

Minerals yearbook 1941. Year 1941 1943

Shore, F. M.

Washington, D. C.: Bureau of Mines : United States Government Printing Office, 1943

https://digital.library.wisc.edu/1711.dl/PPYAWXJZXOESO8L

http://rightsstatements.org/vocab/NoC-US/1.0/

As a work of the United States government, this material is in the public domain.

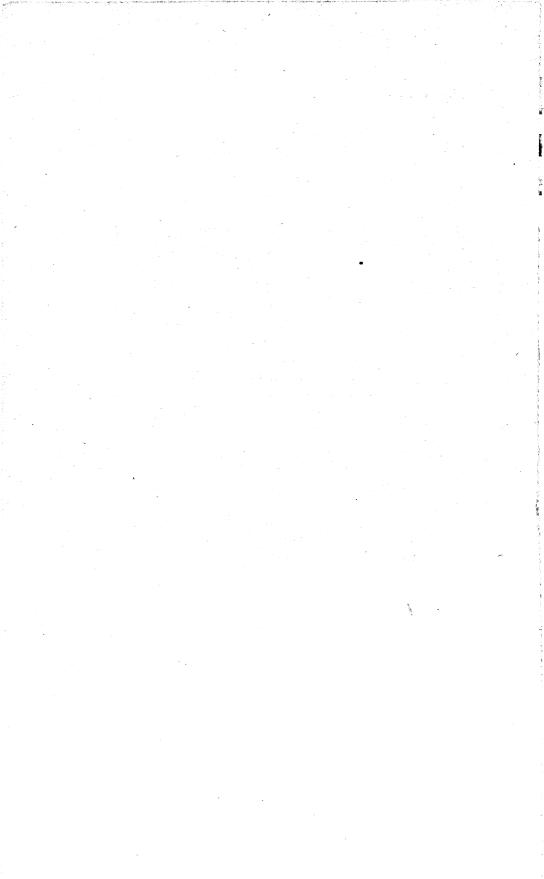
For information on re-use see: http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

UNITED STATES DEPARTMENT OF THE INTERIOR

HAROLD L. ICKES, Secretary


BUREAU OF MINES R. R. SAYERS, Director

MINERALS YEARBOOK 1941

Prepared under the direction of F. M. SHORE, Assistant Chief Economics and Statistics Service

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON: 1943

MNK Gology 561341

MNK
APR 13 1944

FOREWORD

The rapid development of the stupendous program of national defense in 1941, plus the mounting needs of the democratic nations at war with the Axis Powers, fostered an unprecedented demand for the mineral raw materials that are indispensable to the successful conduct of modern military operations. As soon as this country entered the worldwide conflict in December, the demand for materials became more acute, and at the same time shipments from foreign sources were seriously curtailed. Under the growing pressure for mineral supplies, especially those in which the resources of the United States are deficient, the Bureau of Mines was called upon to exert its efforts to the utmost in the search for domestic sources of the needed minerals, in developing methods for recovering necessary metals from the lowgrade ores available in this country, and in supplying accurate, current, and comprehensive data regarding production, distribution, consumption by uses, and stocks of mineral supplies required for military and civil needs. Moreover, the work of the Bureau on health and safety was stepped up to meet the conditions arising from rapid increase in the productive activities of the mineral industries and the additional hazards resulting therefrom.

The achievements of the mining and metallurgical industries in an attempt to meet the tremendous need for mineral supplies constituted a notable contribution to the remarkable progress of the defense program during 1941. The record of the mineral industries in helping to prepare the country for the eventuality of the war forced upon it on December 7, 1941, is presented and analyzed in the present volume of Minerals Yearbook for the information and guidance of Government, industry, and the general public, both in the present and in future years. Although the bound volume of Minerals Yearbook cannot for the present be released for general distribution because of the confidential material it contains relating to strategic and critical minerals, the several chapters covering the other mineral commodities are printed separately and made available for the use of industry and

the general public.

Despite the large increase in the volume of inquiries necessarily imposed by Government upon business in the all-out program of preparation for national defense, the response of the mineral industries and other interests to the fact-finding surveys of the Bureau of Mines has been generous and prompt. It is a pleasure to acknowledge here the cordial assistance of the many individuals and agencies furnishing the data that have enabled the Bureau of Mines to compile this comprehensive record of developments in the mineral industries during the important year of 1941. The limits of space preclude mention of the thousands of contributors to this great fund of factual information, but their assistance has been an indispensable factor of the prepared-

ness program. An especially valuable part of this cooperation is that supplied by State officials who have assisted in collecting mineral statistics within their respective jurisdictions, thus eliminating duplication of effort by State and Federal agencies and promoting more accurate statistics. The State agents cooperating in the 1941 canvass were: Stewart J. Lloyd, acting State geologist, University, Ala.; Herman Gunter, State geologist, Tallahassee, Fla.; Garland Peyton, director, division of mines, mining, and geology, department of natural resources, Atlanta, Ga.; M. M. Leighton, chief, and Walter H. Voskuil, mineral economist, State geological survey division, Urbana, Ill.; A. C. Trowbridge, director, Iowa Geological Survey, Iowa City, Iowa; Raymond C. Moore, State geologist, Lawrence, Kans.; Edward B. Mathews, director, department of geology, mines, and water resources, board of natural resources, Baltimore, Md.; R. A. Smith, State geologist, Lansing, Mich.; H. A. Buehler, State geologist, Rolla, Mo.; Meredith E. Johnson, State geologist, Trenton, N. J.; Jasper L. Stuckey, State geologist, Raleigh, N. C.; Robert H. Dott, director, Oklahoma Geological Survey, Norman, Okla.; E. P. Rothrock, State geologist, Vermillion, S. Dak.; E. H. Sellards, director, bureau of economic geology, Austin, Tex.; Arthur Bevan, State geologist, and Linwood H. Warwick, chief clerk, Virginia Geological Survey, Charlottesville, Va.; Harold E. Culver, supervisor. division of geology, department of conservation and development, Pullman, Wash.; Paul H. Price, State geologist, Morgantown, W. Va.; and E. F. Bean, State geologist, Madison, Wis. In addition, B. D. Stewart, Department of Mines, Juneau, Alaska, and Walter W. Bradley, State mineralogist, San Francisco, Calif., assisted in the compilation of statistics for Alaska and California, respectively.

R. R. SAYERS, Director.

August 31, 1942.

CONTENTS

Foreword, by R. R. Sayers
introduction, by F. M. Shore
Part I. General summary:
Review of the mineral industries in 1941, by E. W. Pehrson
Statistical summary of mineral production, by Martha B. Clark
Part II. Metals:
Aluminum and bauxite, by Herbert A. Franke and M. E. Trought
Antimony, by T. H. Miller and A. L. Ransome
Arsenic and bismuth, by Herbert A. Franke
Bauxite and aluminum, by Herbert A. Franke and M. E. Trought_
Bismuth and arsenic, by Herbert A. Franke and W. E. Hought-
Codmission by Allon E Matthews
Cadmium, by Allan F. Matthews
Chromite, by Frederick Betz, Jr
Cobalt, by H. W. Davis
Cobalt, by H. W. Davis Copper, by T. H. Miller and H. M. Meyer Ferro-alloys, steel, iron ore, and pig iron, by Norwood B. Melcher
Ferro-alloys, steel, iron ore, and pig iron, by Norwood B. Melcher
Gold and silver, by Chas. W. Henderson and C. E. Needham
Gold, silver, copper, lead, and zinc in—
Alaska, by Chas. W. Henderson and A. J. Martin
Arizona, by G. E. Woodward and Paul LuffCalifornia, by Charles White Merrill and H. M. Gaylord
California, by Charles White Merrill and H. M. Gaylord
Central States, by A. J. Martin
Colorado, by Chas. W. Henderson and A. J. Martin
Eastern States, by A. J. Martin
Eastern States, by A. J. Martin Idaho, by G. E. Woodward and Paul Luff
Montana, by G. E. Woodward and Paul Luff
Nevada, by Charles White Merrill and H. M. Gaylord
New Mexico, by Chas. W. Henderson and A. J. Martin
Oregon, by Charles White Merrill and H. M. Gaylord
South Dakota, by Chas. W. Henderson and S. A. Gustavson
Texas, by Chas. W. Henderson and S. A. Gustavson
Utah, by G. E. Woodward and Paul Luff
Washington, by G. E. Woodward and Paul Luff
Wyoming, by Chas. W. Henderson and S. A. Gustavson
Iron and steel scrap, by Harold E. Carmony
Iron one pig iron forms allows and steel by Morroad R. Molahor
Iron ore, pig iron, ferro-alloys, and steel, by Norwood B. Melcher
Lead, by T. H. Miller and A. L. Ransome Lead and zinc pigments and zinc salts, by H. M. Meyer and A. W
Mills I
MitchellMagnesium, by Herbert A. Franke and M. E. Trought
Magnesium, by Herbert A. Franke and M. E. Trought
Manganese and manganiferous ores, by Norwood B. Melcher Mercury, by H. M. Meyer and A. W. Mitchell
Mercury, by H. M. Meyer and A. W. Mitchell
Minor metals, by Allan F. Matthews
Molybdenum and vanadium, by Frederick Betz, Jr., and A. P. van
Siclen
Nickel, by H. W. Davis
Platinum and allied metals, by H. W. Davis
Platinum and allied metals, by H. W. Davis. Secondary metals—nonferrous, by F. H. Wright and J. H. Schaum.
Silver and gold, by Chas. W. Henderson and C. E. Needham
Tin, by E. W. Pehrson and J. B. Umhau
Tungsten, by H. W. Davis
Vanadium and molybdenum, by Frederick Betz, Jr., and A. P. van
Siclen
Zinc, by A. L. Ransome
Zinc and lead pigments and zinc salts, by H. M. Meyer and A. W
Mitchell

CONTENTS

Part III. Nonmetals:
Abrasive materials, by Robert W. Metcalf
Asbestos, by Oliver Bowles and A. C. Petron
Asphalt and related bitumens, by A. H. Redfield
Barite, witherite, and barium chemicals, by Bertrand L. Johnson and
K. G. Warner
Carbon black, by G. R. Hopkins and H. Backus
Cement, by Uliver Bowles and E. V. Balser
Clays, by Paul M. Tyler and A. Linn
Coal:
Bituminous coal and lignite————————————————————————————————————
Pennsylvania anthracite, by J. A. Corgan, Robert H. Ridgway.
and A. V. Coleman
Coke and byproducts, by Robert H. Ridgway, J. A. De Carlo, and
M. M. Otero. Crude petroleum and petroleum products, by A. G. White, G. R.
Crude petroleum and petroleum products, by A. G. White, G. R.
Hopkins, H. A. Breakey, and A. T. Coumbe
Cryolite and fluorspar by H W Davis
Feldspar, by Robert W. Metcalf Fluorspar and cryolite, by H. W. Davis
Fluorspar and cryolite, by H. W. Davis
Fuel briquets and packaged fuel, by G. S. Goodman
Gem stones, by Sidney H. Ball
Gravel and sand, by Oliver Bowles and G. E. Tucker
Gravel and sand, by Oliver Bowles and G. E. Tucker Ground soapstone, tale, and pyrophyllite, by Bertrand L. Johnson and
K. G. Warner
LGypsum, by Forrest T. Moyer
K. G. Warner
Lime, by Oliver Bowles and F. D. Gradijan
Liquefied petroleum gases and natural gasoline, by F. S. Lott and
A. T. Coumbe
A. T. Coumbe Magnesium compounds and miscellaneous salines, by Alvin Schallis
K. G. Warner
K. G. Warner Mica, by Paul M. Tyler and K. G. Warner
Minor nonmetals, by Paul M. Tyler and Charles L. Harness
Natural gas, by F. S. Lott and G. R. Hopkins
Minor nonmetals, by Paul M. Tyler and Charles L. Harness Natural gas, by F. S. Lott and G. R. Hopkins Natural gasoline and liquefied petroleum gases, by F. S. Lott and
A. T. Coumbe
Packaged fuel and fuel brigueta by C C Coodman
Peat, by Joseph A. Corgan
Petroleum products and crude netroleum by A C White C D
Hopkins, H. A. Breakey, and A. T. Coumbe.
Peat, by Joseph A. Corgan Petroleum products and crude petroleum, by A. G. White, G. R. Hopkins, H. A. Breakey, and A. T. Coumbe Phosphate rock, by Bertrand L. Johnson and K. G. Warner Potash, by J. H. Hedges Pyrites and sulfur, by Allan F. Matthews and A. W. Mitchell Purpophyllite ground georetone and talk by Bertra d. I. Library
Potech by I H Hodros
Pyrites and sulfur by Allan F. Matthews and A. W. Mitabell
Pyrites and sulfur, by Allan F. Matthews and A. W. Mitchell———————————————————————————————————
1 yrophymic, ground soapstone, and taic, by Dertrand 1. Johnson and
K. G. Warner
Salt, by F. E. Harris and K. G. Warner Sand and gravel, by Oliver Bowles and G. E. Tucker
Sand and gravel, by Oliver Bowles and G. E. Tucker
State, by Oliver Bowles and M. S. Jensen
Stone, by Oliver Bowles and M. S. Jensen
Sulfur and pyrites, by Allan F. Matthews and A. W. Mitchell
Talc, pyrophyllite, and ground soapstone, by Bertrand L. Johnson and
K. G. Warner Witherite, barium chemicals, and barite, by Bertrand L. Johnson and
witherite, barium chemicals, and barite, by Bertrand L. Johnson and
N. G. warner
Part IV. Mine safety:
Employment and accidents in the mineral industries, by W. W.
Adams
Index, by M. E. Winslow

INTRODUCTION

The great increase in the activities of the mineral industries during 1941 in filling the needs of the national defense and lend-lease programs resulted in new annual production peaks for many important minerals. To supply the increasing demands from defense agencies for current information regarding supplies, distribution, uses, and stocks of the needed mineral commodities, the work of the Bureau of Mines was progressively oriented to service in this field. Of the vast amount of new information thus obtained from producers and consumers of mineral products during 1941, much is included in the present Yearbook.

Because of censorship requirements, considerable confusion and delay have been experienced in preparing Minerals Yearbook, 1941. The compilation of Yearbook material has been delayed further by the loss to Federal war agencies of keymer from the commodity divisions of the Economics and Statistics Service. In May the Department of Commerce ceased to publish data covering the export of specific commodities by countries of destination subsequent to March 31. In the latter part of the year it also ruled that all figures of imports and exports later than those covering September should be

withheld from publication.

To provide uniform control over the publication and use of Federal statistical information that would give aid and comfort to the enemy, Executive Order 9103 was issued by the President March 18, 1942; it ordered that

The Director of the Bureau of the Budget shall maintain a continuous surveillance of governmental publication of statistical data and shall determine in any instance whether the publication of statistical data by any Government agency would be in accordance with governmental policy designed to guard against the unauthorized disclosure of vital information as such policy is formulated by appropriate authority.

The Committee on War Information •recommended that the Minerals Yearbook be classified by the Bureau of Mines as "confidential," in the military sense of the term, with a limited number of copies distributed for official use only and the remainder of the edition impounded for the duration of the war. However, upon recommendation of the Bureau of Mines, the Bureau of the Budget agreed that only those sections of the Minerals Yearbook dealing with certain mineral commodities designated as strategic or critical by the Army and Navy Munitions Board should be considered confidential. separate chapters that discuss strategic or critical minerals only are therefore considered confidential, and their distribution is being restricted to a limited list of authorized users in Federal agencies. those composite chapters of the Yearbook that cover both strategic and critical minerals and others not in such category, discussion of the former is being restricted to material not of a confidential character, and the chapters will be released for general distribution. chapters of the Minerals Yearbook will be released for general distribution and will include the customary statistics, with the exception of

data on imports and exports for the last 3 months of the year and those

covering exports by countries of destination since March 31.

As Minerals Yearbook, 1941, contains a great deal of information regarding strategic and critical minerals that cannot be released to the public at this time, the volume is issued upon a confidential basis and will be available only to authorized users in Federal agencies having need for the information it contains. The Yearbook will not be available for general distribution until its contents can be made public without disclosing information of significant military value to the enemy.

It will be noted that the continuity of some of the statistical series regularly carried in the Minerals Yearbook has been interrupted necessarily, but temporarily, because of the Government's policy regarding the disclosure of vital information. These interrupted series will be brought up to date in subsequent issues of the Yearbook when the confidential data omitted herein can be released without

giving aid and comfort to the enemy.

Acknowledgments.—The collection of economic and statistical data in relation to the bituminous-coal industry was transferred from the Bureau of Mines to the National Bituminous Coal Commission in 1937. Since that transfer, the Yearbook chapters relating to bituminous coal have been kindly contributed by the Commission and its successor, the Bituminous Coal Division, United States Department of the Interior; this cooperation is gratefully acknowledged.

The data on imports and exports in Minerals Yearbook were obtained through the cooperation of the Bureau of Census, United

States Department of Commerce.

The Bureau of Mines depends on the good will and voluntary cooperation of those interested in minerals for the data comprised in its statistical program. It is a pleasure to acknowledge the generous support of thousands of individual mine operators, distributors, and consumers, as well as that received from the many public officials and agencies that have returned questionnaires or otherwise supplied information. The Bureau, furthermore, is indebted to a large number of trade associations for liberal contributions of data.

Credit is accorded the many members of the Bureau's staff who assisted in the preparation, editing, and arrangement of the Yearbook material. Especial mention is due the following members of the staff, who have been most active and assiduous in contributing to the preparation of the Yearbook manuscript for publication. Martha B. Clark, besides preparing the statistical summary of mineral production each year, has been largely responsible for the maintenance of continuity of data and uniformity of statistical presentation throughout the Minerals Yearbook volumes. Mabel E. Winslow acted as editorial consultant and was responsible for the editing of the entire manuscript. The Graphic Section of the Bureau, in Pittsburgh, Pa., Louis F. Perry, chief, prepared most of the charts. Max Abel assisted in administrative details of the Yearbook program and nad charge of estimates of space requirements for printing. John H. Ady, chief of the Publications Section of the Interior Department and liaison officer between the Department and the Government Printing Office, contributed invaluable counsel in the development and execution of the publishing program. F. M. SHORE.

PART I. GENERAL SUMMARY

REVIEW OF THE MINERAL INDUSTRIES IN 1941

By E. W. Pehrson

SUMMARY OUTLINE

	Page	the state of the s	Page
Introduction	ΙX	National defense activity—Continued.	
Extension of Axis control of mineral re-		Office of Price Administration	. XIX
sources	x	Board of Economic Warfare	
Production		Office of Petroleum Coordinator for War	
Value of mineral output		Office of Solid Fuels Coordinator for War.	. XX
Trends in physical volume of production	XII	Bureau of Mines	. XX
Stocks	XIII	Geological Survey	. XXI
Consumption	XIV	Metals Reserve Co	
Prices	XIV	Defense Plant Corporation	
Employment and safety	xv	Government stock piles.	. XXII
National defense activity	XVI		XXIII
Office for Emergency Management	XVIII	Procurement of minerals from Latin America.	XXIII
Was Production Board	VVIII		

INTRODUCTION

Mineral production in the United States in 1941 responded to the Nation's mobilization for war by exceeding all previous records. The physical volume of production was 7 percent above the previous peak, established in 1940, 17 percent above the predepression peak of 1929, and 49 percent above production levels of the World War of 1917-18. The output was valued at \$6,817,300,000, 21 percent above 1940 but Although mineral 2 percent under the peak value recorded in 1920. prices increased moderately in 1941—approximately 9 percent over 1940—the record shows that they were still below the level of prices in general. A heavy demand for minerals persisted throughout the year and in many instances was unsatisfied by available supplies; as a consequence, civilian uses were substantially curtailed to maintain military production schedules. Industry inventories trended downward, and efforts were made to increase production at home and abroad, particularly in Latin America.

The transition from a defense to a war economy in December 1941 had no immediate effect on the domestic mineral industry other than the added impetus for more production prompted by the realization that the Nation was actually at war. The success of Axis aggression and submarine warfare prior to Pearl Harbor had provoked major problems in maintaining supplies of those minerals normally obtained in quantity from the Eastern Hemisphere, so that with the declaration of war plans for meeting this threat were well advanced. The success of the submarine attack on American shipping off the Atlantic coast and in the Caribbean early in 1942 greatly aggravated the situation,

however; in these circumstances it was inevitable that 1942 would bring more rigid Federal controls in the production and distribution of mineral raw materials, as well as greater emphasis on lessening our dependence on distant supplies by development of marginal resources

nearer home.

Extension of Axis control of mineral resources.—The success of the Axis conquest, in the light of the relatively small material resources available to it at the beginning of the war, must be acknowledged as an outstanding achievement for the dictator nations and a major setback for the democracies. Not only have these aggressions mitigated to a considerable extent serious deficiencies in minerals for the Axis, but they have also cut off important sources of supply upon which the United Nations have depended for many years. Before their expansion Germany, Japan, and Italy occupied only 3 percent of the land area of the world, comprised only 10 percent of the population, and controlled not more than 5 percent of the mineral wealth. On July 1, 1942, they dominated 13 percent of the land area, 35 percent of the population, and about a third of the mineral resources, and there was no assurance that their aggression would not extend farther before the tide of victory turned. Control of Australia and the isolation of virtually all of Asia and North Africa could not be ruled out as an impossibility at that time.

The direction of Axis expansion has been influenced to a considerable extent by mineral objectives. Hitler's drive to the southeast and Japan's move to the southwest struck at rich and strategic mineral areas that heretofore have contributed much to the industrial strength of the United Nations. The shutting off of supplies of tungsten and antimony from China and of tin, manganese, and chromite, as well as rubber, manila fiber, and other nonmineral commodities from southeastern Asia already constitutes a serious loss, and if the threatened pincer movement on the Indian Ocean isolates the Asiatic Continent the Allies face the loss of more important sources of manganese and chromite, strategic mica, and flake graphite. Russia's military power has been crippled by the loss of the manganese, iron, and coal industries of the Ukraine. At the same time, the most serious deficiency of the Axis—petroleum—has been alleviated in part by Japan's occupation of Malaya and the Netherlands Indies. Germany has obtained valuable raw materials and facilities for manufacturing munitions in Europe and seeks the rich petroleum prizes of

the Near East. The numerical significance of Axis gains in mineral wealth is illustrated by the accompanying table, which shows the percentage of Axis control of world production and capacity in various commodities before expansion began, as of July 1, 1942, based on battle lines on that date, and the possible control that would result from conquest of Australia and isolation of Asia and North Africa by control of the Indian Ocean and the Mediterranean. The figures are based on production in 1940, the latest year for which reliable estimates can be They do not reflect the expansion in production that has occurred since 1940 or the effects of "scorched-earth" activities in occupied countries. Consequently the data can be considered only as an approximate indication of relative mineral strength of the

antagonists in the present world conflict.

Growth in Axis control of mineral production resulting from conquest, in percent of world total

Mineral	Before expan- sion	July 1, 1942	Pos- sible ¹	Mineral	Before expan- sion	July 1, 1942	Pos- sible 1
Petroleum Refinery capacity Coal Iron ore Steel capacity Copper Refinery capacity Lead Zinc Smelter capacity	1 5 27 6 20 5 11 7 16	7 11 53 46 34 10 17 22 27 44	22 24 59 55 44 20 21 45 44 51	Tin Aluminum Bauxite Magnesium Manganese ore Chromite Tungsten Nickel Mercury Antimony	1 33 11 67 2 3 6 1 52 2	72 54 49 68 30 30 64 4 68 32	74 61 62 72 78 68 67 12 74

¹ Assuming Australia, Asia, and North Africa come under Axis domination.

As indicated above, the control over mineral resources so far gained by the Axis cannot be considered as an equivalent gain in military power. For example, tungsten and antimony in the interior of China, not yet occupied by Japanese troops, is largely cut off from the United Nations but is only partly available to the Axis. Restoration of production schedules and transportation in newly conquered territory is at best a difficult job, and doubtless many production facilities have been destroyed under the "scorched-earth" programs of the invaded countries. Occasionally refining capacity has been captured, but raw materials to maintain operations are not available. Many of the European oil refineries are reported to be inactive for want of crude petroleum: Despite these difficulties, the improved mineral position of the Axis countries has strengthened their capacity for war and at the same time aggravated the raw-material problems of the United Nations, in consequence prolonging the duration of the conflict.

These losses in mineral supplies, while indeed serious, are by no means decisive. The industrial war power of the United States and its Allies when fully mobilized will outweigh that of the Axis by a considerable margin. Recently the Government advised the Nation that the United Nations war production already has surpassed that of the Axis but that the program must move forward even faster. Potential supplies of all essential minerals are adequate for this purpose. United States has substantial stocks of many of the strategic minerals, the less essential civilian uses are being curtailed, and production at home and abroad is being stepped up. The immensity and diversity home and abroad is being stepped up. The immensity and diversity of the mineral wealth of the Western Hemisphere assure ample raw materials for successful prosecution of the war, if new production can be developed in time. Winning the war is thus chiefly a problem of quickly converting potential mineral output into usable material and of speedy organization and efficient use of manpower and plant to employ these mineral materials in effective military effort before the enemy consolidates its holdings and becomes intrenched in impregnable military positions.

PRODUCTION

Value of mineral output.—In 1941, as in 1940, the quantity of minerals produced exceeded all previous records; but the value failed to reach that of the peak year 1920, when prices of minerals, partic-

ularly coal, were abnormally high. The total value of the mineral output of the United States for 1941, approximately \$6,817,300,000, was 2 percent below that of 1920 but exceeded all other years. It was 21 percent over 1940. Average prices in 1941 were roughly 9 percent above those in 1940.

Of the total value of mineral production in 1941, fuels contributed \$3,628,900,000 (53 percent), metals \$2,137,100,000 (31 percent), and nonmetallics other than fuels \$1,051,300,000 (16 percent). The value of metal production increased 27 percent, that of fuels 16 percent, and other nonmetallics 28 percent. Figure 1 shows the growth in value of various branches of mineral production from 1880 to 1941. Up to 1908 metals comprised the principal product in most years, but since then fuels have consistently ranked first except for 1915 and 1916. The predominant position of the mineral fuels during the last three decades has been due largely to the phenomenal growth of the petro-

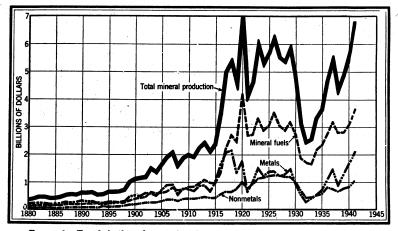


FIGURE 1.—Trends in the value of mineral production in the United States, 1880-1941.

leum and natural-gas industries. In 1941 oil and gas wells contributed products valued at over \$2,300,000,000, or 34 percent of the total

mineral output.

Trends in physical volume of production.—Figure 2 compares the physical volume of mineral production during the last 42 years with industrial and agricultural production and with population growth, each expressed in terms of an index based on the average for 1935–39. The long-time trend of production during this 42-year period has been steadily upward, although year-to-year and cyclical fluctuations have been prominent. Production of minerals, which furnish tools, fuels, and raw materials for manufacture, has naturally been closely correlated with the trend of industrial production, experiencing the same violent ups and downs, whereas agricultural production has exhibited more moderate fluctuations.

¹ The following indexes have been used—volume of farm production, U. S. Department of Agriculture; mineral production, 1900-18, from Warren Persons' Forecasting Business Cycles; mineral production of 1919-41 and industrial production, Federal Reserve Board; total population of the United States, Bureau of the Census.

The importance of metals in the manufacture of armament and other defense needs is shown by the sharp up-swing of mineral production between 1914 and 1918 and by the all-time high records established in 1940 and 1941 in both mineral and industrial output. Because production of coal for domestic use and petroleum for automobile fuel, which have a pronounced effect on the trend of mineral output, does not respond proportionately to increases in the rate of manufacturing activity and is more stable, the index of industrial production tends to exceed that of mineral production in periods of prosperity and to fall below during depressions. Thus the sharp

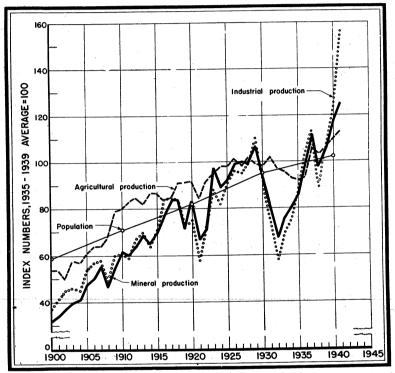


FIGURE 2.—Comparison of growth of physical volume of mineral production with that of agricultural and industrial production and population, 1900-41.

advance of the index of industrial activity over the index of mineral output in 1941 should not be interpreted as a true indication of the lag in mineral output. Such lag as did exist in 1941 was offset in part by larger net imports of mineral raw materials and liquidation of stocks.

STOCKS

Mineral production, particularly of metals, did not pace the rapid increase in manufacture in 1941, and as a consequence inventories trended downward. Industry stocks of copper, lead, and zinc declined during the year, as well as those of manganese, tin, and

mercury. Consumers' stocks of pig iron likewise declined, and the quantity of iron and steel scrap on hand at suppliers' and consumers' plants was considerably lower at the end than at the beginning of 1941. Contrary to the general trend in metal inventories, stocks of tungsten and chromite increased as a result of large importations. Inventories of cement and petroleum decreased somewhat, but those of anthracite and bituminous coal rose appreciably.

Stock-piling activity of the Government was greatly expanded during the year, and the number of commodities being accumulated

was increased considerably.

CONSUMPTION

Consumption of minerals exceeded all previous records in 1941, notwithstanding the fact that many less essential civilian uses were Despite the frequent cry of shortages, the record shows outstanding increases in consumption to new peaks of virtually all metals and most of the important nonmetallic minerals. Among the metals, iron, copper, lead, zinc, aluminum, magnesium, tin, manganese, chromium, and other alloying elements exceeded former peaks by considerable margins. Domestic demand for petroleum reached a new high at least 55 percent above the 1929 demand. Contrary to the general trend, consumption of anthracite and bituminous coal, though substantially above that in 1940, was still below records set many years ago. The use of cement in 1941 likewise advanced over 1940 but did not equal the predepression high. Other important nonmetallic minerals, however, including raw clay, lime, phosphate rock, salt, sand and gravel, stone, and sulfur, established new peak rates of use in 1941.

The tremendous quantities of minerals consumed in 1941 reflected the rapid rate at which the United States was mobilizing for war. The Federal Reserve Board index of industrial production (1935-39 average=100) again reached a new high by rising from 123 (revised) in 1940 to 156 in 1941. In 1929 the index was 110. Except for a 3-point drop in April, industrial activity continued upward throughout 1941, advancing from 140 (adjusted index) in January 1941 to 168 in December. Aircraft, tanks, ships, guns, and other accouterments of war were substantial contributors to this upward surge; but the abrupt rise in construction, which had lagged behind general industrial activity before 1941, also had an important effect on the demand for minerals. The Federal Reserve Board index of construction contracts awarded (value basis, 1923-25=100) rose from 81 in in 1940 to 122 in 1941—the highest since the peak of 135 established However, construction contracts other than residential soared to a peak of 149 compared with 89 in 1940 and 142 in 1929, as a result of the large volume of defense construction inaugurated during the past few years.

PRICES

No precise composite index of average prices of mineral raw materials is available, but a weighted average for 24 major commodities, which comprised approximately 98 percent of the total value of mineral production in 1941, indicates an increase of about 9 percent

in unit sales realizations by producers in 1941 compared with 1940. A somewhat larger rise in fuel and metal prices was offset by only a moderate increase in the unit values of other nonmetallic minerals.

According to the Bureau of Labor Statistics, the wholesale price index (1926=100) of metals and metal products rose from 95.8 in 1940 to 99.4 in 1941. That of nonferrous metals, including some fabricated products, advanced from 81.3 to 84.4. Prices for copper, lead, mercury, tin, and zinc made gains, but that of aluminum dropped The index for iron and steel products increased from 95.1 to 96.4; quotations for pig iron and scrap were several points higher, but iron-ore prices again were lower. The fuels were consistent in upward movements. The price index for anthracite rose from 71.7 to 82.7, bituminous coal from 78.9 to 104.3, and petroleum and its products from 50.0 to 57.0. Except for crushed stone, which declined fractionally, building materials (brick and tile, cement, lime, and sand and gravel) recovered somewhat from the lower prices of 1940. Phosphate rock and potash prices likewise rose. The index number of wholesale prices for all commodities increased from 78.6 in 1940 to 87.3 in 1941.

Throughout 1941 mineral prices were under surveillance by the Federal price-control agencies, and much higher prices that would have been justified by supply-demand relationships were avoided, chiefly through voluntary cooperation of the industries. instances the Government imposed rigid price ceilings.

Mineral prices in 1941 were still far below previous peaks. The 1941 index for nonferrous metals was 20 percent lower than in 1929 and 42 percent below 1918. The iron and steel index was about 2 percent higher than in 1929 but 34 percent below that in 1918. Prices for petroleum products, although somewhat improved over recent lows, were still 20 percent below 1929 and 58 percent below The 1941 index for all commodities was 8 percent below 1929 and 34 percent lower than in 1918.

EMPLOYMENT AND SAFETY

Gains in employment noted a year ago for the mineral industries of the United States were continued in 1941; more men were employed at the mines, and more man-hours were worked. Incomplete reports from mines, quarries, mills, smelters, and coke ovens indicate a total of 829,000 men employed, an increase of 27,000 over the number of employees reported for 1940. Even more significant than the increase in number of workers was the increase over 1940 in the number of man-hours worked; the latter amounted to 8 percent and the former to less than 4 percent for all mineral industries combined. larly notable were the increases in employment at beehive coke ovens, at mines producing minor but strategic metals such as quicksilver, tungsten, and manganese, and at mines producing such major metals as iron, copper, zinc, and lead. Small gains in man-hours worked were reported for gold lode mines, although gold placer mines reported a decline. Coal mines—both bituminous and Pennsylvania anthracite—also reported more man-hours of work; but these gains, although larger in actual number of man-hours because employment in coal mining is the largest among the various mineral industries, were

proportionately smaller than those at some classes of mines engaged in

the production of metallic ores.

Fewer deaths were caused by accidents in the mineral industries of the United States in 1941, but this gratifying decline was offset by an The chief reason for the increase in the number of nonfatal injuries. decline in fatalities was the reduction in deaths from major disasters in coal mines—disasters in which five or more lives are lost. Whereas six major disasters causing 276 deaths in all occurred in 1940, reports for 1941 showed eight disasters with 73 deaths resulting therefrom. This improvement in the major-disaster situation caused the over-all death toll of the mineral industries to drop from 1,716 in 1940 to an estimated 1,620 in 1941. All of the major disasters in 1941 occurred in bituminous-coal mines; none has occurred in a Pennsylvania anthracite mine since June 2, 1938.

The combined fatality rate for all mineral industries in 1941 was 1.16 per million man-hours worked, which compared favorably with a rate of 1.33 for 1940. The corresponding rate for nonfatal injuries was 65.11, as against 64.08 for the previous year. This rise in accident frequency probably resulted from the intense pressure on the mineral industries for production in 1941, which necessitated the employment

of inexperienced help at many mines.

Nearly all branches of the mineral industries—such as coal mines, copper mines, iron mines, and limestone quarries —had higher accidentfrequency rates in 1941 than in 1940. However, lower and therefore more favorable rates were reported at lead-zinc mines in the Missis-

sippi Valley States, slate quarries, and ore-dressing plants.

On May 7, 1941, Congress enacted a coal-mine inspection law, which, among other things, required the Bureau of Mines to obtain additional information concerning accidents in coal mines. Expanded surveys began April 1, 1942. It is expected that the accident facts now being reported will, under a continuing analysis, prove helpful in achieving the main objectives of the law—namely, the prevention of accidents and the lowering of accident costs that have heretofore been associated with the production of coal in the United States.

Accidents to workers engaged in the production of petroleum--a mineral vital to mechanized warfare—have never been reported systematically. A survey of accident frequency during the calendar year 1941 was begun by the Bureau of Mines in the spring of 1942. Early reports indicate that accidents during 1941 occurred at a rate of 20.21 for each million man-hours of work performed at the produc-

ing properties.

NATIONAL DEFENSE ACTIVITY

The progress of World War II, culminating in the declaration by the United States of war against the Axis Powers in December 1941, promoted rapid expansion of the Government's organization for industrial mobilization. A brief summary of activities pertaining to the mineral industry, which appeared in this chapter of Minerals Yearbook—Review of 1940, is carried forward in the following digest of subsequent developments up to about August 1, 1942.

At the beginning of 1941 administration of the mineral aspects of the Government defense program was lodged in a variety of temporary agencies, including the Office for Emergency Management, Office of Production Management, Advisory Commission to the Council of National Defense, Administrator for Export Control, Office for Coordination of Commercial and Cultural Relations between the American Republics, National Defense Research Committee, Metals Reserve Co., and Defense Plant Corporation. Besides these, the permanent Government agencies had greatly expanded their activity in the mineral field.

The temporary agencies were reorganized during the year to meet changing conditions, and several new ones were created. By the end of 1941 all original functions of the Advisory Commission to the Council of National Defense had been transferred to other agencies, so that the Commission became virtually nonexistent. The Office of the Administrator for Export Control was transferred to a new Economic Defense Board on September 15, 1941, which agency became the Board of Economic Warfare on December 17, 1941. Office for Coordination of Commercial and Cultural Relations Between the American Republics, formerly part of the National Defense Council, was transferred on July 30, 1941, to the Office for Emergency Management under the title of Office of the Coordinator of Inter-American Affairs. The National Defense Research Committee, created by the Council of National Defense in June 1940, was transferred on June 28, 1941, to the newly organized Office of Scientific Research and Development under the Office for Emergency Manage-Another new agency created during 1941 was the Office of Price Administration and Civilian Supply, which on April 11, 1941, absorbed the Price and Consumer Divisions of the National Defense Advisory Commission but on August 28, 1941, was succeeded by the Office of Price Administration, under the Office for Emergency Management; at this time the civilian supply functions were transferred to the Office of Production Management. The Office of Petroleum Coordinator for National Defense (later War) was established on May 28, 1941, with the Secretary of the Interior designated as Coordinator. On November 5, 1941, the Secretary of the Interior also was requested to serve as Coordinator of Solid Fuels. Other agencies created in 1941 with functions more indirectly related to the mineral industries included the National Defense Mediation Board, which was succeeded on December 17, 1941, by the National War Labor Board; Office of Lend-Lease Administration; Supply, Priorities, and Allocations Board; Office of Defense Transportation; Office of Censorship; and others of minor significance to the mineral industries.

Some of the afore-mentioned agencies were created after the declaration of war on December 8, 1941. On January 16, 1942, the War Production Board replaced the Office of Production Management, and the Supply, Priorities, and Allocations Board, which had been set up as a superagency, with Donald M. Nelson as Chief, to determine policy for and coordination of the various activities relating to supply of materials and commodities and their allocation to defense and civilian uses. A War Manpower Commission was established on April 18, 1942, with Paul V. McNutt as Chairman, to formulate plans and programs and establish basic national policies to assure the most effective mobilization and maximum utilization of the Nation's manpower in the prosecution of the war. The labor supply and training functions of the Labor Division of the War Production Board were

transferred to the new agency, as well as related activities of other

Government agencies operating in the employment field.

Office for Emergency Management.—This is essentially an administrative agency of the Executive Office designed to maintain liaison between the President and the national war agencies. During 1941 most of the temporary defense and war bureaus were coordinated through the Office for Emergency Management, and by the end of the year all the functions of the Advisory Commission to the Council of National Defense had been transferred to agencies under its jurisdiction.

War Production Board.—At the close of 1941 the Office of Production Management, predecessor of the War Production Board, was operating under the supervision of William S. Knudsen, Director General, and Sidney Hillman, Associate Director General. organization had been expanded from its original four divisions— Production, Priorities, Purchases, and Labor-to include the following bureaus and divisions:

Bureau of Clearance of Defense Industry Advisory Committees—Sidney J. Weinberg, Chief.

Bureau of Industrial Conservation—Lessing J. Rosenwald, Chief. Bureau of Research and Statistics—Stacy May, Chief.

Production Division—W. H. Harrison, Chief.

Production Division—W. H. Harrison, Chief.
Purchases Division—Douglas MacKeachie, Chief.
Priorities Division—Donald M. Nelson, Chief.
Labor Division—Sidney Hillman, Chief.
Division of Contract Distribution—Floyd B. Odlum, Chief.
Division of Civilian Supply—Leon Henderson, Chief.
Materials Division—W. L. Batt, Chief.

Coincident with the creation of the War Production Board in January 1942, William S. Knudsen was appointed Director of Production for the War Department, with the rank of Lieutenant Gen-Donald M. Nelson was designated as Chairman of the War Production Board. Other members of the Board as of June 1942 were:

Secretary of War. Secretary of the Navy. Federal Loan Administrator. Lieutenant General in charge of War Department production. Administrator, Office of Price Administration. Chairman, Board of Economic Warfare. Director, Labor Division, War Production Board. Special Assistant to the President.

A few changes were made in the general organization of the Board. As of June 1942 a Requirements Committee (W. L. Batt, Chairman) and a Planning Committee (Robert R. Nathan, Chairman) had been established in the office of the Board Chairman. The Bureau of Clearance of Defense Industry Advisory Committees, the Priorities Division, and the Division of Contract Distribution were consolidated in a Division of Industry Operations with J. S. Knowlson as Director. The other divisions and bureaus of the original Office of Production Management were continued with relatively minor internal adjust-A. I. Henderson succeeded W. L. Batt as Chief of the Materials Division, and Wendell Lund replaced Sidney Hillman as Chief of the Labor Division.

Most of the activity of the War Production Board concerned with production and distribution of mineral raw materials was centered in the Materials Division, in which Dr. C. K. Leith served as technical consultant. As of May 1942, the various branches dealing with minerals and their respective chiefs were as follows:

Mining—Dr. Wilbur Nelson.
Stock Pile and Shipping—Dr. William Y. Elliott.
Aluminum and Magnesium—A. H. Bunker.
Chemicals—Dr. Ernest W. Reid.
Iron and Steel—C. E. Adams.
Power—J. A. Krug.
Cork and Asbestos—Fred W. Gardner.
Nickel—H. A. Rapelye.
Tungsten and Molybdenum—M. K. Smith.
Copper—H. O. King.
Zinc—David A. Uebelacker.
Manganese and Chromite—Andrew Leith.
Tin and Lead—Erwin Vogelsang.
Mica and Graphite—Raymond B. Ladoo.
Miscellaneous Minerals—Richard J. Lund.

Office of Price Administration.—Surveillance and control of mineral and scrap metal prices were greatly increased during 1941 as the gaps between supply and demand widened and pressure on prices mounted. Several warnings were issued during the year to discourage upward trends in prices, and several ceilings were imposed. Before passage of the Emergency Price Control Act of 1942, approved January 30, 1942, the agency functioned only under general executive orders, but passage of the act established definite statutory authority for enforcement of price-stabilization measures. The general policy of the Office of Price Administration has been to pay a premium over fixed ceiling prices for submarginal production rather than to stimulate output by a general advance in price levels. Details on the various actions taken during the year are given in the commodity chapters of this volume.

Control of mineral prices is administered through the Industrial Materials Price Division (Clair Wilcox, Director), the Fuels Price Division (George W. Stocking, Chief), and the Industrial Manufacturing Price Division (Donald Wallace, Director). Donald D. Kennedy heads the Iron and Steel Branch of the Industrial Materials Price Division, John Sumner the Zinc, Lead, and Tin Branch, and Carl Holmquist the Copper, Aluminum, and Ferro-alloys Branch; Jesse L. Maury is Chief Premium Price Analyst for copper, lead, and zinc. R. G. Phelps is Chief of the Chemicals Branch of the Industrial Manufacturing Price Division.

Board of Economic Warfare.—Besides exercising control of all foreign trade in minerals, the Board of Economic Warfare plans Government activities in the procurement, development, and production of minerals required from foreign countries for war purposes. The last function is administered through a Metals and Minerals Division, of which Alan M. Bateman is Chief. The Division is com-

posed of the following sections:

Major Ferro-alloys Section—Robert H. Ridgway, Chief. Minor Ferro-alloys Section—Hugh E. McKinstry, Chief. Major Base Metals Section—Herman L. Dauth, Chief. Minor Base Metals Section—William Warfield, Chief. Minor and Rare Metals Section—James S. Baker, Chief. Nonmetallic Mineral Section—Paul M. Tyler, Chief.

As of August 1, 1942, the Board of Economic Warfare had mineral missions in Africa, Argentina, Brazil, Central America, Colombia, Cuba, Guatemala, Mexico, and Peru.

Office of Petroleum Coordinator for War.—This office was authorized by the President to coordinate all Federal activities concerned with the production, refining, transportation, and marketing of petroleum, particularly where these functions pertain to war. It functions as a clearing house for the Federal Government on petroleum matters and operates closely with an Industry War Council, of which W. R. Boyd, Jr., President of the American Petroleum Institute, is Chairman. The organization and major officials of the Office of Petroleum Coordinator for War, as of August 1, 1942, were:

Coordinator—Harold L. Ickes.
Deputy Coordinator—Ralph K. Davies.
Production Division—Don R. Knowlton, Director.
Refining Division—Wright W. Gary, Director.
Transportation Division—J. R. Parten, Director.
Marketing Division—Robert T. Collier, Director.
Natural Gas and Natural Gasoline Division—E. Holley Poe, Director.
Foreign Division—James Terry Duce, Director.
Petroleum Reserves Division—W. B. Heroy, Director.
Petroleum Supply Division—Robert L. Minckler, Director.
Materials Division—Greer W. Orton, Director.
Facility Security Division—W. D. Mason, Director.
Research Division—Edward B. Swanson, Director.
Public Relations Division—Gordon M. Sessions, Director.

Field representation for the Petroleum Coordinator's Office is provided through five district offices and district industry committees with headquarters at New York, N. Y.; Chicago, Ill.; Houston, Tex.;

Denver, Colo.; and Los Angeles, Calif.

Office of Solid Fuels Coordinator for War.—This office serves as the agency for the coordination of information and the making of recommendations concerning measures relating to the production, storage, pooling, transportation, distribution, marketing, and consumption of solid fuels for the purpose of assuring adequate supplies at reasonable prices for military, industrial, and civilian needs. As of August 1, 1942, the office was operating under the following administrators:

Coordinator—Harold L. Ickes.
Deputy Coordinator—Howard A. Gray.
Associate Director for Bituminous Coal—Thomas J. Thomas.
Associate Director for Transportation—Ralph P. Russell.
Assistant Director for Anthracite—Brice P. Disque.
Assistant Director for Coke—Harlen M. Chapman.

Bureau of Mines.—Through its field investigations, technical research, health and safety, and economics and statistics services, the Bureau has made valuable contributions to the war program too numerous to mention in detail in this summary. Considerable information on the Bureau's war activity as regards individual commodities is given in the various chapters of this volume. Perhaps the most significant accomplishments are those resulting from the investigation of domestic resources of strategic minerals initiated in 1939 under Public Law 117, 76th Congress, and subsequently extended to other critical minerals. Under this program approximately 1,600 deposits had been investigated up to June 30, 1942. Exploration projects were undertaken on 96 of the most promising, and of these, 56 have proved successful to the extent that tonnages of ore have been developed that are already being brought into production or can be if needed for emergency purposes. The Bureau engineers estimate that the program has indicated 56,000,000 tons of ore of commercial or near-commercial grade in the following categories:

Type of ore	Indicated ore reserves	Approximate grade
Antimony Chromite Manganese Mercury Nickel Tin Tungsten Iron (Western States)	4, 104, 500 10, 239, 900 1, 053, 100 8, 406, 700 68, 000	2 percent antimony. 20 percent Cr ₂ O ₃ . 20 percent manganese. 2 pounds of mercury per ton. 0.35 percent inckel. 6.33 pounds of tin per ton. 0.8 percent tungsten. 50 percent iron. 40 percent plus Al ₂ O ₃ .

Geological Survey.—The activities of the Geological Survey have been largely oriented to war work. Its geologic staff is playing an important part in the exploration for war minerals, and its Conservation Branch is aiding in increasing mineral production from public lands. The Survey's map-making and topographic-mapping facilities are working in close cooperation with the military establishments, and its ground-water experts are assisting in solving problems of

water supply for military cantonments and munitions plants.

The Survey conducts three types of geological investigations. Regional or district studies of promising areas are made with a view to recommending deposits worthy of further exploration and development by the Bureau of Mines. A second type is carried on by the geologists assigned to Bureau of Mines projects, who assist in planning explorations and interpreting the results. A third type consists of brief examinations of districts or individual deposits for a specific purpose; these usually are requested by some other war agency. The results of this work are published in a series of Strategic Mineral Investigations, of which about 50 had been printed up to June 30, 1942.

Metals Reserve Co.—The Metals Reserve Co., which was transferred from the Federal Loan Agency to the Department of Commerce on February 24, 1942, is the agency through which the Government finances the procurement of mineral supplies and the payment of premium prices. The company is acquiring reserve stocks of various minerals as available supplies permit. In the acquisition and distribution of these materials to industry, the company works in cooperation with the War Production Board, the Office of Price Administration, and the Board of Economic Warfare. Chief administrative officials and mineral advisers include:

Chairman of the Board—Jesse H. Jones.
President—Charles B. Henderson.
Executive vice president—G. Temple Bridgman.
Assistant vice president—Simon D. Strauss.
Technical advisers—H. DeWitt Smith and D. D. Irwin.
Consulting engineer—John E. Norton.
Special adviser—Howland Bancroft.

Defense Plant Corporation.—This agency also was transferred from the Federal Loan Agency to the Department of Commerce on February 24, 1942. The Corporation has very broad authorization, but is chiefly concerned with Government financing of new productive capacity required for war purposes. It operates under directives from the War Production Board, War and Navy Departments. Mineral projects financed by the Corporation include construction

of plants for the production and processing of ores of aluminum, magnesium, chromium, manganese, tungsten, vanadium, and other minerals, as well as steel and pig iron plants. Jesse H. Jones is Chairman of the Board, and Sam H. Husbands is President.

GOVERNMENT STOCK PILES

Government purchasing of minerals for stock piling and for the purposes of price control and stimulation of production has been greatly expanded since January 1, 1941. At that time the Navy Department had completed its small mineral stock-piling program, which included purchases of chromium ore, manganese ore, tin, and tungsten ore. The Procurement Division of the Treasury Department, operating under Public, No. 117, 76th Congress, was actively engaged in acquiring stocks of chromium ore, manganese ore, mercury, mica, quartz crystals, tin, and tungsten ore. Its tin program was completed and purchase of industrial diamonds was inaugurated during the first half of 1941. As stated in Minerals Yearbook, Review of 1940, the need for acceleration and expansion of stockpiling activity became apparent as the war in Europe took a serious turn with the fall of France in May 1940, and this need was met by establishing subsidiary buying organizations in the Reconstruction Finance Corporation of the Federal Loan Agency. With the exception of nitrate of soda, which was acquired by Defense Supplies Corporation, all Reconstruction Finance Corporation metal and mineral purchases have been made through the Metals Reserve Co. As of the close of business September 13, 1941, the Metals Reserve Co. announced it had made commitments to acquire minerals and metals at a cost estimated at \$969,544,000.

The extent to which Government purchases have expanded is indicated by the following lists, which show the commodities being ac-

quired at various times:

As of the end of 1940 Antimony Chromium ore Graphite Manganese ore Mercury Mica Quartz crystals Tin Tungsten ore

chapters.

Added in 1941 Aluminum (refined) Asbestos Bauxite Beryllium ore Cadmium Cobalt Copper (refined) Corundum ore Diamonds, industrial Iridium

Iron ore Kyanite Lead (refined) Lead ore Lead vanadate concentrates Nickel (refined) Nitrate of soda Platinum Rutile Scrap iron Tin ore

Zinc concentrates

Alumina Alumina hydrate Aluminum (reclaimed) Antimony ore Arsenic Bismuth Columbite Copper matte Copper ore Cryolite ore Fluorspar Lead (bullion) Molybdenite Nickel (matte) Sapphire (natural Montana) Silver (foreign) Tantalite Vanadium ores

Zinc (refined)

Added in January-July 1942

Zirconium ores Details of Government purchases during 1941, insofar as they can be revealed in this volume, are shown in the various commodity

STIMULATION OF DOMESTIC PRODUCTION

The policy of increasing production of minerals through direct Government contract or subsidy rather than by broadcasting general appeals to the public, as was done during World War I, was continued in 1941. The Government program is carried out chiefly through the Metals Reserve Co. and the Defense Plant Corporation, both subsidiaries of the Reconstruction Finance Corporation. Throughout the year prospective producers or producers desiring to increase their capacity received Government help either through loans or advance contracts guaranteeing a market for fixed tonnages at fixed prices. As an added incentive to stimulate copper, lead, and zinc production and as a means of offsetting rising costs that threatened many producers, a premium-price quota plan for these metals was announced jointly by the Office of Price Administration and the Office of Production Management in January 1942. The plan provided for payment of substantial premiums over established ceiling prices for production in excess of quotas which were determined for each producer according to circumstances surrounding his individual operation. The Metals Reserve Co. participated in the administration of the program.

Early in 1942 it became evident that direct methods of assisting small-scale producers were required, and on March 5, 1942, the Metals Reserve Co. announced a program for buying truckload lots of chromium ore at local buying stations established in Oregon and northern California. Specifications were modified to permit purchase of lower-grade ores, and a fixed schedule of buying prices at purchase depots was published. Subsequently, similar depots were set up in Arizona, Arkansas, Colorado, Montana, Nevada, New Mexico, New York, and Tennessee, and small-lot buying was extended to manganese ore and

mercury.

Regulations governing Federal loans to mining also were modified in an endeavor to stimulate domestic production. On March 27, 1942, the Reconstruction Finance Corporation announced that owners or lessees of mining property that gives reasonable promise of success could thereafter obtain development loans repayable out of proceeds from production, rather than secured by mortgage on the property. These loans would be made initially in amounts not exceeding \$20,000, but if the results of such development were favorable, additional loans up to \$20,000 might be made for further development. Public Law 603, approved June 11, 1942, authorized the Reconstruction Finance Corporation to make loans not to exceed \$5,000 to any one borrower for the purpose of financing the unwatering, retimbering, making accessible, or other preliminary development of mine workings, when such loans are deemed by the Reconstruction Finance Corporation to be advantageous to the national defense.

PROCUREMENT OF MINERALS FROM LATIN AMERICA 1

The impact of war between the United States and the Axis Powers has emphasized the seriousness of the economic problems involved in the necessary shift from our peacetime efforts to sell our products in foreign markets to the wartime necessity of purchasing essential

¹ Contributed by J. S. McGrath.

strategic materials. During 1941 the United States Government and private industry literally combed Latin America to locate additional sources of strategic minerals. Intensive efforts were also made throughout the year by the Governments of most Latin American countries to stimulate production of strategic and critical minerals essential to our war effort in areas already under development. Latin America has been a traditional source of many mineral raw materials, which the United States has in inadequate amounts and consequently has been obliged to import. During the present emergency the United States will depend for a large percentage of its total imports of certain

minerals on the other American republics.

In the initial stages of the defense program efforts were made by the Government to purchase essential raw materials from the other American republics. However, the high standards of specifications established by the Army and Navy Munitions Board for stock-pile purchases, the narrow list of commodities listed by the Board, and the comparatively small amount of money originally available for such purposes prevented procurement on a large scale. The buying program, later initiated by the Federal Loan Agency, overcame most of the restrictive features of the original purchasing program, and agreements then entered into between the Government of the United States and several Governments of Latin America during 1941 resulted in a substantial increase in the purchases of several urgently needed raw materials. As requirements for such materials soared, plans were developed for buying all strategic minerals available for export in the several countries of Latin America. During most of 1941 the agreements negotiated had an obvious preclusive element in the sense that such over-all agreements to purchase the entire output of a given country would naturally reduce the amount available to other countries. However, in the negotiations for the purchase of strategic materials, emphasis was placed on the definite requirements of the United States rather than on an effort to obstruct purchases by other countries.

The first over-all agreement to purchase all available minerals was negotiated with Brazil in May 1941. The Federal Loan Agency. through the Metals Reserve Co., agreed to purchase the entire exportable surplus of various Brazilian products for 2 years from the date of the agreement. The mineral products involved included bauxite, beryl ore, chromite, ferronickel, industrial diamonds, manganese, mica, quartz crystals, rutile, and zircon. The list was not rigid, and it was anticipated that other commodities would be added The agreement embodies a prohibition against as occasion arose. the export of the commodities specified except to the United States or to other American republics having parallel systems of export con-However, the Metals Reserve Co. was obligated to buy all the enumerated minerals not purchased by private industry in the United States or by other American republics. The mutual benefits to Brazilian producers and industrial consumers of the United States cannot be fully evaluated at this time, but it is expected that the more stable market assured Brazilian producers for 2 years at relatively high prices will have the effect of increasing output.

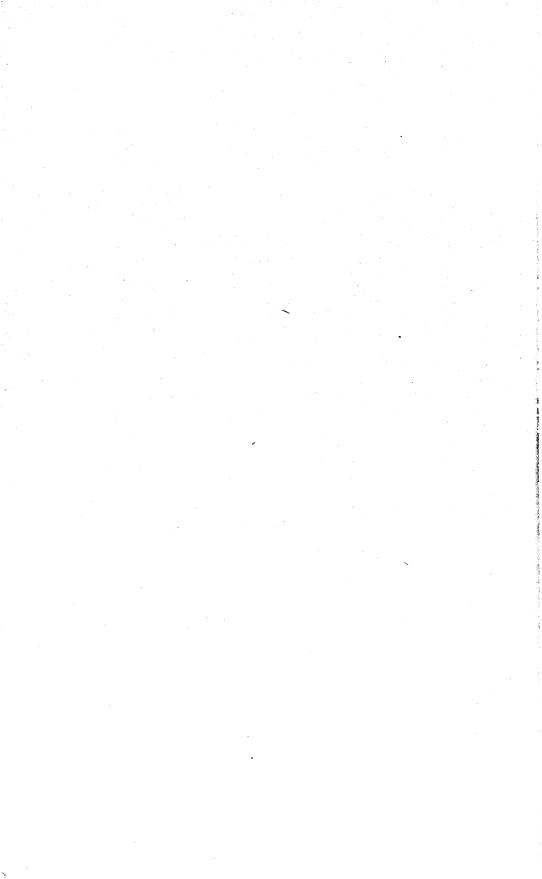
An over-all agreement with Mexico became effective on July 15, 1941. The arrangement with Mexico followed the same general pat-

tern as in the case of Brazil. The agreement with Mexico consists of two parts. The Mexican Government established an export embargo to all countries outside the Americas and to countries that have not established export controls similar to Mexico. Among the commodities affected are the following minerals: Antimony, arsenic, bismuth, cadmium, zinc, cobalt, copper, fluorspar, tin, graphite, manganese, mercury, mica, molybdenum, lead, tungsten, and vanadium. The Metals Reserve Co. agreed, during a period of 18 months from the date the joint agreement became effective, to purchase the exportable surplus of the commodities specified, provided the sellers were unable to dispose of their products through regular commercial channels after due effort. There are two notable differences between the Mexican and Brazilian agreements. The Mexican agreement is effective for 18 months while the Brazilian agreement is for 2 years; in the Brazilian agreement purchases will be made at fixed minimum prices, while the Metals Reserve Co. agreed in effect to pay current market prices for such materials as it may buy from Mexico.

In October 1941 arrangements were concluded involving an over-all agreement with the Peruvian Government whereby certain strategic and critical materials were made available exclusively to the countries of the Western Hemisphere, with emphasis on the requirements of the United States. This agreement covers antimony, copper, lead, tungsten, vanadium, and zinc; the Metals Reserve Co. will purchase the entire output of these for the Government stock pile, and it is understood that such purchases will be the surplus over and above purchases

made by private industry in the United States.

In May 1941 the Metals Reserve Co. entered into a contract with Bolivian producers guaranteed by the Bolivian Government to purchase the entire production of Bolivian tungsten for the next 3 years at \$21 per short-ton unit. Late in 1940 the Metals Reserve Co. contracted with tin-ore producers of Bolivia for annual delivery to the United States during the following 5 years of tin concentrates equivalent to 18,000 tons of refined tin a year; the Bolivian Government guaranteed the performance of this contract.


Other contracts negotiated with Bolivian producers by the Metals Reserve Co. provide for the procurement of the entire exportable

surpluses of Bolivian antimony, lead, and zinc.

At the close of 1941 negotiations were under way leading toward over-all purchasing agreements involving the mineral output of

Argentina and Chile.

When negotiations with other American republics, now under way, have been completed and those already concluded have the anticipated effect, it is apparent that the United States will have virtually the entire exportable surplus of strategic minerals produced throughout Latin America.

STATISTICAL SUMMARY OF MINERAL PRODUCTION

(GENERAL UNITED STATES SUMMARY AND DETAILED PRODUCTION BY STATES)

By MARTHA B. CLARK

SUMMARY OUTLINE

Page			, P	age
Introduction Unit of measurement. Elimination of duplication	State tab	tablesbles	 	3 14

INTRODUCTION

This report continues the series of annual statistical summaries published in previous years as chapters of Mineral Resources and Minerals Yearbook.

UNIT OF MEASUREMENT

The unit of measurement used by the Bureau of Mines for each mineral product in reports on the mineral resources is that common to the industry concerned, and the variation in these units makes it impracticable, if not impossible, directly to combine and compare the different minerals except as to value. Although most of the products are measured by weight, some are measured by volume and some by number of "pieces," etc.; for some no total quantity figures are available.

ELIMINATION OF DUPLICATION

In the totals for the United States, shown in the following "general" tables, duplication has been eliminated wherever practicable, and in the State totals given in the State tables virtually all duplication has been eliminated. For instance, in both general and State tables the output of coke is shown but its value is not included in the totals, as the value of the coal used in its manufacture enters into the value of the coal production which is included in the totals. For asphalt, both native and oil are shown in the general tables, but the value of the oil asphalt is excluded from the totals as it duplicates that of the petroleum from which it is manufactured. For the clay industries, no figures have been available for total clay produced. For years before 1936, the total value of clay products is included in both general and State totals as representing the first marketable form of the greater part of the clay produced; the quantity and value of the clay mined and sold in the raw state by miners to users of clay are shown separately also, but the value is not included in the totals as it is duplicated largely in that for clay products. For years beginning with 1936, as the Bureau of Mines believes that a closer approach to

the value of domestic clay in its first marketable form results from the inclusion of the value of clay sold by producers and of clay products other than pottery and refractories, the United States and State totals include such values for the clay industries. This change in practice should be borne in mind when comparing the values beginning

1936 with those for earlier years.

United States totals.—In the general tables both iron ore and pig iron are shown, but the value of the pig iron rather than the iron ore is included in the United States totals, as that is considered the better means of presenting the statistics for iron in its first marketable form. For gold, silver, copper, lead, and zinc the value of "smelter output" is included in the general totals, and to account more fully for the value of the ores treated these smelter figures are supplemented by the value of the byproduct sulfuric acid. The value of pigments (white lead, red lead, lithopone, litharge, and orange mineral) manufactured from metals is not included in the general tables, as the base from which they are made is included in the output of lead or zinc, whereas the value of sublimed blue lead, sublimed white lead, leaded zinc oxide, and zinc oxide is included, as these are made in large part direct from the ores and do not enter into the lead or zinc totals, which represent smelter output.

State totals.—In the State tables also iron ore and pig iron are both shown. As blast-furnace products cannot be traced to the States in which the ore is mined, the value of the ore is used in the State totals. For ores of gold, silver, copper, lead, and zinc no values are shown, and in fact none are recorded; instead, for each of these metals the recoverable content of the ores is used as the basis of valuation. The value of the zinc and lead pigments is not included in the State total, as the recoverable zinc and lead content of the ores from which the products were made is included under zinc or lead. The value of the sulfuric acid produced as a byproduct of copper and zinc smelting and zinc roasting is not included in the State total, as tracing this product back to the State producing the ore has not been possible.

GENERAL TABLES

Mineral products of the United States, 1939-41 1

Product	1939	,	1940		19	41
Trouge	Quantity	Value	Quantity	Value	Quantity	Value
METALLIC						
Aluminum pounds Antimonial lead short tons (2,000 pounds)	327, 090, 000	\$64, 600, 000	412, 560, 000	\$75, 292, 000	(2 8)	(2 8) (4)
Antimony:	4 21, 995	(4)	4 29, 762	(4)	4 40, 237	(4)
Metal do	(5)	(5)	(5)	(A)	(2 5)	(2 5)
Ore and concentrates do	3, 174	37, 200	1, 124	72, 900		(2 3)
Bauxite long tons (2,240 pounds) short tons	375, 301	2, 166, 236	434, 988	2, 578, 968	(2 3) (2 3)	(2 3)
Beryllium ore (beryl)short tons	95	2,720	121	3, 721	158	\$7,30
Cadmium: Metalpounds	5, 190, 273	0 770 004	0.407.000	4 707 000		
In compoundsdo	5, 190, 273 401, 200	2, 776, 224 212, 636	6, 467, 260 205, 900	4, 527, 082 144, 130	7, 044, 417	5, 498, 40
Ohromite long tons	3, 614	46, 892	2.662	28, 784	265, 700	(2 8) 207, 24
Copper 6 sales value pounds	1, 425, 349, 488	148, 236, 000	1, 818, 167, 516	205, 453, 000	1, 932, 144, 953	227, 993, 00
Ferro-alloys short tons	942, 101	76, 156, 588	1, 292, 660	128, 127, 810	(2 8)	(2 8)
Gold 7troy ounces	5, 611, 171	196, 391, 000	6, 003, 105	210, 108, 700	5, 976, 419	209, 174, 60
Ore 8long tons	54, 827, 100	158, 537, 696	77 100 004	8 100 000 TOO		
Pigshort tons.	35, 942, 463	626, 824, 690	75, 198, 084 46, 958, 929	8 189, 086, 799 840, 442, 032	93, 053, 994	8 249, 705, 90
Lead (refined). sales value	420, 967	20, 571, 000	433, 065	43, 307, 000	55, 223, 641 470, 517	1, 111, 811, 31 53, 639, 00
Magnesium (new ingot) pounds	10, 650, 121	(9) 794, 746 2, 148, 321	12, 823, 633	10 3, 462, 380	(2 8)	(2 3)
Manganese ore (35 percent or more Mn)long tons	29, 307	794, 746	40, 123	1, 169, 024	(2 3)	(2 8)
Manganilerous ore (5 to 35 percent Mn)do	709, 247	2, 148, 321	1, 136, 547	3, 348, 042	(2 8)	(2 8)
Mercury: Metalflasks (76 pounds net)	10.000					-
Oreshort tons	18, 633	1, 936, 714	37, 777	6, 681, 618	(2 3)	(2 3) (12)
Molybdenumpounds_	32, 415, 000	22, 157, 000	(11) 25, 329, 000	(12) 17, 189, 000	(11)	(12) (2 3)
Nickel short tons	394	(9)	554	(9)	(2 8)	(2 3) (2 3)
Ores (crude), old tailings, etc.: Copperdo		''	001	(/	(-)	(-9)
Copperdo	55, 221, 000	(12) (12)	69, 278, 000	(12) (12)	78, 453, 000	(12)
Dry and siliceous (gold and silver)do	19, 467, 000	(12)	18, 700, 000	(12)	17, 639, 000	(12)
Leaddododo	5, 387, 000	(12)	6, 144, 000	(12)	6, 151, 000	(12)
Zincdo	8, 000 7, 576, 000	(12) (12) (12) (12) (12)	10, 000 9, 521, 000	(12) (12) (12)	6,000	(12) (12) (12) (12) (12) (12) (12) (12)
Zino-copper do	67, 000	712	79, 000	(12)	10, 492, 000 81, 000	(12)
Zinc-leaddo	11, 518, 000	(12)	12, 866, 000	712	16, 211, 000	12
Zinc-lead-copper do	12,000	(12)	4,000	(12)	1,000	(12)
Platinum metals (refined) (value at New York City) _troy ounces	41, 441	1, 566, 000	47, 339	1, 986, 000	(2.3)	(2 8)
eleniumpounds	345, 726	(9)	368, 709	(9)	681, 650	`(%)'

See footnotes at end of table.

Mineral products of the United States, 1939-41—Continued

P. A.	19	39	19	40	1941	
Product	Quantity	Value	Quantity	Value	Quantity	Value
METALLIC—continued	65. 119. 513	\$44, 202, 279	69, 585, 734	\$49, 483, 189	72, 336, 029	\$51, 438, 954
Silver 18troy ounces Tantalum orepounds	340	\$44, 202, 279 200		φ 1 8, 400, 108	250	280
Tollyrium	63, 431	(9)	88, 996	(9)	239, 983	(9) (2 3)
Tin (metallic equivalent)short tons Titanium dre:	38	`´ 38, 400	55	54, 900	(2 3)	(2 8)
Ilmenitedo	(9)	(2)	(9)	(2)	(2)	(9)
Rutile	(9)		(9)		(9)	(9) (2 3)
Tungsten ore (60-percent concentrates)do	4, 287 279, 354	4, 402, 182 1, 053, 660	5, 319 96, 345	6, 576, 318 1, 018, 600	(2 3)	(2 3) (2 3)
Uranium and vanadium ores	491, 058	51, 070, 000	589, 988	74, 338, 000	652, 599	97, 890, 000
Other metallic 14		1, 110, 817		1, 162, 558		1, 727, 828
Total value of metallic products (approximate)		1, 291, 700, 000		1, 679, 500, 000		2, 137, 100, 000
NONMETALLIC Arsenious oxideshort tons_	22, 439	495, 500	23, 339	561, 300	34, 784	1, 119, 320
Asbestos	15, 459	512, 788	20, 060	674, 508	(2 15)	(2 15)
Asphalt:	470.040	0.000.044	400.00	2, 725, 337	691, 168	3, 169, 193
Nativedo Oil (including road oil) ⁸ do	459, 848 4, 860, 540	3, 066, 844 8 36, 038, 696	490, 665 5, 262, 959	2, 725, 337 8 41, 398, 735	(2 8)	(2 8)
Barite (crude)	383, 609	2, 344, 103	409, 353	2, 596, 743	503, 156	3, 134, 234
Boron mineralsdo	245, 284	5, 689, 797	243, 355	5, 643, 390 11, 772, 515	301, 282	8, 455, 422 11, 506, 213
Bromine pounds Calcium-magnesium chloride (75 percent NaCla) short tons	37, 882, 005 108, 441	7, 611, 400 1, 307, 717	59, 266, 275 99, 536	998. 241	68, 317, 019 165, 932	1, 333, 370
Cement barrels (376 pounds net)	125, 056, 594	184, 254, 932	132, 864, 383	193, 464, 869	170, 365, 440	250, 589, 481
Clay: Products (other than pottery and refractories) 16 Raw (sold by producers)		122, 528, 069		114, 000, 000		(16)
Raw (sold by producers)short tons	3, 760, 694		4, 700, 951	18, 162, 485	7, 018, 056	25, 193, 893
Coal:	1		, ,	.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Bituminous ¹⁷ do Pennsylvania anthracite do	18 394, 855, 325 51, 487, 377	18 728, 348, 366 187, 175, 000	¹⁹ 460, 771, 500 51, 484, 640	19 879, 327, 227 205, 490, 000	19 511, 290, 000 56, 368, 267	19 1, 083, 935, 000 240, 275, 000
Coke 8dodo	44, 326, 641	8 212, 884, 050	57, 072, 134	8 273, 832, 410	65, 186, 578	8 352, 967, 237
Diatomite do	(20) ´	(20)	(20)	(20)	(20)	(20)
Emery do	765 253, 466	6, 828 1, 112, 857	1, 046 290, 763	9, 349 1, 271, 995	4, 876 338, 860	42, 484 1, 519, 456
Fluorspar short tons	200, 400 182, 771	3, 704, 959	233, 600	4, 744, 808	320, 669	6, 724, 782
Fuller's earthdo	167, 070	1, 691, 855	146, 568	1, 471, 083	207, 446	2, 111, 674
Garnet for abrasive purposesdodo	4,056	278, 534 (21)	4,716	259, 345 (21)	5, 501	371, 752 (81)
Graphite:		, ,		` ,		(-7
Amorphous short tons. Crystalline pounds	(39) (30)	(20) (20)	(20)	(20)	(2 15) (2 15)	(9 15) (2 1 5)

Grindstones and pulpstones	10, 434 3, 226, 737 26, 281, 800 (10) 2, 950 4, 254, 248 1, 990 198, 980 171, 508, 000	426, 375 4, 431, 005 31 75, 262 (**) 69, 000 30, 049, 394 97, 000 1, 465, 190 2, 159, 019	13, 323 3, 699, 015 29, 450, 855 (20) 4, 241 4, 886, 929 2, 011 333, 166 216, 532, 000	496, 448 5, 227, 910 11 85, 061 (10) 93, 716 33, 956; 385 80, 679 2, 487, 969 2, 452, 814	15, 536 4, 788, 534 (80) (10) 8, 335 6, 079, 416 3, 332 374, 799 274, 714, 000	545, 556 6, 794, 223 (**) (**) 175, 581 42, 941, 162 115, 718 2, 655, 547 3, 587, 784
Calcareous short tons Greensand do.	22, 114 6, 466	38, 492 318, 550	25, 516 6, 697	42, 481 389, 888	183, 009 11, 120	175, 393 619, 664
Mica: Scrap	24, 672 813, 708	311, 895 138, 963 11, 084	22, 386 1, 625, 437	314, 565 291, 685 6, 559	(2 15) (2 15)	(2 15) (2 15) 15, 579
Mineral paints: Natural pigments ²²	(28) 162, 774 (21)	(²³) 19, 029, 802 (²¹)	(28) 164, 775 (31)	(²⁸) 19, 334, 347 (²¹)	(23) 228, 123 (21)	(23) 27, 994, 694 (21)
Natural gas M cubic feet Natural gasoline gallons Olistones, etc short tons	2, 476, 756, 000 2, 169, 300, 000 620	534, 240, 000 90, 050, 000 115, 805	2, 660, 222, 000 2, 339, 400, 000 (²⁰)	577, 939, 000 68, 261, 000 (20)	2, 770, 000, 000 2, 696, 568, 000	608, 000, 000 128, 700, 000 (20)
Olivine do Peat do Petroleum barrels (42 gallons) Phosphate rock long tons Potassium saits short tons Pumice do Pyrites long tons Sait (sodium chloride) short tons Sand and gravel: short tons	3,000 55,483 1,264,962,000 3,757,067 33,666,287 89,159 519,497 9,277,911	15, 000 362, 066 1, 294, 470, 000 12, 294, 042 12, 028, 195 424, 780 1, 560, 000 24, 509, 680	2, 500 70, 097 1, 353, 214, 000 4, 002, 700 35 393, 058 82, 407 626, 640 10, 359, 960	15, 000 516, 865 1, 385, 440, 000 12, 334, 662 12, 562, 050 449, 914 1, 920, 000 26, 474, 619	4, 828 86, 503 1, 404, 182, 000 4, 688, 312 25 531, 346 117, 310 659, 498 12, 720, 629	24, 401 657, 556 1, 570, 000, 000 15, 587, 738 17, 368, 237 669, 514 2, 035, 000 33, 620, 376
Glass sand do Sand (molding, building, etc.) and gravel do Sand-lime brick benefit of the sand-lime brick bri		4, 280, 936 101, 785, 000 1, 587, 659 153, 038 6, 682, 214 2, 556, 686 158, 461, 515 35, 500, 000 6, 213, 027 2, 700, 834 466, 380 174, 587 2, 363, 251	2, 759, 544 235, 548, 000 104, 519 31, 865 473, 450 317, 267 153, 733, 040 2, 558, 742 840, 937 281, 375 30, 212 22, 299	4, 881, 508 105, 806, 000 1, 174, 044 176, 390 5, 738, 269 3, 157, 916 160, 044, 115 40, 900, 000 6, 797, 421 3, 008, 320 366, 569 137, 698 2, 806, 861	3, 475, 111 285, 240, 000 (**) 41, 685 618, 660 304, 201 183, 107, 960 3, 401, 410 915, 989 416, 389 29, 301 23, 438	6, 113, 529 141, 093, 000 (28) 228, 587 7, 615, 634 3, 286, 123 195, 337, 426 54, 400, 000 7, 201, 161 4, 701, 892 421, 746 125, 444 4, 457, 215
Total value of nonmetallic products (approximate)		8, 622, 500, 000		8, 935, 300, 000		4, 680, 200, 000
·						

See footnotes at end of table.

Mineral products of the United States, 1939-41—Continued

Product	1939		1940		1941	
Froduct	Quantity	Value	Quantity	Value	Quantity	Value
SUMMARY Cotal value:						
Metallic		\$1, 291, 700, 000		\$1,679,500,000		\$2, 137, 100, 0
Fuels Offier Office Off		2, 834, 300, 000 788, 200, 000		3, 116, 500, 000 818, 800, 000		3, 628, 900, 0 1, 051, 300, 0
Grand total approximate value of mineral products		4, 914, 200, 000		5, 614, 800, 000		6, 817, 300, 0

- In this general statement certain of the figures represent shipments rather than quantity mined, and some of the figures for 1941 are subject to revision. For details see following chapters of this volume.
- Figures withheld from publication at request of Committee for War Information.

3 Value included in total value of metallic products.

- 4 Figures represent antimonial lead produced at primary refineries from both domestic and foreign primary and secondary sources; no figures for value of antimonial lead available. Estimate of value of primary antimony and lead contents of antimonial lead from domestic sources included in total value of metallic products.
- ⁵ Largely from foreign ore; value not included in total value. 6 Product from domestic ores only.
- According to Bureau of the Mint. Valued at \$35 per ounce.

8 Value not included in total value.

- 9 Value included in total value of metallic products; Bureau of Mines not at liberty to publish figures.
- 10 Value calculated at nominal price—27 cents per pound.

11 Figures not available.

12 Figures showing values not available.

13 According to Bureau of the Mint.

14 Includes value of following products. Figures are shown wherever Bureau of Mines is at liberty to publish them.

1939: Bismuth and iron ore sold for paint (12,235 long tons, \$66,817).

1940: Bismuth, cobalt oxide, and iron ore sold for paint (8,912 long tons, \$45,578).

1941: Bismuth, cobalt ore, indium, iron ore sold for paint (20,792 long tons, \$101,710). and zircon concentrates (174 short tons. \$5,153).

16 Value included in total value of nonmetallic products.

16 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete. Figures for 1941 not yet available; estimate of value included in total value of nonmetallic products.

17 Includes brown coal and lignite, and anthracite mined elsewhere than in Pennsyl-

vania.

18 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.

19 According to Bituminous Coal Division; value for bituminous includes selling expenses. Figures for 1941 are preliminary.

Walue included in total value of nonmetallic products; Bureau of Mines not at liberty to publish figures.

- No canvass. Estimate of value included in total value of nonmetallic products. 22 Figures cover fiscal year ended June 30 of year stated.
- 23 Canvass discontinued after 1915. Figures for iron ore sold for paint given in footnote 14.

24 Sublimed blue lead, sublimed white lead, lead zinc oxide, and zinc oxide.

25 Equivalent as K2O. 26 Figures obtained through cooperation with Bureau of the Census. Figures for 1941 not yet available; estimate of value included in total value of nonmetallic products.

Figures for soapstone used as dimension stone included in figures for stone. 28 From copper and zinc smelters and zinc roasters and from roasting of high-sulfide

gold and silver concentrates. 20 Includes value of following products. Figures are shown wherever Bureau of Mines

is at liberty to publish them.

1939: Andalusite, aplite, natural sulfonated bitumen, calcite (Iceland spar), chats (2,237,200 short tons, \$294,200), dumortierite, flint lining for tube mills, optical fluorspar (undetermined quantity, \$25), pebbles for grinding, silica sand and sandstone (ground) (310,512 short tons, \$1,993,031), and sulfur ore (79 long tons, \$743).

1940: Andalusite, aplite, natural sulfonated bitumen, chats (3,786,906 short tons, \$572,-739), dumortierite, flint lining for tube mills, pebbles for grinding, silies sand and sandstone (ground) (342,218 short tons, \$2,088,314), strontium minerals, and sulfur ore (280

long tons, \$3,203).

1941: Andalusite, aplite, natural sulfonated bitumen, chats (5,291,491 short tons. \$897.940), dumortierite, flint lining for tube mills (3,411 short tons, \$54,216), pebbles for grinding (13,561 short tons, \$221,826), silica sand and sandstone (ground) (487,665 short tons. \$3,073,730). strontium minerals (4,724 short tons, \$69,054), and sulfur ore (409 long tons, \$2,553).

STATISTICAL SUMMARY OF MINERAL PRODUCTION

Value of mineral products of the United States, 1880-1941 1

Year	Metallic	Fuels ²	Other	Total	Grand tota
380 1	\$190, 881, 000	\$120, 241, 000	\$56, 341, 000	\$176, 582, 000	\$367, 463, 00
381	192, 663, 000 219, 070, 000 201, 131, 000 182, 784, 000 174, 718, 000 204, 795, 000	149, 798, 000	60, 659, 000 63, 557, 000 61, 170, 300 58, 431, 000 61, 758, 000 66, 782, 000	210, 457, 000 234, 036, 000 246, 930, 000	403, 120, 00 453, 106, 00 448, 061, 00
882	219, 070, 000	149, 798, 000 170, 479, 000 185, 760, 000 165, 825, 000	63, 557, 000	234, 036, 000	453, 106, 00 448, 061, 00
383 384	182 784 000	165, 825, 000	58, 431, 000	224, 256, 000	407, 040, 00
OOE .	174, 718, 000	183, 070, 000	61, 758, 000	244, 833, 000 1	419, 551, 00
386	204, 795, 000	184, 608, 000	66, 782, 000 77, 199, 000	251 390,000	456, 185, 00 535, 633, 00
888	241, 185, 000	217, 251, 000 231, 459, 000	79, 880, 000	311, 339, 000	553, 799, 0
889	250, 823, 000 303, 937, 000	231, 459, 000 208, 297, 000 230, 962, 000	79, 880, 000 83, 206, 000 80, 530, 000	294, 450, 000 311, 339, 000 291, 503, 000 311, 492, 000	535, 633, 00 553, 799, 00 542, 326, 00 615, 429, 0
891	280, 985, 000	237, 160, 000	82, 704, 000	319, 864, 000 338, 017, 000	600 840 0
892	284, 215, 900 223, 654, 000	248, 344, 000 251, 735, 000	89, 673, 000 70, 104, 000	338, 017, 000	545, 493, 0
894	187, 335, 000	235, 618, 000	127, 292, 000	321, 839, 000 362, 910, 000 304, 158, 000	622, 232, 0 545, 493, 0 550, 245, 0 642, 691, 0
205	187, 335, 000 248, 533, 000	268, 438, 000	127, 292, 000 125, 720, 000 120, 305, 000	394, 158, 000	642, 691, 0
396	252, 575, 000	268, 161, 000	120, 305, 000 127, 580, 000	388, 466, 000 381, 178, 000	641, 041, 0 651, 612, 0
898	308, 747, 000	267, 513, 000	150, 782, 000 185, 302, 000	381, 178, 000 418, 295, 000	727, 042, 0
896 897 888 900	252, 575, 000 270, 434, 000 308, 747, 000 484, 021, 000 514, 232, 000	231, 735, 000 235, 618, 000 268, 438, 000 268, 161, 000 253, 598, 000 267, 513, 000 340, 773, 000 405, 376, 000	185, 302, 000 188, 328, 000	526, 075, 000 594, 764, 000	1, 010, 096, 0 1, 108, 936, 0
901	, ,				1, 155, 078, 0
902	605, 017, 000	469, 079, 000	218, 855, 000 253, 855, 000	661, 264, 000 7.22, 934, 000	1, 327, 951, 0
903	493, 814, 000 605, 017, 000 589, 253, 000 501, 315, 000	442, 409, 000 469, 079, 000 634, 226, 000 584, 043, 000 602, 258, 000 652, 398, 000	271, 902, 000	906, 128, 000	1, 495, 381, 0
904		602, 258, 000	318, 722, 000	920, 980, 000	1, 359, 181, 0 1, 323, 765, 0 1, 900, 880, 0 2, 069, 570, 0
906		652, 398, 000	362, 202, 000	1,014,600,000	1, 900, 880, 0
907	904, 151, 000	789, 128, 000	376, 291, 000 324, 849, 000	1,165,419,000	2, 002, 570, 0 1, 591, 773, 0
907	904, 151, 000 550, 890, 000 755, 092, 000 750, 027, 000	789, 128, 000 716, 034, 000 746, 204, 000 828, 213, 000	271, 902, 000 273, 824, 000 318, 722, 000 362, 202, 000 376, 291, 000 324, 849, 000 385, 811, 000	906, 123, 009 857, 867, 000 920, 980, 000 1, 614, 600, 000 1, 165, 419, 000 1, 040, 883, 000 1, 132, 015, 500 1, 237, 817, 000	1, 591, 773, (1, 387, 107, (1, 987, 844, (
910	601 000 000	005 700 000		1 243 058 000	
911 912	862, 191, 000	945, 541, 000	407, 295, 000 430, 062, 000 466, 644, 000 431, 234, 000	1, 375, 603, 000 1, 554, 487, 000 1, 424, 071, 600	1, 924, 081, 0 2, 237, 794, 0 2, 433, 545, 0
913		1, 087, 543, 000	466, 644, 000	1, 554, 487, 000	
913 914 915	687, 101, 000 993, 353, 000 1, 622, 129, 000 2, 088, 914, 000	945, 541, 060 1, 087, 543, 000 992, 837, 000 972, 617, 000 1, 352, 584, 000 2, 237, 837, 000	431, 234, 000 428, 674, 000	1, 424, 071, 000	2, 111, 172,
916	1, 622, 129, 000	1, 332, 584, 000	553 796 000	1 846 310 000	3, 508, 439,
916 917 918	2, 088, 914, 000	2, 237, 837, 000	665, 745, 000	2,903,582,000	4 992, 496,
918 919	2, 156, 588, 000 1, 361, 099, 000	2, 736, 151, 000 2, 510, 394, 000	751, 777, 000	3, 262, 671, 000	4, 523, 770,
920	1, 763, 675, 000	4, 192, 910, 000	665, 745, 000 647, 969, 300 751, 777, 000 1, 024, 755, 000	2, 903, 582, 000 3, 384, 120, 000 3, 262, 671, 000 5, 217, 665, 000	2, 111, 172, 2, 394, 644, 3, 508, 439, 4 992, 496, 5, 540, 708, 4, 323, 770, 6 981, 340,
921	654, 700, 000 988, 100, 000	2, 703, 470, 000 2, 737, 880, 000	780, 330, 600 921, 310, 000	3, 483, 800, 00C 3, 659, 190, 0C0	4, 138, 500, 4, 647, 290, 5, 986, 500, 5, 305, 800, 5, 677, 630, 6, 213, 600,
923	1, 511, 930, 000	. 3 317 100 000°	1, 157, 470, 000	1 4 474 570 000 i	5, 986, 500,
922 923 924	1. 233, 370, 000	0 000 220 000	1, 173, 800, 000	4, 072, 430, 000	5, 305, 800, 5, 677, 630
925	1, 382, 155, 000 1, 405, 345, 000	3, 058, 680, 000 3, 541, 916, 000 3, 060, 047, 000 2, 884, 962, 000 3, 190, 527, 000	1, 157, 470, 000 1, 173, 800, 000 1, 236, 795, 000 1, 266, 339, 000 1, 249, 320, 000	4, 072, 430, 009 4, 295, 475, 000 4, 808, 255, 000 4, 309, 317, 000	6, 213, 60%
926	1, 220, 633, 600	3, 060, 047, 000	1, 249, 320, 000	4, 309, 367, 000	5,530,000.
928	1, 288, 290, 000	2, 884, 962, 000	1, 211, 945, 00"	4,096 910,000 4,407,210,000	5, 385, 200, 5, 887, 600,
929 930	1, 288, 290, 000 1, 480, 390, 000 985, 790, 000	2, 764, 500, 000	1, 216, 683, 000 1, 014, 510, 000	3, 779, 010, 000	4, 764, 800,
931	569, 790, 000 285, 875, 000 417, 065, 000 548, 934, 000 733, 130, 000	1,892,400,000 1,743,400,000 1,383,400,000 2,233,300,000	704, 410, 600 432; 425, 000 454, 635, 600	2, 596, 810, 000 2, 175, 825, 000 2, 138, 035, 000	3, 166, 600, 2, 461, 700,
000	285, 875, 000	1,743,400,000	432; 425, 000	2, 175, 825, 000	2.555.100
934	548, 934, 000	2, 233, 300, 000	1 543, 166, 000	2,775,466,000	3, 325, 400,
933	733, 130, 000	2, 330, 000, 000	586 870 000	2, 913, 870, 000	3.650 000.
936	1, 081, 600, 000 1, 468, 200, 000	2, 759, 200, 000 3, 200, 500, 000	716, 090, 000	3, 475, 200, 000 3, 945, 200, 000	4, 556, 800. 5, 413, 400, 4, 363, 200,
937	892, 600, 000	2, 820, 300, 000	650, 300, 000	3, 470, 600, 000	4, 363, 200,
939	1, 291, 700, 000 1, 679, 500, 000	2, 820, 300, 000 2, 834, 300, 000 3, 116, 500, 000	744, 700, 000 650, 300, 000 788, 200, 000 818, 800, 000	3, 470, 600, 000 3, 622, 500, 000 3, 935, 300, 000	4, \$14, 200, 5, 614, 800,
940		1	1	:	!
941 3	2, 137, 100, 900	3, 628, 900, 000	1, 051, 300, 000	4,680,200,000	6, 817, 300,

¹ Figures for earlier years not available.
2 Coal, natural gas, natural gasoline, petroleum.
3 Subject to revision.

The sum of the following State totals does not reach the total for the United States given in the preceding table partly because figures for certain of the products included in the United States total are not available by States of origin. This fact is brought out in the opening text of this chapter and in the second table following.

In addition, there are many factors (the more important discussed in the opening text) that account for the disagreement between the sum of the State totals and the grand total for the United States, by products. Chief among these are: (1) The use of iron ore values in State totals and pig iron values in United States total; (2) the use of mine figures for gold, silver, copper, lead, and zinc in the State totals and mint and smelter figures (supplemented by the value of byproduct sulfuric acid from copper and zinc smelting and zinc roasting and the value of zinc and lead pigments made in large part direct from ores) in the United States total; and (3) the inclusion of estimates in the United States total for a few products for which no canvass has been conducted for many years and for which no estimate by States is made.

Many other less important differences are involved, but both State and United States totals are as complete and definite as seems possible with the data available. The practice is consistent from year to year, and it is believed that the reader can determine readily just what minerals are covered by the total concerned.

In every table each mineral produced is listed, and all figures are shown except those that the Bureau of Mines is not at liberty to publish.

Value of mineral products of the United States, 1936-40, by States 1

State	1936	1937	1938	1939	1940
Alabama	\$44, 752, 688	\$53, 518, 993	\$46, 296, 293	\$52, 158, 173	\$64, 998, 01
laska	23, 737, 714	27, 927, 958	28, 796, 753	25, 673, 566	28, 724, 22
rizona	60, 532, 996	94, 564, 494	60, 756, 253	75, 087, 930	85, 277, 34
rkansas	21, 296, 783	25, 578, 393	29, 395, 086	29, 572, 632	37, 479, 13
alifornia	437, 565, 809	476, 880, 603	490, 108, 428	467, 612, 196	455, 672, 03
Colorado	56, 214, 827	67, 338, 548	60, 369, 440	64, 144, 557	63, 188, 42
Connecticut	3, 317, 494	3, 689, 554	3, 059, 688	4, 306, 351	3, 914, 17
Delaware	444, 093	397, 362	320, 621	401, 333	457. 32
istrict of Columbia.	547, 576	522, 687	568, 717	591, 837	640, 4
lorida	12, 973, 243	13, 811, 958	12, 866, 981	13, 060, 453	14, 854, 20
leorgia	11, 756, 592	12, 584, 060	11, 598, 421	14, 633, 655	16, 932, 33
daho	29, 965, 964	40, 633, 119	31, 738, 606	33, 138, 452	40, 799, 92
linois	117, 916, 128	133, 437, 554	130, 155, 083	210, 798, 331	277, 943, 01
ndiana	52, 281, 539	54, 886, 756	47, 892, 364	53, 884, 995	58, 975, 11
owa	28, 359, 140	26, 941, 350	24, 794, 058	25, 170, 181	26, 006, 9
ansas	121, 689, 562	154, 376, 403	129, 675, 438	122, 959, 513	130, 859, 8
entucky	113, 435, 307	127, 423, 680	106, 654, 903	112, 840, 566	131, 974, 4
ouisiana	153, 358, 397	182, 118, 905	172, 306, 761	168, 903, 151	189, 153, 3
faine	3, 423, 353	4, 129, 391	3, 548, 638	3, 769, 791	4, 374, 9
[aryland	11, 157, 550	10, 634, 854	9, 407, 723	11, 781, 531	.2, 605, 1
lassachusetts	7, 559, 253	7, 813, 345	6, 666, 281	8, 242, 956	7, 573, 1
lichigan	100, 646, 492	119, 167, 573	81, 380, 602	116, 088, 154	124, 774, 5
Innesota	94, 568, 991	152, 107, 070	51, 425, 289	106, 455, 607	128, 571, 6
Lississippi	3, 846, 104	4, 821, 950	5, 209, 547	5, 192, 156	7, 239, 6
Lissouri	41, 350, 860	52, 446, 272	39, 560, 739	45, 633, 707	50, 324, 50
Iontana	65, 569, 150	82, 086, 815	48, 602, 547	63, 343, 802	79, 487, 8
ebraska	3, 843, 562	4, 837, 809	4, 028, 712	4, 390, 291	4, 692, 1
evada	32, 693, 129	38, 871, 816	27, 031, 281	34, 670, 879	42, 570, 5
ew Hampshire	1, 182, 055	1, 219, 869	1, 146, 606	1, 187, 339	1, 065, 3
ew Jersey	24, 421, 046	31, 467, 931	24, 408, 545	30, 441, 758	33, 653, 7
ew Mexico	45, 942, 006	72, 855, 745	63, 568, 953	69, 987, 797	80, 969, 7
ew York	71, 647, 775	77, 665, 874	73, 217, 430	78, 409, 560	76, 119, 5
orth Carolina	9, 955, 519	11, 160, 444	14, 959, 228	18, 533, 720	21, 112, 7
orth Dakota	2, 902, 453	2, 873, 011	2, 653, 473	2, 689, 627	2, 987, 3
hio	122, 684, 043	131, 025, 104	104, 812, 531	120, 681, 969	130, 655, 1
klahoma	305, 191, 649	367, 444, 222	272, 860, 078	236, 194, 064	235, 494, 1
	7, 080, 975	6, 609, 710	7, 536, 408	8, 637, 047	11, 229, 6
regonennsylvania	599, 457, 486	599, 817, 364	472, 773, 327	531, 007, 890	618, 347, 8
hode Island	929, 103	862, 710	911, 599	980, 916	994. 9
	3, 432, 662	4, 022, 325	4, 364, 034	5, 422, 979	5, 305, 5
outh Carolina	23, 221, 620	23, 472, 873	23, 583, 359	24, 813, 621	23, 528, 8
		34, 893, 847	32, 428, 512	39, 818, 234	42, 683, 4
ennessee	31, 121, 865			701, 972, 035	725, 005, 0
exas	638, 643, 488 61, 209, 302	813, 290, 605 105, 652, 422	740, 147, 465 59, 236, 355	80, 127, 521	104, 392, 9
tah				6, 972, 234	6, 979, 7
ermont	6, 225, 396	7, 042, 547	6, 439, 552		50, 003, 6
irginia	37, 295, 168	46, 019, 085	42, 370, 169	43, 902, 881 31, 595, 704	28, 090, 18
Vashington	22, 921, 456	26, 658, 257	21, 167, 004		329, 891, 96
Vest Virginia	271, 501, 941	306, 590, 947	254, 995, 309	276, 084, 118	13, 553, 60
/isconsin	13, 277, 983	15, 239, 524	10, 636, 741	12, 704, 942	43, 073, 5
yoming	34, 498, 261	41, 087, 908	37, 364, 363	39, 413, 001	20,013, 3

¹ In this table iron ore, not pig iron, is taken as the basis of iron valuation, and for other metals mine production (recoverable content of metals) is the basis. State totals for 1941 not yet available.

Mineral products of the United States and principal producing States in 1940

ank in	Product	Principal pro	ducing States ¹		
alue	1 Todaet	In order of quantity	In order of value		
14	Aluminum	New York, Tennessee, North Carolina, Washington	Rank same as for quantity.		
91	Andalusite	Nevada	Do.		
(2)	Antimonial lead	Not separable by States	Not senerable by States		
81	Antimony ore	Nevada, Idaho, Alaska, California	Alaska, Nevada, Idaho, California		
82	Aplite	Virginia	Pank sama as for anontity		
62	Arsenious oxide	Montana, Utah	Do		
58	AsbestosAsphalt:	Vermont, Arizona, Georgia, North Carolina.	Do.		
41	Native	Texas, Oklahoma, Kentucky, Alabama	Kentucky, Utah, Oklahoma, Texas.		
19	Oil	Not separable by States	Not sanarable by States		
42	Barite (crude)	Missouri, Georgia, Tennessee California	Missouri, Tennessee, Georgia, California.		
43	Bauxite	Arkansas, Alabama, Georgia, Virginia	Rank same as for quantity.		
94	Beryllium ore (beryl)	South Dakota, Colorado, Maine	Do.		
55	Bismuth	Not separable by States	Not separable by States.		
97	Bitumen (natural sulfonated)	Utah	Rank same as for quantity.		
34	Boron minerals	California	Do		
28	Bromine		Do.		
37	Cadmium	Not separable by States	Not separable by States.		
57	Calcium-magnesium chloride	Michigan, West Virginia, California, Ohio	Rank same as for quantity.		
8	Cement	Pennsylvania, California, New York, Michigan	Tank same as for quantity.		
60	Chats	Oklahoma, Missouri, Kansas	Pennsylvania, California, New York, Texas.		
87	Chromite	California, Oregon	Rank same as for quantity.		
٠, ۱	Clay:	Camornia, Oregon	D0.		
12	Products (other than pottery and refractories).		Ohio, Pennsylvania, California, Illinois.		
24 2	Raw (sold by producers)	Pennsylvania, Georgia, Ohio, Missouri	Georgia, Pennsylvania, Missouri, Kentucky.		
-	Bituminous	West Virginia, Pennsylvania, Illinois, Kentucky	Pennsylvania, West Virginia, Kentucky, Illinois.		
ļ	Pennsylvania anthracite	Pennsylvania	Rank same as for quantity.		
84	Cobalt oxide	do			
5	Coke	Ponnsylvania Ohio Indiana Nort Varle	I 5.		
7	Copper	Arizona Utah Montana Navada	Do.		
49	Diatomite	Arizona, Utah, Montana, Newada. California, Washington, Oregon, Nevada.	California, Washington, Oregon, Florida.		
96	Dumortierite	Nevada	Rank same as for quantity.		
90	Emery	New York	Do.		
51	Feldspar (crude)	North Corolina South Dakota New Hampshire Coloredo			
ĭî i	Ferro-alloys	North Carolina, South Dakota, New Hampshire, Colorado Pennsylvania, New York, Ohio, West Virginia	North Carolina, South Dakota, New Hampshire, Connecticu		
92	Flint lining for tube mills	Minnesota	Pennsylvania, New York, West Virginia, Ohio.		
36	Fluorspar	Illinois, Kentucky, Colorado, New Mexico.	Rank same as for quantity.		
50	Fuller's earth	Cleangia Tower Provide Illimais	Carrier Ministry Manager 1		
72	Garnet (abraciva)	New York, Vermont, North Carolina, Idaho	Georgia, Florida, Texas, Illinois.		
(3)	Gams and precious stones	No canvass for 1940	Rank same as for quantity.		
8	Gold	California, Alaska, South Dakota, Nevada	No canvass for 1940.		
0 '	www	Camouna, Alaska, South Dakota, Nevada	nank same as for quantity.		

98	Graphite: Amorphous	Nevada	Do.
64	Grindstones and pulpstones	Ohio, West Virginia, Washington	Do.
35	Gypsum (crude)	New York, Michigan, Iowa, Texas	
79	Helium	Texas	Rank same as for quantity
65	lodine (natural)	California	Do.
- 00	Teom		
9	Ore •	Minnesota, Michigan, Alabama, Pennsylvania	Do.
3	Pig	Pennsylvania, Ohio, Indiana, Illinois	Do.
54	Sinter	Tennessee	Do.
78	Kyanite	TennesseeCalifornia, Virginia, Georgia, North Carolina	Do.
18	Lead	Missouri, Idaho, Utah, Montana	Do.
21	Lime	Ohio Pennsylvania Missouri West Virginia	Do.
8ô	Lithium minerals	Ohio, Pennsylvania, Missouri, West Virginia South Dakota, California, North Carolina	California, South Dakota, North Carolina.
44	Mornorita (amida)	Washington, California, Texas, Nevada	Washington, California, Nevada, Texas.
38	Magnesium	Michigan	Rank same as for quantity.
45	Magnesium calte (natural)	Michigan, Nevada, California, Washington	Michigan, California, Nevada, Washington.
53	Manganese ore	Montana, Tennessee, Arkansas, Georgia	Montana, Arkansas, Tennessee, Georgia.
39	Manganese of	Minnesota, New Mexico, Michigan, Georgia	Minnesota, New Mexico, Georgia, Montana.
69	Manganiferous zinc residuum	New Jersey	Rank same as for quantity.
09	Marl:	New Jersey	rank same as for quantity.
85	Mar:	Virginia, Wisconsin, West Virginia, Nevada	Wort Vincinia Wisconsin Vincinia Marada
68	Greensand	Non Tonor	West Virginia, Wisconsin, Virginia, Nevada. Rank same as for quantity.
	Greensand	New Jersey	Do.
31 59	Mercury Mica	California, Oregon, Nevada, Arkansas North Carolina, Virginia, South Dakota, Colorado	North Corolina Compostions Courth Delrote Vincinia
29	Scrap	North Carolina, Virginia, South Dakota, Coloradodododo	North Carolina, Connecticut, South Dakota, Virginia. North Carolina, Virginia, Georgia, South Dakota.
	Sheet	North Carolina, Connecticut, New Hampshire, South Dakota	Rank same as for quantity.
93	Millstones.	1401th Caronna, Connecticut, 146w Hampshire, South Dakota.	North Carolina, Virginia, New York.
23	Mineral paints (zinc and lead pigments)	Pennsylvania, Illinois, Kansas, Indiana	Rank same as for quantity.
(8)	Mineral waters	No canvass for 1940	No canvass for 1940.
25	Molybdenum		Rank same as for quantity.
20	Natural gas	Toron Colifornia Louisiana Oklahama	Toyon Colifornia West Virginia Tomisiana
12	Natural gas	Texas, California, Louisiana, Oklahoma. Texas, California, Oklahoma. Louisiana.	California Toyog Oklahoma Lavisiana
16 71	Natural gasomic	Not separable by States	Not separable by States.
77	NICKUL	Arkansas, Ohio, New Hampshire, Indiana	Rank same as for quantity.
89	Olivine	North Carolina	Do.
(4)	Once (counds) at a	North Carolina.	D0.
(4)	Ores (crude), etc.: Copper	Utah, Arizona, New Mexico, Nevada	Value not available.
	Dry and siliceous (gold and silver)	Alaska, California, Nevada, South Dakota.	Do.
	Lead	Missas, Osmonia, Nevaua, South Dakota	Do.
	Lead-copper		Do.
		Oklahoma, Tennessee, Kansas, New Jersey	Do.
	Zinc		
	Zinc-copper		Do.
	Zinc-lead		
	Zinc-lead-copper	Utah	
63	Peat		New York, Maine, New Jersey, Michigan. Rank same as for quantity.
88	Pebbles for grinding		Do.
.1	Petroleum.		Do. Do.
27	Phosphate rock	Florida, Telliessee, Idalio, Molitana	Do. Do.
47	Platinum metals	Alaska, California, Oregon, Montana	μο.
26	Potassium salts		Colifornia Mangas Nam Mantas Mahasaka
66	Pumice	Kansas, Camornia, Nedraska, New Mexico	Camornia, Ashsas, New Intextoo, Nebraska.

See footnotes at end of table.

Mineral products of the United States and principal producing States in 1940—Continued

Rank	Product	Principal prod	lucing States
in value	Product	In order of quantity	In order of value
48 22 13 52 61 74 46 17 33 29 10 86 20	Pyrites Salt Sand and gravel Sand-lime brick Selenium Silica (quartz) Silica sand and sandstone (ground) Silver Slate Sodium salts (other than NaCl) (natural) Stone Strontium minerals Sulfur Sulfur Sulfuric acid from copper and zinc smelters and roasters and from roasting of high-sulfide gold and silver concentrates.	Tennessee, Virginia, California, New York Michigan, New York, Ohio, Louisiana. California, New York, Michigan, Illinois. New York, New Jersey, Michigan, Minnesota. Not separable by States Wisconsin, New Jersey, North Carolina, Tennessee. Illinois, New Jersey, West Virginia, Ohio. Idaho, Montana, Utah, Colorado. California, Texas, Utah, Wyoming. Pennsylvania, Michigan, Ohio, New York. Texas, California, Washington, Ohio. Texas, Louisiana, California, Utah. Pennsylvania, Illinois, Tennessee, Arizona	Michigan, New York, Louisiana, Ohio. California, Pennsylvania, New York, Ohio. New York, Michigan, New Jersey, Massachusetts. Not separable by States. New Jersey, Wisconsin, North Carolina, California. Illinois, New Jersey, Ohio, West Virginia. Rank same as for quantity. Pennsylvania, Vermont, New York, Virginia. Rank same as for quantity. Pennsylvania, New York, Ohio, Illinois. Rank same as for quantity. Do.
95 40 76 83 73 67 70 32 56 75	Sulfur ore Talc, pyrophyllite, and ground soapstone Talc, pyrophyllite, and ground soapstone Tellurium Tin Titanium ore: Ilmenite Rutile Tripoli Tungsten ore. Uranium and vanadium ores. Vermiculite Zine.	Texas, Colorado, Nevada New York, North Carolina, Vermont, California Not separable by States Alaska, South Dakota, New Mexico, Montana Virginia, Florida Virginia, Arkansas, Florida Missouri, Illinois, Arkansas, Oklahoma California, Nevada, Colorado, Arizona Colorado, Utah Montana, North Carolina, Wyoming, Texas Oklahoma, New Jersey, Idaho, Kansas	New York, California, Vermont, North Carolina. Not separable by States. Rank same as for quantity. Do. Do. Illinois, Missouri, Arkansas, Oklahoma. Rank same as for quantity. Do. Montana, North Carolina, Wyoming, Colorado.

Rank of States in metal production (except aluminum, ferro-alloys, and pig iron) arranged according to mine reports, not smelter output.
 Separate figures for antimonial lead from primary sources not available.
 No canvass for 1940.
 Value not available.
 Exclusive of soapstone used as dispension stone (all from Virginia), which is included in figures for stone.

States and their principal mineral products in 1940 1

State	Rank	Percent of total value for United States	Principal mineral products in order of value
Alabama	18	1.39	Coal, iron ore, cement, stone.
laska	29	.62	Gold, platinum metals, coal, silver.
rizona	14	1.82	Copper, gold, silver, zinc.
rkansas	27	. 80	Petroleum, coal, natural gas, bauxite.
alitornia	- 3	9. 75	Petroleum, natural gas, gold. natural gasoline.
olorado	19	1, 35	Coal, molybdenum, gold, silver.
onnecticut	45	.08	Stone, clay products, sand and gravel, feldspar.
elaware istrict of Columbia	50	.01	Clay products, stone, sand and gravel, raw clay.
lorida	49 35	.01	Clay products, stone. Phosphate rock, stone, cement, sand and gravel.
		. 32	Stone, raw clay, clay products, cement,
eorgialaho	26	.87	Silver, lead, zinc, gold.
linois		5.95	Petroleum, coal, stone, cement.
idiana		1. 26	Coal, cement, stone, petroleum.
wa	31	. 56	Coal, cement, stone, clay products.
ansas	9	2, 80	Petroleum, natural gas, zinc, coal.
ontucky		2.82	Coal, natural gas, petroleum, stone.
ouisiana	7	4.05	Petroleum, natural gas, sulfur, salt.
aine	44	. 09	Stone, sand and gravel, cement, clay products.
[aryland	37	. 27	Coal, sand and gravel, cement, clay products.
assachusetts		. 16	Stone, sand and gravel, clay products, lime.
[ichigan [innesota	12	2.67	Iron ore, petroleum, cement, copper.
innesota	- 11	2.75	Iron ore, manganiferous ore, stone, sand and gravel.
ississippi	40	. 16	Petroleum, natural gas, clay products, sand and gravel
issouri	21	1.08	Lead, cement, coal, stone.
ontana ebraska	10	1.70 .10	Copper, gold, silver, natural gas.
epraska	25	.91	Cement, sand and gravel, stone, clay products. Copper, gold, silver, tungsten ore.
evada	47	.02	Stone sand and gravel alay products foldense
ew Hampshireew Jersey	28	.72	Stone, sand and gravel, clay products, feldspar. Zinc, clay products, sand and gravel, iron ore.
ew Mexico	15	1.73	Petroleum, copper, natural gas, potassium salts.
ew York	17	1.63	Cement, petroleum, stone, natural gas.
orth Carolina	33	. 45	Bromine, stone, clay products, sand and gravel.
orth Dakota	46	.06	Coal, sand and gravel, clay products, stone.
hio	10	2.80	Coal, clay products, natural gas, stone.
klahoma	6	5.04	Petroleum, natural gas, zinc, natural gasoline.
regon	38	. 24	Gold, stone, mercury, cement.
ennsylvania	2	13. 23	Coal, natural gas, petroleum, cement.
hode Island	48	.02	Stone, sand and gravel, clay products, lime.
outh Carolina	42	.11	Clay products, stone, raw clay, gold.
uth Dakota		.50	Gold, stone, cement, sand and gravel.
nnessee	24 1	.91	Coal, stone, cement, zinc. Petroleum, natural gas, sulfur, natural gasoline.
exastah	13	15. 51 2. 23	Copper, gold, silver, coal.
ermont	41	.15	Stone, slate, asbestôs, lime.
irginia	22	1.07	Coal, stone, cement, clay products.
ashington	30	.60	Cement, coal, sand and gravel, gold.
ashington est Virginia	4	7.06	Coal, natural gas, petroleum, stone.
/isconsin	36	. 29	Stone, iron ore, sand and gravel, cement.
yoming		. 92	Petroleum, coal, natural gas, natural gasoline.

¹ In this table iron ore, not pig iron, is taken as the basis of iron valuation, and for other metals mine production (recoverable content of metals) is the basis.

Prices of gold, silver, copper, lead, and zinc, 1932-41 1

Year	Gold 3	Silver *	Copper 4	Lead 4	Zine 4
1932 1933 1934 1935 1936 1937 1938 1939	Per fine ounce \$20.67+ 25.58 34.95 35.00 36.00 35.00 36.00 35.00	Per fine ounce \$0. 282 .350 .646+ .71875 .7745 .7735 .646+ .7.678+ .711+	Per pound \$0.063 .064 .080 .083 .092 .121 .098 ,104 .113	Per pound \$0. 030 . 037 . 037 . 040 . 046 . 059 . 046 . 047	Per pound \$0, 030 . 042 . 043 . 044 . 050 . 065 . 048 . 052 . 063

¹ Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+ per fine ounce. For table of prices for silver, copper, lead, and zinc from 1850 to 1931, by years, see Mineral Resources, 1931, pt. 1, p. A115.
² 1932: Legal coinage value; 1933–34: Yearly average weighted Government price; 1935–41: Price under authority of Gold Reserve Act of January 31, 1934.
² 1932-33: Average New York price for bar silver; 1934 and 1938–41: Treasury buying price for newly mined silver; 1935–37: Yearly average weighted Treasury buying price for newly mined silver ² Yearly average weighted Treasury buying price for newly mined silver 3 Yearly average weighted price of all grades of primary metal sold by producers.
² \$20.671835.
² \$0.71111111.

STATE TABLES

Mineral production of Alabama, 1939-40

	1939		1940	
Product		I		
	Quantity	Value	Quantity	Value
Asphalt (native)short tons_	(1)	(1)	(1)	(1)
Baritedo	(1)	(1)		
Bauxitelong tons	(1)	(1)	(1)	(1)
Cement barrels Clay:	2 5, 042, 921	² \$6, 690, 765	2 5, 249, 759	2 \$7, 617, 405
Products (other than pottery and refractories)		3 2, 306, 712		\$ 2, 394, 000
Raw (sold by producers)short tons	51, 015	83, 933	144, 354	143, 363
Coaldo	4 12, 046, 675	4 27, 741, 791	⁶ 15, 324, 163	8 35, 777, 923
Cokedodo	3, 854, 505	6 10, 917, 559	4, 727, 378	6 13, 748, 837
Ferro-alloysdo	31,440	6 1, 802, 917	45, 184	6 3, 422, 111
Goldtroy ounces	3	105	5	175
Iron:				
Ore long tons Pig short tons	5, 985, 208	9, 971, 024	7, 330, 412	12, 606, 369
Pigshort tons_	3, 043, 602	6 43, 902, 681	3, 476, 072	49, 706, 851
Limedo	176, 513	1,004,785	234, 147	1, 359, 371
Manganese orelong tons	187	3,742	243	(1)
Manganiferous oredodo	519	4, 561	342	(1)
Scrapshort tons_			(1)	(1)
Sheetpounds_			(i) (i)	(1)
Mineral watersgallons sold	(7)	(7)	(7)	(7)
Ore (dry and siliceous) (gold and silver) short tons	10	(7) (8)	`´ 900	(8)
Sand and graveldodo	1, 283, 577	687, 265	1, 840, 945	936, 724
Sand and gravel do troy ounces			3	300,12
Stoneshort tons_	1, 855, 990	2, 516, 584	2, 496, 480	3, 048, 043
Miscellaneous 9		1, 146, 906		1, 114, 643
Total value, eliminating duplications		52, 158, 173		64, 998, 018

1 Value included under "Miscellaneous."
2 Exclusive of puzzolan, value for which is included under "Miscellaneous."
3 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
4 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
3 According to Bituminous Coal Division; value includes selling expenses.
4 Value not included in total value for State.
5 Value not included in total value for State.

Value not moduled.
 No canyass.
 Not valued as ore; value of recoverable metal content included under the metals.
 Includes minerals indicated by "4" and "2" above.

Mineral production of Alaska, 1939-40

Post	1939		1940	
Product	Quantity	Value	Quantity	Value
Antimony ore (concentrates) short tons Arsenic do Coal do Copper pounds Gold try ounces Lead short tons	(1) (2) 2 146, 250 256, 000 676, 737 937	(1) (2) 3 \$585,000 26,624 23,685,795 88,078	(1) (2) * 173, 970 110, 000 755, 970	(1) (2) 3 \$695, 000 12, 430 26, 458, 950 77, 900
Mercury	165	(4) (4)	162	28, 653
Dry and siliceous (gold and silver)doPlatinum metals (crude)troy ouncesshort tonsslivertroy ouncestroy ounces.	4, 751, 492 31, 300 5 42, 332 201, 054	997, 000 5 23, 112 136, 473	4, 885, 023 32, 300 515, 011 191, 679	1, 093, 000 103, 217 136, 305
Stoneshort tons_ Tin (metallic equivalent)do Miscellaneous 6	(1), 37	(1) 37, 300 94, 184	(1) 52	(1) 52, 000 66, 766
Total value, eliminating duplications		25, 673, 566		28, 724, 221

1 Value included under "Miscellaneous."

Figures not available:

According to the Alaskan Branch of the Geological Survey.

According to the Alaskan Branch of the Geological Survey.

Not valued as ore; value of recoverable metal content included under the metals.

"Government-and-contractor." Value of "Commercial" included under "Miscellaneous."

Includes minerals indicated by "" and "" above.

Mineral production of Arizona, 1939-40

	19	39	1940		
Product	Quantity	Value	Quantity	Value	
Antimony ore (concentrates) short tons. Arsenious oxide do. Asbestos do. Barite do_	(2) (1) 904	(2) \$95, 807 (1)	(1) (2) 1, 197	(1) (2) \$149, 290	
Bismuth pounds. Clay: Products (other than pottery and refractories). Raw (sold by producers) short tons.	(1)	3 237, 542 (1)	(4) (1) (1.5)	² 306, 000	
Coal do Copper pounds Feldspar (crude) long tons Fluorspar short tons Gems and precious stones	524, 224, 000 (1) (1)	(1 4) 54, 519, 296 (1) (1)	562, 338, 000 (1) (1)	(1 5) 63, 544, 194 (1) (1)	
Goldtroy ounces Gypsum (crude)short tons	316, 453	11, 075, 855	294, 807	10, 318, 245	
Lead do Lime do Manganese ore long tons	57, 233	1, 012, 474 448, 860	13, 266 67, 882 369	1, 326, 600 502, 998 4, 940	
Mercury flasks (76 pounds) Mica, scrap short tons.	711 192	(1) (1)	740 (1) 406, 306	130, 884 (¹) (¹)	
Copper short tons Dry and siliceous (gold and silver) do Lead do Lead-copper do	1, 042, 004 9, 778 30	00000	20, 284, 826 928, 448 8, 813 44	3333	
Zinc do Zinc-copper do Zinc-lead do Sand and gravel do Sand-lime brick thousands of brick	67, 074 204, 778	(7) (7) (7) 261, 316 (1 8)	79, 044 271, 000 245, 602	(7) (7) 114, 500 (1 8)	
Silica (quartz) short tons Silver troy ounces Stone snort tons	7, 824, 004 665, 290	5, 310, 839 626, 281	7, 075, 215 1, 149, 000	5, 031, 264 1, 043, 101 (1 10)	
Yangsten ore (60-percent concentrates) do Vanadium from complex ore Zinc. short tons. Miscellaneous ¹¹	100	103, 980 (1) 697, 944 1, 183, 915		471, 546 (1) 1, 947, 456 798, 684	
Total value, eliminating duplications		75, 087, 930		85, 277, 347	

1 Value included under "Miscellaneous."

1 Figures not available.
2 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
4 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
4 According to Bituminous Coal Division; value includes selling expenses.
Not canvass.
Not valued as ore; value of recoverable metal content included under the metals
Figures obtained through cooperation with Bureau of the Census.
From copper smelting.
Value not included in total value for State.
Il Includes minerals indicated by "1" above.

Mineral production of Arkansas, 1939-40

Doodwat	19	1939		1940	
Product	Quantity	Value	Quantity	Value	
Bariteshort tons			(1)	(1)	
Bauxitelong tons Cementbarrels		\$2, 074, 954	423, 283	\$2, 501, 398	
Clay: Products (other than pottery and refractories)		2 944, 661			
Raw (sold by producers)short tons.	_ (1)	(1)	24, 997	² 792, 780 13, 844	
Coal do	1, 152, 038	* 3, 655, 438	4 1, 453, 611	4 4, 879, 286	
Leadshort tons.			55	(5) 5, 500	
Limedolong tons	1 (1)	(1) (1) (1) 37, 834	(1) 6, 079	(1)	
Manganiferous oredodo	_1 1.970	B	1,075	(1)	
Mercury flasks (76 pounds) Mineral waters gallons sold	364	37, 834 (5)	1, 159	204, 992 (5)	
Natural gas	_ 10, 107, 000	1, 996, 000	14, 379, 000	2, 622, 00	
Natural gasoline gallons gallons short tons	24, 634, 000 (1)	962, 000 (1)	32, 096, 000	818, 000 (¹)	
Ores (crude), etc.:				(.)	
Lead do do do	(6)	8	(6)	9	
Petroleumbarrels	21, 238, 000	16, 790, 000	25, 775, 000	21, 700, 000	
Sand and gravel short tons.	2, 646, 793	1, 030, 270	2, 664, 178	1, 068, 701	
Stone short tons		640, 330	1, 222, 690	1, 152, 32	
Titanium minerals: Rutile do	- (1)	9		(1)	
Zine do	123	12, 792	440	55, 440	
Zinedo Miscellaneous ⁸ do	-	1, 428, 353		1, 664, 870	
Total value, eliminating duplications	-	29, 572, 632		37, 479, 138	

1 Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
4 According to Bituminous Coal Division; value includes selling expenses.
5 No canvass.
6 Figures not available.
7 Not valued as ore; value of recoverable metal content included under the metals.
8 Includes minerals indicated by "!" above.

Mineral production of California, 1939-40

	19	1939		1940	
Product	Quantity	Value	Quantity	Value	
ndalusite	(1)	(1)			
ntimony ore (concentrates)do	(1)	(1)	74	\$3, 70	
rsenious oxidedo	(2)	(2)	(2)	(3)	
sphalt (native)do	(1)	(1)	(1)	(1)	
sphalt (native) do arite do oron minerals do oronine pounds alcium chloride short tons ement barrels hromite long tons lay: Products (other than pottery and refractories) Raw (sold by producers) short tons copper nounds	(1)	45 (0) 007	(1)	F (1)	
oron mineralsdo	244, 984	\$5, 685, 297	243, 355	5, 643, 3	
rominepounds	(1)	(1)	8	×	
ament herrole	11, 293, 989	15, 889, 395	13, 813, 362	17, 296, 5	
hromite long tons	3, 514	(1)	(1)	(1)	
lay:	0,000			``	
Products (other than pottery and refractories)		³ 8, 304, 038		3 8, 417, 0	
Raw (sold by producers)short tons	310, 710	894, 809	343, 526	926, 6	
opperpounds	8, 360, 000	869, 440		1, 454, 9	
Piatomiteshort tons	2, 076	(1)	12, 870, 000 (1) 2, 711	(1)	
eldspar (crude)long tons	2,076	12, 655	2,711	18, 2	
ulier's earthsnort tons	(1)	(1)			
ems and precious stones	1 495 964		1 455 671	50, 948, 4	
Raw (sold by producers) short tons. lopper pounds. leistomite short tons. eldspar (crude) long tons. uller's earth short tons. ems and precious stones troy ounces. vjoid troy ounces. lypsum (crude) short tons. on ore long tons. yanite short tons. ead do Aime do ithium minerals do fagnesite do	1, 435, 264 188, 364	50, 234, 240 306, 350	1, 455, 671 259, 321	437, 5	
dina sounds	(1)		(1)	(1)	
on ore	17, 173	(1)	1,071	8	
vanite short tons	(1)	(i)	(1)	(i)	
eaddo	526	49, 444	1.772	ì⁄77, 2	
imedo	87, 407	833, 326	112, 522	1, 031, 3	
thium mineralsdodo	(1)	(1) (1)	(1)	(1)	
[agnesitedodo	(1) (1)		(1) (1) (1)	(1)	
[agnesium salts (natural)pounds	(1)	(1)	(1)	(1)	
langanese orelong tons	6	(1)	158	(1)	
langanilerous oredo			87	(1)	
tynum minerais. 00. fagnesite do lagnesium salts (natural) pounds. fanganese ore long tons. fanganiferous ore do larl, calcareous short tons. fercury flasks (76 pounds).	(1) 11, 127	(1) 1, 156, 540	18, 629	3, 294, 9	
fine seren short tons	(1), 121	1, 130, 340	(1), 028	(1)	
fineral paints (zine and lead nigments)	(1) (1 5)	(1) (1 5)	(1) (1 5)	à	
fineral waters gallons sold	(4)	(4)	(4)	(4)	
f olybdenumpounds	(1)	(1)	(1)	(1)	
fatural gas M cubic feet	348, 361, 000	91, 572, 000	351, 950, 000 587, 476, 000	90, 006, 0 27, 901, 0	
firetry lissks (76 pounts). fice, scrap short tons. fineral paints (zinc and lead pigments)do	607, 237, 000	35, 454, 000	587, 476, 000	27, 901, 0	
res (crude), etc.:			440 000	(10)	
Copper snort tons	367, 477	· 🗶	446, 392	1 2	
Treed	5, 209, 637 706	6	4, 214, 650 8, 199	X	
Tood-connor do	700	(%)	0, 188	X	
a turai gasoline gallons res (crude), etc.: Copper short tons Dry and siliceous (gold and silver) do Lead do Lead-copper do Zinc-lead do	33	(6)	181	66	
Zinc-lead do east do east do east do east do ebbles for grinding do etroleum barrels latinum metals (crude) troy ounces otassium salts short tons umice do yrites long tons alt (sodium chloride) short tons and and gravel do and and sandstone (ground) do do llica (quartz) do ller troy ounces late do late do lica do do lica do do lica do do lica do do do lica do do do do do do do d	4, 199	(f) 22, 240	4, 116	`21, 1	
ebbles for grindingdodo	(1)	(1)	(1)	(1)	
etroleumbarrels	224, 354, 000	229, 000, 000	223, 881, 000	216, 720, (
latinum metals (crude) troy ounces	1, 140		1, 400	8	
otassium saltsshort tons	(1)		(1)		
umicedo	36, 216	144, 772	32, 123	152,	
yriteslong tons	(1) 404, 689	1, 980, 777	(1) 460 254	2, 200,	
art (sodium chioride)snort tons	13, 661, 406	6, 711, 214	469, 354 18, 913, 301	8, 988,	
and and condetone (ground)	13, 001, 400	0, 711, 214	5, 505	39,	
llice (anartz)	К	l X	(1), 000	(1)	
liver troy ounces	2, 599, 139	1, 764, 264	2, 359, 776	1, 678, 0	
ate	_,	(1)		(4)	
short tons	209, 398	1, 988, 929	233, 590	2, 183, 1	
tonedo	5, 734, 100	4, 673, 751	6, 340, 080	5,048,2	
trontium mineralsdo			287	(1)4,3	
unurlong tons	(1) (1 5)	(1) (1.5)	(1 s)	(1)	
unuric acid 'Short tons	33, 796	483, 839	36, 282	476,	
auc, pyrophymice, and ground soapstonedo	(1)		1	310,	
rinoli	Ж	(1)	(n)	(1)	
imposten ore (60-nercent concentrates) do	1, 263	1, 140, 597	2,070	2.561.0	
odium salts (carbonates and sulfates) (natural) short tons tone	1,200	624	(1) 2, 070 79	9, 9	
discellaneous	l	8, 589, 243		8, 155,	
Total value, eliminating duplications		467, 612, 196		455, 672,	

¹ Value included under "Miscellaneous."

3 Figures not available.

3 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

4 No canvass.

5 Value not included in total value for State.

6 Not valued as ore; value of recoverable metal content included under the metals.

7 From roasting of high-sulfide gold and silver concentrates.

8 Includes minerals indicated by "1" above.

Mineral production of Colorado, 1939-40

	19	39	19	40
Product		1	ļ	
	Quantity	Value	Quantity	Value
Arsenious oxideshort tons_	(1)	(1)	(1)	(1)
Barite do	(2)	(2)	(2)	(2)
Beryllium ore (beryl)do Bismuthpounds	(2)	(2)	(2)	(3)
Dement barrels	(2)	(2)		(1)
Clay:	(9)	(-)	(-)	(9)
Products (other than pottery and refractories)		3 \$1, 687, 568		3 \$1, 391, 000
Raw (sold by producers)short tons_	128, 391	150, 803	115, 670	156, 588
oal do do	4 5, 923, 210	4 14, 620, 726	6, 588, 742	5 16, 644, 26
Cokedo	454, 869	(2 6)	605, 965	(2 6)
Copperpounds	26, 430, 000	2,748,720	24, 304, 000	2,746,352
Feldspar (crude)long tons	29, 995	107, 536	34, 105	123, 514
'erro-alloysshort tons	(2 6)	(2 6)	(2 6)	(2 6)
Fluorspardo	7, 569	107, 459	11,032	163, 28
fuller's earthdo	(2)	(2)	(2)	(2)
lems and precious stones		(7)		(7)
loldtroy ounces	366, 852	12, 839, 820	367, 336	12, 856, 760
ypsum (crude)short tons	24, 013	40, 694	24, 641	36, 78
ron, pigdodo	(2 6)	(2 6)	(2 6)	(2 6)
.eaddodo	8, 222	772, 868	11, 476	1, 147, 600
Anganese orelong tons	10, 699	103, 097	7,944	82, 486
Manganiferous oredodo	7, 516		224	(3)
Aica, scrapshort tons	(2)	(2)	3, 303	
Mineral waters gallons sold	8	l 8	1 12	(2)
Molybdenum pounds	25, 437, 893	(2)	18, 600, 897	(2)
Vatural gas M cubic feet_	2, 015, 000	467, 000	2, 533, 000	573,000
Vatural gasoline gallons	390,000	13,000	380,000	14,000
ores (crude), etc.:	000,000	10,000	000,000	11,000
Coppershort tons	342, 499	(8)	334, 312	(8)
Coppershort tons_ Dry and siliceous (gold and silver)do	1, 542, 235	(8)	1, 528, 737	(8)
Leaddo	14, 700	(8)	10, 199	(8)
Lead-copperdo	1, 464	(8)	1,037	(8)
Zincdo	344	(8)	27	(8)
Zinc-leaddo	13, 351	(8)	283, 453	(8)
'eatdo	(2)	(2)	(2)	(2)
etroleumbarrels	1, 404, 000	1, 330, 000	1, 626, 000	1, 480, 000
umiceshort tons			(2)	(2)
Pyriteslong tons	(2) (2)	(2) (2)	14, 473	34, 697
altshort tons		(3)	(3)	(2)
and and graveldo ilvertroy ounces	9 627, 306	9 361, 747	1, 853, 359	508, 403
toneshort tons	8, 496, 488 900, 460	5, 767, 313	9, 710, 709	6, 905, 393
ulfur orelong tons	900, 4 00 36	1, 040, 579 400	1, 089, 650 89	1, 067, 788 1, 000
ungsten ore (60-percent concentrates)_short tons	479	488, 628	693	822, 989
Franium and vanadium oresdodo	85, 225	(2)	92, 745	(3)
Vermiculite do	(2)	8	(2)	8
incdodo	1,830	190, 320	5,060	637, 560
Miscellaneous 10		29, 192, 106		25, 105, 109
Total value, eliminating duplications		64, 144, 557		63, 188, 42
		l'		I .

Value not included in total value of recoverable metal content included under the metals.
No canvass.
Not valued as ore; value of "Government-and-contractor" included under "Miscellaneous."
"Commercial" Value of "Government-and-contractor" included under "Miscellaneous."
Includes minerals indicated by "2" and "9" above.

Figures not available.
 Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
 According to Bituminous Coal Division; value includes selling expenses.
 Value not included in total value for State.
 No carness

Mineral production of Connecticut, 1939-40

	19	39	1940	
Product	Quantity	Value	Quantity	Value
Clay:	(2) (2 3) 10, 033 (2) 213 279, 508 (4) (2) 1, 988, 933 1, 816, 650	1 \$1, 257, 049 (2) (2) (3) 53, 120 (2) 3, 483 59, 172 (4) (773, 163 2, 077, 366 3, 053, 600	(2) (2 3) (24, 404 (2) 300 285, 690 (4) (3) 1, 646, 870 1, 915, 990	1 \$1,007,612 (3) (3) (3) 128,345 (2) 4,900 40,316 (4) (9) 736,317 1,918,132 3,342,258
Total value, eliminating duplications		4, 306, 351		3, 914, 17

Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 Value included under "Miscellaneous."
 Value not included in total value for State.

 No canvass.
 Includes minerals indicated by "2" above.

Mineral production of Delaware, 1939-40

	1939		1940	
Product	Quantity	Value	Quantity	Value
Clay: Products (other than pottery and refractories) Raw (sold by producers) Sand and gravel Stone do Miscellaneous	(2) 102, 850 (2)	1 \$185, 632 (2) 61, 556 (2) 154, 145	(2) 3 167, 138 114, 690	1 \$200, 000 (2) 8 91, 913 152, 313 13, 100
Total value, eliminating duplications		401, 333		457, 32

Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 Value included under "Miscellaneous."
 "Commercial." Value of "Government-and-contractor" included under "Miscellaneous."
 Includes minerals indicated by "2" above. Total for 1940 is estimate by Bureau

Mineral production of the District of Columbia, 1939-40

	19	39	1940	
Product	Quantity	Value	Quantity	Value
Clay products (other than pottery and refractories) . Stone		(1 2)	(1)	(1 2) (1)
Stone short tons Miscellaneous short tons		\$591, 837		\$640, 480
Total value, eliminating duplications		591, 837		640, 480

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

Mineral production of Florida, 1939-40

Product	19	39	1940	
Froduct	Quantity	Value	Quantity	Value
Cement barrels Clay:	(1)	(1)	(1)	(1)
Products (other than pottery and refractories)		2 \$193, 110		2 \$153, 000
Raw (sold by producers)short tons	(1)	(1)	(1)	(1)
Diatomitedo	(1)	(1)	(1)	(1)
Ferro-alloysdo	(1 3)	(1 2)	(1 3)	(i 3)
Fuller's earthdodo	(1)	(1)	(1)	(1) 227, 440
Limedo Mineral watersgallons sold	22, 843	215, 472	25, 038	227, 440
Peatshort tons_	\mathbb{R}	- 23	$\sim \Omega$	\mathbf{x}
Phosphate rocklong tons_	2, 678, 784	7, 893, 457	2, 845, 012	7, 741, 177
Sand and gravelshort tons	1, 015, 139	779, 708	1, 162, 075	800. 08
Stonedo	5 1, 444, 100	⁵ 1, 462, 730	5 2, 880, 540	⁵ 2, 750, 017
Titanium minerals:	77		2,000,010	2, 100, 021
Ilmenite do			(1)	(1)
Rutiledo			(1)	(1)
Miscellaneous 6		2, 517, 786		3, 190, 127
Total value, eliminating duplications		13, 060, 453		14, 854, 206

1 Value included under "Miscellaneous."

Mineral production of Georgia, 1939-40

	19	39	194	0
Product	Quantity	Value	Quantity	Value
Asbestosshort tons	(1) 86, 589 (1) (1)	(1) \$438, 378 (1) (1)	(1) 92, 302 (1) (1)	(1) \$464, 590 (1)
Cement Darrels Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons Coal do Copper pounds		(1) 2 2, 375, 225 4, 162, 127 (1 3)		(1) (1) 2 2, 582, 00 4, 859, 82 4 100, 57 2, 84
Fuller's earth short tons. Gems and precious stones fold troy ounces. Graphite, amorphous short tons. Iron ore-	(¹) 670 (¹)	(1) (5) 23, 450 (1)	(1)	(1) (8) 33, 63
Shipped to furnaces, etc. long tons. Sold for paint do. Kyanite. short tons. Lime do Manganese ore. long tons. Manganiferous ore. do	25, 846 487 (1) 6, 815 2, 646 7, 156	51, 078 2, 063 (1) 57, 663 45, 171 35, 959	100, 342 944 (1) 13, 774 3, 572 10, 293	182, 61 3, 14 (¹) 92, 28 68, 50 63, 76
Mica: Scrap	(1) (1) (5) 730 328, 173 58	(1) (1) (5) (6) 146, 355 39	(1) (1) (5) 6, 963 490, 136 630	(1) (1) (5) (6) 231, 59:
Slate. Stone Short tons. Tale and ground soapstonedo Miscellaneous 7	20,090	4, 838, 623 177, 881 2, 279, 643	2, 507, 600 20, 104	5, 034, 28 219, 95 2, 992, 27
Total value, eliminating duplications		14, 633, 655		16, 932, 33

² Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

³ Value not included in total value for State.

^{*} No canvass.

* Exclusive of dimension unclassified stone, value for which is included under "Miscellaneous."

* Includes minerals indicated by "" and "*" above.

¹ Value included under "Miscellaneous."

³ Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

³ According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.

⁴ According to Bituminous Coal Division; value includes selling expenses.

⁵ No canvass.

⁶ Not valued as ore; value of recoverable metal content included under the metals.

ʔ Includes minerals indicated by "!" above.

Mineral production of Idaho, 1939-40

	19	39	1940	
Product	Quantity	Value	Quantity	Value
Antimony ore (concentrates) short tons. Arsenious oxide do Bismuth pounds. Cement barrels. Clay:	2, 677 (2) (3) (1)	(1) (2) (3)	302 (3) (1)	\$18, 100 (2) (2) (1)
Products (other than pottery and refractories). Raw (sold by producers)	(1) (1 4) 5, 032, 000 (1)	* \$102, 071 (1) (1 4) 523, 328 (1)	(1) (1 s) 6,698,000 (1) (1)	* 82, 000 (1) (1 5) 756, 874 (1) (1)
Gold troy ounces. Lead short tons. Lime do Manganiferous ore long tons. Marcury flasks (76 pounds)	116, 662 90, 981 (1) 163	4, 083, 170 8, 552, 214 (1) (1) (1)		5, 126, 800 10, 483, 400 (1) (1) (1)
Ores (crude), etc.: Coppershort tons. Dry and siliceous (gold and silver)do Leaddo Lead-copperdo	120, 904	(f) (f)	4, 931 878, 993 164, 508 232	වලලල
Zinc. do do Zinc-lead do do Zinc-lead do do do do do do do	1, 196, 495 95, 451 1, 617, 856 17, 222, 370 1, 863, 350 228 47, 549	(7) (7) 431, 938 622, 240 11, 690, 336 1, 238, 735 (1) 4, 945, 096 949, 324	101 1, 507, 922 99, 088 1, 943, 723 17, 552, 240 967, 900 70, 601	(7) (441, 598 657, 848 12, 481, 593 809, 797 (1) 8, 895, 726 1, 046, 184
Total value, eliminating duplications		33, 138, 452		40, 799, 920

¹ Value included under "Miscellaneous."
2 Figures not available.
3 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
4 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses
5 According to Bituminous Coal Division; value includes selling expenses.
6 No canvass.
7 Not valued as ore; value of recoverable metal content included under the metals.
8 Includes minerals indicated by "1" above.

Mineral production of Illinois, 1939-40

Product	19	939	19	40
Troube	Quantity	Value	Quantity	Value
Cement barrels Clay: Products (other than pottery and refractories)	1 4, 801, 292	¹ \$7, 056, 746 ² 7, 107, 144	1 4, 937, 127	1 \$7, 209, 431
Raw (sold by producers) short tons Coal do Coke do Ferro-alloys do	126, 611 46, 782, 691 1 884 240	271, 737 3 76, 680, 593 3 11, 963, 932	169, 938 4 50, 610, 430 3, 014, 840	² 7, 052, 000 419, 740 4 85, 584, 043 8 18, 217, 939
Fluorspar do do Fluorspar, optical ounces. Fuller's earth short tons	75, 257 (7)	1, 638, 693 25		2, 313, 747
Iron, pigdododo	3, 203, 846 308 147, 729	57, 718, 814 28, 952 1, 064, 154	4, 093, 623 1, 508	73, 882, 065 150, 800 1, 150, 113
Mineral paints (zinc and lead pigments) do Mineral waters gallons sold. Natural gas M cubic feet.			(8 6) (8) 8, 359, 000	(8 6)
Natural gasoline gallons Ores (crude), etc.: short tons Lead short tons Zinc do	4, 012, 000	229,000	21, 499, 000	805, 000 (9)
Zinc-lead do	(10) 94, 912, 000 13, 950	(10) 101, 200, 000 (6)	41, 830 147, 647, 000 13, 021	(°) 156, 500, 000 21, 876
Sand and gravel short tons Sand and sandstone (ground) do Sand-lime brick thousands of brick	11 8, 755, 193 91, 645 (6 12)		11 10, 103, 214 106, 397	11: 5, 578, 309 628, 488
Silver troy ounces. Stone short tons Sulfuric acid (60° Baumé) 14 do do do do	178 144	458 7, 820, 589 1, 665, 077	4, 766 18 9, 209, 170 188, 355	3, 389 13 7, 556, 497 1, 721, 565
Tripoli do Zine do Miscellaneous 18	. 004	148, 310 34, 736 3, 712, 410		155, 576 607, 068 3, 410, 794
Total value, eliminating duplications		210, 798, 331		277, 943, 011

1 Exclusive of natural cement, value for which is included under "Miscellaneous."
3 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
3 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
4 According to Bituminous Coal Division; value included such expenses.
9 Value not included in total value for State.
9 Value included under "Miscellaneous."
7 Quantity undetermined.
9 No canvass.
9 Not valued as ore; value of recoverable metal content included under the metals.
19 No ore milled in northern Illinois in 1939; metal output of southern Illinois was typroduct of fluorspar milling.

"No ore mined in northern minors in 1959, metal output of southern minors was byproduced in miling.

11 "Commercial." Value of "Government-and-contractor" included under "Miscellaneous."

13 Figures obtained through cooperation with Bureau of the Census.

14 Exclusive of unclassified stone, value for which is included under "Miscellaneous."

14 From zine smelting.
15 Includes minerals indicated by "1", "6", "11", and "12" above.

Mineral production of Indiana, 1939-40

Product	19	39	1940	
rioduct	Quantity	Value	Quantity	Value
Cement barrels.	(1)	(1)	(1)	(1)
Products (other than pottery and refractories)		2 \$5, 629, 014	l .	2 \$4, 265, 000
Raw (sold by producers)short tons.		79, 693	89, 230	92, 71
Coaldo	³ 16, 942, 772	3 25, 101, 972	4 18, 868, 572	4 28, 810, 86
Cokedo	4, 878, 033	5 28, 532, 944	6, 412, 716	\$ 37, 308, 46
Goldtroy ounces_	4	140	5	17
Iron, pigshort tons	3, 780, 364	⁵ 68, 164, 618	5, 333, 915	5 97, 407, 80
Limedo	94, 741	534, 688	84, 462	457, 62
Mineral paints (zinc and lead pigments)	(1.5)	(1.5)	(1.5)	(1.5)
Mineral waters gallons sold Natural gas M cubic feet	(6) 791, 000	(6) 452,000	(8)	(6)
Petroleum barrels	1, 711, 000	1, 675, 000	1, 137, 000 4, 978, 000	661, 00 5, 200, 00
Pyrites long tons	4, 403	(1)	2, 734	4,88
Rubbing stones and whetstonesshort tons	(1)		(1)	(1) 2,00
Sand and graveldo	6, 249, 169	3, 388, 297	6, 265, 163	3, 306, 16
Sand-lime brick thousands of brick	(17)	(17)	(17)	(17)
Stone short tons	8 4, 338, 690	8 7, 469, 659	8 4, 498, 490	8 5, 822, 00
Miscellaneous •		11, 985, 673		12, 636, 59
Total value, eliminating duplications		53, 884, 995		58, 975, 11

1 Value included under "Miscellaneous."

No canvass.
Figures obtained through cooperation with Bureau of the Census.
Exclusive of dimension sandstone in 1939 and of unclassified stone in 1940, value for which is included under "Miscellaneous."

Includes minerals indicated by "1" and "8" above.

Mineral production of Iowa, 1939-40

Quantity	Value	Quantity	Value
4, 717, 295 5, 615 2, 947, 557 (4 5) 430, 712 (4 5) (9)	\$7, 771, 503 1 3, 698, 611 50, 939 2 7, 189, 245 (4 5) 510, 120 (4 5) (6) (4)	4, 597, 781 10, 005 2 3, 231, 177 (4 5) 487, 379 (4 5) (9) 2, 500	\$7, 641, 163 1 3, 649, 000 51, 267 2 8, 060, 587 (4 5) 587, 223 (4 5) (6) 30, 000
7 2, 503, 988 6, 400, 590	⁷ 1, 299, 449 4, 385, 234 2, 176, 129	7 3, 464, 803 4, 013, 740	7 1, 852, 285 3, 832, 070 2, 880, 942
	4, 717, 295 5, 615 2, 947, 557 (4 5) 430, 712 (4 1) (9) (4) 7 2, 503, 988	4, 717, 295 \$7, 771, 503 1 3, 698, 611 50, 939 7, 189, 245 (4 5) (4 5) (5 (6) (6) (7 2, 503, 988 7 1, 299, 449 6, 400, 590 4, 335, 234	4, 717, 295 \$7, 771, 503 4, 597, 781 1 3, 698, 611

5 Value not included in total value for State.

No carvass.
7 "Commercial." Value of "Government-and-contractor" included under "Miscellaneous."
8 Includes minerals indicated by "" and "" above.

Yaiue included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
 According to Bituminous Coal Division; value includes selling expenses.
 Value not included in total value for State.
 No converse.

Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 According to Bituminous Coal Division and Bureau of the Census producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
 According to Bituminous Coal Division; value includes selling expenses.
 Value included under "Miscellaneous."

Mineral production of Kansas, 1939-40

	19	39	1940	
Product	Quantity	Value	Quantity	Value
Asphalt (native) short tons Cement barrels Chats short tons Clay: Products (other than pottery and refractories)	² 3, 746, 370 50, 000	⁽¹⁾ ² \$5, 614, 112 ⁽¹⁾ ³ 1, 051, 349	² 3, 441, 612 163, 180	³ \$5, 192, 160 25, 747
Raw (sold by producers)	4 2, 674, 691 (1) 13, 697	(1) 4 5, 057, 992 (1) 1, 287, 518 (1 6) (7) 29, 356, 000	(1) 5 3, 578, 952 (1) 11, 927 (1 6) (7) 90, 003, 000	3 1, 035, 000 5 6, 717, 318 (1) 1, 192, 700 (1 6) (7) 31, 931, 000
Natural gas M cubic feet Natural gasoline gallons Ores (crude), etc.: gallons Lead short tons Zine do Zine-lead do Petroleum barrels Pumice short tons	1, 937, 000 1, 764, 300 60, 703, 000 41, 643	(8) (8) (8) 63, 100, 000 123, 163	64, 691, 000 2, 000 1, 137, 704 2, 014, 096 66, 139, 000 39, 215	(8) (8) (8) (8) 68, 700, 000 129, 959
Punite	9, 838 641, 752 1, 934, 759 3, 406, 640	(1) 2, 591, 934 822, 305 4, 550, 560 7, 172, 984 2, 797, 911	684, 053 2, 264, 871 2, 880, 930 57, 032	2, 710, 847 893, 962 3, 672, 644 7, 186, 032 2, 760, 184
Total value, eliminating duplications		122, 959, 513		130, 859, 896

¹ Value included under "Miscellaneous."

Yalue included under "Miscellaneous."
 Exclusive of natural cement, value for which is included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 According to Bituminus Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
 According to Bituminous Coal Division; value includes selling expenses.
 Value not included in total value for State.
 Yalue not included in total value for State.

7 No canvass.
8 Not valued as ore; value of recoverable metal content included under the metals.
9 Includes minerals indicated by "1" and "3" above.

300

Mineral production of Kentucky, 1939–40							
	19	39	1940				
Product		·					
	Quantity	Value	Quantity	Value			
Asphalt (native)short tons	(1)	(1) (1)	(1)	(1)			
Cementbarrels_	(1)	(1)	(1)	(1)			
Clay:	į		1				
Products (other than pottery and refractories)		2 \$1, 566, 982		² \$1, 258, 000			
Raw (sold by producers)short tons	247, 958	1,004,232		1, 328, 644			
Coaldodo	³ 42, 556, 568	³ 74, 078, 412	4 49, 140, 904	4 91, 153, 768			
Fluorspar do do	89, 563	1, 773, 063	103, 939	2,043,866			
Iron, pigdo	259, 273	(1 5)	290, 610	(1.5)			
Lead do do	87	8,178	360	36,000			
Limedo	(1)	(1)	(1)	(1)			
Mineral waters gallons sold	(6)	(6)	(6)	(6)			
Natural gas	47, 771, 000	20, 630, 000	53, 056, 000	22, 936, 000			
Natural gasoline gallons	7, 785, 000	347, 000	9, 539, 000	350,000			
Ores (lead and zinc)short tons	(7)	(7)	(7)	(7)			
Petroleumbarrels	5, 621, 000	5, 900, 000	5, 188, 000	5, 400, 000			
Sand and gravelshort tons	1, 101, 415	777, 602	1, 226, 325	815, 688			
Stonedo	4, 802, 280	4, 480, 098	4, 620, 750	4, 207, 875			
Zincdodo	909	94, 536	1, 278	161,028			
wriscenaneous *		8, 850, 839		10, 740, 376			
Total value, eliminating duplications		112, 840, 566		131, 974, 410			

17 Yalue included under "Miscellaneous."

Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.

According to Bituminous Coal Division; value includes selling expenses.

Yalue not included in total value for State.

No canvass.
Figures not available.
Includes minerals indicated by "1" above.

Mineral production of Louisiana, 1939-40

	19	39	40	
Product	Quantity	Value	Quantity	Value
Cementbarrels Clay: Products (other than pottery and refractories)	(1)	(1) 2 \$741, 692	(1)	(¹) ² \$540, 000
Raw (sold by producers) short tons. Mineral waters gallons sold. Natural gas M cubic feet.	(1) (3) 294, 370, 000	(1) (3) 53, 835, 000	10, 189 (3) 343, 191, 000	96, 314 (3) 63, 577, 000
Natural gasoline gallons Petroleum barrels Salt short tons	94, 090, 000 93, 646, 000	3, 329, 000 98, 000, 000 2, 830, 331	113, 741, 000 103, 584, 000	2, 552, 000 107, 500, 000 2, 804, 406
Sand and gravel do Sand-lime brick thousands of brick Stone short tons	2, 145, 793 (1 4)	1, 195, 049	2, 580, 478	1, 381, 044
Sulfur long tons Miscellaneous 5	446, 242	8, 972, 079	543, 004	8, 688, 064 2, 014, 484
Total value, eliminating duplications		168, 903, 151		189, 153, 312

Mineral production of Maine, 1939-40

	19	39	1940	
Product	Quantity	Value	Quantity	Value
Beryllium ore (beryl)		(1) (1) 2 \$371, 629	8	(¹) (¹) 2 \$275, 000
Raw (sold by producers)	(1) 18, 109	(1) 74, 165 (3)	18, 390	84, 796 (8) (1)
Mica: Scrapdo	9	8	8	<u>Q</u>
Sheet pounds. Sheet gallons sold. Peat short tons. Sand and gravel do.	(1) (3) 1, 267 3, 312, 164	(*) 26, 569 888, 646	(3) 8, 173 3, 836, 131	(3) 118, 897 878, 820
Silica (quartz)do	4 205, 280	1, 725 215, 951 4 1, 228, 930 962, 176	160 4 245, 580	538 286, 660 4 1, 876, 198 854, 067
Total value, eliminating duplications		3, 769, 791		4, 374, 976

^{&#}x27;Value included under "Miscellaneous."

Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

No canvass.

Figures obtained through cooperation with Bureau of the Census.

Includes minerals indicated by "1" above.

Yalue included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimated by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

No canvass.
 Kxclusive of unclassified stone, value for which is included under "Miscellaneous."
 Includes minerals indicated by "!" and "4" above.

Mineral production of Maryland, 1939-40

	19	39	194	ŧu
Product	Quantity	Value	Quantity	Value
Asbestosshort tons. Dementbarrels. Dlay:	(1)	(1)	(1)	(1)
Products (other than pottery and refractories) Raw (sold by producers) short tons Coal 6	35, 817 31, 442, 728 1, 578, 973	² \$1, 709, 524 124, 502 ³ 2, 938, 938 (1 5)	49, 036 4 1, 503, 433 1, 682, 701	² \$1, 856, 000 114, 531 4 3, 171, 243 (1 5)
Feldspar (crude) long tons Fold troy ounces ron, pig short tons lime do	(1) 71	(1) 2, 485 (1 5) 396, 201	2, 350, 773 63, 745	(1) (1 5) 355, 771
Mineral waters gallons sold. Ore (dry and siliceous) (gold and silver) short tons. Potassium salts do and and gravel do	(6) 220	(6) (7) (1) 2, 827, 268	(f) (1) 3, 426, 525	(6) (1) 2, 763, 323
Silica ((artz) do Silver troy ounces Slate. short tons	515 2	8,010	1, 109, 960	(1) (1) 1, 395, 37
Talc and ground soapstone do		40, 697, 718	(1)	46, 596, 89

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimated by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
 According to Bituminous Coal Division; value includes selling expenses.
 Value not included in total value for State.
 No environment

Value not included in total value for State.
No canvass.
Not valued as ore; value of recoverable metal content included under the metals.
Includes minerals indicated by "!" above.

Mineral production of Massachusetts, 1939-40

	193	39 1940		0
Product	Quantity	Value	Quantity	Value
Clay:	(1) 1, 057, 158 (1) (1) (1) 111, 734 (6) (4) 3, 662, 098 1, 374 (1) 442 2, 543, 730	1 \$866, 226 (Y) (z s) (z	(1) 1, 130, 311 (2 3) 108, 797 1, 900 (4) 703 3, 563, 760 1, 425 (1 3) 786 2, 176, 340	1 \$976, 895 (2) (2) (2) (2) (3) 965, 333 (3) (4) (4) 1, 681, 222 6, 246 (1 3) 4, 716 3, 819, 706 9, 436, 085

Figures obtained through cooperation with Bureau of the Census.
 Value included under "Miscellaneous."
 Value not included in total value for State.

Includes minerals indicated by "2" above.

Mineral production of Michigan, 1939-40

	19	39	194	1940	
Product	Quantity	Value	Quantity	Value	
Brominepounds	13, 035, 667	\$2, 680, 591	14, 173, 936	\$2, 878, 900	
Calcium chloride	98, 287	1, 219, 581	84, 918	900, 801	
Cement barrels	8, 327, 479	10, 891, 978	8, 519, 416	11, 389, 191	
Clav:	3,52.,2.6	,,	,,	,,	
Products (other than pottery and refractories)		1 2, 550, 934		1 2, 377, 000	
Raw (sold by producers)short tons	(2)	(3)	(2)	2,011,000	
Coaldodo	3 456, 754	* 1, 723, 104	4 410, 169	4 1, 592, 051	
Cokedodo		12, 408, 881	2, 872, 026	5 15, 445, 452	
Copper pounds.	87, 970, 000	9, 148, 880	90, 396, 000	10, 214, 748	
Copperpounds	87, 970, 000		80, 380, 000	(6)	
Gems and precious stones		(6)	746 000	1, 017, 126	
Gypsum (crude)short tons_	643, 180	834, 856	746, 982	1, 017, 120	
Iron:	1	i '			
Ore—	1				
Sold to furnaceslong tons	11, 238, 605	37, 026, 665	13, 751, 970	40, 474, 951	
Sold for paintdo	872	(2)			
Pigshort tons_	1, 275, 640	§ 18, 872, 150	1, 340, 402	⁵ 18, 472, 588	
Limedo	45, 180	324, 765	41, 814	308, 926	
Magnesiumpounds_	10, 650, 121	(2)	12, 823, 633	3, 462, 380	
Magnesium salts (natural):	3.6 0.50				
Carbonatedo	(2)	(3)	(2)	(3)	
Chloridedodo	(2)	(2)	(2)	(3)	
Sulfatedo	(2)	(2)	(2)	(3)	
Manganiferous orelong tons	l		18, 617	(2)	
Marl, calcareousshort tons	(2)	(2)	(2) (6)	(2)	
Mineral watersgallons sold	(6)	(6)	(6)	(6)	
Natural gas	10, 726, 000	7. 411. 000	12, 648, 000	8, 339, 000	
Natural gasoline gallons		89,000	3, 919, 000	162,000	
Ores (crude), etc.: Coppershort tons_	4, 603, 751	(1)	4, 438, 219	(7)	
Peatdodo	6, 190	28, 600	5, 326	32,750	
Petroleum barrels	23, 462, 000	21, 350, 000	19, 753, 000	20, 150, 000	
Salt short tons		6, 726, 912	2, 863, 035	7, 479, 905	
Sand and graveldo		4, 087, 508	13, 650, 528	4, 978, 006	
Sand-lime brick thousands of brick	8 21, 475	197, 659	13, 000, 028	170, 678	
OMIG-HIRE Drick	101, 878	69, 154	88, 657	63,045	
Silvertroy ounces_ Stoneshort tons_	11, 138, 280	5, 890, 728	13, 527, 170	6. 891. 433	
Miscellaneous •	11. 138, 280	3, 836, 239	10, 021, 110	1, 891, 690	
Miscellaneous		0, 830, 239		1, 591, 690	
Total value, eliminating duplications		116, 088, 154		124, 774, 581	

¹ Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

3 Value included under "Miscellaneous."

3 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.

4 According to Bituminous Coal Division; value includes selling expenses.

5 Value not included in total value for State.

6 No converse

value not included in total value for State.
No canvass.
Not valued as ore; value of recoverable metal content included under the metals.
Figures obtained through cooperation with Bureau of the Census.
Includes minerals indicated by "3" above.

Mineral production of Minnesota, 1939-40

Product	19	039	1940	
Product	Quantity	Value	Quantity	Value
Cementbarrels	(¹) 2,010	(1) 2 \$1, 013, 688 5, 253	(t)	(1) 2 \$988, 116
Coke	497, 079 (¹)	* 3, 684, 811 (1) (4)	524, 360 (¹)	3 3, 662, 906 (1) (4)
Ore	32, 370, 241 188, 013 (1) 651, 963	97, 113, 591 (1 3) (1) (1)	47, 904, 137 282, 728 (¹) 1, 046, 374	(118, 947, 968 (13) (1) 2, 894, 388
Marl, calcareous short tons. Mineral waters gallons sold short tons	(4) (1)	745 (4)	(1) (4) 1,984	(1) (4) 19, 980
Pebbles for grindingdo_ Sand and graveldo Sand-lime brickthousands of brick Stoneshort tons	8, 501, 211 18, 428 1, 405, 740	1, 942, 430 1 182, 443 2, 339, 774	8, 729, 205 (1 2) 1, 119, 230	1, 924, 716 (1 2) 1, 987, 822
Miscellaneous I	1, 200, 120	7, 188, 055	1, 110, 200	7, 083, 74 128, 571, 69

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 Value not included in total value for State.
 No canvass.
 Includes minerals indicated by "!" above.

Mineral production of Mississippi, 1939-40

Product	193	39	0	
Product	Quantity	Value	Quantity	Value
Clay: Products (other than pottery and refractories) Raw (sold by producers) Iron ore long tons Mineral waters Matural gas Petroleum Sand and gravel Stone Missellaneous Missellaneous Clay: Award refractories Indicate and refractories	(2) 14, 527, 000 107, 000 2, 336, 842 (2)	1 \$761, 686 (2) (3) 3, 300, 000 94, 000 810, 933 (2) 225, 537	(2) 59 (1) 59 6, 365, 000 4, 400, 000 2, 319, 073 4 210	1 \$787, 000 (2) 38 (4) 1, 637, 000 3, 750, 000 724, 777 4 410 340, 422
Total value, eliminating duplications		5, 192, 156		7, 239, 64

Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 Value included under "Miscellaneous."
 No canvass.
 Exclusive of limestone, value for which is included under "Miscellaneous."
 Includes minerals indicated by "2" and "4" above.

Mineral production of Missouri, 1939-40

	19	39	194	10
Product	Quantity	Value	Quantity	Value
Asphalt (native)	171, 642 4, 702, 259	(1) \$1, 163, 870 7, 420, 013 59, 900	(1) 179, 455 4, 867, 799 1, 470, 849	(1) \$1, 216, 069 7, 616, 247 238, 266
Products (other than pottery and refractories) Raw (sold by producers)short tens do Cosl	384, 665 3 3, 273, 550 (1 5)	³ 6, 138, 603 (1 5)	498, 150 4 3, 096, 741 (1 s) 1, 370, 000	² 2, 064, 000 1, 400, 932 4 6, 320, 770 (1 ⁵) 154, 810
Iron ore—	156, 281 516, 988 (1 5) (6) 538, 000	5,346 14,690,414 2,800,379	172, 052 607, 062 (1 5) (6)	11, 177 17, 205, 200 3, 184, 293 (1 5) (6)
Ores (crude), etc.:	20, 200 503, 600 40, 000 32, 496 3, 857, 406 (1) (1 8) 213, 400 9 3, 958, 470 (1)	(7) (7) (7) 30,000 68,369 2,310,995 (1) (1*) 144,853 *4,589,986 (1)	5, 837, 550 201, 055 418, 795 44, 000 29, 325 4, 067, 571 (1) (18) 260, 314 6, 085, 790 (1) 13 12, 703	6, 176, 867 (1) (1) 1, 600, 578
Miscellaneous ¹⁰ Total value, eliminating duplications		1,711,108		1, 876, 04 50, 324, 56

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
 According to Bituminous Coal Division; value includes selling expenses.
 Value not included in total value for State.
 No entrees

<sup>Value not included in word value of the October of No canyass.
Not valued as ore; value of recoverable metal content included under the metals.
Figures obtained through cooperation with Bureau of the Census.
Exclusive of sandstone, value for which is included under "Miscellaneous."
Includes minerals indicated by "" and "" above.</sup>

Mineral production of Montana, 1939-40

P	19	139	194	10
Product	Quantity	Value	Quantity	Value
Antimony ore (concentrates)short tons_			69	\$3,000
Arsenious oxidedodo	(1)	(1)		
Asbestosdodo	(1)	(1)	(1) (1)	(1) (1)
Barite do do	(1)	l k	` ' '	(-)
Bismuthpounds	≥) } ₂ <	(3)	(2)
Cement barrels	₩	1 7	(1)	(2) (1)
Clav:	(-)	(-)	(1)	(•)
Products (other than pottery and refractories)		\$ \$203, 727		9 177 000
Raw (sold by producers)short tons	(1)			* 155, 000
Coal:	(1)	(1)	(1)	(1)
Bituminousdo	4 2, 803, 749	4 4, 092, 157	f 5 2, 818, 936	\$ 4,075,528
_ Lignitedo)		48, 264	86, 000
Copper pounds Gems and precious stones	195, 654, 000	20, 348, 016	252, 782, 000	28, 564, 366
Gems and precious stones		(6)		(6)
Goldtroy ounces	264, 173	9, 246, 055	272, 602	9, 541, 070
Gypsum (crude)short tons	(1)	(1)	(1)	(1)
Leaddo	16, 555	1, 556, 170.	23, 036	2, 303, 600
Limedo	(1)	(1)	18, 797	77, 658
Manganese orelong tons	11.139	l ii	19, 343	(1)
Manganiferous oredo	2, 121	l k	3, 617	Ж
Mineral waters gallons sold	(6)	65	(6)	\ \
Natural gas M cubic feet.	23, 178, 000	6, 486, 000	26, 231, 000	7, 132, 000
Natural gasoline gallons	2, 161, 000	154,000	2, 603, 000	162, 000
Ores (crude), etc.:	2, 101, 000	102,000	2,000,000	102, 000
Coppershort tons_	2, 253, 270	(7)	3, 287, 803	(7)
Dry and siliceous (gold and silver)do	1, 049, 461	l X	1, 028, 523	K
Leaddo	23, 096	8		X
Lead-copper do	20,000	()	29, 454 71	X
Zinedo	146, 705	(7)		Ω
Zinc-leaddo	320, 248	Ω	174, 181	g
Petroleum barrels	5, 960, 000	5, 860, 000	579, 209	(7)
Phosphate rock long tons			6, 728, 000	6, 860, 000
Platinum metals (crude) troy ounces	44, 384	112, 142	64, 239	184, 844
Pariting metals (crude)troy ounces			31	(1)
Pyriteslong tons	(1)	(1)	(1)	(1)
Sand and gravel short tons	4, 305, 553	1, 678, 098	4, 978, 353	1, 953, 009
Silvertroy ounces	9, 087, 571	6, 168, 533	12, 361, 050	8, 790, 080
Stoneshort tons	1, 266, 220	1, 714, 718	829, 600	813, 286
Tin (metallic equivalent) pounds Tungsten ore (60-percent concentrates) _ short tons Vermiculite do	(1)	(1)	(1)	(1)
Tungsten ore (60-percent concentrates) _short tons	23	(1)	50	(1)
Vermiculitedo	(1)	(1)	(1)	(1)
Zinedo	34, 799	3, 619, 096	52, 587	6, 625, 962
Miscellaneous 8		2, 105, 090		2, 360, 470
Total value, eliminating duplications		63, 343, 802		
A COOL VALUE, CHIMINALINE CHIMICALIONS		105, 545, 802		79, 487, 873

1 Value included under "Miscellaneous."

2 Figures not available.
3 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
4 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
4 According to Bituminous Coal Division; value includes selling expenses.
6 No canvass.
7 Not valued as ore; value of recoverable metal content included under the metals.
8 Includes minerals indicated by "1" above.

Mineral production of Nebraska, 1939-40

Donadanak	193	39 1		940	
Product	Quantity	Value	Quantity	Value	
Cement barrels. Clay: Products (other than pottery and refractories). Raw (sold by producers)short tons. Mineral watersgallons sold. Petroleum barrels. Pumice short tons. Sand and graveldo. Stonedo. Miscellaneous 4	(1) 19, 576 (3) 2, 000 (1) 2, 494, 142 427, 580	(1) 2 \$569, 953 9, 185 (2) 2, 000 (1) 878, 366 660, 732 2, 270, 055 4, 390, 291	(1) 10, 417 (2) 276, 000 (1) 3, 051, 706 832, 890	(1) 2 \$412, 000 5, 781 (8) 220, 000 (1) 1, 072, 931 906, 563 2, 074, 867	

Mineral production of Nevada, 1939-40

		1939	194	0
Product	Quantity	Value	Quantity	Value
Andalusiteshort tons_ Antimony ore (concentrates)do	(1)	(1)	(1) 361	(¹) \$22, 100
Barite do Bismuth pounds Boron minerals short tons Clay:	(1) (2) 300	(2) \$4, 500	(1)	(1) (2)
Products (other than pottery and refractories) Raw (sold by producers)short tons Copperpounds.	(¹) 133, 194, 000	(1 3) (1) 13, 852, 176	(¹) 156, 908, 000	(1 3) (1) 17, 730, 604
Diatomite short tons Dumortierite do do Government do Gove	(1) (1) 3, 520	(1)	(1) (1) 5, 803	(1) (1)
Fuller's earthdoGems and precious stones	361, 518	(1) (4) 12, 653, 130	(¹)´ 383, 933	(1) (4) 13, 437, 655
Graphite, amorphous short tons. Gypsum (crude) do Lead do Lime do	205, 762 4, 236	484, 621 398, 184 (1)	250, 632 7, 499	(1) 618, 050 749, 900 (1)
Magnesite do Magnesium oxide (hydrated) (brucite) do Magnese ore long tons	l Ö	(i) 	(1) (1) 210	(i) (i)
Manganiferous ore do do short tons short tons flasks (76 pounds)	(i) 828	(¹) 86, 062	4, 613 (1) 5, 924	(1) (1) 1, 047, 778
Mineral waters gallons sold Ores (crude), etc.: Copper short tons Dry and siliceous (gold and silver) do dodo	(4) 4, 936, 001	(4) (9)	(4) 6, 158, 388	(4) (2)
Lead-copperdo	6, 730 219	(6) (6) (7)	2, 044, 000 7, 080 9	(5) (5) (5) (5)
Zinc do do Zinc-lead do do Qumice do	150 44, 848 (1) 1, 329, 810	(*) (1) 453, 047	1.968 126,814 1.803.924	(°) 543, 036
Sand and gravel do Silver troy ounces Stone short tons. Sulfur ore long tons.	4, 316, 029 34, 260	2, 929, 668 40, 207 343	5, 175, 928 171, 670	3, 680, 660 189, 143 403
Talc and pinite	2, 091 6, 228	(¹) 647, 712	(1) 1,796 11,833	(1) (1) 1, 490, 958
Miscellaneous 7 Total value, eliminating duplications		3, 121, 229		3, 060, 242 42, 570, 529

Value included under "Miscellaneous."

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 No canvass.
 Includes minerals indicated by "1" above.

<sup>Value included under "Miscellaneous."
Figures not available.
Figures obtained through cooperation with Bureau of the Census.
No canvass.
Not valued as ore; value of recoverable metal content included under the metals.
Exclusive of limestone, value for which is included under "Miscellaneous."
Includes minerals indicated by "1" and "4" above.</sup>

Mineral production of New Hampshire, 1939-40

Product	193	39	194	1940	
Houdet	Quantity	Value	Quantity	Value	
Clay products (other than pottery and refractories). Feldspar (crude)long tons. Garnet, abrasiveshort tons. Gems and precious stones	34, 414 (²)	1 \$321, 751 161, 968 (2) (8)	38, 589	1 \$204, 228 149, 031	
Mica: Scrap short tons Scrap pounds Mineral waters gallons sold Peat short tons Sand and gravel do Scythestones do Stone do Miscellaneous 4 do	105 43,670 (3) (2) 2,067,994 (2) 105,390	1, 592 3, 738 (a) (2) 219, 296 (2) 437, 342 41, 652	(2) (2) (3) 143 2, 132, 525 (2) 4 51, 250	(3) (4) (5) 24, 116 266, 338 (7) 4 409, 616 34, 008	
Total value, eliminating duplications		1, 187, 339		1,065 33	

¹ Figures obtained through cooperation with Bureau of the Census.
² Value included under "Miscellaneous."
⁸ No canvass.

Mineral production of New Jersey, 1939-40

Product	19	039	1940	
Flounce	Quantity	Value	Quantity	Value
Cementbarrels_	(1)	(1)	(1)	(1)
Products (other than pottery and refractories) Raw (sold by producers) Short tons Goke Go Gok Ferro-alloys Lime Short tons Manganiferous residuum Mari, greensand Mineral waters Mineral waters More (zine) Short tons Mineral waters More (zine) Short tons More (zine) More	96, 629 1, 003, 197 (15) 394, 709 22, 636 129, 238 6, 466 (4) 606, 504 11, 781 4, 319, 297 88, 946	2 \$6, 726, 041 522, 684 (1 3) 1, 865, 037 148, 605 (4) 62, 372 3, 361, 965 577, 811	95, 186 1, 016, 481 (1 ³) 693, 998 28, 854 154, 455 6, 697 (4) 556, 031 10, 056 4, 913, 350 (1)	2 \$6, 489, 000 529, 914 (1 3) 3, 328, 467 206, 326 (1) 389, 888 (1) (1) (1) (1) (1) (1) (1) (1)
Silica (quartz) short tons Stone do Tale do Miscellaneous	2, 806, 020 88, 716	3, 036, 516 11, 507, 318 8, 937, 506	(1 6) (1) 2, 705, 170 (1) 91, 406	(1 b) (1) 2, 888, 339 (1) 13, 121, 911 9, 814, 738
Total value, eliminating duplications		30, 441, 758		33, 653, 73

[•] No canvass.

• Exclusive of basalt, value for which is included under "Miscellaneous."

• Includes minerals indicated by "2" and "4" above.

I Value included under "Miscellaneous."

Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

Value not included in total value for State.

No canvass.

No canvass.

Total for 1940 is estimate by Bureau of the Census as somewhat incomplete.

Figures obtained through cooperation with Bureau of the Census.

Value reported for zinc in New Jersey is estimated smelting value of recoverable zinc content of ore after freight, haulage, smelting, and manufacturing charges are added.

Includes minerals indicated by "1" above.

Mineral production of New Mexico, 1939-40

Arsenious oxide short tons. Bismuth pounds do llay: Product (Iceland spar) do llay: Products (other than pottery and refractories). Raw (sold by producers) short tons. Coal do Copper pounds. Diatomite short tons. Pluorspar do Fluorspar do Gems and precious stones. Fluorspar short tons. Coal troy ounces. Coal do Comps and precious stones. Coal do Comps and precious stones. Coal do do Comps and precious stones. Coal do Coal		(1) (2) (3) (4) (5) (6) (6) (6) (6) (7) (8) (8) (9) (9) (1) (9) (1) (2) (9) (1) (9) (6) (8)	Quantity (1) (1) (1) 11,378 5,1,10,615 139,696,000 (9) (9) 35,943	(1) (1) (1) 2 \$98, 00 18, 32 5 3, 304, 04 15, 785, 64 (2) (2)
Bismuth	(2) 7, 767 41, 230, 060 92, 284, 000 (2) 36, 979 5, 392 (2)	(2) 2 \$162,003 19,686 43,503,032 9,597,536 (2) (4) 1,294,265	11, 378 \$ 1, 110, 615 139, 696, 000 (2) (3) (2)	* \$98, 00 18, 32 * 3, 304, 04
Clay: Products (other than pottery and refractories)	7, 767 41, 230, 060 92, 284, 000 (2) (3) 36, 979 5, 392 (2)	* \$162, 003 19, 686 4 3, 503, 032 9, 597, 536 (2) (6) 1, 294, 265	11, 378 \$ 1, 110, 615 139, 696, 000 (2) (3) (2)	* \$98, 00 18, 32 * 3, 304, 04
Clay: Products (other than pottery and refractories)	7, 767 41, 230, 060 92, 284, 000 (2) (3) 36, 979 5, 392 (2)	* \$162, 003 19, 686 4 3, 503, 032 9, 597, 536 (2) (6) 1, 294, 265	\$ 1, 110, 615 139, 696, 000 (3) (3) (2)	18, 32 5 3, 304, 04
Products (other than pottery and refractories). Raw (sold by producers) short tons. Coal do Gopper pounds. Diatomite short tons. Fluorspar do Golder do Gold	(2) 36, 979 5, 392	19, 686 4 3, 503, 032 9, 597, 536 (2) (8) 1, 294, 265	\$ 1, 110, 615 139, 696, 000 (3) (3) (2)	18, 32 5 3, 304, 04
Raw (sold by producers) short tons. Coal do. Copper pounds. Diatomite short tons. Fluorspar do. Fuller's earth do. Gems and precious stones. Gold troy ounces. Lead short tons. Lime do. Manganese ore long tons	(2) 36, 979 5, 392	19, 686 4 3, 503, 032 9, 597, 536 (2) (8) 1, 294, 265	\$ 1, 110, 615 139, 696, 000 (3) (3) (2)	18, 32 5 3, 304, 04
Coal do Copper pounds Diatomite short tons Fluorspar do Fuller's earth do Gems and precious stones short tons Lead short tons Lime do Manganese ore long tons	(2) 36, 979 5, 392	(a) (b) (b) (a) (b) (c) (a) (d) (e) (e) (e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	\$ 1, 110, 615 139, 696, 000 (3) (3) (2)	5 3, 304, 04
Copper pounds Diatomite short tons Fluorspar do Fuller's earth do Gems and precious stones lold troy ounces Lead short tons Lime do Manganese ore long tons	92, 284, 000 (2) 36, 979 5, 392 (2)	9, 597, 536 (2) (6) 1, 294, 265	(3) (3) (3) (2)	
Diafomite short tons. Filtorspar do. Fuller's earth do. Gems and precious stones. Fold troy ounces. Lead short tons. Lime do. Manganese ore long tons	36, 979 5, 392	(²) (⁶) 1, 294, 265	(3) (3) (2)	(2) (2) (2)
Fluorspar	36, 979 5, 392	(6) 1, 294, 265		(2)
Fuller's earth do. Gems and precious stones. Jold troy ounces. Lead short tons. Lime do. Manganese ore long tons	36, 979 5, 392	(6) 1, 294, 265		S
Gems and precious stones	36, 979 5, 392	(6) 1, 294, 265 506, 848		
Gold troy ounces. Lead short tons. Lime do Manganese ore long tons	36, 979 5, 392	1, 294, 265 506, 848	35 042	74
Lead short tons ime do Manganese ore long tons	5, 392 (2)	506, 848		1, 258, 0
Jime do	(2)	000,040	3, 822	382, 2
Manganese orelong tons	(-)	(2)		(2)
vianganese ore			(2) 45	8
	31, 999	8	36, 835	(2)
Manganiferous oredodo	91, 999	(4)	30, 830	(4)
Mica: Scrapshort tons_	(2)	(3)	(0)	/9 \
Sheet pounds		8		(2)
Mineral waters gallons sold	8			8
Wolvbdenumpounds_	1, 269, 182	X	1, 897, 063	, X
Natural gas M cubic feet	60, 284, 000	8, 778, 000	63, 990, 000	10, 317,
Natural gas	54, 707, 000			879, 0
0 (1, 696, 000	55, 713, 000	879, U
Ores (crude), etc.: Copper	4, 517, 429	(7)	6, 606, 471	(T)
Coppershort tons	111, 202		127, 014	\mathcal{O}
Leaddo	1, 431	0	1,901	8
Lead-copperdo	1, 451		1,901	(-)
Zinedo		X	123, 126	(7)
Zinc-leaddodo	128, 694	X	231, 391	\mathcal{C}
Petroleumbarrels	37, 637, 000	30, 850, 000	39, 129, 000	32, 500, 0
Potassium saltsshort tons	37,037,000	30, 830, 000	(2)	32, 300, 0
Pumice do		X		(2)
altdo	<u> </u>	\ <u>}</u>	13, 915	41. 5
and and graveldo	8 1, 832, 733	8 1, 131, 804	8 2, 364, 939	8 1. 141. 3
silvertroy ounces_	1, 400, 878	950, 899	1, 407, 839	1,001,1
stone short tons	287, 190	9 164, 924	362,020	223, 6
Cantalum orepounds	(2)		002,020	, 0
rin (metallic equivalent)do	(2)	(2)	(2)	(2)
Cungstan are (60-nercent concentrates) do	(7)	(-)	98	(2)
Pungsten ore (60-percent concentrates)doshort tons	29, 356	3, 053, 024		3, 819, 4
Miscellaneous 10	20,000	8, 279, 776	30,313	10, 200, 3
IIIOOIIGHOOGO		0, 210, 110		
Total value, eliminating duplications		69.987.797		80, 969, 7

1 Figures not available.
2 Value included under "Miscellaneous."
3 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
4 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
4 According to Bituminous Coal Division; value includes selling expenses.
5 No canvass.
7 Not valued as ore; value of recoverable metal content included under the metals.
8 "Government-and-contractor." Value of "Commercial" included under "Miscellaneous."
5 Exclusive of basalt, value for which is included under "Miscellaneous."
10 Includes minerals indicated by "", "a", and "9" above.

MINERALS YEARBOOK, 1941

Mineral production of New York, 1939-40

Aluminum	Product	19	939	1940		
Cament	Floduct	Quantity	Value	Quantity	Value	
Cament	Aluminumpounds	(1.2)	an	170 177 116	2 \$22 700 000	
Clay: Products (other than pottery and refractories) Raw (sold by producers) Short tons Coke Assay (sold by producers) Short tons Coke	Cement barrels	3 6 853 706	3 to 866 100			
Products (other than pottery and refractories) Raw (sold by producers) short tons (1) (2) (2) (3) (2) (3) (2) (3)	Clav:	- 0, 000, 190	40,000,102	0, 201, 088	11,087,088	
Raw (sold by producers) short tons Cloke do do do do do do do d	Products (other than nottery and refractories)	1	4 6 992 100		4 5 000 000	
Coke	Raw (sold by producers) short tone	(1)	. 0, 000, 109			
Distomite	Coke do producers	4 400 407	205 500 040			
Emery						
Feldspar (crude)			(1)		(1)	
Ferro-alloys	Foldenon (anado)		6,828			
Garnet, abrasive. do (i) (i) (ii) (ii) (iii) (iiii) (iiii) (iiiiiiii	reluspar (crude)long tons					
Gens and precious stones Cryshiline Artificial	remo-anoyssnort tons		² 18, 388, 766		² 30, 719, 756	
Crystalline	Garnet, abrasivedo	(1)		(1)		
Craphite:			(5)		(5)	
Crystalline.	Graphite:		l ''		'	
Crystalline	Artificialpounds_	(1 2)	(1 2)	(1.1)	(12)	
System (crude) Short tens 709, 495 971, 229 798, 229 1, 037, 18	Crystallinedo	(1)	(1)			
Cror	Gypsum (crude)short tens	709, 495		708 220	1 037 181	
Sold to furnaces	Iron:			100, 220	1,001,101	
Sold for paint	Ore—	1	1		1.0	
Sold for paint	Sold to furnaceslong tons	(n)	(n)	/n	/n	
Pig	Sold for paintdo				X	
Lead	Pig short tone					
Lime do 42, 225 314, 457 54, 364 408, 644		2, 110, 100			107, 100, 107	
Mica: Scrap		40 005				
Scrap	Mina.	42, 220	314, 40/	- 54, 364	408, 645	
Sheet	Qoran do	m	- 45	-		
Milistones Gallons sold (e) (f)	Sheet	1 22		(2)	(2)	
Mineral waters gallons sold (2) (3) (7		J (+)		(1)	(2)	
Natural gas.	Minoral matera				(1)	
Natural gasoline gallons 34,000 1,000 17,000 1,000 1,000 17,000 1,000 17,000 1,000 17,000 1,000 17,0	Nimeral watersgailons sold				(8)	
Ores (crude), etc.: 2/inc. short tons 115,000 (*) 116,171 (*) Zinc. do. 305,000 (*) 316,048 (*) Pet. do. 18,306 116,875 19,352 148,433 Petroleum barrels. 5,098,000 10,650,000 4,999,000 116,000 Pyrites long tons. 71,176 (1) 64,498 233,816 Salt. short tons. 2,041,492 5,855,422 2,117,671 6,523,777 Sand-lime brick thousands of brick. (1*) (1*) (1*) (1*) Silica (quartz) short tons. (1) (1) (1*) (1*) Silver troy ounces. 37,250 25,285 35,720 25,401 Silone. short tons. 10,703,600 10,111,032 9,782,120 10,308,401 Tale do. 99,880 1,252,525 113,611 1,402,524 Vince. do. 36,014 3,745,456 35,686 6,	Natural gasM cubic feet				8, 246, 000	
Zinc	Natural gasolinegallons	34,000	1,000	17,000	1,000	
Zinc-lead	Ores (crude), etc.:		1	1		
CPeat. do. 18,306 116,875 19,352 148,432 Pertorleum barrels. 5,098,000 10,650,000 4,999,000 11,600,000 Pyrites long tons. 71,176 (1) 64,498 233,816 Salt short tons. 2,041,492 5,855,422 2,117,671 6,533,776 Sand-lime brick thousands of brick. (1)<	Zineshort tons_	115,000	(6)	116, 171	(6)	
Petroleum barrels 5,098,000 10,650,000 4,999,000 11,600,000 233,816 234: short tons 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Zinc-leaddo	305,000	(6)	316,048	(6)	
Petroleum	Peatdodo	18, 306	116,875		148, 433	
Pyrites long tons 71, 176 (1) 64, 498 233, 814 314 314 314 315 314 314 315 314 315 314 315 314 315 314 315 3	Petroleumbarrels	5, 098, 000	10, 650, 000			
Salt short tons 2, 041, 492 5, 855, 422 2, 117, 671 6, 523, 772 Sand and gravel do 712, 608, 128 7, 050, 104 713, 225, 133 77, 639, 668 Sand-lime brick thousands of brick (1) (2) (25, 285 35, 720 25, 401 479, 052 (25, 285 (25, 285 (25, 285 (25, 285 (25, 285 (25, 285 (25, 285 (25, 285 (25, 285 (2	Pyriteslong tons					
Sand and grave	Saltshort tons					
Sand-lime brick (1 s)	Sand and gravel do	7 12 608 128		7 12 995 122		
Shica (quartz)	Sand-lime brick thousands of brick	(1.8)		(1.8)		
Silver troy ounces 37, 250 25, 285 35, 720 25, 401 Slate 465, 837 465, 837 479, 052 Stone 5, 200 10, 111, 032 9, 782, 120 10, 388, 401 Pale 40 99, 880 1, 252, 525 113, 611 1, 402, 524 Sine 40 36, 014 3, 745, 456 35, 686 4, 496, 436 Miscellaneous \$ 35, 810, 535 6, 690, 854	Silica (quartz) short tons					
Stone short tons 10,703,690 10,111,032 9,782,120 10,388,401 Falc do 99,880 1,252,525 113,611 1,402,524 Jine do 36.014 3,745,456 35,686 4,496,436 Wiscellaneous \$\frac{1}{2}\$ 35,810,535 535 6,680,854	Silver troy ormose		25 205			
Stone short tons 10, 703, 690 10, 111, 032 9, 782, 120 10, 398, 401 Falc do 99, 880 1, 252, 525 113, 611 1, 402, 524 Line do 36, 014 3, 745, 456 35, 686 4, 496, 436 Miscellaneous 9 35, 810, 535 6, 690, 854	Slate	01, 200		55, 720		
Pale do 99, 880 1, 252, 525 113, 611 1, 402, 524 115, 610 1, 406, 436 11 3, 745, 466 35, 686 4, 496, 436 11 3, 610, 535 686 1, 680, 854	Stone short tone	10 702 600		0.700 100		
Zinc. do 36.014 3,745,456 35,686 4,496,436 Wiscellaneous 9 35,810,535 6,680,856	Tale					
Miscellaneous 9	Zine					
Motel value aliminating a limit and a significant	Microllaneous 9	30. U14		35, 686		
Total value, eliminating duplications	WISCERALEOUS *		35, 810, 535		6, 080, 854	
76, 119, 505	Total makes aliminating dentity					
	Total value, eliminating duplications		78, 409, 560		76, 119, 505	

¹ Value included under "Miscellaneous."

1 Value not included in total value for State.

2 Exclusive of natural cement, value for which is included under "Miscellaneous."

4 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

Not valued as ore; value of recoverable metal content included under the metals.

4 Not valued as ore; value of "Government-and-contractor" included under "Miscellaneous."

5 Figures obtained through cooperation with Bureau of the Census.

6 Includes minerals indicated by "1", "3", and "" above.

Mineral production of North Carolina, 1939-40

	19	39	19	40
Product				
	Quantity	Value	Quantity	Value
luminumpounds_	(1.2)	(1.2)	58, 882, 397	\$10, 746, 000
shestosshort tons	(1) (1)	(1)	(1) (1)	(1)
Brominepounds	(1)	(1)	(1)	(1)
Clay:				l
Products (other than pottery and refractories)		\$4, 595, 857		*4, 629, 000
Raw (sold by producers)short tons	11, 365	166, 010	14, 620	202, 678
Copperpounds	(1)	(1)	(1)	(1)
Copper pounds long tons long tons long tons long tons long tons	76, 738	397, 631	79, 312	426, 784
Jarnet, aprasiveshort was	(1)	(1)	(1)	(1)
lems and precious stones		(*)		(*)
foldtroy ounces	495	17, 325	1, 943	
Cvaniteshort tons	(1)	(1)	(1)	(1)
imedo	(1)	(1)	(1) (1)	(1)
ithium mineralsdo			(1)	(1)
Manganese orelong tons	43	796		
Manganiferous oredodo	51	632	190	(1)
Mica:				
Scrapshort tons	13, 913	184, 377	11, 595	173, 327
Sheetpounds	401, 170	69, 344	1, 002, 646	218, 154
Millstones		(1)		(3)
Mineral watersgallons sold	(4)	(4)	(4) 2, 500	(*)
Olivineshort tons	3,000	15, 000	2, 500	15, 000
Ores (crude):				
Copperdo	15, 310	(5) (5)	20, 311	(5)
Dry and siliceous (gold and silver)do	1, 430	(*)	7, 927	(3)
Pebbles for grinding			(1)	1 100 455
sand and graveldodo	2, 383, 772	1, 001, 369	3, 213, 855	1, 439, 45
Sand and sandstone (ground)do			(;)	(1)
dilica (quartz)dodododo	(1)	(1) 2, 689	(1)	(1)
dilvertroy ounces	3, 961	2, 689	6, 480	4,608
Stoneshort tons	6 6, 037, 000	6, 979, 426	3, 031, 300	4, 850, 27
Palc and pyrophyllitedodo	36, 772	283, 789	39, 206	298, 38
Zermienlite do	1, 400	14, 400	1,040	8,070
Miscellaneous 7		13, 029, 075	,	8, 778, 990
Total value, eliminating duplications		18, 533, 720		21, 112, 73

Mineral production of North Dakota, 1939-40

Product	19	1939		.0
	Quantity	Value	Quantity	Value
Clay: Products (other than pottery and refractories) Raw (sold by producers) Note: Ado Mineral waters Sand and gravel Stone Miscellaneous Total value, eliminating duplications	2, 131, 252 (1) 76, 000 1, 464, 738 (1)	(1 2) (1) \$2, 425, 000 (2) 29, 000 128, 279 (1) 107, 348 2, 689, 627	2, 218, 434 (*) 3, 202, 167	(1 2) (1) \$2,587,000 (2) 298,646 (1) 101,705 2,987,351

¹ Value included under "Miscellaneous."
² Value not included in total value for State.
³ Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
⁴ No canvass.
⁵ Not valued as ore; value of recoverable metal content included under the metals.
⁶ Exclusive of dimension sandstone, value for which is included under "Miscellaneous."
² Includes minerals indicated by "!" and "4" above.

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 No canvass.
 Includes minerals indicated by "1" above.

Mineral production of Ohio, 1939-40

The stand	1939		1940		
Product	Quantity	Value	Quantity	Yales-	
	Quantity	Value	Quantity	Value	
Bromine pounds. Calcium chloride short tons	(1)	(1)	(2)	(1)	
Calcium chlorideshort tons	(1)	(1)		(1)	
Cement barrels	² 6, 140, 125	2 \$8, 233, 817	2 6, 841, 129	2 \$9, 202, 414	
Clay:					
Products (other than pottery and refractories)		3 26, 539, 916		2 24, 711, 000	
Raw (sold by producers)short tons_	469, 152	912, 780	514, 257	1, 058, 016	
Coaldo	4 20, 289, 553	4 33, 127, 116	\$ 22, 771, 552	39, 039, 016	
Cokedo	6, 135, 949	6 28, 592, 024	7, 897, 929	6 38, 568, 313	
Ferro-alloysdodo	160, 924	6 6, 084, 252	189, 499	6 8, 793, 122	
Grindstonesdo	7, 524	246, 119	8, 539	278, 274	
Gypsum (crude)do	(1)	(1)	(1)	(1)	
[ron, pigdodo	8, 119, 073	6147, 154, 864	10, 275, 696	193, 283, 920	
Limedo	1, 106, 250	8, 907, 195	1, 284, 877	10, 180, 785	
Marl, calcareousdodo	(1)	(1)	(1)	(1)	
Mineral paints (zinc and lead pigments)do	(Ì f)	(1 6)	(ì 6)	(16)	
Mineral waters gallons sold	(7)	(7)	(7)	(n)	
Natural gas M cubic feet Natural gasoline gallons	36, 469, 000	18, 818, 000	40, 639, 000	20, 850, 000	
Natural gasoline gallons	7, 445, 000	351,000	8, 062, 000	333, 000	
Peat short tons	1,623	14, 400	2, 531	24, 087	
Petroleumbarrels_	3, 156, 000	3,600,000	3, 159, 000	4, 100, 000	
Rubbing stones, scythestones, and whetstones				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
short tons	(1)	(1)	(1)	(1)	
Salt do	1, 794, 788	2, 647, 355	2, 080, 133	2, 781, 599	
Sand and graveldodo	8, 660, 485	6, 595, 483	9, 558, 904	7, 182, 453	
sand and sandstone (ground)	36,950	223, 965	(1)	(1)	
Silica (quartz)dodo	(1)	(1)			
3tonedo	8 11, 133, 560	8 10, 140, 272	8 11, 915, 520	8 10, 234, 221	
Strontium mineralsdo			(1)	(1)	
Sulfuri acid 9dodo	(16)	(16)	(ì 6)	(ì é)	
Miscellaneous 10	l	2, 217, 812	l	2,865,443	
Total value, eliminating duplications	and the second second	120, 681, 969	4	130, 655, 129	

1 Value included under "Miscelianeous."

Value included under "Miscellaneous."
 Exclusive of natural cement, value for which is included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
 According to Bituminous Coal Division; value includes selling expenses.
 Value not included in total value for State.
 No carness

value not included in total value for state.
To canyass.
Exclusive of unclassified stone, value for which is included under "Miscellaneous."
From zinc-roasting operation.
Includes minerals indicated by """, "2", and "" above.

Mineral production of Oklahoma, 1939-40

Product	19	1939 1940		40
Froduct	Quantity	Value	Quantity	Value
Asphalt (native) short tons Cement barrels Chats short tons Clay:	(1) (1) 1, 663, 100	(1) (1) (1)	(1) (1) 2, 152, 877	(1) (1) \$308, 726
Products (other than pottery and refractories). Raw (sold by producers) short tons. Coal. do do Gypsum (crude) do long tons Iron ore. long tons lead Lead short tons Lime Lime do Mineral waters gallons sold Natural gas. M cubic feet Natural gasoline gallons	³ 1, 187, 562 161, 748	* \$720, 587 (1) * 2, 503, 450 207, 503 	(1) 4 1, 645, 981 176, 166 (1) 21, 240 (1) (5) 257, 626, 000 389, 369, 000	2 532, 004 (1) 4 4, 021, 76(227, 534 (1) 2, 124, 000 (1) (9) 31, 603, 000 8, 926, 000
Ores (crude), etc.: Zinc. short tons. Zinc. do Zinc-lead. do Petroleum. barreis. Pumice. short tons. Salt. do Sand and gravel. do Stone. do Tripoli. do Zinc. do Missellaneous. do	3, 465, 900 5, 337, 000 159, 913, 000 (1) 859, 060 1, 992, 660 (1 8)	(8) 166, 300, 000 (1) 400, 478 1, 820, 409 (18) (1) 14, 599, 416 3, 945, 534	5, 813, 405 5, 436, 995 156, 164, 000 (1) (1) 1, 030, 435 1, 311, 640 (18) (1) 162, 935	(8) (9) 162, 500, 000 (1) (284, 010 1, 217, 528 (1) (1) 20, 529, 810 3, 669, 930

¹ Value included under "Miscellaneous."

2 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

3 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.

4 According to Bituminous Coal Division; value includes selling expenses.

5 No canyass.

6 Not valued as ore; value of recoverable metal content included under the metals.

7 From zinc smelting.

9 Value not included in total value for State.

9 Includes minerals indicated by "1" above.

Mineral production of Oregon, 1939-40

Pro-duck	19	39	19	40
Product	Quantity	Value	Quantity	Value
Arsenious oxide short tons. Cement barreis. Chromite long tons. Clay:	(¹) (²) 100	(1) (2) (2)	(1) (2) (2)	(1) (2) (2)
Products (other than pottery and refractories) Raw (sold by producers) short tons. Coal do Copper pounds. Distornite short tons. Gems and precious stones.	(2) (2 4) 96, 000 (2)	* \$410, 9€3 (2) (24) 9, 984 (2) (6)	(2) (2 8) 176, 000 (2)	3 \$397, 000 (2) (2 5) 19, 888 (3) (6)
Gold troy ounces Lead short tons Lime do	93, 372 15	3, 268, 020 1, 410	113, 402 35 (°)	3, 969, 070 3, 500 (2)
Mercury flasks (76 pounds)	4, 592 (6)	477, 293 (6)	9, 043 (6)	1, 599, 436
Mineral watersgainons soid. Ores (crude), etc.: Coppershort tons Dry and siliceous (gold and silver)do Leaddo	00,020	(7)	146 105, 318 5	(7)
Platinum metals (crude) troy ounces Pumice short tons Sand and gravel do Silica (quartz) do Silver troy ounces Stone short tons M iscellaneous ¹⁰	20 (2) 3, 144, 917 910 105, 388 2, 225, 610	260 (1) 1, 233, 320 5, 600 71, 536 1, 682, 175 1, 476, 486	(2) 8 1, 622, 921 1, 600 219, 112 9 2, 757, 820	(*) (*) 8 859, 943 10, 600 155, 813 * 2, 234, 928 1, 980, 692
Total value, eliminating duplications		8, 637, 047		11, 229, 670

¹ Figures not available.
2 Value included under "Miscellaneous."
3 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
4 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
4 According to Bituminous Coal Division; value includes selling expenses.
No canvass.
No canvass.
Not valued as ore; value of recoverable metal content included under the metals.
3 "Commercial." Value of "Government-and-contractor" included under "Miscellaneous."
5 Exclusive of sandstone, value for which is included under "Miscellaneous."
1 Includes minerals indicated by "?," "4," and "4" above.

Mineral production of Pennsylvania, 1939-40

Asbestos short tons. Day: Products (other than pottery and refractories). Raw (sold by producers) short tons. Coal: Anthracite do do.	2 24, 870, 343	Value 2 \$34, 332, 649 3 11, 351, 849 1, 675, 019	Quantity (1) 27, 499, 786 899, 173	Value (1) 2\$38, 350, 998 2 11, 031, 000
Dement barrels Dlay: Products (other than pottery and refractories) Raw (sold by producers) short tons	2 24, 870, 343	* 11, 351, 849		2\$38, 350, 998
Clay: Products (other than pottery and refractories) Raw (sold by producers) State of the control of the contro	667, 140	* 11, 351, 849		
Products (other than pottery and refractories)	667, 140	* 11, 351, 849 1, 675, 019	900 172	1 11 001 000
Raw (sold by producers)short tons.	667, 140	1, 675, 019	900 179	
n1-		1,010,010		2, 189, 509
Anthracitedodo	51 497 377	1	000,210	_, 100, 000
		187, 175, 000	51, 484, 640	205, 490, 000
Bituminousdo	4 92, 584, 113	4 187, 609, 657	⁵ 116, 602, 999	5 237, 333, 374
Cobalt oxidepounds.			(1)	(1)
Cokeshort tons.	12, 120, 225	49, 015, 558	17, 412, 024	6 69, 599, 076
Copper 7pounds_ Feldspar (crude)long tons	-j (<u>1)</u>	(1)	1 (3)	(1)
feldspar (crude)long tons.	- (1)	(1)	(1)	4 re 000 010
Ferro-alloysshort tons	322, 647	6 29, 609, 712	512, 174	
Gems and precious stones troy ounces.	1.815	63, 525	1,840	(8) 64, 400
iron:	1,010	00, 020	1,010	02, 200
ron: Ore→		1	1	1.0
Sold to furnaces long tons.	_ (1)	(1)	(1)	(1)
Sold for paint do Pig short tons	463	(1)	(1)	(1)
Pig short tons	10, 057, 207	6 186, 302, 533	14, 571, 517	⁶ 282, 666, 561
Lima do	691 460	4, 744, 197	833, 038	5, 622, 72
Mineral paints (zinc and lead pigments)do	(1 6)	(1.6)	(1.6)	(1.6)
Mineral waters gallons soid.	. [(*)	(8)	(8)	(8)
Natural gasM cubic feet.	93, 882, 000	35, 268, 000	90, 725, 000	41, 733, 000 594, 000
Natural gasolinegallons	11, 756, 000	499,000	15, 371, 000 8, 310	23, 540
Peatshort tons. Petroleumbarrels.	17, 382, 000	36, 200, 000	17, 353, 000	39, 700, 000
Pyriteslong tons	11, 302, 000	30, 200, 000	17, 500, 600	(1)
Sand and gravel short tons	6, 779, 592	6, 752, 222	8, 431, 656	8, 000, 22
Sand and sandstone (ground)do	(1)	(1)	(1)	(1)
Sand-lime brickthousands of brick	(4)	(ì b)	(ì f)	(1.6)
Silica (quartz)short tons.			(1)	(1)
Silver 7troy ounces.	13, 558	9, 203		9, 290
Slate		3, 056, 853		2, 609, 80
Soapstoneshort tons	- (1)	(1)	(1)	10 10 055 475
Stonedo	15, 743, 790	10 16, 906, 854 6 2, 295, 370	299, 751	10 19, 855, 478 6 2, 739, 724
Sulfuric acid (60° Baumé) ¹¹ do	254, 758	(1)	1 71	(1)
Miscellaneous 12		14, 660, 980	9	15, 290, 390
MIRCHARCOUS		12, 000, 800		
Total value, eliminating duplications		531, 007, 890		618, 347, 808

¹ Value included under "Miscellaneous."

2 Exclusive of natural cement, value for which is included under "Miscellaneous."

3 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

4 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.

5 According to Bituminous Coal Division; value includes selling expenses.

6 Value not included in total value for State.

7 Copper, gold, and silver were recovered from magnetite-pyrite-chalcopyrite ore, which is included as iron ore produced. Bureau of Mines not at liberty to publish figures.

8 No canvass.

8 Figures obtained through cooperation with Bureau of the Census.

10 Exclusive of dimension basalt, value for which is included under "Miscellaneous."

11 From zinc smelting.

12 Includes minerals indicated by "1," "2," and "10" above.

Mineral production of Rhode Island, 1939-40

Product	1939		1940	
	Quantity	Value	Quantity	Value
Clay products (other than pottery and refractories). Coke	(1 3) (1) (4) 383, 557 320, 780	(1 2) (1 3) (1) (4) \$265, 631 558, 944 1, 690, 297	(1 3) (1) (4) 515, 129 5 201, 380	(1 3) (1 3) (1) (4) \$333, 612 \$ 511, 620 1, 960, 840

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 Value not included in total value for State.
 No canvass.
 Exclusive of dimension basalt, value for which is included under "Miscellaneous."
 Includes minerals indicated by "" and "" above.

Mineral production of South Carolina, 1939-40

	19	1939 1940		Ю	
Product	Quantity	Value	Quantity	Value	
Asbestos short tons Barite do Clay:	(i)	8	(1)	(1)	
Products (other than pottery and refractories)	159, 164	3 \$1, 573, 470 1, 303, 163	152, 529 800	2 \$1, 688, 000 1, 306, 438 90	
Gold troy ounces Mica: Scrap short tons	13, 833	484, 155	13, 076 (¹)	457, 660 (1)	
Sheetpounds. Mineral watersgallons sold. Ore (dry and siliceous) (gold and silver) _short tons_	(³) 114, 514	(3)	(1) (3) 126, 607		
Sand and graveldotroy ounces_	546, 428 5, 480	313, 758 3, 720	515, 247 8, 047	260, 857 5, 722	
Stoneshort tons Miscellaneous 4short tons	⁸ 1, 339, 030	\$ 1, 732, 795 11, 918	⁴ 1, 233, 610	1, 570, 689 16, 141	
Total value, eliminating duplications		5, 422, 979		5, 305, 597	

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines hased on figures issued by Bureau of the Census as somewhat incomplete.
 No canvass.
 Not valued as ore; value of recoverable metal content included under the metals.
 Exclusive of unclassified stone, value for which is included under "Miscellaneous."
 Includes minerals indicated by "i" and "i" above.

Mineral production of South Dakota, 1939-40

Product	. 19	39	19	1940	
Froduct	Quantity	Value	Quantity	Value	
Beryllium ore (beryl) short tons. Cement barrels. Clay:	(¹) 84	\$2, 390 (1)	(¹) 74	\$2,064 (1)	
Products (other than pottery and refractories)	31, 528 49, 495	(1 2) 217, 622 69, 000	40, 481 66, 085		
Copper pounds. Feldspar (crude) long tons. Gems and precious stones		(3)	12,000 54,692	157, 323 (3)	
Gold	618, 536 (¹) 300	21, 648, 760 (1) (1)	586, 662 (1) 640	20, 533, 170 (1) (1)	
Lime do Lithium minerals do Mica:	(¹) 1, 7 4 0	(¹) 34, 300	- e	(1) (1)	
Scrapdo	(1) (1) (3)	(1) (1) (3)	2, 240 107, 062 (3)	(3)	
Natural gas	10, 000 1, 632, 778	`3, 000 (4)	9, 000 1, 667, 289	3, 000 (<u>1)</u>	
Lead do do Sand and gravel do Sand-lime brick thousands of brick Silver troy ounces.	2, 539, 417 (1 2) 167, 584	722, 046 (1 3) 113, 754	2, 910, 331 (1 3) 175, 514	(1 2)	
Stone	408, 730 (1) (5)	998, 444 (1) 608	255, 600 2	878, 866 1, 710	
Miscellaneous 6 Total value, eliminating duplications		869, 804 24, 813, 621		893, 687 23, 528, 825	

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 No canvass.
 Not valued as ore; value of recoverable metal content included under the metals.
 1,210 pounds.
 Includes minerals indicated by "" above.

Mineral production of Tennessee, 1939-40

	19	39	1940	
Product	Quantity	Value	Quantity	Value
Aluminumpounds_	(1 2)	(1 2)	164, 512, 530	² \$30, 023, 000
Bariteshort tons_	57, 140	\$372, 348	70, 767	503, 204
Cementbarrels_	3, 677, 116	5, 613, 477	3, 766, 807	5, 655, 635
Clay:	0, 011, 110	0, 010, 111	0, 100, 001	0, 000, 000
Products (other than pottery and refractories)		3 2, 107, 917		\$ 1,869,000
Raw (sold by producers)short tons_	61, 867	425, 008	89, 582	491, 271
Coaldo	4 5, 185, 481	4 10, 100, 341	⁵ 6, 008, 456	5 12, 024, 742
Coke	79, 448	² 527, 535	99, 705	
Copperpounds	(1)			2 618, 746
Copperpounds		² 1. 442. 967	(1)	(1)
Ferro-alloysshort tons	22, 494		38, 900	3,041,405
Fuller's earthdo	(1)	(1)	(1)	(1)
Goldtroy ounces	163	5, 705	173	6,055
Iron:		1		
Ore—				
Sold to furnaceslong tons	(1)	(1)	(1)	(1)
Sold for paintdo	781	3,044	169	(1)
Pigshort tons_ Sinter from copper sulfide orelong tons_	(1 2)	(1.8)	(1.3)	(i i) .
Sinter from copper sulfide orelong tons	(1)	(1)	(1)	(1)
Leadsnort tons	(1)	(1)	573	57, 300
Limedo	163, 006	893, 161	192, 133	1, 050, 199
Manganese orelong tons	7,835	128, 176	7,418	120, 736
Manganiferous oredodo	294	2,030	2, 327	(1)
Mineral watersgallons sold	(6)	(6)	(6)	(6)
Notural rec M cubic feet	8,000	(6) 3, 000	9,000	``3,000
Ores (crude), etc.:		l. '		
Copper short tons Dry and siliceous (gold and silver) do	513, 400		705, 574	(7)
Dry and siliceous (gold and silver)do	20	8		
Lead			8, 709	(7)
Zincdo	1, 065, 900	(7)	1, 206, 786	m
Zinc-leaddodo	18,000	(7)	549	(i)
Petroleum barrels barrels	50,000	55,000	24, 000	23,000
Phosphate rocklong tons	(1)	(1)	(1)	(1)
Pyritesdodo	(1)	l às	l ii	h h
Sand and gravelshort tons	2, 689, 844	1, 967, 356	3, 104, 382	2, 255, 287
Silica (quartz)do	(1)	(1)	(1)	(1)
Silvertroy ounces	31,994	21,717	38, 610	27, 456
Slate	02,002	1 63	00,010	2., 200
Stone short tons	8 5, 626, 210	8 8, 312, 977	5, 604, 170	6, 674, 710
Sulfuric acid 9dodo	(1 2)	(12)	(1 1)	(1 2)
Tripolidodo	(1)	(1)	(· · · · · · · · · · · · · · · · · · ·	(- 7
Zinedo		l X	34, 796	4, 384, 296
Miscellaneous 10	(-)	37, 574, 261	02, 180	8, 832, 008
MIDOCHGHOUGS **		01, 014, 201		0, 002, 008
Total value, eliminating duplications		39, 818, 234		42, 683, 407
i otal value, eminiating dupitestions		00, 010, 204		22, 083, 201
	1	1		1

¹ Value included under "Miscellaneous."
2 Value not included in total value for State.
3 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
4 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
5 According to Bituminous Coal Division; value includes selling expenses.
6 No canvass.
7 Not valued as ore; value of recoverable metal content included under the metals.
8 Exclusive of dimension limestone, value for which is included under "Miscellaneous."
9 From copper smelting.
10 Includes minerals indicated by "1" and "8" above.

Mineral production of Texas, 1939-40

		190	39	194	940	
Product		Quantity	Value	Quantity	Value	
Asphalt (native)	short tons	138, 911	\$333, 818	158, 220	\$306, 120	
Barite Dement	do barrels	7, 207, 001	12, 152, 780	7, 383, 600	450 12, 198, 800	
Clay: Products (other than pottery and	androntorion)		1 3, 696, 905		1 3, 173, 000	
Raw (sold by producers)	short tons	43, 813	288, 404	92, 719	407, 873	
Bituminous			(2 3)	4 14, 137	48, 278	
Lignite	do	814, 022	875, 000	606, 418	637, 000	
Copper	pounds	68,000	7, 072	60,000	6, 780	
Fuller's earth	short tons	38, 338	359, 058	34, 039	277, 220	
dems and precious stones			(5)		(5)	
Gold	troy ounces	324	11, 340	312	10, 92	
dypsum (crude)	short tons	283, 912	266, 265	328, 261	368, 88	
Helium		6, 281, 800	6 75, 262	6 9, 450, 855	6 85, 06	
ron ore			(3)	(3)	(3)	
Lead			21, 338	205	20, 50	
Lime	do	62,048		64, 274	543, 130	
Magnesite	do			(2)	(2)	
Magnesium sulfate (natural)	pounds			(2)	(2)	
Mercury flas	rs (76 pounds)	(2)	(3) (5)	(2)	(2)	
Mineral waters	gallons sold	(5)		(8)	(4)	
Natural gas	M cubic_feet	979, 427, 000		1,063,538,000	151, 580, 00	
		770, 047, 000	25, 807, 000	932, 040, 000	20, 322, 00	
Ores_(crude), eta.:	_		<u> </u>			
ores (crude), etc.: Copper Dry and siliceous (gold and silve	short tons	657	(2)	3	O ·	
Dry and siliceous (gold and silve	r)do	141, 132	(7)	146, 811	(7)	
Lesu			(7)	122	(7)	
Petroleum	barrels	483, 528, 000	478, 330, 000	493, 209, 000	494, 000, 00	
Salt (sodium chloride)	short tons	352, 008	604, 633	402, 165	792, 21	
Sand and gravel	do	7, 622, 309	3, 670, 423	6, 930, 975	3, 446, 08	
SilverSodium sulfate (natural)	troy ounces	1, 341, 945	910, 896	1, 326, 150	943, 04	
Sodium sulfate (natural)	short tons	(2)	(3)	(2)	(3)	
Stone	do	3, 771, 750	3, 320, 508	2, 737, 690	2, 581, 35	
Strontium minerals	do	(8)	(2)	(8)	(2)	
Bulfur	long tons	1, 784, 952	28, 498, 473	2, 008, 968	32, 143, 48	
Bulfur ore	do			150	1,80	
Tripoli			(2)	(2)	(3)	
Vermiculite	do			(3)	(2)	
Miscellaneous 9			683, 112		1, 111, 00	
Total value, eliminating dupli	estions	1	701, 972, 035		725, 005, 00	

i Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

2 Value included under "Miscellaneous."

3 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.

4 According to Bituminous Coal Division; value includes selling expenses.

5 No canvass.

6 Figures cover fiscal year ended June 30 of year stated.

7 Not valued as ore; value of recoverable metal content included under the metals.

8 Figures not available.

9 Includes minerals indicated by "9" above.

Mineral production of Utah, 1939-40

Arsenious oxide	Product	1939		1940	
Asphalt (native)		Quantity	Value	Quantity	Value
Asphalt (native)	Arsenious oxide short tons	(1)	(1)	(1)	(1)
Bismuth pounds (2) (1) (1) (2) (2) (2) (3) (1) (1) (2) (2) (3) (4) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (5) (5) (6) (6) (7) (7) (7) (7) (7) (8) (8) (1) (1) (1) (1) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		37 364	\$1 050 034	32 000	\$776 17
Cament	Rismuth	(2)	(2)	(3)	(3)
Cament	Ritumen natural sulfonated short tons	1 8	l X	1 🐰	X-
Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons Coal do do do do do do do d	Cament harris	i X		1 8	
Products (other than pottery and refractories) Raw (sold by producers) short tons 29,468 111,141 27,506 98,1 10,000 11,0		(-)	6	(5)	(9)
Raw (sold by producers)	Products (other than nottery and refractories)		3 669 717		3 820 50
Coal	Raw (cold by producers) chart tone	20, 469		97 808	
Coke	Cool do	4 2 994 904			
Copper				000 047	1,011,90
Fluorspar — short tons — 385				469 700 000	FC 401 00
Gems ând precious stones Gold troy ounces 277, 7E1 8, 721, 285 355, 494 12, 442, 2 Gypsum (crude) short tons 88, 146 65, 269 45, 421 60, 0 Ore long tons 262, 087 (1) 326, 500 (1) Pig short tons (1, 6) (1, 6) (1, 6) (1, 6) Lead do do 67, 634 6, 357, 596 75, 688 7, 588, 84 Lime do 38, 437 (1) 27 (1) 27 (1) Manganierous ore do 262 1, 550 2, 102 13, 11 Molybdenum pounds Matural gas M cubic feet 4, 854, 000 1, 033, 000 5, 124, 000 1, 063, 00 Natural gas M cubic feet 4, 854, 000 26, 000 722, 000 722, 000 Ores (crude), etc: Copper Short tons 19, 602, 472 (1) 28, 301, 745 (1) Zinc do 27, 702 (1) 65, 072 (1) (1) (1) Zinc do 27, 703 (1) 65, 072 (1) (1) (1) Zinc-lead do 77, 703 (1) 65, 072 (1) (1) (1) Zinc-lead do 77, 705 (2) 65, 072 (1) (1) (1) Zinc-lead do 77, 705 (2) 65, 072 (1) (1) (1) Zinc-lead do 77, 705 (2) 768, 870 (2) (3) 28, 000 (1) Zinc-lead do 77, 705 (2) 768, 870 (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	Finorener chart tons	020, 100, 000	30, 100, 120		
Gold	Clame and presions stones	900	1 13	142	
Carposim (crude)	Gold troy or non	077 751	0 701 005	255 404	
Cron:	Ornaum (amida)				12, 442, 29
Ore long tons 262, 087 (1°) (1°) 326, 500 (1°) (1°) Pig short tons (1°) <		38, 140	00, 209	40, 421	00,05
Pig		000 007	(1)	000 500	
Lead					
Lime do 38, 437 (288, 557 (49, 413 (306, 3 Manganese ore long tons 50 (1), 550 (1), 550 (2, 102 13, 1 Mercury flasks (76 pounds) pounds Natural gas Molybdenum pounds (4, 957, 484 (1) 4, 285, 688 (1), 30 Natural gas Molybdenum galions (26, 200 0) (26, 000 0)				(10)	
Manganese ore. long tons 50 (1) 27 (1) 13, 1 (1) 13, 1 <t< td=""><td>L68000</td><td></td><td>0, 357, 590</td><td>75,688</td><td>7, 568, 80</td></t<>	L68000		0, 357, 590	75,688	7, 568, 80
Manganiferous ore	LAMB				306, 35
Mercury flasks (76 pounds) Molybdenum Dounds Molybdenum Dounds Molybdenum Dounds Molybdenum Dounds Molybdenum M	Manganese orelong tons	50	(1)		(1)
Molybdenum. pounds 4, 957, 484 (1) 4, 285, 688 (1) Natural gas M cubic feet 4, 854, 000 1, 033, 000 28	Manganuerous ore	262	1,550		13, 13
Natural gasoline	Mercury nasks (76 pounds)				
Natural gasoline	Molybdenumpounds		(1)	4, 285, 688	
Dres (crude), etc. Copper	Natural gas				
Copper	Natural gasolinegalions	500,000	26,000	722,000	28,00
Dry and siliceous (gold and silver) do 838, 897 (*) 795, 123 (*) 123 (*) 144 (1) 107 108	ores (crude), etc.:				
Lead	Coppersnort tons_	19.602,472	(2)		
Lead-copper	Dry and shiceous (gold and shver)do		(8)		
Zinc do Zinc do Zinc do Zinc ead	Lead		(8)		1 (7)
Zinc-lead		4,951] (8)		
Zinc-lead-copper				26	(8)
Petroleum Darrels 4,000 4,000 3,000 3,000 (1)	Zinc-leaddo	570.705	(8)	768 870	(8)
Potassium salts) ·	1 '''	,	
Salt (sodium chloride)	Petroleumbarrels				
Sand and gravel	Potassium saitsshort tons				
Soldium sulfate (natural) Short tons 10, 788, 657 7, 302, 846 12, 172, 299 8, 856, 88 12, 172, 299 8, 856, 88 12, 172, 299 8, 856, 88 12, 172, 299 8, 856, 88 12, 172, 299 8, 856, 88 12, 172, 299 8, 856, 88 12, 172, 299 12, 172, 299 8, 856, 88 12, 172, 299 12, 1	Salt (sodium chloride)do			71, 472	
Soldium sulfate (natural) Short tons 10, 788, 657 7, 302, 846 12, 172, 299 8, 856, 88 12, 172, 299 8, 856, 88 12, 172, 299 8, 856, 88 12, 172, 299 8, 856, 88 12, 172, 299 8, 856, 88 12, 172, 299 8, 856, 88 12, 172, 299 12, 172, 299 8, 856, 88 12, 172, 299 12, 1	Sand and graveldo			1, 899, 563	582,70
Stone	Silvertroy ounces				
Sulfur long tons (1) (2) (3) (4) (3) (3) <t< td=""><td>Sodium sulfate (natural)short tons</td><td>(1)</td><td></td><td></td><td>(1)</td></t<>	Sodium sulfate (natural)short tons	(1)			(1)
Tungsten ore (60-percent concentrates) do 3 (1) 14 (1) 11 (2) 12 (2) 237 (1) 3, 600 (1) 2 (2) 237 (1) 3, 600 (1) 2 (2) 237 (2) 3, 590, 704 (2) 2	Stonedo				
Tungsten ore (60-percent concentrates) do 3 (1) 14 (1) 11 (2) 12 (2) 237 (1) 3, 600 (1) 2 (2) 237 (1) 3, 600 (1) 2 (2) 237 (2) 3, 590, 704 (2) 2	sumrlong tons			(1)	
Tungsten ore (60-percent concentrates) do 3 (1) 14 (1) 1 (1) 1 (2) 1 (2) 1 (3) 1 (4) (1) 1 (4) 1 (1) 1 (4) 1 (1) 1 (4) 1	sumuric acid 10short tons	(1 6)			
Zinedo34, 526 3, 590, 704 43, 788 5, 517, 29 Miscellaneous ¹¹	Tungsten ore (60-percent concentrates)do	. 3			
Miscellaneous 11					
		34, 526			5, 517, 28
Total value, eliminating duplications 80, 127, 521 104, 392, 98	Miscellaneous 11		9, 355, 393		10, 431, 70
Total value, eliminating duplications 80, 127, 521 104, 392, 98					
	Total value, eliminating duplications		80, 127, 521		104, 392, 98

¹ Value included under "Miscellaneous."
2 Figures not available.
3 Figures obtained through cooperation with Bureau of the Census.
4 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
5 According to Bituminous Coal Division; value includes selling expenses.
6 Value not included in total value for State.
7 No canyass

<sup>Value not included in total value for bears.
No canvass.
Not valued as ore; value of recoverable metal content included under the metals.
Exclusive of granite, value for which is included under "Miscellaneous."
From copper smelting.
Includes minerals indicated by "1" and "9" above.</sup>

Mineral production of Vermont, 1939-40

Product	1939		1940	
	Quantity	Value	Quantity	Value
Asbestos short tons Clay:	(1)	(1) (1 2)	(1)	(1) (1 2)
Products (other than pottery and refractories) Raw (sold by producers)short tons Garnet, abrasivedo Limedo	(1) (1) 63, 316	(1) (1) \$452, 045	(1) (1) 61, 026	(1) (1) \$430, 178
Magnesite do Mica, scrap do Mica, scrap ado Mineral waters gallons sold Sand and gravel short tons.	(1) (1) (3) 529, 248	(1) (3) 238, 252	290 (3) 4 873, 325	2, 964 (3) 4 217, 661
Slate	232, 770 39, 393	1, 948, 315 3, 412, 005 378, 492 543, 145	135, 680 38, 516	1, 555, 230 3, 681, 752 423, 368 668, 619
Total value, eliminating duplications		6, 972, 234		6, 979, 77

1 Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 No cauvass.
4 "Government-and-contractor." Value of "Commercial" included under "Miscellaneous."
5 Exclusive of crushed sandstone, value for which is included under "Miscellaneous."
6 Includes minerals indicated by "", "4", and "4" above.

Mineral production of Virginia, 1939-40

	19	39	1940		
Product .	Quantity	Value	Quantity	Value	
Apliteshort tons		(1) (1)	(1)	(1)	
Asbestosdo	. (1)	(1)			
Baritedo	. (1)	(1)	(1)	(1)	
Bauxitelong tons_			(4)	(1)	
Cementbarrels	(1)	(1)	(1)	(1)	
Clay:					
Products (other than pottery and refractories)		2 \$2, 818, 947	<u>-</u>	2 \$2, 602, 000	
Raw (sold by producers)short tons.	(1)	(1)	(1)	(1)	
Coaldo	8 13, 530, 974	³ 24, 993, 885	4 15, 348, 075	4 29, 965, 943	
Cokedo	165, 317	⁸ 783, 512	198, 379	8 943, 753	
Feldspar (crude)long tons_	18, 544	100, 299	21, 705	116, 531	
Ferro-alloys short tons	(1 5)	(1.5)	(1 5)	(1.1)	
Goldtroy ounces_	364	12,740	458	16, 030	
Gypsum (crude)short tons	(1)	(1)	(1)	(1)	
Iron:					
Orelong tons_		(1)	(1)	(1)	
Pigshort tons.		(1.9)	(1 b).		
Kyanitedo		(1)	(1)	(1)	
Leaddo		(1)	2, 285	228, 500	
Limedo		990, 796	178, 036	1, 044, 229	
Manganese orelong tons	1,661	31, 795	2, 216	41, 286	
Manganiferous oredo		27,004	4,559	30, 069	
Marl, calcareous short tons	. 8,869	9, 311	8, 176	7, 392	
Mica:					
Scrapdo	(1)	1 (2)	(1)	(;)	
Sheetpounds_	- (-)	1 23	(1)	1 (2)	
Millstones		1 12		1 (2)	
Mineral watersgallons sold Natural gas M cubic feet	60,000	48,000	(f) 80,000	(%)	
Ores (crude), etc.:	. 00,000	48,000	80,000	81,000	
Dry and siliceous (gold and silver) short tons.	3, 350	(7)	0.400	1 1	
Zinc-leaddo	650, 231	X	2, 480 599, 759	1 💢	
Phosphate rock long tons	. 000, 201	X	(1)	1 23	
Pyritesdo		1 83	1 23	1 🐰	
Saltshort tons		X	1 23		
Sand and graveldo	2, 639, 790	1, 425, 708	2, 671, 412	1, 778, 576	
Sand and sandstone (ground)	(1)	(1)	(1)	1,770,070	
Sand and sandstone (ground) do Silica (quartz) do			K	(1)	
Silvertroy ounces	1,780	1, 208	271	193	
Slate	1, 100	(1)	211	(1)	
Stone 8 short tone	5, 813, 630	5, 879, 447	6, 800, 640	6, 959, 136	
Stone s	0, 615, 000	(1)	(1)	(1)	
litanium minerals:			• •	()	
Ilmenitedo	(1)	(1)	(1)	(1)	
Rutiledo	76	一省	\\	1 海	
Zinc. do	(1)	i is	16,927	2, 132, 802	
Miscellaneous 9	1	11, 613, 097	10,021	10, 966, 418	
		32, 525, 501			
Total value, eliminating duplications		43, 902, 881		50, 003, 672	
,	1	1 ,,	1	1	

1 Value included under "Miscellaneous."

3 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

3 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.

4 According to Bituminous Coal Division; value includes selling expenses.

5 Value not included in total value for State.

6 No canyass.

7 Not valued as ore; value of recoverable metal content included under the metals.

8 Soapstone used as dimension stone included in figures for stone.

9 Includes minerals indicated by "1" above.

Mineral production of Washington, 1939-40

	19	39	1940		
Product	Quantity	Value	Quantity	Value	
Aluminum pounds			9, 987, 957	1 \$1, 823, 000	
Arsenious oxideshort tons	(2)	(2)	(2)	41,020,00	
Cement barrels	(2)	(2)	8	8	
Dlay:		()	(4)	(9)	
Products (other than pottery and refractories)		4 \$1, 030, 025	1.0	4 1, 241, 000	
Raw (sold by producers)short tons_	28, 637	53, 634	35, 915	47, 35	
Coaldodo	1, 690, 442	5 5, 261, 681	6 1, 650, 352	6 5, 221, 717	
7aba	1,090,442	0 3, 201, 081	(1 8)		
Cokedo	17 000 000	1 071 504		(1 3)	
Copperpounds_	17, 996, 000	1, 871, 584	19, 224, 000	2, 172, 312	
Diatomiteshort tons	1, 707	24, 814	(3)	(2)	
Fems and precious stonestroy ounces		(7)		(7)	
foldtroy ounces	90, 420	3, 164, 700	82, 136	2, 874, 760	
ron orelong tons		44, 188	5, 582	(8)	
Leadshort tons		349, 492	2, 555	255, 500	
[.imedo]	47, 485	484, 667	53, 428	582, 410	
Magnesitedo	(8)	(3)	(3)	(3)	
Magnesium sulfate (natural) pounds	(8)	(8)	(3)	(8)	
Manganese orelong tons	10	(3)			
Mercuryflasks (76 pounds)			(3)	(2)	
Mineral watersgallons sold	(7)	(7)		(7)	
Molybdenumpounds			4, 624	(8)	
Molybdenum pounds Natural gas M cubic feet	63, 000	59,000	36,000	37,000	
Omog (omido) oto :					
Copper short tons	597, 957	(8)	689, 325	(6)	
Dry and siliceous (gold and silver)do	266, 857	(8)	204, 146	(8)	
Leaddo	400	(9)	100	(8)	
Zinc-lead do do	259, 350	(8) (8) (9) (8) (3)	273, 227	(8) (8)	
Peatdo		(3)	(3)	(3)	
Pulpstonesdodo	(3)	(3)	180	`í1. 130	
Sand and graveldo	11, 918, 217	6, 048, 619	6, 987, 761	4, 278, 25	
Sand lime brick thousands of brick	(8 9)	(3 9)	(3 9)	(3 9)	
Silvertroy ounces.	442, 063	300, 067	365, 175	259, 680	
Stone short tons		2, 020, 445	2, 347, 190	1, 941, 820	
Strontium mineralsdo		2, 020, 110	(3)	(3)	
Talc and ground soapstonedo	190	1, 225	4	1, 394	
Fungsten ore (60-percent concentrates)d	100	(3)	74	(3)	
Zinc do-percent concentrates)do	10 191	1, 053, 624	11, 560	1, 456, 56	
Zinc dododo	10, 131		11,000	7, 709, 82	
MISCELLARIEOUS		9, 827, 939		1, 109, 82	
Matal makes aliminating deplications		21 505 704		90 000 100	
Total value, eliminating duplications		31, 395, 704		28, 090, 18	

¹ Value not included in total value for State.

Value not included in total value for State.
 Figures not available.
 Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.
 According to Bituminous Coal Division; value includes selling expenses.
 No canvass.
 Not valued as ore; value of recoverable metal content included under the metals.
 Figures obtained through cooperation with Bureau of the Census.
 Includes minerals indicated by "*" above.

Mineral production of West Virginia, 1939-40

Doodwat	19	939	1940		
Product	Quantity	Value	Quantity	Value	
Brominepounds. Calcium chlorideshort tons	12,473	\$140, 910 83, 583	12, 103	79, 978	
Cement barrels Clay:	''	(1)	(4)	(1)	
Products (other than pottery and refractories) Raw (sold by producers)short tons	46 759	² 3, 000, 116 93, 426		2 2, 451, 000 103, 989	
Coal do	108, 361, 934 1, 686, 070	3 190, 492, 164 4, 699, 840	1126, 437, 621 2, 133, 003	231, 603, 534 6, 170, 849	
Ferro-alloysdodododo	(1.5)	(1.1)	(1.8)	(1.8)	
Iron, pig do Lime do do	853, 229	(1.5)	941, 299	(1 f) 1, 727, 844	
Manganese orelong tonsshort tonsshort tons	26	380	(1) 219	(2)	
Mineral waters gallons sold Natural gas M cubic feet	(1) (6) 159, 226, 000	(6) 63, 194, 000	(6) 188, 751, 000	(6) 76, 085, 000	
Natural gasoline gallons Petroleum barrels	52, 272, 000 3, 580, 000	2, 017, 000 6, 000, 000	58, 782, 000	1, 848, 000 6, 400, 000	
Salt short tons do do	144, 727 1, 968, 852	773, 988 2, 036, 020	144, 312	701, 953 2, 240, 650	
Sand and sandstone (ground)dododo	7 3, 808, 140	⁽¹⁾ 7 4, 477, 828	(1)	⁷ 3, 818, 788	
Sulfuric acid	(1.5)	26, 437, 932	(1.8)	(1 s) 31, 257, 639	
Total value, eliminating duplications		276, 084, 118		329, 891, 960	

¹ Value included under "Miscellaneous."

³ Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.

³ According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude selling expenses in reporting value, but a number of them included such expenses.

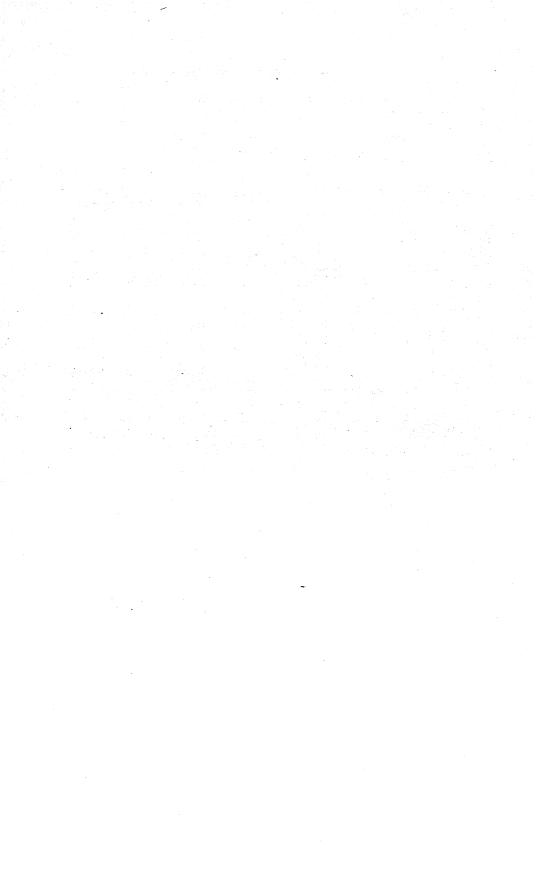
⁴ According to Bituminous Coal Division; value includes selling expenses.

⁴ Value not included in total value for State.

Value not included in total value for state.
No carvass.
Exclusive of unclassified stone in 1939 and of dimension limestone in 1940, value for which is included under "Miscellaneous."
From zine smelting.
Includes minerals indicated by "" and "" above.

Mineral production of Wisconsin, 1939-40

Product			1940	
	Quantity	Value	Quantity	Value
Cementbarrels	(1)	(1)	(1)	(1)
lay products (other than pottery and refractories).		² \$494, 323		² \$326, 000
Ookeshort tons	(1.8)	(1.8)	(1 8)	(1.8)
ron ore—	1			
Sold to furnaces long tons Sold for paint do	1, 173, 828	3, 526, 980	1, 227, 840	3, 290, 889
and for paint			598	(1)
leadshort tons_	- 398	36, 472	445	44, 500
Limedo Marl, calcareousdo	- 64, 290	541, 787	65, 632	542, 749
Mineral waters gallons sold	- ! !!	Ω	8	
Molybdenum pounds	- (4)	(4)	(9)	(9)
Ores (crude), etc.:	-	(-)		
Zincshort tons	İ	1	190, 326	(4)
Zinc short tons Zinc-lead do	213, 400	(5)	100, 020	
		1 715	(1)	(1)
and and gravel short tons	7, 024, 722	2, 616, 204	6, 742, 882	2, 304, 197
and and sandstone (ground)do	(1)	(1)	(1)	(1)
Saud-Hille Drick thousands of brick	1 (6)	(16)	(1) (1 6)	(1 6)
Silica (quartz) short tons do do	- (1)	(1)	(1)	(1)
tonedo		3, 564, 045	4, 330, 360	5, 030, 263
Zinedo	5, 904	614, 016	5,770	727, 020
Miscella neous 7.	-	4, 993, 973		5, 356, 657
Total value, eliminating duplications.		12, 704, 942		13, 553, 682


Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 Value not included in total value for State.

Volume not included in worst value for School.
No canyass.
Not valued as ore; value of recoverable metal content included under the metals.
Figures obtained through cooperation with Bureau of the Census.
Includes minerals indicated by "4" above.

Mineral production of Wyoming, 1939-40

	19	30	1 94 0	
Product	Quantity	Value	Quantity	Value
Cement barrels. Clay: Products (other than pottery and refractories). Raw (sold by producers) short tons. Coal do Copper pounds. Feldspar (grude) long tons.	76, 133 8 5, 373, 289	777, 722 10, 753, 533 25, 008	(1) 91,714 4 5,808,042 4,000 7,833	976, 844 4 11, 944, 261 452 29, 128
Gems and precious stones Gold troy ounces Gypsum (crude) short tons Iron ore long tons Mics, scrap short tons Mineral waters gallons sold Natural gas M cubic feet Natural gasoline gallons	583 (1) 587, 892	(3) 20, 405 (1) (1) (1) (5) 4, 901, 000 1, 575, 000	740 5, 415 831, 314 (a) 27, 346, 006 33, 380, 000	(4) 25, 900 8, 393 (1) 5, 221, 000 1, 271, 000
Ores (crude), etc.: Copper Dry and siliceous (gold and silver)	1, 675, 120 75 (1) 690, 860	(*) 18, 150, 000 746, 022 51 (1) 668, 069 (1) (1) 1, 614, 006	1, 676, 954 114 (1) 405, 140	(1)
Total value, eliminating duplications		39, 413, 001		43, 073, 53

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census. Total for 1940 is estimate by Bureau of Mines based on figures issued by Bureau of the Census as somewhat incomplete.
 According to Bituminous Coal Division and Bureau of the Census; producers were asked to exclude salling expenses in reporting value, but a number of them included such expenses.
 According to Bituminous Coal Division; value includes selling expenses.
 No canvass.
 Not valued as ore; value of recoverable metal content included under the metals.
 Includes minerals indicated by "1" above.

PART II. METALS

GOLD AND SILVER

By Chas. W. Henderson and C. E. Needham

SUMMARY OUTLINE

	Page		ega?
Summary	51	Mine report—Continued.	
Domestic refinery production	52	Mine production—Continued.	67
Prices of gold and silver	54	Ore production, classification, metal yield,	
United States and world monetary stocks	55	and methods of recovery	69
Gold and silver in the arts and industries	57	Placers	74
Imports and exports	62	Dredging	74
Domestic supply	63		
Mina report	63	World aspects	77
Method of collecting statistics	63		61
Units of measurement			82
Mines producing Leading gold producers			87
Leading gold producers Leading silver producers	::	Mexico	89
Number of mines			89
Mine production	- 019		91

SUMMARY

Gold and silver in 1941 failed to maintain the high rate of production set by the industry in 1940, which was a record year in many countries. World output of gold dropped an estimated 4 percent. Most of the slump is attributed to Europe; however, no reliable data have been obtained either on gold or silver from any of the European countries, and this is true as well for nearly all of the Asiatic nations and most of those in Africa and Oceania. World production of silver is estimated to have dropped nearly 3 percent, most of which represents reduced output in Canada, Mexico, and Peru.

Output of gold in North America dropped less than 1 percent in 1941. Although production in the United States decreased nearly 1 percent, increases were appreciable in Canada and Nicaragua. Silver

made a poorer showing and dropped nearly 3 percent.

Among the gold-producing countries of the world, the Union of South Africa, with an output of more than 14,000,000 ounces, continued well in the lead and produced about 35 percent of total world output in 1941. The Union succeeded in increasing its output by 2½ percent in spite of losses of skilled workmen and engineers to military service, conversion of workshops to munition work, difficulty in obtaining steel, and increased working costs. This favorable showing was accomplished by extending the ordinary working hours, by amending leave arrangements, by working overtime, by practicing the strictest economy in the use of all stores, by using substitute materials wherever possible, by reducing replacements in equipment to a minimum, and by the restriction of development work.

In the United States less attention was given to gold and silver and more to base metals in order to meet the great demands of the war program. Early in 1942, the War Production Board asked gold and silver operators to give precedence to more essential operations to conserve mining material and supplies, and gold and silver mines were excluded from the priority benefits of Preference Rating Order P-56. This exclusion caused considerable disturbance and misunderstanding in the industry, and protests followed. In a short time it was stated that the case of each mine would be reviewed and if the mine was found to produce needed amounts of copper, lead, or zinc, its serial number would be reinstated.

Gold and silver producers in the Latin American countries faced an increasing shortage of mine and mill machinery, most of which comes from the United States. Moreover, their operations were handicapped by inadequate shipping facilities for their ores and concentrates to United States smelters. Naturally, it is expected that production

will decrease still more in 1942.

Although gold and silver had been considered quite unessential to the war effort, late in 1941 they began to make many important contributions to industry. This applied especially to silver, of which surprising amounts were used in the war industries by 1942. A more detailed discussion in this connection is given later in this chapter.

DOMESTIC REFINERY PRODUCTION

The figures in the following table were obtained through cooperation between the United States Bureau of the Mint and the Bureau of Mines and were agreed upon after conference and adjustment

between the two Bureaus.

The State totals are based upon bullion deposits in the United States mints and assay offices and upon returns to the Bureau of the Mint from smelting and refining companies. The State distribution is adjusted further by the Bureau of Mines from its geographical records of sources and production, both historical and current, from the producing mines and is tabulated for the mine reports discussed later. The data for the total production and in part for the distribution are obtained from records of (1) the unrefined domestic gold and silver deposited in the United States mints and assay offices; (2) the domestic gold and silver in fine bars reported by private refineries, supplemented by data of content of unrefined mattes, blister copper, copper anodes, and lead bullion; and (3) the unrefined domestic gold and silver contained in ore and matte exported for reduction. The last item is small.

Gold and silver produced in the United States, 1937–41, and approximate distribution of source, by States and Territories, in 1941

[Refinery figures supplied by U. S. Bureau of the Mint]

	Go	ld 1	Silver ²	
State or Territory	Fine ounces	Value	Fine ounces	Value
937	4, 804, 540	\$168, 158, 900	71, 941, 794	\$55, 646, 978
937	5, 089, 811	178, 143, 400	62, 665, 335	40, 510, 924
939	5, 611, 171	196, 391, 000	65, 119, 513	44, 202, 279
1940	6, 003, 105	210, 108, 700	69, 585, 734	49, 483, 189
1941:				
Alabama	32	1, 100	4	3
Alaska	696, 113	24, 364, 000	217, 930	154, 972
Arizona	317, 386	11, 108, 500	7, 711, 716	5, 483, 887
California	1, 431, 637	50, 107, 300	2, 167, 280	1, 541, 177
Colorado	387, 627	13, 567, 000	8, 638, 904	6, 143, 221
Georgia.	307	10, 700	35	25
Idaho	151, 211	5, 292, 400	17, 082, 433	12, 147, 508
Illinois			501	356
Michigan			60, 502	43, 024
Missouri			152, 273	108, 283
Montana		8, 843, 900	12, 742, 114	9, 061, 059
Nevada	377, 953	13, 228, 400	5, 800, 174	4, 124, 568
New Mexico		1, 089, 400	1, 394, 182	991, 418 26, 497
New York			37, 262	5, 221
North Carolina		115,900	7,342	189, 352
Oregon	95, 635	3, 347, 200	266, 276	12, 009
Pennsylvania	2, 667	93, 300	16, 887	896, 069
Philippine Islands	1, 144, 332	40, 051, 600	1, 260, 097	880, 000
Puerto Rico		700	6, 447	4, 58
South Carolina	15, 549	544, 200		123, 226
South Dakota		21, 415, 400	173, 286 39, 396	28, 01
Tennessee		8,000	1, 093, 137	777, 34
Texas		10, 300	13, 061, 846	9, 288, 424
Utah		13, 040, 000	13, 001, 840	9, 200, 32
Virginia		8, 400 2, 910, 800	405, 820	288, 58
Washington Wyoming	83, 166 459	2, 910, 800	400, 820	3
w young	5, 976, 419	209, 174, 600	72, 336, 029	51, 438, 95

Gold and silver produced in the United States, 1792-1941

[From Report of the Director of the Mint. The estimate for 1792-1873 is by R. W. Raymond, commissioner of mining statistics, and since then by the Director of the Mint]

	G	old	Silver	
Period	Fine ounces	Value 1	Fine ounces	Value 2
1792–1847 1848–72 1873–1941	1, 187, 170 58, 279, 778 207, 958, 229	\$24, 537, 000 1, 204, 750, 000 4, 851, 125, 300	309, 500 118, 568, 200 3, 610, 431, 694	\$404, 590 157, 749, 900 2, 715, 323, 848
	267, 425, 177	6, 080, 412, 300	3, 729, 309, 394	2, 873, 478, 248

¹ Gold valued in 1934 and thereafter at \$35 per fine ounce; prior thereto at \$20.67+ per fine ounce. Dollar

'Gold valued in 1834 and thereafter at \$35 per line ounce; prior thereto at \$20.67+ per fine ounce. Dollar figures are rounded.

Silver valued in 1934 and thereafter at Government's average buying price for domestic product: In 1934 and 1938 at \$0.64+ per fine ounce, in 1935 at \$0.71875, in 1936 at \$0.7745, in 1937 at \$0.7735, in 1939 at \$0.678787+, and in 1940 and 1941 at \$0.7111+.

The average commercial value per fine ounce of silver for the total recorded domestic production is \$0.771.

¹ Gold valued at \$35 a fine ounce. ² Silver valued as follows: 1937, \$0.7735; 1938, \$0.646+; 1939, \$0.678787+; 1940 and 1941, \$0.7111+.

PRICES OF GOLD AND SILVER

Gold.—Under the Gold Reserve Act of 1934 the value of gold was fixed by Presidential proclamation on January 31, 1934, at \$35 per fine troy ounce and has remained at that figure through 1941. From January 18, 1837, through 1932, the price was \$20.67+ per ounce, and in 1933 the legal coinage value was continued at \$20.67+. The average weighted price per fine ounce in 1933, as computed by the Bureau of Mines, was \$25.56 and in 1934, \$34.95. A complete account of regulations pertaining to gold and silver in 1933-34 is given in the chapter on Gold and Silver in Minerals Yearbook, 1934 (pp. 25-46), issued by the Bureau of Mines.

Silver.—The Government price for newly mined domestic silver was maintained throughout 1938 and to June 30, 1939, at \$0.646464646+ per fine ounce. The act of Congress approved July 6, 1939, fixed the price of domestic silver mined after July 1, 1939, at \$0.711+ per ounce. The annual average prices 2 used for domestic silver from 1932 to 1939 are as follows: 1932, \$0.282; 1933, \$0.350; 1934, \$0.646464646+; 1935, \$0.71875; 1936, \$0.7745; 1937, \$0.7735; 1938, \$0.646464646+; 1939,

\$0.678787878+; 1940-41, **\$**0.711111111+.

The following table, copied from the Annual Report of the Director of the Mint for the Fiscal Year Ended June 30, 1941, shows the price of silver in London and in New York in 1940 and the first half of 1941.

Price of silver in London and in New York, 1940-41
[From the Report of the Director of the Mint]

	London 1	London price per ounce, 0.925 fine			equivalent, month	Average monthly New York price of
Month	Highest	Lowest	Average	monthly exchange, New York on London	ounce, of London price, at current rate of ex- change	fine bar silver.
1940	Pence	Pence	Pence	Dollars	Dollar	Dollar
January	2256	211/16	21, 8920	3, 9639	0. 39089	0. 35062
February	2113/16		20. 9345	3, 9633	. 37373	. 35062
March	215/4	20116	20. 7631	3, 7591	. 35158	. 35062
April	2114	2018	20. 7130	3, 5259	. 32897	. 35062
May	231/2	2078	21. 8777	3, 2736	. 32261	. 35261
June	2316	2118	22, 6875	3, 6016	. 36807	. 35137
July	2258	21116	22, 0951	3. 8049	. 37869	. 35062
August	2312	22516	23, 2613	3. 9788	. 41690	. 35062
September	2312	2338	23, 4464	4. 0342	. 42607	. 35062
October	2312	2338	23, 4511	4. 0325	. 42598	. 35062
November	2312	2278	23, 2381	4. 0356	. 42243	
December	235/16	2213/16	23. 0149	4. 0350	. 41831	. 35062 . 35062
1941						
January	2334	233/16	23, 2727	4. 0342	. 42291	. 35062
February	237/16	2314	23, 3406	4. 0297	. 42366	. 35062
March	231/2	23316	23, 4226	4. 0319	. 42539	. 35062
April	2312	231/2	23, 5000	4. 0248	. 42605	. 35062
May	2312	2398	23, 4574	4. 0310	. 42593	. 35062
June.	237/16	2338	23. 4000	4. 0316	. 42495	. 35062
Average, calendar year 1940			22. 2921	3, 8360	. 38458	. 35085
			23. 2344	4. 0209	. 42082	. 35062

For Congressional acts with reference to coinage from April 2, 1792, to January 31, 1934, see Minerals Yearbook, 1937, p. 113; for gold prices in London, 1931-36, p. 114.
 For highest, lowest, and average price of silver in New York, 1874-1935, see Minerals Yearbook, 1937, p. 115; for ratio of silver to gold, 1687-1935, p. 121.

UNITED STATES AND WORLD MONETARY STOCKS

According to figures published in the Federal Reserve Bulletin, the gold reserves of the United States increased \$742,000,000 in 1941 and totaled \$22,737,000,000 at the end of the year. The gain in 1941 was the smallest since the year before the legal value of gold was raised from \$20.67 + to \$35 a fine ounce. The record gain of \$4,351,000,000 occurred in 1940, when much gold was acquired from European countries invaded by Germany. During the first 5 months of 1942 the gold reserves decreased slightly and were shown by the daily statement of the United States Treasury, June 8, 1942, to be 649,033,271.8 fine ounces valued at \$22,716,164,513.90.

Figures on gold reserves held by central banks and governments in many of the other countries of the world at the end of 1941 are not available. At the end of 1939 the gold reserves (including stabilization funds) of all countries (including the United States) totaled approximately \$29,122,000,000. Adding \$1,419,000,000 for new gold produced in 1940 and an estimated \$1,336,000,000 for 1941 raises the

total reserves of the world to approximately \$31,877,000,000.

The United States Treasury silver holdings on December 31, 1941, approximated 3,280,000,000 fine ounces. This represents slightly over 100,000 tons of silver. Early in 1942 it was stated that the Treasury would lend 40,000 tons of silver for electrolytic busbars for making magnesium and for certain other war uses. The Twenty-sixth Annual Review of the Silver Market, 1941, by Handy & Harman, contains the following paragraphs regarding coinage and Indian demand.

Accretions to the gold stocks of the United States were much less in 1941 than in recent years. Nevertheless, such additions were sufficient to prevent any but nominal progress towards the goal set by the Silver Purchase Act that "one-fourth of the total monetary value of the gold and silver stocks shall be in silver."

Instead of the required 25 percent, the proportion of silver at December 31, 1941, was 15.7 percent, which compares with 15.6 percent one year before.

Coinage.—According to advices from London, the Royal Mint coined and exported substantial quantities of silver during 1941, but no amounts are ascertainable. It is believed that these shipments included coinage for the Dominions and the allies of Creek Prize although the major portion compiled of Maria Theorem the allies of Great Britain, although the major portion consisted of Maria Theresa thalers for Ethiopia and East Africa to replace the Italian money introduced

five years previously.

In Latin America, Panama authorized the coinage of additional fractional silver pieces, and the Central Bank of Ecuador was instructed to mint 5-sucre and 2-sucre coins of silver instead of issuing paper notes for the needed expansion of currency. Mexico used only a scant 300,000 ounces in 1941 to make 1-peso and 20-centavo pieces, but the silver came out of stocks purchased in 1940 and not from newly mined metal. The United States supplied native coins for Liberia, the Dominican Republic, the Dutch possessions of Curação and Surinam, and the

Netherlands East Indies.

Although the amount of foreign coinage done in this country was considerable, the necessity to operate our mints on a 24-hour basis was caused by the tremendous demand for United States fractional currency which developed during the year, and which, according to the Director of the Mint, was attributable to defense expansion in trade, increased popularity of vending machines, and sales taxes. Between January 1 and November 30, 1941, the value of subsidiary silver in circulation (this excludes nickels and pennies) increased by \$61,500,000, equivalent to 44,500,000 ounces of newly coined metal. It is also of interest that during this same period an additional 8,600,000 ounces of silver in the form of standard silver dollars was withdrawn from the benefer. of standard silver dollars was withdrawn from the banks. However, no question of silver consumption for coinage is involved in this record-breaking demand for currency by the American people, since no specific Government purchases of metal were necessitated.

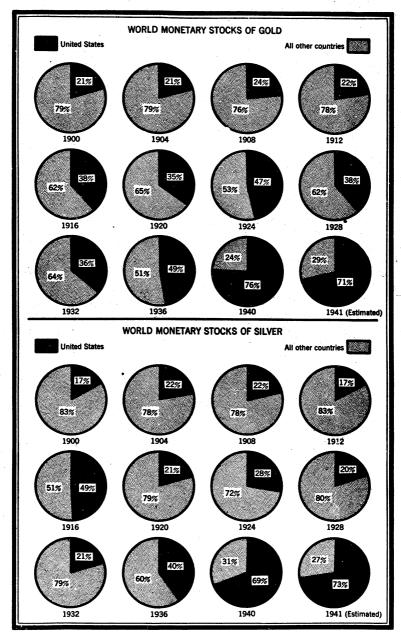


FIGURE 1.-World monetary stocks of gold and silver, 1900-1941.

Indian demand.—It has been impossible to compute statistically India's absorption of silver in 1941 because of the almost total lack of official figures or even estimates covering imports, exports, and Indian Government sales. The only pertinent information available is that in February and April 3,500,000 ounces were shipped to India from the United States and 875,000 ounces from Canada.

Also, it is believed that India acquired most of Burma's production and some 4,000,000 ounces from Australia. The sole basis for our estimate of Indian silver consumption in 1941 is an advice from Bombay which sets the figure at 40,000,000 ounces.

During the past year there has been no indication of any further hoarding of silver coin such as occurred in 1940; nor any criticism, so far as we have heard, of the debasement of the rupee. It would appear, therefore, that the steps taken by the Indian Government have satisfied the demand of the people for more currency and at the same time have provided surplus stocks of silver without the corresponding loss of foreign exchange which purchases abroad would have necessitated.

GOLD AND SILVER IN THE ARTS AND INDUSTRIES

Gold.—The average person doubtless regards gold as a special metal almost unavailable except for monetary, international trade, and exchange purposes. However, gold has a number of qualities that adapt it to many uses in industry, and it would seem that greater use might be made of the metal during the present emergency when there is a critical shortage of nearly all metals. The following comments on the uses of gold in the industries have been excerpted largely from an excellent paper by Downs.³

Gold has seven properties that make it particularly desirable in meeting many industrial needs: (1) Resistance to all ordinary corrosion; (2) high malleability and ductility; (3) ability to form a fast joint with ceramics; (4) ability to weld at ordinary temperatures by pressure alone; (5) very low specific heat and latent heat of fusion, making it about the easiest of the ordinary metals to heat, cool, or melt; (6) attractive color, either in the nearly pure form or as numer-

ous alloys; (7) high conductivity for electricity.

The use of gold in jewelry is well-known. The two properties accounting mainly for the popularity of gold in articles of jewelry are attractive color and freedom from corrosion. In addition to yellow gold, white, green, blue, and purple gold can be produced. By adding varying amounts of silver, copper, zinc, nickel, or palladium, white gold is produced; adding cadmium, green gold; adding iron, blue gold;

adding aluminum, purple gold.

Many articles are prepared by covering the surfaces with a layer of gold by one of the several processes described below. Gilding by the older mercurial and immersion processes has been largely replaced by electroplating. The article to be plated is made the cathode (negative pole) and a bar of gold the anode (positive pole) in a bath of potassium aurocyanide. Any thickness of plate may be obtained by controlling the operation. A thickness of 0.00005 inch is satisfactory on many articles. Gold-covered silver wire may be prepared by plating a bar of silver-copper alloy and drawing it out to wire in the usual manner. This common commodity is used for weaving into gold braid and embroideries so widely used on uniforms, vestments, and other articles. Plated gold also finds much application in instruments used in the transmission of sound, the efficiency of which depends upon the delicate electrical contact of gold-plated electrodes.

In covering surfaces with leaf gold, the extreme malleability of gold is utilized. Most leaf gold is prepared by hand-hammering the metal

Downs, E., Gold and Its Scope in Industry: Chem. and Ind., vol. 61, No. 14, April 4, 1942, pp. 156-160.

into sheets about four-millionths inch thick, and the leaf can be applied to nearly all kinds of surfaces. About 250 square feet of leaf can be prepared from 1 ounce of gold at a cost for the gold of about one-tenth cent per square inch. The low cost permits the leaf to be used extensively on picture frames, gilt labels of many kinds, book titles and coverings, the edges of playing cards, and numerous other articles.

The process of depositing a layer of gold by cathode sputtering or cathode dispersion has been developed rather recently. The method is applicable to articles of many different shapes, sizes, and materials. To be coated, the article is placed in a vacuum chamber provided with an aluminum anode and a gold cathode. On passing an electric current of high voltage through the chamber, gold is dispersed and deposited as a film less than one-millionth inch thick. Sputtered gold parts are used extensively in radio equipment.

The vaporization process is also used to coat objects with gold. Again, the object is placed in a vacuum chamber which also contains gold. The gold is heated electrically to its melting point, and the vapor is condensed as a molecular film on the object. Spectacle lenses processed in this way are used in the treatment of certain eye

complaints.

Still another method of covering a surface with a layer of gold is through the use of rolled gold, prepared by soldering or welding gold plate of any carat onto a block of bronze, nickel silver, or silver. The block is then rolled to the desired thickness even to a covering of no more than two-millionths inch thick. Common articles made of rolled gold include spectacle frames, watch cases, pencils, jewelry, and toys. Articles with the thicker coverings have very high wearing qualities.

An interesting and important use of gold is in decorating ceramic ware. Gold applied in this way is virtually pure gold, even to the finest line. The decorating usually is done in one of two ways. In the first, the gold is prepared chemically in the amorphous form and amalgamated. Fluxes are added, and the whole is ground to a fine powder. The powder is next mixed with a suitable liquid and applied to the ware; the ware is then fired in the kiln. In the second method, a solution is prepared of complex organic gold compounds in essential oils, with materials added to give good adhesion. The solution is applied to the ware with a brush, and the ware is fired. More ware is decorated by this method than by the first. Attractive shades of ruby and rose in stained glass, jewelers' enamel, china, and porcelain ware are developed by the use of purple of Cassius (gold precipitated from a solution of gold chloride by adding stannous chloride).

The use of gold in the practice of dentistry is also well-known. Gold is a desirable dental material because it is permanent and has natural resistance to mouth secretions. It is used mainly in three ways—as fillings, dentures, and orthodentic wires. For certain types of dental

work the gold is hardened by adding platinum or palladium.

Gold finds considerable use for chemical plant and laboratory ware, although the high cost of the metal limits its use considerably. Laboratory dishes and crucibles of gold-palladium alloy resist heat and chemicals, and the alloy can be substituted for platinum in many processes when the price of platinum is unduly high. Some plant equipment constructed of base metals is lined with gold to give greater resistance to the chemicals, and solid-gold stills and condensers are not unknown. Gold-platinum alloy is used to make spinnerets in the

manufacture of artificial silk, as the metal used must resist abrasion and corrosion during passage of the solution through the spinneret.

Gold also finds use in several types of special instruments, including the Pallador thermocouple—a gold-palladium-iridium-platinum couple—used for accurate temperature measurements; heat fuses, either as the pure metal or as a gold-palladium alloy, in certain electrically heated furnaces to provide protection from 960°C. to 1,500°C.; and contacts in certain electrical equipment, generally as a gold-silver-platinum alloy.

Other special commodities are made of gold because of its high resistance to corrosion. These include gold-alloy hairsprings used in highly accurate timepieces and marine chronometers; suspension strips in the most accurate galvanometers; gold plate on base-metal conductors carrying high-frequency radio currents; and gold-tipped pencils

on water-meter recorders used in damp climates.

Still other interesting applications are made of gold in parabolic reflectors using infrared rays to dry paint work and as a gold alloy for brushes in motor generators employed in connection with electrical equipment that measures the speed of aircraft engines.

In therapeutics gold serves unusually well as a target in X-ray work, as container tubes for the distintegration products of radon in radium therapy, and, in the form of complex organic salts, in the

treatment of certain skin diseases and rheumatoid arthritis.

Silver.—The utilization of silver in the arts and industries has shown a phenomenal increase during the past few years. Consumption has leaped from about 5,000,000 fine ounces in 1935 to some 72,000,000 fine ounces in 1941, and it is expected that consumption in 1942 will be substantially greater than in 1941. Naturally, much of this increased demand is due directly or indirectly to the war program.

Silver has many properties that make it valuable for uses in the arts and industries. For example, it is highly malleable and ductile; it ranks first among the metals in conductivity of electricity and heat; it is beautiful and has ability to take a superior finish; it is but slightly affected by common acids and is not ordinarily discolored or stained by foods and fruit juices; and it is low in cost compared with other precious, and even some base, metals.

Although nearly pure silver has many applications, it is too soft for most purposes, hence is alloyed with other metals in varying proportions. It is also used in many articles as a plating or coating on base metals or base-metal alloys. Plating is now done almost entirely by the electro method. Compounds of silver find much use in the

photographic industry, as well as in medicine and chemistry.

For many years the greatest consumer of silver has been the sterling silverware industry, which in 1941 used an estimated 30,000,000 fine ounces. ("Sterling" has a fineness of 0.925, or 92.5 percent pure silver.) This amount is considerably more than double that consumed by this industry in 1940 and is attributed in great part to increased purchasing power of the public and to the greater number of marriages as a result of enlistments and inductions into the service.

The photographic industry for a number of years has ranked second in consumption of silver, followed generally by the electroplating industry, the manufacture of jewelry, optical goods and novelties, silver-clad steel tanks, evaporators, drying pans, and other equipment for the chemical industry, and several smaller industries and uses that have consumed annually less than 1,000,000 fine ounces each.

In 1941 the war industries and others began using increasing amounts of silver; in 1942 war uses of the metal are expanding rapidly. This trend was brought about by the substitution of silver in many articles formerly made of nickel, chromium, aluminum, copper, and tin and by the industries employing silver in new ways because of the desirable properties that it possesses.

Of particular importance was the greatly increased use of silver solder and brazing alloys, which are made in a wide variety of types containing 10 to 80 percent silver, with the remainder copper, zinc, or other metals. Those in greatest use contain 40 to 50 percent silver

The silver solders and brazing alloys are of great moment in the They are used in ignition-wire shields for aircraft engines, preventing radio interference; in the manufacture of oil coolers and radiators for airplane engines; and in airplane instruments, pipe connections, parts of the fuselage, and repair work. In armament, they are employed in joining the cylinder heads in the recoil mechanisms of antiaircraft guns and field artillery pieces: in the brazing of jackets of machine guns; in the construction of torpedo tubes; and in joining the nose pieces of aerial and incendiary bomb shells and tubes. Silver brazing alloys are widely used in the construction, maintenance, and repair of ships in joining pipes, and in equipment for air conditioning and refrigeration; also, in the construction of motors, and headlight connections and pneumatic systems of automobiles; and in the assembling of parachute rip rings and the brazing of joints of army field-kitchen stoves. Numerous other uses are made of silver solder and silver brazing alloys in a wide variety of electrical equipment and appliances.

A new and important use of silver is the plating of aircraft bearings, which are coated with a thickness of 0.025 inch. This use alone probably will consume more than 5,000,000 ounces in 1942. Coin silver (90 percent pure silver) is being employed to form seals and cushion ends for pistons in the recoil chambers of antiaircraft guns and field-artillery pieces, and 9½ pounds of silver goes into the recoil

mechanism of each 155-mm. gun and each 8-inch howitzer.

Silver is replacing tin in soft tin-lead solders and in high-tin Babbitt metal; nickel silver in the manufacture of watch cases; tin-antimony alloys in costume jewelry; aluminum as a reflective coating for "sealed-beam" headlights and in vacuum bottles; and brass in many important ways. It is being substituted for copper in low-voltage wiring and in busbars so extensively employed in plants manufacturing aluminum and magnesium. Silver alloyed with about 10 percent copper finds much use in electrical contacts, for which it is well-adapted because of its high conductivity of electricity and heat; too, the oxide formed at some contacts decomposes at 572° F. and returns to pure silver and thus does not build up high resistance.

Silver added in small amounts to copper improves copper to be soldered by preventing undue softening from heat; in commutator bars by insuring hardness; and in photoengravers' plates by preventing softening of the cold-rolled copper sheets processed at increased

temperatures.

An alloy containing 4 percent silver has gained some commercial use as a master alloy to introduce silver into stainless steel. The

silver tends to decrease pit corrosion and to give a better surface polish.

Some progress has been made in casting silver articles weighing up to 2 ounces. Success in this field will lead to many industrial

applications.

Finally, silver in various forms has considerable use in dentistry, medicine, and surgery as instruments of many types, suture wires and plates, dental fillings, cauterizing devices, and compounds used

for caustic, astringent, and antiseptic purposes.

It is evident that, silver occupies an important place in the war program, and the extensive research now being made on the metal undoubtedly will develop many new uses within a short time. The stockpile, once considered to be large, is disappearing at a rapid rate, and the metal is speedily taking its place with numerous other metals whose nonessential uses are being seriously curtailed or prohibited; not often has a commodity readjusted its position in commerce so abruptly.

The following table shows the net industrial consumption of gold and silver in the United States from 1901 to 1941, inclusive, in terms of dollars for gold and fine ounces for silver. The amount of each metal reclaimed and recovered from various sources is deducted from

the amount issued for industrial use to give the net amount.

Net industrial consumption of gold and silver in the United States, 1901-411

		Gold (dollars)		Sil	lver (fine ounce	es)
Year	Returned from indus- trial use	Issued for industrial use	Net indus- trial con- sumption	Returned from indus- trial use	Issued for industrial use	Net indus- trial con- sumption
1901 1902 1903 1904	5, 237, 013 6, 576, 863 6, 459, 989 7, 880, 964 7, 733, 423	23, 868, 956 27, 682, 847 29, 063, 551 28, 655, 963 33, 208, 615	18, 631, 943 21, 105, 984 22, 603, 562 20, 774, 999 25, 475, 192	1, 223, 720 2, 798, 880 3, 934, 270 2, 659, 153 4, 391, 923	14, 133, 694 19, 345, 009 19, 968, 356 20, 479, 987 23, 700, 677	12, 909, 974 16, 546, 124 16, 034, 086 17, 820, 834 19, 308, 754
1906 1907 1908 1908 1910 1911	7, 030, 294 7, 380, 560 7, 626, 278 7, 731, 238	39, 126, 763 40, 727, 070 31, 476, 091 37, 628, 769 41, 787, 152 40, 834, 292	31, 882, 934 31, 467, 816 24, 445, 797 30, 248, 209 34, 160, 874 33, 103, 054	3, 909, 030 2, 298, 742 3, 589, 929 6, 941, 962 1, 602, 979 5, 725, 582	21, 853, 264 24, 369, 784 23, 850, 828 27, 901, 126 24, 789, 807 32, 013, 685	17, 944, 23- 22, 071, 045 20, 260, 894 20, 959, 16- 23, 186, 826 26, 288, 105
1912	8, 106, 705	43, 977, 257	35, 870, 552	7, 291, 699	29, 936, 520	22, 644, 82
1913	8, 362, 235	45, 864, 066	37, 501, 831	7, 864, 466	30, 992, 834	23, 128, 368
1914	12, 934, 974	36, 137, 075	23, 202, 101	6, 758, 330	29, 309, 961	22, 551, 63
1915	12, 698, 326	36, 126, 353	23, 428, 027	7, 001, 875	29, 968, 115	22, 966, 240
1916	20, 185, 304	50, 042, 175	29, 856, 871	9, 899, 246	32, 103, 507	22, 204, 26
1917	19, 082, 196	50, 415, 641	31, 333, 445	11, 041, 038	27, 039, 845	15, 998, 80
1918 1919 1920 1921 1922	20, 327, 345 21, 035, 398 29, 534, 478 28, 013, 868 24, 683, 403 31, 265, 070	53, 014, 385 76, 132, 251 79, 715, 087 48, 455, 477 56, 613, 658 66, 892, 245	32, 687, 040 55, 096, 853 50, 180, 609 20, 441, 609 31, 930, 255 35, 627, 175	9, 530, 263 6, 463, 002 8, 694, 392 7, 024, 318 6, 623, 568 8, 469, 806	36, 252, 596 32, 700, 521 27, 974, 521 35, 867, 946 37, 910, 099 36, 824, 977	26, 722, 33 26, 237, 51 19, 280, 12 28, 843, 62 31, 286, 53 28, 355, 17
1924	32, 320, 145	64, 791, 449	32, 471, 295	8, 930, 580	33, 594, 816	24, 664, 23
1925	30, 092, 021	61, 225, 870	31, 133, 849	9, 897, 416	39, 826, 579	29, 929, 16
1926	32, 063, 448	62, 990, 839	30, 927, 391	10, 000, 792	39, 408, 393	29, 407, 60
1927	30, 369, 237	56, 819, 728	26, 450, 491	10, 155, 427	38, 648, 717	28, 493, 29
1928	30, 276, 159	56, 581, 650	26, 305, 500	10, 616, 380	35, 547, 663	24, 931, 28
929	32, 030, 531	56, 903, 667	24, 873, 136	11, 381, 523	42, 359, 082	30, 977, 55
930	27, 511, 640	42, 689, 379	15, 177, 739	9, 468, 829	36, 343, 207	26, 874, 37
931	23, 227, 085	29, 157, 865	5, 930, 780	9, 346, 281	33, 682, 119	24, 335, 83
932	26, 594, 769	20, 105, 102	-6, 489, 667	9, 796, 956	24, 257, 967	14, 461, 01
932	22, 805, 960	17, 013, 260	-5, 792, 700	18, 532, 880	29, 343, 451	10, 810, 57
933	75, 927, 285	14, 232, 795	-61, 694, 490	28, 186, 178	39, 678, 603	11, 492, 42
935	58, 390, 675	25, 929, 497	-32, 461, 178	35, 903, 107	41, 192, 023	5, 288, 91
936	35, 875, 770	32, 967, 937	-2, 907, 833	16, 703, 355	35, 842, 674	19, 139, 32
937	36, 407, 945	39, 622, 338	3, 214, 393	23, 564, 996	51, 292, 270	27, 727, 28
938	30, 480, 835	30, 156, 754	-324, 081	18, 438, 847	38, 620, 473	20, 181, 62
939	31, 328, 360	38, 788, 960	7, 460, 600	24, 972, 260	69, 585, 265	44, 613, 00
1940	27, 872, 355	41, 178, 387	13, 306, 032	22, 563, 729	67, 062, 632	44, 498, 90
1941	30, 975, 490	67, 977, 110	37, 001, 620	20, 361, 256	92, 793, 574	72, 432, 31

¹ U. S. Bureau of the Mint.

IMPORTS AND EXPORTS

Value of gold and silver imported into and exported from the United States, 1940-41, by classes

	Imports	Exports	Excess of im- ports over exports
1940			
Gold:	**** ***		
Contained in ore and base bullion	\$110, 935, 025	\$103, 922	\$110, 831, 103
Bullion refinedUnited States coin	4, 115, 289, 974	1, 016, 218	4, 114, 273, 756
	9,057	6, 347	2, 710
Foreign coin	523, 233, 147	3, 868, 412	519, 364, 73
	4, 749, 467, 203	4, 994, 899	4, 744, 472, 304
Silver:			
Contained in ore and base bullion	21, 069, 295	4,030	21, 065, 26
Bullion refined	36, 916, 258	3, 343, 184	33, 573, 074
United States coin	217, 964	7,790	210, 17
Foreign coin	230, 349	319, 381	1 89, 03
	58, 433, 866	3, 674, 385	54, 759, 48
1941 (JanSept.)			
Gold:	and the second second		and the state of the state of
Contained in ore and base bullion		30, 973	78, 776, 789
Bullion refined	759, 476, 500	12, 180	759, 464, 320
United States coin	728	8, 114	17,38
Foreign coin	434,034		434, 03
	838, 719, 024	51, 267	838, 667, 757
Silver:			
Contained in ore and base bullion	12, 961, 787	1, 159	12, 960, 62
Bullion refined	22, 671, 365	2, 706, 334	19, 965, 03
United States coin	115, 943	171,000	1 55, 05
Foreign coin	1,703	2, 251, 097	1 2, 249, 39
	35, 750, 798	5, 129, 590	30, 621, 20

¹ Excess of exports.

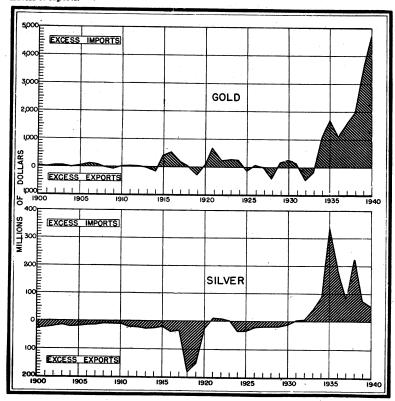


FIGURE 2.—Gold and silver imports and exports, with net movements, 1900-1940.

DOMESTIC SUPPLY

The domestic supply of new gold comes chiefly from dry and siliceous ore and from placer gravel. These two sources yielded 90 percent of the domestic gold (excluding Philippine Islands and Puerto Rico) in 1915, 80 percent in 1930, 87 percent in 1931, 93 percent in 1932, 1933, and 1934, 91 percent in 1935, 88 percent in 1936, 85 percent in 1937, 90 percent in 1938, 88 percent in 1939, 87 percent in 1940, and 86 percent in 1941. The proportionate output of gold from copper ore was 7 percent in 1915, 16 percent in 1930, 10 percent in 1931, 4 percent in 1932, 5 percent in 1933 and 1934, 7 percent in 1935, 10 percent in 1936, 12 percent in 1937, 8 percent in 1938, 10 percent in 1939, 11 percent in 1940, and 12 percent in 1941. These sources represented 96 to 98 percent of the gold supply in 1915 and 1930-41.

In 1915 dry and siliceous ore yielded in rounded figures 36 percent of the total silver; copper ore, 26 percent; lead ore, 27 percent; and zinc-lead ore, 9 percent. In 1940 dry and siliceous ores yielded 41 percent and in 1941, 41 percent; copper ore, 29 and 28 percent; lead ore, 4 and 6 percent; and zinc-lead ore (including zinc-copper and zinc-

lead-copper ores), 24 and 25 percent.

MINE REPORT

METHOD OF COLLECTING STATISTICS

The first table in this report presents the official refinery figures for production of gold and silver in the United States from 1937 to 1941, as agreed upon by the Bureau of the Mint and the Bureau of Mines. These figures record the output of gold and silver bullion from domestic ore in marketable form as metals, either refined or unrefined.

To trace the gold and silver produced back to its source by States, counties, and mining districts, the Bureau of Mines systematically investigates the "mine production" of ores containing gold and silver and the output of the placer mines, the total being classified by methods of production and by kinds of ore, as well as by mining districts.

The resulting figures form the basis of the mine reports.

Of the two systems for ascertaining the production of gold and silver, one is a measure of the metallurgic industry and the other of the mining industry; one reports the metal actually recovered in marketable form and the other the mine output and its recoverable content. The two methods will not produce identical results, but data for a period of years long enough to compensate for overlap or lag should agree within allowable limits of error.

Gold and silver produced in the United States, 1905-41, in fine ounces, according to mint and mine returns, in terms of recovered metals

Year -	Mi	int	Mine		
rear	Gold	Silver	Gold	Silver	
1905-36. 1937. 1938. 1939. 1940.	109, 420, 194 4, 804, 540 5, 089, 811 5, 611, 171 6, 003, 105 5, 976, 419	1, 826, 086, 989 71, 941, 794 62, 665, 335 65, 119, 513 69, 585, 734 72, 336, 029	109, 190, 585 4, 834, 062 5, 170, 743 5, 672, 485 5, 984, 163 5, 881, 798	1, 815, 780, 860 72, 128, 397 62, 873, 450 65, 565, 024 71, 824, 746 68, 483, 333	
	136, 905, 240	2, 167, 735, 394	136, 733, 836	2, 156, 655, 810	

Compared with the mine reports, the mint reports for the 37 years show a total excess of gold of 171,404 ounces (a difference of 0.13 percent) and a total excess of silver of 11,079,584 ounces (a difference of 0.51 percent).

UNITS OF MEASUREMENT

All tonnage figures are short tons of 2,000 pounds 'dry weight"; that is, they do not include moisture. The weight unit for gold and silver is the troy ounce (480 grains). The totals are calculated upon the basis of recovered and recoverable fine gold and silver shown by assays to be contained in ore, bullion, and other material produced. Prices of gold and silver are discussed in a preceding section of this report.

MINES PRODUCING

LEADING GOLD PRODUCERS

The output of the 35 largest gold producers in the United States (Philippine Islands and Puerto Rico excluded) in 1941, none of which produced less than 19,000 ounces, was 2,528,312 fine ounces (53 percent of the total). Six of the companies, working placer mines with floating connected-bucket dredges, recovered 484,227 ounces of gold; the rest of the output of the largest producers came from lode mines. The total output of lode mines and placers producing less than 19,000 ounces each was 2,222,553 ounces.

Largest producers of gold in the United States in 1941, in order of output 1

Rank	Operator	State	Mining district	Source of gold
1	Homestake Mining Co	South Dakota	Whitewood	Dry and siliceous gold ore.
2 3	Utah Copper Co	Utah Alaska	West Mountain Fairbanks and Nome	Copper ore. Dredging gravel.
4	Golden Cycle Corporation 3	Colorado	Cripple Creek, etc	Dry and siliceous gold ore.
5	Phelps Dodge Corporation	Arizona	Ajo, Copper Mountain, Verde, Warren.	
6 -	Yuba Consolidated Gold Fields.	California	Callahan, Oroville, Snelling, Yuba River.	Dredging gravel.
7	Alaska Juneau Gold Mining	Alaska	Juneau	Dry and siliceous gold ore.
8	Idaho Maryland Mines Corporation.		Grass Valley-Nevada City.	Do.
9 10	Natomas Co	do	Folsom Valley Grees	Dredging gravel. Dry and siliceous ore.
11 12 13	Getchell Mine, Inc	Nevada Washington California	Potosi Chelan Lake Grass Valley-Nevada	Do. Copper ore. Dry and siliceous ore.
14	ration. Alaska-Pacific Consolidated Mining Co.		City. Willow Creek	
15	Nevada Consolidated Copper Corporation.	Nevada	Robinson	Copper ore.
16 17	Mammoth-St. Anthony, Ltd.	Arizonado	Old Hat San Francisco	Dry and siliceous ore. Do.
18 19	Road;. Snyder Mines, Inc	Utahdodo	Camp Floyd West Mountain and Tintic.	Do. Zinc-lead ore, lead ore, dry and siliceous gold-silver ore.
20	Consolidated Coppermines Corporation.	Nevada	Robinson	Copper ore.

Philippine Islands excluded.
 Custom mill. Includes mainly ore from Cresson, Portland, Ajax, Vindicator, and other mines in Cripple Creek district, Colorado, but also from other districts in Colorado.

Largest producers of gold in the United States in 1941, in order of output -Contd.

Rank	Operator	State	Mining district	Source of gold
21	Bald Mountain Mining Co	South Dakota	Trojan	Dry and siliceous gold
22 23 24 25	Gold Hill Dredging Co	do	Camanche, Oroville Mother Lode Folsom Battle Mountain	Dredging gravel. Dry and siliceous ore. Dredging gravel. Copper ore.
26	Knob Hill Mines, Inc	Washington	Republic	Dry and siliceous gold ore.
27 28 29 30	Talache Mines, Inc	do	Middle Boise Mother Lode Mojave Mother Lode	Do. Dry and siliceous ore. Do. Do.
31	Telluride Mines, Inc. ormerly Veta Mines, Inc.).	Colorado	Upper San Miguel	Dry and siliceous gold- silver ore.
32	Anaconda Copper Mining Co	Montana	Summit Valley or Butte.	Copper ore, zinc-lead ore, dry and siliceous gold-silver ore.
33 34	Manhattan Gold Dredging Co. Anaconda Copper Mining Co.	Nevada Montana	Manhattan Renova	Dredging gravel. Dry and siliceous gold
35	(West Mayflower mine). Prescott Lease (E. L. Cord)	Nevada	Silver Peak	Dry and siliceous ore.

LEADING SILVER PRODUCERS

The output of silver from the 50 leading silver-producing companies in 1941, none of which produced less than 199,000 ounces, was 53,638,081 ounces—80 percent of the total mine output of the United States (Philippine Islands and Puerto Rico excluded); the remaining 13,426,788 ounces (placer production excluded) came from about 5,000 lode mines, many of which derive a substantial net income from the silver content.

Largest producers of silver in the United States in 1941, in order of output

	•			
Rank	Operator	State	Mining district	Source of silver
1	Anaconda Copper Mining Co	Montaná	Summit Valley or Butte.	Copper ore, zinc-lead ore, dry and siliceous gold- silver ore.
2	Sunshine Mining Co	Idaho	Evolution	Dry and siliceous silver
3	New Jersey Zinc Co., Empire Zinc Division.	Colorado	Battle Mountain	
4	Phelps Dodge Corporation	Arizona	Ajo, Copper Moun- tain, Verde, Warren.	
5	United States Smelting, Refining & Mining Co.	Utah	West Mountain and Tintic.	Zinc-lead ore, lead ore, dry and siliceous gold- silver ore.
6	Utah Copper Co	do	West Mountain	Copper ore.
7	Bunker Hill & Sullivan Mining & Concentrating Co.			
8	Tintic Standard Mining Co	Utah	Tintic	Dry and siliceous silver ore, lead ore.
9	Coeur d'Alene Mines Corpo- ration.	Idaho	Evolution	Dry and siliceous silver ore.
10	Federal Mining & Smelting Co.	do	Bunter and Yreka	Zinc-lead ore, lead ore.
11	Silver King Coalition Mines Co.	Utah	Uintah	Zinc-lead ore.
12	American Metal Co. (Presidio	Texas	Shafter	Ore
13	Polaris Mining Co	Idaho	Evolution	Do.
14	Polaris Mining Co Hecla Mining Co	do	Lelande	Zinc-lead ore, lead ore.
15	Triumph Mining Co	do	Warm Springs	Zinc-lead ore

Largest producers of silver in the United States in 1941, in order of output-Con.

_				
Rank	Operator	State	Mining district	Source of silver
16 17	Desert Silver, Inc Emperius Mining Co	Nevada Colorado	Silver Peak Creede	Dry and siliceous ore. Dry and siliceous silver ore.
18	Park City Consolidated Mines	Utah	Blue Ledge	Zinc-lead ore.
19	Anaconda Copper Mining Co. (Flathead mine).	Montana	Hog Heaven	Dry and siliceous silver ore, lead ore.
20 21	Lexington Mining Co	Arizona	Montana (Neihart) Pioneer	Do. Copper ore, zinc-copper
22 23	New Park Mining Co Combined Metals Reduction	Utah Nevada	Park City Pioche	ore. Zinc-lead ore. Do.
24	Co. Chief Consolidated Mining Co.	Utah	Tintie	Dry and siliceous gold- silver ore, zinc-lead ore,
25	Blackhawk Consolidated Mines Co.	New Mexico		lead ore. Dry and siliceous gold- silver ore.
26 27	West Coast Mines, Inc	Nevada Utah	Barrett Springs Park City	Dry and siliceous ore. Zinc-lead ore, lead ore.
28	Shattuck Denn Mining Corporation.	Arizona	Warren	Copper ore, zinc-lead ore.
29 30 31	Cactus Mines Co St. Joseph Lead Co Ground Hog Unit, American Smelting & Refining Co.	California Missouri New Mexico	Southeastern Missouri	Dry and siliceous ore. Lead ore. Zinc-lead ore, lead ore,
32	Anaconda Copper Mining Co.	Montana		copper ore. Zinc-lead ore, manga-
33	(Emma and Ophir). Lava Cap Gold Mining Cor-	California	Butte. Grass Valley-Nevada	nese-zinc-lead ore. Dry and siliceous ore.
34	poration. Telluride Mines, Inc. (formerly Veta Mines, Inc.).	Colorado	City. Upper San Miguel	Dry and siliceous gold- silver ore.
35	American Smelting & Refining Co. (Trench Unit).	Utah	Harshaw	Zinc-lead ore.
36	Philipsburg Mining Co	Montana		Dry and siliceous gold- silver ore.
37	Combined Metals Reduction Co. (Park-Bingham group).	Utah	West Mountain	Zinc-lead ore, dry and siliceous gold ore, dry and siliceous gold-sil- ver ore.
38	Lessees of the Tonopah Mining Co. of Nevada.	Nevada	Tonopah	Dry and siliceous ore.
39 40	Shenandoah-Dives Mining Co- Bristol Silver Mines Co-	Colorado Nevada	Jack Rabbit	Zinc-lead ore. Lead ore.
41	Iron King Mining Co	Arizona	Big Bug	Zinc-lead ore, dry and
42 43	Summit King Mines, Ltd Sherman Lead Co	NevadaIdaho	Sand Springs Lelande	Dry and siliceous ore. Lead ore.
44	Combined Metals Reduction Co. (West Calumet mine).	Utah	Rush Valley	Zinc-lead ore, lead ore, dry and siliceous gold- silver ore.
45	DeLamar Mining & Milling Co.	Idaho	Carson	Dry and siliceous gold- silver ore.
46	Florence Mining Co	Montana	, ,	Dry and siliceous silver ore.
47 48	Golden Queen Mining Co Sullivan Mining Co. (Star mine).	California Idaho	Mojave Hunter	Dry and siliceous ore. Zinc-lead ore.
49	The Exploration Syndicate, Inc.	New Mexico	•	Dry and siliceous gold- silver ore.
50	South Mountain Mining Co	Idaho	South Mountain	Zinc ore, copper ore.

NUMBER OF MINES

The following table indicates the number of mines that produced gold and silver in 1940 and 1941. The placers are those in which gold and silver in natural alloy and, in a few placers, platinum are recovered from gravel and sand, whether by hand washing, sluicing, hydraulicking, drifting (in frozen ground or ancient buried river channels), or dredging. The lode mines are those yielding gold and silver from ore as distinguished from gravel, mainly from under-

ground workings, and include those that yield ore mined chiefly for copper, lead, or zinc but that contribute the precious metals as byproducts. In addition to the producing mines enumerated here many properties were being prospected and developed, and many other mining claims were being held by assessment work only.

The enumeration of placer mines is less satisfactory than that of lode mines, because some are operated only temporarily and are individually small. As far as possible the unit, as for lode mines, is

not the operator but the mining claim or group of claims.

Number of mines in the United States producing gold and silver, 1940-41, by States

Quan.	Loc	ie	Pla	cer	Tot	al
State	1940	1941	1940	1941	1940	1941
Alabama Alaska Arizona Salifornia Colorado Jeorgia daho Illinois Indiana Michigan Missouri	2 73 1, 024 1, 030 691 .7 378 3	2 56 805 835 579 7 329 4	1, 069 276 836 439 14 548	799 184 724 324 11 524	2 1, 142 1, 300 1, 866 1, 130 21 926 3 1	854 986 1, 555 900 18 853
Montana Nevada New Mexico New York North Carolina	687 895 164 1	612 799 145 1 5	285 115 179	325 78 103	972 1,010 343 1 12	93 87 24
oregon Pennsylvania Outh Carolina Outh Dakota Pennessee	112 1 5 11 3	91 1 7 10 4	192 1 81	153	304 1 6 92	24 5
exas Itah Virginia Vashington Vyoming	6 191 3 83 9	9 167 1 61 8	21 88 28	12 1 56 12	212 3 171 37	17 11 2
	5, 393	4, 542	4, 176	3, 349	9, 569	7, 89

MINE PRODUCTION

SUMMARY

The following table gives the mine production of gold and silver in 1940 and 1941, by States, in terms of recovered metals, as calculated by the Bureau of Mines from reports from the producing mines. The annual percentage gains in gold production in the years following the 69-percent increase in the price of gold are as follows: 1934 over 1933, 19 percent; 1935 over 1934, 18 percent; 1936 over 1935, 19 percent; 1937 over 1936, 9 percent; 1938 over 1937, 7 percent; 1939 over 1938, 10 percent; 1940 over 1939, 5 percent; but 1941 decreased from 1940, 2 percent. The total gain in 1940 over 1933 was 128 percent. The output of silver decreased 5 percent in 1941 from 1940 but was 194 percent above that in 1933.

Mine production of gold and silver in the United States, 1940-41, by regions and States, in terms of recovered metals

			Gold					Silver		
Region and State	Fine o	ounces	Increase or decrease	Value (at \$3	35 an ounce)	Fine o	unces	Increase or decrease	Value (at an ou	
	1940	1941	(percent)	1940	1941	1940	1941	(percent)	1940	1941
Western States and Alaska: Alaska Arizona California Colorado Idaho Montana Nevada New Mexico Oregon South Dakota Texas Utah Washington	755, 970 294, 807 1, 455, 671 367, 336 146, 480 272, 602 383, 933 35, 943 113, 602 586, 662 312 355, 494 82, 136	695, 467 315, 392 1, 408, 793 380, 029 149, 816 246, 475 366, 403 27, 845 96, 565 600, 637 306 356, 501 84, 176	-8 +7 -3 +3 +2 -10 -5 -23 -15 +2 -2 (1)	\$26, 458, 950 10, 318, 245 50, 948, 485 12, 856, 760 5, 126, 800 9, 541, 070 13, 437, 650 1, 258, 005 3, 969, 070 20, 533, 170 10, 920 12, 442, 290 2, 874, 760	\$24, 341, 345 11, 038, 720 49, 307, 755 13, 301, 015 5, 243, 560 8, 626, 625 12, 824, 105 974, 575 3, 379, 775 21, 022, 295 10, 710 12, 477, 535 2, 946, 160	191, 679 7, 075, 215 2, 359, 776 9, 710, 709 17, 552, 240 12, 361, 050 5, 175, 928 1, 407, 839 219, 112 175, 514 1, 326, 150 12, 172, 299 365, 175	191, 522 7, 498, 260 2, 154, 188 7, 301, 697 16, 672, 410 12, 386, 238 1, 328, 317 276, 158 170, 771 1, 096, 027 11, 315, 485 402, 030	(1) +6 -9 -25 -5 (1) +13 -6 +26 -3 -17 -6 +10	\$136, 305 5, 031, 264 1, 678, 063 6, 905, 393 12, 481, 593 8, 790, 080 3, 680, 660 1, 001, 130 155, 124, 810 943, 040 8, 665, 857 259, 680	\$136, 19 5, 332, 09 1, 531, 86 5, 192, 31 11, 855, 93 8, 808, 48 4, 145, 94 944, 58 196, 37 121, 43 779, 39 8, 103, 45 285, 88
Wyoming	4, 851, 488	4, 728, 883	-35	25, 900 169, 802, 080	16, 730 165, 510, 905	70, 092, 800	94 66, 704, 122	-18 -5	49, 843, 769	47, 434, 04
Eastern States: Alabama Georgia New York North Carolina Pennsylvania South Carolina. Tennessee Virginia	5 961 1,943 1,840 13,076 173 458	30 311 3, 244 2, 422 15, 508 227 240	+500 -68 +67 +32 +19 +31 -48	175 33, 635 68, 005 64, 400 457, 660 6, 055 16, 030	1, 050 10, 885 113, 540 84, 770 542, 780 7, 945 8, 400	3 630 35, 720 6, 480 13, 064 8, 047 38, 610 271	3 38 37, 734 7, 439 15, 016 6, 525 39, 161 135	-94 +6 +15 +15 -19 +1 -50	2 448 25, 401 4, 608 9, 290 5, 722 27, 456 193	26, 83 5, 29 10, 67 4, 64 27, 84
Central States:	18, 456	21, 982	+19	645, 960	769, 370	102, 825	106, 051	+3	73, 120	75, 41
Central States: Illinois. Indiana. Michigan. Missouri	5			175		4, 766 88, 657 260, 314	20, 340 60, 796 367, 688	+327 -31 +41	3, 389 63, 045 185, 112	14, 46 43, 23 261, 46
	5		-100	175		353, 737	448, 824	+27	251, 546	319, 16
Philippine IslandsPuerto Rico	² 1, 114, 201 ² 13	² 1, 130, 933	(3) +2	38, 997, 035 455	39, 582, 655 (³)	² 1, 275, 383 ² 1	² 1, 224, 336 (³)	(3)	906, 939	870, 63 (3)
	1, 114, 214	1, 130, 933	+2	38, 997, 490	39, 582, 655	1, 275, 384	1, 224, 336	-4	906, 940	870, 68
	5, 984, 163	5, 881, 798	-2	209, 445, 705	205, 862, 930	71, 824, 746	68, 483, 333	-5	51, 075, 375	48, 699, 25

¹ Less than 0.5 percent.

² United States refineries' receipts.

Figures for 1941 not available.

Gold and silver, produced in the Western States of the United States, 1848-1941, and in Alaska, 1880-1941, in terms of recovered metals

[Original research, 1848–1903, by Chas. W. Henderson; 1904–41, by western offices, Economics and Statistics Service]

		0	lold	Sil	ver
State -	Period	Fine ounces	Value	Fine ounces	Value
Alaska Arizona California Colorado Idaho Montana Nevada New Mexico Oregon South Dakota Texas Utah Washington Wyoming	1848-1941 1858-1941 1863-1941 1862-1941 1859-1941 1848-1941 1876-1941 1885-1941 1885-1941	25, 152, 030 10, 174, 289 100, 262, 759 38, 296, 755 7, 629, 158 16, 680, 518 24, 775, 780 5, 620, 788 20, 037, 943 8, 041 9, 058, 229 1, 881, 725 77, 891	\$593, 335, 652 243, 595, 270 2, 211, 300, 217 834, 263, 389 170, 159, 933 368, 271, 342, 545, 702, 286 48, 541, 493 124, 690, 623 482, 925, 214 482, 925, 214 217, 263, 055 44, 615, 698 1, 834, 513	19, 562, 668 268, 688, 038 103, 032, 188 717, 950, 564 469, 574, 957 713, 202, 910 580, 706, 330 65, 276, 576 5, 089, 782 9, 346, 276 631, 300, 151 11, 222, 890 74, 580	\$13, 915, 671 199, 881, 769 83, 335, 903 558, 481, 176 322, 200, 087 521, 196, 672 534, 278, 401 51, 150, 206 4, 697, 387 6, 648, 628 22, 874, 293 496, 755, 268 7, 941, 147 51, 715
Total, Western States and Alaska	1848-1941	261, 804, 352	5, 886, 714, 065	3, 677, 541, 666	2, 823, 408, 323

ORE PRODUCTION, CLASSIFICATION, METAL YIELD, AND METHODS OF RECOVERY

The best index of lode mining is the quantity and metallic content of ore mined rather than the number of mines or operators. The following tables give details of classes of ore, metal yield in fine ounces of gold and silver to the ton, and gold and silver output by classes of ore and by methods of recovery, embracing all ores that produced gold and silver in the United States (excluding the Philippine Islands and Puerto Rico) in 1941. The individual State chapters from which these tables were compiled contain additional tables and text on the

subject and may be found elsewhere in this volume.

The classification originally adopted in 1905 on the basis of smelter terminology, smelter settlement contracts, and smelter recovery has been used continuously in succeeding years, except for modifications necessitated by the improvement in recovery of metals and the lowering of grade of complex ores treated, accomplished by improved mill concentration processes. A "dry" ore is one that carries so little lead or copper that by itself in quantity it would not satisfy the requirements for the smelter charge in lead smelting or copper smelting, respectively. The copper ores include those smelting ores that contain 2.5 percent dry assay or more of copper (or less than this percentage if no other metal is present), or those area concentrated chiefly for their copper content. The lead ores are those that contain 5 percent dry assay (minimum lead smelting charge requires 7.5 to 8.5 percent wet assay) or more of lead, irrespective of precious-metal content; an ore that carries any grade of lead exclusively is called a lead ore. Zinc smelting ores (chiefly oxides) range from 16 to 45 percent zinc; zinc concentrating ores include any grade of zinc ore that makes marketable zinc concentrate, irrespective of precious-metal content. The mixed ores are combinations of those enumerated. The smelter classification applies to concentrates.

Siliceous (silica 4 in excess of iron) gold, gold-silver, and silver ores containing too little copper, lead, or zinc to be classified as copper, lead, zinc, or mixed ores are called "dry" ores regardless of the ratio of concentration, except low-grade ore milled chiefly for its copper content and having very little or no precious-metal content (chiefly the "porphyry coppers") and ores from which separate products of lead concentrates and zinc concentrates are made. The crude ore into the mill in these two exceptional instances thus takes its name from its products—a name that is also justified by the mineralogical content and final recovery of metals. The "dry and siliceous ores" thus, by elimination, include both dry siliceous and irony, but chiefly siliceous, ores valuable for their gold and silver content, regardless of method of treatment, and dry fluxing ores carrying considerable quantities of iron and manganese oxides, or iron sulfide, and very small quantities of gold and silver. Dry and siliceous gold ores are those that by inspection are overwhelmingly of gold content; a similar qualification applies to silver ores; decision as to "gold-silver" ore is made arbitrarily on a basis of value, using the rule that the metal of lower value is not used in the bimetal classification unless its value is equal to or over one-quarter of the combined value of gold and silver.

The lead, zinc, and zinc-lead ores in most districts in the Eastern and Central States carry no appreciable quantity of gold or silver; such ores are excluded from this report unless otherwise indicated.

Ore produced in the United States and average recovery in fine ounces of gold and silver per ton in 1941 1

	Go	ld ore		Gold	-silver	ore	Silv	er ore	
State	Short tons	oung	erage es per on	Short	Average ounces per ton		Short tons	Average ounces per ton	
		Gold	Silver		Gold	Silver		Gold	Silver
Western States: Arizona. California. Colorado. Idaho. Montana Nevada. New Mexico. Oregon. South Dakota. Texas. Utah. Washington. Wyoming. Total, Western States. Alaska.	3, 848, 038 1, 234, 025 330, 354 695, 481 1, 250, 607 18, 305 87, 748 1, 711, 744 328, 576 178, 121 117 10, 483, 920	0. 163 . 168 . 225 . 190 . 201 . 164 . 238 . 382 . 351 . 128 . 211 . 248 . 248 208 . 045 . 125	0. 27 . 26 . 33 . 74 . 56 . 41 . 99 1. 10 . 10 . 98 . 12 . 32 . 03 . 06	138, 611 117, 983 270, 267 82, 465 121, 902 416, 981 89, 430 9, 779 199, 866 87 1, 447, 371	0. 095 .243 .100 .067 .093 .122 .130 .264 	3. 80 6. 24 2. 30 3. 60 5. 75 5. 81 8. 15 16. 97 4. 73 13. 98	36, 375 2, 266 68, 471 490, 691 122, 684 116, 335 116, 335 282 4 140, 739 94, 208 2, 492	0. 020 . 012 . 014 . 001 . 042 . 043 . 028 . 028 . 041 . 021	12. 53 8. 56 17. 55 20. 11 14. 83 10. 68 27. 42 44. 50 7. 79 13. 34 4. 30

¹ Illinois, Michigan, Missouri, Philippine Islands, and Puerto Rico excluded.

⁴ Except where mineralization approaches a matte, ores in their natural state generally contain more silica than iron and usually are highly siliceous.

Ore produced in the United States and average recovery in fine ounces of gold and silver per ton in 1941—Continued

	Cop	per ore		Le	ead ore		Lead-c	opper o	re
State	Short tons	oung	erage es per on	Short	ounc	erage es per on	Short tons	ounc	erage es per on
		Gold	Silver		Gold	Silver		Gold	Silver
Vestern States:		1					1.		
Arizona	24, 153, 483	0.006	0. 21	18, 432	0.116	7. 11	663	0.029	5. 6
		.041	. 62	18, 338	197	9. 10	2	0. 023	83. 5
California				10, 330				1 000	
Colorado		. 121	20.74	7, 917	. 184	9. 28		1.000	110. 8
Idaho	7, 979	. 087	5.50	212, 251	.002	4.92		. 011	127.7
Montana	3, 791, 202	.004	1.62	33, 029	. 152	9.37	4		34.0
Montana Nevada	6 850 444	.010	.04	26, 838	. 036	25, 38			١.
New Mexico	6 075 689	.001	.03	2, 261	. 187	3. 18			
O	629	.016	3.53	2, 201	1.10	0. 10			
Oregon South Dakota	029	.010	3. 33						
South Dakota									
Texas	58		. 38	21	. 095	12.14			
Utah	30, 444, 402	.008	.08	77, 979	. 123	12.67	5, 276	.008	14. 4
Washington	694, 565	.066	. 29	152		2.37		1	
Wyoming	42	.048	.71					1	
, w John 118		.020							
Total, Western States	72 418 306	.008	. 25	397, 218	. 059	8.56	6, 123	. 011	16. 8
local, western states.	144	. 215	.89	001, 210	.000	0.00	0,120	.011	10.0
LINSKN	177	. 210		400					
Castern States	8 751, 516	4 .004	5.08	469					
laskaEastern States	³ 751, 516 74, 170, 056	.004	.25	397, 687	. 059	8. 55	6, 123	011	16. 8
State States	74, 170, 056				. 059	8. 55	6, 123		16. 8
State	74, 170, 056	.008		397, 687	. 059	8. 55	6, 123	011	16.8
State	74, 170, 056	.008	. 25	397, 687 Zinc-lead and zinc-le	. 059	8.55	6, 123	011	
State Vestern States: Arizona	74, 170, 056 Zii 2, 143	. 008 nc ore	6.14	397, 687 Zinc-lead and zinc-le	. 059	8. 55	6, 123 Tot 25, 491, 794	011 cal ore	0. :
State	74, 170, 056 Zii 2, 143 1, 330	0.027	6.14	397, 687 Zinc-lead and zinc-le 341, 283	. 059 , zinc-cad-copp	8.55 copper, per ores ⁶ 3.36	6, 123 Tot 25, 491, 794 4, 280, 185	011 al ore 0.012 .161	0.
State Vestern States: Arizona. California.	74, 170, 056 Zii 2, 143 1, 330	0.027	6.14	397, 687 Zinc-lead and zinc-le 341, 283	. 059	8.55	6, 123 Tot 25, 491, 794 4, 280, 185 2, 222, 766	011 cal ore	0.
State Vestern States: Arizona	74, 170, 056 Zii 2, 143 1, 330 224	0.027 .002 .344	6.14 .40 3.38	397, 687 Zinc-lead and zinc-le 341, 283	. 059 , zinc-cad-copp 0. 043	8. 55 copper, per ores ⁶ 3. 36 1. 59	6, 123 Tot 25, 491, 794 4, 280, 185 2, 222, 766	011 al ore 0.012 .161 .157	0. :
State Vestern States: Arizona. California. Colorado. Idaho.	2, 143 1, 330 224 22, 551	0. 027 .002 .344 .017	6. 14 . 40 3. 38 8. 58	397, 687 Zinc-lead and zinc-le 341, 283 434, 200 1, 558, 215	0.043	8. 55 copper, per ores ⁶ 3. 36 1. 59 3. 17	25, 491, 794 4, 280, 185 2, 222, 784 2, 704, 680	0.012 .161 .157	0. 2 3. 2 6. 1
State Vestern States: Arizona. California. Colorado Idaho Montana.	74, 170, 056 Zii 2, 143 1, 330 224 22, 551 7 182, 745	0. 027 0. 027 0. 044 0. 017	6.14 .40 3.38 8.58 .11	397, 687 Zinc-lead and zinc-lead and zinc-lead 341, 283 434, 200 1, 558, 215 695, 202	. 059 ., zinc-cad-copp 0. 043 . 041 . 005 . 013	8. 55 copper, per ores ⁶ 3. 36 1. 59 3. 17 4. 30	25, 491, 794 4, 280, 185 2, 222, 756 2, 704, 680 5, 642, 249	0.012 0.012 .161 .157 .029	0. 2 3. 2 6. 2
State Vestern States: Arizona California Colorado Idaho Montana Nevada	74, 170, 056 Zi: 2, 143 1, 330 224 22, 551 7 182, 745 1, 488	0. 027 .002 .002 .344 .017	6.14 .40 3.38 8.58 .11	397, 687 Zinc-lead and zinc-le 341, 283 434, 200 1, 558, 215 695, 202 136, 942	. 059 d., zinc-cad-copp 0. 043 . 041 . 005 . 013 . 014	8. 55 copper, per ores ⁶ 3. 36 1. 59 3. 17 4. 30 5. 04	25, 491, 794 4, 280, 185 2, 202, 766 2, 704, 680 5, 642, 249 8, 799, 635	0.012 .161 .157 .029 .033 .037	0. 2 3. 2 6. 2
State Vestern States: Arizona. California. Colorado. Idaho. Montana. Newada. New Mexico.	74, 170, 056 Zii 2, 143 1, 330 224 22, 551 7 182, 745 1, 488 148, 359	0. 027 . 002 . 344 . 017 . 001	6.14 .40 3.38 8.58 .11	397, 687 Zinc-lead and zinc-lead and zinc-lead 341, 283 434, 200 1, 558, 215 695, 202	. 059 ., zinc-cad-copp 0. 043 . 041 . 005 . 013	8. 55 copper, per ores ⁶ 3. 36 1. 59 3. 17 4. 30 5. 04	701 25, 491, 794 4, 280, 185 2, 222, 766 2, 704, 680 2, 704, 680 8, 799, 635 7, 530, 226	0.012 .161 .157 .029 .033 .037 .003	0.2 3.2 6.1 2.1
State Vestern States: Arizona. California. Colorado. Idaho. Montana. New Mexico. Oregon	74, 170, 056 Zi: 2, 143 1, 330 224 22, 551 7 182, 751 1, 488 148, 359	0. 027 .002 .344 .017	6.14 .40 3.38 8.58 .11	397, 687 Zinc-lead and zinc-le 341, 283 434, 200 1, 558, 215 695, 202 136, 942 295, 907	. 059 ., zine-cad-copp 0. 043 . 041 . 005 . 013 . 014	8. 55 copper, per ores ⁶ 3. 36 1. 59 3. 17 4. 30 5. 04	701 25, 491, 794 4, 280, 185 2, 222, 766 2, 704, 680 5, 642, 249 8, 799, 635 7, 530, 226 98, 160	0.012 .161 .157 .029 .033 .037 .003	0. 2 3. 2 6. 2
State Vestern States: Arizona. California. Colorado. Idaho. Montana. Nevada. New Mexico. Oregon. South Dakota.	74, 170, 056 Zii 2, 143 1, 330 2, 251 7 182, 745 1, 488 148, 359	0. 027 .002 .344 .017	6.14 .40 3.38 8.58 .11	397, 687 Zinc-lead and zinc-le 341, 283 434, 200 1, 558, 215 695, 202 136, 942	. 059 d., zinc-cad-copp 0. 043 . 041 . 005 . 013 . 014	8. 55 copper, per ores ⁶ 3. 36 1. 59 3. 17 4. 30 5. 04	25, 491, 794 4, 280, 185 2, 704, 680 5, 642, 249 8, 799, 635 7, 530, 226 98, 160	0.012 .161 .157 .029 .033 .037 .003 .368 .351	0. : 3. : 6. : 2. :
State Vestern States: Arizona. California. Colorado. Idaho. Montana. Nevada. New Mexico. Oregon. South Dakota.	74, 170, 056 Zii 2, 143 1, 330 2, 251 7 182, 745 1, 488 148, 359	0. 027 . 002 . 344 . 017 . 001	6. 14 .40 3. 38 8. 58 . 11	397, 687 Zinc-lead and zinc-le 341, 283 434, 200 1, 558, 215 696, 202 136, 942 295, 907	0. 043 0. 043 0. 043 0. 041 0. 005 0. 014	8. 55 copper, per ores ⁶ 3. 36 1. 59 3. 17 4. 30 5. 04 1. 09	701 25, 491, 794 4, 280, 185 2, 222, 766 2, 704, 680 5, 642, 249 8, 799, 635 7, 530, 226 98, 160 1, 711, 744 140, 818	0.012 .161 .157 .029 .033 .037 .003 .368 .351 .002	0. 2 3. 2 6. 1 2. 1 7. 7
State Vestern States: Arizona. California. Colorado. Idaho. Montana. Nevada. New Mexico. Oregon. South Dakota.	74, 170, 056 Zii 2, 143 1, 330 224 22, 551 7 182, 745 1, 488 148, 359	0. 027 . 002 . 344 . 017 . 001	6.14 .40 3.38 8.58 .11	397, 687 Zinc-lead and zinc-le 341, 283 434, 200 1, 558, 215 696, 202 136, 942 295, 907	0. 043 0. 043 0. 043 0. 041 0. 005 0. 014	8. 55 copper, per ores ⁶ 3. 36 1. 59 3. 17 4. 30 5. 04	701 25, 491, 794 4, 280, 185 2, 222, 766 2, 704, 680 5, 642, 249 8, 799, 635 7, 530, 226 98, 160 1, 711, 744 140, 818	0.012 .161 .157 .029 .033 .037 .003 .368 .351	0. 2 3. 2 6. 1 2. 1 7. 7
State Vestern States: Arizona California Colorado Idaho Montana New Mexico Oregon South Dakota Texas Utah	74, 170, 056 Zi: 2, 143 1, 330 2, 244 22, 2551 7 182, 745 148, 359	.008 oc ore 0.027 .002 .344 .017 .001	6.14 .40 3.38 8.58 .11	397, 687 Zinc-lead and zinc-le 341, 283 434, 200 1, 558, 215 695, 202 136, 942 295, 907	0. 043 0. 043 0. 043 0. 043 0. 043	8. 55 copper, per ores ⁶ 3. 36 1. 59 3. 17 4. 30 5. 04 1. 09	25, 491, 794 4, 280, 185 2, 704, 680 5, 642, 249 98, 160 98, 160 1, 711, 744 140, 818 31, 952, 817	0.012 .161 .157 .029 .033 .037 .003 .368 .351 .002	0. 2 3. 2 6. 1 2. 1 7. 7
State Vestern States: Arizona. California. Colorado. Idaho. Montana. Nevada. New Mexico. Oregon South Dakota. Texas. Utah Washington.	74, 170, 056 Zii 2, 143 1, 330 224 22, 251 7 182, 745 1, 488 148, 359	.008 0.027 .002 344 .017 .001	6.14 .40 3.38 8.58 .11	397, 687 Zinc-lead and zinc-le 341, 283 434, 200 1, 558, 215 696, 202 136, 942 295, 907	0. 043 0. 043 0. 043 0. 041 0. 005 0. 014	8. 55 copper, per ores ⁶ 3. 36 1. 59 3. 17 4. 30 5. 04 1. 09	701 25, 491, 794 4, 280, 185 2, 222, 766 2, 704, 680 5, 642, 249 8, 799, 635 7, 530, 226 98, 160 1, 711, 744 140, 818	0.012 .161 .157 .029 .033 .037 .003 .368 .351 .002	0. : 3. : 6. : 2. :
State Vestern States: Arizona. California. Colorado. Idaho. Montana. Nevada New Mexico. Oregon South Dakota Texas. Utah Washington Wyoming.	74, 170, 056 Zii 2, 143 1, 330 2, 244 1, 488 148, 359 2, 302	0. 027 - 002 - 344 - 011 - 001	. 25 6. 14 . 40 3. 38 8. 58 . 11	397, 687 Zinc-lead and zinc-le 341, 283 434, 200 1, 558, 215 695, 202 136, 942 295, 907 3 800, 208 363, 092	. 059 , zinc-cad-copp 0. 043 . 041 . 005 . 013 . 014	8.55 copper, per ores ⁵ 3.36 1.59 3.17 4.30 5.04 1.09	701 25, 491, 794 4, 280, 185 2, 222, 756 5, 642, 249 8, 799, 635 7, 530, 226 98, 160 1, 711, 744 140, 818 31, 952, 81, 7 1, 238, 509	0.012 .161 .157 .029 .033 .037 .003 .368 .351 .002 .011 .068 .195	0. 2 3. 2 6. 1 2. 1 7. 1
State Vestern States: Arizona. California. Colorado. Idaho. Montana. Nevada New Mexico. Oregon South Dakota Texas. Utah Washington Wyoming.	74, 170, 056 Zii 2, 143 1, 330 2, 244 1, 482, 745 1, 488 148, 359 2, 302	0. 027 - 002 - 344 - 011 - 001	. 25 6. 14 . 40 3. 38 8. 58 . 11	397, 687 Zinc-lead and zinc-le 341, 283 434, 200 1, 558, 215 695, 202 136, 942 295, 907 3 800, 208 363, 092	. 059 , zinc-cad-copp 0. 043 . 041 . 005 . 013 . 014	8.55 copper, per ores ⁵ 3.36 1.59 3.17 4.30 5.04 1.09	701 25, 491, 794 4, 280, 185 2, 222, 766 2, 704, 680 5, 642, 249 8, 799, 635 7, 530, 226 98, 160 1, 711, 744 140, 818 31, 952, 817 1, 238, 509 91, 813, 762	0.012 .161 .157 .029 .037 .003 .368 .351 .002	0. 2 3. 2 6. 1 2. 1 7. 1
State Vestern States: Arizona	74, 170, 056 Zi: 2, 143 1, 330 224 22, 551 7 182, 745 148, 359 2, 302 361, 142	0. 027 0.027 0.02 344 017 001	6.14 .40 3.38 8.58 .11	397, 687 Zinc-lead and zinc-le 341, 283 434, 200 1, 558, 215 695, 202 136, 942 295, 907	0. 043 0. 043 0. 043 0. 043 0. 043	8. 55 copper, per ores ⁶ 3. 36 1. 59 3. 17 4. 30 5. 04 1. 09	701 25, 491, 794 4, 280, 185 2, 222, 766 2, 704, 680 5, 642, 249 8, 799, 635 7, 530, 226 98, 160 1, 711, 744 140, 818 31, 952, 817 1, 238, 509 91, 813, 762	0.012 .167 .029 .033 .037 .003 .368 .351 .002 .011 .068 .195	0. 2 3. 2 6. 1 2. 1 7. 3
State Vestern States: Arizona California Colorado Idaho Montana New Mexico Oregon South Dakota Texas Utah Washington Wyoming Total, Western States.	74, 170, 056 Zi 2, 143 1, 330 2, 244 2, 1551 7, 182, 745 1, 488 148, 359 2, 302 361, 142	0. 027 . 002 . 002 . 344 . 017 . 001	6. 14 .40 3. 38 8. 58 .11	397, 687 Zinc-lead and zinc-le 341, 283 434, 200 1, 558, 215 695, 202 136, 942 295, 907 8 800, 208 363, 092 4, 625, 049	. 059 , zinc-cad-copp 0. 043 . 041 . 005 . 013 . 014	8.55 copper, per ores 3.36 1.59 3.17 4.30 5.04 1.09 7.13 .03 3.57	25, 491, 794 4, 280, 185 2, 704, 680 5, 642, 249 8, 799, 635 7, 530, 226 98, 160 1, 711, 744 140, 818 31, 952, 817 1, 238, 509 91, 813, 762 4, 480, 508	0.012 .161 .157 .029 .033 .037 .003 .368 .351 .002 .011 .068 .031 .033 .046	0. 2 3. 2 6. 1 2. 1 7. 1
State Vestern States: Arizona	74, 170, 056 Zi 2, 143 1, 330 2, 244 2, 1551 7, 182, 745 1, 488 148, 359 2, 302 361, 142	0. 027 . 002 . 002 . 344 . 017 . 001	6. 14 . 40 3. 38 8. 58 . 11	397, 687 Zinc-lead and zinc-le 341, 283 434, 200 1, 558, 215 695, 202 136, 942 295, 907 3 800, 208 363, 092	. 059 , zinc-cad-copp 0. 043 . 041 . 005 . 013 . 014	8.55 copper, per ores ⁵ 3.36 1.59 3.17 4.30 5.04 1.09	701 25, 491, 794 4, 280, 185 2, 222, 766 2, 704, 680 5, 642, 249 8, 799, 635 7, 530, 226 98, 160 1, 711, 744 140, 818 31, 952, 817 1, 238, 509 91, 813, 762	0.012 .167 .029 .033 .037 .003 .368 .351 .002 .011 .068 .195	0.: 3.: 6.: 2.: 7.:

³ Excludes magnetite-pyrite-chalcopyrite ore from Pennsylvania.
4 The quantity from which this average is derived is 2,746 ounces, which includes 2,422 ounces from magnetite-pyrite-chalcopyrite ore from Pennsylvania.

4 The quantity from which this average is derived is 59,221 ounces, which includes 15,016 ounces from magnetite-pyrite-chalcopyrite ore from Pennsylvania.

5 Includes zinc-copper ore from Arizona and zinc-lead-copper ore from Utah.
7 Includes 170,592 tons of current slag fumed.
5 Includes 29,658 tons zinc-lead slag.
6 Less than 0.0005 ounce per ton.

⁴⁹⁷⁷⁷⁹⁻⁴³⁻

Mine production of gold in the United States in 1941, by States and sources, in fine ounces, in terms of recovered metals ¹

State	Placers	Dry and siliceous ore	Copper ore	Lead ore	Lead- copper ore	Zinc ore	Zinc-lead, zinc-copper, and zinc- lead-copper ores	Total
Alabama Alaska Arizona California Colorado Georgia Idaho Montana Newada New Mexico North Carolina Oregon Pennsylvania South Carolina South Carolina South Dakota Tennessee Texas Utah Virginia Washington Wyoming	491, 581 11, 931 718, 013 30, 377 72, 395 61, 611 36, 897 2, 488 6 60, 430 93	30 203, 855 144, 198 675, 129 305, 194 122 68, 656 156, 585 261, 148 15, 966 3, 141 36, 125 15, 508 600, 544 227 304 58, 157 304 58, 157 304 58, 157 305 37, 593 29	142, 498 12, 038 25, 187 696 13, 871 65, 510 8, 908 97 70 2, 422 243, 953 46, 034 2	2, 129 3, 611 1, 455 426 5, 007 964 423 	19 4 2 2 41	378 138 100	14, 559 17, 735 7, 263 9, 263 1, 884 60 44, 109	30 695, 467 315, 392 1, 408, 793 380, 029 311 149, 816 246, 475 366, 403 27, 845 3, 244 96, 565 2, 422 15, 508 600, 637 227 306 356, 501 84, 176 478
	1, 487, 635	2, 582, 743	561, 257	23, 619	66	663	94, 882	4, 750, 865

¹ Philippine Islands and Puerto Rico excluded.

Mine production of silver in the United States in 1941, by States and sources, in fine ounces, in terms of recovered metals ¹

State	Placers	Dry and siliceous ore	Copper	Lead ore	Lead- copper ore	Zinc ore	Zinc-lead, zinc-cop- per, and zinc-lead- copper ores	Total
Alabama	67, 544	3 123, 850	128					191, 52
ArizonaCalifornia	2, 205 65, 475	1, 195, 814 1, 741, 386	5, 006, 374 179, 744	130, 985 166, 879	3, 745 167	13, 168 537	1, 145, 969	7, 498, 26
Colorado	5, 687	2, 224, 632	4, 306, 343	73, 496	442	756	690, 341	2, 154, 18 7, 301, 69
Idaho. Illinois.	17, 408	10, 411, 202	43, 851	1, 043, 250	22, 227	193, 484	4, 940, 988 20, 340	16, 672, 41 20, 34
Michigan Missouri			60, 796	367, 688				60, 79 367, 68
Montana	10,035	2, 915, 273	6, 142, 250	309, 341	136	20, 481	2, 989, 409	12, 386, 92
Nevada	14, 033	4, 184, 776	259, 686	681, 146			690, 597	5, 830, 23
New Mexico New York	284	754, 230	242, 834	7, 200			323, 769 37, 734	1, 328, 31 37, 73
North Carolina	1	2, 394	5, 044					7,43
Oregon Pennsylvania	11, 205	262, 733	2, 220					276, 15
South Carolina		6, 525	15,016					15, 01 6, 52
South Dakota	7	170, 764						170, 77
Tennessee			39, 161					39, 16
Texas		1,095,750	22	255				1,096,02
Utah Virginia	90	2, 333, 078 135	2, 285, 377	988, 000	76, 459	8, 046	5, 704, 435	11, 395, 48 13
Washington Wyoming	90 50	186, 950 14	202, 091 30	360			12, 539	402, 030
	194, 128			3, 768, 600	103, 176	236, 472	16, 556, 121	67, 258, 99

¹ Philippine Islands and Puerto Rico excluded.

Gold and silver produced in the United States from ore, old tailings, etc., in 1941, by States and by methods of recovery, in terms of recovered metals 1

State	Total ore old taimgs,	covered old tail			Ore and old tailings to con-	Concentrates smelted (from amalgamation and cyanidation and concentrating mills combined)			Crude ore to smelters			
State	etc., treat- ed (short tens)	Ore (short tons)	Old tail- ings, etc. (short tons)	Gold (fine ounces)	Silver (fine ounces)	centrating mills (short tons)	Short tons	Gold (fine ounces)	Silver (fine ounces)	Short tons	Gold (fine ounces)	Silver (fine ounces)
Western States and Alaska: Alaska. Arizona. California. Colorado. Idaho. Montana. Nevada. New Mexico. Cregon. South Dakota. Texas. Utah. Washington. Wyoming.	5, 642, 249 8, 799, 635 7, 530, 226 98, 160 1, 711, 744 140, 818 31, 952, 817	4, 443, 260 833, 910 2, 997, 893 1, 244, 184 179, 503 542, 870 1, 550, 341 90, 519 22, 949 1, 711, 539 110, 503 202, 595 135, 984	845, 067 	165, 530 78, 515 517, 733 203, 191 21, 533 64, 231 210, 927 11, 067 5, 027 599, 156 285 17, 839 7, 359	31, 823 182, 800 837, 955 53, 614 14, 369 169, 095 2, 255, 120 690, 466 735 168, 860 940, 967 17, 359	37, 172 19, 001, 720 392, 406 730, 982 2, 492, 644 4, 661, 117 7, 042, 097 7, 352, 950 65, 130 200 31, 235, 139 1, 063, 076	5, 683 1, 028, 620 34, 620 106, 124 353, 372 662, 594 326, 689 313, 725 505 505 439 1, 073, 438 71, 871	38, 132 114, 974 157, 713 111, 198 51, 396 60, 046 77, 642 10, 757 25, 596 1, 290 19 286, 575 65, 448	92, 042 2, 782, 173 961, 339 2, 404, 131 16, 091, 846 518, 113 161, 326 518, 113 161, 326 1, 620, 336 518, 113 7, 973, 147 329, 832	76 5, 656, 164 44, 919 247, 620 32, 533 438, 262 201, 669 86, 757 8, 896 5 315 465, 083 39, 449	224 109, 972 15, 334 35, 263 4, 492 60, 887 40, 937 3, 533 5, 512 98 2 51, 458 10, 829 21	113 4, 531, 082 289, 419 4, 838, 265 548, 787 2, 105, 406 1, 941, 040 119, 454 102, 892 2, 279 3, 422, 061 54, 749
Eastern States	96, 294, 270 3 6, 157, 108	14, 148, 125 151, 471	851, 780 1, 000	18, 741	5, 363, 363 9, 004	74, 074, 633 5, 934, 520	3, 983, 678 (³)	2, 649	43, 189, 538 91, 911	7, 221, 732 70, 117	389	17, 957, 108 5, 121
	102, 451, 378	14, 297, 596	852, 780	1, 921, 144	5, 372, 367	80, 009, 153	4 3, 983, 678	1, 003, 435	43, 281, 449	7, 291, 849	338, 651	17, 962, 229

Illinois, Michigan, Missouri, Philippine Islands, and Puerto Rico excluded.
 Includes ore containing no gold or stiver.
 Bureau of Mines not at liberty to publish figures.
 Excludes concentrates from Eastern States.

Gold and silver produced at amalgamation and cyanidation mills in the United States and percentage of gold and silver recovered from all sources, 1937-41 1

Bullion and p (fir Year Amalgamation			cipitates re ounces)	Percent of gold and silver from all sources 1								
		mation	Cyanidation		Amalgama- tion		Cyanida- tion		Smelting 3		Placers	
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
1937 1938 1939 1940	1, 040, 593 984, 620 985, 717 959, 452 916, 113	368, 394 223, 058 243, 786 248, 112 214, 665	793, 204 962, 788 1, 043, 675 1, 044, 014 1, 005, 031	3, 039, 172 4, 275, 154 4, 556, 336 5, 251, 162 5, 157, 702	25. 3 23. 1 21. 1 19. 7 19. 3	0.5 .4 .4 .3 .3	19. 3 22. 6 22. 3 21. 4 21. 1	4.3 7.0 7.1 7.5 7.7	30. 8 26. 4 28. 0 27. 9 28. 3	95. 0 92. 4 92. 2 91. 9 91. 7	24.6 27.9 28.6 31.0 31.3	0. 2

¹ Philippine Islands and Puerto Rico excluded.

Gold and silver produced at amalgamation and cyanidation mills in the United States in 1941, by States 1

	Amalgamation			C	Percent of gold and silver from all sources in State					
Qt.t.	Ore, old	Bullion recovered (fine ounces)		Ore, old tailings, concen-	Bullion and precip- itates recovered		Amalgama- tion		Cyanidation	
State	concen- trates, etc., treated (short tons)	Gold	Silver	trates, sands, slimes, etc., treated (short tons)	Gold	Silver	Gold	Silver	Gold	Silver
Alaska Arizona California Colorado Idaho Montana Nevada New Mexico Oregon South Dakota Texas	4, 442, 871 7, 517 2, 104, 298 1, 040, 093 173, 321 99, 482 250, 702 5, 908 1, 440 1, 506, 183	888 285, 038 78, 933 20, 874 7, 938 25, 757 986 971 328, 166	297 65, 978 18, 513 12, 883 2, 508 19, 120 249 222 62, 423	826, 393 2, 225, 102 578, 261 6, 182 443, 388 1, 425, 740 84, 611 22, 802 1, 704, 356 140, 064	77, 627 232, 695 124, 258 659 56, 293 185, 170 10, 081 4, 056 270, 990 285	182, 503 771, 977 35, 101 1, 486 166, 587 2, 236, 009 690, 217- 513 106, 437 940, 967	20. 23 20. 77 13. 93 3. 22 7. 03 3. 54 1. 01 54. 64	. 02 . 08 36. 55	0. 03 24. 61 16. 52 32. 70 . 44 22. 84 59. 54 36. 20 4. 20 45. 12 93. 14	0. 01 2. 43 35. 84 , 48 . 01 1. 34 38. 35 51. 96 . 19 62. 33 85. 85
Utah Washington Wyoming	515 694 75	777	122 363 4	252, 080 135, 290		65	. 01 . 92 2. 09	(2) .09 4. 2 6	4. 99 7. 82	(3) 4. 23
Eastern States	3, 348		173	149, 123	18, 323	8, 831	1. 90	. 16	83. 35	8. 33
	9, 636, 447	916, 113	214, 665	7, 993, 781	1, 005, 031	5, 157, 702	19. 28	. 32	21. 15	7.67

¹ Philippine Islands and Puerto Rico excluded.

PLACERS

Dredging.—Placer gold is obtained largely from gravels handled by connected-bucket floating dredges, which recovered approximately 58 percent of the total output from placers in the United States (Philippine Islands and Puerto Rico excluded) in 1941 and 60 percent in 1940. The quantity of gold recovered by dredges from the inception of the industry as a commercial factor in 1896 to the end of 1941 is recorded as 18,385,002 ounces, originating by States as follows: California, 11,255,979 ounces; Alaska, 4, 908,196 (including the production from two Becker-Hopkins single-dipper dredges and some gold by hydraulicking); Montana, 659,800; Idaho, 575,660; Colorado, 440,672; Oregon, 445,405; and other States, 99.290. The out-

² Both crude ores and concentrates.

Less than 0.005 percent.

put in 1941 was 867,005 ounces from 123 dredges, of which California produced 418,282 ounces from 47 dredges; Alaska, 307,087 from 47 dredges; Idaho, 52,358 from 12 dredges; Montana, 33,844 from 7 dredges; Oregon, 24,131 from 7 dredges; and Colorado, 10,622 from 2 dredges.

Connected-bucket floating gold dredges operated in the United States, 1940-41, by companies and districts

ALASKA

1941
1
1
.1
1
1
1
1
1
1
1
1
ı
4
1
4
l
.
1
1
1
1 / 1

Etna Gold Dredging Co	Camanche	Callahan	1 1 2 1 1 2	1 3 2 1 2 1
Natomas Co. French Gulch Dredging Co. Cal Oro Gold Dredging Co. Thurman Gold Dredging Co. Arroyo Seco Gold Dredging Co. Lancha Plana Gold Dredging Co.	Sacramento San Francisco do Redding San Francisco	do	7 1 1 1	1 1
California Gold Dredging Co	San Francisco	Jenny Lind Junction City	i	i

¹ Single-dipper dredge.

Connected-bucket floating gold dredges operated in the United States, 1940-41, by companies and districts—Continued

CALIFORNIA—continued

Company	Address	District	Num dre	ber of dges
			1940	194i
Yreka Gold Dredging Co	1 40	ا الم	1	
Yuba Consolidated Gold Fields. C. R. and T. D. Harris. Roseville Gold Dredging Co. Gold Hill Dredging Co. Oroville Gold Dredging Co. Yuba Consolidated Gold Fields.	San Francisco	Lewiston Ophir Oroville	1 1 1	
Yuba Consolidated Gold Fields	San Francisco	do Port Wine	4	
Poverty Hill Properties Williams Bar Dredging Co Merced Dredging Co San Joaquin Mining Co Sen Joaquin Mining Co Yuba Consolidated Gold Fields	Marysville San Francisco	Smartville Snelling	1	
Snelling Gold Dredging Co	Snelling	do	1 2	
Yuba Consolidated Gold Fields	San Francisco Duluth, Minn	do Trinity Center	1 1	-
Carrylle Gold Co	San Francisco	Yuba River	6	
			46	- 4
CC	OLORADO			
Timberline Dredging Co South Platte Dredging Co	Fairplaydo	Beaver Creek Park	1	
			1	
	IDAHO			
Fisher-Baumhoff CoThe Grimes Co.	Centerville	Boise Basindo	2	
The Grimes Co. Idaho-Canadian Dredging Co. H. & H. Mines	Idaho City	do	1	
H. & H. Mines Fisher & Hippins Idaho Warren Dredging Co. (dredge operated by Fisher & Higgins in 1940). Northwest Goldfields.	Elk City Salmon North Fork	Elk City Eureka Gibbonsville	1	
Northwest Goldfields. Boise King Placers. Mount Vernon Gold Mining Co. Quartz Creek Dredging Co.	Harvard Twin Springs Elk City	Hoodoo Middle Boise Orogrande	1 1	
Quartz Creek Dredging Co	Pierce	Pierce	1	
Warren Dredging Co. ²	Warren Sunbeam	Yankee Fork	2 1	
	5435544	1001001001	12	
M	ONTANA			
Winston Bros. Co Emigrant Dredging Co	Helena Emigrant	ClanceyEmigrant	1	
SIRT POINTER EXPLORATION CO	Bearmouth	First Chance	1	
Porter Bros. Corporation Perry-Schroeder Mining Co	Helenado	Helena Missouri River	1	
Homer Wilson Pioneer Placer Dredging Co	Harrison Gold Creek	Norris	1	
Gold Creek Mining Co	Deer Lodge	Pioneer Washington	1	
<u> </u>	-		7	
	NEVADA	·		
Manhattan Gold Dredging Co	San Francisco	Manhattan	1	
	REGON			
Western Dredging Co Murphy-Murray Dredging Co Pleasant Creek Mining Corporation	San Francisco Rogue River	Canyon Gold Hill	1 1	
Pleasant Creek Mining Corporation	do	do	1	
Porter & Co Sunshine Mining Co. (Burnt River Division) The Sumpter Valley Dredging Co.	Baker Boise	Granite Greenhorn	1	
The Sumpter Valley Dredging Co	Portland	Sumpter	1	
GOIG DIEURING CO	Galena	Susanville	6	

¹ Warren Dredging Co. sold 1 dredge in August 1941 to W. W. Prather.

Gold produced in the United States by connected-bucket floating dredges, 1987-41, in fine ounces

Year	Dredges	California	Alaska	Other States 1	Total
1937	105	322, 961	255, 568	65, 614	644, 143
1938	115	375, 296	278, 442	82, 686	736, 424
1939	114	370, 264	304, 995	112, 472	787, 731
1940	122	414, 966	354, 806	134, 377	904, 149
1941	123	418, 282	307, 087	141, 636	867, 005

¹ Colorado, Idaho, Montana, Nevada, and Oregon.

Other placer-mining methods.—From 1932 through 1941 dragline and power-shovel excavators operated in connection with dry-land and fleating amalgamating and sluicing plants have been widely used in placer mining. In 1941 approximately 30 percent of the total output of placer gold, including that of Alaska and excluding that of the Philippine Islands, was recovered at such plants, and 12 percent was produced by old-established mining methods, such as hydraulicking, drift mining, sluicing, and rocking.

Additional information on placer-mining methods may be found in the State reviews in the Minerals Yearbook and Mineral Resources

series.

WORLD ASPECTS WORLD PRODUCTION

According to the Bureau of the Mint, the world output of gold and silver from 1493 to 1940 is 1,375,164,679 fine ounces of gold valued at \$31,910,089,774 and 17,244,356,061 fine ounces of silver valued at \$15,451,255,865 (see figs. 3 and 4).

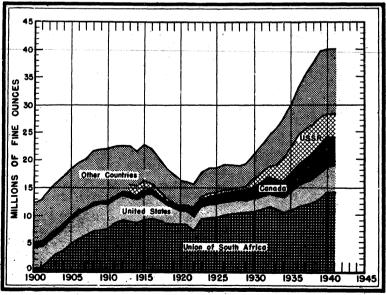


FIGURE 3.—World production of gold, 1900-1941. (Figures for 1941 are preliminary.)

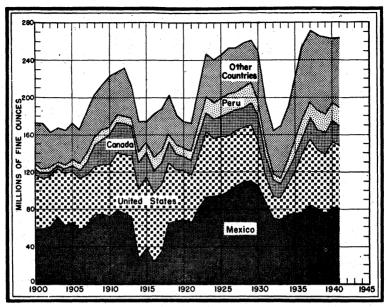


FIGURE 4.—World production of silver, 1900-1941. (Figures for 1941 are preliminary.)

The following tables show the world output of gold and silver from 1937 to 1941.

World production of gold, 1937-41, by countries, in fine ounces 1

Country	1937	1938	1939	1940	1941
			T 18 18 18		
North America:					
United States:					-
Continental 3	4, 112, 160	4, 245, 368	4, 620, 567	4, 862, 979	4, 832, 06
Puerto Rico	17	9	35		2
Canada	4, 096, 213	4, 725, 117	5, 094, 379	5, 311, 145	5, 351, 68
Central America and West Indies:					
Costa Rica	16, 920	17, 994	13, 261	13, 538	³ 12, 76
Cuba	3, 707	4 3, 889	4 3, 851	4 1, 251	60
Dominican Republic (exports)	6,710	5, 275	6, 304	6, 914	15, 61
Guatemala	4, 180	5, 466	5,058	4, 447	2, 56
Hondurás.	24, 170	21, 879	22, 216	23, 173	22, 62
Nicaragua	24, 242	44, 301	100, 182	164, 355	209, 43
Panama	9,023	6,879	3,774	2,634	2, 11
Salvador	§ 15, 310	⁸ 12, 065	5 16, 424	5 51, 195	3 32, 30
Other countries 3	39, 300	48, 300	(6)	(6)	(6)
Mexico	846, 400	923, 819	841,642	883, 117	799, 97
Mexico	22, 470	24, 246	20, 316	21, 786	21, 19
	9, 221, 000	10, 085, 000	10, 798, 000	11, 397, 000	11, 353, 00
South America:					
Argentina	10, 449	8, 423	12, 249	12,860	(6)
Bolivia	7 14, 251	7 9, 255	7 7, 884	4 11, 749	4 8, 15
Brazil (lode only)	145, 835	148, 735	148, 355	149, 815	147, 30
Chile	272, 704	294,033	325, 052	342, 830	264, 54
Colombia	442, 222	520, 717	570, 017	631, 927	656, 01
Ecuador	59, 500	74,042	85, 352	52, 942	70, 26
Guiana:	Í .				•
British	35, 993	38, 482	38, 473	35, 745	3 30,00
French	47, 422	40,638	37, 606	40,000	8 35, 00
Netherlands (Surinam)	12,756	14, 154	14,812	15, 921	8 12, 00
Peru	205, 350	260, 326	272, 362	279, 606	260, 98
Uruguay		657	1,608	1,762	1, 36
Venezuela	116, 519	114, 985	146, 608	146, 792	145, 00
	1, 363, 000	1, 524, 000	1, 660, 000	1, 722, 000	1, 643, 00

See footnotes at end of table.

World production of gold, 1937-41, by countries, in fine ounces-Continued

Country	1937	1938	1439	1940	1941
Surope:					
Bulgaria	. 50	200	6, 690	7, 330	(6)
Czechoslovakia Finland	9, 930	10,000	10,000	3 10,000	(6)
Finland	4,822	3, 858 87, 354	4, 822	(6) (8)	(6) (6)
France	66, 423	87, 354	8 85, 000	(6)	(6)
Germany Austria Hungary	8,028 140	8,650	(6)	(6)	(6)
Tungary	5, 159	5, 655	5,079	(6)	
Italy Norway Portugal Rumania	3, 103	5,016	(6),013	8	0000000000
Norway	96	55	6	(6)	8
Portugal	4,366	6, 186	5, 948	³ ìó, 000	6
Rumania.	277, 043	157, 924	211, 496	130, 760	(6)
		157, 924 6, 955	211, 496 3 30, 000	130, 760 8 15, 000	(6)
Sweden	193, 226	934 199	216, 149	197, 995	(6)
Switzerland	964	1, 125 5, 236, 000 2, 428	1, 447	(6) (6)	(6)
U. S. S. R.3	5, 359, 000	5, 236, 000	(6) (6)	(6)	(6)
Sweden. Switzerland U. S. S. R. 3 United Kingdom.	60				(9)
Yugoslavia	87, 578	78, 318	71, 503	8 75, 000	(6)
	6, 023, 000	5, 844, 000	5, 665, 000	5, 523, 000	8 4, 500, 0
sia:	1 004	1 000	(0)	(0)	(0)
Burma	1,004	1, 209	(9) (6)	³ 377, 000	(6)
China. Manchuria 7. Chosen.	118, 829	(6)	(8)	0017,000	(6)
Chosen	794 505	948, 447	975,000	(6) (6)	(6)
Cyprus_ India, British_	1 23 650	4 29, 245	4 16, 393	13, 621	8
India British	4 23, 650 330, 744	321 138	9 316, 504	289, 357	9 285, 9
Indochina	9,870	8 745	8,070	8, 038	(6)
Japan	723, 375	321, 138 8, 745 8 760, 000	³ 836, 000	(6)	(6) (8)
Malay States:					
Federated Straits Settlements	33, 828	40, 209 5	40, 283	35, 689 6	(6)
Unfederated	1 519	581	880	479	(6)
Netherlands Indies. Philippine Islands	55, 621	76, 443	81, 183	89, 942	(6)
Philippine Islands	716, 967	903, 265	1,040,146	1.140.126	1, 144, 3
		18, 520	17, 261	12, 285	(6)
Taiwan	123,073	145,000	(6)	(6)	(6)
Taiwan Thailand (Siam) Turkey	13, 768	13, 620	12, 711	12,717	(6)
Turkey	514				
	3, 206, 000	3, 666, 000	3, 889, 000	3, 942, 000	3, 943, 0
frica: Bechuanaland	17, 577	10 111	17 910	10.015	14, 5
Belgian Congo		19, 111	17, 219	18, 015 168, 565	(6)
Ruanda and Hrundi	419,664	455, 264 17, 994	494, 642 29, 386	(6)	8
Ruanda and Urundi	12, 925 14, 211	15, 542	(6)	(6) (6)	00000
Egypt.	1, 226	2, 162	3, 877	7, 344	6 6
Transh Tanatarial Africa		40,028	(0)	(6) (6)	(6)
French West Africa (exports)	128, 346	127, 220	(6)	(6)	(6)
Gold Coast	128, 346 559, 212	127, 220 674, 927	782, 271	866, 326	· (6)
Kenya Colony	54,774	70 500	mm' 000	77 049	
Liberia (exports)		70.000	77,000	11,240	. (*)
ALLONIA (UAPULW)	2, 457	70, 500 1, 902	77, 000 6, 536	77, 243 9, 661	20, 3
Madagascar	2, 457 13, 471	1, 902 13, 770	6, 536 \$ 14, 000	9, 661 11, 580	20, 3
French Squaonia Antica French West Africa (exports) Gold Coast Kenya Colony Liberia (exports) Madagascar Moroeco, French	4.030	1, 902 13, 770	6, 536 * 14, 000 (6)	9, 661 11, 580 (6)	20, 3
MOTOGO, French	4.030	1, 902 13, 770 7, 491 24, 815	6, 536 14, 000 (9) 25, 794	9, 661 11, 580 (6) 25, 617	20, 3
Nigeria. Portuguese East Africa. Rhodesia:	26, 466 11, 129	1, 902 13, 770 7, 491 24, 815 9, 609	6, 536 * 14, 000 (6) 25, 794 11, 064	9, 661 11, 580 (6) 25, 617 11, 432	20.3 (6) (6) (6) (6)
Morocco, French. Nigeria. Portuguese East Africa. Rhodesia: Northern.	26, 466 11, 129 4, 228	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092	6, 536 14, 000 (6) 25, 794 11, 064 4, 645	9, 661 11, 580 (6) 25, 617 11, 432	20.3 (6) (6) (6) (6)
Morocco, French Nigeria 4 Portuguese East Africa Rhodesia: Northern Southern	4, 030 26, 466 11, 129 4, 228 804, 219	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078	6, 536 14, 000 (9) 25, 794 11, 064 4, 645 795, 613	9, 661 11, 580 (°) 25, 617 11, 432 (°) 826, 485	20, 3 (9) (9) (9) (9) 790, 4
Morocco, French Nigeria. Portuguese East Africa Rhodesia: Northern Southern Slerra Leone	4, 630 26, 466 11, 129 4, 228 804, 219 35, 717	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012	6, 536 14, 000 (9) 25, 794 11, 064 4, 645 795, 613 33, 657	9, 661 11, 580 (°) 25, 617 11, 432 (°) 826, 485 32, 676	20.3 (9) (9) (9) 790,4
Morocco, French Nigeria . Portuguese East Africa Rhodesia: Northern Southern Sierra Leone South-West Africa	4, 630 26, 466 11, 129 4, 228 804, 219 35, 717 2, 804	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012	6, 536 14, 000 (e) 25, 794 11, 064 4, 645 795, 613 33, 657 1, 619	9, 661 11, 580 (°) 25, 617 11, 432 (°) 826, 485 32, 676 1, 358	20.3 (9) (6) (9) 790,4
Morocco, French Nigeria. Portuguese East Africa Rhodesia: Northern Southern Sierra Leone South-West Africa Sudan	4, 630 26, 466 11, 129 4, 228 804, 219 35, 717 2, 804 7, 388	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012 1, 796 8, 866	6, 536 14, 000 25, 794 11, 064 4, 645 795, 613 33, 657 1, 619 7, 510	9, 661 11, 580 (°) 25, 617 11, 432 (°) 826, 485 32, 676 1, 358 6, 606	20.3 (9) (6) (9) 790,4
Morocco, French Nigeria. Portuguese East Africa Rhodesia: Northern Southern Sierra Leone South-West Africa Sudan Swaziland	4, 630 26, 466 11, 129 4, 228 804, 219 35, 717 2, 804 7, 388 2, 410	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012 1, 796 8, 866 1, 246	6, 536 14, 000 25, 794 11, 064 4, 645 795, 613 33, 657 1, 619 7, 510 983	9, 661 11, 580 (e) 25, 617 11, 432 (e) 826, 485 32, 676 1, 358 6, 606 1, 080	20.3 (9) (6) (9) 790,4
Morocco, French Nigeria. Portuguese East Africa Rhodesia: Northern Southern Sierra Leone South-West Africa Sudan Swaziland Tanganyika	4, 530 26, 466 11, 129 4, 228 804, 219 35, 717 2, 804 7, 388 2, 410 75, 281	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012 1, 796 8, 866 1, 246 81, 857	6, 536 14, 000 (9) 25, 794 11, 064 4, 645 795, 613 33, 657 1, 619 7, 510 983 130, 366	9, 661 11, 580 (e) 25, 617 11, 432 (e) 826, 485 32, 676 1, 358 6, 606 1, 080 143, 693	20.3 (9) (6) (9) 790,4
Morocco, French Nigeria. Portuguese East Africa Rhodesia: Northern Southern Sierra Leone South-West Africa Sudan Swaziland Tanganyika	4, 530 26, 466 11, 129 4, 228 804, 219 35, 717 2, 804 7, 388 2, 410 75, 281 16, 947	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012 1, 796 8, 866 1, 246 81, 857	6, 536 14, 000 (9) 25, 794 11, 064 4, 645 795, 613 33, 657 1, 619 7, 510 983 130, 366	9, 661 11, 580 (e) 25, 617 11, 432 (e) 826, 485 32, 676 1, 358 6, 606 1, 080 143, 693	20.3 (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)
Morocco, French Nigeria. Portuguese East Africa Rhodesia: Northern Southern Sierra Leone South-West Africa Sudan Swaziland Tanganyika	4, 530 26, 466 11, 129 4, 228 804, 219 35, 717 2, 804 7, 388 2, 410 75, 281	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012 1, 796 8, 866 1, 246	6, 536 14, 000 25, 794 11, 064 4, 645 795, 613 33, 657 1, 619 7, 510 983	9, 661 11, 580 (e) 25, 617 11, 432 (e) 826, 485 32, 676 1, 358 6, 606 1, 080	20.3 (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)
Morocco, French Nigeria. Portuguese East Africa Rhodesia: Northern Southern Setrra Leone South-West Africa Sudan Swaziland Tanganyika Uganda Union of South Africa	4, 030 26, 466 11, 129 4, 228 804, 219 35, 717 2, 804 7, 388 2, 410 75, 281 16, 947 11, 734, 575	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012 1, 796 8, 866 1, 246 81, 857 20, 502 12, 161, 392	6, 536 \$ 14, 000 (9) 25, 794 11, 064 4, 645 795, 613 33, 657 1, 619 7, 510 983 135, 366 10, 316 12, 819, 344	9, 661 11, 580 (e) 25, 617 11, 432 (e) 826, 485 32, 676 1, 358 6, 606 143, 693 11, 060 14, 037, 741	20. 3 (e) (f) (f) (f) (f) (f) 790, 4 (f) 3 (f) (f) (f) (f) (f) (f) (f) (f) (f) (f)
Morocco, French Nigeria. Portuguese East Africa Rhodesia: Northern Southern Sierra Leone South-West Africa Sudan Swaziland Tanganyika Uganda Union of South Africa Other countries	4, 030 26, 466 11, 129 4, 228 804, 219 35, 717 7, 388 2, 410 75, 281 16, 947 11, 734, 575	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012 1, 796 8, 866 6, 1, 246 81, 857 20, 502 12, 161, 392	6, 536 * 14, 000 (°) 25, 794 11, 064 4, 645 795, 613 33, 657 1, 619 7, 510 913 130, 366 15, 115 12, 819, 344	9, 661 11, 580 (e) 25, 617 11, 432 (f) 826, 485 32, 676 1, 358 6, 606 1, 080 141, 063 141, 063 141, 063	20. 3 (e) (f) (f) (f) (f) (f) 790, 4 (f) 3 (f) (f) (f) (f) (f) (f) (f) (f) (f) (f)
Morocco, French Nigeria. Portuguese East Africa Rhodesia: Northern Southern Southern South West Africa Sudan Swaziland Tanganyika Uganda Union of South Africa Other countries.	4, 030 26, 466 11, 129 4, 228 804, 219 35, 717 2, 804 7, 388 2, 410 75, 281 16, 947 11, 734, 575 (*)	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012 1, 796 8, 866 1, 246 81, 857 20, 502 12, 161, 392 (9)	6, 536 * 14, 000 (°) 25, 794 11, 064 4, 645 795, 613 33, 657 1, 619 7, 510 983 130, 366 15, 115 12, 819, 344 (°)	9, 661 11, 580 (v) 25, 617 11, 432 (v) 826, 485 32, 676 1, 080 143, 693 11, 060 14, 037, 741 (v)	20, 3 (e) (f) (f) (f) (g) (g) (g) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h
Morocco, French Nigeria. Portuguese East Africa Rhodesia: Northern Southern Southern Sierra Leone South-West Africa Swaziland Tanganyika Uganda Union of South Africa Other countries.	4, 030 26, 466 11, 129 4, 228 804, 219 35, 717 2, 804 7, 388 2, 410 75, 281 16, 947 11, 734, 575 (9)	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012 1, 796 8, 866 1, 246 81, 857 20, 502 12, 161, 392 (9)	6, 536 * 14, 000 (9) 25, 794 11, 064 4, 645 795, 613 33, 657 1, 619 7, 510 310, 366 15, 115 12, 819, 344 (9) 15, 488, 000	9, 661 11, 580 (e) 25, 617 11, 482 (e) 826, 485 32, 676 1, 358 6, 606 1, 080 143, 693 11, 080 14, 037, 741 (e) 17, 468, 000	20, 3 (e) (f) (f) (f) (g) (g) (g) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h
Morocco, French Nigeria. Portuguese East Africa Rhodesia: Northern Southern Southern Sierra Leone South- West Africa Sudan Swaziland Tanganyika Uganda Union of South Africa Other countries ceania: Australia: New South Wales Northern Territory	26, 466 11, 129 4, 228 804, 219 35, 717 2, 804 7, 388 2, 410 75, 281 16, 947 11, 734, 575 (9) 13, 997, 000	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012 1, 796 8, 866 1, 246 81, 857 20, 502 12, 161, 392 (9) 14, 627, 000	6, 536 * 14, 000 (°) 25, 794 111, 064 4, 645 795, 613 33, 657 1, 619 7, 510 983 130, 366 15, 115 12, 819, 344 (°) 15, 488, 000	9, 661 11, 580 (°) 25, 617 11, 482 (°) 826, 485 32, 676 1, 358 6, 606 143, 683 11, 080 14, 037, 741 (°) 17, 468, 000	20. 3 (9) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
Morocco, French Nigeria. Portuguese East Africa Rhodesia: Northern Southern Southern Sierra Leone South-West Africa Swaziland Tanganyika Uganda Union of South Africa Other countries ceania: Australia: New South Wales Northern Territory Oueensland	4, 030 26, 466 11, 129 4, 228 804, 219 35, 717 2, 804 7, 388 2, 410 75, 281 11, 734, 575 (r) 13, 997, 000	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012 1, 796 8, 866 6, 1, 246 81, 857 20, 502 12, 161, 392 (9) 14, 627, 000 88, 707 12, 378 88, 707 12, 378	6, 536 * 14, 000 (9) 25, 794 11, 064 4, 645 795, 613 33, 657 1, 619 7, 510 983 130, 366 15, 115 12, 819, 344 (9) 15, 488, 000	9, 661 11, 580 (e) 25, 617 11, 432 (e) 826, 485 32, 676 1, 358 6, 606 1, 080 143, 693 143, 69	20, 3 (e) (f) (f) (f) (f) (f) (g) (h) (g) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h
Morocco, French Nigeria. Portuguese East Africa Rhodesia: Northern Southern Southern Sierra Leone South- West Africa Sudan Swaziland Tanganyika Uganda Union of South Africa Other countries ceania: Australia: New South Wales Northern Territory	26, 466 11, 129 4, 228 804, 219 35, 717 2, 804 7, 388 2, 410 75, 281 16, 947 11, 734, 575 (9) 13, 997, 000	1, 902 13, 770 7, 491 24, 815 9, 609 1, 092 814, 078 30, 012 1, 796 8, 866 1, 246 81, 857 20, 502 12, 161, 392 (9) 14, 627, 000	6, 536 * 14, 000 (°) 25, 794 111, 064 4, 645 795, 613 33, 657 1, 619 7, 510 983 130, 366 15, 115 12, 819, 344 (°) 15, 488, 000	9, 661 11, 580 (°) 25, 617 11, 482 (°) 826, 485 32, 676 1, 358 6, 606 143, 683 11, 080 14, 037, 741 (°) 17, 468, 000	20.3 (9) (9) (9) (9) (9) (9) (9) (9) (9) (14, 386, 3) (9) (17, 090, 0

See footnotes at end of table.

World production of gold, 1937-41, by countries, in fine ounces-Continued

Country	1937	1938	1939	1940	1941
Oceania—Continued. Fiji. New Guinea. New Zealand. Papua Tasmania.	24, 917	92, 362	110, 000	111, 338	(6)
	217, 152	236, 133	246, 214	294, 794	(6)
	168, 487	152, 050	178, 955	185, 665	(6)
	22, 153	33, 249	28, 164	35, 000	(6)
	20, 276	22, 200	19, 984	21, 390	(7)
	1, 814, 000	2, 106, 000	2, 209, 000	2, 273, 000	2, 135, 000
	35, 624, 000	37, 852, 000	39, 709, 000	42, 325, 000	40, 664, 000

l Preliminary world gold production table prepared with revisions and adjustments by B. B. Waldbauer, Foreign Minerals Division, and Frederick Betz, Metal Economics Division, Bureau of Mines, in cooperation with the Office of the Director of the Mint. Figures used were derived in part from the Statistical Yearbook of the League of Nations and from the American Bureau of Metal Statistics. No official statistics are issued by Government of U. S. S. R., consequently figures released by the various authorities vary widely and are irreconcilable. In some countries accurate figures are not possible to obtain, due to clandestine trade in gold.

Refinery production.
Approximate production.
Exports.

Exports.
Imports into United States.
Data not available. Estimate included in total.
Purchases by the State Central Bank.
Conjectural figure published by the American Bureau of Metal Statistics (New York), Annual Issue.
Beginning with 1939, Burmese production included with British India.

World production of silver, 1937-41, by countries, in fine ounces 1

Country	1937	1938	1939	1940	1941
North America:					
United States 2	71, 298, 930	61, 688, 834	63, 871, 972	68, 286, 535	71, 075, 932
Canada Central America and West Indies:	22, 977, 751	22, 219, 195	23, 163, 629	23, 833, 752	21, 754, 79
Central America and West Indies:				20,000,102	
Honduras Other countries 3	3, 210, 337	3, 335, 070	4, 118, 864	3, 899, 164	3, 488, 67
Other countries 3	390,000	965, 000	681, 000	(1)	(4)
Mexico	84, 680, 875	81, 018, 809	75, 870, 575	82, 640, 074	78, 363, 96
Newfoundland	1, 447, 637	1, 663, 623	1, 421, 060	1, 494, 066	1, 657, 34
	184, 006, 000	170, 891, 000	169, 127, 000	180, 754, 000	175, 941, 00
outh America:					
Argentina	2, 122, 000	2, 636, 361	3, 125, 756	3, 242, 200	3, 978, 40
Bolivia (exports)	9, 454, 022	6, 373, 660	7, 241, 312	5, 626, 380	7, 348, 69
Brazil	25, 238	25, 585	27, 075	24, 694	21, 17
Chile	1, 854, 649	1, 375, 530	1, 180, 902	1, 515, 563	1, 262, 00
Colombia	167, 971	192, 880	242, 628	260, 310	271, 11
Ecuador		89, 111	103, 331	105,000	116, 83
Guiana, British		5, 060	(4)	(4)	(4)
Peru	17, 453, 331	20, 552, 816	18, 802, 075	19, 916, 774	15, 101, 30
	31, 180, 000	31, 251, 000	30, 728, 000	30, 696, 000	28, 105, 000
urope:					
Bulgaria (estimated)	6, 500	13,000	(4)	(4)	(4)
Czechoslovakia	1, 103, 444	1, 190, 326	(4)	(4) (1)	(6)
Finland	57, 900	57, 900	61,000	(1)	(4)
France	563, 860	3 565, 000	3 565, 000	(4)	(1)
Germany	6, 774, 161 9, 774	7, 010, 000	(4)	(4)	(4)
Greece !	375, 000	335, 000	(4)		
Hungary	50, 965	46, 632	51, 600		(4)
Italy	715, 000	812, 481	880, 000	(4) (6) (4)	XX
Norway	282, 904	250, 776	295, 787		\mathcal{R}
Poland	64, 237	62, 244	(4)	8	\aleph
Portugal	11, 337	16, 742	(4)		\mathcal{R}
Rumania	670, 214	819, 876	712, 731	500, 204	8
Spain	633, 177	237, 658	(1)	(4)	79
Sweden	946, 261	1, 123, 861	1, 122, 865	745, 894	74
U. S. S. R.3	7, 230, 000	8, 022, 000	(4)	(1)	74
United Kingdom	71, 448	107, 985	7ó, 818	(1)	(6)
Yugoslavia	2, 242, 546	2, 524, 123	2, 293, 634	(4)	<u> </u>

See footnotes at end of table.

World production of silver, 1937-41, by countries, in fine ounces—Continued

Country	1937	1938	1939	1940	1941
sia:			·		
Burma	6, 180, 000	5, 920, 000	6, 175, 000	(1) '	(2)
China	5 150, 000	\mathbb{R}	(4) (4)	8	\mathbf{g}
Chosen	2, 672, 978 6 132, 968	6 199, 719	6 103, 953	58, 341	52
Cyprus Federated Malay States	3,000	3, 500	(4)	(4)	\mathbb{R}
Hong Kong	3,000	111,070	8	8	X
India, British	24, 642	22, 295	22, 745	8 .	X
Indochina	3, 537	2, 411	1, 672	1, 736	K
Japan	3 9, 902, 000	3 10, 100, 000	(4)	(4)	À
Netherlands Indies	500, 095	579, 297	618, 023	1, 499, 544	(4)
Philippine Islands	719, 771	1, 167, 612	1, 350, 099	1, 299, 199	1, 260, 09
Sarawak		1,660	700	(4)	(4)
Taiwan	(4)	(4)	(4)	(4)	(4)
Turkey 7	380, 000	350, 000	575, 000	575, 000	(4)
	20, 684, 000	21, 623, 000	23, 115, 000	22, 878, 000	(4)
Africa:					
Algeria	72, 177	7 90, 000	7 85, 000	(4)	(4)
Bechuanaland	1, 499	1, 127	813	1, 207	∷ 94
Belgian Congo	2, 961, 855	3, 121, 559	2, 800, 000	3, 536, 582	(2)
Gold Coast	19,000	23,000	(4)	(4)	(2)
Kenya Colony	7, 549	11, 200	³ ì2, 000	13, 626	\mathbb{R}^{2}
Morocco, French	241, 549	208, 980	<u>@</u>	(4)	\mathbb{R}
Nigeria Portuguese East Africa	102, 120 1, 474	(4)	(4)	1,901	8
Rhodesia:	1, 4/4	1,808	2, 319	1, 801	(9)
Northern	83, 861	88, 237	80, 137	(4)	(4)
Southern	152, 038	166, 417	173, 556	186, 080	170, 36
Sierra Leone	1, 568	1, 271	(4)	(4)	(4)
South-West Africa	8 385, 500	8 673, 500	587,600	7 460, 000	(4)
Tanganyika	11, 696	16, 473	27, 999	35, 492	(4)
Tunisia	58, 354	61, 149	(4)	(4)	(4)
Uganda	1, 379	1,981	1,376	1,015	(4)
Union of South Africa	1, 100, 641	1, 135, 374	1, 182, 516	1, 292, 284	7 1, 461, 00
	5, 202, 000	5, 652, 000	5, 389, 000	6, 130, 000	(4)
Oceania:					
Australia:					
New South Wales	9, 780, 499	9, 558, 550	8, 584, 719	7 9, 000, 000	(4)
Queensland	3, 264, 994	3, 533, 490	3, 885, 963	7 3, 450, 000	(4)
South Australia	955	503	541	(2)	(9)
Victoria	5, 443	5, 898	6, 285	(4)	(2)
Western Australia	180, 562	271, 346	287, 439	274, 741	7 255, 00
Fiji	3,463	12, 380	7 175 015	23,020	7 125, 00
New Guinea	8 96, 000	8 104, 000 257 700	7 175, 015	199, 084 415, 330	7 400, 00
New ZealandTasmania	443.981 1,060,785	357, 709 1, 219, 550	390, 342 1, 278, 116	1, 242, 000	(4)
	14 007 000	15 000 000	14 600 000	14, 613, 000	(4)
,	14, 837, 000	15, 063, 000	14, 620, 000	14,010,000	1 (7)

¹ Preliminary world silver production table prepared with revisions and adjustments by B. B. Waldbauer, Foreign Minerals Division, Bureau of Mines, in cooperation with the Office of the Director of the Mint. No official statistics are issued by Government of U. S. S. R., consequently figures released by the various authorities vary widely and are irreconcilable.
² Philippine Islands excluded.
³ Approximate production.
¹ Data not available. Estimate included in total.
³ Conjectural figure published by the American Bureau of Metal Statistics.
§ Croorts.

REVIEW BY COUNTRIES

Because of lack of communications between the United States and the countries dominated by the Axis Powers and the censorship imposed by some of the other countries, it has been impossible to obtain information on gold and silver mining in these countries. Few data have come even from some of the countries in the Western Hemisphere. The following summary covers the Philippines and those

<sup>American Bureau of Metal Statistics (New York), Annual Issue.
Imperial Institute (London), Statistical Summary.
Conjectural world total in "Silver in 1941," by E. Baliol Scott: Mining Jour., April 11, 1942, p. 5.</sup>

countries of the Western Hemisphere from which information has been obtained.

PHILIPPINE ISLANDS

Gold production in the Philippine Islands during 1941 according to mint returns continued to gain as it has each year since 1927 reaching an all-time high of 1,144,332 fine ounces valued at \$40,051,600. This represents an increase of 4,206 fine ounces, or 0.4 percent, over 1940, the previous record year. The total value of gold output from 1907 to 1941, inclusive, is computed at \$270,540,406.

Silver production, on the other hand, declined in 1941 from 1940,

decreasing 39,102 fine ounces, or 3 percent.

The following historical review and description of the gold mines and districts in the Philippine Islands has been prepared by Charles White Merrill.⁵

Since 1936, when Philippine Islands gold production passed that of South Dakota and Alaska, California has been the only political subdivision under the United States flag with a larger output. With the opening of hostilities between the United States and Japan December 7, 1941, however, the Islands' gold-mining industry was suspended

almost immediately.

Gold mining in the Philippine Islands antedates written history. Much evidence of widespread mining activities during the Spanish colonial period remains, but production never reached great size. With occupation and pacification of the Islands by the United States, American prospecting techniques were applied, and many promising districts were discovered or rediscovered. Nevertheless, for over 30 years development of gold-mining enterprises was very slow. Even as late as 1931 the value of mine output was only \$3,762,433, or less than 10 percent of the value of output in 1940 (1,114,201 fine ounces valued at \$38,997,035).

The rapid rise of the industry after 1931 may have been accelerated by the belief that Philippine independence or Japanese conquest would make exploitation less profitable or impossible. Conditions at leading producing properties just before the Japanese invasion, however, gave ample evidence that the very rapid expansion had not created

an unhealthy condition in the industry.

Principal mines.—Figure 5 shows the location of the principal mining districts in the Islands. The Baguio district in northern Luzon is the oldest and by far the most important. Also on Luzon is the Paracale district. The most productive mineral area on Mindanao Island is the Surigao district, and on Masbate Island the Masbate district is the leading mining area; the map locates the principal companies operating in the several districts. Three groups of companies, generally referred to by the names of the men holding controlling interests—the Haussermann group, Soriano group, and Marsman group—produced nine-tenths of the Philippine gold in 1940. The following paragraphs summarize the last complete details on the producing companies.

Modern mining in the Philippine Islands can be said to date from June 24, 1903, when the Benguet Consolidated Mining Co. was incorporated; in 1914 John W. Haussermann was placed in charge, and

⁵ Many data have been excerpted from the Philippine Mining Yearbook for 1940: Chamber of Mines of the Philippines, 1941.

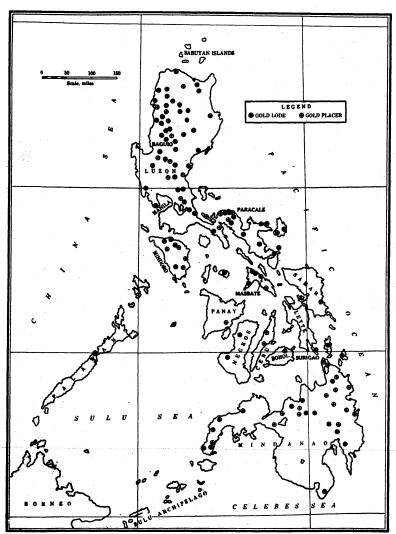


FIGURE 5.—Principal mining districts in the Philippine Islands.

in 1915 the first of a long series of dividends was paid. In 1940 the company produced 154,922 fine ounces of gold and 102,738 fine ounces of silver from 467,130 tons of ore mined in the Baguio district; the ore was treated in the company 1,250-ton cyanide plant. Positive ore reserves January 1, 1941, assured 1 year's operation, and probable ore, 2 additional years. Dividends for 1940 were \$3,900,000.

The Balatoc Mining Co., another member of the Haussermann group of companies, is also situated in the Baguio district. In 1940, when 187,282 ounces of gold and 165,321 ounces of silver were recovered from 738,716 tons of ore, it was the leading gold producer of the Islands; the ore was treated in a 2,000-ton flotation-cyanidation

[•] See also Hezzelwood, George W., Development of Mining Methods at Balatoc Mine: Min. Technol., Am. Inst. Min. and Met. Eng., vol. 6, No. 1, January 1942, pp. 1-27.

plant. Positive ore reserves January 1, 1941, assured 2 years' operation and probable ore an additional 1½ years. Dividends in 1940

totaled \$2,100,000.

The Cal Horr Mine, a Haussermann company, operated the Cal Horr and Ukab mines in the Baguio district. In 1940, the two properties produced 85,162 tons of ore from which 20,356 ounces of gold and 13,600 ounces of silver were recovered in the company 250-ton cyanide mill. Proved ore reserves were small.

The Ipo Gold Mines, Inc., was the only company in the Haussermann group to prove unprofitable in 1940; limited ore reserves indicated a short life for the enterprise. In 1940, 71,145 tons of ore treated in the company 200-ton all-slime cyanide mill yielded 9.907

ounces of gold and 8,419 ounces of silver.

The Marsman group of mining companies included Coco Grove, Inc., Itogon Mining Co., Philippine Smelting Co., San Mauricio Mining Co., Suyoc Consolidated Mining Co., and United Paracale Mining Co. Coco Grove, Inc., Paracale district, operated two connected-bucket dredges, each with a capacity of 165,000 cubic yards a month, and in 1940 washed 3,897,357 cubic yards of gravel which yielded 23,045 ounces of gold and 3,517 ounces of silver; these figures represent 85 percent of the gravel washed and 82 percent of the placer gold recovered in the Philippine Islands. On January 1, 1941, reserves were 14,320,000 cubic yards of gravel valued at \$3,007,200. Production by Coco Grove, Inc., in 1938 revived the Paracale district placers, which already had a record of \$9,000,000 of placer gold from dredging carried on between 1915 and 1922.

The Itogon Mining Co. worked its mine in the Baguio district and treated 327,062 tons of ore in a 1,000-ton all-slime cyanide mill in 1940; 75,996 ounces of gold and 33,401 ounces of silver were recovered. Ore reserves January 1, 1941, were 563,100 tons with a gross value of

\$4,817,820. In 1940, \$500,000 was paid in dividends.

The San Mauricio Mining Co. worked a mine in the Paracale district discovered in 1629 by Diego de Espina; refractory ore was treated in the company 550-ton amalgamation-flotation mill. In 1940, the treatment of 182,716 tons of ore yielded 80,790 ounces of gold and 122,317 ounces of silver; the concentrates contained substantial quantities of lead and copper. Reserves January 1, 1941, assured ore for 2½ years' operation. Dividends paid in 1940 totaled \$700,000.

The Suyoc Consolidated Mining Co. operated in the Suyoc district in northern Luzon Island. During 1940, 79,152 tons of ore were treated in the company 350-ton flotation-cyanidation mill and yielded 28,654 ounces of gold and 13,610 ounces of silver. The ore reserves January 1, 1941, were adequate for 3 years' operation at the 1940 rate.

Dividends paid in 1940 totaled \$98,750.

The United Paracale Mining Co. operated four mines in the Paracale district; 47,293 ounces of gold and 116,255 ounces of silver were recovered from 126,321 tons of ore treated in a 370-ton mill. Ore reserves January 1, 1941, were sufficient to maintain the 1940 production rate for 2 years. Dividends paid in 1940 totaled \$130,000.

The Soriano group of properties included the Antamok Goldfields Mining Co., Batong Buhay Gold Mines, Inc., I. X. L. Mining Co., Masbate Consolidated Mining Co., North Camarines Gold Mining

⁷ See also Johnson, G. R., Coco Grove Dredges Have Interesting Features: Eng. and Min. Jour., vol. 143, No. 4, April 1942, pp. 59-61.

Co., Paracale Gold Mining Co., and Paracale National Gold Mining Co. The Antamok Goldfields Mining Co. (Baguio district) treated 193,966 tons of ore in an 800-ton cyanide plant and recovered 37,112 ounces of gold and 16,136 ounces of silver in 1940. Dividends paid in 1940 totaled \$137,500; ore reserves were small.

The I. X. L. Mining Co. worked a group of claims in the Masbate district; 144,868 tons of ore treated in the company 400-ton mill yielded 38,618 ounces of gold and 267,170 ounces of silver. The company was the largest silver producer in the Islands. Ore reserves January 1, 1941, were sufficient for almost 2 years' operation at the

1940 rate. Dividends paid in 1940 totaled \$600,000.

The Masbate Consolidated Mining Co., Masbate district, increased the capacity of its 3,000-ton cyanide mill to 3,800 tons in 1941 by adding a colloidal-slime-treatment plant. Before the increase in capacity the mill, which treated 1,078,573 tons of ore (24 percent of the gold ore milled in 1940) and recovered 90,080 ounces of gold and 62,551 ounces of silver, already had the largest capacity in the Philippines. Despite the rapid rate of mining, the reserves January 1, 1941, were sufficient for over 6 years' production at the 1940 rate. Dividends paid in 1940 totaled \$500,000. The Masbate Consolidated Mining Co. includes in its holdings the property from which the Colorado Mining Co. is credited with recovering \$6,000,000 of gold from 600,000 tons of ore between 1911 and 1925 and the property from which the Syndicate Mining Co. is credited with recovering \$6,500,000 from 800,000 tons of ore between 1914 and 1935. The gold-mining operation under the present management is the oldest continuous one in the Philippine Islands.

The North Camarines Gold Mining Co. operated in the Paracale district in 1940; 63,944 tons of ore treated in the company 400-ton amalgamation-cyanidation-flotation mill yielded 19,967 ounces of gold and 24,343 ounces of silver. Ore reserves were small; no dividends were paid in 1940. The outputs of the Batong Buhay Gold Mines, Inc., the Paracale National Gold Mining Co., and the Paracale Gold Mining Co. were much smaller than those of the other Soriano companies.

The larger gold producers not associated with one of the three leading management companies were: Baguio Gold Mining Co., Big Wedge Mining Co., Baguio district; Capsay Mining Co., Masbate district; Mindanao Mother Lode Mines, Inc., and Surigao Consolidated Mining Co., Inc., Surigao district; and Treasure Island Mining

Co. on Lahuy Island.

During 1940, the Baguio Gold Mining Co. recovered 31,325 ounces of gold and 21,576 ounces of silver from 142,545 tons of ore treated in the company 400-ton all-slime cyanide plant. Ore reserves January 1, 1941, were equal to 1½ years' production at the 1940 rate. Dividends paid in 1940 totaled \$194,985. The Big Wedge Mining Co. recovered 27,726 ounces of gold and 25,057 ounces of silver from 75,642 tons of ore treated in the company 225-ton cyanidationflotation mill. Dividends paid in 1940 totaled \$155,538. Ore reserves were adequate to assure 4 years' operation at the 1940 rate. Capsay Mining Co. recovered 14,888 ounces of gold and 11,585 ounces of silver from 43,183 tons of gold ore treated in the company 150-ton amalgamation-cyanidation plant. On January 1, 1941, enough ore was blocked out to assure operation at the 1940 rate for 1 year. No dividends were paid in 1940. The Mindanao Mother Lode Mines, Inc., recovered 31,063 ounces of gold and 43,683 ounces of silver from 68,487 tons of ore treated in the company 200-ton flotation-cyanidation mill during 1940 and paid dividends totaling \$200,000. Ore reserves January 1, 1941, sufficed to assure 1½ years' operation at the 1940 rate. Very favorable developments at this property during 1941 resulted in the monthly production rate approaching 12,000 ounces of gold late in 1941. The Surigao Consolidated Mining Co. recovered 30,898 ounces of gold and 40,470 ounces of silver from 117,012 tons of ore treated in the company 325-ton flotation-cyanidation mill. Dividends paid in 1940 totaled \$204,680. Ore reserves January 1, 1941, were equal to 4 years' production at the 1940 rate. The Treasure Island Mining Co. treated 57,843 tons of ore in a 200-ton cyanidation mill and recovered 21,918 ounces of gold and 4,759 ounces of silver. No dividends were paid in 1940. The ore reserves January 1,

1941, approximated 1 year's production at the 1940 rate. Japanese invasion.—The position of the Philippine Islands exposed them to almost immediate attack by Japan; enemy reconnaissance planes were over the Islands almost simultaneously with the bombing of Pearl Harbor, December 7, 1941 (about 4 a.m., December 8, in the Philippines). First landings of Japanese troops were reported at Aparri, Luzon Island, December 10. By December 13, enemy landing parties were established at Aparri, Vigan, Lingayen, and Legaspi, all on the Island of Luzon. The Japanese had landed in force at Davao on Mindanao Island by December 20; 80 transports were sighted December 22 off Lingayen Gulf, northwest Luzon, and the major invasion drive began. On December 26, American forces began their withdrawal from Manila, where virtually all mining companies in the Philippine Islands maintained their main offices, and military authorities declared it an "open" city. By January 4, 1942, organized American and Filipino resistance was confined to Bataan Peninsula and the Corregidor group of fortresses. Bataan fell April 9, and Corregidor capitulated May 6. The Japanese continued their subjugation of isolated guerilla bands.

Although reports from managements of gold mines in the Philippine Islands have been fragmentary, all companies appear to have prepared for complete suspension of operations as soon as war was declared. Underground machinery, including pumps, was removed for storage at the surface. Some expendable supplies, such as fuel oil and explosives, seem to have been requisitioned by the military authorities, and other such supplies were destroyed. Structures, equipment, and machinery at the properties apparently were left undamaged, except for Dieselpower units, which, at least at most properties, were reported destroyed. As Diesel engines have been the gold industry's sole source of power (except for a very small hydroelectric installation at the Benguet Consolidated Mining Co. property), the Japanese will find it impossible to resume production without providing a source of power. thought no attempts were made to delay entry into the mines by blasting entries, but removal of the pumps assured that most productive workings would rapidly fill with water. As the mines are situated in nonagricultural areas, it is presumed that the workers dispersed to the lowlands almost immediately. One company is reported to have provided each employee with a dismissal bonus equal to 3 months' wages. As large-scale mining was a very new industry in the Philippine Islands, most of the workers had experience in other occupations, principally farming, and it is believed that most gold-mine employees returned to them. The mining staffs, made up largely of Americans. were ordered to Manila, where it was hoped that the open-city declara-

tion of the military authorities would insure their safety.

The invasion progressed so rapidly that little time was given the company managements to consider courses of action; the eventual complete defeat of the Japanese seems to have been assumed. the occupation, however, a number of possibilities presented themselves, which included reopening of the mines by the Japanese, stripping the properties of machinery either for use elsewhere or as a source of scrap

metal, or complete quiescence at the properties.

Some of company officials have stated that the first possibility would be the least injurious to the interests of the mine owners: reserves, being in narrow veins at most of the mines, could not be extracted very rapidly, and operation would tend to preserve the plants and organizations during hostilities. The Japanese need for gold, particularly to foster treason on the Asiatic mainland, has been suggested as an outstanding reason for reopening the gold mines. It seemed not impossible that some method would be found to exact reparations for the benefit of the Possibility that plants would be looted for machinery and scrap was evident, because much of the equipment could be very helpful to the invaders for use elsewhere and because of chronic shortage of metallic scrap in Japan. When the Japanese established complete control of Manila Bay, it became practicable for them to export even the largest units of machinery from the deep-water docks of Manila; whereas, while the American forces at Corregidor commanded the entrance to the bay, there were no Luzon harbors in the hands of the Japanese from which cargoes could be transferred to ocean-going vessels except with lighters. Nothing short of overwhelming military force could have brought the expanding Philippine mining industry to such a sudden halt; the healthy condition of the gold industry at the time of the invasion, however, gives promise of prompt revival when peace is restored.

DOMINION OF CANADA AND NEWFOUNDLAND

Canada.—Gold production in Canada reached a record total of 5,351,689 fine ounces valued at \$206,040,026 in 1941 compared with 5,311,145 fine ounces valued at \$204,479,083 in 1940. Canada contributes about 12 percent of the total world production of gold and is exceeded only by South Africa and Russia as a world producer.

Canadian production of gold in 1941 was distributed among the vari-

ous provinces as follows:

<u>-</u>	Fine ounces		Fine ounces
Ontario	3, 190, 786	Northwest Territories	77, 334
Quebec	1, 088, 860	Yukon	70, 959
British Columbia	615, 838	Nova Scotia	19, 170
Manitoba	150, 523	Alberta	215
Saskatchewan	138, 004		

In Ontario virtually all the gold comes from quartz veins; a small amount is obtained as a byproduct in the refining of nickel and copper. The principal producing areas are Porcupine and Kirkland Lake. 72 mills with an operating capacity of 36,800 tons a day were in continuous operation in 1941.

In Quebec, also, most of the gold comes from quartz veins, although the largest single producer is the Noranda gold-copper mine. In 1941

497779-43---8

the Province had 24 mills in continuous operation, with a daily ca-

pacity of 13.850 tons.

In British Columbia the chief source of gold is gold-quartz mines. Next in importance are the gold-bearing base-metal ores; a relatively small amount is obtained from placer operations. During 1941, 30 mills with a total daily capacity of 5,300 tons were in operation.

Manitoba produces about 55 percent of its total gold from goldquartz ores and 45 percent from copper-zinc-gold ores. There were five mills operating in 1941; the total capacity was 5,025 tons a day.

In Saskatchewan the production is mainly from that portion of the Flin Flon copper-zinc-gold mine lying within the Province. One mill with a capacity of 1,500 tons a day was in operation in 1941.

Production of gold was begun in the Northwest Territories in 1938 and is obtained from the Yellowknife River and adjoining areas north of Great Slave Lake. Five mills operated in 1941 with a daily capacity of 535 tons. Three of the mills were new.

Yukon's gold output comes almost entirely from placers and is won chiefly from large-scale dredging operations in the vicinity of

Dawson City, Klondike district.

Nova Scotia's output is from gold-quartz mines and Alberta's from placer operations. Nova Scotia had two mills in operation, one

of which closed late in 1941.

Silver produced in Canada totaled 21,754,798 fine ounces valued at \$8,323,603 in 1941 compared with 23,833,752 fine ounces valued at \$9,116,172 in 1940. Production is obtained mainly as a byproduct from the treatment of base-metal ores. A substantial amount is also produced from gold-quartz ores and from silver ores; a small amount comes from gold placers.

British Columbia produces nearly half of Canada's silver. The leading silver producer in the Dominion is the Sullivan lead-zinc-

silver mine at Kimberley, B. C.

Production of silver in the Cobalt and Sudbury areas in Ontario is important, although production from the Cobalt area has been declining for several years. On the other hand, production from the nickel-copper mines of the Sudbury area has increased. Preliminary figures on the yield in 1941 are 4,981,751 ounces.

Western Quebec has increased its production of silver in recent years owing to rapid development of copper-gold ores, copper-pyrite ores, and gold-quartz ores. Production from Quebec amounted to

1,656,527 ounces in 1941.

Silver production in Manitoba and Saskatchewan comes mainly from the copper-zinc ores of the Flin Flon mine and from a number of smaller properties. The 1941 output from Manitoba is given at 966,102 ounces (preliminary) and from Saskatchewan 2,054,731 ounces (preliminary).

In Yukon silver is produced from silver-lead ores and from gold placers. The 1941 output is given as 1,195,582 ounces (preliminary).

In the Northwest Territories the radium ores in the Great Bear Lake district and the gold ores from several districts produce appreciable quantities of silver. Production from this Province in 1941 was 15,189 ounces. Output in Nova Scotia is small, amounting to 614 ounces (estimated) in 1941.

Newfoundland.—Gold and silver production in Newfoundland depends wholly on the operations of the Buchans Mining Co. at

its lead-zinc-copper mine at Buchans. Output is given at 21,194 ounces of gold and 1,657,342 ounces of silver in 1941, compared with 21,786 ounces of gold and 1,494,066 ounces of silver in 1940.

MEXICO

The Republic of Mexico ranks first among the silver-producing nations of the world. In 1941 Mexico produced 78,363,961 fine ounces, exceeding the United States by more than 7,000,000 ounces and contributing nearly 30 percent of the total world production. Output in 1941 was some 4,000,000 ounces less than in 1940, when 82,640,074 ounces were produced.

The bulk of Mexico's silver comes from the belt of highlands extending southeasterly from Arizona and New Mexico toward Mexico, D. F.; production south of the latitude of Mexico, D. F., is much

less important.

Hidalgo was the leading State in silver production in 1941 with a total of 874,111 kg. The mines in the Pachuca district, world-renowned for many years, supplied most of the production. These silver mines are the greatest in Mexico.

Chihuahua ranked next to Hidalgo, with a production of 410,367 kg. in 1941. The most important districts center around Chihuahua and San Francisco del Oro in the central part of the State and around

Parral and Santa Bárbara in the southern part.

Zacatecas followed Chihuahua closely in 1941, with 398,771 kg. of silver. About 70 percent of this came from the Fresnillo district in the central part of the State. The next most important district was

the Mazapil, in the northeastern part of the State.

The three States, Hidalgo, Chihuahua, and Zacatecas, produced 70 percent of Mexico's silver in 1941. No other State reached the 200,000-kg. mark. San Luis Potosi approached this amount with 186,067 kg.; there are large mines near Charcas, Matehuala, and La Paz. Michoacán produced 158,872 kg., most of which came from the large mine of the American Smelting & Refining Co., at Angangueo. Durango produced 124,281 kg.; the most important district is the San Dimas.

The remaining production of about 250,000 kg. came from a number of other States; Guanajuato and Guerrero together produced

about half.

Mexico has never been an outstanding gold producer among the countries of the world. In 1941 the Republic produced 24,882 kg. (799,975 fine ounces). The gold deposits are closely associated with the silver deposits. The six leading States, in the order named, were Hidalgo, Chihuahua, Durango, Michoacán, Zacatecas, and Guanajuato.

WEST INDIES AND CENTRAL AMERICA

Puerto Rico.8—Gold and silver mining in Puerto Rico is but little developed. This condition is due to general apathy of Puerto Rican capital toward mining and to the lack of trained mining labor, of roads in many sections of the country, and of plants for treating the ore.

Brief abstract from an article by Ray, Horatio C., Gold Deposits of Puerto Rico: Rocks and Minerals, vol. 16, November 1941, pp. 404–405.

Both placer and lode deposits are known on the island, and some development work has been done on them. Nearly all the streams coming from the volcanic backbone of the island carry placer gold, but the amount of gold-bearing gravel is small. Most of the placers are in the general vicinity of Barranquitas-Naranjito-Corozal, Luquillo Forest Reserve, and San German.

Lode deposits have been prospected near Barranquitas, Corozal, and San German and the Carmen township of Guayama. Some of these deposits are considered to have commercial possibilities if systematic development were made and mills were built to concentrate

the ore.

Cuba.—Two mines have produced gold or silver in Cuba during the last 10 years. The Delita mine on the Isle of Pines operated for a time in 1937 and produced 1,311 ounces of gold and 2,255 ounces of silver. The Nerva Potosí mine in the Province of Oriente operated

regularly in 1941; in 1940 it produced 2,857 ounces of gold.

Dominican Republic.—Production of gold in the Dominican Republic amounted to 636 kg. valued at \$546,476 in 1941 compared with 271 kg. valued at \$241,987 in 1940. No large companies operate in the republic, as virtually all the gold is produced from numerous small placers. Hand washing of the gravel is still largely used; daily returns are small. Lode deposits are known but have been little developed. No silver is produced in this country.

Nicaragua.—Gold production in Nicaragua has shown a phenomenal rise during the last 10 years. From a value of \$382,189 in 1932, production leaped to \$7,323,265 in 1941, an increase of about 1800 percent. Silver production also increased from a value of \$11,100 in 1932 to \$93,553 in 1941, although the value of production in 1940

was \$100,149.

The La Luz Mines, Ltd., led in total gold and silver produced in 1941 with 75,047 ounces of gold valued at \$2,619,884 and 32,383 ounces of silver valued at \$10,988. Next in rank was the Compañia Minera la India with a production of 32,732 ounces of gold valued at \$1,134,879 and 41,424 ounces of silver valued at \$13,624. Other important producers included the Neptune Gold Mining Co., the San Juan Mines Co., the Compañia Minera del Jabali, the Compañia Minas Matagalpa, and the Empresa Minera de Nicaragua.

Guatemala.—Production of gold in Guatemala during the past 11 years reached a peak in 1931 when 294 kg. were produced. Since 1932 little more than half this amount has been derived in any year, and in 1941 only 78 kg. were produced. This country has no known

workable deposits of silver.

Panama.—Production of gold in Panama during the past decade reached its peak in 1934 when 13,895 fine ounces were produced. Since that year, output has steadily declined, except for 1937 when a temporary revival was experienced. Production in 1941 totaled only 2,115 ounces.

The higher production from 1934 to 1937 was due mainly to the development of two mines in gold-quartz veins in the San Francisco and Santa Fe districts in the Province of Veraguas. Operations in

these districts ceased in 1937.

Since 1938 most of the gold has come from small placer operations in nearly every territory in the country. Large defense projects in the Canal Zone and inability to get mining machinery are the two

factors responsible for the decline of gold mining in Panama in the last 2 years.

Silver has been of minor importance in Panama; no production

has been reported since 1936.

SOUTH AMERICA

Argentina.—Silver production in Argentina amounted to 3,978,400 fine ounces in 1941 compared with 3,242,200 ounces in 1940. Gold in 1940 amounted to 12,860 fine cunces; figures for 1941 are not available. More than half of the gold is produced from placers. Six gold mines have been reported in production, one in the Province of La Rioja, one in the Andes territory, and four in the territory of Neuguén. The silver is largely produced from lead concentrates.

Bolivia.—Bolivia's production of 8,158 fine ounces of gold in 1941

Bolivia.—Bolivia's production of 8,158 fine ounces of gold in 1941 was divided among eight principal producers, of which the Empresa Minera la Joya accounted for about 65 percent of the total. This company produces gold from auriferous pyrites. Five principal producers of silver supplied nearly all of the country's 7,348,695 ounces. Gold and silver mining is being handicapped by lack of ocean transportation of the ore to United States smelters; also, it is not possible

to obtain mining equipment from the United States.

Brazil.—In 1941 Brazil produced 147,309 fine ounces of gold from lode mines; no data are available on placers, except that prospectors are still very active along the gold-bearing streams. All but a small part of Brazil's gold comes from the State of Minas Gerais, where there are two important mines. These are the Morro Velho and the Passagem, where the gold occurs in extensive ore shoots along the planes of schistose rocks. The Morro Velho is over 8,000 feet deep. Some gold is also produced in the States of Paraná, Rio Grande do

Sul, São Paulo, Goias, and Maranhão.

Silver production in Brazil is small, amounting to only 21,170 fine

ounces in 1941.

Colombia.—Since 1931 the production of both gold and silver has gained steadily in Colombia, and 1941 was the high year for each metal. Of the 656,019 fine ounces of gold produced in 1941, about 60 percent came from placers and 40 percent from lodes. Most of the placer gold is recovered by dredges, eight being in operation in 1941. Hydraulicking was carried on by 60 operators. Two companies produced most of the lode gold, but 53 small operators also reported production.

Colombia's production of 271,115 ounces of silver in 1941 came

almost entirely as a byproduct of gold mining.

Ecuador.—The 70,264 ounces of gold and the 116,836 ounces of silver produced in Ecuador in 1941 came almost entirely from the operations of two companies—the Cotopaxi Exploration Co. and the South American Development Co. Six other companies carried on exploration work.

Guianas.—Information on the Guianas is almost nonexistent. It is estimated that British Guiana produced about 30,000 ounces of silver in 1941, French Guiana about 35,000 ounces, and Surinam

about 12,000 ounces.

Gold production from British Guiana probably amounted to a few thousand ounces. One company working in British Guiana holds about 900 acres of dredging concessions, over 66,000 acres of exclusive permissions, and 3,000 acres of claims. These holdings are centered in the Mahdia, Potaro, Konawaruk, and Essequibo areas. The gravel is stated to carry 2.90 to 5 grains of gold per cubic yard.

Surinam for several years has produced over 400,000 grams of gold annually, all of which has been won from placers by the use of long

toms, sluices, and hand pans.

Peru.—Peru, with an output of ever 15,000,000 ounces of silver, furnished more than half of the total 28,105,000 ounces produced in South America in 1941.

By T. H. MILLER AND H. M. MEYER

SUMMARY OUTLINE

	Page	1	Page
General summary	93	Domestic production—Continued.	
Supply problems	93	Refinery production	104
Salient statistics	94	Copper sulfate	10
Price action	95	Secondary copper	
Government purchasing	96	Consumption and uses	10
Prospects for increased production	97	New supply	105
Arizona report on marginal production	97	Industrial use of copper	106
Domestic production	97	Stocks	107
Primary copper		Prices	
Smelter production	98	Foreign trade	
Mine production			
Production by States and districts	. 99	Exports.	
Quantity and estimated recoverable con-		World aspects of copper industry	116
tent of copper-bearing ores		Review by countries	

GENERAL SUMMARY

The inability of copper producers to meet all requirements, evident in the latter half of 1940, was accentuated in 1941. Copper was consumed at an astounding rate in the United States for its own military requirements, for the needs of its Allies, and for civilian uses, exceeding previous records by 40 to 50 percent. A demand of unknown proportions could not be filled. Consumption doubtless would have been much larger had enough metal been available to fabricators for unrestricted use.

The trend of events throughout 1940 and 1941 forced many observers to revise their opinions regarding the adequacy of copper supplies in the United States. When the present World War began, few would have believed that domestic production plus unprecedented imports could fall so far short of satisfying all needs. The British Empire's position as regards copper was then considered relatively satisfactory, and when the tremendous resources of the United States were added, no problem regarding supplies of the metal was generally anticipated. This opinion, of course, held before the United States entered the war and before it was known that this country must supply copper in fabricated form to virtually all the nations at war with the Axis Powers or preparing to resist them. The unbelievable growth in plans for airplanes, tanks, and other munitions made all previous ideas regarding consumption requirements obsolete.

Supply problems.—Early in 1941, as data on military requirements were made public, it became evident that civilian use of copper would have to be drastically curtailed. Defense agencies studied at length the problems of estimated needs and supplies from domestic and foreign mines before copper was placed under mandatory industry-wide control, effective June 1. The order provided for the setting aside of a producers' pool to be allocated by the Director of Priorities and the filling of defense orders, according to preference ratings, before any shipments for civilian use were made. All copper owned by the Metals Reserve Co. on and after June 1 was also to be

allocated by the Director of Priorities.

When the order was issued the Director of Priorities announced that the total supply of copper in 1941 was expected to be between 1,340,000 and 1,470,000 tons, whereas total military and civilian

requirements were estimated at 1,810,000 tons, indicating an expected shortage of 340,000 to 470,000 tons. Later in the year the estimates for 1941 were revised, and data for 1942 were added. new estimates showed that the emergency in regard to copper supplies was growing worse rapidly and foretold more stringent controls on civilian use of copper as the war progressed. This dark outlook prevailed when plans for overwhelming military dominance of the world had not reached their peak. Figures released by the Office of Emergency Management in October are quoted below, in short tons:

Supply:	1941	1942
Domestic production	950, 000	1, 100, 000
Imports (Latin America)		500, 000
Other imports	100, 000	100, 000
Secondary copper	100, 000	100, 000
	1, 650, 000	1, 800, 000
Demand:	1, 000, 000	1, 000, 000
Military 1	600, 000	1, 000, 000
Essential civilian	400, 000	
Other civilian	880, 000	1, 170, 000
	1, 880, 000	2, 570, 000
1 Includes foreign.		

The agency explained that the large "other civilian" demands were predicated on the theory of unrestricted consumption to fit in with the rise in national income under the defense program.

Salient statistics of the copper industry in the United States, 1925-29 (average) and 1938-41, in short tons

	Average (1925–29)	1938	1939	1940	1941
New copper produced—					
From domestic ores, as reported by—	007.000	FF7 F00	700 000	070 000	050 140
Mines Ore produced:	885, 826	557, 763	728, 320	878, 086	958, 149
Copper ore	59, 505, 871	1237,794,938	1 55, 239, 098	169, 278, 476	(3)
Average yield of copper, percent	1.44	1.34	1, 25	1.20	(3)
Smelters	892, 730	562, 328	712, 675	909, 084	966,072
Percent of world total	51	25	30	(3)	(3)
Refineries	890, 767	552, 574	704, 873	927, 239	975, 408
From foreign ores, matte, etc., refinery reports.	317, 287	239, 842	204 640	386, 317	410.001
Total new refined, domestic and foreign.	1. 208, 054	792, 416	304, 642 1, 009, 515	1, 313, 556	419, 901 1, 395, 309
Secondary copper recovered from old scrap	1. 200, 004	152, 410	1,000,010	1, 515, 550	1, 050, 005
only	347, 512	267, 300	286, 900	333, 890	412, 699
Copper content of copper sulfate produced	,		1 200,000	,	, 500
by refiners	4,601	4,978	4,868	5, 643	6, 984
Total production, new and old and domes-					
tic and foreign	1, 560, 167	1,064,694	1, 301, 283	1,653,089	1, 814, 992
Imports (unmanufactured)	391, 212	252, 164	336, 297	491, 342	5 524, 974
Refined 4. Exports of metallic copper 6.	59, 236 522, 616	1,802 421,012	16, 264 427, 517	68, 337 427, 650	§ 220, 762
Refined (ingots, bars, rods, etc.)		385, 223	396, 406	377, 108	5 107, 793 5 77, 824
Stocks at end of year.	307, 200	414,000	355, 500	334, 500	317, 500
Refined copper	86, 100	181,000	95, 500	91, 500	77, 500
Blister and materials in solution.	221, 100	233, 000	260,000	243,000	240,000
Withdrawals from total supply on domestic account:				,	
Total new copper	778, 123	406, 994		1,008,785	(7)
Total new and old copper	1, 288, 700	767, 000	1, 215, 000	1,541,000	(7)
Price, averagecents per pound	14.7	9.8	10.4	11.3	11.8
World smelter production, new copper	1, 761, 000	2, 254, 000	8 2, 405, 000	(3)	(3)

Includes old tailings.

Exclusive of Alaska, figures for which Bureau of Mines not at liberty to publish. Figures not yet available.

Figures not yet available.
 Data include copper imported for immediate consumption plus material entering country under bond.
 Figures cover 9 months only; data for last quarter of year confidential.
 Total exports of copper, exclusive of ore, concentrates, composition metal, and unrefined copper.
 Exclusive also of "Other manufactures of copper," for which figures of quantity not recorded.
 Bureau of Mines not at liberty to publish calculated totals owing to confidential nature of foreign tradedate for last quarter of year.

data for last quarter of year. 8 Approximate.

General Preference Order M-9 was amended in July to extend control to copper-base alloys and fabricated products made from copper or from copper-base alloys, such as brass or bronze; and Order M-9-A, issued August 2, placed copper and copper-base alloys under 100-

percent priority control.

In an order dated September 30, copper scrap also was placed under full priority control. The order stated that copper ranked next to aluminum as the most difficult of the critical metals to obtain in quantities sufficient for defense and civilian needs. Priority assistance was granted Latin-American copper mines on October 15 to enable them to obtain necessary maintenance materials and operating supplies more rapidly. This action marked another effort to improve the supply-demand situation by helping to increase production in the affected countries.

Amendments and revisions of the conservation orders mentioned above were issued subsequently from time to time, partly to clarify them and to withdraw some unsatisfactory features but mainly to tighten controls further and to restrict unnecessary uses. There have been repercussions among many other metals as a result of the copper-conservation orders. In saving copper, the secondary effect of the orders has been to release large and small quantities of other metals normally alloyed with copper in the restricted uses. The extent of the effects on other metals has been somewhat startling.

Jeffries 1 has prepared a report on copper conservation.

Percy Barbour, in the American Metal Market of September 23, 1941, questioned the accuracy of defense agency data on requirements for war and civilian consumption, contending that they were too high; and Arthur Notman, in a statement reprinted from the New York Sun in Metals, January 1942, was inclined to agree. Barbour pointed out that civilian requirements were calculated by adding wartime to peacetime demand and, in addition, that Army and Navy estimates were well-known to be on the ample side. He also pointed out that the amount of copper available for German consumption during the period of preparation for war, 1933–38, was considerably below half of the estimated requirements of Great Britain

and the United States for 1 year.

Price action.—The strain on supplies of copper in 1941 paved the way for sharply increased prices. In deference to the expressed interest of the Office of Price Administration in preventing price advances for this commodity, as well as for others, large producers maintained a price of 12 cents a pound for electrolytic copper, delivered Connecticut Valley, until August 12. For more than 6 months, custom smelters and small producers obtained premiums for nearby metal. On August 12 a ceiling of 12 cents for copper was established by the Price Administrator, and it has remained at that level beyond the time of the preparation of this report (June 1942). This inactivity of prices contrasts directly with the movement of prices in the previous World War. The average quoted price for electrolytic copper, New York, was 13.6 cents in 1914, 17.3 cents in 1915, and 27.2 cents in 1916. An agreement between copper producers and the War Industries Board fixed the maximum price for copper, f. o. b. New York, at

Jeffries, Zay, A Program for Conservation of Copper: One of a series of reports by the Advisory Committee on Metals and Minerals, Clyde E. Williams, chairman, submitted to the Office of Production Management through F. B. Jewett, president of the National Academy of Sciences; reprinted in several technical journals.

23.5 cents a pound on September 21, 1917. This price remained in

force until July 2, 1918, when it was advanced to 26 cents.

During the year the Office of Price Administration had been investigating means of encouraging marginal mines to produce copper, lead, and zinc without increasing the prices paid for the bulk of production. Late in 1941 arrangements were made for Government purchase of copper from three Michigan companies at 1 cent a pound above "out-of-pocket" costs. In January 1942 it was announced that the Metals Reserve Co. would purchase copper output above quotas at 17 cents a pound, Connecticut Valley, for 2½ years. Quotas were to be assigned by the Office of Production Management and the Office of Price Administration, and beginning February 1, 1942, production was to be entitled to the premium price. Any metals acquired at premium prices by Metals Reserve Co., which were not used for or by the Government, were subject to allocation to consumers at the

ceiling prices fixed by the Price Administrator.

Government purchasing.—As stated in the chapter on Copper in Minerals Yearbook, Review of 1940, arrangements to purchase Latin American copper were begun in the final quarter of 1940, when it became apparent that production in the United States would be inadequate for all requirements. First Government contracts, announced December 19, 1940, totaled 100,000 short tons, distributed among Anaconda Copper Mining Co., Kennecott Copper Corporation, American Metal Co., Ltd. (Cerro de Pasco Co.), and Phelps Dodge Corporation. The 1941 stockholders' report of the Anaconda Copper Mining Co. stated that, beginning March 1941, large quantities of copper produced by their foreign subsidiaries were delivered to Metals Reserve Co. and that, with the exception of comparatively small quantities required for Latin America, the entire output was currently being sold and delivered to that organization. The report stated that the price paid by Metals Reserve Co. was the equivalent of 9½ cents a pound f. a. s. Chilean ports until October 8, when it was advanced to the equivalent of 10% cents f. a. s. Chile, applicable to deliveries made during September, October, November, and December. Effective January 1, 1942, the price was increased to 111/4 cents, which, the report stated, was the current price under which foreign production was being delivered to the Government (the report was dated April 11, 1942). The annual report of the Kennecott Copper Corporation stated that the Braden Copper Co. (a Kennecott subsidiary) delivered virtually all of its 1941 production, most of which was fire-refined copper, to the Metals Reserve Co.

In May 1942 Jesse Jones, Administrator of the Reconstruction Finance Corporation, of which Metals Reserve Co. is a subsidiary, stated before the Senate Committee on Banking and Currency that his organization had purchased 760,000 tons of copper from Latin American countries and in addition intended to import metal from

New Zealand, Australia, and Africa.

The Government also arranged during the year to acquire metal, belonging to France and other countries, which was stranded in the United States.

In May 1942 the Copper Recovery Corporation was formed to act as agent for the Metals Reserve Co. and to plan for physical transfer and payment for 300,000 tons of copper and brass products saved for military uses by limitation and conservation orders of the War Pro-

duction Board (formerly Office of Production Management). Where possible, the metal was to be used to fill military requirements for shapes and grades in the form in which it was held in inventory. The stocks were expected to yield 255,000 tons of copper and about

45,000 tons of zinc.

Prospects for increased production.—Development of the open-pit copper mine at Morenci, Ariz., begun in 1937, promised an annual production of 75,000 tons of copper a year. The first ore was sent to the Morenci mill in January 1942; the smelter started later, and capacity operations were expected by about July. Following the declaration of war on Japan, a 7-day week was adopted at some large properties that had been operating upon a shorter-week basis. As a result of the longer work period, properties of the Anaconda Copper Mining Co. were expected to yield an additional 24,000 to 36,000 tons of copper a year and those of the Phelps Dodge Corporation 12,000 tons more. The Kennecott Copper Corporation was already upon a 7-day basis. Increased facilities at Inspiration Consolidated were expected to yield another 12,000 tons of copper annually, beginning early in 1942.

Contracts between the Metals Reserve Co. and the Defense Plant Corporation (both Reconstruction Finance Corporation subsidiaries) and mining companies forecast the following annual increments to

domestic supply:

	Shor	rt tons
Bagdad Copper, Ariz	10	, 200
Calumet and Hecla, Mich.		l, 250
Gray Eagle Mining, Calif		3, 800
Castle Dome, Ariz	23	3, 000 −
National Tunnel & Mines, Utah	{	5, 000
Phelps Dodge, Ariz	60	0,000
	106	3, 250

¹ Additional at Morenci.

Bonus prices paid by the Metals Reserve Co. for above-quota copper production, already mentioned under the discussion on price action, will contribute an additional unknown amount to domestic supply.

Arizona report on marginal production.—During the year the Arizona Department of Mineral Resources, at the request of the Arizona Copper Tariff Board, prepared a report on the production possibilities of marginal mines in Arizona, which it submitted on August 1 to the Office of Price Administration and Civilian Supply. The report stated that an increase in the price of copper to 14 cents a pound could result in an additional output of 55,000,000 pounds of copper yearly by small mines in Arizona (85,000,000 pounds if the Inspiration Consolidated Copper Co., one of the major producers, is considered) provided a return of the necessary capital investment could be guaranteed. Further advance to 16 cents would bring out an additional 32,000,000 pounds, the report stated, but advances to higher levels would result in less-important gains.

DOMESTIC PRODUCTION

Statistics on copper production may be compiled upon a mine, smelter, or refinery basis. Mine data are most accurate for showing the geographic distribution of production; smelter figures are better

for showing the actual recovery of metal and fairly accurate for showing the source of production; and refinery statistics give precise information regarding metal recovery but indicate only in a general way the source of crude materials treated. The chapter on Copper in Mineral Resources of the United States, 1930, part 1, discusses the differences among the three sets of figures.

Copper produced from domestic ores, as reported by mines, smelters, and refineries, 1937-41, in pounds

Year	Mine	Smelter	Refinery
1937	1, 683, 996, 000	1, 669, 322, 278	1, 644, 505, 129
	1, 115, 525, 160	1, 124, 656, 539	1, 105, 148, 323
1939	1, 456, 639, 000	1, 425, 349, 488	1, 409, 745, 816
1940	1, 756, 172, 000	1, 818, 167, 516	1, 854, 478, 996
1941	1, 916, 298, 000	1, 932, 144, 953	1, 950, 816, 680

PRIMARY COPPER

Smelter production.—The recovery of copper by United States smelters from ores of domestic origin totaled 1,932,144,953 pounds in 1941—a 6-percent increase over 1940. Domestic smelter output constituted 51 percent of the world production during 1925–29. The proportion dropped sharply in the succeeding years until 1934, when it was only 17 percent. It rose to 32 percent in 1936 and since then has never fallen below 25 percent, fluctuating between the two figures. The proportion was believed to be close to the higher level of the range in 1940 and 1941 and possibly exceeded it somewhat in the latter year.

The figures for smelter production are based upon confidential returns from all smelters handling copper-bearing materials produced in the United States. For Michigan the sum of furnace-refined copper and copper cast into anodes for electrolytic refining is included. The figures for blister represent the fine-copper content. Some casting and electrolytic copper produced direct from ore or matte is included in the smelter production. Metallic and cement copper recovered by leaching is included in smelter production.

The precise quantity, in pounds, of copper produced by smelters in the United States and its value are shown by years for 1845-1930 in the Copper chapter of Mineral Resources of the United States, 1930, part 1.

Copper produced in the United States from domestic ores, 1937-41, by States
[Smelter output, in pounds fine]

State	te 1937 1938 1939		1939	1940	1941
Alabama Alaska Arizona California Colorado Georgia Idaho Michigan Missouri Montana Nevada New Mexico	18, 820 42, 215, 119 580, 493, 036 10, 615, 215 21, 826, 209 4, 804, 162 84, 751, 478 695, 569 280, 662, 270 149, 963, 847 63, 573, 985	33, 492, 746 420, 351, 310 1, 680, 754 30, 563, 654 70 5, 611, 392 75, 281, 469 625, 844 156, 249, 794 93, 655, 642 43, 913, 133	304, 000 525, 410, 905 8, 490, 872 25, 548, 762 4, 632, 415 89, 402, 464 1, 1020, 000 203, 512, 107 128, 844, 525 74, 083, 586	128, 001 574, 533, 050 13, 091, 643 26, 372, 851 25, 917 7, 379, 389 91, 486, 806 1, 638, 000 258, 141, 139 157, 241, 576 140, 968, 734	190, 003 657, 100, 101 8, 029, 066 12, 966, 327 7, 101, 877 93, 503, 895 1, 546, 526 257, 424, 059 161, 035, 989 147, 696, 312

Copper produced in the United States from domestic ores, 1937-41, by States—Con.
[Smelter output, in pounds fine]

			No.		and the second second second
State	1937	1938	1939	1940	1941
North Carolina	(1) 870, 102 (1)	(1) 88, 670 (1) 7, 893	(1) 95, 557 (1) 66	(1) 202, 527 (1)	(¹) 167, 899 (¹)
South Dakota Tennessee Texas. Utah	(1) 316, 102 404, 168, 742	(1) 35, 740 229, 876, 860	(1) 66, 000 326, 117, 467	12, 037 (1) 66, 000 497, 463, 560	(¹) 14, 00 0 541, 293, 973
Virginia Washington Wyoming Undistributed	953 124, 422 75 24, 222, 036	43, 279 12, 494, 297 155 20, 683, 837	741 16, 756, 007 21, 064, 014	21, 022, 000 4, 018 28, 390, 268	17, 334, 000 8, 000 26, 732, 920
	1, 669, 322, 278	1, 124, 656, 539	1, 425, 349, 488	1, 818, 167, 516	1, 932, 144, 95

¹ Included under "Undistributed"; Bureau of Mines not at liberty to publish figures.

Copper produced (smelter output) in the United States, 1937-41, and total 1845-1941
[Values rounded]

	Year		Short tons	Value
937		•	834, 661	\$201, 988, 00
1938 1939			562, 328 712, 675	110, 216, 000 148, 236, 000
940 941			909, 084 966, 072	205, 453, 00 227, 993, 00
Fotal 1845-1941			28, 464, 550	8, 480, 013, 00

Mine production.—The figures for mine production are based upon reports supplied to the Bureau of Mines by all domestic mines that produce copper. Details of the method of collecting the statistics and reasons for the discrepancy between mine-, smelter-, and refinery-production figures are given in the Copper chapter of Mineral Resources of the United States, 1930, part 1.

Mine production is more accurate than either refinery or smelter production for showing the distribution of domestic cutput by States and districts. It also indicates the production by calendar years more exactly, because additional time is required for smelting and refining. Mine production in 1941 was 1,916,298,000 pounds—an increase of 9 percent over that in 1940 and 8 percent above the average for 1925–29.

Production by States and districts.—The following tables show mine and smelter production by States for 1940 and 1941 and mine output by districts for 1937-41. In 1941 Arizona, Utah, and Montana led in production, with 75 percent of the smelter total compared with 73 percent in 1940; adding the output of Nevada, New Mexico, and Michigan to the foregoing brings the proportions to 96 percent of the total for the country compared with 95 percent in 1940. Arizona supplied 34 percent compared with 28 percent for Utah and 13 percent for Montana. Both Arizona and Utah made noteworthy gains in output, and these States contributed a greater proportion of the country's total; Montana's output was relatively unchanged, and its share of the total therefore declined. There was nothing outstanding

among the increases for other producing States; and some States, notably Colorado, California, and Washington, recorded decreases. Comparison of present production with that of the past century shows that Arizona is now producing at about the same rate in relation to the country total as over the entire period 1845-1941; Montana's and Michigan's shares in 1941 (13 and 5 percent, respectively) mark declines from 21 and 16 percent during 1845-1941; and Utah's sharply increased proportion of 28 percent (compared with 13 percent) partly offsets the relative decreases indicated for Montana and Michigan. Nevada and New Mexico are now producing considerably larger proportions of the country's total than in 1845-1941.

Copper produced in the United States, according to smelter and mine returns, by States, 1940-41 and 1845-1941, in short tons

	19	1940		1941	1845–1941, smelter		
State			Smelter	returns		output	
	Smelter returns	Mine returns	Percent of total	Quan- tity	Mine returns	Total quantity	Percent or total
Alaska	64	- 55	0, 01	95	72	676, 783	2. 3
Arizona	287, 266	281, 169	34.01	328, 550	326, 317	9, 414, 487	33. 0
California	6, 549	6, 438	.42	4,015	3, 943	574, 471	2. 0
Colorado	13, 186	12, 152	. 67	6, 483	6,748	271, 515	. 9
Georgia	13	13				(1)	(1)
Idaho	3, 689	3, 349	.37	3, 551	3, 621	91,490	.3
Michigan	45, 743	45, 198	4.84	46, 752	46, 440	4, 637, 385	16. 2
Missouri	819	685	.08	773	1,400	(1)	(1)
Montana	129,070	126, 391	13.32	128,712	128, 036	6, 082, 756	21. 3
Nevada	78, 621	78, 454	8.33	80, 518	78, 911	1, 453, 477	5. 1
New Mexico	70, 484	69, 848	7.64	73, 848	73, 478	1,010,303	3. 5
North Carolina	(2).	(2)	(2)	(2)	(2)	(1)	(1)
Oregon	101	88	. 01	84	83	11, 535	.0
Pennsylvania	(2)	(2) (3)	(2)	(2)	(2) (3)	(1)	(1)
South Carolina		(3)			(3)	(1)	(1)
South Dakota	6	6				(1)	(1)
Tennessee	(2)	(2)	(2)	(2) _	(2)	4 259, 508	4. 9
rexas	33	30	(5)	7	6	(1)	(1)
Utah	248, 732	231,864	28.02	270, 647	266, 838	3, 667, 738	12.8
Virginia						(1)	(1)
Washington	10, 511	9, 612	90	8, 667	8, 686	48, 276	.1
Wyoming	2	10.700	(5)	10.000	10 500	15, 869	.0
Undistributed	14, 195	12,732	1.38	13, 366	13, 566	6 248, 957	.8
	909, 084	878, 086	100.00	966,072	958, 149	28, 464, 550	100.0

In 1941, for the sixth consecutive year, the Bingham (Utah) district was the largest copper producer in the United States; its output was slightly more than double that of Butte (Mont.), for 6 years its nearest competitor and before 1936 usually ahead of Bingham in copper production. Following Globe-Miami (Ariz.), which has ranked third for a number of years, is a group of districts that frequently change places in importance as copper producers.

Details of mine production, by districts and companies, in 1941 are available in the chapters of this volume dealing with the production of gold, silver, copper, lead, and zinc in the various States.

Included under "Undistributed"; figures not separately recorded.
 Included under "Undistributed"; Bureau of Mines not at liberty to publish figures. 3 Less than 1 ton.

⁴ Approximate production through 1928. Figures for 1929-41 confidential and included under "Undistributed."

Less than 0.01 percent. 6 Includes Tennessee for 1929-41.

Mine production of copper in the principal districts of the United States, 1937-41. in terms of recovered copper, in short tons

District or region	State	1937	1938	1939	1940	1941
Bingham	Utah	203, 421	106, 049	167, 856	228, 505	264, 705
Bingham Butte	Montana	143, 879	76, 855	97, 266	125, 442	127, 431
Globe-Miami	Arizona	88, 509	44, 528	62, 400	70, 406	82, 419
Central (including Santa Rita)	New Mexico	29, 464	16, 557	42, 344	64, 991	67, 727
Elv (Robinson)	Nevada	56,706	38, 501	51, 590	63,840	67, 171
A'io	Arizona	55, 375	43, 180	49, 871	51, 566	65, 880
Bishee (Warren)	do	55, 991	47, 518	54, 617	55, 254	56, 592
Bisbee (Warren) Lake Superior	Michigan	47, 464	46, 743	43, 985	45, 198	46, 440
Yavapai County (mostly Je-	Arizona	43, 403	29, 437	38, 203	38, 201	43, 701
			,	,	,	
Ray (Mineral Creek)	do	17, 308	15,029	21, 583	31, 729	42, 400
			17, 167	17, 958	18, 450	19, 121
Copper Mountain (Morenci- Metcalf) Cope		,	,	,	,	,
Metcalf)	do	6,822	11, 148	15, 878	13, 503	13, 879
Cone	Nevada	16, 588	6, 563	14, 065	13, 542	10, 756
Cholon Loke	Washington	,	5, 931	8, 786	9, 288	8, 365
Chelan Lake	Colorado	9, 458		11, 921	10, 552	
				3, 184	3, 278	3, 734
Lordsburg Plumas County	Celifornia	4, 939	602	4, 029	5, 293	3, 644
Coeur d'Alene region	Idaho	1,944		2,068	2,680	2, 979
Tintic				1, 413	1, 295	1,042
San Pedro	New Mexico	1,001	44	336	1, 394	719
San Juan Mountains	Colorado			981	1, 209	
Onbir	Utah	391	437	2,070	1,095	204
Ophir Bunker Hill	Arizone	1, 396		246	1,008	ĭi
Copper River 2	Alecko	³ 17, 336		(4)	(4)	(4)
Swein County 2	North Carolina	(5)	(5)	Ì	l is	(5)
Swain County 2. Lebanon (Cornwall mine) 2	Panneylvania	(5)	(5)	\ \d	(5) (5)	(5)
Ducktown 2	Tennessee	1 75	1 6	(5) (5) (5)	(ŧ)	(5)
Ducktown 2	Tennessee	(5)	(5)	(5)	(\$)	(9)

Districts producing 1,000 short tons or more in any year of the period 1937-41.
 Not listed in order of output.
 Includes a small quantity produced elsewhere in Alaska.

Quantity and estimated recoverable content of copper-bearing ores. The following tables list the quantity and estimated recoverable copper content of the ore produced by mines in the United States in 1940; figures for 1941 are not yet available. Of the total copper produced from copper ores in the United States in 1940, 84 percent was obtained from ores concentrated before smelting and 11 percent from direct-smelting ores; in addition, copper was recovered from 3,198,904 tons of copper ore treated by straight leaching. The percentages for 1940 compare with 81 percent obtained from concentrated ore (including ores treated by combined leaching and flotation) and 16 percent from direct-smelting ores in 1939. In 1939, 2,114,407 tons of copper ore were treated by straight leaching.

Close agreement between the output as reported by smelters and the recoverable quantity as reported by mines indicates that the estimated recoverable tenor is close to the actual recovery. Classification of some of the complex western ores is difficult and more or less arbitrary. "Copper ores" include not only those that contain 2.5 percent or more copper but also those that contain less than this percentage if they are valuable chiefly for copper. Mines report considerable copper from ores mined primarily for other metals. These include siliceous gold and silver ores, lead and zinc ores, and pyritic ores.

Bureau of Mines not at liberty to publish figures.

Copper ore, old tailings, etc., sold or treated in the United States in 1940, with copper, gold, and silver content in terms of recovered metals

	Ore, old tail- ings, etc.,			Gold pro-	Silver pro-	Value of gold and
State	sold or treated (short tons)	Pounds	Percent	duced (fine ounces)	silver per ton of ore	
Arizona	20, 284, 826	1 2 525, 163, 470	1. 29	128, 720	4, 463, 702	\$0.38
California		12, 326, 100	1.38	16,669	291, 914	1.77
Colorado	334, 312	21, 254, 198	3. 18	30, 331	6, 765, 877	17. 57
Idaho	4, 931	695, 365	7. 05	597	17, 762	6.80
Michigan		90, 396, 000	1.02		88, 657	3.41
Montana		1 243, 663, 241	3.71	11,708	6, 039, 027	1.43
Nevada		156, 434, 000	1. 27	59, 325	339, 810	. 38
New Mexico		1 129, 592, 547	. 98	13, 202	369, 968	. 11
Oregon		30, 100	10. 31	6	2, 696	14. 57
Texas		300	5.00			
Utah	26, 301, 745	1 439, 544, 601	. 84	223, 156	2, 132, 727	. 35
Washington		18, 864, 662	1. 37	51, 529	218, 861	2,84
Wyoming	30	4,000	6.67		38	.90
Eastern States	4 725, 885	25, 463, 900		2, 115	56, 367	
	4 69, 278, 476	1 1, 663, 432, 484	1. 20	537, 358	20, 787, 406	48

Excludes copper recovered from mine-water precipitates as follows: Arizona, 32,737,425 pounds; Montana, 5,624,886; New Mexico, 8,258,984; and Utah, 14,223,006.
 Includes small quantity of copper from copper concentrates derived from tungsten ore.
 Calculated only on ore that yielded silver.
 Excludes magnetite-pyrite-chalcopyrite ore from Pennsylvania.

Copper ore, old tailings, etc., concentrated in the United States in 1940, with content in terms of recovered copper

	S			
State	Ore, old tail- ings, etc., concentrated (short tons)	Concentrates produced (short tons)	Copper pro- duced (pounds)	Copper from ore, etc. (per- cent)
Arizona	1 15, 530, 822	772, 845	2 314, 986, 799	1, 0
California	437, 508	20, 881	10, 573, 900	1. 2
Colorado	1,764	503	114,000	3. 2
Idaho	160	39	9, 631	3.0
Michigan	4, 438, 219	69, 226	90, 396, 000	1. 0
Montana	3, 248, 544	513, 900	241, 277, 039	3. 7
Nevada	6, 117, 071	269, 862	143, 291, 800	1. 17
New Mexico	6, 522, 903	207, 151	124, 576, 849	. 98
Utah	26, 296, 475	681, 231	439, 023, 871	. 83
Washington	688, 946	38, 766	18, 720, 971	1. 36
Eastern States	³ 618, 100	53, 043	21, 126, 000	
	63, 900, 512	2, 627, 447	1, 404, 096, 860	1. 10

Excludes 3,198,904 tons of copper ore treated by straight leaching.
 Excludes 70,589,712 pounds of electrolytic copper from copper ore treated by straight leaching.
 Excludes magnetite-pyrite-chalcopyrite ore from Pennsylvania.

Copper ore, old tailings, etc., smelted in the United States in 1940, with content in terms of recovered copper, and copper produced from all sources, in terms of recovered copper

		Ore, old t	ailings, etc., sn	nelted	Copper from
State		Short tons	Copper pro- duced (pounds)	Percent of copper	all sources including old slags, smelter cleanings, and precipitates (pounds)
Alaska					110, 000
Arizona California		1, 555, 100 8, 884	139, 509, 459 1, 752, 200	4. 49 9. 86	1 562, 338, 000 12, 876, 000
Colorado Idaho Michigan		332, 548 4, 771	21, 140, 198 685, 734	3. 18 7. 19	24, 304, 000 26, 698, 000 90, 396, 000
Missouri Montana			2, 386, 202	3, 04	1, 370, 000 1 252, 782, 000
Nevada New Mexico		41, 317 83, 568	13, 142, 200 5, 015, 698	15. 90 3. 00	156, 908, 000 1 139, 696, 000
OregonSouth Dakota		146	30, 100	10. 31 5. 00	176, 000 12, 000 60, 000
Texas Utah Washington		5, 270	520, 730 143, 691	4. 94 18. 96	\$ 463, 728, 000 19, 224, 000
Wyoming Eastern States		30 107, 785	4, 000 4, 337, 900	6. 67 2. 01	4, 000 25, 490, 000
		2, 179, 060	188, 668, 412	4. 33	1, 756, 172, 000

Copper ores produced in the United States, 1936-40, and average yield in copper, gold, and silver

	Smelting	ores 1	Concentrating ores 1		Total				
Year	Short tons	Yield in cop- per (per- cent)	Short tons	Yield in cop- per (per- cent)	Short tons 1	Yield in cop- per (per- cent)	in gold	Yield per ton in silver (ounce)	Value per ton in gold and silver
1936 1937 1938 1939	2, 388, 635 2 2, 763, 184 2 2, 028, 000 2, 396, 155 2, 179, 060	5. 05 4. 30 4. 49 4. 61 4. 33	36, 116, 692 2 58, 737, 922 2 34, 374, 026 50, 719, 026 63, 900, 512	1. 31 1. 15 1. 17 1. 09 1. 10	38, 514, 245 2 61, 513, 148 2 37, 794, 938 55, 239, 098 69, 278, 476	1. 54 1. 29 1. 34 1. 25 1. 20	0.0099 .0081 .0090 .0085 .0078	0. 453 . 327 . 414 . 333 . 300	\$0.70 .53 .58 .52 .48

Considerable copper was recovered from mine-water precipitates.
 Mostly recovered from ores classed as dry and siliceous silver and zinc-lead.
 Considerable copper was recovered from mine-water precipitates and from ores classed as dry and siliceous, zinc-lead, and zinc-lead-copper.

Includes old tailings, etc.
 Exclusive of Alaska, figures for which Bureau of Mines not at liberty to publish.

REFINERY PRODUCTION

The refinery output of copper in the United States in 1941 was made by 10 plants; 8 of these employed the electrolytic method and

2 the furnace process on Lake Superior copper.

There are five large electrolytic refineries on the Atlantic seaboard, three Lake refineries on the Great Lakes, and three refineries west of the Great Lakes—one at Great Falls, Mont.; one at Tacoma, Wash.; and one at El Paso, Tex. Of the above plants, the Lake refinery of the Quincy Mining Co. has been idle since 1933.

In addition to the foregoing plants, that at Inspiration, Ariz., is equipped to make electrolytically refined copper direct from the liquors obtained from leaching; this copper is shipped as cathodes to other refineries, where it is melted and cast into merchant shapes.

The 12 plants indicated constitute what commonly are termed "regular refineries." Of these plants, 9 employ the electrolytic process and 3 the furnace process. The electrolytic plants have a rated capacity of 1,561,000 tons of refined copper a year. As they produced 1,445,000 short tons in 1941, this part of the industry was operated at 93 percent of capacity.

Early in June 1942, the Phelps Dodge Corporation announced the letting of a contract for expansion in its electrolytic plant at El Paso. The cost was reputed to be \$2,650,000, and plans were reported to include a 50-percent increase in capacity of furnace and tank house. The increased capacity is required to take care of expansion in mine

and smelter production at Morenci, Ariz.

The following tables show the production of refined copper at regular refining plants, classified according to source, grade, and form in which cast.

Primary and secondary copper produced by regular refining plants in the Unitea States and imported, 1937-41, in pounds

200000 07		, 1001 41,	the pounds			
	1937	1938	1939	1940	1941	
Primary: Domestic: Electrolytic Lake Casting	1, 548, 857, 307 84, 007, 120 11, 640, 702	72, 021, 341	84, 928, 386	1, 767, 219, 614 87, 259, 382	1, 859, 421, 387 91, 395, 293	
Foreign: 1 ElectrolyticCasting and best select	1, 644, 505, 129 486, 285, 376 2, 837, 298	479, 635, 732	609, 284, 939		1, 950, 816, 680 839, 800, 708	
Refinery production, new copper. Imports, refined copper.	2, 133, 627, 803 14, 974, 815				2,790,617,388 4 441,523,575	
Total new refined copper made available	2, 148, 602, 618	1, 588, 434, 754	2, 051, 558, 228	2, 763, 786, 187	(5)	
Secondary: Electrolytic ⁶	312, 831, 103 380, 000		233, 225, 695	235, 337, 792	190, 873, 847 8, 476, 000	
	313, 211, 103	185, 084, 601	233, 225, 695	235, 337, 792	199, 349, 847	
Grand total	2, 461, 813, 721	1, 773, 519, 355	2, 284, 783, 923	2,999,123,979	(5)	

¹ The separation of refined copper into metal of domestic and foreign origin is only approximate, as an

accurate separation at this stage of manufacture is not possible.

2 Some copper from Michigan is electrolytically refined at eastern refineries and is included as electrolytic.

copper.

Data include copper imported for immediate consumption plus material entering country under bond.

Figures cover January to September, inclusive. Data for last quarter not available for publication.

Bureau of Mines not at liberty to publish, owing to confidential nature of import figures for last 3 months. of year.
• Includes some secondary Lake copper.

~			,	TT '. 7	~	1940-41
('ammar	cast a	n forme	am the	Imated	States	14/11-11
CUDDEI	cuse of	6 101 1160	010 0100	Chine	Diames.	1040 41

T	1940		1941		
Form	Pounds	Percent	Pounds	Percent	
W ire bars Ca thodes Ca kes Ing ots Other forms	1, 245, 000, 000 906, 000, 000 293, 000, 000 175, 000, 000 243, 000, 000	43. 50 31. 66 10. 24 6. 11 8. 49	1,472,000,000 601,000,000 383,000,000 257,000,000 277,000,000	49. 23 20. 10 12. 81 8. 60 9. 26	
	2, 862, 000, 000	100.00	2, 990, 000, 000	100.00	

In addition to the regular refineries, numerous plants throughout the country operate on scrap exclusively, producing metallic copper and a great variety of alloys. The output of these plants is not included in the statements of refined-copper production in the preceding tables but is included in the following statement of secondary-copper production.

Copper sulfate.—The production of hydrous copper sulfate or bluestone by copper refineries in the United States was 54,833,327 pounds having a copper content of 13,967,000 pounds in 1941 compared with 44,308,107 and 11,286,000 pounds, respectively, in 1940.

The output of copper sulfate by plants other than the regular primary refineries was 116,143,533 pounds with a reported copper content of 29,368,000 pounds in 1941 compared with 89,723,720 pounds containing 22,808,000 pounds of copper in 1940.

SECONDARY COPPER

Secondary copper includes material recovered from remelting old copper and copper scrap and from the treatment of copper alloys or alloys treated without separation of the copper. The following table summarizes the production of secondary copper during 1937–41. Further details appear in the chapter on Secondary Metals—Nonferrous.

Secondary copper produced in the United States, 1937-41, in short tons

	1937	1938	1939	1940	1941
Copper as metal	285, 600 246, 500	192, 400 167, 400	151, 370 1 348, 330	170, 839 1 361, 207	135, 869 1 590, 527
Total secondary copper	532, 100	359, 800	499, 700	532, 046	726, 396
From new scrapFrom old scrap	123, 200 408, 900	92, 500 267, 300	212, 800 286, 900	198, 156 333, 890	313, 697 412, 699
Percent of domestic mine output	63	65	69	61	76

¹ Includes copper in chemicals as follows: 1939, 3,200 tons; 1940, 9,431 tons; 1941, 9,804 tons.

CONSUMPTION AND USES

NEW SUPPLY

The usual discussion on supplies of new copper available for domestic use can be given in general terms only. This condition is due to the fact that precise information in 1941 regarding additions to supply by importation and withdrawals from supply for exportation are

available for the first 9 months of the year only; data for the last quarter are confidential. A tremendous gain in imports and a severe drop in exports, however, are shown by the 9-month totals. data are at hand to indicate that new copper was withdrawn from supply for domestic consumption in 1941 at a considerably higher rate than ever before. The record consumption, of course, was a direct result of the present World War, in which, however, the United States did not become an active participant until December 1941. The entry of this country into the war and the successive announcements of new and larger armament plans foretell new consumption records in 1942 and 1943. The recording of these tonnages as domestic consumption is accurate only insofar as consumption applies to the use of refined copper and primary fabricated shapes. Much of the metal, particularly in 1940 and 1941, actually was used in foreign countries, for after its manufacture here into war and industrial products it was or will be shipped abroad.

The following table shows the computation of apparent domestic consumption of new copper for 1937 to 1940. It should be noted that exports and stocks include some refined secondary copper that cannot be determined separately and that actual consumption of new copper would differ from the figures shown in the table by the changes in consumers' stocks.

New refined copper withdrawn from total year's supply on domestic account, 1937-41, in pounds

	1937 1938		1939	1940	1941	
Total supply of new copper Stock at beginning of year	2, 148, 602, 618 220, 000, 000	1, 588, 434, 754 358, 000, 000	2, 051, 558, 228 362, 000, 000	2, 763, 786, 187 191, 000, 000	(¹) 183, 000, 000	
Total available supply.	2, 368, 602, 618	1, 946, 434, 754	2, 413, 558, 228	2, 954, 786, 187	(1)	
Copper exported 2 Stock at end of year	620, 791, 029 358, 000, 000	770, 446, 945 362, 000, 000	792, 812, 995 191, 000, 000	754, 215, 509 183, 000, 000	⁸ 155, 648, 305 155, 000, 000	
	978, 791, 029	1, 132, 446, 945	983, 812, 995	937, 215, 509	(1)	
Withdrawn on domestic account	1, 389, 811, 589	813, 987, 809	1, 429, 745, 233	2, 017, 570, 678	(1)	

¹ Bureau of Mines not at liberty to publish, owing to confidential nature of foreign trade figures for last 3 months of year.
 2 Includes refined copper in ingots, bars, rods, or other forms.
 3 Figures cover January to September, inclusive.

INDUSTRIAL USE OF COPPER

The annual figures of the American Bureau of Metal Statistics on consumption of copper, by uses, for 1937 to 1941, inclusive, are shown in the following table. No other similar data are available in as Figures for 1941 confirm the indications that concomplete detail. sumption in that year towered above all previous annual totals it was 50 percent above 1940 and 38 percent above the previous record established in prosperous 1929. Before the war began in 1939, the possibility of again equaling the 1929 record appeared to be reserved for the very distant future. The magnitude of the program for tanks, ships, and airplanes, among other things, quickly changed previous ideas regarding requirements for copper.

The American Bureau of Metal Statistics Year Book states that the absence of information as to uses by arsenals, navy yards, and

shipbuilding yards, and on exports of manufactures (except for the first 9 months of the year) makes it impossible to supply 1941 estimates for all lines The Year Book savs-

The total deliveries of refined copper into consumption in the United States in 1941 (as to which we regard deliveries for manufactures for export as for domestic consumption) were 1,605,000 tons in shipments ex copper and brass mills, wire and cable mills, and in consignments to foundries for the manufacture of brass It does not follow that this delivery passed into use and probably it did not.

Estimated use of copper in the United States, 1937-41, in short tons

			10.0		100
Use	1937	1938	1939	1940	1941
Electrical manufactures 1	212,000	150, 000	185, 000	247, 000	393, 000
Telephones and telegraphs	40,000	30, 000	39, 000	49,000	78, 000
Light and power lines 2		62, 000	67,000	74,000	94,000
Wire cloth	6,800	6,000	8,000	9, 200	13,000
Other rod and wire 3		60,000	95, 000	120,000	253, 000
Automobiles 4	112,000	55, 000	85,000	103, 000	112,000
Buildings ⁵ Castings, n. e. s. ⁶	70, 500	67, 500	89,000	102, 000	134,000
Castings, n. e. s.6	40,000	31,000	33, 000	35, 000	38, 000
Clocks and watches		3,000	4,000	4, 400	4, 400
Copper-bearing steel	4,600	2,600	4, 200	4, 700	4, 900
Radiators, heating	2,100	2,000	3,600	2, 900	
Radio receiving sets	23, 100	21,000	27,000	32,000	
Radio receiving sets	7, 100	1,700	2,700	5, 700	
Refrigerators 8	13,500	6, 700	10,000	10, 500	
Shipbuilding 8	6,400	6,000	8, 500	8,700	480,700
Shipbuilding 8	7, 200	6,000	6,000	6,000	
Ammunition	14,100	12,500	14, 500	26,000	100
Other uses 10		46, 200	67, 600	81, 500	1.0
Manufactures for export		38, 800	51, 900	148, 400	1
	860,000	608, 000	801, 000	1, 070, 000	1, 605, 000

¹ Generators, motors, electric locomotives, switchboards, light bulbs, etc.
² Transmission and distribution wire and bus bars, accounting only for public-utility companies.
² Includes industrial wire and cable, wire in buildings, railway cars and ships, radio broadcasting, railway and municipal signaling, railway electrification, trolley wire, rod and wire for Government projects, blasting wire, flexible cord, and sundries.
⁴ Does not include starter, generator, and ignition equipment.
⁴ Excludes electrical work.
⁴ Bearings, bushings, lubricators, valves, and fittings.
² Includes air conditioning.
⁵ Excludes electrical equipment.

8 Excludes electrical equipment. Other than railway.

*• Other than railway.

10 Includes condenser tubes, oil-burner tubing, welding rod, screw-machine products, nickel-silver and phophor-bronze products, rivets and burrs, toilet pins, eyelets and grommets, electrotyping and engraving sheet, spark plugs, inner-tube valve stems, jar tops and rouge boxes, flashlight tubes, kerosene lamps, kitchen utensils, kitchen-range boilers, linotype matrices, safety razors, blasting caps, asbestos textiles, water meters, thermostats, soldering coppers, yacht fittings, coinage, washing machines, household water heaters, fire extinguishers, pumps, airplanes, engines, and sundry machinery, etc., all reckoned in terms of copper content. content.

STOCKS

The following table gives domestic stocks of copper as reported by primary smelting and refining plants. Stocks of blister and anode copper in transit from smelters to refineries are included under blister copper.

Stocks of copper at primary smelting and refining plants in the United States at end of year, 1937-41, in pounds

Year	Refined copper	Blister and materials in process of refining ¹	Year	Refined copper	Blister and materials in process of refining ¹
1937 1938 1939	358, 000, 000 362, 000, 000 191, 000, 000	428, 000, 060 466, 000, 000 520, 000, 000	1940	183, 000, 900 155, 000, 000	486, 000, 000 479, 000, 000

¹Includes copper in transit from smelters in the United States to refineries therein.

Inventories of refined copper at primary refineries in the United States at the end of 1941 were 15 percent below 1940 and were the smallest recorded since 1928. The demand that carried stocks to 114,000,000 pounds at the close of 1928, however, was the industrial boom of that period and varied greatly from the requirements for the war expansion program of 1941. Stocks of blister and anode copper at smelters, in transit to refineries, and at refineries at the end of 1941 were only slightly lower than in 1940 and, on the whole, were of relatively the same size as inventories of this class for a

number of years.

Figures compiled by the Copper Institute and published in the press show that domestic stocks of refined, duty-free copper totaled 75,564 tons at the close of 1941 compared with 142,772 tons in 1940. Study of the monthly changes in stocks in 1941 fails to reveal a complete story, inasmuch as free movement of metal was impossible during more than half of the year. The low point of the year in stocks occurred at the end of September, when 63,670 tons were reported. Differences are always found between stock data supplied by the Bureau of Mines and those of the Copper Institute and are due partly to a somewhat different coverage and to an arbitrary but permissible method used by the Copper Institute in designating the copper as domestic or foreign metal. Exceptional conditions in the market during 1941 brought the two sets of figures for the end of that year into closer agreement than usual.

Fabricators' statistics in 1941, published in the press, clearly show the effects of the tremendous demands for copper in that year. Stocks of refined copper in fabricators' hands fell from 339,755 tons at the end of 1940 to 292,973 tons at the end of 1941. Meanwhile, unfilled purchases of refined copper by fabricators from producers were 326,269 and 241,335 tons, respectively. Fabricators' working stocks, which rise and fall according to plant activity, were 237,105 tons on December 31, 1940, and 291,515 tons on December 31, 1941. Unfilled sales by fabricators to customers rose from 413,388 to 547,468 tons, respectively, at the close of 1940 and 1941. The excess of fabricators' stocks over booked orders declined from 15,531 tons at the end of 1940 to -304,675 tons at the end of 1941; this position had worsened further to -425,286 tons by the end of April 1942. Unfilled orders at the end of April 1942 had reached the staggering total of 632,474 tons.

PRICES

Reports to the Bureau of Mines from copper-selling agencies indicate that 1,139,000 short tons of copper were delivered to domestic and foreign purchasers (excluding deliveries to the Metals Reserve Co.) in 1941 at an average price (f.o.b. refinery) of 11.8 cents a pound, compared with 11.3 cents in 1940, 10.4 cents in 1939, and 9.8 cents in 1938.

Average quoted prices for 1940 and 1941 were almost identical with the delivered prices of the Bureau of Mines, each showing an increase of ½ cent a pound in 1941. The two sets of figures are

commonly in slight disagreement, owing to the fact that one is upon a sales basis and the other upon a delivery basis. Moreover, Bureau of Mines compilations of average values are computed upon the basis of weighted deliveries, whereas trade quotations are averages

of averages.

Throughout the year primary producers maintained a price for electrolytic copper (delivered Connecticut Valley points) of 12 cents a pound. For much of the year their action was voluntary, in deference to wishes of the Price Administrator that a uniform 12-cent price for copper be maintained. On August 12, however, a ceiling of 12 cents a pound, Valley, was placed on copper by the Office of Price Administration, and it has continued in effect beyond the time this report was prepared (June 1942). The 12-cent ceiling applied to electrolytic-grade copper in the shape of wire bars or ingot bars delivered in carlots. Lake copper, which had previously sold at a slight premium, was placed upon the same basis as electrolytic at Connecticut Valley points. A top price of 11% cents a pound, Valley, was set for casting copper made by fire-refining to a standard of 99.5 percent pure, including silver as copper. The casting-copper ceiling was revised to 11% cents, f. o. b. refinery, early in September.

Premiums ranging from % cent to 2 cents a pound were allowed for

less-than-carlots sold by other than refiners or producers.

The price order exempted sales of copper to the Metals Reserve Co. This provision was made to permit the purchase by that organization of high-cost copper production at higher than ceiling prices. Other provisions referred to other kinds, grades, shapes, or forms, to

contracts entered into prior to the order, and to other items.

Later in 1941 the Price Administrator announced that the proposed sale of high-cost Michigan copper to the Procurement Division of the Treasury Department at 1 cent a pound above "out-of-pocket" costs was undertaken with the full knowledge of his agency. Contracts were signed subsequently. An amendment issued January 14, 1942, provided, among other things, that sale above ceiling levels could be made to any Government department, agency, or corporation previously approved in writing by the Office of Price Administration.

Commodity Exchange, Inc., informed the Office of Price Administration and Civilian Supply that with electrolytic copper selling at no more than 12½ cents, Connecticut Valley, the proper relative price for "Standard" copper on the futures market should be approximately 11½ cents. The price agency announced on May 5 that the Commodity Exchange had agreed not to permit the opening up of new positions in the futures market for "Standard" at prices higher than 11½ cents.

The board of governors of Commodity Exchange, Inc., suspended copper trading on July 22 until further notice. This action was attributed to the allotment and priorities orders and regulations of the Office of Production Management in connection with the sale and distribution of copper, which prevented copper deliveries being

freely made against Exchange contracts.

Average monthly quoted prices of electrolytic copper for domestic and export shipments, f. o. b. refineries, in the United States and for spot copper at London, 1940-41, in cents per pound

		1940		1941			
Month	Domestic f. o. b. refinery ²	Domestic f. o. b. refinery ³	Export f. o. b. refinery ³	Domestic f. o. b. refinery 2	Domestic f. o. b. refinery 3	Export f. o. b. refinery ³	
January February March April May June July August September	12. 09 11. 28 11. 26 11. 20 11. 20 11. 25 10. 69 10. 83	11. 954 11. 148 11. 160 11. 087 11. 079 11. 128 10. 564 10. 708	11. 999 11. 471 11. 407 11. 258 11. 191 11. 216 10. 189 9. 851 9. 849	11. 87 11. 87 11. 87 11. 87 11. 87 11. 87 11. 87 11. 87 11. 7	11. 819 11. 794 11. 814 11. 820 11. 815 11. 810 11. 812 11. 778 11. 775	10. 25 10. 41 10. 59 10. 95 10. 95 10. 95 10. 95	
October November December Average for year	11. 87 11. 87 11. 87	11. 826 11. 800 11. 802 11. 296	10. 436 10. 084 10. 293	11.87 11.87 11.87	11. 775 11. 775 11. 775 ———————————————————————————————————	11. 36 11. 20 11. 20	

London Metal Exchange dealings suspended for duration of war.
 As reported by American Metal Market Co.
 As reported by Engineering and Mining Journal.

Average yearly quoted prices of electrolytic copper for domestic and export shipments, f. o. b. refineries, in the United States and for spot coppor at London, 1932-41, in cents per pound

	1932	1933	1934	1935	1936	937	1938	1939	1940	1941
Domestic f. o. b. refinery ¹ Domestic f. o. b. refinery ² Export f. o. b. refinery ² London spot ² ⁴	5. 67 5. 555 (3) 5. 629	7. 15 7. 025 6. 713 6. 877	8. 53 8. 428 7. 271 7. 496	7. 538	9. 230		10.000 9.695	11. 07 10. 965 10. 727 510. 066	11. 296 10. 770	11.797

With the market under strict controls, totals for domestic copper sales in 1941 declined from 1940--1,037,900 tons from 1,109,749 tons. Peak monthly sales occurred in January, when they totaled 104,835 tons, considerably less than half the 254,277 tons attained in September 1940, the highest month y sales ever recorded.

Transactions on the London Metal Exchange were suspended at the beginning of the war. The maximum buyers' price on standard copper was fixed by the British Ministry of Supply at £62 per long ton in December 1939 and has remained there to the present.

FCREIGN TRADE 2

Ordinarily United States imports and exports of copper constitute a well-balanced trade through which the smelting, refining, and manufacturing facilities of this country are utilized to treat foreign raw materials and to return copper and manufactures of copper abroad. Normal trade conditions are nonexistent at present (June

As reported by American Metal Market Co.
 As reported by Engineering and Mining Journal.
 Not available. Export quotation established after imposition of tariff in 1932.
 Conversion of English quotations into American money based on average rates of exchange recorded by Federal Reserve Board of Treasury.

⁵ Average for 8 months. ⁶ No quotations.

² Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Comme ce.

1942), and many of the avenues of trade are greatly changed. None-theless, record-breaking quantities of copper entered the United States in 1941, and large amounts were exported. Exports, however, were in even further stages of manufacture than usual—forms not covered by this report—and they were highly concentrated, no doubt, among what are now the Allies of the United States. For more than a year, the accent in the United States has been on obtaining increased quantities of crude and refined copper for its own expanded needs and for the manufacture of forms suitable for the war needs of nations fighting the Axis Powers.

Beginning with October 1941 all foreign trade information has been held confidential, so data for 9 months only are published in this report. The quantity of crude and refined copper entered during the 9 months, however, was large enough to top all previous annual totals. Meanwhile, exports of refined copper and primary fabricated shapes had declined so far that they were almost the smallest of the century,

surpassing the totals for 1933, 1932, and 1901 only.

In 1941 (9 months), 58 percent by weight of the copper imported was contained in ore, concentrates, and unrefined furnace products, and 42 percent was refined copper. These proportions marked an important change from the pre-war years since enactment of the tariff in 1932, when little refined copper was entered. Less than 1 percent of the copper imported in unmanufactured form during 1938 (only 5 percent during 1939) was refined copper. It had become evident by 1940 that metal available in the United States would be inadequate to fill industrial requirements in this country, plus the sharply expanded demands of foreign countries for war products made to a large or small extent of copper. The ratio of refined imports to the total rose to 14 percent in 1940 and, as already pointed out, to 42 percent in 1941. Most of the refined copper brought into the country during 1941 was metal contracted for by the Metals Reserve Co., as mentioned in the opening section of this report.

Virtually all the copper exported is composed of refined metal and primary fabrications therefrom; 97 percent of the total for the first

9 months of 1941 consisted of such forms.

Separation of total exports to show the quantity of domestic copper shipped from the United States is not possible. From enactment of the present tariff until 1940, total exports of refined copper and primary fabricated shapes exceeded imports of unmanufactured copper. In 1940, however, the import excess was 127,000,000 pounds and for the first 9 months of 1941 reached the enormous total of 834,000,000 pounds. The apparent import excess would be reduced substantially if data were available covering copper contained in exports of such manufactured products as airplanes, tanks, and electrical apparatus.

IMPORTS

Although data in 1941 for only 9 months are available for publication, the establishment of a new high record for imports of unmanufactured copper in that year is evident, as imports for 9 months were 7 percent above the previous annual peak in 1940. The main reason for this sharp increase is the enormous gain in receipts of refined copper from Chile. For a number of years before 1940, entries of refined copper comprised no more than 5 percent of the total, but

they represented 42 percent in the first 9 months of 1941. This shift was due to the unprecedented requirements for copper in the United States in 1941 and to the disrupted state of ocean transportation; both of these caused the United States to absorb metal that normally would have been exported to Europe. Other trends are not so evident from the incomplete import figures. Conservation of cargo space probably caused a drop in receipts of ore and resulted in no increase, at least, in receipts of concentrates. Imports of ores, concentrates, and blister copper from British Africa decreased notably in 1941, but imports of crude copper from Belgian Congo appeared to have more than held their own. Canada increased its shipments of both crude and refined copper to the United States. Incomplete data indicate that receipts of concentrates from Newfoundland and blister copper from Peru declined notably in 1941.

Copper (unmanufactured) imported into the United States in 1941 (January to September, inclusive), by countries, in pounds ¹

Country	Ore (copper content)	Concentrates (copper content)	Regulus, black or coarse copper, and cement copper (copper content)	Unrefined black blis- ter and converter copper in pigs or con- verter bars	Refined in ingots, plates, or bars	Old and scrap copper, fit only for remanufac- ture, and scale and clippings
Africa, British: Union of South Other South Argentina	4,414	237, 637 862, 838 44, 027	20, 000	13, 274, 700		30, 000
Australia Belgian Congo Bolivia Burma	1, 409, 953 381, 077	8, 911, 475	1, 993 63, 072, 888 2, 113, 044	54, 999, 529		
Canada Chile Colombia Cuba	159, 992 2, 322, 250 20, 131 218, 142	50, 075, 664 2, 794, 050 23, 832	480, 718 3, 518	40, 560, 121 202, 239, 445	7, 794, 119 433, 729, 456	2, 732, 561 89, 412 8, 910
Curação (NWI) Ecuador Honduras	141, 532	12, 575, 748 4, 685, 436 271, 280				104, 522
Mexico	1, 622, 733	9, 963, 109		64, 211, 741		9, 138 66, 550
PeruPhilippine IslandsOther countries	458, 490 (2) 5, 425	5, 327, 344 23, 853, 129 24, 482	7,455	46, 937, 217		
	6, 744, 139	110, 235, 002	65, 932, 192	422, 222, 753	441, 523, 575	3, 290, 909

¹ Data include copper imported for immediate consumption plus material entering country under bond.
² Some copper in "ore" and "other" from Philippine Islands not separately classified is included under "concentrates."

Copper (unmanufactured) imported into the United States, 1937-41, by countries, in millions of pounds 1

Country	1937	1938	1939	1940	1941 (Jan.– Sept.)
Africa: Belgian Congo. British: Union of South Other South Australia Bolivia. Canada Chile. Cuba Ecuador. Malta, Gozo, and Cyprus Islands Mexico. Newfoundland and Labrador Peru. Philippine Islands. Turkey. United Kingdom Yugoslavia Other countries.	4 5 6 61 199 28 (2) 9 108 16 82 1	4 9 5 5 5 88 8135 366 (2) 3 94 13 80 0 3 3 5 5 1 21 2 2 2	34 30 6 4 95 240 20 3 105 20 77 3 11 1 19	122 32 55 2 8 103 409 23 3 3 9 87 20 84 4 4 12	118 (2) 14 1 9 102 641 13 5
Y MAY	560	504	673	983	1,050

Data include copper imported for immediate consumption plus material entering country under bond.
Less than one half million pounds.

Copper (unmanufactured) imported 1 into the United States, 1937-41

Year	Pounds	Year	Pounds	
1937 1938 1939	559, 749, 133 504, 327, 779 672, 594, 122	1940 1941 (JanSept.)	982, 684, 647 1, 049, 948, 570	

Data include copper imported for immediate consumption plus material entering country under bond.

EXPORTS

Total exports of copper as refined metal and in primary fabricated shapes slumped sharply, according to the incomplete foreign trade data available for publication for 1941; they were surpassed by all but 3 years of the present century. The foregoing statement gives a partial picture only, because huge demands for manufactured products that contain copper caused the shipment of considerable but unknown quantities of this metal from the United States.

Comparison of export data for the first 9 months of 1941 with those for the similar period of 1940 reveals some drastic changes. The largest export class—refined copper in ingots, bars, etc.—declined 78 percent during the 1941 period. Other important decreases were 52 percent for pipes and tubes, 41 percent for rods, and 37 percent for old and scrap. Plates and sheets moved against the general trend and increased 7 percent. Bare-wire exports were 30 percent lower during the first 9 months of 1941 than in the same months of 1940, and rubber-covered wire was 68 percent lower. Weatherproof wire, however, gained 30 percent in the 9-month period of 1941 and the vastly more important "other insulated wire," 84 percent.

Information concerning the destination of exports in 1941 has been published for only the first 3 months of the year. It is a noteworthy and bitter fact that from 1937–40, inclusive, Japan received more of the copper shipped from the United States than did any other country. This movement was halted in 1941, but not before large quantities of metal had been sent to Japan. Germany, France, Italy, and other European countries normally were markets for large quantities of United States copper but naturally are receiving none at present. The United Kingdom was the destination of the second-largest amount in 1940 and doubtless outranked all other countries in 1941.

In recent years, exports of copper and primary manufactures thereof to Brazil and Argentina have increased. Shipments to China gained notably in 1940 and continued to be large during the first 3 months of 1941.

The second table following shows the destinations of copper exported in 1937 to 1940, inclusive, and in the first 3 months of 1941.

Copper exported from the United States, 1937-41, by classes

Class	19	37	19	938	19	1939		
	Pounds	Value	Pounds	Value	Pounds	Value		
Ore, concentrates, etc. (copper content) Refined in ingots, etc. Old and scrap. Pipes and tubes. Plates and sheets. Rods. Wire (bare) Insulated copper wire and cable: Rubber-covered. Weatherproof. Other. Other copper manufactures.	41, 828, 050 2, 182, 976 2, 770, 814 30, 663, 983 9, 389, 653 7, 705, 486 2, 615, 497 5, 174, 582	\$891, 639 76, 684, 278 4, 571, 368 547, 363 547, 363 548, 294 4, 113, 564 1, 521, 911 2, 046, 995 473, 541 1, 339, 817 851, 697	2, 004, 229 741, 090, 681 43, 621, 346 1, 644, 804 1, 099, 590 29, 356, 264 10, 723, 595 6, 055, 254 2, 598, 495 5, 833, 168 (1)	\$171, 878 74, 062, 534 3, 574, 504 355, 368 224, 466 3, 127, 467 1, 285, 951 1, 389, 762 398, 924 1, 528, 994 689, 008	745, 554, 651 35, 285, 656 3, 139, 888 1, 685, 218 47, 258, 344 7, 259, 770 5, 875, 757 2, 644, 200 6, 330, 330	\$24, 64 82, 232, 83 3, 375, 60 746, 83 353, 28 5, 489, 48 997, 69 1, 302, 73 413, 26 1, 384, 99 863, 56		
Class			19	40	19 (Jan.–			
			Pounds	Value	Pounds	Value		
Ore, concentrates, etc. (copper Refined in ingots, etc. Old and scrap Pipes and tubes. Plates and sheets. Rods. Wire (bare) Insulated copper wire and cabl Rubber-covered. Weatherproof. Other Other opper manufactures.	712, 862, 128 14, 297, 577 7, 671, 798 7, 454, 072 41, 353, 381 17, 711, 322 32, 773, 326 1, 533, 064	\$79, 623 81, 840, 805 1, 526, 158 1, 631, 458 1, 435, 438 5, 167, 363 2, 642, 572 9, 108, 533 289, 716 4, 812, 551 1, 584, 441	3, 276 135, 661, 707 6, 402, 569 2, 921, 154 5, 678, 425 19, 986, 598 7, 449, 882 9, 692, 732 1, 855, 562 25, 937, 025	\$390 15, 365, 393 711, 265 787, 482 1, 096, 282 2, 611, 735 1, 300, 905 2, 708, 917 378, 204 6, 179, 51 1, 007, 995				

¹ Quantity not recorded.

Copper exported from the United States, 1937-40 and January to March 1941, by countries, in millions of pounds

Coun	try	1937	1938	1939	1940	1941 (Jan.– Mar.)
India, British Indochina, French Italy Japan Kwantung Mexico Netherlands Norway Philippine Islands Poland and Danzig Spain Sweden		7 34 5 7 12 3 12 7 6 84 100 6 (1) 9 (1) 42 157 2 8 20 8 3 7 (1) 35 (1) 4 108 15	6 222 5 4 4 2 70 5 9 70 173 8 3 5 (1) 47 2222 9 3 21 6 4 4 25 (1) (1) 62 19 19 19 19 19 19 19 19 19 19 19 19 19	4 14 8 2 3 3 3 2 7 7 7 153 54 (1) 11 11 6 60 259 17 4 16 12 2 3 3 225 1 1 51 7 7 49 44 5 17 855	111 33 122 44 144 33 55 733 11 100 114 11 688 241 20 70 8 11 3 3 15 163 163 164 164 165 165 165 165 165 165 165 165 165 165	1 3 2 5 5 (1) 43 4 4 2 1 1 (1) (1) (1) 2 1 5 9 9 93

¹ Less than one-half million pounds.

Copper 1 exported from the United States, 1937-41

	Pounds		Total	Year	Pou	Tota!		
Year M	Metallic 2	Total	value	1 ear	Metallic ²	Total	value	
1937 1938 1939	692, 458, 087 842, 023, 197 855, 033, 814	700, 633, 261 844, 027, 426 855, 157, 653	\$92, 774, 770 86, 119, 848 96, 321, 365	1940 1941 ³	855, 299, 411 215, 585, 654	855, 887, 957 215, 588, 930	\$108, 534, 217 31, 140, 095	

¹ Exclusive of "other copper manufactures" valued at \$851,697 in 1937; \$689,008 in 1938; \$863,561 in 1939; \$1,584,441 in 1940; and \$1,007,995 in 1941 (Jan.—Sept.).

² Exclusive of ore, concentrates, and composition metal; exclusive also of unrefined copper, figures for which are not separable from those for ore and concentrates.

³ January to September, inclusive.

The value of brass and bronze exported from the United States gained sharply in 1940, when it was five times that in 1939. It declined in 1941; but the total for the first 9 months was larger than any annual total (except 1940) since 1918. Data covering this class, too, are incomplete for publication, but the figures that may be published indicate that the drop in 1941 was shared by all major classes of brass and bronze.

Brass and bronze exported from the United States, 1940-41, by classes

Class	19	940	1941 (JanSept.)		
	Pounds	Value	Pounds	Value	
Ingots Scrap and old Bars and rods. Plates and sheets. Pipes and tubes. Pipe fittings and valves. Plumbers' brass goods. Wire of brass or bronze. Brass wood screws. Hinges and butts of brass or bronze. Other hardware of brass or bronze. Other brass and bronze manufactures.	2, 944, 804 1, 424, 883 9, 312, 705	\$188, 039 1, 056, 414 8, 894, 520 21, 719, 237 1, 149, 321 1, 786, 549 796, 402 2, 686, 117 72, 929 98, 721 371, 646 6, 408, 879	161, 908 1, 361, 873 14, 623, 767 55, 773, 337 2, 181, 833 2, 037, 547 916, 086 5, 879, 195 (1) (1) (1)	\$24, 086 104, 713 2, 487, 924 10, 098, 695 1, 330, 938 537, 987 1, 451, 026 88, 061 97, 349 372, 917 3, 510, 195	
		45, 228, 774		20, 770, 070	

¹ Weight not recorded.

Unmanufactured brass exported from the United States, 1937-41

[Ingots, bars and rods, and plates and sheets]

Year	Pounds Value		Year	Pounds	Value	
1937 1938 1939	17, 373, 035 3, 645, 637 12, 951, 892	\$2, 573, 245 677, 809 1, 946, 578	1940 1941 (JanSept.)	181, 814, 478 70, 559, 012	\$30, 801, 796 12, 610, 705	

Copper sulfate (blue vitriol) exported from the United States, 1937-41

Year	Year Pounds Value		Year	Pounds	Value	
1937 1938 1939	23, 528, 240 31, 249, 735 29, 239, 575	\$1, 212, 430 1, 229, 317 1, 157, 498	1940 1941 (JanSept.)	55, 480, 646 47, 484, 360	\$2, 293, 983 1, 952, 120	

WORLD ASPECTS OF COPPER INDUSTRY

Nothing much can be added to the world discussions given in chapters of this series for several preceding years, as few new data on foreign sources have been made available. The year 1941 witnessed extension of German control over European sources (with Russia the principal exception) of copper and other materials, and authorities testified to Germany's inadequacy as regards copper at least. The more surprising deficiency in copper supplies, however, was that of the United States, which has huge reserves of its own and has access to additional large sources in the Western Hemisphere and elsewhere but whose consumption for nonessential use had to be drastically curtailed to conserve metal for war requirements. The stringent situation in the United States resulted primarily from efforts of this country to fulfill its promise to serve as the arsenal of democracy. The United States did not enter the war until December. However, other democratic powers, chiefly the British Empire, made enormous demands on the United States for supplies of war materials.

Available data on foreign countries are shown in the following pages.

World mine and smelter production of copper, 1938-41, in metric tons [Compiled by B B. Waldbauer]

G. vinter		Mir	ie		Smelter				
Country	1938	1939	1940	1941	1938	1939	1940	1941	
North America: Canada Cuba Mexico Newfoundland United States	259, 113 14, 431 41, 851 8, 056 505, 991	276, 157 9, 964 44, 390 10, 341 660, 717	(1) \$ 10, 500 37, 602 9, 426 796, 582	(1) 9, 838 48, 716 5, 007 869, 214	² 215, 732 37, 100 ⁴ 570, 773	² 229, 367 39, 045 ⁴ 698, 323	31, 252	(1) 40, 914 • 1, 015, 346	
South America:	829, 442	1, 001, 569	(1)	(1)	823, 605	966, 735	1, 234, 842	(1)	
BoliviaBrazilChile	\$ 2, 885 15 351, 482 37, 529	8 4, 056 14 339, 173 35, 616	⁸ 6, 660 (1) 352, 010 43, 965	5 7, 274 (1) (1) 35, 378	337. 508 35. 741	324, 591 34, 115	336, 861 33, 584	453, 594 3 28, 162	
Europe: Belgium	391, 911	378, 859	(1)	(1)	373, 249 6 81, 460	358, 706 6 65, 850	(1)	481, 756 (1)	
Bulgaria Cyprus Finland France Germany ³ ⁷	29, 789 12, 232 7 600	320 24, 384 11, 797 (1)	7 20, 000 (1)	(1)	11, 824	13, 246	(1) (1) (1)	(1) (1) (1)	
Austria ³⁷	30,000 336 71,000 21,619	30, 000 (1) (1) 20, 358	35, 800 (1) (1) 3 29, 000	(1) (1) (1) (1)	2, 963 10, 547	8 66, 000 (1) 3 10, 515	(1)	(1) (1) (1)	
Portugal Rumania Spain Sweden U. S. S. R. ¹⁰ United Kingdon Yugoslavia	4, 884 9 580 7 30, 000 9, 289 11 114, 552 37 49, 500	(1) (1) (1) 9, 610 11 144, 000 (1) 64, 200	(i) (1) (1) (1) (1) 11 157, 900 (1) (1)		580 14, 984 10, 668 114, 552 7, 200 41, 993	(1) 77,300 11,076 144,000 74,000 41,658	(1) 4, 493 7 12, 500 157 000 7 4, 500 3 42, 951	(1) (1) (1) (1) (1) (1)	
Asia:	304, 473	(1)	(1)	(1)	366, 771	(1)	(1)	(1)	
Burma	7 3, 600 240 7 5, 600	7 3, 365 1 (1)	(1) (13) (1)	(1) 14 163 (1)	5, 416	6, 640		14 163 (1)	
Japan Proper Taiwan Netherlands Indies Philippine Islands	7 4, 000 93 4, 435	7 4, 000 94 7, 496	(1)	(1) (1) (1) 7 9, 900			7 125, 000	(1)	
Turkey U. S. S. R	11 2, 488 (10) 10 122, 456	11 5, 917 (10)	(10) (1)	(1) (19) (1)	2, 488 (10) 10 110, 144	5, 917 (10) 10 116, 558	8,731 (10) (1)	(1) (10) (1)	
Africa: Algeria Belgian Congo Rhodesia:	22 11 123, 943	(1) 11 122, 649	(1) 11 148, 619	(1) (1)	123, 943	122, 649	148, 619	⁷ 165, 000	
NorthernSouthernSouthernSouth West Africa	254, 904 5 4, 828 11, 305	(1) (1) 3,530 10,998	(1) (1) 1, 485 13, 350	(1) (1) (1) (1)	216, 450 13, 468		7 231, 330	(1)	
Oceania: Australia	395, 007 19, 758	(1) 19, 800	(1)	(1)	353, 861 17, 372	351, 803		(1)	
•	2, 063, 000	(1)	(1)	(1)	2, 045, 009	72,182,000	(1)	(1)	

¹ Data not available.
2 Copper content of blister produced.
3 According to Year Book of American Bureau of Metal Statistics.
4 Smelter output from domestic and foreign ores, exclusive of scrap. Production from domestic ores only, exclusive of scrap, was as follows: 1938, 510,133 tons; 1939, 646,524 tons; 1940, 824,703 tons; 1941, 876,401 tons.
5 Copper content of exports.
6 Figures represent blister copper only. In addition to blister copper, Belgium reports a large output of refined copper which is not included above as it is believed produced principally from crude copper from Belgian Congo and would therefore duplicate output reported under the latter country.
7 Approximate production.
8 Exclusive of material from scrap.
9 Smelter output from U. S. S. R. in Asia included under U. S. S. R. in Europe.
11 Smelter product.
12 Exports of ingots and slabs.
13 Less than 1 ton.
14 January to August, inclusive.

REVIEW BY COUNTRIES

Australia.—The pressing need for copper for defense purposes in Australia led the Commonwealth Prices Commissioner to raise the refined copper price to £86 10s. per ton in midyear as an inducement toward increased production. At about the same time, the Minister for Supply and Development appointed a committee to investigate copper and bauxite resources. Australia was reported to be partly dependent on overseas sources for copper and entirely dependent for bauxite.

Production figures are not available for 1941, but 22,680 metric tons were produced at smelters in 1940 compared with 20,219 in 1939. Output is mainly from Mount Lyell, Tasmania, and Mount Morgan, Queensland. At the annual meeting of the Mount Lyell Mining & Railway Co., Ltd., on December 12, it was stated that larger tonnages of ore were handled during the year but that, owing to lower copper

content, the copper output was a little less.

The Commonwealth Government advanced £10,000 to Mount Morgan, Ltd., for the unwatering and development of the Great Fitzroy mine at Mount Chalmers near Rockhampton. The annual capacity for production was expected to be 2,000 tons. The Government also advanced £50,000 to Mount Isa Mines, Ltd., Queensland, which produces silver, lead, and zinc, so that it may develop copper ore at the mine. It was reported that annual production probably would reach 5,000 tons. Additional prospecting and development

work were in progress on other parts of the continent.

Belgian Congo.—Available data on production of copper in Belgian Congo indicate a sharp increase in activity there. Smelter output was estimated at 165,000 metric tons in 1941 compared with 148,619 tons in 1940. As indicated in the preceding report of this series (Minerals Yearbook, Review of 1940, p. 108), the Belgian and British Governments reached an agreement early in 1941 for the delivery of 126,000 metric tons of copper to the United Kingdom by Union Minière du Haut Katanga. The overrunning of Belgium by the Germans had increased the quantities of Belgian Congo copper available to the British and actually made all of it available to enemies of Germany. At the annual meeting of Union Minière du Haut Katanga (May 1941), the company capacity to produce copper was reported as 200,000 tons. New prospecting was then reported to have substantially increased ore reserves. Figures covering imports of copper into the United States during the first 9 months of 1941 show that about 28,600 metric tons of regulus, black or coarse copper, and cement copper and 24,900 tons of unrefined black blister and converter copper were received from Belgian Congo during that period; data covering all of 1941 are not available for publication.

Brazil.—Occurrences of copper in Brazil and recent attempts to promote production there are described in the Foreign Minerals

Quarterly of July 1941, issued by the Bureau of Mines.

Canada.—Statistics on mine production of copper in Canada are confidential for both 1940 and 1941. There seems little reason to question, however, that new annual peaks were reached each year. There were noteworthy consumption gains also in 1941, as Canadian industry assumed a larger share in supplying the increasing war needs of the British Empire for fabricated products. The Northern

COPPER 119

Miner (Toronto) in its annual number (November 13, 1941) stated that Canada probably was now consuming one-third of its annual output. Large amounts of brass are being manufactured, the review said, and the upward trend will be increased in the current year. The annual review number of the Engineering and Mining Journal for 1941 reported that

Munitions have become the big business of the Dominion and in securing adequate supplies of nickel, copper, and zinc for war effort, along with gold that will maintain credit with the United States, the national economy has been turned over to two agencies that have absolute authority. These are the Department of Munitions and Supply, which is the supreme purchasing control, and the Wartime Prices and Trade Board, which sets prices and wages throughout the land. The Metals Controller, who is working under this closely integrated program, is the arbiter of mining.

The Dominion Bureau of Statistics reported that Canadian basemetal mines, smelters, and refineries worked to capacity during 1941. Plans to produce other metals of strategic importance, in addition to maximum outputs of copper, lead, and zinc, were in evidence.

More than half of the copper produced in Canada in 1941 probably came, as usual, from the nickel-copper mines of the Sudbury district. The principal producer in that area is The International Nickel Co. of Canada, Ltd. This company reported that war requirements dominated markets for its products during the year and that, with few exceptions, all deliveries were made in Canada, the British Empire, and the United States. In past years the company has refined the major part of its copper and exported the remainder as matte. Quebec normally ranks as the second most important Province in copper production. Noranda Mines, Ltd., is the outstanding producer, and others include Waite Amulet, Aldermac Mines, Ltd., and Normetal Mining Corporation, Ltd. All of Quebec's production is refined at Montreal East by Canadian Copper Refineries, Ltd., subsidiary of Noranda Mines, Ltd., which was operated at capacity during the year. The Britannia Mining & Smelting Co., subsidiary of the Howe Sound Co., at Howe Sound, and the Granby Consolidated Mining, Smelting & Power Co., which operates the Copper Mountain mine at Allenby, are the principal copper producers in British Columbia. Copper reserves at the Copper Mountain mine have been greatly amplified in recent years, according to the Canadian Mining Journal of September 1941. Several years ago it was reported that ore reserves might be estimated at 10,000,000 tons. At present, the journal stated, after several years of full-blast operations reserves are estimated at 17,220,729 tons, and current operations were disclosing new ore in excess of the quantity mined. The larger reserves contained an average of 1.32 percent copper, or less than was formerly estimated. Concentrates from the two British Columbia mines mentioned go to Tacoma, Wash,, for smelting and refining. The copper produced in Manitoba and Saskatchewan comes from the Flin Flon mine of the Hudson Bay Mining & Smelting Co., Ltd., and the Sherritt Gordon mine of the Sherritt Gordon Mines Co., Ltd. The report of the Hudson Bay Co. for 1941 stated that production of copper, zinc, gold, and silver in that year was the highest on record. The Sherritt Gordon production, which is restricted by current milling capacity, goes to the United States under bond for treatment.

Chile.—The urgent world need for copper for war purposes gave impetus to production in Chile and output there reached unprecedented levels in 1941; production amounted to 453,594 metric tons compared with 336,861 tons in 1940 and 396,444 tons in 1937, the previous record year. There seems little doubt that Chile, in 1941 as usual, ranked second in importance among the copper-producing countries of the world by a substantial margin, although data for Canada and Northern Rhodesia are not available.

The strain on producers to supply requirements in 1941 marked shorp reversal of the condition that prevailed early in the war period. Then Chile was virtually cut off from its principal markets in Europe, and the large, low-cost output from its mines was almost without out-

let.

According to Knox,³ engineers have been careful to speed up Chilean production and at the same time to avoid certain errors made during the first World War, when frenzied stripping of ore often left the work-

ings so unstable that subsequent operations were hampered.

Japan tried to obtain increasingly large supplies of crude and refined copper from Chile during 1941. Action of the Metals Reserve Co. in contracting to receive most of the copper produced in Latin America not only increased supplies of this metal available to the United States but withheld them from Japan. Reports indicated that 209,403 metric tons of electrolytic copper and 195,861 tons of standard went to the United States in 1941, out of totals of 240,707 and 199,264 tons, respectively, for all countries; Japan received 12,771 and 3,403 tons. Other South American countries received increased amounts of Chilean copper in 1941—Argentina took 10,251 tons and Brazil 8,020 tons of electrolytic copper. Italy was the destination of 6,483 tons of electrolytic copper and 11,990 tons of standard copper exported from Chile in 1940 but could not obtain any in 1941.

The Chile Copper Co. produced 216,847 metric tons of copper in 1941 compared with 150,994 in 1940, and Andes Copper Co. 94,243 tons compared with 72,932; these two companies are Anaconda Copper Mining Co. subsidiaries. The Braden Copper Co. (subsidiary of the Kennecott Copper Corporation) produced 131,703 tons in 1941

compared with 109,185 tons in 1940.

Cuba.—Production of copper in Cuba totaled only 9,838 metric tons in 1941, a decline from 10,500 tons in 1940 and only two-thirds of the output of 14,431 tons in 1938, the peak period of recent years. Minas de Matahambre, Pinar del Rio Province, has been the principal copper-producing property in Cuba. The 1941 annual report of the American Metal Co., Ltd., which owns a 59-percent interest in the Matahambre mine, stated that it had been impossible for some time past to replenish ore reserves as rapidly as ore was extracted. Unless continued search resulted in the development of new ore bodies, the report continued, the mine probably would have to cease production in about a year.

Germany.—Although Germany had overrun most of Europe (except Russia) by the end of 1941 and had access to all of Europe's copper except that of Russia, additions to supply from European mines to offset losses from Germany's major sources of supply overseas were noteworthy only insofar as the Bor mine in Yugoslavia was

³ Knox, Newton B., South America: Eng. and Min. Jour., vol. 143, No. 2, p. 67.

COPPER 121

concerned. Germany's supplies of copper were described in the two preceding chapters of this series. Refined metal, metal products, and scrap materials requisitioned in conquered territory have made substantial though unmeasurable additions to Germany's inventories of Despite these acquisitions in 1940 and 1941, however, all authorities appear to agree that copper is one of the commodities that in the long run will present a serious problem to the Axis Powers; Italy is in a worse position than Germany, and Japan as well lacks adequate sources of supply. Germany's annual deficiency in copper and the rate at which it must draw on stocks of unknown size have been subjects of much speculation. The Metal Bulletin 4 calculated the current rate of consumption at perhaps 372,000 tons and stated that if deductions of total mine output of 120,000 tons (all accessible Europe), process scrap of 75,000 tons (calculated upon the basis of 20 percent of current output of products), imported scrap of 30,000 tons, and possible war scrap of 25,000 tons were made, an annual drain of 122,000 tons on inventories is indicated. The Mining Journal (London), after estimating current quantities of copper available from every source as compared with former supplies, stated: "From whatever angle the situation is examined, one fact is evident. Germany must replace the equivalent of about 200,000 tons of imported copper (ingots, ores, etc.) to meet even peace-time annual consumption." Percy Barbour 6 stated that Hitler consumed only 1,352,700 metric tons in the 6 years 1933-38 when he was building his war machine. Barbour's article quotes figures showing that Germany, plus all other Europe, except Russia, produced 114,000 metric tons of copper in 1940 and that consumption in Germany plus all other Europe except Russia totaled 771,000 tons in 1939, the latest year for which data are available.

Mexico.—Mine production in Mexico was carried on at a high rate in 1941; the output—48,716 metric tons—was the largest annual total since 1931. In the period 1923–31, however, tonnages produced ranged from 50,062 to 86,554 tons and averaged 61,700 tons.—Smelter recovery was reported as 40,914 metric tons in 1941 compared with

31,252 tons in 1940.

Northern Rhodesia.—Northern Rhodesia is another of the large copper-producing countries of the world that have been regularly establishing new annual production records. Mine data for 1940 and 1941 are confidential, but there is no reason to doubt that the uptrend continued in those years as copper was urgently needed to help fill the large war requirements of the British Empire. There have been complaints from time to time that the British excess profits tax has worked a hardship, particularly on some of the companies, and has had a somewhat deterrent effect on production. The South African Mining and Engineering Journal of January 17, 1942, stated that the mining companies in Northern Rhodesia have expanded their operations considerably so that, in spite of the pegging of the price of their product, earnings have increased substantially. It said, however, that the financial return to those who made this expansion possible has descended sharply.

Metal Bulletin (London), No. 2621, August 29, 1941, pp. 4-5.
 Mining Journal (London), vol. 215, No. 5539, October 18, 1941, p. 19.
 Barbour, Percy E., The War-Copper Situation: Am. Metal Market, September 23, 1941, p. 3.

The principal mines were, as usual, the Roan Antelope, Rhokana, and Mufulira. The proposed expansion at Nchanga, mentioned in the Copper chapter of Minerals Yearbook, 1940, Review of 1939, has been delayed because of the war, but the company reported a satisfactory increase in the production of concentrates in its pilot plant. According to the December issue of Engineering and Mining Journal, unofficial reports from Africa state that the Northern Rhodesia copper mines are delivering their copper in shapes that save time and labor for munitions manufacturers—evidently no longer merely in ingots, cakes, and bars.

The occupation of Madagascar by the British rather than by the Axis Powers in the first half of 1942 withdrew one of the threats to shipments of Northern Rhodesia and Belgian Congo copper from

African ports.

Peru.—Peru ranks second to Chile in copper production in South America, and these two countries are the only important sources on that continent at present. Production in Peru usually amounts to somewhat more than 10 percent of the total for Chile and between 1 and 2 percent of that for the world. Unlike Chile, Peru broke no records in the production of copper in 1941 and its output, therefore, fell below the usual relationship. The Cerro de Pasco Copper Corporation, largest producer in the country, is credited with an output of 28,162 metric tons in 1941 compared with 33,538 tons in 1940 and 45,353 tons in 1929. This corporation has increased its output of lead sharply in recent years and is planning larger-scale production of zinc, Other copper producers in the country include the Northern Peru Mining Co., Sociedad Minera Puquio Cocha, Cie de Mines de Huaron, Compania Minera Rescate, and Sindicato Minero Rio Palanga.

Exports of copper contained in bars, concentrates, and ores totaled

36,417 metric tons in 1941 compared with 37,686 tons in 1940.

Philippine Islands.—Japan had been receiving the major part of the copper produced in the Philippine Islands, but in the latter part of 1941 exports to Japan were virtually embargoed. As a consequence the Hixbar Gold Mining Co., second-largest copper producer, was reported to have been forced to suspend mining operations; the mine has no concentrating plant, and Japan had been the only market for the grade of ore produced. A report prepared by the American consul in April 1941 stated that production in all of 1941 probably would amount to 9,900 metric tons, or between 5 and 10 percent above that in 1940. The shut-down at Hixbar may have prevented fulfillment of this estimate. At the end of 1941, Lepanto Consolidated was reported to be the only active copper producer in the Philippines.

Following successful invasion of the Islands by the Japanese in the early part of 1942 Japan can requisition, for a time at least, the entire output of the Philippines and can dictate the reopening of idle prop-

erties if desired.

Sweden.—Swedish authorities have prepared to improve their trade balance as regards copper. The annual production is reported to be 12,500 metric tons, and an increase of some 3,000 tons is anticipated as a result of an agreement between the Government and the Boliden Mining Co.—largest producer—regarding exploitation of certain Government-owned deposits in the Province of Västerbotten.

COPPER 123

Recent reports originating in Sweden credit annual consumption in that country with 40,000 to 45,000 tons. On April 1, 1941, the Swedish Government expropriated all stocks of copper and decreed that copper and its alloys were to be sold under license only. Substitution of other metals for copper and brass was reported to be in

progress in Sweden.

Union of South Africa.—Production of copper in the Union of South Africa has increased in recent years; data for 1941 are not available, but mine output totaled 13,350 metric tons in 1940 compared with 10,998 tons in 1939. The principal producer is the Messina mine, Northern Transvaal, and operations at that property were recently described. Resumption of copper mining in Namaqualand by the O'okiep Copper Co., Ltd., was mentioned in the Copper chapter of Minerals Yearbook, Review of 1940.

Figures covering imports of blister and converter copper into the United States during the first 9 months of 1941 show that 6,021 metric tons were received from British South Africa. During the same period, 499 metric tons of copper in concentrates and small quantities of regulus and scrap were received. Data covering

receipts of material in all of 1941 cannot be published.

⁷ South African Mining and Engineering Journal, Mining and Smelting Copper at Messina: Vol. 52, No. 2545, November 8, 1941, pp. 265-267.

LEAD 1

By T. H. MILLER AND A. L. RANSOME

SUMMARY OUTLINE

	Page	t en	Page
General summary	125	Stocks	132
Salient statistics	126	Producers' stocks	
National defense activity	126		
Domestic production		Domestic consumption	
Primary lead			
Refinery production	128		
Sources of primary lead	129		135
Antimonial lead	129	Foreign trade	137
Secondary lead	130		
Lead pigments	130		
Mine production	131	World aspects of lead industry	140
	101	Review by countries	140

GENERAL SUMMARY

The lead industry in 1941 was called upon to fill a growing and unprecedented demand. Lead was not only used as an essential war metal in direct military applications specified under the national defense program but as a substitute to help relieve the shortage of other nonferrous metals. As the result of this pressure, the industry showed moderate gains over 1940; but these advances were inadequate, despite the continued flow of metal into the United States from foreign sources, and by October lead was placed under Government control.

The output of refined primary lead from domestic and foreign ores was 7 percent above that in 1940 and the largest recorded since 1930. Production from domestic ores increased 9 percent, but that from foreign ores remained virtually unchanged from the high level estab-The estimated industrial use of lead (primary, secondlished in 1940. ary, and antimonial) rose 34 percent and was 8 percent above the record established in 1929. As production failed to pace demand, year-end stocks at domestic refineries declined for the seventh consecutive year. This condition was balanced somewhat by a corresponding rise in consumers' inventories, which indicates that apparent consumption was greater than the amount actually used. Prices for lead at New York advanced from 5.50 cents a pound in January to 5.85 cents in April, at which point the quotation was stabilized for the rest of the year; the average price for the year increased from 5.18 cents in 1940 to 5.79 cents in 1941.

¹ This report deals primarily with the smelting, refining, and consuming phases of the industry. For full details of mining operations, see separate reports issued for the various States.

Salient statistics of the lead industry in the United States, 1925-29 (average) and 1937-41, in short tons

	1925–29 (average)	1937	1938	1939	1940	1941
Production of refined primary lead: From domestic ores and base bullion	660, 525	443, 142	331, 964	420, 967	433, 065	470, 517
From foreign ores and base bullion	123, 104	24, 175	51, 705	63, 068	100, 114	100, 450
	783, 629	467, 317	383, 669	484, 035	533, 179	570, 967
Recovery of secondary lead	280, 000	275, 100	224, 900	241, 500	260, 346	397, 416
Lead in pigs, bars, and old	4, 592 95, 747	4, 903 1, 800	3, 235 15, 296	7, 139	151, 568	2 179, 179
Lead in ores and matte	40,096	34, 103	45, 370	48, 902 30, 842	19, 624 111, 300	² 23, 631 ² 58, 082
Exports of refined pig lead Lead remaining in bonded warehouse at	98, 048	20, 091	45, 866	74, 392	3 49, 079	² 13, 494
end of period Refined primary lead available for con-	136, 969	60, 131	87, 811	79, 215	211, 876	4 153, 289
sumption	690, 916	449, 464	339, 708	415, 031	633, 989	(8)
Estimated consumption of primary and secondary lead	900, 250	678, 700	546, 000	667, 000	782, 000	1, 050, 000
Prices: New York:		', '				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Average for yearcents per pound_		6. 01			5. 18	5. 79
Quotation at end of yeardo London averagedo		4. 75 5. 15	3. 33	5. 50 6 3. 09	5. 50 (7)	5. 85 (7)
Mine production of recoverable lead World smelter production of lead	664, 230 1, 850, 000	464, 892 1, 851, 000	369, 726 1, 878, 000	413, 979 1, 919, 000	457, 392 (⁸)	461, 426 (8)
F-0	-, 555, 666	1,001,000	2, 5, 5, 600	1, 010, 000		()

1 Data include lead imported for immediate consumption plus material entering the country under bond.

Figures cover January to September, inclusive.

Includes 25,324 tons of foreign refined lead re-exported, according to American Bureau of Metal Statistics; official figures not available.

September 30.

September 30.

Figures not available for publication.

A verage for 8 months; London Metal Exchange dealings suspended for duration of war.

Official maximum price fixed by British Ministry of Supply at £25 per long ton.

8 Data not available.

Record quantities of lead continued to be received from abroad, largely in the form of refined metal principally from Mexico, but also in greatly increased tonnages from Canada, Australia, and Peru. Government stock piles of foreign lead purchased through the Metals Reserve Company were drawn on to bridge the gap between production and shipments; as a result, the large quantity of lead that had accumulated in bonded warehouses by the end of 1940 was notably depleted during the first 9 months of 1941.

Figure 1 shows trends in the domestic lead industry since 1900.

National defense activity.—All defense requirements necessitating the consumption of lead were met in 1941, including direct use in ammunition and in important indirect secondary military uses, such as batteries, paints, tetraethyl lead, and chemicals. One of the largest jobs for lead was in substitution for other metals, including aluminum, copper, zinc, and tin which were more important for war purposes and a great deal less abundant. Very little concern was felt as to lead supplies during the first part of 1941, and only nominal surveillance over the lead industry by the Production Division of the Office of Production Management was necessary. Following a previously issued warning, Leon Henderson, Commissioner of Price Stabilization of the Advisory Commission to the Council of National Defense, on April 5, 1941, requested that there be no further increase in the price of lead. This announcement, with its accompanying threat of ceiling prices, halted the upward trend, and no further change occurred during 1941.

Following the rapid expansion of lead consumption in early 1941. it was soon apparent that a shortage threatened, and, to conserve LEAD 127

supplies and prevent lead from getting unto unfriendly hands, the metal was placed under export control as of March 24, 1941. This order included lead in ore, matte, pigs, bars, and manufactures and on May

6 was extended to include lead pigments.

On May 1, 1941, General Metals Order 1, designed to restrict inventory accumulation of lead and various other metals not under priority control, was issued by the Office of Production Management. It remained in effect until October 4, when all supplies of lead, including domestic and imported, were placed under full priority control. The new control, provided for in Order M-38, set up a system of allocation that previously had been restricted to releases of foreign lead purchased and held by the Metals Reserve Company. An

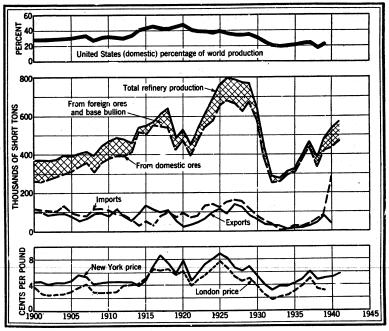


FIGURE 1.—Trends in the lead industry in the United States, 1900-1941. Imports include lead in ore, base bullion, pig lead, and scrap; exports include pigs, bars, and scrap lead exported in manufactures with benefit of draw-back.

emergency pool was set up to take care of special needs, and on October 23 the Division of Priorities of the Office of Production Management ordered refiners of lead to set aside 15 percent of their November production for allocation from this pool. The same percentage was ordered set aside for December and for each successive month of 1942

up to the time this review was written (June 25).

In an effort to ease the supply situation, an appeal was sent to all lead producers and miners by the Office of Production Management early in November, asking them to increase production. On January 13 the Office of Production Management, jointly with the Office of Price Administration, announced a two-point program to meet the urgent additional demands for copper, lead, and zinc that followed active entry into the war. With regard to lead, the program involved an increase in the price at New York to a ceiling of 6.50 cents a pound

and a payment, through the Metals Reserve Company, of a premium price of 9.25 cents for lead produced in excess of quotas based upon 1941 output. The premium-price plan was made effective as of February 1, 1942, for 2½ years.

DOMESTIC PRODUCTION

Pig lead is produced at primary plants that treat mainly ore and at secondary plants that treat scrap exclusively. Both types of plants may produce refined lead or antimonial lead. Because of the large quantity of battery scrap treated at secondary smelters, their output comprises chiefly antimonial-lead alloys. Figures for production of refined lead at secondary plants are shown in the section on Secondary Lead.

The following table shows production of refined lead and antimonial lead at primary refineries from 1937 through 1941.

Refined lead and antimonial lead produced at primary refineries in the United States. 1937-41, in short tons

Year	From domes- tic ores and base bullion	From foreign ores and base bullion	From scrap	Total	Antimonial lead
1937	443, 142 331, 964 420, 967 433, 065 470, 517	24, 175 51, 705 63, 068 100, 114 100, 450	29, 986 24, 800 29, 011 16, 588 13, 454	497, 303 408, 469 513, 046 549, 767 584, 421	27, 524 24, 123 21, 995 29, 762 40, 237

PRIMARY LEAD

Refinery production.—Production of refined primary lead increased 7 percent in 1941 but was only 73 percent of the 1925-29 average (783,629 tons). Output from domestic ores and base bullion gained nearly 9 percent; production from foreign ores and base bullion rcmained virtually unchanged, with an increase of less than 1 percent from the high level attained in 1940, and was considerably less than the average (123,104 tons) for the period 1925-29.

Refined primary lead produced in the United States, 1937-41, by classes and sources

	Production (short tons) by—							Total production 1			
		Class			Source			Value			
Year	Desilver-	Soft	lead 3	From domestic	From	From Short tons		Average	Total		
	ized lead 1 2	Desil- verized	· Undesil- verized	ores and base bul- lion	foreign ores	foreign base bullion	tons	sales price per pound	calculated value		
1937 1938 1939 1940 1941	272, 051 243, 891 280, 356 336, 456 366, 385	55, 317 31, 986 65, 349 43, 400 39, 872	139, 949 107, 792 138, 330 153, 323 164, 710	443, 142 331, 964 420, 967 433, 065 470, 517	23, 393 32, 862 24, 652 83, 563 74, 166	782 18, 843 38, 416 16, 551 26, 284	467, 317 383, 669 484, 035 533, 179 570, 967	\$0. 059 . 046 . 047 . 050 . 057	\$55, 143, 000 35, 298, 000 45, 499, 000 53, 318, 000 65, 090, 000		

Lead content of antimonial lead excluded.
 Desilverized soft lead excluded.
 Includes lead derived from Missouri ores and other nonargentiferous ores.

129

Sources of primary lead.—Of the total refined primary lead produced in 1941, 82 percent was derived from domestic ores and base bullion and 18 percent from foreign. Production from foreign ores decreased 11 percent from the all-time record established in 1940, but lead refined from foreign bullion advanced 59 percent. Details of the sources of lead from domestic ores are given in the section on Mine Production.

LEAD

Refined primary lead produced in the United States, 1936-41, by sources, in short tons

Source	1936	1937	1938	1939	1940	1941
Domestic ore and base bullion.	387, 698	443, 142	331, 964	420, 967	433, 065	470, 517
Foreign ore: Australia Canada Europe Mexico South America Other foreign	172 2, 277 1, 133 1, 486 3, 883 2, 450	3, 088 5, 343 388 3, 836 8, 497 2, 241	7, 320 3, 562 14 9, 745 9, 887 2, 334	7, 580 4, 763 188 227 8, 869 3, 025	14, 856 9, 009 3, 650 1, 303 34, 744 20, 001	19, 561 5, 708 123 390 27, 173 21, 211
	11, 401	23, 393	32,862	24, 652	83, 563	74, 166
Foreign base bullion: Mexico South America Other foreign	57	782	18, 268 575	37, 463 9 944	16, 161	25, 358 47 879
	57	782	18, 843	38, 416	16, 551	26, 284
Total foreign	11, 458	24, 175	51, 705	63, 068	100, 114	100, 450
Grand total	399, 156	467, 317	383, 669	484, 035	533, 179	570, 967

Antimonial lead.—Antimonial or hard lead is an important byproduct of the refining of base bullion, but the quantity derived from this source is only a small part of the country's yearly production. The major part is obtained from the smelting of antimonial-lead scrap, and some is produced by mixing metallic antimony with refined soft lead.

Several lead-smelting plants handle scrap materials exclusively. Production data from such plants are summarized in the following section and discussed in detail in the chapter on Secondary Metals—Nonferrous. A large quantity of hard-lead scrap also is treated at primary smelters and refineries; the production of antimonial lead at such plants is shown in the following table.

Antimonial lead produced at primary lead refineries in the United States, 1937-41

	Produc- Antimony content		Lead content by difference (short tons)				
Year	tion (short tons)	Short tons	Percent	From domestic ore	From foreign ore	From scrap	Total
1937	27, 524 24, 123 21, 995 29, 762 40, 237	2, 579 2, 809 2, 031 2, 944 3, 510	9. 4 11. 6 9. 2 9. 9 8. 7	7, 833 6, 759 4, 117 7, 364 14, 852	1, 721 3, 385 3, 189 3, 023 8, 013	15, 391 11, 170 12, 658 16, 431 13, 862	24, 945 21, 314 19, 964 26, 818 36, 727

SECONDARY LEAD

As previously stated, some scrap lead is treated at primary plants, but the greater part is refined at a large number of plants that operate exclusively on secondary materials. Secondary lead is recovered in the form of refined lead, antimonial lead, other alloys, and chemicals. Recovery at primary and other plants in 1940 and 1941 is shown in the following table. Secondary lead recovered in 1941 totaled 53 percent more than in 1940 and was equivalent to 84 percent of the domestic refined primary lead output. Further details appear in the chapter on Secondary Metals—Nonferrous.

Secondary lead recovered in the United States, 1940-41, in short tons

	1940	1941
As refined metal: At primary plants At other plants	16, 588 42, 992	13, 454 61, 810
	59, 580	75, 264
In antimonial lead: At primary plants At other plants	16, 431 110, 256	13, 8 62 192, 660
In other alloys 1	 126, 687 74, 079	206, 522 115, 630
Grand total: Short tons Value	260, 346 \$26, 034, 600	397, 416 \$45, 305, 400

¹ Includes some lead in chemical compounds.

LEAD PIGMENTS

Lead pigments manufactured in 1941 contained 273,315 tons of lead—a 28-percent increase above 1940. Of the 248,674 tons of lead in pigments derived from refined pig lead, litharge contained 45 percent, white lead 35 percent, red lead 19 percent, and sublimed lead, leaded zinc oxide, and orange mineral 1 percent. Leaded zinc oxide and sublimed lead are the principal pigments of which the lead content is derived from ores. Details of production and consumption of lead pigments are given in the chapter on Lead and Zinc Pigments and Zinc Salts.

Lead in pigments produced in the United States, 1937-41, by sources, in short tons 1

	I	ead in pi	gments fro	om—		Lead in pigments from—				
Year	0	Ore		Ore Year		0	re			
	Domes- tic	Foreign	Metal	Total	1	Domes-	Foreign	Metal	Total	
1937	17, 363 12, 025 15, 171		204, 961 163, 815 200, 390	222, 451 175, 840 215, 561	1940 1941	16, 869 23, 951	290	196, 235 248, 674	213, 104 3 273, 315	

Includes also lead recovered in leaded zinc oxide.
 Includes 127 tons from scrap.
 Includes 400 tons from scrap.

MINE PRODUCTION

Mine production of lead showed an advance in each group of States—Western, Central, and Eastern—but the over-all gain during 1941 was only about 1 percent. The comparatively minor increases amounted to 1,577 tons in the Western States and Alaska, 1,775 tons in the Central States, and 682 tons in the Eastern States. Lead production from Southeastern Missouri was 164,342 tons, a decline of 5,551 tons, whereas output from the Tri-State region amounted to 41,080 tons, an advance of 5,769 tons. Gains in Oklahoma and Kansas more than offset a loss from Southwestern Missouri Idaho continued to be the leading producer in the Western States group and was followed again by Utah and Montana; output from Idaho was only a few tons more than in 1940, and production from both the other States was less. The decrease in Utah's total is explained chiefly by decreases in output from the United States & Lark property and the National Tunnel & Mines Co. property (operations ceased about September 1941), both in the Bingham district. The principal factors causing the decline in Montana were the production drop from the Jack Waite mine and the closing, in April 1941, of the Comet-Gray Eagle group. Arizona produced 15,638 tons of recoverable lead in 1941, the greatest output in the history of the State. In Colorado the production of lead was 12,574 tons and in Nevada 9,623 tons; both totals were above the 1940 figures, as was also true for New Mexico and Washington. Additional details of production by mines, districts, and States can be found in the State chapters.

Mine production of recoverable lead in the United States, 1925-29 (average) and 1937-41, by States, in short tons

State	1925-29 (average)	1937	1938	1939	1940	1941
Vestern States and Alaska:						
Alaska		823	994	937	779	66
Arizona		12, 354	10, 571	10, 771	13, 266	15, 63
California		1, 186	495	526	1,772	3, 46
Colorado	30, 112	9,786	9, 455	8, 222	11, 476	12, 57
Idaho	141,610	103, 711	92, 177	90, 981	104, 834	104, 91
Montana	18, 871	17, 957	9, 327	16, 555	23,036	21, 25
Nevada	9,807	9, 347	4,679	4, 236	7,499	9, 62
New Mexico	6, 730	6, 512	4, 949	5, 392	3,82z	4, 66
Oregon	6	109	23	15	35	
South Dakota	21				7	
Texas		395	342	227	205	18
Utah		89, 458	65, 657	67,634	75, 688	69, 60
Washington	1, 323	2, 830	4, 284	3,718	2, 555	3, 90
	370, 997	254, 468	202, 953	209, 214	244, 974	246, 58
1 1						
entral States:	٠	40	7		55	1
Arkansas			175	308	1,508	2, 37
Illinois		186	15, 239	13, 697	11, 927	14, 5
Kansas	26, 121	16, 008 89	10, 239	13, 097	360	21
Kentucky	135			156, 281	172,052	165, 9
Missouri		157, 631	122, 027	27, 720	21, 240	25, 0
Oklahoma		29, 840	21, 004 320	388	21, 240	1, 2
Wisconsin.	1,745	1,091				
	289, 137	204, 885	158, 873	198, 481	207, 587	209, 3
astern States:	. !					2, 10
New York	,-				1,973	
Tennessee	3 4,096	5, 539	7, 896	6, 284	573	
Virginia	J -, 500	[J		l	2, 285	3, 3
North Carolina			4			
	4, 096	5, 539	7, 900	6, 284	4, 831	5, 5
	664, 230	464, 892	369, 726	413, 979	457, 392	461, 4

Mine production of recoverable lead in the principal lead-producing districts of the United States, 1937-41, in short tons

District	State	1937	1938	1939	1940	1941
Southeastern Missouri region.	Missouri	153, 205	118, 870	153, 522	169, 893	104 046
Coeur d'Alene region	Idaho	96, 505	82, 274	81, 699	95, 609	164, 342
Joplin region	Kansas, Southwestern	50, 274	39, 400	44, 176		95, 529
	Miccoursi Oklohoma	1	39, 400	44, 170	35, 311	41, 080
Bingham	IItah	45, 233	41, 334	36,842	07 077	
Park City region	do	22, 417			37, 857	34, 512
Tintic	do	10, 198	7, 258	11, 631	19, 749	19, 094
TinticButte	Montono	5, 780	9,605	8, 618	6, 536	9, 424
San Juan Mountains	Colorado	0,780	204	4,708	8, 859	8, 630
Pioche	Nevada	4, 998	5, 885	4, 402	7, 323	8,073
Harshaw	Nevada	4,759	3, 214	2, 964	5, 520	6,822
Warm Springs	Arizona	984	149	2, 287	4, 581	5, 541
Rush Valley	Idaho	4,004	7, 370	5, 565	5, 050	5, 334
Control	Utah	6, 410	4, 619	3, 422	4,760	4, 168
Central	New Mexico	2, 281	340	2, 941	3, 245	3, 902
Metaline	Washington	2, 644	4,009	3, 509	2, 495	3,819
Austinville	Virginia	(2)	(2)	(2)	2, 285	3, 390
Eagle	Montana	4, 812	4, 301	3, 252	4, 108	3, 294
Hog Heaven	.ldo	808	1, 214	2, 767	3, 588	2, 824
Wallapai Old Hat	Arizona	2, 489	4,004	703	2, 304	2, 408
Old Hat	do	794	1.919	1.861	1,908	2, 172
St. Lawrence County Red Cliff	New York	(2)	(2)	(3)	1, 973	2, 100
Red Cliff	Colorado	580	933	1, 137	1, 412	1,710
Montana	Montana	218	212	293	955	1, 601
Port Hill	Idaho	519	291	1. 111	1. 837	1, 537
Smelter	Montana	1. 178	710	1, 256	1, 363	1, 527
Ophir	Utah	3.307	2, 013	6, 050	5. 354	1, 437
Ophir Upper Mississippi Valley	Iowa, Northern Illinois, and Wisconsin	1, 091	320	388	453	1, 345
Leadville	Colorado	2, 100	1, 222	1.088	794	1, 112
Bisbee (Warren)	Arizona	1, 018	14	120	692	970
Banner	do	1,010	**	120	092	597
Cataract	Montana	1.946	1. 326	1, 672	1 004	
Tombstone	Arigono	315	315	290	1,904	355
Flint Creek	Montana	1. 511	113	290 218	276	165
rybo	Nevada	2, 439	119		119	114
Oro Blanco	Arizona	2, 439		14	27	20
Willow Creek	New Mexico	3,864	4, 150	3, 568		1
CIOCA	TAGM INTEXICOTT	3, 852	4, 277	1,800		

Corrected figure.
 Bureau of Mines not at liberty to publish figures.
 Total for Virginia but almost entirely from Austinville district.

STOCKS

Producers' stocks.—Lead stocks, as reported by the American Bureau of Metal Statistics, are shown in the following table. Stocks of refined and antimonial lead include metal held by all primary refiners and by most refiners of secondary material who produce common lead. Foreign lead refined in the United States and entered for domestic consumption is included.

Lead stocks at end of year at smelters and refineries in the United States, 1937-41, in short tons

	1937	1938	1939	1940	1941
Refined pig lead	119, 837	102, 489	52, 783	32, 458	15, 973
	9, 294	13, 413	5, 994	8, 468	4, 212
	129, 131	115, 902	58, 777	40, 926	20, 185
Lead in base bullion— At smelters and refineries In transit to refineries In process at refineries	10, 959	18, 693	10, 337	9, 166	8, 594
	2, 219	2, 339	3, 521	3, 457	2, 215
	14, 413	16, 690	15, 958	18, 141	17, 709
Lead in ore and matte and in process at smelters	27, 591	37, 722	29, 816	30, 764	28, 518
	52, 081	56, 332	59, 486	71, 722	51, 446
	208, 803	209, 956	148, 079	143, 412	100, 149

LEAD 133

During 1941 the excess of shipments over production resulted in generally decreasing inventories for the year. Stocks of refined and antimonial lead at refineries, which totaled approximately 40,900 tons at the end of 1940, rose to 47,200 tons by the end of January—the peak for 1941—but this initial gain was followed by a steady drop to a low of 10,700 tons by the end of October. During the remaining 2 months, increased production more than balanced a parallel gain in shipments, but refinery inventories (which rose to about 20,200 tons at the end of 1941) were only 49 percent of those on hand at the end of 1940. Stocks of lead in ore and matte and in process at smelters, in base bullion at smelters and refineries, and in transit to and in process at refineries were 22 percent lower at the end than at the beginning of 1941.

Consumers' stocks.—In the Bureau of Mines survey of the consumption of refined soft lead in 1941 (discussed in this chapter under the heading Domestic Consumption), consumers were asked to give their stocks of the three commercial grades of refined soft lead at the beginning and end of 1941. The results obtained give for the first time an inventory picture of the consumer phase of the lead industry. The totals shown in the following table indicate a marked increase in stocks, amounting to 33 percent. Consumers' stocks gained 25,865 tons during the year and more than offset the decrease of 16,485 tons in producers' inventories of refined lead, indicating conclusively that

consumption of lead was less than producers' shipments.

Consumers' stocks of refined soft lead at beginning and end of 1941, by grades, in short tons 1

		Domestic	Foreign		
	Corrod- ing	Chemical	Common	(all grades)	Total
Dec. 31, 1940	24, 880 36, 351	12, 436 17, 209	36, 977 36, 251	4, 177 14, 524	78, 470 104, 335

¹ Based upon survey of approximately 475 companies.

DOMESTIC CONSUMPTION

New supply.—A complete picture of the increased supply of refined primary lead available for consumption in 1941 cannot be published, owing to the confidential nature of foreign trade information since September 1941. In the following table the apparent trend of supply is shown for the 4 years, 1937–40, but no attempt has been made to total the incomplete 1941 statistics. In 1941, imports that affect the total supply and exports that largely determine withdrawals are listed only for January to September, inclusive. The figures do not consider variation in producers' stocks, and as these have changed considerably during the past 5 years the quantities stated do not show the true trend in actual consumption of new lead.

Refined primary pig lead available for consumption in the United States, 1937-41, in short tons

	1937	1938	1939	1940	1941
Supply: Imports Production	2, 238 467, 317	1, 905 383, 669	5, 388 484, 035	149, 889 533, 179	¹ 179, 086 570, 967
Withdrawn: Exports	469, 555 20, 091	385, 574 3 45, 866	489, 423 74, 392	683, 068 4 49, 079	(²) 1 13, 494
Supply available for consumption	449, 464	339, 708	415, 031	633, 989	(2)

Consumption.—Consumption of lead in the United States during 1941 broke all records. The metal not only served as a war material in military applications and other defense uses but was called upon to help relieve the shortage of other metals, including aluminum, copper, zinc, and tin. Owing to the return of large quantities of secondary lead in discarded and obsolete articles and from the lead-consuming industries, the total consumption of pig lead greatly exceeds the supply of new lead available. The following table gives the American Bureau of Metal Statistics estimate of the total consumption of lead by industries, 1937-41.

Lead consumed in the United States, 1937-41, in short tons 1

Purpose	1937	1938	1939	1940	1941
White lead	86, 000	71, 000	75, 000	65, 500	85, 000
Red lead and litharge	57,000	43, 000	57, 200	59, 400	89, 100
Storage batteries		167, 000	198, 000	220, 200	245, 000
Cable covering		60, 000	74, 400	107, 400	173, 000
Building	45,000	36, 000	50, 000	65, 000	95, 000
Automobiles	12,000	6,000	8,900	11, 000	12,000
Ammunition	39, 500	31, 200	42, 300	56, 000	71, 500
<u> rerneplate</u>	6,400	4, 300	6,000	6,000	8,700
Foil Bearing metal	21, 700	22,000	21, 800	23, 500	45, 000
Bearing metal	15,000	9,000	12,800	14,000	25,000
solaer	22,000	15,000	20,000	24,000	36, 000
Type metal	17,000	12,000	14,000	16, 800	20,000
Calking		12,000	16,000	19, 200	31,000
Castings	6,000	6,000	7, 500	9,000	14,000
Other uses	54, 100	51, 500	63, 100	85, 000	99, 700
	678, 700	546, 000	667, 000	782, 000	1, 950, 000

¹ American Bureau of Metal Statistics. These estimates are for total consumption of lead, irrespective of whether its origin is primary or secondary. Antimonial lead is included.

The quantity of lead consumed by industry in 1941, as estimated by the American Bureau of Metal Statistics, was 34 percent above that in 1940 and 8 percent greater than the previous high level estab-The principal use of lead is in the manufacture of lished in 1929. storage batteries, and in recent years requirements of lead for this purpose have averaged approximately 30 percent of the total. Although the lead thus used in 1941 reached a new record high, the amount was only 23 percent of the total lead consumed, as all uses increased over 1940. This high figure reflects the efforts of the automobile industry to produce a record number of vehicles before conversion of plant facilities to war production plus expanded production

Figures cover January to September, inclusive.
 Figures not available for publication.
 Includes small quantity of "sheets and pipes"; figures not separable.
 Includes 25,324 tons of foreign refined lead re-exported, according to American Burean of Metal Statistics; official figures not available.

LEAD 135

of batteries for strictly military and naval use. Under normal conditions, lead withdrawn for use in storage batteries noticeably curtails the need for newly mined metal, as it rapidly returns to the trade in the form of scrap and there competes with the primary market. The use of lead for cable covering ranked again second but increased 61 percent. Although the white-lead industry dropped to fifth place, following increased consumption of lead for building and for red lead and litharge, the amount of lead used was 30 percent more than in 1940.

The increases in use of white lead, and also red lead (which advanced 50 percent), were due principally to the shortage of other pigments derived from aluminum, zinc, and titanium. Compared with the former record year 1929, lead consumption for the six major uses in 1941 was as follows: Use in storage batteries was greater by 17 percent, red lead and litharge 197 percent, and ammunition 74 percent; cable covering was 79 percent of the 1929 figure, white lead 71 percent, and building 99 percent. Of all the uses listed, six were higher

in 1941 than in 1929 as compared with four in 1940.

In January 1942 the Bureau of Mines started a consumer survey of the use of refined soft lead during 1941. The results of this survey of approximately 475 companies are shown in the following table. Judging from available data as regards supply, shipments, and producers' stocks, the receipts of 838,835 tons of refined soft lead by those consumers canvassed indicate that the coverage was substantially complete. However, the total does not represent the entire consumption, as antimonial lead, unrefined scrap lead, and lead in alloys are not included. As this survey is the first attempt to show the actual picture of the consumer side of the industry, no comparative analysis can be made with 1940 or earlier years.

Consumption of refined soft lead in the United States in 1941, by grades and uses, in short tons 1

By grades: Domestic: Corroding Chemical Common Foreign: All grades Total consumed By uses: Ammunition Bearing metals Cable covering Calking lead Casting metals Casting metals Casting metals Casting metals Casting metals	289, 970 150, 237 257, 114 115, 649 812, 970 33, 011 10, 318 137, 659 35, 876 9, 263	By uses—Continued. Collapsible tubes. Foil. Pipes, traps, and bends. Sheet lead. Solder Storage batteries. Terneplaze. Type metals White lead Red lead and litharye. Chemicals and insecticides. Other uses ³ Total consumed.	3, 720 51, 51, 32, 944 35, 48, 56, 62: 2, 96; 2, 97; 83, 23 143, 49, 8 86 112, 84
---	---	--	---

Based upon survey of approximately 475 companies; subject to revision.
 Includes consumption of lead in manufacture of tetraethyl lead used in tempering gasoline.

PRICES

The two major markets for lead in the United States are New York and St. Louis; much of the lead produced in this country is sold at prices based upon quotations in these markets. As the New York quotations are influenced to some extent by the lower prices that, in normal times, usually prevail on the London market, the New York price seldom exceeds the St. Louis price by as much as the freight difference (usually 0.35 cent a pound).

In 1941 the average prices for lead did not fluctuate, as in 1940, but followed the trend of the other common nonferrous metals and rose during the first quarter to a point of stabilization that was maintained for the rest of the year. The price for pig lead at New York, outside market, at the beginning of 1941 was 5.50 cents a pound. During subsequent weeks of heavy purchases the price advanced to 5.65 cents on February 10. Consumption continued to increaseat least in part attributable to additions to consumer inventoryand the quotation again jumped, rising to 5.75 cents on March 3. The increased use of lead as a substitute material for scarcer commodities added to the ever-growing demand, and the price advanced once more. This last step-up raised the quotation to 5.85 cents on March 26. What appeared to be forward buying on the part of consumers resulted in a continuation of demand above actual requirements. On April 5 the Office of Price Administration declared the possibility of a price ceiling and requested leading producers to refrain from further increases in price. This unofficial request was followed, and the price remained at 5.85 cents for the remainder of 1941. average price for 1941 was 5.79 cents compared with 5.18 cents in 1940 and 5.05 cents in 1939.

Information regarding London Metal Exchange dealings, which were suspended at the outbreak of the war, continued to be unavailable

during 1941.

In September 1939 the British Ministry of Supply announced the establishment of the maximum price of Empire lead at £17 per long ton ex ship and of foreign lead at £16 12s. 6d. ex ship. In December 1939 the Nonferrous Metal Control for the United Kingdom raised the price of Empire and foreign lead to £25 per long ton, duty paid, There was no reported change from this figure during 1941.

Average monthly and yearly quoted prices of lead at St. Louis, New York, and London, 1939-41, in cents per pound 1

25	1939			1940				1.	
Month	St. Louis	New York	Lon- don	St. Louis	New York	Lon- don	St. Louis	New York	Lon- don
fanuary February March April May Une Uly August Jeptember October November December	4. 68 4. 65 4. 63 4. 60 4. 65 4. 70 4. 89 5. 35 5. 35 5. 35	4. 83 4. 80 4. 82 4. 78 4. 75 4. 80 4. 85 5. 04 5. 45 5. 50 5. 50	3. 03 3. 20 3. 07 3. 03 3. 04 3. 08 3. 30 (2) (2)	5. 32 4. 93 5. 04 4. 92 4. 87 4. 85 4. 78 5. 16 5. 58 5. 35	5. 47 5. 08 5. 19 5. 07 5. 02 5. 00 5. 00 4. 85 4. 93 5. 73 5. 50	(2)	5. 35 5. 45 5. 61 5. 70 5. 70 5. 70 5. 70 5. 70 5. 70 5. 70 5. 70 5. 70 5. 70	5. 50 5. 60 5. 77 5. 85 5. 85 5. 85 5. 85 5. 85 5. 85 5. 85 5. 85 5. 85	(2)
Average	4.90	5. 05	3 4 3. 09	5. 03	5. 18	(3)	5. 64	5. 79	(2)

¹ St. Louis: Metal Statistics, 1942, p. 473. Average daily quotations of soft Missouri lead, f. b. b. St. Louis (open market), as reported daily in American Metal Market.

New York: American Metal Market, daily issues. Pig lead, New York (outside market), prompt shipment from West.

London: Metal Statistics, 1942, p. 478. Average price of foreign lead. Price per long ton, as published in Metal Statistics, converted to cents per pound at average exchange rate reported by Federal Reserve Board.

2 London Metal Exchange dealings suspended for duration of war. Official maximum price fixed by British Ministry of Supply at £25 in December 1939.

3 London quotation in pounds sterling per long ton for first 8 months of 1939 was £14.7083.

4 Average for 8 months; comparable average for New York was 4.83 cents.

FOREIGN TRADE 2

As foreign trade statistics for 1941 can be given for only the 9-month period from January to September, no direct comparison can be made with 1940 totals. The figures do show that total lead imported during the period more than maintained the high level reached in 1940.

Imports.—Lead imported in the 9-month period totaled 260,892 short tons. Of this amount, pigs, bars, and old comprised 69 percent, lead in ore and matte 22 percent, and lead in base bullion 9 percent; the comparative ratio for 1940 was 54, 39, and 7 percent, respectively. Imports of pigs, bars, and old during 1941 continued to gain, and the 9-month total was substantially above the high level of 1940. Mexico, for years the principal source of imports of unrefined lead, contributed 38 percent of the total tonnage during the 9 months, followed by Canada with 21 percent. In 1940 the ratio was 53 and 3 percent, respectively, which indicates a remarkable gain from the latter country that was almost entirely in the form of pigs, bars, and old. This same category included notable tonnages from Australia and Peru. Mexico remained the principal source.

Total lead imported into the United States, 1937-41, by forms in which imported, in short tons 1

Year	Lead in ore and matte	Lead in base bul- lion	Pigs, bars, and old	Total lead content
1937	34, 103	1, 800	4, 903	40, 806
	45, 370	15, 296	3, 235	63, 901
	30, 842	48, 902	7, 139	86, 883
	111, 300	19, 624	151, 568	282, 492
	58, 082	23, 631	179, 179	260, 892

¹ Data include lead imported for immediate consumption plus material entering country under bond.

Total lead imported into the United States, in ore, base bullion, and refined, 1937-41, by countries, in short tons 1

Year	Canada	Mexico	New- found- land	South America ²	Europe	Other countries	Total
1937. 1938. 1939. 1940. 1941 (JanSept.).	5, 749 3, 174 5, 641 8, 721 54, 309	17, 068 38, 467 52, 059 149, 493 99, 226	27, 563 15, 963	13, 229 13, 426 16, 527 63, 120 49, 846	535 680 1, 971 3, 891 176	4, 225 8, 154 10, 684 29, 704 41, 372	40, 806 63, 901 86, 883 282, 492 260, 892

¹ Data include lead imported for immediate consumption plus material entering country under bond.

² Includes imports from Argentina as follows—1937: 17 tons; 1938: 4 tons; 1939: 3,362 tons; 1940: 16,469 tons; and 1941 (Jan.-Sept.): 10,209 tons.

² Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Total lead imported into the United States in ore, matte, base bullion, pigs, bars, and old, 1937-41, by countries, in short tons 1

Country	1937	1938	1939	1940	1941 (JanSept.)
In ore and matte:					
Africa			7	7, 586	204
Argentina	17	4	3, 362	16, 469	10, 209
Australia	2, 241	6, 434	7,612	17, 472	14, 616
Canada	5, 211	3, 173	5, 624	8, 666	3, 879
Chile	474	2, 107	1,844	6, 271	1,300
Mexico.	15, 970	24, 023	3, 846	1,804	4, 537
Newfoundland		0.017		27, 563	15, 963
Peru	10, 132	9, 317	7, 174	18, 383	3, 415
United Kingdom Other countries	11	2 310	1,058	3, 498	175
Other countries	4/	310	315	3, 588	3, 784
	34, 103	45, 370	30, 842	111, 300	58, 082
In base bullion:					
Mexico	1,067	14, 444	47, 915	19,009	23, 494
Peru	239	198	84	179	52
Other countries	494	654	903	436	85
• • • • • • • • • • • • • • • • • • •					
	1, 800	15, 296	48, 902	19, 624	23, 631
In pigs, bars, and old:				7	
Australia	1,769	1, 475	2,727	4, 266	26, 277
Canada	538	-,	17	55	50, 356
Mexico	31	-	298	128, 680	71, 195
Peru .	2, 344	1, 736	4, 051	18, 452	31, 324
Other countries	221	23	46	115	27
	4, 903	3, 235	7, 139	151, 568	179, 179
	40, 806	63, 901	86, 883	282, 492	260, 892

¹ Data include lead imported for immediate consumption plus material entering the country under bond.

Lead remaining in warehouse in the United States, December 31, 1937-40, and September 30, 1941, in short tons

[Stated in the form in which material was entered for warehouse]

Year	Lead in ore and matte	Lead in base bul- lion ¹	Year	Lead in ore and matte	Lead in base bul- lion 1
1937 1938 1939	57, 509 76, 287 72, 737	2, 622 11, 524 6, 478	1940	110, 580 105, 944	101, 296 47, 345

¹ Figures also include pigs, bars, sheets, and old lead.

Lead 1 imported for consumption in the United States, 1937-41, by forms in which imported

Year	Lead in ores, flue dust, and mattes, n. s. p. f.			in base Illion	Pigs 8	Pigs and bars		Sheets, pipe, and shot		Total value
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	speci- fied (value)	varue
1937 1938 1939 1940 1941 2	5, 313 6, 722 12, 317 70, 027 61, 409	\$507, 945 543, 164 1, 063, 512 4, 659, 445 3, 989, 125	188 304 1, 764 9, 992 14, 817	\$12, 788 31, 147 166, 298 929, 946 1, 466, 781	2, 355 2, 001 4, 772 36, 882 224, 871	\$174, 077 84, 109 176, 437 2, 269, 075 15,874,826	376 166 170 201 38	\$54, 649 30, 906 28, 296 36, 444 12, 025	\$13, 527 23, 381 11, 611 12, 046 18, 480	\$793, 796 733, 081 1, 449, 541 7, 910, 873 21, 362, 284

¹ In addition to quantities shown (values included in total values), "Reclaimed, scrap, etc." imported as follows—1937: 349 tons, valued at \$30,810; 1938: 189 tons, \$20,374; 1939: 36 tons, \$3,387; 1940: 24 tons, \$3,917; and 1941 (Jan.-Sept): 9 tons, \$1,047.

² January to September, inclusive.

Miscellaneous products, containing lead, imported for consumption in the United States, 1937-41

Year		etal, solder, w r combinatio		Type metal and antimonial lead		
	Gross weight (short tons)	Lead content (short tons)	Value	Gross weight (short tons)	Lead content (short tons)	Value
1937 1938 1939 1940 1941 (JanSept.)	618 390 136 1, 368 523	178 77 45 429 217	\$213, 734 126, 660 96, 492 1, 026, 432 562, 857	132 433 380 1, 482 1, 222	115 374 321 1, 291 1, 082	\$13, 572 38, 708 38, 491 108, 286 80, 377

Exports.—In the 9-month period of 1941 exports were much smaller than the total for 1940, which indicates that the downtrend from the high level of 1939 is continuing. Exports by countries of destination are given only for the first quarter of 1941; they show the general distribution.

Lead exported from the United States, 1937-41

	Pigs a	nd bars	Foreign lead exported in		Pigs a	nd bars	Foreign lead exported in
Year Short tons	Value	manufactures with benefit of draw-back (short tons)	Year	Short tons	Value	manufactures with benefit of draw-back (short tons)	
1937 1938 1939	20, 091 1 45, 866 74, 392	\$1, 838, 262 1 3, 354, 616 4, 547, 219	8, 679 9, 061 10, 379	1940 1941 ²	23, 755 13, 494	\$1, 794, 590 1, 057, 368	15, 604 14, 310

¹ Includes sheets and pipes; figures not separable.
² January to September, inclusive.

Pig lead exported from the United States, 1937-41, by destinations, in short tons

	1		1		
Destination	1937	1938 1	1939	1940 3	1941 (JanMar.)
Countries:					
Belgium	43	28	588	644	
Brazil	652	111	647	1,559	73
Canada	7	101	5	34	1
Denmark			1, 569		
Finland		560	616	112	
France		(3)	540	1, 120	
Germany		1,092	8, 333		
Hungary			560	437	
Japan Kwangtung	7, 320 56	30, 203 314	34, 790 99	11, 958	4, 216
Mexico	8, 122	11, 403	2,922	336 15	Б.
Netherlands	0,122	11,403	2, 101	2, 352	
Norway	112		1,091	2,002.	
Philippine Islands	569	1,037	974	450	5
Sweden		23	7, 340	301	112
United Kingdom		78	9, 411		
Other countries	416	916	2, 806	4, 435	963
	20, 091	45, 866	74, 392	23, 755	5, 375
Continents:					
North America	8, 337	12,002	3, 345	865	108
South America	784	303	1, 317	3,078	772
Europe		1,950	33, 152	6,400	183
Asia	7, 989	31,606	36, 122	13,384	4, 279
Africa and Oceania	32	5	456	28	33
	1	l		l	J

Includes sheets and pipes; figures not separable.
 In addition, 25,324 tons of foreign lead were re-exported, according to American Bureau of Metal Statistics; official figures not available.

8 Less than I ton.

WORLD ASPECTS OF LEAD INDUSTRY

A statistical picture of the lead situation throughout the world in 1941 is more difficult to draw than in 1940, owing to an even greater scarcity of production data.

Although official data are lacking, it is doubtful if world production and consumption gained much in 1941; indeed, the reverse may have

been true.

Some of the details by countries, insofar as data are available under existing conditions of wartime restrictions, are discussed in the following pages.

REVIEW BY COUNTRIES

Argentina.—The Compania Minera Aguilar S. A., subsidiary of the St. Joseph Lead Co., supplied nearly 98 percent of the Argentine output of lead in 1941. During the year, Argentina produced 32,317 metric tons of 74-percent lead concentrates; in 1940 the output of concentrates amounted to 40,097 tons. From January to September (inclusive) 1941, 4,615 metric tons of lead ore were imported, almost entirely from Bolivia, compared with 2,888 tons for the same period in 1940. Nearly all the primary lead produced in Argentina comes from the National Lead Co. smelter at Puerto Vilelas; although the 1941 total is not known, production probably exceeded the 1940 figure of 12,864 metric tons, which included 2,476 tons from foreign ore.

Australia.—Although figures relating to production in Australia are not available for 1941, increased nonferrous metal-mining activity would appear to indicate an advance in lead output. Mt. Isa Mines, Ltd., continued to produce lead bullion steadily throughout 1941. The average mill extraction for the year ended June 30 was 79.7 percent lead recovered. During the year mining and milling continued at the property of the Lake George Mining Corporation, New South Wales, but toward the end of 1941 the lessened labor supply resulted in reduced output in the mine. With increased scarcity of shipping plus other factors, lead concentrates equal to nearly 8 months production had accumulated by the end of the year.

In Tasmania the North Farrell mine at Tullah is now the only producer of silver-lead ore. Output from the mine is reported to be

80 to 100 tons of concentrates a month.

Bolivia.—Mine production of lead in Bolivia, derived principally from small mines in the La Quiaca region, amounted to 15,654 metric tons contained in 26,356 tons of ore and concentrates. Production of lead in 1940 was 11,662 tons (content in ore). All concentrates are exported, during past years almost entirely to Argentina. The Bolivian Government has given the United States the exclusive right to purchase lead output, but during 1941 exports were divided between the United States and Argentina. It is reported that the Bolivian Banco Minero allotted 504,000 bolivianos for the erection of a lead smelter.

Brazil.—Production of lead remains comparatively undeveloped in Brazil. The Furnas lead-silver mine in the Iporanga district, State of São Paulo, is the principal producer and has considerable reserves of ore. The new selective-flotation plant of 35-ton daily capacity at Palmital treats ore averaging about 7 percent lead, 17 percent zinc, and 7 ounces of silver per ton and produces a 55.6-

LEAD 141

percent lead concentrate containing 50 ounces of silver per ton. Recovery is approximately 79 percent. Operating in conjunction with this plant is a new lead-silver smelter completed in July 1941—the first to be built in Brazil. Potential daily capacity, following pilotplant operations, is 10 metric tons of refined lead and 25 kilograms of silver; the lead produced will be placed on the domestic market, and the silver will go to the mint. Power for the operations is obtained from a hydroelectric plant at Salto do Colabouco on the Palmital River near Apiai. Although a larger output from the district is expected, the mines do not produce enough at present to keep the

smelter operating at full capacity.

Canada.—Although data on production of lead in Canada continued to be unavailable, it is understood that the Canadian metal industry more than maintained the high production rate attained in 1940. The Sullivan mine of the Consolidated Mining & Smelting Co., in British Columbia, reputedly produced 90 percent of the total Canadian lead output. Large quantities have been shipped to the United States through contract with the Metals Reserve Co., and reserve stocks are reportedly near exhaustion. Mining has been resumed at numerous smaller properties, including that of the Lake Geneva Mining Co., Ltd., northwest of Sudbury and at the old Calumet Island property near Ottawa.

Arrangements have reportedly been made by Reeves McDonald Mines, Ltd., to construct a zinc-lead smelter at its property in the West Kootenay district of British Columbia to be in operation late in 1942.

Mexico.—Mine production of lead in Mexico during 1941 amounted to 155,259 metric tons, a considerable decrease from the 196,250 tons produced in 1940. Exports of lead in all forms from January to September (inclusive) 1941 totaled 114,603 metric tons compared with 138,739 tons for the same period in 1940. Of this total, 90,116 tons (nearly 79 percent) were exported to the United States compared with 79 percent for the entire year 1940.

Mexico continued to have labor problems in 1941. The American Smelting & Refining Co. closed its Monterrey refinery in the State of Nuevo León, owing to a strike on April 28, and did not reopen it until June 16. The capacity of the refinery is 18,000 tons a month. There was also a strike at the Monterrey refinery of the American Metal Co., Ltd., from September 8 to October 20; it adversely affected Mexican output, and full production was not resumed for some time

after its settlement.

Peru.—Mine production of lead in Peru in 1941 totaled 54,822 metric tons compared with 50,439 tons in 1940. Exports from Peru during 1941 included an estimated 8,000 tons of lead ore, 12,000 tons of concentrates, and 38,000 tons of pig lead, compared with 5,430, 19,086, and 23,241 tons, respectively, in 1940. Of the total lead shipped, the Cerro de Pasco Copper Corporation supplied about 85 percent. The corporation is installing a third lead furnace at the Oroya smelter—the only one in Peru—to keep the refinery operating at capacity. Output of refined lead will be increased to about 45,000 tons annually. Construction of the new 800-ton-per-day lead-zinc concentrator is progressing, but the plant is not scheduled for completion before late 1942 or in 1943.

Spain.—Little information has been available regarding the Spanish lead industry during and following the years of the Spanish Civil War, which was concluded in 1939. It is reported that mine production of lead in 1940 amounted to about 57,900 metric tons and that 42,400 tons of metal were produced. For 10 months of 1941, mine and metal production has been given as approximately 35,600 and 24,400 tons, respectively.

Sweden.—In an effort to alleviate the acute lead shortage, the Swedish Boliden Mining Co. is preparing to mine and concentrate lead ore. The concentrates will be shipped to the Rönnskär smelter at Skelleftead for treatment. The company has extensive holdings

at Laisvall in northern Sweden.

ZINC¹

By A. L. RANSOME

SUMMARY OUTLINE

	Page		Page
71		Domestic production—Continued.	
Jeneral summary	144	Mine production	_ 151
Salient statistics		Ctooks	153
National defense activity			153
Smelting capacity	146	Consumers' stocks	153
Supply of zinc concentrates		Consumers stocks	
Domostic production	147	Domestic consumption	
Production of primary and redistilled sec-		New supply	
ondary slab zinc	14/	Consumption	. 155
Distilled and electrolytic zinc.		Prices	_ 156
Production of primary slab zinc by States.		Zinc-reduction plants	_ 158
Production of primary stan zine by braces:	- 40		_ 158
Secondary zinc			_ 158
Byproduct sulfuric acid			159
Rolled zinc	149	World aspects of zinc industry	
Zinc dust	150	World aspects of zine industry	162
Zine nigments and salts	151	Review by countries.	. 102

GENERAL SUMMARY

The zinc industry in 1941 again was characterized by its well-geared relationship with the national defense program. The spirit of cooperation between Government and the zinc industry resulted in a year of smooth-running but intense activity that broke all records in an endeavor to meet increased demands for the metal. The smelting industry increased its output 22 percent over 1940 to a new all-time record and at the same time managed to show a gain of 26 percent in stocks above the low point reached at the end of 1940. The augmented supply was inadequate, and consumers' stocks continued to decrease. Continued heavy demand for high-grade zinc resulted in a 29-percent gain in output above the exceptionally high total for 1940. In comparison, the lower grades of zinc advanced 16 percent. At the close of 1941, smelters were operating at usable capacity, which was 96 percent of the total available, with additional capacity under construction and planned in excess of new capacity added since 1940.

Although domestic mine output increased 13 percent to a point only 3 percent below the 1926 record, it could not meet the gain in consumption, and smelters continued to use foreign ore in even greater amounts than in 1940. Imports in the first 9 months of 1941 exceeded the previous record for 1940 (12 months) and sufficed to establish an all-time record for domestic output of zinc from foreign ores, as well as a marked increase in ore inventories at the smelters.

¹ This report deals primarily with the smelting branch of the industry. Full details of zinc mining are given in the various State reports. Some zinc ore is used directly in the manufacture of zinc pigments. See chapter on Lead and Zinc Pigments and Zinc Salts.)

Salient statistics of the zinc industry in the United States, 1925-29 (average) and 1937-41

	1925-29 (average)	1937	1938	1939	1940	1941
Production of primary slab zinc: By sources:						
From domestic ores short tons From foreign ores do do	589, 648 12, 734	551, 165 5, 739	435, 007 10, 334	491, 058 16, 178	589, 988 85, 287	652, 59 169, 42
By methods:	602, 382	556, 904	446, 341	507, 236	675, 275	822, 02
Electrolyticpercent of totaldodo Distilleddodo Production of redistilled secondary slab	21 79	21 79	21 79	25 75	28 72	2 7
zincshort tons Stocks on hand at primary smelters Dec. 31	43, 756	51, 554	31, 613	50, 428	48, 917	59, 500
short tons Primary zinc available for consumption	45, 575	79, 144	1	83, 728	19, 212	24, 21
Price: Prime Western at St. Louis:	548, 472	570, 219	375, 004	607, 464	677, 168	(1)
A verage for yearcents per pound Highest quotationdodo	6. 76 8. 90	6. 52 7. 50	4. 61 5. 05	5. 12 6. 50	6. 34 7. 25	7. 49 8. 2
Yearly average at London do	5. 40 6. 46	5.00 4.91	4.00 3.05	4. 50 2 2 89	5. 50	7. 24 (3)
Mine production of recoverable zinc short tons	724, 720	626, 362	516, 699	583, 807	665, 068	749, 12
Western States percent of total do	49 30	38 31	38 28	38 29	35 36	38 38
Otherdodo	. 21	31	34	33	29	27
short tons	1, 435, 000	1,789,000	1, 728, 000	1, 800, 000	(3)	(3)

Figures not available for publication.
 A verage for 8 months; London Metal Exchange dealings suspended in September.
 Data not available.

Only one change was made in the price of slab zinc after September On October 9, 1941, the Office of Price Administration raised the official quotation for Prime Western zinc at St. Louis from 7.25 to 8.25 cents a pound in an effort to expand output from marginal This was the highest price level reached in 15 years. average quoted price for 1941 was 7.48 cents compared with 6.34 cents in 1940 and 5.12 cents in 1939.

Figure 1 shows trends in the domestic zinc industry since 1900.

National defense activity.—The rising tide of defense preparations during 1941, plus the initiation of Lend-Lease activities, was climaxed in December by the unprovoked Japanese attack upon Pearl Harbor. Thus the year closed with an abrupt change from a national policy of defense against aggression to active participation in the world conflict, with accompanying necessary alterations in the peacetime industrial pattern.

During 1940 the shortage of zinc became more acute, and by the end of the year producers had voluntarily initiated a system of allocating supplies of zinc to consumers. Imposition of Government priorities in deliveries was suggested as early as November, but no positive Committee for Nonferrous Metals was established in the Priorities Division of the Office of Production Management. Exports of zinc ores, slab zinc, and manufactures of zinc were added to the list of meterials subject to export control on February 3. On February 20 the American Zinc Institute appointed a committee to coordinate

145

zinc supplies between producers and consumers. The tight situation continued, and informal action was taken by the Priorities Division to facilitate the flow of zinc into military uses, nondefense consumers

being urged to cooperate voluntarily.

On March 7 the Office of Production Management announced the creation of a zinc pool effective for April, when an amount of zinc equal to 5 percent of the January output would be requisitioned from the April production to alleviate shortages in defense industries. The pool requirements increased throughout the remainder of 1941 and

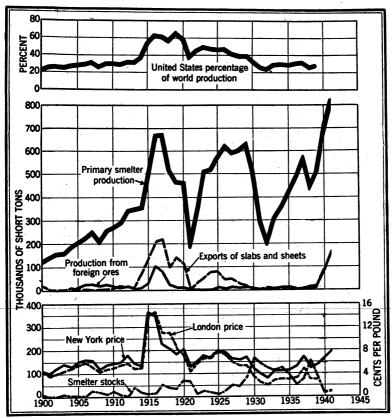


FIGURE 1.—Trends in the zinc industry in the United States, 1900-1941. Imports for consumption of slab and sheet zinc are not shown; before 1936 they seldom exceeded 500 tons annually, but in recent years they have increased, amounting to 37,439 tons in 1937, 7,456 tons in 1938, 31,138 tons in 1939, 10,164 tons in 1940, and 31,066 tons in 1941 (January-September, inclusive).

until May 1942, when amounts were set at 75 percent of high-grade and 50 percent of the lower grades based upon January production. The following table lists the zinc-pool percentage requirements by months, as ordered by the Office of Production Management during 1941 and by the War Production Board after creation of that agency on January 16, 1942, to absorb and take over the duties of the Office of Production Management.

Zinc-pool percentage requirements

From production in—	An amount equal to—
1941April	5 percent of January 1941 total output.
May	17 percent of March 1941 total output.
June	22 percent of April 1941 total output.
July	22 percent of May 1941 total output.
August	27 percent of June 1941 total output.
September	
October	27, percent of August 1941 total output.
November	31 percent of August 1941 total output.
December	29 percent of August 1941 total output.
1942—January	31 percent of October 1941 total output.
February	40 percent of November 1941 total output.
March	50 percent of December 1941 high-grade 1 output.
	140 percent of December 1941 lower grade 2 output.
April	60 percent of January 1942 high-grade 1 output.
	40 percent of January 1942 lower grade 2 output.
May	75 percent of January 1942 high-grade 1 output.
	150 percent of January 1942 lower grade 2 output.

Special High Grade and Regular High Grade.
 Intermediate, Brass Special, Selected, and Prime Western.

The Division of Industry Operations of the War Production Board announced on May 1 that zinc would be placed under full allocation on June 1. The same order stated that zinc produced from foreign ores in bond could be re-exported upon issuance of a license by the

Office of Export Control of the Board of Economic Warfare.

Smelting capacity.—Under existing conditions of all-out production, zinc-smelting capacity is best measured by actual production data with estimated future production based upon added capacity of new facilities under construction and planned. Industry's estimate of 1941 production (announced in February 1941) from ores and secondary material (excluding production from graphite retorts) was 864,000 short tons. This figure came remarkably close to the actual comparable total of 863,263 tons as compiled by the Bureau of Mines. It has been estimated that total production of 881,523 tons of primary and secondary metal in the United States in 1941 will be increased to 956,000 tons² in 1942 by the use of additional capacity under construction, with the possibility of even further expansion for 1943. The results of the feverish activity in the zinc industry to adjust itself to war economy and enlarge production can best be judged by comparing present data with those for 1938, when the output was 478,000 tons.

Supply of zinc concentrates.—In 1941 the domestic mine production of zinc increased 13 percent over the 1940 total, owing in large part to the increase in price of zinc. Domestic supply of ore was supplemented by amounts of foreign concentrates large enough to produce the record 1941 output of metal plus necessary uses of ore in other industries, and still build up a considerable inventory of ore and concentrates by the end of 1941. The Office of Production Management, jointly with the Office of Price Administration, on January 13, 1942, announced the details of a premium-price plan, whereby producers of zinc (copper and lead are also included in the plan) would receive, through the Metals Reserve Co., 11 cents a pound for zinc produced in excess of quotas based upon 1941 output, effective as of February 1, 1942, for 2½ years. Although the result undoubtedly will be an increased domestic production, the percentage gain is

³ Young, Howard I., Slab Zinc Review: Am. Zinc Inst. Ann. Convention, April 29, 1941; mim. by that agency.

ZINC 147

conjectural. The expected increase in the rate of production has been estimated (according to the joint O. P. M.—O. P. A. announcement of January 13) at 30 percent by the end of 1942, as compared with the 1941 year-end rate. Even considering such a possible increase this country must still look to imports of foreign concentrates to continue at about the same rate as in 1941. This import rate must, if possible, be maintained by increasing imports from sources that involve rail movements rather than ships, in view of the hazards that today accompany ocean transport.

DOMESTIC PRODUCTION

Production of primary and redistilled secondary slab zinc.—The production of 822,020 short tons of primary slab zinc from domestic and foreign ores in 1941 was the highest ever recorded and exceeded the previous record of 1940 by 22 percent; the total was 23 percent higher than that for the peak year of 1917 and 37 percent more than the average annual output in the 5 years 1925–29. Both domestic and foreign ores contributed to the increase, as production from the former source advanced 11 percent and that from the latter 99 percent. The output from domestic ores was the largest on record, and the quantity produced from foreign ores was 63 percent greater than the previous high of 104,005 tons in 1916.

The production of redistilled secondary slab zinc increased 22 percent. To prevent inadvertent duplication, figures for the output of remelted secondary slab zinc are not included with those for redistilled metal. In 1941, 10,389 tons were recovered by remelting purchased scrap. Zinc rolling mills and other consumers recover considerably more than this from their own plant scrap, but such metal normally does not enter the market and is not measured statis-

tically.

Primary and redistilled secondary slab zinc produced in the United States, 1937-41, in short tons

•		Primary	Redistilled	Total	
Year	Domestic	Foreign 1	Total	secondary	(excludes remelted)
1937 1938 1939 1940	551, 165 436, 007 491, 058 589, 988 652, 599	5, 739 10, 334 16, 178 85, 287 169, 421	556, 904 446, 341 507, 236 675, 275 822, 020	51, 554 31, 613 50, 428 48, 917 59, 503	608, 458 477, 954 557, 664 724, 192 881, 523

¹ Most of the foreign ores smelted in the United States in 1937-38 originated in Peru; in 1939, in Mexico, Peru, and Argentina; and in 1940-41, principally in Mexico, Canada, Newfoundland, and Peru.

Distilled and electrolytic zinc.—Of the primary zinc produced in 1941, 73 percent was distilled and 27 percent electrolytic compared

with 72 and 28 percent, respectively, in 1940.

Because of the significant part of zinc in the manufacture of items both for military and civilian uses, producers were requested to report their output of each grade in 1941. In 1940 Special High Grade was separately reported for the first time, and the 1941 statistics show a continued exceptional demand for this grade that was exceeded only by Prime Western. All grades that were directly comparable with

1940 figures showed increases. Special High Grade gained 4 percent, Regular High Grade 79 percent, Intermediate 15 percent, and Prime Western 22 percent. The combined total of Brass Special and Selected was slightly less than the comparable figure for 1940; these two grades, not segregated in preceding years, amounted to only 8 and less than 1 percent, respectively, of the total zinc production in 1941.

Distilled and electrolytic zinc, primary and secondary, produced in the United States, 1937-41, in short tons

APPORTIONED ACCORDING TO METHOD OF REDUCTION

:		Electro-	D:-41113	Redistilled	secondary 1	
	Year	lytic pri- mary	Distilled primary	At primary smelters	At second- ary smelters	Total
1937		117, 511	439, 393	24, 131	27, 423	608, 458
1938		93, 272	353, 069	14, 003	17, 610	477, 954
1939		127, 056	380, 180	23, 471	26, 957	557, 664
1940		187, 040	488, 235	20, 003	28, 914	724, 192
1941		224, 313	597, 707	27, 904	31, 599	881, 523

APPORTIONED ACCORDING TO GRADE

	Grad	de A		Grades (C and D	Ct-F	*
Year	Special High Grade (99.99%Zn)	Ordinary	Grade B (Intermediate)	Brass Special	Selected	Grade E (Prime Western)	Total
1937 1938 1939 1940	140,	,052 ,256 ,345 98,940 177,451	67, 132 58, 128 66, 591 65, 321 74, 797	73, 86,	993 724 274 681 5, 152	272, 281 205, 846 242, 454 284, 131 347, 125	608, 458 477, 954 557, 664 724, 192 881, 523

¹ For total production of secondary zinc see chapter on Secondary Metals-Nonferrous.

Production of primary slab zinc by States.—Pennsylvania continued to be the leading producer of primary slab zinc in the United States, a distinction held without interruption since 1934. Montana and Illinois ranked next in order of importance, closely followed by Oklahoma. The positions of Arkansas and Idaho were reversed from 1940, and Arkansas again took the lead over Idaho. All producing States continued to show gains; the increases were particularly marked in Pennsylvania, Illinois, and the West Virginia-Texas group, where they were 27, 20, and 42 percent, respectively. Montana and Idaho, as usual, produced electrolytic zinc only. Whereas all other States produced distilled zinc only in 1940, Illinois produced electrolytic zinc as well as distilled metal in 1941.

Primary slab zinc produced in the United States, by States, where smelted, 1937-41, in short tons

							т	otal			
Year	Arkan- sas	Idaho	Illinois	Mon- tana	Okla- homa			Pennsyl- vania	Other States ¹	Short	Value
1937	25, 799 20, 476 19, 892 35, 497 44, 045	22, 831 15, 634 18, 427 37, 477 39, 285	73, 151 68, 167 79, 480 101, 819 121, 921	94, 680 77, 638 108, 629 149, 563 176, 406	96, 153 68, 224 84, 551 96, 689 105, 885	175, 275 139, 897 155, 598 175, 352 222, 486	69, 015 56, 305 40, 659 78, 878 111, 992	556, 904 446, 341 507, 236 675, 275 822, 020	\$72, 398, 000 42, 849, 000 52, 753, 000 85, 085, 000 123, 303, 000		

¹ Texas and West Virginia.

ZINC 149

Secondary zinc:—In addition to the redistilled secondary slab zinc (unalloyed) already reported herein, some remelted slab is produced, and a large quantity of secondary zinc is recovered each year in the form of alloys, zinc dust, zinc pigments, and zinc salts. Additional information on secondary zinc is given in the chapter on Secondary Metals—Nonferrous.

Byproduct sulfuric acid.—Sulfuric acid made from the sulfur dioxide gases produced in roasting zinc blende (sphalerite) is an important byproduct of zinc smelting. To utilize a larger proportion of their acid-producing capacity, some plants also consume large quantities of sulfur. The production of sulfuric acid at zinc blende roasting plants

from 1937 to 1941 is shown in the following table.

Sulfuric acid (60° B. basis) made at zinc blende roasting plants in the United States, 1937-1941

		from zinc	Made fro	m sulfur	Total ¹		
Year						Valu	le s
	Short	Value ²	Short tons	Value 2	Short tons	Total	Average per ton
19 37 19 38 19 39 19 40	542, 356 466, 879 528, 872 586, 912 672, 177	\$5, 060, 181 4, 253, 268 4, 765, 137 5, 364, 376 5, 706, 783	151, 090 30, 996 102, 663 134, 250 148, 257	\$1, 409, 670 282, 373 924, 993 1, 227, 045 1, 258, 702	693, 446 497, 875 631, 535 721, 162 820, 434	\$6, 469, 851 4, 535, 641 5, 690, 130 6, 591, 421 6, 965, 485	\$9. 33 9. 11 9. 01 9. 14 8. 49

¹ Includes acid from foreign blende.

Rolled zinc.—Production of rolled zinc increased 21 percent in 1941, and the average value advanced 14 percent (from \$0.100 in 1940 to \$0.114 in 1941). Some mills that fabricate their rolled zinc into various finished products remelt and reroll the resulting scrap. The scrap thus treated in 1941 amounted to 14,586 tons, a 43-percent gain over 1940. The zinc lost in such waste products as skimmings, dross, and pot losses totaled 1,838 tons in 1941, an amount equivalent to about 2.6 percent of the net production of rolled zinc (the same ratio as in 1940). Zinc purchased for rolling in 1941 comprised 34 percent High Grade, 29 percent Brass Special, 19 percent Intermediate, 14 percent Selected, and 4 percent Prime Western. compare with the 1940 figures of 16, 41, 22, 5, and 16 percent, respec-The increased use of the higher grades of zinc continues the trend in this direction noted in 1940 and probably reflects the gain in production of the higher grades of zinc during 1941 plus their increased use in rolled products in the expanded national defense pro-Stocks of slab zinc on hand at rolling mills were about 5,200 tons (revised figure) at the beginning and 3,336 tons at the end of the vear.

² At average of sales of 60° acid.

Rolled zine produced and quantity available for consumption in the United States, 1940-41

		1940		1941			
		Va	lue		Value		
	Short tons	Total	A verage per pound	Short tons	Total	A verage per pound	
Production: Sheet zinc not over 0.1 inch thick Boiler plate and sheets over 0.1 inch thick Strip and ribbon zinc 2 Total rolled zinc 2 Imports Exports Available for consumption Value of slab zinc (all grades) Value added by rolling	1 16, 547 1, 904 1 38, 948 57, 399 18 7, 055 50, 362	1 \$3,876,000 363,000 1 7,220,000 1 11,459,000 2,800 1,421,100	\$0. 117 . 095 1. 093 1. 100 	18, 823 3, 610 47, 046 69, 479 3 71 3 3, 067 (4)	\$4, 933, 000 775, 000 10, 125, 000 15, 833, 000 3 14, 000 3 724, 500	\$0. 131 . 107 . 108 . 114 . 118	

Revised figures.

Figures cover January to September, inclusive.
 Figure not available for publication.

Zinc dust.—Production of zinc dust in 1941 advanced to the highest level in the history of the industry and was 18 percent above the previous record established in 1940. The zinc content of dust ranged from 94.0 to 99.0 percent and averaged 97.7 percent.

The largest present use for zinc dust is in the manufacture of chemicals consumed in the process of printing and dyeing textiles. These chemicals, for the most part, act as reducing and bleaching agents. Other uses of zinc dust in approximate order of importance are: The metallurgical uses, including precipitation of gold, silver, and other heavy metals and production of cadmium; the sherardizing of iron; and the production of zinc paints. Some miscellaneous uses include chemicals (other than those mentioned above), manufacture of ceramics, refining of lubricants, production of oil-well drilling compounds, pipe-joint compounds, soot removers, and smoke screens, and in the Schori process of metal spraying. The last-named use is increasing in this country, and the chemical use in smoke screens undoubtedly will gain sharply because of the war.

Zinc dust is manufactured principally from galvanizers' dross, and in 1941 more than three-quarters of the total produced came from The rest of the production was from ore, metallic this one source. zinc, die-cast scrap, and numerous miscellaneous scrap zinc items, and as a byproduct of zinc refining.

² Figures represent net production. In addition, 10,183 tons of strip and ribbon zinc in 1940 and 14,586 tons in 1941 were rerolled from scrap originating in fabricating plants operated in connection with zinc rolling mills.

zinc 151

Year Short tons		Val	lue			Val	ue
	Total	A verage per pound	Year	Short tons	Total	A verage per pound	
1937	15, 242 11, 609 16, 835	\$2, 587, 577 1, 542, 511 2, 367, 861	\$0.085 .066 .070	19401941	20, 731 24, 429	\$3, 404, 970 4, 641, 580	\$0. 082 . 095

¹ All produced by distillation.

Zinc pigments and salts.—The principal zinc pigments are zinc oxide and lithopone, and the principal salts are the chloride and sulfate. These products are manufactured from various zinciferous materials, including ore, metal, and secondary substances. Details of the production of zinc pigments and salts are given in the chapter on

Lead and Zinc Pigments and Zinc Salts.

Mine production.—Mine production of zinc showed a general increase in the Western, Central, and Eastern States, with an over-all gain of approximately 13 percent during 1941; the advance amounted to 40,532 tons or 17 percent in the Western States, 31,030 tons or 13 percent in the Central States, and 12,495 tons or 7 percent in the Eastern States. Oklahoma continued to be the principal producer in the country by a wide margin, contributing more than half of the yield from the Central States which supplied 37 percent of the total mine production in 1941. The increased output in this area, as well as for the entire country, can be attributed directly to the ever-increasing demand, coupled with the continued higher level of prices. As in 1940, the Tri-State (or Joplin) region supplied 35 percent and Southeastern Missouri and the other Central States only 2 percent of total domestic production. Output from Arkansas and Kentucky declined during 1941.

All the Western States, except Utah, gained in production during 1941; they yielded 38 percent of the total domestic output. Idaho continued to be the largest producer in this region, with a 12-percent increase over the previous record level of 1940. Montana again ranked second, with the largest output since 1929, and Utah maintained third place (despite a drop in production) but was closely followed by New Mexico. Output of zinc from Arizona was the largest in the history of the State and resulted from increased activity at mines producing zinc-lead ore. About 95 percent of the production from Nevada came from the Pioche district. The output from Washington gained 24 percent and was the highest ever recorded for the State; nearly all of it came from three properties at Metaline Falls.

Among the Eastern States, New Jersey continued to be the leading producer and maintained its rank as second in importance in the country, with an output higher than in any year since 1937. Output from the newly developed Hyatt mine in St. Lawrence County, N. Y., contributed to the 8-percent increase in 1941 for that State. Production in Tennessee was higher than in any previous year. Although shipments of concentrates from Virginia were greater than in 1940, actual mine production was less.

Mine production of recoverable zinc in the United States, 1925–29 (average) and 1937–41, by States, in short tons

State	1925-29 (average)	1937	1938	1939	1940	1941
Western States:						
Arizona	2, 628	5, 026	5, 814	6, 711	15, 456	16, 493
California	3, 999	20	0,011	6, 111	79	440
Colorado	32, 868	4. 247	4, 553	1.830	5, 060	15, 722
Idaho	29, 128	54, 199	44, 030	47. 549	70, 601	79, 084
Montana	72, 519	39, 168	8, 844	34, 799	52, 587	60, 710
Nevada	5, 570	14, 236	8, 944	6, 228	11, 833	15, 129
New Mexico	23, 351	23, 927	28, 236	29, 356	30, 313	37, 862
Oregon	20, 001	26, 321	20, 200	20, 000	30, 313	01,002
Utah	44, 385	48, 001	33, 658	34, 526	43, 788	42, 049
Washington	575	4, 116	11, 402	10, 131	11, 560	14, 320
** doming to it = = = = = = = = = = = = = = = = = =	010	1, 110	11, 102	10, 101	11,000	11, 020
	215, 023	192, 964	145, 481	171, 136	241, 277	281, 809
Central States:			<u></u>			
Arkansas	71	241	152	123	440	206
Illinois	1, 174		102	334	4, 818	9, 198
Kansas	114, 323	80, 300	73, 024	68, 971	57, 032	71, 403
Kentucky	644	270	322	909	1, 278	427
Missouri	16, 708	20, 600	10, 226	15, 096	12, 703	21, 932
Oklahoma	226, 969	135, 696	112, 924	140, 379	162, 935	166, 602
Wisconsin	23, 055	6, 938	2,073	5, 904	5, 770	6, 238
	382, 944	244, 045	198, 721	231, 716	244, 976	276, 006
Eastern States:	1			and the same		100
New Jersey	93, 839	101, 408	85, 839	88, 716	91, 406	93, 781
New York	7, 091	32, 690	29, 896	36, 014	35, 686	38, 446
Tennessee	25, 823	55, 255	56, 766	56, 225	34, 796	36, 170
Virginia	7 20,020	00, 200	00, 700	00, 220	16, 927	22, 913
	126, 753	189, 353	172, 501	180, 955	178, 815	191, 310
	724, 720	626, 362	516, 703	583, 807	665, 068	749, 125

Mine production of recoverable zinc in the principal zinc-producing districts of the United States, 1937-41, in short tons

District	State	1937	1938	1939	1940	1941
Joplin region	Kansas, Southwestern Missouri, Oklahoma.	236, 585	196, 174	224, 446	232, 437	258, 837
New Jersey		101, 408	85, 839	88, 716	91, 406	93, 781
Coeur d'Alene region	Idaho.	47, 070	31, 937	40, 065	62, 948	68, 321
St. Lawrence County	New York	32, 690	29, 896	36, 014	35, 686	38, 446
Summit Valley (Butte)	Montana	22, 033	942	20, 016	35, 899	38, 070
Eastern Tennessee	Tennessee	1 55, 255	1 56, 766	1 56, 225	34, 796	36, 170
Central	New Mexico	11, 887	16, 695	23, 677	29. 573	34, 649
Austinville	Virginia	(1)	(1)	(1)	² 16, 927	2 22, 913
Bingham	Utah	20, 570	23, 096	20, 861	21, 812	20, 496
Smelter	Montana	10, 330	6, 063	12, 639	14, 462	18, 751
Park City region	Utah	19, 342	5, 678	9. 054	17. 598	16, 177
Pioche	Nevada	12, 472	8, 414	5, 737	10, 773	14, 391
Metaline	Washington	4, 095	11, 402	10, 130	11, 560	14, 201
Red Cliff	Colorado	4,000	11, 402	10, 150	1 '	10, 880
Warm Springs	Idaho	6, 959	12,070	7, 463	7, 104	8, 534
Upper Mississippi Valley	Iowa, Northern Illinois, Wis-	6, 938	2, 073	5, 904	5, 776	7, 955
opper wississippi vancy	consin.	0, 300	2,015	0, 904	0,110	1, 30,
Kentucky-Southern Illinois	Kentucky-Southern Illinois	270	322	1, 243	6, 090	7, 907
Pioneer	Arizona		825	2,000	3, 175	4, 139
San Juan Mountains	Colorado	2, 092	4, 308	1, 465	4, 151	3, 894
Rush Valley	Utah.	2, 205	1, 955	2, 370	2, 971	3, 726
Harshaw	Arizona	2, 200	1, 500	1,075	2, 714	3, 531
Magdalena	New Mexico	755	218	317	206	2, 580
Wallanai	Arizona	1, 714	1,660	770	4. 295	2, 346
Warren	do	1.714	1,000	7	1,812	2, 095
Big Bug	do			110	1,740	1, 804
Montana	Montana			5	713	1.474
Eagle	do	632	550	394	418	1.048
Tintie	Utah	1, 259	921	851	225	797
Onhir	do	4. 023	1.893	1, 268	603	173
Cataract	Montana	1, 043	605	1,070	773	93
Leadville	Colorado	1,676	97	172	172	48
Flint Creek	Montana	4, 641	426	663	99	41
Oro Blanco	Arizona	2, 700	3, 265	2, 377	484	
Willow Creek	New Mexico	10, 882	11, 291	4, 925	404	
Terbo	Nevada	1, 417	11, 291	7, 52.0		

¹ Virginia included with Tennessee for 1937-39. Bureau of Mines not at liberty to publish separately. ² Includes a very small quantity produced elsewhere in the State.

153 ZINC

STOCKS

Producers' stocks.—Stocks of zinc at primary reduction plants, although still at a low level, gained 26 percent by the end of 1941; the comparatively small inventories held at secondary distilling plants increased 17 percent; and total stocks also rose 26 percent. Of the total stocks on hand at the end of the year, 18,491 tons were of the higher grades of zinc (A and B) and 6,611 tons of the lower grades (C, D, and E) compared with 9,710 and 10,263 tons, respectively, at the end of 1940.

According to the American Zinc Institute, stocks of slab zinc followed a general downward trend during the first half of 1941 and reached the low point for the year at the end of June. Comparable figures for the same date in past years are not available, but the midyear stock figure was lower than any year-end total since 1913. During the latter half of 1941, stock totals advanced steadily, so that the year-end figure was somewhat higher than that at the

beginning of 1941.

Stocks of zinc on hand at zinc-reduction plants in the United States at end of year, 1937-41, in short tons

	1937	1938	1939	1940	1941
At primary reduction plants	79, 144 1, 969	157, 511 1, 915	83, 728 2, 555	19, 212 761	24, 212 890
	81, 113	159, 426	86, 283	19, 973	25, 102

Stocks of zinc ore (60-percent concentrates) in the Tri-State district (as reported by the Tri-State Zinc and Lead Ore Producers' Association) on December 28, 1940, totaled about 2,800 short tons with a drop to 1,200 tons on January 4, 1941, as shipments continued to increase over production. Production began to gain and by February 22 exceeded shipments, with a resultant advance in stocks to This was followed by a sharp initial drop and a subsequent gradual falling off of stocks to 4,900 tons by the end of the first quarter

(March 29). During the second quarter of 1941, stocks first rose to 6,100 tons on April 19 and then showed a general slight downward trend to 5,000 tons on June 28. In this same period, production for the most part exceeded shipments; but by July 5 shipments greatly exceeded production, and stocks dropped to 3,500 tons. Following this midyear low, stocks climbed steadily (with but one notable decrease—in the latter part of August) to 9,300 tons on October 11—the peak for 1941. A subsequent sharp gain in shipments, with continued excess over slightly rising production, caused a rapid depletion of stocks to 2,900 tons on November 29, followed by a gain to 3,800 tons on December 27; however, a marked rise in shipments, accompanied by a slight decrease in production, resulted in stocks dropping to 1,500 tons on January 3, 1942—the lowest point reached since January 4, 1941.

Data on stocks of metallic zinc outside the United States continue to be unavailable, owing to the disruption of international trade in

zinc ore caused by the war.

Consumers' stocks.—The monthly survey of consumer stocks, first made by the Bureau of Mines in September 1940, was continued throughout 1941. In the following table the totals, by months, from

December 1940 through June 1941 are based upon a canvass of approximately 300 companies with an estimated industrial coverage of about 90 percent at the first of the year. In August the survey was expanded to include more than 500 respondents, representing over 95 percent of the consuming industry; stock totals were recorded upon this basis beginning July 31.

Consumers' stocks of slab zinc at plants at month's end, December 1940 to December 1941, by industries, in short tons ¹

	Galva- nizers	Die casters	Brass mills	Zinc rolling mills	Oxide plants	Others	Total
940:							
December	31, 612	12, 937	16, 410	6.0)67	638	67, 66
941:	1			· ·		100	
January	29, 621	11, 619	10, 948	5.0	010	727	57, 93
February		10, 422	11, 515	5.	159	801	54, 9
March		7, 548	8,016		567	820	48, 50
		5, 993	10, 712		337	856	45, 8
April May	21, 798	5, 449	11, 999		397	899	43, 8
June	22, 481	5, 594	14, 485	3,	577	846	46, 9
July	27, 703	6, 410	18, 448	2, 862	443	1,832	57, 6
JulyAugust	26, 809	6, 206	15, 748	3, 533	268	2, 113	54, 6
September	28, 718	7, 300	16, 231	3, 689	152	1,860	57, 9
October		7, 538	14, 831	3, 637	240	1,744	57. 7
November		8,026	17, 890	3, 808	301	1,676	60.7
December	31, 508	9, 320	19,049	3, 569	164	1,672	65. 2

¹ Based upon canvass of approximately 300 companies from January through June; expanded to 520 companies beginning July 31.

In addition to the zinc recorded in the foregoing data on physical inventories at plants, several thousand tons were in transit and held for redistillation at the end of each month. The total of this additional metal ranged from as low as 10,530 tons to as high as 15,924 tons for month-ends from December 31, 1940, to December 31, 1941, with an average of about 13,200 tons a month for the year.

Although the monthly stock data do give a general picture, the results for July through December are not directly comparable with preceding months, because of variance in coverage and certain changes in industrial classification. These differences are indicated by the following table, which gives the final stock totals for the beginning and end of 1941, based upon an annual consumer survey for the calendar year 1941. Total inventories decreased 11 percent.

Consumers' stocks of slab zinc at plants at the beginning and end of 1941, by industries, in short tons 1

	Galva- nizers	Die casters	Brass mills	Zinc rolling mills	Oxide plants	Others	Total
December 31, 1940	34, 903	13, 522	20, 412	5, 251	767	1, 760	76, 615
December 31, 1941	33, 506	9, 846	19, 069	3, 371	319	1, 977	68, 088

¹ Based upon canvass of approximately 600 companies.

DOMESTIC CONSUMPTION

New supply.—A complete picture of the supply of new zinc available for consumption in 1941 cannot be published, owing to the confidential nature of foreign trade information since September 1941. In the following table the trend of supply is shown for the 4 years,

1937-40, but no attempt has been made to total the incomplete 1941 statistics. In 1941 imports that affect the total supply and exports that largely determine withdrawals are listed only for January to September, inclusive.

In addition to primary zinc, redistilled secondary metal was available for consumption in 1941. Allowing for a slight increase in stocks at secondary smelters, the supply of this material available to con-

sumers totaled 59.374 tons.

Primary slab zinc available for consumption in the United States, 1937-41, in short tons

7,7 0,00,7 0,000										
	1937	1938	1939	1940	1941					
Supply: Stock at smelters Jan. 1 Production. Imports for consumption.	55, 500 556, 904 37, 208	79, 144 446, 341 7, 230	157, 511 507, 236 30, 960	83, 728 675, 275 1 16, 468	19, 212 822, 020 1 2 25, 212					
Total available	649, 612	532, 715	695, 707	775, 471	(3)					
Withdrawn: Exports	249 79, 144	4 200 157, 511	4, 515 83, 728	79, 091 19, 212	² 57, 909 24, 212					
Total withdrawn	79, 393	157, 711	88, 243	98, 303	(3)					
Available for consumption	570, 219	375, 004	607, 464	677, 168	(3)					

Figures cover January to September, inclusive.

Consumption.—The survey by the Bureau of Mines of zinc consumers for the calendar year 1941, mentioned earlier in this chapter under the heading Consumers' Stocks, showed that a record total of 827,435 tons of zinc actually was consumed in 1941 by approximately 600 companies, representing virtually 100 percent of the consuming industry. In comparison, a similar survey for 1940 gave a consumption total of about 733,000 tons. Receipts of zinc by consumers in 1941 totaled 818,908 tons, and the rest was supplied by an 8,527-ton withdrawal from consumers' inventories. A break-down of the total consumed, by industrial groups and principal uses in each group, was obtained for 1941 for the first time. These figures are given in the following tabulation, but no comparison can be made with previous vears.

Consumption of slab zinc in the United States in 1941, by industries, in short tons 1

Galvanizing: ² Sheets Tubes and pipe Wire	129, 028 69, 749	Die-casting alloy Rolled and ribbon zinc Zinc oxide	150, 853 72, 049 16, 128
Wire cloth	11, 307	Other uses:	
Shapes 3			751
biapes		Wet batteries	1, 767
	250 054		
	350, 854	Desilvering lead	
		Miscellaneous 4	5, 564
Brass products:	-	-	
Sheets, tubes, etc	195, 714		9, 513
Ingots			
Castings	4, 509	Total consumption: All uses	827, 435
Minallanana	18, 318	1 our consumption: 1211 dece	021, 200
Miscellaneous	10, 310		
	228, 038		

1 Based upon canvass of approximately 600 companies.
2 Includes zinc used in electrogalvanizing but excludes sherardizing.
3 Includes pole-line hardware, hollow ware, chains, and miscellaneous articles not elsewhere mentioned.
4 Includes slab zinc used in manufacture of zinc dust.

Figures not available for publication.
 Not separately recorded; estimated.

The estimated industrial use of primary and secondary zinc, as calculated by the American Bureau of Metal Statistics, cannot be directly compared with the Bureau of Mines consumption figures for 1941 because the results were attained by separate methods and certain data are subject to different interpretation. Nevertheless, the figures in the following table are particularly valuable as they show the indicated trend over a period of several years.

Estimated industrial use of zinc in the United States, 1937-41, in short tons 1

Purpose	1937	1938	1939	1940	1941
Galvanizing:					
Sheets	139,000	108, 500	147, 500	147, 700	138, 500
Tubes.	37,000	29, 300	43, 300	51, 200	55, 000
Wire	33,000	23, 600	33,000	33, 900	37, 100
Wire cloth	7,000	5, 600	7, 700	8, 400	8, 600
Shapes 3	40,000	31, 000	43, 500	45, 800	60, 800
	256, 000	198,000	275, 000	287, 000	300,000
Brass making	169,000	102,000	175,000	232, 000	313, 900
Rolled zinc	58,000	46,000	62, 900	58,000	69, 000
Die castings	88,000	48,000	84,000	116,000	125,000
Other uses 3	39, 000	27,000	30,000	26, 000	24, 000
	610,000	421,000	626,000	719,000	831,000

 American Burcau of Metal Statistics, Year Book, 1941.
 Includes pole-line hardware, hollow ware, chains, and all articles not elsewhere mentioned.
 Includes slab zinc used for manufacture of French oxide, zinc for wet batteries, slush castings, the de-line interference of the control oxide. silverization of lead, wire for metalizing, etc., and sundries.

The quantity of zinc used by industry in 1941, as estimated by the American Bureau of Metal Statistics, was 16 percent higher than the previous record established in 1940. According to the data in the foregoing table, all the principal uses indicate increases in 1941galvanizing 5 percent, brass making 35 percent, and die castings 8 Galvanizing took 36 percent of the total tonnage in 1941 compared with 40 percent in 1940 and 44 percent in 1939. includes zinc used in electrogalvanizing and that used in sherardizing; the former increased from 6,071 tons in 1940 to 7,594 tons in 1941, and the latter from 618 to 944 tons. An incomplete break-down of the zinc used in rolled products in 1941 (1940 figures in parentheses) included 20,975 tons (20,985) in battery cans, 3,600 (1,904) in boiler plate, and 449 (426) in brake lining. The remaining tonnage was distributed for glass jar tops, photoengraving sheet, and automobile manufacture and for miscellaneous uses or export. The chief item in "Other uses" is the slab zinc employed in making French-process zinc oxide.

PRICES

Despite the ever-increasing demand for zinc, from January through September the price of Prime Western at St. Louis continued at the 7.25-cent-a-pound rate established September 24, 1940. In an effort to expand output from marginal producers, the Office of Price Administration raised the base price on October 9, 1941, from 7.25 to 8.25 cents, where it remained for the rest of 1941 The price of zinc

157 ZINC

concentrates quickly followed with a rise of \$6.70 to \$55.28 per ton for 60-percent zinc concentrates in the Tri-State market, the highest reached in 15 years. The average quoted price for zinc in 1941 was

7.48 cents compared with 6.34 cents in 1940.

Information on London Metal Exchange dealings, which were suspended at the outbreak of the war, continued to be unavailable during 1941. On December 18, 1939, the Nonferrous Metal Control for the United Kingdom fixed the price of zinc at £25 15s., delivered consumers, duty paid, for foreign zinc, and £26 10s., for domestic These established prices did not change during 1941.

Price of zinc and zinc concentrates, 1937-41

	1937	1938	1939	1940	1941
Average price of common zinc at—					
St. Louis (spot)cents per pound	6.52	4.61	5, 12	6.34	7. 48
New York dodododo	6.87	4.99	5, 51	6, 73	7. 87
Londondo	4. 91	3, 05	1 2, 89	(2)	(2)
Excess New York over Londondo	1.96	1.94	8 2, 03	(2) (4)	(2)
Toplin 60-percent zinc concentrates:					
Price per short tondollars	39. 87	27, 83	34. 15	41.87	49, 80
Price of zinc contentcents per pound		2.32	2.85	3, 49	4. 1.
Smelter margindo	3. 20	2. 29	2. 27	2.85	3. 3
D 1 1 (100F 00 100)	- 3.20	2. 20	2. 21	2.00	0.00
Zinc (New York)	. 97	70	77	95	111
Tood (Now York)	- 80		68	69	78
Lead (New York)	80	63			
Copper (New York)	90	70	75	77	80
Nonferrous metals 5		74	79	82	8
All commodities	88	80	79	80	89

Difference based upon 8-month averages.
 Not available.

Average monthly quoted prices of common zinc (prompt delivery or spot) at St. Louis and London, and of 60-percent zinc concentrates at Joplin, 1940-411

		1940		1941			
Month	60-percent zinc concen- trates in the	Metallic z per po	inc (cents)	60-percent zinc concen- trates in the	Metallic z per pe	inc (cents	
	Joplin region (dollars per ton)	St. Louis	London	Joplin region (dollars per ton)	St. Louis	London	
January February March April May June July August Sepftember October	41. 98 44. 75 48. 24	5. 64 5. 75 5. 75 5. 81 6. 24 6. 25 6. 94 7. 25	(2)	\$48. 20 48. 22 48. 19 48. 20 48. 21 48. 21 48. 21 48. 22 48. 39 52. 88	7. 25 7. 25 7. 25 7. 25 7. 25 7. 25 7. 25 7. 25 7. 25 7. 25	(2)	
November December Average for year	48. 23 48. 19 41. 87	7. 25 7. 25 6. 34	(2)	55. 28 55. 28 49. 80	8. 25 8. 25 7. 48	(2)	

All quotations from Metal Statistics, 1942.
 Official maximum price fixed by British Ministry of Supply at £25 15s., equivalent to 4.64 cents a pound at the official 1940-41 rate of exchange.

Average for 8 months; London Metal Exchange dealings suspended in September.
 Official maximum price fixed by British Ministry of Supply at £25 15s., equivalent to 4.64 cents a pound at the official 1940-41 rate of exchange.

Based upon price indexes of U. S. Department of Labor.

Average price received by producers for zinc, 1937-41, by grades, in cents per pound

	1937	1938	1939	1940	1941
Grade A:1					
Special High Grade Regular High Grade Grade B: Intermediate	6. 65	5. 03	5. 34	6. 59	8.04 7.74 7.52
Grades C and D: 1 Brass Special	6.47	4 73	5,00	6.04	7.37
Selected Grade E: Prime Western All grades	6.44	4.71 4.8	5.08 5.2	6. 14 6. 3	6.64 7.16 7.5
Prime Western; spot quotation at St. Louis.	6. 5	4.6	5. 1	6.3	7.5

¹ American Metal Market quotes average prices of High Grade and Brass Special as follows: High Grade (f. o. b. New York)—1937, 7.76 cents; 1938, 5.74 cents; 1939, 6.16 cents; 1940, 7.38 cents; 1941, 8.48 cents. Brass Special (f. o. b. East St. Louis)—1937, 6.62 cents; 1938, 4.71 cents; 1939, 5.22 cents; 1940, 6.44 cents; 1941, 7.68 cents.

ZINC-REDUCTION PLANTS

Zinc smelters.—No changes took place during 1941 in the number of active and idle zinc smelters; as in 1940, there were 17 active plants Of those active, 13 continued to operate with horiand 1 idle plant. zontal retorts exclusively, 1 with both horizontal and vertical retorts, 2 with large vertical retorts exclusively, and 1 with electrothermic The total number of retorts reported at the active horizontal-retort primary plants was 68,552, a 10-percent increase over the 62,368 recorded for December 31, 1940. Of the total retorts reported, 65,969 were in use, a 19-percent increase over the 55,328 in operation at the close of 1940. Although this active equipment represented 96 percent of the total at the regular plants, smelting operations were at usable capacity throughout 1941; the remainder represents a rapidly decreasing amount of equipment that has been idle for some time and is being replaced or reconditioned, plus a certain percentage that was closed down for necessary repairs. At the end of 1941, 800 new retorts were under construction. The 14 new large vertical retorts under construction at the end of 1940 were completed during 1941, bringing the total reported to 66, of which 64 were in use at the year's end.

Many primary smelters treat scrap as well as ore. Horizontal-retort plants at Beckemeyer and Sandoval, Ill., and graphite-retort plants at Trenton, N. J., Philadelphia and Bristol, Pa., Wheeling, W. Va., Tottenville, N. Y., and Fairfield, Ala., handle scrap exclusively. Graphite retorts were also operated during 1941 by Morris P. Kirk & Son, Inc., Los Angeles, Calif., and the New England Chemical Works, Putnam, Conn.; both concerns use scrap exclusively. The Torrance (Calif.) plant of the Pacific Smelting Co., Ltd. uses small clay retorts as well as graphite retorts for treating secondary materials. Although no units were reported under construction at secondary plants during 1941, additional Philadelphia retorts are planned for future

installation at Fairfield and Philadelphia.

Electrolytic plants.—Four electrolytic plants were in operation during 1941 compared with three in 1940. The plant of the American Zinc Co. of Illinois at East St. Louis, Ill., which opened in May 1941, operated at full capacity thereafter during the year, and construction work was planned for doubling the output. The plant of the Sullivan Mining Co. at Kellogg, Idaho, made full use of its capacity. The Anaconda Copper Mining Co. plant at Anaconda, Mont., operated to

full extent, and the Great Falls plant ran at near capacity; both plants increased their capacity over 1940, and additional plant facilities were planned for 1942. At the four plants, 2,502 cells out of a total of 2,526 were in use at the end of 1941 compared with 2,204 out of 2,228 at three plants at the end of 1940; no new cells were reported under construction at the end of the year, but 348 additional cells were planned for 1942. The American Smelting & Refining Co. electrolytic zinc plant at Corpus Christi, Tex., which was begun in 1940, was still under construction at the end of 1941 but should be ready to operate in 1942 with an annual capacity of 25,000 tons of zinc.

FOREIGN TRADE 3

Imports.—The following tables give zinc total imports (general) in ore and blocks, pigs, or slabs into the United States, 1939-40, and from January through September 1941; imports for consumption, 1937-40 and 9 months of 1941; and a record of bonded warehouse inventories, 1937-41.

Zinc imported into the United States in ore, blocks, pigs, or slabs, 1939-41, by countries, in short tons 1

		1 1 1	
Country	1939	1940	1941 (Jan Sept.)
Ore (zinc content): Argentina		6, 723 1, 749	5, 320 8, 933 8, 161
Belgian Congo	1, 613	2, 530 33, 993 611	8, 161 2, 687 33, 991
Mexico Newfoundland and Labrador Peru Spain	23, 221	93, 789 23, 640 17, 285	92, 544 3, 531 21, 822 5, 119
Spain	36, 100	180, 320	182, 100
Blocks, pigs, or slabs: Belgium Canada	(0,402	336 6, 938	6, 70 1, 10
Indochina, French Mexico Other countries	10,000	8, 948 246	17, 36 4
	30, 898	16, 468	25, 213

¹ Data include ore imported for immediate consumption plus material entering country under bond.

Zinc ¹ remaining in warehouse in the United States, December 31, 1937-40, and September 30, 1941

	Poun is	Pounds .
1937	24, 904, 405 1940	184, 442, 754
1938	51, 058, 373 1941 (Sept. 30)	279, 092, 943
1939	20, 295, 817	

Includes zinc ore (zinc content) and zinc blocks, pigs, old, and sheets.

As imports in 1941 are listed for only 9 months no direct comparisons can be made with 1940 totals, but statistics for the January-September period do give an interesting picture of the trend since 1940. By September 30, imports of zinc ore and concentrates were

³ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

greater than the 1940 total. Mexico remained the chief source, with shipments amounting to 51 percent of the total, followed by Canada and Peru; although figures for all three countries indicate that totals for the year exceeded those for 1940, Peru shows the greatest gain. Increased amounts came from Australia and Bolivia; but imports from Newfoundland and Labrador in the 9 months declined appreciably, and none were reported from Chile. A substantial tonnage was obtained from Argentina, as well as from Belgian Congo and Spain. The rapid rise in the amount of zinc remaining in warehouse (from 184,442,754 pounds at the end of 1940 to 279,092,943 pounds on September 30, 1941) is due largely to the preponderance of total imports (general) over imports for consumption.

Before 1940, total (general) imports of slab zinc very closely approximated imports for consumption, whereas in 1940 total imports were higher than imports for consumption by about 6,000 tons. Upon the basis of 9-months' totals the reverse is indicated for 1941; the 30,995 tons imported for consumption during this period (12-months' figures for 1940 in parentheses) included 23,085 tons (2,647) from Mexico, 6,704 tons (6,877) from Canada, and the rest from French Indochina, Australia, and Peru. In comparison, the 9-months' total (general) imports of slab zinc—25,212 tons—included 17,362 tons (8,948) from Mexico and 6,704 tons (6,938) from Canada.

Zinc imported for consumption in the United States, 1937-41, by classes

Year		zinc con- ent)	Blocks, pigs, or slabs		Sheets Old, dr		ross, and mings ¹	Zin	e dust	Total	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	value 2
1937 1938 1939 1940 1941 3	3, 345 4, 860 33, 503 44, 637 66, 976	\$177, 457 392, 591 1, 304, 433 1, 108, 361 2, 421, 632	37, 208 7, 230 30, 960 10, 146 30, 995	\$3, 852, 884 480, 169 1, 890, 236 801, 331 2, 841, 071	231 226 178 18 71	\$30, 398 25, 989 21, 166 2, 796 14, 029	678 96 203 520 412	\$70, 460 8, 944 14, 067 36, 689 28, 065	69 64 41 68	\$6, 169 5, 074 3, 388 	\$4, 137, 368 912, 767 3, 233, 290 1, 949, 177 5, 317, 098

Includes dross and skimmings as follows—1937: 560 tons, valued at \$59,635; 1938: None reported; 1939:
 tons, \$1,918; 1940: 356 tons, \$21,815; and 1941 (Jan.-Sept.): 353 tons, \$23,028.
 In addition, manufactures of zinc imported as follows—1937: \$828; 1938: \$463; 1939: \$1,545; 1940: \$32; 1941 (Jan.-Sept.): \$68.
 January to September, inclusive.

Exports.—The value of exports in 1941 (January-September) of zinc ore and manufactured articles containing zinc of foreign and domestic origin (excluding galvanized products, alloys, and pigments) amounted to \$9,557,706 compared with \$11,302,228 in the full year 1940. The maintenance of this high over-all value was due to increased prices. Slabs, plates, or blocks continued to be the largest export group. In addition to the items shown in the accompanying tables, considerable zinc is exported each year in brass, pigments, chemicals, and galvanized iron and steel. The American Bureau of Metal Statistics estimates that 14,300 tons of zinc were exported in galvanized products from January through September 1941. Export data on zinc pigments and chemicals are given in this volume in the chapter on Lead and Zinc Pigments and Zinc Salts. Much of the zinc used in the manufacture of such products is of foreign origin, and when they are exported a draw-back of 99 percent of the import duty is paid on the

161 ZINC

basis of zinc contained in the finished product. For the 9-month period in 1941, draw-back was paid on 22,777 tons of zinc, of which 7,638 tons had been imported as slabs and 15,139 tons as ore. Totals for preceding years were: 1940, 19,306 tons; 1939, 16,213 tons; 1938, 11,550 tons; 1937, 9,253 tons; and 1936, 8,909 tons.

In the following table on exports of slab and sheet zinc by countries of destination, the figures only for the first quarter of 1941 are given to show the general distribution. The influence of the Lend-Lease program in 1941 is indicated by the large tonnage exported to the

United Kingdom during the 3-month period.

Slab and sheet zinc exported from the United States, 1938-40, and January to March, 1941, by destinations, in short tons

	Sla	Slabs, plates, and blocks				Sheets, strips, or other forms, n. e. s.			
Destination	1938 1	1939	1940	1941 (Jan Mar.)	1938 1	1939	1940	1941 (Jan Mar.)	
Country:									
Argentina	(2)	56	890	349	471 841	404 1, 052	579 246	195	
Brazil	Ø	526	1, 391	471	9	50	96	58	
Canada Chile	8	298	(2) 428	(2)	2, 317 9	2, 902 20	2, 813 130	491 41	
China India, British	(2)	201	4, 115 9, 634	21 1, 288	11 110	148 122	40 1, 422	91 313	
Japan	(i)	3, 252	13, 958	175	232	5	259		
United Kingdom Other countries	000000000	177	36, 718 11, 957	9, 559 576	775 961	841 1, 164	585 1, 320	611	
Total	(1)	4, 515	79, 091	12, 439	5, 736	6, 708	7, 490	1, 802	
Continent:									
North America	(1)	31	258	18	2, 527	3, 167	3, 127	581	
South America Europe	8	996	2, 760 45, 982	822 9, 559	643 914	555 952	997 783	359 111	
Asia	(1)	3, 488	29, 431	1, 950	673	741	1,657	642	
Africa	999999		640 20	90	107 872	159 1, 134	653 273	109	

 $^{^1}$ Slabs, blocks, or pigs not shown separately; included with sheets, strips, or other forms, n. e. s. 2 Less than 1 ton.

Zinc ore and manufactures of zinc exported from the United States, 1937-41

Year.	Zinc ore, trates, a (zinc cor	nd dross	Slabs, plates, or blocks		Sheets, strips or other forms, n. e. s.		Zinc dust	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1937	314 135 303 448	\$10, 145 6, 404 11, 253 42, 207		\$25, 706 (1) 479, 338 9, 103, 030 8, 252, 009	5, 813 1 5, 736 2 6, 708 2 7, 490 2 3, 539	\$1, 103, 533 1 908, 381 2 1, 116, 485 2 1, 564, 720 2 859, 837	2, 145 2, 253 2, 834 3, 044 1, 954	\$418, 376 355, 856 468, 516 592, 27 445, 866

¹ Pigs and slabs not shown separately; included with sheets, strips, or other forms, n. e. s. ² Includes "Other forms, n. e. s. (including scrap)", as follows—1939: 259 tons, valued \$64,434; 1940: 435 tons, \$143,652; and 1941 (Jan.—Sept.): 472 tons, \$135,297. Not separately classified before 1939.

WORLD ASPECTS OF ZINC INDUSTRY

A perspective of the zinc situation throughout the world in 1941 shows continuation of the abnormal conditions that prevailed during 1940.

Although official data are lacking, the serious need for zinc for military and civilian use indicates that world production and consumption of this metal were greater in 1941 than ever before. Some of the details by countries, where such information is available, are discussed in the following pages. Owing to the serious lack of data for 1940 and 1941, the table showing world smelter production has been omitted.

REVIEW BY COUNTRIES

Argentina.—Production of zinc concentrates in Argentina in 1941 amounted to 66,010 metric tons containing about 36,300 tons of zinc, only slightly below the 1940 total of 66,384 tons containing approximately 37,000 tons of zinc. The Aguilar mine of the St. Joseph Lead Co. in the Province of Jujoy is still virtually the only producer. This and other smaller mines supply concentrates for the Puerto Vilelas smelter. During 1940 a large percentage of the output of concentrates accumulated as stocks as the result of difficulty in disposing of them. In June 1941 the United States, through the Metals Reserve Co., purchased the greater part of such stocks on hand. Reportedly this purchase amounted to 100,000 long tons of concentrates contain-

ing 42,500 long tons of recoverable zinc.

Australia.—Base-metal production statistics for Australia for 1941 are not available. A prominent feature in development work at the various zinc properties is the use of diamond drilling. Late in 1941 diamond drilling at New Broken Hill gave evidence of a reversal of pitch of the present ore body, which, if true, means that the main body to the south will be shallower. This would have an important bearing on future mining practice. Operations at Broken Hill during 1941 continued in the usual efficient manner; at North Broken Hill the main feature of the mining operations has been the continued success attending extraction of ore from lode pillars, as 23.8 percent of the ore mined in the North section during the last operating period was won from this source. Ore reserves were estimated at 5,232,000 long tons as of June 30, 1941. Broken Hill South, Ltd., introduced a hydraulic system of stope filling Lower-grade crude ore treated at this property during 1941 was offset by improved metallurgy resulting in the following recoveries: Lead, 96.1 percent; silver, 92.2 percent; The latest available figures for the Zinc and zinc, 89.1 percent.

Corporation, Ltd., indicate ore reserves of about 3,650,000 long tons. The Broken Hill Associated Smelters at Port Pirie are reported to be conducting research as to the feasibility of recovering zinc from accumulated blast-furnace slag containing 15.78 percent zinc and a minor amount of lead. Mt. Isa Mines, Ltd., Queensland, continued to make a steady output of zinc concentrates during 1941. Estimated sulfide ore reserves, as of June 30, 1941, have been reported to total 8,775,300

tons averaging 8.65 percent zinc.

Bolivia.—Mine production of zinc (content in ore) in Bolivia amounted to only 6,065 metric tons in 1941 compared with 12,197 tons in 1940. Bolivian output of zinc ore and concentrates is com-

paratively small, and no apparent reserve stocks are carried.

Brazil.—The zinc-bearing zone of the Iporanga district, São Paulo, is the most important in Brazil. Reserves of sphalerite and calamine ore, containing 31 to 36 percent zinc and estimated as amounting to 30,000 metric tons, have been reported near the Apiai lead-silver

ZINC 163

deposits. Other deposits occur in Minas Gerais at Januaria and at Morro do Bule near Curo Preto. The only zinc currently being produced in Brazil is in the form of a byproduct from the Furnas lead-silver mine in the Iporanga district. The ore averages 7 percent lead and 17 percent zinc. The new selective-flotation mill has a daily capacity of 35 tons and produces 55-percent zinc concentrates with a recovery of 83 percent.

Burma.—Ore reserves of the Bawdwin mines, at the end of the fiscal year (June 30, 1941), were estimated at 3,130,200 tons of ore assaying 15.1 ounces of silver, 19.5 percent lead, and 12.1 percent zinc, or slightly lower both in tonnage and metal content than estimates for the previous

fiscal period.

Canada.—Continued war restrictions prevent the publication of base-metal production figures for Canada. The drive for zinc output by the Consolidated Mining & Smelting Co. has resulted in a greater production of lead as well. By the end of 1941, Waite Amulet was treating about 1,500 tons of ore a day. The new 300-ton addition to the mill, in operation since October 1941, has been producing zinc for the American market. It is reported that the Hudson Bay Mining & Smelting Co. has recently installed a 10-ton pilot plant for the experimental treatment of zinc residues that have accumulated at Flin Flon since 1930. Successful operation may result in the expansion of facilities for commercial-scale treatment of about 250,000 tons of this material. By the end of 1941, mining operations had been resumed at the old Calumet Island property near Ottawa; ore reserves have been estimated at 1,300,000 tons.

Canadian zinc-ore exports continued to go largely to the United States and in the 9-month period from January through September 1941 amounted to 34,000 tons compared with the same amount in all of 1940. The United Kingdom was the chief market for slab-zinc exports, although the amount shipped to the United States during the January-September period was nearly equal to the total for 1940. The ban on exports of zinc dross, remelted zinc in slabs, or high-grade zinc scrap remained in effect throughout 1941. Measures have been taken by the Canadian Government to conserve for essential purposes all available supplies of zinc that are in demand for defense purposes. As a result of this program of curtailment, 75 percent of the estimated use of zinc in 1941 was for essential purposes and 25 percent nonessential. In comparison, the division in 1940 was 36 and 64 percent, respectively.

Mexico.—Mine production of zinc in Mexico totaled 154,996 metric tons in 1941, compared with 114,955 tons in 1940. This large increase reflects the great demand for zinc in the United States, to which approximately 84,000 metric tons (content in ore and concentrates) were exported from January through September 1941. A considerable part of this tonnage came from stock piles accumulated after the sea blockade had cut off European markets in 1939. Smelter output totaled 31,500 metric tons, a drop from the 33,400 tons produced in 1940, due largely to labor difficulties at the beginning of the year at the Rosita smelter of the American Smelting &

Refining Co.

Peru.—Production of zinc concentrates in Peru during 1941 totaled approximately 40,800 metric tons, with an extractable zinc content of 23,700 tons, a marked increase over the 1940 total of 29,467 tons

containing 17,000 tons of zinc. This output is principally from the properties of the Cerro de Pasco Copper Corporation. Construction of the new 800-ton-per-day lead-zinc concentrator is progressing, but the plant is not scheduled for completion before late 1942 or in 1943. The corporation's 5-ton pilot electrolytic zinc plant operated successfully in 1940 and 1941, and erection of a commercial-size refinery of 100 tons daily capacity is under consideration.

Spain.—Little information has been available regarding the Spanish zinc industry during and following the years of the Spanish Civil War, which was concluded in 1939. It is reported that mine production of zinc in 1940 amounted to about 74,000 metric tons and that 12,300 tons of metal were produced. For 10 months of 1941, mine and metal production has been given as 60,900 and 10,400 tons, respectively. The zinc deposits of Spain are mainly in the Santander region, the principal mines being operated by the Real Compañia Asturiana de Minas.

LEAD AND ZINC PIGMENTS AND ZINC SALTS

By H. M. MEYER AND A. W. MITCHELL

SUMMARY OUTLINE

	Раде	Consumption by industries—Continued.	Page
General summary	165	Leaded zinc oxide	172
Salient statistics	166	Lithopone	
Production	167	Zinc sulfide	173
Lead pigments		Zine chloride	173
Zinc pigments and salts	168	Zinc sulfate	173
Consumption by industries		Raw materials used in manufacture of lead and	
White lead		zinc pigments and zinc salts	
Basic lead sulfate		Prices.	175
Red lead	170	Foreign trade	176
Orange mineral	171		
Litharge		Zinc pigments and salts	
Zina ovida	171	P-0	110

GENERAL SUMMARY

Expansion in the use of lead and zinc pigments, forecast in the report of this series for 1940, resulted in the establishment of several new high records for this group of commodities in 1941. The achievements were due to considerable gains in the use of litharge and red lead for storage batteries and of dry white lead, leaded zinc oxide, and others for the manufacture of paint, to outstanding advances in the use of zinc oxide for rubber manufacture, to the use of unprecedented quantities of litharge and zinc oxide in ceramics, and to record amounts of litharge used in insecticides. In 1941 consumption of black oxide or suboxide of lead, not included in the pigments totals, also rose above all previous years.

The actual demand for many products in 1941, particularly those made from metals and metallic ores, is impossible to gage. Sales of zinc and lead pigments unquestionably would have been much larger had adequate quantities of raw materials for their unrestricted manufacture been available. Moreover, the relationship of zinc, lead, and titanium pigment totals in that year undoubtedly would have been more favorable to titanium and zinc, because raw materials for these pigments were more restricted than those for the lead group

Zinc is closely related to war needs, more so than lead. Consequently, a tight situation in zinc metal and scrap for the manufacture of pigments arose early in the war. This condition affected zinc oxide more than other pigments, for more metal is used in its manufacture than in any other zinc pigment. In recent years the use of scrap in making zinc oxide had risen so that roughly equal quantities of zinc oxide and lithopone (in terms of zinc content) were made from scrap materials. More than half of the zinc oxide manufactured, however, is made direct from ore. Although zinc oxide sales increased 31 percent during 1941, the zinc content of oxide made from metal and scrap actually decreased more than 5,000 tons; output from ores, meanwhile, increased 29,000 tons in terms of zinc content. As early

as June 10, 1941, zinc was placed under full priority control by the Office of Production Management (now the War Production Board). Producers of zinc oxide were ordered to set aside in July an amount equivalent to 10 percent of their May output for emergency allocation by the Director of Priorities. From then until the end of the year the amount to be set aside ranged from 10 percent for some months to none for others; the percentage usually applied to the second preceding month.

Pig lead supplies appeared to be satisfactory at the beginning of 1941; however, the greatly expanded use of this metal for war and civilian purposes, partly as a substitute for scarcer materials, brought noteworthy changes in this favorable position as the year progressed. Consequently, lead was placed under full priority control in October.

In 1941 lead pigments, as a group, made a better showing than zinc pigments in relation to 1940, as the total quantities sold advanced 37 and 27 percent, respectively. In relation of 1941 to averages for 1925–29, however, zinc pigments performed better, having risen 10 percent compared with 1 percent for lead pigments. Failure of white lead in oil to maintain its relative position caused the poorer showing of lead pigments in the latter comparison.

The titanium pigments group, competitors in the white pigment

field, experienced unprecedented activity again in 1941.

Average quoted prices for lead and zinc pigments were generally higher in 1941 than in 1940, and the average values reported to have been received by producers confirmed the trend of quotations.

Salient statistics of the lead and zinc pigments industry of the United States, 1925-29 (average) and 1937-41

	1925-29 (average)	1937	1938	1939	1940	1941
Production (sales) of principal						
pigments:						-
White lead (dry and in oil)	124 400			00.400		
short tons.	154, 483	98, 213	100, 213	98, 429	80, 562	113, 000
Lithargedo	84, 845	83, 902	68, 711	89, 518	89, 841	122, 280
Red leaddo Zinc oxidedo	41, 362 154, 208	33, 931	30, 183	39, 976	42, 200	53, 838
Leaded zinc oxidedo	26, 609	114,652	79, 129	114, 552	113, 213	148, 833
Lithoponedo	177, 745	40, 343 154, 771	38, 216 125, 746	42,684	45, 362	68, 920
Dithopone	177, 745	104, 771	120, 740	142, 759	151, 802	176, 642
Value of products:						
All lead pigments	\$60,092,000	\$35, 676, 000	\$28, 351, 000	\$35, 485, 000	\$32, 628, 000	\$46, 572, 000
All zinc pigments	41, 314, 000	28, 038, 000	23, 301, 000	28, 794, 000	28, 747, 000	39, 210, 000
Am ame pigments	11, 011, 000	20, 000, 000	20, 301, 000	20, 104, 000	20, 141, 000	39, 210, 000
Total	101, 406, 000	63, 714, 000	51, 652, 000	64, 279, 000	61, 375, 000	85, 782, 000
Value per ton received by pro-		00, 111, 000	02, 002, 000	01, 210, 000	01,0.0,000	00, 102, 000
ducers:	i	ļ				
White lead (dry)	178	140	123	128	137	147
Litharge	176	143	122	123	126	134
Red lead	193	160	137	140	141	161
Zinc oxide	133	103	117	117	118	125
Leaded zinc oxide	124	104	107	114	114	118
Lithopone	98	78	79	73	67	71
- <u>-</u>						
Foreign trade:	İ	ŀ	1	1	İ	
Lead pigments:	i	1	! .	}	ļ	
Value of exports	1, 346, 000	586,000	510,000	715,000	594, 000	1 833, 000
Value of imports	30,000	17,000	10,000	10,000	14,000	19,000
Zinc pigments:		l				
Value of exports	2, 150, 000	610,000	339, 000	925, 000	1, 585, 000	1 2, 313, 000
Value of imports	931, 600	414, 000	285, 000	280,000	46, 000	1 15, 000
Export balance	2, 535, 000	765, 000	554, 000	1, 350, 000	2, 119, 000	1 3, 122, 000

¹ Figures cover January to September, inclusive.

PRODUCTION

Sales have more significance in this report than production, owing to lack of data on stocks at the beginning and end of the year. In some instances materials reported as one commodity for production Therefore, sales have been sold later under another classification. figures afford a more accurate guide to the pigments actually going into consumption. To prevent duplication, care is necessary even in handling sales figures. Some pigments reported as sales of finished products at one plant actually are used by other plants as an intermediate product in the manufacture of another pigment covered by the lead and zinc pigments canvass. Basic lead sulfate consumed in the manufacture of leaded zinc oxide is the principal problem in this connection, but it is not the only one. Production figures are employed in this report only in calculating the metal content of pigments and salts in the section on Raw Materials Used in Manufacture of Lead and Zinc Pigments and Zinc Salts. Pigments used by producers in manufacturing products at their own plants are included as sales.

The total value of sales of lead and zinc pigments showed a 40-percent rise, from \$61,375,000 in 1940 to \$85,782,000 in 1941. This noteworthy increase was due to advances in sales of all pigments and to gains in average values received by producers for virtually all items.

Lead pigments.—The lead pigments that in 1941 rose above all previous years in sales were litharge, red lead, and white lead (dry); these commodities gained 36, 25, and 26 percent, respectively, over previous high records established in 1940, 1929, and 1925. On the whole, price quotations in 1941 did not exceed the higher levels of the 1940 range; but, in general, they were above the lower levels, so that average quoted prices topped those of the earlier year. In 1941 most of the lead pigments made gains in average value received by producers. Consequently, although lead pigments showed a notable rise (37 percent) in total quantity the increase (43 percent) in their total value was even greater.

White lead in oil advanced 16 percent in 1941 but lagged behind all other pigments. Gains in sales of white lead (dry) brought this pigment up to 94-percent of the quantity of the paste product, the highest proportion it has ever attained in this relationship.

Lead pigments sold by domestic manufacturers in the United States, 1940-41

		1940		1941		
Pigment	Short			Short	Value (at plant, exclusive of container)	
	tons	Total	Average	tons	Total	Average
Basic lead sulfate or sublimed lead: White Blue Red lead Orange mineral Litharge White lead: Dry In oil 1	5, 493 707 42, 200 137 89, 841 30, 115 50, 447	\$692, 769 92, 076 5, 970, 156 30, 441 11, 305, 954 4, 114, 785 10, 421, 585	\$126 130 141 222 126 137 207	8, 739 1, 631 53, 838 246 122, 280 54, 689 58, 311	\$1, 122, 622 211, 816 8, 687, 469 57, 516 16, 416, 507 8, 013, 421 12, 062, 375	\$128 130 161 234 134 147 207

¹ Weight of white lead only but value of paste.

Lead pigments sold by domestic manufacturers in the United States, 1910-41, in short tons

Year	Whit	e lead	Basic lead sulfate or sublimed lead		Red lead	Orange mineral	Litharge
	Dry	In oil	White	Blue		minerai	
)10	32, 237	111. 573	9	858	1 19, 801	1 676	23, 74
11	25, 834	106, 778		019	1 19, 540	1 766	25, 19
112	26, 242	120, 591		085	1 21, 120	1 545	29, 11
013	24, 196	118, 430		452	1 17, 635	1 434	23, 09
14	29,076	130, 398		665	1 18, 697	1 426	27, 34
15	33, 907	122, 194		364	2 19, 435	(2)	26, 11
16	32, 938	96, 041	10, 977	1, 287	2 23, 035	25	37. 73
17	27, 869	87, 331	8, 231	1, 369	2 25, 478	2	44. 10
18	20,089	82, 799	7, 403	1, 343	2 30, 069	(2) (2) (2) (2)	48, 87
19	30, 085	109, 005	9, 068	1, 350	2 32, 362	2	46.73
20	33, 678	112, 017	12, 412	928	2 34, 431	(2)	62, 32
21	26, 738	143, 545	11, 568	463	21, 805	381	41.90
22	41, 598	153, 393	13, 765	972	30, 509	370	58. 26
23	37, 786	125, 087	11, 949	800	38, 037	646	75, 10
24	42, 622	144, 872	14, 572	1,088	36, 813	331	74, 72
25	43, 426	120, 479	14. 996	1,090	41, 669	840	86. 54
26	37, 968	111, 845	12, 271	1, 236	42, 550	813	82, 54
27	38, 669	119, 026	13, 482	1.061	39, 073	709	81, 68
28	42, 049	111, 923	16, 002	1. 234	40, 497	459	85, 57
29	42, 159	104, 872	15, 580	1. 234	43, 021	678	87, 91
30	32, 548	69, 592	10, 308	1, 219	32, 941	356	72, 57
31	30, 922	66, 446	8, 790	896	25, 853	282	63, 89
32	19, 946	46, 728	5, 708	549	18, 880	212	58, 09
33	24, 628	48, 354	7, 320	625	21, 988	231	61, 19
34	22, 569	56, 165	6, 399	668	26, 743	234	68, 73
35	27, 972	68, 859	7, 572	727	28, 776	252	79, 93
36	34, 775	83, 632	7, 531	891	34, 896	248	86, 24
37	32, 661	65, 552	7. 514	1, 108	33, 931	206	83, 90
38	29, 813	70, 400	5, 030	771	30, 183	127	68, 71
39	30, 509	67, 920	4, 688	850	39, 976	131	89, 51
40	30, 115	50, 447	5, 493	707	42, 200	137	89. 84
41	54, 689	58, 311	8, 739	1, 631	53, 838	246	122, 28

Small quantity of orange mineral included with red lead.
 Orange mineral included with red lead.

Zinc pigments and salts.—Sales of leaded zinc oxide established another new high record in 1941, and those of the lead-free class were the largest since 1929; the total of both grades had never been exceeded Lithopone sales, although not attaining a new peak, had been higher only from 1927 to 1929, inclusive. The sharp rise in the use of ore in the manufacture of zinc oxide was due primarily to the difficulty in obtaining adequate supplies of zinc metal and scrap in 1941. The average quoted price for lithopone in 1941 was above the range for 1940, but, in general, prices for various grades of zinc oxide were at or close to the top of the ranges for 1940. Producers reported receiving higher average values for all pigments during 1941.

Zinc pigments and salts sold by domestic manufacturers in the United States, 1940-41

		1940		1941			
Pigment or salt	Short	Value (at plant, exclusive of container)		Short	Value (at plant, ex- clusive of container)		
	tons	Total	Average	tons	Total	Average	
Zinc oxide ¹ Leaded zinc oxide ¹ Lithopone . Zinc chloride, 50° B Zinc sulfate.	113, 213 45, 362 151, 802 (2) 11, 937	\$13, 361, 980 5, 187, 522 10, 197, 897 (2) 695, 496	\$118 114 67 (2) 58	148, 833 68, 920 176, 642 (³) 19, 201	\$18, 558, 474 8, 101, 782 12, 550, 193 (2) 1, 424, 456	\$125 118 71 (2) 74	

¹ Zinc oxide containing 5 percent or more lead is classed as leaded zinc oxide.

² Data not available.

Zinc nigments and salts sold by domestic manufacturers in the United States. 1910-41. in short tons

Year	Zinc oxide	Leaded zinc oxide	Lithopone	Zinc chlo- ride (50° B.)	Zinc sulfat
	58, 481	6, 823	12, 655		
10	63, 827	6, 765	16, 866	11	
11	84, 002	11, 410	24, 220	11	
12	75, 700	9, 421	29, 685	11	
13		11, 317	32, 819	(1)	(1)
14	1 400 004			<i>y</i>	(-)
15		18, 758	46, 494	11	
16	100, 339	23, 003	51, 291	11	
17	107, 586	23, 450	63, 713	11	
18	100, 286	26, 714	62, 403	1	
19	117, 639	27, 591	78, 365	2 59, 228	2 2, 7
20		30, 460	89, 373	² 68, 945	2 3, 0
21		16, 103	55, 016	59, 457	3, 2
22		19, 613	83, 360	41, 627	5, 0
23	126, 987	23, 504	98, 199	42, 431	5, 3
24		26, 729	109, 469	51, 054	4,6
25		31,750	145, 019	45, 619	5, 5
26		23, 859	159, 931	47, 296	6,6
27		26, 064	176, 994	40, 141	6,4
28		24, 223	200, 468	45, 669	4.7
29		27, 149	206, 315	43, 189	7,4
30	1 440'440	17, 279	164, 065	29, 043	6.2
	0.5,200	18, 577	151, 850	34, 885	5, 2
3132		14, 305	121, 667	23, 524	4.2
		22, 868	140, 831	32, 187	5. 6
33		20, 506	145, 565	19, 614	7. 3
34		29, 976	159, 486	(3)	1 7.8
35	1		158, 319	(3)	9.7
36		40, 512		(3)	10.
87		40, 343	154, 771		7, 7
38		38, 216	125, 746	(3)	10. 1
39	114, 552	42, 684	142, 759	(3)	
40	113, 213	45, 362	151,802	(3)	11,9
41	148, 833	68, 920	176, 642	(3)	19, 2

¹ No canvass.

Complete data covering the production of zinc chloride in recent years are not available owing to the absence of a reliable report from one producer, whose output is believed to have been large.

Sales of zinc sulfate established a second successive high in 1941-

61 percent above the previous record. attained in 1940.

CONSUMPTION BY INDUSTRIES

White lead.—Total sales of white lead gained 40 percent over 1940, and the dry variety established a new high record. White lead in oil did not make a good showing in relation to other prosperous years for the pigments industry.

Normally about 95 percent of the white lead sold is used in the manufacture of paint. For the past 2 years, the percentage has been closer to 90 percent, although some of the quantities shown under

"Other" may rightfully belong under the paint classification.

Early in 1942, the Federal Specification Board approved several Emergency Alternate Specifications, including one to cover three regular specifications, namely: TT-P-36a, Lead-Zinc; TT-P-101a, Titanium-Zinc and Titanium-Zinc-Lead; TT-P-156, Basic Carbonate White Lead. A single emergency paint to take the place of all three will be designated E-TT-P-101a, Titanium-Zinc and Titanium-Zinc-Lead, Outside, Ready-Mixed White Paint. Although the title implies two types, only the titanium-zinc-lead type is specified. covers light tints as well as the white product. The composition requirements are: Pigment, minimum 63 percent, consisting of

Figures represent production.
Data not available.

titanium dioxide, minimum 10 percent; zinc oxide, minimum 24 percent; white lead, minimum 24 percent; sum of zinc oxide and white lead, minimum 48 percent; inert pigments, maximum 40 percent. A semi-chalk-resisting type of titanium dioxide is required.

Distribution of white lead (dry and in oil) sales, 1937-41, by industries, in short tons

Industry	1937	1938	1939	1940	1941
Paint	93, 580 2, 506 2, 127	95, 018 1, 918 3, 277	92, 380 1, 767 4, 282	73, 137 3, 029 4, 396	100, 665 3, 704 8, 631
	98, 213	100, 213	98, 429	80, 562	113, 000

Basic lead sulfate.—The outstanding use of basic lead sulfate is also in the manufacture of paint; 90 percent of the total was sold for that purpose in 1941. The increasing use of this pigment in making leaded zinc oxide has been noted in earlier chapters of this series. The practice assumed record-breaking proportions in 1941, when 12,000 tons were so used compared with the previous peak of 7,700 tons in 1939. These quantities are included in the totals for leaded zinc oxide but not in those for basic lead sulfate.

Distribution of basic lead sulfate sales, 1937-41, by industries, in short tons

Industry	1937	1938	1939	1940	1941
Paints	8, 255 213 6 148	5, 024 91 3 683	5, 170 140 4 224	5, 593 128 4 475	9, 285 200 8 877
	8, 622	5, 801	5, 538	6, 200	10, 370

Red lead.—Sales of red lead were record-breaking in 1941; they exceeded the previous peak in 1929 by 25 percent and fulfilled the promise of increased use made when it became evident that a tremendous expansion in plant construction to supply materials for war purposes would develop. Although sales to makers of storage batteries continued to represent the larger part of the total, they did not advance in the same ratio as sales to manufacturers of paints, which gained 68 percent.

An Emergency Alternate Federal Specification for Red-Lead-Base Ready-Mixed Paint, E-TT-P-86, changed the specifications for this paint to: Pigment, red lead (95 percent grade), minimum 40 percent; red iron oxide (70 percent Fe₂O₃), minimum 20 percent; zinc oxide, minimum 10 percent; extenders, remainder (magnesium silicate, aluminum silicate, silica, or mixtures).

Distribution of red lead sales, 1937-41, by industries, in short tons

Industry	1937	1938	1939	1940	1941
Storage batteries Paints. Ceramics Other	20, 275 10, 440 854 2, 362	19, 057 8, 698 655 1, 773	24, 709 11, 421 1, 123 2, 723	26, 718 11, 949 1, 117 2, 416	27, 405 20, 130 1, 593 4, 710
	33, 931	30, 183	39, 976	42, 200	53, 838

Orange mineral.—This pigment is produced in very small quantities. Ink manufacture took the principal amount in 1941.

Distribution of orange mineral sales, 1937-41, by industries, in short tons

Industry	1937	1938	1939	1940	1941
Ink manufacture	76 51 79	20 94 13	64 40 27	51 18 68	98 26 122
•	206	127	131	137	246

Litharge.—Sales of litharge made a new high record in 1941, owing largely to the sharp advance in its use for storage batteries (the largest consuming industry) and to noteworthy increases in sales to makers of ceramics, chrome pigments, and insecticides. Each of these industries took more litharge than ever before. On the other hand, its use in rubber and varnish manufacture, although greater than in 1940, had been exceeded in earlier years. Black oxide or suboxide of lead used by storage-battery manufacturers established successive peaks in 1939, 1940, and 1941. The total for 1941 was 61,000 tons compared with 53,000 in 1940 and 45,000 in 1939. Sales of black oxide are not included in Bureau of Mines totals for litharge.

Distribution of litharge sales, 1937-41, by industries, in short tons

Industry	1937	1938	1939	1940	1941
Storage batteries	32, 228	32, 514 11, 736	39, 754 16, 435	38, 303 16, 041	49, 847 19, 403
Insecticides Ceramics	18, 242 7, 577	5, 889	8, 679	12,072	18, 285
Chrome pigments	7,330	5, 590	9, 415	8, 456	13, 927
Oil refining	8, 311 1, 659	6, 411 880	7, 619 1, 404	6, 876 1, 590	6, 749 3, 968
Rubber Varnish	3, 366	2, 449	2,428	3,003	3, 16
Linoleum	264	231	226	418 3, 082	647 6, 289
Other	4,925	3, 011	3, 558	3,002	
	83, 902	68, 711	89, 518	89, 841	122, 280

Zinc oxide.—Although zinc oxide sales were 31 percent above those in 1940, unlike some or the pigments that made new highs in 1941, they were exceeded by the totals for 1925 and for each of the 3 years 1927, 1928, and 1929. The demand for zinc oxide in the manufacture of rubber and ceramics broke all records. Gains were also registered in sales for paint manufacture and floor coverings and textiles, but the quantities did not represent the largest ever sold for these purposes. The inadequacy of zinc metal and scrap supplies in 1941 caused a sharp downturn in the proportion of French-process zinc oxide made in that year, and only 24 percent of the total was manufactured by that method; 76 percent was American-process zinc oxide. These percentages represent changes from the 36 and 64 percent, respectively, for 1940 and the 41 and 59 percent for 1939. It is impossible to say what zinc oxide sales would have been if enough zinc had been available to meet requirements for the manufacture of this product.

Provisions for a zinc oxide monthly pool, for allocation by the Director of Priorities, are discussed in the opening section of this

report. The maximum prices for various grades of zinc oxide, which the Office of Price Administration requested manufacturers to maintain beginning January 1, 1942, are discussed in the price section of

this report.

A new plant for the manufacture of zinc oxide by direct flash fuming zinc concentrates was completed and put in operation by the Eagle-Picher Mining & Smelting Co. in January 1941 at Galena, Kans.; a second unit that doubled the capacity of the plant was constructed and went into production early in July. Production of zinc oxide was begun during the year by the Gulton Metals Refining Co. at Metuchen, N. J.

Distribution of zinc oxide sales, 1937-41, by industries, in short tons

Industry	1937	1938	1939	1940	1941
Rubber Paints Ceramics Floor coverings and textiles Other	67, 061 27, 987 5, 216 9, 019 5, 369	46, 266 20, 884 4, 908 3, 030 4, 041	70, 187 25, 334 6, 572 5, 641 6, 818	70, 979 23, 268 6, 352 4, 752 7, 862	90, 429 30, 304 8, 596 6, 991 12, 513
	114, 652	79, 129	114, 552	113, 213	148, 833

Leaded zinc oxide.—This increasingly popular pigment continued to advance in 1941, and sales reached new heights—68,920 tons, or 52 percent above the previous high record for 1940. One factor in the large increase during 1941 is that virtually all the zinc content of this pigment comes from zinc ores and concentrates; consequently, gains in its production placed no strain on tight supplies of zinc metal and scrap. As usual, paint manufacturers took nearly all the leaded zinc oxide sold. The total shown for leaded zinc oxide in 1941 includes 12,000 tons of basic lead sulfate used to increase the lead content of the product; this tonnage is excluded from the basic lead sulfate totals to avoid duplication in reporting data for metals.

Distribution of leaded zinc oxide sales, 1937-41, by industries, in short tons

Industry	1937	1938	1939	1940	1941
PaintsRubber	39, 584 97	37, 348	41, 519	44, 341	67, 472
Other	662	868	1, 164	1,021	1, 447
	40, 343	38, 216	42, 684	45, 362	68, 920

Lithopone.—Lithopone statistics are reported upon the basis of the regular lithopone content of high-strength lithopone plus normal lithopone sold as such; before 1936, they were upon the basis of standard-strength plus high-strength product. Sales in 1941 were 16 percent above those in 1940 and with the exception of 1927–29 were the largest on record. Paints, varnish, and lacquers take the principal part of the total lithopone sold, and sales to such users increased 13 percent in 1941; this use took about 80 percent of the total in several years but only 77 percent in 1940 and 75 percent in 1941. Floor coverings and textiles have used 12 to 13 percent and rubber 2 to 3 percent of the total in recent years. Based upon somewhat

incomplete information, separation of the 1941 quantities shown in the following table for floor coverings and textiles indicates that 16,000 tons were used for linoleum and felt-base floor coverings and the remainder for coated fabrics and textiles (oil cloth, shade cloth, artificial leather, and similar products). Other sales in 1941 included 5,559 tons for paper and 2,301 tons for printing ink. Figures for an additional quantity for printing ink cannot be separated from the total figures for paints.

Plant capacity for the production of lithopone was reported to

total 181,600 tons at the end of 1941.

Distribution of lithopone sales, 1937-41, by industries, in short tons

Industry	1937	1938	1939	1940	1941
Paints, etc. Floor coverings and textiles. Rubber Other	122, 915 20, 194 4, 383 7, 279	101, 924 15, 400 3, 148 5, 274	113, 995 17, 429 3, 189 8, 146	117, 075 18, 738 3, 387 12, 602	132, 691 21, 114 3, 547 19, 290
	154, 771	125, 746	142, 759	151, 802	176, 642

The use of ordinary-strength lithopone in the manufacture of titanated lithopone (which usually contains 15 percent TiO₂) reached a peak in 1937, when 19,400 tons were so used; in 1941, 14,100 tons were used for this purpose. The lithopone figures in the following table are included in the totals for ordinary lithopone in the preceding table.

Titanated lithopone produced in the United States and ordinary lithopone used in its manufacture, 1937-41, in short tons

Year	Titanated lithopone produced	Ordinary lithopone used	Year	Titanated lithopone produced	Ordinary lithopone used
1937	23, 000 20, 100 16, 100		1940 1941	18, 100 16, 800	15, 200 14, 100

Zinc sulfide.—Although zinc sulfide has been produced by four plants in the United States in recent years, one producer dominates the industry; therefore, the Bureau of Mines has not been at liberty to release data on this commodity. Only two plants were productive in 1941.

Zinc chloride.—The Bureau of Mines cannot report zinc chloride production as one producer, whose output is reputed to be large, has

failed to supply reliable data.

Zinc sulfate.—Sales of zinc sulfate in 1941 exceeded by a wide margin the high record established in 1940, thus continuing the uptrend that began in 1933 and was interrupted only in 1938; the gain over 1940 was 61 percent. Of the 1941 total, 5,555 tons were indicated for chemical manufacture (including the medicinal trade), 5,170 for rayon, 3,038 for agricultural purposes, 1,422 for paints and varnish processing, 1,203 for glue manufacture, 502 for electrogalvanizing, 246 for flotation reagents, and 130 for textile printing and dyeing. The distribution of 1,935 tons was not reported.

RAW MATERIALS USED IN MANUFACTURE OF LEAD AND ZINC PIGMENTS AND ZINC SALTS

Lead pigments and zinc pigments and salts are manufactured from a variety of materials, including ore, refined metal, and such miscellaneous secondary materials as scrap and waste from various industrial processes. In 1941, 91 percent of the lead pigments were derived from pig lead and 9 percent from ore. The proportion for zinc pigments in 1941 was 74 percent from ore, 8 percent from slab zinc, and 18 percent from secondary materials.

Metal content of lead and zinc pigments produced by domestic manufacturers, 1940-41, by sources, in short tons

	19	140	1941		
Source	Lead in pig- ments 1	Zinc in pig- ments	Lead in pig- ments 1	Zinc in pig- ments	
Ore: Domestic Foreign	16, 869	94, 491	23, 951 290	129, 520	
Metal Secondary material ²	196, 235	19, 421 29, 675	248, 674 400	2, 464 15, 463 31, 703	
	213, 104	143, 587	273, 315	179, 150	

Includes also lead recovered in leaded zinc oxide.
 Zinc ashes, skimmings, drosses, and old metal.

The following tables give the source of the metal used in the manufacture of each pigment and salt. Pig lead is employed exclusively, either directly or indirectly, in the manufacture of white lead, litharge, red lead, and orange mineral and is used also in the manufacture of basic lead sulfate. The lead content of leaded zinc oxide made from basic zinc sulfate, which in turn was made from pig lead, is credited to pig lead in the table. Zinc oxide is the only pigment in which considerable slab zinc is used. Ore is employed in the manufacture of zinc oxide, leaded zinc oxide, lithopone, zinc sulfate, and basic lead sulfate. A substantial proportion of the zinc in lithopone and zinc chloride made in the United States is derived from secondary material. A decided increase has been noted in the quantity of secondary zinc consumed in the manufacture of zinc oxide since 1933. The relative scarcity of zinc metal and scrap in 1941 caused declines in the use of both these materials for the manufacture of zinc oxide in the face of a noteworthy gain in production of the pigment.

Lead content of lead and zinc pigments produced by domestic manufacturers, 1940-41 by sources, in short tons

		1940					1941				
	Lead in pigments produced from—					Lead in pigments produced from—					
Pigment	0	re		Second-	Total lead in pig- ments	0	re		Second-	Total lead in pig- ments	
	Domes-	Foreign	Pig lead	ary ma- terial	Honos	Domes-	Foreign	Pig lead	ary ma- terial	ments	
White lead			69, 535 38, 905 85, 005 180		69, 535 38, 905 85, 005 180			86, 750 47, 615 112, 099 172		86, 750 47, 615 112, 099 172	
Basic lead sulfate Leaded zinc oxide	4, 705 12, 164		1, 436 1, 174		6, 141 13, 338	6, 122 17, 829	290	1, 126 912	400	7, 648 19, 031	
	16, 869		196, 235		213, 104	23, 951	290	248, 674	400	273, 315	

Zinc content of zinc pigments and salts produced by domestic manufacturers, 1940-41, by sources, in short tons

	1940						1941				
Pigment or salt	Zinc in pigments and salts produced from—				Total zinc in	Zinc in pigments and salts produced from—				Total	
	Ore	Slab	Second-		0	re	Slab	Second-	zinc in pig- ments and		
	Domes- tic	Foreign	zinc	ary ma- terial	salts	Domes- tic	Foreign	zinc	ary ma- terial	salts	
Zinc oxideLeaded zinc oxideLithoponeZinc sulfide	59, 463 21, 178 13, 850		18, 696 680 45	15, 148 662 13, 865	93, 307 22, 520 27, 760	87, 999 27, 508 14, 013	373 2, 091	15, 435 28	12, 826 1, 469 17, 408	116, 633 31, 068 31, 449	
Zinc sulfate	(1) (1) 1, 426		(1)	(¹) 1, 958	(1) (1) 3,384	(1) (1) 2,831		(1)	(1) 2, 840	(1) 5, 671	

¹ Data not available.

PRICES

The total values reported by producers for lead and zinc pigments and zinc salts are given in the tables in the first part of this report. The average reported values for all lead pigments, except white lead in oil and basic lead sulfate (blue), were above those for 1940 by \$2 to \$20 a ton; these two classes remained unchanged from 1940. Average price quotations for all lead pigments exceeded those for 1940, principally because they were near or at the top of the range for 1940 rather than because they actually exceeded the range for that year. Price changes for lead oxides, as usual, coincided with the price changes for the metal. White lead prices rose at the beginning of January 1941 and remained unchanged thereafter.

All values reported by producers for zinc pigments and salts were higher in 1941 than in 1940. On the whole, average price quotations also were higher than in 1940 because they clung to the higher part of the 1940 range. They were generally unchanged throughout 1941, although Pacific coast prices for lithopone, zinc oxide, and zinc

sulfide rose ½, ½, and ½ cent a pound, respectively, in midyear. Prices for lithopone and zinc sulfide were advanced on the first day of 1941 but did not change subsequently. Zinc sulfate prices rose ½ cent a pound in June.

Range of quotations on lead pigments and zinc pigments and salts at New York (or delivered in the East), 1938-41, in cents per pound

Product	1938	1939	1940	1941				
Basic lead sulfate, or sublimed lead, less than carlots, barrels	F EO	6, 25- 6, 50	0.05.075	a ro 7 o				
White lead, or basic lead carbonate, dry, carlots.	5. 50- 6. 50	0. 20- 0. 00	6. 25- 6. 75	6.50-7.00				
barrels	6.00- 7.00	7.00	7,00-7,50	7.50				
Litharge, commercial, powdered, barrels	5, 50- 7, 50	6, 25- 7, 75	6. 25- 8. 25	7.00- 8.2				
Red lead, dry, 95 percent or less, less than carlots,	0.0000	0.200	0.20 0.20					
barrels	7.00-8.50	7.75- 9.00	7, 75- 9, 25	8. 50- 9. 2				
Orange mineral, American, small lots, barrels	9.50-11.00	10. 25-11. 25	10, 25-11, 75	11.00-11.7				
Zinc oxide:								
American process, lead-free, bags, carlots	6. 25- 7. 50	6. 25- 7. 50	6. 25- 7. 50	6. 50				
carlots	5, 90- 6, 38	6, 25- 6, 38	6, 25- 6, 75	6, 25- 6, 7				
French process, red seal, bags, carlots	7.50	7.50	7. 50- 7. 75	7. 7				
French process, green seal, bags, carlots	8.00	8.00	8.00- 8.25					
French process, white seal, barrels, carlots	8. 75	8.75	8. 75- 9. 00					
Lithopone, domestic, 5-ton lots, bags	4.38-4.63	4.00- 4.38	3. 85- 4. 00					
Zinc sulfide, less than carlots, bags, barrels	8, 63- 9, 50	7, 75- 8, 88	7.75- 8.00	8.00- 8.2				
Zinc chloride, works:								
Solution, tanks			2. 25	2. 25- 2. 50				
Fused, drums	4. 25- 5. 75		4. 25- 5. 75	4. 25- 6. 50				
Zinc sulfate, crystals, barrels	2.65-4.05	2.90-3.65	2.90-3.90	3. 15- 4. 40				

The favorable behavior of prices for lead and zinc pigments and zinc salts, in the face of the tremendous pressure of record-breaking sales and scarcity of raw materials, was in deference to the known Government desire to avoid price advances wherever possible through-

out the war emergency.

In December zinc oxide producers were requested by the Office of Price Administration to agree individually to a list of maximum prices for their product. The O. P. A.-approved ceiling prices per pound for various grades of zinc oxide delivered in bags in carlots were 7.25 cents for lead-free American process oxide, 6.75 cents for leaded zinc oxides containing 35 percent or more lead, 7.125 cents for lead-free French process oxides other than U. S. P., and 10.50 cents for French process U. S. P. oxide. Price schedule 80 of the Office of Price Administration, effective February 2, 1942, set a maximum price of 4.25 cents per pound for the normal grade of lithopone.

FOREIGN TRADE 1

Any discussion of foreign trade in 1941 is necessarily restricted because data for October and subsequent months are held confidential by the Department of Commerce. Incomplete figures for imports fail to indicate anything unusual in that phase of foreign trade. It is noteworthy, however, that export values for the first 9 months of 1941 exceeded those for the full year 1940 in each group covered by the following table. Lithopone continued to be the outstanding item in the export class, whereas zinc oxide led again in the relatively unimportant import class.

 $^{^{\}rm h}$ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Value of foreign trade of the United States in lead and zinc pigments and salts, 1940-41

	1940)	1941 (JanSept.)		
	Imports	Exports	Imports	Exports	
Lead pigments: White lead	\$249 9 140 13, 571	\$211, 148 185, 049 197, 634 (1) (1)	\$389 217 	\$279, 742 302, 239 250, 523 (1) (1)	
	13, 969	593, 831	9, 152	832, 504	
Zinc pigments: Zinc oxide	45, 347	472, 305 1, 112, 362	13, 413 9 1, 525	858, 190 1, 454, 520 (1)	
	46, 040	1, 584, 667	14, 947	2, 312, 710	
Lead and zinc salts: Lead arsenate Zinc chloride Zinc sulfate	1, 147 7, 736	242, 399 (1) (1)	4, 216	306, 853 (1) (1)	
	8, 883	242, 399	4, 216	306, 85	
Grand total	68, 892	2, 420, 897	28, 315	3, 452, 06	

¹ Data not available.

Lead pigments and salts.—In 1941, as usual, imports of these commodities were insignificant.

Lead pigments and salts imported for consumption in the United States, 1937-41

Year							
	Basic carbonate white lead	Red lead	Litharge	Orange mineral	Lead compounds	Total value	
1937 1938 1939 1940 1941 (Jas	nSept.)	34 20 11 2 2	1 1 2 2	(1)	5 2 1 1	213 85 104	2 \$53, 984 2 22, 644 2 28, 248 2 13, 969 2 9, 152

¹ Less than 1 ton.
2 Includes also—1937: Lead pigments, n. s. p. f., \$8 (100 pounds), sublimed lead (basic sulfate), \$2 (10 pounds), and suboxide of lead, n. s. p. f., \$9,396 (55,453 pounds); 1938: Lead pigments, n. s. p. f., \$198 (2,330 pounds), and suboxide of lead, n. s. p. f., \$5,335 (31,834 pounds); 1939: Lead pigments, n. s. p. f., \$690 (5,270 pounds), and suboxide of lead, n. s. p. f., \$6,620 (40,45 pounds); 1940: Suboxide of lead, n. s. p. f., \$6,620 (40,45 pounds); 1940: Suboxide of lead, n. s. p. f., \$13,571 (71,148 pounds); 1941 (Jan.-Sept.): Suboxide of lead, n. s. p. f., \$3,546 (52,040 pounds).

All export items covered by the following table had the same relative importance, as regards quantity, in the period January to September 1941.

Lead pigments and salts exported from the United States, 1937-41

		Total			
Year	White lead	Red lead	Litharge	Lead arsenate	value
1937. 1938. 1939. 1940. 1941 (JanSept.)	1, 236 1, 411 2, 024 1, 360 1, 976	934 806 1, 324 1, 336 2, 050	1, 452 1, 694 2, 077 1, 586 2 003	521 511 856 1,450 1,875	\$677, 815 605, 075 875, 235 836, 230 1, 139, 357

Zinc pigments and salts.—No zinc pigment or salt was imported in significant amounts during 1941.

Zinc pigments and salts imported for consumption in the United States, 1937-41

	Short tons							
Year	Zinc oxide		Litho-	Zine	Zinc	Zinc	Total value	
	Dry	In oil	pone	sulfide	chloride	sulfate		
1937	680 579 1, 485 273 107	95 66 66 45 11	5, 601 3, 932 2, 641	113 12 7 (¹)	667 272 399 19	593 392 325 245 78	\$488, 110 321, 441 317, 719 54, 921 19, 163	

¹ Less than 1 ton.

Shipments of zinc pigments from the United States, like those of the lead group, were larger during the first 9 months of 1941 than in all of 1940. Lithopone continued to be the feature of the export trade in lead and zinc pigments; it was the largest single item in both quantity and value and established a new high record. Exports of zinc oxide in the first 9 months of 1941 were larger than in any calendar year since 1930.

Details covering exports in 1941, by countries, can be shown for the first 3 months only, and these are not sufficiently complete to be recorded separately here. As indicated by tables in the preceding chapter of this series, Canada normally receives the preponderant share of exports of lithopone, 55 percent of the total for the period 1936-40 having gone to that country. South American countries have taken increasing quantities of lithopone in recent years; they took 22 percent of the total in 1940. The pattern of exports of zinc oxide differs from lithopone in that the quantities shipped do not go so largely to only a few destinations. Canada is the destination of the largest part of the zinc oxide exported, having received 37 percent of the total for 1936-40. A relatively large tonnage has gone to Asiatic countries in recent years, and increasing quantities have gone to Mexico and Brazil.

Zinc pigments and salts 1 exported from the United States, 1937-41

	Shor	t tons	Total		Shor	t tons	
Year	Zinc oxide	Litho- pone	value	Year	Zinc oxide	Litho- pone	Total value
1937 1938 1939	2, 953 1, 163 3, 485	2, 671 1, 734 4, 845	\$609, 954 339, 415 925, 468	1940 1941 (JanSept.)	3, 239 5, 404	14, 298 16, 954	\$1, 584, 667 2, 312, 710

¹ Zinc salts not separately recorded.

GOLD, SILVER, COPPER, AND LEAD IN ALASKA

(MINE REPORT)

By Chas. W. HENDERSON AND A. J. MARTIN

SUMMARY OUTLINE

	Page		Page
Summary	170 N	farkets and metallurgyeview by regions	181 182

SUMMARY

Gold recovered from Alaska ores and gravels in 1941 totaled 695,467 fine ounces valued at \$24,341,345—a decrease of 8 percent from the 755,970 ounces valued at \$26,458,950 in 1940. The value of the gold in 1941 was 99 percent of the total gross value of the gold, silver, copper, and lead produced. The silver, lead, and most of the copper produced were byproducts of gold mining. The number of producing lode mines decreased from 73 in 1940 to 56 in 1941, floating connected-bucket dredges from 49 to 47, and other types of placer operations from 1,020 to 752.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

Yardage figures used in measuring material treated in placer operations are "bank measure"; that is, the material is measured in the ground before treatment.

The value of metal production herein reported has been calculated

at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold ¹	Silver 2	Copper 3	Lead 3	Zinc ³
1937	Per fine ounce \$35.00 35.00 35.00 35.00	Per fine ounce \$0. 7735 4. 646+ 5. 678+ 6. 711+ 6. 711+	Per pound \$0. 121 . 098 . 104 . 113 . 118	Per pound \$0.059 . 046 . 047 . 050 . 057	Per pound \$0.065 . 048 . 052 . 063 . 075

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+(\$20.671835) per fine ounce.
² 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver.
² Yearly average weighted price of all grades of primary metal sold by producers.
² \$0.67578787.
² \$0.67111111

6 0.71111111.

The following tables show the mine production of gold, silver, copper, and lead in Alaska in 1937-41 and 1880-1941 in terms of recovered metals; the output of gold and silver in 1941, by types of operation; and the output of gold, silver, copper, and lead from amalgamation and cyanidation mills (with or without concentration equipment) in 1941, by regions.

Mine production of gold, silver, copper, and lead in Alaska. 1937-41, and total, 1880-1941, in terms of recovered metals

Year	Gold (lode	and placer)	Silver (lode and placer)		
	Fine ounces	Value	Fine ounces	Value	
937 938 939 940	627, 940 664, 973 776, 737 755, 970 695, 467	\$21, 977, 900 23, 274, 955 23, 685, 795 26, 458, 950 24, 341, 345	494, 340 479, 853 201, 054 191, 679 191, 522	\$382, 37 310, 20 136, 47 136, 30 136, 19	
880-1941	25, 152, 030	593, 335, 652	19, 562, 668	13, 915, 67	

Year	Co	pper	Le	Total	
1001	Pounds	Value	Pounds	Value	value
1937	34, 672, 000 29, 098, 000 256, 000 110, 000 144, 000	\$4, 195, 312 2, 851, 604 26, 624 12, 430 16, 992	1, 645, 000 1, 988, 000 1, 874, 000 1, 558, 000 1, 324, 300	\$97, 114 91, 448 88, 078 77, 900 75, 468	\$26, 652, 698 26, 527, 315 23, 936, 970 26, 685, 585 24, 569, 998
1880-1941	1 685, 808	226, 548, 982	1 24, 141	2, 655, 021	836, 455, 326

¹ Short tons.

Mine production of gold and silver in Alaska in 1941, by types of operation, in terms of recovered metals

Type of operation	-			Gold			Silver		
	Mines pro- duc- ing	Material treated	Fine ounces	Percent of total		Fine	Percent of total		Total value
	<u>.</u>	ounces	1941	1940	ounces	1941	1940		
Lode mines. Floating connected-bucket-	56	1 4, 480, 508	203, 886	29	28	123, 978	65	61	\$7, 224, 172
dredges Placers (dragline and dry- land dredges, hydraulic, drift mining, and sluic-	3 47	8 23,405,479	307, 087	44	47	38, 943	20	25	10, 775, 738
ing)	4 752	(5)	184, 494	27	25	28, 601	15	14	6, 477, 628
Total, 1940	855 1, 142		695, 467 755, 970	100	100	191, 522 191, 679	100	100	24, 477, 538 26, 595, 255

¹ Short tons of ore.

Number of dredges, including 1 single-dipper dredge.

Cubic yards of gravel (average recovered per yard, \$0.46).

Includes all types and sizes of placer operations, excluding floating connected-bucket dredges.

Cubic yards of gravel; figures not available.

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Alaska in 1941, by regions, in terms of recovered metals

	Recovered bullion							red metal
Region	Ore treated	Gold	Silver	Concen- trates pro- duced	Gold	Silver	Cop- per	Lead
Cook Inlet-Susitna Copper River	Short tons 50, 229 3, 500	Fine ounces 38, 165 4, 045 869	Fine ounces 1, 983 825 270	Short tons 1,470 67	Fine ounces 9, 860 281	Fine ounces 678 286	Pounds 6, 117 300	Pounds
Kenai Peninsula Kuskokwim Seward Peninsula Southeastern Alaska Yukon River Basin	1, 066 2, 898 12 4, 365, 678 19, 877	1, 727 17 105, 357 15, 350	405 3 24, 281 4, 056	2, 331 95	21, 907 1, 403	76, 701 4, 032	72, 094 390	1, 314, 000 8, 131
Total, 1940	4, 443, 260 4, 877, 373	165, 530 175, 702	31, 823 32, 841	3, 963 4, 769	33, 451 36, 782	81, 697 81, 816	78, 901 47, 877	1, 322, 131 1, 551, 362

Gold.—Floating connected-bucket dredges recovered 44 percent of the total Alaska output of gold in 1941 compared with 47 percent in 1940. The United States Smelting, Refining & Mining Co., operating eight dredges at Fairbanks and four at Nome, was the largest producer of gold from this source in the Territory in both years. Placer mines worked by dragline and dry-land dredges, bulldozers and hydraulic giants, drifting, and sluicing together yielded 27 percent of the total gold in 1941 and 25 percent in 1940. A large part of the output from these types of operations came from the Circle, Fairbanks, Hot Springs. Iditarod (Flat), and Innoko (Folger, Ophir) districts. Lode mines contributed 29 percent of the total Alaska output of gold in 1941 and 28 percent in 1940. The Alaska Juneau Gold Mining Co. at Juneau continued to be much the largest producer of lode gold in Alaska. The Southeastern Alaska and Cook Inlet-Susitna regions yielded 88 percent of the total Alaska output of lode gold in 1941.

Silver.—All the silver produced in Alaska in 1941 was a byproduct

of gold mining.

Copper.—The output of recoverable copper in Alaska in 1941 was only 144,000 pounds, of which 123,124 pounds were derived from gold

ore and 20,876 pounds from copper ore.

Lead.—The bulk of the recovered lead output of Alaska in 1941 came from lead concentrates produced at the flotation mill of the Alaska Juneau Gold Mining Co.

MARKETS AND METALLURGY

About 94 percent of the gold and 52 percent of the silver produced from Alaska ores and gravels in 1941 were obtained in the form of gold-silver bullion, which was sold finally to the Seattle Assay Office and the San Francisco Mint. As there are no smelters or refineries in Alaska, all the remaining gold and silver produced and all the lead and copper were obtained from high-grade ore and concentrates shipped to smelters and refineries in the States, largely to the Tacoma (Wash.) and Selby (Calif.) smelters.

Banks and bullion buyers throughout the Territory and in Seattle, Wash., handled approximately 235,000 fine ounces of gold and 24,000 fine ounces of silver. The gold-silver bullion was either sent direct to the mints or cast into bars for shipping; in many instances the banks acted merely as agents for the lode and placer operations. The seven largest purchasers (or agents) of bullion (handling altogether over 229,000 fine ounces of gold) were: The Bank of Alaska, Anchorage; the Bank of Fairbanks and the First National Bank of Fairbanks, Fairbanks; the First National Bank of Valdez, Valdez; the Miners and Merchants Bank of Alaska, Nome; the Miners and Merchants Bank of Iditarod, Flat; and the Northern Commercial Co., Seattle, Wash.

Ore-reduction mills active in Alaska in 1941 included the 12,000-ton Alaska Juneau amalgamation-table concentration-flotation mill and about 45 other mills (chiefly amalgamation or cyanidation mills, with supplementary concentrating equipment) with reported daily capacities ranging from 2 to 72 tons. Most of the lead concentrates produced in 1941 were obtained by flotation of the dry gold ore of the Alaska Juneau Gold Mining Co. property at Juneau. Only 21 tons of copper concentrates were shipped during the year, and the small copper output of Alaska was derived mostly from gold ores. The concentrates shipped from straight concentration mills (1,720 tons) averaged 2.72 ounces of gold and 6.01 ounces of silver to the ton; those from amalgamation or cyanidation mills having concentrating equipment (3,963 tons) averaged 8.44 ounces of gold and 20.61 ounces of silver to the ton. The crude smelting ore shipped (76 tons) averaged 2.95 ounces of gold and 1.49 ounces of silver to the ton. Mill heads averaging more than 1 ounce of gold to the ton were not uncommon.

At the suggestion of miners, the United States Assay Office of the Treasury Department at Seattle, Wash., recommended that the districts in Alaska be redefined. In August and September 1941 the Denver Office of the Bureau of Mines, United States Department of the Interior, put the recommendation into effect in preparation for its 1941 canvass, and the preceding table and the "Review by regions" in this chapter follow the revised scheme. The Seattle Assay Office could not utilize the new districting during 1941, but in 1942 all receipts at that office will be listed in accordance with it.

Bullion of Alaska origin deposited at United States Assay Office, Seattle, Wasn., during year ended December 31, 1941, in fine ounces

District	Gold	Silver	District	Gold	Silver
Circle Cook Inlet Copper River Esgle Iditarod Koyukuk	16, 497 49, 457 7, 322 3, 252 73, 652 5, 956	1, 651 1, 762 185 459 4, 263 583	Kuskokwim Nome Southeastern Alaska Tanana ¹	27, 323 133, 034 106, 180 207, 740 630, 413	1, 282 11, 829 22, 070 28, 640 72, 724

¹ Includes mainly Bonnifield, Fairbanks, Hot Springs, Kantishna, and Tolovana districts in the Yukon Basin region.

REVIEW BY REGIONS

Cook Inlet-Susitna region.—This region, which includes the Iliamna, Valdez Creek, Willow Creek, and Yentna-Cache Creek districts, produced 24 percent of the total gold output from lode mines

in Alaska in 1941. There were 10 producing lode mines compared

with 17 in 1940, and the output of gold decreased slightly.

The Alaska-Pacific Consolidated Mining Co., operating the Independence and Free Gold mines on the west branch of Fishhook Creek in the Willow Creek district, continued to be the largest producer of gold in the Cook Inlet-Susitna region and the second-largest producer of lode gold in Alaska. The mine is equipped with a 72-ton amalgamation-flotation mill, which was operated at capacity 7 days a week throughout the year. The ore treated averaged 1.29 ounces of gold and 0.07 ounce of silver to the ton. Mine development work resulted in 500 feet of shaft, 1,000 feet of drifts, 2,000 feet of tunnel, and

2,500 feet of diamond drilling.

The Willow Creek Mines Co., second-largest producer of gold in the Cook Inlet-Susitna region in 1941, maintained a steady output from its Lucky Shot mine and 60-ton amalgamation-flotation-cyanidation The mine is on Cragie Creek approximately 1½ miles above the junction of Cragie Creek and Willow Creek and is connected with the mill by a 1/4-mile aerial tram. Less gold-silver bullion and concentrates were shipped than in 1940. In treatment the ore is crushed and sent to a closed circuit, consisting of a ball mill, rake classifiers, and gold jigs. The jig concentrates are amalgamated. The classifier overflow passes into the flotation cells. The flotation concentrate goes to a regrind circuit (where more gold is amalgamated) and is then thickened, sacked, and shipped to the Tacoma (Wash.) smelter. The tails from the flotation cells are either sent to the cyanide plant or discharged into the creek.

Other leading lode-gold producers in the Cook Inlet-Susitna region were the Fern Gold Leasing Co. (operating the Fern, Goodel, and Talkeetna groups), the Gold Cord Development Co., Golden Zone

Mine, Inc., and Mabelle Mines, Inc.

Placer operations, using principally hydraulic giants, recovered considerable gold from stream and bench gravels. Among the larger placer-gold producers were John E. Carlson and the White Creek Mining Co. in the Valdez district; and the Alaska Exploration & Mining Co., Cache Creek Mining Co., Devault, Devault & Seitz, Falls Creek Mining Co., Spokane Peters Creek Mining Co., and F. R.

Wagner in the Yentna-Cache Creek district.

Copper River region.—The Copper River region includes the Chistochina, Nelchina, Nizina, Prince William Sound, and Yakataga (including Icy Bay) districts. The Cliff mine on Valdez Bay 10 miles west of Valdez, operated by Cliff Goldmines, Inc., was the principal producer of gold in the region in 1941. The mine is equipped with a 24-ton stamp amalgamation-gravity concentration mill which was operated 320 days and treated 2,500 tons of ore. The yield was 4,249 ounces of bullion containing 3,378 fine ounces of gold and 692 fine ounces of silver, and 36 tons of concentrates containing 81 ounces of gold and 21 ounces of silver. A plant for re-treating tailings by regrinding and flotation was nearly completed during the year. Other producers of lode gold included Yellow Band Gold Mines, Inc., in the Nizina district and the Sun Ray Mining Co. in the Prince William Sound district.

Placer gravels were worked, chiefly by hydraulicking and ground sluicing, in the Copper River region in 1941. Substantial producers of placer gold included J. M. Elmer on the Slate Creek Mining Co.

property and Einer Johnson on the Grubstake placer, both in the Chistochina district; Belanger, Cameron & Gallivan on Albert Creek in the Nelchina district; and Chititu Mines on the Rex Gulch property and Joshua Green Associates on Nicolai Placer Mines property in the

Nizina district.

Kenai Peninsula region.—The Kenai Peninsula region includes the Moose Pass-Hope, Nuka Bay-Homer, and Turnagain Arm-Girdwood districts. No large producing lode or placer mines operated in this region in 1941. Most of the output of lode gold came from the Alaska Oracle Extension, East Point, and Gilpatrick mines in the Moose Pass-Hope district; the Paystreak mine in the Nuka Bay-Homer district; and the Crow Creek Gold Corporation property in the Turnagain Arm-Girdwood district. Among the producing placers were the Hope Mining Co. and Palmer Creek Mining Co. properties on Resurrection Creek in the Moose Pass-Hope district.

Kodiak Island region — Small quantities of gold were recovered by

individuals from beach placering in 1941.

Kuskokwim region.—The Kuskokwim region includes the Bethel, Goodnews Bay, McGrath, and Tuluksak-Aniak mining districts. The only producing lode mine in the region in 1941 was the Nixon Fork in

the McGrath district, owned and operated by Mespelt & Co.

Placers were worked in all the districts. Two floating connected-bucket dredges were operated in the Goodnews Bay district and two in the Tuluksak-Aniak district. Those in the Tuluksak-Aniak district were operated by the New York Alaska Gold Dredging Co., largest gold producer in the region in both 1941 and 1940. In the Goodnews Bay district the Bristol Bay Mining Co. operated its floating connected-bucket dredge (equipped with sixty-four 2½-cubic foot buckets) from May 9 to October 10, 1941, on Wattamuse, Slate, Culver, and Bear Creeks northerly from Goodnews Bay. The Goodnews Bay Mining Co. operated its dredge (equipped with ninety-two 8-cubic foot buckets) on Salmon River from April 26 to November 5. The company produced gold also from other ground on Salmon River and Platinum Creek and in Snow Gulch on the Arolic River, using 3-inch hydraulic giants, bulldozers, and draglines.

Among the other larger producers from dragline land dredge operations were Strandberg & Sons on Candle Creek in the McGrath district; the Marvel Creek Mining Co., Garrison Co., and Peandore Placer Mining Co. in the Tuluksak-Aniak district; John B. Huff on Butte Creek in the Arolic River area (hydraulicking); and the Eek

River Mining Co. in the Bethel district.

Northwestern Alaska region.—Mining in the Northwestern Alaska region—comprising the Kiana and Shungnak districts and covering the area of the Kobuk River Valley—was confined mostly to small placer operations in 1941. The Lammers Exploration Co. shipped sizable lots of gold dust from its placer on California Creek (Shungnak district) to the Miners and Merchants Bank of Alaska at Nome.

Seward Peninsula region.—The Seward Peninsula region—comprising the Council-Bluff, Fairhaven, Kougarok, Koyuk, Nome, Port Clarence, and Serpentine River districts—had 22 floating connected-bucket dredges in 1941 (same number as in 1940); numerous bulldozer-hydraulicking, dragline land dredging, drift mining, and ground-sluicing operations; and only 1 small producing lode mine (the McDuffee, in the Nome district). Gold recovered by dredges increased 6 percent

over 1940. The average value of the gravel worked by dredges was about 47 cents per cubic yard compared with 50 cents in 1940. Most of the dredge operations in 1941 began in the period from May 10 to June 18 and ended in that from October 9 to November 23. Preparation of dredging ground is started well ahead of actual dredging, and in some places preparation of ground and general repair work are carried on throughout the year. Other types of placer operations

averaged about 120 days for mines mechanically equipped.

The United States Smelting, Refining & Mining Co., in the Nome district, was the largest producer of gold in the region. The company operated three electrically powered Yuba dredges (one with 112, one with 103, and one with 78 9-cubic foot buckets) throughout the open season and in October completed and placed in operation a Yuba dredge equipped with 134 9-cubic foot buckets. Gravel washed in 1941 totaled approximately 4,000,000 cubic yards compared with 3,700,000 in 1940. The Thirty-sixth Annual Report of the United States Smelting, Refining & Mining Co. for the year ended December 31, 1941 (dated March 19, 1942), says—

At Nome, Alaska, three dredges operated throughout the normal season and the new deep-digging dredge referred to in last year's report was started in October. In all, the four dredges operated 593 dredge days in 1941 as against 567 dredge days in 1940. Both yardage and grade were better.

Arctic Circle Exploration, Inc., operated two dredges, each with seventy 4-cubic foot buckets, on Candle Creek in the Fairhaven district and ranked second in production of gold in the region in 1941.

Castleton & Keenan, operating a Washington Iron Works Diesel-powered dredge equipped with eighty-five 2½-cubic foot buckets on the Kougarok River in the Kougarok district, began dredging June 18 and ceased October 10. The company also operated five hydraulic giants, three caterpillar bulldozers, and a dragline and washing plant on the Kougarok River.

Lee Bros. Dredging Co. operated two Diesel-powered floating connected-bucket dredges (one with 74 and one with 66 buckets) on the Solomon River in the Nome district from June to the middle of

November and handled 750,000 cubic yards of gravel.

Other companies operating floating connected-bucket dredges in the Seward Peninsula region were: The Alaska Placer Co., Camp Creek Dredging Co., Council Dredging Co., Inland Dredging Co., and Ophir Gold Dredging Co., all in the Council-Bluff district; Dry Creek Dredging Co. and Forsgren Dredging Co., both operating on the Inmachuk River in the Fairhaven district; Fox Bar Dredging Co. in the Kougarok district; Ungalik Syndicate in the Koyuk district; and American Creek Dredging Co., Casa de Paga Gold Co., Osborn Creek Dredging Co., and Tolbert Scott, all in the Nome district.

Among the large producers of gold from placers worked by hydraulic giants, with some combination of bulldozers, draglines, and pumping equipment in addition, were: Crabtree & Sullivan in the Council-Bluff district; Wallace Porter in the Fairhaven district; The Alaska Taylor Mining Co., Carlson & Co., Dahl Creek Mining Co., Gold Bullion, Inc., Grant Mining Co., Rainbow Mines, Trinity Mining Co., George Waldhelm, and Wirum Bros., all in the Kougarok district; Gabe Johnson & Co., Gold Beach Placers, Margraf & Kowalski, E. W. Quigley, and C. O. Roberts, all in the Nome district; and Gilbert Fidjeland and Frank L. Rice, both in the Port Clarence district.

Southeastern Alaska region.—Southeastern Alaska—including the Admiralty Island, Chichagof Island, Hyder, Juneau, Ketchikan, and Windham Bay districts—produced 64 percent of the total lode gold and most of the silver, copper, and lead output of Alaska as a whole in There were 16 active mines—7 less than in 1940.

The Alaska Juneau was the largest producer of silver and lead and was second only to the United States Smelting, Refining & Mining Carlo autout of gold in the Territory in 1941. The Twenty-seventh Annual Report of the Alaska Juneau Gold Mining Co. for the year

ended December 31, 1941 (dated March 14, 1942), savs-

During 1941 the amount of rock trammed from the mine was 4.354.770 tons. Compared to the previous year's production, this represents a decrease of slightly over 1,000 tons per day. The North ore body furnished 15 percent of the year's over 1,000 tons per day. tonnage, the South ore body 38 percent, while the Perseverance section of the mine

supplied 47 percent of the total.

During the year, 333,250 pounds of powder were used in blasting powder drifts; 33,750 pounds were used in blasting long hole stations, making a total of 367,000 pounds of powder for primary breaking, or 0.08 pound per ton trammed. Total powder consumption for primary and secondary breaking was 0.29 pound per ton trammed in 1941, as against 0.32 pound in 1940, and 0.32 pound in 1939. This gives a tonnage ratio of 3.45 tons of rock per pound of powder used for 1941.

In the Deep North ore body, work was started on ore pockets, skip loading apparatus, stations, and tipple installations in and around the Main shaft on 13 level, which is 1,450 feet below the collar of the winze. Work on the tipples and tunnel widening is still in progress but should be finished within a few months. Additional exploratory work was done in the western part of the Deep North ore body, while in the 91 winze area, ore-way raise work is still in progress.

While exploratory, development, and preparatory mining work was carried on

throughout the year, the rate at which it was being done during the second half of the year was below the normal requirement. Any such prolonged curtailment of development and preparatory mining will directly affect future tonnage output, although the effect may be delayed somewhat, inasmuch as it generally takes about two years to bring a stope into production. This reduction of preparatory mining work is due to the shortage of labor and to the high turn-over of labor,

both being results of the present national emergency.

Mill.—There were no alterations to the mill flow sheet during the year. only additional equipment installed was a small Oliver filter, which handles a

mixture of flotation and table concentrates.

Power plants.—The relocation of part of the Annex Creek electric transmission line was completed during the summer of 1941. The repair work at Salmon Creek Dam was continued, but due to labor shortage it was not completed.

Labor.—All during the year, except for the first 4 months, there was a very marked shortage of both skilled and unskilled labor in all departments. During the last few months of the year, we operated with 200 less men daily than during the previous year. Labor turn-over reached the highest point in the history of The average monthly percentage turn-over during the last 6 months was 10 percent, which is about three times greater than the normal turn-over.

In May 1941 a wage increase of about 7 percent was granted and a Union shop agreement was entered into with the Juneau Mine and Mill Workers Union affiliated with International Mine, Mill and Smelter Workers Union.

The average wage per day was \$7.17 in 1941 as compared to \$6.69 in 1940.

The number of men employed at the end of the year was 866.

The over-all cost per man per day was \$11.14 in 1941, as compared to \$10.87 in 1940.

Gold content of ore from Alaska Juneau mine, 1937-41, and total, 1893-1941

			Gold (ounce)					
Year	Rock to mil	ll from mine ns)	Recovery per ton fine-milled		Losses per ton of tailings		Content of rock	
	Ore fine- milled	Coarse tailings rejected	In bul- lion	In galena concen- trates	Fine	Coarse	from mine to mill	
1937 1938 1939 1939 1940	2, 251, 079 2, 478, 928 2, 377, 718 2, 308, 397 2, 211, 211	2, 191, 681 2, 184, 952 2, 270, 342 2, 431, 393 2, 143, 559	0. 0594 . 0515 . 0454 . 0442 . 0451	0. 0080 . 0081 . 0088 . 0089 . 0092	0. 0116 . 0090 . 0083 . 0081 . 0078	0.0082 .0071 .0066 .0065 .0063	0. 0441 . 0398 . 0352 . 0331 . 0347	
Total and average, 1893-1941	44, 428, 244	39, 432, 014	. 0507	. 0114	. 0119	. 0084	. 0432	

Gold, silver, and lead recoveries from Alaska Juneau mine, 1893-1941

	G	old	Sil	Silver Lead			
Year	Fine ounces	Value	Fine ounces	Value	Pounds	Value	Total value recovered
1937 1938 1939 1940 1941	151, 670. 64 148, 103. 14 129, 011. 74 122, 469. 96 120, 501. 24	\$707, 730. 15 48, 804, 365. 29 5, 308, 471. 55 5, 183, 542. 98 4, 515, 410. 28 4, 286, 448. 37 4, 217, 897. 67 73, 023, 866. 29	1, 291, 697. 20 120, 691. 21 121, 473. 25 111, 494. 24 100, 633. 39 95, 776. 56	91, 528. 49 78, 999. 04 75, 165. 90 71, 154. 36 67, 753. 89	1, 980, 405 2, 152, 714 2, 040, 280 1, 666, 016 1, 464, 956	116, 414. 16 101, 945. 80 104, 961. 22 89, 568. 57 85, 268. 93	4, 447, 171. 30

¹ Lost in tailings.

Summary of production and operating costs, Alaska Juneau mine, 1914-41, inclusive

	4,354,770	tons	4,739,790	tons	83,353,004 tons		
	1941	Per ton trammed	1940	Per ton trammed	1914-41	Per ton trammed	
Production (gross recovered gold, silver, and lead values):							
Bullion	\$3, 509, 421. 76 861, 498. 73	\$0.806 .198	\$3, 584, 827. 33 862, 343. 97	\$0.756 .182	\$60,095,156.36 15, 481, 957. 74	\$0.721 .186	
	4, 370, 920. 49	1.004	4, 447, 171. 30	. 938	75, 577, 114. 10	. 907	
Costs: Mining. Milling. Other Juneau operating and	1, 649, 946. 97 1, 005, 054. 65	. 379	1, 744, 652. 26 1, 069, 494. 51	. 368 . 226	25, 173, 771. 89 20, 181, 013. 53	. 302 . 242	
marketing costs	265, 220. 42 220, 705. 62	. 031 . 051	212, 896. 29 236, 678. 76	. 045	4, 002, 545. 17 1, 727, 599. 01	. 048	
Total Juneau operating and marketing costs All other costs	3, 140, 928. 65 77, 531. 84	. 722 . 018	3, 293, 721, 82 59, 422, 14	. 689 . 013	51, 084, 929. 60 3, 538, 655. 62	. 613 . 042	
Total operating costs and expenses	3, 218, 460. 50	. 740	3, 323, 143. 96	702	54, 623, 585. 22	. 655	
Juneau operating profit	1, 229, 991. 83	. 282	1, 183, 449. 48	. 249	24, 492, 184. 50	. 294	
Net operating profit Other revenue (interest, etc.)	1, 152, 459. 99 50, 504. 47	. 264	1, 124, 027. 34 41, 052. 43	. 236	20, 953, 528. 88 719, 652. 38	. 252	
Profit before depreciation, depletion, and income taxes	1, 202, 964, 46		1, 165, 079. 77		21, 673, 181. 26		

The Hirst-Chichagof Mining Co. on Chichagof Island operated its mine and 35-ton amalgamation-flotation mill continuously in 1941 and was again the second-largest producer of gold in the region. The bullion product was sent direct to the Seattle Assay Office, and the concentrates were shipped to the Tacoma (Wash.) smelter.

The Chichagof Mining Co. at Klag Bay in the Chichagof Island district continued to treat old tailings, producing gold-silver concentrates (containing a little copper) which were shipped to the Tacoma

(Wash.) smelter.

The output from other mines in the region was small. Companies or individuals producing more than 100 ounces of gold from lode mines were the Alaska Empire Gold Mining Co. in the Admiralty Island district, the LeRoy Mining Co. in the Juneau district, and Wendell Dawson in the Ketchikan district. Small sluicing operations in the Juneau and Windham Bay districts recovered placer gold.

Yukon River Basin region.—The Yukon River Basin region includes the following mining districts: Bonnifield-Nenana, Chandalar, Chisana, Circle, Delta River, Eagle, Fairbanks, Fortymile, Goodpaster, Hot Springs, Hughes, Iditarod, Innoko, Kantishna, Koyukuk, Marshall, Rampart, Ruby, Tolovana, and Yukon Flats. The region yielded 59 percent of the total output from connected-bucket dredges in Alaska during 1941; it ranked first in gold recovered from other placers and third in that from lode mines.

Twenty-two floating connected-bucket dredges (including one single-dipper dredge) were operating in the region—two less than

in 1940.

The United States Smelting, Refining & Mining Co., operating eight floating connected-bucket dredges in the Fairbanks district, was much the largest producer of gold and silver in the Yukon River Basin region. The company operated two 10-cubic foot Bethlehem dredges (with 111 and 93 buckets, respectively), one 10-cubic foot Yuba dredge (with 106 buckets), three 6-cubic foot Bethlehem dredges (with 78, 78, and 68 buckets, respectively), one 5-cubic foot Yuba dredge (with 84 buckets), and one 3-cubic foot Yuba dredge (with 68 buckets); all the dredges are electrically operated. Other equipment used (chiefly for removing overburden) included 365 Joshua Hendy hydraulic giants, one 8- to 12-cubic yard electric-powered Bucyrus 10-W dragline, and one oil-burning caterpillar bulldozer. Of the dredges operated in 1941, two were on Cleary Creek, two on Goldstream Creek, and one each on Cripple, Ester, Fish, and Pedro Creeks.

The Thirty-sixth Annual Report of the United States Smelting, Refining & Mining Co. for the year ended December 31, 1941 (dated

March 19, 1942), says—

At Fairbanks, Alaska, the gold output for the season was considerably lower than in 1940. This was due to a strike which lasted from June 6 to July 2, 1941, shutting down all operations and resulting in a loss of 216 dredge days for the eight dredges; and to decrease in the output of the new large dredge, which spent most of the season of 1941 digging in tailings and lower-grade gravels. In all, the dredges operated 1,611 dredge days in 1941 as against 1,799 dredge days in 1940.

At both Fairbanks and Nome there were further acquisitions of ground in 1941. Continued development resulted in gold-reserve additions which considerably exceeded the year's extraction.

In the Circle district three dredges were again active in 1941. Alluvial Golds, Inc., operated its W. W. Johnson Co. dredge (with

seventy-two 4-cubic foot buckets) on Woodchopper Creek. On Coal Creek, Gold Placers, Inc., ran a dredge of similar type equipped with sixty 4-cubic foot buckets. The C. J. Berry Dredging Co. operated its steampowered dredge (with fifty-eight 3-cubic foot buckets) and handled about 318,200 cubic yards of gravel. The output by these three dredges ranked the Circle district second in gold produced by dredges in the Yukon River Basin in 1941.

The Tolovana district, with two dredges, ranked third in the region in gold produced by dredges. Livengood Placers, Inc., made a large output from its Yuba dredge on Livengood Creek, equipped with eighty-eight 6-cubic foot buckets. The Nome Creek Mining Co. operated a W. W. Johnson Co. dredge (with 4-cubic foot buckets) on

Nome Creek northeast of Fairbanks.

In the Iditarod district the North American Dredging Co. operated a Washington Iron Works dredge (with sixty-nine 3-cubic foot buckets) on Otter Creek from May 19 to November 5. The Riley Investment Co. also operated a dredge on Otter Creek.

Three dredges were active in the Innoko district in 1941; the Ganes Creek Dredging Co. and Moss & Larson operated one each on Ganes

Creek, and Nels J. Vibe ran one on Yankee Creek.

In the Fortymile district the Boundary Dredging Co. operated a W. W. Johnson Co. 60-bucket dredge on Canyon Creek from July 22 to October 12. On Wade Creek the Wade Creek Dredging Co. continued to operate its Risdon steam-powered dredge equipped with

seventy 3½-cubic foot buckets.

In the Bonnifield-Nenana district Standard Mines, Inc., operated a Becker-Hopkins single-bucket floating dredge on Eva Creek. The bucket is mounted on a steel framework at the digging end of the dredge in such a manner as to permit it to be elevated to an angle that allows the gold-bearing gravel to be discharged into a trommel screen on the floating washing plant. The washing plant and stacker unit are similar to those on lightweight connected-bucket dredges.

On Caribou Creek in the Delta River district the Brinker-Johnson Co. operated its W. W. Johnson Co. dredge, equipped with seventy-circle 41/2 online foot business from June 15 to November 7, 1041

eight 4½-cubic foot buckets, from June 15 to November 7, 1941.

Placer operations of all types—other than floating connected-bucket dredges—were to be found throughout the Yukon River Basin region, some with production as large as or larger than the average dredge and many producing over 500 ounces of gold. The combined production of these operations was at least 100,000 fine ounces of gold in 1941.

In the Bonnifield-Nenana district Triple X Placers operated a 1'-cubic yard Bucyrus dragline, an Isaacson washing plant, and two caterpillar bulldozers on the Totatlanika River from June 1 to Sep-

tember 25 and handled 200,000 cubic yards of gravel.

Among the larger producers in the Circle district using hydraulic giants and bulldozers or draglines with screening and sluicing plants were: The Berry Holding Co., Bergstrom & Savage, Central Mining Co., Frank & Co., Independence Mining Co., F. B. Johnston Mining Co., Jack LaCross, and Mastodon Mining Co.

In the Fairbanks district Helmer Johnson handled approximately 35,000 cubic yards of gravel with hydraulic giants and a bulldozer at his placer on upper Cleary Creek; the yield was 1,157 fine ounces of gold and 190 fine ounces of silver. The Wolf Creek Mining Co.,

operating a dragline and washing plant on Wolf Creek, continued to be an important producer of gold. The Fish Creek Mining Co. on upper Fish Creek and the Faith Creek Mining Co. on Faith Creek (tributary to Chatanika River) recovered substantial quantities of gold by hydraulicking, bulldozing, and sluicing. The First Chance Mining Co. worked its claim in First Chance Creek 14 miles from Fairbanks from March 25 to October 10, using six hydraulic giants, a Dieselpowered 1-cubic yard dragline, and a bulldozer; the gravel handled (100,000 cubic yards) had an average value of 15 cents a cubic yard, based upon net returns from the gold and silver sold. Other sizable producers in the Fairbanks district included the Alder Creek Mining Co., Brown & Reeves, the Gilmore Mining Co., O. M. Grant, Robert O. Jones, and J. H. Martin.

In the Fortymile district the Central Development Syndicate continued to be an important producer of gold from company owned and leased ground on Jack Wade Creek; hydraulic giants and bulldozers

were used to handle the gravel.

Among the larger placer operators in the Hot Springs district were the Cleary Hill Mines Co., operating 12 hydraulic giants, 1 dragline, and 2 bulldozers on Sullivan Creek; J. R. Frank & Co. and Whitehead & Co., hydraulicking on Pioneer Creek; and the Montana Mining Co., using hydraulic giants with a dragline and bulldozer on Omega Creek.

On Utopia Creek (tributary to Indian River) in the Hughes district L. McGee handled 200,000 cubic yards of gravel, using four hydraulic giants, two bulldozers, and a dragline in conjunction with a land washing plant; the average value of the gravel was 43.5 cents a cubic yard. McGee also worked ground on Black Creek and Indian River with hydraulic giants and bulldozers; the gravel washed (45,000 cubic yards) had an average value of 51.3 cents a cubic yard.

In the Iditarod district the larger producers from these types of placer operations were: The Awe Mining Co., the Granite Mining Co., Hatten, Bauquier & Turner, Sakow & Tomoff, Turner & Reming-

ton, and Uotila & Ogriz.

In the Innoko district Three Miners, Inc., operated its dragline and portable dry-land washing plant on the Innoko River about 30 miles northwest of Ophir from March 15 to September 30, 1941. Degnan & Rosander and the Cripple Creek Mining Co. operated similar equipment on Little Creek and Cripple Creek, respectively. Hard, Uotila & Hansen operated seven hydraulic giants, a 1½-cubic yard dragline, and a bulldozer on Bear Creek from April to October. Other large placer operators were Beaton & McDougall, Peter Miscovich & Sons, the Moore Creek Mining Co., Sid Paulson, and Savage & Matheson.

On Caribou Creek in the Kantishna district Caribou Mines handled 119,668 cubic yards of gravel from June 20 to September 16, using a 1%-cubic yard dragline, two bulldozers, and a dry-land washing plant,

all of which used oil for fuel.

The principal producer of gold in the Kovukuk district in 1941 was Repo & Schwaesdall, who operated hydraulic giants, bulldozers, and

a dragline on Myrtle Creek.

In the Marshall district the Wilson Creek Mining Co. operated its dragline and two bulldozers in conjunction with elevated sluices on Elephant Creek (tributary to Wilson Creek) from April 21 to October 21 and handled 235,888 cubic yards of gravel having an average value

of 25.6 cents a cubic yard. The Yukon Mining Co. mined from June 18 to October 11 on placer ground on Buster and Windy Creeks; sluicing was done on bedrock, and a dragline was used to stack the tailings. H. Roy Hunter operated two hydraulic giants, a dragline, and two bulldozers from June 1 to October 15 on Willow Creek 12 miles southeast of Fortuna Ledge.

Other large producers among these types of placer operations in the Yukon River Basin region in 1941 were the Long Creek Mining Co. and Richardson & Johnson in the Ruby district, and Parker & Son

and A. W. Warwick in the Tolovana district.

Lode mining in the Yukon River Basin region produced 16,763 fine ounces of gold and 8,114 fine ounces of silver in 1941, decreases of 17

percent in gold and 5 percent in silver from 1940.

The leading producer of lode gold in the region in 1941 was Cleary Hill Mines, Inc., operating the Cleary Hill mine and amalgamation-flotation mill in the Fairbanks district 27 miles northeast of Fairbanks. The United States Smelting, Refining & Mining Co. operated its McCarty mine on Fairbanks Creek continuously in 1941, except during a strike which lasted nearly a month; the mine is equipped with a 10-ton amalgamation mill. The Hi Yu Mining Co. continued small-scale mining at its Hi Yu mine on Fairbanks Creek; the ore was treated in the 50-ton amalgamation mill on the property. Other small lode-gold producers in the Fairbanks district included the Carver Alder Mine Co., Emma Creek Mine Co. (a partnership), O. M. Grant, Lloyd Lounsberry, and the Tolovana Mining & Milling Co.

In the Kantishna district the Red Top Mining Co. operated its Red Top mine and 50-ton jig-, table-, and flotation-concentration mill from March 3 to October 26; the jig and table concentrates are amalgamated in a barrel, and the barrel tails and the flotation con-

centrates are shipped to the Tacoma (Wash.) smelter.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN ARIZONA

(MINE REPORT)

By G. E. WOODWARD AND PAUL LUFF

SUMMARY OUTLINE

	Page	1	Page
Summary Calculation of value of metal production Mine production by counties.	193 197	Mining industry Ore classification Metallurgic industry	199 199
		Review by counties and districts	204

SUMMARY

The total value of the output of recoverable metals from mines in Arizona was \$97,638,310 in 1941 compared with \$82,167,759 in 1940—an increase of 19 percent (see fig. 1); it was the greatest since 1929, when the total value was \$155,567,133. Both quantity and value of each of the five metals increased substantially in 1941. total value of the gold was \$11,038,720, a 7-percent gain over 1940; silver \$5,332,096, a 6-percent gain; copper \$77,010,812, a 21-percent gain; lead \$1,782,732, a 34-percent gain; and zinc \$2,473,950, a 27-percent gain. The value of the gold production represented 11 percent of the State total, silver 5 percent, copper 79 percent, lead 2 percent, and zinc nearly 3 percent. The total value of the metals recovered from copper ore was \$84,957,995 in 1941, or 87 percent of the State total. The output of copper in 1941 was the greatest since 1929, and the outputs of both lead and zinc were the largest in the history of the State. The output of placer gold (11,931 fine ounces) was larger than in any year since records were established in 1901 and resulted chiefly from the operation of two dragline-floating dredges in Yavapai County.

All tonnage figures are short tons and "dry weight"; that is, they do not include moisture.

The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold ¹	Silver ²	Copper 3	Lead ³	Zinc ³
1937 1938 1939 1940	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0. 7735 6.646+ 5.678+ 6.711+ 6.711+	Per pound \$0. 121 .0 78 .101 .113 .118	Per pound \$0.059 .046 .047 .050	Per pound \$0.035 .018 .052 .063 .075

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+(\$20.671835) per fine ounce.

² 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938–41: Treasury buying price for newly mined silver.

³ Yearly average weighted price of all grades of primary metal sold by producers.

⁴ \$0.67878787.

⁵ \$0.6787878787.

Mine production of gold, silver, copper, lead, and zinc in Arizona, 1937-41, and total, 1860-1941, in terms of recovered metals

Year		Mines producing Ore (short tons)			Gold (lode	and placer)	Silver (lod	Silver (lode and placer)		
		Lode	Placer	tons)	Fine ounce	s Value	Fine ounce	es Value		
1937 1938 1939 1940 1941 1860–1941		888 885 976 1, 024 805	376 329 142 276 184	20, 976, 359 14, 203, 164 18, 793, 260 21, 572, 175 25, 491, 794	332, 694 \$11, 644, 305, 043 10, 676, 316, 453 11, 075, 294, 807 10, 318, 315, 392 11, 038, 310, 174, 289 243, 595,		7, 479, 1 53 7, 824, 004 5, 7, 075, 215 7, 498, 260	\$7, 288, 344 4, 835, 008 5, 310, 839 5, 031, 264 5, 332, 096		
	c	opper		Le	ead	Zi	ne	m . 1 . 1 .		
Year	Pounds	v	alue	Pounds	Value	Pounds	Value	Total value		
1937 1938 1939 1940 1941	576, 956, 000 421, 594, 000 524, 224, 000 562, 338, 000 652, 634, 000	41, 54, 63,	811, 676 316, 212 519, 296 544, 194 010, 812	24, 708, 000 21, 142, 000 21, 542, 000 26, 532, 000 31, 276, 000	\$1, 457, 772 972, 532 1, 012, 474 1, 326, 600 1, 782, 732	10, 052, 000 11, 628, 000 13, 422, 000 30, 912, 000 32, 986, 000	\$653, 380 558, 144 697, 944 1, 947, 456 2, 473, 950	\$90, 855, 462 58, 358, 401 72, 616, 408 82, 167, 759 97, 638, 310		
1860-1941	2 9, 446, 796	2, 841,	255, 216	² 282, 054	32, 499, 650	² 126, 303	19, 142, 801	3, 336, 374, 706		

¹ Figures not available.

3 Short tons.

Gold and silver produced at placer mines in Arizona, 1937-41, in fine ounces, in terms of recovered metals

						Dre	edges			
Year	Sluicii	ng I	Drift m	iining	Dry-la	and 2	Dragl floatii		Tota	al
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
1937 1938 1939 1940	1, 275 1, 624 1, 919 1, 625 976	212 213 227 207 125	258 328 1,850 646 77	34 35 125 41 5	(3) (3) (3) 1, 186 824	(3) (3) (3) 464 717	3 2, 866 3 3, 033 3 2, 640 2, 784 10, 054	3 403 3 380 3 339 396 1, 358	4, 399 4, 985 6, 409 6, 241 11, 931	649 628 691 1, 108 -2, 205

Figures for dragline floating dredges include those for dry-land dredges.

Gold.—The output of recoverable gold in Arizona in 1941 was 315,392 fine ounces—an increase of 7 percent over 1940. Gold from siliceous ores (chiefly dry and siliceous gold ore) and zinc-lead ore was virtually the same as in 1940, but gold from copper ore increased 13,778 ounces and that from lead ore 1,234 ounces. Gold from placers increased 5,690 ounces; 84 percent of the total placer gold was recovered by dragline dredging at properties on Big Bug Creek and Lynx Creek in Yavapai County. The Copper Queen (Bisbee) branch of the Phelps Dodge Corporation continued to be the leading gold producer in Arizona; it was followed by the New Cornelia mine in Pima County, the Mammoth-St. Anthony Limited property in Pinal County, the Goldroad mine (United States Smelting, Refining

Includes placer sands treated by dry concentration plants.
A floating washing plant supplied with gravel by a dragline excavator is called a "dragline dredge"; a stationary or "ovable washing plant supplied with gravel by any type of power excavator is called a "dry-land and or "ovable washing plant supplied with gravel by any type of power excavator is called a "dry-land and or "ovable washing plant supplied with gravel by any type of power excavator is called a "dry-land and or "ovable washing plant supplied with gravel by any type of power excavator is called a "dry-land and ovable washing plant supplied with gravel by any type of power excavator is called a "dry-land and ovable washing plant supplied with gravel by any type of power excavator is called a "dry-land and ovable washing plant supplied with gravel by any type of power excavator is called a "dry-land and ovable washing plant supplied with gravel by any type of power excavator is called a "dry-land and ovable washing plant supplied with gravel by any type of power excavator."

& Mining Co.) in Mohave County, and the United Verde mine in Yavapai County; these five properties produced more than 58 percent of the State total output. Other large gold producers were the Magma mine in Pinal County, the Octave mine (American Smelting & Refining Co.) in Yavapai County, the Shattuck Denn mine in Cochise County, the Iron King mine in Yavapai County, the Tyro mine (Gold Standard Mines Corporation) in Mohave County, and the

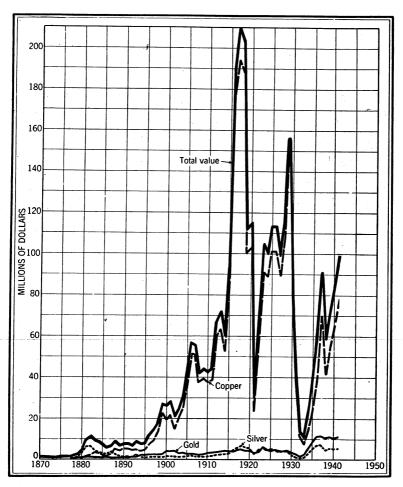


FIGURE 1.—Value of mine production of gold, silver, and copper and total value of gold, silver, copper, lead, and zinc in Arizona, 1870-1941. The value of lead and zinc has been less than \$2,000,000 annually, except in a few years.

Congress property in Yavapai County. Siliceous ores yielded 46 percent of the State total gold, copper ore 45 percent, and zinc-lead ore 4 percent. The chief gold-producing districts in Arizona were the Warren (mostly copper ore), San Francisco (nearly all gold ore), Ajo (copper ore), Verde (mostly copper ore), Old Hat (nearly all gold ore), Weaver (Yavapai County) (gold ore), and Big Bug (mostly zinc-lead ore and placer gold).

Silver.—The output of recoverable silver in Arizona in 1941 was 7,498,260 fine ounces—an increase of 6 percent over 1940. from siliceous ores declined 182,504 ounces and that from zinc-lead ore 48,992 ounces; but silver from copper ore increased 542,672 ounces, that from lead ore 62,609 ounces, and that from zinc-copper ore 32,600 ounces. Copper ore yielded 67 percent of the State total silver, siliceous ores 16 percent, zinc-lead ore 12 percent, zinc-copper ore 3 percent, and lead ore nearly 2 percent. The Phelps Dodge Corporation continued to be the chief silver producer in Arizona, and its output was 17 percent greater than in 1940; its four properties (Copper Queen, Morenci, New Cornelia, and United Verde) produced 40 percent of the State gold output, 54 percent of the silver, and 53 percent of the copper. Other large silver producers in Arizona in 1941 were the Magma, Shattuck Denn, Trench-Flux, Iron King, and Iron King-Equator properties. The chief silver-producing districts were the Warren (Bisbee), Verde (Jerome), Pioneer (Superior), Ajo, Harshaw, Big Bug, and Wallapai (Chloride); more than 56 percent of the total silver came from the Warren and Verde districts.

Copper.—The output of recoverable copper in Arizona in 1941 was 652,634,000 pounds—a 16-percent gain over 1940 and the largest output since 1929, when it was 830,628,411 pounds. There was a substantial increase in each of the seven chief copper-producing districts. The Globe-Miami district, with a production of 164,837,300 net pounds of copper, continued to be the leading copper-producing area in Arizona; it was followed by the Ajo district with 131,760,000 pounds, Warren (Bisbee) with 113,184,100 pounds, Mineral Creek (Ray) with 84,800,000 pounds, Verde with 84,484,800 pounds, Pioneer (Superior) with 38,238,400 pounds, and Copper Mountain (Morenci) with 27,757,800 pounds. These seven districts contributed 99 percent of the State total copper. Copper ore and its products yielded 647,-420,204 pounds of copper, as follows: 18,607,089 tons of copper ore treated by concentration yielded 58 percent; 1,760,740 tons of copper ore shipped crude to smelters, 24 percent; and 3,785,654 tons of copper ore leached and 21,373 tons of cement copper (from mine-water precipitates and underground leaching operations), 18 percent. New Cornelia property continued to be the largest copper producer in Arizona; it was followed in order by the Copper Queen, Inspiration, Ray (Nevada Consolidated Copper Corporation), United Verde, Miami, Magma, and Morenci (Phelps Dodge Corporation).

Lead and zinc.—The output of recoverable lead in Arizona in 1941 was 31,276,000 pounds—the largest output in any year in the history of the State and an increase of 18 percent over 1940; the output of recoverable zinc was 32,986,000 pounds—also the largest in any year in the history of the State and an increase of 7 percent over the record output in 1940. About 40 percent of the State total lead and 32 percent of the zinc came from Santa Cruz County, nearly 16 percent of the lead and 14 percent of the zinc from Mohave County, and 15 percent of the lead and 25 percent of the zinc from Pinal County; nearly all the remainder of the lead and zinc came from Yavapai and Cochise Counties. About 68 percent of the total lead and 74 percent of the total zinc came from zinc-lead ore; nearly all the rest of the lead came from siliceous ores, lead ore, zinc-copper ore, and copper ore, and nearly all the rest of the zinc from zinc-copper ore. The Trench-Flux group of the American Smelting & Refining Co. near Patagonia in Santa Cruz County was by far the largest producer of lead in the State; it was followed by the Tennessee mine at Chloride, Mammoth-St. Anthony Limited property at Tiger, Shattuck Denn mine at Bisbee, Duquesne property near Patagonia, Hillside mine near Hillside, "79" mine near Hayden Junction, and Iron King mine at Humboldt. The largest producer of zinc in the State was the Magma mine at Superior; it was followed by the Trench-Flux, Tennessee, Shattuck Denn, Iron King, Duquesne, and Hillside properties.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Arizona in 1941, by counties, in terms of recovered metals

County		Mines i	produc ng	Gold (lode a	nd pl	acer)	Sil	ver (lode a	nd placer)
		Lode	Place	Fine ou	nces	v	alue	Fir	ne ounces	Value
Cochise Coconino Gila Graham Greenlee Maricopa Mohave Pima Pinal Santa Cruz Yavapai Yuma Total, 1940		35 4 48 5 12 49 193 56 54 49 237 63 805 1, 024		6 2 1 1 9 5 7 56 6 42 2 44 8 95 3 2	, 441 7, 716 16 , 646 , 902 , 203 , 252 , 562 , 709 , 788 , 150	2 1, 9 1, 4 1, 5 3, 3	20, 435 95, 660 57, 610 06, 570 67, 105 78, 820 59, 670 24, 815 52, 580 75, 250 38, 720 18, 245		2, 763, 616 502 111, 593 12, 728 161, 415 46, 035 285, 875 461, 053 947, 174 510, 660 2, 145, 316 52, 293 7, 498, 260 7, 075, 215	\$1, 965, 238 79, 355 9, 051 114, 784 32, 736 203, 288 327, 860 673, 546 363, 136 1, 525, 558 37, 186
	Co	pper	<u> </u>	Le	ad			Zi	ne	Ī
County	Pounds	v	alue	Pounds	V	alue	Pour	nds	Value	Total value
Cochise Coconino Gila Graham Greenlee Maricopa Mohave Pima Pinal Santa Cruz Yavapai Yuma	113, 346, 000 139, 000 166, 453, 000 44, 500 27, 762, 000 112, 000 123, 141, 000 123, 124, 000 87, 402, 000 72, 000	19, 6 3, 2 15, 7 14, 5 10, 3	74, 828 16, 402 41, 454 5, 251 75, 916 13, 216 26, 137 10, 638 28, 632 96, 406 13, 436 8, 496	3, 535, 000 1, 342, 000 334, 000 90, 000 118, 300 4, 851, 000 65, 000 4, 790, 700 12, 616, 000 3, 216, 000 318, 000	70 19 276 277 719 183 18	1, 495 3, 494 9, 038 5, 130 3, 743 3, 507 3, 705 3, 070 9, 112 3, 312 3, 126	154, 4, 692, 8, 278, 10, 637, 4, 859,	,600 ,400 ,000 ,000 ,000	\$321, 000 6, 420 11, 580 351, 900 620, 850 797, 775 364, 425	\$18, 082, 996 17, 004 19, 898, 783 33, 900 3, 465, 020 259, 265 2, 824, 938 17, 521, 023 17, 655, 768 2, 001, 244 15, 739, 311 139, 058
Total, 1940	652, 634, 000 562, 338, 000		16, 812 44, 194	31, 276, 000 26, 532, 000		2, 732 6, 600	32, 986, 30, 912,		2, 473, 950 1, 947, 456	97, 638, 310 82, 167, 759

Gold and silver produced at lode mines in Arizona in 1941, by counties, in terms of recovered metals

County	Ore sold or treated (short tons)	Gold (fine ounces)	Silver (fine ounces)
Cochise Coconino Gila Graham Greenlee Maricopa Mohave Pima Pinal Santa Cruz Yavapai	1, 217, 357 1, 060 9, 958, 665 2, 686 918, 777 76, 469 352, 924 7, 720, 119 3, 502, 114 97, 607 1, 637, 696	63, 435 7 2, 705 16 1, 637 5, 870 56, 044 42, 234 44, 559 709 84, 934 1, 311	2, 763, 616 502 111, 593 12, 728 161, 415 46, 028 285, 854 461, 028 947, 174 510, 660 2, 143, 831 51, 601
Total, 1940	25, 491, 794 21, 572, 175	303, 461 288, 566	7, 496, 055 7, 074, 107

Gold and silver produced at placer mines in Arizona in 1941, by counties, in fine ounces, in terms of recovered metals

						Dre	dges			
County	Sluicing ¹		Drift mining		Dry-land 2		Dragline floating 2		Total	
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
Cochise Gila Greenlee Maricopa Mohave Pima Pinal Yavapai Yuma	6 11 9 32 159 18 3 484 254	7 21 75 22	77	5	316 508	52 665	10, 054	1,358	6 11 9 32 159 18 3 10,854 839	7 21 1, 485 692
Total, 1940	976 1,625	125 207	77 646	5 41	824 1, 186	717 464	10, 054 2, 784	1, 358 396	11, 931 6, 241	2, 205 1, 108

MINING INDUSTRY

The mining industry continued to improve in Arizona in 1941, as a result of the demand for copper, lead, and zinc; more ore was mined than in any year (except 1929) in the history of the State. The output of copper ore increased to 24,153,483 tons—a 19-percent gain over 1940—but the output of zinc-lead ore declined to 260,473 tons—a 4-percent loss; however, the production of both lead and zinc was the largest ever recorded in the State. A total of 23,994,259 tons (94 percent of the State total ore output) was copper ore mined in the Globe-Miami, Ajo, Mineral Creek (Ray), Verde (Jerome), Warren (Bisbee), Copper Mountain (Morenci), and Pioneer (Superior) districts; virtually all the zinc-lead ore was mined in the Big Bug, Harshaw, Wallapai (Chloride), Eureka (Hillside), Patagonia, and Warren (Bisbee) districts. The output of siliceous ores (chiefly gold ore) increased to 975,790 tons—a 5-percent gain over 1940 and lead ore to 18,432 tons—a 109-percent gain; zinc-copper ore increased slightly to 80,810 tons. Placer mining, chiefly dredging operations, was the greatest in any year since records were established in 1901.

Includes placer sands treated by dry concentration plants.
 A floating washing plant supplied with gravel by a dragline excavator is called a "dragline dredge"; a stationary or movable washing plant supplied with gravel by any type of power excavator is called a "dry-land dredge."

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Arizona in 1941, with content in terms of recovered metals

Source	Mines produc- ing	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Dry and siliceous gold ore Dry and siliceous gold-silver ore Dry and siliceous silver ore	, 471 68 72		13, 187		542, 414	457, 950	
Copper oreLead oreZinc oreZinc-copper oreZinc-copper oreZinc-lead ore	1 594 144 98 5 2 1	24, 153, 483 18, 432 663 2, 143 80, 810	142, 498 2, 129 19 58 1, 069	5, 006, 374 130, 985 3, 745 13, 168 224, 400	2647, 420, 204 142, 351 22, 668 13, 270 2, 533, 700	261, 278 4, 378, 355 62, 280 17, 700	235, 200 8, 278, 000
Total, lode mines Total, placers	1 805 184	25, 491, 794	303, 461 11, 931		² 652, 634, 000	31, 276, 000	32, 986, 000
Total, 1940		25, 491, 794 21, 572, 175		7, 498, 260 7, 075, 215	² 652, 634, 000 ³ 562, 338, 000	31, 276, 000 26, 532, 000	32, 986, 000 30, 912, 000

A mine producing more than 1 class of ore is counted but once in arriving at total for all classes.
 Includes 118,450,902 pounds recovered from ore leached and mine-water precipitates.
 Includes 103,327,137 pounds recovered from ore leached and mine-water precipitates.

METALLURGIC INDUSTRY

Of the 25,491,794 tons of ore produced in 1941 in Arizona, 19,001,720 tons (75 percent) were treated at concentration plants, 3,785,654 tons (15 percent) were treated at a leaching plant, 833,910 tons (3 percent) were treated at amalgamation and cyanidation mills, and 1,870,510

tons (7 percent) were shipped crude to smelters.

Gold ore treated at amalgamation mills increased from 4,162 tons in 1940 to 7,517 tons in 1941 and siliceous material treated at cyanidation plants from 742,801 to 826,393 tons. Cyanidation plants were operated continuously in 1941 at the Goldroad, Gold Standard, Producers Mines, Inc., Congress, Octave, Mammoth-St. Anthony Limited, Alvarado, Yarnell, Vulture, Vivian, and Iron King properties. Nine companies reported cyaniding 667,990 tons of siliceous material and using 132,570 pounds of sodium cyanide, 1,142,000 pounds of Aero Brand calcium cyanide, 80,775 pounds of zinc dust, 2,776,950 pounds of lime, 1,175 pounds of aerosol, 200 pounds of lead acetate, and 165 pounds of lead nitrate.

Ore treated at concentration plants in 1941 comprised 6,940 tons of gold ore, 36,440 tons of gold-silver ore, 2,100 tons of silver ore, 18,607,-089 tons of copper ore, 5,950 tons of lead ore, 600 tons of lead-copper ore, 2,143 tons of zinc ore, 80,810 tons of zinc-copper ore, and 259,648 tons of zinc-lead ore. Copper ore from the Miami property (5,821,-077 tons) was treated by a combination of leaching and concentration and copper ore from the Inspiration mine was treated by straight leaching, but 298,706 tons of slimes discarded from the leaching-plant feed were concentrated. Large copper-concentration plants were operated continuously in 1941 at Ajo, Clarkdale, Hayden, Miami, Morenci, and Superior; copper-leaching plants at Inspiration and

Miami; and copper smelters at Clarkdale, Douglas, Hayden, Miami, and Superior. The 20-ton smelter at Tiger is the only lead smelter in Arizona, and it operated exclusively on concentrates from the mill of Mammoth-St. Anthony, Ltd.

The following tables give details of the treatment of all ores produced

in Arizona in 1941.

Mine production of metals in Arizona in 1941, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Ore amalgamated Ore and old tailings cyanided Concentrates smelted Ore smelted Copper precipitates smelted Copper ore leached Placer	7, 517 826, 393 1, 028, 852 1, 870, 510 21, 373 2 3, 785, 654	888 77, 627 114, 974 109, 972	297 182, 503 2, 782, 173 4, 531, 082	378, 843, 659 155, 339, 439 1 34, 323, 752 84, 127, 150	26, 981, 425 4, 294, 575	32, 693, 800 292, 200
Total, 1940		315, 392 294, 807	7, 498, 260 7, 075, 215	652, 634, 000 562, 338, 000	31, 276, 000 26, 532, 000	32, 986, 000 30, 912, 000

Distributed as follows: Cochise County, 821,616 pounds; Gila County, 6,086,086 pounds; Greenlee County, 12,485,800 pounds; Pinal County, 13,800,000 pounds; and Yavapai County, 1,130,250 pounds.
 Treated by straight leaching at 1 plant in Gila County.

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Arizona in 1941, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

to the second		Recovered	in bullion	Conc	entrates sn	nelted and	recovered	metal
County	Material treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	Concentrates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)
Cochise	280 33	44	49	22	29	28		
Maricopa Mohave Pima Pinal	340 3, 729 182 35	35 260 29 11	100 12 3	8 16 2	11 110 7	2 3 6		
Santa Cruz Yavapai Yuma	2, 608 158	12 452 37	103 9	1 24	3 160	25 81	1, 200	1, 50
Total, 1940	7, 517 4, 162	988 882	297 321	73 45	320 103	145 232	1, 200	1, 508 2, 236
		CY	ANIDATI	ON MIL	LS			
Cochise Maricopa Mohave Pima	400 64, 105 293, 502 7, 720	7 2, 821 50, 230 1, 573	219 3, 211 93, 432 7, 519	234	799	300	970	
Pinal Yavapai Yuma	193, 577 267, 054 35	4, 099 • 18, 866 31	8, 351 69, 767 4	5, 112 632	27, 840 8, 806	30, 000 11, 556	7, 086 26, 800	4, 344, 800 110, 770
Fotal, 1940	826, 393 742, 801	77, 627 72, 141	182, 503 125, 009	5, 978 5, 269	37, 445 34, 011	41, 856 39, 260	34, 856 16, 144	4, 455, 570 3, 904, 600
Frand total: 1941 1940		78, 515 73, 023	182, 800 125, 330	6, 051 5, 314	37, 765 34, 114	42, 001 39, 492	36, 056 16, 144	4, 457, 075 3, 906, 836

Mine production of metals from concentrating mills in Arizona in 1941, by counties, in terms of recovered metals

		Concentrates smelted and recovered metal									
County (short tons)	Concentrates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)					
Cochise Gila Graham Greenlee	20, 115 6, 120, 063 2, 650 908, 152	7, 524 124, 075 530 37, 390	380 1,884 15 896	84, 320 71, 688 12, 530 42, 000	434, 914 74, 146, 889 43, 713 15, 265, 000	1, 651, 120 44, 600 315, 287	4, 189, 000 38, 800				
Maricopa Mohave Pima	5, 840 51, 193 7, 710, 867	524 12, 081 224, 791	1,038 3,534 40,435	12, 321 137, 519 443, 043	55, 071 179, 212 133, 017, 070	4, 563, 005	4, 692, 000				
Pinal Pinal Santa Cruz Yavapai Yuma	3, 209, 701 93, 869 875, 970 3, 300	270, 685 21, 523 323, 186 492	7,858 154 21,006	554, 458 449, 712 904, 795 27, 786	96, 332, 253 765, 325 58, 567, 656 500	393, 229 12, 410, 965 2, 831, 144 315, 000	8, 278, 000 10, 637, 000 4, 859, 000				
Total, 1940	19, 001, 720 15, 941, 271	1, 022, 801 856, 846	77, 209 67, 337	2, 740, 172 2, 619, 155	378, 807, 603 318, 533, 602	22, 524, 350 20, 208, 281	32, 693, 800 30, 874, 492				

Gross metal content of concentrates produced from ores mined in Arizona in 1941, by classes of concentrates smelted

	Gross metal content								
Class of concentrates	trates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)			
Dry gold	651 38 953, 841 37, 666 2, 027 34, 629	2, 731 23 58, 799 52, 222 102 1, 097	3, 727 1, 326 1, 624, 764 877, 915 137, 078 137, 363	4, 049 826 390, 930, 948 882, 371 262, 279 734, 206	7, 875 194 52, 966 26, 521, 582 1, 803, 422 1, 125, 782	2, 919, 550 3, 617, 510 206, 200 36, 575, 687			
Total, 1940	1, 028, 852 862, 160	114, 974 101, 451	2, 782, 173 2, 658, 647	392, 814, 679 329, 934, 421	29, 511, 821 26, 583, 580	43, 318, 947 41, 522, 522			

Mine production of metals from Arizona concentrates shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

	Concen- trates (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Cochise	7, 546	409	84, 348	434, 914	1, 651, 120	4, 189, 000
Graham	124, 075 530	1,884 15	71, 688 12, 530	74, 146, 889 43, 713	44, 600 315, 287	38, 800
Greenlee	37, 390	896	42,000	15, 265, 000	510, 201	
Maricopa	766	1,848	12,623	56, 041		
Mohave	12,097	3, 644	137, 522	179, 212	4, 563, 005	4, 692, 000
Pima Pinal	224, 793	40, 442	443,049	133, 017, 070		l <u>-</u>
Santa Cruz	275, 797 21, 524	35, 698 157	584, 458 449, 737	96, 339, 339	4, 738, 029	8, 278, 000
Yavapai	323, 842	29, 972	916, 432	765, 325 58, 595, 656	12, 410, 965 2, 943, 419	10,637,000 4,859,000
Yuma	492	20, 312	27, 786	500	315, 000	4,009,000
	1, 028, 852	114, 974	2, 782, 173	378, 843, 659	26, 981, 425	32, 693, 800
Total, 1940	862, 160	101, 451	2, 658, 647	318, 549, 746	24, 115, 117	30, 874, 492

BY CLASSES OF CONCENTRATES

1					
651 38 953, 841 37, 666 2, 027 34, 629	2, 731 23 58, 799 52, 222 102 1, 097	3, 727 1, 326 1, 624, 764 877, 915 137, 078 137, 363	3, 340 783 377, 327, 938 704, 713 220, 146 586, 739	6, 905 185 31, 780 24, 595, 034 1, 661, 086 686, 435	32, 693, 800
1, 028, 852	114, 974	2, 782, 173	378, 843, 659	26, 981, 425	32, 693, 800
	953, 841 37, 666 2, 027 34, 629	38 953,841 58,799 37,666 52,222 2,027 102 34,629 1,097	38 23 1,326 953,841 58,799 1,624,764 37,666 52,222 877,915 2,027 102 137,078 34,629 1,097 137,363	38 23 1,326 783 953,841 58,799 1,624,764 377,327,938 37,666 52,222 877,915 704,713 2,027 102 137,078 220,146 34,629 1,097 137,363 586,739	38 23 1,326 783 185 953,841 58,799 1,624,764 377,327,938 31,780 37,666 52,222 877,915 704,713 24,595,034 2,027 102 137,078 220,146 1,661,086 34,629 1,097 137,363 586,739 686,435

Gross metal content of Arizona crude ore shipped to smelters in 1941, by classes of ore

	100	Gross metal content								
Class of ore	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)				
Dry and siliceous gold	26, 266 37, 751 32, 383 1, 760, 740 12, 482 63 825	14, 432 7, 527 614 85, 290 2, 105 4	73, 346 350, 711 422, 809 3, 592, 043 90, 669 1, 504	298, 817 376, 405 143, 326 165, 648, 895 123, 283 4, 981 831	31, 936 112, 307 43, 609 472, 257 4, 075, 972 26, 311 198, 355	343, 60				
Total, 1940	1, 870, 510 1, 685, 544	109, 972 114, 092	4, 531, 082 4, 290, 130	166, 596, 538 150, 143, 477	4, 960, 747 2, 660, 351	343, 60 42, 13				

Mine production of metals from Arizona crude ore shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Cochise	1, 196, 562	62, 975	2, 679, 000 502	112, 089, 470 139, 000	1, 883, 880	91, 000
Coconino Gila Graham	1, 060 52, 915 36	813 1	39, 901 198	2, 092, 875 787	1, 297, 400 18, 713	46, 800
Fransm Freenlee Maricopa	10, 625	741 1, 166	119, 415 30, 185	11, 200 55, 959	90, 000 118, 300	154, 400
Mohave	4, 500 1, 350	1,910 190	54, 800 10, 473	42, 288 123, 930	287, 995 65, 000	
Pinal Santa Cruz	3, 586	4, 751 540	354, 362 60, 915	12, 984, 661 51, 675	52, 671 205, 035 272, 581	
Yavapai Yuma	492, 064 2, 827	35, 644 1, 234	1, 157, 529 23, 802	27, 676, 094 71, 500	3,000	
Total, 1940	1, 870, 510 1, 685, 544	109, 972 114, 092	4, 531, 082 4, 290, 130	155, 339, 439 140, 461, 117	4, 294, 575 2, 416, 883	292, 200 37, 508
	В	Y CLASS	ES OF ORE			- 4
Dry and siliceous gold	26, 266	14, 432	73, 346	285, 338	20, 038	
Dry and siliceous gold-silver	32, 383	7, 527 614	350, 711 422, 809	353, 677 137, 451	67, 145 28, 677	
Copper Lead	12, 482	85, 290 2, 105	3, 592, 043 90, 669	154, 459, 920 98, 138	261, 278 3, 748, 068	
Lead-copper Zinc-lead		4	1, 504	4, 115 800	24, 051 145, 318	292, 20
	1, 870, 510	109, 972	4, 531, 082	155, 339, 439	4, 294, 575	292, 20

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Arizona in 1941, by counties and districts, in terms of recovered metals

County and district		produc- ng	Ore sold or treated (short	Gold	l (fine ou	inces)	Silve	r (fine ou	inces)	Copper	Lead	Zinc	Total
	Lode	Placer	tons)	Lode	Placer	Total	Lode	Placer	Total	(pounds)	(pounds)	(pounds)	value
Cochise County:	,												
California	2		240	1		1	1,672	1	1,672	800	80, 200		\$5, 889
Cochise	1		891	1		1	938		938	116,000	00, 200		14, 390
Dos Cabezas and Tevis	6		1,072	291		291	748		748	8, 900	1,800		11, 870
Golden Rule (Dragoon) Hartford (Huachuca Mountains)	1		3				38		38	0,000	400		11,870
Hartiord (Huachuca Mountains)	2	1	347	15	5	20	3, 105		3, 105	300	177, 600		13,066
Kimball (Peloncillo)	2		4				14		14	800	2, 000		104
Swisshelm	5		3,053	489		489	13, 562		13, 562	3, 200	792, 200		72, 292
Tombstone	6		4,875	812		812	64, 350		64, 350	26, 500	330, 700		96, 157
Turquoise Warren	4		1,354	100		100	7, 920		7, 920	5, 200	211, 800	91,000	28, 644
Winchester	5	1	1, 205, 517	61, 726	1	61, 727	2, 671, 238		2, 671, 238	113, 184, 100	1, 940, 300	4, 189, 000	17, 840, 488
Coconino County:	1		1				31		31	200			46
Francis													
Jacob Canyon and Warm Springs	3		73			- -	24		24	3, 500			430
Gila County:	3	[987	7		7	478		478	135, 500			16, 574
Banner and Dripping Springs	8	1	40.000										,
Globe-Miami.	21	1	40,002	643	2	645	24, 383		24, 383	1,609,500	1, 193, 000	38, 800	300, 746
Green Valley	11	1	9, 918, 381 104	1, 991 47		1, 997	83, 534		83, 534	164, 837, 300	142, 400	46, 800	19, 591, 725
Green Valley Pioneer (Pinal Mountains)	5	1	154	23	3	50	24		24				1,767
Spring Creek	ĭ		154	23		23	3,600		3,600	3, 200			4,096
Summit	9		22	1		1	38		38		400		85
Fraham County:	-		22				14		14	3,000			364
Aravaipa.	2		2, 680	16		10	10 701						
Lone Star	2		2,000	. 10		. 16	12, 721		12, 721	44,000	334, 000		33, 836
Preenlee County:			0				7		7	500			64
Ash Peak	9	į	9, 533	392		392	110 040		*** ***				
Copper Mountain (Morenci)	6		908, 691	1. 187		1. 187	116, 242		116, 242	1,500			96, 558
Maynower	ĭ		23	1, 101		1, 10/	44, 903		44, 903	27, 757, 800	4,000		3, 349, 124
Metcalf (Greenlee)	â		530	58			114 156		114	2, 700			400
San Francisco	١		000	90		58	150		156		86, 000	154, 400	18, 623
Maricopa County:		*			ا ت	9		-,					315
Rig Horn	2	2	79	68	10	78	31	l	ا ۔ ا	1			
Cave Creek and Camp Creek	6	ĩ	1.872	152	10	153	12, 216		31				2, 752
Eagle Tail	ĭ	- 1	2,0,2	2	- 1	2	12, 210		12, 216	68, 800			22, 160
Ellsworth (Harqua Hala) 1	4		132	99		22	45						70
Gila Bend Mountains	2		114	8		8	40		45	7, 100			1,640
New River	ĩ l		5	• •		۰ı	14		.7				285
Osborn	= 1		546	100		100	14		14	2,700			329

	Pikes Peak (Morgan City)	10	1 1	285 4.141	136 1: 019	1	137 1, 019	135 841		135 841	1,800			5, 103 36, 263
	San Domingo	2	2	21	39	15	54	14	7	21 135				1, 905
	Sunflower Vulture	13	2	361 64, 733	86 3, 789	3	86 3, 792	135 30, 240		30, 240	200 22, 500	900		3, 130 156, 930
	White Butte	1		10	7		7	7		7				250
	Wickenburg Winifred	1 2	1	3, 700 469	264 178	2	266 178	554 62		554 62				9, 704 6, 274
Mo	have County:							1						
	Cedar Valley	3	2	177 42	15 13	14	15 27	4, 507		4, 507 14	63, 300	100 200		11, 205 966
	Cottonwood	3		241	68	14	68	377		· 377	9,000	2,000		3, 824
	Gold Basin	13	2	1, 168	584	99	683	367 121	14	381 121	1,400	19, 400 100		25, 447 232
	GreenwoodIndian Secret (White Hills)	5		8 1, 246	4 181		181	5, 227		5, 227		100		10, 052
	Lost Basin		3			46	46		7	7				1, 615
	Maynard and McConnico	. 3		3, 580 3, 698	291 696		291 696	2, 804 5, 438		2, 804 5, 438		300		12, 179 28, 244
	Music Mountain	6		338	270		270	1,080		1,080	300	2,000		10, 367
	OwensPeacock	18		703	119 2		119	5, 708		5, 708	12,700	10, 700		10, 333 70
	San Francisco (Oatman, Goldroad, Kather-	_					-							
	ine, Vivian)	36 71		252, 458 70, 398	42, 098 7, 500		42, 098 7, 500	43, 823 213, 577		43, 823 213, 577	2, 100 132, 700	4, 816, 200	4, 692, 000	1, 504, 841 1, 056, 459
	Weaver	18		18, 858	4, 203		4, 203	2,811		2,811	132, 100	4, 610, 200	4, 002, 000	149, 104
Pir	na County:								1 1		1			
				7 891 887 1	40 405		40 405	1 423 AAA		493 MM	1131 760 000	1		
	AjoAmole	1 3		7, 681, 667 86	40, 405 16		40, 405 16	423, 000 204		204	800	18, 800		17, 262, 655 1, 871
	Amole	3 13	3	86 148	16 85	4	16 89	204 1, 087		204 1, 087		18, 800 800	[1,871 4,017
	Amole	3	3	86	16	4	16	204		204 1, 087 7, 664 938	800	3,000		1,871
	Amole. Arivaca. Baboquivari. Cababi (Comobabi). Cerro Colorado.	3 13 4	3	86 148 7, 730	16 85 1, 586	4	16 89 1,586	204 1, 087 7, 664 938 481		204 1, 087 7, 664 938 481	800 700 4,150 50	3,000 200		1, 871 4, 017 60, 960 4, 233 359
	Amole Arivaca Baboquivari Cababi (Comobabi) Cerro Colorado	3 13 4	3	86 148 7, 730	16 85 1, 586	4	16 89 1,586	204 1, 087 7, 664 938		204 1, 087 7, 664 938	800 700 4,150	3,000		1, 871 4, 017 60, 960 4, 233
	Amole. Arivaca Baboquivari. Cababi (Comobabi). Cerro Colorado. Empire. Greaterville. Helvetia (Rosemont).	3 13 4	3	86 148 7,730 314 1 7 7 440	16 85 1, 586 83	7	16 89 1, 586 83 7 13	204 1, 087 7, 664 938 481 76		204 1, 087 7, 664 938 481 76	800 700 4,150 50	3,000 200		1, 871 4, 017 60, 960 4, 233 359 197 265 9, 205
	Amole. Arivaca Baboquivari Cababi (Comobabi) Cerro Colorado. Empire Greaterville Helvetia (Rosemont) Møver	3 13 4	3	86 148 7,730 314 1 7 7 440 3	16 85 1, 586 83	7	16 89 1, 586 83 	204 1, 087 7, 664 938 481 76 28 1, 966		204 1, 087 7, 664 938 481 76 28 1, 966	800 700 4, 150 50 100 58, 300	3, 000 200 2, 300		1, 871 4, 017 60, 960 4, 233 359 197 265 9, 205
	Amole Arivaca Baboquivari. Cababi (Comobabi). Cerro Colorado Empire Greaterville Helvetia (Rosemont). Meyer Old Hat ⁷ Pima (Sierritas, Panago, Twin Buttes).	3 13 4 11 1 3 1 8 1 2 5	1	86 148 7,730 314 1 7 7 440	16 85 1, 586 83	7	16 89 1, 586 83 7 13	204 1, 087 7, 664 938 481 76 28		204 1, 087 7, 664 938 481 76 28	800 700 4, 150 50 100	3, 000 200 2, 300		1, 871 4, 017 60, 960 4, 233 359 197 265 9, 205 105 167, 991 2, 669
	Amole Arivaca Baboquivari. Cababi (Comobabi). Cerro Colorado Empire Greaterville Helvetia (Rosemont). Meyer Old Hat ⁷ Pima (Sierritas, Panago, Twin Buttes).	3 13 4 11 1 3 1 8 1 2 5	1 1 1	86 148 7,730 314 1 7 440 3 29,329 93	16 85 1, 586 83	7	16 89 1,586 83 	204 1, 087 7, 664 938 481 76 28 1, 966		204 1, 087 7, 664 938 481 76 28 1, 966	800 700 4, 150 50 100 58, 300 1, 289, 900 2, 300	3, 000 200 2, 300 8, 300 7, 300		1, 871 4, 017 60, 960 4, 233 359 197 265 9, 205 105 167, 991 2, 669 175
	Amole Arivaca Baboquivari Cababi (Comobabi) Cerro Colorado Empire Greaterville Helvetia (Rosemont) Meyer Old Hat ⁷ Pima (Sierritas, Papago, Twin Buttes) Quijotoa Roskruge and Waterman	3 13 4 11 1 3 1 8 1 2 5	1 1 1 1	86 148 7, 730 314 1 7 7 440 3 29, 329	16 85 1, 586 83	7	16 89 1,586 83 	204 1, 087 7, 664 938 481 76 28 1, 966		204 1, 087 7, 664 938 481 76 28 1, 966	800 700 4,150 50 100 58,300 1,289,900	3, 000 200 2, 300 8, 300		1, 871 4, 017 60, 960 4, 233 359 197 265 9, 205 105 167, 991 2, 669
Pir	Amole. Arivaca. Baboquivari. Cababi (Comobabi). Cerro Colorado. Empire. Greaterville. Helvetia (Rosemont). Meyer. Old Hat ² Pima (Sierritas, Papago, Twin Buttes). Quijotoa. Roskruge and Waterman. Silver Bell. Bal County:	3 13 4 11 1 3 1 8 1 2 5	1	86 148 7, 730 314 1 7 7 440 3 29, 329 93	16 85 1,586 83 	7	16 89 1,586 83 7 13 3 36 5 5	204 1, 087 7, 664 938 481 76 28 1, 966 		204 1, 087 7, 664 938 481 76 28 1, 966 20, 423 2, 541 1, 357 1, 288	800 700 4, 150 50 100 58, 300 1, 289, 900 2, 300 23, 200 1, 500	800 3,000 200 2,300 8,300 7,300 5,000 19,300		1, 871 4, 017 60, 960 4, 233 359 197 265 9, 205 105 167, 991 2, 689 175 4, 023 2, 298
Pìr	Amole. Arivaca. Baboquivari. Cababi (Comobabi). Cerro Colorado. Empire. Greaterville. Helvetia (Rosemont). Meyer. Old Hat ** Pima (Sierritas, Papago, Twin Buttes). Quijotoa. Roskruge and Waterman. Silver Bell. all County: Bunker Hill. Casa Grande.	3 13 4 11 1 3 3 1 2 5 	1 1 1	86 148 7, 730 314 1 7 7 440 3 29, 329 93 	16 85 1,586 83 	7	16 89 1,586 83 	204 1, 087 7, 664 938 481 76 28 1, 966 20, 423 2, 541 1, 357 1, 288 2, 551 47, 499		204 1, 087 7, 664 938 481 76 28 1, 966 20, 423 2, 541 1, 357 1, 288 2, 551 47, 499	58, 300 1, 289, 900 2, 300 23, 200 1, 500 21, 000 20, 900	3,000 200 2,300 2,300 8,300 7,300 5,000 19,300 51,200		1, 871 4, 017 60, 960 4, 233 359 197 265 9, 205 105 167, 991 2, 669 4, 023 2, 298 7, 805 37, 596
Pir	Amole. Arivaca Baboquivari. Cababi (Comobabi). Cerro Colorado. Empire. Greaterville. Helvetia (Rosemont). Meyer. Old Hat ² . Pima (Sierritas, Papago, Twin Buttes). Quijotoa. Roskruge and Waterman. Silver Bell. all County: Bunker Hill. Casa Grande. Cottonwood and Black Mountain.	3 13 4 11 1 3 3 1 2 5 	1 1 1	86 148 7,780 314 1 7 7 440 3 29,329 93 196 98 624 2,517 114	16 85 1,586 83 	7	16 89 1,586 83 	204 1, 087 7, 664 938 481 76 28 1, 966 20, 423 2, 541 1, 357 1, 288 2, 551 47, 499 45		204 1, 087 7, 664 938 481 76 28 1, 966 20, 423 2, 541 1, 357 1, 288 2, 551 47, 499 45	800 700 4,150 50 100 58,300 1,289,900 2,300 1,500 21,000 20,900 1,000	3,000 200 2,300 8,300 7,300 5,000 19,300 51,200 400		1, 871 4, 017 60, 960 4, 233 359 197 265 9, 205 105 167, 991 2, 669 175 4, 023 2, 298 7, 805 37, 596 2, 005
Pir	Amole. Arivaca. Baboquivari. Cababi (Comobabi). Cerro Colorado. Empire. Greaterville. Helvetia (Rosemont). Meyer. Old Hat ** Pima (Sierritas, Papago, Twin Buttes). Quijotoa. Roskruge and Waterman. Silver Bell. all County: Bunker Hill. Casa Grande.	3 13 4 11 1 3 3 1 2 5 	1 1 1	86 148 7,780 314 1 7 7 440 3 29,329 98 196 98 624 2,517 114 902 3	16 83 	7	16 83 1,586 83 7 13 3 36 5 5 1 1 3 17 38 53 116	204 1,087 7,664 938 481 76 28 1,966 		204 1, 087 7, 664 938 481 76 28 1, 966 20, 423 2, 541 1, 357 1, 288 2, 541 47, 499 45 623 7	800 700 4,150 50 100 58,300 1,289,900 2,300 1,500 21,000 20,900 1,000 7,200	3,000 200 2,300 8,300 7,300 5,000 19,300 51,200 400		1, 871 4, 017 60, 960 4, 233 359 197 265 9, 205 105 107, 991 2, 669 175 4, 023 2, 298 7, 805 37, 596 2, 005 5, 353 75
Pin	Amole Arivaca Baboquivari Cababi (Comobabi) Cerro Colorado Empire Greaterville Helvetia (Rosemont) Meyer Old Hat ² Pima (Sierritas, Papago, Twin Buttes) Quijotoa. Roskruge and Waterman Silver Bell. al County: Bunker Hill Casa Grande Cottonwood and Black Mountain Goldfields Hackberry Mineral Creek	3 13 4 11 11 12 18 8 12 25 5 11 12 14 14 15 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1 1 1	86 148 7,730 314 1 7 7 440 3 29,329 98 196 98 624 2,517 114 902 3 3 2,882,412	16 1,586 83 3 36 3 36 3 17 38 17 38 53 116 2	7	16 1,586 83 7 13 3 36 5 5 5 1 3 17 38 116 2 851	204 1, 087 7, 664 938 481 76 28 1, 966 		204 1, 087 7, 664 938 481 1, 966 28 1, 966 20, 423 2, 541 1, 357 1, 288 2, 551 47, 499 45 623 7 58, 618	800 700 4,150 100 58,300 1,289,900 2,300 23,200 1,500 21,000 20,900 7,200	3,000 200 2,300 8,300 7,300 5,000 19,300 51,200 400		1, 871 4, 017 60, 960 4, 233 359 197 265 105 107 175 4, 023 2, 298 7, 805 37, 596 2, 005 5, 353 75 10, 077, 869
Pin	Amole. Arivaca. Baboquivari. Cababi (Comobabi). Cerro Colorado. Empire. Greaterville Helvetia (Rosemont). Meyer. Old Hat ² Pima (Sierritas, Papago, Twin Buttes). Quijotoa. Roskruge and Waterman. Silver Bell. all County: Bunker Hill. Casa Grande. Cottonwood and Black Mountain. Goldfields. Hackberry.	3 13 4 11 11 12 18 8 12 25 5 11 12 14 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1 1 1	86 148 7,780 314 1 7 7 440 3 29,329 98 196 98 624 2,517 114 902 3	16 83 	2 5	16 83 1,586 83 7 13 3 36 5 5 1 1 3 17 38 53 116	204 1,087 7,664 938 481 76 28 1,966 	1	204 1, 087 7, 664 938 481 76 28 1, 966 20, 423 2, 541 1, 357 1, 288 2, 541 47, 499 45 623 7	800 700 4,150 50 100 58,300 1,289,900 2,300 1,500 21,000 20,900 1,000 7,200	3,000 200 2,300 8,300 7,300 5,000 19,300 51,200 400		1, 871 4, 017 60, 960 4, 233 359 197 265 9, 205 105 107, 991 2, 669 175 4, 023 2, 298 7, 805 37, 596 2, 005 5, 353 75

See footnotes at end of table.

Mine production of gold, silver, copper, lead, and zinc in Arizona in 1941, by counties and districts, in terms of recovered metals—Continued

County and district		produc- ng	Ore sold or treated	Gold	l (fine ou	nces)	Silve	r (fine ou	nces)	Copper	Lead	Zine	Total
•	Lode	Placer	(short tons)	Lode	Placer	Total	Lode	Placer	Total	(pounds)	(pounds)	(pounds)	value
Pinal County—Continued.													
Pioneer (Superior)	9		420, 635	10, 987		10, 987	794, 408		794, 406	38, 238, 400	355, 000	8, 278, 000	\$6, 102, 672
Ripsey	1		502	150		150	3,001		3, 001				7, 38
Rodgers	1		2	1		1	7		7		1,300		114
Saddle Mountain	2		39	3		3	114		114	4,000			658
Santa Cruz County:	l									(
Harshaw	6		68, 652	125		125	367, 027		367, 027	213, 900	11, 082, 400	7, 032, 000	1, 451, 959
Nogales (Gold Hill)	5		184	19		19	239		239	3, 300	200		1, 23
Oro Blanco	18		1, 411	483		483	13, 770		13, 770	1,700	2, 200	1	27, 02
Pajarito	1		2				69		69		100		. 5
Palmetto	2		176				208		208	9, 400	2,900		1, 42
Patagonia	9		26, 720	67		67	124, 456		124, 456	579, 600	1, 409, 000	3, 575, 000	507, 678
Redrock	1		3				31		31	100			. 34
Tyndall	4		438	13		13	3, 271		3, 271	8,800	118,800		10, 59
Wrightson	3		21	2		2	1, 589		1, 589	200	400		1, 247
Yavapai County:	ļ								i .		100		
Agua Fria	1		40	3		3	14		14	6,600			. 894
Ash Creek	1		145	69		69	391		391	1,000			2,81
Big Bug	14	14	138, 642	9, 612	6, 056	15, 668	324, 938	533	325, 471	187, 400	1, 188, 700	3, 607, 000	1, 140, 220
Black Canyon	8	4	28, 171	3, 326	11	3, 337	88, 851		88, 851	10,800	420,000		
Black Hills	3		73	27		27	114		114	1,600			1, 21
Black Rock	16	2	537	179	20	199	135	7	142	10, 700			8,49
Blue Tank	4	1	25	20	1	21	21		21	1, 700			95
Bullard (Pierce)	4		2, 190	887		887	533		533	103, 100			43, 59
Castle Creek	8	2	352	40	5	45	1, 243		1, 243	2,000			11, 51
Cherry Creek			598	452		452	436		436	1, 200			16, 27
Copper Basin	2	9	2	3	46	49		7	7				1, 72
Eureka	18		120, 119	5, 440		5, 440	69, 404		69, 404	2, 288, 800	1, 294, 100	1, 252, 000	677, 49
Granite Creek		3			7	7							24
Hassayampa	38	8	1,718	1, 186	105	1, 291	5, 213 *	21	5, 234	3,000			49, 89
Humbug	2 2	5	154	58	30	88	128	7	135				3, 17
Kirkland	2		61	50		50	7		7				1, 75
Lynx Creek	<u>-</u> -	14			4, 372	4, 372	::-::-	886	886				153, 65
Martinez	5		99, 912	6, 826]	6, 826	15,075		15, 075				249, 63
Mineral Point	1		2	2		2							7
Peck	1		223	2 000			8, 927		8, 927		600		6, 45
Pine Grove	9		5, 247	3,000		3,000	29, 475		29, 475	44, 500	19, 400		132, 31
Silver Mountain	4		183	12		12	5, 670		5, 670		1,000		4, 50
Squaw Creek	1 1		8	22		22	7		0.7				77
Tiger	. 7		284	383	1	383	661	l	661	1, 100		1	14,00

OLD,	
SILVER,	
COPPER,	
LEAD,	
AND	
ZINC	
Z	
ARIZONA	

Turkey Creek	4	2	33	24	5	, 29	59		59	100	200	1	1,080
Verde	6		1, 121, 004	32,047	- 	32,047	1, 544, 317		1, 544, 317	84, 484, 800			12, 189, 032
Wagoner		4			7	7							245
Walker	22	10	8, 360	1,060	56	1, 116	24, 172	14	24, 186	176, 300	4,600		77, 324
Walnut Grove	6	3	107	32	6	38	121		121	9,400	400		2, 548
Weaver	22	26	108, 715	20,065	125	20, 190	19, 824	10	19, 834	28,600	115,600		730, 718
White Picacho	11		791	107		107	4,095		4,095	39, 300	2,700		11, 448
Yuma County:	١ .	1 .								1		-	
Castle Dome	2	1	43 392	36	467	503	467	661	1, 128		2, 700		18, 561
Cienega	1 12		392	132		132	45		45	17, 700			6, 741
Dome (Gila City) Ellsworth (Harqua Hala) ¹	33		659	300	11	300	675		675	00.000			385
Eureka			3, 300	300		300	27, 786		27, 786	26, 600 500	315,000		14, 119
Fortuna	;		3,300	1		9	21, 100		21,100	500	310,000		38, 088 175
Kofa.	1 4	í	44	123	1 1	128	166		166				
Laguna		1	***	120	6	120	100		100				4, 598 315
La Paz and Middle Camp	2	11	15	41	133	174	606	14	620	9, 800			7, 687
Mohawk.	l ī		33		100	1,13	294		294	600			280
Plomosa and La Cholla	14	20	1, 771	666	186	852	21, 510	17	21, 527	8,000	300		46, 089
Santa Maria (Planet, Bill Williams)	i		55	3	100	3	52	1	52	8,800	500.		1, 180
Trigo		6	"	"	24	24	"-		-	0,000			840
	-	l				<u> </u>							010
Total Arizona	805	184	25, 491, 794	303, 461	11.931	315, 392	7, 496, 055	2, 205	7, 498, 260	652, 634, 000	31, 276, 000	32, 986, 000	97, 638, 310
	1	i	, , , , , , , , ,	,	,	,	1,,		, ===, ===	, 132, 000	, 0, 000	22, 223, 000	., 555, 610
						`				·		·	·

Ellsworth district lies in both Maricopa and Yuma Counties.
 Old Hat district lies in both Pima and Pinal Counties.

COCHISE COUNTY

California district (Hilltop).—Lessees operated the Columbia and Hilltop mines in 1941 and shipped silver-lead ore to the smelter at El Paso, Tex.

Cochise district.—Approximately 900 tons of copper ore were pro-

duced in 1941 from the old Republic mine near Dragoon.

Dos Cabezas and Tevis district.—The Dives property, operated by the Santa Maria Mining Corporation, was the chief producer in the Dos Cabezas and Tevis district in 1941; about 700 tons of crude gold ore were shipped to a smelter. Other producers of gold ore included the Gold Prince and Gold Spot properties.

Hartford (Huachuca Mountains) district.—Nearly all the output in the Hartford district in 1941 was silver-lead ore from the Armistice

group near Hereford.

Kimball (Peloncillo) district.—Small lots of copper ore were produced in 1941 from the Quien Sabe and Willie Rose claims near San Simon.

Swisshelm district (Elfrida).—The metal output of the Swisshelm district was much greater in 1941 than in 1940, owing to the marked increase in shipments of silver-lead ore from the Scribner mine; lessees shipped about 3,000 tons of ore to El Paso, Tex. Silver-lead ore was produced also from the Chance, Juan Lares, and No Name No. 1 properties.

Tombstone district.—Gold-silver ore and silver-lead ore from the Tombstone Development property continued in 1941 to be the most important output in the Tombstone district; however, production declined to 4,180 tons in 1941. The remainder of the district output was mainly silver-lead ore from the Tombstone Extension mine and silver ore from the Manganese Silver and South Bonanza properties.

Turquoise district (Courtland, Pearce, Gleeson).—About 700 tons of lead ore and 200 tons of zinc-lead ore were produced in 1941 from the Defiance mine and 333 tons of gold-silver ore from the Commonwealth mine. The rest of the district output was chiefly lead ore from

the No Account group.

Warren district (Bisbee, Warren).—The value of the metal output of the Warren district in 1941 increased nearly 7 percent over 1940. Crude copper ore (1,080,969 tons) from the Copper Queen branch of the Phelps Dodge Corporation was again the principal output; the property remained the largest producer of gold and silver in the

State and ranked second in copper.

The Bisbee mines of the Copper Queen branch of the Phelps Dodge Corporation produced 836,248 tons of ore from the Limestone area, according to the annual report of the corporation for 1941. Operations were conducted virtually at capacity throughout the year; shipments of siliceous flux to the Douglas smelter from the Southeast Extension porphyry ore body totaled 214,075 tons; lease operations produced 30,646 tons of copper ore; and shipments of copper precipitates from surface and underground plants aggregated 807 tons. The advance in exploration, development, and stope preparation totaled 65,238 feet; in addition, 15,824 feet of diamond drilling were done. The total footage driven for exploration and development was less than in 1940, but satisfactory results were obtained in maintaining ore reserves. At the end of August a very heavy flow of water, which flooded the mine up to the 2,433 level, was encountered east of the Campbell fault on the 2,700 level. Large sinking pumps were in-

stalled, and by the end of the year the mine had been unwatered with the exception of an area east of the Campbell fault. The flood did not interfere seriously with ore production but did retard development.

The flood extended into the Denn mine of the Shattuck Denn Mining Corporation and caused suspension of copper-ore production during September; in consequence, the output of copper ore decreased from 124,811 tons in 1940 to 102,828 tons in 1941; however, the output of zinc-lead ore from the mine increased to 20,115 tons. The remainder of the district production was mostly copper ore from the Shattuck mine and rich gold ore from the Sure Thing claim.

COCONINO COUNTY

Francis district.—The output of the Francis district in 1941 was

copper ore from the Emerald & Ruby property.

Jacob Canyon and Warm Springs district.—A total of 987 tons of carbonate copper ore was produced in 1941 from the Brown Derby, Mackin, and Petoskey properties; the Mackin mine was by far the largest producer.

GILA COUNTY

Banner and Dripping Springs district.—The Sam Knight Lease operated the Christmas mine continuously in 1941 and shipped 35,791 tons of copper ore to a smelter—a substantial increase over 1940. Lead ore (2,979 tons) and zinc-lead ore (280 tons) were produced from the "79" mine and gold ore from the Apex, Columbia, Gold Queen, Round Top, and Standard properties. The rest of the district output was mainly copper ore from the Round Top and Chilito mines.

Globe-Miami district.—The Globe-Miami district, with a production

of 164,837,300 net pounds of copper in 1941, remained the chief copperproducing area in Arizona; the output increased 17 percent over that in 1940. The Inspiration property, with a yield of 91,841,640 net pounds of copper, was the largest producer of copper in the district and ranked third in the State. According to the printed annual report of the Inspiration Consolidated Copper Co. for 1941, 3,843,931 tons of copper ore from which the slimes had been removed were treated by ferric sulfate leaching. The ore averaged 1.23 percent copper, of which 0.659 percent was oxide and 0.571 percent sulfide; extraction was 98.483 percent of the oxide and 80.21 percent of the sulfide. slimes (298,706 tons) removed from the ore were treated at the concentrator to recover the sulfide copper, and the tailings were treated with sulfuric acid to dissolve the oxide copper. Leaching operations were at the highest rate since operations began in 1926. A monthly production of 8,000,000 pounds of net copper was attained in August and maintained throughout the remainder of the year. The company has contracted for the building and equipping of a new acid plant and has started the necessary alterations and new installations in the concentrator to increase the production of copper by about 2,000,000 pounds a month. The Miami Copper Co. operated its 18,000-ton concentrator and 3,000-ton leaching plant continuously and treated 5,821,077 tons of copper ore, an increase of 10 percent over 1940. According to the printed annual report of the company, it is estimated that the mining of the mixed ore body will be completed about September 1942. After this date the tonnage will be replaced by a somewhat larger tonnage of sulfide ore, which will tend to reduce copper production, as the sulfide ore yields less copper per ton than does the mixed ore. To increase copper production beyond the existing capacity of the property, facilities were installed during the year for leaching and precipitating copper from the broken ore and capping that remaining in abandoned parts of the mine; copper production from this source was begun in January 1942. The rest of the district output was largely crude silver ore and zinc-lead ore from the Old Dominion property and crude copper ore from the Carlota mine.

Green Valley district (Payson).—Virtually all the metal output of the Green Valley district in 1941 was gold ore, mainly from the Planet,

Golden Hill, and Payrock properties.

Pioneer (Pinal Mountains) district.—About 154 tons of ore were produced in the Pioneer district in 1941; most of it was silver ore from the Pioneer mine, copper ore from the Bob Tail group, and lead ore from the Penial claim.

Summit district.—A little copper ore was produced in 1941 from the

Ritchard and Yan properties near Miami.

GRAHAM COUNTY

Nearly all the output of Graham County in 1941 was old tailings, containing chiefly silver, lead, and copper, from the Grand Reef property in the Aravaipa district.

GREENLEE COUNTY

Ash Peak district (Duncan).—Lessees operated the Ash Peak and Hardy mines in 1941 and shipped a total of 9,533 tons of silver ore;

the Ash Peak property was the largest producer.

Copper Mountain district (Morenci).—The metal output of the Copper Mountain district continued in 1941 to be principally copper ore and copper precipitates from the Morenci branch of the Phelps Dodge Corporation. The corporation treated 908,152 tons of copper ore in its testing concentrator and shipped 8,116 tons of copper precipitates. The remainder of the district output was mostly crude gold ore from the Gold Belt and Bianes & Pitts properties and gold-silver ore from the Emma Gomez claim.

According to the annual report of the Phelps Dodge Corporation for 1941, stripping operations at the Morenci branch removed 20,266,896 tons of material from the open pit; by the end of 1941, 49,183,602 tors of material in all had been removed from the pit, exclusive of ore mined for the test concentrator. As the year closed, stripping operations planned in advance of actual mining had been completed and the pit developed to permit a daily ore extraction of 25,000 tons. construction was pushed, and by December 31 about 60 percent of the main haulageway had been brought to its permanent position and the remaining 40 percent put in good operating condition. test-pit area a total of 1,002,315 tons of material comprising 943,493 tons of ore and 58,822 tons of waste was mined. Major construction projects completed in 1941, aside from the new reduction works, included 14 new dwellings, a 10,000,000-gallon reservoir to serve the new concentrator, installation of a new water-pipe line, and the building of a mine A. C.-D. C. substation. Virtually all essential buildings and shops at the reduction works were completed and occupied; the concentrator was about 90 percent finished, one unit of the power plant was nearly ready to run, and the smelting and converting plants were about 75 percent complete.

Maytlower district.—A little copper ore was produced in 1941 from

the Providencia mine.

Metcalf (Greenlee) district.—The output of the Metcalf district in 1941 comprised 446 tons of crude zinc-lead ore from the Lime Cap mine, 61 tons of gold ore from the South Sycamore mine, and 23 tons of lead ore from the Midnight claim.

San Francisco district.—The American Gold placer property was

worked a short time in 1941, and a little gold was recovered.

MARICOPA COUNTY

Big Horn district.—The principal production in the Big Horn district in 1941 was lode gold from the Big Horn mine and placer gold from the

Davenport and Tiger properties.

Cave Creek and Camp Creek district.—The Red Rover mine on Camp Creek was operated the first 5 months of 1941, and about 1,500 tons of silver-copper ore were treated by flotation. The remainder of the district output was mainly gold ore from the Black Mountain, Edwards, and Defense properties.

Ellsworth (Harqua Hala) district.—Nearly all the output of the Ellsworth district in 1941 was copper ore from the Sonny and Columbia

properties.

Gila Bend Mountains district.—Gold ore was produced in 1941 from

the Blue Ribbon and Sunset properties near Gila Bend.

New River district.—A small lot of copper ore was produced in 1941

from the Daisy claim.

Osborn district.—Crude lead ore (545 tons) from the Belmont-McNeil mine was virtually the only output in the Osborn district in 1941; the mine was operated throughout the year by various lessees.

Pikes Peak (Morgan City) district.—There were 10 producers of gold ore in the Pikes Peak district in 1941, but most of the output

came from the Pikes Peak group.

Salt River Mountains district.—The Delta mine, the only producer in the Salt River Mountains district in 1941, was operated continuously by the Park View Mining Co.; about 4,000 tons of gold ore were treated by flotation, and 141 tons of similar ore were shipped to a smelter.

San Domingo district.—Lessees operated the Gold Queen Standard property in 1941 and produced 20 tons of rich gold ore. The remainder of the district output was principally placer gold recovered by various

operators working along San Domingo Wash.

Sunflower district.—Mining and milling were continued in 1941 at the Little Daisy mine; most of the output was gold ore treated by

flotation.

Vulture district.—The chief output of the Vulture district in 1941, as in 1940, was gold ore from the Vulture mine. The East Vulture Mining Co. operated the mine continuously and treated 52,085 tons of gold ore and 8,140 tons of old tailings by cyanidation and concentration; it was by far the largest producer of gold in Maricopa County. The rest of the district output was largely crude gold-silver ore (4,295 tons) from the Newsboy (Pitt) mine.

White Butte district.—A little gold ore was produced in 1941 from

the Charlotte claim near Phoenix.

Wickenburg district.—In 1941 about 3,700 tons of old tailings (gold) from a dump near Wickenburg were treated by cyanidation.

Winifred district.—All the output of the Winifred district in 1941 was gold ore, principally from the Jack White mine near Phoenix.

MOHAVE COUNTY

Cedar Valley district.—Complex ore from the Boriana mine continued in 1941 to be the principal output in the Cedar Valley district: 10,077 tons of ore were treated in a 120-ton concentration mill. per concentrates were shipped from the mill to a smelter in Arizona. Gold-silver ore and silver ore were produced at the Bunker Hill mine.

Chemehuevis district.—Small lots of gold ore were produced in 1941 from the Copper Ledge, Dutch Flat, and Gold Dome properties; placer gold was recovered from the Chief claim and "49" Diggings.

Cottonwood district.—About 200 tons of copper ore were shipped from the Copper Giant mine in 1941, and a little gold ore was produced from the Gold Mountain and North Star properties.

Gold Basin district.—There was a marked decline in output of gold in the Gold Basin district in 1941, owing to idleness of the cyanide mill at the Cyclopic mine and to closing of the concentration mill of the Malco Gold Mining Co. The chief production in 1941 was lode gold, mainly from the Golden Link, O. K., Excelsior, and M. O. properties, and placer gold from the Gold Basin Placers.

Indian Secret (White Hills) district.—More than 1,200 tons of ore were produced in the Indian Secret district in 1941; the output was all gold ore, silver ore, and gold-silver ore treated in a custom cyanide

mill from various claims of the White Hills group.

Lost Basin district.—The entire output of the Lost Basin district in 1941 was placer gold and silver recovered by various operators

working the Lost Basin Placers.

Maynard and McConnico district.—Production of gold in the Maynard and McConnico district increased in 1941, owing to mining and milling operations at the Bimetal mine by the W. H. M. Gold The gain in output of silver resulted from shipments of gold-silver ore from the Democrat mine.

Minnesota district.—About 3,700 tons of ore were produced in the Minnesota district in 1941, more than double that in 1940; 83 percent of the output was gold ore treated in a custom cyanide mill, from the Van Diemon, Yellow Aster, and Pope properties. The remainder

was largely gold-silver ore from the Horn Silver mine.

Music Mountain district.—All the output of the Music Mountain district in 1941 was gold ore, principally from the Portland & Mizpah,

Roosevelt, and Mohawk properties.

Owens (McCracken and Potts Mountain) district.—Numerous small lots of crude gold ore and copper-gold ore, produced from various claims in the Owens district in 1941, were sold to the Wickenburg Ore Market; however, the chief output was silver ore from the North

Star mine, shipped to a smelter.

San Francisco (Oatman, Goldroad, Katherine, Vivian) district.— Production of gold in the San Francisco district was 42,098 fine ounces in 1941—a slight gain over 1940. The Goldroad mine of the United States Smelting, Refining & Mining Co. was by far the most important producer in the district; 154,436 tons of gold ore were treated in the company 300-ton cyanide plant in 1941 compared with 153,280 tons in 1940. The property again ranked fourth in gold production in the State.

Production of gold at Oatman, Goldroad, and Vivian in 1941 was 34,114 fine ounces compared with 32,044 in 1940, and that at Katherine was 7,984 ounces compared with 9,565; 94 percent of the gold output at Katherine came from the Tyro mine worked by the Gold Standard Mines Corporation. The company operated its 300-ton evanide mill continuously, chiefly on gold ore (81,992 tons) from the Tyro mine. Other producers at Katherine included the Buellard, Burt, King of Secret Pass, Minnie, Philadelphia, and Sheep Trail properties. The chief producers of gold at Oatman and Vivian were the Vivian, Telluride, Western Apex, Pioneer, Gold Dust, and Sunnyside properties. The Vivian Mining Co. operated its 100-ton custom cyanide plant throughout the year, mainly on old tailings from the Vivian dump and on gold ore from the Vivian-Lelande Mitchell group; a total of 5,838 tons of old tailings and 4,377 tons of gold ore was treated.

Wallapai district (Cerbat, Chloride, Mineral Park, Stockton Hill).—Of the total ore (70,398 tons) produced in the Wallapai district in 1941, 64 percent was zinc-lead ore from the Tennessee mine operated by the Tennessee-Schuylkill Corporation. The company worked the mine continuously and treated 45,150 tons of zinc-lead ore in its 150-ton flotation mill—a decline of 10,371 tons from 1940; the mine ranked second in lead production in Arizona in 1941 and third in zinc. About 21 percent of the district output was gold ore, largely from the Tin Cup, Golden Gem, O'Brien, Golden Eagle, Rainbow, Red Seal, and Tintic properties. The remainder was chiefly gold-silver ore from the Nighthawk, C. O. D., Lucky Boy, Summit, Juno, and Mint properties; zinc ore from the Middle Golconda mine; silver ore from the Distaff and Silver Age mines; and lead ore from the Summit group. Concentration mills were operated at the C. O. D., Golden Gem, and Middle Golconda properties; and several thousand tons of gold ore, gold-silver ore, and silver ore were treated in the custom cyanide mill of Producers Mines, Inc.

Weaver (Mocking Bird, Pilgrim, Portland) district.—The output of ore and yield of gold and silver in the Weaver district in 1941 were much less than in 1940; the output of ore declined from 40,571 tons in 1940 to 18,858 tons in 1941, owing chiefly to the large decrease in output of gold ore from the Pilgrim mine of Producers Mines, Inc. The 300-ton cyanide mill owned by the company was operated almost exclusively on custom ores; a total of 46,540 tons of ore was milled in 1941 (2,322 tons of gold ore came from the Pilgrim mine). The most important producer in the district in 1941 was the Golden Door

mine; 15,207 tons of gold ore were treated by cyanidation.

PIMA COUNTY

Ajo district.—Production of gold, silver, and copper in the Ajo district was much greater in 1941 than in 1940, owing to the large increase in output of copper ore from the New Cornelia mine, only producer in the district in 1941. The property remained the largest

producer of copper in Arizona and ranked second in gold.

According to the annual report of the corporation for 1941, operations at the New Cornelia branch of the Phelps Dodge Corporation were at a maximum capacity (three-shift basis) throughout the year. Production at the open pit comprised 7,682,444 tons of copper ore and 7,232,688 tons of waste. The 22,500-ton concentrator treated 7,681,667 tons of copper ore with satisfactory metallurgy and with

improved unit efficiencies. The grinding capacity of the ball mills was increased, resulting in a greater output of copper concentrates. Amole district.—Nearly all the output of the Amole district in 1941

was lead ore from the Old Yuma mine.

Arivaca district.—Various small-scale operators in the Arivaca district produced a total of 148 tons of ore in 1941; most of it was crude gold ore from the Oreona, Backbone, and Gold Plate properties.

Baboquivari district.—Operations at the Allison mine were greatly expanded in 1941, resulting in an increased output of gold ore. property was operated continuously by the Gold Bar Mining Co. (formerly Tombstone Mining Co.) and 7,720 tons of gold ore were treated by cyanidation. The rest of the district output was small lots of crude gold ore from various prospects.

Cababi (Comobabi) district.—There were 11 producers in the Cababi district in 1941, but the chief output was gold ore from the Jaeger, Grand Central, Sophia, and Wayne properties.

Cerro Colorado district.—A small lot of silver-lead-copper ore was

produced in 1941 from the Mary "G" claim.

Empire district.—Small lots of lead ore were produced in 1941 from the Esperanza, Chief, and Virgin properties.

Greaterville district.—The principal output of the Greaterville district in 1941 was placer gold recovered from the Greaterville Placers.

Helvetia (Rosemont) district.—About 420 tons of copper ore and a little lead ore were produced in the Helvetia district in 1941; the chief

producer was the Copper World (Leader) mine.

Old Hat district (Oracle).—Continuous mining and milling operations throughout 1941 at the Daily and Geeseman groups by Control Mines, Inc., resulted in a greater output of silver and copper in the Old Hat district in Pima County. The company treated 29,200 tons of copper ore by flotation in 1941 compared with 24,000 tons in 1940. A little copper ore was produced also from the Apache mine.

Pima (Sierritas, Papago, Twin Buttes) district.—The output of the Pima district in 1941 was largely silver ore from the Black Silver

property near Sahuarita.

Roskruge and Waterman (Silver Hill) district.—A lessee operated the Silver Hill mine in 1941 and shipped silver-copper ore and silver-lead ore to various smelters.

Silver Bell district.—Nearly all the output of the Silver Bell district

in 1941 was silver-lead ore from the Indiana mine.

PINAL COUNTY

Bunker Hill district (Copper Creek).—In 1941 the Bunker Hill mine. operated by the Ari-Butte Operating Co., was the only producer in the Bunker Hill district; the output was mainly lead-copper ore treated by flotation.

Casa Grande district.—Output of silver in the Casa Grande district showed a marked increase in 1941, owing to steady shipments throughout the year of silver ore from the Silver Reef mine; 2,335 tons of ore were shipped to the smelter at Superior The remainder of the district

output was chiefly silver-copper ore from the Reward mine.

Cottonwood and Black Mountain district.—Nearly all the ore produced in the Cottonwood and Black Mountain district in 1941 was

crude gold ore from the Grand Prize mine.

Goldfields (Superstition Mountains) district.—In 1941, as in 1940, the principal output of the Goldfields district was old tailings (gold) from the Bulldog dump and first-class gold ore from the Superstition mine.

Mineral Creek district (Ray).—Operations at the Ray mine of the Nevada Consolidated Copper Corporation were expanded in 1941, resulting in a marked increase in output of copper. The company reported that 2,882,406 tons of copper ore were treated in the company 12,000-ton concentrator in 1941 compared with 2,103,004 tons in 1940. In addition, 7,820 tons of copper precipitates were shipped to the smelter at Hayden; the property ranked fourth in copper production in Arizona in 1941. The district output of gold decreased considerably in 1941, owing to suspension of operations at the Broken Hill gold mine in June 1940.

Mineral Hill district.—Production in the Mineral Hill district in 1941 totaled 1,157 tons of ore—a decline of 41 percent from 1940. The principal output was crude gold ore from the Sunset, Wedge,

Kitty Why, Troxel, and Consolidated Gold properties.

Old Hat district (Oracle).—Mining and milling operations at the Mammoth-St. Anthony & New Year-Mohawk groups were continuous throughout 1941; the output (192,977 tons) of ore was slightly greater than in 1940. The ore was treated by gravity concentration, followed by flotation, and the flotation tailings were treated by cyanidation. Lead concentrates containing considerable quantities of gold and other metals were smelted in the company 20-ton lead furnace, and gold precipitates were shipped to an eastern refinery. The property was the largest producer of gold from siliceous gold ore in Arizona in 1941 and ranked third in lead output. The remainder of the district output was largely crude gold ore from the Southern Belle mine.

Owl Head district.—The San Antonio No. 1 claim near Oracle was operated in 1941, and 77 tons of silver ore were shipped to a smelter.

Pioneer district (Superior).—Copper ore and zinc-copper ore from the Magma mine were, as usual, the chief output in the Pioneer district in 1941. The Magma Copper Co. operated its mine, 850-ton concentrator, and 450-ton copper smelter continuously, except for the usual summer shut-down. According to the company printed annual report, the mill treated 245,885 tons of copper ore averaging 5.26 percent copper and 80,810 tons of zinc-copper ore averaging 1.77 percent copper and 8.16 percent zinc; in addition, 78,177 tons of copper ore were sent direct to the smelter. Production, after all losses (including refining) were deducted, was 11,741 ounces of gold, 631,189 ounces of silver, 37,152,224 pounds of copper, and 7,715,313 pounds of zinc. The average net cost of producing copper after deduction of gold, silver, and zinc concentrate values was 7.9 cents a pound. Stoping operations were carried on at the usual rate until September 1, when production was speeded for defense purposes; an increase of about 15 percent was attained by October 1. The rest of the district output was largely crude silver ore (9,124 tons) from the Reymert mine and crude gold ore (4,765 tons) from the Lake Superior & Arizona property.

Ripsey district.—Gold-silver ore (502 tons) from the Norman group (Old Ripsey) was the only output in the Ripsey district in 1941.

Saddle Mountain district.—A little copper ore was produced in 1941 from the Senator mine and gold ore from the Columbia No. 1 claim.

SANTA CRUZ COUNTY

Harshaw district.—Zinc-lead-silver ore from the Trench and Flux groups was by far the principal output in the Harshaw district in 1941. The American Smelting & Refining Co. operated both groups and its 200-ton concentrator continuously; about 67,300 tons of ore were treated in 1941 compared with 49,311 tons in 1940. The company was again the largest producer of lead in Arizona and ranked second in zinc. The remainder of the district output was chiefly crude silver ore from the American, Salvador, and World's Fair properties.

Nogales (Gold Hill) district.—Nearly all the output of the Nogales district in 1941 was gold-silver ore from the Roy mine and gold ore from the Louella Lou, Hardscrabble, and Silent Friend properties.

Oro Blanco district (Ruby).—Production in the Oro Blanco district in 1941 was 1,411 tons of ore, a marked decline from 54,564 tons in 1940. This large loss resulted from suspension of operations at the Montana zinc-lead-silver property in May 1940. The district output in 1941 was largely gold-silver ore from the Old Soldier and Noon properties, silver ore from the Brick claim, and gold ore from the Oro Blanco mine.

Palmetto district.—In 1941 about 170 tons of copper ore from the Three R mine were concentrated, and a small lot of crude silver-lead

ore from the La Palma claim was sold to a local ore buyer.

Patagonia (Duquesne) district.—The increased output of silver, copper, lead, and zinc in the Patagonia district in 1941 resulted from continuous mining and milling operations at the Duquesne property by the Callahan Zinc-Lead Co. The company reported that 27,572 wet tons of zinc-lead-copper ore were treated by flotation in 1941 and that 1,109 tons of silver-lead-copper concentrates and 696 tons of copper concentrates were shipped to El Paso, Tex., and 3,601 tons of zinc concentrates to Amarillo, Tex. The rest of the district output was mainly copper ore from the Gladstone, Paymaster, and Quajalote properties and lead ore from the Mowry mine.

Tyndall district.—Nearly all the output of the Tyndall district in 1941 was crude lead ore from the Jefferson mine and lead-silver ore

and lead-copper ore from the Alto group.

Wrightson district.—A little silver ore was produced in 1941 from the Armada and Lucky Strike claims and a small lot of copper ore from the American Boy prospect.

YAVAPAI COUNTY

Agua Fria district.—The Burzog (Old Minor) property was operated in 1941, and 1 car of copper ore was shipped to a smelter.

Ash Creek district.—Lessees worked the Gold Coin mine in 1941 and

produced 145 tons of first-class gold ore.

Big Bug district.—There was a marked increase in production of gold and silver and a gain in copper and zinc but a decline in lead in the Big Bug district in 1941. The principal output in 1941 was zinclead-gold-silver ore from the Iron King mine at Humboldt; 69,159 tons of zinc-lead ore were treated by flotation, 60,206 tons of current flotation tailings (gold-silver) were treated by cyanidation, and 6,419 tons of crude gold-silver ore were shipped to a smelter. The remainder of the district lode output was chiefly crude gold ore (1,956 tons) from the Postmaster mine. The output of placer gold was 6,056 fine

ounces—an increase of 4,652 ounces over 1940; the gain resulted from operation of a dragline floating dredge at the Star (Lawson) property by Arical Mines, Inc. The Big Bug Dredging Co. operated a dragline floating dredge at the Hill property until March 12, when it was moved

to a property in the Lynx Creek district.

Black Canyon district.—The output of ore and yield of gold, silver, copper, and lead in the Black Canyon district were less in 1941 than in 1940, owing to the large decrease in output of gold-silver-lead ore from the Golden Turkey group near Cordes; the output dropped from 43,544 The remainder of the district output was largely silver to 27,283 tons. ore from the Silver Cord and Thunderbolt mines.

Black Hills district.—Gold ore was produced in 1941 from the Ambassador and D. & M. mines and copper ore from the Yeager

claim.

Black Rock district.—The output of the Black Rock district in 1941 was principally gold ore from the Super X (Atos) mine, treated in a cyanide mill. Numerous small lots of crude gold ore and copper-gold ore were produced from various claims and sold to the Wickenburg Ore Market; placer gold was recovered chiefly from the Justin Placers.

Blue Tank district.—Small lots of gold ore were produced in 1941

from the Franklin D. and Lone Star claims and copper ore from the

Little Mildred and McIntosh properties.

Bullard (Pierce) district.—Bullard Gold Mines, Inc., worked the Bullard mine continuously in 1941 and shipped about 1,800 tons of gold-copper ore to a smelter. The rest of the district output was mainly copper ore from the Little Giant mine.

Castle Creek district.—The principal output of the Castle Creek dis-

trict in 1941 was crude lead ore from the Montezuma and Palona King properties and gold ore from the Gold Rock and King Bolt mines.

Cherry Creek district.—All the output of the Cherry Creek district in 1941 was crude gold ore shipped to smelters; the chief producers were the Sugar Bowl, Sensation, Black Hawk, Volcano, Gray Eagle, and Gold Pick properties.

Copper Basin district.—Placer gold was the principal output in the Copper Basin district in 1941; the Queen of Sheba claim was the

largest producer.

Eureka district.—Production of gold, silver, copper, lead, and zinc in the Eureka district in 1941 was much greater than in 1940, owing to increased output of zinc-lead ore from the Hillside mine and copper ore from the Bagdad property. All of the zinc and most of the gold, silver, and lead output of the district were recovered from the treatment of 31,450 tons of zinc-lead ore from the Hillside mine, and nearly all the copper output was recovered from the treatment of 88,209 tons

of copper ore from the Bagdad property.

Hassayampa (Groom Creek, Hassayampa River, Senator, Prescott) district.—About 1,700 tons of ore were produced in the Hassayampa district in 1941 compared with 2,512 tons in 1940; most of it was gold ore from the Climax Extension, Oro Flame, Alma, Eureka, Railroad, Sacramento, Big Chief, Mohawk, U. P., Golden Summer, Nevada, and Infanta properties. The most important producer was the Oro Placer gold was recovered chiefly at the Hobbs prop-Flame mine. erty by a dragline floating dredge working the last 10 days of the year.

Humbug district.—A little gold ore was produced in 1941 from the Humbug Gold Mines property, and 139 tons of old tailings (gold)

were shipped from a dump; placer gold and silver were recovered by various operators working along Cow, French, and Humbug Creeks.

Kirkland district.—All the output of the Kirkland district in 1941

was crude gold ore, mainly from the Venus mine.

Lynx Creek district.—The output of placer gold in the Lynx Creek district was 4,372 fine ounces in 1941, an increase of 2,342 ounces over 1940. The gain resulted from operation of a dragline flotation dredge at the Peach & Brown property by the Big Bug Dredging Co. The rest of the district placer gold was recovered, chiefly by dredges, at the Fitzmaurice and Speck-Lynx Creek properties.

Martinez (Congress) district.—Gold and silver recovered from old tailings and waste-dump ore at the Congress property continued in 1941 to be the chief production of the Martinez district; 49,712 tons of ore and 50,068 tons of old tailings were treated by cyanidation in 1941 compared with a total of 91,307 tons of ore and old tailings

in 1940.

Peck district.—In 1941 crude silver ore (223 tons) from the Swastika

mine was the only output in the Peck district.

Pine Grove district (Crown King).—The Gladiator Mining Co. worked the Gladiator-War Eagle group throughout 1941 and shipped 4,759 tons of gold ore containing some silver and copper. The remainder of the district output was principally gold ore and old tailings from the Golden Crown property and crude gold-lead ore from the Del Pasco mine.

Silver Mountain district (Wagoner).—Nearly all the output of the Silver Mountain district in 1941 was crude silver ore from the Little

Joker mine.

Squaw Creek district.—A little gold ore was produced in 1941 from

the Gold Crown claim near Canyon.

Tiger district.—About 262 tons of gold ore and 22 tons of gold-silver ore were produced in the Tiger district in 1941; the chief producers were the Oro Belle, Fortuna, and Pilgrim properties.

Turkey Creek district.—The principal output of the Turkey Creek district in 1941 was crude gold ore from the Issaquah, Parker, and

Cumberland properties.

Verde district (Jerome).—Production of gold, silver, and copper in the Verde district was much greater in 1941 than in 1940, owing to increased output of copper ore from the United Verde mine of the Phelps Dodge Corporation; the total output of ore and old tailings from the property was 1,097,546 tons in 1941 compared with 882,319 tons in 1940.

According to the printed annual report of the corporation for 1941, the United Verde mine produced 838,454 tons of copper ore from underground operations; as in past years, a large part of the total ore mined was recovered from pillars. Stoping operations were much larger than in 1940, and all available ore areas were worked to the extent possible under proper mining sequence. Total development for the year amounted to 20,597 feet, including 15,653 feet of diamond drilling and 656 feet of sinking at the No. 8 shaft. Material reclaimed from ore dumps totaled 239,318 tons, production of precipitates amounted to 690 tons, and the concentrator treated 651,552 tons of copper ore.

Lessees continued to work the Iron King-Equator group and shipped 20,580 tons of gold-silver ore to a smelter. The rest of the district output was principally crude copper ore from the Green

Flower property.

Walker district.—About 8,360 tons of ore were produced in the Walker district in 1941—a marked increase over 1,668 tons in 1940; nearly 96 percent of the output was gold-silver-copper ore concentrated from the Sheldon property. The remainder was largely crude gold ore from the Four Boys, Oro Plata, Alturas, Lost Wonder, and Emma properties. Placer gold and silver were recovered by various small-scale operators working on Lynx Creek near Walker.

Walnut Grove district.—Nearly all the output in the Walnut Grove district in 1941 was crude copper ore from the Copper Crown and Red

Devil claims and gold ore from the Granite group.

Weaver district (Octave).—Production of gold in the Weaver district was 20,190 fine ounces in 1941, a gain of 871 ounces over 1940; 94 percent of the total came from three properties—the Octave, Alvarado, and Yarnell. The most important producer continued to be the Octave mine, operated by the American Smelting & Refining Co.; 27,951 tons of gold ore were treated by flotation, and the flotation tailings were cyanided. About 40,150 tons of gold ore from the Yarnell mine and 36,372 tons of similar ore from the Alvarado mine were treated in cyanide plants. Other producers of gold ore included the Johnson, "94," Rincon, Monica, York (Rees), and Koerber properties. Placer gold was recovered chiefly from the Sunshine, Merrill, and Home claims.

White Picacho district.—The Eugenia group was operated in 1941, and 446 tons of crude copper-silver ore were shipped to a smelter. The rest of the district output was mainly gold ore from the Young

property.

YUMA COUNTY

Castle Dome district.—The most important output in the Castle Dome district in 1941 was placer gold recovered at the Ocatilla property by a Stebbins dry concentrator. The chief producer of lode gold was the Southern Extension mine.

Cienega district.—Lessees operated the Empire mine in 1941 and shipped 325 tons of gold-copper ore to various smelters in Arizona. The rest of the district output was mainly crude gold ore from the

Golden Ray group.

Dome (Gila City) district.—All the output of the Dome district in 1941 was placer gold recovered by various operators working along

the Gila River near Dome.

Ellsworth district (Salome).—Of the total ore (659 tons) produced in the Ellsworth district in 1941, about 45 percent was numerous small lots of crude gold ore and gold-copper ore sold to the Wickenburg Ore Market. The remainder was principally crude copper ore from the Moore group and gold ore from the Bunker Hill, Critic, Dandy, and Hercules properties, shipped to a smelter.

Eureka district.—The Penn Metals, Inc., operated the Red Cloud mine a few months in 1941 and treated about 3,300 tons of lead-silver

ore by flotation.

Kofa district.—Small lots of ore averaging 10 ounces of gold to the ton were produced in 1941 from the Oakland claim; gold ore was produced also from the Blue Bird, Katy Ross, and Sheep Tanks properties. Placer gold was recovered from the Kofa claim.

Laguna district.—In 1941, as in 1940, all the output of the Laguna district was placer gold recovered by various operators working in the

Laguna Dam area.

La Paz and Middle Camp district.—The principal output in the La Paz and Middle Camp district in 1941 was placer gold recovered largely from the Golden Anchor (Jones) property. Small lots of high-grade gold-copper ore were produced from the Copper Bottom claim.

Mohawk district.—The Red Cross mine was operated in 1941, and

33 tons of silver ore were shipped to a smelter.

Plomosa and La Cholla district.—A total of 1,771 tons of ore was produced in the Plomosa and La Cholla district in 1941 compared with 3,017 tons in 1940. The chief output was crude gold ore from the Little Butte mine and crude silver ore from the R. & A. property. The marked decrease in output of placer gold resulted from suspension in February of drift mining at the Arizona Drift property. Other placer producers included the Can Do (Erdman) and Yell claims.

Santa Maria (Planet, Bill Williams) district.—The only output in the Santa Maria district in 1941 was old mill clean-up material con-

taining chiefly copper from the Swansea property.

Trigo district.—All the output of the Trigo district in 1941 was placer gold recovered by various operators working gravel in dry washes.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN CALIFORNIA

(MINE REPORT)

By CHARLES WHITE MERRILL AND H. M. GAYLORD

SUMMARY OUTLINE

	Page		Page
Summary Calculation of value of metal production Mine production by counties	222 227	Mining industry Ore classification Metallurgic industry Review by counties and districts	230 230

SUMMARY

After an uninterrupted rise from \$12,066,750 in 1932 to \$54,268,690 in 1940, the total value of gold, silver, copper, lead, and zinc produced from California ore, old tailings, and gravels declined in 1941 to \$52,231,066 (see fig. 1). Higher wages, migration of miners to war industries, rising prices of supplies and materials and difficulties in obtaining them, increased taxes, and fixed prices for gold and silver (the most important of the five metals in California) were factors in reversing the upward trend that had more than quadrupled in 8 years the value of the metals covered by this survey.

Comparing 1941 with 1940, the decline in total value for the five metals was 4 percent; gold decreased 3 percent and silver 9 percent in both quantity and value, copper decreased 39 percent in quantity and 36 percent in value, lead increased 95 percent in quantity and 123 percent in value, and zinc increased 457 percent in quantity and 563 percent in value. Of the total value of the five metals in 1941, gold represented 94 percent, silver 3 percent, copper 2 percent,

and lead and zinc combined 1 percent.

Despite a 10-percent decline for 1941 in total value of production, Nevada County continued to be the largest contributor to the metalmining output of California; it supplied 20 percent of the State total value of the five metals, 20 percent of the total gold, and 39 percent of the lode gold. Sacramento County (largely from gold dredging) contributed 12 percent of the total value of the five metals; Amador County (three-fourths from gold ore and one-fourth from placer gravels) and Kern County (largely from gold and gold-silver ores), 7 percent each; Yuba County (largely from gold dredging) and Butte County (largely from placer gravels), 6 percent each; Calaveras County (almost two-thirds from gold ore and one-third from placer gravels) and Siskiyou County (largely from placer gravels), 5 percent each; and Plumas County (largely from gold and copper ores), 4 percent. Thus, the foregoing 9 of the 40 counties producing the metals in California in 1941 contributed over 2 million dollars each to the State total value and supplied nearly three-fourths of that total.

All tonnage figures are short tons and "dry weight"; that is, they do not include moisture.

Yardage figures used in measuring material treated in placer operations are "bank measure"; that is, the material is measured in the ground before treatment.

The value of metal production herein reported has been calculated

at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zine 3
1937	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0.7735 4.646+ 5.678+ 6.711+ 6.711+	Per pound \$0.121 .098 .104 .113 .118	Per pound \$0.059 . 046 . 047 . 050 . 057	Per pound \$0.065 .048 .052 .063

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+(\$20.671835) per fine cunce.
² 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver; 23 Yearly average weighted price of all grades of primary metal sold by producers.
4 \$0.64646464.

5 \$0.67878787.

6 \$0.71111111.

Mine production of gold, silver, copper, lead, and zinc in California, 1937-41, and total, 1848-1941, in terms of recovered metals

Year	Mines producing ¹				and placer)	Silver (lode	and placer)
	Lode	Placer	etc. (short tons)	Fine ounces	Value	Fine ounces	Value
1937	913 927 1, 028 1, 030 835	838 676 749 836 724	4, 925, 014 4, 648, 249 5, 577, 853 4, 669, 433 4, 280, 185	1, 174, 578 1, 311, 129 1, 435, 264 1, 455, 671 1, 408, 793	\$41, 110, 230 45, 889, 515 50, 234, 240 50, 948, 485 49, 307, 755	2, 888, 265 2, 590, 804 2, 599, 139 2, 359, 776 2, 154, 188	\$2, 234, 073 1, 674, 863 1, 764, 264 1, 678, 063 1, 531, 867
1848-1941			(2)	100, 262, 759	2, 211, 300, 217	103, 032, 188	83, 335, 903

Year	Copper		Le	ad	2	line		
1 bar	Pounds	Value	Pounds	Value	Pounds	Value	Total value	
1937 1938 1939 1940	10, 502, 000 1, 612, 000 8, 360, 000 12, 876, 000 7, 886, 000	\$1, 270, 742 157, 976 869, 440 1, 454, 988 930, 548	2, 372, 000 990, 000 1, 052, 000 3, 544, 000 6, 928, 000	\$139, 948 45, 540 49, 444 177, 200 394, 896	40, 000 12, 000 158, 000 880, 000	\$2,600 624 9,954 66,000	\$44, 757, 593 47, 767, 894 52, 918, 012 54, 268, 690 52, 231, 066	
1848-1941	³ 592, 570	192, 203, 568	³ 125, 852	14, 764, 921	³ 52, 483	9, 455, 464	2, 511, 060, 073	

¹ Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.
² Figures not available. 3 Short tons.

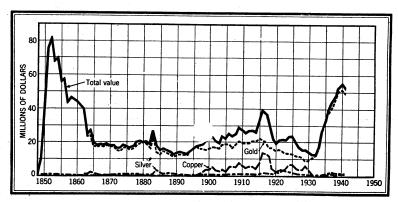


FIGURE 1.—Value of mine production of gold, silver, and copper and total value of gold, silver, copper, lead, and zinc in California, 1848-1941. The value of lead and zinc has exceeded \$1,000,000 in only a few years.

Gold produced at placer mines in California, 1937-41, by classes of mines and by methods of recovery, and total, 1848-1941

	1			Gold recovered		
Class and method	Mines produc- ing ?	Washing plants (dredges)	Material treated (cubic yards)	Fine ounces	Value	Average per cubic yard
Surface placers: Gravel mechanically handled: Connected-bucket dredges:						
1937 1938 1939 1940 1941	33 33 34 32 37	46 48 47 46 47	94, 809, 000 117, 080, 000 121, 655, 000 132, 461, 000 135, 757, 000	322, 961 375, 296 370, 264 414, 966 418, 282	\$11, 303, 635 13, 135, 360 12, 959, 240 14, 523, 810 14, 639, 870	\$0. 119 . 112 . 107 . 110 . 108
Dragline dredges: 1937. 1938. 1939. 1940.	51 77 142 198 234	47 68 109 106 112	19, 364, 000 24, 560, 000 31, 618, 000 42, 747, 000 45, 579, 000	94, 142 118, 108 172, 519 205, 181 225, 019	3, 294, 970 4, 133, 780 6, 038, 165 7, 181, 335 7, 875, 665	. 170 . 168 . 191 . 168 . 173
Becker-Hopkins dredges: 1940 - 1941	2 3	2 2	35, 000 52, 000	148 244	5, 180 8, 540	. 148
Suction dredges: 4 1940 3 1941	17	17	64, 000 357, 000	584 1, 763	20, 440 61, 705	. 319 . 173
Nonfloating washing plants: # 1937 1938 1939 1940 1941	58 74 114 131 85	53 71 101 105 76	2, 338, 000 3, 538, 000 5, 512, 000 5, 908, 000 5, 656, 000	17, 079 23, 046 41, 694 28, 232 28, 703	597, 765 806, 610 1, 459, 290 988, 120 1, 004, 605	. 256 . 228 . 265 . 167 . 178
Gravel hydraulically handled: Hydraulic: 1937 1938 1939 1940 1941			1, 324, 000 1, 719, 000 921, 000 2, 401, 000 2, 886, 000	4, 628 7, 061 6, 059 12, 059 10, 145	161, 980 247, 135 212, 065 422, 065 355, 075	. 122 . 144 . 230 . 176 . 123

See footnotes at end of table.

Gold produced at placer mines in California, 1937-41, by classes of mines and by methods of recovery, and total, 1848-1941—Continued

		Washing plants (dredges)		Gold recovered		
Class and method	Mines produc- ing		Material treated (cubic yards)	Fine ounces	Value	Average per cubic yard
Surface placers—Continued. Small-scale hand methods:						
Wet: 1937 1938 1939 1940 1941	463 292 267 7 278 182		2, 209, 000 2, 863, 500 2, 534, 100 8 1, 710, 200 1, 599, 700	25, 612 41, 686 38, 815 7 38, 526 29, 040	\$896, 420 1, 459, 010 1, 358, 525 7 1, 348, 410 1, 016, 400	\$0. 406 . 510 . 536 7. 788 . 635
Dry: 1937 1938 1939 1940 1941	30 15 25 17 13		14,000 6,500 11,900 10,800 7,300	486 172 169 211 220	17, 010 6, 020 5, 915 7, 385 7, 700	1. 215 . 926 . 497 . 684 1. 058
Underground placers: Drift: 1937	121 99 94 96 74		98, 000 97, 000 83, 000 88, 000 90, 000	7, 398 7, 144 6, 525 5, 045 4, 597	258, 930 250, 040 228, 375 176, 575 160, 895	2. 642 2. 578 2. 752 2. 007 1. 788
Grand total placer: 1937	838 676 • 749 • 836 724		120, 156, 000 149, 864, 000 162, 335, 000 8 185, 425, 000 191, 984, 000	472, 306 572, 513 636, 045 704, 952 718, 013	16, 530, 710 20, 037, 955 22, 261, 575 24, 673, 320 25, 130, 455	. 138 . 134 . 137 . 133 . 131
1848-1941			(10)	64, 540, 142	1, 394, 642, 616	(16)

For data by years before 1937 see Minerals Yearbook, Review of 1940, p. 219.
 Excludes itingrant prospectors, snipers, high-graders, and others who gave no evidence of legal right to

property worked.

First year for which this method was reported used in California.

First year for which this method was reported used in California.

Includes all placer operations using suction pump for delivering gravel to floating washing plant, except those producing less than 100 ounces of gold which are included under "Small-scale hand methods."

Includes all placer operations using power excavator and washing plant, both on dry land; when washing plant is movable, outfit is termed "dry-land dredge."

Place of the production of the production of the place of the production of the production of the place of the production of the production of the place of the production of the pro

plant is movable, outht is termed dry-land dredge.

§ Includes all operations in which hand labor is principal factor in delivering gravel to sluices, long toms, dip boxes, pans, rockers, dry washers, etc.

§ Figures changed to exclude suction dredges. See footnote 4.

• A mine using more than 1 method of recovery is counted but once in arriving at total for all methods.
• Complete data not available.

Gold.—After an uninterrupted rise from 1929 to 1940, the quantity and value of California gold production in 1941 fell below that of 1940. The reversal in trend was due entirely to the decline in lode mining; placer-gold output continued to rise and exceeded that for any year since 1862.

The 25 leading gold-producing mines in California in 1941, listed in the following table, yielded 54 percent of the total gold output of the State. In 1941, three lode mines (gold ore) and two placers (connected-bucket dredges) displaced two lode mines (gold ore) and three placers (two connected-bucket dredges and one dragline dredge) which were on the 1940 list; of those displaced, one connected-bucket dredge and the dragline-dredge operations were reported worked out and one of the lode operations lost its identity by merger with its neighbor.

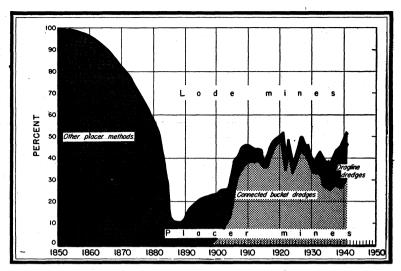


FIGURE 2.—Percentage of total California gold produced at lode and placer mines and by various methods of placer mining, 1850-1941.

Twenty-five leading gold-producing mines in California in 1941, in order of output

Rank	Mine	District	County	Rank in 1940	Operator	Source of gold
1 2 3 4 5 6 7 8 9	Butte Unit Central Eureka Capital Dredges Golden Queen	vada City. Yuba River Grass Valley-Nevada City.	Butte Amador Sacramento Kern	3 2 4 5 6 7 8 12	Mines Corporation. Natomas Co Empire Star Mines Co., Ltd. Yuba Consolidated Gold Fields.	Gold ore. Dredge. Gold ore. Dredge. Gold ore. Dredge. Gold ore. Dredge. Gold ore. Dredge. Dredge. Dredge. Dredge.
11 12 13 14		Ophir Mojave Mother Lode	f .		Gold Mines Co. Cactus Mines Co. Middle Fork Gold	Do. Do.
15 16 17 18	Sheepranch Snelling Original Sixteen to One. Iron Mountain	East Belt Snelling Alleghany Flat Creek (Iron	Merced	16 19	Mining Co. St. Joseph Lead Co. Snelling Gold Dredging Co. Original Sixteen to One Mine, Inc. The Mountain Cop-	Do. Dredge. Gold ore. Gold ore and
19 20 21	Walker Ohio Point (Virgilia).	Mountain). Genesee	Plumasdo	17 30	per Co., Ltd. Walker Mining Co Virgilia Mining Corporation. Keystone Mine Syn-	copper ore.
22 23 24 25		Yankee Hill Snelling Camanche			dicate. Hoefling Bros Merced Dredging Co Gold Hill Dredging Co. Yuba Consolidated Gold Fields.	Do. Dredge. Do.

Silver.—The bulk of the silver output of California in 1941 was more localized than that of the gold; the 10 leading silver-producing mines, listed in the following table, yielded 80 percent of the State total recoverable silver in that year. The list is similar to that of 1940, except for some changes in rank, the exclusion of the Iron Mountain mine (Shasta County) and the Standard mine (Mono County), and the inclusion of the Columbia No. 2 mine (Inyo County) and the Alabama mine (Placer County). In addition to the mines listed, some silver was recovered from almost every lode and placer mine operating in the State in 1941.

Ten leading silver-producing mines in California in 1941, in order of output

Rank	Mine	District	County	Rank Rank Rank	Operator	Source of silver
. 1	Cactus Queen	Moiave	Kern	1	Cactus Mines Co	Gold-silver ore.
2	Lava Cap	Grass Valley-Ne- vada City.	Nevada	2	Lava Cap Gold Min- ing Corporation.	Gold ore.
3	Golden Queen	Mojave	Kern	4	Golden Queen Mining Co.	Do.
4	Starlight	do	do	5	Lodestar Mining Co	Do.
5	Walker	Genesee	Plumas	3	Walker Mining Co	Copper ore.
6	Columbia No. 2	Resting Springs	Invo	12	Shoshone Mines, Inc.	Lead ore.
7	Kelly	Randsburg	San Bernar- dino.	7	F. Royer and lessees.	Gold-silver ore.
8	Empire Star Mines.	Grass Valley-Ne- vada City.	Nevada	10	Empire Star Mines Co., Ltd.	Gold ore.
9	Alabama	Ophir	Placer	11	Alabama California Gold Mines Co.	Do.
10	Grigsby (Palisade).	Calistoga	Napa	6	Helena Consolidated Mines, Inc.	Gold-silver ore

Copper.—Copper production in California decreased materially with the suspension of operations at the Walker mine in the Genesee district of Plumas County, October 31, 1941; during the year this mine contributed over 92 percent of the State copper output of 7,886,000 pounds.

Lead.—Lead production in California increased 95 percent in quantity and 123 percent in value in 1941 compared with 1940. Shoshone Mines, Inc., which operated the Columbia No. 2 mine in the Resting Springs district of Inyo County, and Imperial Metals, Inc., which operated the Black Eagle mine in the Eagle Mountain district of Riverside County until work was suspended early in the year, supplied

94 percent of the State total.

Zinc.—Zinc production in California, although still very small, increased 457 percent in quantity and 563 percent in value in 1941 compared with 1940; 96 percent of the zinc was recovered from ores shipped by E. H. Snyder from the Colorado group in the Modoc district of Inyo County and by W. F. Houston from the Carbonate King mine in the Ivanpah district of San Bernardino County. Much of the ore from both mines was converted to zinc oxide at the Richmond plant of the Western Zinc Oxide Co (operated under lease after September 18, 1941, by the Pacific Zinc Oxide Co.).

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in California in 1941, by counties, in terms of recovered metals

Lode		Mine	es pro-			G	old		
Alpine	County			I	ode	P	lacer	Т	otal
Amador		Lode	Placer		Value		Value		Value
Amador. 23 40 75,023 2,625,805 24,957 8873,495 99,980 3,409, Butte. 14 52 11,620 406,700 73,554 2,574,395 85,174 2,981, Calaveras. 43 61 46,148 1,615,180 28,520 998,200 74,668 2,613, Del Norte. 1 39 1,365 3	Alpine	1		136	\$4, 760			136	\$4,76
Butte	Amador		40	75, 023		24, 957	\$873, 495		3, 499, 30
Calaveras 43 61 46,148 1,615,180 28,520 998,200 74,668 2,613 Del Norte 1 1 39 1,365 39 1,365 39 1,185 Fresno 5 7 27 945 6,089 213,115 6,116 214 Humboldt 6									2, 981, 09
Del Norte								74 668	2, 613, 38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		l							1, 36
Fresno		50		20, 639	722, 365				1, 547, 63
Humboldt 6 2,427 84,945 52 13,370 382 13, moreial 10 2 2,427 84,945 52 1,820 2,479 86, myo 71 4 16,063 562,205 33 1,155 16,096 563, myo 2,800, 28								6, 116	214, 06
Imperial									13, 37
Tyo.	mperial	10	2	2, 427	84, 945	52	1,820	2, 479	86, 76
Lassen 6 6 6 2,135		71	4	16,063	562, 205	33	1, 155	16,096	563, 36
Los Angeles 9 4 5,083 177,905 188 3,080 5,171 180, Madera 12 20 301 10,535 1,196 41,860 1,497 52, Mariposa 53 30 22,664 793,240 9,938 347,830 32,602 1,141, Merced 8 793,240 9,938 347,830 32,602 1,141, Mono 36 1 9,500 332,500 5 175 9,505 332, Monterey 1 1 350 177 595 175 9,505 332, Monterey 1 1 350 12,250 177 17 17 180, Nevada 32 32 270,596 9,470,860 11,469 401,415 282,065 9,872, Nevada 32 32 270,596 9,470,860 11,469 401,415 282,065 9,872, Nevada 32 52 52 93 30,272 1,059,520 5,984 209,440 36,256 1,268, Riverside 31 3 1,690 59,150 179,632 6,287,120 179,645 6,287, San Bernardino 117 10 16,649 582,715 298 10,430 16,947 593, San Diego 7 301 10,535 19 805 10,300 110, San Francisco (2) 301 10,535 19 805 10,300 110, San Luis Obispo 1 1 23,455 19,857 694,995 29,279 1,024,765 49,136 1,719, San Luis Obispo 1 1 23,455 10,300 338, San Luis Obispo 1 1 23,455 10,300 338, San Luis Obispo 1 1 23,451 19,857 694,995 29,279 1,024,765 49,136 1,719, San Luis Obispo 1 1 23,455 10,430 36,55 27,362 957, Sikayou 50 93 1,801 63,035 65,333 368,655 27,362 957, Sikayou 50 93 1,801 63,035 65,333 368,655 27,362 957, Sikayou 50 93 1,801 63,035 65,333 368,655 27,362 957, Sikayou 50 93 1,801 63,035 65,379,801 22,279 1,024,765 49,136 1,719, Sikayou 50 93 1,801 63,035 65,379,801 22,279 1,024,765 49,136 1,719, Sikayou 50 93 1,801 63,035 65,379,801 22,279 1,024,765 49,136 1,719, Sikayou 50 93 1,801 63,035 65,379,801 22,279 1,024,765 49,136 1,719, Sikayou 50 93 1,801 63,035 65,379,801 22,279 1,024,765 49,136 1,719, Sikayou 50 93 1,801 63,035 65,379,801 22,279 1,024,765 49,136 1,719, Sikayou 50 93 1,801 63,035 65,393 2,288,755 67,194 2,351, Sikayou 50 93 1,801 63,035 65,379,802 22,977 1,024,765 49,136 1,719, Sikayou 50 93 1,801 63,035 65,579 2,977,660 88,923 3,112, Ventura 2 2 2 17 70 19 3,847 134,645 85,076 2,977,660 88,923 3,112, Ventura 2 2 2 17 70 19 3,847 134,645 85,076 2,977,660 88,923 3,112, Ventura 2 2 2 17 70 19 3,847 134,645 85,076 2,977,660 88,923 3,112, Ventura 2 2 2 17 70 19 3,847 134,645 85,076 2,977,660 88,923 3,112, Ventura 2 2 2 17 70	Kern	97	11	79,740	2, 790, 900	288	10,080	80,028	2, 800, 98
Madera 12 20 301 10,535 1,196 41,860 1,497 52, Mariposa 53 30 22,664 793,240 9,938 347,830 32,602 1,141, Merced 8				61	2, 135			61	2, 13
Mariposa 53 30 22,664 793,240 9,938 347,830 32,662 1,141,500 Mono 36 1 9,500 332,500 44,313 1,550,955 44,313 1,550,955 332,500 350 175 9,505 332,500 350 12,250 350 12,20 13,141,141 360 11,469 401,415 282,065 9,872,20 13,424 36,256 1,441,21 14,41,21 14,41,21 14,41,21 14,41,21 14,41,21 14,41,21 14,41,21 14,41,21 <td< td=""><td>Los Angeles</td><td></td><td>4</td><td></td><td></td><td>88</td><td></td><td>.5, 171</td><td>180, 98</td></td<>	Los Angeles		4			88		.5, 171	180, 98
Merced									52, 39
Mono		53	30	22, 664	793, 240	9,938	347, 830	32,602	1, 141, 0
Monterey						44, 313	1, 550, 955	44, 313	1, 550, 9
Napa 1 350 12,250 350 11,469 350 12,250 Nevada 32 32 270,596 9,470,860 11,469 401,415 282,065 9,872, Placer 1 1 18 630 15,805 553,175 41,193 1,441, Plumas 25 29 30,272 1,059,520 5,984 209,440 36,256 1,268, Riverside 31 3 1,690 59,150 8 220 1,79,645 6,287, acramento 2 20 13 455 179,632 6,287,120 179,645 6,287, an Diego 7 301 10,535 10,430 16,947 593, an Francisco (2) 301 10,535 301 10,430 16,947 593, an Luis Obispo 1 2,3741 830,935 23,741 830, San Luis Obispo 1 2,943 1,943 1,943 1,749,			1	9,500	332, 500	5	175	9,505	332, 67
Nevada 32 32 32 270,596 9,470,860 11,469 401,415 282,065 9,872, 07ange 1 1 18 630 11,469 401,415 282,065 9,872, 07ange 1 1 18 630 11,469 401,415 282,065 9,872, 07ange 1 1 18 630 11,469 401,415 282,065 9,872, 07ange 1 1 18 630 11,5805 553,175 41,193 1,441, 193 1,44									59
Drange 1 1 18 630	Napa								12, 2
Placer 24 59 25,388 888,580 15,805 553,175 41,103 1,441,103 1,441,103 1,441,103 1,441,103 1,441,103 1,441,103 1,441,103 1,441,103 1,441,103 1,441,103 1,441,103 1,441,103 1,441,103 1,268,103 59,150 8 280 1,682,651,103 1,268,59,103 59,150 8 280 1,645,656,126 1,268,59,103 59,150 8 280 1,645,656,626 6,287,120 179,645,626,287,120 179,645,628,759,303 6,287,120 179,645,628,759,303 10,430 16,947,593,301 10,301 10,430 16,947,593,301 10,301 10,430 16,947,593,301 10,430 16,947,593,301 10,430 16,947,593,301 10,430 16,947,593,301 10,430 16,947,593,301 10,430 16,947,593,301 10,430 16,947,593,301 10,430 16,947,593,301 10,430 16,947,593,301 10,430 16,947,593,301 10,430 16,947,593,301 10,430 16,947,593,301 10,430 10,430 10,430 10,430 10,430 <			32			11, 469	401, 415	282, 065	9, 872, 27
Plumas									63
Riverside								41, 193	1,441,78
Saramento									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									59, 43
San Diego		1.2							
San Francisco (2)			10			298	10, 430		
San Joaquin									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	an Francisco		(4)						66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	an Joaquin						830, 935		
shasta 26 32 19,857 694,995 29,279 1,024,765 49,136 1,719,95 sierra 17 39 16,829 589,015 10,533 368,655 27,362 957, siskyou 50 93 1,801 63,035 65,393 2,288,755 67,194 2,351, stanislaus 7 25,472 891,520 25,472 891,500 25,472 891,500 25,472 891,500 25,472 891,500 25,472 891,500 25,472 891,500 25,472 891,500 25,472 891,500 25,472 891,500 25,472 891,500 25,472 891,500 25,472 891,500 25,472 891,500 25,472 891,500 25,472 891,500 25,700,00 26,00 27,00 75 2,00 70 75 2,00 70 75 2,00 70 75 2,00 70 75 2,00 70 75 2,00 70 70 70 70 <									3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ne		10 057	604 005				1 710 70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								49, 100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 30		1,001	00,000				
Fulare 3 75 2,625 75 2,625 Cuolumne 42 10 13,199 461,965 9,798 342,930 22,997 804,701 Yentura 2 2 17 595 2 70 19 Yuba 6 19 3,847 134,645 85,076 2,977,660 88,923 3,112, 835 724 690,780 24,177,300 718,013 25,130,455 1,408,793 49,307,		10	67	420	15 015				
Puolumne 42 10 13, 199 461, 965 9, 798 342, 930 22, 997 804, 7 entura Yentura 2 2 17 595 85, 076 2, 977, 660 88, 923 3, 112, 7 entura Yuba 835 724 690, 780 24, 177, 300 718, 013 25, 130, 455 1, 408, 793 49, 307, 7 entural	Pulare					72, 700	1, 100, 000		2,6
Ventura			10			0 708	342 030		804, 89
Yuba						2, , 30			66
						85, 076			3, 112, 30
		835	724	690, 780	24, 177, 300	718, 013	25, 130, 455	1, 408, 793	49, 307, 78
FOTAL 1940	Γotal, 1940	1,030	836	750, 719	26, 275, 165	704, 952		1, 455, 671	50, 948, 48

			Sil	ver			
County	Lo	de	Pla	cer	Total		
•	Fine ounces	Value	Fine ounces	Value	Fine ounces	Value	
Alpine	325 20, 226 23, 881 12, 212	\$231 14, 383 16, 982 8, 684	3, 049 5, 884 2, 708 3	\$2, 168 4, 184 1, 926 2	325 23, 275 29, 765 14, 920 3	\$231 16, 551 21, 166 10, 610 2	
EldoradoFresnoHumboldt	2, 935	2, 087 2 362	2, 994 973 55	2, 129 692 39	5, 929 976 55 509	4, 216 694 39 362	
Inyo Kern Lassen	159, 227 868, 126 62	113, 228 617, 334 44	66	47	159, 227 868, 192 62	113, 228 617, 381 44	

¹ Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.

Output from property not classed as a "mine."

Mine production of gold, silver, copper, lead, and zinc in California in 1941, by counties, in terms of recovered metals—Continued

	Silver										
County	Lo	de	Plac	cer	Total						
	Fine ounces	Value	Fine ounces	Value	Fine ounces	Value					
Los Angeles	2, 274	\$1,617	13	\$9	2, 287	\$1,626					
Madera	128	91	343	244	471	335					
Mariposa	7, 785	5, 536	2, 316	1,647	10, 101	7, 183					
Merced	,		4, 555	3, 239	4, 555	3, 239					
Mono	44, 446	31,606	_,,550	-, -00	44, 446	31, 60					
Monterey	11,110	51,000			7	01,00					
	36, 121	25, 686			36, 121	25, 68					
Napa		20,000	1 000	960	30, 121						
Nevada	443, 385	315, 296	1, 350	800	444, 735	316, 25					
Orange	4, 846	3, 446			4,846	3, 440					
Placer	54, 339	38, 641	2,087	1, 484	56, 426	40, 12					
Plumas	180, 076	128, 054	539	383	180, 615	128, 437					
Riverside	32, 400	23, 040	1		32, 400	23, 040					
Sacramento	3	2	10, 229	7, 274	10, 232	7, 27					
San Bernardino	162, 873	115, 821	20	14	162, 893	115, 83					
San Diego	102, 570	36	20		50	3					
		. 30	3	2	3						
San Francisco						1 1 40					
San Joaquin			2,011	1, 430	2,011	1, 43					
San Luis Obispo											
Santa Cruz			3	. 2	3						
Shasta	22, 882	16, 272	2,890	2,055	25, 772	18, 32					
Sierra		2,580	896	637	4. 524	3, 21					
Siskiyou	564	401	9,470	6, 734	10, 034	7, 13					
Stanislaus	001	101	2, 314	1, 646	2, 314	1, 64					
	173	123	4, 619	3, 285	4, 792	3, 40					
Trinity	56	123 40	4,019	0, 200	4, 792	o, 40					
Tulare											
Tuolumne	4,870	3, 463	905	644	5, 775	4, 10					
Ventura	5	4			5						
Yuba	296	210	5, 180	3, 684	5, 476	3, 89					
	2, 088, 713	1, 485, 307	65, 475	46, 560	2, 154, 188	1, 531, 86					
Total, 1940	2, 295, 606	1, 632, 431	64, 170	45, 632	2, 359, 776	1, 678, 063					

Gt	Copp	er	Lea	d	Zi	nc	Total val
County	Pounds	Value	Pounds	Value	Pounds	Value	10tai vai
lpine							\$4.9
mador		\$944	14,000	\$708			3, 517, 5
utte	. 0,000	φυττ	11,000				3, 002, 2
alaveras	- 8,000	044					2, 624, 9
el Norte		011					1.8
ldorado	2,000	236					1, 552, 0
resno	2,000	200					214. 7
umboldt							13. 4
nperial							87. 1
190		33, 748	5, 312, 000	302, 784	438, 000	\$32,850	1, 045, 9
ern		236	18,000	1,026	100,000	402,000	3, 419, 6
assen		-00	10,000	, ,			2,
os Angeles		236					182, 8
adera		200					52, 7
ariposa		472	8,000				1, 149, 1
erced			0,000	100			1, 554, 1
lono		472	30,000	1,710			366, 4
Ionterev			00,000	1,,10			1 6
apa		236					38.
evada		3, 068	10,000	570			10, 192, 1
range	1 ' 1	0,000	14,000	798	32,000	2,400	7.
lacer		944	44,000	2, 508		_,	1, 485, 3
lumas		859, 984	68,000	3, 876			2, 261, 2
iverside	10,000	1, 180	1, 368, 000	77, 976			161,
cramento		-,	-,,	,			6, 294, 8
an Bernardino		12, 508	32,000	1,824	410,000	30,750	754. 0
an Diego		, 505	02,000	-,			10.
an Francisco							· '€
an Joaquin							832, 3
n Luis Obispo							
nta Cruz					l		1 :
hasta	118,000	13, 924			1		1, 752, 0
erra		236	10,000	570		l	961, 6
skivou	_,						2, 358, 9
anislaus							893, 1
rinity.							1, 504, 2
ulare				1	1	1	2.6

Mine production of gold, silver, copper, lead, and zinc in California in 1941, by counties, in terms of recovered metals—Continued

County	Cop	per	Les	ad	Zi		
County	Pounds	Value	Pounds	Value	Pounds	Value	Total value
TuolumneVentura	10,000	\$1, 180					\$810, 182
Yuba							3, 116, 199
Total, 1940	7, 886, 000 12, 876, 000	930, 548 1, 454, 988	6, 928, 000 3, 544, 000	\$394, 896 177, 200	880, 000 158, 000	\$66,000 9,954	52, 231, 066 54, 268, 690

MINING INDUSTRY

The tonnage of material from lode mines in California treated in 1941 decreased 8 percent compared with 1940, but the yardage at placer mines increased 4 percent; the output of lode gold declined 8 percent, but that of placer gold rose 2 percent. The average grade of lode material remained unchanged, but the average recoverable gold content of gravels declined 2 percent. Of the State total gold output in 1941, 49 percent was from lode mines and 51 percent from placers; this was the first year since 1927 that placer-gold production had exceeded that from lode mines.

Dredges of the connected-bucket type handled 71 percent of the gravel mined and recovered 58 percent of the State total placer gold in 1941.

The next most important method of placer mining—dragline dredging—continued in 1941 its spectacular rise as a means of recovering gold. The first dragline-dredge production in the United States was reported in California in 1933, when three outfits began work late in the year and recovered less than 100 ounces of gold. In 1941, 112 dragline dredges worked 234 properties; they washed 24 percent of the total placer gravel and recovered 31 percent of the total placer gold. The following table gives partial data on equipment in the dragline-dredge industry over a 3-year period; information on bucket size was supplied for 52 dredges in 1939, 89 in 1940, and 94 in 1941.

Size of buckets (cubic	Nu	mber of	boats	Size of buckets (cubic	Nu	nber of t	oats
yards)	1939	1940	1941	yards)	1939	1940	1941
<u> </u>	1 2	1 2 1	2 6	134 114 114 114 114	2 17 5 4	3 25 9	1
4	3 4 2 10	8 1 15	5 19 1 13	74 1/2 3/8	1 2	7 3 1	

The Becker-Hopkins type of dredge (single bucket on telescopic arm attached to dredge) made its first appearance in California in 1940, when units were installed in Fresno and Sacramento Counties. In 1941 two of these dredges worked two properties in Sacramento County and one in Butte County.

A small increase was reported in gold recovery and a small decrease in quantity of gravel handled at nonfloating washing plants to which gravel was delivered by mechanical means. Equipment was moved from one property to another, as was the practice with dragline dredges, and 76 plants worked 85 properties. Some of these non-floating washing plants are stationary; others are built to move on skids, wheels, tracks, or by other means. Dragline excavators, power shovels, slackline excavators, trucks, bulldozers, and other machines are used to deliver the gravel.

Hydraulic production of gold in 1941 declined compared with 1940, but the quantity of gravel washed increased. Output by small-scale hand methods (both wet and dry) and by drift mining decreased.

Consumption of quicksilver at California placer mines totaled 19,949 pounds in 1941 compared with 21,872 pounds in 1940. The following quantities of gold were recovered to the pound of quicksilver used in 1941 (1940 figures in parentheses): Connected-bucket dredging, 40 ounces (41); dragline dredging, 37 ounces (39); non-floating washing plants with mechanical gravel handling, 42 ounces (10); hydraulicking, 22 ounces (12); small-scale hand operation, 15 ounces (15); and drift mining, 72 ounces (115).

ORE CLASSIFICATION

Of the 4,280,185 tons of ore (including 845,076 tons of old tailings) sold or treated in 1941, 90 percent was dry gold ore and old tailings, 7 percent copper ore, and most of the remainder dry gold-silver ore.

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore and old tailings sold or treated in California in 1941, with content in terms of recovered metals

<u>•</u>		7000					
Source	Material treat		Gold	Silver	Copper	Lead	Zinc
Source	Ore	Old tailings	Gold	Silver	Copper	Leati	
Dry and siliceous gold ore. Dry and siliceous gold- silver ore. Dry and siliceous silver ore.	Short tons 3, 004, 662 117, 968	Short tons 843, 376 15	Fine ounces 1 646, 386 28, 716	Fine ounces 1 985, 692 736, 469 19, 225	Pounds 1 376, 700 18, 600	Pounds 111, 100	Pounds 32, 000
Copper ore Lead ore Lead-copper ore Zinc ore	3, 123, 207 292, 232 18, 338 2 1, 330	845, 076	1 675, 129 12, 038 3, 611	1 1, 741, 386 179, 744 166, 879 167 537	1 395, 300 7, 418, 100 72, 300 100 200	125, 100 64, 000 6, 731, 800 200 6, 900	32, 000 848, 000
Total, lode mines Total, placers	3, 435, 109	845, 076	1 690, 780 718, 013	1 2, 088, 713 65, 475	1 7, 886, 000	6, 928, 000	880, 000
Total, 1940	3, 435, 109 3, 819, 472	845, 076 849, 961	1 1, 408, 793 1 1, 455, 671	1 2, 154, 188 1 2, 359, 776	1 7, 886, 000 1 12, 876, 000	6, 928, 000 3, 544, 000	880, 000 158, 000

¹ Includes metals recovered from tungsten ore not included in material treated.

METALLURGIC INDUSTRY

During 1941, as in former years, most of the ore and virtually all the old tailings were treated at amalgamation and cyanidation mills (with or without concentrating equipment); 90 percent of the total ore and old tailings was treated at such mills in 1941. Almost all the remaining ore was treated at concentrating mills; only 44,810 tons of crude ore and 9 tons of old tailings were shipped for direct smelting. Smelters received 32,198 tons of flotation concentrates and 2,422 tons of gravity concentrates from California mine operators in 1941. Comparing 1941 with 1940, ore treated at amalgamation and cyanidation mills decreased 9 percent, quantity of old tailings treated remained virtually unchanged, quantity of material treated at concentrating mills decreased 20 percent, and quantity of crude

ore and old tailings smelted increased 54 percent.

Quicksilver consumption at California amalgamation mills totaled 7,265 pounds, used in the treatment of 2,104,298 tons of material to recover 285,038 ounces of gold and 65,978 ounces of silver in 1941. In the treatment of 1,265,201 tons of ore, 838,135 tons of old tailings, and 3,996 tons of concentrates to recover 203,511 ounces of gold and 600,949 ounces of silver, cyanide consumption was 289,659 pounds of 91-percent sodium cyanide and 1,812,239 pounds of commercial calcium cyanide (50-percent NaCN equivalent); in terms of 98-percent NaCN, the consumption was 1,193,581 pounds or 0.57 pound to the ton. A substantial part of the cyanide was consumed at custom mills in California.

Companies producing most of California's lode gold in 1941 owned and operated their own metallurgical plants, but a number of custom mills were active. The leading operators of metallurgical plants receiving custom material were: Burton Bros., Inc., Rosamond, Kern County; Golden Queen Mining Co., Mojave, Kern County; Mineral Reduction Co., Benton, Mono County; Gold Crown Mining Co., Ltd., east of Twentynine Palms, San Bernardino County; and F. W. Royer, Red Mountain, San Bernardino County. All these mills were cyanidation plants and accepted ore and old tailings for treatment. The Idaho Maryland Mines Corporation and Empire Star Mines Co., Ltd., Grass Valley, Nevada County, cyanided some lots of concentrates. The largest metallurgical custom plant in California—the Selby lead plant of the American Smelting & Refining Co. at Selby, Contra Costa County—continued to be the State's only smelter.

Mine production of metals in California in 1941, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated	Gold	Silver	Copper	Lead	Zinc
Ore, old tailings, and concen-	Short tons	Fine ounces	Fine ounces	Pounds	Pounds	Pounds
trates amalgamated Ore, old tailings, sands, slimes.	2, 104, 298	285, 038	65, 978			
and concentrates cyanided Concentrates smelted:	2, 225, 102	232, 695	771, 977			
Flotation	1 32, 198	1 146, 182	946, 320	1 7, 582, 700	i65, 300	183, 300
Gravity Ore and old tailings smelted	2, 422 44, 819	11, 531 15, 334	15, 019 289, 419	4, 700 298, 600	37, 200 6, 725, 500	696, 70
Total, lode mines Total, placers		1 690, 780 718, 013	1 2, 088, 713 65, 475	1 7, 886, 000	6, 928, 000	880, 00
Total, 1940		1 1, 408, 793 1 1, 455, 671	1 2, 154, 188 1 2, 359, 776	7, 886, 000 1 12,876, 000	6, 928, 000 3, 544, 000	880, 00 158, 00

¹ Includes concentrates and metals from tungsten ore.

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in California in 1941, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

	Materia	l treated		ered in lion	Concen	trates sm	elted and	recovere	d metal
County	Ore 1	Old tail- ings	Gold	Silver	Con- centrates pro- duced	Gold	Silver	Cop- per	Lead
Alpine	Short tons 423	Short tons	Fine ounces	Fine ounces	Short tons	Fine ounces 127	Fine ounces 322	Pounds	Pounds
Amador Butte	268, 514 7, 823		38, 802 325	7, 914 59	2, 665 28	17, 821 117	4, 148	5, 300	12, 900
Calaveras Eldorado Fresno	441, 660 19, 757 66	420	19, 561 6, 962 8	2, 496 635	2, 488 1, 813 1	10, 654 12, 943 16	4, 203 1, 251 3	5, 400 2, 000	
Imperial	15, 429 281	64	740 67	167 15					
Kern Lassen	51, 783 121	1, 051	5, 672 41	2, 288 21	746	3, 159	9, 159	300	18, 000
Los Angeles	32, 678 1, 623		3, 122 279	632 114	340 7	1, 038 22	1, 190 14	2,000	
Mariposa Mono	119, 217 140, 766		9, 314 4, 424	2, 558 1, 962	2, 194	12, 080	4, 347	3, 800	8, 000
Nevada Placer Plumas	642, 680 115, 153 3, 496	401	147, 906 20, 374 639	26, 071 6, 747 110	1, 405 863 8	38, 429 3, 734 22	324, 923 45, 355 23	26, 000 8, 000	10, 000 43, 100
Riverside Sacramento	447 1		316 7	91 2					
San Bernardino San Diego	15, 642 1, 050		2, 300 176	9, 747 27	11 8	149 110	331 14		
Shasta Sierra Siskiyou	7, 102 58, 633 2, 526		2, 571 15, 145 1, 341	571 2, 846 289	464 495 12	2, 579 1, 481 49	909 718 24	100 2,000	10, 000
Trinity Tulare	918 424	212	296 56	55 42	10 4	55 14	31 7		
Tuolumne Ventura	135, 192 65		1, 869 15	434 5	1, 099	10, 867	4, 145	9, 900	
Yuba	18, 680		2, 701	. 77					
Total, 1940	2, 102, 150 2, 410, 542	2, 148 19, 432	285, 038 339, 707	65, 978 97, 618	14, 666 26, 649	115, 466 113, 467	401, 151 369, 552	64, 800 87, 000	102, 000 104, 700

CYANIDATION MILLS

	1	,			1				
Amador	30, 345	366, 679	16, 281	4, 659	6	243	1,632	600	1, 100
Butte	78, 250	000,000	10, 364	21, 660	24	722	2, 084	000	1, 100
Calaveras	381, 326	437	15, 462	5, 165	2	17	7	1	
Eldorado	123		655	958		1			
Imperial.	3, 236	64	1, 499	314					
Inyo		1, 913	12, 088	6, 683	3	235	122		
Kern	224, 532	457, 816	57, 399	543, 653	213	13, 436	312, 542	1,700	
Lassen	14	201,011	14	22		10, 100	012,012	1,,,,,,	
Los Angeles	1, 439		923	444					
Mariposa	1, 100	2, 969	227	143					
Mono	122, 753	55	3, 821	38, 515	97	1, 244	2, 854		
Nevada	206, 922	3, 800	84, 007	92, 255		1 ., 2	2,001		
Placer	375	1 0,000	930	1, 388					
Plumas	26, 472		5, 633	1,726					
Riverside	2, 081	71	1, 270	50					
San Bernardino	32, 894	2, 947	6, 141	35, 391	i4	333	656		4, 400
San Diego	12	-,	2	30,001		000			1, 10
Shasta	233, 725		14, 318	18, 448					
Sierra	2,50, . 20	5, 951	193	62					
Siskivou	518	200	340	216					
Trinity		66	13	18					i
Tuolumne		15	5	2					
Ventura	2		2	-					
Yuba.	986		1, 108	205	2	4	3		
			1,100	200					
	1, 382, 119	842, 983	232, 695	771, 977	361	16, 234	319, 900	2, 300	5, 500
Total, 1940	1, 349, 167	826, 725	240, 574	833, 744	1, 134	20, 049	306, 457	13, 100	7, 000
		=====	210, 011	550, 744	., 101	20,010	330, 101	15, 100	-,,000
Grand total: 1941	3, 484, 269	845, 131	517, 733	837, 955	15, 027	131, 700	721, 051	67, 100	107, 500
	3, 759, 709	846, 157	580, 281	931, 362	27, 783	133, 516	676, 009	100, 100	111, 700
1010.2.	., . 50, 100	O1, 1.71	000, 201	01, 502	21, 700	100, 010		1,00, 100	111,700

¹ Figures under "Ore" include both raw ore and concentrates amalgamated or cyanided, but not raw ore concentrated before amalgamation or cyanidation of concentrates.

Mine production of metals from concentrating mills in California in 1941, by counties, in terms of recovered metals

	Materia	l treated	Cor	centrates	smelted ar	nd recovered	metal	
County	Ore	Old tail- ings	Concen- trates produced	Gold	Silver	Copper	Lead	Zinc
				Fine	Fine			
	Short tons	Short tons		ounces	ounces	Pounds	Pounds	Pounds
Butte	150		12	85	40			
Calaveras	1, 556 20		80	378 6	231 36	2, 600		
Eldorado	10		1	3	30			
Inyo and Plumas 1	369, 226		2 18, 947	2 23, 780	² 197, 328	2 7, 515, 300	77, 400	145, 300
Kern	250		2 10	2 74	² 484			
Lassen	10		1	6	_19			
Mariposa	12, 940		267	1,024	725	200		
Napa Nevada	6, 599 950		116 24	350 210	36, 121 84	2, 000		
Orange	403		108	18	4, 846		14,000	32, 000
San Bernardino	101		16	4	286	200	3, 600	6,000
Siskiyou	21		5	9	11			
Trinity	130		2	22	41			
Tuolumne	40		1 1	44	36			
	392, 406		2 19, 593	² 26, 013	² 240, 288	2 7, 520, 300	95, 000	183, 300
Total, 1940	489, 699	10	2 24, 914	2 27, 828	2 415, 475	2 10, 795, 200	160,000	158, 000

Gross metal content of concentrates produced from ores mined in California in 1941, by classes of concentrates

	Concen-		Gross	metal conten	it	
Class of concentrates	trates	Gold	Silver	Copper	Lead	Zinc
Dry gold	Short tons 18, 568	Fine ounces 131, 917	Fine ounces 414, 498	Pounds 107, 101	Pounds 103, 954	Pounds
Dry gold-silver	354	13, 684	347, 793 107	7, 431	2, 052	2, 930
Copper	15, 352	11, 976	193, 968	7, 746, 560	85, 766	
Lead Zinc	138 207	133 3	3, 874 1, 099	2, 210 520	40, 003 8, 103	4, 363 229, 829
Total, 1940	34, 620 52, 697	157, 713 161, 344	961, 339 1, 091, 484	7, 863, 822 11, 278, 562	239, 878 329, 052	237, 122 228, 531

Combined to avoid disclosure of individual output.
 Includes concentrates and metals from tungsten ore not included in material treated.

Mine production of metals from California concentrates shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

Short tons 5 2, 671 64 2, 570 1, 816 2	Fine ounces 127 18, 064 924 11, 049	322 5, 780	Pounds	Pounds	Pounds
2, 570 1, 816 2	18, 064 924 11, 049	5, 780			
2, 570 1, 816 2	11, 049		5, 900	14,000	
2		2, 158 4, 441	8, 000		
	12, 949 19	1, 287 3	2, 000		
605 969	326 16, 669	19, 324 322, 185	227, 700 2, 000	9, 400 18, 000	145, 300
1 340	6	19 1, 190			
2. 461	22	14			
97	1, 244	2, 854			
1, 429	38, 639	325, 007	26, 000	10,000	32, 000
863	3, 734	45, 355	8,000	43, 100	
41	486	1, 273	200	8,000	6, 000
464	2, 579	909	100	10.000	
17	58	35	2,000	10,000	
4	14	7			
1, 100 2	10, 911	4, 181	9, 900		
34, 620 52, 697	157, 713 161, 344	961, 339 1, 091, 484	7, 587, 400 10, 895, 300	202, 500 271, 700	183, 300 158, 000
BY CLASSE	s of con	CENTRAT	ES		
18, 568 354	131, 917 13 684	414, 498 347 793	66, 500 3, 600	93, 100	
1		107			
138	133	3, 874	1, 100	37, 100	183, 300
	1 340 7 2, 461 1, 429 108 863 18, 353 41 8 464 495 17 12 4 1, 100 2 34, 620 52, 697 BY CLASSI 18, 568 354 1, 352	1 1 0 6 3 40 7 22 2 461 13, 104 97 1, 244 116 350 108 18 863 3, 734 41 8, 353 23, 711 41 495 495 1, 481 17 58 12 77 4 11, 100 10, 911 2 4 34, 620 157, 713 52, 697 161, 344 11, 354 620 157, 713 52, 697 161, 344 11, 354 15, 355 11, 976 13, 354 11, 917 13, 684 11 15, 352 11, 976 138 133 133	1	969 16, 669 322, 185 2, 000 1	969 16, 669 322, 185 2,000 18,000 1 1 1 1 1 1 1 1 1

Gross metal content of California crude ore shipped to smelters in 1941, by classes of ore

157, 713

961, 339

7, 587, 400

34, 620

183, 300

202, 500

	Materia	l shipped	Gross metal content								
Class of ore	Ore	Old tail- ings	Gold	Silver	Copper	Lead	Zinc				
Dry and siliceous gold Dry and siliceous gold-silver Dry and siliceous silver Copper Lead Lead-copper Zinc	Short tons 19, 127 5, 876 110 764 17, 968 2 963	Short tons	Fine ounces 9, 667 1, 976 1 90 3, 600	Fine ounces 19, 943 96, 785 1, 626 4, 366 166, 532 167	Pounds 96, 561 25, 095 85 122, 960 90, 651 182	Pounds 3, 966 982 7, 003, 526 304 1, 136	Pounds				
Total, 1940	44, 810 25, 380	9 3, 794	15, 334 9, 094	289, 419 272, 760	335, 534 2, 062, 343	7, 009, 914 3, 451, 025	773, 844				

Mine production of metals from California crude ore shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

· ·						i .	ŀ
	Ore	Old tail- ings	Gold	Silver	Copper	Lead	Zinc
	Shqrt tons	Short tons	Fine ounces	Fine ounces	Pounds	Pounds	Pounds
Amador	1, 545		1,876	1,873	2, 100		
Butte	4		7	4			
Calaveras	81	8	76	110			
Eldorado	103		73	55			
[mperial	320		188	28			
[nyo	12,819		3, 582	133, 205	58, 300	5, 302, 600	292, 700
Los Angeles	1			8			
Mariposa	15		19	12			
Mono	193		11	1, 115	4,000	30, 000	
Monterey	17		17	7			
Nevada	11	. 1	44	52			
Placer	81		350	849		900	
Plumas	184		289	91	400	1	
Riverside	5, 395		104	32, 259	10,000	1, 368, 000	
Sacramento	1		6	1			
San Bernardino	22, 917		7, 722	116, 462	105, 800	·24, 000	404,000
San Diego	1		13	9			l
Shasta	914		389	2, 954	117, 900		l
Sierra	l ī		10	2			
Siskiyou	7		62	24			
Trinity	20		43	28			
Tulare	liž		5	7			
Tuolumne	152		414	253	100		
Yuba	16		34	11			
Luba							
Гotal, 1940	44, 810 25, 380	9 3,794	15, 334 9, 094	289, 419 272, 760	298, 600 1, 980, 700	6, 725, 500 3, 272, 300	696, 700
10(81, 1940	20,000	3,754	5,051	212,100	1, 860, 700	3, 272, 500	
	BY	CLASSES	OF ORE				
Dry and siliceous gold	19, 127	9	9, 667	19, 943	91, 600	2, 700	
Dry and siliceous gold-silver	5, 876		1, 976	96, 785	15,000	900	
Dry and siliceous silver	110		1	1, 626			
Copper	764		90	4, 366	119, 600		
Lead	17, 968		3,600	166, 532	72, 300	6, 720, 900	
Lead-copper	2			167	100	200	
Zine	963					800	696, 70
	44, 810	9	15, 334	289, 419	298, 600	6, 725, 500	696, 70

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in California in 1941, by counties and districts, in terms of recovered metals 1

County and district 1		ines icing 2	Ore and old		Gold		Silver (lode	Copper	Lead	Zinc	Total value
	Lode	Placer	tailings	Lode	Placer	Total	and placer) 3	Сорры	Load	Zinc	1 otal value
Alpine County: Monitor	. 1		Short tons 423	Fine ounces 136	Fine ounces	Fine ounces 136	Fine ounces	Pounds	Pounds	Pounds	\$4,991
Camanche 4 East Belt 5 Ione	9	3 10 9	6, 474	3, 198	239 2, 421 12, 958	239 5, 619 12, 958	24 1, 585 1, 336	2,000			8, 382 198, 028
Mother Lode 6 Butte County:	14	18	634, 205	71, 825	9, 339	81, 164	20, 330	6, 000	14,000		454, 480 2, 856, 703
Butte Creek Enterprise	`′	(9)	(7)	(7)	913 50	8 913 50	* 86 7				8 32, 016 1, 755
Forbestown Golden Summit Magalia	i i	(9)	328 15 529	66 2 157	78 21 43	144 23 200	14 3 52				5, 050 807
Merrimac Oroville Yankee Hill	1 4	(°) 43	130 903	79 72	68, 787	130 68, 859	41 5, 161				7, 037 4, 579 2, 413, 735
Calaveras County: Camanche 4	. 2	1 15	77, 202	11, 113	3, 611 8, 541	14, 724 8, 541	24, 363 808				532, 665
Campo Seco Copperopolis	7	6	7, 030	955	779	779 955	93 789				299, 510 27, 331 34, 293
East Belt 5 Jenny Lind 10 Mother Lode 6	(⁷)	2 12 26	41, 590 (7) 418, 448	16, 469 (7) 27, 038	1, 041 8, 589 9, 570	17, 510 8 8, 589	2, 233 8 629	2, 300			614, 709 8 301, 062
Del Norte County: Crescent City (Beach)		(9)	410, 440	21,000	9, 570	36, 608 13	9, 257	Í			1, 288, 229 455
French Hill Eldorado County: East Belt ⁶	7	1			26	26	3				912
Mother Lode 6 West Belt	32 11	8 29 7	3, 061 72, 649 759	1, 144 19, 311 184	3, 588 15, 694 4, 297	4, 732 35, 005 4, 481	2, 000 3, 424 505				167, 042 1, 227, 846 157, 194
Fresno County: Auberry Copper King.		(0)	10	2	127	127	1				4, 470
Friant Sycamore	2	6	35	5	5, 958 4	5, 958 9					70 209, 197 315
Temperance Flat Humboldt County: Orleans	1	6	1	2	382	382					70 13, 409

GOLD, SILVER, COPPER, LEAD,

AND

Imperial County:	1	1	1	Ī	1. 1	1		1	1	. 1	
Cargo Muchacho	. 8	1	4, 283	1,823	19	1, 842	346				64, 716
Mesquite Diggings	2	(9)	14, 830	604	5	609	163				21, 431
Picacho		(9)			21	21					735
Pot Holes		1			7	7					245
Inyo County:		1							i	i l	
Alabama Hills	2		23	. 13		13	14				465
Bishop Creek	3		14	11 31		11 31	11 18, 626	11 227, 500			11 41, 175
Carbonate	1		32	4		-4	232		9, 300		835
Chloride Cliff	10		1, 837	742		742	1, 391				26, 959
	1 .		110	, v		1	21		3, 900		272
Coso Echo Canyon	1 (113 14	28		28	1, 855 5		•22, 800		3, 599
Fish Springs	1 1		62	28		28	31				319 1,002
Marble Canyon.	1		02	48		20 22	91				770
Modoc	5		942	126		126	782	100	17,000	438,000	38, 797
Olancha	ĭ		300	120		120	31	100	3, 300	430,000	420
Sherman	3		24, 660	6,091		6,091	107		3, 300		213, 261
South Park	18		2,842	1, 702		1, 702	4, 313	1.300	23, 700		64, 141
Ubehebe	1 1		2,012	1,.00		1, 100	2,010	1,000	20, 100		315
Union	3	1	464	263	11	274	1, 665				10, 774
Wancoba	l ĭ		34				218		6, 700		537
White Mountains	2		67	28		28	855		14,000		2, 386
Wild Rose	6		8, 386	3, 641		3, 641	3, 673	100	48, 700		132, 835
Kern County:				-,		-,	-,		,		
Amalie	. 3		2,024	263		263	125				9, 294
China Grade		1			152	152	25				5, 338
Cove	.] 1		43, 914	6, 039		6, 039	10, 360	300	18,000		219, 793
Goler	. 2	1	5	3	30	33	13				1, 164
Greenhorn	2	1	9	3	5	_8					280
Green Mountain	. 9	1	966	753	1	754	308				26, 609
Havilah	6	2	203	61	20	81	55				2,874
Keyes	۱ 🚜	1	326	228	1 4	232	135				8, 216
Mojave Rademacher	23	1	218, 731 163	60, 218	1	60, 219 53	853, 009	1, 700			2, 714, 450
Randsburg 12	33	1	468, 105	11 11, 955	37	11 11, 992	11 3, 950				1, 860 11 422, 529
Red Rock	99	1 1	100, 100	11, 900	91	11, 992	107				76
Sageland	2		170	149		149	77				5, 270
Summit			110	130		1 1 1	"				35
White River	2	1 1	52	15	37	52	21				1, 835
Lassen County:			02	1		. 02	41				1,000
Diamond Mountain	2	1	64	28		28	24		l	! !	997
Hayden Hill	2		70	25		25	17				887
Milford	5		iĭ	8		- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	21				295
Los Angeles County:	1 -			1						[
Cedar	. 5		32, 231	4, 251		4, 251	1, 817	2.000		[150, 313
Iron Mountain	ĭ		684	56		56	17				1, 972
/ Muroc	. 2		39	96		96	45				3, 392
Neenach	. ī		1, 164	680		680	395				24, 081
Palomas	.	1			28	28	10				987
San Gabriel		3		l	60	60	3		l		2, 102
Mar. 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4											•

See footnotes at end of table.

Mine production of gold, silver, copper, lead, and zinc in California in 1941, by counties and districts, in terms of recovered metals—Con.

adera County: Chowchilla River 13. Dennis. Hildreth. Potter Ridge. ariposa County: East Belt 5. Hunter Valley 14. Mother Lode 6. erced County: Chowchilla River 13. Hunter Valley 14. Snelling. ono County: Blind Springs. Bodie. Chidago. Homer. Mammoth Lakes. Masonic. Plute. West Walker River. onterey County: Los Burros apa County: Calistoga. vada County: French Corral. Grantieville.	6 6 18 12 23	3 14 13	Short tons 1, 167 456 4, 930 25, 709 104, 502 61 122, 813 947	3 5, 476	49 636 77 434 83 6, 526 3, 329 26 1, 103 43, 184	49 636 279 533 1, 528 13, 631 17, 443 26 1, 103 43, 184	, , , , ,	Pounds 2, 000 2, 000	8,000		\$1, 72; 22, 38; 9, 86; 18, 75(53, 73; 480, 61(614, 84; 91; 38, 77(1, 514, 504;
Chowchilla River 15 Dennis Dennis Hildreth. Potter Ridge arriposa County: East Belt 5 Hunter Valley 16 Mother Lode 6 erced County: Chowchilla River 12 Hunter Valley 14 Snelling ono County: Blind Springs Bodie Chidago Homer Mammoth Lakes Masonic Plute West Walker River onterey County: Los Burros apa County: Calistoga vada County: French Corral	6 6 18 12 23	3 14 13 1 2 5	1, 167 456 4, 930 25, 709 104, 502	202 99 1, 445 7, 105 14, 114	49 636 77 434 83 6, 526 3, 329 26 1, 103 43, 184	49 636 279 533 1, 528 13, 631 17, 443 26 1, 103 43, 184	10 180 139 142 352 4, 625 5, 124 7 239 4, 309	2, 000 2, 000	8,000		22, 38 9, 86 18, 75 53, 73 480, 61 614, 84 911 38, 777 1, 514, 504
Hildreth. Potter Ridge ariposa County: East Belt ⁵ Hunter Valley ¹⁶ Mother Lode ⁶ ereed County: Chowchilla River ¹³ Hunter Valley ¹⁶ Snelling. ono County: Bilnd Springs Bodie. Chidago. Homer. Mammoth Lakes. Masonic Plute West Walker River. onterey County: Los Burros apa County: Calistoga. svada County: French Corral.	6 6 18 12 23	3 14 13 1 2 5	456 4, 930 25, 709 104, 502	99 1, 445 7, 105 14, 114	77 434 83 6, 526 3, 329 26 1, 103 43, 184	279 533 1, 528 13, 631 17, 443 26 1, 103 43, 184	139 142 352 4, 625 5, 124 7 239 4, 309	2, 000 2, 000	8,000		9, 86 18, 750 53, 730 480, 610 614, 84 911 38, 777 1, 514, 504
Potter Ridge ariposa County: East Belt 4. Hunter Valley 4. Mother Lode 6. erced County: Chowchilla River 13. Hunter Valley 14. Snelling ono County: Blind Springs Bodie. Chidago Homer Mammoth Lakes. Masonic Plute West Walker River. onterey County: Los Burros apa County: Calistoga. vada County: French Corral.	18 12 23	9 3 14 13 1 2 5	456 4, 930 25, 709 104, 502	99 1, 445 7, 105 14, 114	434 83 6, 526 3, 329 26 1, 103 43, 184	533 1, 528 13, 631 17, 443 26 1, 103 43, 184	352 4, 625 5, 124 7 239 4, 309	2, 000 2, 000	8,000		18, 75 53, 73 480, 61 614, 84 91, 38, 77 1, 514, 50
East Belt 4 Hunter Valley 14 Mother Lode 6 erced County: Chowchilla River 13 Hunter Valley 14 Snelling Ono County: Blind Springs Bodie Chidago Homer Mammoth Lakes Masonic Plute West Walker River onterey County: Los Burros apa County: Calistoga	12 23	14 13 1 2 5	25, 709 104, 502 	7, 105 14, 114	6, 526 3, 329 26 1, 103 43, 184	13, 631 17, 443 26 1, 103 43, 184	4, 625 5, 124 7 239 4, 309	2,000	8,000		480, 61 614, 84 91 38, 77 1, 514, 50
Hunter Valley 14 Mother Lode 6 ereed County: Chowchilla River 13 Hunter Valley 14 Snelling ono County: Blind Springs Bodie. Chidago Homer Mammoth Lakes. Masonic Plute. West Walker River onterey County: Los Burros apa County: Calistoga. vada County: French Corral	12 23	14 13 1 2 5	25, 709 104, 502 	7, 105 14, 114	6, 526 3, 329 26 1, 103 43, 184	13, 631 17, 443 26 1, 103 43, 184	4, 625 5, 124 7 239 4, 309	2,000	8,000		480, 61 614, 84 91 38, 77 1, 514, 50
erced County: Chowchilla River 13 Hunter Valley 14 Snelling ono County: Blind Springs Bodie Chidago Home: Mammoth Lakes Masonic Plute Plute West Walker River opper County: Los Burros apa County: Calistoga vada County: French Corral	3 4	1 2 5	61 122, 813	3 5, 476	26 1, 103 43, 184	26 1, 103 43, 184	7 239 4, 309				91 38, 77 1, 514, 50
Hunter Valley 14 Snelling ono County: Blind Springs Bodie Chidago Homer Mammoth Lakes Masonic Plute West Walker River onterey County: Los Burros apa County: Calistoga	3 4	5	61 122, 813	3 5, 476	1, 103 43, 184	1, 103 43, 184 3	4, 309				38, 77 1, 514, 50
Snelling ono County: Blind Springs Bodie Chidago Homer Mammoth Lakes Masonic Plute West Walker River onterey County: Los Burros apa County: Calistoga vada County: French Corral	3 4	. 5	61 122, 813	3 5, 476	43, 184	43, 184	4, 309				1, 514, 50
Blind Springs Bodie Chidago Homer Mammoth Lakes Masonic Plute Vest Walker River onterey County: Los Burros apa County: Calistoga vada County:	3 4 15 4		122, 813	5, 476		3	720				A1
Bodie Chidago Chidago Homer Mammoth Lakes Masonic Plute West Walker River onterey County: Los Burros apa County: Calistoga vada County: French Corral	4 15 4		122, 813	5, 476			12U I				
Homer Mammoth Lakes Masonic Piute West Walker River onterey County: Los Burros apa County: Calistoga vada County: French Corral	15 4		047			5, 476	35.661				217, 01
Mammoth Lakes Masonic Plute West Walker River onterey County: Los Burros apa County: Calistoga vada County: French Corral	4		17, 878	425		425			900		16, 11
Masonic Plute West Walker River onterey County: Los Burros apa County: Calistoga vada County: French Corral	3		759	3, 294 274		3, 299 274	910 5, 324	4,000	27, 700		116, 11 15, 42
West Walker River	3		12	11 13		11	41				41
onterey County: Los Burros	1		24 60	13		13 4	118		1, 400		61 14
evada County: French Corral	1		17	17		17	7				60
	. 1		6, 599	350		350	36, 121	2,000			38, 17
	2	(7)	35	10	(7)	18 10					15 35
Grass Valley-Nevada City	3 21	10	793, 341	20 270, 059	6, 392	20 276, 451	444, 206	26, 000	10 000		9, 995, 30
North Bloomfield	2	8	1, 750	160	2, 134	2, 294	184				80, 42
Washington You_Bet	4	10	1, 570	347	1, 781 709	2, 128 709	197 72				74, 62 24, 86
ange County: Santa Rosa	1		403	18		18			14,000	32,000	7, 27
acer County:	7	2.	1, 061	516	649	1, 165	626		900		41, 27
Canada Hill	i		13	6		6	3				21
Dutch Flat Foresthill	1	6	2, 180 240	371 99	954	1, 325	156				46, 48
Iowa Hill			240	99	901 1, 219	1,000 1,219	131 169				35, 09 42, 78
Last Chance		10									

GOLD, SILVER, COPPER,

LEAD, AND

ZINC

Michigan BluffOphir		19	111, 740	24, 896	772 9, 678	772 34, 069	80 55, 036	8,000	43, 100		27, 07 1, 234, 95
umas County:	l									1	
Genesee		5	(7)	(7)	109	8 109	* 10	(7)	(7)		8 3, 82
Granite Basin			104	37	54	91	17				3, 19
Greenville		(7)	27, 990	5, 957	(7)	18 5, 957	15 1, 807				15 209, 82
Johnsville	. 3	3	1,085	332	469	801	138				28, 13
La Porte		5			685	685	62				24, 01
Lights Canyon		1 1	714	74	1,673	1,747	156 232				61, 25
Quincy		2	366 76	97 68	2,640	2,737	63		4,000		95, 96 7, 09
Seneca	. 3	0	70	08	127	195	03		4,000		7, 08
verside County:	3	i		231		001	38			1 1	8. 11
Chuckawalla		2	17			231			400		
Dale 16 Eagle Mountain	13	2	2,000	1, 139 128	2	1, 141	90 32, 244	10.000	1, 367, 600		40, 02 106, 54
Lagie Mountain	. 4		5, 446 288	128		128 103		10,000	1, 307, 000		3, 60
Gold Park				103	,		4				
Ironwood Pinacate			149	21	6	66 27	17				2, 32
		1	89	21	0	27	1				95
Pinon.	-) 1		. 0	Z		Z					•
cramento County: Cosumnes River	1	7			01 000	01 000	0.001			1	1 100 70
Cosumnes River	-				31,660	31, 660	2,301				1, 109, 73
Folsom	. 2	13	2	13	147, 972	147, 985	7, 931				5, 185, 11
n Bernardino County:	1 -							ļ		1	
Amargosa			94	32		32	10				1, 12
Amboy			44	48		48	24				1, 69
Barstow	. 2		760 159	167 140		167	145				5, 94
Bellville	1 7				1	141	62	200			5,00
Black Hawk	1 1:		45	338		338	218				11, 98
Buckeye	. 3		16, 100	5, 918		5, 918	16, 145	86, 800			228, 8
Calico	1 7		2,898	18		18	14,746	500			11, 17
Clark Mountain			6, 873	513		513	1,921	400			20, 51
Coolgardie		3			55	55	2 2 7				1, 98
Dale 16			17, 453	4,921		4, 921	3, 617				174, 80
Fremont Peak	. 3		177	11		11					38
Goldstone			1	3							10
Hart	. 1		4, 253	703		703	443				24, 9
Holcomb Valley	(7)	3	(7)	(7)	216	• 216	8 10				8 7, 5
Ivanpah			640	23]]	23	55	300	2, 300	410,000	31, 76
Kelso	. 2		1,481	189		189	495				7, 2
Kramer Hills		1			11	- 11					38
New York Mountains			40	2		2	3				7
Old Woman Mountains			215	41		41	1, 582				2,56
Paradise	1		370	18		18					63
Randsburg 13	. 11	(7)	14, 569	2, 278	. ტ	15 2, 278	15 121, 981	15,000			15 168, 24
Signal	. 4		18	26		26	24	200			95
Silver Mountain	. 9		96	. 52		52	461		3, 800		2, 36
Slate Range	. 8		13	7		7	171	100	200		39
Soda Lake	. 1		2	1	[1	***********				3
Solo	. 6		298	495		495	249		********		17, 50
Spangler	1 1		34	8	(A			, , , , , , , , , , , , , , , , , ,		28

See footnotes at end of table.

Mine production of gold, silver, copper, lead, and zinc in California in 1941, by counties and districts, in terms of recovered metals—Con.

County and district		ines ucing	Ore and old		Gold		Silver (lode	Copper	Lead	Zinc	Total value
County and district	Lode	Placer	tailings	Lode	Placer	Total	and placer)	Зэррэг			
San Bernardino County—Continued. Summit Valley		1	Short tons	Fine ounces	Fine ounces	Fine ounces	Fine ounces	Pounds	Pounds	Pounds	\$35
Turtle Mountains Vanderbilt Whipple Mountains	1 2		15 -43 144	20 19 58		20 19 58	55 64	100 2, 400	1, 200		701 784 2, 359
San Diego County:	4		34 1, 029	24 277		24 277	12 38				849 9, 722
Pine Valley. San Francisco County: San Francisco San Joaquin County: Camanche 4	1	(9)	2,020		19 16, 572	19	3 1, 762				581, 273
Jenny Lind ¹⁹ San Luis Obispo County: La Panza Santa Cruz County: Santa Cruz		4			7, 169	7, 169 9					251, 092 315 317
Shasta County: Flat Creek	2		232, 964	13, 368	100	13, 468 15 5, 386	19, 382 18 3, 088	117, 900			499, 075 15 190, 718
French Gulch Harrison Gulch Igo	2	(7) 23	17, 183 131	5, 386 128	20, 261	128 20, 261	24 1, 821				4, 497 710, 430
North Cow Creek Old Diggings: Redding	1 1	1 1 2	2 1, 261	47 443	347 102 2, 944	347 149 3, 387	52 93 464				12, 182 5, 281 118, 875
Shasta Slate Creek Sierra County:	1	1 2	1, 195 60	457 28	112 105	569 133	162 24				20, 030 4, 672
Alleghany Downieville Gold Lake	1	7 20	48, 552 100 105	14, 442 38 35	3, 904 (7)	15, 001 3, 942 15 35	2, 814 412 15 7				527, 142 138, 263 15 1, 230
Pike. Poker Flat Sierra City	2	2 5	13, 022 15 2, 791	2, 100 12 202	142 467 128	2, 242 479 330	842 45 90	1, 100	10,000		79, 769 16, 797 11, 814
Siskiyou County: Callahan	4	11 3	191	127	15, 386	15, 513	2, 100				544, 448 88, 289
Deadwood Gazelle Greenhorn	1 2	<u>5</u>	207 120 98	186 14 225	2, 328 1, 003	2, 514 14 1, 228	7 173				495 43, 103
Humbug	13 12	7 31 19	142 761 644	65 448 202	2, 912 38, 307 2, 886	2, 977 38, 755 3, 088	5, 836				104, 557 1, 360, 575 108, 412
Quartz Valley Salmon River		11	19	26 17	1, 195 1, 283	1, 221	208				42, 883 45, 642

Scott Bar	3	1	1,041	491	82	573 11	114				20, 136 385
Soda Creek		1			11	11					900
Stanislaus County: Knights Ferry		1 4			12,049	12,049	1.071				422, 477
La Grange		3			13, 423	13, 423	1, 243				470, 689
Trinity County:		"			10, 120	10, 120	1,210				2.0,000
Big Bar	1	3	30	19	282	301	37				10, 561
Crow Creek	2	2	5	32	133	165	11				5, 783
Hayfork	(7)	9	(7)	(7)	3, 357	8 3, 357	8 505				8 117, 854
Helena	`´1	li	`´ 98	52	327	379	57				13, 306
Junction City	1	8	49	15	11,710	11, 725					411, 145
Lewiston	5	12	796	181	5, 695	5, 876	627				206, 106
New River	1	4	100	8	106	114	15				4,001
Salver		1			956	956	71				33, 510
Trinity Center	1	. 5	20	4	10, 279	10, 283	1, 440				360, 929
Weaverville] 3	20	91	31	9, 504	9, 535	875				334, 347
Tulare County:			1 1 2				_	'			
Camp Nelson	1		12	_5		5	7				180
White River	2		424	- 70		70	49				2, 485
Tuolumne County:		_					=40				00 117
East Belt 4	30	2	3, 32.	1,850	481	2, 331	748 4, 982	10.000			82, 117 722, 748
Mother Lode 6	11	8	130, 967	11, 198	9, 317	20, 515	4, 982	10,000			5, 317
West Belt	1		1, 110	151		151	40				0, 311
Ventura County:											140
Piru	! !	2	65	2 15	Z	15					529
Snowey	1		00	10		15					020
Yuba County: Bear River		(9)		1	91	91	46				3, 218
Browns Valley		()	18, 600	3, 686	1	3, 686	273				129, 204
Camptonville		8	10,000	0,000	270	270	31				9, 472
Challenge		l ĭ	61	23	5	28	4				983
Dobbins		l â	316	138	575	713	110				25, 033
Smartville	•	4	020		8, 934	8, 934	668				313, 165
Strawberry Valley		3			1, 237	1, 237	107				43, 371
Yuba River		1			73, 964	73, 964	4, 237				2, 591, 753
Other districts 17		16	407, 295	29, 570	11, 439	41, 009	306, 210	7, 344, 600	5, 226, 600		2, 817, 643
Total California	835	724	4, 280, 185	11 690, 780	718, 013	11 1, 408, 793	11 2, 154, 188	11 7, 886, 000	6, 928, 000	880, 000	11 52, 231, 066

1 Only those districts shown separately for which Bureau of Mines is at liberty to publish figures: others producing listed in footnote 17 and their output included under "Other districts."

2 Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.

3 Source of total silver as follows: 2,088,713 ounces from lode mines and 65,475 ounces

 Camanche district lies in Amador, Calaveras, and San Joaquin Counties.
 East Belt district lies in Amador, Calaveras, Eldorado, Mariposa, and Tuolumne Counties.

Mother Lode district lies in Amador, Calaveras, Eldorado, Mariposa, and Tuolumne Counties.

Included under "Other districts."

Exclusive of lode output, which is included under "Other districts."
Output of property not classed as a "mine."

10 Jenny Lind district lies in Calaveras and San Joaquin Counties.

11 Includes metals from tungsten concentrates from ore not included in "Ore and old tailings" tonnage.

Randsburg district lies in Kern and San Bernardino Counties.
 Chowchilla River district lies in Madera and Merced Counties.

18 Chowchilla River district lies in Madera and Merced Counties.
18 Hunter Valley district lies in Mariposa and Merced Counties.
18 Exclusive of placer output, which is included under "Other districts."
18 Dale district lies in Riverside and San Bernardino Counties.
19 Includes following: Butte Creek district (lode) in Butte County; Jenny Lind (lode) in Calaveras County; Davis Flat in Fresno County; Resting Springs in Inyo County; French Corral (placer) in Nevada County; Genessee (lode), Greenville (placer), and Rich Bar in Plumas County; Holcomb Valley (lode), Randsburg (placer), and Ship Mountain in San Bernardino County; French Gulch (placer) in Shasta County; Depot Hill, Cald Leis (places) and Port Wine in Slatera County; Coffee Creek and Hayfork (lode) Gold Lake (placer), and Port Wine in Sierra County; Coffee Creek and Hayfork (lode) in Trinity County.

ALPINE COUNTY

Monitor district.—Lessees worked the Zaca mine during 1941; the principal product was gold concentrates shipped to a smelter.

AMADOR COUNTY

Camanche district.—The Independence Gold Mines treated 12,100 cubic yards of gravel at a stationary washing plant between July 30 and October 12, 1941, recovering 187 ounces of gold and 19 ounces of silver.

East Belt district.—The Belama Corporation worked the Belden mine in the Volcano section of the East Belt during 1941 and treated 4,069 tons of ore in a 25-ton flotation mill; amalgamation, cyanidation, and smelting of concentrates yielded 2,079 ounces of gold and 634 ounces of silver. E. Schaefer shipped 145 tons of ore, containing 458 ounces of gold, 276 ounces of silver, and 2,575 pounds of copper, from the Elkhorn mine to a smelter. The Gwalia Gold Mining Co. worked the Pioneer mine and recovered gold by amalgamation and the smelting of flotation concentrates. Kent & Nimmo treated 1,500 tons of ore at the Three-in-One mine; bullion containing 170 ounces of gold and 51 ounces of silver was recovered by amalgamation, and table concentrates containing 18 ounces of gold, 15 ounces of silver, and 145 pounds of copper were shipped to a smelter. Garibaldi Bros. operated a nonfloating washing plant, to which gravel was delivered by mechanical means, at the Garibaldi mine, Pioneer Creek, one-half mile east of Volcano, intermittently during 1941; 33,200 cubic yards of gravel yielded 229 ounces of gold and 35 ounces of silver. The River Pine Mining Co. operated a dragline dredge near Aukum, which used a dragline excavator with a 1%-cubic yard bucket, from January 1 to June 12, when it was moved to a site in Eldorado County near Nashville; 300,000 cubic yards of gravel yielded 1,380 ounces of gold and 192 ounces of silver.

Ione district.—The Amador Dredging Co. operated a dragline dredge in the Ione district during 1941. The Arroyo Seco Gold Dredging Co. operated an electric connected-bucket dredge, equipped with eighty-six 6-cubic foot buckets, from January 1 to May 15. The Lancha Plana Gold Dredging Co. operated an electric connectedbucket dredge, equipped with sixty-five 4½-cubic foot buckets, on Jackson Creek near Buena Vista from January 1 to May 4, when it was dismantled and moved to Butte Creek, Butte County. Kreth operated the Horton mine in Jackson Valley 5 miles south of Ione by hydraulicking from January to June and from October to McQueen and Downing operated a dragline dredge at the December. Irish Hill mine from March 28 to June 25. Lorentz and Swingle operated a dragline dredge on the Cosumnes River 7 miles northwest of Plymouth during 1941. The Pacific Placers Engineering Co. operated a dragline dredge with an electric dragline excavator, which used a 2%-cubic yard bucket, on the McCulloh property from January 1 to February 8 and from May 13 to December 31; 350,000 cubic yards of gravel yielded 2,749 ounces of gold and 258 ounces of silver. The Rim Cam Gold Dredging Co. operated a dragline dredge on the Yager ranch from February 4 to May 26.

Mother Lode district.—The Argonaut Mining Co., Ltd., operated the Argonaut mine throughout 1941; gold ore was treated by amalgama-

tion and flotation. During the year the company installed a 10-ton cvanide plant to handle concentrates from the Argonaut mine and the nearby Plymouth property, where it had treated old tailings by flotation; until this cyanide plant was put into operation, the concentrates were shipped to a smelter. The Central Eureka Mining Co. operated the Central Eureka and Old Eureka mines; the ore was treated by amalgamation and flotation, and the sands and concentrates were The Black Hills Mining Co. worked the Italian mine. The Kennedy Mining & Milling Co. operated the Kennedy mine throughout 1941; gold ore was treated by amalgamation and flotation, and the concentrates were shipped to a smelter. The Keystone Mine Syndicate worked the Keystone mine; 97,945 tons of ore were treated in the company 300-ton amalgamation-flotation mill; 1,984 ounces of gold were recovered in bullion, and 9,226 ounces were contained in 747 tons of concentrates shipped to a smelter. Tailings Co. continued to cvanide material derived from old tailings collected in the channel of one of the streams draining a section of the Mother Lode district; two such deposits were worked during 1941. Henry & Weaver operated a dragline dredge, equipped with a dragline excavator and a %-cubic yard bucket, on the Allen ranch on Sutter Creek Gulch from November 22 until December 12. On Little Indian Creek 4 miles west of Plymouth W. D. Ingram operated a dragline dredge, which had two dragline excavators—one with a 2½cubic yard and the other with a 1-cubic yard bucket—from January 1 to May 11; the tailings were leveled and the overburden replaced, fitting the land for further agricultural use. The Mountain Gold Dredging Co. operated a dragline dredge with a dragline excavator, using a 1½-cubic yard bucket, on the Matulich property in the Drytown section of the Mother Lode intermittently during 1941. Ingram and the Mountain Gold Dredging Co. operated dragline dredges on the W. F. Detert estate also during 1941. J. C. Pantle operated a dry-land dredge on the Rupley ranch on Willow Creek; 360,000 cubic yards of gravel yielded 1,850 ounces of gold and 254 ounces of silver. E. L. Lilly operated a dragline dredge, which employed a dragline excavator with a 24-cubic yard bucket, on the Treble Clef mine from January 1 to June 14 and from July 2 to December 16.

BUTTE COUNTY

Butte Creek district.—The Lancha Plana Gold Dredging Co. moved its connected-bucket dredge from Amador County to Butte County and resumed operations October 22, 1941. The Piedmont Dredging Co. operated a Becker-Hopkins type dredge on Butte Creek intermittently from September 24 until the end of the year; 29,592 cubic yards of gravel yielded 121 ounces of gold and 10 ounces of silver.

Magalia district.—S. F. Thomas operated the S & D mine from January 1 to September 1, 1941, when work was suspended; 529 tons

of ore yielded 157 ounces of gold and 45 ounces of silver.

Oroville district.—Yuba Consolidated Gold Fields (Butte Unit) operated four electric connected-bucket dredges in the Oroville district during 1941; the dredge-bucket equipment per boat was as follows: Eighty-four 9-cubic foot, eighty-nine 9-cubic foot, eighty-seven 9-cubic foot, and seventy-one 6-cubic foot buckets. The Sunmar Dredging Co. operated a dragline dredge, which used a dragline excavator with a 1½-cubic yard bucket, on the Clark, Cratt and Schwartz, Crowder and Binney, Darby, Darby and Crowder, Leal, and Schwartz and Pedrazzini properties. The Placer Exploration Co. operated two dragline dredges—one employed a dragline excavator with a 5-cubic yard bucket and the other a dragline excavator with a 2½-cubic yard bucket—on several properties in the district, including the Dagorret, California Lands, Inc., and Innis. The Golden Feather Dredging Co. operated a dragline dredge, equipped with a dragline excavator and a 5-cubic yard bucket, on Feather River near Oroville Kaufield and Danison worked the Ford property with a during 1941. nonfloating washing plant to which gravel was delivered with a dragline excavator, using a 1-cubic yard bucket, from October 15 to December 31. Wm. Richter & Sons operated dragline dredges on the Belkriet, Bilkli, Freidel, Helen Whittier, Hume and Coleman, John Alm, Lorrie, Ray Angle, Rottinger, and Wyandotte properties. Interstate Mines, Inc., and Placer Exploration Co. operated dragline dredges on the Gianella ranch. The Oroville Gold Dredging Co. operated a Yuba connected-bucket dredge, with seventy-two 8½-cubic foot buckets, on the Hazelbusch and T. M. Rogers tracts on Feather River 9 miles southwest of Oroville during 1941. The Lemroh Mining Co. operated a dragline dredge, using a dragline excavator with a 2½-cubic vard bucket; 504,848 cubic yards of gravel yielded 2,739 ounces of gold and 195 ounces of silver. The Lobicasa Co. and the Sunmar Dredging Co. operated dragline dredges on the Peters ranch during 1941. The Placer Development Co. operated a dragline dredge with a dragline excavator having a 21/2-cubic yard bucket at Meadows 3 miles south of Oroville. The Gold Hill Dredging Co. operated an electric connected-bucket dredge with seventy-four 9-cubic foot buckets on the Wilton Kister ranch on the east side of Feather River 7 miles south of Oroville.

Yankee Hill district.—Hoefling Bros. worked the Surcease mine and operated the company new flotation-cyanidation mill throughout 1941; most of the resulting concentrates were cyanided. Piombo Bros. & Co. operated a dragline dredge, using a dragline excavator with a 1½-cubic yard bucket, on French Creek from January 1 to

December 31.

CALAVERAS COUNTY

Camanche district.—The Gold Hill Dredging Co. operated its electric-connected bucket dredge on the Arlington and Osterman properties along the Mokelumne River from January 1 to May 21, For 6 months Cat Camp Placers operated a nonfloating washing plant to which gravel was delivered by carry-all; 100,000 cubic yards of gravel yielded 605 ounces of gold and 34 ounces of silver. The Lobicasa Co. operated a dragline dredge, using a dragline excavator with a 3-cubic yard bucket, on the City of Stockton reservoir site from July 1 to December 23, when the ground was worked out. Burson Mining Co. operated a dry-land dredge on the Foster ranch intermittently; 495 ounces of gold and 37 ounces of silver were recovered from 55,200 cubic yards of gravel. From January 1 to July 22 Mehrten Bros. operated a nonfloating washing plant to which gravel was delivered by carry-all; 146 ounces of gold and 15 ounces of silver were recovered from treatment of 16,200 cubic yards of gravel. From January 18 to March 25 the Midas Placer Co. operated a nonfloating washing plant on high-channel gravel at the Penn gold-copperzinc lode property. E. A. Bacon operated a nonfloating washing plant, to which gravel was delivered by bulldozer and carry-all, at the

Wallace mine during 1941.

Campo Seco district.—Glo-Bar Mines operated the Glo-Bar drift mine in 1941. The Ralford Mining Co. operated a dragline dredge, using a dragline excavator with a %-cubic yard bucket, on the Wm. P. Hiatt ranch from February 1 to July 10; 25,000 cubic yards of gravel yielded 199 ounces of gold and 14 ounces of silver.

Copperopolis district.—The Jumbo Consolidated Mining Co. turned over the Mountain King mine to the El Gabilan Corporation during 1941; gold ore was treated by flotation, and the gold concentrates

were shipped to a smelter.

East Belt district.—The St. Joseph Lead Co. worked the Sheepranch mine throughout 1941; the ore was treated in a 150-ton amalgamationflotation mill, and the concentrates were shipped to a smelter. The Horseshoe Dredging Co. operated a dragline dredge on Jesus Maria

Creek from July 25 to October 24.

Jenny Lind district.—F. S. Tower operated the Royal mine during 1941; the ore was treated in a 20-stamp mill that employed amalgamation, flotation, and vanner concentration. Thompson Dredge operated a dragline dredge having a dragline excavator with a 21/2cubic yard bucket on the Gregory, Sinclair, and Dickhaut ranches 1% miles southwest of Jenny Lind from January 1 to April 20; later in the year the dredge was operated in Siskiyou County by the Shasta Dredging Co. C. F. Vanciel operated a dragline dredge. using a dragline excavator with a 11/2-cubic yard bucket, at the Hatler mine 5 miles west of Jenny Lind on Calaveras River from February 20 to April 26; 552 ounces of gold and 27 ounces of silver were recovered from 87,848 cubic yards of gravel. G. T. Oien operated a nonfloating washing plant to which gravel was delivered by mechanical means. The Horseshoe Dredging Co. and the Stagan Mining Co. operated dragline dredges on the Robie property on Calaveras River 2 miles southwest of Jenny Lind during 1941. The Stagan Mining Co. also operated its dragline dredge on the Willits ranch from October 15 to December 31; the dragline excavator had a 1\%-cubic yard Henry & Weaver operated a dragline dredge, using a dragbucket. line excavator with a %-cubic yard bucket, on Neapolitan Gulch from July 23 to November 7. The Wolhall Dredging Corporation operated a dragline dredge which had a dragline excavator with a 2-cubic yard bucket near Jenny Lind intermittently in 1941.

Mother Lode district.—The Carson Hill Gold Mining Corporation treated 381,326 tons of gold ore at the Carson Hill mine during 1941 and produced amalgamation bullion containing 5,835 ounces of gold and 559 ounces of silver; eyanidation bullion containing 15,390 ounces of gold and 5,141 ounces of silver; and 48 tons of gravity concentrates which, after partial extraction by amalgamation, contained 1,046 ounces of gold, 1,473 ounces of silver, and 590 pounds of copper when delivered to a smelter. According to the company printed annual report for the year ended September 30, 1941, the average recovery was \$2.15 per ton of ore compared with \$2.19 for the year ended September 30, 1940. Operating costs (including 4,251 feet of development work and maintenance and improvement of plant) were reported as \$1.94 per ton compared with \$1.90 for the preceding

Because of the narrow-profit margin and rising costs, no orereserve figures were given. R. Hageman operated the Del A Ray mine from August 15 until the end of the year; 700 tons of ore were treated by amalgamation and concentration, and bullion, containing 200 ounces of gold and 40 ounces of silver, and 11 tons of concentrates. containing 3 ounces of gold, were produced. Le Roi Mines, Inc., worked the Easyz Bird mine and operated its 125-ton flotation mill from February 10 until the end of 1941; most of the gold was recovered by the smelting of concentrates. The Horseshoe Dredging Co. operated a dragline dredge on the Beers, Gertzen, and Osborn ranches. The Ean Andreas Gold Dredging Co., which was sold to Thurman & Wright March 7, 1941, operated two dragline dredges on the Fischer, Hageman-Huberty, Hageman, Lombardi, and Nuner properties; each dragline excavator had a 1½-cubic vard bucket. Fire Protection Engineering Co. operated a nonfloating washing plant, to which gravel was delivered by mechanical means. Placers and A. W. Ellis operated a stationary washing plant, to which gravel was delivered by a power shovel, on the Quartz Hill property; 11,270 cubic yards of gravel yielded 298 ounces of gold and 30 ounces of silver. The Imperial Dredging Co. operated a dragline dredge on the White property from April 1 to September 4.

ELDORADO COUNTY

East Belt district.—The Cosumnes Mines, Inc., treated gold ore from a group of claims in the Grizzly Flat section of the East Belt by amalgamation and concentration in 1941. The Eagle King Mining Co. worked the Eagle King mine; gold ore was treated in a 40-ton flotation mill, and the concentrates were shipped to the Empire Star mill in Grass Valley for cyanidation. The Greenhorn Dredging Co. operated a dragline dredge on the Barkley property near Youngs. W. D. Ingram operated a dragline dredge at Horseshoe Bar on American River from October 7 to December 31; dredging was conducted also in Placer County part of the year, as the river passes through the property and the center of the river is the county line.

Mother Lode district.—The Alhambra-Shumway Mines, Inc., worked the Alhambra mine from January 1 to June 1, 1941; 1,983 tons of ore treated by amalgamation and flotation yielded bullion, containing 799 ounces of gold and 111 ounces of silver, and 17 tons of concentrates containing 123 ounces of gold and 19 ounces of silver. The Madre de Oro Gold Mines, Inc., reopened the Church mine and treated 496 tons of ore in a 3-stamp mill; gold bullion containing 149 ounces of gold and 35 ounces of silver was recovered by amalgamation, and 5 tons of concentrates containing 20 ounces of gold and 5 ounces of silver were recovered by flotation; the company constructed a 20-stamp mill. The California Aztec Mining Co. operated its Kelsey Unit from January 1 to September 24 and treated ore by amalgamation and flotation in a 50-ton mill. The Middle Fork Gold Mining Co. operated the Sliger mine and treated the ore in a 160-ton amalgamation-flotation mill; during 1941 a new changehouse was completed at the property. This company's recent development of a method 1 using tailings for stope filling has proved very successful.

¹ Plumb, C. W., Filling Mine Stopes with Mill Tailings: Min. Cong. Jour., vol. 28, No. 1, January 1942, pp. 12-14.

The El Dorado Dredging Corporation operated a dragline dredge using a dragline excavator with a 1½-cubic yard bucket on Coloma Creek 2 miles south of Greenwood from January 1 to March 6; 833 ounces of gold and 124 ounces of silver were recovered from 106,078 cubic yards of gravel. This company moved its equipment to the Hughes property on Rock Canyon Creek and handled 338,940 yards of gravel, from which 2,630 ounces of gold and 281 ounces of silver were recovered between March 17 and October 28; at the end of the year the dredge operated on Irish Creek. W. D. Ingram operated dragline-dredging equipment on the Craig Osborne, Craig Royce, Craig Salt Water, Emma J. Hodgkin, and Red Raven properties. The General Dredging Corporation operated a dragline dredge with a dragline excavator, using a 2-cubic yard bucket, on ground adjacent to American River near Coloma from January 1 to August 30; the company operated a second dragline dredge, equipped with a dragline excavator having a 11/2-cubic yard bucket, in the same area from January 1 to September 30. Van Dyke, Modrell, and Warner operated a dragline dredge, using a dragline excavator with a \(\frac{1}{2} \)-cubic yard bucket, on the Emma Gordon property from May 17 to Sep-The Orolomo Co. operated a dry-land dredge, which had a dragline excavator with a 1½-cubic yard bucket, on Indian Creek throughout 1941. The River Pine Mining Co. operated its dragline dredge on the North Fork of Cosumnes River near Nashville between July 8 and December 15; this dredge worked in the

East Belt district, Amador County, the first half of the year.

West Belt district.—The General Dredging Corporation moved its smaller dragline dredge from Coloma to a site near Shingle Springs: operations were resumed October 1 and continued until the end of The Big Canyon Dredge operated a dragline dredge, using a dragline excavator with a 3-cubic yard bucket, on Deer Creek for 11 months; 3,160 ounces of gold and 321 ounces of silver were recovered

from 540,000 cubic yards of gravel.

FRESNO COUNTY

Friant district.—Griffith Co. and Bent Co., which supplied gravel for the Friant Dam in 1941, recovered 4,990 ounces of gold and 747 ounces of silver in preparing 3,935,620 tons of sand and gravel. kins & Becker operated a suction dredge invented by Becker on the San Joaquin River near the town of Friant; 298 ounces of gold and 61 ounces of silver were recovered from 121,000 cubic yards of gravel. The dredge had a 6-inch centrifugal gravel pump, gasoline engine, and riffle tables mounted on a steel pontoon hull; the suction point could be lowered vertically 28 feet below water level.

HUMBOLDT COUNTY

Orleans district.—Hydraulicking at the Pearch mine yielded 266 ounces of gold and 38 ounces of silver from 128,500 cubic yards of gravel in 1941.

IMPERIAL COUNTY

Cargo Muchacho district.—The Holmes & Nicholson Mining & Milling Co. shipped substantial quantities of gold ore from the Cargo Muchacho group of claims and the Gold Bird mine to the company

100-ton all-slime-cyanidation mill 4 miles west of Winterhaven in 1941.

Mesquite Diggings district.—The Reese Production Corporation operated an open pit on the property leased from the Desert Gold & Aluminum Co. from March 22 to November 8, 1941; the ore, which was treated by amalgamation, resembled cemented gravel.

INYO COUNTY

Bishop Creek district.—The United States Vanadium Corporation produced a copper concentrate containing a substantial quantity of silver as a byproduct of ore treated primarily for tungsten in 1941.

Chloride Cliff district.—Lessees shipped gold ore from the Old Mill

schist mine to a custom cyanide plant in 1941.

Modoc district.—From the Colorado mine E. H. Snyder and associates shipped 416 tons of zinc carbonate ore, containing 327,058 pounds of zinc, to a zinc oxide plant in the San Francisco Bay region and 336 tons of ore to the Combined Metals Reduction Co. flotation plant at Stockton, Utah, during 1941; the zinc concentrates from the material treated at Stockton contained 2 ounces of gold, 529 ounces of silver, 6,715 pounds of copper, and 185,475 pounds of zinc. This property, though still in the prospecting stage, was the largest zinc producer in California during the year.

Resting Springs district.—Shoshone Mines, Inc., shipped ore from the Columbia No. 2 mine throughout 1941 and was by far the largest producer of lead and the sixth-largest producer of silver in the State.

Sherman district.—A substantial quantity of gold was recovered by cyanidation of ore mined by the Arondo Mining Co. at the Arondo mine during 1941. Burton Bros., Inc., operated the Ruth mine and treated 21,181 tons of ore by crushing and cyanide-leaching; 5,587

ounces of gold and 105 ounces of silver were recovered.

South Park district.—Lessees on the Cecil R. mine shipped gold ore to a custom cyanide plant in 1941. Mining Associates shipped gold ore from the Gold Bug mine to custom mills. Several lessees worked the Mint-O-Gold mine and shipped a total of 593 tons of ore to custom cyanide mills; 515 ounces of gold and 25 ounces of silver were recovered. The Old Gold Mines Co. shipped lead ore containing substantial quantities of gold and silver from the Old Gold mine.

Union district.—Lessees on the Reward (Brown Monster) mine shipped 451 tons of ore containing 260 ounces of gold and 1,639

ounces of silver to a custom cyanide plant in 1941.

Wild Rose district.—The Del Norte Mining Co. treated gold ore by cyanidation and concentration at the Del Norte-Skidoo group in the Skidoo section of the Wild Rose district during 1941. L. Warnken cyanided ore at the Tucki mine.

KERN COUNTY

Amalie (Agua Caliente) district.—Lessees operated the Aunt Rosa mine and treated ore by amalgamation and concentration during 1941.

Cove district.—Kern Mines, Inc., operated the Big Blue mine throughout 1941; 43,914 tons of ore yielded amalgamation bullion containing 2,909 ounces of gold and 1,218 ounces of silver and 728 tons of flotation concentrates containing 3,130 ounces of gold, 9,142

ounces of silver, 578 pounds of copper, and 19,748 pounds of lead; the

concentrates were shipped to a smelter.

Green Mountain district.—Geringer Bros. operated the Gwynne mine from April 15 to December 10, 1941; gold ore was shipped to a custom cyanide plant. The Lone Star Mining Co. worked the Lone Star mine; most of the ore was treated in the company 10-stamp mill,

but a small quantity was shipped to a custom cyanide plant.

Mojave district.—The Cactus Mines Co. operated the Cactus Queen mine in the Middle Butte section of the Mojave district throughout 1941 and treated gold-silver ore in the company 125-ton cvanidationflotation mill; the resulting concentrates were shipped to a smelter. In 1941, for the fourth year, this property was the State's leading The Golden Queen Mining Co. operated the Golden silver producer. Queen mine the entire year; in addition to treating a large tonnage of company ore in its 425-ton cyanide mill, it did a substantial custommill business. The Lodestar Mining Co. and lessees shipped 50,613 tons of gold-silver ore containing 9,177 ounces of gold and 180,875 ounces of silver to custom cyanide mills; mining operations were suspended September 13, the property, machinery, and equipment were sold to the Golden Queen Mining Co., and the corporation was completely liquidated November 30, 1941. The Standard Hill Mines Co. and numerous lessees shipped 7,381 tons of ore from the Standard Hill mine to custom cyanide mills; 2,726 ounces of gold and 33,136 ounces of silver were recovered. Burton Bros., Inc., operated the Tropico mine both on company account and through lessees; 35,494 tons of gold ore treated in the company 150-ton cyanide plant yielded 8,042 ounces of gold and 13,444 ounces of silver. In addition, the company treated over 8,800 tons of custom material from 215 shippers during 1941. As a pioneer in California custom milling east of the Sierra Nevada Mountains, Burton Bros., Inc., has been an important factor in the development of mineral resources within a radius of 100 miles or more of Rosamond, where the company mill is located. Lessees on the Whitmore mine shipped 790 tons of gold-silver ore to custom cyanide mills; 310 ounces of gold and 5,296 ounces of silver were recovered.

Randsburg district.—The Butte Lode Mining Co. operated the Big Butte mine throughout 1941; 727 tons of ore treated by amalgamation yielded 262 ounces of gold and 91 ounces of silver, and current sands from this operation, plus 490 tons of old tailings, yielded 10 ounces of gold and 3 ounces of silver by cyanide leaching. Several groups of lessees worked the Big Dyke mine and shipped 903 tons of ore to custom cyanide plants, which recovered 356 ounces of gold and 37 ounces of silver. J. M. Kreta operated the Big Gold group; the custom cyanide plant to which the ore was shipped recovered gold and silver. Lessees on the Buckboard mine produced 1,563 tons of gold ore during 1941; 970 tons treated by amalgamation at the Baltic mill yielded 228 ounces of gold and 46 ounces of silver, and 593 tons of ore shipped to a custom cyanide plant yielded 182 ounces of gold. Lessees shipped gold ore from the K. C. N. mine to custom cyanide The King Solomon Mines Lease and other lessees worked the King Solomon mine during 1941; 1,915 tons of ore and 1,972 tons of old tailings were treated in a 5-stamp mill and cyanide-leaching plant; the amalgamation bullion contained 852 ounces of gold and 247 ounces of silver, and the cyanidation bullion contained 77 ounces of

gold and 19 ounces of silver; 3 tons of concentrates shipped to a smelter yielded 7 ounces of gold and 35 ounces of silver. Shipments, totaling 674 tons, of gold ore from the Wade mine to a custom cyanide mill yielded 479 ounces of gold. The Anglo American Mining Corporation, Ltd.—largest operator in the Randsburg district—treated 454,583 tons of old tailings and recovered 7,731 ounces of gold and 3,245 ounces of silver during 1941. The old tailings were treated by slime-agitation and sand-leaching in a 1,400-ton cyanide plant; 237,976 pounds of "Aero" brand calcium cyanide were consumed.

LOS ANGELES COUNTY

Cedar district.—The Governor Mine Co., operator of the Governor mine, was the principal producer in the Cedar district during 1941; operations were suspended late in the year.

Neenach district.—A substantial quantity of gold ore was shipped from the Big Susanna mine to a custom cyanide mill during 1941.

MADERA COUNTY

Dennis district.—Two suction dredges were operated in 1941 on Fresno River where it passes through the Cassaurang ranch. H. A. Berg also operated a suction dredge on Fresno River; 22,000 cubic yards of gravel yielded 257 ounces of gold and 74 ounces of silver.

MARIPOSA COUNTY

East Belt district.—The Diltz mine was worked during 1941. The Black Oak Mining Co. operated the Feliciana mine; 716 tons of ore treated by amalgamation and flotation yielded bullion containing 228 ounces of gold and 36 ounces of silver and 6 tons of concentrates containing 59 ounces of gold and 11 ounces of silver; the concentrates were shipped to a smelter. A 25-ton amalgamation-flotation mill was constructed on the Feliciana property and put into operation November 1, 1941.

Hunter Valley district.—The Pacific Mining Co. reopened the Washington and Jenny Lind lode claims in 1941 and put a newly constructed 125-ton flotation mill into operation in July; a substantial quantity of ore was treated, and the resulting concentrates were shipped to a The Pacific Mining Co. placed the operation under a corporation—Lind Mining Co.—September 1. The Mount Gaines Mining Co. worked the Mount Gaines mine. Thurman & Wright operated a dragline dredge, equipped with a dragline excavator having a 6-cubic yard bucket, on the Crocker-Huffman Land & Water Co. property from June 17 until the end of 1941. The Barker Corporation operated a dragline dredge on Eldorado Creek and on several other properties, including the Givens, Trabucco, Turner, and Waltz. The Trebor Corporation also carried on dragline dredging on several properties, including the Fretz, Gaskill, Machado, Trabucco, Turner, and Waltz.

Mother Lode district.—The Granite King mine was worked in 1941. The Boston California Mining Co. operated the Malvina group. The Pacific Mining Co. worked the Pine Tree and Josephine mines during the year and treated 58,151 tons of ore by amalgamation and

flotation: the amalgamation bullion contained 1.465 ounces of gold and 313 ounces of silver, and the flotation concentrates shipped to a smelter contained 7.507 ounces of gold, 1.802 ounces of silver, and 2,770 pounds of copper. This company also produced a small quantity of gold at the Evans and French properties. Golden Quail, Inc., treated 4,200 tons of ore from the Quail mine in a 50-ton amalgamationflotation mill: amalgamation bullion contained 57 ounces of gold and 10 ounces of silver, and 49 tons of concentrates shipped to a smelter contained 217 ounces of gold, 151 ounces of silver, and 103 pounds of copper. The Golden Quail, Inc., lease was returned to the Quail Mining Co. in December, 1941. The Barker Corporation did dragline dredging on the Adams, Explorers, Inc., Munn, Penrose, R. Williams, and Stratton properties.

MERCED COUNTY

Hunser Valley district.—The Thurman & Wright dragline-dredge operations on the Crocker-Huffman Land & Water Co. and Waltz properties extended from Mariposa County into Merced County

during part of 1941.

Snelling district.—The Merced Dredging Co. operated an electric connected-bucket dredge, with sixty-two 10-cubic foot buckets, onehalf mile southeast of Snelling. The electric connected-bucket dredge of Yuba Consolidated Gold Fields (Merced Unit), equipped with seventy-two 9-cubic foot buckets, completely worked out its property 4 miles east of Snelling by the end of 1941. The San Joaquin Mining 4 miles east of Snelling by the end of 1941. Co. operated a connected-bucket dredge, with sixty-four 10 cubic foot The Snelling Gold Dredging buckets, 2% miles southwest of Snelling. Co. operated two connected-bucket dredges on Merced River between Snelling and Merced Falls throughout 1941; one of the dredges was equipped with sixty-six and the other with seventy-two 7-cubic foot buckets.

MONO COUNTY

Blind Springs district.—The Mineral Reduction Co. continued to operate its custom cyanide-flotation mill throughout 1941: 65 shippers sent the plant over 1,400 tons of ore during the year. The decline in precious-metal mining in the area tributary to the mill resulted in plans being made to convert it to producing other concentrates.

Bodie district.—The Roseklip Mines Co. cyanided ore from dumps and open-cuts at the Standard mine in a 400-ton cvanide plant during

1941.

Chidago district.—R. G. Jones operated the Gold Crown mine from January 1 to August 16, 1941; the lease was relinquished August 29, and operations were continued by the owner until the end of the year. The ore was shipped to a custom cyanide mill.

Homer (May Lundy) district.—The Log Cabin Mines Co. operated the Log Cabin (Simpson) mine from January 1 to November 1, 1941; 17,855 tons of ore treated in a 100-ton amalgamation mill yielded

3.287 ounces of gold and 907 ounces of silver.

Mammoth Lakes district.—The Monte Christo Mining Co. operated the Monte Christo group from May 1 to November 1, 1941; a 30-ton flotation mill was built during the year.

NAPA COUNTY

Calistoga district.—The Grigsby (Palisade) mine, worked by the Graham Loftus Oil Corporation in 1940, was operated from January 1 to August 16, 1941, by Helena Consolidated Mines, Inc.; 6,599 tons of gold-silver ore were treated in a 100-ton flotation mill, and 116 tons of resulting gold-silver concentrates containing 350 ounces of gold, 36,121 ounces of silver, and 4,009 pounds of copper were shipped to a smelter. The company reported that the mine was closed August 16, the equipment and buildings had been removed from the property, and no further operations were contemplated.

NEVADA COUNTY

Grass Valley-Nevada City district.—A. Louiselli operated the Black Prince mine during 1941. Grass Valley Bullion Mines, Inc., shipped ore to the Idaho Maryland Mines Corporation mill from January 1 to April 30, after which operations were greatly curtailed. The Empire Star Mines Co., Ltd., operated the Empire, North Star, and Pennsylvania mines at Grass Valley, and the Pennsylvania and Dannebrog at Browns Valley in Yuba County; some work was also carried on at the Zeibright mine in Bear Valley and at the Murchie mine at Nevada City. Late in 1941 work was begun on a drainage, exploration, and tailings-disposal adit from the South Fork of Yuba River near Omega to the lower workings of the Zeibright mine, a distance of over 3 miles. Failure of the extensive exploration campaign in the Murchie mine to reveal substantial quantities of ore resulted in the suspension of all work at the property late in the year. Cooley Butler operated the Golden Center mine. The Idaho Maryland Mines Corporation operated the Idaho Maryland-Brunswick group. According to the company printed annual report for the year ended December 31, 1941, 113,973 ounces of gold and 30,000 ounces of silver were recovered from 263,768 tons of ore, compared with a recovery of 129,309 ounces of gold from 406,707 tons of ore in 1940. Although these figures represent an 11-percent decline in quantity of gold produced, they show a 36-percent gain in grade of ore mined. In 1941, 48,803 tons of ore were derived from development headings, and 214,965 tons were produced by stoping. In addition to company ore, 8,586 tons of custom ore and 348 tons of custom concentrates were treated. Dividends declared and paid in 1941 totaled \$1,074,-020.80, raising total disbursements in dividends to \$6,797,986.40. annual report attributes the decline in production in 1941 in part to a 19-day labor strike in May, after which the company had difficulty in rebuilding and maintaining a complete labor force owing to competition from war industries. In addition, unanticipated delays in erecting a new headframe at the New Brunswick shaft, due to a shortage of steel erectors, contributed to the reduction in ore pro-The Idaho Maryland-Brunswick operation continued to hold first place among California mines as a gold producer, and the Idaho Maryland Mines Corporation was second to Yuba Consolidated Gold Fields among California gold-producing companies. The Lava Cap Gold Mining Corporation operated the Lava Cap mine throughout the year; 146,900 tons of ore were treated by amalgamation, flotation, and cyanidation in the company 400-ton flotation plant, 25-ton concentrate- and middling-cyanide plant, and 350-ton tailings-cyanide

Cyanidation of sand, slimes, and 4,762 tons of concentrates yielded 1,729 ounces of gold and 19,596 ounces of silver; amalgamation of high-grade ore yielded 318 ounces of gold and 78 ounces of silver: 1.010 tons of flotation concentrates shipped to a smelter contained 36,796 ounces of gold, 324,162 ounces of silver, 38,367 pounds of copper, and 10,737 pounds of lead. Operators of the Queen Lil mine treated 312 tons of ore by amalgamation and recovered 249 ounces of gold and 41 ounces of silver. The Spring Hill Gold Mines, Inc., operated the Spring Hill mine throughout 1941; ore was treated in the company 100-ton flotation plant, and the resulting concentrates were treated by amalgamation and evanidation. The Stockton Hill Corporation worked the Stockton Hill mine. William Richter & Sons operated a dragline dredge on the Donnelly and Johnson property during 1941. The M. K. Gibson Mining Co. operated a dragline dredge on the Elder, Martel, Neirzert, and Thomas properties. The Wyandotte Dredging Co. operated a dragline dredge with a dragline excavator having a 21/2-cubic vard bucket on the Perrin and Pingree properties during 1941; 130,000 cubic vards of gravel treated on the Perrin property yielded 1,186 ounces of gold and 155 ounces of silver, and 70,000 cubic yards washed at the Pingree property yielded 339 ounces of gold and 58 ounces of silver.

North Bloomfield district.—Kaufield & Danison operated a dragline dredge on Columbia Hill from March 1 to April 20, 1941. A. B. Innis operated a dragline dredge, using a dragline excavator with a 1½-cubic yard bucket, at the Malakoff mine from October 16 to December 31; 72,000 cubic yards of gravel yielded 333 ounces of gold and 33 ounces Western Gold. Inc., carried on hydraulicking operations at of silver.

Relief Hill.

Washington district.—The Omega Co. began hydraulicking March 9, 1941, at the Omega mine upon completion of the Upper Narrows Debris Dam at Smartville and continued operations until July 7; the company washed 429,637 cubic yards of gravel, which yielded 1,302 ounces of gold and 49 ounces of silver. This was the first major operation to take advantage of the debris storage back of the new dam.

ORANGE COUNTY

Santa Rosa district.—The Blue Light Silver Mines, Inc., worked the Silverado or Blue Light mine in Silverado Canyon throughout 1941; the gross content of the concentrates from 403 tons of ore treated by flotation was 18 ounces of gold, 4,846 ounces of silver, 1,300 pounds of copper, 14,383 pounds of lead, and 43,839 pounds of zinc.

PLACER COUNTY

Dutch Flat district.—The Canyon Mines Corporation suspended operations at the Rawhide mine during 1941. La Kamp Bros. operated a nonfloating washing plant at the Mutual mine, to which gravel was delivered with a bulldozer.

Foresthill district.—The Volcano Mining Co., Ltd., worked the Volcano drift mine throughout 1941; 4,000 tons of gravel yielded 206

ounces of gold and 27 ounces of silver.

Iowa Hill district.—The Lebanon Consolidated Mines worked the Occidental drift mine from January 1 until December 31; 3,766 cubic yards of gravel yielded 536 ounces of gold and 63 ounces of silver. Lincoln district.—A nonfloating washing plant to which gravel was delivered by mechanical means operated on the Guilford ranch during 1941. On the Johnson ranch, C. N. Chittenden operated a nonfloating washing plant to which gravel was delivered by a dragline excavator with a %-cubic yard bucket; 43,500 cubic yards of gravel yielded 282 ounces of gold and 51 ounces of silver.

Michigan Bluff district.—The W. D. Ingram dragline-dredge operation on Horseshoe Bar on the Eldorado County line treated some

gravel in Placer County.

Ophir district.—The Alabama California Gold Mines Co. operated the Alabama mine throughout 1941; the ore was treated by amalgamation and flotation, and the resulting concentrates were shipped to a smelter; amalgamation bullion contained 14,566 ounces of gold and 4,581 ounces of silver, and 797 tons of concentrates contained 3,527 ounces of gold, 44,862 ounces of silver, 12,045 pounds of copper, and 46,591 pounds of lead. J. K. Wright and L. W. Smith worked the Duncan Hill mine from April 15 to December 31; 200 tons of ore yielded 207 ounces of gold and 85 ounces of silver by amalgamation. Highway Forty Mines, Inc., operated the Highway Forty mine during V. J. DeCampos worked the Mary Len mine; 1,838 tons of ore treated by amalgamation and flotation yielded 509 ounces of gold and 244 ounces of silver, and 20 tons of concentrates, treated at a custom cyanide plant, yielded 96 ounces of gold and 90 ounces of silver. Oro Fino Consolidated Mines operated the Oro Fino mine during 1941; the ore was treated in an amalgamation-flotation mill, and the resulting concentrates were shipped to a custom cyanide plant and to a smelter. From March to October, on the Ferrari property, the Panob Gold Dredging Co. operated a nonfloating washing plant, with Ainlay bowls, to which gravel was delivered by a dragline excavator with a 1½-cubic yard bucket; the same company operated similar equipment on the Forsyth & Lewis property. H. W. McKinley operated a dragline dredge on the Fisher ranch from June 17 to July 31. Gold Placers, Inc., operated a dragline dredge on the Robinson ranch from April 30 to August 30 and on the Leak ranch from September 7 to December 20. Hallstrom and Lindblad operated during 1941 a nonfloating washing plant, to which gravel was delivered by mechanical means, on the Joseph Mooney, Mathilda Bahr, and Rogers ranches and in Miners Ravine. The Roseville Gold Dredging Co. operated a connected-bucket dredge, with seventytwo 3-cubic foot buckets, in Strap Ravine 6 miles east of Roseville. The Gold Recoveries Corporation operated a dragline dredge on the William Ayers and Anderson properties.

PLUMAS COUNTY

Genesee district.—The Walker Mining Co. (affiliate of the Anaconda Copper Mining Co.) suspended operations October 31, 1941, at its Walker mine, the outstanding mine in Plumas County and California's largest copper producer for several years. According to the company printed annual report for the year ended December 31, 1941, 291,438 tons of ore were milled and 14,387 tons of concentrates produced. Shipments comprised 14,929 tons of concentrates, lime scale, and precipitates, with a net recoverable content of 7,248,128 pounds of copper, 10,938 ounces of gold, and 166,581 ounces of silver. The

company report states that, despite a vigorous exploration campaign for more than 2 years, ore developments had been unfavorable and the operation remained unprofitable under the prevailing prices for copper.

Greenville (Crescent Mills) district.—Cherokee Mine operated the Cherokee mine throughout 1941; 26,344 tons of ore were treated in the company 150-ton cyanidation-flotation mill, and 127 tons of resulting In all, 5,627 concentrates were shipped to a custom cyanide plant.

ounces of gold and 1,726 ounces of silver were recovered.

Johnsville district.—In 1941 lessees and sublessees on the Jamison mine treated 489 tons of ore and 401 tons of old tailings by amalgamation and concentration and shipped 112 tons of ore and 3 tons of concentrates to a smelter; amalgamation bullion contained 103 ounces of gold and 13 ounces of silver; ore smelted contained 144 ounces of gold and 38 ounces of silver; and concentrates smelted contained 11 ounces of gold and 3 ounces of silver. The Lobicasa Co. operated a dragline dredge on Jamison Creek from August 20 to December 24.

Lights Canyon district.—A. B. Innis operated a dragline dredge, equipped with a dragline excavator having a 1%-cubic vard bucket, on Lights Creek from January 1 to September 22, 1941; 1,653 ounces of gold and 130 ounces of silver were recovered from 250,000 cubic yards

Quincy district.—Baker and McCowan operated a dragline dredge. using a dragline excavator with a 1½-cubic yard bucket, in Meadow

Valley during 1941.

Rich Bar district.—The Virgilia Mining Corporation operated the Ohio Point mine during 1941; the ore was treated in the company 240-ton flotation mill, and the concentrates were shipped to a smelter.

RIVERSIDE COUNTY

Dale district.—D. M. Campbell and sublessees shipped 344 tons of ore from the Los Angeles mine to a custom cyanide plant in 1941; 257 ounces of gold and 3 ounces of silver were recovered. Gold ore from the Mission mine was shipped to the Gold Crown custom cyanide plant.

Eagle Mountain district.—Imperial Metals, Inc., suspended operations at the Black Eagle mine early in 1941; substantial shipments of

argentiferous lead ore were made to a smelter.

SACRAMENTO COUNTY

Cosumnes River district.—Hoosier Gulch Placers operated boat No. 1 on the Biggs ranch and boat No. 2 on the Rossi property throughout 1941. Cosumnes Gold Dredging Co. operated an electric connected-bucket dredge with sixty-three 12-cubic foot buckets 7 miles southwest of Sloughhouse. McQueen & Downing operated a dragline dredge on Deer Creek from January 1 to February 14. Humphreys Gold Corporation operated a nonfloating washing plant, which was converted to a dragline dredge, on the Fassett-Parker-Hanlon and Hutchinson properties. F. O. Bohnett also operated on the Hutchioson property. At the end of 1941 the Humphreys Gold Corporation equipment consisted of five dragline excavators, each with a 2½-cubic yard bucket—three for stripping and two for delivering gravel to two washing plants. An average of 18 feet of overburden was side-cast, and 12 feet of gravel and 1 foot of bedrock were washed. The Lobicasa Co. operated a dragline dredge, using a dragline excavator with a 1½-cubic yard bucket, on the Mahon property from June 5 to October 17 when the property was worked out.

Folsom district.—The Capital Dredging Co. operated two electric connected-bucket dredges on its property 5 miles south of Folsom during 1941; one dredge had 88 and the other 100 18-cubic foot The General Dredging Corporation—dissolved September 30, 1941, and continued as General Dredging Co., a partnershipoperated its dragline dredge No. 1, equipped with a dragline excavator having a 5-cubic yard bucket, at its property on American River. Its No. 2 dredge, operating on the ancient river channel in the same district, used a dragline excavator with a 2-cubic yard bucket; dredge No. 4, working gravel along American River, near Fair Oaks, likewise used a dragline excavator with a 2-cubic yard bucket. Climax Dredging Co. operated a dragline dredge on the J. Vincent property from January 1 to April 8. The Lancha Plana Gold Dredging Co. operated a Yuba electric dredge with 84 6-cubic foot buckets at Sailor's Bar on American River throughout 1941. The Natomas Co. fleet of seven electric connected bucket dredges produced more placer gold than any other operation in the State in 1941. number and size of buckets per dredge were: No. 1, 62 16-cubic foot buckets; No. 4, 67 15-cubic foot; No. 5, 105 12-cubic foot; No. 6, 106 11-cubic foot; No. 7, 98 9-cubic foot; No. 8, 105 12-cubic foot; and No. 10, 83 15-cubic foot buckets. The Carson Creek Dredging Co., Ltd., worked a dragline dredge on the Quinn ranch from January 1 until February 5, when the operation was taken over by the Northwest Development Co.

SAN BERNARDINO COUNTY

Black Hawk district.—A small quantity of gold ore was shipped to custom mills from the Santa Fe (Arlington) mine during 1941; the Beverly Oil Co. foreclosed and acquired title to the property November 21.

Buckeye district.—F. W. Royer shipped gold ore from the Bagdad

Chase-Roosevelt group to a smelter during 1941.

Calico district. Operators of cyanide-leaching plants on Calico

tailings were the principal producers in the Calico district in 1941.

Dale district.—The Gold Crown Mining Co., Ltd., worked the Gold Crown mine throughout 1941; in addition to treating company ore, the mill handled over 2,400 tons of custom material from 24 shippers in its 50-ton all-slime cyanide plant. L. A. Wilson shipped 865 tons of ore to a custom cyanide plant; 709 ounces of gold were

Hart district.-W. W. Hartman operated the Valley View mine from January 1 to August 2, 1941; a substantial quantity of gold ore was treated in the company 40-ton cyanide plant; the mill was used late in the year to test ores trucked from a mine in the Ivanpah

Holcomb Valley district.—The Big Bear Mines, Ltd., Inc., operated the Big Bear (Lucky Baldwin) mine from September 5, 1941, until the end of the year; a 150-ton amalgamation-flotation mill was built at the property. The Holcomb Valley Placer Co. operated a nonfloating washing plant, to which gravel was delivered by tractor and scraper, from July 7 to November 16; 16,265 cubic yards of gravel

yielded 204 ounces of gold and 10 ounces of silver.

Ivanpah district.—W. F. Houston operated the Carbonate King mine from January 7 to December 31, 1941; 547 tons of ore shipped to a zinc smelter and a zinc oxide plant contained 446,786 pounds of zinc and 1,136 pounds of lead. This operation was the second-largest in zinc output in the State.

Randsburg district.—F. W. Royer operated the Kelly mine largely through lessees during 1941; in addition to Kelly ore, a custom cyanide plant at the mine treated over 6,200 tons of ore from approxi-

mately 66 shippers during the year.

SAN DIEGO COUNTY

Pine Valley district.—Long Valley Mining & Milling Association operated the Eagle Nest mine throughout 1941; 767 tons of ore treated by amalgamation and flotation yielded amalgamation bullion containing 73 ounces of gold and 8 ounces of silver, and 8 tons of concentrates shipped to a smelter contained 110 ounces of gold and 14 ounces of silver. During the year construction of a 75-ton amalgamation-concentration mill was begun. This property and several others in the district are recent discoveries.

SAN JOAQUIN COUNTY

Camanche district.—The Gold Hill Dredging Co. operated two electric connected-bucket dredges on the Jennie Lucas, Alex Perie, Putnam, Thorne, and Osterman properties during 1941; one dredge had sixty-six 7%-cubic foot buckets and the other eighty-seven 8%-cubic

foot buckets.

Jenny Lind (Bellota, Linden) district.—The California Gold Dredging Co. operated an electric connected-bucket dredge with eighty-one 6-cubic foot buckets from January 1 to December 11, 1941. The Smith-Notterman Co. operated a dragline dredge, using a dragline excavator with a 1%-cubic yard bucket, on the Elmer Cady and Lewallen ranches. A. G. Watkins & Sons operated a dragline dredge, equipped with a dragline excavator having a 2-cubic yard bucket, intermittently during 1941 on Calaveras River.

SHASTA COUNTY

Flat Creek (Iron Mountain) district.—The Mountain Copper Co., Ltd., largest mineral producer in Shasta County, worked the Iron Mountain mine throughout 1941. Most of the ore was mined by the open-cut method and was cyanided in a 500-ton sand-leaching plant and 200-ton flotation-countercurrent-decantation plant; in addition, a

small shipment of copper ore was made to a smelter.

French Gulch district.—Operators of the Brunswick mine treated 2,009 tons of ore by amalgamation and flotation; amalgamation bullion contained 186 ounces of gold and 28 ounces of silver, and 38 tons of resulting concentrates shipped to a smelter contained 79 ounces of gold and 9 ounces of silver. The Willow Creek Mines, Inc., which had reopened the Greenhorn mine in 1939, abandoned the operation during 1941 and removed much of the equipment to the Bullion dis-

trict in Lander County, Nev. The St. Jude Mining Co. operated the St. Jude mine. The J. H. Scott Co. operated the Washington mine throughout 1941; ore was treated in the company 50-ton amalgamation-flotation plant; all jig concentrates were amalgamated before shipment to a smelter, and part of the flotation concentrates were cyanided and part shipped to a smelter. The French Gulch Dredging Co. operated an electric dredge with seventy-six 4½-cubic foot buckets on Clear Creek.

Igo district.—J. P. Brennan operated a dragline dredge, equipped with a dragline excavator and a 3-cubic yard bucket, on Champion Gulch from January to June 1941. The Clear Creek Dredging Co. operated two dragline dredges; one dragline excavator had a 1½-cubic yard bucket and the other a 21/2-cubic yard bucket. The Crow Creek Dredging Co. operated a dragline dredge, using a dragline excavator with a 1½-cubic yard bucket; 220,000 cubic yards of gravel were washed. R. S. Olson operated a dragline dredge on Daly Gulch, and C. E. Gruwell operated a dragline dredge on the Fish, Forschler, Rais, and Russell ranches during 1941. The Tehama Dredging Co. operated a dragline dredge, which had a dragline excavator with a %-cubic yard bucket, at the Gold Acres mine from March 20 to June 30; 242 ounces of gold and 17 ounces of silver were recovered from 48,860 cubic yards of gravel. The San Gruco Co. operated a dragline dredge on the Happy Valley Land and Water Co. property during 1941. The Dobbin Gulch Dredging Co. operated a dragline dredge, using a dragline excavator with a 1\%-cubic vard bucket, on the Montgomery property on Flat Creek from January 1 to May 30; washing 142,160 cubic yards of gravel yielded 853 ounces of gold and 62 ounces of silver. The B. H. K. Mines operated a dragline dredge, equipped with a dragline excavator having a 14-cubic vard bucket, on the R. C. Connelly and Robert Litsch properties on Clear Creek from November 15 to December 31; 54,400 cubic yards of gravel yielded 339 ounces of gold and 48 ounces of silver. The Thurman Gold Dredging Co. operated a Yuba electric dredge of the connectedbucket type, with seventy-two 9-cubic foot buckets, on Clear Creek during 1941.

North Cow Creek district.—DeKarr & Herbert operated a dragline dredge, using a dragline excavator with a %-cubic yard bucket, on the Fred Kohle property on North Cow Creek from January 16 to March 17, 1941; 297 ounces of gold and 46 ounces of silver were re-

covered from 23,800 cubic yards of gravel.

Redding district.—The Carino Hewer Lease operated throughout 1941 the Blue Gravel mine owned by the City of Redding; ore was treated by amalgamation and flotation, and the resulting concentrates were shipped to a custom cyanide plant. The Columbia Construction Co., Inc., recovered 2,810 ounces of gold and 301 ounces of silver in preparing 4,038,167 tons of gravel for use in constructing Shasta Dam; two dragline excavators, one with a 5-cubic yard bucket and the other with an 8-cubic yard bucket, were used in delivering gravel to the washing plant.

Shasta district.—A. G. Cadogon leased the Yankee Jack mine in 1941 and treated the ore by amalgamation and flotation; the resulting

concentrates were shipped to a smelter.

SIERRA COUNTY

Alleghany district.—The Dickey Exploration Co. operated the Oriental mine throughout 1941; ore was treated by amalgamation and flotation, and the concentrates were shipped to a smelter. Original Sixteen to One Mine, Inc., largest gold producer in Sierra County, continued to operate its Original Sixteen to One mine; ore was treated by amalgamation and flotation, and the concentrates were shipped to a smelter. In addition, a lessee cyanided a small quantity of old tailings at the property.

Downieville district.—William Richter & Sons operated a dragline dredge in the bed of Yuba River from June 1 to December 31, 1941: 280,000 cubic yards of gravel yielded 1,403 ounces of gold and 179 ounces of silver. C. L. Best operated the Ruby drift mine—by far the largest drift operation in the State—on Rock Creek 3½ miles

southeast of Goodyears Bar.

Pike (Slate Range) district.—A lessee operated the Alaska mine throughout 1941; gold ore was treated in a 60-ton, 20-stamp amalgamation-concentration mill; bullion and lead concentrates were shipped. W. C. Ennis worked the Bowman mine and treated 6,300 tons of ore in an amalgamation mill; the bullion contained 644 ounces of gold and 108 ounces of silver.

Poker Flat (Table Rock) district.—The Loftus Blue Lead Mining

Co. hydraulicked in the district during 1941.

Port Wine district.—Poverty Hill Properties began to install a connected-bucket dredge with eighty-two 6-cubic foot buckets on May 13, 1941; production began August 21 and continued until the end of the year. This use of a connected-bucket dredge on a high Neocene channel represents a new departure in placer mining in the State.

SISKIYOU COUNTY

Callahan district.—The Etna Gold Dredging Co. operated a connected-bucket dredge, with 3-cubic foot buckets, from January 1 to August 19, 1941. Okoro Mines, Inc., operated a dragline dredge, using a dragline excavator with a 2½-cubic yard bucket, from July 11 to December 31, and recovered 771 ounces of gold and 101 ounces of silver from 245,000 cubic yards of gravel; in addition, a small quantity of gravel at the property was treated by small-scale hand methods. Oro Trinity Dredging Co. operated a dragline dredge, which had a dragline excavator with a 1½-cubic yard bucket, on Scott River from January 1 to May 31. Yuba Consolidated Gold Fields (Siskiyou Unit) operated a connected-bucket dredge, with seventy-two 9-cubic foot buckets, on Scott River throughout 1941.

Deadwood district.—The C. & E. Dredging Co. operated a dragline dredge, using a dragline excavator with a 2-cubic yard bucket, on

McAdams and Cherry Creeks from May 9 to December 31, 1941.

Greenhorn district.—The Schroeder Mining & Development Co.
operated the Schroeder mine during 1941. The Lincoln Gold Dredging Co. operated a dragline dredge, equipped with a dragline excavator having a 1%-cubic yard bucket, on the Calkins property 1 mile east of Yreka from July 7 to December 2; 556 ounces of gold and 78 ounces of silver were recovered from 93,742 cubic yards of gravel; in addition,

E. A. Kinkle recovered a small quantity of gold by using a dry-land plant. The same two operators also worked the Rose property.

Humbug district.—Von der Hellen & Webber operated a dragline dredge, which had a dragline excavator with a 2-cubic yard bucket,

on Humbug Creek from January 1 to October 1, 1941.

Klamath River district.—Merriam Mining Merger worked the Buzzard Hill mine from May 20 to December 31, 1941; gold ore was crushed to minus-1/2-inch and given a cyanide leach. The Northern Dredging Co. operated a dragline dredge on the Allen and the Collins properties from January to May, when the company was dissolved; the company dragline excavator used a 2-cubic yard bucket. The Thompson Dredge, which changed its name to Shasta Dredging Co. November 27, 1941, operated its dragline dredge on Brasswire Gulch 1 mile southwest of Hornbrook from May 12 to August 16, after moving the equipment from the Jenny Lind district in Calaveras County; the dragline excavator used a 2½-cubic yard bucket. Larson Bros. & Harms Bros. operated three dragline dredges throughout 1941; two of the dragline excavators used 5-cubic yard buckets and the other a 3-cubic yard bucket. The William von der Hellen Mining Co. operated a dragline dredge with a dragline excavator, using a 2½-cubic yard bucket; 6,113 ounces of gold and 928 ounces of silver were recovered from 773,700 cubic yards of gravel. McQueen & Downing operated a dragline dredge on the Neville and Silva properties. Bauman operated a nonfloating washing plant, to which gravel was delivered by mechanical means, on the Surveyor's Mistake mine on Vesa Creek during 1941. The Yreka Gold Dredging Co. operated a connected-bucket dredge with sixty-seven 6-cubic foot buckets in Seiad Valley.

Liberty district.—Lessees hydraulicked 27,900 cubic yards of gravel at the Joubert mine and recovered 385 ounces of gold and 58 ounces of silver in 1941. The Midland Co., Inc., operated a dragline dredge, which had a dragline excavator with a 1½-cubic yard bucket, on the North Fork of Salmon River throughout the year; 1,950 ounces of gold and 284 ounces of silver were recovered from 350,000 cubic yards

of gravel.

Quartz Valley (Oro Fino, Indian Creek) district.—The Beaver Dredging Co. worked a dragline dredge, using a dragline excavator with a 5-cubic yard bucket, on Indian Creek 6 miles west of Fort Jones from

April 16 to December 31, 1941.

Salmon River district.—The Salmon River Gold Dredging Co. operated a dragline dredge, using a dragline excavator with a 3-cubic yard bucket, on several properties in the Salmon River district during 1941.

Scott Bar district.—The Quartz Hill lode mine was operated in 1941.

STANISLAUS COUNTY

Knights Ferry district.—C. F. Vanciel operated a dragline dredge, employing a dragline excavator with a 1½-cubic yard bucket, on the Anderson, Higginbotham, and Kassa property from May 13 until December 31, 1941; 2,198 ounces of gold and 179 ounces of silver were recovered from 628,400 cubic yards of gravel. The Placer Properties Co. operated a dragline dredge, using a dragline excavator with a 6-cubic yard bucket, on Stanislaus River 8 miles east of Oakdale throughout 1941.

La Grange district.—The La Grange Gold Dredging Co. operated a connected-bucket dredge with sixty-two 10-cubic foot buckets on Tuolumne River throughout 1941. Yuba Consolidated Gold Fields began operations with a Yuba electric connected-bucket dredge, equipped with sixty-nine 9-cubic foot buckets, on Tuolumne River December 15, 1941. The Tuolumne Gold Dredging Co. operated a connected-bucket dredge with one hundred 12-cubic foot buckets from January 1 to April 13, when the dredge capsized.

TRINITY COUNTY

Hayfork district.—The Cinco Mineros Co. operated a dragline dredge, equipped with a dragline excavator having a 1½-cubic yard bucket, on the Albiez, Crews, Parmenter, Ross, and Trimble properties during 1941. H. S., R. A., and R. I. Smith operated a dragline dredge, using a dragline excavator with a 3-cubic yard bucket, on the High Channel mine for 30 days in August and September, and 300 ounces of gold and 40 ounces of silver were recovered from 100,000 cubic yards of gravel; in addition, a small quantity of gold was recovered at the property by hydraulicking.

Helena (North Fork) district.—The North Fork Placer Mining Co.

hydraulicked at the North Fork Placer mine on Hydraulic Hill 1 mile from Helena from January 1 to June 30, 1941; 277 ounces of gold and 30 ounces of silver were recovered from 53,500 cubic yards

of gravel.

Junction City district.—G. H. Bergin conducted hydraulicking on Canyon Creek from January 1 to July 15, 1941. The Junction City Mining Co. operated a Yuba electric connected-bucket dredge with seventy-five 10-cubic foot buckets along Trinity River near Junction City. Hydraulicking and dragline dredging by Goldfield Consolidated Mines and the Golden Gravels Mining Co. at the Red

Hill mine yielded a substantial quantity of gold.

Lewiston district.—The Lincoln Gold Dredging Co. operated two dragline dredges, one using a dragline excavator with a 2½-cubic yard bucket and the other a 1½-cubic yard bucket, on several properties in the Lewiston district during 1941. The properties and recoveries were: Clark-Jansen, 430 ounces of gold and 67 ounces of silver from 109,139 cubic yards of gravel; Costa, 134 ounces of gold and 9 ounces of silver from 26,432 cubic yards of gravel; Dickerson, 149 ounces of gold and 16 ounces of silver from 65,856 cubic yards of gravel; Fancelli, 141 ounces of gold and 19 ounces of silver from 28,170 cubic yards of gravel; Froloff, 2,453 ounces of gold and 158 ounces of silver from 562,732 cubic yards of gravel; and Phillips, 1,134 ounces of gold and 161 ounces of silver from 194,876 cubic yards of gravel. In addition to the dragline production, smaller quantities of gold and silver were recovered by hydraulicking at the Costa and Phillips properties. Havilah Gravels, Inc., operated a dragline dredge, which had a dragline excavator with a 2-cubic yard bucket, on Eastman Gulch from November 23 to December 31; 338 ounces of gold and 48 ounces of silver were recovered from 7,860 cubic yards of gravel. A nonfloating washing plant operated by J. W. Martin and R. W. Setzer on the same property from January 1 to August 1 recovered 163 ounces of gold and 19 ounces of silver from 20,000 cubic yards of gravel. Lewiston Placers hydraulicked at the Lewiston Placers mine from January 27 to July 1 and December 6 to 31.

Salyer district.—The Swanson Mining Corporation operated a hvdraulic property during 1941.

Trinity Center district.—The Carrville Gold Co. operated a Yuba electric connected-bucket dredge with seventy-seven 12-cubic foot

buckets on the Carr ranch throughout 1941.

Weaverville district.—O. R. Batham operated a dragline dredge on the Bazet Estate property on the East Fork of Stuarts Fork from August 10, 1941, to the end of the year; 626 ounces of gold and 50 ounces of silver were recovered from 205,550 yards of gravel. Batham also carried on smaller operations on the Hook and Ladder and Nugget Bar properties. J. P. Brennan operated a dragline dredge, using a dragline excavator with a 4-cubic yard bucket, on Browns Creek from July 17 to December 31. Three dragline-dredge operators worked the Hamilton property. Several operators worked the La Grange mine—the Weaver Dredging Co. operated a dragline dredge from January 1 to May 19 and recovered 976 ounces of gold and 89 ounces of silver from 231,124 cubic yards of gravel; and La Grange Placer Mines, Ltd., hydraulicked 113,100 cubic yards of gravel during operations from January 1 to July 1 and from December 16 to 31, recovering 757 ounces of gold and 84 ounces of silver. The Dobbin Gulch Dredging Co. operated a dragline dredge, equipped with a dragline excavator having a 11/4-cubic yard bucket, on the M. A. Brady property from June 13 to December 24; 926 ounces of gold and 80 ounces of silver were recovered from 213,800 cubic yards of gravel. B. H. K. Mines operated a dragline dredge, which had a dragline excavator with a 1%-cubic yard bucket, on the Rehberger property from January 1 to May 2, the M. K. Brown property from May 3 to July 1, the Scharr property from July 20 to September 12, and the Tye property from September 13 to October 22; all operations were on Little Browns Creek. The treatment of 176,000 cubic yards of gravel at the Rehberger property yielded 751 ounces of gold and 41 ounces of silver; 95,000 cubic yards of gravel on the Brown property vielded 405 ounces of gold and 24 ounces of silver; 81,500 cubic yards of gravel on the Scharr property yielded 349 ounces of gold and 28 ounces of silver; and 55,000 cubic yards of gravel on the Tye property yielded 150 ounces of gold and 10 ounces of silver. W. E. Woodbury hydraulicked 20,000 cubic yards of gravel on the Rex mine east of Weaver Creek during 1941. The Hidden Channel, Tout, and Gasper properties were operated by the Viking Dredging Co. from January 1 to February 28, when the operation and equipment were taken over by the Placer Exploration Co. which continued operations until December 2; the dragline dredge used a dragline excavator with a 2-cubic vard bucket.

TOULUMNE COUNTY

East Belt district.—Densmore Mines operated the Densmore mine during 1941. The La Guria Gold Mining Co. ceased operations at the La Guria mine January 23; the mine, held under lease, was returned to its owner. The Mullin-Hampton Dredging Co. operated a dragline dredge, which had a dragline excavator with a 11/2-cubic yard bucket, on the Kaplan (Dondero) mine on Woods Creek 1 mile east of Columbia from January 29 to July 15; 365 ounces of gold and 28 ounces of silver were recovered from 85,000 cubic yards of gravel.

Mother Lode district.—Miller & Clemson operated the Eagle-Shawmut mine throughout 1941; the addition of a large ball mill expanded the mill capacity to 500 tons, and ore was treated by amalgamation and flotation. Gravel from the Menke-Hess property near Chinese Camp was treated in a nonfloating washing plant. Kent operated two dragline dredges, using dragline excavators with 1%- and 2½-cubic foot buckets, on the Rosasco, Sanguinetti, and Six Bit properties during 1941.

YUBA COUNTY

Browns Valley district.—The Empire Star Mines Co., Ltd., operated the Pennsylvania and Dannebrog mine during 1941.

Dobbins district.—The Dove Mining Co. operated a nonfloating

washing plant on the Rose property during 1941.

Smartville district.—The Williams Bar Dredging Co. operated a connected-bucket dredge with eighty-four 6-cubic foot buckets in the

bed of Yuba River near Smartville throughout 1941.

Strawberry Valley district.—The R. & M. Mining Co. operated a dragline dredge, using a dragline excavator with a 11/4-cubic yard bucket, at several properties on Slate Creek in 1941. The properties, recoveries, and time periods were as follows: Corley, 423 ounces of gold and 36 ounces of silver from 134,000 cubic yards of gravel between April 15 and June 21; Ophir, 76 ounces of gold and 7 ounces of silver from 15,000 cubic yards of gravel between June 21 and July 8; and First Chance, 691 ounces of gold and 60 ounces of silver from 99,000 cubic yards of gravel between July 21 and November 27.

Yuba River district.—Yuba Consolidated Gold Fields operated a fleet of six dredges at its property in the Yuba River Basin near Hammonton. All the dredges were equipped with 18-cubic foot buckets and electric power; two had 87 buckets each, two had 100

buckets each, one had 126 buckets, and one had 135 buckets.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN THE CENTRAL STATES

(MINE REPORT)

By A. J. MARTIN

SUMMARY OUTLINE

	Page		Page
Summary	265	Review by States—Continued.	
Calculation of value of metal production	265	Illinois	270
Mine production by States and regions	267	Kansas	271
Mine production of lead and zinc by regions.	268		272
Quantity and tenor of ores	268	Michigan	273
Mining and metallurgic industry	269	Missouri	275
Review by States	270	Oklahoma	280
Arkanege	270	Wisconsin	282

The critical character of the need for expanding the domestic mine output of copper, lead, and zinc prompted Federal defense agencies to give much attention during 1941 to the Central States region, which in 1940 contributed 45 percent of the total United States mine output of lead, 37 percent of the zinc, and 5 percent of the copper. As a result of the urgent necessity for current information on mine production of copper, lead, and zinc during 1941, the Bureau of Mines inaugurated a series of published monthly estimates showing the mine production of these metals in the United States, including the Central States. Mine production in the Central States under the controlled and ceiling prices prevailing in 1941 did not greatly exceed that of 1940; copper output increased 4 percent, lead 1 percent, and zinc 13 percent.

The silver production of the Central States is that recovered as a byproduct from lead, copper, and zinc-lead ores. No gold was recovered from mines in the Central States in 1941; the 5 ounces

produced in 1940 came from a placer prospect.

All tonnage figures are short tons and "dry weight"; that is, they do not include moisture.

The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zinc *
1937 1938 1939 1940	Per fine vunce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0.7735 4.646+ 5.678+ 6.711+ 6.711+	Per pound \$0. 121 . 098 . 104 . 113 . 118	Per pound \$0.059 .046 .047 .050	Per pound \$0.065 . 048 . 052 . 063 . 075

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.

2 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver.

3 Yearly average weighted price of all grades of primary metal sold by producers.

4 \$0.6464646.

Mine production of gold, silver, copper, lead, and zinc in the Central States, 1937-41, in terms of recovered metals

	Mines	Ore and	G	old .	Silver	
Year	produc- ing	old tailings (short tons)	Fine ounces	Value	Fine ounces	Value
1937 1938 1939 1940	283 229 251 416 447	26, 516, 112 19, 037, 105 22, 972, 151 25, 532, 085 28, 959, 189	51, 44 1 4, 00 1 5, 00	\$1,800 140 175	206, 041 386, 210 315, 953 353, 737 448, 824	\$159, 374 249, 671 214, 465 251, 546 319, 164

Year	Co	pper	L	ead	Z		
	Pounds	Value	Short tons	Value	Short tons	Value	Total value
1937 1938 1939 1940 1941	95, 466, 000 93, 486, 000 87, 970, 000 91, 766, 000 95, 680, 000	\$11, 551, 386 9, 161, 628 9, 148, 880 10, 369, 558 11, 290, 240	204, 885 158, 873 198, 481 207, 587 209, 362	\$24, 176, 430 14, 616, 316 18, 657, 214 20, 758, 700 23, 867, 268	244, 045 198, 721 231, 716 244, 976 276, 006	\$31, 725, 850 19, 077, 216 24, 098, 464 30, 866, 976 41, 400, 900	\$67, 614, 840 43, 104, 831 52, 119, 163 62, 246, 955 76, 877, 572

¹ From placer prospecting.

Silver.—Production of silver in the Central States in 1941 totaled 448,824 fine ounces, comprising 367,688 ounces derived from refining lead bullion, slags, and skimmings recovered from Southeastern Missouri lead ores; 60,796 ounces from copper ore from Michigan; and 20,340 ounces from galena concentrates recovered in milling

zinc-lead ore and fluorspar from Illinois.

Copper.—The copper output of the Central States in 1941 came from copper ore from Michigan and lead ore from Missouri; no copper ore was shipped from Missouri during the year, and the copper produced (2,800,000 pounds) was derived from the treatment of residues from lead smelting. The output of refined copper in Michigan increased from 90,396,000 pounds in 1940 to 92,880,000 pounds in 1941, and the average recovery per ton of combined rock and sands treated increased from 20.4 to 21.7 pounds.

Lead.—The mine production of recoverable lead in the Central States was 209,362 tons in 1941 compared with 207,587 tons in 1940. Output from Southeastern Missouri was 164,342 tons in 1941—5,551 tons less than in 1940—and that of the Tri-State region (Kansas, Oklahoma, and Southwestern Missouri) was 41,080 tons, an increase of 5,769 tons over 1940. The output from Central Missouri, Arkansas, Illinois, Kentucky, and Wisconsin totaled 3,940 tons in 1941, an

increase of 1,557 tons over 1940.

Zinc.—The mine output of recoverable zinc in the Central States in 1941 was 276,006 tons, a 13-percent increase over 1940. The

Tri-State region produced 94 percent of the total in 1941, 95 percent in 1940, and 97 percent in 1939. In 1941 Oklahoma contributed 64 percent and Kansas 28 percent of the Tri-State output compared with 70 and 25 percent, respectively, in 1940. Unsold stocks of Tri-State zinc concentrates totaled 907 tons at the end of 1941 compared with 2,764 tons in 1940. The zinc output from Southeastern Missouri in 1941 (893 tons) was contained in carbonate concentrates and ore carrying zinc, lead, and iron shipped from old dumps. Production of zinc in Illinois rose from 4,818 tons in 1940 to 9,198 tons in 1941 and that in Wisconsin from 5,770 to 6,238 tons; in Kentucky the output dropped from 1,278 to 427 tons and in Arkansas from 440 to 206 tons.

MINE PRODUCTION BY STATES AND REGIONS

Mine production of silver, copper, lead, and zinc in the Central States in 1941, by
States, in terms of recovered metals¹

			Mines p	ro-		nd old	Silv	er
S	State		ducing			s (short -	Fine ounces	Value
Arkansas				32 6 58	3,	3, 000 2 72, 598 696, 247	20, 340	\$14, 464
Kentucky Michigan Missouri Oklahoma Wisconsin			8 2 16, 340 7 4, 282, 448 93 6, 792, 594 120 13, 883, 989 123 211, 973		282, 448 792, 594	60, 796 367, 688	43, 233 261, 467	
Total, 1940			447 28, 959, 189 416 25, 532, 085			448, 824 353, 737	319, 164 251, 546	
	Copper		I	æad		z	inc	/D-4-1
State	Pounds	Value	Short tons	,	/alue	Short tons	Value	Total value
Arkansas		\$10, 959, 840	2, 376 14, 538 282		\$1, 254 270, 864 657, 332 32, 148	206 9, 198 71, 403 427	\$30, 900 1, 379, 700 10, 710, 450 64, 050	\$32, 154 1, 665, 028 12, 367, 782 96, 198 11, 003, 073
Missouri Oklahoma Wisconsin	2,800,000	330, 400	165, 909 25, 021 1, 225	2,	913, 626 852, 394 139, 650	21, 932 166, 602 6, 238	3, 289, 800 24, 990, 300 935, 700	22, 795, 293 27, 842, 694 1, 075, 350
Total, 1940	95, 680, 000 91, 766, 000	11, 290, 240 10, 369, 558	209, 362 207, 587		867, 268 758, 700	276, 006 244, 976	41, 400, 900 30, 866, 976	76, 877, 572 1 62, 246, 955

¹ Grand total value for 1940 includes gold from placer prospecting in Indiana, as follows: 5 fine ounces, valued at \$175. No output of gold in 1941. See preceding table.
³ Excludes lead-bearing material mined with fluorspar and from which some lead was recovered as a byproduct of the mining and milling of the fluorspar.

Mine production of lead and zinc in the Central States in 1941, by regions

Domina	Lea	d 1	Zin	C 2	
Region	Short tons	Value	Short tons	Value	Total value
Concentrates:					
Joplin or Tri-State	53, 690	\$3, 597, 132	478, 403	\$23, 960, 568	\$27, 557, 700
Southeastern Missouri 3	228, 572	15, 404, 226	5, 192	73, 202	15, 477, 428
Upper Mississippi Valley 4	1,810	121, 301	14, 893	757, 833	879, 134
Kentucky-Southern Illinois	3, 866	219,064	⁵ 14, 401	687, 270	906, 334
Northern Arkansas	10	600	6 622	16, 132	16, 732
	287, 948	19, 342, 323	513, 511	25, 495, 005	44, 837, 328
Total, 1940	283, 045	17, 162, 573	454, 882	18, 938, 538	36, 101, 111
Recoverable metal:					
Joplin or Tri-State	41, 080	4, 683, 120	258, 837	38, 825, 550	43, 508, 670
Southeastern Missouri 7	164, 388	18, 740, 232	1, 100	165,000	18, 905, 232
Upper Mississippi Valley 4	1, 345	153, 330	7, 956	1, 193, 400	1, 346, 730
Kentucky-Southern Illinois	8 2, 538	289, 332	7, 907	1, 186, 050	1, 475, 382
Northern Arkansas	• 11	1, 254	206	30, 900	32, 154
	209, 362	23, 867, 268	276,006	41, 400, 900	65, 268, 168
Total 1940	207, 587	20, 758, 700	244, 976	30, 866, 976	51, 625, 676

1 Includes galena and small quantity of lead carbonate concentrates

Includes sphalerite and relatively small quantity of zinc carbonate and silicate concentrates.
 Includes 64 tons of lead concentrates and 472 tons of zinc concentrates from Central Missouri.
 Region includes Iowa Northern Illinois, and Wisconsin; no production in Iowa from 1918 to 1941, inclu-

Includes 688 tons of zinc-lead concentrates averaging 47.53 percent zinc and 8.14 percent lead.

Includes 81 tons of zinc-lead carbonate ores and concentrates.

Includes 46 tons of lead and 207 tons of zinc from Central Missouri,

Includes 54 tons contained in zinc-lead concentrates

Includes 5 tons contained in zinc and zinc-lead carbonate ores and concentrates.

The report of this series for 1930 (chapter of Mineral Resources of the United States, 1930, pt. I) gives the areas included in the seven lead- and zinc-producing regions of the Central States. Resources, 1914, contains brief reviews of the history of lead and zinc mining in the Central States, the yearly production of each State from 1907 to 1914, inclusive, and historical notes and estimates of the total production of lead and zinc in each State before 1907. Subsequent records year by year are found in Mineral Resources and Minerals Yearbook.

Of a total of 477,126 tons of blende concentrates produced in 1941 in the Tri-State region, 74.036 tons-470 tons less than in 1940-were

derived from old tailings.

Quantity and tenor of ores.—The quantity and tenor of ores and old tailings treated in Kansas, Michigan, Missouri, Oklahoma, and Wisconsin from 1939 to 1941 are shown in the table that follows. Comparable figures for Kentucky and Illinois cannot be given because the lead and zinc concentrates shipped from some of the mines are recovered as byproducts in the concentration of the fluorspar that they accompany, and the metal content of the crude ore raised cannot be calculated. In Arkansas very little ore was mined annually from 1918 to 1941, and the tenor of most of the ore treated (generally by small mills or hand iigs) was not determined by the operators.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN CENTRAL STATES 269

Quantity and tenor of copper, lead, and zinc ores, old tailings, etc., produced in some 1 Central States, 1939-41, by States

	19	39	19	40	1941		
State	Ore, etc.	Metal content 2	Ore, etc.	Metal content 2	Ore, etc.	Metal content :	
Kansas Michigan Missouri Oklahoma	Short tons 3, 701, 300 4, 603, 751 5, 650, 800 8, 802, 900 213, 400	Percent 2, 45 , 96 3, 12 2, 00 3, 26	Short tons 3, 153, 800 4, 438, 219 6, 457, 400 11, 250, 400 190, 326	Percent 2.40 1.02 2.94 1.80 3.61	Short tons 3, 696, 247 4, 282, 448 6, 792, 594 13, 883, 989 211, 973	Percent 2. 55 1. 08 2. 85 1. 52 3. 86	
	22, 972, 151		25, 490, 145		28, 867, 251		

MINING AND METALLURGIC INDUSTRY

Most of the ore mined in the Central States is concentrated by the companies producing it, but that mined by some of the large producing companies in the Tri-State and Upper Mississippi Valley regions is sent to central mills, which also afford an outlet for crude ore produced by individuals and partnerships working small mines or gouging in large mines abandoned by former operators. Gravity concentration continues to be an important factor in the treatment of ores, although flotation is used in nearly all the large mills to supplement the gravity method or as the principal method of treatment. concentrates generally have an established market. In 1941 copper concentrates from Michigan were smelted at plants at Hubbell and Houghton, Mich.; lead concentrates from Southeastern Missouri were sent to smelters at Herculaneum, Mo., and Alton, Ill.; and lead concentrates from the Tri-State district went to smelters or pigment plants at Galena and Coffeyville, Kans., and Alton and Hillsboro, Ill. Zinc concentrates from the Tri-State district moved to plants at Bartlesville, Blackwell, and Henryetta, Okla.; Coffeyville and Galena, Kans.; Fort Smith and Van Buren, Ark.; Danville, East St. Louis, Hillsboro, and La Salle, Ill.; Donora and Josephtown, Pa.; and Moundsville, W. Va. The lead and zinc concentrates from Wisconsin, Illinois, and other scattered districts in the Central States were shipped to the plants that treated the concentrates from the Southeastern Missouri and Tri-State districts.

l Only small-scale intermittent mining done in Arkansas from 1918 to 1941; Kentucky and Illinois excluded because part of the metal output (lead and zinc) was a byproduct of fluorspar mining, and the quantity of metal-bearing material hoisted could not be determined.

The percentages represent metal content of the ore insofar as it is recovered in the concentraces. In Michigan the metal so recovered is copper; in other Central States the metals are lead and zinc combined, relative proportions of which are shown in third table of this chapter and in tables of tenor of ore given in sections devoted to the respective States.

REVIEW BY STATES

ARKANSAS

Concentrates and crude smelting ore shipped from lead and zinc mines in Arkansas in 1941 totaled 632 tons containing 11 tons of recoverable lead and 206 tons of zinc compared with 1,570 tons containing 55 tons of lead and 440 tons of zinc in 1940. About 32 small mines and prospects in Boone, Marion, Newton, and Searcy Counties contributed to the output in 1941. Most of the operators handjigged or sorted their ore at the mines and sold it in small lots to the Manda Industrial Corporation at Harrison, which reshipped it to smelters or other buyers in carlots. The Hurricane Mining Co. did development work at the Big Hurricane and Excelsior mines in Searcy County and installed a 75-ton mill at the Excelsior near St. Joe; the mill treated about 800 tons of sulfide ore yielding 60 tons of concentrates assaying 58.7 percent zinc. The rest of the concentrates and ore shipped was carbonates or silicates and averaged 37 percent zinc and 2 percent lead. I. A. Lower treated 150 tons of ore and 50 tons of old tailings in the McIntosh mill at Rush, which yielded 20 tons of concentrates. At the Edith mine near Rush the Maricon Mining Co. drove 122 feet of tunnel and a 48-foot drift, did construction work on a 100-ton mill, and shipped 11 tons of sorted crude ore. Other producing mines included the Gloria, Coon Hollow, and Jack Pot in Boone County; Monte Cristo, Red Cloud, and Sure Pop in Marion County; and Lone Star in Searcy County.

ILLINOIS

Northern Illinois (see under Wisconsin for output data).—Gill Brothers operated the old Hughlett and Gray mine in Jo Daviess County from February through December 1941 and shipped 13,639 tons of ore averaging 15.32 percent zinc and 1.03 percent lead to the Vinegar Hill Zinc Co. custom flotation mill at Cuba City, Wis. Operations consisted of robbing pillars, slabbing off sides of old drifts, and taking up bottoms of old stopes. A little zinc ore was cleaned up and shipped from the old Blewett mine in the Galena district.

Southern Illinois.—The Mahoning Mining Co. operated its 200-ton selective flotation mill at Rosiclare continuously in 1941 on zinc-lead fluorspar ore from the company-owned W. L. Davis mine and adjacent leased properties near Cave in Rock. The ore occurs generally in flat-lying or blanket formation with alternating layers, one consisting of fluorspar and the other mostly of sphalerite and galena; it is mined through vertical shafts from open stopes supported by pillars and is transported to the mill by trucks. The commercial products of the mill (in the order recovered) are lead concentrates, zinc concentrates, and fluorspar concentrates (mostly of acid grade). Hillside Fluor Spar Mines continued to ship lead concentrates recovered as a byproduct in the milling of fluorspar, and individuals shipped small lots of lead concentrates from Freeport and Rosiclare. The total output of lead concentrates in Southern Illinois in 1941 was 3,545 tons averaging 64.94 percent lead and 5.74 ounces of silver to the ton, and that of zinc concentrates was 13,292 tons averaging 62.53 percent zinc. Production (in terms of recovered metals) amounted to 2,256 tons of lead, 20,340 ounces of silver, and 7,480 tons of zinc

compared with 1,500 tons of lead, 4,766 ounces of silver, and 4,812 tons of zinc in 1940.

KANSAS

Mine production of lead and zinc increased substantially in Kansas in 1941. The recoverable lead output rose from 11,927 tons in 1940 to 14,538 tons in 1941 and zinc from 57,032 to 71,403 tons. Zinc derived from old tailings decreased from 11 percent of the total in 1940 to 6 percent in 1941. About 58 mines and 18 mills were operated all or part of 1941 compared with 34 mines and 20 mills in 1940. Prices of concentrates and other general details of mining in the Tri-State region are given in the pages of this chapter devoted to Southwestern Missouri.

Mines and mills near Baxter Springs yielded 4,734 tons of lead concentrates and 34,533 tons of zinc concentrates in 1941. St. Louis Smelting & Refining Co. operated its Ballard mill continuously on ore from the Ballard, Bailey, Clark, English "O", and Shanks mines; the mill output of both lead and zinc concentrates increased materially over 1940. In July 1941 the Bilbarz Mining Co. began milling ore from the Bilharz-Brewster mine, at which the company had been conducting a difficult acid-water fight to unwater lower levels and reopen old ground; the company mill also continued to treat ore from the L. D. Brewster mine in Oklahoma. The Madison Mining Co. operated the Peru (old Sunflower) mine and mill steadily. The Lula Bell Mining Co. worked the Opperman mine, treating the ore in the company mill near Hockerville, Okla. Ore from the Robob and Oldham mines was shipped to the Central and Guarantv mills. respectively, in Oklahoma. The Wade custom mill treated 26,222 tons of ore received from small-scale operators in Kansas and Oklahoma.

Production from the Blue Mound-Treece area was 13,939 tons of galena and 87,920 tons of blende. The Eagle-Picher Mining & Smelting Co. operated its Westside-Barr and Webber mines and mills continuously; production of zinc from the Westside-Barr mine showed a large increase over 1940 and was the highest in the Tri-State district for a single mine. The Federal Mining & Smelting Co. ran its Muncie mill on ore from the Muncie-Tar Creek-Semple Group; the ore from the Federal Jarrett mine was sent to the company Gordon central mill in Oklahoma. Kansas Explorations, Inc., operated its Jarrett lease and mill northeast of the Federal Jarrett from January to November. Ore from the Cherokee mine was shipped to the Wood-The Youngman mill handled tailings until chuck mill in Oklahoma. July and was then dismantled and moved to the Robinson mine (operated by the Harris Mining Co.), where it was rebuilt for handling mine "dirt" and operated the rest of the year on ore from the Robinson mine, which had been shipping to the Beck mill at Picher, Okla. Ore from the Bendelari, Black Eagle, Big John, Chubb, Wilbur, and Wright mines was shipped to the Central mill at Cardin, Okla. The Dines Mining Co. mill treated company and custom ore, mostly from the Lindsey, Northern, and Southern mines. The New Blue Mound Mining Co., J. A. Worley, and the Pilot Oil Co. also operated mine mills. Operators of tailing mills in Kansas were the Captain Milling Co., C. Y. Semple, and H. D. Youngman. The Kansas part of the Waco district yielded 15 tons of galena concentrates and 8,361 tons of blende. The St. Louis Smelting & Refining Co. reopened its No. 9 group of mines and 800-ton mill in April and operated them the rest of the year; some of the ore milled came from the Missouri part of the property The F. W. Evans mill (formerly R. H. & G.) treated ore from leases on the O'Neill land (partly in Kansas and partly in Missouri), the St. Louis Smelting & Refining Co. land, and the Reynolds land. The Peacock mine and mill at the old Badger camp were operated on a small scale from January to September. At Galena, Fred Childress & Sons unwatered the Bailey shaft on the Southside land and shipped some ore late in the year to the Central mill in Oklahoma.

Mine shipments of lead and zinc in Kansas, 1937-41

		Lead o	oncentrates	Zina aa	ncentrates		Metal content 1			
Year	Mines pro- duc-	Beau c	oncentrates	Zinc co	incentrates .	Lead			Zinc	
	ing	Short tons	Value	Short tons	Value	Short tons	Value	Short	Value	
1937 1938 1939 1940	42 31 30 34 58	20, 559 19, 909 17, 845 15, 424 18, 888	\$1, 454, 507 1, 023, 851 1, 010, 106 907, 296 1, 264, 147	151, 646 133, 546 126, 235 105, 070 131, 406	\$6, 476, 064 4, 132, 248 4, 300, 365 4, 420, 360 6, 595, 506	16, 008 15, 239 13, 697 11, 927 14, 538	\$1, 888, 944 1, 401, 988 1, 287, 518 1, 192, 700 1, 657, 332	80, 300 73, 024 68, 971 57, 032 71, 403	\$10, 439, 00 7, 010, 30 7, 172, 98 7, 186, 03 10, 710, 45	

¹ In calculating metal content of the ores from assays allowance has been made for smelting losses of both lead and zinc. In comparing the value of ore and metal it should be borne in mind that the value given for the ore is that actually received by the producer, whereas the value of the lead and zinc is calculated from the average price for all grades.

Tenor of lead and zinc ore and old tailings milled and concentrates produced in Kansas, 1940-41

			<u> </u>		
	19	40	1941		
	Crude ore	Old tail- ings	Crude ore	Old tail- ings	
Total ore and old tailings milledshort tons Total concentrates produced:	1, 843, 800	1, 310, 000	2, 446, 207	1, 250, 040	
Galena do	15, 290	134	18, 886	6	
Sphalerite do	93, 537	11, 533	123, 000	8, 406	
Ratio of concentrates to ore, etc.:	,	,		0, 10	
Leadpercent_	0.83	0.01	0.77		
Zincdo	4.98	. 88	5. 03	0. 6	
Metal content of ore, etc.: 1					
Leaddo	. 66	. 01	. 61		
Zincdo	3. 01	. 53	3.04	. 40	
Average lead content of galena concentratesdo	78. 99	70.0	78. 54	50. (
Average zinc content of sphalerite concentrates_do	60. 36	59. 91	60.48	58.9	
Average value per ton: Galena concentrates	450.00	***	*** ***		
	\$58. 82	\$59.00	\$66. 93	\$56.00	
Sphalerite concentrates	42. 56	38. 13	50. 32	48. 38	

¹ Figures represent metal content of the crude ore (or "dirt") only insofar as it is recovered in the concentrates; data on tailing losses not available.

KENTUCKY

Shipments of lead and zinc ore and concentrates from Kentucky in 1941 comprised 321 tons of galena averaging 72.27 percent lead, 475 tons of zinc-lead sulfide averaging 54.32 percent zinc and 10.95

percent lead, 616 tons of zinc carbonate averaging 36.2 percent zinc and 1 percent lead, and 18 tons of sphalerite averaging 62.53 percent The recoverable metal content of the combined concentrates was 282 tons of lead and 427 tons of zinc in 1941, compared with 360 tons of lead and 1,278 tons of zinc, in 1940. The drop in zinc production in 1941 resulted from the closing late in 1940 of the "Hutson" mine and 100-ton mill of the Eagle Fluor Spar Co. near Salem, Livingston County; the only shipments from the mine in 1941 were 55 tons of ore cleaned up from a waste dump. Valley Mining Co. operated the Gratz mine and mill at Gratz, Owen County, intermittently from May to December and shipped several cars of zinc and lead sulfide concentrates. The United States Coal & Coke Co. Fluorspar Division shipped some zinc-lead and lead concentrates, and the National Fluorspar Co. and the Mineral Ridge Fluor Spar Co. shipped byproduct lead concentrates. A 200-ton lot of ore from Kentucky was sent to the Mahoning mill at Rosiclare, Ill., for experimental milling. Zinc carbonate log-washer concentrates were shipped from the K-K-Mining Co. land near Sheridan and the Blue property near Mexico. The Eagle-Picher Mining & Smelting Co. continued developing its zinc-lead property 6 miles east of Marion.

MICHIGAN

Copper totaling 92,880,000 pounds was produced in Michigan in 1941, an increase of 2,484,000 pounds (3 percent) over 1940. The increase resulted from a rise in the average grade of both mine ore and old tailings treated; the quantity of mine ore milled decreased from 1,827,119 tons in 1940 to 1,741,961 tons in 1941 and that of old tailings

from 2,611,100 to 2,540,487 tons.

The adverse effect of rising operating costs on copper production in Michigan under the ceiling price of 12 cents a pound, effective August 6, 1941, was recognized by the Office of Price Administration. In November special arrangements were consummated under which the Procurement Division of the Treasury Department contracted to purchase the copper output of three "high-cost" mines for 6 months at a price per pound equivalent to the "out-of-pocket" cost of production for the 6-month period ended June 30, 1941. The price was adjusted to include a wage increase of \$1 a day and expenses incident to the increase, plus an additional cent a pound if the total price a pound is lower than the cost of production during the contract period. Other stipulations provide an incentive for operators to reduce costs and fix maximum prices at 15 and 16 cents a pound. A contract, with similar provisions, for reopening a fourth "high-cost" copper mine in Michigan was executed early in 1942.

The concentrate ("mineral") produced at mills in Michigan in 1941 was smelted at plants of the Calumet and Hecla Consolidated Copper Co. at Hubbell and the Copper Range Co. at Houghton. Copper bullion that carries an amount of silver sufficient to make the separation and recovery of this metal profitable is cast into anodes and shipped to electrolytic refineries outside the State. The quantity of silver recovered from anodes shipped was 60,796 fine ounces in 1941

compared with 88,657 ounces in 1940.

Mine production of gold, silver, and copper in Michigan, 1937-411

				Copper 2		Concentrate ("min-			
Gold		Silver		Yield		eral")3		Ore ("rock")	
Year (fine ounce:	ounces)	(anantin lane	Pounds	Pounds per ton of ore ("rock")	Percent	Pounds Yield (percent copper)	(short tons)4		
1937 1938 1939 1940 1941	51.44	25, 454 93, 634 101, 878 88, 657 60, 796	94, 928, 000 93, 486, 000 87, 970, 000 90, 396, 000 92, 880, 000	22. 6 24. 9 19. 1 20. 4 21. 7	1. 13 1. 24 . 96 1. 02 1. 08	148, 172, 000 144, 964, 890 136, 771, 339 138, 451, 495 141, 100, 268	64. 1 64. 5 64. 3 65. 3 65. 8	\$ 4, 197, 881 3, 757, 705 4, 603, 751 4, 438, 219 4, 282, 448	

¹ Figures based upon actual recovery of copper from "mineral" smelted and estimated recovery from

"mineral" not smelted during year.
Includes copper from sands.
Includes sands.

Includes "mineral" from sands.
 Excludes 600 tons of siliceous ore.

Value of silver and copper produced in Michigan mines, 1937-41

19		Сор	per				Сор		
Year	Silver	Total	Per ton of ore ("rock")	Total	Year	Silver	Total	Per ton of ore ("rock")	Total
1937 1938 1939	\$19, 689 60, 531 69, 154	\$11, 486, 288 9, 161, 628 9, 148, 880	\$2. 74 2. 44 1. 99	\$11, 505, 977 9, 222, 159 9, 218, 034	1940 1941	\$63, 045 43, 233	\$10, 214, 748 10, 959, 840	\$2.30 2.56	\$10, 277, 793 11, 003, 073

The Calumet and Hecla Consolidated Copper Co. operated the Ahmeek and Peninsula groups on the Kearsarge lode throughout 1941 and in October began working the adjacent Douglass property under a 25-year lease from the Copper Range Co. During the year the company obtained a modification of its lease and option on the Peninsula group under which the term of the lease and option might be extended from year to year after July 1, 1943, upon payment of yearly installments on the purchase price. In July 1941 the company purchased all the lands of the Ojibway Mining Co. at public sale; these comprised 3,000 acres north of and contiguous to the Peninsula property. Development and mining on the Peninsula and Douglass properties were carried on from the Ahmeek mine workings. which are reached through three inclined shafts 7,043, 5,903, and 5,157 feet deep. Development done in 1941 comprised 334 feet of shaft, 10,094 feet of drifts, and 43,942 feet of diamond drilling. ore produced was treated in the 6,800-ton Ahmeek stamp mill by gravity concentration followed by flotation of the fines. The annual company report to stockholders shows an output of 28,670,000 pounds of copper from mine ore and 32,766,000 pounds from tailings treated in reclamation plants. It was estimated that at the 1941 rate of production the conglomerate tailings will be exhausted in about 2% vears.

Operations at the Calumet and Hecla reclamation plants at Lake Linden and Hubbell in 1941 and for the entire period of their operation

		-,			
	- 1 - 1			1941	Since beginning
Quantity treated			short tons	2, 295, 000	38, 365, 000
Assay headings			percent	0.835 .117	0.671
Refined copper produced per to:	n treated		pounds	32, 766, 000 14, 28	419, 791, 000 10, 94
					10.01

The Copper Range Co. operated its Champion and Globe mines and 2,500-ton mill at Freda throughout 1941, except for about 3 weeks following a fire at the mine on November 22; the company tailings-recovery plant was run from April to December, inclusive. The Champion mine is opened by a 70° shaft 5,361 feet deep, through which the workings of both mines are reached. Copper recovered from 304,480 tons of mine ore and 245,487 tons of sands treated totaled 16,677,304 pounds. The average yield of fine copper per ton of mine rock was 52.38 pounds compared with 57.72 pounds in 1940. The concentrates produced in the mills were treated in the company smelter, which also handled custom concentrates from the mills of the Isle Royale Copper Co. and the Quincy Mining Co.

The Isle Royale Copper Co. mine and 2,000-ton stamp mill were run continuously in 1941, except for a shut-down of about a week in September owing to a labor strike at the mine. The quantity of crude ore produced decreased from 391,073 tons in 1940 to 316,598 tons in 1941, owing mainly to a reduction in the output from No. 5 shaft; production from No. 4 shaft nearly equalled that in 1940. Fine copper yielded per ton of rock treated averaged 21.223 pounds

in 1941 and 19.897 pounds in 1940.

The Quincy Mining Co. operated its mine and mill steadily in 1941. The tonnage of rock treated and the yield of copper per ton were both slightly lower than in 1940.

MISSOURI

The total value of recoverable silver, copper, lead, and zinc produced from Missouri mines was \$22,795,293 in 1941 compared with \$19,145,700 in 1940. The silver output in 1941 (367,688 fine ounces valued at \$261,467) and the copper (2,800,000 pounds valued at \$330,400) were byproducts recovered in smelting and refining lead concentrates from Southeastern Missouri. These two metals occur in such small quantity to the ton of concentrates that no value is attached to them in the sale of the concentrates. The lead output of the State came largely from the Southeastern Missouri region and the zinc mostly from Southwestern Missouri. The Central district of Missouri produced 46 tons of recoverable lead and 207 tons of zinc in 1941; these figures are included with those of Southeastern Missouri in the table that follows.

The total output of lead concentrates in Missouri was 230,746 tons with a recovered lead content of 165,909 tons in 1941 compared with 235,746 and 172,052 tons, respectively, in 1940. The total output of zinc concentrates was 44,982 tons with a recovered zinc content of 21,932 tons compared with 24,539 and 12,703 tons, respectively, in 1940.

Mine production of lead and zinc in Southeastern and Central Missouri, 1937-41

	Lead co	ncentrates		oncen- (sphal-	Metal content 1					
Year		alena)	erite)		1	ead	Zine			
	Short tons	Value 2	Short tons	Value	Short tons	Value	Short tons	Value		
1937	209, 937 163, 500	\$14, 360, 271 9, 040, 593	24	\$720	153, 205 118, 870	\$18, 078, 190 10, 936, 040	11	\$1,430		
1939 1940 1941	210, 526 232, 871 228, 572	12, 339, 360 14, 269, 600 15, 404, 226	³ 815 4 5, 192	20, 000 73, 202	153, 522 169, 908 164, 388	14, 431, 068 16, 990, 800 18, 740, 232	233 1, 100	29, 358 165, 000		

¹ In calculating metal content of the ores from assays allowance has been made for smelting losses of both lead and zinc. In comparing the values of ore and metal it should be borne in mind that the value given for the ore is that actually received by the producer, whereas the value of the lead and zinc is calculated from the average price for all grades.

² Values given are to a certain extent arbitrary, as part of the lead concentrates are smelted by the producer.

³ Includes 500 tons of zinc carbonate ore containing 106 tons of recoverable zinc.

Tenor of lead ore and concentrates in Southeastern Missouri disseminated-lead district, 1937-41

	1937	1938	1939	1940	1941
Total lead ore short tons Galena concentrates in ore percent Zinc content of ore do Average lead content of galena concentrates do Average value per ton of galena concentrates Average zinc content of sphalerite concentrates percent Average value per ton of sphalerite concentrates.	5, 012, 631 4. 18 (1) 74. 5 \$68. 42 51. 6 \$30. 00	3, 668, 400 4. 45 (¹) 74. 8 \$55. 29	5, 127, 000 4. 11 (1) 74. 4 \$58. 61	5, 837, 400 3. 99 (1) 74. 45 \$61. 28	5, 737, 230 3, 98 (1) 73, 31 \$67, 39

¹ Figures not available.

Mine production of lead and zinc in Southwestern Missouri, 1937-41

		Lead con	centrate	es		Zinc conce	ntrates		Metal content 1				
Year	Ga	lena	Cart	onate	Sph	alerite	Silicate		Lead		Zinc		
	Short tons	Value	Short tons	Value	Short	Value	Short tons	Value	Snort tons	Value	Snort tons	Value	
1937. 1938. 1939. 1940. 1941.	5, 587 4, 130 3, 674 2, 818 2, 084	199, 885 158, 556	104 57	3, 100 2, 446	18, 474 27, 741	944, 587 959, 356	1, 022 949 807	16, 757 10, 965	3, 157 2, 759 2, 144	259, 346	10, 226 15, 096 12, 470	1, 569, 984 1, 571, 220	

¹ In calculating metal content of the ores from assays allowance has been made for smelting losses of both lead and zinc. In comparing the values of ore and metal it should be borne in mind that the value given for the ore is that actually received by the producer, whereas the value of the lead and zinc is calculated from the average price for all grades.

Includes 4,720 tons of zinc-lead carbonate concentrates containing 893 tons of recoverable zinc and 172 tons of lead.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN CENTRAL STATES 277

Tenor of lead and zinc ore and old tailings milled and concentrates produced in Southwestern Missouri, 1940-41

	1	940	. 1	941
	Crude ore	Old tailings and slimes	Crude ore	Old tailings and slimes
Total ore, etc., milledshort tons_	497, 500	117, 000	777, 351	252, 603
Total concentrates produced:	2, 875		2, 147	27
Door	22, 850	874	37, 594	2, 196
	22,000	0.2	0,,002	_,
Ratio of concentrates to ore, etc.:	0.58		0. 28	0. 0
	4.59	0.75	4.84	.8
Zincdo Metal content of ores, etc.: 1	1	31.13		1.
Leaddodo	.44		. 20	.00
Zine do do	2,68	. 43	2.83	.4
Average lead content of galena concentrates_do	76.4		72.8	51.
Average lead content of lead carbonatedo	59.7		52. 22	
Average zinc content of sphalerite concentrates				
percent	59. 5	59. 5	59.74	53.8
Average zinc content of silicates and carbonates			/	
percent_	25.7	43. 5	22.47	
Average value per ton:			200.00	#100 E
Galena concentrates	\$56. 27		\$60.62	\$38. 5
Lead carbonate concentrates	42.91		48.66	43.4
Sphalerite concentrates	41.90	\$40.74	50.34	45. 4
Zinc silicates and carbonates	12.13	27.00	11. 24	

¹ Figures represent metal content of the crude ore (or "dirt") only insofar as it is recovered in the conentrates; data on tailing losses not available.

Southeastern and Central Missouri.—The disseminated-lead district of Southeastern Missouri-largest lead-producing district in the United States—yielded 164,342 tons of recoverable lead in 1941 compared with 169,893 tons in 1940. The bulk of the production in 1941, as in the past, came from St. Francois County, where the St. Joseph Lead Co. operated four groups of mines and the Bonne Terre, Desloge, Federal, and Leadwood mills with a total daily capacity of 21,100 tons of ore. Treatment is by table concentration followed by flotation. The ore occurs in extensive flat-lying deposits in limestone and is mined from open stopes supported by pillars. Electric-powered mechanical loaders and locomotives are used for loading and under-Thirteen shafts averaging 440 feet in depth were ground haulage. operated in 1941. Development done comprised 41,585 feet of drifts and 1,240,845 feet of diamond drilling. In Madison County the Mine La Motte mine and 1,000-ton mill of the Mine La Motte Corporation (50 percent owned by the St. Joseph Lead Co.) were run steadily. Two shafts, 116 and 308 feet deep, were operated. Development done totaled 2,884 feet of drifts and 29,468 feet of churn drilling. The Ozark Lead Co. mined on the Fleming tract near Fredericktown from January to July; no further production was made from the property until March 17, 1942, when it was reopened by the Fredericktown Lead Co., which had purchased the Ozark Lead Co. mining lease and the Clark & Hallock mill. Of the 228,508 tons of lead concentrates made in 1941 in Southeastern Missouri, 106,232 tons were flotation concentrates. Local buyers and small-scale operators shipped 346 tons of galena recovered in shallow workings (including barite mines) in Jefferson, St. Francois, and Washington Counties.

The zinc output of Southeastern Missouri in 1941 was contained in zinc-lead carbonate concentrates recovered in log washers and

hand jigs from old dump material on the properties of the Valle Mining Co. north of Bonne Terre and the Tausig Estate 9 miles west of De Soto.

In Central Missouri the Wemhaner Mining Corporation produced 472 tons of 49-percent zinc sulfide concentrates and 6 tons of galena in its 100-ton jig-concentration mill, operated intermittently on ore from the leased open-cut mine on the Monarch Coal & Mineral Co. land in Moniteau County. Otis and E. M. Sullens shipped 58 tons of galena recovered in their 10-ton power jig from ore from an open-

cut on the Lowery property near Enon.

Southwestern Missouri.—The method of marketing the mine output in the Tri-State or Joplin lead and zinc region (Southwestern Missouri, Kansas, and Oklahoma) differs from that employed in other parts of the country where miners receive pay for ore upon the basis of the assay content of metal at a certain price per unit f. o. b. smelter and freight charges are deducted from the smelter settlement if not paid in advance or guaranteed by the shipper. In the Tri-State region compensation is paid per ton of concentrates f. o. b. mine bins. In effect, however, this is equivalent to paying for the metal contained, inasmuch as the price per ton is based upon a sliding scale determined by the assay content. The standard for zinc sulfide concentrates is 60 percent zinc and for lead sulfide 80 percent lead. No base prices have been quoted in recent years for zinc silicate and lead carbonate concentrates, as the output has been scattered and small.

The total value given in this report for all concentrates produced in the Tri-State region is based upon actual receipts by the sellers and not upon quoted prices. The quoted price is that paid for medium quantities or carlots; small lots bring less. The quoted weekly price a ton for Tri-State zinc blende concentrates at Joplin from January 1 to September 6, 1941, was \$48.00. A slight adjustment upward to \$48.58 was made in the next quotation (September 12), and this price held until October 10, when the quotation was raised to \$55.28 and remained at this figure the rest of the year. The quoted weekly price for galena concentrates from January 4 to February 8 was \$64.54; February 15 to March 1, \$66.70; March 8 to 22, \$68.14; March 29 to June 28, \$69.58; and July 5 to January 3, 1942, \$68.64. The average price paid for zinc silicate and carbonate shipped in

1941, most of which was low-grade, was \$11.24 a ton.

Production of zinc concentrates in the Tri-State region increased from 429,778 tons valued at \$18,062,867 in 1940 to 478,403 tons valued at \$23,960,568 in 1941, and that of lead concentrates from 46,212 tons valued at \$2,724,795 to 53,690 tons valued at \$3,597,132. Unsold stocks in bins December 31, 1941, totaled 907 tons of zinc concentrates and 1,276 tons of lead concentrates compared with 2,764 tons and 186 tons, respectively, as of December 28, 1940. Flotation concentrates comprised 53.6 percent of the sphalerite from the Oklahoma-Kansas area and 14.7 percent of that from Southwestern Missouri.

During 1941 Federal defense agencies made surveys covering all phases of the zinc- and lead-mining industry of the Tri-State region in an effort to determine under what conditions output could be increased or at least maintained at its present level during the next few years. The data obtained indicated that owing to depletion of ore reserves and rising operating costs the rate of production attained during the spring of 1941 (arcund 40,000 tons of zinc concentrates

and 4,300 tons of lead concentrates monthly) was close to the maximum that the field could produce at the prices then prevailing for concentrates. Measures subsequently taken by the Government, which greatly improved the outlook for maintaining and expanding production, were a raise of 1 cent a pound in the price of zinc allowed on October 9, which brought an increase of \$6.70 a ton in the price of zinc concentrates at Joplin; the granting of high-priority preference ratings on mine supplies and equipment, which became operative in the Tri-State district late in October; approval early in January 1942 of an advance of 0.65 cent a pound in the price of lead; and announcement of the plan to pay premium prices for over-quota production of copper, lead, and zinc for a 2½-year period beginning February 1, 1942.

The premium prices applied to concentrates of the Tri-State district amount to \$28.05 a dry ton of 60-percent zinc concentrates and \$39.60 for 80-percent lead concentrates. On March 1, 1942, Leslie H. McColgin was designated representative for the Metals Reserve Co. to handle premium payments on the production of Tri-State sulfide concentrates in excess of monthly quotas. The settlement plan is essentially as follows: Each producer who is eligible for the premium submits a request to McColgin, listing the total amount of concentrates delivered and sold for which payment has been or will be made and the amount of such concentrates which, being excess production, is eligible for a premium; he also furnishes a sworn affi-McColgin compiles statements of all requests received in a given period and sends them, with the sworn producers' affidavits, to the Metals Reserve Co., which arranges for premium payments to be made; checks made payable to the producers are sent to Mc-Colgin for distribution. Any deficiency in monthly deliveries of a given metal below the monthly production quota of any producer must be made up in the next succeeding month or months before such producer can receive any premium payment on excess-quota production of that metal. The first premium-payment checks made out to Tri-State operators were delivered March 17, 1942.

Production of recoverable zinc in Southwestern Missouri increased from 12,470 tons in 1940 to 20,832 tons in 1941 and lead decreased from 2,144 to 1,521 tons. About 80 mines and 26 mills, large and small, produced in 1941, compared with 80 and 17, respectively, in The Oronogo and Wentworth-Stark City areas contributed 67 percent of the total zinc output in 1941. At Oronogo, the Oronogo Mutual Mining Co. extracted 202,072 tons of ore from the Oronogo Circle open pit and in addition removed 409,790 tons of waste rock and overburden. The ore was milled in the Eagle-Picher American mill. From January to June, Kansas Explorations, Inc., sank two shafts, erected a hoisting derrick, and built a 600-ton mill on its Snapp property 2½ miles northwest of Oronogo; mining and milling were begun in July and continued the remainder of the year. The F. & M. Mining Co. operated the La Tosca mine and mill, and Fenix & Sons shipped crude ore from a shaft on the Oronogo Mutual property to the Central mill in Oklahoma. The output from the Wentworth-Stark City area came largely from the Dungy, Navy Bean, and Reynolds mines, operated by the Eagle-Picher Mining & Smelting Co., which milled the ore in its Navy Bean mill, completed in December 1940. The Wentworth Mining & Milling Co. and the Midwestern Mining & Sand Co. mills near Wentworth were operated part of 1941.

About October 20 the Federal Mining & Smelting Co. resumed operations at its Granby-American group of mines and mill, which had been shut down for 15 years. At Stotts City the Capital Mining Co. mine and mill were operated from June to December, except for time lost when the mine was flooded by heavy rains in October. The Stotts City Mining Co. worked on unwatering and developing its property. The Playter 100-ton custom mill near Waco milled ore from the Waco, Belleville, and Carthage area; and the F. W. Evans and St. Louis No. 9 mills in Kansas treated considerable ore mined from the Missouri part of the Waco district. In the Thoms station area the St. Louis Mining & Milling Co. operated its mill (old Grasselli) intermittently on ore mined by lessees on the Tabor-Velie land. The Sciota Milling Co. 1,000-ton tailing mill, built on the Missouri Zinc Fields Co. land near Webb City early in the year, was operated steadily after April. About 10 small mills in the vicinity of Webb City, Joplin, Alba, and Spurgeon were operated intermittently. Lessees on the Connor Investment Co. land in the Chitwood area shipped ore to custom mills. In November the Northside Mining Co. struck a rich deposit of zinc ore at a depth of 160 feet while sinking a shaft on the leased St. Louis-Joplin Lead & Zinc Co. land % mile northwest of Chitwood. The Mary Arnold mine and mill near Ozark (taken over in August by the Nibeck Mining Co.) continued producing. At Aurora the Harris Mining Co. completed a mill on the Scott-Phelps-Scott property and produced 85 tons of sphalerite. Zinc carbonate from scattered small mines and lowgrade zinc-lead concentrates from the Goade mill at Granby shipped in 1941 totaled 1,277 tons.

OKLAHOMA

The method of marketing concentrates, prices quoted for them in 1941, and other general details of mining in the Tri-State region—which includes northeastern Oklahoma—are given in the preceding pages on Southwestern Missouri. Zinc and lead concentrates recovered from Oklahoma ores and old tailings had a combined value of \$17,630,111, a 23-percent increase over 1940. The output of zinc concentrates increased 2 percent in quantity and lead concentrates 17 percent. About 120 mines produced during the year, and 27 mills were operating at the end of the year compared with 100 and 31, respectively, in 1940. Old tailings treated in Oklahoma in 1941 exceeded crude ore by 4,147,947 tons, and the tailings yielded 21 percent of the total zinc concentrates.

Mine shipments of lead and zinc in Oklahoma, 1937-41

•		oncentrates		ncentrates	Metal content ¹					
Year	(§	galena)	(sphalerite)		Lead		Zine			
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value		
1937 1938 1939 1940	39, 446 27, 608 36, 422 27, 913 32, 628	\$2,729,690 1,446,058 2,189,077 1,656,497 2,202,876	255, 839 208, 484 258, 214 300, 984 307, 207	\$10, 428, 354 6, 390, 422 8, 937, 554 12, 672, 186 15, 427, 235	29, 840 21, 004 27, 720 21, 240 25, 021	\$3, 521, 120 1, 932, 368 2, 605, 680 2, 124, 000 2, 852, 394	135, 696 112, 924 140, 379 162, 935 166, 602	\$17, 640, 40 10, 840, 70 14, 599, 41 20, 529, 81 24, 990, 30		

¹ In calculating metal content of the ores from assays allowance has been made for smelting losses of both lead and zinc. In comparing the values of ore and metal it should be borne in mind that the value given for the ore is that actually received by the producer, whereas the value of the lead and zinc is calculated from the average price for all grades.

Tenor of lead and zinc ore, old tailings, and slimes milled and concentrates produced in Oklahoma, 1940-41

	1	940	1941		
	Crude Ore	Old tailings and slimes	Crude ore	Old tailings and slimes	
Total ore, etc., milledshort tonsshort tons	4, 195, 400	7, 055, 000	4, 868, 021	9, 015, 968	
Galenado	27, 328	585	32, 296	332	
Sphaleritedo Ratio of concentrates to ore, etc.:	238, 806	62, 178	243, 773	63, 434	
Leadpercent.	0.65	0.01	0.66	0.004	
Zincdo	5. 55	. 88	5.01	. 70	
Metal content of ore, etc.: 1					
Leaddo	. 51	004	. 52	. 002	
Zincdo	3.35	. 53	3.03	. 41	
Average lead content of galena concentratesdo Average zinc content of sphalerite concentrates	78.3	48. 2	78. 53	51. 51	
percent	60.3	59. 6	60.59	58. 97	
Average value per ton:		1			
Galena concentrates	\$59.75	\$40.64	\$67.75	\$44. 79	
Sphalerite concentrates	42.40	40.95	50.55	48. 94	

¹ Figures represent metal content of the crude ore (or "dirt") only insofar as it is recovered in the concentrates; data on tailing losses not available.

The Eagle-Picher Mining & Smelting Co. continued to be the largest producer of both lead and zinc in Oklahoma and in the Tri-State region. The company Central mill near Cardin has a capacity of 13,000 tons daily and treats company and custom ore. New installations made in the mill in 1941 included a secondary differentialdensity cone to be used as a supplement to the primary cone unit. which has been in operation since February 1939, and eight sludge tables for separating a special blende product for shipment to the zinc oxide plant adjoining the company lead smelter at Galena, Kans. The total ore treated in 1941 was 3,311,144 tons compared with 2,795,963 tons in 1940. Company-operated mines in Oklahoma shipping to the mill were the Blue Goose mines, Crystal mines, Eagle-Picher Gordon Nos. 1 and 2, Grace Walker mines, Hum-bah-wat-tah mines, Jay Bird, John Beaver mines, Little Greenback, Ohimo, See Sah, Southside mines, Stanley, Swift, and Wesah Greenback. principal shippers of Oklahoma custom ore were the Baird Mining Co. (American-Douthat), Cameron & Henderson (Admiralty, Kitty), Cortez-Childress, Davis-Big Chief Mining Co. (Eudora-Whitebird), F. W. Evans (Shorthorn, etc.), Jane E. Mining Co. (McKibben, Scott), Lula Bell Mining Co. (Anna Beaver), M. & M. Mining Co. (Piokee, Swift), and Mahutska Mining Co. (Acme). The Eagle-Picher 2,400-ton Bird Dog mill was shut down in April and remained idle the rest of the year.

The Gordon central mill of the Federal Mining & Smelting Co. treated company ore from the Gordon, Lucky Bill, Lucky Syndicate, and Quapaw-Davenport mines in Oklahoma and the Federal Jarrett in Kansas. The Beck Mining Co. mill treated company and custom ore. Evans Wallower Zinc, Inc., ran its No. 4 and No. 7 mines and mills steadily. The M. & W. Mining Co. mined and sent to the Bilharz mill in Kansas a considerable tonnage of ore of higher than average grade from the L. D. Brewster mine. Operation of the Woodchuck and Townsite mines and the Woodchuck mill in Oklahoma and the Cherokee mine in Kansas was taken over on December 12, 1941, by the Weidman Mining Co.; the Oklahoma Interstate Mining Co.

which had operated them for many years, became inactive. The Skelton Lead & Zinc Co. closed its mill in December and began shipping to the Central mill. Other producers of concentrates from mine mills in Oklahoma comprised Kansas Explorations, Inc. (Ritz); Rialto Mining Corporation (No. 3 mill); Lawyers Lead & Zinc Co. (mine "dirt" and tailings); Lavrion Mining Co.; Lula Bell Mining Co.; Mission Mining & Royalty Co. (custom "dirt"); St. Louis Smelting & Refining Co. (No. 4 mill); United Zinc Smelting Corporation (company and custom ore); Davis-Big Chief Mining Co. (Kropp mine); Hudson Lead & Zinc Co. (Goodeagle); Guaranty Mining & Royalty Co.; Roan Bull Mining Co.; and Smoky Hill Mining Co.

Companies operating tailing mills in Oklahoma comprised the Atlas Milling Co., Big Chief Tailing Co., Britt & Britt Milling Co., Cardin Mining & Milling Co. (Nos. 2 and 3), Rialto Mining Corporation, C. Y. Semple, Tri-State Zinc, Inc. (Sooner and Ottawa), and

Western Mining & Milling Co.

No production was reported in the Peoria area or the Davis (Murray County) district in 1941.

WISCONSIN

During the 10-year period ended with 1940 the annual output of recoverable zinc from Wisconsin averaged 7,295 tons and that of lead 607 tons; this comprised all the output of the Upper Mississippi Valley region except 6 tons of zinc and 8 tons of lead produced in Northern Illinois in 1940, as mines in Iowa yielded no zinc or lead from 1918 to 1941, inclusive. In 1941 mines in Wisconsin yielded 6,238 tons of zinc and 1,225 tons of lead and those in Northern Illinois 1,718 and 120 tons, respectively—a total for the Upper Mississippi Valley region of 7,956 tons of zinc and 1,345 tons of lead compared with 5,776 and

453 tons, respectively, in 1940.

Shipments of crude ore and zinc-iron-lead rougher jig concentrates to the Vinegar Hill Zinc Co. central flotation mill at Cuba City rose sharply during the latter part of 1941, necessitating a 50-percent enlargement in the capacity of the mill. The mill made zinc concentrates (averaging 59.50 percent zinc), lead concentrates, and iron sulfide concentrates that were roasted to produce sulfuric acid. principal shippers of custom mine "dirt" to the mill were the McCabe Mining Co. and Strawberry Blonde Mining Co. in the Benton district; the Depp Mining Co., Cuba City; the Meloy & Baker Mining Co., New Diggings; Arensdorf & Murray and the St. Joe Mining Co., Platteville; and Gill Brothers, Northern Illinois. Shippers of jig mill concentrates were the Big Jack Mining Co., Platteville; C. F. & H. Mining Co., New Diggings; Cuba Mining Co., Shullsburg; Four S. & B. Mining Co., Dodgeville; and Little Benny Mining Co., New Diggings. The Vinegar Hill Zinc Co. closed its Mullen No. 2 mine The Dodgeville Mining Co. operated its 150-ton jig mill and 50-ton flotation mill (placed in operation December 20, 1940) throughout 1941; the zinc concentrates made in the flotation mill averaged 61.24 percent zinc. Several cars of zinc carbonate were shipped from the Clark No. 2 mine in the Highland district.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN CENTRAL STATES 283

Mine production of lead and zinc in Wisconsin, 1937-41

	Lead cor	ncentrates	Zinc cor	centrates		Metal content 1					
Year	-		(spha	lerite)	Le	ad	Zi	ne			
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value			
1937	1, 590 493 567 621 1, 639	\$109, 468 21, 050 29, 327 34, 852 111, 014	37, 060 ² 3, 895 ³ 10, 169 ³ 10, 875 ³ 11, 685	\$444, 531 2 121, 180 3 355, 915 3 447, 396 3 594, 323	1, 091 320 388 445 1, 225	\$128, 738 29, 440 36, 472 44, 500 139, 650	6, 938 2, 073 5, 904 5, 770 6, 238	\$901, 940 199, 008 614, 016 727, 020 935, 700			

¹ In calculating metal content of the ores from assays allowance has been made for roasting and smelting losses of both lead and zinc. In comparing the values of ores and metal it should be borne in mind that the value given for the ore is that actually received by the producer, whereas the value of the lead and zinc is calculated from the average price for all grades.
¹ The zinc concentrates shipped in 1938 were a flotation product or raw concentrates roasted at Cuba City, Wis. No raw concentrates were shipped in 1938; about 13,000 tons were produced.
³ Most of the ore mined in Wisconsin from 1939-41 was first treated in gravity-concentration mills producing bulk concentrates which were re-treated by flotation. A considerable quantity of crude ore was floated direct.

Tenor of lead and zinc ore and concentrates produced in Wisconsin, 1937-41

1937	1938	1939	1940	1941
285, 000	58, 700	213, 400	190, 326	211, 973
0. 56 13. 00	0.84	0. 26	0.33	0. 77 3 5. 51
. 29	. 55	. 19	. 24	. 59
3. 12 70. 1	3. 91 67. 0	3. 07 70. 0	3. 37 73. 1	3. 27 76. 27
24.0	18. 5	20. 2	³ 58. 94	³ 59. 77
\$68.85 11.99	\$42.70 531.11	\$51.72 6 35.00	\$56. 12 6 41. 14	\$67. 73 6 51. 39
	285, 000 0. 56 13. 00 . 29 3. 12 70. 1 24. 0 \$68. 85	285,000 58,700 0.56 0.84 13.00 122.15 .29 .55 3.12 3.91 70.1 67.0 24.0 18.5 \$68.85 \$42.70	285,000 58,700 213,400 0.56 0.84 0.26 13.00 122.15 215.15 .29 .55 .19 3.12 3.91 3.07 70.1 67.0 70.0 24.0 18.5 20.2 \$68.85 \$42.70 \$51.72	285,000 58,700 213,400 190,326 0.56 0.84 0.26 0.33 13.00 122.15 15.15 5.71 .29 .55 .19 .24 3.12 3.91 3.07 3.37 70.1 67.0 70.0 73.1 24.0 18.5 20.2 358.94 \$68.85 \$42.70 \$51.72 \$56.12

¹ The zinc concentrates shipped in 1938 (3,895 tons) were a flotation product or raw concentrates roasted at Cuba City, Wis. No raw concentrates were shipped in 1938; about 13,000 tons, averaging 18.5 percent zinc, were produced.

² All sphalerite shipped in 1939 (10,169 tons) was a flotation product. No raw concentrates were shipped in 1939; 32,360 tons, averaging 20.2 percent zinc, were produced.

³ Percentage represents finished flotation concentrates. Most of the ore mined in Wisconsin in 1940 and 1941 was first treated in gravity-concentration mills producing bulk concentrates which were re-treated by flotation. A considerable quantity of crude ore was floated direct.

⁴ Percentages represent metal content of the ore insofar as it is recovered in the concentrates.

⁴ Value is that of roasted or flotation concentrates shipped. No value can be assigned for zinc concentrates prior to roasting or re-treatment by flotation.

prior to roasting or re-treatment by flotation.

Value is that of flotation concentrates shipped.

GOLD. SILVER. COPPER. LEAD. AND ZINC IN COLORADO

(MINE REPORT)

By Chas, W. Henderson and A. J. Martin

SUMMARY OUTLINE

Page	Page
Summary 285	Metallurgic industry 291
Calculation of value of metal production 285	Review by counties and districts 296
Mine production by counties 288	Golden Cycle mill 303
Mining industry 290	Leadville district 306
Ore classification 291	Cripple Creek district 313

SUMMARY

Colorado mines vielded gold, silver, copper, lead, and zinc valued, in terms of recovered metals, at \$23,877,597 in 1941 compared with \$24,293,665 in 1940. (See fig. 1.) Gold and silver together represented 77 percent of the total value in 1941 and 81 percent in 1940. Gold production increased 3 percent over 1940 and was the highest since 1924. The quantity of silver and copper produced decreased 25 and 44 percent, respectively, lead increased 10 percent, and zinc increased 211 percent. The output of zinc was 31,444,000 pounds. compared with 10,120,000 pounds in 1940 and with an annual average of 3,792,250 pounds in the 8-year period from 1932 to 1939. number of large producing lode mines was about the same as in 1940; the number of placer operations (large and small) decreased, but the entire gain in gold production of the State came from the placers.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zine 3	
1937 1938 1939 1940 1941	Per fine ounce \$35.00 35.00 35.00 35.00	Per fine ounce \$0.7735 4.646+ 5.678+ 6.711+ 6.711+	Per pound \$0. 121 . 098 . 104 . 113 . 118	Per pound \$0. 059 . 046 . 047 . 050 . 057	Per pound \$0.065 . 048 . 052 . 063 . 075	

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+(\$20.671835) per fine ounce.

² 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver.

³ Yearly average weighted price of all grades of primary metal sold by producers.

⁴ \$0.646464.

\$0.67878787 § \$0.71111111 Annual figures for the 5 years ended with 1941 and total production from 1858 to 1941 are given in the table that follows. Colorado has produced more silver in the past than any other State and ranks second in total recorded output of gold.

Mine production of gold, silver, copper, lead, and zinc in Colorado, 1937-41, and total, 1858-1941, in terms of recovered metals

Year		Mines producing Lode Placer		Ore sold or treated	Gold (lode	and placer)	Silver (lode and place		
:				(short tons)	Fine ounces	Value	Fine ounce	Value	
1937 1938 1939 1940 1941		655 490 669 592 758 583 691 439 579 324		2, 068, 619 1, 996, 095 1, 914, 593 2, 157, 765 2, 222, 786	368, 905 367, 468 366, 852 367, 336 380, 029	\$12, 911, 678 12, 861, 380 12, 839, 820 12, 856, 760 13, 301, 018	7, 932, 095 8, 496, 488 9, 710, 709	5, 127, 819 5, 767, 313 6, 905, 393	
1858-1941				(1)	38, 296, 755	834, 263, 389	717, 950, 564	558, 481, 176	
	C	Copper		Le	ead	Zi	ine		
Year	Pounds	1	Value	Pounds	Value	Pounds	Value	Total value	
1937 1938 1939 1940 1941	21, 868, 000 28, 342, 000 26, 430, 000 24, 304, 000 13, 496, 000) 2,) 2,) 2,	646, 028 777, 516 748, 720 746, 352 592, 528	19, 572, 000 18, 910, 000 16, 444, 000 22, 952, 000 25, 148, 000	\$1, 154, 748 869, 860 772, 868 1, 147, 600 1, 433, 436	8, 494, 000 9, 106, 000 3, 660, 000 10, 120, 000 31, 444, 000	\$552, 110 437, 088 190, 320 637, 560 2, 358, 300	\$22, 107, 207 22, 073, 663 22, 319, 041 24, 293, 665 23, 877, 597	
1858-1941	² 244, 294	2 244, 294 64, 499, 199		2 2, 376, 891	224, 695, 713	² 1, 151, 014	161, 586, 696	1, 843, 526, 173	

¹ Figures not available.

2 Short tone

Gold and silver produced at placer mines in Colorado, 1937-41, in fine ounces, in terms of recovered metals

	a 1											
Year	Sluicin hydra		Drift mining		Dry-land 1		Drag float			Tota	d .	
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Bilver	Gold	Silver
1937 1938 1939 1940 1941	1, 948. 21 2, 285. 00 2, 535. 00 1, 822. 00 1, 886. 00	433 498 360	2, 020. 13 1, 362. 00 15. 00	279	6, 212. 24 10, 201. 00 10, 631. 00 10, 203. 00 13, 052. 00	2, 020 2, 436 2, 210	2, 780. 35 3, 166. 00 1, 950. 00 4, 817. 00	279 178	1, 910. 07 1, 027. 00 4, 688. 00 4, 975. 00 10,622.00	239 1, 012 1, 068	14, 871. 00 18, 041. 00 19, 819. 00 17, 000. 00 30, 377. 00	3, 250 4, 125 3, 638

¹ Dragline and power-shovel excavators with sluices or special amalgamators.

Gold.—The output of gold from lode mines in Colorado in 1941 varied little from 1940, but that from placer mines increased 13,377 ounces (79 percent), owing mainly to production from new dredging operations in Park County. The Cripple Creek district, Teller County, continued to be the principal gold-producing district in the State; it was followed, in order, by the Red Cliff district, Eagle County; Upper San Miguel, San Miguel County; Mosquito, Park County; Leadville, Lake County; Animas, San Juan County; Summitville, Rio Grande County; Empire, Clear Creek County; Southern districts, Gilpin County; Idaho Springs, Clear Creek County; Gold Hill,

Boulder County; Sneffels, Ouray County; and Fairplay, Park County. Each of these districts yielded more than 10,000 ounces of gold. The largest gains over 1940, by counties, were 10,137 ounces in Lake County, 7,270 ounces in Park, 4,538 ounces in Teller, 4,344 ounces in Gilpin, and 4,342 ounces in Rio Grande; the largest decreases were 6,005 ounces in Eagle County, 5,084 ounces in Clear Creek, 3,246 ounces in San Miguel, and 2,892 ounces in Boulder. Dry and siliceous ores yielded 80 percent of the total gold; copper ore, 7 percent; zinclead, lead, zinc, and lead-copper ores, 5 percent; and placers, 8 percent.

Silver.—The mine production of silver in Colorado was 7,301,697 ounces in 1941—a decrease of 2,409,012 ounces from 1940. Eagle County continued to be by far the largest producer of silver in the State, although its output decreased from 6,766,726 ounces in 1940 to 4,352,677 ounces in 1941. Variations in output in other important silver-producing counties were decreases of 32,906 ounces in Clear Creek County, 13,247 ounces in Dolores, 90,744 ounces in Ouray, 27,852 ounces in Pitkin, and 18,499 ounces in San Miguel and increases of 39,340 ounces in Lake County, 40,310 ounces in Mineral, and 170,069 ounces in San Juan. Copper ore yielded 59 percent of the total silver; dry and siliceous ores 30 percent; and other types of ore, with a very small quantity of silver from placer mines, 11 percent.

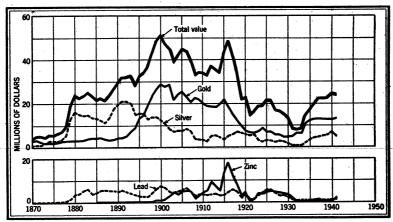


FIGURE 1.—Value of mine production of gold, silver, lead, and zinc and total value of gold, silver, copper, lead, and zinc in Colorado, 1870–1941. The value of copper has been less than \$2,000,000 annually, except in a few years.

Copper.—The mine output of recoverable copper in Colorado was 13,496,000 pounds in 1941 compared with 24,304,000 pounds in 1940. The only sizable producer of copper in the State in either year was the Empire Zinc Division "Eagle Mine" of the New Jersey Zinc Co. at Gilman, Eagle County, which continued to ship copper-iron-silvergold-lead ore direct to the copper smelter at Garfield, Utah. About June 15, 1941, the company began also to mine and mill zinc-lead ore in quantity, with greatly decreased output of copper-bearing ore. The copper output from other counties in the State came chiefly from zinc-lead ore and dry and siliceous ore; those that contributed more than 100,000 pounds of recoverable copper during the year were Boulder, Clear Creek, Dolores, Gilpin, Jefferson, Lake, Ouray, and San Juan.

Lead.—The mine production of lead in Colorado was 25,148,000 pounds in 1941 compared with 22,952,000 pounds in 1940. The output in 1941 came chiefly from San Juan, Dolores, Eagle, San Miguel, Lake, and Mineral Counties, each of which contributed more than 1,000,000 pounds. Zinc-lead ore yielded 53 percent of the total lead; dry and siliceous ore, 32 percent; and lead, copper, zinc, and lead-

copper ores together, 15 percent.

Zinc.—Mines in Colorado yielded 31,444,000 pounds of recoverable zinc in 1941 compared with 10,120,000 pounds in 1940. The large increase in 1941 resulted from resumption of the mining and milling of zinc-lead ore by the New Jersey Zinc Co. Empire Zinc Division at its Eagle mine at Gilman, Eagle County. From 1932 to 1940; inclusive, the zinc-lead ore bodies in this mine were not worked, and the 600-ton underground flotation mill was idle. The total output of zinc from other mines in Colorado decreased slightly from 1940; and the principal producers in both years were the Rico Argentine Mining Co. at Rico, Dolores County, and the Shenandoah-Dives Mining Co. at Silverton, San Juan County.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Colorado in 1941, by counties, in terms of recovered metals

County	Mines producing		Gold (lode	and placer)	Silver (lode and placer)		
•	Lode	Placer	Fine ounces	Value	Fine ounces	Value	
Adams	L	3	282	\$9,870	45	\$35	
Arapahoe		i	22	770	4	4 04	
Archuleta	1		38	1, 330	4		
Boulder	99	4	30, 729	1, 075, 515	62, 775	44, 64	
Chaffee	12	15	498	17, 430	1, 734	1. 233	
Clear Crosk	77	16	33, 198	1, 161, 930	129, 416	92, 029	
Conejos	1		7	245	204	148	
Costilla	1	1	7	245	1	146	
Custer	3		•		2, 222	1, 580	
Denver		3	6	210	2, 222	1, 500	
Dolores	5		1,068	37, 380	150, 477	107, 006	
Douglas		6	13	455	100, 211	107,000	
Eagle	5	ĭ	25, 168	880, 880	4, 352, 677	3, 095, 237	
Fremont	ž	_	20, 100	35	35	3, 090, 237 25	
Garfield	4		89	3, 115	142	101	
Gilpin	51	80	13, 560	474, 600	17, 966		
Grand	3		10,000	35	744	12,776	
Gunnison	19		1.871	65, 485	13, 815	529	
Hinsdale	5		20	700	6, 186	9, 824	
Jefferson	1	26	579	20, 265	2,039	4, 399	
Lake	45	18	20, 287	710.045		1, 450	
La Plata	6	1	747	26, 145	120,603	85, 762	
Larimer	2		31		1, 914	1, 361	
Mineral	6		904	1,085	21	15	
Montezuma.	2		1, 112	31, 640	906, 712	644, 773	
Montrose	î	18	56	38, 920	1, 229	874	
Ouray	17	10	10, 790	1,960	13, 735	9, 767	
Park	21	75		377, 650	159, 186	113, 199	
Pitkin	5	10	45, 682	1, 598, 870	31, 230	22, 208	
Rio Grande	1		10 070		238, 773	169, 794	
Routt	1	2	16, 979	594, 265	14,019	9, 969	
Saguache.	9	2	5	175	3	2	
San Juan	25		24	840	17, 706	12, 591	
San Miguel	21		17, 384	608, 440	532, 731	378, 831	
Summit.	30	2	24, 097	843, 395	450, 515	320, 366	
Teller	99	52	1,304	45, 640	51, 234	36, 433	
- VIIOI	89		133, 470	4, 671, 450	21, 600	15, 360	
	570	324	380, 029	13, 301, 015	7, 301, 697	5, 192, 318	
Fotal, 1940	691	439	367, 336	12, 856, 760	9, 710, 709	6, 905, 393	

Mine production of gold, silver, copper, lead, and zinc in Colorado in 1941, by counties, in terms of recovered metals—Continued

	Сор	per	Lea	ıd.	Zir	1C	Total
County	Pounds	Value	Pounds	Value	Pounds	Value	value
dams							\$9, 9
rapahoe							7
rchuleta							1, 3
oulder	103,000	\$12, 154	225, 000	\$12,825	11,000	\$825	1, 145, 9
haffee	3,000	354	28,000	1,596	48,000	3, 600	24, 2
lear Creek	181,000	21, 358	947, 000	53, 979	112,000	8, 400	1, 337, 6
oneios							3
ostilla			4,000	228	8,000	600	1,0
uster	2,000	236	66,000	3, 762			5,
enver							- 1
olores	124,000	14, 632	5, 054, 000	288, 078	6, 008, 000	450, 600	897, (
ouglas							
agle	11, 218, 000	1, 323, 724	3, 420, 000	194, 940	21, 760, 000	1, 632, 000	7, 126,
remont	8,000	944	2,000	114			1,
arfield	500	59			7,000	525	3,
ilpin		16, 284	39,000	2, 223			505,
rand	200,000	,	2,000	114			
unnison	3,000	354	120,000	6, 840	64,000	4,800	87,
insdale	15,000	1,770	15, 000	855			7, 1
efferson	192,000	22, 656					44,
ake	102,000	12,036	2, 230, 000	127, 110	95,000	7, 125	942,
a Plata	102,000	,	,,,		l		27,
arimer							1,
fineral	32,000	3,776	1, 140, 000	64, 980			745,
Iontezuma	02,000	5,					39,
Iontrose	47,000	5, 546					17,
uray	256,000	30, 208	637, 000	36, 309	38,000	2, 850	560,
ark	79, 000	9, 322	738, 000	42, 066	614,000	46, 050	1, 718,
itkin	2,000	236	807, 000	45, 999	254,000	19, 050	235,
io Grande	8,000	944		,			605,
outt	3,000						-
aguache	26,000	3,068	320,000	18, 240	62,000	4,650	39,
an Juan		102, 660	6, 145, 000	350, 265	1,680,000	126,000	1, 566,
an Miguel		9, 263	2, 834, 000	161, 538			1, 334,
ummit		944	375,000	21, 375	683, 000	51, 225	155,
'eller	0,000	721	1 5.0,000	,			4, 686,
WIW							
	13, 496, 000	1, 592, 528	25, 148, 000	1, 433, 436	31, 444, 000	2, 358, 300	23, 877,
otal, 1940		2, 746, 352	22, 952, 000	1, 147, 600	10, 120, 000	637, 560	24, 293,

Ore sold or treated and gold and silver produced at lode mines in Colorado in 1941, by counties, in terms of recovered metals

	. ,		
County	Ore sold or treated (short tons)	Gold (fine ounces)	Silver (fine ounces)
	7	38	4
Archuleta	89, 958	30, 719	62, 775
Boulder	221	207	1,689
Chaffee		32, 372	129, 316
Clear Creek	179, 434	32, 3/2	204
Conejos	45	1	203
Costilla	46		2. 222
Custer	178		
Dolores	48, 827	1,068	150, 477
Eagle	328, 655	25, 164	4, 352, 677
Fremont	33	1	35
Garfield	100	89	142
Gilpin	28,778	8, 320	17,038
Grand	15	1	744
Gunnison	9,638	1,871	13, 815
Hinsdale	707	20	6, 186
Jefferson	4, 624	151	1, 959
Lake	243, 902	19, 270	120, 285
La Plata	134	744	1, 914
Larimer	15	31	21
Mineral	41, 568	904	906, 712
Montezuma	2, 558	1, 112	1, 229
Montrose	270	2	13,718
	44, 148	10, 790	159, 186
Ouray	112, 799	24, 415	27, 343
Park	24,088	21, 110	238, 773
Pitkin	27, 313	16, 979	14,019
Rio Grande	1, 415	24	17, 706
Saguache	265, 232	17, 384	
San Juan	1 200, 232	1 17,304	1 000,101

Ore sold or treated and gold and silver produced at lode mines in Colorado in 1941, by counties, in terms of recovered metals—Continued

County	Ore sold or treated (short tons)	Gold (fine ounces)	Silver (fine ounces)
San MiguelSummit.	234, 830	24, 089	450, 512
	4, 607	410	50, 978
Teller	528, 641	133, 470	21, 600
Total, 1940	2, 222, 786	349, 652	7, 296, 010
	2, 157, 765	350, 336	9, 707, 071

Gold and silver produced at placer mines in Colorado in 1941, by counties, in fine ounces, in terms of recovered metals

	Olesiai				Dre	dges					
County	hydi	icing and ydraulic		Dry-land 1		Dragline float- ing		Floating bucket		Total	
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	
Adams ArapahoeBoulder	282 22	45 4							282 22	4	
Chaffee Clear Creek Costilla	115 12 7	18 1	3 176 814	27 99					10 291 826	4.0 100	
Denver Douglas Eagle	6 13 4								6 13 4		
Gilpin Jefferson Lake	189 - 428 315	42 80 90	5, 051 702	886 228					5, 240 428 1, 017	929 80 318	
La Plata Montrose Park	3 54 204	17 43	5, 624	1, 139	4, 817	553	10, 622	2, 152	3 54	17	
Routt San Miguel Summit	5 8 212	43 3 3 55	682	201			10, 022	2, 152 	21, 267 5 8	3, 88	
Fotal, 1940	1, 886 1, 822	402 360	13, 052 10, 203	2, 580 2, 210	4, 817	553	10, 622 4, 975	2, 152 1, 068	30, 377 17, 000	5, 683 3, 638	

¹ Dragline and power-shovel excavators with sluices or special amalgamators.

MINING INDUSTRY

In 1941 the output of dry and siliceous gold, gold-silver, and silver ores from mines and dumps in Colorado increased 3 percent and zinclead ore 53 percent over 1940, whereas copper ore decreased 38 percent and lead ore 22 percent. This sharp variation from 1940 in the State total output of zinc-lead and copper ores is explained by the fact that in 1940 the output of the Eagle mine in Eagle County, largest producer of copper and silver in the State since 1930, consisted entirely of copper ore (carrying iron, gold, silver, and lead), whereas in 1941, although the total tonnage was approximately the same as in 1940, part of the output was copper ore and part zinc-lead The total quantity of zinc-lead ore mined in other counties in the State increased 9 percent. The increase in output of dry and siliceous ores in 1941 came from the Ibex dumps in Lake County. In July 1941 the Golden Cycle Corporation completed the driving of the 32,262-foot Carlton drainage tunnel in the Cripple Creek district, permitting renewal of mining on the lower levels of the Ajax and Cresson mines. The Resurrection Mining Co. at Leadville continued development work at its property and nearly completed construction

of a 250-ton zinc-lead flotation mill; the mill was placed in operation February 1, 1942. The South Platte Dredging Co. completed and put in operation its new floating connected-bucket dredge on the Platte River near Fairplay, and Cooley Bros. installed and operated a dragline floating dredge near Como.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Colorado in 1941, with content in terms of recovered metals

Source	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Dry and siliceous gold ore	1, 234, 025 270, 267 68, 471	277, 160 27, 067 967	401, 609 622, 763 1, 200, 260	797, 207 141, 481 42, 690	2, 422, 510 3, 581, 952 2, 003, 656	254, 000
	1, 572, 763	305, 194	2, 224, 632	981, 378	8, 008, 118	254, 000
Copper oreLead oreLead-copper oreZine oreZine-lead ore	207, 678 7, 917 4 224 434, 200	25, 187 1, 455 4 77 17, 735	4, 306, 343 73, 496 442 756 690, 11	11, 479, 396 30, 392 339 2, 400 1, 002, 095	1, 678, 029 2, 165, 829 618 6, 153 13, 289, 253	107, 071 31, 082, 929
	650, 023	44, 458	5, 071, 378	12, 514, 622	17, 139, 882	31, 190, 000
Total, lode mines Total, placers	2, 222, 786	349, 652 30, 377	7, 296, 010 5, 687	13, 496, 000	25, 148, 000	31, 444, 000
Total, 1940	2, 222, 786 2, 157, 765	380, 029 367, 336	7, 301, 697 9, 710, 709	13, 496, 000 24, 304, 000	25, 148, 000 22, 952, 000	31, 444, 000 10, 120, 000

METALLURGIC INDUSTRY

Ore treated in 1941 by all mills in Colorado handling ores of gold, silver, copper, lead, and zinc totaled 1,970,253 tons, of which 1,379,077 tons were treated in company mills at mines and dumps; 532,127 tons by the Golden Cycle custom roast-amalgamation-cyanidation-flotation mill at Colorado Springs; and 59,049 tons by the following custom concentration mills (some of which also treated company ore included above) in or near the mining districts: Orphan Boy in Boulder County; Black Eagle, Clear Creek-Gilpin, Red Elephant, Ruth, and Watrous (Silver Leaf) in Clear Creek County; Eldorado in Hinsdale County; Creede Mills (Emperius) in Mineral County; Banner American in Ouray County; Record in Park County; Shenandoah-Dives in San Juan County; Smuggler-Union in San Miguel County; and Cameron in Teller County. All these custom mills except the Shenandoah-Dives and Banner American treated gold, gold-silver, or silver ores, with a minor content of lead and copper. Zinc-lead ore (4,913 tons) containing gold and silver and some copper, from Boulder, Chaffee, Dolores, Gunnison, Lake, Ouray, Saguache, San Juan, and Summit Counties, was shipped to custom mills at Bauer, Midvale, and Tooele, Utah. The ore-sampling works at Boulder was run part of 1941; the sampler at Idaho Springs was idle throughout the year.

Direct-smelting ores comprised 11 percent of the State total output of ore in 1941. The Arkansas Valley lead bullion-leady copper matte smelter at Leadville purchased most of the gold, silver, and gold-silver-lead-copper ores and concentrates shipped to smelters during the year. Ore and concentrates were shipped to smelters in other States as

follows: Zinc-lead sulfide ores and concentrates from Lake, Saguache, and Summit Counties to Coffeyville, Kans.; zinc concentrates from Clear Creek, Dolores, Ouray, Park, Pitkin, San Juan, and Summit Counties to Amarillo, Tex.; and copper-iron-silver-gold ore from Eagle County, copper-silver and copper-silver-gold ores and concentrates from Custer, Garfield, Jefferson, Larimer, and Montrose Counties, and gold-silver-lead-copper ores and concentrates from the San Juan region to Utah smelters.

The quantity of gravel handled in 1941 by 2 floating connectedbucket dredges, 1 dragline floating dredge, and 31 dry-land dredges was approximately 5,322,300 cubic yards averaging 18.74 cents to the yard. Specific data on yardage handled at small-scale placer operations are not obtainable because of lack of knowledge by the operators

of the quantity of gravel sluiced.

Mine production of metals in Colorado in 1941, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)
Ore and concentrates amalgamated ¹ . Ore, old tallings, concentrates, sands, and slimes cyanided ² . Concentrates smelted. Ore smelted. Placer ¹ .	1, 040, 093 ³ 578, 261 106, 124 247, 620	78, 933 124, 258 111, 198 35, 263 30, 377	18, 513 35, 101 2, 404, 131 4, 838, 265 5, 687	2, 110, 994 11, 385, 006	20, 199, 890 4, 948, 110	31, 404, 929 39, 071
Total, 1940		380, 029 367, 336	7, 301, 697 9, 710, 709	13, 496, 000 24, 304, 000	25, 148, 000 22, 952, 000	31, 444, 000 10, 120, 000

¹ Quicksilver used by amalgamation mills was 3,489 pounds. Placer mines used approximately 550

pounds.

2 Cyanide (in terms of 98- to 98-percent NaCN) used was 641,045 pounds.

3 Comprises 355,349 tons of sands and slimes from ore and iron concentrates first roasted and amalgamated, 176,778 tons of tailings from ore first floated, 26,483 tons of tailings from ore first treated by jigging, and 19,651 tons of combined flotation concentrates, crude ore, and old tailings cyanided direct.

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Colorado in 1941, by counties, in terms of recovered metals

	Ore	Recovered in bullion		Conc	entrates si	nelted and	recovered	metal
County tons)	Gold (fine ounces)	Silver (fine ounces)	Concentrates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	
BoulderChaffee	69, 616 16	20, 271 15	6, 022 15	2, 835	4, 949	22, 602	49, 834	130, 942
Clear Creek Conejos Eagle	149, 447 45 (¹)	15, 918	3, 728 204	4, 270	8, 715	49, 945	44, 423	482, 756
Garfield Gilpin Gunnison	16, 197	6 1, 409	346	1, 065	1, 626	6, 889	24, 215	18, 622
Lake Larimer	8, 617 224, 736 7	1, 400 8, 934 14	809 2, 993 14	125 6, 006	275 7,074	5, 899 61, 193	94, 181	8, 148 425, 188
Montezuma Ouray	2, 510 38, 654	791 7, 604	220 1,817	24 3, 155	84 2, 944	564 118, 057	245, 916	445, 602
Park Rio Grande San Juan	18, 249 27, 313	322 10,699 19	119 11,816 99	949 830	2, 395 6, 280	3, 726 2, 203	2, 838 8, 000	84, 961
San Miguel Summit	194, 161 11	7, 356 6	6, 721 3	13, 768	14, 108	325, 680		1, 887. 604
Teller	494, 587	128, 418	18, 688					
Total, 1940	1, 244, 184 1, 225, 741	203, 191 196, 735	53, 614 67, 509	33, 027 37, 230	48, 450 53. 339	596, 758 658, 370	469, 407 849, 941	3, 483, 823 4, 288, 072

¹ Less than 1/2 ton.

Mine production of metals from concentrating mills in Colorado in 1941, by counties, in terms of recovered metals

BY COUNTIES

			Concen	trates smelte	ed and recove	ered metal	
	Ore treated (short tons)	Concentrates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Cepper (pounds)	Lead (pounds)	Zine (pounds)
Beulder Chaffee Clear Creek Dolores Eagle	18, 841 125 29, 585 48, 812 125, 311	588 80 4, 612 11, 259 27, 311	3, 173 59 7, 498 1, 067 163	28, 947 645 56, 959 150, 209 63, 941	10, 371 2, 067 125, 128 123, 593 10, 354	78, 782 12, 277 381, 624 5, 042, 104 1, 746, 612	11,000 48,000 112,000 6,008,000 21,760,000
Garfield Gilpin Gunnison Hinsdale Jefferson	26 12, 265 896 616 4, 624 2, 586	7 1, 855 209 72 884 293	4,020 143 13 151 107	83 7, 767 3, 374 1, 682 1, 959 3, 460	95, 520 2, 900 11, 904 192, 000 495	6, 570 65, 773 6, 923 67, 758	64,000 85,903
Lake La Plata Mineral Oursy Park Pitkin Saguache San Juan	25 34, 370 4, 908 94, 235 10, 200 501 265, 001	2, 316 250 5, 693 898 170 10, 656	11 644 28 20,941 5 17,060	5, 159 580, 959 24, 111 22, 150 180, 471 1, 768 530, 941	32,000 5,860 73,967 1,622 2,644 866,819	648, 000 141, 035 623, 980 560, 420 52, 152 6, 131, 382	38,000 614,000 254,000 62,000 1,680,000
San Miguel Summit Teller	40, 498 3, 504 34, 053	3, 185 1, 251 1, 503	2, 546 81 5, 038	115, 330 29, 548 2, 910	76, 500 7, 843	928, 960 221, 715	661, 020
Total, 1940	730, 982 550, 732	73, 097 42, 394	62, 748 55, 194	1, 807, 373 1, 674, 971	1, 641, 587 2, 151, 162	16, 716, 067 13, 024, 734	31, 404, 929 9, 838, 578
	В	Y CLASS	ES OF O	RE TREAT	red		
Dry and siliceous gold. Dry and siliceous gold-	178, 799	12, 480	39, 551	78, 245	271, 838	783, 487	
silverDry and siliceous gold- Dry and siliceous silver. Copper	67, 203 45, 729 4, 624	5, 027 3, 305 884	4, 568 649 151	256, 103 775, 644 1, 959	133, 785 38, 579 192, 000	1, 333, 098 1, 224, 756	254, 00
Lead Zinc Zinc-lead	311 162 434, 154	120 87 51, 194	17 77 17, 735	4, 325 756 690, 341	890 2, 400 1, 002, 095	87, 173 2, 300 13, 285, 253	76, 00 31, 074, 92
	730, 982	73, 097	62,748	1, 807, 373	1, 641, 587	16, 716, 067	31, 404, 92

Gross metal content of concentrates produced from ores mined in Colorado in 1941, by classes of concentrates smelted

	Concen-		Gro	oss metal con	tent	
Class of concentrates	trates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (wet assay) (pounds)	Lead (wet assay) (pounds)	Zine (pounds)
Dry gold-silver Dry silver Copper Lead Lead-copper	18, 515	36, 210	142, 794	334, 215	841, 742	515, 277
	998	1, 313	46, 700	1, 386	34, 461	27, 436
	105	12	6, 107	1, 971	6, 762	47, 290
	2, 549	4, 297	13, 884	392, 594	16, 436	34, 122
	40, 500	57, 509	1, 752, 072	458, 566	18, 016, 530	4, 149, 100
	7, 253	11, 550	396, 782	1, 206, 460	3, 011, 694	1, 449, 751
Total to copper and lead plantsZine	69, 920	110, 891	2, 358, 339	2, 395, 192	21, 927, 625	6, 222, 970
	36, 204	430	66, 899	185, 751	614, 636	35, 272, 832
Total, 1940	106, 124	111, 321	2, 425, 238	2, 580, 943	22, 542, 261	41, 495, 808
	79, 624	108, 688	2, 350, 225	3, 582, 869	19, 632, 705	17, 168, 976

Mine production of metals from Colorado concentrates shipped to smellers in 1941, in terms of recovered metals

BY COUNTIES

	Concentrates (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)
Boulder	3, 423	8, 122	51, 549	60, 205	209, 724	11,000
Chaffee	80	59	645	2,067	12, 277	48,000
Clear Creek	8, 882	16, 213	106, 904	169, 551	864, 380	112,000
Dolores	11, 259	1,067	150, 209	123, 593	5, 042, 104	6,008,000
Garfield.	27, 311	163	63, 941	10,354	1, 746, 612	21, 760, 000
Gilpin	2, 920	5, 646	83 14, 656			7,000
Gunnison	334	418	9, 273	119, 735 2, 900	25, 192	
Hinsdale	72	13	1,682	11, 904	73, 921 6, 923	64,000
Jefferson	884	151	1, 959	192,000	0, 820	
Lake	6, 299	7, 181	64, 653	94, 676	492, 946	85, 903
La Plata	5	11	159			30,000
Mineral	2, 316	644	580, 959	32,000	648,000	
Montezuma Ouray	24	84	564			
Park	3, 405 6, 642	2,972	142, 168	251,776	586, 637	38,000
Pitkin	898	23, 336	25, 876 180, 471	76, 805	708, 941	614,000
Rio Grande	830	6, 280	2, 203	1,622 8,000	560, 420	254,000
Saguache	170	0, 200 5	1, 768-	2,644	52, 152	62,000
San Juan	10, 656	17.060	530, 941	866. 819	6, 131, 382	1, 680, 000
San Miguel	16 053	16, 654	441,010	76, 500	2, 816, 564	1,000,000
Summit	1, 251	81	29, 548	7, 843	221, 715	661, 026
Teller	1, 503	5, 038	2, 910			
Fotal, 1940	106, 124 79, 624	111, 198 108, 533	2, 404, 131 2, 333, 341	2, 110, 994 3, 001, 103	20, 199, 890 17, 312, 806	31, 404, 929 9, 838, 578
ву с	LASSES O	F CONCEN	TRATES	SMELTED		
Dry gold	18, 515	36, 210	142, 794	266, 862	757, 006	
DTV gold-silver	998	1,313	46, 700	1,031	29, 824	
Dry silver	105	12	6, 107	1, 513	6, 216	
Copper	2, 549	4, 297	13, 884	347, 968	14, 617	
Lead	40, 500	57, 509	1, 752, 072	365, 322	16, 268, 071	
Lead-copper	7, 253	11, 550	396, 782	978, 768	2, 737, 848	
Total to copper and						
lead plants	69, 920	110, 891	2, 358, 339	1, 961, 464	10 919 500	
Zine	36, 204	307	45, 792	149, 530	19, 813, 582 386, 308	21 404 000
	00, 202	501	30, 182	148, 050	380, 308	31, 404, 929
1	106, 124	111, 198	2, 404, 131	2, 110, 994	20, 199, 890	31, 404, 929
				1		

Gross metal content of Colorado crude ore shipped to smelters in 1941, by classes of ore

_	Ore (short		Gross metal content						
Class of ore	tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)			
Dry and siliceous gold_ Dry and siliceous gold-silver_ Dry and siliceous silver_ Copper_ Lead_ Lead_copper_	8, 782 5, 324 22, 742 203, 054 7, 606	7, 611 856 318 25, 036 1, 438	22, 471 17, 181 424, 616 4, 304, 384 69, 171 442	75, 731 2, 473 5, 862 11, 583, 589 37, 268 424	170, 039 279, 942 865, 307 2, 794, 753 2, 303, 947 686	13, 569 3, 277 9, 541 4, 053, 197 142, 569			
Total to copper and lead plants	247, 512	35, 263	4, 838, 265	11, 705, 347	6, 414, 674	4, 222, 153			
ZincZinc-lead	62 46				5, 166 4, 639	37, 989 10, 021			
Total to zinc plants	108				9, 805	48, 010			
Total, 1940	247, 620 381, 292	35, 263 45, 068	4, 838, 265 7, 306, 221	11, 705, 347 22, 044, 508	6, 424, 479 8, 136, 711	4, 270, 163 5, 451, 929			

Mine production of metals from Colorado crude ore shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Archuleta	7	38	4			
Boulder	1, 501	2, 326	5, 204	42, 795	15, 276	
Chaffee	80	133	1,029	933	15, 723	
Clear Creek	402	241	18, 684	11, 449	82, 620	
Costilla	46				4,000	8,000
Custer	178		2, 222	2,000	66,000	
Dolores	15	1	268	407	11,896	
Eagle	203, 344	24, 999	4, 288, 736	11, 207, 646	1, 673, 388	
Fremont	33	l o	35 59	8,000 500	2,000	
Garfield	71	83	2,036	18, 265	13, 808	
Gilpin	316 15	1, 265	744	10, 200	2,000	
Grand	125	53	3, 733	100	46,079	
Gunnison	91	7	4, 504	3, 096	8,077	
Hinsdale Lake	16, 580	3, 155	52, 639	7, 324	1, 737, 054	9, 097
La Plata	10,000	733	1, 755	.,	-,,,,,,,	
Larimer	8	17	7			
Mineral	7, 198	260	325, 753		492,000	
Montezuma.	48	237	445			
Montrose	270	2	13, 718	47, 000		
Ouray	586	214	15, 201	4, 224	50, 363	
Park	315	757	1, 348	2, 195	29, 059	
Pitkin	13, 888		58, 302	378	246, 580	
Saguache	914	19	15, 938	23, 356	267, 848	
San Juan	216	305	1, 691	3, 181	13, 618	
San Miguel	171	79	2, 781	2,000	17, 436	
Summit	1,092	323	21, 427	157	153, 285	21, 974
Teller	1	14	2			
	247, 620	35, 263	4, 838, 265	11, 385, 006	4, 948, 110	39, 071
Total, 1940	381, 292	45,068	7, 306, 221	21, 302, 897	5, 639, 194	281, 422
	BY (CLASSES C	F ORE		<u> </u>	l .
	l	1 - 1		1	1.50.500	1
Dry and siliceous gold	8, 782	7, 611	22, 471 17, 181	61, 792	152, 793	
Dry and siliceous gold-silver	5, 324	856		1,866	251, 261 778, 900	
Dry and siliceous silver	22,742	318 25, 036	424, 616 4, 304, 384	4, 111 11, 287, 396	1, 678, 029	
Copper	203, 054	1, 438	69, 171	29, 502	2, 078, 656	
Lead	7,606	1, 456	442	339	618	
Lead-copper	4					
Total to copper and lead	045 510	25 002	4, 838, 265	11, 385, 006	4, 940, 257	
plants	247, 512	35, 263	±, 000, 400	11, 000, 000	2, 020, 201	
7in a	62		•		3, 853	31, 071
Zinc.	46				4,000	8,000
Zinc-lead	40					1
Total to zinc plants	108				7, 853	39, 071
· ·	247, 620	35, 263	4, 838, 265	11, 385, 006	4, 948, 110	39, 07
	241,020	30, 203	2,000,200	11, 550, 660	1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,0

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Colorado in 1941, by counties and districts, in terms of recovered metals

County and district	Mines producing		Ore sold or treated	Gold (fine ounces)			Silver (fine ounces)			Copper	Lead	Zinc	
	Lode	Placer	(short tons)	Lode	Placer	Total	Lode	Placer	Total	(pounds)	(pounds)	(pounds)	Total value
Adams County		3			282	282		45	45				\$9,90
Arapahoe County		1			22	22		4	4				77
Archuleta County	1	1	7	38		38	4		4				1, 33
Boulder County:	1	1											_, _,
Central	13		13, 498	7, 753		7, 753	2, 936	l	2, 936	300	14,600	7,000	274, 83
Gold Hill	32	3	45, 470	12, 601	7	12,608	24, 701		24, 701	50,000	130, 700		472, 19
Grand Island	9	1	16, 953	2, 898	3	2,901	25, 851		25, 851	2,900	73, 600	4,000	124, 75
Magnolia	8		1,664	960		960	388		388			-, -, -	33, 87
Sugar Loaf	26		7, 114	3,662		3, 662	5, 493		5, 493	600	4, 700		132, 41
Ward	11		5, 259	2,845		2,845	3, 406		3, 406	49, 200	1, 400		107, 88
Chaffee County:						•			-,	10, 200	-, -00		10,,00
Chalk Creek	2		98	130		130	641		641	1,600	20, 800	18,000	7, 73
Four Mile	1		67	39		39	336		336	1,000	1, 200	30,000	4.04
Granite 1	3	15	10	8	291	299	10	45	55	,	-,-00	30,000	10, 50
La Plata	i	1	2	3		3	3		3		300		10,00
Monarch	2		28	13		13	682		682	400	5, 700		1, 31
Red Mountain	1		2	2		2	3		3	100	0,100		7,01
Turret	1 2		14	12		12	14		14				43
lear Creek County:	i -												**
Alice	6	1	1, 178	473		473	772		772	1,000	14,000		18, 02
Argentine	3		3, 770	53		53	21, 614		21, 614	2,100	43,000		19, 92
Empire	8		74, 173	14, 612		14, 612	6, 445		6, 445	68, 500	300		524, 10
Griffith	6		739	42		42	10, 908		10, 908	500	67,000	112,000	21, 50
Idaho Springs 2	42	16	67, 997	11, 959	826	12, 785	75, 548	100	75, 648	106, 700	549,000	112,000	545, 15
Montana	2		175	8	0_0	,,	6, 895	1 -00	6, 895	300	77,000		9.60
Trail Creek	10		31, 402	5, 225		5, 225	7, 134		7, 134	1,900	196, 700		199, 38
Conejos County	i		45	7		7	204		204	1,000	180, 100		38
Costilla County		1	46		7	7		ii-	i		4,000	8,000	1.07
uster County	3		178			•	2, 222		2, 222	2,000	66, 000	0,000	5, 57
Denver County	l	3			6	6	-,			2,000	00,000		21
Polores County:					•	Ĭ							
Lone Cone	. 1	I	11, 201	966		966	37, 762		37, 762		4, 300		60, 90
Pioneer (Rico)	1 4		37, 626	102		102	112, 715		112,715	124,000	5, 049, 700	6, 008, 000	836, 78
Douglas County: Newlin Gulch	1 -	6	0.,000		13	13	11, . 10		112, 110	124,000	0,010,100	0, 000, 000	45
Cagle County:		1 .				10							46
Mount Egley	. 1	1	(3)	2	4	6							21
Red Cliff		1 *	328, 655	25, 162	*	25, 162	4, 352, 677		4, 352, 677	11, 218, 000	2 420 000	21, 760, 000	7, 126, 57
remont County	1 5		33	20, 102		10, 102	35		35	8,000	2,000	41, 700,000	1, 120, 57
arfield County: Rifle Creek	1 4		100	89		89	142		142	500	2,000	7, 000	3, 80

Gilpin County:		1						1		1	1		
Southern.	43	76	26, 043	7, 956	5, 134	13, 090	16, 723	918	17, 641	138, 000	38,000		489, 145
Northern	Ř	1 4	2, 735	364	106	470	315	10	325		1,000		16, 738
Grand County	1 3	1 -1	15	1	200	- 1	744	l	744		2,000		678
Gunnison County:	1		20	1 1		-					-,		
Domingo		1					2	1	3	100	'		14
Domingo	1 1		0.007			1,822	7, 581		7.581	100	26, 400		70, 666
Gold Brick	1 1		9, 297	1,822		1,024	1,001		7,001		20, 200		145
Green Mountain			.7	4		4			1				140
Quartz Creek	3	l	15	3		3	464		464		2,400		572
Rock Creek Taylor Park (Tin Cup)	2		7	2		2	862		862		200	1,000	769
Taylor Park (Tin Cup)	3	1	219	38		38	4,095		4,095	2,900	58, 400	28,000	10, 013
Tomichi	1	1	92	2		2	803		803		32,600	35,000	5, 124
	_			-				l.	1				
Hinsdale County: Galena	1 3	1 1	623	13		13	1,776	l	1,776	12,000	11,000		3, 761
Lake	9		84	7		7	4,410	1	4, 410	3,000	4,000		3, 963
Jefferson County	1 1	26	4, 624	151	428	579	1, 959	80	2, 039	192,000	1,000		44, 371
Lake County:	1	20	7,027	101	720	010	1, 505	00	2,000	102,000			22,072
Lake County:	38	1	240, 219	10.00	309	19, 346	114, 016	87	114, 103	101, 800	2, 224, 300	95, 000	904, 172
California (Leadville)	38	14		19, 037			114,010			200	2, 224, 300	80,000	37, 906
Other districts 4	7	4	3, 683	233	708	941	6, 269	231	6,500	200	5, 700		
La Plata County: California) 6) 1	134	744	3	747	1,914		1,914				27, 506
Larimer County:	j	1		1 .	1			ł		l			
Manhattan	1		8	17		17	7		. 7				600
Masonville	1		7	14	1	14	14	l	. 14				500
Mineral County: Creede	6		41, 568	904		904	906, 712	1	906, 712	32,000	1, 140, 000		745, 169
Montezuma County			2, 558	1, 112		1, 112	1, 229		1, 229	l			39, 794
Montrose County:	1 -		_,	-,		,	.,		-/	1			
La Sal	1 1	. I.	270	9		2	13, 718		13, 718	47 000			15, 371
San Miguel River (Naturita)	1 -	18	2.0	1 -	54	54	10, 710	17	10, 17	1,			1, 902
Oursy County:		. 10						1	**			}	1,002
Red Mountain		}	37		l		246	1	246	100	13, 200	4,000	1, 239
Red Mountain	1 0		07 004	1			100 550				447, 800	4,000	504, 793
Sneffels			37, 884	10, 422		10, 422	120, 773		120, 773	242, 500		24 000	504, 795
Uncompangre	11		6, 227	368		368	38, 167		38, 167	13, 400	176, 000	34,000	54, 184
Park County:	1	1		1	1	1	1	1	1		1	1	
Alma Placers	.]	.) 10		.]	2,699	2,699		568	568				94, 869
Beaver Creek	.	. 3			3, 313	3, 313		713	713			1	116, 462
Buckskin	. 6	6	4,676	1,059	15	1,074	6,584	3	6, 587	21,600	81,600	614,000	95, 524
Consolidated Montgomery	۱ ž	lĭ	3,700	402	5	407	1, 724	3	1, 727	1,500	800		15, 696
Fairplay	'	1 48	0,.00	1	10, 171	10, 171	1 '	2,022	2, 022	2,000			357, 423
Hall Valley	1	-) ***	27	1	1 20, 111	1 20, 111	111	, 0	7,111	900	200		231
Mosquito	1 2		104, 386	22, 940		22,940	18, 924	1	18, 924	55,000	655, 400		860, 205
WT0840100				22, 940	F 064	24, 540	10, 924	578	578	00,000	000, 400		178, 106
Tarryall-	. 2	1 9	10	13	5,064	5, 077						054 000	176, 100
Pitkin County: Roaring Fork	.∣ 5		24, 088				238, 773		238, 773	2,000	807,000	254,000	235, 079
Rio Grande County: Summit-	1	1		ll.)	1	1	1	1		1	1	
ville	.1 1	1	27, 313	16, 979	1	16,979	14,019	1	14,019	8,000		1	605, 178

¹ Granite district lies in both Chaffee and Lake Counties.
2 Includes Cascade and Ute Creek district.
3 Less than ½ ton.
4 Less than ½ ton.
4 Includes Box Creek, Granite, Lackawanna Gulch, St. Kevin, Tennessee Pass, Twin Lakes, and Two Bit districts.

Mine production of gold, silver, copper, lead, and zinc in Colorado in 1941, by counties and districts, in terms of recovered metals—Continued

C	Minesp	roducing	Ore sold or treated	Gol	d (fine oun	ces)	Silve	r (fine ou	nces)	Copper	Lead	Zinc	Total value
County and district	Lode	Placer	(short tons)	Lode	Placer	Total	Lode	Placer	Total	(pounds)	(pounds)	(pounds)	Total Value
Routt County		2			5	5		3	3				\$177
Kerber Creek	8 1		1,414 1	24		24	17, 678 28		17, 678 28	26,000	319, 600 400	62,000	39, 346 43
San Juan County: Animas Eureka Ice Lake Basin	17 7		264, 246 967 19	17, 105 279		17, 105 279	527, 490 5, 172 69		527, 490 5, 172 69	868, 000 2, 000	6, 090, 300 48, 600 6, 100	1, 663, 000 12, 000 5, 000	1, 548, 075 17, 349 772
San Miguel County: Iron Springs Lower San Miguel	9	1 1	178	101	1 7	102 7	2, 662	3	2,662	2,000	17, 400		6, 691 247
Mount Wilson Upper San Miguel Summit County:	10 10		234, 651	23, 981		23, 981	447, 843		447, 843	76, 500	2, 816, 600		250 1, 327, 374
Breckenridge Montezuma Ten Mile	13 7 6	52	1, 260 1, 641 915	325 14 46	894	1, 219 14 46	11, 901 13, 808 3, 773	256	12, 157 13, 808 3, 773	300 5, 300 200	35, 600 178, 900 99, 700	39, 000 45, 000 141, 000	56, 299 24, 506 20, 575
Wilkinson, Rock Creek, and Green Mountain Teller County: Cripple Creek	4 99		791 528, 641	25 133, 470		25 133, 470	21, 496 21, 600		21, 496 21, 600	2, 200	60, 800	458, 000	54, 237 4, 686, 810
Total Colorado	579	324	2, 222, 786	349, 652	30, 377	380, 029	7, 296, 010	5, 687	7, 301, 697	13, 496, 000	25, 148, 000	31, 444, 000	23, 877, 597

ADAMS COUNTY

Nearly all the output of gold and silver from Adams County in 1941 was recovered as a byproduct from the gravel-washing plants of the Brannan Sand & Gravel Co. and the United Sand & Gravel Co. near Denver.

ARAPAHOE COUNTY

A lessee on the Tresize placer, which extends across the county line into Jefferson County, produced 22 ounces of gold and 4 ounces of silver from the Arapahoe County area in 1941.

ARCHULETA COUNTY

Seven tons of gold-silver ore were shipped to the Leadville smelter from the Last Dollar claim.

BOULDER COUNTY

Central (Jamestown) district.—The Wano mine continued in 1941 to be the principal producer of gold in the Central district; it was operated throughout the year by the owner and several sets of lessees, who shipped the ore to the Golden Cycle mill at Colorado Springs. A lessee at the Smuggler group shipped ore from the mine and dump to the Golden Cycle mill. Associated Metal Mines, Inc., worked the John Jay mine from January 1 to March 31 and shipped 163 tons of ore. Among the other producers of gold were the Black Rose group, Golden Age, and Gray Eagle. About 50 tons of zinc-lead ore were shipped from the Central district to the Midvale (Utah) custom concentrator.

Gold Hill district.—Slide Mines, Inc., operated its Slide-Klondyke-Twin group of mines and 70-ton gravity- and flotation-concentration mill throughout 1941. The gold concentrates caught on burlap tables between the classifier and Wilfley tables were amalgamated, and the rest were shipped to the Leadville smelter. Besides gold and silver, the concentrates shipped to the smelter contained some recoverable copper and lead. The ore from the other producing mines and dumps in the Gold Hill district was shipped to the Golden Cycle mill or the Boulder Ore Sampler. Sizable producers, in order of gold output, were the Ingram group, Sunshine, Emancipation, Melvina, Nil Desperandum, and Little Johnny.

Grand Island district.—The Donora Mining Co. operated the Boulder County mine and 70-ton jig- and flotation-concentration mill under lease throughout 1941, producing gold-silver-lead concentrates which were shipped to the Leadville smelter. Ore was shipped to the Golden Cycle mill and Leadville smelter from the Amy Paul, Blue Bird, Enterprise, Revenge, and other small mines in the Grand Island

district.

Magnolia district.—The producing mines in the Magnolia district in 1941 were the Cash-Rebecca, Fortune, Graphic, Hereafter, India,

LeRoy, Ben C. Lowell, and Senator Hill.

Sugar Loaf district.—Most of the ore produced from mines and dumps in the Sugar Loaf district in 1941 was shipped to the Golden Cycle mill. The Poorman group continued to be the principal producer of gold; it was followed by the Alpine Horn, Nancy, Wood

Mountain, Grand Republic, and Keystone, each of which yielded more than 100 ounces of gold. The silver output came chiefly from silver ore from the Yellow Pine group and gold ore from the Nancy.

Ward district.—The Ward United Mines Co. operated the Boston-Utica group throughout 1941 and reconditioned the Utica 25-ton concentration mill, which was placed in operation in July. The concentrates and crude smelting ore shipped contained in all 2,535 ounces of gold, 2,872 ounces of silver, and 49,661 pounds of copper. Small tonnages of ore were shipped to the Leadville smelter or the Golden Cycle mill from the B & M mine, Baxter, Captain Jack, Columbia, Golden Queen, Grandview, Hard Rock, Hawkeye, Helen B, and Nelson.

CHAFFEE COUNTY

Chalk Creek district.—Lessees operating the old Mary Murphy mine on a small scale shipped ore containing gold, silver, lead, copper, and a relatively high percentage of zinc to the Midvale (Utah) custom milling plant and selected ore of a similar type but lower in zinc content to the Leadville (Colo.) smelter. A small quantity of lead ore was shipped from another property in the Chalk Creek district.

Four Mile district.—Harry Ault shipped 67 tons of zinc ore containing gold, silver, lead, and copper to the Midvale (Utah) custom

concentrator in 1941.

Granite district (see also Lake County).—Only 10 tons of ore yielding 8 ounces of gold and 10 ounces of silver were shipped from lode mines in the Granite district in 1941. Len Savage operated his placer in Lost Canyon intermittently from June to September, using a power shovel and screening-sluicing plant. Wolfe & Hesser operated a %-cubic yard power shovel and screening and sluicing plant in Lost Canyon and on Cache Creek from July 12 to August 19. The Cache Creek, Franklin, Independent, Mizer, and other placers on Arkansas River near Granite were worked on a small scale with sluices, and drift mining was done at the Old Channel and Georgia Bar placers.

La Plata district.—A 2-ton lot of gold-silver-lead ore from the Tip

Top claim was shipped to the Leadville smelter in 1941.

Monarch district.—A lessee at the Madonna group shipped 12 tons of gold-silver-lead ore in 1941, and another operator in the Monarch district shipped 16 tons of gold-silver-lead-copper ore.

Red Mountain district.—A small lot of gold-silver ore was shipped

from the Anchor group to the Golden Cycle mill in 1941.

Turret district.—Small lots of ore were shipped from the Golden Wonder and Monongahela mines to the Golden Cycle mill.

CLEAR CREEK COUNTY

Alice district (Yankee, Lincoln).—A lessee at the Lombard mine shipped 829 tons of gold ore containing some silver, lead, and copper to custom mills in the Idaho Springs district in 1941. The Gold King mine yielded 203 tons of gold-silver ore, part of which was shipped to the Golden Cycle mill at Colorado Springs and part to the Clear Creek-Gilpin mill at Idaho Springs. Other small producers in the Alice district were the Lalla, San Juan, Reynolds, and Whale mines.

Argentine district.—Buckley Bros. operated the Hamill tunnel group in 1941 and produced 601 tons of silver ore, of which 527 tons were concentrated in local custom mills and 74 tons were shipped crude to

the Leadville smelter. The 50-ton flotation mill at the Santiago mine was operated during the summer months; the concentrates produced, containing gold, silver, lead, and copper, were shipped to the Leadville smelter. Some ore from the Paymaster group was shipped to

the Ruth custom mill at Idaho Springs.

Empire district.—In 1941 Minnesota Mines, Inc., operated continuously its consolidated group of claims in the area north of Empire; since 1935 this company has been the largest producer of gold in Clear Creek County. The output was 15 percent less in 1941 than in 1940. The ore is treated in the 250-ton mill at the mine by concentration on mats in launders and by flotation followed by cvanidation of the flotation concentrates. After cyanidation the flotation concentrates, containing chiefly iron sulfide, are sold to the General Chemical Co. of Denver for the manufacture of sulfuric acid; the mat concentrates, containing mostly free gold, are amalgamated. Copper Cone, Inc. made a substantial output of gold from the Upper Union-Gold Fissure group; the ore was treated in the Clear Creek-Gilpin and Ruth custom mills at Idaho Springs. The Conqueror Operating Co. shipped 425 tons of gold-silver ore from the Conqueror group to the Clear Creek-Gilpin mill. Other small producers included the Ashland, Cashier, Gold Dirt, Mint, and Pittsburg properties.

Griffith (Georgetown-Silver Plume) district.—The Mile High Mining

Griffith (Georgetown-Silver Plume) district.—The Mile High Mining Co. began work at the Smuggler group in January 1941 and in August began to mine and mill ore. Production to the end of the year was 145 tons of zinc concentrates, shipped to the Amarillo (Tex.) smelter, and 45 tons of lead-silver concentrates, shipped to the Leadville smelter. Ore was shipped to custom mills at Idaho Springs from the Clara B, Hall tunnel, and St. George groups and to the Leadville

smelter from the Fargo and Johnny Bull properties.

Idaho Springs district.—The Alma-Lincoln Mining Co., a consistent producer since 1933, operated its Lincoln-South Lincoln-Elliott Barber group and flotation mill throughout 1941 and treated 25,019 tons of ore, compared with 36,404 tons in 1940. The company, which had purchased the Metropolitan property in 1940, took a lease on the Dona Juanita and Cardigan claims in 1941. The Silver Spruce Gold Mining Co. operated its 50-ton mill at Idaho Springs on company ore from the Lord Byron mine from January to the first week in July and on custom ore the rest of the year. A large part of the custom ore came from the Shafter dump. Gold Mines Consolidated, owner and operator of the Dona Juanita-Maude Monroe group of mines and the Gustafson mill, produced and treated 5,613 tons (wet weight) of ore during The Black Eagle mill was operated as a custom plant by S. S. Huntington; most of the ore treated came from the Williams, Diamond Joe, Specie Payment, Freighter's Friend, and Brighton The ore from the last four mines contained, besides gold, considerable silver and lead and some recoverable copper. Other sizable producers of gold-silver-lead-copper ores shipped to custom mills were the Brighton, Hyland, and Idaho Bride. LeRoy Giles & Co. and the Ute Creek Syndicate continued to ship gold-silver ore from the Dixie No. 4 and East Dixie mines, respectively, to the Ruth custom Other producers of more than 100 tons of ore included the Equinox, Golden Edge, Mattie group, Red Jacket, and East Santa Fe. The Banner Mining Co., working the Idaho placer ground, produced

most of the output of placer gold from the Idaho Springs district during the year.

Montana district (Lawson, Dumont).—The output of ore from the Montana district in 1941 comprised 150 tons of lead-silver-gold ore from the Red Elephant group and 25 tons from the Joe Reynolds.

Trail Creek district.—Lamartine Mines, Inc., operated the Lamartine-Falcon group of mines throughout 1941. The ore (29,508 tons) was treated in the company mill by flotation supplemented by jigs in the ball mill-classifier circuit to extract free gold for amalgamation. Bullion sold to the Denver Mint contained 1,788 fine ounces of gold and 461 fine ounces of silver, and concentrates shipped to the Leadville smelter contained 2,668 ounces of gold, 4,738 ounces of silver, 214,817 pounds of lead, and some zinc. Lessees at the Donaldson (Wheatland)-Little Champion group continued to ship ore to custom mills at Idaho Springs and the Golden Cycle mill at Colorado Springs. Other small producers included the Diamond Mountain-Lucky group, Harrisburg, and Lone Tree.

CONEJOS COUNTY

Lessees at the Forest King mine in the Platoro district shipped 45 tons of gold-silver ore to the Golden Cycle mill in 1941.

COSTILLA COUNTY

A car of zinc-lead ore was shipped from Jaroso to the Ozark pigment plant at Coffeyville, Kans., in 1941. Sluicing in Grayback Gulch on the property of the Drum Estate near La Veta recovered a few ounces of placer gold.

CUSTER COUNTY

Output from Custer County in 1941—mostly from the Hardscrabble district—comprised 168 tons of lead-silver ore from the Defender mine, 7 tons of copper ore from the Reito Alta, and 3 tons of lead ore from the High Kicker-Wild Girl group.

DENVER COUNTY

Sluicing on Platte River recovered 6 ounces of placer gold in 1941.

DOLORES COUNTY

Lone Cone district (Dunton).—Modern Gold Mines, Inc., continued to operate the Emma and Smuggler-Almont mines and the Emma 100-ton flotation mill under lease from January 1 to September 1, 1941. The concentrates produced contained gold, silver, and a little

lead and were shipped to the Leadville smelter.

Pioneer district (Rico).—The Rico Argentine Mining Co. operated its group of mines and 135-ton selective-flotation mill continuously in 1941 at an average daily rate of approximately 100 tons of ore. The products of the mill were lead-silver concentrates (carrying some copper, zinc, and a little gold) shipped to the Leadville smelter and zinc concentrates (carrying also silver, lead, copper, and a little gold) shipped to the Amarillo (Tex.) smelter. Other output from Rico included zinc-lead-silver and lead-silver ores containing a little copper and gold shipped from the Pro Patria group, the St. Louis Smelting & Refining Co. property, and the Yellow Jacket group to custom mills and smelters in Utah.

DOUGLAS COUNTY

Individuals sluicing on Dry Creek and Newlin Gulch near Parker and Franktown in 1941 recovered small lots of placer gold.

EAGLE COUNTY

Mount Egley district.—A little gold was recovered in 1941 from the Katherine lode claim and a small placer mine on Lake Creek.

Red Cliff district (Battle Mountain).—In 1941 the Red Cliff district ranked first among Colorado districts in output of silver, copper, and zinc and was also an important producer of gold and lead. The Eagle mine, owned and operated by the New Jersey Zinc Co., Empire Zinc Division, was again the chief producer. The company shipped a large tonnage of copper-iron-silver-gold sulfide ore (but much less than in 1940) to the Garfield (Utah) smelter and from June to December operated its 600-ton underground flotation mill on zinclead ore, large reserves of which are also developed in the mine. The Ben Butler Corporation shipped 552 tons of gold-silver copper ore from the Ben Butler group to the Garfield (Utah) smelter. Other small producers were the Star of the West and Tip Top mines.

EL PASO COUNTY

GOLDEN CYCLE MILL

The Golden Cycle custom mill at Colorado Springs recovered 42 percent of the total Colorado output of gold from lode mines in 1941. It treated 532,127 tons of ore averaging 0.3038 ounce of gold to the ton compared with 550,521 tons averaging 0.2905 ounce in 1940. Of the total ore treated in 1941, 484,702 tons were gold-[silver]-sulfotelluride ores from the Cripple Creek district (Teller County) and 47,425 tons comprised miscellaneous gold and gold-silver ores from other districts, mainly in Boulder, Clear Creek, and Gilpin Counties. Approximately one-third of the total crude ore is treated by flotationand table-concentration, and the concentrates obtained are mixed with the other two-thirds of crude ore and roasted. The calcines from the roasters are cooled and ground in Chilean mills to approximately minus-16-mesh and passed over blankets; the blanket concentrates are amalgamated in Wheeler pans and iron arrastres, and the blanket tailings are treated by cyanidation after sand-slimes separation. concentration-plant tailings (flotation being in cyanide solution) also go to the cyanide plant. The amalgam and precipitates recovered are melted and cast into bars for shipment to the Denver Mint. On October 20, 1941, the mill placed in effect a new treatment schedule which increased the payment for gold \$0.86 an ounce.

The cyanide plant of the Mill Tailings Recovery Co. at the old Portland mill dump near Colorado Springs was not operated in 1941.

FREMONT COUNTY

Lessees worked the Green Mountain mine near Hillside intermittently in 1941 and shipped 31 tons of copper-silver ore to the Leadville smelter. Jetter & Andrews shipped 2 tons of dump lead ore from Florence.

GARFIELD COUNTY

Rifle Creek district.—The Gray Eagle Mining Co. operated the Gray Eagle mine 8½ miles from New Castle intermittently in 1941, mostly on development, and shipped some gold-silver-copper ore to the Garfield (Utah) smelter. L. Harmon shipped a car of zinc ore containing a little gold, silver, copper, and lead from the Sunshine mine near Rifle to the custom mill of the International Smelting & Refining Co. at Tooele, Utah. A little ore was shipped from the O. G. and Paupers Dream claims near New Castle.

GILPIN COUNTY

Southern districts (Blackhawk, Central City, Nevadaville, Russell Gulch).—The Pittsburg-Notaway group of mines and 50-ton flotation mill were operated continuously in 1941 and yielded more than half of the total output of gold from lode mines in the Southern districts of Gilpin County during the year. Operations from January to July were carried on under lease by J. C. B. Millard and during the rest of the year by Kingmill Mines, Inc.

The concentrates contained, besides gold, considerable copper and silver and were sold to the Leadville smelter. The California-Hidden Treasure Mines Co. worked the Monmouth-Kansas mine throughout the year, sending the ore produced (1,580 tons) to the Clear Creek-Gilpin mill at Idaho Springs (Clear Creek County) for treatment. The recovery in bullion shipped to the Denver Mint and the content of concentrates sold to the Leadville smelter totaled 775 ounces of gold, 3,909 ounces of silver, 20,927 pounds of copper, and 9,307 pounds of lead. The company also shipped 504 tons of ore from its First National-Kansas group, operated through the Argo tunnel. Work on this group ceased about November 1, 1941. The New Brunswick mine and 15-ton stamp amalgamation-table concentration mill were operated throughout the year. Ore was shipped to the Golden Cycle mill at Colorado Springs and to custom mills in Clear Creek County from the Americus, Federal, Justice, Old Town group, Saratoga, West Notaway, and other mines and dumps in the Southern districts. Chain O'Mines Operators shipped a few cars of gold-silver-lead concentrates to the Leadville smelter.

Manion Placer Mines operated its land dredge on North Clear Creek from April 15 to November 19, 1941. The ground worked comprised the Van Fleet patented land and the Snowstorm, Deal, Independent, and Badger placers. The equipment included a 1½-cubic yard power shovel, ½-cubic yard dragline, caterpillar bulldozer, screening plant on crawlers, and separate sluicing plant on wheels. Other producing placers worked on a small scale with power shovels or draglines and screening and sluicing plants included the McElwee & James, Mission Mines Co., Nevada Gulch, Nugget, and Pleasant Valley. Individuals continued sluicing and panning during the open season on North Clear Creek.

Northern districts.—The Perigo group was worked on a small scale by lessees during part of 1941. Most of the ore produced was concentrated in the mill at the mine, yielding gold-silver concentrates that were shipped to the Leadville smelter. One car of crude ore was sold to the Golden Cycle mill. Other shippers of small lots to the Golden Cycle mill were the Independent and Lone Star mines. A

little ore was shipped to the Leadville smelter and to custom mills in Clear Creek County from the Caledonia, McAdams, Providence-Newport, and two other lode properties in the Northern districts. The Gamble Gulch Mining Co. operated its ½-cubic yard dragline and sluicing plant during part of the year in Gamble Gulch. Individuals recovered a little placer gold by sluicing in Lump Gulch.

GRAND COUNTY

Small lots of silver-lead ore were shipped to the Leadville smelter in 1941 from the Bobtail claim in the La Plata district, the Ready Cash near Jones Pass, and the Wolverine about 22 miles north of Granby.

GUNNISON COUNTY

Domingo (White Earth) district.—A 1-ton lot of copper-gold-silver

ore was shipped from the Good Smaritan claim in 1941.

Gold Brick district.—The Carter Mines Co. operated its mine and mill on Gold Creek throughout 1941. The ore was treated by amalgamation and by flotation- and gravity-concentration. Ore treated during the year totaled 8,451 tons, from which were recovered bullion containing 1,367 fine ounces of gold and 786 fine ounces of silver and concentrates containing 273 ounces of gold, 5,887 ounces of silver, and 9,008 pounds of lead. Burleson Mines, Inc., operated the Raymond group and mill about 6 months in 1941 and produced 670 tons of ore yielding 79 tons of concentrates containing 137 ounces of gold, 831 ounces of silver, and 20,233 pounds of lead. At the Bertha, Chicago, and Wayne mines small tonnages of ore were produced and treated in amalgamation-concentration mills. A little gold was recovered from the Goldsmith and Phyllis claims.

Green Mountain district.—Small lots of ore were shipped to the Leadville smelter in 1941 from the Chief and Prosperity claims.

Quartz Creek district.—Wamer H. Thomas shipped 4 tons of ore containing lead, copper, silver, gold, and zinc to the Midvale (Utah) custom concentrator in 1941. A few tons of silver-lead and gold-silver-lead ore were shipped to the Leadville smelter from the Fairview mine and another property in the Quartz Creek district.

Rock Creek district.—The owners of the Carbonate claim shipped

Rock Creek district.—The owners of the Carbonate claim shipped 2 tons of zinc ore containing a little gold, silver, and copper to the Midvale (Utah) custom concentrator in 1941. A 4-ton lot of silvergold-lead ore was shipped to the Leadville smelter from the Black

Eagle claim.

Taylor Park (Tin Cup) district.—In 1941 the Star and Thunderbird mines shipped 96 and 105 tons, respectively, of ore containing zinc, lead, copper, silver, and gold to the Midvale (Utah) custom mill, and the Trail Horse claim shipped 18 tons of gold-silver-lead ore to the Leadville smelter.

Tomichi district.—A sublessee at the Akron mine, under lease to the Callahan Zinc-Lead Co., Inc., shipped 2 cars of zinc-lead silver-gold

ore to the Midvale (Utah) custom mill in 1941.

HINSDALE COUNTY

Galena district.—Davis Gold Mines operated the Eldorado 50-ton mill during part of 1941 on company and custom ores and shipped some copper-lead-silver-gold concentrates to the Leadville smelter. The ore milled included 16 tons from the Cherokee dump.

Lake district.—About 2 cars of silver-lead-copper-gold ore were shipped by lessees from the Belle of the West mine, and 1 ton of gold-silver-lead ore was shipped from the Pitkin claim in 1941.

JEFFERSON COUNTY

The old Malachite mine 3½ miles northwest of Morrison, which was reopened in 1940, was operated by lessees for a period during the first part of 1941. The ore produced was concentrated in the Furstenberg mill near Idaho Springs, and the concentrates produced were shipped to the Garfield (Utah) smelter. Later the mine was leased to the American Smelting & Refining Co. Most of the output of placer gold from Jefferson County during the year was recovered by W. B. Kerkling from the Bertrand gravel pit and the Tresize placer.

LAKE COUNTY

LEADVILLE DISTRICT

The American Smelting & Refining Co. operated its Arkansas Valley lead bullion-leady copper matte smelter continuously (one furnace) in 1941 on ores and concentrates purchased from operators in virtually all the active mining districts of Colorado. Receipts totaled 121,297

tons compared with 114,371 tons in 1940.

A large part of the mine output of gold, silver, copper, and lead from the Leadville district in 1941 was derived from Ibex dump ore treated in the mills of the California Gulch Mining Co. and the H. G. N. Mining & Milling Co. (name changed to Hamm Mining & Milling, Ltd., September 1, 1941). The first company operated two mills, both equipped for gravity- and flotation-concentration and amalgamation. Mill No. 1, with a daily capacity of 125 tons, was built in 1939 and operated in 1940 and 1941. Mill No. 2 (daily capacity, 450 tons) was completed in May 1941 and operated from hims 1 to the end of the years. The Harry 1941 for the Company of the years. June 1 to the end of the year. The Hamm mill (formerly H. G. N.), built in 1937, was operated throughout 1941; it has a daily capacity The process used is jig-, table-, and flotation-concentration and amalgamation of the cleaner jig concentrate. Ore treated in the three mills totaled 217,693 tons. Andy Caine & Co. treated 2,868 tons of ore from the Fanny Rawlings mine by table concentra-tion and amalgamation in the leased Norton mill. The principal shippers of crude ore to the Leadville smelter (in approximate order of tonnage) were the "Lillian" group, Breece, Iron Hill, Ibex, Dolly B, New Monarch, Ollie Reed, and Little Ellen. Nearly 500 tons of zinc-lead-gold-silver ore from the New Monarch, Rock Hill, St. Louis tunnel, and Yak properties were shipped to the Midvale (Utah) custom concentrator, and 25 tons of zinc-lead ore from the Rock Hill property were sent to the Ozark pigment plant at Coffeyville, Kans.

The Resurrection Mining Co., continuing development work at the Resurrection mine, drove 6,718 feet of drifts and 336 feet of raises, reconditioned 4 miles of the Yak drainage-transportation tunnel and the surface plant at the tunnel portal, and nearly completed the building of a 250-ton flotation mill. The mine workings include a vertical shaft 1,290 feet deep and six levels. The Yak tunnel intersects the shaft at the 850-foot level. The mill was placed in operation

February 1, 1942; the products are lead concentrates (carrying gold, silver, copper, and some zinc) and zinc concentrates (carrying some gold, silver, copper, and lead).

OTHER DISTRICTS

No large producing lode mines operated outside the Leadville district in Lake County in 1941. Those making some output were the Mount Champion in the Lackawanna Gulch district; the Amity, Dinero, and St. Kevin in the St. Kevin-Sugar Loaf district; the Homestake in the Tennessee Pass district; and the Columbine and Gordon-Bengal Tiger in the Twin Lakes district. The Mt. Elbert Mining Corporation operated its dry-land dredge on the Derry Ranch placers in the Box Creek district 12 miles south of Leadville from April 27 to November 25. Small lots of placer gold were recovered at the Cureton and other placers near Granite and Twin Lakes.

TA PLATA COUNTY

California (or La Plata) district (Hesperus, La Plata).—Small tonnages of ore were shipped to the Leadville smelter in 1941 from the Bessie G, Hazel, Gold King, Gold Hope, May Day, and Mountain Lilly mines. A little placer gold was recovered by sluicing on the Eclipse property.

LARIMER COUNTY

Manhattan district.—Small lots of ore were shipped to smelters in 1941 from the Depression claim.

Masonville district.—Lessees at the Little Mary Mason mine shipped tons of gold-silver ore in 1941.

MINERAL COUNTY

Creede district.—Silver production in the Creede district increased 5 percent in 1941 over 1940, following a 45-percent increase in 1940 over 1939. The output of gold recovered from the silver ore also increased slightly in 1941, but that of lead decreased. Most of the ore was treated in the leased 100-ton flotation mill operated by the Emperius Mining Co.; the concentrates produced were shipped to the Leadville smelter. Shippers to the mill comprised the Amethyst group, Commodore, Equinox, and Emco-Chance. Part of the ore from the Commodore and Emco-Chance mines and that from the Ochre mine and the Weaver-Oates lease were shipped direct to the Leadville smelter.

MONTEZUMA COUNTY

The Red Arrow Gold Corporation operated its Red Arrow mine and 25-ton amalgamation mill approximately 9 months in 1941. The mill treated 2,500 tons of ore, and an additional 24 tons were shipped crude to the Leadville smelter. The total content in bullion and crude ore was 1,053 ounces of gold and 1,152 ounces of silver. The Outwest Mining Co. shipped 34 tons of gold-silver ore from the Outwest property, adjoining the Red Arrow.

MONTROSE COUNTY

La Sal district.—Lessees at the Cashin group shipped 270 tons of copper-silver-gold ore to smelters in 1941.

Naturita district.—Individuals sluicing on San Miguel River in

1941 recovered small lots of placer gold.

OURAY COUNTY

Red Mountain district.—The only shipments of ore from mines in the Red Mountain district in 1941 were 27 tons of lead-silver ore from the Mickey lease, 9 tons of zinc-lead ore from the Red Creek group,

and 1 ton of lead-silver ore from a prospect.

Sneffels district.—King Lease, Inc., ran its 100- to 125-ton mill throughout 1941 on ore from the Camp Bird mine. The ore was transported from the mine workings to the mill through the 11,000-foot low adit. In treatment the ore was fed from the mill bins to jaw crushers and then to ball mills; the pulp from the ball mills was amalgamated on plates, and the pulp from the plates was sent to the flotation circuit where bulk gold-silver-copper-lead-[zinc] concentrates were made for shipment to smelters. The gold-silver bullion recovered was sold to the Denver Mint. The only other output of ore from the Sneffels district during the year was 10 tons of lead-silver ore from the Mountain Top claim and less than 1 ton of gold

ore from another property.

Uncompalgre district.—G. A. Franz, Inc., operated its 120-ton flotation mill 2 miles north of Ouray in 1941 on custom ores from the Syracuse-Bachelor and Pony Express groups. The mill treated 4,862 tons of ore yielding 167 tons of lead-silver concentrates (containing some copper and gold) and 55 tons of zinc concentrates (containing also silver, lead, and a little gold and copper). The lead-silver concentrates were shipped to the Leadville smelter and the zinc concentrates to the Amarillo (Tex.) smelter. The McCullough Lease shipped gold-silver-copper ore from the American Nettie and Wanakah groups direct to smelters and treated 780 tons of old tailings from the Wanakah mill dump in the 50-ton flotation mill on the property. Small tonnages of smelting ore were shipped from other mines in the Uncompalgre district, including the Chief Ouray group, Newsboy, Portland, and Senorita.

PARK COUNTY

Alma Placers district.—The only substantial producer on the Alma Placers in 1941 was Jack Richards, who shipped gold to the Denver Mint steadily from May to October. The gravel was dug from open pits by power shovels and hauled by trucks to the central sluicing

plant for treatment.

Beaver Creek district.—The Timberline Dredging Co. operated its electric floating connected-bucket dredge on Beaver Creek near Fairplay from April 27 to November 2, 1941, and handled 632,400 cubic yards of gravel; the dredge is equipped with 84 buckets, each with a capacity of 7½ cubic feet. Other producers from placers on Beaver Creek were the Detwiler Lease and E. E. Lytle.

Buckskin district.—The Phillips group was operated by 2-3-4 Mines, Inc., from January 1 to March 31, 1941, and by Buckskin

Joe Mines, Ltd., from April to the end of the year. The ore produced (4,539 tons) was treated by selective flotation in the leased Alma Betts 50-ton mill 6 miles from the mine. The products of the mill were zinc concentrates (carrying some gold, silver, copper, and lead) shipped to the Amarillo (Tex.) smelter and iron concentrates (containing gold, silver, lead, and zinc) and lead concentrates (carrying gold, silver, copper, and zinc) shipped to the Leadville smelter. A lessee at the Gold Ridge mine shipped 67 tons of zinc ore (containing gold, silver, copper, and lead) to the Midvale (Utah) custom mill and 41 tons of gold-silver-lead-copper ore to the Leadville smelter. Other small lode producers included the Buckskin and Kentucky Belle mines. Sluicing in Buckskin Gulch recovered a little placer gold.

Consolidated Montgomery district.—The Magnolia Gold Mining Co. continued in 1941 to work the Magnolia mine and produced 3,600 tons of gold-silver ore containing a little copper. The ore was transported by a 4,000-foot aerial tramway to the company mill in Montgomery Gulch and treated by table- and flotation-concentration. Small tonnages of ore were shipped to the Golden Cycle mill and the Leadville smelter from the Alice Lee, Creighton, Kansas, Ketsby, Lee Goss, and Prince Albert mines. About 5 ounces of placer gold were recovered

in Montgomery Gulch.

Fairplay district.—The new 10,000-cubic yard (per day) steel connected-bucket dredge of the South Platte Dredging Co. began operating June 11, 1941, on bench ground along the Platte River near Fairplay and ran continuously the rest of the year. The dredge is powered by electricity and is equipped with 108 buckets, each with a capacity of 12 cubic feet. The Snowstorm placer north of Fairplay yielded a substantial output during the year. About 38 companies and individuals, several of whom used power shovels and land washing plants, worked on the property. Among the larger producers were the B. & H. Exploration Co., Philton Mines, and Miles O. Deatherage. Sluicing was done at other placers on Platte River near Fairplay.

Hall Valley district.—A lessee at the La Clede claim shipped 27 tons of gold-silver-copper-lead ore to the Ruth custom mill at Idaho Springs

(Clear Creek County).

Mosquito district.—The London Mines & Milling Co. continued in 1941 to be the principal producer of gold, silver, copper, and lead in the Mosquito district and in Park County. The company owns and operates a consolidated group of mines on London Mountain opened by a 4,400-foot tunnel. The ore is treated in the company 200-ton flotation- and gravity-concentration mill near the portal of the tunnel. The concentrates produced contain chiefly gold, with some silver, a little copper, and considerable lead and zinc; they are sold to the Leadville smelter. The London-Butte Gold Mines Co. operated its Butte mine and 100-ton flotation mill throughout the year. The 150-ton Record mill was purchased by James N. Redman, trustee, from the London Extension Mining Co. on May 10, 1941; it was operated after July 23 and treated a total of 14,613 tons of ore, of which 2,143 tons came from the American mine, 11,679 tons from the London Extension reject dump, 476 tons from the South London dump, and 315 tons from the Record mill dump. Small lots of ore were shipped to the Leadville smelter from the Orphan Boy and Susquehanna mines.

Tarryall district.—The large increase in gold output from the Tarryall district in 1941 came from the Peabody-Volz group of placer mines

on Tarryall Creek 2 miles north of Como. The ground was leased in 1940 by Cooley Bros., who installed a 3,000-cubic yard (per day) dragline floating dredge on the property during the first part of 1941 and operated it from May 4 to December 4. The Sterling Mining Co. operated its 1½-cubic yard dragline and four-bowl land dredge on the Little Mint-Storming Jordan placer on Tarryall Creek about 7 miles below Como during September and October. Gale L. Odell worked the Roberts placer on Tarryall Creek 2½ miles northwest of Como from June 15 to November 10 with a 1½-cubic yard dragline and screening and sluicing plant on wheels. Other placers on Tarryall Creek were worked by hand methods. A small output of gold and silver was made from the Stormchild and King Solomon-Pikes Peak lode properties.

PITKIN COUNTY

Roaring Fork district (Aspen).—The Midnight Mining Co. operated its Midnight mine and flotation mill continuously 6 days a week in 1941. The mill had a daily capacity of 60 tons, but the company had machinery on hand at the end of the year to raise the capacity to 75 tons or more. Ore treated in 1941 totaled 7,500 tons. The mill produced lead-silver concentrates, which were sold to the Leadville smelter, and zinc concentrates, which were shipped to the Amarillo (Tex.) zinc smelter. D. P. Rohlfing continued to ship to the Leadville smelter lime fluxing material carrying silver and lead from the Smuggler, Spar Consolidated, and other groups under his management. A lessee of the Hunter Creek flotation mill shipped a small tonnage of lead-silver concentrates recovered in the milling of silverand lead-bearing dump material. A few tons of smelting ore were shipped from the Enigma and Unexpected claims.

RIO GRANDE COUNTY

Summitville district.—Gold production in the Summitville district, only producing district in Rio Grande County in 1941, increased 34 percent over 1940. All the output in both years came from the group of mines operated by Summitville Consolidated Mines, Inc. 1941 the company treated a daily average of 83 wet tons of ore, 7 days a week, in its 150-ton mill at Summitville. In treatment the ore is ground in a ball mill with cyanide solution to minus-100-mesh. A jig between the ball mill and classifier removes coarse high-grade gold-silver-pyrite concentrates, which are shipped to the Leadville The classifier overflow goes to primary thickeners to remove pregnant solution; the primary thickener underflow goes to agitators and from them to three stages of countercurrent decantation. The pregnant solution is precipitated in Merrill-Crowe units, and the precipitates are acid-treated and reduced to bullion for shipment to the Denver Mint. During the year the company also carried on developing and prospecting work within the mine area on a deposit containing copper which previously had been avoided.

ROUTT COUNTY

Individuals recovered some gold and silver in 1941 from placers in the Hahns Peak area.

SAGUACHE COUNTY

Kerber Creek district (Bonanza).—Lessees at the Rawley group continued in 1941 to ship lead-silver-copper ore to smelters. The Flagstaff Mining & Milling Co. made intermittent test runs in its 50-ton flotation mill on ores from several properties. The ore treated included 205 tons of zinc-lead ore, which yielded 51 tons of zinc concentrates sold to the Ozark Smelting & Mining Co. plant at Coffeyville, Kans., and 10 tons of lead concentrates shipped to the Leadville smelter. Lessees on the Rawley No. 3 mine shipped some zinc-lead-silver-copper ore to the custom concentrator at Midvale, Utah. Other shippers of direct-smelting ore included the Liberty mine, Minnie Lynch, and Rico.

Myers Creek district.—The owners of the Silver Dollar claim shipped

1 ton of lead-silver ore to the Leadville smelter in 1941.

SAN JUAN COUNTY

Animas district.—Throughout 1941 the Shenandoah-Dives Mining Co. operated its consolidated group of claims on King Solomon Mountain (opened by the Mayflower tunnel) and 750-ton selective-flotation mill on Animas River near Silverton. The mill treated 231,519 tons of ore from company mines and 3,995 tons from other mines in San Juan and Ouray Counties. Output from the mill totaled 7,044 tons of combined lead-copper, zinc, and iron (lead) concentrates, containing in all 15,398 ounces of gold, 336,034 ounces of silver, 951,813 pounds of copper (wet assay), 3,443,741 pounds of lead (wet assay), and 2,161,931 pounds of zinc; the lead-copper and iron (lead) concentrates were shipped to the Leadville smelter, and the zinc concentrates (1,376 tons of 56.7 percent zinc content, with also gold, silver, and minor lead and copper content) to the Amarillo (Tex.) smelter. The bulk of the custom ore came from the Silver Lake mine of the American Smelting & Refining Co., worked through a 3,000-foot crosscut from inside the Mayflower tunnel. The rest came largely from the Coming Wonder and Little Fannie mines in the Animas district; the Esmeralda, Lead Carbonate, and Mountain Queen in the Eureka district, San Jaun County; and the Bachelor in the Uncompangre district, Ouray County. Highland Mary Mines, Inc., operated the Highland Mary mine and 70-ton flotation mill from June 1 to December 5, 1941. The concentrates produced (containing gold, silver, copper, and lead) were shipped to the Leadville smelter. The Pride of the West Mining Co. operated its 70-ton selectiveflotation mill'continuously on company lead-zinc-gold-silver-copper ore from the Pride of the West group. Nearly 90 percent of the mill product was lead concentrates (containing gold, silver, copper, and some zinc) shipped to the Leadville smelter; the rest was zinc concentrates shipped to the Amarillo (Tex.) smelter. On January 9, 1942, a fire which destroyed the buildings at the portal of the mine closed it until May 17. Some ore was shipped direct to the Leadville smelter in 1941 from the Crusader, Golden Eagle, and other mines in the Animas district.

Eureka district.—Most of the ore produced from mines in the Eureka district in 1941 was sold to the Shenandoah-Dives mill (see Animas district). About 1 car of high-grade gold-silver ore was shipped to

the Leadville smelter from the Brooklyn mine. The Treasure Mountain Gold Mining Co. erected a 25-ton flotation mill at the portal of the Sandiago tunnel and treated 377 tons of gold-silver ore from the Golden Fleece dump. The Sunnyside mine and 1,000-ton selective-flotation mill at Eureka, closed June 30, 1938, remained idle throughout 1941.

Ice Lake Basin district.—The only output from the Ice Lake Basin district in 1941 was 19 tons of zinc-lead ore shipped to the Midvale

(Utah) custom mill.

SAN MIGUEL COUNTY

Iron Springs district (Ophir).—Nearly all the metal output from the Iron Springs district in 1941 was contained in small tonnages of ore shipped to the Leadville smelter from the Carbonero, Hattie, New Dominion, San Bernardo, Sulphurette, Texas, and Yellow Jacket properties. The Butterfly mill at Ophir was destroyed by fire December 6, 1940; the Butterfly-Terrible-Silver Bell group had no output in 1941.

Lower San Miguel district (Sawpit, Vanadium).—Sluicing on San Miguel River 5 miles from Norwood recovered 7 ounces of gold and 3

ounces of silver in 1941.

Mount Wilson district.—A little high-grade gold ore was shipped from the Silver Pick mine in 1941, and about 3 ounces of gold were

produced from another property in the Mount Wilson district.

Upper San Miguel district (Telluride).—Veta Mines, Inc., operated its amalgamation and gravity- and flotation-concentration mill at Pandora 2½ miles east of Telluride at an average rate of 532 tons daily for 365 days in 1941 compared with 486 tons in 1940. The company ore treated in 1941 (193,768 tons) came from the Smuggler Union, Cimarron, and Montana mines and the Smuggler, Cimarron, and Tomboy dumps; the custom ore (315 tons) came from the Pike County mine and the Tomboy dumps. About one-third of the gold output from the mill was recovered in gold-silver bullion and the rest in concentrates, which also contained the bulk of the recoverable silver and all the recoverable lead. The bullion was shipped to the Denver Mint and the concentrates to the Leadville smelter. Alta Mines, Inc., operated the Alta-St. Louis group and 150-ton gravity- and flotation-concentration mill throughout 1941 and produced 40,498 tons of ore yielding 3,185 tons of concentrates containing 2,546 ounces of gold, 115,330 ounces of silver, 95,774 pounds of copper, 1,032,178 pounds of lead, and 463,245 pounds of zinc; the concentrates were shipped to the Leadville smelter. Individuals working small mines and prospects in the Upper San Miguel district recovered some gold from high-grade ore reduced by hand methods.

SUMMIT COUNTY

Breckenridge district.—Small-scale operations only were carried on at lode mines in the Breckenridge district in 1941, and most of the ore produced was shipped direct to the Leadville smelter. A car of zinc ore from the Royal Tiger property was shipped to the Ozark Smelting & Mining Co. smelter at Coffeyville, Kans., and some zinc-bearing material from the Sally Barber dump was shipped to a custom mill at Idaho Springs (Clear Creek County). Producers of more than 25

tons of ore shipped to the Leadville smelter were the Bemrose lode,

Carbonate, Dunkin, Fredonia, and Minnie B.

The leading producing placer mines in the Breckenridge district, some of which were equipped with small land dredges, were the Bemrose-Bostwick, Blue Beach, Ford and Bedrock, Long Island (worked by hydraulicking), Louis D, and Van Winkle.

Montezuma district.—G. W. Goodman continued in 1941 to work the Bullion group under lease from the Golden Cycle Corporation. Most of the time was spent in driving development drifts and putting in chutes in preparation for stoping. The mine is equipped with a 75-ton gravity- and flotation-concentration mill. About 180 tons of ore were treated during the year, yielding 44 tons of lead-copper-silver concentrates shipped to the Leadville smelter. The Plymouth Milling Co. worked throughout the year at the New York, Waterloo, and Silver King mines, reopening old tunnels and installing tracks, air pipes, and other equipment needed for mining. The company also built a 125-ton electric-powered selective-flotation mill. was run intermittently for testing ores from August to December and treated 1,127 tons yielding 108 tons of lead-silver-copper-gold concentrates, shipped to the Leadville smelter, and 49 tons of zinc concentrates, sold to smelters at Coffeyville, Kans., and Amarillo, Tex. A small tonnage of lead-silver ore was treated in the 24-ton mill at the Marlin group. The 150-ton mill on the Pennsylvania property was remodeled to treat zinc and lead ores by flotation; the mine was not operated during the year. The Erickson, Florado, and Foremost mines shipped lead-silver ore to the Leadville smelter.

Ten Mile (Kokomo, Robinson) district.—Lessees at the Washington and Hancock mines (known as the Lucky Strike group) shipped 766 tons of zinc-lead-silver ore to the Midvale (Utah) custom concentrator The Wilfley Leasing Co. installed flotation equipment in the Wilfley mill and made test runs on ore from the Wilfley mine; 12 tons of concentrates containing 4.70 ounces of gold, 201 ounces of silver, 4,760 pounds of lead, and 1,214 pounds of zinc were produced. Shippers of direct-smelting ore included the Leopard, Polar Star, Sammy B,

and Silver Queen mines.

Wilkinson, Rock Creek, and Green Mountain district.—Walter McDaniel continued producing rich zinc-silver-lead-gold-copper ore from his Big Four mine on Green Mountain; the ore was shipped to the Midvale (Utah) custom mill. The mine is opened by a 760-foot tunnel with a 325-foot drift from a point 400 feet within the tunnel. in 1941 was 752 tons of ore containing 627,501 pounds of zinc, 23,637 ounces of silver, 58,941 pounds of lead, 20.5 ounces of gold, and 3,509 pounds of copper. Small tonnages of lead-silver-gold ore were shipped to the Leadville smelter from the Boss-Thunderbolt, Chief Mountain, and another property in the Wilkinson district.

TELLER COUNTY

CRIPPLE CREEK DISTRICT

Cripple Creek is the leading gold-producing district in Colorado. From 1891, when gold was discovered in that area, through 1941 it has yielded a total of 18,316,289 fine ounces valued at \$394,644,597, or 48 percent of the State total output of gold from 1858 to 1941, inclusive.

In 1941 the district produced 133,470 ounces (35 percent of the State total) compared with 128,932 ounces (35 percent) in 1940 and 134,003 ounces (37 percent) in 1939. The increase in output in 1941 resulted from completion of the 6-mile Carlton drainage tunnel, permitting resumption of mining on the lower levels of the Ajax and Cresson mines. Details of work done during the year on the Carlton tunnel are given in the following Mines Review. The total output of ore from Cripple Creek mines and dumps in 1941 was 528,641 tons, of which 484,702 tons were shipped to the Golden Cycle mill (operations reviewed under El Paso County). Ore milled locally included 34,053 tons treated by flotation in the Cameron mill and 8,885 tons treated by cyanide leaching in the Kavanaugh plant. Cripple Creek ores generally contain gold as the only commercial metal, but some silver ore has been shipped from two or three veins in the district; a small quantity of silver is recovered annually in bullion and concentrates produced from the gold ores.

MINES REVIEW

Operations of the Golden Cycle Corporation, which owns and operates the Golden Cycle mill at Colorado Springs and several mines in the Cripple Creek district, are described in the following extract from its annual report to stockholders for the year ended December 31, 1941 (dated March 1, 1942):

In spite of adverse economic conditions existing in the gold-mining industry, the Cripple Creek district shipped to the Golden Cycle mill 484,702 tons with a [settlement] gross value of \$4,640,419.99 and an average value of \$9.57 per ton. This compares with 485,155 tons with a [settlement] gross value of \$4,394,533.57 and an average value of \$9.06 per ton for 1940. This increase in value was partly due to ore coming from the lower levels of the Ajax shaft of the Golden Cycle Corporation, which was completely drained by the Carlton tunnel in February 1941. All the lower levels of the Ajax were under water during the year 1940.

As in previous years, the United Gold Mines Co. and the Cresson Consolidated Gold Mining & Milling Co. were the largest shippers to the mill, with the Golden Cycle Corporation mining operations third. These three companies accounted for 66 percent of the ore. Lessees working on all properties in the district accounted for 83 percent of all the ore shipped from the Cripple Creek district, and all properties are dependent upon the lessees for the greater part of their

tonnage.

Carlton tunnel.—The Carlton tunnel was finished to the breccia granite contact under the Portland in September 1941. 6,293 feet of tunnel was driven in 1941. From July 18, 1939, to September 1, 1941, a total of 32,927 feet or 6.236 miles of tunnel was driven. The daily average was 46.9 feet. The last 4,000 feet of tunnel were driven under extremely difficult conditions, due to the heavy flows of water encountered. The first water cut in the tunnel was on February 18, 1941, when the New Market fault in Ajax was reached. The flow of water at this time amounted to 25,000 gallons per minute. Work in the tunnel was suspended for about 10 days until the water subsided to about 10,000 gallons per minute. It was then necessary to drop back about 200 feet from the face and change the course of the tunnel, in order to cut the fault in a different place. It was necessary to timber about 150 feet of heavy ground through the fault. From this point on, the tunnel was driven to the Portland without any great difficulty except heavy flows of water.

It was expected, when the breccia granite contact was reached, that enough water would be cut to quickly drain the Portland mine workings. 800 feet of water stood in the Portland shaft at this time. Due to the tight ground only a small flow of water was opened, which did not give rapid enough drainage. It was then necessary to drive a 125-foot raise from the tunnel, and from the top of the raise run a short crosscut toward the winze level of the Portland No. 2 shaft and drain the Portland workings in this manner. When this water was released the tunnel

flow increased to about 125,000 gallons per minute for a few hours, gradually subsiding to 6,000 gallons per minute. The heavy flow of water caused consubsiding to 6,000 gallons per minute. The heavy flow of water caused considerable damage in the tunnel, washing out track in several places and leaving considerable debris which was carried in from the Portland workings.

however, has all been cleaned up and the tunnel is now in good shape.

Ajax operations.—Lessees and the dump, which the company was washing and sorting, furnished all the production for the Ajax until the Carlton tunnel drained the mine in February 1941. When the tunnel cut the New Market fault, the mine drained in 10 days time. Clean-up and repair work was started at once and within 2 months ore from the lower levels was being shipped to the mill. Production the latter part of the year was much greater than the first part, and the mine showed a profit instead of a loss. Company and lessess shipped 29,332 tons with a gross value of \$437/760.05 and an average value of \$14.92 per ton. This is above the average grade of ore shipped from the district and compares with 22,203 tons with a gross value of \$226,628.07 and an average value of \$10.21 per ton for the year 1940.

Development work opened ore on both the New Market and Bobtail vein systems on the 24th and 26th levels, and several drifts are now being driven on ore in different parts of the mine. Shaft sinking which is now in progress will open two new levels, the 27th and 28th. Crosscutting and drifting for the various

vein systems will start on these new levels as fast as conditions permit.

Index operation.—During the first 10 months of 1941, the Index was operated by the company mainly for the accommodation of split-check lessees. The company, however, accomplished considerable development work and opened a number of small ore chutes, none of which were large enough to mine and make any money. It was decided to close the mine down on November 1, 1941, after the number of A total of 1,662.5 feet of development work was done lessees dwindled to one set. on the property during the year.

Anchoria Leland operation.—Development work on this property totaled 1,848 feet, of which the company accomplished 720 feet and the lessees 1,128 feet. Production amounted to 9,228 tons with a gross value of \$92,956.30 and an average value of \$10.07 per ton. Operations showed a loss for the year after depletion

of \$4,224.71.

Development work is still continued on this property mainly by lessees, and it is hoped that sufficient ore will be opened to operate the mine at a profit.

The annual report of the United Gold Mines Co., an operating and holding company for property scattered throughout the Cripple Creek district, for the year ended December 31, 1941 (dated February 15, 1942), gives the following details on operations at individual mines:

Production by company and lessees was 149,235.80 tons, with a gross value of \$1,430,199.42 and an average value of \$9.58. Lessees produced 92.7 percent of the tonnage and 95.5 percent of the gross value of the ore shipped. The Portland No. 1 and No. 2, Rose Nicol, Vindicator, Hull City, and Theresa shafts were operated on company account mainly for the accommodation of split-check lessees. Due to the present national emergency, a severe shortage of labor and lessees exists in the Cripple Creek district. The number of lessees working on the various United Gold Mines Co. properties has dropped off very greatly during the latter part of the year. We now have 42 sets of split-check lessees, 13 sets of royalty lessees, and 21 sets of dump lessees.

Portland group.—Both the Portland No. 1 and No. 2 shafts were operated on company account during the year, No. 1 shaft entirely for the accommodation of split-check lessees. These lessees produced a substantial tonnage of a good of split-check lesses. These lesses produced a substantial tonnage of a good grade of ore. Portland No. 2 shaft has now become the main operation, due to its drainage by the Carlton tunnel. Shaft repairs and clean-up work was carried out on the 23rd, 24th, 26th, 27th, 29th, and 30th levels. Pipe lines and track are being installed in order to make as much of the mine accessible for work as It is planned to do some development work on these levels, provided

we can secure the necessary labor and material.

The company has been carrying on a development program throughout the year on the 17th level in Rose Nicol territory. In the course of this work the Trail basalt blow-out, which was mined on the Rose Nicol, was cut and found to be a fair grade of ore. Stoping will be started on this as soon as an air connection

can be made with the 14th level of the Cresson mine.

Rose Nicol.—The company mined and shipped 7,467.20 tons of ore, with a value of \$6.38 per ton, and the lessees shipped 9,443.74 tons with an average value of \$13.67, or a total of 16,910.94 tons with a gross value of \$176,725.99.

No production was made from Rose Nicol ground through the Cresson shaft

during the past year, as the Cresson Co. was not able to handle the extra tonnage.

Vindicator group.—The Vindicator made a very good production during the past year. It produced 34,628.20 tons, with a gross value of \$380.062.51. An average of 18 sets of lessees was active, employing about 55 men. The Theresa and Hull of 18 sets of lessees was active, employing about 55 men. The Theresa and Hull City shafts were steady producers throughout the year. Some company development work was done on the Theresa shaft. A new ore house was constructed at the Hull City at a cost of \$1,800.00.

Shurtloff & Findley.—This property is under lease to the Golden Conqueror Mines, Inc., and is being worked through the South Burns shaft of the Acacia Gold Mines Co. A steady production was maintained during 1941, and a large

amount of development work was also accomplished.

Wild Horse group.—The Wild Horse shaft was in operation during part of 1941. Some low-grade ore was shipped, but it was of such muddy, sticky character that the mill could not handle it and the mine was forced to close. The Gleason shaft of the Wild Horse was under lease to Dwyer Brothers and produced a smal tonnage of ore.

Patti Rosa.—This is under lease to the Tennessee Mines Co., who were steady shippers during the year. The Patti Rosa shaft was repaired and a skip installed to take the place of the bucket formerly used. This should speed up their production for 1942.

Deadwood.—This property is under lease to the Gold Bullion Mines, Inc., who

maintained a steady production throughout the year.

Due to a safety program we have carried on for the past 3 years, our rate on compensation insurance has been cut from a high of \$8.81 3 years ago to \$6.198 for the year 1942.

Production of company ore by United Gold Mines Co. in 1941

Mine	Net tons	Gross value 1	Company ore cash receipts	Average gross value ton ¹
Vindicator Rose Nicol Portland Theresa No. 2 Plant	1, 513 7, 467 375 102 1, 478	\$6, 830. 79 47, 647. 52 4, 134. 10 404. 89 5, 978. 67	\$2, 293. 83 23, 223. 08 2, 451. 86 112. 68 1, 731. 36	\$4. 52 6. 38 11. 02 3. 99 4. 04
	10, 935	64, 995. 97	29, 812. 81	5. 94

¹ Settlement value

Production of lessee ore of United Gold Mines Co. in 1941

Group	Net tons	Gross value 1	Royalties received	Lessees' receipts	Average gross value per ton 1
Vindicator. Rose Nicol. Portland-Last Dollar Theresa. Hull City Deadwood group Hardwood group Londonderry group. W. P. H. group.	33, 115 9, 444 35, 038 9, 392 6, 203 28, 840 10, 679 3, 205 2, 384	\$373, 231. 72 129, 078. 47 359, 863. 68 102, 136. 82 62, 633. 11 220, 836. 22 70, 349. 09 23, 279. 27 23, 795. 07	\$94, 735. 67 36, 734. 98 84, 772. 39 31, 471. 11 20, 222. 03 17, 196. 18 3, 454. 73 1, 397. 18 1, 972. 71 291, 956. 98	\$133, 233. 73 49, 925. 66 133, 286. 46 29, 336. 64 18, 844. 51 91, 356. 91 25, 644. 57 8, 360. 50 10, 236. 61 500, 225. 59	\$11. 27 13. 67 10. 27 10. 88 10. 10 7. 66 6. 59 7. 26 9. 98

¹ Settlement value

Production of properties of United Gold Mines Co. before and after organization of the company (May 15, 1902) to December 31, 1941

	× 11 11 11 11 11 11 11 11 11 11 11 11 11	Net tons	Gross value 1
Ore mined before consolidation Production under operation of	on of United Gold Mines Co	26, 310 2, 220, 065	\$456, 806. 19 23, 375, 026. 05
Total to Dec. 31, 1941		2, 246, 375	23, 831, 832. 24

¹ Settlement value.

Drifts and crosscuts:

The annual report of the Cresson Consolidated Gold Mining & Milling Co. for the 12 months ended December 31, 1941 (dated January 15, 1942) says—

The following is a summary of the development work for the 12 months ending December 31, 1941: Development

Feet Feet 2, 495 Company Hart group 708 Lessees______1, 506 4, 709

Raises and winzes: Company Lessees_______1, 644

2,079 6,788

Production during the year was maintained at full capacity of the plant. Development work was also continued on all blocks of undeveloped ground where it was felt an ore chute might be opened. Some bodies of ore were opened by the company on the 5th, 12th, 13th, and 16th levels. One large stope of low-grade ore is being mined by the company on the 16th level at the present time.

There are 30 sets of split-check lessees working through the Cresson shaft.

These lessees made a very good production during the past year. One set of lessees, working on the 10th level, opened up and shipped some very high-grade

The Gold Sovereign shaft is under lease to F. G. Blackwood & Co., and pro-

duced a considerable tonnage of low-grade ore.

The Carlton tunnel, driven by the Golden Cycle Corporation, was completed to the Portland No. 2 shaft, and a raise completed through to the 31st level. Preparations are now under way to connect the Portland No. 2 shaft with the tunnel level.

The first large flow of water was cut in the tunnel about the middle of February 1941, and drainage of the southern part of the district began almost immediately. The tunnel is now making 6,000 gallons per minute, although at one time a flow in excess of 100,000 gallons per minute was encountered. The water level in the Cresson shaft has been lowered 240 feet since the middle of February. 19th level, which is 250 feet below the Roosevelt tunnel, is now dry, and clean-up work on this level is under way. There are several drives to be made on this level, and it is felt that some ore will be opened.

While the rate of drainage at the Cresson shaft was at first rapid, the rate of drainage at the present time is slowing down. It will be over a year before the 20th level, which is 125 feet below the 19th level, is unwatered. For this reason, 20th level, which is 125 feet below the 19th level, is unwatered. For this reason, it will be necessary for the Cresson Co. to drive a 4,000-foot lateral from the main Carlton tunnel into Cresson ground, in order to obtain drainage at a rate fast enough to keep the necessary development work shead of mining. The Cresson might eventually drain almost to the same level as the Carlton tunnel, but it would require a great many years. It would not allow us to open up the ground below the level we are now working, nor drain at a fast enough rate to keep the mine going.

The lateral from the main Carlton tunnel to the Cresson will be about 4,000 feet in length. Approximately two-thirds of the distance will be through ground owned by the United Gold Mines Co. The remaining distance will be through Cresson ground. Arrangements for a lease on the ground belonging to the United Gold Mines Co., through which the tunnel will pass, have been made; so the Cresson Co. will be protected on any ore this lateral might open. This work will be started as soon as the Portland shaft is completed to the Roosevelt tunnel level. Arrangements have been made to use the tunnel equipment owned by the Golden Cycle Corporation for this work.

Economic conditions caused by the war are beginning to be felt very severely.

Economic conditions caused by the war are beginning to be felt very severely. A shortage of labor and lessees exists throughout the Cripple Creek district and is getting worse as time goes on. Men are naturally attracted by the much higher wages paid by defense industries. A raise in wages, amounting to about 8½ percent, was made by the mines 3 months ago; but with this raise wages here are below all Government work. The price of most mining supplies has raised

during the past year.

Compensation insurance costs decreased again this year to a new low of \$4.057 per \$100 of pay roll. This is the lowest rate in the Cripple Creek district.

The average operating cost per ton shipped by company and the lessees during 1941 was \$2.880 on a total of 130,166 tons.

, , ,	
Federal taxes	
State income taxes	
State and county taxes	
Sales, service, and use tax	
Capital-stock taxes	
Social-security taxes	
Miscellaneous taxes	
Unemployment-compensation insurance	
Compensation insurance	
Fire insurance	
Business insurance	
Salaries of officers and directors	
General expense	
Mining operations	
Group insurance	

Production of Cresson Consolidated Gold Mining & Milling Co., 1903 to December 31

Period	Dry short tons	Gross value ¹	Freight and treatment	Net value
1903 to Dec. 31, 1940	2, 963, 009	\$43, 841, 173. 73	\$14, 315, 107. 78	\$29, 526, 065. 95
Company ore	53, 223 76, 943	363, 821. 13 973, 658. 53	181, 641. 91 333, 745. 19	182, 179. 22 639, 913. 34
1903 to Dec. 31, 1941	3, 093, 175	45, 178, 653. 39	14, 830, 494. 88	30, 348, 158. 51

Period	Royalties re- ceived by company	Amount paid lessees	Average gross value per ton	Average net value per ton	Dividends
1903 to Dec. 31, 1940			\$14.80	\$ 9. 96	\$13, 381, 672, 50
1941: Company ore Lessee ore	\$317, 291. 56	\$322, 621. 78	6. 84 12. 65	3. 42 8. 32	97, 600. 00
1903 to Dec. 31, 1941			14. 61	9. 81	2 13,479,272. 50

¹ Settlement value.

² Represents 29.84 percent of gross value and 44.42 percent of net value.

Shipments from the Stratton properties in 1941 totaled 28,738 tons of mine ore and 15,113 tons of dump, which together had a total gross settlement value of \$416,305.78 or an average settlement value of \$9.49 per ton. Most of the ore was mined by lessees under the royalty system. The bulk of the dump ore was shipped by the Regain Corporation from three groups of dumps on Bull Hill. The principal producers of mine ore were the Alie Bell Mining Co. (Proper mine), C. E. Sullivan and Longfellow Mining Co., A. S. Cobb, and J. E.

Van Dewalker.

Cameron Gold Mines, Inc., operated its group of mines and 100-ton flotation mill continuously in 1941. Ore treated totaled 34,053 tons yielding 1,503 tons of concentrates containing 5,038 ounces of gold and 2,910 ounces of silver; the concentrates were shipped to the Leadville smelter. The mill feed included 1,072 tons of custom ore milled for the Tenderfoot Mining Co. Thomas Kavanaugh operated his Iron Clad group and cyanide plant 6 months during the year, treating 8,885 tons of ore yielding 504 fine ounces of gold and 77 fine ounces of silver. In approximate order of gold output, the Empire Lee, Free Coinage, El Paso, Acacia, Dr. Jack Pot, Jerry Johnson, Mary Nevin, and Mary McKinney continued to be important producers in 1941. Some of the other producing mines and dumps were the Atlas, Black Belle, Buckeye, Cardinal-Great West, Delmonico, Economic dump, Joe Dandy, Nellie V and War Eagle, New Gold Dollar, and Strong.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN THE EASTERN STATES

(MINE REPORT)

By A. J. MARTIN

SUMMARY OUTLINE

	Page		Page
Summary. Calculation of value of metal production Mine production by States. Mining industry. Ore classification. Metallurgic industry Review by States. Alabama. Georgia	321 324 324 325 325 326	New Jersey New York North Carolina Pennsylvania South Carolina Tennessee Virginia	327 327 328 329

The mine output of recoverable gold, silver, copper, lead, and zinc in the Eastern States in 1941 was valued at \$34,159,265—\$5,941,270 more than in 1940 and the highest value in any year since 1917. Zinc represented 86 percent of the total in both 1941 and 1940 and 85 percent in 1917. Mine shipments of zinc in 1941 increased 7 percent over 1940 and set a new annual record. Gains in production and shipments were made in New Jersey, New York, and Tennessee; in Virginia actual production of both zinc and lead during the year was less than in 1940, but the quantities shipped (production credited to year of shipment in the tables that follow) were larger. production increased in New York and decreased in Tennessee. The output of copper, nearly all of which came from North Carolina, Pennsylvania, and Tennessee, increased 6 percent over 1940. Gold production rose 19 percent and was the highest in both quantity and The principal gold-producing States were South value since 1882. Carolina, North Carolina, and Pennsylvania. The silver output was recovered from the refining of the gold, copper, and lead produced.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold ¹	Silver 2	Copper 3	Lead ³	Zine 3
1937	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0.7735 4.646+ 5.678+ 6.711+ 6.711+	\$0.121 .098 .104 .113	Per pound \$0.059 . 046 . 047 . 050 . 057	Per pound \$0.065 . 048 . 052 . 063 . 075

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31,1934, was \$20.67+(\$20.671835) per fine ounce.

1 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver.

3 Yearly average weighted price of all grades of primary metal sold by producers. 4 \$0.64646464.

^{\$0.64646464.} \$0.67878787. \$0.71111111.

1038

1030

Annual figures for the 5 years ended with 1941 are given in the table The figures for tonnage of ore sold or treated do not that follows. include magnetite ore containing pyrite and chalcopyrite, from which copper, gold, and silver were recovered as byproducts.

Mine production of gold, silver, copper, lead, and zinc in the Eastern States, 1937-41, in terms of recovered metals

Year		Mines p	Ore so			l (lode placer			(lode and cer) ³	
	1 cai		Placer	(shor tons)	tons) 1		s	Value	Fine ounces	Value
1937 1938 1939 1940 1941		39 51 47 40 43	40 26 24 18 14	3, 409, 3, 674,	880 619 815	10, 680. 19, 928. 17, 414. 18, 456. 21, 982.	00 6 00 6	373, 83; 397, 486 369, 496 345, 966 769, 376	94, 94 94, 08 102, 82	5 61,380 3 63,862 5 73,120
		Copper		Le	ad			Zi	ne	
Year	Poun	ds V	alue	Short	,	alue	Sho		Value	Total value

24, 444, 000 21, 079, 160 21, 295, 000 25, 490, 000

27, 132, 000

5, 539 7, 900 6, 284

4, 831

\$653,602

726, 800 590, 696 483, 100

628, 482

189, 353

172, 501 180, 955

\$24, 894, 159

19, 211, 235 21, 100, 174 24, 135, 445

\$28, 961, 985 22, 762, 653 24, 578, 902 28, 217, 995

3 Placer silver did not exceed 39 ounces in any year during the 5-year period.

\$2, 957, 725 2, 065, 758 2, 214, 680 2, 880, 370 3, 201, 576

The old Haile mine in Lancaster County, S. C., near Kershaw, yielded 69 percent of the total mine output of gold in the Eastern States in 1941. Other substantial producers were the Condor (old Howie) mine near Waxhaw, Union County, N. C.; and the Cornwall mine in Lebanon County, Pa., which yields gold, silver, and copper as a byproduct of iron mining. Changes in output of gold in the various States in 1941 comprised increases of 2,432 ounces in South Carolina, 1,301 ounces in North Carolina, 582 ounces in Pennsylvania, 54 ounces in Tennessee, and 25 ounces in Alabama; and decreases of 650 ounces in Georgia and 218 ounces in Virginia. The estimated output of gold in the Southern Appalachian States from 1799 to 1941 is recorded as follows:

Mine production of gold in the Southern Appalachian States, 1799-1941

State	Period	Fine ounces	Value	State	Period	Fine ounces	Value
Alabama Georgia Maryland North Carolina	1830-1941 1830-1941 (1)-1941 1799-1941	870, 479 6, 102	\$1, 198, 740 18, 082, 612 163, 940 24, 179, 828	South Carolina Tennessee Virginia	1829-1941 1831-1941 1828-1941 1799-1941	20, 038 167, 255	\$7, 283, 140 448, 960 3, 566, 904 54, 924, 124

¹ Year of first production not recorded.

¹ Excludes magnetite-pyrite-chalcopyrite ore from Pennsylvania.

² Includes placer gold as follows: 1937, 632 ounces; 1938, 667 ounces; 1939, 413 ounces; 1940, 452 ounces;

Silver.—The silver recovered from ores and gravels mined in the Eastern States in 1941 totaled 106,051 fine ounces—59,221 ounces derived from copper and iron (magnetite-pyrite-chalcopyrite) ores, 37,734 ounces from zinc-lead ores, 9,081 ounces from gold ores, and

15 ounces from placer gravel.

Copper.—As the three mines that produced nearly all the copper output of the Eastern States in 1941 are in different States (North Carolina, Pennsylvania, and Tennessee), it is not possible to show the production separately by States without disclosing that of each mine; the combined output of the three States is shown under Tennessee in the following table. The total Eastern States production rose from 25,490,000 pounds in 1940 to 27,132,000 pounds in 1941. Gold ore from South Carolina and North Carolina yielded 1,265 pounds of copper. Copper ore yielded, in recovered metals, about 0.0004 ounce of gold and 0.06 ounce of silver to the ton of crude ore. Copper concentrates from the magnetite-pyrite-chalcopyrite ore of the Cornwall mine in Pennsylvania contained some recoverable gold and silver.

Lead.—The recoverable lead in concentrates shipped from mines in the Eastern States totaled 5,513 tons in 1941, an increase of 682 tons over 1940. The figures include some concentrates that were stock-piled at the mine in previous years and are credited to production for 1941, the year of shipment. Zinc-lead sulfide ores from the Austinville mine in Virginia and the Balmat in New York yielded all the lead output except 23 tons derived from lead carbonate and zinc-

lead sulfide ores from Tennessee.

Zinc.—The mine output (shipments) of recoverable zinc in the Eastern States was 191,310 tons in 1941, an increase of 12,495 tons over 1940. New Jersey contributed 49 percent of the total in 1941, New York 20 percent, Tennessee 19 percent, and Virginia 12 percent. The Virginia shipments include a substantial tonnage of concentrates from mine stocks carried over from previous years. The newly developed Hyatt mine near Emeryville, N. Y., which began producing on a small scale in February 1941, and the Jarnagin mine at Jefferson City, Tenn., reopened in April, contributed part of the 7-percent increase in total output from the Eastern States during the year. Zinc ore yielded 73 percent of the total zinc output and zinc-lead ore and copper ore together 27 percent. The proximity of the large zinc mines of the Eastern States to smelting and manufacturing centers enhances their importance as a source of zinc in time of war, when transportation becomes a material factor in obtaining supplies. Statements furnished by mine operators early in December 1941 indicated an increase in production from their mines for 1942. The Government premium-price program announced January 12, 1942, provides an incentive for increasing the output from established mines and reopening marginal properties, and it may cause a larger gain.

MINE PRODUCTION BY STATES

Mine production of gold, silver, copper, lead, and zinc in the Eastern States in 1941, by States, in terms of recovered metals

	Mines pro-						Gold				Silve	er	
State	duc	ducing		Ore (short tons)		1e o	unces	Total		Fine	ounces	Total	
	Lode	Placer			Lod	e	Placer	value]	Lode	Placer	value	
Alabama Georgia New Jersey	7 2	11		1, 020 1, 641 35, 463		30 22	189	\$1, 050 10, 885		3 24	14	\$2 27	
New York North Carolina Pennsylvania South Carolina Tennessee Virginia	5 1 7 13	2	13 2,03	38, 079 33, 746 1) 35, 288 33, 030 02, 130	3, 23 2, 42 15, 50 22 23	22 08 27	6	113, 540 84, 770 542, 780 7, 945 8, 400	1	7, 734 7, 438 5, 016 6, 525 9, 161 135	1	26, 833 5, 290 10, 678 4, 640 27, 848	
Total, 1940	43 40	14 18		30, 397 74, 815	21, 77 18, 00		203 452	769, 370 645, 960		6, 036 2, 795	15 30		
State	c	opper			Lea	ad			z	ine		Total	
Siste	Pounds	V	alue	lue Short		tons Value		Short tons V		V	alue	value	
Alabama Georgia New Jersey New York North Carolina Pennsylvania South Carolina Tennessee Virginia	(4) (4) 1, 00 4 27, 131, 00		(4) (4) (5) (1) (1) (4) (1) (4) (4) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7		2, 100 23 3, 390		2, 622 186, 460	93, 78 38, 44 36, 17 22, 91	6	5, 7	355, 073 766, 900 25, 500 36, 950	\$1,052 10,912 14,855,073 6,033,133 118,830 595,448 547,538 8,665,373 3,831,906	
Total, 1940	27, 132, 00 25, 490, 00		1, 576 0, 370		5, 513 4, 831		28, 482 83, 100	191, 31 178, 81			84, 423 35, 445	34, 159, 265 28, 217, 995	

Ore is magnetite-pyrite-chalcopyrite, flotation copper concentrates from which yielded gold, silver and copper; Bureau of Mines not at liberty to publish figures for ore and copper.
 Excludes magnetite-pyrite-chalcopyrite ore from Pennsylvania.

Estimated smeltting value of recoverable zinc content of ore after freight, haulage, smelting, and manufacturing charges are added.

North Carolina and Pennsylvania included under Tennessee; Bureau of Mines not at liberty to publish

separate figures.

4 Excludes value of copper, which is lincluded under Tennessee.

6 Includes also value of copper from North Carolina and Pennsylvania.

MINING INDUSTRY

The total output of ores yielding gold, silver, copper, lead, or zinc in the Eastern States in 1941, excluding the magnetite-pyrite-chal-copyrite ore from Pennsylvania, was 3,780,397 tons—a 3-percent increase over 1940. The quantity of gold-bearing sand and gravel handled at placer mines in the Southern Appalachian region was small; the Ferey Mining Co., only operator that reported using mechanical equipment in placer mining during the year, shut the equipment down in August after a few months of intermittent operation on the Barlow placer near Dahlonega, Ga. The gold ore output (most of which was treated by cyanidation) averaged \$4.36 to the ton in gold and \$0.04 in silver and copper. The copper, zinc, and

zinc-lead ores of the Eastern States yield byproducts (besides gold and silver), the value of which would have to be considered to show the full value of the crude ore mined. Copper-iron ore from Tennessee and zinc-lead-pyrite ore from New York yield pyrite concentrates that are used in the manufacture of sulfuric acid, and sulfuric acid is also made from gases produced in roasting zinc sulfide concentrates from zinc and zinc-lead ores of Tennessee, New York, and Virginia. New Jersey zinc ore yields a residue, which is further treated for the recovery of other metals; and zinc ore milled in Tennessee yields a commercial tailing, some of which is sold for its lime content and some for use in concrete. The quantity of the various types of ore mined in the Eastern States is shown in the table that follows.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in the Eastern States in 1941, with content in terms of recovered metals

Source	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (short tons)	Zine (short tons)
Dry and siliceous gold ore	152,833 751,516 (³) 469	19, 033 324 2, 422	9, 081 44, 205 15, 016	1, 265 1 27,130, 735 (1)		(2)
Zinc oreZinc-lead ore	2, 037, 653 837, 926		37, 734		19 5, 494	140, 415 2 50, 895
Total, lode mines Total, placers	4 3, 780, 397	21,779 203	106, 036 15	27, 132, 000	5, 513	191, 310
Total, 1940	4 3, 780, 397 4 3, 674, 815	21, 982 18, 456	106, 051 102, 825	27, 132, 000 25, 490, 000	5, 513 4, 831	191, 310 178, 815

¹ Copper from magnetite-pyrite-chalcopyrite ore included with that from copper ore.

² Zine from copper ore included with that from zinc-lead ore; Bureau of Mines not at liberty to publish

separate figures.

Bureau of Mines not at liberty to publish separate figures for ore and copper.

Excludes magnetite-pyrite-chalcopyrite ore from Pennsylvania.

METALLURGIC INDUSTRY

All the principal producing base-metal mines in the Eastern States except the Fontana copper mine in North Carolina have concentrating mills at or near the mines, but a considerable tonnage of copper ore is smelted direct and some of the crude zinc ore is shipped to oxide plants. The ore from the Fontana mine is shipped to the Tennessee Copper Co. plant in Tennessee. The methods of treatment used in the various mills and other operating details, including the tonnage and grade of concentrates produced by some of the mills, are given in the Review by States that follows. Most of the concentrates are shipped to smelters operated by the companies that own the mines. The methods of recovering the gold and silver are shown in the following table.

Mine production of gold and silver in the Eastern States in 1941, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated (short tons)	Gold (fine ounces)	Silver (fine ounces)
Ore and old tailings amalgamated	3, 348 149, 123 75, 778 19, 764	418 18, 323 2, 649 389 203	173 8,831 91,911 5,121
Total, 1940		21, 982 18, 456	106, 051 102, 825

¹ Excludes material containing no recoverable gold or silver. The totals for concentrates and direct-smelting ore shipped were 694,222 and 70,117 tons, respectively.

REVIEW BY STATES

ALABAMA

At the Hog Mountain mine near Alexander City, Tallapoosa County, 1,000 tons of old tailings from the mill dump were treated in 1941 by gravity concentration followed by amalgamation of the concentrates; the recovery was 28 fine ounces of gold and 3 fine ounces of silver. A lessee at the Gold Log mine near Talladega recovered 2 ounces of gold from about 20 tons of quartz treated by crushing, grinding, and amalgamation.

GEORGIA

Mines in Georgia yielded 311 fine ounces of gold and 38 fine ounces of silver in 1941, but no recoverable copper, compared with 961 ounces of gold, 630 ounces of silver, and 25,200 pounds of copper in 1940. The output in 1941 comprised 122 ounces of gold and 24 ounces of silver recovered from ore amalgamated at lode mines and 189 ounces of gold and 14 ounces of silver derived from placer gravel. The Ferey Mining Co. worked the Barlow placer near Dahlonega with a dragline and portable washing plant from March to August and produced about one-half of the State output of gold. Sluicing at small placers in Cherokee, Lumpkin, and White Counties recovered 32 ounces of gold. The Brand Estate claim in Cherokee County, the Findley and Lockhart mines in Lumpkin County, and the Russell mine in Paulding County were among the producing lode mines. All the Georgia output of gold and silver in 1941 was sold to the United States Mint at New Orleans, La. This mint discontinued purchasing newly mined gold and silver as of April 25, 1942.

NEW JERSEY

Zinc ore produced in New Jersey in 1941 totaled 585,463 tons containing 93,781 tons of recoverable zinc as metal or in oxide compared with 556,031 and 91,406 tons, respectively, in 1940. The producing mines were the Mine Hill at Franklin and the Sterling Hill at Ogdensburg, both in Sussex County. The ore bodies in these mines are unique in that they are said to be the only ones in the world from which all three of the minerals franklinite, willemite, and zincite are being mined in commercial quantities. The minerals, ore deposits, and mining methods are described in recent publications of the Geo-

logical Survey and the Bureau of Mines.¹ In the reduction of the ores the franklinite (an iron-manganese-zinc oxide mineral) is removed from the crushed ore by magnetic separators, and the willemite and zincite are concentrated on jigs and tables. The concentrates and some crude ore are shipped to smelters at Palmerton, Pa.

New Jersey has a few deposits of copper ore, but none has been worked for many years. At Carteret and Perth Amboy are copper and lead smelters and refineries that treat ores, scrap, byproducts,

and bullion from various States and foreign countries.

NEW YORK

Zinc and zinc-lead ores mined in New York in 1941 yielded 38,446 tons of recoverable zinc, 2,100 tons of lead, and 37,734 fine ounces of silver—increases over 1940 of 2,760 tons in zinc, 127 tons in lead, and 2,014 ounces in silver. The producing mines in 1941 were the Balmat about 8 miles southeast of Gouverneur, the Edwards at the town of Edwards about 12 miles northeast of the Balmat, and the Hyatt near Emeryville, all in St. Lawrence County. The Balmat and Edwards mines are owned and operated by the St. Joseph Lead The Balmat ore contains zinc, iron, and lead sulfides, and some silver is associated with the lead; it is mined through a 2,655-foot inclined shaft (vertical depth, about 1,300 feet) and treated in the selective flotation plant at the mine. The daily capacity of the mill The mill feed in 1941 totaled at the end of 1941 was 1,100 tons. 336,271 tons of ore; it yielded 3,578 tons of lead concentrates averaging 60.35 percent lead, 52,075 tons of zinc concentrates averaging 56.34 percent zinc, and 71,633 tons of pyrite concentrates averaging 41.35 percent iron and 49.39 percent sulfur. The lead concentrates contained considerable silver. The Edwards mine, which produces zinc ore, is opened by a vertical shaft to the 1,500-foot level and has an inclined shaft 1,212 feet long from this level to the lower workings. The mine is equipped with a 500-ton flotation mill, which treated 126,220 tons of ore yielding 21,421 tons of zinc concentrates averaging 58.71 percent zinc. The zinc concentrates from both mills were shipped to the company electrothermic zinc-reduction plant at Josephtown, Pa. The lead concentrates from the Balmat mill were shipped to the U.S. Metals Refining Co. plant at Carteret, N. J., and the pyrite concentrates were sold to sulfuric acid plants. The Hyatt zinc mine is owned by the Universal Exploration Co., which began developing it in 1938 and in 1940 nearly completed construction of a 200-ton flotation mill. The mill began treating ore early in 1941 and produced several cars of concentrates monthly from February through December: the concentrates were shipped to the Donora (Pa.) smelter.

NORTH CAROLINA

Gold production in North Carolina in 1941 totaled 3,244 fine ounces, and silver totaled 7,439 fine ounces, compared with 1,943 and 6,480 ounces, respectively, in 1940. Copper output from the Fontana

¹ Palache, Charles, The Minerals of Franklin and Sterling Hill, Sussex County, N. J.: Geol. Survey Prof. Paper 180, 1935, 135 pp.
Jackson, Chas. F., Knaebel, John B., and Wright, C. A., Lead and Zinc Mining and Milling in the United States, Current Practices and Costs: Bureau of Mines Bull. 318, 1935, pp. 44, 134.

copper mine in Swain County-only producer of copper ore in the State during the year—varied little from that in 1940. The mine is operated by the North Carolina Exploration Co., which ships the crude ore to the Tennessee Copper Co. smelter at Copperhill, Tenn. The Fontana ore contains very small quantities of gold and silver, some of which are recovered as byproducts in refining the copper The Condor (old Howie) mine near Waxhaw in Union County, operated under lease by Hugh Jardine, was again the principal producer of gold in the State; milling of the ore at the Capps mill, Charlotte, was discontinued in January 1941, and a countercurrent cyanide mill was erected on the Condor property and operated continuously after July 15. Gold ore treated at this mill and copper ore from the Fontana mine yielded nearly all the silver output of the State during the year. A little gold was recovered from ore amalgamated at the Chapman property in Burke County and the Hoover Hill in Randolph County. A 28-ton lot of gold ore was shipped from a property near Ranger, Cherokee County, to the smelter at Copperhill. Small placers in Halifax and McDowell Counties yielded 6 fine ounces of gold and 1 fine ounce of silver.

PENNSYLVANIA

Gold, silver, and copper are recovered as byproducts of iron mining at the Cornwall mine of the Bethlehem Steel Co. in Lebanon County. The mine is developed by an open pit and three inclined shafts. shafts were extended 200 feet during 1941 to a total depth of 1,500 The ore contains magnetite, and pyrite and chalcopyrite carrying a little gold and silver; it is treated in the company plants at Lebanon, comprising a magnetic separation plant producing iron concentrates, a sintering plant for handling the iron concentrates, and a flotation mill in which the tailings from the magnetic plant are concentrated to recover copper, gold, and silver. The capacity of all three plants was expanded in 1941—that of the magnetic plant from 6,000 tons daily to 6,500 tons, the sintering plant from 2,000 to 2,400 tons, and the flotation plant from 2,500 to 2,800 tons. rise in the production rate for iron resulted in an increase in the output of byproduct metals; the quantity of copper recovered rose 30 percent over 1940, gold 32 percent, and silver 15 percent.

SOUTH CAROLINA

In 1941, for the fifth consecutive year, South Carolina ranked first among the Eastern States in gold production. The old Haile mine in Lancaster County, 3½ miles northeast of Kershaw, continued to be the chief producer. The mine is equipped with a 400-ton cyanide plant, which was operated continuously in 1941. The ore is mainly quartz and pyrite; that produced in 1941 was mined from open pits. Ore treated during the year totaled 134,854 tons yielding 15,197 fine ounces of gold and 6,447 fine ounces of silver compared with 126,261 tons in 1940 yielding 12,861 ounces of gold and 7,970 ounces of silver. Other mines in the State yielded a total of 311 ounces of gold, 78 ounces of silver, and 1,000 pounds of copper in 1941. Small lots of gold were shipped to the Philadelphia Mint and the New York Assay Office from the Funder Bunk mine and the Mineral Mining Corporation properties in Lancaster County and the Oro at Pageland in

Chesterfield County. Crude ore containing gold and a little silver and copper was shipped from the Terry and Ross-Carroll mines near Smyrna, York County, to the U. S. Metals Refining Co. smelter at Carteret, N. J. W. K. Hunter, of Hickory Grove, shipped several cars of gold ore to the Tennessee Copper Co. smelter at Copperhill, Tenn.

TENNESSEE

The mine production of gold, silver, and zinc in Tennessee increased moderately in 1941 over 1940, copper decreased slightly, and lead declined sharply. The increase in zinc was the sixth in successive years, and the quantity produced (36,170 tons) was larger than in anv previous year. The gold and silver and some of the zinc were byproducts of the copper-iron mining, milling, and smelting operations of the Tennessee Copper Co. at Ducktown and Copperhill in Polk Important commercial products derived from the copperiron ores (besides copper bullion and zinc concentrates) included sulfuric acid and copper sulfate manufactured in the company plants and iron sinter sold to iron and steel producers, mostly in the Birmingham (Ala.) district. The zinc concentrates produced in the mills were sold to the Donora (Pa.) smelter. The new reverberatory furnace placed in operation at the company smelter in September 1940 was operated throughout 1941; the three blast furnaces formerly used for smelting were maintained as stand-by equipment. Most of the blister copper from the converter was cast into pigs and shipped to an electrolytic refinery on the Atlantic seaboard, where the byproduct gold and silver were recovered. Shot copper was produced for use at the copper sulfate plant. In 1941 the company operated the Burra Burra, Eureka, Isabella, and Boyd groups of mines and the London and Isabella selective flotation mills. The mines are opened by two vertical shafts 755 and 2,400 feet deep. Development work done during the year totaled 414 feet of shaft, 20,201 feet of drifts, and 28,077 feet of diamond drilling. The rated capacity of the London mill is 1,350 tons of ore daily and that of the Isabella 850 tons. In addition to crude ore and concentrates from company mines and mills the smelter treated considerable copper-iron sulfide ore from the Fontana mine in Swain County, N. C., and a small tonnage of gold ore from mines in North Carolina and South Carolina.

The principal zinc-producing mines in Tennessee in 1941 were the Mascot group in Knox County and the Grasselli, Jarnagin, and Davis groups in Jefferson County. The Jarnagin mine was reopened in April 1941 after having been closed since December 1937. The Mascot, Grasselli, and Jarnagin were operated by the American Zinc Co. of Tennessee, which concentrated the ore from all three mines in its Mascot mill. The mill is equipped with a differential-tension density unit, jigs, and flotation machines. In 1941 the mill treated 1,017,451 tons of ore yielding 44,537 tons of concentrates averaging 60.6 percent zinc. The Mascot mine is opened by a 520-foot shaft and an inclined shaft from the 520-foot level to the maximum depth of 850 feet. The Grasselli has one operating shaft and an auxiliary manway shaft and is 350 feet deep. Power-operated scrapers are used in both mines. The Jarnagin has one operating shaft 280 feet deep, with an auxiliary manway shaft. Development done in the three mines in 1941 totaled 355 feet of shaft, 5,763 feet of drifts, 7,325 feet

of diamond drilling, and 12,667 feet of churn drilling. The Davis group at Jefferson City is owned and operated by the Universal Exploration Co. The company 800-ton flotation mill for treating sulfide ore was operated at approximate capacity throughout 1941, and the 100-ton plant for concentrating carbonate ore was run at less than capacity from July to December. The average grade of the blende shipped in 1941 was 64.48 percent zinc. The Embree Iron Co., which owns properties in Washington and Unicoi Counties near Embreeville, operated its lead and zinc mines on a small scale from January to June, when production of these metals was suspended. In December the Imperial Mining Co. began operating the Imperial mine about 2 miles northwest of Goin, Claiborne County. The mill is equipped with a 4-cell jig. Production in 1941 was 35 tons of zinc-lead concentrates, shipped to the Ozark Smelting & Refining Co. plant at Coffeyville, Kans. Other output in the State in 1941 included a car of zinc ore from the Finchum property at New Market and a car of zinc concentrates shipped from Murfreesboro by an individual.

VIRGINIA

Virginia mines produced 240 fine ounces of gold and 135 fine ounces of silver in 1941 compared with 458 and 271 ounces, respectively, in 1940. No recoverable copper was produced in the State from 1939 to 1941, inclusive. The Red Bank mine near Virgilina, Halifax County, equipped with a small amalgamation mill, was the only lode mine in the State producing gold and silver in 1941; it was operated from January to July 18 by Joseph Hamme, owner, who then sold it to Red Bank Gold Mines, Inc., which made no output the rest of the year. A little gold was recovered from the Ruth placer in Goochland County.

The recoverable lead and zinc in concentrates shipped from Virginia in 1941 was 3,390 tons of lead and 22,913 tons of zinc, an increase of 1,105 and 5,986 tons, respectively, over 1940. A substantial part of the concentrates shipped in 1941 came from mine stocks accumulated in previous years. Actual mine production of both lead and zinc was less than in 1940. The Austinville zinc-lead mine of the New Jersey Zinc Co. in Wythe County, only large producer of lead and zinc in the State for many years, was operated continuously in 1941; it is equipped with a 2,000-ton flotation mill. The Lacy-Butler Co. shipped a car of zinc ore from a mine at Cripple Creek, Va.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN IDAHO

(MINE REPORT)

By G. E. WOODWARD AND PAUL LUFF

SUMMARY OUTLINE

	Page		Page
Summary	331	Metallurgic industry	337
Calculation of value of metal production	331	Review by counties and districts	342
Mine production by counties	335	Coeur d'Alene region	353
Mining industry	336		
Ore classification	337		

SUMMARY

The total value of gold, silver, copper, lead, and zinc produced by Idaho mines was \$41,776,848 in 1941 compared with \$37,744,393 in 1940—an increase of nearly 11 percent (see fig. 1). The quantity and total value of each metal except silver increased; the greatest gain was \$2,966,874 in zinc. The value of the gold production represented nearly 13 percent of the State total, silver 28 percent, copper 2 percent, lead 29 percent, and zinc 28 percent. Production of gold in Idaho in 1941 (149,816 fine ounces) exceeded the 1940 production, which had been the largest since 1871, and the output of zinc (158,-168,000 pounds) was by far the greatest in any year in the history Compared with 1940 the gold output increased 2 perof the State. cent, copper 8 percent, lead less than one-half of 1 percent, and zinc 12 percent; silver declined 5 percent. The gain in gold output was due entirely to increased output from dredging at placer properties, as the output from lode mines decreased.

All tonnage figures are short tons and "dry weight"; that is, they do not include moisture.

The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold 1	Silver 2	Copper 3	Lead :	Zinc 3
1937 1938 1939 1940	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0.7735 4.646+ 8.678+ 6.711+ 6.711+	Per pound \$0.121 .098 .104 .113 .118	Per pound \$0.059 .046 .047 .050	Per pound \$0.065 .048 .052 .063 .075

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.

² 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938–41: Treasury buying price for newly mined silver.

³ Yearly average weighted price of all grades of primary metal sold by producers.

⁴ \$0.64646464.

⁵ \$0.67878787.

⁶ \$0.71111111.

Mine production of gold, silver, copper, lead, and zinc in Idaho, 1937-41, and total 1863-1941, in terms of recovered metals

	Mines p	roducing		Gola (lode	and placer)	Silver (lode and placer)		
Year	Lode Placer		Ore (short tons)	Fine ounces	Value	Fine ounces	Value	
937 938 939 940 941	347 305 362 378 331	741 463 465 548 524	2, 075, 402 1, 999, 147 2, 108, 445 2, 556, 687 2, 704, 680	81, 861 103, 513 116, 662 146, 480 149, 816	\$2, 865, 135 3, 622, 955 4, 083, 170 5, 126, 800 5, 243, 560	19, 587, 766 18, 993, 676 17, 222, 370 17, 552, 240 16, 672, 410	\$15, 151, 13 12, 278, 74 11, 690, 33 12, 481, 59 11, 855, 93	
1863-1941			(1)	7, 629, 158	170, 159, 933	469, 574, 957	322, 200, 08	
					1			
	Co	pper	Le	ad	Zi	ne		
Year	Pounds	pper Value	Pounds	value	Pounds	value	Total value	
Year 1937		-	Pounds			<u> </u>	\$37, 840, 18 29, 028, 10 29, 794, 14 37, 744, 39 41, 776, 84	

¹ Figures not available.

Gold and silver produced at placer mines in Idaho, 1937-41, in fine ounces, in terms of recovered metals

	~1				Dredges								
Year	Year Sluicing and hydraulic		Drift mining		Dry-land 1		Dragline floating ¹		Floating bucket		Total		
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	
1937 1938 1939 1940 1941	4, 286 4, 987 5, 443 6, 664 4, 899	1, 399 969 1, 638 1, 337 1, 149	433 410 196 291 228	65 57 26 48 46	2, 369 1, 989 4, 475 5, 623 3, 185	325 384 1, 332 758 388	4, 490 15, 459 9, 576 6, 569 11, 725	1, 327 5, 818 4, 389 5, 427 2, 100	28, 962 31, 234 28, 973 41, 262 52, 358	9, 171 10, 100 7, 490 10, 226 13, 725	40, 540 54, 079 48, 663 60, 409 72, 395	12, 28 17, 32 14, 87 17, 79 17, 40	

¹ A floating washing plant supplied with gravel by a dragline excavator is called a "dragline floating dredge"; a stationary or movable washing plant supplied with gravel by any type of power excavator is called a "dry-land dredge."

Gold.—The output of recoverable gold in Idaho was 2 percent greater in 1941 than in 1940. The yield of gold from lode mines decreased 10 percent, and most of the loss was from gold ore; the production from placers increased 20 percent, owing to larger output from dredging. About 42 percent of the State total gold in 1941 came from siliceous gold ore and 45 percent from all types of dredging operations. Twelve floating (bucket) dredges, the same number as in 1940, treated 10,612,000 cubic yards of gravel and recovered 52,358 ounces of gold—an increase of 11,096 ounces over 1940; 9 dragline dredges and 12 dry-land dredges treated 2,342,000 cubic yards of gravel and recovered 14,910 ounces of gold—an increase of 2,718 ounces. Of the total placer gold, 84 percent came from the Boise Basin, Elk City, Yankee Fork, Warren, Hoodoo, Middle Boise, and Gibbonsville districts, where dredges were operated. Of the

² Short tons.

total lode gold, 81 percent came from the Middle Boise, Yellow Pine, Warm Springs, Burgdorf-Marshall Lake, Carson, Yankee Fork, Mineral Hill, and West View districts and the Coeur d'Alene region. Substantial increases in output of gold were made in the Middle Boise, Yankee Fork, Elk City, Hoodoo, and Gibbonsville districts but large decreases in the Boise Basin and Yellow Pine districts and the Coeur d'Alene region.

Talache Mines, Inc., operating lode property at Atlanta, was again the largest gold producer in Idaho. It was followed by the Fisher-Baumhoff Co., which continued to operate two bucket dredges near Centerville; Yellow Pine mine at Stibnite; H. & H. bucket dredge near Elk City; Snake River Mining Co. (bucket dredge) at Sunbeam;

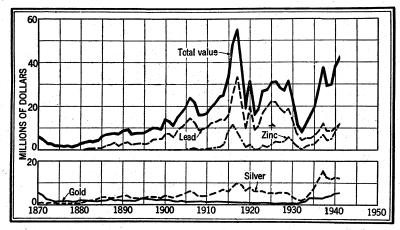


FIGURE 1.—Value of mine production of gold, silver, lead, and zinc and total value of gold, silver, copper, lead, and zinc in Idaho, 1870–1941. The value of copper has been less than \$2,000,000 annually, except in a few years.

Golden Anchor mine at Burgdorf; Northwest Goldfields bucket dredge near Harvard; Triumph mine near Ketchum; Idaho-Canadian Dredging Co. at Idaho City; Warren Dredging Co. at Warren; Boise King Placers near Twin Springs; De Lamar Milling Corporation at De

Lamar; and Custer Consolidated Mines, Inc., near Sunbeam.

Silver.—The output of recoverable silver in Idaho was 16,672,410 fine ounces in 1941—a 5-percent decrease from 1940. Production from the Sunshine mine declined 1,045,470 ounces. The Coeur d'Alene region produced 88 percent of the State total silver in 1941; the rest came largely from the Warm Springs, Carson, Bayhorse, South Mountain, Middle Boise, Port Hill, and Pend d'Oreille districts. Silver ore yielded 59 percent of the State total silver, zinclead ore 30 percent, lead ore 6 percent, and gold-silver ore and gold ore 3 percent. The yield of silver from silver ore decreased 918,449 ounces and from zinc-lead ore 418,176 ounces, but that from zinc ore increased 193,405 ounces, from lead ore 176,184 ounces, and from gold ore and gold-silver ore 60,176 ounces.

Eight mines—the Sunshine, Bunker Hill & Sullivan, Mineral Point, Polaris, Hecla, Morning, Triumph, and Page—produced 84 percent of the silver output of the State in 1941. All these mines

except the Triumph are in the Coeur d'Alene region.

Copper.—The output of recoverable copper in Idaho in 1941 was 7,242,000 pounds—an 8-percent increase over 1940. The gain resulted mainly from increased output of silver-copper ore from the Mineral Point mine. Silver ore (chiefly from mines in the Coeur d'Alene region) yielded 68 percent of the State total copper, zinc-lead ore 17 percent, copper ore 9 percent, and lead ore and zinc ore together 5 percent.

The Mineral Point and Sunshine mines produced 63 percent of the

total copper output of the State in 1941.

Lead.—The output of recoverable lead in Idaho was 209,828,000 pounds in 1941—an increase of only 160,000 pounds over 1940. Marked increases at the Sherman, Tamarack, and Sunset mines prevented a decline, as a notable decrease took place at the Morning mine. About 91 percent of the State total lead came from the Coeur d'Alene region and 5 percent from the Warm Springs district; considerable lead was produced also in the Port Hill, Bayhorse, and Pend d'Oreille districts. Zinc-lead ore and old tailings from the Coeur d'Alene region and the Warm Springs district yielded 86 percent of the State total lead; and lead ore, chiefly from the Coeur d'Alene region, yielded 13 percent. Lead recovered from zinc-lead ore declined 4,482,205 pounds and from silver ore 710,597 pounds, but that from lead ore increased 4,971,053 pounds and from zinc ore 408,589 pounds.

In 1941 the combined lead output of the three largest producers—the Bunker Hill & Sullivan, Morning, and Hecla—was 127,137,585 pounds (138,817,322 pounds in 1940), or nearly 61 percent of the State total; other important producers were the Page, Star, Triumph, Tamarack, Sherman, Idaho-Continental, Gold Hunter, and Clayton

nronerties

Zinc.—The output of recoverable zinc in Idaho was 158,168,000 pounds in 1941—a 12-percent increase over the former record output (in 1940). The gain was due principally to increased output of zinc from mines in the Coeur d'Alene region and in the Warm Springs and South Mountain districts. Substantial increases in zinc output were made at the Star, South Mountain, Triumph, Tamarack, Sunset, and Highland Surprise properties. More than 86 percent of the State total zinc in 1941 came from the Coeur d'Alene region and nearly all the remainder from the Warm Springs and South Mountain districts. Zinc-lead ore and old tailings concentrated yielded 97 percent of the State total zinc, and zinc ore concentrated nearly all the remainder.

Seven mines—the Star, Morning, Bunker Hill & Sullivan, Triumph, Hecla, Tamarack, and Page—produced 85 percent of the State total zinc in 1941; the rest came chiefly from the South Mountain, Frisco, Sunset, Interstate-Callahan, and Highland Surprise properties.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Idaho in 1941, by counties, in terms of recovered metals

County	Mine duc		Gold (lode a	nd placer)	Silver (lode a	nd placer)
	Lode	Placer	Fine ounces	Value	Fine ounces	Value
Ada Adams Bannock	1 4 1	10 5	453 257 1	\$15, 855 8, 995 35	31 647 7	\$22 460 5
Benewah Blaine Boise Bonner	32 34 6	* 1 1 78	6, 783 23, 438 13	70 237, 405 820, 330 455	770, 199 41, 286 76, 365	547, 697 29, 359 54, 304
Bonneville Boundary Butte Camas	1 1 6 10	5 5	78 5 618	2, 730 175 21, 630	7 81, 353 1, 980 16, 951	57, 851 1, 408 12, 054
CanyonCassia ClearwaterCuster	3 2 30	2 42 11	3 11 1, 968 12, 803	105 385 68, 880 448, 105	76 457 297, 457	54 325 211, 525
Elmore Gem Idaho Jerome	13 6 58	27 3 152 17	28, 505 3, 232 37, 016 158	997, 675 113, 120 1, 295, 560 5, 530	96, 248 28, 426 39, 171	68, 443 20, 214 27, 855
Latah Lemhi Lewis Nez Perce	44	7 61 7 6	5, 573 8, 959 51 39	195, 055 313, 565 1, 785 1, 365	329 61, 259 7 7	234 43, 562 5 5
Owyhee Power Shoshone Twin Falls	15 58	19 2 21 27	5, 850 18 3, 419 202	204, 750 630 119, 665 7, 070	455, 151 14, 678, 356 17	323, 663 10, 437, 942 12
Valley Washington	331	11 4 524	10, 346 15 149, 816	362, 110 525 5, 243, 560	21, 299 5, 317 16, 672, 410	15, 146 3, 781 11, 855, 936
Total, 1940	378	548	146, 480	5, 126, 800	17, 552, 240	12, 481, 593

_	Cop	per	Le	ad	Zi	ne	Total
County	Pounds	Value	Pounds	Value	Pounds	Value	value
Ada							\$15,877
Adams	37, 000	\$4,366	100	\$6			13, 827
Bannock	300	35					75
Benewah							70
Blaine	217, 000	25, 606	10, 737, 900	612, 060	17, 080, 000	\$1, 281, 000	2, 703, 768
Boise	4,000	472	36, 300	2, 069	12,000	900	853, 130
Bonner	4,600	543	820,000	46, 740			102, 042
Bonneville	100	12					2, 747
Boundary	19, 500	2, 301	3, 074, 000	175, 218		150	235, 370 6, 669
Butte	5,600	661	75, 000	4, 275	2,000	100	38, 627
Camas	8,900	1,050	68, 300	3, 893			38, 027
Canyon				91			530
Cassia.			1,600	91			69, 205
Clearwater			2, 895, 400	165, 038	28,000	2, 100	879, 927
Custer	450, 500	53, 159	2, 895, 400	105, 058	20,000	2, 100	1, 066, 141
Elmore	10,000	1, 180	154, 600	8, 812			143, 326
GemIdaho	11,000	1, 180	16,000	912			1, 325, 625
Jerome	11,000	1, 290	10,000	012			5, 535
Latah							195, 289
Lemhi	262, 500	30, 975	594, 400	33, 881	2,000	150	422, 133
Lewis	202, 500	30, 313	001, 100	00,001	2,000	200	1, 790
Nez Perce							1, 370
Owyhee	246,000	29, 028	287,000	16, 359	4, 402, 000	330, 150	903, 950
Power	210,000	20,020	20.,000	,			630
Shoshone	5, 957, 000	702, 926	191, 057, 000	10, 890, 249	136, 642, 000	10, 248, 150	32, 398, 932
Twin Falls	0,00.,000						7, 082
Valley	200	24	6,000	342			377, 622
Washington	7, 800	920	4,000	228			5, 454
	7, 242, 000	854, 556	209, 828, 000		158, 168, 000		41, 776, 848
Total, 1940	6, 698, 000	756, 874	209, 668, 000	10, 483, 400	141, 202, 000	8, 895, 726	37, 744, 393

Gold and silver produced at lode mines in Idaho in 1941, by counties, in terms of recovered metals

County	Ore sold or treated	Gold	Silver	County	Ore sold or treated	Gold	Silver
Ada	Short tons 40 294 1 104, 870 6, 885 10, 728 1 37, 000 2, 673 2, 588 401	Fine ounces 6 241 1 6, 781 2, 616 13 1 1 5 601 11 34	Fine ounces 647 7 770, 199 35, 768 76, 365 7 81, 353 1, 980 16, 944 76 14	Valley Washington	Short tons 59,033 122,399 11,737 37,240 68,622 98,444 2,051,390 90,149 157 2,704,680 2,556,687	Fine ounces 5, 208 23, 429 2, 621 12, 659 4, 741 5, 099 3, 056 10, 289 9 77, 421 86, 071	Fine ounces 294, 487 94, 576 28, 357 33, 591 60, 899 454, 843 14, 678, 287 21, 285 5, 317 16, 655, 002 17, 534, 444

Gold and silver produced at placer mines in Idaho in 1941, by counties, in fine ounces, in terms of recovered metals

							Dr	edges				
County	hydi	ng and raulic	Drift 1	mining	Dry-l	and 1	Draglin in		Floating	g bucket	1	otal
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
AdaAdamsBenewah	31 16 2	7			416	24					447 16	31
Blaine Boise Bonneville	2, 142 77	493	13	3	74	22	1,058	303	17, 535	4, 697	2 20,822 77	5, 518
Camas Canyon Clearwater	17 3 116	7			49	6	1, 095	288	674	123	17 3 1, 934	448
Custer Elmore Gem	28 178 16	12 52 3					70	19	7, 497 4, 898	2, 939 1, 620	7, 595 5, 076 611	2, 970 1, 67
Idaho Jerome Latah	902 158 23	204	64	8	796	116	6, 895	1, 271	15, 700 5, 550	329	24, 357 158 5, 573	5, 58 32
Lemhi Lewis Nez Perce	469 51 39	7 7	46	7	1, 187	122	2,012	153	504	36	4, 218 51 39	360
Owyhee Power Shoshone	282 18 64	242	105	28	469 1 9 4	66 32					751 18 363	308
Twin Falls Valley Washington	202 57 6	17 14									202 57 6	17
Total, 1940	4, 899 6, 664	1, 149 1, 337	228 291	46 48	² 3, 185 5, 623	² 388 758	³ 11, 725 6, 569	³ 2, 100 5, 427	452, 358 41, 262		72, 395 60, 409	17, 408 17, 796

¹ A floating washing plant supplied with gravel by a dragline excavator is called a "dragline floating dredge"; a stationary or movable washing plant supplied with gravel by any type of power excavator is called a "dry-land dredge."

2 Recovered from 342,000 cubic yards of gravel treated by 12 dry-land dredges.
3 Recovered from 2,000,000 cubic yards of gravel treated by 9 dragline floating dredges.
4 Recovered from 10,612,000 cubic yards of gravel treated by 12 floating bucket dredges.

MINING INDUSTRY

The marked increase in output of zinc, the gain in production of gold from dredging operations, and the reopening of several old zinclead producers in the Coeur d'Alene region were the most important features of the mining industry of Idaho in 1941. The production of

zinc was the largest in any year in the history of the State, and the output of placer gold was the largest since 1872, when 77,884 fine ounces were produced. Zinc-lead ore (by far the chief output of the State) increased 3 percent over 1940, silver ore nearly 7 percent, gold-silver ore 29 percent, copper ore 62 percent, lead ore 29 percent, and zinc ore from 101 to 22,551 tons; gold ore declined 7 percent.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Idaho in 1941, with content in terms of recovered metals

Source	Mines produc- ing	Ore	Gold	Silver	Copper	Lead	Zinc
Dry and siliceous gold ore	172	Short tons 330, 354	Fine ounces 62, 657	Fine ounces 245, 418	Pounds 33,077	Pounds 242, 165	Pounds
Dry and siliceous gold- silver ore	16 31	82, 465 490, 691	5, 566 433	296, 475 9, 869, 309	6, 649 4, 951, 766	51, 954 955, 543	
Copper oreLead ore	1 217 15 57	903, 510 7, 979 212, 251	68, 656 696 426	10, 411, 202 43, 851 1, 043, 250	4, 991, 492 687, 128 139, 760	1, 249, 662 21, 913 27, 154, 356	3, 60
Lead-copper ore Zinc ore Zinc-lead ore	3 10 37	174 22, 551 1, 558, 215	378 7, 263	22, 227 193, 484 4, 940, 988	13, 006 204, 300 1, 206, 314	70, 497 408, 589 180, 922, 983	4, 965, 17 153, 199, 22
Total, lode mines	1 331 524	2, 704, 680	77, 421 72, 395	16, 655, 002 17, 408	7, 242, 000	209, 828, 000	158, 168, 00
Total, 1940	855 926	2, 704, 680 2, 556, 687	149, 816 146, 480	16, 672, 410 17, 552, 240	7, 242, 000 6, 698, 000	209, 828, 000 209, 668, 000	158, 168, 00 141, 202, 00

¹ A mine producing more than 1 class of ore is counted but once in arriving at total for all classes.

METALLURGIC INDUSTRY

Of the 2,704,680 tons of ore produced in 1941 in Idaho, 2,492,644 tons (92 percent) were treated at concentration plants, 179,503 tons (7 percent) were treated at amalgamation and cyanidation mills, and 32,533 tons (1 percent) were shipped crude to smelters.

Ore treated at concentration plants in 1941 comprised 145,840 tons of gold ore, 81,202 tons of gold-silver ore, 480,902 tons of silver ore, 3,906 tons of copper ore, 200,387 tons of lead ore, 22,313 tons of zinc

ore, and 1,558,094 tons of zinc-lead ore.

Ore treated at straight amalgamation mills in 1941 totaled 15,673 tons yielding 3,057 ounces of gold and 2,797 ounces of silver. Ore treated at combined amalgamation and concentration plants comprised 157,648 tons yielding 17,817 ounces of gold and 10,086 ounces of silver in amalgamation bullion and 2,570 tons of concentrates containing 18,065 ounces of gold, 167,010 ounces of silver, and some copper and lead.

Ore (6,182 tons) treated at straight cyanidation plants in 1941

yielded 659 ounces of gold and 1,486 ounces of silver.

The lead smelter and refinery of the Bunker Hill & Sullivan Mining & Concentrating Co. at Bradley were operated continuously in 1941 on ore and concentrates, chiefly from the Bunker Hill & Sullivan,

Hecla, Star, Sunshine, Coeur d'Alene Mines Corporation, Polaris, Idaho-Continental, Gold Hunter, and Crescent mines, and zinc residue from the electrolytic zinc plant of the Sullivan Mining Co. The 100-ton electrolytic zinc plant of the Sullivan Mining Co. near Bradley operated at capacity, chiefly on zinc concentrates from the Star, Bunker Hill & Sullivan, and Hecla mills.

The Bunker Hill & Sullivan Mining & Concentrating Co. started building a fuming plant at Bradley in September to treat hot current slag and old slag containing principally zinc; this plant is expected to be operating in July 1942. The company also added to its milling plant a 1,700-ton H. & H. sink-and-float unit. The 400-ton gold mill at the Yellow Pine property at Stibnite was converted in August into a 200-ton mill to recover chiefly tungsten and antimony.

Mine production of metals in Idaho in 1941, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated	Gold	Silver	Copper	Lead	Zine
Ore amalgamatedOre cyanided	Short tons 173, 321 6, 182	Fine ounces 20, 874	Fine ounces 12, 883	Pounds	Pounds	Pounds
Concentrates smelted Ore smelted Placer	353, 372 32, 533	659 51, 396 4, 492 72, 395	1, 486 16, 091, 846 548, 787 17, 408	6, 627, 749 614, 251	201, 796, 985 8, 031, 015	158, 030, 82 137, 17
Total, 1940		149, 816 146, 480	16, 672, 410 17, 552, 240	7, 242, 000 6, 698, 000	209, 828, 000 209, 668, 000	158, 168, 00 141, 202, 00

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Idaho in 1941, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

	Material		ered in llion	Concer	ntrates si	melted and	recovered	metal
County	treated	Gold	Silver	Concen- trates produced	Gold	Silver	Copper	Lead
Ada	Short tons 40	Fine ounces 6	Fine ounces	Short tons	Fine ounces	Fine ounces	Pounds	Pounds
Boise_ Clearwater	2, 699	1, 191	521	9	52	146		
ElmoreIdaho	121, 426	1, 502 10, 384 6, 542	1, 690 6, 117 3, 603	188 2, 117 256	2, 727 12, 852 2, 434	53, 183 87, 700 25, 981	8, 500	
Lemhi Owyhee Shoshone Valley	717	208 45 65 930	40 64 17					
Total, 1940	173, 321 127, 152	20, 874 19, 741	12, 883 11, 035	2, 570 2, 044	18, 065 13, 848	167, 010 131, 171	8, 500 119, 673	3, 300 7, 300
	(YANII	OATION	MILLS	·	-		<u></u>
Blaine Cassia Clearwater Elmore Lemhi	3, 000 17 400 165 2, 600	314 4 33 19 289	1, 291 14 20 161	,				
Total, 1940	6, 182 15, 305	659 2, 228	1, 486 4, 607					
Grand total: 1941	179, 503 142, 457	21, 533 21, 969	14, 369 15, 642	2, 570 2, 044	18, 065 13, 848	167, 010 131, 171	8, 500 119, 673	3,.300 7, 300

Mine production of metals from concentrating mills in Idaho in 1941, by counties, in terms of recovered metals

			Conce	ntrates smelt	ed and rec	overed metal	l
County	Ore treated	Concen- trates produced	Gold	Silver	Copper	Lead	Zinc
			Fine	40.			
	Short tons	Short tons		Fine ounces	Pounds	Pounds	Pounds
Blaine		35, 881	5, 583	748, 126	212, 086	10, 618, 791	16, 994, 306
Boise		1.55	364	1,570	2, 142	12,662	12,000
Bonner		760	9	61, 351	2, 700	697, 084	
Boundary		2, 223		81, 353	19, 500	3, 074, 000	
Rntte	2.500	73		1,118		71,000	
amas	650	8	72	37		100	
Custer		2, 010	68	127, 685	18, 440	2, 399, 840	
Clmore	700	8	75	590			
}em	11,674	2,088	2, 577	27, 620	9, 923		
daho	14, 149	164	3, 575	3,897	2, 500	12, 700	
emhi	63, 847	2, 266	3,806	48, 008	237, 479	130, 225	
Owyhee	97, 928	5, 372	4, 961	440, 105	200,000	276, 545	
Shoshone	2, 034, 156	295, 607	2, 918		5, 914, 279	184, 347, 890	136, 622, 520
Valley	80, 818	4, 187	9, 323	19, 997	200	3, 200	
	2, 492, 644	350, 802	33, 331	15, 924, 836	6, 619, 249	201, 793, 685	158, 030, 826
Гotal, 1940	2, 368, 572	333, 960	41, 770	16, 652, 596	5, 732, 861	199, 559, 904	141, 202, 000

Gross metal content of concentrates produced from ores mined in Idaho in 1941, by classes of concentrates smelted

Class of concentrates	Concen- trates								
	pro- duced	Gold	Silver	Copper	Lead	Zine			
	Short	Fine	Fine						
	tons	ounces	ounces	Pounds	Pounds	Pounds			
Dry gold	9, 91,0	37, 693	221, 509	30, 825	211,880				
Dry gold-silver	375	4, 575	252, 716						
Dry silver	76	9	4, 199	333	7, 209	1 .51			
Copper	15, 805	601	9, 672, 187	5, 690, 572	403, 078				
Lead	147, 318	2, 984	5, 085, 001	867, 105	198, 153, 059	16,668,85			
Lead-copper	1,667	549	213, 104	151, 200	416, 328	501, 56			
Zine	162, 190	1,630	577,890	723, 095	9, 648, 467	172, 992, 90			
Zinc-lead	2, 562	42	29, 551	9, 570	707, 482	2, 255, 36			
Dry iron (from zinc-lead ore)	13, 469	3, 313	35,689	23, 704	478, 427	502, 51			
	353, 372	51, 396	16, 091, 846	7, 496, 404	210, 025, 930	192, 921, 20			
Fotal, 1940	336, 004	55, 618	16, 783, 767	6, 549, 361	208, 367, 276	176, 675, 06			

Mine production of metals from Idaho concentrates shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

	Concen- trates	Gold	Silver	Copper	Lead	Zinc
		Fine				
	Short tons	ounces	Fine ounces	Pounds	Pounds	Pounds
Blaine	35, 881	5, 583	748, 126	212, 086	10, 618, 791	16, 994, 306
Boise		416	1,716	2, 142	12,662	12,000
Bonner	760	9	61, 351	2, 700	697, 084	
Boundary	2, 223		81, 353	19,500	3, 074, 000	
Butte	73		1, 118		71,000	
Camas		72	37		100	
Custer	2, 198	2, 795	180, 868	18, 440	2, 399, 840	
Elmore		12, 927	88, 290			.
Gem	2,088	2, 577	27, 620	9, 923	149, 648	
Idaho Lemhi	420	6,009	29,878	11,000	16,000	[
Lemm.	2, 266	3,806	48,008	237, 479	130, 225	
Owyhee	5, 372	4, 961	440, 105	200,000	276, 545	4, 402, 000
Shoshone		2, 918	14, 363, 379	5, 914, 279	184, 347, 890	136, 622, 520
Valley	4, 187	9, 323	19, 997	200	3, 200	
m . 1	353, 372	51, 396	16, 091, 846	6, 627, 749	201, 796, 985	158, 030, 826
Total, 1940	336, 004	55, 618	16, 783, 767	5, 852, 534	199, 567, 204	141, 202, 000
	BY CLASSE	s of co	NCENTRA	TES	ı	
Ory gold	9,910	37, 693	221, 509	23, 645	182, 590	

Dry gold Dry gold-silver Dry silver Copper Lead Lead-opper	9, 910 375 76 15, 805 147, 318	37, 693 4, 575 9 601 2, 984 549	221, 509 252, 716 4, 199 9, 672, 187 5, 085, 001 213, 104	23, 645 200 5, 057, 802 722, 670 117, 768	182, 590 7, 000 382, 545 190, 788, 688 395, 103	
ZincZinc-lead Zinc-lead Dry iron (from zinc-lead ore)	162, 190 2, 562 13, 469 353, 372	1, 630 42 3, 313 51, 396	577, 890 29, 551 35, 689 16, 091, 846	673, 596 8, 930 23, 138	8, 991, 230 664, 441 385, 388 201, 796, 985	155, 999, 274 2, 031, 552

Gross metal content of Idaho crude ore shipped to smelters in 1941, by classes of ore

			Gross	metal conte	nt	
Class of ore	Ore	Gold	Silver	Copper	Lead	Zine
Dry and siliceous gold Dry and siliceous gold Dry and siliceous silver Copper Lead Lead-copper Zinc-lead	Short tons 5, 011 1, 263 9, 789 4, 073 11, 864 174 238 121	Fine ounces 2, 784 991 84 441 188 2 1	Fine ounces 8, 109 43, 759 146, 647 43, 531 282, 548 22, 227 549 1, 417	Pounds 7, 942 9, 046 20, 588 526, 608 74, 179 15, 427 1, 432	Pounds 71, 886 71, 284 500, 059 32, 022 7, 681, 350 73, 437 3, 073 33, 551	Pounds
Total, 1940	32, 533 45, 658	4, 492 8, 484	548, 787 735, 035	655, 222 896, 871	8, 466, 662 10, 695, 300	168, 085

Mine production of metals from Idaho crude ore shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

		DI COCI			4	
	Ore	Gold	Silver	Copper	Lead	Zinc
Adams	Short tons	Fine ounces 241	Fine ounces 647	Pounds 37, 000	Pounds 100	Pounds
Bannock Blaine Boise	4, 261 684	1 884 1,009	20, 782 33, 531	300 4, 914 1, 858	119, 109 23, 638	85, 694
Bonner Bonneville Butte	175 1 173	4 1 5	15, 014 7 862	1, 900 100 5, 600	4, 000	2,000
Camas	1, 938 11 5, 478	529 7 911	16, 907 76 111, 929	8, 900 432, 060	68, 200 1, 600 495, 560 400	28, 000
Elmore	108 63 38	99 44 108 438	149 737 110 12, 690	77 25, 021	4, 952 464, 175	2,000
LemhiShoshone	1, 458 500 17, 162 31	93 73 36	14, 674 314, 891 457	46, 000 42, 721	10, 455 6, 709, 110 2, 800	19, 480
Valley Washington	157 32, 533	4, 492	5, 317	7,800 614, 251	4,000	137, 174
Total, 1940	45, 658	8, 484	735, 035	845, 466	10, 100, 796	
	ву	CLASSES	OF ORE	ī	,	
Dry and siliceous gold Dry and siliceous gold-silver Dry and siliceous silver	5, 011 1, 263 9, 789	2, 784 991 84	8, 109 43, 759 146, 647	7, 323 6, 649 17, 441	45, 011 51, 954 443, 778	
Copper Lead Lead-copper	4, 073 11, 864 174	441 188 2	43, 531 282, 548 22, 227	508, 314 60, 725 13, 006 793	21, 913 7, 367, 838 70, 497 2, 494	68, 300
Zinc-lead	238 121	1 100	549 1, 417	614, 251	27, 530 8, 031, 015	137, 17
	32, 533	4, 492	548, 787	014, 251	0,001,010	101,111

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Idaho in 1941, by counties and districts, in terms of recovered metals

	Mines p	roducing	Ole sold		Gold			Silver		Copper	Lead	Zinc	Total
County and district	Lode	Placer	or treated	Lode	Placer	Total	Lode	Placer	Total		2004		value
Ada County: Black Hornet			Short tons 40	Fine ounces 6	Fine ounces	Fine ounces	Fine ounces	Fine ounces	Fine ounces	Pounds	Pounds	Pounds	\$210 105
Boise		5			3 18 426	3 18 426		7 24	7 24				635 14, 927
Adams County: Seven Devils	4	5	294	241	16	241 16	647		647	37, 000	100		13, 267 560
Bannock County: Lago	1	1	1	1	2	1 2	7		7	300			75 70
Blaine County: Mineral Hill and Camas Sawtooth (Vienna)	16 2		4, 683 55	533 25 6, 223	2	533 25 6, 225	15, 234 1, 433 753, 532		15, 234 1, 433 753, 532	2, 600 214, 400	67, 000 3, 600 10, 667, 300	13,000	34, 589 2, 099 2, 667, 080
Warm Springs Boise County: Banner Boise Basin	1	1 1 56	100, 132 1 1, 493	1 1, 211	3 20, 671	0, 223 4 21, 882	38 33, 262	5, 483	38 38, 745	1,500	23, 300		167 794, 927
Boise River (Twin Springs) Eight Mile Creek Garden Vallev	î	1 2	2, 577	301	6	301 6	256		256	200	100		140 10, 747 210
Grimes Pass Miller Creek North Fork	1		568 15	134	87 10	221 10	1, 222 540	21 7	1, 243 7 540		12, 900		10, 525 355 384 140
Payette River Rabbit Creek Shaw Mountain South Fork of Payette River	.	. 2	20	12	27	27 12 9	3	7	7				950 422 315
South Fork of Payette River Summit Flat Bonner County: Lakeview	. 5	1	2, 211 1, 053	957	ı	958 8	447 4, 019		447 4, 019	200	7,000		33, 848 3, 561
Lakeview Pend d'Oreille Bonneville County: Mt. Pisgah Boundary County: Port Hill	5	5	9, 675 1 37, 000	5 1	77	5 78	72, 346 7 81, 353		72, 346 7 81, 353	4, 400 100 19, 500	813, 000 3, 074, 000		98, 481 2, 747 235, 370
Butte County: Dome Hamilton Lava Creek	1 1		1			. 5	1, 118 24		1, 118 24 838	4, 600 1, 000	71,000 200 3,800		4, 842 571 1, 256

Canyon County:		a														
Little Smoky and Carrietown	'			Į.	1 000	910		010	2 000		9 000	4 400	40 000		10 000	
Skeleton Creek		Tittle Complete and Completown	1 1				17						92,000			
Section Country Casain Country C				1 9			17	990		1. '1		4, 500				
\$\frac{5}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac					003	230			110		110		100			
Clearwater County:	*			2			3	3							109	
Clearwater County:	٦ '	Dassia County:		i			l									
Clearwater County:	-7							4	62		62		200			
Burnt Creek	3		1		6	7		l	14		14		1, 400		335	
Moose Creek and Independence Creek	Γ,		ľ	Į.								i				
North Fork of Clearwaker River 2 31 401 34 1,855 1,800 14 429 443	7	Burnt Creek		. 3					-:	7	7					
Pierce 2 31 401 34 1,856 1,890 14 429 443	င့်ခ	Moose Creek and Independence Creek		. 6						7	7					
Local County: Alder Creek. Alder Creek. Bayhoise. 8 2 38,409 45 2 47 221,182 221,182 68,600 2,755,300 324,077 East Fork. 1 1 14 2 2 2 885 885 83 83 34,000 2,755,300 324,077 100 2,267 100 100 100 100 100 100 100 100 100 10																
Alder Creek	i	Pierce	2	31	401	34	1,856	1,890	14	429	443				66,465	
Alder Creek	1	Custer County:		1		1	'	l '								
Bayhorse	7	Alder Creek	4		3, 483			383	9, 474		9, 474	381, 500	90, 400		72, 412	
Boulder		Bayhorse	8	2	38, 409	45	2	47	221, 182		221, 182	68, 600	2, 755, 300		324, 077	
East Fork			l i	I	114	2	l	2			855		27, 700		2, 257	
Loon Creek			l î	1	6	l		_			83		3, 400		253	
Seafoam				1		22	3	25	14			100	, ,,,,,,,			
Stanley and Stanley Basin 2				1 -					1 004			. 200	5 300		5 076	
Yankee Fork. 9 4 16,169 4,502 7,500 12,002 58,708 2,942 61,650		Stanley and Stanley Regin	3	4			90		3 167		3 105	300	13, 300			
Elmore County: Bear Creek 9		Vankaa Fark	1 6									300	10,000			
Bear Creek 9 1 992 205 2 207 758 758 300 7,801 1,515			1 .	1 -	10, 100	1,002	1,000	12,002	00,100	2,012	01,000				200, 010	
Boise River (Twin Springs)		Poor Crook	١ ،		000	205		207	750		750		200	•	7 901	
Middle Boise		Doigo Divor (Twin Springs)	, ,		562	200			100	14			300			
Neal					191 404	22 221		20 240	02 011							
Snake River Snake River State				10	121, 104		0,019			1,000	80, 408					
Gem County: West View					0	٥					•		100			
Idaho County: Burgdorf-Marshall Lake		Shake River			11 797				00 257		00 400		154 600			
Burgdorf-Marshall Lake 10 5 14,853 6,111 110 6,221 27,000 38 27,038 1,900 3,300 237,374 Camp Howard (Salmon River) 16 116 116 24 24 24 24 24 24 24 24 24 24 24 24 24			0	3	11,737	2, 021	011	3, 232	28, 337	. 09	28, 420	10,000	104,000		143, 320	
Camp Howard (Salmon River) 16 116 116 24 24 24 4,077 Clearwater River (Pardee) 3 3 3 3 3 3 105 Deep Creek 1 520 231 22 2 128 59 187 100 17,744 Elk City 4 21 2,455 468 13,504 13,972 1,274 2,544 3,818 100 17,744 Florence and French Creek 2 34 5 9 125 134 7 45 52 100 17,744 Harpster 1 3 3 3 100 117,744 100 117,744 100 100 117,744 100 100 117,744 100 100 117,744 100 100 100 100 100 100 117,744 100 100 100 100 100 100 100 100 11,000 100 100 100		Idano County:	١		44 050				0= 000		OF 000		0 000			
Clearwater River (Pardee)		Burgdorf-Marshall Lake	10		14,653	6, 111			27,000							
Deep Creek		Camp Howard (Salmon River)						110		24	24					
Dix 6		Clearwater River (Pardee)						3								
Elk City								2								
Florence and French Creek 2 34 5 9 125 134 7 45 52 4,727		Dixie	. 7						128							
Harpster		Elk City	. 4				13, 504		1, 274							
Lolo Creek		Florence and French Creek	. 2		5	9			7	45	52					
Lower Salmon River																
Maggie and Pete King Creeks 1 4 4 4 4 4 4 5 1,882 1,882 1,882 384 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td>																
Newsome		Lower Salmon River		. 4			84	84		14	14					
Newsome		Maggie and Pete King Creeks		. 1				4								
Ramey Ridge		Newsome		. 2	1		1.882	1,882		384					66, 143	
Ramey Ridge		Orogrande	4	5	5, 315	1,760	2,010	3,770	1.499	433	1, 932		6, 600			
Riggins 2 2 5 5 5 7 7 1,985 1,985 1,985 1,985 1,985 1,985 1,885 1,885 1,885 1,885 1,985 1,885		Ramey Ridge	4	1	2, 555	840		840	782		782	6, 600			30, 735	
Robbins (Buffalo Hump) 4 2,606 593 593 1,080 1,080 1,100 4,800 21,927 Salmon River (Shoup) 10 42 42 42 7 7 1,475 Seven Devils 1 1 35 Simpson (Salmon River) 12 56 56 7 7 7 Snake River 6 48 2,028 1,544 7 7 7 Ten Mile 8 1 8,059 1,980 48 2,028 1,544 7 1,551 600 1,200 72,222		Riggins		2			5	5	1						175	
Salmon River (Shoup)		Robbins (Buffalo Hump)	4	·	2,606	593		593	1.080		1.080	1, 100	4.800			
Seven Devils. 1 1 1 35 Simpson (Salmon River) 12 56 56 7 7		Salmon River (Shoup)	1	_10			42			7	7					
Simpson (Salmon River)		Seven Devils	1	"1					l	l	·					
Snake River 54 54 7 7 7 1,895 Tan Mile 8 1 8,059 1,980 48 2,028 1,544 7 1,551 600 1,200 72,222		Simpson (Salmon River)	1	12	1					7	7					
Ten Mile. 8 1 8.059 1.980 48 2.028 1.544 7 1.551 600 1.200 72.222		Engle Diver								, ,	, ,				1,805	
Warren 15 13 1,072 667 6,023 6,690 277 2,011 2,288				1 1	9 050	1 090			1 544		1 551	600	1 200			
WHITCH 10 10 10 1,016 001 0,020 2(1 2,011 2,200				1 10		887				9 011	0,000	1 000			995 777	
		AA 8110H	.1 10	1 10	1,072	1 001	i U, Uaid	1 0,000	1 4//	I w OTT	4,400	·			1 400,111	

Mine production of gold, silver, copper, lead, and zinc in Idaho in 1941, by counties and districts, in terms of recovered metals—Continued

County and district	Mines p	roducing	Ore sold		Gold			Silver		Copper	Lead	Zinc	Total
County and district	Lode	Placer	treated	Lode	Placer	Total	Lode	Placer	Total	Copper	Dead	Zinc	value
Jerome County: Snake River Latah County:		17	Short tons	Fine ounces	Fine ounces 158	Fine ounces 158	Fine ounces	Fine ounces 7	Fine ounces 7	Pounds	Pounds	Pounds	\$ 5, 53
Gold Creek Hoodoo Moscow Mountain		2 2 3			5, 553 17	5, 553 17		329	329				194, 58 5
Lemhi County: Blackbird Blue Wing	1		3, 277 29, 035	266 11		266 11	204 45, 661		204 45, 661	146, 500 55, 000	116, 700		26, 74 45, 9
Eldorado Eureka. Gibbonsville (Dahlonega) Indian Creek.	8	4 13	10 1, 491 185 2, 001	21 235 177 412	17 2, 827	21 252 3, 004 412	121 201 107 38	204	121 201 311 38	4, 200 49, 350 550 1, 500	100 1, 600		1, 31 14, 79 105, 51 14, 62
Junction Kirtley Creek Mackinaw	2	11 16	10	21	45 1, 200	45 1, 221	128	7 128	128 7 128		5, 600		1, 58 1, 58 42, 82
Mineral Hill Nicholia Parker Mountain	1	2	28, 220 8 8	2, 893	7	2, 900	1, 838		1, 838	700	12, 700 300	2,000	103, 6 10 5
Rattlesnake Creek Salmon River Spring Mountain	3	14	16		112	112	28	21	28 21 208	450	1,000		3, 9
Texas Yellow Jacket Lewis County: Clearwater River (Kamiah)	6	1	3, 539 806	319 371	10	319 381 8	11, 963 329		11, 963 329	2,450 1,800	444, 300 700		45, 2 13, 8
Salmon River Sez Perce County: Clearwater River		3			43	43		7	7				1,
Snake River Dwyhee County: Carson or French	9	9	81, 330	4, 698	33 127	33 4, 825	254, 714	7 277	7 254, 991				1, 1 350, 2
Castle Creek Flint Snake River	i	10	1	3 1	624	3 1 624	111 149	31	111 149 31				21,
South Mountain Steele Steele Sower County: Snake River hoshone County:	1	2	17, 086 23	376 21	18	376 21 18	199, 838		199, 838 31	246, 000	287, 000	4, 402, 000	530,
Beaver County:	9	9 3	73, 770 72	106 19	252 27	358 46	117, 104	45	117, 149 14	66, 500	4, 344, 800	7, 048, 600	879, 1.

	OLU,	
٠	<u> </u>	
	SILVER, COPPER	
	LEAD,	
	AND	
	ZINC	
	Z	
	IDAHO	

Eagle Evolution Hunter Lelande Placer Center St. Joe Summit Yreka Twin Falls County: Snake River	7 5 10 6 2 3	3 4	320 451, 690 540, 013 298, 216 123, 088 9 3, 094 561, 118	1 325 387 478 200 6 731 803	6 67 202	12 325 387 478 200 12 798 803 202	9, 581, 130 1, 143, 713		9, 581, 130 1, 143, 713		90, 300 622, 900 52, 759, 900 45, 664, 400 12, 202, 400 24, 400 75, 347, 900	3, 600 381, 600 64, 455, 400 16, 318, 400 12, 284, 400 26, 400 36, 123, 600	6,740 7,457,307 8,704,641 4,777,186 1,827,817 519 31,802 8,711,318 7,082
Valley County: Big Creek Deadwood Basin Lake City Pistol Creek South Fork of Salmon River Thunder Mountain	1	2 2 2	31	93 36 930	5 8 18 7 19	98 8 18 36 7 949	457 831	7	197 7 457	200	3, 200		3, 776 280 635 1, 745 245 33, 811
Yellow Pine Washington County: Snake River. Washington (Mineral Creek) Total Idaho			1 80, 658 157 2, 704, 680	9, 230	6	9, 230 6 9	19, 800 5, 317 16, 655, 002	17 408	5, 317 16, 672, 410	7, 800			337, 130 210 5, 244

¹ Exclusive of antimony-tungsten-gold ore.

ADA COUNTY

Black Hornet district.—Adelmann Bros. operated their mine a short time in 1941 and treated a little gold ore by amalgamation.

Highland (Boise River) district.—Placer gold and silver were recovered by sluicing in 1941 at various claims along the Boise River 12 miles east of Boise.

Snake River district.—There was a marked increase in output of placer gold in the Snake River district of Ada County in 1941, owing to operation of three dry-land dredges near Grand View; the largest production came from ground worked by Cecil Rhodes.

ADAMS COUNTY

Seven Devils district.—Lessees operated the Placer Basin mine near Cuprum in 1941 and shipped several cars of gold ore to a smelter; nearly all the remainder of the district output was copper ore from the Helena and South Peacock properties.

Snake River district.—Placer gold was recovered in 1941 by sluicing

at various claims along the Snake River near Homestead.

BLAINE COUNTY

Mineral Hill and Camas district.—The output of the Mineral Hill and Camas district in 1941 was largely old tailings (gold) treated by cyanidation from the Daisy property, old tailings (silver) shipped from the Minnie Moore property, and gold ore and old tailings from the Camas property.

Sawtooth (Vienna) district.—About 35 tons of gold-silver ore was shipped from the Vienna mine in 1941 and a little silver ore from the

Silver King mine.

Warm Springs district.—Except for the Coeur d'Alene region, the Warm Springs district near Ketchum continued to be the most important producing area in Idaho; the value (\$2,667,080) of its metal output increased 14 percent in 1941 over 1940. Zinc-lead-silver ore (about 97,000 tons) from the Triumph-North Star-Independence groups was again the chief output of the district; the rest of the district output was principally gold ore and old tailings from the June Day property and gold-silver ore and lead ore from Boulder Basin Mines.

BOISE COUNTY

Banner district.—The only output of the Banner district in 1941 was old mill cleanings sold to an assayer in Boise and placer gold

recovered from the Gold Fork claim.

Boise Basin district (Centerville, Placerville, Idaho City, Pioneerville, Quartzburg).—The production of ore and of each metal, especially gold and silver, in the Boise Basin district was less in 1941 than in 1940. The most important output was, as usual, placer gold from dredging operations, but gold from this source decreased 13 percent from 1940. The Fisher-Baumhoff Co., operating two bucket dredges at Centerville, was again the largest producer of placer gold in the State; the two dredges handled 2,529,000 cubic yards of gravel and recovered 12,007 fine ounces of gold. The Idaho-Canadian Dredging Co. operated its 7½-cubic foot bucket dredge at Idaho City throughout the

year and recovered more than 5,500 fine ounces of gold. Considerable gold was also recovered by two dragline floating dredges—one operated by M. A. Stickler on Moores Creek and the other by Smith Bros. on Grimes Creek—and by hydraulicking and sluicing at Gold Hill Placers at Idaho City. The most important lode operation in the district during 1941 was that of the Come-Back Mining Co.; this company operated its mine at Pioneerville continuously and shipped 192 tons of high-grade gold-silver ore to a smelter.

Eight Mile Creek district.—Birthday Consolidated Gold Mines, Inc., operated its mine near Lowman throughout 1941; about 2,400 tons of gold ore were treated in a 25-ton concentration plant, and 174 tons

of crude ore were shipped to a smelter.

Grimes Pass district.—The output of the Grimes Pass district in 1941 was principally gold ore and zinc-lead ore from the Homestake-Coon Dog group, gold ore and lead ore from the Santa Clara mine, and placer gold chiefly from the J. S., Horseshoe, and Golden Age properties.

Miller Creek district.—Placer gold and silver were recovered in 1941

by sluicing at the Miller Mountain claim.

North Fork district.—In 1941 about 15 tons of silver ore were shipped

from the Packer John claim near Smiths Ferry.

Rabbit Creek district.—Hydraulicking and sluicing at the Rabbit Creek Placer recovered a little gold and silver.

Shaw Mountain district.—The Little Dave mine was operated in

1941, and gold ore was treated by amalgamation.

South Fork of Payette River district.—Placer gold was recovered in 1941 by sluicing at various claims along the South Fork of the Payette River near Lowman.

Summit Flat district.—Virtually all the output in the Summit Flat district in 1941 was gold ore treated by amalgamation; 82 percent of the output came from the King mine.

BONNER COUNTY

Lakeview district.—The Hewer (Idaho Lakeview) mine was the only producer in the Lakeview district in 1941; several hundred tons of

silver ore were treated in a 75-ton flotation plant.

Pend d'Oreille district.—In 1941, as in 1940, nearly all the output of the Pend d'Oreille district was silver-lead ore, treated by flotation, from the Hope (Elsie K.) and Whitedelf mines; however, the output from the Hope property was much less than in 1940. The Whitedelf mine was by far the most important producer in the district.

BONNEVILLE COUNTY

Virtually all the output of Bonneville County in 1941 was placer gold recovered by hydraulicking and sluicing, largely from the Rosana, Lottie, and McCoy Creek properties in the Mt. Pisgah district.

BOUNDARY COUNTY

In 1941, as in 1940, the only producer in Boundary County was the Idaho-Continental mine in the Port Hill district; 37,000 tons of silverlead ore were treated by flotation.

BUTTE COUNTY

Dome district.—The output of the Dome district in 1941 was 2,500 tons of lead ore, treated by gravity concentration, from the mine dump at the Wilbert property.

Hamilton district.—Small lots of rich copper ore were produced in

1941 from the Copper Mountain prospect.

Lava Creek district.—Silver ore was produced in 1941 from the Hornsilver mine, silver-lead ore from the Lead Belt mine, gold-silver ore from the Moran mine, and zinc ore from the Multa Metals group.

CAMAS COUNTY

Beaver Creek (Mineral Hill) district.—Lessees operated the Princess-Blue Ribbon mine in 1941 and shipped 988 tons of gold ore and 44 tons of lead ore to smelters in Utah; the output was much less than in 1940.

Little Smoky and Carrietown district.—The output of the Little Smoky and Carrietown district in 1941 was chiefly silver ore and old tailings from the King of the West property, silver ore from the Horn Silver mine, and gold-silver-copper ore from the Grant mine.

Skeleton Creek district.—Lessees operated the El Oro mine in 1941 and treated about 600 tons of gold ore by gravity concentration. The remainder of the district output was principally high-grade gold ore from the Red Horse claim.

CASSIA COUNTY

Virtually all the output of Cassia County in 1941 was silver ore from the Silver Hills claim in the Blackpine district and gold-lead ore from the Big Bertha mine in the Stokes district.

CLEARWATER COUNTY

Burnt Creek district.—The output of the Burnt Creek district in 1941 was placer gold and silver; the chief producer was the Frank Bish claim near Elk River.

Moose Creek and Independence Creek district.—The output of placer gold in the Moose Creek and Independence Creek district increased in 1941, owing to operation, from June to October, of a dry-land dredge

at the Alma claim by Placer Properties of Idaho, Inc.

Pierce district.—Production of placer gold in the Pierce district decreased nearly 45 percent in 1941 compared with 1940, owing to suspension of dredging by the Quartz Creek Dredging Co. in March. A greater decrease was prevented by the operation of two dragline floating dredges—one at the Crawford Placer by the J. M. S. Co. and the other at the French Creek Placers by the Pilot Dredging Co. Nearly all the gold output from lode mines in the district was produced from the Gold Quartz claim.

CUSTER COUNTY

Alder Creek district.—The principal output in the Alder Creek district in 1941 was copper ore, containing gold and silver, from the Empire mine at Mackay; however, the output declined from 4,500 tons in 1940 to 3,169 tons in 1941. The rest of the district output was largely lead ore from the Horseshoe mine and zinc ore and lead ore from the White Knob property.

Bayhorse district.—The value of the metal output of the Bayhorse

district was 35 percent greater in 1941 than in 1940, chiefly in consequence of the increase in output of silver and lead from the Clayton This mine was operated continuously, and 36,880 tons of silver-lead ore were treated by flotation. In November the company (Clayton Silver Mines) began to erect an addition to its mill building to house a zinc-recovery plant. Lessees continued to operate the Ramshorn mine and shipped 938 tons of lead-silver ore and lead-copper-The rest of the district output was largely silver-lead ore from the Riverview and South Butte properties.

Boulder district.—Lessees continued to operate the Livingston mine

and treated 114 tons of silver-lead ore by gravity concentration. East Fork district.—A small lot of lead ore was produced in 1941

from the F. D. R. prospect.

Loon Creek district.—A little high-grade gold ore was produced in 1941 from the Last Chance claim and placer gold from the Brush claim.

Seafoam district.—There were four producers in the Seafoam district in 1941, but most of the output was crude gold ore from the Lake View mine.

Stanley and Stanley Basin district.—The decline in metal output in the Stanley and Stanley Basin district in 1941 resulted from suspension in April of production of crude gold-silver ore from property operated by the Western Gold Exploration Co. The company worked most of the year on development and in building a new 100-ton concentration and cyanidation plant. Placer gold and silver were recovered, largely from the Elk Creek Placer, by a dragline floating dredge.

Yankee Fork district.—The value of metal production in the Yankee Fork district in 1941 was \$463,910—an increase of \$294,912 over 1940. The principal output was placer gold from the Yankee Fork Placer and lode gold and silver from the General Custer-Lucky Boy group. The marked increase in placer gold resulted from regular operation of the 8-cubic foot bucket dredge of the Snake River Mining Co. at the Yankee Fork property. About 16,000 tons of gold ore from the General Custer-Lucky Boy group were treated by amalgamation and concentration.

ELMORE COUNTY

Bear Creek district.—Gold ore was produced in 1941, chiefly from the Avalanche-Richmond, Luck, Duces Wild, and Jungo properties.

Boise River (Twin Springs) district.—Small-scale placer operators along the Boise River near Twin Springs recovered 43 fine ounces of

gold and 14 fine ounces of silver in 1941.

Middle Boise (Atlanta) district.—The value of the metal output of the Middle Boise district increased to \$1,056,289 in 1941, owing to substantial gain in output of gold from the Boise-Rochester-Monarch groups and to operation of a new 7½-cubic foot bucket dredge by Boise King Placers. Talache Mines, Inc., operated its property (Boise-Rochester-Monarch) continuously and treated 121,355 tons of gold ore by amalgamation and concentration; this property, with a production of 23,027 fine ounces of gold in 1941, remained the chief producer of gold in Idaho. Boise King Placers became a large producer of placer gold through operation, from June 15 to December 31, of a bucket-line dredge.

Snake River district.—Placer gold was recovered in 1941 by various

operators along the Snake River near King Hill.

GEM COUNTY

West View district.—The principal output of the West View district in 1941 was lode gold and silver from the Lincoln group and placer gold from the Cruickshank property. Huron Mines, Inc., operated the Lincoln group and treated 11,274 tons of gold ore by flotation. A dragline floating dredge at the Cruickshank property recovered about 600 fine ounces of gold and 66 fine ounces of silver; the equipment was moved in June to a property near Idaho City, Boise County.

IDAHO COUNTY

Burgdorf-Marshall Lake district.—Gold ore from the Golden Anchor mine was again the chief output of the Burgdorf-Marshall Lake district, but the output declined from 15,459 tons in 1940 to 13,367 tons in 1941. Other producers of gold ore included the Gold Crest, Jewel, Kimberly, Old Kentuck, and Warrior properties. Nearly all the output of placer gold and silver was recovered by hydraulicking and sluicing at the Ruby placers and the Black Creek and Golden Rule properties.

Camp Howard (Salmon River) district (White Bird).—Hydraulicking and sluicing and drift mining at various claims along the Salmon River near White Bird recovered 116 fine ounces of gold and 24 fine ounces

of silver in 1941.

Dixie district.—The principal output of the Dixie district in 1941 was placer gold recovered by a dragline floating dredge at Dixie Placers and lode gold, mostly from the Slip Easy, Dixie Royal, Ontario,

and North Star properties.

Elk City district.—In 1941 six dredges in the Elk City district treated 1,796,883 cubic yards of gravel and recovered 13,387 fine ounces of gold and 2,525 fine ounces of silver, nearly double the output in 1940; the bucket-line dredge on Crooked River, operated by H. & H. Mines, was by far the largest producer. Other large producers were the American River Mining Co., Tyee Mining Co., and Lloyd Barker. Nearly all the lode gold produced in the district in 1941 came from gold ore and old tailings amalgamated at the Blue Ribbon property, operated by the Elk Leasing Corporation.

Florence and French Creek district.—Numerous small lots of placer gold and silver were recovered by operators in the Florence and French Creek district in 1941, and a little lode gold and silver was

produced from the Golden Dyke and Sines claims.

Lolo Creek district.—Thirteen fine ounces of placer gold were

recovered in 1941 from gravel along Lolo Creek.

Lower Salmon River district.—The output of the Lower Salmon River district in 1941 was placer gold and silver, recovered chiefly from the Swiftwater and Sunshine properties.

Newsome district.—Gold output in the Newsome district was much greater in 1941 than in 1940, owing to the operation of a dragline floating dredge at property on Newsome Creek by Gold Hill Placers.

floating dredge at property on Newsome Creek by Gold Hill Placers. Orogrande district.—The Mt. Vernon Co. operated its 2-cubic foot bucket dredge at property on Crooked River 9 months of the year and recovered about 2,000 fine ounces of gold and 430 fine ounces of silver. Nearly all the remainder of the district output was gold and silver produced from the Penman lode mine.

Ramey Ridge district.—Snowshoe Gold, Inc., operated the Snowshoe

mine in 1941; about 2,500 tons of gold ore were treated by amalgamation and concentration. The rest of the district output was small lots of gold ore from the Estep, Hand, and Werdenhoff properties.

Robbins (Buffalo Hump) district.—The output of the Robbins district in 1941 was gold ore, principally from the Jumbo, St. Louis, and

Mother Lode properties.

Salmon River (Shoup) district.—Small-scale placer operators recovered 42 fine ounces of gold and 7 fine ounces of silver in 1941 at various bars along the Salmon River in Idaho County below Shoup.

Simpson (Salmon River) district (Lucile).—The principal producers of placer gold in the Simpson district in 1941 were the Wild Cat, Betty

Jean, Katie B., and J. K. T. properties.

Snake River district.—Sluicing at various claims on the Snake River below Lewiston recovered 54 fine ounces of gold and 7 fine ounces of

silver in 1941.

Ten Mile district (Golden).—Lessees operated the Center Star mine throughout 1941 and treated about 6,800 tons of gold ore by concentration; this mine was by far the most important producer in the dis-Other producers of gold ore included the Bob, Lone Pine, Shamrock, and Wonder properties. Placer gold and silver were re-

covered by hydraulicking and sluicing at Key Placers.

Warren district.—Gold output in the Warren district declined to 6,690 fine ounces in 1941, owing to decreased output of gold from bucket dredging. The Warren Dredging Co., largest producer in the district, operated two bucket dredges from January 1 to August 10, when it sold its placer ground and one dredge to W. W. Prather, who operated the property the remainder of the year. Production of gold from lode mines in the district came mainly from the Rescue property.

JEROME COUNTY

Production from Jerome County in 1941 was, as usual, placer gold and silver recovered by various operators along the banks of the Snake River near Murtaugh, Hansen, Eden, and Twin Falls.

LATAH COUNTY

Hoodoo district.—The output of the Hoodoo district in 1941 was placer gold and silver, virtually all recovered by the 4%-cubic foot bucket-line dredge of Northwest Goldfields.

Moscow Mountain district.—The output of 17 fine ounces of placer gold in the Moscow Mountain district in 1941 was recovered chiefly

from Leith Placer.

LEMHI COUNTY

Blackbird district.—The Uncle Sam mine was the only producer in the Blackbird district in 1941; 3,256 tons of copper ore were treated by flotation, and 21 tons of copper ore were shipped crude to a smelter.

Blue Wing district.—About 29,000 tons of ore from the Ima mine containing galena, pyrite, and certain strategic minerals were treated in 1941. Iron concentrates containing gold, silver, copper, and lead were shipped to a smelter in Utah.

Eldorado district.—A small lot of copper ore was produced in 1941 from the Mountainview claim, and some old mill cleanings (gold) from

the Ranger mill were sold to an assaver.

Eureka district.—The principal output in the Eureka district in 1941 was gold ore (amalgamated) from the Queen of the Hills mine and copper ore (concentrated) from the Pope-Shenon and Grand View

properties.

Gibbonsville district.—Output of placer gold in the Gibbonsville district showed a marked increase in 1941, owing to the operations of two dredges. A dragline floating dredge was operated by Smith Bros. at the Hagle property, and a 4½-cubic foot bucket-line dredge was operated the last quarter of the year at Hughes Creek Placer by the Idaho-Warren Dredging Co.; Smith Bros. was by far the larger producer. Hydraulicking and sluicing at the Sundown property recovered considerable placer gold. Most of the gold output from lode mines in the district came from the Nevada, McCarthy, and Providencia properties.

Indian Creek district.—The output of the Indian Creek district in 1941 was gold ore (concentrated) from the Kittie Burton & Ulysses

group.

Junction district.—A little lead ore was produced in 1941 from the

Dirigo and Plymouth properties near Leadore.

Kirtley Creek district.—In 1941, 45 fine ounces of gold and 7 fine ounces of silver were recovered by drift mining by various placer

operators on Kirtley Creek.

Mackinaw district.—The principal output of the Mackinaw district in 1941 was placer gold from the Richardson property at Leesburg, where a 1%-cubic yard dry-land dredge recovered more than 1,000 fine ounces of gold and 115 fine ounces of silver.

Mineral Hill district.—Gold Producers, Inc., operated the Grunter mine at Shoup throughout the year and treated 27,689 tons of gold ore by flotation. The rest of the district output was mainly gold ore

from the Gold Hill and Meadow Mountain properties.

Parker Mountain district.—Small lots of rich gold ore were produced

in 1941 from the Pinch Hit claim.

Salmon River district.—The Salmon River Dredging Co. operated its floating washer, equipped with a suction nozzle, a few months in 1941 and recovered about 50 fine ounces of gold and 8 fine ounces of silver. Other placer producers included the Bean Bar and Homestake properties.

Spring Mountain district.—A little silver-lead ore was produced in 1941 from the Galena and Red Warrior claims and copper ore from

the Mountain Bell prospect.

Texas district.—The output of the Texas district in 1941 comprised 2,600 tons of gold ore (treated by cyanidation) from the Allie (Falls Creek) mine and 939 tons of crude silver-lead ore from the Latest

Out property.

Yellow Jacket district.—Lessees operated the Yellow Jacket mine near Forney in 1941 and treated about 700 tons of gold ore by flotation and shipped 21 tons of rich gold ore to a smelter. The remainder of the district output was chiefly gold ore from the Bryan mine.

LEWIS COUNTY

Placer gold and silver were recovered in 1941 from gravel along the Clearwater River near Greer and Kamiah and from the Salmon River south of Forest.

NEZ PERCE COUNTY

The metal output of Nez Perce County in 1941 was principally placer gold recovered from gravel by various operators working along the Clearwater River near Myrtle and the Snake River below Lewiston.

OWYHEE COUNTY

Carson district (Silver City, De Lamar).—The principal production in the Carson district in 1941, as in 1940, was gold and silver recovered from the milling of old tailings (81,202 tons in 1941) by the De Lamar Milling Corporation. The rest of the district lode output was largely silver ore from the Henrietta and Trade Dollar mines, gold ore from the Poorman-Pauper group, and gold-silver ore from the South Central mine. Most of the placer gold and silver came from the Lewis property and from cleanings from an old dredge.

Castle Creek district.—Small lots of gold-silver ore were produced in 1941 from the Badger and Elliott claims and a little gold ore from

the Buck Horn prospect.

Snake River district.—The output of placer gold in the Snake River district near Grand View was much less in 1941 than in 1940, owing to the decreased output from dredging operations. Two dry-land dredges—one operated by Cecil Rhodes and the other by F. R. Knowlton—recovered about 600 fine ounces of gold and 31 fine ounces of silver in 1941.

South Mountain district.—Continuous operation of the Golconda mine by the South Mountain Mining Co. in 1941 resulted in a marked increase in metal output from the South Mountain district; 16,663 tons of zinc ore containing gold, silver, lead, and copper were shipped to the custom flotation mill at Tooele, Utah, and 423 tons of silver-copper ore were shipped to a smelter.

Steele district.—The only output in the Steele district in 1941 was

23 tons of gold ore from the Morning Glory mine.

POWER COUNTY

The metal output of Power County in 1941 was placer gold recovered by sluicing at the Bonanza Queen and Eagle Rock properties on the Snake River near American Falls.

SHOSHONE COUNTY

COEUR D'ALENE REGION

The value of the metal output of the Coeur d'Alene region increased 10 percent in 1941 over 1940, owing chiefly to the gain in output of zinc; the output of copper also increased, but the output of gold, silver, and lead decreased. Copper increased 11 percent and zinc 9 percent; and gold decreased 50 percent, silver 6 percent, and lead less than one-half of 1 percent. The output of zinc was the largest in the history of the region and resulted chiefly from marked increases at the Star, Tamarack, Sunset, and Highland Surprise properties. More than 71 percent of the material produced in Shoshone County in 1941 was zinc-lead ore and old tailings, 22 percent silver ore, and 6 percent lead ore.

Of the total metal output in Idaho in 1941, the Coeur d'Alene region produced 88 percent of the silver, 82 percent of the copper,

91 percent of the lead, and 86 percent of the zinc.

The following table gives the production of gold, silver, copper, lead, and zinc in the Coeur d'Alene region in 1940 and 1941 and the total for 1884 to 1941.

Mine production of gold, silver, copper, lead, and zinc in the Coeur d'Alene region, Shoshone County, 1940-41, and total 1884-1941, in terms of recovered metals

Year	Mine duo	s pro-	Ore	Gold (lode and	Silver (lode and	Copper	Lead	Zinc	Total value
	Lode	Placer		placer)	placer)	. - -			value
			Short tons	Fine ounces	Fine ounces	Pounds	Pounds	Pounds	
1940 1941	49 58	25 21	1, 917, 235 2, 051, 390	6,886	15, 616, 852	5, 359, 000		125, 896, 000	\$29, 444, 265 32, 398, 932
Total, 1884-1941			(1)	382, 397	387,566,608	2 57, 267	2 5, 138, 989	² 808, 233	939, 211, 323

¹ Figures not available.

Beaver district.—The value of metal production in the Beaver district was \$879,982 in 1941, or more than double that in 1940. Substantial increases were recorded in output of silver, copper, lead, and zinc, but the output of gold decreased. The most important producer was the Sunset mine, operated under lease; 25,416 tons of zinc-lead ore were milled in the Golconda custom flotation plant in 1941 compared with 5,603 tons in 1940; and the mine was the largest producer of silver, copper, lead, and zinc in the district. The Interstate Lease continued to operate the Interstate-Callahan property, and 16,000 tons of zinc-lead ore were treated in the Galena mill. mill, owned by the Callahan Zinc-Lead Co., was purchased in 1941 by Zanetti Bros., who operated the plant on custom ores and old tailings; 30,000 tons of old zinc-lead tailings were treated from the Interstate-Callahan dump, under lease to Zanetti Bros. The rest of the district lode output was mostly zinc-lead ore from the Silver Tip (Portland) and Monarch properties. The output of placer gold in the district was much less than in 1940, owing to suspension early in 1941 of dredging by the Beaver Dredging Co. Other placer producers included the Accident and Lock & Erwin claims.

Coeur d'Alene district.—About 72 tons of gold ore were produced in 1941 from the Mountain Lion mine; placer gold and silver were recovered from the Beehive Bar, Joe Gandy, and Otis properties.

Eagle district.—A lessee operating the Crystal Lead property in 1941 hauled 300 tons of lead ore to the Silver Crescent custom mill near Osburn and shipped 20 tons of similar ore to a smelter. little placer gold was recovered from two claims on Eagle Creek.

Evolution district.—Production of silver in the Evolution district continued to decline in 1941, owing to the decrease in silver content of the Sunshine ore; the output of silver ore from the mine increased from 278,810 tons in 1940 to 305,180 tons in 1941, and the mine is still the largest producer of silver in the United States. gold output of the district resulted mainly from suspension of dredging at placer properties near Murray; and the gain in output of copper resulted from the increase in silver-copper ore from the Mineral

² Short tons.

The Sunshine Mining Co. reported that 7,748 tons of concentrates contained 7,138,426 ounces of silver, 2,394,641 pounds of copper, 258,855 pounds of lead, and some antimony. The milling ore treated at the Sunshine mill in 1941 contained an average of 241 ounces of silver to the ton, 0.4 percent copper, a trace of lead, and some antimony. A new plant is under construction to treat the entire production of silver-copper-antimony concentrates. Output of silver-copper ore from the Mineral Point mine of the Coeur d'Alene Mines Corporation increased from 51,209 tons in 1940 to 87,672 tons in 1941; the daily_capacity of the 300-ton flotation mill was increased to 600 tons. The company reported that the concentrates contained 1,447,267 ounces of silver, 2,768,284 pounds of copper, and some antimony. The property was the largest producer of copper in Idaho and ranked third in silver output. The Polaris Mining Co. operated its mine and 200-ton mill continuously and treated 47,554 tons of silver ore, a slight decrease from 1940. rest of the district output was principally old zinc-lead tailings from

a dump near Wallace.

Hunter district (Mullan).—The output of ore and the quantity of each metal produced in the Hunter district were less in 1941 than in 1940, but the total value of the output was greater, owing to the increase in average sales price of copper, lead, and zinc. The output of recoverable zinc (64,455,400 pounds) was larger than in any district in Idaho, and the output of recoverable lead was exceeded by only one district (Yreka). Zinc-lead-silver ore from the Morning mine of the Federal Mining & Smelting Co. continued to be the chief output, but it declined from 336,603 to 270,787 tons. The average grade of the ore mined during 1941 was 3.1 ounces of silver to the ton, 7.3 percent lead, and 7.2 percent zinc. Ore reserves at the end of 1941, including developed and probable ore, are estimated at 687,000 tons. The company reported that the concentrates produced contained 207 ounces of gold, 787,009 ounces of silver, 37,232,772 pounds of lead, and 34,817,432 pounds of zinc. The property ranked second in the State in lead and zinc output and sixth in silver. The Sullivan Mining Co. operated its Star mine and 1,000-ton flotation plant throughout the year; 212,420 tons of zinc-lead ore were treated in 1941 compared with 214,464 tons in 1940. The company reported that the concentrates produced contained 209,808 ounces of silver, 14,037,830 pounds of lead, and 37,127,957 pounds of zinc. The mine was the largest producer of zinc in Idaho in 1941. Lessees continued to operate the Gold Hunter mine, and 49,942 tons of silver-lead ore were treated in the 500-ton Gold Hunter flotation plant. The rest of the district output was mainly zinc-lead ore from the Golconda

Lelande district (Burke, Mace, Frisco).—The value of the metal production of the Lelande district was \$4,777,186 in 1941—a gain of 14 percent over 1940; the output of each metal except zinc increased. The Hecla mine remained the most important producer in the district; 204,662 tons of zinc-lead-silver ore were treated in the company 900-ton flotation mill, and 7,282 tons of crude silver-lead ore were smelted. The company reported that the concentrates and crude ore contained 945,240 ounces of silver, 30,083,418 pounds of lead, and 17,255,660 pounds of zinc. The Sherman Lead Co. was a large producer of silver-lead ore in 1941; 52,066 tons of ore were treated in

the company 300-ton flotation plant—a marked increase over 1940. The ore treated in 1941 averaged 6.4 ounces of silver to the ton and 10.8 percent lead. The Hull Leasing Co. continued to work the Frisco mine and treated 32,000 tons of zinc-lead ore in its 100-ton flotation mill. The remainder of the district output was mostly zinc-lead ore

from the Black Bear mine.

Placer Center district.—The marked increase in output of silver. lead, and zinc in the Placer Center district in 1941 resulted chiefly from the greater output of zinc-lead ore from the Tamarack mineby far the most important producer in the district. The mine and 300-ton mill were operated continuously by the Tamarack & Custer Consolidated Mining Co.; 97,008 tons of zinc-lead ore were treated by flotation, compared with 56,121 tons in 1940. According to the printed annual report of the company, the mine is prepared for maximum production in 1942. A greater tonnage of ore is in sight now than there was in 1940; however, the grade of the ore will be lower in metal content in 1942 than in 1941, when it averaged 1.9 ounces of silver to the ton, 5.5 percent lead, and 7.3 percent zinc. A new 200-ton mill was built at the Dayrock property in 1941, and during the last quarter of the year 4.651 tons of silver-lead ore were treated by flotation; in addition, 6,630 tons of similar ore were treated in the Hercules custom mill. The ore milled averaged 7.7 ounces of silver to the ton and 8.7 percent lead. The rest of the district output was principally old zinc-lead tailings (12,665 tons) from various dumps near Wallace and zinc-lead ore from the Success mine.

St. Joe district.—Small lots of placer gold were recovered in 1941 from the Gold Producers, Grizzly, and Iron Hill claims, and a little copper ore was produced from the Hansy and Monitor properties.

Summit district (Murray).—Output of gold in the Summit district decreased sharply in 1941, owing to suspension in April of operations at the Golden Chest mine; before the mine closed, about 3,000 tons of gold ore had been concentrated. Zinc-lead ore (91 tons) was produced from the Anchor mine. Placer gold and silver were recovered by various operators working on Coeur d'Alene Mining Co. ground.

Yreka district (Kellogg).—The value (\$8,711,318) of the metal output of the Yreka district in 1941 was the largest in any district of Idaho. but it exceeded that of the Hunter district by only \$6,677. The production of recoverable lead was greater than in any district of the State, and that of recoverable zinc and silver ranked second. Zinc-lead ore from the Bunker Hill & Sullivan mine was again the chief output in the district; 385,060 tons were treated in the company 1,200-ton flotation plant, compared with 383,886 tons in 1940. A new 1,700-ton sink-and-float unit, added to the mill during the year, was put in operation December 1. The property remained the largest producer of lead in Idaho, second in output of silver, and third in The company reports that ore reserves on January 1, 1942, fully developed and ready to mine, totaled 2,730,398 tons of zinc-The Federal Mining & Smelting Co. operated the lead-silver ore. Blackhawk and Page mines and the Page 500-ton mill throughout the year; 102,352 tons of zinc-lead ore from the Page mine and 11,854 tons of similar ore from the Blackhawk were treated. The Highland Surprise property was reopened early in the year, after being idle since April 1927, and 21,000 tons of zinc-lead ore were treated in the company 100-ton flotation mill. The old Constitution (Spokane-Idaho) mine also was reopened, and 6,973 tons of zinc-lead ore were treated by flotation. About 10,000 tons of silver ore from the Crescent group were concentrated, and 1,536 tons of similar ore were shipped to a smelter. The rest of the district output was largely zinc-lead ore from the Little Pittsburg, Liberal King, and Nabob properties.

TWIN FALLS COUNTY

The metal output of Twin Falls County in 1941 was, as usual, placer gold and silver recovered by sluicing at various properties along the Snake River.

VALLEY COUNTY

Big Creek district.—Nearly all the output of the Big Creek district

in 1941 was gold ore concentrated from the Sunday mine.

Deadwood Basin district.—A little placer gold recovered from claims on Bummer Creek and Deadwood Creek was the only output in the Deadwood Basin district in 1941.

Lake City (McCall) district.—Hydraulicking and sluicing in 1941 at the Neely Hill and Boulder Creek properties recovered a little placer gold and silver.

Pistol Creek district.—Gold-lead ore from the Lucky Boy mine con-

tinued to be the only output in the Pistol Creek district.

Thunder Mountain district.—A substantial increase was made in output of gold in the Thunder Mountain district in 1941, owing to operation of the Sunnyside mine and mill by the Gold Reef Mining Co.; 9,300 tons of gold ore were treated by amalgamation. Placer gold and silver were recovered chiefly from the Dewey claim.

Yellow Pine district.—The Bradley Mining Co. operated the Yellow Pine property throughout 1941. However, the output of antimonygold ore declined from 132,297 tons in 1940 to 80,658 tons in 1941, resulting in a substantial decrease in gold output for district. In August the 400-ton gold mill was converted into a 200-ton mill.

WASHINGTON COUNTY

Nearly all the output in Washington County in 1941 was silver-copper ore from the Silver Still mine and gold-copper ore from the Condor property, both in the Washington (Mineral Creek) district.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN MONTANA

(MINE REPORT)

By G. E. WOODWARD AND PAUL LUFF

SUMMARY OUTLINE

	Page		Page
Summary Calculation of value of metal production Mine production by counties	359 359 363	Metallurgic industry Review by counties and districts Butte or Summit Valley district	370
Mining industry	365		

SUMMARY

The Montana output of gold, silver, copper, lead, and zinc had a greater aggregate value in 1941 than in 1940, but only the quantity of copper, silver, and zinc increased. The total value of the five metals was \$59,181,627 compared with \$55,825,078 in 1940 (see The gold output from several of the larger lode gold mines throughout the State dropped sharply; the output from placer mines was slightly less than in 1940. The decline in lead output in 1941 was due in part to a general decline in production at several large lead-producing mines and in part to suspension of operations at the Comet mine in Jefferson County after 3 months of operation. value of the metal output from Silver Bow County-by far the most productive area in the State and from which virtually all the copper and much of the zinc and silver are derived—was \$44,195,725 in 1941 compared with \$40,871,719 in 1940. This increase was due to nearcapacity operations of the Anaconda Copper Mining Co.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold 1	Silver ²	Copper 3	Lead 3	Zinc 3
1937	Per fine ounce \$35.00 35.00	Per fine ounce \$0.7735 4.646+	Per pound \$0.121 .098	Per pound \$0.059 .046	Per pound \$0.065
1938 1939 1940 1941	35.00 35.00 35.00	5.678+ 6.711+ 6.711+	. 104 . 113 . 118	.047 .050 .057	. 052 . 063 . 078

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.

2 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver.

3 Yearly average weighted price of all grades of primary metal sold by producers.

4 \$0.67878787.

Mine production of gold, silver, copper, lead, and zinc in Montana, 1937-41, and total, 1862-1941, in terms of recovered metals

Year		produc- ig	Ore (short	Gold (lode	and placer)	Silver (lode and placer)			
	Lode	Placer	tons)	Fine ounces	Value	Fine ounces	Valu e		
1937	615 482 594 687 612	406 265 282 285 325	4, 898, 009 2, 724, 466 3, 792, 780 5, 099, 241 5, 642, 249	202, 252 203, 313 264, 173 272, 602 246, 475	\$7, 078, 820 7, 115, 955 9, 246, 055 9, 541, 070 8, 626, 625	11, 812, 093 6, 403, 962 9, 087, 571 12, 361, 050 12, 386, 925	\$9, 136, 654 4, 139, 935 6, 168, 533 8, 790, 080 8, 808, 480		
1862-1941			(1)	16, 680, 518	368, 271, 342	713, 202, 910	521, 196, 672		

V	Year			ead	z	inc			
1ear	Pounds	Value	Pounds	Value	Pounds	Value	Total value		
1937	289, 056, 000	\$34, 975, 776	35, 914, 000	\$2, 118, 926	78, 336. 000	\$5,091,840	\$58, 402, 016		
1938 1939 1940	154, 426, 000 195, 654, 000 252, 782, 000	15, 133, 748 20, 348, 016 28, 564, 366	18, 654, 000 33, 110, 000 46, 072, 000	858, 084 1, 556, 170 2, 303, 600	17, 688, 000 69, 598, 000 105, 174, 000	849, 024 3, 619, 096 6, 625, 962	28, 096, 746 40, 937, 870		
1941	256, 072, 000	30, 216, 496	42, 518, 000	2, 423, 526	121, 420, 000	9, 106, 500	55, 825, 078 59, 181, 627		
1862-1941	² 6, 037, 457	1, 757, 899, 462	2 627, 242	66, 507, 668	2 1,699,667	254, 791, 430	2, 968, 666, 574		

Figures not available.

Gold and silver produced at placer mines in Montana, 1937-41, in fine ounces, in terms of recovered metals

	Cludata						Dred	ges				
Year	Sluicing hydra	ulic	Drift n	ining	Dry-la	ınd 1	Dragi floati		Float buck		Tot	al
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
1937 1938 1939 1940 1941	² 2, 989 ² 3, 896 2, 075 2, 163 2, 305	² 351 232 272	(2) 208 281	41	11, 355 5, 721 9, 164 11, 252 14, 663	1, 533 2, 722 2, 640	4, 489 4, 375 9, 737 11, 439 10, 660	1, 410 1, 937 1, 302	17, 564 21, 356 33, 815 39, 012 33, 844	3, 240 6, 723 7, 400	36, 397 35, 348 54, 999 64, 147 61, 611	6, 534 11, 634 11, 655

A floating washing plant supplied with gravel by a dragline excavator is called a "dragline dredge"; a stationary or movable washing plant supplied with gravel by any type of power excavator is called a "dry-land dredge."
 Figures for sluicing and hydraulic include those for drift mining.

Gold.—Montana ores and gravels yielded 246,475 fine ounces of gold in 1941 compared with 272,602 ounces in 1940—a 10-percent decrease. In 1941 the output from lode mines decreased 23,591 ounces and that from placer mines 2,536 ounces. Siliceous ores yielded 64 percent of the State total and base metal-ores 11 percent; there was a decrease from siliceous ores but an increase from copper, lead, and zinc-lead ores. Gains were noted in output of recovered gold from Park, Silver Bow, Broadwater, Ravalli, and Cascade Counties but losses from Lewis and Clark, Madison, Jefferson, Powell, and Phillips Counties Gold ore mined in 1941 totaled 695,481 tons compared with 803,173 tons in 1940 and included 542,870 tons treated in amalgamation and cyanidation mills, 99,293 tons in concentrating mills, and 53,318 tons shipped crude to smelters. Ore treated at

² Short tons.

amalgamation and cyanidation plants (with or without concentrating equipment) yielded 29 percent of the State total gold, that at concentrating mills 22 percent, ores of all classes shipped crude to smelters

24 percent, and placers 25 percent.

The leading gold producer in Montana was again the West Mayflower property in Madison County, operated by the Anaconda Copper Mining Co.; it was followed by all company-operated copper mines at Butte, the Ohio Keating mine in Broadwater County, the

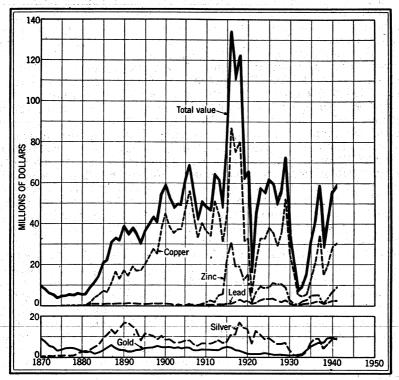


FIGURE 1.—Value of mine production of gold, silver, copper, lead, and zinc and total value in Montana, 1870-1941.

Winston dredge operating on Prickly Pear Creek near Clancey, the Ruby Gulch mine at Zortman, and Porter Bros. dredge near Helena. Silver.—The output of recoverable silver in Montana in 1941 was 12,386,925 fine ounces, virtually the same as in 1940. Copper ore yielded 50 percent of the State total silver, zinc-lead ore 24 percent, and siliceous ore 24 percent. Ore treated at concentration mills yielded 82 percent of the total silver and crude smelting ore 17 per-

ore 121,902 tons.

cent.

The copper mines, dumps, and zinc mines at Butte and the Flathead mine in Flathead County, all operated by the Anaconda Copper Mining Co., produced 73 percent of the State silver. Other large producers included the Lexington group in the Montana district,

The output of silver ore was 122,684 tons and of gold-silver

Cascade County; the Granite-Bimetallic mine (tailings) in Granite County; the Emma mine at Butte (including byproduct silver); and

the Florence mine in Cascade County.

Copper.—Copper produced in Montana in 1941, in terms of recoverable metal, showed a gain of 3,290,000 pounds in quantity and \$1,652,130 in value over 1940. Copper ore and precipitates yielded recoverable gold, silver, copper, and lead valued at \$34,296,577 or 58 percent of the value of the State output. The Anaconda Copper Mining Co. was, as usual, the only important copper producer in Montana; although the output of copper from all sources of company operations in the Butte district showed a net gain, the output of copper from company mines, precipitates, and old mine dumps showed a decrease from 1940 which was more than offset by the copper recovered from the milling of old works tailings. In 1941 the company shipped 2,869,051 tons of copper ore to the mills compared with 2,737,572 tons in 1940, 405,862 tons of mine-dump material compared with 510,972 tons in 1940, and 512,930 tons of old tailings compared with none in 1940. In addition, 36,596 tons of crude ore and 32,881 tons of old tailings were shipped direct to the smelter.

Lead and zinc.—The value of the output of lead and zinc in Montana, in terms of recoverable metals, showed increases in 1941 over 1940; however, the increase in total value of the lead was due to the higher average price for the metal, inasmuch as the quantity decreased. Zinc showed a 37-percent increase in value and a 15-percent gain in quantity; lead a 5-percent increase in value but an 8-percent decrease in quantity. All zinc mines, plus the Anaconda slag-fuming plant at East Helena, showed a gain over 1940 of 14,091,956 pounds in recovered zinc but a loss of 104,154 pounds in lead. The Emma mine, operated under lease by the Anaconda Copper Mining Co., reported a decrease of about 6,500,000 pounds in recovered zinc and 1,300,000 pounds in lead from zinc-lead ore. However, it showed a gain of about 5,500,000 pounds in zinc and 1,400,000 pounds in lead as a In 1941 the Jack Waite mine in Sanders County made byproduct. an increased output of zinc, but its production of lead decreased. The Flathead mine in Flathead County, operated by the Anaconda Copper Mining Co., reported a decreased output of lead. The Comet mine in Jefferson County showed a decrease in output of both metals, as operations were suspended in April 1941. The leading sources of zinc production in Montana in 1941 were the zinc mines of the Anaconda Copper Mining Co. at Butte, the fuming plant at East Helena, the Emma mine, the Emma byproduct zinc production, the Broadwater group in Cascade County, the Poulin mine in Silver Bow County, the Jack Waite mine in Sanders County, and the Mike Horse mine in Lewis and Clark County; these sources supplied 98 percent of the State total. The leading lead producers in Montana in 1941 were the zinc mines at Butte, the Jack Waite mine, the Flathead mine in Flathead County, the slag-fuming plant at East Helena, the Emma mine, the Broadwater mine, the Mike Horse mine, and the Emma byproduct lead output; these sources were credited with 84 percent of the State total.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Montana in 1941, by counties, in terms of recovered metals

County		produc- ng	Gold (lode a	nd placer)	Silver (lode and placer)		
	Lode	Placer	Fine ounces	Value	Fine ounces	Value	
Beaverhead Broadwater Cascade Deer Lodge Fergus Flathead Gallatin Granite Jefferson Judith Basin Lewis and Clark Lincoln Medison Meagher Mineral Missoula Park Phillips Powell Ravalli Sanders Silver Bow Stillwater Sweet Grass Toole	53 100 131 13 16 6 16 16 16 16 16 16 16 16 16 16 16 1	17 33 6 1 1 17 23 49 7 7 18 25 26 8 8 2 2 2 34 2 2 1 1	10, 958 29, 596 4, 839 4, 135 2, 760 303 9 13, 906 21, 709 116 33, 419 2, 357 53, 956 53, 956 53, 956 228 1, 231 16, 143 3, 550 2, 445 227 29, 485 22, 22 1, 5	\$383, 530 1, 035, 860 169, 365 149, 665 96, 600 10, 605 486, 710 759, 815 4, 060 1, 169, 665 82, 495 1, 888, 460 7, 980 43, 085 122, 955 565, 005 565, 005 1, 031, 975 1, 031, 975 1, 031, 975	120, 375 47, 752 1, 104, 047 1, 104, 047 1, 201 665, 138 526, 798 233, 733 2, 714 243, 394 233, 394 66 59 360 64, 291 106, 169 55, 485 19, 793 33, 532 3, 393, 693	\$85, 600 33, 957 785, 100 115, 732 15, 732 472, 967 374, 612 166, 210 1, 930 103, 707 7, 306 165, 966 47, 718 75, 488 39, 456 14, 075 22, 845 6, 395, 515	
Total, 1940	612 687	325 285	246, 475 272, 602	8, 626, 625 9, 541, 070	12, 386, 925 12, 361, 050	8, 808, 480 8, 790, 080	

7	Cop	oper	Lei	ad	Ziı	nc	Total
County	Pounds	Value	Pounds	Value	Pounds	Value	value
Beaverhead	63, 000 26, 500	\$7,434	507, 000 634, 000	\$28, 899 36, 138	2, 000	. \$150	\$505, 613 1, 109, 082
		3, 127			2, 948, 000	221, 100	1, 363, 450
Cascade Deer Lodge	46,000	5, 428	3, 201, 000	182, 457	2, 940, 000	221, 100	167, 360
	58, 500 150	6, 903 18					97, 536
FergusFlathead			E 847 000	321, 879			812, 433
Gallatin	59,000	6, 962	5, 647, 000	321,019			315
Granite	336, 500	39, 707	955,000	54, 435	748, 000	56, 100	1,011,564
	125,000		1, 115, 700	63, 595	215, 600	16, 170	1, 020, 540
Jefferson	14,900	14, 750 1, 758	43, 400	2, 474	210,000	10,170	10, 222
Lewis and Clark	137,000	16, 166	5. 257. 000	299, 649	38, 598, 000	2, 894, 850	4, 494, 037
Lincoln	1,450	10, 100	256,000	14, 592	26, 400	1, 980	106, 544
Madison	108,000	12,744	557,000	31, 749	20, 200	1, 500	2, 098, 922
Meagher		47	001,000	01, 110			8, 074
Mineral		**					43, 127
Missoula		130	300	17			123, 353
Park		12, 449	288, 300	16, 433	160,000	12,000	651, 605
Phillips	100,000	12, 110	- 200,000	10, 100	200,000	12,000	481, 568
Powell		826	153, 400	8,744	44,000	3, 300	174, 826
Ravalli	8,000	944	52, 400	2, 987	442, 600	33, 195	136, 776
Sanders	111,000	13, 098	6, 589, 600	375, 607	2, 095, 000	157, 125	577, 970
Silver Bow	254, 863, 000	30, 073, 834	17, 260, 900	983, 871	76, 140, 400	5, 710, 530	44, 195, 725
Stillwater	201,000,000	00,000,001			,,		770
Sweet Grass							35
Toole							175
	256, 072, 000	30, 216, 496	42, 518, 000	2, 423, 526	121, 420, 000	9, 106, 500	59, 181, 627
Total, 1940	252, 782, 000	28, 564, 366	46, 072, 000	2, 303, 600		6, 625, 962	55, 825, 078

Gold and silver produced at lode mines in Montana in 1941, by counties, in terms of recovered metals

County	Ore sold or treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	County	Ore sold or treated (short tons)	Gold (fine ounces)	Silver (fine ounces)
Beaverhead Broadwater Cascade Deer Lodge Fergus Flathead Granite Jefferson Judith Basin Lewis and Clark Lincoln Madison	43, 986 64, 400 103, 288 19, 470 75, 661 32, 552 88, 265 53, 954 300 330, 442 27, 015 123, 085	7, 120 20, 129 4, 839 4, 126 2, 732 303 8, 219 8, 198 116 18, 491 2, 305 49, 607	120, 060 46, 800 1, 104, 047 22, 123 1, 246 665, 138 526, 303 228, 721 2, 714 144, 128 10, 267 232, 598	Meagher. Missoula Park Phillips Powell Ravalli Sanders. Silver Bow. Sweet Grass. Total, 1940	5 190 91, 147 119, 115 5, 711 12, 132 29, 889 4, 421, 641 1 5, 642, 249 5, 099, 241	4 396 13, 952 11, 596 2, 855 206 20, 463 1 184, 864 208, 455	21 308 63, 963 106, 169 55, 374 19, 672 33, 525 8, 993, 693

Gold and silver produced at placer mines in Montana in 1941, by counties, in fine ounces, in terms of recovered metals

	Sluic	ing and	j. 1			1 Å	Dre	edges				
County		raulic	Drift	mining		land 1		gline ting 1		ating cket	T	otal
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
Beaverhead Broadwater Deer Lodge	66 76 9	3 10	4 15	1	941 3, 955	125 435	2, 827 5, 421	187 506			3, 838 9, 467 9	315 952
FergusGallatin	28 9	45									28	45
Granite Jefferson Lewis and Clark Lincoln	101 151 199 52	10 45 25 7	14 3 22	1 2	3, 464 1, 288	34 1, 298 319			5, 131 9, 893 13, 419	450 3, 669 1, 364	5, 687 13, 511 14, 928 52	495 5, 012 1, 710
Madison Meagher Mineral	548 50 106	86 5 5	16 10	1	510 117 1, 115	64 27 54	57	13	3, 275	645	4, 349 224 1, 231	796 45 59
Missoula Park Phillips	264 10 6	4	55	12	2, 735	42	118	6	2, 126	296	3, 117 2, 191 6	52 308
Powell Ravalli Sanders	570 2 31	101 7			75	10	2, 237	121			2, 239 31	111 121 7
Silver Bow Stillwater Toole	22 5				22						22 22 5	
Total, 1940	2, 305 2, 163	353 272	139 281	17 41	14, 663 11, 252	2, 408 2, 640	10, 660 11, 439		33, 844 39, 012	6, 424 7, 400	61, 611 64, 147	10, 035 11, 655

A floating washing plant supplied with gravel by a dragline excavator is called a "dragline dredge"; a stationary or movable washing plant supplied with gravel by any type of power excavator is called a "dry-and dredge."

MINING INDUSTRY

Continuous operation of the zinc mines, the copper mines, and the Emma mine at Butte by the Anaconda Copper Mining Co. and increased production of zinc-lead ore from mines in Cascade, Lewis and Clark, and Granite Counties in 1941 maintained the output of copper, silver, and lead at substantially the same level as in 1940 and helped to increase the yield of zinc considerably above that in 1940. The chief gain in zinc output came from the slag-fuming plant at East Helena. Metals from ore treated at cvanidation and amalgamation mills and crude ore shipped to smelters showed a decline in 1941.

Declines of 2.536 fine ounces in gold and 1.620 fine ounces in silver were noted in the vield from placer mines. Seven connected-bucket floating dredges were in operation in 1941; they treated 9,025,755 cubic yards of gravel and recovered gold valued at \$1,184,540, indicating an average recoverable gold value of 13.1 cents per cubic yard treated. Dragline and power shovels with both dry-land and floating washing plants were reported in operation at 40 properties. plants washed 3,208,961 cubic yards of gravel and recovered gold valued at \$886,305, indicating an average recoverable gold value of 27.6 cents to the cubic yard washed.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Montana in 1941, with content in terms of recovered metals

Source	Mines pro- ducing	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)
Dry and siliceous gold ore	343 76 69	121, 902	11, 277	700, 663	1, 608, 067	542, 782	
Copper ore	1 484 19 103 1 2	3, 791, 202 33, 029 4 3 182, 745	13, 871 5, 007 138	6, 142, 250 309, 341 136 20, 481	2 249,518, 972 37, 848 562 8, 579	547 9, 701, 161	37, 960, 400
Total, lode mines Total, placers		5, 642, 249		12, 376, 890	² 256,072, 000		
Total, 1940		5, 642, 249 5, 099, 241	246, 475 272, 602	12, 386, 925 12, 361, 050	² 256,072,000 ⁴ 252,782,000	42, 518, 000 46, 072, 000	121, 420, 000 105, 174, 000

A mine producing more than 1 class of ore is counted but once in arriving at total for all classes.
 Includes 5,503,585 pounds recovered from precipitates.
 Includes 170,592 tons of current slag fumed.
 Includes 5,624,886 pounds recovered from precipitates.

METALLURGIC INDUSTRY

The 5,642,249 tons of ore produced from Montana lode mines in 1941 were treated as follows: 99,482 tons at amalgamation plants, 443,388 tons at cyanidation mills, 4,661,117 tons at concentration mills, 267,670 tons shipped crude to smelters, and 170,592 tons treated

at a slag-fuming plant.

Nine cyanidation mills treated 351,663 tons of gold ore, which contained 51,517 ounces of gold and 213,783 ounces of silver; the bullion and precipitates shipped contained 42,946 fine ounces of gold and 137,301 fine ounces of silver, indicating an average recovery of 83 percent of the gold and 64 percent of the silver. Nine mills treating 351,663 tons of gold ore reported the consumption of 190,718 pounds of sodium cyanide, 321,646 pounds of calcium cyanide, 55,087 pounds of zinc dust, and 2,839,780 pounds of lime

Ore treated at straight concentration plants increased from 4,101,902 tons in 1940 to 4,661,117 tons in 1941. The 1941 total comprised 155,034 tons of siliceous ores, 3,790,183 tons of copper ore, 8,545 tons of lead ore, 12,153 tons of zinc ore, and 695,202 tons of zinc-lead ore.

The East Helena smelter continued to operate throughout 1941 and treated ores and concentrates, chiefly from Montana and Idaho. The Anaconda electrolytic zinc plants, with four units at Anaconda and eight units at Great Falls, operated at an average capacity of about 2,575,000 pounds of zinc per unit per month, in terms of slab zinc, zinc dross, and zinc oxide. This rate was a 22-percent increase over that in 1940. Capacity at the plants in 1942 has been increased by adding additional tanks, and work is now under way to add the equivalent of one new unit at Anaconda and two units at Great Falls, which will increase the annual capacity of these plants to 465,000,000 pounds before the end of 1942.

Details of the treatment of all ores produced in Montana in 1941

are given in the tables that follow.

Mine production of metals in Montana in 1941, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Ore amalgamated Ore cyanided Concentrates smelted ¹ Copper precipitates smelted	99, 482 443, 388 662, 594	7, 938 56, 293 60, 046	2, 508 166, 587 10, 102, 389	247, 705, 376	29, 513, 047	83, 918, 000
Ore smelted Slag fumed Placer	4, 501 267, 670 170, 592	60, 587 61, 611	2, 105, 406 10, 035	5, 503, 585 2, 863, 039	9, 950, 953 3, 054, 000	37, 502, 000
Total, 1940		246, 475 272, 602	12, 386, 925 12, 361, 050	256, 072, 000 252, 782, 000	42, 518, 000 46, 072, 000	121, 420 , 000 105, 17 4 , 000

¹ Includes zinc concentrates treated at electrolytic plants.

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Montana in 1941, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

		Recov bul	ered in lion	Conc	entrates sn	nelted and	recovered	metal
County	Ore treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	Concentrates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)
Beaverhead Broadwater Deer Lodge	50 622 150	23 674 11	2 276					
Granite	228 422	49 351	6 51	4 12	55 29	26 144	167	970
Jefferson Lewis and Clark	1, 309	230	631	3	6	8		
Lincoln	19, 289	1,379	348	253 255	645	1, 112	849	20, 999
Madison Park	7, 954 69, 324	573 4, 540	161 1,028	1,673	996 2, 746	2, 219 650	8, 764 1, 400	
Powell	132	38 70	5					
Navalli								
Total, 1940	99, 482 89, 361	7, 938 9, 664	2,508 2,178	2, 200 2, 919	4, 477 5, 216	4, 159 13, 252	11, 180 9, 456	21, 9 6 9 100, 490
		CY	ANIDAT	ION MIL	LS			
Beaverhead	31, 855	4, 939	576					
Deer Lodge	17, 180	3, 901	567					
Fergus	75, 646 780	2,728	1,109	4	9	9		
Granite Lewis and Clark	124, 221	225 15, 743	52,764	4	9	9		
Madison	56, 276	10,888	5,345	139	1,879	806	1, 156	22, 550
Phillips Silver Bow	119,091	11,552	105, 703 514					
pliver Dow	18, 339	6, 317	014					
Total, 1940	443, 388 466, 024	56, 293 72, 874	166,587 180,559	143 104	1,888 245	815 643	1, 156 211	22, 550 7, 004
Grand total: 1941 1940	542, 870 555, 385	64, 231 82, 538	169,095 182,737	2, 343 3, 023	6, 365 5, 461	4, 974 13, 895	12, 336 9, 667	44, 519 107, 499
		1		l	l	l	1	

Mine production of metals from concentrating mills in Montana in 1941, by counties, in terms of recovered metals

			Conce	ntrates smelt	ted and recov	ered metal	
County	Ore treated (short tons)	Concen- trates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Beaverhead	766 59, 705	213 9, 695	113 15, 150	1, 352 2, 098	922	67, 341	2,000
Cascade Deer Lodge	103, 057	7, 340 47	4, 530	1, 065, 125 208	44, 028	3, 180, 125	2, 948, 000
Granite		1, 574	23	47, 097	32, 555	709, 506	748, 000
Jefferson		3, 698	1, 429	136, 455	78, 948	842, 454	215, 600
Lewis and Clark		3, 077	399	76, 060	129, 330	1, 985, 319	1, 096, 000
Lincoln	7, 643	335	267	8, 580	601	228, 114	26, 400
Madison		1,406	3, 746	7, 254	77, 966	1, 433	100 000
Park	21, 500	1,082	6, 512	47, 862	103, 998	214, 914	160, 000 44, 000
Powell		187 515	134 136	4, 186 19, 672	3, 447 8, 000	52, 382 52, 400	442, 600
Ravalli Sanders	12,000 28,382	5, 424	125	25, 213		4, 884, 057	2,095,000
	4, 318, 890	625, 658	21, 099		247, 137, 132	17, 250, 483	76, 140, 400
Total, 1940	4, 661, 117 4, 101, 902	660, 251 659, 809	53, 681 49, 135		247, 693, 040 243, 758, 594	29, 468, 528 30, 545, 854	83, 918, 000 76, 011, 400

Gross metal content of concentrates produced from ore mined in Montana in 1941, by classes of concentrates smelled

	Concen-		Gro	oss metal con	tent	
Class of concentrates	trates (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)
Dry gold Dry gold-silver	12, 212	21, 893	9, 061 332	13, 400	51, 762 101	
Dry silver Copper Lead	1, 403 511, 451 19, 537	3, 064 23, 919 3, 417	547, 185 6, 157, 633 1, 113, 575	31, 158 248, 692, 523 1, 376, 762	124, 422 3, 444 22, 110, 719	1, 777, 987
Lead-copperZinc	144 89, 757	30 5, 424	3, 472 2, 007, 541	12, 772 2, 131, 988	76, 997 8, 773, 992	93, 222, 377
Zinc-lead	28 28, 059	2, 295	1, 166 262, 424	393, 418	3, 474 903, 041	19, 960 2, 372, 104
Total, 1940	662, 594 662, 832	60, 046 54, 596	10, 102, 389 9, 810, 936	252, 652, 104 250, 131, 853	32, 047, 952 32, 595, 168	97, 392, 428 88, 251, 640

Mine production of metals from Montana concentrates shipped to smelters in 1941, in terms of recovered metals

		BY COUN	TIES			
	Concentrates (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)
Beaverhead	213	113	1, 352	922	67, 341	2,000
Broadwater Cascade	9, 695 7, 340	15, 150 4, 530	2, 098 1, 065, 125	44, 028	3, 180, 125	2, 948, 000
Deer Lodge Granite Jefferson	1, 582	18 87	208 47, 132	32, 555	709, 506	748, 000
Lewis and Clark Lincoln	3, 710 3, 080 588	1, 458 405 912	136, 599 76, 068 9, 692	79, 115 129, 330	843, 424 1, 985, 319	215, 600 1, 096, 000
Madison Park	1, 800 2, 755	6, 621 9, 258	10, 279 48, 512	1, 450 87, 886 105, 398	249, 113 23, 983 214, 914	26, 400 160, 000
Powell Ravalli	187 515	134 136	4, 186 19, 672	3, 447 8, 000	52, 382 52, 400	44, 00 442, 600
Sanders Silver Bow	5, 424 625, 658	125 21, 099	25, 213 8, 656, 253	76, 113 247, 137, 132	4, 884, 057 17, 250, 483	2, 095, 000 76, 140, 400
Total, 1940	662, 594 662, 832	60, 046 54, 596	10, 102, 389 9, 810, 936	247, 705, 376 243, 768, 261	29, 513, 047 30, 653, 348	83, 918, 000 76, 011, 400
	BY CLAS	SES OF CO	NCENTR	ATES		
Dry goldDry gold-silver	12, 212	21, 893	9, 061 332	12, 489	49, 662 97	
Dry silver	1, 403 511, 451	3, 064 23, 919	547, 185 6, 157, 633	26, 484 244, 078, 680	119, 445 3, 306	
Lead Lead-copper	19, 537 144	3, 417 30	1, 113, 575 3, 472	1, 170, 127 11, 150	21, 227, 112 73, 963	
Zinc Zinc-lead Dry iron (from zinc-lead ore)	89, 757 28	5, 424	2, 007, 541 1, 166	2, 025, 479	7, 984, 257 3, 161	83, 900, 000 18, 000
LULY ITOM CITOM ZINC-JESM OFF)	28, 059	2, 295	262, 424	380, 888	52, 044	

Gross metal content of Montana crude ore shipped to smelters in 1941, by classes of ore

			Gro	ss metal con	tent	
Class of ore	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Dry and siliceous gold. Dry and siliceous gold-silver. Dry and siliceous silver. Copper. Lead Lead-copper	53, 318 114, 043 74, 802 1, 019 24, 484	43, 911 10, 838 1, 067 61 4, 710	200, 917 683, 794 946, 610 5, 308 268, 641 136	54, 890 1, 779, 426 1, 107, 996 126, 217 43, 387 661	188, 546 644, 463 38, 686 570 9, 697, 598 781	
Total, 1940	267, 670 278, 031	60, 587 71, 321	2, 105, 406 2, 355, 722	3, 112, 577 3, 481, 623	10, 570, 644 14, 247, 622	261, 690

Mine production of metals from Montana crude ore shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Beaverhead	11, 315	2, 045	118, 130	62, 078	439, 659	
Broadwater	4,073	4, 305	44, 426	26, 500	634,000	
ascade	231	309	38, 922	1,972	20, 875	
Deer Lodge	1,940	196	21, 348	58, 500		
Pergus	15	4	137	150		
Flathead	32, 552	303	665, 138	59,000	5, 647, 000	
Franite	67, 820	7, 858	479, 156	303, 945	245, 494	
efferson	13, 977	6, 389	92, 071	45, 885	272, 276	
udith Basin	300	116	2,714	14, 900	43, 400	
ewis and Clark	3, 746	2, 113	14,665	7, 670	217, 681	
incoln	83	14	227		6, 887	
Madison	39, 892	31, 525	216, 813	20, 114	533, 017	
deagher	5	4	21	400		
dissoula	190	396	308	1, 100	300	
ork	323	154	14, 443	102	73, 386	
hillips	24	44	166			
owell	5, 264	2, 683	51, 183	3, 553	101, 018	
Sanders	1, 507	81	8, 312	34, 887	1, 705, 543	
Silver Bow		2, 047	336, 926	2, 222, 283	10, 417	
weet Grass	1	7, 1		5		
	267, 670	60, 587	2, 105, 406	2, 863, 039	9, 950, 953	
Γotal, 1940	278, 031	71, 321	2, 355, 722	3, 388, 853	12, 692, 652	238, 60
	BY	CLASSES	OF ORF		•	2.44
Dry and siliceous gold	53, 318	43, 911	200, 917	49, 641	177, 123	
Dry and siliceous gold-silver	114, 043	10, 838	683, 794	1, 599, 611	427, 400	
Dry and siliceous silver		1,067	946, 610	1, 054, 930	36, 355	
Copper	1, 019	61	5, 308	121, 882	547	
ead	24, 484	4, 710	268, 641	36, 413	9, 308, 778	
	21, 101	1,110	136	562	750	
ead-copper	, ,					

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Montana in 1941, by counties and districts, in terms of recovered metals

County and district		ines lucing	Ore sold or treated (short	Gol	d (fine our	ices)	Silve	r (fine ou	inces)	Copper	Lead	Zine	Total
	Lode	Placer	tons)	Lode	Placer	Total	Lode	Placer	Total	(pounds)	(pounds)	(pounds)	value
Beaverhead County:									, ·				
Argenta	24	2	35, 770	6, 384	9	6, 393	15, 366		15, 366	1,600	228, 000		\$247, 867
Bald Mountain	1		3				90		90	2,000	, 000		64
Bannack	4	11	230	191	2, 951	3, 142	353	201	554	1, 100	200		110, 505
Big Hole	3	1	242	113	1	114	263		263	-,	32, 300		6,018
Blue Wing	7		273	16		16	5, 895		5, 895	2,000	9, 300	2,000	5, 668
Bryant.	3		4, 546	390		390	40, 545		40, 545	58, 300	183, 400	-, -, -,	59, 815
Colorado Horse Prairie Creek	1		92	. 6		6	533		533		52, 400		3, 576
Vipond		2			849	849		114	114		,		29, 796
West Fork Madison River	3		2, 830	20		20	57, 015		57, 015		1, 400		41, 324
Broadwater County:		1			28	28							980
Backer		1											
Beaver		17	332	596	876	1, 472	488	149	637	1, 100	400		52, 126
Cedar Plains	17		2, 957	2, 859		2, 859	34, 117		34, 117	14,000	465, 400		152, 506
Park	13	2	59, 861	15, 301	6	15, 307	3, 524		3, 524	10, 100	22, 600		540, 731
Cascade County: Montana	19	14	1, 250	1, 373	8, 585	9, 958	8, 671	803	9, 474	1,300	145, 600		363, 719
Deer Lodge County:	. 10		103, 288	4, 839		4, 839	1, 104, 047	- -	1, 104, 047	46,000	3, 201, 000	2, 948, 000	1, 363, 450
Dry Gulch				1.0				1 1	er a	200			
French Gulch		2			3	3							105
Georgetown		1			1	I							35
Heber	1	1 1	17, 487	4,042	2	4, 044	782		782	550			142, 161
Lost Creek	1	1	200	18	2	20	208		208				848
Oro Fino	2	1			1	1							35
Silver Lake	2		1, 176	55		55	17, 564		17, 564	,			14, 415
Smelter	- 4		19 588	10		1	104		104	1, 100			239
Fergus County:	1		988	10		10	3, 465		3, 465	56, 850			9, 522
Cone Butte	2	1	114					1 1		* .			
North Moccasin	1		75, 535	15		15	31		31				547
Warm Springs	2	1	10, 535	2, 715	28	2, 743	1, 080	45	1, 125				96, 805
lathead County: Hog Heaven	3		32, 552	303		2	135		135	150			184
Jallatin County: Eldridge			32, 332	303	9	303	665, 138		665, 138	59,000	5, 647, 000		812, 433
Franite County:					9	. 9							315
Alps	2	1	12										
Boulder	10	2	1, 251	456	15	1	45		45				67
Dunkleberg	2	- 4	18, 815	20	19	471 20	3, 375		3, 375	1, 100	14, 400	15, 800	21, 021
First Chance	19	0	2, 918	2, 237	5. 287		37, 509		37, 509	30, 400	702, 600	644, 600	119, 353
Flint Creek	13		64, 324	5, 207	0, 487	7, 524 5, 207	2, 143	464	2, 607	2,000			265, 430
Gold Creek.	10		U1, 341	0, 401	49	3, 207	480, 375		480, 375	301, 600	228, 000	87, 600	579, 000

Henderson					1.					212.2				* 4 * * * * * * * * * * * * * * * * * *
Rock Creek 2 2 531 181 8 189 02 62 62 62 63 669 Rock Creek 2 2 531 181 8 189 02 62 62 63 669 Jefferson County: 2 85 2 22 1,291 33 38 38 38 38 38 38 Boulder 6 2 424 38 129 14 138 38 38 38 38 38 38 3	Henderson	3	1 1		18	328	346		24		1, 400			
Red Lion. 3	Maxville	2		19	4		4	163		163		10,000		
Rock Creek		3		191	95		95	7		7				
Jefferson County: 2		2	2	531	181	8	189	62	l	62				6, 659
Amazon		-	- 1											
Billefoot	Amoron	9	1 1	85	22	100	22	1. 291		1, 291	600	13, 300		2, 517
Boulder		ĩ												202
Clanex		ė				10					400	10.900		5, 113
Clancery	Boulder								7	133 927			186,000	
Coloredo 13	Cataract	23						100, 720	1 4 417	4 946			100,000	438 133
Elikhorn	Clancey	4	13			12, 402							90 800	
Calcionatials		13			1, 424						40, 800		29, 000	
Homestake	Elkhorn	4										1,000		
Lowland	Golconda	4		60								2,000		2, 346
Lowland		7	1	83	51	4								
Mitchell 5 82 82 82 82 187 100 400 3,038 Warm Springs 1 61 16 116 224 224 224 100 400 3,038 Willow Creek 11 300 746 746 831 8,131 5,000 78,000 27,709 Judith Basin County: 3 92 2 2 1,845 50 43,490 3,862 Yoro. 2 207 114 114 869 869 14,850 43,490 3,862 Lewis and Clark County: 1 24 23 207 1 7,307 1 7,308 6,030 6,030 7,900 260,688 Dry Gulch 1 1 24 28,510 78 73 8,78 65,482 66,482 123,700 1,935,000 1,066,000 250,778 Heldleston 4 24 508 348 8,403 8,751 322		2	اقا	237	4	1.071	1, 075		588					
Warm Springs		5	- 1		82	.,,	82	187		187	100			3, 038
Whitehall 1		ĭ								284		1,000		819
Williow Greek		- 11									5,000	78, 000		140, 563
During the part During the				0, 102										
Barker 3 93 1 2 1,845 1,		1		300	740		140	991		991	2,000	12,000		21,100
Darker Color Col	Judith Basin County:	_	1	00				1 045	1	1 045	80	42 400		3 862
Lewis and Clark County: 1		3										20, 200		
Bluc Cloud	Yogo	2		207	114		114	809		809	14, 800			0, 300
Dry Gulch	Lewis and Clark County:		1									= 000		P70
April	Blue Cloud											7, 300		
Greenhorn	Dry Gulch	1	1 1	50,000	7, 307			6, 030		6,030				
Hedna 14 24 508 348 8,403 8,751 322 772 1,094 1,93,000 1,095,000 20,239 1,096,000 2,100 307,239 1,000 1,000 2,100 307,239 1,000 1,000 2,100 307,239 1,000 1,000 2,100 307,239 1,000 1,000 2,100 307,239 1,000 1,000 2,100 307,239 1,000 1,000 2,100 307,239 1,000 1,000 2,100 307,239 1,000 1,000 2,100 307,239 1,000 1,000 2,100 307,239 1,000 1,000 2,100 307,239 1,000 1,000 2,100 307,239 1,000 1,000 2,100 307,239 1,000 1,000 2,100 307,239 1,000 1,000 2,100 307,000 2,000 3,000 3,000 1,	Greenhorn		1 2 1			4								
Helena		4		28, 510	78			65, 482	1				1, 096, 000	
Fefferson Gulch			24		348	8, 403	8, 751	322	772	1,094	900	2, 100		
Lincoln	Infloren Gulch			• • • •	1.7		19							
Marysville				17	13			38	14	52				3, 957
Missouri	Lincolli		6								3 100	64, 100		254, 518
Ophir Gulch		19		19,700	0, 320			01, 102		602	0, 100	02,200	7	
Common College Colle	Missouri		2			0,000		01	002		9 200			
Scratch Gravel 3												100 600		
Strate City 1 1 170,592 74 74 74 74 74 7547 30,000 37,502,000 2,986,728 8 melter 10 3 28,823 5,085 13 5,098 30,766 3,000 37,502,000 2,986,728 8 melter 10 3 28,823 5,085 13 5,098 30,766 7 10,274 1,450 256,000 26,400 106,544 10 10 10 10 10 10 10 10 10 10 10 10 10			2			103			99			109,000		
Silver City 1 1 170, 592 2 3 8, 823 5, 885 13 5, 988 30, 766 30, 766 3, 900 3, 600 256, 000 26, 400 100, 544 100, 544 100, 544 100, 423 2, 400 50, 300 11, 725 11, 725 11, 725 11, 725 11, 724 12, 725 11, 727	Scratch Gravel	3									100	3, 300		1, 550
Smelter	Silver City	1			74		74	547		547				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Smelter	1		170, 592					.				37, 502, 000	2, 986, 728
Lincoln County: Libby		10	3	28, 823	5, 085	13	5, 098	30, 766						
Madison County: 1	Tincoln County: Libby			27,015			2, 357	10, 267	7	10, 274	1, 450	256,000	26, 400	106, 544
Cherry Creek (Havana) 1 23 3 18,880 10,575 1,500 12,075 1,219 194 11,413 2,600 31,700 432,855 1,000 12,075 1,300 6,210 6,210 78,300 600 151,764 1,765 1,764 1,765 1,764 1,765 1,764 1,765 1,765 1,764 1,765 1,765 1,764 1,765		'			-,000		_,				′			
Norris		1	1	1	.	1		14		14		1		10
Norman				10 000	10 575	1 500	19 075		104		2 600	31 700		
Renova 9 1 20,329 20,342 1 20,343 136,485 136,48				10,000										151 764
Rochester 12 873 331 - 331 3,915 200 63,300 188,001 Ruby Creek 1 1 14 14 1.725 Sheridan 30 8 2,935 1,260 123 1,333 10,409 14 10,423 2,400 373,000 77,361 Silver Star 14 47,827 8,152 8,162 11,115 11,115 16,900 4,100 295,452 Tidal Wave 18 1,364 1,073 1,073 4,022 4,022 1,700 28,000 42,212 Virginia City 34 21 12,293 3,711 883 4,504 48,354 121 48,475 400 2,000 195,422				18, 240				0, 210				EO 200		019 565
Ruby Creek	Renova		1			1					0,400	30, 300		
Ruby (1628) Sheridan 30 8 2,935 1,260 123 1,383 10,409 14 10,423 2,400 373,000 77,361 Silver Star 14 47,827 8,152 8,152 11,115 11,115 16,900 4,100 29,505 Tidal Wave 18 1,384 1,073 1,073 1,073 4,022 4,022 1,700 28,000 42,212 Virginia City 34 21 12,293 3,711 883 4,504 48,354 121 48,475 400 2,000 195,452	Rochester	12		873	331			3, 915			200	03, 300		
Sheridan. 30 8 2,935 1,260 123 1,383 10,409 14 10,423 2,400 37,000 77,301 Silver Star. 14 47,827 8,152 8,152 11,115 11,115 16,900 4,100 295,452 Tidal Wave. 18 1,364 1,073 1,073 4,022 4,022 1,700 28,000 42,212 Virginia City 34 21 12,293 3,711 883 4,594 48,354 121 48,475 400 2,000 195,422 77,555		l	. 1											1,725
Silver Star 14 47,827 8,152 8,152 11,115 11,115 16,900 4,100 295,452 Tidal Wave 18 1,364 1,073 1,073 4,022 4,022 1,700 28,000 42,212 Virginia City 34 21 12,993 3,711 883 4,594 48,354 121 48,475 400 2,000 195,422 *** Figure 1.5**	Sheridan	30	8			123	1, 383					373,000		77, 361
Tidal Wave	Silver Star	14	l	47, 827	8, 152	1								
Virginia City 34 21 12, 293 3, 711 888 4, 504 48, 354 121 48, 475 400 2, 000	Tidal Ways		1				1.073	4,022			1,700			
71 ALL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Virginia City	94	21	12, 203		888						2,000		
1) STILLEROOF		1 3	1 "3	342		1 790	2 011			1,308		4,000		71.555
	11 #2HIHRIOH	•		. 040		2, .00	-, -, -	550		-, 500	200	-, ***		

Mine production of gold, silver, copper, lead, and zinc in Montana in 1941, by counties and districts, in terms of recovered metals—Continued

County and district		ines lucing	Ore sold or treated (short	Gol	d (fine oun	ices)	Silve	r (fine ou	inces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)	Total value
	Lode	Placer	tons)	Lode	Placer	Total	Lode	Placer	Total	(pounds)	(pounds)	(pounds)	Value
Meagher County: Beaver Creek		17			215	015		45	45	7 (B.)			
Camas Creek		17			215	215		40	4.0				\$7, 557 315
Carbonate Lineral County: Cedar Creek	1	25	5	4	1, 231	4 1, 231	` 21	59	21 59	400			202
Aissoula County: Coloma Copper Cliff Elk Creek	7		175 15	394		394 2	308		308	600	300		14, 097 129
Elk Creek Nine Mile		2 24			3, 113	$\frac{4}{3,113}$		52	52				108, 992
Park County: Cowles					3, 113	0, 110		32	32		**********	\	70
Emigrant Creek		6			2. 188	2. 188		308	308				76, 799
New World	3	1	21, 678	6, 516	i	6, 517	62, 294		62, 294	104, 100	288, 300	160, 000	313, 110
Sheepeater (Jardine)	2	2	69, 469 119, 115	7, 436 11, 596	6	7, 436 11, 602	1, 689 106, 169		1, 689 106, 169	1, 400			261, 626 481, 568
owell County: Big Blackfoot	4	3	242	100	070	700			040		***		15 550
Nigger Hill	11	1	670	132 278	370	502 279	173 7, 418	76	249 7. 418	3, 400	100 40, 000		17, 753 17, 721
Ophir	1	6	61	98	36	134	59	7	66	1,000			4, 855
Pioneer	2	12 12	6	1	178 60	179	45	21	66	50	1,000		6, 375
Zozell	6	14	4, 714	34 2. 312	00	94 2, 312	17 47, 662	1	24 47, 662	2, 550	700 111, 600	44,000	3, 347 124, 775
avalli County:	_		,	1.7									
Curlew Overwich	1	2	12, 000 132	136 70	2, 239	136 2, 309	19, 672	121	19, 672 121	8, 000	52, 400	442, 600	55, 875 80, 901
anders County:		-	102	10	2, 239	2, 309		141	121				80, 901
Eagle	1		27, 223	76		76	32, 483		32, 483	18, 800	6, 588, 900	2, 095, 000	560, 669
Plains Revais Creek	1		2, 458	66		66	450 367		450 367	92,000	100		326 13, 427
Trout Creek	i		79	12		12	107		107	92,000	300		13, 427
Vermillion	2	2	123	52	31	83	118	7	125	100	300		3, 023
ilver Bow County: Butte or Summit Valley Divide Creek	$\frac{42}{2}$		4, 403, 137	23, 130		23, 130	8, 988, 501		8, 988, 501	254, 862, 900	17, 260, 900	76, 140, 400	43, 969, 596

German GulchHighlandIndependenceLost Child	2 2	1	18, 340 88	6, 318 11	4	6, 318 11 2	519 2, 866		519 2, 866				140 221, 499 2, 423 70	
Melrose Silver Bow Creek Stillwater County: Yellowstone River	2	13	44	4	16 22	16 22	1, 696		1, 696	100			1, 358 560 770	
Sweet Grass County: Independence Toole County: Gold Butte	1	1	1	1	5	1 5							35 175	
Total Montana	612	325	5, 642, 249	184, 864	61, 611	246, 475	12, 376, 890	10, 035	12, 386, 925	256, 072, 000	42, 518, 000	121, 420, 000	59, 181, 627	

BEAVERHEAD COUNTY

Argenta district.—The Ermont Mines, Inc., operated the Ermont property throughout 1941 and produced most of the gold output in the Argenta district. The company operated its 100-ton countercurrent cyanide mill all year and treated 31,855 tons of gold ore of a lower grade than in 1940, resulting in a decline in gold output. Other important lode producers in the district were the Goldfinch and Shafer mines, which produced gold ore that was shipped crude to a smelter, and the Rosemont and Copper Bell properties, which produced crude lead ore. Some gold was recovered from the French Creek and

Watson Gulch placers in 1941.

Bannack district.—Gold recovered from placer gravels made a marked gain in 1941 over that in 1940, but gold from lode mines a decided decrease. The main source of gold from lode mines in 1941 was crude gold ore shipped direct to a smelter from the New York-Montana and Gold Bug properties. The bulk of the placer gold output came from dredging by the Ralph E. Davis Syndicate on Grasshopper Creek. Equipment used comprised two draglines (one 5-cubic yard and one 1½-cubic yard) and a floating washing plant. During 1941 271,340 cubic yards of overburden were removed, and 131,035 cubic yards of gold-bearing gravel were washed, from which 2,690 ounces of gold were recovered. The Traderhorn Mining & Construction Co. operated a dry-land dredge in Dry Gulch for testing purposes. Several small sluicing operations, principally on Grasshopper Creek, recovered some gold.

Big Hole district.—Crude gold ore from the Star mine and crude lead ore from the S. S. & R. mine shipped direct to a smelter and gold ore from the North Star mine amalgamated comprised the metal output from lode mines in the Big Hole district in 1941. Some placer

gold was recovered by sluicing.

Blue Wing district.—The output from the Blue Wing district in 1941 comprised shipments direct to smelters of several classes of crude ore, which included silver ore from the Federal Star, Del Monte, Silver Snow, and Single Jack properties, lead ore from the Ingersoll group, copper ore from the Cable claim, and gold ore from the Interstate property.

Bryant district.—Most of the output from the Bryant district in 1941 came from the Hecla mine and dump and consisted of 1,424 tons of crude gold-silver ore and 2,209 tons of gold-silver tailings shipped

crude to smelters.

Colorado district.—The metal output of the Colorado district in 1941 was contained in lead ore shipped direct to a smelter from the H. & S. mine.

Horse Prairie district.—The bulk of the placer gold output from the Horse Prairie district in 1941 came from operations by W. C. McLeod on the Golden Leaf Placer on Jeff Davis Creek. The remainder came from operations by Associated Placers, Inc., on Jeff Davis and Horse Prairie Creeks. Both operators used dry-land dredges.

Vipond district.—The production from the Vipond district in 1941 comprised silver ore from the Lone Pine & Argyle and Aurora mines and lead ore from the Faithful mine, all shipped crude to smelters.

West Fork of Madison River district.—A dry-land dredge operated by Madison West Fork Placers supplied the placer gold output from the West Fork of Madison River district in 1941.

BROADWATER COUNTY

Backer district.—The value of the metal output from the Backer district in 1941 decreased from that in 1940, owing to a decline in placer gold production. Gold recovered by three dry-land dredges represented most of the output in 1941. The Pitcher Placer Mining Co. operated two draglines (1½ cubic yards and 1¾ cubic yards) on Boulder Bar in Confederate Gulch and handled about 90,000 cubic yards of gold-bearing gravel, averaging 23 cents in value of recoverable gold to the cubic yard washed. This operation was the largest in the district during 1941. Dry-land dredges were also operated by R. G. Woodard and C. J. Painter, both working in Confederate Gulch. The rest of the placer output came from small sluicing operations, chiefly in Confederate Gulch. Most of the lode output came from rich gold ore at the Superior mine.

Beaver district.—Lead ore rich in gold and containing considerable quantities of zinc was shipped crude to a lead smelter from the East Pacific and East Pacific Tunnel No. 4. This property, by far the most important producer in the district in 1941, was operated by lessees. The Iron Age property shipped 209 tons of crude gold ore, averaging over 2 ounces of gold to the ton, to a smelter in 1941. The 75-ton Custer flotation mill was idle in 1941, although a quantity of crude gold ore was shipped direct to a smelter from the Custer property. Other mines active in the Beaver district during 1941 included the Native Gold, which treated gold ore in a 25-ton flotation mill; the January, from which lead ore was shipped crude to a smelter; and the Kleinchmidt, from which crude silver ore was shipped direct

to a smelter.

Cedar Plains district.—The value of the metal output from the Cedar Plains district in 1941 was virtually the same as in 1940. The M & M Mining Co., operating the Ohio Keating mine, was again the largest producer in the district and accounted for over 60 percent of the district total gold. In 1941 the daily capacity of the flotation mill was increased from 80 to 105 tons; in consequence, an average of 100 tons of gold ore a day was treated, producing over 6,000 tons of gold concentrates, which were shipped to a smelter. The C. G. Gold Corporation continued to operate its 100-ton flotation mill and made 3,000 tons of gold concentrates in 1941; in addition, a small quantity of gold ore was shipped direct to a smelter. Other production from the district included gold ore from the Robert E. Lee mine and lead ore from the Joe Dandy mine, all shipped crude to a smelter. Some placer gold was recovered from the Bald Eagle claim in Johnny's Gulch.

Park district.—The value of the metal production from the Park district in 1941 increased materially over that in 1940, owing entirely to the gain in output from placer operations by the Cooley Gravel Co. and Douglas Placers. The Cooley Gravel Co. operated from March to the middle of December 1941 and washed about 673,000 cubic yards of gold-bearing gravel from Indian Creek. The equipment consisted of a Bodinson all-electric floating washing plant, supplied with gravel by a 3-cubic yard dragline. The Douglas Placers, operating the Wilson Placers on Indian Creek, used two dragline excavators, which supplied gravel to a dry-land dredge. During 1941 the company washed approximately 500,000 cubic yards of gold-bearing gravel, which averaged 22 cents per cubic yard in value of recoverable gold.

The remainder of the placer output came from several small sluicing operations, principally on Indian Creek. The Marietta Mines shipped considerable lead ore and gold ore crude to smelters and produced most of the metal output from lode mines. Gold ore from the Little Giant mine and lead ore from the W. A. Clark mine shipped crude to smelters and gold ore amalgamated comprised most of the remaining district output in 1941.

CASCADE COUNTY

Montana district.—The Montana district showed a decided increase in output of silver, lead, and zinc in 1941 over 1940; it was the secondlargest silver-producing district in the State. The Klies Mining Co., largest producer of lead and zinc in the district, operated throughout The 70-ton flotation mill was increased to 80-ton daily capacity and treated 29,120 tons of zinc-lead ore that contained about 150 ounces of gold, 150,000 ounces of silver, 20,000 pounds of copper, 2,200,000 pounds of lead, and 3,500,000 pounds of zinc. The concentration mill was operated 7 days a week, 3 shifts a day. The Lexington Mining Co. operated its 100-ton flotation mill the entire year and treated 32,718 tons of silver ore, which yielded most of the silver and gold output of the district. The Florence Mining Co. was active throughout 1941 and treated 14.664 tons of silver ore in its 75ton flotation mill, which made lead concentrates. Lead ore from the Star group was treated in a 35-ton flotation mill by the New London Mining Corporation; the production totaled about 400 tons of lead The Queen Leasing Co. operated its 60-ton flotation concentrates. mill throughout 1941 and treated 18,500 tons of zinc-lead ore, which contained 77,700 ounces of silver, 555,000 pounds of lead, and 1,554,000 pounds of zinc. The property was closed in March 1942. Additional production from mines in the district included gold-silver ore from the Spotted mine, silver ore from the Benton group, and lead ore from the Champion "B," all shipped crude to a smelter.

DEER LODGE COUNTY

Georgetown district.—Gold ore from the Holdfast-Southern Cross group, treated by cyanidation, made up most of the output from the Georgetown district in 1941. The Sentinel Mines, Inc., working this group, operated its 65-ton countercurrent cyanidation mill throughout 1941 and treated 17,180 tons of ore. The metal output was somewhat less than in 1940. A small quantity of gold ore from the Cable mine was treated by amalgamation in 1941. The rest of the production from the district was gold ore shipped crude to a smelter; it came from several small producers, among which the Hub mine was the most important. A little placer gold was recovered from sluicing operations.

Heber district.—Gold ore from the Spain mine and a little gold from sluicing in First Chance Gulch comprised all the output from the Heber district in 1941.

Oro Fino district.—The output from the Oro Fino district in 1941 was crude silver ore shipped to smelters from the Champion and Cashier groups.

Silver Lake district.—Silver ore was shipped crude to smelters from the Silver Reef and Chloride Silver properties in 1941.

Smelter district.—Some copper ore clean-up and slimes from the Anaconda plant were shipped to Washoe.

FERGUS COUNTY

Cone Butte district.—Gold ore cyanided, from the Thomas and Old

Glory mines, made up the output from the Cone Butte district in 1941.

North Moccasin district.—The North Moccasin Mines Syndicate treated 75,535 tons of gold ore from the Barnes-King open-cut mine by cyanidation in 1941. The ore contained 3,777 ounces of gold and 1,510 ounces of silver and yielded 2,715 ounces of gold and 1,080 ounces of silver. The cyanidation mill had a daily capacity of about 600 tons. A little placer gold was recovered from the Grubstake claim in 1941.

Warm Springs district.—The output from the Warm Springs district was copper ore from the Globe mine, gold ore from the Gold Crop mine, and silver ore from the Mickey mine, all shipped crude to

smelters.

FLATHEAD COUNTY

Hog Heaven district.—The Flathead mine, owned and operated by the Anaconda Copper Mining Co., shipped 17,600 tons of silver ore and 14,926 tons of lead ore crude to smelters in 1941; it was one of the most important lead-producing mines in the State. The rest of the district production was contained in silver ore from the Birdseye mine and copper ore from the Flag-Martin mine, all of which was shipped crude to a smelter.

GALLATIN COUNTY

The output from Gallatin County in 1941 came from sluicing at the Jewel Placer in the Eldridge district.

GRANITE COUNTY

Alps district.—Most of the output from the Alps district in 1941 consisted of crude gold ore from the Rainy Day mine, shipped direct

to a smelter.

Boulder district.—The Gold King mine, operated by lessees, was the chief producer in the Boulder district in 1941. Among other producers were the Apex mine, which shipped gold ore direct to a smelter, and the Saranac, which shipped zinc ore to the Anaconda zinc concentrator for treatment. Sluicing in Princeton Gulch recovered

some gold.

Dunkleberg district.—Zinc-lead ore from the Forest Rose mine, treated by flotation concentration in a new 100-ton mill, comprised virtually all the output of the Dunkleberg district in 1941. The 100-ton mill, which was erected adjacent to the mine during the latter part of 1940, was put into operation on January 12, 1941, and continued for the remainder of the year. During this period it treated 18,766 tons of ore and made zinc concentrates and lead concentrates, which were shipped to Anaconda and East Helena smelters, respectively. The rest of the district output was gold-silver ore shipped crude to a smelter.

Flint Creek district.—Old tailings from the Granite-Bimetallic mine, operated by the Philipsburg Mining Co. in 1941, were again the chief

source of metal output from the Flint Creek district. The tailings were shipped direct to Tacoma and Washoe and there used chiefly for fluxing. The Kroger Lease of the Moorlight Mining Co. operated the Headlight mine and shipped 1,547 tons of gold-silver ore crude to a smelter, and the Moorlight Mining Co. operated the Climax mine and shipped lead smelting ore crude. Zinc-lead ore was shipped to the Anaconda zinc concentrator from the Silver Prince and Trout properties in 1941 by the Contact Mines Corporation and the Trout Mining Division of American Machine & Metals, Inc., respectively. In addition, the Contact Mines Corporation shipped a large quantity of silver ore crude to Washoe.

Gold Creek district.—The output from the Gold Creek district in 1941 was placer gold, nearly all of which was recovered by the Master

Mining Co. from upper Gold Creek.

Henderson district.—The lode output of the Henderson district comprised silver ore from the Black Pine mine and dump and gold ore from the Sunrise mine. The placer gold output came from a dry-land dredge operated by H. J. Schneider & Bros. on the New Deal placer.

Maxville district.—Lead ore from the Blue Bird mine and gold ore

from the Evergreen mine were shipped to East Helena in 1941.

Red Lion district.—The Red Lion Mining Co. cyanided gold ore from the Hidden Lake property and recovered most of the gold output of the Red Lion district in 1941. The rest of the output was crude gold smelting ore from the Lila Dixon and Surprise groups.

Rock Creek district.—The Normac Corporation built a 25-ton cyanide plant during 1941 and treated some gold ore from the Ella mine. Other lode production from the Rock Creek district was gold ore from the Shakespeare mine. Some placer gold was recovered.

JEFFERSON COUNTY

Amazon district.—Lead ore was shipped crude to a smelter in 1941 from the East Mint mine and the Anna Carmen dump.

Bigfoot district.—A small lot of gold ore from the Grass Root property

was shipped to a smelter in 1941.

Boulder district.—Ore was shipped crude to a smelter in 1941 from several properties in the Boulder district, including gold-silver ore from the Adolphus, silver ore from the Baltimore, and lead ore from the Ing, Esperanzie, and St. John properties. Some gold was produced

from placers near Boulder.

Cataract district.—The total value of the metal output of the Cataract district in 1941 decreased materially from 1940, owing almost entirely to the closing of the Comet property by the Basin Montana Tunnel Co., in April 1941. As commercial ore was exhausted, the 200-ton flotation mill on the property was idle for the remainder of 1941. The Boulder, Bullion, Crystal, Deer Lodge, Morning Glory, and Red Eagle mines were among the other lode producers in the district in 1941. Some gold was recovered by sluicing near Boulder.

Clancey district.—The metal output from the Clancey district in 1941 again came largely from placer operations. The Winston Bros. Co. continued to operate its 6-cubic foot electrically powered Yuba dredge throughout 1941. The dredge handled 2,157,277 cubic yards of gravel compared with 1,880,436 in 1940. The company again was the leading placer gold producer in Montana. The Williams Construction Co., operating a dry-land dredge near Clancey, ranked second.

The Jefferson Placers and O. A. Barnes operated dry-land dredges on Clancey Creek and Holmes Creek, respectively. A total of 28,700 cubic yards of gravel was washed, which averaged about 75 cents in value of recoverable gold per cubic yard. The remainder of the placer production in the district came from sluicing, chiefly in Lump Gulch. The lode production was ore shipped crude to smelters; it came from

the Frohner, Our Ticket 45, Panama, and Paragraph mines.

Colorado district.—Eathorne & Fox, again the leading producers in the Colorado district, treated zinc-lead tailings from the Alta dump in 1941. The mill, which treated 29,607 tons of tailings in 1941, made 1,391 tons of lead concentrates and 40 tons of zinc concentrates. The Blue Bird mine shipped crude to Washoe 2,038 tons of gold-silver ore containing 714 ounces of gold and 20,884 ounces of silver. Other mines active in 1941 included the Buckeye, Blizzard, Custer, and Pen Yan.

Elkhorn district.—The only production in the Elkhorn district in 1941 was lead ore and gold ore shipped crude to smelters from the C & D, Elkhorn, Klondyke, and Little Goldie mines.

Golconda district.—The output from the Golconda district in 1941

was gold, silver, and lead ores shipped crude to smelters.

Homestake district.—Gold and gold-silver ore shipped direct to smelters formed the lode mine output in 1941. The Payrock mine was the largest producer. Some gold was recovered by sluicing on

Betty Creek.

Lowland district.—Placer gold comprised the bulk of the output from the Lowland district in 1941, and the Kit Carson Placers produced virtually the entire output. The company operated a dry-land dredge from May through September and washed 170,000 cubic yards of gold-bearing gravel, which averaged 22 cents per cubic yard in recoverable gold. In addition, the company removed 354,000 cubic yards of overburden preparatory to dredging. Lode production came from the Montreal and Infinite groups.

Mitchell district.—Gold ore shipped crude to smelters was the out-

put from the Mitchell district in 1941.

Warm Springs district.—Gold-silver ore was shipped crude to a

smelter from the Greenleaf dump in 1941.

Whitehall district.—The Golden Sunlight mine, operated by lessees, was the largest producer in the Whitehall district in 1941; it shipped 5,105 tons of gold ore containing 3,075 ounces of gold and 4,142 ounces of silver. Among the other producers were the Florence, Lucky Hit, Ivans, and Sunny Corner mines.

Willow Creek district.—The output from the Willow Creek district in 1941 was lead ore shipped crude to a smelter and gold ore amalgamated and concentrated from the Callahan group (Deer Horn).

JUDITH BASIN COUNTY

Barker district.—The output of the Barker district in 1941 was lead ore shipped crude to East Helena from the Glendennin group and the Marcelline and Silver & Bell mines.

Yogo district.—Gold ore from the Gold Bug mine and copper ore from the Blue Dick mine, shipped crude to Washoe, comprised the only output in the Yogo district in 1941.

LEWIS AND CLARK COUNTY

Blue Cloud district.—One lot of lead ore was shipped to East Helena

from the Lincoln mine in 1941.

Dry Gulch district.—The Golden Messenger mine was operated throughout 1941 by the Golden Messenger Corporation. The output was about 50,000 tons of gold ore cyanided in the company 150-ton mill. The bullion produced yielded 7,307 ounces of fine gold and 6,030 ounces of fine silver. The property was closed in March

1942. A little placer gold was recovered by sluicing.

Heddleston district.—The value of the metal output of the Heddleston district in 1941 increased substantially over that of 1940, owing entirely to work by the Mike Horse Mining & Milling Co. The company operated its 150-ton flotation mill throughout 1941 except for the months of April, May, and June. During the operating period, about 27,000 tons of zinc-lead ore were treated, producing about 1,500 tons of lead concentrates and 1,300 tons of zinc concentrates. Production figures based upon the first quarter of 1942 indicate that the property is exceeding its 1941 rate. Other producers in the district were the Carbonate, Mazuma, and Consolation mines.

Helena district.—Placer gravel remained the chief source of mineral value in the Helena district in 1941. By far the largest part of the placer gold output came from dredging by Porter Bros. Corporation. The 6-cubic foot electric-powered bucket dredge operated throughout 1941 in Last Chance Gulch near Helena and treated 1,864,078 cubic yards of gravel. A small dry-land dredge was operated on the Travis Placer from April to the middle of May. The rest of the placer gold output came from several small sluicing operations. The lode output came from several small lode mines; the most important were the

Court House, Whitlatch, and Spring Hill.

Jefferson Gulch district.—A little placer gold was recovered by

sluicing in Jefferson Gulch.

Lincoln district.—Placer gold contributed the major part of the metal output from the Lincoln district in 1941; it was recovered by sluicing, principally in Lincoln, McClellan, and Sauerkraut Gulches. The lode output came from gold ore amalgamated and gold ore shipped

crude to smelters.

Marysville district.—Lode mines produced the bulk of metal values from the Marysville district in 1941. The Martin Mining Co., again the leading producer, treated 36,350 tons of old tailings from the Eck mine in its 125-ton roasting and cyaniding mill. The tailings were excavated by power shovels and trucked about 1 mile to the mill. The J. C. Archibald Co. treated old tailings from the Bald Butte mine, but the quantity of gold recovered was less than in 1940. Lessees operated the Shannon group and shipped crude to Washoe 743 tons of gold ore, which contained 606 ounces of gold and 403 ounces of silver. Several groups of lessees operated the St. Louis Drumlummon mine in 1941 and shipped gold ore crude to smelters. The Rex Mining Co. treated gold-silver ore in its 35-ton flotation mill and made 71 tons of lead concentrates. Among the other producers in the district were the Penobscot mine, Piegan-Gloster group, and Golden Gate mine.

Missouri River district.—The Perry-Schroeder Mining Co. continued to operate its 6-cubic foot electrically driven Yuba dredge on the

Missouri River 15 miles north of Helena throughout 1941 and handled 1,873,400 cubic yards of gold-bearing gravel.

Ophir Gulch district.—Gold ore was shipped crude to a smelter

from the Nora Darling mine in 1941.

Rimini district.—The bulk of the lode production in the Rimini district in 1941 came from the Armstrong mine, which shipped lead ore crude to East Helena. The rest of the lode output of the district was ore shipped crude to smelters, chiefly from the Eureka and Porphyry Dike mines. A dry-land dredge, operated by N. Rogers on the Gould Placer near Rimini in 1941, contributed the major part of the placer gold output.

Scratch Gravel district.—Ore shipped crude to a smelter from the Franklin and Julia mines and gold ore amalgamated from the Umatilla

mine comprised the output from the Scratch Gravel district.

Silver City district.—The output from the Silver City district was

old tailings amalgamated from the Albert Brown mine.

Smelter district.—The fuming plant owned by the Anaconda Copper Mining Co. continued throughout 1941 to treat slag from the lead smelter of the American Smelting & Refining Co. at East Helena. The value of the zinc fume produced was \$1,250,130 greater than

that produced in 1940.

Stemple district.—The Gould mine operated by the Standard Silver-Lead Mining Co. again produced the bulk of the output in the Stemple district. In 1941, 27,871 tons of ore and old tailings were cyanided in the 75-ton cyanide plant. The bullion shipped to the Seattle Assay Office contained 4,720 ounces of fine gold and 20,137 ounces of silver. Among other mines active in the Stemple district in 1941 were the New Silver Bell, Bachelor, Homestake, and Hubbard. A little gold was recovered by sluicing, principally in Canyon Creek.

LINCOLN COUNTY

Libby district.—The Courageous Mining Co. treated 17,239 tons of gold ore from the Branagan mine in its 150-ton amalgamation and flotation-concentration mill. The Glacier Silver-Lead Mining Co. milled 6,443 tons of gold-silver ore from the Lukens Hazel mine, which made 142 tons of lead concentrates. The Snowshoe Mines, Inc., treated zinc-lead ore in its 100-ton flotation mill; it made 162 tons of lead concentrates and 31 tons of zinc concentrates. Two other mills active in the Libby district in 1941 were the 50-ton Midas mill, which treated gold ore from the Midas mine, and the 25-ton Tip Top mill, which treated gold ore from the New Deal property. The rest of the lode output was lead ore from the Silver Butte and gold ore from the Merrie claim, all shipped crude to smelters. Some gold was recovered by sluicing, chiefly on Libby Creek.

MADISON COUNTY

Norris district.—The Boaz mine operated its 50-ton cyanide and concentration mill throughout 1941 and treated both company and custom gold ore. The mill treated 13,415 tons of gold ore from company properties, which yielded 5,145 ounces of gold and 3,178 ounces of silver in bullion and 1,879 ounces of gold and 806 ounces of silver in gold concentrates. The Grubstake mine, second-largest producer in the Norris district, shipped about 500 tons of rich gold ore to Washoe

in 1941. The Revenue mine operated only the first part of 1941 but ranked third in lode gold output in the district. Among other lode mines making sizable production in 1941 were the Madisonian, Heleene, New York Belle, and Emperor. Nearly the entire placer output from the district in 1941 came from the operation of a bucket dredge on the Norwegian Placer by Homer Wilson. The dredge is equipped with 5-cubic foot buckets and washed 150,000 cubic yards of gravel, from which 1,490 ounces of fine gold were recovered—a slight increase over 1940.

Pony district.—The output of the Pony district decreased sharply in 1941 from 1940, owing chiefly to inactivity of the Atlantic-Pacific group. The bulk of the output in 1941 came from the Mammoth mine, from which 17,585 tons of gold ore were concentrated, making copper concentrates containing 3,460 ounces of gold, 5,646 ounces of silver, and 80,353 pounds of copper. Among the other producers in the district were the Boss Tweed & Clipper and Ridgeway mines.

A little placer gold was recovered by sluicing.

Renova district. — The West Mayflower mine, owned and operated by the Anaconda Copper Mining Co., was again the largest gold producer in Montana; in 1941 it produced 19,166 tons of gold ore shipped crude to Washoe and containing 19,760 ounces of gold and 135,026 ounces of silver. The Mary Ingaber mine was operated by lessees.

Rochester (Rabbit) district.—The Lively Mining Co., operating the Hidden Treasure mine, was the largest producer in the Rochester district during 1941. Ore was shipped direct to smelters from several small mines.

Ruby Creek district.—A dry-land dredge recovered some gold in

1941 from tests on Gumbo Flats.

Sheridan district.—The Sheridan Gold Mining & Milling Co., operating the Uncle Sam, Toledo group, and Occidental properties in 1941, was again the largest producer in the Sheridan district. Gold ore was shipped crude from the Uncle Sam and Occidental mines, and lead ore was shipped crude from the Toledo group. Production was reported from 27 other lode mines in the district. The Traderhorn Mining & Construction Co. produced most of the placer gold recovered in the district in 1941. The company tested the Sievers Placer in

California Gulch and used a dry-land dredge.

Silver Star district.—The Victoria Mines, Inc., operated the Broadway mine and its 125-ton cyanide plant throughout 1941. The company treated 39,273 tons of gold ore in its mill and in addition shipped 654 tons of gold ore crude to smelters. The Green Campbell property, operated by the Green Campbell Mining Co., ranked second in gold output in the Silver Star district. During 1941 the company treated 6,731 tons of gold ore in its 25-ton amalgamation-concentration mill; this ore yielded 202 ounces of gold in amalgamation bullion and 988 ounces of gold in gold concentrates. The Golden Rod Mining Co. shipped crude to a smelter 490 tons of gold ore, which averaged over 2 ounces of gold to the ton. Among the other lode producers in the district in 1941 were the Aurora and Edgerton, both shipping gold ore crude to Washoe.

Tidal Wave district.—The metal output of the Tidal Wave district in 1941 came from several small lode mines and was mostly gold ore shipped crude to smelters. The most important producers were the High Ridge mine, Pollinger group, and Smith and Agitator mines.

Virginia City district.—There were 34 lode mines active in the Virginia City district in 1941. The five leading mines—East & West Mapleton, Bartlett, and Alameda mines and the Prospect and Easton-Pacific groups—produced an aggregate of 10,203 tons of gold and gold-silver ore, which contained 3,247 ounces of gold and 41,110 ounces of silver. Among the other leading producing lode mines were the U. S. Grant, Apex, Gold Bar, Marietta, and St. John properties. The Howe Dredging Co. was the largest producer of placer gold in the district in 1941. The equipment consisted of a dry-land dredge, and during 1941 about 20,000 cubic yards of gravel were washed. Several sluicing operations also were active in the district, of which the most important were the E. D. Howe operation in Wisconsin Gulch and the G. Gosta Miller operation in Cottonwood Creek.

Washington district.—The Gold Creek Mining Co. operated its floating connected-bucket dredge for 9 months of 1941 and recovered 1,785 fine ounces of gold from 499,010 cubic yards of gravel. The dredge is electrically powered and has sixty-two 4½-cubic foot buckets. The lode production in the Washington district came from gold ore shipped direct to a smelter, principally from the Missouri McKee mine.

MEAGHER COUNTY

Beaver Creek district.—The output from the Beaver Creek district in 1941 came mostly from operations of three dry-land dredges. The largest producer was the dredge operated by the T. C. Mines on Thomas Creek which handled 21,400 cubic yards of gravel and recovered 112 ounces of gold.

Camas Creek district.—Some gold was recovered by sluicing.

Carbonate district.—Some copper ore was shipped direct to a smelter from the Peterson Waite mine.

MINERAL COUNTY

Cedar Creek district.—The bulk of the placer gold output in the Cedar Creek district in 1941 came from dry-land dredging by the Superior Mines Co. The rest came from several small sluicing operations.

MISSOULA COUNTY

Coloma district.—Gold ore shipped crude to smelters was the chief source of metal output in the Coloma district in 1941. The Mammoth & East Mammoth, Dixie, and Dandy mines were the chief producers.

Copper Cliff district.—Gold ore from the Copper Cliff mine was the

only output from the Copper Cliff district in 1941.

Elk Creek district.—A little placer gold was recovered by sluicing. Nine Mile district.—The Weaver Dredging Co. operated a dragline dredge on Nine Mile Creek from March to May 19; on May 19, this company was dissolved and the Beaver Dredging Co., a partnership, resumed the operations. The new partnership also operated a dryland dredge on Nine Mile, Josephine, and McCormick Creeks. In all, 506,187 cubic yards of gold-bearing gravel from these operations were treated; 2,858 fine ounces of gold were recovered. The rest of the placer gold output was from sluicing, mainly on McCormick Creek.

PARK COUNTY

Emigrant Creek district.—The Emigrant Dredging Co. operated a floating electrically powered connected-bucket Yuba dredge, equipped with 110 10-cubic foot buckets, in Emigrant Gulch from August 15 to December 31, 1941; as a result, the output from the Emigrant Creek district increased sharply over 1940. During its period of activity the dredge washed 558,000 cubic yards of gravel. The remaining district

output came from several small sluicing operations.

New World district.—The McLaren Gold Mines Co., operating the Estelle property throughout 1941, milled 19,000 tons of gold ore, which made 675 tons of copper concentrates, containing about 6,500 ounces of gold, 5,000 ounces of silver, and 103,000 pounds of copper. The capacity of the mill was increased to 200 tons a day, and in 1942 the production is expected to reach 1,000,000 pounds of copper in concentrates containing substantial quantities of gold. The Irma Mines, Inc., treated zinc-lead ore in its 30-ton flotation mill and produced lead and zinc concentrates. In addition, the company shipped 164 tons of lead ore crude to East Helena. Some placer gold was recovered by sluicing.

Sheepeater (Jardine) district.—The Jardine Mining Co. operated the Jardine mine all of 1941. The company amalgamation and concentration mill treated 69,324 tons of gold ore, from which 7,436 ounces of gold were recovered. Gold ore shipped crude to a smelter totaled 145 tons. Extra equipment was installed in the mill during 1941, and surface mining was adopted in addition to underground mining.

PHILLIPS COUNTY

Little Rockies district.—The Ruby Gulch Mining Co. operated the Ruby Gulch mine throughout 1941 and treated 94,244 tons of gold ore by straight cyanidation. The 300-ton cyanide mill was operated at capacity all year. The Little Ben mine produced 24,847 tons of gold ore, which was cyanided by the Little Ben Mining Co. in its 150-ton mill. The mill was operated in 1941 at the rate of two shifts a day for 5 months and one shift a day for 7 months.

POWELL COUNTY

Big Blackfoot district.—The Western Montana Gold Mining Co. operated the Blackfoot Group intermittently during 1941, treated gold ore in its 30-ton concentration mill, and also shipped gold ore crude to Washoe. Other lode production in the Big Blackfoot district included gold ore amalgamated from the Sweepstake mine. Placer gold was recovered by sluicing on McCormick Creek.

Nigger Hill district.—Gold-silver ore concentrated from the Old Monarch mine represented virtually all the lode output from the Nigger Hill district in 1941. Some placer gold was recovered by

sluicing.

Ophir district.—Gold ore smelted from the Victory claim and placer gold recovered from several small sluicing operations comprised the

output from the Ophir district in 1941.

Pioneer district.—The bulk of the output in the Pioneer district in 1941 came from hydraulic operations by Francis Slaughtner and dryland dredging operations by the Master Mining Co., both at Gold Creek. The Pioneer Placer Dredging Co. did not resume operations

after closing down in 1940. Some lead ore was shipped crude to East Helena.

Washington Gulch district.—A dry-land dredge operated on the Peacock Placer in Washington Gulch in 1941. Gold ore was shipped

crude from the Grey mine to a smelter.

Zozell (Emery) district.—Crude gold, gold-silver, and lead ores from the Bonanza and Emery Consolidated mines contributed the bulk of the metal output of the Zozell district in 1941. In addition, the Emery Consolidated shipped zinc-lead ore to the Midvale concentrator in Utah. Other important producers were the Blue-Eyed Maggie, Emma Darling, and Hidden Hand mines; all shipped ore crude to smelters in 1941.

RAVALLI COUNTY

Curlew district.—The output from the Curlew district in 1941 came from the Curlew mine. Zinc ore was concentrated and over 500 tons

of zinc concentrates were shipped to a smelter.

Overwich district.—The J. L. Shiely Co. operated a dragline dredge from March 27 to November 30, washed 376,920 cubic yards of gravel, and recovered 2,237 fine ounces of gold. The equipment comprised a Bodinson floating washing plant and a 2½-cubic yard dragline. Some gold ore from the Washington mine was amalgamated.

SANDERS COUNTY

Eagle district.—The Jack Waite mine extends over the State line into Idaho. The property was operated throughout 1941 by the American Smelting & Refining Co. During this period the company treated (in its 300-ton flotation mill) 25,967 tons of zinc-lead ore containing 27,006 ounces of silver, 5,395,943 pounds of lead, and 2,783,662 pounds of zinc; the concentrates produced amounted to 3,136 tons of lead concentrates and 2,195 tons of zinc concentrates. In addition, 1,256 tons of lead ore, which contained about 1,775,000 pounds of lead and 7,585 ounces of silver, were shipped crude to East Helena.

Revais Creek district.—Copper ore from the Drake property was concentrated in 1941 by the Green Mountain Mining Co. in its 50-ton flotation mill. In addition to the concentrates produced, 118 tons of copper ore, containing 19 ounces of gold, 136 ounces of silver, and

34,451 pounds of copper, were shipped direct to Washoe.

Other districts.—Production was reported from the Dog Lake mine in the Plains district, the Ambassador mine in the Trout Creek district, and the Shoestring No. 1 and No. 2 and Razorback mines in the Vermillion district.

SILVER BOW COUNTY

The total value of the metal output from mines in Silver Bow County in 1941 gained \$3,324,006 over 1940; all metals except lead made gains, owing to increased production of copper and zinc-lead ores at Butte. The following table gives the output of mines in Silver Bow County, which includes the Butte or Summit Valley district, in 1940 and 1941 and the total from 1882 to the end of 1941.

Production of gold, silver, copper, lead, and zinc in Silver Bow County, Mont., 1940-41, and total, 1882-1941, in terms of recovered metals

	Mines pro- duc- ing	Ore (short tons)	Gold (lode and placer) (fine ounces)	Silver (lode and placer) (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)	Total value
1940 1941	58 50	3, 764, 610 4, 421, 641	25, 107 29, 485	8, 766, 398 8, 993, 693			71, 798, 000 76, 140, 400	
1882-1941		(1)	1, 952, 811	517, 777, 237	² 6, 006, 680	² 215, 736	² 1, 509, 891	2, 418, 107, 139

¹ Figures not available.

Short tons.

Butte or Summit Valley district.—All productive mines of the Anaconda Copper Mining Co. at Butte were brought up to capacity during 1941, with the result that the output of all metals but lead in-Lead production was slightly less than in 1940. In 1941, 2,869,051 tons of copper ore were sent to the copper concentrator at Anaconda compared with 2,737,572 tons in 1940, and 4,500 tons of mine-water precipitates were treated compared with 3,812 in 1940. In addition, the copper concentrator at Anaconda treated 405,862 tons of mine-dump material averaging about 1 percent copper and 512,930 tons of Old Works tailings and Upper Old Works tailings averaging slightly over 1 percent copper. Crude ore smelted totaled 36,596 tons, and tailings 32,881 tons. All zinc mines of the Anaconda Copper Mining Co. operated throughout 1941; the output consisted of 472,133 tons of zinc-lead ore treated at the Anaconda zinc concentrator compared with 362,479 tons in 1940. Development comprised at the copper mines 210,045 feet of drifts, 1,492 feet of shafts, and 20,599 feet of diamond drilling; at all zinc mines, 27,653 feet of drifts, 772 feet of shafts, and 2,414 feet of diamond drilling. tions were continued throughout 1941 at the Emma mine, leased from the Butte Copper & Zinc Co. by the Anaconda Copper Mining Co. The production—36,329 tons of zinc-lead ore compared with 77,353 tons in 1940—was treated at the Anaconda zinc concentrator. The output of the company included 12,193 tons of zinc-lead sulfide concentrates (zinc-lead middlings). The sulfide concentrates were re-treated at the Anaconda zinc concentrator.

Lessees of the Anaconda Copper Mining Co. operated several company properties; the most productive were the Poulin, which produced over 3,000,000 pounds of zinc, and the Black Rock group,

which produced 9,973 tons of silver ore.

Divide Creek district.—Small lots of silver ore were shipped crude to

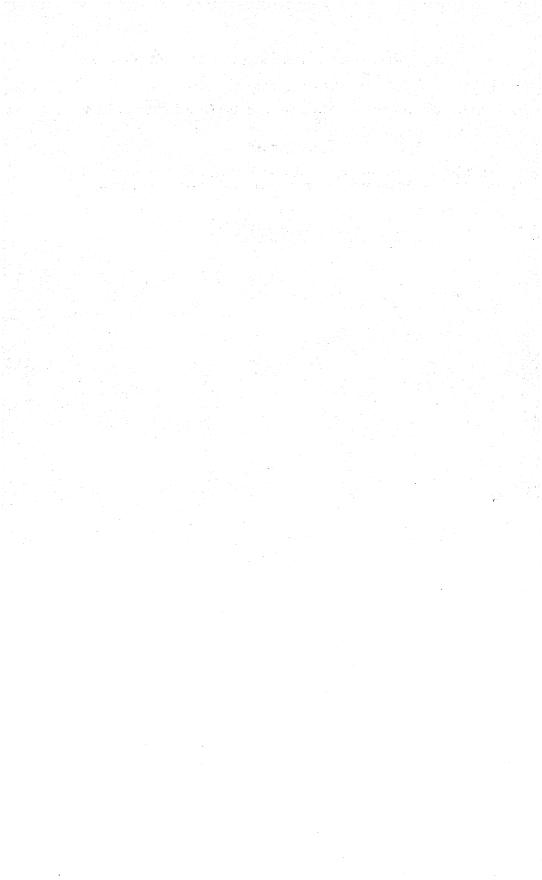
Washoe in 1941.

Highland district.—The Butte Highlands Mining Co. operated the Highlands group (Tilton) in 1941 and treated 18,339 tons of gold ore in its 75-ton cyanide plant. The ore yielded 6,317 ounces of gold and 517 ounces of silver.

Independence district.—Silver ore was shipped crude to Washoe from the Deadwood and Goldflint mines in 1941.

Melrose district.—Small lots of silver ore were shipped from the

Galla Nipper and Olson properties in 1941.


Silver Bow Creek district.—Some gold was recovered from sluicing on Silver Bow Creek in 1941.

STILLWATER COUNTY

Placer gold was recovered by sluicing in the Gold Butte district in 1941.

TOOLE COUNTY

Yellowstone River district.—A dry-land dredge operated on gravel bars along the Yellowstone River in 1941 and recovered some gold.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN NEVADA

(MINE REPORT)

By CHARLES WHITE MERRILL AND H. M. GAYLORD

SUMMARY OUTLINE

	Page	line in a company of the company of	Page
Summary	389	Mining industry	392
Calculation of value of metal production	. 389		393
Mine production by counties	392	Metallurgic industry	393
		Review by counties and districts	300

SUMMARY

The total value of gold, silver, copper, lead, and zinc recovered from ores, old tailings, and gravels in Nevada in 1941—\$38,959,420—was greater than in any year since 1918 (see fig. 1). Gold production decreased in 1941' compared with 1940, but both quantity and value of each of the other four metals increased. Copper production—157,822,000 pounds—exceeded all years but 1928, which was greater by only 1,054,883 pounds. Gold decreased 5 percent in both quantity and value; silver increased 13 percent in both quantity and value, copper 1 percent in quantity and 5 percent in value, lead 28 percent in quantity and 46 percent in value, and zinc 28 percent in quantity and 52 percent in value. The total value of the five metals was 5 percent greater than in 1940; of this total value, copper comprised 48 percent, gold 33, silver 10, zinc 6, and lead 3 percent.

White Pine County continued in 1941 to be the largest contributor to the mineral output of the State; it ranked again first in copper and second in gold and was third in silver. Humboldt County was again the leading gold producer. Lincoln County led in silver and

again in lead and zinc.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

Yardage figures used in measuring material treated in placer operations are "bank measure"; that is, the material is measured in the ground before treatment.

The value of metal production herein reported has been calculated

at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zinc 3
1937 1938 1939 1940	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0.7735 4.646+ 5.678+ 6.711+ 6.711+	Per pound \$0. 121 . 098 . 104 . 113 . 118	Per pound \$0.059 .046 .047 .050	Per pound \$0.065 .048 .052 .063 .075

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67 + (\$20.671835) per fine ounce. ² 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver.

Yearly average weighted price of all grades of primary metal sold by producers. \$0.64646464. \$50.71111111.

Mine production of gold, silver, copper, lead, and zinc in Nevada, 1937-41, and total, 1859-1941, in terms of recovered metals

Year	Mines produc- ing ¹		Ore, old tailings, etc. (short	ailings,		Silver (lode and placer)		
	Lode	Placer	tons)	Fine ounces	Value	Fine ounces	Value	
1937 1938 1939 1940	682 795 891 895 799	117 130 104 115 //8	7, 565, 466 5, 880, 021 6, 894, 999 8, 338, 259 8, 799, 635	281, 332 296, 434 361, 518 383, 933 366, 403	\$9, 846, 620 10, 375, 190 12, 653, 130 13, 437, 655 12, 824, 105	4, 864, 750 4, 355, 471 4, 316, 029 5, 175, 928 5, 830, 238	\$3, 762, 884 2, 815, 658 2, 929, 668 3, 680, 660 4, 145, 947	
1859-1941 2			(3)	24, 775, 446	545, 702, 286	580, 706, 330	534, 278, 401	

	Con	oper	Le	ad	Zi	ne	Total value	
Year	Pounds	Value	Pounds	Value	Pounds	Value	Total value	
1937 1938 1939 1940	149, 206, 000 92, 338, 000 133, 194, 000 156, 908, 000 157, 822, 000	\$18, 053, 926 9, 049, 124 13, 852, 176 17, 730, 604 18, 622, 996	18, 694, 000 9, 358, 000 8, 472, 000 14, 998, 000 19, 246, 000	\$1, 102, 946 430, 468 398, 184 749, 900 1, 097, 022	28, 472, 000 17, 888, 000 12, 456, 000 23, 666, 000 30, 258, 000	\$1, 850, 680 858, 624 647, 712 1, 490, 958 2, 269, 350	\$34, 617, 056 23, 529, 064 30, 480, 870 37, 089, 777 38, 959, 420	
1859-1941 3	4 1, 465, 494	420, 494, 522	4 516, 959	55, 108, 383	4 258, 839	35, 463, 284	1, 591, 046, 876	

1 Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to

property.

Compiled by Chas. W. Henderson, supervising engineer, field offices, Denver, Colo. From 1904 (when first satisfactory annual canvass of mine production was made) to 1941, inclusive, the output was as follows: Gold, 12,948,569.51 ounces, valued at \$301,219,053; silver, 292,293,481 ounces, \$197,120,178; copper, 1,463,568 tons, \$419,847,894; lead, 279,168 tons, \$32,471,821; zinc, 258,839 tons, \$35,463,284; total value, \$986,122,230.

Figures not available.

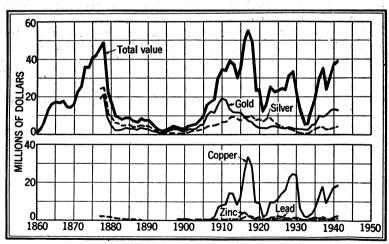


FIGURE 1.—Value of mine production of gold, silver, copper, lead, and zinc and total value in Nevada, 1860-1941

Gold.—Almost three-fourths of the recoverable gold output of Nevada in 1941 was derived from dry ores, chiefly gold ore, and virtually all the gold from base-metal ores came from copper ore; placer gold constituted 10 percent of the total. Five companies produced 45 percent of the State total gold, and the 10 leading gold-producing mines listed in the following table supplied 60 percent. Five of the mines listed (Getchell, Manhattan dredge, Northumberland, Gold Standard, and Dayton dragline dredge) have begun production since March 1, 1938; together they produced 32 percent of the State total in 1941.

Ten leading gold-producing mines in Nevada in	1941. i	n order of out	put

Rank	Mine	District	County	Rank in 1940	Operator	Source of gold
1 2	Getchell Ruth and Copper Flat Pit.	Potosi	Humboldt White Pine.	1	Getchell Mine, Inc Nevada Consolidated Cop- per Corporation.	Gold ore. Copper ore.
4	Coppermines group. Manhattan dredge		Nye	2 4	Consolidated Coppermines Corporation. Manhattan Gold Dredging Co.	Do. Dredge.
5 6 7 8	MaryGold Standard Northumberland Overman	Silver Peak Imlay Northumberland Comstock	Esmeralda Pershing Nye Storey	5 8 7 9	Prescott Lease (E. L. Cord). Standard Cyaniding Co Northumberland Mining Co Consolidated Chollar Gould & Savage Mining Co.	Gold ore. Do. Do. Do.
9	Dayton dredge	Silver City	Lyon	(1)	Dayton Dredging Co	Dragline dredge.
10	Keystone	Comstock	Storey	6	Dayton Consolidated Mines Co. and lessees.	Gold ore.

¹ Operation began Jan. 1, 1941.

Silver.—The 10 leading silver-producing mines in Nevada in 1941, listed in the following table, produced 57 percent of the State total recoverable silver; the first 2 yielded almost one-fourth of the total. As in preceding years, most of the silver was a byproduct of ore mined chiefly for other metals; only 21 percent was derived from straight silver ore.

Ten leading silver-producing mines in Nevada in 1941, in order of output

Rank	Mine	District	County	Rank in 1940	Operator	Source of silver
1 2	Nivloc	Silver Peak Pioche	Esmeralda Lincoln	1 2	Desert Silver, Inc	Silver ore. Zinc-lead ore.
3	Pansy Lee	Barrett Springs.	Humboldt	25	West Coast Mines, Inc	Gold-silve
4 5 6	Mizpah Bristol Silver Dan Tucker	Tonopah Jack Rabbit Sand Springs	Nye Lincoln Churchill	3 9 4	Various lessees	Do. Lead ore. Gold-silver
7	El Dorado-Rover	Eldorado Can-	Clark	6	El Dorado-Rover Mining	Do.
8	group. Crown Point Overman	yon. Comstockdodo	Storeydo	7 8	Sutro Tunnel Coalition, Inc. Consolidated Chollar Gould & Savage Mining Co.	Do. Gold ore.
10	Gore	Taylor	White Pine.	54	Various lessees	Silv er ere.

Copper.—Nearly 99 percent of the recoverable copper output of Nevada in 1941 came from mines operated by the following companies: The Nevada Consolidated Copper Corporation, working the Ruth mine at Ruth and the open pit at Copper Flat (in the Robinson district, White Pine County); the Consolidated Coppermines Corporation, working the Coppermines group at Kimberly (also in the Robinson district); and the Mountain City Copper Co., working the Mountain City mine at Mountain City (in the Cope district, Elko County).

Lead and zinc.—The Combined Metals Reduction Co. in the Pioche district, Lincoln County, produced 92 percent of the recoverable zinc and 63 percent of the recoverable lead output of Nevada in 1941.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Nevada in 1941, by counties, in terms of recovered metals

		s pro- ing ¹				lold				er (lode and
County			I	∕ode	P	lacer	Т	otal		placer)
	Lode	Placer	Fine ounces	Value	Fine ounces	Value	Fine ounces	Valu	e Fin	
Churchill	28 49 2		9, 586 17, 755	\$335, 510 621, 425			9, 586 17, 755	\$335, 621,	425 377,	
Douglas Elko Esmeralda	55 65	1 5 3	4, 169 34, 393	525 145, 915 1, 203, 755	2, 276 18	79, 660 630	6, 445 34, 411	225, 1, 204,	385 794,	907 142, 156 014 564, 632
Eureka Humboldt Lander	43	11 7 6	75, 779	100, 730 2, 652, 265 209, 755	521	18, 235	76, 300	2, 670, 232,	500 597,	375 424, 800
Lincoln Lyon Mineral	36 47 63	4 2	5, 751 6, 167	201, 285 215, 845 76, 580		370, 615	5, 751 16, 756		285 1, 251, 460 45,	803 890, 171 304 32, 216
Nye	120 54 46 20 97	11 22 1	26, 067 18, 562 42, 975 1, 470	912, 345 649, 670 1, 504, 125 51, 450	21, 045 1, 204 6 27	736, 575 42, 140 210 945	47, 112 19, 766 42, 981 1, 497	1, 648, 691, 1, 504, 52,	920 601, 810 59, 335 539, 395 7,	909 428, 024 957 42, 636 058 383, 330 478 5, 318
Total, 1940	799 895	78	329, 506	2, 651, 530 11, 532, 710 12, 110, 735	36, 897 37, 912	1, 291, 395	366, 403	2, 654, 12, 824, 13, 437,	105 5, 830.	464 503, 797 238 4, 145, 947 928 3, 680, 660
		Coppe	er	1	Lead			Zinc		
County	Poun	đs	Value	Poun	ds	Value	Pound	ls	Value	Total value
Churchill	4	, 000	\$4	72 280	, 000	\$15, 960	860	.000	\$64, 500	\$650, 759 970, 507
Douglas Elko Esmeralda	21, 820	2,000	2, 574, 70 2		,000	76, 836 1, 254		,000	36, 000	913 3, 055, 327 1, 770, 507
Eureka Humboldt Lander	70	, 000), 000), 000	8, 20 63, 75	1,002	,000 ,000 ,000	2, 850 57, 114 9, 576	8		600	148, 644 3, 160, 674 373, 417
Lincoln Lyon Mineral	62	5, 000 2, 000 5, 000	109, 20 7, 3 70	38 15, 558 16		886, 806	28, 782	,000	2, 158, 650	4, 246, 180 625, 992 141, 013
Nye Pershing Storev	12 10	, 000 , 000	1, 41 1, 18	16 386	, 000 , 000	22, 002				2, 100, 362 740, 756 1, 887, 665
Washoe White Pine	12	2,000 1,000	1, 41 15, 853, 77		,000	342 5, 244				59, 471 19, 027, 233
Total, 1940	157, 822 156, 908	2, 000 3, 000	18, 622, 99 17, 730, 60	96 19, 246 94 14, 998		1, 097, 022 749, 900	30, 258 23, 666		2, 269, 350 1, 490, 958	38, 959, 420 37, 089, 777

¹ Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.

MINING INDUSTRY

Expansion of production at the three large copper mines in Nevada in 1941 explains most of the increase in tonnage of ore treated compared with 1940. Production of copper ore and of dry and siliceous ore each increased 11 percent. Cessation in 1940 of old-tailings cyanidation by the Bradshaw Syndicate, Inc., in the Goldfield district,

Esmeralda County, and the Caliente Cyaniding Co. in the Ferguson district, Lincoln County, terminated the large-scale working of old tailings in the State; the quantity of old tailings treated declined

98 percent in 1941 compared with 1940.

The connected-bucket dredge of the Manhattan Gold Dredging Co. in the Manhattan district, Nye County, was again the largest producer of placer gold and the fourth-largest of total gold in the State; the dragline operation started January 1, 1941, by the Dayton Dredging Co. made the second-largest placer-gold and the ninth-largest total-gold output in the State in 1941. In addition to these large placer operators, 2 dragline dredges, 6 nonfloating washing plants with mechanical excavators, 1 hydraulic mine, 52 (24 dry) small-scale hand-method mines, and 15 drift mines were in operation. Quick-silver consumption at placer mines was 405 pounds in 1941.

ORE CLASSIFICATION

The following table classifying ores produced in Nevada in 1941 shows that 78 percent of the tonnage of ore (including old tailings) sold or treated was copper ore, 14 percent gold ore and old tailings, 5 percent gold-silver ore and old tailings, nearly 2 percent zinc-lead ore, 1 percent silver ore and old tailings, and the remainder lead ore and old tailings and zinc ore.

Details of ore classification are given in the chapter of this volume

on Gold and Silver.

Ore and old tailings sold or treated in Nevada in 1941, with content in terms of recovered metals

games	Material trea		Gold	Silver	A	T	7:_	
Source	Ore	Old tailings	200	Silver	Copper	Lead	Zinc	
	Short	Short	Fine	Fine	21.45	11 4 1.		
Dry and siliceous gold ore	tons 1, 248, 162	tons 2,445	ounces 205, 453	ounces 518, 177	Pounds 101, 400	Pounds 67, 400	Pounds	
Dry and siliceous gold-silver ore	413, 380		50, 693					
Dry and siliceous silver ore	112, 808		5, 002					
	1, 774, 350		261, 148	4, 184, 776	216, 500	1, 473, 400		
Copper ore	6, 850, 444		65, 510					
Lead ore	26, 758		964	681, 146	915, 800			
Zinc ore Zinc-lead ore	1, 488 136, 942		1,884	690, 597	39, 900	51, 900 13, 123, 600		
Total, lode mines Total, placers	8, 789, 982	9,653	329, 506 36, 897	5, 816, 205 14, 033	157, 822, 000	19, 246, 000	30, 258, 000	
Total, 1940	8, 789, 982 7, 890, 476		366, 403 383, 933	5, 830, 238 5, 175, 928				

METALLURGIC INDUSTRY

Of the 8,799,635 tons of lode material from Nevada sold or treated during 1941, 80 percent went to concentrating mills, 18 percent to amalgamation and cyanidation mills, and 2 percent to smelters; of the total, only 0.1 percent was old tailings—all amalgamated, cyanided, or smelted. Flotation was employed at concentration mills to the virtual exclusion of gravity concentration. Of the gold recovered as

bullion, cyanidation supplied 88 percent and amalgamation 12 percent; of the silver recovered as bullion, 99 percent was derived by cyanidation and 1 percent by amalgamation. The total quantity of crude ore shipped to smelters in 1941 was virtually unchanged from 1940. The Combined Metals Reduction Co., Pioche district, Lincoln County, began to operate its 600-ton selective-flotation mill in September 1941; the mill was laid out so that capacity could be tripled by the addition of two more grinding and flotation units. Operation of the new 150-ton flotation mill built by the West Coast Mines Co., Inc., in the Barrett Springs district, Humboldt County, was begun February 1. Construction of a 350-ton flotation mill by the International Smelting & Refining Co. in the Battle Mountain district, Lander County, neared completion at the end of 1941. Fire destroyed the Black Mammoth 150-ton cyanide mill in the Silver Peak district, Esmeralda County, September 23, 1941.

Quicksilver consumption in Nevada in 1941 at mills using ama¹gamation was 2,490 pounds in recovering 25,757 ounces of gold and 19,120 ounces of silver from 250,702 tons of material treated.

Data obtained on cyanide consumption in 1941 at Nevada mills are nearly complete. In the treatment of 1,202,361 tons of ore, 1,500 tons of old tailings, and 344 tons of concentrates, 290,182 pounds of 91-percent sodium cyanide and 1,782,513 pounds of commercial-grade calcium cyanide (50-percent NaCN equivalent) were used, with a recovery of 166,936 ounces of gold and 1,841,537 ounces of silver; in terms of 98-percent NaCN the consumption was 1,178,900 pounds, or 0.98 pound to the ton of material treated compared with 0.74 pound in 1940 and 0.64 pound in 1939. The declining proportion of old tailings treated explains the rising average consumption of cyanide in the State.

Mine production of metals in Nevada in 1941, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated	Gold	Silver	Copper	Lead	Zinc
Ore and old tailings amalgamated	Short tons 250, 702	Fine ounces 25, 757	Fine ounces 19, 120	Pounds	Pounds	Pounds
Ore, old tailings, sands, slimes, and concentrates cyanided	1, 425, 740	185, 170	2, 236, 009			
Flotation Gravity Ore and old tailings smelted	325, 813 267 201, 669	76, 566 1, 076 40, 937	1, 602, 597 17, 439 1, 941, 040	147, 146, 900 22, 300 10, 652, 800	14, 424, 700 38, 900 4, 782, 400	29, 270, 000 988, 000
Total, lode mines	201, 000	329, 506 36, 897	5, 816, 205 14, 033	157, 822, 000	19, 246, 000	30, 258, 00
Total, 1940		366, 403 383, 933	5, 830, 238 5, 175, 928	157, 822, 000 156, 908, 000	19, 246, 000 14, 998, 000	30, 258, 00 23, 666, 00

Custom mills were operated in various parts of Nevada during 1941; all used the cyanide process. Those of importance were at Silver City, Lyon County; Westgate, Churchill County; Gold Point, Esmeralda County; Adelaide, Humboldt County; and Kincaid, Mineral County. Most of the custom mills obtained part of their mill feed from mines controlled by the mill operators. Large quantities of ore and concentrates were shipped out of the State, principally to lead and copper smelters in the Salt Lake Basin. The

Bauer (Utah) plant of the Combined Metals Reduction Co. treated all the company zinc-lead ore mined at Pioche, Lincoln County, until September, when the new Pioche mill was put into operation; the Pioche mill treated ore from its neighbor, the Black Prince mine, upon a custom basis. The McGill copper smelter at McGill in White Pine County, operated by the Nevada Consolidated Copper Corporation, continued in 1941 to be the only smelter and the most important metallurgical plant in the State; the concentrator (daily capacity increased in 1941 from 18,000 to 20,000 tons), operated by the same company, was the largest mill in the State. The Consolidated Coppermines Corporation shipped its copper ore to the McGill concentrator for treatment.

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Nevada in 1941, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

	Mate treat			vered in Ilion	Conc	entrates	smelted metal	and reco	vered
County	Ore 1	Old tail- ings	Gold	Silver	Con- cen- trates pro- duced	Gold	Silver	Copper	Lead
Churchill	Short tons 2, 856 24, 018	Short tons	Fine ounces 1,085 1,084	Fine ounces 886 1, 592	Short tons 14 298	Fine ounces 121 3,057	Fine ounces 309 44, 088	Pounds	Pounds
Elko Esmeralda Humboldt Lander	393 92, 233 15, 665 1, 781	60	108 2, 274 3, 141 577	102 920 1,545 117	37 1	1 473 1	35 266 1		
Lyon Mineral Nye Pershing Storey	13, 885 271 12, 417 4, 833 80, 996	7	5, 322 88 4, 371 2, 611 4, 201	589 121 6, 686 2, 415 3, 838	37 1 1	173 2 4	51 2 2	800	
Washoe White Pine	970		861 20	304 4					
Total, 1940	250, 335 117, 770	367 3, 24 0	25, 757 23, 131	19, 120 24, 741	390 662	3, 832 4, 903	44, 754 98, 674	1,000 2,300	4, 500
	<u>' </u>	CYA	LADINA	TION MII	LLS	<u> </u>		<u>'</u>	
Churchill Clark Douglas	34, 476 71, 098	18	8,042 9,206	435, 467 236, 118	7 31	77 490	914 9, 247		
Elko Esmeralda Humboldt	2, 904 183, 198 457, 587	300	1,435 27,361 66,014	18, 532 772, 612 119, 676	2	3			
Lander Lyon Mineral	15, 392 16, 323 2, 262	75	2,655 622 1,047	6, 258 38, 492 7, 288	2				
Nye Pershing Storey Washoe	104, 844 249, 044 283, 291 159	1, 500 268	15,772 14,846 37,754 413	39, 306 25, 355 530, 501 206	2	31	17		
White Pine	1, 420, 579	3, 000 5, 161	2 185,170	6, 195 2, 236, 009	42	601	10, 189		
Total, 1940	1, 291, 718	438, 728	200,913	2, 101, 800	638	1, 514	11,080	1,000	1, 100
1941	1, 670, 914 1, 409, 488	5, 528 441, 968	210,927 224,044	2, 255, 129 2, 126, 541	432 1,300	4, 433 6, 417	54, 943 109, 754	1,000 3,300	5, 600

¹ Figures under "Ore" include both raw ore and concentrates amalgamated or cyanided, but not raw ore concentrated before amalgamation or cyanidation of concentrates.

Mine production of metals from concentrating mills in Nevada in 1941. in terms of recovered metals

BY COUNTIES

and the second			Concen	trates smel	ted and reco	vered metal	
	Ore treated	Concen- trates produced	Gold	Silver	Copper	Lead	Zinc
			Fine	Fine			
		Short tons	ounces	ounces	Pounds	Pounds	Pounds
Clark	22, 427	250	967	62, 325	2, 300	92, 400	
Elko	123, 637	30, 996	650	113, 511	12, 779, 000	859, 900	480, 000
Eureka	27	16		33		7, 100	8,000
Humboldt	39, 598	7,882	5, 314	453, 508	60, 500	978, 100	
Lander	2,600	371	162	12,657	24, 400	18, 100	
Lincoln	129, 844	47, 913	1,885	600, 107	23, 800	12, 212, 100	28, 782, 000
Mineral Nye	1, 326	88 614	10	27, 796 85, 293	2, 200 8, 100	72,000	
Nyt Pershing	12, 333 50	014	10	194	8, 100	220,600	
White Pine	6, 710, 255	237, 515	64, 218	209, 669	134, 267, 700	3, 300	
	7, 042, 097	325, 648	73, 209	1, 565, 093	147, 168, 200	14, 463, 600	29, 270, 000
Total, 1940	6, 293, 384	316, 788	64, 341	1, 051, 015	143, 515, 600	11, 731, 200	22, 468, 000
	ву (CLASSES	OF CON	CENTRA	TES		
Dry gold		149	43	3, 522	22, 100	100	
Dry gold Dry gold-silver Dry silver Copper		9, 166	1, 941 1	85, 168 219	26, 700	208, 400	
Conner		267, 261	64, 582	229, 314	147, 032, 400	2, 200	
Lead		20, 058	6, 428	1, 139, 407	82, 400	13, 573, 100	
Zine		29, 013	214	107, 463	4, 600	679, 800	29, 270, 000
		325, 648	73, 209	1 565 093	147, 168, 200	14, 463, 600	29, 270, 000

Gross metal content of concentrates produced from ores mined in Nevada in 1941, by classes of concentrates

Class of concentrates	Concen-	Gross metal content									
Class of concentrates	trates produced	Gold	Silver	Copper	Lead	Zinc					
Dry gold	Short tons	Fine ounces 4, 475	Fine ounces 58, 430	Pounds 24, 585	Pounds 283	Pounds					
Dry gold-silver Dry silver	9, 167 1	1,942 1	85, 203 219	28, 489	333, 702						
Copper Lead Zinc	267, 261 20, 058 29, 013	64, 582 6, 428 214	229, 314 1, 139, 407 107, 463	150, 578, 106 100, 325 5, 745	3, 035 14, 139, 109 717, 779	1, 728, 673 32, 529, 934					
Total, 1940	326, 080 318, 088	77, 642 70, 758	1, 620, 036 1, 160, 769	150, 737, 250 147, 614, 150	15, 193, 908 12, 392, 556	34, 258, 60 26, 834, 32					

Mine production of metals from Nevada concentrates shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

	Concen- trates	Gold	Silver	Copper	Lead	Zinc
	Short tons	Fine ounces	Fine ounces	Pounds	Pounds	Pounds
Churchill		198	1, 223	0 700	92, 400	
Clark		4, 514 654	115, 660 113, 557	2,500 12,779,000	859, 900	480,000
Esmeralda		473	266	12, 779,000	009, 900	400,00
Eureka		419	33		7, 100	8,00
Humboldt		5, 315	453, 509	60, 500	978, 100	0,00
Lander		162	12, 657	24, 400	18, 100	
Lincoln		1,885	600, 107	23, 800	12, 212, 100	28, 782, 00
Lyon		173	51	800	12, 212, 100	20, 102, 00
Mineral		5	27, 798	2, 200	72,000	
Nve		45	85, 312	8, 100	220,600	
Pershing			194	200		
White Pine		64, 218		134, 267, 700	3, 300	
	326, 080	77, 642	1, 620, 036	147, 169, 200	14, 463, 600	29, 270, 00
Γotal, 1940	318, 088	70, 758	1, 160, 769	143, 518, 900	11, 736, 800	22, 468, 00
	BY CLAS	SES OF CO	ONCENTR	ATES		
Dry gold	580	4, 475	58, 430	23, 100	100	
Dry gold-silver	9, 167	1,942	85, 203 219	26, 700	208, 400	
Dry silver Copper	267, 261	64, 582		147, 032, 400	2, 200	
Lead	207, 201	6, 428	1, 139, 407	82, 400	13, 573, 100	
Zinc	29, 013	214	107, 463	4,600	679, 800	29, 270, 00
				147, 169, 200	14, 463, 600	29, 270, 00

Gross metal content of Nevada crude ore and old tailings shipped to smelters in 1941, by classes of material

	Material	shipped					
Class of material	Ore	Old tailings	Gold	Silver	Copper	Lead	Zinc
Dry and siliceous gold Dry and siliceous gold-silver Dry and siliceous silver Copper Lead Zinc Zinc-lead	Short tons 34,608 80,508 29,482 24,879 26,319 1,488 260	Short tons 38 3, 480 527 80	Fine ounces 26, 229 11, 546 1, 211 991 960	Fine ounces 72, 901 810, 867 432, 870 30, 768 593, 634	Pounds 106, 183 21, 737 9, 766 9, 917, 835 1, 041, 227	Pounds 84, 443 239, 068 137, 491 7, 067 4, 649, 648 73, 588 76, 151	Pound 13 1, 054, 72 154, 40
Total, 1940	197, 544 197, 438	4, 125 5, 565	40, 937 51, 219	1, 941, 040 1, 875, 596	11, 096, 748 13, 909, 373	5, 267, 456 3, 697, 184	1, 209, 26 1, 613, 29

Mine production of metals from Nevada crude ore and old tailings shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

	Materia	l shipped	ŧ				
	Ore	Old tailings	Gold	Silver	Copper	Lead	Zinc
Churchill	Short tons 96	Short tons	Fine ounces 261	Fine ounces 5, 743	Pounds	Pounds	Pounds
Clark Elko Esmeralda	3, 811 24, 168 -4, 317	41	2, 951 1, 972 4, 285	23, 716 66, 986	1,500 9,041,000	187, 600 488, 100	860,00
Eureka Humboldt Lander	6, 676 2, 960 11, 775		2,878 1,309 2,599	20, 213 41, 575 22, 558	2,000 4,000 9,500	22, 000 42, 900 23, 900	
Lincoln Lyon Mineral	51, 940 346 2, 497	110	2, 599 3, 866 50 1, 048	75, 835 651, 696 406 32, 753	515, 600 902, 200 61, 200 3, 800	149, 900 3, 345, 900 172, 000	
NyePershingStorey	17, 354 1, 615 158	450	5, 879 1, 105 1, 020	463, 582 31, 765 4, 671	3, 900 9, 800	165, 400 90, 000	
WashoeWhite Pine	244 69, 587	3, 509	196 11, 518	6, 960 492, 581	12, 000 86, 300	6, 000 88, 700	128, 000
Total, 1940	197, 544 197, 438	4, 125 5, 565	40, 937 51, 219	1, 941, 040 1, 875, 596	10, 652, 800 13, 389, 100	4, 782, 400 3, 261, 200	988, 000 1, 198, 000
	ву с	LASSES	OF MA	TERIAL			
Dry and siliceous gold	34, 608 80, 508	38 3, 480	26, 229 11, 546	72, 901 810, 867	99, 800 18, 900	59, 800 193, 700	<u> </u>
Dry and siliceous silver Copper Lead	29, 482 24, 879 26, 319	527 80	1, 211 991 960	432, 870 30, 768 593, 634	7, 300 9, 619, 200 907, 600	101, 300 4, 300 4, 318, 000	
Zine. Zine-lead	1,488 260					51, 900 53, 400	864, 400 123, 600
	197, 544	4, 125	40, 937	1, 941, 040	10, 652, 800	4, 782, 400	988, 000

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Nevada in 1941, by counties and districts, in terms of recovered metals 1

County and district 1	Mine duc	s pro- ing ²	Ore and old				Silver (lode and	Copper	Lead	Zinc	Total
	Lode	Placer	tailings	Lode	Placer	Total	placer)3				value
Churchill County:			Short tons	Fine ounces	Fine ounces	Fine ounces	Fine ounces	Pounds	Pounds	Pounds	
Alpine Broken Hills			50 1,087	23 9		23	15, 092				\$812 11,047
Desert Dixie Vallev	1 2		2, 747	1.814		1,814	2, 233				65, 078
Eastgate	4		1,872	511		511	5, 348				21, 688
FairviewFireball	2		4,041	581		581	46, 436				53, 356 250
Holy Cross	. ī		92	14		14	5, 179				4, 173
IXL Sand Springs	6		20, 688	5, 765		5, 765	298, 499				35 414, 041
WonderClark County:	6		5, 127	859		859	70, 512				80, 207
Crescent	. 3		136	89		89	232		700		3, 320
Eldorado CanyonGold Butte	9		103, 837 2, 850	11, 956 36		11, 956 36	367, 802 14	800	5, 400		680, 410 1, 270
Searchlight	20		4,092	3, 908		3,908	4, 524	2, 100	5,000		140, 530
SunsetYellow Pine	1 15.		10, 073	15 1, 751		15 1,751	4, 510	1, 100	268, 900	860, 000	528 144, 449
Douglas County:	-	_	10,00	1,101			1,010	1,100	200,000	200,000	1
Mount SiegelSilver Glance	2	1	11	15	. 11	11 15	4				385 528
Elko County:	1 -						-				
Centennial Contact	2		750 112	330		. 330	900 253	13, 500	9, 200		12,714 1,843
Cope	10	2	132, 784	538	2, 128	2,666	41, 244	21, 511, 600	8, 900		2, 661, 515
Delano	1 6		1, 433 1, 510	11 2		11 2	29, 205 232	8, 300 187, 500	340,000		41, 854 22, 360
Ferber	1		30	1		1 170	83	2, 700 300			413
Gold Circle	. 8	- 1	2,857	1,452	145	1, 453 152	21, 493	300			66, 174 5, 354
Ivanhoe	1		46	8 347		347	782				295
Jarbidge Lime Mountain	1 7		459 2, 960	1, 247		1, 247	3, 375	70, 800			12, 701 54, 399
Mardis	. 1		62	186		186	121	500	852, 300		6,658
Merrimac	8		7, 432 13	31		31	91, 152	16, 100	1, 800	480, 000	152, 385 167
Rock Creek	l ī		1 1	1		1	246		1		178

See footnotes at end of table.

Mine production of gold, silver, copper, lead, and zinc in Nevada in 1941, by counties and districts, in terms of recovered metals—Continued

County and district		es pro- cing	Ore and old		Gold		Silver (lode and	Copper	Lead	Zinc	Total
	Lode	Placer	tanings	Lode	Placer	Total	placer)	Соррог	Load	2400	value
Elko County—Continued. Spruce Mountain Tecoma			Short tons 581	Fine ounces	Fine ounces	Fine ounces	Fine ounces 8,744 111	Pounds 8, 600	Pounds 123, 000	Pounds	\$14,3 <u>4</u>
Tuscarora	2	1	64	4	2	6	1,769 38	100	5, 800 1, 000		1,81 8
Desert	- 8 5		181 684	216 412		216 412	436 6, 293				7, 87 18, 89
Goldfield Hornsilver	18		3, 019 12, 331	3, 288 3, 608		3, 288 3, 608	14 1,807 29,080	2,000	400 2, 200		50 116, 62 147, 08
Klondyke Lida Lone Mountain	- 1	1	91 4 6	42 6 1	15	42 21 1	4, 541 17 28		12, 400		5, 40 74 5
Montezuma Oneota Palmetto	- 1		111 775 47	1 106 16		1 106 16	2, 101 73 56		400		1, 55 3, 76 60
Silver Peak Sylvania Tonopah 4	- 17 - 1	2	170, 359	26, 675	3	26, 675 3 8	748, 973		6, 600		1, 466, 60 10 70
Eureka County: BuckhornCortez	- 1 5		1, 180 1, 389	329 839		329 839	3, 347 9, 145	2, 000	19, 600	8, 000	13, 89 37, 82
Eureka Mount Hope Safford	22 1 3	11	3, 931 8 195	1, 663	411	2, 074	23, 915 4	1,000	21, 600	3,000	90, 82 12
Iumboldt County: Awakening Barrett Springs	6		11, 291	1, 305		47 1, 305	5, 224 1, 021	1,000 900	8,800		5, 98 46, 50
Battle Mountain 6		1	40, 900	6, 291	390	6, 291 390 9	469, 551 52 45	67, 000	999, 800		618, 98 13, 68 37
Donnelly Florence Gold Run	1	3	54 29 100, 739	47 9 6, 596	50	47 9 6, 646	65 1, 228 117, 371		1, 200		1, 69 1, 25 316, 07
Iron Point Leonard Creek National	1	2	98 744	755	16	16	1, 282		300		9: 5:
Paradise Valley	1 4		48	755 432		755 432	3, 026 491		100		28, 58 15, 46

	Sawtooth	1		(7)			13	13	3				457	
	Sulphur			(7)			43	43	15				1, 516 2, 292	
;	Varyville		2		323	57		57	153	1,500			29, 118	
•	Warm Springs	.1	5	1	3, 575	817	9	826	193	600			20, 110	
Lane	der County:	i		_				0 704	57, 223	456, 100	142,000		191, 296	
]	Battle Mountain		19	3	11,691	2, 380	154	2, 534 1, 975	23, 134	81, 300			96, 252	
	Bullion	-	12	3	10, 249	1, 476	499	213	2, 665	2,600			10, 056	33
	Hilltop	-	3		352 92	213 16		16	100	2,000	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		631	GOLD
	Kingston	-	2		7, 000	931		931	5, 237				36, 309	È
	McČoy	-	3		2, 154	970		970	803				34, 521	. •
	New Pass	-	2		25	""			2,372				1, 687	T/A
	Reese River	-1	2		20									SILVER,
	oln County: Chief	I	1		93	85		85	1,080				3, 806	5
	Comet	1	ī		911	98		98	3, 510	400	8, 400		6, 452	Ħ
	Eagle Valley	1	2		70	44		44	270				1, 732	∺
	Ferguson		4		1,063	1,554		1, 554	2, 807	1,000	3, 800		56, 721	3.
	Jack Rabbit	[]	3		18, 663	179		179	305, 799	887, 000	1, 880, 900		435, 599	
	Pahranagat		7		284	14		14	6, 300	2,000	16, 900		6, 169 7, 310	COP
	Pennsylvania		2		301	163		163	2,025	1, 400		00 700 000	3, 728, 186	Ŧ
	Pioche	-1	15	l	160, 505	3, 614		3, 614	929, 884 128	34, 200		28, 782, 000	205	. ''
	Tempiute	.	1		4				128		2,000 -		203	丟
Lvo	n County:	1	_	1 -			10	90	107				3, 226	্ম
-	Buckskin	-	1	1	222	80	10	80	107				35	7.1
	Cambridge		1		7. 454	994		994	16, 854				46, 775	TE
	Palmyra		4		7, 257	300		300	101	800			10, 663	E
	Pine Grove		24	3	19, 761	3, 771	10, 579	14, 350	16,068				513, 676	AD
	Silver City		- 8		381	27		27	114	61, 200			8, 248	٠٠٠
	Yerington	-1	٠		00-									
TAT II	Aurora	1	8	(7)	236	240	3	243	2, 191				10, 063	AND
	Bell		ž		270	154		154	187				5, 523	3
	Columbus	21	4		1,805	501		501	20, 205	800			40, 131 6, 127	0
	East Walker]	6		648	170		170	249		-		4,027	N
	Garfield		1		224	69		69	2, 267		72,000		39, 379	ZIN
	Hawthorne		10	1	2,000	425	4	429	28, 125	2, 200			3, 473	Z
	Marietta	-1	5		131	31		31	2, 707	1, 100			430	C
	Pilot Mountains		3		37			12	28 121	1, 100	-		506	
	Rand.		3		42	12 93		128	897	300	200		5, 164	Z
	Regent	-	7	1	182	247	1	247	2, 652	100			10, 965	
	Santa Fe	-1	5		568 288	238		238	8, 359	1, 100			15, 225	Z
	Silver Star	-1	9		200	200		200	0,000	1,100	,		,	Ħ
	e County:	į.			688	465	1	465	270		l		16, 467	. ≤
	Athens	-	2		552	123		123	3,392				6, 717	VAD
	Bellehelen	-	4		515	6		6	7, 138				5, 286	×
	BelmontBullfrog	-	16		2, 571	735		735	1, 281	100			26, 648	
			- 1	1	3			1	14	1	المحمد فيستنا		1 45	
	Cactus Range		•			_								

See footnotes at end of table.

Mine production of gold, silver, copper, lead, and zinc in Nevada in 1941, by counties and districts, in terms of recovered metals—Continued

County and district		Mines pro- ducing		Gold			Silver (lode and	Copper	Lead	Zine	Total
	Lode	Placer	tailings	Lode	Placer	Total	placer)	Copper	Leau	Zinc	value
Nye County—Continued.	1		Short tons	Fine ounces	Fine ounces	Fine ounces	Fine ounces	Pounds	Pounds	Pounds	
Cloverdale	2	1	79	18	2	20	495				1, 0
Current Creek	2	l	168	47	l	47	38				1, 6
Eden	1	1	10	i		l i					1, (
Ellendale.	1		92	22		22	21				7
Fairplay			209	46		46	1.620				2.7
Flourine	1		29				415				-, ;
Golden Arrow	3		694	264		264	8, 290				15. 1
Gold Reed	2		33	6	1	6	374				- ,
Hannapah			19	2		2	685				
Jackson			213	113		113	537				4. 3
Jefferson Canyon	1		1				28				-,,
Johnnie		1	90	13	8	21					7
Mammoth	3		333	43		43	4, 597				4. 7
Manhattan	21	8	4, 480	3, 106	21,034	24, 140	9,079	200			851. 3
Millett	4		118	99		99	2, 527				5, 2
Morey	2		784	48		48	12, 828		500		10, 8
Northumberland.			97, 177	12, 737		12, 737	9,024				452.
Phonolite			5,000	1,506		1, 506	18,079				65.
Quartz Mountain			420	47		47	6, 882	2, 900	120, 300		13.
Reveille			44	1		1	987				,
Round Mountain	5		7, 376	1, 888		1,888	5, 486				69.
San Antone	1		. 44	50		50	114				1.
Silver Bow	3		662	96		96	12, 880				12,
Tonopah 4	7		11, 202	4, 113		4, 113	376, 939	400	5,000		412,
Troy	1		606	191		191	38				6.
Tybo.	8		2, 223	166		166	30, 475	300	39, 600		29,
Union	7	1	12, 426	105	1	106	87, 244	8, 100	220, 600		79.
Willow Creek	1		41	9		9	28		l		
ershing County		_ [:				l		
Antelope	3	2	580	260	125	385	194		l. 		13.
Central 6	3		517	32		32	19,045	1,800	54, 400		17,
HaystackImlay			141	56		56	24				1, 9
Imlay Kennedy	2	8	246, 233	14, 557	215	14,772	15, 061				527, 7
Placerites	9		536	254		254	5, 123	7, 900	4,900		13,
Poshester		(7)			37	37	3				1,
Rochester		6	1,094	273	108	381	10, 620				20, 8
Rosebud	1	2	2,000	329	673	1,002	1, 270				35, 9
Sawtooth 6	!	1			17	17	3				,

Seven Troughs	.1 15	1	2, 938	1 1,935		1,935	1 7 740	,			
Sierra			712	270		1,935	1, 742 475	100	***********		68, 964
Staggs	1	1	524	530		532	6, 151	100	200		9, 811
Star	1 1		50	330	1	002			30, 400		24, 727
Trinity.		(7)	50		12		194	200			162
Unionville		1 0			15	12 15	4				423
Washiki		2	216	65	15		3				527
Storey County: Comstock	46	[331, 502		6	65	35		100		2, 306
Washoe County:	1 20	1	331, 302	42, 975	0	42, 981	539, 058				1, 887, 665
Galena	١,	1	16		1	[1	
Granite Range	1 :		10				634	200			475
Jumbo	1 1		13	2		2	1, 506		5, 400		1,449
Peavine	1 1		143	5		5	4 000				178
Pyramid	1 :			29		29	4, 226	5,900	600		4,750
Stateline Peak			38	3		3	336	5, 900			1,040
			61	20		20	93				766
White Horse	12	(7)	1,061	1,411	27	1, 438	679				50, 813
White Pine County:	١ .	1 1			· ·	2.1			1		
Aurum.	3		508	4		4	1, 422	2,400	35,600	128, 000	13, 063
Bald Mountain	1 1		326	62		62	689	7,500	1		3, 545
Cherry Creek	18		9,796	1, 199		1, 199	80,872	100	500		99, 515
Duck Creek	7		38				287	600	25, 900		1, 751
Eagle	1 2		49	2		2	844	100	20,900		1,873
Granite	3		233	76		76	758	l 			3, 199
Newark	3		906	8		. 8	6, 571		5, 500		5, 267
Osceola	7	1 5	6, 089	5, 758	94	5, 852	2, 092				5, 267 206, 308
Piermont	1		564	27		27	10, 654				8, 521
Robinson	31		6, 745, 600	68, 057		68, 057	374, 337	134, 342, 900			18, 500, 652
Shoshone	1		1				5		300		21
Taylor	6		14, 244	418		418	199, 900				156, 781
Ward	6		4,897	143		143	23, 339				21, 602
White Pine	1 6		3, 091	4		4	6, 483		3, 300		4, 938
Other districts *	7		360, 817	60, 463		60, 463	18, 560	400	-,,,,,		2, 129, 450
Total Nevada	799	78	8, 799, 635	329, 506	26 007		T 000 000		10.010.010		
T OFUT TARANTOTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	100	(8)	0, 188, 030	349, 300	36, 897	366, 403	0, 830, 238	157, 822, 000	19, 246, 000	30, 258, 000	38, 959, 420
	<u> </u>				<u> </u>	!			<u></u>	<u> </u>	

¹ Only those districts shown separately for which Bureau of Mines is at liberty to publish figures; other producing districts listed in footnote 8 and their output included under "Other districts."

² Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.
² Source of total silver as follows: 5,816,205 ounces from lode mines and 14,033 ounces from placers.
¹ Tonopah district lies in both Esmeralda and Nye Counties.
² Battle Mountain district lies in both Humboldt and Lander Counties.
² Central and Sawtooth districts lie in both Humboldt and Pershing Counties.
² Output from property not classed as a "mine."
² Includes following districts: Potosi in Humboldt County; Lewis in Lander County; Talapoosa in Lyon County; Echo in Pershing County; and Kinsley in White Pine County.

CHURCHILL COUNTY

The Westgate Mining & Milling Corporation, operator of a custom cyanide mill at Westgate, was reorganized in 1941 as the Silver State Milling Corporation. This plant treated 9,170 tons of ore from 40 shippers and continued to be an important factor in the mining indus-

try of Churchill County.

Dixie Valley district.—The Comstock-Keystone Mining Co. operated the Dixie mine from January 1 to March 31, 1941, when it was leased to Dale & Hargrove who continued operations until the end of the year. A total of 2,731 tons of ore was treated in a 20-ton amalgamation mill, followed by table concentration and cyanide leaching of the sands; the amalgamation bullion contained 1,050 ounces of gold and 865 ounces of silver, cyanidation precipitates contained 439 ounces of gold and 621 ounces of silver, and 14 tons of concentrates shipped to a smelter contained 121 ounces of gold and 309 ounces of silver. In addition, 1 ton (1,767 pounds) of high-grade ore shipped to a smelter yielded 204 ounces of gold and 384 ounces of silver.

Eastgate district.—Schweiss & Luce shipped gold ore from the Gold

Ledge mine to a custom cyanide mill in 1941.

Fairview district.—Several groups of lessees worked the Nevada Hills mine and produced 4,029 tons of gold-silver ore; 3,953 tons shipped to custom cyanide plants yielded 531 ounces of gold and 42,957 ounces of silver, and 76 tons of ore shipped to a smelter contained 50 ounces of gold, 3,253 ounces of silver, and 130 pounds of copper.

Holy Cross district.—Several groups of lessees on the Pyramid group

shipped ore to a custom cyanide mill in 1941.

Sand Springs district.—Summit King Mines, Ltd., operated the Dan Tucker mine throughout 1941 and treated the ore in the company 65-ton all-slime cyanide plant. The Dan Tucker Extension Mining Co. shipped 155 tons of ore, yielding 13 ounces of gold and 4,212 ounces of silver, from the Double Ender mine to a custom cyanide mill; operations were suspended, and the lease was relinquished during the year.

Wonder district.—Lessees shipped gold-silver ore from the Giger mine to custom cyanide mills during 1941. Lessees operated the Jack Pot and Grand View mines. Several groups of lessees worked the Nevada Wonder mine. A. W. Schulze shipped silver ore from

the Queen-Vulture mine to a custom cvanide mill.

CLARK COUNTY

Eldorado Canyon district.—The El Dorado-Rover Mining Co. operated the Quaker City, Magnolia, Crown, and Nevada Eagle groups of claims throughout 1941. Gold-silver ore was shipped to a smelter from the Occidental mine. Silver ore shipped to a smelter from the Oro Plata (Belmont Phoenix) mine contained 66 ounces of gold, 16,243 ounces of silver, 217 pounds of copper, and 901 pounds of lead. The Diamond Gold Mining Co. operated the Techatticup, Jubilee, and Red Butte mines throughout 1941; the ore was treated in a 100-ton flotation mill during the early months of the year but after July in a new 200-ton cyanide mill. W. W. Hartman operated the Wall Street mine.

Searchlight district.—Lessees operated the Blossom mine during 1941. H. H. Lang worked the Good Hope mine. W. H. Kelsey operated the M & M property. The Monte Carlo group was active. F. P. Jackson shipped ore from the Valley mine to a custom mill and

a smelter.

Yellow Pine (Goodsprings) district.—H. V. Jarman shipped lead and zinc-lead ores from the Addison mine in 1941. The Chiquita Mining Co., Ltd., operated the Chiquita mine. O. F. Schwartz (Barefoot Lease) operated the Golden Chariot mine; 367 tons of ore treated by amalgamation yielded 27 ounces of gold and 4 ounces of silver, and 10 tons of flotation concentrates shipped to a smelter contained 23 ounces of gold, 1 ounce of silver, and 170 pounds of copper; in addition, 36 tons of ore containing 83 ounces of gold, 12 ounces of silver, and 692 pounds of copper were shipped to a smelter. O. F. Schwartz also operated the Hoosier and Keystone-Barefoot mines. F. Williams shipped 57 tons of zinc ore containing 4,053 pounds of lead and 33,618 pounds of zinc from the Hoodoo Nos. 1 and 2. Gressman & Flukey shipped 60 tons of zinc ore containing 7,794 pounds of lead and 32,358 pounds of zinc from the Milford No. 1 mine. From the Milford No. 2 T. J. Hammons and R. H. Reed shipped 8 tons of lead ore, containing 35 ounces of silver and 11,507 pounds of lead, and 179 tons of zinc-lead ore, containing 59,262 pounds of lead and 100,961 pounds of zinc. Jacobson, Krider, and Reim, lessees on the Sultan mine, shipped 414 tons of lead ore to a custom flotation mill and 61 tons of zinc ore to a smelter; the 60 tons of resulting concentrates contained 1 ounce of gold, 2,163 ounces of silver, 119 pounds of copper, and 61,378 pounds of lead, and the 61 tons of zinc ore contained 4,929 pounds of lead and 51,469 pounds of zinc. From the Tam O'Shanter mine Jacobsen and Krider shipped to a smelter 266 tons of lead ore containing 1,736 ounces of silver, 205 pounds of copper, and 41,776 pounds of lead. The Yellow Pine Lease operated the Yellow Pine mine throughout 1941 and shipped zinc ore to a smelter.

ELKO COUNTY

Cope (Mountain City) district.—The Mountain City Copper Co. (third-largest copper producer in Nevada) was active throughout 1941; part of the ore was treated in the company 400-ton flotation mill, and high-grade ore was shipped for direct smelting. The Morrison-Knudsen Co., Inc., operated a dragline dredge, using a dragline excavator with a 2-cubic yard bucket, at the Van Duzer mine on Van Duzer Creek from April 1 to December 20.

Delano district.—Lessees on the Cleveland mine shipped 233 tons of lead ore containing 2 ounces of gold, 6,377 ounces of silver, 1,759 pounds of copper, and 87,909 pounds of lead during 1941. Lessees on the Net Group shipped to a smelter 1,145 tons of lead ore containing 8 ounces of gold, 21,915 ounces of silver, 6,889 pounds of copper, and

361,418 pounds of lead.

Dolly Varden district.—E. G. Gibson shipped copper ore from the

Victoria mine to a smelter in 1941.

Gold Circle district.—Gold & Silver Circle Mines, Inc., was the largest producer of gold and silver in the district in 1941. Esmeralda Gold Mines, Ltd., operated the Esmeralda mine and treated gold ore by cyanidation. W. Collins worked the Miner's Gold mine.

Lime Mountain district.—Lime Mountain Consolidated operated the Lime Mountain mine throughout 1941; 2,960 tons of ore shipped to a smelter contained 1,247 ounces of gold, 3,375 ounces of silver, and 72,880 pounds of copper.

Mardis district.—From the Virginia mine in 1941 J. M. Prunty shipped to a smelter 62 tons of ore containing 186 ounces of gold, 121

ounces of silver, and 700 pounds of copper.

Merrimac (Lone Mountain) district.—The Rip Van Winkle Consolidated Mining Co. treated 7,376 tons of zinc-lead ore in the company 100-ton flotation mill and shipped to a smelter 691 tons of lead concentrates (containing 13 ounces of gold, 88,295 ounces of silver, 13,519 pounds of copper, and 883,312 pounds of lead) and 554 tons of zinc concentrates (containing 3 ounces of gold, 2,827 ounces of silver, 5,745 pounds of copper, 5,760 pounds of lead, and 539,779 pounds of zinc).

Spruce Mountain (Black Forest) district.—The Missouri Monarch Consolidated Mines Co. operated the Missouri Monarch mine from January 1 to October 31, 1941, when the property was leased to L. M. Conley who continued operations until the end of the year; silver

ore, copper ore, and lead ore were shipped to a smelter.

ESMERALDA COUNTY

Divide district.—Several groups of lessees on the Tonopah Divide mine shipped 632 tons of gold ore containing 376 ounces of gold and

5,887 ounces of silver to a smelter during 1941.

Goldfield district.—The Diamondfield Daisy Gold Mining Co. shipped gold ore from the Diamond Daisy mine to a smelter in 1941. Several groups of lessees worked the Black Butte, Florence, and Merger claims of the Goldfield Deep Mines Co. of Nevada. The Goldfield Consolidated Mines Co. property was operated by several groups of lessees.

Hornsilver (Gold Point) district.—The Ohio Mines Corporation

Hornsilver (Gold Point) district.—The Ohio Mines Corporation operated the Ohio group throughout 1941; in addition to company ore, over 2,400 tons of custom material received from 37 shippers was treated in the company 50-ton cyanide mill. The Orleans mine, one of the Ohio group, was operated as the Midnight Lease. Several groups of lessees on the Tokop mine shipped ore to a custom cyanide mill.

Klondyke district.—The Original Klondyke Divide Mining Co. shipped lead ore from the Original Klondyke mine to a smelter in 1941.

Oneota district.—The Red Top Mining Co. constructed a cyanide mill at the Brownie mine in 1941, which was operated for a short period

during the year.

Silver Peak district.—In 1941 Desert Silver, Inc., worked the Nivloc mine, leading silver producer in the State since 1938. The Silver Divide Mines Co. operated the Coyette mine from August to December 1941. E. L. Cord, operating as the Prescott Lease, worked the Mary mine throughout the year; ore was treated in the company 350-ton flotation-amalgamation-cyanide mill. Lessees shipped gold ore from the Oromonte mine to a custom cyanide mill and to a smelter. The Silver Peak Custom Milling Co. operated the Black Mammoth mill as a custom plant for a short period in 1941 before it was destroyed by fire September 23.

EUREKA COUNTY

Buckhorn district.—Between March 1 and December 15, 1941, D. P. Murphy shipped ore from the Buckhorn mine dumps to a smelter.

Cortez district.—Lessees shipped silver ore from the Cortez mine to a smelter during 1941. The Ventura mine was active throughout the year; 864 tons of ore containing 760 ounces of gold, 623 ounces of

silver, and 524 pounds of copper were shipped to a smelter.

Eureka district.—A lessee operated the Colorado mine and shipped gold ore to a smelter in 1941. The Eureka Prospect Co. worked the Diamond Excelsior mine intermittently. Lessees worked the Eureka Croesus mine. The Eureka Corporation, Ltd., shipped ore from several properties in the Eureka district; the largest production, came from the Oswego property in the Secret Canyon section.

HUMBOLDT COUNTY

Awakening (Slumbering Hills) district.—Austin Bros. Gold Mining Co. operated the Jumbo group from May 11 to October 18, 1941. Barrett Springs (Ten-mile) district.—West Coast Mines, Inc., began operation of its new 150-ton flotation mill at the Pansy Lee mine February 1, 1941; 39,598 tons of ore milled yielded 7,882 tons of concentrates containing 5,314 ounces of gold, 453,508 ounces of silver, 71,130 pounds of copper, and 1,018,842 pounds of lead; and 407 tons of ore shipped to a smelter contained 157 ounces of gold, 13,217 ounces of silver, 2,929 pounds of copper, and 30,894 pounds of lead. This mine was the third-largest producer of silver in the State in 1941. King Gold Mines in the Ten-mile section of the Barrett Springs district was active during 1941.

Battle Mountain district.—The B. & M. Mining Co. operated a non-floating washing plant at the Johnny Boy placer group from June 12 to November 24, 1941. Gravel was delivered to the plant by a drag-

line excavator using a 1½-cubic vard bucket.

Gold Run (Adelaide) district.—Adelaide Crown Mines operated the Adelaide Crown mine throughout 1941; 96,898 tons of ore treated in the company 300-ton all-slime cyanide mill yielded 5,249 ounces of gold and 113,705 ounces of silver; the company also treated 2,287 tons of custom ore from 18 shippers. Marigold Mines; Inc., worked the Marigold mine and shipped ore to custom cyanide mills and to a smelter.

National district.—A lessee operated the Buckskin mine from April 1 to December 31, 1941; 639 tons of ore shipped to custom cyanide mills contained 453 ounces of gold and 2,210 ounces of silver, and 103 tons of ore shipped to a smelter contained 110 ounces of gold, 589 ounces of silver, 94 pounds of copper, and 157 pounds of lead. Lessees mined 2 tons of very high grade ore at the National mine; in August the mine was leased to the Santa Rosa Mining Co., subject to the leases already in effect.

Potosi district.—Getchell Mine, Inc., operated the Getchell mine throughout 1941 and continued to hold first place in Nevada as a gold producer. Ore was treated in the company 1,000-ton cyanide plant, to which a 260- by 7½-foot rotary kiln was added during the

vear.

Warm Springs district.—Gold ore was treated by amalgamation at the Ashdown mine in 1941. The Homer Verne Mining Co. operated the Homer Verne mine in the Boyd Basin section of the Warm Springs district.

LANDER COUNTY

Battle Mountain district.—In 1941, as in former years, lessees at the various small mines in the Battle Mountain district produced much of the ore shipped to smelters. Small mines that were active included the Armour, Bentley, Big Florence, Buffalo Valley, Buzzard, Copper Queen, Eldorado, Gold Butte, Gold Cash, Gold Road, Hard Times, Oriole, Plumas, San Miguel, Trinity, and White. The International Smelting & Refining Co. took a 5-year lease on the property of the Copper Canyon Mining Co. with option to purchase 51 percent of the Copper Canyon Mining Co. stock. The lessee budgeted \$500,000 for examination and the construction of a 350-ton flotation mill, building of which was started late in the year. In addition to examination and construction activities, a substantial quantity of copper ore was shipped to a smelter during 1941. Broyles and Wilson, one of the larger lessees in the district, shipped gold-silver ore from the Independence group.

Bullion district.—H. W. Treweek operated a cyanide mill on the Goldacres property during 1941. The Gray Eagle Mining Co. worked the Gray Eagle mine. Lessees operated the Little Gem mine and treated silver ore by flotation; copper ore was shipped to a smelter. Several operators on Triplett Gulch produced 413 ounces of gold and

40 ounces of silver from placer gravels.

McCoy district.—The Nevada United Gold Mining Co. cyanided a substantial quantity of gold ore produced at the Gold Dome mine

during 1941.

New Pass district.—New Pass Mines operated the New Pass mine from January 1 to December 22, 1941. W. H. Smith treated 291 tons of ore from the Thomas W. mine and recovered 146 ounces of gold and 23 ounces of silver.

LINCOLN COUNTY

Comet district.—The Comet Mines Co. carried on test runs at the Comet mine during 1941; 565 tons of ore were treated by flotation, and 7 tons of resulting concentrates shipped to a smelter contained 17 ounces of gold, 665 ounces of silver, 90 pounds of copper, and 656 pounds of lead; and 346 tons of ore shipped to a smelter contained 81 ounces of gold, 2,845 ounces of silver, 404 pounds of copper, and 13,405 pounds of lead.

Ferguson (Delamar) district.—During 1941 lessees shipped gold ore to a smelter from the properties owned by the Delamar Exploration

Co.

Jack Rabbit (Bristol) district.—The Bristol Silver Mines Co. operated the Bristol Silver mine throughout 1941; 18,576 tons of lead ore containing 178 ounces of gold, 305,232 ounces of silver, 1,002,198 pounds of copper, and 1,975,935 pounds of lead were shipped to a smelter.

Pioche district.—The Combined Metals Reduction Co. (affiliate of the National Lead Co.) worked the Pioche Nos. 1 and 2 mines and a section of the Amalgamated Pioche mine throughout 1941; the company was the largest producer of both lead and zinc in the State.

From January until September all the production was shipped to the company 600-ton selective-flotation mill at Bauer, Utah, but from September until the end of the year virtually all the output was treated in the 600-ton selective-flotation mill erected by the company at Castleton 3 miles southwest of Pioche. In addition to company ore, this new mill handled ore from the Black Prince mine for the Prince Consolidated Mining Co. The Amalgamated Pioche Mines & Smelters Corporation shipped lead ore from a section of the Amalgamated Pioche mine to a smelter in 1941. W. A. Free shipped lead ore from the Apex and the Financier mines to a smelter. The Nevada Volcano Mines Co. operated the Nevada Volcano mine from May 29 to December 31 and shipped lead ore to a smelter. The Hall Bros. Co., Inc., shipped from the Raymond Ely mine to a smelter 27,006 tons of gold-silver ore containing 1,217 ounces of gold and 130,700 ounces of silver. Lessees shipped gold-silver smelting ore from the Wide Awake mine.

LYON COUNTY

Palmyra district.—T. Panos shipped gold ore from the Carpenter mine to a custom cyanide mill. P. Haggerty, a lessee on the Hulley Logan mine, shipped gold-silver ore to a custom cyanide mill. Lundgren shipped gold-silver ore from the North Rapidan mine to a custom cyanide mill.

Pine Grove (Wilson) district.—G. L. Felt, a lessee, operated the Wilson mine from February 1 until December 31, 1941, and reconstructed the mill at the property as a 150-ton flotation plant; gold concentrates were shipped to a custom cyanide mill and to a smelter.

Silver City district. The Dayton Consolidated Mines Co. operated the Dayton mine in 1941 on company account and through In addition to the Dayton mine ore, the company treated ore it mined at other properties in the Silver City district and more than 20,000 tons of custom ore received from 250 shippers working mines in Silver City and other districts. Gold ore from the Haywood mine was shipped to the Dayton mill. The Gold Rock Mining Co. and lessees operated the Buckeye group; the company reconstructed the mill as a 75-ton amalgamation-flotation plant. A number of lessees working the Oest mine produced 863 tons of ore, from which 284 ounces of gold and 479 ounces of silver were recovered; some of the ore was amalgamated and some shipped to a custom cyanide mill. Lessees operated the Silver City mine. The Dayton Dredging Co. operated a dragline dredge at its property on the north edge of Dayton from January 1 to December 31; the dragline dredge used a dragline excavator with a 14-cubic yard bucket which, when installed, was the largest used in dragline dredging in the world.

Talapoosa district.—F. J. de Longchamps operated the Talapoosa mine from January to July 1941 and shipped ore to the Dayton Con-

solidated Mining Co. custom mill for treatment.

MINERAL COUNTY

Columbus (Candelaria) district.—Gold-silver ore from the Silver

King mine was shipped to a smelter in 1941.

Hawthorne (Panlico, Ashby) district.—Lessees on the Ashby mine shipped gold ore to custom cyanide mills during 1941. Champion

City Mines, Inc., treated 1,326 tons of silver ore in the company 200-ton flotation mill and shipped to a smelter 88 tons of lead concentrates containing 3 ounces of gold, 27,796 ounces of silver, 3,012 pounds of copper, and 75,020 pounds of lead.

Santa Fe district.—Lessees shipped gold ore from the Clay Peters

group to a smelter in 1941.

Silver Star (Gold Range) district.—Lessees on the Lancashire mine shipped gold-silver ore to a custom cyanide mill and lead ore to a smelter in 1941.

NYE COUNTY

Bellehelen district.—Western Gold, Inc., shipped gold-silver ore from the dumps of the Clifford mine to a smelter during 1941.

Belmont district.—Ore and old tailings, valued chiefly for silver,

were shipped to a smelter from the Combination mine in 1941.

Bullfrog district.—C. L. Tibbols operated the Denver mine from January 8 to September 2, 1941; 257 tons of ore shipped to custom cyanide mills yielded 149 ounces of gold and 202 ounces of silver. M. F. Hazen operated the May Flower mine from February to November. Lessees operated the Senator Stewart mine from January 11 to March 11.

Golden Arrow district.—Gold-silver ore from the Golden Arrow mine was shipped to a smelter in 1941. Lessees on the Golden Bar

mine shipped gold ore to a custom mill and to a smelter.

Manhattan district.—Lessees on the April Fool mine in 1941 produced 328 tons of ore from which 240 ounces of gold and 89 ounces of silver were recovered by amalgamation and cyanidation. The Big Four mine was operated by lessees. J. Francisco operated the Jumbo mine under lease from January to November and treated gold ore in his 35-ton stamp mill located on a nearby property. Lessees worked the Manhattan mine and treated gold ore in a 5-stamp amalgamation mill. Lessees worked the Nevada Coalition mine. The Reliance Mining Co. suspended operations at the Verden mine in June 1941; during the year, a substantial quantity of gold was recovered from clean-up of the mill and high-grade ore shipped to a smelter. The Manhattan Gold Dredging Co. (largest producer of placer gold in the State since 1939) operated throughout 1941 its electric connected-bucket dredge equipped with 108 9½-cubic foot buckets.

Northumberland district.—The Northumberland Mining Co. oper-

ated the Northumberland mine throughout 1941.

Phonolite district.—A clean-up at the Penelas mine in 1941 yielded a substantial quantity of gold and silver.

Quartz Mountain district.—O. LeFavor shipped lead ore from the

San Rafael mine to a smelter in 1941.

Round Mountain district.—Morrin & Steigmeyer operated the Gold Hill mine during 1941. S. W. Boswick worked for 40 days the Mary McLean mine in the Red Mountain section of the Round Mountain district. J. J. Raymond worked the Monte Christo mine.

Silver Bow district.—In 1941 silver ore from the Catlin and Hillside mines was shipped to a smelter. In addition, some gold-silver ore

from the Hillside mine was treated in a custom cyanide mill.

Tonopah district.—Gold-silver ore mined by a lessee at the Jim Butler mine was shipped to a smelter in 1941. Lessees shipped 446 tons of gold-silver ore containing 207 ounces of gold and 18,937 ounces of silver from the Tonopah Belmont mine. Silver ore and mill clean-

up from the Tonopah Extension mine were shipped to a smelter. Several sets of lessees operated the Tonopah Mining Co. of Nevada property throughout 1941 and shipped gold-silver ore to a smelter. Lessees on the West End mine shipped silver ore to a smelter.

Tybo district.—Silver ore from the Ramona mine was shipped to a smelter during 1941. Lessees shipped to a smelter gold-silver ore

and lead ore from the Two G mine.

Union district.—Silver Palace Mines, Inc., operated the Silver Palace mine from April until the end of 1941, and 12,233 tons of silver ore were treated in a 50-ton flotation plant built during the year; 613 tons of lead concentrates recovered contained 3 ounces of gold, 85,283 ounces of silver, 12,443 pounds of copper, 230,202 pounds of lead, and 188,411 pounds of zinc. The company planned adding selective flotation to produce a zinc concentrate.

PERSHING COUNTY

Central district.—Jones Bros. & Associates worked the Keystone mine in 1941; 501 tons of lead ore shipped to a smelter contained 21 ounces of gold, 18,904 ounces of silver, 1,924 pounds of copper, and

68,313 pounds of lead.

Imlay district.—The Standard Cyaniding Co. operated the Gold Standard mine throughout 1941. Between April 15 and December 20 J. K. Wadley treated in a 4-ton amalgamation mill 27 tons of ore from a property 20 miles west of Imlay and recovered 317 ounces of gold and 166 ounces of silver.

Rochester district.—E. McCartney shipped gold-silver ore from the

West Slope mine to a custom cyanide mill.

Rosebud district.—P. Webster operated the Brown Palace mine from January 1 to October 1, 1941, and treated the ore in a 20-ton cyanide plant. Acme Gold Placers, Inc., operated a nonfloating washing plant on the Acme property.

Seven Troughs district.—Laughton & Causten operated the Portland mine throughout 1941; ore was treated in a 25-ton amalgamation-

concentration mill.

Staggs district.—The Twin Buttes Mining Syndicate operated the Twin Buttes mine throughout 1941; 524 tons of ore shipped to a smelter contained 530 ounces of gold, 6,151 ounces of silver, 54 pounds of copper, and 40,573 pounds of lead.

STOREY COUNTY

Comstock district.—Lessees on the Chollar-Potosi mine in 1941 shipped to a custom cyanide mill 1,041 tons of ore from which 370 ounces of gold and 8,476 ounces of silver were recovered. The Consolidated Virginia Mining Co. operated the Consolidated Virginia mine continuously. Sutro Tunnel Coalition, Inc., operated the Crown Point mine throughout the year; the output of gold-silver ore was treated in the company 100-ton cyanide mill. The Dayton Consolidated Mines Co. and lessees shipped 2,131 tons of ore to the Dayton Consolidated cyanide mill in Silver City; 606 ounces of gold and 8,286 ounces of silver were recovered. This company and lessees worked the Keystone mine and produced 28,697 tons of ore from which 8,167 ounces of gold and 22,554 ounces of silver were recovered by cyanidation. The Dayton Consolidated Mines Co. operated the

New York mine throughout the year. Lessees shipped 873 tons of ore from the Occidental mine to a custom cyanide mill; 176 ounces of gold and 5,848 ounces of silver were recovered. The Nevada Securities Co. worked the Overland mine. The Consolidated Chollar Gould & Savage Mining Co. operated the Overman mine continuously. The Silver Hill Mining Co. operated the Silver Hill and Succor mines and treated the ore in the company 100-ton amalgamation-cyanidation mill. Sierra Nevada, Ltd., and lessees worked the Sierra Nevada mine.

WASHOE COUNTY

White Horse district.—The Renegade mine was operated during 1941; 361 tons of ore treated by amalgamation yielded 284 ounces of gold and 88 ounces of silver, and 149 tons of ore shipped to a custom cyanide mill yielded 402 ounces of gold and 116 ounces of silver.

WHITE PINE COUNTY

Aurum district.—The Grand Deposit Mining Co. and lessees worked the Grand Deposit mine during 1941; copper ore and lead ore were shipped to a smelter and zinc ore to a zinc oxide plant for treatment.

Cherry Creek district.—Several groups of leasers on the Eagen mine in 1941 shipped to a smelter 1,656 tons of ore and 949 tons of old tailings, containing in all 461 ounces of gold and 10,502 ounces of silver. The Exchequer Mining Co. shipped silver ore from the Imperial mine to a smelter. The Nevada Standard Mining Co. and lessees shipped gold-silver ore and silver ore from the Star mine. Old tailings were

shipped from the Thompson tailing pile to a smelter.

Robinson district.—The Nevada Consolidated Copper Corporation (operating subsidiary of the Kennecott Copper Corporation and largest industrial company in Nevada) operated the Ruth mine at Ruth and the open pit at Copper Flat throughout 1941. In addition to its mining activities, the company operated the McGill copper smelter (only smelter in the State) and the McGill flotation-concentrator, which was increased in 1941 from 18,000- to 20,000-ton daily The Consolidated Coppermines Corporation, secondlargest copper producer in the State in 1941, was active throughout the year; copper ore mined on company account was shipped to the McGill concentrator. C. Caviglia shipped from the Chainman mine to a smelter 4,517 tons of ore containing 654 ounces of gold and 5,785 ounces of silver. The Ely Gold & Manganese Co. and lessees operated the Cuba mine. The Hayes mine was operated by D. F. Paine until May; operations were continued by the D. F. Paine estate. During August and September lessees shipped 598 tons of gold-silver ore, containing 113 ounces of gold, 3,145 ounces of silver, and 942 pounds of copper, from the Hidden Treasure mine to a smelter. L. Piombo operated the Jupiter Lease and shipped gold-silver ore to a smelter. L. Burnham worked the Keystone mine from March to September. The Ely Gold Mining Co. shipped gold-silver ore from the Revenue

Taylor district.—Lessees shipped silver ore from the Gore mine during 1941. Farnsworth-Ely Combined Metals Mines shipped silver ore from the Mineral Farm mine to a smelter during the first 4 months of the year. Lessees worked the Monitor and Sunrise mines.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN NEW MEXICO

(MINE REPORT)

By Chas. W. Henderson and A. J. Martin

SUMMARY OUTLINE

Page	Pag
Summary 413	Mining industry 41
Calculation of value of metal production 414	Ore classification 41
Mine production by counties	Metallurgic industry 41
	Review by counties and districts 42

SUMMARY

Production of both copper and zinc in New Mexico in 1941 was larger in quantity than in any previous year, and that of lead was greater than in 1940 but less than in 1939. The output of both gold

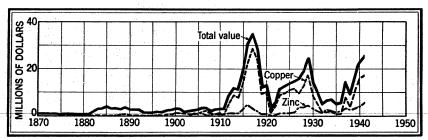


FIGURE 1.—Value of mine production of copper and zinc and total value of gold, silver, copper, lead, and zinc in New Mexico, 1870-1941. The value of gold, silver, and lead produced annually has been relatively small.

and silver decreased. The total value of the recovered output of the five metals in 1941 was \$25,471,416 (highest since 1918) and compares with \$22,246,421 in 1940 (see fig. 1). Copper represented 68 percent and zinc 22 percent of the total value in 1941; the zinc value was the highest in any year on record for the State, and the copper value was the largest since 1918. All the principal producing mines and mills that were active in 1940 continued operations throughout 1941, with the exception of the Aztec mine and 140-ton amalgamation-flotation mill in Colfax County and the San Pedro group and 150-ton flotation mill in Santa Fe County (shut down in August). The Waldo mine and 200-ton flotation mill near Magdalena were reopened and began producing in September.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and a	nnc. 1937–41
---	--------------

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zinc 3
1967 1985 1989 1940	Per fine ounce \$35.00 35.00 35.00 35.00	Per fine ounce \$0.7735 4.646+ 5.678+ 6.711+ 6.711+	Per pound \$0. 121 . 098 . 104 . 113 . 118	Per pound \$0.059 .046 .047 .050	Per pound \$0.065 .048 .052 .063 .075

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+(\$20.671835) per fine ounce.
¹ 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver.
¹ Yearly average weighted price of all grades of primary metal sold by producers.
¹ \$0.64646464.
² \$0.64646464.
² \$0.67878787.
² \$0.71111111.

The following table shows the number of mines in New Mexico producing gold, silver, copper, lead, and zinc and their annual output of ore and metals from 1937 to 1941; also the total production from 1848 to 1941. The report of this series for 1929 (chapter of Mineral Resources of the United States, 1929, pt. 1, pp. 729-759) gives the yearly production of each important metal-producing district in New Mexico from 1904 to 1929, inclusive. Subsequent records year by year may be found in annual issues of Mineral Resources and Minerals Yearbook.

Mine production of gold, silver, copper, lead, and zinc in New Mexico, 1937-41, and total, 1848-1941, in terms of recovered metals

		Mines produc- ing		Ore (short	Gold (lode	and placer)		lode and cer)
Year		Lode	Placer	tons)	Fine ounces	Value	Fine ounces	Value
1937 1938 1939 1940		159 166 214 164 145	160 164 168 179 103	4, 191, 092 2, 414, 857 4, 977, 375 7, 089, 903 7, 530, 226	41, 171 43, 050 36, 979 35, 943 27, 845	\$1, 440, 985 1, 506, 750 1, 294, 265 1, 258, 005 974, 575	1, 243, 766 1, 229, 860 1, 400, 878 1, 407, 839 1, 328, 317	\$962, 053 795, 061 950, 899 1, 001, 130 944, 581
1848-1941				(1)	2, 148, 780	48, 541, 493	65, 276, 576	51, 150, 206
		Copper		Le	ad	Zi	ne	
Year	Pound	s 1	/alue	Pounds	Value	Pounds	Value	Total value
1005	04 100 0	00 00	### 000	10.004.000	Amon 410	45 054 000	40 110 510	414 000 700

^{\$768, 416} 455, 308 506, 848 382, 200 532, 152 \$14, 038, 790 9, 473, 819 15, 402, 572 22, 246, 421 25, 471, 416 1937 ... 64, 106, 000 \$7,756,826 4,006,044 13,024,000 47, 854, 000 \$3, 110, 510 56, 472, 000 58, 712, 000 60, 626, 000 75, 724, 000 2, 710, 656 3, 053, 024 3, 819, 438 5, 679, 300 40, 878, 000 92, 284, 000 139, 696, 000 9, 898, 000 10, 784, 000 7, 644, 000 9, 597, 536 15, 785, 648 17, 340, 808 1939 146, 956, 000 9, 336, 000 308, 878, 983 2 611, 830 74, 886, 524 506, 988, 937 1848-1941 2 1, 017, 444 2 244, 684 23, 531, 731

Gold and silver produced at placer mines in New Mexico, 1937-41, in terms of recovered metals

	Gold		Silver		(Total		Ge	old	Silv	e r	Total	
Year	Fine ounces	Value	Fine ounces	Value	Total value		Year	Fine ounces	Value	Fine ounces	Value	value
1937 1938 1939	3, 027 2, 626 3, 474		167	108		1940 1941	2, 928 2, 488	\$102, 480 87, 080	263 284	\$187 202	\$102, 667 87, 282	

¹ Figures not available.

² Short tons.

Gold.—Mine production of gold in New Mexico decreased from 35,943 fine ounces in 1940 to 27,845 ounces in 1941. Changes in output in the principal gold-producing districts in 1941 were: Decreases of 1,877 ounces in the Mogollon district, 570 ounces in the Mount Baldy, 951 ounces in the Hillsboro, 1,737 ounces in the Central, 955 ounces in the Lordsburg, 1,641 ounces in the San Pedro, and 359 ounces in the Pinos Altos district; output increased 1,271 ounces in the Steeple Rock district. Dry and siliceous ores yielded 57 percent of the State total gold, copper ore 32 percent, lead and zinc-lead ores 2 percent, and placers 9 percent.

Silver.—Mine production of silver in New Mexico was 1,328,317 fine ounces in 1941 compared with 1,407,839 ounces in 1940. The Mogollon district contributed 37 percent of the State total in 1941, Central 36 percent, Steeple Rock 19 percent, Lordsburg 5 percent, and San Pedro 1 percent. Dry and siliceous ores yielded 57 percent of the total silver; copper ore 18 percent; zinc-lead ore 24 percent; and lead ore, together with a small quantity of silver from placers, 1 percent.

Copper.—The output of recoverable copper from mines in New Mexico in 1941 was 146,956,000 pounds—a 5-percent increase over the former record annual production (in 1940). The Chino open-pit mine of the Nevada Consolidated Copper Corporation at Santa Rita, Grant County, continued to be much the largest producer in the State. The daily capacity of the concentrator at Hurley was 20,000 tons at the end of 1941. The copper concentrates are reduced to blister copper in the smelter adjacent to the concentrator. Molybdenite concentrates are recovered in the mill as a byproduct. Other sizable producers of copper were the Burro Mountain group of the Phelps Dodge Corporation at Tyrone, Grant County; the Bonney mine near Lordsburg, Hidalgo County; the San Pedro near Golden, Santa Fe County (operated January to August); and the Ground Hog-San Jose group near Hanover, Grant County. Copper ore and mine-water precipitates yielded 98 percent of the total copper; most of the remainder was recovered from concentrates produced from the milling of zinc-lead ore.

Lead.—The bulk of the lead produced from New Mexico mines in 1941 came from the American Smelting & Refining Co. Ground Hog unit in the Central district, Grant County. The total State output of lead (9,336,000 pounds) was 22 percent above that in 1940. Zinc-lead ore yielded 88 percent of the total lead, lead ore 5 percent,

copper ore 5 percent, and other types of ore 2 percent.

Zinc.—The output of recoverable zinc from mines in New Mexico increased 25 percent in 1941 over 1940. The principal producers in 1941 were the American Smelting & Refining Co. (Ground Hog unit), Empire Zinc Co. (Hanover mine group), and the Teru Mining Co. (Pewabic mine), all in the Central district, Grant County; and Raskob Mining Interests, Inc. (Waldo mine operation) and the Empire Zinc Co. (Kelly group), both in the Magdalena district, Socorro County. Other districts producing some zinc were the Organ, Dona Ana County; Pinos Altos and Swartz, Grant County; and Lordsburg and San Simon, Hidalgo County.

Zinc concentrates produced in 1941 amounted to 80,774 tons, containing as shipped 20 ounces of gold, 56,215 ounces of silver, 603,467 pounds of copper, 1,117,017 pounds of lead, and 87,362,425 pounds of zinc. The average content in zinc was therefore 54.08

percent. The zinc and zinc-lead ores (1,492 tons) from New Mexico shipped crude to the Ozark pigment plant at Coffeyville, Kans., averaged 22.86 percent zinc and 12.40 percent lead.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in New Mexico in 1941, by counties, in terms of recovered metals

		Mines	producing	Gold (lod	e and placer)	Silver (lode	and placer)
Cou	nty	Lode	Placer	Fine ounces	Value	Fine ounces	Value
Bernalillo			1	7, 884 703	\$140 275, 940 24, 605	1, 014 489, 943 97 97	\$721 348, 404 69 69
Eddy Grant Guadalupe		6	1 8 20 1	14, 793	517, 755	737, 003	524, 091
Hidalgo Lincoln Luna		1		1, 357 231	47, 495 8, 085	232 67, 815 758 218	165 48, 224 539 155
Santa Fe		2	6 16 7 42	1, 157 1, 518 198	40, 495 53, 130 6, 930	17, 384 5, 518 8, 235	12, 362 3, 924 5, 856
Total, 1940		14 16		27, 845 35, 943	974, 575 1, 258, 005	1, 328, 317 1, 407, 839	944, 581 1, 001, 130
	Cop	per	Lea	ad	Zi	ne	<u> </u>
County	Pounds	Value	Pounds	Value	Pounds	Value	Total value
Bernalillo							\$861
Catron	600	\$71					624, 415 24, 674
Dona Ana Eddy	500	59	12, 000	\$684	12,000	\$900	1, 653
GrantGuadalupe	137, 814, 000 204, 000	16, 262, 052 24, 072	8, 165, 000	465, 405	70, 473, 000	5, 285, 475	23, 054, 778 24, 237
HidalgoLincoln	7, 468, 800	881, 318	221, 000 200	12, 597 11	80,000	6, 000	995, 634 8, 635
Luna Santa Fe	200 1, 437, 000	24 169, 566	26, 400	1, 505			1, 684 222, 423
SierraSocorro	23, 400 7, 500	2, 761 885	7, 400 904, 000	422 51, 528	5, 159, 000	386, 925	60, 237 452, 124
Total, 1940	146, 956, 000 139, 696, 000	17, 340, 808 15, 785, 648	9, 336, 000 7, 644, 000	532, 152 382, 200	75, 724, 000 60, 626, 000	5, 679, 300 3, 819, 438	25, 471, 416 22, 246, 421

Gold and silver produced at lode mines in New Mexico in 1941, by counties, in terms of recovered metals

County	Ore sold or treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	County	Ore sold or treated (short tons)	Gold (fine ounces)	Silver (fine ounces)
Bernalillo Catron Dona Ana Eddy Grant. Guadalupe. Hidalgo Lincoln	16 61, 734 47 9 7, 281, 457 2, 411 123, 557 175	7, 884 14, 342 1, 357 53	1, 014 489, 943 97 3 736, 896 232 67, 815 744	Luna Santa Fe Sierra Socorro Total, 1940	45 27, 376 4, 852 28, 547 7, 530, 226 7, 089, 903	1, 052 467 198 25, 357 33, 015	218 17, 377 5, 459 8, 235 1, 328, 033 1, 407, 576

Gold and silver produced at placer mines in New Mexico in 1941, by counties, in fine ounces, in terms of recovered metals

County	Sluicing and	i hydraulic	Dry-land	dredges 1	Total	
	Gold	Silver	Gold	Silver	Gold	Silver
Colfax Grant Lincoln	26 81 178	4 19 14	677 370	93 88	703 451 178	97 107 1 <u>4</u>
Santa FeSierra	105 96	5	955	54	105 1, 051	59
Total, 1940	486 651	49 58	2, 002 2, 277	235 205	2, 488 2, 928	284 263

¹ Dragline and power-shovel excavators with sluices or special amalgamators.

MINING INDUSTRY

The greater part of the 7,530,226 tons of ore produced in New Mexico in 1941 was copper ore, mined with power shovels, from the Chino open-pit mine at Santa Rita, Grant County. Underground mining was done at the other principal mines of the State. The quantity of each type of ore produced, with its content in terms of recovered metals, is shown in the table that follows. Operating details at both lode and placer mines are given in the following review by counties and districts.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in New Mexico in 1941, with content in terms of recovered metals

Source	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)
Dry and siliceous gold ore. Dry and siliceous gold-silver ore Dry and siliceous silver ore	18, 305 89, 430 282	4, 360 11, 598 8	18, 036 728, 462 7, 732	66, 414 7, 267 899	225, 555 2, 206 6, 494	
	108, 017	15, 966	754, 230	74, 580	234, 255	
Copper ore	6, 975, 682 2, 261 148, 359	8, 908 423	242, 834 7, 200	1 144,714, 904 9, 827	429, 254 450, 987 382 8, 221, 122	26, 586, 093 49, 137, 907
Zinc-lead ore	295, 907 7, 422, 209	9, 391	323, 769 573, 803	2, 156, 689	9, 101, 745	75, 724, 000
Total, lode mines	7, 530, 226	25, 357 2, 488	1, 328, 033 284	1 146,956, 000	9, 336, 000	75, 724, 000
Total, 1940	7, 530, 226 7, 089, 903	27, 845 35, 943	1, 328, 317 1, 407, 839	1 146,956, 000 2 139,696, 000	9, 336, 000 7, 644, 000	75, 724, 000 60, 626, 000

¹ Includes 16,818,294 pounds of copper recovered from mine-water precipitates.

² Includes 8,258,984 pounds of copper recovered from mine-water precipitates.

METALLURGIC INDUSTRY

The following eight flotation mills treated 98 percent of the total New Mexico output of ore in 1941: Chino at Hurley, Empire Zinc at Hanover, Banner near Lordsburg, Peru near Deming, Combination near Hanover, San Pedro near Golden, Waldo near Magdalena, and Southwest Minerals near Duncan, Ariz. (operated on ore from the Carlisle group at Steeple Rock, N. Mex.). One percent was treated by the Little Fanney cyanidation mill at Mogollon, the East Camp cyanidation mill at Steeple Rock, and scattered small concentration and amalgamation mills; and 1 percent was shipped crude to smelters. The Chino reverberatory copper smelter of the Nevada Consolidated Copper Corporation at Hurley was operated throughout 1941 on company copper concentrates, siliceous copper ore, and copper precipitates recovered by leaching of waste dumps. Concentrates and ore produced by other operators in the State were shipped to smelters in other States, mentioned in the following review by counties and districts. About 300,250 cubic yards of gravel were treated at four placer mines using dry-land dredges, and some gravel for which figures are not obtainable was handled at small placers worked by hand methods.

Mine production of metals in New Mexico in 1941, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Ore amalgamated Ore cyanided ¹ Concentrates smelted Ore smelted Placer	5, 908 84, 611 313, 725 86, 757	986 10, 081 10, 757 3, 533 2, 488	249 690, 217 518, 113 119, 454 284	² 144, 281, 312 2, 674, 688	8, 173, 537 1, 162, 463	75, 179, 301 544, 699
Total, 1940		27, 845 35, 943	1, 328, 317 1, 407, 839	146, 956, 000 139, 696, 000	9, 336, 000 7, 644, 000	75, 724, 000 60, 626, 000

¹ Cyanide used was approximately 342,800 pounds of Aero Brand calcium cyanide (approximately 48 to 49 percent NaCN).

¹ Includes 16,818,294 pounds of copper recovered from smelting of mine-water precipitates.

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in New Mexico in 1941, by counties, in terms of recovered metals

(short		Recovered in bullion		Concentrates smelted and recovered metal					
	Ore treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	Concentrates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	
Catron Grant Santa Fe	61, 460 23, 776 780	7, 720 3, 100 193	484, 827 205, 451 54	3	7	3	75		
SierraSocorro	4, 300 203	16 38	5 129	81	191	777	9, 288	878	
Total, 1940	90, 519 112, 784	11, 067 12, 698	690, 466 680, 751	84 176	198 860	780 700	9, 363 1, 092	878	

Mine production of metals from concentrating mills in New Mexico in 1941, in terms of recovered metals

BY COUNTIES

			Concer	trates sm	elted and reco	vered meta	1
	Ore treated (short tons)	Concentrates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Dona Ana	7 7, 176, 912 123, 330 50	291, 592 14, 222 10	8, 421 1, 270	3 428, 631 65, 015 642 17, 317	¹ 135, 367, 068 7, 467, 803 1, 436, 925	7, 634, 993 184, 617 200	70, 467, 568 80, 000
Santa FeSierraSocorro	26, 554 100 25, 997	2, 445 9 5, 361	19 11	645 5,080	1, 450, 925	351, 884	4, 631, 703
Total, 1940	7, 352, 950 6, 877, 449	313, 641 276, 562	10, 559 11, 944	517, 333 425, 484	1 144, 271, 949 2 134, 579, 892	8, 172, 659 5, 879, 669	75, 179, 301 60, 120, 764
В	Y CLASSI	ES OF O	RE COI	NCENTI	RATED	<u> </u>	·
Dry and siliceous gold Dry and siliceous gold-silver	8, 015 100	477 9	1,673 19	8, 373 645	30, 400 153	153, 900	
Dry and siliceous silver CopperLead	6, 901, 193 818	222, 411 56	8,807	183, 808 96	1142, 084, 707	200 35, 500 57, 565	
Zinc-lead	148, 334 294, 440	30, 398 60, 280	60	323, 769	2, 156, 689	7, 925, 494	26, 580, 691 48, 598, 610
	7, 352, 950	313, 641	10, 559	517, 333	1144, 271, 949	8, 172, 659	75, 179, 301

Includes 16,818,294 pounds of copper recovered from mine-water precipitates.
 Includes 8,258,984 pounds of copper recovered from mine-water precipitates.

Gross metal content of concentrates produced from ores mined in New Mexico in 1941, by classes of concentrates smelled

	Concen- trates									
Class of concentrates	duced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (wet assay) (pounds)	Lead (wet assay) (pounds)	Zinc (pounds)				
Dry gold	5 9 10	18 19	16 645 642	87 201	21 318					
CopperLeadZinc	222, 492 381 10, 054 80, 774	8, 998 18 1, 686 20	184, 585 6, 600 269, 507 56, 215	1 145, 207, 294 2, 467 2, 097, 520 603, 467	66, 159 364, 355 7, 932, 845 1, 117, 017	7, 790 1, 647, 300 87, 362, 42				
Total, 1940	313, 725 276, 738	10, 759 12, 824	518, 210 437, 301	1 147, 911, 036 2 137, 321, 764	9, 480, 715 7, 131, 824	89, 917, 52 69, 095, 18				

¹ Includes 17,185,932 pounds of copper contained in mine-water precipitates.
² Includes 8,384,755 pounds of copper contained in mine-water precipitates.

Mine production of metals from New Mexico concentrates shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

	Concentrates (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Dona Ana	2		3		965	
Grant Hidalgo Lincoln	291, 592 14, 222	8, 421 1, 270	428, 631 65, 015 642	1 135, 367, 068 7, 467, 803	7, 634, 993 184, 617 200	70, 467, 598 80, 000
Santa Fe	2, 448	845	17, 320	1, 437, 000	200	
Sierra	90	210	1,422	9, 441	878	
Socorro	5, 361	11	5, 080		351, 884	4, 631, 703
Total, 1940	313, 725 276, 738	10, 757 12, 804	518, 113 426, 184	¹ 144, 281, 312 ² 134, 580, 984	8, 173, 537 5, 879, 669	75, 179, 301 60, 120, 764
BY CLA Dry gold Dry gold-silver Dry silver	5	18 19	16 645 642	S SMELTED 75 153	200	
Copper	222, 492	8, 998	184, 585	1 142, 093, 995	36, 378	
Lead	381	18	6,600	1, 663	327, 809	
Lead-copper	10.054	1,686	269, 507	1, 702, 663	7, 094, 190	
Zine	80, 774	18	56, 118		714, 960	75, 179, 301
	313, 725	10, 757	518, 113	1 144, 281, 312	8, 173, 537	75, 179, 301

 $^{^1}$ Includes 16,818,294 pounds of copper recovered from mine-water precipitates. 2 Includes 8,258,984 pounds of copper recovered from mine-water precipitates.

Gross metal content of New Mexico crude ore shipped to smelters in 1941, by classes of ore

			Gr	oss metal cor	itent	
Class of ore	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Dry and siliceous gold Dry and siliceous gold-silver Dry and siliceous silver Copper Lead	4, 382 4, 719 232 74, 489 1, 443	2, 003 998 8 101 423	8, 634 37, 600 7, 090 59, 026 7, 104	28, 135 7, 603 1, 051 2, 710, 014 12, 292	128, 519 4, 061 7, 676 715, 927 436, 808	2, 837
Total to copper and lead plants.	85, 265	3, 533	119, 454	2, 759, 095	1, 292, 991	80, 725
ZincZinclead	25 1, 467				505 369, 465	6, 718 674, 762
Total to zinc plants	1, 492				369, 970	681, 480
Total, 1940	86, 757 99, 670	3, 533 7, 513	119, 454 300, 641	2, 759, 095 5, 308, 184	1, 662, 961 2, 777, 568	762, 205 662, 634

Mine production of metals from New Mexico crude ore shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)
BernalilloCatron	16 274	4 164	1, 014 5, 116	600		
Dona Ana	40		94		11,035	12,00
Eddy	9 80, 769 2, 411	2, 821	3 102, 814 232	500 2, 446, 932 204, 000	530, 007	5, 40
HidalgoLincoln	227 125	87 53	2, 800 102	997	36, 383	
Luna Santa Fe	45 42		218	200	26, 400	
SierraSocorro	452 452 2, 347	14 241 149	4, 032 3, 026	13, 959 7, 500	6, 522 552, 116	527, 29
Гotal, 1940	86, 757 99, 670	3, 533 7, 513	119, 454 300, 641	2, 674, 688 5, 115, 016	1, 162, 463 1, 764, 331	544, 69 505, 23
Dry and siliceous gold	4, 382 4, 719 232 74, 489 1, 443	2,003 998 8 101 423	8, 634 37, 600 7, 090 59, 026 7, 104	26, 651 7, 114 899 2, 630, 197 9, 827	70, 777 2, 206 6, 294 393, 754 393, 422	
Total to copper and lead plants.	85, 265	3, 533	119, 454	2, 674, 688	866, 453	
ZincZinc-lead	25 1, 467				382 295, 628	5, 402 539, 297
Total to zinc plants	1, 492				296, 010	544, 699
	86, 757	3, 533	119, 454	2, 674, 688	1, 162, 463	544, 699

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in New Mexico in 1941, by counties and districts, in terms of recovered metals

County and district	Mine du	es pro- cing	Ore sold	Gold	l (fine ou	nces)	Silv	er (fine o	unces)	Copper	Lead	Zine	Total
	Lode	Placer	(short tons)	Lode	Placer	Total	Lode	Placer	Total	(pounds)	(pounds)	(pounds)	value
Bernalillo County	. 1		16	4		4	1, 014		1, 014				\$861
Catron County: Mogollon						l							1.1
Wilcox	. 8		61, 732	7, 884		7, 884	489, 926		489, 926	600			624, 403
Colfax County: Mount Baldy	. .	6	2		703	703	17		17				12
Dona Ana County: Organ	3	0	47		703	703	97	97	97 97				24, 674
Eddy County			9				97		3	500	12,000	12,000	1, 653
Grant County:									•	300			61
Burro Mountain	. 2	1	17	11	3	14	509		509	2, 287, 000	1		070 710
Central	12		7. 231, 981	6. 893		6, 893	476, 138		476, 138	135, 454, 500	7, 804, 600	69, 297, 000	270, 718 22, 205, 610
Chloride Flat	1 3		9	0,000		0,000	436		436	500	7, 304, 000	09, 297, 000	22, 205, 610 415
Eureka 1			28	2		2	1, 156		1, 156	300	9, 200		1,416
Pinos Altos	28	16	9,811	725	444	1. 169	4, 576	107	4, 683	10, 500	62, 100	1, 089, 000	130, 699
Steeple Rock	9		39, 018	6, 685		6.685	252, 509		252, 509	53, 200	226, 000	1,000,000	432, 697
Swartz	1		502	0, 000		0,000	516		516	2, 900	56, 400	87, 000	10, 484
Telegraph	3		23	•		1 -	710		710	2, 500	5, 900	1 1	10, 454
White Signal	6	3	68	25	4	29	346		346	5, 400	0, 900		1, 898
Juadalupe County	ĭ		2, 411		-		232		232	204, 000			24, 237
Hidalgo County:	_		_,						202	201,000		,	24, 201
Eureka (Sylvanite)	3		124	86		86	2, 340		2, 340	300	400		4, 732
Gillespie	1		88	i		ĺ	398		398	200	32, 200		2, 177
Lordsburg	5		121, 145	1, 270		1, 270	63, 886		63, 886	7, 467, 300	48,000	12,000	974, 657
San Simon	1		2, 200	-,		-,	1, 191		1, 191	1,000	140, 400	68, 000	14, 068
Lincoln County:	1						-,		-, -,-	1,000	110, 100	00,000	14,000
Cedar Creek	1		51				720		720		200		523
Jicarilla		19			178	178		14	14		200		6, 240
White Oaks una County: Cooks Peak	2		124	53		53	24		24				1, 872
Luna County: Cooks Peak	5		45				218		218	200	26, 400		1, 684
Santa Fe County:	1		1				7.0				20, 200		1,001
Ortiz Mountains (Cerrillos)	1	5.	42	14	49	63	3	3	6				2, 209
San Pedro	5	11	27, 334	1.038	56	1,094	17, 374	4	17, 378	1, 437, 000			220, 214
lierra County:						_,		- 1	21,,010	, _,, 000			~20, 217
Chloride			187	29		29	2, 496		2, 496	3,000	5,000		3, 429
Kingston	3		84	6		6	1, 457		1, 457	400	1, 300		1, 367
Las Animas (Hillsboro)	16	4	4, 581	432	989	1, 421	1, 506	56	1, 562	20,000	1, 100		53, 269
Pittsburg and Caballos Mountains	1	38			62	62		3	3	, 500	-,		2, 172

	3		
t	`		
	٠	5	
١	Č	j	

0	osrro County: Magdalena	6		27, 381	133	 	133	7, 972		7, 972	7, 500	847, 400		446, 436
49	Mocking Bird	1		811 200	25		35	93 128		.93 128		56, 600		3, 292 1, 316
777	San Mateo MountainsSilver Mountain	1 2		52 103	16 14		16 14	28 14		28 14				580 500
9-43	Total New Mexico	145	103	7, 530, 226	25, 357	2, 488	27, 845	1, 328, 033	284	1, 328, 317	146, 956, 000	9, 336, 000	75, 724, 000	25, 471, 416

¹ District lies in both Grant and Hidalgo Counties.

BERNALILLO COUNTY

F. S. Hofheims shipped 16 tons of silver-gold ore from the Little Daisy claim to the El Paso smelter in 1941.

CATRON COUNTY

Mogollon district.—The Black Hawk Consolidated Mines Co. continued in 1941 to operate the Consolidated group (comprising the Andrew Jackson Consolidated, Lexington Contention, and Lexington Gunboat claims on the Queen vein) and the Little Fanney cyanide mill, both under lease from the Lehigh Metals Co. Besides ore from the Consolidated group, the mill treated custom ore from the Little Fanney, Maude S, Champion, Last Chance, and Pacific groups. Company and custom ore treated totaled 61,460 tons, from which 7,720 fine ounces of gold and 484,827 fine ounces of silver were recovered in bullion shipped to the Denver Mint. Some of the ore produced at the Last Chance group and a few lots of ore from the Bearup and Ruby properties were shipped crude to the El Paso smelter and Hawley & Hawley (ore buyers) at Douglas, Ariz.

Wilcox district.—In 1941 the owner of the Little Dry claim shipped

Wilcox district.—In 1941 the owner of the Little Dry claim shipped 2 tons of ore to the Ira L. Wright assay office at Silver City; the ore assayed 0.14 ounce of gold and 8.4 ounces of silver to the ton.

COLFAX COUNTY

Mount Baldy district (Baldy, Elizabethtown, Eagle Nest).—All the output of gold and silver from the Mount Baldy district in 1941 came from placer mines. Fullroe, Inc., worked the Lynch Homestead and Grouse Gulch placers about 8 months, using a caterpillar bulldozer, 1½-cubic yard dragline, and portable screening and sluicing plant. The Peerless Mining Co. operated its portable four-bowl washing machine, 1½-cubic yard gasoline shovel, and caterpillar bulldozer from April 12 to November 17 on placer ground on Ute Creek. Individuals recovered small lots of placer gold by sluicing near Elizabethtown. No activity in mining or development was reported at lode mines in the Mount Baldy district in 1941. The mills at the Aztec and French Henry mines were dismantled.

DONA ANA COUNTY

Organ district.—A car of zinc-lead ore cleaned up from dumps on the Rickardite property was shipped to the Ozark Smelting & Mining Co. at Coffeyville, Kans., in 1941. About 6 tons of lead-silver ore were shipped to the El Paso smelter from the Seale & Hoffer group of claims, and a little ore was shipped from a prospect on which assessment work was being done.

EDDY COUNTY

Orvan F. Ammann shipped 9 tons of copper-silver ore to the El Paso smelter from his claim northwest of Carlsbad.

GRANT COUNTY

Burro Mountain district (Tyrone).—In March 1941 the Phelps Dodge Corporation began preparing its Burro Mountain mine (idle since 1921) for leaching. Water lines, power lines, and pumps were installed, and a precipitation plant was built. Production of copper was begun May 22 and continued the rest of the year. A lessee at the Barrio claim, owned by the Standard Silver Lead Mining Co., shipped small lots of gold-silver ore to buyers at Silver City, N. Mex., and Douglas, Ariz. Dry washing on placer ground in the Burro Mountain dis-

trict recovered a little gold.

Central district (Bayard, Fierro, Georgetown, Hanover, Santa Rita).—
The Nevada Consolidated Copper Corporation Chino Mines Division, largest producer of copper in New Mexico, operated its open-pit mine at Santa Rita and flotation mill and reverberatory copper smelter at Hurley throughout 1941. The output of copper was larger than in 1940 and set a new annual record. Improvements made in the mill in 1941 raised its capacity from 17,500 to 20,000 tons daily. The copper concentrates carry a low content of gold and silver. Molybdenite concentrates are recovered in the mill as a byproduct. The material smelted in 1941 included, besides concentrates from the mill, a considerable tonnage of siliceous carbonate copper ore (used as a flux) and copper precipitates recovered from leaching operations. The Twenty-seventh Annual Report of the Kennecott Copper Corporation, dated March 10, 1942, contains the following paragraphs regarding operations at the Chino property during 1941:

A total of 94,889,612 tons of rock was mined and moved at the four properties in Utah, Nevada, Arizona, and New Mexico. Of this total 51,180,803 tons were overburden which went to the waste dumps and 43,708,809 tons were ore sent to the concentrators. The average assay of the ore was 1.04 percent copper and there was produced a total of 819,648,759 pounds of copper during the year. The average monthly production was thus slightly in excess of 34,000 tons—varying from about 32,000 tons in the earlier months to 36,000 tons in the latter part of the year.

Chino mines.—The full electrification of the open-pit mine at Santa Rita was completed with the purchase of additional electric locomotives to replace the last of the steam motive power. Other new mine equipment included one 5-yard electric shovel and 20 dump cars. Sixteen new houses and a theater were built at

the mine townsite.

At the mill and smelter at Hurley—about 8 miles from Santa Rita—the installation of a 230-foot diameter Dorr thickening tank was started, and a new lime-burning plant was nearly completed at the year end. Four wells were drilled to augment the water supply developing an initial flow of 800 gallons per minute. This additional gallonage together with the water that will be saved through the Dorr thickener installation should provide a sufficient supply to treat present ore tonnages in seasons of normal rainfall. Eight houses and a teachers' dormitory were constructed at the Hurley townsite.

Zinc production in the Central district rose 17 percent over 1940. The Peru Mining Co. expanded mining operations at its Pewabic mine and shipped a materially increased tonnage of ore to the company 500-ton mill near Deming. Besides ore from the Pewabic mine, the mill handled some zinc tailings from the Cleveland mine near Pinos Altos. The concentrates produced were shipped to the retort plant at Dumas, Tex. The Empire Zinc Co. operated its Hanover mine group and selective-flotation mill continuously in 1941. Although the quantity of zinc concentrates produced from Hanover ore was less than in 1940, the decline from this source was partly offset by concentrates made from ore shipped to the mill from the company Kelly mine in the Magdalena district, Socorro County. Most of the zinc concentrates produced were shipped to the New Jersey Zinc Co. plant at Depue, Ill. (Mineral Point Zinc Division); the byproduct

lead-copper concentrates made were shipped to the El Paso smelter. Zinc concentrate production from the Combination (Black Hawk) mill, operated under lease by the American Smelting & Refining Co., was nearly double that in 1940, and lead concentrate production also increased. Most of the ore treated came from the company Ground Hog-San Jose group which produced, in addition to mill-grade zinclead-copper-silver ore, a substantial tonnage of copper-lead-silver-gold and lead-copper-silver ores shipped crude to the El Paso smelter. The zinc concentrates produced were shipped to the Amarillo (Tex.) smelter and the lead-copper concentrates to El Paso. handled considerable custom ore from the Combination and Hobo mines of the Black Hawk Consolidated Mines Co. and smaller quantities from the Bullfrog mine in the Central district, the Grandview in the Swartz (Carpenter) district, the Silver Hill near Pinos Altos, and the Ruth near Lordsburg. A few cars of ore were shipped to smelters from the Hanover Bessemer Iron & Copper Co. group, Lead King mine, and other properties in the Central district.

Chloride Flat district.—Small lots of lead-silver ore from the Hot Spot and Silver Queen claims and copper-silver ore from the Silver Monument were sold to Ira L. Wright, assayer and ore buyer at

Silver City, in 1941.

Eureka district (see also Hidalgo County).—The output from the Grant County part of the Eureka district in 1941 comprised small lots of ore (mostly lead-silver) shipped through Ira L. Wright of Silver City from the American, Cherokee, Green Horn, and Hornet claims.

Pinos Altos district.—Zinc was the metal of chief value produced in the Pinos Altos district in 1941; most of it was contained in old tailings from the Cleveland dump shipped to the Peru mill at Deming. Some zinc-lead ore was treated in the 20-ton Calumet mill, and 19 tons were shipped from the Silver Hill mine to the Combination mill near Hanover. Gold-silver and gold-silver-lead-copper ores were shipped (mostly in small lots) to the El Paso smelter, Ira L. Wright at Silver City, and Hawley & Hawley at Douglas, Ariz., from various mines, dumps, and prospects in the Pinos Altos district. Among those producing more than 25 tons of ore were the Langston, Lupita No. 2, Pacific, and Wild Bill. Most of the output of placer gold from the Pinos Altos district in 1941 was recovered by Cooperative Placers, which operated a dragline land dredge in Santa Domingo Gulch.

Steeple Rock district.—The Southwest Mineral Co. operated the Carlisle group from January 2 through December 1941 and produced 11,313 tons of gold-silver-copper ore, of which 7,913 tons were concentrated in the company 75-ton flotation mill at Duncan, Ariz., and 3,400 tons were shipped crude to the El Paso smelter. Mine development done included a 300-foot vertical shaft and 250 feet of drifts. The Exploration Syndicate, Inc., continued to operate the East Camp group; most of the ore produced was treated in the company cyanide mill at the mine, and the gold-silver bullion recovered was shipped to the Denver Mint; a few cars of crude ore were shipped to the El Paso smelter. Other shippers of crude ore to the El Paso smelter or the International Smelting & Refining Co. smelter at Miami, Ariz., were the Eureka group, Homestake, Jim Crow, Laura, Mount Royal, New Year's Gift, and Ontario.

Swartz (or Carpenter or Camp Monarch) district.—The Black Range Development Co. worked the Grandview group from January through April 1941 and produced 502 tons of ore averaging 11.6 percent zinc, 7.1 percent lead, and 0.4 percent copper, and 1.1 ounces of silver and 0.003 ounce of gold to the ton; the ore was sold to the Combination mill near Hanover.

Telegraph district.—Small lots of lead-silver and silver ore were shipped through ore buyers (Ira L. Wright at Silver City and Hawley & Hawley at Douglas, Ariz.) from the Calard No. 2, Cora Miller, and

Slate Creek claims.

White Signal district.—Only small-scale intermittent mining was done in the White Signal district in 1941, and the ore produced (mostly copper-silver) was shipped crude through Ira L. Wright at Silver City to El Paso or direct to the United Verde smelter at Clarkdale, Ariz. Among the producing lode claims were the Big Chief, Bisbee, Combination, Reward, and True Blue No. 1. Sluicing in Gold Gulch recovered a little placer gold.

GUADALUPE COUNTY

Alex. Bonnyman, Jr., worked the Stauber mine, in secs. 6 and 7, T. 7 N., R. 20 E. of the New Mexico principal meridian, under lease throughout 1941 and shipped to the El Paso smelter 2,411 tons of ore averaging 4.41 percent copper and 0.097 ounce of silver to the ton.

HIDALGO COUNTY

Eureka (Sylvanite) district (see also Grant County).—Small tonnages of smelting ore were shipped in 1941 from the Hardscrabble group and the Howell and Rincon claims.

Gillespie (Red Hill) district.—The Hope Mining Co., lessee at the Red Hill group, shipped 88 tons of lead-silver ore containing a little

gold and copper to the El Paso smelter in 1941.

Lordsburg district.—The Banner Mining Co. operated the Bonney mine and 500-ton flotation mill 6 miles south of Lordsburg continuously in 1941. The ore produced from the various levels of the mine is hoisted through a 1,300-foot vertical main shaft 100 feet from the mill. The product of the mill is copper-gold-silver-[iron] concentrates, which are sold to the El Paso smelter. During the year the company unwatered the old Anita mine about 5 miles west of Lordsburg, reconditioned the 800-foot shaft, and began doing development work. The ore will be hauled to the mill at the Bonney mine for treatment. A road connecting the two properties was built. J. A. Werme shipped 55 tons of zinc-lead ore from the leased Ruth property to the Combination mill at Hanover (Grant County). Small lots of direct-smelting ore were shipped from the Blue Bird No. 2, C. G. N. S., and Francis K. Sweet claims.

San Simon district (Steins).—The McGhee 75-ton flotation mill at the McGhee mine 3 miles south of Steins was operated part of 1941 on zinc-lead-silver ore from the Crystal group. About 2 cars each of lead-silver concentrates and zinc concentrates were produced and

shipped.

LINCOLN COUNTY

Cedar Creek district.—A lessee worked the Silver Cap No. 2 claim on a small scale in the spring of 1941 and produced some silver-lead-

copper ore, most of which was concentrated in the 20-ton mill on the

property.

Jicarilla district.—Placer miners continued to recover gold in 1941 by dry washing, rocking, and sluicing in the Jicarilla Mountains southeast of Ancho.

White Oaks district.—A few cars of gold-silver ore were shipped from mines in the White Oaks district to the El Paso smelter in 1941.

LUNA COUNTY

Cooks Peak district.—Small tonnages of lead-silver ore were shipped through Ira L. Wright at Silver City in 1941 from the Busted Banker,

Ethel-"85", Gladys, Graphic, and Mickey properties.

Deming.—In 1941 the Peru Mining Co. operated continuously its 500-ton selective-flotation mill at Wemple near Deming and treated mostly company zinc ore from the Pewabic mine in the Central district, Grant County, with some custom ore from the Central and Pinos Altos districts in Grant County. The output of zinc concentrates from the mill increased 50 percent over 1940.

SANTA FE COUNTY

Ortiz Mountains district (Cerrillos).—The only output from lode mines in the Ortiz Mountains district in 1941 was 42 tons of gold-silver-copper ore shipped from a prospect. Sluicing and dry washing on the Ortiz Grant southeast of Cerrillos recovered small lots of placer gold.

San Pedro or New Placers district.—Raskob Mining Interests, Inc., operated its San Pedro mine and 150-ton flotation mill from January 1 to August 15, 1941, and treated 26,554 tons of ore yielding 2,445 tons of concentrates containing 838 ounces of gold, 17,317 ounces of silver, and 1,496,780 pounds of copper. A lessee worked the Candelari mine on a small scale and trucked the ore produced 3½ miles to his 25-ton amalgamation-concentration mill at Golden for treat-At the Old Timer mine 200 tons of ore were treated in a Huntington mill. Small quantities of gold were recovered from other lode mines and prospects in the San Pedro district. Individuals continued to work placer mines in the vicinity of Golden with sluices and dry washers.

SIERRA COUNTY

Chloride (Apache, Cuchillo Negro) district.—Only intermittent small-scale mining was done in the Chloride district in 1941. ore produced was shipped in small lots direct to the El Paso smelter, or through Ira L. Wright at Silver City to El Paso and Hawley & Hawley at Douglas (Ariz.) to the Douglas smelter. Among the producing properties were the Apache group, Depression, Minnehaha, and New Era.

Kingston district.—Small tonnages of smelting ore were shipped

from the Comstock, B. R., and Virginia properties in 1941.

Las Animas district (Hilisboro).—The Black Dome Mining Corporation built a 60-ton gravity- and flotation-concentration mill on Percha Creek 1 mile east of Hillsboro and operated it about 5 months in 1941 on ore and old tailings from the Snake-Opportunity-Litel King group and the Golden Era and Biglow mines. The mill feed totaled 4,300 tons, comprising 300 tons of newly mined ore and 4,000 tons of old tailings. The concentrates produced, containing gold, silver, copper, and a little lead, were sold to the El Paso smelter. The Black Peak Mining Co. operated the Wicks mine a few months and shipped several cars of gold-silver-copper ore. Among the shippers of less than a car of ore during the year were the Duke,

Tressness (formerly Garfield-Butler), and Tremont groups.

The John I. Hallett Construction Co. continued throughout 1941 to operate its movable dry-land Coulter-Ainlay four-bowl gold-recovery plant on placer ground 6 miles northeast of Hillsboro. The excavating unit consists of two butane-powered draglines of 1 and 1½ cubic yards capacity, respectively. Drift mining at the Jones Hill placer and sluicing at other placers in the Hillsboro district recovered some gold.

Pittsburg and Caballos Mountains district.—Individuals, local and itinerant, panned for gold in 1941 on placer ground in the Pittsburg and Caballos Mountains district; the yield was sold through the Myers

Co. store at Hatch.

SOCORRO COUNTY

Magdalena district.—The output of recoverable zinc from the Magdalena district rose from 411,000 pounds in 1940 to 5,159,000 pounds in 1941 and lead from 129,000 to 847,400 pounds. On April 1, 1941, Raskob Mining Interests, Inc., took an option on the Waldo mine and 200-ton flotation mill, owned by The Sherwin-Williams Co., and began preparing them for operation. The mine had been idle and full of water for many years. Pumping was begun in June, and the mine and mill were placed upon an operating basis in September; unwatering of the mine, however, was not completed until February 1942. Ore milled in 1941 totaled 20,211 tons, yielding 3,206 tons of concentrates averaging 53.2 percent zinc and 3.5 percent lead; the concentrates were shipped to the Ozark Smelting & Mining Co. pigment plant at Coffeyville, Kans. The Kelly mine of the Empire Zinc Co. was worked by lessees, who shipped zinc-lead ore to the Empire Zinc Co. flotation mill at Hanover and the Ozark Smelting & Mining Co. pigment plant, and lead-silver ore to the El Paso smelter. Victor Papa shipped 264 tons of lead-silver-gold-copper ore from the I apa property to the El Paso smelter; a few lots of lead-silver ore were shipped from prospects.

Mocking Bird district.—From July to December 31, 1941, the Mocking Bird Mining Co. drove a 250-foot incline shaft at the Mocking Bird group (formerly Independence group) and produced 811 tons of lead ore, which was concentrated in the company jig-concentration mill built in 1941 at Tokay (7 miles southeast of San Antonio) 28 miles from the mine. The mill recovered 54 tons of concentrates averaging


58.34 percent lead and 1.69 ounces of silver to the ton.

Rosedale district.—Bullion containing 35 fine ounces of gold and 128 fine ounces of silver was shipped from the Rosedale mine to the Denver Mint in 1941.

San Mateo Mountains district.—Ellison Warren shipped 52 tons of

gold-silver ore to the El Paso smelter in 1941.

Silver Mountain (or Water Canyon) district.—Test runs made in 1941 on ore from the Open Cut mine, in the gravity-concentration mill on the property, yielded some gold and silver. A little gold was recovered from the Springtime claim.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN OREGON

(MINE REPORT)

By CHARLES WHITE MERRILL AND H. M. GAYLORD

SUMMARY OUTLINE

Page		Page
432	Ore classification	436
	- 431 432	432 Ore classification

SUMMARY

After an all-time record in 1940, the total value of gold, silver, copper, and lead recovered from ores, old tailings, and gravels in Oregon declined 13 percent in 1941. Rising wages, migration of miners to war industries, rising costs of supplies and materials and difficulties in obtaining them, higher taxes, and fixed prices for gold and silver were factors in reversing a trend that had more than

doubled the total value of the four metals since 1937.

The total value of the gold, silver, copper, and lead (in terms of recovered metals) produced in Oregon was \$3,602,468 in 1941 compared with \$4,148,271 in 1940. It was divided among the metals as follows: Gold, 94 percent; silver, 5 percent; and copper and lead combined, 1 percent. No recovery of zinc has been reported since 1937. Baker County continued to be the leading metal producer and contributed 42 percent of the State total value; Grant County yielded 30 percent, Jackson County 15 percent, Josephine County 8 percent, and the other 11 producing counties 5 percent. Distribution of production by counties was much the same as in 1940.

Cornucopia Gold Mines, which worked the Cornucopia mine in the Cornucopia district of Baker County until October 31, not only continued in 1941 to be the largest producer of lode gold in Oregon but also led again in output of total gold and copper. Although the Cornucopia operation was the largest to be suspended during 1941, other important producers also closed—Cougar-Independence Lessees, Western Dredging Co., Ferris Mining Co. (dragline dredge on Bull Run Creek in Baker County), Rogers & McGinnis, H. F. England Co. (dragline dredge on Dixie Creek in Grant County and Trout Creek in

Harney County), and Murphy-Murray Dredging Co.

Despite a 19-percent decline in quantity of gold recovered by dragline dredging compared with 1940, this method continued for the third successive year to be the most important source of placer gold in Oregon; gold output from connected-bucket dredges declined only 3 percent; and production by nonfloating washing plants (to which gravel was delivered by mechanical means), hydraulicking, small-scale hand methods, and underground gravel-mining all decreased substantially.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

Yardage figures used in measuring material treated in placer operations are bank measure; that is, the material is measured in the ground before treatment.

The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold 1	Silver 2	Copper ³	Lead 3	Zinc ³
1937. 1938. 1939. 1940.	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0.7735 4.646+ 5.678+ 6.711+ 6.711+	Per pound \$0, 121 .098 .104 .113 .118	Per pound \$0.059 .046 .047 .050	Per pound \$0.065 .048 .052 .063 .075

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+(\$20.671835) per fine ounce.

² 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938–41: Treasury buying price for newly mined silver.

³ Yearly average weighted price of all grades of primary metal sold by producers.

⁴ \$0.646464644.

⁵ \$0.671111111.

Mine production of gold, silver, copper, lead, and zinc in Oregon, 1937-41, and total, 1852-1941, in terms of recovered metals

		nes icing ¹		, old ings,	Go	ld (lode	and placer)		lode and icer)	
Year	Lode	Placer	etc.	(short ns)		Fine unces	Value	Fine ounces	Value	
1937 1938 1939 1940 1941	104 84 116 112 91	150 157 201 192 153	10	77, 230 74, 936 69, 025 05, 469 98, 160		52, 662 81, 729 93, 372 113, 402 96, 565	\$1, 843, 170 2, 860, 515 3, 268, 020 3, 969, 070 3, 379, 775	60, 56 100, 50 105, 38 219, 11 276, 15	7 64, 974 8 71, 536 2 155, 813	
1852-1941			((2)	5,	620, 788	124, 690, 623	5, 089, 78	2 4, 697, 387	
Voor	(Copper			Lea	ad	Zi	ne	(Tatal - alas	
Year	Pounds		lue	Poun		ad Value	Zi	nc Value	Total value	
Year 1937		S Val	9, 220 7, 448 9, 984 9, 888 9, 588	Poun 218, (46, (30, (70, (118, (000 000 000 000		Pounds 2 48,000	Value \$3, 120	\$2,005,218 2,935,053 3,350,950 4,148,271 3,602,468	

¹ Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.
² Figures not available.

Figures not available.Short tons.

Gold produced at placer mines in Oregon, 1937-41, by classes of mines and by methods of recovery

	35.	Material	Go	ld recovered	l
Class and method	Mines pro- ducing ¹	treated (cubic yards)	Fine ounces	Value	Average per cubic yard
Surface placers: Gravel mechanically handled:		4			
Connected-bucket dredges: 1937 1938 1939 1940 1941	4 5 5 6 7	5, 017, 000 7, 258, 000 6, 267, 000 7, 580, 000 6, 670, 000	17, 178 29, 006 25, 028 24, 951 24, 131	\$601, 230 1, 015, 210 875, 980 873, 285 844, 585	\$0. 120 . 140 . 140 . 115 . 127
Dragline dredges: ² 1937	4 11 10 23 25	2, 085, 000 2, 891, 000 5, 964, 000 7, 361, 000 6, 256, 000	9, 126 15, 939 26, 257 35, 216 28, 395	319, 410 557, 865 918, 995 1, 232, 560 993, 825	. 153 . 193 . 154 . 167 . 159
Suction dredges: 3 1941	1	27,000	191	6, 685	. 248
Nonfloating washing plants: 4 1937 1938 1939 1940 1941	9 5 13 29 17	186, 000 136, 000 346, 000 638, 000 567, 000	2, 017 1, 768 2, 169 4, 092 2, 757	70, 595 61, 880 75, 915 143, 220 96, 495	. 380 . 455 . 219 . 224 . 170
Gravel hydraulically handled: Hydraulic: 1937 1938 1939 1940	48 66 76 82 63	366, 000 731, 000 440, 000 599, 000 683, 000	2, 344 3, 261 2, 585 2, 731 2, 306	82, 040 114, 135 90, 475 95, 585 80, 710	. 224 . 156 . 206 . 160
Small-scale hand methods: 5 Wet: 1937 1938 1939 1940 1941	71 57 83 44 33	173, 892 332, 800 299, 200 499, 300 438, 300	3, 197 3, 874 4, 398 4, 279 2, 553	111, 895 135, 590 153, 930 149, 765 89, 355	. 643 . 407 . 514 . 300 . 204
Dry: 6 1938 1939 1940 1941	2 1 1 1	800 400 500 100	16 13 21 3	560 455 735 105	. 700 1. 138 1. 470 1. 050
Underground placers: Drift: 1937. 1938. 1939. 1940.	15 11 13 10 6	3, 108 5, 400 5, 400 6, 200 4, 600	357 467 329 287 94	12, 495 16, 345 11, 515 10, 045 3, 290	4. 020 3. 027 2. 132 1. 620 . 718
Grand total placer: 1937	7 150 157 201 7 192 153	7, 831, 000 11, 355, 000 13, 322, 000 16, 684, 000 14, 646, 000	34, 219 54, 331 60, 779 71, 577 60, 430	1, 197, 665 1, 901, 585 2, 127, 265 2, 505, 195 2, 115, 050	. 153 . 167 . 160 . 150 . 144

¹ Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to

¹ Excludes itinerant prospectors, supers, ingurgancies, and validation and property.
2 Includes all placer operations using dragline excavator for delivering gravel to floating washing plant.
3 Includes all placer operations using suction pump for delivering gravel to floating washing plant, except those producing less than 100 ounces of gold, which are included under "Small-scale hand methods"; no suction dredges reported for 1937-40, inclusive.
4 Includes all placer operations using power excavator and washing plant, both on dry land; when washing plant is movable, outfit is termed "dry-land dredge."

4 Includes all operations in which hand labor is principal factor in delivering gravel to sluices, long toms, dip boxes, pans, etc.
4 None reported for 1937.
7 A mine using more than 1 method of recovery is counted but once in arriving at total for all methods.

Gold.—Production of gold in Oregon in 1941 decreased 15 percent compared with 1940—the output from placers 16 percent and that from lode mines 14 percent. Of the total placer gold, dragline dredges recovered 47 percent, connected-bucket dredges 40 percent, nonfloating washing plants with mechanical excavators almost 5 percent, and hydraulicking and small-scale hand methods 4 percent each; recoveries by suction dredging and drift mining were relatively unimportant. Virtually all the lode gold was derived from dry ores and most (93 percent) of it from dry gold ore. Although 244 properties produced in 1941, the bulk of the gold came from relatively few mines; the following 10 properties, listed in order of output, supplied 62 percent of the State total: Cornucopia Gold Mines (gold ore), Sumpter Valley Dredging Co. (connected-bucket dredge), Porter & Co. (connected-bucket dredge), Cougar-Independence Lessees (gold ore), Northwest Development Co. (dragline dredge), Lewis Investment Co. (gold ore), the B-H Co. (dragline dredge), John Arthur (Cracker Creek group) (gold ore), Consuelo Oregon Mines (dragline dredge), and Charles C. Stearns (Alaska of Oregon) (dragline dredge). Operations at 2 of these, yielding over one-third of the gold production of the 10, were suspended before the end of 1941.

Silver.—Silver production in Oregon in 1941 increased 26 percent over 1940. Of the State total, Grant County contributed 35 percent, Jefferson County 32 percent, and Baker County 30 percent; dry gold-silver ore yielded 60 percent, dry gold ore 35 percent, placer gravel 4 percent, and silver and base-metal ores 1 percent. Nearly 61 percent of the total lode silver was recovered by concentration followed by smelting of the resulting concentrates; virtually all the rest of the

output came from smelting of ore.

Copper, lead, and zinc.—Most of the copper output of Oregon in 1941 was a byproduct of ores worked primarily for their gold content. The lead output of the State, which totaled only 118,000 pounds, was derived entirely from precious-metal ores. No zinc was reported recovered.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, and lead in Oregon in 1941, by counties, in terms of recovered metals

		nes icing ¹			(dold		
County		,		Lode	P	lacer	Т	otal
	Lode	Placer	Fine ounces	Value	Fine ounces	Value	Fine ounces	Value
Baker Coos	22	31 (3)	18, 503	\$647, 605	23, 025 100	\$805, 875 3, 500	41, 528 100	\$1, 453, 480 3, 500
Curry Douglas	1	6			85	2, 975	85	2, 975
Grant.	14	9 21	$\frac{2}{11,522}$	70 403, 270	143 17, 383	5, 005 608, 405	145 28, 905	5, 0.75
Harney	1	i	11, 522	35	294	10, 290	295	1, 011, 675 10, 325
Jackson	25	33	909	31, 815	14,789	517, 615	15,698	549, 430
Jefferson	1		945	33, 075			945	33, 075
Josephine	20	39	4, 215	147, 525	3,435	120, 225	7,650	267, 750
Lane	4	1	20	700	3	105	23	805
Malheur.	2	9	15	525	1,115	39, 025	1,130	39, 550
MarionWallowa	1		3	105			3	105
Other counties 4		(3)			7 51	245 1,785	51	245
		°				1,780	- 31	1, 785
	91	153	36, 135	1, 264, 725	60, 430	2, 115, 050	96, 565	3, 379, 775
Total, 1940	112	192		1, 463, 875		2, 505, 195		3, 969, 070

See footnotes at end of table.

Mine production of gold, silver, copper, and lead in Oregon in 1941, by counties, in terms of recovered metals-Continued

	Silver (l plac		Cor	per	Le	Total	
County	Fine ounces	Value	Pounds	Value	Pounds	Value	value
BakerCoos	84, 046 14	\$59,766 10	88,000	\$10, 384	14, 000	\$798	\$1, 524, 42 3, 51 2, 98
Curry DouglasGrant	13 270 96, 950 97	9 192 68, 942 69	6,000 16,000	708 1,888	64,000	3, 648	5, 97 1, 086, 15 10, 39
Harney Jackson Jefferson Josephine	2, 914 88, 823 891	2, 072 63, 163 634	14,000 16,000	1,652 1,888	6, 000 34, 000	342 1, 938	551, 84 99, 82 270, 27
Lane Malheur Marion	1,620 177 336	1, 152 126 239	2,000	236			2, 19 39, 67 3, 17
Wallowa Other counties 4	7	5					1,79
Total, 1940	276, 158 219, 112	196, 379 155, 813	166, 000 176, 000	19, 588 19, 888	118, 000 70, 000	6,726 3,500	3, 602, 46 4, 148, 27

¹ Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to

property.

3 Sources of total silver as follows: 1941, 264,953 ounces from lode mines and 11,205 ounces from placers: 1940, 206,317 ounces from lode mines and 12,795 ounces from placers.

3 Output from property not classed as a "mine."

4 Morrow and Wheeler

MINING INDUSTRY

Of the 98,160 tons of ore (including 1,185 tons of old tailings) sold or treated in Oregon in 1941, Baker County produced 38,448 tons or 39 percent, Grant County 31,788 tons (including 50 tons of old tailings) or 32 percent, and Josephine County 22,711 tons (including 625 tons of old tailings) or 23 percent. Over 89 percent of the ore was dry gold ore, and virtually all the remainder was dry gold-silver ore. In addition to the ore, 1,185 tons of old tailings, of value principally in

gold, were treated.

The seven properties worked by connected-bucket dredges had one dredge each, none of which worked at more than one Oregon property during 1941; at the end of the year two operations had been suspended. Among the properties worked by dragline dredges, however, one had two dredges, and a number of the dredges worked more than one property; in consequence, 16 dragline outfits worked 25 properties. At the close of 1941, however, only 12 dragline dredges were in opera-The dragline excavators were equipped as follows: 4 with 11/4cubic yard buckets, 3 with 11/2-cubic yard buckets, 2 with 2-cubic yard buckets, and 1 each with a 5-, 31/2-, 3-, 21/2-, 11/4-, 11/4-, and 1/2-cubic yard

Reports on the use of quicksilver at Oregon placer mines indicate that 1,108 pounds were consumed during 1941. The four connectedbucket dredges reporting on such use showed none consumed in 1941; the largest of the four reported enough quicksilver regained from gravel tailings to compensate losses in handling virgin ground. For the 17 dragline dredges reporting on the use of quicksilver a recovery of 55 ounces of gold per pound was recorded, compared with a recovery of 51 ounces in 1940 and 42 ounces in 1939. The quantities of gold recovered per pound of quicksilver used at other types of placer operations in 1941 were as follows (1940 figures in parentheses): Nonfloating washing plants with mechanical excavators, 43 ounces (13); hydraulic mines, 21 ounces (22); and small-scale hand operations, 6 ounces (5).

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore and old tailings sold or treated in Oregon in 1941, with content in terms of recovered metals

Source	Material so	ld or treated	1			
	Ore	Old tailings	Gold	Silver	Copper	Lead
Dry and siliceous gold-silver ore	Short tons 86, 563 9, 779 4 629	Short tons 1,185	Fine ounces 33, 542 2, 583	Fine ounces 96, 607 165, 948 178 2, 220	Pounds 103, 900 14, 100	Pounds 84,000 34,000
Total, lode mines Total, placers	96, 975	1, 185	36, 135 60, 430	264, 953 11, 205	166,000	118, 000
Total, 1940	96, 975 1 02, 2 50	1, 185 3, 219	96, 565 113, 402	276, 158 219, 112	166, 000 176, 000	118, 000 70, 000

METALLURGIC INDUSTRY

Of the State total ore and old tailings (98,160 tons), 66 percent was treated in concentrating mills, most of which used flotation; 25 percent was treated in amalgamation and cyanidation mills, with or without concentration equipment; and 9 percent was shipped crude to smelters. Ultimate recovery of 71 percent of the total lode gold was from the smelting of concentrates; 15 percent from direct smelting of ore; 11 percent as bullion from cyanidation of ore, old tailings, and concentrates; and 3 percent as bullion from amalgamation of ore. All material requiring smelting was shipped out of the State, as Oregon has no smelters.

Data furnished by operators of gold and silver mills show that 6,526 pounds of 91-percent sodium cyanide were consumed in recovering 3,899 ounces of gold and 276 ounces of silver from 20,529 tons of ore, 250 tons of old tailings, and 10 tons of concentrates, and that 7 pounds of quicksilver were used in recovering 449 ounces of gold and 116 ounces of silver from 166 tons of ore.

Mine production of metals in Oregon in 1941, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated	Gold	Silver	Copper	Lead
Ore amalgamated Ore, old tailings, and concentrates cyanided	Short tons 1, 440 22, 802	Fine ounces 971 4, 056	Fine ounces 222 513	Pounds	Pounds
Concentrates smelted: Flotation Gravity Ore smelted	6, 279 96 8, 896	25, 485 111 5, 512	160, 856 470 102, 892	88, 200 24, 000 53, 800	83, 200 800 34, 000
Total, lode mines		36, 135 60, 430	264, 953 11, 205	166, 000	118, 000
Total, 1940		96, 565 113, 402	276, 158 219, 112	166, 000 176, 000	118, 000 70, 000

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Oregon in 1941, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

		w.					
	Materia	l treated	Recove			rates smel	
County	Ore 1	Old tailings	Gold	Silver	Concen- trates produced	Gold	Silver
BakerGrant	Short tons 370 85	Short tons	Fine ounces 150 65	Fine ounces 30 16	Short tons 2 3	Fine ounces 11 6	Fine ounces
Harney Jackson Josephine Lane	334		593 142 20	149 17 10	7	45	11
Total, 1940	1, 440 4, 416	305	971 2, 819	222 556	12 31	62 124	2 13
	C.	YANIDAT	ION MI	LLS			
BakerGrantJacksonJosephine	80 98 21, 439	50 510 625	15 5 58 3, 978	2 1 62 448			
Total, 1940	21, 617 16, 520	1, 185 3, 119	4, 056 4, 001	513 403			
Grand total: 1941	23, 057 20, 936	1, 185 3, 424	5, 027 6, 820	735 959	12 31	62 124	2 13

¹ Figures under "Ore" for cyanidation mills include both raw ore and concentrates cyanided, but not raw ore concentrated before cyanidation of concentrates.

Mine production of metals from concentrating mills in Oregon in 1941, by counties, in terms of recovered metals

County		Concentrates smelted and recovered metal							
	Ore	Concen- trates produced	Gold	Silver	Copper	Lead			
Baker Grant Jackson Marion	Short tons 31,856 31,397 1,377 500	Short tons 1,675 4,573 43 72	Fine ounces 14, 783 10, 646 102 3	Fine ounces 70, 266 90, 055 648 336	Pounds 74, 400 13, 800 24, 000	Pounds 14,000 64,000 6,000			
Total, 1940	65, 130 73, 289	6, 363 5, 411	25, 534 29, 771	161, 305 166, 876	112, 200 127, 900	84, 000 47, 70			

Gross metal content of concentrates produced from ores mined in Oregon in 1941, by classes of concentrates

	Concen-	Gross metal content							
Class of concentrates	trates	Gold	Silver	Copper	Lead	Zinc			
ory gold ory gold-silver opper	Short tons 4, 442 1, 818 72 43	Fine ounces 23, 888 1, 603 3 102	Fine ounces 84,056 76,286 336 648	Pounds 78, 503 12, 869 25, 742	Pounds 32, 458 69, 575 7, 262	Pounds 79, 429			
Total, 1940	6, 375 5, 442	25, 596 29, 895	161, 326 167, 015	117, 114 132, 335	109, 295 67, 423	79, 429			

Mine production of metals from Oregon concentrates shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

	Concen- trates	Gold	Silver	Copper	Lead	
Baker Grant Jackson Josephine Marion	Short tons 1,677 4,576 43 7 72	Fine ounces 14, 794 10, 652 102 45 3	Fine ounces 70, 268 90, 063 648 11 336	Pounds 74, 400 13, 800	Pounds 14,00 64,00 6,60	
Total, 1940	6, 375 5, 442	25, 596 29, 895	161, 326 167, 015	112, 200 127, 900	84, 000 47, 700	
BY CLASSES	OF CONC	ENTRATE	8			
Dry gold Dry gold-silver Copper Lead	4, 442 1, 818 72 43	23, 888 1, 603 3 102	84, 056 76, 286 336 648	75, 900 12, 300 24, 000	24, 200 53, 800 6, 000	
	6, 375	25, 596	161, 326	112, 200	84,000	

Gross metal content of Oregon crude ore shipped to smelters in 1941, by classes of ore

Class of ore	0	Gross metal content						
C1902 01 016	Ore	Gold	Silver	Copper	Lead			
Dry and siliceous gold Dry and siliceous gold-silver Dry and siliceous silver Copper	Short tons 6, 347 2, 416 4 129	Fine ounces 4, 525 930	Fine ounces 11, 168 89, 662 178 1, 884	Pounds 17, 827 14, 655 19 25, 764	Pounds 992 63, 280 100 564			
Total, 1940	8, 896 8, 225	5, 512 5, 097	102, 892 38, 258	58, 265 52, 810	64, 936 35, 635			

Mine production of metals from Oregon crude ore shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

	Ore	Gold	Silver	Copper	Lead	
Baker Douglas Grant	42 256	Fine ounces 3, 544 2 800	Fine ounces 8, 865 256 3, 260	Pounds 13,600 6,000 2,200	Pounds	
Jackson Jefferson Josephine Lane Malheur	2 348	156 945 50	88, 823 26 1, 610	14,000 16,000 2,000	34,000	
Total, 1940	8, 896 8, 225	5, 512 5, 097	102, 892 38, 258	53, 800 48, 100	34, 000 22, 300	
BY CI	ASSES OF	ORE				
Dry and siliceous gold. Dry and siliceous gold-silver. Dry and siliceous silver. Copper	6, 347 2, 416 4 129	4, 525 980 7	11, 168 89, 662 178 1, 884	15,700 14,100 24,000	34,000	
	8, 896	5, 512	102, 892	53,800	34, 000	

Mine production of gold, silver, copper, and lead in Oregon in 1941, by counties and districts, in terms of recovered metals 1

Country and district I	Mines	prod	lucing 2	Ore and old		Gold		Silver (lode		Lead	Total value
County and district 1	Lode		Placer	tailings	Lode Placer Total	and placer)3	and placer)3		1 out value		
Baker County:				Short tons	Fine ounces		Fine ounces			Pounds	#10.000
Baker.		j	2	172	64	274	338 1, 632	284 197			\$12,032 57,260
Dui nui			1			1,632 62	1, 632	197			2, 178
Connor Creek		3-	2	01 055	14, 783	100	14, 883	70, 314	74, 400	14,000	580, 483
Cornucopia		3	Z	31,855	3, 093	100	3,093	8, 408	12,000	14,000	115, 650
Cracker Creek	!	3		5, 435 10	3,093		3,093	0,400	12,000		281
Eagle Creek		!		10	8	2, 747	2, 755	422			96, 725
Greenhorn 4		! !	0	113	32	2, 747	2, 755	27			1, 594
Homestead		1	Ţ	113	32	174	174	31			6.112
Mormon Basin 5		2	4	116	43	1/4	43	24			1, 522
Sparta	1	- 1	ē	110	40	17, 612	17, 612	4. 105			619, 339
Sumpter			9			234	234	7, 100			8, 220
Upper Burnt River			4	701	435	101	536	153	1,600		19,058
Virtue		3	i i	40	37	76	113	100	1,000		3, 974
Weatherby		2	Z	40	01	10	110	21			0, 01 1
Coos County:			(4)							l	140
Coos Bay			(8)			38	38				1, 333
Coquille			(%)			58	58	10			2,037
Johnson Creek			(°)			08	08	10			2,001
Curry County:	į.		400	1 7 7				3	1.		492
Gold Beach			(6)			14	14	ا ٥			280
Mule Creek			3			8	8				140
Ophir			(6)			4	4				2, 072
Sixes			3			59	59	10			2, 072 5, 975
Douglas County: Riddle		1	9	42	2	143	145	270	6,000		0,970
Grant County:		.	1 2	I							101 000
Canyon		3	7	55	47	3, 399	3, 446	675			121,090
Granite		5	5	31, 441	11, 231	8,404	19,635	94, 282	13,800		759, 546
Greenhorn 4		3	1	184	199	12	211	930			8, 306
Quartzburg		3	2	108	45	1, 281	1, 326	194			46, 548
Susanville			4		.	2, 203	2, 203	405			77, 393
Harney County:	1	- 1	100	4				1		1	10000
Idol City			1			294	294	97			10,359
Pueblo Mountain		1 -		. 5	1	1	1	1	l	l	. 35

See footnotes at end of table.

OREGON

SILVER,

COPPER,

Mine production of gold, silver, copper, and lead in Oregon in 1941, by counties and districts, in terms of recovered metals—Continued

County and district	Mines p	Mines producing			Gold		Silver (lode			
County and district	Lode	Placer	tailings	Lode	Placer	Total	and placer)	Copper	Lead	Total value
Jackson County: Ashland. Gold Hill Greenback ' Jacksonville. Upper Applegate. Jefferson County: Ashwood Josephine County: Galice. Grants Pass. Greenback ' Illinois River. Lower Applegate. Waldo. Lane County: Blue River. Bohemia. Malheur. Mormon Basin ' Marion County: North Santiam Wallowa County: Snake River. Combined counties and districts 10	4 5 5 5 (8) 2 3 3 1 3 2 2 1	(*) 11 12 19 88 6 12 5 17 7 1 6 8 3	Short tons 134 175 5 480 55 2, 348 20, 660 477 (*) 4 911 26 62 3 500	Fine ounces 60 138 149 66 387 945 3,929 91 83 (8) 19 70	Fine ounces 10 2,719 13 1,175 10,872 150 764 982 225 24 1,290 3 227 888	Fine ounces 70 2, 857 162 1, 241 11, 259 945 4, 079 855 1, 065 225 43 1, 360 23 227 903 3 7 2, 267	Fine ounces 21 405 34 190 1,606 88,823 301 115 174 931 10 257 1,610 10 31 146 336	14,000		395, 207 99, 828 142, 979 30, 007
Total Oregon	91	153	98, 160	36, 135	60, 430	96, 565	276, 158	166,000	118,000	3, 602, 468

¹ Only those counties and districts shown separately for which Bureau of Mines is at liberty to publish figures; others producing listed in footnote 10 and their output included under "Combined counties and districts."

² Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.

³ Source of total silver as follows: 264,953 ounces from lode mines and 11,205 ounces from placers.

<sup>Greenhorn district lies in both Baker and Grant Counties.
Mormon Basin district lies in both Baker and Malheur Counties.</sup>

<sup>Output from a property not classed as a "mine."
Greenback district lies in both Jackson and Josephine Counties.
Included under "Combined counties and districts."
Exclusive of lode output, which is included under "Combined counties and districts."
Includes following districts: North Fork John Day in Grant County; Elk Creek in Jackson County; Illinois River (lode) in Josephine County; Columbia River in Morrow County; and Spanish Gulch in Wheeler County.</sup>

BAKER COUNTY 1

Baker district.—The Midas mine in the Pocahontas section of the Baker district was worked by hydraulic mining during 1941; 198 ounces of gold and 21 ounces of silver were recovered from 6,585 cubic yards of gravel.

Bull Run district.—The Ferris Mining Co. operated a dragline dredge, using a dragline excavator with a 3-cubic yard bucket, on Bull Run Creek 6 miles southwest of Unity from January 1 until July 31, 1941; 485,270 cubic yards of gravel yielded 1,632 ounces of

gold and 197 ounces of silver.

Cornucopia district.—The Cornucopia mine, operated by Cornucopia Gold Mines, continued to be the outstanding producer of lode gold, total gold, and copper in Oregon in 1941, although the company suspended operations October 31. Flotation of 30,800 tons of gold ore yielded 1,648 tons of gold concentrates containing 14,509 ounces of gold, 68,408 ounces of silver, 76,093 pounds of copper, and 21,744 pounds of lead; these concentrates and 8 tons of crude ore containing 6 ounces of gold, 38 ounces of silver, and 89 pounds of copper were In terms of recovered metals, the mine supplied shipped to a smelter. 40 percent of the lode gold produced in the State, 15 percent of the total gold, 25 percent of the silver, 45 percent of the copper, and 12 percent of the lead. The decline in production at this mine from its 1940 output was a major factor in the decreased gold and copper out-A lessee shipped 1,046 tons of ore from the Simmons put in Oregon. group for treatment at the Cornucopia flotation mill; the concentrates recovered were credited with a content of 264 ounces of gold and 1,840 ounces of silver.

Cracker Creek district.²—A smelter shipment of 217 tons of ore containing 236 ounces of gold, 64 ounces of silver, and 385 pounds of copper was made from the Argonaut mine in 1941. A lessee shipped 5,163 tons of smelting ore containing 2,828 ounces of gold, 7,776 ounces of silver, and 12,007 pounds of copper from the Columbia, **Tabor**

Fraction, E & E, and North Pole mines.

Greenhorn district.—The Sunshine Mining Co. (Burnt River Division) installed a Yuba electric connected-bucket dredge with 4½-cubic foot buckets near Whitney and began operations October 21, 1941; treatment of 150,000 cubic yards of gravel vielded 391 ounces of gold and 80 ounces of silver. The Oroplata Mining Co. operated a dragline dredge on Pinus and Camp Creeks 3 miles north of Whitney.

Sumpter district.—Consuelo Oregon Mines operated a dragline dredge on McCully Fork. The Northwest Development Co. began 1941 with two dragline dredges operating in the Sumpter district, but only one dredge worked after February 28; 900,000 cubic yards of gravel yielded 5,701 ounces of gold and 1,324 ounces of silver. The Sumpter Valley Dredging Co., in 1941 again the largest producer of placer gold in Oregon, washed 3,376,514 cubic yards of gravel and recovered 9,178 ounces of gold and 1,923 ounces of silver; the dredge is of the connected-bucket electric-power type, with seventy-two 9-cubic foot buckets.

¹ See also Pardee, J. T., Preliminary Geologic Map of the Sumpter Quadrangle, Oreg.: State of Oregon Department of Geology and Mineral Industries, 1941.

2 Leaver, E. S., Woolf, J. A., and Towne, A. P., Progress Reports—Metallurgical Division. 46. Ore-Testing Studies (Primarily Precious Metals): Bureau of Mines Rept. of Investigations 3569, 1941, pp. 29-35.

Virtue district.—Lessees worked the Cliff mine during 1941; 65 tons of ore treated by amalgamation yielded 13 ounces of gold and 3 ounces of silver, and 279 tons of ore shipped to a smelter contained 190 ounces of gold, 97 ounces of silver, and 1,386 pounds of copper. During the first 5 months of the year, lessees on the Hidden Treasure mine shipped to a smelter 247 tons of ore containing 184 ounces of gold, 24 ounces of silver, and 468 pounds of copper; 80 tons of ore treated by cyanidation yielded 15 ounces of gold and 2 ounces of silver.

GRANT COUNTY 3 4

Canyon district.—On November 9, 1941, the Ferris Mining Coresumed operations with a dragline dredge, using a dragline excavator with a 3-cubic yard bucket, on the John Day River 3 miles northwest of John Day and continued until the end of the year; 130,370 yards of gravel yielded 683 ounces of gold and 72 ounces of silver. The Western Dredging Co. operated a connected-bucket dredge with seventy-two 6-cubic foot buckets from January 1 until October 4.

with sixty-two 4½-cubic foot buckets on Granite, Clear, Olive, and Crane Creeks throughout 1941. The Intermountain Mining Co. abandoned dragline-dredge operations in the Granite district during the year. Bruce Dennis operated the Constitution mine; gold ore was treated in a 25-ton flotation plant, and gold concentrates and a small quantity of high-grade ore were shipped to a smelter. Cougar-Independence Lessees worked the Cougar Independence mine until September 1, when operations were suspended; gold ore was treated by flotation, and gold concentrates were shipped to a smelter. Rogers & McGinnis operated the La Bellevue mine from January 1 until November 15; gold-silver ore was treated in a 35-ton flotation plant, and gold-silver concentrates were shipped to a smelter. In addition to a substantial output of gold and silver, this operation led in the State in production of lead.

Greenhorn district.—Gold ore from the Morning mine, in that part of the Greenhorn district extending into Grant County from Baker

County, was shipped to a smelter in 1941.

North Fork John Day district.—Ralph Davis, Inc., operated a dragline dredge, using a dragline excavator with a 3½-cubic yard bucket, at

the North Fork placer from March 22 to December 24, 1941.

Quartzburg district.—The H. F. England Co. operated a dragline dredge with a dragline excavator, having a 1%-cubic yard bucket, on hydraulic tailings in Dixie Creek for 3 months in 1941; 150,000 cubic yards of gravel yielded 1,247 ounces of gold and 161 ounces of silver.

Susanville district.—The Timms Gold Dredging Co. operated its reconstructed connected-bucket dredge on the DeWitt ranch during

1941.

HARNEY COUNTY

Idol City district.—The H. F. England Co. operated a dragline dredge, moved from the Quartzburg district in Grant County to Trout Creek, for 2 months in 1941; 294 ounces of gold and 97 ounces of silver were recovered from old hydraulic tailings.

³ Pardee, J. T., Work cited in footnote 1. ⁴ See also State of Oregon Department of Geology and Mineral Industries, Oregon Metal Mines Handbook: Bull. 14-B, 1941, 157 pp.

JACKSON COUNTY

Gold Hill district.—The Murphy-Murray Dredging Co. operated a connected-bucket dredge until September 22, 1941, when operations were discontinued; the dredge was dismantled and moved. Placer Mines, Inc., operated a dry-land dredge on Galls Creek from February 20 to July 6: 30,000 cubic yards of gravel yielded 198 The Pleasant Creek Mining ounces of gold and 38 ounces of silver. Corporation operated a connected-bucket dredge on Pleasant Creek.

Jacksonville district. The Jackson Mining Co. operated a nonfloating washing plant with 4 Ainlay bowls, to which gravel was delivered by a 2-cubic yard dragline excavator, on the George Wendt ranch from May 15 to December 22, 1941.

Upper Applegate district.—Charles C. Stearns operated a dragline dredge on the Alaska of Oregon mine from January 8 to December 23, 1941. The B-H Co. operated a dragline dredge, using a dragline excavator with a 1½-cubic yard bucket, on Forest Creek; Stearns worked also on this property with a dragline dredge for a short time, and, in addition, conducted dragline dredging on the Herriot, Kubli, M. E. Dunlap, Walter W. Bell, and William Smith properties for short periods. The Crescent Pacific Mining Co. operated a dragline dredge, with a dragline excavator having a 1%-cubic yard bucket, on the Fred Offenbacher, Matney, and Offenbacher ranches during 1941; 42,500 cubic yards of gravel at the Fred Offenbacher ranch vielded 244 ounces of gold and 33 ounces of silver, 88,825 cubic yards of gravel at the Matney ranch yielded 448 ounces of gold and 64 ounces of silver, and 455,770 cubic yards of gravel at the Offenbacher ranch yielded 1,490 ounces of gold and 195 ounces of silver. The Southern Oregon Mining Co. worked the McDonough and Taylor properties with a dragline dredge, using a dragline excavator with a 14-cubic yard bucket; 180,000 cubic yards of gravel at the McDonough ranch vielded 703 ounces of gold and 92 ounces of silver; and 65,700 cubic yards of gravel at the Taylor ranch yielded 70 ounces of gold and 9 ounces of silver. A lessee on the Sterling mine hydraulicked 34,375 yards of gravel and recovered 208 ounces of gold and 30 ounces of silver.

JEFFERSON COUNTY

Ashwood district.—The Oregon King Mines, Inc., shipped 2,348 tons of gold-silver ore containing 945 ounces of gold, 88,823 ounces of silver, 14,465 pounds of copper, and 63,046 pounds of lead from the Oregon King mine to a smelter in 1941. This mine was the leading producer of silver and the second-largest producer of lead in the State.

JOSEPHINE COUNTY

Galice district.—The Lewis Investment Co. worked the Benton mine throughout 1941 and was again the third-largest producer of lode gold in the State; the ore was treated in a 60-ton countercurrent-cyanidation

Grants Pass district.—McGuire & Lyons operated a suction dredge on Rogue River near Grants Pass during 1941; 27,000 cubic yards of gravel yielded 191 ounces of gold and 17 ounces of silver. Northern California Dredging Co. operated a dragline dredge, using a dragline excavator with a 14-cubic vard bucket, on Jump-Off-Joe

Creek for 4 months in 1941.

Greenback district.-Hydraulicking was carried on at the Blue Channel mine in 1941 from January 1 to June 1 and from November 15 The Buckskin Mining Co. property on Wolf Creek to December 31. was operated by hydraulicking for 51/2 months. Hydraulicking was carried on at the Columbia mine.

Waldo district.—C. R. Stout hydraulicked at the Esterly mine in 1941 from January 1 to July 15 and from December 1 to 31 and recovered 433 ounces of gold and 24 ounces of silver from 150,000 cubic yards of gravel. The Atlas Gold Dredging Corporation operated a dragline dredge on Althouse Creek from January 1 to March 16; 255,178 cubic yards of gravel yielded 648 ounces of gold and 82 ounces Messenger and Johnson hydraulicked 62,000 cubic yards of gravel at the Plataurica mine on the Illinois River and recovered 108 ounces of gold and 7 ounces of silver.

MALHEUR COUNTY

Malheur district.—Pacific Placers operated a dry-land dredge near

Brogan during 1941.

Mormon Basin district.—Mormon Basin Placers treated gravel in a stationary washing plant at Colt Bros. Placers and recovered 318 ounces of gold and 46 ounces of silver from 13,000 cubic yards of Whitney and Boydstun worked the Lone Eagle mine with a caterpillar scraper and washing plant; 60,000 cubic yards of gravel yielded 353 ounces of gold and 62 ounces of silver. The Gold Flower Mining Co. operated a dragline excavator and portable nonfloating washing plant.

OTHER COUNTIES

Small outputs in 1941 were reported from Coos, Curry, Douglas, Lane, Marion, Morrow, Wallowa, and Wheeler Counties.

Details of production by counties and districts are given in the

preceding table.

GOLD, SILVER, COPPER, AND LEAD IN SOUTH DAKOTA

(MINE REPORT)

By Chas. W. Henderson and S. A. Gustavson

SUMMARY OUTLINE

Page	Page
Summary 445 Calculation of value of metal production 445 Mine production by counties 447	Metallurgic recovery

For many years the principal mineral industry of South Dakota has been lode gold mining, with subsidiary silver. Such minor minerals as columbo-tantalite, tin, and lithium minerals have been produced, and at present there is a project for developing a large low-grade manganese deposit. The gold and minor mineral area of the State is included in Custer, Lawrence, and Pennington Counties in the mountain group known as the Black Hills. A notable exception is the extensive low-grade manganese deposit near Chamberlain, Brule County, which in 1941-42 was being developed and processed by the Federal Bureau of Mines. The total production of recovered gold in South Dakota in 1941-600,637 fine ounces valued at \$21,022,-295, a 2-percent increase over 1940—has been exceeded only by the peak output of 618,536 ounces valued at \$21,648,760 in 1939. Recovered silver in 1941, all a byproduct of gold mining, was 170,771 fine ounces valued at \$121,437. No copper or lead was recovered in 1941.

All tonnage figures are short tons and "dry weight"; that is, they do not include moisture.

The value of the metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold 1	Silver 3	Copper 3	Lead 3	Zinc 3
1937 1938 1939 1940	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0.7735 4.646+ 5.678+ 6.711+ 6.711+	Per pound \$0. 121 . 098 . 104 . 113 . 118	Per pound \$0.059 .046 .047 .050	Per pound \$0.065 . 048 . 052 . 063 . 075

Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+(\$20.671835) per fine ounce.

2 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver.

3 Yearly average weighted price of all grades of primary metal sold by producers.

\$ \$0.67878787.

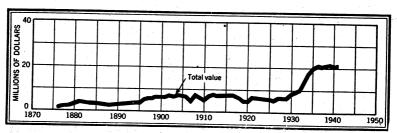


FIGURE 1.—Total value of mine production of gold and silver in South Dakota, 1876-1941.

Mine production of gold, silver, copper, and lead in South Dakota, 1937-41, and total, 1876-1941, in terms of recovered metals ¹

Year		nes produc- ing Ore (short tons)		Gold (lode	and placer)	Silver (lode and placer)	
	Lode	Placer	tons)	Fine ounces	Value	Fine ounces	Value
1937 1938 1939 1940	14 11 18 11 10	73 71 80 81 41	1, 597, 178 1, 586, 181 1, 632, 778 1, 667, 370 1, 711, 744	581, 544 594, 847 618, 536 586, 662 600, 637	\$20, 354, 040 20, 819, 645 21, 648, 760 20, 533, 170 21, 022, 295	139, 638 162, 295 167, 584 175, 514 170, 771	\$108, 010 104, 918 113, 754 124, 810 121, 437
1876-1941			(2)	20, 037, 943	482, 925, 214	9, 346, 276	6, 648, 628

7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Cor	per	Le		
Year	Pounds	Value	Pounds	Value	Total value
1937					\$20, 462, 050
1939 1940 1941	12, 000	\$1,356	14, 000	\$700	20, 924, 563 21, 762, 514 20, 660, 036 21, 143, 732
1876-1941	³ 104	35, 954	3 295	35, 520	489, 645, 316

¹ For total production of gold and silver in South Dakota, by years, see Mineral Resources, 1913, pt. 1, p. 42; Mineral Resources, 1922, pt. 1, p. 194; and subsequent volumes of Mineral Resources and Minerals Yearbook.

Gold and silver produced at placer mines in South Dakota, 1937-41, in terms of recovered metals

Year	Gol	d	Silve	Total	
1937	1,010.60 1,069.00 622.00 229.00 93.00	Value \$35, 371 37, 415 21, 770 8, 015 3, 255	75 82 47 21	\$58 53 32 15 5	\$35, 429 37, 468 21, 802 8, 030 3, 260

<sup>Figures not available.
Short tons.</sup>

MINE PRODUCTION BY COUNTIES

Mine production of gold and silver in South Dakota in 1941, by counties, in terms of recovered metals

County		produc- ng Gold (lode an		e and placer) Silver (lode		nd placer)	Total value
	Lode	Placer	Fine ounces	Value	Fine ounces	Value	7,220
Custer Lawrence Pennington	6 4	7 13 21	27 596, 109 4, 501	\$945 20, 863, 815 157, 535	1 169, 891 879	\$1 120, 811 625	\$945 20, 984, 625 158, 160
	10	41	600, 637	21, 022, 295	170, 771	121, 437	21, 143, 732

MINING AND METALLURGIC INDUSTRY

Producers of lode gold and silver in South Dakota in 1941 mined and sold or treated 1,711,744 short tons of ore yielding, in recovered metals, 600,544 fine ounces of gold and 170,764 fine ounces of silver. Methods of treatment were as follows: 1,499,988 tons treated by amalgamation followed by cyanidation of sands and slimes; 205,356 tons by cyanidation only (36,677 tons of which was first roasted and about one-fourth of 134,985 tons also first roasted); 3,725 tons by jigging, amalgamation of the jig concentrates, and flotation of the remaining pulp (concentrates carrying gold and silver shipped to smelters); 100 tons by amalgamation only; 2,370 tons by amalgamation with flotation of tailing; 31,894 tons (included in 205,356 tons above) by countercurrent-decantation cyanidation with jig in ball-mill circuit (gold concentrates shipped to smelter); 200 tons by concentration; and 5 tons of crude ore shipped direct to the Omaha (Nebr.) Operating details at both lode and placer mines are given in the following review by counties.

METALLURGIC RECOVERY

Gold and silver bullion produced at mills in South Dakota by amalgamation, 1937-41

Year	Ore treated	Gold in bullion	Silver in bullion	Quicksilver used
1937 1938 1939 1940	Short tons 1, 414, 772 1, 430, 391 1, 461, 283 1, 479, 905 1, 506, 183	Fine ounces 329, 975. 10 328, 044. 50 336, 424. 93 313, 964. 15 328, 166. 44	Fine ounces 66, 640 62, 602 64, 710 60, 254 62, 423	Pounds 10, 178 7, 744 9, 221 4, 997 6, 537

Gold and silver bullion produced at mills in South Dakota by cyanidation, 1937-41

		Mater	rial treated	Gold in	Silver in	Sodium	
Year	Crude ore	Concen- trates	Sands and slimes	Total	bullion product	bullion product	cyanide used ¹
1937	Short tons 182, 406 155, 667 170, 270 187, 360 205, 356	Short tons	Short tons 1, 394, 252 1, 416, 899 1, 443, 548 1, 432, 244 1, 499, 000	Short tons 1, 576, 658 1, 572, 566 1, 613, 879 1, 619, 604 1, 704, 356	Fine ounces 249, 980. 70 262, 913. 21 279, 889. 77 269, 518. 82 270, 989. 89	Fine ounces 72, 833 98, 777 102, 317 111, 607 106, 437	Pounds 786, 072 860, 762 887, 888 883, 849 2 903, 680

¹ In terms of 96- to 98-percent strength.

² From 1.143 tons of ore treated by flotation.
2 Actually 1.755,590 pounds of calcium eyanide (48- to 49-percent strength) and 28,445 pounds of sodium eyanide (91-percent strength); all reduced to equivalent of 96- to 98-percent strength to conform with earlier use of figures for high-strength NaCN and KCN.

REVIEW BY COUNTIES

CUSTER COUNTY

Small, hand-method, gold placering was done on seven properties, chiefly on French Creek, and constituted the only operations in Custer County in 1941. The gold recovered was sold either to local buyers or direct to the United States Mint at Denver, Colo. A large proportion of the placer ground in the county has been worked out and this, together with the fact that more jobs in other occupations are available, accounts for the small production of gold from the county.

LAWRENCE COUNTY

Homestake mine.—The Homestake mine has been an almost continuous producer of gold and silver since 1876 and has been operated by the Homestake Mining Co. since 1877. The company at first owned only the Homestake and Golden Star claims but has since acquired numerous others which, with the first two, have been consolidated into one group called the Homestake mine. The annual report of the general manager of the Homestake Mining Co. for the year ended December 31, 1941, says—

Operations during 1941 were substantially normal in all departments. Ore production from the mine was 1,499,988 tons which is an increase of 4.62 percent over that for 1940. The gross income for gold and silver produced was 2.70 percent higher than in 1940. The average realization per ton was \$13.02 as compared to \$13.26 in 1940.

Operating expenses exclusive of taxes were slightly higher than in 1940. Total taxes were \$4,160,334.61, which is \$570,990.29 more than in 1940.

There are 358,784 tons of broken ore remaining in shrinkage stopes.

The reserve of developed ore is 19,393,300 tons. As in previous reports this includes the broken ore. Of the total reserve 9,600,191 tons are in the ledge developed in recent years and 9,793,109 tons are in the main ledges. Production from the new ledge during 1941 was 310,813 tons or 20.72 percent of the total mined.

Yates shaft construction is practically completed. The shaft was completed to the 4,100-foot level late in December and sinking below that level is in progress. Ore hoisting at the Yates shaft began on October 1 and the handling of men and materials on November 10. All parts of this new plant are operating satisfactorily. The winze from the 4,100-foot level was deepened from the 4,700-foot evel to the 5,000-foot level and drifting on the 5,000-foot level was begun.

Ore milled, receipts, and dividends, Homestake mine, 1937-41 1

Year	Ore milled (short tons)	Receipts for bull		
		Total	Per ton	Dividends
1937 1938 1939 1940 1941	1, 394, 773 1, 377, 314 1, 400, 015 1, 433, 737 1, 499, 988	\$19, 304, 076. 45 19, 284, 459. 67 19, 922, 964. 60 19, 014, 767. 73 19, 529, 080. 70	\$13.8403 14.0015 14.2300 13.2624 13.0195	\$9,041,760 9,041,760 9,041,760 9,041,760 9,041,760

¹ From 1876 to 1941, inclusive, this mine yielded bullion and concentrates that brought a net return of \$418,541,828 and paid \$142,271,002 in dividends.

The system of mining used at the Homestake mine has been described briefly as follows:1

The ore body is first cut by a series of stopes each extending for 60 feet along the strike and from wall to wall of the deposit—a distance which may be as great as

¹ Lincoln, Francis Church, Miser, Walter,G., and Cummings, Joseph B., The Mining Industry of South Dakota: South Dakota Sch. Mines Bull. 17, February 1937, pp. 12-14.

400 feet. Pillars of ore 42 feet in thickness separate the 60-foot stopes. A stope is started by making a cut entirely across its bottom. A timbered gangway provided with chute gates is next constructed across the floor of the cut and waste filling is introduced around it. The stope is then carried upward by shrinkage stoping to within about 25 feet of the level above. The interval between levels is 100 feet in the upper part of the mine and 150 feet in the lower. During shrinkage stoping, the miners stand upon the broken ore, enough being drawn off regularly through the chute gates into the gangway to keep the ore away from the back and provide room for the miners to work. When shrinkage stoping is completed, the broken ore remaining in the stope is all drawn off, and the stope is filled with waste rock or mill tailings. The crowns of the stopes and the pillars between them are later mined by the square-set timbering system, the square sets being filled with waste.

Since 1932 sand fill (tailings from the sand plants) has been used to

supplement the coarse waste fill.

The ore drops from the chutes into ore cars pulled by compressedair locomotives and is taken to the shafts for hoisting. Primary crushing of the ore is done at the shafts. From the shafts the ore is moved by a rail tramway to the South mill, which has a capacity of 3,900 tons per 24 hours. Here the ore is reduced further by stamps and fed to rod mills in closed circuit with Clark-Todd amalgamators for primary grindings and to ball mills and pebble mills in closed circuit with Clark-Todd amalgamators for secondary grinding. The copper amalgamation plates, for many years an integral part of the mill equipment, gradually have been replaced by the Clark-Todd amalgamators. Classification is done partly in the South mill and is finished in cyanide sand plant No. 1 and cyanide sand plant No. 3. In plant No. 3 part of the sand tailings from the South mill are classified and ground further in ball mills in closed circuit with Clark-Todd amalgamators. The sands are treated by cyanide leaching, and the slimes are thickened and sent to the slime plant at Deadwood for further treatment. In plant No. 1 a partly classified sand portion of the tailings from the South mill is separated by cone classification into sand and slime fractions. In this plant the sands are leached, and the solutions from both this plant and plant No. 3 are precipitated. Slimes are piped to the slime plant at Deadwood, which accomplishes cyanidation of the slimes from both plants. Precipitation is by the Merrill-Crowe Silver is parted from the gold in the company refinery, and virtually pure metals are shipped to the mint.

The Homestake mine has been developed through shafts; the newest and deepest (4,100 feet) is the Yates which, to date, has cost over \$3,000,000. In 1941 development work in the mine consisted of sinking 700 feet of shaft, driving 28,074 feet of drifts and crosscuts and 10,878 feet of raises, and performing 45,656 feet of diamond drilling.

Other mines.—The second-largest producer of gold and silver in South Dakota in 1941 was the Bald Mountain Mining Co. The company operated continuously its consolidated group of mines and 370-ton (rated 350 tons in 1940) all-sliming countercurrent-cyanidation plant at Trojan. Ore was produced in 1941 from the Portland, Two Johns, Dakota, Trojan, Clinton, and Empire claims. Development work done on these claims in 1941 totaled 2,695 feet of drifts and 630 feet of raises. The mill treated 134,985 tons of dry gold ore, from which 27,322 fine ounces of gold and 48,937 fine ounces of silver were recovered. Five tons of high-grade ore, containing 98 fine ounces of gold and 1,521 fine ounces of silver, were shipped direct to the Omaha (Nebr.) refinery. About 25 percent of the ore produced was sulfide

(locally known as "blue ore"), and 75 percent was oxide (locally known as "brown ore"). After primary crushing the sulfide ore was roasted in a 110-ton gas-fired rotary hearth furnace, then mixed with the oxide ore and cyanided. The net return from metals produced in 1941 after transportation and mint and smelter charges were deducted was \$989.945.

The Canyon Corporation operated its Maitland group of claims and 120-ton (rated 100 tons in 1940) roast-cyanide mill continuously. treating 36,677 tons of ore which yielded 11,256 fine ounces of gold and 1,056 fine ounces of silver. Development work in the mine consisted of 2,754 feet of prospecting drifts, 2,257 feet of development

drifts, and 4,354 feet of diamond drilling.

The Gilt Edge Mines, Inc., properties in the Bear Butte district were inoperative, except that clean-up in the mill and final settlement

of product mined in 1940 carried over into 1941.

The Frerichs Mining Co. operated its mine and 50-ton flotationcyanidation mill during January and February 1941, making test runs to try out equipment and determine best extraction. About 1,800 tons of ore were treated, which yielded 91 fine ounces of gold and 66 fine ounces of silver.

The Belle Eldridge Gold Mines, Inc., did some development work on its property in the Whitewood district and made repairs and

installed some new equipment in the company mill.

Placers active in Lawrence County included two operations in the Bear Butte district, one in the Custer Peak, one in the Portland or Bald Mountain, one in the Rawlings, one in the Two Bit, and seven in the Whitewood district. All were small hand-sluicing and panning operations and produced a total of only 35 fine ounces of gold and 3 fine ounces of silver.

PENNINGTON COUNTY

The Holy Terror Mining Co. operated its mine and 100-ton cyanidation plant in the Keystone district continuously, treating 31,894 tons The mill process is countercurrent-decantation of dry gold ore. cyanidation, with a jig in the ball-mill circuit. Part of the jig concentrates was shipped to the Helena (Mont.) smelter. The goldsilver bullion was shipped to the Denver Mint. In the mine a development program was started to open up a level 200 feet below the 1941 workings.

In the Hill City district, the Gold Mountain Mining Co. operated

part time its mill and the Gold Lode group of claims.

Two other small lode operations in Pennington County—one in the Hill City district and the other in the Hornblende district treated a few tons of ore in small amalgamation mills; each recovered

less than 2 fine ounces of gold.

Twenty-one placers in the county, all small hand-sluicing or panning operations, yielded a total of 31 fine ounces of gold and 3 fine ounces of silver in 1941. Operations were chiefly on Castle Creek in the Castle Creek district, Battle Creek in the Keystone district, and Rapid Creek in the Rapid Creek district.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN TEXAS

(MINE REPORT)

By Chas. W. Henderson and S. A. Gustavson

SUMMARY OUTLINE

Page	Page
Summary 451	Smelting and refining plants in Texas 453
Calculation of value of metal production 451	Mines review by counties 453
Mine production 452	
Ore classification 452	the control of the co

Silver was found in Texas in 1880 at the Presidio mine at Shafter, Presidio County, but it was not until 1885 that shipments of bullion From 1885 through 1941 this mine has been by far the were begun. outstanding producer of the State—chiefly of silver but also of gold and lead. Another early producer was the Hazel mine in Culberson County. The American Metal Co. of Texas continued to operate the Shafter mine and 400-ton cyanidation mill in 1941 and made a slightly decreased tonnage output containing less silver to the ton than in 1940. About 200 tons of silver smelting ore (carrying some copper) from the Hazel mine and 18 tons of silver ore from the Needle Peak mine were shipped to the El Paso smelter. Of interest in 1941 was the shipment of 6 tons of copper ore from an open-cut on the Bob Cat location 10 miles south and 6 miles east of Quanah, Hardeman County, where copper ore has been reported for many years. A car of silver smelting ore, carrying some copper, was shipped from the Black Shaft mine near Allamoore, Hudspeth County, to the El Paso smelter. Smelting lead-silver ore, carrying some copper, was shipped from the Puerto Rico mine near Sierra Blanca, Hudspeth County, to El Paso.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

The value of the metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zinc ³
1937	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0.7735 4.646+ 5.678+ 6.711+ 6.711+	Per pound \$0. 121 . 098 . 104 . 113 . 118	Per pound \$0.059 .046 .047 .050	Per pound \$0.065 . 048 . 052 . 063 . 075

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+(\$20.671835) per fine ounce.

² 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver:

² Yearly average weighted price of all grades of primary metal sold by producers.

⁴ \$0.6464644.

⁵ \$0.67878787.

⁶ \$0.711111111.

MINE PRODUCTION

The following table shows the annual output of ore and the quantity and value of the metals recovered from Texas mines from 1937 to 1941, as well as the total metal production from 1885 to 1941.

Mine production of gold, silver, copper, lead, and zinc in Texas, 1937-41, and total, 1885-1941, in terms of recovered metals

V	Ore (short	Gol	lđ	Silver	
Year	tons)	Fine ounces	Value	Fine ounces	Value
1937 1938 1939 1940 1941	120, 145 131, 002 141, 795 146, 936 140, 818	562 439 324 312 306	\$19, 670 15, 365 11, 340 10, 920 10, 710	1, 325, 660 1, 433, 008 1, 341, 945 1, 326, 150 1, 096, 027	\$1, 025, 398 926, 389 910, 896 943, 040 779, 397
1885-1941	(1)	8, 041	215, 380	32, 513, 756	22, 874, 293

<u></u>	Copper		Le	ad	Zi		
Year	Pounds	Value	Pounds	Value	Pounds	Value	Total value
1937	320, 000 32, 000 68, 000 60, 000 12, 000	\$38, 720 3, 136 7, 072 6, 780 1, 416	790, 000 684, 000 454, 000 410, 000 372, 000	\$46, 610 31, 464 21, 338 20, 500 21, 204			\$1, 130, 398 976, 354 950, 646 981, 240 812, 727
1885-1941	2 956	278, 153	2 4, 594	463, 245	3 744	\$106, 491	23, 937, 562

¹ Figures not available.

Mine production of gold, silver, copper, and lead in Texas in 1941, by counties, in terms of recovered metals

County	Mines producing	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)
Culberson Hardeman Hudspeth Presidio	2 1 4 2	234 6 73 140, 505	2 304	1, 918 1 276 1, 093, 832	8, 900 400 2, 700	3, 100 368, 900
Total, 1940	9 6	140, 818 146, 936	306 312	1, 096, 027 1, 326, 150	12,000 60,000	372, 000 410, 000

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Texas in 1941, with content in terms of recovered metals

Source	Mines producing	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)
Dry and siliceous silver ore Copper ore Lead ore	. 4 2 3	140, 739 58 21	304	1, 095, 750 22 255	8, 900 3, 000 100	368, 900 3, 100
Total, 1940	9	140, 818 146, 936	306 312	1, 096, 027 1, 326, 150	12,000 60,000	372, 000 410, 000

³ Short tons.

SMELTING AND REFINING PLANTS IN TEXAS

In 1941 two zinc retort smelters, one copper smelter, one lead smelter, one antimony smelter, one tin smelter, and one electrolytic copper refinery were operating in Texas; and an electrolytic zinc refinery was under construction. The two zinc retort smelters and the electrolytic copper refinery were operated virtually at capacity throughout the year. While the copper and lead smelters were run somewhat under capacity, owing to lack of domestic ores and Mexican ores, advantage was taken of the situation to make improvements.

repairs, and additions to both plants.

The American Smelting & Refining Co. continued to operate its copper and lead smelters at El Paso in 1941, treating ores purchased from operators in Arizona, California, New Mexico, and Texas and in Mexico. Also, ores from Canada, South America, Africa, and many other foreign countries were sent to the smelters at El Paso after their original destinations had fallen into enemy hands, and other ores captured by the British. Additional roasting facilities, other new equipment, and general repairs and improvements were made on both the lead and copper smelters during the year. In addition to the lead and copper furnaces the El Paso plant contains a unit for the recovery

The American Smelting & Refining Co. gas-retort zinc smelter at Amarillo was operated continuously at capacity throughout the year, treating zinc concentrates and some high-grade zinc ores purchased from operators in Arizona, Colorado, Nevada, New Mexico, and Utah, and in Mexico. Zinc concentrates from Newfoundland were treated under bond. Three blocks, each of 800-ton monthly capacity, were added to the plant early in the year, supplementing the five blocks already in use and increasing the capacity 60 percent. Roasting equipment at the plant was inadequate to handle the added retort capacity and necessitated preliminary roasting of Mexican ores at the company El Paso plant.

The Machovec smelter of the American Zinc Co. of Illinois at Dumas, Tex., was operated at capacity throughout the year on zinc concentrates from operators in New Mexico and in Mexico, and zinc concentrates from Newfoundland were treated under bond. Additions to the plant were made, increasing capacity 100 percent since it was again placed in operation in February 1940. The plant is leased

from the Illinois Zinc Co.

The Nichols electrolytic copper refinery at El Paso, a unit of the Phelps Dodge Corporation, continued to refine copper anodes pro-The plant was operated duced at corporation smelters in Arizona. virtually at capacity throughout the year.

MINES REVIEW BY COUNTIES

Culberson County.—The Hazel mine 14 miles northwest of Van Horn was operated by A. P. Williams under lease until March 20, 1941, when his lease expired. The mine was then operated by J. P. Witherspoon, with A. P. Williams acting as mine superintendent. In 1941 silver ore totaling 216 tons and containing 1,815 ounces of silver, 9,141 pounds of copper, and 433 pounds of zinc was shipped to the El Paso smelter. A small lot of 18 tons of dry silver ore containing 103 ounces of silver was shipped also from Culberson County to the El Paso smelter.

Hardeman County.—A 6-ton lot of copper ore containing 440

pounds of copper was shipped to the El Paso smelter.

Hudspeth County.—The Black Shaft mine 8 miles south of Allamoore was operated 11 months during 1941 by A. P. Williams. Copper ore totaling 52 tons and containing 21 ounces of silver and 2,641 pounds of copper was shipped to the El Paso smelter. Three small lots of lead ore totaling 21 tons were shipped from Sierra Blanca to the

El Paso smelter, mostly from the Puerto Rico mine.

Presidio County.—The American Metal Co. of Texas operated its Presidio property continuously in 1941; the quantity of ore treated was 140,503 tons compared with 144,558 tons in 1940. The mine is developed by two vertical shafts, one 400 and one 700 feet deep; three underground subshafts, one 100, one 250, and one 450 feet deep; and other openings reported as totaling 75 miles of underground workings. Development work in 1941 comprised 303 feet of shaft, 8,532 feet of drifts, and 27,808 feet of diamond drilling. The minerals contained in the ore are argentite, cerargyrite, galena, anglesite, and cerussite. The ore is transported 1½ miles by rail and aerial tramways from the shafts to the 400-ton mill (average per day treated in 1941, 387 tons). In 1941 the mill produced 940,967 ounces of silver and 285 ounces of gold in cyanide precipitates, and 439 tons of table concentrates containing 152,781 ounces of silver, 19 ounces of gold, and 350,277 pounds of lead. The cyanide precipitates carried 26,065 pounds of lead dissolved by the cyanide, an unusual phenomenon. The concentrates and precipitates were shipped to the Carteret (N. J.) smelter.

Production of silver from the Presidio mine, 1 1885-1941 2

			<u> </u>	4,11		
Period	Mill heads treated		tent of mill (ounces)	Recovery of silver		
	(short tons)	Per ton	Total	Percent	Ounces	
1885-1912 1913-26	450,000	25.84	11, 628, 000	81. 68	9, 497, 75	
		12.00	8, 640, 000	83. 66	7, 228, 22	
1927		22.87	1, 102, 105	91. 41	1, 007, 43	
928		23. 17	1, 331, 696	91.04	1, 212, 34	
929	54, 644	19.74	1, 078, 673	90. 30	974, 04	
Total, 1885-1929	1, 330, 309	17. 88	23, 780, 474	83. 77	19, 919, 79	
930		16.09	401, 926	88.79	356, 8	
934		19. 70	919, 064	91. 39	839, 9	
935		15.87	1, 113, 686	87. 84	978, 3	
936		14.41	1, 419, 371	87.48	1, 241, 6	
937		12.76	1, 406, 825	86. 79	1, 220, 9	
938		12.76	1, 627, 844	84. 72	1, 379, 1	
939		11. 24	1, 561, 618	83. 49	1, 303, 7	
940		10. 55	1, 525, 087	84.90	1, 294, 8	
941	140, 503	9. 39	1, 319, 323	82.90	1, 093, 7	
Total, 1885-1941	2, 232, 401	15. 71	35, 075, 218	84. 47	29, 628, 90	
	1	1		1		

15, 1941, pp. 3-5.

No production in 1931, 1932, and 1933.

¹ Howbert, Van Dyne, and Gray, F. E., Milling Methods and Costs at Presidio Mine of the American Metal Co. of Texas: Am. Inst. Min. and Met. Eng. Tech. Pub. 368, 1930, 20 pp. Howbert, Van Dyne, and Bosustow, Richard, Mining Methods and Costs at Presidio Mine of the American Metal Co. of Texas: Am. Inst. Min. and Met. Eng. Tech. Pub. 334, 1930, 15 pp. Stem, D. E., Milling Methods and Costs at the Presidio Mine: Arizona Min. Jour., vol. 24, No. 22, April 15, 1941, pp. 2-5.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN UTAH

(MINE REPORT)

By G. E. WOODWARD AND PAUL LUFF

SUMMARY OUTLINE

	Page		Page
Summary	455	Metallurgic industry	460
Calculation of value of metal production	455	Review by counties and districts	464
Mine production by counties	458	Tintic district	466
Mining industry		Bingham or West Mountain district	469
Ore classification	460	Park City region	471

SUMMARY

Utah mines produced gold, silver, copper, lead, and zinc in 1941 valued at \$97,796,623, in terms of recovered metals. This value, compared with \$86,585,499 in 1940, represents a 13-percent gain, which was due almost entirely to the increased output of recovered copper. The quantity of gold was virtually the same as in 1940; that of silver, lead, and zinc decreased, although the total value of both lead and zinc increased. The slight gain in gold and by far the largest part of the gain in copper output can be credited to the Bingham district and resulted from the outstanding efforts of the Utah Copper Co. The Park City region showed gains in production of gold and copper only, and the Tintic district made gains in output of Tooele County reported a loss in output of each metal lead and zinc. except zinc, which increased owing to the output from the Tooele slagfuming plant.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

The value of the metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zine 3
1937 1938 1939 1940 1941	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0.7735 4.646+ 5.678+ 6.711+ 6.711+	Per pound \$0.121 .098 .104 .113 .118	Per pound \$0.059 .046 .047 .050	Per pound \$0.065 .048 .052 .063

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+(\$20.671835) per fine ounce.

² 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver:

³ Yearly average weighted price of all grades of primary metal sold by producers.

⁴ \$0.64646464.

Mine production of gold, silver, copper, lead, and zinc in Utah, 1937-41, and total, 1864-1941, in terms of recovered metals

Year	Mines producing		Ore (short	Gold (lode	and placer)	Silver (lode and placer)		
rear	Lode	Placer	tons)	Fine ounces	Value	Fine ounces	Value	
1937	189 183 175 191 167	14 22 11 21 21	24, 578, 275 13, 248, 660 21, 094, 097 27, 939, 346 31, 952, 817	322, 759 200, 630 277, 751 355, 494 356, 501	\$11, 296, 565 7, 022, 050 9, 721, 285 12, 442, 290 12, 477, 535	12, 869, 117 9, 682, 732 10, 758, 657 12, 172, 299 11, 395, 485	\$9, 954, 262 6, 259, 544 7, 302, 846 8, 655, 857 8, 103, 456	
1864-1941			(1)	9, 058, 229	217, 263, 055	681, 300, 151	496, 755, 268	

		pper	Le	ad	Zi	m	
Year	Pounds	Value	Pounds	Value	Pounds	Value	Total value
1937 1938 1939 1940	411, 988, 000 216, 252, 000 343, 780, 000 463, 728, 000 533, 676, 000	\$49, 850, 548 21, 192, 696 35, 753, 120 52, 401, 264 62, 973, 768	178, 916, 000 131, 314, 000 135, 268, 000 151, 376, 000 139, 202, 000	\$10, 556, 044 6, 040, 444 6, 357, 596 7, 568, 800 7, 934, 514	96, 002, 000 67, 316, 000 69, 052, 000 87, 576, 000 84, 098, 000	\$6, 240, 130 3, 231, 168 3, 590, 704 5, 517, 288 6, 307, 350	\$87, 897, 549 43, 745, 902 62, 725, 551 86, 585, 499 97, 796, 623
1864-1941	2 3, 646, 526	1, 039, 489, 341	2 4, 157, 806	447, 711, 842	² 789, 656	95, 842, 627	2, 297, 062, 133

¹ 1864-1901: Figures not available; 1902-41: 421, 365, 983 tons produced.

3 Short tons.

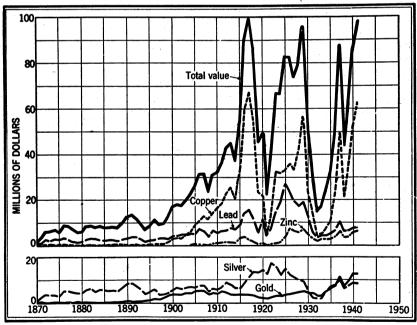


FIGURE 1.—Value of mine production of gold, silver, copper, lead, and zinc and total value in Utah, 1870-1941.

Gold.—The output of recoverable gold in Utah increased 1,007 ounces in 1941 from 1940. Copper ore yielded 68 percent of the total gold and siliceous ore 16 percent; the remainder came from zinc-lead ore, lead-copper ore, zinc ore, zinc-lead-copper ore, and slag

and from placers. The placer output was negligible. Gold recovered from ore of all classes treated in concentrating mills comprised 80 percent of the State total, from crude ore shipped direct to smelters nearly 15 percent, and from ore treated by amalgamation and cyanidation and from placers 5 percent. The Bingham (West Mountain) district produced 77 percent of the State gold and showed a gain of 18,561 ounces. The Park City region produced 2,447 ounces more gold than in 1940, owing to the output of the New Park Mining Co. Gold produced from the Tintic district decreased sharply, owing chiefly to the decline at the Tintic Bullion and Centennial-Beck & Victoria mines, and gold output from Tooele County decreased 3,481 ounces. The Utah Copper Co., which supplied over 67 percent of the State gold, was followed by the group of properties at Mercur under control of Snyder Mines, Inc., and the United States & Lark, Mayflower, and Tintic Bullion mines; these five mines produced 88 percent of the total gold output of the State.

Silver.—Silver recovered from Utah ore totaled 11,395,485 ounces in 1941, a decrease of 776,814 ounces from 1940, owing primarily to the lower output of siliceous ore. In 1941 zinc-lead, lead-copper, and zinc-lead-copper ore yielded 51 percent of the State total silver, siliceous ore 20 percent, copper ore 20 percent, and lead ore nearly 9 percent. Bingham was again the largest silver-producing district (supplying 43 percent of the State total), followed by the Park City region, the Tintic district, and Tooele County. Ore concentrated yielded 70 percent of the State silver, and ore shipped crude to smelters nearly all the remainder. The Utah Copper Co. was again the largest producer, followed by the United States & Lark, Tintic Standard, Silver King Coalition, the Park City Consolidated properties, the New Park Mining Co. property, the Park Utah Consolidated Mines groups, and the Chief Consolidated properties; these eight properties

produced 82 percent of the silver output of Utah in 1941.

Copper.—The output of recoverable copper in Utah during 1941 was 533.676,000 pounds, by far the greatest production in the history of the State; the previous high year was 1940, when the output was 463,728,000 pounds. The Utah Copper Co. exceeded its former high record set in 1940; its open-cut mine at Bingham produced about 68,000,000 tons of ore and waste at a ratio of about 1½ tons of waste to 1 ton of ore. The company mills at Magna and Arthur treated ore at a combined rate of over 83,000 tons a day and showed high recoveries in copper; their rated capacity is approximately 68,000 tons a day. Copper ore mined in Utah totaled 30,444,402 tons in 1941 compared with 26,301,745 in 1940. Copper ore and mine-water precipitates yielded 99 percent of the State copper. Other producers of copper in Utah included the Ohio Copper Co. and the United States & Lark properties in the Bingham district and the Tintic Standard properties in the Tintic district.

During the first 4 months of 1942, Utah mines were producing at a rate which indicated that even the all-time high production of 1941

would be exceeded.

Lead.—The output of recovered lead in Utah was 139,202,000 pounds in 1941, a decline of 12,174,000 pounds from 1940. The Bingham district continued to be the largest lead-producing area in the State, although production declined 6,689,100 pounds from 1940; most of the output came from the United States & Lark properties. The

Park City region produced about the same quantity of lead as in 1940, but the average grade of the ore treated decreased slightly in 1941; the two leading producers of the district were the Silver King Coalition Mines Co. and the Park Utah Consolidated Mines Co. (including Daly), which together produced 195,291 tons of ore yielding 30,854,000 pounds of lead. The output from the Tintic district showed a gain, owing chiefly to increased production at the Tintic Standard mine, from which large quantities of siliceous ore and dump material were shipped direct to a smelter in 1941 for fluxing purposes. Output from the Calumet and Hidden Treasure mines in Tooele County decreased The principal lead-producing mines in Utah in 1941 were from 1940. the United States & Lark, Park Utah Consolidated (including Daly), Silver King Coalition, Tintic Standard, Calumet, New Park mines. and Chief Consolidated; these seven properties produced 81 percent of the State total lead.

Output during the first 3 months of 1942 indicates that lead is being produced at a rate that will result in a material gain over 1941.

Zinc.—The output of recoverable zinc in Utah during 1941 decreased 4 percent from 1940. The chief zinc-producing areas—the West Mountain district and the Park City region—each reported a loss, as both tonnage and grade were lower than in 1940. Zinc was recovered finally from zinc-lead ore treated at four selective-flotation mills, from zinc-lead-copper ore treated at two of the flotation mills, from the fuming of zinc-lead slag at Tooele, and from crude zinc and zinc-lead ore shipped direct to smelters. The United States & Lark property in the Bingham district was again the largest producer of zinc in the State, followed by the Park Utah Consolidated (including Daly) and Silver King Coalition properties in the Park City region, the Calumet property in Tooele County, and the New Park property in the Park City region; these five mines supplied 84 percent of the State zinc output in 1941.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Utah in 1941, by counties, in terms of recovered metals

	Mines p	roducing	Ore	Gold (lode a	and placer)	Silver (lode and placer)		
County	Lode	Placer	(short tons)	Fine ounces	Value	Fine ounces	Value	
Beaver Box Elder	16 2	2	4, 387 257	269 60	\$9,415 2,100 140	31, 455 10, 762	\$22, 368 7, 653	
Garfield	1 3 27	4	5 676 176, 170	252 37 10, 442	8,820 1,295 365,470	73 924 871, 771	52 657 619, 926	
Millard Morgan Piute	3 2 3	1	1, 128 17 2, 121	929	14,000 32,515	315 21 8, 543	224 15 6, 075	
Salt Lake San Juan Sevier	27	2	35	275, 368 18 15 4, 572	9, 637, 880 630 525 160, 020	4, 880, 146 329 1, 818, 149	3, 470, 326 234 1, 292, 906	
Summit Tooele Uintah Utah	8 44 1 21	3	223, 560 386, 282 2 176, 299	34, 872 334 13, 752	1, 220, 520 11, 690 481, 320	456, 629 34 1, 863, 270	324, 714 24 1, 324, 99	
Wasatch Washington	4 2		114, 035	15, 175	531, 125 70	1, 453, 050	1, 033, 286	
Total, 1940	167 191	12 21	31, 952, 817 27, 939, 346	1 356, 501 2 355, 494	12, 477, 535 12, 442, 290	11, 395, 485 12, 172, 299	8, 103, 456 8, 655, 85	

See footnotes at end of table.

Mine production of gold, silver, copper, lead, and zinc in Utah in 1941, by counties, in terms of recovered metals—Continued

County	Cop	per	Les	d	Zi	ne	Total
	Pounds	Value	Pounds	Value	Pounds	Value	value
Beaver Box Elder Garfield	63, 600 900	\$7, 505 106	324, 000 2, 000	\$18,468 114	705,000	\$52,875	\$110, 63 9, 97
Frand ron uab Millard Morgan	800 672,000 700	94 79, 296 83	55, 700 7, 162, 000 1, 900 7, 300	3, 175 408, 234 108 416	1,554,000	116, 550	8, 8, 5, 2, 1, 589, 4, 14, 4,
Piute alt Lake an Juan	900 529, 477, 000	106 62, 478, 286	23, 000 69, 316, 000	1,311 3,951,012	41, 048, 000	3, 078, 600	40, 0 82, 616, 1
evier ummit Cooele Jintah	825, 000 505, 000 100	97, 350 59, 590 12	31, 308, 000 12, 155, 700	1, 784, 556 692, 875	10,000 26,355,000 7,936,000	750 1, 976, 625 595, 200	1, 5 5, 311, 4 2, 892, 8 11, 7
tah Vasatch Vashington	1, 448, 000 682, 000	170, 864 80, 476	11, 966, 000 6, 880, 000	682, 062 392, 160	492,000 5,998,000	36, 900 449, 850	2, 696, 1 2, 486, 8
otal, 1940	533, 676, 000 463, 728, 000	62, 973, 768 52, 401, 264	139, 202, 000 151, 376, 000	7, 934, 514 7, 568, 800	84, 098, 000 87, 576, 000	6, 307, 350 5, 517, 288	97, 796, 6 86, 585, 4

¹ Includes 629 ounces of placer gold distributed as follows: Garfield County, 4 ounces; Grand County, 252 ounces; Millard County, 21 ounces; San Juan County, 18 ounces; and Uintah County, 334 ounces. ² Includes 275 ounces of placer gold distributed as follows: Garfield County, 1 ounce; Grand County, 82 ounces; Millard County, 74 ounces; San Juan County, 35 ounces; and Uintah County, 83 ounces.

MINING INDUSTRY

Copper ore produced in Utah in 1941 (predominantly from the Bingham district) represented 95 percent of the total tonnage of ore of all classes. The Utah Copper Co., operating the open-pit mine at Bingham, began 1941 with a monthly output of about 42,000,000 pounds of copper, which had risen to about 46,000,000 pounds in December. This copper ore, carrying a low content of gold and silver, accounted for nearly all the district gain in gold and silver output. The Bingham district showed decreases in 1941 in both tonnage and grade of zinc-lead ore mined, the Park City region showed an increase in tonnage but a decrease in grade, and Tooele County showed a decrease in tonnage; but the Tintic district trebled its tonnage of zinc-lead ore. In 1941 the production of siliceous ores declined from that in 1940; the largest decreases were in the output of gold ore in Tooele County and of gold, gold-silver, and silver ores in the Tintic district. In 1941 these two regions supplied about 90 percent of the siliceous ore output of the State.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Utah in 1941, with content in terms of recovered metals

Source	Mines produc- ing	Ore	Gold	Silver	Copper	Lead	Zinc
Dry and siliceous gold	24	Short tons 328, 576	Fine ounces 42, 171	Fine ounces 130, 260	Pounds 426, 316	Pounds 288, 914	Pounds
Dry and siliceous gold- silver ore	33 34	199, 866 94, 208	12, 091 3, 895	946, 277 1, 256, 541	899, 469 1, 077, 433	5, 983, 069 2, 984, 530	
Copper ore	91 19	622, 650 30, 444, 402	58, 157 243, 953	2, 333, 078 2, 285, 377	2, 403, 218 1 526, 670, 055	9, 256, 513 66, 065	
Lead ore Lead-copper ore Zinc ore	75 4 4	77, 979 5, 276 2, 302	9,602 41 10	988, 000 76, 459 8, 046	520, 475 264, 196 39, 932	19, 102, 639 1, 992, 105 26, 575	828, 600
Zinc-lead ore Zinc-lead-copper ore	29 2	² 798, 864 1, 344	44, 102	5, 692, 372 12, 063	3, 740, 535 37, 589	108, 497, 841 260, 262	83, 048, 491 220, 909
Total, lode mines. Total, placers	³ 167 12	31,952,817	355, 872 629	11, 395, 395	1 533, 676, 000	139, 202, 000	84, 098, 000
Total, 1940	179 212	31, 952, 817 27, 939, 346	356, 501 355, 494	11, 395, 485 12, 172, 299	1 533, 676, 000 4 463, 728, 000	139, 202, 000 151, 376, 000	84, 098, 000 87, 576, 000

Includes 13,418,668 pounds recovered from mine-water precipitates.
 Includes 29,658 tons of zinc-lead slag.
 A mine producing more than 1 class of ore is counted but once in arriving at total for all classes.

4 Includes 14,223,006 pounds recovered from mine-water precipitates.

METALLURGIC INDUSTRY

In 1941, 31,952,817 tons of Utah ores were treated—a quantity that exceeded the 1940 record output by 14 percent—as follows: 31,205,481 tons at concentrating mills compared with 27,215,217 tons in 1940; 252,080 tons at cyanidation mills compared with 297,567 tons in 1940; 515 tons at amalgamation mills compared with 520 tons in 1940; 465,083 tons shipped crude to smelters compared with 426,042 tons in 1940; and 29,658 tons of zinc-lead slag fumed compared with none A considerable tonnage of siliceous ore, included in the quantity shipped crude to smelters, came from old dumps and tailings piles and was used primarily as a flux in smelting. The siliceous fluxing ores usually were sold upon a per-ton basis, and the shipper received further payments if the metal content exceeded certain base minimums established by the smelters.

All the ore cyanided was handled at two cyanide plants at Mercur, each treating considerable custom ore; the total (252,080 tons) yielded These two plants re-17,804 ounces of gold and 65 ounces of silver. ported a consumption of 140,500 pounds of sodium cyanide (91-percent grade), 1,730,460 pounds of lime, and 26,991 pounds of zinc dust. Eleven concentrating plants were active in Utah during 1941—three plants (Arthur, Magna, and Ohio Copper) treated 30,432,336 tons of copper ore and old tailings; four mills (Bauer, Midvale, Silver King, and Tooele), having a combined rated daily capacity of 4,800 tons, treated 754,345 tons of ore mostly zinc-lead and zinc-lead-copper; three gravity-concentration mills (one in Beaver County, one in Tooele County, and one in Utah County) treated 800 tons of lead ore; and one flotation mill in Summit County treated 18,000 tons of zinclead tailings. One slag-fuming plant at Tooele treated 29,658 tons of slag.

The following tables give details of treatment for all the ore pro

duced in Utah in 1941.

Mine production of metals in Utah in 1941, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated	Gold	Silver	Copper	Lead	Zinc
Ore amalgamatedOre cyanided	Short tons 515 252, 080	Fine ounces 35 17, 804	Fine ounces 122 65	Pounds	Pounds	Pounds
Concentrates smelted Slag fumed	1, 073, 438 29, 658	286, 575	7, 973, 147	516, 364, 567	108, 895, 218	83, 920, 987
Ore smelted	465, 083 8, 320	51, 458	3, 422, 061	3, 892, 765 13, 418, 668	30, 306, 782	177, 013
riacer		629	90			
Total, 1940		356, 501 355, 494	11, 395, 485 12, 172, 299	533, 676, 000 463, 728, 000	139, 202, 000 151, 376, 000	84, 098, 000 87, 576, 000

¹ All from Salt Lake County.

Mine production of metals from concentrating mills in Utah in 1941, by counties, in terms of recovered metals

		Concentrates smelted and recovered metal								
County	Ore milled	Concen- trates produced	Gold	Silver	Copper	Lead	Zine			
Beaver Juab Salt Lake Summit Tooele Utah Wasatch	Short tons 2, 009 12, 243 30, 830, 073 206, 604 41, 480 1, 773 111, 299	Short tons 836 3, 268 969, 475 61, 206 17, 943 983 19, 727	Fine ounces 10 141 266, 818 3, 251 1, 567 32 14, 752	Fine ounces 13, 768 55, 770 4, 641, 544 1, 607, 154 275, 117 13, 174 1, 364, 505	Pounds 39, 932 300 514, 899, 969 657, 177 113, 982 2, 922 648, 782	Pounds 109, 920 942, 500 65, 260, 492 28, 231, 464 7, 334, 880 226, 637 6, 432, 325	Pounds 705, 000 1, 554, 000 40, 994, 587 26, 355, 000 4, 808, 400 492, 000 5, 998, 000			
Total, 1940.	31, 205, 481 27, 215, 217	1, 073, 438 1, 011, 236	286, 571 263, 721	7, 971, 032 8, 212, 922	516, 363, 067 444, 939, 519	108, 538, 218 123, 620, 563	80, 906, 987 87, 473, 400			

Gross metal content of concentrates produced from ores mined in Utah in 1941, by classes of concentrates smelted

Class of concentrates	Concen- trates	Gross metal content							
Class of concentrates	produced	Gold	Silver	Copper	Lead	Zinc			
Copper Lead Lead-copper Zinc Zinc-lead Dry iron (from zinc-lead ore)	Short tons 789, 335 82, 928 4, 693 42, 373 41, 662 112, 447	Fine ounces 242, 456 14, 055 5, 501 2, 613 3, 079 18, 867	Fine ounces 2, 254, 125 3, 970, 270 520, 964 406, 651 268, 721 550, 301	Pounds 528, 398, 263 2, 369, 549 415, 686 426, 618 866, 348 827, 634	Pounds 94, 256, 349 5, 193, 450 2, 164, 035 6, 218, 267 6, 077, 799	Pounds 6, 953, 865 586, 649 48, 020, 622 41, 877, 122 5, 187, 862			
Total, 1940	1, 073, 438 1, 011, 416	286, 571 263, 903	7, 971, 032 8, 212, 922	533, 304, 098 460, 038, 946	113, 909, 900 130, 525, 928	102, 626, 120 117, 278, 022			

Mine production of metals from Utah concentrates shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

	Concen- trates	Gold	Silver	Copper	Lead	Zinc
Beaver Juab Salt Lake Summit Tooele Utah Wasatch	969, 475 61, 206 17, 943	Fine ounces 10 141 266, 818 3, 251 1, 567 32 14, 752	Fine ounces 13, 768 55, 770 4, 641, 544 1, 607, 154 275, 117 13, 174 1, 364, 505		Pounds 109, 920 942, 500 65, 260, 492 28, 231, 464 7, 334, 880 226, 637 6, 432, 325	Pounds 705, 000 1, 554, 000 40, 994, 587 26, 355, 000 4, 808, 400 492, 000 5, 998, 000
Total, 1940	1, 073, 438 1, 011, 416	286, 571 263, 903	7, 971, 032 8, 212, 922	516, 363, 067 444, 939, 519	108, 538, 218 123, 620, 563	80, 906, 987 87, 473, 400
BY CL	ASSES OF	CONCE	NTRATES	SMELTED		
Copper Lead Lead-copper Zinc Zinc-lead Dry iron (from zinc-lead ore)	4, 693 42, 373 41, 662 112, 447	242, 456 14, 055 5, 501 2, 613 3, 079 18, 867	2, 254, 125 3, 970, 270 520, 964 406, 651 268, 721 550, 301	512, 546, 305 1, 693, 635 287, 550 404, 891 823, 031 607, 655	90, 459, 481 4, 985, 069 1, 969, 181 5, 658, 624 5, 465, 863	43, 217, 493 37, 689, 494
	1, 073, 438	286, 571	7, 971, 032	516 363 067	108 538 218	RN 006 087

Gross metal content of Utah crude ore shipped to smelters in 1941, by classes of ore

Class of ore	Ore	Gross metal content						
Class of the	Ole	Gold	Silver	Copper	Lead	Zinc		
Dry and siliceous gold— Dry and siliceous gold-silver— Dry and siliceous silver— Copper— Lead—copper— Zinc—— Zinc—— Zinc-lead————————————————————————————————————	Short tons 75, 981 199, 866 94, 208 12, 066 77, 179 5, 276 393 114	Fine ounces 24, 332 12, 091 3, 895 1, 497 9, 602 41	Fine ounces 130, 073 946, 277 1, 256, 541 31, 252 981, 459 76, 459	Pounds 439, 560 927, 129 1, 113, 618 727, 405 641, 513 404, 190	Pounds 414, 152 9, 876, 699 4, 933, 553 95, 787 20, 654, 998 2, 075, 144 7, 217 37, 782	Pounds		
Total, 1940	465,083 426,042	51, 458 73, 754	3, 422, 061 3, 958, 814	4, 253, 415 4, 915, 443	38, 095, 332 33, 454, 947	230, 630 114, 256		

Mine production of metals from Utah crude ore shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

		COUNT	IES			
	Ore	Gold	Silver	Copper	Lead	Zinc
	Short tons	Fine ounces	Fine ounces	Pounds	Pounds	Pounds
BeaverBox ElderGrand	2,378 257 5	259 60	17, 687 10, 762	23,668	214, 080 2, 000	Tounus
Iron Juab	176 163, 927	10, 301	806 816,001	800 671, 700	55, 700 6, 219, 500	
Millard Morgan Piute	1, 128 17 2, 121	379 929	315 21 8, 543	700	1, 900 7, 300 23, 000	
Salt Lake Sevier Summit	37, 753 35 16, 956	8, 550 15 1, 321	238, 602 329 210, 995	1, 158, 363 167, 823	4, 055, 508 400 3, 076, 536	53, 413 10, 000
Tooele Uintah Utah	63, 064 2 174, 526	15, 497 13, 720	179, 332 3 1, 850, 096	389, 515 100 1, 445, 078	4, 463, 820 11, 739, 363	113,600
Wasatch Washington	2, 736 2	423	88, 545 10	33, 218	447, 675	
Fotal, 1940	465, 083 426, 042	51, 458 73, 754	3, 422, 061 3, 958, 814	3, 892, 765 4, 565, 475	30, 306, 782 27, 755, 437	177, 013 102, 600
	ву	CLASSES	OF ORE	·	·	<u> </u>
Dry and siliceous gold	75, 981 199, 866	24, 332 12, 091	130, 073 946, 277	426, 316 899, 469	288, 914 5, 983, 069	
Dry and siliceous silver	94, 208 12, 066 77, 179	3,895 1,497 9,602	1, 256, 541 31, 252 981, 459	1, 077, 433 705, 082 520, 269	2, 984, 530 66, 065 18, 962, 247	
Lead-copper Zinc Zinc-lead	5, 276 393 114	41	76, 459	264, 196	1, 992, 105 3, 405	123,600
NITC-10801	465, 083	51, 458	3, 422, 061	3, 892, 765	26, 447 30, 306, 782	53, 413 177, 013

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Utah in 1941, by counties and districts, in terms of recovered metals

Mines p	roducing	Ore sold or		Gold			Silver		Conner	Lead	Zine	Total
Lode	Placer	treated	Lode	Placer	Total	Lode	Placer	Total				value
1		Short tons	Fine ounces	Fine ounces	Fine ounces	Fine ounces 83	Fine ounces	Fine ounces 83	Pounds	Pounds 6,000	Pounds	\$401
1 2		12 331	3 7 240		3 7 240	38 734 21, 953		38 734 21, 953	20, 000 1, 600	287, 600	8,000	132 3, 127 41, 193
6		1, 965	19		19	8, 647			, , , , , , , , , , , , , , , , , , ,		697,000	65, 778 9, 973
2	2	257	60	4	60 4	10, 762		10, 762	900	2,000		140
<u>i</u> -	4	5		252	252	14	59	59 14				8, 862 10
1 2		124 552	37		37	197 727		197 727	800	55, 700		3, 409 1, 812
1		840	186		186	516 997		516 997	20, 000	300 8, 000		9, 254 1, 165
2 21		3 175, 267	10, 250		10, 250	869, 940		869, 940	651, 800	900 7, 144, 700	1, 554, 000	56 1, 578, 084 917
1 3			ľ		379	311		311	700	1,900		13, 680
······ <u>2</u>	1	17		21	21	21		21		7, 300		735 431
1 1		1, 623 451	667 257		667 257	3, 458 4, 739		3, 458 4, 739	800	20, 000		25, 804 13, 599 604
1			68 68		68	19, 319		19, 319	54,000	142,000	57, 000	34, 859
3		575 200	129 52		129 52	2,444		2, 444	4,000	30,000	40. 991. 000	17, 165 5, 740 82, 558, 340
15	1	30, 800, 103	2/5, 119	1	213, 119	2,001,072		4, 601, 672	020, 200, 000	00, 021, 000	25, 551, 666	35 595
	Lode 1 1 1 2 6 6 6 2 2 1 1 2 2 2 2 1 1 3 3 2 2 1 1 1 5 4	1 1 2 6 6	Code Placer Core sold or treated Code Placer Code C	Lode Placer Created Lode Lode	Lode	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lode	Lode	Lode Placer Core sold or treated Lode Placer Total Placer Total Lode Placer Total Placer Total Placer Total Lode Placer Total Placer T	Lode Placer Placer Lode Placer Total Lode Placer Total Lode Placer Total Copper	Lode Placer Total Placer Pl	Lode Placer Total Placer Total Placer Place

Sevier County:			1		1 1	1	1			1		1	ľ
Henry	2	li	7	15		15	329		329				759
Redmond	ī		28								400	10,000	773
Summit County: Uintah	8		223, 560	4, 572		4, 572	1, 818, 149		1, 818, 149	825, 000	31, 308, 000	26, 355, 000	5, 311, 457
Tooele County:	_												
Camp Floyd	8		292, 163	29, 980		29, 980	436		436				1, 049, 610
Clifton	1		16	1		1	308		308	3, 100	300		637
Dugway	1		317	3		. 3	675		675	800	73,000	24, 800	6, 700
Free Coinage	1		4				21		21		2, 300		146
Lakeside	3		1, 406	2		2	1, 163		1, 163	2, 200	270, 700		16, 587
North Tintic	1		396				52		52		13, 400	113, 600	9, 321
Ophir	12		18, 315	201		201	158, 009		158, 009	408, 500	2, 874, 000	345, 600	357, 338
Rush Valley	11		42, 625	1,814		1,814	283, 088		283, 088	87, 400	8, 336, 700	7, 452, 000	1, 309, 202
"Smelter"	1		29, 658	, -,		-,	66		66	· ·	300		64
Silver Island	1		1 201			0.071	12,811		12,811	3,000	585,000		143, 294
Willow Springs	4		1, 381	2, 871		2, 871	12, 011		12, 611	0,000	000,000		110, 201
Uintah County:		1				,	,	1	3	100			14
Carbonate	1		2		334	334	•	31	31	100			11, 712
Green River		٥			904	994		31	91				,
Utah County: American Fork	۰		2, 128	51		51	91 110		21, 119	14,000	246, 300	452,000	66, 394
			2, 120	1		1	204		204	1, 500	210,000	102,070	357
Payson Canyon	†		46			•	97		97	2,000	15, 600		958
SantaquinTintic 2	1 11		174, 076	13, 700		13, 700	1,841,850		1,841,850	1, 432, 500	11, 704, 100	40,000	2, 628, 429
Wasatch County:			21.2,010	1 20, 100		,			' ' '				
Blue Ledge	2		55, 249	3, 620		3, 620	849, 683	l	849, 683	217, 000	2, 555, 000	2, 335, 600	1, 077, 330
Snake Creek	<u></u>		58, 786	11,555		11, 555	603, 367		603, 367	465,000	4, 325, 000	3, 662, 400	1, 409, 561
Washington County:	-		·	i i			1 2 1	}			1 1 2 2 2		1000
Bull Valley	2		17	2		2	14		14				80
					<u> </u>								
Total Utah	167	12	31, 952, 817	355, 872	629	356, 501	11, 395, 395	90	11, 395, 485	533, 676, 000	139, 202, 000	84, 098, 000	97, 796, 623
	1	1					l	i	l	!	l	l	

¹ Detroit district lies in both Juab and Millard Counties.

² Tintic district lies in both Juab and Utah Counties.

BEAVER COUNTY

Beaver Lake district.—A small shipment of silver-lead ore from the property of the Beaver Gold & Copper Co. comprised the output of the Beaver Lake district in 1941.

Bradshaw district.—Production in the Bradshaw district during 1941

came from a small lot of gold ore shipped crude to a smelter.

Rocky district.—The Prosper Mining Co. operated the Old Hickory group in 1941 and shipped 2 cars of gold-silver-copper ore direct to a smelter; the property was operated primarily for the tungsten content of the ore. Crude ore was shipped direct to a smelter from the Montreal property also.

San Francisco district.—The Horn Silver Mines Co. shipped lead ore crude to a smelter in 1941 and was the largest producer in the San Francisco district. Most of the remainder of the district metal output was from zinc ore from the King David property and lead ore

from the Quad Metals Corporation property.

Star and North Star district.—The bulk of the district output came from zinc ore shipped from the Moscow Silver property to Tooele for Most of the remainder came from small shipments of lead, silver, and gold ore shipped crude to smelters from several properties.

BOX ELDER COUNTY

Ashbrook district.—Silver ore, all from the Vipont property, comprised virtually the entire output of the Ashbrook district in 1941.

IRON COUNTY

Calumet district.—Lead ore shipped crude to a smelter from the property of the New Arrowhead Mining Co. comprised the output from the Calumet district in 1941.

Stateline district.—Gold ore from the property of Aetna Gold Mines, Inc., treated by amalgamation, yielded most of the output from the

Stateline district.

JUAB COUNTY

Detroit district.—The Ibex property shipped gold ore crude to a smelter in 1941 and accounted for the entire output from the Juab

County section of the Detroit district.

Fish Springs district.—Lead ore shipped direct to a smelter from the Black Dragon and Utah Mine group comprised the output of the

Fish Springs district in 1941.

Tintic district.—The Tintic district, which lies in both Juab and Utah Counties, is reviewed here. The table that follows gives the metal production in each section of the district for 1941, a comparison with the total output in 1940, and the grand total from 1869 to 1941.

In 1941 the Chief Consolidated Mining Co. operated the Chief No. 1, Gemini, Eureka Hill, and Plutus mines in Juab County. ment operations on the Apex Standard area were continued during the year but were suspended in January 1942 awaiting the receipt of premium metal quotas. Although most of the company output was contained in ore from the Chief No. 1 property, large tonnages of siliceous tailings were shipped to Garrield from the Eureka Hill and Chief No. 1 dumps. According to the company printed annual report, production of gold, silver, and copper decreased from that in

Mine production of gold, silver, copper, lead, and zinc in Tintic district, Juab and Utah Counties, Utah, 1940-41, and total, 1869-1941, in terms of recovered metals

	Mines pro- ducing	Ore	Gold	Silver	Copper	Lead	Zinc	Total value
1941 Juab County	21	Short tons 175, 267	Fine ounces 10, 250	Fine ounces 869, 940	Pounds 651,800	Pounds 7, 144, 700	Pounds 1, 554, 000	\$1, 578, 084
Utah County	11	174, 076				11, 704, 100		
Total, 1940	32 34	349,343 283,046		2, 711, 790 2, 953, 312				
Total, 1869-1941		(1)	2, 498, 332	253, 425, 174	236, 922, 464	1, 798, 012, 879	40, 745, 738	376, 593, 598

¹ Figures not available.

1940, but the output of lead and zinc increased. Production in 1941, says the report, comprised 34,397 tons of siliceous ore, 288 tons of silver-lead ore, and 12,619 tons of zinc-lead ore from the Chief No. 1 mine; 6,280 tons of siliceous ore and 382 tons of silver-lead ore from the Gemini mine; 2,086 tons of siliceous ore from the Eureka Hill mine; and 851 tons of siliceous ore and 28 tons of silver-lead ore from the Plutus mine—an aggregate of 56,931 tons of ore of all classes, which contained 2,115 ounces of gold, 361,832 ounces of silver, 74,436 pounds of copper, 1,448,574 pounds of lead, and 2,064,-340 pounds of zinc. Total development work was 3,989 feet and included three major projects, none of which reached its objective. The Centennial-Beck, Victoria, and Eagle & Blue Bell properties, all owned or controlled by the United States Smelting, Refining & Mining Co., were operated on company account during the year; lessees worked the American Star mine until April 1941, when all operations The total production from these properties comprised 4,790 tons of lead ore and 13,309 tons of siliceous ore, all of which was shipped crude to smelters. The Dragon, Martha Washington, and the Empire group (formerly Empire-Star), all owned or controlled by the International Smelting & Refining Co., were operated in 1941 by lessees; the production was siliceous gold-silver ore shipped direct to The Godiva mine, operated by a lessee, yielded 29,936 a smelter. tons of ore of all classes, principally siliceous ore, which was shipped direct to a smelter. The Mammoth Mining Co. operated its property all of 1941 and shipped 20,533 tons of siliceous ore and 1,415 tons of The remainder of the output of the lead ore direct to a smelter. Juab County section of the Tintic district was predominantly siliceous ore shipped direct to smelters and came principally from the Windridge, Alaska, Showers, and Park Utah mines and the dump of the Grand Central mine.

The Tintic Standard Mining Co. and its subsidiary companies, largest producers in the Utah County section of the Tintic district in 1941, produced lead ore and siliceous ore. The printed annual report of these companies gives the following operating details. Ore production at the Tintic Standard mines (including the Iron Blossom) increased 12,118 tons over 1940. Most of the ore was siliceous in character and was mined on company account. The Eureka Lilly Consolidated mines produced 6,500 tons of ore, largely siliceous, which was mined chiefly by lessees; the Colorado Consolidated and Sioux mines were operated by lessees and produced 3,511 and 404 tons, respectively, chiefly

siliceous ore. The tonnage of ore of all classes aggregated 126,878 (92,630 tons was siliceous ore), which had the following metal content: 6,194 ounces of gold, 1,656,180 ounces of silver, 1,236,937 pounds of copper, and 13,186,346 pounds of lead; the siliceous ore averaged 2.5 percent lead. In addition, 31,673 tons of siliceous material from the Harold dump were shipped crude to Garfield; it contained over 1,000,000 pounds of lead. Development during 1941 totaled 5,669 feet of drifts and raises and 66 feet of shafts. During the year the lead ore shipped was higher in lead content, but substantially lower in silver; in the siliceous ores, the content of gold and silver was lower. Active mines in the Utah County section of the Tintic district, owned or controlled by the International Smelting & Refining Co. and its subsidiaries, were the Eureka Bullion, May Day (Mountain View), North Lily, Tintic Bullion, and Yankee.

West Tintic district.—Crude lead ore from the Scotia mine, operated by a lessee, comprised the output from the West Tintic district in 1941.

MILLARD COUNTY

Detroit district.—Siliceous gold ore shipped direct to a smelter comprised the output from the Millard County section of the Detroit district in 1941. The Charm mine was the principal producer.

MORGAN COUNTY

Argenta district.—Crude lead ore shipped direct to a smelter, principally from the Dan Heiners claim, comprised the output from the Argenta district in 1941.

PIUTE COUNTY

Gold Mountain district.—Lessees operating the property of Annie Laurie Consolidated Gold Mines, only producer in the Gold Mountain district in 1941, shipped 1,623 tons of gold ore to a smelter.

Mount Baldy district.—The property of the Deer Trail Mining Co., only producer in the Mount Baldy district in 1941, was operated by a lessee from July to the end of the year; 451 tons of siliceous ore were

shipped direct to a smelter.

Ohio district.—Siliceous ore shipped crude to a smelter from the Bully Boy property of the American Mineral Products Co. was the only production from the Ohio district in 1941.

SALT LAKE COUNTY

Big and Little Cottonwood districts.—Lessees operated the Cardiff property in the Big Cottonwood district during 1941 and shipped 644 tons of ore—152 tons of lead ore, 368 tons of copper ore, and 124 tons of zinc-lead ore. The output from the Mountain Mines Co. property, second-largest producer in the district in 1941, totaled 200 tons of ore shipped crude to a smelter; the company completed the lower development tunnel and made contact with vein at 2,000-foot depth. Other producers in the district were the Utah-Kentucky Mines Co. and the Tar Baby Mining Co.; both shipped crude ore to a smelter.

Silver-lead ore, lead-copper ore, and copper ore shipped crude to a smelter comprised the output of the Little Cottonwood district in 1941.

The principal producers were the Wasatch Mines Co. and Columbus Rexall Consolidated Mines Co.

"Smelter" district.—The output from the "Smelter" district in 1941 came principally from the Mingo and Germania dumps and from

clean-ups at the Utah Ore Sampling Co. yards and tracks.

West Mountain (Bingham) district.—The Bingham district, by far the outstanding mining region of Utah, produced most of the State output of copper and gold, nearly half of the zinc and lead, and more than a third of the silver in 1941; the value of these five metals was \$82,558,340, or 84 percent of the value of the entire State output during the year. The following table gives the production from mines at Bingham in 1940 and 1941 and the total for the district from 1865

Mine production of gold, silver, copper, lead, and zinc in Bingham or West Mountain district, Salt Lake County, Utah, 1940-41, and total, 1865-1941, in terms of recovered metals

Year	Mines pro- ducing	Ore	Gold (lode and placer)	Silver (lode and placer)	Copper	Lead	Zinc	Total value
1940 1941 Total, 1865-1941	14 15	Short tons 26, 753, 382 30, 866, 163	275, 119	Fine ounces 4, 760, 252 4, 851, 872 121, 990, 525	Pounds 457, 010, 531 529, 409, 000 23, 425, 919	69, 024, 000	40, 991, 000	\$70, 540, 717 82, 558, 340 1, 367, 736, 039

Figures not available.
Short tons.

Utah Copper Co. operations accounted for most of the gain over 1940 in value of gold and silver produced and virtually all the gain in value of copper produced in the Bingham district in 1941. These gains in output were attained only through an all-out effort, started before 1941 and stimulated further by the present urgent need for copper. During 1941 the company milled an average of about 83,000 tons a day at its two flotation-concentration mills. average copper content of the ore treated was slightly higher than in 1940, due chiefly to the fact that a larger portion of the ore came from the lower levels of the Bingham pit. Ore and waste were mined at a rate exceeding 188,000 tons a day. The waste rock was piled in adjacent gulches and leached there. In addition to the vast quantity of copper recovered from copper concentrates, the company recovered about 13,000,000 pounds of copper from the copper-precipitating plant at Lead Mine. The gold, silver, and molybdenite production from these copper ores far exceeded that of any other properties in the State, and the company ranked high among the leading gold and silver producers and second in production of molybdenite in the United States. In May 1942 the company exceeded its 1941 production schedule and was producing copper at the rate of about 600,000,000 pounds a year. The Kennecott Copper Corporation revealed the following operating details in its printed annual report. The mine operated 364 days during 1941, and the tonnage of ore hauled to the concentrators for treatment was 16 percent above that The railroad congestion resulting from this larger tonnage

necessitated construction of a supplemental train-assembly yard about 1 mile from the main yard at Bingham.

The Boston Consolidated property, owned by the Utah Copper Co., was operated under lease by the American Smelting & Refining Co.

Crude copper ore was shipped direct to a smelter.

The zinc and lead output of the Bingham district was produced largely by the United States & Lark mine, owned and operated by the United States Smelting, Refining & Mining Co. The tonnage of gold-silver ore and lead ore shipped for smelting increased slightly over the output in 1940, when 13,311 tons were shipped. The tonnage of zinc-lead ore shipped for milling at Midvale in 1941 was slightly less than in 1940 and lower in zinc and lead content but higher in gold and silver. In 1941 this property was second in silver and third in gold output in the State. During the first quarter of 1942, the property showed a marked increase in zinc-lead output over the monthly average for 1941. Development work consisted of driving 560 feet of shaft and 19,731 feet of raises. The Niagara mine shipped over 12,000 tons of ore of all classes to Midvale for treatment, and most of it was zinc-lead mill ore. The Montana-Bingham Consolidated Mining Co. shipped over 7,100 tons of ore of all classes. Metal property, leased by the United States Smelting, Refining & Mining Co., was the only other property active in the Bingham district in 1941 among those owned or controlled by the United States Smelting, Refining & Mining Co.; small shipments of zinc-lead ore were made incident to development of the property.

The National Tunnel & Mines Co. operated the Apex Delaware group from January through July 1941 on company and lessee account. The output was chiefly zinc-lead ore shipped to the Tooele sulfide concentrator and amounted to approximately one-half that produced in 1940. The Elton tunnel, driven by the National Tunnel & Mines Co., was completed in July 1941 as far as the main objective—reaching the Rood shaft in the Utah Apex mine. The rest of the year was spent mainly in rehabilitation of old workings and work preparatory to the extraction of ore. Limited production from the property was under way in April 1942; it is anticipated that by June 1942 normal produc-

tion will have been established.

The Ohio Copper Co. treated 341,936 tons of old tailings, containing 2,097,531 pounds of copper in concentrates; in addition, 422 tons of copper precipitates were produced. The 1,000-ton flotation mill treated a daily average of 958 tons of tailings.

A total of over 31,000 tons of ore of all classes was shipped fom the Butterfield properties to the Combined Metals Reduction Co. concentrating plant at Bauer and to the International Smelting & Refining

Co. at Tooele, or considerably less than the output in 1940.

Among other producers in the Bingham district in 1941 were the New England, Chicago, Kremlin, and Colonel Sellers properties, which shipped crude ore direct to smelters.

SEVIER COUNTY

Henry district.—Siliceous ore shipped crude to a smelter from the B. W. & H. property and from the Yellow Cougar No. 1–4 comprised the output from the Henry district in 1941.

Redmond district.—Zinc ore shipped crude to the Tooele slag-fuming

plant was the only output from the Redmond district in 1941.

SUMMIT AND WASATCH COUNTIES

PARK CITY REGION

The Park City region includes the Uintah district in Summit County and the Blue Ledge and Snake Creek districts in Wasatch County. In 1941 the region produced gold, silver, copper, lead, and zinc valued at \$7,798,348. The following table gives the output from the Park City region in 1940 and 1941 and the total since 1870.

Mine production of gold, silver, copper, lead, and zinc in Park City region, Summit and Wasatch Counties, Utah, 1940-41, and total 1870-1941, in terms of recovered metals

Year	Mines pro- ducing	Ore	Gold	Silver	Copper	Lead	Zinc	Total value
1940 1941	12 12							
Total, 1870-1941		(1)	473, 385	226, 668, 134	63, 327, 513	2, 287, 946, 834	585, 052, 911	336, 879, 568

¹ Figures not available.

The Silver King mine and 800-ton flotation plant operated throughout 1941 and showed gains from 1940 in output of gold, silver, copper, and zinc but a decline in lead. The 800-ton flotation concentrator treated a daily average of 457 tons of zinc-lead ore, operating 5 days a week and three shifts a day. The gross metal content of the mill feed was virtually the same as in 1940, but no crude lead ore was shipped, as in the preceding year.

A total of 26,702 feet of development work was completed during 1941. According to the company printed annual report, the 116,443 tons of zinc-lead ore mined and milled produced lead, zinc, and iron concentrates that contained 1,855 ounces of gold, 1,173,437 ounces of silver, 598,953 pounds of copper, 15,732,531 pounds of lead, and 14,552,673 pounds of zinc. In addition, 1,092 tons of 62-percent zinc

concentrates held in storage were sold.

The Park Utah Consolidated Mines Co. operated the Park Utah Consolidated Mines group in Summit County and the Keetley unit in Wasatch County continuously in 1941. All the ore was sent to the International smelter and mill for treatment. According to the company printed annual report, the 73,073 tons of ore produced contained 1,709 ounces of gold, 470,327 ounces of silver, 85,267 pounds of copper, 16,908,115 pounds of lead, and 15,716,159 pounds of zinc. Extensive development work was carried on at the property of the Park City Utah Mines Co. (affiliate of the Park Utah Consolidated Mines Co.) in Wasatch County. From the Park City Utah group the company produced 9,351 tons of ore of all classes, which was shipped to the International mill and smelter for treatment. In addition, the Park Utah Consolidated Mines Co. mined and shipped over 5,000 tons of zinc-lead ore, for the Daly Mining Co. from its Daly group, to the International smelter.

As part of its 1942 program, in view of the urgent need for base metals, the Park Utah Consolidated Mines Co. has reopened the orig-

inal main shaft at the Keetley unit, and extraction of the pillar of ore left around this shaft below the drainage-tunnel level has been begun. The additional tonnage from this section will bring an excess production over 1941 for the immediate future; but its tonnage is limited, and any excess production later in the year must necessarily come as a result of the favorable outcome of exploratory drives now in progress and those to be started in the near future. To increase the scope of the exploratory drives, the Anaconda Copper Mining Co. purchased a large share in the control of the company in April 1942.

The Park City Consolidated Mines Co. produced 45,998 tons of zinc-lead ore in 1941 from its Roosevelt and East Crescent groups and shipped it to the Midvale concentrator for treatment. The company produced about 70 percent as much ore as in 1940, but that mined

and shipped in 1941 was of higher grade.

The New Park Mining Co. mined and shipped to the Midvale concentrator 58,600 tons of zinc-lead-copper ore, a gain of about 16,000 tons over 1940. The company was by far the leading gold producer in the region. In 1941 ore sent to Midvale for treatment contained 13,638 ounces of gold, 666,783 ounces of silver, 693,385 pounds of copper, 4,871,141 pounds of lead, and 4,978,013 pounds of zinc. A 2-mile railroad spur was constructed from Keetley to Cranmer, portal of the Mayflower tunnel; however, in 1941 all ore was hauled to Keetley for shipment. Development work was carried on continuously. Late in the year a shaft was started to permit exploring the levels below the Mayflower tunnel. Early in 1942 the mining crews were placed on a 7-day week and three-shift day. At the end of the first quarter of 1942, the company was producing at a rate that would exceed its 1941 output of all metals by a substantial margin.

The Marsac Mining Co., lessee on the Park Flag mine, operated the property for the first 6 months of 1941; at that time, the lease was transferred to D. C. Despain, and operations were continued for the rest of the year. About 3,400 tons of siliceous ore plus 800 tons of

zinc-lead ore were shipped for treatment.

The remainder of the production from the Park City region came from shipments of zinc-lead ore and crude silver ore sent to smelters and mills, principally from the New Quincy property and from old tailings on Silver Creek and near Park City.

TOOELE COUNTY

Mines in Tooele County produced gold, silver, copper, lead, and zinc valued at \$2,892,899 in 1941 compared with \$3,747,433 in 1940. This decline in value of output was due chiefly to decreased output from mines in the Camp Floyd, Ophir, and Rush Valley districts, which more than offset the gain by the output of the Tooele slag-

fuming plant.

Camp Floyd district.—Gold output in the Camp Floyd district decreased in 1941 compared with 1940. Snyder Mines, Inc., was again the largest producer in the district and treated over 168,000 tons of gold ore from company and custom shipments. The Geyser Marion Gold Mining Co. operated the Geyser Marion mill until the middle of June, when the mill was taken over by Snyder Mines, Inc. During the latter half of 1941, virtually all the gold output of the district was controlled by Snyder Mines, Inc. In addition to produc-

tion from the cyanide mills, about 40,000 tons of siliceous gold ore were shipped direct to Garfield for fluxing purposes. Active mines in the district included the Consolidated Mercur, New Mercur, La Cigale, Omaha, Sacramento, Geyser Marion, and Boston Sunshine. Clifton (Gold Hill) district.—The Western Utah Copper property

was the only producer in the Clifton district in 1941.

Dugway district.—Crude lead ore and zinc-lead ore were shipped direct to the International smelter and Bauer mills, respectively, for treatment from the Four Metals property, only active mine in the Dugway district in 1941.

Free Coinage district.—A small shipment of lead ore, sent direct to a smelter from the Utah Bunker Hill mine, was the only production

from the Free Coinage district in 1941.

Lakeside district.—Lead ore shipped crude to a smelter from the Georgia Lyn, Lead Prince, and Monarch mines comprised the output from the Lakeside district in 1941.

North Tintic district.—The Scranton property was operated by lessees in 1941, and shipments of zinc ore and lead ore were made

direct to the smelters.

Ophir district.—There was a sharp drop from 1940 in the metal output from the Ophir district in 1941, due chiefly to the decline in output from the Hidden Treasure mine, largest producer in the district. The property was operated by the United States Smelting, Refining & Mining Co. The tonnage of lead-copper ore shipped crude to the Midvale smelter was 3,000 tons less than in 1940; the production of zinc-lead-copper ore amounted to about 400 tons. The Ophir Development Co. operated the Ophir Coalition and Ophir Hill properties in 1941 and shipped to smelters 3,825 tons of ore of all classes. In addition, 1,675 tons of zinc-lead and zinc-lead-copper ores were shipped to the International sulfide concentrator. Highgrade lead ore was shipped crude to a smelter by the Mecca Mining Co. (formerly the Cliff Lease) from the Wandering Jew. Among other mines active in the Ophir district were the Northern Light, Queen of the Hills, and the Mono group.

Rush Valley district.—The output from the Rush Valley district in 1941 declined from that in 1940. The West Calumet (Calumet) property, owned and operated by the Combined Metals Reduction Co., was by far the largest producer in the district in 1941. 38,000 tons of zinc-lead ore from the Calumet were treated at the Bauer plant, and in addition over 1,000 tons of crude ore were shipped direct to a smelter. Lead ore was shipped crude to the International smelter from the Bluestone mine in 1941. Other producers in the district included the Honerine, Salvation-Hercules, and Argenta.

"Smelter" district.—The International Smelting & Refining Co. erected a slag-fuming plant at the smelter location near Tooele. The plant was completed in September 1941 and during the rest of the year treated over 29,000 tons of zinc-lead slag and a few hundred tons of crude zinc ore. Zinc recovery averaged nearly 1,000,000 pounds a month during 1941. During the first quarter of 1942, the production had exceeded 1,000,000 pounds a month. The zinc fume produced averaged over 65 percent zinc and 2 percent lead and was shipped to the Anaconda Copper Mining Co. and to Bartlesville (Okla.) for treatment. The lead fume averaged about 45 percent lead and was treated at the Tooele lead smelter.

Willow Springs district.—The bulk of the output of the Willow Springs district came from rich gold ore and lead ore shipped crude to smelters from the Oro Del Rey and Depression mines.

UINTAH COUNTY

Most of the output from Uintah County was placer gold and silver recovered from the Big Bend, D. J. McConnell, and Utah State Lease No. 788 properties in the Green River district.

UTAH COUNTY

American Fork district.—The Dutchman mine was the largest producer in the American Fork district in 1941 and shipped 998 tons of high-grade zinc-lead ore to Midvale. Other mines active in 1941 included the Blue Rock, Bog Iron, Red Cloud, and Live Yankee.

Payson Canyon district.—A test lot of copper ore was shipped crude

to a smelter from the Payson Canyon district.

Santaquin district.—One carload of lead ore was shipped crude to a

smelter from the Elsie Jane mine in 1941.

Tintic district.—Mines in the Utah County section of the Tintic district are reviewed under Juab County.

WASHINGTON COUNTY

Gold ore amalgamated and a test shipment of silver ore sent direct to a smelter comprised the output from the Bull Valley district in 1941.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN WASHINGTON

(MINE REPORT)

By G. E. WOODWARD AND PAUL LUFF

SUMMARY OUTLINE

Page	
Summary475	Metallurgic industry 480
Calculation of value of metal production 475	Review by counties and districts 484
Mine production by counties	Chelan Lake district 485
Mining industry 479	Republic district 485
Ore classification 479	Metaline district 486

Ores and gravels from mines in Washington yielded gold, silver, copper, lead, and zinc valued at \$7,874,886 in 1941 compared with \$7,018,812 in 1940. The output of each metal except copper increased. The gain in value of total output was due chiefly to greater production of lead and zinc, which was stimulated by the urgent need for these Gold and silver production improved owing to a sharp rise in output from the Republic district, Ferry County, which more than balanced losses in the Methow district in Okanogan County and by the Howe Sound Co. in the Chelan Lake district, Chelan County. bulk of the State copper production came from the Holden property The decline from the 1940 output of copper of the Howe Sound Co. can be ascribed to the lower grade of ore treated. The production of lead and zinc, which was derived chiefly from ores mined in Pend Oreille County, gained sharply over 1940 due principally to full-year operation of the properties of the Metaline Mining & Leasing Co. and the American Zinc, Lead & Smelting Co.; however, the Pend Oreille Mines & Metals Co. was the largest producer in the county. productive effort of these three zinc and lead producers was greatly stimulated by defense requirements.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

The value of the metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc. 1937-41

Year	Gold 1	Silver 2	Copper ⁸	Lead 3	Zine 3
1937 1938 1939 1940 1941	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0.7735 4.646+ 8.678+ 6.711+ 6.711+	Per pound \$0.121 .098 .104 .113	Per pound \$0.059 .046 .047 .050 .057	Per pound \$0.065 .048 .052 .063

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.67+(\$20.671835) per fine ounce.

² 1937: Yearly average weighted Treasury buying price for newly mined silver; 1938-41: Treasury buying price for newly mined silver; a Yearly average weighted price of all gradual actions at all grad

Yearly average weighted price of all grades of primary metal sold by producers.

4 \$0.64646464.

\$ \$0.67878787.

\$ \$0.7878787.

Mine production of gold, silver, copper, lead, and zinc in Washington, 1937-41, and total, 1860-1941, in terms of recovered metals

Year		Mines producing		Ore (short		old (lode a	end	placer)	Silver (lode and placer)	
	Lode	Placer	10	шѕ)	Fine	ounces		Value	Fine ounces	Value
1937 1938 1939 1940	- 88	90 80 84 88 56	1, 1: 1, 1: 1, 2:	94, 826 01, 689 24, 564 66, 798 38. 509		36, 310 74, 175 90, 420 82, 136 84, 176		\$1, 270, 850 2, 596, 125 3, 164, 700 2, 874, 760 2, 946, 160	126, 304 380, 938 442, 063 365, 175 402, 030	\$97, 696 246, 263 300, 067 259, 680 285, 888
1860-1941		- -		(1)	1,	881, 725		44, 615, 698	11, 222, 890	7, 941, 147
	Co			Lead			Zine		Total	
Year	Pounds	Va	lue	Pou	nds	Value		Pounds	Value	value
1937	128,000 12,034,000 17,996,000 19,224,000 17,372,000	1, 17 1, 87 2, 17	5, 488 9, 332 1, 584 2, 312 9, 896	8, 568 7, 430 5, 110	0, 000 8, 000 6, 000 0, 000 8, 000	\$333, 9 394, 1 349, 4 255, 5 444, 9	28 92 00	8, 232, 000 22, 804, 000 20, 262, 000 23, 120, 000 28, 640, 000	1, 094, 592 1, 053, 624 1, 456, 560	\$2, 253, 054 5, 510, 440 6, 739, 467 7, 018, 812 7, 874, 886

^{1 1860-1903:} Figures not available; 1904-41: 7,164,273 tons produced. 2 Short tons.

2 47, 064 12, 151, 301

Gold and silver produced at placer mines in Washington, 1937-41, in terms of recovered metals

2 53, 276

6, 506, 580

2 76, 288

8, 896, 994

80, 111, 720

Veen	Gol	d	Silve		
Year	Fine ounces	Value	Fine ounces	Value	\$13,022 55,266 79,378 96,657 18,964
1937 1938 1939 1940 1941	371 1, 575 2, 261 2, 747 540	\$12, 985 55, 125 79, 135 96, 145 18, 900	48 218 358 720 90	\$37 141 243 512 64	

Gold.—The output of recoverable gold in Washington was 84,176 fine ounces in 1941, a gain of 2 percent over 1940 due almost entirely to gold recovered from gold concentrates shipped to a smelter; gold recovered by amalgamation increased slightly but that recovered from gold cyanide bullion, copper concentrates, and crude ore shipped to smelters declined from 1940. Gold recovered from gold bullion from ore treated at cyanidation plants (with or without concentration) in Ferry County declined 6,131 ounces, but that in Stevens County gained 559 ounces; gold recovered from gold concentrates made in the concentration sections of the cyanide mills in Ferry County increased 18,299 ounces. Gold from ores sent crude to smelters was virtually the same as in 1940 in Ferry County but declined 1,856 ounces in Okanogan County and 198 ounces in Chelan Gold ores treated in amalgamation plants, principally from Ferry, Okanogan, and Whatcom Counties, yielded 777 ounces of gold. Copper concentrates produced by the Howe Sound Co. yielded about 55 percent of the State total and gold concentrates produced from the Knob Hill and Mountain Lion groups 23 percent. Other important producers of gold were the Aurum and Valley mines in Ferry County and the First Thought mine in Stevens County. The total output of gold ore in 1941 was 178,121 tons compared with 202,502 tons in 1940; it was treated as follows: 135,290 tons cyanided, 694 tons amalgamated, 3,747 tons concentrated, and 38,390 tons sent crude to smelters. Placers yielded 540 fine ounces of gold in 1941.

Silver.—Recoverable silver produced in Washington in 1941 totaled 402,030 fine ounces, a gain of 10 percent over 1940; most of it came from copper ores of Chelan County and gold ores of Ferry County and the remainder chiefly from copper ores of Stevens and Snohomish Counties. Of the State total, copper ores yielded 50 percent, gold ore 43, silver ore 3, and the combined production of zinc-lead, gold-silver, and lead ores and placer gravels 4 percent. The Holden mine in Chelan County was the largest producer, followed by the Knob Hill and Mountain Lion properties in Ferry County, operated by Knob Hill Mines, Inc.; these two companies produced 75 percent of the State total. Other important silver-producing mines were the Aurum and Valley in Ferry County and the Amazon & Copper King in Stevens County. Placer mines yielded 90 fine ounces of silver.

Copper.—Recoverable copper produced in Washington amounted to 17,372,000 pounds in 1941 compared with 19,224,000 pounds in 1940. Copper concentrates shipped by the Howe Sound Co. from its Holden property to Tacoma yielded about 96 percent of the State total copper. The gold value in the copper concentrates was equivalent to 82 percent of the copper value. Other important copper producers were the Sunset mine in Snohomish County and the Amazon & Copper King

and Lucky Boy mines in Stevens County.

Lead and zinc.—The production of recoverable lead and zinc in Washington in 1941 increased 53 and 24 percent, respectively, over Three properties in Pend Oreille County produced 98 percent of the State total lead and 99 percent of the zinc. ore treated in two flotation mills in Pend Oreille County in 1941 exceeded that treated in 1940 by 87,808 tons and was virtually of the The 700-ton flotation mill of the Pend Oreille Mines & same grade. Metals Co. was operated the entire work year 7 days a week and three shifts a day. Ore treated daily averaged 661 tons. The 450-ton Grandview mill of the Metaline Mining & Leasing Co. treated company ore and ore from the property of the American Zinc, Lead & Smelting Co.; during 1941 the daily capacity of the mill was increased from 450 to 500 tons, and it was operated practically at capacity all of 1941 three shifts a day and 7 days a week. The Sierra Zinc Co., operating the Blue Ridge property in Stevens County, erected a 50-ton mill (50-ton flotation capacity and 100-ton crushing capacity) and began operations in October 1941. The average grade of ore treated was about 1 percent lead and 8 percent zinc. Other producers of lead included the Electric Point and Gladstone Mountain properties in Stevens County.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Washington in 1941, by counties, in terms of recovered metals

County	Mines produc- ing		Gold (lode a	nd placer)	Silver (lode and placer)	
	Lođe	Placer	Fine ounces	Value	Fine ounces	Value
Asotin		13	129 27	\$4, 515 945	21	\$15
Benton	5	3 2	46, 048	1, 611, 680 70	175, 891	125, 078
Douglas Ferry	11	2	34, 559 38	1, 209, 565 1, 330	173, 392	123, 30
Grant King Kittitas	3		111 19	3, 885 665	1, 139	810
Kittitas Okanogan Pend Oreille	12	7 2	1, 036	36, 260 105	1, 741 10, 807	1, 238 7, 688
Pierce	1	2	3 125	105 4, 375	16, 507	11, 798
Snohomish Stevens	16	9 2	1, 688 378	59, 080 13, 230	22, 206 180	15, 791 12
Whatcom	5	1	3/8	315 35	38	2
Yakima	1		04 170			
Total, 1940	61 83	56 88	84, 176 82, 136	2, 946, 160 2, 874, 760	402, 030 365, 175	285, 889 259, 680

	Cor	per	Les	ıd	Zi	Total	
County	Pounds	Value	Pounds	Value	Pounds	Value	value
Asotin							\$4, 530
Benton							945
Chelan Douglas	16, 731, 000	\$1,974,258					3, 711, 016 70
Ferry	200	24					1, 332, 890 1, 335
KingKittitas	1, 100	130	2, 300	\$131			4, 956 667
Okanogan	55,000	6, 490	1,600	91			44, 079
Pend Oreille			7, 637, 900	435, 360	28, 402, 000	\$2, 130, 150	2, 573, 300
Pierce			100	6			121
Snohomish	364, 500	43,011	700	40			59, 224
Stevens	218, 300	25, 759	163,000	9, 291	238, 000	17,850	127, 771
Whatcom	800	94	400	23			13, 475
Whitman							315
Yakima	1, 100	130					192
	17, 372, 000	2, 049, 896	7, 806, 000	444, 942	28, 640, 000	2, 148, 000	7, 874, 886
Total, 1940	19, 224, 000	2, 172, 312	5, 110, 000	255, 500	23, 120, 000	1, 456, 560	7, 018, 812

Gold and silver produced at lode minss in Washington in 1941, by counties, in terms of recovered metals

County	Ore sold or	Gold	Silver			
	treated	(fine	(fine			
	(short tons)	ounces)	ounces)			
Chelan Ferry King Okanogan Pend Oreille Pierce Snohomish Stevens Whatcom Yakima	687, 492 160, 756 817 3, 806 361, 041 17, 397 781 15	46,045 34,550 111 1,027 3 122 1,409 368	175, 891 173, 392 1, 133 1, 741 10, 807 14 16, 591 22, 147 186			
Total, 1940	1, 238, 509	83, 636	401, 940			
	1, 166, 798	79, 389	364, 455			

GOLD, SILVER, COPPER, LEAD, AND ZINC IN WASHINGTON 479

Gold and silver produced at placer mines in Washington in 1941, by counties, in fine ounces, in terms of recovered metals

County	Sluicing and hydraulic		Dragline land dr		Total	
	Gold	Silver	Gold	Silver	Gold	Silver
AsotinBenton	64 12	10	65 15	11	129 27	21
Chelan Douglas Ferry	3 2 9		38	7	3 2 9 38	
Grant Kittitas Okanogan Pend Oreille	19 9 3	3			19 9 3	
Snohomish Stevens Whatcom	64 10	13	215	46	279 10	50
Whitman	9 207 363	26 66	333 2, 384	64 654	540 2,747	90 720

¹ A floating washing plant supplied with gravel by a dragline excavator is called a "dragline dredge"; a stationary or movable washing plant supplied with gravel by any type of power excavator is called a "dry-land dredge."

MINING INDUSTRY

Ore totaling 1,171,674 tons (95 percent of the State output) in 1941 was produced from six properties. This total includes copper ore from the Holden property in Chelan County; zinc-lead ore from the Pend Oreille, Metaline, and Grandview properties in Pend Oreille County; and gold ore from the Knob Hill and Mountain Lion properties in Ferry County. Development work on these six properties included 87,008 feet of diamond drilling and 4,826 feet of churn drilling; development work was also reported at several smaller properties in the State.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Washington in 1941, with content in terms of recovered metals

Source	Mines produc- ing	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)
Dry and siliceous gold ore Dry and siliceous gold-silver ore Dry and siliceous silver ore	32 5 8	178, 121 87 2, 492	37. 508 32 53	175, 011 1, 216 10, 723	56, 423 380 1, 234	3, 090 1, 900 1, 322	
Copper ore Lead ore Zinc-lead ore	45 6 3 7	180, 700 694, 565 152 363, 092	37, 593 46, 034	186, 950 202, 091 360 12, 539	58, 043 17, 313, 000 957	6, 312 112, 830 7, 686, 858	28, 640, 000
Total, lode mines Total, placers	61 56	1, 238, 509	83, 636 540	401, 940 90	17, 372, 000	7, 806, 000	28, 640, 000
Total, 1940	117 171	1, 238, 509 1, 166, 798	84, 176 82, 136	402, 030 365, 175	17, 372, 000 19, 224, 000	7, 806, 000 5, 110, 000	28, 640, 000 23, 120, 000

METALLURGIC INDUSTRY

Lode mines in Washington produced 1,238,509 tons of ore in 1941, treated as follows: 1,063,076 tons in straight concentrating mills, 135,290 tons at cyanide plants, 694 tons at amalgamation plants, and 39,449 tons shipped crude to smelters.

Amalgamation plants.—Ten straight amalgamation plants and one amalgamation and concentration plant treated 694 tons of dry gold ore in 1941. The Boundary Red Mountain property in Whatcom

County was the chief producer.

Cyanidation mills.—The 400-ton cyanidation-concentration plant of Knob Hill Mines, Inc., at Republic, Ferry County, treated the bulk of the gold ore cyanided in 1941; the plant treated gold ore from the Knob Hill and Mountain Lion mines. The First Thought Mine Corporation treated gold ore from the First Thought mine in the Orient district, Stevens County, in its 50-ton plant. These two mills treated a total of 105,218 tons of gold ore and reported the consumption of 7,675 pounds of sodium cyanide (91-percent grade), 163,800 pounds of calcium cyanide, 29,500 pounds of zinc dust, and 1,371,800 pounds of lime.

Concentration mills.—A total of 1,063,076 tons of ore was treated at 13 flotation mills, as follows: 693,937 tons of copper ore treated at 4 plants, 363,092 tons of zinc-lead ore at 4 plants, 3,747 tons of gold ore at 4 plants, and 2,300 tons of silver ore at 1 plant.

Details of the treatment of all ore produced in Washington in 1941

are given in the following tables.

Mine production of metals in Washington in 1941, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Ore amalgamatedOre cyanidedOncentrates smeltedOne smeltedOre smelted	694 135, 290 71, 871 39, 449	777 6, 582 65, 448 10, 829 540	363 16, 996 329, 832 54, 749 90	17, 155, 667 216, 333	7, 689, 648 116, 352	28, 640, 000
Total, 1940		84, 176 82, 136	402, 030 365, 175	17, 372, 000 19, 224, 000	7, 806, 000 5, 110, 000	28, 640, 000 23, 120, 000

GOLD, SILVER, COPPER, LEAD, AND ZINC IN WASHINGTON 481

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Washington in 1941, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

		Recovered	in bullion	Concentrates smelted and recovered metal			
County	Ore treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	Concentrates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	
Chelan Ferry Okanogan Whatcom	76 13 105 500	75 228 233 241	14 217 118 14	5	3	8	
Total, 1940	694 1, 418	777 568	363 161	5	3	8	
	CY	ANIDATIO	ON MILLS				
FerryStevens	123, 290 12, 000	5, 254 1, 328	16, 205 791	3, 590	18, 969	109, 818	
Total, 1940	135, 290 145, 582	6, 582 12, 154	16, 996 39, 676	3, 590 515	18, 969 670	109, 818 6, 722	
Grand total: 1941	135, 984 147, 000	7, 359 12, 722	17, 359 39, 837	3, 595 515	18, 972 670	109, 826 6, 722	

Mine production of metals from concentrating mills in Washington in 1941, by counties, in terms of recovered metals

		Concentrates smelted and recovered metal							
County Ore treated (short tons)	treated (short	Concentrates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)		
Chelan King Okanogan Pend Oreille Snohomish	687, 343 750 2, 795 361, 041 5, 807	35, 330 93 184 31, 596 349	45, 910 102 280	175, 853 382 302 10, 807 12, 318	16, 730, 900 786 35, 286	1,690 7,637,900 700	28, 402, 000		
Stevens Whatcom	5, 138 202	702 22	60 40	20, 264 80	214, 706 210	48, 958 400	238, 000		
Total, 1940	1, 063, 076 972, 848	68, 276 64, 856	46, 476 53, 164	220, 006 238, 706	17, 155, 667 18, 958, 139	7, 689, 648 4, 993, 708	28, 640, 000 23, 120, 000		

Gross metal content of concentrates produced from ores mined in Washington in 1941, by classes of concentrates smelted

Class of concentrates	Concen- trates	Gross metal content						
	produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)		
Dry gold Dry silver Copper Lead Zinc	3, 721 89 36, 178 5, 396 26, 487	19, 177 49 46, 213 4 5	110, 407 8, 917 197, 969 11, 671 868	1, 343 392 17, 682, 675 649 800	3, 985 1, 320 71, 953 7, 852, 349 659, 302	411, 63 32, 083, 48		
Fotal, 1940	71, 871 65, 371	65, 448 53, 834	329, 832 245, 428	17, 685, 859 19, 544, 488	8, 588, 909 5, 621, 267	32, 495, 12 30, 885, 46		

Mine production of metals from Washington concentrates shipped to smelters in 1941, in terms of recovered metals

BY COUNTIES

	Concen- trates (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds	Zinc (pounds)
Chelan Ferry	35, 330 3, 590	45, 910 18, 969	175, 853 109, 818	16, 730, 900		
KingOkanogan	93 189	102 283	382 310	786 35, 286	1,690	
Pend Oreille Snohomish Stevens	31, 596 349	84	10, 807 12, 318	173, 779	7, 637, 900 700	28, 402, 000
Whatcom	702 22	60 40	20, 264 80	214, 706 210	48, 958 400	238, 000
Total, 1940	71, 871 65, 371	65, 448 53, 834	329, 832 245, 428	17, 155, 667 18, 958, 139	7, 689, 648 4, 993, 708	28, 640, 000 23, 120, 000

BY CLASSES OF CONCENTRATES

Dry gold. Dry silver. Copper. Lead. Zinc.	3, 721 89 36, 178 5, 396 26, 487	19, 177 49 46, 213 4 5	110, 407 8, 917 197, 969 11, 671 868	1, 164 300 17, 153, 246 586 371	2, 090 700 7, 537, 168 149, 690	28, 640, 000
	71, 871	65, 448	329, 832	17, 155, 667	7, 689, 648	28, 640, 000

GOLD, SILVER, COPPER, LEAD, AND ZINC IN WASHINGTON 483

Gross metal content of Washington crude ore shipped to smelters in 1941, by classes of ore

	Ore (short tons)	Gross metal content				
Class of ore		Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	
Dry and siliceous gold Dry and siliceous gold-silver Dry and siliceous silver Copper Lead	38, 390 87 192 628 152	10, 755 32 4 38	47, 062 1, 216 1, 806 4, 305 360	24, 087 478 1, 081 200, 900	1, 644 3, 024 1, 072	
Total, 1940	39, 449 46, 950	10, 829 12, 833	54, 749 79, 190	226, 546 277, 697	121, 847 125, 311	

Mine production of metals from Washington crude ore shipped to smellers in 1941, in terms of recovered metals

BY COUNTIES

73	60 10 099	24 47 152	100	
67	9	757	314	610 1, 600
3	3	14		100
259	21	1,092	3, 594	114,042
15	1	38	1, 100	
39, 449	10, 829	54, 749	216, 333	116, 352 116, 292
	37, 453 67 906 3 594 259 79 15	37, 453 10,099 906 511 3 594 38 259 21 79 87 15 13,39,449 10,829	37, 453 10,099 47,152 757 906 511 1,313 3 14 3594 38 4,273 259 21 1,092 79 87 86 15 1 38 39,449 10,829 54,749	37, 453 10,099 47,152 200 67 9 757 314 906 511 1,313 19,714 3 3 14 190,721 259 21 1,092 3,594 79 87 86 590 15 1 38 1,100 39,449 10,829 54,749 216,333

BY CLASSES OF ORE

Dry and siliceous gold Dry and siliceous gold-silver Dry and siliceous silver Copper Lead	38, 390 87 192 628 152	10,755 32 4 38	47, 062 1, 216 1, 806 4, 305 360		1,000 1,900 622 112,830
	39, 449	10, 829	54, 749	216, 333	116, 352

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Washington in 1941, by counties and districts, in terms of recovered metals

gradien er en e La en er en en en en en en en en en en en en en	p	ines ro- cing	000 0014	Gold		Silver	(fine				
County and district	Lode	Placer	treated (short tons)	Lode	Placer	Lode	Placer	Copper (pounds)	Lead (pounds)	Zinc (pounds)	Total value
	1	1		Н	Н		14				1
Asotin County: Snake River		13			129		21				
Benton County:							21				\$4, 53
Columbia River Chelan County:		5			27	1					94
	1		687, 343	45, 910		175, 853		16, 730, 900 100			3, 706, 14
Chelan Lake Peshastin Creek Wenatchee River	4	3	149	135		38		100			4,70
Douglas County:	1	1 3			3						10
Columbia River		2]	2						
Ferry County: Columbia River		1			5						
Danville	1		193								15, 4
Enterprise Republic	1 9		84 160, 479			630 172, 350		100			4
3rant County:		1 -	100, 110	54, 115	4	172, 300		100			1, 316, 7
Columbia River		1			38		7				1, 3
King County: Miller River	3		817	111	l	1, 139		1, 100	2 200		
Kittitas County:	1		02.			1, 100		•	-,		4, 9
Columbia River Swauk		1			2						1
Yakima River		2			10		3				3 2
Okanogan County:											-
Cascade	1	4	100	47		38					1, 6
Loomis-Oroville	2	*	8	5		284					1 3
Methow	6		3, 604	906		1, 253		54, 800	700		39, 1
Myers Creek and Mary Ann Creek.	3		94	69		166		200	000		2, 6
Similkameen River		3			4				900		2,0
Pend Oreille County: Metaline	3	2	361, 041		3	10 807			T 40T 000	00 400 000	
Pierce County:	ಿ	-	501, 041		3	10,007			7, 637, 900	28, 402, 000	2, 573, 3
Mount Rainier	1		3	3		14			100		1:
nohomish County:	1		3, 826	69		6, 774		320, 200			45, 0
IndexStilaguamish	î		2, 300	49		8,917		300			8, 1
Sultan White Horse Moun-	1	2	268	3	3	886		43, 900			6, 0
tain	1		7	1		14		100			
tevens County: . Bossburg	2			_							
Chewelah.	1		155 1, 587	49		696 17, 962		400 110, 900	4, 300	14,000	1, 8 27, 5
Chewelah Columbia River		9			279		59				9,8
Colville Deer Trail	14		96			31			9,600	18,000	1, 9
Kettle Falls	1		21 1	3		734 76			6, 300		9
Northport	4		1,983			1, 274		1,000	142, 800	206, 000	24, 9
Orient Springdale	2		12, 028 1, 526	1, 345 2		796 578		106, 000			47, 64 12, 9
Vhatcom County:			,					100, 000			12, 98
Mount Baker	2 3	₂	501	243		14					8, 5
Vhitman County:	3	2	280	125	10	166		800	400		4, 9
Snake River		1			9						31
akima County: Summit.	1		15	1		38		1, 100			19
Total Washington.	61	20	1, 238, 509	00.000	F40	401 040	- 00	17, 372, 000	7 000 000	20. 040. 000	

Comment on districts with small output has been omitted owing to lack of space.

ASOTIN COUNTY

Most of the output of gold from Asotin County in 1941 came from the operations of three small dragline and washer plants on Snake River.

BENTON COUNTY

The Benton County output in 1941 was derived from several small sluicing operations and one dragline working placers along the Columbia River near Paterson and Richland.

CHELAN COUNTY

Chelan Lake district.—The Holden property of the Howe Sound Co. was again the leading producer of gold, silver, and copper in Washington. Although the ore milled totaled 687,343 tons in 1941—almost equal to the 687,429 tons milled in 1940—the output of metals declined because a lower grade of ore was treated. In 1941 the grade of ore averaged 0.08 ounce of gold and 0.310 ounce of silver to the ton, 1.30 percent copper, and 0.88 percent zinc. The copper concentrates produced averaged about 1.30 ounces of gold and 5 ounces of silver to the ton and 24 percent copper. Mine development included sinking 150 feet of vertical and 377 feet of inclined shaft and driving 14,263 feet of drifts and 2,605 feet of raises, besides 44,139 feet of diamond drilling. The 2,000-ton company concentrator operated continuously in 1941 at slightly above rated capacity; a cyanide plant that was to start operations in January 1942 was added to the concentrator.

Peshastin Creek District.—Several small lots of crude gold ore were shipped to smelters in 1941, chiefly from the Old Blewett and Pole-

pick mines.

DOUGLAS COUNTY

Gold recovered from bars along Columbia River by sluicing was the entire metal output of Douglas County in 1941.

FERRY COUNTY

Danville district.—Production of gold at the Morning Star mine from ore shipped to smelters and ore amalgamated increased in 1941.

Enterprise district.—A small amount of crude silver ore from the Silver Bell property was shipped to Tacoma for smelting in 1941.

Republic district.—The entire output of gold, silver, and copper in

Republic district.—The entire output of gold, silver, and copper in 1941 came from siliceous gold ore; 123,290 tons were treated by cyanidation and 10 tons by amalgamation, and 37,179 tons were shipped crude to a smelter. All the ore from the Knob Hill and Mountain Lion groups, operated by Knob Hill Mines, Inc., was treated in the 400-ton cyanide-flotation plant at the Knob Hill mine, producing 3,590 tons of gold concentrates in addition to cyanide bullion. Most of the crude ore from the Republic district, shipped for smelting, came from company and leasing operations on properties of the Aurum Mining Co. Other important shippers of crude ore were Golden Valley, Inc., operating the Valley claim; the Eureka

Mining & Milling Co., operating its Blaine-Republic properties on company and leasing accounts; Flag Hill Mines, operating the Scalawag mine; and operators of the South Penn property. A small amount of placer gold was recovered by sluicing on Columbia River.

GRANT COUNTY

All gold produced in Grant County during 1941 was recovered by the dry-land dredge operated by Miller Bros. at Chinaman Bar on Columbia River.

KING COUNTY

Most of the gold from King County in 1941 was contained in gold concentrates produced from gold ore treated in the 75-ton flotation mill at the Apex property. Small lots of siliceous gold-silver and siliceous silver ores were shipped from the Coney Basin and Cleopatra properties, respectively, for smelting.

KITTITAS COUNTY

Swauk district.—Several small sluicing operations produced placer gold from Swauk Creek in 1941.

Yakima River district.—A small amount of placer gold was recovered by sluicing on Yakima River.

OKANOGAN COUNTY

Cascade district.—The Bodie group near Wauconda, treating gold ore by amalgamation and concentration, produced the entire output of the Cascade district in 1941.

Loomis-Oroville district.—Two small lots, one of gold ore and the other of gold-silver ore, comprised the output of the Loomis-Oroville district in 1941.

Methow district.—The Methow Gold Corporation treated ore by amalgamation in the 40-ton Red Shirt mill and was the leading producer in the Methow district in 1941. Other producers were the New London, Highland Light & Hidden Treasure, Gold Crown, Minnie, and Gold Coin properties.

Myers Creek and Mary Ann Creek district.—Gold ore from the Mother Lode property represented the bulk of the output in 1941.

PEND OREILLE COUNTY

Metaline district.—The Pend Oreille County metal output increased in value from \$1,712,157 in 1940 to \$2,573,300 in 1941, owing chiefly to greater output of lead and zinc. The Pend Oreille Mines & Metals Co. operated the Josephine group the entire year and milled an average of 661 tons of ore a day in its 700-ton flotation mill. The company produced about 56 percent of the zinc and about 49 percent of the lead output of the Metaline district. The average content of the zinc-lead ore milled in 1941 was about 1 percent lead and 5 percent zinc. Development work reported by the company totaled 500 feet of incline, 1,701 feet of drifts, 485 feet of raises, and 18,067 feet of diamond drilling. The remainder of the zinc and lead output of the district was contained in zinc and lead concentrates produced by the 450- to

500-ton Grandview flotation mill, which treated ore from properties of the Metaline Mining & Leasing Co. and the American Zinc, Lead & Smelting Co. The crushing and classifier sections of the Grandview mill were enlarged, thereby increasing the milling capacity from 450 tons a day to 500 tons. Placer gravels yielded a small amount of gold.

PIERCE COUNTY

A small lot of gold ore was shipped crude to Tacoma in 1941 from the Silver Creek property in the Mount Rainier district.

SNOHOMISH COUNTY

Index district.—The Sunset Cooperative Mining Co. shipped copper concentrates and some crude ore to Tacoma for smelting in 1941, surpassing its 1940 production by more than 60 percent. The company operated its 150-ton flotation mill until November, when the Kromona Mines Corporation assumed control of the property.

Stilaguamish district.—Silver concentrates were shipped to Tacoma in 1941 for smelting, from properties operated by the Ore Recoveries

Corporation at Silverton.

Sultan district.—The Kromona Mines Corporation operated the Florence Rae property in 1941 and shipped crude copper ore to Tacoma for smelting. A small amount of placer gold was recovered by sluicing along Sultan River.

STEVENS COUNTY

Bossburg district.—Small lots of zinc-lead ore, from the Silver Trail and Young America mines, treated in the Budd custom mill at Kettle Falls (Kettle Falls district) comprised the output of the Bossburg district in 1941. The Budd mill, owned by Ark Mines, is a 40-ton flotation mill.

Chewelah district.—The Chinto Mining Co., treating ore from company properties, in its 25-ton flotation mill, produced copper concentrates that yielded the metal output of the Chewelah district in

1941

Columbia River district.—The Columbia River district of Stevens County was the largest producer of placer gold in the State in 1941. The bulk of the gold was recovered from properties along Columbia River operated by R. H. Fish and the Harvey R. Cline Co., both using mechanical equipment.

Colville district.—A small lot of zinc-lead ore from the Smokey Bullion mine was treated in the Budd custom mill and yielded the

entire metal output of the Colville district in 1941.

Deer Trail district.—Several small lots of silver-lead ore were shipped

crude to a smelter in 1941.

Northport district.—The Sierra Zinc Co. started production at the Blue Ridge mine in October 1941 and produced the bulk of the 1941 metal output of the Northport district. The company erected a 50-ton mill (crushing capacity, 100 tons) on the property in 1941. The remainder of the district output consisted of lead ore shipped crude to a smelter from the Electric Point and Gladstone Mountain mines and a small lot of silver ore from the Frisco-Standard mine.

Orient district.—The First Thought Mine Corporation treated about 12,000 tons of siliceous gold ore in its 50-ton cyanidation mill and produced the bulk of the metal output of the Orient district in 1941.

Springdale district.—Ore from the Lucky Boy mine (only producer in the Springdale district in 1941) was treated in the Deer Trail 100-ton flotation mill and yielded copper concentrates; in addition, a small lot of ore was shipped crude to Tacoma.

WHATCOM COUNTY

Mount Baker district.—Ore from the Boundary Red Mountain mine, treated by amalgamation, contained most of the gold produced in the Mount Baker district in 1941.

Slate Creek district.—The bulk of the Slate Creek district output came from gold ore shipped crude to Tacoma from the Azurite property and from gold concentrates produced by the Slate Creek Mining Co. in its 75-ton flotation mill. A little gold was recovered from placers on Slate Creek by sluicing.

WHITMAN COUNTY

Snake River district.—A few ounces of gold were recovered from the Indian Bar placer on Snake River by sluicing.

YAKIMA COUNTY

Summit district.—A small lot of copper ore was shipped crude to Tacoma from the Chinook mine.

GOLD, SILVER, COPPER, AND LEAD IN WYOMING

(MINE REPORT)

By Chas. W. Henderson and S. A. Gustavson

SUMMARY OUTLINE

Page	Page
Summary 489	Mine production by counties 490
Calculation of value of metal production 489	Review by counties and districts 490

Lode and placer mines in Wyoming in 1941 yielded—in terms of recovered metals—478 fine ounces of gold, 94 fine ounces of silver, and 8,000 pounds of copper. Of this total, 447 ounces of gold and 50 ounces of silver were recovered from placer mining, the bulk of it by two dry-land dredge operations in the Atlantic City district of Fremont County; small hand-sluicing or panning operations—one in Albany County, two in Carbon County, and seven in Fremont

County—supplied the remaining placer output.

No large lode-mining operations were carried on in the State to recover gold, silver, copper, or lead in 1941. Eight small lode mines, none of which shipped or treated over 40 tons of crude ore, yieldedin terms of recovered metals—31 fine ounces of gold, 44 fine ounces of A total of 75 tons of crude ore silver, and 8,000 pounds of copper. was treated in four small amalgamation mills—three in Fremont County and one in Johnson County—which recovered 10 fine ounces of gold and 4 fine ounces of silver. A total of 42 tons of copper ore and 42 tons of dry gold ore from three mines in Carbon County and one mine in Platte County (yielding 21 fine ounces of gold, 40 fine ounces of silver, and 8,000 pounds of copper) was shipped to the Garfield (Utah) smelter.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

The value of the metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1937-41

Year	Gold 1	Silver 2	Copper 3	Lead ²	Zine ³
1937 1938 939 1940	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0. 7735 4. 646+ 3. 678+ 6. 711+ 6. 711+	Per pound \$0. 121 . 098 . 104 . 113 . 118	Per pound \$0.059 .046 .047 .050	Per pound \$0.065 .048 .052 .063 .075

¹ Price under authority of Gold Reserve Act of January 31, 1934. Treasury legal coinage value of gold from January 18, 1837, to January 31, 1934, was \$20.671+(\$20.671835) per fine ounce.
2 1937: Yearly average weighted Treasury buying price for newly mined silver.
3 Yearly average weighted price of all grades of primary metal sold by producers.
4 \$0.64646464.

8 \$0.67878787.

The following table shows the annual output of ore from lode mines producing gold, silver, copper, and lead and the quantity and value of the metals recovered from both lode and placer mines in Wyoming from 1937 to 1941; it also gives the total production of metals from 1867 to 1941. About three-fourths of the total recorded value of the four metals is in copper, most of which was mined before 1924 in the Encampment district, in Carbon County, and the Hartville district, originally in Laramie County, now in Platte County.

Mine production of gold, silver, copper, and lead in Wyoming, 1937-41, and total, 1867-1941, in terms of recovered metals

Vaar	Ore placer)		Silver (lode and placer)		pper	oper Lead		Total		
Year (short tons)	Fine ounces	Value	Fine ounces	Value	Pounds	Value	Pounds	Value	value	
1937	17 581 57 813 159	1, 776 798 583 740 478	\$62, 160 27, 930 20, 405 25, 900 16, 730	203 328 75 114 94	\$157 212 51 81 67	4,000 8,000	\$452 944			\$62, 317 28, 142 20, 456 26, 433 17, 741
1867-1941	(1)	77, 891	1, 834, 513	74, 580	51, 715	²16,325	5, 684, 048	28	\$568	7, 570, 844

¹ Figures not available.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, and copper in Wyoming in 1941, by counties, in terms of recovered metals

County	Mines producing							Silver	Copper	Total	
	treat- ed	Lode	Placer	Total	Lode	Placer	Total		value		
Albany		1	Short tons	Fine ounces	Fine ounces 2	Fine ounces 2	Fine ounces	Fine ounces	Fine ounces	Pounds	\$70
Carbon Fremont Johnson Platte	3 3 1 1	9	81 60 15 3	21 8 2	3 442	24 450 2	27 3 1 13	1 49	28 52 1 13	6,000 2,000	1, 56 15, 78 7 24
Гotal, 1940	8 9	12 28	159 813	31 18	447 722	478 740	44 41	50 73	94 114	8,000 4,000	17, 74 26, 43

REVIEW BY COUNTIES AND DISTRICTS

ALBANY COUNTY

Centennial district.—The only mining operations in the Centennial district in 1941 were those incident to development or assessment work.

Douglas Creek district (Holmes, Keystone).—A small lot of placer gold was recovered by Ira J. Knisley on the west branch of Little Beaver Creek. Development and assessment work were the only other mining operations carried on in the Douglas Creek district. Pete Erickson, of Holmes, did development work on the Lucky Strike property. The Multi Metals Corporation also did development work and made tests for the treatment of ore from its Gold Crater group of claims near Keystone.

² Short tons.

BIG HORN COUNTY

There was no metal production from Big Horn County in 1941. Some sampling for gold of bench gravel on the Big Horn River, about 7 miles north of Kane, was done by George E. Frame.

CARBON COUNTY

Elkhorn Mountains district.—Assessment work and some sampling were done by the Golden Sun Mining Syndicate on the Vulcan group of claims; a small shipment of gold ore was sent to the Garfield (Utah) smelter of the American Smelting & Refining Co. Shull, Johnson & Hoggard made a small shipment of copper ore to the Garfield smelter. Development work was carried on at the Silent Six group by C. H. Ashley, of Encampment, and at the Hub group by Joe McCarthy, of Livermore, Colo.

Encampment or Upper Platte district.—The Golden Clover claim was developed further, and a few tons of dry gold ore were shipped

to the Garfield (Utah) smelter.

Savery Creek district.—Sluicing of about 700 cubic yards of gravel in Savery Creek by John Malten yielded 2½ ounces of gold.

FREMONT COUNTY

Atlantic City district.—The holdings of Crawford Bros., including the complete dry-land washing plant and all leases of the E. T. Fisher Co., were purchased in November 1940 by C. E. Gish of Farnam, Nebr. Gish operated the plant in 1941 and treated about 80,000 cubic yards of gravel, from which 224 fine ounces of gold and 26 fine ounces of silver were recovered; the average fineness of the bullion was 0.890 in gold and 0.105 in silver, the same as in 1940. The placering was carried on chiefly on the Timba-Bah Mining Co. property about 5 miles below Atlantic City, largest single producer of gold and silver in the State in 1941. John E. Whisenand's placer operation on Sweetwater River in the vicinity of Atlantic City, worked by a 3-cubic yard dragline and a washing plant, ranked second in output of gold and silver. His bullion had an average fineness of 0.894 in gold and 0.083 in silver. The plant was shut down and moved to Farson, Wyo., in the fall of 1941. There were small hand-operated placers in Big Atlantic Gulch, Meadow Gulch, and Rock Creek.

Roy A. Cowden, of Atlantic City, operated the Gold Leaf and Mint lode-mining claims and treated 40 tons of ore in a 5-ton Gibson amalgamation mill, producing 5½ ounces of gold bullion which was sold to the Denver Mint. Jacob Stevenson and J. C. Gibson operated the Caribou mine, did development work, and treated 10 tons of ore. J. Don Birch operated the St. Louis mine and the Birch 10-ton amalgamation mill; 10 tons of ore were treated and yielded 2.84 ounces of fine gold

and 0.48 ounce of fine silver.

Copper Mountain district.—Using a portable mechanical placer machine, H. B. Crawford in sampling and testing placer ground handled 30 tons of old tailings and stream gravel in Birdseye Creek below the Gold Nugget mine on Copper Mountain; about 1 ounce of fine gold was recovered.

JOHNSON COUNTY

The Powder River Mining Corporation treated a few tons of ore from the Powder River mine. The property is in sec. 20, T. 47 N., R. 85 W.

PLATTE COUNTY

Oscar Alexander made a shipment of 3 tons of copper ore to the Garfield (Utah) smelter. The Colorado Fuel & Iron Co. produced no copper ore at its Sunrise iron mine in 1941.

TETON COUNTY

Some sampling work was done on the Mercury placer on Snake River about 7 miles southeast of Moran, but no product was marketed.

SECONDARY METALS—NONFERROUS

By F. H. WRIGHT and J. H. SCHAUM 1

SUMMARY OUTLINE

	Page	1	Page
General summary	- 493	Secondary lead	503
Salient statistics	493	Secondary magnesium	507
		Secondary nickel	
Secondary aluminum	- 495	Secondary tin	510
Secondary antimony	- 498	Detinning plants	512
Secondary copper and brass	_ 499	Secondary zinc	513

GENERAL SUMMARY

All previous records for annual recovery of secondary nonferrous metals were broken in 1941. The value of economically important nonferrous metals recovered from scrap, as metal and in alloys and chemicals, totaled \$348,377,389 in 1941 compared with \$242,789,445 (revised) in 1940. Metals recovered from new scrap that entered the market as a byproduct of manufacturing operations comprised \$143,114,982 of the total, and metals recovered from old and obsolete salvage materials were valued at \$205,262,407.

Salient statistics of nonferrous secondary metals recovered in the United States, 1940-41

	Ne	w scrap	Ol	d scrap	•	rotal .
Metal	Short tons	Value	Short tons	Value	Short tons	Value
1940 Aluminum Antimony Copper Lead Magnesium Nickel Tin Zinc	245 198, 156 33, 763 (²) 2, 184	1 \$12,612,940 68,600 44,783,256 3,376,300 1,528,800 12,690,150 1 19,883,934	1 45, 806 11, 176 333, 290 226, 583 (2) 1, 968 20, 486 64, 204	1 \$16, 719, 190 3, 129, 280 75, 459, 140 22, 658, 300 (1) 1, 377, 600 20, 412, 251 8, 089, 704	1 80, 362 11, 421 532, 046 260, 346 (1) 4, 152 33, 222 1 222, 013	1 \$29, 332, 130 3, 197, 880 120, 242, 396 26, 034, 600 (3) 2, 906, 400 33, 102, 401 1 27, 973, 638
Aluminum 1941 Antimony Copper Lead Magnesium Nickel Tin Zinc	17, 136 1, 737	20, 704, 051 15, 960 74, 032, 492 1, 953, 504 833, 760 2, 226, 700 12, 926, 565 30, 421, 950	43, 113 21, 572 412, 699 380, 280 15 2, 134 29, 606 81, 154	14, 003, 102 6, 040, 160 97, 396, 964 43, 351, 920 1, 493, 800 30, 796, 161 12, 173, 100	106, 857 21, 629 726, 396 397, 416 1, 752 5, 315 42, 033 283, 967	34, 707, 153 6, 056, 129 171, 429, 456 45, 305, 424 45, 305, 424 3, 720, 500 43, 722, 726 42, 595, 050 348, 377, 389

¹ Revised figures.

² Data not available.

Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Although the full effect of all-out war production was not felt in the secondary metals industry during 1941, there were many instances Turnings and clippings of aluminum, magnesium, copper, and brass were produced in tremendous quantities but for the most part were routed back to rolling mills. Denial of export licenses for nickel scrap created the need for recovery facilities in the United States, and several plants expanded their operations.

The better grades of all scrap metals were always in demand during 1941, but some of the lower grades suffered because they could not be used in products that had to meet the rigid specifications of armament production. Unalloyed copper scrap and high-tin bronze supplies fell far short of requirements. It is interesting to note that more of almost every type of scrap was consumed in 1941 than in 1940.

Aluminum and zinc scrap held the spotlight in January and February, with many instances of scrap prices far above those of primary metal, owing to surging business activity and a demand exceeding primary production facilities. Both aluminum and zinc scrap virtually disappeared from the market when the first official scrap price ceilings were imposed in March, and normal flow was not resumed until midsummer.

Smelters and ingot makers experienced difficulty in finding sufficient copper, brass, and bronze scrap during most of 1941, but they had less trouble after a large part of the competition from foundries was removed by priority control in October. Even though some dealers had difficulty in disposing of low-copper-bearing materials, consumption of copper-bearing scrap and residues was almost four times that of 1940.

Most nonferrous scrap-metal prices averaged 1 cent to 1.8 cents a pound higher in 1941 than in 1940.

SCOPE OF REPORT

New features were added to the canvass of nonferrous scrap-metal consumers in 1941. Remelters, smelters, and refiners were asked to report the weight and composition of metals and alloys produced from scrap, and manufacturers and foundries, including brass mills, aluminum rolling mills, and chemical works, were asked to list their products and report the secondary metal contents.

Secondary magnesium rose to a position of economic importance

during 1941 and is reported in this chapter for the first time.

In all, 344 plants were classified as remelters, smelters, or refiners of nonferrous scrap metals in 1941. Some of these plants specialized in one base metal, whereas others combined a variety of functions and

consumed many types of scrap.

Consumption of purchased nonferrous scrap metals was reported by 1,192 manufacturers and foundries (including brass mills and chemical works) in 1941. Many foundries and manufacturers made their initial entry into the scrap market in 1941 in search of materials to fill rated orders, and other consumers who used scrap during the first half of the year were unable to obtain priorities for further purchases.

Each table of secondary metals recovered shows the total quantity of each element reclaimed directly as metal or in chemical compounds and, in addition, the quantity of that element reclaimed in alloys recovered from certain types of alloy scrap. The fact that a metal is recovered in one type of alloy scrap does not necessarily mean that the final product was an alloy of the same class. For example, tin recovered in solder (a lead alloy) might emerge from the plant as an alloying element in bronze ingot. From the foregoing it is obvious that there is no basis for direct comparison between the tables of metal "recovered" and the tables of metal products, introduced in this chapter for the first time.

SECONDARY ALUMINUM

The quantity of secondary 2 aluminum recovered from scrap totaled 106,857 short tons valued at \$34,707,153 in 1941 compared with 80,362 tons valued at \$29,332,130 in 1940 (revised figures). The value was computed at 16.24 cents a pound of weight recovered in 1941 compared with 18.25 cents in 1940.

Secondary aluminum recovered in the United States, 1940-41, in short tons

	1940 1	1941
As metal	5, 620 74, 742	8, 308 97, 614
In chemical products: Aluminum chloride	(2) (2)	784 151
· · · · · · · · · · · · · · · · · · ·	80, 362	106, 857
From new scrapFrom old scrap.	34, 556 45, 806	63, 744 43, 113

¹ Revised figures.

The 8,308 tons of secondary aluminum recovered as metal appeared on the market as 3,449 tons of pure aluminum (98.5 percent) ingot, 1,663 tons of aluminum powder, 931 tons of pure aluminum castings, and 2,265 tons in commercial shapes produced by rolling mills.

The 97,614 tons of secondary aluminum alloys recovered from aluminum scrap appeared in such products as aluminum-alloy ingot, alloy castings, zinc-base die-cast alloys, and aluminum bronze.

Production of secondary aluminum and aluminum-alloy products in the United States, 1940-41, gross weight, short tons

	1940	1941
Secondary aluminum ingot: 2 Pure aluminum (98.5 percent)	4, 679	3, 449
95.5 (silicon)	5, 679	4, 014
Other aluminum-silicon alloys	1, 539	3, 356
No. 12 aluminum Other aluminum-copper alloys	17, 519 1, 613	21, 708 6, 477
Aluminum-copper-silicon alloys	12, 334	10, 113
Steel-mill ingot and shot	19, 427 2, 552	24, 212 4, 431
Die-casting alloys	1, 340	4, 747
Miscellaneous	1, 807	1, 426
· · · · ·	68, 489	83, 933
Aluminum powder	(3)	1, 663 9, 851
Aluminum castings	(3)	9, 851 935

¹ In addition to the secondary aluminum produced, 670 tons of aluminum were recovered from aluminum scrap in zinc die-casting alloys, and 291 tons in aluminum bronze; 14,221 tons were combined with primary aluminum in the products of aluminum rolling mills.

² Gross weight of alloys, including copper, silicon, and other added elements; total secondary ingot contained 3,718 tons of primary aluminum in 1940 and 1,038 tons in 1941.

³ Data not available.

² Data not available.

² The term "secondary aluminum" is used in the broad sense covering aluminum and aluminum alloys, including the weight of alloy constituents, such as copper, silicon, magnesium, etc.

Thirteen chemical-producing companies recovered 784 tons of aluminum in aluminum chloride and 151 tons in aluminum sulfate. The second half-year activity in chemical production approximately doubled that of the first half.

Despite an erratic production rate, 80 secondary ingot makers produced 83,933 tons of various grades of ingot, resulting in a 23percent increase over the 1940 output, which was still far below the

maximum capacity available.

The average monthly production of secondary ingot was 6,994 tons. Monthly output rose from about 8,000 tons in January and February to almost 10,000 tons in March, then fell abruptly to 4,500 tons in May, when dealers withdrew from the market after price ceilings had been set. Production became stabilized toward the end of 1941 as confidence returned to the trade.

New scrap from the fabrication of aluminum sheet and forgings was largely routed back to aluminum rolling mills for most efficient recovery of the low-alloy metal consumed in aircraft production. In 1941, 14,221 short tons of aluminum were thus recovered from scrap by working the metal in with primary aluminum.

The quantity of aluminum recovered from old scrap in 1941 was slightly less than recovery from old scrap in 1940, but recovery from

new scrap increased 84 percent.

Consumption of purchased aluminum scrap in the United States in 1941, gross weight, in short tons

	,		Ma	nufacturer	s and fou	foundries			
Scrap item		rs, smelt- refiners		ım rolling ills	Founds other m tur	Total scrap used			
	New scrap	Old scrap	New scrap	Old scrap	New scrap	Old scrap			
Pure clippings, wire, and foil. Castings and forgings Alloy sheet. Scrap sheet and sheet utensil Borings and turnings Die castings.	2, 565 4, 320 9, 365 1, 050 30, 618	1, 083 23, 401 1, 447 11, 734	3, 184 28 625 10, 510 1, 379	16 3 78	869 223 1, 331 103 594	849 5, 466 68 888	8, 566 33, 438 12, 839 24, 363 32, 591		
Miscellaneous aluminum and dross	13, 732	81.	71		34 517	38 8	241 14, 409		
	61, 650	37, 915	15, 797	97	3, 671	7, 317	126, 447		

The consumption of 126,447 tons of aluminum scrap in 1941 represents a 36-percent increase over 1940. About 79 percent of the scrap was used by 99 remelters, smelters, and refiners; 13 percent by 14 aluminum rolling mills; and the remaining 8 percent by 997 foundries and miscellaneous manufacturers.

Of the total aluminum scrap used in 1941, Ohio consumed 33 percent, Illinois 21 percent, Michigan 9 percent, New York 7 percent, California 6 percent, Pennsylvania 6 percent, Tennessee 5 percent, and all other States 13 percent.

As the sources of old scrap were depleted to some extent, the market in 1941 reflected its increased dependence on new scrap generated by manufacturers, and 64 percent of all scrap consumed was new. In 1940, new scrap constituted only 43 percent of the total

Remelters, smelters, and refiners proved the largest consuming group by taking 99,565 tons of aluminum scrap, a 29-percent rise over 1940. Although die castings, pure clippings, wire, and foil all revealed diminished usage, the 30,618 tons of borings and turnings consumed amounted to almost double the 1940 consumption. Virtually all of the scrap used by aluminum rolling mills was new scrap that was a byproduct of industrial fabrication. Foundries and miscellaneous manufacturers consumed only 10,988 tons of aluminum scrap, slightly less than in 1940. Early in 1942, an order was issued making it mandatory for all companies whose operations yielded more than 1,000 pounds of aluminum scrap a month to segregate all scrap produced.

Consumers' stocks of purchased aluminum-base scrap in the United States at end of year, 1940-41, gross weight, in short tons

	On h	and—
Scrap item	Dec. 31, 1940 1	Dec. 31, 1941
Castings and forgings. Sheet, turnings, clippings, etc. Miscellaneous aluminum and dross.	2, 734 3, 690 1, 802	2, 00- 6, 07/ 1, 521
	8, 226	9, 59

¹ Revised figures.

The base price of primary aluminum ingot was reduced from 17 cents a pound to 15 cents a pound in October and averaged 16.50 cents for the year. The average price for the 98 percent pure second-

ary aluminum was about 17.36 cents.

Dealers' buying prices for scrap cast aluminum in New York averaged 10.76 cents a pound in 1941 compared with 8.95 cents in 1940. Prices averaged 13.97 cents in February, but March prices could not be averaged for lack of quotations. Following the announcement of official ceiling prices on March 25, the monthly average dropped to 11.00 cents in April and remained static until October, when an average of 9.36 cents a pound reflected the drop in price of both primary metal and scrap. Cast scrap averaged 9.37 cents in December.

Dealers' buying prices for new aluminum clippings in New York averaged 13.00 cents a pound in 1941 compared with 14.47 cents in 1940. From a peak of 16.88 cents averaged in March, the price dropped to the ceiling level of 13.00 cents, eased to 11.36 cents a pound in October, and ended the year with a December average of

9.37 cents.

Effective March 25, 1941, a dual price ceiling listing maximum prices for sale of aluminum scrap by maker, as well as for sale to consumer, was announced by the Office of Price Administration. Secondary ingot (98 percent pure) was fixed at 17 cents a pound, and scrap prices were set in relation to the prevailing rate for primary metal (17 cents a pound). The flow of aluminum scrap immediately dried up and did not resume normal volume until late in the summer of 1941.

Many secondary aluminum-ingot makers were shut down in April and May, and a few operated at reduced schedules. Nevertheless, ingot production during the first half of 1941 advanced 21 percent over

the half-year rate in 1940.

On November 1, 1941, scrap-aluminum price ceilings were reduced to conform with the new 15-cent base price of primary metal, and the dual price schedule was abolished in favor of a single list of maximum sale prices. Secondary ingot was also reduced to 15 cents for 98-percent metal.

Aluminum scrap was placed under full priority control on June 10, 1941, but smelters did not receive an A-10 rating until the first of July.

The much publicized house-to-house aluminum-collection campaign in July netted 5,600 short tons of mixed scrap metals containing about 3,200 tons of recoverable aluminum.

Imports of aluminum scrap into the United States were only 26 tons for the first 9 months of 1941 compared with 648 tons in all of 1940. No figures on exports were available for publication.

SECONDARY ANTIMONY

A total of 21,629 short tons of secondary antimony valued at \$6,056,120 was recovered in 1941 compared with 11,421 tons valued at \$3,197,880 in 1940. The value in both years was computed at 14 cents a pound, the average price for ordinary brands of Americangrade antimony. The expanded recovery of antimony represented an increase of almost 90 percent over 1940.

Secondary antimony recovered in the United States, 1940-41, in short tons

	1940	1941
In lead-base alloys : In tin-base alloys	11, 073 348	21, 337 292
	11,421	21, 629
From new scrapFrom old scrap	245 11, 176	57 21, 572

¹ Includes antimony recovered as metal and in oxide and other compounds; 867 tons of antimony were recovered in antimonial lead produced at primary lead refineries in 1940 and 532 tons in 1941.

The rise in secondary antimony was entirely attributable to the 21,337 tons recovered in lead-base alloys. There was a 16-percent decline in antimony recovered in tin-base alloys—from 348 tons in 1940 to 292 tons in 1941. Nearly all of the antimony was recovered in old scrap. Only 2,113 tons (10 percent of the total) were recovered by consumers classified as manufacturers and foundries.

A table of the secondary lead and tin-base alloy products containing secondary antimony may be found in the section on Secondary Lead. Antimonial lead products yielded 77 percent of the secondary antimony recovered, including 10,820 tons contained in high antimonial lead (over 8 percent antimony). This latter type of antimonial lead is produced largely in conjunction with the recovery of refined lead from battery plates, when antimony slag is smelted to make a hard lead containing up to 16 percent antimony. The 21,629 tons of secondary antimony reported in 1941 were recovered in 371,809 tons of lead-base scrap and 4,725 tons of tin-base scrap. Battery-lead plates were the source of almost 60 percent of the total secondary antimony, and the remainder was supplied by type metal and type dross, hard lead, and bearing metals. The threatened

shortage of lead resulting from unusually heavy demand brought out large amounts of old battery plates.

Consumption of purchased antimony-bearing scrap in the United States in 1941 gross weight, in short tons

Scrap item	ers, and			Manufacturers and foundries New Old		
	scrap	scrap	scrap	scrap		
Y and home govern						
Lead-base scrap: Hard lead	539	37, 693	117	234	38, 583	
Cable lead		21, 779 257, 638		70 6, 552	21, 849 264, 190	
Battery-lead plates Mixed common babbitt	109	6, 574		9,077	15, 760	
Type metals		15, 483	11	3,858	19, 352	
Type-metal dross		10, 551 1, 524			10, 551 1, 524	
Lead sludge		1,024				
	648	351, 242	128	19, 791	371, 809	
Tin-base scrap:					100	
No. 1 pewter		371		40	411	
Genuine babbitt	22	2, 433	(1)	3 159	2, 458 1, 856	
No. 1 babbitt	26	1,671	(1)	159	1,000	
	48	4, 475	- (1)	202	4, 725	
	696	355, 717	128	19, 993	376, 534	

¹ Less than 1 ton.

On January 13, 1942, the maximum price allowed for the antimony content of secondary antimonial lead was set at 14 cents a pound, but the factor was advanced to 15.50 cents a pound on March 31, 1942. The War Production Board placed antimony under full priority control, effective May 1, 1942.

SECONDARY COPPER AND BRASS

More than 1,000,000 short tons of purchased 3 copper and copperbase scrap were consumed in 1941. Copper recovered from scrap metals, including that in alloys, totaled 726,396 short tons valued at \$171,429,456 in 1941 compared with 532,046 tons valued at \$120,-242,396 in 1940. The value was computed at 11.8 cents a pound in 1941, whereas the average price of 11.3 cents was used in 1940.

In all, 135,869 tons of copper were recovered in 1941 as essentially pure metal, most of which was refined electrolytically. Of the total copper recovered in copper-alloy products, yellow brass alloys contributed 234,191 tons (copper content), and alloys other than yellow brass supplied 346,532 tons of secondary copper. In addition to copper recovered as metal and in alloys, 9,804 tons were recovered from scrap metals in the form of chemicals.

Owing to greatly increased demand for clean copper scrap at foundries and secondary brass-ingot plants, recovery of refined copper from scrap at primary copper refineries decreased 15 percent

from 117,669 short tons in 1940 to 99,675 tons in 1941.

³ The term "purchased scrap" includes scrap treated on toll as well as scrap transferred between plants of a single company. It does not include home scrap reused in the plant in which it originated.

Secondary copper recovered in the United States, 1940-41, in short tons

	1940	1941		1940	1941
As metal	170, 839 361, 207	135, 869 590, 527	In new scrap: Yellow brass All other	1 121, 531 1 76, 625	162, 161 151, 536
As metal:	532, 046	726, 396		198, 156	- 313, 697
At primary plants At other plants	117, 669 53, 170	99, 675 36, 194	In old scrap: Yellow brassAll other	52, 489 281, 401	72, 030 340, 669
In yellow brass	170, 839 1 174, 020 1 177, 756 9, 431	135, 869 234, 191 346, 532 9, 804	1111 001101	333, 890	412, 699
	532, 046	726, 396			

¹ Includes some plant scrap at brass mills.

Analysis and production of secondary copper and copper-alloy products in the United States in 1941

Item produced from scrap		Approximate analysis (percent)					
	Cu	Sn	Pb	Zn	Ni	Al	1941 (short tons)
Refined copper (electrolytic grade)	100						109, 368
Casting copper Copper sheet, rod, tubing, etc	99						18, 700
Copper sheet, rod, tubing, etc	99						3, 855
Copper powder	98						2, 493
Copper castings	98						1, 453
Total unalloyed copper products							135, 869
Brass and bronze ingots:	1 .	1	İ		1		
Tin bronze		10		2			26, 343
Leaded-tin bronze	88	6	1.5	4.5			29, 404
Leaded red brass	85	5	5	5		1	91, 389
Leaded semired brass	81	. 3	7	9		l	30, 829
High-leaded-tin bronze	80	10	10				25, 005
Do	84	6	8	. 2			8, 658
Do	75	5	20				5, 850
Leaded yellow brass	66	1	3	30			21, 518
High-strength yellow brass	58			39		1	31, 676
High-strength yellow brass Manganese bronze	62			27		5	8, 202
Aluminum bronze	- 80				l	10	4, 261
Nickel silver	58	2	7	18	14		941
Do	65	4	3	5	22		2, 205
Gilding metal				5			5, 231
Low brass	80			20			1, 129
Phosphor copper	85						2, 542
Hardeners and special alloys	81						3, 838
Total copper-alloy ingots							299, 021
Brass and bronze sheet, rod, tubing, etc.							1 308, 407
Brass and bronze castings	1	1	1	1			2 152, 637
Copper in chemical products (copper content)							
products (copper content)							9, 804

¹ Gross weight of secondary brass and bronze in commercial shapes; includes 221,492 tons of copper, 1,200 tons of nickel, 4,166 tons of lead, 236 tons of tin, and 81,313 tons of zinc.
² Gross weight of secondary brass and bronze castings; includes 123,955 tons of copper, 1,424 tons of nickel, 9,087 tons of lead, 6,986 tons of tin, and 11,185 tons of zinc.

As would be expected with expanded production of munitions added to a general upswing in manufacturing activity, secondary copper and copper in alloys recovered from new scrap in 1941 increased 58 percent over the 1940 figure. The 24-percent increase in recovery of copper in old scrap reflected the consumption of reserves of old copper and brass scrap brought out by an active market,

augmented by scrap-collection campaigns. Unalloyed copper scrap yielded 231,500 tons of secondary copper, which was recovered partly as refined metal, to a limited extent in copper chemical products, and to a greater extent in brass and bronze. Of this amount, 59,078 tons came from new unalloyed copper scrap and 172,426 tons from old

unalloved scrap.

No direct comparison may be made between the table of secondary copper "recovered" and the table of copper products. The tabulation of metal "recovered" includes copper contained in nickel-base, aluminum-base, and tin-base alloy scrap, as well as the copper recovered by direct addition of copper scrap to such items as secondary aluminum ingot or tin babbitts. The tabulation of copper and copper-alloy products lists the gross weight of secondary copper alloys, including both primary and secondary tin, lead, zinc, nickel, aluminum, and a small quantity of primary copper.

Refined electrolytic-grade copper was produced at 12 refineries, including 10 primary plants. Of the 109,368 tons of refined copper produced, 83 percent was supplied by 5 plants. Casting copper was produced at 21 plants, of which only 1 was a primary copper refinery.

Secondary brass and bronze ingots totaling 299,021 short tons were produced by 78 ingot-manufacturing plants representing 65 companies. Stocks of secondary ingot rose 12 percent from 12,269 tons on hand December 31, 1940, to 13,760 tons on hand December 31, 1941. Shipments in 1941 totaled 297,530 short tons.

Consumption of purchased copper scrap in the United States in 1941, gross weight, in short tons

			Man	Total scrap used			
Scrap item	Remelters, smelters, and refiners		Brass mills		Foundries and other manufac- turers		
	New scrap	Old scrap	New scrap	Old scrap	New scrap	Old scrap	
No. 1 wire and heavy. No. 2 wire, mixed heavy, and light. Composition or red brass. Railroad-car boxes.	18, 368 10, 465 35, 004	42, 688 92, 175 70, 480 1, 943	14, 126 12, 426 3	8, 850 1, 501	2, 590 2, 689 404	15, 542 17, 607 59, 762 39, 159	102, 164 136, 863 165, 653 41, 102
Yellow brass	20, 348	82, 941 45, 438 1, 655	232, 901	19,875	3, 578	18, 674 873 548	378, 317 46, 311 2, 203
Bronze	307 765 495	4, 267 1, 204 727	2, 955 6, 798 12, 886	197 1, 622	42 96	1, 692 69 7, 087	9, 263 9, 129 22, 817
Aluminum bronze Low-grade scrap and residues	60, 773	355 29, 030			3 45	8	89, 856
	146, 658	372, 903	282, 095	32, 045	9, 447	161, 022	1,004,170

The gross weight of "purchased" copper and copper-alloy scrap consumed in 1941 was 1,004,170 short tons compared with 707,924 tons in 1940, a 42-percent increase. Of the total scrap used, 52 percent was consumed by 109 remelters, smelters, and refiners, 31 percent by 36 brass mills, and 17 percent by 1,028 foundries and miscellaneous manufacturers.

Aside from copper-bearing byproduct residues, the remelter, smelter, and refinery group treated comparatively little new scrap but con-

sumed two-thirds of all the old. Brass mills used minor quantities of old yellow brass and old clean copper but accounted for almost two-thirds of all the new scrap reported. Foundries and miscellaneous manufacturers confined virtually all of their purchases to old scrap.

Consumers' stocks of purchased copper-base scrap in the United States at end of year, 1949-41, gross weight, in short tons

	Scrap item		On h	and—
	Scrap item		Dec. 31, 1940 ¹	Dec. 31, 1941
Unalloyed copper Copper-base alloy		 	15, 606 56, 283	15, 004 53, 218
Low-grade scrap and residu	es	 	23, 733 95, 622	34, 654 102, 876

¹ Revised figures.

Brass-ingot manufacturers placed a voluntary ceiling on their products early in 1941, but sale prices of foundry products were not controlled.

Maximum prices were set for brass mill scrap on July 22, 1941, in order that other consumers might be prevented from offering higher prices to draw new brass and commercial bronze scrap from the channel of most efficient recovery. On August 12, 1941, the price of electrolytic-grade copper was set at 12 cents, delivered Connecticut Valley. This was followed by ceilings on unalloyed copper scrap which placed the consumers' price of No. 1 scrap at 10.75 cents, effective August 19, 1941.

Dealers' monthly average buying prices for No. 1 copper scrap at New York rose from 8.87 cents a pound in January to 9.60 cents in March, dropped to 8.99 in April, then rose to 10.03 cents in August. The dealers' buying price ceiling of 10 cents held throughout September, then prices declined to 9.37 cents in November and December. The average was 9.44 cents in 1941 compared with 8.20 cents in 1940. No. 1 composition scrap followed practically the same trends, averaging 9.41 cents a pound in 1941 compared with 7.68 cents in 1940.

The drop in scrap prices during October was occasioned by a revision in the copper price-ceiling order that abolished the dual price schedule and reduced the maximum selling price of No. 1 copper scrap to 10 cents but permitted the addition of transportation charges and certain quantity premiums. The further fall in November prices was the result of an order prohibiting delivery of brass ingot for nondefense uses.

Except for certain grades of brass mill scrap, copper-alloy scrap was free of formal price ceilings until February 27, 1942, when prices were set on 24 grades.

Although primary copper was first made subject to allocation on May 29, 1941, it was not until September 30, 1941, that the flow of copper scrap was brought under regulation. According to Supplementary Order M-9-b issued by the Director of Priorities, brass mill scrap was routed to brass mills as sole consumers, and dealers were prohibited from melting any type of copper or copper-alloy scrap. Deliveries of scrap to other than dealers required a preference rating showing that the material was needed for essential uses.

All types of copper scrap were in demand at the start of 1941, but continued light offerings led to the belief that dealers were holding scrap for an expected rise in price. Liquidation of copper and copper-base scrap was hastened in April, when producers of primary copper agreed to an informal ceiling of 12 cents for refined copper. Brassingot makers and custom smelters experienced difficulty in obtaining enough scrap of the better grades throughout 1941, but supplies of material of low copper content exceeded demand. Large purchases of scrap copper and brass were made early in August, when dealers again hurried to move accumulations before formal ceiling prices became effective. Flow of scrap was retarded immediately after the price ceilings were issued and did not increase noticeably until November.

General Imports Order M-63, effective December 27, 1941, required in part that scrap copper and brass be imported under the direction of the Metals Reserve Co. Publication of import and export statistics was suspended at the end of September 1941.

Copper, brass, and bronze scrap were placed under export control on January 10, 1941. Effective February 3, 1941, a license was required for exporting materials containing over 15 percent copper.

Brass and copper scrap imported into and exported from the United States, 1940-41, in short tons

	1940	1941 (JanSept.)
Brass scrap imported Scrap copper imported Brass scrap exported Scrap copper exported	1, 232 135 5, 887 7, 149	4, 688 2, 023 681 3, 201

SECONDARY LEAD

The net weight of secondary lead recovered from scrap, including lead as metal and lead contained in alloys, totaled 397,416 short tons valued at \$45,305,424 in 1941 compared with 260,346 short tons valued at \$26,034,600 in 1940. The value was computed at 5.7 cents a pound in 1941 and 5.0 cents a pound in 1940.

The lead content of soft lead refined from scrap amounted to 75,264 tons, and the lead content of secondary antimonial lead was 206,521 tons in 1941. Lead recovered in other scrap-lead alloys, such as type metal, lead babbitts, and solders, totaled 88,200 tons, and lead recovered as a constituent of other alloy scrap, such as brass and bronze, came to 27,431 tons.

The total secondary lead recovered in all forms represented a 53-

percent increase in 1941 compared with 1940.

The apparent drop in the quantity of lead recovered from new scrap—from 33,763 short tons in 1940 to 17,136 tons in 1941—was caused by a change in interpretation and not by any difference in the types of scrap consumed. In former years, certain drosses resulting from the actual use of type metals, as well as drosses produced in scrap-metal dealers' lead-scrap melting operations, were classed as new scrap. Further study has led to the belief that the drosses specified should be reclassified as old scrap. Very little "new" lead scrap

reaches commercial channels, owing to the fact that most of this material is easily prepared for reuse in the same plant.

Secondary lead recovered in the United States, 1940-41, in short tons

		1940	1941
As metal: At primary plants At other plants		 16, 588 42, 992	13, 454 61, 810
In antimonial lead ¹ In other lead alloys. In alloys other than lead alloys.	 	 59, 580 126, 687 58, 586 15, 493	75, 264 206, 522 88, 200 27, 430
		260, 346	397, 416
From new scrap From old scrap	 	 33, 763 226, 583	17, 136 380, 280

Includes 16,431 tons of lead recovered from secondary sources at primary plants in 1940 and 13,862 tons in 1941.

Production of secondary lead, tin, and lead and tin-alloy products in the United States in 1941, gross weight, in short tons

	Gross	S	econdary n	netal conte	nt
	weight of product	Lead	Tin	Antimony	Copper
Refined pig lead Soft lead castings Lead pipe Lead foil	74, 959 158 133 42	74, 931 158 133 42			
	75, 292	75, 264			
Refined pig tin	5, 882 18		5, 880 18		
	5, 900		5, 898		
Lead and tin alloy pigs: Antimonial lead (to 2 percent antimony). Antimonial lead (2 to 4 percent antimony). Antimonial lead (2 to 8 percent antimony). Antimonial lead (4 to 8 percent antimony). Common babbitt. Genuine babbitt. Other tin babbitts. Solder (to 15 percent tin). Solder (15 to 30 percent tin). Solder (over 30 percent tin). Linotype metal. Other type metals. Miscellaneous lead-tin alloys	4, 982 23, 037 16, 426 17, 239	16, 644 33, 270 65, 412 91, 194 12, 723 362 4, 612 15, 355 9, 648 14, 309 15, 275 206	5 55 71 123 1 200 2,000 1,145 360 5,653 6,348 809 1,011 184		7.
			10, 804		y-
Antimonial lead castings	1, 339 8, 677 1, 138	1, 259 6, 421	1, 041 1, 138	80 1, 215	

¹ This total includes 7,884 tons of primary metals. ² Includes 1,209 tons of antimony from ore.

Production of secondary antimonial pig lead amounted to 226,353 short tons (gross weight), almost all recovered from old storage

Refined secondary pig lead totaling 74,959 short tons was produced at 131 plants representing 109 concerns classed as remelters, smelters, and refiners. Of this refined lead, 55,800 tons (74 percent) were produced at only 20 plants.

batteries. Including lead babbitts, solders, type metals, and miscellaneous lead-base alloys, the total secondary lead and lead-base alloy products reported in 1941 amounted to 409,488 short tons, gross weight. In all, 189 plants were engaged in remelting, smelting, and refining lead and lead alloys, whereas 20 additional smelters and 406 manufacturing plants (mostly foundries) consumed lead and lead-

alloy scrap in products other than secondary pig.

It is difficult to draw a distinction between secondary lead smelters and scrap-metal dealers, some of whom melt large quantities of scrap lead in simple pot installations. Measurement of the secondary white metals industry is complicated further by the practice of melting and smelting scrap alloys and drosses containing lead, tin, and antimony to produce so-called "percentage metals," which are pigged and analyzed for subsequent blending in alloys to be sold on specification. For example, solder sweated from lead or copper pipe joints might be thoroughly mixed in a pot, pigged, and analyzed to ascertain the lead and tin contents. The resultant pigs would then be marked and held until an order for solder was received, at which time the alloy would be remelted and the lead-tin proportion adjusted by the addition of either a high-tin alloy or perhaps some very low tin solder stock, until the ratio specified in the order was met. Lead-antimony and lead-tin-antimony scrap alloys are treated similarly, and the percentage metals are used in production of bearing metals, type metals, and antimonial lead.

Although some remelted lead-base and tin-base alloy pigs produced by small remelters are sold directly to manufacturers, others are sold to larger secondary smelters for consumption in specification metals. Thus, percentage metals are reported by the first melter as secondary products recovered from scrap, but the metal contents appear again in the production reports of large smelters. Process metals of this class were deleted from the 1941 statistics to avoid duplication.

Consumption of purchased lead scrap in the United States in 1941, gross weight, in short tons

Scrap item	Remelters, s	melters, and ners	Manufact foun	Total scrap	
	New scrap	Old scrap	New scrap	Old scrap	useu
Soft lead Hard lead Cable lead	992 539	34, 591 37, 693 21, 779	926 117	1, 212 234 70	37, 721 38, 583 21, 849
Battery-lead plates Mixed common babbitt Solder Type metals	109 36	257, 638 6, 574 9, 536 15, 483	11	6, 552 9, 077 144 3, 858	264, 190 15, 760 9, 716 19, 352
Dross Lead oxide Residues	7, 857	42, 345 4, 650 6, 956		4, 328	54, 530 5, 293 7, 284
	10, 504	437, 245	1, 054	25, 475	474, 278

¹ The lead-base scrap listed as consumed by manufacturers and foundries in 1941 cannot be compared with earlier reports of lead-base scrap consumed by this group in 1940, owing to the recent transfer of 29 large plants (equipped with smelting fscilities) from the manufacturer group to the remelter-smelter-refiner group. If the transfer had not been made, this table for 1941 would have shown a total of 343,824 tons consumed by remelters, smelters, and refiners and 130,454 tons of scrap consumed by manufacturers and foundries.

Of the 474,278 short tons of lead-base scrap consumed in 1941, only 11,558 tons (2 percent) were classed as new scrap, and 462,720 tons (98 percent) were old scrap returned for salvage after having served a useful purpose. As usual, battery-lead plates dominated the picture, comprising 56 percent of all lead-base scrap consumed during 1941 and exceeding the 1940 figure by almost 100,000 tons. Reclamation of cable lead dropped slightly, reflecting the tendency of utilities to make existing equipment serve a longer life. A 66-percent increase in consumption of drosses shows that dead stocks of low-grade by-products were brought into the market when a shortage of lead was threatened.

Illinois, with 24 secondary lead remelters and smelters worthy of mention, consumed 19 percent of all lead-base scrap, followed by 17 percent used in Pennsylvania (23 plants), 15 percent in New Jersey (16 plants), 10 percent in Indiana (6 plants), 8 percent in California (14 plants), and 8 percent in New York (27 plants); the remaining 23 percent of consumption was reported by 21 other States.

Consumers' stocks of purchased lead-base scrap in the United States at end of year, 1940-41, gross weight, in short tons

Scrap item		On ha	ind—
Scrap пеш	:	Dec. 31, 1940 ¹	Dec. 31, 1941
Unalloyed lead		4, 119 29, 693	2, 733 25, 642
Drosses and residues		8, 128	12, 775
		41, 940	41, 150

¹ Revised figures.

Although no formal ceiling prices were applied to scrap lead during 1941, buyers were strongly urged to hold scrap prices to the usual relationship with primary lead quotations. Prices of both primary metal and scrap rose during the first 4 months of 1941 but leveled in April when the trade agreed to an informal ceiling of 5.85 cents a pound for primary pig in New York. Dealers' buying prices for heavy lead scrap in New York averaged 4.72 cents in January, climbed to an average of 5.18 cents in March, then leveled at 5.31 cents in April and stayed there through October. Heavy-scrap-lead prices averaged 5.36 in November and 5.37 in December; the rise was attributed to the expectation of official ceiling prices that would exceed the earlier informal levels. Scrap flow was greatly improved during these 2 months.

Dealers' quotations for battery-lead plates rose steadily from 2.75 cents a pound at the beginning of the year to 3.125 cents in March. The price rose to 3.25 cents in July and increased to 3.50 cents at the end of October in anticipation of a higher price for primary lead.

Battery-plate smelting charges ranged from \$16 a ton (maintained through April) to \$13 in September, then fluctuated between \$13 and \$14 until early in December, when the charge fell to \$12. On December 18, 1941, quotations jumped to \$20 a ton.

Effective January 15, 1942, maximum prices were set for lead-base scrap, battery-lead plates, batteries in boxes, and secondary lead, all in relation to base prices fixed for each of 146 city areas listed as main

shipping points in 34 States. Under the terms of this order, the maximum selling price of heavy-lead scrap in New York was fixed at 5.95 cents a pound, f. o. b. point of shipment. The price of primary pig lead was fixed on the same date at 6.50 cents a pound, delivered at New York.

Secondary lead produced from scrap was made subject to allocation on October 3, 1941. No priority control was exercised on lead scrap throughout 1941, but General Preference Order M-72, issued January 9, 1942, provided for direct allocation of lead scrap when necessary. Acceptance of deliveries of lead scrap at dealers' yards was made dependent on the ratio of shipments to inventories, and monthly reports of dealers' transactions were required.

Lead scrap was placed under export control on March 4, 1941, and effective March 24, 1941, a license was required for exporting materials

containing over 15 percent lead.

SECONDARY MAGNESIUM

In 1941, 1,752 short tons of secondary magnesium were recovered. Value was set at \$840,960, computed from an average price of 24 cents a pound. This quantity was recovered as 929 tons of magnesium in ingot, 738 tons of magnesium castings, 60 tons of magnesium added as a constituent in aluminum alloys, and 25 tons in reagents.

Secondary magnesium recovered in the United States, in 1941, in short tons

Magnesium alloys produced and recovered from scrap In aluminum alloys In reagents	
and the state of t	1, 752
From new scrapFrom old scrap	1, 737 15
Production of secondary magnesium ¹ and magnesium-alloy products in the States in 1941, gross weight, in short tons	United
Magnesium ingot Magnesium castings	² 929 738
This table does not include secondary magnesium recovered in other than magnesium-base of	oducts.

¹ This table does not include secondary magnesium recovered in other than magnesium-base products.
² Approximately 470 short tons of this amount were incorporated in primary magnesium ingot, and the remainder was produced as secondary magnesium ingot.

A total of 51 plants consumed 2,279 tons of magnesium-base scrap, which was almost entirely in the form of new scrap emanating from industrial operations. By far the largest tonnage of magnesium scrap consisted of borings and turnings, and this item represented 70 percent of the total; filings and grindings comprised 12 percent, sand castings 10 percent, and miscellaneous items 8 percent. The increased tempo of secondary magnesium consumption was revealed by the fact that 911 tons were consumed in the first 6 months of 1941 compared with 1,368 tons in the latter half of the year. Stocks of magnesium scrap were 204 tons at the start of 1941 and 239 tons at the close.

Sales of magnesium were under strict priority control as of March 24, 1941, and on November 14, 1941, General Preference Order M-2-b, issued by the Office of Production Management, required all

persons owning magnesium of any kind to report its existence by November 30. The new order provided for complete allocation of all magnesium supplies.

Stocks and consumption of magnesium scrap in the United States in 1941, gross weight, in short tons

	On hand—		Consumption
	Dec. 31, 1940	Dec. 31, 1941	during 1941
Cast scrap Solid wrought scrap Borings, grindings, drosses, etc	20 52 132	15 22 202	266 103 1, 910
	204	239	2, 279

To overcome the disadvantages of shipping bulky and inflammable magnesium scrap from scattered sections of the country to the few plants equipped for remelting, additional facilities were provided at strategic locations near the sources of magnesium scrap. On February 25, 1942, four smelting companies with a total of seven plants equipped for handling magnesium scrap were granted the right by the Government to purchase magnesium scrap for remelting into secondary magnesium ingot. Primary magnesium producers continued to remelt scrap from nearby areas.

SECONDARY NICKEL (NONFERROUS)

The 1941 survey of secondary nickel recovery was confined to that recovered from nonferrous scrap, and the incomplete report of nickel recovered in ferro-alloys in former years has been omitted from this report.

Secondary nickel recovered from nonferrous scrap in 1941 totaled 5,315 short tons valued at \$3,720,500 compared with 4,152 tons valued at \$2,906,400 in 1940. The value for both years was computed at 35 cents a pound, the spot-delivery price of electrolytic nickel, including duty.

Secondary nickel (nonferrous) recovered in the United States, 1940-41, in short tons

	1940	1941
As metal In nickel alloys In copper alloys In chemical products: Nickel sulfate Nickel oxide Nickel chloride, carbonate, cyanide, and nitrate	3 841 3, 308	248 1, 267 3, 396 283 120
	4, 152	5, 318
From new scrap From old scrap	2, 184 1, 968	3, 181 2, 134

¹ Data not available.

Owing to the past reluctance of many nickel-scrap consumers to report their activities, figures for 1940 are believed to be incomplete, particularly with respect to nickel recovered as metal.

Production of secondary nickel and nonferrous nickel-alloy products in the United
States in 1941, gross weight, in short tons

Refined nickel	 79
Nickel anodes	169
	289
Cupronickel bar and shot	2. 284
	404

In 1941, 248 short tons of secondary nickel were recovered as metal, which appeared on the market as 79 tons of nickel bars and shot and 169 tons of recast nickel anodes. Production of secondary Monel-metal bar and shot amounted to 289 tons containing 178 tons of nickel, and secondary cupronickel totaled 2,284 short tons containing 1,089 tons of nickel. Of the total secondary nickel reported in nonferrous products, 64 percent was recovered in copper-base alloys represented principally by nickel silver. In addition to nickel as metal and in alloys, 404 tons were recovered in chemical products. Of this amount, 70 percent was in nickel sulfate, and most of the remainder was in nickel oxide, with a total of 1 ton contained in nickel chloride, carbonate, cyanide, and nitrate.

Consumption of purchased nickel scrap in the United States in 1941, gross weight, in short tons

Scrap item	Remelters, smelters, and refiners		Manufacturers and foundries		Total scrap
	New scrap	Old scrap	New scrap	Old scrap	used
Pure nickel Monel metal Nickel silver Miscellaneous nickel alloys Nickel residues	140 383 766 503	42 1, 064 1, 204 3, 019	105 1, 790 6, 894	147 74 266 2 432	434 3, 311 9, 130 3, 524 554
	1, 792	5, 329	8, 911	921	16, 953

A total of 16,953 tons of nonferrous nickel scrap was consumed in 1941 compared with 12,404 tons in 1940. Nickel silver constituted slightly more than half of the scrap, and Monel metal and miscellaneous nickel alloys were each about one-fifth of the total.

Thirty-six remelters, smelters, and refiners used 42 percent of the total nickel scrap, and 109 manufacturers and foundries consumed the other 58 percent. Of the 9,832 tons of nickel scrap consumed by manufacturers and foundries, 7,025 tons were used by 17 brass mills, and only 2,807 tons were distributed among the remaining 92 plants.

Consumers' stocks of purchased nonferrous nickel scrap in the United States at end of year, 1940-41, gross weight, in short tons

G	On h	On hand—		
Scrap item	Dec. 31, 1940 1	Dec. 31, 1941		
Unalloyed nickel Nonferrous nickel alloys. Nickel residues	93 2, 217 472	60 3, 965 485		
	2,782	4, 510		

¹ Revised figures.

Dealers' buying prices for new nickel clips in New York in the first days of 1941 were between 37 and 40 cents a pound, and late in January they rose above 47 cents owing to heavy buying by Japan before export control went into effect. In February, prices dropped to the 30-cent level but gradually rose with increased industrial demand until a 55-cent price was quoted in April. The threat of ceiling prices by the Advisory Commission to the Council of National Defense made quotations nominal until June 2, 1941, when Price Schedule 8 fixed ceiling prices on scrap and secondary material. This action drove the price of clips down to the 24- to 25-cent level. During the latter half of 1941, the dealers' buying price for Monel clips in New York lay between 18 and 19 cents a pound.

Nickel, including scrap, was placed under export control on January 10, 1941, and after February 3, 1941, a license was required for ex-

porting materials containing over 10 percent nickel.

SECONDARY TIN

Recovery of secondary tin rose to 42,033 short tons valued at \$43,722,726 in 1941 compared with 33,222 short tons valued at \$33,102,401 in 1940. The value was computed at 52.01 cents a

pound in 1941 and at 49.82 cents a pound in 1940.

Tin recovered as metal increased to 5,900 tons, a 17-percent rise above the 5,056 tons recovered in 1940. Only seven plants, representing four companies, participated in the recovery of 5,089 short tons of metallic tin from tin-plate scrap in 1941, as the expansion program to accelerate recovery of tin from old cans was not yet under way. The 811 short tons of secondary tin recovered as metal at other plants represented the total reported by 40 remelters, smelters, and refiners and 3 manufacturers. Of this total, 60 tons of remelted tin were reclaimed from scrap tin by dealer-remelters and shipped to smelters for fire refining.

Secondary tin recovered in the United States, 1940-41, in short tons

	1940	1941
As metal: At detinning plants At other plants	4, 147 909	5, 089 811
In copper alloys In lead alloys In tin alloys In tin alloys In chemical compounds	5, 056 13, 950 7, 848 5, 671 697	5, 900 16, 298 9, 509 9, 188 1, 138
	33, 222	42, 033
From new scrap.	12, 736 20, 486	12, 427 29, 606

Almost one-fourth of the 1941 yield of secondary tin was recovered in the form of tin-base products, including metallic tin, tin babbitts, and tin chemicals. The next 40 percent emerged as the tin content of lead-base alloys, and the remaining 36 percent filled the greater part of the tin requirements in secondary brass and bronze products. Metallic tin and tin-base alloy products are listed in the production table in the Secondary Lead section of this chapter.

Block-tin scrap and foil, high-tin babbitts, and tin residues accounted for most of the 43-percent increase in tin-base scrap consumed in 1941. Tin scruff and dross resulting from tin-plate opera-

tions in 1941 almost duplicated the 4,936 tons used in 1940.

Dealers' buying prices for block-tin pipe in New York averaged 46.35 cents a pound in 1941 compared with 42.90 cents in 1940. The monthly average rose from 44.50 cents a pound in January to 47.50 cents in May and remained at this price until September, when the average dropped to 45.79 cents a pound. Quotations in each of the last 3 months averaged 45.50 cents.

Consumption of purchased tin scrap in the United States in 1941, gross weight, in short tons

Scrap item	Remelters, smelters, and refiners		Manufacturers and foundries		Total scrap
<u> </u>	New scrap	Old scrap	New scrap	Old scrap	used
Block-tin pipe, scrap, and foil	52 4, 970	1, 287	49 1	104	1, 492 4, 971 411
High-tin babbitt Residues Miscellaneous tin alloys	47 368	4, 107 3, 348 (1)	1	159	4, 314 3, 716
	5, 437	9, 114	51	302	14, 904

¹ Less than 1 ton.

Consumers' stocks of purchased tin-base scrap in the United States at end of year, 1940-41, gross weight, in short tons

	On hand	
Scrap item	Dec. 31, 19401	Dec. 31, 1941
Unalloyed tin	214 482 704	115 624 1, 639
	1, 400	2, 378

¹ Revised figures.

Some small lots of tin scrap were reported sold during the summer months at prices higher than those for primary tin, but warnings from the Office of Price Administration, coupled with the ceiling price of 52 cents a pound for Grade A pig tin, established on August 15, 1941, tended to keep scrap prices fairly well in line.

The price of Grade B tin was fixed at 41.375 cents a pound on September 20, 1941, but no formal ceilings were set on tin-base scrap. There was no Federal control of scrap or secondary tin consumption

or stocks before the Japanese attack on December 7, 1941.

Effective December 17, 1941, General Preference Order M-43 provided for allocation of all stocks of pig tin. This order was amended February 14, 1942, to freeze stocks of tin and tin alloys in the hands of manufacturing jewelers, and arrangements were made to purchase all such stocks for the Metals Reserve Co., with the National Lead Co. acting as agent.

On the last day of 1941, Conservation Order M-43-a ordered 50percent curtailment in the use of tin in nondefense production, with the further provision that use of tin in 29 types of commercial articles

should cease March 31, 1942.

General Preference Order M-72 provided for direct allocation of tin-base scrap to consumers when necessary in the interests of the war program. Acceptance of deliveries of tin scrap at dealers' yards was made dependent on the ratio of shipments to inventories in the preceding 60-day period, and monthly reports of dealers' transactions in tin scrap were required to be filed with the Bureau of Mines.

Early in January 1942, retail druggists were urged to set up collection bins for receiving used collapsible tubes of tin or tin-coated lead. Beginning April 7, 1942, consumers were required to turn in a used tube for each new one of toilet preparations purchased. The newly organized Tin Salvage Institute in Newark, N. J., was designated as the agent of the Metals Reserve Co. to reclaim the tin from

collapsible tubes.

Detinning plants.—Recovery of tin from new tin-plate clippings was carried out during 1941 at seven plants: Metal & Thermit Corporation operated plants at Carteret, N. J., San Francisco, Calif., and East Chicago, Ind.; Vulcan Detinning Co., at Sewaren, N. J., and Neville Island, Pa.; Standard Metal Refining Co., at Baltimore, Md.; and Johnston & Jennings Co., at Cleveland, Ohio.

New tin-plate scrap treated totaled 341,075 long tons, exceeding the 1940 total of 268,269 long tons by 27 percent. Recovery of tin per ton of scrap treated stayed about the same as during 1940, owing to the fact that general reductions of thickness of the tin coating on

steel did not take place until late in 1941.

Recovery of tin from old containers rose only slightly from 62 short

tons in 1940 to 69 short tons in 1941.

No tin bichloride or tin crystals have been reported produced from tin-plate scrap since 1939.

Secondary tin recovered at detinning plants in the United States, 1940-41

	1940	1941
Scrap treated: Clean tin platelong tons_ Old tin-coated containersdo	268, 269 4, 963	341, 075 5, 963
	273, 232	347, 038
Tin recovered as metal: New tin-plate clippingsshort tons. Old tin-coated containersdo	4, 085 62	5, 020 69
Tin content of tin tetrachloride, tin oxide, and sodium stannate produced short tons.	697	1, 067
	4, 844	6, 156
Weight of tin tetrachloride, tin oxide, and sodium stannate produced short tons Average quantity of tin recovered per long ton of clean tin-plate scrap used	1, 157	1,927
Average quantity of the recovered per long con of clean tin-place scrap used pounds. Average delivered cost of clean tin-plate scrapper long ton.	35. 65 \$16. 59	35. 69 \$18. 51

Several small independent plants were equipped for salvaging tin from old cans early in 1942, and six large plants were projected for Government financing. A program was mapped out for converting hot-dipping methods to electroplating of tin to conserve the supply, and many large city areas arranged early in 1942 to collect empty tin cans for shipment to detinning plants. First reports from the detinning plants revealed that less than half of the old cans received had been properly prepared by washing and flattening.

Export regulations concerning tin-plate scrap adopted in 1940

were continued in force throughout 1941.

Imports for the first 9 months of 1941, mostly from Canada, totaled 15,989 long tons of tin-plate scrap valued at \$200,626.

SECONDARY ZINC

The net weight of secondary zinc recovered totaled 283,967 short tons valued at \$42,595,050 in 1941 compared with 222,013 short tons valued at \$27,973,638 in 1940 (revised). The value was computed at 7.5 cents a pound in 1941 (the average selling price of all grades) and at 6.3 cents in 1940.

Secondary zinc recovered in the United States, 1940-41, in short tons

	1940	1941
As metal: By distillation:		
In slab zinc. Zinc dust. By remelting.	1 48, 917 17, 321 2, 704	59, 306 18, 950 11, 400
In alloys:	68, 942	89, 656
Die-cast slab	⁽²⁾ 112, 306	2, 571 1 4 3, 23 6
Zinc oxide	15, 810 1, 958 9, 132	14, 295 2, 840 13, 613
Zinc carbonate and cyanide	(2) 13, 865	348 17, 408
	222, 013	283, 967
From new scrap	157, 809 64, 204	202, 813 81, 154

¹ Gross weight; includes 16,092 tons of zinc slab formerly classified as distilled from plant scrap.

Data not available.
Includes some plant scrap at brass mills.

Twenty-four zinc distillers contributed to a record production of 59,503 tons of secondary distilled slab containing 59,306 tons of zinc. This amount represents a 21-percent increase over the 1940 recovery of 48,917 (revised) short tons. Virtually 40 percent of the supply of secondary distilled slab was consumed by galvanizers, 30 percent by brass mills, 16 percent by die casters, 10 percent by rolling mills and extrusion plants, and the remainder by zinc oxide producers and other miscellaneous users.

The 18,950 tons of secondary zinc dust produced by nine distillers represented approximately 80 percent of the total zinc dust produced in the United States from all sources. More than half of this dust was

consumed by the producers of sodium hydrosulfite.

The 2,704-ton figure for remelted zinc listed for 1940 was unusually low, because a large amount of the zinc in scrap used to produce spelter formerly was listed as having been recovered in copper alloys, and spelter produced by dealers was not reported. The 11,400 tons of remelted zinc reported in 1941 was recovered in 10,389 tons of remelt

spelter, 527 tons of galvanizing stock, 497 tons of zinc sheet, 78 tons of zinc powder, and 70 tons of zinc anodes. In addition to the 10,389 tons of remelt spelter listed, 430 tons of remelt spelter were consumed by zinc refiners, and this recovery is included in the weight of redistilled slab produced. Bureau of Mines surveys revealed that 1,967 tons of zinc were recovered in die-cast slab during the first 6 months of 1941, whereas only 604 tons were recovered in the second half.

Zinc is the principal alloying constituent of copper-base alloys, and 143,236 tons of secondary zinc were recovered in secondary brass and bronze. This quantity includes both the zinc originally contained and recovered in brass scrap and the zinc in zinc-base scrap added to

secondary brass in the melting furnace.

Production of secondary zinc and zinc alloy products in the United States in 1941, gross weight, in short tons

Redistilled zinc slab		See	59, 503
Zinc dust	 		18, 950
Remelt spelter	 		10, 389
Remelt die-cast slab			2, 735
Galvanizing stock	 		527
Zinc sheet	 		497
Zinc powder			78
Zinc anodes	 		70
Zinc in chemical products_	 		48, 504
variante de la companya de la companya de la companya de la companya de la companya de la companya de la compa	 		

Thirty-seven chemical manufacturers recovered 48,504 tons of secondary zinc in chemicals, a 19-percent increase over the 1940 recovery of 40,765 tons. High industrial activity, supplemented by an insufficient supply of titanium pigments, effected a sharp increase in the demand for lithopone at the end of 1941. The production of zinc oxide from zinc scrap and slab zinc declined, but the use of ore for oxide to supply the growing market increased sharply.

A major part of the zinc scrap treated in 1941 consisted of galvanizers' skimmings and dross; and zinc recovery from this source, added to increased recovery of zinc in brass cartridge scrap, explains the recovery of 71 percent of all secondary zinc from new scrap compared

with 29 percent from old.

Consumption of purchased zinc scrap in the United States in 1941, gross weight, in short tons

Scrap item		s, smelters, efiners	Manufac foun	Total scrap	
	New scrap	Old scrap	New scrap	Old scrap	used
Clippings Sheet Castings Skimmings and ashes Dross Die castings Flue dust and residues	5, 978 299 471 57, 186 56, 620 305 8, 819	6, 562 1, 443 12, 701 16, 024	1, 537 265 23 27, 861 37 114 14, 233	456 124 18 900 7,117	5, 515 7, 582 2, 061 85, 065 56, 657 14, 020 46, 193
	127, 678	36, 730	44, 070	8, 615	217, 093

Consumption and stocks of zinc scrap in the United States in 1940, gross weight, in short tons 1

	Remelters and re	s, smelters, efiners	Manufac four	(Dodo)	
Scrap item	Used	Stocks, Dec. 31, 1940	Used	Stocks, Dec. 31, 1940	Total used
Clippings Sheet Castings Skimmings and ashes Dross Die castings Flue dust and residues	2, 877 12, 009 822 62, 552 46, 457 17, 087 7, 833	161 804 355 19, 079 5, 311 1, 358 11, 542	1, 153 73 18 7, 463 5, 201 169 18, 853	223 57 16 4, 320 6 13 3, 701	4, 030 12, 062 840 70, 015 51, 658 17, 256 26, 686
	149, 637	38, 610	32, 930	8, 336	182, 567

¹ Revised figures.

Zinc-base scrap and residues consumed in 1941 totaled 217,093 tons, composed of 39 percent skimmings and ashes, 26 percent dross, 21 percent flue dust and residues, 6 percent die castings, 4 percent sheet, 3 percent clippings, and 1 percent zinc castings.

Of the total zinc scrap used in 1941, Pennsylvania consumed 37 percent, Illinois 17 percent, New Jersey 7 percent, Delaware 6 percent, Oklahoma, West Virginia, Indiana, and Ohio each 5 percent,

and all other States 13 percent.

Zinc scrap was used in the following proportion: 76 percent by 130 remelters, smelters, and refiners; 23 percent by 22 chemical plants making chemicals exclusively; and 1 percent by 239 manufacturers and foundries. Of the total secondary zinc recovered in the production of zinc chemicals, 39 percent was reported by concerns that could not be separately classified as chemical works, owing to their greater activity as smelters and refiners. One of the largest reservoirs of zinc was copper-base alloy scrap, from which 80,236 tons of secondary zinc were recovered from new scrap and 47,873 tons from old scrap. For the most part, the scrap containing this zinc was used to make secondary copper alloys such as brass and bronze, but some low-grade brass scrap was put through a copper-recovery process in which most of the zinc content was converted to flue dust.

Of the total zinc scrap consumed, 79 percent represented new scrap. Remelters, smelters, and refiners used 78 percent new scrap and 22 percent old, and chemical works and other manufacturers (and foundries) used 84 percent new scrap and only 16 percent old

Consumers' stocks of purchased zinc-base scrap in the United States at end of year, 1940-41, gross weight, in short tons

Scrap item	On hand—				
ouap tem	Dec. 31, 1940 1	Dec. 31, 1941			
Metallic zinc scrap Dross Skimmings and residues	3, 126 5, 317 38, 503 46, 946	1, 378 5, 634 32, 433 39, 445			

¹ Revised figures.

Dealers' buying prices for new zinc clips in New York averaged 6.59 cents a pound in 1941 compared with 4.81 cents in 1940, a 37-percent rise. Prices experienced an inflationary period at the beginning of the year when zinc clips averaged 6.70 cents in January, 7.92 cents in February, and 9.09 cents in March. Pressure on prices encouraged speculation to the point that zinc scrap was withheld from the market, and the prices of zinc scrap materials and secondary slab rose to exceed that of primary slab. As a measure to prevent speculation and to maintain price stability, maximum prices on sales of secondary and scrap zinc were established on March 31, 1941. Secondary slab of Prime Western grade was fixed at 7.25 cents a pound f. o. b. East St. Louis, and High-Grade zinc was set at 8.25

The maximum dealers' selling price for new zinc clips was set at 6.75 cents delivered at buyers' plants. This ceiling forced the average dealers' buying prices down to 5.87 cents in April, where it remained through September. In October, the Office of Price Administration raised the price of Prime Western secondary zinc to 8.25 cents, and the selling price of zinc clips was adjusted to 7.25 cents. This accounted for the 6.87-cent average dealers' buying price maintained through November and December. A formal ceiling order on January 29, 1942, forced adherence to primary zinc prices previously held

down by informal agreement.

Throughout 1941 the zinc industry was under close surveillance of the Government. On April 1, a monthly production pool was established from which the Office of Production Management allocated zinc to meet emergency demands. The amount reserved for this pool each month increased from 3,000 tons in April to over 24,000 tons in

November.

On July 1, 1941, the zinc industry was put under full priority control by General Preference Order M-11. This order continued the zinc pool so as to include production of all grades of distilled zinc, both primary and secondary, as well as zinc oxide and dust. The zinc that remained after the required amount had been set aside in the pool was to be shipped in such manner that each customer should receive a percentage of the producers' commitments to him for the month, including both defense and nondefense orders, equal to the percentage received by every other customer. These restrictions also applied to interplant transfers and toll agreements and included galvanizers who redistilled zinc from dross or skimmings.

Imports of metallic zinc scrap into the United States for the first 9 months of 1941 totaled 59 tons compared with 164 tons for the whole year 1940, and imports of zinc dross and skimmings were 353 tons for 9 months of 1941 compared with 356 tons in 1940. There were 519 tons of skimmings imported through September 1941 for smelting, refining, and reexporting. Zinc scrap was placed under export control on January 10, 1941, and effective February 3, 1941, a license was required for exporting materials containing over 15 percent zinc.

IRON AND STEEL SCRAP

By HAROLD E. CARMONY

SUMMARY OUTLINE

	Page		Page
General summary Salient statistics	517	Consumption—Continued.	2 450
Prices	520	Consumption by type of furnace—Cont. Bessemer converters	531
Legislation Stocks	521 522	Electric steel furnaces Cupola furnaces	531 533
Consumers' stocks Suppliers' and producers' stocks	522	Air furnaces	534
Consumption	525 525	Crucible and puddling furnaces Blast furnaces Foreign to describe the described to the desc	535 536
Consumption by districts and States Consumption by type of furnace	527 530	roreign trade	537
Open-hearth furnaces	530	World aspects Cartel activities	538 538
		Review by countries	538

GENERAL SUMMARY

Under the impetus of greatly increased activity in war industries, steel-ingot production in 1941 surged to unprecedented heights, creating the greatest demand for iron and steel scrap ever known. The production of steel ingots in 1941 increased 24 percent over that in 1940. Reflecting this rise in steel-ingot production, the use of ferrous scrap increased 33 percent over that consumed in the previous record year-1940. This greater increase in the use of scrap as compared with the rise in the steel-ingot production was necessitated by the relatively smaller increase in pig-iron production, which rose 20 percent over 1940. During the first 6 months of 1941, scrap consumption was fairly stable, but with the accelerated rate of war-material manufacture, demand improved as steel production soared to record proportions in the closing months of the year. The consumption of scrap probably reached an all-time peak in October 1941. Despite the large increase in demand, prices increased only slightly as a result of price-control activities of the Federal war agencies. Stocks of iron and steel scrap consistently declined throughout the year. During November and December, many consumers were obliged to increase the amount of pig iron used because of the curtailment of available supplies of scrap caused by the continued large demand.

The total consumption of ferrous scrap and pig iron in 1941 increased 27 percent over that in 1940. Of the 115,401,728 net tons used, 93,042,313 tons were charged to steel-making furnaces and 22,359,415 tons to iron furnaces. In making the average ton of steel in 1941 more scrap and less pig iron were used than in 1940; the relative consumption of home scrap increased considerably in 1941 over 1940, and that of purchased scrap increased slightly. In iron furnaces the relative use of total scrap also increased, and that of pig iron decreased. This increase in the relative use of scrap resulted from larger consumption of home scrap in 1941 compared with 1940. The proportion of

purchased scrap used increased only slightly.

Statistics on exports of ferrous scrap from the United States in 1941 are not available for publication, except the total amount exported during the first 9 months of the year. However, from the data pro-

¹ Minerals Yearbook, 1939, p. 513, defines the various scrap terms used in this report.

curable, it is evident that exports were considerably lower in 1941 than in 1940 and previous years. The exportation of scrap was limited, by restrictions imposed by the Federal Government in October 1940, to countries of the Western Hemisphere and the United Kingdom. Two joint resolutions that would directly or indirectly impose restrictions on the exportation of scrap from all the Territories, dependencies, and possessions of the United States were introduced during the first session of the Seventy-seventh Congress. After extensive testimony, one of these, S. J. Res. 76, was approved on May 28, 1941, and became Public, No. 75, 77th Congress. Also introduced was a bill designed to suspend the effectiveness, during the national emergency, of tariff duties on scrap iron, scrap steel, and nonferrous-metal scrap, but the Congress adjourned without acting on the proposed legislation.

Since the outbreak of war in 1939 there has been no cartel activity by foreign consumers for the purpose of securing scrap for exportation from the United States. Consequently, all countries that purchased

scrap in 1941 acted independently.

Prices for scrap fluctuated within narrower limits in 1941 than in This smaller fluctuation did not result from actual supplydemand relationships, but from the attempts of the scrap industry to conform to the request of the Government to voluntarily halt the advancing trend in scrap-steel prices. During the first quarter of 1941, the price stabilization agency of the Government continued the conferences, initiated in the latter months of 1940 between steel-mill and scrap-trade representatives, designed to achieve voluntary reduction in scrap prices. However, the effect of these conferences was only partly successful. According to Iron Age, the quotation for No. 1 Heavy-melting steel scrap at Pittsburgh declined from a high of \$23.75 a gross ton the first week in January 1941 to a low of \$20.75 the second week in February but then increased slightly to \$21.00. On April 3, 1941, the Government issued Price Schedule 4, establishing maximum prices for iron and steel scrap. Under this schedule, the price of No. 1 Heavy-melting steel scrap was stabilized at \$20.00 at Pittsburgh with other grades and districts based thereon. resultant average price for 1941 was \$20.34 compared with \$19.26 in 1940 and was the highest since 1923, when the average was only a few cents higher. Scrap prices received strong support from both the domestic and foreign markets—support created by increased domestic demand and the need for scrap by the democratic nations. The price of basic pig iron, established at \$23.50 per gross ton at Valley furnaces in December 1940, prevailed throughout 1941.

The continued high operating rates in steel production during the earlier part of the year precipitated such an abnormal demand for scrap that dealers and brokers found it difficult to cover commitments. This occasioned considerable alarm as to the depleted condition of domestic stocks of iron and steel scrap. Consequently, the Priorities Division, Office of Production Management, issued General Metals Order 1. Designed to conserve existing supplies, this order restricted accumulation of inventories and eliminated excessive inventories by curtailing deliveries. The quarterly surveys inaugurated by the Bureau of Mines in September 1939 to ascertain the stock situation were continued through the first 6 months of 1941, at which time they were expanded and conducted upon a monthly basis. Since the scrapsupply situation, as shown by these surveys, did not improve satisfactorily the Priorities Division in October issued General Preference

Order M-24, devised to conserve the supply and direct the distribution of iron and steel scrap, and placed scrap under full priority control, allocating it in a manner similar to pig iron. At the same time the Bureau of Mines expanded its monthly iron and steel scrap surveys, furnishing the results to the Office of Production Management and other defense agencies for their confidential use. The survey of suppliers', producers', and consumers' stocks at the end of 19412 indicated inventories approximating 4,994,000 net tons, which was equivalent to a 4-week supply at the December rate of consumption. showed a declining trend in iron and steel scrap stocks, as surveys conducted earlier in the year indicated that inventories were equivalent to a 5- to 6-week supply at the rate of consumption at that time. Consumers' stocks of scrap decreased from 5,471,554 tons at the beginning of 1941 to 3,726,030 tons at the close.

Salient statistics of ferrous scrap and pig iron in the United States, 1940-41

	1940	1941	Change in 1941 (percent)
Stocks, December 31:		11.7	
Ferrous scrap and pig iron at consumers' plants:	Net tons	Net tons	
Home scrap	1, 783, 920	1, 166, 551	8
Purchased scrap	3, 687, 634	2, 559, 479	-3
Pig iron	3, 242, 324	1, 585, 199	-5
	8, 713, 878	5, 311, 229	-3
Ferrous scrap at suppliers' yards and producers' plants:	14 1 1 1 1 1 1 1		1 1 1
Prepared scrap	1, 418, 266	675, 952	-5
Unprepared scrap	724, 087	515, 417	-2
Scrap in transit to yards or for export and at docks	48, 958	(1)	(1)
	2, 191, 311	1, 191, 369	-4
Consumption: Ferrous scrap and pig iron charged to—	100		
Steel furnaces: 2		18 18 Apr 18	1000
Home scrap	19, 680, 106	26, 433, 206	+3
Purchased scrap	14, 080, 677	18, 061, 681	i ∔ž
Pig iron.	40, 172, 734	48, 547, 426	<u>∔</u> 2
1 ig ii 0ii			
	73, 933, 517	93, 042, 313	+2
Iron furnaces: 3			
Home scrap	5, 367, 617	7, 471, 474	+3
Purchased scrap	5, 401, 271	7, 249, 895	+3
Pig iron	6, 013, 094	7, 638, 046	+2
	16, 781, 982	22, 359, 415	+8
	10, 101, 002		
All furnaces:			
Home scrap	25, 047, 723	33, 904, 680	+8
Purchased scrap	19, 481, 948	25, 311, 576	+3
Pig iron	46, 185, 828	56, 185, 472	+2
	90, 715, 499	115, 401, 728	+2
Ferrous scrap (total)	44, 529, 671	59, 216, 256	+8
Exports:	TT, U20, U! I	30, 210, 200	Τ,
Tron and steel	3, 126, 389	4 685, 464	
Tin plate, waste-waste, circles, strips, cobbles, etc	15, 923	4 9, 989	
A verage prices per gross ton:	.,		
Seran:			
No. 1 Heavy-melting, Pittsburgh 5	\$19. 26	\$20.34	+
No. 1 Cast cupola	19. 85	22. 25	+1
For export	16. 87	18. 56	+1
Pig iron, f. o. b. Valley furnaces: 5			Ι.
Basic	22. 53	23. 50	i 1
No. 2 Foundry	23. 03	24.00	+

Data not obtained in 1941 canvass

² Includes open-hearth, bessemer, and electric furnaces.
3 Includes cupola, air, Brackelsberg, puddling, crucible, and blast furnaces; also direct castings.
4 Figures cover January to September, inclusive.

² Bureau of Mines, Iron and Steel Scrap Monthly Stock Reports: No. 16, May 18, 1942, 7 pp. 497779-43-35

Figure 1 shows the consumption of purchased scrap and the output of pig iron and steel ingots and castings from 1905 to 1941, inclusive.

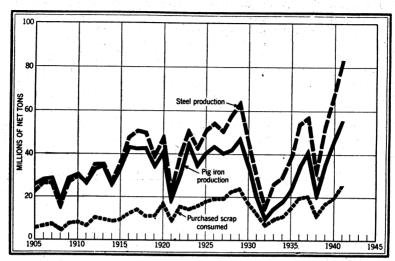


Figure 1.—Consumption of purchased scrap and output of pig iron and steel in the United States, 1905–41. Figures on consumption of purchased scrap for 1905–32 are from State of Minnesota vs. Oliver Iron Mining Co. et al., Exhibits, vol. 5, 1935, p. 328; those for 1933–34 are estimates by authors; and those for 1935–41 are based upon Bureau of Mines reports. Figures on output of pig iron and steel are as given by the American Iron and Steel Institute.

PRICES 3

Scrap prices in 1941 were moderate, especially in view of the fact that steel-ingot production with the exception of 2 weeks consistently exceeded 95 percent of rated capacity. Market quotations for No. 1 Heavy-melting steel and No. 1 Cast cupola scrap, which had averaged \$22.80 and \$22.65 a gross ton (Pittsburgh), respectively, in December 1940, eased off; No. 1 Heavy-melting steel dropped to \$20.75 in the second week of February, and No. 1 Cast cupola scrap dropped to \$21.75 in the second week of January. This moderate price schedule was due not to market conditions but rather to pressure applied by the Price Stabilization Division of the Advisory Commission to the Council of National Defense for voluntary cooperation by the scrap industry to stabilize scrap prices. However, competition for supplies was too keen to permit a voluntary stabilization program to operate successfully, and prices soon resumed an upward trend. No. 1 Heavymelting steel reached \$21.00 the third week in February and No. 1 Cast cupola scrap rose to \$23.25 the third week in March. Prices remained at these levels until the first week in April, when the Price Stabilization Division, later known as the Office of Price Administration, issued Price Schedule 4 establishing maximum prices for iron and steel scrap. Under this schedule No. 1 Heavy-melting steel, at Pittsburgh, was set at \$20.00 per gross ton and was maintained throughout the remainder of the year at this point. lished prices for other grades of steel scrap were based upon the price of No. 1 Heavy-melting steel, and price differentials for other districts were standardized, using the Pittsburgh prices as a basis. The price for No. 1 Cupola cast was established at no more than \$2.00

³ Pittsburgh price quotations from Iron Age.

per gross ton under the price of No. 2 Foundry pig iron, delivered at the same point. On May 7, 1941, the price of No. 1 Cupola cast was changed to \$22.00, Pittsburgh, with differentials for other dis-

tricts based upon this price.

There were several minor revisions of Price Schedule 4 throughout the year, which included changes in export prices, addition or deletion of basing points, modification of shipping-point prices, and an increase in prices for scrap in remote States. On December 23, 1941, a major revision in the price structure was introduced with a view toward increasing the collection of all kinds of scrap and directing the flow of particular types to plants of consumers needing special scrap items. This revision classified the various types and grades of scrap according to use and established maximum prices for each type of consumer; however, the basic price remained unchanged. In this new amendment the price of No. 1 Cupola cast was changed from the basing-point system to an f. o. b. shipping-point price under which the United States was divided into three groups containing certain specified States, the price varying according to the location of the group.

In contrast to the fluctuations in scrap prices, the price of basic pig iron, established at \$23.50 a gross ton at Valley furnaces late in

December 1940, remained unchanged throughout 1941.

On May 29, 1941, the Office of Price Administration and Civilian Supply, acting under an Executive order, issued Price Schedule 8 governing scrap and secondary materials containing nickel. This

schedule included stainless steel and nickel-steel scrap.

Export scrap prices for the first 9 months of 1941, as indicated by the declared value of iron and steel-scrap exports, averaged \$18.56 a gross ton and were much higher than the 1940 average of \$16.87. The 1941 average price—\$18.56—was slightly less than the recent highest yearly average—\$18.91—which was attained in 1937. The price structure during the first 4 months of 1941 was relatively strong due to the difficulty of obtaining material for loading, but after this period the prices were fairly well established under Price Schedule 4. The average value of exports in April—\$19.62—represented the high monthly average for the 9 months for which statistics are available. After April export values declined, reaching the low point of the first three quarters of the year in September when the average was \$17.38 a ton.

LEGISLATION

Since H. R. 9850, Seventy-sixth Congress, authorizing licensing of exports was approved and became Public, No. 703, no new bills advocating further restrictions on the exportation of iron and steel scrap have been introduced. However, two joint resolutions extending the application of Section 6 of Public, No. 703, Seventy-sixth Congress, to all Territories, dependencies, and possessions of the United States were introduced during the first session of the Seventy-seventh Congress. After much debate in both the Senate and the House of Representatives, Representative May's resolution (H. J. Res. 183, 77th Cong.) was tabled, and Senator Reynolds' resolution (S. J. Res. 76, 77th Cong.) was approved and became Public, No. 75, on May 28, 1941. Section 6 of Public, No. 703, Seventy-sixth Congress, and Public, No. 75, Seventy-seventh Congress, provide for the licensing, under proclamation by the President, of exports of materials deemed

necessary in the interest of national defense. Acting under these laws, the President on May 28, 1941, proclaimed that all articles and materials described in previous proclamations issued pursuant to section 6 shall not be exported from the Territories, dependencies, and possessions of the United States, including the Philippine Islands, the Ganal Zone, and the District of Columbia, except when authorized in each case by license. One bill 4 calling for the suspension of tariff duties on scrap metal was introduced during this session, but Congress adjourned without acting on the bill, deferring further consideration

to the 1942 session of the Seventy-seventh Congress.

On May 1, 1941, the Priorities Division, Office of Production Management, acting under an Executive order signed by the President, issued General Metals Order 1 to restrict inventory accumulations of certain specified materials. This order, designed to conserve existing supplies of certain specified materials, including iron and steel scrap, restricted inventory accumulation and eliminated excessive inventories by curtailing deliveries. Then, on October 11, 1941, the Priorities Division issued General Preference Order M-24 to conserve the supply and direct the distribution of iron and steel scrap. Under this preference order, iron and steel scrap was placed under full priority control, and allocation of scrap was inaugurated in a manner similar to the allocation of pig iron.

STOCKS

Visible supplies of iron and steel scrap and pig iron in the United States were determined by the regular annual canvass of consumers of these materials and the monthly canvass of suppliers and producers. The monthly canvass had been expanded to include as suppliers all dealers and automobile wreckers and as producers all railroads and manufacturing plants that produced 50 tons of scrap in a month. The final results of the annual survey indicate that consumers', suppliers', and producers' stocks of iron and steel scrap totaled 4,917,399 net tons on December 31, 1941. This total of 4,917,399 tons represents a 36-percent decrease from the 7,662,865 tons on hand December 31, 1940, even with the addition of a large number of concerns that were not canvassed in the previous year.

Consumers' stocks.—Consumers' stocks of home and purchased scrap were considerably less at the end of 1941 than at the beginning of the year. The supply of 1,166,551 net tons of home scrap on hand December 31, 1941, represented a 35-percent decrease from the 1,783,920 tons on hand at the beginning of the year, and the supply of 2,559,479 tons of purchased scrap on hand at the end of 1941 was a 31-percent decrease from the 3,687,634 tons on hand December 31, 1940. Thus, consumers' stocks of scrap totaling 3,726,030 tons at the year end were 32 percent less than the 5,471,554 tons on hand at the beginning

of the year.

Likewise, consumers' stocks of pig iron totaling 1,585,199 tons at the end of the year had decreased 51 percent from the 3,242,324 tons

on hand at the beginning of the year.

Suppliers' and producers' stocks.—In appraising stocks insofar as suppliers and producers are concerned, it should be noted that the coverage of the canvass is not known precisely. However, the data

⁴H. R. 5985. To suspend the effectiveness, during the existing national emergency, of tariff duties on scrap iron, scrap steel, and nonferrous-met il scrap.

Consumers' stocks of ferrous scrap and pig iron on hand in the United States on December 31, 1940, and December 31, 1941, by States and districts, in net tons

		Decembe	r 31, 1940		December 31, 1941				
State and district		Scrap				Scrap	1		
	Home	Pur- chased	Total	Pig iron	Home	Pur- chased	Total	Pig iron	
Connecticut. Maine. Massachusetts. New Hampshire. Rhode Island. Vermont.	8, 706 132 14, 979 313 2, 285 161	36, 996 2, 037 52, 504 1, 792 6, 725 3, 939	45, 702 2, 169 67, 483 2, 105 9, 010 4, 100	37, 777 4, 911 146, 512 1, 082 13, 560 1, 354	9, 304 81 14, 988 215 1, 284 395	27, 616 2, 256 62, 202 2, 790 7, 706 4, 965	36, 920 2, 337 77, 190 3, 005 8, 990 5, 360	26, 444 3, 925 77, 773 1, 765 12, 070 3, 725	
Total New England	26, 576	103, 993	130, 569	205, 196	26, 267	107, 535	133, 802	125, 702	
Delaware New Jersey New York Pennsylvania	17, 480 126, 159 483, 899	100, 860 267, 085 646, 922	118, 340 393, 244 1, 130, 821	109, 604 292, 844 585, 514	22, 229 55, 023 397, 072	98, 754 130, 981 490, 309	120, 983 186, 004 887, 381	44, 536 103, 311 334, 786	
Total Middle Atlantic.	627, 538	1, 014, 867	1, 642, 405	987, 962	474, 324	720, 044	1, 194, 368	482, 633	
Alabama District of Columbia Kentucky Maryland	55, 988 97, 213	60, 753 77, 985	116, 741 175, 198	119, 388 95, 741	33, 479 31, 477	38, 590 - 41, 398	72, 069 72, 875	40, 111 29, 377	
Florida Georgia Mississippi North Carolina South Carolina	902 162 613 64	21, 789 58 4, 232 219	22, 691 220 4, 845 283	18, 137 156 1, 236 494	833 100 159 844	29, 743 275 5, 177 2, 143	30, 576 375 5, 336 2, 987	5, 506 134 1, 215 667	
Virginia West Virginia	} 11,806 4,677	42, 923 138, 320	54, 729 142, 997	43, 944 38, 963	15, 422 6, 176	32, 159 33, 784	47, 581 39, 960	19, 048 26, 250	
Total Southeastern	171, 425	346, 279	517, 704	318, 059	88, 490	183, 269	271, 759	122, 30	
Arkansas Louisiana Oklahoma Texas	1, 676 4, 179	12, 580 16, 199	14, 256 20, 378	805 573	434 6, 806	18, 573 27, 602	19, 007 34, 408	790 1, 385	
Total Southwestern	5, 855	28, 779	34, 634	1, 378	7, 240	46, 175	53, 415	2, 17	
Illinois Indiana Iowa Kansas	172, 885 255, 897 872 } 1, 829	472, 129 289, 139 25, 174 13, 421	645, 014 545, 036 26, 046 15, 250		111, 846 103, 529 1, 508	317, 538 240, 384 30, 765 13, 739	429, 384 343, 913 32, 273 14, 602	147, 356 99, 176 10, 668	
Nebraska Michigan Wisconsin Minnesota Missouri	93, 050 10, 469 3, 830	256, 213 28, 829 77, 956	349, 263 39, 298	378, 790 16, 022	89, 521 4, 401 7, 709	210, 891 51, 767 69, 168	300, 412 56, 168 76, 877	237, 570 5, 713 11, 70	
North Dakota South Dakota Ohio	905 381, 846	163	1, 068 1, 090, 243	44 5: 3, 352	2, 092 215, 993	274 273, 206	2, 366 489, 199	51 250, 580	
Total North Central	921, 583	1, 871, 421	2, 793, 004	1, 602, 413	537, 462	1, 207, 732	1, 745, 194	763, 5 9 -	
Arizona Nevada New Mexico Colorado	3, 928	6, 413		77	2, 350	7, 571	9, 921	91	
Utah Idaho Wyoming Montana	12, 837 316 5 23	109, 490 1, 004 5, 105	1, 320 5	101, 823 40 2 257	8, 093 130 5 1, 279	71, 475 3, 534 1 15, 235	79, 568 3, 664 6 16, 514	9, 136 5 25	
Total Rocky Moun-	ļ	122, 012	<i>-</i>	102, 199	11, 857	97, 816	109, 673	9, 53	
Alaska Oregon	17, 109							2,74	
Washington California	12, 729	150, 463	163, 192	21, 867	15, 338	145, 550	160, 888	76, 51	
Total Pacific Coast	13, 834	200, 283	214, 117	25, 117	20, 911	196, 908	217, 819	79, 25	
Total United States	1, 783, 920	3, 687, 634	5, 471, 554	3, 242, 324	1, 166, 551	2, 55 0 , 479	3, 726, 030	1, 585, 19	

Suppliers' stocks of iron and steel scrap on hand December 31, 1940, and December 31, 1941, by States and districts, in net tons

	De	ecember 31, 1	940	De	cember 31,	1941
State and district	Prepared	Unpre- pared	Total	Pre- pared	Unpre- pared	Total
Connecticut	19. 568 7, 718 30, 897 2, 864 5, 903 2, 348	10, 387 3, 020 23, 394 2, 417 3, 141 2, 335	29, 955 10, 738 54, 291 5, 281 9, 044	11, 615 5, 094 13, 940 978 1, 437	3, 794 1, 212 17, 959 766 707	15, 40 6, 30 31, 89 1, 74 2, 14
Total New England	69, 298	2, 555 44, 694	4, 683 113, 992	2, 465 35, 529	1, 793 26, 231	61, 76
	2,041	1,094	3, 135	939	497	
Delaware New Jersey New York Pennsylvania	46, 492 107, 723 112, 154	30, 524 63, 841 88, 274	77, 016 171, 564 200, 428	22, 290 54, 783 42, 355	16, 416 37, 179 57, 876	1, 43 38, 70 91, 96 100, 23
Total Middle Atlantic	268, 410	183, 733	452, 143	120, 367	111, 968	232, 33
Alabama District of Columbia District of Columbia Florida Georgia Kentucky Maryland Mississippi North Carolina South Carolina Tennessee Virginia West Virginia	13, 077 1, 597 17, 575 14, 580 28, 192 24, 962 4, 392 18, 125 12, 801 12, 669 46, 784 8, 238	5, 190 2, 228 4, 532 4, 404 6, 635 22, 482 1, 492 5, 419 5, 251 8, 334 7, 135 5, 292	18, 267 3, 825 22, 107 18, 984 34, 827 47, 444 5, 884 23, 544 18, 052 21, 003 53, 919 13, 530	5, 932 482 6, 303 9, 681 8, 533 3, 662 2, 166 7, 108 6, 698 13, 769 15, 970 6, 748	7, 226 1, 392 3, 625 4, 253 6, 255 13, 026 2, 077 2, 727 1, 169 7, 543 8, 505 6, 459	13, 15 1, 87 9, 92 13, 93 14, 78 16, 68 4, 24 9, 83 7, 86 21, 31 24, 47 13, 20
Total Southeastern	202, 992	78, 394	281, 386	87, 052	64, 257	151, 30
Arkansas Louisiana. Oklahoma Texas.	9, 134 20, 739 7, 637 122, 366	3, 695 9, 666 6, 395 21, 141	12, 829 30, 405 14, 032 143, 507	2, 381 10, 139 5, 376 25, 402	2, 223 7, 954 4, 383 22, 478	4, 60- 18, 09: 9, 75: 47, 88:
Total Southwestern	159, 876	40, 897	200, 773	43, 298	37, 038	80, 33
Illinois Indiana Iowa Kansas Kansas Michigan Minnesota Missouri Nebraska North Dakota Ohio South Dakota Wisconsin	141, 387 55, 920 22, 231 11, 682 65, 058 112, 563 26, 677 10, 462 1, 893 101, 752 577 27, 109	124, 616 16, 885 9, 725 6, 420 28, 391 27, 837 29, 927 5, 235 1, 430 86, 092 2, 230 22, 053	266, 003 72, 805 31, 956 18, 102 93, 449 140, 400 56, 604 15, 697 3, 323 187, 844 2, 807 49, 162	77, 894 21, 185 8, 644 7, 748 29, 783 67, 650 12, 024 4, 161 784 64, 219 505 18, 121	48, 768 21, 763 15, 095 7, 699 24, 335 23, 502 17, 720 4, 922 654 47, 804 1, 216 20, 557	126, 66: 42, 94: 23, 73: 15, 44: 54, 11: 91, 15: 29, 74: 9, 08: 1, 43: 112, 02: 1, 72: 38, 67:
Total North Central	577, 311	360, 841	938, 152	312, 718	234, 035	546, 75
Arizona Colorado Idaho Montana Newada New Mexico Utah Wyoming	459 15, 969 129 3, 271 185 560 4, 355 24, 730	1, 056 8, 723 1, 135 1, 403 610 73 4, 020 1, 809	1, 515 24, 692 1, 264 4, 674 795 633 8, 375 26, 539	140 5, 872 2, 258 390 334 584 511 5, 443	515 3, 650 644 2, 979 207 17 4, 327 586	65; 9, 52; 2, 90; 3, 36; 541 601 4, 838 6, 02;
Total Rocky Mountain	19, 658	18, 829	68, 487	15, 532	12, 925	28, 45
California OregonWashington	58, 971 22, 290 9, 460	27, 762 5, 728 12, 167	86, 733 28, 018 21, 627	43, 130 6, 904 11, 422	19,602 2,667 6,694	62, 732 9, 571 18, 116
Total Pacific Coast	90, 721	45, 657	136, 378	61, 456	28, 963	90, 41
Fotal United States	1, 418, 266	773, 045	2, 191, 311	675, 952	515, 417	1, 191, 369

assembled include virtually complete returns from the larger suppliers and producers, as well as a representative number of returns from others, and the figures shown probably reveal a very substantial part of the total visible supplies of iron and steel scrap in suppliers' and

producers' hands.

Stocks held by dealers, automobile wreckers, railroads, and manufacturers declined from 2,191,311 net tons on December 31, 1940, to 1,191,369 tons on December 31, 1941, or 46 percent. Stocks in the hands of the larger suppliers were 76 percent lower at the end of 1941 than at the end of 1940, and railroad inventories declined 43 percent during the same period.

CONSUMPTION

In the canvass of consumers of ferrous scrap and pig iron, data are assembled only on that portion of scrap used in remelting processes. To simplify the annual canvass, no details are sought regarding the ordinary trade classifications of scrap consumed, and no attempt is made to obtain data on its value or cost at consumers' plants. Statistics are compiled to show the consumption of scrap and pig iron by districts and States and by types of furnace. To avoid disclosing details concerning individual plants reporting it is necessary in some instances to combine figures for some States. All such combinations are made with a view to revealing details of consumption by types of furnace rather than by geographic subdivisions.

The importance of scrap in the conservation of resources is illustrated by the relative quantities of scrap and ore used in the domestic iron and steel industry. The total scrap consumed in 1941 was equivalent to 123 percent of the iron content of all domestic and foreign iron and manganiferous ores used in blast furnaces, and purchased scrap alone equaled 53 percent of the iron content of the

ores; in 1940 the comparable percentages were 111 and 48.

Scrap constitutes by far the greater part of the ferrous raw materials used in iron and steel plants in the Southwestern, Pacific Coast, and New England districts. These regions, however, used less than 5 percent of the total scrap consumed in 1941. In the New England district proportionately less scrap was used in 1941 than in 1940; whereas in the remaining districts (Middle Atlantic, Southeastern, Southwestern, North Central, Rocky Mountain, and Pacific Coast) proportionately more scrap was used.

Open-hearth steel furnaces use by far the largest quantities of ferrous scrap and pig iron. They consumed 67 percent of the total scrap in 1941 (70 percent in 1940), 71 percent of the home scrap (73 percent in 1940), 63 percent of the purchased scrap (65 percent in

1940), and 75 percent of the pig iron (79 percent in 1940).

In cupola furnaces, the second-largest consumers of scrap, the relative consumption of home and purchased scrap did not change from 1940, when the percentages were 15 and 22, respectively; however, their consumption of pig iron increased to 10 percent in 1941 from 9 percent in 1940.

Ferrous scrap and pig iron consumed in the United States and percent of total derived from home scrap, purchased scrap, and pig iron, 1940-41, by districts

			1 94 0					1941	inde in Line	
District Total used (net tons)		Per	cent of	total us	sed		Pe	rcent of	total us	eđ
		Scrap		Dia	Total used (net		Scrap		Pig	
	Home	Pur- chased	Total	Pig iron	tons)	Home	Pur- chased	Total	iron	
New England Middle Atlantic Southeastern Southwestern North Central Rocky Mountain Pacific Coast	999, 597 31, 205, 021 12, 528, 675 180, 017 43, 350, 393 1, 060, 303 1, 391, 493	28. 4 26. 2 25. 1 22. 0 29. 5 24. 6 23. 5	41. 4 18. 0 19. 8 75. 5 22. 2 32. 2 62. 9	69. 8 44. 2 44. 9 97. 5 51. 7 56. 8 86. 4	30. 2 55. 8 55. 1 2. 5 48. 3 43. 2 13. 6	1, 532, 883 40, 056, 774 14, 286, 365 295, 465 55, 915, 636 1, 512, 974 1, 801, 631	31. 9 28. 6 26. 3 25. 1 30. 8 27. 9 25. 4	37. 0 19. 5 19. 8 73. 0 22. 1 29. 5 62. 8	68. 9 48. 1 46. 1 98. 1 52. 9 57. 4 88. 2	31. 1 51. 9 53. 9 1. 9 47. 1 42. 6 11. 8
	90, 715, 499	27.6	21. 5	49. 1	50. 9	115, 401, 728	29. 4	21.9	51.3	48.7

Proportion of home and purchased scrap and pig iron used in furnace charges in the United States, 1940-41, in percent

		19	40	1941				
Type of furnace		Scrap		7				
	Home	Pur- chased	Total	Pig iron	Home	Pur- chased	Total	Pig iron
Open-hearth Bessemer Electric Cupola Afr¹ Crucible Puddling	27. 2 6. 1 43. 7 30. 2 41. 1 49. 5 5. 5 61. 9	18. 9 . 2 54. 5 36. 0 22. 2 45. 3 19. 4 38. 1	46. 1 6. 3 98. 2 66. 2 63. 3 94. 8 24. 9 100. 0	53. 9 93. 7 1. 8 33. 8 36. 7 5. 2 75. 1	29. 1 5. 0 49. 6 31. 4 47. 8 53. 3 5. 6 54. 7	19. 3 1. 2 48. 7 34. 8 19. 1 41. 0 27. 8 45. 3	48. 4 6. 2 98. 3 66. 2 66. 9 94. 3 33. 4 100. 0	51. 93. 1. 33. 33. 5. 66.

¹ Includes data for 3 Brackelsberg furnaces.

Open-hearth and cupola furnaces together consumed 86 percent of the home scrap and 85 percent of both purchased scrap and pig iron in 1941. Bessemer converters used 11 percent of the pig iron consumed in 1941 but only relatively small quantities of scrap (0.66 percent of the total). Although electric furnaces consumed only 7 percent of the total scrap in 1941, 98 percent of the total charge to this type of equipment was home and purchased scrap.

Consumption of ferrous scrap and pig iron in the United States, 1940-41, by type of furnace, in net tons

	Active		Scrap		Dia inon	
Type of furnace or equipment	plants reporting	Home	Purchased	Total	Pig iron	
1940	135	18, 320, 111	12, 687, 633	31, 007, 744	36, 297, 25	
Open-hearthBessemer	26	248, 868	9, 322	258, 190	3, 828, 978	
Electric	280	1, 111, 127	1, 383, 722	2, 494, 849	46, 50	
Cupola	2, 708	3, 657, 048	4, 372, 777	8, 029, 825	1 4, 106, 11	
Air	122 2	419, 771	226, 257	646, 028	374, 18	
Brackelsberg	25	1,749	1, 599	3, 348	18	
Puddling	7	2,064	7, 294	9, 358	28, 29	
Blast	79	1, 286, 985	793, 344	2, 080, 329		
Direct castings	23				1, 504, 31	
	3 3, 407	25, 047, 723	19, 481, 948	44, 529, 671	46, 185, 82	
1941	190	04 000 600	15, 920, 857	39, 923, 486	42, 481, 40	
Open-hearth Bessemer Bessemer	139 33	24, 002, 629 320, 738	72, 506	393, 244	5, 993, 26	
Electric	306	2, 109, 839	2, 068, 318	4, 178, 157	72, 75	
Cupola	2, 798	5, 004, 864	5, 559, 273	10, 564, 137	1 5, 388, 74	
Air	128	872, 227	349, 425	1, 221, 652	604, 83	
Brackelsberg	.3	()		3, 448	20	
CruciblePuddling	14 8	1, 949 4, 568	1, 499 22, 626	27, 194	54, 18	
Blast	78	1, 587, 866	1, 317, 072	2, 904, 938	01, 10	
Direct castings	24				1, 590, 07	
	2 3, 531	33, 904, 680	25, 311, 576	59, 216, 256	56, 185, 47	

CONSUMPTION BY DISTRICTS AND STATES

All 48 States, the District of Columbia, and Alaska contain plants consuming ferrous scrap or pig iron. The greatest consumption, however, is concentrated in the steel-making centers of the North Central, Middle Atlantic, and Southeastern States. These areas include the 8 largest consuming States, which used 83 percent of the total scrap, 92 percent of the pig iron, and 87 percent of the total scrap and pig iron charged into furnaces in 1941; these percentages remained unchanged from 1940. These States (the relative position of which did not change from 1940) and the percentage of the total ferrous scrap and pig iron each consumed in 1941 were as follows: Pennsylvania 28, Ohio 20, Indiana 11, Illinois 9, Michigan 5, New York 5, Alabama 5, and Maryland 4.

The following table shows the total consumption of ferrous scrap and pig iron by districts and the percentage change in the use of home scrap, purchased scrap, total scrap, and pig iron from 1937

to 1941.

Includes some pig iron used in making direct castings.
 Where 2 or more separate departments, such as blast-furnace, open-hearth, foundry, etc.. are situated at the same place and are operated by 1 establishment, each appears as 1 plant in the total.

Consumption of ferrous scrap and pig iron in the United States, 1937-41, by districts

	-			Sera	p				
		Hor	ne	Purch	ased	Tot	al	Pig iron	
District and year	Active plants reporting	Net tons	Change from pre- vious year (per- cent)	Net tons	Change from pre- vious year (per- cent)	Net tons	Change from pre- vious year (per- cent)	Net tons	Change from pre- vious year (per- cent)
New England: 1937	257 257 263 270 267	262, 011 140, 344 240, 931 283, 607 489, 163	+31.9 -46.4 +71.7 +17.7 +72.5	449, 901 250, 830 385, 805 413, 993 566, 952	+7.3	391, 174 626, 736 697, 600	$ \begin{array}{r} -45.1 \\ +60.2 \\ +11.3 \end{array} $	145, 825 239, 753	+23.7 -45.6 +64.4 +26.0 +57.9
1937 1938 1939 1940 1941	831	3, 882, 649	-46.8	2, 967, 931 4, 660, 910 5, 607, 105	$ \begin{array}{c c} -51.7 \\ +57.0 \\ +20.3 \end{array} $	13, 444, 291 6, 850, 580 10, 501, 496 13, 804, 979 19, 268, 970	-49.0	14, 202, 765 6, 617, 829 12, 250, 912 17, 400, 042 20, 787, 804	+18.9 -53.4 +85.1 +42.0 +19.5
Southeastern: 1937	445 470 473	1, 765, 819 2, 593, 437 3, 137, 588	+46.9 +21.0	2, 485, 652	$ \begin{array}{r} -36.2 \\ +44.9 \\ +23.1 \end{array} $	4, 613, 057 5, 623, 240	-31.3 +46.0	5, 853, 055 6, 905, 435	+18.6 -24.0 +52.9 +18.0 +11.5
Southwestern: 1937	114 131 132	39, 377 39, 865 39, 674	-32.2 +1.2 5	110, 366 125, 968 135, 909	-33.3 +14.1 +7.9	165, 833 175, 583	+10.7 +5.9	4, 575 4, 434	+242.8 -81.2 -9.0 -3.1 +28.7
North Central: 1937	1, 333	11, 717, 880 6, 526, 443 10, 365, 278 12, 801, 283 17, 227, 439	-44.3 +58.8	10, 286, 435 5, 759, 245 8, 468, 527 9, 622, 839 12, 329, 204	1-47.0	22, 004, 315 12, 285, 688 18, 833, 805 22, 424, 122 29, 556, 643	+53.3	18, 016, 942 9, 871, 485 16, 291, 065 20, 926, 271 26, 358, 993	+7.4 -45.2 +65.0 +28.3 +26.0
Rocky Mountain: 1937	66 68 66	101, 953 224, 007 260, 825	$ \begin{array}{r} -54.3 \\ +119.7 \\ +16.4 \end{array} $	161, 999 280, 988 341, 269	-49.2 $+73.5$ $+21.5$	263, 952 504, 995 602, 094	+91.3 +19.2	152, 974 412, 564 458, 209	+15. 1 -63. 3 +169. 7 +11. 1 +40. 8
Pacific Coast: 1937	234 252 258	223, 317 317, 792 326, 872	+2.9	582, 092 762, 822 875, 181	-23.5 +31.0 +14.7	805, 409 1, 080, 614 1, 202, 053	$ \begin{array}{r r} -22.7 \\ +34.2 \\ +11.2 \end{array} $	104, 598 180, 775 189, 440	1 +4.8
United States: 1937	1 3, 266 1 3, 393 1 3, 407	22, 255, 557 12, 679, 902 19, 621, 896 25, 047, 723 33, 904, 680	+54.7 +27.7	20, 311, 468 11, 226, 424 16, 704, 640 19, 481, 948 25, 311, 576	+48.8 +16.6	42, 567, 025 23, 906, 326 36, 326, 536 44, 529, 671 59, 216, 256	$ \begin{array}{r} -43.8 \\ +52.0 \\ +22.6 \end{array} $	38, 143, 310 20, 724, 871 35, 232, 699 46, 185, 828 56, 185, 472	+13. 1 -45. 7 +70. 0 +31. 1 +21. 7

¹ Where 2 or more separate departments, such as blast-furnace, open-hearth, foundry, etc., are situated at the same place and are operated by 1 establishment, each appears as 1 plant in the total.

Consumption of ferrous scrap and pig iron in the United States in 1941, by States and districts

		<u>u</u>	na ar	stricts	<u></u>		- :-	1	
			÷	Scrap	p :			Pig ir	on
	Active plants	Hom	ie .	Purcha	sed	Tota	1		
State and district	report- ing	Net tons	Per- cent of total	Net tons	Percent of total	Net tons	Per- cent of total	Net tons	Per- cent of tota
Connecticut	72	150, 663	0.5	190, 016 11, 361 276, 811	0.7	340, 679	0.6	143, 862 11, 467 242, 265	.0.
Maine Massachusetts	20 125	12, 186 256, 882	(¹) (¹) .1	276, 811	(1) 1.1	23, 547 533, 693	(1)	242, 265	(1)
New Hampshire	20	6,971	(1)	1 15.831	.1	22, 802	(1)	0.810	(1)
Rhode IslandVermont	14 16	47, 694 14, 767	(1).1	53, 827 19, 106	. 2 . 1	33, 873	.2	57, 082 16, 276	(1)
Total New England.	267	489, 163	1.4	566, 952	2. 2		1.8	476, 768	
Delaware	10	144 652	1.3	608, 765	2.4	1 052 449	1.0	440 496	
New Jersey	96	444, 683			5. 9	1, 053, 448	1.8	449, 486	
New York Pennsylvania	234 519	1, 714, 528 9, 313, 516	5. 1 27. 4	1, 502, 402 5, 685, 076	22.5		5. 4 25. 3	2, 765, 216 17, 573, 102	4 31
Total Middle Atlan-									
tic	859	11, 472, 727	33.8	7, 796, 243	30.8	19, 268, 970	32. 5	20, 787, 804	37
Alabama	93	1, 386, 249	4.1	649, 788	2.6	2, 036, 037	3.4	3, 142, 958	5
District of Columbia Kentucky Maryland	27	1, 677, 512	4.9	964, 615	3.9	2, 642, 127	4.5	2, 974, 834	5
lorida	35 22	} 53, 715	.2	136, 183	.5	189, 898	. 3	83, 895	
Georgia	58 14	941	(1)	2, 034	(1)	2, 975	(1)	621	
Mississippi North Carolina	58	20, 181	.1	32, 177	1	52, 358 11, 852	. 1	18, 591	(1)
outh Carolina	16 62	5, 803	(1)	6,049	(1)		(1)	. 5, 090	(1)
/irginia	65 36	246, 736	.7	298, 190	1. 2	544, 926	.9	254, 840	
West Virginia Total Southeastern	490	370, 321 3, 761, 458	$\frac{1.1}{11.1}$	736, 867	2.9	1, 107, 188	1.9	1, 218, 175 7, 699, 004	12
Arkansas	17	0, 701, 400		2, 825, 903		6, 587, 361	11.1	7, 099, 004	13
ouisiana Oklahoma	26 23	25, 555	.1	92, 298	. 4	117, 853	. 2	2, 600	(1)
Texas	73	48, 504	.1	123, 401	. 5	171, 905	.3	3, 107	(1)
Total Southwestern	139	74, 059	. 2	215, 699	9	289, 758	. 5	5, 707	(1)
llinoisndiana	249 162	2, 922, 248	8.6 11.3	2, 322, 107 2, 029, 512	9. 1 8. 0	5, 244, 355	8. 9 9. 9	4, 915, 372 6, 833, 091	12
owa	66	3, 839, 965 128, 791	.4	202, 344	.8		.6	104, 368	12
KansasVebraska	39 16	20, 591	.1	64, 166	.3	1 1	.1	4, 251	(1)
Michigan Visconsin	214	2, 804, 776	8.3	2, 043, 222	8.0	4, 847, 998	8. 2	2, 478, 219	4
Visconsin	133 76	192, 508	.6	342, 250	1.4	534, 758	.9	266, 768	
Aissouri	78	222, 556	.7	622, 591	2. 5	845, 147	1.4	80, 065	
Vorth Dakota	2 3	1, 283	(1)	1, 094	(1)	2, 377	(1)	86	(1)
)hio	386	7, 094, 721	20.9	4, 701, 918	18.5	11, 796, 639	19.9	11, 676, 773	20
Total North Central	1,424	17, 227, 439	50.9	12, 329, 204	48.6	29, 556, 643	49.9	26, 358, 993	47
rizonaVevada	8	19, 059	.1	31, 810	.1	50, 869	. 1	67	(1)
Vew Mexico	2 31	}							
Jtah	16	394,007	1.1	404, 420	1.7	798, 427	1.4	644, 393	- 1
daho	6	706 3	(1) (1)	2, 896 1	(1) (1)	3, 602 4	(1)	123	(1) (1)
Montana	8	7, 416	(1)	7, 618	<u>(i)</u>	15, 034	(1) (1)	453	(1)
Total Rocky Moun- tain	75	421, 191	1. 2	446, 745	1.8	867, 936	1.5	645, 038	1
laska	1	1							
OregonVashington	41 73	67, 208	. 2	258, 225	1.0	325, 433	.6	9, 830	(1)
California	162	391, 435	1.2	872, 605	3. 5	1, 264, 040	2.1	202, 328	
Total Pacific Coast	277	458, 643	1.4	1, 130, 830	4. 5	1, 589, 473	2.7	212, 158	-
Total United States:	20.00	20 004 000	100.0	05 211 550	100.0	FO 010 070	100.0	50 105 170	100
1941 1940	4 3. 531	33, 904, 680°	100.0	25, 311, 576 19, 481, 948	100.0	59, 216, 256 44, 529, 671		56, 185, 472 46, 185, 828	100 100

Less than 0.05 percent.
 Where 2 or more separate departments, such as blast-furnace, open-hearth, foundry, etc., are situated at the same place and are operated by 1 establishment, each appears as 1 plant in the total.

CONSUMPTION BY TYPE OF FURNACE

Open-hearth furnaces.—Ferrous scrap and pig iron consumed in open hearths in 1941 totaled 82,404,890 net tons—a 22-percent increase over 1940. Of the 1941 total, home scrap constituted 29 percent, purchased scrap 19 percent, and pig iron 52 percent; in 1940 the percentages were 27, 19, and 54, respectively. The use of home scrap increased 31 percent, purchased scrap 25 percent, and pig iron 17

percent.

Charges to open-hearth furnaces in 1941 consisted of 48 percent total scrap and 52 percent pig iron compared with percentages in 1940 of 46 and 54, respectively. Of the total scrap consumed in open hearths in 1941, 40 percent was purchased scrap compared with 41 percent in 1940 and 44 percent in 1939. Higher proportions of purchased scrap are used in areas remote from pig iron-producing centers, but the practice of using scrap exclusively is relatively rare. In 1941 only 4 plants out of a total of 139 operated upon a 100-percent scrap basis; they consumed only 501,842 tons, less than 1 percent of the total consumption of ferrous raw matrials in open hearths.

Consumption of ferrous scrap and pig iron in open-hearth furnaces in the United States in 1941, by districts and States, in net tons

	Active		Scrap		
District and State	report- ing	Home	Purchased	Total	Pig iron
New England: Connecticut Massachusetts. Rhode Island	1 2 1	34, 958	228, 518	363, 476	148, 899
Total: 1941	4	134, 958 74, 608	228, 518 183, 901	363, 476 258, 509	148, 899 94, 266
Middle Atlantic: Delaware. New Jersey New York Pennsylvania.	1 1 8 51	1, 429, 438 7, 626, 806	1, 150, 476 4, 219, 437	2, 579, 914 11, 846, 243	2, 480, 954 14, 150, 089
Total: 1941	61 58	9, 056, 244 6, 570, 784	5, 369, 913 3, 805, 596	14, 426, 157 10, 376, 380	16, 631, 043 14, 250, 550
Southeastern and Southwestern: Alabama Georgia. Tennessee Oklahoma District of Columbia	1 1 1 1	900, 518	446, 342	1,346,860	2, 305, 697
Kentucky Maryland West Virginia	2 1 2	1, 786, 399	1, 388, 150	3, 174, 549	3, 481, 905
Total: 1941	12 12	2, 686, 917 2, 361, 679	1, 834, 492 1, 768, 163	4, 521, 409 4, 129, 842	5, 787, 602 5, 395, 587
North Central: Illinois. Indiana. Michigan Iowa. Missouri Minnesota. Wisconsin Ohio.	7	2,000,774 3,363,139 861,070 } 114,250 } 169,456 5,058,978	1, 466, 663 1, 673, 190 757, 178 409, 538 204, 088 2, 946, 230	3, 467, 437 5, 036, 329 1, 618, 248 523, 788 373, 544 8, 005, 208	3, 295, 830 6, 172, 778 1, 259, 146 45, 012 250, 043
Total: 1941	55 54	11, 567, 667 8, 953, 931	7, 456, 887 6, 062, 664	19, 024, 554 15, 016, 595	8, 174, 164 19, 196, 973 16, 007, 080
Rocky Mountain and Pacific Coast: Colorado California Washington	1 5 1	556, 843	1, 031, 047	1, 587, 890	716, 887
Total: 1941	7 7	556, 843 359, 109	1, 031, 047 867, 309	1, 587, 890 1, 226, 418	716, 887 549, 767
Total United States: 1941	139 135	24, 002, 629 18, 320, 111	15, 920, 857 12, 687, 633	39, 923, 486 31, 007, 744	42, 481, 404 36, 297, 250

Pennsylvania, the leading steel-producing State, outranked all others in 1941 in the consumption of ferrous scrap and pig iron in

open hearths, followed by Ohio, Indiana, and Illinois.

Bessemer converters.—The consumption of ferrous scrap and pig iron in bessemer converters in 1941 totaled 6,386,508 net tons—a 56-percent increase over 1940. This large increase in total consumption indicates a revival of the use of bessemer converters for steel making. The proportion of scrap consumed in converter practice is low (amounting to only 6.2 percent in 1941), and the major portion was home or plant scrap. Almost all of the small tonnage of purchased scrap consumed in converters was used in small steel-foundry plants.

Pennsylvania was the principal consumer of scrap in bessemer

converters in 1941.

Consumption of ferrous scrap and pig iron in bessemer converters in the United States in 1941, by districts and States, in net tons

	Active		Scrap		Din i
District and State	plants re- porting	Home	Purchased	Total	Pig iron
New England and Middle Atlantic:	1	1			
Delaware Massachusetts	1 1 1	1, 508	1, 677	3, 185	1,626
New Jersey Pennsylvania	9	106,000	50, 580	156, 580	2, 199, 685
Total: 1941	13 12	107, 508 90, 507	52, 257 2, 487	159, 765 92, 994	2, 201, 311 1, 456, 966
Southeastern and Southwestern: Alabama Maryland West Virginia Louislana Texas:	1 1 1 1 1	63, 088	5, 090	68, 178	488, 351
Total: 1941	5 4	63, 088 32, 723	5, 090 1, 786	68, 178 34, 509	488, 351 296, 942
North Central and Pacific Coast: Illinois. Indiana Iowa. Michigan	4 1 1	5, 748 25, 714	7, 607 3, 770	13, 355 29, 484	549, 172 336, 686
Minnesota. Missouri. Washington. Ohio.		3, 709 114, 971	3, 782	7, 491 114, 971	2, 018 2, 415, 726
Total: 1941	15 10	150, 142 125, 638	15, 159 5, 049	165, 301 130, 687	3, 303, 602 2, 075, 070
Total United States: 1941	33 26	320, 738 248, 868	72, 506 9, 322	393, 244 258, 190	5, 993, 264 3, 828, 978

Electric steel furnaces.—Ferrous scrap and pig iron consumed in electric furnaces in 1941 totaled 4,250,915 net tons—a 67-percent increase over 1940. Pig iron constituted less than 2 percent of the total ferrous raw materials used in electric furnaces in 1941. Of the 306 active plants reporting in 1941, 104 operated exclusively on scrap and consumed 751,711 tons—about 18 percent of the total scrap and pig iron used.

Ohio led all States in 1941 in the consumption of scrap in electric furnaces, followed by Pennsylvania, Michigan, Illinois, and New

York.

Consumption of ferrous scrap and pig iron in electric steel furnaces in the United States in 1941, by districts and States, in net tons

District and State	Active				
District and State	plants re- porting	Home	Purchased	Total	Pig iron
New England:					
Connecticut	4	9, 059	10, 447	19, 506	86
New Hampshire	1	1	•		
Rhode Island	1 1	1,547	776	2, 323	3
Vermont Massachusetts	8	20, 340	10, 282	30, 622	72
Total: 1041					
Total: 1941 1940	15 15	30, 946 17, 063	21, 505 13, 062	52, 451 30, 125	1, 63 72
Middle Atlantic:					
Delaware	1	40, 468	58, 325	98, 793	1 79
New York	6	1)			1, 73
Pennsylvania	18 59	92, 165 453, 189	113, 721 502, 817	205, 886 956, 006	5, 67- 15, 31
Total: 1941 1940	84 77	585, 822 335, 005	674, 863 392, 102	1, 260, 685 727, 107	22, 72 16, 26
Southeastern:					
District of Columbia Kentucky	1	11 1			
Maryland	2	23, 720	61, 477	85, 197	25
West Virginia	ī	IJ I			
Alabama	1 2 1 3 1 3 2 3	1			
FloridaGeorgia.	i	10, 927	31, 694	42, 621	
Tennessee	2	13	712		
Virginia	3	} 18,560	29, 517	48, 077	62
Total: 1941 1940	17 15	53, 207 27, 119	122, 688 56, 613	175, 895 83, 732	87°
Southwestern:		= ===		=	***
Arkansas	. 1	h l		1 N	
Oklahoma	1	95 167	05 005	00 700	
LouisianaTexas.	4 7	25, 167	35, 625	60, 792	561
Total: 1941	13	25, 167	35, 625		
1940	13	15, 265	35, 625 21, 732	60, 792 36, 997	561 536
North Central:					
Illinois	23	190, 505	202, 058	392, 563	11, 536
Indiana	13	33, 919	44, 448	78, 367	658
IowaKansas	2 1	7, 274	10 704	00.000	
Nebraska	i	(, 2,2,4	12, 784	20, 058	. 83
Michigan.	24	245, 984	165, 678	411, 662	17, 114
Minnesota	4	4, 658	10, 462	15, 120	395
Missouri Ohio	10 35	10, 478	14, 437	24, 915	993
Wisconsin	13	776, 556 70, 388	524, 355 90, 534	1, 300, 911 160, 922	10, 891 4, 271
Total: 1941	126	1, 339, 762	1, 064, 756	2, 404, 518	45, 936
1940	111	672, 856	830, 132	1, 502, 988	27, 826
Rocky Mountain:		l. 1			
Arizona Colorado	2 2	11 1			
Nevada	i	10, 337	15, 150	25, 487	118
Utah	i)	·		
Total: 1941	6	10, 337	15, 150	25, 487	118
	6	6, 784	8, 859	15, 643	100
Pacific Coast:				7	
AlaskaOregon	1	5, 450	9, 939	15, 389	13
California	4 26		89, 983	136, 822	
Washington	14	46, 839 12, 309	33, 809	46, 118	858 39
Total: 1941	45	64, 598	133, 731 61, 222	198, 329	910
:	43	37, 035		98, 257	615
Cotal United States: 1941	306 280	2, 109, 839 1, 111, 127	2, 068, 318 1, 383, 722	4, 178, 157 2, 494, 849	72, 758 46, 506

Cupola furnaces.—Consumption of ferrous scrap and pig iron in cupola furnaces in 1941 totaled 15,952,884 net tons—a 31-percent increase over 1940. Use of home scrap increased 37 percent, purchased scrap 27 percent, total scrap 32 percent, and pig iron 31 percent. Thus, the proportionate increase in the use of purchased scrap was less than that of pig iron, although the prices of scrap were relatively lower as compared with pig iron. This lower proportion of purchased scrap was undoubtedly caused by difficulty in obtaining cast scrap.

Charges to cupola furnaces in 1941 consisted of 31 percent home scrap, 35 percent purchased scrap, and 34 percent pig iron; in 1940 the percentages were 30, 36, and 34, respectively. Many cupola plants operate on a 100-percent scrap charge; a total of 511 plants reported the use of 922,685 tons of ferrous scrap without pig iron in 1941 compared with 456 plants that reported the use of 1,086,456 tons in 1940.

The relative position of States that are large consumers of scrap in cupola furnaces was not changed in 1941. Michigan continued to be the principal consumer, followed in order by Ohio, Pennsylvania, Illinois, and New York.

Consumption of ferrous scrap and pig iron in cupola furnaces in the United States in 1941, by districts and States, in net tons

	Active		Scrap		Pig iron
District and State	plants re- porting	Home	Purchased	Total	· Pig iron
New England:			-		
Connecticut	58	94, 712	62,008	156, 720	95, 964
Maine	20	12, 186	11, 361	23, 547	11, 467
Massachusetts	108	112,657	147, 149	259, 806	134, 289
New Hampshire	17	3, 437	14, 719	18, 156	4, 024
Rhode Island		28, 733	28, 507	57, 240	32, 77
Vermont	15	14,748	19, 106	33, 854	16, 276
Total: 1941	229	266, 473	282, 850	549, 323	294, 792
1940	228	160, 459	199, 295	359, 754	185, 297
Middle Atlantic:					
Delaware	6	3, 350	5, 883	9, 233	3, 42
New Jersey		183, 065	310, 060	493, 125	249, 143
New York	187	276, 773	326, 876	603, 649	300, 203
Pennsylvania	336	455, 672	544. 396	1,000,068	629, 041
Total: 1941	613	918, 860	1, 187, 215	2, 106, 075	1, 181, 810
1940	596	632, 299	1, 038, 005	1, 670, 304	858, 22
O-mall-contame					
Southeastern: Alabama	79	319, 582	219, 897	539, 479	850, 06
District of Columbia	2	h '	1		,
Maryland		60,708	63, 384	124, 092	71, 10
Florida	· 21	1,676	5, 320	6, 996	65
Georgia	54	24, 082	40, 157	64, 239	33, 60
Kentucky	22	39, 479	32, 279	71, 758	92, 03
Mississippi	12	941	2, 034	2, 975	62
North Carolina	58	20, 181	32, 177	52, 358	18, 59
South Carclina		5,803	6,049	11,852	5,09
Tennessee		154, 248 72, 470	120, 349 145, 775	274, 597 218, 245	204, 34 49, 39
Virginia		10, 595	25, 608	36, 203	12, 15
West Virginia	270	10, 595	20,008	30, 203	12, 15.
Total: 1941	441	709, 765	693, 029	1, 402, 794	1, 337, 65
1940	425	478, 181	547, 552	1, 025, 733	1, 153, 97
Southwestern:					
Arkansas.	16	1, 186	4, 435	5, 621	18
Lonisiana		2,700	7, 532	10, 232	71
Oklahoma		5, 112	12, 543	17,655	1,42
Texas	64	27, 349	102, 818	130, 167	98
Total: 1941	121	36, 347	127, 328	163,675	3, 30
1940		19, 335	96, 269	115, 604	2, 90
1010	1			l	

Consumption of ferrous scrap and pig iron in cupola furnaces in the United States in 1941, by districts and States, in net tons—Continued

District and State	Active plants re-		Scrap		Pig iron
	porting	Home	Purchased	Total	I Ig HUII
North Central:				44	1, 1, 2, 4
Illinois	187	467, 110	479, 029	946, 139	384, 913
Indiana	126	239, 874	266, 944	506, 818	248, 494
Iowa	60	102, 652	122, 482	225, 134	70, 36
Kansas	38	14, 737	50, 911	65, 648	
Michigan	171	1, 103, 762	658, 937	1, 762, 699	2, 027
Minnesota	66				839, 725
Minnesota		32,754	98, 747	131, 501	21,859
Missouri	63	106, 436	264, 513	370, 949	56, 796
Nebraska	15	4,867	10, 638	15, 505	2, 223
North Dakota	2	1, 283	1,094	2,377	86
South Dakota	3	, ,	1,001	2,011	80
Ohio	269	499, 295	647, 854	1, 147, 149	572, 636
Wisconsin	108	264, 638	272, 163	53%, 801	237, 844
Total 1941	1, 108	2, 837, 408	2, 873, 312	5, 710, 720	2, 436, 964
1940	1,083	2, 194, 806	2, 213, 419	4, 408, 225	1, 818, 120
Rocky Mountain:					
Arizona	6	9, 531	23, 506	33, 037	155
Colorado	25	20, 289	53, 456	73, 745	41, 543
Idaho	6	706	2,896	3,602	123
Montana.	š	7, 416	7,618	15, 034	453
Nevada	2	15	The second second		400
New Mexico	2	3,699	3, 535	7, 234	52
Wyoming	í	3			
Utah	14	29, 353	F1 4F0	00 000	2
O tan	14	29, 353	51, 456	80, 809	28, 248
Total: 1941	64	70, 997	142, 468	213, 465	70, 421
1940	56	35, 603	85, 351	120, 954	45, 740
Pacific Coast:					
California	128	141,062	186, 768	327, 830	E0 808
Oregon	37	7,611	20, 750		56, 707
Washington.	57	16, 341		28, 361	3, 292
w asnington		10, 541	45, 553	61, 894	3, 803
Total: 1941	222	165, 014	253, 071	418, 085	63, 802
1940.	204	136, 365	192, 886		
1010	204	100, 000	194, 680	329, 251	41,862
Total United States: 1941	2, 798	5, 004, 864	5, 559, 273	10, 564, 137	1 5, 388, 747
1940	2,708	3,657,048	4, 372, 777	8,029,825	1 4, 106, 119
101011111111111111111111111111111111111	2,100	0,001,010	z, 012, 111	0,048,040	. 4, 100, 118

¹ Includes some pig iron used in making direct castings.

Air furnaces.—Ferrous scrap and pig iron consumed in air furnaces in 1941 amounted to 1,826,487 net tons—a 79-percent increase over 1940. The use of home scrap increased 108 percent, of purchased scrap 54 percent, and of pig iron 62 percent; the use of total scrap increased 89 percent. Thus, equipment of this type used relatively more pig iron than purchased scrap in 1941, in contrast with 1940 when the relative increase in use of both was identical. No air-furnace operators reported exclusive use of scrap in 1941, whereas in 1940 4 reported the use of 15,673 tons.

Ohio led all States in 1941 in the consumption of scrap in air furnaces, followed in order by Illinois, Pennsylvania, Indiana, Michigan,

New York, and Wisconsin.

Consumption of ferrous scrap and pig iron in air furnaces ¹ in the United States in 1941, by districts and States, in net tons

	Active			Scrap			
District and State	plants re- porting		Home	Purchased	Total	Pig iron	
New England: Connecticut. Massachusetts New Hampshire. Rhode Island	7 3 1	}	23, 658 21, 476	5, 114 10, 101	28, 772 31, 577	15, 334 15, 864	
Total: 19411940	12 12		45, 134 23, 714	15, 215 9, 224	60, 349 32, 938	31, 198 21, 337	
Middle Atlantic: Delaware New Jersey New York Pennsylvania	2 13 25	}	13, 796 68, 549 110, 606	2, 829 25, 111 50, 056	16, 625 93, 660 160, 662	9, 771 45, 165 96, 825	
Total: 1941	41 40		192, 951 105, 786	77, 996 60, 712	270, 947 166, 498	151, 761 90, 576	
Southeastern and Southwestern: West Virginia Texas	3 1	}	11, 571	6, 656	18, 227	6, 984	
Total: 1941	4 4		11, 571 7, 813	6, 656 15, 613	18, 227 23, 426	6, 984 5, 401	
North Central: Illinois. Indiana Michigan Iowa Minnesota Missouri Ohio Wisconsin	1 1 1 22 10	}	240, 084 98, 110 14, 913 211, 007 53, 851	96, 095 43, 285 4 938 91, 061 12, 855	336, 179 141, 395 19, 851 302, 068 66, 706	167, 558 61, 700 14, 465 119, 669 46, 525	
Total: 1941 1940	70 6 5	L	617, 965 279, 822	248, 234 139, 905	866, 199 419, 727	409, 912 254, 388	
Rocky Mountain and Pacific Coast: ColoradoCalifornia	2 2	}	4, 606	1, 324	5, 930	4, 980	
Total: 1941	` 4 3		4, 606 2, 636	1, 324 803	5, 930 3, 439	4, 980 2, 485	
Total United States: 1941	131 124	Γ	872, 227 419, 771	349, 425 226, 257	1, 221, 652 646, 028	604, 835 374, 187	

Includes 3 Brackelsberg furnaces, 1 each in Indiana, Ohio, and Michigan.

Crucible and puddling furnaces.—Crucible and puddling furnaces, whose combined output of iron and steel is very small, consume only minor quantities of ferrous raw materials.

Consumption of ferrous scrap and pig iron in crucible and puddling furnaces in the United States in 1941, by districts and States, in net tons

District and State	Active			Scrap	•	
District and State	plants re- porting	Γ	Home	Purchased	Total	Pig iron
New England: Connecticut Massachusetts New Hampshire	1 2 1	}	861	854	1, 715	6
Total: 19411940	4 9		861 949	854 1, 067	1.715 2.016	6 29
Middle Atlantic and Southeastern: New Jersey Kentucky Pennsylvania	2 1 10	}	1, 952 3, 566	5, 102 17, 862	7, 054 21, 428	16, 106 38, 119
Total: 1941	. 13 14		5, 518 2, 683	22, 964 7, 666	28, 482 10. 349	54, 225 28, 381
North Central: Ohio	. 3	Γ	53	8	61	59
Total: 1941	3 7		53 163	8 140	61 303	59 67
Pacific Coast and Southwestern: California Oklahoma	1 1	}	85	299	384	100
Total: 1941	2 2		85 18	299 20	384 38	100
Total United States: 19411940	22 32		6, 517 3, 813	24, 125 8, 893	30, 642 12, 706	54, 390 28, 477

Blast furnaces.—Ferrous scrap constitutes only a small proportion of the metal-bearing materials consumed in blast furnaces. The other materials used in 1941 were 94,404,667 net tons of iron and manganiferous iron ores, 6,858,576 tons of cinder and scale, and 3,983,000 tons of flue dust. Total consumption of scrap in 1941, as reported by 78 plants operating blast furnaces, was 2,904,938 tons, a 40-percent increase over 1940. Of the 1941 total, 55 percent was home scrap and 45 percent purchased scrap.

The proportion of scrap used in blast furnaces increased in 1941, amounting to 5.3 percent of the pig iron produced in 1941 compared with 4.5 percent in 1940 and 5.6 percent in 1939. Purchased scrap was equivalent to 2.4 percent of the pig iron produced in 1941 com-

pared with 1.7 percent in 1940 and 2.3 percent in 1939.

Blast furnaces in Ohio continued to consume more scrap than those in any other State and in 1941 used 8 percent more than Pennsylvania, the second ranking State; in 1940, Ohio furnaces consumed 3 percent more than Pennsylvania furnaces.

Consumption of ferrous scrap in blast furnaces in the United States in 1941, by districts and States, in net tons

District and State	Active plants re-		Scrap	
District and State	porting	Home	Purchased	Total
New England and Middle Atlantic:				
Massachusetts New York		59, 809	133, 597	193, 400
Pennsylvania	21	557, 677	299, 928	857, 60
Total: 1941	28 28	617, 486 468, 072	433, 525 309, 951	1, 051, 011 778, 022
Southeastern: Alabama	6	190, 915	91, 475	282, 390
Kentucky Maryland	1		16, 511	16, 51
Tennessee	1	44, 619 704	37, 562	82, 181 704
Virginia West Virginia	1 2	12, 261	66, 666	78, 92
Total: 1941	12 13	248, 499 234, 699	212, 214 111, 863	460, 713 346, 562
North Central: Illinois	5	130, 695	114, 834	245, 529
Indiana Iowa ¹	3	66, 347	751 250	67, 099 250
Michigan		77, 890	23, 129	101, 019
Minnesota Ohio	2 20	5, 759 433, 861	39, 500 492, 410	45, 259 926, 27
Total: 1941		714, 552	670, 874	1, 385, 426
1940	36	574, 067	371, 530	945, 597
Rocky Mountain: Colorado			of of the later	
Colorado Utah	1 1	7,329	459	7, 788
Total: 1941		7, 329 10, 147	459	7, 788 10, 147
Total United States: 1941	78 79	1, 587, 866 1, 286, 985	1, 317, 072 793, 344	2, 904, 938 2, 080, 329

¹ Electric furnace.

FOREIGN TRADE 5

Statistics on foreign trade during 1941 are not available for publication, except totals covering the period from January through September. Therefore no accurate conclusions or comparisons with

previous years can be made.

Imports.—Imports of iron and steel scrap into the United States, which never have been very significant, totaled 52,429 net tons valued at \$503,100 during the period from January through September 1941. In 1940, 2,199 tons valued at \$47,979 were imported. Of the 1941 partial total, 27,822 tons came from Cuba, 17,601 from Canada, 2,317 from Colombia, 1,859 from Curação (N. W. I.), 1,117 from Surinam, 756 from Europe (mainly Czechoslovakia), 736 from Bermuda, and only 221 from other countries. In addition, 17,908 tons of tin-plate scrap were imported during the first 9 months of 1941, largely from Canada. In 1940 imports of tin-plate scrap totaled 18,609 tons compared with 14,149 in 1939.

Exports.—Ferrous scrap exports (all types) from the United States during the January-September period of 1941 totaled only 696,110 net tons valued at \$12,050,641. In 1940, 3,159,284 tons valued at \$48,314,146 were exported. The low exportation in 1941 was caused

⁴ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

by license proclamations issued during the latter part of 1940 restricting exports of all grades of scrap, except to Great Britain and countries of the Western Hemisphere. The shipments in 1941 included 9,989 tons of tin-plate scrap, waste-waste tin plate, tin-plate strips, cobbles, etc., valued at \$654,946. In 1940, exports of this type of scrap totaled 15,923 tons valued at \$753,184. The following table shows the principal countries to which shipments of scrap were consigned during the 5-year period 1936-40.

Ferrous scrap exported from the United States, 1936-40, by countries, in net tons

Country	1936	1937	1938	1939	1940
Canada Germany Italy Japan Netherlands Poland and Danzig United Kingdom Other countries	71, 357 7, 615 319, 341 1, 184, 536 5, 350 34, 837 408, 659 136, 773	207, 840 98, 731 427, 161 2, 140, 889 160, 609 308, 680 948, 838 300, 987	103, 283 258, 611 486, 883 1, 547, 617 231, 341 169, 625 433, 829 127, 233	196, 556 18, 574 477, 004 2, 279, 315 60, 665 173, 161 569, 288 240, 609	411, 571 357, 627 1, 079, 141 165 1, 100, 774 210, 006
Total value	2, 168, 468 \$24, 684, 084	4, 593, 735 \$79, 387, 459	3, 358, 422 \$45, 829, 533	4, 014, 572 \$55, 911, 516	3, 159, 284 \$48, 314, 146

Exports were drawn largely from seaboard areas where the cost of transportation from the point of origin to the port of exportation is relatively low and where the cost of transportation to domestic iron and steel plants not within the area is high.

WORLD ASPECTS

Statistics on world steel and pig-iron production in 1941 are not available, as publication of information has been suspended in many countries. However, as iron and steel are essential to the military forces, world steel and pig-iron production undoubtedly was considerably increased, and the demand for iron and steel scrap was greater than at any previous time.

CARTEL ACTIVITIES

All agencies that formerly operated on behalf of groups of countries suspended operations after the advent of war in 1939, hence there was no activity for the purchase of iron and steel scrap by any cartel for individual nations. Throughout 1941 each nation that purchased scrap bought independently; the pro-Axis nations procured no scrap, and the democracies received less scrap than in 1940.

REVIEW BY COUNTRIES

Canada.—Steel production in Canada reached new high levels in 1941, when the output of steel ingots and castings totaled 2,701,000 net tons, an increase of approximately 20 percent over the previous record of 2,256,000 tons established in 1940. Canadian pig-iron production also increased in 1941 but not to the extent of the increase in steel production, indicating that the steel industry was more dependent on supplies of iron and steel scrap to establish the new record. Production of pig iron in 1941 totaled 1,528,000 tons compared with the previous record of 1,309,000 tons established in 1940, an increase of

less than 17 percent.6 This increased production of steel and pig iron occasioned alarm regarding the scrap supply since, with the greater demand that at times exceeded the supply, dealers could not increase their yard stocks, and some consumers were compelled to

deplete stock piles to maintain production.

On February 17 1941, iron and steel scrap was placed under the direct control of the Canadian Steel Controller, and maximum prices for steel scrap only were issued. This measure was instituted to relieve the price situation and to insure the maximum flow of scrap through domestic channels.⁸ Then, on July 10, 1941, the Steel Controller also established a maximum price schedule for cast-iron scrap to assure a steady flow of this material to foundries and to stabilize prices.9 During the last quarter of the year the entire iron and steel scrap industry was placed under Government control, under which all dealers were required to procure a license from the Steel Controller, comply with maximum prices, and submit monthly reports.¹⁰ The program instituted in 1940 by the Dominion Government, to collect agricultural scrap, as well as old ship hulls, automobile scrap, and railroad material in the maritime Provinces and rural districts, was continued and enlarged to include industrial concerns, municipal governments, and the civilian population.11 To utilize supplies of scrap metal that accumulated in British Columbia, as a consequence of the embargo on exports and the difficulty of transporting scrap to consuming centers, the Government endorsed the establishment of a steel plant in which scrap would be utilized exclusively.¹² No iron and steel scrap has been exported from Canada since late in 1939, except to the United Kingdom and to nations of the Western Hemisphere. Consequently, exports have decreased considerably, whereas imports from the United States have steadily increased.

Germany.—Statistics on the production of steel and pig iron and on the consumption of scrap in Germany are not available. However, as a result of annexation and military occupancy of European countries, steel-ingot capacity is estimated as more than double what it was before the war. 13 The German Government issued a decree curtailing the use of iron and steel in many commodities, except in goods to be used for military or hospital purposes.¹⁴ Decrees were also issued in German-dominated countries regulating the use and disposal of scrap materials. Iron and steel scrap was shipped from such countries for use in the manufacture of war materials.1

Japan.—The prohibition by the United States of exports of iron and steel scrap to Japan caused a revision of technique in the iron and steel industry. The main point in the revised plans included the increased manufacture of equipment for the production of steel from pig iron, thereby using little or no scrap. Some small success was attained in furnaces of low capacity in producing steel using approximately 15 percent scrap and 85 percent pig iron, as compared with previous practice when these percentages were 45 and 55, re-

Iron Age, vol. 149, No. 6, February 5, 1942, p. 109.

7 American Metal Market, vol. 48, No. 217, November 11, 1941, p. 8.

8 Waste Trade Journal, vol. 70, No. 25, March 29, 1941, pp. 77, 79, 81.

8 Mrach and Metal Market, vol. 48, No. 137, July 17, 1941, p. 7.

8 Foreign Commerce Weekly, vol. 5, No. 6, November 8, 1941, p. 23.

11 American Metal Market, vol. 48, No. 227, November 27, 1941, p. 7.

12 Waste Trade Journal, vol. 70, No. 26, April 5, 1941, p. 26.

13 Metals and Alloys, vol. 12, No. 1, January 1942, p. 114.

14 American Metal Market, vol. 48, No. 91, May 10, 1941, p. 6.

15 Daily Metal Reporter, vol. 41, No. 98, May 21, 1941, p. 10.

16 Waste Trade Journal, vol. 70, No. 13, January 4, 1941, p. 26.

spectively. In view of the scarcity of scrap the Ministry of Commerce decided to request steel-manufacturing companies to use a ratio of 70 percent pig iron to 30 percent scrap in the production of steel.¹⁷ To offset the loss of scrap imports, the Government intensified scrapcollection efforts, and such material as railway cars, posts, kitchen utensils, gutters, pipes, and manhole covers was salvaged. Fences around Government and business buildings were salvaged, as were the numerous ships that have been wrecked in nearby Japanese-controlled areas. 18 The iron and steel industrial policy as regards the purchase and distribution of scrap iron, which had been inaugurated previously, was extended to provide for closer control of the allotment of iron and

steel raw materials. United Kingdom.—Scrap remained an extremely significant factor in the production of steel in the United Kingdom in 1941, especially since operations at iron and steel mills were conducted at or near record levels throughout the year. Imports of scrap from the United States continued until September, when a decision was reached to discontinue the exportation of scrap materials from the United States to Great Britain. 19 House-to-house collection campaigns were continued and produced sizable quantities of scrap. In addition to these collections, scrap was being salvaged from buildings damaged by the enemy, derelict factories, abandoned railroad and street-car installations, and other sources of supply. Buildings damaged by bombs yielded large quantities of iron and steel scrap, offsetting the curtailment of imports. Local authorities were instructed to compile a list of all unnecessary gates and railings, with the exception of those serving a safety purpose or having historic interest or artistic merit.⁹⁰ These measures tended to increase the supply of scrap material, with the result that at the end of the first half of the year stocks of iron and steel scrap were approximately 50 percent larger than during 1940, and adequate supplies were available throughout the entire year 1941.21

The British Ministry of Supply issued Control of Iron and Steel (Scrap) Order 14, which decreed complete control over all buying and selling of scrap.²² This decree regulated the acquisition or disposition of scrap except by license; exports of scrap were also prohibited except under license issued by the Export Licensing Department of the Board of Trade. In conjunction with this decree, maximum prices were established covering all sales of iron and steel scrap. Toward the close of the year the scrap-collection drives were placed upon a firmer national basis and were being directed by the Ministry of Works and Buildings with plans made to grant the Ministry power to commandeer obsolete property of all descriptions.²³ With a view to conserving raw materials, manufacture of a large list of items from steel was restricted, including metal windows, beds, springs, furniture, buttons, buckles, and sundry manufactures.²⁴ In the production of pig iron less scrap was employed in blast furnaces because of an increased use of home-produced iron ores.

Foreign Commerce Weekly, vol. 4, No. 2, July 12, 1941, p. 14.
 Waste Trade Journal, vol. 72, No. 4, November 1, 1941, p. 15.
 American Metal Market, vol. 48, No. 169, August 30, 1941, p. 1.
 Ion and Coal Trades Review, vol. 143, No. 3836, September 5, 1941, p. 217.
 Iron Age, vol. 147, No. 26, June 26, 1941, p. 98.
 Waste Trade Journal, vol. 70, No. 25, March 29, 1941, pp. 105, 107, 113.
 Iron Age, vol. 148, No. 25, December 18, 1941, p. 131.
 American Metal Market, vol. 48, No. 110, June 7, 1941, p. 6.

IRON ORE, PIG IRON, FERRO-ALLOYS, AND STEEL

By Norwood B. Melcher 1

SUMMARY OUTLINE

	Page	l to	Page
General features in 1941	541	Iron ore—Continued.	•
Salient statistics	542	Mining by States	558
Consumption of ferrous scrap and pig iron	547	Men employed and output per man at	
Iron ore	547	mines	563
Production and shipments	547	World production	569
Principal mines	549	Pig iron	570
Beneficiation	550	Production and shipments	570
Average value	552	Value at blast furnaces	571
Consumption	552	Commercial quotations	572
Stocks at mines	554	Foreign trade	
Foreign trade		Consumption	573
Mining in Cuba	555	World production	575
Review of Lake Superior district	555	Ferro-alloys.	576
Production and shipments	555	Foreign trade	576
Allaiyses	9971	Steel	
Stocks at Lake Erie ports	557		
Prices of Lake Superior ore	557	Foreign trade and production	
n		C	

GENERAL FEATURES IN 1941

The domestic steel industry operated at record levels throughout Production was maintained at a rate well above 90 percent, in spite of the fact that the capacity increased considerably. The average operating rate for the entire year was 97.3 percent, and 82,839,259 net tons of steel were produced. This great activity in steel manufacture was reflected in the iron ore and pig iron industries during Domestic production of pig iron, exclusive of ferro-alloys, increased 19 percent over 1940 and established a new record of 55,085,446 net tons—an increase of 18 percent over the previous peak year 1929. Iron ore, exclusive of ore containing 5 percent or more manganese, likewise experienced a record year in 1941, and a total of 92,409,579 gross tons was mined—an increase of 25 percent over 1940 and 23 percent more than in the previous peak year 1917. However, iron ore is an essential raw material in our great war-production drive, and 1941 is not expected to retain its laurels long. If announced objectives are reached, iron-ore production in 1942 should easily pass the 100,000,000-ton mark; and steel production of 85,000,000 tons and a considerable increase in pig-iron output are anticipated.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Salient statistics of iron ore, pig iron, ferro-alloys, and steel in the United States 1940-41

	19	40	19	41
	Gross tons	Value	Gross tons	Value
ron ore: Production by— Districts: Lake Superior	1 61, 471, 323		(* 78, 858, 332	1
Southeastern and Southwestern Northeastern Western	4 7, 446, 103 3, 559, 924 1, 218, 549	(2)	8, 145, 900 3, 962, 072 4 1, 443, 275	(2)
ราย (ชิวัน เรียก) และเกิด	73, 695, 899	(2)	92, 409, 579	(2)
Mining methods: Open pit Underground	\$ 49, 591, 309 \$ 24, 104, 590	} (2)	8 65, 192, 237 5 27, 217, 342	} (2)
	73, 695, 899	(3)	92, 409, 579	(3)
Varieties: Hematite Brown ore Magnetite Carbonate	6 68, 869, 837 8 934, 625 6 8 3, 890, 924 513	(3)	7 86, 725, 406 1, 366, 849 7 4, 316, 718 606	(3)
	73, 695, 899	(2)	92, 409, 579	(3)
Shipments (exclusive of ore for paint) Average value per ton at mine	75, 198, 084	\$189, 086, 799 2. 51	93, 053, 994	\$249, 705, 903 2, 68
Stocks at mines Dec. 31	3, 613, 742	6, 204, 641 4, 624, 555	3, 592, 141 1, 707, 811 1, 347, 641	⁽²⁾ 3, 917, 452 4, 362, 806
Pig iron: ProductionShipmentsAverage value per ton at furnaces	41, 927, 615	840, 442, 032 20. 05	49, 183, 434 49, 306, 822	1, 111, 811, 316 22. 55
ImportsExports	10, 242 553, 871	189, 379 13, 057, 901	9 458, 537	9 14, 081, 065
Ferro-alloys: Production	1, 093, 179	(2)	(10)	(2)
Shipments: Ferromanganese	106, 707 429, 494	42, 755, 485 3, 487, 565 24, 027, 652 57, 857, 108	(10)	(10)
• · · · · · · · · · · · · · · · · · · ·	1, 154, 161	128, 127, 810	(10)	(10)
Imports: Ferromanganese Spiegeleisen Ferrosilicon	15,585	1, 321, 369 638, 732 262, 397	9 3, 579 9 2, 911 9 9, 054	9 325, 102 9 119, 524 9 337, 789
Steel production: Open-hearth:	F4. 9F0. 9F0		4 65 457 009	
Basic Acid Bessemer Crucible Electric	616, 288 3, 311, 226 914	(3)	65, 457, 903 961, 400 4, 980, 420 2, 065 2, 561, 836	(2)
12100H tt	59, 805, 970	(2)	73, 963, 624	(i)

¹ Includes a small quantity of ore produced in southern Wisconsin.
2 Figures not available.
3 Includes a small quantity of ore produced in southern Minnesota.
4 Texas included with Southeastern and Southwestern districts in 1940 and included in Western in 1941.
4 Some underground included with open pit.
5 Small quantity of hematite included with magnetite.
7 Small quantity of magnetite included with hematite.
8 Small quantity of brown ore included with magnetite.
9 Figures cover January-September, inclusive.
10 Figures not available for publication.

Figure 1 shows the trends in domestic production of iron ore, pig

iron, and steel since 1880.

Steel-consuming industries.—The automobile industry, although called upon to convert to war production during the latter months of the year, ranked second only to the construction industry in the consumption of steel during 1941. The production of automobiles in 1941 increased 8 percent over 1940 and totaled 4,838,561 units, which was only slightly below the 5-million-car year 1929. The automobile and aircraft industries consumed 6,392,202 net tons (10.2 percent) of the total (62,484,162 tons) consumed and exported. The construction industry experienced great activity during the year, using 8,127,889 tons or 13.0 percent of the total. The additions to arms-

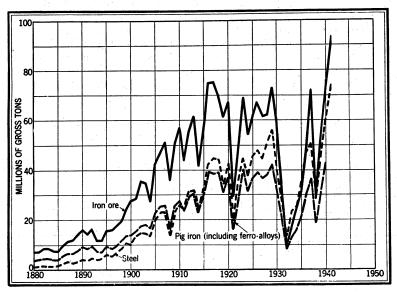


FIGURE 1.—Trends in production of iron ore, pig iron, and steel in the United States, 1880-1941.

production capacity during 1941 were almost exclusively in the form

of new plants rather than the conversion of existing facilities.

The large volume of capital in hands of consumers made available through the increased output of steel was instrumental in raising the Nation's purchasing power to high levels. Consumers' demands were directed particularly to durable goods; in consequence, these articles were produced in extraordinary quantity during the first 9 months of the year. In the final months, shortages of raw materials forced curtailment in output of private consumers' goods. By the beginning of 1942, the new military program pointed to virtual elimination of all such production through control over uses of materials and conversion of whole industries to war production.

The farm-machinery industry had a record year in 1941. The industry was granted favorable priority for raw materials and drew heavily on steel products. Output of railroad cars—another major type of equipment—was hampered during much of 1941 by shortage of materials, especially steel plates. Production was 65,317 cars (not includ-

ing output of private car shops), about one-third more than in 1940, but this was far short of needs. Approximately 993 locomotives were built compared with 646 in 1940, and output trended toward Diesel and Diesel-electric units. The most dramatic advance in output during the year appeared in certain industries engaged directly in manufacturing finished arms. In the first stages of the armament program, emphasis was placed on planes and ships as the most urgently needed types of war materials, and it was in these arms categories that heaviest volume production was achieved by the year end. The number of naval ships completed during the year is not published, but deliveries of merchant tonnage aggregating 749,000 gross tons were almost 70 percent more than the 445,000 gross tons completed in 1940. Output of airplanes averaged more than 1,500 monthly (using only 9 months' figures) compared with 500 units a month average in the preceding However, these figures are dwarfed by the goal of 60,000 fighting planes and 8,000,000 dead-weight tons of merchant shipping set by the President early in 1942 to be produced before the end of

The following table shows the distribution of steel to consuming

industries during 1941.

Distribution of steel to consuming industries in 1941 1

	Net tons	Percent of total
Steel converting and processing industries:		
Wire drawers and wire product manufacturers	535, 741	
Bolt, nut, and rivet manufacturers	1, 160, 767	
Forging manufacturers	1, 144, 442	
All other steel plants and foundries	1, 956, 853	
Total	4, 797, 803	7.
obbers, dealers and distributors:		
Oil and natural-gas industry	1, 018, 371	
All other	8, 181, 440	
Total	9, 199, 811	14. 7
le la companya di managantan di managantan di managantan di managantan di managantan di managantan di managant	0,100,011	
Construction industry: Public (municipal, State, national)	518, 555	
Highways.	708, 613	
Railways	102, 494	
Railways. Automotive and aircraft.	406, 463	
Utilities	515, 003	
Building trim, accessories and builders' hardware	1,020,109	
All other	4, 856, 652	
Total	8, 127, 889	13.0
hipbuilding industry	2, 733, 413	4.
ressing, forming and stamping industry:		
Metal furniture and office equipment	676, 944	
Hardware and household equipment	1, 746, 810	
All other	3, 897, 782	
Total	6, 321, 536	10. 1
Container industry:		
Oil and natural-gas industry	437, 367	
All other	4, 052, 043	
The total	4, 489, 410	7. 3
gricultural, including implement and equipment manufacturers.	1, 153, 678	1.8
fachinery and tools:		
Machinery and tools ovaluding electrical agricument	1 500 710	
Machinery and tools, excluding electrical equipment Electrical machinery and equipment	1, 569, 712 1, 301, 275	
	1, 301, 275	
Total	2, 870, 987	4. 0
utomotive and aircraft industry	6, 392, 202	10.

¹ American Iron and Steel Institute.

Distribution of steel to consuming industries in 1941—Continued

	Net tons	Percent of total
Railroad industry: All railroads. Car and locomotive builders and parts manufacturers.	3, 533, 866 2, 146, 935	
Total	5, 680, 801	9. 1
Oil, natural-gas, and mining industry: Oil and natural gas, including pipe lines Mining, quarrying, and lumbering	1, 735, 983 249, 157	
Total Miscellaneous industries and export	1, 985, 140 8, 731, 492	3. 2 14. 0
Total	62, 484, 162	100.0

Prices.—The composite price of finished steel, as compiled by Iron Age, remained constant at 2.30467 cents (revised figure) a pound throughout 1940 and 1941. Prices of No. 1 Heavy-Melting scrap at Pittsburgh started at \$19.76 a net ton in January, dropped to \$18.75 in February, and beginning in May remained at \$17.86, the price maximum set by the Office of Price Administration. Pig iron held at \$20.94 a net ton during January and February, rose to \$21.01 in March, and remained thereafter at \$21.08, the composite maximum price.

The price of ferromanganese at seaboard was held by maximum price regulation at \$107.14 a net ton throughout 1941. Spiegeleisen, as quoted by Steel, continued at \$32.14 a ton during the year. Prices of Lake ores have remained constant since April 17, 1940.

Figure 2 gives trends in prices of iron ore, pig iron, steel and steel

scrap since 1890.

Employment and wages.—According to the American Iron and Steel Institute, steel pay rolls totaled \$1,301,000,000 in 1941 compared with \$961,000,000 in 1940 and only \$841,000,000 in 1929. Hourly wages in 1941 averaged 95.9 cents an hour compared with 85 cents in 1940. Employment rose 86,000 during the year to a record total of 633,000. During 1941, steel workers averaged 38.6 hours a week. Total employment in all industries (excluding the armed forces) rose to 49.5 million in December 1941. In all, about 3 million were added to the employment list during the year. The real income of workers increased during 1941 despite higher living costs. An increase in hours worked a week and in wage rates during the year was accompanied by a marked increase in the number of industrial disputes.

Meeting demand for steel.—During 1941, domestic steel capacity was increased 4,418,000 net tons to a record total of 88,570,000 tons. Since January 1940 steel capacity has increased 6,950,000 tons, almost

equal to Japan's total 1940 production of 7,100,000 tons.

The increase in open-hearth capacity was 3,542,000 tons and in electric furnace capacity 1,151,000 tons, whereas bessemer-steel

capacity declined from 6,997,000 tons to 6,721,000 tons.

Blast-furnace capacity increased 2,784,000 tons during 1941 to a record total of 60,394,000 net tons. This capacity was made possible by the addition of five new blast furnaces and the return to service of five furnaces that had been long idle.

United States Government regulations regarding expansion of iron and steel capacity are promulgated by the Iron and Steel Industrial Branch, Division of Materials, War Production Board. The Division of Materials was set up as an operating division in the Office of Production Management by the O. P. M. Council on September 4, 1941, with the approval of the President. It represents an amalgamation of certain commodity sections (of which iron and steel is one) of the Production and Priorities Division, dealing with industrial materials.

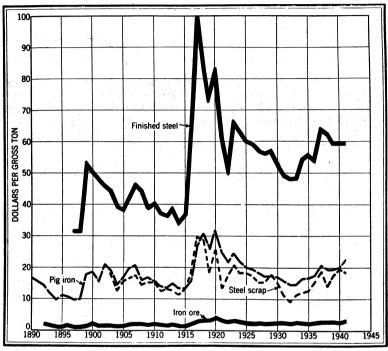


FIGURE 2.—Trends in prices of iron ore, pig iron, finished steel, and steel scrap, 1890-1941. The prices of iron ore and pig iron are the averages f. o. b. mines and furnaces, respectively, as reported to the Bureau of Mines; the price of finished steel is an average composite computed by American Metal Market; that of steel scrap is an average at Pittsburgh of No. 1 Heavy Melting, computed by Iron Age.

Functions of the Division of Materials in the War Production Board are virtually unchanged from those it held in the Office of Production Management. The War Production Board was established January 16, 1942.

In fulfilling its functions, the branch formulates policies and recommends means for expanding and developing domestic sources, for purchasing, stock-piling, and assuring as great a supply of raw materials as possible, and for expediting production of iron and steel.

Foreign trade.—Because of war-time censorship, imports and exports

for only 9 months of 1941 may be shown.

Statistics relating to imports and exports for 9 months of 1941 may be found under discussion of foreign trade in iron ore, pig iron, ferroalloys, and steel.

CONSUMPTION OF FERROUS SCRAP AND PIG IRON

Data on the consumption of ferrous scrap and pig iron, formerly included in this chapter, will be found in the chapter on Iron and Steel Scrap. Data on the consumption of pig iron will be found n the pig-iron section of this chapter.

IRON ORE

PRODUCTION AND SHIPMENTS

Iron-ore mining in the United States experienced its best vear on Production totaled 92,409,579 gross tons—a record during 1941. gain of 25 percent over 1940. Output in 1941 came from 276 2 mines. of which 18 produced more than 1 million tons each compared with 230 2 mines and 15 in the million-ton class in 1940. Twenty States were active producers in 1941 compared with 19 in 1940. Minnesota, with 62,750,907 tons, supplied 68 percent of the domestic total; and Michigan, with 14,671,192 tons or 16 percent, was the second-largest These two States and mines in Wisconsin (1,436,233 tons or 2 percent) constitute the Lake Superior region, which supplied 85 percent of the domestic total. The ratio of open-pit to underground production remained about the same in 1941; approximately twothirds of the output in both years came from open-pit operations.

Iron ore mined in the United States in 1941, by States and varieties, in gross tons [Exclusive of ore containing 5 percent or more manganese]

State	Number of active mines	Hematite	Brown ore	Magnetite	Carbon- ate	Total
Alabama	1 76	6, 791, 237	1, 093, 614			7, 884, 851
California	. 3	2 51, 644		2 1,887		53, 531 89
Connecticut	1 10	01 919	239, 354			260, 667
Georgia	1 19 41	21, 313 14, 671, 192	239, 334			14, 671, 192
Michigan Minnesota	102	62, 750, 860	47			62, 750, 907
Mississippi	102	02, 100, 000	51			51
Missouri	16	7,884	10, 769			18, 65
Nevada	ĭ	215				218
New Jersey	ã.			649, 374		649, 374
New York	5	8, 553		3, 300, 451	f	3, 312, 610
Pennsylvania	3		3,000	3, 300, 401	∫ 606	, .
Oklahoma	2		208			208
South Dakota	1) .		İ		40 84
Virginia	1	}	19,718			19, 71
Texas	1	3	1	355,006	1	355,00
Utah	2 3	423		10,000		10, 42
Washington	3	1, 436, 233		10,000		1, 436, 23
W yoming	1	985, 852				985, 85
44 Anming		500, 002				
Total: 1941	1 276	2 86, 725, 406	1, 366, 849	2 4, 316, 718	606	92, 409, 579
1940	1 230	* 68, 869, 837	4 934, 625	* 4 3, 890, 924	513	73, 695, 89

Excludes an undetermined number of small pits. Output of these pits included in tonnage given.
 Small quantity of magnetite included with hematite.
 Small quantity hematite included with magnetite.
 Small quantity of brown ore included with magnetite.

² This figure does not include an undetermined number of small mines whose aggregate output is only a fraction of 1 percent of the total.

Shipments of iron ore likewise were much larger in 1941, amounting to 93,053,994 gross tons—an increase of 24 percent over 1940. The greater part of the iron ore mined in the United States is employed in the manufacture of iron and steel, but 99,480 tons of domestic ore were shipped in 1941 for other uses, as follows: Cement, 57,133 tons; paint, 20,792 tons; ferromagnesite, 6,000 tons; flux at nonferrous smelters, 1,795 tons; and other industries, 13,760 tons.

The quantities of iron ore in the following tables include ore that was beneficiated—that is, treated in any way to improve the ore

content—as well as ore that did not require treatment.

Although included in the figures on production, the iron ore sold for the manufacture of paint—20,792 tons in 1941 valued at \$101,710 (\$4.89 a ton) compared with 8,912 tons in 1940 valued at \$45,578 (\$5.11 a ton)—is not included in shipments from mines. The output of manganiferous ore that contained 5 to 35 percent manganese also is excluded. Moreover, the statistics do not include iron sinter recovered from the roasting of domestic pyrite concentrates in Tennessee.

Quantity and tenor of iron ore mined in the United States, 1940-41, by States and mining methods

		1940				1941			
		Total			Total				
State	Open pit (gross tons)	Under- ground (gross tons)	Gross tons	Iron content, natural (per- cent)	Open pit (gross tons)	Under- ground (gross tons)	Gross tons	Iron content natura (per- cent)	
AlabamaCalifornia	837, 488 1, 071	6, 478, 639	7, 316, 127 1, 071		1, 195, 148 53, 531 88	6, 689, 703	7, 884, 851 53, 531 88	55. 2	
Georgia	100, 641 1, 505, 812 43, 560, 321 50	645 10, 966, 636 4, 176, 489	101, 286 12, 472, 448 47, 736, 810	47. 14 52. 03 52. 36 40. 90	259, 217 1, 706, 375	12, 964, 817	260, 667	46. 91 51. 68 52. 43	
Missouri Nevada New Jersey	53, 238	400 659, 425	53, 638	51. 66	17, 369 215	1, 284	18, 653 215	45, 00	
New York Pennsylvania Fennessee	}1 2,900, 499	(1)	659, 425 2, 900, 499	62. 35 66. 56 39. 73	} ¹ 3,312, 610	649, 374 (¹)	649, 374 3, 312, 610	62. 36 66. 92 39. 64	
Virginia South Dakota	23, 187 640		23, 187 640	47. 24 54. 32 2 51. 03	} 19,718		19, 718	53. 60 46. 00	
rexas Oklahoma Utah	5, 453 326, 500		5, 453 326, 500	{ 51.50 45.02 54.97	208 355, 006		208 355, 006	52. 50 47. 10 54. 47	
Washington Wisconsin Wyoming	3, 942 272, 467	1, 444 1, 262, 065 558, 847	5, 386 1, 262, 065 831, 314	65. 00 53. 35 2 51. 03	10, 000 4, 000 2, 847	423 1, 432, 233 983, 005	10, 423 1, 436, 233	66. 30 53. 32	
V	1 49,591, 309					1 27,217, 342	985, 852 92, 409, 579	51. 36	

Some underground included with open pit.
 Average percentage for South Dakota and Wyoming.

Iron ore mined in the United States, by mining districts and varieties, in 1941, in gross tons

[Exclusive of ore containing 5 percent or more manganese]

District	Hematite	Brown ore	Magnetite	Carbonate	Total
Lake Superior ¹ Birmingham Chattanooga Adirondack and Cornwall Northern New Jersey Other districts	78, 858, 285 6, 787, 077 25, 473 2 1, 054, 571 2 86, 725, 406	415, 187 421, 756 529, 906 1, 366, 849	3, 300, 451 649, 374 2 366, 893 2 4, 316, 718	606	78, 858, 285 7, 202, 264 447, 229 3, 300, 451 649, 374 1, 951, 976

Includes only those mines in Minnesota that are in the true Lake Superior district.
 Small quantity of magnetite included with hematite.

Iron ore shipped from mines in the United States, 1940-41, by States [Exclusive of ore containing 5 percent or more manganese and ore sold for paint]

State		1941		
	Gross tons	Value	Gross tons	Value
Alabama California Connecticut	1, 07	2 \$12, 606, 369 (¹)	7, 873, 228 53, 531 28	\$18, 090, 992 (¹)
Georgia Michigan Minnesota Mississippi Missouri		40, 474, 951 7 118, 947, 968 38	258, 947 15, 201, 619 62, 874, 891 51 13, 410	598, 497 43, 765, 164 167, 781, 967 101 35, 543
New Jersey New York Pennsylvania	693, 998 2, 942, 948	3, 328, 467	215 666, 550 3, 265, 912	3, 437, 082 9, 678, 564
Tennessee Virginia Texas Oklahoma	23, 038		11, 278	(1)
Utah. Washington. Wisconsin. Wyoming. Undistributed	326, 500 5, 582 1, 227, 840 831, 314	3, 290, 389	355, 006 6, 492 1, 486, 776 985, 852	(1) (1) 3, 998, 287 (1) 2 2, 319, 061
	75, 198, 084	189, 086, 799	93, 053, 994	249, 705, 903

¹ Included under "Undistributed."

PRINCIPAL MINES

The importance of large operations in the iron-mining industry is shown by the fact that 18 units yielding more than 1,000,000 tons each produced 56 percent of the entire output in 1941. Of the 18 millionton producers in 1941, 13 are in Minnesota (all on the Mesabi range), 2 in Alabama, 1 each in Pennsylvania and Wisconsin, and 1 in Michigan. Of the 18 principal producers in 1941, 11 were open-pit operations, 4 were operated by underground methods, and 3 were combinations. Except for 1 mine that produced magnetite, all the principal mines produced hematite.

Includes value for States entered as "(1)."

Iron-ore mines of the United States in 1941, by size of output

Missabe Mountain Red Mountain group Mahoning do Virginia do do Ado Hall Annes Mahoning Minnesota Hibbing Mesabi Open pit Hill Annes do Marbie do do Montreal do Marbie Mo do Morrison Minnesota Coleraine Mesabi Open pit Mo do Mo do do </th <th>e of mine</th> <th>State</th> <th>Nearest town</th> <th>Range or dis- trict</th> <th>Mining method</th> <th>Gross tor</th>	e of mine	State	Nearest town	Range or dis- trict	Mining method	Gross tor
Missabe Mountain			TTILLI	3532	O	10 771 0
Mahoning		inesota	Virginio	do.	do do	16,771,0 4,603,0
Mahoning		homo	Rossomor	Rirmingham	Underground	4,005,0
All Annex			Hibbing	Mesohi	Onen nit	4, 040, 3
			Columnat	Miesani	Open bit	2 645 0
	DELLO GEOLIE	do	Eveleth	do	Combined	3, 645, 9 3, 452, 3 1, 715, 0
Trazer	pruce group	do	Hibbing	do		1 715 0
		do	Chicholm	do		1, 398, 7
Voodward No. 3	mbull	do	Marhle	do	do pour pro-	1, 285, 6
Montreal	rd No. 3 Als	ahama		Birmingham	Underground	1, 084, 9
Morrison	wi	isconsin		Gogebic	do	1, 080, 1
Agriculus Minnesota Marble Mesabi Open pit	M	innesota	Coleraine	Mesabi	Open pit	1,077,6
Agriculus Minnesota Marble Mesabi Open pit	Mi	chigan	Negatinee	Marquette	Underground	1,041,9
Cevin	Mi	innesote	Marhle	Mesahi	Open nit	1, 037, 9
Caranton		do	Nashwank	do	do	1 036 9
renn group. Michigan Vulcan Menominee Open pit Open pit Monas Minnesota Mibbing Mesabi Open pit Underground Open pit Underground Open pit Underground Open pit Minnesota Minnesota Mesabi Open pit Underground Open pit Minnesota Taconite Mesabi Open pit Open pit Minnesota Taconite Mesabi Open pit Open pit Minnesota Taconite Mesabi Open pit Open pit Open pit Minnesota Taconite Mesabi Open pit Open Open pit Open pit Open Open pit Open Open pit Open Open pit Open pit Open Open Open pit Open Open Open Dit Open Open Open Dit Open Open Open Dit Open Open Dit Open Open Open Open Open Dit Open Open Open Open Open Open Open Open		ا ماہ	Hibbing	do	do	1, 025, 2
rem group. Michigan Willean Menominee Open pit. do Keewatin do Combined Open pit. do Keewatin do Combined Open pit. do Keewatin do Combined Open pit. do Hibbing Mesabi. Open pit. do Hibbing do do do do do do do do do do do do do		do	Biwabik	do_	do	1, 025, 3 1, 012, 7 985, 8
rem group. Michigan Willean Menominee Open pit. do Keewatin do Combined Open pit. do Keewatin do Combined Open pit. do Keewatin do Combined Open pit. do Hibbing Mesabi. Open pit. do Hibbing do do do do do do do do do do do do do	w	voming	Sunrise	Hartville	Combined	085
Minnesota	Min Mi	ichigan	Vulcan	Menominee	Underground	914,
Marquette Underground Open pit	onno Mi	nnesota	Hibbing	Mesahi	Open pit	876,
Marquette Underground Open pit	MIII 1	do	Keewetin	do	Combined	875, 3
Colman-Brown Minnesota Colman-Brown Minnesota Colman C	Mi	ichigen	Negginee	Marquette	Underground	855, (
	Reown Mi	innesote	Teconite	Mesahi	Open pit	850. 9
			Virginia	do	do do	817, 3
				do	do	807.
Description Description	d Nos. 1 and Ala			Birmingham	Underground	723,
Dorsies	Mi	innesote	Elv	Vermilion	do	721,
Dorsies		do	Coleraine	Mesahi	Open pit	708, 8
Name		do	Elcor	do	do	706,
Sings Shaft	alms-Kewee- Mi	íchigan				695,
A	aft.	_do	Ishpeming	Marguette	do	672,
Company Comp		do	Mogoranoo	- do	do	658,
Minesota		4.	Ramsay	Gogebic	do	612, 8
Minesota	h	do	Wakefield	do	Open pit	607,
Minesota		do	Ironwood	do	Underground	602,
Minesota		do	do	do	do	597.
Michigan	M	innesota	Chisholm	Mesabi	do	589, 1
Michigan		do	Coleraine	do	Open pit	585, 6
Davis Geneva West Davi		do	Buhl	do	do	581.0
Davis Geneva West Davi	Lake M	ichigan	Wakefield	Gogebic	Underground	574.
Davis Geneva West Davi		_do	Ishpeming	Marquette	do	574, 558,
Davis-Geneva-West Davis. Davis. Davis. Minnesota. Ely. Vérmilion. do. Menominee. do. Z. Harrison. Minnesota. Cooley. Mesabi. Open pit. Harmony and Old New York. Mineville. Adirondack. Underground. Dentate Lyon Mtn. Adirondack. Underground. Control of 8 mines producing more than 500,000 tons each. Dutput of 18 mines producing between 400,000 and 500,000 tons each. Dutput of 18 mines producing between 400,000 and 300,000 tons each. Dutput of 19 mines producing between 200,000 and 300,000 tons each. Dutput of 19 mines producing between 200,000 and 300,000 tons each. Dutput of 19 mines producing between 200,000 and 300,000 tons each. Dutput of 19 mines producing between 200,000 and 300,000 tons each. Dutput of 19 mines producing between 200,000 and 300,000 tons each. Dutput of 19 mines producing between 200,000 and 300,000 tons each. Dutput of 19 mines producing between 200,000 and 300,000 tons each.	s. 1 and 2 Al:	abama	Deggemer	DILIHIMBHAIII	uv	552,
Adirondack Underground Dutput of 48 1 mines producing between 400,000 and 500,000 tons each Dutput of 18 1 mines producing between 400,000 and 300,000 tons each Dutput of 19 mines producing between 200,000 and 300,000 tons each Dutput of 19 mines producing between 200,000 and 300,000 tons each Dutput of 19 mines producing between 200,000 and 300,000 tons each Dutput of 19 mines producing between 200,000 and 300,000 tons each Dutput of 19 mines producing between 200,000 and 300,000 tons each Dutput of 19 mines producing between 200,000 and 300,000 tons each Dutput of 19 mines producing between 200,000 and 300,000 tons each Dutput of 19 mines producing between 100,000 and 300,000 tons each	eneva-West M	ichigan	Ironwood	Gogebic	do	544,
Harrison Minnesota Cooley Mesabi. Open pit. Harmony and Old New York Mineville Adirondack Underground Detailed Head New York Miners Village Cornwall Combined Underground Adirondack Underground Dutput of 48 I mines producing more than 500,000 tons each Dutput of 18 I mines producing between 460,000 and 500,000 tons each Dutput of 19 mines producing between 300,000 and 300,000 tons each Dutput of 19 mines producing between 200,000 and 300,000 tons each Dutput of 30 mines producing between 200,000 and 300,000 tons each Dutput of 30 mines producing between 100,000 and 300,000 tons each Dutput of 30 mines producing between 100,000 and 300,000 tons each Dutput of 30 mines producing between 100,000 and 300,000 tons each Dutput of 19 mines producing between 100,000 and 300,000 tons each Dutput of 30 mines producing between 100,000 and 300,000 tons each Dutput of 30 mines producing between 100,000 and 300,000 tons each Dutput of 19 mines producing between 100,000 and 300,000 tons each Dutput of 19 mines producing between 400,000 and 300,000 tons each Dutput of 19 mines producing between 400,000 and 300,000 tons each Dutput of 19 mines producing between 400,000 and 300,000 tons each Dutput of 19 mines producing between 400,000 and 300,000 tons each Dutput of 19 mines producing between 400,000 and 300,000 tons each Dutput of 19 mines producing between 400,000 and 300,000 tons each Dutput of 19 mines producing between 400,000 and 400,000 tons each Dutput of 19 mines producing between 400,000 and 400,000 tons each Dutput of 19 mines producing between 400,000 and 400,000 tons each Dutput of 19 mines producing between 400,000 and 400,000 tons each Dutput of 19 mines producing between 400,000 and 400,000 tons each Dutput of 19 mines producing between 400,000 and 400,	a Nos. 1 and M		Stambaugh	Menominee	do	527, 520,
Pennsylvania Miners Village Cornwall Combined Chateaugay New York Lyon Mtn Adirondack Underground Chateaugay New York Lyon Mtn Adirondack Underground Chateaugay Chateau	y and Old No	innesota w York	Cooley Mineville	Mesabi Adirondack	Open pit Underground	506,
Output of 19 mines producing between 200,000 and 300,000 tons each	lPe gayPe	nnsylvania w York		Cornwall Adirondack	Combined Underground	3, 300,
Output of 19 mines producing between 200,000 and 300,000 tons each	of 48 1 mines produ	ucing more the	an 500.000 tons eac	ch		1 72, 497, 2, 185, 1 5, 966,
Output of 19 mines producing between 200,000 and 300,000 tons each	of 5 mines product	ng between 46	0.000 and 500.000	tons each		2. 185
Output of 19 mines producing between 200,000 and 300,000 tons each	of 18 1 mines produ	icing between	300,000 and 400.0	00 tons each.		1 5, 966
Output of 30 mines producing between 100,000 and 200,000 tons each	of 19 mines produc	cing between 2	200,000 and 300,000	tons each		4, 702,
Output of 19 mines producing between 50.060 and 100.000 tons each	of 30 mines produc	cing between 1	00,000 and 200,000	tons each		4, 546,
	of 19 mines produc	cing between F	60.060 and 100.000	tons each		1, 336,
Output of 137 mines producing less than 50,600 tons each	of 137 mines produ	icing less than	50.600 tons each			1, 175,
aspec of 101 miles broadents from man object your end of the second	or so mines broad	TOOD VIIGHT	. 55,500 1040 04011.			1

¹¹ mine producing between 300,000 and 400,000 tons included with those producing more than 500,000

BENEFICIATION

Beneficiation of iron ore was reported at 112 mines in 8 States in 1941 compared with 70 mines in 8 States in 1940. At many mines the ore is crushed and screened to improve its structure, but ore so improved is not included in the statistics on beneficiated ore. Some iron ore is recovered as dust from blast furnaces; data on ore so re-

tons.
² Excludes an undetermined number of small pits. The output of these pits is included in the tonnage given.

covered, however, have been accounted for previously in shipments from mines

Beneficiated ore shipped from domestic mines in 1941 increased 50 percent over 1940 and comprised 21 percent of the total shipments compared with 17 percent in 1940.

Beneficiated iron ore shipped from mines in the United States, 1940-41 [Exclusive of ore containing 5 percent or more manganese and of ore sold for paint]

State	Variety	19	40	1941		
	Variety	Gross tons	Value	Gross tons	Value	
Alabama Georgia - Minnesota New Jersey - New York Pennsylvania	Brown oredo	750, 131 41, 015 9, 353, 270 604, 249 2, 149, 197	\$1, 792, 584 63, 353 23, 839, 368 2, 817, 541 8, 569, 580	1, 230, 892 245, 972 14, 846, 899 666, 550 2, 375, 123	\$3, 273, 354 572, 361 38, 483, 473 3, 437, 082 10, 017, 684	
Tennessee Texas California	Brown oredo Magnetite	27, 879	91, 164	10, 684	50, 94	
		12, 925, 741	37, 173, 590	19, 376, 120	55, 834, 89	

The quantity of crude ore beneficiated in the Lake Superior district (all in Minnesota) in 1941 totaled 25,691,501 gross tons and the beneficiated ore recovered 15,125,368 tons—a ratio of 1.699:1. In 1940 the crude ore treated totaled 14,547,504 tons and the beneficiated ore recovered therefrom 9,439,921 tons—a ratio of 1.541:1. Most of the concentration in this district is done by washing, but a few plants are equipped with jigs, and two plants sinter ore after washing. Processes have been described by Counselman.⁴

In the past, an increase in domestic iron-ore production has been accompanied by a percentage decrease in the quantity of beneficiated ore shipped. However, in the record year 1941, 21 percent of the shipments were beneficiated ore compared with 17 percent in 1940. Thus it is apparent that supplies of direct shipping ores are being stressed to the limit, and lower-grade deposits are being exploited. This is made possible in part by more efficient mining and beneficiating methods. Data showing the relationship between beneficiated ore and total shipments for recent years are shown in the following table, and corresponding statistics for 1914 (the first year for which they were gathered) to 1929 are given in Mineral Resources, 1930, part 1. Data for 1930 to 1934, inclusive, are given in Minerals Yearbook, 1935, and for 1932 to 1936, inclusive, in Minerals Yearbook, 1937.

Iron ore shipped from mines in the United States, 1925-29 (average) and 1937-41, in gross tons, and percentage of beneficiated ore compared to the total shipped

[Exclusive of ore containing 5 percent or more manganese and of ore sold for paint]

Year	Benefici- ated	Total	Proportion of beneficiated to total (percent)	Year	Benefici- ated	Total	Proportion of beneficiated to total (percent)
1925–29 (av.)	8, 653, 590	66, 697, 126	13. 0	1939	9, 425, 809	54, 827, 100	17. 2
1937	12, 350, 136	72, 347, 785	17. 1	1940	12, 925, 741	75, 198, 084	17. 2
1938	4, 836, 435	26, 430, 910	18. 3	1941	19, 376, 120	93, 053, 994	20. 8

⁴ Counselman, T. B., Beneficiating Minnesota Iron Ores: Regional Meeting, Am. Inst. Min. and Met. Eng., Duluth, August 12-15, 1941, pp. 15-22.

AVERAGE VALUE

The average value per gross ton of iron ore at the mines was \$2.68

in 1941 compared with \$2.51 in 1940.

The table that follows gives the average value at the mines of the different classes of iron ore in 1940–41 for each of the producing States or groups of States, except where there are fewer than three shippers of a certain variety of ore in a State and permission was not given to publish the value. These data are taken directly from statements of producers and probably represent the commercial selling prices only approximately, as not all reports are comparable. Some evidently include mining costs only; others contain, in addition, the cost of selling and insuring the ore; others include an allowance for a sinking fund; and still others comprise only costs charged against blast furnaces. None of the reports, however, is supposed to include freight charges.

Average value per gross ton of iron ore at mines in the United States, 1940-41

[Exclusive of ore containing 5 percent or more manganese and of ore sold for paint]

State	Hema	Hematite		Brown ore		Magnetite	
0000	1940	1941	1940	1941	1940	1941	
Alabama. Georgia. Michigan Minnesota	\$1.65 2.24 2.94 2.48	\$2. 26 2. 61 2. 88 2. 67	\$2.33 1.79	\$2. 50 2. 29			
Missouri	2. 32	2. 40	2. 50	2.94	\$4.80	\$5. 16	
New York Pennsylvania		(1)			2.78	2. 96	
Wisconsin. Other States 2	2. 68 1. 11	2. 69 1. 19	3. 13	4. 82	2.82	2. 83	
	2. 48	2. 66	2. 31	2. 49	3. 13	3. 43	

Less than 3 producers; permission to publish not given, therefore value may not be shown.
 1940: California, Mississippi, Oklahoma, Tennessee, Texas, Utah, Virginia, Washington, and Wyoming;
 1941: California, Connecticut, Mississippi, Nevada, Oklahoma, Texas, Utah, Virginia, Washington, and Wyoming.

CONSUMPTION

The production of 55,085,446 net tons of pig iron in 1941 required 94,404,667 net tons of iron ore and manganiferous iron ores, 6,858,576 tons of mill cinder and roll scale, and 1,317,072 tons of purchased scrap, an average of 1.862 tons of metalliferous materials (exclusive of home

scrap and flue dust) per ton of iron made.

The greater part of the iron ore used in Alabama furnaces in 1941 was hematite, chiefly from mines in Jefferson County, but some hematite came from De Kalb, Cherokee, and St. Clair Counties. Brown ore, iron sinter, pyrite ash, imported iron ore, manganese ore, and small quantities of domestic manganese-bearing ores were used. The brown ore originated chiefly in mines of the Birmingham and Russellville districts, Alabama, and the Chattanooga district, Georgia. In addition to iron sinter (sintered pyrite ash) from Tennessee, pyrite ash was shipped to Birmingham in 1940 from acid plants in other Southern States. The pyrite from which this ash was made came from both domestic and foreign ores. The domestic manganese-bearing ores came chiefly from Arkansas, Georgia, and Tennessee. Imported

manganese-bearing ores came from Cuba. In 1941, Alabama furnaces consumed an average of 2.450 tons of ore in making 1 ton of pig iron—

the highest average for any State.

Maryland furnaces consumed considerable domestic ore in 1941, in addition to ores from Africa, Brazil, Chile, and Cuba. These furnaces used an average of 1.597 tons of ore per ton of pig iron; however, they used proportionately more cinder, scale, and scrap than any other State.

Blast furnaces in Illinois, Indiana, Kentucky, Michigan, Minnesota, and West Virginia handled Lake Superior iron ore and manganiferous iron ore almost exclusively. Furnaces in Kentucky had the lowest consumption of metal-bearing material per ton of iron.

In New York the furnaces in the Buffalo district used ore chiefly from the Lake Superior district, magnetite from New York, and some manganese ore from Cuba, and the furnace at Troy consumed magne-

tite from the Chateaugay mine at Lyon Mountain, N. Y.

Blast furnaces in Ohio consumed magnetite from New York and hematite and brown ore from Missouri, in addition to ore from the

Lake Superior district.

Virtually all the ore consumed in western Pennsylvania furnaces came from the Lake Superior district. Those in the eastern part of the State used some Lake ore; magnetite ores from Pennsylvania, New Jersey, and New York; and some ore from Africa, Australia, Chile, Cuba, and Spain.

The Pueblo (Colo.) blast furnaces consumed hematite from the Sunrise mine in Wyoming and manganese-bearing ores, chiefly from

Colorado, New Mexico, and California.

The Provo (Utah) furnace treated chiefly semialtered magnetite from the Iron Mountain mine near Cedar City, Utah, manganese tailings from Montana, and manganese-bearing ores from Nevada, Idaho, and Utah.

The Tennessee furnace used chiefly Tennessee brown ore and iron

sinter.

Iron ore and other metallic materials consumed and pig iron produced in 1941, by States, in net tons

	Met	talliferous ma	terials consu	 .	Materials consumed per ton of iron made			
State		nanganifer- on ores	Cinder, scale, and	Total	Pig iron produced, exclusive of ferro- alloys	Ores	Cinder, scale, and	Total
	Domestic Foreign purchased scrap	10001			pur- chased scrap	10041		
Alabama	8, 852, 045	6, 228	197, 841	9, 056, 114	3, 696, 566	2. 396	0.054	2. 450
Illinois.	9, 421, 151		573, 976	9, 995, 127	5, 354, 767	1.760	. 107	1.867
Indiana	11, 101, 430		815, 607	11, 917, 037	6, 374, 331	1.742	.128	1.870
Kentucky	517, 500		44, 329	561, 829	328, 912	1. 573	. 135	1.708
Maryland	1, 705, 179	2, 052, 021	28, 433	4, 285, 633	2, 353, 203	1. 597	. 224	1.821
Michigan	2, 167, 722	89, 948	109, 171	2, 366, 841	1, 350, 450	1.672	. 081	1.753
Minnesota	618, 656		74, 844	693, 500	359, 263	1. 722	. 208	1.930
New York	6, 006, 912	76, 025	412, 537	6, 495, 474	3, 574, 901	1.702	. 115	1.817
Ohio	20, 753, 800		2, 124, 844	22, 878, 644	12, 787, 243	1.623	166	1.789
Pennsylvania	27, 433, 619	125, 858	3, 090, 630	30, 650, 107	16, 856, 917	1.635	. 183	1.818
West Virginia	1, 629, 573		146, 843	1, 776, 416	1, 019, 150	1. 599	. 144	1.743
Undistributed 1	1, 808, 470	38, 530	56, 593	1, 903, 593	1, 029, 743	1. 794	. 055	1.849
	92, 016, 057	2, 388, 610	8, 175, 648	102, 580, 315	55, 085, 446	1.714	. 148	1.862

¹ Includes Colorado, Iowa, Massachusetts, Tennessee, and Utah.

Foreign iron and manganiferous iron ore consumed in the manufacture of pig iron in the United States, 1940-41, by sources of ore, in net tons

Source of ore	1940	1941	Source of ore	1940	1941
Africa Australia Brazil Canada Chile Cuba Newfoundland	18, 261 13, 755 15, 912 101, 165 1, 920, 525 324, 643 18, 450	14, 775 2, 265 17, 863 202, 809 1, 907, 980 232, 848	Norway_Palestine_Spain_Sweden_U.S.S.R.	4, 591 16, 509 8, 567 586 151 2, 443, 115	554 9, 496 2, 388, 610

STOCKS AT MINES

Stocks at mines varied considerably in some States, but the United States total decreased only 1 percent from December 31, 1940, to December 31, 1941.

Stocks of iron ore at mines, December 31, 1940-41, by States, in gross tons

State	1940	1941	State	1940	1941
Alabama	15, 485 2, 302, 980	28, 693 60 1, 939, 457	Pennsylvania Texas	52, 753 638	81, 012 6, 860 500
Minnesota	952, 813 2, 375	1, 310, 487 2, 491	Virginia	3, 086 69	3, 086
New Jersey New York	65, 550 20, 120	1, 572 27, 631	Wisconsin	197, 673	190, 292
North Carolina	20, 120	21,001		3, 613, 742	3, 592, 141

FOREIGN TRADE

Imports for consumption of iron ore for only the first 9 months of 1941 are available for publication. During that period, Chile was the chief source of iron ore imported into this country, furnishing 73 percent of the total; Canada supplied 12, Cuba 8, and Brazil 5 percent. In addition to the figures in the following table, 22,439 tons of dross or pyrite ash were imported from Canada during the first 9 months of 1941.

Iron ore imported for consumption in the United States, 1939-41, by countries, in gross tons

Country	19	39	19	40	1941 (Jan.–Sept.)	
-	Gross tons	Value	Gross tons	Value	Gross tons	Value
AlgeriaAustralia	7,000 16,520	\$25, 167 30, 184				
Brazil British West África ("Other")	16, 700 11, 540	68, 267 55, 677	99, 165 7, 190	\$460, 669 32, 775	80, 320	\$309, 984
CanadaChile	23, 275	129, 251 2, 824, 252	217, 938 1, 682, 600	1, 050, 051 3, 028, 699	201, 152 1, 251, 280	911, 098 2, 280, 485
Cuba Iran (Persia)	1, 586, 625 269, 866	596, 318	219, 653	436, 515	135, 638	270, 144
Mexico	110 1, 722	5, 207 3, 319	3, 650 3, 590	85, 733 7, 206	3, 602	7, 587
Newfoundland and Labrador. Norway	14, 450 199, 966	41, 183 845, 355	23, 320	63, 698	28, 291	77, 122
Philippine Islands Spain	22	230	11,010	55, 793	7, 292	50, 755
Sweden United Kingdom	264, 353 356	1, 227, 864 13, 214	210, 804 393	968, 925 14, 290	236	10, 277
YugoslaviaOther countries	10	22	10 3	160 127		
	2, 412, 515	5, 865, 510	2, 479, 326	6, 204, 641	1, 707, 811	3, 917, 452

Exports of iron ore from the United States totaled 1,347,641 gross tons valued at \$4,362,806 (\$3.24 a ton) during the first 9 months of 1941. Exports for the full year 1940 totaled 1,386,304 gross tons valued at \$4,624,555 (\$3,34 a ton).

MINING IN CUBA

Shipments from Cuban mines decreased 5 percent in 1941 from 1940. The 1941 total (200,350 gross tons) included 73,308 tons of hematite carrying (dried) 56.17 percent iron, and 84,396 tons of siliceous ore carrying (dried) 30.34 percent iron, from the Daiquiri-Juragua mines on the southern coast, and 42,646 tons of nodulized brown ore carrying (dried) 55.69 percent iron from the Mayari district near the northern coast. The Mayari mine resumed operations in 1941.

The total stock of ore reported on hand was 90,930 gross tons at the end of the year compared with 111,797 tons at the end of 1940.

The following table shows shipments of iron ore from Cuba since the mines were opened in 1884. The statistics on shipments of Cuban iron ore are collected by the Bureau of Mines.

Iron ore shipped from mines in the Province of Oriente, Cuba, 1884-1941, in gross tons

	Juragua (hematite and mag- netite),	Sigua	Mayari	Guamá	El Cuero	Total
Year	Daiquiri (hematite and a little magnetite)	(hematite)	(brown ore)	(hematite)	(hematite)	10081
1884-1939 1940 1941	122, 162, 124 177, 044 157, 704	20, 438	3, 901, 183 33, 024 42, 646	41, 241	903, 103	27, 028, 089 210, 068 200, 350
	22, 496, 872	20, 438	3, 976, 853	41, 241	903, 103	27, 438, 507

¹ Of this quantity, 5,932 tons were sent to Pictou, Nova Scotia, and 64,228 tons to other ports outside of the United States.

REVIEW OF LAKE SUPERIOR DISTRICT

Production and shipments.—Operations in the Lake Superior district (the principal producing district) were conducted at record levels during 1941. The Lake shipments broke many records during 1941 and moved 79,654,785 gross tons of iron ore and manganese-bearing ore from United States ports. The season had the earliest opening (April 8) in 40 years, and 6,918,914 tons were shipped during April compared with 464,669 in April 1940. The quantity shipped increased every month to August, when record shipments of 11,429,569 gross tons were made. Likewise, a favorable late closing date (December 8) permitted shipments of 822,998 tons in December.

Eighty-five percent of the United States total iron-ore production came from the Lake Superior district in 1941, and all shipping facilities were strained to the limit. In July Canadian vessels entered the American ore trade to assist in shipping the year's record tonnage. Total shipments of ore by water and all-rail from the Lake Superior district were 80,748,454 gross tons (79,563,286 tons of iron ore and 1,185,168 tons of manganese-bearing ores containing 5 percent or

more manganese) compared with 63,949,536 tons (62,884,545 tons of iron ore and 1,064,991 tons of manganese-bearing ore containing 5 percent or more manganese) in 1940. The iron-ore-shipment figures given above include 47 tons of iron ore from Fillmore County,

Minn., which is outside the true Lake Superior district.

Production in the Lake Superior region in 1941 increased 28 percent over 1940, to establish an all-time record. The 85 percent of the United States total contributed by the district in 1941 compares with 83 percent in 1940 and 81 percent in 1939. It is therefore apparent that as domestic iron-ore-mining activity increases, the bulk of the increase is supplied from the Lake Superior region. Several ranges contributed to the district total. The Mesabi was the largest producer, furnishing 76 percent of the district and 65 percent of the United States total. The output, by ranges, is listed in the following table. After 1905 figures do not include manganiferous iron ore containing 5 percent or more manganese.

Iron ore mined in the Lake Superior district, 1854-1941, by ranges, in gross tons
[Exclusive after 1905 of ore containing 5 percent or more manganese]

Year	Marquette	Menominee	Gogebic	Vermilion	Mesabi	Cuyuna	Total
1854-1939 1940 1941	201, 533, 822 5, 284, 194 6, 230, 612	184, 770, 564 2, 679, 364 3, 822, 451	213, 782, 729 5, 770, 357 6, 054, 362	67, 135, 407 1, 531, 963 1, 853, 030	1, 073, 242, 695 45, 483, 450 59, 688, 047	26, 056, 086 721, 397 1, 209, 783	1, 766, 521, 303 61, 470, 725 78, 858, 285
	213, 048, 628	191, 272, 379	225, 607, 448	70, 520, 400	1, 178, 414, 192	27, 987, 266	1, 906, 850, 313

In 1941, 76 percent of the ores produced on the iron ranges of the Lake Superior district came from open-pit mines. A large part of the open-pit production originates in the Mesabi range, which in 1941 supplied 96 percent of the open-pit ore mined in the district. There is no open-pit mining in northern Wisconsin and relatively little in Michigan. In addition to the output on the Mesabi range, there is some open-pit production in Minnesota on the Cuyuna and Vermilion ranges.

Holt ⁵ has described the progress made in the mining industry of Minnesota during the last few years. Open pits, which were not feasible in the past, are now being developed, because of the rapid improvement in stripping and mining methods. The work formerly required in constructing railroad tracks, building, and dump trestles has been eliminated in favor of the speedy and efficient method of using

trucks and bulldozers for stripping and hauling.

Most stripping is done in winter in order to spread out labor requirements over the entire year and to utilize equipment that otherwise would be idle. The newer equipment now available is built for work in extreme cold and heat. Overburden is loaded by electric, Diesel, or gasoline shovels and a few steam shovels. The larger pits still use locomotives and side-dump stripping cars, but truck haulage is replacing steam locomotives to a greater extent each year. After the overburden has been removed, virtually all ores require drilling and blasting before loading. Most drilling is done with a churn-type drill,

⁸ Holt, Grover J., Mining Practice and Mine Transportation on Minnesota's Iron Ranges: Regional Meeting, Am. Inst. Min. and Met. Eng., Duluth, Minn., August 12-15, 1941, pp. 10-14.

although recently a new type of large-diameter auger has been used

successfully for drilling horizontal holes.

The most important development in mining in recent years has been the radical change in the methods of transporting open-pit ore. In many pits the change to trucks, tractors, bulldozers and beltconveyor systems has necessitated replacing tracks, locomotive repair shops, and locomotive engineers with roads, garages, drivers, and mechanics. Locomotive cranes are being replaced by cranes mounted on treads and trucks.

Shipments from the Michipicoten range in Ontario, Canada, continued during 1941. Although this output is not included in Bureau of Mines production figures, it enters the same commercial channels. The ore comes from the old Helen mine of the Algoma Steel Corporation, which in August 1939 began to produce from new open-pit operations and made shipments for the first time since 1922. A total of 462,747 tons of sinter, made from the carbonate ores, was shipped

during the season, compared with 361,394 tons in 1940.

Analyses.—The following table, compiled by the Lake Superior Iron Ore Association, summarizes the average analyses of the total tonnages of all grades of ore shipped and shows the remarkable uniformity maintained during the past 5 years. This uniformity does not mean, of course, that the average grade of available Lake Superior ore is not declining. The grade of shipments has been maintained partly by beneficiation and partly by mixing ores from different deposits. The method of sampling and grading Lake Superior iron ores has been described by Bayer, and the method of classification and sampling by Murray.7

Average analyses of total tonnages (bill-of-lading weights) of all grades of iron ore from all ranges of Lake Superior district, 1937-41

Year	Gross tons	Iron (nat- ural)	Phos- phorus	Silica	Manga- nese	Moisture
1937	61, 972, 823 19, 353, 497 44, 983, 754 63, 308, 413 79, 941, 240	Percent 51. 53 51. 90 51. 75 52. 09 51. 83	Percent 0.091 .089 .085 .085	Percent 8. 27 8. 25 8. 27 8. 00 8. 18	Percent 0.82 .81 .76 .77	Percent 11. 31 10. 13 10. 73 10. 93 11. 01

Stocks at Lake Eric ports.—At the close of navigation in 1941 according to the Lake Superior Iron Ore Association, 5,290,117 gross tons were in stock at Lake Erie ports compared with 4,786,643 tons on the corresponding date in 1940. At the opening of navigation in May 1942, 2,529,175 tons were in stock at these ports—an increase of 594,106 tons from the figure on May 1, 1941. Withdrawals from of 594,106 tons from the figure on May 1, 1941. docks were therefore 2,760,942 tons during the winter of 1941-42.

Prices of Lake Superior ore.—The prices established April 17, 1941, for the four standard grades of Lake Superior ore were unchanged from a year ago and remained 5 cents a ton lower than the price maintained from 1926 to 1939. Beginning April 17, 1940, the unit

Bayer, E. P., Sampling and Grading Mesabi Iron Ore: Min. and Met., vol. 18, No. 372, December 1937, pp. 547-548. Grading Lake Superior Iron Ores: Eng. and Min. Jour., vol. 139, No. 3, March 1938, pp. 50-51.
Murray, C. B., Classification and Sampling; Lake Superior Iron Ores (chap. 4): Lake Superior Iron Ore Assoc., Cleveland, 1938, pp. 69-72.

prices for base ore of the various grades quoted at Lake Erie ports were as follows: Old-Range Bessemer, 9.223 cents; Mesabi Bessemer, 8.932 cents; Old-Range Nonbessemer, 8.932 cents; and Mesabi Nonbessemer, 8.641 cents, respectively, \$4.75, \$4.60, \$4.60, and \$4.45 a gross ton. The base of the four standard grades for 1925–41 is an iron content of 51.5 percent natural. For the bessemer grades, the allowable phosphorus content is 0.045 percent (dry), and for the nonbessemer grades the phosphorus content ranges from 0.045 to 0.18 percent. Ores containing more than 0.18 percent phosphorus are classed as high-phosphorus ores, whereas those containing 18 percent or more silica are classed as siliceous ores.

Reserves.—Estimates of ore reserves for Minnesota, furnished by the Minnesota Tax Commission, and for Michigan, furnished by the Michigan Board of Tax Commissioners, are shown in the following tables. These estimates reveal decreases from 1940 of 24,796,880 gross tons in Minnesota and 1,315,899 tons in Michigan. Reserves in Wisconsin have been estimated recently at 5,500,000 tons.

Unmined iron-ore reserves in Minnesota, May 1, 1937-41, in gross tons

Range	1937	1938	1939	1940	1941
Mesabi Vermilion Cuyuna	1, 173, 108, 376 13, 943, 325 61, 922, 739	1, 150, 817, 768 14, 274, 025 60, 690, 596	1, 132, 513, 348 13, 631, 484 61, 902, 885	1, 122, 593, 126 13, 208, 699 65, 026, 280	1, 097, 000, 026 14, 018, 934 65, 012, 265
	1, 248, 974, 440	1, 225, 782, 389	1, 208, 047, 717	1, 200, 828, 105	1, 176, 031, 225

Iron-ore reserves in Michigan, January 1, 1938-42, in gross tons

Range	1938	1939	1940	1941	1942
Gogebic Marquette Menominee	40, 706, 291 49, 869, 363 58, 031, 692	40, 456, 002 52, 130, 385 57, 168, 510	37, 160, 900 49, 573, 794 56, 922, 733	31, 603, 731 48, 370, 114 55, 851, 786	30, 073, 528 48, 306, 120 56, 130, 084
	148, 607, 346	149, 754, 897	143, 657, 427	135, 825, 631	134, 509, 732

MINING BY STATES

Alabama.—Production of iron ore in Alabama during 1941 increased 8 percent over 1940 and established a new record. About 85 percent of the 1941 production came from underground operations compared with 89 percent in 1940, indicating a considerable increase in open-pit production during 1941. Consequently, brown-ore production increased 42 percent in 1941. Hematite, which comprised 86 percent of the State total in 1941, is derived chiefly from underground operations on Red Mountain near Birmingham in Jefferson County, where Raimund Nos. 1 and 2, Red Mountain group (comprising the Muscoda, Wenonah, and Ishkooda groups), Ruffner, Sloss Nos. 1 and 2, Spaulding, and Woodward No. 3 mines were producers. Several smaller mines (open-pit and underground) in Cherokee, De Kalb, St. Clair, and Jefferson Counties contributed to the total output of hematite ore. The hematite produced in 1941 averaged (natural) 35.57 percent iron, 0.15 percent manganese, 0.32 percent phosphorus, and 15.02

percent lime. The Red Mountain group, with 4,056,217 tons, was the third-largest producer in the United States in 1941. Limonite (brown ore) is mined from a number of widely scattered deposits in Alabama, but production is not nearly as large as that of red ore. In 1941, the output of brown ore constituted 14 percent of the Alabama total. Brown ores, however, are higher-grade and usually have been beneficiated, although some operations are rather crude. The brown ore mined in 1941 averaged (natural) 47 percent iron and 0.77 percent manganese. Brown ore is mined from open-cuts and was produced chiefly from the Tecumseh mine in Cherokee County, the Russellville and Parish mines in Franklin County, and the Martaban and Renomines in Tuscaloosa County.

California.—Production of iron ore in California increased from 1,071 tons in 1940 to 53,531 tons in 1941. Most of the ore was hematite used for cement. The ore mined averaged 55 percent iron during

1941.

Connecticut.—A small quantity of brown iron ore came from the Ore Hill mine in Litchfield County during 1941. This ore was used as a foundry flux and was the first iron ore reported from Connecticut since 1920.

Georgia.—The heavy demand for iron ore in the South enabled production of iron ore in Georgia to continue to increase in 1941. Production consisted of 21,313 tons of hematite and 239,354 tons of brown ore compared with 7,163 tons of hematite and 94,123 tons of brown ore in 1940. Virtually all the brown ore mined during 1941 was beneficiated. The iron ore from Georgia averaged (natural) 46.91 percent iron. The average value at the mines was \$2.61 for hematite and \$2.29 for brown

ore compared with \$2.24 and \$1.79, respectively, in 1940.

Michigan.—Output from Michigan comes from three ranges—the Marquette, the Menominee, and the Gogebic. All ranges increased their production in 1941, the Menominee showing the largest gain in tonnage. Production in Michigan rose 18 percent in 1941 over 1940 and totaled 14,671,192 gross tons. Of this total, 88 percent came from underground mines; the Negaunee mine—an underground producer on the Marquette range—was the largest producer. The iron content (natural) of the ore mined in Michigan in 1941 averaged 51.68 percent compared with 52.03 percent in 1940. Iron-ore reserves in Michigan at the end of 1941 totaled 134,509,732 gross tons—a decrease of 1,315,899 tons during the year.

A report of the iron-ore mines of Michigan for 1941, published by the Geological Survey Division of the Michigan Department of Conservation, shows that the average number of men employed was 7,553 (6,743 in 1940), the average number of days worked 248 (213 in 1940), the average daily wage \$7.60 (\$7.48 in 1940), the average yearly earning \$1,875.79 (\$1,593.82 in 1940), and the average tons of ore

mined per man per day 7.15 (5.10 in 1940).

The data in the following table on average per-ton costs of mining ore at underground mines and at siliceous open pits have been abstracted from statistics published in much greater detail by the Geological Survey Division of Michigan.

⁸ Eddy, G. E., General Statistics Covering Costs and Production of Michigan Iron Mines: Michigan Dept. of Conservation, Geol. Survey Div., Lansing, 1942, 9 pp.

Average costs, per gross ton, of mining iron ore at underground mines and at siliceous open pits in Michigan in 1941

	Underground							
Item	Gogebic	Marquette	Dickinson and Iron	Total	Siliceous open pits			
Cost of mining Deferred mining cost Taxes General overhead Transportation Marketing Royalty Interest on borrowed money	\$1, 5062 , 1841 , 2360 , 2055 1, 8009 , 0686 , 3581 , 0003	\$1.7452 .0604 .2041 .1928 1.5072 .0919 .2066 .0392	\$1. 4880 . 1343 . 1325 . 1646 1. 6297 . 0749 . 2213 . 0061	\$1. 5990 .1190 .1948 .1884 1. 6460 .0797 .2581	\$0. 4417 . 0373 . 0422 . 0918 1. 4929 . 0801 . 0869			
Total ore cost	4. 3597 4. 7429	4. 0474 4. 7400	3. 8574 4. 4522	4. 1029 4. 6577	2. 2731 2. 3790			
Gross ore profit 1	. 3832	. 6926	. 5948	. 5548	. 1059			

¹ This figure does not represent true profit, as much ore is sold below the Lake Erie price.

Minnesota.—In 1941, the output of iron ore in Minnesota increased 31 percent over that in 1940 and was 30 percent greater than the previous peak established in 1937. Three ranges contribute to Minnesota's production—the Cuyuna, the Mesabi, and the Vermilion. The Mesabi range supplied a large part of the Minnesota total and in 1941 produced 59,688,047 tons. The output from open-pit mines in 1941 furnished 93 percent of the total compared with 91 percent in 1940 and 88 percent in 1939. Of the 18 domestic mines producing more than 1 million tons each in 1941, 13 were in Minnesota; of these 11 were open pits, and 2 used combination open-pit and underground methods. Of the 102 mines in Minnesota active in 1941 (79 in 1940), 67 (52 in 1940) yielded more than 100,000 tons each. The iron content (natural) of the ore mined in 1941 averaged 52.43 percent compared with 52.36 percent in 1940.

According to the annual report of the mine inspector of St. Louis County, the average number of men employed in iron mines in the county was 7,097 in 1941 (5,547 in 1940), and the average daily wage was \$7.02 (\$6.70 in 1940) for 8 hours. In 1941, 8,065,960 cubic yards of overburden were removed compared with 2,728,306 in 1940.

According to the annual report of the mine inspector of Itasca County, the average number of men employed in iron mines in the county was 3,947 in 1941 (3,047 in 1940), and the average daily wage was \$6.82 (\$6.40 in 1940) for 8 hours. In 1941, 11,194,181 cubic yards of overburden were removed compared with 4,395,650 in 1940.

Unmined iron-ore reserves in Minnesota on May 1, 1941, totaled 1,176,031,225 gross tons, a decrease of 24,796,880 tons from 1940.

Missouri.—An undetermined number of small mines and pits in Bollinger, Butler, Carter, Crawford, Dent, Franklin, Madison, St. Francois, Washington, and Wayne Counties supplied the iron-ore output of Missouri in 1941, which decreased considerably from 53,638 tons in 1940 to 18,653 tons in 1941. The ore, which averaged 51.90 percent iron, comprised both hematite and brown ore, was mined by open-pit and underground methods, and was shipped to paint and steel plants as well as to nonferrous smelters.

Nevada.—Jay Jacobson produced the State total of 215 long tons from the Tom O'Shanter mine in Clark county. All was used as a flux in nonferrous smelters.

New Jersey.—The output of iron ore in New Jersey decreased 2 recent in 1941 from 1940 and totaled 649,374 tons. The ore, all percent in 1941 from 1940 and totaled 649,374 tons. magnetite and all from underground operations, came from three mines in Morris County and one mine in Warren County in the northern part of the State. New Jersey ores are crushed and concentrated before shipment. Most of the concentration is done magnetically, although some nonmagnetic martite is recovered by gravity methods, and some hand-sorting is practiced, principally to recover high-grade lump used in open-hearth steel furnaces. The concentrates produced in 1941 averaged (natural) 62.35 percent iron. The largest output came from the Scrub Oaks mine, which produced 798,751 gross tons of crude ore. Concentrates from this ore totaled 317,205 gross tons averaging 62.12 percent iron. Other producers were the Mount Hope, Richard, and Washington mines.

New York.—The iron ore produced in New York during 1941 was chiefly magnetite from underground operations at the Harmony and Old Bed shafts in Essex County and the Chateaugay mine in Clinton County. Some hematite was mined for paint in Oneida and Wayne Counties and a small amount for other coloring purposes in St. Lawrence County. Shipments from New York in 1941 included sinter, averaging 67 percent iron; lump, averaging 61 percent iron;

and concentrates, averaging 68 percent iron.

The largest producer was the Republic Steel Corporation, which operates properties at Mineville (near Port Henry) and at Lyon Mountain.

Oklahoma.—The iron ore accredited to Oklahoma in 1941 came from two operations in Johnston County. All was brown ore and was used

in the manufacture of cement.

Pennsylvania.—Pennsylvania is the most important source of magnetite in the United States. The output comes from the Cornwall mine in Lebanon County, where the ore is extracted by both open-pit and underground methods. The ore is shipped to Lebanon, Pa., where it is concentrated magnetically. In addition, some carbonate ore for use in paint was mined in Carbon County in 1941, and some brown paint ore came from Clearfield County. Hickok 9 has summarized the history of iron-ore production in Pennsylvania and the changing economic conditions that affect the industry and control its history; he also discussed the geological environment, mode of origin, and future reserves of the various types of iron ore.

South Dakota.—Iron ore from South Dakota increased from 640 tons in 1940 to 2,150 tons in 1941. All was shipped for paint and was

brown ore from the Hausle mine in Pennington County.

Tennessee.—No iron-ore production was reported from Tennessee in 1941. However, a considerable quantity of sintered pyrite ash was made at the plants of the Tennessee Copper Co. in Ducktown Basin. This sinter, which contained 67.5 to 69.4 percent iron and 0.005 percent phosphorus in 1941, moved largely to blast furnaces in Alabama and Tennessee. Such sinter is not included in iron-ore production or shipment figures for the United States.

Texas.—The output of iron ore from Texas came from the Linden

mine in Cass County. The product is brown ore, which averaged

52.5 percent iron in 1941.

⁹ Hickok, W. O., IV, Iron Ores of Pennsylvania: Pennsylvania Geol. Survey Bull. M 18-B, 4th ser., 1939, 21 pp.

Utah.—Two operators in Iron County supplied the Utah total in 1941. By far the larger output came from the Iron Mountain mine, and a relatively small quantity came from the Great Western. The ore, principally semialtered magnetite, contained (natural) 54.47 percent iron and moved largely to the blast furnace at Provo, Utah, although small quantities went to steel plants.

. Virginia.—A small production of 331 tons of brown ore came from the Oriskany mine in Botetourt County in 1941 and was shipped for

the manufacture of hydrogen gas.

Washington.—Two underground mines, the Napoleon in Stevens County and the Keystone in Pend Oreille County, and an open-pit mine, the Neutral in Okanogan County, supplied the iron ore from Washington in 1941. The underground mines yielded hematite averaging about 27 percent iron, which was used in the manufacture of cement. The Neutral mine yielded magnetite averaging about 68 percent iron, which was used in making ferromagnesite.

Wisconsin.—The Montreal underground mine in Iron County was the largest producer of iron ore in Wisconsin, contributing 1,080,136 gross tons of the 1,436,233 produced in 1941. The ore—hematite—averaged (natural) 53.32 percent iron, 1.12 percent manganese, and 0.052 percent phosphorus. The Cary underground mine, also in Iron County, furnished 352,097 tons of hematite containing (natural) 53.21 percent iron, 1.26 percent manganese, and 0.054 percent phosphorus. In addition, 4,000 tons of ore were shipped from the Matilda mine in Florence County.

Wyoming.—The output of iron ore from Wyoming in 1941, all from the Sunrise mine, was 985,852 gross tons of hematite containing (dry) 55.11 percent iron, 0.08 percent manganese, 0.075 percent phosphorus, and 6.8 percent moisture. Much of the ore is a red, earthy hematite similar to Mesabi ore. Production came from both open-pit

and underground operations.

Iron ore mined in the United States, 1940-41, by States and counties
[Exclusive of ore containing 5 percent or more manganese]

		1940		1941			1940		1941
State and county	Ac- tive mines	Gross tons	Ac- tive mines	Gross tons	State and county	Ac- tive mines	Gross tons	Ac- tive mines	Gross tons
Alabama: Blount Butler Crenshaw Calhoun Cherokee Chilton Cleburne Colbert	3 3 14 110 2 1	25, 765 22, 557	$\left\{\begin{array}{c} 9 \\ 1 \\ ^{1}5 \\ ^{1}11 \\ 2 \end{array}\right.$	32, 395 40, 325 8, 176 8, 630 89, 008 2, 801 33, 615 220	Alabama—Con. Talladega Tuscaloosa Unknown California: San Bernar-	13 4 151	312, 651	13	53, 55 379, 94 16, 09 7, 884, 85
DeKalb Etowah Franklin Jefferson Lamar Marshall	1 13 11 11	2, 249 235, 120 6, 541, 407 317		1, 411 190 423, 061 6, 787, 018	dino Inyo Santa Cruz		1, 071 1, 071	$ \begin{bmatrix} & 1 \\ & 1 \\ & 1 \end{bmatrix} $	53, 53
Pike St. Clair Shelby	$\frac{1}{2}$	15, 720 137	1 2 1 1	157 8, 151 59 48	Connecticut: Litchfield			1	8

¹ In addition there is an undetermined number of small pits. The output of these pits is included in the tonnage given.

Iron ore mined in the United States, 1940-41, by States and counties—Continued
[Exclusive of ore containing 5 percent or more manganese]

		1940	1	941			1940		1941
State and county	Ac- tive mines	Gross tons	Ac- tive mines	Gross tons	State and county	Ac- tive mines	Gross tons	Ac- tive mines	Gross tons
Georgia: Bartow Chattooga Cherokee Floyd Gordon Polk	1	27, 262 84 89 66, 688 7, 163	15 1 11 18 13	83, 296 164 417 143 170, 250 6, 397	New York: St. Lawrence Essex Clinton Oneida Wayne Pennsylvania: Lebanon	1 1 1 1	2,899,986	1 1 1 1 1 1	3, 309, 004
Walker	114	101, 286	119	260, 667	Carbon	1	513	1 1	3, 00
Michigan: Dickinson Gogebic	3 10	764, 395 4, 508, 890 1, 914, 969	3 9 14	4, 622, 129	South Dakota:	6	2, 900, 499	8	3, 312, 610
Iron Marquette	14	5, 284, 194	15	6, 230, 612	Pennington	1	640	1	2, 150
Minnesota: Crow Wing ItascaSt. Louis Fillmore	8 29 42	721, 397 10, 570, 746 36, 444, 667		14, 671, 192 1, 209, 783 16, 103, 012 45, 433, 964 47 4, 101	Virginia: Roanoke Botetourt Tennessee: Hamilton Hickman Lewis	1 2 1 1 1		i	33
	79	47, 736, 810	102	62, 750, 907		6	23, 187	1	33
Mississippi: Marshall Prentiss Missouri:	1	50	1 	51	Texas: Cass Oklahoma: Johnston	2	5, 453	$\begin{bmatrix} & 1 \\ & 2 \end{bmatrix}$	17, 44
Butler, Car- ter, Craw- ford, and Wayne		43, 890	12	16, 761	Utah: Iron	3 2			
PhelpsBollingerMadisonDentFranklin	1 1	320	(2)	385 600 86	Washington: Okanogan Pend Oreille_ Stevens	1 1 1	1,444	1	
Iron Miller	1	6, 683		100		3	5, 386	3	10, 42
St. Francois Texas Washington		28 708	1	641	Wisconsin: Dodge Iron Florence				
Nevada: Clark	1		1	215		3	1, 262, 06	5 3	1, 436, 23
New Jersey: Morris Warren		659, 425	{ 3		Wyoming: Platte	. 1	831, 31	4 1	985, 8
	4	659, 425	4	649, 374		1 230	73, 695, 89	9 276	92, 409, 5

¹ In addition there is an undetermined number of small pits. The output of these pits is included in

the tonnage given. 2 Undetermined number of small pits. The output of these pits is included in the tonnage given.

MEN EMPLOYED AND OUTPUT PER MAN

Although complete information on employment at iron-ore mines in 1941 is not yet available, incomplete figures indicate that about 28,000 men working about 56,000,000 man-hours were required to produce 92,409,579 tons of merchantable ore—an average of about 1.7 tons per man-hour, an all-time record. Thus, the total man-hours worked in 1941 advanced 15 percent over 1940, whereas the output of merchantable ore increased 25 percent; in consequence, output per man-hour increased 13 percent. The gain in output per man-hour in

1941 compared with 1940 was due mainly to a further shift in the production of ore from underground to open-pit mines and to nearer-capacity operation of large units. Specifically about 71 percent of the output came from open-pit mines in 1941 compared with 67 percent in 1940, and 18 mines produced more than 1 million tons each in 1941 compared with 15 in 1940.

Figure 3 shows trends in employment and output at iron-ore mines

in the United States from 1923 to 1940.

During 1940 (the latest year for which complete statistics are available) a substantial increase in iron-ore output resulted in increased employment at the mines. The average number of men increased, as did the average number of days and total man-hours worked. In 1940, 25,128 men working 48,731,997 man-hours produced 73,695,899

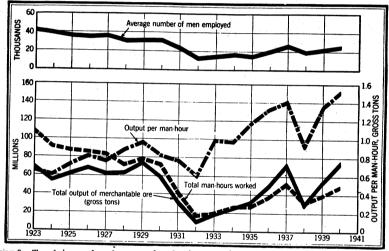


FIGURE 3.—Trends in number of men employed at iron-ore mines, output of merchantable ore, man-hours worked, and output per man-hour in the United States, 1923-40.

gross tons of merchantable ore—an average output of 1.512 tons per man-hour—whereas in 1939, 21,859 men working 39,055,362 man-hours produced 51,731,730 tons of merchantable ore—an average output of 1.325 tons per man-hour. Thus, although the average number of men employed increased 15 percent from 1939 to 1940 and the number of man-hours gained 25 percent, the output of merchantable ore advanced 42 percent, resulting in a 14-percent increase in the output per man-hour. The labor requirements in 1940 were relatively smaller than in 1939 due to several factors—the proportionately larger output of open-pit mines, nearer-capacity production of operating units, and the stripping of proportionately much less overburden in preparation for future mining.

In 1940 the number of man-hours of labor increased over 1939 in all districts, but the increases in the Lake Superior and Southeastern districts (24 and 25 percent, respectively) were relatively less than in the other chief producing districts. The increases in the Northeastern and Western districts were 26 and 33 percent, respectively. In the Lake Superior district, the output of merchantable ore per man-hour in 1940 reached 2.032 tons—18 percent more than in 1939 and 14 percent more than the previous record year of 1937. The large gain

(19,791,715 tons or 47 percent) in Lake Superior output in 1940 over 1939 required the employment of 16 percent more men. This, plus an 8-percent increase in the average number of days worked, resulted in a 24-percent rise in the number of man-hours worked. Much of the Lake Superior output comes from Minnesota, where open pits furnished 91 percent of the State total in 1940. Because of this pre-

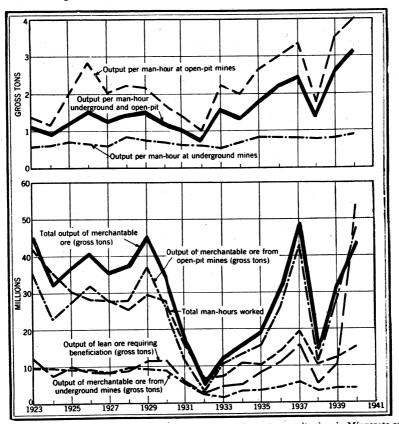


FIGURE 4.—Trends in output of merchantable iron ore per man-hour at open-pit mines in Minnesota compared with production of merchantable and lean ore and total man-hours worked, 1923–40.

ponderant production from open pits, the output per man-hour in Minnesota is greater than in any other State or district and in 1940 amounted to 3.136 tons—a 22-percent increase over 1939. Although advances in mechanization, more efficient mining methods, and better management of mines have done much to increase output in recent years, most of the gain is due to expansion of open-pit operations in Minnesota. For example, although about 75 percent of the merchantable ore output of Minnesota in 1923–32 came from open-pit mines, 85 percent was so produced in 1933–40. Minnesota contributed 61 percent of the total merchantable ore produced in 1923–40, and during this period the output at open-pit mines averaged 2.189 tons per man-hour compared with only 0.707 ton per man-hour at underground mines.

The greater output per man-hour in recent years also was due partly to the stripping of proportionately less overburden in Minne-

sota in 1933-40 than in 1923-32. In 1933-40 about one-fourth cubic yard of overburden was removed for each ton of merchantable ore mined in Itasca and St. Louis Counties, Minnesota, whereas in 1923-32 about one-half cubic yard of overburden was recovered for each ton of ore mined. Any material shift in the labor force used for direct mining of the ore at the expense of that used in stripping will result in a much higher output per man-hour for any year.

Another factor that affects the output per man-hour is the tendency to mine leaner ore. Proportionately more lean ore requiring beneficiation has been mined in Minnesota in recent years than in 1923-32. In 1933-40, for instance, beneficiated ore represented 21 percent of

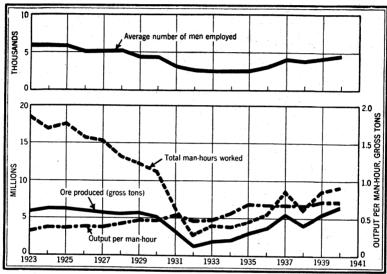


FIGURE 5.—Trends in production, man-hours worked, output per man-hour, and number of men employed at iron-ore mines in Jefferson County, Ala., 1923-40.

the total merchantable ore compared with an average of only 16

percent in 1923–32.

Most of the ore mined in the Southeastern district—the secondlargest producing region—is obtained from underground operations. The output of merchantable ore per man-hour decreased slightly from 0.644 ton in 1939 to 0.639 ton in 1940. The largest and most consistent producing mines in the Southeastern district are in Jefferson County, Ala., where 4,623 men working 9,122,985 man-hours in 1940 produced 6,541,407 tons of merchantable ore, equivalent to an average output of 0.717 ton per man-hour. Virtually all ore produced in Jefferson County comes from underground mines. In comparing the man-hour cost of mining ore in this county, with that of underground mines in the Lake Superior district one should remember that, whereas the ore in the Lake Superior district is much richer in iron, the ore from the Jefferson County mines contains enough or almost enough lime to make it self-fluxing. Thus, the lower iron content is partly offset by the self-fluxing nature of the ore.

Figure 5 shows trends in production and employment at iron-ore

mines in Jefferson County, Ala., 1923-40.

In the Northeastern district the average output of merchantable ore per man-hour decreased to 0.594 ton in 1940 from 0.654 ton in 1939. The drop in productivity was due in part to relatively larger increases in output from mines in New Jersey and New York, where virtually the entire output came from underground operations, resulting in a relatively higher expenditure of labor than in Pennsylvania, where output is predominantly from the open pit at Cornwall and productivity is high.

Trends in the technology, employment, and output per man in iron-ore mining over the past half century are covered in a recent

report by Yaworski, Kiessling, and others.10

The accompanying table shows employment at iron mines and beneficiating plants, quantity and tenor of ore produced, and average output per man by districts and States in 1940. Corresponding statistics and supplementary data are given in Minerals Yearbook, 1934 to 1940, inclusive, and Minerals Yearbook, Review of 1940.

¹⁰ Yaworski, N., Kiessling, O. E., and others, Technology, Employment, and Output per Man in Iron Mining: W. P. A. Nat. Research Project, in cooperation with Bureau of Mines, U. S. Department of Interior, June 1940, 264 pp.

Employment at iron-ore mines and beneficiating plants, quantity and tenor of ore produced, and average output per man in 1940, by districts and States

(Wyolneiga	01 0	\PA	containing	ĸ	nercent	or	more	manganesel	1

	<u> </u>				6 01 016 0011	valuing o per	reent or mor	e manganese	·	duction					
			Employmer Time er			:	Mer	chantable ore			Avera	ge per m	an (gross	tons)	
District and State	Average			Ma	i-hours Crude ore			Iron cont	ained	Crud (partl)	y esti-		Merchan	table ore)
	number of men	Average	Total man-			(partly estimated),				mat	ed)			Iron con	ntained
	employed	number of days	shifts	Aver- age per shift	Total	gross tons	Gross tons	Gross tons	Per- cent natural	Per shift	Per hour	Per shift	Per hour	Per shift	Per hour
Lake Superior: Michigan Minnesota Wisconsin	6, 981 8, 519 647	245 224 260	1, 710, 740 1, 905, 481 168, 345	8. 0 8. 0 8. 0	13, 681, 841 15, 223, 399 1, 346, 760	12, 472, 448 53, 617, 491 1, 262, 065	12, 472, 448 47, 736, 810 1, 262, 065	6, 489, 049 24, 993, 261 673, 527	52. 03 52. 36 53. 35	7. 291 28. 139 7. 497	0. 912 3. 522 . 937	7. 291 25. 052 7. 497	0. 912 3. 136 . 937	3, 793 13, 117 4, 001	0. 474 1. 642 . 500
	16, 147	234	3, 784, 566	8.0	30, 252, 000	67, 352, 004	61, 471, 323	32, 155, 837	52. 31	17. 796	2, 226	16. 243	2.032	8. 497	1.063
Southeastern States: Alabama Georgia	5, 593	245	1, 369, 194	8. 1	11, 137, 408	9, 413, 519 240, 650	7, 316, 127 101, 286	2, 665, 246 47, 747	36. 43 47. 14 (40. 90	6. 875	. 845	5.343	. 657	1. 947	. 239
Mississippi Tennessee Texas Virginia	414	148	61, 199	8.3	506, 004	67, 218	26, 893	12, 807	47. 24 51. 50 54. 32	5.031	. 608	2.094	. 253	. 989	.120
	6, 007	238	1, 430, 393	8. 1	11, 643, 412	9, 721, 387	7, 444, 306	2, 725, 800	36. 62	6. 796	. 835	5. 204	. 639	1. 906	. 234
Northeastern States: New Jersey New York	857 } 1,664	268 310	229, 881 515, 985	8. 0 8. 0	1, 839, 050 4, 151, 289	1, 292, 794 3, 817, 196	659, 42 5 2, 900, 499	411, 124 1, 386, 752	62.35 { 66.56 39.73	5. 624 } 7. 398	. 703 . 920	2. 869 5. 621	. 359	1.788 2.688	. 224
Pennsylvania	2, 521	296	745, 866	8.0	5, 990, 339	5, 109, 990	3, 559, 924	1, 797, 876	50.50	6. 851	. 853	4.773	. 594	2.410	.300
Western States: California Missouri Oklahoma Utah	197	172	33, 801	8.8	298, 798	1,071 53,638 1,797 326,500	1, 071 53, 638 1, 797 326, 500	675 27, 708 809 179, 487	63. 03 51. 66 45. 02 54. 97	11. 509	1. 302	11. 509	1. 302	6. 286	. 711
WashingtonSouth Dakota Wyoming	256	267	68, 431	8.0	547, 448	5, 386 640 831, 314	5, 386 640 831, 314	3, 501 294 424, 220	65.00 51.03	$\begin{cases} 12, 148 \end{cases}$	1. 519	12.148	1. 519	6. 199	. 775
	453	226	102, 232	8.3	846, 246	1, 220, 346	1, 220, 346	636, 694	52. 17	11. 937	1.442	11. 937	1.442	6. 228	. 752
	25, 128	241	6, 063, 057	8.0	48, 731, 997	83, 403, 727	73, 695, 899	37, 316, 207	50.64	13. 756	1.711	12. 155	1. 512	6. 155	.766

WORLD PRODUCTION

The following table shows the production of iron ore, by countries, from 1937 to 1941, insofar as statistics are available. Although complete returns for 1941 are not yet available it is evident that world production was much greater than in 1940.

World production of iron ore, 1937-41, by countries, in metric tons 1

[Compiled by B. B. Waldbauer]

Country 1	1937	1938	1939	1940	1941
North America:					
Canada	5, 622	5, 281	117, 583	2 367, 194	² 362, 33
Cuba	2 496, 258	3 154, 540	² 283, 613	160, 339	192, 85
Guatemala					
Mexico		118, 251	143, 873	110, 783	110, 13
Newfoundland		1, 707, 180	1, 679, 625	1, 532, 990	981, 73
United States	73, 250, 649	28, 903, 861	52, 562, 024	74, 878, 718	93, 892, 78
South America:	1 ' ''				
Brazil 3		359, 115	396, 938	255, 548	420, 78
Chile 4	1,489,637	1, 608, 399	1, 626, 490	1, 749, 840	1, 702, 69
Curope:		1	1		
Belgium		180, 920	177, 370	(5)	(8)
Bulgaria	11,920	16, 771	20, 115	30,000	(5)
Czechoslovakia	1,836,495	(6)	(5)	(5)	(5)
France	37,839,000	33, 137, 000	(5)	(5) (5)	(5)
Germany 7	9,575,234	10, 938, 650	(5)	(5)	(5)
Austria		2, 600, 063	(5)	(5)	(5)
Greece	300, 498	348, 613	307, 284	(6) (6) (6) (5)	00000000000
Hungary	290, 044	369, 935	370,000	(5)	(5)
Italy	997, 805	990, 043	(5)	(5)	(5)
Luxemburg		5, 140, 632	(5)	(5)	(5)
Norway	1,008, 225	1, 425, 297	1, 340, 408	(5)	(5)
Poland	780, 152	872, 591	(5)	(5)	(5)
Portugal		2, 519	418	285	25
Rumania	129,060	139, 185	131, 992	(5)	(5) 8 1, 352, 00
Spain	1,269,742	2, 544, 945	2, 200, 000	2, 886, 973	8 1, 352, 00
Sweden	14,952,549	13, 928, 023	13, 787, 202	(5)	(5)
Switzerland	3 148, 578	³ 133, 998	3 171, 279	200,000	(5)
U. S. S. R.9	26,000,000	26, 529, 700	(5)	(5)	(6)
United Kingdom: Great Britain 10	14, 443, 146	12, 049, 531	(5)	(5)	(5) (5)
Yugoslavia	629, 172	606, 884	666, 816	(5)	(5)
Asia:		1	1		
Burma	25, 834	18, 340	26, 680	(5)	(6)
Chosen		(6)	(5)	(5)	(5)
India, British	2,883,548	2, 787, 711	3, 166, 087	(5)	(5)
Indochina	33, 285	130, 298	136,000	32, 861	(5) (5)
Japan	(6)	(6)	(5)	(5)	(5)
Malay States:		1.0			
Federated	1, 165	938	780	972	(8)
Unfederated	1,686,990	1, 606, 289	1, 991, 173	1, 872, 903	(8)
Philippine Islands 3	601, 190	910, 952	1, 154, 738	1, 191, 641	11 852, 08
Turkey		71, 375	143, 277	130, 338	(5) (5)
U. S. S. R	(9)	(9)	(6)	(4)	(5)
Africa:		, ,			
Algeria	2,427,230	3, 105, 037	13 2, 750, 000	(5)	(5)
Belgian Congo		2,650	(5)	6, 100	(5)
Morocco:		1	1	•	
French	66, 864	266, 100	(5)	(5)	(5)
Spanish		1, 341, 658	3 1, 038, 006	³ 389, 337	(5)
Northern Rhodesia		208	138	(5)	(8)
Sierra Leone	644, 160	875, 789	(5)	(8)	(8)
South-West Africa		23, 861	ìý, 500	(5)	(6)
Tunisia		822, 053	764, 731	(8)	(8)
Union of South Africa	461, 796	505, 314		638, 757	13 427, 61

¹ In addition to the countries listed, China, Egypt, Eritrea, Finland, French West Africa, Madagascar, and New South Wales report production of iron ore, but complete data are not available.

³ Shipments.

³ Exports.
4 Production of Tofo Mines.

⁴ Production of Tofo Mines.
5 Data not available.
6 Estimate included in total.
7 Exclusive of manganiferous iron ore carrying 12 to 30 percent manganese.
8 January to October, inclusive.
9 U. S. S. R. in Asia included with U. S. S. R. in Europe.
10 Exclusive of bog ore, which is used mainly for purification of gas.
11 January to July, inclusive.
12 Estimated.
13 Isonary to June inclusive.

¹² January to June, inclusive.

World production of iron	ore, 1937-41,	by c	ountries, i	n metric	tons—Continued
--------------------------	---------------	------	-------------	----------	----------------

Country	1937	1938	1939	1940	1941
Oceania: Australia: Queensland South Australia. Tasmania New Caledonia. New Zealand.	4, 551 1, 896, 370 62 580	5, 207 2, 281, 404 36, 279 1, 238	4, 003 2, 613, 036 (5) 83, 567 1, 611	(5) (5) (5) 176, 600 1, 208	(5) (6) (6) (9)
		162, 000, 000	(5)	(5)	(5)

Data not available.

PIG IRON PRODUCTION AND SHIPMENTS

Domestic production of pig iron, exclusive of ferro-alloys, increased 19 percent in 1941 over 1940 and established a new record. The output in 1941 comprised 54,981,489 net tons using coke and 103,957 tons using charcoal as fuel. Pennsylvania was the largest producer of pig iron in 1941, with 31 percent of the total; Ohio ranked second, with 23 percent. Of the pig iron manufactured in 1941, it is calculated that 1,381,893 tons valued at \$27,404,941 were made from 2,388,610 tons of foreign ores, including ore from Africa, Australia, Brazil, Canada, Chile, Cuba, Palestine, and Spain, indicating an average yield of 57.85 percent from imported ore. Domestic ore (92,016,057 tons) and cinder, scale, and purchased scrap (8,175,648 tons) totaling 100,191,705 tons were reported as used in the manufacture of 53,703,553 tons of pig iron, indicating an average pig-iron yield of 53.60 percent from domestic materials. In addition, 1,588,000 tons of home scrap and 3,983,000 tons of flue dust were consumed in making pig iron in 1941.

Pig iron produced and shipped in the United States, 1940-41, by States

	Proc	luced	Shipped from furnaces						
State	1940	1941	19-	10	1941				
	Net tons	Net tons	Net tons	Value	Net tons	Value			
Alabama Colorado Illinois Indiana Iowa Kentucky Maryland Massachusetts Michigan Minnesota New York Ohio Pennsylvania Tennessee Utah Virginia West Virginia Undistributed	(1) 4,047,376 5,337,935 (1) 290,514 2,342,519 1,349,775 277,069 3,009,567 10,094,448 14,294,453 (1) (1)	3, 696, 566 (1) 5, 354, 767 6, 374, 331 2, 353, 208 (1) 1, 350, 450 359, 263 3, 574, 901 12, 787, 243 16, 856, 917 (1) 1, 1019, 150 21, 029, 743	3, 476, 072 (1) 4, 093, 623 5, 333, 915 (2) 290, 610 2, 350, 773 (1) 1, 340, 402 282, 728 3, 206, 10, 275, 696 14, 571, 517 (1) (1) (1) (1) (2) 941, 299 2 796, 132	\$49, 706, 851 73, 882, 065 97, 407, 801 (1) (1) (1) (1) (1) 18, 472, 588 (1) 193, 283, 920 282, 666, 561 (1) (1) (1) 2 70, 872, 139 840, 442, 032	3, 712, 018 (1) 5, 461, 459 6, 393, 223 (2) 329, 125 2, 372, 932 (1) 1, 360, 139 369, 549 3, 724, 989 12, 995, 298 16, 340, 965 (1) (1) 1, 1, 032, 148 2, 1, 131, 796 55, 223, 641	\$64, 037, 104 (1) 113, 558, 60 135, 655, 196 (1) (1) (1) 21, 384, 38: (6, 718, 24, 298, 60, 86 344, 298, 43: (1) (1) (1) 297, 498, 48: 1,111,811,314			

¹ Included under "Undistributed."

² Includes statistics for States entered as "(1)."

Shipments of pig iron, exclusive of ferro-alloys, increased 18 percent in quantity and 32 percent in value in 1941 over 1940. The values given represent the approximate amounts received for the iron f. o. b. furnaces and do not include freight costs, selling commissions, and other items that are figured in some of the market prices for pig iron published by trade journals.

Pig iron shipped from blast furnaces in the United States, 1940-41, by grades

		1940		1941				
Grade	Net tons	Valu	e	Net tons	Value			
	Net tons	Total	Average	Net tons	Total	Average		
Charcoal	72, 461	\$1,755,735	\$24. 23 17. 76	144, 076	\$3, 618, 686	\$25. 12		
FoundryBasic	2, 737, 224 35, 004, 116	48, 600, 640 606, 481, 057	17. 33	3, 125, 413 40, 642, 051	61, 309, 626 801, 328, 939	19. 62 19. 72		
Bessemer Low-phosphorus	6, 657, 388 443, 088	130, 929, 263 11, 156, 558	19. 67 25. 18	7, 900, 369 508, 727	170, 051, 203 13, 881, 518	21. 52 27. 29		
Malleable Forge	1, 778, 770 3, 943	35, 713, 749 89, 309	20. 08 22. 65	2, 643, 497 1, 212	56, 677, 298 30, 094	21. 44 24. 83		
All other (not ferro-alloys)	261, 939	5, 715, 721	21.82	258, 296	4, 913, 952	19. 02		
	46, 958, 929	840, 442, 032	17. 90	55, 223, 641	1, 111, 811, 316	20. 13		

The number of furnaces in blast June 30 and December 31 and the total number of blast furnaces recorded for 1940 and 1941 were as follows:

Blast furnaces (including ferro-alloy blast furnaces) in the United States, 1940-41 1

	In blast	Dec	ember 31,	1940	In blast June 30.	Dece	ember 31,	1941
State	June 30, 1940	In	Out	Total	1941	In	Out	Total
Alabama Colorado Illinois Indiana Kentucky Maryland Massachusetts Michigan Minnesota New York Ohio Pennsylvania Tennessee Utah Virginia West Virginia	16 2 6 8 2 11 40 61 2 1	17 3 18 2 6 1 8 2 2 13 46 68 2 1 1 3	2 8 1	19 33 23 19 2 6 1 8 2 15 48 77 3 1 1	17 3 18 19 2 6 1 7 2 15 47 70 2 1 1 1 3	19 3 20 19 2 7 1 8 2 15 46 70 5 1 1	1 1 3 3	20 4 23 19 2 7 7 1 8 2 16 48 77 5 1
	184	206	25	231	214	223	-15	238

¹ American Iron and Steel Institute.

VALUE AT BLAST FURNACES

The average value of all kinds of pig iron given in the accompanying table is based upon reports of producers to the Bureau of Mines. The figures represent the approximate values f. o. b. blast furnaces and do not include the values of ferro-alloys. The general average value for all grades of pig iron at the furnaces was \$20.13 a net ton in 1941—\$2.23 more than in 1940.

Average value per net ton of pig iron at blast furnaces in the United States, 1937-41, by States

State	1937	1938	1939	1940	1941
Alabama Illinois Indiana Michigan New York Ohio Pennsylvania Other States 1	\$14. 89 18. 85 18. 85 15. 17 18. 44 19. 31 19. 40 16. 89	\$13. 10 18. 15 18. 29 15. 67 18. 58 18. 17 19. 30 15. 21	\$14. 42 18. 02 18. 03 14. 79 18. 29 18. 12 18. 52 14. 91	\$14. 30 18. 05 18. 26 13. 78 16. 89 18. 81 19. 40 15. 20	\$17. 25 20. 79 21. 22 15. 72 17. 91 20. 67 21. 07 18. 62
Average for United States	18. 54	17. 51	17. 44	17.90	20. 13

¹ Colorado, Iowa, Kentucky, Maryland, Massachusetts, Minnesota, Tennessee, Utah, Virginia, and West Virginia.

COMMERCIAL QUOTATIONS

The average monthly prices of foundry, basic, and bessemer pig iron at Valley furnaces and of foundry pig iron at Birmingham furnaces, according to published market quotations, are summarized in the following table:

Average monthly prices per net ton of chief grades of pig iron, 1940-41 1

Month	Foundry pig iron at Valley furnaces		Foundry at Birn furnaces	ningham	Bessemer at Val naces		Basis pig iron at Valley furnaces		
	1940	1941	1940	1941	1940	1941	1940	1941	
January	\$20. 54	\$21.43	\$17. 30	\$17.30	\$20.98	\$21.88	\$20.09	\$20.98	
February	20.54	21.43	17. 30	17. 30	20.98	21.88	20.09	20.98	
March	20. 54	21.43	17. 30	17. 51	20.98	21.88	20.09	20.98	
April	20. 54	21.43	17. 30	18. 20	20.98	21.88	20.09	20.98	
May	20. 54	21.43	17.30	18. 20	20.99	21.88	20.09	20.98	
June	20. 54	21.43	17. 30	18. 20	20.98	21.88	20.09	20.98	
July	20.54	21.43	17. 30	18. 20	20.98	21.88	20.09	20.98	
August	20.54	21. 43	17. 30	18. 20	20.98	21.88	20.09	20.98	
September	20.54	21. 43	17. 30	18. 20	20.98	21.88	20.09	20.98	
October	20.54	21.43	17. 30	18. 20	20.98	21.88	20.09	20.98	
November	20. 54	21.43	17. 30	18. 20	20.98	21.88	20.09	20.98	
December	29. 54	21. 43	17. 30	18. 20	20.98	21.88	20.09	20. 98	
Average	20. 54	21.43	17. 30	17. 99	20.98	21.88	20.09	20.98	

¹ Metal Statistics, 1942.

FOREIGN TRADE

There were no imports for consumption of pig iron during the first 9 months of 1941.

Pig iron imported for consumption in the United States, 1937-41, by countries, in net tons

Country	1937	1938	1939	1940	1941 (JanSept.)
North America: Canada	7, 434	2, 975	7, 685 174	3, 826	
Denmark Germany	571		1		
Netherlands Norway	32, 225 980	15, 944 952	7, 250		
Sweden U. S. S. R	672 5, 131	230	292		
United Kingdom Asia: India, British	77, 976	47 13, 900	27, 821	7, 645	
	125, 101	34, 048	43, 223	11, 471	
Value	\$1,701,304	\$598, 461	\$663, 091	\$189, 379	

Exports of pig iron, January through September 1941, totaled 513,-561 net tons valued at \$14,081,065 compared with 620,336 net tons having a value of \$13,057,901 for entire year 1940. Details regarding destination of exports are not available for publication.

Pig iron exported from the United States, 1940-41, by countries, in net tons

Country	1940	1941 ¹ (Jan.–Sept.)	Country	1940	1941 ¹ (Jan.–Sept.)
North America: Canada. Other North America South America: Argentina. Chile. Colombia. Peru. Uruguay. Other South America. Europe: Belgium. Greece. Hungary. Italy. Netherlands. Norway. Portugal. Sweden. Switzerland.	30, 497 1, 315 1, 543 2, 465 279 731 1, 191 347 3, 537 2, 500 4, 239 336 252 2, 184 3, 471 11, 883 3, 471	} (1)	Europe—Continued. United Kingdom. Other Europe Asia: British Malaya China Hong Kong Japan Netherlands Indies Phillippine Islands Other Asia Africa: Gold Coast Union of South Africa. Other Africa Oceania: New Zealand	515, 061 6, 815 1, 792 8, 290 224 6, 368 1, 760 10, 372 77 22 620, 336 \$13, 057, 901	(1) 513, 561 \$14, 081, 085

¹ Details by countries not available for publication.

CONSUMPTION

Consumption of pig iron rose 22 percent in 1941 over 1940. Pig iron, a product of the blast furnace, is a semiraw material and, except for the small quantity used in direct castings, moves to other-type furnaces for further refining or mixture with other required ingredients. In general, it goes to steel-making or iron-making furnaces. By far the larger part is taken to steel-making furnaces (open-hearth, bessemer, and electric) for refining and processing into steel. In 1941, 86.4 percent of the pig iron was consumed in steel making. Direct castings took 2.8 percent of the 1941 total, and the remaining 10.8 percent was consumed in iron-making furnaces, of which the cupola is by far the most important. The consumption of pig iron, by types of furnace, for 1938 to 1941 is shown in the following table. Typically, the quantities of pig iron used in these furnaces are supplemented by the addition of ferrous scrap. The proportion of pig iron to scrap used in steel furnaces decreased in 1941 compared with 1940.

Consumption of pig iron in the United States, 1938-41, by type of furnace

Type of furnace or	1938	3	1939)	1940		1941	
equipment	Net tons	Percent of total	Net tons	Percent of total	Net tons	Percent of total	Net tons	Percent of total
Open-hearth Bessemer Electric Cupola Air Brackelsberg	15, 376, 896 2, 179, 574 17, 800 2, 693, 193 } 207, 776	74. 2 10. 5 . 1 13. 0 1. 0	26, 826, 172 3, 603, 199 30, 542 3, 349, 198 329, 317	76. 2 10. 2 . 1 9. 5	36, 297, 250 3, 828, 978 46, 506 4, 106, 119 374, 187	78.6 8.3 .1 8.9	42, 481, 404 5, 993, 264 72, 758 5, 388, 747 604, 835	75. 6 10. 7 . 1 9. 6
Crucible Puddling Direct castings 1	244 5, 984 243, 404	(2) (2) 1, 2	92 27, 959 1, 066, 220	(³) .1 3.0	184 28, 293 1, 504, 311	(²) . 1 3. 2	207 54, 183 1, 590, 074	(7) 2.8
	20, 724, 871	100.0	35, 232, 699	100.0	46, 185, 828	100.0	56, 185, 472	100.0

¹ Some pig iron used in making direct castings included in cupola.

² Less than 0.05 percent.

The consumption of pig iron in this country is widespread, and plants using pig iron are situated in all 48 States, the District of Columbia, and Alaska. As expected from the uses of pig iron, consumption is concentrated largely in the iron- and steel-making centers of the North Central, Middle Atlantic, and Southeastern States. These areas in 1941 used about 98 percent of the pig iron, Pennsylvania (the leading consumer) taking about 31 percent of the total and Ohio (the second-largest consumer) nearly 21 percent. Of the chief consuming areas in 1941, the North Central district made the largest gain over 1940—26 percent compared with 19 percent in the Middle Atlantic district and 11 percent in the Southeastern district (including the Birmingham district of Alabama). The following table shows the distribution of pig-iron consumption by States from 1938 to 1941.

Consumption of pig iron in the United States, 1938-41, by States and districts

		1938		1939		1940	-	1941
State and district	Con- sum- ers	Net tons	Con- sum- ers	Net tons	Con- sum- ers	Net tons	Con- sum- ers	Net tons
Connecticut. Maine. New Hampshire. Massachusetts. Rhode Island. Vermont. Total New England.	57 16 14 98 13 13 211	53, 476 4, 538 1, 398 66, 947 16, 085 3, 381	59 15 15 97 12 12 210	82, 886 6, 720 1, 826 115, 534 26, 257 6, 530 239, 753	60 15 14 104 11 12 216	96, 574 8, 392 2, 479 146, 886 37, 308 10, 358 301, 997	62 14 15 107 12 14 224	143, 862 11, 467 5, 816 242, 265 57, 082 16, 276 476, 768
Delaware New Jersey New York Pennsylvania	7 80 194 345	223, 937 1, 038, 632 5, 355, 260	7 79 193 365	281, 000 1, 817, 251 10, 152, 661	₹ 7 81 190 348	362, 758 2, 403, 248 14, 634, 036	80 199 391	449, 486 2, 765, 216 17, 573, 102
Total Middle At- lantic	626	6, 617, 829	644	12, 250, 912	626	17, 400, 042	677	20, 787, 804
Alabama District of Columbia Kentucky Maryland West Virginia Florida Georgia Mississippi North Carolina South Carolina. Tennessee Virginia	59 1 21 26 22 10 40 6 30 13 53 44	1, 562, 813 1, 515, 824 562, 151 38, 041 366 12, 240 1, 717 133, 981	57 2 24 26 23 { 12 40 7 32 13 { 52 46	2, 378, 774 2, 365, 534 880, 062 61, 655 362 13, 853 2, 251 150, 564	59 1 24 25 23 { 13 40 9 33 14 { 50 44	2, 809, 064 2, 825, 324 1, 016, 445 73, 045 365 15, 901 2, 355 162, 936	$\left\{\begin{array}{c} 74\\ 1\\ 23\\ 26\\ 28\\ 12\\ 43\\ 7\\ 40\\ 12\\ 52\\ 45\\ \end{array}\right.$	3, 142, 958 2, 974, 834 1, 218, 175 83, 895 621 18, 591 5, 090 } 254, 840
Total Southeastern	325	3, 827, 133	334	5, 853, 055	335	6, 905, 435	363	7, 699, 004
Oklahoma Louisiana Texas	7 8 23	2,013 3,014	6 8 24	2,003	8 8 8 23	2, 107 2, 327	$\left\{\begin{array}{c} 7\\7\\7\\27\end{array}\right.$	2, 600 3, 107
Total Southwest-	43	5, 027	44	4, 575	45	4, 434	47	5, 707
Illinois Indiana Iowa Minnesota Minnesota Missouri Kansas Nebraska Michigan Wisconsin South Dakota Ohio	182 120 51 52 50 15 8 158 116	1, 645, 013 2, 118, 178 43, 920 147, 412 28, 357 2, 832 1, 098, 431 4, 787, 342	179 124 49 53 53 614 7 { 168 118 2 290	2, 770, 693 3, 830, 053 54, 834 185, 976 37, 760 3, 513 } 1, 849, 622 148 7, 558, 466	183 126 52 51 53 { 13 8 { 173 115 2 285	3, 764, 275 5, 522, 177 63, 834 214, 340 45, 48° 3, 742 } 2, 232, 069 9, 080, 242	208 131 52 53 51 { 15 10 { 174 111 2 319	4, 915, 372 6, 833, 091 104, 368 266, 768 80, 065 } 4, 251 } 2, 478, 219 86 11, 676, 773
Total North Cen- tral	1,028	9, 871, 485	1, 057	16, 291, 065	1,061	20, 926, 271	1, 126	26, 358, 993
Arizona Nevada New Mexico	} 1	25	1	36	1 1 1	35	2	67
Colorado Utah	} 17	152, 729	19	412, 220	{ 10 7	457, 487	18	644, 393

Consumption of pig iron in the United States, 1938-41, by States and districts—Continued

		1938		1939		1940	1941		
State and district	Con- sum- ers	Net tons	Con- sum- ers	Net tons	Con- sum- ers	Net tons	Con- sum- ers	Net tons	
Idaho Wyoming Montana	} 4	220	5	308	$ \begin{bmatrix} & 1 \\ & 1 \\ & 3 \end{bmatrix} $	687	4	578	
Total Rocky Mountain	22	152, 974	25	412, 564	25	458, 209	24	645, 038	
Oregon Washington California	18 33 90	5, 518 99;080	19 37 95	6, 312 174, 463	{ 19 36 93	7, 519 181, 921	{ 18 33 98	9, 830 202, 328	
Total Pacific Coast.	141	104, 598	151	180, 775	148	189, 440	149	212, 158	
Total United States.	2, 396	20, 724, 871	2, 465	35, 232, 699	2, 456	46, 185, 828	2, 610	56, 185, 472	

WORLD PRODUCTION

The accompanying table shows the production of pig iron by countries from 1937 to 1941 insofar as statistics are available. Although many of the leading world producers have been operating at a high rate for several years, the probable increase in world production during 1941 was due largely to the rise in United States production.

World production of pig iron (including ferro-alloys), 1937-41, by countries, in metric tons 1

[Compiled by B. B. Waldbauer]

Country 1	1937	1938	1939	1940	1941
Australia 2	928, 066	944, 597	1, 122, 334	(3)	(9)
Belgian Congo	565	5 600	5 600	⁵ 600	(4)
Belgium	3, 803, 750	2, 426, 130	3, 058, 730	6 2, 200, 000	(4)
Brazil	98, 101	122, 352	160, 016	185, 570	208, 795
Canada	996, 671	773, 573	844, 760	1, 325, 229	1, 579, 648
China (Manchuria)	⁸ 650, 000	5 700, 000	5 700, 000	5 700, 000	(4)
Chosen	168, 344	5 200, 000	5 200, 000	⁵ 200, 000	(4)
Chosen Czechoslovakia	1, 675, 064	1, 233, 987	7 1, 000, 000	(8)	(4)
Finland	11, 258	27,000	5 30, 000	(3)	(4)
France	7, 916, 000	6, 061, 322	7 7, 900, 000	6 4, 600, 000	(4)
Germany 9	15, 959, 806		, , ,		<i>(</i> ()
Austria	387, 602	18, 596, 000	7 20, 300, 000	6 21, 000, 000	(4)
Hungary	357, 935	350, 537	7 460, 000	(3)	(4)
India, British	1, 655, 457	1, 583, 284	1, 785, 242	2, 015, 116	(4)
Italy	865, 305	928, 847	7 1, 000, 000	6 890, 000	(4)
Japan	2, 750, 000	5 2, 800, 000	⁵ 3, 000, 000	4 3, 000, 000	(4) .
Luxemburg	2, 730, 400	1, 500, 000	7 1, 800, 000	6 1, 000, 000	(4)
Mexico	89, 717	98, 376	141, 335	93, 179	108, 524
Netherlands		266, 956	284, 004	(3)	(4)
		173, 748	190, 785	(3)	(6)
Norway			7 1, 000, 000	8	8
Poland		967, 668		(3)	X
Rumania	127, 234	132, 681	⁵ 140, 000		530,000
Spain	141, 053	442, 574	456, 813	581, 343	330,000
Sweden	692, 865	713, 579	691, 402	787, 211	\mathbb{R}
Union of South Africa	276, 236	294, 406	300, 227	303, 923	Ω
U. S. S. R	14, 520, 000	15, 179, 856	7 15, 200, 000	6 15, 500, 000	9
United Kingdom	8, 629, 313	6, 871, 546	7 8, 300, 000	6 8, 437, 000	(1)
United States	37, 749, 575	19, 474, 677	32, 321, 653	43, 026, 030	10 49, 972, 415
Yugoslavia	41,006	58, 458	61, 106	(3)	(4)
-	104, 221, 000	82, 923, 000	102, 449, 000	107, 636, 000	(4)

¹ Pig iron is produced in Chile, New Zealand, and the Philippine Islands in addition to countries listed. but production figures are not available.

² Year ended June 30.

³ Estimate included in total.

⁴ Data not available.

<sup>Data not avaiable.
Estimated production.
Approximate production as published by The Iron Age, vol. 147, No. 1, January 2, 1941, p. 61.
Approximate production as published by Steel, vol. 196, No. 1, January 1940, p. 269.
Included in the German figure in 1940.
Beginning with March 1935, production of the Saar is included with that of Germany.
Boes not include forms allow.</sup> 10 Does not include ferro-alloys.

FERRO-ALLOYS

Statistics concerning production and shipments of ferro-alloys during 1941 are omitted from this chapter to avoid the possibility of revealing information that might lend aid or comfort to the enemy.

FOREIGN TRADE

Imports of all alloys of the rarer metals are not recorded separately but are grouped as shown in the following table. Although spiegeleisen formed the bulk of the imports in 1940, there was a very noticeable decrease in withdrawals of this alloy and ferromanganese during the first 9 months of 1941, which totaled 7,268 net tons compared with 29,068 during the entire year 1940.

Imports of ferromanganese, January to September 1941, totaled 4,008 net tons containing 3,280 tons of manganese. Of this total, 3,993 net tons containing over 1 percent carbon came from Canada, and 15 tons of alloys containing less than 1 percent carbon were imported from Norway. All the ferrosilicon imported during the first 9 months of 1941 came from Canada.

From January to September 1941, inclusive, exports of ferro-alloys comprised 3,363 net tons of ferromanganese and spiegeleisen and 16,829 tons of other ferro-alloys, compared with 14,600 net tons of ferromanganese and spiegeleisen and 27,401 tons of other ferro-alloys during the full year 1940.

Ferro-alloys and ferro-alloy metals imported for consumption in the United States, 1940-41, by varieties

		1940		1941 (Jan.–Sept.)			
Variety of alloy		Content (net tons)	Value	Gross weight (net tons)	Content (net) tons)	Value	
Ferromanganese: Containing over 1 percent carbon Containing not over 1 percent carbon Manganese broom, manganese metal, and spiegeleisen not more than 1 percent carbon	10, 035 1, 578	8, 280 1, 321	\$1, 121, 133 200, 236	3, 993 15	3, 267 13	\$323, 505 1, 597	
(manganese content)	(1) 17, 455	(¹) 66	16, 737 638, 732	(1) 3, 260	(1) 39	9, 135 119, 524	
Containing 3 percent or more carbon Ferrosilicon	(2) 10, 257 (4)	(3) 1, 235 (1)	92 262, 397 566	130 10, 140	85 2,881	18, 298 337, 789	
Chromium and zirconium silicon and calcium silicide	1,066	(1)	154, 424	56	(1)	8, 337	
Tungsten metal (tungsten content)	(1)	18	41,041	(1)	19	37, 800	

¹ Not recorded.

² 1,400 pounds.

^{3 1,020} pounds.

^{4 1,000} pounds.

Ferromanganese and ferrosilicon imported for consumption in the United States, 1940-41, by countries

	Ferrom	anganese (n	nanganes	e content)	Ferrosilicon (silicon content)			
Country	1940		1941 (JanSept.)		1940		1941 (JanSept.)	
	Net tons	Value	Net tons	Value	Net tons	Value	Net tons	Value
Canada	39	\$2,349	1, 026	\$113, 197	1, 235	\$262, 397	2, 881	\$337, 789
Japan Norway United Kingdom	9, 562	1, 319, 020	13 2, 241	1, 597 210, 308				
	9, 601	1, 321, 369	3, 280	325, 102	1, 235	262, 397	2, 881	337, 789

Ferro-alloys and ferro-alloy metals exported from the United States, 1940-41, by varieties

	19	40	1941 (JanSept.)		
Variety of alloy	Net tons	Value	Net tons	Value	
Ferromanganese and spiegeleisenOther ferro-alloys 1	14,600 27,401	\$1, 366, 087 7, 064, 823	3, 363 16, 829	\$437, 534 4, 252, 369	

¹ Includes ferrosilicon, ferrotungsten, ferrovanadium, and other ferro-alloys.

STEEL

PRODUCTION

The high operating rate of production established during the closing months of 1940 continued through all of 1941. The production rate was above 93 percent of capacity during each month and averaged 97 percent for the year, compared with 82 percent in 1940. Capacity for producing steel increased 4,418,000 net tons during the year to reach a new record total of 88,570,000 net tons. The following figures covering the output of steel were compiled by the American Iron and Steel Institute. The production of steel ingots and castings in 1941 established a new record and totaled 82,839,259 net tons.

Of the 1941 total, 89.8 percent was made in open-hearth furnaces, 6.7 percent in bessemer converters, 3.5 percent in electric furnaces, and only 2,313 tons in crucible furnaces. The bulk (73,232,959 tons) of the total open-hearth output in 1941 was made in basic furnaces. Of the total output of steel ingots and castings, 82,434,367 net tons were ingots in 1941 compared with 66,649,864 tons in 1940.

Pennsylvania and Ohio continued to lead all other States and produced about 53 percent of the total steel, 51 percent of the openhearth steel, and 76 percent of the bessemer steel.

Open-hearth steel ingots and castings manufactured in the United States, 1937-41, by States, in net tons

[Includes only that portion of the steel for eastings produced in foundries operated by companies manufacturing steel ingots]

State	1937	1938	1939	1940	1941
New England States New York and New Jersey Pennsylvania Ohio Indiana Illinois Other States	309, 143	183, 297	286, 850	322, 753	462, 754
	3, 124, 143	1, 509, 538	2, 627, 910	3, 618, 444	4, 232, 521
	16, 309, 104	7, 920, 816	13, 622, 272	18, 469, 170	23, 007, 147
	10, 156, 097	6, 016, 902	9, 913, 454	11, 769, 780	14, 746, 523
	6, 661, 052	3, 847, 603	6, 486, 502	8, 421, 956	10, 366, 380
	4, 382, 916	2, 184, 251	3, 687, 874	4, 963, 457	5, 998, 679
	10, 882, 524	7, 417, 609	11, 784, 938	14, 007, 523	15, 575, 615
	51, 824, 979	29, 080, 016	48, 409, 800	61, 573, 083	74, 389, 619

Bessemer-steel ingots and castings manufactured in the United States, 1937-41, by States, in net tons

[Includes only that portion of the steel for castings produced in foundries operated by companies manufacturing steel ingots]

State	1937	1938	1939	1940	1941
Ohio Pennsylvania Other States	1, 957, 435 930, 093 976, 390	1, 202, 916 389, 827 513, 597	1, 439, 629 1, 109, 081 810, 206	1, 459, 807 1, 366, 017 882, 749	2, 265, 987 1, 966, 779 1, 345, 305
	3, 863, 918	2, 106, 340	3, 358, 916	3, 708, 573	5, 578, 071

Steel electrically manufactured in the United States, 1937-41, in net tons

Includes only that portion of the steel for castings produced in foundries operated by companies manufacturing steel ingots]

Year	Ingots	Castings	Total	Year	Ingots	Castings	Total
1937 1938 1939	912, 027 524, 843 951, 522	34, 975 40, 784 77, 545	947, 002 565, 627 1, 029, 067	1940 1941	1, 608, 032 2, 758, 611	91, 974 110, 645	1, 700, 006 2, 869, 256

The steel output for 1941 includes 8,174,961 net tons of alloy-steel ingots and castings, which represent 10 percent of the total. This figure includes steels in which the minimum of the range specified in any of the elements named exceeds the following percentages: Nickel, 0.40 percent; chromium, 0.30 percent; copper, 0.50 percent; manganese, 1.65 percent; silicon, 0.50 percent; molybdenum, 0.10 percent; vanadium, tungsten, cobalt, titanium, and zirconium, any percentage. The output of alloy steels in 1941 increased 65 percent and that of total steel 24 percent over 1940. Of the total alloy-steel output in 1941, 65 percent came from basic open hearths, 5 percent from acid open hearths, 30 percent from electric furnaces, 933 tons from crucible furnaces, and 3,890 tons from bessemer furnaces.

Production of alloy-steel ingots and castings, 1937-41, by processes, in net tons
[Includes only that portion of the steel for castings produced in foundries operated by companies manufacturing steel ingots]

Process	1937	1938	1939	1940	1941
Open-hearth, basic	2, 559, 200 164, 455	1, 179, 031 102, 089 13	2, 302, 273 156, 581 3, 486	3, 421, 961 252, 965 3, 990	5, 275, 247 433, 240 3, 890
Crucible Electric	270 672, 616	372, 372	231 749, 384	255 1, 286, 716	933 2, 461, 651
	3, 396, 541	1, 653, 510	3, 211, 955	4, 965, 887	8, 174, 961

From the foregoing tables it will be seen that most of the steel made in electric furnaces (86 percent in 1941) is alloy steel. Typically, steels with higher alloy content are made in electric furnaces and steels with lower alloy content by the open-hearth process.

FOREIGN TRADE AND PRODUCTION

Although data for only the first 9 months of 1941 are available for publication, it is evident that exports of iron and steel products continued at a high rate during the year. Exports of iron ore, pig iron, and ferro-alloys are covered in other sections of this report.

Imports for consumption of iron and steel products during the first 9 months of 1941 were very small—almost negligible compared with exports. The bulk of imports was in the form of rails and narrow strips not over 16 inches wide. Imports of these two commodities

totaled 6,777 net tons during the first 9 months of 1941.

According to the Iron and Steel Institute, the steel capacity of Great Britain is approximately 20,600,000 tons and that of U. S. S. R. about 21,800,000 tons a year. Germany, Czechoslovakia, Poland, and Austria have produced as much as 24,700,000, 2,500,000, 1,700,000, and 700,000 net tons, respectively, a year. French maximum production was 10,700,000 net tons in 1929, a figure considerably in excess of actual production of succeeding years. Also, 1929 was the year during which Belgian production reached a maximum of 4,500,000 tons of steel. Japan's steel capacity is about 7,100,000 tons a year based upon estimates of 1940 output. Italian steel capacity is about 3,000,000 tons, the production peak reached in 1939. Luxemburg's steel industry reached its maximum output in 1929 when 3,000,000 tons were produced. In addition, the steel output of Hungary, Spain, and Sweden is about 800,000, 700,000, and 1,200,000 net tons, respectively. Data for 1941 are not available for Australia and India, but in each country the output of steel in 1940 represented a new peak, Australia producing 1,300,000 tons and India 1,200,000 tons.

MINERALS YEARBOOK, 1941

Iron and steel exported from the United States, 1940-41

Amatolo		1	940	1941 (JanSept.)		
Article		Net tons	Value	Net tons	Value	
Semimanufactures: Steel ingots, blooms, billets, slabs, and sheet bar	8	2, 822, 428	\$98, 542, 659	1, 642, 002	\$70, 266, 272	
Iron and steel bars and rods:		10 101	1 000 000	4 001	900 546	
Iron bars		16, 191 155, 329	1,026,268	4, 081 131, 640	398, 542	
Other steel hers		649, 151	7, 458, 760 41, 741, 271	314, 864	7, 022, 327 31, 890, 728	
Wire rods. Iron and steel plates, sheets, skelp, and strips: Boiler plates. Other plates, not fabricated		320, 622	14,060,723	132, 784	6, 604, 619	
Iron and steel plates, sheets, skelp, and strips:						
Boiler plates		12, 510 629, 671 167, 309	803, 521 29, 334, 244 6, 368, 968	22, 688 298, 357 128, 770 86, 278 339, 018	1, 048, 387 16, 903, 312 5, 487, 826	
Other plates, not fabricated		629, 671	29, 334, 244	298, 357	16, 903, 312	
Skelp iron or steel. Iron and steel sheets, galvanized. Steel sheets, black, ungalvanized.		167, 309	6, 368, 968	128,770	5, 487, 826	
Steel sheets block ungalvanized		184, 020 533, 671	14, 160, 612 34, 530, 127	330 018	7, 109, 944 23, 070, 155	
Iron sheets, black		29, 621	2, 264, 642	16, 170	1, 298, 807	
Iron sheets, black Strip band, and scroll iron or steel:		,	2,201,012		2, 200, 001	
Cold-rolled		72, 803	6, 552, 171	47, 506	4, 969, 762	
Hot-rolled		150, 203	8, 594, 550	79,855	5, 060, 301	
Tin plate, terneplate, and taggers' tin		429, 328	44, 374, 895	221, 816	23, 714, 833	
Manufactures—steel-mill products: Structural iron and steel:		. •	1			
Water oil gas and other storage tanks on	minlete		1		1	
Water, oil, gas, and other storage tanks co and knocked-down material	mpiece	42, 712	3, 350, 242	16, 567	1, 487, 011	
Structural shapes:		, •	0,000,212	10,00	1, 101, 011	
Not fabricated		456, 015	19, 701, 320	218, 318	10, 833, 613	
Fabricated. Plates fabricated, punched, or shaped Metal lath		80, 960	7, 379, 656	43,008	4, 296, 303	
Plates fabricated, punched, or shaped		30, 818	2,044,620	20, 188	1, 664, 832	
Frames, sashes, and sheet piling		1, 901 15, 769	326, 881 1, 097, 112	1,915	338, 942	
Railway track material:		15, 709	1,097,112	7, 914	630, 265	
Rails for railways		289, 020	11, 364, 737	125, 852	5, 438, 493	
Rails for railways Rail joints, splice bars, fishplates, and tie pl	ates	11, 596	870, 524	13, 839	866, 024	
Switches, irogs, and crossings		11, 596 3, 269	500, 109	13, 839 1, 786	260, 823	
Railroad spikes Railroad bolts, nuts, washers, and nut locks		5, 617	870, 524 500, 109 398, 211 430, 637	5, 679 1, 755	438, 043 284, 546	
Railroad bolts, nuts, washers, and nut locks		3, 724	430, 637	1,755	284, 546	
Tubular products: Boiler tubes	. 1	30, 117	3, 961, 676	44, 960	6, 278, 373	
Casing and oil-line pipe		203, 447	18 165 437	102, 183	8, 377, 558	
Seamless black pipe, other than casing and	oil line.	34 025	4, 411, 354 5, 077, 148	27, 911	8, 377, 558 3, 428, 830	
Welded black pipe		57, 968	5,077,148	54, 754 65, 227	4, 980, 746	
Welded galvanized pipe		76. 826	6, 302, 473 1, 463, 394	65, 227	5, 789, 2 55	
Malleable-iron screwed pipe fittings		5, 023	1, 463, 394	4, 192	1, 255, 909	
Cast-iron progress pipe and fittings		2, 816 56, 836 18, 716	2 002 642	951 36, 035	222, 132 2, 000, 686	
Cast-iron soil nine and fittings		18 716	1 057 872	12, 905	763, 005	
Goller tubes. Casing and oil-line pipe. Seamless black pipe, other than casing and Welded black pipe. Welded galvanized pipe. Malleable-iron screwed pipe fittings. Cast-iron screwed pipe fittings. Cast-iron pressure pipe and fittings. Cast-iron soil pipe and fittings. Riveted-steel or iron pipe and fittings. Wire and manufactures:		19, 263	530, 478 2, 903, 643 1, 057, 872 4, 581, 615	19, 832	3, 836, 295	
		7	1	·		
Barbed		49, 510	3, 523, 089	47, 252	3, 823, 527	
Galvanized wire		74,009	5, 582, 899	47, 652	4, 186, 112	
Galvanized wire		97, 552	7, 325, 759	58, 992	5, 612, 960	
Woven-wite fencing and serven eleth		14, 962 9, 051	2 120 281	15, 024 7, 196	4, 748, 603 1, 895, 565	
All other		23, 497	7, 325, 759 3, 383, 803 2, 129, 381 3, 990, 240	16, 809	- 2,864,603	
Nails and bolts (except railroad):		20, 10.	5	20,000		
Wire nails		54, 496	3, 726, 608	43, 115	3 .245, 735 503, 471	
Horseshoe nails		1,650	382, 574	2, 231 7, 270	503, 471	
All other nails, including tacks and staples	35	7,092	904, 371	7,270	1, 068, 144	
Bolts, nuts, rivets, and washers (except rails Castings and forgings:	oad)	37, 387	7, 087, 062	35, 284	7, 933, 035	
Horsehoes and calks	į	398	48, 185	582	69, 517	
Iron and steel, including car wheels and axis	8	70, 224	10, 806, 824	83, 895	17, 161, 838	
Advanced manufactures:		•			, ,	
House heating boilers and radiatorsOil burners and parts			340,004		306, 570	
			1, 467, 276		880, 549	
Tools:	İ		477 492		484, 162	
Shovels and snades			477, 483 292, 229		380 453	
Axes Shovels and spades Hammers and hatchets Saws, wood and metal cutting All other tools			336, 037		380, 453 403, 729	
			1 - 5-5' 5-6		2 105, 00	
Saws, wood and metal cutting	1		2, 078, 253 15, 631, 262		2, 427, 285 15, 870, 060	

Iron and steel imported for consumption in the United States, 1940-41, by commodities

	19	40	1941 (JanSept.)	
Commodity	Net tons	Value	Net tons	Value
mimanufactures:				
Steel bars:		***		A100
Concrete reinforcement	9	\$227	2	\$126
Solid or hollow, n. e. s.	2,074	257, 435	402	52, 931
Hollow and hollow drill steel	977	129, 216	227	31, 99
Bar iron	222	22, 276	17	1, 671
Wire rods, nail rods, and flat rods up to 6 inches in	1			
width	4, 465	452, 428	118	32, 907
Boiler or other plate iron or steel, except crucibles and	1			
saw-nlate steel	(1)	11	46	3, 483
Sheets or plates of iron or steel	16	16, 951	7	9, 285
Steel ingots, blooms, and slabs	4	179	1,051	119, 517
Billets, solid or hollow	491	54, 094	62	5, 476
Billets, solid or hollow Die blocks or blanks; shafting, etc	13	3, 102	12	6, 878
Circular saw plates	21	10,062	21	8, 865
Circular saw plates		,	1	•
other plate iron or steel	2	254	2	145
Sheets and plates and steel, n. s. p. f	114	20, 179	29	1, 512
Tin plate, terneplate, and tagger's tin	153	39, 422	106	27, 461
anufactures:	100	00, 122		,
Structural iron and steel	859	38, 358	322	48, 831
Rails for railways	1, 467	32, 132	4, 295	81.042
Rail braces, bars, fishplates or splice bars, and tie plates	312	18, 421	656	34, 357
Rail braces, bars, usuplates of spince bars, and the places.	012	10, 101		02,00.
Pipes and tubes: Cast-iron pipe and fittings	502	15, 619	1	166
Other pipes and tubes	3, 444	432, 003	852	98, 396
Other pipes and tubes	0, 444	402,000	002	00,000
Wire: Barbed	959	7, 441	(1)	21
Barded	985	219, 741	35	8, 311
Round iron and steel	10	709	99	0, 011
Baling	10	109		
Telegraph, telephone, etc., except copper, covered		1, 260	1 /0	32
with cotton jute, etc	1	1, 200	(1)	. 044
Flat and steel strips not thicker than 14-inch and		1 407 007	0.400	1, 430, 968
not over 16 inches wide	2, 481	1, 485, 307	2,482	
Rope and strand	587	96, 861	105	21, 82
Galvanized fencing wire and wire fencing	1	30	1	70
Hoop or band iron or steel for baling	694	21,570		
Hoop, band, strips, or scroll iron or steel, n. s. p. f	10	4,889		
Nails	126	44, 910	27	8, 611
Castings and forgings, n. e. s.	685	124, 830	285	65, 215

¹ Less than 1 ton.

MANGANESE AND MANGANIFEROUS ORES

By Norwood B. Melcher 1

SUMMARY OUTLINE

	Page	the second control of the second control of	Page
General perspective		Metallurgical industry	595
Salient statistics	584	Ferromanganese	596
Government purchases	585	Spiegeleisen	598
Safety		Manganiferous pig iron	
Domestic production	587	Battery industry	. 599
Imports of manganese ore	593	Miscellaneous industries	. 599
Consumption and stocks of manganese raw		Prices	. 599
motorials	594	World production	. 600

GENERAL PERSPECTIVE

In 1941 history's greatest armament race was under way and overshadowed all other influences affecting the activity of the world's metal and mineral industries. To meet the demand for manganese created by an all-time record year of world steel production, all possible sources were stressed to the limit during 1941. The domestic production (shipments from domestic mines) of manganese ore containing 35 percent or more manganese in 1941 increased 95 percent over 1940; shipments were reported from 18 States in 1941, compared with 13 in 1940, and totaled 78,388 long tons. In addition, 457,287 long tons of ore containing 10 to 35 percent manganese and 820,290 tons of ore containing 5 to 10 percent manganese were shipped during the year.

A domestic manganese war program of sufficient scope to free American steel and alloy production from its present reliance on foreign sources, with accompanying dependence on ocean shipping and naval convoy where necessary, has been outlined by the Bureau of

Mines.

The program is designed to provide enough manganese to produce 87 million tons of steel annually. It covers utilization of low-grade domestic manganese ores and was made possible through the development of several processes by the Bureau of Mines during years of study

in laboratories and pilot plants.

The program provides for the establishment of 8 mills, 3 hydrometallurgical plants (including 1 electrolytic unit), and 1 matte smelting plant. The proposal is to establish these 12 plants in 10 locations in 8 States—Arizona, Arkansas, Minnesota, Montana, Nevada, New Mexico, South Dakota, and Utah. Construction periods for these plants would range from 9 to 12 months. Even with an increase of imports from Cuba and Mexico, a reduction of shipping from other foreign sources may result in a deficiency in manganese in 1943 unless additional domestic ores are processed. Supplies adequate for the present year and part of 1943 are now on hand.

It is estimated that a capital investment of less than \$38,000,000 in mining operations and processing plants will be required to produce the quantity of manganese specified. A minimum of 526,000 tons of

497779—43——39

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

metal annually is provided for in the program, with a maximum of approximately 560,000 tons. This includes 12,000 tons of electrolytic manganese, which is of special value in low-carbon steels and in certain types of stainless steels. Approximately 11,500,000 tons of domestic ores could be processed annually.

The program proposed by the Bureau of Mines is divided into two

steps.

Six custom mills and one hydrometallurgical plant would be established first to handle the higher-grade ores. After careful consideration of the larger resources available and the methods of treatment suitable to each ore, the following locations were proposed: Custom concentrators at Deming, N. Mex.; Batesville, Ark.; Parker Dam, Ariz.; Phuipsburg, Mont.; Delta, Utah; and Garfield, Utah; and a leaching plant and electrolytic plant at Las Vegas, Nev. These plants could produce a minimum of 213,620 tons of manganese (metal equivalent) annually and would require an investment of \$14,100,000.

The second step in the program includes a concentrating plant at Artillery Peak, Ariz., one on the Cuyuna Range in Minnesota, and one at Chamberlain, S. Dak. These plants could produce a minimum of 312,175 tons of manganese (metal equivalent) annually and would

require an investment of \$24,000,000.

Ore from 50 different deposits could be used in the program, including properties in the Batesville-Cushman district in Arkansas; the Aquila, Parker Dam, and Wickenburg areas in Arizona; the Paymaster district in California; the Granite County, West Butte, and Wickes areas in Montana; the Drum Mountain, Simpson Mountains, Kanab, Marysvale, and Tintic districts in Utah; the Caliente, Ely, Pioche, Battle Mountain, and Valmy areas in Nevada; the Three Kids, Annex, and Las Vegas-Wash areas in Nevada; the Cleveland area in Idaho; the Cuyuna Range area in Minnesota; and the South Dakota area near Chamberlain.

The program includes the advance purchase and stock-piling of ores during the period of construction of the mills and hydrometallurgical

plants so that full operation could be attained rapidly.

Figure 1 shows imports and domestic production of manganese ore over a 42-year period.

Salient statistics of the manganese industry in the United States, 1925-29 (average) and 1937-41, in long tons

	1925–29 (a verage)	1937	1938	1939	1940	1941
Manganese ore: Total shipments containing 35 percent or more Mn. Shipments of metallurgical ore. Shipments of battery ore. Imports for consumption Ferro-alloys: Production of ferromanganese. Imports of ferromanganese? Production of spiegeleisen Imports of spiegeleisen Exports of spiegeleisen and ferromanganese.	59, 312 1 41, 892 17, 420 600, 000 306, 360 4 50, 590 95, 463 7, 298 3, 769	40, 241 28, 419 6, 447 911, 919 376, 443 23, 888 (b) 16, 841 1, 725	25, 321 16, 989 4, 959 483, 586 242, 994 21, 118 11, 311 17, 248	29, 307 18, 580 7, 767 627, 129 270, 111 33, 414 91, 491 38, 264 2, 923	40, 123 27, 158 9, 271 1, 282, 079 459, 538 8, 573 101, 892 15, 585 13, 036	78, 388 65, 939 10, 178 1, 530, 876 518, 486 5, 085 158, 853 4, 233 4, 603

¹ Includes small quantity of miscellaneous ore.

Imports for consumption.
Manganese content.

Includes small quantity of other manganese alloys.
 Bureau of Mines not at liberty to publish figures.

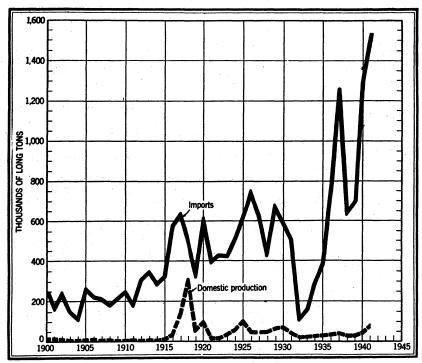


FIGURE 1.—Imports and domestic production (mine shipments) of manganese ore, 1900-1941. Statistics on imports shown in the graph represent "general imports" for the period 1900-1933; beginning with 1934, data classified as "general imports" were not available, and the figures plotted for 1934-41 represent imports for consumption adjusted for changes in stocks in bonded warehouses and are closely comparable with the record for earlier years.

Government Purchases.—The following schedule regarding Government purchases of manganese ore, effective May 4, 1942, was published by the Metals Reserve Co. The terms are subject to change without notice and do not apply to ores originating outside the limits of continental United States.

1. Quantity: One thousand (1,000) to ten thousand (10,000) long tons per contract. Contracts in excess of ten thousand tons may be obtained as a result of individual negotiations, provided reliable and complete engineering data submitted by the applicant warrant a contract for a larger quantity.

mitted by the applicant warrant a contract for a larger quantity.

2. Term of Contract: Deliveries must be completed within eighteen (18) months of the date of contract. If delivery of twenty percent (20%) of the tonnage contracted for has not been made within 6 months of date of contract, Buyer may cancel contract forthwith.

3. Quality: Purchases of domestic manganese ores are of three grades with the following specifications:

(a) Black oxide ores: The schedule of prices and the terms and conditions

herein refer to black oxide ores of manganese.

(b) Concentrates: Manganese concentrates to be acceptable under this schedule

must be nodulized or sintered.

(c) Carbonate ores: Manganese carbonate ores will be accepted under this schedule only if calcined.

		"High-Grade"	"Low-Grade A"	"Low-Grade B"
Manganese Alumina Iron Phosphorus Silica Zine	Minimum Maximum Maximum Maximum Maximum Maximum	48.0 % 6.0 % 7.0 % .18% 10.0 %	44.0 % 10.0 % 10.0 % .30% 15.0 % 1.0 %	40.0%.* No maximum. No maximum. 0.50%. No maximum. 1.0%.

^{*} Under "Low-Grade B," manganese ore will be accepted to 35.0% minimum under penalties hereinafter prescribed.

Size of ore: None in excess of 12 inches and not more than 25% to pass a 20-mesh

Buyer may reject any shipment which does not conform to the applicable

requirements and specifications as set forth above.

4. Price: Effective May 4, 1942, contracts will be considered on the following

schedule for domestic ores, within continental United States (excluding Alaska); all prices per long ton (2,240 pounds) of dry weight, f. o. b. cars at stock pile designated by Buyer.

"High-Grade"—Base price, \$48.00 per long dry ton for ore containing 48.0% manganese with an increase of one dollar (\$1.00) per ton for each unit (22.4 pounds) in excess of 48.0%; fractions prorated. "High-Grade" ore containing not less than 48.0% manganese but otherwise falling below excessions but not less than 48.0% manganese but otherwise falling below specifications but within the limits hereinafter set forth will be accepted subject to the following penalties:

Iron—Up to 10.0% maximum with a penalty of 1¢ per unit for each percent in excess of 7.0%; fractions prorated;

ilica—Up to 15.0% maximum with a penalty of 1¢ per unit for each percent in excess of 10.0%; fractions prorated;

Alumina—Up to 10.0% maximum with a penalty of 1¢ per unit for each percent in excess of 6.0%; fractions prorated;

Phosphorus—Up to 0.30% maximum with a penalty of 1¢ per unit for each 0.03% in excess of 0.18%; fractions prorated.

"Low-Grade A"—Base price, \$35.20 per long dry ton for ore containing 44.0% manganese with an increase of eighty cents (\$0.80) per ton for each unit (22.4

pounds) in excess of 44.0%; fractions prorated.

"Low-Grade B"—Base price \$26.00 per long dry ton for ore containing 40.0% manganese with an increase of sixty-five cents (\$0.65) per ton for each unit (22.4 pounds) in excess of 40.0%; fractions prorated. Ore containing a minimum of 35.0% manganese will be accepted under this schedule with a penalty of \$1.30

per ton for each unit (22.4 pounds) less than 40.0%; fractions prorated.

In addition to the above prices, an allowance will be made for each long ton shipped equal to the freight tariff per long ton from Seller's nearest convenient rail station to Buyer's stock pile.

The cost of sampling and analysis by the Buyer, weighing, and unloading onto stock pile will be for the account of Buyer.

Under the contract, each lot will be priced under the grade within which the specifications fall. Thus a lot carrying 45% manganese but also 0.50% phosphorus would be priced as "Low-Grade B."

5. Shipment and Delivery: Seller will give such advice regarding shipment and arrival as Buyer may require at least ten days prior to shipment of the ore from point of loading onto railroad cars; otherwise, any demurrage at the stock pile will be for Seller's account.

Shipment will be made in flat-bottom gondolas, if available, in lots of not less than one carload, to the stock pile designated by Buyer. Seller will prepay the freight to such stock pile, where the ore will be weighed in cars, light and loaded, on track scales, and sampled for moisture. The lot will be sampled as unloaded and upon receipt of analysis, Buyer will advise Seller as to whether the ore is acceptable and under what classification.

If the lot is ascertained to be unacceptable under the above specifications, Seller will not be entitled to any allowance for prepaid freight and will be held responsible for the removal of this shipment of ore from the stock pile location. Upon failure so to remove the ore within fifteen days of due notice, Buyer may, at its absolute discretion, remove such ore and the cost of such removal shall be for Seller's account; or Buyer may, at its option, otherwise dispose of such ore without

any liability therefor. In the event that Seller fails to repay Buyer for the cost of removal within fifteen days after notice, Buyer may cancel the contract forthwith.
6. Payment: As soon as moisture and analysis determinations are received,

Buyer will promptly pay Seller in accordance with the weight certificate and the above schedule.

7. Weights: The weight paid for will be net railroad track scale weights (weight of loaded car less weight of empty car), less moisture as determined by standard

8. Sampling and Analysis: Each lot will be sampled at the time of unloading onto stock pile by a sampler designated by Buyer, three samples being taken, one for each Seller, Buyer, and Umpire, and analysis made for manganese and other guaranteed elements. Usual provisions will be made for splitting limits and settlement by average of Seller's and Buyer's analyses, or by trade practice if samples are sent to Umpire. Moisture samples will be taken in accordance with standard

practice. Seller may have representative at sampling at his own expense.

9. Application for Contract: Forms may be obtained upon request from the Metals Reserve Co., 811 Vermont Avenue, NW., Washington, D. C. All the information called for on the application form must be supplied before consideration

can be given to granting a contract.

Safety.—With increased activity of manganese ore operations, attention is called to the toxic effect of breathing dust containing appreciable quantities of manganese. In 1941 a study was made by Flinn and others 2 of this hazard. An abstract of this work follows:

The occurrence of chronic manganese poisoning among the 34 employees of a manganese ore-crushing mill was found to vary with the atmospheric manganese concentration and with the length of employment. Eleven cases were found. None of the 9 men exposed to less than 30 mg. of manganese per cubic meter was found to have the disease although only 2 of these 9 men had been employed more than 3 years; on the other hand, 5 of the 6 men exposed for more than 3 years to atmospheric manganese concentrations exceeding 90 mg. per cubic meter were found to have the disease. Tests made in a modern mill showed that the workers' exposure could be reduced to at most 6 mg. per cubic meter by the use of enclosed machinery, mechanical conveyors, and exhaust ventilation.

The disease is characterized by muscular incoordination which becomes evident first in the form of difficulty in walking. Later, many parts of the body may be affected and disability results. Most of the usual laboratory tests applied to blood, urine, and cerebrospinal fluid gave normal results. However, manganeseaffected workers had low leucocyte counts, particularly in neutrophilic cells, and in Lange's test the middle range of dilutions of cerebrospinal fluid gave slightly

positive reactions.

Recommendations for medical and engineering control are incorporated.

DOMESTIC PRODUCTION 3

The following table shows the various types of manganiferous materials shipped by domestic producers during 1937 to 1941.

Manganiferous raw materials shipped by producers in the United States, 1937-41, in long tons

	Metall		Miscel-				
Year	Manganese ore (35 per- cent or more Mn)	Ferruginous manganese ore (10 to 35 percent Mn)	Manganifer- ous iron ore (5 to 10 per- cent Mn)	Manganifer- ous zinc residuum	Battery ore	laneous manga- nese ore	
1937	26, 419 16, 989 18, 580 27, 158 65, 939	151, 955 33, 620 239, 544 320, 006 457, 287	1, 189, 017 275, 240 469, 703 816, 541 820, 290	115, 998 39, 079 129, 238 154, 455 251, 829	6, 447 4, 959 7, 767 9, 271 10, 178	7, 375 3, 373 2, 960 3, 694 2, 271	

² Flinn, Robert H., Neal, Paul A., Reinhart, Warren H., Dallavalle, J. M., Fulton, William B., M. D., and Dooley, Allan E., Chronic Manganese Poisoning in an Ore-Crushing Mill: Public Health Service, Public Health Bull. 247, 1941, p. vii.

³ Throughout chapter, unless otherwise indicated, percentages expressing manganese content of ores refer to ores in natural (undried) state.

Shipments of the various grades of manganese ore during the last 5 years are given, by States, in the following tables. In addition, battery-grade ores were produced in Arizona, California, and Montana; manganiferous zinc residuum was produced from New Jersey zinc ores; and miscellaneous manganese ores came from Alabama, California, Georgia, Montana, Tennessee, Virginia, and West Virginia.

Metallurgical manganese ore shipped from mines in the United States, 1937-41, by States, in long tons

State	1937	1938	1939	1940	1941	State	1937	1938	1939	1940	1941
AlabamaArizonaArkansas	31	111		311	884	North Carolina Oklahoma			43		31 36
California Colorado	3, 931	2, 987	5, 365	158 224	2, 321 170	Tennessee Texas	1, 214 38	3, 603	7, 306	6, 983	76
Georgia	689	3, 058			4, 369 30 11	Virginia Washington	32 952		50 475 10	1,043	
Montana Nevada	16, 854	5, 300		8, 230 210	38, 888 2, 622	West Virginia	1,800	56		219	
New Mexico	878	560	339	45			26, 419	16, 989	18, 580	27, 158	65, 939

Ferruginous manganese ore shipped from mines in the United States, 1937-41, by States, in long tons

State	1937	1938	1939	1940	1941	State	1937	1938	1939	1940	1941
Alabama. Arizona. Arkansas. California Colorado Georgia. Idaho Massachusetts. Michigan Minnesota. Montana.	279 7, 509 11, 577 4, 045 	3, 477 655 2, 807 230 17, 424	7, 516 7, 156 163 649	1, 275 87 3, 303 10, 088 313 1, 900	3, 019 414 5, 996 348 4, 000 365, 942	Nevada. New Mexico North Carolina Oklahoma. Tennessee Utah. Virginia Washington West Virginia.	902 3, 436 1, 170	456 1,670	294 262 4, 584	2, 327 2, 102	58, 467 155 50 1, 665 492 3, 906 6 400

Manganiferous iron ore shipped from mines in the United States, 1937-41, by States, in long tons

State	1937	1938	1939	1940	1941
Alabama. Georgia. Michigan. Minnesota. Virginia. Wisconsin	149 5, 492 9, 739 1, 173, 637	16, 057 259, 183	469, 703	205 18, 617 797, 642 77	1, 064 819, 226
	1, 189, 017	275, 240	469, 703	816, 541	820, 290

Manganese and manganiferous ores shipped by mines in the United States in 1941, by States

	Ore	contai or n	ning 35 iore M	percent n	Ore	contai	ning 1	0 to 35	Or	e contai	ining l	
		Long	tons			Long				Long	tons	
	Shippers	Gross weight	Manganese content	Value	Shippers	Gross weight	Manganese content	Value	Shippers	Gross weight	Manganese content	Value
Metallurgical: ArizonaArkansasCaliforniaColorado	11 3 7 2 2 3 7	884 4, 478 2, 321 170 4, 369	390 1, 917 1, 060 66 1, 764	\$17, 141 113, 125 54, 625 (1) 107, 074	1 3 2 	15 3, 019 414 5, 996	5 803 133 1, 251	\$44, 890 (1) 42, 713	 1	1,064	58	(3)
Idaho	1 1 4 1 2	30 11 38, 888 2, 622	14 4 23, 036 986	(1) (1) (1) (1)	3 1 3 1 2	4, 454	1, 405	2,046 (1) 1, 106, 011 (1) (1)	4	819, 226	56, 530	³\$1,953,798
New Mexico North Carolina Oklahoma Oregon	1 1 1 1 19	31 36 76 3, 923	12 14 35 1,558	(1) (1) (1) 85, 771	3 1 1 4	58, 467 155 50 1, 665	47 6 443	219, 401 (1) (1) 12, 229				
UtahVirginiaWashingtonWest VirginiaUndistributed	2 21 1 1	38 4, 449 1, 418 2, 195	700	100, 466 (1) (1) 1, 680, 731	6 7 1 1	3, 906 6 400	1					
Total metal- lurgical	71	65, 939	34, 293	2, 158, 933	51	457, 287	61, 896	1, 746, 918	5	820, 290	56, 588	1, 953, 798
Battery: ArizonaCalifornia Montana	1 1 43		383	485, 155	{							
Total battery	5	10, 178	4, 473	485, 155	==				===			
Miscellaneous: AlabamaCaliforniaGeorgiaMontana	3 2 4 2 4 2	360 74 649	168 31 245	24, 183	 [
West Virginia Tennessee Virginia	1 14 11	29	11	420								
Total miscel- laneous	25	<u> </u>			-							
	91	78, 388	39, 677	2, 696, 124	51	457, 287	61, 896	1, 746, 918	1	820, 290	56, 588	1, 953, 798

¹ Included under "Undistributed."

³ 1 producer in Georgia, 2 in Tennessee, and 5 in Virginia shipped both metallurgical and miscellaneous ore.

³ Value for Georgia included with Minnesota.

⁴ 1 producer in Montana shipped metallurgical, battery-grade, and miscellaneous ore.

Alabama.—Production in Alabama was small during 1941, and all was miscellaneous-grade ore. Three producers, one each in Cherokee, Etowah, and Jefferson Counties, supplied the total of 165 long tons.

Etowah, and Jefferson Counties, supplied the total of 165 long tons. Arizona.—Norman W. McGregor shipped a small quantity of battery-grade ore averaging 41.6 percent manganese from the Black Warrior mine in Mohave County. The largest shipper from Arizona during 1941 was Apache Mines, Inc., with operations at the Apache mines in Gila County and the Casa Grande mine in Pinal County. Shipments averaged 44.4 percent manganese. In addition, small quantities were shipped by 10 other producers in Cochise, Coconino, Gila, Pinal, Yavapai, and Santa Cruz Counties.

Arkansas.—Most of the manganese ore from Arkansas in 1941 came from the Batesville-Cushman district of Independence County and was supplied by the Walter H. Denison Manganese & Contracting Co., Inc., and the Arkansas Manganese Co. The North American Manganese Corporation made an initial shipment of metallurgical ore from Pike County in western Arkansas; this ore averaged 48.69 per-

cent manganese (dry).

A study of the beneficiation of manganese wad ores from Batesville,

Ark., has been made by Shelton and coworkers.4

California.—A great increase in manganese-mining activity was apparent in California during 1941. Manganese ore was shipped by 10 producers in 7 counties compared with only 2 producers in 1940. Shipments during 1941 were reported from Imperial, Plumas, San Bernardino, San Joaquin, Santa Clara, Stanislaus, and Trinity Counties. William Clark Crittendon shipped 976 tons of battery-grade ore from the Black Wonder-Jones mines in Stanislaus County. In addition, 414 tons of ferruginous manganese ore were shipped from Santa Clara and Trinity Counties during the year.

Colorado.—J. D. Thomas at Iola and Strategic Minerals, Inc., in San Miguel County supplied the State total of 170 tons of metallurgi-

cal-grade ore during 1941.

Georgia.—All ore containing 35 percent or more manganese and nearly all other manganese-bearing ores shipped from Georgia in 1941 came from Bartow County. Small quantities of ferruginous manganese ore were shipped from Fannin and Polk Counties. Bearden & Mosteller shipped 1,064 tons of manganiferous ore from the Cartersville district. Miscellaneous ores were shipped by Bearden & Mosteller and the Manganese Mining Co., both of Cartersville.

A study of the concentration of these ores was made by Johnston

and coworkers.5

Idaho.—The Metalloy Corporation, Cleveland, Idaho, made the only shipment of manganese ore made from Idaho in 1941—that from the Hot Spot mine. Three producers shipped a total of 348 tons of ferruginous manganese ore during the year.

Massachusetts.—Anson G. Betts shipped ferruginous manganese ore averaging 20 percent manganese from the Taconic mine in Hampshire

County.

Minnesota.—Ferruginous manganese ore averaging 12.62 percent manganese was shipped from the Alstead-Hillcrest, Louise, and Merritt mines. Manganiferous iron ore averaging 6.90 percent manganese

⁴ Shelton, S. M., Fine, M. M., and Bardill, J. D., Beneficiation of Manganese Wad Ores from the Chinn Property, Batesville, Ark.: Bureau of Mines Rept. of Investigations 3614, 1942, pp. 1-18.

3 Johnston, T. L., Fine, M. M., and Shelton, S. M., Concentration of Manganese-Bearing Ore from the Dobbins Mine, Cartersville, Ga.: Bureau of Mines Rept. of Investigations 3608, 1942, pp. 1-32.

came from the Louise, Merritt, Sagamore, and Mahnomen mines. All shipments during 1941 came from the Cuyuna Range in Crow Wing County.

A study of the production of ferromanganese-grade concentrates

from these ores has been made by Shelton and Fine.6

Missouri.—Ernest Pearce shipped a small quantity of metallurgical-

grade ore from Washington County during 1941.

Montana.—Sixty-two percent of the total United States production of manganese ore during 1941 came from Montana. The bulk of the battery-grade ore came from the Philipsburg district and averaged about 70 percent MnO2; however, several cars of battery-grade ore were shipped from the Emma mine near Butte. A total of 4,454 tons of ferruginous manganese ore was shipped from the Trout mine in the Philipsburg district. The Anaconda Copper Mining Co. at Butte shipped 59 percent of the United States total of metallurgical manganese ore in 1941 and was the most important development of the year from a standpoint of tonnage produced; shipments of calcined nodules from Anaconda were begun in June in fulfillment of its contract with the Metals Reserve Co. The concentration process is described by Huttl 7 and consists of selective flotation, which recovers manganese, The rhodochrosite nodules are calcined before lead, zinc, and silver. shipment.

Deposits of the Philipsburg district are described in detail by

Goddard.8

Nevada.—H. E. Chatwin and R. H. Richards shipped 2,622 tons of metallurgical ore averaging 37.6 percent manganese and 7,958 tons of ferruginous manganese ore from the Black Diablo mine in Humboldt

Courty and the Black Rock mine in Lander County.

New Mexico.—No shipments of manganese ore were made from New Mexico in 1941. The Luna Manganese Co. of Deming produced about 250 tons of concentrates, which were shipped early in 1942. Luck Mining & Construction Co. shipped the bulk of the ferruginous manganese ore from the Boston Hill mine in Grant County.

Lasky has described manganese deposits in the Little Florida Mountains, Luna County, and De Vaney and coworkers 10 have studied

the concentration of ores from that district.

North Carolina.—The National Metals Corporation shipped 31 tons of metallurgical ore from the Bald Knob mine in Alleghany County, and ferruginous manganese ore was shipped from McDowell County.

Oklahoma.—Robert Galbreath shipped metallurgical ore and ferru-

ginous manganese ore from Coal and Johnston Counties.

Oregon.—Seventy-six tons of manganese ore averaging 46.67 percent manganese were shipped from the McAdams property in Coos and Curry Counties during 1941.

South Dakota.—No production of manganese-bearing ore in 1941 for commercial purposes was reported from South Dakota. How-

⁶ Shelton, S. M., and Fine, M. M., Progress Reports—Metallurgical Division. 49. Ferromanganese-Grade Concentrates from the Cuyuna Range: Bureau of Mines Rept. of Investigations 3582, 1941, 14 pp. 7 Huttl, John B., Domestic Manganese from Butte Helps in Emergency: Eng. and Min. Jour., vol. 143, No. 1, 1942, pp. 56-58.

⁸ Goddard, E. N., Manganese Deposits at Philipsburg, Granite County, Mont.: Geol. Surv. Bull. 922-G, 1940, pp. 187-204

Goddard, E. N., Maiganese Deposits at Impostacy, Status
 1940, pp. 157-204.
 Lasky, S. G., Manganese Deposits in the Little Florida Mountains, Luna County, N. Mex.: Geol. Surv. Bull. 922-C, 1940, pp. 55-73.
 De Vaney, F. D., Fine, M. M., and Shelton, S. M., Manganese Investigations—Metallurgical Division. 6. Ore-Dressing Studies of Manganese Ores. Concentration of Manganese Ores from the Little Florida Mountains, Luna County, N. Mex.: Bureau of Mines Rept. of Investigations 3620, 1942, 9 pp.

ever, the Bureau of Mines has done extensive work on the concentration of nodules and recovery of manganese from the manganiferous shales near Chamberlain in south-central South Dakota. of the most extensive of our possible sources of manganese. and Rothrock 11 estimate the manganese content of the deposit to be as high as 850,000,000 tons and state that it is safe to assume that at least 50.000.000 tons of nodules can be recovered from the areas free of overburden and suitable for open-pit mining.

De Vaney and coworkers 12 have studied concentration of manganese nodules from Chamberlain, and Wood and coworkers 13 recovery of

manganese from nodules.

Tennessee. - Manganese-bearing ores were shipped from Johnson, Unicoi, and Washington Counties during 1941. The Embree Iron Co., Unicoi County, and the Interstate Manganese Co., Johnson County, shipped the bulk of the total ore—from the Embree and Greer mines.

Reichert 14 has recently given a detailed description of the manganese resources of East Tennessee, and Johnston and coworkers 15 have

studied the concentration of Tennessee ores.

Utah.-F. W. De Friess made Utah's only shipment of manganese ore, from a mine near Green River in Grand County. Ferruginous manganese ore was shipped from six properties in Grand, Juab, Kane. and Sevier Counties.

Zimmerley and coworkers 16 have studied concentration of Drum

Mountain ores.

Virginia.—Twenty-one shippers of metallurgical-grade ore and 11 shippers of miscellaneous ore (5 shipping both grades) supplied 4,449 tons of metallurgical and 989 tons of miscellaneous ore during 1941. Shipments of manganese ore were made from Appomattox, Augusta, Bath, Bland, Campbell, Craig, Frederick, Giles, Grayson, Page, and Smyth Counties. In addition, 3,906 tons of ferruginous manganese ore were shipped from Augusta, Bland, and Giles Counties during the vear.

Washington.—The Sunshine Mining Co. shipped 1,418 tons of manganese ore containing 49.34 percent manganese from the Crescent mine in Clallam County during 1941. A very small shipment of ferruginous manganese ore was shipped from the Stevens Creek mine

in Gravs Harbor County.

West Virginia.—The Appalachian Ores Co. shipped 2,195 tons of metallurgical ore and 400 tons of ferruginous manganese ore from the Sweet Springs mine in Monroe County. Five tons of miscellaneous ore were shipped from a mine in Pendleton County.

18 Zimmerley, S. R., Vincent, J. D., and Schock, C. H., Manganese Investigations—Metallurgical Division. 1. Ore-Dressing Studies of Manganese Ores. Concentration of Manganese Ores from the Drum Mountain District, Utah: Bureau of Mines Rept. of Investigations 3606, 1942, 12 pp.

¹¹ Gries, J. P., and Rothrock, E. P., Manganese Deposits of the Lower Missouri Valley in South Dakota:
South Dakota State Geol. Survey Rept. of Investigations 38, 1941, 96 pp.

12 De Vaney, F. D., Shelton, S. M., and Lamb, F. D., Manganese Investigations—Metallurgical Division.
3. Ore-Dressing Studies of Manganese Ores. Concentration of Manganese Nodules from Chamberlain,
S. Dak.: Bureau of Mines Rept. of Investigations 3613, 1942, 21 pp.

13 Wood, C. E., Wallfred, C. L., Barrett, E. P., Reader, L. J., Ginsberg, S. I., Wyman, W. F., and Evans,
R. L., Manganese Investigations—Metallurgical Division. 2. Hydrometallurgical Studies of Manganese
Ores. Recovery of Manganese from Chamberlain Nodules by the Reverson Modification of the Sulfur
Dioxide Leaching Process: Bureau of Mines Rept. of Investigations 3609, 1942, 30 pp.

14 Reichert, Stanley O., Manganese Resources of East Tennessee: State of Tenn. Division of Geol., Nashville, Tenn., Bull. 50, 1942, 205 pp.

15 Johnston, T. L., Shelton, S. M., Fine, M. M. and Calhoun, W. A., Manganese Investigations—Metallurgical Division. 10. Ore-Dressing Studies of Manganese Ores. Concentration of Manganese-Bearing Ore
from the Interstate Manganese Co., Johnson County, Tenn.: Bureau of Mines Rept. of Investigations
3623, 1942, 13 pp.

IMPORTS OF MANGANESE ORE

Imports for consumption of manganese ore containing 35 percent or more manganese increased 19 percent in 1941 over 1940 and comprised 1,498,667 long tons of metallurgical ore containing 719.096 tons of manganese valued at \$24,165,221 and 32,209 tons of batterygrade ore containing 17,472 tons of manganese valued at \$920,610. All supplying countries except Gold Coast and U. S. S. R. made larger shipments than in 1940; the most noticeable increases came from Brazil, Cuba, British India, and Union of South Africa, and these four countries supplied 80 percent of the total in 1941. Of the battervgrade ore, 25,347 tons came from Gold Coast. 4,574 tons from Union of South Africa, 2,090 tons from Netherlands Indies, 139 tons from Mexico, 57 tons from British India, and 2 tons from Canada.

General imports (containing 35 percent or more manganese), which represent the movement of ore into this country, were 9 percent less than imports for consumption and totaled 1,394,762 long tons containing 654,710 tons of manganese. Of this ore 387.348 tons came from Brazil, 322,241 tons from British India, 261,374 tons from Union of South Africa, and 243,405 from Cuba; and these four countries supplied 87 percent of the total in 1941. Included in the total ore are receipts of battery-grade ore amounting to 28,995 tons (containing 15,840 tons of manganese), of which Gold Coast supplied 22,804 tons.

or 79 percent.

No imports for consumption of ferruginous manganese ore (containing 10 to 35 percent manganese) were recorded during 1941. Imports of manganiferous ore (5 to 10 percent manganese) are estimated at 2.022 tons.

Manganese ore (35 percent or more Mn) imported into the United States, 1940-41. by countries

	· ·	eneral im	norts I		Imports for consumption 2						
	(long tons)				Long tons				Value		
Country	Gross	Gross weight Mn content Gross weight		Mn content		weight	Mn co	ntent			
	1940	1941	1940	1941	1940	1941	1940	1941	1940	1941	
Belgian Congo Brazil	5, 245 43, 515 238, 400 179, 251 207	387, 348 17, 135 243, 405 67, 699 322, 241 3, 814 9, 253 57, 048 261, 374	92, 615 8, 112 64, 175 123, 709 109, 284 271 2, 753 21, 824 106, 588 86, 018 110	115, 979 35, 389 162, 117 1, 689 4, 933 27, 498 122, 264	177, 739 311, 748 193	243, 405 198, 907 386, 908 941 8, 244 57, 048 273, 749 29, 183 210	3, 718 64, 175 124, 221 95, 100 271 2, 753 21, 824 78, 508 151, 367 104	7, 740 115, 979 101, 551 196, 211 460 4, 459 27, 497 127, 534 15, 115 102	3, 059, 735 4, 468, 383 2, 323, 880 12, 145 144, 131 627, 243 1, 802, 537 3, 947, 766 11, 992	366, 012 6, 353, 224, 205 6, 270, 579 26, 962 250, 465 1, 000, 466 3, 829, 070 393, 377 3, 672	
	1, 294, 316	1, 394, 762	615, 944	654, 710	1, 282, 079	1, 530, 876	617, 101	736, 568	18, 231, 887	25, 085, 83	

¹ Comprises ore received in the United States during year; part went into consumption and remainder entered bonded warehouses.

² Comprises receipts during year for consumption and ore withdrawn from bonded warehouses during year (irrespective of time of importation).

CONSUMPTION AND STOCKS OF MANGANESE RAW MATERIALS

The following table shows actual consumption of manganese ore (containing 35 percent or more manganese (natural)) and alloys during 1941 and stocks at the end of the year. As this table is the result of the first study of this type conducted by the Bureau of Mines, there are no comparable statistics for earlier years.

Manganese ore and manganese alloys consumed and in stock¹ in the United States in 1941, gross weight in long tons

		In stock D	ec. 31, 1941 i
	Consumed	At plant (in- cluding bonded warehouses)	In bonded warehouses
Manufacturers of manganese alloys: Manganese ore: Domestic:		2	
35 to 47 percent Mn (natural) Over 47 percent Mn (natural) Foreign	· 04	10, 309 403 1, 017, 291	624, 69
Ferromanganese	1, 113, 560	1, 028, 003	624, 69 26, 11
Silicomanganese		8, 594 1, 975	1, 30
Manufacturers of iron and steel: Manganese ore: Domestie: 35 to 47 percent Mn (natural) Over 47 percent Mn (natural) Foreign	1, 214 4, 189 17, 174	1, 114	
Ferromanganese Spiegeleisen Silicomanganese	22, 577 520, 054 144, 120 41, 294	150, 361	2, 983
Manufacturers of dry cells: Manganese ore: Domestic: 35 to 47 percent Mn (natural) Over 47 percent Mn (natural) Foreign	3, 618 6, 777 23, 520		14, 021
Brokers and dealers: Manganese ore: Foreign	33, 915	24, 073 8, 820	14, 021 2, 539
Grand total: Manganese ore: Domestic:		83	
35 to 47 percent Mn (natural) Over 47 percent Mn (natural) Foreign	20, 832 11, 060 1, 138, 160	12, 008 4, 224 1, 054, 381	641, 252
Ferromanganese Spiegeleisen Silicomanganese	1, 170, 052 520, 054 144, 120 41, 294	1, 070, 613 184, 793 73, 922 7, 646	641, 252 29, 101 1, 304

¹ Exclusive of Government stocks.

The following table shows ores available for consumption in the United States during 1941. The table does not consider consumers or Government stocks at beginning and end of the year.

Indicated consumption of manganiferous raw materials in the United States in 1941

		aining 35 or more	contain	residuum ling 10 to ent Mn		aining 5 to ent Mn
	Long tons	Mn content (percent)	Long tons	Mn content (percent)	Long tons	Mn content (percent)
Domestic shipments Imports for consumption	78, 388 1, 530, 876	50. 6 48. 1	709, 116	15. 4	820, 290 1 2, 022	6. 9 7. 2
Total available for consumption	1, 609, 264	48. 2	709, 116	15. 4	822, 312	6. 9

¹ Estimated.

In addition to the foregoing, 1,592,700 long tons of domestic ore containing 2 to 5 percent manganese were shipped from mines in 1941, and presumably used in the manufacture of pig iron, compared with 737,400 tons in 1940 and 652,900 tons in 1939. Figures for imports of ore of this class are not available.

METALLURGICAL INDUSTRY

Although manganese is used in both the ferrous and nonferrous metallurgical industries, the bulk is consumed in the manufacture of iron and steel. Most of the ore entering the industry is used in the manufacture of ferromanganese and spiegeleisen, the forms in which manganese ordinarily is added to steel.

Ferromanganese and spiegeleisen imported into and made from domestic and imported ores in the United States, 1940-41, in long tons

	19	40	19	41
	Alloy	Manga- nese	Alloy	Manga- nese
Ferromanganese:				
Imported	10, 369	8. 573	6, 278	5, 085
Domestic production	459, 538	365.092	518, 486	412.088
From domestic ore 1	7, 306	5, 773	19, 577	15,888
From imported ore 1	452, 232	359, 319	498, 909	396, 200
Total	469, 907	373, 665	524, 764	417, 173
Ratio (percent) of Mn in ferromanganese of domestic origin to total Mn in ferromanganese made and im-				
ported	1	1.54		3. 81
Number of plants making ferromanganese			. 12	
Spiegeleisen:				
*T	15, 585	1 3, 117	4, 233	1 847
Domestic production	101, 892	20, 805	158, 853	25, 606
From domestic ore	101, 820	20, 794	156, 735	25, 265
From imported ore	72	20, 11	2, 118	341
	117, 477	23, 922	163, 086	26, 453
Total	111, 411	217. 522	1.90, 1.00	
Ratio (percent) of Mn in spiegeleisen of domestic origin	ł	86, 92		95, 51
to total Mn in spiegeleisen made and imported	5	au. 92	5	3,,,,,,,
Number of plants making spiegeleisen			.,	
Total available supply of metallic manganese in ferro-	Ì	20- 50-		443, 626
manganese and spiegeleisen	· · · · · · · · · · · ·	397, 587		440.02
Percent of available supply of manganese in-		0.04		1, 34
Ferromanganese and spiegeleisen imported		2.94		89. 31
Ferromanganese made from imported ore		90.38		
Spiegeleisen made from imported ore		(2)		. 05
Ferromanganese made from domestic ore		1, 45		3. 55
Spiegeleisen made from domestic ore		5. 23		5, 69
Ferromanganese and spiegeleisen made from domestic	1		l	0.5
ore		6.68		9. 27
Spiegeleisen made and imported		6.02		5. 96
Total open-hearth, Bessemer, and electric steel	59, 805, 055		73, 961, 559	1

¹ Estimated.

Less than 0.01 percent.

Ferromanganese.—The domestic output of ferromanganese in 1941, which increased 13 percent over 1940, was produced at the following plants:

Bethlehem Steel Co., Johnstown, Pa.
Carnegie-Illinois Steel Corporation, Etna, Duquesne, and Clairton, Pa.
Electro Metallurgical Co., Alloy, W. Va., and Niagara Falls, N. Y.
E. J. Lavino & Co. Reusens, Va., and Sheridan, Pa.
Sloss-Sheffield Steel & Iron Co., North Birmingham, Ala.
Tennessee Products Corporation Reckdele and Rockwood Tonnessee

Tennessee Products Corporation, Rockdale and Rockwood, Tenn. Keokuk Electro-Metals Co., Keokuk, Iowa.

In addition to the foregoing plants, shipments were made by the Colorado Fuel & Iron Corporation, Pueblo, Colo., and the Jones & Laughlin Steel Corporation, Aliquippa, Pa.

The larger part of the ferromanganese produced in this country is made from foreign ores, as shown in the following table:

Ferromanganese produced in the United States and metalliferous materials consumed in its manufacture, 1937-41

	Ferrom	anganese pi	roduced	Mat	erials consu	med (long	tons)	Manga-
Year	Long	Manganese contained		percent	ese ore (35 or more atural)	Iron and manga-	Cinder, scale, and	nese ore used per ton of ferroman- ganese
	tons	Percent	Long tons	Foreign	Domestic	niferous iron ores	purchased scrap	made (long tons)
1937 1938 1939 1940 1941	376, 443 242, 994 270, 111 459, 538 518, 486	79. 54 78. 65 79. 24 79. 45 79. 48	299, 425 191, 104 214, 040 365, 092 412, 088	698, 052 416, 738 502, 986 871, 725 1, 001, 953	9, 444 22, 548 11, 981 8, 405	17, 511 9, 696 8, 324 5, 258 4, 613	6, 017 8, 462 6, 250 6, 918 5, 385	1. 879 1. 808 1. 862 1. 923 1. 949

Foreign manganese ore used in manufacture of ferromanganese in the United States, 1937-41, by sources of ore, in long tons

Source of ore	1937	1938	1939	1940	1941
Africa Brazil Chile Cuba India Mexico	60, 012 62, 199	152, 699 64, 060 36, 295 55, 965	129, 227 58, 284 856 58, 999 86, 309	208, 366 169, 097 5, 425 100, 767 167, 928	198, 161 293, 544 4, 210 121, 054 1 223, 594 1, 567
Philippine Islands U. S. S. R Undistributed	313, 305 698, 052	107, 720	169, 311 502, 986	11, 400 167, 220 41, 522 871, 725	5, 568 1 129, 754 1 24, 501 1, 001, 953

¹ Tonnage entered under "Undistributed" comprises ore from India and U. S. S. R.; separation as to source not reported by consumer.

Shipments of ferromanganese in 1941 increased 23 percent over 1940. The record of shipments during the past 5 years is as follows:

Ferromanganese shipped from furnaces in the United States, 1937-41

Year	Long tons	Value	Year	Long tons	Value
1937 1938 1939	359, 842 223, 720 296, 631	\$30, 696, 748 19, 144, 884 24, 137, 211	1940 1941	449, 367 553, 031	\$42, 755, 485 69, 378, 004

Imports for consumption and exports decreased 39 and 65 percent, respectively, in 1941 from 1940. Ferromanganese imported for consumption in 1941 comprised 13 tons containing not over 1 percent carbon and 6,265 tons containing not less than 4 percent carbon.

Ferromanganese imported into and exported from the United States, 1937-41

	Impo	orts for cons	Exports 1		
Year	Gross weight (long tons)	Mn con- tent (long tons)	Value	Gross weight (long tons)	Value
1937	29, 559 26, 258 41, 227 10, 369 6, 278	23, 888 21, 118 33, 414 8, 573 5, 085	\$2, 163, 616 1, 770, 948 2, 935, 214 1, 321, 369 557, 150	1,725 247 2,923 13,036 4,603	\$72, 502 18, 799 247, 798 1, 366, 087 771, 575

¹ Includes spiegeleisen; not separately classified prior to July 1, 1941.

Imports of ferromanganese in 1940 and 1941, by countries, are shown in the following table.

Ferromanganese imported for consumption in the United States, 1940-41, by countries

	1940) "	1941		
Country	Mn content (long tons)	Value	Mn content (long tons)	Value	
Canada			1,073	\$136,029	
Japan Norway United Kingdom	35 8,538	\$2,349 1,319,020	11 4,001	1, 597 419, 524	
	8, 573	1, 321, 369	5, 085	557, 150	

Customs districts through which imported ferromanganese entered in 1940 and 1941 are as follows:

Manganese content of ferromanganese imported for consumption in the United States, 1940–41, by customs districts, in long tons

Customs district	1940	1941	Customs district	1940	1941
Buffalo	992 79 6, 731	969 4,001 95	New York Oregon Vermont Washington (State)	529 38 47	20
New Orleans	157			8, 573	5, 085

The quoted price of ferromanganese was unchanged throughout 1941, as shown in the following table.

Prices per long ton of ferromanganese in the United States, 1939-41 1
[80 percent—delivered at Pittsburgh]

Month	1939	1940	1941	Month	1939	1940	1941
January February March April May June	\$91. 58 85. 33 85. 33 85. 33 85. 33 85. 33	\$105. 33 105. 33 105. 33 105. 33 105. 33 105. 33	\$125. 33 125. 33 125. 33 125. 33 125. 33 125. 33	July August September October November December	\$85. 33 85. 33 95. 33 105. 33 105. 33 105. 33	\$125. 33 125. 33 125. 33 125. 33 125. 33 125. 33	\$125. 33 125. 33 125. 33 125. 33 125. 33 125. 33

¹ Steel, vol. 110, January 5, 1942.

Spiegeleisen.—Domestic shipments of spiegeleisen in 1941 increased 52 percent over 1940 and 91 percent over 1939.

Spiegeleisen produced and shipped in the United States, 1937-41

	Produced	Shipped f	rom furnaces		Produced	Shipped from furnaces		
Year	(long tons)	Long tons	Value	Year	(long tons)	Long tons	Value	
1937 1938 1939	(1) 11, 311 91, 491	134, 983 24, 939 84, 739	\$3, 969, 822 728, 830 2, 484, 042	1940 1941	101, 892 158, 853	106, 707 161, 765	\$3, 487, 565 5, 793, 481	

¹ Bureau of Mines not at liberty to publish figures.

Spiegeleisen was manufactured at the following plants during 1941: Carnegie-Illinois Steel Corporation, Duquesne and Clairton, Pa., and Gary, Ind. New Jersey Zinc Co., Palmerton, Pa. Sloss-Sheffield Steel & Iron Co., North Birmingham, Ala.

Most of the spiegeleisen produced in the United States is made from domestic raw materials. However, 1,683 tons of Brazilian ore containing 42.14 percent manganese and 143 tons of Cuban ore containing 50.73 percent manganese were consumed in the production of spiegeleisen during 1941. Imports of spiegeleisen for consumption in 1941 decreased 73 percent from 1940. The total supply came from Canada.

Spiegeleisen imported for consumption in the United States, 1937-41

Year	Long tons	Value	Year	Long tons	Value
1937 1938 1939	16, 841 17, 248 38, 264	\$589, 766 625, 480 1, 329, 814	1940 1941	15, 585 4, 233	\$638, 732 215, 108

The prices of spiegeleisen (20 percent) at producers' furnaces, as quoted by Steel, remained constant at \$36.00 a ton throughout 1941.

Manganiferous pig iron.—Precise data on the consumption of manganiferous ores in the production of manganiferous pig iron are not available. However, 820,290 long tons of domestic ore containing 5 to 10 percent manganese and 1,592,700 tons containing 2 to 5 percent manganese were shipped during 1941. A small amount of foreign manganiferous iron ore (2,022 tons) and 7,422 tons of foreign ferruginous manganese ore were also consumed in the manufacture of pig iron.

Foreign ferruginous manganese ore and manganiferous iron ore consumed in the United States, 1939-41, in long tons

Source of ore	Ferrugin	ous manga	nese ore	Manganiferous iron ore		
rounce of one	1939	1940	1941	1939	1940	1941
AfricaAsia: Palestine	1, 184 1, 133	184 36, 069				
Australia		746	7, 422	54, 941 6, 831	11, 905	2,02
Sweden Undistributed	582			985	523	
	2, 899	36, 999	7, 422	62, 757	12, 428	2, 02

BATTERY INDUSTRY

Shipments of manganese ore from Arizona, California, and Montana by domestic producers to battery makers in 1941 totaled 10,178 long tons. Imports of battery-grade ore for consumption were 32,209 long tons containing 17,472 tons of manganese. Manganese ore for battery use should have a high content of available oxygen with minimum iron and be comparatively free from such metals as arsenic, copper, nickel, or cobalt, which are electronegative to zinc.

MISCELLANEOUS INDUSTRIES

Small quantities of manganese ores are used in the glass, paint and varnish, pigments and dyes, and other miscellaneous industries. No accurate statistics are available to show the amount of manganese ore used for these purposes in this country, but it is known to be very small, probably less than 5,000 tons a year.

PRICES

Prices of manganese ore (except battery ore) are upon a unit basis, the unit being 1 percent of a long ton or 22.4 pounds of contained manganese. Prices of battery-grade ore are quoted upon a per-ton basis, with a minimum requirement of manganese dioxide.

A complete price schedule for domestic ore is given in the early pages of this chapter under "Government Purchases"; effective May 4, 1942, the price rose to \$1.00 per unit for 48-percent-grade ore. The average value reported for ore containing 35 percent or more manganese during 1941 was about 63 cents per unit. Quotations on imported ore in the following table are from the Engineering and Mining Journal. A duty of one-half cent per pound of contained manganese is imposed on all imported manganese ore except that from Cuba and the Philippine Islands, which enters duty free.

Domestic prices of metallurgical manganese ore in 1941, in cents per long-ton unit
[C.i.f. North Atlantic ports, cargo lots, exclusive of duty]

	Beginning of year	End of year		Beginning of year	End of year
Brazilian, 46–48 percent Mn Chilean, 47–48 percent Mn South African, 50–52 percent Mn	\$0.50 .52 .5 ⁵	\$0.63 .65	Cuban (not dutiable): 50-52 percent Mn 45-47 percent Mn	\$0, 65 , 55	\$0. 78 . 73

According to the Engineering and Mining Journal, prices for chemical (battery-grade) ores per long ton in carlots at the end of 1941 were as follows: Domestic, containing 70 to 72 percent MnO₂, \$45 to \$50; Brazilian or Cuban, 80 percent MnO₂, \$55; Javan or Caucasian, 85 percent MnO₂, nominal.

WORLD PRODUCTION

Manganese ore produced in principal countries of the world, 1937-41, in metric tons 1 [Compiled by B. B. Waldbauer]

Country 1	Percent Mn	1937	1938	1939	1940	1941
North America:	-		* 12.			
Canada (shipments)		77		359	(2)	(2)
Costa Rica		100	304	(2)	(2) (2)	(2) (2)
Cuba	36-50+	131, 299	123, 844	102, 415	119, 852	191, 93
Mexico.	40+	17	117	27	307	979
United States:						
Continental (shipments)	35+	40, 887	25, 727	29, 777	40, 767	79, 64
Puerto Rico (exports)	48-51	2, 381	1,039			
outh America:	-50 0-	,	,			
Argentina 3	35-38	606	437	651	710	1, 470
Bolivia (exports)	50			500	(2)	(2)
Brazil	38-50	262, 409	306, 025	257, 752	313, 391	4 437, 402
Chile	40-50	13, 014	19, 319	12, 550	11, 620	4 21, 396
Peru		157	24	96	283	(2)
Gurope:		-5.		30	_50	``
Bulgaria	30-45	3,000	1,887	944	2,000	(2)
Germany	30+	226	163	(2)	(2)	(2)
Greece	30+	6, 952	7, 075	11, 178	(2)	(3)
Hungary	35-48	25, 088	22, 221	(2)	(2)	(2) (2) (2)
Italy	34-37	33, 532	48, 282	(2)	(2)	(2)
Portugal	40+	317	557	225	1,059	(2)
Rumania		50, 749	60, 256	41. 546	(2)	(2)
Spain	30-30	\$ 490	5 1. 319	(2)	(2) (2)	6 7. 27
Sweden	30-50	5, 845	5, 347	5, 934	(2)	(2)
U. S. S. R.	41-48	2, 752, 000	2, 272, 800	(2)	2, 800, 000	7 3, 000, 00
Yugoslavia	32-38	4, 420	3, 759	5, 655	2,000,000	(2)
l ugosiavia	02-00	1, 120	0, 100	0, 000	,	'
China (exports)	45-46	51, 446	1, 247	1	(2)	(2)
India:	40-10	01, 110	-,		()	
British	47-52	1,068,472	983, 464	858, 22 0	(2)	7 1,000,00
Portuguese	42-50+	4, 077	9, 478	8, 204	6, 525	
Indochina	12 00 1	5, 287	2, 214	2, 440	7 2,000	(2)
Japan	49-51	7 70, 000	7 80, 000	(2)	(2)	(2)
Netherlands Indies	50-55	11, 083	9, 687	12, 074	11, 569	(2)
Philippine Islands	45-50	25, 518	58, 143	29, 394	52, 166	8 33, 66
Turbon	30-50	530	2, 186	3, 339	(2)	(2)
Turkey Unfederated Malay States	30	33, 319	32, 483	31, 952	11,702	(2)
		00, 010	02, 100	01,002	,	١ ''
Belgian Congo	56	27, 471	7, 725	(2)	18, 369	(2)
Fount	30+	186, 320	153, 112	119, 882	64, 912	⁷ 200, 00
Gold Coast (exports)	50+	535, 495	329, 411	341, 710	(2)	(3)
Egypt Gold Coast (exports) Morocco:	301	000, 100	020, 111	011, 110	· · ·	``
French		76, 460	86, 597	(2)	(2)	(2)
Spanish		660	152	(2)	(2)	(2)
Northern Rhodesia	30-48	2, 379	2, 779	3, 018	(2)	(2)
Union of South Africa		631, 194	551, 739	419, 697	412,071	223,09
Orion of Bouth Africa	00 01	,001,101	001, 100	110,000	1, 0	,
Australia:	1		1 1		1	1
New South Wales	1	109	221	(2)	(2)	(2)
			382	(2) (2)	(2)	(2)
Queensland South Australia		1,002	""	7	(2)	(2)
New Zealand		5	91	494	996	(2) (2) (2) (2)
THEW MESISHU				101		
		6, 064, 000	5, 212, 000	(2)	(2)	(2)
	1	1 0,000,000	1 0,414,000	(-)	1 (7	1 (7)

In addition to countries listed, Belgium produces manganese ore, but data of output are not available. Czechoslovakia reports a production of manganese ore, but as it has been ascertained that the product so reported averages less than 30 percent Mn and therefore would be considered ferruginous manganese ore under the classification used in this report, the output has not been included in the table.

2 Data not available.

3 Shipments by rail and river.

4 Expected Values to Lune inclusive.

5 Estimated.

6 Fractive Lune inclusive.

Exports.

Exports January to June, inclusive.
January to June, inclusive.

Brazil.—Production of manganese ore in Brazil increased greatly in 1941 over 1940. Exports totaled 437,402 metric tons compared with 270,000 tons in 1940. Nearly all the exports came to the United States, which imported 393,565 metric tons in 1941. Brazil was the largest supplier of manganese ore imported into the United States during the year. Stocks on hand in Rio de Janeiro on December 31, 1941, were 32,010 metric tons compared with 68,212 tons at the end of 1940. During the first quarter of 1942, all exports from Brazil came to United States.

Chile.—Exports from Chile totaled 21,396 metric tons in 1941 compared with 19,518 tons in 1940; 17,409 metric tons reached the

United States during 1941.

Cuba.—A concentrating plant at Cristo near Santiago, Cuba, was expanded 30 percent to make possible a production of 130,000 tons of high-grade ore during 1941. A considerable quantity of ore was purchased from small producers to make this production possible. Total Cuban production in 1941 was 191,937 metric tons.

Mexico.—Production of manganese ore in Mexico was 979 metric

tons in 1941 compared with 307 tons in 1940.

Philippine Islands.—Exports of manganese ore from the Philippines were 33,664 metric tons for the first 6 months of 1941 compared with

58,038 tons during entire year 1940.

U. S. S. R.—Output in U. S. S. R., the world's largest producing nation, was reported by official sources to have been 2,800,000 metric tons in 1940. It is estimated that production totaled 3,000,000 tons in 1941; no manganese was exported to the United States in 1941.

CHROMITE

By FREDERICK BETZ, JR.

SUMMARY OUTLINE

•	Page		Page
General features in 1941	603	Domestic production	609
Salient statistics	604	Imports	610
Government exploration	604	Prices	611
Office of Production Management and War		Consumption	611
		Uses	
Metals Reserve Company	607	World production and trade	613

GENERAL FEATURES IN 1941

The outstanding features of the chromite industry during 1941 were the continued increase in imports of foreign ore and the expansion of the Government program for purchasing domestic chromite. Mines in the United States shipped 12,731 long tons of chromite (ore and concentrates), a peak in annual shipments for the period since 1918 (see historic table under "Consumption" and fig. 1). The apparent available supply soared to an all-time high of 1,008,507

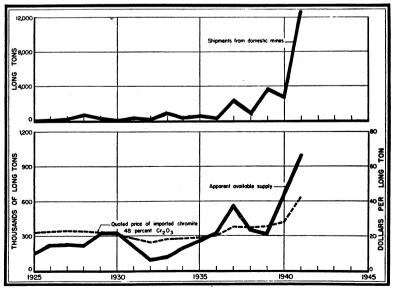


FIGURE 1.—Trends in shipments, prices, and apparent available supply of chromite, 1925-41.

Large increases were noted in imports from Africa, Cuba, the Philippine Islands, and New Caledonia, whereas shipments to the United States from British India, Greece, and Turkey declined. Statistics on world production are incomplete for 1940 and 1941. Latest figures show that production decreased from 1,155,000 long tons in 1939 to 1,123,000 tons in 1940. In 1941 an increase is indicated, largely because of the rise in exports from Cuba and the Philippine Islands. In the United States, the Government continued its exploration and development work on chromite deposits through the Bureau of Mines and the Geological Survey. The Office of Production Management placed restrictive orders on chromium, which The Metals Reserve culminated in a complete allocation system. Co. established purchasing schedules for domestic ore in November and December to encourage chromite mining in the United States.

Salient statistics of the chromite industry in the United States, 1925-29 (average) and 1937-41

	1925–29 (average)	1937	1938	1939	1940	1941
Apparent available supply:* Importslong tons_ Shipments from domestic mines	224, 357	553, 916	352, 085	317, 511	657, 689	995, 776
long tons	276	2, 321	812	3, 614	2, 662	12, 731
	224,633	556,237	352,897	321,125	660,351	1,008,507
Imports:			40	67	40	40
Africa 1 percent of total do	63 15	50 17	48 11	37 21	43	43 16
Cubadodo	9	17	3	3	2	(2)
New Caledoniado	6	g g	8	5	6	
Philippine Islandsdo	Ŭ	8.	22	23	24	26
Turkeydo		7	6	5	11	
Other countriesdo	7	4	2	6	6	2 2
World productionlong tons	428, 000	1, 260, 000	1, 115, 000	1, 155, 000	1, 123, 000	(3)

Originated in Southern Rhodesia, Union of South Africa, and British West Africa.
 Greece (less than 1 percent) included under "Other countries."
 Data not available.

GOVERNMENT EXPLORATION

In accordance with section 7 of the strategic materials act (53 Stat. 811), the Geological Survey and the Bureau of Mines continued the search for and appraisal of ore deposits containing metals designated as strategic by the Secretaries of War, Navy, and Interior upon the advice of the Army and Navy Munitions Board. The act authorized the expenditure of \$500,000 a year—\$350,000 by the Bureau of Mines and \$150,000 by the Geological Survey—for each of the 4 fiscal years ending June 30, 1940, 1941, 1942, and 1943. The two bureaus are cooperating closely to facilitate accomplishment of the objectives of the act.

In carrying out its part of the program, the Bureau of Mines 1 seeks to determine (1) the extent and quality of the ore, (2) the most suitable method of mining and beneficiating it, and (3) the cost at which it may be produced.

Exploration by the Bureau of Mines 2 of the chromite deposits in Stillwater and Sweet Grass Counties, Mont., carried on in 1939 and 1940 was continued during 1941. Extensive diamond drilling represents

¹ Finch, John W., Strategic Minerals Investigations—Procedure Followed by the Bureau of Mines: Bureau of Mines Inf. Circ. 7097, 1939, pp. 1-5.

² Jackson, C. F., Annual Report of the Mining Division, Fiscal Year 1941: Bureau of Mines Rept. of Investigations 3596, 1941, pp. 11-22, 24-25.

CHROMITE 605

the present phase of the investigations, which had been preceded by trenching and large-scale sampling. The Bureau of Mines also conducted examinations in Siskiyou and Glenn Counties, Calif., by trenching and drilling. Special investigations included magnetic and gravimetric surveys of a selected area in the serpentine belt of northern Maryland and southern Pennsylvania, which formerly yielded large supplies of chromite. Drilling will be carried on at selected points.

The Geological Survey mapped in 1941 in considerable detail five chromite deposits in Siskiyou and Tehama Counties, Calif., Skagit County, Wash., and Baranof Island, Alaska. Mapping of the chromite zone of the Stillwater Complex in Stillwater and Sweet Grass Counties, Mont., was continued. In cooperation with the Bureau of Mines, deposits in Siskiyou, Glenn, and San Luis Obispo Counties, Calif., and on the Kenai Peninsula, Alaska, were examined further. Several smaller districts in the United States and Alaska were inspected briefly.

A report ³ was published by the Geological Survey in 1942 on field work performed in connection with the strategic minerals investiga-

tions.

The chemical laboratory of the Geological Survey made 52 complete and 143 partial analyses of cleaned chromite from the United States and Alaska, Cuba, Brazil, and other countries of the Western Hemisphere during the years 1939–41.

Investigations of the Metallurgical Division of the Bureau of Mines 4 during the fiscal year 1941 were concerned with the production of high-grade chromium (metal) and standard-grade ferro-

chromium.

A new method, known as a roasting and leaching process, was developed to convert chromite concentrates into a higher grade of material, which may be used to produce either high-purity chromium or standard ferrochromium for the manufacture of alloy steel. The process is capable not only of increasing the chromium content of the ore but also of raising the ratio of chromium to iron from about 1.7:1 to as much as 30 or 40:1. In this method, the chromite concentrates are mixed with coke and treated in an especially designed rotary kiln. The material thus treated is cooled, and part of the iron is removed by gravity concentration or by magnetic methods. Additional reduced iron may be removed by leaching with sulfuric acid or sulfur dioxide, leaving the residue enriched in chromium. The Bureau's research indicates that it probably will be most economical to produce a residue having a ratio of 5 parts chromium to 1 part iron. This will permit mixing 2 tons of residue with 1 ton of raw concentrates to produce a product having a chromium: iron ratio of 3:1.

A form of sponge, or powdered, chromium (metal) that under certain conditions attains a purity of 99.8 percent—higher than any chromium used in present commercial manufacturing—was also produced from both low- and high-grade domestic chromite.⁵ Low-temperature reduction without sintering is the basis of the process. The fundamentals consist in the chlorination of chromite at elevated temperature, the sublimation and separation of volatile chlorides, and the

 ³ Guild, Philip W., Chromite Deposits of Kenai Peninsula, Alaska: Geol. Surv. Bull. 931-G, 1942, pp. 139-175.
 ⁴ Dean, R. S., Progress Reports—Metallurgical Division. 50. Annual Report of the Metallurgical Division, Fiscal Year 1941: Bureau of Mines Rept. of Investigations 3600, 1941, pp. 40-42.
 ⁴ Maier, C. G., Sponge Chromium: Bureau of Mines Bull. 436, 1942, 109 pp.

reduction of the chlorides to metal by hydrogen. The new reduction process may, under favorable circumstances, permit a large amount of low-grade domestic chromite to be utilized at costs comparable with the existing prices of low-carbon ferrochromium. Its future in this field will depend chiefly on the availability and cost of chlorine, the chemical used extensively in producing this new metallurgical material. Its high purity and powdered form are said to render it valuable in the manufacture of special steels, brass and bronze materials, and alloys that are subjected to high temperatures, such as electrical heating elements.

OFFICE OF PRODUCTION MANAGEMENT AND WAR PRODUCTION BOARD

Chromium was one of 16 metals (and classes of metals) subject to inventory control by virtue of General Metals Order 1, issued on May 1, 1941, by the Office of Production Management. In this and subsequent orders "chromium" refers to ores, concentrates, all chromiumbearing products, and scrap, unless otherwise specified.

Chromium was removed from the general order on July 7 and placed under full priority control in Order M-18. The main provisions of

this order were the following:

1. All defense orders were assigned a preference rating of A-10 unless higher ratings were specifically given.

2. Monthly deliveries of chromium to be used in the manufacture of chemical products were limited to the average monthly consumption of the processor during

the 12 months preceding June 30, 1941.

3. Deliveries by processors of chromium refractory material were allowed only under defense orders or for necessary maintenance and repairs, except under other authorization.

4. Deliveries for nondefense purposes were permitted after fulfillment of all other terms of this order.

5. Restrictions against accumulation of excessive inventories were also established.

An amendment to Order M-18 became effective August 22. statement was chiefly a clarification and redefinition of certain terms and provisions of the original order. The monthly use of chromium in ores and concentrates for production of chemicals was limited to a quantity of chromic oxide not greater than one-twelfth of the total annual consumption of oxide for this purpose by the processor during the period from July 1, 1940, to June 30, 1941. Acceptance of defense orders was made compulsory, subject to certain provisions.

Order M-18-a was issued on November 29, revoking the previous chromium orders. The new order included two main provisions:

1. Complete control of deliveries of chromium was placed in the hands of the Director of Priorities. Monthly requests for delivery of chromium were required

to be made to producers.

2. The total chromic oxide content of ore to be used by any processor in the manufacture of chromium chemicals during any month was limited to one-twelfth of the aggregate oxide content used in chromium chemicals actually delivered by the processor during the period from July 1, 1940, to June 30, 1941.

On January 13, 1942, an amendment to Order M-18-a prohibited any person from melting more than 2 tons of ferrochrome in any month without specific authorization. The amendment was designed to conserve chromium steel for military needs. A further amendment was added on February 4, in which a complete allocation system for chromium (including scrap) was established. It was also stated therein that chromium could be melted only with specific permission.

607

Order M-18-b, effective March 26, 1942, limited the use of chromium in chemicals (including chromium for pigments, chromic acid, leather tanning, and wood preservation). The use of chromium in the manufacture of roofing materials, ceramics, soap, and glass was

prohibited.

Chromium steel was subjected to regulation in Order M-21, relating to priority control over steel, first issued on August 9, 1941, and amended September 9. It was also included in Order M-21-a (September 16) and dealt with specifically in an amendment dated November 25. This last prohibited the manufacture and delivery of alloy iron or steel containing 4 percent or more chromium, except on preference ratings of A-10 or higher. Order M-21-d of December 27 provided that no person shall consume, fabricate, or deliver corrosion- or heat-resistant alloy iron or steel containing over 4 percent chromium after January 6, 1942, except on ratings of A-10 or higher. An amendment to this order, issued March 27, further restricted the use of steel with 4 percent or more chromium to orders with priority ratings of A-1-k or higher.

Chromium was one of the 13 materials listed in General Imports

Order M-63, which provided that, as of December 28, 1941—

Unless otherwise authorized by O. P. M., all future contracts for imports of these materials will be handled by the Metals Reserve Co., R. F. C. subsidiary, or other governmental agency. No private person or concern can make arrangements for imports, except that in certain cases, such as imports for processing and immediate reexport, the Director of Priorities may grant specific exceptions to the Order.

METALS RESERVE COMPANY

On November 1, 1941, it was announced that the Metals Reserve Co. would consider contracts for the purchase of domestic chrome ore with a minimum Cr₂O₃ content of 40 percent. A memorandum detailing terms of contracts, quantity of ore, grade specifications, prices, shipments, and payments was released November 14. The purchasing schedule was revised December 19, 1941, and February 20 and May 25, 1942. An abstract of the schedule of May 25 follows:

1. Quantity: 1,000 to 10,000 long tons per contract. Contracts in excess of 10,000 tons may be obtained as a result of individual negotiations, provided reliable and complete engineering data submitted by the applicant warrant a contract for a larger quantity.

2. Terms of contract: Deliveries must be completed within 18 months of date of contract. If delivery of 20 percent of the tonnage contracted for has not been made within 6 months of date of contract, Buyer (Metals Reserve Co.) may cancel contract forthwith.

3. Quality: Purchases of domestic chrome ores will be of three grades, with the

following specifications:

	High- Grade	Low-Grade			
		A	В		
Cr ₃ O ₁ percent minimum SiO ₁ percent maximum P do S do Cr: Fe ratio minimum	45. 00 11. 00 . 20 . 50 2. 5 : 1	40.00 13.00 .50 1.00 2.0:1	40.00 None None None None		

Under Low-Grade A and B, chrome ore will be accepted to 35 percent minimum under penalties described below.

٦.

4. Size of ore: None in excess of 12 inches.

Buyer may reject any shipment which does not conform to the applicable

requirements and specifications as set forth above.

5. Price: Effective May 25, 1942, contracts will be considered on the following schedule for domestic ores within the continental United States (excluding Alaska); all prices per long ton (2,240 pounds) of dry weight, f. o. b. cars at stock pile designated by Buyer.

High-Grade—Base price: \$40.50 per long dry ton for ore containing 45 percent Cr₂O₃, and with a ratio of chrome (Cr) to iron (Fe) of 2.5:1; with an increase of 90 cents per ton for each unit Cr₂O₃ in excess of 45 percent Cr₂O₃; with an increase of \$1.50 per ton for each tenth increase in chrome: iron ratio to a maximum of

Low-Grade A—Base price: \$28.00 per long dry ton for ore containing 40 percent Cr_2O_3 , with a ratio of chrome (Cr) to iron (Fe) of 2.0:1; with an increase of 90 cents per ton for each unit Cr_2O_3 in excess of 40 percent Cr_2O_3 ; with an increase of \$1.50 per ton for each tenth increase in chrome: iron ratio to a maximum of 3.0:1. Chrome ore containing a minimum of 35 percent Cr_2O_3 but otherwise meeting the specifications set forth for this grade will be accepted with a penalty of \$1.40 per long dry ton for each unit (22.4 pounds of Cr_2O_3) under 40

Low-Grade B-Base price: \$24.00 per long dry ton for ore containing 40 percent Cr₂O₃, with an increase of 60 cents per ton for each unit Cr₂O₃ in excess of 40 percent Cr₂O₃. Chrome ore containing a minimum of 35 percent Cr₂O₃ but otherwise meeting the specifications set forth for this grade will be accepted with a penalty of \$1.20 per long dry ton for each unit $(2\overline{2}.4 \text{ pounds of } \text{Cr}_2\overline{0}_3)$ under

40 percent. Fractions prorated in all cases.

In addition to the above prices, an allowance will be made for each long ton shipped equal to the freight tariff per long ton from Seller's nearest convenient rail station to Buyer's stock pile.

The cost of sampling and analysis by the Buyer, weighing, and unloading onto

stock pile will be for the account of Buyer.

Each lot of ore will be graded in accordance with the specifications heretofore set forth (all elements to be within the range specified for the applicable grade),

and the price to be paid for such ore will be governed accordingly.

6. Shipment and Delivery: Seller will give such advice regarding shipment and arrival as Buyer may require, at least 10 days prior to shipment of the ore from point of loading onto railroad cars; otherwise, any demurrage at the stock pile will be for Seller's account.

Shipment will be made in flat-bottom gondolas, if available, in lots of not less than 1 carload, to the stock pile designated by Buyer. Seller will prepay the freight to such stock pile, where the ore will be weighed in cars, light and loaded, on track scales, and sampled for moisture. The lot will be sampled as unloaded and upon receipt of analysis, Buyer will advise Seller as to whether the ore is

acceptable and under what classification.

If the lot is ascertained to be unacceptable under the above specifications, Seller will not be entitled to any allowance for prepaid freight and will be held responsible for the removal of this shipment of ore from the stock pile location. Upon failure so to remove the ore within 15 days of due notice, Buyer may, at its absolute discretion, remove such ore and the cost of such removal shall be for Seller's account; or Buyer may, at its option, otherwise dispose of such ore without any liability therefor. In the event that Seller fails to repay Buyer, within 15 days after notice, for the cost of removal, Buyer may cancel the contract

7. Payment: As soon as moisture and analysis determinations are received. Buyer will promptly pay Seller in accordance with the weight certificate and the

above schedule.

8. Weights: The weight paid for will be net railroad track scale weights (weight of loaded car less weight of empty car), less moisture as determined by standard

practice.

9. Sampling and Analysis: Each lot will be sampled at the time of unloading onto stock pile by a sampler designated by Buyer, three samples being taken, one each for Seller, Buyer, and Umpire, and analysis made for chrome and other guaranteed elements. Usual provisions will be made for splitting limits and settlement by average of Seller's and Buyer's analyses, or by trade practice if samples are sent to Umpire. Moisture samples will be taken in accordance with standard practice. Seller may have representative at sampling at his own expense.

CHROMITE 609

To stimulate production from small chromite deposits in Oregon and northern California and to provide a ready market for the ore, the Metals Reserve Co. announced on March 5, 1942, that truckload lots of ore mined in these localities would be purchased. Purchase depots, at which agents are located, were provided at Coquille, Grants Pass, and Seneca, Oreg., and at Yreka, Calif., and others are being established. Ore or concentrates delivered at the depots will not be accepted as delivery on contracts made under earlier schedules. This buying plan became effective April 1, 1942, for 1 year. Grade specifications and prices are the same as in the May 25 schedule summarized above. Payment will be made as soon as lots of 10 tons or more have been delivered and analyzed.

DOMESTIC PRODUCTION

The domestic output of chromite, in terms of shipments from mines, totaled 12,731 long tons in 1941 compared with 2,662 tons in 1940. Shipments in 1941 were the largest in any year since 1918. A table showing annual shipments of chromite from mines in the United States from 1910 to 1941 is given in the section of this report on

"Consumption."

California and Oregon were the only States from which chromite was shipped in 1941; the former furnished the bulk of the total. Most of the chromite shipped from California came from properties in Del Norte, Eldorado, Fresno, Humboldt, and Placer Counties. The largest individual source was the Pilliken mine in Eldorado County, operated by the Rustless Mining Corporation; the concentrates produced from Pilliken ore averaged 43 percent Cr₂O₃ and 26 percent FeO in 1941. The second most important property, in quantity shipped, was the High Plateau mine in Del Norte County, operated by Eugene R. Brown. In Oregon, chromite was shipped from mines in Curry, Jackson, and Josephine Counties.

Extensive development work was reported from various localities. In California especially a large number of properties were stated to be under development, and in some places ore was mined but not shipped. Some of the larger projects undertaken during 1941 are

summarized as follows:

In Montana, the Anaconda Copper Mining Co. developed a mine in the deposits of Stillwater County and constructed a mill. Shipments of concentrates were to begin early in 1942. The project was carried out by the Anaconda company at the request of the Office of Production Management and the Metals Reserve Co., with funds provided by the Reconstruction Finance Corporation. Under a similar arrangement with the Government, the company will develop and equip further mines and mills in the Stillwater area. The United States Vanadium Corporation began a chromite mining and milling operation in Carbon County, Mont. A mill with an initial capacity of 200 tons a day was under construction at Red Lodge, and ore for milling was being hauled from the mine to the mill site in 1941.

In California, the Rustless Mining Corporation began to build a 200-ton mill in Glenn County to concentrate ore from the Gray

Eagle mine.

In Oregon, the Krome Corporation, which plans to concentrate chromite from black beach sands, undertook to construct a plant near Port Orford in Curry County.

Chromite (ores and concentrates) shipped from mines in the United States, 1937-41

	1937	1938	1939	1940	1941
Ores and concentrates containing— 45 percent or more chromic oxidelong tons 35 to 45 percent chromic oxidedodo	1 2, 006	1 812	3, 056	238	4, 286
	1 2 315	(1)	558	² 2, 424	2 8, 445
Total:	² 2, 321	\$12	3, 614	² 2, 662	² 12, 731
Long tonsValue	\$14, 888	\$10, 730	\$46, 892	\$28, 784	\$274, 062

Small quantity of ore containing 35 to 45 percent chromic oxide included with ore containing 45 percent or more.
 Includes small quantity of ore containing less than 35 percent chromic oxide.

IMPORTS 6

Imports of chromite in 1941 reached a new peak, exceeding the previous high of 1940 by 51 percent. Despite war conditions, which hampered shipping throughout the world, the principal foreign sources of chromite continued to furnish large supplies. The only notable decrease was in shipments from British India, Greece, and Turkey. The imported chromite averaged 45 percent Cr₂O₃ in 1941, as compared with 46 percent in 1940. The imports from New Caledonia had the highest chromic oxide content (52 percent), and those from Cuba had the lowest (35 percent).

The following table shows imports of chromite into the United States, 1937-41, by countries; and a table showing annual imports from 1910 to 1941 is given in the section of this report on "Consumption."

Crude chromite imported for consumption in the United States, 1937-41, by countries

	Gr	oss weigh	t (long to	1941			
Country					Long		
	1937	1938	1939	1940	Gross weight	Chromic oxide content	Value
North America: Canada Cuba Other	93, 098 5	39, 529 59	66, 002 1, 902	187 51, 955	351 160, 644	175 55, 823	\$6, 829 1, 356, 080
South America: Brazil	93, 104	39, 590	67, 905	52, 142 2, 790	160, 995 5, 361	55, 998 2, 494	1, 362, 909 78, 742
Europe: GreeceOther	24, 583	10, 000 3, 000	11, 000 1, 000	14, 041 1, 000	1, 963	890	41, 223
	24, 583	13, 000	12,000	15, 041	1, 963	890	41, 223
Asia: India, British Philippine Islands Turkey	23, 939 43, 648 39, 391	4, 051 78, 233 20, 392	16, 468 71, 914 16, 632	32, 644 156, 566 70, 081	9, 741 257, 510 55, 219	4, 856 110, 309 25, 907	182, 604 2, 273, 628 1, 099, 723
Africa ¹ Oceania	106, 978 277, 420 51, 831	102, 676 168, 299 28, 520	105, 014 118, 233 14, 359	259, 291 285, 559 42, 866	322, 470 424, 444 80, 543	141, 072 203, 451 41, 993	3, 555, 955 5, 926, 599 1, 653, 153
	553, 916	352, 085	317, 511	657, 689	995, 776	445, 898	12, 618, 581

¹ Originated in Southern Rhodesia and Union of South Africa; recorded by the Department of Commerce as imported from Union of South Africa, "Other British South Africa," "Other British West Africa," and Mozambique.

⁶ Figures on imports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

No imports of chromium compounds were recorded in 1940 or 1941; a table showing imports of these compounds from 1937 to 1939 is given in Minerals Yearbook, Review of 1940, page 591.

The following table shows imports of ferrochromium and chromium

into the United States from 1937 to 1941.

Ferrochrome or ferrochromium and chrome or chromium metal imported for consumption in the United States, 1937-41, in long tons

Class	1937	1938	1939	1940	1941
Ferrochrome or ferrochromium— Containing 3 percent or more carbon (chromium content) Containing less than 3 percent carbon (chromium content) Chrome or chromium metal.	96 164 78	(¹) 121 39	3 127 56	(2)	7

¹ 60 pounds.

PRICES

Nominal prices of chromite for import are quoted in domestic trade journals in dollars per long ton, c. i. f. North Atlantic ports. At the beginning of 1941, Engineering and Mining Journal Metal and Mineral Markets quoted Indian and African 48 percent metallurgical ore at \$32 to \$34. The price rose during the year and in September reached \$47 to \$49; during the last quarter, it held at \$45 to \$47. Refractory ore (43 to 45 percent) opened the year at \$22 to \$24 and increased to \$30 to \$32, a price that was maintained for the last 4 months of 1941.

Prices for domestic chromite were established by the Metals Reserve Co. in its schedule of November 14 and revised on December 19. The following were the base prices per long dry ton, f. o. b. stock pile designated by the Metals Reserve Co.:

November 14:		
48 percent Cr ₂ O ₃ , Cr : Fe=3:1	\$43.	20
40 percent Cr ₂ O ₃	22.	00
December 19:		
45 percent Cr ₂ O ₃ , Cr : Fe=2.5:1	40.	50
40 percent Cr_2O_3 , $Cr : Fe=2:1$	28.	00
40 percent Cr ₂ O ₃ , no Cr: Fe ratio specified	24.	00

CONSUMPTION

Consumption of all grades of chromite in the United States during 1941 amounted to 714,645 long tons. Actual data on consumption have not been published before, but at the close of 1940 the annual rate was reported to be about 600,000 tons. For purposes of comparison, the apparent available supply may be used as an indicator of the requirements in the years preceding 1941. Since institution of the Government purchasing program, part of the new supply—comprising shipments from domestic mines and imports for consumption—has entered Government stock piles, from which an undisclosed quantity has been released to consumers. The following table, covering the period from 1910 to 1941, shows the general upward trend in apparent supply of chromite and reflects the increasing demand. During World War I, domestic production constituted a significant

² 1,020 pounds.

^{3 1,000} pounds.

source of supply, but since 1920 virtually all the chromite consumed in the United States has been imported.

Domestic production, imports, and apparent available supply of chromite in the United States, 1910–41

		Apparen					
Year		Long	tons		Total	Imports (long tons)	available supply 1 (long
	Califor- nia	Oregon	Other States 2	Total	value	tons)	tons)
910	205			205	\$2,729	38, 579	38, 78
911	120			120	1,629	37, 540	37, 660
912	201			201	2,753	53, 929	54, 130
913	255			255	2,854	65, 180	65, 43
914	506		85	591	8,715	74, 686	75, 27
915	3, 281			3, 281	36, 744	76, 455	79, 730
916	43, 758	3, 099	178	47, 035	726, 243	115, 945	162, 98
917	36, 774	6, 701	250	43, 725	1, 049, 400	72, 063	115, 78
918	63, 147	18, 454	829	82, 430	3, 955, 567	100, 142	182, 57
919	3, 272	538	1, 269	5, 079	129, 302	61, 404	66, 48
920	1,416	955	131	2, 502	44, 857	150, 275	152, 77
921	123	159		282	2, 900	81,836	82, 11
922	163	79	113	355	7, 288	90, 081	90, 43
923	69	78	80	227	3, 819	129, 693	129, 92
924	188	100		288	1, 140	118, 343	118,63
925	83		25	108	2, 105	149, 739	149, 84
926	91	1	50	141	2,079	215, 464	215, 60
927	² 201			201	3 5, 063	222, 360	222, 56
928	652		8	660	14, 807	216, 592	217, 25
929	269			269	3, 976	317, 630	317, 89
930	80			80	1,905	326, 617	326, 69
931	268			268	3,509	212, 528	212, 79
932	155			155	2, 160	89, 143	89, 29
933	843			843	11, 585	116, 511	117, 35
934	369	1		369	4,653	192, 297	192, 66
935	515			515	6, 163	259, 063	259, 57
936	269			269	2,978	324, 258	324, 52
937	2, 033	288		2, 321	14, 888	553, 916	556, 23
938	812			812	10, 730	352, 085	352, 89
939	3, 514	100		3, 614	46, 892	317, 511	321, 12
940	2, 422	240		2,662	28, 784	657, 689	660, 35
941	11, 981	750		12, 731	274, 512	995, 776	1, 008, 50

Domestic production plus imports; no exports recorded, 1910-41.
 Maryland, North Carolina, Washington, and Wyoming.
 According to Division of Mines and Mining, Department of Natural Resources, California.

Over 80 percent of the chromite supply is consumed in the steel industry, either as a source of the alloying element chromium or in refractories. Stainless steel has been one of the principal chromiumbearing products, of which important quantities were used by the automotive industry. In 1940 nearly 60 percent of the total metallurgical ore consumed was in stainless steels.7

USES

The industrial uses of chromite are classified in three groups: Metallurgical, refractory, and chemical. For use in making alloy steels chromite is generally first converted into ferrochromium, an alloy containing 60 to 70 percent chromium, before being added to the steel Ferrochromium is produced in high- and low-carbon grades. On December 17, 1941, the Office of Production Management announced that all domestic producers of ferrochromium had agreed voluntarily to change specifications for the high-carbon in order to permit the use of lower-grade ores and to conserve the higher grades.

⁷ Advisory Committee to W. P. B. on Metals and Minerals, Ferrous Minerals and Ferro-Alloys Group, Chrome Ore, Its Conservation and Substitution: Metal Prog., vol. 41, No. 4, April 1942, pp. 503-506.

613 CHROMITE

The new specifications are approximately the same as those in use during World War I. The specifications—formerly 68 to 69 percent Cr, 4 to 6 percent C, and 1 to 2 percent Si—are now 60 to 63 percent Cr, 6 to 8 percent C, and 4 to 6 percent Si.

One solution of the problem of using low-grade ores for metallurgical purposes is offered by Udy, who has developed "Chrom-X," a product being manufactured in high- and low-carbon grades. The use of "Chrom-X" in the production of chromium steels was described

by McDonald.9

Chromium plating constitutes an important industrial application of this element, although small quantities are consumed. Chromic acid is the raw material for this purpose. A review by Hall ¹⁰ of latest research in this field shows that "hard" chromium plating was the

principal object of studies during 1941.

The "Inkrom" process 11 of chromium impregnation of iron and steel surfaces was discussed by Rudorff,12 who reported that it is in full commercial use in Germany. The process involves the introduction of gaseous chromium chloride to the surface to be treated. surface zones of chromised materials assume properties similar to those of rustless steel. Important fields of application of the process are in the manufacture of turbine blades, tubing, bolts, and screws.

For refractory purposes certain grades of chromite in the form of lump or ground ore may be used directly. Chromium cements, plastics, and bricks are also produced for similar uses. At present about 6 pounds of chromite are consumed as a refractory in the production

of each ton of steel.13

Chromium chemicals are used in dyeing, tanning, and pigments and in pickling solutions in nonferrous-metals industries.

WORLD PRODUCTION AND TRADE

Statistics on world production of chromite in 1941 are incomplete, but available data indicate that the output was greater than in 1940. The United States, as the leading consumer of chromite, depends largely on imports for its supply. The record attained in 1941 in imports, which amounted to 1,011,758 metric tons, gives strength to the belief that world production increased, although some of the imports may have come from stocks in foreign countries. The following table shows the Philippine Islands and Cuba as the chief producers of chromite in 1941; however, estimates of the output from Southern Rhodesia and U. S. S. R. suggest that these countries should be considered among the leaders in chromite production.

⁸ Udy, Marvin J., "Chrom-X" and Our Chromium Problem: Metals and Alloys, vol. 14, No. 1, July

^{1941,} pp. 52-55.

McDonald, John H., Use of "Chrom-X" in Steel Making: Metals and Alloys, vol. 15, No. 2, February 1942, pp. 249-253.

Hall, Nathaniel, Technical Developments of 1941: Metal Finishing, vol. 40, No. 1, January 1942, pp.

<sup>2-11.

&</sup>quot;I The Metal Bulletin, Inside Europe Today—Germany: No. 2645, November 21, 1941, p. 8.

"Rudorff, D. W., A New Chromising Process: Metal Ind., vol. 59, No. 13, September 26, 1941, pp.

<sup>194–195.

19</sup> Advisory Committee to W. P. B. on Metals and Minerals, Ferrous Minerals and Ferro-Alloys Group: Work cited in footnote 7.

World production of crude chromite, 1937-41, by countries, in metric tons 1 [Compiled by B. B. Waldbauer]

Country 1	1937	1938	1939	1940	1941
Australia: New South Wales		967	(2)	(2)	(2)
Brazil (exports)	2, 980	934	3, 554	4, 572	5, 944
Bulgaria	2.350	1,745	4, 251	6,000	(2)
Canada (shipments)	3,876			(2)	(2)
Cuba 3	94, 592	40, 163	67, 061	52, 789	163, 222
Cyprus (shipments)	1,641	5, 667	(2)	4,775	(2)
Greece	52, 620	42, 464	57, 091	4 33, 118	(2)
Guatemala 3			1, 933		
India, British	63, 307	44, 858	49, 925	(5) (5)	(2) (2)
Japan New Caledonia	6 40, 000	(5)	(5)	(5)	(2)
	48, 022	52, 216	52, 000	55, 790	(2)
Norway		508	371	(2)	(2)
Philippine Islands (exports)	69, 856	66, 911	126, 749	194, 393	6 300, 000
Sierra LeoneSouthern Rhodesia	741	505	10, 755	17, 777	(2)
Southern Rhodesia	275, 617	186, 019	139, 083	(5)	(2)
Syria and Lebanon Turkey (Asia Minor)		500	(2)	(2)	(2)
Turkey (Asia Minor)	192, 508	213, 630	191, 644	4 110, 037	§ 100, 000
Union of South Africa	168, 620	176, 561	166, 927	106, 393	⁷ 120, 335
U. S. S. R.	6 200, 000	(5)	(5)	(5) (2)	(2)
United Kingdom	305	473	(2)	(2)	(2)
United States (shipments)	2, 358	825	3, 672	2, 705	12, 935
Yugoslavia	59, 932	58, 470	59, 527	⁸ 58, 512	(2)
	1, 280, 000	1, 133, 000	1, 174, 000	1, 141, 000	(2)

¹ In addition to countries listed, chromite mining was reported in Albania in 1938 and in Mexico (12 tons) in 1941; no further production figures are available.

2 Data not available.

3 Imports into United States.

⁴ Exports.
⁵ Estimate included in total.

Estimated.

7 January to November, inclusive.
8 January to October, inclusive.

Most of the world output of chromite enters international trade, as the principal producing countries are not important consumers. Notes concerning countries that produce and consume chromite and developments of potential sources follow:

Brazil.—The Cascabulhos mine, 12 miles west of Campo Formosa in the State of Baía, was the only active chromite producer in 1941. The concentrates average about 48 percent Cr₂O₃ and have a Cr: Fe ratio of 2.9:1. Shipments of chromite were also made from an old stock pile at Santa Luzia, Baía.

Chromite was included in the list of strategic or critical minerals specified in an agreement between the United States and Brazil whereby the United States contracted for all of Brazil's production during the next 2 years. The United States Government will purchase any ore not taken by private American buyers.

Canada.—The Sterrett chromite property at St. Cyr, Quebec, which produced considerable quantities of chromite during World War I, was reopened and was said to be producing at the rate of 100 tons a week at the end of 1941. Ore reserves were estimated at about 20,000 tons, averaging 28 percent chromite. Chromite, Ltd., now operating the property, began to construct a 50-ton concentrator late in September. Exploratory work was carried on in Quebec and British Columbia. The Government was reported to have begun an investigation of chromite possibilities in the Black Lake area, Eastern Townships, Quebec.

Cuba.—At Moa, Province of Oriente, exploitation of chromite deposits was begun; reserves are estimated at 150,000 tons. Cuba's entire output of chromite is shipped to the United States.

into the United States were 163,222 metric tons in 1941 compared with 52,789 tons in 1940.

Germany.—An important consumer of chromite, Germany depends on foreign sources of supply. At present, sources within Europe and Asia Minor appear to be the only ones to which Germany can look. About 100,000 tons of chromite have been produced annually in the Balkans, principally from deposits in Yugoslavia and Greece. Bulgaria has a small output, and Rumania has deposits that were exploited by the German Army during the first World War. It may be assumed that chromite mined in Norway, a minor producer, will also be available to Germany. As a result of a trade agreement, Germany is to obtain 90,000 to 100,000 tons of chromite from Turkey in both 1943 and 1944.

India.—Virtually all of India's chromite output has been exported. Nearly one-half of the production comes from Mysore State, and about one-third is furnished by the Hindubah mines near Quetta. Curtailment of foreign supplies of bichromates led to the opening of the Pioneer Chromate Works at Andheri, equipped to produce 400 long tons annually. Imports of most chromium compounds are subject to license control, and certain restrictions have been placed on the use of such compounds.

New Caledonia.—Early in 1941 the Free French Government of New Caledonia prohibited the exportation of chromite to Japan. The Tiébaghi mine, one of the richest chromite mines in the world, was reported to be making shipments to the United States at the rate of about 7,500 tons monthly. The Fantoche mine had shipped its entire stock to the United States by the end of July, but exports were to be resumed early in 1942. A brief review of chromite deposits in New Caledonia was given by Priday. 15

Newfoundland.—Development work continued on the recently discovered chromite deposit in the Lewis Hills on the north side of Fox Island River, near Port-au-Port Bay, western Newfoundland. Irregular lenses of ore occur in a zone about 1,200 feet long. Based upon diamond drilling to shallow depths, the ore reserves were estimated at almost 12,000 tons averaging 37 percent Cr₂O₃.

Philippine Islands.—According to Boericke, ¹⁶ approximately half of the Philippine chromite exports are of refractory-grade ore, all from the Masinloc deposit in Zambales Province. The remainder is high-grade ore, mostly from the Acoje Mining Co. property at Santa Cruz, Zambales. A new operation in Oriental Misamis, Mindanao, yielded about 14,000 tons of ore averaging over 50 percent Cr₂O₃. Frasché¹⁷ estimates the chromite reserves in the Philippine Islands to be 10,890,500 metric tons, of which 10,120,000 are of refractory grade, 450,500 of chemical grade, and 320,000 of metallurgical or sub-

Southern Rhodesia.—Rhodesian Chrome Mines, Ltd., of Bulawayo, and the affiliated African Chrome Mines, Ltd., of Salisbury, are reported to be producing 90 percent of the chromite output of the country from the Selukwe district. The Southern Rhodesian produc-

metallurgical ore.

¹⁴ Allen, Robert, and Howling, G. E., Chrome Ore and Chromium: Imperial Inst., 1940, p. 70.

¹⁸ Priday, H. E. L., New Caledonia's Mineral Wealth: Chem. Eng. and Min. Rev., vol. 33, No. 396, September 10, 1941, pp. 369–373.

¹⁸ Boericke, W. F., Chromite in the Philippines: Eng. and Min. Jour., vol. 142, No. 11, November 1941, pp. 389–384.

pp. 38-40.

"Frasché, D. F., Chromite Deposits of the Philippine Islands (abs.): Econ. Geol., vol. 36, 1941, pd. 845-846.

tion, now thought to be proceeding at the rate of about 325,000 tons

a year, represents the full capacity of the mines.

Turkey.—Late in 1939 Turkey ceased exporting to Germany, principal purchaser of Turkish chromite before the war. Since then shipments have been made to the United States, England, and France. Following the collapse of France in 1940, Great Britain obtained that country's share of the output. During 1941 Germany concluded trade negotiations with the Turkish Government, and it was indicated that 90,000 to 100,000 tons of ore would be furnished in both 1943 and 1944, contingent upon the delivery by Germany of war materials to the extent of £T18,000,000 before 1943. Subsequent deliveries of ore were to be made only upon receipt of German war

materials of equal value.

United Kingdom.—In October 1941 it was announced that the Chrome Ore Control would henceforth purchase all chromite (ore and concentrates) required in the United Kingdom. Consumers will make their applications to the Control for quantity and quality of ore desired. The Control will undertake to deliver the chromite to consumers and establish price schedules for all grades delivered at consumers' plants. No licenses are necessary for such purchases. The decision of the Government to purchase chromite was prompted by the inequitable distribution to consumers during periods of freight shortage. A strain on internal transportation facilities had also been caused by transfers of ore between plants in Great Britain. Early in 1942 the Ministry of Supply decided that chromium plating for a wide variety of purposes would be discontinued in consideration of the great demand for chromic acid.

NICKEL

By H. W. Davis

SUMMARY OUTLINE

	Page		Page
Summary	617	Foreign trade	619
Salient statistics		World production	
Dundantion	610	•	

Although world production of nickel reached an all-time high in 1941, the supply available fell short of the unprecedented demands for nickel for war purposes of the United Nations. As a consequence, peacetime industrial consumers had to curtail sharply their use of nickel steels and other nickel-bearing products. On March 7, 1941, primary nickel deliveries and allocations in the United States were placed under priority control by the Office of Production Manage-The United States consumed over two-thirds of the total world nickel available in 1941, of which steel mills used about 70 percent and nonferrous rolling mills most of the remainder.

Although figures are not obtainable, Canada undoubtedly furnished a larger proportion of the world nickel supply than in 1940. The International Nickel Co. of Canada, Ltd., and Falconbridge Nickel Mines, Ltd., have extensive expansion programs under way that will further increase the nickel supply.

Salient statistics for nickel, 1937-41

	1937	1938	1939	1940	1941
United States: Production: Primary	219 2, 400 54, 438 4, 473 35 4 112, 453 491 111, 385 132, 000	416 2, 300 29, 546 6, 581 35 105, 286 491 98, 852 127, 000	394 2, 920 64, 796 10, 167 35 113, 053 697 117, 391 (1)	554 5, 150 92, 468 11, 994 35 (1) (1) (1)	(1) (24, 130 7, 111 35 (1) (1) (1) (1)

Excludes small quantity produced in British Columbia.

In 1941, as usual, the domestic production of primary nickel was insignificant. In addition to the nickel produced as a byproduct in the electrolytic refining of copper and as secondary nickel, comparatively small quantities were produced from ore mined in Colorado and as a byproduct of talc production in Vermont.

Figures not yet available.
 Excludes "All other manufactures of nickel"; weight not recorded.
 Excludes "Manufactures"; weight not recorded.
 Price quoted by International Nickel Co. of Canada, Ltd., for electrolytic nickel at New York, in 2-4on

Continuing the search for ore deposits of strategic metals, as authorized under section 7 of the Strategic Materials Act, the Bureau of Mines completed diamond drilling of a large body of low-grade coppernickel ores in Stillwater County, Mont. This drilling aggregated 5,981 feet, which, taken in conjunction with earlier drilling and underground exploration by a commercial company, revealed a few million tons of material averaging 0.4 percent nickel and 0.37 percent copper. Exploration of low-grade deposits on Yakobi Island in Alaska included the completion of two diamond-drill holes which indicated material of about the same average grade as that exposed in surface outcrops. This work was recessed on account of severe weather conditions, to be resumed in the spring of 1942.

As part of its program of investigation, the Geological Survey published reports describing the nickel deposits on Yakobi Island, Alaska; near Riddle, Douglas County, Oreg.; and near Mount Vernon.

Skagit County, Wash.

According to Reed and Dorr: 1

Calculations based on the investigations made by the Geological Survey in 1940 indicate that about 6,000,000 tons of rock, containing about 0.36 percent of nickel and 0.27 percent of copper, is present and available for mining in the eight bodies that have been partly prospected. Further prospecting will probably greatly increase the estimate of the tonnage available in the bodies, but it probably will not greatly change the estimate of the grade. Rough calculations indicate that the material can be mined and the nickel and copper extracted from it at a cost roughly equal to the value of the metals that would be produced.

Concerning the nickel deposit near Riddle, Douglas County, Oreg., Pecora and Hobbs 2 write:

About 162 acres of ground are underlain by a blanket containing over 6,000,000 tons of material, 1 to 2 percent of which is probably nickel. Eighty thousand tons have been proved to contain 2 to 3 percent of nickel, and 75,000 tons have been proved to contain 1 to 2 percent of nickel. A new method of treating low-grade silicate material would have to be devised before this large deposit could be

The following paragraph is quoted from a report by Hobbs and

The silica-carbonate rock on Devils Mountain cannot properly be considered a large potential nickel reserve. At best, if selective large scale low-cost mining methods and favorable means of concentration are employed, it might be considered a marginal to submarginal gold deposit, whose value would be slightly enhanced by the small amount of nickel recoverable from the sulfide minerals of the concentrates. The sulfide-bearing breccia, because of its uneven tenor and small tonnage, cannot be depended upon to sustain any long mining operation. Some of it, however, might be mined at a profit under present economic conditions. This sulfide ore could best be mined selectively, on a small scale, and concentrated by flotation, to which the ore is well adapted.

PRODUCTION

Domestic production of nickel is small and comprises secondary metals recovered from scrap-nickel anodes, nickel-silver, and copper-

¹ Reed, J. C., and Dorr, J. V. N., Nickel Deposits of Bohemia Basin and Vicinity, Yakobi Island, Alaska: Geol. Survey Press Notice 144,067, 1941, 2 pp.

² Pecora, W. T., and Hobbs, S. W., Nickel Deposit near Riddle, Douglas County, Oreg.: Geol. Survey Bull. 931-I, 1942, pp. 205-226.

³ Hobbs, S. W., and Pecora, W. T., Nickel-Gold Deposit near Mount Vernon, Skagit County, Wash.: Geol. Survey Bull. 931-D, 1941, pp. 57-78.

nickel alloys (including Monel metal) and primary metal recovered in copper refining and produced from ore and as a byproduct of talc production, as listed in the following table. Domestic primary nickel is recovered as a byproduct in copper refining at Baltimore, Md., Laurel Hill, N. Y., Perth Amboy, N. J., and Tacoma, Wash. A matte containing 22.58 percent nickel, 4.28 percent copper, and 1.46 percent cobalt was produced in 1941 from ore mined near Gold Hill. Colo. Concentrates containing 13.39 percent nickel and 1.27 percent cobalt were recovered as a byproduct of talc production in Vermont in 1941.

Nickel produced in the United States, 1937-41

Year	Primary (short tons) 1	Secondary 2		
	Byproduct in copper refining 3	Other 4	Short tons	Value	
1937 1938 1939 1940 1941	219 416 394 554 619	41	2, 400 2, 300 2, 920 5, 150	\$1, 680, 000 1, 610, 000 2, 044, 000 3, 605, 000 (5)	

Bureau of Mines not at liberty to publish value.
 Nickel recovered as metal and in nonferrous alloys and salts.
 Nickel content of nickel salts and metallic nickel.
 Nickel content of matte produced from ore and of concentrates produced as a byproduct of talc.
 Figures not yet available; they will be found in the chapter on Secondary Metals—Nonferrous.

FOREIGN TRADE 4

The nickel imported into the United States in 1941 comprised chiefly metallic nickel and nickel alloys, matte, and oxide. All the oxide, 63,220,793 pounds of the matte, and 149,447,516 pounds of the metallic nickel and allows were obtained from Canada; virtually all the remainder of the matte (16,671,607 pounds) came from New Caledonia; and the rest of the metallic nickel and alloys (539.406 pounds) came from Europe, chiefly the United Kingdom (538,931 The matte from Canada, which contains approximately 55 percent nickel and 25 percent copper, is refined to Monel metal and other products at the plant of the International Nickel Co., Inc., Huntington, W. Va. The matte from New Caledonia, which contains about 77 percent nickel, will also be refined at Huntington, where a new plant has been provided primarily for refining raw material from New Caledonia and elsewhere. The nickel content of the unmanufactured nickel products imported into the United States is estimated at 212,363,000 pounds in 1941, as compared with 167,519,000 pounds in 1940. Imports of nickel in 1941 were the largest on record.

Exports of nickel comprise largely products manufactured from imported rew materials. Exports of all classes except nickel silver decreased substantially. The United Kingdom (6,021,581 pounds) was the chief market for nickel, Monel metal, and other alloys in 1941.

⁴ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Nickel imported for consumption in the United States, 1939-41, by classes

Class	1939		19	40	1941	
Class	Pounds	Value	Pounds	Value	Pounds	Value
Unmanufactured: Nickel ore and matte. Nickel pigs, ingots, shot, etc. Nickel bars, rods, tubes, etc. Nickel oxide Manufactured: Nickel silver or German silver in	28, 433, 530 99, 309, 184 216, 874 1, 631, 558	98, 848		35, 152, 218 193, 284	149, 466, 723	37, 429, 028
sheets, strips, rods, and wire All other manufactures of nickel	(1)	4,060	(¹) 153	84 1, 787	2, 800 (¹)	2, 545 1, 785
		29, 078, 200		41, 745, 788		51, 967, 548

¹ Quantity not recorded.

Nickel exported from the United States, 1938-41, by classes

Class	19	938 19		939		140	1941	
	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
Nickel, Monel metal, and other alloys Manufactures Nickel-chrome elec- tric resistance wire. Nickel silver or Ger- man silver in bars.	11, 877, 498 (¹) 490, 640	\$2, 896, 806 606, 892 552, 470	(1)	\$5, 076, 383 495, 639 609, 611	(1)	1, 393, 636	(1)	863, 01
rods, or sheets	794, 811	91, 290	800, 456	136, 397	1, 502, 071	269, 907	1, 694, 800	359, 73
		4, 147, 458		6, 318, 030		9, 857, 334		6, 212, 80

¹ Quantity not recorded.

WORLD PRODUCTION

Because of Government restrictions on the publication of statistics for many countries, few figures for 1940 and 1941 are available; however, production during 1941 was the largest on record.

World production of nickel (content of ore), 1937-41, by countries, in metric tons 1 [Compiled by B. B. Waldbauer]

Country 1	1937	1938	1939	1940	1941
Australia Brazil Burma Canada Egypt Germany Greece Italy Morocco, French Netherlands Indies New Caledonia Norway Southern Rhodesia Union of South Africa U. S. S. R. United States ⁵	1, 233 3 102, 015 14 890 957 68 132 11, 600 877 4	20 375 959 95, 514 33 550 1, 207 4 150 163 4 500 11, 700 1, 245 76 44 2, 500 377	25 921 102, 559 (2) (2) 1, 336 (2) 4 753 10, 625 1, 106 4 490 398 (2) 357	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

¹ In addition to countries listed, Japan also produces nickel, but data of output are not available.
2 Data not yet available.
3 Excludes small quantity produced in British Columbia.

<sup>Estimated.
Byproduct in electrolytic refining of copper.
Includes also a small quantity produced nom ore and as a byproduct of talc.</sup>

NICKEL 621

Brazil.—The nickel deposits at São José do Tocantins, State of Goyaz, and at Livramento, State of Minas Geraes, have been described

in considerable detail by Wright and Pardee.5

The nickel deposit at Jacuba, São José do Tocantins, occurs at an altitude of 800 meters on the west side of Serra do Mantiqueira. An automobile road 2 miles long extends from Jacuba to the mine workings, which are at an elevation of 1.050 meters: cobalt is also being mined. Anapolis, the nearest railroad station, is 220 miles from the mine over a narrow, ungraded road, and at present it is necessary to ferry across the Maranhao River. Estimates of ore reserves range from 20 to 100 million tons. Much work will have to be done before the economic limits of the ore body can be outlined accurately enough to permit making tonnage estimates. Assays of numerous samples show a nickel content ranging from 3 to 12 percent, the average being about 5 percent. Mining conditions are favorable, as gravity can be used both in mining and transporting the ore to The ore could be mined by open-cut, or the millhole system could be used by mining the ore at the surface into raises to an adit level below, with a bulldozing chamber near the bottom of each raise to reduce the large pieces before loading them into ore cars. As the ore is relatively soft, large tonnages could be mined per manshift with a low consumption of explosives, power, and timber. One of the immediate problems is concentrating the ore. A reverberatory furnace costing \$50,000 was installed at Jacuba to reduce the ore to nickel matte, but the company could not obtain the necessary pyrites or gypsum for its operation. The furnace was designed to burn wood, and charcoal and limestone were to be fed into the furnace with the ore and sulfur or pyrites. Concentration of the ore by flotation and leaching methods is to be studied thoroughly. Both water supply and power for a mill are available from nearby rivers, and there are a number of excellent mill sites in the immediate vicinity, with adequate room for tailings disposal.

The Livramento nickel deposit occurs at an altitude of 1,100 meters and is 225 kilometers north of the port of Angra dos Reis, with which it has a direct railroad connection. The mine is operated by the Companhia de Nickel do Brazil, which produces ferronickel in an electric furnace capable of smelting about 15 tons of ore daily. The nickel content of the ore as mined ranges from 1 to 3 percent. During 1936, 28,000 tons of nickel ore were mined; 18,000 tons of this total were shipped to Germany, 7,000 tons went to the company furnace, and 3,000 tons were left in stock. Mine output for the first 4 months of 1941 totaled 1,667 tons. The company produced 492 metric tons of 20-percent ferronickel from the time that the plant was started (in 1939) through 1940. Output of ferronickel for the first 4 months of 1941 was 153 tons, most of which is reported to have been shipped to Germany. The 1942 production will be sold in Brazil—200 tons to the Companhia Siderurgica Belgo Mineira and the rest to smaller

steel plants.

Canada.—Virtually all the Canadian output is derived from the copper-nickel ores of the Sudbury district, Ontario; and two companies—International Nickel Co. of Canada, Ltd., and Falconbridge Nickel Mines, Ltd.—are the principal producers. Although figures are

Wright, C. W., and Pardee, F. G., The Nickel-Cobalt Deposit at São José do Tocantins, State of Goyaz, Brazil: Ms. Rept., June 4, 1941, 22 pp.; The Nickel Deposit at Livramento, Minas Geraes, Brazil: Ms. Rept., June 14, 1941, 10 pp.

not available, the output in 1940 and 1941 surpassed the former record

output of 113,053 short tons in 1939.

The International Nickel Co. of Canada, Ltd., operated its mines, smelters, and refineries continuously, largely upon a 24-hour basis. Production of nickel reached an all-time high, and additional works are being constructed that will increase the output further.

Falconbridge Nickel Mines, Ltd.,7 attained higher annual levels, in both tonnage treated and in production, in 1941, than in any previous Part of the gain was attributed to the installation of some additional equipment in the mill but was accomplished mainly by crowding all units to the limit. Extensive additions have been undertaken in various units of the plant to provide for increased capacity.

Cuba.—According to an announcement by the War Production Board, large deposits of the low-grade ores of northeastern Cuba are to be treated by a complicated chemical and metallurgical process to yield nickel by the Nicaro Nickel Co., a new subsidiary of the Freeport Sulphur Co., which since early 1940 has conducted research on nickel recovery. A pilot plant was put into operation in late August 1941. A 20-million-dollar plant and facilities have been authorized; construction is being financed by Reconstruction Finance Corporation, and the plant will be operated by Nicaro Nickel Co. for the Government.

Finland.—According to the Northern Miner: 8

It is learned that the Germans have placed the mine [Petsamo] in production of ore at the rate of 300 to 350 tons a day, that this ore is being sent to the Norwegian port of Kirkenes, and from there freighted down the coast to Germany. It is being direct-treated in the former Mond I. G. plant at Frankfurt by a process that recovers perhaps half the nickel content and supplies Germany with refined nickel at the rate of 5 million pounds a year.

New Caledonia.9—The largest nickel-producing centers are at Thio on the east coast and Voh and Koné on the west coast, all operated by the Nickel Society, whose large Noumea smelters are on the site of former cobalt smelters erected in 1894. The company also erected smelters, using hydroelectric power, at Yate on the southeast end of the island; these were closed in 1931 when the company amalgamated with the Société Hauts Fourneaux, which was then operating the Noumea smelters. In addition to the Nickel Society holdings, hundreds of mines are owned by individuals, but only a dozen or so of these are working; in 1940 they produced about one-third of the Some of this ore is bought by the Nickel Society; the Colony's ore. rest has been exported to Japan. Before the war, Germany bought nickel ore containing 4.7 percent nickel to mix with her own low-grade ore. Ore containing as low as 3.5 percent nickel was being shipped to Japan up to the end of 1940, when the ban on export came into operation.

⁶ International Nickel Co. of Canada, Ltd., Annual Report, 1941, p. 5.
7 Falconbridge Nickel Mines, Ltd., 13th Annual Report, 1941, pp. 1-10.
8 Northern Miner, vol. 27, No. 14, June 26, 1941, pp. 1, 9.
9 Priday, H. E. L., New Caledonia's Mineral Wealth: Chem. Eng. and Min. Rev., vol. 33, No. 396, September 10, 1941, pp. 369-370.

COBALT

By H. W. Davis

SUMMARY OUTLINE

	rage
	623
Summary	
Production	
Foreign trade	. 624
Uses	. 625
World production	. 625

The consumption of cobalt in the United States, chiefly in the production of high-speed cutting tools and permanent magnets, increased substantially during 1941; as heretofore, most of the demand was supplied by imports, mainly in the form of residues from Belgian Congo. Though comparatively small, domestic production made large proportionate gains in 1941, and most of it was a byproduct of the iron ore mined at Cornwall, Pa. The greater part of the cobalt-bearing residues from Belgian Congo is converted to metal at Niagara Falls, N. Y., and to oxide, sulfate, catalytic salts, or driers at Cincinnati and Cleveland, Ohio; Elizabeth, N. J.; New Brighton, Pa.; and Richmond, Calif. The metal-refining capacity of the Niagara Falls plant is being increased 50 percent. Most of the Canadian cobalt ore imported into the United States is processed to oxide and other commodities at Cincinnati. Cobalt oxide was also produced in 1941 at Wilmington, Del., from cobalt-containing pyrites concentrates recovered from the iron ore mined at Cornwall, Pa. Production of metal at Wilmington is planned for 1942. A mixed oxide of nickel and cobalt was recovered in 1941 from Burmese nickel speiss in a plant at Cleveland.

Domestic quotations for metal in 100-pound lots and for black oxide in 350-pound lots remained unchanged throughout 1941 at \$1.50 and \$1.84 a pound, respectively. These prices have been in effect

since the latter part of October 1939.

General Preference Order M-39, issued by the Office of Production Management on November 4, 1941, placed cobalt ore and residues, metal, and cobalt chemical compounds under an allocations system to insure priority for war uses and also limited deliveries of cobalt chemical compounds for nonmetallic uses to 90 percent of the average amount delivered during the first 6 months of 1941. The order was amended February 7, 1942, to place cobalt in all forms under allocations, to prohibit its use in pigments after May 1, and to restrict nonessential uses further.

PRODUCTION

A considerable quantity of pyrites concentrates containing 1.3 percent cobalt was produced in 1941 by the Bethlehem Steel Co., Bethlehem, Pa. The cobalt is contained in the sulfides that accompany the

magnetite mined at Cornwall, Pa. The Eastern Magnesia Talc Co. Inc., Burlington, Vt., recovered 86 short tons of concentrates in 1941 as a byproduct of froth flotation of tale; 36 tons contained 1.97 percent cobalt and 17.19 percent nickel, and 50 tons contained 0.78 percent cobalt and 10.69 percent nickel. The higher-grade concentrate was Otto F. Schwartz, manager of the Columbia mine near Goodsprings, Nev., sold about 2 tons of concentrate averaging 9.48 percent cobalt. Jonathan Gordon, Tombstone, Ariz., reported production of 10 tons of 12-percent cobalt concentrate at a property near Fort Thomas, Ariz.; a 20-ton mill was installed. The Sullivan Mining Co., Kellogg, Idaho, recovered 66 short tons of residue containing 7.19 percent cobalt at its electrolytic zinc plant in 1941, but none was Plans are under way to reopen the old Buckeye cobalt mine near Fredericktown, Mo. Sporadic attempts have been made to produce cobalt in the Southeastern Missouri district, where cobalt and nickel occur associated with lead, iron, and copper, but the complexity of the ore presents a problem in metallurgy. According to George F. O'Brien, Ironton, Mo., development and exploratory work is progressing on the high-silica, low-manganese ore deposits in Reynolds and Madison Counties, Mo.; these ores are reported to contain 0.5 to 4.8 percent cobalt oxide, and work is under way on a process for recovering the cobalt. Experimental work on electrowinning of cobalt from ores is described in Report of Investigations 3600.1

FOREIGN TRADE 2

Although figures on imports in 1941 are available for publication for only the first 9 months of the year, the partial total is only about 17 percent less than the all-time record established in 1940. Of the partial 1941 imports, Belgian Congo supplied 80 percent in the form of residues (averaging 41 percent cobalt) and Canada 5 percent as ore (averaging 9 percent cobalt) and 14 percent as metal. Data on exports are not given by the United States Department of Commerce.

Cobalt ore, metal, oxide, and other compounds of cobalt imported for consumption in the United States, 1937-41

	Ore		Metal		Oxide		Sulfate		Other salts and compounds		
Year	Pou	nds									
	Gross weight	Cobalt content	Value	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
1937 1938 1939 1940 1941	587, 499 449, 984 611, 083 10, 497, 719 8, 647, 797	(1) (1) (1)	32, 354 54, 446 3, 660, 869	938, 476 2, 130, 296 130, 321	2, 711, 677 207, 345	842, 847 373, 215 680, 644 756, 759 38, 002	944, 836 1, 124, 554	41, 811 75, 290 11, 468	34, 343 7, 818	45 56 1,374 500	\$187 98 3, 405

Data not available.
 January to September, inclusive.

¹ Dean, R. S., Progress Reports—Metallurgical Division. 50. Annual Report of the Metallurgical Division, Fiscal Year 1941: Bureau of Mines Rept. of Investigations 3600, 1941, pp. 42-44.

² Figures on imports compiled by M. B. Price, of the Bureau of Mines, from records of the U. S. Department of Commerce.

Cobalt ore, metal, and oxide imported for consumption in the United States, 1940-41, by countries, in pounds

	Ore			Metal		Oxide	
Country	1940	194	11 1		1941 1	19 4 0	1941 ¹
Country	Gross weight	Gross weight	Cobalt content	1940			
Australia	7, 843, 828	56, 224 6, 631, 692	1,000 2,718,473			16, 800	
Belgian Congo	2, 653, 891	1, 959, 881	173, 665	100, 321 30, 000	484, 800	488, 619 177, 450 21, 200	17, 850 15, 952
France						52, 690	4, 200
	10, 497, 719	8, 647, 797	2, 893, 138	130, 321	484, 800	756, 759	38, 002

¹ January to September, inclusive.

USES

An important use for cobalt is in the manufacture of high-speed cutting tools for operation at high speeds or at high temperatures. also is employed in alloy steels for high-temperature dies, heavy-duty shears, and other implements requiring extreme toughness combined with great hardness at high temperatures. The largest single use of cobalt is in stellite or stellite-type alloys, which contain 45 to 55 percent cobalt, 30 to 35 percent chromium, and 12 to 17 percent tungsten; there are various modifications of this composition, but all contain high percentages of cobalt. A comparatively small quantity of cobalt is used in carbide-type alloys. A substantial quantity of cobalt is used in permanent magnets, which are employed in electric meters, relays, regulating devices, fractional horsepower motors and generators, switching appliances, and a variety of other uses. is also employed in alloys where constant magnetic permeability at low magnetic forces is necessary. Comparatively small quantities of cobalt are used in electroplating and as a catalyst. Cobalt oxide is utilized in the ceramic industry; and cobalt salts are employed in the preparation of driers for use in paints, varnishes, and linoleums and as a catalyst.

WORLD PRODUCTION

Because cobalt-production data published by many of the producing countries are given in such indefinite figures and because those for certain countries are lacking, it is impossible to prepare an accurate statement of world output. Despite the fact that cobalt has been reported produced in about 14 countries, Belgian Congo, Burma, Canada, French Morocco, and Northern Rhodesia have in recent years supplied the bulk of the production, which increased from about 1,200 metric tons in 1929 to 4,500 to 5,000 tons in 1939.

Brazil.3—The Empresa Brasileira Mineracão Ltda. of São Paulo, a Japanese organization, was established by decree 4882 on November 16, 1939. The shares in the company were held by Brazilian-born citizens who were in the employ of the company and constitute the Board of Directors. The real owners, as well as the men in charge

¹ Wright, C. W., and Pardee, F. G., The Nickel-Cobalt Deposit at São José do Tocantins, State of Goyaz, Brazil: Ms. Rept., June 4, 1941, pp. 15-16.

of operations at the mine, were Japanese. After several months of investigation the company signed a contract with the Empresa Commercial of Goyaz, S. A., on October 28, 1940, to obtain the privilege of mining cobalt ore over a period of 7 years and to pay for the ore extracted upon a basis of 50\$000 a metric ton for ore with 3 percent cobalt, plus 10\$000 for each additional 0.1 percent. Thus, ore containing 4.5 percent cobalt would bring 200\$000 a ton, or \$10 in United States currency. Under the contract, all operating expenses and construction and upkeep of roads from the mine at Anapolis were to be paid by the Empresa Brasileira Mineração Ltda. During the first 5 months of 1941, cobalt ore produced totaled 141 tons. In the early part of 1941, a plant with trommels, sorting belts, and cleaning drums was being built which was expected to increase daily production capacity to about 10 tons. Mining operations were confined to the Jacuba II section, where the ferruginous capping of the serpentine was being excavated for its cobalt content. This area of capping, was about 500 meters long, 200 meters wide, and less than 1 meter to several meters thick (the average being about 1.5 meters). This capping is excavated by pick and shovel and transported in wheelbarrows to screens, where fines under %-inch are screened out. The oversize material is sorted into medium-, high-, and low-grade piles. Only the highgrade ore was transported in automobile trucks to the washing plant below the Jacuba camp. Twenty-five men were employed at the mine, and about 50 tons of material were handled daily. At the washing plant, 2 kilometers from the mine, the ore was washed and sized in a trommel. Ore larger than 1 inch went to sorting tables where the higher-grade ore was separated, about 20 percent being discarded. Ore less than 1 inch went to a cleaning drum about 1 meter in diameter and 1 meter in length, into which the ore was dumped in batches, with an equal amount of quartz sand, and rolled for several minutes to remove the iron oxide coating on the surface of the small pieces. Loss of cobalt ore due to abrasion by this treatment was estimated at 5 to 10 percent. The final product contains 4 to 4.5 percent cobalt, which was shipped to Japan in bags holding 100 pounds.

Canada.—As a result of improved demand, activity in the Cobalt district, Ontario, increased. Over 50 properties are being worked for silver and cobalt.⁴ The many small leasers in the Cobalt camp suffered a severe handicap when the plant of Temiskaming Testing Laboratories (Ontario Government sampling plant) was destroyed by fire in July 1941.⁵ Leasers depended on the plant for the sampling

valuation, and frequently the marketing of their ore.

Chile.—During November 1941, Chile shipped 525 metric tons of cobalt ore to Japan. The Compañiá Minera "La Cobaltera," which operates a cobalt deposit near Puerto del Huasco in the Province of Atacama, suspended operations temporarily to install a concentrating plant and make other necessary improvements; regular production is not expected to be resumed until the improvements are completed, probably in 1942. The Cobalt Minerals Corporation has been formed to exploit cobalt deposits in Chile. Although the deposits, so far as known, are not particularly extensive, it is reported that up to 600 tons of concentrates averaging 10 to 12 percent cobalt could be produced annually.

Skillings' Mining Review, vol. 30, No. 4, May 17, 1941, p. 9.
 Canadian Mining Journal, vol. 63, No. 1, January 1942, pp. 54, 56.
 Metal Bulletin (London), No. 2564, January 31, 1941, p. 11.

MOLYBDENUM AND VANADIUM

By Frederick Betz, Jr., and A. P. van Siclen 1

SUMMARY OUTLINE

			_
· · · · · · · · · · · · · · · · · · ·	Page	· .	Page
Molybdenum	627	Vanadium	
Summary		Summary	
Salient statistics.	628	Salient statistics	637
Defense program		Defense program	637
Prices		Prices	
Domestic production		Domestic production	638
Exports and imports		Foreign trade	639
Uses		Uses	
Technologic developments	633	World production	
World production		Bibliography	641
Dibliography	634	, , ,	

MOLYBDENUM

SIIMMARY

Domestic production of molvbdenum reached a new peak in 1941. with a total of 40,162,000 pounds (contained molybdenum), or 17 percent above the previous peak of 34,313,000 pounds in 1940. Fragmentary data with respect to production elsewhere in the world indicate that Latin American countries continued to produce a few hundred tons of molybdenum. What transpired in most molybdenum-producing countries may only be surmised, but in general the record of molybdenum centers around developments in the United States

As actual or threatened shortages of strategic metals employed in steel alloying developed, molybdenum became increasingly important in the defense program, and its use was regulated in a series of orders issued by the Office of Production Management.

In 1941, as in 1940, shipments of molybdenum concentrates from the United States to foreign countries represented about 19 percent of domestic production, compared with 67 percent in 1939. of the 7,673 short tons of molybdenum ore and concentrates exported (valued at \$5,379,367) went to the United Kingdom and U. S. S. R.

As has been the case for a number of years, the Climax Molybdenum Co. was the world's leading producer of molybdenum, and in 1941 it supplied 69 percent of the domestic output. Molybdenite concentrates recovered as a byproduct of copper operations at Bingham, Utah, Santa Rita, N. Mex., and Miami, Ariz., have become an established source of supply and in 1941 represented 28 percent of the United States production of molybdenum.

Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Salient statistics of the molybdenum industry in the United States. 1939-41

	1939	1940	1941
Concentrates: Production short tons. Molybdenum contained pounds. Shipments (including exports) short tons. Molybdenum contained: A verage percent. Total pounds. Value Exports short tons. Molybdenum contained pounds. Liports short tons. Molybdenum contained pounds. Value. Imports for consumption (molybdenum contained): Pounds. Value.	32, 347 30, 324, 000 31, 479 51, 49 32, 415, 000 \$22, 157, 000 (2), 777 (2) \$14, 066, 501 26, 347 \$32, 327	33, 128 34, 313, 000 24, 300 52, 12 25, 329, 000 \$17, 189, 000 \$17, 189, 000 6, 584, 714 \$4, 904, 000	38, 962 40, 162, 000 36, 894 51, 77 38, 200, 000 \$25, 883, 000 \$2, 883, 000 \$7, 640, 330 \$5, 379, 64 4, 300 \$2, 898

¹ Estimated by Bureau of Mines.
² Not recorded.

DEFENSE PROGRAM

Recognition of the possibilities of using molybdenum in place of tungsten is by no means recent. References cited by Gregg 2 indicate that early in the twentieth century a number of investigators were studying the properties of molybdenum as a steel-alloying element and its effective value in replacing tungsten for such use. Anticipating the possibility that imports of tungsten might be curtailed, several steps were taken by Federal defense agencies during 1941 to promote the use of molybdenum as a substitute material. Advisory Committee on Metals and Minerals of the National Academy of Sciences submitted a report in April 1941 indicating that molybdenum high-speed steels can be substituted for tungsten steels "rather sweepingly if the necessity arises."

Molybdenum was one of 16 metals included in O. P. M. General Metals Order 1, issued May 1, 1941, to which inventory control was The order provided that the metals affected might not be shipped to customers in quantities that would increase customers' inventories to unnecessary levels. The 16 metals were then placed on the Priorities Critical List. (General Metals Order 1 was extended to October 15, 1941, and subsequently revoked.)

On June 12, 1941, General Preference Order M-14 was issued. which provided that a customer for high-speed steel might not purchase the tungsten-type steel (containing more than 12.0 percent tungsten) if the molybdenum type (7.0 percent or less tungsten and more than 3.0 percent molybdenum) would serve as well. It provided further that during any 3-month period, beginning June 1, 1941, a customer for high-speed steel might purchase tungsten-type steel only to the extent that he bought molybdenum-type steel.

Early in December the foregoing order was amended to provide that 75 percent of all high-speed-steel orders accepted in any one quarter should be of the molybdenum type and not more than 25 percent of the tungsten type. The order was also extended to December 31, 1942.

As a result of the increased use of molybdenum in replacing tungsten in alloy steels, the War Production Board issued General Preference Order M-110 on March 18, 1942, providing for complete alloca-

² Gregg, J. L., The Alloys of Iron and Molybdenum: McGraw-Hill Book Co., Inc., New York, 1932,

tion of molybdenum in all forms, including scrap, until December 31, 1942. Provisions of the order were to become effective May 1, 1942.

PRICES

Engineering and Mining Journal quotations for 90 percent molybdenum concentrates remained constant at 45 cents per pound throughout the year. Ferromolybdenum containing 55 to 60 percent Mo was quoted at 95 cents per pound of Mo, f. o. b. shipping point, throughout the year; prices for calcium molybdate at 80 cents per pound of Mo contained and molybdenum metal (99 percent) at \$2.60 to \$3.00 per pound were also constant.

DOMESTIC PRODUCTION

The spectacular development of the molybdenum industry from the first year of World War I to the end of 1941 is shown in the following table.

Molybdenum in ore and concentrates shipped from mines in the United States, 1914-41

Year	Pounds	Value 1	Year	Pounds	Value ¹
1914 1915 1916	181, 769 206, 740	\$1, 297 114, 866 205, 000	1928 1929 1930	3, 329, 214 3, 904, 648 3, 759, 269	\$1, 924, 600 2, 259, 000 2, 068, 000
1917 1918 1919 1920	297, 926 34, 900	495, 350 1, 253, 700 341, 814 17, 207	1931 1932 1933 1934 1935	3, 157, 000 2, 373, 000 5, 761, 000 9, 377, 000 10, 892, 000	1, 577, 000 1, 186, 000 4, 316, 000 6, 502, 000 7, 261, 000
1921 1922 1923 1924 1925 1926	22, 667 297, 174 1, 154, 050	11, 350 222, 880 961, 324 1, 192, 714 1, 858, 786	1935 1936 1937 1938 1939 1940	17, 959, 000 30, 122, 000 25, 727, 000 32, 415, 000 25, 329, 000 38, 200, 000	11, 933, 000 20, 571, 000 17, 977, 000 22, 157, 000 17, 189, 000 25, 883, 000

¹ Largely estimated by Bureau of Mines.

Arizona.—Among the smaller domestic producers of molybdenum is Mammoth-St. Anthony, Ltd., operating at Tiger, Pinal County. In addition to molybdenum, the values recovered are gold, silver, lead, and vanadium. Huttl ³ has recently summarized the operations, stating that: "The enterprise is essentially a low-grade gold mine, with a large daily tonnage and careful management as the principal requisites for making the ore bodies economically important." The molybdenum ore is wulfenite (PbMoO₄). Over-all recovery of molybdenum in the Mammoth-St. Anthony operation is 97 percent in the mill and 74 percent in the smelter. The smelter has a daily capacity of about 20 tons. The slag containing the molybdenum and vanadium values is treated further, yielding a Na₂MoO₄-Na₂V₂O₄ salt, which is shipped. The Miami Copper Co. continued to recover molybdenum as a byproduct of copper-mining operations at Miami, Gila County. A roaster converts the molybdenite concentrates to molybdic oxide.

California.—The United States Vanadium Corporation completed a new concentrating and chemical treatment plant near its tungsten

² Huttl, John B., Mammoth-St. Anthony's Complex Operations: Eng. and Min. Jour., vol. 142, No. 12, December 1941, pp. 42-45.

mine on Pine Creek near Bishop, Invo County. The new plant, with an initial capacity of 1,300 tons of tungsten-molybdenum ore a day, replaced a 450-ton plant at the mine. Burwell 4 has described the milling process and metallurgical problems encountered in developing this operation. Molybdenum is one of the byproducts, which include also copper, silver, and gold. The molybdenum minerals in the ore are molybdenite, molybdite, and powellite.

Colorado.—In 1941, production by the Climax Molybdenum Co. increased nearly 22 percent to 27,751,273 pounds of elemental molybdenum. Except for the record high output attained in 1938, this production was the greatest since the company began mining in 1918. Production of molybdenum from the Climax deposit from 1918 to

1941 has been as follows:

Molybdenum (element) contained in concentrates produced from the Climax deposit in Colorado, 1918-41

	Pounds		Pounds
1918	342, 200	1930	3, 083, 000
1919	152. 648	1931	2 644 399
1920		1932	1, 913, 395
1921		1933	5 028 695
1922		1934	8 378 683
1923		1935	10 168 635
1924	156, 935	1936	15 216 806
1925	821, 757	1937	22 750 368
1926	1, 057, 367	1938	28 242 085
1927	1, 858, 228	1939	21 796 116
1928	2, 957, 845	1940	22 782 608
1929	3, 529, 295	1941	27, 751, 273

The following excerpts from a recent article by Duggan 5 trace the history of this unique operation:

The mine and mill of the Climax Molybdenum Co. are at Climax, Colo., on Fremont Pass, directly on the Continental Divide, at an elevation of 11,400 feet.

The Climax ore-bearing rock is essentially an altered and highly silicified granite, fully half of the gangue being quartz. Molybdenite is the only mineral of economic

consequence, and most of it is intimately associated with quartz in the form of fine while the molybdite may be readily extracted by hydrometallurgical methods, its content is too low to make such operations profitable. The pyrite content ranges from 2 to 5 percent and that of the chalcopyrite from 0.03 to 0.05 percent. There is not enough copper to make its recovery attractive, and one of the metallurgical problems is the elimination of it and the pyrite from the product.

On account of the close association of the molybdenite with the quartz and the

necessity of eliminating the pyrite and chalcopyrite from the final product, fine grinding followed by flotation is the only feasible method of concentration.

Construction of the first milling unit was started in 1917, and it was operated

during parts of 1918 and 1919.

In the post-war years, there was almost no demand for the product and production was at a standstill until 1924. The company's research campaign to develop the use of the metal began to show results in that year. From 1926 to 1932 production ranged from 500 to 1,200 tons per day. In 1931 an additional mill section was built, and production was gradually increased until in 1934 and 1935 about 3,000 to 4,000 tons was milled per day. This tonnage overtaxed the milling facilities, and as the demand for molybdenum was growing constantly, additional milling equipment was needed. In 1936 and 1937 another crushing plant, six additional mill sections, and the necessary auxiliary plants were conplant, six additional mill sections, and the necessary auxiliary plants were constructed and brought into operation.

pp. 16-18.

Pp. 16-18.

Suggan, E. J., Climax Milling Practice: Am. Inst. Min. and Met. Eng., Tech. Paper 1456, Min. Technol., March 1942, 15 pp.

Burwell, Blair, Milling Tungsten Ores at Pine Creek: Min. Cong. Jour., vol. 27, No. 10, October 1941,

This plant was designed to mill 10,000 tons per day, but it was not long before 12,500 tons was being treated during periods of peak demands. During the summer of 1941, to meet defense needs, the mill has been required to treat 15,500 tons per day. This has been accomplished with little plant expansion and at no loss in recovery. To increase capacity still further, one more primary section is being built. This will bring capacity to 18,000 tons per day, which can be stretched to 20,000 tons at a small sacrifice in recovery.

The foregoing article also describes milling methods in considerable detail; additional information on mining methods, with special refer-

ence to blasting practice, was made available by Barker.6

New Mexico.—The Molybdenum Corporation of America continued to operate its mine and mill near Questa, Taos County. Ore of relatively high grade is mined, and the tonnage treated is comparatively small. The Nevada Consolidated Copper Corporation recovered molybdenite as a byproduct from its copper concentrate at the Chino property in Grant County.

Utah.—The only producer in Utah in 1941 was the Utah Copper Co. at Bingham. The molybdenite concentrate is obtained as a byproduct in the concentration of copper ores and in the re-treatment

of molvbdenum-bearing concentrates.

EXPORTS AND IMPORTS

Total exports of molybdenum ore and concentrates in 1941 were 15,345,251 pounds, containing 7,640,330 pounds of molybdenum, with a value of \$5.379,367; this total represents a 16-percent increase over 1940 in molybdenum contained. Large increases were shown in shipments in 1941 to Canada, U. S. S. R., and United Kingdom. Exports of molybdenum to France, Italy, and Japan ceased. Chile entered the list of countries receiving molybdenum from the United States, whereas no exports to Brazil were recorded during 1941.

Molybdenum ore and concentrates exported from the United States, 1940-41, by countries

	÷	1940		1941		
Country	Gross weight (pounds)	Molybde- num content (pounds)	Value	Gross weight (pounds)	Molybde- num content (pounds)	Value
Brazil Canada Chile	332, 676 554, 951	201, 362 284, 458	\$149, 856 255, 256	974, 321 30, 255	500, 402 15, 000	\$400, 706 12, 000
France Italy Japan	5, 299, 380 1, 650, 650 133, 215	2, 740, 065 849, 578 117, 100	2, 021, 685 631, 696 53, 929			
U. S. S. R. United Kingdom Other countries.	654, 789 3, 985, 961 66, 172	336, 289 2, 019, 801 36, 061	241, 113 1, 514, 852 35, 613	4, 715, 284 9, 625, 391	2, 367, 492 4, 757, 436	1, 777, 185 3, 189, 476
	12, 677, 794	6, 584, 714	4, 904, 000	15, 345, 251	7, 640, 330	5, 379, 367

Imports of molybdenum in molybdenum ore and concentrates in 1941 totaled 4,300 pounds; there were none in 1940. In 1939, 26,347 pounds were imported in ferromolybdenum, etc.

⁶ Barker, Claude L., The World's Largest Molybdenum Mine: Mines Mag., vol. 31, No. 11, November 1941, pp. 558-564, 568.

⁴⁹⁷⁷⁷⁹⁻⁴³⁻⁴²

Molybdenum ore and concentrates, ferromolybdenum, molybdenum metal and powder, calcium molybdate, and other compounds and alloys of molybdenum imported for consumption in the United States, 1937-41

Year	Molyb- denum content (pounds)	Value	Year	Molyb- denum content (pounds)	Value
1937 1938 1939	7, 707 25 26, 347	\$13, 491 81 32, 327	1940 1941	4, 300	\$2,898

USES

Approximately 93 percent of the molybdenum consumed in the United States is employed in steel ingots and castings; 3 or 4 percent goes into iron castings; and the remainder is used in miscellaneous products, such as pigments and colors, welding rods, etc. denum is becoming of increasing interest as a substitute material for tungsten and other steel-alloying metals, of which domestic supplies are limited. Its chief field of usefulness in this capacity is to replace tungsten, as mentioned elsewhere in this chapter. However, the Advisory Committee on Metals and Minerals of the National Research Council has called attention to the value of molybdenum in relieving threatened shortages of vanadium, caused by substitution of the latter for nickel.7

A tabulation of 1,500 tool steels compiled by Lippert ⁸ includes more than 250 with molybdenum contents ranging from as little as 0.15 percent to the molybdenum high-speed steels, which may be as high as 9 percent Mo. Increased use of molybdenum-type high-speed steels has been facilitated by release of patents covering their produc-

tion by several companies holding them.

For use in alloy steels, molybdenum may be added in the form of ferromolybdenum, calcium molybdate, and molybdenum oxide (roasted molybdenite). Common practice favors use of the oxide, and nearly half of the molybdenum employed in alloy steels enters in that form.

As was to be expected, compliance with O. P. M. orders substituting molybdenum-type high-speed steels for tungsten highspeed steels presented certain technical difficulties, which are being solved as rapidly as possible. Recommendations concerning the handling of molybdenum high-speed steels were made by a special committee of O. P. M.9

According to Edsall and Lloyd, 10 solution of a major problemthat of heat treating-may be achieved through use of the electrically heated salt bath. Procedure to be followed in salt-bath hardening

⁷ Steel, Finds Molybdenum Good Substitute to Relieve Tightness in Vanadium: Vol. 109, No. 17 October 27, 1941, p. 86.

8 Lippert, T. W., 1500 Tool Steels: Iron Age, vol. 147, No. 20, May 15, 1941, pp. 55-59; No. 21, May 22, pp. 65-68; No. 22, May 29, pp. 51-54; No. 23, June 5, pp. 60-63; No. 24, June 12, pp. 65-68; No. 25, June 19, pp. 58-60; No. 26, June 26, pp. 52-54; vol. 148, No. 1, July 3, 1941, pp. 56-59

• Stotz, N. I., and others, Heat Treatment of Molybdenum High-Speed Steels: Am. Metal Market, vol. 48, No. 175, September 10, 1941, p. 7.

10 Edsall, Howard Linn, and Lloyd, T. E., Heat-Treating High-Speed Molybdenum Steels: Iron Age, vol. 148, No. 14, October 2, 1941, pp. 39-46.

of molybdenum high-speed steels was also described in the report of a special committee of O. P. M. headed by A. F. Holden.¹¹

Another O. P. M. committee report 12 presents details of surface protection of molybdenum high-speed steels through use of con-

trolled-atmosphere furnaces.

A molybdenum stainless steel has been developed that is said to have great strength and freedom from chemical or electrical reaction and to be adapted to treatment of bone fractures. It may be used in the form of steel plates, screws, nails, and wire in surgery, and the manufacturer claims that it provides bone surgeons with a strong, durable metal that will not corrode in human tissues.¹³

British practice in use of molybdenum in "high-strength" iron was reviewed by A. McRae Smith, "who stated that "in correctly balanced proportions, added to a suitable base composition, nickel and molybdenum impart to cast iron the maximum tensile and transverse strengths and deflection so far achieved in any material which is a

true grav cast iron."

Minor outlets for molybdenum include its use in pigments and colors, welding rods, and wire and for various chemical purposes. Such uses, however, represent specialized fields in which relatively few manufacturers participate. Applications for black molybdenum finishes are described by Young, 15 who mentions jewelry, instrument-gage dial, and decorative fields. Colors ranging from rainbow effects to black deposits may be obtained with coatings produced in a solution containing ammonium molybdate, sodium thiosulfate, and some ammonium hydroxide. Molybdenum black coatings may be applied to electroplated zinc and cadmium, die-cast zinc, die-cast aluminum, and rolled aluminum.

TECHNOLOGIC DEVELOPMENTS

A sample of wulfenite (lead molybdate) ore from Arizona was tested in the Ore-Dressing Section of the Metallurgical Division of the Bureau of Mines at Rolla, Mo., to determine whether molybdenumbearing concentrates could be obtained by gravity-concentration methods avoiding formation of slime and attendant loss of value. The investigators concluded that careful stage-crushing is essential to avoid excessive sliming and that with efficient hydraulic classification and table concentration good recovery of the valuable mineral should result. 16

WORLD PRODUCTION

The production of molybdenum outside the United States is very small. Figures covering such output in 1941 are available only for Chile, Mexico, and Peru; except for Norway, these countries appear to be the only significant foreign sources of supply.

[&]quot;Holden, A. F., and others, Salt-Bath Method for Hardening Molybdenum High-Speed Steels: Am. Metal Market, vol. 48, No. 175, September 10, 1941, p. 7.

"Hayes, G. I., and others, Controlled-Atmosphere Furnaces for the Heat Treatment of Molybdenum High-Speed Steels: Am. Metal Market, vol. 48, No. 175, September 10, 1941, p. 7.

"Hamerican Metal Market, Republic Steel Develops New Steel for Surgery: Vol. 48, No. 157, August 44, 1941, p. 1

^{1941,} p. 1.

1941, p. 1.

1941, p. 1.

1941, p. 1.

195, Poung, C. B. F., Plating Alloys: Iron Age, vol. 149, No. 7, February 12, 1942, pp. 53-57.

195, Engel, A. L., and Shelton, S. M., Progress Reports—Metallurgical Division. 45. Ore-Testing Studies, 1939-40: Bureau of Mines Rept. of Investigations 3564, 1941, p. 23.

World production of molybdenum ores and concentrates, 1937-41, by countries, in metric tons 1

[Compiled by B. B. Waldbauer]

Country 1	1937	1938	1939	1940	1941
Australia: New South Wales concentrates (gross weight) do do Victoria do Western Australia do Canada do Chile concentrates (Mo content) Greece ore (gross weight) do Mexico concentrates (Mo content) do Morocco, French (exports) do Norway do Peru do Meriso gross weight) do Peru do Rumania Bi-Mo ore (gross weight)	16 23 31 (2) 7 7 46 629 104 344 50 27	9 14 36 (2) 6 1,560 12 483 94 462 85 160	(2) 20 26 64 1 30 (2) (3) 523 (4) 433 167	(2) (3) (3) (3) (2) (2) (3) (3) (4) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	(2) (2) (2) (2) (2) (2) (3) (4) (52 (4) (52 (4)
Furkeyconcentrates (Mo content)do	26 13, 344 84	41 15, 103 19	(2) (2) 13, 755 60	⁽²⁾ 15, 564 ⁽²⁾	(2) 18, 21 (2)

[!] In addition to the countries listed, molybdenum ore is also produced in Burma, China, Chosen, and Japan, but data on production are not available.

2 Data not available.

In Canada, the Moss mine, in the Quyon district of Quebec, controlled by the Quyon Molybdenite Co., was active during the latter part of 1941. Operation of the mine was undertaken during the first World War by The Canadian Wood Molybdenite Co.; subsequently the property changed hands several times and was worked inter-The present management took charge in 1938 and has mittently. built a mill and smelter. Output was reported to be at the rate of about 6 tons of 90-percent concentrates a week, and ore reserves were estimated at 30,000 tons averaging 0.5 percent MoS₂. Production of molybdenum in Chile, where molybdenite concentrates are recovered from copper operations of the Braden Copper Co. at Sewell, amounted to 229 metric tons (Mo content) in 1941. In January 1942 the Government of Chile entered into an agreement granting the United States exclusive buying rights on all molybdenum produced in Chile for 18 months. Peru Molibdeno, S. A., principal producer in Peru, continued to operate its mine near Ricran, in Juaja, Department of With the expiration of contracts for shipments of molybdenum to Japan, all future exports were destined for England. covery of a molybdenum deposit was reported in Salvador 17 8 km. east of the village of Teputla, Department of Chalatenango, and 40 km. from La Toma, the nearest railway point. Prospecting revealed a 4- to 5-foot vein in a 30-foot shaft; ore samples were reported to contain 8.5 to 19 percent MoS₂.

BIBLIOGRAPHY

BARKER, CLAUDE L. The World's Largest Molybdenum Mine. Mines Mag., vol. 31, No. 11, November 1941, pp. 558-564, 568.

BURWELL, BLAIR. Milling Tungsten Ores at Pine Creek. Min. Cong. Jour., vol. 27, No. 10, October 1941, pp. 16-18.

CURTIS, CHARLES H. Process of Purifying Molybdenite Concentrates. U. S. Patent 2,238,250, April 15, 1941.

FULLER, J. O. Geology and Mineral Deposits of the Fleur-de-Lys Area, Newfoundland Geol. Surv., Bull. No. 15, 1941, 41 pp.

¹⁷ Engineering and Mining Journal, Molybdenum Deposit in San Salvador: Vol. 142, No. 7, July 1941, p. 85.

GILL, J. P., AND ROSE, ROBERT S. Molybdenum High-Speed Steels. Iron Age, vol. 148, No. 13, September 25, 1941, pp. 33-35..

HUTTL, JOHN B. Mammoth-St. Anthony's Complex Operations. Eng. and Min. Jour., vol. 142, No. 12, December 1941, pp. 42-45.

IRON AGE. Production of Chromium-Molybdenum-Aluminum Steel. Vol. 147,

No. 20, May 15, 1941, p. 45.

JANNEY, THOMAS A. Process of Recovering Molybdenite by Froth Flotation.

U. S. Patent 2,255,776, September 16, 1941.

KAUTZ, KARL. Molybdenum in Enamels. Ceram. Ind., May 1941, pp. 44-45. KUHN, TRUMAN. Pipe Deposits of the Copper Creek Area, Arizona. Econ. Geol., vol. 36, No. 5, August 1941, pp. 512-538.
LINZ, ARTHUR. Molybdenum. Chem. Ind., vol. 48, No. 5, May 1941, pp. 570-

574. 574.
MINING JOURNAL (LONDON). Use of Tungsten and Molybdenum in the Steel Industry. Vol. 213, No. 5523, June 28, 1941, p. 308.
POOLE, GEORGE M. Simplified Molybdenum Determination. Iron Age, vol. 148, No. 15, October 9, 1941, pp. 62, 164-165.
RICHARDSON, JAMES K. Industrial Relations at Climax Molybdenum Plant. Eng. and Min. Jour., vol. 142, No. 7, July 1941, pp. 41-44.
WHITE, D. E. The Molybdenite Deposits of the Rencontre East Area, Newfoundland. Econ. Geol., vol. 35, December 1940, pp. 967-975.

VANADIUM

SUMMARY

In 1941 the United States became the world's leading producer of vanadium, displacing Peru which held that position from 1938 to Domestic production, in terms of vanadium contained in ore distributed to mills and domestic consumers, amounted to 2,393,478 pounds (1,086 metric tons) in 1941 compared with 2,162,916 pounds (981 metric tons) (revised figures) in 1940. Peru's production decreased from 1,214 metric tons (vanadium contained) in 1940 to 1,017 tons in 1941. A marked decline was noted in the vanadium output of South-West Africa. No statistics are available concerning production in Northern Rhodesia. The demand for vanadium in the United States has increased steadily. Apparent consumption in 1940 was estimated at 3,000,000 pounds by the Office of Production Management, which on August 16, 1941, stated that "The current rate of production would indicate that 3,750,000 pounds in finished form will be made available in 1941 as against an estimated need of 5,900,000 pounds. Requirements for 1942 are expected to reach 7,150,000." Vanadium was placed under full priority control on August 14. On December 20, a complete allocation system was established for vanadium by the O. P. M.

The only countries known to have important vanadium-ore deposits are the United States, Peru, South-West Africa, and Northern Rhodesia. Vanadium has been and is now being obtained by some countries from other materials, including petroleum, bauxite, phosphate rock, and titaniferous magnetites. The ever-increasing demand for vanadium directs attention to all possible vanadium

resources, as well as to efforts to extend known deposits.

In the United States the principal ores are roscoelite and carnotite in sandstones, disseminated or in spots, bunches, lenses, and seams. These desposits, representing a distinct type, are found in southwestern Colorado and in southeastern Utah. Application of geophysical methods in this region to locate further concentrations of ore was discussed by Kelly.18

¹⁸ Kelly, S. F., Geological Studies of Vanadium-Uranium Deposits by Geophysical Exploration Methods: Min. Cong. Jour., vol. 27, No. 8, August 1941, pp. 27-35.

Interest was shown in lead vanadate deposits in the western United Under normal conditions, these deposits do not have commercial value, but the Metals Reserve Co. reported that arrangements had been completed for rapid development of several such properties to augment the domestic vanadium supply.

The Bureau of Mines investigated the metallurgical treatment of vanadium ores (including carnotite, cuprodescloizite, descloizite, and

vanadinite) from Colorado, Nevada, and Arizona.19

Vanadium was recovered from flue dust gathered from the boilers of ships burning Venezuelan fuel oil. The dust is said to contain 20 to 40 percent V₂O₅. Lately, Argentine petroleum and asphaltite have been examined for their vanadium content. The investigators, Fester, Cruellas, and Baron, state that the oils contain vanadium in quantities too small to be recovered economically. Referring to the asphaltites, these authors find that, whereas Peruvian bituminous material contains 0.5 to 1.5 percent V₂O₅, the samples from the Provinces of Mendoza and Neuquén, Argentina, contained only 0.1 to 0.2 percent. In 8 of 24 analyses given the content was below 0.1

percent.

The presence of vanadium in titaniferous magnetites is well-known. Actual recovery from converter slag has been carried on in Germany, where, it is believed, this source meets the vanadium requirements of that country. Research on recovery of vanadium from slags is reported from U. S. S. R. In a recent study of the titaniferous magnetites of the Laramie Range, Wyoming, Diemer ²¹ gives six new analyses in which the V₂O₃ content ranges from 0.32 to 0.53 percent. Frankel and Grainger 22 report 1.08 percent V2O3 in a sample of titaniferous iron ore from the Bushveld Complex of South Africa and note that the content of all samples examined thus far rarely exceeds 1 They concur in the results of investigations in India by Dunn and Dey 25 who found that the vanadium is present in coulsonite, a mineral possibly of the composition (FeV)₂O₃. Frankel and Grainger believe that the intimate association of the minerals in the Bushveld ore, presumably a typical titaniferous iron ore, would militate against successful concentration of any of its constituents by physical methods.

Engel, A. L., and Shelton, S. M., Progress Reports—Metallurgical Division.
 Ore-Testing Studies, 1939-40: Bureau of Mines Rept. of Investigations 3564, 1941, pp. 5-12.
 Engel, A. L., and Shelton, S. M., Progress Reports—Metallurgical Division.
 Ore-Testing Studies of the Ore-Dressing Section, Fiscal Year 1941: Bureau of Mines Rept. of Investigations 3628, 1942, pp.

of the Ore-Dressing Section, Fiscal Year 1941: Bureau of Mines Rept. of Investigations 3020, 1022, pp. 16-21.

Description of the Ore-Dressing Section, Fiscal Year 1941: Bureau of Mines Rept. of Investigations 3020, 1022, pp. 16-21.

Fester, G. A., Cruellas, J., and Baron, M., Cenizas vanadiferas: Rev. Facultad de Quim., Ind., y Agric., vol. 8, Univ. Nac. del Litoral, Santa Fe, Argentina, 1940, pp. 95-110.

Diplomer, R. A., Titaniferous Magnetite Deposits of the Laramie Range, Wyoming: Geol. Surv. Wyoming Bull. 31, 1941, 23 pp.

Frankel, J. J., and Grainger, G. W., Notes on Bushveld Titaniferous Iron Ore: South African Jour. Sci., vol. 37, 1941, pp. 101-110.

Dunn, J. A., and Dey, A. K., Vanadium-Bearing Titaniferous Iron Ores in Singhbum and Mayurbhanji, India: Trans. Min. Geol. Inst. India, vol. 41, pt. 3, 1937, pp. 117-184.

Salient statistics of vanadium-bearing ores in the United States, 1940-41

	1940	1941
Mine production:		
Vanadium oresshort tons	95, 983	135, 822
Vanadium contained pounds Uranium-vanadium ores short tons	2, 879, 379 796	2, 333, 797 908
Vanadium containedpounds	51, 377	50, 824
Complex ore:	1	00,002
Vanadium containeddodo	95, 810	105, 760
Distribution:		
Ore milled:		
Vanadium oresshort tonsshort 549	111,602	
Vanadium containedpounds.	2, 015, 729	2, 236, 804
Complex ore: Vanadium containeddodo	05.010	
Ore shipped to domestic consumers:	95, 810	105, 760
Uranium-vanadium oresshort tons	796	908
Vanadium containedpounds.	51, 377	50,824
Total distribution: Vanadium containeddo		
Vanadium containeddo Valuedo	1 2, 162, 916 1 2 \$1, 044, 100	2, 393, 478 3 \$1, 098, 500
v anue	1 2 \$1, 044, 100	, \$1,080,000
Mill products * (vanadium contained):		-
Produced—		
From vanadium and uranium-vanadium orespounds	1, 496, 257	1, 681, 192
From other oresdodo	4 51, 876	172,463
Total produceddodo	1, 548, 133	1, 853, 655
Shipped—		
From vanadium and uranium-vanadium oresdo		4 2, 026, 752
From other oresdo	4 23, 495	4 26, 134
Total shipped:		
Vanadium containeddodo		2,052,886
. Value	2 \$2, 350, 500	3 \$3, 968, 800
Imports: Short tons Short tons		
Vanadium oresshort tonspounds	22, 551 2, 574, 951	12, 323 2, 138, 608
Valuepounds_	\$1, 216, 705	2, 156, 000 \$1, 012, 991
Exports:	42, 210, 100	42, 622, 001
Vanadium ore and concentratesshort tons_	(7)	28
Vanadium containedpounds_	(7)	25, 462
Value	(7)	\$63,213

Revised figure.
Estimated by Bureau of Mines.
Vanadium oxide, vanadic acid, and iron vanadate.
Mill products produced from complex ore.
Mill products produced from complex ore and phosphate rock.
Includes shipments of mill products produced from phosphate rock.

7 Data not available.

DEFENSE PROGRAM

Vanadium was among the metals included in the inventory control provided by General Metals Order 1, May 1, 1941, issued by the Office of Production Management. It was removed from this order on August 14 and placed under full priority control, effective Sep-The new regulation (Order M-23) gave high ratings to all defense orders for vanadium and required their acceptance in preference to nondefense orders; a purchaser of vanadium was required to file a statement of the intended uses not later than the twenty-fifth of the month preceding that specified for delivery; deliveries were restricted to an amount not in excess of that necessary to fill a given manufacturer's orders on the basis of his current method and rate of production. On December 20, General Preference Order M-23-a replaced the previous priority-control order. It "provides for monthly requests for vanadium allotments and authorizes the Director of Priorities to make monthly allocations without regard to previous preference ratings." Consumers receiving less than 50 pounds a month are not obliged to file reports. The order, as originally an-

nounced, was to be effective until June 30, 1942.

Vanadium was among 13 materials listed in General Imports Order M-63, which took effect December 28, 1941. The order provided that "unless otherwise authorized by O. P. M., all future contracts for imports of these materials will be handled by the Metals Reserve Co., R. F. C. subsidiary, or other governmental agency. No private person or concern can make arrangements for imports, except that in certain cases, such as imports for processing and immediate re-export, the Director of Priorities may grant specific exceptions to the Order." The Metals Reserve Co. was stated to be planning to work through established brokers and dealers.

PRICES

Engineering and Mining Journal Metal and Mineral Markets quoted a nominal price of $27\frac{1}{2}$ cents per pound of V_2O_5 contained for vanadium ore throughout 1941. Ferrovanadium was quoted at \$2.70 to \$2.90 per pound of V contained, and the price of vanadium pentoxide (technical grade, approximately 88 to 92 percent V_2O_5) quoted by Daily Metal Trade was \$1.10 per pound of V_2O_5 contained.

DOMESTIC PRODUCTION

Arizona.—Vanadium is recovered from complex ores at Tiger Pinal County, by Mammoth-St. Anthony, Ltd., a low-grade gold mine that yields values in silver, lead, molybdenum, and vanadium, in addition to gold. The vanadium-ore minerals are vanadinite and descloizite. The vanadium and molybdenum are shipped as a Na₂MoO₄-Na₂V₂O₄ salt. Operations have been described by Huttl.²⁴ Colorado and Utah.—The principal vanadium-ore district in the United States lies in southwestern Colorado and southeastern Utah. The vanadium resources are large, but the individual ore bodies are widely scattered and generally small. Facilities for treating the ores are being expanded in this region, and mining is being carried on at increased rates to meet the present demand for vanadium. Production in Colorado and Utah in 1941, in terms of vanadium contained in

ment plants and domestic consumers, amounted to 2,287,718 pounds. The United States Vanadium Corporation operated its 240-ton mill and a plant to treat tailings at Uravan, Colo. The company also worked on the construction of a new mill at Rifle, Colo., where vanadium operations were carried on from 1925 to 1932. The new plant has a capacity of 200 tons; the first unit—a 100-ton roaster—went into

vanadium and uranium (carnotite) ores shipped from mines to treat-

operation in February and the second in April 1942.

The Vanadium Corporation of America treated ore at its Naturita (Colo.) plant during 1941; the mill, reopened in 1940, has a capacity of about 50 tons and handles ore from company property in Montrose and San Miguel Counties, Colo., as well as custom ore. Through a lease agreement with the Defense Plant Corporation, the company will erect a 120-ton plant at Monticello, Utah. The cost of the plant—\$875,000—is being provided by the Defense Plant Corporation, which retains title to the facilities. Operation is scheduled to begin about

²⁴ Huttl, John B., Mammoth-St. Anthony's Complex Operations: Eng. and Min. Jour., vol. 142, No. 12, December 1941, pp. 42-45.

July 1, 1942. In preparation for this new activity, the company maintained during 1941 an ore sampler at Monticello, where ore was

purchased and stock-piled.

North Continent Mines, Inc., continued to operate its mill at Slick Rock near Cedar, San Miguel County, Colo. At Gateway, Mesa County, Colo., the Nisley & Wilson Vanadium Mill produced vanadium oxide from custom ores. Gateway Alloys, Inc., formerly treating ore at Gateway, restricted its activity to mining. The Blanding Mines Co. produced ore and oxide from its mine and mill at Blanding, San Juan County, Utah.

Idaho.—The Anaconda Copper Mining Co. recovered vanadium as a byproduct in the treatment of phosphates for fertilizer. The phosphate rock is mined at Conda, Idaho, and treated in reduction works

at Anaconda, Mont.

FOREIGN TRADE

Imports of vanadium ores in 1941, virtually all from Peru, totaled 12,323 short tons with a vanadium content of 2,138,608 pounds. Data on exports of vanadium ore and concentrates were not available before 1941. The total exports during 1941 were 28 short tons containing 25,462 pounds of vanadium; details by countries of destination are shown in the following table.

Vanadium ore and	concentrates exported	from the United	States in 1941.	by countries

	Country	Gross weight (pounds)	Vanadium content (pounds)	Value
Canada		37, 150	17, 578	\$35, 603
Japan Netherlands Indies United Kingdom		7, 470 629 10, 422	3, 552 256 4, 076	9, 879 531 17, 200
		55, 671	25, 462	63, 213

USES

The principal use of vanadium is in the manufacture of high-speed and low-alloy tool steels and high-strength cast iron and steel forgings. The present demand for vanadium is reflected in the increased use of vanadium-bearing steels, which have been substituted for steels containing nickel and tungsten.

The role of vanadium in forging spring and cast steels has been

discussed by Dawe, 25 who states that—

Vanadium as an alloying element in steel has, in recent years, experienced a rapidly increasing number and range of applications. Small percentages have been found to contribute a variety of valuable properties—from toughness, uniformity, and carburizing qualities in the smallest forgings and springs to higher impact resistance, reduction of internal defects, and increased strength in the largest forgings and castings. In addition, a number of other effects generally accompanies the presence of a small amount of vanadium. These include improved machinability, simpler heat treatment, reduced distortion, exceptional weldability, increased wear resistance, better control and uniformity of hardness penetration and gradient, smoother finish, and reduced flaking or spalling of carburized surfaces.

²³ Dawe, C. N., How Vanadium Influences Design Materials: Machine Design, vol 13, No. 10, October 1941, pp. 49-53, 110, 112.

Of interest at this time is the use of chrome-vanadium steels in making propeller hubs, gears, and welded propeller blades for air-Light armor plate for planes and tanks is also made of vana-

In minor amounts, vanadium is utilized in the ceramic, glass, color, and nonferrous industries and as a catalyst in the manufacture of

Vanadium is made available to the steel industry in the form of ferrovanadium, which contains 35 to 40 percent of the element. also prepared for commercial use as vanadium oxide and ammonium metavanadate. Fused oxide is used to a minor degree in basic electric-furnace steels, but, in general, the oxide is produced for use in the minor applications mentioned above.

WORLD PRODUCTION

World output of vanadium in ore and concentrates in 1941 was similar in volume to that in 1940. The United States increased its production by 11 percent and assumed the leading position, displacing Peru which ranked second. The Minasragra property of the Vanadium Corporation of America, on the east side of the main Cordillera of the Andes at an elevation of 15,472 feet, produces most of Peru's vanadium output.26 Part of the ore is treated at a concentrator near the mine. The concentrates average about 25 percent V₂O₅. Sorted ores are also shipped, and in the last 5 years the V2O5 content of these ores exported has ranged from about 7 to 15 percent. Vanadium-bearing asphaltites, chiefly in deposits of the Compania Minera Santa Clara y Llacsacocha at Yaulí, Department of Junin, are mined on a small scale.27 The vanadium is concentrated in the ashes, which are obtained by burning the asphaltite. The company was preparing to mine vanadiferous coal for its vanadium content.

Production of vanadium in South-West Africa in 1941 came entirely from the Abenab and Baltika mines of the Southwest Africa Co., Ltd. Mottramite and descloizite, the vanadium-ore minerals, are found in clay pockets in dolomite. The concentrates average 19.75 percent The Otavi Minen und Eisenbahn Gesellschaft of Tsumeb, which formerly supplied about half the output of the country, suspended operations in September 1940. The Union of South Africa Government was said to be planning to operate the Otavi company

mines.

In U. S. S. R., plans were announced for exploiting titaniferous iron deposits (from which vanadium was also to be recovered) near Lake Onega in the Soviet Karelian-Finnish Republic. A plant was to be built at Pudozhgora to produce high-grade pig iron and ferro-

vanadium.

It is assumed that Germany and Italy continued to obtain vanadium Vanadium G. m. from the same sources that were known in 1940. b. H., a national cartel, was then reported to be responsible for furnishing the German requirements. Converter slag is the source of the vanadium. Italy recovers vanadium from naphtha soot collected from smokestacks of ships and industrial plants.

^{**} Vanderburg, W. O., Vanadium-Peru: Bureau of Mines Mineral Trade Notes, vol. 14, No. 3, March 20, 1942, pp. 16-17.

**Y Vanderburg, W. O., Vanadium-Peru: Bureau of Mines Mineral Trade Notes, vol. 14, No. 4, April 20, 1049, 104 20, 1942, p. 13.

World production of vanadium in ores and concentrates, 1937-41, in metric tons [Compiled by B. B. Waldbauer]

Country	1937	1938	1939	1940	1941
Argentina. Mexico. Northern Rhodesia. Peru. South-West Africa. United States (shipments).	45 235 583 591 493	180 374 826 557 732	15 148 384 996 514 900	1 4 57 (3) 1, 214 428 4 981	1 7 (2) (3) 1,017 269 1,086

¹ Exports.

BIBLIOGRAPHY

Assarsson, G. The Vanadium Content of Oil Shales and the Nature of the

Occurrence of Vanadium. Geol. Foren. Forh., vol. 63, 1941, p. 182.

BADGER, A. E., AND PINNOW, H. R. Vanadium and Chromium Oxides in Refractories as Aids in the Elimination of Cords in Glass. Glass Ind., vol. 22, No. 4, April 1941, pp. 161-162.

Bosazza, V. L. Occurrence of Vanadium and Molybdenum in Clays. Nature, vol. 146, 1940, p. 746.

Cornelius, H., and Bungardt, W. (The Influence of Vanaduim on the Scaling of Steel.) Archiv. Eisenhüttenwesen, vol. 13, 1939-40, p. 539; Abs. Metallurgist, Suppl. to Engineer, October 1941, pp. 35-36.

Janssen, J. J. H. Vanadium Recovery from Crude Oils. U. S. Patent 2,242,675, May 20, 1941.

Jenness, Leslie G. Recovery of Vanadium from Vanadium-Bearing Material.

Cast Iron to Slag.) Ural. Met., 1939, No. 7, pp. 22-25; Chem. Abs., vol. 35, 1941, p. 419.

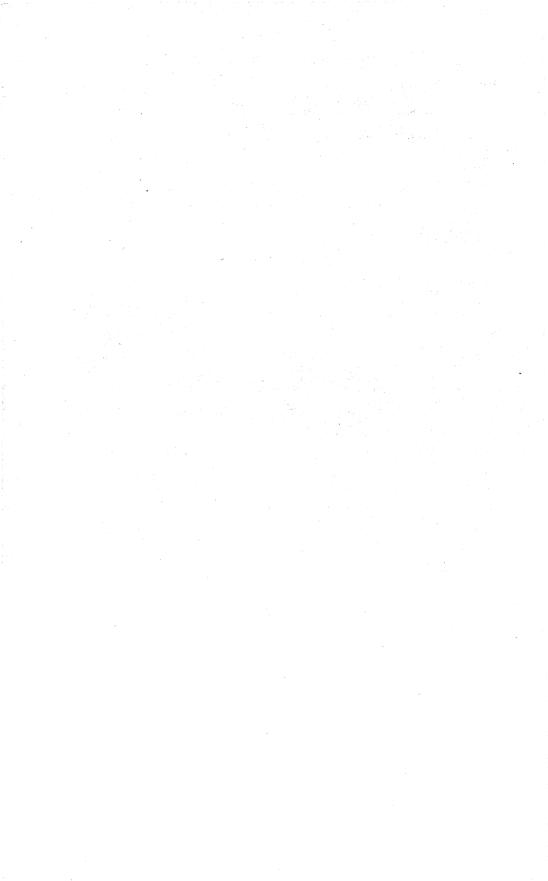
PIWOWARSKY, E. (Vanadium in Cast Iron.) Chem. Fabrik, vol. 14, No. 183, 1941; Chem. and Met. Eng., vol. 48, No. 11, November 1941, p. 174.

ROBERTSON, JOHN, DUNN, HOLBERT EARL, AND SPROUL, ARCHIBALD ALEXANDER.

Extraction of Vanadium Values from Vanadium-Bearing Material. U. S. Patent 2,257,978, October 7, 1941.

STEEL. Finds Molybdenum Good Substitute to Relieve Tightness in Vanadium.

Vol. 109, No. 17, October 27, 1941, p. 86.


Vol. 109, No. 17, October 27, 1941, p. 86.

Swardp, D., and Iyer, V. G. An Investigation Into the Wet Concentration of the Vanadium Occurring in the Iron Ores of Mayurbhanj. Trans. Min., Geol. and Met. Inst. India, vol. 37, August 1941, pp. 45-50.

Vakhrushev, G. V. (Exploration of Rare Elements in Bashkirya (Southern Ural).) Uchenye Zapiski Saratov. Gosudarst. Univ. N. O. Chernyshevskogo, vol. 15, No. 1 (Misc.), 1940, pp. 124-146; Chem. Abs., vol. 35, 1941, p. 6541.

² Less than 1 ton.
³ Data not available.

⁴ Revised figure.

TUNGSTEN

By H. W. DAVIS

SUMMARY OUTLINE

	Page	<u>'</u> -	Page
Sament Statistics	643	Domestic production Foreign trade	840
Government exploration	KAA.	Uses	010

SIIMMARY

Consumption of tungsten concentrates in the United States reached an all-time high in 1941; as a consequence, both imports and domestic production established new records. Shipments of tungsten concentrates and high-grade sorted ore from domestic mines were 6,567 short tons (60 percent WO₃ basis), an increase of 23 percent over 1940 and 7 percent greater than in the previous record year 1917. Production in California, Idaho, and Nevada gained substantially in 1941; and the Yellow Pine mine in Idaho made its initial cutput and shipments in that year. Many new mills were completed during the year; especially noteworthy was the 1,300-ton-daily-capacity concentrating and chemical plant near Bishop, Calif., which began operating in the latter part of 1941. Additions to capacity were made at many existing mills.

Receipts of imported ore and concentrates during 1941 were 13,820 short tons (60 percent WO₃ basis), of which China supplied 68 percent

and Latin American countries 25 percent.

Salient statistics of tungsten ore and concentrates in the United States, 1940-41

	19	40	1941		
	Short tons, 60 percent WO ₃	Value	Short tons, 60 percent WO ₃	Value	
Domestic production	5, 120	(1)	6, 7 46	(¹)	
	5, 319	\$6, 576, 318	6, 567	\$9, 223, 726	
General (receipts) For consumption Stocks in bonded warehouses, Dec. 31	10, 157	(1)	13, 820	(1)	
	5, 896	4, 690, 723	12, 107	11, 231, 313	
	4, 615	3, 956, 825	6, 300	5, 740, 789	

¹ Figures not available.

The Government program to buy tungsten ore for stock-piling and for resale to industry made substantial progress in 1941. Release to industry of part of the Government-held stock pile relieved a temporary stringency in the spot supply in the early part of 1941, which

developed as a result of the closing of the Burma Road from July 18 to October 17, 1940, cutting off tungsten supplies ordinarily supplied The Metals Reserve Co. entered into a contract with Bolivian producers, guaranteed by the Bolivian Government, to purchase their entire production for 3 years at \$21 per short-ton unit. An arrangement was also completed with the Argentine Government and producers to purchase up to 3,000 tons of tungsten concentrates for 3 years at \$21 per short-ton unit. An agreement was also made to buy, at the market price at the time of purchase, any surplus Mexican tungsten not sold to private industry in the Western Hemisphere. Contracts have been made with three of the largest domestic producers of tungsten to permit substantial increases in output, and similar contracts are being arranged with numerous other producers. A re-treatment plant will be erected in Utah in 1942 to utilize large tonnages of low-grade concentrates, much of which has hitherto not been recovered. Arrangements are also being made for direct purchase of output from small producers. Under the stimulation of a price of \$24 per short-ton unit and with the anticipated addition to output from re-treatment of low-grade concentrates, it is expected that domestic production will increase substantially by the end of 1942.

GOVERNMENT EXPLORATION

The Bureau of Mines continued its search for ore deposits of strategic metals, as authorized under section 7 of the Strategic Materials Productive operation in the Yellow Pine district, Idaho, was begun in August over the deposit revealed in the course of diamond drilling by the Bureau of Mines in cooperation with the Geological This deposit appears to be one of the few outstanding new discoveries of tungsten ore in the United States since 1900. A large number of preliminary examinations of tungsten deposits were completed by the Strategic Minerals Examination Section of the Bureau's Mining Division. Trenching and diamond drilling were completed at Mill City, Nev.; near Bishop, Calif.; and in the vicinity of Shoshone, Nev., and the Huachuca Mountains, Ariz. Although no other large ore bodies were discovered, some ore was found in each instance, which enabled the operating companies either to increase or maintain production at properties where depletion of ore reserves would otherwise have forced reduction of output. At the Ima mine in Lemhi County, Idaho, important new discoveries were made by trenching and diamond drilling; their significance will be determined by further diamond drilling now in progress. It now appears that the new discoveries will bring about a considerable increase in the production rate.

As part of its program of investigation of strategic mineral deposits, the Geological Survey published reports describing tungsten deposits in the Sierra Nevada near Bishop, Calif., and in the Blue Wing district, Lemhi County, Idaho. The tungsten deposits in Mohave County, Ariz., including those in the Boriana mine, were mapped. Detailed mapping of the Tempiute district, Lincoln County, Nev., the tungsten deposits in Beaver County, Utah, and the Deer Park district, Stevens County, Wash., was undertaken. In California the tungsten deposits in the Darwin district, Inyo County, and the Greenhorn Mountain region in Kern and Tulare Counties were examined in considerable detail. In the Nederland district, Boulder County, Colo., the Yellow

Pine district, Valley County, Idaho, and the Seven Devils district, Adams County, Idaho, earlier examinations were continued or extended. A number of smaller districts were visited briefly.

PRICES

Quotations on tungsten ore and concentrates were relatively stable throughout 1941; imported and domestic ores fluctuated only \$2 and \$4 per unit, respectively. However, whereas the price trend of imported ore was downward, that of domestic ore was the reverse. Chinese ore was quoted in the Engineering and Mining Journal at \$26 per short-ton unit of WO₃, duty paid, at the beginning of 1941, was lowered to about \$24 in late January, advanced to \$24.50 in August, but again was reduced to \$24 in late October. Bolivian and Portuguese ores were quoted within the same range as Chinese ore. Domestic scheelite, in carlots, delivered, was quoted at \$23 to \$25 per short-ton unit during the first 9 months of 1941, at \$24 to \$27 in October, and at \$26 to \$27 during the remaining 2 months. The average price for the 1941 shipments, as reported to the Bureau of Mines, was \$23.41 per short-ton unit of WO₃.

DOMESTIC PRODUCTION

Stimulated by greater defense activities, production of tungsten concentrates and high-grade sorted ore in the United States increased 32 percent over 1940 to an all-time high of 6,746 short tons (reduced to an equivalent of 60 percent WO₃) in 1941. Production was obtained from a rather large number of widely scattered operations in Alaska, Arizona, California, Colorado, Idaho, Missouri, Montana, Nevada, New Mexico, South Dakota, Utah, and Washington. California, which displaced Nevada as the principal producing State in 1940, maintained its rank in 1941. Idaho attained the rank of third-largest producing State in 1941, as a result of production at the Yellow Pine mine, where the presence of tungsten was discovered in the spring of 1941.

Tungsten ore and concentrates produced and shipped in the United States, 1940-41, by States

	Produced					Shipped from mines				
9 4.4.	1940		1940 1941		19	1940		1941		
State	Short tons, 60 percent WO ₃	Units	Short tons, 60 percent WO ₃	Units	Short tons, 60 percent WO ₃	Units	Short tons, 60 percent WO ₂	Units		
Alaska Arizona. California Colorado Idaho Missouri Montana Nevada New Mexico South Dakota Utah Washington	348 1, 935 657 242 13 50 1, 788 (1)	20, 903 116, 087 39, 411 14, 524 760 2, 998 107, 300 2 899 4, 286	26 280 2,704 646 663 3 7 2,316 3 30 68	1, 590 16, 793 162, 229 38, 740 39, 781 164 415 138, 983 170 1, 802 4, 103	2, 070 693 260 13 50 1, 796 (1) 14 74 5, 319	20, 938 124, 213 41, 561 15, 580 760 2, 998 107, 797 2 832 4, 479	277 2, 603 631 656 3 7 2, 289 } 3 30 68	16, 602 156, 203 37, 839, 361 164 415 137, 321 1, 806 4, 103		

^{1 98} pounds.

Tungsten ore and concentrates shipped from mines in the United States, 1937-41

	Quai	ntity	Reported value f. o. b. mines			
Year	Ore and concentrates, 60 percent WO ₃ (short tons)	Tungsten content (pounds)	Total	Average per unit of WO ₂	Average per pound of tungsten	
1937 1938 1939 1940 1941	3, 500 3, 044 4, 287 5, 319 6, 567	3, 331, 020 2, 897, 036 4, 0€0, 024 5, 062, 199 6, 249, 945	\$4, 094, 000 3, 161, 498 4, 402, 182 6, 576, 318 9, 223, 726	\$19. 50 17. 31 17. 11 20. 61 23. 41	\$1. 23 1. 09 1. 08 1. 30 1. 48	

Alaska.—At the Riverside mine near Hyder, 30 short tons of tungsten concentrates averaging about 53 percent WO₃ were produced (but not shipped) in 1941. About 700 feet of drifting, raising, and crosscutting from old workings were done during 1940 and 1941. According to J. H. Scott, owner and operator of the mine, metallurgical difficulties in the mill were numerous but are believed to have been solved. It is planned to install considerable additional equipment in the mill in 1942.

Arizona.—Shipments of tungsten concentrates from Arizona operations totaled 246 short tons averaging 67.49 percent WO₃ in 1941 compared with 302 tons averaging 69.33 percent WO₃ in 1940. output comprised scheelite, wolframite, huebnerite, and ferberite. By far the largest output came from the Boriana mine near Yucca, Mohave County, where wolframite and scheelite concentrates averaging about 70 percent WO2 were recovered from milling a 1.35-percent WO₃ ore. The mining and milling operations at the Boriana mine have been described in the Mining World.1 The remainder of the output, which was produced at a number of widely scattered operations, came chiefly from the Tungsten Reef mines in Cochise County; the Gold Crown, Chloriding, and Diff claims and the Williams mine in Mohave County; and the Morning Star claim in Pinal County. At the Williams mine, where the Continental Mining Corporation did extensive development and installed mining and milling equipment and a power plant, operations were discontinued because of unsatisfactory results, mainly high operating costs. The tungsten deposits of Arizona have been described recently by Wilson.2

California.—California maintained its rank as the principal tungsten-producing State in 1941. Shipments of tungsten concentrates (virtually all scheelite) from California totaled 2,629 short tons averaging 59.42 percent WO₃ in 1941 compared with 2,076 tons averaging 59.83 percent WO₃ in 1940. Although tungsten concentrates were shipped from a large number of widely scattered operations, four producers—Atolia Mining Co. (in San Bernardino County) and United States Vanadium Corporation, Tungstar Corporation, and West Coast Tungsten Co. (all in Inyo County)—accounted for 2,263 tons, or 86 percent of the State total. The bulk of the remainder was shipped from the Black Rock mine in Mono County; Schober, Tung-

¹ Mining World, Boriana Tungsten Operations in Arizona of the Molybdenum Corporation: Vol. 3, No. 3, March 1941, pp. 9-15.

¹ Wilson, E. D., Tungsten Deposits of Arizona: Arizona Bureau of Mines Geol. Ser. 14, Bull. 148, vol. 12, No. 2, 1941, 54 pp.

sten City, and Tungsten Blue mines in Inyo County; Woody, Tungsten Chief, and Sierra Tungsten mines in Kern County; Tungstore mine

in Tulare County; and Garnet Dike mine in Fresno County.

Production of tungsten concentrates in California was 2,747 short tons averaging 59 percent WO₃ in 1941 compared with 1,935 tons averaging 60 percent WO₃ in 1940. Of the 1941 total, Inyo County supplied 65.7 percent, San Bernardino 24.8 percent, Mono 3.3 percent, Kern 2.6 percent, Tulare 1.5 percent, Fresno 1.3 percent, and Madera and undistributed 0.8 percent. The largest producer in California during 1941 was the United States Vanadium Corporation, which operated the Pine Creek mine near Bishop and, in addition, milled ore and tailings from other properties in California and Nevada. concentrates recovered from milling ore and tailings from Nevada have been credited to that State in the statistics. The new concentrating and chemical treatment plant of the company was completed and put into operation the latter part of 1941. The daily capacity of the plant is 1,300 tons of tungsten-molybdenum ore. The process that has been developed to treat the complex Pine Creek ore is the result of 4 years of research and development. The new plant will replace the present 450-ton plant at the mine portal, at an elevation of 10,700 feet, and is situated at the junction of Pine and Morgan Creeks, 2 miles distant and 3,000 feet lower than the present mill. The original chemical plant first used in conjunction with the upper mill is being used as a custom plant to treat low-grade flotation concentrates from various mines. Residues as low as 2.75 percent WO₃ are being successfully treated in this plant, and the operator has been cooperating with other mills to make available the process developed at Pine Creek to produce additional tungsten to meet demands of the war The new concentrating and chemical treatment plant has been described by Burwell.3

A recent report 4 describes the tungsten deposits adjacent to Pine Creek and near the crest of the Sierra Nevada. It also includes brief summary descriptions of other prospects in extensions of the same

narrow belt and of mines and prospects southwest of Bishop.

The mining and milling of tungsten at the Tungstar mine have been

described by Lenhart 5 and Hamilton.6

The tungsten mines and deposits of California have been described

by Partridge.

Colorado.—Production of tungsten concentrates in Colorado was 810 short tons averaging 48 percent WO₃ in 1941, or virtually the same as in 1940. Shipments, however, declined slightly to 787 tons averaging 48 percent WO₃ in 1941 from 849 tons averaging 49 percent WO₃ in 1940. Virtually all the output was ferberite from Boulder County, the greater part of which came from operations of the Wolf Tongue Mining Co. and the Vanadium Corporation of America. comparatively small quantity of huebnerite was produced in San Juan County in 1941.

Burwell, Blair, Milling Tungsten Ores at Pine Creek: Min. Cong. Jour., vol. 27, No. 10, October 1941, pp. 16-18.
4 Lemmon, D. M., Tungsten Deposits in the Sierra Nevada near Bishop, Calif.: Geol. Survey Bull. 931-E, 1941, pp. 79-104.
5 Lenhart, W. B., Milling Scheelite at Tungstar Mine: Min. Cong. Jour., vol. 27, No. 4, April 1941, pp.

February 15, 1942, p. 6.

7 Partridge, J. F., Jr., Tungsten Resources of California: California Jour. Mines and Geol., vol. 37, No. 2, April 1941, pp. 225-326.

Idaho.—Production of tungsten concentrates in Idaho was 1,291 short tons averaging 30.81 percent WO₃ in 1941 compared with 224 tons averaging 64.84 percent WO₃ in 1940. Shipments were 1,269 tons averaging 31.03 percent WO₃ in 1941 compared with 240 tons averaging 65 percent in 1940.

The Ima mine in the Blue Wing district, Lemhi County, was inactive because of labor difficulties from August 1 to October 27, 1941. The mine power plant was destroyed by fire in January 1941. Chiefly as a consequence of these interruptions, production of huebnerite concentrates at the Ima mine declined to 180 tons in 1941 from 224 tons in 1940; the concentrates average about 65 percer 5 WO₃.

At the Miller property, also in the Blue Wing district, the General Electric Co. has undertaken an extensive development program involving 3,000 to 4,000 feet of diamond drilling, trenching with a caterpillar tractor on some bedding veins, and a crosscut drift that has progressed nearly 2,000 feet. Not enough ore has been uncovered, however, to justify any milling operations.

The geology, ore deposits, and mines and prospects in the Blue Wing district, Lemhi County, have been described by Callaghan and Lemmon.8

The chief producing mine in Idaho is the Yellow Pine near Stibnite in Valley County, where tungsten production was begun in August 1941; during the remainder of 1941, 14,498 short tons of ore averaging 2.4 percent WO₃ were produced and treated, yielding 1,111 short tons of concentrates averaging 25.45 percent WO₃. The presence of tungsten at the Yellow Pine mine was discovered jointly by engineers of the Bureau of Mines and geologists of the Geological Survey in the spring of 1941. The Yellow Pine mine has been described in considerable detail by Bradley.9

Missouri.—A small quantity (3 short tons averaging 55.07 percent WO3) of huebnerite was shipped from the Silver mine near Fredericktown, Madison County, in 1941. In 1940 shipments were 12 short

tons averaging 65.13 percent WO₃.

Montana.—Production of scheelite concentrates in Montana was 8 short tons averaging 51.88 percent WO₃ in 1941 compared with 42 tons averaging 70.62 percent WO₃ in 1940. Of the 1941 total, 7 tons averaging 56.56 percent WO₃ were produced as a byproduct of gold at the Jardine mine in Park County, and 1 ton averaging 48.5 percent WO₃ came from the New Deal Placer property near Philipsburg, Granite County.

Nevada.—Nevada was the second-largest tungsten-producing State Production and shipments of concentrates (reduced to an equivalent of 60 percent WO₃) were 2,316 and 2,289 short tons, respectively, in 1941 compared with 1,788 and 1,796 tons, respectively, The greater part of the production was scheelite concentrates from operations of the Nevada-Massachusetts Co. and affiliated companies, which operate mills at Mill City, Golconda, and Oreana. The Nevada-Massachusetts Co. completed and put into production at Mill City a flotation plant to treat tailings from previous milling operations and the Golconda Syndicate at Golconda a chemi-

Callaghan, Eugene, and Lemmon, D. M., Tungsten Resources of the Blue Wing District, Lemhi County,
 Idaho: Geol. Survey Bull. 931-A, 1941, pp. 1-21.
 Bradley, J. D., The Yellow Pine Mine—A Gold, Silver, Antimony, and Tungsten Producer in Central Idaho: Min. Cong. Jour., vol. 27, No. 9, September 1941, pp. 16-21.

cal plant to treat tungsten-bearing psilomelane. Smaller but important producers in 1941 were Nevada Scheelite, Inc., operating the Leonard mine in Mineral County; Tungsten Metals Corporation, operating the Scheelite Chief, Oriole, Everitt, and Silver Bell mines in White Pine County; and Lincoln Mines, Inc., operating the Tem-Piute mine in Lincoln County. At the Leonard mine the shaft was extended 150 feet, a station was cut on the 200-foot level, and 400 feet of drifting were done. Of the other smaller producing mines in 1941, the largest were the Tungsten Minerals, Hill Top, and Cherry Creek in White Pine County; Ajax and Gun Metal in Mineral County; Contact Group in Pershing County; Comet in Lincoln County; and Star in Elko County.

New Mexico.—Small quantities (50 units) of tungsten concentrates were produced at two localities in New Mexico in 1941—near Gage,

Luna County, and White Oaks, Lincoln County,

South Dakota.—A small quantity of ore containing ferberite and scheelite was produced at the Mineral Ridge property near Hill City,

Pennington County.

Utah.—Shipments from Utah were 44 short tons of scheelite averaging about 41 percent WO₃ in 1941 compared with 14 tons averaging 59.43 percent WO₃ in 1940. Although production came from operations in Beaver, Box Elder, Juab, Millard, and Tooele Counties, about three-fourths was from the Estelle mine in Tooele County and the Lone Pine mine in Box Elder. Mills were installed in Juab County near Delta by the Apex Tungsten Mining & Milling Co.; near Lucin, Box Elder County, by Massae Tungsten Mining Corporation: and near Milford, Beaver County, by the Prosper Mining Co. The tungsten ore body at the Prosper Mining Co. was discovered in October 1940, and in January 1941 part of it was leased to the Nevada-Massachusetts Co., which did considerable development work. In December 1941 the entire ore body and mill were leased to the Nevada-Massachusetts Co., which plans to remodel and greatly enlarge the mill. According to an announcement (March 26, 1942) of the Metals Reserve Co., "a re-treatment plant will be erected in Utah which will permit the utilization of large tonnages of low-grade concentrates, much of which has hitherto not been recovered. Arrangements are being made for direct purchase of production from small producers."

Washington.—Shipments of tungsten concentrates from Washington were 121 short tons averaging 33.91 percent WO₃ in 1941 compared with 92 tons averaging 48.68 percent WO₃ in 1940. The bulk of the production came from the Germania mine near Fruitland, Stevens County, where the General Electric Co. worked over surface float and tailings to recover 32 short tons of wolframite concentrates averaging 65 percent WO₃ and 75 tons of wolframite jig concentrates averaging 14 percent WO₃; no new development was undertaken at the property during 1941. Comparatively small quantities of wolframite concentrates were produced by James Keeth and the Industrial Tungsten Corporation from properties near Fruitland, Stevens County.

FOREIGN TRADE 10

Domestic supplies of tungsten are inadequate for requirements, and the United States imports both tungsten concentrates and products,

¹⁶ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

chiefly the former. Receipts of imported ore and concentrates (tungsten content) during 1941 totaled 13,152,716 pounds—a new record. Bolivia and China supplied 18 and 68 percent, respectively, of the 1941 total.

Imports for consumption amounted to 11,522,190 pounds (tungsten content) during 1941, and Bolivia and China supplied 25 and 57 percent, respectively. In addition, 27,558 pounds of tungsten in concentrates were imported from Bolivia for smelting, refining, and cent, respectively. export during 1941. Material brought in for smelting, refining, and export is free of duty. There is no record of any exports of tungsten ore and concentrates from the United States.

Tungsten ore and concentrates imported into the United States in 1941, by countries

	General i	mports 1	Impo	rts for consum	or consumption ?		
Country	Gross weight (pounds)	Tungsten content (pounds)	Gross weight (pounds)	Tungsten content (pounds)	Value		
Africa:							
Union of South Africa	520, 140	278, 241	230, 954	124, 343	\$136, 400		
Other British South Africa.	73, 722	39, 466	70, 227	37, 579	40, 451		
Argentina	835, 606	443, 485	976, 032	515, 729	487, 869		
Australia	70,600	39, 427	180, 458	97, 874	80, 681		
Belgian Congo	121, 852	70, 546	87, 276	41, 826	56, 583		
Bolivia	5, 725, 854	2, 324, 172	7, 087, 521	2, 895, 568	2, 752, 843		
Brazil	737	384	737	384	225		
British Malaya	58, 335	30, 723	59, 179	31, 619	23, 044		
Chile	55, 793	25, 112					
China	17, 177, 846	9, 016, 519	12, 803, 295	6, 575, 020	6, 584, 040		
rench Indochina	24, 992	14, 237	24, 992	14, 237	12, 901		
Mexico	169, 905	78, 318	174,000	79, 801	79, 592		
eru	704, 313	359, 273	669, 566	326, 333	290, 612		
Portugal	714, 235	354, 576	711, 749	371, 632	307, 728		
Phailand	141, 778	78, 237	774, 025	410, 245	378, 344		
Total: 1941	26, 395, 708	13, 152, 716	³ 23, 850, 011	8 11, 522, 190	³ 11, 231, 313		
1940	18, 481, 342	9, 666, 228	⁸ 10, 829, 093	3 5, 610, 882	³ 4, 690, 723		

¹ Comprises ore and concentrates received in the United States; part went into consumption during year

Only rises or and concentrates received in the United States; part went into consumption during year and remainder entered bonded warehouses.

2 Comprises ore and concentrates withdrawn from bonded warehouses during year (irrespective of time of importation) and receipts during year for consumption.

3 In addition, following quantities were imported for smelting, refining, and export—1941: 48,196 pounds containing 27,558 pounds of tungsten and valued at \$21,16.; 1940: 2,546,166 pounds containing 1,348,495 pounds of tungsten and valued at \$1,023,426.

Imports of tungsten metal were 36,793 pounds (tungsten content) valued at \$48,307 in 1941; all came from the United Kingdom. tungsten carbide, tungstic acid and other compounds of tungsten, or combination containing tungsten or tungsten carbide was imported in 1941.

Exports of tungsten metal, wire, shapes, and alloys other than ferrotungsten (for which export data are not available) were 195,762 pounds in 1941 compared with 237,940 pounds in 1940.

USES

Of the tungsten ore and concentrates consumed in the United States during 1941, about 75 percent was converted to ferrotungsten and metallic tungsten, 20 percent was added directly to furnaces in the manufacture of alloy steel, and 5 percent was used in various tungsten chemicals.

The chief use of tungsten, according to quantity, is in the manufacture of cutting tools, the majority of which are made of high-speed steel containing about 18 percent tungsten, 4 percent chromium, and 1 percent vanadium—commonly known as "18-4-1." Smaller quantities of tungsten are used in numerous other types of high-speed steels. Other important uses of tungsten are in stellite and tungsten carbide cutting tools, magnet steels, austenitic valve steels and valve seats, armor-piercing projectiles, and erosion-resisting gun liners. Minor amounts of tungsten are used in lamp and radio-tube filaments, X-ray targets, and electrical contact points. Tungsten salts are used in the chemical, pigment, and tanning industries.

To conserve the supply of tungsten, molybdenum-tungsten highspeed steels (which contain 1 to 2 percent tungsten and 5 to 10 percent molybdenum) and sintered carbide materials (part of which are of the tungsten type) are being used successfully for many applications of tungsten high-speed steels; and molybdenum-manganese steel is being

used for bullet cores.

WORLD PRODUCTION

Because of Government restrictions on the publication of statistics for many countries, few figures for 1940 and 1941 are available.

Argentina.—Argentina ranks second to Bolivia as a producer of tungsten in South America. All the tungsten produced is exported, and shipments abroad have increased phenomenally during the past decade. Exports in 1941 amounted to 1,897 short tons, of which 1,112 tons were shipped to the United States and 718 tons to Japan; 67 tons were destined to Germany in July, but the ship was intercepted by the British. Exports in 1940 were 1,585 short tons, of which 1,271 tons were shipped to the United States, 308 tons to Japan, and 6 tons to Sweden. Exports to Japan ceased after September 1941.

Bolivia.—Bolivia is the largest tungsten producer in South America. The first production recorded was in 1905, and the annual output through 1913 averaged less than 300 tons. During the World War of 1914–18, production averaged 2,471 metric tons (60 percent WO₃ basis) annually and attained a peak of 4,215 tons in 1917. From 1919 through 1934, annual production dropped to an average of about 500 tons, then increased progressively from 1,423 tons in 1935 to 4,353 tons in 1941. Of the total production in 1941, the Banco Minero de Bolivia (representative of the small miners) exported 1,625 tons, Cie. Aramayo de Mines en Bolivie 1,067 tons, International Mining Co. 760 tons, Bolivian Tin & Tungsten Mines 318 tons, and several small producers 583 tons.

Burma.—Burma ranks second to China as a producer of tungsten. Recent production figures are not available, but 9,025 metric tons (60 percent WO₃ basis) were produced in 1939 compared with 7,796

tons in 1938.

Canada.—Tungsten occurs in many parts of Canada in association with gold ores, and during 1941 shipments of tungsten ores were made to the Department of Mines for treatment. A small plant for the recovery of scheelite is being erected at the Hollinger mine at Timmins, Ontario.

China.—Production figures for China, principal producing country, are not available for 1941, but 9,474 short tons (60 percent WO₃ basis)

were received in the United States.

World production of tungsten ores, 1937–41, by countries, in metric tons of concentrates containing 60 percent WO_3 ¹

[Compiled by B. B. Waldbauer]

Country 1	1937	1938	1939	1940	1941
North America:					
Mexico United States (shipments)	33 3, 175	76 2, 761	118 3, 889	112 4, 825	5, 95
omica stotes (smp.memo.,	3, 208	2, 837	4, 007	4, 937	6, 056
South America:					
Argentina Bolivia (exports)	866 1, 802	1, 195 2, 530	1, 309 3, 337	1, 417 4, 183	1, 74. 4, 3 5.
Brazil (exports)	6	2	7	9	2
ChilePeru	78	5 170	170	290	(3)
	2, 757	3, 902	(2)	(2)	(3)
Curope:			400	400	
France Great Britain: Cornwall	148	22 258	(2) (2)	(2)	(2) (2)
Italy	3	4	(2)	(2)	(2)
Norway Portugal	2,069	2, 810	31 3, 851	(2) 4, 858	(2) (2)
Spain	250	215	(2)	299	50-
Sweden	127	180	200	(2)	(2)
	2, 600	3, 508	(2)	(2)	(2)
Asia: Burma	7, 393	7, 796	9, 025	(2)	(2)
China (exports)	17, 895	13, 387	11, 580	(2) 3, 118	(2)
Chosen	2, 058	(2) 12	(2)	(2)	(2) (2)
India, British Indochina: Tonkin	15 648	545	510	392	(2)
Malay States: Federated Malay States.	1, 077	749	246	108	(2)
Unfederated Malay States	279	333	362	427	(3)
Netherlands Indies	(3) 221	(3)	378	(²) 400	(2) (2)
Thailand		251	(2)	(2)	(2)
-	29, 586	(2)			——————————————————————————————————————
Africa: Egypt	193	(2)		15	(2)
Morocco, French		7	(2)	(2)	(2)
Nigeria Southern Rhodesia	9 275	49 329	237 270	(2) 131	(2) (2)
South-West Africa.	41	48	50	24	46
Tanganyika Territory	$\begin{bmatrix} 2\\2 \end{bmatrix}$	5 2	(3) 2	2	(2) (2)
UgandaUnion of South Africa	40	127	100	(2) 105	4 4
	562	(2)	(2)	(2)	(2)
Oceania:					
Australia: New South Wales	66	113	(2)	(2)	(2)
Northern Territory	345	515	354	320	(²)
Queensland Tasmania	110 345	167 390	107 472	(2)	(2)
New Zealand	28	54	49	88	(2)
	894	1, 239	(2)	(2)	(2)
. [7	39, 607	(2)	(2)	(2)	(2)

In addition to countries listed, tungsten ore is produced in Japan, U. S. S. R., and Western Australia. but data on production are not available.
 Data not available.
 Less than 1 ton.
 January to June, inclusive.

Chosen.—According to Emmons:11

To coordinate and develop the tungsten production of Chosen, arrangements have been announced to center the control of all the tungsten mines of the peninsula in three principal companies, the Japan Mining Co., Japan High Cycle Heavy Industry Co., and Kobayashi Mining Co. The consumption of all domestic tungsten will be limited to seven principal manufacturing concerns. The Kobayashi Mining Co. is reported to be exploiting several newly developed tungsten deposits and to be constructing an ore sorting mill at Yotoku in South Heian Province. A new tungsten deposit is also being developed by Kongo Special Mining Co. in the Diamond Mountains (Kongo San).

Peru.—The only tungsten deposits of proved economic importance in Peru are in the Provinces of Santiago de Chuco and Pallasca in the Departments of La Libertad and Ancash in the west-central part of Peru. These deposits became important during the 1914–18 war period, when a peak production of 532 metric tons of concentrates was attained in 1916. After hostilities ceased, the operators were unable to compete with other sources of supply, and production declined to low figures. The Peruvian deposits have again become increasingly active, and since 1937 production has advanced from 78 metric tons to 337 tons in 1941.

Spain.—Production of wolframite in Spain was 504 metric tons in 1941 compared with 299 tons in 1940. The greater part (426 tons) of the 1941 production came from the Province of Coruña, the remainder being divided between the Provinces of Badajoz and Salamanca. The wolframite boom led to much prospecting and surface mining of hitherto deserted mines in Badajoz Province, where output in December 1941 was five times that of the total for the other 11 months.

[&]quot;Emmons, A. B., 3d (Am. Vice Consul, Keijo, Chosen), Production of Nonferrous Metals and Second ary Minerals in Chosen in 1941: Ms. Rept., May 29, 1941, p. 4.

BAUXITE AND ALUMINUM

By HERBERT A. FRANKE AND M. E. TROUGHT 1

SUMMARY OUTLINE

P	age	Bauxite—Continued.	Page
Summary			_ 663
Salient statistics	657	Aluminum	663
Bauxite			
		Consumption.	
Consumption	659	Prices	_ 669
		Foreign trade	
		Technologic developments	
Abrasive	661	National defense and war measures	675
Chemical	661	World bauxite and aluminum industries.	677
Oil refining, cement, and other	662	Review by countries	679

SUMMARY

Production (618,134,000 pounds) and consumption (605,577,231 pounds) of primary aluminum in 1941 advanced 50 and 33 percent, respectively, over those in 1940. However, 1941 was only the beginning of a new era for aluminum as the Nation prepared for its greatest war, which could not be won unless vast quantities of the light, strong metal were available to build bombers, pursuit planes, and other implements of modern warfare. To meet this objective the War Production Board has recommended expansion of annual domestic aluminum capacity to approximately 2,100,000,000 pounds and the procurement of metal from Canada at a rate that would reach 450,000,000 pounds in 1943. In 1942 production and consumption of aluminum should substantially exceed 1,000,000,000 pounds; by 1943 production is expected to be about double that, and consumption should approach 2,500,000,000 pounds.

Highlights of the industry in 1941 included the following: Mandatory priorities were placed on aluminum in February; the secondary aluminum industry became completely disorganized early in the year following three successive price reductions on primary metal in 1940; as military requirements rose during the summer virtually all civilian uses for aluminum were stopped; and on October 1 the fourth price reduction within 19 months (by the Aluminum Co. of America) brought the price of primary aluminum from 17 cents to 15 cents a pound. In December the United States was at war with Japan, Germany, and Italy and thankful that the private aluminum expansion program and the first Government one were well on their way. The Aluminum Co. of America increased production capacity at all five of its aluminum reduction plants, notably at Vancouver, Wash.,

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

and the Reynolds Metals Co. became the second substantial domestic producer of aluminum. The Aluminum Co.'s expansion program was completed in March 1942, and in May 1942 three new Government-owned aluminum plants (under the first expansion program) had already started operations.

Recovery of secondary aluminum increased 33 percent in 1941. Imports and exports of crude and semicrude aluminum in 1941

declined 26 and 73 percent, respectively, compared with 1940.

Production (894,174 long tons) and consumption (1,721,475 long tons) of bauxite in 1941 increased 104 and 61 percent, respectively, compared with 1940. As with aluminum production, the large output of bauxite in 1941 will be dwarfed by that of 1942 and 1943. Original plans called for the domestic production of 1,899,000 tons (1,344,000 of low-silica and 555,000 of high-silica ore) and the importation of 1,386,000 tons of bauxite in 1942, and the production of 3,290,000 tons (1,600,000 of low-silica and 1,690,000 of high-silica ore) and the importation of 1,800,000 tons of bauxite in 1943. Enemy submarines began sinking South American bauxite cargoes destined to aluminum plants in the United States and Canada in the spring of 1942, which probably will necessitate an "all-out" domestic mining program and greatly increase the bauxite-production goals set above (possibly to 6,000,000 tons or more) for Arkansas and other Southern States. Owing to the shipping crisis, an allocation order was issued July 7, 1942, effective August 1, 1942, to conserve and direct the distribution of bauxite and alumina. It is estimated that domestic consumption of bauxite will reach about 2,600,000 tons in 1942 and 5,100,000 tons or more in

In 1941 imports of bauxite (1,116,546 long tons, 88 percent of which came from Surinam) exceeded those in 1940 by 77 percent. Exports (dried equivalent) rose 82 percent. Of the domestic and foreign bauxite consumed, the aluminum industry used 69 percent; chemical, 17 percent; abrasive, 12 percent; and other industries, 2 percent. Compared with 1940, the aluminum industry increased its consumption of bauxite approximately 82 percent, and the abrasive and chemical industries each used better than 60 percent more ore. Domestic output was equivalent to 36 percent and imports to 64 percent of the total ore consumed. Shipments from Arkansas mines comprised 91 percent of the total domestic production, and output in Georgia, Alabama, and Virginia rose substantially above that of 1940. Although the minimum quoted price for domestic bauxite advanced 17 percent, the average value actually received for all grades of ore shipped was only slightly above that for 1940.

World production of bauxite is believed to have increased 36 percent and of aluminum 40 percent in 1941. Axis and Allied production of aluminum was "neck and neck" in 1941, but in 1942 and 1943 United

Nations output is expected to greatly exceed that of the Axis.

Salient statistics of	the bauxite and a	luminum industries	in the	United States.
		<i>39–41</i>		

	1939	1940	1941
Bauxite: Production (mine shipments) 1	375, 307 \$2, 166, 236 520, 179 51, 635 4, 238, 000 163, 545 \$64, 600, 000 20. 0 53, 947 \$4, 766, 260 \$23, 705, 250	438, 913 \$2, 578, 968 629, 552 81, 913 3 4, 620, 000 206, 280 \$75, 292, 000 18. 7 80, 362 \$5, 159, 924 \$22, 437, 125 903, 000	894, 174 \$5, 358, 976 1, 116, 546 134, 746 6, 296, 000 309, 667 \$100, 395, 000 16, 55 106, 857 \$3, 827, 543 \$6, 872, 522 \$1, 288, 000

Dried-bauxite equivalent.
 As shipped.
 Estimated.
 New York: 99 percent plus, pure virgin ingot, according to Metal Statistics, 1942, published by American Metal Market.

BAUXITE

PRODUCTION

An all-time record was established in 1941, when production (mine shipments converted to dried basis) of bauxite in the United States increased 104 percent in quantity and 108 percent in value over that of 1940. Production rose 90 percent in Arkansas, 593 percent in Alabama, 653 percent in Georgia, and 739 percent in Virginia.

Mines in Saline and Pulaski Counties, Ark., produced 91 percent of the total domestic output in 1941. American Cyanamid & Chemical Corporation operated the Townsend, Cleveland, Ozark Nos. 24 and 28, Globe, Rauch, and Heckler properties. Large-scale stripping operations were conducted at the Townsend and Ozark No. 24 mines, chiefly during August 1941 when considerable ore was mined and stock-piled. Consolidated Chemical Industries, Inc., abandoned its Gates lease (Alexander No. 2 mine) during the summer and began to develop a new property in Pulaski County. American Cyanamid & Chemical Corporation later acquired the Gates lease. Crouch Mining Co., Inc. (owned by General Abrasives Co.), continued development work underground at its new Young mine in Saline County and completed installing a large, new, rotary calcining kiln in December 1941, which substantially increased its processing capacity. Dixie Bauxite Co., Inc., continued operations at its Dixie No. 2 mine and began underground mining on the Wright property, formerly worked by the Pulaski Bauxite Co. Dulin Bauxite Co., Inc., started to produce early in 1941 on the Reichardt lease several miles south of Little Rock and early in 1942 began to develop the Harley and Thorpe leases and to construct a processing plant at Sweet Home. Republic Mining & Manufacturing Co. (Aluminum Co. of America subsidiary), the principal domestic producer, extended its previous open-pit and underground mining operations and commenced or completed stripping overburden from bauxite on large areas in secs. 14 and 15, T. 2 S., R. 14 W. (including the Alexander Hill deposit). Reynolds Mining Corporation acquired bauxite-mining rights to several properties in Saline and Pulaski Counties and did extensive geological and other exploratory work thereon in 1941.

Bauxite shipped from mines in the United States, 1937-41, by States

			Long tons			
State and year				То	Value f.o.b.mine.	
State and year	Crude	Dried	Calcined		Dried-	as shipped
	1			As shipped	bauxite equivalent	
Alabama and Georgia:						2121 00
1937	3, 410	14, 627		18,037	17,614	\$121,82
1938	5, 532	1 12, 542		18,074	17, 253	132, 88
1939	2,727	11, 318		14,045	13, 617	91, 28
1940	2 2, 363	9, 342		² 11, 705	2 11, 381	2 77, 57
1941	2 66, 133	23,081		2 89, 214	2 80, 205	² 406, 13
Arkansas:	•			1		
1937	98, 340	257, 023	46, 832	402, 195	407, 462	2, 322, 86
1938	72, 097	194, 945	1 26, 238	293, 280	293, 663	1,679,66
1939	99, 215	225, 355	3 36, 686	361, 256	361, 690	2, 074, 95
1940	114, 921	261, 103	3 47, 259	423, 283	427, 532	2, 501, 39
1941	221, 338	532, 775	3 59, 432	813, 545	813, 969	4, 952, 83
Total United States:	,	,		1		
1937	101, 750	271, 650	46, 832	420, 232	425, 076	2, 444, 68
1938	77, 629	1 207, 487	1 26, 238	311, 354	310, 916	1,812,54
1939	101, 942	236, 673	3 36, 686	375, 301	375, 307	2, 166, 2
1940	117, 284	270, 445	3 47, 259	434, 988	438, 913	2, 578, 90
1941	287, 471	555, 856	3 59, 432	902, 759	894, 174	5, 358, 9
1991	201, 111	000,000	30, 102	1 232, 100	202,217	,, _

Includes small quantity of activated.

Bauxite mining was active in Alabama during 1941. In the Barbour-Henry County area the Bauxite Co. of Alabama and the Barbour Bauxite Co. commenced new operations, and the Republic Co. and Floridin Co. also were active. J. C. Hebble started mining ore in a new field 3 miles south of Ashville in St. Clair County. In Sumter County, Ga., American Cyanamid & Chemical Corporation resumed activities by opening up the Thig Pen mine, and Benjamin Easterlin shipped a small quantity of ore from his property. Early in 1942 the General Ore Co., Inc., started operations near Silver Creek, Floyd County, Ga., and near Eufaula, Barbour County, Ala. In Virginia the Republic Co. shipped ore in 1941 from the Lightner and Allen mines, Augusta County.

Following a general canvass by the Bureau of Mines in March 1941 of current bauxite production, capacity, and proved reserves, the Bureau of Mines and the Geological Survey made a detailed preliminary survey of domestic bauxite resources. Results of this survey were published in November 1941.

Estimated bauxite reserves of the United States 1 in long tons and by grade,2 and alumina content, in percent

	Grade and alumina content, percent								
State	A (55 plus)	B (50 to 55)	C (45 to 50)	D (30 to 45)	Total				
Arkansas. Alabama Georgia Mississippi Tennessee Virginia	9, 090, 000 16, 000 237, 000	8, 443, 000 79, 000 311, 000 23, 000 36, 000 6, 000	7, 803, 000 33, 000 481, 000 100, 000 22, 000	1, 918, 000 230, 000 200, 000	27, 254, 000 358, 000 1, 029, 000 323, 000 58, 000 6, 000				
Total	9, 343, 000	8, 898, 000	8, 439, 000	2, 348, 000	29, 028, 000				

³ Includes Virginia.

³ Includes sintered.

¹ Thoenen, J. R., and Burchard, E. F., Bauxite Resources of the United States: Bureau of Mines Rept. of Investigations 3598, 1941, p. 39.

2 Grades are as follows: A = 55 plus percent Al₂O₃, minus 7 percent SiO₂; B = 50 to 55 percent Al₂O₃, 7 to 15 percent SiO₂; C = 45 to 50 percent Al₂O₃, 16 to 30 percent SiO₂; D = 30 to 45 percent Al₂O₃, high in silica

With the tremendous aluminum-production program planned, known domestic reserves of high-grade bauxite would be exhausted within a few years if dependence were placed solely thereon. In view of this critical situation Congress appropriated funds in the fall of 1941 for a more comprehensive investigation by the Bureau of Mines and Geological Survey of the occurrence, extent, and quality of

domestic bauxite, alunite, and high-alumina clay deposits.

Because of the limited reserves of high-grade ore, large quantities of marginal or high-silica bauxite (B and C grades) must be mined in 1942 and 1943, chiefly in Arkansas, for the new Hurricane Creek and Baton Rouge alumina plants. Stripping the overburden with power shovels and Le Tourneau and Euclid wagons and other development work on the low-grade deposits were started in 1941 by the Republic Mining & Manufacturing Co., American Cyanamid & Chemical Corporation, and Reynolds Mining Corporation.

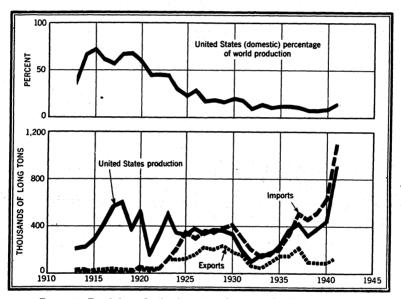


FIGURE 1.—Trends in production, imports, and exports of bauxite, 1913-41.

Stocks of bauxite on hand at mines and processing plants on December 31, 1941, totaled 157,600 long tons (dried-bauxite equivalent) compared with 168,600 tons on December 31, 1940. Stocks at consumers' plants increased from 221,900 tons at the beginning of the year to 541,600 tons at the end of the year.

CONSUMPTION

Actual domestic consumption of bauxite (as determined by special monthly consumer surveys conducted by the Bureau of Mines for Federal war agencies) totaled 1,721,475 tons (dried-bauxite equivalent) in 1941 and compares with an apparent consumption of 1,072,000 tons in 1940. Both quantities include exports to Canada, as virtually all bauxite shipped there during those years was to American-owned abrasive plants for the manufacture of crude abrasives reimported

into the United States for final manufacture and consumption. sumption of the 1,721,475 tons was as follows: Aluminum industry, 1,190,710 tons; chemical, 295,348; abrasive (including refractories), 210,060; and cement, oil-refining, steel, and ferro-alloy industries, 25,357 tons. Consumption of bauxite "as shipped" totaled 1,642,458 tons and consisted of 1,478,509 tons of dried bauxite, 132,962 tons of calcined, and 30,987 tons of undried and activated ore. bauxite, 64 percent was foreign and 36 percent domestic ore. aluminum industry used 94 percent and the chemical industry 5 percent of the foreign ore. About 1 percent of the foreign bauxite was employed in abrasives, cements, and other uses.

Apparent domestic consumption, shown in the table below, is presented from two different points of view; and apparent consumption within the United States does not correspond with the data above, inasmuch as the calculations are based upon "shipments" to domestic plants and do not consider fluctuations in consumers' stocks.

Shipments, imports, exports, and apparent consumption of bauxite in the United States, 1937-41, in long tons

		וען	ieu-pauxite (quivalent		A 1	
		shipments fr ssing plants to		Imports	Exports	Apparent consumption within United States	Apparent consump- tion, in-
Year	Arkansas	Alabama and Georgia ²	Total				cluding shipments to Canada for process- ing ¹
1937 1938 1939 1940	415, 050 275, 078 335, 647 437, 595 857, 804	17, 614 17, 253 13, 689 211, 603 2 79, 812	432, 664 292, 331 349, 336 449, 198 937, 616	507, 423 455, 693 520, 179 629, 552 1, 116, 546	210, 657 90, 341 86, 540 120, 055 218, 691	729, 430 657, 683 782, 975 958, 695 1, 835, 471	921, 000 732, 000 867, 000 1, 072, 000 3 1, 721, 475

(Delod-honeita aquivalent)

BY INDUSTRIES

Bauxite shipped from mines and processing plants in the United States, 1937-41, by consuming industries, in long tons

	1937		1938		1939		1940		1941	
Industry	As shipped ¹	Dried- baux- ite equiv- alent	As	Dried- baux- ite equiv- alent	As	Dried- baux- ite equiv- alent	As shipped ¹	Dried- baux- ite equiv- alent	As	Dried- baux- ite equiv- alent
Aluminum ³ Chemical Abrasive ³ Oil refining, refractory, ³ and other	78, 261	209, 476 79, 150 135, 849 8, 189	63, 940 48, 999	74, 614	81, 444 55, 346		82, 799	128, 818	143, 783 132, 645	141, 334 212, 482
Total quantity. Total value	383, 529 \$2,722,403	432, 664	267, 479 \$1,823,307		312, 036 \$2,448,038		391, 480 \$3,075,317		874, 761 \$6,155,714	

¹ Includes exports to Canada, inasmuch as virtually all of this bauxite is shipped to American-owned plants in Canada for manufacture into crude abrasives reimported into the United States for final manufacture and consumption.
Includes Virginia in 1940 and 1941.

Actual consumption.

Includes crude, dried, and calcined, 1937-41; also activated, 1938-41, and sintered, 1939-41.
 Includes some ore shipped to the abrasive and chemical industries.
 Small quantity of bauxite shipped to makers of refractories probably included under "Abrasive."

The foregoing table shows only shipments to consuming industries

of domestic bauxite and excludes foreign ore.

Aluminum.—Consumption of bauxite by the aluminum industry in 1941 increased approximately 82 percent over that in 1940 and comprised 69 percent of all the domestic and foreign ore used. The industry employed dried and undried ore from Arkansas, Alabama, Surinam, British Guiana, the Netherlands Indies, and Brazil. Estimated bauxite consumption in 1942 is expected to be at least 40 percent above that in 1941.

Abrasive and refractory.—Manufacturers of crude aluminous abrasive pigs in Canada and the United States received approximately 64 percent more domestic bauxite in 1941 than in 1940, being consigned 15 percent of all the domestic ore shipped. Except for a small quantity from British Guiana, all of the calcined and sintered ore employed came from Arkansas. The industry's 1942 ore requirements are expected to exceed those of 1941 by about 40 percent. The use of bauxite in refractories is combined with abrasives. In 1941 the consumption of special aluminous refractory products increased sub-

stantially in the steel, glass, ship, and other industries.

Chemical.—The chemical industry used 62 percent more bauxite in 1941 than in 1940 and 17 percent of all the domestic and foreign ore consumed. Shipments of domestic bauxite from mines and processing plants to the chemical industry increased 74 percent. Consumption by the industry totaled 295,348 long tons of bauxite, but this includes ore used to make some aluminum chemicals other than those shown in the table. Ore used to manufacture the salts and alumina shown in the table totaled only about 236,900 tons. In addition to bauxite, aluminum salts producers reported consuming 21,841 short tons of alumina (dry equivalent), 4,170 tons of aluminum, and a relatively small quantity of clay, alumite, beryl, and chromite residue. Manufacturers estimated that their 1942 bauxite consumption would exceed that of 1941 by almost 10 percent.

Production and shipments of aluminum salts increased 21 and 22 percent, respectively, in 1941; of alumina (for use other than in aluminum), 106 and 113 percent, respectively. Of this alumina, only 39 percent was consumed by the producers of aluminum salts; the remainder was used in the manufacture of abrasives, refractories, petroleum, spark plugs, glass, rubber, paints,² and various other

products.

² Draper, C. R., Aluminum Compounds in the Paint and Varnish Industry: Paint Technol. (London), vol. 5, Nos. 57, 58, 59, and 60; vol. 6, Nos. 61 and 63; September-December 1940; January and March 1941; pp. 207-208; 229-230, 242; 251-252; 291-292; 13, 20; and 63-64.

Aluminum salts and alumina produced and shipped in the United States, 1940-41

			1940			. :	1941	
	Produc- tion						Produc- tion Shipment	
	Short tons	Ship- pers	Short tons	Value	Short	Ship- pers	Short tons	Value
Aluminum salts:								
Alum: Ammonia Potash	6, 546 2, 857	7 4	5, 754 2, 852	\$326, 736 179, 020	8, 235 4, 008	7 5	8, 268 4, 441	\$511, 414 297, 595
Aluminum chloride: LiquidCrystal	3, 176 } 10, 790	6 { 4 5	3, 184 } 10, 755	136, 952 1, 267, 827	4, 250 16, 583	∫ 6 ∫ 4	4, 399 }16, 180	184, 659 2, 545, 373
AnhydrousAluminum sulfate: Commercial:) 20,100		,			₹ 6	,	
General Municipal Iron-free	432, 422 11, 80. 24, 347	17 10 8	428, 179 11, 944 23, 676	8, 532, 972 185, 570 679, 356	513, 835 11, 670 35, 381	19 9 10	517, 954 11, 768 32, 400	10, 647, 730 188, 980 1, 027, 822
Sodium-aluminum sulfate Sodium aluminate	26,674	$\left\{\begin{array}{c} 2\\9\end{array}\right.$	27, 176	1, 574, 145	32,078	$\left\{\begin{array}{c} 10\\2\\10\end{array}\right.$	30, 974	1, 979, 102
Total aluminum salts	518, 673 26, 070	9	513, 520 26, 284	12, 882, 578 2, 692, 411	626, 040 53, 710	<u>i</u> i	626, 384 56, 093	17, 382, 675 5, 602, 762

¹ Excludes alumina produced for use in making aluminum; includes activated, calcined, crude, light and heavy hydrate, and monohydrate D, converted to a calcined-alumina equivalent. Figures not comparable with those prior to 1939.

Aluminum salts shipped in, imported into, and exported from the United States, 1937-41

					1	Exports				
Year	Domestic shipments		Imports		Aluminum sulfate		Other aluminum compounds			
	Short tons	Value	Short tons	Value	Short tons	* Value	Short tons	Value		
1937 1938 1939 1940	466, 894 412, 905 494, 032 513, 520 626, 384	\$12,092,992 10,197,354 11,813,299 12,882,578 17,382,675	2, 864 1, 871 828 21 (1)	\$61, 665 40, 189 22, 335 866 231	31, 807 27, 715 34, 734 43, 615 51, 261	\$679, 214 578, 330 744, 755 994, 861 1, 184, 169	2,609 1,770 1,792 1,920 2,815	\$423, 365 257, 541 208, 455 271, 711 349, 95		

^{1 147} pounds.

In 1941 the General Chemical Co. started to produce aluminum sulfate in a new plant at Vancouver, Wash., and the Stauffer Chemical

Co. built a new plant at Portland, Oreg.

Oil refining, cement, and other.—The use of thermally activated bauxite as an adsorbent and catalyst in the petroleum industry continued to expand in 1941 and is expected to enlarge substantially in 1942 as production of high-octane aviation gasoline increases and the manufacture of synthetic rubber commences. The manufacture of quick-setting, early-strength calcium aluminate cement and the fluxing of ferro-alloys also required more bauxite.

PRICES

In 1941 the average selling price, f. o. b. mines and processing plants, was \$4.31 per long ton for crude (undried) bauxite, \$5.63 for

crushed dried bauxite, \$13.79 for calcined bauxite, and \$41.09 for activated bauxite. The average value for all grades of domestic ores as shipped was \$5.94 per ton (\$5.93 in 1940). The Metals Reserve Co. plans to purchase marginal grades of bauxite in 1942 for the new Arkansas alumina plant on a sliding price scale, providing a bonus for ore high in alumina and a penalty for ore high in silica. Nominal quotations on domestic, chemical, crushed and dried bauxite rose from \$6.00-\$8.00 in 1940 to \$7.00-\$8.50 in 1941.

FOREIGN TRADE

Imports of bauxite in 1941 topped the peak set in 1940 by 77 percent, and exports (dry equivalent) advanced 82 percent. Of the imports, 982,515 tons came from Surinam, 84,683 from British Guiana, 36,082 from Netherlands Indies, and 13,266 from Brazil. By customs districts, importations were as follows: 680,827 tons to Mobile, 263,519 to New Orleans, 40,098 to Philadelphia, 10,446 to Massachusetts, 121,648 to Virginia, and 8 to New York. Of the 1941 exports, 119,261 tons were classified as bauxite and other aluminum ores, 15,462 tons as other bauxite concentrates, and 23 tons as alumina; all of these were consigned to Canada, except for less than 1 ton of alumina sent to Brazil.

Bauxite imported into and exported from the United States, 1937-41

Year	Import sum	s for con- otion 12	Exports bauxit trates)	e concen-	Year	Imports for consumption 12		Exports (including bauxite concentrates) 3	
	Long tons	Value	Long tons	Value		Long tons	Value	Long tons	Value
1937 1938 1939	507, 423 455, 693 520, 179	\$3,609,063 3,521,325 3,765,140	123, 191 57, 726 51, 685	\$3, 456, 916 1, 459, 491 1, 117, 564	1940 1941	629, 552 1, 116, 546	\$4, 298, 969 7, 475, 039	81, 913 134, 746	\$1,542,703 2,773,877

<sup>Also "alumina" as follows: 1937, 182 long tons valued at \$16,461; 1938, 64 tons, \$5,464; 1939, 1 ton, \$432;
1940, 11 tons, \$1,743; 1941, 60 tons, \$5,544.
2 Chiefly dried ore.
As shipped.</sup>

ALUMINUM

PRODUCTION

Primary.—The production of 618,134,000 pounds of primary aluminum in 1941, 50 percent more than in 1940, initiated an aluminum-expansion program destined to reach an annual rate of approximately 2,100,000,000 pounds in 1943, a further advancement of 240 percent. By the end of 1941 the annual production rate totaled approximately 760,000,000 pounds, and in 1942 actual domestic output should total substantially more than 1,000,000,000 pounds. The five aluminum-reduction plants of the Aluminum Co. of America supplied the larger part of the 1941 output. The Reynolds Metals Co. became the first new company to produce primary metal when it began operations at Listerhill, Ala., in June 1941 and at Longview, Wash., in September 1941. Of the Aluminum Co. output, 35 percent was made at Alcoa, Tenn.; 24 percent at Massena, N. Y.; 22 percent at Vancouver, Wash.; 13 percent at Badin, N. C.; and 6 percent at

Niagara Falls, N. Y. Of the Reynolds production, Listerhill, Ala., accounted for 79 percent and Longview, Wash., for 21 percent. Value of the aluminum produced in 1941 averaged 16.24 cents a pound compared with 18.25 cents in 1940. Greater fabricating

capacity paced the enlarged metal-producing program.

Although the Government made heavy financial commitments for the expansion of aluminum facilities, virtually all of the increased metal production and fabrication completed by the Aluminum Co. of America during 1941 resulted from expenditures of the company's own money (a \$215,000,000 expansion program was begun in 1937). Funds for plants of the Reynolds Metals Co. were obtained from the Reconstruction Finance Corporation, which took the company's existent aluminum-fabricating facilities as security. On June 27, 1941, the Government announced that more aluminum would be needed to fulfill Army-Navy and Lend-Lease requirements, and late in the summer of 1941 it began to let contracts for the construction and operation of its own aluminum plants through the Defense Plant Corporation.³

The first Government expansion program (of June 27, 1941) for 303,000 short tons of aluminum was followed by a second expansion program (announced February 26, 1942) providing for an additional 320,000 tons of metal. The Aluminum Co. of America was the first company to enter into a contract with the Defense Plant Corporation (August 19, 1941) for the construction and operation of a 200,000-ton (annual) alumina plant (later extended to 500,000 tons and recently expanded again to 650,000 tons) at Hurricane Creek, near Bauxite, Ark., utilizing low-grade bauxite and of three reduction plants to produce a total of 160,000 tons of aluminum. The Aluminum Co. also agreed to build additional plants to be operated by others. contract provides that the company design and construct the plants at cost but without fee or profit and that it operate them under a 5year lease and pay the corporation 85 percent of the net profits from operation. Either party can extend its own capacity; the lease can be canceled; and an adjustment in price of the metal will be made if unreasonable profits are attained. In concluding negotiations the Aluminum Co. of America agreed to reduce the price on ingot aluminum after September 30, 1941, from 17 cents to 15 cents a pound.

The Office of Production Management originally recommended that the remainder of the aluminum-producing capacity under the first expansion be divided among four other companies—Reynolds Metals Co., Olin Corporation, Bohn Aluminum & Brass Co., and Union Carbide & Carbon Co. This program did not materialize exactly as planned, and only the first two of these firms decided to enter into the production of primary aluminum. Reynolds finally decided to add only 27,000 tons of capacity to its Listerhill works, and Olin was allocated 15,000 tons, which later was increased to 20,000 tons. Olin's subsidiary, Kalunite, Inc., was authorized to build a 10,000-ton alumina plant based upon alumite, which later was extended to 30,000-ton capacity. The Aluminum Co. was allocated the production capacity that remained on the first expansion program, which when revised to conform to the company's standard design brought its share of this program to 256,000 tons.

³ Franke, Herbert A., The Aluminum Situation: Min. and Met., vol. 22, No. 419, November 1941, pp. 528-532.

As the War Production Board (which superseded the Office of Production Management January 24, 1942) realized that the vast increase in the Nation's aluminum facilities would still not be enough to assure essential materials for the greatly increased aircraft, munition, and other vital war programs, plans were announced for a second expansion in aluminum facilities. This provided for three new reduction plants and extensions to three others, and for another All of this capacity was turned over to the Aluminum alumina plant. Co. for construction and operation. The table shows the existent and projected alumina and aluminum program (as of August 1, 1942), which, when completed, will give the Government ownership of 51 percent of the alumina and 57 percent of the aluminum capacity of the country.

Projected annual alumina- and aluminum-producing capacity of the United States in 1943, in thousands of short tons

John Colon Colon Colon	Alumina	capacity	Aluminur	n capacity	
Operating company and plant location	Company- owned	Government- owned	Company- owned	Government- owned	
Aluminum Co. of America: East St. Louis, Ill	657	1 650			
Baton Rouge, La. Alcoa, Tenn Massena, N. Y. Niagara Falls, N. Y		² 500	140	148	
Badin, N. C Vancouver, Wash Troutdale, Oreg Los Angeles, Calif			45 84	1 2 64	
Jones Mills, Ark Mead (near Spokane), Wash Maspeth, L. I., N. Y Burlington, N. J				1 64 1 2 96 3 128	
Modesto, Calif				2 48 2 48	
Listerhill, Ala Longview, Wash Kalunite, Inc.: Salt Lake City, Utah Olin Corporation: Tacoma, Wash		1 30	3 27	1 20	
Total capacity	1, 135	1, 180	443	596	

¹ First expansion program.

Under its own privately financed program the Aluminum Co. of America started or completed during 1941 and the early part of 1942 expansion of aluminum reduction facilities at Alcoa, Tenn., Badin, N. C., and Vancouver, Wash.; another addition to its alumina plant at Mobile, Ala.; more capacity to produce castings (13,800 tons more a year), forgings (19,200 tons), extrusions (3,000 tons), tubing (18,000 tons), and rivets (1,000 tons); a large, new, strong-alloy sheet mill of 180,000 short tons capacity a year at Alcoa, Tenn.; a second blooming and rod mill at Massena, N. Y., to supply 120,000 tons a year of forging stock and rod, bar, and wire; the stripping of large bodies of bauxite ore at Bauxite, Ark.; two rotary bauxite-drying kilns and mining equipment at Bauxite, Ark.; bauxite drying and mining capacity at Moengo Hill and Paranam, Surinam; acquisition of eighty 70-ton covered hopper railroad cars on a 5-year lease and ten new ore-carrying vessels;

Second expansion program.
 Government-financed.

and construction of a dam and power house of 27,000 Kv.-a. at Glenville, N. C., and of a hydroelectric project of 54,000 Kv.-a. at Nantahala, N. C. In August 1941 the company voluntarily turned over to the Tennessee Valley Authority for coordinated operation or integration its five hydroelectric developments on the Little Tennessee River and also transferred to it the great Fontana dam site, where the Government is now constructing a 225,000-kilowatt hydroelectric plant. In February 1942 cabling machinery at Massena, N. Y., made idle by the diversion of aluminum to more essential war purposes, was sold

to the Anaconda Wire & Cable Co.

Under the aluminum expansion programs initiated by the Government, the Aluminum Co. of America undertook to design, construct, and operate all the new capacity proposed under the first- and secondexpansion programs (or for 1,150,000 tons of alumina and 576,000 tons of aluminum) except for 30,000 tons of alumina and 47,000 tons of aluminum allocated to Kalunite, Inc., Olin Corporation, and Reynolds Metals Co. In addition to alumina- and aluminum-producing plants, the expansion programs provide for more fabricating, carbon electrode, synthetic cryolite, aluminum fluoride, power, and other The power program includes construction of a new steamcapacity. electric generating plant with 80,000-kilowatt output and a gasengine-powered D. C. generating plant of 81,000-kilowatt installed capacity at Jones Mills, Ark. Extension of fabricating capacity involves the production of more forgings, rivets, extrusions, wire, rod, bar, tubing, and sheet (including high-strength alloy sheet). Outstanding among the fabricating projects are two Governmentfinanced aluminum sheet mills—at Chicago, Ill. (of 120,000-ton annual capacity), designed and constructed by the Aluminum Co.. and at Spokane, Wash. (of 120,000-ton capacity), designed and constructed by the United Engineering & Foundry Co. (except for ingot casting and furnaces, which will be designed and installed by the Aluminum Co.).

A strike of Congress of Industrial Organizations workers at the Edgewater (N. J.) rolling mill of the Aluminum Co. lasted from March 12 to March 24, 1941. On April 26, 1941, the company made a general wage (and salary) increase to all its employees which amounted to 10 cents an hour when added to that of October 1, 1939. In June 1941 the aluminum and aircraft programs again were threatened with strikes. Congress of Industrial Organizations workers walked out at the Cleveland plant of the Aluminum Co. (and the Detroit plants of the Bohn Aluminum & Brass Co.) demanding further wage increases. The Cleveland strike ended after 2 days and resulted in a 1-cent-an-hour wage increase. After 10 days the Detroit strikers returned to work and submitted their wage demands to further negotiations before the National Defense Mediation Board. In July 1941 the Congress of Industrial Organizations demanded that an 18-cent-an-hour sectional wage differential between workers in northern and southern aluminum plants be eliminated. After other negotiations failed and a strike threatened, the case was certified to the National Defense Mediation Board on August 16, 1941. On February 12, 1942, the National War Labor Board ordered gradual elimination of the wage differential between the Aluminum Co.'s northern and southern plants, which was accepted by the company "under protest." The Board also ruled that a premium should be

paid for night work.

In October 1941 Federal Judge Francis G. Caffey handed down a decision on the monopoly charges filed against the Aluminum Co. of America by the Antitrust Division of the Department of Justice on April 23, 1937. The decision favored the company and cleared it of the charges of monopoly, conspiracy, and other violations of the Sherman Act. Monopolization charges covered bauxite, water power, alumina, virgin aluminum pig and ingot, castings, cooking utensils, pistons, extrusions and structural shapes, foil, miscellaneous fabricated articles, sheets, and cables. The judge reserved jurisdiction for the court on the matter of selling sheet and cable below cost to restrain competition or to compete with copper. He ruled that there was no conspiracy between the Aluminum Co. and Aluminium. Ltd.. or any foreign producer and that the charges of misconduct were not pertinent to the Sherman Act. On December 17, 1941, Judge Caffey denied Assistant Attorney General Thurman Arnold's motion to have the court's oral decision on the case designated as the court's findings of fact and conclusions of law for the purpose of speeding appeals before the United States Supreme Court because he held that the charges of price fixing, monopoly, and restraint of trade alleged by the Government had not been sustained.

During 1941 the Reynolds Metals Co., Federal Reserve Bank Building, Richmond, Va., completed an aluminum plant (95,000 tons annual capacity) and aluminum reduction plants at Listerhill, Ala. (18,000 tons), and Longview, Wash. (27,000 tons). aluminum-fabricating facilities were greatly increased in capacity by one sheet-rolling mill and one rod and shape mill at Listerhill, and one sheet-rolling mill, one rod mill, and one extrusion plant at Louisville, The company expansion program provides for enlargement of the reduction plant at Listerhill and increasing its ingot capacity to 45,000 tons, which is scheduled to be brought into operation during the summer of 1942. The company further mortgaged its plants to secure Reconstruction Finance Corporation loans for expansion of its aluminum program. Arrangements with the Defense Plant Corporation provided for the 24,000-ton aluminum-alloy extrusion plant at Lousiville, Ky., and for the 39,000-ton aluminum-alloy sheet and blooming mill at Listerhill, Ala. The fabricating facilities at Listerhill are operated under the name of the Reynolds Alloys Co.

Reynolds is reported to have prospected, drilled, and proved reserves of over 3,000,000 tons of domestic bauxite. In May 1941 Reynolds signed a 12-year contract with the N. V. Billiton Maatschappij for 6,000,000 tons of Surinam bauxite in addition to the earlier provision for bauxite made with the same company for shipments from Bintan, Netherlands Indies, and one made with the Companhia Geral de Minas of Brazil. The first ore shipments from Surinam are expected to arrive in the summer of 1942. The company is opening an underground mine in Arkansas which will commence producing bauxite for the Government alumina plant there late in the fall of

1942.

The Olin Corporation, East Alton, Ill., owner of the Western Cartridge Co., began construction of a 20,000-ton aluminum reduction plant at Tacoma, Wash., which is scheduled to begin production

early in the fall of 1942. Its subsidiary (Kalunite, Inc.) began work on an alumina plant of 30,000 tons capacity at Salt Lake City, Utah, to use alunite from Marysvale, Utah. The Bureau of Mines made a survey which indicated domestic reserves of alunite totaling 9,400,000 short tons, contained in 21,900,000 tons of rock averaging a minimum of 30 percent alunite. Reserves of high-grade material, containing 50 percent minimum alunite content, were estimated at

only 2,400,000 tons, contained in 3,350,000 tons of rock.

Other companies which expanded or were enlarging facilities in connection with the aluminum program (chiefly through the Defense Plant Corporation) were: Extruded Metals Defense Corporation—a 21,000-ton (annual) aluminum-alloy extrusion plant at Grand Rapids, Mich.; Bohn Aluminum & Brass Corporation—a 22,000-ton aluminum-alloy extrusion plant at Adrian, Mich., and another of 7,800-ton capacity at Los Angeles, Calif.; Willys Overland Motors, Inc.—a 1,800-ton aluminum-alloy forging plant at Toledo, Ohio; Chrysler Corporation and Ford Motor Co.—aluminum-alloy forging facilities at Detroit and Dearborn, Mich., respectively; General Motors Corporation—forging plants at Saginaw, Mich., and Muncie, Ind.; Naval Aircraft Factory and the Weatherhead Co.—forging plants at Philadelphia, Pa., and Cleveland, Ohio, respectively; National Bronze & Aluminum Foundry Co. and Packard Motor Car Co.—aluminum-alloy casting facilities at Cleveland, Ohio, and Detroit, Mich., respectively; Pennsylvania Salt Mfg. Co.—a 10,000-ton synthetic cryolite and 3,000-ton aluminum fluoride plant at Cornwells Heights, Pa.; General Chemical Co.—an aluminum fluoride plant at Marcus Hook, Pa.; and Revere Copper & Brass, Inc.—a 27,000-ton aluminum-alloy forging plant at Rome, N. Y.

Secondary.—Recovery of secondary aluminum in 1941 totaled 106,857 short tons compared with 80,362 tons in 1940 and 53,947 tons in 1939. The 106,857 tons recovered from secondary sources included 8,308 tons of pure metal (98.5+ percent), 97,614 tons of aluminum alloys, and 935 tons of aluminum in chemical products (784 in aluminum chloride and 151 in aluminum sulfate). Production in the form of secondary aluminum ingot totaled 83,933 tons (68,489 in 1940). The secondary aluminum recovered in 1941 required the consumption of 126,447 tons of aluminum scrap, 45,329 tons or 36 percent of which was old scrap (53,265 tons or 57 percent in 1940), and 81,118 tons or 64 percent new scrap (39,587 or 43 percent in 1940). Remelters, smelters, and refineries used 79 percent of this scrap; aluminum rolling mills, 13 percent; and foundries and

other manufacturers, 8 percent.

CONSUMPTION

Apparent domestic consumption of primary aluminum in 1941 advanced 33 percent over that in 1940. Consumption of secondary aluminum increased at approximately the same rate.

⁴ Thoenen, J. R., Alunite Resources of the United States: Bureau of Mines Rept. of Investigations 3561, 1941, 48 pp.

Production, imports, exports, and apparent consumption of primary aluminum and production of secondary aluminum in the United States, 1937-41

	-	Pri	nary aluminu	m.	Secondary aluminum		
Year	Prod	uction	Imports	Exports	Apparent consump-	Pounds	Value 3
	Pounds	Value	(pounds)	(pounds)	tion 1 (pounds)	Founds	value -
1937 1938	292, 681, 000 286, 882, 000	\$55, 609, 000 56, 659, 000	³ 45, 178, 069 ³ 17, 740, 281	5, 383, 516 12, 618, 078	335, 958, 553 179, 045, 203	125, 120, 000 77, 600, 000	\$23,773,000 15,326,000
1939 1940 1941	327, 090, 000 412, 560, 000 618, 134, 000	64, 600, 000 75, 292, 000 100, 395, 000	18, 579, 940 34, 870, 887 26, 715, 155	73, 264, 458 53, 771, 478 14, 808, 924	335, 291, 482 454, 034, 409 605, 577, 231	107, 894, 000 160, 724, 000 213, 714, 000	21, 309, 065 29, 332, 130 34, 707, 153

Data not available on fluctuations in consumers' stocks. Withdrawals from producers' stocks totaled 3,483,000 pounds in 1937, 62,886,000 in 1939, and 60,375,000 in 1940; additions to producers' stocks totaled 112,969,000 pounds in 1938 and 24,463,000 in 1941.
 Based upon average price of primary aluminum as reported to Bureau of Mines.
 Crude and semicrude, some of which may be secondary aluminum.

Of the primary metal consumed in 1941, the transportation industry used 63 percent compared with 40 percent in 1940 and only 29 percent from 1933 to 1938. The aviation industry employed the greater part of that used in the transportation field plus a considerable portion of the 19 percent allocated to the foundry and metal-working business. Production of military and commercial aircraft in the United States in the first month of each year had increased from 157 in 1939 to 279 in 1940 and 1,107 in 1941. In September 1941 production totaled 1,942 planes and on June 26, 1942, the President announced that the output for May 1942 reached nearly 4,000 planes. The President's airplane-production program announced January 6, 1942, calls for 60,000 planes in 1942 and 125,000 in 1943—45,000 and 100,000. respectively, of the heavier combat type. Aluminum is said to constitute 54 to 80 percent of the weight of an airplane (including the motor). The percentage break-down of primary aluminum used by industry in 1941 was approximately as follows: Transportation (air, water, and land), 63 percent; foundry and metal working, 19 percent; machinery and electrical appliances, 6 percent; chemical, 5 percent; building construction, 3 percent; ferrous and nonferrous metallurgy, 2 percent; and cooking utensils, 1 percent. No new metal was used for the manufacture of electrical conductors and food and beverage According to the American Iron and Steel Institute, the steel industry consumed 3,957,359 pounds of aluminum in October 1941 (averaging 0.562 pound per ton of steel), and it will need about 60,000,000 pounds of aluminum annually, chiefly to deoxidize and purify molten steel. Remelted aluminum scrap satisfies the major part of these requirements.

PRICES

Despite the great demand for aluminum, on October 1, 1941, the Aluminum Co. of America reduced the base price of primary aluminum 2 cents, bringing down the open-market quotation in New York for

lots of 10,000 pounds or more, 99-percent plus pure ingot aluminum, delivered, to 15 cents a pound. The new price included the extension of additional transportation allowances on shipments of ingot and

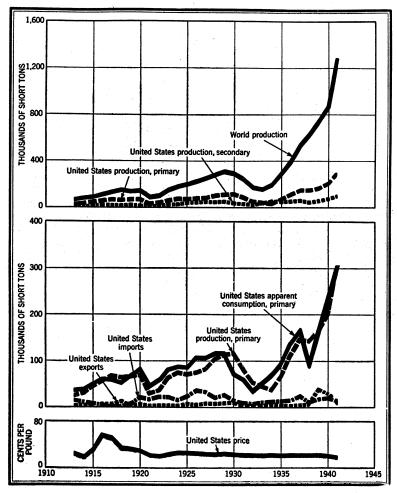


FIGURE 2.—Trends in production, imports and exports, apparent consumption, and average quoted prices of aluminum, 1913-41. Price is for No. 1 virgin 98-99 percent at New York through 1929, thereafter for 99-percent-plus virgin ingot, as reported by American Metal Market.

certain basic fabricated products to destinations west of the Mississippi River. Deductions allowed for transportation charges on orders of 500 pounds or more of one product cannot exceed the lowest carload rate of rail freight.

Within less than 2 years the price of aluminum has dropped 5 cents—from 20 cents a pound to 19 cents on March 25, 1940; from 19 cents to 18 on August 1, 1940; from 18 cents to 17 on November 18, 1940, and from 17 cents to 15 on October 1, 1941. Corresponding reductions in fabricated products also were made, and in May 1942 the Office of Price Administration announced that in August 1942 the Aluminum Co. would make further substantial reductions in its prices of fabricated products, particularly sheet, castings, and forgings. The price reductions on aluminum are attributed to mass production, manufacturing improvements, and lower operating costs arising from

Chaotic conditions prevailed in the secondary or scrap-aluminum industry early in 1941 owing to the 1940 price reductions on primary aluminum and the maximum price schedules set by the Office of Price Administration and Civilian Supply. The Government set a maximum price of 11 cents on cast and forged scrap when sold by makers, 12 cents when sold by dealers, and 13 and 14½ cents, respectively, on pure clippings and cable, f. o. b. point of shipment. Prices of 17 cents and 16 cents, respectively, were established on secondary aluminum ingot 98 percent pure and on No. 12 alloy. According to Metal Statistics, 1942, dealers' buying prices per pound in New York for the principal grades of domestic aluminum scrap in 1941 averaged 10.76 cents for cast aluminum (8.95 cents in 1940) and 13.00 cents for new aluminum clippings (14.47 cents in 1940). The average selling price of remelted metal, 98½ to 99 percent grade, was 17.36 cents (18.74 cents in 1940), and of No. 12 alloy, No. 2 grade, 16.37 cents (14.66 cents in 1940).

FOREIGN TRADE

Imports and exports of crude and semicrude aluminum in 1941 were 26 and 73 percent less, respectively, than in 1940. The value of imports and exports of manufactured aluminum products decreased 51 and 54 percent, respectively. Imports (exclusive of scrap) constituted only 4 percent of the apparent consumption of primary aluminum in 1941. Of the imports of crude (12,830 short tons), 12,802 tons came from Canada and 28 from Chile; of semicrude (528 tons), all came from Canada; and of scrap (55 tons), 20 tons came from Cuba, 11 from Mexico, 6 from the United Kingdom, 5 from Jamaica, and 1 from Canada.

Of the crude aluminum exported in 1941 (750 short tons), 331 tons went to Brazil, 178 to Argentina, 45 to the United Kingdom, 83 to Canada, 28 to the Netherlands Indies, 26 to the Union of South Africa, 19 to China, 17 to Hong Kong, and 16 to Uruguay; of semicrude (6,655 tons), 2,903 tons went to the United Kungdom, 1,779 to U. S. S. R., 1,261 to Australia, and 201 to Canada; and of scrap

(57 tons), 34 tons went to Canada and 21 to Brazil.

Aluminum imported for consumption in the United States, 1939-41, by classes

Class	19	39	19	140	19	41
Ciass	Pounds	Value	Pounds	Value	Pounds	Value
Crude and semicrude: Metal and alloys, crude Scrap Plates, sheets, bars, etc	17, 967, 167 10, 092, 927 612, 773	\$2, 490, 571 760, 913 133, 629	34, 869, 763 1, 296, 738 1, 124	\$4, 628, 601 108, 035 592	25, 659, 083 109, 302 1, 056, 072	\$3, 333, 642 13, 440 271, 675
	28, 672, 867	3, 385, 113	36, 167, 625	4, 737, 228	26, 824, 457	3, 618, 757
Manufactures: Leaf (5½ by 5½ inches) Powder in leaf (5½ by 5½ inches) Bronze powder and pow-	(1) (2)	26, 003 90	(1)	12, 138	(1)	14, 825 74
dered foil	100, 995	42, 959			44, 564	28, 044
thick Table, kitchen, hospital	2, 827, 010	1, 266, 436	941, 004	389, 868	234, 699	110, 166
utensils, etc	26, 776 (³)	16, 191 29, 468	8, 568 (³)	5, 149 15, 541	4, 809 (³)	3, 620 52, 057
	(3)	1, 381, 147	(3)	422, 696	(3)	208, 786
Grand total	(3)	4, 766, 260	(3)	5, 159, 924	(3)	3, 827, 543

^{1 1939: 13,589,224} leaves; 1940: 10,244,034 leaves; 1941: 11,113,500 leaves; equivalent in pounds not recorded.
2 1939: 70,000 leaves; 1941: 50,000 leaves; equivalent in pounds not recorded.
3 Quantity not recorded.

Aluminum exported from the United States, 1939-41, by classes

Class	19	939	19	14 0	194	11
Class	Pounds	Value	Pounds	Value	Pounds	Value
Crude and semicrude: Ingots, slabs, and crude Scrap	56, 247, 255 951, 662 17, 017, 203 74, 216, 120	\$11, 533, 919 160, 283 9, 197, 953 20, 892, 155	24, 453, 795 1, 910, 723 29, 317, 683 55, 682, 201	\$5, 352, 151 331, 757 12, 235, 124 17, 919, 032	1, 499, 052 114, 222 13, 309, 872 14, 923, 146	\$325, 218 22, 352 4, 445, 018 4, 792, 588
Manufactures: Tubes, moldings, or other shapes. Table, kitchen, and hospital utensils. Foil. Fowders and pastes (aluminum and aluminum bronze). Other manufactures.	1, 370, 419 537, 532 1, 133, 031 182, 323 (*)	977, 296 302, 406 488, 010 80, 960 964, 423 2, 813, 095	2, 465, 068 841, 845 2, 808, 535 879, 342 (3)	1, 273, 793 482, 869 1, 221, 590 370, 061 1, 169, 780 4, 518, 093	733, 934 595, 802 547, 489 1 478, 308 (2)	550, 606 281, 851 246, 259 1 206, 776 794, 442 2, 079, 934
Grand total	(2)	23, 705, 250	(2)	22, 437, 125	(2)	6, 872, 522

¹ Aluminum content.

TECHNOLOGIC DEVELOPMENTS

Outstanding developments in technology in 1941 centered about the mass production of aluminum—the greatly increased recovery of ingots; the fabrication, upon a volume basis, of aluminum-alloy sheet, forgings, castings, rods, bars, and rivets; and the advancements in using low-grade bauxite, alunite, and clay.

One of the most important advancements in technology in the aluminum industry probably is under way at the Government's new

² Quantity not recorded.

Hurricane Creek alumina plant near Bauxite, Ark. A combination Bayer and lime-soda-sinter process has been developed that is expected to yield a much higher percentage recovery of the alumina contained in bauxite. Low-grade Arkansas bauxite will be used, which probably will average 13 to 14 percent silica compared with currently used high-grade Arkansas and South American bauxite averaging only about 5 percent silica. In the process developed by the Aluminum Co. in its East St. Louis pilot plant, high-silica bauxite (actually bauxite and clay) will be treated directly by the Bayer process (without prior washing) and the tailings or red mud subjected to a lime-soda sintering operation requiring the addition of lime and some soda ash. The sintered product will be leached and its liquors added to the Bayer process liquors. The Bayer process also has been improved by adding starch to the caustic soda solution to assist settling (U. S. Patent 2.280.998).

At Salt Lake City, Utah, a plant is under construction that will use the Kalunite process to extract alumina from alunite or aluminum-bearing clays. By this process, crushed alunite rock (containing at least 20 percent alumina) first is roasted to drive off combined water, and the soluble residue is dissolved in a mixture of sulfuric acid and return liquor. Potassium alum is crystallized from the solution and decomposed in an autoclave to form basic alum and dilute sulfuric acid. The basic alum then is decomposed by heating to 1,000° C. Potassium sulfate is leached from this sintered residue, leaving the insoluble finished alumina. Potash and sulfur dioxide are

obtained as byproducts.

Further developments in progress on the recovery of alumina from domestic raw materials include work by the Phelps Dodge Corporation on the fines from Morenci copper-ore mill tailings (potash-alum process); the Monolith Portland Cement Co. on clay (a lime-soda sinter process producing alumina and cement); the Tennessee Valley Authority on clay (a sulfuric acid process); Kalunite, Inc., on clay and alunite (sulfuric acid process); the War Metallurgy Committee of the National Academy of Sciences and the Bureau of Mines on clay and alunite (modified Pedersen process); the Aluminum Co. of America on clay and Bayer-process red mud (lime-soda treatment); and the Bureau of Mines on lime-soda sintering of high-silica bauxite and clay as well as on beneficiation of bauxite and alunite. To date, the Bureau's work on the beneficiation of submarginal bauxite shows that for some ores careful grinding and desliming suffices, other ores require gravity concentration to remove iron and titanium minerals, and still other bauxites require flotation or flotation and gravity concentration. Oleic acid and paper-mill fatty acid (tallol) proved the best reagents to collect the gibbsite, the principal extractable alumina mineral in bauxite.7 Tests of the Seailles alumina process for the treatment of high-silica bauxite indicated that it was impracticable and uneconomic. By means of flotation, alunite was readily separated from quartz, the principal impurity.8 The Bureau worked out

Advisory Committee to W. P. B. on Metals and Minerals of the National Academy of Sciences, Alumina from Low-Grade Bauxite, Alumite, and Clay: Metal Progress, vol. 42, No. 2, Aug. 1942, pp. 197-200.
 Eichelberger, Frank, Aluminum from Western Alumites: Min. Cong. Jour., vol. 27, No. 11, November

^{*} Eigheneierer, Frank, Administration Western Artifacts. Each Congress, Frank, Administration of Western Artifacts. Frank, 37-39.

7 Clemmer, J. B., Clemmons, B. H., and Stacy, R. H., Preliminary Report on the Flotation of Bauxite: Bureau of Mines Rept. of Investigations 3610, 1942, Alton, and Dasher, John, Beneficiation of Alunite: Bureau of Mines Rept. of Investigations 3610, 1942, 20 pp.

the details of a lime-soda-sinter process and assembled it in the form of a flow sheet, and construction of a pilot plant based upon it was Work to date indicates that a lime-soda-sinter or a limesinter-soda-extract process may prove most practicable for the recovery of alumina from clay. A method developed by Arthur Hixson of Columbia University for the extraction of alumina from clay (U. S. Patent 2,249,761) involves roasting and subsequent treatment with hydrochloric acid and isopropyl ether, and one by Alfred R. Globus specifies the treatment of clay with sulfuric acid and then with excess

sodium hydroxide.

Despite some advantages claimed for the Soderberg electrode, it has been found more expedient in the expansion program to use chiefly the old-style pots and prebaked carbon block electrodes. melters increased the recovery of aluminum from scrap in 1941 by briquetting before melting and by using fluxes. 10 Additional research is recommended on prevention of the explosibility of aluminum powder and other metal dusts.¹¹ Improvements in methods of converting power from alternating to direct current by means of the mercury rectifier have greatly facilitated the rapid growth of the aluminum and other electrochemical industries. The use of bauxite as a catalyst and catalyst carrier and of anhydrous aluminum chloride 13 in the production of high-octane aviation gasoline increased in

importance.

Representative of the trend in fabrication is the new, mile-long, semicontinuous hot-strip mill (North mill) of the Aluminum Co. of America at Alcoa, Tenn., which simulates hot-strip steel roll-mill Strong aluminum-alloy sheet 48 to 120 inches wide can be rolled for the aircraft industry at the North mill at the rate of 180,000 tons annually by means of a two-high, reversible, hot-roll mill followed by a single-stand and a four-stand tandem mill. strong-alloy sheet mill of the Reynolds Metals Co. at Listerhill, Ala., also depicts a more modern trend in aluminum fabrication. plant includes a single-stand hot reversible mill, a single-stand cold, and a four-stand cold mill. A new technique is the mass production of compound curved surfaces in sheet, as for large airframe skin panels, in which forming takes place by controlled drawing actions applied to a moving sheet while it travels at selected speeds.¹⁴ was a trend in favor of forgings in place of sand castings in 1941, and the use of press rather than hammer forgings increased for small More hot-pressed or kneaded forging stock went into the manufacture of crankcases and other aircraft products. Development of forged or pressed aircraft cylinder heads by the Wright Aeronautical Corporation showed great promise. The firm uses hydraulic mechanical presses and upsetters instead of drop hammers on aluminum-alloy cast ingot or extruded bar stock. 15 To take care of the great demands for forging stock and rods, bars, and wire, the

Noton, C. H., The Söderberg Electrode: Ind. Chem. (London), vol. 17, No. 196, May 1941, pp. 115-116.
 Steel, Increasing Recovery from Aluminum Scrap: Vol. 110, No. 9, March 2, 1942, p. 85.
 Brown, Hylton R., Dust-Explosion Hazards in Plants Producing or Handling Aluminum, Magnesium, or Zinc Powder: Bureau of Mines Inf. Circ. 7148, 1941, 11 pp.
 Cox, J. H., and Bohn, D. I., Power Rectification in Aluminum: Chem. and Met. Eng., vol. 48, No. 9, September 1941, pp. 108-110. Rhea, T. R., Mercury Arc Rectifiers for Electrochemical Installations: Chem. Ind. vol. 49, No. 7, December 1941, pp. 814-816.
 Thomas, C. A., Anhydrous Aluminum Chloride in Organic Chemistry: Am. Chem. Soc. Mono. Ser. 87, 1942, 972 pp.
 Anderson, Frohman, Forming-by-Drawing: Aviation, vol. 41, No. 6, June 1942, pp. 82-85.
 Aviation, Forged Cylinder Head Developed by Wright: Vol. 41, No. 6, June 1942, pp. 117, 263.

Aluminum Co. started construction of a second, and plans for a third, blooming mill. Although production of extrusions increased, the advance probably was not as great as that in Europe, where extruded products are widely used as forging stock. During 1941 sand casting foundries were more highly mechanized, and there was a trend toward the mass and straight-line production of only one product, such as cylinder heads, in a single plant (as by Buick, Ford, and Aluminum Co.). The Antioch plaster-mold process for the production of highly stressed aluminum castings to unusually close tolerances was further improved.16 The manufacture of permanent mold 17 and die castings increased substantially, largely because of the aircraft program. Many zinc die-casting machines were converted to produce aluminum-alloy castings. The production of rivets greatly increased, and new blind or pull-through and explosive rivets is were introduced for airplane work in places that are not readily accessible. Mass fabrication led to better understanding of the aluminum alloys, of which 24S (both bare and Alclad) was the most widely used. Alloys 2S, 3S, and 52S, available in controlled tempers, were produced by cold-work from hot-mill slab, while alloys 17S and 24S were heat-treated and aged at room temperatures and alloys 53S, and 61S were heat-treated and artificially aged at moderately elevated temperatures to develop maximum strength. showed that aluminum-base alloys containing varying amounts of magnesium usually exhibit marked resistance to the action of alkaline corrosion. 19 Spot welding of aluminum alloys was applied more to stressed members of airframes.20

NATIONAL DEFENSE AND WAR MEASURES

When it became obvious that aluminum requirements for military purposes had been underestimated, the Office of Production Management placed the metal under mandatory priorities—on February 24, 1941.21 This order, No. M-1, effective March 22, 1941, was superseded by No. M-1-f, on February 14, 1942, which further restricted the delivery, processing, use, and inventories of aluminum. Ceiling price: were set on scrap and secondary ingot during March 1941 by the Price Stabilization Division of the Office of Production Management in order to maintain price stability and prevent excessive and speculative price increases. This price order was amended in May, June, August, October, and November 1941. Regulations governing the disposition and use of aluminum scrap were promulgated April 11, 1941, in Order M-1-b, which was amended June 10, 1941 (Order M-1-c) and January 7, 1942 (Order M-1-d). A survey by the Bureau of Mines in April 1941 showed that domestic bauxite production could be increased from limited reserves in an emergency.

The National Academy of Sciences began an investigation of possible substitutes for aluminum early in 1941, and in May 1941 it was

pp. 29-33. 21 Fortune, Aluminum and the Emergency: Vol. 23, No. 5, May 1941, pp. 66-68, 142, 145-146, 150, 152, 164b.

<sup>Kay, R. Raymond, Precision Aluminum Castings: Iron Age, vol. 149, No. 15, April 9, 1942, pp. 50-54.
Fahlman, E. G., and Chase, Herbert, Aluminum Permanent Mold Castings: Iron Age, vol. 149, No. 17, April 23, 1942, pp. 36-42.
Iron Age, Explosive Rivets for Aircraft: Vol. 148, No. 3, July 17, 1941, pp. 54-55.
Benson, L. J., and Mears, R. B., Aluminum-Magnesium Alloys Resist Attack: Chem. and Met. Eng., vol. 49, No. 1, January 1942, pp. 88-91.
Chiles, Harry L., Spot-Welding Aluminum at Lockheed: Iron Age, vol. 149, No. 5, January 29, 1942, pp. 29-33.</sup>

announced that civilian and nonessential uses for the metal would be seriously curtailed as the armed forces would absorb virtually the entire metal output. As a result of the President's new heavy-bomber program, aluminum began to present a more serious problem. Apparently military needs had not been fully appreciated. Underestimation of requirements and the shortage were laid in part to failure to provide adequate working inventories for processing of the metal, to foresee the extent of indirect military needs, to obtain aluminum scrap from secondary markets, and to make allowance for the reduction in imports from Canada.

In June 1941 the Office of Production Management directed the Office of Civilian Defense to conduct a Nation-wide collection of old and unwanted aluminum. The campaign, however, was disappointing, as an anticipated collection of 20,000,000 pounds of aluminum actually yielded only 11,173,979 pounds of scrap, which contained but 6,398,051 pounds of recoverable aluminum. The poor yield was attributed to inadequate preparation by the Office of Civilian Defense

and to the fact that cooperation from scrap dealers was not requested. On June 27, 1941, the Office of Production Management made recommendations for the first aluminum-expansion program—to increase domestic aluminum productive capacity to 1,400,000,000 pounds and to procure an additional 200,000,000 pounds of metal from Canada. The alumina capacity provided for in this program was subsequently increased from 400,000,000 pounds to 1,300,000,000. Contracts and commitments for the construction of these new plants began to be let in August 1941 by the Defense Plant Corporation. The first contract was made with the Aluminum Co. of America.

In the fall of 1941 punitive action was taken against violators of aluminum priorities—companies that had diverted much-needed aluminum from vital defense or war production to nonessential uses. The aluminum program was threatened several times by strikes as well as by the shortage of boats for bringing bauxite from South America. High priority ratings for necessary materials were granted by the Division of Priorities for the construction of new aluminum

plants.

On January 23, 1942, Conservation Order M-1-e became effective, probibiting the use of aluminum except in the manufacture of specific items. Rearrangement of maximum prices for aluminum "plant" scrap were made by the Office of Price Administration on January 13, 1942, to facilitate operation of the segregation order (M-1-d), issued January 7, 1942. On March 10, 1942, allocations were placed on aluminum paint and pigments (Order M-1-g). In February 1942 the Director of Industry Operations of the War Production Board (formerly Office of Production Management) ordered all idle aluminum inventories in the hands of fabricators sold to the Government. On February 16, 1942, the United States Department of the Interior proposed a vast expansion program for mineral and power developments in the West, which included the aluminum industry.

On February 26, 1942, the Aluminum and Magnesium Branch, Division of Materials, War Production Board, announced a second aluminum expansion program to assure the Nation a supply of metal ample to produce the airplanes requested by the President. This program provided for an increase in annual domestic aluminum production capacity to 2,100,000,000 pounds, which (with Canadian

imports) should make available a supply of over 2,500,000,000 pounds of primary metal a year. The contracts made May 2 and July 15, 1941, by the Metals Reserve Co. with the Aluminum Co. of Canada, Ltd., call for the total delivery of 340,000 metric tons of aluminum before the end of 1944. The new expansion program also involves the annual remelting and reworking of about 400,000,000 pounds of recovered scrap and a very considerable increase in fabri-

cating facilities.

In May 1942 the three reduction plants provided by the first Government expansion program began operations. The Metals Reserve Co. started purchasing high-silica Arkansas bauxite in the spring of 1942 to supply the Government's new Hurricane Creek alumina plant, scheduled to start operations in July 1942. Enemy submarine torpedoing of boats carrying bauxite from South America to the United States and Canada resulted in the issuance of Order M-1-h on July 7, 1942, which allocates for any use all bauxite, both domestic and foreign, containing less than 15 percent silica and all alumina, effective

August 1, 1942.

Power for the original, first, and second aluminum expansion programs and for other industries presented the Government with a serious problem, and during the first part of 1941 the Office of Production Management set up a special branch to study power requirements. Total power generated in 1941 for public and industrial use is said to have totaled approximately 212,000,000,000 kw.-hr. To supply expanding war industries in 1943, total requirements have been placed as high as 300,000,000,000 kw.-hr. During 1941 many power projects were completed or extended, and construction of new hydroelectric and steam plants was begun. Outstanding projects included those by the United States Department of the Interior agencies in the West (Bonneville, Grand Coulee, and Boulder Dams)22 and the Tennessee Valley Authority in the South.23 Other power expedients were adopted, such as connecting transmission lines or grid systems, power poolings, curtailment of nonessential uses, and the operation of reserve generating capacity in industrial and big city areas. An unprecedented drought in the South during 1941 brought out a call for voluntary reduction in the consumption of power during the summer and early fall. The Federal Power Commission directed immediate construction of connecting power links. Heavy rains late in the fall of 1941, however, relieved the power situation in the South.

WORLD BAUXITE AND ALUMINUM INDUSTRIES

Aluminum is expected to play a leading role in winning the present world conflict. By the end of 1943 production and consumption of both aluminum and magnesium will reach a rate undreamed of before the war. After peace is restored it is expected that a substantial part of the vast productive capacity for these two light metals will be utilized at the expense of other metals because of their greater relative

Bloch, Ivan, Western Power Production and Mineral Development: Paper presented at 8th Ann. Convention, Am. Min. Cong., San Francisco, September 30, 1941, 23 pp.
Parker, Theodore B., Emergency Program of the T. V. A.: Eng. News-Record, vol. 127, No. 25, December 18, 1941, pp. 866-870.
Engineering News-Record, T. V. A. Rushes Power for National Defense: Vol. 126, No. 9, February 27, 1941, pp. 332-335.

abundance in the earth's crust, their utility and diversified usage, and a more advantageous price position (already competitively stronger upon a volume basis).24

World production of bauxite is estimated to have reached approximately 6,396,900 metric tons in 1941, 36 percent more than that in 1940 and 66 percent more than that in the pre-war year 1938.

World production of bauxite, 1937-41, by countries, in metric tons [Compiled by B. B. Waldbauer]

Country	1937	1938	1939	1940	1941
Australia:					
New South Wales	6, 793	442	(1)	(1)	(1)
Victoria	1, 097	1, 341	820	² 1,000	² 1, 000
Brazil (exports)	8,770	12, 928	18, 279	82	14, 36
Czechoslovakia	846	(1)	(1)	(1)	(1)
France	688, 200	682, 440	2 800, 000	2 700, 000	2 700, 000
Germany	18, 212	19, 703	² 20, 000	2 20,000	25,000
Greece	137, 412	179, 886	186, 906	2 50, 000	³ 50, 000
Guiana:	101, 112	110,000	100, 500	- 00,000	- 50,000
British	305, 533	382, 409	483, 653	2 700, 000	1, 089, 333
Netherlands (Surinam)	392, 447	377, 213	511, 619	615, 434	1, 198, 900
Hungary	532, 657	540, 718	485, 000	2 647, 000	² 1, 000, 000
India, British	15, 393	15, 005	9, 121	2 15,000	2 1, 000, 000 2 15 000
Indochina	7,000	160	330	118	1,000
[taly	386, 495	360, 837	483, 965	2 530, 000	² 600, 000
Netherlands Indies	198, 970	245, 354	230, 668	274, 345	171, 821
Portuguese East Africa	100, 010	210, 001	180	1,030	² 1, 000
Rumania	10, 701	11, 807	10, 460	² 40, 000	² 40, 000
Southern Rhodesia	10, 101	11,001	10, 400	2 40,000	² 1, 000
Unfederated Malay States: Johore	19, 305	55, 965	93, 737	63, 787	20,000
U. S. S. R	2 230, 000	³ 250, 000	2 270, 000	2 300, 000	250,000
United States (dried-bauxite equivalent)	431, 898	315, 906	381, 331	445, 958	908, 525
Yugoslavia	354, 233	396, 368	318, 840	2 290, 000	² 300, 000
	001, 200	000, 000	010, 040	- 250,000	- 300,000
	3, 746, 000	3, 849, 000	2 4, 306, 000	2 4, 693, 800	² 6, 396, 900

World production of aluminum, 1937-41, by countries, in metric tons [Compiled by B. B. Waldbauer]

Country	1937	1938	1939	1940	1941
CanadaFranceGermany	34, 500	66,000 45,300 161,100	75, 000 , 50, 000	¹ 100, 000 ¹ 50, 000	1 200, 000 1 60, 000
Austria Hungary Italy	4, 400 1, 000	4, 500 1, 500 25, 800	1,500 34,200	1 240, 000 1 2, 800 1 40, 000	1 300, 000 1 5, 000 1 50, 000
Japan Norway Spain	10,000 23,000	17, 000 29, 000 651	23, 000 31, 000 1 800	1 35, 000 1 25, 000 271	1 90, 000 1 35, 000 1 700
Switzerland U. S. S. R	25, 000 37, 700	2, 400 27, 000 43, 800	2, 700 28, 000 1 73, 000	1 2, 000 1 31, 000 1 75, 000	1 2, 500 1 29, 000 1 60, 000
United Kingdom United States Yugoslavia	19, 300 132, 800 200	23, 300 130, 100 1, 200	25, 000 148, 400 2, 400	1 28, 000 187, 100 1 2, 800	1 35, 000 280, 383 1 3, 000
-	481,500	578, 700	705, 000	1 819, 000	1 1, 150, 600

¹ Estimated production. Estimates for 1939, 1940, and 1941 by the authors.

Data not available.
 Estimated production. Estimates for 1939, 1940, and 1941 by the authors.

^{*}Tyler, Paul M., Tomorrow's Metals: Min. and Met., vol. 23, No. 421, January 1942, pp. 5-8.
Franke, Herbert A., The Future Sources of Aluminum: Paper presented at Industrial Minerals Div.
Meeting, Am. Inst. Min. and Met. Eng., Rolla, Mo., October 24, 1941, 8 pp.
Anderson, Robert J., The World Aluminum Industry: Mining Mag. (London), vols. 64 and 65, Nos. 6
and 1, June and July 1941, pp. 285-292, 15-25.
Armstrong & Co., George S., An Engineering Interpretation of the Economic and Financial Aspects of
American Industry: Vol. 3, The Light Metal Industries—Aluminum, Magnesium, New York, 1942, '9 pp.

The aluminum made in 1941 is believed to have totaled about 1,150,600 metric tons, 40 percent more than in 1940 and 99 percent more than in 1938. Of the world output in 1941, it is thought that production under the control or domination of Germany in Europe was about 485,200 tons; under total Axis control, 575,200 tons (or 50 percent); and under total Allied control, 575,400 tons (or 50 percent). The annual rate of production in 1943-44 may be about as follows: German European control, 721,000 tons; total Axis control, 921,000 tons (36 percent); and total Allied control,1,620,000 tons (64 percent).

REVIEW BY COUNTRIES

Australia.—Extensive geological surveys conducted by the Department of Mines reveal the occurrence of substantial reserves of low-grade bauxite and alunite in Australia. New South Wales ore analyzed ranges from 25 to 68 percent Al₂O₃, 2 to 39 percent Fe₂O₃, and up to 20 percent SiO₂. Sulphates Pty., Ltd., now mining bauxite at Boolarra, Victoria, and the White Metals (Australia) Pty., Ltd., are interested in developing various other ore deposits, including those at Ouse, Tasmania (reserves reported at 2,000,000 tons with 48 percent Al₂O₃); Mount Tambourine, Queensland; and Wingello, New South Wales. The Australian Aluminium Co. Pty., Ltd., began to operate its aluminum strip and sheet rolling mill at Granville, New South Wales, on May 1, 1941, and the construction of another fabricating mill in Australia is under consideration. The use of aluminum for other than authorized purposes was prohibited by the Minister of Munitions on December 17, 1941, The National Aluminium Mining & Smelfing Co. proposes to produce 5,000 tons of alumina annually at Port Kembla, using bauxite from Wingello, New South Wales, and to

locate a reduction plant at Sydney. Brazil.—Companhia Electro-Chimica Brasileira plans to construct a 10,000-ton alumina and a 2,000-ton reduction plant at Saramenha, a short distance from Ouro Preto, Minas Gerais. A priority rating for equipment has been granted the company in the United States. Bauxite will be obtained from nearby ore deposits, and power will be secured from two hydroelectric plants on the Rio Maynart, one of which is in operation and the other under construction. Companhia Brasileiro de Aluminio, S. A., plans to develop the Poços de Caldas bauxite deposits and to produce aluminum at plants to be built near São Paulo, but it now appears likely that the shortage of critical materials in the United States will hinder early completion of this project. The Bank of Brazil, with Government authorization, granted the company a loan repayable within 12 years. The fabrication of aluminum (chiefly cooking utensils) in São Paulo was paralyzed in the summer of 1941 as importation of the metal from the United States virtually ceased. Exports of bauxite from Brazil in 1941 (chiefly to the United States) totaled 14,365 metric tons compared with only 82 tons in 1940.

British Guiana.—Exports of bauxite by the Demerara Bauxite Co., Ltd., during 1941 totaled 1,072,617 long tons, of which 908,125 tons went to Canada, 112,815 to the United States, and 51,677 to the United Kingdom. The company had five rotary drying kilns in operation at MacKenzie during the summer of 1941 producing 4,800 tons of dried ore daily. The Berbice Co., Ltd., plans to start shipping

bauxite in the summer of 1942 from its property about 130 miles up the Berbice River. Dried ore is to be barged down to Everton, whence it will be loaded into ocean-going vessels. Establishment of an alumina and aluminum plant in British Guiana has been proposed

by American interests.

Canada.—Compared with 1941, Canadian aluminum production is expected to increase about 60 percent in 1942 and more than double in 1943. A 5-day strike at the Arvida reduction plant of the Aluminum Co. of Canada, Ltd., in July was a serious set-back to output in 1941, as the molten metal in the pots solidified when the power was shut off and caused a production delay of several weeks. Aluminum-fabricating facilities also have been greatly expanded in Canada, principally at Kingston, Ontario, where strong-alloy sheet, extrusions, tubing, and forgings are made, partly for United States consumption. Rolled screw machine and rivet stock is produced at Shawingan Falls,

Quebec, and sheet and castings at Toronto, Ontario.

In 1943 one-sixth of all the electric power of the Dominion will be used to produce aluminum. The Aluminum Co. of Canada, Ltd., is further developing the hydroelectric power resources of the Lake St. John-Chicoutimi district and also is investigating available power resources in Manitoba with a view to constructing a new plant in that Province. In the Lake St. John-Chicoutimi district the company will spend \$30,000,000 building a channel from its dam at Chute-á-Caron to the mouth of the Shipshaw River, where a hydroelectric plant is to be constructed capable of generating 820,000 hp. (compared with 265,000 hp. now produced at Chute-a-Caron). The proposed facilities could ultimately be extended to 1,000,000 hp. The American Nepheline Corporation (subsidiary of Ventures, Ltd.) is experimenting on the extraction of alumina, potash, and soda ash by a lime-sinter process from nepheline syenite derived from the Bancroft, Haliburton. and Lakefield areas of Ontario. To reduce the sailing time of oceangoing vessels, late in the summer of 1941 South American bauxite began to be discharged at Portland, Maine, for movement by rail to Arvida. Early in 1942 sinkings by enemy submarines began seriously to affect these bauxite cargoes, and bauxite and alumina were imported from the United States.

France.—French aluminum production is believed to have failed in reaching its objective of 70,000 tons in 1941 because of the lack of railroad transportation, lack of skilled labor, inadequate coal supply, and hydroelectric power and labor troubles. Early in 1942 production was reduced two-thirds owing to power difficulties; these, however, were soon overcome, and production returned to normal in April. Within the next 2 or 3 years the large Genissiat Dam on the Rhône River is expected to be completed, and it will be able to supply an enormous quantity of hydroelectric power. Most of the aluminum is now shipped to Germany or used in France to produce war equipment for Germany. The Groupement de Repartition de la Bauxite was recently founded in France by Pechiney, Ugine, Union des Bauxites, Bauxites de France, Bauxites du Midi, Ciments de Lafarge et du Teil, and Aluminium du Sud-Ouest to undertake the distribution and control the utilization of all bauxite. Axis European production of aluminum depends partly on France, not only for metal but for bauxite and alumina, which are shipped to Germany, Switzerland, Italy, Norway, and other countries for processing. Southern France is reported to be shipping bauxite to Italy at the rate of 250 truckloads daily.

Germany.—German and Austrian aluminum production in 1941 has been estimated at 300,000 to 350,000 tons. Greater production is believed to have been retarded by Germany's lack of hydroelectric power, the heavy demand by other industries for steam power, the lack of miners to extract more coal, bombings by the British Royal Air Force, and inadequate transportation facilities. Although most of the aluminum output is derived from bauxite mined in Hungary, France, and the Balkan countries, two German plants (Lautawerk and Lippe or Lünen) are reported jointly producing 50,000 tons of alumina annually from clay, and two other plants (Lautawerk and Horrem near Cologne, owned by Lurgie Thermie G. m. b. H. of Metallgesellschaft A. G.) are making virtually all of the aluminum-silicon or Silumin alloy (12 percent silicon) needed by direct thermal reduction of clay with carbon. Germany greatly increased its supply of aluminum in its conquest of other European countries, particularly in the acquisition of France and Norway. Three new aluminum plants with a total capacity of 50,000 tons are reported under construction in Austria-two on the Inn River below the Innwerke plant and the third on the Enns River. It is reported unofficially that Germany obtained 38,000 tons of bauxite and 10,000 tons of aluminum from Unoccupied France between January 15 and March 1, 1941. June 1, 1941, the price of aluminum was reduced from 133 reichsmarks to 127 per 100 kilograms. The import duty on alumina (4 reichsmarks per 100 kilograms) for aluminum production was removed March

Gold Coast.—A bauxite mine was opened in the Colony about 50 miles northwest of Dunkwa, we nee the ore is hauled by truck to

Dunkwa and by rail to Takoradi.

Honduras.—Unconfirmed reports mention the occurrence of bauxite

in southern Honduras.

Hungary.—The production capacity of aluminum plants owned by Manfried Weiss and the Kohlenbergbau, A. G., was expanded substantially in 1941. The Ungarische Bauxitgruben, A. G., increased its production of bauxite about 50 percent in 1941 over that of 1940 (647,000 tons) and plans to build an alumina (20,000 tons) and aluminum reduction (10,000 tons) works at Ajka, near Veszprem, as well as an aluminum-fabricating plant at Stuhlweissenberg. During the latter part of 1941 the Hungarian Price Commissariat ordered an increase in taxes on 99.3- to 99.5-percent aluminum and on semifinished materials from Pengos 27 to Pengos 49 per 10 pounds. The maximum selling price for raw aluminum, including taxes, was increased from Pengos 280-297 to Pengos 302-310 per 10 pounds.

India, British.—The new 20,000-ton alumina and 3,000-ton reduction plant of the Aluminium Corporation of India, Ltd., at Asansol, Bengal, started operations early in 1941. Indian bauxite is used in the alumina plant, and Söderberg electrodes are employed in the reduction works. The Aluminium Production Co. of India, Ltd., still plans to construct aluminum-producing facilities at Alwaye, North The Development Department of the Government of Madras reveals that many million tons of workable bauxite of various grades occur in the Shevaroy Hills about 207 miles southwest of

Madras.

^{**} Haenni, P. M., Light Alloys in Modern Warfare: Canadian Metals and Met. Ind., vol. 5, No. 2, February 1942, pp. 36-42.

Italy.—According to Giornale d'Italia, the Italian production of aluminum would reach 50,000 metric tons in 1941, 60,000 in 1942, and 100,000 by 1943 and 1944. Production in 1941, by plants, is estimated as follows: Porto Marghera (Venice), 20,000 tons; Bolzano, 15,000 tons; Mori, 10,000 tons; and Borgofranco, 5,000 tons. In May 1941 Trafilerie e Punterie di Cogoleto was authorized to enlarge its Cogoleto fabricating plant. Società Edison (Milan), a power company, received permission to build a reduction plant with an annual capacity of 10,000 tons. Although the aluminum industry is still expanding, the shortage of electric power has caused great difficulties, and Italy exports some of its alumina to Germany in payment for necessary machinery.

Japan.-Few official data on the Japanese aluminum industry have been available since 1937. The conquest of Malaya and the fall of Singapore made available to Japan large reserves of high-grade bauxite on Bintan Island and in Johore, and Japanese industrial concerns are reported to have started immediate development of the deposits. The Aluminium Co. of the South Seas is reported working bauxite deposits on Palao Island, where reserves are reputed to total 10,000,000 tons. Early in 1941 the Japanese Ministry of Industry placed Yen 30,000,000 at the disposal of the aluminum industry for developing bauxite deposits in Northern China and Indochina and on Panope Island. Expansion of the Japanese aluminum industry was urged by the Government in 1937, and by the end of 1941 Japan is believed to have had aluminum-producing facilities totaling about 140,000 to 150,000 metric tons. Aluminum production in 1941 is estimated at 90,000 tons, but some observers place output as high as 150,000 tons. In 1941 the aluminum industry was consolidated further by the Government. The Toyo Aluminium Co., belonging to the Mitsui group, was amalgamated with the Sei-Sen Chemical Co., a subsidiary of the Japan Soda Co.

Following is a list of the principal Japanese aluminum companies, with some of their plant locations and annual capacities (in metric

tons):

Company:	Alumina	Aluminum
Japan Light Metals Co_	Shimizu, Shizuoka Pref. (120,000).	Kambara, Shizuoka Pref. (27,000 to 36,000).
		Niigata, Niigata Pref. (18,000 to 27,000).
Industry Co.	Koyasu, Nagano Pref	Omachi, Nagano Pref. (20.000).
Japan Aluminium Co	Takao, Taiwan (20,000)_	Takao, Taiwan (10,000).
		Karenko, Taiwan (2,000 to 6,000).
Manchuria Light Met- als Mfg. Co.	Fushun, Manchuria (25,000 to 45,000).	Fushun, Manchuria (12,000).
		Antung, Manchuria (9,000).
Reduction Co.	land, Ehime Pref. (18.000).	Kaneko-Mura, Niigun, Shikoku Island; Ehime Pref (9 000)
Japan Soda Co	Takaoka, Toyama Pref	Takaoka, Toyama Pref. (16,000 to 20,000).
Korea Nitrogen Ferti- lizer Co.	Konan, Chosen	Konan, Chosen (6,000).
Japan-Manchuria Co	Iwase, Toyama Pref	Koriyama, Fukushima Pref. (5,000).
nimium Co.	Fukuoka Pref.	Takaoka, Toyama Pref.
Another alumina plant is	s said to be located at Ku	ırosaki, Kyushu Island.

Netherlands Indies.—The N. V. Billiton Maatschappij produced 171,821 metric tons of bauxite on the Island of Bintan in 1941. Of the 165,571 tons shipped, 130,871 tons went to Japan, 25,000 to Australia, and 9,700 to the United States. Plans for the erection of hydroelectric, alumina, and aluminum plants in Sumatra were delayed in 1941 and later were upset by Japanese occupation of the Indies.

Norway.—A/S Nordag, registered on June 26, 1941, owned by Hansa Leichtmetall A. G., Berlin, and directed by Field Marshal Hermann Goering, has largely completed plans and has started preliminary work on aluminum plants and power stations at Sunndalsoyra, Ose, Tyin, Tyssedal, Sauda, Glomfjord, Eitreheim, and Lassedal. Before the Germans entered the Norwegian aluminum industry the reduction plants had about the following rated capacities: Tyssedal (Hardangerfjord), 6,000 tons; Haugvik (Glomfjord), 8,000; Hoyanger, 9,000; Eydehavn, 10,000; Vigeland, 4,000; and Stangfjord, 1,000. Apparently plans have been made to extend capacity at Glomfjord to 23,000 tons, commencing March 1, 1942; at Eitreheim to 8,000 tons, beginning May 1, 1942; and at Tyin to 22,000 tons, starting September 1, 1942. Alumina amounting to 60,000 tons annually is to be produced at Sauda (Rogalan), and amounting to 50,000 tons at Ordalstangen, Tyin. Work at Ordalstangen is scheduled to start July 1, 1942. Plans for the other sites are not completed. Another company involved in the expansion of Norwegian aluminum production to 130,000 tons annually is Nordisk Lettmetal A/S, controlled by I. G. Farbenindustrie. One of its reduction works will be at Skienfjord, in the neighborhood of the Norsk Hydro power installation at Heroya. This plant, however, will be supplied with power from a new hydroelectric plant to be built at Rjukan. The Norwegian Nitrogen Co. is said to be working in conjunction with the German Apparently the alumina is to be derived from bauxite obtained by rail and boat from Unoccupied France, Hungary, Yugoslavia, and Greece and from domestic labradorite.

Southern Rhodesia.—The manufacture of aluminum sulfate in South Africa by African Explosives & Industries, Ltd., was made possible by the discovery of a high-grade deposit of bauxite near Penhalonga, Southern Rhodesia. The deposit is operated by the Wankie Colliery Co., Ltd., which experimented with the ore but found it unsuitable for the manufacture of refractory brick. A 5-year contract was then signed for supplying the Umbogintuini and Modderfontein chemical plants of African Explosives & Industries, Ltd. The ore in most places is overlain by not more than 20 feet of overburden and is worked by open-cut methods. From the drying plant the ore is bagged and shipped to Umtali whence it must be transported by truck, oxen, and wagon. The ore averages about 62 percent Al₂O₃, 6 percent SiO₂, 1 percent Fe₂O₃, 8 percent insolubles, and 1 percent moisture.

Spain.—Owing to the shortage of copper in Spain, aluminum production is to be increased and domestic bauxite deposits will be exploited. Mining has been carried on at intervals at Gijon, Asturias, and in the southwestern part of Barcelona, but the ore has heretofore been considered too low in grade and unsuitable for metallurgical

^{*} South African Mining and Engineering Journal, The Penhalonga Bauxite Deposit: Vol. 52, No. 25 August 16, 1941, pp. 739-742.

purposes. A second aluminum reduction plant, of 8,000 tons annual capacity, is being built and eventually will operate on domestic raw material. The old reduction works at Sabinanigo is producing at a

rate of 700 to 1,200 tons of aluminum annually.

Surinam.—Virtually all of the 1,180,000 long tons of bauxite exported from Surinam (Netherlands Guiana) in 1941 by the Surinaamsche Bauxite Maatschappij (subsidiary of Aluminum Co. of America) went to the United States. American troops occupied Surinam in November 1941, partly to protect the valuable bauxite deposits developed in the Moengo and Para Creek districts. N. V. Billiton Maatschappij has completed most of its mining installations and plans to ship bauxite from its deposits in the Para Creek district (near Paranam) to the Reynolds Metals Co. in the summer of 1942. The bauxite reserves of Surinam are reported adequate to last many years, and visible ore reserves of the Moengo Hill and Rorak regions alone have been estimated at 10,000,000 tons and 8,000,000 tons, respectively (ranging from 54 to 64 percent in Al₂O₃ content).

Sweden.—During the first half of 1941, Sweden was able to maintain an almost constant stock of aluminum, but in the latter half supplies were cut drastically. As a result, Svenska Aloxidverken A. B., a subsidiary of A. B. Svenska Aluminium Kompaniet, was formed to manage two projected new plants. Construction of a plant at Kubi-kenborg, near Sundsvall, northern Sweden, capable of producing 6,000 tons of alumina annually from Boliden and alusite, has been started and will be completed in the spring of 1942. A reduction plant is to be built at the same place with an annual capacity of 1,100 tons of metal. This plant will require about 2,000 tons of the locally produced alumina, and the remaining 4,000 tons will be shipped to the Mansbo reduction plant. Restrictions were placed on the use of aluminum in

April 1941.

U. S. S. R.—Two of the three Soviet aluminum reduction plants (Dnepr with 35,000 tons capacity and Volkhov with 15,000 tons capacity) probably were destroyed before Germany invaded or attacked these two areas. Equipment from the Dnepr plant is believed to have been moved to the Kamensk or to another plant site in the The previously announced annual capacity of the Kamensk

works was 50,000 tons.

United Kingdom.—Although small additional aluminum-producing facilities have been completed, the United Kingdom depends largely

on Canada for its metal requirements.

Yugoslavia.—Output of bauxite in Croatia totaled 211,000 metric tons in 1941 compared with 271,000 tons in 1940. Croatia now possesses most of the Dalmatian-Hercegovinian mines, but the alumina and aluminum works at Lozovac are in Italian hands. Italy concluded an agreement with Croatia whereby the aluminum works at Lozovac will deliver a large part of its metal output to Croatia in return for bauxite. Construction of a 30,000-ton aluminum plant in Croatia is under consideration. A new bauxite deposit has been discovered near Brijeg in Slovakia.

MERCURY

By H. M. MEYER AND A. W. MITCHELL 1

SUMMARY OUTLINE

	Page	l de la companya del companya de la companya del companya de la co	Page
Summary	685	Prices	. 689
Salient statistics	686	Consumption	. 690
Agreement with Mexican Government	687	Stocks	. 691
Import restrictions	687	Review by States	. 693
Conservation in use	687	Foreign trade	. 697
Price control	687	World production	. 691
Stock-pile purchases	688		
Bureau of Mines and Geological Survey			
activities	688	I and the second	

SUMMARY

The Axis Powers were favored with supplies of mercury at the outset of the present World War, because Italy and Spain, the principal world sources, were closely associated with them. The development of alternate sources of supply to cover their requirements, therefore, was a problem their opponents had to solve. Since the war began, however, production in Western Hemisphere countries has increased until, for a time at least, the United Nations are relatively self-sufficient in this commodity for all essential purposes. There can be little question that the record-breaking high prices for mercury played their part in this outstanding achievement.

In 1939 the United States produced 18,633 flasks, Mexico 7,376 flasks, and Canada 6 flasks. By 1941 the production in the United States had reached 44,921 flasks and in Mexico 23,137 flasks. Data for Canada cannot be published, but it is well-known that a noteworthy contributor to world supplies has been developed and is pro-

ducing large quantities.

Consumption in the United States during 1941 was 67 percent above that in 1940 and indicated that a new high record rate was established. The sharp upward trend in domestic production during 1940 continued in 1941 with diminished vigor; supplies from United States mines just sufficed to satisfy increased domestic needs but allowed no surplus for exportation. Export restrictions imposed in 1940 were effective in preventing needed metal from leaving the country, and an agreement reached in July 1941 assured retention of Mexican production in the Western Hemisphere. At the end of the year, supplies and requirements appeared to balance, with some metal available for stockpiling. Nevertheless, the probability of increased demands for war purposes led the Office of Production Management to consider means of reducing consumption of mercury in uses designated as nonessential.

¹ Monthly data on production, consumption, and stocks compiled by D. A. Wyatt.

These considerations eventuated in Conservation Order M-78, issued in January 1942 and discussed in more detail later in this report.

Domestic production of mercury amounted to 44,921 flusks in 1941 and was 19 percent above the total for 1940, which itself was more than double the rate that had obtained for a number of years immediately preceding. The 1940 and 1941 totals represent succes-

sive peaks in the annual production recorded since 1883.

General imports of mercury totaled 7,478 flasks in 1941 compared with 1,861 flasks in 1940; of the 1941 total, none was entered in the first 7 months, 750 flasks in August, 735 in September, none in October, 1,725 in November, and 4,268 in December. Immediately after the agreement with Mexico in July 1941, exports and production figures for that country dropped sharply. By the end of 1941, however, imports into the United States were exceeding the monthly rate of production in Mexico, indicating that any accumulated stocks in that

country may have been in process of dissolution.

Exports dropped from 9,617 flasks in 1940 to 2,590 flasks in 1941, under the restrictions placed thereon in July 1940. The United Kingdom was the principal destination of mercury exported from the United States in both 1940 and 1941 but in 1941 took only a small fraction of the total taken in 1940—598 flasks compared with 5,178 flasks. Japan received no mercury from the United States in 1941 compared with 1,598 flasks in 1940. It is significant that late in 1941 the United States received 210 flasks of mercury from Canada, now the only source of consequence in the British Empire, but shipped reduced quantities to the United Kingdom. This condition lends weight to the suggestion that the British need mercury products more seriously than they do the metal itself.

Despite the sharp upturn in domestic mercury consumption, the average quoted price in 1941 advanced somewhat less than 5 percent over that in 1940. The 1940 average had been the highest on record, but a new record was established in 1941. Further price gains in 1941 were discouraged by warnings issued twice during the year by the Office of Price Administration. Although the first warning was in March 1941, action with regard to the establishment of a price ceiling was delayed until February 1942. When action was taken, ample supplies for all foreseeable war needs were believed by the price agency to have been provided for and not to have been endangered

by the price move.

Salient statistics of the mercury industry in the United States, 1937-41
[Flasks of 76 pounds]

	1937	1938	1939	1940	1941
Production flasks Number of producing mines Average price per flask:	16, 508	17, 991	18, 633	37, 777	44, 921
	101	91	107	159	197
New York London Imports for consumption:	\$90, 18	\$75, 47	\$103, 94	\$176.87	\$185.02
	\$69, 65	\$66, 92	\$88, 26	\$201.10	\$194.20
Pounds Equivalent flasks Exports:	1, 437, 712	179, 522	265, 944	12, 971	588, 228
	18, 917	2, 362	3, 499	171	7, 740
Pounds Equivalent flasks Apparent new supply flasks	34, 485	54, 161	91, 789	730, 877	196, 837
	454	713	1, 208	9, 617	2, 590
	35, 000	19, 600	20, 900	1 2 26, 800	1 44, 800

¹ Actual consumption as reported by consumers.

^{*} Revised figures.

MERCURY 687

Agreement with Mexican Government.—During July 1941 an agreement was reached with the Mexican Government whereby the United States was to obtain surplus production of certain materials, including mercury, for 18 months. Under the terms of the agreement, the United States was obliged to acquire all metal not sold through ordinary commercial channels in countries in the Western Hemisphere that had export restrictions similar to those that had recently been put into effect in Mexico; the obligation applied to quantities up to 125 percent of total exports of mercury from Mexico during the 18 months ended July 1, 1941. Purchases are being made for the United States by the Metals Reserve Co. The agreement provides for changing prices based upon quotations in the United States regarded by the United States Government as technically authoritative.

This agreement not only guaranteed the United States large additional supplies of strategic commodities but denied these commodities to an enemy country. Japan received 93 percent of all the mercury shipped from Mexico in the first 7 months of 1941, before the agree-

ment was signed, but received none officially after August.

Import restrictions.—General Import Order M-63, which went into effect at 12:01 a.m., December 28, 1941, provides that unless otherwise authorized by the Office of Production Management (now War Production Board) all future contracts for imports of 13 strategic materials, including mercury, will be handled by the Metals Reserve Co. An amendment issued in 1942 added mercury-bearing ores and

concentrates to the commodities covered by the order.

Conservation in use.—The need to provide enough mercury for all possible war uses led the Office of Production Management to study the problem of reducing or discontinuing consumption of mercury in uses considered nonessential. Its study resulted in Conservation Order M-78, issued January 23, 1942. This order restricted the use of mercury for carroting hat fur, for marine antifouling paint, thermometers (except industrial and scientific), treatment of green lumber (except Sitka spruce), turf fungicides, vermilion, wall switches for nonindustrial use, and wood preservatives from January 15 to March 31 to 50 percent of such use in a selected base period, described later. Beginning April 1, 1942, all use for the purposes mentioned was to be discontinued, unless otherwise specifically authorized by the Director Consumers of mercury for the following purposes were ordered to restrict their use to the percentages given, as follows: Fluorescent lamps, 100 percent; health supplies, 100; mercuric fulminate for commercial blasting caps, 125; mercuric fulminate for ammunition, 100; and thermometers (industrial and scientific), 100 percent. Other consumers were restricted to 80 percent. period" meant, at the option of the manufacturer, either (1) the corresponding quarterly period in 1940 or (2) the first calendar quarter of 1941, provided that the same option should be used throughout the calendar year. Exceptions from the order primarily covered materials for delivery under war and Lend-Lease contracts.

Price control.—The price for mercury was subjected to ceiling limitations in February 1942, following a prolonged study during which there was official warning more than once that the price was too high. Price Schedule 93 of the Office of Price Administration provided that the maximum base price for California, Oregon, Washington, Idaho, Utah, Nevada, or Arizona was \$191 per 76-pound flask, f. o. b. point

of shipment; for Texas and Arkansas it was \$193, f. o. b. point of shipment; for mercury produced outside the continental United States and Mexico and entering the United States through Pacific coast ports of entry, it was \$191, and for Mexico it was \$193, f. o. b. freight station in the United States at or nearest the point on the boundary at which the shipment enters the United States (duty, if any, included).

Other sections of the order placed limitations on the dealers',

brokers', and agents' charges.

Stock-pile purchases.—Mercury produced in the United States was added to the stock pile of the Procurement Division of the Treasury Department in 1941. In the latter part of the year, metal from Mexico began to accumulate for the credit of the Metals Reserve Co. Stock-pile gains in 1942 will comprise metal obtained from other Western Hemisphere sources, as well as from domestic mines and Mexico.

Bureau of Mines and Geological Survey activities.—The Bureau of Mines explored mercury deposits in six scattered districts in Oregon that revealed about 150,000 tons of low-grade ore averaging 1.6 pounds of mercury per ton. In addition, 200,000 tons of possible ore of similar grade may be expected upon the basis of reasonable geological deductions. Low-grade deposits in California were explored by test pitting and rotary bucket, which outlined over 100,000 tons of ore averaging 1.6 pounds per ton. In Valley County, Idaho, diamond drilling has indicated over 400,000 tons averaging 2.7 pounds of mercury per ton, and very recently one diamond-drill hole penetrated 34 feet (24 feet, true thickness) averaging over 11 pounds of mercury The importance of the higher-grade strike cannot be gaged until surrounding holes have been drilled. Exploration has been started on the old mine at Black Butte, Oreg., in the hope that the virtually depleted reserves there might be augmented. Drilling along the New Idria fault was begun late in 1941. This drilling is in the

nature of wildcatting upon the basis of geological evidence.

The Bureau's engineers investigated seven additional mercury deposits in Nevada, California, Idaho, and Oregon, which (it has been estimated) might contain 850,000 tons of ore averaging 2.3 pounds of mercury per ton. This estimate, of course, is speculative and will

have to be verified by further exploration.

During 1941 the Geological Survey issued reports on the mercury deposits of San Luis Obispo County and southwestern Monterey County, Calif.; Steens and Pueblo Mountains, southern Oregon; 3 and adjacent parts of Nevada, California, and Oregon.4 Field work was completed and reports were in preparation on the Pike County (Ark.) district; the Opalite district, Malheur County, Oreg., and Humboldt County, Nev.; the Weiser district, southwestern Idaho; and the Morton district, Lewis County, Wash. In Nevada, field work also was completed in the Wildhorse district, Lander County, and the Antelope Springs district, Pershing County; and work was in progress in the Ivanhoe and Mount Tobin districts in Elko and Pershing Counties, respectively. In addition, several smaller districts and scattered prospects in Nevada were examined and mapped

² Eckel, E. B., Yates, R. G., and Granger, A. E., Quicksilver Deposits in San Luis Obispo County and Southwestern Monterey County, Calif.: Geol. Survey Bull. 922-R, 1941, pp. 515-580.

² Ross, C. P., Quicksilver Deposits in the Steens and Pueblo Mountains, Southern Oregon: Geol. Survey Bull. 931-J. 1941, pp. 227-258.

⁴ Ross, C. P., Some Quicksilver Prospects in Adjacent Parts of Nevada, California, and Oregon: Geol. Survey Bull. 931-B, 1941, pp. 23-37.

MERCURY 689

in cooperation with the Bureau of Mines in a comprehensive sampling project, which was continued into 1942. In California, field work was completed in eight separate areas: The Coso district, Inyo County; New Idria district, San Benito County; Stayton district, San Benito and Merced Counties; Parkfield district, Monterey County; Knoxville district, Napa, Yolo, and Lake Counties; southeastern Mayacmas district, Napa and Lake Counties; Panoche district, San Benito County; and Canon del Puerto (Phoenix) district, Stanislaus County. Some preliminary work was done in the New Almaden district, Santa Clara County, and many small deposits and prospects throughout the State were visited in a search for promising areas in which to do additional work as well as to bring earlier information up to date. At the end of the year, field work was in progress in California in the northwestern part of the Mayacmas district, Lake and Colusa Counties, and in the Patricks Creek district, Del Norte County. In the New Idria district, an exploratory drilling program was begun by the Bureau of Mines, with geologic guidance by the Geological Survey.

In southwestern Alaska, field work was completed on the mercury

deposits of Sleitmut in the Georgetown district.

In Mexico, work was in progress on cinnabar-bearing placers near Guadalcazar in San Luis Potosi, and early in 1942 a detailed study was begun in the new mercury area near Fresnillo, Zacatecas.

The Bureau of Mines recently issued two publications 5 that discuss

hazards in mercury mining.

PRICES

Quoted prices for mercury trended upward throughout 1941 and twice during the year were the target of warnings issued by the Office of Price Administration. The average monthly price in New York was \$165.85 a flask in January 1941 and \$199.65 in December. Only in 2 previous months—January and February 1916—had monthly average prices been higher than in December 1941; and the annual average of \$185.02 for 1941 had never been exceeded. Despite the fact that prices had advanced from \$84.41 in August 1939—the month before declaration of war in Europe—and the threats mentioned above, price-ceiling action was withheld until February 1942. Probably the delay was due to the hesitancy of the price agency to take any action that might seriously disturb the maintenance of a favorable balance between supplies and requirements for this metal. By the time action was taken, substantial quantities of new supplies were arriving from Mexico, and steps to conserve the use of mercury had been taken by the Office of Production Management.

Early in 1940 the cartel price for Italian and Spanish mercury was \$200 a flask, f. o. b. ports of origin; it advanced to \$250 a flask in

December, where it remained throughout 1941.

The price for mercury in London was £48 a bottle (flask) in January 1941. In May a new control order was issued which called for maximum prices of £48 15s. a bottle for quantities of over 1 and less than 11 bottles and of £48 for larger quantities, ex-sellers' premises in both cases. Smaller lots and redistilled grades were entitled to higher prices. The Ministry of Supply also announced that it was

Davenport, Sara J., and Harrington, D., Mercury Poisoning as a Mining Hazard: Bureau of Mines Inf. Circ. 7180, 1941, 27 pp.
Randall, Merle, and Humphrey, H. B., New Process for Controlling Mercury Vapor: Bureau of Mines Inf. Circ. 7206, 1942, 10 pp.

prepared to sell mercury to approved buyers at £47 15s., ex-warehouse in the United Kingdom

Average monthly prices per flask (76 pounds) of mercury at New York and London and excess of New York price over London price, 1939-41

		1939			1940		1941			
Month	New York ¹	London ²	Excess of New York over London	New York ¹	London 2	Excess of New York over London	New York ¹	London 2	Excess of New York over London	
January February March April May June July August September October	\$77. 44 85. 23 87. 28 90. 80 86. 77 86. 62 86. 96 84. 41 140. 00 145. 60	\$70. 97 75. 21 77. 81 82. 40 79. 87 76. 09 76. 21 76. 08 90. 78 108. 00	\$6. 47 10. 02 9. 47 8. 40 6. 90 10. 53 10. 75 8. 33 49. 22 37. 60	\$156. 96 178. 00 180. 92 173. 54 181. 54 197. 36 194. 42 184. 11 173. 33 168. 85	\$169. 50 207. 00 207. 00 181. 32 168. 34 189. 44 207. 36 216. 84 219. 86 219. 78	3 \$12. 54 3 29. 00 3 26. 08 3 7. 78 13. 20 7. 92 3 12. 94 3 32. 73 3 46. 53 3 50. 93	\$165. 85 170. 18 177. 69 180. 08 180. 00 183. 92 188. 58 192. 00 192. 44 193. 62	\$193. 64 193. 43 193. 53 193. 19 194. 50 194. 52 194. 55 194. 53 194. 58 194. 59	3 \$27. 79 \$ 23. 25 \$ 15. 84 \$ 13. 11 \$ 14. 50 \$ 10. 60 \$ 5. 98 \$ 2. 53 \$ 2. 3	
November December	134. 98 141. 20	109. 75 136. 00	25. 23 5. 20	168. 39 164. 96	219. 94 206. 79	³ 51. 55 ³ 41. 83	196. 27 199. 65	194. 65 194. 69	1. 62 4. 96	
Average	103. 94	88. 26	15. 68	176. 87	201. 10	3 24. 23	185. 02	194. 20	3 9. 18	

CONSUMPTION

The Bureau of Mines began to compile monthly data on consumption of mercury at the outset of the present World War-September Before that time, supplies of metal available for use were calculated by the conventional method of merely adding production to imports and deducting exports, if no stock figures were available. Figures for 5 years are shown in the following table, in which apparent new supply figures are given for 1937 to 1939 and consumption data for 1940 and 1941.

There seems little reason to question the indication that in 1941 mercury was consumed at a new high-record level. During the period of highest domestic production, 1877 and the years immediately preceding and succeeding, metal also was exported at a very high rate. Export figures before 1880, however, are not entirely satisfactory, and precise comparisons are impossible.

Supply of mercury in the United States, 1937-41, in flasks of 76 pounds

Year	Production	Imports for consump- tion	Exports	Apparent total new supply
1937	16, 508	18, 917	454	35, 000
1938	17, 991	2, 362	713	19, 600
1939	18, 633	3, 499	1, 208	20, 900
1940	37, 777	171	9, 617	1 2 26, 800
1941	44, 921	7, 740	2, 590	1 44, 800

Actual consumption as reported by consumers.

¹ Engineering and Mining Journal, New York.

² Mining Journal (London) prices in terms of pounds sterling converted to American money by using average rates of exchange recorded by the Federal Reserve Board, through August 1939 and from April 1940 to the end of that year; during the intervening period prices were quoted in American money. Official prices, established early in May 1941, were £47 15s. to £48 15s. per flask beyond the end of the year.

³ London excess.

² Revised figures.

Requests for consumption data were revised in the middle of 1941 in order to obtain more detailed figures. Statistics for the first and second halves of the year, as reported to the Bureau of Mines, follow.

Mercury consumed in the United States in 1941, in flasks of 76 pounds

Use	Flasks	Use	Flasks
Drugs and chemicalsFulminate	13, 558 939	Felt manufactureOther	68 1, 13
Electrical apparatus. Industrial and control instruments Vermilion	2, 317 1, 456 712	Total	1 21, 60
10	LY TO D	ECEMBER	
Ĵζ	LY TO D	ECEMBER	
	2, 679	As a catalyst or in electrolytic prepara-	
Pharmaceuticals Dental preparations Chemical preparations 2	2, 679 609 4, 059	As a catalyst or in electrolytic prepara- tion of— Chlorine and caustic soda	18 82
Pharmaceuticals. Dental preparations. Chemical preparations ² . Agriculture.	2, 679 609 4, 059 1, 968 1, 601	As a catalyst or in electrolytic prepara- tion of— Chlorine and caustic soda Acetic acid	
Pharmaceuticals Dental preparations Chemical preparations ² Agriculture Fulminate Electrical apparatus Industrial and control instruments	2, 679 609 4, 059 1, 968 1, 601 2, 379 2, 175	As a catalyst or in electrolytic prepara- tion of— Chlorine and caustic soda	1, 2 2
Pharmaceuticals. Dental preparations	2, 679 609 4, 059 1, 968 1, 601 2, 379 2, 175 510 680	As a catalyst or in electrolytic prepara- tion of— Chlorine and caustic soda Acetic acid	1, 2

¹ Items are upon a partial coverage basis and do not add to total, which has been increased to cover total consumption.

consumption.

2 Largely for munitions other than fulminate.

3 Use of virgin metal in the preparation of redistilled. The breaking down of this quantity would add substantially to industrial and control instruments and lesser amounts to dental preparations, electrical apparatus, and laboratory, pharmaceutical, and other uses.

STOCKS

Inventories of mercury in the hands of consumers and dealers amounted to about 12,400 flasks at the end of 1941 compared with 14,100 flasks at the end of 1940. These stocks do not include metal held by the Metals Reserve Co. and the Procurement Division of the Treasury Department and are largely exclusive of metal in the hands of companies that consume redistilled mercury only. Stocks held by the last group totaled 1,600 flasks at the end of 1941, but data are not available for the end of 1940. Stocks at mines that reported monthly to the Bureau of Mines aggregated 439 flasks compared with 607 flasks at the end of 1940.

REVIEW BY STATES

Production in the United States in 1941 rose 19 percent over that in 1940, which, in turn, was double the output in 1939. Largest percentage gains were made in Texas, Arkansas, and California, with Arizona also advancing. Less metal was recovered in Nevada, Alaska, Idaho, Washington, and Utah. San Benito and Lake Counties, Calif., ranked first and second as mercury-producing counties, followed by Douglas County, Oreg., and Sonoma County, Calif. New Idria and Bonanza were the two largest producing mines. The principal producing mines in 1941 were as follows:

Arizona—Gila County, Ord group; Maricopa County, Pine Mountain mine. Arkansas—Clark County, Caddo mine; Pike County, Parker Hill and Superior mines. California—Contra Costa County, Mount Diablo mine; Lake County, Great Western, Mirabel, and Sulphur Bank mines; Napa County, Oat Hill and Knoxville mines; San Benito County, New Idria (including San Carlos) mine; San Luis Obispo County, Oceanic and Klau mines; Santa Barbara County, Falcon (Santa Ynez) mine; Santa Clara County, New Almaden mine and dumps; Sonoma County, Contact, Great Eastern, and Mount Jackson mines; Yolo County, Reed mine.

Idaho-Washington County, Idaho-Almaden mine.

Nevada—Humboldt County, Blue Bird, Blue Can, and Cordero mines; Pershing County, Mount Tobin mine.

Oregon—Douglas County, Bonanza mine; Jefferson County, Horse Heaven

mine; Malheur County, Bretz and Opalite mines.

Texas—Brewster County, Chisos and Big Bend mines; Presidio County,

r resno mine.

These 33 mines produced 85 percent of the United States total. The 29 most important mines produced 86 percent of the total in 1940 and 16 produced 88 percent in 1939.

Mercury produced in the United States, 1938-41, by States

Year and State	Pro- duc- ing mines	Flasks of 76 pounds	Value 1	Year and State	Pro- duc- ing mines	Flasks of 76 pounds	Value 1
1938: California Nevada Oregon Alaska, Arkansas, Texas, and Washington	52 17 13	12, 277 336 4, 610 768	\$926, 545 25, 358 347, 917 57, 961	1940—Continued. Arkansas. California. Nevada. Oregon Utah Idaho, Texas. and Washington	10 70 42 23 1	1, 159 18, 629 5, 924 9, 043 53 2, 067	\$204, 99; 3, 294, 91; 1, 047, 77; 1, 599, 43; 9, 374
1939:	91	17, 991	1, 357, 781		159	37, 777	6, 681, 61
Arkansas California Nevada. Oregon Arizona, Idaho, and Texas.	5 59 25 14	364 11, 127 828 4, 592 1, 722	37, 834 1, 156, 540 86, 062 477, 293 178, 985	1941: Arizona Arkansas California Nevada Oregon Utah	5 19 87 54 21 1	873 2, 012 25, 714 4, 238 9, 032	161, 522 372, 260 4, 757, 604 784, 118 1, 671, 101 3, 518
1940: Alaska	107	18, 633	1, 936, 714 28, 653	Alaska, Idaho, Texas, and Wash- ington	10	3, 033	561, 16
Arizona	. 6	740	130, 884		197	44, 921	8, 311, 28

¹ Value calculated at average price at New York.

Alaska.—Mellick & Halverson produced mercury at the Red Devil mine during 1941 in a 1½-ton retort. The retort was idle for the winter, and the operators reported that a 30-ton Allis-Chalmers rotary was on the ground ready for installation. Two small lots of cinnabar were shipped to the United States for treatment.

Arizona.—Increased activity in Arizona carried the 1941 mercury production to a new peak for recent years. The output of 873 flasks was recovered largely at the Pine Mountain mine, Ord group, and Sunflower mine, as in 1940; smaller amounts came from two other operations. Productive operations are believed to have been confined

to Gila and Maricopa Counties.

Arkansas.—A record-breaking number of properties took part in the production of an unprecedented quantity of mercury in 1941—19 mines having contributed 2,012 flasks. The mines are in Pike and Clark Counties. Many of the operations were very small, as is indicated by the fact that six mines supplied 1,777 flasks of the 1941

MERCURY 693

total. Large producers included the Caddo, Gap Ridge, Parker Hill, Superior, Big Six, and U. S. Mercury. The Mid-Continent mine, one of the larger producers in the past, was idle at the end of 1941. California.—The supremacy of California as a mercury-producing

California.—The supremacy of California as a mercury-producing State has never been challenged. It led by a substantial margin again in 1941, with 25,714 flasks, representing 57 percent of the

national total.

Sixteen counties contributed the total for the State; chief among them, in order of importance in 1941, were San Benito, Lake, Sonoma, Santa Clara, San Luis Obispo, and Napa. Their output ranged from over 6,000 flasks to somewhat less than 2,000. In these counties, properties that have been supplying large amounts of metal in recent years—New Idria, Sulphur Bank, Mirabel, Great Western, Mount Jackson, New Almaden (mine and dumps), Klau, Oceanic, Oat Hill, and Knoxville—continued to stand out as large contributors. Other well-known mines in these counties that joined the leading producing properties in 1941 are the Great Eastern and Contact. Large producers in other counties include the Mount Diablo mine in Contra Costa County and the Reed in Yolo County.

The Manzarita and Dewey mines in Colusa County were active in 1941. New concentrating equipment was being installed at Manzanita

at the end of the year.

In Contra Costa County the Bradley Mining Co. treated 19,201 tons of ore in its 50-ton Gould rotary at the Mount Diablo mine and produced 1,506 flasks of mercury.

Five mines in Fresno County were producing mercury in 1941, but

their total was small.

A small output of metal was recovered from dumps in Inyo County

and from two mines in Kings County.

Lake County ranked second only to San Benito in production of mercury in the United States during 1941. The Sulphur Bank mine dominated county output; an important amount also came from the Mirabel, followed by the Great Western and Abbott mines, and the Otto, Midway, and three others also were active. At the Sulphur Bank mine, 18,391 tons of ore were mined and treated in a 50-ton rotary kiln and 4,022 flasks of mercury were recovered. Western mine produced 8,148 tons, of which 6,600 were treated in a 20-ton Herreshoff furnace, yielding 356 flasks of metal. The plant The mine and plant are described was burned and rebuilt in 1941. in the January 1941 issue of Compressed Air Magazine. diamond drilling and the usual drifting and cross-cutting were reported at the Mirabel mine. Plans were made during the year for reopening the Helen and Red Elephant mines; a new 3- by 40-foot Gould rotary furnace has been installed at the latter.

Activity at the Red Hawk mine in Modoc County resulted in the output of a very small quantity of mercury before the lease was

abandoned.

A small quantity of metal was produced at the G. W. D. mine,

Monterey County, in 1941.

The Oat Hill, Knoxville, Oat Hill Extension, and Aetna mines all old, familiar names, ranked above other producing properties in Napa County in 1941. The only output from the Knoxville mine in 1940 was from dumps. The Oat Hill treated 24,537 tons of ore in an 80-ton Gould rotary furnace in 1941 and produced 1,044 flasks of mercury,

and the Knoxville treated 1,126 tons of ore and 7,190 tons of dump material in a 40-ton Gould rotary to recover 69 and 389 flasks, respectively. Zack Anderson milled 2,400 tons of ore and recovered 147 flasks in retorts. Aetna's production was made in a 50-ton rotary furnace. Other producing properties included the Toyon, Corona, Manhattan, Twin Peaks, Washington dumps, and several operations on James Creek. Late in 1941 or early in 1942 the Corona mine passed under control of the Twin Peaks Mining Co., which planned to develop a larger-tonnage operation there. This company reported installation of a 70-ton rotary kiln and Diesel electric plant at the Twin Peaks mine in 1941. The Aetna Extension mine, lying between the Oat Hill and Aetna, was taken over by Atkins, Kroll & Co., and production early in 1942 was anticipated. Equipping and development of the Bella Oakes mine were begun in January 1942, and production was scheduled to start 2 months later.

San Benito County led all other counties in the United States in mercury production in 1941. The New Idria mine, as usual, outranked by an enormous margin all other mines in the county and easily led all others in the State, maintaining its place as one of the two leading producers in the country. The Aurora, Wonder, Star Nos. 1 and 2, Stayton, Lea-Grant, Yturriarte, Loneoak, Panoche (Valley View), El Rey, and Clear Creek (including Andy Johnson and Fourth of July) mines also were productive in 1941. The Lea-Grant mine (Lily Berg, Goodall Estate, and Ortiz properties) produced 194 flasks in 1941 from 3,804 tons of ore treated in its new 60-ton Gould rotary

furnace.

The Klau mine was the outstanding producer in San Luis Obispo County, with a yield of 1,358 flasks from 14,047 tons of ore mined and treated; a new 70-ton Gould rotary furnace was installed in 1941 to supplement the 40-ton plant already in operation there, and a new shaft was being sunk to the 500-foot level. The Oceanic mine was second in importance; other producers were the Deer Trail, Little Bonanza, Buena Vista (Mahoney), Polar Star, Rinconada, and La Libertad.

Almost all of the output of Santa Barbara County came from the Red Rock and Falcon (Santa Ynez) mines. There are three rotary furnaces at the Falcon property, two of 30 tons capacity each and one of 50 tons. A newly installed Gould rotary was put into operation at the Red Rock mine. Press reports indicated that this plant was moved to California from the Blue Can mine in Humboldt County, Nev.

Activity at the famous New Almaden mine overshadowed all other operations in Santa Clara County during 1941; independent operations on the New Almaden dumps produced considerable metal. Other producers included the Guadalupe mine and several smaller operations.

The only mercury property known to have produced in Siskiyou County during 1941 is the Great Northern, where output was made

in a new 50-ton Nichols Herreshoff furnace.

The rise of Sonoma County to third place among the mercury-producing counties in 1941 was due largely to reopening of the Mount Jackson mine in 1940 and of the Great Eastern in 1941 and to increased production at the Contact. Development of the Great Eastern mine included installation of a new 100-ton Gould rotary furnace. This plant treated 13,528 tons of ore and recovered 503 flasks of mercury, and the 75-ton Mount Jackson plant treated 29,068 tons and produced

MERCURY 695

1,625 flasks. Outstanding among the other producing mines were the Cloverdale, Culver-Baer, and Star Springs. The Socrates, Prospect, and seven other properties yielded the remainder of the county output.

The Altoona and Shasta Lily mines were the only known producers in Trinity County during 1941. Altoona's output is made in a 50-ton

rotary.

A 50-ton rotary furnace was reported under construction at the

end of 1941 at the Adobe mine in Stanislaus County.

The Bradley Mining Co. produced and treated 3,145 tons of ore to recover 784 flasks of mercury at the Reed mine in Yolo County. A 10-ton rotary was in operation during 1941, and a new 50-ton plant was expected to be completed in February 1942. Some mercury was

produced from dump material at the Harrison.

Idaho.—Considerable exploratory work was carried on in Idaho during 1941, and two or three properties were reported to be on the verge of production at the close of the year. The Idaho-Almaden mine near Weiser was the only producing property, however, as in 1940 and 1939. A new Gould rotary of 100 tons rated capacity was installed at the Hermes mine in the Yellow Pine district, Valley County, by Bonanza Mines, Inc.; this property was obtained from the United Mercury Mines Co.

Nevada.—Production of mercury fell from 5,924 flasks in 1940 to 4,238 flasks in 1941 but continued well above the levels of other recent years. The decline was due largely to lowered rates of output in Humboldt and Mineral Counties, explained (in part, at least) by

exhaustion of known ore reserves.

The Wild Horse mine in Churchill County was again productive; it yielded 106 flasks in 1941 from the treatment of 945 tons of ore. All operations were suspended in September, however, and no further production was reported contemplated; the Gould rotary furnace was removed.

Five mines in Eiko County produced in 1941; the Butte (Bowers-

Rand) had the largest output.

More metal was produced at the Red Rock than at any other mine in Esmeralda County. Ore from the Container was treated in the furnace at Red Rock. Two small properties also contributed to the

county total.

Mercury output in Humboldt County dropped from the large quantity (2,713 flasks) produced in 1940 to 2,226 flasks in 1941. The largest contributor in 1941 was the Cordero mine, a newly developed property that began to treat ore in a newly installed 100-ton Nichols Herreshoff furnace in August. The output from this mine helped to offset a lowered rate of production in 1941 at some of the larger 1940 mines. As a whole the Blue Can, Blue Bird, and Wootan & McCown mines, operated by McAdoo interests, led Cordero by a considerable margin. Chief among the other producing mines were the Red Ore, Cahill, and Blue Bucket (Baldwin).

Eleven mines in Mineral County reported production; by far the

largest part came from the Mina Development Co. property.

Six mines in Nye County were active during 1941. Magee Mercury, Inc., which is operating the Great Eastern mine in Sonoma County, Calif., began to develop the Horse Canyon mine and installed a 25-ton Gould rotary furnace purported to have come from the Wild

Horse mine in Churchill County. Ore from the San Pedro mine was shipped for treatment to the Red Rock mine in Esmeralda County.

The Van Ness and three others also produced.

Mount Tobin dominated production in Pershing County. This property produced 6,684 tons of ore that yielded 626 flasks of mercury. In February 1942 the mine was reported worked out, and production was discontinued. The El Dorado mine produced 100 flasks in a Rossi retort during 1941 but was reported as closed on November 28. The Goldbanks mine also made an output and at the end of the year was under lease to the Bradley interests. Five other mines, including the Red Bird, were productive. Considerable activity that did not result in output during 1941 was reported at other properties; these include the old Pershing mine that last produced in 1930.

Oregon.—Oregon's total output of mercury in 1941 was within a few flasks of its 1940 production and double that in 1939. Bonanza mine, Douglas County, again towered above other producers; the Horse Heaven in Jefferson County and the Bradley properties (Bretz and Opalite) in Malheur County also made important

contributions to the total.

The Oak Grove and D. E. Kiggens properties in Clackamas County

produced small amounts in 1941.

Nine properties were engaged in productive activity in Crook County; the Taylor Ranch (Whiting) and Staley and Culbertson ranked highest.

As already stated the Bonanza mine, Douglas County, was the dominant producer in Oregon and one of the two largest in the

ountry. It was the only producing mine in the county.

Three properties in the Steens Mountain district, Harney County, reported an output for 1941. For many years this area has been known to contain mercury, but it did not produce until 1939. It has been described by Ross.6

The Roxana Group in Jackson County recovered a small quantity

of metal in 1941.

The Horse Heaven mine in Jefferson County is the second-largest producer in Oregon. The Axehandle mine in this county also produced in 1941.

A little mercury was produced at the Lucky Boy No. 1 mine in

Lake County in 1941.

At the old Black Butte mine in Lane County 19,733 tons of ore were treated, yielding 292 flasks of mercury, in 1941. This mine has had a long record of production and its locality is one of those

picked for Bureau of Mines exploration work.

The only output in Malheur County during 1941 was from the Bretz and Opalite properties, operated by the Bradley interests. The Opalite mine produced 13,265 tons of ore that yielded 434 flasks of mercury. Bretz ore, totaling 4,862 tons, was hauled to the Opalite 80-ton rotary kiln for treatment and yielded 498 flasks.

Texas.—All the mercury produced in Texas during 1941 came from the Terlingua region, Brewster and Presidio Counties. Producing properties in Brewster County were the Chisos, Rainbow, Big Bend, Texas Almaden, Gard, and Black Mesa; in Presidio County the Fresno was active. The output at all mines except the Gard was from furnace operations.

[•] Ross, C. P., Work cited in footnote 3.

Utah.—The Congar Hill mine, Tooele County, produced 19 flasks of mercury from 76 tons of ore in 1941.

Washington.—Mercury was produced by the Roy Mining Co. in the Morton district, Lewis County.

FOREIGN TRADE?

Imports of mercury for consumption were 7,740 flasks in 1941 compared with the insignificant total of 171 flasks in 1940. Only 104 flasks of the 1941 total were credited to the first 7 months of the year. The benefits of the July agreement with Mexico, discussed elsewhere in this report, did not become evident in import statistics until November. During November and December, imports for consumption aggregated 6,861 flasks, of which Mexico supplied 6,651 flasks; the remainder came from Canada.

General imports, a better measure of the physical movement of imports than imports for consumption, amounted to 7,478 flasks in

1941 compared with 1,861 flasks in 1940.

Mercury imported into the United States, 1937-41, by countries

Country	1937		1938		193	39	194	4 0	1941	
Country	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
Canada Hong Kong Italy Mexico Spain United Kingdom	5 747, 266 116, 497 535, 156 38, 788	104, 730	84, 454 95, 068	\$50, 434 82, 176	42, 745	\$29, 818 61, 313 245, 613	9, 698	\$6 316 13, 681 3, 958		\$130, 468 1, 171, 752 6, 373
	1, 437, 712	1, 227, 991	179, 522	132, 610	265, 944	336, 744	12, 971	17, 961	588, 228	1, 308, 59

In addition to the mercury received from Mexico in the form of metal during 1941, antimony-mercury concentrates imported from that country yielded 1,300 flasks during the year. This latter class of imports is not shown separately in foreign trade statistics?

Imports of mercury compounds were virtually nonexistent during

1941, as is shown by the table that follows.

Mercury compounds imported for consumption in the United States, 1940-41

0.m	194	10	194	24 1	
Compound	Pounds	Value	Pounds	Value	
Chloride (mercurous) (calomel) Mercury preparations (not specifically provided for) Oxide (red precipitate) Vermilion reds (containing quicksilver)	19, 513 21, 863 9, 000 14, 332	\$16, 374 15, 362 9, 234 13, 114	25 24 25	\$83 140	
		54, 084		232	

Exports fell from the high total of 9,617 flasks reached in 1940 to 2,590 flasks in 1941; the aggregate for 1941, however, was larger than in any other year since 1931. The abnormal relationship of international to domestic prices in 1931 favored exportation of the metal. International prices favored the exportation of mercury again in 1941,

¹. Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

but domestic export restrictions and disruption of international trade

routes rendered normal economic laws invalid in that year.

In 1941 little more than one-tenth of the amount shipped to the United Kingdom in 1940 (598 flasks compared with 5,178) was destined to that nation, but it continued to get more than any other country. The shipment of mercury from Canada, the only important source of mercury in the British Empire, to the United States in 1941 would seem to indicate either a relatively adequate supply of metal in the United Kingdom or a greater need for mercury products than for the metal itself. Japan received no mercury from the United States in 1941 but had the second-largest amount in 1940—1,598 flasks. The only sections of the world that received larger quantities in 1941 than in 1940 were the Asiatic Continent and islands (other than Japan), to which 629 flasks were shipped compared with 181 flasks in 1940.

Mercury exported from the United States, 1937-41

Year	Pounds Value 34, 485 \$37, 165 54, 161 50, 184 91, 789 137, 427		Year	Pounds	Value
1937	54, 161	50, 184	1940 1941	730, 877 196, 837	\$1, 743, 149 470, 903

Mercury exported from the United States, 1940-41, by countries of destination

Country	19	40	194	1
- Commy	Pounds	Value	Pounds	Value
North America:				
Canada	58, 923	\$145,063	10, 905	\$29, 604
Curação (N. W. I.)	4, 834	10, 264	6, 229	15, 15
Other North America	6, 168	14, 869	4, 057	10, 450
	69, 925	170, 196	21, 191	55, 200
South America:				
Brazil	8, 221	20, 002	5, 324	13, 791
Colombia	12, 512	28, 608	8, 213	20, 257
Other South America	10, 451	26, 380	7, 558	20, 594
	31, 184	74, 990	21, 095	54, 642
Europe:				
United Kingdom	393, 492	970, 533	45, 472	101, 288
Other Europe	7, 170	15, 879	125	465
	400, 662	986, 412	45, 597	101, 753
Asia:				
Hong Kong	6	20	4, 575	11, 588
India, British	1, 612	3, 266	10, 234	22, 685
Japan	121, 466	254, 890		
Netherlands Indies Philippine Islands	4, 926	11,844	21, 882	51, 979
Other Asia.	5, 117	11, 471	8, 455	20, 966
other Asia-,	2, 105	4, 455	2, 632	6, 628
	135, 232	285, 946	47, 778	113, 846
Africa:				
Union of South Africa	30, 266	71, 780	18, 785	45 100
Other Africa	9, 234	20, 271	5, 656	45, 128
	8, 201	20, 211	3, 636	14, 130
	39, 500	92, 051	24, 441	59, 258
Oceania:				
Australia	50, 648	124, 642	36, 185	84, 305
Other Oceania	3, 726	8, 912	550	1, 893
	54, 374	133, 554	36, 735	86, 198
	730, 877	1, 743, 149	196, 837	470, 903

699 MERCURY

WORLD PRODUCTION

The inability to obtain data covering activity in Spain and Italy. the world's largest sources of production of mercury, makes it impossible to compile a reliable estimate of world production. As the mines in these areas are either under Axis domination or friendly to the Axis Powers, ample supplies are assured enemies of the United States, whereas supplies for the United Nations have presented more

of a problem.

World trade conditions have contributed to greatly expanded production in the United States, Mexico, and Canada during the past 2 years and have prompted prospecting for and development of additional sources in several other Western Hemisphere countries. put in the United States during 1941 was 44.921 flasks compared with 18,633 in 1939, and Mexico produced 23,137 flasks in 1941 compared with 7,376 in 1939. Canada, during this period, rose from an insignificant producer to a position as the only important source in the British Empire. Interest regarding mercury mining has been reported recently in Honduras, Brazil, Chile, Peru, and Venezuela. In connection with the increased emphasis on finding additional sources of mercury, technical representatives of the United States Government have examined mercury prospects in Mexico and other countries of the Western Hemisphere.

Available information for various countries is reviewed on the

following pages.

World production of mercury, 1937-41, by countries [Compiled by B. B. Waldbauer] [1 metric ton=29.008 flasks of 76 pounds]

alan Aya	19	37	19	38	19	39	19	40	19	41
Country	Flasks	Metric tons	Flasks	Metric tons	Flasks	Metric tons	Flasks	Metric tons	Flasks	Metric tons
Algeria	140 9	4.8	191	6. 6	(¹) 3	(¹) 0.1	(1)	(1) (1)	(1)	(1)
land Bolivia ² Canada	16	.6	10	.3	9	.3 .2	(i) (i)	(1)	(i) (i)	(1)
China Chosen	² 1, 736 2	.1	² 65	(1) 100.0	(1)	(1)	(1)	² 215.8 (1) 4 89.0	(4)	* 206. 8 (1) (1)
Czechoslovakia Germany ³ Austria	2, 750 1, 775 134	61.1	2, 900 1, 750			(1)	(i) (i)	(1) (1)	(i)	2533
Italy Japan	66, 963 580	2, 308. 4 20. 0	66, 748 592	2,301.0 20.4	(1)	(1)	(1)	(1) (1) 401. 7	(1) (1) 23, 137	(1) (1) 797. 6
Mexico New Zealand Rumania	4, 936 18		8, 519 10	293. 7 . 3	7, 376		11,653 (1) (1)	(1)	(1) (1)	(1)
Southern Rhodesia. Spain 2	28, 357	977. 5		1, 378. 9	(1) (5) 53, 441	(1) (5) 1, 842. 3	(1)	(1)	(1)	(i)
Tunisia Turkey	25 483 8, 700			9.3 20.6 300.0	359	(1) 12.4 (1)	(1) 2 261 (1)	(1) 2 9. 0 (1)	(i) (i)	1
U. S. S. R United States	16, 508		17, 991	620. 2	18, 633	642.3	37,777	1, 302. 3	44, 921	1, 548.
Total 7	133, 136	4, 589. 6	148, 343	5, 113. 7	(1)	(1)	(1)	(1)	(1)	(1)

¹ Data not yet available.

² Exports.
2 Estimated.

⁻ Essumateu.

8 Slovak Metallurgical Works.

8 Production less than 1 fiask or 0.1 metric ton.

9 Production figure published by Metallgesellschaft.

7 Sum of figures given in table only.

Australia.—The Metal Bulletin (London) of September 2, 1941, indicated that the mercury property at Kilkivan, Queensland, might double its plant capacity, which had been about 40 pounds a week. Exploitation of adjoining properties was said to be under way.

Development work is also reported to be in progress elsewhere on

the continent.

Canada.—Information regarding production of mercury in Canada is again confidential. It is known, however, that since 1939 production in this country has turned sharply upward. The increased output is from the Pinchi Lake property of the Consolidated Mining & Smelting Co. of Canada, Ltd. Production of mercury at the property of Empire Mercury Mines in the Pinchi Lake district is reported

to have been discontinued owing to operating difficulties.

Chile.—Mercury ores are said to occur in the Provinces of Atacama, Aconcagua, and Coquimbo but are mined mainly in the last-named. The Compania Minera Pumitaqui, a Chile owned and managed corporation, is reported to be the only concern producing mercury for export. Its property is, however, primarily a gold-copper mine. The output in midyear 1941 was said to be a little over 100 tons of mercury concentrates (containing 2½ to 3 percent mercury) a month, and increased production was in prospect. At that time Japanese interests were bidding for the metal.

China.—Mercury was produced in Kweichow, Hunan, and Szechuan Provinces in 1941; the major part of the production of probably more than 6,000 flasks came from Kweichow. Figures from a reliable source indicated that more than 4,000 flasks were shipped to Russia in June, August, and December and probably additional quantities at other times. Some metal was shipped to India and small quantities to

other countries.

Italy and Spain.—Lack of recent data makes it impossible to bring previous annual reports on mercury up to date with regard to Italy and Spain, the leading sources of this commodity. It can be repeated, however, that these nations can doubtless produce approximately 70,000 flasks apiece should demand from available customers require it. Accessibility of the Axis Powers to these outstanding producers of mercury appears to assure very ample supplies to all but Japan, which

is shut off by shipping difficulties.

Japan.—The South Africa Mining & Engineering Journal of August 30, 1941, reported that the Yamato Mercury Mining Co. was planning to increase its present rate of mercury production, given as 1,500 to 2,000 flasks annually. Early in 1941, Japan was receiving large quantities of mercury from Mexico and was negotiating for the purchase of Chilean metal. Japanese offers considerably exceeded prices prevailing in the United States. The agreement between the United States and Mexican Governments in July 1941 stopped shipments of Mexican metal to Japan.

Mexico.—Our neighbor republic is one of the few important mercury-producing countries in the world whose production data are available for publication. These show that output during 1941 amounted to 23,137 flasks, double the production of 11,653 flasks attained in 1940, which itself was sharply above the 7,376 flasks recovered in 1939. The largely increased quantities made available during the first 7 months of 1941 went mainly to Japan, to which was consigned 93 percent of the 17,037 flasks exported during that period.

701

In July an agreement was reached with the Mexican Government whereby the United States was to obtain the surplus production of certain strategic commodities, including mercury, placed under export control by the Mexican Government. Under its terms, this country is obliged to acquire surpluses over and above metal sold through regular commercial channels to customers in the Western Hemisphere that had export limitations similar to the Mexican regulations. agreement was to be in effect for 18 months and applies to quantities up to 125 percent of exports of such commodities during the 18month period ended July 1, 1941. Both production and export official totals were much lower after the agreement, but by December they had advanced to figures resembling activity earlier in the vear. Data on production and exports in 1941 follow:

Mercury produced in and exported from Mexico in 1941, by months, in flasks of 76 pounds

Month	Production	Exports	Month	Production	Exports	
January February March April May June July	1, 676 2, 446 1, 924 3, 841 1, 603 2, 738 2, 984	1,666 2,446 1,914 3,796 1,569 2,695 2,951	August September October November December	715 863 549 1,072 2,726	705 858 543 1, 053 2, 726	

Since July most of the metal exported has come to the United States, although smaller quantities have been consigned to Argentina. Brazil. Colombia, Costa Rica, Cuba, and Uruguay; 62 flasks went to Japan in August.

The following States are reported to contain mercury mines or occurrences of mercury: Aguascalientes, Chihuahua, Durango, Guanajuato, Guerrero, Hidalgo, Jalico, Mexico, Michoacan, Morelos, Oaxaca, Queretaro, San Luis Potosi, and Zacatecas.

The famed Trinidad mine is in the State of San Luis Potosi, and the

Huitzuco mine is in Guerrero.

The Pacific Foundry Co., Ltd., of Los Angeles, Calif., reported that it had constructed three 30- to 40-ton and one 20- to 25-ton Nichols Herreshoff plants and one additional retort in Mexico in 1941.

New Zealand.—Mercury is reported being produced by Mercury Explorations, Ltd., at Puhipuhi, after 2 years of preparatory work. The property is situated in barren country traversed by a cinnabarbearing belt, but commercial ore is found only in scattered areas and pockets. Ore is loaded by mechanical shovel into motor trucks and transported to the treatment plant—an oil-fired, rotary furnace. Recovery of mercury from low-grade deposits at Ngawha and elsewhere was being investigated in 1941.

Peru.—Although little mercury has been produced in Peru in recent years, at one time one of the largest producing properties in the world was active there. Most of the past production has come from the famous Santa Barbara mines, a few miles south of Huancavelica. Wm. C. Vanderburg, foreign mineral specialist of the Bureau of Mines, recently supplied the following data regarding mercury in

Peru.

The deposits were discovered in 1570 and up to 1908 had produced 51,362 tons of mercury, equivalent to 1,489,498 flasks (76-pound). This output exceeds that of the New Almaden property in California, largest source of mercury in the United States, which up to 1930 had produced 1,039,675 flasks. During the colonial period, the Santa Barbara deposits supplied not only the mining industry of Peru but also Bolivia, Chile, and Mexico, where the patio process of silver amalgamation was employed. The decadence in the early days of the mines is attributed to exhaustion of the richer ores and to the discovery of mercury in California about 1850. Since 1901 repeated attempts have been made to revive the mines, generally with little success. As current prices for mercury are high, the old workings are being sampled by E. E. Fernandini with the object of treating the lower-grade ores on a large scale. It is reported that there is a large tonnage of low-grade ore containing 0.1 to 0.2 percent mercury; if this is confirmed by sampling, tentative plans call for the erection of a plant capable of treating 500 tons of ore daily. The mercury deposit in the Chonta district, Department of Huanuco, has been under development for the past year by Panaminas, Inc., subsidiary of Ventures, Ltd., of Canada. It is reported that enough ore reserves have been blocked out to justify the erection of a 20-ton-daily-capacity Gould furnace, which has been ordered. Several beds of coal that can be used as furnace fuel occur near the deposit.

Union of South Africa.—According to the Metal Bulletin (London) of May 23, 1941, production of mercury on a small scale was started at Monarch Kap on the Murchison Range, Northern Transvaal, in July 1940. During the latter half of 1940, 3,329 pounds (44 flasks) of mercury were produced, and late in 1941 output was reported to be increasing. Mercury for consumption in South Africa has been previously supplied chiefly by imports from Spain and Italy, according to an article in the March 29, 1941, issue of The Chemical Age. This magazine gives imports of mercury as ranging from 600 to 1,100 flasks a year for 1937 to 1939. The metal is used in gold mining, for the manufacture of explosives, pigments, and scientific instruments, and in medicine; some difficulty in obtaining necessary supplies

was anticipated.

Venezuela.—Compania Anonima Minerales de San Jacinto was organized in Caracas in April 1941 to operate a cinnabar mine near La Mesa, Muncipio Chiquinquira, Distrito Torres, in the State of Lara. The mine was expected to reach a monthly capacity of 200 tons of ore. Fifty tons were shipped to the United States for treatment. According to the Anglo-American Metal & Ferro-Alloy Corporation, which purchased the ore, careful sampling, assaying, and rechecking the actual analysis of the ore showed that it contained no more than 2 percent mercury—considerably less than was anticipated. The producing company expected to treat the ore at the mine beginning in January 1942, using retorts made from oil-well casings.

By E. W. PEHRSON and J. B. UMHAU

SUMMARY OUTLINE

그 살림에 하는 지수 함께 되는 모든 모든 모든	Page		Page
General summary	703	Consumption	711
Salient statistics	. 704	Apparent consumption	711
Axis control of world tin resources	704	Consumption by uses	712
Government stock-piling program	705	Foreign trade	714
Government ore purchases			716
Government tin smelter		Stocks	718
Conservation		World aspects of tin industry	
Investigation of domestic tin deposits	. 708		719
Licensing of exports			
Domestic production		International tin control cheme.	721
Mine output	710	World consumption	723
Domestic tin smelting	710	Review by countries	723
Goondom tin	711		

GENERAL SUMMARY

Blockade of the principal sources of tin supply, long feared by students of the United States tin industry, was in sight at the close of 1941 and became a reality early in 1942, precipitating a serious raw-material problem. The Japanese attack on Pearl Harbor on December 7, accompanied by a renewed drive on southeastern Asia, initiated the assault on the world's richest tin-producing area, which was climaxed by the fall of Singapore on February 15, 1942. At the outset of the Japanese offensive, it was widely believed that Singapore was virtually impregnable or at least could hold out long enough to permit completion of United States stock-piling objectives. The amazing speed and success of the Japanese conquest, however, forced the United Nations to drastically adjust their tin-consumption

programs downward.

The immediate shock of sharp curtailment of imports into the United States fortunately could be cushioned because of the abnormally large stocks of tin on hand. Despite its late start, the Government stock-piling program had made substantial progress, and industry had been farsighted enough to greatly increase its inventories during recent years. As a result, 107,600 long tons of metallic tin were on hand when Singapore fell—enough for 17 months' consumption at a normal rate of use and sufficient to assure many more months' supply, if uses were restricted to absolutely essential purposes. Government tin smelter at Texas City was nearing completion, with adequate stocks of ore on hand to assure its operation for several months. As a hedge against possible destruction of British smelters, the initial capacity of the Texas plant was being increased so that it could treat the entire Bolivian output, if necessary. These events, plus prompt Government action in placing all tin in the country under rigid control and in expediting its conservation program, give assurance that enough tin will be available for military needs essential to successful prosecution of the war, although domestic industry and

civilian consumption will undergo severe readjustments. Fortunately these need not be so abrupt as to cause violent disruption of industrial

processes.

The forlorn outlook for obtaining any substantial quantity of tin from domestic sources has emphasized the importance to the United States of the Bolivian tin industry, not only from the viewpoint of maintaining or increasing production in that country, but also of safe-guarding shipments of ore from submarine attack. Neither of these guarding shipments of ore from submarine attack. objectives was in sight on August 1, 1942. Bolivian production was reported to be declining because of labor shortages and rising costs, and the record of ship sinkings since December 7, 1941, is ample evidence that the submarine menace was far from being under control.

Statistically the tin industry of the world established several new records. Mine production exceeded the previous peak reached in 1940 by about 3 percent, and despite the inactivity of Continental European plants smelter output about equaled the previous high. World consumption is estimated to have increased about 3 percent over 1940 but was still below the record of 1937. Consumption of virgin tin in the United States in 1941, however, reached the unprecedented total of 106,000 long tons (processed); during October virgin tin was being used at the rate of 114,000 tons a year. Imports also touched a new high of nearly 141,000 tons, which permitted the substantial increase in stocks previously mentioned. Considering the momentous developments in the tin trade during 1941, prices fluctuated within extremely narrow limits—from a low of 50.10 cents a pound (Straits tin, New York) to a high of 55.00 cents. The Metals Reserve Co. buying policies under its agreement with the Tin Cartel were a restraining factor on the low side, and pressure from Government price-control agencies served similarly on the high side. A ceiling price of 52 cents a pound was established by the Office of Price Administration and Civilian Supply on August 16, 1941.

Salient statistics for tin in the United States, 1925-29 (average) and 1937-41

	1925-29 (average)	1937	1938	1939	1940	1941
Production— From domestic mines	24 30, 600 78, 009 1, 740 70. 67 39. 79 56. 64 163, 000	168. 4 27, 100 88, 115 2 313 62. 71 42. 85 54. 24 211, 000	95 21, 000 49, 699 205 46. 23 36. 84 42. 26 163, 000	34 26,000 70,102 2,105 63.50 45.62 50.18 177,000	49 29, 700 124, 810 3 2, 664 54. 54 45. 94 49. 82 236, 000 53	1 62. 9 37, 500 140, 878 11, 094 53. 35 50. 16 52. 01 242, 000

AXIS CONTROL OF WORLD TIN RESOURCES

As a result of events in 1941 and early 1942, the Axis gained control of the bulk of the world's tin resources. At the outset of the war in 1939, Germany, Italy, and Japan controlled less than 3 percent of the mine output, but with the Japanese conquest of Indochina, Thailand,

¹ Subject to revision.
2 Figures for 1937-41 cover foreign only; domestic not separately recorded.

British Malaya, Netherlands Indies, Burma, and parts of China, as well as German domination of Europe, the Axis Powers occupied territory that produced 66 percent of the 1940 output. Although this success has assured Japan of tin supplies ample for prosecuting the war, Germany, whose tin supplies are believed to be very low, probably will not profit greatly because of the lack of communications as long as the British fleet controls the Indian Ocean. The chief significance of the shift in control is thus the loss to the United Nations of supplies of an important strategic material. Serious as this is, it is by no means decisive because of the tin ores available in areas still accessible to the Allies, chiefly in Bolivia, Nigeria, and Belgian Congo, which, it has been estimated, will produce approximately 90,000 tons of tin in 1942. Smelting capacity ample for treating these ores soon will be available to the United Nations.

From the longer viewpoint, the delay in rehabilitating mines in the war-torn tin-producing areas after the war is significant. The destruction of mines and equipment by the retreating British and Hollanders, plus the damage that will be inflicted as the Japanese are forced to retreat, will be such that it has been estimated 5 years will

be required to restore production to normal.

GOVERNMENT STOCK-PILING PROGRAM

At the beginning of the year all Government tin purchases for stock-piling purposes were being made by the Metals Reserve Co., a subsidiary of the Reconstruction Finance Corporation. Buying continued under the 1-year contract made with the International Tin Committee on June 28, 1940. (See Minerals Yearbook, Review of 1940, p. 669.) In May 1941 the contract was extended to July 1. The contract provided that the United States agreed to buy all surplus tin offered up to 75,000 long tons a year. Actual purchases were far below the 150,000 tons possible under the contract, because of the abnormally large acquisitions by industry during the period and the fact that world production did not meet expectations. the first agreement, the International Tin Committee undertook to increase output to 130 percent of standard tonnages for 1 year, effective July 1, 1940, permitting participating countries to export 272,310 tons for the period. In the 12 months ended June 1941, exports actually totaled 235,074 tons, a 20-percent increase over the 195,834 tons shipped in the preceding 12 months. At the end of 1941, Metals Reserve purchases totaled 65,756 tons, of which 43,511 tons were delivered, 2,700 tons affoat, and 19,545 tons contracted for but not shipped. As of August 15, 1942, over 20,000 tons of Far Eastern tin purchased under the contract were still undelivered.

The Metals Reserve Co. also has commitments for the acquisition of 36,000 tons of tin under the loan agreements to China mentioned in Minerals Yearbook, Review of 1940, but as of December 31, 1941,

no deliveries had been reported.

Despite assurances by the Office of Production Management early in July 1 that stock piles would be reserved for defense purposes and that they would not be drawn upon for any instant needs, Metals Reserve Co. began releasing tin to industry during August 1941 when shortages occurred in spot tin owing to shipping delays and Russian

¹ Office of Production Management, Memo to editors: PM 681, July 8, 1941.

purchases in the East. The total quantity released during 1941 was 905 long tons, which left a balance of 42,606 long tons on hand at the end of the year. The 5,478 tons and the 1,955 tons acquired and stored by the Procurement Division and Navy Department, respectively, have remained intact. Thus, at the close of 1941 the Government held 50,039 tons of tin in reserve compared with 20,804 (revised) tons at the close of 1940. In addition, there were 2,700 tons affoat and 55,535 tons contracted for but undelivered.

GOVERNMENT ORE PURCHASES

The United States acquired substantial quantities of tin ore in 1941 under the Metals Reserve Co. contract with Bolivian producers signed November 4, 1940. In addition, the company made an agreement in August 1941 with Netherlands producers for the acquisition of concentrates containing 20,000 long tons of tin from the Netherlands Indies, and contracts for small tonnages were signed with Mexican and South African producers. On June 30, 1942, retroactive to January 1, 1942, the Bolivian agreement was amended by changing the buying price from 48½ cents, f. o. b. U. S. ports, to 60 cents, f. o. b. Chilean and Peruvian ports, and providing for acceptance of concentrates equivalent to 30,000 tons of tin a year in contrast to the 18,000 tons agreed to originally.

By the end of 1941, 45,572 tons of ore had been delivered to the stock pile; 38,368 tons were derived from Bolivia, 7,159 tons from the Netherlands Indies, and 45 tons from South Africa. In addition to the quantity delivered, 251, 623 tons had been purchased or contracted for, including 226,652 tons from Bolivia, 21,341 tons from the Netherlands Indies, and 3,620 tons from Mexico. Data on the tin content

of these delivered ores are not available.

Imports of Bolivian ore were begun in April 1941, when ores containing 2,330 tons of tin entered through the Galveston customs district. In September ores from the Netherlands Indies began arriving through New Orleans. The total tin content of ores imported during the year through Galveston and New Orleans was 27,368 long tons, including 21,148 tons from Bolivia and 6,220 tons from Netherlands Indies.

GOVERNMENT TIN SMELTER

Plans for the Government tin smelter at Texas City, Tex., construction of which was begun in October 1941, have been changed. Originally it was designed to treat 50,000 tons of Bolivian ore for the recovery of 18,000 tons of tin a year, but subsequent plans called for 30,000 tons of metal a year from Bolivian ores and 22,000 tons from high-grade alluvial ores. As of August 15, 1942, further extensions to raise the total metal capacity to 74,000 tons a year had been authorized. The expansion was prompted as a precaution against possible destruction of British smelters by bombing or sabotage.

Production of metal from high-grade Netherlands ores began in April 1942, and presmelting treatment of impure Bolivian ores was expected later in the year. The plant is operated by the Tin Processing Corporation under a contract with the Metals Reserve Co.

CONSERVATION

The formal announcement of Japan's alliance with the Axis accentuated the threat of a blockade on tin supplies from Asia and emphasized the need for developing a conservation and substitution program in the United States. In March 1941 the National Academy of Sciences was requested by the Office of Production Management to report on the possibilities of conserving tin. The task was assigned to H. W. Gillett, who worked with a committee under the chairmanship of Zay Jeffries. The formal report, submitted in June, contained many recommendations that subsequently formed the basis of various conservation orders issued by the Government. The report was

published by Metals.2

By March 1941 the conservation aspects of raw materials reached such importance in the supply situation that a conservation unit was established in the Production Division of the Office of Production Management to direct Government activity in this field. In May 1941, following representations from the industry, producers and consumers of tin plate were called upon to adopt measures for conserving tin by using for certain packs only 1.35 pounds of tin per base box (for years the standard coating on tin plate has been 1.5 pounds per base box), substituting terneplate for tin-coated containers wherever feasible and using black plate wherever tin plate and terneplate were not required. Order M-21e, issued February 4, 1942, established further reductions to 1.25 pounds per base box for ordinary hot-dip plate and 0.50 pound for electrolytic plate; restricted the use of terne metal to terneplate only; and set up a quota system for using tin plate and terneplate. The tin content of terne metal used for terneplate and cans was limited to 15 percent by weight and that used for long ternes Approximately 90 percent of the tin plate produced to 10 percent. is utilized for making containers or cans.

Events following Pearl Harbor necessitated prompt and drastic reduction in the use of tin. On January 27, 1942, can manufacturers were ordered by telegraph to curtail sharply the manufacture, sale, and delivery of tin cans for such commodities as beer and confections in February 1942 to 50 percent of the quantity used for these products during February 1940. This order was superseded by Conservation Order M-81, issued February 11, 1942, in which can sizes were standardized, small sizes being eliminated. A general restriction was imposed on consumption of tin plate by designating the percentage that can be used for various canned products. No limit was placed on cans for fruits, vegetables, milk, and fish of primary importance, which would spoil if not canned when fresh and on which the Department of Agriculture had set production goals. In March 1942 the use of tin containers for nonessential products was discontinued. This group included beer, dog food, dried beans of all kinds (including pork and beans), baking powder, cereals and flour, petroleum products, candy, condiments, and tobacco. Conservation Order M-104, issued April 3, 1942, and Amendment 1 of April 20 restrict use of tin plate and tempelate as covers for glass containers, including crown caps for beverages and cover caps for home preserving.

²Gillett, H. W., Tin Conservation and Substitution: Metals, July 1941, pp. 6-9; August 1941, pp. 6-9; and September 1941, pp. 6-12.

Use of tin in products other than tin plate or terneplate has also been restricted. Drastic reductions in the consumption of tin in tin foil, tin alloys, tin oxide, type metal, collapsible tubes, etc., have been ordered by the Government. Tin content of solder has been reduced to a maximum of 30 percent, effective May 1, 1942. The use of tin in numerous articles, such as musical instruments, automobile body solder, office staples, jewelry, kitchen equipment, etc., during the first quarter of 1942 was limited to 50 percent of the amount used in the same quarter of 1940 and prohibited thereafter.

Order M-115, issued April 1, 1942, eliminates the use of collapsible tin tubes for foods, cosmetics, and many toilet preparations. Individuals purchasing tubes of toothpaste or shaving cream must turn in an empty tube for each new tube bought. Pure tin tubes are permitted only for certain pharmaceutical preparations. The old tubes are to be salvaged through the Tin Salvage Institute as agent for Metals

Reserve Company.

INVESTIGATION OF DOMESTIC TIN DEPOSITS

The Bureau of Mines and the Geological Survey continued their investigation of domestic tin deposits. In May 1941 the Bureau of Mines issued a summary ³ reporting progress in its tin-exploration program, which contained the following conclusion:

Two of the largest known tin-bearing areas in the country were explored, one in South Dakota and the other in southwestern New Mexico, which confirmed the opinion that no deposits are likely to be found in the United States that can supply any substantial quantity of tin even at prices several times the normal present price.

Deposits near Spokane, Wash., containing both tin and tungsten, were explored by the Bureau of Mines by surface trenching. According to a press release of the Geological Survey dated August 18, 1941, the largest deposit exposes about 500 tons of ore containing about 3 percent tin, and the presence of perhaps 20,000 tons of lower-grade material has been determined. The deposits have been known since 1906, and by 1912 about 150 tons of material containing 3 to 6 percent tin had been mined and stacked on the dump. There are no recorded shipments from this property.

The Coosa County (Ala.) tin belt, which was examined by the Bureau of Mines in 1939, was reexamined early in 1942 to determine whether recent developments had indicated continuity of tin-bearing pegmatites. Extensive trenching revealed little continuity and no

appreciable amount of cassiterite.

The Geological Survey reported in August 1941 that its examination of virtually all known tin deposits from Lincolnton, N. C., southwest to Gaffney, S. C., showed that the bedrock deposits, individually or as a group, cannot yield more than small amounts of tin. Possibly a few can be worked profitably on a small scale if the price of tin rises sufficiently. In 1939 the Bureau of Mines conducted concentrating tests on a sample of tin ore from North Carolina.⁴

Tin deposits near Battle Mountain, Lander County, Nev., were described in a report by the Geological Survey, which concluded that

Mining Division, Exploration and Sampling of Domestic Deposits of Strategic Minerals: Bureau of Mines Rept. of Investigations 3574, 1941, p. 7.
 Shelton, S. M., and Engel, A. L., Progress Reports—Metallurgical Division.
 Ore-Testing Studies, 1939-40: Bureau of Mines Rept. of Investigations 3425, 1941, pp. 14-15.
 Fries, Carl, Jr., Tin Deposits of Northern Lander County, Nev.: Geol. Survey Bull. 931-L, 1942, 15 pp.

selective mining of the tin-bearing veinlets would not pay, owing to their narrowness and discontinuity, and it seems equally certain that the deposits could not be mined by bulk methods. A few tons of cassiterite might be recovered from veins by narrow stoping and hand sorting, and from thin placer deposits of gravel in small pockets. This tin-bearing area was described in a Bureau of Mines report in 1939.6

At Majuba Hill, Pershing County, Nev., cassiterite appears widely scattered in very small amounts and is abundant only in a single underground ore shoot so small that it could not be mined at a profit.? As now exposed, the shoot, which is cut off by a fault, may contain 12,000 pounds of metallic tin. Its utilization depends on finding additional ore reserves by prospecting aimed at locating the offset part of the high-grade shoot, discovering additional shoots or a large

body of low-grade ore.

The results of a study of the tin deposits of Irish Creek, Va., by the Geological Survey, announced in April 1942, suggest that further prospecting in the area may be warranted. As only a small part of the district has been explored, the extent of its tin deposits is still undetermined. The Geological Survey has done some work on tin deposits of the Temescal district and the Bernice group of claims near Cima, San Bernardino County, Calif. A shipment of low-grade tin ore from the Cima property is understood to have been made in 1942 to the Tin Processing Corporation. A systematic survey of all known tin occurrences in California has been made by Segerstrom. 8 who states

The future of tin mining in California, unfortunately, does not look encouraging. Repeated failures in operations that have been attempted, lack of ore bodies of suitable size and value, lack of reports of new and substantial occurrences, all add up to a general dismissal of possible future operations in this State.

The tin-bearing pegmatites of the Tinton district, South Dakota,

were reported on by the Geological Survey.

In 1941 the Geological Survey sent geologists into the Seward Peninsula and the Hot Springs district to make intensive investigation of all possible sources of tin there. Although these investigations have not yet been completed as of August 1942, none of the parties has found deposits that appeared to contain a large supply of tin that

could be worked at a profit under existing conditions.

On May 25, H. R. 7131, authorizing the Metals Reserve Co. to purchase for the United States all tin produced in this country at \$1.00 a pound, was introduced in the 77th Congress, 2d Session, and referred to the Committee on Mines and Mining. H. R. 96, authorizing an appropriation of \$2,000,000 for exploration and development of Alaska tin deposits, was introduced January 3, 1941, but no action was taken.

In March 1942 the Reconstruction Finance Corporation announced the adoption of a plan to encourage producers to speed development of small ore deposits containing strategic and critical metals and

[•] Vanderburg, William O., Reconn alssance of Mining Districts in Lander County, Nev.: Bureau of Mines Inf. Circ. 7043, 1939, pp. 54-57.

† Smith, Ward C., and Glanella, V. P., Tin Deposit at Majuba Hill, Pershing County, Nev.: Geol. Survey Bull. 931-C, 1942, 20 pp.

† Segenstrom, Richard J., Tin in California (prepared under direction of Charles A. Dobbel, Professor of Mining, Stanford University): State of California Dept. of Natural Resources, Division of Mines, California Jour. Mines and Geology, vol. 37, No. 4, October 1941, pp. 531-557.

† Smith, Ward C., and Page, Lincoln R., Tin-Bearing Pegmatites of the Tinton District, Lawrence County, S. Dak.—A Preliminary Report: Geol. Survey Bull. 922-T, 1941, 36 pp.

minerals. The owner or lessee of properties giving reasonable promise of success may now obtain an initial loan without mortgage of not more than \$20,000, repayable out of proceeds from production. If the results of such development are favorable, additional loans up to \$20,000 may be made for further development.

LICENSING OF EXPORTS

The Department of State issued no licenses for export of tin-plate scrap during 1941. Exports of all other tin-bearing commodities are subject to controls and license by the Board of Economic Warfare, except those authorized by the Office of Lend-Lease Administration. Data on the quantity of tin authorized for export have not been released.

DOMESTIC PRODUCTION

MINE OUTPUT

Only 63 long tons of tin were produced in 1941—an increase, however, of about 28 percent from 1940. Alaska again supplied virtually all the output. According to the Federal Geological Survey, tin mining in Alaska in 1941 was confined mainly to placer deposits that have been developed in the western part of the Seward Peninsula near Tin City. It is understood that dredging operations in that area have now been suspended and equipment dismantled. Small amounts of stream tin were recovered in the course of placer-gold mining in the Hot Springs and Ruby districts of the Yukon region. No lode tin was mined during 1941 from any Alaska deposits.

In addition to Alaska, small quantities were reported produced in Alabama, Montana, New Mexico, and South Dakota in 1941. Producers included the Coosa Cassiterite Corporation near Rockford, Ala.; George A. Mayer near Basin, Mont.; W. Barker and W. A. McCalla, Paul D. Bellamy, Curtis C. Johnson, and H. E. Van Sant in the Black Range, N. Mex.; and the Black Hills Tin Co. near Tinton and Black Hills Keystone Corporation near Keystone, S. Dak.

A historical table of mine production of tin in the United States, by States, from 1910 to 1938, inclusive, was published in Minerals Yearbook, 1939 (p. 679).

Mine production of tin (content) in the United States, 1937-41, by States

Year	Alaska	South Dakota	Other States 1	Total	Value
1937 1938 1939 1940 1941	166 94 33 46 2 53. 4	0.8 1 .5 2 1.4	1. 6 . 5 1 8. 1	168. 4 95 34 49 2 62. 9	\$205, 300 90, 000 38, 400 54, 900 2 73, 200

^{1 1937:} South Carolina, New Mexico, and Wyoming; 1939-40: Montana and New Mexico; 1941: Alabama, Montana, and New Mexico.

Subject to revision.

DOMESTIC TIN SMELTING

Tin ores were treated on a small scale in this country in 1941. Several privately owned plants recovered 1,839 long tons of tin, includ-

ing 502 tons in the form of pig tin and 1,337 tons in the form of alloys (mostly solder) made direct from the ores. In 1940 (revised figures), 1,391 tons were recovered—510 tons as pig and 881 as alloys. The total recovered was 32 percent greater than in 1940, the production of pig tin being slightly less while that of tin alloys increased 52 percent. The Government plant at Texas City, Tex., did not begin producing

pig tin űntil April 1942.

The ores treated at domestic plants in 1941 were obtained chiefly from Latin American countries, principally Bolivia, although small quantities produced by domestic mines were also purchased. Companies reporting the recovery of tin from ores in 1941 include American Metal Co., American Smelting & Refining Co., Franklin Smelting & Refining Co., Kansas City Smelting Co., Metal & Thermit Corporation, Nassau Smelting & Refining Co., Phelps Dodge Refining Corporation, and Vulcan Detinning Co.

SECONDARY TIN

Recovery of secondary tin established a new record in 1941, with a 27-percent increase over 1940. The increase was due principally to greatly accelerated industrial demand prompted by the national defense program and higher prices. In appraising the significance of secondary tin as a factor in national supply, it should be borne in mind that a very large proportion (approximately 80 percent in 1941) is contained in alloy scrap from which the tin seldom is isolated but merely revolves in the various cycles of use, purification, and re-use of the alloys themselves.

Secondary pig tin recovered by detinning plants in 1941 totaled 4,500 tons (3,700 tons in 1940), mostly from clean tin-plate scrap with only a small tonnage (about 60 tons) from old tin-coated containers. Further details on secondary tin are given in the chapter on

Secondary Metals—Nonferrous.

Secondary tin recovered in the United States, 1925-29 (average) and 1937-41

i i i i i i i i i i i i i i i i i i i	Tin reco	overed at de plants	etinning	Tin recovered from all sources					
Year	As metal	In	Total	As In alloys		7	l'otal		
	(long tons)	chemicals (long tons)	(long tons)	metal (long tons)	and chem- icals (long tons)	Long tons	Value		
1925-29 (average)	900 2, 500 2, 200 3, 600 3, 700 4, 500	2, 000 1, 500 1, 300 600 600 950	2, 900 4, 000 3, 500 4, 200 4, 300 5, 450	7, 500 7, 400 4, 300 4, 000 4, 500 5, 300	23, 100 19, 700 16, 700 22, 000 25, 200 32, 200	30, 600 27, 100 21, 000 26, 000 29, 700 37, 500	\$38, 034, 120 32, 124, 100 19, 284, 600 29, 276, 600 33, 102, 400 43, 722, 700		

CONSUMPTION

APPARENT CONSUMPTION

The apparent consumption of primary pig tin is determined by adding domestic smelter production to net imports. As there was no recorded smelter output from 1925 to 1939, inclusive, the apparent consumption for this period was equivalent to net imports. The

computation does not consider fluctuations in dealer and consumer stocks (information on which is not always available) or the large accumulation in Government stocks; consequently the figures do not reveal the actual trend in consumption. Nevertheless, statistics on apparent consumption have been useful in determining long-time A table giving these data from 1910 to 1938 was published

in Minerals Yearbook, 1939 (p. 680).

The apparent consumption of primary pig tin, computed by the above formula, reached an all-time record of 141,618 tons in 1941 a 15-percent increase over the 123,537 tons consumed in 1940—but. as indicated above, these figures exaggerate actual consumption because of very large increases in consumers' and Government stocks. Nevertheless, actual consumption of primary tin in 1941 reached a new peak, being considerably higher than in 1940, and exceeded by 15 percent the consumption of 1929, when the previous record was established.

CONSUMPTION BY USES

The following tables show the actual consumption of primary and secondary tin as reported to the Bureau of Mines. The items included in the table of consumption by uses represent the products of the first cycle of manufacture. In computing the figures shown in the table, any primary tin emerging from the first stage of manufacture as scrap was recorded as secondary metal. The figures thus understate consumption of primary tin, and some of the secondary tin listed duplicates the virgin metal shown because it is reclaimed from such byproducts as tin-plate clippings and virgin drosses from tin-plate and tinning mills and other plants consuming virgin tin. In 1941, for example, domestic consumers received 114,281 tons of virgin metal, of which 8,252 tons were added to inventories and 106,029 tons processed. Of the tin processed, about 4,200 tons were sold as scrap, lost, or added to stocks of metal in process, and the remainder emerged from the first stage of manufacture in the products shown in the following tables.

Consumption of primary and secondary tin in the United States, 1937-41, in long tons

1007	1020	1020	1040	1941
1937	1899	1998	1940	1941
17. 978 101, 354	25, 984 61, 431	25, 260 89, 018	29, 025 128, 030	56, 999 149, 123
119, 332 25, 984	87, 415 25, 260	114, 278 29, 025	157, 055 56, 999	206, 122 2 67, 421
93, 348	62, 155	85, 253	100, 056	138, 701
2, 782	2, 122	2, 390	2, 190	2, 936
90, 566 436	60, 033 2 259	82, 863 435	97, 866 712	135, 765 1, 070
90, 130	59, 774	82, 428	97, 154	134, 695
72, 928 17, 202	48, 116 11, 658	³ 66, 583 15, 845	³ 72, 324 24, 830	* 103, 086 31, 609
	101, 354 119, 332 25, 984 93, 348 2, 782 90, 566 436 90, 130 72, 928	17. 978 25, 984 101, 354 61, 431 119, 332 87, 415 25, 984 25, 260 93, 348 62, 155 2, 782 2, 122 90, 566 60, 033 436 259 90, 130 59, 774 72, 928 48, 116	17, 978 25, 984 25, 260 101, 354 61, 431 89, 018 119, 332 87, 415 114, 278 25, 984 25, 260 29, 025 93, 348 62, 155 85, 253 2, 782 2, 122 2, 390 90, 566 60, 033 82, 863 436 259 435 90, 130 59, 774 82, 428 72, 928 48, 116 3 66, 583	17, 978 25, 984 25, 260 29, 025 128, 030 119, 332 87, 415 25, 260 29, 025 56, 999 93, 348 62, 155 85, 253 100, 056 2, 782 2, 122 2, 390 2, 190 90, 566 60, 033 82, 863 97, 866 436 2, 259 435 712 90, 130 59, 774 82, 428 97, 154 72, 928 48, 116 366, 583 372, 324

^{11937:} Primary, 82,946 tons; secondary, 3,461; terne, 1,052; scrap, 13,895. 1938: Primary, 50,052; secondary, 1,983; terne, 787; scrap, 8,609. 1939: Primary, 70,732; secondary, 4,976; terne, 1,171; scrap, 12,139. 1940: Primary, 98,125; secondary, 5,409; terne, 1,086; scrap, 23,410. 1941: Primary, 114,281; secondary, 6,879; terne, 1,851; scrap, 26,112. 3Not including 2,700 tons in transit or in warehouses. Includes small tonnage secondary pig tin.

Consumption of tin in the United States, 1937-41, by finished products (tin content), in long tons

,		1937			1938		1939			1940		1941			
Product	Primary	Second- ary	Total	Primary	Second- ary	Total	Primary	Second- ary	Total	Primary	Second- ary	Total	Primary	Second- ary	Total
Tin plate Terneplate Solder Babbitt Bronze and brass Collapsible tubes Tinning Foil Chemicals (other than tin oxide) Pipe and tubing 3 Tin oxide Type metal Galvanizing Bar tin Miscellaneous alloys White metal Miscellaneous	382 12, 026 4, 501 3, 712 3, 571 2, 585 1, 456 171 1, 278 793 221 997 652 482-	(1) 1,015 7,832 2,272 2,784 (2) 67 4 1,331 18 411 1,140 (2) 174 24 33 97	39, 221 1, 397 19, 858 6, 773 6, 496 3, 571 2, 652 1, 460 1, 502 1, 294 1, 204 1, 304 1, 502 1, 204 1, 600 1, 600	1 23, 545 264 7, 590 2, 893 2, 334 3, 427 1, 738 2, 283 166 948 547 134 792 456 238 390 371	(1) 743 5, 208 1, 264 1, 598 35 (2) 910 (444 978 213 19 44 202	23, 545 1, 007 12, 798 4, 157 3, 932 3, 427 1, 773 2, 283 1, 076 991 1, 112 792 669 257 434 573	1 36, 640 317 9, 578 3, 850 3, 385 3, 507 2, 165 2, 001 167 606 606 606 601 1, 028 1, 100 404 466 569	(1) 1,137 7,701 1,598 3,051 (2) 172 (2) 288 (3) 359 990 241 45 42 221	36, 640 1, 454 17, 279 5, 448 6, 3, 507 2, 307 2, 001 455 606 1, 010 1, 139 1, 028 1, 341 449 508 790	1 38, 674 455 10, 222 4, 473 5, 444 3, 512 2, 455 1, 713 52 661 661 681 84 963 1, 000 353 953 953	(1) 1,058 8,797 3,173 9,216 (2) 265 330 (2) 506 1,048	38, 674 1, 513 19, 019 7, 646 14, 660 3, 512 2, 720 1, 713 382 611 1, 157 1, 132 1, 963 1, 091 364 1, 064 1, 064 911	1 44, 854 917 18, 084 7, 495 10, 067 4, 233 3, 987 4, 292 4, 292 4, 325 995 287 863 1, 526 4 2, 463 938	(1) 1, 129 10, 141 3, 104 13, 103 212 145 690 (2) 495 1, 528 104 607 137 498 116	44, 854 2, 046 28, 221 10, 596 23, 170 4, 444 4, 132 4, 292 1, 490 1, 325 1, 967 2, 133 4, 2, 561 4, 2, 561 1, 054
·	72, 928	17, 202	90, 130	48, 116	11, 658	59, 774	66, 583	15, 845	82, 428	72, 324	24, 830	97, 154	103, 086	31, 609	134, 69

¹ Primary includes small tonnage of pig tin derived from detinning operations; Bureau of Mines not permitted to publish separate figures.

2 Small quantity included under "Miscellaneous."

3 In 1937 pure tin tubing required 1.286 tons and tin-lined tubing 10 tons; not reported separately after 1937.

4 Includes 454 tons of primary and 20 of secondary for Britannia ware and 64 tons of primary and 8 of secondary for pewter.

Tin is employed principally in the manufacture of tin plate. Normally this industry consumes approximately half of the virgin tin used in the United States. Tin-plate production rose to a new high

in 1941, as the total food pack was the largest in history.

The use of primary tin in various other products increased as follows in 1941: Solder 77 percent, babbitt 68 percent, bronze and brass 85 percent, type metal 242 percent, collapsible tubes 21 percent, foil 151 percent, tinning 62 percent, pipe and tubing 100 percent, chemicals 438 percent, tin oxide 53 percent, and bar tin 53 percent. The use of primary tin for galvanizing declined 10 percent.

FOREIGN TRADE 10

The principal items in the foreign trade of the United States in tin are imports of pig tin (which supply virtually all the domestic tin requirements) and exports of tin plate. In 1941 a large quantity of tin concentrates was imported and placed in storage for smelting at Texas City, Tex. Of minor importance are the import and export trade in tin-plate scrap; exports of tin-plate circles, strips, cobbles, etc.; and exports of waste-waste tin plate. There is also an appreciable export of miscellaneous tin manufactures, tin-plated hollow ware, and

tin compounds.

Imports of metallic tin in 1941 were 13 percent greater than in 1940, establishing an all-time record. Of the total, 89 percent came from Asia, 8 percent from Africa, and 3 percent from Europe and Australia. Receipts from Asia increased 10 percent, and those from Africa more than doubled. Imports of tin concentrates (which were the largest since 1920) were consigned chiefly to the Government tin smelter at Texas City, Tex. The first shipment for treatment at this new smelter arrived in April. The tin content of the ores and concentrates imported was 28,670 tons from the following sources: Bolivia 22,021 tons, Netherlands Indies 6,220, Africa 198, Mexico 114, Argentina 102, and others 15.

Foreign trade of the United States in tin and tin concentrates, 1937-41

Year	Tin	(metal)	Tin cone	Exports of tin (metal) ¹ (long tons)	
	Long tons	Value	Long tons	Value	
1937 1938 1939 1940 1941	88, 115 49, 699 70, 102 124, 810 140, 873	\$104, 284, 762 44, 860, 324 70, 590, 764 128, 294, 410 149, 569, 328	151 (?) 500 3,000 28,670	\$132, 810 298 418, 004 2, 687, 154 27, 671, 689	313 205 2, 105 2, 664 1, 094

¹ Imported as pigs, bars, etc., and exported as such.
² Less than 1 ton.

¹⁰ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Tin 1 imported for consumption in the United States, 1940-41, by countries

	1	940	1941		
Country	Long tons	Value	Long tons	Value	
Australia Belgian Congo	4, 899	\$760, 641 5, 527, 493	250 11, 030	\$270, 956 10, 397, 351	
Belgium British Malaya Canada China	. 70, 404	42, 560 98, 606, 535 2, 036 3, 591, 865	104, 872 5 2, 845	112, 798, 138 5, 644 2, 702, 373	
Hong Kong Indochina, French Mexico	1, 241 23	415, 452 1, 340, 956 18, 333	4 487	4, 248 545, 814	
Netherlands Netherlands Indies Panama	12, 101 (2)	5, 086 12, 916, 449 98 86, 044	17, 739	18, 883, 180	
Portugal		4, 980, 862	3, 641	3, 961, 624	
	124, 810	128, 294, 410	140, 873	149, 569, 328	

¹ Bars, pigs, blocks, grain, granulated, or scrap, and alloys, chief value tin, n. s. p. f. ² Less than 1 ton.

Foreign trade in tin plate, taggers tin, and terneplate in various forms, 1937-41, in long tons

Year	Tin-pla	te scrap	Tin-plate circles, strips; cob-	Waste- waste tin plate,	Tin plate, taggers tin, and terneplate		
	Imports	Exports	bles, etc., exports	exports	Imports	Exports	
1937	12, 916	14, 126	13, 062	23, 259	246	360, 683	
1938	10, 444	12, 495	4, 467	7, 254	109	161, 576	
1939	12, 633	10, 204	6, 552	9, 132	99	311, 016	
1940 ¹	16, 615	3, 536	4, 590	6, 091	137	383, 328	
1941 ¹	22, 600	180	4, 952	8, 321	109	354, 940	

¹ In addition, 15,153 long tons of terneplate clippings and scrap valued at \$474,374 were exported in 1940, and 715 long tons valued at \$43,545 in 1941; not separately classified before January 1, 1940.

Foreign trade in miscellaneous tin manufactures and tin compounds, 1937-41

Year		neous tin actures	Tin compounds (pounds)		
	Imports 1	Exports 2	Imports	Exports	
1937 1938 1939 1940	\$50, 545 19, 453 20, 106 12, 429 2, 266	\$2, 532, 747 2, 064, 515 1, 098, 140 706, 425 1, 456, 353	1, 715 865 5 271 7, 224	218, 006 172, 467 204, 362 131, 019 137, 424	

Includes tin manufactures, n. s. p. f., tin foil, tin powder, flitters, and metallics.
 Includes tin dross and tin-bearing scrap material other than tin-plate scrap.

Exports of tin plate, etc., decreased 7 percent owing chiefly to loss of markets in Europe and Asia in consequence of the war. There were large increases in shipments to South America and Australia. For the 12-month period beginning December 15, 1941, 218,600 metric tons of tin plate have been allotted for export to Latin America by the Supply Priorities and Allocations Board at the request of the Economic Defense Board. Shipments to Latin America and Canada, which represented 58 percent of the total, increased 15 percent in 1941.

Tin plate, terneplate (including long ternes), and taggers tin exported from the United States, 1940-41, by principal countries and customs districts

Country and customs district	19) 4 0	19	41
	Long tons	Value	Long tons	Value
COUNTRY				4
Argentina	35, 037	\$4,097,755	48, 081	\$6, 431, 92
Australia	1.982	220, 547	50, 457	5, 883, 65
Brazil	56, 902	6, 495, 308	63, 506	7, 697, 84
British East Africa	21	2, 483	3, 695	386, 746
British Malaya	8, 613	1, 020, 259	13, 018	1, 459, 75
Canada	26, 524	2, 955, 990	30, 023	
Chile	8, 332	939, 107	8, 984	3, 453, 48
China	19, 610	2, 038, 933	1, 811	1, 096, 28
Colombia	4, 173	497, 180		184, 01
Cuba	10.918		3, 762	448, 66
Egypt		1, 315, 679	17, 271	2, 161, 00
	6, 282	748, 146	9, 107	965, 92
Greece	4, 106	440, 210	137	15, 28
Hong Kong	3, 339	340, 387	2, 537	257, 76
India, British	8, 573	1, 003, 567	6, 456	728, 04
ndochina, French	2,002	215, 918	19	1, 81
taly	3, 817	514, 171		
apan	9, 471	1, 112, 349		
Mexico	14, 769	1, 782, 045	16, 888	2, 070, 12
Netherlands	16, 633	2, 158, 170		-, 0.0, -0
Netherlands Indies	7, 349	818, 676	5, 697	731, 29
New Zealand	1, 790	19, 321	11, 739	1, 395, 36
Norway	5, 664	617, 428	22,100	1, 000, 00
Paraguay	133	17, 690	1, 819	223, 50
Peru	5, 215	562, 483	2, 843	334, 25
Philippine Islands	13, 947	1, 536, 056	6,091	694, 04
Portugal	15,622	1, 906, 663	3, 390	409. 91
Spain	9, 083	1, 072, 987	52	
Sweden	12, 100	1, 271, 691	49	5, 69
Switzerland				5, 03
	7, 678	1, 054, 833	10	1, 26
Furkey Union of South Africa	1,774	201, 939	35	3, 93
	24, 604	2, 754, 358	23, 909	2, 758, 64
J. S. S. R.	3, 348	509, 483	4, 664	698, 38
Jruguay	15, 694	1, 848, 135	11, 340	1, 423, 94
Venezuela	2, 237	261, 992	1,886	232, 96
Other countries	15, 986	2, 022, 956	5, 664	674, 57
CUSTOMS DISTRICT	383, 328	44, 374, 895	354, 940	42, 835, 14
Buffalo	6, 623	725, 085	7, 255	811, 39
Dakota	8, 439	978, 882	12, 940	1, 556, 15
Clorida	2, 430	282, 651	3, 854	495, 21
Maine and New Hampshire	2, 133	267, 375	2, 927	398, 14
Aaryland	135, 007	14. 911. 145	79, 172	9, 339, 80
Aichigan	6, 136	626, 747	5, 156	485, 77
Vew Orleans	7, 195	807, 022	8, 198	993, 94
New York	193, 844	23, 213, 471	218, 835	
hiladelphia	12, 119	1, 482, 326	218, 835 2, 494	26, 622, 55
Other districts	9, 402			289, 53
viioi distillis	9, 402	1, 080, 191	14, 119	1, 842, 62
	383, 328	44, 374, 895	.854, 940	42, 835, 14

PRICES

The average quoted price of Straits tin for prompt delivery in New York in 1941 was 4 percent higher than in 1940 but 4 percent under the 1937 average, which was the high for the last decade. On August 16, 1941, a ceiling price of 52 cents a pound was established by the Government. At the beginning of 1941 the quotation stood at 50.10 cents a pound, the lowest at any time during the year. By the middle of January prices began moving upward, at first fractionally and then sharply after the middle of February upon reports of an impending breach between the United States and Japan. The price reached 54.25 cents on February 20. This prompted the Office of Production Management to warn that bidding up of price would neither increase the total supply of tin in the country nor the amount available to particular consumers, no matter what they may

have paid for it. Consumers were advised that if supplies of tin from the Far East should be interrupted immediate steps would be taken to conserve domestic supply and that all stocks, whether in Government or private hands, would become subject to allocation upon the basis of national defense requirements. Prices dropped promptly to 51.25 cents on March 1 but rose again to 52.75 cents on March 20. A slight decline began the first part of April, as there had been a check in the German plans in the Balkans, the Italian fleet had suffered a defeat, and the British Army had met with some success in Africa, making the prospect of a Japanese move in the Far East much less menacing. Thereafter, as the progress of the war changed, prices again trended upward. In July aggressive moves by Japan into and around Indochina, the Vichy Government acceptance of Japan's occupation of that country, and freezing of Japanese assets by the United States and Great Britain caused sharp increases in price. On July 25 quotations reached the highest for the year-55 cents-an increase of almost 5 cents since the beginning of the year and more than 2 cents since July 1. As a result, the Office of Price Administration and Civilian Supply on July 28 warned that this increase might force imposition of a price ceiling on the metal in the near future and expressed the hope that prices would stabilize around the level of the Government buying price-50 cents a pound. At the same time the chief of the Tin Branch of the Office of Production Management requested consumers not to buy if their stocks exceeded by 50 percent what they held in June 1940. consequence, quotations promptly settled to 52 cents, nominal. Early in August, concern over shipments of tin from the Far East became so alarming (Russia began buying Straits tin in considerable quantity during August) that an inflationary situation developed which necessitated issuance of an order by the Office of Price Administration and Civilian Supply establishing a ceiling price of 52 cents a pound. effective August 16.

In London the monthly average price for standard tin, spot delivery, ranged downward from a high of £270.1 a long ton in March to the low of £255.8 in October. The average for the year approximated £261.1, compared with £256.4 in 1940. Dealings on the London Metal Exchange were suspended December 9. The price averaged £257.6 for the six market days that preceded the suspension of trading. The closing price on December 8 was £259.10. With the closing of the exchange, the British Government attained control of tin prices, supplying consumers with their essential requirements at a basic price of £275 a ton, for tin with a minimum of 99 percent, delivered at works. Singapore failed to function as a market after December 13. It was bombed by the Japanese on Sunday night, December 14, and penetrated by Japanese military forces on February

9, 1942.

Tin price data, 1925-29 (average) and 1937-41

	1925-29 (average)	1937	1938	1939	1940	1941
A verage prices:						
New York: 1					-	
Straits tincents per pound_	56. 64	51, 24	42. 26	50.18	49.82	52, 01
99.75-percent tin (English refined)do	(2)	54.06	42.07	3 47. 84	4 48, 79	(5)
99-percent tindo	55. 50	53.01	40.84	6 46. 35	4 49, 98	51.26
London: 7						
Standard tin £ per long ton .	254.6	242.3	189.6	226.3	256.6	\$ 261.6
Docents per pound 9	55.17	53.48	41.39	44.81	10 43.87	10 47.09
Premium allowed over standard:						
Straits £ per long ton	5.1	3.0	4.3	(2)	(2)	(3)
Bankado	6.9			(2)	(2)	(2) (2)
English do	7	. 4	1.3	(2)	(2)	(2)
Price indexes (1925-29 average=100):			1.0			
Straits tin (New York)	100	96	75	89	88	92
Copper (New York)	100	90	70	75	77	80
Lead (New York)	100	80	63	68	69	78
Straits tin (New York) Copper (New York) Lead (New York) Nonferrous metals 11	100	91	74	79	82	85
All commodities 11	100	88	80	79	80	89

¹ American Metal Market. ² Data not available. ³ 10-month average. ⁴ 7-month average.

¹¹ Based upon price indexes of U. S. Department of Labor.

Monthly price of Straits tin for prompt delivery in New York, 1939-41, in cents per pound 1

High 46. 80	Low	Average	High	Low	Average	High	Low	A mornage
	45 15					3-		Average
46. 37½ 46. 70 49. 25 49. 25 49. 10 48. 75 49. 50 75. 00	50.00	46. 38 45. 62 46. 21 47. 20 49. 02 48. 85 48. 52 48. 76 63. 50	48. 75 48. 00 49. 00 47. 50 55. 00 58. 00 52. 75 52. 62½ 51. 50		45. 94 47. 09 46. 82 51. 48	50. 50 54. 25 52. 62½ 52. 50 52. 25 53. 12½ 55. 00 53. 00 52. 00	50. 10 50. 25 51. 25 51. 50 51. 75 52. 12½ 52. 50 52. 00 52. 00	50. 16 51. 40 52. 05 51. 96 52. 16 52. 67 53. 35 52. 36 52. 00
56. 00 54. 00 52. 25	55. 00 50. 00 49. 00	55. 25 52. 24 50. 64	51. 87½ 51. 00 50. 20	51. 00 50. 20 50. 05	51. 49 50. 56, 50. 11	52. 00 52. 00 52. 00	52.00 52.00 52.00	52.00 52.00 52.00
4444	9. 25 9. 25 9. 10 8. 75 9. 50 5. 00 6. 00 4. 00	99. 25 46. 10 99. 25 48. 70 99. 10 48. 25 8. 75 48. 40 99. 50 48. 121 2 50. 00 50. 00 4. 00 50. 00 4. 00 50. 00 22. 25 49. 00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Metal Statistics, 1942, pp. 425 and 427.

STOCKS

Total year-end stocks of virgin tin in the United States in 1941, including metal afloat but excluding Government stock piles in the United States, were 4 percent below those of 1940. Visible supplies decreased 42 percent, while consumers' stocks rose 22 percent. Including tin afloat and Government stock piles, metal on hand at the end of 1941 was equivalent to about 13 months' supply at the average rate of consumption in 1941. In August the Metals Reserve Co. began releasing tin from stocks for industrial purposes. On December 18 all supplies of tin became subject to special allocation. Thereafter no tin, including metal afloat, could be sold or delivered without specific permission, and imports could be sold only to the Government. The Government stock pile of pig tin was greatly augmented,

⁸ January-August, nominal; September-December, 51.62 cents. ⁶ 9-month average.

⁷ Metal Bulletin, London, as compiled by International Tin Research and Development Council. ⁸ 11-month average.

Conversion of British quotations into American money based upon average rates of exchange recorded by the Federal Reserve Board of the Treasury.

Based upon free exchange rate.

so that by the close of the year 50,000 tons were on hand and in addition 45,600 tons of tin ore were awaiting treatment by the smelter,

which was being rushed to completion at Texas City.

During 1941 the Bureau of Mines canvassed tin consumers to determine stocks and use. According to these reports, the consuming industry had 54,100 tons of primary pig tin at plants at the end of 1941, including 34,950 tons held by tin-plate manufacturers. The industry also had 2,700 tons of virgin tin in transit or warehoused in addition to 880 tons of secondary pig tin on hand at the end of the year.

Stocks of virgin pig tin in the United States, December 31, 1937-41, in long tons

	1937	1938	1939	1940	1941
Location of stocks: Afloat to United States At landings in New York In licensed warehouses in New York 1. At landings in New York 1. At l	7, 678	4, 150	12, 663	22, 627	² 15, 000
	4, 106	1, 837	2, 415	6, 106	3, 129
	2, 279	3, 320	887	3, 073	371
Total visible supply 1Consumers' stocks 3	14, 063	9, 307	15, 965	31, 806	18, 500
	17, 678	17, 851	21, 111	4 46, 574	5 56, 842
Total stocks on hand	31, 741	27, 158	6 37, 076	6 78, 380	6 75, 342

¹ As reported by Commodity Exchange, Inc.

² Estimated.

Visible stocks of tin in the world and in the United States at end of each month, 1925-29 (average) and 1937-41, in long tons 1

Month	1925 (aver		19	37	19	38	193	39	19	40′	194	1
	World ¹	U.S.	World	u.s.	World ¹	U.S.	World ¹	U. S.	World	U.S.	World	υ.s.
January February March April May June July August September October November	18, 912 19, 620 18, 312 17, 765 19, 085 18, 250 18, 164 18, 339 18, 317 18, 356 19, 058 20, 557	3, 027 2, 803 2, 189 2, 384 2, 390 2, 675 2, 450 2, 425 2, 899	26, 341 27, 526 27, 168 27, 320 27, 073 28, 938 29, 371 26, 099 24, 858	5, 478 4, 956 5, 731 4, 741 5, 144 4, 810 6, 193 5, 850 3, 538 3, 280 5, 285 6, 385	29, 002 34, 872 35, 359 33, 051 35, 844 39, 119 41, 701 40, 544 38, 945 37, 145	5, 116 4, 458 4, 447 3, 679 4, 247 4, 071 5, 232 4, 573 4, 500 5, 060	40, 035 37, 788 37, 224 33, 715 30, 039 29, 615 26, 338 31, 168 38, 206 38, 035	5, 486 5, 806 3, 385 3, 387 4, 388 5, 339 3, 613 3, 413 3, 536 3, 283	33, 148 32, 339 32, 149 30, 562 31, 869 38, 736 38, 040 39, 450 40, 631 40, 046	2, 078 2, 635 2, 964 3, 677 5, 300 6, 567 6, 583 9, 438 6, 623 4, 362	44, 107 39, 971 38, 788 40, 777 38, 600 (2) (2) (2) (2) (2) (2)	7, 489 5, 195 5, 016 7, 205
Average	18, 744	2, 573	27, 449	5, 116	36, 149	4, 617	34, 962	4, 130	36, 435	5, 096	(²)	4, 50

Metal Statistics, 1942, pp. 417 and 419. In this table figures for world stocks, 1937-41, include carry-over in the Straits Settlements (on lighters and warrants) and carry-over at principal European smelters.
 Publication of statistics suspended due to war.

WORLD ASPECTS OF TIN INDUSTRY

WORLD MINE PRODUCTION

World mine production of tin appears to have established a new record in 1941 that exceeded the previous peak in 1940 by 3 percent. Complete official statistics for 1941 are unavailable, but reasonably accurate estimates of totals for the year can be made from the data at hand. Production in the countries participating in the International Control Scheme during 1941 was 4 percent higher than in

³ As reported to the Bureau of Mines; does not include tin in process or secondary pig tin.

<sup>Revised figures.
Includes 2.700 tons in transit in the United States and at other warehouses not contained in figures above for "at landings" and "in licensed warehouses."
Exclusive of Government purchases delivered.</sup>

1940, whereas that elsewhere was 7 percent lower. The output of the unrestricted producers comprised 10 percent of the total in 1941 compared with 11 percent in 1940, 18 percent in 1939, and 11 percent from 1925 to 1929.

Japan's conquest has shifted the balance of world tin resources. In 1938 the Allies controlled approximately 97 percent and the Axis Powers less than 3 percent of world output, whereas countries under Axis domination in 1942 controlled 66 percent of the 1940 production and those controlled by or accessible to the United Nations 34 percent. Production of tin in 1942 by sources controlled by and available to the United Nations has been tentatively estimated at 90,000 long tons, as follows: Bolivia, 45,000; Nigeria, 15,000; Belgian Congo, 19,000; United Kingdom, 2,500; Australia, 3,500; and others, 5,000 tons. The estimate excludes China because of doubtful access over the Burma Road.

World mine production of tin (content of ore), 1925-29 (average) and 1937-41, by countries, in long tons

[Compiled by B. B. Waldbauer]

Country	1925-29 (average)	1937	1938	1939	1940	1941
Restricted production:					7	
Belgian Congo	967	8, 084	8, 820	9, 663	10.000	2.00
Bolivia 2	37, 169	25, 128	25, 484	27, 211	12, 392	1 14, 44
Indochina Malay States:	691	1, 577	1, 599	1, 470	37, 940 2, 098	42, 190 1 1, 430
Malay States:	_,			-, -,	_,000	- 1, 200
FederatedUnfederated	54, 606	75, 117	41, 206	49, 525	h l	
Straits Settlements		2, 075	2,041	1, 994	85, 384	1 78, 000
Netherlands Indies		72	114	206	00,001	- 10,000
Nigeria.	33, 266	39, 133	27, 299	27, 755	43, 193	¹ 51, 000
Thailand (Siam)	8, 319	10, 782	8, 977	9, 427	12, 012	1 15, 000
I nanand (Siam)	8. 204	15, 786	14, 704	² 17, 325	17. 447	1 16, 250
Total signatory coun-					-	
tries	145, 453	177, 754	130, 244	144, 576	210, 466	218, 324
Inrestricted production:					= =	210, 321
Argentina	32	1, 423	1 000		l	
Australia	2 620	3, 256	1, 886 3, 329	1, 655	1, 481	921
Rurmo	0 000	7, 472		3, 500	(3) 1 5, 500	(3)
Cameroun, French	2, 220	231	7, 100	8, 536	1 5, 500	(3)
China 2	7, 085	12. 871	242	255	(3) 6, 249	(3)
Germany	98	1 100	11, 605	10, 422	6, 249	(3)
Germany	96		1 300	1 300	(3)	(3) (3) (3) (3) (3)
Japan	625	131	271	229	(3)	(3)
Mexico	020	2, 175	2, 186	1 1, 700	(3)	(3)
Morocco, French	4	373	249	289	345	` 212
Peru	4	14	27	(3)	(3)	(3)
Portugal 4	625	173	103	47	72	45
Portugal 4 Portuguese East Africa	625	1, 095	1, 037	1, 486	1, 721	2, 261
R hodesio.		6	4	7	8	(3)
Northern		5	3		(0)	4-1
Southern	15 (139	267		(3)	(3)
Somaliland, Italian		.00	207	451	(3)	(3) (3) (3)
South-West Africa	149	169	164	1 40		
Spain	145	127	110	156	137	120
Swaziland	138	108		(3)	91	▶ 50
Tanganyika	22	243	122	114	103	(3) (3)
Uganda	98	361	241	229	258	(3)
Union of South Africa	1, 174	537	399	346	(3)	(3)
United Kingdom 4	2, 658		558	482	518	`` 6 398
United States	2, 038	1, 987 168	1, 999 95	1, 630 34	1. 560	¹ 1, 600
Total nonsignatory					49	63
ountries	15 05-		1	l		
countries	17, 957	33, 164	32, 297	32, 100	25, 100	23, 300
rand total	163, 000	211, 000	163, 000	177, 000	236, 000	242, 000

 $^{^{\}rm 1}$ Estimates derived in part from American Bureau of Metal Statistics and Engineering and Mining Journal.

Exports.
 Exports.
 Restricted production basis from 1934-36, inclusive.
 Islanuary to October, inclusive.
 January to November, inclusive.

¹¹ Tin, Future Tin Supplies: February 1942, p.1.

WORLD SMELTER PRODUCTION

The large tin-smelting plants of the Straits Settlements and those of Netherlands Indies have been destroyed or put out of commission, as they have fallen into enemy hands. Nevertheless, during the greater part of 1941 these plants operated at a very high rate. smelter at Penang stopped accepting ore only shortly before December 19, when the island was captured by the Japanese. At Singapore, smelting was slowed in December as shipments of concentrates from mines came to a standstill, and by the end of January 1942 it was reported that only clean-up work was being done. It is understood that by the time Singapore surrendered all tin at Palau Brani where the plant was situated had been sent away. Presumably smelting continued throughout the year on the island of Banka and did not cease until the early part of February 1942. Ores and concentrates continued to flow to the United Kingdom from Nigeria and Bolivia. Smelter capacity has been expanded in the Belgian Congo. South Africa has resumed smelting operations on a small scale, and in Canada a smelter of low capacity is under construction in British Columbia. Progress was made in constructing the United States Government tin smelter at Texas City so that production of tin was begun in April

World smelter production of tin, 1925-29 (average) and 1937-41, by countries, in long tons 1

(Compiled	by	B.	В.	Waldbauer	

Country 1	1925–29 (average)	1937	1938	1939	1940	1941
Argentina Australia Belgian Congo Belgium 3 British Malaya China Germany 7 Italy Japan Mexico Netherlands Netherlands Indies 6 Norway Portugal Thailand (Siam) United Kingdom 3	720 5 88, 855 6 7, 080 3, 444 606 (2) 6 1, 000 14, 749 (3) 9 2	734 2, 907 2, 313 4 5, 500 5 95, 372 11, 100 2, 671 1, 850 (2) 3 26, 600 13, 757 241	2, 093 3, 229 2, 283 4 6, 700 63, 746 11, 200 3, 000 271 1, 900 (2) 3 26, 400 7, 207 254 39	1, 080 3, 300 2, 124 43, 100 5 81, 536 10, 850 3 4 3, 600 3 4 3, 600 3 4 2, 000 3 14, 600 13, 941 283 30 (2)	881 (2) 7, 832 (126, 945 22, 992 (2) 31, 800 116 2, 967 22, 035 (3) 781 (2)	768 3 5,000 15,000 15,000 3 10,000 (2) (3) (2) (3) (4) (5) (7) (8) (9) (1,48) (9) (1,48) (9) (1,48) (1,48)
_	165, 000	197, 000	163, 500	174, 100	(2)	(2)

The Union of South Africa resumed smelting operations on a small scale in 1939; 143 long tons were reported for the fiscal year ending July 31, 1941. 3 Estimated.

² Data not available.

INTERNATIONAL TIN CONTROL SCHEME

With the close of 1941 the International Tin Control Scheme officially terminated. Although recommendation was made to extend it for another 5 years, the war with Japan prevented any reasonable chance for it to operate, and formal ratification by signatory countries has not been completed. The scheme was initiated

Y earbook of American Bureau of Metal Statistics.

Exports plus difference between carry-over at end and beginning of year.

⁷ Includes production of some secondary tin.
Average for 1926-27.
Less than 1 ton. Exports.
Estimated production in 1929.
Average for 1926-28.

on March 1, 1931, for 3 years. Subsequently it was renewed for 3 years, and again for 5 years to December 31, 1941. The object of the control scheme was to balance production and consumption and prevent rapid and severe oscillations of price by fixing quarterly production quotas, based upon standard tonnages, according to variations in price and stocks. To overcome the time lag which prevented this from being done rapidly enough, so-called buffer stocks of tin were introduced. The first buffer stock, introduced July 10, 1934, and consisting of 8,282 tons, was profitably wound up at the end of 1935. The second stock of 15,000 tons was established July 1, 1938, and was liquidated the latter part of 1939. The scheme also included provisions for research with a view to stimulating tin consumption. The International Tin Research and Development Council was created with research facilities in England and later at the Battelle Memorial Institute, Columbus, Ohio, and with a statistical work was transferred to England following the German invasion of the Netherlands. Publication of the statistics ceased at the close of 1941 owing to the war in the Pacific.

The quarterly quotas during 1941 were set at 130 percent of standard tonnage; this would have permitted participants to mine a total of 272,960 tons, virtually full capacity. Unfortunately, this fell short of accomplishment by about 20 percent, and only two countries—Netherlands Indies and Nigeria—could meet their full quotas.

The question of renewal of the control scheme was discussed during At a meeting of the committee in March, it was announced that a recommendation for continuation of the agreement for a further period from January 1, 1942, had been sent to the signatory governments, subject to certain adjustments. Satisfactory progress was reported at the September meeting, when a preliminary new draft was discussed. Revised standards calculated from actual outputs in the year ended June 30, 1941, were proposed and as announced at the time totaled 231,000 long tons compared with 206,970 tons under the scheme then in effect. Quotas of all participants were raised except those of Bolivia and Thailand, which were lowered. French Indochina was omitted from the list of countries participating. After further discussion, standards for all countries except Thailand were finally revised upward, and a new total was set at 251,400 tons. This was agreed to at a meeting of the committee in London December 1, 1941, and, although Thailand refused to accept, renewal for 5 years was nevertheless recommended. The standard tonnages proposed for the new agreement were:

Polytion Committee Old	New
Belgian Congo 15, 035	20, 178
Bolivia	46, 768
77 OOF	95, 474
	55, 113
Nigeria 39, 053 Thailand 10, 890 18, 628	15, 367
18, 628	18, 500
206, 970	251 400

The standard tonnages agreed upon were based on exports from July 1, 1940, to June 30, 1941. The quota for the first quarter of 1942 was fixed at 105 percent, corresponding closely to the 130 percent

of the standard tonnages under the expiring agreement. Owing to the war in the Pacific, the agreement was not formally adopted.

Although the scheme has officially terminated, a framework of the organization has been retained and will continue to function informally.

WORLD CONSUMPTION

Apparent world consumption of tin in 1941 is estimated to have totaled 175,000 long tons—about 3 percent above 1940. Details by countries are unavailable. Estimated 1942 requirements of U. S. S. R. have been given as 15,000 tons and for the British Empire 35,000 tons, of which 25,000 would be for the United Kingdom and the remainder for other components of the Empire.

Apparent tin consumption of the world, 1926-29 (average) and 1936-40, by countries, in long tons ¹

Country	1926-29 (average)	1936	1937	1938	1939	1940 *
Belgium	1, 231	1, 336	1, 520	1,618	1, 217	900
Canada	2, 346	2, 164	2,625	2, 355	2,601	3,000
Czechoslovakia	1, 513 10, 260	1,684 9,748	1, 731 9, 175	1, 560 9, 049	(3) 8,300	(³) 6,000
FranceGermany 4	12, 444	9, 164	12, 368	13, 774	13,000	10,000
India, British	2,704	2, 293	2, 595	2, 494	3, 131	3, 500
Italy	4, 268	3, 928	3,601	4,618	4, 750	4,000
Japan	4, 506	6, 403	8, 190	10, 963	11, 184	12, 500
Netherlands	980	1, 284	1,470	1,400	1, 220	1,000
Poland	589	1,322	1, 272	1,819	(3) (3)	(3)
Spain	1, 565	661 1,692	942	1, 082 2, 883	2,500	1, 500
SwedenSwitzerland	1,373 1,742	1, 109	1, 889 1, 100	1, 259	1, 101	800
United Kingdom	21, 988	21, 860	25, 971	18, 290	27, 279	32,000
U. S. S. R	3, 791	9,664	25, 125	16, 174	10,000	8,000
United States	76, 539	73,039	86, 663	50, 724	70, 460	76,000
Other countries	15, 036	12, 549	12, 863	11, 438	⁸ 1, 816	(3)
	162, 875	159, 900	199, 100	151, 500	166, 500	169, 500

As estimated by the Tin Research and Development Council.

Denmark and Norway only. Other countries included in total.

REVIEW BY COUNTRIES

Argentina.—Both mine and smelter output of tin in Argentina was considerably less in 1941 than in 1940. According to Ross Field, up to 1940 the Pirquetas lode mine had produced 6,399 metric tons of concentrates containing 1,742 tons of tin. The ore reserves, as of June 30, 1940, amounted to 72,978 dry tons with a tin content of 2,379 tons, which at the present rate of production will last 2½ years. The Pircas Creek placer high-grade gravel is nearly worked out, and plans have been made to work lower-grade dirt, which will prolong the life of the placer at least 4 years, possibly longer. Annual consumption requirements are estimated at 1,100 tons. There is an import duty of 0.27 peso per kilogram of metallic tin.

Australia.—Some of the smaller mines in New South Wales experienced a difficult period in 1941 through prolonged drought. The Ardlethan tin field in New South Wales, which has been of considerable importance, appears to be reaching its final stages. Some tin-

Metal Bulletin estimate based on figures of Research Institute.

Estimate included in total.

Includes Austria; also the Saar, 1936-40.

¹³ Field, Ross, The Pirquetas Mine, a Tin-Silver Property in Argentina: Eng. and Min. Jour., vol. 142, No. 7, July 1941, pp. 35-39.

mining companies hitherto operating in Malaya are searching for mining properties in Australia. An increase in the price of tin in Australia to £A371 a ton (a rise of £A51 a ton) was announced on April 30 by the Commonwealth Economic Advisor to encourage increased production from low-grade deposits. It is proposed to establish a pool by allocating £A10 a ton for developing low-grade ores. It has been estimated that Australia will produce 3,500 tons of tin in 1942, all of which, it is assumed, will be consumed locally. 13

Belgian Congo.—The production of tin in the Belgian Congo in 1941 exceeded that in 1940 by about 17 percent and almost equaled smelter capacity (which, according to latest pre-war statistics, was 15,000 tons a year). Some appreciable expansion in output is anticipated during the first 6 months of 1942, as production was to be at the rate of 105 percent of the 20,178 tons permissible annual figure proposed in the unratified control scheme. To increase output, all mining companies have been placed under direct State control. There are three important tin-producing areas—Katanga, Maniema, and Ruanda-Urundi. Tin concentrates are obtained from both lode and placer deposits. The Geomines smelter at Manono treats custom ores as well as company ores. The Symaf tin-mining concern was considering erecting a smelter at its property, but it is not known how far

this progressed.

Bolivia.—Owing to Japanese occupation of Malaya, Netherlands Indies, and Thailand, Bolivia is now the principal source of tin for the United Nations. The tin content of ore exported from Bolivia in 1941 was 42,199 long tons compared with 37,940 in 1940. Despite the 11percent increase, exports were 17,637 tons under the permissible quota of 59,836 tons allowed under the control scheme. About equal portions of the exports went to the United States (for treatment by the new smelter at Texas City) and to Great Britain. Production in 1941 was retarded by labor shortage and lack of railroad transportation from mines to Pacific ports. A standard of 46,768 tons was proposed for Bolivia under the new restriction scheme, which expired at the end of 1941. Production for 1942 has been estimated at 45,000 Few new mines have been discovered recently, and old mines are not being developed. The Director General of Mines of Bolivia has estimated 430,000 tons to be the total supply of tin available Engineers of the United States Bureau of Mines have been studying the problem of accelerating output and improving the grade of concentrates produced. Most of the low-grade concentrates are shipped by small producers (the large producers include Patino, Hochschild, and Aramayo), who are without means for applying technical knowledge and modern methods to their mining operations. With proper development of their operations, the Director General of Mines predicts that Bolivia should be able to produce about 70,000 tons of tin annually. Recovery in the more efficient mills is 80 percent, while poorer mills obtain 50 percent or less and there are millions of tons of old tailings, mine dumps, and stope fillings assaying 0.6 percent tin or better—in some cases as high as 2 percent. P. H. Reagan states "the recovery of this metal offers an opportunity for the metallurgists who can solve the problem." 14

Tin (monthly bulletin of The Tin Producers' Association), February 1942, p. 1.
 Reagan, P. H., Bolivia: Eng. and Min. Jour., vol. 142, No. 8, August 1941, pp. 156-157.

Upon the basis of increases in cost of production, transportation, and insurance, producers campaigned during 1941 for an increase in the price paid them for tin ore. The outcome of this resulted in an amendment to the agreement with Metals Reserve Co. on June 30, 1942, retroactive to January 1, 1942, changing the buying price from 48½ cents f. o. b. U. S. ports to 60 cents f. o. b. Chilean and Peruvian ports and providing for acceptance of concentrates equivalent to 30,000 tons of fine tin a year, suppliable at the option of sellers, in contrast to the 18,000 tons agreed to originally. Although Patino Mines and Enterprises Consolidated does not participate in the Metals Reserve contract it will profit by this new arrangement. Under provisions of a contract with the British Government, the company is entitled to receive settlement upon the basis of the Metals Reserve

Co. buying price.

British Malaya.—On December 8 the Japanese invaded Malaya, landing at Kota Bharu airdrome across from the Thailand border in the northern part of the peninsula. Thereafter tin-mining activities were disrupted and ceased entirely as fighting raged toward Singapore. However, the rate of production at tin mines and smelters during the year up to December had been about the same or slightly higher than in the previous year. The 1941 quota for Malaya under the Tin Control Scheme was 100,536 long tons, but up to the end of November only 74,367 tons had been exported. As mine production virtually ceased in December, it has been assumed that total output in 1941 was 78,000 tons or about 9 percent less than in 1940. Ores imported for reduction at smelters in the Straits Settlements from sources other than Malaya during the first 11 months of 1941 totaled 37,293 tons compared with 39,643 tons in the same period of 1940 and 45,576 tons in all of 1940. During the first 10 months of 1941, the smelters shipped 108,855 tons of pig tin, which up to then had been exported at a rate a little above that of the previous year. On December 6 stocks of concentrates at Singapore and Penang are believed to have amounted to the equivalent of 9,975 tons of fine tin, slightly more than half of which was at Penang. Stocks of refined pig tin at Singapore and Penang on July 31 totaled 3,430 tons, of which about 80 percent was at Penang; these had been reduced somewhat, but as of November 30, the carry-over in the Straits Settlements exceeded 2,700 tons, of which about 75 percent was at Penang.15

Strict censorship prevailed during the latter part of 1941, and publication of figures relating to mine output was prohibited; but reports indicated almost complete cessation of mining operations toward the end of the year, owing to the Japanese invasion. Shipping difficulties also affected output, and enemy action caused the loss at sea of some mining equipment. With the advance of the Japanese army toward Singapore, shipments of concentrates from the mines ceased. Smelting slowed so that by the end of January 1942 the Singapore smelter was doing clean-up work only. By the time Singapore surrendered on February 15, 1942, all tin at Pulau Brani in Kepple Harbor where the smelter was situated had been sent away. Reliable information on the condition of the smelter (which had been the largest in the world) is not available, but it may have been damaged when the harbor was bombed. The smelter at George Town, Penang, stopped accepting ore only shortly before

¹⁵ American Metal Market: Vol. 48, No. 249, December 30, 1941, p. 5.

the Japanese captured the island on December 19, so that it would seem that some tin fell into the hands of the invaders. Although there is no definite information on the quantity so acquired, reports have stated that 1,500 tons were awaiting shipment at the time, and Japanese statements have indicated that some 1,300 tons were thus obtained. It has not been definitely established whether the George Town smelter was destroyed, although A. Strauss & Co., Ltd., of London reported that it had been. The Japanese, however, have claimed that the smelter and furnaces were intact when they seized The smelter at Butterworth (on the opposite shore of the mainland) was put out of action, according to the British Under Secretary of War. 16 This smelter was only reopened in June 1940 after remaining closed for 9 years during which it served as an orebuying establishment. Dredges and other mining equipment and power plants were destroyed, however, as the British troops retired; and as long as war continues it will be extremely difficult for the Japanese to re-equip these plants. Some authorities consider that 5 years must elapse before complete recovery of output is possible. 17 A Commission of Inquiry, appointed in September 1940 by the

High Commissioner to investigate the management of the Mines Department of the Federated Malay States, disclosed corruption and bribery. A number of officers of the Mines Department have

been prosecuted, convicted, and given prison sentences. 18

Burma.—The property of Mawchi Mines, Ltd., 20 miles east of Toungoo, which is in territory occupied by the Japanese, is reported to have been put out of commission for at least 18 months before

the staff departed.

Canada.—No commercial ore bodies of cassiterite are known in Canada. At present, however, tin is being produced from zinc tailings at the Sullivan mine, British Columbia. Occurrences of tin have been found in New Brunswick, Northwest Territories, Ontario, Manitoba, Yukon, and Nova Scotia. Tin was separated from Sullivan lead-zinc ore some years ago in experimental work by the Consolidated Mining & Smelting Co. of Canada, Ltd. The company. which has continued these experiments from time to time, states in its 1941 annual report that the tin concentration plant commenced operations on March 1, 1941, and functions very satisfactorily. production of refined tin will commence in April 1942. content of the ore is so small that its recovery is of more academic than commercial importance. * * A process has been developed for the electric smelting of tin. According to H. R. Banks, superintendent, Sullivan concentrator, "On the basis of present operation the Sullivan production will approach 500 tons of refined tin per year." 19 The smelter is at Kimberley.

China.—No official records of Chinese tin output are available, although this country has been an important producer for centuries. Records have been confined to exports, which have averaged 10,000 long tons annually during recent years. The Minister of Economic Affairs of the Chinese National Government, Chungking, roughly

¹⁶ Mining Journal (London), Demolitions at Penang: Vol. 216, No. 5553, January 24, 1942, p. 43.

17 Scott, E. Baliol, Tin in 1941; Mining Jour. (London), Ann. Review, No. 1942, April 11, 1942, p. 11.

18 Mining Journal (London), Malaya: Vol. 215, No. 5548, December 20, 1941, p. 90.

19 Banks, H. R., Tin at the Sullivan Concentrator: Proc. Ann. Meeting, B. C. Division, Canadian Inst. Min. and Met., October 10, 1941, Canadian Min. and Met. Bull. 356, December 1941, Trans., vol. 44, 1941, pp. 611-622.

estimates that 17,278 metric tons of tin were produced in 1940 in

unoccupied China.20

Nearly all the ore produced is smelted in China, although during the last 5 or 6 years small tonnages were being shipped to smelters in the Straits Settlements. Pig-tin imports have not been large, and very little is known about the quantity consumed. Since 1937 exports have declined steadily. Tin is a Government monopoly, and exports are controlled through the Yunnan Consolidated Tin Corporation and the National Resources Commission. The Government has been striving for an annual export of 15,000 tons of tin. Yunnan, Kwangsi, and Hunan Provinces are the principal sources, the bulk of the output coming from Yunnan. Estimates of production in Yunnan during the first quarter of 1941 were 1,352 tons, with stocks of about 7,000 tons on hand. Approximately 2,400 tons of pig tin were shipped to the United States via the Burma Road during the first 9 months of 1941.

A Chino-Russian barter agreement provides for repayment of Russian credits with shipments of tin and other materials from China to Russia. The United States, through the Metals Reserve Co., has arranged to purchase wolframite, antimony, and tin from the National Resources Commission of China to the total value of \$90,000,000, but no tin had been received by Metals Reserve Co. for

stock-piling up to the end of 1941.

Germany.—There are no important tin mines in Europe, and Germany formerly depended entirely on imports from the Far East and Bolivia for her requirements. Germany is believed to have had large stocks in 1938 and to have acquired additional stocks in the Netherlands. Substitutes have been developed for many uses, such as in the food-packing industries, and all available tin is reserved for highly essential applications. Germany has been outstanding in the reclamation of scrap tin and other metals for many years. Substantial amounts of cadmium, a substitute in some uses of tin, are produced in Germany and Poland. Despite these efforts to eke out a tin supply, some authorities assert that Germany is facing a critical tin shortage. According to Tin, 21 the official bulletin of the Tin Producers' Association—

Germany's tin reserves must be fast diminishing. Her shipbuilding, aircraft building, and armaments program for 1939 and 1940, if it were as extensive as neutral observers would have us believe, must have almost exhausted Germany's reserves of tin. Whichever way one may approach the problem it becomes clearly evident that the tin shortage must be assuming alarming proportions in Germany. How long she can go on without tin, or whether she has successfully exploited a substitute are matters upon which it is naturally impossible to offer any concrete facts. Submarines, ships, aircraft, tanks, guns—all these things are virtually impossible without tin. Germany cannot go on producing war weapons unless she gets stocks of tin. Is she getting those stocks? From all statistics and information available it would seem that she is not. In fact, it would appear that Germany is now facing a severe shortage of tin. If this is so it is almost certain that we shall once again see a deterioration in her aircraft production, in her shipbuilding program, and, what is more important, in her fire power, both in bombs and shells. Experts talk glibly of Germany's shortage of oil and the effects of the food blockade, but the tin shortage may do more to sabotage Germany's war effort than either of them.

Smith, A. Viola, Mineral Resources, Production and Trade of China: Bureau of Mines, Foreign Minerals Quarterly, vol. 4, No. 2, October 1941, p. 7.
 Tin, Tin and Germany's War Effort: April 1941, p. 4.

Italy.—The tin resources of Italy are insignificant compared with requirements. It is reported that all tin-bearing equipment in public bars and restaurants has been requisitioned by the Government.

Japan.—On August 1, 1942, Japan possessed sources formerly supplying two-thirds of the world's tin, as a result of military operations begun with its attack on Pearl Harbor, December 7, 1941. The annual demand for tin in Japan in peace time was about 4,400 tons, of which 20 percent was supplied from its own mines and the remainder imported. Japan is believed to have accumulated a stock pile of tin before hostilities began, but war needs have probably increased to 12,000 to 15,000 tons a year, of which only about 5,000 tons can be supplied by Japanese smelting facilities. Therefore, unless the smelters in the Straits Settlements and Banka can be operated, Japan will be somewhat handicapped until its own smelting capacity has been increased. Ample ore is available in Thailand and Indochina to meet Japanese requirements. It has been reported that the refineries at Penang, Singapore, and Banka are to be operated by Mitsubishi Mining Co. and the Togo Mining Co.

Mexico.—The small quantity of tin produced annually in Mexico is obtained by native miners, chiefly from scattered deposits. A refinery of small capacity at San Luis Potosi produces pig tin, all of which is consumed in Mexico. Ores that cannot be treated in Mexico are sold for export. The Metals Reserve Co. has contracted for the purchase of 3,630 tons of tin concentrates from Mexico. By Presidential decree, effective July 15, 1941, exportation of tin from Mexico to any non-American country is prohibited. Tin deposits of Mexico recently have been investigated by the United States Geological Survey. The problem of concentrating low-grade tin ores is being studied with a view to establishing a central treating plant at Aguascalientes.

Netherlands Indies.—The permissible export quota of Netherlands Indies for 1941 was 50,772 long tons; up through November, 48,805 tons had been exported and as additional quantities were doubtless shipped during December the total for 1941 has been estimated at 51,000 tons, or about 18 percent more than in 1941. Production and smelting operations presumably continued up to the end of January 1942 or shortly before Japanese planes came over Banka on February Japanese troops landed on the west coast of Billiton on April 10, 1942, according to a broadcast from Tokyo. The smelters on Banka were at Muntok, Pangkalpinang, and Belinjoe. It is believed the smelting plants were destroyed and all dredges with their machinery sunk to prevent them from falling into Japanese hands. Ores imported into the United States from Netherlands Indies during the latter part of 1941 contained 6,220 tons of tin. The Billiton Co. and the Netherlands Government contracted with the Metals Reserve Co. for the shipment of tin concentrates at the rate of about 2,500 tons (equivalent to 1,875 tons of refined tin) monthly, starting with Under the agreement Metals Reserve Co. was to acquire tin concentrates containing 20,000 tons of fine tin to be converted at the Texas City smelter upon the basis of 50 cents per pound, less smelting charges and penalties for impurities.

Nigeria.—Tin mining was greatly accelerated in Nigeria during 1941; consequently, production no doubt reached an all-time peak. The output for the year is estimated at 15,000 long tons of tin. Exports had exceeded 13,200 tons by October; statistics for November

and December are not available. The 5-year contracts between Nigerian producers and English smelters expired during 1941. Owing to the war, new contracts were made for 1 year only at increased rates. The International Tin Committee proposed 15,367 tons as the standard for Nigeria in the new unratified 1942 restriction scheme, with a permissible production quota of 105 percent thereof for the first 6 months of 1942. Estimates indicate a total production of 15,000 tons in 1942. The provisions of the Lend-Lease Act have been made available to mining companies of Nigeria to augment facilities for increasing output. Nigeria is at present the chief source of supply

for tin within the British Empire.

Union of South Africa.—The Zaaiplaats Tin Mining Co., Transvaal, which resumed operation of its small reverberatory furnace in 1939, has expanded smelting facilities so as to treat concentrates from Northern Rhodesia, Mozambique, and Swaziland. The output so far has not been large, but during the fiscal year ended July 31, 1941, the company produced 143 long tons of ingot tin compared with 57 tons in the previous year. This establishment operated a smelter during the First World War and sold the metal locally, chiefly to South African railway companies. During recent years, production in the Union of South Africa has averaged 900 tons of concentrates contain-

ing 54 percent to 68 percent metallic tin annually.

United Kingdom.—Tin consumption in 1941 amounted to 30,000 long tons compared with 29,225 tons in 1940. Every effort is being made to restrict consumption to 25,000 tons in 1942. Stocks of tin in official warehouses on December 8, the last date information was issued, were 6,517 tons. Deliveries of pig tin during the first 6 months of 1941 amounted to 5,366 tons. Imports of ore from Bolivia and Nigeria apparently were higher than in 1940 and ore receipts for smelting probably were more than adequate to meet requirements. In recent years smelter output has averaged 34,700 tons of tin annually, and doubtless could be greatly expanded as production rose to 55,200 tons in 1929. The Cornwall mines produced 1,600 tons of tin, slightly more than in 1940. As part of a Government drive to increase production of Cornish tin, the Ministry of Supply has agreed to bear all risks and costs necessary to increase output. The tin-mining industry has received "essential works" status so that workers can neither be dismissed nor leave without plausible explanation, and working conditions are guaranteed.

The London tin market has been closed since December 8, 1941. The Government has assumed control of tin prices, industrial stocks, international purchases, and sales. Tin and various alloys containing tin require license for export. Acquisitions of tin, scrap, ore, concentrates, and residues are subject to license. On February 16, 1942, the price of grade A tin, delivered buyers' premises, was fixed at £275

a ton.

U. S. S. R.—Although tin deposits are known in several districts of the Soviet Union, none appears to be capable of extensive development, and only small quantities of tin seem to have been produced there. The Soviet tin demand is therefore accurately measured by its imports, and these indicate a remarkably rapid increase in consumption during recent years. Imports are not available beyond 1937, but information gathered from the trade returns of exporting countries (Netherlands, Great Britain, Belgium, etc.) indicates that

shipments to Russia during 1937 and 1938 averaged 20,650 tons a year. Russia probably entered the war with a substantial reserve stock, but its active buying in August 1941 suggests that tin may have become scarce at that time. Under a barter agreement with China, four Russian credits (since 1938 totaling between \$200,000,000 and \$250,000,000), with repayment in 5 to 10 years, have been made against shipments of tin and other materials from China to Russia.

An Anglo-Soviet trade pact signed in Moscow on August 16 provided, among other things, for furnishing supplies of tin to Russia by Great Britain. Soon thereafter Russia began buying Straits tin in the East and probably could obtain shipments totaling as much as 9,000 tons. Additional quantities are believed to have been purchased for forward delivery, but it is not known whether British mer-

chants have been able to cover these commitments.

ARSENIC AND BISMUTH

By HERBERT A. FRANKE 1

SUMMARY OUTLINE

	Page	!	Page
Arsenic	731	Bismuth	738
Summary	731	Summary	738
Salient statistics	731	Production	739
Production	732	Consumption	739
Consumption	733	Prices	
Prices.		Foreign trade	
Foreign trade		World production and consumption	741
Technologic developments	736	•	
World production and consumption	736		

ARSENIC

SUMMARY

Domestic production of white arsenic in 1941 exceeded all previous records and increased 30 percent over that of 1940. Consumption also reached a new peak and exceeded that of 1940 by 28 percent. Demand for white arsenic was so great that producers' stocks neared exhaustion in the fall of 1941. A shortage of arsenic is forecast for 1943 unless production facilities are expanded because of the increased insecticide, military, and other requirements in 1942 and 1943. May 22, 1942, arsenic was put under allocation control. Quotations on domestic white arsenic advanced from 3½ cents to 4 cents a pound in August 1941.

Salient statistics for arsenic in the United States, 1925-29 (average) and 1938-41

			•		
	1925–29 (average)	1938	1939	1940	1941
WHITE ARSENIC					
Domestic sales: 1 Crude	10, 769 (4) 2, 69	9, 428 3, 732 14, 238 25, 098 1, 40 1, 73	17, 070 5, 369 14, 674 33, 913 1. 00 1. 42	16, 688 6, 651 9, 929 31, 668 1. 10 1. 47	28, 661 6, 123 2 7, 578 40, 442 1. 47 2. 24
OTHER ARSENICALS Imports for consumption: Metallic arsenicpounds Sulfide (orpiment and realgar)do Arsenic acid (H ₂ AsO ₄)do	208, 672 575, 506 14, 692	16, 868 241, 602 55		13, 228 220, 445	² 2, 240 ² 11, 025
Calcium arsenate do Lead arsenate do Sheep dip do Paris green and london purple do Sodium arsenate do	1, 452 6 2, 133 135, 929 4, 402 82, 105	168, 932 103, 556 11, 881		432, 785 341, 556 25, 603	³ 1, 230, 960 ³ 264, 200 ³ 4, 000
Exports: Calcium arsenate dodododo	⁷ 2, 159, 168 ⁷ 1, 328, 828	5, 242, 882 1, 021, 345	6, 731, 103 1, 712, 583	4, 879, 391 2, 900, 250	2, 675, 097 3, 749, 115

731

Includes sales by domestic producers for export.

Figures cover 9 months only; data for last quarter of the year are confidential.

Adjusted for exports by domestic producers.

Complete data not available.

Complete data not available.
 Actual consumption.
 10,467 pounds in 1925 and 200 pounds in 1929; no imports from 1926 to 1928, inclusive.
 Average for 1928-29; exports of calcium arsenate and lead arsenate not separately recorded by the Department of Commerce prior to 1928.

Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines from records of the

World production of new arsenic, which probably set a record, was substantially controlled by the Allies, but because it controlled the output and stocks in Sweden, plus its own production, the Axis had the greatest supplies available.

PRODUCTION

Domestic smelters and refineries operated their roasting and subliming facilities at virtually maximum capacity in 1941 to produce 32,481 short tons of white arsenic. Producers of marketable arsenic included the American Smelting & Refining Co., Anaconda Copper Mining Co., and U. S. Smelting, Refining & Mining Co. which derived their product from baghouse and Cottrell dust, speiss, and accumulated smelter-refinery byproduct residues. Of the production, 83 percent consisted of crude (black) arsenic and 17 percent of refined arsenic.

Crude and refined white arsenic produced and sold by producers in the United States, 1937-41

		Crude			Refined		Total			
Year	Produc-	Se	ıles	Produc-	Sa	les	Produc- tion	Sa	les	
	tion (short tons)	Short tons	Value 1	tion (short tons)	Short	Value 1	(short tons)	Short	Value 1	
1937	9, 936 12, 619 17, 499 18, 244 26, 843	10, 903 9, 428 17, 070 16, 688 28, 661	\$290, 733 264, 004 343, 000 365, 700 844, 793	6, 878 4, 066 4, 842 6, 742 5, 638	6, 733 3, 732 5, 369 6, 651 6, 123	\$250, 822 129, 018 152, 500 195, 600 274, 527	16, 814 16, 685 22, 341 24, 983 32, 481	17, 636 13, 160 22, 439 23, 339 34, 784	\$541, 55 393, 02 495, 50 561, 30 1, 119, 32	

¹ Partly estimated.

Production, as reported by the Bureau of Mines, is measured after the low-grade flue dusts containing 20 to 60 percent As₂O₃ are subjected to a roasting or preliminary refining process. This crude arsenic usually contains 93 to 98+ percent As₂O₃. Most of the crude arsenic and a small quantity of better-grade arsenic obtained in certain parts of smelter flue systems are marketed without further refining. Some crude arsenic is refined further. Bureau of Mines statistics on refined arsenic include only products containing 99 percent or more As₂O₃. The arsenic reported as a refined product is not duplicated in the crude arsenic statistics.

It is anticipated that the record 1941 output will be duplicated in 1942. All accumulated arsenic residues in the United States, however, were consumed in 1940 and 1941, and producers will depend largely on current accelerated byproduct recoveries. The American Smelting & Refining Co. has some surplus stock of residue available at San Luis Potosi, Mexico, and is treating it at its El Paso (Tex.) plant. Getchell Mine, Inc., Red House, Nev., installed a Cottrell electrical precipitator unit, two 260- by 7½-foot rotary kilns, and other equipment in 1941 and will become a new producer in 1942, recovering the arsenic by roasting gold ore (which contains arsenopyrite, orpiment, and realgar) before cyanidation.² In 1941 the com-

² Wise, Fred, Roasting Improves Gold Recovery at Getchell Mine: Min. Cong. Jour., vol. 28, No. 4, April 1942, pp. 48-51.

pany produced a substantial quantity of crude arsenic and made a

few small trial shipments of the low-grade material.

Although smelter-refinery facilities have been extended, requirements in 1942 are expected to be much greater than future byproduct production, and it appears that present producing facilities must be substantially expanded. Arsenical ore reserves of the Western States are abundant. In World War I, when a shortage of arsenic developed owing partly to war conditions but mainly to the demand among farmers who had been instructed regarding the merits of arsenical insecticides, several new enterprises were started in the West. A substantial quantity of arsenic was produced from an operation at Gold Hill, Utah. The Jardine Mining Co., Jardine, Mont., which ceased byproduct arsenic production at its gold-mining property in 1936, still possesses its arsenic recovery equipment and has arsenic values in its gold-tungsten ore.

The Anaconda Copper Mining Co. continued to be the sole domestic producer of metallic arsenic in 1941 and increased its output 25 percent over that in 1940. The Rare Metal Products Co., Belleville, N. J., as before, was the only domestic producer of commercial arsenic

sulfides.

CONSUMPTION

Data on actual consumption in 1941 were obtained by the Bureau of Mines in a special consumer survey conducted at the request of the War Production Board. Results of the survey are being with-

held at the request of the War agencies.

In 1941 calcium arsenate was used chiefly to combat the cotton boll-weevil, leaf-worm, and boll-worm infestations in the South, where the situation became so serious that a local shortage of calcium arsenate developed for a time during the summer. Lead arsenate was employed largely as a spray on apple and pear trees, to exterminate codling and gypsy moths, and to treat soil in the East in destroying the Japanese-beetle grub. The carry-over of calcium and lead arsenate in the hands of suppliers at the end of 1941 was approximately 4,300,000 and 11,250,000 pounds, respectively, compared with about 25,000,000 and 10,000,000 pounds at the close of the 1940 season. Total consumption of calcium and lead arsenate in 1942 is estimated at 45,000,000 and 60,000,000 pounds, respectively. Heavy boll-weevil infestation in the Southeastern Cotton States is predicted where a heavy demand is anticipated for calcium arsenate and molasses as a poison mixture. Other arsenical insecticides were used in 1941 chiefly on truck farms. Federal and State agencies employed considerably less arsenic in fighting grasshoppers, Mormon crickets, and white-fringed beetles in 1941 than in previous years, although Congress appropriated \$2,225,000 to the Bureau of Entomology and Plant Quarantine for the control of destructive pests. The Department of Agriculture reports that in 1941 these agencies consumed 210,000 gallons of liquid sodium arsenite for grasshopper bait (75,000 gallons estimated for 1942), 151,000 pounds of calcium arsenate for mole crickets in Florida, and 378,658 pounds of calcium arsenate and 54,232 gallons of liquid sodium arsenite in destroying white-fringed beetles (351,500 pounds and 25,000 gallons estimated for 1942). Sodium fluosilicate largely replaced sodium arsenite to combat grasshoppers

and Mormon crickets and will replace calcium arsenate in fighting the mole cricket in 1942.

There was a tendency in 1941 to substitute arsenic for other poisonous insecticide and rodent constituents because of the difficulty in procuring squill, thallium sulfate, and rotenone (derived from imported derris, cube, and barbasco roots). Loss of the Netherlands Indies and Malaya to Japan cut off a big part of the supply of rotenone-bearing roots, and on April 14, 1942, Conservation Order M-133 limited the use of rotenone poison, which now must come from Latin America. Pyrethrum, however, offers a satisfactory substitute for some insecticidal uses, it is available from Africa, and the flower can be grown in the United States. The use of sodium arsenite as a weed killer rose in 1941 because of the shortage of sodium chlorate and the shift of labor from weed control to more essential work.

Restrictions on the use of tin in cans resulted in the manufacture of more glass containers in 1941, the production of which is expected to greatly increase in 1942 and 1943. Not only does arsenic go into the manufacture of glass containers but also into the making of heatresisting oven and top-of-stove glassware, electric light bulbs, optical glass lenses, bottles, building, plate, scientific, flat, and other machine and handmade glassware. It is said that the use of arsenic is not absolutely essential as a decolorizer, opacifier, and refining agent for most glass, but the procurement of some substitute materials probably Arsenic consumed by the glass industry in 1941 is will be difficult. estimated to have advanced about 40 percent over that in 1940. Arsenical compounds were used in the treatment of syphilis and other diseases in 1941. There was a marked increase in the sale of arsenic medicinal compounds, chiefly the arsphenamines. A large part of this increased demand went to meet requirements of the armed services, Lend-Lease, and exports. White arsenic was consumed in the manufacture of arsenic acid used in the preparation of insecticides, dyes, and other products. Arsenic wood preservative paste and arsenic in other forms were employed in preserving telephone and fence posts, Celotex cane-fiber insulating board, railroad ties, mine timber, piles, etc. White arsenic and metallic arsenic (made from white arsenic) had limited metallurgical applications in the manufacture of antimonial lead and lead anodes and as a flux or alloying element in copper, brass, white bearing metal, and other alloys. Miscellaneous uses for white arsenic included antifouling paint for ship bottoms (in place of mercury) and the purification of producer gas by the Thylox method.

In view of the tremendously increased insecticide, glass, military, and Lend-Lease requirements, it was considered prudent to begin conserving domestic supplies of arsenic, and on May 22, 1942, it was placed under allocation control by General Preference Order M-152. No producer or distributor of arsenic can make delivery to any person unless he has received specific authorization from the Director of Industry Operations, who controls the quantity of arsenic that a supplier can deliver to any person and the purpose for which it may be used. On July 11, 1942, an amendment to the order covered the procedure by which small consumers could place purchase orders for arsenic. The use of arsenic probably will be greatly

restricted in glass, weed killer, and certain insecticides.

On May 18, 1942, the Office of Price Administration issued a maximum price regulation (No. 144) on all household and agricultural insecticides (seasonal commodities). On October 1, 1941, the United States Department of Agriculture revised the Insecticide Act of 1910 providing for proper labeling, declaration of imports, and inspection

of insecticides and fungicides.

The Public Health Service reported that manufacturers and distributors sold 18.211.074 doses of arsenical drugs for treatment of syphilis in 1941 compared with only 13,371,490 in 1940. The 5-day arsenic drip method for treatment of incipient cases of syphilis was used in hospitals in Chicago, where an active campaign was waged against venereal disease.

PRICES

Eastern quotations on domestic refined white arsenic, packed in barrels, carlots, rose from 3½ to 4 cents a pound in August 1941. Less than carlot deliveries advanced from 4½ to 4½ cents. average selling value for domestic sales in 1941 was only 1.47 cents a pound for crude and 2.24 cents for refined arsenic—an increase of 34 and 52 percent, respectively, over that in 1940. Despite the limited supply of white arsenic, quotations on arsenical compounds were affected only slightly in 1941. Minimum prices for calcium arsenate remained unchanged at 6½ cents a pound during 1941, although there was a slight upward tendency in August, and in February 1942 the price advanced to 7 cents. Some sellers reduced prices on lead arsenate from 9% cents to 9 cents in January 1941, but later in May and August quotations ranged at higher levels. No quotations were published on arsenic metal, and it is assumed that the nominal price remained at about 75 cents a pound.

Range of quotations on arsenic and its compounds at New York (or delivered in East), 1940-41, in cents per pound 1

	1940	1941
Arsenic metal, lump, cases. White arsenic (Asy03), domestic, kegs, carlots. Red arsenic (Asy83), imported, cases. Calcium arsenate, wholesale, drums, carlots. Lead arsenate, wholesale, drums, carlots. Sodium arsenate, wholesale, drums (white gray.	(3) 3.00- 3.50 17.50-18.00 6.00- 7.25 8.50-11.00 7.00- 8.00 8.00- 8.75 6.50- 7.50	(2) 3. 50- 4. 00 (3) 6. 50- 7. 50 9. 00-11. 00 7. 00- 8. 00 7. 25- 9. 00 6. 25- 7. 50

As reported by Oil, Paint and Drug Reporter. Not quoted.

FOREIGN TRADE

Compared with imports of white arsenic during the first 9 months of 1940 (8,665 tons), imports of white arsenic decreased 13 percent during the 1941 period. Of the 1941 imports, Mexico supplied 88 percent, Canada 9 percent, and Japan 3 percent. Unofficial export data obtained from private sources show that 2,154 tons of white arsenic were shipped abroad in 1941 compared with 1,600 tons in 1940.

Data on the foreign trade in arsenical compounds during the first 9 months of 1941 are given in the table on salient statistics. There was a substantial drop in imports of all arsenical compounds except calcium arsenate, which increased. Metallic arsenic was imported from the United Kingdom, arsenic sulfide from France, calcium arsenate from Canada, sheep dip from the United Kingdom, and paris green and london purple from the United Kingdom. Exports of calcium and lead arsenate went chiefly to former countries of destination.

70711.								
White arsenic imported	for	annoummeti-m	•	4L -	T1-21-3	CI.	1000 11	
TT TOUCH WISE TOUCH FILL PUT LEW	101	consumputon	$\tau \tau \iota$	ıne	Unnea	NIALER.	1937-41	hii coiintrase
	•	A				~~~~,	71,	UH COMINITED

Country	1	937	19	938	1	939	19)4 0		941 -Sept.)
Country	Short tons	Value	Short tons	Value	Short	Value	Short	Value	Short	Value
Belgium Canada France Germany	708 599 828 7	\$20, 373 48, 896 18, 838 663	565 689 1, 176	\$16, 100 29, 854 30, 843 5, 656	323 471 2, 200	\$10,098 24,760 50,224	15 339 1,654	\$1, 152 18, 016 25, 799	707	\$42, 101
Japan Mexico Norway	798 11,500	37, 380 556, 097	482 8, 422	17, 199 415, 180	963 8, 124	30, 079 377, 568	224 7, 520	10, 307 393, 413 187	193 6, 678	10, 668 375, 246
Sweden	4, 816	138, 617	2, 792	93, 197	2, 593	69, 304	176	4, 156		
	19, 256	820, 864	14, 238	608, 029	14, 674	562, 037	9, 929	453, 030	7, 578	428, 015

¹ Less than 1 ton.

TECHNOLOGIC DEVELOPMENTS

Recovery of arsenious oxide in relatively pure form from metallurgical dusts is claimed by Archibald in United States Patent 2,257,710, which comprises a froth-flotation treatment involving the use of a water and kerosene reagent. Patent 2,257,746 relates to a process for electrolytically oxidizing a water soluble arsenite to the corresponding arsenate, and Patent 2,263,594 concerns the manufacture of cupric meta-arsenite by treating white arsenic and copper with an ammonium chloride solution. By proper control of composition and conditions, iron oxide and tin oxide ores can be dearsenized before reduction begins.³ A new lead-base bearing alloy developed contains 3 percent arsenic which has, at elevated temperatures, the tensile strength and Brinell hardness equal to tin-base alloys and in general, properties superior to the lead-base and tin-base bearing alloys now in use.⁴

WORLD PRODUCTION AND CONSUMPTION

Tremendous war demands for nonferrous metals in 1941 greatly increased smelter and refinery byproduct production of arsenic. It is not unreasonable to believe that world production of marketable white arsenic exceeded 80,000 tons. Output increased 39 percent in Mexico, 30 percent in the United States, and 11 percent in Brazil, the only countries on which official data are available.

Inasmuch as Sweden is virtually under Axis domination, Germany has available the world's largest source of arsenic—the mines and storage silos of Bolidens Cruv A.-B. The large concrete storage silos at Rönnskar were extended in 1934 to hold 250,000 tons of arsenic, and in 1939 additional storage capacity was added. Germany, France, Greece, Belgium, Italy, Japan, Portugal, and Hungary also are producers of arsenic.

² Klärding, Josef (Dearsenizing Oxide Ores): Archiv Eisenhütten. (Germany), vol. 14, 1941, pp. 473-476.
⁴ Phillips, A. J., Smith, A. A., and Beck, P. A., The Properties of Certain Lead-Bearing Alloys: Am. Soc. Test. Materials, vol. 41, 1941 (preprint, 8 pp.).

World production of white arsenic, 1936-41, by countries, in metric tons 1 [Compiled by B. B. Waldbauer]

Country 1	1936	1937	1938	1939	1940	1941
Australia: New South Wales Western Australia Belgium-Luxemburg (exports) Brazil Canada China Chosen France Germany (exports) Greece. Hungary	2, 731 732 619 (3) 230 9, 750 2, 739	2, 087 3, 039 717 630 (2) 6, 501 2, 852 234 100	4, 063 2, 706 519 987 (2) (2) (2) 2, 845 77	(2) 1, 439 3, 332 713 790 (2) (2) (2) (3) (4)	(1) 3, 385 (1) 1, 088 950 800 (2) (1) (1) (2) (2)	(2) (3) (4) 1, 203 (3) (9) (9) (1) (1) (9)
Italy Japan Mexico Portugal Rumania Southern Rhodesia Sweden (sales) ⁴ United Kingdom United States	2, 629 8, 527 150 8, 647	(2) 10, 762 112 6 (2) 97 15, 253	810 (2) 8,894 1 3 19 (2) 66 15,136	(2) 7, 063 (2) (2) (2) (2) (2) (2) (2) (2), 267	(2) 9, 268 (2) (3) (2) (2) (2) (2) (2) 22, 664	(2) 12, 844 (2) (3) (4) (2) (3) (2) (2) 29, 466
	55, 700	(2)	(2)	(2)	(2)	(2)

¹ Arsenic is also believed to be produced in Czechoslovakia, Iran, Peru, Turkey, and U. S. S. R. Production figures are not available for these countries.

Data not available. ³ Data not available.

Argentina.—Mexico has replaced Sweden as the source of 1,000 to 1,200 tons of white arsenic required annually for sheep dip and the treatment of hides and skins. In addition, about 9,000 tons of ready-

made sheep dip are imported annually.

Brazil.—Of 1,203 metric tons of arsenic produced in 1941, the São João D'el Rey Gold Mining Co. contributed 1,110 tons, Companhia Minas da Passagem 88, and Companhia Brasileira de Mineração 5. The Companhia Minas da Passagem discontinued production during the year. Arsenic may be produced at another property, the São The importation of lead arsenate (for cotton crop) is Bento mine. understood to have been very heavy in 1941.

Bolivia.—Calcium arsenate is expected to be recovered as a byproduct in the processing of Bolivian tin ores by the Tainton smelting

process.

Canada.—Canadian output of arsenic probably was increased substantially in 1941 by the Deloro Smelting & Refining Co., Ltd., which formerly produced at the rate of about 1,000 tons annually from silver-cobalt-arsenic ores of Cobalt, Ontario. Arsenic residue stock-piled for several years by the O'Brien and Beattie 5 gold mines was marketed, and a contract was let for all future output. reached the point where gold-bearing arsenopyrite ores of the Little Long Lac, Hard Rock, MacLeod-Cockshutt, and other mines in Ontario and Quebec and of the Bralorne and Hedley mines in British Columbia were being considered for their arsenic values.

Chile.—Estimated annual arsenical requirements are 250 tons of lead arsenate, 50 tons of calcium arsenate, and some white arsenic

for sheep dip.

Data not available. Estimate included in total.

Arsenic content of ores mined is as follows: 1936, 23,312 tons; 1937, 20,954 tons; 1938, 21,480 tons; data not available for later years.

⁴ Archibald, S. R., Martin, S. J., and Koenen, A. T., Roasting of Beattie Concentrate: Trans. Canadian anst. Min. and Mct., vol. 42, 1939, pp. 608-631.

China.—In 1940 China produced an estimated 800 metric tons of white arsenic and 400 tons of realgar, of which 46.8 tons and 35.7

tons, respectively, were exported.

Mexico.—Arsenic roasting and subliming plants at San Luis Potosi and Torreón operated near peak capacity in 1941. Of 12,590 metric tons of arsenic exported in 1941, 10,101 tons were destined to the United States, 1,706 to the United Kingdom, 532 to Argentina, and 251 to the Union of South Africa.

Peru.—Calcium arsenate was imported from the United States to combat the cotton boll weevil, and some arsenic was received for the preparation of sheep dip. The Cerro de Pasco Copper Corporation has accumulated substantial quantities of arsenical residue and is

considering the production of white arsenic.

Spain.—Arsenic and manufactured arsenical compounds, hitherto more economically available from other countries, are being produced in Spain. The Fabrica de Arsenico, Mineras de Arsenico, and the Sociedad Industrias Arsenicales Reunidas are mining and treating mispickel ore from 13 pocket deposits in the northwestern part of Spain. The ore contains 25 to 34 percent arsenic and is mined solely for its arsenic content.⁶

United Kingdom.—Metallic arsenic is marketed by the Metallo Refining Co. Ltd., and it enjoys a steady demand at £325 per long ton. Early in 1942 an association of importer-distributors was formed to handle all sales of foreign white arsenic, which was quoted at £40 per ton, 99+ percent As₂O₃, for lots of 20 tons or over, delivered. Early in 1941 and in the summer of the year quotations for refined white, in warehouse, were only £30 and £33 10s. per ton.

Uruguay.—Annual white arsenic consumption totals approximately 1,000 tons—for cattle and sheep dip, insecticides, and weed killer—which are distributed by the Institute of Industrial Chemistry

and Department of Agriculture.

BISMUTH

SUMMARY

Although the Bureau of Mines is not at liberty to publish domestic statistics on production it can be reported that the bismuth output in 1941 surpassed the record output of 1940, largely owing to the treatment of some accumulated rich bismuth residues. Apparent consumption increased about 100 percent over that in 1940. Army and Navy medical units and South American countries increased their purchases of pharmaceuticals containing bismuth, and the aircraft, munitions, machine-tool, building, and other industries consumed much larger quantities of bismuth alloy. Despite the slight increase in production and the doubling of consumption, domestic stocks rose substantially owing to increased receipts of foreign bismuth. During the first 9 months of 1941, imports more than doubled, and exports declined compared with the same period of 1940. The Peruvian Trade Agreement, effective July 29, 1942, halved the import duty on Nominal quotations on bismuth remained steady at \$1.25 bismuth. There was some variance in price of certain bismuth a pound. compounds.

⁶ Cortell, P., Arsenic in Spain: Ion (Madrid), October 1941; abs. Chem. Trade Jour. (London), vol. 110, February 6, 1942, pp. 145-146.

World production of bismuth totaled an estimated 3,000,000 pounds in 1941, of which the bulk was under control of the Allies.

PRODUCTION

Treatment of some accumulated rich bismuth residues offset an apparent tendency to relax full recovery of bismuth from lead because of the scarcity of magnesium (essential for one lead-debismuthization process) and of the willingness of consumers of lead in their anxiety to secure the metal to tolerate a relatively higher percentage of bismuth, which discouraged maximum refinement. The Anaconda Copper Mining Co., American Smelting & Refining Co., and U. S. Smelting, Refining & Mining Co. continued to be the sole domestic producers. Their production included metal recovered from Mexican lead bullion and from ores imported for smelting and refining from South America, Central America, Australia, and Canada. The Cerro de Pasco Copper Corporation imported large quantities of bismuth and bismuth-lead alloy from Peru to supply the increasing industrial and pharmaceutical demand.

CONSUMPTION

The demand for bismuth doubled in 1941 owing to a great rise in industrial and metallurgical requirements and a slight increase in pharmaceutical applications. It is estimated that 60 percent of the metal was used in pharmaceutical and 40 percent in metallurgical or industrial uses. The industrial demand for bismuth is expected to continue to grow owing to use of the metal as a substitute for tin in solders and to old and new metallurgical uses that the war has greatly expanded. Possibly the industrial or alloy consumption will overtake the pharmaceutical and medicinal use in 1942. Heretofore, as much as 85 to 90 percent of all the bismuth consumed was for medicinal and cosmetic preparations, including various indigestion remedies and toilet powders. Bismuth compounds also are used in treating wounds and venereal diseases, and in 1941 the Army, Navy, and Red Cross reported a substantial growth in demand for bismuth pharmaceuticals.

The Department of Agriculture began experiments in 1941 to replace lead compounds with bismuth subsalicylate in a fungicide spray, which may develop into a sizable use for the metal. The spray is expected to be effective in the treatment of tobacco, potato,

and other plant mildew diseases.

The unique characteristics of metallic bismuth—its expansion in passing from the liquid to the solid state, its low melting point, and its nonshrinking properties when alloyed with certain other metals—are responsible for the greatly extended use of the metal in industry and metallurgy. The Cerro de Pasco Copper Corporation, largest supplier of bismuth alloys, has as its principal commercial alloys "Cerrobend" (50 percent Bi.), "Cerrobase" (55.5 percent Bi.), "Cerromatrix" (48 percent Bi.), "Cerrosafe" (42.5 percent Bi.), and "Cerrodent" (38 percent Bi.). In addition, there are several other combinations of bismuth, lead, tin, cadmium, antimony, or mercury containing 33 to 56 percent bismuth. The Federated Metals Division of the American Smelting & Refining Co. began to produce a series of

⁷ Curtis, T. M., and Groehn, Harvey G., Cerrobend Tools for National Defense: Modern Industrial Press, November 1941.
Curtis, T. M., Cerrobend Trim Racks and Spotting Fixtures: Tool Engineer, December 1940.
How to Bend Tubes and Sections: Iron Age, vol. 146, No. 19, Nov. 7, 1940, pp. 52-53.

new ST solders containing 3 to 5 percent bismuth early in 1942, a use that is expected to become very important. Bismuth reduces the tin required. Furthermore, the new solders have properties comparable with the conventional lead-tin and lead-silver solders. wiping solder containing 0.5 percent bismuth and 25 percent tin also was placed on the market, and more bismuth was used in babbitt alloys. Additions of tin and bismuth to lead-silver alloys also constitute a very acceptable substitute for high-tin solders in many instances.8 The addition of 0.1 to 0.5 percent bismuth in freemachining stainless steels results in a remarkable and useful increase in machinability with no detriment to, and in some cases an improvement in, the corrosion resistance. Bismuth is expected to replace selenium here as the addition agent. Bismuth also is reported to increase the machinability of brasses.10

Of the principal metallurgical uses for bismuth during 1941, it is estimated that 24 percent went into the bending of thin-walled aluminum-alloy aircraft oil and gas tubing and steel sections and for trim racks and spotting fixtures in the aircraft and automobile industry; 24 percent into solder and bearing metal; 18 percent into the manufacture of free-cutting aluminum alloys and miscellaneous pattern work; 13 percent into fusible metal for automatic sprinklers, safety valves, and other protective devices; and 21 percent into various other uses such as anchoring bearing bushings on machine tools, sealing of tanks, mounting airplane propellers during machining, setting or anchoring dies, punches, and other parts, and electroforming and

electroplating.

PRICES

Throughout 1941 New York quotations on bismuth metal remained unchanged at \$1.25 a pound, tonlots, according to the Engineering and Mining Journal Metal and Mineral Markets. According to the Oil, Paint and Drug Reporter in May 1941 the price of bismuth subcarbonate (fiber drums) decreased from \$1.73 to \$1.50 a pound and bismuth subgallate from \$1.68 to \$1.40 a pound, whereas prices for bismuth subnitrate and subsalycilate remained steady during the year at \$1.48 and \$2.50 a pound, respectively.

FOREIGN TRADE

Imports of bismuth metal during the first 9 months of 1941 (all from Peru) increased 143 percent compared with those received during the same period in 1940 (81,479 pounds). Receipts of compounds, mixtures, and salts of bismuth were insignificant. Imports not valued chiefly for lead during the first 9 months of 1941 totaled 747,757 pounds, of which 400,528 pounds comprised metals other than lead. This classification included shipments from Peru and the United Kingdom. Of the 708,873 pounds from Peru, only 315,785 were lead; probably the remainder was chiefly bismuth. A new trade agreement with Peru, effective July 29, 1942, reduces the import duty on bismuth metal from 7½ to 3¾ percent ad valorem. According to a

⁸ Turkus, S., and Smith, A. A., Jr., Low-Tin Solders Containing Silver and Bismuth: Metals and Alloys, vol. 15, No. 3, March 1942, pp. 412-413.

⁹ Pray, H., Peoples, R. S., and Fink, F. W., Addition of Bismuth for Producing Free-Machining Stainless Steels: Proc. Am. Soc. Test. Materials, vol. 41, 1941, pp. 646-655.

¹⁰ Price, W. B., and Bailey, R. W., Bismuth—Its Effect on the Hot-Working and Cold-Working Properties of Alpha and Alpha-Beta Brasses: Am. Inst. Min. and Met. Eng., Tech. Pub. 1441, Metals Technol., June 1942, pp. 1-6.

ruling of the Bureau of the Customs, United States Treasury, mixtures of two or more elements, such as lead, bismuth, etc., and bismuthlead eutectic alloy are dutiable as a combination of chemical elements not specifically provided for at the rate of 25 percent ad valorem.

Bismuth and "compounds, mixtures, and salts of bismuth" imported for consumption in the United States, 1937-41

Year	Bisn	nuth	Compounds, mixtures, and salts of bismuth		
	Pounds	Value	Pounds	Value	
1937.	67, 225	\$54,007	3, 145	\$9, 117	
1938.	92, 298	74,583	2, 004	3, 387	
1939.	182, 832	154,339	297	649	
1940	123, 880	118, 260	4	31	
1941 (JanSept.)	198, 162	198, 259	15	53	

WORLD PRODUCTION AND CONSUMPTION

It is estimated that world production of bismuth in 1941 totaled approximately 3,000,000 pounds, of which the United States, Peru, Mexico, and Canada supplied the greater part. Other producing countries were Bolivia, Spain, Japan, China, Yugoslavia, Sweden, Argentina, Belgium, U. S. S. R., Australia, France, the Union of South Africa, and Germany.

North America.-Mexico produced 215,989 pounds of bismuth in 1941 (408,810 in 1940) and placed an export embargo on bismuth to all countries except the United States and Latin American nations having a satisfactory system of export control. Canadian production of bismuth is not available but is supplied largely by the Consolidated Mining & Smelting Co., Trail, British Columbia, and the Deloro Smelting & Refining Co. Ltd, Deloro, Ontario.

South America.—Production of bismuth in Peru (by the Cerro de Pasco Copper Corporation) in 1941 is reported 11 to have comprised 723,367 pounds of refined bismuth in bars and 422,977 pounds in bars bit refined (bismuth-lead bullion). Output in 1942 is expected to increase substantially over that in 1941. Exports in 1941 totaled 747,369 pounds of metal containing 729,730 pounds of bismuth and 809,096 pounds of bismuth-lead bullion containing 421,083 pounds of bismuth. Bolivia exported 49,833 pounds of bismuth in concentrates in 1941, of which the Compagnie Aramayo de Mines en Bolivio accounted for 15,825 pounds, Fabulosa Consolidated Co. 15,985 pounds, and numerous small operators selling to Banco Minero de Bolivio Production of bismuth in Bolivia could be greatly 18,023 pounds. increased at its tin, tungsten, gold, and bismuth mines but only at considerable cost. Bolivia exported 138,891 pounds of concentrates and ores in 1941 containing 50,706 pounds of bismuth (41,230 in 1940). A plant was established in San Luis, Argentina, in 1941 to recover bismuth metal from the Los Condores scheelite ore. Bismuth was recovered as a byproduct in the São Jose de Brejauva region of Ferros, Minas Gerais, Brazil, in the mining of beryl and aquamarine. From 0.3 to 3.0 percent bismuth occurs in the copper ores of the Pedra Branca region, Paraibo and Rio Grande do Norte, and also in Mariana, Itabirito, and Bomfim, Minas Gerais, and in Iguape, São Paulo.

¹¹ Foreign Commerce Weckly, vol. 7, No. 1, April 11, 1942, p. 20.

Europe.—Unlimited customs licenses were issued in the United States to the British Purchasing Commission in 1941 authorizing the exportation to certain British areas of bismuth metal and alloys; bismuth matte, slimes, and residues; and bismuth salts and compounds. In the United Kingdom bismuth metal was quoted at 6s, 3d. per pound and for 35 percent ore about £110 to £125 per long ton, c.i.f. Africa, Asia, and Australia.—China produced an estimated 40,000 pounds of bismuth in 1940.

MAGNESIUM

By HERBERT A. FRANKE AND M. E. TROUGHT

SUMMARY OUTLINE

	Page	l in a company from the second control of	Page
Summary	743	Prices	752
Salient statistics	743	Foreign trade	753
Production		Technologic developments	753
Consumption		World production	754
National defense and war measures	752		

SUMMARY

Events in 1941 forecast that an unprecedented quantity of magnesium would be required for military purposes—for the production of aircraft and incendiary bombs. The War Production Board recof aircraft and incendiary bombs. ommended that magnesium production in the United States be extended more than 90 times that of 1939—to approximately 610,000,000 pounds. In 1941 the production of primary magnesium totaled 32,589,052 pounds—160 percent more than in 1940 (12,521,726 pounds) and 386 percent more than in 1939 (6,700,122 pounds). 1941 output was greater than the combined output of the previous The Dow Chemical Co., an outstanding factor in the magnesium industry since its inception in this country in 1915, was joined by a second producer (for the first time since 1927)—the Permanente Metals Corporation. Dow continued to be by far the principal producer, employing its usual process involving the electrolysis of fused 85-percent magnesium chloride derived from Michigan underground brine and, for the first time, from Texas seawater. nente recovered its metal by the new, carbo-electrothermic process, using magnesia from California sea water and Nevada magnesite as its raw materials.

Salient statistics of the magnesium industry in the United States, 1939-41

	1939	1940	1941
Production of primary magnesium pounds Quoted price per pound 1 cents Imports pounds Exports do World production (estimated) short tons	6, 700, 122 27. 0 76 4, 200, 000 34, 100	12, 521, 726 27. 0 1, 718, 444 49, 500	32, 589, 052 22. 5 3, 098, 424 85, 500

¹ Lowest nominal price (New York) for primary metal ingot 99.8 percent pure, carlots.

Estimated. Magnesium metal in primary form; in addition, metal was exported in other forms (86,070 pounds) and in powder (33,383 pounds) during last 6 months of 1941.

Domestic consumption of primary and secondary magnesium in 1941 totaled 29,346,600 pounds compared with 11,531,000 pounds in 1940. Demand for the metal was much greater than the supply, and to meet military requirements mandatory priorities were invoked on magnesium March 3, 1941. Of the primary magnesium shipped or used in 1941, approximately 57 percent went into the production of magnesium-base alloys, virtually all for structural products; 19 percent into other alloys, chiefly aluminum; 6 percent into magnesium products, chiefly nonstructural; 14 percent for export account; and 4 percent into other uses. No magnesium was imported, but more than 3,000,000 pounds were exported. Despite an extraordinary demand for the metal, the market price on 99.8-percent magnesium ingot, carlots, was reduced May 1, 1941, from 27 cents to 22.5 cents a pound.

World magnesium output reached a new peak in 1941, and Germany remained the outstanding producer. Whereas the Axis controlled about 60 percent of the world production during 1941, it is anticipated that in 1942 and 1943 the United Nations will greatly outstrip the

Axis in magnesium output.

PRODUCTION

Primary magnesium.—Domestic production of primary magnesium in 1941 totaled 32,589,052 pounds, an advance of 160 percent over the 12,521,726-pound output of 1940. Primary magnesium shipped or used (sales) totaled 31,056,947 pounds. Although the Dow Chemical Co. produced most of the output, the Permanente Metals Corporation contributed a part. Dow placed two entirely new 18,000,000-pound units in operation on the Texas seacoast and expanded annual capacity at its Michigan plant to 18,000,000 pounds. Permanente, the first of 10 new producing companies, started operations in the fall of 1941 with a unit rated at 8,000,000 pounds annual

capacity.

Output of the United States is expected to exceed 125,000,000 pounds in 1942 and may reach the goal of 610,000,000 pounds in 1943. The first expansion program announced June 13, 1941, by the Office of Production Management, stated that tremendously increased aircraft and military requirements made it necessary to extend annual productive capacity to approximately 400,000,000 pounds. thereafter, the Dow Chemical Co., Permanente Metals Corporation, Basic Magnesium, Inc., Diamond Magnesium Co., Mathieson Alkali Works, Inc., and International Minerals & Chemicals Corporation (Union Potash) began laying plans for constructing these additional production facilities. By February 1942, however, military needs had risen to a point where a second magnesium-expansion program had to be scheduled, increasing annual capacity to approximately 725,-000,000 pounds. This goal was later reduced to 610,000,000 pounds. The following table shows the total projected magnesium program, which, when completed, will make the Government owner of 86 percent of all the domestic magnesium-producing capacity.

¹ Wilson, Philip D., Enlarging Magnesium Output a Hundredfold: Min. and Met., vol. 23, No. 424, April 1942, pp. 201-204.

Projected magnesium-producing capacity of the United States in 1943, in millions of pounds

	141			nagnesium pacity
Operating company and plant location	Magnesium raw material	Process		
			Company owned	Government owned
Dow Chemical Co.:		is by		
Midland, Mich	hrine	Dow electrolytic		
Freeport, Tex	Sea water	do	1 18	18
Marysville, Mich	Underground	do		72
	brine (and dolo-			
Velasco, Tex	Sea water	do		72
Permanente, Calif. (and Moss		thermic.		1
Manteca, Calif	Dolomite	Ferrosilicon Dow electrolytic		20
Mathieson Alkali Works, Inc.: Lake Charles, La.	Dolomite (and al- kali liquors).		1.0	
Diamond Magnesium Co.: Painesville, Ohio.	do	do		3f
International Minerals & Chemicals Corporation, Austin, Tex. (and Carlsbad, N. Mex.).	Langbeinite and dolomite.	do		24
Basic Magnesium, Inc.: Las Vegas,	Magnesite	Magnesium Elek-		112
Nev. (and Gabbs, Nev.). New England Lime Co.: Canaan,	Dolomite	tron electrolytic. Ferrosilicon		10
Comm	1		ł	40
Ford Motor Co.: Dearborn, Mich Electro Metallurgical Co.: Spokane, Wash.				
Ameo Magnesium Co.: Wingdale,				
National Lead Co.: Luckey, Ohio	do	do		10
Total capacity				526

The Dow Chemical Co. has developed its process involving electrolysis of fused 85-percent magnesium chloride (MgCl₂.H₂O) since 1916. At Midland, Mich., bromine and the sodium and calcium salts in underground brine are first removed by evaporation, filtration, and fractional crystallization; chlorine is added during the process, and the purified magnesium chloride solution remaining is concentrated further by crystallization to yield MgCl2.6H2O (hexahydrate). The hexahydrate is partly dried and fed to specially designed, rectangular, cast-steel cells, where the fused magnesium chloride, with some added sodium chloride, is electrolyzed. The metal deposited at the cathode collects on the surface of the electrolyte, from which it is removed at intervals. In addition to high-purity metal, the cell produces byproduct dilute hydrochloric acid and chlorine. Early in 1941 Dow developed an underground brine field near Ludington, Mich., where wells have penetrated magnesium chloride brines richer than those near Midland at a 2,800-foot depth. This brine, containing about 10 percent MgCl2, will be concentrated and shipped to Marysville, Mich., where it will be enriched with dolomite, converted to hexahydrate, and treated electrolytically. Some of the Ludington brine was shipped by railroad tank cars to Midland during the first part of 1942. At Freeport and Velasco, Tex., Dow adds milk of lime to sea water and precipitates magnesium hydroxide, which is thickened, filtered, and treated with hydrochloric acid to produce

¹ Small part British-financed.
2 Partly Reconstruction Finance Corporation-financed, and capacity expected to be reduced.

MgCl₂.6H₂O.² This is made almost anhydrous and electrolyzed in the same manner as at Midland. In the interest of the war effort, the Dow Chemical Co. offered (through the Office of Production Management and the Defense Plant Corporation) its process and technique to the Diamond Alkali Corporation and the International Minerals & Chemicals Corporation. The Dow Magnesium Corporation was formed to operate the Velasco and Marysville plants for the Defense Plant Corporation.

The Mathieson Alkali Works, Inc., developed jointly with the staff of the Consolidated Mining & Smelting Co. (Trail, B. C.) a special type of electrolytic cell which is reported to be advantageous at present in that almost 3 pounds of concentrated chlorine gas are produced for each pound of magnesium metal made and a slight saving in electric current is indicated. Mathieson will treat waste calcium chloride solution from its Solvay process with calcined dolomite and carbon dioxide to produce magnesium chloride solution and byproduct calcium carbonate. The calcium carbonate precipitate is filtered off and the magnesium chloride solution purified, evaporated, and dehydrated enough for electrolysis. The operation makes possible the economic disposal of huge quantities of calcium chloride resulting from the ammonia-soda process for sodium carbonate production and the use of low-cost dolomite.

The Diamond Magnesium Co. not only takes advantage of the fact that dolomite, a double carbonate of lime and magnesia, can supply the lime needed for its Solvay ammonia-soda process but, in conjunction with some of the process waste liquors, the magnesia yields a cheap magnesium chloride. Some of Diamond's cell feed will be derived from waste liquors, and some will be produced by direct treatment of calcined dolomite with hydrochloric acid. Hydrated dolomite will be treated with the chloride waste liquors to produce magnesium hydroxide and calcium chloride, which will be carbonated with kiln gases. The calcium carbonate is precipitated and the magnesium chloride obtained is made almost anhydrous. The regular Dow type of cell will be employed in the electrolysis.

Magnesium will be produced by the International Minerals & Chemicals Corporation (at Austin, Tex.) primarily from magnesium chloride derived as a byproduct in the base exchange of langbeinite (K₂SO₄.2MgSO₄) and sylvite (KCl) solutions (which average about 17 percent MgCl₂) in the production of sulfate of potash by its subsidiary, the Union Potash & Chemical Co., at Carlsbad, N. Mex. Part of the cell feed, however, will be derived from hydrated dolomite, carbonated with kiln gases, and treated with hydrochloric acid produced as a byproduct from the Dow-type electrolytic cell. Heretofore the company wasted substantial quantities of the magnesium chloride solution at Carlsbad.

Basic Magnesium, Inc., will employ another magnesium chloride electrolytic process, which differs from that of Dow's primarily in that it employs a completely anhydrous feed instead of an almost anhydrous magnesium chloride. The so-called M. E. L. method was developed in Germany by I. G. Farbenindustrie, A. G., and later

¹ Murphy, Walter J., Magnesium from the Sea: Chem. Ind., vol. 49. No. 6, November 1941, pp. 618-628. Kirkpatrick, Sidney D., Magnesium from the Sea: Chem. and Met. Eng., vol. 48, No. 11, November 1941, pp. 76-84. Killeffer, D. H., Magnesium from the Sea: Am. Chem. Soc. (News Ed.), vol. 19, No. 21, November 10, 1941, pp. 1189-1193.

was used by Magnesium Elektron, Ltd., at Clifton Junction, England, after which the Nevada plant is modeled. A tremendous quantity of magnesite must be quarried and concentrated by flotation for this huge plant. Plans are to quarry the magnesite 3 and transport the beneficiated raw material from Gabbs, Nye County, northeast of Luning, Nev., to Las Vegas, over 300 miles away. Raw magnesite and magnesium oxide sinter (from Herreshoff roasters) will be ground and briquetted with coke and British Columbia peat moss to make a spongy, porous mass, which will be roasted and treated with chlorine gas to produce anhydrous magnesium chloride. The chlorine gas will be derived partly from gases evolved from the magnesium cells

and partly from the electrolysis of sodium chloride.

The Permanente Metals Corporation will employ two different processes to produce magnesium—the direct carbo-electrothermic and the ferrosilicon reduction methods. Development of the carbothermal process has been largely credited to Fritz J. Hansgirg, an Austrian scientist, who designed and installed the initial unit at Permanente, Calif.⁴ The method involves many difficult problems, primarily because it is based upon a chemical reaction easily reversible and requires the maintenance of a reducing or inert environment throughout to prevent reoxidation. Operations of the plant have been retarded by explosions and fires resulting from the difficulties of controlling temperatures and vacuums, which is so highly essential. Briefly, the Hansgirg process consists in mixing coke and calcined magnesia and heating the mixture in an electric arc furnace at about 2,100° C. and then suddenly "shock-cooling" the resultant vaporized metal at about 200° C. with natural gas. The finely divided magnesium or powder, separated from the gas by Cottrell precipitators, is contaminated with carbon, magnesium oxide, and other impurities and must be redistilled. It is mixed with oil and the doughy mixture redistilled in special furnaces, the oil and then the magnesium being vaporized. High-purity magnesium crystals are recovered from the top of the furnace. In 1941 Permanente employed magnesium oxide obtained from sea water and Nevada magnesite by the Westvaco Chlorine Products Co. at Newark, Calif., as its raw material. in 1942 the company abandoned its original plan to rely upon Nevada magnesite and began constructing its own sea-water magnesia plant at Moss Landing, Calif. By the summer of 1942, two carbothermal units had been completed, but neither unit had yet approached its rated capacity.

The ferrosilicon process was largely adopted for the second magnesium expansion program. Work thereon was pioneered by Dr. L. M. Pidgeon of the Canadian National Research Council, the Ford Motor Co., and the Electro Metallurgical Co. Its adoption was recommended by the National Academy of Sciences. The process involves briquetting high-grade dead-burned dolomite and pulverized ferrosilicon (75-percent grade) and heating in a horizontal or vertical furnace or some other form of retort equipped with a condenser unit.

³ Hewett, D. F., Callaghan, E., Moore, B. N., Nolan, T. B., Rubey, W. W., and Schaller, W. T., Mineral Resources of the Region Around Boulder Dam: Geol. Survey Bull. 871, 1936, pp. 142-143.

⁴ Kirkpatrick, Sidney D., Magnesium by the Hansgirg Process: Chem. and Met. Eng., vol. 48, No. 9, September 1941, pp. 91-94.

⁵ Breyer, Frank A., Pidgeon Ferrosilicon Process for Magnesium: Chem. and Met. Eng., vol. 49, No. 4, April 1942, p. 87.

Killeffer, D. H., Magnesium from Dolomite by Ferrosilicon Reduction: Chem. and Eng. News, vol. 20, No. 6, March 25, 1942, p. 369.

Reduction takes place under high vacuum at about 1,150° C., and the vaporized magnesium is condensed as a metal of high purity in the water-cooled section of the retort. Any fuel (such as gas, oil, or electricity) that will give uniform heat at constant temperature can It is reported that a pressure of less than one-tenth millimeter should be maintained in the furnace. The charge is heated with the particular equipment selected long enough to vaporize most of the magnesium in the dolomite. Residue remaining in the retort after heating consists chiefly of dicalcium silicate, calcium oxide, and some magnesium oxide and ferrosilicon. Approximately 1 pound of ferrosilicon and 12 pounds of dolomite are required to produce 1 pound of magnesium metal. Attention was drawn to the process because it requires a minimum of electric power (chiefly that used in production of ferrosilicon), it utilizes dolomite (which is very abundant), and a The process, howplant can be erected in a relatively short time. ever. necessitates substantial expansion of ferrosilicon production capacity and the use of a large quantity of critical nichrome steel for manufacture of the retorts.

The Ford Motor Co., Electro Metallurgical Co., Permanente Metals Corporation, New England Lime Co., Amco Magnesium Co. (American Metals Co.), and National Lead Co. will construct magnesium plants using the ferrosilicon process; some of them will start operation by the summer or early fall of 1942. Ferrosilicon will be supplied by other concerns, except for the Electro Metallurgical Co.. which is constructing its own 48,000,000-pound ferrosilicon plant

near Spokane.

Dolomite for the various magnesium plants probably will be obtained by Ford and Dow from Ohio and Michigan, by Mathieson from Burnet County, Tex., by Permanente from deposits near Salinas, Monterey County, Calif., and by the other companies from deposits

relatively near their plants.

Other companies, raw materials,7 and processes 8 were considered in connection with the production of magnesium, but the program to date has not permitted their inclusion. Olivine, dunite, and serpentine have been considered as raw materials for the production of magnesium, and processes receiving attention have included ferrosilicon, thermal, and hydrochloric acid processes.9 The Defense Plant Corporation allocated funds for drilling and testing carnallite-sylvite beds in the vicinity of Thompsons, Grand County, Utah (in connection with Utah Magnesium Corporation) and of magnesium chloride brines near Gail, Borden County, Tex. (by Ozark Chemical Co.). The Geological Survey and Bureau of Mines cooperated in these drilling programs, as well as in the investigation of magnesite, dolomite, brucite, brines, and other magnesium-bearing raw materials. particularly in the western United States.

⁶ Colby, Shirley F., Occurrences and Uses of Dolomite in the United States: Bureau of Mines Inf. Circ. 7192, November 1941, 21 pp.
7 Franke, Herbert A., Our Magnesium Resources: Min. Cong. Jour., vol. 27. No. 8, August 1941, pp. 16-22. The Future Sources of Magnesium: Pres. at Ind. Min. Div. Meeting, Am. Inst. Min. and Mct. Eng., Rolla, Mo., October 23, 1941, 9 pp. Seaton, Max Y., Production and Properties of the Commercial Magnesias: Pres. at Ind. Min. Div. Meeting, Am. Inst. Min. and Mct. Eng., Rolla, Mo., October 23, 1941, 42 pp.
8 Pannel, Ernest V., Magnesium Progress in America: Metal Ind. (London), vol. 59, Nos. 21, 22, and 23, November 21 and 28 and December 5, 1941, pp. 322-323, 338-339, and 359-360.
9 Houston, E. C., and Rankin, H. S., Olivine as a Source of Magnesium: Pres. at Ind. Min. Div. Meeting, Am. Inst. Min. and Mct. Eng., Rolla, Mo., October 23, 1941, 7 pp. (See Chem. and Mct. Eng., vol. 49, No. 4, April 1942, pp. 119-150).

No. 4, April 1942, pp. 149-150).

The Aluminum Co. of America, American Magnesium Corporation, Magnesium Development Corporation, Dow Chemical Co., General Aniline & Film Corporation, and I. G. Farbenindustrie, A. G., were indicted by the Department of Justice on January 30, 1941, for violation of the Sherman Antitrust Law. Charges stated that these companies had retarded and stifled production by pooling patents, maintaining high prices, limiting consumers to one domestic source of supply, and making unlawful agreements pertaining to foreign sales and output in the United States. On April 15, 1942, the first five companies filed a plea of nolo contendere (no consent), and a consent decree was entered that provides for compulsory and free licensing of patents held by the defendants for producing and fabricating magnesium during the war. The concerns and individuals contended that this action was taken to settle the case at any cost as quickly as possible so that time (more important for the production and fabrication of aluminum and magnesium) could be devoted entirely to defeat of the Axis and that actually none was conscious of wrongdoing. Fines imposed aggregated \$110,000 for the corporation defendants and \$30,-000 for the individuals. The half interest owned by the General Aniline & Film Corporation in the American Magnesium Corporation was purchased by the Aluminum Co. of America on February 6, 1941, when a huge magnesium-fabrication expansion program also was

Production and fabrication of magnesium were threatened by short-lived strikes of the Die Casting Workers (C. I. O.) at the Cleveland plant of the American Magnesium Corporation in April 1941 and by the Gas, Coke, and Chemical Division of the United Mine Workers (C. I. O.) at the Midland plant of the Dow Chemical Co. in June 1941.

Explosions and fires damaged magnesium plants of the Permanente Metals Corporation (ingot), National Magnesium Corporation (powder), and Wellman Bronze & Aluminum Co. (castings) during 1941. Old and new companies that expanded or began to fabricate mag-

Old and new companies that expanded or began to fabricate magnesium products during 1941 and the first half of 1942 through the Defense Plant Corporation were: American Radiator & Standard Sanitary Corporation, at Louisville, Ky., and Elyria, Ohio—sand castings for aircraft engines and wheels; Bendix Aviation Corporation, at Bendix, N. J.—castings (1,920,000 pounds annually); Dow Magnesium Corporation, at Bay City, Mich.—sand castings (700,000 to 900,000 pounds monthly); Ferro Enameling Corporation, at Bedford, Ohio—powder (200,000 pounds monthly); Hills-McCanna Co., at Chicago, Ill.—sand castings (30,000 pounds monthly); Howard Foundry Co., Inc., at Chicago, Ill.—sand castings; Revere Copper & Brass, Inc., at Rome, N. Y.—forgings; and Wellman Bronze & Aluminum Co., at Cleveland, Ohio—castings.

Secondary magnesium.—Recovery of secondary magnesium totaled 1,752 short tons in 1941 and required the consumption of 2,279 tons of magnesium scrap, which was almost entirely new scrap. Of the quantity of magnesium recovered, 929 tons were as ingot and 738 went into castings, 60 into aluminum alloys, and 25 into chemical reagents. During the first part of 1942, six companies had been authorized to remelt scrap and produce secondary magnesium: Aluminum & Magnesium, Inc., American Magnesium Corporation, Apex Smelting Co., Dow Chemical Co., Federated Metals Division of

American Smelting & Refining Co., and National Smelting Co. Additional information on secondary magnesium will be found in the chapter on Secondary Metals—Nonferrous.

CONSUMPTION

After magnesium was placed under mandatory priority control, virtually all of the metal was consumed for military purposes, for the production of airplanes and incendiary bombs. Apparent primary consumption exceeded that in 1940 by 151 percent. Of the primary magnesium shipped or used in 1941 (31,056,947 pounds), approximately 57 percent was used in the production of magnesium-base alloys, virtually all for structural products; 19 percent in other alloys, chiefly aluminum; 6 percent in magnesium products, chiefly nonstructural; 14 percent for export account; and 4 percent in other uses.

14 percent for export account; and 4 percent in other uses.

As magnesium oxidizes readily at temperatures above the melting point, approximately 27 percent of the metal consumed in the production of magnesium-base alloys and the manufacture of structural

products was lost or burned in processing.

Production, sales, imports, exports, and apparent consumption of primary magnesium in the United States, 1939-41, in pounds

Year	Production	Sales	Imports	Exports	Apparent consumption
1939	6, 700, 122	10, 650, 121	2 76	³ 4, 200, 000	6, 450, 200
1940	12, 521, 726	12, 823, 633		⁴ 1, 668, 765	11, 154, 868
1941	32, 589, 052	31, 056, 947		3, 098, 424	27, 958, 523

Does not consider fluctuations in consumers' stocks and metal derived from scrap. Withdrawals from producers' stocks totaled 3,949,999 pounds in 1939 and 301,907 pounds in 1940; additions to producers' stocks totaled 1,47,615 in 1941.

² Includes alloys and scrap (magnesium content).

Actual consumption of magnesium (from primary and secondary sources) totaled 29,346,600 pounds. Of this, 75 percent was used in the manufacture of magnesium-base alloy structural products, 23 percent in aluminum alloys, and 2 percent in other uses.

Actual domestic consumption of primary and secondary magnesium (magnesium content), 1940-41, by uses, in pounds

Use	1940	1941	
Structural products ¹ Aluminum alloys Other alloys Scavenger and deoxidizer Pyrotechnics Chemicals. Other		21, 951, 900 6, 762, 200 59, 000 130, 400 383, 200 27, 600 32, 300	
Total	11, 531, 000	29, 346, 600	

¹ Castings, sheet, extruded shapes, forgings, etc.

Magnesium-alloy structural products manufactured and sold or used in the United States increased 150 percent over those of 1940. The manufacture of nonstructural products advanced 84 percent. Of the structural products sold or used, sand and permanent mold cast-

Estimated.
 Of the 1,718,444 pounds of metal exported, 49,679 pounds consisted of magnesium alloy.

ings comprised 87 percent, die castings 6 percent, extruded products 3 percent, sheet 3 percent, and other structural products 1 percent. Of the nonstructural products, powder comprised 68 percent, stick 28 percent, and shavings, turnings, wire, ribbon, and other products 4 percent. The value of sand and permanent mold castings manufactured in 1941 averaged \$2.07 a pound, die castings \$1.50 a pound, and all castings \$2.03 a pound (compared with \$1.71 in 1940).

Magnesium products (other than ingol) manufactured in the United States and sold or used by the companies manufacturing the products, 1939-41

Product	193	9	19	40	1941		
rioduct	Pounds	Value	Pounds	Value	Pounds	Value	
Structural products: Castings: Sand and permanent							
Sand and permanent mold	1, 321, 080	\$2,030,175	3, 973, 757	\$7,345,050	11, 944, 618	\$24,669,146	
Die	525, 372	385, 770	699, 212	653, 289	768, 162	1, 155, 048	
Sheet: Structural shapes, rods,	180, 896	116, 287	322, 664	246, 476	431, 306	309,749	
tubing (extrusions)	308, 443	185, 746	410, 912	349, 123	451, 394	313, 638	
Forgings	17, 065	26, 925	25, 938	34,602	25, 734	79,605	
Other structural	3, 404	2, 553	43, 047	134, 251	54, 119	84, 718	
Total structural prod- ucts	2, 3-6, 260	2.747, 456	5, 475, 530	8, 762, 791	13, 675, 333	26, 611, 904	
Nenstructural products: Stick	(1)	(1)	435, 483	128, 500	407, 470	121, 105	
Powder Shavings, wire, ribbon, and sawdust	232, 244	228, 129	349, 429	410, 859	882, 078 52, 111	1, 305, 418 37, 163	
Total nonstructural products	232, 244	228, 129	2 784, 912	² 539, 359	1, 441, 659	1, 463, 686	
Grand total	2, 588, 504	2,975,585	² 6, 260, 442	2 9, 302, 150	15, 116, 992	28, 075, 590	

¹ Not available.

Of the magnesium-alloy structural products sold or used, the aircraft industry took 96 percent and incendiary bomb casings and other industries, 4 percent. Of that going into the aircraft industry, 61 percent was for the manufacture of engines (including propellers), 22 percent for wheels, 10 percent for frames, and 7 percent for aircraft accessories. Sand, die, and permanent mold castings comprised 95 percent of all the magnesium-alloy structural products sold or used in the aviation field.

Consumption of magnesium-base alloy structural products in 1941, by uses

Use	Pounds	Use	Pounds
Aircraft: Engine Frame Wheel Accessories Incendiary bomb casings Automotive Stationary machines	1, 358, 988 2, 878, 833 885, 666 15, 116 181, 972	Portable machine equipment and tools. Textiles. Foundry equipment Oil-field equipment Printing Other industries. Total	90, 811 55, 097 2, 395 8, 293

Fabricators of magnesium structural products increased from 30 in 1940 to 38 in 1941 and of nonstructural products from 4 to 6. By the end of 1941, 24 companies were producing sand castings, 2 per-

² Revised figures.

manent mold castings, 10 die castings, 2 extruded products, 2 forgings, and 5 powder. The largest producers of alloy structural products were the American Magnesium Corporation, Dow Chemical Co., Wright Aeronautical Corporation, Bohn Aluminum & Brass Corporation, Eclipse Aviation Co. (subsidiary of Bendix Aviation Corporation), Springfield Bronze & Aluminum Co., Dochler Die Casting Co., Harvill Aircraft Corporation, Hills-McCanna Co., Magnesium Products Corporation, and Ford Motor Co. Producers of powder included American Magnesium Corporation, Magna Manufacturing Co., Magnesium Corporation of America, National Magnesium Co., and National Metals Co.

Stocks of primary magnesium materials on hand at producers' and consumers' plants December 31, 1941, totaled 6,092,699 pounds, including 3,312,179 pounds of primary and 2,780,520 pounds of alloy ingot. Stocks of secondary materials totaled 293,995 pounds.

NATIONAL DEFENSE AND WAR MEASURES

As the demand for magnesium became greater than the supply, production of the metal was placed under mandatory priority status by the Office of Production Management on March 3, 1941. Preceding this action, on February 12, 1941, the Director of Priorities had directed that all manufacturers and fabricators of magnesium give preferential consideration to defense projects. General Preference Order M-2 was issued March 24, 1941. All defense orders for magnesium were thereby assigned a preference rating of A-10 or A statement of March 26 stipulated that defense orders for Great Britain were to receive the same priority treatment as those of the United States. On November 14, 1941, General Preference Order M-2-b was issued, conserving the supply and directing the distribution of magnesium, which prohibited its contamination and debasement; allocated the output of producers, approved smelters and fabricators; confined all purchase orders to uses bearing a rating of A-1-j or higher; made inventory and scheduling provisions, and provided for the collection, segregation, and disposition of scrap.

As the need for aircraft and incendiary bombs multiplied, the magnesium-production program was increased by the Office of Production Management, first on June 13, 1941, from a previously contemplated 75,000,000 pounds to 400,000,000 pounds annually. Six domestic companies became identified with this first magnesium-expansion program—Dow, Permanente, Basic Magnesium, Diamond, Mathieson, and International Minerals (Union Potash). As war and lend-lease requirements rose, the War Production Board announced the second expansion program (on February 26, 1942) extending capacity to approximately 610,000,000 pounds. Five additional companies were added to the six previously named concerns—Ford, Electro Metallurgical, New England Lime, American Metals, and

National Lead.

PRICES

Dow's price for 99.8-percent standard four-notch ingots (17 pounds) of magnesium, carlots (30,000 pounds minimum), was reduced from 27 cents to 22.5 cents a pound on May 1, 1941. For less than carlots, 100 pounds or more, the price was dropped from 29 cents to 24½

cents. Quotations for 4-inch-diameter by 16-inch ingots (12 pounds) and six-notch ingots (6 pounds), carlots, were reduced to 23.5 cents and for extruded sticks to 32 cents. The new price quoted on magnesium alloys (except Dowmetal "M" and "R-1"), in carlots, standard four-notch ingots (21 pounds), was 24.5 cents a pound, and on the standard 3-pound die-casting ingot, 25.5 cents. All quotations were f. o. b. producing plant, with freight allowed on 100 pounds or more to all points in the United States. On January 1, 1942, the above quotations on magnesium alloys were increased ½ cent a pound. Magnesium-ingot quotations in London remained stationary at 1s. 6d. a pound during 1941.

FOREIGN TRADE

No magnesium was imported in 1941. Exports of magnesium metal in primary form in 1941 totaled 3,098,424 pounds valued at \$860,486, of which 2,313,227 pounds went to the United Kingdom, 656,420 to Canada, 64,771 to Australia, 40,000 to Argentina, 20,000 to Mexico, 2,340 to China, and 1,666 to various other countries. In 1940 exports totaled 1,718,444 pounds valued at \$582,961. Official records on exports of the metal in other forms (available only for the last 6 months of 1941) totaled 86,070 pounds valued at \$29,620, of which 58,398 pounds were consigned to the United Kingdom and 25,116 to Canada. Exports of magnesium powder from July 1 to December 31, 1941, totaled 33,383 pounds valued at \$14,797, of which 26,575 pounds were sent to the United Kingdom and 6,500 to Canada. The metal has been under export control since November 5, 1940.

TECHNOLOGIC DEVELOPMENTS

Mass production of magnesium resulted in new methods for recovering the metal from various raw materials and the development of improved fabricating technique. Most of the new magnesium processes have already been discussed in this chapter under "Production." The Bureau of Mines investigated three new magnesium processes believed to have merit—the direct electrothermic method involving carbon reduction of magnesium oxide and condensation by an oil spray, use of molten lead to condense electrothermic magnesium vapor and subsequent electrolysis of the lead, and direct reduction of magnesium oxide in an electrolytic cell. Operation of a pilot plant at Pullman, Wash., revealed that a light stove oil is as effective as gas for shock-cooling magnesium vapor when atomized in a nozzle of proper design. Further work is planned on the two-stage continuous distillation of the oil sludge formed in the electrothermic process.

Radically new fabrication methods were placed in operation by the manufacturers of magnesium powder, of which there were over 10 in June 1942. Mounting aircraft requirements prompted the construction of large, new, streamlined magnesium-alloy sand-casting foundries. Among the up-to-date melting, casting, and heat-treating installations are those of Ford, Wright Aeronautical, American Magnesium, Dow, Bohn, Magnesium Products, Hills-McCanna,

Doerner, H. A., Holbrook, W. Floyd, Dilling, E. Don, Harris, Dwight L., Magnesium by Electrothermic Reduction: Bureau of Mines Rept. of Investigations 3635, 1942, 47 pp.

Aluminum Industries, Light Metals, Superior Bearing Bronze, Eclipse Aviation, Wellman Bronze & Aluminum, and Springfield Bronze & Aluminum. 11 Advancements also were made in the manufacture of permanent and semipermanent mold castings and of die castings, sheet, strip, plate, extruded shapes, and forgings. Companies that formerly fabricated other metals started manufacturing magnesium-alloy products in 1941 and early 1942. Dow and American Magnesium remained the only producers of sheet.

Preliminary static tests were completed on a magnesium-alloy airplane wing to determine its possible weight saving and general suitability for aircraft construction. Progress was made in 1941 on methods for combatting corrosion of magnesium.¹³ Numerous patents were issued on improved methods for producing, treating, and protecting magnesium and its alloys. Studies were made on the extinguishment and control of magnesium and incendiary-bomb fires.14 Care of atmospheres and heat-treating methods for magnesium products became increasingly important. 15 Demand increased during 1941 for high-purity magnesium alloys in which the iron, nickel, and copper impurities were removed—Dow metal J-1, for extrusions, sheet, and forgings; O-1, for extrusions and forgings; and FS-1, for sheet and extrusions. These new alloys have high corrosion resistance.

WORLD PRODUCTION

World production and consumption of magnesium in 1941 set a Most of the metal found its way into the manufacture of airplanes and incendiary bombs. Of the world output, it is estimated that about 60 percent was under Axis control and 40 percent under control of the Allied Nations.

Estimated world production of magnesium, 1937-41, by countries, in metric tons

Country	1937	1938	1939	1940	1941
Australia					20
France	1, 500	1,800	2, 500	2,000	3, 00
Germany	12, 080	14, 100	16, 500	25,000	35, 000
[taly	66	102	300	500	2, 500
apan	1, 200	1, 500	2,000	3.000	5, 000
Norway					100
Switzerland	230	750	750	750	1,000
U. S. S. R	500	500	1,000	1.500	4,000
United Kingdom	2,000	2, 200	4. 831	6, 500	12,000
United States.	1 2, 059	2.918	3, 039	5, 680	14, 78
Total	19,600	23, 900	30, 900	44, 900	77. 60

¹ Sales.

[&]quot;Phair, W. A., Magnesium Aircraft Castings: Iron Age, vol. 148, No. 8, August 21, 1941, pp. 39-44. Briskin, N. M., Magnesium Sand Castings: Iron Age, vol. 148, No. 2, July 10, 1941, pp. 47-53. Cone, Edwin F., The Ford Magnesium-Alloy Foundry: Metals and Alloys, vol. 15, No. 3, March 1942, pp. 395-402.

12 Conlon, Emerson W., and Mathes, John C., Preliminary Static Tests of a Magnesium-Alloy Wing:

Pres. at Ann. Meeting, Inst. Aeronautical Sci., January 25-30, 1912. (Preprint, 8 pp. and illus.)

B Hanawalt, J. D., Nelsen, C. E., Peloubet, J. A., Corrosion Studies of Magnesium and Its Alloys: Am. Inst. Min. and Met. Eng. Tech. Pub. 1333, April 1941, 26 pp.

Schmidt, H. W., Finishing Magnesium Die Castings: Am. Soc. Test. Mat., vol. 41, 1941, pp. 15-22.

B Guise, Arthur B., Protecting Industrial Plants from Magnesium Fires; Chem. and Met. Eng., vol. 48, No. 6, June 1941, pp. 85-87.

Bryone (Ming. Methods of Estimatishing Magnesium Fires)

Bureau of Mines, Methods of Extinguishing Magnesium Fires and Incendiary Bombs with Very Hard

Coal-Tar Pitch: December 15, 1941, 3 pp.

B Nelson, C. E., Atmosphere Control in the Heat Treatment of Magnesium Products: Pres. at Am. Soc. Metals, October 20-24, 1941.

Australia.—Production at a 1,000-ton magnesium plant was begun in the summer of 1941 by the Broken Hill Proprietary Co., Ltd., at New Castle, New South Wales. Finely ground calcium carbide and calcined magnesite are heated under vacuum, and the metal obtained

is remelted and refined with suitable fluxes. 16

Canada.—Dominion Magnesium, Ltd., early in 1942 began constructing a 3,500-ton magnesium plant at Haley near Renfrew, Ontario, based upon the dolomite-ferrosilicon process developed by Dr. L. M. Pidgeon of the Canadian National Research Council. The project is sponsored by Bobjo Mines, Ltd., Moneti Associates, and Ventures, Ltd., but cost of the plant (\$3,000,000) is to be borne by the Canadian Government. The Consolidated Mining & Smelting Co. of Canada, Ltd., is reported planning construction of a 5,000-ton magnesium plant in eastern Canada. It was first planned to locate this plant in western Canada, near the newly developed Marysville magnesite ore belt (4½ miles long) north of Cranbrook, B. C. At Trail, B. C., this company produced magnesium powder by a new atomization method. At Farm Point near Wakefield, Quebec, the Aluminum Co. of Canada, Ltd., started production of pure granular magnesia suitable for both refractories and the manufacture of magnesium metal from brucitic limestone. Virtually all of the current output, however, is to be used for refractory brick.17 The British Columbia Magnesium Co., Ltd. (one of several concerns planning the production of magnesium in Canada) began exploratory work in 1941 on magnesite deposits in the Williams Lake and Clinton districts, B. C., of which some ore contains 40 percent MgO and 27 percent Cr₂O₃.

France.—Several leading chemical companies (Pechiney, Ugine, and Bozel-Maletra) plan to increase French production of magnesium. Dolomite and Mediterranean sea-water brine apparently constitute the principal raw materials used. A new plant at Lannemazon in the Pyrenees is expected to be completed early in 1942. Magnesium plants formerly reported in operation are located at Saint-Auban.

Jarrie-Vizille, Villard de Bozel, and Moissac.

Germany.—German production of magnesium may have reached 50,000 tons in 1941, as production capacity is believed to have totaled that amount in 1940. Plants operated by the I. G. Farbenindustrie, A. G., were located at Bitterfeld (employing a process similar to Dow's with potash end liquor and magnesite), at Aken near Dessau (Magnesium Elektron process), and at Wintershalle; and by the Wintershall A. G. (the potash combine) at Wintershalle and Heringen (employing an electrolytic process with carnallite). Two new plants in central Germany and the rebuilt Radenthein (Austria) plant probably were in operation also. German interests were expected to complete construction of a 10,000-ton magnesium plant in Norway in 1941 based upon sea water and potentially available hydroelectric power.

Italy.—Italian magnesium production has been estimated in 1941 at 800 to 3,000 tons. The Fraschini automobile and Montecatini chemical interests are producing agnesium from dolomite in northern

Chemical Engineering and Mining Review, Magnesium Manufacture in Australia: Vol. 34, No. 400, January 10, 1942, pp. 121-126.
 Goudge, M. F., Sources of Magnesia and Magnesium in Canada: Canadian Min. and Met. Bull. 360, April 1942, pp. 191-207.

ern Italy, and Montecatini is recovering magnesium from sea water

on the Ligurian coast.

Japan.—Magnesium production is believed to have been greatly increased in 1941, and 15 companies (which the Government was attempting to consolidate) are said to have been established early in the year. Probably the five best-established and largest producers were the Nichiman (Japan-Manchuria) Magnesium Co., Ltd. (at Ube, Yamaguchi Prefecture—2,000 tons capacity); Japan Magnesium Metal Co., Ltd. (at Konan, South Kanyo Province, Chosen—2,000 tons); Asahi Electro-Chemical Industry Co., Ltd. (at Tokyo—560 tons); Japan Soda Co., Ltd. (at Toyama—360 tons); and Manchurian Magnesium Manufacturing Co. (at Yinkow, Manchuria—3,000 tons). Adequate supplies of raw material are available to Japan from the immense magnesite reserves at Tashihchiao and on the Liao-Tung Peninsula in Manchuria and in Chosen, and from the sea-water bitterns of the Gulf of Liao Tung and the Inland Sea.

United Kingdom.—Magnesium Elektron, Ltd., and Magnesium Metals & Alloys, Ltd., are estimated to have produced about 12,000 tons of metal in 1941 and are expected to double that amount in 1942. Domestic dolomite, sea water, Greek magnesite, and magnesite from

West and South Africa are used as raw materials.

ANTIMONY

By T. H. MILLER AND A. L. RANSOME 1

SUMMARY OUTLINE

	Page	9	Page
Summary	75	7 Domestic consumption	
Salient statistics			765
National defense		8 Foreign trade	766
Domestic production		World production	768
Mine output	75	Review by countries	768
Smelter output	76		
Secondary production	76	3	

SUMMARY

Under the impetus of rising demand, the antimony industry made general over-all gains during 1941. Although imports from China advanced over those in 1940, a continued shortage of Chinese metal stimulated domestic consumers of antimony to look to increased Mexican and South American ore supplies, which were augmented by a larger domestic production. World production is estimated to have been 55 percent greater than the 1938 total of 32,000 metric tons, based upon comparative gains from countries that produced 57 percent of the 1938 total.

High prices resulted from the increased competition, and 50- to 55-percent ores quoted at \$1.25 to \$1.35 a short-ton unit, New York, at the beginning of 1941 were priced at \$2.00 to \$2.10 at the close of the year. Despite the sharp rise in ore prices, the quotation for domestic metal remained at 14.00 cents a pound, New York, the same as in 1940. Quotations for Chinese metal were nominal at 16.50 cents, duty paid, throughout the year, a continuation of the 1940 price.

Domestic production of antimony ore and concentrate advanced 208 percent over 1940, but metal content rose only 146 percent, an indicated average drop in grade from 44 percent in 1940 to 35 percent in 1941. The antimony content of antimonial lead produced from all classes of domestic and foreign ores increased 42 percent over the 1940 figure and was the largest recorded since 1929. The content of the total production of antimonial lead at primary refineries from all raw materials—scrap and domestic and foreign ores—increased 19 percent and was the largest since 1929. Primary antimony available for consumption increased 67 percent to the highest point reached in many years. Stocks of metallic antimony at producers' plants, as reported to the Bureau of Mines, decreased from 1,048 short tons at the end of 1940 to 730 tons on December 31, 1941. The Laredo (Tex.) smelter and Kellogg (Idaho) electrolytic plant both reported marked increases in

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

757

production that greatly exceeded a drop in output from the Los Angeles smelter. The new electrolytic plant of the Sunshine Mining Co., under construction, should contribute to increased total production in 1942.

Figure 1 shows trends in world production from 1910 to 1938 and United States imports and prices from 1910 to 1941.

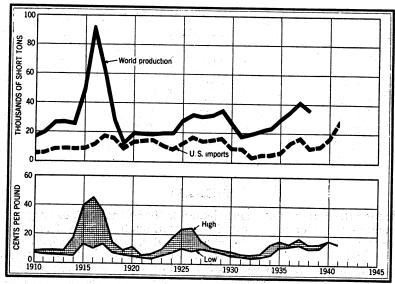


FIGURE 1.—Trends in world production, 1910-38, and United States imports and New York price of antimony, 1910-41.

Salient statistics for antimony in the United States, 1937-41

	1937	1938	1939	1940	1941
Production of antimony ore and concentratesshort tons Antimony contained	4, 250 1, 266	2, 730 650	3, 174 393	1, 124 494	3, 46 1, 21
Antimony content of antimonial lead produced from domestic and foreign ores	1, 726 12, 340	2, 080 8, 500	1, 108 9, 810	2, 077 11, 421	2, 95 21, 62
Antimony in oredo	13, 818	8, 322 90	9, 448	15, 733	19, 38
Oxidedo	1,043	821 414	228 1, 045 167	113 209	63 7, 46
Exports of foreign antimony -rimary antimony available for consumption do -toks of antimony in bonded warehouse at end of year	437 18, 132	711 11, 557	58 11, 609	276 17, 955	29, 99
A verage price of antimony at New York: 1	656	345	685	3, 417	41
Chinese	15. 30 15. 35 42, 100	14. 59 12. 35 35, 600	14. 44 12. 36 (3)	² 16. 50 14. 00 (3)	² 16. 50 14. 00 (3)

¹ According to American Metal Market.
² Nominal.

NATIONAL DEFENSE

The strategic aspects of antimony are based upon the dependence of the United States on imported ores and metal to supply the demand for which domestic production can fill only a minor, but increasing, percentage. The dislocation of the Chinese antimony industry since

Figures not yet available.

1937 has led to substantial changes in world antimony industry, which have tended to reduce the dependence of this country, among other democracies, on Chinese supplies. The decline in Chinese exports has been more than offset by the expansion in production, with American financial aid, in Mexico and Bolivia, of which virtually the whole supply is available to the United States. Notwithstanding this potential supply, antimony was comparatively scarce throughout 1941, but no mandatory priorities were invoked during the year by the Office of Production Management, even though some metal was withdrawn from Government stock piles to relieve shortages. On September 13, 1941, the Metals Reserve Co. announced that 7,014 tons of Chinese and 1,250 tons of domestic metal had been delivered to its stock pile, and 19,623 tons of foreign and 1,750 tons of domestic antimony were on order.

On August 21, 1941, American antimony prices advanced 0.50 cent a pound to 14.50 cents, New York—the first price change recorded since September 23, 1939. This rise was short-lived, however, as the Office of Price Administration and Civilian Supply on August 22 requested that the 14.00-cent level be maintained; it remained at that point until March 23, 1942, when the Office of Price Administration allowed the price advance to 15.96 cents for small case lots.

On March 30, 1942, allocation control over antimony was ordered by the Director of Industry Operation of the War Production Board, with issuance of General Preference Order M-112, effective May 1. Under this order, deliveries of antimony were strictly controlled. Subsequently, on July 11, 1942, order M-112 was amended to allow up to 50 tons a month of contained antimony in ore or concentrates to be delivered by producers without restriction.

DOMESTIC PRODUCTION

MINE OUTPUT

The extent of the increased activity as regards antimony in 1941 is not apparent from the record of production of antimony ores and concentrates alone. The number of producing mines and prospects has nearly doubled, as is indicated by the fact that 37 properties contributed to the country's total production of antimony ores in 1941 compared with 19 in 1939. In addition, much development work in the past year or two has not yet resulted in production. Moreoever, mines containing ores that are produced principally for their values in metals other than antimony have supplied increasing quantities of this metal for domestic consumption. The augmented supplies of antimony from ores containing values mainly in silver, copper, and other metals were available partly as the result of operation of the new Bunker Hill & Sullivan Mining & Concentrating Co. plant at Kellogg, Idaho.

There were 3,460 tons of material, containing 1,214 tons of antimony, classed as antimony ores and concentrates produced in 1941 compared with 1,124 tons of material containing 494 tons of antimony in 1940. Upon the basis of antimony content, the record for 1941 was surpassed in only 3 previous years—1915, 1916, and 1937. Shipments totaled 2,834 tons containing 1,018 tons of antimony in 1941 compared with 1,108 tons containing 490 tons in 1940.

The development of new large reserves of low-grade antimony ore by the Bureau of Mines at the Yellow Pine mine, discussed briefly under Idaho, and the availability of markets in Los Angeles and Laredo, among others, for small as well as large lots of domestic ores, foretell a substantial increase in output of antimony from domestic mines, should a prolonged war require. The new Bunker Hill plant at Kellogg and the prospective Sunshine Mining Co. plant at Big Creek near Kellogg indicate that larger quantities of antimony will be available from domestic silver, copper, and other ores not classed as anti-

mony ores.

Alaska.—Shipment of antimony ores from Alaska in 1941 was again confined to the Stampede mine of Morris P. Kirk & Son, Inc., in the Kantishna district. The total for 1941 considerably exceeded tonnages for 1938 to 1940 but was below the record for 1937. Much of the ore shipped from this deposit in 1941 was mined during 1939-40 and held in storage awaiting a more favorable market. Early shipments consisted of hand-sorted ore, but beginning in 1939 shipments comprised both ore and concentrates from a small mill installed in that year. In the early months of 1942 it was reported that the property had been acquired from Kirk by Earl Pilgrim, manager for Kirk since operations at the property were begun in 1936. It was also reported at that time that new milling equipment was to be installed.

Antimony deposits of the Stampede Creek area have been described in a report by Donald E. White of the Geological Survey, available for consultation in the Washington office of the Survey. White says that a large fault, the Stampede fault, has probably controlled the deposition of the antimony ore. The Stampede mine contains several veins or series of veins, one of which branches from the Stampede fault at a small angle. The veins are commonly wider and higher in grade near the premineral cross faults, which are tight and slightly mineralized. Several ore bodies have been found in the veins immediately east and north of cross faults—that is, on their hanging-wall sides. However, the largest ore body, called the Surface ore body, lay between the Stampede fault and the offshooting vein. The antimony is present principally as stibnite. White estimated that the reserves, including ore partly developed, amount to about 70 tons of shipping-grade ore containing at least 50 percent antimony and 6,000 tons of low-grade ore, capable of concentration, which has a minimum content of 10 percent antimony. In addition, the surface material below the outcrop of the principal ore body is estimated to contain at least 1,000 tons of oxidized ore with a tenor of 20 percent. Mill tailings amounting to 5,000 tons contain 6 percent antimony and may eventually be reworked. The estimates of reserves do not include possible ore in bodies not yet discovered or completely undeveloped ore in known bodies.

Mining at the Stampede mine was recently described.²

Arizona.—Less than 1 ton of antimony ore was produced and shipped from the Walker district in 1941. The mine in the Tip Top district, from which a small shipment was made in 1940, was inoperative during 1941.

California.—The Hilltop and Bishop properties in Inyo County produced antimony ores in 1941, and small quantities came from two properties in Kern and one in San Bernardino County. The location

² Gallaher, Robt. A., Sub-Arctic Antimony Mining: Mining World, vol. 3, No. 7, July, 1941, pp. 21-23.

ANTIMONY 761

of one producer was unreported. Some ore was also shipped in less than ton lots.

Production and shipments for the State amounted to only 51 tons of ore containing about 15 tons of antimony, marking a decline from the 74 tons containing 29 tons of antimony in 1940. Shipments in 1941 moved almost entirely to the El Segundo plant of Harshaw Chemical Co., near Los Angeles. This company took over the plant

operated by Menardi Metals Co. in 1940.

Antimony deposits in the Stayton district, which lies 13 miles northeast of Hollister and includes parts of San Benito, Santa Clara, and Merced Counties, were described in a report that is one of a series on strategic minerals investigations.³ According to the report, the antimony reserves of the district cannot be closely estimated because high-grade pockets are distributed sporadically. The breccia veins, exclusive of rich pockets, average less than 1 percent antimony, and, although the total amount of antimony they contain is a few tens of thousands of tons, the average grade is much too low for mining to be profitable, even at the high average price of 22 cents a pound that prevailed during the First World War years 1915–18. Small, high-grade pockets were not expected to raise the average tenor of any

considerable length of breccia vein to more than 1½ percent.

Idaho.—As has usually been the case in the recent past, Idaho was the principal producer in 1941 of antimony ores and concentrates. Output amounted to 1,823 tons containing 655 tons of antimony, and shipments totaled 1,249 tons containing 483 tons of antimony. addition to such ores, an even larger amount of antimony came from ores classed as silver ores, copper ores, and others, not included in this report as mine output of antimony. The Yellow Pine mine, operated by the Bradley Mining Co., is the largest source of antimony in the United States. This mine is owned by the United Mercury Mines, which also owns and operates the second-largest producing antimony mine in Idaho in 1941—the Antimony Ridge. Operations at the Yellow Pine mine were described by Bradley, who stated that 492,977 tons of ore assaying \$5.93 a ton in gold was milled from 1932, when the Yellow Pine Co. began operations (it was succeeded in 1938 by the Bradley Mining Co.), until January 1, 1941. The average net, smelter return for gold, silver and antimony was \$4.17 a ton. During this 9-year period, 68,364 ounces of gold, 213,569 ounces of silver, and 7,875,878 pounds of antimony were recovered from the concentrates.

The Bureau of Mines has developed an important reserve of low-grade antimony ore in the Yellow Pine mine, in connection with its strategic metal program. Drilling has revealed 2,315,000 tons of ore containing 43,900 tons of antimony. This ore must be considered mostly subcommercial at normal prices, although it is believed that about 300,000 tons may prove commercial if proper milling equipment

is used.

One other mine in Valley County and two properties in Shoshone County produced small quantities of antimony ore or concentrates in 1941

Idaho antimony ores were shipped to the Texas Mining & Smelting Co., Laredo, Tex.; Harshaw Chemical Co. (also Menardi Metals Co.,

Bailey, Edgar H., and Myers, W. Bradley, Quicksilver and Antimony Deposits of the Stayton District, California: Geol. Survey Bull. 931-Q. 1942, pp. 405-434.
 Bradley, John D., Mining and Milling Methods and Costs at the Yellow Pine Mine, Stibnite, Idaho: Bureau of Mines Inf. Cir. 7194, 1942, 11 pp.

which preceded it), El Segundo, Calif.; United States Smelting, Refining & Mining Co., Midvale, Utah; and Bunker Hill & Sullivan

Mining & Concentrating Co., Kellogg, Idaho.

Montana.—Small quantities of antimony ores were produced and shipped in 1941 from near Thompson Falls in the Burns district, Sanders County. Mines and claims reported to have been active were the Stibnite Hill, Eureka, Ellis, Coeur d'Alene, and Interstate. Production and shipments totaled 113 tons containing 43 tons of

antimony.

Nevada.—A greater number of antimony properties were active in Nevada than in any other State during 1941. Operations were reported in every section of the State, and the producing counties are given as follows, in descending order of importance: Nye, Lander, Pershing, Humboldt, White Pine, and Washoe. There were 16 shippers of lots of more than 1 ton each. The average size of antimony operations was small, and the average grade of ore produced was low, as is indicated by the fact that totals for the State were 691 tons, containing 146 tons of antimony, produced and 669 tons, containing 138 tons of antimony, shipped. A number of shipments of less-than-ton lots were made. The Harshaw Chemical Co. (which succeeded Menardi Metals), El Segundo, Calif., was the destination of the larger number of shipments, and the Texas Mining & Smelting Co., Laredo, Tex., received the remainder.

Oregon.—The chapter of this series, review of 1940, pointed out that prospecting was done on antimony deposits in Baker and Jackson Counties in that year. This work resulted in production and shipments of ore from both counties in 1941. Shipments of more than ton lots were made from the Gray Eagle (Koehler) and one other property in Baker County and from the Jay Bird in Jackson County.

Washington.—Two properties in Okanogan County were reported to have produced and shipped antimony ore in 1941—the Antimony Queen in the Methow district and the Lucky Knock in another

district.

SMELTER OUTPUT

In 1941 primary antimony for shipment to others was produced from foreign and domestic ores at three plants in the United States: Bunker Hill & Sullivan Mining & Concentrating Co., Kellogg, Idaho; Harshaw Chemical Co., Menardi Metals Division, El Segundo, Calif.; and Texas Mining & Smelting Co., Laredo, Tex. In addition, metallic antimony was produced by the American Smelting & Refining Co. at its Omaha (Nebr.) plant but was converted into other products such as antimonial lead and was not sold as metallic antimony.

The Sunshine Mining Co. began to construct an antimony plant at Big Creek, Idaho (near Kellogg), early in 1942, to be in operation by late summer of that year. The plant will be the fourth in the United States and is designed to recover the antimony content of silverbearing tetrahedrite ore mined by the company. It is planned to treat custom antimony ore as well. The capacity is reported to be

200,000 pounds of metal a month.

Imports of antimony ore in 1941 amounted to 41,662 short tons containing 19,386 tons of antimony, compared with 37,966 tons in 1940 containing 15,733 tons of metal, an increase of 23 percent in terms of antimony content. The following table, which shows consumption and stocks of foreign antimony in the United States during

1940 and 1941, lists receipts of 40,434 tons of ore in 1941 and 34,530 tons in 1940 or 97 and 91 percent, respectively, of the total amount imported. The difference in each instance is attributable to the usual lag in reporting imports on one hand and receipts on the other, plus the fact that a certain percentage of total stocks is in transit and not statistically accounted for in the receipts. Receipts exceeded consumption in 1940, and stocks of antimony ore increased 33 percent (gross weight). The reverse was true in 1941, and stocks declined 56 percent. Although receipts increased 17 percent over 1940, consumption of 46,211 tons (containing 20,530 tons of antimony) in 1941 was 44 percent above the reported consumption of 31,982 tons (containing 13,421 tons of antimony) in 1940.

Consumption and stocks of foreign antimony ore in the United States during 1940 and 1941, in short tons

					Gross weig mon	tht of anti- y ore
					1940	1941
Stocks at beg Received dur Consumed de Stocks at end	ring year. uring year	 			7, 775 34, 530 31, 982 10, 323	10, 32 40, 43 46, 21 4, 546

Production of antimonial lead at primary lead refineries is shown in the accompanying table. The figures cover only part of the total antimonial lead production, as large quantities are produced at plants that operate exclusively on scrap, and some hard lead is made by mixing antimony and soft lead.

Antimonial lead produced at primary lead refineries, 1937-41, in short tons

		Antimony content						
Year	Production	From do-	From for-	From	Total			
		mestic ores	eign ores 1	scrap	Quantity	Percent		
1937 1938 1939 1940 1941	27, 524 24, 123 21, 995 29, 762 40, 237	1, 636 1, 871 929 1, 915 2, 586	90 209 179 162 372	853 729 923 867 552	2, 579 2, 809 2, 031 2, 944 3, 510	9. 4 11. 6 9. 2 9. 9 8. 7		

¹ Includes lead ores, antimony ores, and metallic antimony.

SECONDARY PRODUCTION

A large part of the total antimony available for consumption each year in the United States is recovered in the treatment of secondary nonferrous metals. The production of antimony from secondary metals in 1941 totaled 21,629 tons—an 89-percent increase from the 11,421 tons produced in 1940. Primary antimony available for consumption in the United States in 1941 totaled 29,994 tons. Total antimony available was thus 51,623 tons, including 58 percent primary and 42 percent secondary; the ratios in 1940 were 61 and 39 percent, respectively.

Most of the secondary antimony is recovered from old scrap returning from worn-out and obsolescent equipment. In 1941, old scrap vielded 21.572 tons of antimony and new scrap 57 tons. Leadbase alloys, chiefly antimonial lead, supplied 99 percent of the total secondary antimony recovered in 1941; most of the remainder came from tin-base scrap. Discarded storage batteries are the largest single source of secondary antimony. In 1941 plants treating secondary metals reported the consumption of 264,190 tons of battery lead plates containing 12,681 tons of recoverable antimony or 59 percent of the total secondary antimony produced. Babbitt of all types, including Mixed Common, No. 1, and Genuine, yielded 2,347 tons of antimony, and 4,089 tons came from type metals and drosses. The remainder of secondary antimony in 1941 came from hard lead (yielding 2,268 tons of antimony), cable lead (216 tons), and No. 1 pewter (28 tons).

Most of the plants treating scrap metals containing antimony also consume other antimony materials, such as antimony ore or metallic antimony. These materials are used to adjust or "sweeten" the antimony content of the products. Refined metallic antimony is rarely produced from scrap metals, as most of the output is in the form of lead-base and tin-base alloys. Much of the production is in the form of antimonial lead returned directly to the storage-battery trade. Antimony oxide, sodium antimonate, and other compounds are also produced from scrap metals. Additional information on secondary antimony is given in the chapter on Secondary Metals-

Nonferrous.

DOMESTIC CONSUMPTION

Data on the consumption of primary antimony in the United States are not available owing to the lack of complete information on dealer and consumer stocks and on the quantity of domestic antimony recovered in alloys other than antimonial lead and in compounds. Comprehensive surveys of producers and consumers of antimony and antimony materials are currently being conducted by the Bureau of Mines and should give a nearly complete picture for 1942. However, an approximate idea of the trend of consumption can be obtained from the following table, which shows the annual supply available for consumption.

Primary antimony available for consumption in the United States, 1937-41, in short tons 1

	1937	1938	1939	1940	1941
Domestic antimony recovered in antimonial lead	1, 636	1, 871	929	1, 915	2, 586
Antimony ore	13, 818	8, 322	9, 448	15, 733	19, 386
Needle or liquated 2	540	63	160	79	447
Compounds 3	909	336	138	4	2
Type metal, etc	410	355	121	191	202
Regulus	1, 043	821	1, 045	209	7, 469
Total available	18, 356	11, 768	11.841	18, 131	30, 092
Exports under draw-back	224	211	232	176	98
Available for consumption 4	18, 132	11, 557	11, 609	17, 955	29, 994

Excludes domestic antimony recovered as miscellaneous alloys, oxides, and other compounds.
 Content estimated at 70 percent.
 Content estimated at 80 percent.

Figures are low owing to somewhat incomplete data concerning some items of domestic production.

765

Primary antimony available for consumption in 1941 increased 67 percent over the total for 1940. Imports of regulus and ore increased to a marked degree, and domestic production also advanced. According to the American Bureau of Metal Statistics, 131,000 tons of antimonial lead were used in manufacturing storage batteries during the year compared with 115,600 tons in 1940 and 106,500 tons in 1939. This battery metal contains 4 to 12 percent antimony, largely from scrap, although a substantial quantity of new metal is added to raise the alloy to the required ratio.

An important use of antimony is in white-base antifriction bearing metals. According to the Bureau of the Census, shipments of this material produced for sale and for plant consumption in 1941 totaled 33,146 tons compared with 26,701 tons in 1940. The manufacturers reporting data that give the above totals represent almost the entire

industry.

The use of antimony in making chemicals continued to grow in 1941, as the production of oxide and other compounds increased 43 percent to 14,588 short tons containing approximately 11,590 tons of metal. Figures on the production of compounds in the 4 preceding years, with the estimated antimony content in parentheses, are as follows: 1940, 10,211 tons (8,223); 1939, 7,668 tons (6,188); 1938, 4,393 tons (3,539); 1937, 6,992 tons (5,667). Nearly all of this material was made from foreign ores. Oxide, the most important compound, is used extensively in paints, lacquer, synthetic enamel, porcelain enamel, and glass. The following companies reported production of oxide and other salts in 1941: American Smelting & Refining Co., 120 Broadway, New York, N. Y.; Harshaw Chemical Co., 1945 East 97th Street, Cleveland, Ohio; McGean Chemical Co., 1106 Republic Building, Cleveland, Ohio; Menardi Metals Co., Division of Harshaw Chemical Co., El Segundo Calif.; Texas Mining & Smelting Co., Laredo, Tex.; and Rare Metal Products Co., Belleville, N. J.

Still another and expanding use for antimony, although comparatively small, is in the treatment of canvas and other textiles against rotting and fire. The importance of such a use for military purposes

at present is obvious.

PRICES

The price of domestic brands of metallic antimony was quoted at 14.00 cents a pound in New York throughout 1941, the same as in 1940. A one-half cent advance posted in August 1941 was quickly withdrawn at the request of the Office of Price Administration, and no further advance was made until March 23, 1942, when the quotation was listed at 15.96 cents by permission of Office of Price Administration. An additional allowed rise on April 13 brought the price to 16.01 cents, where it remained at the end of July 1942. The quotation of 16.50 cents a pound for Chinese metal, which had been in effect during all of 1940, remained the same throughout 1941 and was unchanged at the end of July 1942; the price was nominal.

On the London market the price of English regulus (minimum, 99 percent antimony) was £85 from December 31, 1940, until May 23, 1941, when it increased to £95. The quotation continued to advance during the following 5 months to £120 on October 10, where the price remained for the rest of 1941; it was still quoted at this level at the end of June 1942. Foreign regulus (spot deliveries from warehouse,

duty paid) was quoted at £90 at the end of 1940. Subsequent prices throughout 1941 and the first half of 1942 were the same as those of the English regulus.

Average monthly quoted prices of antimony, prompt delivery at New York, 1937-41, in cents per pound

Month	C	hinese b	rands (di	ity paid)	American brands 3					
	1937	1938	1939	1940 2	1941 3	1937	1938	1939	1940	1941
January February March April May June July August September October November December	14. 14 14. 69 16. 92 16. 79 14. 79 14. 70 14. 79 15. 53 (4) (4) 15. 91 14. 69	15. 56 15. 74 15. 75 15. 65 14. 46 13. 94 14. 00 14. 00 14. 00 14. 00 14. 00	14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.24 3 16.50 3 16.50	16. 50 16. 50 16. 50 16. 50 16. 50 16. 50 16. 50 16. 50 16. 50 16. 50 16. 50	16. 50 16. 50 16. 50 16. 50 16. 50 16. 50 16. 50 16. 50 16. 50 16. 50 16. 50	14. 14 14. 55 16. 37 16. 02 14. 79 14. 70 14. 81 15. 34 16. 59 16. 92 15. 87 14. 12	13. 75 13. 75 13. 75 13. 65 12. 46 11. 73 11. 02 10. 88 11. 32 12. 06 12. 25 11. 56	11. 68 11. 25 11. 27 11. 50 11. 70 12. 00 12. 00 12. 00 12. 87 14. 00 14. 00	14. 00 14. 00 14. 00 14. 00 14. 00 14. 00 14. 00 14. 00 14. 00 14. 00 14. 00	14. 0 14. 0 14. 0 14. 0 14. 0 14. 0 14. 0 14. 0 14. 0
Average	15. 30	14. 59	14. 44	16. 50	16. 50	15. 35	12. 35	12. 36	14.00	14. 0

¹ Metal Statistics, 1940, p. 529, except for 1940 and 1941, which were taken from daily issues of American Metal Market.

Metal Statistics, 1942, p. 551.
Nominal.

Quotations for antimony ore on January 2, 1941, according to Engineering and Mining Journal Metal and Mineral Markets, were as follows: "Per (short-ton) unit of antimony contained, at New York, 50 to 55 percent, \$1.25 @ \$1.35; 58 to 60 percent, \$1.40 @ \$1.50; 60-65 percent, \$1.50 @ \$1.60. London, 60 to 65 percent, 9s.3d. per long-ton unit." Increased competition for the available ore supply resulted in higher prices which, by January 1, 1942, reached \$2.00 @ \$2.15 for the lower-grade ore, \$2.15 @ \$2.25 for intermediate-grade, and \$2.25 @ \$2.35 for higher-grade at New York, and 14s.9d. for higher-grade in London. These prices fluctuated slightly throughout the first month of 1942 but rose in April to \$2.15 @ \$2.20, \$2.20 @ \$2.30, and \$2.30 @ \$2.40 for the lower, intermediate, and higher grades, respectively. The New York quotations were unchanged at the end of July, but the London price for the higher-grade was quoted at 12s.9d. in May.

FOREIGN TRADE

The following tables show imports and exports of antimony and antimony products.

Antimony imported for consumption in the United States, 1937-41

	Antimony ore		liquat	edle or ed anti- iony	Antim	ony metal	Antimony ox- ides and other compounds		
Year	Antimony content		ony content						
	tons	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1937	42, 453 19, 811 21, 000 37, 966 41, 662	13, 818 8, 322 9, 448 15, 733 19, 386	\$1, 775, 011 1, 095, 497 1, 132, 359 2, 027, 612 2, 717, 472	772 90 228 113 638	\$101, 963 12, 016 30, 102 19, 464 126, 018	1, 043 821 1, 045 209 7, 469	\$228, 485 155, 420 196, 812 50, 048 2, 056, 678	1, 136 420 173 5 2	\$249, 152 94, 400 29, 786 1, 851 537

No average, owing to lack of offerings during greater part of month.

Antimony imported for consumption in the United States, 1940-41, by countries

		Antimony or	8	Antimor	ny metal
Country	Gross weight	Antimon	y content		
	(short tons)	Short tons	Value	Short tons	Value
1940					
Argentina 1		31	\$5,876	<u>-</u> -	
BelgiumBolivia ¹		5, 547	860, 813	7	\$2, 276
China		0,011	300,010	194	45, 126
Colombia		7	615		
Honduras		9, 545	1, 671 1, 065, 296		
Peru		598	93, 341	2 6	488 2, 158
	37, 966	15, 733	2, 027, 612	209	50, 048
1941 Belgium				22	4, 248
Bolivia	11, 695	7,094	1, 210, 118		
Burma	30	18	3, 673		
China	28	17	145 2, 250	7, 115	1, 950, 990
Honduras	24	ii	1, 970		
Mexico. Peru	28, 706 1, 177	11, 664 581	1, 399, 896 99, 420	328 4	100, 309 1, 131
	41, 662	19, 386	2, 717, 472	7, 469	2, 056, 678

¹ Imports credited to Argentina originate largely in Bolivia.

Estimated antimony content in type metal, antimonial lead, and other alloys imported for consumption in the United States, 1937-41, in short tons 1

Year	Type metal and anti- monial lead	Other alloys 2	Total	Year	Type metal and anti- monial lead	Other alloys 3	Total
1937 1938 1939	⁸ 17 ² 59 59	393 296 62	410 355 121	1940 1941	191 202		191 202

¹ For details of gross weight and values, see imports shown in Lead chapter of this volume.
² Chiefly in special antimony-lead alloys containing high percentage of antimony.
³ Type metal only.

Foreign antimony (regulus or metal) exported from the United States, 1937-41

Year	Short tons	Value	Year	Short tons	Value
1937 1938 1939	437 711 58	\$86, 991 96, 836 16, 736	1940 1941	276 70	\$75, 440 19, 690

As in other recent years, imports of antimony ore in 1941 came principally from Mexico and Bolivia. Imports from Bolivia increased 26 percent in 1941, and receipts from Mexico were the highest on record, except for 1937 when 34,736 short tons were imported. Imports for consumption of 7,469 tons of antimony metal in 1941, nearly all from China, were the highest recorded since 1930.

In addition to the exports of foreign metal reported in the last table above, 98 tons were exported in finished products under the draw-back provisions of the tariff law; draw-back exports amounted to 176 tons in 1940 and 232 tons in 1939. Stocks of antimony in bonded warehouses on December 31, 1941, totaled 416 tons compared

with 3,417 tons at the end of 1940. The drop is due largely to the release of Chinese metal stocks held by the Metals Reserve Co.

WORLD PRODUCTION

Statistics on world production, which were incomplete for 1939 and 1940, are even less complete for 1941 because of the war and its effect on the release of information from the nations involved. Data from countries that supplied 84 percent of the total recorded world output in 1938 indicated a 14-percent increase over that year in total world production during 1940. Similarly, statistics from countries that produced 57 percent of the world total in 1938 indicate a 55-percent increase over that year in total world production during 1941. Although Mexican output decreased, the loss was more than offset by gains in Bolivia. All other countries from which data were available showed increases over 1940.

REVIEW BY COUNTRIES

Argentina.—During 1940 the total production of antimony ore in Argentina was approximately 250 tons, including antimony oxides, sulfides, and ores associated with silver, iron, copper, and arsenic. A corresponding figure for 1941 is not available. The source of antimony is chiefly small mountain mines in the Provinces of Jujuy and La Rioja. The Pabellon mine, Jujuy, is the principal producer. A small tonnage of antimony is obtained annually as a byproduct of imported Bolivian lead ores.

Bolivia.—The main antimony-producing regions in Bolivia are near Tupiza, Llallagua, and Oruro. The stibnite ore bodies are generally spotty, and the ore is mined and concentrated by rudimentary hand methods, which yield low recovery with a tailings content ranging from 5 to 10 percent. More than 80 percent of the total exports of antimony is supplied by the Banco Minero de Bolivia from purchased production of small miners. Recent demand for antimony has resulted in a steady increase in output, which reached 24,923 metric tons of ore containing 14,870 tons of antimony in 1941.

Brazil.—Several occurrences of antimony have been reported in Brazil, and the deposits of Morro do Bule, near Ouro Preto, State of Minas Gerais, and also Cananea, State of São Paulo, are considered of value for commercial exploitation.

Canada.—The high prices for antimony prevailing in the latter part of 1941 renewed the interest in the Stuart antimony deposit at Ferguson Creek, Bridge River district, British Columbia. This property was discovered in 1925 but has not been developed. Late in 1941 a considerable quantity of ore from the Bridge River area was sacked and shipped to the United States for treatment.

China.—Production from China during 1940 was 5,493 metric tons, including antimony content of regulus, crude antimony, and oxide exported. No figures for 1941 are available. New antimony deposits are being explored, with the expectation of increasing output 1,000 to 2,500 tons annually.

Approximately 99 percent of the antimony mines lie in south-western China, in territory still under Chinese control. Exports from all of China during 1940 were 326 metric tons of crude antimony and 5,248 tons of regulus.

Late in 1941 Japanese military interests were reported to be organizing an antimony refinery at Wuchang, Hupeh, in central China, capitalized at yuan 3 million, but no other details are available.

Cuba.—Antimony is found in the MacKinley area in the northwestern part of the Isle of Pines, and small amounts were shipped to

the United States in 1941.

Honduras.—A trial shipment of antimony ore (25 long tons) from a property near La Union, Department of Olancho, was sent to the United States in the third quarter of 1941. The Yoro Mining Co. and the Honduras Mining Co. have been idle during 1941, principally because transportation costs between the deposits and the ports of shipment have been too high for profitable operation.

India.—Several sources of antimony ore have been found recently in India as the result of exploration, and a refining plant to treat

these ores may be installed in the near future.

Japan.—It is reported that increased output of antimony is planned by the semigovernmental antimony mining company in Japan. step has been taken as a result of the ban imposed by Bolivia on exports of antimony to Japan. Current antimony production covers less than a quarter of Japan's consumption, which has risen sharply in recent years.

Mexico.—The most recent available information on the antimony industry in Mexico appears in the November 20, 1941, issue of Mineral Trade Notes, published by the Bureau of Mines, from which the

following notes have been abstracted.

Deposits of antimony are found in 14 States in Mexico. Output from many of the discoveries has been small, but potentialities of several undeveloped deposits are promising. Lack of even medium-sized formal mining operations in the Mexican antimony industry is noteworthy. In only a few instances, notably at San Juan Mixtepec, Oaxaca, and at Wadley, San Luis Potosi, are properties large enough to justify installation of mechanical equipment. The greater portion of antimony comes from small, scattered operations, mostly close to the surface with very little depth attained by the workings. Likewise most of these operations are carried on under the "buscon" and "gambusino" systems, in which the individual miner is almost entirely the sole judge of where, when, and how the work is to be performed.

Up to a short time ago almost the entire production of antimony in Mexico was controlled by Cia. Minera y Refinadora and by Cia. Minera de Oaxaca. However, within the past few months, several other organizations and individuals have entered actively into the field, largely from the ore-purchasing angle.

The Republican Mining Co. was the earliest formal organization in Mexico for the production of antimony. This company was the forerunner of the Texas Mining & Smelting Co., of which Cia. Minera y Refinadora is a subsidiary. Cia. Minera de Oaxaca is owned mainly by the Madera Bros. of Mexico City, but the Texas company also has a substantial stock interest in it. Operations of Cia. Refinadora are confined generally to the area posts of Operators, while Cia. Refinadora are confined generally to the area north of Queretaro, while Oaxacá operates to the south.

The principal antimony area is in the western part of Oaxaca near San Juan Mixtepec just west of Tlaxiaco. Cia. Minera de Oaxaca controls the most important developments in the area. During 1940 production in Oaxaca totaled 5,100 tons, averaging 56 percent antimony—2,900 tons of oxide ore and 2,200 tons of sulfide ore. The sulfide ore normally averages 52 to 57 percent Sb, while the

suince ore. The suinde ore normally averages 52 to 57 percent Sb, while the oxides occasionally run as high as 80 percent.

The antimony deposits in the vicinity of Wadley, 165 kilometers north of San Luis Potosi, formed the nucleus for the mining operations of the Republican Mining Co. This company, originally organized by the Cookson interests of England, built a smelter at Wadley, which operated until 1930 when the Cookson interests were reorganized, the smelter closed, and a new plant opened at Laredo, Tex. The initial operation of the Republican Mining Co. was the San Jose mine, high in the hills about 7 miles east of Wadley. Originally, work on the property

was performed on company account, but, with the type of ore body found, this system proved unprofitable and upon reorganization of the corporation was abandoned. At present, work is conducted on the "gambusino" system, which in general principles corresponds to leasing operations in the United States. Development work in search of new ore bodies is done by the company, as the gambusinos are unwilling to perform work where there is no certainty of a direct

Just north of Wadley is the old mining district of Catorce with a considerable record of past production of precious metals, but now almost dormant except for a small output of antimony. This ore comes from small scattered operations, and small output of antimony. the greater part is purchased by Refinadora and shipped to Laredo. Production from the district averages about 60 tons monthly, virtually 95 percent of which is oxide ore containing 25 percent Sb. Individual lots average from 20 to 40 percent. Between Catorce and Wadley, at Nantanzas, 60 to 80 buscones are producing

about 80 tons of ore monthly.

The principal antimony-producing regions of the State of Queretaro lie in the central and eastern parts of the State in the vicinity of Toliman, Bernal, El The largest amount of development and greatest production Doctor, and Jalpan. has been in the area nearest Toliman and Bernal. In this section several other large mining operations have produced over a period of several years. At present the most active of these properties is owned and operated by Augustine B. Carrasco. Carrasco operates one of the few concentrating plants for the beneficiation of antimony ore. The plant uses gravity methods and is turning out 60 tons of 50-percent concentrate monthly. The mine also produces between 60 and 70 tons monthly of direct shipping ore.

The State of Zacatecas is one of the oldest mining areas in Mexico with a recorded production dating back to 1540 when the mines were first discovered by the Spaniards. In 1940 the State ranked sixth in output of antimony, when 201 tons were recovered. The chief antimony areas are in the northern part of the State in the vicinity of Sombrerete, Nieves, and Pacheco. Refinadora, which maintains agencies in the larger towns and even in small villages, has been the chief outlet for the ore. The deposits worked so far are small, irregular pockets close to the surface and with little indication of continuity. Operations have been carried on for several years, but no appreciable depth has been attained,

rarely more than 15 to 20 meters.

During 1940 Durango produced only 161 tons of antimony, all reported by Refinadora as obtained from the Cuencame and San Bartolo districts. Scattered antimony deposits are reported in the State, but most of them are in the eastern and northeastern sections. The ore is comparatively low in grade, ranging from 25 to

30 percent.

Three widely separate districts in Sonora are known to contain deposits of
These are antimony ore and to have shipped appreciable amounts in past years. These are near the village of Antimonio, about 100 miles west of Santa Ana on the Southern Pacific, 66 miles south of Nogales; Sahuaripa, in the central part of the State near the Chihuahua line; and in the vicinity of Nacozari, south of Douglas, Ariz. The Antimonio district, or as more generally called the Caborca district, has been an important source of antimony. Shipments have been made during the past 25 years and at the present average 100 tons of metal contained in ore monthly. The ore as shipped averages 45 percent Sb. The workings as yet have not reached any appreciable depth. It is reported that 25,000 tons of 10-percent ore have accumulated on dumps for possible future operations. The deposits in the neighborhood of Sahuaripa are virtually inaccessible. Small amounts of antimony are shipped occasionally, but up to the present the district has been of little im-Occasional small shipments also are made from Nacozari. developed deposits along the Yaqui River near Ramona have been reported.

Several antimony deposits are reported in the State of Guerrero, but to date only the Huitzuco Co. is operating. In June 1941 the company treated 110 to 130 tons of ore daily, averaging 0.23 percent Hg and 1.1 percent Sb. The ore is treated in a modern flotation plant, and the concentrates are shipped to Menardi Metals Co., Los Angeles, Calif., for refining. Production in 1940 totaled 335,155 pounds of antimony, of which 224,058 were recovered from refining operations.

Peru.—In 1941 exports of antimony ore from Peru totaled 2,850 metric tons containing 1,452 tons of metal, 48 tons of antimonial lead ores containing 11 tons of metal, and 2 tons of antimony bar containing 1.8 tons of metal. Antimony is largely mined by small producers. It is reported that potentially large deposits occur in the Departments of Arequipa and Puno, but exploitation is restricted by

lack of transportation facilities and capital.

The principal development in the antimony industry in Peru is the erection, by the Cerro de Pasco Corporation, of a dust treatment plant, of 100 tons a day capacity, which should be completed in 1942, pending arrival of equipment from the United States. The plant will treat Cottrell dust; 4,000 tons containing 45 percent antimony are stored at the smelter.

Union of South Africa.—According to the Metal Bulletin (London), the Consolidated Murchison (Transvaal) Goldfields and Development Co., Ltd., is now producing antimony flotation concentrates on a fairly substantial scale; these are, for the most part, being shipped to the United Kingdom for treatment. Several small mines are being worked along the Murchison range for the production of antimony alone.

CADMIUM

By Allan F. Matthews

SUMMARY OUTLINE

	Page		Page
General statement	773	Prices	778
Government supervision	773	Foreign trade	779
Domestic production	774	Toxicology	780
Consumption and uses	775	World aspects of cadmium industry	780
Stocks	778		

GENERAL STATEMENT

Cadmium recovery is at a high level in apparently all zinc-lead-smelting countries. More than half of the world output is supplied by the United States, a sixth by the British Commonwealth of Nations and the U.S.S. R., and about a fifth by the Axis-dominated countries. The favorable position of the United Nations is due in part to their control of the flow of cadmium flue dust from Mexico and South-West Africa. Cadmium production in the United States from domestic and imported raw materials reached about 7½ million pounds in 1941, and stocks were drawn upon to meet a consumption of nearly 8 million pounds. Germany was able to supplement its own cadmium output—the second-largest in the world—with quantities from Poland, Norway, and France. Canadian cadmium production, which ranks

third, was increased about 30 percent in 1941.

Government supervision.—The job of maintaining production of cadmium in the United States and directing available supplies into war channels was undertaken by the Cadmium Section, Office of Production Management; in April 1941 Harry J. Wolf was appointed chief of the section. During the latter half of 1941 producers marketed their cadmium in normal fashion, although the Office of Production Management watched deliveries and stepped in to handle individually the "hot-spot" situations that developed. Cadmium was placed under full priority control by Office of Production Management Order M-65 on January 17, 1942. The companion Order M-65-a, issued at the same time, prohibited the use of cadmium in automotive, trailer, and tractor equipment, building supplies and hardware, house furnishings and equipment, and a number of miscellaneous products. Order M-65 was modified by an amendment, effective June 24, 1942, that enabled the War Production Board to allocate all cadmium for absolutely essential purposes. The Government stock pile of metallic cadmium, held by Metals Reserve Co., a subsidiary of the Reconstruction Finance Corporation, amounted to 134,400 pounds valued at \$139,000 as of October 22, 1941, and was valued at \$194,000 as of March 7, 1942. Control of cadmium imports was provided for in Office of Production Management Order M-63 on December 28, 1941, but was revoked by amendment 3, effective March 14, 1942,

because such imports were controlled by other means. last three quarters of 1941 primary producers cooperated with the Government in keeping the price of cadmium sticks at 90 cents a pound—the level at which it was formally fixed by Office of Price Administration Price Schedule 71, effective January 19, 1942.

DOMESTIC PRODUCTION

Cadmium established a new record in 1941, when primary production increased 14 percent over 1940. Production of secondary cadmium (derived principally from bearing scrap) now constitutes about 5 percent of the total primary and secondary output. Producers' shipments of primary cadmium were 10 percent larger in 1941 than in 1940. The geographic distribution of primary cadmium production, based upon location of plants that produced metal or compounds (and not upon origin of cadmium-containing ores), in 1941 was as follows: 74 percent from four plants in four Western States (Colorado, Idaho, Montana, and Utah), 18 percent from nine plants in six Central States (Illinois, Kansas, Missouri, Ohio, Oklahoma, and Texas), and 8 percent from six plants in three Eastern States (Connecticut, New York, and Pennsylvania). In the United States cadmium is chiefly a byproduct of zinc production.

Cadmium produced, shipped by producers, imported, and exported in the United States, 1937-41, in pounds

	1937	1938	1939	1940	1941
Production:					
Primary: 1		l	1		
Metallic cadmium Cadmium compounds (Cd content) *_	4, 265, 973 3 418, 800	4, 077, 961 216, 400	4, 411, 530	² 6, 154, 200 ² 209, 400	6, 937, 931 295, 600
Total primary production Secondary (metal and Cd content of	² 4, 684, 800	2 4, 294, 400	2 4 4,790, 500	4 6, 363, 600	7, 233, 500
compounds) 5	(6)	(6)	(4 8)	227, 900	379, 500
Shipments ' by producers: Primary:	4 1				
Metallic cadmium Cadmium compounds (Cd content) 3_	4, 059, 764 334, 600	2, 525, 666 211, 000	5, 190, 273 4 401, 200	6, 467, 260 205, 900	7, 044, 417 265, 700
Total primary shipments	4, 394, 400	2, 736, 700	4 5, 591, 500	6, 673, 200	7, 310, 100
compounds) 5 Imports (metallic cadmium)	(6) 828, 535	(6) 22, 582	(4.6) 309, 874	227, 200 27, 491	376, 500 8 147, 378
Exports (metal and Cd content of com- pounds)	(6)	(6 9)	(9)	387, 100	⁸ 103, 500

¹ Figures showing primary cadmium production for 1940 and 1941 are strictly comparable. The revised ** Figures snowing primary command production for 1940 and 1941 are strictly comparable. The revised data for 1937-39 are exactly comparable with 1940-41 as to totals, but in the former period the cadmium content of some compounds made from metal is included with the compounds and excluded from the metal. Production figures prior to 1937 are comparable with 1937-39 data regarding metal output but are not comparable with 1937 or later data as to compounds or totals because the earlier figures include some duplication of metal made into compounds. Revised figures.

Cadmium compounds are produced principally from metal, although some are made directly from primary residues and secondary mate-Total production of cadmium compounds in 1941 (in terms of Cd content) increased 56 percent over 1940.

^{*} Excludes compounds made from metal.

⁴ Some secondary compounds included with primary compounds. Bureau of Mines not at liberty to publish figures separately for primary cadmium compounds.

5 Bureau of Mines not at liberty to publish figures separately for secondary cadmium compounds.

Data not available.

Figures for 1937-39 represent sales.

Figures cover January to September, inclusive.
Producers reported exports of 458,283 pounds of metallic cadmium.

Cadmium compounds produced in the United States, 1940-41, in pounds

G	194	0	1941		
Compound	Gross weight	Cd content	Gross weight	Cd content	
Cadmium suifide 1	2, 287, 608 318, 393 29, 594 19, 799 15, 475 14, 733 6, 289 4, 324 (8)	759, 500 250, 800 10, 800 14, 100 7, 600 9, 600 2, 500 2, 200 (3)	3, 304, 478 410, 748 138, 951 42, 995 57, 828 36, 806 17, 041 6, 771 4, 047 1, 300	1, 141, 500 361, 300 50, 600 31, 500 30, 100 24, 100 7, 000 3, 400 1, 300	
Total production	2, 697, 318	1, 057, 600	4, 020, 965	1, 651, 400	

CONSUMPTION AND USES

Consumption of cadmium in all forms in 1941 totaled 7,766,000 pounds, a 26-percent increase over 1940. Corresponding data for earlier years are not available. About 95 percent of the available cadmium is consumed in electroplating, bearing alloys, and pigments, and the remaining 5 percent goes into miscellaneous alloys, laboratory reagents, and photographic chemicals.

Electroplating.—The most common use of cadmium is as a protective

coating for steel and, to a much lesser extent, for copper alloys. principal advantages of cadmium electrodeposits as compared with

Estimated distribution, by uses, of cadmium consumed in the United States, 1940-41

	194	10	194	1
Use	Pounds	Percent of total	Pounds	Percent of total
Electroplating Bearing alloys Solders Copper alloys Zinc alloys Low-melting alloys Type metal Other alloys	36, 000 23, 000 3, 000	59.8 21.0 1.2 3.3 .6 .4 (1)	4, 586, 000 1, 504, 000 120, 000 80, 000 54, 000 43, 000 3, 000 41, 000	59. 1 19. 4 1. 7 1. 6 (1)
Total metal and alloys	5, 346, 000	86. 5	6, 441, 000	83. (
Paints and varnishes Ceramics (glass, porcelain enamel, pottery) Printing inks. Rubber Laboratory reagents Leather Photography Other pigments 3	50, 000 44, 000 35, 000	4.7 4.2 1.7 .8 .7 .6 (1)	392, 000 389, 000 126, 000 100, 000 68, 000 75, 000 11, 000 164, 000	5.0 5.0 1.6 1.3 .9 1.0
Total pigments and chemicals	832, 000	13. 5	1, 325, 000	17. (
Total cadmium consumed	6, 178, 000	100.0	7, 766, 000	100, 0

¹ Less than 0.1 percent.

Includes cadmium lithopone and cadmium sulfoselenide.
 In addition to quantities shown, cadmium oxide consumed in making other compounds shown was produced as follows: 1940, 33,186 pounds (Cd content, 28,700 pounds); 1941, 33,649 pounds (Cd content, 27,500 pounds).
 Cadmium iodide included with cadmium hydrate to avoid disclosure of confidential figures.

² Includes plastics, textiles, artists' colors, etc., and some unclassified.

⁴⁹⁷⁷⁷⁹⁻⁴³⁻⁻⁵¹

those of zinc, according to Fusco and Woldman, Mankowich, and Bray,3 are as follows: (1) Coatings one-third as thick give equal protection; (2) rate of deposition is virtually double; (3) parts are more easily soldered; (4) cadmium has higher electrical conductivity; (5) when plated on one of two dissimilar alloys—such as steel and duralumin or steel and brass—that would otherwise be in contact, cadmium more effectively minimizes corrosion by galvanic action; (6) bath is more easily operated; (7) less electrical current is required; (8) cadmium has superior throwing power, that is, ability to deposit uniformly in recesses; (9) cadmium has greater resistance to atmospheric agencies, salt water, and alkalies; and (10) cadmium holds its brightness longer. Some of these properties are interrelated. A disadvantage of cadmium plating is its low resistance to many acids.

Products commonly electroplated with cadmium include bolts. nuts, screws, rivets, nails, washers, fasteners, and parts for a wide variety of products, including airplanes, ordnance, automobiles, electrical equipment (conduit fittings, switches, and controls), builders' hardware (locks, hinges, and fixtures), communication equipment (radio, telephone, and telegraph parts), office equipment (typewriter. adding-machine, and calculator parts), household appliances (vacuumcleaner, washing-machine, stove, and refrigerator parts), hand tools (wrenches, pliers, and screw drivers), industrial hardware (chains, hose couplings, valves, hooks, filters, and pulleys), textile machinery (heddles, bobbin rings, and cotton-gin ribs), measurement and control equipment (counter, thermostat, pyrometer, and gage parts), machine tools, railway signal devices, agricultural implements, oil-drum flanges, commercial refrigerators, beverage and candy vending machines, respirators, fire-fighting apparatus, bicycles, buttons on work clothes and uniforms, fishing tackle, and toys. Many of the nonessential applications of cadmium have been discontinued for the duration of the war.

Cadmium bearing alloys.—Cadmium-base bearings are generally of two types—one composed of 98.65 percent cadmium and 1.35 percent nickel and another containing 0.2-2.25 percent silver and 0.25-2 percent copper in place of the nickel. Such bearings are used principally in automotive engines but also in aircraft and marine engines. The big end bearing of British Bristol and French Gnome-Rhone airplane engines was reported by German metallurgists to be of the first type mentioned.4 Certain lead-antimony-tin bearing alloys contain 0.5-2 percent cadmium. Cadmium-base bearings, according to Dayton and Faust,⁵ are stronger than babbitt and, compared with other connecting-rod bearings, have superior embeddability and ease of bonding but inferior seizure resistance and corrosion resistance. To protect cadmium bearings from the corrosive action of organic acids in lubricants, a coating of indium is sometimes applied. "Graphalloy"—solid graphite impregnated with 30-35 percent cadmium is used in oilless bearings and bushing linings.

Cadmium solders.—The most widely used cadmium solders are the cadmium-silver solders, three typical compositions of which are shown

¹ Fusco, Anthony J., and Woldman, Norman E., Cadmium Plating in the Victory Program: Iron Age, vol. 149, No. 12, March 19, 1942, pp. 46-52.

¹ Mankowich, A., Corrosion Resistance of Cadmium and Zinc Electrodeposits under Marine Conditions: Monthly Rev. Am. Electroplaters' Soc., vol. 27, No. 11, November 1940, pp. 833-839.

¹ Bray John L., Nonferrous Froduction Metallurgy: John Wiley & Sons, New York, 1941, pp. 65-66.

⁴ Iron Age, Metallurgy of Aircraft Engines: Vol. 148, No. 26, December 25, 1941, p. 40.

⁵ Dayton, R. W., and Faust, C. L., The Use of Silver in Bearings; Silver in Industry: Reinhold Publishing Corporation, New York, 1940, p. 223.

Silver solders for the jewelry trade sometimes in the following table. contain 10-20 percent cadmium. The zinc-tin alloy shown is a hightemperature solder suitable, among other things, for flexible tubing. Similar alloys containing 5-43 percent cadmium are used for soldering The war-imposed necessity for strict conservation of tin has focused attention on reduction or even elimination of tin in base-metal solders. The cadmium-lead-tin alloys in the table appear the most promising of the low-tin solders, according to Rhines and Anderson, who discuss the technical advantages and disadvantages of a number of cadmium solders. These investigators point out that base-metal solders containing no tin are distinctly less promising than those containing reduced quantities, but that the first two tinless compositions in the following table deserve special notice. The third tinless solder listed is one of the best, states Gillett,7 for it resembles lead-tin in ease of application and makes good joints. It is alleged to be the favorite German substitute solder.

Cadmium solder compositions, in percent

Туре	Cadmium	Silver	Zinc	Lead	Tin	Copper	Nickel
Silver-cadmium	{ 5 95	20	30			45	
Zinc-tin-cadmium	l 16 22.5	5Ŏ	16 71	65	5	15 1. 5	
Lead-tin-cadmium	26 22 10-26			75 65–80	3		
Tinless-cadmium	{ 40 8		60 2	90			

Other cadmium alloys.—The addition of about 1 percent cadmium to copper trolley wire improves strength and wear resistance without seriously reducing electrical conductivity. Small quantities cadmium-copper have also been used in electrical contact parts of horn relays and voltage regulators for automobiles. An alloy of 60 percent cadmium and 40 percent zinc is sold for hot-dipping wire. Some wire is dipped in a bath of 33 percent cadmium and 67 percent zinc. Photoengravers use zinc alloys containing 0.3 percent cadmium to improve etching characteristics. "Cerrobend," a low-melting alloy of 50 percent bismuth, 27 percent lead, 13 percent tin, and 10 percent cadmium, is used in the aircraft industry as a filler in bending thinwalled tubing and as a material for making spotting fixtures and jigs. Other low-melting alloys containing 39-50 percent bismuth, 19-38 percent lead, 11-24 percent tin, and 4-25 percent cadmium are used in sprinkler apparatus, fire-detector systems and valve seats for highpressure gas containers. About 0.4 percent cadmium is added to some type metals to improve castability. Cadmium-carbon and cadmium-silver are made into contacts for circuit breakers and other electrical equipment. Small quantities of cadmium are used in slider fasteners, collapsible tubes, standard cells, pattern metal for stoves, low-carat gold alloys, and wire-quenching mediums, and as a deoxidizing agent in silver melting.

Cadmium compounds.—Cadmium sulfide and cadmium sulfoselenide are standard agents for producing resistant yellow and red colors,

⁶ Rhines, F. N., and Anderson, W. A., Substitute Solders: Metals and Alloys, vol. 14, No. 5, November 1941, pp. 704-711.

⁷ Gillett, H. W., Substitutes for Tin in Solder: Nat. Acad. Sciences Rept. 45 to the War Production Board, March 26, 1942, 13 pp.; abs. Metals and Alloys, vol. 15, No. 5, May 1942, p. 868.

respectively, in paints, ceramics, inks, rubber, leather, and other products. Virtually all the cadmium oxide, hydrate, and chloride produced go into platers' electrolytic solutions. Cadmium bromide, chloride, and iodide are used in photographic films.

STOCKS

Producers' stocks of cadmium during 1941 decreased 12 percent—the result of a 19-percent decline in metallic cadmium and a 50-percent gain in cadmium compounds (based upon Cd content). Inventories held by cadmium-compound manufacturers (consumers of metal in making compounds for sale) and suppliers (dealers plus distributors that cast metal into anode shapes) decreased 53 percent and 32 percent, respectively, during 1941. Consumers' stocks of cadmium in the first half of 1941 declined 11 percent but showed a net gain of 5 percent for the year. Metals Reserve Co., a subsidiary of the Reconstruction Finance Corporation, began a Government stock pile of metallic cadmium in 1941 and had on hand 134,400 pounds as of October 22 of the year.

Cadmium stocks at end of 1940 and 1941, in pounds

	D	ecember 31, 19	140	December 31, 1941			
	Metallic cadmium	Cadmium compounds (Cd content)	Total cadmium	Metallic cadmium	Cadmium compounds (Cd content)	Total cadmium	
Producers Compound manufacturers Suppliers Consumers Government	552, 130 171, 292 202, 587 1, 501, 000	66, 700 234, 000 52, 500 64, 000	618, 800 405, 300 255, 100 1, 565, 000	444, 944 57, 677 95, 894 1, 536, 000 2 134, 400	100, 300 134, 400 77, 200 106, 000	545, 200 192, 100 173, 100 1, 642, 000 2 134, 400	
Total stocks	2, 427, 000	417, 200	2, 844, 200	2, 268, 900	417, 900	2, 686, 800	

Partly estimated. Includes some material in process. Excludes stocks of compounds held by pigment and chemical consumers.
 Stocks on Oct. 22, 1941. Data for Dec. 31, 1941, are not available for publication.

PRICES

The 1941 opening price of 80 cents a pound for commercial sticks of metallic cadmium advanced 5 cents on February 17 and again on March 7 to 90 cents a pound, where it remained the rest of the year. Anode shapes continued to command a premium of 5 cents a pound. The tight position in plating metals enabled certain dealers to sell cadmium at prices as high as \$1.75 a pound—a practice that on April 11 brought a charge of "ruthless profiteering" and a waining of ceiling prices from Leon Henderson, Commissioner of Price Stabilization, Office of Emergency Management. On August 30 Henderson, now Administrator, Office of Price Administration, announced that the major producers of cadmium had indicated their willingness to continue to sell the metal to consumers at prices not above 90 cents for sticks and 95 cents for anodes and to sell to distributors at discounts permitting resales at the same prices. This agreement, which was adhered to by primary producers but not by certain secondary producers, was made mandatory by Office of Price Administration Price Schedule 71, effective January 19, 1942. The order was

amended, effective June 22, 1942, to permit the sale of metallic cadmium in small containers (5 pounds or less) at October 1941 price levels.

Shipments of metallic cadmium, as reported to the Bureau of Mines by primary producers, had an average value of 78 cents a pound in 1941 compared with 70 cents in 1940, 53 cents in 1939, 74 cents in 1938, and \$1.12 in 1937. Producers' quotations, according to Metal and Mineral Markets, averaged 88 cents in 1941 compared with 80 cents in 1940 and 59 cents in 1939.

Cadmium compounds also advanced in price during 1941—cadmium sulfide from 75 cents a pound to \$1.10 in April and cadmium lithopone from 50-60 cents a pound to 55-65 cents in November, according to Oil, Paint and Drug Reporter.

FOREIGN TRADE 8

Imports.—Imports of metallic cadmium in 1937–41 are shown in the following table. Virtually all of the metal entered from Canada in the first 9 months of 1941 was purchased by a French company and, as a result of the collapse of France, was resold to the Metals Reserve Co. A few hundred pounds of cadmium sulfide from the United Kingdom represented the total cadmium-compound entries reported in the first 9 months of 1941. Corresponding data on cadmium-compound imports in previous years are not available. Domestic cadmium production is partly from imported flue dust, which in the first 9 months of 1941 had a cadmium content of 1,707,022 pounds, including 1,370,294 from Mexico, 334,137 from South-West Africa, and 2,591 from the Union of South Africa. All flue dust imported in 1940 was from Mexico and contained 1,890,528 pounds of cadmium.

Metallic cadmium imported for consumption in the United States, 1937-41

Country	1937		1938		1939		1940		1941 (Jan.–S ept.)	
	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
Australia Belgium Canada France Germany Italy Netherlands Norway Poland and Danzig United Kingdom	22, 400 250, 878 270, 620 3, 968 34, 562 2, 205 76, 940 27, 557 139, 405	301, 663 354, 014 5, 753 32, 092	20, 067 55 2, 240 220		30, 068 50	148 14, 847 12, 649 2, 822		\$9, 520	136, 280	\$139, 898
	828, 535	1, 075, 330	22, 582	30, 574	309, 874	130, 973	27, 491	9, 520	147, 378	152, 064

Exports.—Cadmium exports in the first 9 months of 1941 totaled 103,500 pounds, including 46,516 pounds of metal and 57,000 pounds in compounds. Exports in 1940 comprised 286,529 pounds of metal and 100,600 pounds in compounds—a total of 387,100 pounds. These figures were obtained by the Bureau of Mines from exporters, and corresponding data for previous years are not available. The Department of Commerce, which had previously recorded data on

⁸ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

cadmium exports in combination with other commodities, began to show them separately on July 1, 1941.

TOXICOLOGY

Dangers to health are involved in the production of cadmium and in the consumption of food contaminated with cadmium. Regarding the former, Frant and Kleeman 9 state: "Cadmium presents its greatest hazard to the health of man during its production and in the handling of its compounds. Most dangerous are the inhalation of fumes and vapors arising from retorts'or condensers while cadmium and cadmium oxide are being manufactured and the inhalation of dust in bagging and handling the materials." In a number of instances inhalation of cadmium fumes has resulted in death. The safe limit of cadmium vapor in air is stated to be 0.1 milligram per cubic meter. determination of cadmium in quantities as small as 0.025 to 0.05 milligram by a method suitable for industrial-hygiene studies is described by Feicht, Schrenk, and Brown 10, of the Bureau of Mines.

Several outbreaks of cadmium food poisoning induced the Federal Security Agency to advise manufacturers against using the metal for plating cooking utensils and refrigerator containers, according to an announcement by Federal Security Administrator Paul V. McNutt on January 14, 1942. The suggestion was implemented by action of the Office of Production Management, which stated that no cadmium would in future be released for such uses. New York City amended its Sanitary Code to prohibit the use of cadmium in articles employed in the preparation of food and drink. Most of the reported cases in of cadmium poisoning resulted from placing gelatin desserts and beverages containing fruit juices in cadmium-plated refrigerator travs. Cadmium was applied to the trays not by manufacturers but by reconditioners who sold the refrigerators second-hand. Cadmiumplated pitchers, beverage cans, roasting pans, and molds for "pop-sicles" (flavored ices frozen on a stick) also have caused food poisoning. Cadmium compounds combine with hydrochloric acid in the gastric juices to form toxic cadmium chloride, resulting in violent acute gastritis with nausea, cramps, vomiting, diarrhea, and weakness. Symptoms may appear within 10 minutes after ingestion of the contaminated food. Cadmium in concentrations as low as 15 parts per million produces noticeable effects. However, no fatal cases of cadmium food poisoning and no instances of chronic poisoning due to continued ingestion of minute amounts of cadmium have ever been reported.

WORLD ASPECTS OF CADMIUM INDUSTRY

Some general comments on the world cadmium situation appear in the opening paragraph of this chapter. Cadmium production of individual countries in recent years is shown in the following table.

Frant, Samuel, and Kleeman, Irving, Cadmium "Food Poisoning": Jour. Am. Med. Assoc., vol. 117, No. 2, July 12, 1941, pp. 86-89; repr. Metal Finishing, vol. 40, No. 3, March 1942, pp. 131-134.

Feicht, Florence L., Schrenk, H. H., and Brown, Carlton E., Determination by the Dropping-Mercury-Electrode Procedure of Lead, Cadmium, and Zinc in Samples Collected in Industrial-Hygiene Studies: Bureau of Mines Rept. of Investigations 3639, 1942, pp. 1-20.

Frant, Samuel, and Kleeman, Irving, Work cited in footnote 9.

Calvery, Herbert O., Illnesses Traced to Cadmium Food Containers. Metal Finishing, vol. 40, No. 3, March 1942, pp. 134-135.

World production of cadmium, 1936-41, by countries, in kilograms [Compiled by B. B. Waldbauer]

Country	1936	1937	1938	1939	1940	1941
Australia (Tasmania)	251, 826 203, 997	210, 608 271, 000	199, 326 182, 000	175, 150 2 530, 800	(1)	8
Belgium Canada	356, 484	338, 018	317, 122	426, 234	8	8
France Germany	302,000	99, 000 355, 000	116,000 432,000	8	8	8
Italy	54, 630 23, 563	90, 850	69,000 (1)	(1)	8	(1)
Mexico 3 Norway	535, 017 101, 876	619, 792 154, 192	762, 398 207, 667	816, 584 138, 000	815,734	906, 577
Poland South-West Africa	140, 900	124, 461 132, 763	244, 000 259, 133	(1) 82, 155	(1) (1) 39, 634	4 179, 597
U. S. S. R.	50,000	50,000	50,000	(1) (1)	(1)	(1)
United Kingdom United States:	22, 160	124, 142	124, 898		(1)	(4)
Metallic cadmium Cadmium compounds (Cd content)	1, 648, 117 5 147, 200	1, 935, 003 5 190, 000	1, 849, 722 8 98, 200	2,001,026 5 171,900	\$2,791,484 \$95,000	3, 146, 976 134, 000
	3, 386, 800	3.942.300	3, 889, 900	(1)	(1)	(h)

Data not available.

Belgium.—Produits Chimiques de Tenderloo S. A., whose plant was reported seriously damaged by an explosion early in 1942, was

a producer of cadmium and cadmium salts.¹²

Canada.—Production of cadmium in 1941 was stepped up 37 percent over 1940 by Consolidated Mining & Smelting Co. of Canada, Ltd., Trail, British Columbia—the Dominion's principal source of this metal. Hudson Bay Mining & Smelting Co., Flin Flon, Manitoba—the other Canadian cadmium producer—increased its milling capacity about 14 percent during 1941 and in September put into operation a 10-ton pilot plant to test a process for treating stock-piled residues containing zinc, cadmium, and other metals.13 Canada is not only producing enough cadmium for its own requirements, according to a statement by the Metals Controller's Office,14 but has a surplus to send to the United Kingdom and the United States. Primary cadmium may be acquired only under permit from the Metals Controller, according to an order effective June 1, 1942. Metallic cadmium, ton lots, was quoted at \$1.15 a pound at the beginning of 1941, according to Canadian Metals & Metallurgical Industries, but advanced in March to \$1.25 and in April to \$1.30, where it remained the rest of the year.

Mexico.—Cadmium flue-dust production (based upon Cd content) was 11 percent larger in 1941 than in 1940. Cadmium flue dust was exported to the United States for production of metal and compounds.

Peru.—A cadmium recovery plant was under construction early in 1942 at the Cerro de Pasco Copper Corporation smelter in Oroya. 15

Ladmium content of flue dust exported for treatment elsewhere; represents in part shipments from stocks on hand.
 Figures cover January to June, inclusive.
 Revised figures.

Metal Bulletin (London), No. 2691, May 8, 1942, p. 9.
 Canadian Mining Journal, vol. 63, No. 2, February 1942, p. 95.
 Northern Miner, vol. 27, No. 47, February 12, 1942, p. 7.
 Luttl, John B., A Mining Tour of South America: Eng. and Min. Jour., vol. 143, No. 6, June 1942,

South-West Africa.—Cadmium flue dust is a byproduct of the smelting of copper-lead-zinc ores from the Tsumeb mine. The property was not worked during 1941, but in the first half of the year all remaining stocks of cadmium flue dust (containing 36 percent Cd) were shipped to the United States.

Sweden.—All local stocks of cadmium bars, rods, and anodes were requisitioned by the Swedish Government on November 1, 1941.

United Kingdom.—The purchase of cadmium metal, residues, and scrap (containing over 50 percent Cd) in the United Kingdom except by license of the Minister of Supply is prohibited by Control of Nonferrous Metals Order 6 (Cadmium), issued December 24, 1941, and effective January 1, 1942. Consumers of 10 pounds or less a month are exempt from the license requirement. The order also established a maximum price for cadmium ingots, sticks, and rods (99.9 percent Cd) at 5 s. 4 d. a pound in hundredweight lots and 5 s. 6 d. in smaller quantities.

PLATINUM AND ALLIED METALS

By H. W. DAVIS

SUMMARY OUTLINE

	Page		Page
Summary	783	Refined platinum metals—Continued.	_
Salient statistics	783	Secondary metals recovered	785
Crude platinum	784	Prices	786
Production	784	Consumption and uses	786
Purchases	784	Stocks	788
Prices.	785	Foreign trade	788
Refined platinum metals		World production	790
New metals recovered	785		

SUMMARY

Chiefly as a result of refining concentrates from Canada and crude platinum from Alaska, most of which heretofore has been done in England, recoveries of new platinum metals by refiners in the United States amounted to 152,623 ounces in 1941—a new record. Recoveries of new platinum metals gained 222 percent over 1940 and 80 percent over the former peak attained in 1926. Refinery capacity has been increased to handle larger quantities of Canadian concentrates. Production of domestic placer platinum metals was 26,821 ounces in 1941, a 21-percent decline from 1940. Sales of platinum metals to consumers in the United States advanced to 288,397 ounces in 1941 from 206,890 ounces in 1940. A greater quantity of platinum metals was used in industrial products and equipment than in jewelry in 1941. Imports of platinum metals established a new peak in 1941 and amounted to 309,995 ounces, an increase of 58 percent over 1940 and 1 percent over the previous record made in 1939. On the other hand exports of unmanufactured platinum metals were only 15,405 ounces in 1941, or 72 percent less than in 1940.

Despite the greatly increased demand for platinum metals in 1941, prices remained virtually unchanged throughout the year for all metals except iridium, which was reduced \$100 an ounce in February.

Salient statistics of platinum and allied metals in the United States, 1940-41, in troy ounces

	1940	1941		1940	1941
Production: Crude platinum from placers New metals: Platinum Palladium Other	33, 800 2 38, 951 4, 564 3, 824 47, 339	¹ 26, 821 ² 98, 376 49, 812 4, 435 152, 623	Stocks in hands of refiners, importers, and dealers, Dec. 31:2 Platinum Palladium Other Imports for consumption: Platinum Palladium	3 144, 302 3 93, 244 3 32, 368 3 269, 914 126, 696 60, 204	150, 887 138, 014 33, 942 322, 843 254, 714 46, 099
Secondary metals: Platinum Palladium Other	47, 657 14, 773 4, 000 66, 430	37, 522 12, 630 1, 417 51, 569	Other	8, 745 195, 645 (4) 55, 027 1, 800	9, 182 309, 995 244 15, 405 3, 204

¹ Subject to revision.
2 In 1941 includes 17,027 ounces (8,427 in 1940) of new platinum from domestic sources, comprising 15,219 ounces (3,971 in 1940) derived from crude placer platinum, 3 ounces (none in 1940) from ore, and 1,805 ounces (4,470 in 1940) obtained from domestic gold and copper ores as a byproduct of refining.
3 In 1940 figures exclude stocks held in United States by dealers and importers other than from the United

Kingdom.

Not separately classified.

Because of the demand for iridium for use in contact points for magnetos, voltage regulators, and other electrical applications in the war program, the Office of Production Management on July 3, 1941, requested the voluntary cooperation of refiners and others in discontinuing the use of iridium in platinum alloys for jewelry articles and in substituting 5 percent ruthenium-platinum alloys. Effective December 12, 1941, however, the use of iridium and its alloys in the manufacture of jewelry was prohibited under Conservation Order M-49.

Because of an insufficient supply of rhodium for war and essential civilian requirements, its use in the manufacture of jewelry was prohibited by the War Production Board under Conservation Order M-95, effective March 11, 1942. This order was amended April 1, 1942, to prohibit the use of rhodium alloys, as well as rhodium plating, in the manufacture of jewelry and other articles of personal adornment.

To prevent any American platinum from being smuggled out of the country or otherwise finding its way into enemy hands, all traffic in platinum except that conducted through normal, approved trade channels was halted by the War Production Board under general Conservation Order M-162, effective May 30, 1942.

CRUDE PLATINUM

Production.—Mine returns for 1941 indicate a production of 25,400 ounces of crude platinum (containing 22,630 ounces of platinum-group metals valued at \$813,000) in Alaska, 1,300 ounces in California, 41 ounces in Montana, and 80 ounces in Oregon—a total of 26,821 ounces; comparable figures for 1940 are 32,300 ounces of crude platinum (containing 28,886 ounces of platinum-group metals valued at \$1,093,000) in Alaska, 1,400 ounces in California, 31 ounces in Montana, and 69 ounces in Oregon—a total of 33,800 ounces. Production in Alaska came mainly from placer deposits in the Goodnews district of southwestern Alaska; most of it was mined by a large modern dredge and by well-mechanized draglines. In California most of the output of platinum was a byproduct of dredges working the gold placers in Amador, Butte, Merced, Placer, Sacramento, San Joaquin, Shasta, Stanislaus, Trinity, and Yuba Counties. Production in Montana was from Lewis and Clark and Sanders Counties. Production in Oregon came from Baker, Grant, Jackson, and Josephine Counties.

Many gold and copper ores in the United States contain small quantities of platinum metals. In 1941, 6,494 ounces of platinum metals were recovered as a byproduct of refining gold and copper ores compared with 7,774 ounces in 1940

The Goodnews (Alaska) platinum deposits have been described by Mertie.² The report covers the geography, general geology, and economic geology of the platinum deposits and is illustrated with topographic and geologic maps. It includes 28 commercial analyses of platinum metals of Fox Gulch and Platinum Creek, 8 of Squirrel Creek, 47 of Lower Platinum Creek and Salmon River, and 1 of Clara Creek.

Purchases.—Platinum refiners in the United States reported purchases of domestic crude platinum from the following sources in 1941: Alaska, 25,752 ounces; California, 1,129 ounces; Montana, 10 ounces;

¹ Figures and other information for Alaska from Geol. Survey, U. S. Dept. of Interior. ² Mertie, J. B., Jr., The Goodnews Platinum Deposits, Alaska: Geol. Survey Bull. 918, 1940, 97 pp.

and Oregon, 126 ounces—a total of 27,017 ounces (6,006 ounces in 1940). Domestic refiners also reported purchases of 38,124 ounces (34,374 ounces in 1940) of foreign crude platinum or osmiridium in 1941—10 ounces from Canada, 37,790 ounces from Colombia, 224 ounces from Australia, and 100 ounces from the Union of South Africa.

Prices.—Buyers reported purchases at \$28.39 to \$73.28 an ounce for domestic crude platinum and \$24.80 to \$191.50 an ounce for foreign crude platinum or osmiridium in 1941.

REFINED PLATINUM METALS

New metals recovered.—Reports from refiners of crude platinum, gold bullion, nickel, and copper indicate that 152,623 ounces of platinum metals were recovered in the United States from such sources in 1941, an increase of 222 percent over 1940 and 80 percent over the previous record made in 1926. It is estimated that 22,683 ounces of the total output in 1941 were derived from domestic sources.

New platinum metals recovered by refiners in the United States in 1941, by sources, in troy ounces

	Plati- num	Palla- dium	Iridium	Osmium	Rho- dium	Ruthe- nium	Total
Domestic from— Crude platinum Ore	15, 219 3	9	637	206	24	79	16, 174 16
Gold and copper refining	1, 805	4, 645	33	11			6, 494
Foreign from—	17, 027	4, 664	672	217	24	79	22, 683
Crude platinum Nickel and copper refining	81, 349	45, 148	720	47	1, 956	720	129, 940
Total recovery	98, 376	49,812	1, 392	264	1, 980	799	152, 623

New platinum metals recovered by refiners in the United States, 1937-41, in troy ounces

Year	Platinum	Palladium	Iridium	Others	Total
1937	36, 174	5, 945	1, 998	1, 141	45, 258
	30, 444	3, 653	1, 247	869	36, 213
	36, 033	3, 491	1, 051	866	41, 441
	38, 951	4, 564	1, 517	2, 307	47, 339
	98, 376	49, 812	1, 392	3, 043	152, 623

Secondary metals recovered.—In 1941, 51,569 ounces of secondary platinum metals were recovered from the treatment of scrap metal, sweeps, and other waste products of manufacture that contain platinum, a 22-percent decrease from 1940.

Secondary platinum metals recovered in the United States, 1937-41, in troy ounces

Year	Platinum	Palladium	Iridium	Others	Total
1937. 1938. 1939. 1940.	55, 926 44, 654 45, 432 47, 657 37, 522	12, 680 13, 489 13, 039 14, 773 12, 630	2, 076 1, 253 2, 767 1, 365 659	1, 524 4, 895 2, 205 2, 635 758	72, 206 64, 291 63, 443 66, 430 51, 569

Prices.—Except for iridium, quotations ³ on platinum metals were stable throughout 1941. Platinum was quoted at \$36 an ounce, palladium \$24, osmium \$45 to \$48, rhodium \$125, and ruthenium \$35 to \$40. Iridium was quoted at \$275 an ounce during January and at \$175 the remainder of the year. The quotations on palladium, rhodium, and ruthenium have prevailed for several years.

Consumption and uses.—Platinum and its allied metals (palladium,

Consumption and uses.—Platinum and its allied metals (palladium, iridium, rhodium, ruthenium, and osmium) are characterized by high melting point, whiteness, and resistance to oxidation at high temperatures and to attack by destructive chemical compounds. As pure metals, combined, clad, or alloyed with other metals, the platinum metals are employed in jewelry and dentistry, in the chemical and

electrical industries, and for numerous miscellaneous purposes.

A material gain in world output of platinum metals, owing chiefly to improvements in metallurgical processes for refining copper-nickel ores, has made available large quantities of platinum, palladium, iridium, rhodium, ruthenium, and osmium. In 1938—the latest year for which fairly complete figures are available—world production of platinum metals was about 540,000 ounces, of which 57 percent was recovered as byproducts in the refining of nickel, copper, and gold ores, whereas in 1929 world production was about 231,000 ounces, of which 17 percent was so obtained. With increased supplies, relative stability in the price of platinum and palladium has been reached at levels that permit their use for plant equipment and other industrial purposes. Despite the rapid advance in output of platinum metals during the past decade, research has found new uses for them, and developmental activities are opening up larger and more diversified markets in which they are becoming accepted.

The most widely used metal of the group is platinum, which constituted 190,075 ounces (66 percent) of the total platinum metals reported sold to consumers in the United States in 1941. The chemical industry, which usually ranks second as a consumer of platinum, advanced to first place in 1941, taking 36 percent (68,285 ounces) of the total platinum sales. The largest outlet for platinum in the chemical industry in 1941 was as a catalyst to produce nitric and sulfuric acids, which are consumed in large quantifies for the manufacture of explosives and other war materials. Important quantities of platinum were also used in laboratory ware and rayon spinnerets. Smaller amounts were employed in nozzles for the production of glass fiber, lining processing and reaction vessels, hydrogenation of organic compounds, glass insulators for the bases of electric-light bulbs, tubing, valves, siphons, and safety disks for handling corrosive liquids and gases, anodes for the production of "per" salts, gas-analysis cells, and crucibles.

The jewelry industry dropped from first to second place as a consumer of platinum in 1941. Alloyed with iridium or ruthenium, platinum is employed as a setting for diamonds and other precious stones in rings and other forms of jewelry. About 35 percent (66,151 ounces) of the total sales of platinum went to the jewelry trade in 1941.

Accounting for 15 percent (28,368 ounces) of the total platinum sales in 1941, the electrical industry ranked third. Platinum is used in this industry for thermocouples, temperature measuring and re-

Martin 187

³ Engineering and Mining Journal Metal and Mineral Markets, vol. 12, 1941.

cording instruments, precision resistance thermometers, high-temperature furnace windings, spark-plug electrodes, magneto contacts, electrical contacts, relays, thermostats, automobile voltage regulators and direction indicators, and switches for potentiometric recorders.

The dental industry purchased 10 percent (19,426 ounces) of the total platinum sold in the United States in 1941. Platinum, either pure or alloyed, is used in tooth pins, bridges, and bracing for artificial teeth, as matrices on porcelain inlays, and in orthodontic

appliances.

Next to platinum, palladium is the most extensively used metal of the group; it is about half as common as platinum but less costly. It constituted 78,904 ounces (27 percent) of the total platinum metals sold to domestic consumers in 1941. Palladium, pure or alloyed, is adapted to many of the uses of platinum and during the past 2 decades has been employed in increasing quantities by the dental, electrical, and jewelry industries. The conservation of gold by many countries has stimulated the demand for platinum metals, particularly palladium, and the substitution of palladium for gold alloys for dental restorations and articles of jewelry has made substantial progress. Palladium in telephone relays and other types of electrical contacts found an improved market in the electrical field; in consequence, the electrical industry was the chief consumer in 1941, taking 45 percent (35,456 ounces) of the total palladium sold. Second in magnitude as a consumer of palladium is the dental industry, which took 40 percent (31,440 ounces) of the total. The jewelry industry was the third-largest outlet for palladium in 1941, and small quantities were

sold for use in the manufacture of chemical ware.

The consumption of the other platinum metals—iridium, rhodium, osmium, and ruthenium—is comparatively small; it made up 7 percent of the total for the group in 1941. Iridium is used chiefly as a hardening addition to platinum, rendering it suitable for laboratory vessels, rayon spinnerets, surgical tools, hypodermic needles, magneto and electrical contacts, and jewelry. Its compounds are employed as fixing agents, porcelain pigment, and (in the form of black) as a Rhodium is alloyed with platinum for high-melting-point thermocouple wire, furnace windings, and laboratory ware for certain special applications, and for use as a catalyst to produce sulfuric acid and for ammonia oxidation to produce nitric acid and nitric oxide. Rhodium plating is employed as a finish for glassware and silverware and in surfacing reflectors for searchlights and projectors. Osmium, in association with other metals, provides pen points that will resist wear and corrosion by ink. Considerable osmium was used in electrical contact points in 1941. Osmium alloys also replace jewels as bearings for fine instruments. The oxide is used as a biological stain for fats and for fingerprint work. Ruthenium, like iridium, is an effective hardening agent for platinum and palladium, and one of its salts serves as a biological stain. Because of the demand for iridium in the aircraft industry, much ruthenium was employed as a hardener of platinum in jewelry and electrical contact points in 1941.

The following table shows sales of platinum metals by refiners, importers, and dealers to consumers in the United States in 1941.

Such sales totaled 288,397 ounces.

Platinum	metals	sold to	consuming	industries	in the	United	States in	ı 1941,
			in tr	oy ounces		1.0		

Industry	Platinum	Palladium	Iridium, osmium, rhodium, and ruthe- nium	Total
Chemical Electrical Dental Jewelry Miscellaneous and undistributed	68, 285 28, 368 19, 426 66, 151 7, 845	3, 342 35, 456 31, 440 7, 999 667	19, 418	288, 397
	190, 075	78, 904	19, 418	288, 397

Stocks.—Stocks of platinum metals in the hands of refiners, importers, and dealers were 322,843 ounces on December 31, 1941.

Stocks of platinum metals held by refiners 1 in the United States, December 31, 1937-41, in troy ounces

Year	Platinum	Palladium	Iridium	Osmium, rhodium, and ruthenium	Total
1937 1938 1939 1940 ¹	60, 236 71, 058 71, 393 144, 302 150, 887	21, 942 30, 071 29, 273 93, 244 138, 014		8, 475 9, 631 9, 884 368 942	99, 499 117, 911 117, 550 269, 914 322, 843

¹ In 1940 figures also include stocks held in the United States by importers from the United Kingdom; in 1941 figures also include stocks held in the United States by all importers and dealers.

FOREIGN TRADE 4

Imports.—Imports of platinum metals into the United States during 1941 established a new record and amounted to 309,995 ounces, a gain of 58 percent over 1940 and 1 percent over the previous peak year 1939. The principal sources of imported platinum metals in 1941 were Canada (217,909 ounces), United Kingdom (52,377 ounces), and Colombia (36,875 ounces). Imports of unrefined platinum (excluding scrap) increased phenomenally to 226,951 ounces in 1941 from 58,320 ounces in 1940, whereas imports of refined platinum (including scrap) declined to 27,763 ounces in 1941 from 68,376 ounces in 1940. Although receipts of iridium advanced to 1,292 ounces in 1941 from 237 ounces in 1940, they fell far short of the imports during the 5 years 1935–39, which averaged 4,354 ounces. Imports of osmiridium dropped to 266 ounces in 1941 from 1,857 ounces in 1940 and from an average of 3,380 ounces during the 5 years 1935–39. Imports of osmium and ruthenium increased 4 and 118 percent, respectively, over 1940, but palladium and rhodium decreased 23 and 22 percent, respectively.

⁴ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Platinum metals imported for consumption in the United States, 1937-41

Year	Troy ounces	Value	Year	Troy ounces	Value
1937	206, 937	\$7, 418, 364	1940	195, 645	\$5, 748, 005
1938	161, 189 306, 627	4, 366, 912 9, 881, 531	1941	309, 995	7, 143, 612
	000,027	0,001,001	ka taja ka		12 × 14 × 12 × 14

Platinum metals (unmanufactured) imported for consumption in the United States, 1940-41, by metals

	19	40	1941		
Metal	Troy ounces	Value	Troy ounces	Value	
Platinum: Ores and concentrates of platinum metals (platinum content) Grain and nuggets (including crude, dust, and residues) (platinum content) Sponge and scrap (platinum content) Ingots, bars, sheets, or plates not less than 1/6-inch thick (platinum content)	13, 653 44, 667 32, 734 85, 642	\$314, 400 1, 215, 683 1, 250, 016 1, 175, 827	175, 810 51, 141 17, 898 9, 865	\$3, 317, 806 1, 300, 601 635, 062 322, 989	
Iridium Osmiridium Osmium Palladium Rhodium Ruthenium	126, 696 237 1, 857 1, 617 60, 204 3, 586 1, 4:8	3, 955, 926 38, 774 64, 851 57, 064 1, 256, 696 333, 217 41, 477	254, 714 1, 292 266 1, 689 46, 099 2, 780 3, 155	5, 576, 461 279, 458 23, 851 58, 028 851, 174 271, 809 82, 834	
	195, 645	5, 748, 005	309, 995	7, 143, 612	

Platinum metals (unmanufactured) imported for consumption in the United States in 1941, by countries, in troy ounces

		Platir	um						
Country	Ores and concentrates of platinum metals (platinum content)	Grain and nuggets (includ- ing crude, dust, and residues) (plati- num content)	Sponge and scrap (plati- num con- tent)	Ingots, bars, sheets, or plates not less than %-inch thick (platinum content)	Iridi- um	Osmi- um and osmi- ridium	Palla- dium	Rhodi- umand ruthe- nium	Total
Argentina Australia Belgium Brazil		488	93			191	4		585 191 88
Canada Colombia France Germany	175, 780	12, 750 36, 873	35 1,330 2 660	18	1		25, 020	3,010	35 217, 909 36, 875 660
New Zealand Philippine Islands Portugal U, S, S, R	30		3	150					30 150
United Kingdom Uruguay West Indies, British		1,000 30	15, 686 (¹)	9, 697	1,000 291	1, 764	21, 014 61	2, 925	1, 000 52, 377 91 (¹)
·	175, 810	51, 141	17, 898	9, 865	1, 292	1, 955	46, 099	5, 935	309, 995

¹ Less than 1 troy ounce.

Exports.—Exports of unmanufactured platinum metals declined phenomenally to 15,405 ounces in 1941 from 55,027 ounces in 1940 and from an average of 48,746 ounces during the 4 years 1936–39. The shipment of 8,100 ounces to U. S. S. R. in 1941 was refined platinum from stock held by the Amtorg Trading Corporation. Except for U. S. S. R., Canada (3,041 ounces) and Argentina (1,577 ounces) were the chief foreign markets for unmanufactured platinum metals in 1941.

Platinum and allied metals exported from the United States, 1937-41

Year	Ore and concentrates		Unmanu	factured	Manufactures of, except jewelry	
	Troy ounces	Value	Troy ounces	Value	Troy ounces	Value
1937	(1) (1) (1) (1) (1) 244	(1) (1) (1) (1) (1) \$11,713	59, 567 33, 635 46, 329 55, 027 15, 405	\$2, 908, 552 1, 156, 644 1, 528, 563 2, 280, 339 607, 333	2, 874 796 4, 041 1, 800 3, 204	\$100, 944 31, 111 213, 445 96, 703 160, 674

¹ Not separately classified.

Platinum and allied metals exported from the United States in 1941, by countries 1

Country	Ore and con	centrates ²	Unmanufactur sheets, wire, scrap)		Manufactures of, except jewelry	
	Troy ounces	Value	Troy ounces	Value	Troy ounces	Value
Argentina		e1 000	1,577	\$54, 024	3 221	\$900
Brazil	48 10	\$1,830 358	343	12,711	2, 432	8,828
CanadaChile	16	576	3, 041 193	138, 856 7, 720	2, 452	121, 402 1, 589
Cuba	10	116	399	10, 240	8	456
Egypt	4,	110	300	10, 240	150	4, 550
Japan			843	27, 586	100	7,000
Mexico			93	3, 712	17	917
Netherlands Indies			150	5, 846	30	1, 616
Philippine Islands			70	4, 510	12	353
Spain			80	2, 682		000
Union of South Africa.	38	3, 125	3	60	22	2, 102
U. S. S. R		0, 120	8, 100	324, 000		2, 102
United Kingdom	128	5, 628	260	8, 819		
Uruguay	***	0,020	168	3, 386	73	2, 545
Other countries	2	80	86	3, 181	208	15, 416
	244	11, 713	15, 405	607, 333	3, 204	160, 674

Figures for 1940 in Minerals Yearbook, Review of 1940, p. 739, should read—Manufactures of, except lewelry: China, 7 ounces, \$322; Japan, 522 ounces, \$27,697. No change in grand totals.
 Not separately classified before January 1, 1941.

WORLD PRODUCTION

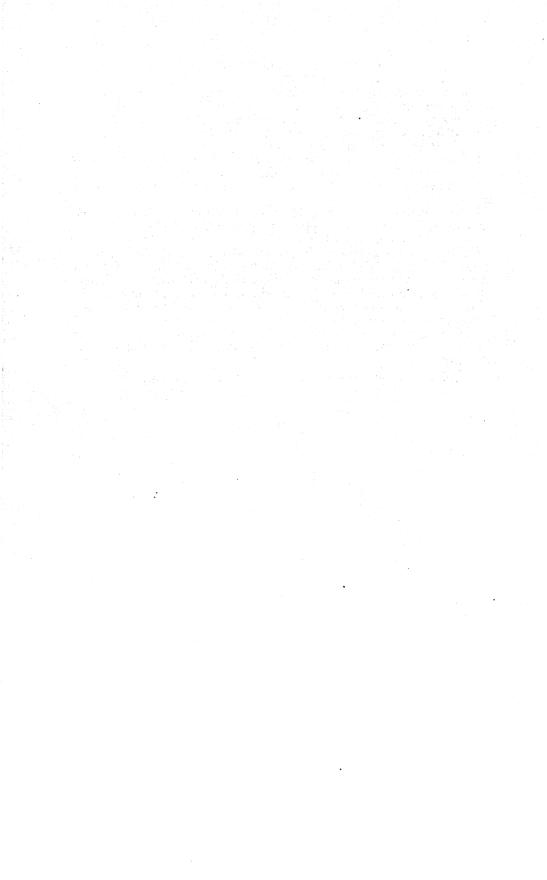
Because of Government restrictions in many countries on the publication of statistics, few figures for 1940 and 1941 are available. However, data on world production of platinum metals by countries are fairly complete for 1936, 1937, 1938, and 1939; they are shown in Minerals Yearbook. Review of 1940, page 739.

Minerals Yearbook, Review of 1940, page 739.

Canada.—Figures are not available on the recovery of platinum metals from the nickel-copper ores of the Sudbury district, Ontario, in 1940 and 1941, but 148,877 ounces of platinum and 135,402 ounces of other platinum-group metals were recovered in 1939. Concentrates from the Port Colborne and Copper Cliff refineries and residues from

the Clydach (South Wales) refinery are normally shipped to the International Nickel Co. precious metals refinery at Acton, England, for recovery of platinum, palladium, iridium, rhodium, and ruthenium. Since 1940, however, much of the concentrates has been shipped to the United States for refining.

Colombia.—The South American Gold & Platinum Co. produced 30,548 ounces of crude platinum metals in 1941 (24,294 in 1940) and 72,582 ounces of gold (58,462 in 1940). The figures for other operators


are not available.

In accordance with Decree 796, issued March 27, 1942, by the Colombian Government, all platinum production in Colombia must

be sold to the Bank of the Republic.

Union of South Africa.—The estimated content of the platinum metals (exclusive of osmiridium) produced in the Union of South Africa was 71,975 ounces in 1940. Figures for 1941 are not available, but according to the South African Mining and Engineering Journal ⁵ "the report of Rustenburg Platinum Mines for the 12 months ended 31st August discloses that production to the full capacity of the plant proceeded uninterruptedly during the year, and the output in the form of crude platinoids and matte was dispatched to England for treatment."

South African Mining and Engineering Journal, vol. 52, No. 2550, December 13, 1941, p. 436.

MINOR METALS

By Allan F. Matthews 1

SUMMARY OUTLINE

	Page		Page
General statement	793	Radium and uranium	802
Beryllium	793	Selenium and tellurium	804
Calcium	798	Titanium	808
Columbium and tantalum	799	Zirconium	809
Indium	801		

GENERAL STATEMENT

Initiation of a \$7,750,000 project to make the United States self-sufficient in ilmenite supplies, subjection of virtually all metals to various degrees of Government control, and greatly increased production and consumption were the 1941 highlights of the metals regularly reviewed in this chapter. Calcium-silicon and titanium pigments were the only derivatives of the minor metals placed under priority order by the Office of Production Management in 1941 and early 1942. Titanium pigments were also subject to price control by the Office of Price Administration. On the other hand, most of the minor metals were under export control—specifically beryllium, cerium, columbium, radium, tantalum, thorium, titanium, uranium, and zirconium. On December 28, 1941, in accordance with Office of Production Management Order M-63, the Metals Reserve Co., subsidiary of the Reconstruction Finance Corporation, assumed control of all imports of rutile and zircon.

BERYLLIUM

Annual world production of beryl is estimated to have increased from 500 short tons in 1935 to 1937 and 1,000 tons in 1938 and 1939 to 2,500 tons in 1940. Appreciable advances in output were also registered during 1941. The principal sources of beryl are Argentina and Brazil. The United States, Germany, and Italy are the outstanding producers of beryllium metal, alloys, and compounds, but some output has been reported in France and Japan. The Axis Powers in recent years have acquired more than one-third of the beryl available in world markets. Beryllium alloys have many very desirable properties, and they are being utilized in ever-increasing quantities, but the trend is restricted by relatively high price and skepticism in some quarters as to the adequacy of ore reserves. Because of the highly refractory nature of beryl, the extreme reactivity of the metal at elevated temperatures, and the number of process steps

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

required, metallic beryllium is produced with a low over-all efficiency.2 However, increased consumption in those applications where it is superior to other alloys will do much to lower the price. The mineralogical occurrence of beryl in pegmatite dikes is extremely common, but it is always sporadic and in no instance has been found to have continuity like ores in a vein. The current output is handcobbed by low-paid labor or is recovered as a none-too-remunerative The quantities of beryl obtained in this fashion have supplied the demand adequately to date, and the output can doubtless be expanded. Larger tonnages of beryllium may prove to be extractable economically from low-grade beryl ores amenable to flotation or possibly from other beryllium minerals rarer than beryl but less sporadic in individual deposits. Interest was aroused during 1941 in a helvite deposit discovered recently in New Mexico.3

Domestic production.—Mine shipments of beryl since 1937, when the Bureau of Mines began to collect data on this ore, are shown in the accompanying table. Shipments in 1941, 31 percent greater than in 1940, were the largest on record. Beryl is produced in several Western and New England States as a byproduct in the mining of feldspar, mica, and other pegmatite minerals. Pennington and Custer Counties in the Black Hills of South Dakota contributed 96 percent of the United States total in 1941, compared with 61 percent Beryllium metal, alloys, and compounds are produced by the Beryllium Corporation of Pennsylvania, Temple (near Reading), Pa., and by the Brush Beryllium Co., Cleveland, Ohio. Beryllium oxide is produced by Clifton Products, Inc., Painesville, Ohio. plant for the manufacture of beryllium oxide and carbonate was being erected during 1941 at Harbor City, Calif., by the Calloy Co.

Beryllium ore (beryl) shipped from mines in the United States, 1937-41

	Mine shipments-			
Year	Short	Va	lue	State
	tons	Total	Average per ton	
1937 1938 1939 1940	75 25 95 121 158	\$1, 640 770 2, 720 3, 721 7, 300	\$21. 87 30. 80 28. 63 30. 75 46. 20	Colorado, Maine, South Dakota. Maine. Colorado, Maine, South Dakota. Do. Maine, New Hampshire, South Dakota, Wyoming.

Foreign trade.—Beryl imports into the United States have mounted steadily to 1,635 short tons in the first 9 months of 1941. Imports in recent years, by country of origin, are shown in the accompanying United States concessions in the reciprocal trade agreement with Argentina, effective November 15, 1941, included a reduction in the duty on beryllium oxide and carbonate from 25 percent ad valorem to 12½ percent, although the older duty may be restored on 6 months' notice any time after the end of the present war. No beryl is exported by the United States, but beryllium-copper master alloys have been shipped to Great Britain for several years.

¹ Stott, Louis L., The Present Status of Beryllium: Soc. Aeronautical Weight Eng., Paper 6, 1st Nat. Meeting, February 25, 1941 (revised April 24, 1941), p. 4.

¹ Strock, Lester W., A New Helvite Locality—A Possible Beryllium Deposit: Econ. Geol., vol. 36, No. 7, November 1941, pp. 748-751.

Beryl imported for consumption in the United States, 1937-41, by countries, in short tons

Country of origin	1937	1938	1939	1940	1941 (JanSept.)
ArgentinaBrazil	152	78	384 75	422 377	693 942
India, British Union of South Africa	30	58 10		6	
Total: Short tons	182 \$8, 031 \$44. 13	146 \$5, 990 \$41. 03	459 \$14, 574 \$31. 75	805 \$23, 865 \$29, 65	1, 635 \$77, 630 \$47. 48

Price.—Domestic beryl, 10–12 percent BeO, was quoted nominally by the trade journals during 1941 at \$30–\$35 a short ton, f. o. b. mines, but actual prices obtained averaged over \$45 a ton. Nominal quotations on imported beryl, c. i. f., by the American Metal Market were advanced on February 26 from \$45–\$49.50 to \$47–\$52 for 10–11 percent BeO and from \$49.50–\$54 to \$52–\$55 for 11–12 percent BeO, and the quotations remained at the new level throughout the remainder of 1941. The actual New York price on imported beryl containing 10–12 percent BeO is said to have been \$50–\$65 a ton during the early part of 1941 and \$60–\$72 in later months. Beryllium-copper, master alloy of 4 percent Be and remainder Cu, was priced unchanged at \$15 per pound of contained Be, and metallic beryllium and beryllium-aluminum at \$45 to \$50 per pound of contained Be. Ceramic Industry quoted beryllium oxide, c. p., calcined

at 1,350° C., at \$4 a pound during 1941.

Recyllium-copper alloys.4—The outstanding use of beryllium today is in beryllium-copper alloys fabricated into springs, diaphragms, and motor parts subject to wear. These alloys generally contain about 2 percent beryllium and the remainder copper (although the beryllium content ranges from 0.1 to 3.5 percent), and 0.13 to 2.60 percent cobalt, chromium, or silver is often added. Beryllium hardens copper and increases its tensile properties without greatly decreasing electrical Parts subject to wear in airplane engines are absorbing the largest quantities of beryllium-copper at present. In such applications as tappet roller bushings, counterweight bushings, oil pressurerelief-valve seats, and spacing shims, and, in general, in heavily loaded bushings where the action is eccentric or reciprocating and in parts mating with hard steel and subject to extreme vibration or shock loading, beryllium-copper is reportedly giving excellent service. Beryllium-copper springs have a large amplitude of movement combined with remarkable freedom from hysteresis or elastic driftproperties that enable them to possess and retain stable springiness to a much greater degree than springs made of any other available corrosion-resisting material. The dependability of these springs has prompted their use in sensitive altimeters, air-speed indicators, and a wide range of aircraft instruments, as well as in pressure gages, electrical contacts, business machines, camera shutters, telephone jacks, and radio equipment.

As beryllium-copper is nonmagnetic and has structural properties comparable to good alloy steels, it is used in parachute harness fasteners

⁴ Stott, Louis L., Work cited in footnote 2, 10 pp. Beryllium—Its Present Field and Possible Future Applications: Steel, vol. 109, No. 17, October 27, 1941, pp. 62-64, 92-93.

and release springs to avoid magnetic disturbance of instruments. The alloy has a further advantage of nonsparking. Beryllium-copper hammers, wrenches, crowbars, chisels, and other tools are utilized in munition factories, petroleum refineries, and other plants where a spark from working steel against steel might ignite inflammable fumes or materials. Another interesting property of beryllium-nickel-copper alloys is illustrated by tests reported to indicate that the alloy is about 50 times more resistant to heat-checking than conventional nickel cast irons under frictional contact with materials used for brake blocks and clutch facings.

Other beryllium alloys.—Small additions of beryllium to nickel are said to impart physical properties even superior to those that can be obtained in the copper-base alloys. Interest in these alloys seems to have been centered in Europe, but small quantities of nickel containing 1.8 to 2 percent beryllium were produced in the United States during 1941. Beryllium-nickel has a very unusual combination of high tensile strength (270,000 p. s. i.) and elongation (8.8 percent in 2 inches). Applications to date include corrosion-resisting springs, springs subject to moderately high temperatures, hypodermic needles,

and surgical instruments.

As beryllium has a low specific gravity (1.85), being only slightly heavier than magnesium (1.74) and 30 percent lighter than aluminum (2.70), it is being considered as a constituent of light metal alloys. Beryllium does not appear to alloy with magnesium, but industrial research on beryllium-aluminum is showing progress. Additions of 25-50 percent of beryllium greatly stiffen aluminum; and an alloy of this composition, called beralite, is being developed by Cooper-Wilford Beryllium, Ltd., Philadelphia, Pa. Beralite is said to be lighter than and as strong as duralumin, to have fatigue strength superior to that of any existing aircraft metals, and to have enough workability to be considered for aircraft forgings.5 Suggested applications are in aircraft pistons, connecting rods, valve-actuating mechanisms, and certain air frames, such as control surfaces. Sawyer 6 compares berylliumaluminum with standard aluminum-base aircraft alloys and states that, while higher modulus of elasticity greatly favors beryllium-aluminum alloys, this factor cannot overcome the disadvantage of inferior tensile strength where ductility is important. Addition of other components probably can improve low creep strength and other properties. above statements, the author cited points out, concern properties at room temperature; at 600° F. (as may exist in a piston) berylliumaluminum alloys have higher endurance limits and much higher tensile strength than the materials now in use and therefore hold out attractive possibilities if such parts can be made. A factor that has retarded development of beryllium-aluminum is the high price of metallic beryllium. Beryllium contained in aluminum alloy costs three times as much per pound as it does in copper or nickel, because it must be added to aluminum as pure metal, whereas it is introduced directly into copper and nickel as the less expensive oxide.

Beryllium has been used as a ferro-alloy in Germany, particularly, it is said, in armor plate and in a high-speed tool steel containing 12 percent Cr, 5 percent Ni, and 1 percent Be. Surface saturation of steel

Wilford, E. Burke, Beryllium Alloys in Aviation: Aviation, vol. 41, No. 1, January 1942, pp. 92-93, 188.
 Sawyer, C. B., Beryllium as a Light Metal Component: Metals and Alloys, vol. 14, No. 1, July 1941, pp. 37-39.

by beryllium diffusion, a method somewhat analogous to sherardizing, greatly increases hardness. Additions of 1 to 2 percent of beryllium to various steels improve hardness, tensile strength, and acid resistance.

Beryllium metal and compounds.—Utilization of metallic beryllium has been limited principally to X-ray tubes, where small quantities of the metal are useful because of its transparency to X-rays. The second most important use of beryllium, quantitatively, is in white fluorescent lamps and fluorescent screens, where an oxide of high purity, containing less than 0.002 percent iron, is specified for the preparation of zinc-beryllium silicate. Beryllium oxide and beryllium carbonate, activated by uranium salts or rare earths, are utilized in luminescent paints. Pure beryllium oxide melts at 2,570° C.—550° C. higher than the melting point of alumina—and thus makes a good refractory. The washability of a new English textile made from seaweed is improved by treating it in a coagulating bath of beryllium acetate. Experiments indicate that beryllium carbonate may be a useful antirachitic substance. It is reported that in recent years some 50 to 100 tons of raw beryl have been ground annually for use in ceramics.

Technologic developments.—Factors to be considered in exploring for peryl are outlined by Brinton.⁸ In the course of its flotation investigations, the Bureau of Mines ⁹ found that a low-grade Nevada beryllium ore containing 1.3 percent BeO could be concentrated (using oleic acid as the collector reagent and Du Pont 23 as a frother) to material containing 5.5 percent BeO, representing 87 percent recovery of beryllium in 20 percent of the feed. When these flotation concentrates were dried and treated in a high-intensity magnetic separator, the nonmagnetic product contained 6.6 percent BeO in one-third the weight of the feed, but only half of the beryllium was recovered.

WORLD PRODUCTION

Production of beryl by various countries in recent years, insofar as data are available, is shown in the accompanying table.

Country 1	1935	1936	1937	1938	1939	1940
Argentina	189	300	260	753	299	520
Brazil (exports) Canada (estimate) India, British Madagascar (estimated exports) Portugal Union of South Africa (estimate) United States (mine shipments)	126 10 2 80 (2)	4 18 89 10 2 5	18 24 2 2 21 (2) 68	203 9 15 2 (2) (2) (2) 23	276 161 8 (2) (2) (2) (2) (3)	1, 472 (2) (2) (2) (2) (2) (2)

World production of beryl, 1935-40, by countries, in metric tons 1

Argentina.—Beryl is mined in the Provinces of Cordoba and San Luis. In previous years, the material has been exported only as raw beryl, but in 1941 a portion of the output was converted to beryllium

¹ In addition to countries listed, beryl may also be produced in France, Italy, Norway, Rumania, and U. S. S. R.

² Data not available.

⁷ Businco, L., (Rachitogenic Effect of Beryllium Carbonate): Rass. med. applicata lavoro, vol. 11, 1940, pp. 417-424; Ceram. Abs., vol. 20, No. 5, May 1941, p. 132.

⁸ Brinton, Paul H. M.-P., Fundamentals in the Search for Beryllium: Min. Cong. Jour., vol. 27, No. 5,

May 1941, pp. 20–21, 55.

Bargel, A. L., and Shelton, S. M., Progress Reports—Metallurgical Division. 45. Ore-Testing Studies 1939–40: Bureau of Mines Rept. of Investigations 3564, 1941, pp. 26–28.

oxide-carbonate by the Sociedad Anonima Berilo Argentina in a new

plant at Juan Ortiz, Province of Santa Fe.

Canada.—The property of Canadian Beryllium Mines & Alloys, Ltd., in Lyndoch Township, Ontario, was idle throughout 1941, but a shipment of ore to Kansas City, Mo., for testing a new reduction process was reported. Mobirk Beryllium Mining Co., Ltd., did some development work on beryl deposits in the Winnipeg River district of Manitoba.

CALCIUM

Calcium metal formerly was imported from France and Germany, but in 1939 the Electro Metallurgical Co. built a plant at Sault Ste-Marie, Mich., and later expanded the capacity to several times the maximum imported in any I year. Domestic consumption of calcium metal during 1941 appears to have been about twice that in 1940.11 Imports of calcium metal and calcium-silicon in recent years are shown in the accompanying table. During 1941 calcium metal, 97-98 percent, ton lots, was quoted by Charles Hardy, Inc., New York, at \$1.25 a pound for carrots and about \$2.00 a pound for castings, although the price was \$1.50-\$5.00 a pound in smaller lots. Calciumsilicon was quoted by Canadian Metals & Metallurgical Industries at 13½-15½ cents a pound, f. o. b. Welland, Ontario, during the first 5 months of 1941, 15-17 cents from June to September, and 15½-17½ cents during the last quarter of the year. In the United States, calcium-silicon was subjected to direct allocation by Office of Production Management General Preference Order M-20, effective July 29, 1941, which was revised and extended to May 31, 1942, by General Preference Order M-20-a, issued November 29, 1941. It was stated that production of calcium-silicon can be expanded as needed but that it requires very large quantities of electric power.

Calcium metal and calcium-silicon imported for consumption in the United States, 1937-41

	C	alcium metal		Calcium-silicon			
Year		Va	lue		Va	lue	
	Pounds	Total	Average per pound	Pounds	Total	Average per pound	
1937	23, 767 41, 299 41, 718 11, 900	\$10, 087 16, 144 17, 758 6, 518	\$0. 42 . 39 . 43 . 55	3, 751, 918 1, 402, 314 3, 972, 571 2, 131, 758 111, 994	\$205, 173 77, 003 225, 312 154, 424 8, 377	\$0. 055 . 055 . 057 . 072 . 074	

Metallic calcium is utilized as a scavenger in steel and secondary aluminum, to produce magnesium castings and calcium hydride, and to harden lead. Calcium is used as a deoxidizer and final addition in obtaining particularly clean steels and in imparting better working properties to high-nickel-chromium steels. Calcium-silicon (28–35 percent Ca and 60–65 percent Si) and calcium-manganese-silicon are likewise employed for this purpose, although the unalloyed metal may

Northern Miner, vol. 27, No. 39, December 18, 1941, p. 2.
 Jeffries, Zay, Rare and Precious Metals: Min. and Met., vol. 23, No. 422, February 1942, p. 69.

have specific effects. Ready combination with oxygen and nitrogen may be among these effects, but the formation of a different type of sulfide and change of the nature of the nonmetallic inclusions when calcium is added as a metal are said to be the major reasons for its use.¹² Additions of calcium up to 0.25 percent in some magnesium castings reduce the heat-treating time by permitting higher temperatures and result in an improved surface. Calcium sometimes is used for deoxidizing aluminum castings and reconditioning scrap aluminum, 13 but Stroup 14 does not favor this procedure and states that the presence of calcium in aluminum alloys containing copper causes definite lowering of strength in the solution heat-treated temper. Metallic calcium is a starting point in the preparation of calcium hydride, which is a reducing agent in the production of titanium. uranium, vanadium, and zirconium. Calcium has been used to maintain lead in the emulsified state in high-lead-copper alloys, and calcium as a substitute for antimony in the hardening of lead is a promising application of strategic importance. Lead containing about 0.1 percent of calcium has properties equal to antimonial lead for cable sheathing. roofing sheets, and the negative plates, connector links, grid heads, and terminal posts of storage batteries. At present calcium-lead is prepared directly, either by electrolytic deposition of calcium in the lead or by dissociation of calcium carbide in lead, but production of this alloy from metallic calcium is said to be simpler and may be generally adopted in future.

COLUMBIUM AND TANTALUM

Domestic production of tantalum ore was resumed on a small scale in 1941. During the first 9 months of the year, columbium ore was imported at a considerably higher rate than during 1940, but entries of tantalum ore were lower. The Fansteel Metallurgical Corporation, North Chicago, Ill., a principal consumer of tantalite, was reported to have a 2-year supply of the ore at the end of 1941.15 Mine shipments and imports in recent years are shown in the accompanying table. During the first 9 months of 1941, Nigeria supplied all the colum-

Tantalum ore shipped from mines and columbium and tantalum ores imported for consumption in the United States, 1937-41

	Mine ship	ments of	Imports				
Year	tantalu		Columbi	Columbium ore		m ore	
	Pounds	Value	Pounds	Value	Pounds	Value	
1937 1938 1939 1940 1941	16, 307 36, 189 340 250	\$13. 317 35, 127 200	922, 654 645, 141 109, 132 595, 220 983, 495	\$306, 086 228, 078 37, 062 210, 526 348, 087	20, 897 41, 706 56, 561 490, 460 276, 968	\$40, 742 80, 092 82, 990 258, 514 126, 282	

¹ Import figures cover January to September, inclusive.

Kinzel, A. B., Calcium Metal Production, a New American Industry: Min. and Met., vol. 22, No. 418,
 October 1941, p. 490.
 Hardy, Charles, Calcium to Purify Scrap Aluminum: Metal Prog., vol. 40, No. 1, July 1941, p. 70.
 Stroup, Philip T., Calcium—Its Effect on Aluminum: Metal Prog., vol. 40, No. 6, December 1941, p. 903. ¹⁸ Wall Street Journal, vol. 118 No. 153, December 30, 1941, p. 8

bium ore imported except about 5,000 pounds from Argentina and Brazil combined; of the imports of tantalum ore in the same period, 53 percent came from Belgian Congo, 35 percent from Prazil, and 12 percent from South Africa. Brazilian exports of tantalum ore during this period totaled 63 short tons, of which 59 percent was shipped to the United States.

Price.—Columbium ore is not quoted in the trade journals, but imports containing about 65 percent Cb₂O₅ have been valued at about 35 cents a pound in recent years. Tantalum ore (60-percent concentrates) has been listed by Metal and Mineral Markets at \$2.00-\$2.50 per pound of contained Ta₂O₅. Imported tantalum ore dropped in average value from \$1.47 a pound in 1939 to 53 cents in 1940 and 46 cents in 1941, probably owing to an increase in columbium content. Most of these ores are mixtures of columbite and tantalite, but the most desirable ores are high in one mineral and low in the other. Ferrocolumbium, 50-60 percent, was quoted throughout 1941 at \$2.25-\$2.35 per pound of contained Cb, f. o. b. Niagara Falls, N. Y. Columbium metal was quoted at \$227-\$254 a pound and tantalum

metal at \$65-\$73 a pound.

Uses of columbium.—The addition of about 0.5 percent columbium to chrome steels improves weldability by inhibiting intergranular corrosion, reduces air-hardening, and increases oxidation resistance, creep strength, and impact strength, regardless of heat treatment. craft exhaust stacks, manifolds, and collector rings are made of stainless steels containing about 0.8 percent columbium. Sevbolt 16 found that 0.58 percent columbium brings the softening temperature of coldrolled copper from 250° C. up to about 450° C. and that 0.29 percent brings the softening temperature of 80-20 cupronickel from 500° C. up to about 550° C. Iron containing 3 percent columbium is suitable for high-pressure steam turbines operating at temperatures exceeding 1,000° F. Columbium is a constituent of an aluminum alloy known as ceralumin,17 which is said to be used quite widely in British aircraft. The addition of columbium to a chromium-aluminum-iron electrical resistance wire overcomes the detrimental effect of carbon on the life of elements built of such wires. 18

Uses of tantalum.—Ultrahard cemented carbides of tantalum are being used increasingly-alone or in combination with carbides of tungsten or titanium-in wire-drawing dies, steel-cutting tools, and wear-resistant parts of machines. Large dies for cold-nosing artillery shells are among such uses. A cast alloy containing tantalum, columbium, and tungsten ("Tantung G"), which has a hardness approaching that of the hard carbides, plus much higher strengtn and toughness, is being used to increase production upon older machines not suited for employing cemented carbides. Tantalum metal has a variety of applications, of which perhaps the most important quantitatively is in the manufacture of corrosion-resistant equipment for chemical plants and laboratories. Tantalum metal is used in radio tubes, lamp filaments, neon tubes, electrolytic cathodes, surgical and dental instruments, heat interchangers, pump and valve parts, nozzles, spin-

¹⁶ Seybolt, Alan U., Effect of Columbium on Some Annealing Characteristics of Copper and 80–20 Cupronickel: Am. Inst. Min. and Met. Eng. Tech. Pub. 1342, Metals Technol., vol. 8, No. 5, August 1941, 5 pp. 17 Murphy, Alfred J., and Wells, Stanley A. E., Aluminum Alloys: U. S. Patents 2,214,431, 2,214,432, and 2,214,433, September 10,1940: Chem. Abs., vol. 35, No. 3, February 10, 1941, p. 728.

18 Swinden, Thomas (to Kemet Laboratories Co.), Electrical Resistances of Iron Alloys: U. S. Patent 2,210,309, August 6, 1940: Chem. Abs., vol. 35, No. 1, January 10, 1941, p. 72.

nerets for synthetic textiles, temperature-control apparatus, electrical contacts, and lightning arresters for railway-signal circuits. Tantalum oxide is a component of a glass having a very high refractive index and low dispersion-factors that permit the manufacture of superior aerial camera lenses which are thinner and have less curvature. Sun and Silverman 19 studied glasses containing 5 to 36 percent tantalum oxide.

INDITIM

Augmented production of engine bearings and war-inspired restrictions on ordinary plating metals stimulated interest in indium during 1941. Indium is recovered as a byproduct of zinc and lead operations by the American Metal Co., Ltd., American Smelting & Refining Co., Anaconda Copper Mining Co., and National Zinc Co., Inc. Domestic production could be increased to more than 40,000 pounds annually, according to William S. Murray, president of the Indium Corporation of America.²⁰ In Mohave County, Ariz., the Indium Corporation of America has a property said to contain 35,000 tons of ore averaging about 2 ounces of indium per ton.21 However, demand for the metal has not yet become sufficient to justify exploitation of this property, particularly in view of the ability of zinc refineries to supply ample Abroad, indium has been produced commercially in Germany, Belgium, and possibly Japan and U.S.S. R.

Price.—In December 1940 the price of metallic indium, as quoted in the trade journals, was reduced from \$15 to \$12.50 per troy ounce,

where it remained throughout 1941.

Uses.—Indium is deposited on and alloyed with cadmium-nickel and copper-lead on bearings for airplane, automobile, and Diesel engines to resist the corrosive action of lubricants containing organic acids. After the nonferrous coating is applied to the ferrous base, an indium layer 0.001 to 0.0005 inch thick is plated on the undercoat and diffused through it at about 175°-180° C. to form a protective alloy surface containing 0.2 to 4 percent indium. Coatings of indium, alloyed with lead, copper, cadmium, zinc, silver, or gold, have been suggested for washers, contact points, light reflectors, molds for plastics, decorative metal strips, collapsible tubes, cosmetics containers, jewelry, and office machinery. Indium has been used to prevent corrosion by perspiration of the small pins in the hinges of spectacle frames. A steel article coated with a 41/2-percent indium-lead alloy is reported to have successfully resisted severe exposure to salt spray. Indium-alloy coatings are easily polished and burnished.

In addition to plating, 0.5 to 5 percent indium is used in dental alloys, where it is said to impart superior compressive strength and resistance to tarnish. Indium is an advantageous constituent of certain low-melting alloys and has recently been found to improve the "wetting" properties of brazing materials through a wide range of melting points. The use of indium in pharmaceuticals and as a mor-

dant for the dyestuffs industry is being developed.

¹⁹ Sun, Kuan-Han, and Silverman, Alexander, Tantalum Glass—K₂O-Ta₂O₃-SiO₃ Series: Jour. Am. Ceram. Soc., vol. 24, No. 5, May 1941, pp. 160-167.

20 Jeffries, Zay, Work cited in foot.ote 11.

21 Elder, Albert L., Textbook of Chemistry: Harper & Bros., New York, 1941, p. 662.

RADIUM AND URANIUM

The Eldorado mine at Great Bear Lake, Northwest Territory, Canada, operated by Eldorado Gold Mines, Ltd., and the mine in Belgian Congo, operated by Union Minière du Haut Katanga, which together yield nearly the entire world output of radium-uranium ore, were both inoperative during 1941. The Canadian company, however, experienced in 1941 its best sales year to date, and its refinery at Port Hope, Ontario, is now operating on a 24-hour basis. ore stocks at the refinery are being cleaned up, and the mine at Great Bear Lake will resume production in 1942. Mining operations in Belgian Congo were halted as a result of the German invasion of Belgium in May 1940 and the consequent unavailability of refining facilities at Oolen, near Antwerp. In general, the United Nations are in a comparatively favorable position as regards radium and It is estimated that these countries possess two-thirds of the world radium supply and three-fourths of the uranium and, furthermore, control well over 95 percent of all the known ore reserves. Of the stocks held at Oolen, all of the radium and part of the uranium were removed from Belgium before the invasion and shipped to the United States. The Oolen refinery was not damaged, but the Germans apparently have not attempted to operate it on the basis of the small amounts of ore obtainable from St. Joachimsthal in Czechoslovakia and other European localities. The agreement between Union Minière du Haut Katanga of Belgium and Eldorado Gold Mines, Ltd., of Canada, dividing world markets for radium in a 60:40 ratio, was dissolved in 1941.

Domestic production.—Radium, uranium, and vanadium are recovered from carnotite ore mined in western Colorado and eastern Utah. The two radium producers in the United States are the Vitro Manufacturing Co., Pittsburgh, Pa., which had an output of 3 grams in 1941 and expects to supply 3 to 5 grams in 1942, and the S. W. Shattuck Chemical Co., Denver, Colo., which produced about 225 milligrams in 1941 and anticipates an output exceeding 1 gram in 1942.

Foreign trade.—Imports of radium salts, radioactive substitutes, and uranium ore and compounds are shown in the accompanying table. All of the imports during the first 9 months of 1941 were from Canada, except that 21 percent of the uranium compounds came from Belgian Congo.

Radium salts, radioactive substitutes, and uranium ore and compounds imported for consumption in the United States, 1937-41

Year]	Radium sal	ts	2.1			Uranium oxide		
		Value		Radio- active substi-	Urani	um ore	and salts		
	Grams	Total	Average per gram	tutes (value)	Pounds	Value	Pounds	Value	
1937	15. 29 38. 75 78. 631 30, 311 4. 063	\$377, 659 787, 025 1, 953, 820 748, 097 101, 480	\$24, 700 20, 300 24, 800 24, 700 25, 000	\$711 5, 746 966 5, 650 13	2, 400, 198	\$10 2, 110, 927	203, 473 376, 708 1, 439, 324 240, 199 229, 872	\$258, 417 520, 540 1, 197, 786 388, 355 345, 264	

Price.—In 1941 the market price of radium dropped from \$30 a milligram to \$25, and even lower. Individual sales at less than \$20 a milligram were reported. Prices quoted at the end of 1941 by the Radium Chemical Co., Inc. (sales agent in America for Union Minière du Haut Katanga), were as follows: \$23 a milligram for 1-99 milligrams, \$21.50 for 100-499 milligrams, and \$20 for 500 milligrams or over. Throughout 1941, Ceramic Industry listed uranium oxide at \$1.75-\$3.00 a pound; and Glass Industry quoted yellow or orange uranium oxide at \$1.65 a pound, black uranium oxide at \$2.55 a pound, and orange or yellow sodium uranate at \$1.65 a pound.

Uses of radium.—The principal use of radium is in the treatment of cancer and skin diseases, but the war program is drawing on increasing amounts for luminous paints and industrial radiography. Clocks, gun sights, compasses, and various other types of instrument dials are coated with radium compounds to permit them to be seen under blackout conditions. Radium is used to detect flaws in castings, forgings, and welds of numerous kinds of metals and alloys. Aircraft parts hull castings, valves for power plants and refineries, cast piping, welded pressure vessels, gun carriages, turret tracks, shaft struts for ships, frogs for railroads, and turbine casings are among the equipment inspected in this way. From 25 to 1,000 milligrams of radium (usually 100 to 200 milligrams) in the form of radium sulfate in a duralumin container are ordinarily placed in the center of a circle of articles to be tested. X-ray films are fastened to the backs of the specimens, and the penetrating gamma rays cause a shadowgraph to appear upon the film very similar to one obtained with X-rays. Defects as small as 0.25 percent of the thickness of the article, ranging from % to 10 inches, can clearly be seen. Magnification of the images to 5 and 10 diameters reveals defects otherwise unnoticed. Radiographic inspection of magnesium-alloy castings was described in some detail by Bailey.22 Some of the recent literature on industrial radiography has been summarized.23 Progress in radiography prompted organization in October 1941 of the American Industrial Radium and X-ray Society, Inc. The primary aim of the society is to promote scientific education in industrial radiography; headquarters will be in Chicago.24 A new use of radium is as a radium-beryllium salt in geophysical exploration for petroleum.

Figures showing radium transactions are not available, but preparations tested each year by the National Bureau of Standards, under the supervision of Dr. L. F. Curtiss, give some idea of movements. Such preparations included 9.0 grams of radium in 1937, 10.5 in 1938,

22.0 in 1939, 16.8 in 1940, and 19.9 in 1941.

Radon, polonium, and mesotherium.—Useful radiation from radium is not due to the radium itself but rather to its disintegration products. Radium first decomposes into the gaseous element radon (atomic number, 86). Radon is put in tubes and used in both hospitals and industrial plants. It loses its effectiveness after a few days, but in some circumstances this short life is advantageous. Radiologists in Great Britain were temporarily forced by German bombers to abandon most of their clinical work with radium because of the danger of losing

²² Bailey, P. M., Radiography—Applied to Magnesium Alloy Castings: Metal Ind., vol. 59, No. 15, October 10, 1941, pp. 232-235.
23 American Society for Testing Materials, Review of the Literature of 1939 on the Testing of Materials by Radiographic Methods: Bull. 111, August 1941, pp. 31-32.
24 Steel, Industrial Radium, X-ray Society Formed: Vol. 109, No. 18, November 3, 1941, p. 59.

In its place, hospitals were supplied with radon, individual losses of which would not be significant. The radon tubes were filled in subterranean plants, one of which was financed with \$25,000 cabled to London by the British War Relief Society in the United States.25 Polonium is a radioactive element (atomic number, 84) recovered at the Port Hope refinery and used in minute traces in spark-plug electrodes to ionize the air gap and speed the passage of a hot spark under all temperature conditions, even when the battery is low. Made by the Firestone Tire & Rubber Co., the nickel electrodes either are coated with a film of polonium or contain 0.000000001 percent polonium as an alloy. The longer the radioactive spark plug is used, the more efficient it becomes.26 Mesothorium is a radium isotope (atomic numbers, 88 and 89) which is used as a substitute for radium. It is obtained from monazite-sand residues and is more radioactive than radium itself. The principal application at present is probably in black-out paints. The number of mesothorium specimens tested annually by the National Bureau of Standards gives some index as to demand. Such specimens contained 1,026 milligrams in 1934, 300-600 yearly in 1935-38, 49 in 1939, and 301 in 1940 and reached a high of 1,451 in 1941.

Uses of uranium.—Uranium is now used principally in ceramics. luminescent paints, tool steels, and chemicals. Uranium oxides color pottery glazes and porcelain bodies black, gray, brown, or green in a reducing environment and yellow, orange, or red under oxidizing con-They are sometimes used as a crystallizing agent in crystal-Sodium uranate and sodium uranyl carbonate produce line glazes. the fluorescence typical of uranium glasses, which are yellowish green in transmitted light and emerald green in reflected light. These compounds under other conditions color glass yellow, orange, or red.27 Uranium salts are incorporated in luminescent paints, either for their own inherent fluorescence or as an activator for such accessory compounds as zinc-cadmium sulfide and beryllium oxide. Uranium imparts desirable properties to tool steels. The metal is introduced as ferrouranium or, more recently, as a master alloy containing 66 percent uranium and 33 percent nickel. Stainless silverware can be made by plating the ware in an electrolytic bath containing silver fluoride and compounds of uranium and tin. Uranium oxides are used as catalysts in a number of organic chemical reactions.

SELENIUM AND TELLURIUM

Production of selenium and of tellurium in the United States in 1941 increased 89 and 162 percent, respectively, and sales showed corresponding gains. Producers' stocks of both metals declined during Selenium imports (all from Canada) expanded. Salient statistics for 1937-41 are shown in the accompanying table. increased its production of selenium and tellurium during 1941, and the Germans are said to have brought into operation a new selenium plant in the Mansfeld copper district.²⁸ The base price of selenium (black, powdered, 99.5 percent) and of tellurium continued to be

²⁵ American Medical Association, Radon Production Plant given to England: Jour., vol. 116, No. 1,

²⁸ American Predical Association, Radon Production Flant given to England: 652., January 4, 1941, p. 58.
26 American Chemical Society, News Edition: Vol. 19, No. 19, October 10, 1941, p. 1111.
27 Ceramic Industry, vol. 38, No. 1. January 1942, pp. 107 and 112.
28 Metal Bulletin (London), No. 2642, November 11, 1941, p. 4.

\$1.75 a pound throughout 1941. Glass Industry quoted barium selenite at \$1.40-\$1.60 and sodium selenite at \$1.50-\$1.65 a pound.

Salient statistics of selenium and tellurium in the United States, 1937-41

:			Selenium	Tellurium					
Year	Production	Sales 1	Producers' stocks at	lmpo	orts 2	Production	Sales 1	Producers'	
•	(pounds) (pounds)	end of year (pounds)	Pounds	Value	(pounds)	(pounds)	end of year (pounds)		
1937	435, 821 225, 674 227, 131 328, 731 620, 493	282, 598 166, 494 345, 726 368, 709 681, 650	306, 200 365, 500 246, 800 206, 800 146, 000	92, 523 101, 034 124, 830 134, 429 3 139, 505	\$161, 382 163, 598 193, 168 198, 163 204, 608	51, 409 11, 076 25, 234 85, 622 224, 639	23, 365 26, 944 63, 431 88, 996 239, 983	93, 200 77, 300 39, 100 35, 700 20, 400	

Bureau of Mines not at liberty to publish value. Includes selenium salts.

Selenium, in conjunction with cadmium, is important as a red colorant in ruby glasses for signal lenses, tail lights, fire globes, and tableware. Antithetically, selenium acts as a decolorizer; 0.8 ounce per ton of glass imparts a pink that cancels the green from iron impurities and thereby yields a virtually colorless product. Increasing quantities of selenium are used in rectifiers and light-sensitive cells and for flameproofing wire and cable insulation. Additions of selenium or tellurium have been found to increase the ductility of nickel-manganese steels and to improve machinability of stainless steels and copper Augmented demand for tellurium is principally as a carbon stabilizer in cast iron. Tellurium is also called upon to toughen lead 29 Tellurium-lead work-hardens and is resistant to acids, even at high temperatures.

TITANIUM

Soon the United States will attain self-sufficiency in another mineral-ilmenite-through development of the Adirondack titaniferous magnetite deposits, which was begun in 1941. The project was born of the necessity to discontinue the practice of importing several hundred thousand tons of ilmenite annually from India. Such cargo space was needed for the transportation of other ores more directly essential to the victory program. Rutile from Australia faced a somewhat more fortunate situation, for ships delivering war supplies in the South Pacific loaded ores for the return voyage. pigments were in great demand during 1941. The Navy is said to have purchased about 2,500 tons in that year, and individual orders of 300 tons for aircraft camouflage lacquer and 350 tons to paint the interior of a single airplane plant were reported.30 Such military requirements prevented the paint industry from obtaining much more than 60 percent of its needs for civilian consumption and forced manufacturers to use less titanium dioxide and more white lead.31 Titanium pig-

Figures cover January to September, inclusive.

^{**} Hofmann, Wilhelm, and Hanemann, Heinrich, Work Hardening and Precipitation Hardening of Lead-Tellurium Alloys: Zischr. Metallkunde, vol. 33, February 1941, pp. 62-63; Metals and Alloys, vol. 14, No. 1, July 1941, pp. 110,112.

** Corddry, G. W., Titanium and the Present-Day Situation: Paint Ind. Mag., vol. 56, No. 11, November 1941, pp. 370-372.

** Business Week, No. 637, November 15, 1941, pp. 42, 44-45.

ments were put under allocation by Office of Production Management General Preference Order M-44, effective December 1, 1941. Subsequent amendments moved the effective date to January 1, 1942, clarified the original text, and increased from 20 percent to 25 percent (effective February 1, 1942) the proportion of titanium pigments that had to be set aside by producers for direct allocation by the War Production Board. No price action on titanium pigments was taken during 1941, but to stem a proposed advance the Office of Price Administration, on January 2, 1942, requested the stabilization of prices at levels of October 1, 1941, and 2 months later made the informal request mandatory by issuing Price Schedule 98, effective March 1, 1942.

Domestic production.—Ilmenite and rutile were produced in Arkansas, Florida, and Virginia during 1941, mining of ilmenite in North Carolina was begun early in 1942, and plans were made to work titanium ore near Elma, Wash. The Bureau of Mines is not at liberty to publish figures showing domestic production of titanium ores. Ilmenite concentrates shipped from domestic mines in 1941 contained 42 to 54 percent TiO₂, and rutile concentrates contained 92 to 95 percent TiO₂. The geology of the Virginia titanium deposits was described in some detail by Ross.³² The most significant feature of the 1941 titanium picture was the plan to exploit the Adirondack titaniferous iron ores. Mining will be begun in the summer of 1942, and at full capacity the project will enable the United States to be virtually self-sufficient in supplies of ilmenite. The property is being developed by the Titanium Division, National Lead Co., and the following details are abstracted from a comprehensive report by I. D. Hagar,³³ general manager.

In the Adirondack Mountains at Newcomb, Essex County, northeastern New York, a titaniferous iron-ore deposit, known as the MacIntyre Development, is being opened up by the National Lead Co. to obtain titanium for use in pigments. Purchased were some 7,000 acres, including the Sanford Hill deposit, located on the east shore of Lake Sanford, and the Iron Mountain deposit, about 1½ miles to the northeast. The National Lead Co. offered through the Office of Production Management to make a part of the output available to any pigment producer who would finance the requisite additional facilities. In this manner the Krebs Pigment & Chemical Division of E. I. du Pont de Nemours & Co., Inc., acquired an interest in the development and will receive one-fourth of the production for 10 years. The program of operation calls for a daily mine output of 5,500 long tons of ore analyzing 16 percent TiO2, from which the mill will produce 800 long tons of ilmenite concentrates containing about 48 percent TiO2. In addition, there will be a byproduct of approximately 1,800 tons daily of low-phosphorus magnetite. There is some question as to the ready marketability of this concentrate, since it will contain about 10 percent TiO2, the effects of which in a blast furnace constitute a controversial question. However, much interest is being expressed by various steel manufacturers in the possibility of utilizing this magnetite, in spite of the alleged handicap. Beginning in May 1941, a coredrilling program involved the extraction of over 11,000 feet of diamond-drill cores from 70 drill holes. Examination of these cores showed that there is available in the Sanford Hill deposit above lake level approximately 15,000,000 tons of ore analyzing 16 percent TiO2. This quantity is estimated to constitute a sufficient supply for the domestic pigment industry for at least 10 years.

The mine will be of the open-pit or bench-type, utilizing churn drills and electrically operated shovels to load the broken ore on heavy-duty mine trucks for haulage to the mill. The mill will contain the following units: (1) The crushing plant, equipped with a 48- by 60-inch jaw crusher, a 5½-foot standard cone

³¹ Ross, Clarence S., Occurrence and Origin of the Titanium Deposits of Nelson and Amherst Counties, Va.: Geol. Survey Prof. Paper 198, 1941, 59 pp.
31 Hagar, I. D., Titanium and the MacIntyre Development: Paint Ind. Mag., vol. 61, No. 12, December 1941, pp. 410-418.

See also, Oliver, Frank J., Titaniferous Adirondack Ores Being Reworked: Iron Age, vol. 149, No. 10, March 5, 1942, pp. 53-59.

crusher, a 5½-foot shorthead cone crusher, and attendant screens and conveyors. (2) The wet mill, which will contain the crushed-ore bins, 4 rod mills with attendant elevators, screens, and pumps, 12 Crockett wet-belt separators for separating the magnetite, 96 wet-concentration tables for separation of the ilmenite, and units for dewatering the concentrates. (3) The dry mill, in which is included a battery of steam coil driers, operated by two 500-hp. boilers, and 21 Wetherill dry magnetic separators. Cost of development is estimated at \$7,750,000. Materials for the entire development were made available through the issuance by the Office of Production Management of a blanket A-1-c Preference Rating Certificate, one of the highest blanket priorities granted so far to a commercial enterprise not directly engaged in the manufacture of weapons.

Foreign trade.—Imports of titanium ore and ferrotitanium in recent years are shown in the accompanying table. Of the 139,944 long tons of ilmenite imported during the first 9 months of 1941, 95 percent came from British India, 3 percent from Canada, and 1 percent each from Brazil and Portugal. Imports of rutile during the same period, including the rutile in zircon-rutile concentrates from Australia, are estimated at 4,000 short tons—78 percent from Australia and 22 percent from Brazil. Exports of titanium pigments from the United States were 5,950 short tons during the first 9 months of 1941 and 3,592 in the corresponding period of 1940. Such exports totaled 4,962 tons in the 12 months of 1940 compared with 4,319 in 1939.

Titanium ore 1 and ferrotitanium imported for consumption in the United States, 1937-41

Year		Titani					
	Ilme	nite	Rut	ile 1	Ferrotitanium		
	Long tons	Value	Short tons	Value	Pounds	Value	
1937	153, 993 209, 174	\$770, 757 1, 018, 403	665 230	\$67, 643 26, 533	4, 500	\$608	
1939 1940	255, 872 197, 894	1, 126, 200 750, 590	442 156	23, 170 14, 849	350	77	
1941 (JanSept.)	139, 944	574, 651	1 930	1 110, 002			

¹ Excludes rutile in zircon-rutile concentrates from Australia; such imports are estimated at approximately 3,000 tons from January to September 1941.

Prices.—Quotations for ilmenite, 50-60 percent TiO₂, at \$18-\$20 a long ton were replaced in February by prices of \$28-\$30 for straight 60-percent material, which held throughout 1941, according to Metal and Mineral Markets. Rutile, 88-90 percent TiO₂, advanced \$10 in April to \$95 a short ton, and 94-percent concentrates remained at 8-10 cents a pound during all of 1941. Titanium metal, 96-98 percent, was listed at \$5-\$5.50 a pound. Throughout 1941, Steel quoted ferrotitanum at \$1.23 per pound of contained Ti for 40- to 45-percent grade and \$1.35 for 20- to 25-percent grade, and ferrocarbontitanium, 15-20 percent Ti, at \$142.50 a short ton for 6- to 8-percent carbon and \$157.50 for 3- to 5-percent carbon. The base price of titanium dioxide was 13½-15½ cents a pound during the first half of 1941, according to Oil, Paint and Drug Reporter, but at the beginning of July was raised to 14½-16½ cents, at which level it was fixed by Price Schedule 98, previously noted.

Uses.—Most of the titanium supply is consumed as dioxide in paints, paper, rubber, leather, ceramics, plastics, linoleum, printing ink, textiles, cosmetics, soap, and welding-rod coatings; the remainder

goes into titanium ferro-alloys, hard-cutting alloys, other nonferrous alloys, and metallic titanium. Domestic production of titanium pigments has more than doubled since 1938 and, according to Chemical and Metallurgical Engineering, approached 165,000 short tons in 1939. Titanium white paints are noted for a high degree of opacity, reflectance, and durability. Titanium dioxide makes it possible to manufacture workable porcelain enamels with a higher degree of acid resistance than can be obtained by any other means; at the same time, a remarkable degree of opacity in developed and gloss is im-Ilmenite is the source of all titanium pigments and also enters into the production of alloys and welding rods. By far the largest use of rutile is as a flux in welding-rod coatings, where its function is to shield the arc from oxidation during welding and to produce a brittle slag, which protects the cooling weld deposit.35 The second most important use of rutile is in steel manufacture, where ferrotitanium and ferrocarbontitanium act as strong deoxidizers (to some extent replacing aluminum) and as addition agents to inhibit intergranular corrosion of stainless steels and air-hardening of 5-percent chromium steels.³⁶ A new type of permanent magnet contains 6 to 12 percent titanium.³⁷ Rutile is also used in ceramics and a number of nonferrous alloys, particularly titanium-aluminum, which improves the grain of aluminum castings. Titanium carbide is a constituent of hard alloys used in machine tools. A comprehensive Russian technical article on this application has recently been translated.38 The use of metallic titanium has been limited principally to radio tubes. Titanium deserves study as a structural material, although it is difficult to produce metal free from objectionable oxygen and nitrogen.39 Traces of metallic titanium in mercury boilers inhibit corrosion and facilitate heat transfer. tetrachloride is utilized in smoke screens and in purifying aluminum alloys. WORLD PRODUCTION

Australia.—Zircon Rutile, Ltd., Byron Bay, New South Wales, increased its production of zircon-rutile concentrates in 1941.40 The International Titanium Corporation, controlled by the American Rutile Corporation and Ventures, Ltd., of Canada, began producing concentrates of rutile and zircon in New South Wales in June 1941 and shipping the material to Carteret, N. J., for further separation.41 Titanium minerals and zircon are also being recovered from black sands at Lower Piper River near Low Head, on the northern coast of Tasmania.42

Brazil.—During the first 9 months of 1941, Brazil exported 2,621 metric tons of ilmenite and 1,462 metric tons of rutile. All the ilmenite and 57 percent of the rutile were shipped to the United States.

³⁴ Tinsley, S. G., Titanium Oxide as an Ingredient of Porcelain Enamel Frits: Ceram. Ind., vol. 38, No. 3, March 1942, pp. 36-39.

³⁵ Johnston, J. Murray, Rutile and Zircon: Am. Inst. Min. and Met. Eng., Ann. Meeting, New York, N. Y., February 11; 1942, 3 pp.

³⁶ Steel, Modern Contributions of Titanium to Steel Production: Vol. 109, No. 18, November 3, 1941, pp. 64 110-111

^{**} Steel, Modern Contributions of Titanium to Steel Production: Vol. 109, No. 18, November 3, 1941, pp. 96, 110-111.

**Howe, Goodwin H. (to General Electric Co.), Alloys for Permanent Magnets: U. S. Patent 2,264,038, 70 to the Goodwin H. (to General Electric Co.), Alloys for Permanent Magnets: U. S. Patent 2,264,038, 70 to the Goodwin H. (to General Electric Co.), Alloys for Permanent Magnets: U. S. Patent 2,264,038, 70 to the Goodwin H. (to General Electric Co.), Alloys for Permanent Magnets: U. S. Patent 2,264,038, 71 to the Goodwin H. (1941, pp. 30-30), 71 to the Goodwin H. (1941, pp. 30-30), 71 to the Goodwin H. (1941, pp. 30-30), 71 to the Goodwin H. (1941, pp. 30-30), 71 to the Metallurgical Division, Fiscal Year 1941: Bureau of Mines Rept. of Investigations 3600, 1941, pp. 52-53.

**Industrial Australian and Mining Standard, vol. 96, No. 2478, September 15, 1941, p. 211; vol. 96, No. 2479, October 1, 1941, p. 225.

**Industrial Australian and Mining Standard, vol. 96, No. 2478, September 15, 1941, p. 211; vol. 96, No. 479, October 1, 1941, p. 225.

**Industrial Australian and Mining Standard, vol. 96, No. 2478, September 15, 1941, p. 211; vol. 96, No. 479, October 1, 1941, p. 225.

**Industrial Australian and Mining Standard, vol. 96, No. 2478, September 15, 1941, p. 211; vol. 96, No. 479, October 1, 1941, p. 225.

World production of titanium concentrates (ilmenite and rutile), 1936-40, by countries, in metric tons

[Compiled by B. B. Waldbauer]

Country	1936	1937	1938	1939	1940
Ilmenite: Australia: New South Wales.		670	460	(1)	(2)
South Australia. Brazil (exports)	9 2, 328 24 10, 376 141, 327 67, 194 183 2 3, 227	8 234 3, 836 317 6, 290 182, 142 84, 209 1, 456 3, 075 (3)	2 317 188 90 6, 462 256, 268 62, 724 568 8, 436	2 3, 351 (1) 11, 098 (1) 55, 027 409 (1)	(1) 12 (1) (2) 596 (1) (1) 399 (1) (3)
Rutile: Australia: New South Wales Brazil (exports). Cameroun (French) Norway. South-West Africa. United States.	(1) 768 55 198 54 (3)	4 1, 195 377 103 187 16	(1) 488 118 124	(1) 489 (1) 166	(1) 499 (1) (1) (3)

¹ Data not available.

2 Exports.

Canada.—Ilmenite production from St. Urbain, Quebec, increased in 1941. Other titaniferous iron deposits were being investigated and may contribute to the 1942 output. Titanium pigment imports by Canada in 1940 totaled 3,069 short tons, principally from the United States.44

Norway.—Titanium deposits were reported discovered in Norway as a result of a systematic survey conducted by Norwegian and Ger-

man geologists and engineers.45

ZIRCONIUM

Zircon is recovered from beach sands near Melbourne, Fla., by the Riz Mineral Co. as an accessory of titanium ore and from gravels near Lincoln, Calif., by the Fay Placers Mining Co. as a byproduct of gold dredging. Although domestic production reached 3,646 short tons in 1927, there was none from 1929 to 1939. The rate of output was small during 1940 and 1941 but was increased somewhat early in 1942. The rate of output was Some work was done on a zircon deposit in Wisconsin during 1941. Imports of zirconium ore and zirconium ferro-alloys in recent years are shown in the accompanying table. Entries of zirconium ore during the first 9 months of 1941 totaled 20,101 short tons-73 percent from Australia, 24 percent from Brazil, and 3 percent from British India. Some comments on the Australian properties may be found in the foregoing titanium discussion in this chapter. The Brazilian zirconium ore is essentially baddeleyite and has a ZrO2 content (82 percent) approximately 1½ times that of Australian zircon. and Chambers 46 have described the deposits in Brazil.

Bureau of Mines not at liberty to publish figures.
4 Includes 72 tons of mixed rutile-ilmenite concentrates.

⁴ De Mille, John B., Mining in Quebec During 1941: Canadian Min. Jour., vol. 63, No. 2, February 1942,

p. 85.

4 Foreign Commerce Weekly, vol. 6, No. 7, February 14, 1942, p. 23.

4 Foreign Commerce Weekly, vol. 6, No. 7, February 14, 1942, p. 23.

4 Chemical and Metallurgical Engineering, German Aid Stimulates Establishment of New Plants for Producing Synthetics in Europe: Vol. 48, No. 12, December 1941, p. 116.

4 Melzer, W., and Chambers, G. H., Zirconia in Brazil: Foote-Prints, vol. 14, No. 1, June 1941, pp. 17-21,

Zirconium ore 1 and zirconium ferro-alloys imported for consumption in the United States, 1937-41

	Zirconiu	m ore 1	Zirconium ferro-alloys		
Year	Short tons	Value	Pounds	Value	
1937 1938 1939 1940 1941 (Jan.–Sept.)	8, 934 2, 093 3, 433 16, 845 20, 101	\$129, 576 62, 138 49, 919 252, 749 446, 286	230, 449 244, 126 799, 269 533, 055	\$13, 085 13, 520 50, 169 37, 126	

¹ Includes zircon-rutile concentrates from Australia.

Price.—Throughout 1941, Metal and Mineral Markets quoted, unchanged from 1940, zirconium ore, 55 percent ZrO₂, at \$60-\$70 a short ton, f. o. b. Atlantic seaboard; zirconium ferrosilicon at \$102.50-\$107.50 a long ton for 12-15 percent Zr content and 14-16 cents a pound for 35-40 percent Zr; and powdered zirconium metal at \$7 a pound. Ceramic Industry quoted crude zircon, pound basis, at 5-7 cents, refined zircon at 8-10½ cents, and zirconium oxide at 40-49 cents.

Uses.—The bulk of the zirconium is consumed in ceramics, chiefly in porcelain enamels and pottery glazes but also in electrical and chemical porcelains and heat-resistant glasses. The function of zirconium in enamels and glazes is opacification, and this use conserves significant amounts of antimony, tin, and zinc. The second-largest use of zirconium is in refractories, particularly for glass-melting furnaces. Zirconium purifies, hardens, and strengthens steels and acts with aluminum to harden cupronickel. Metallic zirconium as powder or ductile metal is used in photoflash bulbs, radio tubes, ammunition primers, and welding rods. Zirconium compounds are important in tanning, and zircon sand is an advantageous foundry sand.

Dep. 367-371.

Commons, C. H., Jr., Effect of Zircopax Additions on Abrasion Resistance and Various Properties of Several Glazes: Jour. Am. Ceram. Soc., vol. 24, No. 5, May 1941, pp. 145-147.

Ceramic Industry, vol. 37, No. 5, November 1941, p. 38.

⁴⁷ King, Burnham W., Jr., and Andrews, A. I., Development of Opacity in Zirconia Enamels: Jour. Am. Ceram. Soc., vol. 24, No. 11, November 1941, pp. 360-367. Solubility of Zirconia in Soda-Borosilicate Glasses: Pp. 367-371.

PART III. NONMETALS

BITUMINOUS COAL AND LIGNITE 1

SUMMARY OUTLINE

	Page		Page
Survey of the bituminous-coal and lignite		Final bituminous coal and lignite statistics for	
industry in 1941	811	1939 and 1940—Continued.	
Sources of data and acknowledgments	814	Methods of recovery	840
Salient statistics	815		843
Production by weeks and months	816		852
Consumption	818	Mechanical loading	853
Stocks held by consumers	819		863
Fuel efficiency	819	Detailed statistics by States and counties	867
Relative rate of growth of coal, oil, and water		Statistics on lignite in 1940	896
power	820	Production	896
Final bituminous coal and lignite statistics for		Number and size of mines	898
	824		899
1939 and 1940. Summary by States	824	Stripping operations.	899
Production by weeks and months	828	World production	900
Number and size of mines	831	Imports and exports	900
Average value	833	World production	901
Labor statistics	833		
Shipments by individual railroads and			
Waterways	835		

SURVEY OF THE BITUMINOUS-COAL AND LIGNITE INDUSTRY IN 1941

Under the stimulus of increased industrial activity arising from the national defense program, coal requirements increased sharply in 1941, and production was the largest since 1929. During the first quarter production was high to fill orders by consumers for storage in anticipation of possible suspension of mining when the wage contract expired on March 31. Output was largely at a standstill during April pending the signing of a new wage contract.

Production.—The estimated output of soft coal in 1941 was 511,-290,000 net tons, an 11-percent increase over 1940. Following the trend of industrial activity, the production for 1941 was 65 percent above the record low of 1932 and only 4 percent below the 534,989,000 tons of 1929 (see figs. 1 to 3 and tables 2 and 3). The trend of average value is shown in table 18.

Consumption.—Each of the major classes of consumers used more coal in 1941 than in 1940, and the increase ranged from 119 percent for beehive coke ovens to 8 percent for byproduct coke ovens (see table 4).

Data for 1941 are preliminary; detailed statistics with final revisions will be released later. Data for

¹⁹³⁹ and 1940 are final.

The collection of statistics on the bituminous-coal industry which before 1937 was conducted by the Bureau of Mines is now performed by the Bituminous Coal Division, U. S. Department of the Interior, Dan H.

Wheeler, Director.

Material in this chapter was prepared in the Division's Economics Branch under the supervision of G. A.

Lamb, chief. It was completed under the immediate direction of W. H. Young, in collaboration with R. L.

Anderson, M. E. McMillan, and R. M. McKinney. The figures for 1939 were compiled under a joint agreement between the Bureau of the Census and the Bituminous Coal Division.

Changes in stocks.—The reserve supply of coal in the hands of industrial consumers and in retail coalyards rose from a total of 50,998,000 net tons at the beginning of the year to 62,737,000 tons at the close. In spite of the increase in total tonnage, the days' supply of stocks advanced only from 38 to 40 because of the increased rate of consumption. Between the same periods, stocks on the upper Lake docks advanced 779,188 tons, whereas unbilled coal in cars at the mines or classification yards fell 378,600 tons (see fig. 1 and tables 1 and 5).

Mechanization.—Sales of mechanical loading equipment for use in bituminous coal mines, in terms of total capacity, increased 31 per-

cent in 1941 over 1940.

Mechanical cleaning.—Sales of mechanical cleaning equipment during 1941 indicate a gain over earlier years in mechanically cleaned coal. The total capacity of cleaning plants sold in 1941 is estimated

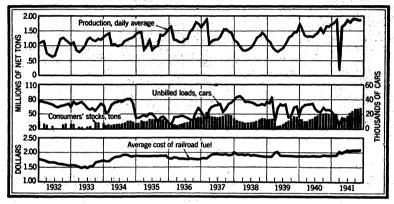
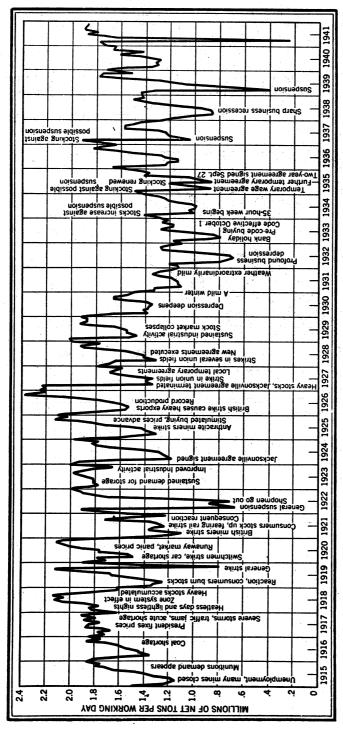


FIGURE 1.—Trends of production, stocks, and prices of bituminous coal and lignite in the United States, 1932-41.


at 8,000 net tons of cleaned coal an hour (see Coal Age, February

1942, p. 66).

Trend of employment.—Estimates of the average number of men employed at bituminous coal and lignite mines in 1941 indicate a rise over the 1940 figure, which was 439,000. Indexes compiled by the Bureau of Labor Statistics upon the basis of a sample that includes more than half the workers in the industry show an increase of almost 4 percent in employment for 1941 over 1940 if normal operations during the April suspension are assumed in 1941. Reports from mining departments of several States also indicate a similar increase for the same period. These data suggest an estimate of 459,000 employees for 1941.

Trend of capacity.—The potential output upon a 308-day basis was 703,000,000 tons in 1940. Under the 5-day week, full-time operation is limited to approximately 261 days. The potential output of mines operating upon a 261-day basis was 595,000,000 net tons in 1940 compared with the total actual production of 460,771,500 tons.

Trend of fuel efficiency.—The upward trend in the efficient utilization of fuel in 1941 made some slight inroads into the coal market (see fig. 4 and table 6).

and lignite in the United States per working day in each month, 1915-41. FIGURE 2.—Average production of bituminous coal

Competition of oil and gas.—The competitive struggle of coal with oil and gas continued in 1941. The consumption of coal by railroads in 1941 increased 15 percent over 1940, but the consumption of oil by railroads increased 21 percent during the same period. Electric public utilities consumed 21 percent more coal and 21 percent more oil in 1941 than in 1940. The kilowatt-hours produced by water power at electric public utility power plants increased 7 percent in 1941 over 1940. (See figs. 5 to 7 and tables 7 to 9.)

In domestic heating comparable figures are available for mechanical firing equipment only. Sales of domestic stokers using bituminous

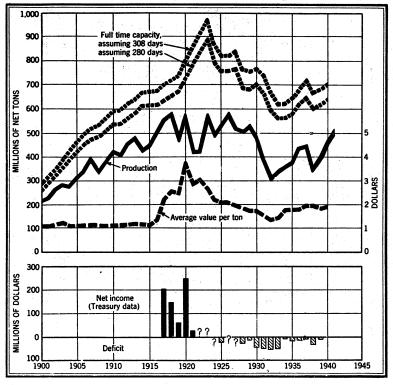


FIGURE 3.—Trends of bituminous coal and lignite production, realization, mine capacity, and net income or deficit in the United States, 1900-1941.

coal rose from 123,167 in 1940 to 158,734 in 1941, or 29 percent, whereas shipments of domestic oil burners and boiler-burner and furnace-burner units rose from 245,799 to 271,673, or 10 percent.

SOURCES OF DATA AND ACKNOWLEDGMENTS

Bituminous coal and lignite production statistics for 1941 are preliminary estimates prepared by the Bituminous Coal Division in accordance with standard procedure used in the past.

The 1939 statistics on bituminous coal and lignite were obtained through a survey conducted jointly by the United States Depart-

ment of Commerce. Bureau of the Census, and the United States

Department of the Interior. Bituminous Coal Division.

The 1940 bituminous coal statistics were compiled by the Bituminous Coal Division and the 1940 lignite statistics by the Bureau of Mines.

Final production of bituminous coal and lignite for 1940 was 0,771,500 net tons. This differs slightly from 461,318,629 tons, as 460.771.500 net tons. published in January 1942 in Mineral Industry Surveys HSS 297 by the Bureau of Mines. These two figures differ largely because the annual canvass of the Bituminous Coal Division includes only mines with 1,000 tons or more yearly production, whereas the canvass of the Bureau of Mines is concerned with the production of all mines in which men are employed and hence are exposed to accident hazards incident to mining.

SALIENT STATISTICS

TABLE 1.—Salient statistics of the bituminous coal and liquite industry in the United States, 1939-41

ſA	ll tonnage	figures	represent	net	tonsl

	1939	1940	1941
Production	394, 855, 325	460, 771, 500	1 511, 290, 000
Exports to Canada and Mexico 2 Exports overseas and all other 2	9, 975, 919	13, 537, 342	(3)
Exports overseas and all other 2	1, 614, 559	2, 928, 586	(3)
Laports 2	355, 115	371, 571	(8)
Consumption in the United States (calculated) 4	379, 768, 962	438, 250, 143	(3)
Stocks at end of year:	44 571 000	EU 000 000	en 797 non
Industrial consumers and retail yards	44, 571, 000	50, 998, 000	62, 737, 000
Stocks on upper Lake docks Unbilled loads, at mines or in classification yards 5	7, 590, 254	6, 998, 258	7, 777, 446
	1, 553, 100	1, 298, 300	919, 700
Price indicators (average per net ton):	A1 01	61 00	*0.00
Average cost of railroad fuel purchased, f. o. b. mines	\$1.91	\$1.88	\$2.02
Average cost of coking coal at merchant byproduct ovens 7		\$4.40	\$4.67
Average cost of bunker coal to vessels in foreign trade 8	\$4.83	\$4.81	(3) (3)
Average value of exports to all countries (at port)	\$3.69	\$3.69	(*)
Average retail price—38 cities 10	\$8. 52	\$8.60	\$9.15
Average railroad freight charge per net ton 11	\$2. 23	\$2. 22	\$2. 22
Mobile loading machines (number)	292	233	367
Scrapers (number)	18	36	8
Conveyors, including those with duckbills (units)		1, 573	1,800
Pit-car loaders (units)	2,000	2,013	10
A verage number of men employed at mines operating 13	421, 788	439, 075	1 459, 000
Fuel-efficiency indicators:	1.39	1.35	1, 34
Pounds of coal per kwhr. at electric power plants 14		112	
Pounds per 1,000 gross ton-miles—railroads 15	113	112	111
	1		

Subject to revision.

Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Production plus imports minus exports plus or minus net changes in consumers' stocks.

A Sociation of American Railroads.

Interstate Commerce Commission. Excludes freight charges.

^{*} Interstate Commerce Commission. Extendes frequency of Mines.

* As reported by coke operators to the Bureau of Mines.

* Computed from records of the Department of Commerce.

* Computed from records of the Department of Commerce. The figure the point of export of shipments to all foreign countries, including Canada.

19 Bureau of Labor Statistics. The figure represents the average value at

¹¹ Average receipts per net ton of revenue bituminous coal and lignite originated, as reported by the Interstate Commerce Commission.

11 Young, W. H., Anderson, R. L., Lamb, G. A., and Shore, F. M., Mechanization Sales: Coal Age, February 1942, pp. 66-68; and Min. Cong. Jour.. February 1942, pp. 22-25.

12 The figures for 1939 and 1940 are based upon reports of mine operators producing over 1,000 tons. The figure for 1941 is estimated from various sources, including the employment index of the Bureau of Labor Statistics and State mine improvements. Statistics and State mine inspectors' reports.

14 Federal Power Commission.

¹⁵ Interstate Commerce Commission; includes coal equivalent of fuel oil consumed.

PRODUCTION BY WEEKS AND MONTHS

Table 2.—Estimated weekly production of bituminous coal and lignite in the United States in 1941

n. 4, 1941 11	1 5, 131, 000 10, 302, 000 9, 808, 000	13	
18 25	10, 302, 000 9, 808, 000		1,791,00 0
25	9, 505, 000	6 6	1, 717, 000
	10,093,000	6	1, 635, 000 1, 682, 000
	10, 265, 000	6	1, 711, 00
8	10, 249, 000	6	1, 708, 00
15	10, 576, 000	6.	1, 763, 00
22	10, 577, 000	6	1, 763, 00
ar. 1	11,024,000	6	1, 837, 00
8	10, 900, 000	6 6	1, 817, 00 1, 870, 00
15 22	11, 431, 000	6	1, 905, 00
29	11, 865, 000	6	1, 978, 00
or. 5	3, 370, 000	5	674.00
12	1,085,000	6	181,00
19	1, 287, 000	6	215,00
26	1, 577, 000	6	263, 00
ay 3 10	5, 076, 000	6 6	846, 00
10 17	9, 318, 000 10, 068, 000		1, 553, 00 1, 678, 00
24	10, 462, 000	6	1, 744, 00
31		5.4	1, 778, 00
ne 7	9, 563, 000	6	1, 594, 00
14		6	1, 692, 00
21		6	1, 723, 00
28	11, 285, 000	6	1, 881, 00
ly 5		3.4	2,006,00
12 19	9, 668, 000 10, 773, 000	5 6	1, 934, 00 1, 796, 00
26	10, 901, 000	6	1, 817, 00
ıg. 2	10, 675, 000	ě	1, 779, 00
9	10, 699, 000	6	1, 783, 00
16	10, 983, 000	6	1, 831, 00
23	10, 974, 000	6	1, 829, 00
		6	1, 870, 00
pt. 6 13	10,010,000	5 6	2,002,00
20		6	1, 914, 00 1, 735, 00
27		6	1, 898, 00
rt. 4	11, 558, 000	ě	1, 926, 00
11	. 11, 524, 000	6	1, 921, 00
18	11, 380, 000	6	1, 897, 00
25	11, 178, 000	6	1, 863, 00
ov. 1	10, 871, 000	6	1, 812, 00
8	11, 362, 000	6 5.6	1,894,00
15 22	11, 622, 900 8, 843, 000	5.0	2, 075, 00 1, 701, 00
29	11, 632, 000	5.8	2, 006, 00
ec. 6	. 11, 364, 000	6	1, 894, 00
13		6	1, 899, 00
20	11, 163, 000	6	1, 861, 00
27		5	1, 684, 00
n. 3, 1942	1 6, 351, 000	13	³ 1, 962, 00
	511, 290, 000	303. 4	1, 685, 00

¹ Figures represent output and number of working days in that part of week included in calendar year shown. Total production for week of January 4, 1941, was 8,956,000 tons; for week of January 3, 1942, it was 9,844,000 tons.

² Average daily rate of production for entire week and not for working days in calendar year shown.

Table 3.—Estimated monthly production of coal in the United States in 1941, by States, in thousands of net tons

[Bituminous coal and lignite figures are preliminary estimates based upon railroad carloadings and river shipments of coal and beehive coke, supplemented by direct reports from a number of mining companies, local coal operators' associations, and detailed monthly production statistics compiled by the State Mine Departments of Colorado, Illinois, Pennsylvania, Washington, and West Virginia. In making the estimates, allowance is made for commercial truck shipments, local sales, and colliery fuel, and for small trucking mines producing over 1,000 tons a year. Where a mine is on the border between two States, the production is accredited to the State from which the coal is extracted, rather than the State in which the tipple is located. The estimates here given are based upon the latest information available and differ in some cases from the current figures previously published in the Weekly Coal Reports.]

State	January	February	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
Alabama	1, 420	1, 385	1, 564	188	1, 065	1, 463	1, 380	1, 438	1, 264	1, 223	1, 293	1, 521	15, 204
AlaskaArkansas and Oklahoma.	21 446	14 320	17 286	19 41	19 55	15 67	22 185	22 388	20 450	24 458	22 380	26 347	241 3, 423
Colorado	763	620	685	304	366	373	443	488	672	697	714	780	6, 905
Georgia and North Carolina	3	3	4	2	4	3	3	3	3	4	4	4	40
Illinois	5, 380	5, 045	5, 833	860	3, 996	3, 864	4,578	4,604	4,718	4, 930 2, 270	4, 842 2, 228	5, 550 2, 323	54, 200
Indiana Iowa	2, 163 344	1, 933 292	2, 480 352	195 130	1,774 168	1, 635 168	1, 674 168	1, 897 177	2, 018 232	2, 270	300	2, 323	22, 590 2, 950
Kansas and Missouri	773	707	820	462	375	452	510	607	636	655	678	770	7, 445
Vontucky:							777			K. sa iii			
Eastern	3, 524 967	3, 366 975	3, 844	160	3,676	3, 935 723	3, 864 842	3, 934 900	4, 120 886	4, 408 957	3, 354 1, 020	3, 325 1, 105	41, 510 11, 765
Western	157	153	1,090 172	1, 420 14	880 135	155	150	156	168	166	1,020	1, 103	1,748
Michigan	52	47	45	21	100	100	8	34	36	40	38	40	370
Montana (bituminous and lignite)	300	257	225	181	184	184	219	237	289	374	372	378	3, 200
New Mexico	113	106	122	85	76	99	95	90	103	112	115	134	1, 250
North and South Dakota (lignite)		249	207	92	81	92	87	105 2, 774	186	322	401 2, 840	300 2, 820	2, 426 29, 690
OhioPennsylvania (bituminous)	2, 258 11, 360	2, 327 10, 730	2, 710 12, 118	272 236	2, 462 11, 675	2, 565 11, 463	2, 625 11, 255	11, 882	2, 930 11, 576	3, 107 12, 672	10, 190	12, 313	29, 690 127, 470
Tennessee	567	568	637	102	563	602	585	598	620	681	585	605	6, 713
Texas (bituminous and lignite)	34	30	34	30	28	31	30	31	27	37	32	24	368
Utah	424	350	345	60	233	206	238	382	450	465	400	460	4, 013
Virginia	1, 453	1,377	1,610	233 137	1, 705	1,682	1,687	1,723 149	1,760 176	1, 896 190	1,628 177	1, 586 186	18, 340 1, 875
Washington West Virginia	11, 194	153 10, 835	168 12, 741	345	126 13, 429	126 13, 035	120 12, 833	13, 492	13, 487	14, 614	12,002	12, 879	140, 886
Wyoming	587	490	571	440	382	377	477	538	676	746	663	700	6, 647
WyomingOther Western States	2	2	2	ĭ	1	2	2	2	2	2	2	i	21
Total bituminous coal and lignite	44, 776	42, 334	48, 682	6, 030	43, 465	43, 319	44, 080	46, 651	47, 505	51, 328	44, 426	48, 694	511, 290
Pennsylvania anthracite 1	5, 162	4, 596	4, 765	3, 317	4,001	5, 072	4, 855	5, 441	5, 334	5, 580	3, 974	4, 271	56, 368
Grand total	49, 938	46, 930	53, 447	9, 347	47, 466	48, 391	48, 935	52, 092	52, 839	56, 908	48, 400	52, 965	567, 658

Bureau of Mines. Includes colliery fuel, dredge and washery coal, and shipments by truck from authorized operations. Includes also about 2,000,000 tons of illicit coal lawfully purchased and prepared by legitimate operators for shipment to market.

CONSUMPTION

Table 4.—Changes in the United States consumption of bituminous coal and lignite by such classes of consumers as report currently and by all other consumers, 1929 and 1934–41, in thousands of net tons 1

[Information on several other classes of consumers is available for certain years. The items shown in this table are selected because they are available in strictly comparable form for each year]

			Cons	umed in	the Uni	ted State:	.		Export	 .	
Year	Col- liery fuel	Elec- tric power utili- ties ³	Bunk- ers, foreign trade ²	Loco- motive fuel, class I roads 4	Bee- hive ovens	By- product ovens	All other uses ⁶	Total con- sump- tion 7	To Canada and Mexico	To other coun- tries (sea- borne)	Total of con- sump- tion and ex- ports 8
1929 1934 1935 1936 1937 1938 1939 1940	4, 663 3, 175 3, 103 3, 227 3, 052 2, 493 2, 565 2, 443 2, 710	44, 937 33, 555 34, 807 42, 025 44, 766 40, 212 46, 223 53, 398 64, 756	4, 287 1, 321 1, 576 1, 622 1, 832 1, 352 1, 477 1, 426 (10)	113, 894 70, 496 71, 335 81, 130 82, 667 68, 794 73, 935 79, 628 90, 906	10, 028 1, 635 1, 469 2, 698 4, 927 1, 360 2, 298 4, 803 10, 529	76, 759 44, 343 49, 046 63, 244 69, 575 45, 266 61, 216 76, 583 82, 609	264, 987 192, 518 198, 956 228, 850 221, 678 185, 173 192, 055 219, 969 (10)	519, 555 347, 043 360, 292 422, 796 428, 497 344, 650 379, 769 438, 250	14, 727 10, 213 9, 044 9, 912 12, 052 9, 561 9, 976 13, 537	2, 702 656 698 743 1, 093 929 1, 615 2, 929 (10)	536, 984 357, 912 370, 034 433, 451 441, 642 355, 140 391, 360 454, 716

Comparable data for earlier years in Minerals Yearbook, 1937, p. 799.
 Department of Commerce.
 Geological Survey and Federal Power Commission. Represents all coal consumed by public utility power plants in power generation, including bituminous coal, anthracite, lignite, and a small amount of

coke.

Interstate Commerce Commission. Represents bituminous coal and lignite consumed as locomotive fuel by class I steam railways, excluding switching and terminal companies. In 1940, the consumption by class I line-haul railways plus the purchases by class II and class III railways plus all switching and terminal companies combined was 91,047,281 net tons of bituminous coal and lignite. Similar data for 1941 are not yet available. (Note: This is a revision of footnote 4, p. 768, Minerals Yearbook, Review of 1940.)

Bureau of Mines.

Obtained by subtracting the known items from the calculated total consumption. Includes general manufacturing, domestic, and many miscellaneous uses.

7 Production plus imports minus exports, plus or minus changes in consumers' stocks.

Includes imports.

Subject to revision.
 Figures not available for publication.

STOCKS HELD BY CONSUMERS

Table 5.—Stocks of bituminous coal and lignite in hands of commercial consumers and in retail dealers' yards in the United States, 1940-41

		Day	s' supply	at curr	ent rate	of consum	ption o	n date of	stock tal	ring
Date	Total stock (net tons)	Byprod- uct coke plants	Steel plants	Other indus- trials	Coal-gas plants	Electric utilities	Retail yards	Rail- roads	Cement mills	Total
1940 an. 1 Peb. 1 Apr. 1 Apr. 1 Une 1 Uly 1 Aug. 1 Sept. 1 Oct. 1 Dec. 1 Dec. 31	44, 571, 000 40, 222, 000 39, 077, 000 35, 108, 000 35, 721, 000 39, 203, 000 41, 563, 000 45, 438, 000 51, 122, 000 51, 564, 000 51, 572, 000 50, 998, 000	37 30 30 28 27 31 32 35 36 40 43 43 45	21 18 21 21 23 22 24 26 26 28 24 24 23 24	40 32 32 31 35 42 50 56 56 59 49 44 42	56 48 45 43 36 59 69 74 66 62 64 59	60 57 63 71 80 82 80 80 79 81 73 75	26 16 16 13 21 41 57 61 59 50 41 28	23 18 21 20 20 22 22 25 27 26 23 23 23	32 43 52 38 33 29 28 30 32 28 26 27	34 27 22 22 33 34 44 44 44 44 44 44 43
1941 'an. 1 'an. 1 'An. 1 'Mar. 1 'Apr. 1 'May 1 'Une 1 'Unly 1 'Aug. 1 'Oct. 1 'Nov. 1 'Dec. 1 'Dec. 1	37, 483, 000 42, 929, 000 47, 051, 000 52, 801, 000 56, 994, 000	45 43 43 43 23 21 26 27 31 32 37 36 38	26 28 30 39 23 27 26 27 28 31 32 30	42 37 35 38 34 38 45 53 59 61 58 54		74 72 69 74 65 57 58 62 60 63 62 67	28 19 16 14 26 32 32 34 31 33 36 34 27	23 24 26 32 24 25 26 28 31 33 34 33	33 34	33 33 33 34 44 44 44

¹ Unadjusted for coal in transit during suspension of mining in April 1941.

FUEL EFFICIENCY

Table 6.—Indicators of effect of fuel economy on consumption of coal in the United States per unit of performance since the World War of 1914-18

States per unit of performance state the troit and the state of	Pounds	Reduction from base
그 옷이 되어 가는 사람이 가는 살이 하면	Founds.	period (percent)
Steam railroads: Pounds per 1,000 gross ton-miles freight service:		
A verage: 1919-20	170 112 111	34. 1 34. 7
Pounds per passenger-train car-mile: Average: 1919-20. 1940. 1941	18. 5 15. 0 14. 9	18. 9 19. 5
Electric public utility power plants: Pounds per kilowatt-hour: 1919 1940	3. 2 1. 4 1. 3	56. 3 59. 4
1941 Iron and steel—pounds coking coal per gross ton of pig: 1 1918.	0.777	20. 4 20. 9
1941 Coke manufacture: Savings of heat values through recovery of gas, tar, light oils, and breeze by extension of byproduct in place of beehive coking, 1913-41, expressed as percent of coal used for all coke in 1941.		18.9

¹ Includes only savings through higher yields of merchantable coke per ton of coal charged and lower consumption of coke per ton of iron. Excludes economies through recovery of byproducts, which are

consensition of the part of the covered in next item.

These byproducts are used in part for boiler fuel, in part for metallurgical purposes, in part for domestic heating and cooking, and to a small extent for automotive fuel.

RELATIVE RATE OF GROWTH OF COAL, OIL, AND WATER POWER

The procedure used in making the calculations on relative rate of growth of energy is described in detail in Minerals Yearbook, Review of 1940 (p. 774).

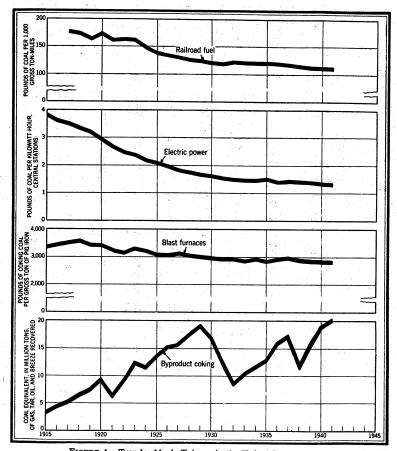


FIGURE 4.—Trends of fuel efficiency in the United States, 1915-41.

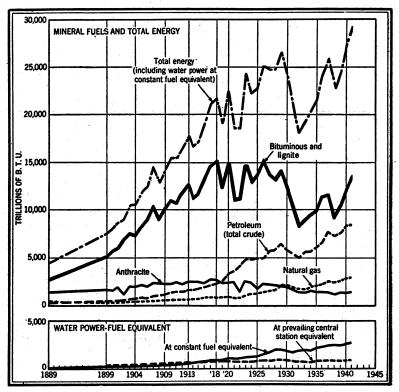


FIGURE 5.—Annual supply of energy from mineral fuels and water power in the United States, 1889-1961.

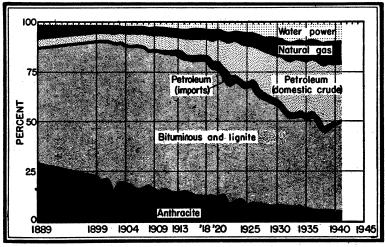


FIGURE 6.—Percentage of total B. t. u. equivalent contributed by the several sources of energy in the United States, counting water power at constant fuel equivalent, 1889-1941. If water power is counted at the prevailing fuel equivalent of central stations in each year, its proportion is 3.2 percent in 1899 and 3.4 percent in 1941, and the proportions of the other sources of energy are affected accordingly.

Table 7.—Annual supply of energy from mineral fuels and water power in the United States, 1933-41,1 in trillions of B. t. u.2

•		Coal		Petro (total inclu that re	crude, ding	Natu-	Total		(fuel e	power quiva- nt)		d total ergy
Year	Penn- syl- vania an- thra- cite	Bitu- minous coal and lignite	Total	Do- mestic pro- duc- tion	Im- ports	ts	petro- leum and natu- ral gas	Total mineral fuels	At constant fuel equivalent 3	At prevailing central station equivalent 4	Water power at constant fuel equivalent	Water power at pre- vailing central station equiva lent
1933 1934 1935 1936 1937 1938 1938 1940 1941	1, 348 1, 555 1, 419 1, 485 1, 410 1, 255 1, 400 1, 400 1, 478	8, 741 9, 415 9, 756 11, 504 11, 673 9, 132 10, 345 12, 072 13, 396	10, 089 10, 970 11, 175 12, 989 13, 083 10, 387 11, 745 13, 472 14, 874	5, 434 5, 448 5, 980 6, 598 7, 675 7, 286 7, 590 8, 119 8, 425	191 213 193 194 165 158 199 256 (*)	1, 672 1, 904 2, 060 2, 330 2, 588 2, 468 2, 663 2, 860 2, 978	7, 297 7, 565 8, 233 9, 122 10, 428 9, 912 10, 452 11, 235 611,403	17, 386 18, 535 19, 408 22, 111 23, 511 20, 299 22, 197 24, 707 • 26, 277	1, 931 1, 896 2, 207 2, 256 2, 446 2, 466 2, 423 2, 620 2, 804	711 698 806 812 871 866 838 880 934	19, 317 20, 431 21, 615 24, 367 25, 957 22, 765 24, 620 27, 327 6 29, 081	18, 09 19, 23 20, 21 22, 92 24, 38 21, 16 23, 03 25, 58 6 27, 21

1 Comparable data for earlier years in Minerals Yearbook, 1937, p. 807.

Subject to revision. • Excludes imports of petroleum. Figures not available for publication.

Table 8.—Index numbers for relative rate of growth of coal, oil, and water power in the United States, 1933-41 1

[The figures are expressed as a percentage of the 1918 rate]

		Coal			eleum crude)			4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Grand	l total
Year	Penn- syl- vania anthra- cite	Bitu- minous coal and lignite	Total	Domes- tic produc- tion	Im- ports		leum	Total min- eral fuels	Water power (at constant fuel equivalent)	With water power at constant fuel equivaent	With water power at pre- vailing central station equiva- lent
1933	50 58 53 55 52 47 52 52	57 62 64 76 77 60 68 80 88	56 61 63 73 73 58 66 75 83	252 255 280 309 359 341 335 380 394	90 94 85 86 73 70 88 113 (3)	205 246 266 301 334 318 344 369 384	229 241 262 291 332 316 333 358	82 88 92 105 112 97 106 118	231 227 264 270 292 295 289 313 335	87 94 99 112 119 104 • 113 125	83 89 93 106 112 98 106 118

Comparable data for earlier years in Minerals Yearbook, 1937, p. 809.

¹ Comparable data for earlier years in Minerals Yearbook, 1937, p. 807.

² The unit heat values employed are: Anthracite, 13,600 B. t. u. per pound; bituminous coal and lignite, 13,100 B. t. u. per pound; petroleum, 6,000,000 B. t. u. per pound; petroleum, 6,000,000 B. t. u. per pound; petroleum, 6,000,000 B. t. u. per harrel; natural gas, 1,075 B. t. u. per cubic foot. Water power includes installations owned by manufacturing plants and mines, as well as Government and privately owned public utilities. The fuel equivalent of water power is calculated from the kilowatt-hours of power produced wherever available, as is true of all public utility plants since 1919. Otherwise the fuel equivalent is calculated from the reported horsepower of installed water wheels, assuming a capacity factor of 20 percent for manufacturers and mines and of 40 percent for public utilities.

³ Assuming 4.02 pounds per kilowatt-hour, which is average of central-electric-station practice in 1913, the base period used.

⁴ Assuming the average central-station practice for each of the years for which data are available, which declined from about 7.05 pounds per kilowatt-hour in 1899 to 1.34 pounds in 1941.

⁸ Subject to revision.

Subject to revision.

Excludes imports of crude petroleum. Figures not available for publication.

Table 9.—Percentage of total B. t. u. equivalent contributed by the several mineral fuels and water power in the United States, 1933-41 \(^1\)

		Coal			oleum crude)	Natural	Total petro-	e E	Water	Grand total,
Year	Penn- sylvania anthra- cite	Bitu- minous coal and lignite	Total	Domes- tic pro- duction	Imports	gas (total produc- tion)	leum and natural gas	Total mineral fuels	power, fuel equiva- lent	includ- ing water power
	Water	power co	unted at o	onstant fu	el equival	ent of app	roximatel	y 4 lbs. pe	er kilowat	t-hour
1933 1934 1935 1936 1937 1938 1939 1940	7.0 7.6 6.6 6.1 5.4 5.5 5.7 5.1	45. 2 46. 1 45. 1 47. 2 45. 0 40. 1 42. 0 44. 2 46. 1	52. 2 53. 7 51. 7 53. 3 50. 4 45. 6 47. 7 49. 3 51. 2	28. 1 26. 7 27. 7 27. 1 29. 6 32. 0 30. 8 29. 7 29. 0	1.0 1.0 .9 .8 .6 .7 .8 .9	8.7 9.3 9.5 9.5 10.0 10.8 10.8 10.5	37. 8 37. 0 38. 1 37. 4 40. 2 43. 5 42. 4 41. 1 39. 2	90. 0 90. 7 89. 8 90. 7 90. 6 89. 1 90. 1 90. 4 90. 4	10.0 9.3 10.2 9.3 9.4 10.9 9.9 9.6 9.6	100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0
	4	Wate	r power c	ounted at	prevailing	central-s	tation equ	ivalent fo	r year	
1933	7. 4 8. 1 7. 0 6. 5 5. 8 5. 9 6. 1 5. 5 5. 5	48. 4 49. 0 48. 3 50. 2 47. 8 43. 2 44. 9 47. 2 49. 2	55. 8 57. 1 55. 3 56. 7 53. 6 49. 1 51. 0 52. 7 54. 7	30. 0 28. 3 29. 5 28. 8 31. 5 34. 4 32. 9 31. 7 31. 0	1.1 1.1 1.0 .8 .7 .7 .9 1.0	9. 2 9. 9 10. 2 10. 2 10. 6 11. 7 11. 6 11. 2 10. 9	40.3 39.3 40.7 39.8 42.8 46.8 45.4 43.9 41.9	96. 1 96. 4 96. 0 96. 5 96. 4 95. 9 96. 4 96. 6 96. 6	3.9 3.6 4.0 3.5 3.6 4.1 3.6 3.4 3.4	100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0

Comparable data for earlier years in Minerals Yearbook, 1937, p. 810.
 Subject to revision. Percentages based upon figures in table 7.
 Figures not available for publication.

FINAL BITUMINOUS COAL AND LIGNITE STATISTICS FOR 1939 AND 1940 SUMMARY BY STATES

Table 10.—Production, value, employment, days active, and output per man-shift at bituminous coal and lignite mines in the United States in 1939, by States

[Exclusive of mines producing less than 1,000 tons]

				ATTO OF MILEON P	toducing less to	1,000 ton							
		Dis	position of coal p	roduced (net t	ons)		Aver-	and w	orking p	roprieto	e earners s on ac- ut-down	Average	Tons of
State	Loaded for	Shipped by truck or	Used by mine employees,		Net changes	Section 1	age value per		Sur	rface		number of full days mines	coal pro- duced or active
	shipment by rail or water ¹	wagon (ex- cluding coal used by mine employees)	taken by loco- motive tenders at tipple, or other uses at mines?	for power and heat or made into beehive coke at mine ³	coal at mines	Total quantity	ton 4	Under- ground	In strip pits	All others	Total	were active	days per man-shift
Alabama Alaska Arizona, Georgia, Idaho,	11, 210, 512 143, 549	672, 803	119, 431 10	72, 707 3, 305	-28, 778 +1, 553	12, 046, 675 148, 417	\$2.30 2.82	17, 943 66	90	2, 851 22	20, 884 88	183 289	3. 16 5. 84
and Oregon Arkansas Colorado Illinois Indiana	22, 706 1, 093, 527 4, 079, 665 38, 964, 079	14, 710 48, 869 1, 533, 860 6, 770, 843	496 2, 130 82, 266 401, 482	376 7, 548 244, 879 723, 853	+733 -36 -17, 460 -77, 566	39, 021 1, 152, 038 5, 923, 210 46, 782, 691	2.96 3.17 2.47 1.64	122 3, 362 6, 782 27, 198	45 (8) 1, 761	35 597 (5) 6, 935	157 4,004 8,161 35,894	154 107 176 163	1. 61 2. 70 4. 12 7. 98
Kansas Kentucky	2, 411, 643 40, 520, 860	1, 920, 025 1, 478, 839 247, 792 1, 253, 787	475, 007 43, 383 8, 226 595, 201	153, 217 11, 649 13, 576 164, 342	+18, 105 +4, 832 -6, 546 +22, 378	16, 942, 772 2, 947, 557 2, 674, 691 42, 556, 568	1. 48 2. 44 1. 89 1. 74	5, 338 5, 220 1, 772 43, 881	2, 140 322 525 93	2, 288 709 561 6, 667	9, 766 6, 251 2, 858 50, 641	177 147 178 180	9. 79 3. 20 5, 25 4. 68
Maryland Michigan Missouri	1, 188, 237 122, 215 2, 266, 617	236, 534 295, 340 956, 453	9, 702 8, 160 21, 879	8, 480 26, 717 31, 049	-225 +4, 322 -2, 448	1, 442, 728 456, 754 3, 273, 550	2. 04 3. 77 1. 88	2, 057 1, 038 3, 135	672	294 116 686	2, 351 1, 154 4, 493	178 155 158	3. 44 2. 55 4. 60
Montana: Bituminous coal Lignite 6	2, 596, 600 5, 410	145, 979 41, 190	8, 060 · 1, 018	4, 37 0 95	+1,027	2, 756, 036 47, 713	1. 46 1. 59	1, 034 55	(8) (5)	(5) (5)	1, 383 85	168 155	11, 87 3, 61
Total Montana 6 New Mexico North Dakota (lignite) 6 Ohio	2, 602, 010 1, 057, 971 1, 522, 676 15, 380, 081	187, 169 113, 181 403, 763 4, 655, 388	9, 078 13, 259 136, 281 171, 927	4, 465 36, 828 9, 773 98, 141	+1,027 +8,821 -15,984	2, 803, 749 1, 230, 060 2, 072, 493 20, 289, 553	1. 46 2. 85 1. 18 1. 63	1, 089 1, 799 560 17, 657	(5) 305 1,050	(⁵) 400 349 2, 935	1, 468 2, 199 1, 214 21, 642	167 166 189 175	11. 42 3. 37 9. 04 5. 35
Oklahoma	1 040 090	123, 815 5, 604, 283 20, 623 311, 636	2, 219 2, 855, 031 190 55, 704	13, 400 2, 043, 430 10 34, 643	+165, 828 +3, 151	1, 187, 562 92, 584, 113 47, 782 5, 185, 481	2. 11 2. 03 1. 35 1. 95	1, 510 96, 732 1 6, 777	1,000 144 1,219 (5)	378 12, 395 (5)	21, 042 2, 032 110, 346 31 7, 925	173 176 219 178	4. 39 4. 77 7. 03 3. 68

Texas: Bituminous coal Lignite 6	9, 554 793, 647	6, 073 7, 914	6 4, 478	463 4,019	+163	1ປ, 259 810, 058	3. 23 1. 07	175 475	(8)	61 (⁸)	236 559	44 236	1. 55 6. 14
Total Texas ⁶	803, 201 2, 898, 469 12, 910, 240 1, 252, 241 104, 404, 593 5, 006, 753	13, 987 347, 403 221, 738 393, 518 1, 510, 183 197, 282	4, 484 22, 839 73, 986 51, 303 1, 827, 043 54, 712	4, 482 21, 087 317, 434 15, 911 494, 527 98, 922	+163 -4,894 +7,576 -22,531 +125,588 +15,620	826, 317 3, 284, 904 13, 530, 97 ± 1, 690, 442 108, 361, 934 5, 373, 289	1. 12 2. 14 1. 85 3. 11 1. 76 2. 00	650 1, 861 13, 814 1, 755 88, 410 2, 947	(b) (5) (5) 269 53	(5) (5) 1,811 (5) 14,554 757	795 2, 544 15, 625 2, 275 103, 233 3, 757	179 171 186 191 190 207	5. 80 7. 53 4. 66 3. 90 5. 51 6. 92
Total United States	353, 418, 984	29, 533, 824	7, 045, 429	³ 4, 654, 751	+202, 337	394, 855, 325	1.84	353, 476	8, 791	59, 521	421, 788	178	5. 25

¹ Includes coal loaded at mine directly into railroad cars or river barges, hauled by truck to railroad siding for shipment by rail, and hauled by truck to waterway for shipment by water.

Includes coal transported from mines to points of use by conveyor, chute, or aerial tramway.

Includes coal made into beehive coke at mines in following States: Colorado, 97,591 tons; Pennsylvania, 1,554,179 tons; Utah, 13,825 tons; Virginia, 292,152 tons; and West Virginia, 292,152 tons; and 292,152 tons; a

ginia, 131,728 tons—grand total, 2,089,475 tons. 4 Value of all coal produced, f. o. b. mine or cleaning plant, excluding selling cost. The value of cleaned coal, rather than that of raw coal, was used in cases of operations that cleaned coal.

Not shown separately to avoid disclosure of individual operations.

Estimate made from various sources on disposition of lignite has been included for comparative purposes; lignite schedule did not ask for this break-down.

Table 11.—Production, value, employment, days active, man-days, and output per man per day at bituminous coal and lignite mines in the United States in 1940, by States

[Exclusive of mines producing less than 1,000 tons]

		Dispositio	n of coal produce	ed (net tons)			Averag	e numt	er of em	ployees			
State	Loaded for	Shipped by truck or	Used by mine employees,	Used at mine for power		Average value per		Su	rface		Average number of days	Number of man-days	Average tons per
State	shipment by rail or water 1	wagon (ex- cluding coal used by mine employees)	taken by loco- motive tenders at tipple, or other uses at mine 2	and heat or made into beehive coke at mine ⁸	Total quantity	ton 4	Under- ground	In strip pits	All others	Total	mines were active	worked	man per day
Alabama	14, 252, 563 170, 174	854, 403	131, 864	85, 333 3, 670	15, 324, 163 173, 844	\$2. 33 3. 49	20, 068 70	94	3, 314 28	23, 476 98	219 322	5, 136, 191 31, 541	2. 98 5. 51
Arizona, Idaho, and Oregon.	1, 374, 688	16, 816 69, 083	67	19	16, 902	3. 32	37		9	46	210	9, 663	1.75
Arkansas	4 648 238	1, 635, 322	2, 309 98, 058	7, 531 3 207, 124	1, 453, 611 6, 588, 742	3. 36 2. 53	3, 194 6, 463	58 23	623 1, 350	3, 875 7, 836	136 188	527, 621 1, 473, 647	2. 76 4. 47
Georgia Illinois	35, 082 41, 805, 361	5, 531 7, 657, 553	1, 016 406, 845	678 740, 671	42, 307 50, 610, 430	2.38 1.69	96 27, 067	1,729	7, 362	130 36, 158	217 169	28, 248 6, 119, 358	1. 50 8. 27
Indiana	16, 023, 001	2, 272, 043	426, 429	147, 099	18, 868, 572	1. 53	5,085	1, 729	2,819	9,655	188	1, 815, 165	10. 39
Iowa Kansas	1, 424, 398	1, 755, 138	37, 736	13, 905	3, 231, 177	2.49	5,061	370	790	6, 221	158	985, 478	3. 28
Kentucky	3, 226, 456 46, 501, 483	333, 673 1, 868, 325	10, 449 618, 142	8, 374 3 152, 954	•3, 578, 952 49, 140, 904	1.88 1.85	1,601 47,442	474 100	739 7, 254	2, 814 54, 796	196 200	550, 869 10, 986, 433	6. 50 4. 47
Kentucky Maryland	1, 176, 578	311, 386	10, 810	4,659	1, 503, 433	2.11	2,054		285	2, 339	182	424, 936	3. 54
Michigan Missouri	103, 082 1, 760, 616	274, 058 1, 280, 577	8, 795 23, 989	24, 234 31, 559	410, 169 3, 096, 741	3. 88 2. 04	773 2, 920	618	97 684	870 4, 222	187 170	163, 091 718, 755	2. 51 4. 31
Montana:													
Bituminous coal	2, 638, 636	168, 279	8, 948	3, 073	2, 818, 936	1.45	935	48	344	1, 327	189	251, 412	11, 21
Lignite 5	5, 472	41,666	1,030	96	48, 264	6 1. 78	60	8	16	84	161	13, 499	3. 58
Total Montana	2, 644, 108	209, 945	9, 978	3, 169	2, 867, 200	1.45	995	56	360	1, 411	188	264, 911	10. 82
New Mexico	948,866	114, 407 508, 119	10, 952 116, 946	36, 390 26, 393	1, 110, 615 2, 218, 434	2.97 6 1.17	1, 562 654	371	396 352	1, 958 1, 377	168 182	328, 416 251, 216	3. 38 8. 83
Ohio	17, 515, 476	5, 085, 213	104, 210	66, 653	22, 771, 552	1.71	16, 893	1, 227	3,054	21, 174	193	4, 076, 578	5. 59
Oklahoma	1, 417, 960	209, 039	2,730	16, 252	1, 645, 981	2.44	1,471	183	394	2,048	176	359, 675	4. 58
New Mexico. North Dakota (lignite) b Ohio Oklahoma Pennsylvania South Dakota (lignite) b	37, 285	7, 610, 566 28, 521	3, 975, 536 264	³ 3, 689, 912 15	116, 602, 999 66, 085	2.04 6 1.33	102, 996	1, 685 39	13, 739 12	118, 420 63	212 168	25, 115, 380 10, 577	4. 64 6. 25
Tennessee	5, 512, 746	384, 823	67, 946	8 42, 941	6, 008, 456	2.00	7, 413	3	1, 150	8, 566	208	1, 779, 057	3. 38

Texas: Bituminous coal Lignite 5	8, 530 592, 720	5, 565 6, 784	42 3, 650	3, 264	14, 137 606, 418	3. 42 • 1. 05	67 476	16	14 54	81 546	99 170	8, 003 92, 615	1. 77 6. 55
Total Texas	601, 250 3, 112, 429 14, 582, 734 1, 219, 092 121, 411, 168 5, 481, 937	12, 349 416, 221 321, 963 373, 607 1, 744, 018 187, 777	3, 692 20, 963 91, 306 44, 001 2, 598, 170 39, 050	3, 264 3 25, 973 3 352, 072 13, 652 3 684, 265 99, 278	620, 555 3, 575, 586 15, 348, 075 1, 650, 352 126, 437, 621 5, 808, 042	1. 10 2. 20 1. 95 3. 16 1. 83 2. 06	543 1, 882 14, 793 1, 838 88, 684 3, 346	16 5 5 127 49	68 708 2, 222 482 15, 924 830	627 2, 590 17, 020 2, 325 104, 735 4, 225	160 182 199 188 215 173	100, 618 471, 606 3, 391, 223 436, 530 22, 560, 069 733, 036	6. 17 7. 58 4. 53 3. 78 5. 60 7. 92
Total United States	409, 880, 732	35, 540, 476	8, 862, 253	3 6, 488, 039	460, 771, 500	1. 91	365, 013	8, 983	65, 079	439, 075	202	88, 849, 888	5. 19

¹ Includes coal loaded at mine directly into railroad cars or river barges, hauled by truck to railroad siding for shipment by rail, and hauled by truck to waterway for shipment by water.

2 Includes coal transported from mines to points of use by conveyor, chute, or aerial tramway. 3 Includes coal made into beehive coke at mines in following States: Colorado, 95,735 tons; Kentucky, 1,273 tons; Pe., insylvania, 3,239,464 tons; Tennessee, 8,818 tons; Utah, 14,537

Includes coal made into beening ever at mines in holowing states. Colorado, styles of the state

Figures on lignite compiled by Bureau of Mines; see lignite tables, 1940, at end of this chapter. As lignite schedule did not require exactly same break-down on disposition of at tipple, or other uses at mine." Sum of these items equals sum of items "commercial sales by truck or wagon" and "used by mine employees, taken by locomotive tenders at tipple, or other uses at mine." Sum of these items equals sum of items "commercial sales by truck or wagon" and "other sales to local trade, or used by employees, or taken by locomotives at tipple," as published by Bureau of Mines.

**Lignite figures exclude selling cost.

PRODUCTION BY WEEKS AND MONTHS

Table 12.—Bituminous coal and lignite produced in the United States in 1939, with estimates by weeks

		1					
Week ended—	Production (net tons)	Number of working days	Average pro- duction per working day (net tons)	Week ended—	Production (net tons)	Number of working days	Average pro- duction per working day (net tons)
Jan. 7 14 21 28 Feb. 4 11 18 25 Mar. 4 11	7, 815, 000 8, 159, 000 8, 338, 000 8, 759, 000 8, 256, 000 8, 706, 000 8, 777, 000 8, 624, 000 8, 186, 000	5. 1 6 6 6 6 6 5. 9 6	1, 532, 000 1, 360, 000 1, 390, 000 1, 460, 000 1, 470, 000 1, 471, 000 1, 451, 000 1, 488, 000 1, 437, 000 1, 364, 000	July 15 22 29 Aug. 5 12 19 26 Sept. 2 9 16	7, 080, 000 7, 150, 000 7, 437, 000 7, 407, 000 7, 565, 000 7, 565, 000 7, 861, 000 8, 247, 000 7, 816, 000	6 6 6 6 6 6	1, 180, 000 1, 192, 000 1, 240, 000 1, 235, 000 1, 261, 000 1, 259, 000 1, 310, 000 1, 374, 000 1, 563, 300
Apr. 18 25 8 15 22 29 May 6 13	7, 832, 000 7, 574, 000 7, 158, 000 1, 702, 000 1, 974, 000 2, 696, 000 3, 437, 000 2, 820, 000 1, 091, 000	0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1, 305, 000 1, 262, 000 1, 351, 000 284, 000 329, 000 449, 000 573, 000 470, 000 182, 000	23 30 0ct, 7 14 21 28 Nov. 4 11 18	9, 100, 000 9, 384, 000 10, 254, 000 10, 507, 000 10, 761, 000 10, 731, 000 10, 632, 000 10, 321, 000 10, 196, 000	6 6 6 6 6 6 6	1, 517, 000 1, 564, 000 1, 709, 000 1, 751, 000 1, 789, 000 1, 788, 000 1, 772, 000 1, 843, 000 1, 699, 000
June 3 10 17 24 July 1 8	5, 114, 000 6, 182, 000 5, 834, 000 6, 349, 000 6, 406, 000 6, 418, 000 6, 711, 000 5, 929, 000	6 5.4 6 6 6 5	852, 000 1, 030, 000 1, 080, 000 1, 058, 000 1, 068, 000 1, 070, 000 1, 119, 000 1, 186, 000	Dec. 25 9 16 23 30	9, 322, 000 9, 162, 000 9, 257, 000 9, 255, 000 9, 318, 000 8, 396, 000	5.1 5.9 6 6 6 5 305.3	1, 828, 000 1, 553, 000 1, 543, 000 1, 504, 000 1, 553, 000 1, 679, 000

TABLE 13.—Bituminous coal and lignite produced in the United States in 1940, with estimates by weeks

						and the second second	
Week ended—	Production (net tons)	Number of working days	Average pro- duction per working day (net tons)	Week ended—	Production (net tons)	Number of working days	Average pro- duction per working day (net tons)
Jan. 6 13 20 27 Feb. 3	9, 077, 000 10, 232, 000 10, 120, 000 10, 531, 000 10, 371, 000 10, 090, 000	5. 1 6 6 6 6	1, 780, 000 1, 705, 000 1, 687, 000 1, 755, 000 1, 729, 000 1, 682, 000	July 20 27 Aug. 3 10 17 24	7, 906, 000 8, 229, 000 8, 355, 000 8, 685, 000 9, 062, 000 9, 029, 000	6 6 6 6	1, 318, 000 1, 372, 000 1, 393, 000 1, 448, 000 1, 510, 000 1, 505, 000
17 24 Mar. 2 9 16 23	9, 242, 000 9, 259, 000 8, 943, 000 8, 309, 000 8, 581, 000 8, 146, 000	6 5.9 6 6 6	1, 540, 000 1, 569, 000 1, 491, 000 1, 385, 000 1, 430, 000 1, 358, 000	Sept. 7 14 21 28 Oct. 5	9, 222, 000 8, 084, 000 9, 291, 000 9, 473, 000 10, 373, 000 8, 911, 000	6 5 6 6	1, 537, 000 1, 537, 000 1, 617, 000 1, 549, 000 1, 579, 000 1, 729, 000 1, 485, 000
Apr. 6 13 20 27	8, 560, 000 7, 067, 000 7, 784, 000 7, 409, 000 7, 977, 000	6 5.1 6 6 6	1, 427, 000 1, 386, 000 1, 297, 000 1, 235, 000 1, 330, 000	12 19 26 Nov. 2 9	8, 491, 000 8, 432, 000 8, 962, 000 8, 817, 000 9, 127, 000	6 6 6 6 5. 5	1, 415, 000 1, 405, 000 1, 494, 000 1, 470, 000 1, 659, 000
May 4 11 18 25 June 1 8	8, 124, 000 7, 945, 000 7, 665, 000 7, 966, 000 7, 575, 000 8, 096, 000	6 6 6 5.4	1, 354, 000 1, 324, 000 1, 278, 000 1, 328, 000 1, 403, 000 1, 349, 000	16 23 30 Dec. 7 14 21	9, 907, 000 9, 597, 000 9, 876, 000 10, 033, 000 10, 047, 000 10, 105, 000	5. 5 5. 2 5. 8 6 6	1, 801, 000 1, 846, 000 1, 703, 000 1, 672, 000 1, 675, 000 1, 684, 000
July 6 13	7, 888, 000 8, 025, 000 8, 199, 000 7, 277, 000 8, 381, 000	6 6 5 6	1, 315, 000 1, 338, 000 1, 367, 000 1, 455, 000 1, 397, 000	Jan. 4, 1941	8, 094, 000 1 3, 825, 000 460, 772, 000	306. 5	1, 619, 000 1, 619, 000 2 1, 791, 000 1, 503, 000

Figures represent output and number of working days in that part of week included in calendar year shown. Total production for week of January 4, 1941, was 8,956,000 tons.
 Average daily production for entire week and not for working days in calendar year shown.

TABLE 14.—Coal produced in the United States in 1939, by States, with estimates by months, in thousands of net tons

[Totals for year based upon final complete returns to Bituminous Coal Division from all operators known to have produced more than 1,000 tons in year. Apportionment of known yearly total among 12 months based upon best information available—in some States upon direct tonnage reports by operators to State mine department but in most cases upon current records of railway carloadings and waterway shipments]

State	January	February	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
Alabama	1, 202	1, 150	1, 273	134	370	970	992	1, 058	1,072	1, 260	1, 262	1, 304	12, 047
Alaska	12	11	11	12	13	15	. 9	12	15	15	12	11	148
Arkansas	128 672	132 671	65	8	7	8	22	149	178	198	125	134	1, 152
ColoradoIllinois	4, 939	4, 903	551, 4, 490	418 3, 827	197 2, 512	218	244 2, 423	400	518	694	682	658	5, 923
Indiana	1, 756	1, 697	1, 715	1, 535	2, 512 875	1, 943 811	2, 423 895	3, 220 1, 112	3, 882 1, 364	5, 100 1, 732	4,722	4, 822	46, 783
Iowa.	323	316	. 1, 713	259	114	116	151	208	244	309	1, 717 285	1, 734 302	16, 943 2, 948
Kansas	262	300	213	183	90	80	135	220	264	321	303	302	2, 948 2, 675
Kentucky: Eastern	2, 972	2,763	2, 868	252	1. 490	3, 034	3, 088	3, 556	3, 723	4, 161	3, 547	2,812	34, 266
Western	826	860	2, 721	818	524	335	409	600	724	827	799	848	8, 291
Maryland	142	126	170	2	83	109	92	113	128	164	159	155	1, 443
Michigan	53	48	59	4	12	19	9	34	48	57	59	55	457
Missouri	380	364	314	280	170	122	167	194	250	352	332	348	3, 273
Montana (bituminous coal and lignite)	272	265	232	171	162	180	162	210	237	335	301	277	2, 804
New Mexico	185	128	117	114	80	.58	84	91	88	117	114	109	1, 230
North Dakota (lignite)	238	286	175	86	60	67	66	79	185	358	256	216	2,072
Ohio.	1, 984	1,809	2, 061	241	850	1, 537	1, 540	1, 812	1, 923	2, 412	2, 197	1, 923	20, 289
Oklahoma	133	129	75	54	29	26	34	116	125	179	155	133	1, 188
Pennsylvania (bituminous)	8, 082	7,706	8, 731	152	3, 752	7,095	7, 147	8, 231	9, 217	11, 502	11, 260	9, 709	92, 584
South Dakota (lignite)	5 483	491	477	1 147	2	2	400	1	5	9	7	7	48
Texas (bituminous coal and lignite)	66	61	66	62	253 66	380 66	422 74	475 80	489 78	569	523	476	5, 185
Utah	344	376	264	197	96	133	132	213	366	71 445	70 387	66	826
Virginia	1, 189	1,077	1, 125	185	675	1, 148	1, 133	1, 338	1, 424	1,642	1, 415	332 1, 180	3, 285 13, 531
Washington	155	156	160	134	90	1,140	103	1,000	1,424	1,042	172	1, 180	1, 690
West Virginia.	9.017	8, 350	9, 252	237	5, 360	9, 379	9, 587	11.077	11. 362	12,976	12,058	9, 707	108, 362
Wyoming.	485	470	445	429	225	318	349	443	553	613	574	469	5, 373
Other States 1	4	4	5	-3	3	2	i	1	4	4	4	4	39
Total bituminous coal and lignite	36, 259	34, 649	35, 959	9, 945	18, 160	28, 279	29, 471	35, 167	38, 630	46, 596	43, 497	38, 243	394, 855
Pennsylvania anthracite	5, 019	4, 169	3, 652	5, 367	5, 141	3, 577	2, 951	3, 883	4,840	4, 985	3, 989	3, 914	51, 487
Grand total	41, 278	38, 818	39, 611	15, 312	23, 301	31, 856	32, 422	39, 050	43, 470	51, 581	47, 486	42, 157	446, 342

¹ Arizona, Georgia, Idaho, and Oregon.
2 Pennsylvania anthracite figures from Bureau of Mines. Includes Sullivan County, washery and dredge coal, local sales, colliery fuel, and coal shipped by truck from authorized operations.

Table 15.—Coal produced in the United States in 1940, by States, with estimates by months, in thousands of net tons

[Totals for year based upon final complete returns to Bituminous Coal Division from all operators known to have produced more than 1,000 tons in year. Apportionment of known yearly total among 12 months based upon best information available—in some States upon direct tonnage reports by operators to State mine department but in most cases upon current records of railway carloadings and waterway shipments]

. State	January	Febru- ary	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
AlabamaAlaska	1, 345 11	1, 332 10	1, 246 11	1, 250 12	1, 317 14	1, 206 16	1, 199 16	1, 272 18	1, 173 18	1, 345 17	1, 259 16	1, 380	15, 324 174
ArkansasColorado	280 940	161 681	60 473	18 419	27 344	23 252	67 313	168 458	177 566	135 561	168 776	170 806	1, 454 6, 589
GeorgiaIllinois	6, 115	5, 205	4, 448	3, 244	3, 075	2, 906	3, 146	3, 943	4, 085	4, 169	5 4, 741	5, 533	50, 610
Indiana Iowa Kansas	2, 142 422 469	1, 925 328 407	1, 574 256 252	1, 316 203 203	1, 220 200 203	1, 114 189 184	1, 196 193 217	1, 527 230 300	1, 567 272 286	1, 463 261 283	1, 742 324 345	2, 083 353 430	18, 869 3, 231 3, 579
Kentucky: Eastern Western Western	3, 909 1, 339	3, 552 984	2, 955 705	3, 133 568	3, 513 512	3, 202 440	3, 503 543	3, 666 692	3, 335 722	3, 270 644	3, 199 772	3, 109 874	40, 346 8, 795
Maryland Michigan Missouri	169 62 483	161 56 340	139 53 298	116 31 179	104 9 148	93 6 143	100	116 31 187	107 35	122 40 247	129 39 307	147 39	1, 503 410
Montana (bituminous coal and lignite) New Mexico	287 128	244 105	191 77	206 91	202 84	177 177 82	157 191 84	217 75	261 210 81	287 287 90	307 335 98	347 320 116	3, 097 2, 867 1, 111
North Dakota (lignite)	313 2, 156 248	208 1, 958	174 1, 783	116 1, 618	76 1, 835	57 1, 880	76 2, 002	96 2,048	139 1, 914	282 1, 700	391 1, 876	290 2,002	2, 218 22, 772
OklahomaPennsylvania (bituminous)South Dakota (lignite)	10, 223 11	9, 110 7	79 8, 864 5	45 8, 245 2	8, 907 1	58 8, 728	94 9, 758	151 10, 188	160 10, 270 5	146 11, 135 10	200 10, 575 13	225 10, 600 9	1, 646 116, 603 66
Tennessee	593 64	566 72	464 50	532 63	527 64	442 61	470 49	497 44	477 39	460 39	465 38	515 38	6, 008 621
Utah Virginia Washington	432 1, 474 178	274 1, 323 131	223 1, 187 117	195 1, 173 116	160 1, 330 102	157 1, 140 111	205 1, 299	337 1, 345	373 1, 294	345 1,304	426 1, 227	1, 252	3, 576 15, 348
West Virginia	11, 278 632	10, 102 482	9, 731 411	9, 824 397	11, 071 363	9, 971 299	115 11, 086 400	127 11, 482 438	147 11,066 511	143 10, 289 570	181 10, 383 649	182 10, 155 656	1, 650 126, 438 5, 808
Other States 1	2	1	1	1	(2)	(2)	(3)	(2)	2	3	3	4	17
Total bituminous coal and lignite Pennsylvania anthracite 3	45, 709 5, 783	39, 921 3, 648	35, 831 3, 881	33, 320 3, 853	35, 460 4, 070	32, 940 4, 492	36, 491 4, 534	39, 655 3, 883	39, 295 4, 172	39, 364 4, 355	40, 682 3, 980	42, 104 4, 834	460, 772 51, 485
Grand total	51, 492	43, 569	39, 712	37, 173	3 9, 530	37, 432	41, 025	43, 538	43, 467	43, 719	44, 662	46, 938	512, 257

¹ Arizona, Idaho, and Oregon.
² Less than 500 tons.
³ Pennsylvania anthracite figures from Bureau of Mines. Includes Sullivan County, washery and dredge coal, local sales, colliery fuel, and coal shipped by truck from authorized operations.

Table 16.—Number and production of bituminous coal and lignite mines in the United States in 1939, classified by size of output in each State [Exclusive of mines producing less than 1,000 tons]

	Class 500,00	s 1A, over 00 net tons		1B, 200,000- 00 net tons		2, 100,000- 0 net tons	Class 100,00	3, 50,000- 0 net tons	Class 50,000	4, 10,000- net tons		5, less than 0 net tons	Total,	all classes
State	Num- ber of mines	Production (net tons)	Num- ber of mines	Production (net tons)	Num- ber of mines	Production (net tons)	Num- ber of mines	Production (net tons)	Num- ber of mines	Production (net tons)	Num- ber of mines	Production (net tons)	Num- ber of mines	Production (net tons)
AlabamaAlaska	6	4, 096, 606	10	3, 402, 472	16	2, 218, 121	20 1 3	1, 450, 844 1 148, 417	23	442, 743	156	435, 889	231 3	12, 046, 675 148, 417
Arizona, Georgia, Idaho, and Oregon		27, 999, 401		718, 422 9, 810, 830 4, 506, 052	1 18 19 14	104, 739 2, 457, 914 2, 810, 048 2, 159, 415	2 13 34 18	116, 979 995, 103 2, 481, 080 1, 354, 974	1 34 52 115 61	24, 280 782, 718 1, 333, 148 2, 584, 226 1, 375, 418	5 41 126 312 150	14, 741 147, 602 418, 623 1, 097, 106 605, 589	6 78 211 546 266	39, 021 1, 152, 038 5, 923, 210 46, 782, 691 16, 942, 772
Iowa Kansas Kentucky Maryland Michigan Missouri	10	9, 670, 238	2 6 50	501, 652 1, 551, 740 15, 729, 915	1 3 70 3 1	131, 943 386, 046 9, 977, 836 491, 851 164, 130	11 3 64 3 1	761, 148 251, 186 4, 656, 509 215, 049 87, 110	44 11 71 19 9	874, 297 201, 697 1, 873, 194 552, 113 205, 514	213 70 213 58	678, 517 284, 022 648, 876 183, 715	271 93 478 83 11	16, 942, 772 2, 947, 557 2, 674, 691 42, 556, 568 1, 442, 728 456, 754
Montana: Bituminous coal	1	1, 160, 734	3	1, 501, 222	======================================	390, 141 252, 228	2	147, 930	39	799, 119	132 50	435, 138 126, 402	180 59	2, 756, 036
Lignite Total Montana New Mexico		1 100 724	3 2	1, 137, 102 475, 628	2 3	252, 228 380, 027	2	150, 772	4 6	91, 170 119, 107	16 66 29	36, 113 162, 515 104, 526	76 42	2, 803, 749 1, 230, 060
Now Mexico North Dakota (lignite) Ohio Oklahoma Pennsylvania	9	7, 006, 827 45, 617, 268	15 1 70	1, 090, 851 5, 046, 507 249, 434 22, 626, 917	2 20 1 77	345, 574 2, 856, 280 104, 150 10, 453, 650	2 23 2 73	167, 461 1, 627, 280 155, 381 5, 294, 085	10 104 22 263	204, 182 2, 243, 242 466, 261 6, 082, 080	84 485 62 717	264, 425 1, 509, 417 212, 336 2, 510, 113	102 656 88 1, 258	2, 072, 493 20, 289, 553 1, 187, 562 92, 584, 113
Tennessee			8	2, 194, 642	11	1, 600, 505	10	742, 687	18	42, 230 424, 743	3 76	5, 552 222, 904	123	47, 782 5, 185, 481
Texas: Bituminous coal Lignite	<u>i</u>	685, 666							6	121, 039	. 4 1	16, 259 3, 353	4 8	16, 259 810, 058
Total Texas	62	685, 666 1, 025, 542 4, 965, 069 46, 310, 221	15 2 123	1, 305, 471 4, 594, 553 461, 813 36, 371, 451	2 17 4 108	204, 780 2, 481, 412 637, 308 15, 976, 449	5 13 2 80	422, 879 977, 047 180, 554 6, 190, 743	6 10 14 13 104	121, 039 223, 780 372, 427 298, 209 2, 759, 532	5 28 46 31 244	19, 612 102, 452 140, 466 112, 558 753, 538 100, 771	12 51 112 52 721 66	826, 317 3, 284, 904 13, 530, 974 1, 690, 442 108, 361, 934 5, 373, 289
Wyoming		557, 378 156, 036, 274	372	3, 240, 728 116, 517, 402	404	1, 116, 766 57. 701, 313	1 387	50, 398 1 28,625, 616	1, 065	307, 248 24, 803, 717	35 3, 387			394, 855, 325

¹ Figures for Alaska include output from 2 mines in Class 3 and 1 smaller mine that cannot be shown separately.

TABLE 17.—Number and production of bituminous coal and lignite mines in the United States in 1940, classified by size of output in each State [Exclusive of mines producing less than 1,000 tons]

	Class 1A, over 500,000 net tons Class 1B, 200,000-500,000 net tons		1B, 200,000- 00 net tons	Class 2, 100,000- 200,000 net tons Class 3, 50,000- 100,000 net tons			Class 4, 10,000- 50,000 net tons		Class 5, less than 10,000 net tons		Total, all classes			
State	Num- ber of mines	Production (net tons)	Num- ber of mines	Production (net tons)	Num- ber of mines	Production (net tons)	Num- ber of mines	Production (net tons)	Num- ber of mines	Production (net tons)	Num- ber of mines	Production (net tons)	Num- ber of mines	Production (net tons)
Alabama		6, 658, 988	11	3, 568, 010	(¹)	2, 811, 977 (1)	17 1 3	1, 278, 541 1 173, 844	25	495, 104	186 (¹)	• 511, 543 (1) 16, 902	268 3 7	15, 324, 163 173, 844 16, 902
Arkansas	1	668, 324	5		15	2, 134, 726	7 14	475, 769 1, 038, 346	32 50 1	835, 980 1, 207, 684 36, 847	42 131 2	141, 862 419, 843 5, 460	81 216 3	1, 453, 611 6, 588, 742 42, 307
Illinois Indiana	39 13	31, 988, 644 9, 202, 528	26 12 2	9, 499, 254 4, 102, 055 474, 529	22 13 3	3, 131, 163 2, 175, 182 397, 588	25 19 7	1, 724, 170 1, 335, 192 510, 707	130 61 63	3, 126, 009 1, 446, 541 1, 161, 138	306 159 201	1, 141, 190 607, 074 687, 215	548 277 276	50 610 420
Kansas Kentucky Maryland Michigan	17	695, 074 15, 107, 343	7 54 1	1, 819, 721 16, 536, 510 204, 575	74 2	260, 976 10, 539, 143 302, 571	3 51 4	242, 222 3, 729, 091 248, 808	18 85 22	289, 611 2, 240, 998 536, 201	62 350 65	271, 348 987, 819 211, 278	93 631 94	18, 868, 572 3, 231, 177 3, 578, 952 49, 140, 904 1, 503, 433
Missouri Montana (bituminous coal) Montana, North Dakota, South Dakota, and Texas	i		3	1, 096, 156 1, 174, 791	1 4 2	160, 122 496, 705 279, 621	1 2	83, 283 130, 705	8 38 4	166, 764 851, 185 107, 090	152 49	521, 990 132, 502	10 199 59	3, 096, 741 2, 818, 936
(lignite) New Mexico				1, 681, 021 482, 290 4, 586, 583 311, 174	2 1 27 3	331, 292 135, 755 3, 676, 542 353, 290	3 4 23 3	234, 576 253, 322 1, 361, 938	15 5 108	298, 367 119, 507 2, 367, 419	183 28 441 72	393, 945 119, 741 1, 403, 771	208 40 624	2, 939, 201 1, 110, 615 22, 771, 552
Oklahoma Pennsylvania Tennessee Texas (bituminous coal)	69	66, 862, 841	66 10	21, 418, 646 2, 931, 186	82 10	12, 159, 558 1, 484, 965	91 12	179, 537 6, 629, 269 883, 514	25 299 21	558, 804 6, 724, 482 486, 998	807 71 3	243, 176 2, 808, 203 221, 793 14, 137	104 1,414 124 3	1, 645, 981 116, 602, 999 6, 008, 456 14, 137
Texas (bituminous coal) Utah Virginia Washington		576, 187 6, 634, 730	17 2	1, 646, 238 5, 084, 346 483, 477	5 17 4	668, 498 2, 455, 383 601, 058	3 8 2	253, 279 619, 677 138, 278	14 16 15	331, 601 391, 516 341, 579	34 61 25	99, 783 162, 423 85, 960	61 128 48	3, 575, 586 15, 348, 075 1, 650, 352
West Virginia Wyoming	74 2	60, 687, 363 1, 116, 920	134 10	40, 922, 871 3, 424, 866	117 6		67 2	5, 230, 671 140, 916	93	2, 224, 836 263, 335	258 33	859, 200 120, 370	743 62	126, 437, 621 5, 808, 042
Total	247	210, 699, 173	389	122, 568, 118	1 432	1 61,810, 430	1 371	1 26, 895, 655	1, 157	26, 609, 596	1 3, 728	1 12,188, 528	6, 324	460, 771, 500

¹ In Alaska, 1 mine that should be included in Class 2 and 1 mine that should be included in Class 5 are included in Class 3 to avoid disclosure of individual operations.

AVERAGE VALUE

Table 18.—Trend of average value in the United States of bituminous coal and lignite, per net ton, f. o. b. mines, $1929-40^{\,1}$

	Year	Bituminous coal ³ (subject to regulation under	Lignite 3	Total
		1937 Act)		
1930 1931 1932 1933 1934		\$1, 782 1, 702 1, 542 1, 313 1, 337 1, 751 1, 775 1, 761	\$1. 548 1. 556 1. 410 1. 313 1. 188 1. 387 1. 120 1. 061	\$1. 781 1. 701 1. 541 1. 313 1. 336 1. 749 1. 767
1936		 1.831	4 1. 061	1.826
		1.946	4 1. 080	1. 939
1939 5		 1.955	4 1. 071	1.947
1940		 1. 850 1. 913	1. 158 4 1. 156	1. 845 1. 908

I mandes an cost produced other than remissive and the ignite and the ignite included in the second column.

North Dakots, South Dakots, and the lignite counties of Montana and Texas.

North Dakots, South Dakots, and the lignite counties of Montana and Texas.

Figures of Bureau of Mines, excluding selling cost as before. Data on sales realization were not collected from lignite mines by the Bituminous Coal Division.

Producers were asked to exclude selling cost in reporting value, but a number of them included such

LABOR STATISTICS

Table 19.—Number of bituminous coal and lignite mines in the United States in 1940, having established working shift of certain length, and number of men employed therein

State	7 h	ours	8 hc	ours	9 h	ours	All of	hers 1	Total	
5666	Mines	Men	Mines	Men	Mines	Men	Mines	Men	Mines	Men
Alabama	255	23, 210		157			5	109	268	
Arizona, Idaho, and Oregon	3	16	3	98 30					3 7	98 46
Arkansas	74		6	1, 310			1	25	81	3, 875
Colorado	170	7, 068	27 3	417 130			19	351	216 3	
Illinois	415		75	1, 135		3	57	3, 047	548	36, 158
Indiana	151	6, 276	48	388	1	3	77	2,988	277	9, 655
Iowa Kansas	211 45	5, 462 1, 753	50 35		3	15 7	12 12	142 589	276 93	6, 221 2, 814
Kentucky: Eastern	316	42, 186	96	2,096			14	1,093	427	45, 379
Western	140	8, 737	51	476			13	204	204	9, 417
Total Kentucky	456	50, 923	147	2, 572	1	4	27	1, 297	631	54, 796
Maryland Michigan	87 10	2, 208 870	7	131					94 10	2, 339 870
Missouri	99	2,611	77	1, 112	6	55	17	444	199	4, 222
Montana: Bituminous coal	40	1, 176	18	147			=	4	59	1, 327
Lignite 2	3	29	10	26			9	29	22	84
Total Montana	43	1, 205	28	173			10	33	81	1, 411
North Dakota (lignite)	30 11	1, 862 286	92	70 602		102	3 57	26 387	40 164	1, 958 1, 377
Ohio	453		128	1, 193	3		40	677	624	21, 174
Oklahoma	75	1, 631	20	213	3		6	185	104	2,048
Pennsylvania South Dakota (lignite) ²	1, 154	109, 765	145 8	1, 651 48	2	16	113	6, 988		118, 420 63
Tennessee	100	7, 541	20	707			1 4	15 318	14 124	8, 566
Texas: Bituminous coal				55				26	3	81
Lignite 1			4	60	(3)	(3)	14	* 486	8	546
Total Texas			6	115	(3)	(3)	8 5		11	627
Utah Virginia	37 102		20 20	163 439		12	4 5	14 35	61 128	2, 590 17, 020
Washington	48	2, 325		200		12		35	48	2, 325
West Virginia	660	103, 082	56	448	3	29	24	1, 176	743	104, 735
Wyoming	45	4, 140	13	41	1	5	3	39	62	4, 225
Total United States		404, 937	1, 053	14, 410	3 30	* 331	3 507	³ 19, 397	6, 324	439, 075

Includes mines where the day was more than 9 or less than 7 hours or was irregular.
 Lignite figures compiled by Bureau of Mines.
 Mines and men working "9 hours" included under "All others" for Texas lignite.

¹ For explanation see Minerals Yearbook, Review of 1940, pp. 778-779.
³ Includes all coal produced other than Pennsylvania anthracite and the lignite included in the second

Table 20.—Strikes, suspensions, and lock-outs in bituminous coal and lignite mines in the United States, 1939-40, by States

			1939				1940			
State	Number of men	Number of men on	Man-days idle on account of	Average number of days lost on account of strike		Number of men	Number of men on	Man-days idle on account of	Average number of days lost on account of strike	
	employed 1		strike	Per man employed	Per man on strike	employed	strike	strike	Per man employed	Per man on strike
Alabama	20, 884 88	14, 229	647, 608	31	46	23, 476 98	1, 630	7, 434	(2)	5
Arizona, Georgia, Idaho, and Oregon	157 4,004 8,161 35,894 9,766 6,251 2,858	670 2, 617 16, 209 3, 293 4, 024 1, 250	5, 710 30, 429 391, 902 29, 982 140, 612 24, 553	1 4 11 3 22 9	9 12 24 9 35 20	176 3, 875 7, 836 36, 158 9, 655 6, 221 2, 814	89 65 3, 373 955 400	371 65 25, 381 1, 819 3, 796	(2) (2) (2) 1	4 1 8 2 9
Kentucky Maryland Michigan Missouri	50, 641 2, 351 1, 154 4, 493	38, 169 2, 000 392 1, 957	1, 561, 624 74, 993 1, 832 63, 962	31 32 2 14	41 37 5 33	54, 796 2, 339 870 4, 222	5, 167 306 283	45, 991 918 14, 772	1 1 3	9 3 52
Montana: Bituminous coal Lignite	1, 383 85	781	10, 319	7	13	1, 327 84				
Total Montana	1, 468 2, 199 1, 214	781 1, 300	10, 319 9, 303	7 4	13 7	1, 411 1, 958 1, 377				
Ohio Oklahoma Pennsylvania South Dakota (lignito)	21, 642 2, 032 110, 346 31	16, 159 635 78, 859	577, 476 9, 343 2, 840, 132	27 5 26	36 15 36	21, 174 2, 048 118, 420 63	823 70 15, 231	8, 786 927 119, 170	(2) (2) 1	11 13 8
Tennessee	7, 925	6, 410	248, 046	31	39	8, 566	1, 216	27, 994	3	23
Texas: Bituminous coal	236 559					81 546				
Total Toxas	795 2, 544 15, 625 2, 275	1, 240 11, 621 875	13, 521 459, 911 12, 445	5 29 5	11 40 14	627 2, 590 17, 020 2, 325	86 493	747 1, 533	(2)	9
West Virginia. Wyoming	103, 233 3, 757	88, 713 3, 394	3, 446, 965 29, 412	33 8	39 9	104, 735 4, 225	5, 140 23	21, 211 23	(2) (2)	4 1
Total United States	421, 788	294, 797	10, 630, 080	25	36	439, 075	35, 350	280, 938	1	8

¹ Average number of wage earners and working proprietors on active days (excluding shut-down periods).

² One-half day or less.

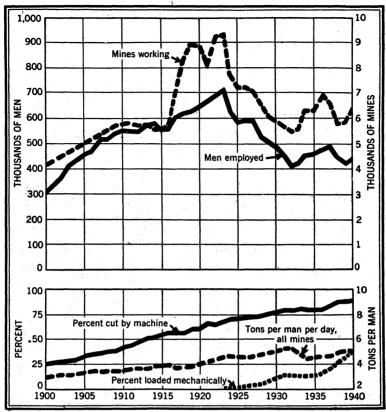


FIGURE 7.—Trends of employment, mechanization, and output per man at bituminous coal and lignite mines in the United States, 1900-1940.

SHIPMENTS BY INDIVIDUAL RAILROADS AND WATERWAYS

Table 21.—Bituminous coal and lignite loaded for shipment by railroads and waterways in the United States, 1939-40, as reported by mine operators, in net tons 1

		195	39	1940		
Route	State	By State	Total for route	By State	Total for route	
RAILROADS						
Alabama Central	Alabama do. Alaska Indiana (Illinois Missouri Arkans is Kentucky Colorado (Illinois Kansas Missouri	2, 470 189, 790 143, 549 2, 390, 705 760, 639 39, 571 471, 456 164, 127 596, 479 348, 427 31, 939	471, 45	233, 264 170, 174 2, 618, 889 9 940, 844 30, 543 29, 967 463, 128 214, 342 618, 654 298, 497 18, 869	233, 264 170, 174 2, 618, 889 971, 387 29, 967 463, 128 1, 846, 520	
Baltimore & Ohio	New Mexico	837, 359 88, 920 545, 282 130, 958 2, 062, 708 8, 546, 206 12, 280, 290	23, 654, 36	696, 158 93, 322 497, 031 93, 311 2, 325, 884 9, 869, 598 14, 073, 361	26, 952, 507	

See footnotes at end of table.

Table 21.—Bituminous coal and lignite loaded for shipment by railroads and waterways in the United States, 1939-40, as reported by mine operators, in net tons—Continued

tons—Continued		1.	<u> </u>		
		19	39	194	0
Route	Ototo				
House	State	l	Total for		Total for
		By State	route	By State	route
RAILBOADS—continued	144				
MATEROADE—Continued				14544	110
Bessemer & Lake Erie	Pennsylvania	2, 868, 543	2, 868, 543	3, 747, 134	3, 747, 134
Bevier & Southern	Missouri	400, 220	2, 868, 543 400, 220	3, 747, 134 379, 574	379, 574 242
Birmingham Southern Buffalo Creek & Gauley	Alabama West Virginia	4, 616 761, 500	4. 616	1 242	242
Cambria & Indiana	Pennsylvania	3, 904, 830	761, 500 3, 904, 830	722, 448 4, 125, 884	722, 448
Cambria & Indiana Campbell's Creek Carbon County Caseyville	West Virginia	920, 157	920, 157	1, 105, 101	4, 125, 884 1, 105, 101
Carbon County	Utah	345, 2671	345, 267	390, 958	390, 958
CaseAAiile	Illinois	164, 004	164, 004	40, 579	40, 579
Central of Georgia	Alabama Georgia		735, 196	782,666	817, 748
	Kentucky	22, 706 6, 855, 203	{	35, 082 7, 773, 799	{
Chesapeake & Ohio	{Ohio	6, 855, 203 448, 340	42, 165, 721	476, 927	48, 190, 979
Chamrich & House	West Virginia	1 34, 862, 1781]	(39, 940, 253)	J
Cheswick & Harmar	Pennsylvania	719, 178 1, 247, 615 1, 547, 643	719, 178	1, 018, 327	1, 018, 327
Chicago & Eastern Illinois	Indiana	1, 547, 643	2, 795, 258	1,317,815	2, 796, 692
Chicago & Illinois Midland	Illinois	4, 247, 887	4, 247, 887	1, 478, 877 5, 160, 343	5, 160, 343
Chicago & North Western	Iowa.	1 2, 220, 2021	1	2, 468, 572	1
Chicago & North Western	Wyoming	3, 599 18, 740	2, 242, 541	₹	2, 489, 822
Chicago, Attica & Southern	Wyoming Indiana	18, 740	294	21, 250 10, 750	J 10 750
	{Colorade	309, 817	1 402	373, 023	10,750
Ohioon Davidon to Only	Illinois	6, 571, 994 133, 598		6, 643, 929	
Chicago, Burlington & Quincy	lowa	133, 598	7, 716, 513	166, 649 49, 394	7, 934, 404
	Missouri Wyoming	61,879		49, 394	
Chicago Great Western	Iowa	639, 225 3, 753 1, 249, 310	3 753	701, 409 2, 731	9 721
Chicago, Indianapolis & Louisville	Indiana	1, 249, 310	3, 753 1, 249, 310	1, 133, 912	2, 731 1, 133, 912
	/Illinois	1	١ / / ا	(11, 362	۱ -,
	IndianaIowa	4, 024, 619 497, 451		4, 745, 612	
	Missouri	1,604		520, 978 2, 568	
Chicago, Milwaukee, St. Paul &	Montana (bitumi-	698, 560		738, 589	1
Pacific.	(nous coai).		5, 280, 995	(155,555)	6, 087, 429
	North Dakota (lignite).			1) 1	
	South Dakota	51, 316		61,007	
	(lignite)	J		11 1	1. 845.757
	Washington	7, 445	1	7,313)
g. Majir wanaya katal	Arkansas	3, 512		7,668	1
Chicago, Rock Island & Pacific	Jiowa	681, 442 351, 356	1, 299, 472	702, 370	1, 239, 729
	Missouri Oklahoma	175. 681	1, 200, 112	309, 305 113, 730 106, 656	1, 239, 129
Chicago, Springfield & St. Louis	Oklahoma	87, 481		106, 656	
1 1 T 1 T 1	Illinois	159, 109 4, 050, 403	159, 109	163.0611	163, 061
Cleveland, Cincinnati, Chicago & St. Louis.	Indiana	820, 748	4, 871, 151	4, 375, 277 1, 056, 050	5, 431, 327
Clinchfield	Kentucky Virginia	102, 734	0 100 040	77, 3221	0 000 000
Colorado & Southeastern	(Virginia	102, 734 2, 067, 114	2, 169, 848	[2, 223, 677]	2, 300, 999
Colorado & Southern	Coloradodo	93, 945 584, 828	93, 945	102, 080	102, 080
Colorado & W yoming		488, 618	584, 828 488, 618	524, 894 664, 699	524, 894 664, 699
Conemation & Black Lick	Pennsylvania	36, 625	36, 625	52, 159	52, 159
Crystal River & San Juan Cumberland & Pennsylvania	Colorado	482	482	341	341
Danianene & Kussenville	MarylandArkansas	496, 648	496, 648	567, 243	567, 243
Denver & Intermountain	Colorado	39, 781 111, 916	39, 781 111, 916	52, 301 105, 054 [1, 207, 527]	52, 301 105, 054
	fdo	999, 286		1, 207, 527	100,004
Denver & Rio Grande Western	New Mexico	4, 7371)	2, 690, 008	24 8331	2, 984, 869
Denver & Salt Lake	Utah Colorado	1, 685, 285 698, 342		1, 752, 509	
Denver & Salt Lake Des Moines & Central Iowa Detroit Tolodo & Leanter	Iowa	698, 342 107, 983	698, 342 107, 983	1, 752, 509 870, 003 92, 992	870, 003 92, 992
Denoit, Toledo & Ironion	Ohio	12, 495	12, 495	14, 486	14, 486
East Broad Top Railroad & Coal Company.	Pennsylvania	12, 495 508, 525	508, 525	536, 841	536, 841
Eastern Railway & Lumber Com-	Washington	- 1	1		
pany.	Washington			270	270
Erie	Ohio	235	الم بمد م	·	
	Pennsylvania	1, 104, 410	1, 104, 645	1, 142, 787	1, 142, 787
Evansville & Ohio Valley Evansville, Suburban & Newburgh	Indiana	8, 177	8, 177	1, 142, 787 7, 707	7, 707
Fort Dodge, Des Moines & South-	Iowa	167, 889	167, 889	159, 957	159.957
ern.	# 4	-		7, 857	7,857
See footnotes at end of table.	•	•	•		

See footnotes at end of table.

Table 21.—Bituminous coal and lignite loaded for shipment by railroads and waterways in the United States, 1939-40, as reported by mine operators, in net tons—Continued

		19	39	1940		
Route	State	By State	Total for route	By State	Total for route	
RAILBOADS—continued						
	1000					
Fort Smith & Van Buren	Oklahomado	112, 876	110 076	158, 663	158,66	
Fort Smith & Western Fort Smith, Subiaco & Rock Island	Arkansas	9,089	112, 876 9, 086	5, 728 23, 183	5,72 23, 18	
Jalesburg & Great Eastern	Illinois	592, 203	9, 086 592, 203	535, 363	535, 36	
Grand Trunk	Michigan Montans (bitumi-	3, 425 414, 173	3, 425	2,006 424,994	2,00	
""。 大家的一点,我又是这一个。	nous coal).			202,002		
3reat Northern	Montana (lignite). North Dakota	343, 976	040.470	333, 497		
Carlotte Control of the Control of t	(lignite).	323, 810	948, 472	000, 491	908, 16	
	(lignite). Washington	190, 323	Į į	149, 670	j	
Julf, Mobile & Ohio	Alabama	8	(2)	{ 75,807 513,001	588, 80	
Harriman & Northeastern Huntingdon & Broad Top Mountain	Tennessee	187, 309 120, 285	187, 309	191, 739 111, 720	191, 73	
Suntingdon & Broad Top Mountain Railroad & Coal Co.	Pennsylvania		187, 309 120, 285	111, 720	111, 72	
	AlabamaIllinois	254, 185 7, 860, 911 107, 662 4, 586, 905)	310, 441	1	
llinois Central	Jillinois	7, 860, 911	12, 809, 663	9, 094, 636	13, 907, 17	
	Indiana Kentucky	4, 586, 905	, , , , ,	9, 094, 636 99, 705 4, 492, 389	1	
llinois Terminal	l lilinois		521, 727	334, 308 503, 746 592, 720	334, 30	
ndiana nternational-Great Northern	Indiana Texas (lignite)	236, 215 793, 647	236, 215 793, 647	503, 746 8 502 720	503, 74 3 592, 72	
nterstate	Kentucky	236, 215 793, 647 61, 755		46, 337	2 062 18	
owa Southern Utilities Company	(Virginia	1, 881, 408	1, 943, 163	46, 337 2, 015, 846	,	
ohnstown & Stony Creek	lowa Pennsylvania	101, 578 89, 178	101, 578 89, 178	105, 730 131, 389	105, 73 131, 38	
oplin-Pittsburg	Kansas	89, 178 260, 496 190, 948	260, 496	249, 962	249, 96 245, 00	
Kanawha Central Kanawha, Glen Jean & Eastern	West Virginia	190, 948 298, 104	190, 948 298, 104	245, 093 407, 559	245, 09 407, 55	
	do (Arkansas	16, 296	250, 102	ſ	201,00	
Kansas City Southern	Kansas Missouri	13, 583	555, 243	720, 932	781,00	
varjuu järjä lääjä on ajoleen ja ole	Oklahoma	498, 818 26, 546	. 41	60, 160		
Kansas, Oklahoma & Gulf Keliy's Creek & Northwestern	do	8, 185 1, 122, 373 798, 649	8, 185	17, 809	17,80	
Kentucky & Tennessee	West Virginia Kentucky	798, 649	1, 122, 373 798, 649	1, 407, 993 802, 385	1, 407, 99	
ake Erie, Franklin & Clarion	Pennsylvania	234, 454	234, 454 10, 121	802, 385 599, 804	802, 38 599, 80	
Ake Erie, Franklin & Clarion aramie, North Park & Western igonier Valley	Colorado Pennsylvania	10, 121	10, 121	10, 308 156, 730	10, 30 156, 73	
itchfield & Madison	Illinois	181, 279 630, 352 1, 946, 901	181, 279 630, 352	671, 614 2, 513, 734	671, 61	
	AlabamaIllinois.	1, 946, 901 6, 992		2, 513, 734 400].	
ouisville & Nashville	Kentucky	22, 509, 083	25, 432, 955	26. 945. 403	30, 708, 37	
	Tennessee	714, 2881		844, 008 404, 832		
Mary Lee	Virginia	255, 691 917, 342	917, 342	1, 218, 648) 1, 218, 64	
fichigan Central	Alabama Michigan	4.147	4, 147	9, 274	9, 27	
Midland Valley	ArkansasOklahoma	257, 870 92, 927	350, 797	324, 261	417, 82	
dinneapolis & St. Louis	(Illinois	515, 235	004 000	93, 566 831, 596		
	Iowa	88, 973	604, 208	105, 216	936,81	
dinneapolis, St. Paul & Sault Ste.	North Dakota (lignite).	554, 996	554, 996	572, 385	572, 38	
Marie. dissouri-Illinois	Illinois	15, 052 301, 004	15, 052	19, 881 303, 359	19, 88	
	Kansas Missouri	801, 004 68, 523		303, 359 38, 942]	
dissouri-Kansas-Texas	Oklahoma	151, 592	521, 119	196, 822	530, 12	
	(Texas (lignite)	(8) 644, 733		(0)	the sit	
	Arkansas Illinois	4, 271, 355		732, 420 4, 439, 187	1	
dissouri Pacific	Kansas	770.061	5, 994, 143	893, 649	6, 456, 28	
	MissouriOklahoma	294, 067 13, 927		346, 409 44, 615	l	
dobile & Ohio	Alabama (Illinois	91, 472)	800 701		, (A)	
		518, 309	609, 781	(4)	(4)	
Ionessen Southwestern	Pennsylvania	2 492 177		15, 349 3, 196, 701	15,84	
Aonessen Southwestern	West Virginia	2, 492, 177 7, 540, 199	10, 032, 376	8, 784, 678 1, 731	11, 981, 37	
dontanadontana, Wyoming & Southern	Arkansas Montana (bitumi-	6, 000 824, 013	6,000	1, 731	1, 73	
romeana, 11 homming or commentar	nous coal).	042, UIS	324, 013	350, 226	350, 22	

See footnotes at end of table.

Table 21.—Bituminous coal and lignite loaded for shipment by railroads and waterways in the United States, 1939-40, as reported by mine operators, in net tons—Continued

		193	39	1940)
Route	State	By State	Total for route	By State	Total for route
BAILROADS—continued					
Montour	Pennsylvania	4, 518, 626	4, 518, 626	5, 216, 812	5, 216, 81
Moorhead & North Fork	Kentucky	1, 584	·	1, 28,	1, 28
Nashville, Chattanooga & St. Louis.	Tennessee	805, 756	807, 340	876,071	} 876, 16
New York Central (includes coal shipped over Kanawha & Michi- gan, Kelly's Creek, Toledo & Ohio Central, and Zanesville & West- ern).	Ohio Pennsylvania West Virginia	5, 012, 462 3, 776, 712 815, 818	9, 604, 992	1	}11, 0 4 5, 11
Nicholas, Fayette & Greenbrier	Kentucky	1, 419, 581 3, 928, 761 7, 392, 424	1, 419, 581	1, 908, 453 4, 540, 674	1, 908, 453 1
Norfolk & Western	KVirginia	7, 392, 424	37, 632, 985	12 R KAR 351	44, 915, 566
	West Virginia	26, 311, 800	245, 186	31, 828, 541 97, 189 1, 124, 827	97, 189
Northern Alabama	Montana (bitumi- nous coal).	245, 186 1, 159, 854]		
Northern Pacific	North Dakota (lignite).	604, 757	2, 578, 775	642, 844	2, 595, 141
	Washington	814, 164 43, 615 211, 765 238, 745 1, 980, 769 3, 306, 223 27, 853, 229)	827, 470 48, 882	40 000
Oneida & Western	Tennessee Washington	43, 615 211, 765	43, 615 211, 765	217.523	48, 882 207, 523
Pacine Coast	[Illinois	238, 745)	183, 770 2, 463, 347 3, 942, 698 33, 647, 863	
Pennsylvania (includes Pittsburgh, Cincinnati, Chicago & St. Louis).	IndianaOhio	1, 980, 769 3, 306, 223	33, 953, 514	3, 942, 698	40, 985, 701
Cincinnati, Chicago & St. Louis).	Pennsylvania West Virginia	27, 853, 229	97,00	33, 647, 863	
Peoria & Pekin Union	Illinois	0/2.020	2, 579	748,023	,
Desmis (Tormina)	do	2, 579 828, 981	2, 579 828, 981 114, 643	425, 733 91, 802	425, 733 91, 802
Pere Marquette	Michigan Pennsylvania	114, 643 832, 642	832, 642	1, 234, 952	1, 234, 952
Pere Marquette Pittsburg & Shawmut Pittsburg County Pittsburgh & Lake Erie	Oklahoma	7, 038 3, 063, 535 482, 273 1, 378, 437	7, 038	11, 297	11, 297
Pittsburgh & Lake Erie	Pennsylvania	3, 063, 535 482, 273	3, 063, 535	3, 451, 460 535, 630 1, 270, 849	3, 451, 460
Pittsburgh & West Virginia	Ohio Pennsylvania West Virginia	1, 378, 437	1, 913, 773	1, 270, 849	1, 939, 553
Pittsburgh, Lisbon & Western	Pennsylvania	53, 063 3, 858	3, 858	133, 074 4, 053 676, 513	4, 05
Pittsburgh, Snawmut & Northern	West Virginia	471, 370	471, 370	676, 513 212, 306	676, 513 212, 300
Quincy, Omaha & Kansas City	W1880uri	14, 968	14, 968		
Rio Grande & Eagle Pass	Texas (bitumi- nous coal).	8, 259	8, 259		
Rio Grande Southern Rockdale, Sandow & Southern	Colorado	9, 387	9, 387	7, 371	7,371
St. Louis & O'Fallon	Texas (lignite)	361, 027	361, 027	334, 249	334, 249
D. Doub & C Land	(Alabama	881, 813	1	1, 148, 283 203, 157	1
St. Louis-San Francisco	Arkansas Kansas	116, 246 712, 798 369, 019	2, 628, 324	757, 357	3, 245, 22
20	Kansas Missouri	369, 019 548, 448		757, 357 413, 784 722, 644	
St. Louis Southwestern of Texas	Texas (lignite)	(3)			(3)
Seaboard Air Line	Alabama	Ì94, 222 1, 544, 969	194, 222	68, 387	68, 38
	Illinois	353		2, 435	İ
Southern	Indiana Kentucky	1, 297, 105	7, 157, 312	1, 247, 418	8, 380, 110
	TennesseeVirginia	998, 355 2, 150, 227		2, 543, 247	il
Sauthan Basife	(Virginia New Mexico	1, 166, 303 215, 875	11	2, 199, 809 2, 435 1, 247, 418 1, 158, 336 2, 543, 805 227, 875 352, 074	227, 87
Southern Pacific	Illinois	403, 305	215, 875 403, 305 10, 231	352, 074	227, 87 352, 07
Susquehanna & New York Tennessee	Pennsylvania Tennessee	10, 231 649, 669	10, 231 649, 669	N 73U. 424	7, 49 730, 42
Tennessee Central Tennessee Coal, Iron & Railroad	. do	229, 483	229, 483	278, 375	278, 37
Company Terminal Railroad Association of St.	Alabama	2, 837, 723		1	1
Louis	. Illinois	13, 145	13, 145 1, 295	1, 291 8, 530	1, 29 8, 55
Texas & Pacific	Texas (bitumi- nous coal).	1, 295	1, 295		, co, co,
Texas Short Line	Texas (lignite)	(3) 665, 039	(3) 665, 039	(3) 896, 356	(*) 896, 35
Thomas & Sayreton	Illinois	45, 889	45, 889	71, 745	71, 74
Union	Pennsylvania	117, 507	117, 507	7 110, 086	110,08

TABLE 21.—Bituminous coal and lignite loaded for shipment by railroads and waterways in the United States, 1989-40, as reported by mine operators, in net tons-Continued

RAILBOADS—continued			193	9	1940	
RAILBOADS—continued	Route	State		Total for		Total for
Union Pacific. Union Pacific. Union Pacific. Unity			By State		By State	route
Unity	RAILBOADS—continued					
Unity		(Colorado	608, 096	1	f 568, 596	}
Washington Washington Washington Wyoming 434, 788 434, 789, 278 479, 278 664, 921 661, 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 123 941, 124 941,		Kansas	5, 274	4 004 414	2,700	
Unity	Union Pacific	Washington	28, 544	4, 994, 414	26,846	0, 380, 209
Virginian	Unity	Pennsylvania	664, 921		651, 017	651, 017
West Virginia 10, 883, 874 11, 901, 818 1, 102, 803 1, 102, 80		Utah	864, 205			941, 123
Western Allegheny	Virginian	West Virginia	10, 583, 874	} 10, 726, 621	[[12, 480, 801]	}12, 644, 024
Western Allegheny		Illinois	1, 091, 818	1 599 700	1, 169, 291	1 840 034
Pennsylvania S3, 820 S3, 820 S7, 183 S7, Western Maryland Maryland S60, 631 406, 388 401, 141 3, 403, 403, 408 401, 141 3, 403, 403, 408 401, 141 3, 403, 403, 400, 388 400, 388 400, 388 400, 388 400, 388 400, 388 400, 388 400, 388 400, 388 400, 388 400, 388 400, 381, 102 16, 828 16, 828 9, 975 9, West Virginia Pulp & Paper Company Wheeling & Lake Erie Ohio 3, 391, 614 3, 931, 197 3, 931, 1	W 8.D88.	Missouri	310, 328	1, 022, 100	366, 803] ' '
Pennsylvania West Virginia Northern West Virginia Mest Virginia Northern State Virginia Northern State Virginia Northern State Virginia S	Western Allegheny	Pennsylvania	53, 820	53, 820	87, 183	87, 183
West Virginia Northern	Western Marviand	Pennsylvania	406, 388	4, 399, 078	401, 141	4, 320, 808
Mest Virginia Pulp & Paper Company		West Virginia	3, 432, 059		3, 403, 643]
Wheeling & Lake Erie. Ohio 3, 391, 614 3, 391, 197 4, 553 4, 624 3, 91, 109 3, 101 <td>West Virginia Pulp & Paper Com-</td> <td></td> <td></td> <td>81, 012 16, 828</td> <td>9, 975</td> <td>80, 035 9, 975</td>	West Virginia Pulp & Paper Com-			81, 012 16, 828	9, 975	80, 035 9, 975
W. M. Ritter Lumber Company Virginia 4, 553 4, 544 4, 545 4, 54	Wheeling & Lake Erie	Ohio	3, 391, 614	3, 391, 614	3, 931, 197	3, 931, 197
W. M. Ritter Lumber Company. Virginia. 4, 553 4, 544 4, 645 4, 541 4,	Winfield	Pennsylvania	3, 922	3, 922	3, 879	3, 879 71, 564
Voodward Iron Company	W M Ritter Lumber Company	LAGSP ATTAITING	4, 553	4, 553	71, 504	71,009
Total railroad shipments 331, 189, 620 331, 189, 620 380, 387, 674 380, 387,	Woodward Iron Company	Alabama	635, 466	635, 466	996, 137	996, 137
Naterways Pennsylvania 1,023,608 1,023,608 1,060,382 1,060,682 1,060,382 1,060,682 1	Youngstown & Suburban	Ohio	9, 100	8, 105		
Allegheny River	Total railroad shipments		331, 189, 620	331, 189, 620	380, 387, 674	380, 387, 674
Black Warrior River	WATERWAYS					
Creen River	Allegheny River	Pennsylvania	1, 023, 608		1, 060, 382	1, 060, 382
Creen River	Black Warrior River	Alabama	84, 462	84, 462	52, 903	52, 903 33, 282
Illinois River	Green River	Kentucky	990	290	471	471
West Virgina 315, 622 753 552, 753 778, 092 778, 092 778, 092 778, 092 199, 958 100 10	Illinois River	Illinois	257, 407	257, 407	288, 659	288, 659
West Virginia 315, 652, 753 552, 753 778, 092 778, 092 778, 092 199, 958 100 1	Kanawna River	(Pennsylvania	16, 927, 030	` '	(24, 236, 365	3
Chickentucky Chic	Monongahela River	West Virginia	315, 627	,	387, 872	
Ohio River	Muskingum River	Unio	302,100	002,700	199, 959	110,002
Pennsylvania 2,810 2,000 477,747	Ohio Divor	Ohio	1, 872	867, 424	4, 233	683, 939
Total waterway shipments Total waterway shipments Total waterway shipments 22, 229, 364 22, 229, 364 29, 493, 058	Olio Mitel	Pennsylvania	2, 816 655 067	1	4,000	
Total waterway shipments 22, 229, 364 22, 229, 364 29, 493, 058 29, 493, 058 29, 493, 058 29, 493, 058 29, 493, 058 29, 493, 058 29, 493, 058 29, 493, 058 29, 493, 058 29, 493, 058 29, 493, 058 29, 493, 058 29, 493, 058 29, 533, 418, 984 409, 880, 732 409, 880, 73	Tennessee River	Alabama	782	782		
Total loaded at mines for shipment by railroads and waterways. 353, 418, 984 353, 418, 984 409, 880, 732 409, 880 29, 533, 824 29, 533, 824 29, 533, 824 35, 540, 476 35, 540 20 20, 533, 824 35, 540, 476 35, 540 20 20, 533, 824 20, 533, 824 20, 533, 824 35, 540, 476 35, 540 20 20, 533, 824 20, 833, 824 20, 833, 824 20, 833, 824 20, 833, 824 2	Youghiogheny River	Pennsylvania	1, 199	1, 198		
by railroads and waterways. 353, 418, 984 353, 418, 984 409, 880, 732 409, 880 1732 40	Total waterway shipments		22, 229, 364	22, 229, 364	29, 493, 058	29, 493, 058
28, 35, 322 29, 36, 324 30, 377 37	Total loaded at mines for shipment	1	959 410 004	252 410 004	400 990 790	400 Seu 23
Used by mine employees and owners for house coal. Taken by locomotive tenders at tipple. Used at mine for power and heat. Transported from mines to points of the state of	by railroads and waterways		29, 533, 824	29, 533, 824	35, 540, 476	35, 540, 47
Taken by locomotive tenders at tipple. 826, 556 826, 556 939, 058 939, 058 Used at mine for power and heat. 2, 565, 276 2, 565, 276 2, 242, 289 2, 442, 289 2, 442, 289 4, 045, 050 4, 045, 050 4, 045, 050 4, 317, 465 5, 887, 994 5, 887, 994 5, 887	Used by mine employees and owners		1, 901, 408		2, 035, 201	2, 035, 20
ple. Used at mine for power and heat. Used at mine for power and heat. 2, 565, 276 2, 565, 276 2, 442, 989 2, 442 Made into beehive coke at mine 2, 089, 475 2, 089, 475 4, 045, 050 4, 045 Transported from mines to points of 4, 317, 465 5, 887, 994 5, 887			826, 556	826, 556	939, 058	939, 05
Made into beehive coke at mine 2,089,475 2,089,475 4,045,050 4,045 Transported from mines to points of 4,317,465 4,317,465 5,887,994 5,887	ple.		1.			
Transported from mines to points of 4, 317, 465 4, 317, 465 5, 887, 994 5, 887	Used at mine for power and heat Made into beehive coke at mine		2, 505, 276 2, 089, 475	2, 505, 276	2, 442, 988 5 4, 045, 050	4, 045, 05
use by conveyor, cnute, or aeriai tramway.	use by conveyor, chute, or aerial			4, 317, 46	5, 887, 994	
Total production 394,855, 325 394,855, 325 460, 771, 500 460, 771	Total production		5 394,855, 325	3 394,855, 32	5,460, 771, 500	460, 771, 50

¹ Includes coal loaded at mine directly into railroad cars or river barges, hauled by truck to railroad siding for shipment by rail, and hauled by truck to waterway for shipment by water. In general, the figures show the quantity of bituminous coal and lignite originated for each railroad and waterway as reported by the mine operators. It must be noted that in 1 year an operator may report coal loaded on a subsidiary railroad and in another year the same operator may report coal loaded on the parent railroad system.

¹ Reported as Mobile & Ohio for 1939.
¹ Texas lignite mines shipping over Missouri-Kansas-Texas, Rockdale, Sandow & Southern, St. Louis Southwestern of Texas, and Texas Short Line have been included with International-Great Northern.

⁴ Reported as Gulf, Mobile & Ohio for 1940.
¹ Includes 202,337 tons of coal reported as net changes in stocks at mines, January 1, 1939, to January 1, 1940.

^{1940.}

METHODS OF RECOVERY Table 22.—Bituminous coal and lignite mined by different methods in the United States in 1939, by States

		1.00	From	underground w	orkings	$(\mathcal{I}_{i}, \mathcal{I}_{i}) \in \mathcal{E}^{\mathrm{H}}_{i},$		From st	rip pits	
State	Mined	by hand	Shot off	the solid	Cut by	machines				Grand total
	Net tons	Percent of total underground	Net tons	Percent of total underground	Net tons	Percent of total underground	Total underground (net tons)	Net tons	Percent of grand total	(net tons)
Alabama	414, 741	3. 5	3, 007, 764 148, 417	25. 1 100. 0	8, 562, 559	71.4	11, 985, 064 148, 417	61, 611	0.5	12, 046, 67 148, 41
Arizona, Georgia, Idaho, and Oregon Arkansas	4, 063	10. 4	34, 958 122, 555	89. 6 10. 9	1, 004, 029	89. 1	39, 021			30.09
Colorado Illinois Indiana Iowa Iowa Kansas Kentucky Maryland Michigan	(1) 542, 354 102, 950 450, 186 70, 375 1, 346, 638 757, 876	(1) 1. 6 1. 3 19. 0 10. 1° 3. 2 52. 5	299, 543 2, 187, 568 597, 660 975, 117 400, 605 930, 604	(1) 6.3 7.4 41.3 57.6 2.3	4, 198, 346 31, 964, 233 7, 344, 792 936, 578 225, 134 39, 486, 484 684, 852 456, 754	(1) 92. 1 91. 3 39. 7 32. 3 94. 5 47. 5	1, 126, 584 (1) 34, 694, 155 8, 045, 402 2, 361, 881 696, 114 41, 763, 426 1, 442, 728	25, 454 (1) 12, 088, 536 8, 897, 370 585, 676 1, 978, 577 793, 142	2. 2 (1) 25. 8 52. 5 19. 9 74. 0 1. 9	1, 152, 03 5, 923, 21 46, 782, 69 16, 942, 77 2, 947, 55 2, 674, 69 42, 556, 56 1, 442, 72
Missouri	226, 985 (¹)	22. 7	68, 605	6.9	704, 405 1, 530, 528	100. 0 70. 4 (1)	456, 754 999, 995 (1)	2, 273, 555 (¹)	69. 5 (¹)	456, 75 3, 273, 55 2, 756, 03
Montana, South Dakota, and Texas (lignite) New Mexico North Dakota (lignite) Dhio	² 91, 185 415, 857 91, 184 95, 288 6, 309	2 11.0 33.8 12.5 .6	738, 667 440, 628 119, 921 474, 301 108, 520	89. 0 35. 8 16. 5 2. 9	(2) 373, 575 517, 442 15, 549, 061	(2) 30, 4 71, 0 96, 5	829, 852 1, 230, 060 728, 547 16, 118, 650	75, 701 1, 343, 946 4, 170, 903	8. 4 64. 8 20. 6	905, 55 1, 230, 06 2, 072, 49 20, 289, 56 1, 187, 56 92, 584, 11
Pennsylvania Fennessee Fexas (bituminous coal) Jtah	13, 509, 560 (1) 16, 259	(¹) 100, 0	2, 864, 907 462, 570	15. 8 3. 2 (¹)	572, 337 73, 244, 807 4, 214, 151	83. 3 81. 7 •(¹)	687, 166 89, 619, 274 (1) 16, 259	500, 396 2, 964, 839 (¹)	42.1 3.2	5, 185, 48 16 26
Van Virginia Vashington Vest Virginia Vyoming	(1) 106, 886 (1) 4, 806, 405 936, 298	(1) .8 (1) 4.4 18.0	190, 332 945, 211 692, 008 957, 271 135, 518	(1) (1) (1) .9 2.6	3, 083, 764 12, 478, 877 708, 399 102, 005, 341 4, 123, 246	(1) 92. 2 (1) 94. 7 79. 4	13, 530, 974 (1) 107, 769, 017 5, 195, 062	(1) (1) 592, 917	(1) (1) 2.5	3, 284, 90 13, 530, 97 1, 690, 44 108, 361, 93 5, 373, 28
Total	² 26, 260, 098	27.4	16, 903, 250		2 313, 969, 394	* 87. 9	357, 132, 742	178, 227 37, 722, 583	3. 3 9. 6	394, 855, 32

Not shown separately to avoid disclosure of individual operations.
 Small quantity of lignite "Cut by machines" in Montana included in figures for "Mined by hand."

Table 23.—Bituminous coal and lignife mined by different methods in the United States in 1940, by States

			From	underground wo	orkings			From s	trip pits	
State	Mined	by hand	Shot off	the solid	Cut by	machines	Total	40		Grand total production
	Net tons	Percent of total underground	Net tons	Percent of total underground	Net tons	Percent of total underground	underground (net tons)	Net tons	Percent of grand total	(net tons)
laska		8. 9 87. 9	2, 168, 327 173, 844	14. 2 100. 0	11, 720, 773	76.9	15, 248, 522 173, 844	75, 641	0. 5	15, 324, 16 173, 84
rizona, Idaho, and Oregon rkansas Colorado Jeorgia	1, 483, 641	1.7 22.6	2, 044 117, 032 437, 327 42, 307	12. 1 8. 2 6. 6 100. 0	1, 285, 840 4, 655, 314	1	16, 902 1, 427, 803 6, 576, 282 42, 307	25, 808 12, 460	.2	16, 90 1, 453, 61 6, 588, 74 42, 30
llinois ndiana owa. Kansas	327, 979 26, 270 282, 315 61, 128	.9 .3 11.3	2, 617, 459 549, 127 1, 212, 723	7. 0 6. 2 48. 4	34, 589, 737 8, 254, 097 1, 010, 227	92. 1 93. 5 40. 3	37, 535, 175 8, 829, 494 2, 505, 265	13, 075, 255 10, 039, 078 725, 912	25. 8 53. 2 22. 5	50 610 43
Kentucky Maryland Michigan	1, 936, 171 803, 929	7. 4 4. 0 53. 5	441, 302 848, 639	53. 6 1. 8	320, 818 45, 493, 619 699, 504 410, 169	39. 0 94. 2 46. 5 100. 0	823, 248 48, 278, 429 1, 503, 433 410, 169	2, 755, 704 862, 475	77. 0 1. 8	18, 868, 57 3, 231, 17 3, 578, 96 49, 140, 96 1, 503, 43 410, 16
fissouri fontana (bituminous coal) fontana and Texas (lignite) lew Mexico orth Dakota (lignite)	000 140	22. 4 . 6 8. 8	82, 698 57, 589 2 543, 180	3. 4 89. 1	783, 054 1, 624, 702 12, 964	70. 2 96. 0 2. 1	1, 115, 895 1, 692, 004 609, 766	1, 980, 846 1, 126, 932 44, 916	64. 0 40. 0 6. 9	3, 096, 7 2, 818, 9 654, 6
klahoma	104, 195	51. 2 13. 6 . 9	184, 734 2 144, 392 214, 013 195, 182	16. 6 17. 8 1. 2 19. 1	356, 899 557, 408 17, 345, 747 828, 154	32. 2 68. 6 97. 9 80. 8	1, 110, 615 812, 844 17, 723, 955 1, 024, 340	1, 405, 590 5, 047, 597 621, 641	63. 4, 22. 2 37. 8	1, 110, 6 2, 218, 4 22, 771, 5 1, 645, 9
ennsylvania outh Dakota (lignite)	14, 425, 666 2 4, 283 502, 422	12.8 100.0 9.9	5, 084, 556 619, 667	10.3	92, 862, 615 4, 794, 713	82. 7 79. 8	112, 372, 837 4, 283 6, 006, 802	4, 230, 162 61, 802 1, 654	3. 6 93. 5	116, 602, 99 66, 08 6, 008, 4
exas (bituminous coal)tahirginia	13, 537 50, 727 40, 889 217, 797	95. 8 1. 4 . 3 13. 3	143, 225 1, 180, 051 647, 920	4. 0 7. 7 39. 7	3, 381, 634 14, 120, 735 768, 675	4. 2 94. 6 92. 0 47. 0	14, 137 3, 575, 586 15, 341, 675 1, 634, 392	6, 400 15, 960	(3)	14, 13 3, 575, 50
Vest VirginiaVyoming	5, 960, 335 1, 091, 971	13. 3 4. 8 19. 4	528, 205 264, 370	39. 7 . 4 4. 7	119, 075, 498 4, 273, 781	94.8 75.9	1, 634, 392 125, 564, 038 5, 630, 122	873, 583 177, 920	1. 0 . 7 3. 1	15, 348, 07 1, 650, 35 126, 437, 62 5, 808, 04
Total	2 29, 876, 974	7.2	2 18, 499, 913	4.4	369, 227, 277	88.4	417, 604, 164	43, 167, 336	9. 4	460, 771, 50

Lignite figures compiled by Bureau of Mines.
 Includes some coal published by Bureau of Mines as "not specified."
 Less than 0.05 percent.

Table 24.—Number of coal-cutting machines in bituminous coal and lignite mines, average output per machine, and percent of total product of underground mines cut by machines in the United States, 1939-40, by States

				1939						1940		
State	1	Number of c	oal-cutting ma	chines in us	е	Average	Percent of total product of	Number o	f coal-cutting in use	g machines	Average	Percent of total product of
<i>State</i>	Track-n	nounted	Other	types	Total	output per machine (net tons)	under- ground mines cut	Permissible	Other	Total	output per machine (net tons)	under- ground mines cut
	Permissible	Other	Permissible	Other	TOTAL		by machines		J	10001		by machines
Alabama Arkansas Colorado Illinois Indiana Iowa Kansas Kentucky Maryland Michigan Missouri	2 45 59 32 6	4 6 40 133 16 17 198 6	100 95 133 225 94 52 11 368 28 8	298 63 229 604 110 28 24 773 17 23 27	435 166 447 1, 021 252 103 44 1, 464 54 53 91	19, 684 6, 048 9, 392 31, 307 29, 146 9, 093 5, 117 26, 971 12, 682 8, 618 7, 741	71. 4 89. 1 (1) 92. 1 91. 3 39. 7 32. 3 94. 5 47. 5 100. 0 70. 4	220 93 229 238 112 41 29 394 25 17	279 50 208 673 130 52 14 1,097 17 26 33	499 143 437 911 242 93 43 1,491 42 43 84	23, 489 8, 992 10, 653 37, 969 34, 108 10, 863 7, 461 30, 512 16, 655 9, 539 9, 322	76. 9 90. 1 70. 8 92. 1 93. 5 40. 3 39. 0 94. 2 46. 5 100. 0 70. 2
Montana: Bituminous coal. Lignite New Mexico North Dakota (lignite). Ohio Oklahoma Pennsylvania Tennessee Texas (bituminous coal).	38 13 313 14	8 60 4 92 2	4 1 14 13 158 51 1,642 56	35 8 562 30 1,280	67 1 61 21 818 98 3,327 178	22, 844 6, 124 24, 640 19, 009 5, 840 22, 015 23, 675	(1) (2) 30. 4 71. 0 96. 5 83. 3 81. 7	(3) 26 3 13 264 50 2,092 52	47 (3) 33 3 7 553 35 1,069	64 (3) 59 3 20 817 85 3, 161 183	25, 386 (3) 6, 049 3 28, 519 21, 731 9, 743 29, 378 26, 201 600	96. (3) 32. 366. 4 97. 4 80. 8 82. 7 9. 4
Virginia. Washington. West Virginia Wyoming	33 64 1	30 339 4	44 72 43 460 43	44 136 6 1, 652 242	122 302 50 2, 762 290	25, 277 41, 321 14, 168 36, 932 14, 218	(1) 92. 2 (1) 94. 7 79. 4	80 71 43 817 42	44 224 6 1, 953 252	124 295 49 2,770 294	27, 271 47, 867 15, 687 42, 988 14, 537	94. 92. 47. 94. 75.
Total	1, 136	964	3, 778	6, 349	12, 227	25, 678	2 87. 9	5, 017	6, 933	11, 950	30, 898	88.

Not shown separately to avoid disclosure of individual operations.
 Small quantity of lignite "cut by machines" in Montana excluded.
 Montana lignite included with North Dakota lignite.

Table 25.—Stripping operations of all types in the bituminous coal and lignite fields of the United States in 1939, by States and counties

Returns for mines that recover coal both by stripping and by underground operations do not permit separating number of men engaged in stripping from those engaged in other work. For this reason, figures for men employed represent all persons working at such mines, including those underground. Total tons produced by both methods at these same mines are also shown]

	Num-		iber of p shovels i			luced (net ns)	and activ	e number working e days (a periods)	proprie excludin	tors on	Aver- age num-	Number of man-shifts worked by wage earn- ers and	Tons of coal pro-
State and county	ber of strip pits							Sur	face	1 2	ber of full days	working proprietors on active	duced on active days per
	pres	Steam	Elec- tric	All others	Mined by stripping	Total at same mines	Under- ground	In strip pits	All others	Total	mines were active	days (ex- cluding shut-down periods)	man- shift
Alabama: Bibb, Blount, Marion, Tuscaloosa, and Walker	6	3 4		4	61, 611 25, 454	61, 611 46, 903	52	90 45	35 21	125 118	105 116	13, 103 13, 636	4. 70 8. 44
Illinois: Adams, Grundy, Henry, Jackson, Knox, Livingston, Peoria, Randolph, Scott, and Will La Salle Perry St. Clair Saline Vermilion Williamson	12 8 7 5 4 3 5	1 2 1 3 3	22 20 1 13 4 2 2	15 3 7 4 10 2 3 7	3, 925, 780 3, 253, 708 173, 876 2, 343, 305 805, 989 742, 388 154, 472 689, 018	3, 925, 780 3, 253, 708 173, 876 2, 343, 305 805, 989 742, 388 154, 472 689, 018		583 267 82 423 116 100 40 150	374 356 39 142 50 44 31 65	957 623 121 565 166 144 71 215	262 233 187 248 218 246 103 171	250, 507 144, 911 22, 675 140, 153 36, 184 35, 441 7, 318 36, 733	15. 67 22. 45 7. 67 16. 72 22. 27 20. 95 21. 11 18. 76
Total Illinois	51	10	66	51	12, 088, 536	12, 088, 536		1, 761	1, 101	2, 862	235	673, 922	17, 94
Indiana: Clay	28 9 7 16 11 7 5	5 2 1 5 6 6 2	11 2 6 14 2 4 5	45 15 7 14 9 7 5	1, 230, 840 482, 689 18, 872 1, 523, 665 3, 173, 940 547, 441 905, 854 1, 014, 069	1, 230, 840 482, 689 18, 872 1, 523, 665 3, 173, 940 547, 441 905, 854 1, 014, 069		503 150 51 398 454 155 207 222	162 65 13 235 385 82 109 129	665 215 64 633 839 237 316 351	192 159 96 184 215 173 232 195	127, 969 34, 291 6, 160 116, 669 180, 136 40, 893 73, 456 68, 426	9. 62 14. 08 3. 07 13. 06 17. 62 13. 39 12. 33 14. 82
Total Indiana	88	27	44	112	8, 897, 370	8, 897, 370		2, 140	1, 180	3, 320	195	647, 990	13.73

¹ Number of power shovels shown represents equipment in use or available for use as of Jan. 1, 1940.

Table 25.—Stripping operations of all types in the bituminous coal and lignite fields of the United States in 1939, by States and counties—Continued

	Num-	Nur	nber of p shovels		Coal proc	duced (net ns)	activ	e number working e days (periods)	excludin	earners tors on g shut-	Aver- age num-	Number of man-shifts worked by wage earn- ers and	Tons of coal pro-
State and county	ber of strip pits				1.7%	in well-sup-		Sur	face	9.4	ber of full days	working proprietors	duced on active days per
	pius	Steam	Elec- tric	All others	Mined by stripping	Total at same mines	Under- ground	In strip pits	All others	Total	mines were active	on active days (ex- cluding shut-down periods)	man- shift
Iowa: Davis, Greene, Jasper, Monroe, Polk, Van Buren, Warren, and Webster Mahaska Marion Wapello	11 11 9 3	1 2	2 1	6 16 18 7	70, 331 227, 874 215, 023 72, 448	70, 331 227, 874 215, 023 72, 448		68 135 95 24	28 49 19 12	96 184 114 36	130 162 215 198	12, 510 29, 744 24, 496 7, 134	5. 62 7. 66 8. 78 10. 16
Total Iowa	34	3	3	47	585, 676	585, 676		322	108	430	172	73, 884	7. 93
Kansas: Bourbon Cherokee Crawford Labette and Linn Osage	7 15 3	5 3 9 2 4	2 2 2 13	4 3 1 1	147, 749 594, 555 1, 222, 725 8, 137 5, 411	147, 749 594, 555 1, 222, 725 8, 137 5, 411		70 122 307 10	16 83 204 3 4	86 205 511 13 20	173 257 163 166 115	14, 838 52, 739 83, 490 2, 161 2, 299	9. 96 11. 27 14. 65 3. 77 2. 35
Total Kansas Kentucky: Christian, Clay, Hopkins, and Whitley	33 5	23 1	17 2	9	1, 978, 577 793, 142	1, 978, 577 809, 899	16	525 93	310 50	835 159	186 197	155, 527 31, 320	12. 72 25. 86
Missouri: Barton Bates Boone Callaway Chariton, Clark, Dade, Howard, Jasper, Johnson, Lincoln, Macon, Monroe, Morgan, Randolph, and Warren	8 6 3 3	5 5 1 2	2 1	4 2 2 3	118, 833 590, 515 9, 767 130, 690	118, 833 580, 515 9, 767 130, 690		81 113 21 36	29 55 5 5 22	110 168 26 58	150 201 107 272	16, 530 33, 767 2, 775 15, 795	7. 19 17. 19 3. 52 8. 27
and Warren Henry Vernon	15 9 7	4 8 5	3 6	7 1 3	754, 986 635, 409 43, 355	754, 986 635, 409 43, 355		218 148 55	65 107 14	283 255 69	210 222 101	59, 533 56, 622 6, 987	12. 68 11. 22 6. 21
Total Missouri Montana, South Dakota, and Texas: Lignite North Dakota: Lignite.	51 7 30	30 4 7	12	22 2 16	2, 273, 555 75, 701 1, 343, 946	2, 273, 555 75, 701 1, 345, 873	5	672 32 305	297 20 186	969 52 496	198 150 217	192, 009 7, 769 107, 531	11. 84 9. 74 12. 52

Ohio: Belmont, Hocking, Holmes, Muskingum, Perry, and Portage. Carroll. Columbiana. Coshocton. Harrison Jackson Jefferson. Mahoning. Stark. Tuscarawas.	10 7 21 3 4 3 12 6 10 13 6	262 255 576 142	1 1 1 6 2	13 6 18 4 4 2 11 7 22 7	328, 066 155, 023 433, 507 25, 246 637, 861 48, 127 1, 401, 596 362, 176 443, 794 271, 937 63, 570	328, 066 173, 620 436, 199 43, 095 637, 861 48, 127 1, 401, 596 362, 176 445, 255 274, 611 63, 570	10 2 11 	82 78 92 21 81 27 297 93 131 101 47	38 19 30 9 83 6 158 17 27 31 8	120 107 124 41 164 33 455 110 160 138	223 205 •240 233 218 117 177 209 245 230 179	26, 731 21, 917 29, 745 9, 572 35, 831 3, 864 80, 326 22, 946 39, 162 31, 678 9, 843	12. 27 7. 92 14. 66 4. 50 17. 80 12. 46 17. 45 15. 78 11. 37 8. 67 6. 46
Total Ohio	95	42	11	98	4, 170, 903	4, 214, 176	31	1,050	426	1, 507	207	311, 615	13. 52
Oklahoma: Craig Haskell, Muskogee, Okmulgee, Rogers, Sequoyah,	3 11	11	1	4	8, 288	8, 288 492, 108		14	4	18	181	3, 253	2. 55
Tulsa, and Wagoner					492, 108			130	97	227	211	47, 871	10. 28
Total Oklahoma	14	11	4	7	500, 396	500, 396		144	101	245	209	51, 124	9. 79
Pennsylvania: Allegheny Armstrong, Cameron, Elk, and Lycoming Beaver Butler, Crawford, Lawrence, Mercer, and Ve-	15 5 9	6	i	15 3 28	378, 467 49, 299 586, 181	379, 019 49, 299 586, 181	8	185 26 156	50 13 91	243 39 247	113 118 243	27, 435 4, 595 59, 941	13. 82 10. 73 9. 78
nango Clarion Clearfield Fayette Jefferson Tioga Washington Westmoreland	7 5 9 16 4 4 13 7	1 2 7 9 2 5 2	1 2 3	12 12 6 11 4 11 18 8	140, 252 265, 328 122, 729 469, 556 60, 060 49, 663 772, 961 70, 343	149, 488 268, 071 156, 404 482, 083 65, 352 61, 501 1, 018, 778 159, 086	57 52 39 14 16 223 91	74 72 110 280 36 33 209 38	46 18 32 53 10 16 102 45	177 95 194 372 60 65 534 174	101 195 163 140 117 210 195 142	17, 948 18, 496 31, 679 52, 087 7, 038 13, 651 104, 376 24, 667	8. 33 14. 49 4. 94 9. 26 9. 29 4. 51 9. 76 6. 45
Total Pennsylvania	94	36	7	128	2, 964, 839	3, 375, 262	505	1, 219	476	2, 200	165	361, 913	9. 33
West Virginia: Brooke Hancock and Preston	6 3		1	11 7	331, 374 261, 543	331, 374 261, 543		184 85	53 18	237 103	120 209	28, 453 21, 486	11. 65 12. 17
Total West Virginia	9		1	18	592, 917	592, 917		269	71	340	147	49, 939	11.87
Wyoming: Campbell, Carbon, and Sheridan Converse	4 3	2	3	1	164, 662 13, 565	174, 971 13, 565	8	41 12	12 3	61 15	228 170	13, 891 2, 544	12. 60 5. 33
Total WyomingOther States ³	7 7	3 2	3 6	1 4	178, 227 1, 191, 733	188, 536 1, 222, 543	8 28	53 71	15 40	76 139	216 220	16, 435 30, 511	11. 47 40. 07
Total United States	587	208	184	524	87, 722, 588	88, 257, 581	645	8, 791	4, 487	13, 873	197	2, 738, 228	13. 97

¹ Number of power shovels shown represents equipment in use or available for use as of Jan. 1, 1940. Colorado, Montana (bituminous), Tennessee, Utah, and Washington.

Table 26.—Stripping operations of all types in the bituminous coal and lignite fields of the United States in 1940, by States and counties

[Returns for mines that recover coal both by stripping and by underground operations do not permit separating number of men engaged in stripping from those engaged in other work.

For this reason, figures for men employed represent all persons working at such mines, including those underground. Total tons produced by both methods at these same mines are also shown]

		Nur	nber of poshovels	ower		roduced tons)	1	verage n emplo		ſ	Aver-		
State and county	Num- ber of strip					m-4-1-4	TT 3	Sur	face		num- ber of days	Number of man-days worked	A verage tons per man per day
	pits	Steam	Electric	All others	Mined by stripping	Total at same mines	Under- ground	In strip pits	All others	Total	mines were active		day
Alabama: Bibb, Blount, Jefferson, Marion, and Walker	7 4	7 2	1	3	75, 641 25, 808	81, 641 25, 808	31	94 58	50 10	175 68	104 171	18, 212 11, 659	4. 48 2. 21
Illinois: Adams, Crawford, Edgar, Grundy, Hancock, Henry, Jackson, Knox, Livingston, Mc- Donough, Peoria, Randolph, Schuyler, Scott, and Will. Fulton La Salle Perry. St. Clair Saline Vermilion Williamson	21 8 7 4 3 4 4 4	2	20 20 2 13 5 5	22 6 9 4 9 4 6 5	3, 933, 224 3, 575, 553 207, 739 2, 676, 461 892, 346 1, 333, 420 218, 526 237, 986	3, 933, 224 3, 575, 535 207, 739 2, 676, 461 892, 346 1, 333, 420 218, 526 237, 986		630 268 88 365 108 160 41 69	498 438 53 277 66 98 32 40	1, 128 706 141 642 174 258 73 109	229 222 180 223 218 263 125 147	258, 303 156, 473 25, 439 143, 277 37, 881 67, 948 9, 142 16, 072	15. 23 22. 85 8. 17 18. 68 23. 56 19. 62 23. 90 14. 81
Total Illinois	54	3	65	65	13, 075, 255	13, 075, 255		1, 729	1, 502	3, 231	221	714, 535	18. 30
Indiana: Clay Daviess, Knox, Parke, and Spencer Fountain Greene Owen Pike Sullivan Vermillion Vigo Warrick	31 6 5 9 3 15 8 4 6	3 2 5 6 2 2	6 2 9 	46 7 6 8 5 17 11 3 6	1, 275, 038 289, 138 52, 757 1, 569, 338 25, 981 3, 495, 567 484, 227 224, 961 1, 283, 842 1, 338, 229	1, 275, 038 289, 138 52, 757 1, 569, 338 30, 992 3, 495, 567 484, 227 224, 961 1, 283, 842 1, 338, 229	5	414 67 25 222 24 449 100 57 116 277	255 59 18 282 18 466 106 42 248 140	669 126 43 504 47 915 206 99 364 417	172 180 132 200 61 208 153 169 212 164	115, 062 22, 741 5, 667 101, 000 2, 879 189, 924 31, 504 16, 699 77, 074 68, 506	11. 08 12. 71 9. 31 15. 54 10. 76 18. 41 15. 37 13. 47 16. 66 19. 53
Total Indiana	96	21	46	121	10, 039, 078	10, 044, 089	5	1, 751	1, 634	3, 390	186	631, 056	15. 92

Iowa: Davis, Greene. Jasper, Monroe, Polk, Van Buren, Warren, and Webster Mahaska. Marion Wapello Total Iowa	14 13 13 4			13 19 21 8	79, 008 315, 159 252, 095 79, 650 725, 912	79, 008 315, 159 252, 095 79, 650 725, 912		85 159 97 29	41 63 39 21	126 222 136 50 534	104 180 228 192	13, 139 39, 870 30, 976 9, 612	6. 01 7. 90 8. 14 8. 29
Kansas:				- 01	720, 912	720, 912	====	370	104		175	90,091	
Bourbon. Cherokee Crawford Labette Linn and Osage	4 5 17 4 5	3 3 14 2 3	2 7 15	1 2 3 2 3	153, 234 499, 213 1, 381, 995 16, 413 704, 849	153, 234 499, 213 1, 381, 995 16, 413 704, 849		37 62 290 18 67	31 142 264 3 76	68 204 554 21 143	192 165 168 156 239	13, 024 33, 636 92, 805 3, 284 34, 108	11. 77 14. 84 14. 89 5. 00 20. 67
Total Kansas	35	25	26	11	2, 755, 704	2, 755, 704		474	516	990	179	176, 857	15. 58
Kentucky: Christian and Hopkins Laurel and Whitley	4 3	2 2	4	4	850, 187 12, 288	857, 764 12, 288	7	79 21	84 15	170 36	177 99	30, 145 3, 576	28. 45 3. 44
Total Kentucky	7	4	4	5	862, 475	870, 052	7	100	99	206	164	33. 721	25. 80
Missouri: Barton Bates Boone, Clark, Dade, Howard, Jasper, Johnson, Lafavetta, Lincoln, Mosco, Miller, Monroe	8 7	7 5	2	4	182, 482 100, 033	182, 482 100, 033		68 74	27 18	95 92	135 113	12, 824 10, 403	14. 23 9. 62
Lafayette, Lincoln, Macon, Miller, Monroe, Morgan, Ralls, Randolph, and Saline Callaway Henry Vernon	4	5 3 7 7	5 6	15 3 4 2	832, 355 150, 136 653, 146 62, 694	832, 355 150, 136 653, 146 62, 694		185 37 209 45	109 23 94 11	294 60 303 56	185 267 213 156	54, 326 16, 030 64, 521 8, 728	15. 32 9. 37 10. 12 7. 18
Total Missouri Montana and Texas: Lignite North Dakota: Lignite	5	34 2 6	13	28	1, 980, 846 44, 916 1, 405, 590	1, 980, 846 44, 916 1, 405, 590		618 24 371	282 1 144	900 25 515	185 104 206	166, 832 2, 599 105, 868	11. 87 17. 28 13. 28
Ohio: Belmont, Gallia, Hocking, Holmes, Lawrence, Portage, and Wayne Carroll. Columbiana Coshocton. Harrison Jackson Jefferson Mahoning Muskingum Perry	5 12 3 5 5 12 9	1 2 1 2 3 1 5 7 2	1 2 4 1 1 1	10 8 24 2 8 4 18 10 11	184, 160 135, 481 505, 691 22, 954 720, 412 36, 029 1, 735, 643 306, 673 64, 800 207, 595	64, 800	·	107 49 116 14 126 38 282 111 23 40	28 14 18 8 59 9 219 21 12 25	136 90 134 34 185 47 501 132 35 65	161 276 246 222 195 97 199 265 195 225	21, 949 24, 840 33, 009 7, 558 36, 013 4, 576 99, 501 34, 965 6, 819 14, 601	8. 42 7. 02 15. 32 6. 09 20. 00 7. 87 17. 44 8. 77 9. 50

Table 26.—Stripping operations of all types in the bituminous coal and lignite fields of the United States in 1940, by States and counties—Con.

	N T	Nu	nber of p shovels	ower		oduced tons)		verage r empl		e.	A ver-		
State and county	Num- ber of strip							Sur	face		num- ber of days	Number of man-days worked	A verage tons per man per
	pits	Steam	Electric	All others	Mined by stripping	Total at same mines	Under- ground	In strip pits	All others	Total	mines were active	7.	day
Ohio—Continued. Stark	10 21 6	6 3	2	28 24 4	717, 638 351, 900 58, 621	717, 638 352, 870 58, 621	1	143 139 39	79 34 15	222 174 54	293 232 220	65, 022 40, 354 11, 868	11. 04 8. 74 4. 94
Total Ohio	105	33	11	159	5, 047, 597	5, 111, 133	41	1, 227	541	1, 809	222	401, 075	12. 74
Oklahoma: Coal, Haskell, Muskogee, Rogers, Sequoyah, Tulsa, and Wagoner	11 3	10	5	4 3	611, 312 10, 329	611. 312 10, 329		173	84	257 14	186 172	47, 792 2, 404	12. 79 4. 30
Total Oklahoma	14	11	5	7	621, 641	621, 641		183	88	271	185	50, 196	12. 38
Pennsylvania: Allegheny Armstrong Beaver Butler Cambria, Cameron, Crawford, Elk, Lawrence, Lycoming, McKean, Mercer, Tioga, and Ve-	20 4 12 4	2	2	24 8 25 6	515, 938 203, 775 604, 714 169, 954	516, 012 493, 401 604, 714 169, 954	1 266	229 77 200 86	86 35 71 26	316 378 271 112	149 212 214 142	47, 017 80, 017 57, 960 15, 869	10. 98 6. 17 10. 43 10. 71
nango Center Clarion Clearfield Fayette Jefferson Somerset W ashington Westmoreland	15 3 8 13 18 4 3 16	5 4 5 2	5	22 4 19 13 18 5 5 18	351, 400 33, 002 491, 148 222, 221 410, 191 243, 402 13, 061 833, 588 137, 768	355, 892 58, 576 491, 148 286, 071 488, 929 250, 989 13, 061 1, 176, 004 139, 742	23 12 108 147 16 247 14	124 58 153 155 248 57 34 165	58 16 58 57 60 21 9 124 41	205 86 211 320 455 94 43 536	157 175 170 139 89 182 45 218	32, 245 15, 012 35, 934 44, 534 40, 646 17, 091 1, 930 117, 090 9, 486	11. 04 3. 90 13. 67 6. 42 12. 03 14. 69 6. 77 10. 04 14. 73
Total Pennsylvania. South Dakota: Lignite	130 8	29	7	181 2	4, 230, 162 61, 802	5, 044, 493 61, 802	834	1, 685	662 9	3, 181 48	162 188	514, 831 9, 023	9. 80 6. 85

-	
н	
~	
Ħ	
ς	
H	
ッ	
ನ	
\mathbf{z}	
▭	
ğ	
COAL	
∺	
ຼ	
_	
C	
➣	
BA	
2	
◡	
_	
믚	
Ω	
7	
2	
3	
3	

West Virginia: Brooke	6 4			15 8	568, 914 304, 669	568, 914 304, 669		72 55	43 28	115 83	199 211	22, 916 17, 486	24. 83 17. 42
Total West Virginia Wyoming: Campbell, Carbon, Converse, and Sheridan Other States '	10 5 6	2 1	2 4	23 2 6	873, 583 177, 920 1, 163, 406		40	127 49 84	71 14 43	198 63 167	204 218 202	40, 402 13, 758 33, 667	21. 62 12. 93 35. 64
Total United States	638	180	194	697	43, 167, 336	44, 100, 152	958	8, 983	5, 830	15, 771	191	3, 017, 888	14, 61

¹ Colorado, Montana (bituminous), Tennessee, Virginia, and Washington.

Table 27.—Summary of operations of power strip pits proper in the bituminous coal and lignite fields of the United States in 1939, by States

		Nu	mber of p shovels 1	ower		Average number		
State	Num- ber of strip pits	Steam	Electric	All others	Net tons mined by stripping 2	of wage earners and working proprietors on active days (ex- cluding shut-down periods)	A verage number of full days mines were active	Tons of coal produced on active days per man-shift
Power strip pits proper: Alabama Arkansas Illinois Indiana Iowa Kansas Kentucky Missouri North Dakota (lignite) Ohio Oklahoma Pennsylvania West Virginia Wyoming Other States 3	6 3 45 82 31 31 3 45 14 85 13 67 8 8	3 3 10 27 7 3 23 30 7 39 11 24	66 44 3 17 2 12 12 8 11 4 7 1 3 6	4 1 51 1112 47 9 3 22 16 96 7 105 18	61, 611 13, 171 12, 065, 935 8, 889, 021 572, 058 776, 207 2, 245, 286 1, 308, 097 4, 104, 451 499, 176 2, 441, 446 590, 359 162, 123 1, 245, 291	125 28 2, 827 3, 302 404 826 119 929 444 1, 388 243 1, 332 337 53 111	105 130 236 196 173 187 219 200 227 207 208 169 147 229 216	4, 70 3, 63 18, 07 13, 77 8, 20 12, 80 29, 85 12, 08 14, 21 9, 85 10, 88 11, 93 13, 33 52, 00
Total	443	189	184	496	36, 948, 790	12, 478	202	14. 68
Mines combining strip- ping and underground methods in same op-	11				183, 888	265	146	4. 77
erations 4	23	17		28	589, 905	⁵ 1, 130	5 162	⁵ 6. 14
Grand total	537	206	184	524	37, 722, 583	5 13, 873	5 197	⁸ 13. 97

Number of power shovels shown represents equipment in use or available for use as of Jan. 1, 1940.
 Excludes coal produced by underground mining conducted in same operation.
 Colorado, Montana (bituminous), South Dakota (lignite), Tennessee, and Texas (lignite).
 Includes operations in Arkansas, Kentucky, North Dakota (lignite), Ohio, Pennsylvania, Tennessee, Washington, and Wyoming, in which output was obtained by both methods. In addition to the 589,905 tons produced by stripping, this group of 23 mines obtained 534,948 tons by underground methods—their total production by both methods being 1,124,853 tons.
 Includes data on underground mining conducted in same operation.

Table 28.—Summary of operations of power strip pits proper in the bituminous coal and lignite fields of the United States in 1940, by States

State	Num- ber of	Nur	nber of postories	ower	Net tons	Num- ber of	Average number of days	Average
Coate	strip pits	Steam	Electric	All others	mined by stripping 1	men em- ployed	mines were active	per mar per day
Power strip pits proper:								
Alabama	4	5	1	3	60, 266	122	91	5. 4
Illinois	51	3	65	65	13, 069, 265	3, 217	222	18. 33
Indiana	86	21	46	119	10, 020, 242	3, 356	187	15. 98
Iowa	40		4	61	719, 529	514	176	7. 90
Kansas	34	25	26	11	2, 754, 504	985	179	15.60
Kentucky	6	3	3	5	853, 038	193	164	26. 9
Missouri	54	34	13	28	1, 972, 321	890	185	11.9
North Dakota (lignite)	19	6	6	23	1, 355, 634	418	225	14. 4
OhioOklahoma	95 14	31	11	156	4, 947, 506	1,690	219	13. 3
Pennsylvania		11 21	5	7	621, 641	271	185	12.3
West Vincinia		21	7	163	3, 704, 489	1,920	151	12.7
West Virginia Wyoming	10			23	873, 583	198	204	21. 62
Other States 2	8	2 5.	2	2	168, 360	58	214	13. 60
Other States	8	Э.	4	6	1, 257, 715	206	189	32. 2
Total	532	167	193	672	42, 378, 093	14, 038	193	15. 63
Horse stripping operations	76				164, 339	260	148	4. 2
Mines combining stripping and							1	
underground methods in same						1.		
operations 3	30	13	1	25	624, 904	4 1, 473	4 182	4 5. 80
Grand total	638	180	194	697	43, 167, 336	415, 771	4 191	4 14. 61

¹ Excludes coal produced by underground mining conducted in same operation.

² Arkansas, Colorado, Montana (bituminous), South Dakota (lignite), Tennessee, Texas (lignite), and Virginia.

³ Includes operations in Alabama, Indiana, Kentucky, Ohio, Pennsylvania, and Washington, in which output was obtained by both methods. In addition to the 624,904 tons produced by stripping, this group of 30 mines obtained 932,816 tons by underground methods—their total production by both methods being 1,557,720 tons.

⁴ Includes data on underground mining conducted in same operation.

POWER DRILLING

Table 29.—Summary of operations of underground bituminous coal and lignite mines in the United States in 1940, where shot holes were power-drilled

		ber of			Nur	nber of	power d	rills			Production	in working p	laces where	Total produ	etion from m r drills (net t	ines using
	mines power	drills		Elec	etric		,	Compre	ssed air		tons)	s word power		powe	r aruis (net t	ons)
State	In coal and coal and rock	In rock only	In coal only	In coal and rock	In rock only	Total	In coal only	In coal and rock	In rock only	Total	Electric drills	Compressed- air drills	Total	In coal and coal and rock	In rock only	Total
Alabama Arkansas Colorado Illinois Indiana Iowa Kansas Kentucky Maryland Montana (bituminous coal) North Dakota (lignite) Ohio Oklahoma Pennsylvania Tennessee Utah Virginia Washington West Virginia Wyoming Other States 3 Undistributed	13 20 27 18	28 (1) 28 3 (1) 8 (1) 67 6 15 70	413 21 183 884 149 10 1 774 45 10 155 3 812 47 706 131 75 914 333 38	255 1 49 75 31 3 35 2 6 80 2 206 3 3 3 3 8 8 286 36	15 22 5 10 3 53 7 4 1 16 3 163 3 111	683 44 237 969 183 10 4 802 18 15 46 10 251 18 1, 181 109 145 83 1, 286 372 44	11 10 42 12 34 8	1 5 5 5 9 1 1 7 3	87 48 20 24 5 114 1 1 394 13 48 25 264 7 12	91 51 20 35 5 125 5 1 1 7 13 495 20 106 279 41	8, 458, 206 (1) 2, 735, 014 30, 998, 780 7, 459, 670 143, 049 30, 800 24, 134, 969 (1) 68, 569 1, 540, 861 (1) 37, 965, 496 (3, 271, 097 (1) 581, 317 49, 790, 492 (1) 309, 667 21, 659, 112	70, 939 (1) 177, 751 408, 761 (1) 5, 141, 456 (1) (1) 690, 942 751, 829 (1) 64, 667 241, 941	8, 529, 145 284, 736 2, 735, 014 31, 176, 531 7, 459, 670 143, 049 30, 800 24, 543, 730 68, 569 1, 540, 861 387, 327 8, 782, 661 44, 056 43, 106, 952 1, 051, 1097 5, 986, 098 1, 272, 259 50, 542, 321 5, 498, 967	12, 502, 257 389, 478 3, 457, 224 (1) 7, 470, 178 334, 268 30, 800 34, 909, 791 (1) 1, 548, 661 402, 951 12, 255, 946 (1) 58, 152, 787 2, 014, 183 3, 286, 766 7, 809, 602 1, 440, 276 74, 137, 116 5, 517, 116 5, 517, 116 5, 517, 116 5, 517, 129 32, 411, 722	963, 838 753, 376 1, 148, 706 (1) 5, 294, 433 227, 951 (1) 23, 061, 316 1, 400, 464 3, 497, 059 24, 484, 832 453, 407 1, 062, 708	13, 466, 095 1, 142, 852 4, 605, 930 32, 946, 429 7, 470, 178 334, 288 30, 800 40, 204, 224 507, 661 326, 632 1, 548, 632 11, 788, 105 201, 369 81, 214, 103 3, 423, 647 3, 286, 766 11, 306, 661 11, 440, 276 98, 621, 948 5, 517, 948 1, 1087, 026
Total	923	249	5, 118	1, 088	407	6, 613	210	79	1, 089	1, 378	189, 534, 426	7, 548, 186	197, 082, 612	259, 074, 487	62, 890, 249	321, 964, 736

¹ Included under "Undistributed." ² Alaska, Missouri, and New Mexico.

MECHANICAL LOADING

The quantity of coal loaded mechanically at underground mines in the United States continued to advance sharply in 1939 and 1940. There were 85,092,836, 110,711,970, and 147,870,252 net tons mechanically loaded at bituminous coal and lignite mines during 1938, 1939, and 1940, respectively, and 10,151,669, 11,773,833, and 12,326,-000 net tons mechanically loaded at Pennsylvania anthracite mines. The percentage of total underground bituminous coal and lignite production that was mechanically loaded increased from 27 in 1938 to 31 in 1939 and 35 in 1940. Detailed statistics on mechanical loading are given in the following tables (30-37). Data in these tables pertain to underground mines and do not include strip mines or equipment used for handling coal on the surface.

Table 30 .- Units of mechanized loading equipment sold to bituminous coal, lignite, and Pennsylvania anthracite mines in the United States, 1934-41, as reported by manufacturers 1

Type of equipment	1934	1935	1936	1937	1938	1939	1940	1941	Percent of increase or decrease, 1941 from 1940
Mobile loaders	55	115	344	292	241	292	233	368	+57.9
	34	22	28	29	10	26	39	11	-71.8
	610	681	994	1, 095	990	1, 311	1, 762	2, 130	+20.9
	26	28	11	32	139	2	3	10	+233.3

Data for 1934-37 include reports from 28 manufacturers; data for 1938, 1939, 1940, and 1941 include reports from 29, 31, 32, and 32 manufacturers, respectively.
 Reported as scrapers or scraper haulers and hoists.
 Includes hand-loaded conveyors and those equipped with duckbills and other self-loading heads. As sales of both loading heads and shaker conveyors are counted, figures involve a certain measure of overlap that cannot be determined accurately. It should also be noted that a small number of conveyors were for use in conjunction with mobile loading machines.

Table 31.—Sales of mechanized loading equipment in the United States in 1941, compared with total number of machines in active use in preceding years

	1	Numb	er of m	achine	s in act oper	ive use, s stors ¹	as report	ed by mi	ne	1941 Number of ma-
Type of equipment	1931	1932	1933	1934	1935	1936	1938	1939	1940	chines sold, as reported by manu- facturers
Bituminous coal and lig- nite mines: Mobile loading ma-										
chines Scrapers Pit-car loaders	583 146 3, 428	548 128 3, 112	523 93 2, 453	534 119 2, 288	657 78 2, 098	980 106 1,851	1, 405 117 1, 392	1, 573 131 873	1, 720 116 697	367 8 10
Conveyors equipped with duckbills and other self-loading heads Hand-loaded convey-	165	159	132	157	179	234	346	559	656	(2)
ors—number of units. Anthracite mines (Pennsylvania):	(3)	(3)	525	574	670	936	1, 526	1, 834	2, 263	4 1, 800
Mobile loading ma- chines	5 457 28	11 479 24	18 455 19	14 517 25	507 22	(8) 7 504 (6)	(6) 545 (6)	(6) 535 (6)	(6) 7 547 (6)	1 3
Conveyors equipped with duckbills and other self-loading heads	1	17	12	13	30	(6)	-4(0)	(6)	(6)	(2)
Hand-loaded convey- ors—number of units.	547	818	940	1, 338	1, 563	8 1, 790	1,831	• 1, 997	8 2, 189	4 330

¹ Data for bituminous coal and lignite mines for 1937 not available. Minerals Yearbook, 1939, p. 357, shows for 1937 in the anthracite mines 539 scrapers and 1,855 conveyors and pit-car loaders including a few mobile loaders.
¹ Included with hand-loaded conveyors.
¹ Number of units not reported.
¹ Reported as face conveyors (hand-loaded), "shaker drives," and "duckbills." Figures for number sold not exactly comparable with number in use in 1940, because of uncertainties in defining what constitutes a conveyor and because of certain overlaps in reporting duckbill loading heads and shaker conveyors.
¹ Included with scrapers.
¹ Included with hand-loaded conveyors.
¹ Includes mobile loading machines.
¹ Includes pit-car loaders and conveyors equipped with duckbills or self-loading heads.
¹ Includes mobile loaders, pit-car loaders, and conveyors equipped with duckbills or self-loading heads.
¹ Includes mobile loaders, pit-car loaders, and conveyors equipped with duckbills or self-loading heads.

Table 32.—Comparison of mobile loaders, scrapers, and conveyors in actual use in coal mines in the United States, 1939-40, and sales reported in 1941, by States and regions

	Mo	bile loa	ders		Scraper	s	Co	nveyor	'S 1
State and region	In us	e in—	Sales	In us	e in—	Sales	In us	e in	Sales
	1939	1940	in 1941	1939	1940	in 1941	1939	1940	in 1941
BITUMINOUS COAL AND LIGNITE									
Northern Appalachian States: Pennsylvania	213	296	80	30	25	4	526 48	613	237 16
Ohio		109	31		2		50 1	104	145
Alabama Kentucky Tennessee	68	25 101 2	22 37 2	45 3	46		193 161 62	245 210 57	142 212
West Virginia. Virginia Middle Western States:	331	363 33	107 5	7	7	4	586 39	832 58	712 66
Middle Western States: Illinois. Indiana. Trans-Mississippi States ³ .	540 138 137	519 130 142	65 8 10	46	36		29 26 672	26 21 726	99 2 120
Total bituminous coal and lignite	1, 573	1, 720	367	131	116	- 8	2, 393	2, 919	1, 800
ANTHRACITE									
Pennsylvania	(1)	(5)	1	535	5 547	` 3	41,997	2, 189	330
Grand total	1, 573	1, 720	368	666	663	11	4, 390	5, 108	2, 130

Table 33.—Bituminous coal and lignite mechanically loaded underground in the United States, 1938–40, by types of machines

Managar day a kina	1938		1939		1940	
Type of machine	Net tons	Percent	Net tons	Percent	Net tons	Percent
Mobile loading machines Scraper loaders Conveyors equipped with	57, 824, 252 1, 030, 468	68. 0 1. 2	76, 441, 608 1, 007, 029	69. 0 . 9	100, 961, 745 1, 255, 396	68.3
duckbills and other self- loading devices	4, 248, 434 5, 652, 562 16, 337, 120	5. 0 6. 6 19. 2	6, 759, 027 5, 038, 539 21, 465, 767	6. 1 4. 6 19. 4	10, 361, 694 3, 979, 209 31, 312, 208	7. 0 2. 7 21. 2
Total loaded mechan- ically	85, 092, 836	100. 0	110, 711, 970	100.0	147, 870, 252	100.0

Includes hand-loaded conveyors and conveyors equipped with duckbills or other self-loading heads.
 Includes North Carolina.
 Includes Arkansas, Colorado, Iowa, Kansas, Montana (bituminous coal), New Mexico, North Dakota (lignite), Oklahoma, Utah, Washington, and Wyoming.
 Mobile loaders and pit-car loaders included with conveyors.
 Mobile loaders included with scrapers.

Table 34.—Mechanical loading underground in bituminous coal and lignile mines in the United States in 1939, by States
[Includes all soft-coal mines that produced any part of their tonnage with the aid of mechanical loading devices in 1939]

	r	Number	of mines	3		Nun	iber of mac	hines		Productio	n mechanics (net tons)	ally loaded	Total prod	uction at m ading device	ines using mes (net tons	echanical
State	Using loading machines only 1	Using con- veyors only ²	Using both loading machines and conveyors	Total	Mobile load- ing ma- chines	Scrap- ers	Convey- ors equipped with duckbills and other self-load- ing de- vices	Pit-car	Hand- loaded con- vey- ors ³		Handled by con- veyors 3	Total	Mines using loading machines only i	Mines using conveyors only 2	Mines using both loading machines and conveyors	Total
Alabama Arkansas Colorado Illinois Indiana Iowa Kansas Kentucky Maryland Michigan Montana (bitumi-	12 2 23 43 18	16 23 16 8 11 3	10 1 3 18 4	38 26 42 69 33 3 1 69 3	16 3 18 540 138	45 12	20 106 	28 15 302 36 65	173 68 80 29 26 6	1, 041, 038 117, 536 1, 328, 117 24, 842, 466 6, 063, 606 (4) 3, 643, 893	1, 867, 707 530, 697 534, 955 1, 727, 733 324, 645 66, 422 1, 451, 735 (4)	2, 908, 745 648, 233 1, 863, 072 26, 570, 199 6, 388, 251 66, 422 (1) 5, 095, 628 (4)	2, 759, 321 (4) 2, 208, 448 19, 317, 449 5, 638, 768 (4) 8, 232, 794	2, 590, 053 501, 729 525, 722 464, 363 187, 521 152, 105 5, 484, 520 (4)	3, 495, 565 (4) 396, 711 7, 948, 277 831, 987 2, 921, 240	8, 844, 939 697, 669 3, 130, 881 27, 730, 089 6, 658, 276 152, 105 (4) 16, 638, 554 (4) (4)
nous coal) New Mexico North Dakota (lig-	5 2		1	6 2	46 3	13	2	1		(4)	(4)	1, 405, 393 (4)	(4) (4)		(1)	1, 405, 393 (4)
nite) Ohlo Oklahoma Pennsylvania Tennessee Utah Virginia Washington West Virginia Wyoming Undistributed East of Mississippi	1 12 3 43 1 8 13 1 67	13 8 49 9 5 4 6 75 3	4 1 12 4 1 1	1 29 12 104 14 14 17 7 186 24	3 91 213 8 34 31 331 29	13 30 7 8	35 5 15 2 5 79 201	216 	36 22 491 57 43 37 80 507 44	(4) 5, 071, 153 46, 339 10, 590, 180 (4) 2, 135, 610 1, 598, 130 (9) 21, 450, 142 4, 309, 930	351, 647 257, 878 7, 098, 454 (4) 324, 096 835, 277 (4) 9, 028, 992 584, 145	(4) 5, 422, 800 304, 217 17, 688, 634 602, 191 2, 459, 706 2, 433, 407 710, 603 30, 479, 134 4, 894, 075	2, 306, 547 3, 873, 885 (4)	944, 580 254, 350 12, 351, 151 999, 272 (4) 1, 022, 853 (4) 15, 799, 787 169, 671	161, 816 (4) 6, 138, 189 (4) (4) 17, 178, 475 1, 955, 300	(4) 7, 732, 560 305, 175 39, 974, 172 1, 747, 407 2, 941, 364 4, 896, 738 850, 601 56, 529, 135 4, 959, 240
River West of Mississippi River										1, 969, 524	832, 217 687, 706	314, 984 456, 276	2, 161, 851	1, 862, 169	1, 114, 600	599, 481 653, 435

Total: 1939 1938 Percent change, 1939	304	275	122	701	1, 573	131	559	873	1,834	84, 207, 664	26, 504, 306	110, 711, 970	100, 995, 201	43, 309, 846	42, 142, 160	186, 447, 207
	275	270	100	645	1, 405	117	346	1, 392	1,526	63, 103, 154	21, 989, 682	85, 092, 836	74, 471, 291	41, 603, 659	31, 409, 299	147, 484, 249
Percent change, 1939 from 1938	+10.5	+1.9	+22.0	+8.7	+12.0	+12.0	+61.6	-37.3	+20.2	+33.4	+20.5	+30.1	+35.6	+4.1	+34.2	+26.4

¹ Includes those mines in which all the tonnage mechanically loaded was obtained with machines that substantially eliminate hand shoveling, that is, mobile loaders, scrapers, and conveyors equipped with duckbills and other self-loading heads. Some mines in this class also use conveyors in conjunction with mobile loaders to perform initial phase of transportation.

2 Includes those mines in which all the tonnage mechanically loaded was obtained with hand-loaded conveyors and pit-car loaders.

3 Number of units.

Included under "Undistributed" to avoid disclosing individual operations.

Table 35.—Mechanical loading underground in bituminous coal and lignite mines in the United States in 1940, by States
[Includes all soft-coal mines that produced any part of their tonnage with the aid of mechanical loading devices in 1940]

	1	Number	of mines			Num	ber of mac	hines		Production	n mechanica (net tons)	ally loaded	Total produ	uction at mi ading devic	nes using m es (net tons)	echanical)
State	Using loading ma- chines only ¹	Using con- veyors only ²	Using both loading ma- chines and con- veyors	Total	Mobile load- ing ma- chines	Scrap- ers	Conveyors equipped with duckbills and other self-load- ing de- vices	Pit-car loaders	Hand- loaded con- vey- ors ³	Loaded by machines 1	Handled by con- veyors ²	Total	Mines using loading machines only 1	Mines us- ing con- veyors only ²	Mines using both loading machines and conveyors	Total
Alabama Arkansas Colorado Illinois Indiana Lowa Kentucky Maryland Michigan	16 2 23 49 19 1 42	17 29 22 5 8 3 26 3	9 4 11 4	42 31 49 65 31 4 77 3	25 20 519 130	1	9 113 6 91	38 1 209 27 48	236 80 95 26 15 11 119 22 5	1, 603, 194 (4) 1, 868, 794 28, 156, 030 7, 176, 040 (4) 5, 494, 346	3, 401, 717 (4) 683, 932 1, 364, 457 230, 880 (4) 1, 656, 208 (4) (4)	5, 004, 911 945, 052 2, 552, 726 29, 520, 487 7, 406, 920 132, 947 7, 150, 554 (4)	4, 417, 139 (4) 2, 462, 176 22, 460, 677 6, 475, 652 (4) 9, 392, 388	4, 146, 343 (4) 806, 032 378, 424 118, 045 (4) 7, 560, 746 (4)	4, 136, 397 517, 548 7, 739, 406 837, 248 3, 031, 280	12, 699, 879 945, 881 3, 785, 756 30, 578, 507 7, 430, 945 322, 102 19, 984, 414 (4)
Montana (bitumi- nous coal) New Mexico North Dakota (lig-	5 2		2 1	7 3	48 8	13	2	6	i	(4) (4)	(4) (4)	1, 511, 123 (4)	(4) (4)		(f)	1, 519, 661 (4)
nite) Ohio Oklahoma Pennsylvania Tennessee Utah Virginia Washington West Virginia Wyoming Undistributed:	2 20 1 64 1 10 12 4 89	13 11 50 14 6 4 7 93 3	3 18 3 2 46 12	2 36 12 132 18 16 18 11 228 25	3 109 296 2 31 33 1 363 31	2 2 25 25 1 7	1 49 46 6 16 5 8 98 206	236 	55 28 567 51 41 53 75 734 49	(4) 7, 750, 819 (4) 18, 031, 402 93, 601 2, 519, 675 1, 996, 634 62, 000 30, 878, 128 4, 799, 234	493, 023 (4) 9, 203, 654 622, 215 353, 285 1, 111, 788 733, 494 13, 100, 403 571, 885	(4) 8, 243, 842 422, 692 27, 235, 056 715, 816 2, 872, 960 3, 108, 422 795, 494 43, 978, 531 5, 371, 119	(4) 10, 628, 539 (4) 34, 285, 988 (4) 2, 625, 496 4, 317, 934 321, 436 35, 531, 433 2, 517, 545	920, 610 (4) 15, 793, 581 1, 758, 163 588, 789 (4) 767, 610 23, 507, 697 150, 505	605, 071 6, 912, 560 (4) (4) 16, 016, 364 2, 776, 369	(4) 12, 154, 220 429, 544 56, 992, 129 2, 460, 835 3, 214, 285 5, 831, 090 1, 089, 046 75, 055, 494 5, 444, 419
East of Mississippi River West of Mississippi River										2, 148, 938	388, 831 1, 375, 645	388, 831 512, 769	2, 446, 886	1, 840, 897 1, 536, 685	1, 051, 473	667, 26 775, 65

Total: 1940	372 304	315 275	124 122	811 701	1, 720 1, 573	116 131	656 559	697 873		112, 578, 835 84, 207, 664	35, 291, 417 26, 504, 306	147, 870, 252 110, 711, 970	137, 883, 289 100, 995, 201	59, 874, 127 43, 309, 846	43, 623, 716 42, 142, 160	241, 381, 132 186, 447, 207
Percent change, 1940 from 1939	+22.4	+14.5	+1.6	+15.7	+9.3	-11.5	+17.4	-20. 2	+23.4	+33.7	+33. 2	+33.6	+36.5	+38.2	+3.5	+29.5

¹ Includes those mines in which all the tonnage mechanically loaded was obtained with machines that substantially eliminate hand shoveling, that is, mobile loaders, scrapers, and conveyors equipped with duckbills and other self-loading heads. Some mines in this class also use conveyors in conjunction with mobile loaders to perform initial phase of transportation.

² Includes those mines in which all the tonnage mechanically loaded was obtained with hand-loaded conveyors and pit-car loaders.

³ Number of units.

⁴ Included under "Undistributed" to avoid disclosing individual operations.

Table 36.—Comparative changes in underground mechanical loading of bituminous coal and lignite in the United States, 1939-40, by principal types of machines and by States

	19	39 (net ton	s)	194	10 (net tons	s)	Increase or decrease, 1940 from 1939						Percent handled by each class			
Canada								Net tons			Percent		19	39	19	40
State	Loaded by ma- chines ¹	Handled by con- veyors ²	Total	Loaded by ma- chines ¹	Handled by con- veyors ²	Total	Loaded by ma- chines ¹	Handled by con- veyors ²	Total	Load- ed by ma- chines ¹	Han- dled by con- vey- ors ²	Total	Load- ed by ma- chines!	Han- dled by con- vey- ors ²	Load- ed by ma- chines!	Han- dled by con- vey- ors ²
Alabama Arkansas Colorado Illimois Indiana Iowa Kansas	1, 041, 038 117, 536 1, 328, 117 24, 842, 466 6, 063, 606	530, 697 534, 955	2, 908, 745 648, 233 1, 863, 072 26, 570, 199 6, 388, 251 66, 422	(4) 1, 868, 794 28, 156, 030 7, 176, 040	(4) 683, 932	945, 052 2, 552, 726 29, 520, 487	+1, 284 +540, 677 +3, 313, 564	-363, 276	+296, 819 +689, 654 +2, 950, 288	+1.1 +40.7 +13.3 +18.3	(4) +27.8 -21.0 -28.9	+72. 1 +45. 8 +37. 0 +11. 1 +15. 9 +100. 2	18. 1 71. 3 7 93. 5 7 94. 9	\$ 81. 9 \$ 28. 7 \$ 6. 5 \$ 5. 1 100. 0	73. 2 7 95. 4 9 96. 9	6 26. 8 8 4. 6
Kentucky Maryland Michigan Montana (bituminous	3, 643, 893	1, 451, 735 (4) (4)	5, 095, 628 (4) (4)		1, 656, 208 (4) (4)	(9)	+1, 850, 453	(4)	+2,054,926 (4) (4)	+50.8 (1) (1)	(4)	+40.3 (4) (4)	71. 5	28. 5 100. 0 100. 0		100. 0 100. 0
New Mexico	(1)	(4)	1, 405, 393 (4)	(4)	8	1, 511, 123 (4)	(1)	(9)	+105, 730 (4)	(4)	(4)	+7.5 (4)	100.0		(3)	(()
nite) Ohio Ohio Ohio Oklahoma Pennsylvania Tennessee Utah Virginia Washington West Virginia Wyoming Undistributed:	2, 135, 610 1, 598, 130	257, 878 7, 098, 454 (4) 324, 096 835, 277 (4) 9, 028, 992	2, 433, 407 710, 603 30, 479, 134	(4) 18, 031, 402 93, 601 2, 519, 675 1, 996, 634 62, 000 30, 878, 128	9, 203, 654 622, 215 353, 285 1, 111, 788 733, 494 13, 100, 403	422, 692 27, 235, 056 715, 816 2, 872, 960 3, 108, 422 795, 494 43, 978, 531	(4) +7, 441, 222 (4) +384, 065 +398, 504 (4) +9, 427, 986	(4) +2, 105, 200 (4) +29, 189 +276, 511 (4) +4, 071, 411	+118, 475 +9, 546, 422 +113, 625 +413, 254 +675, 015 +84, 891 +13, 499, 397	(4) +70. 2 (4) +18. 0 +24. 9 (4) +44. 0	(4) +29.7 (4) +9.0 +33.1 (4)	+38.9 +54.0 +18.9 +16.8 +27.7 +11.9 +44.3	11 15. 2 9 59. 9 (4) 10 86. 8 9 65. 7 (4) 9 70. 4	6 6. 5 5 84. 8 3 40. 1 (4) 5 13. 2 5 34. 3 (4) 3 29. 6	(4) 9 65. 2 13. 1 10 87. 7 9 64. 2 7. 8 10 70. 2	\$ 6.0 (4) \$ 33.8 \$ 86.9 \$ 12.3 \$ 35.8 \$ 92.2 \$ 29.8
East of Mississippi River West of Mississippi River		832, 217 687, 706	· ·	2, 148, 938	388, 831 1, 375, 645	73	(12) (12)	(12) (12)	(12) (12)	(12) (12)	(12) (12)	(12) (12)	(12)	(12) (13)	(12) (13)	(12) (12)
Total	84, 207, 664	26, 504, 306	110, 711, 970									+33.6				23. 9

- Includes mobile loaders, scrapers and duckbills.
 Includes hand-loaded conveyors and pit-car loaders.
 Principally by conveyors.
 Included under "Undistributed" to avoid disclosing individual operations.
 All by conveyors.
 Practically all by conveyors.
 All by mobile loaders.

- Principally by pit-car loaders.
 Practically all by mobile loaders.
 Principally by mobile loaders.
 All by scrapers.
 Included in total; tons increase or decrease and percentage by types not given because State groups not comparable in 1939 and 1940.

Table 37.—Bituminous coal and lignite mined in the United States underground and from strip pits, and method of loading underground, 1939-40, by States, in net tons

						,				
			1939		n e			1940		
State	35:33	M	ined undergrou	nd	G34-4-3	36433	м	ined undergrou	nd	G14.4-1
	Mined by stripping	Hand-loaded	Machine- loaded	Total	Grand total production	Mined by stripping	Hand-loaded	Machine- loaded	Total	Grand total production
Alabama Arkansas Colorado Illinois Indiana Lowa Kansas Kentucky Maryland Michigan Missouri Montana (bituminous coal) Montana South Dakota and	8, 897, 370 585, 676 1, 978, 577 793, 142 	9, 076, 319 478, 351 (1) 8, 123, 956 1, 657, 151 2, 295, 459 (1) 36, 667, 798 (1) (1) 999, 995	2, 908, 745 648, 233 1, 863, 072 26, 570, 199 6, 388, 251 66, 422 (1) 5, 095, 628 (1) (1)	11, 985, 064 1, 126, 584 (1) 34, 694, 155 8, 045, 402 2, 361, 881 696, 111 41, 763, 426 1, 442, 728 456, 754 999, 995 (1)	12, 046, 675 1, 152, 038 5, 923, 210 46, 782, 691 16, 942, 772 2, 947, 557 2, 674, 691 42, 556, 568 1, 442, 728 456, 754 3, 273, 550 2, 756, 036	75, 641 25, 808 12, 460 13, 075, 255 10, 039, 078 725, 912 2, 755, 704 862, 475	10, 243, 611 482, 751 4, 023, 556 8, 014, 688 1, 422, 574 2, 372, 318 823, 248 41, 127, 875 (1) (1) 1, 115, 895 180, 881	5, 004, 911 945, 052 2, 552, 726 29, 520, 487 7, 406, 920 132, 947 7, 150, 554 (1) (1)	15, 248, 522 1, 427, 803 6, 576, 282 37, 535, 175 8, 829, 494 2, 505, 265 823, 248 48, 278, 429 1, 503, 433 410, 169 1, 115, 895 1, 692, 004	15, 324, 163 1, 453, 611 6, 588, 742 50, 610, 430 18, 868, 572 3, 231, 177 3, 578, 952 49, 140, 904 1, 503, 433 410, 169 3, 096, 741 2, 818, 936
Montana, South Dakota, and Texas (all lignite) New Mexico North Dakota (lignite) Ohio Oklahoma Pennsylvania Tennessee Texas (bituminous coal) Utah Virginia Washington West Virginia Wyoming Other States 2 Undistributed	1, 343, 946 4, 170, 903 500, 396 2, 964, 839 (1) (1) (1) 592, 917 178, 227	829, 852 (1) 10, 695, 850 382, 949 71, 930, 640 (1) 16, 259 11, 097, 567 (1) 77, 289, 883 300, 987 187, 438 14, 390, 318	(1) (1) 5, 422, 800 304, 217 17, 688, 634 602, 191 2, 459, 706 2, 433, 407 710, 603 30, 479, 134 4, 894, 075	829, 852 1, 230, 060 728, 547 16, 118, 650 687, 166 89, 619, 274 (1) 16, 259 13, 530, 974 107, 769, 017 5, 195, 062 17, 648, 340	905, 553 1, 230, 060 2, 072, 493 20, 289, 553 1, 187, 562 92, 584, 113 5, 185, 481 16, 259 3, 284, 904 13, 530, 974 1, 690, 442 108, 361, 934 5, 373, 289 187, 438	106, 718 1, 405, 590 5, 047, 597 621, 641 4, 230, 162 1, 654 6, 400 15, 960 873, 583 177, 920	614, 049 (1) (1) 9, 480, 113 601, 648 85, 137, 781 5, 290, 986 14, 137 702, 626 12, 233, 253 838, 898 81, 585, 507 259, 003 233, 053 2, 935, 461	(1) (1) (1) 8, 243, 842 422, 692 27, 235, 056 715, 816 2, 872, 960 3, 108, 422 795, 494 43, 978, 531 5, 371, 119	614, 049 1, 110, 613 1, 110, 613 112, 372, 837 6, 006, 802 14, 137 3, 575, 586 15, 341, 675 1, 634, 392 125, 564, 038 5, 630, 122 233, 053	720, 767 1, 110, 615 2, 218, 434 22, 771, 552 1, 645, 981 116, 602, 999 6, 008, 456 14, 137 3, 575, 586 15, 348, 075 1, 650, 352 126, 437, 621 5, 808, 042 233, 053
Total	37, 722, 583	246, 420, 772	110, 711, 970	357, 132, 742	394, 855, 325	43, 167, 336	269, 733, 912	147, 870, 252	417, 604, 164	460, 771, 50

Included under "Undistributed."

² Alaska, Arizona, Georgia, Idaho, and Oregon.

MECHANICAL CLEANING

Bituminous coal mechanically cleaned increased from 63,454,588 net tons in 1938 to 79,376,672 tons in 1939 and 102,205,186 tons in During the 3 years, this represents annual increases in mechanical cleaning of 18, 20, and 22 percent, respectively, of the total bituminous coal and lignite output. No mechanical cleaning plants have been installed at lignite mines. Detailed data on mechanical cleaning are shown in the following tables (38-44).

Consumer-operated cleaning plants include plants owned by steel companies which receive coal from various mines (but usually from affiliated coal companies), clean it, and then consume it directly at

the plant.

Table 38.—Bituminous coal mechanically cleaned by wet and pneumatic methods in the United States, 1939-40, in net tons of clean coal 1

	1939	1940	Increase, 1940 over 1939			
Method of cleaning	(net tons)	(net tons)	Net tons	Percent		
By wet methods: At mines At central washeries operated by consumers	60, 881, 144 6, 800, 587	78, 475, 302 8, 750, 220	17, 594, 158 1, 949, 633	28. 9 28. 7		
Total wet methods	67, 681, 731 11, 694, 941	87, 225, 522 14, 979, 664	19, 543, 791 3, 284, 723	28. 9 28. 1		
Grand total	79, 376, 672	102, 205, 186	22, 828, 514	28, 8		

¹ Figures do not include Alaska, which had 1 wet-washing installation.

Table 39.—Bituminous coal cleaned in the United States, 1939-40, by types of equipment in actual operation 1

[Coal cleaned and plants operated by consumers at central washeries in Colorado and Pennsylvani included]

Type of equipment	Plants in operation		Net tons o	f clean coal	Increase or o	Percent cleaned by each typs		
	1939	1940	1939	1940	Net tons	Percent	1939	1940
Wet methods: Jigs	175	186	37,003,557	46, 999, 035	+9, 995, 478	+27.0	46. 6	46. 0
	11	13	1,402,584	2, 330, 413	+927, 829	+66.2	1. 8	2. 3
	20	16	3,255,987	2, 765, 237	-490, 750	-15.1	4. 1	2. 7
Jigs in combination with launders and upward-current classifiers ² Launders and upward-current classifiers	10	11	2, 610, 959	4, 408, 148	+1, 797, 189	+68.8	3. 3	4. 3
	112	124	23, 408, 644	30, 722, 689	+7, 314, 045	+31.2	29. 5	30. 0
Total wet methods	328	350	67, 681, 731	87, 225, 522	+19, 543, 791	+28.9	85. 3	85. 3
	69	77	11, 694, 941	14, 979, 664	+3, 284, 723	+28.1	14. 7	14. 7
Grand total	3 397	3 427	79, 376, 672	102, 205, 186	+22, 828, 514	+28.8	100. 0	100.0

Figures do not include Alaska, which had 1 wet-washing installation.
 Includes 1 plant in 1939 with concentrating tables and launders.
 Number of plants using both wet and pneumatic methods was 32 in 1939 and 41 in 1940.

Table 40.—Total production of all coal at bituminous mines in the United States having cleaning plants, 1939-40, in net tons 1

[Does not include any estimate for mines that may ship to consumer-operated plants]

Type of equipment	1939	1940	Increase or decrease, 1940 from 1939			
	2000	1010	Net tons	Per- cent		
Wet methods:			on the account of			
Jigs	63, 369, 947	75, 391, 008	+12,021,061	+19.0		
Concentrating tables	1, 504, 393	1, 733, 048	+228, 655	+15.2		
Jigs in combination with concentrating tables Jigs in combination with launders and upward-	3, 846, 666	3, 385, 168	-461, 498	-12.0		
current classifiers	4, 494, 650	7, 026, 222	+2, 531, 572	+56.3		
Launders and upward-current classifiers	46, 591, 743	56, 412, 328	+9, 820, 585	+21. 1		
Total wet methods	119, 807, 399	143, 947, 774	+24, 140, 375	+20.1		
Pneumatic methods	31, 381, 920	41, 129, 603	+9, 747, 683	+31.1		
Grand total	151, 189, 319	185, 077, 377	+33, 888, 058	+22.4		
Less duplication 2	17, 928, 323	23, 405, 810	+5, 477, 487	+30.6		
Net total	133, 260, 996	161, 671, 567	+28, 410, 571	+21.3		
United States production of bituminous coal 3 Percent produced at mines having cleaning	394, 706, 908	460, 597, 656	+65, 890, 748	+16.7		
plants	33, 8	35. 1				

 Figures do not include Alaska, which had I wet-washing installation.
 Mines using both wet and pneumatic methods.
 For historical comparison, United States production figures include lignite. Alaska not included in total production.

TABLE 41.—Bituminous coal mechanically cleaned by wet and pneumatic methods in the United States, 1939-40, by States 1

[Coal cleaned and plants operated by consumers at central washeries in Colorado and Pennsylvania included]

State		its in ation	Net tons	f clean coal	Increase or d 1940 from	Percent of State out- put me- chanically cleaned		
	1939	1940	1939	1940	Net tons	Per- cent	1939	1940
Alabama Colorado Illinois Indiana Kansas Kentucky Missouri Ohio Pennsylvania ³ Tennessee Virginia Washington West Virginia ³ Undistributed: East of Mississippi River	52 11 45 16 6 12 10 5 53 4 15 18	52 10 47 16 8 13 10 6 58 6 19 18	9, 938, 993 793, 271 14, 108, 576 3, 589, 173 1, 138, 039 2, 116, 523 1, 054, 624 2, 800, 280 21, 462, 135 320, 206 1, 272, 296 1, 366, 754 18, 812, 410	12, 923, 860 1, 067, 856 18, 840, 805 5, 103, 522 1, 620, 407 2, 004, 360 1, 236, 799 3, 533, 632 27, 616, 594 2, 314, 541 2, 315, 560 1, 362, 856 23, 384, 440	+2, 984, 867 +274, 585 +4, 732, 229 +1, 514, 349 +482, 368 -112, 163 +182, 135 +733, 352 +6, 154, 495 -5, 665 +1, 043, 264 -3, 898 +4, 572, 030	+30.0 +34.6 +33.5 +42.2 +42.4 -5.3 +17.3 +26.2 +28.7 -1.8 +82.0 -3 +24.3	82. 5 13. 4 30. 2 21. 2 42. 5 5. 0 32. 2 13. 8 23. 2 6. 2 9. 4 80. 9 17. 4	84. 3 16. 2 37. 2 27. 0 45. 3 4. 1 39. 9 15. 5 23. 7 5. 2 15. 1 82. 6 18. 5
West of Mississippi River	6	5	537, 805	815, 169	+277, 364	+51.6		
Total	4 365	§ 386	79, 376, 672	102, 205, 186	+22, 828, 514	+28.8	20.1	22.

¹ Excludes Alaska.

Includes some coal mined in Pennsylvania and cleaned in Ohio.
 Includes some coal mined in West Virginia and cleaned in Ohio.
 Represents 32 plants using both wet and pneumatic methods of cleaning plus 333 plants using only 1 of the cleaning methods.
 Represents 41 plants using both wet and pneumatic methods of cleaning plus 345 plants using only 1 of the cleaning methods.

Table 42.—Method of mining at bituminous coal mines in the United States served by cleaning plants, 1938-401

[Does not include any estimate for mines that may ship to consumer-operated plants]

Method of mining in use	Total prod move cos tons)2	uction from al to cleaning	Increase, 1940 over 1939		
	1938	1939	1940	Net tons	Per- cent
Mined from strip pits_ Mechanically loaded underground Hand-loaded underground	15, 213, 564 37, 195, 439 55, 828, 538	17, 960, 049 53, 495, 851 61, 805, 096	20, 029, 770 66, 148, 465 75, 493, 332	2, 069, 721 12, 652, 614 13, 688, 236	11. 5 23. 7 22. 1
Total	108, 237, 541	133, 260, 996	161, 671, 567	28, 410, 571	21. 3

Excludes Alaska.
 Based upon shipping weights and includes some marketable coal that did not pass through cleaning plants.

Table 43.—Result of operations at bituminous coal cleaning plants in the United States in 1939, by States, in net tons 1

State	Total raw coal moved to cleaning plants ?	Coal ob- tained in cleaning process	Refuse resulting in cleaning process 3		Total production from mines that moved coal to cleaning plants 4
Alabama Colorado Illinois Indiana Kansas Kansas Kantucky Missouri Ohio Pennsylvania 6 Tennessee Virginia Washington West Virginia 7 Other States 3	1, 315, 185 3, 323, 255	9, 938, 993 (4) 14, 108, 576 3, 589, 173 1, 138, 039 2, 116, 523 1, 054, 624 2, 800, 280 (4) 320, 206 1, 272, 296 1, 272, 296 1, 366, 754 18, 812, 410 16, 058, 171	261, 972 159, 052 260, 521 522, 975 (5) 32, 712	12. 2 9. 2 14. 0 18. 5 18. 7 7. 0 19. 8 15. 7 6. 5 9. 3 9. 1 11. 8 9. 4	10, 911, 118 (9) 28, 194, 800 6, 910, 114 1, 328, 866 4, 384, 939 3, 231, 827 (9) 1, 098, 871 4, 514, 378 1, 548, 729 42, 445, 104 26, 787, 491
Total at mines only 9	81, 675, 853 7, 140, 590 88, 816, 443	72, 576, 085 6, 800, 587 79, 376, 672	9, 099, 768 340, 003 9, 439, 771	11. 1 4. 8 10. 6	133, 260, 996

¹ Excludes Alaska.

Excludes Alaska.

Exact figures on raw coal or refuse could not be furnished by many operators; in such instances, estimates were made from all available information at hand.

In Alabama (for example) for every 100 tons of raw coal cleaned in 1939, an average of 12.2 tons of refuse was discarded and 87.8 tons of clean marketable coal was obtained.

Based upon shipping weights: includes some marketable coal that did not pass through cleaning plants.

Included under "Other States."

Includes some coal mined in Pennsylvania and cleaned in Ohio.

Includes some coal mined in West Virginia and cleaned in Ohio.

Includes Arkansas, Colorado, Maryland, Michigan, Montana, New Mexico, Pennsylvania, Texas, and Utah.

Includes all mechanical cleaning other than washeries operated by consumer steel companies.
 Includes central washeries in Colorado and Pennsylvania operated by consumer steel companies.

Table 44.—Result of operations at bituminous coal cleaning plants in the United States in 1940, by States, in net tons 1

435 12, 923, 86 658 18, 840, 80 599 5, 103, 52 870 1, 620, 40	5 3, 587, 853 2 861, 077	12.4 9.0 16.0 14.4	14, 030, 911 (a) 31, 803, 487 8, 435, 450
309 2, 004, 36 883 1, 236, 79 955 3, 533, 63; (4) 509 314, 54 659 2, 315, 56 221 1, 362, 85 317 23, 384, 44 963 20, 814, 18	0 241, 949 9 328, 084 2 654, 323 (*) 1 28, 968 0 199, 099 6 236, 365 0 2, 688, 877	18. 2 10. 8 21. 0 15. 6 8. 4 7. 9 14. 8 10. 3	2, 072, 312 5, 547, 417 1, 640, 433 4, 469, 653 (9) 1, 276, 875 7, 054, 638 1, 491, 793 52, 002, 066 31, 846, 532
	0 443, 024	12. 2 4. 8	161, 671, 567
	, 378 93, 454, 96 , 244 8, 750, 22	, 378 93, 454, 966 12, 952, 412 , 244 8, 750, 220 443, 024	, 378 93, 454, 966 12, 952, 412 12. 2

¹ Excludes Alaska.

Excludes Alaska.
 Exact figures on raw coal or refuse could not be turnished by many operators; in such instances, estimates were made from all available information at hand.
 In Alabama (for example) for every 100 tons of raw coal cleaned in 1940, an average of 12.4 tons of refuse was discarded and 87.6 tons of clean coal was obtained.
 Based upon shipping weights; includes some marketable coal that did not pass through cleaning plants.
 Included under "Other States."
 Includes some coal mined in Pennsylvania and cleaned in Ohio.
 Includes some coal mined in West Virginia and cleaned in Ohio.
 Includes Arkansas, Colorado, Georgia, Michigan, Montana, New Mexico, Pennsylvania, and Utah.
 Includes all mechanical cleaning other than washeries operated by consumer steel companies.
 Includes central washeries in Colorado and Pennsylvania operated by consumer steel companies.

DETAILED STATISTICS BY STATES AND COUNTIES

Table 45.—Production, value, employment, days active, and output per man-shift at bituminous coal and lignite mines in the United States in 1939, by States and counties

[Exclusive of mines producing less than 1,000 tons]

ALABAMA

	-	Disposi	tion of coal	produced (n	et tons)		# 1 (2) (2) (3) (4) (4) (4) (4) (4) (4) (4	Average and wo tive da periods	rking pr ys (exclu	oprietors	on ac-		
County	Loaded for shipment by rail or water 1	Shipped by truck or wagon (exclud- ing coal used by mine em- ployees)	Used by mine em- ployees, taken by locomo- tive tenders at tipple, or other uses at mines ²	Used at mine for power and heat or made into beehive coke at mine	Net changes in stocks of coal at mines Jan. 1, 1939, to Jan. 1, 1940	Total quantity	Average value per ton 3	Under- ground	In strip pits	All others	Total	Average number of full days mines were active	Tons of coal pro- duced on active days per man-shift
Bibb Biount. Cherokee. Cullman Etowah Jefferson Marion. Shelby Tuscaloosa Walker Other counties (De Kalb, Fayette, Jackson, Madison, St. Clair, and Winston)	592, 190 93, 577 10, 753 6, 781, 701 208, 599 312, 765 70, 946 2, 146, 200 993, 781	13, 703 35, 209 12, 441 34, 347 11, 757 243, 500 38, 200 76, 702 52, 379 104, 819	1, 937 510 73 3 69, 544 1, 249 2, 168 7 32, 827 11, 113	13, 943 1, 361 24, 251 351 1, 166 510 580 30, 545	-3, 529 -1, 434 	618, 244 129, 223 12, 441 34, 420 22, 513 7, 107, 707 249, 559 391, 914 123, 842 2, 277, 824 1, 078, 988	\$2, 40 2, 42 2, 11 2, 49 2, 07 2, 28 2, 90 2, 71 1, 95 2, 20 2, 32	1, 090 341 23 132 66 10, 110 520 776 275 3, 169	14 17 6 6 47	163 47 4 19 10 1,461 78 166 43 526	1, 267 405 27 151 76 11, 571 604 942 324 3, 742 1, 775	180 178 218 161 130 186 156 167 181 163	2. 70 1. 79 2. 11 1. 42 2. 28 3. 30 2. 65 2. 50 2. 11 3. 73
Total Alabama	11, 210, 512	672, 803	119, 431	4 72, 707	-28,778	12, 046, 675	2. 30	17, 943	90	2, 851	20,884	183	3. 16

Table 45.—Production, value, employment, days active, and output per man-shift at bituminous coal and lignite mines in the United States in 1939, by States and counties—Continued

. A	Τ.	٨	œ	v	

	Disposition of coal produced (net tons)							Average number of wage earners and working proprietors on ac- tive days (excluding shut-down periods)				88 * 8	
County	Loaded for shipment by rail or water ¹	Shipped by truck by truck or wagon (exclud- ing coal used by mine em- ployees)	Used by mine em- ployees, taken by locomo- tive tenders at tipple, or other uses at mines ²	Used at mine for power and heat or made into beehive coke at mine	Net changes in stocks of coal at mines Jan. 1, 1939, to Jan. 1, 1940	Total quantity	Average value per ton ³	Under- ground	In strip pits	All others	Total	Average number of full days mines were active	Tons of coal pro- duced on active days per man-shift
Total Alaska	143, 549		10	4 3, 305	+1,553	148, 417	\$2.82	66		22	88	289	5. 84
		ARI	ZONA, G	EORGIA, I	рано, а	ND OREG	ON						
Total Arizona, Georgia, Idaho, and Oregon	22, 706	14, 710	496	4 376	+733	39, 021	\$2.96	122		35	157	154	1.61
				ARK	ANSAS								
Franklin Johnson Logan Sebastian Other counties (Pope and Scott)	105, 767 175, 115 356, 406 400, 162 56, 077	4, 351 16, 392 2, 977 24, 221 928	1, 065 138 807 110 10	1, 461 2, 240 523 2, 710 614	+122 -1,350 +1,035 +157	112, 644 194, 007 359, 363 428, 238 57, 786	\$3. 43 2. 76 3. 67 2. 79 3. 76	397 523 1, 130 1, 097 215	17 28	54 111 211 189 32	468 634 1,341 1,314 247	100 111 108 103 123	2. 41 2. 75 2. 49 3. 17 1. 90
Total Arkansas	1, 093, 527	48, 869	2, 130	4 7, 548	-36	1, 152, 038	3. 17	3, 362	45	597	4, 004	107	2. 70

(2	ď
ì	ä	÷
١		4

			10 4 2 5 90	<u> </u>									
Boulder Delta Elbert	196, 057 28, 705	395, 936 28, 050 7, 866	5, 226 776 157	10, 716 4, 083	+498	608, 433 61, 614 8, 023	\$2.84 2.40 2.43	671 60 12		108 22 2	779 82 14	221 201 194	3. 53 3. 74 2. 95
FremontGarfield	163, 184 12, 717	342, 315 23, 982	4, 194 39	2, 306 1, 240	-1, 992	510, 007 37, 978	2. 50 2. 27	696 35		117 10	813 45	185 221	3. 40 3. 81
Gunnison Huerfano	497, 231 546, 804	23, 923 63, 597	3, 795 4, 354	10, 874 1, 662	-5, 398 -1, 250	530, 425 615, 167	2. 26 2. 51	465 796		96 171	561 967	168 164	5. 63 3. 88
La Plata Las Animas	10, 887 898, 288	17, 457 54, 220	128 5, 170	111,700	-277 -2, 242	28, 195 1, 067, 136	2. 18 2. 33	37 1, 395		10 202	47 1, 597	211 164	2. 85 4. 07
Mesa	29, 931 28, 342	44, 455 26, 503	.148 55	2, 930 1, 000		77, 464 55, 900	2. 08 2. 07	102 37		18 10	120 47	175 236	3. 68 5. 05
RouttWeld	670, 000 828, 314	16, 413 265, 079	13, 018 17, 960	32, 121 25, 474	-4, 112 -2, 197	727, 440 1, 134, 630	2. 44 2. 56	914 1, 174		272 239	1, 186 1, 413	150 171	4. 10 4. 69
Other counties: Archuleta, Montezuma, Montrose,	, ,											-	
Pitkin, and Rio Blanco	482	7, 823	24, 109	4		32, 418	2.30	35		27	62	250	2.09
mer	168, 723	216, 241	3, 137	40, 769	-490	428, 380	2. 44	353	(6)	(6)	428	222	4. 52
Total Colorado	4, 079, 665	1, 533, 860	82, 266	§ 244, 879	-17, 460	5, 923, 210	2.47	6, 782	(6) .	(0)	8, 161	176	4. 12
				TT.T.	INOIS								
													-
Franklin.	8, 148, 497	48, 562	48, 385	100 051	-59, 446	8, 319, 849	\$1.69	4, 797		1,445	0.040		0.07
Fulton	3, 351, 874	428, 205	3, 168	133, 851 9, 314	+578	3, 793, 139	1.42	639	267	1,440	6, 242 1, 353	144 210	9. 27 13. 34
Gallatin	1, 650	42, 921		2, 622	+1,378	48, 571	1.55	66		13	79	185	3. 33
Grundy		123, 250	1, 294	2, 109	-1,746	124, 907	2.61	132	13	17	162	173	4. 45
Knox	595, 853	160, 697	1, 923	5, 361	-2,050	761, 784	1. 59	195	. 54	72	321	218	10.86
La Salle	86, 145	268, 441	5, 849	2, 367	+4, 433	367, 235	2.66	433	82	75	590	174	3. 58
Livingston		10,011	5 00	214 129, 326	+616 -8, 278	10,846	2.98	44	. 3	10 434	57	61	3. 13
Macoupin Madison		177, 300	28, 948										7. 95
		E01 188				3, 369, 170	1.48	1,895		107	2, 329	182	
Monord		591, 166	31, 614	66, 483	+7,109	1, 829, 489	1.49	1, 358		285	1,643	189	5. 89
Menard		110,006	31, 614 2, 428	66, 483 3, 681		1, 829, 489 116, 115	1.49 2.07	1, 358 173		285 18	1, 643 191	189 198	5. 89 3. 07
Mercer		110,006 24,220	31, 614 2, 428 258	66, 483 3, 681 887	+7, 109 	1, 829, 489 116, 115 25, 365	1. 49 2. 07 2. 55	1, 358 173 64		285 18 9	1, 643 191 73	189 198 130	5. 89 3. 07 2. 67
Mercer	598, 392	110,006 24,220 43,849	31, 614 2, 428 258 3, 252	66, 483 3, 681 887 37, 801	+7, 109 	1, 829, 489 116, 115 25, 365 685, 989	1. 49 2. 07 2. 55 1. 38	1, 358 173 64 570	9	285 18 9 129	1, 643 191 73 699	189 198 130 98	5. 89 3. 07 2. 67 10. 03
Mercer Montgomery Peoria	598, 392 828, 981	110,006 24,220 43,849 343,419	31, 614 2, 428 258 3, 252 3, 462	66, 483 3, 681 887 37, 801 2, 547	+7, 109 +2, 695 -7, 338	1, 829, 489 116, 115 25, 365 685, 989 1, 171, 071	1. 49 2. 07 2. 55 1. 38 2. 04	1, 358 173 64 570 1, 277	9	285 18 9 129 103	1, 643 191 73 699 1, 389	189 198 130 98 146	5. 89 3. 07 2. 67 10. 03 5. 77
Mercer Montgomery Peoria Perry Randolph	598, 392 828, 981 3, 035, 812	110,006 24,220 43,849	31, 614 2, 428 258 3, 252	66, 483 3, 681 887 37, 801	+7, 109 	1, 829, 489 116, 115 25, 365 685, 989	1. 49 2. 07 2. 55 1. 38	1, 358 173 64 570	9 423 55	285 18 9 129	1, 643 191 73 699	189 198 130 98	5. 89 3. 07 2. 67 10. 03
Mercer Montgomery Peoria Perry Randolph Rock Island	598, 392 828, 981 3, 035, 812 1, 123, 065	110, 006 24, 220 43, 849 343, 419 67, 555	31, 614 2, 428 258 3, 252 3, 462 29, 486 10, 129 279	66, 483 3, 681 887 37, 801 2, 547 33, 599	+7, 109 +2, 695 -7, 338 +3, 233 +44	1, 829, 489 116, 115 25, 365 685, 989 1, 171, 071 3, 169, 685	1. 49 2. 07 2. 55 1. 38 2. 04 1. 44 1. 29 3. 20	1, 358 173 64 570 1, 277 697	423	285 18 9 129 103 340	1, 643 191 73 699 1, 389 1, 460	189 198 130 98 146 192	5. 89 3. 07 2. 67 10. 03 5. 77 11. 33
Mercer Montgomery Peoria Perry Randolph Rock Island St. Clair	598, 392 828, 981 3, 035, 812 1, 123, 065	110,006 24,220 43,849 343,419 67,555 78,460 23,731 1,491,941	31, 614 2, 428 258 3, 252 3, 462 29, 486 10, 129 279 41, 409	66, 483 3, 681 887 37, 801 2, 547 33, 599 20, 220 68 43, 184	+7, 109 +2, 695 -7, 338 +3, 233 +44 +3, 768	1, 829, 489 116, 115 25, 365 685, 989 1, 171, 071 3, 169, 685 1, 231, 918 24, 078 2, 454, 485	1. 49 2. 07 2. 55 1. 38 2. 04 1. 44 1. 29 3. 20 1. 52	1, 358 173 64 570 1, 277 697 339 57 1, 911	423 55	285 18 9 129 103 340 170 7 413	1, 643 191 73 699 1, 389 1, 460 564 64 2, 440	189 198 130 98 146 192 163 165 141	5. 89 3. 07 2. 67 10. 03 5. 77 11. 33 13. 42 2. 28 7. 12
Mercer Montgomery Peoria. Perry Randolph Rock Island St. Clair	598, 392 828, 981 3, 035, 812 1, 123, 065 874, 183 3, 518, 007	110, 006 24, 220 43, 849 343, 419 67, 555 78, 460 23, 731 1, 491, 941 60, 960	31, 614 2, 428 258 3, 252 3, 462 29, 486 10, 129 279 41, 409 18, 734	66, 483 3, 681 887 37, 801 2, 547 33, 599 20, 220 68 43, 184 50, 644	+7, 109 +2, 695 -7, 338 +3, 233 +44 +3, 768 +1, 428	1, 829, 489 116, 115 25, 365 685, 889 1, 171, 071 3, 169, 685 1, 231, 918 24, 078 2, 454, 485 3, 649, 773	1. 49 2. 07 2. 55 1. 38 2. 04 1. 44 1. 29 3. 20 1. 52 1. 80	1, 358 173 64 570 1, 277 697 339 57 1, 911 2, 154	423 55	285 18 9 129 103 340 170 7 413 582	1, 643 191 73 699 1, 389 1, 460 564 64 2, 440 2, 836	189 198 130 98 146 192 163 165 141 162	5. 89 3. 07 2. 67 10. 03 5. 77 11. 33 13. 42 2. 28 7. 12 7. 95
Mercer Montgomery Peoria Perry Randolph Rock Island St. Clair Saline Sangamon	598, 392 828, 981 3, 035, 812 1, 123, 065 874, 183 3, 518, 007 1, 448, 605	110, 006 24, 220 43, 849 343, 419 67, 555 78, 460 23, 731 1, 491, 941 60, 960 580, 981	31, 614 2, 428 258 3, 252 3, 462 29, 486 10, 129 279 41, 409 18, 734 12, 944	66, 483 3, 681 887 37, 801 2, 547 33, 599 20, 220 68 43, 184 50, 644 20, 888	+7, 109	1, 829, 489 116, 115 25, 365 685, 989 1, 171, 071 3, 169, 685 1, 231, 918 24, 078 2, 454, 485 3, 649, 773 2, 068, 719	1. 49 2. 07 2. 55 1. 38 2. 04 1. 44 1. 29 3. 20 1. 52 1. 80 1. 82	1, 358 173 64 570 1, 277 697 339 57 1, 911 2, 154 2, 517	423 55	285 18 9 129 103 340 170 7 413 582 319	1, 643 191 73 699 1, 389 1, 460 564 64 2, 440 2, 836 2, 836	189 198 130 98 146 192 163 165 141 162 148	5. 89 3. 07 2. 67 10. 03 5. 77 11. 33 13. 42 2. 28 7. 12 7. 95 4. 94
Mercer Montgomery Peoria Perry Randolph Rook Island St. Clair Saline Sangamon Schuyler	598, 392 828, 981 3, 035, 812 1, 123, 065 874, 183 3, 518, 007 1, 448, 605	110, 006 24, 220 43, 849 343, 419 67, 555 78, 460 23, 731 1, 491, 941 60, 960 580, 981 48, 241	31, 614 2, 428 268 3, 252 3, 462 29, 486 10, 129 279 41, 409 18, 734 12, 944	66, 483 3, 681 887 37, 801 2, 547 33, 599 20, 220 68 43, 184 50, 644 20, 888 1, 030	+7, 109 +2, 695 -7, 338 +3, 233 +44 +3, 768 +1, 428	1, 829, 489 116, 115 25, 365 685, 989 1, 171, 071 3, 169, 685 1, 231, 918 24, 078 2, 454, 485 3, 649, 773 2, 068, 719 50, 819	1. 49 2. 07 2. 55 1. 38 2. 04 1. 29 3. 20 1. 52 1. 80 1. 82	1, 358 173 64 570 1, 277 339 57 1, 911 2, 154 2, 517 113	423 55	285 18 9 129 103 340 170 7 413 582 319	1, 643 191 73 699 1, 389 1, 460 564 2, 440 2, 836 2, 836 129	189 198 130 98 146 192 163 165 141 162 148 181	5. 89 3. 07 2. 67 10. 03 5. 77 11. 33 13. 42 2. 28 7. 12 7. 95 4. 94 2. 18
Mercer Montgomery Peoria. Perry Randolph Rock Island St. Clair Saline Sangamon Schuyler Shelby	598, 392 828, 981 3, 035, 812 1, 123, 065 874, 183 3, 518, 007 1, 448, 605	110, 006 24, 220 43, 849 343, 419 67, 555 78, 460 23, 731 1, 491, 941 60, 960 580, 981 48, 241 6, 987	31, 614 2, 428 258 3, 252 3, 462 29, 486 10, 129 41, 409 18, 734 12, 944 136 97	66, 483 3, 681 887 37, 801 2, 547 33, 599 20, 220 68 43, 184 50, 644 20, 888 1, 030 122	+7, 109	1, 829, 489 116, 115 25, 365 685, 989 1, 171, 071 3, 169, 685 1, 231, 918 24, 078 2, 454, 485 3, 649, 773 2, 068, 719 50, 819 7, 206	1. 49 2. 07 2. 55 1. 38 2. 04 1. 44 1. 29 3. 20 1. 52 1. 80 1. 82 1. 89 3. 69	1, 358 173 64 570 1, 277 697 339 57 1, 911 2, 154 2, 517 113 36	423 55	285 18 9 129 103 340 170 7 413 582 319 16 5	1, 643 191 73 699 1, 389 1, 460 564 64 2, 440 2, 836 129 41	189 198 130 98 146 192 163 165 141 162 148 181	5. 89 3. 07 2. 67 10. 03 5. 77 11. 33 13. 42 2. 28 7. 12 7. 95 4. 94 2. 18
Mercer Montgomery Peoria Perry Randolph Rock Island St. Clair Saline Sangamon Schuyler	598, 392 828, 981 3, 035, 812 1, 123, 065 874, 183 3, 518, 007 1, 448, 605	110, 006 24, 220 43, 849 343, 419 67, 555 78, 460 23, 731 1, 491, 941 60, 960 580, 981 48, 241	31, 614 2, 428 268 3, 252 3, 462 29, 486 10, 129 279 41, 409 18, 734 12, 944	66, 483 3, 681 887 37, 801 2, 547 33, 599 20, 220 68 43, 184 50, 644 20, 888 1, 030	+7, 109	1, 829, 489 116, 115 25, 365 685, 989 1, 171, 071 3, 169, 685 1, 231, 918 24, 078 2, 454, 485 3, 649, 773 2, 068, 719 50, 819	1. 49 2. 07 2. 55 1. 38 2. 04 1. 29 3. 20 1. 52 1. 80 1. 82	1, 358 173 64 570 1, 277 339 57 1, 911 2, 154 2, 517 113	423 55	285 18 9 129 103 340 170 7 413 582 319	1, 643 191 73 699 1, 389 1, 460 564 2, 440 2, 836 2, 836 129	189 198 130 98 146 192 163 165 141 162 148 181	5. 89 3. 07 2. 67 10. 03 5. 77 11. 33 13. 42 2. 28 7. 12 7. 95 4. 94 2. 18

Table 45.—Production, value, employment, days active, and output per man-shift at bituminous coal and lignite mines in the United States in 1939, by States and counties—Continued

ILLINOIS—Continued

	ž	Disposi	tion of coal		Average and wo tive da periods	orking pr vs (exclu	of wage coprietors iding shu	earners s on ac- it-down					
		Ghia	Used by mine em-	TY	Net		Average		Surface			Average number of full	Tons of coal pro-
County	Loaded for shipment by rail or water 1	Shipped by truck or wagon (exclud- ing coal used by mine em- ployees)	ployees, taken by locomo- tive tenders at tipple, or other uses at mines 2	Used at mine for power and heat or made into beehive coke at mine	changes in stocks of coal at mines Jan. 1, 1939, to Jan. 1, 1940	Total quantity	value per ton 3	Under- ground	In strip pits	All others	Total	days mines were active	duced on active days per man-shift
7ermilion Wabash Willianson Other counties 7		299, 215 8, 086 507, 517 1, 042, 131	106, 385 60 5, 720 44, 035	20, 712 44 52, 172 83, 763	-9, 737 -21, 759 +793	1, 923, 460 8, 190 2, 430, 571 8, 916, 389	\$1.86 1.76 1.57 1.67	2, 036 26 1, 292 4, 006	40 150 449	224 3 436 1,314	2, 300 29 1, 878 5, 769	173 128 156 176	4. 85 2. 21 8. 29 8. 77
Total Illinois	38, 964, 079	6, 770, 843	401, 482	4 723, 853	-77, 566	46, 782, 691	1.64	27, 198	1, 761	6, 935	35, 894	163	8 7. 98
				IND	IANA				 		· · · · · · · · · · · · · · · · · · ·		•
Clay	837, 043	469, 919	857	9, 753	+711	1, 318, 283	\$1.77	150	503	184	837	188	8.36
Daviess Dubois Ountain Hreene Knox	294 2, 017, 909	58, 571 14, 014 29, 920 113, 715 313, 300	550 85 485 1, 419 3, 476	1, 248 73 1, 892 15, 122 19, 509	-331 +6, 395	1, 318, 283 60, 369 14, 172 32, 591 2, 147, 834 2, 122, 107	1. 96 1. 73 1. 89 1. 54 1. 37	79 24 31 356 887	5 51 398 22	19 3 17 339 289	103 27 99 1,093 1,198	184 190 118 181 173	3. 19 2. 77 2. 80 10. 87
Aartinarkeerryerry	3, 308, 687	18, 751 124, 022 26, 793 60, 915	877 47 8, 201	6, 709 4 16, 266	+1, 341	18, 765 132, 949 26, 844 3, 396, 684	1. 60 2. 25 1. 48 1. 18	39 165 38 101	6	6 37 5 420	208 43 975	173 197 185 222 211	10. 2: 2. 1: 3. 4: 2. 8:
ullivan Termillion	1, 311, 926 370, 856 2, 722, 619	70, 634 113, 950 157, 196	91, 148 1, 262 359, 069	21, 596 3, 655 34, 158 507	+2, 615 +3, 500 -2, 102 +6, 364	1, 498, 804 487, 621 3, 279, 406	1. 72 1. 52 1. 55	789 328 1, 219	155 46 207	218 82 348	1, 162 456 1, 774	140 158 212	16. 50 9. 16 6. 78 8. 79
Warren Warrick	1, 061, 709	4, 441 184, 460	2, 209	4,768	-1, 386	5, 359 1, 251, 760	2. 26 1. 24	18 305	222	3 178	21 705	193 184	1. 32 9. 66

9. 14

and tanders and street and street		1 -0.7	-,									11	
Total Indiana	14, 376, 418	1, 920, 025	475, 007	4 153, 217	+18, 105	16, 942, 772	1.48	5, 338	2, 140	2, 288	9, 766	177	8 9. 79
		•		10	WA				 	<u></u>			· · · · · · · · · · · · · · · · · · ·
Adams Appanose Boone Dallas , Greene Guthrie Jasper Mahaska Marion Monroe Page Polk Van Buren Wapello Warren Wayne Wayne Webster Other counties (Davis, Jefferson, Lucas,	207, 041 169, 233 319, 238 	17, 493 134, 656 63, 325 62, 363 20, 554 24, 185 26, 699 143, 045 365, 913 47, 706 35, 230 228, 158 18, 114 123, 111 61, 266 24, 028 35, 979	60 2, 745 14, 796 6, 883 124 15 740 1, 810 3, 921 1, 571 381 3, 877 224 907 1, 181 202 100	8 3099 1, 433 1, 273 130 114 1, 151 1, 556 944 1, 350 1, 350 1, 834 1, 882		17, 561 344, 055 248, 608 389, 637 20, 808 24, 338 27, 792 270, 781 629, 686 103, 612 35, 611 308, 920 18, 355 180, 930 67, 015 24, 230 36, 079	\$2. 63 2. 49 3. 00 2. 69 2. 69 2. 70 2. 04 2. 11 2. 12 2. 73 2. 71 2. 63 2. 14 2. 60 2. 31 2. 73	78 1, 197 540 596 43 98 68 87 536 256 88 654 26 258 1112 89 59	111 6 135 95 7 7 24 21	12 141 66 48 12 10 15 63 92 38 10 56 6 54 27 13	90 1, 338 606 639 66 108 89 285 723 301 98 715 39 336 160 102 73	136 118 149 196 87 153 84 163 183 111 177 137 189 140 108 168	1. 44 2. 19 2. 76 3. 12 3. 61 1. 47 3. 72 5. 84 4. 01 3. 11 2. 05 3. 15 2. 49 3. 84 3. 88 1. 41 3. 35
and Taylor)	248, 051	47, 014 1, 478, 839	3, 846 43, 383	648 4 11, 649	-20 $+4,832$	299, 539 2, 947, 557	2. 33	435 5, 220	322	709	483 6, 251	163 147	3.80
B. W. C. C. C. C. C. C. C. C. C. C. C. C. C.			<u> </u>	KA	NSAS	1	<u> </u>	<u> </u>			1	1 -1	
Crawford Franklin Labette Linn Osage Other counties (Bourbon, Cherokee, and Leavenworth) Total Kansas *	1,901	70, 395 16, 337 9, 616 16, 499 74, 118 60, 827 247, 792	2, 048 223 20 175 2, 991 2, 769 8, 226	8, 863 100 1, 100 230 141 3, 142	-3, 566 	1, 725, 651 16, 660 10, 736 16, 904 79, 151 825, 589 2, 674, 691	\$1.85 2.64 2.21 1.95 2.89 1.87	1,009 41 8 53 292 369 1,772	307 7 3 16 192 525	298 6 3 8 41 205 561	1, 614 47 18 64 349 766 2, 858	154 180 163 141 163 239	6. 92 1. 97 3. 65 1. 87 1. 39 4. 50
				KEN	TUCKY								
Eastern district: Bell. Boyd. Clay. Floyd.	125. 703	97, 261 25, 594 48, 884 1, 187	24, 075 51 10, 782	8, 731 10 17, 716	+2, 097 +6, 592	1, 620, 896 25, 655 174, 087 4, 517, 275	\$1. 76 1. 74 1. 87 1. 84	2, 486 78 879 4, 683	6	370 11 55 701	2, 856 89 440 5, 384	167 182 200 186	3. 40 1. 58 1. 98 4. 52

17, 957

1.72

Other counties (Gibson, Owen, Spencer, and Vanderburgh).....

Table 45.—Production, value, employment, days active, and output per man-shift at bituminous coal and lignite mines in the United States in 1939, by States and counties—Continued

KENTUCKY—Continued

												<u> </u>	
		Disposi	tion of coal	produced (n		Average and we tive da periods	orking pr ys (exclu	of wage roprietors iding shu	earners s on ac- it-down				
County		Shipped	Used by mine em-	Used at	Net	4 17	Average		Sur	face		Average number of full	Tons of coal pro-
	Loaded for shipment by rail or water ¹	by truck or wagon (exclud- ing coal used by mine em- ployees)	ployees, taken by locomo- tive tenders at tipple, or other uses at mines 2	mine for power and heat or made into beehive coke at mine	changes in stocks of coal at mines Jan. 1, 1939, to Jan. 1, 1940	Total quantity	value per ton ³	Under- ground	In strip pits	All others	Total	days mines were active	duced on active days per man-shift
Eastern district—Continued.						1 He 1911		1.0				100	
Greenup		3, 798				3, 798	\$1.38	18		3	21	77	2. 34
Harlan Jackson	12, 160, 173	12, 875 196, 889	82, 461 50	16, 489 10, 130	-10, 986	12, 261, 012	1.95	12, 035		1, 563	13, 598	197	4. 57
Knott	430, 554	190, 889	1, 766	10, 130	-1,814 +1,216	205, 255 433, 536	1. 78 1. 74	400 519		62 71	462 590	195 137	2. 27 5. 35
Knox	642, 522	1, 540	2, 413	3, 010	-1,301	648, 184	1.72	829		84	913	239	2.98
Laurel	395	49, 323	260	170		50, 148	1.70	126		18	144	170	2.05
Lee		17, 848	50	10		17, 908	1.69	50		7	57	157	2.01
Letcher	3, 740, 035	3, 659	27, 913	1, 589	-10, 898	3, 762, 298	1. 79	4, 224		617	4,841	176	4.41
PerryPike	3, 986, 441 4, 052, 152	3, 860 19, 837	102, 019 207, 575	159 3, 078	+3, 268 -2, 575	4, 095, 747 4, 280, 067	1. 77 1. 69	4, 068 3, 530		614 626	4, 682 4, 156	162 193	5. 41 5. 33
Rockcastle	200	23, 598	201, 310	3,0,0	-2,010	23, 828	1. 43	48		7	4, 150 55	159	2. 73
WhitleyOther counties 10	278, 906	1,500	1, 515	8, 868	+1, 588 +3, 014	292, 377	2.11	597	2	103	702	159	2. 62
Other counties 10	1, 693, 641	92, 304	50, 253	14, 396	+3,014	1, 853, 608	1. 95	2, 369		357	2, 726	188	3. 62
Total Eastern Kentucky	33, 080, 452	599, 407	511, 213	84, 356	-9, 799	34, 265, 629	1.85	36, 439	8	5, 269	41, 716	185	4. 43
Western district:													
Butler	290	10, 906	90			11, 286	1.69	44		6	50	135	1.67
Daviess		106, 110	316	2, 545		108, 971	1. 15	160		20	180	156	3.89
Henderson Hopkins	14, 342	77, 577	1, 315	10, 442	+462	104, 138	1.67	170		34	204	141	3. 61
McLean	3, 446, 937	205, 454 8, 780	40, 907 30	10, 287 85	+4,560	3, 708, 145 8, 895	1. 37 1. 36	2, 609 21	70	535 3	3, 214	161	7. 16
Muhlenburg	2, 204, 354	63:136	12,847	36 315	+27, 190	2, 343, 842	1. 30	2, 191		496	24 2, 687	129 153	2. 88 5. 72
Ohio	224, 194	26, 530	3, 574	36, 315 1, 253	-27, 180 -25	255, 526	1.36	2, 191		35	303	169	5. 72 5. 00
Union	478, 116	83, 657	19, 692	16, 379	+135	597, 979	1.42	667		101	768	143	5. 43
Webster	1, 039, 776	36, 073	5, 166	2, 640	-145	1, 083, 510	1. 27			157	1, 409	136	5. 66

Other counties (Christian and Han-	32, 399	36, 157	51	40		68, 647	1. 50	60	15	11	86	165	4. 83
Total Western Kentucky	7, 440, 408	654, 380	83, 988	79, 986	+32, 177	8, 290, 939	1. 30	7, 442	85	1, 398	8, 925	153	6.09
Total Kentucky	40, 520, 860	1, 253, 787	595, 201	4 164, 342	+22, 378	42, 556, 568	1.74	43, 881	93	6, 667	50, 641	180	4.68
				MAR	YLAND								
AlleganyGarrett	653, 486 534, 751	188, 256 48, 278	5, 672 4, 030	738 7, 742	-326 +101	847, 826 594, 902	\$2.12 1.92	1, 201 856		145 149	1, 346 1, 005	188 166	3. 35 3. 57
Total Maryland	1, 188, 237	236, 534	9, 702	4 8, 480	-225	1, 442, 728	2.04	2, 057		294	2, 351	178	3. 44
The state of the s		•		MIC	HIGAN								
Bay	15, 037 4, 147 103, 031	43, 995 100, 219 151, 126	853 2, 604 4, 703	4, 677 14, 207 7, 833	-474 +4,796	64, 562 120, 703 271, 489	\$3. 99 3. 81 3. 70	249 249 540		18 59 39	267 308 579	87 182 173	2. 79 2. 16 2. 71
Total Michigan	122, 215	295, 340	8, 160	4 26, 717	+4, 322	456, 754	3. 77	1, 038		116	1, 154	155	2. 55
				MIS	souri		-						
Adair. Boone. Clay. Harrison Henry. Lafayette. Linn Putnam Randolph Ray. Vernon. Other counties ¹² .	531, 460 167, 285 15, 969 372, 547 31, 907 11, 594 1, 097, 677	56, 360 14, 131 89, 874 18, 298 107, 335 76, 769 51, 407 31, 116 77, 952 98, 601 43, 033 291, 577	1, 785 3, 366 84 1, 785 3, 778 1, 041 140 2, 016 3, 551 346 3, 987	3, 642 260 2, 030 420 7, 925 3, 305 63 22 237 310 2, 905 9, 930	-2, 251 +15 +1, 308 -319 -192 -1, 009	90, 965 14, 391 95, 270 18, 802 646, 254 251, 152 68, 480 31, 278 454, 060 134, 050 57, 686 1, 402, 162	\$1. 76 2. 17 2. 93 2. 43 1. 72 2. 43 2. 08 2. 07 1. 87 2. 56 1. 77 1. 70	286 17 348 52 32 892 190 141 267 595 20 295	21 148 46 55 402	44 8 38 7 111 71 26 20 79 71 19 192	330 46 386 59 291 963 216 161 392 666 94 889	125 113 163 216 211 134 194 114 207 118 122 189	2. 43 2. 76 1. 52 1. 48 11 10. 50 1. 94 1. 64 1. 70 5. 60 1. 70 11 5. 03 11 8. 36
Total Missouri 9	2, 266, 617	956, 453	21, 879	4 31, 049	-2, 448	3, 273, 550	1.88	3, 135	672	686	4, 493	158	4. 60

Table 45.—Production, value, employment, days active, and output per man-shift at bituminous coal and lignite mines in the United States in 1939, by States and counties—Continued

MONTANA

													
		Disposi	ition of coa	l produced (1	net tons)			Average and w tive de periods	orking p vs (exclu	of wage roprietors iding shu	earners s on ac- it-down		
0 - 1		Shipped	Used by mine em-	Used at	Net		Average		Su	face		Average number of full	Tons of coal pro-
County	Loaded for shipment by rail or water ¹	by truck or wagon (exclud- ing coal used by mine em- ployees)	ployees, taken by locomo- tive tenders at tipple, or other uses at mines 2	mine for power and heat or made into beehive coke at mine	changes in stocks of coal at mines Jan. 1, 1939, to Jan. 1, 1940	Total quantity	value per ton 3	Under- ground	In strip pits	All others	Total	days mines were active	duced on active days per man-shift
Montana bituminous coal: Chouteau Custer Hill Musselshell Powder River Other counties ¹³	600 560	5, 597 9, 698 6, 669 33, 592 7, 807 82, 616	30 35 90 3, 053 28 4, 824	2, 757	-15 +1,042	5, 627 9, 733 6, 759 737, 947 7, 835 1, 988, 135	\$4. 45 1. 54 3. 46 1. 89 1. 72 1. 28	17 16 18 460 8 515	(8)	2 2 2 170 (6)	19 18 20 630 11 685	197 164 130 149 153	1. 50 3. 30 2. 60 7. 88 4. 66
Total bituminous coal	2, 596, 600	145, 979	8,060	4, 370	+1,027	2, 756, 036	1. 46	1, 034	(6)	(6)	1, 383	186	15. 57
Montana lignite: Roosevelt Sheridan Other counties (Custer, McCone, Rich- land, Valley, and Wibaux)	1 8	(14)	(14)	(14)	(14)	8, 706 14, 609 24, 398	1. 47 1. 60 1. 62	16 16 23	(6)	5 8	21 24 40	144 205 131	2. 88 2. 96 4. 65
Total lignite		14 41, 190	14 1, 018	14 95		47, 713	1. 59	55	(6)	(6)	85	155	3, 61
Total Montana	14 2, 602, 010	¹⁴ 187, 169	14 9, 078	4 14 4, 465	+1,027	2, 803, 749	1. 46	1,089	(6)	(6)	1,468	167	11. 42
	1			NEW	MEXICO		<u> </u>	<u> </u>					
Colfax McKinley	608, 106 352, 668	30, 101 53, 146	4, 163 5, 174	2, 751 26, 454	+286 +6,862	645, 407 444, 304	\$2.74 3.00	807 713		171 174	978 887	142 171	4. 66 2. 93

MOUS
COAL
AND
LIGNITE

Sandoval		5, 378	10	75		5, 463	2.89	23		3	26	209	1.00
Other counties (Bernalillo, Rio Arriba, San Juan, Santa Fe, and Socorro)	97, 197	24, 556	8, 912	7, 548	+1,673	134, 886	2.84	256		52	308	223	1.96
Total New Mexico	1, 057, 971	113, 181	13, 259	4 36, 828	+8,821	1, 230, 060	2.85	1, 799		400	2, 199	166	3. 37
			NO	RTH DAK	OTA (LIC	NITE)							
Adams Burke Burleigh Divide Golden Valley Grant Hettinger McLean Mercer Morton Mountrail Stark Ward Williams Other counties (Billings, Bowman, Dunn,	(14)	(14)	(14)	(∙•)	(14)	43, 690 242, 961 227, 504 168, 928 4, 715 19, 129 8, 876 142, 190 576, 610 18, 108 10, 297 95, 983 458, 449 36, 776	\$1. 10 1. 20 1. 25 1. 19 1. 14 1. 36 1. 34 1. 22 1. 12 1. 40 1. 40 1. 25	25 5 4 16 6 42 159 12 6 55 147	68 29 33 37 65 2 6	19 39 26 20 3 10 3 50 67 11 5 67 14	66 107 80 58 7 26 12 129 291 25 17 61 264 48	147 153 188 256 103 119 197 204 199 178 165 248 191 128	4. 50 11 14. 80 11 15. 12 11 11. 39 11 13. 76 10. 57 10. 21 10. 95 10. 90 10.
McKenzie, and Oliver)	J					18, 277	1. 29	9	5				
Total North Dakota	14 1, 522, 676	14 403, 763	14 136, 281	4 14 9, 773		2, 072, 493	1. 18	560	305	349	1, 214	189	9.04
				0	ню								
Athens Belmont. Carroll. Columbiana. Coshocton Gallia. Guernsey. Harrison Hocking. Holmes. Jackson Jeferson. Lawrence. Mahoning. Medina. Meigs. Muskingum Perry.	111, 074 35, 106 16, 202 100 402, 536 2, 518, 041 138, 662 90, 488 4, 304, 515 100 9, 341 59, 135 678, 806	51, 067 196, 921 310, 526 621, 571 210, 462 29, 767 107, 436 37, 591 90, 015 34, 734 80, 099 317, 412 72, 136 418, 060 4, 678 106, 831 235, 783 235, 783 227, 682	5, 253 33, 944 2, 444 481 900 16, 674 965 389 40 21, 424 7, 974 25 468 9 5, 003	16, 302 10, 407 2, 742 3, 003 666 838 27, 586 362 39 26, 714 51 6, 109 127 15 315 619	+2, 304 -11, 535 -1, 454 -153 -2, 851 -517 +364 -4, 777 -450 +2, 199	1, 639, 300 5, 027, 230 425, 332 660, 161 228, 230 29, 867 527, 537 2, 581, 332 222, 911 34, 813 192, 376 4, 651, 838 7, 911 431, 978 4, 814 170, 984 915, 433 787, 961	\$1. 81 1. 62 1. 82 1. 87 1. 87 1. 95 1. 60 1. 37 1. 73 2. 12 2. 27 1. 55 2. 00 0. 1. 80 2. 16 1. 60 0. 1. 60	2, 259 5, 254 389 305 267 59 469 1, 050 271 54 23 3, 024 108 118 118 119 119 11, 398	16 78 92 21 81 6 6 27 297 93	364 569 73 108 59 6 49 356 40 9 , 35 567 19 40 2 2 2 36 100	2, 623 5, 839 540 505 347 65 518 1, 487 317 69 298 3, 888 127 283 16 6 307 743	157 171 166 203 187 241 217 217 218 180 187 215 193 135 177 194 124	3. 97 5. 04 4. 75 6. 45 3. 53 1. 90 4. 70 7. 98 4. 03 2. 35 3. 59 6. 39 2. 65 7. 94 2. 22 3. 14 6. 34 3. 96

Table 45.—Production, value, employment, days active, and output per man-shift at bituminous coal and lignite mines in the United States in 1939, by States and counties—Continued

OHIO-Continued

		Disposi	tion of coal	produced (1	net tons)			Average and we tive da periods	number orking pr bys (exclus)	of wage roprietors iding shu	earners on ac- it-down		
County		Shipped by truck	Used by mine em- ployees,	Used at mine for	Net changes		Average value		Su	face		Average number of full days	Tons of coal pro- duced on
Portage stark Tuscarawas	Loaded for shipment by rail or water 1	or wagon (exclud- ing coal used by mine em- ployees)	taken by locomo- tive tenders at tipple, or other uses at mines ²	power and heat or made into beehive coke at mine	in stocks of coal at mines Jan. 1, 1939, to Jan. 1, 1940	Total quantity	per ton 3	Under- ground	In strip pits	All others	Total	mines were active	active days per man-shift
Portage Stark Tuscarawas Vinton Nahl Wah	65, 236 1, 500	46, 871 573, 757 751, 225 101, 291	413 2, 975 68, 050 246	693 426 1, 047 80	-233 +13	47, 977 576, 925 885, 571 103, 117	\$2.15 1.86 1.90 1.96	27 274 947 65	15 131 101 47	9 68 165 18	51 473 1, 213 130	199 184 159 172	4. 73 6. 63 4. 59 4. 62
Other counties (Morgan, Noble, Washington, and Wayne)	34, 067	29, 473	15			63, 555	2. 17	147		58	205	130	2. 28
Total Ohio	15, 380, 081	4, 655, 388	171, 927	4 98, 141	-15, 984	20, 289, 553	1. 63	17, 657	1, 050	2, 935	21, 642	175	5. 35
	**************************************		-	OKLAR	AMOI								
Coal Craig Latimer Le Flore Muskogee Okmulgee Pittsburg Tulsa Other counties: Haskell and Sequoyah Rogers and Wagoner	4, 016 212, 133 2, 711 211, 691 136, 982 28, 574 73, 284 379, 629	17, 824 8, 112 2, 638 5, 038 3, 978 18, 245 16, 834 9, 122 922 41, 102	97 49 25 382 8 187 501 123 89 758	20 127 115 1,546 100 850 5,122 191 1,020 4,309	+154 +602 +250	17, 941 8, 288 6, 794 219, 253 6, 797 231, 575 159, 689 38, 010 75, 315 423, 900	\$2. 77 2. 27 2. 59 2. 64 2. 62 1. 87 2. 66 2. 12 2. 00 1. 73	51 19 707 11 215 385 87 35	14 9 5 31 85	7 4 5 131 4 42 75 13	58 18 24 838 24 257 460 105	154 181 103 97 102 158 141 145	2. 00 2. 55 2. 74 2. 70 2. 78 5. 71 2. 47 2. 50 4. 59
Total Oklahoma	1, 049, 020	123, 815	2, 219	4 13, 400	-892	1, 187, 562	2.11	1, 510	144	378	2, 032	133	4, 39

PENNSYLVANIA (BITUMINOUS COAL)

| Allegheny Armstrong Beaver Bedford Blair Butler Cambria Center Clarion Clearfield Clinton Fayette Greene Huntingdon Indiana Jefferson Lycoming Mercer Somerset Tioga Venango Washington Westmoreland Other counties: Bradford, Cameron, Elk, Forest, Fulton, and Warren | 10, 197, 634
2, 770, 939
230, 338
59, 458
78, 230
12, 276, 600
287, 963
1, 196, 351
2, 672, 482
1, 789
14, 218, 835
3, 836, 123
396, 378
5, 304, 785
1, 64, 074
4, 222, 224
4, 222, 224
4, 222, 224
170, 088 | 1, 766, 064
51, 029
419, 963
77, 179
68, 750
311, 597
388, 484
128, 934
1240, 886
39, 847
32, 375
10, 922
66, 359
92, 924
45, 230
154, 633
89, 346
71, 744
316, 049
549, 759 | 918, 525
32, 468
927, 183, 952
5, 084
929, 218
9, 234
20, 571
12, 337
86
83, 355
14, 963
746
266, 183
3, 398
20, 570
120
702
33, 652
50
188, 498
143, 606 | 60, 580
340
5, 457
512
164
115
1173, 205
205
1, 018
25, 211
118 1, 031, 032
1, 533
3, 906
119 20, 996
20, 777
20
1, 201
55, 009
4, 300
2, 777
20
1, 201
1, 893
-9, 107
+7, 690
+626
+2, 212
+572
+17, 333
+13
+2, 138
-41, 318
+7, 082
+62, 633
-2, 369
+2, 811
-3, 039
+634
+390
+127, 214
+11, 761
+610
-4, 459 | 12, 922, 910
2, 845, 669
664, 275
321, 727
150, 248
606, 387
13, 784, 840
426, 383
1, 367, 275
2, 909, 578
41, 740
15, 672, 679
3, 939, 164
467, 100
5, 827, 092
1, 743, 989
217, 521
4, 400, 865
246, 940
15, 584, 986
7, 329, 434 | \$1. 89
1. 89
1. 79
2. 27
2. 18
1. 75
2. 21
2. 21
2. 21
2. 21
2. 21
2. 21
2. 14
2. 13
2. 17
2. 14
2. 13
2. 17
2. 21
2. 14
2. 13
2. 17
2. 17
2. 21
2. 18
2. 553
1, 107
153
483
364
1, 164
17, 347
7, 347
1, 424
4, 582
7, 262
5, 551
100
203
5, 710
3, 14
4, 742
203
5, 712
1, 424
4, 742
1, 408
1, br>10
156
6
 | 1, 633
364
136
52
158
2, 133
96
6144
540
111
1, 774
553
90
676
241
16
65
722
722
66
722
11, 620
1, 004 | 13, 371
3, 481
540
1416
1, 480
19, 480
19, 480
1, 5, 232
16, 462
3, 696
816
6, 227
116
88
6, 432
417
68
16, 571
8, 294 | 188
179
200
171
150
154
178
165
188
160
192
166
185
183
177
177
192
151
160
184
225
182
173 | 5. 14
5. 57
7. 48
2. 41
3. 97
3. 43
3. 450
5. 72
6. 72
6. 31
4. 22
2. 33
3. 22
5. 11
3. 39
4. 37
3. 38
5. 12
4. 32
5. 12
6. 33
6. 12
7. 33
7. 33
7. 34
7.
|---|--|---|---|--|---|---|---|---|---------------------------|--|--|---|--|
| Crawford and Lawrence Total Pennsylvania | 81, 915, 541 | | | 15 2, 043, 430 | +165, 828 | 92, 584, 113 | 2. 03 | 96, 732 | 1, 219 | 12, 395 | 110, 346 | 176 | 4.77 |
| | <u> </u> | <u> </u> | so | UTH DAK | OTA (LIG | NITE) | | | | <u>'</u> | 1, | | |
| Dewey and Perkins | 14 26, 959 | 14 20, 623 | 14 190 | 14 10 | <u></u> | 47, 782 | \$1.35 | 1 | (6) | (6) | 31 | 219 | 7. 03 |
| | <u> </u> | 1 | 1 | TENI |
 VESSEE | <u> </u> | <u> </u> | | <u> </u> | <u> </u> | 1 | | |
| Anderson. Campbell. Claiborne. Cumberland. Hamilton. Putnam. Scott. White. | 12, 372
101, 752 | 43, 737
32, 038
23, 250
9, 272
23, 707
9, 320
22, 233
6, 395 | 5, 207
22, 461
12, 142
 | 7, 753
1, 162
1, 509
153
2, 178 | +1, 340
+1, 303
+3, 944 | 977, 476
1, 367, 226
1, 222, 576
9, 272
23, 707
21, 951
128, 909
6, 435 | \$2. 02
2. 06
1. 87
1. 85
1. 82
1. 88
1. 88
1. 92 | 1, 185
1, 909
1, 520
21
55
93
187
16 | (6) | 304
264
194
2
8
14
(0) | 1, 489
2, 173
1, 714
23
63
107
238
18 | 178
175
170
168
138
93
167 | 3. 70
3. 60
4. 19
2. 41
2. 73
2. 21
3. 19
2. 12 |

Table 45.—Production, value, employment, days active, and output per man-shift at bituminous coal and lignite mines in the United States in 1939, by States and counties—Continued

TENNESSEE—Continued

	,	Disposi	tion of coal	produced (n	et tons)			Average and wo tive da periods	number orking pr ys (exclus)	of wage roprietors iding shu	earners s on ac- it-down		
		Shipped	Used by mine em-	Used at	Net		Average		Su	rface		Average number of full	Tons of coal pro- duced on
County ther counties: Bledsoe, Grundy, Marion, Rhea,	Loaded for shipment by rail or water ¹	by truck or wagon (exclud- ing coal used by mine em- ployees)	ployees, taken by locomo- tive tenders at tipple, or other uses at mines?	mine for power and heat or made into beehive coke at mine	changes in stocks of coal at mines Jan. 1, 1939, to Jan. 1, 1940	Total quantity	value per ton 3	Under- ground	In strip pits	All others	Total	days mines were active	active days per man-shift
Other counties: Bledsoe, Grundy, Marion, Rhea, Sequatchie, and Van Buren Fentress, Morgan, and Overton	805, 756 449, 035	109, 230 32, 454	10, 270 4, 732	2, 432 19, 456	-3, 586 +150	924, 102 505, 827	\$2.06 1.53	1, 216 575	(6)	225 (⁶)	1, 441 659	186 211	3. 44 3. 64
Total Tennessee	4, 780, 347	311, 636	55, 704	4 34, 643	+3, 151	5, 185, 481	1.95	6, 777	(6)	(0)	7, 925	178	3. 68
				TE	XAS						'		•
Texas bituminous coal: Palo Pinto, Webb, and Wise	9, 554	6, 073	6	463	+163	16, 259	\$3. 23	175		61	236	44	1. 55
Total bituminous coal	9, 554	6, 073	6	463	+163	16, 259	3. 23	175		61	236	44	1. 55
Texas lignite: Bastrop, Henderson, Milam, Titus, and Wood	14 793, 647	14 7, 914	14 4, 478	14 4, 019		810, 058	1.07	475	(*)	(0)	559	236	6, 14
. Total lignite	14 793, 647	14 7, 914	14 4, 478	14 4, 019		810, 058	1.07	475	(6)	(9)	559	236	6.14
` Total Texas	¹⁴ 803, 201	14 13, 987	14 4, 484	4 14 4, 482	+163	826, 317	1. 12	650	(6)	(0)	795	179	5. 80

UTAH

Carbon Summit	2, 853, 418 3, 712	209, 951 25, 782	14, 919 50	16 17, 181	+6, 405	2, 601, 874 29, 544	\$2.15 1.98	1, 514 35		563 9	2, 077 44	172 199	7. 28 3. 37
Other counties (Emery, Grand, Iron, Sevier, and Uintah)	541, 339	111, 670	7, 870	3, 906	-11, 299	653, 486	2.07	312	(9)	(0)	423	166	9. 33
Total Utah	2, 898, 469	347, 403	22, 839	14 21, 087	-4, 894	3, 284, 904	2.14	1,861	(0)	(9)	2, 544	171	7. 53
				VIRO	INIA	٠			7				
Buchanan Dickenson Lee Tazewell Wise	4, 278, 510 1, 544, 362 1, 141, 640 2, 669, 998 2, 546, 545	2, 574 38, 446 51, 986 62, 890	7, 049 6, 512 12, 210 23, 592 18, 930	285 821 2, 292 10, 467 17 298, 056	-7,642 +173 +1,512 +1,941 +14,159	4, 280, 776 1, 551, 868 1, 196, 100 2, 757, 984 2, 940, 580	\$1. 78 1. 68 2. 03 1. 92 1. 86	1, 662 2, 869		389 163 188 478 387	3, 846 1, 443 1, 850 3, 347 3, 828	192 250 169 191 165	5. 79 4. 29 3. 83 4. 32 4. 65
Other counties: Montgomery and PulaskiRussell and Scott	142, 747 586, 438	9, 320 56, 522	5, 693	900 4, 613	-2, 567	152, 967 650, 699	1. 96 1. 98	313 792		79 127	392 919	163 168	2. 39 4. 21
Total Virginia	12, 910, 240	221, 738	73, 986	17 317, 434	+7, 576	13, 530, 974	1.85	13, 814		1, 811	15, 625	186	4. 66
				WASH	INGTON								
KingLewisPierosOther counties (Kittitas, Thurston, and	345, 988 9, 129 19, 311	273, 247 24, 221 19, 531	5, 332 8 248	853 335 123	-4, 218	621, 202 33, 693 39, 213	\$3. 29 2. 54 3. 46	683 43 75	(6)	(6) 7 14	899 50 89	206 162 180	3. 86 4. 15 2. 45
Whatcom)	877, 813	76, 519	45, 715	14, 600	-18, 313	996, 334	3.00	954		283	1, 237	182	4.44
Total Washington	1, 252, 241	393, 518	51, 303	4 15, 911	-22, 531	1, 690, 442	3. 11	1, 755	(6)	(0)	2, 275	191	3. 90

Table 45.—Production, value, employment, days active, and output per man-shift at bituminous coal and lignife mines in the United States in 1939, by States and counties—Continued

WEST VIRGINIA

		Disposi	tion of coal	produced (n	et tons)			A verage and we tive da periods	ys (exclu	of wage roprietors iding shu	earners s on ac- t-down	Average	Tons of
	1	Shipped	Used by mine em-	Used at	Net		Average		Su	rface		number of full	coal pro- duced on
oone	Loaded for shipment by rail or water ¹	by truck or wagon (exclud- ing coal used by mine em- ployees)	ployees, taken by locomo- tive tenders at tipple, or other uses at mines ²	mine for power and heat or made into beehive coke at mine	changes in stocks of coal at mines Jan. 1, 1939, to Jan. 1, 1940	Total quantity	value per ton 3	Under- ground	In strip pits	All	Total	days mines were active	active days per man-shift
Barbour Boone Brooke Fayette Greenbrier Hancook Harrison Kanawha Logan McDowell Marion Mason Mercer Mineral Mingo Monongalia Nicholas Preston Raleigh Randolph Taylor Upshur Wayne	469, 134 10, 788, 947 1, 419, 581 65, 854 6, 282, 200 13, 448, 125 20, 118, 827 7, 700, 189 18, 973 2, 979, 100 138, 447 3, 020, 439 6, 527, 641 131, 131 13, 006, 884 954, 482 387, 967 88, 026	1, 069 5, 117 215, 274 23, 500 54, 146 189, 029 32, 423 35, 442 3, 848 39, 767 224, 857 49, 204 7, 903 33, 842 2, 655 56, 587 57, 133 13, 670 145, 238 43, 835 19, 786 9, 869	1, 230 13, 336 847, 693 172, 860 9, 271 1, 758 46, 118 53, 463 97, 580 123, 567 10, 575 21, 718 22, 231 19, 236 473 22, 231 19, 236 477 4, 922 8 37	106 1, 247 98 18 147, 039 303 106 4, 303 4, 778 18 27, 583 120, 914 41, 968 41, 325 819 193 24 277 39 18 12, 540 51, 211 13, 442 13 508	+2, 264 +6, 717 +1, 189 -45, 406 +4, 088 -2, 464 -37, 979 +259, 935 -73, 445 +1, 189 -141 +3, 296 +14, 916 -8, 516 -2, 179 +120	1, 427, 718 3, 247, 461 1, 533, 388 11, 086, 940 1, 487, 479 265, 747 3, 542, 034 6, 337, 904 14, 337, 071 20, 329, 630 7, 978, 978, 71, 249 3, 009, 309 172, 955 3, 048, 645 6, 618, 625 57, 219 613, 206, 894 1, 014, 502 418, 693 68, 580 28, 897 27, 744, 287	\$1. 64 1. 79 1. 69 2. 02 1. 86 1. 12 1. 51 1. 76 1. 61 1. 84 1. 60 1. 68 1. 81 1. 36 1. 50 1. 75 1. 88 1. 88 1. 88 1. 88 1. 63 1. 48 1. 60 2. 60	1, 351 2, 872 772 10, 851 1, 543 2, 305 6, 195 9, 233 16, 412 5, 407 3, 354 409 2, 771 3, 354 99 772 11, 677 1, 046 518 772 2, 797	184	731 15 137 1,831 213 60	1, 526 3, 382 1, 120 12, 233 1, 708 1, 125 2, 724 6, 806 11, 159 19, 649 6, 172 194 3, 656 444 3, 232 4, 085 114 13, 508 11, 259 578 104 40 3, 175 104 40 40 40 40 40 40 40 40 40 40 40 40 4	180 185 189 198 177 222 176 186 191 185 126 185 160 176 194 182 172 194 193 145 124 126 127 129 129 129 129 129 129 129 129 129 129	5. 19 5. 18 7. 25 4. 59 4. 91 9. 23 7. 37 4. 95 6. 97 5. 58 6. 97 6. 58 6. 61 2. 93 4. 46 2. 44 5. 35 8. 35 8. 35 5. 04 4. 19 5. 01 5. 01 5. 01 5. 01 5. 01 5. 01

Braxton, Glimer, Lewis, and Webster Clay and Putnam	1, 019, 124 1, 499, 513 469, 459 1, 699, 745	19, 140 12, 744 31, 839 248, 004	22, 104 25, 297 5, 751 123, 804	2, 137 23, 782 19, 152 2, 883	+653 -7, 614 +2, 695 +5, 881	1, 063, 158 1, 553, 722 528, 896 2, 080, 317	2. 09 1. 88 2. 13 1. 69	1, 377 527 1, 626		183 193 64 177	1, 275 1, 570 591 1, 803	202 235	4. 76 4. 31 4. 43 4. 91
Total West Virginia	104, 404, 593	1, 510, 183	1, 827, 043	¹⁸ 494, 527	+125, 588	108, 361, 934	1. 76	88, 410	269	14, 554	103, 233	190	5. 51
		·		WY	OMING								
Converse Hot Springs Other counties 19 Total Wyoming	37, 449 4, 969, 304 5, 006, 753	15, 719 20, 956 160, 607 197, 282	450 54, 262 54, 712	98, 919 4 98, 922	+503 +15, 117 +15, 620	15, 719 59, 361 5, 298, 209 5, 373, 289	\$1. 95 3. 02 1. 99 2. 00	2 110 2,835 2,947	12 41 53	3 26 728 757	17 136 3, 604 3, 757	173 136 210 207	5. 34 3. 20 7. 02 6. 92

1 Includes coal loaded at mine directly into railroad cars or river barges, hauled by truck to railroad siding for shipment by rail, and hauled by truck to waterway for shipment by water.

Includes coal transported from mines to points of use by conveyor, chute, or aerial tramway. Value of all coal produced, f. o. b. mine or cleaning plant, excluding selling cost. The value of cleaned coal, rather than that of raw coal, was used in cases of operations that

cleaned coal.

Other counties

4 No coal was made into beehive coke at mines in 1939. 5 Includes 97,591 tons made into beehive coke at mines in Las Animas County, Colo., in 1939.

Not shown separately to avoid disclosure of individual operations.

7 "Other counties" in Illinois include Adams, Bond, Bureau, Christian, Clinton, Crawford, Edgar, Greene, Hancock, Henry, Jackson, Jefferson, Logan, Marion, Mason, Morgan, Scott, Warren, Washington, White, Will, and Woodford.

Much of the output of the State obtained from strip pits or by use of loading machines, in which types of operations production per man-shift is large.

- Production of Home Riverside and Alston mines is credited to Missouri rather than to Kansas. 10 "Other counties" in Eastern Kentucky include Breathitt, Carter, Elliott, Johnson, Lawrence, McCreary, Magoffin, Martin, Morgan, Owsley, Pulaski, and Wolfe.
- 11 Output obtained chiefly from strip pits in which production per man-shift is large. 12 Other counties in Missouri include Barton, Bates, Callaway, Chariton, Clark, Dale, Daviess, Grundy, Howard, Jasper, Johnson, Lincoln, Macon, Monroe, Morgan, Platte,
- Ralls, and Warren. 18 "Other counties" in Montana (bituminous coal) include Blaine. Carbon. Cascade. Fergus. Flathead, Gallatin, Judith Basin, Park, Phillips, Pondera, and Rosebud.
- 14 Estimate made from various sources on disposition of lignite has been included for comparative purposes; the lignite schedule did not ask for this break-down. Data by counties
- 18 Includes coal made into beehive coke at mines in following counties in Pennsylvania in 1939: Cambria, 45,545 tons; Fayette, 997,104 tons; Indiana, 131,001 tons; and Westmoreland, 380,529 tons-State total, 1,554,179 tons.
- 16 Includes 13,825 tons made into beehive coke at mines in Carbon County, Utah, in 1939.
- 17 Includes 292,152 tons made into beehive coke at mines in Wise County, Va., in 1939. 14 Includes coal made into beehive coke at mines in following counties in West Virginia in 1939: Fayette, 119,495 tons; Logan, 154 tons; and Preston, 12,079 tons—State total, 131,728
- "Other counties" in Wyoming include Campbell, Carbon, Crook, Fremont, Johnson, Lincoln, Natrona, Sheridan, Sweetwater, and Uinta.

Table 46.—Production, value, employment, days active, man-days, and output per man per day at bituminous coal and lignite mines in the United States in 1940, by States and counties

[Exclusive of mines producing less than 1,000 tons]

	,	Disposition o	f coal produc	ed (net tons))		Avera	ge numb	er of emp	oloyees	Aver-		
		Shipped	Used by mine	Used at mine	·	Aver-		Sur	face		age num- ber	Number	Aver- age tons
County	Loaded for shipment by rail or water ¹	by truck or wagon (excluding coal used by mine employees)	employees, taken by locomotive tenders at tipple, or other uses at mine 3	for power and heat or made into bee- hive coke at mine	Total quantity	age value per ton 3	Under- ground	In strip - pits	All others	Total	of days mines were active	of man-days worked	per man per day
				ALABAM	A			*					
Bibb	713, 328 103, 840	47, 779 40, 075 9, 626	3, 226 596	16, 590 1, 958	780, 923 146, 469 9, 626	\$2.62 2.39 1.70	1, 139 304 16	14 23	216 55 4	1, 369 382 20	218 204 192	298, 837 77, 935 3, 840	2. 61 1. 88 2. 51
Cullman Etowah Jefferson Marion	14, 699 9, 001, 797 262, 469	63, 157 14, 129 286, 541 54, 902	63, 431 1, 611	28, 885 74	63, 364 28, 828 9, 380, 654 319, 056	2. 51 2. 11 2. 28 3. 06	162 74 11, 676 532	4 11	23 12 1,880 91	185 86 13, 560 634 942	185 164 229 212 232	34, 185 14, 118 3, 100, 505 134, 697 218, 351	1. 85 2. 04 3. 03 2. 37 2. 32
Shelby. Tuscaloosa Walker Winston.	400, 643 61, 481 2, 741, 500 1, 691	100, 731 51, 939 128, 233 10, 487	2, 874 45 44, 862	1, 568 1, 862	505, 816 113, 465 2, 916, 457 12, 178	2. 85 2. 30 2. 27 2. 42	790 282 3, 453 39	42	152 41 566 9	323 4, 061 48	154 190 147	49, 795 771, 849 7, 038	2. 32 2. 28 3. 78 1. 73
Winston Other counties (De Kalb, Fayette, Jackson, and St. Clair)	951, 115	46, 804	15, 012	34, 396	1, 047, 327	2. 32	1,601		265	1,866	228	425, 041	2. 46
Total Alabama	14, 252, 563	854, 403	131, 864	4 85, 333	15, 324, 163	2. 33	20,068	94	3, 314	23, 476	219	5, 136, 191	2. 98
		<u> </u>	·	ALASKA		'	<u> </u>		•			<u></u>	
Total Alaska	170, 174			4 3, 670	173, 844	\$3. 49	.70		28	98	322	31, 541	5. 51
, 		e wyth (ARIZONA,	IDAHO, A	ND OREG	on							
Total Arizona, Idaho, and Oregon		16, 816	67	4 19	16, 902	\$3. 32	37		9	46	210	9, 663	1. 75

ARKANSAS

Franklin. Johnson. Logan. Sebastian. Other counties (Pope and Scott) Total Arkansas.	115, 770 162, 972 443, 154 569, 813 82, 979 1, 374, 688	7, 261 18, 418 4, 251 37, 289 1, 864 69, 083	529 137 1, 152 319 172 2, 309	1, 909 2, 979 7 2, 330 306	125, 469 184, 506 448, 564 609, 751 85, 321 1, 453, 611	\$3. 65 3. 05 3. 94 2. 93 3. 61	276 467 1, 216 1, 048 187 3, 194	25 33 58	44 115 224 203 37 623	345 582 1, 440 1, 284 224 3, 875	160 122 128 141 159	55, 237 71, 065 184, 256 181, 420 35, 643 527, 621	2. 27 2. 60 2. 43 3. 36 2. 39
				COLORAD	00								
Boulder Delta	844, 233 848, 371 341	402, 307 26, 961 162, 464 358, 912 24, 518 20, 933 70, 294 40, 535 56, 423 40, 143 40, 213 20, 382 4, 298 38, 920 17, 994 313, 578 6, 754 11, 165	6, 197 388 37, 626 3, 117 50 9, 317 3, 614 1, 132 236 6, 837 2, 010 13, 882 12, 479 599 98, 058	7, 804 4, 988 4, 839 2, 106 560 11, 347 7, 1, 949 780 6 112, 158 3, 358 33, 833 23, 157 265 6 207, 124	622, 556 65, 707 250, 434 515, 756 34, 925 610, 249 753, 133 147, 501 29, 146 1, 252, 332 69, 664 48, 162 4, 298 38, 920 909, 942 1, 197, 585 7, 694 21, 738 6, 588, 742	\$2.90 2.48 2.59 2.57 2.47 2.25 2.56 2.30 2.92 2.10 2.92 3.11 2.74 2.51 2.25 2.41 2.53	573 45 181 686 27 478 478 792 113 31 1, 436 68 820 8 20 9 922 1, 026 9 9	23 23	102 22 42 141 8 114 169 23 7 7 212 21 9,3 3 282 282 182 4 6	675 67 223 827 35 592 961 138 1,648 89 929 11 142 1,204 1,208 138 33 37,836	240 176 228 184 221 188 190 211 226 195 201 101 220 162 285 141 184 189 172	161, 861 11, 793 50, 758 151, 782 7, 785 111, 151 182, 160 28, 671 8, 977 820, 636 17, 961 6, 381 1, 786 11, 988 169, 325 221, 723 2, 454 6, 535	3. 85 5. 57 4. 93 3. 40 4. 52 5. 57 4. 13 5. 14 3. 25 5. 39 7. 55 2. 41 3. 25 5. 37 5. 40 3. 14 3. 33 4. 47
				GEORG	[A								
Total Georgia	35, 082	5, 531	1, 016	4 678	42, 307	\$2. 38	96		34	130	217	28, 248	1. 50

Table 46.—Production, value, employment, days active, man-days, and output per man per day at bituminous coal and lignite mines in the United States in 1940, by States and counties—Continued

	1	Disposition (of coal produc	ed (net tons	<u> </u>	Ι	Avera	ge numb	er of emr	olovees			1
	Loaded	Shipped by truck	Used by mine employees.	Used at mine		Aver-		<u> </u>	rface		Average number	Number of	Aver- age tons
County	for shipment by rail or water	or wagon (excluding coal used by mine employees)	taken by locomotive tenders at tipple, or other uses at mine ²	for power and heat or made into bee- hive coke at mine	Total quantity	value per ton 3	Under- ground	In strip pits	All others	Total	of days mines were active	man-days worked	per man per day
				ILLINOIS									
Bureau Christian Clinton Edgar Franklin Fulton Gallatin Grundy Henry Jackson Knox La Salle Livingston Macoupin Madison Menard Mercer Peoria Perry.	5, 057, 283 54, 002 11, 382 8, 781, 555 3, 643, 419 2, 821 604, 557 1, 865, 510 544, 368 111, 565 3, 292, 293 944, 891	58, 369 159, 224 96, 721 26, 131 88, 548 521, 590 51, 188 111, 133 110, 843 111, 649 202, 480 306, 360 18, 013 247, 282 691, 019 133, 587 24, 994 461, 104 85, 692	2, 944 3, 997 2, 952 145 41, 611 5, 857 1, 749 3, 499 2, 333 13, 871 2, 33 14, 527 14, 527 181 3, 295 27, 747	2, 884 17, 736 10, 245 2, 558 150, 367 2, 590 940 4, 804 6, 653 554 136, 910 66, 958 3, 680 3, 680 2, 615 35, 783	65, 773 5, 238, 240 163, 920 40, 196 9, 062, 081 4, 184, 819 55, 991 115, 201 718, 089 1, 985, 462, 985, 432, 350 18, 826 3, 708, 202 1, 717, 395 25, 550 892, 747 3, 474, 647	\$3. 13 1. 49 1. 71 1. 99 1. 76 1. 57 1. 72 3. 12 1. 79 1. 71 1. 80 2. 73 2. 91 1. 42 1. 57 2. 05 2. 72 1. 44 1. 44	231 1, 820 255 48 4, 866 628 611 140 224 569 223 455 26 2, 008 1, 403 1, 772 49 1, 265 772	21 268 13 71 89 53 88 6	17 580 36 23 1,488 547 19 24 110 216 69 93 6 466 262 222 28 133 476	248 2, 400 291 91 6, 354 1, 443 80 177 405 874 375 636 382 2, 474 1, 665 179 57 1, 407	123 197 128 95 150 210 205 151 216 251 203 172 193 167 216 162 129 171	30, 461 473, 174 37, 126 8, 711 955, 593 302, 883 16, 423 26, 707 87, 665 219, 420 6, 530 477, 667 278, 343 38, 602 9, 237 181, 466 276, 178 98, 906	2. 16 11. 02 4. 42 4. 61 9. 44 13. 85 3. 41 4. 33 8. 11 9. 00 9. 23 2. 88 7. 71 4. 92 4. 92 12. 55
Randolph Rock Island St. Clair Saline Sangamon Schuyler Shelby Stark Tazewell Vermilion	683, 239 4, 270, 790 1, 579, 677 949	85, 689 13, 628 1, 444, 558 72, 144 606, 006 55, 361 7, 504 15, 866 132, 304 385, 200	5, 024 198 132, 456 8, 972 14, 754 20 	23, 047 50 45, 468 46, 338 20, 692 1, 304 87 60 668 12, 338	1, 206, 224 13, 876 2, 305, 721 4, 398, 244 2, 221, 129 57, 634 7, 591 15, 926 171, 780 2, 140, 331	1. 45 3. 19 1. 67 1. 84 1. 87 2. 11 3. 88 2. 35 2. 10 1. 86	340 38 1,774 2,020 2,610 70 42 36 300 2,018	108 160 111	199 5 363 597 324 23 5 7 37 261	590 43 2, 245 2, 777 2, 934 104 47 43 337 2, 320	151 141 176 151 196 120 153 156 170	58, 906 6, 496 317, 471 489, 153 443, 907 20, 371 5, 654 6, 567 52, 567 395, 321	12. 2 2. 1 7. 2 8. 9 5. 0 2. 8 1. 3 2. 4 3. 2 5. 4

BITUMINOUS CO	
COAL A	
B	
LIGNI	
3	

Wabash. Washington. Williamson. Other counties 6	186, 108	4, 907 84, 524 667, 570 576, 365 7, 657, 553	60 57 7, 089 17, 137 406, 845	100 11, 016 33, 509 83, 894 4740, 671	5, 067 281, 705 2, 210, 776 2, 780, 989 50 610, 430	2. 04 1. 69 1. 59 1. 95	21 245 1, 249 1, 104 27, 067	69 306 1,729	5 58 396 457 7, 362	26 303 1,714 1,867 36,158	132 148 159 174	3, 434 44, 865 272, 373 325, 124 6, 119, 358	1. 48 6. 28 8. 12 8. 55 7 8. 27
Clay. Daviess Dubois. Fountain Gibson. Greene Knox. Owen. Parke Perry. Pike. Spencer Sullivan Vermillion Vigo Warren. Warrick Other counties (Martin and Vanderburgh)	10, 750 806, 343 2, 083, 947 2, 074, 266 23, 084 3, 486, 559 67, 878 1, 514, 405 439, 788 3, 262, 848	499, 483 67, 545 8, 739 47, 082 146, 641 164, 211 363, 696 7, 764 140, 249 29, 821 69, 961 23, 721 94, 177 119, 502 214, 990 4, 396 220, 749 49, 316 2, 272, 043	1, 196 505 5 24 1, 979 8, 072 144 391 45 6, 456 102 3, 611 864 401; 790 745 426, 429	7, 626 1, 292 12 652 20, 667 17, 336 20, 580 3, 259 90 25, 894 2, 439 23, 766 4, 631	1, 358, 941 69, 342 8, 751 58, 489 973, 715 2, 247, 473 2, 486, 614 13, 899 91, 791 1, 638, 087 562, 593 3, 903, 393 3, 903, 394 1, 597, 437 100, 461 18, 868, 572	\$1. 85 2. 12 1. 67 2. 13 1. 57 1. 44 2. 36 1. 54 1. 20 2. 21 1. 83 1. 61 1. 28 1. 29 1. 28 1. 53	141 522 13 14 454 454 454 338 922 5 197 322 114 14 782 300 1, 268 14 301 124	414 10 25 222 24 24 24 9 24 100 57 116 277	280 15 4 24 94 369 317 18 8 41 251 251 112 492 2 18 2 2,819	836 77 17 63 548 929 1, 263 40 1, 063 69 1, 133 469 1, 133 17 820 142 9, 655	168 209 184 130 149 199 228 61 192 223 191 174 161 1772 217 189 152 145	140, 650 16, 071 3, 124 8, 163 81, 845 184, 490 287, 932 47, 337 8, 936 203, 258 11, 976 182, 616 80, 755 406, 608 3, 215 124, 754 20, 556	9. 66 4. 31 2. 80 7. 17 11. 90 12. 18 8. 57 10. 76 3. 04 3. 34 17. 62 7. 66 8. 97 6. 97 9. 60 1. 81 12. 80 4. 89

Table 46.—Production, value, employment, days active, man-days, and output per man per day at bituminous coal and lignite mines in the United States in 1940, by States and counties—Continued

				, , , , , , , , , , , , , , , , , , , ,									
		Disposition o	of coal produc	ed (net tons)		Avera	ge numb	er of em	ologees			
	Landad	Shipped	Used by mine	Used at mine		Aver-		Sur	face		Aver- age num- ber	Number	Aver- age tons
County	Loaded for shipment by rail or water ¹	by fruck or wagon (excluding coal used by mine employees)	employees, taken by locomotive tenders at tipple, or other uses at mine?	for power and heat or made into bee- hive coke at mine	Total quantity	value per ton 3	Under- ground	In strip pits	All others	Total	of days mines were active	of man-days worked	per man per day
				IOWA									
Adams Appanoose Boone Dallas Greene Guthrie Jasper Lucas Mahaska Marion Mouroe Page Polk Van Buren Wapello Warren Wayne Webster Other counties (Davis, Jefferson, Keokuk, and Taylor) Total Iowa	216, 690 256, 692 167, 062 179, 533 131, 351 87, 015 88, 286 53, 983 2, 731	19, 148 181, 762 83, 709 85, 094 19, 235 25, 376 46, 050 23, 197 171, 117 403, 535 104, 204 40, 136 261, 310 23, 699 121, 011 72, 705 24, 295 22, 818 28, 737	30 4, 134 6, 286 259 257 778 2, 970 1, 362 3, 262 1, 349 433 8, 135 1, 000 1, 000 99 55	82 252 2, 159 1, 305 537 150 1, 219 1, 617 235 1, 534 30 1, 610 87 1, 098 1, 952	19, 260 427, 002 308, 844 349, 359 20, 031 25, 606 46, 978 194, 448 363, 629 588, 373 194, 102 40, 599 369, 340 23, 926 177, 092 24, 394 22, 878 27, 017	\$3. 29 3. 05 2. 49 3. 05 2. 63 3. 68 2. 71 2. 22 2. 05 2. 63 2. 92 2. 70 2. 92 2. 27 2. 27 2. 27 2. 27 2. 27	105 1, 228. 540 661 39 137 60 256 67 481 267 129 585 23 172 105 988 58	7 12 159 97 6 5 19 29 15 4	154 49 41 15 14 20 24 78 112 54 13 38 14 13	120 1, 382 589 702 280 304 690 327 148 654 55 158 112 76	150 132 195 159 169 140 140 165 173 171 143 179 149 166 116 116 112	17, 950 182, 755 114, 755 111, 912 5, 550 21, 143 13, 733 46, 305 51, 773 119, 638 55, 796 21, 230 117, 305 8, 176 42, 373 18, 292 14, 805 8, 920	1. 07 2. 34 2. 69 3. 12 3. 61 1. 21 4. 20 6. 83 4. 50 3. 48 1. 91 3. 07 2. 93 4. 18 4. 28 2. 66 2. 26
Total lowa	1, 424, 398	1, 755, 138	37, 736	4 13, 905	3, 231, 177	2. 49	5, 061	370	790	6, 221	158	985, 478	3. 28
		, , , , , , , , , , , , , , , , , , , ,		KANSAS			112						
Bourbon . Cherokee . Crawford . Labette . Linn . Osage . Other countles (Franklin and Leavenworth) .	1, 865, 607	21, 789 41, 702 118, 189 15, 513 20, 636 101, 151 14, 693	2, 607 5, 489 239 1, 973	1, 378 1, 036 4, 755 900 305	153, 234 518, 913 1, 994, 040 16, 413 716, 254 104, 593 75, 505	\$1.87 1.87 1.89 2.40 1.64 3.01 2.08	55 894 40 308 304	37 62 290 18 54 13	31 149 338 3 81 29 108	68 266 1, 522 21 175 350 412	192 159 188 156 228 181 250	13, 024 42, 180 285, 889 3, 284 39, 960 63, 347 103, 185	11, 77 12, 30 6, 97 5, 00 17, 92 1, 68
Total Kansas	3, 226, 456	333, 673	10, 449	4 8, 374	3, 578, 952	1.88	1, 601	474	739	2,814	196	550, 869	0 6. 50

1, 930 10, 559 175, 320 5, 163, 920 14, 723, 168 821, 596 431, 801 640, 350 4, 214, 610 802, 385 4, 625, 831, 4, 535, 071 343, 432 292, 741 38, 815, 215	35, 092 35, 092 1, 110 68, 271 70, 274 11, 468 25, 666 236, 093 , 572 98, 456 10, 783 3, 540 8, 596 24, 266 45, 376 24, 815 30, 789 15, 433 14, 647	311 40, 134 407 7, 594 11, 694 81, 403 5, 995 1, 771 3, 205 690 20 28, 789 11, 363 112, 337 231, 999 42 2, 924 15	17 1, 825 18, 762 9, 780 10 6, 106 1, 574 2, 500 976 541 140 1, 863	35, 420 43, 174 81, 062 253, 188 5, 195, 844 14, 840, 017 242, 199 829, 165 439, 777 666, 627 100, 122 19, 375 4, 254, 723 817, 288 4, 646, 944 4, 793, 199 45, 417 24, 815 386, 200 15, 450 307, 566	1. 88 2. 18 2. 03 1. 66 1. 98 2. 06 1. 84 2. 29 1. 80 1. 95 1. 90 2. 01 1. 76 1. 90 2. 01 1. 80 1. 98 1. 98	107 114 116 549 4,574 13,823 952 447 860 156 68 4,317 1,035 4,413 3,686 58 732 26	7	19 13 34 125 731 1,736 66 112 74 136 63 150 687 627 13 102 5	126 127 150 674 5, 305 15, 557 459 1, 064 266 277 4, 797 1, 185 5, 100 4, 313 136 71 848 81	195 144 235 176 208 231 242 224 177 156 207 200 136 161 168 188	24, 610 18, 277 35, 215 11, 101, 415 3, 592, 227 110, 900 240, 888 89, 715 242, 724 44, 613 12, 039 995, 023 237, 442 897, 741 900, 542 18, 430 11, 400 142, 259 5, 580	1.4 2.8 2.1 4.1 2.1 4.1 2.7 2.1 4.2 2.7 2.1 5.3 4.2 2.7 7.7 5.3
175, 820 5, 153, 920 5, 153, 920 14, 723, 168 821, 596 431, 801 640, 350 4, 214, 610 802, 385 4, 525, 881 4, 535, 071 343, 432 292, 741	70, 274 11, 488 25, 666 236, 093 7, 6, 205 20, 572 98, 456 10, 783 3, 540 8, 586 24, 266 45, 375 24, 815 30, 789 15, 433 14, 647	7, 594 11, 694 81, 403 5, 995 1, 771 3, 205 690 20, 789 11, 363 112, 337 231, 999 42 2, 924 15	18, 762 9, 780 10 6, 106 1, 574 2, 500 976 541 140 1, 863	253, 188 5, 195, 844 14, 840, 017 242, 199 829, 165 439, 777 666, 627 100, 122 19, 375 4, 254, 723 817, 288 4, 646, 944 4, 793, 199 45, 417 24, 815 386, 200 15, 450	1. 66 1. 98 2. 06 1. 84 2. 29 1. 84 1. 80 1. 95 1. 86 1. 90 2. 01 1. 87 1. 88 1. 95 2. 11 1. 88	4, 574 13, 821 393 952 447 860 156 63 4, 317 1, 035 4, 413 3, 686 109 58 732 26	7	125 731 1,736 66 112 74 136 63 14 480 150 687 27 13 102	5, 305 15, 557 4, 591 996 226 77 4, 797 1, 185 5, 100 4, 313 136 71 848	176 208 231 242 226 172 244 197 156 207 200 176 209 136 161 168	118, 637 1, 101, 415 3, 592, 227 110, 900 240, 888 89, 715 242, 724 44, 613 12, 039 995, 023 237, 442 897, 741 900, 542 18, 430 11, 400 142, 259 142, 259	2.1 4.1 2.1 3.4 4.2 1.6 4.2 2.5 5.3 2.4 2.7
14, 723, 168 821, 596 431, 801 640, 350 4, 214, 610 802, 385 4, 525, 881 4, 535, 071 343, 432 292, 741	11, 468 25, 666 236, 093 7 6, 205 20, 572 98, 456 10, 783 3, 540 8, 586 24, 266 45, 375 24, 815 30, 789 15, 433 14, 647	11, 694 81, 403 5, 995 1, 771 3, 205 690 28, 789 11, 363 112, 337 231, 999 42 2, 924	9, 780 10 6, 106 1, 574 2, 500 976 541 140 1, 863	5, 195, 844 14, 840, 017 242, 199 829, 165 439, 777 666, 627 100, 122 19, 375 4, 254, 723 817, 288 4, 646, 944 4, 793, 199 45, 417 24, 815 386, 200 15, 450	1. 98 2. 06 1. 84 2. 29 1. 84 1. 80 1. 95 1. 90 2. 01 1. 87 1. 80 1. 95 2. 11 1. 88	4, 574 13, 821 393 952 447 860 156 63 4, 317 1, 035 4, 413 3, 686 109 58 732 26	7	731 1,736 66 112 74 136 63 14 480 150 687 627 27 13 102 5	5, 305 15, 557 459 1, 064 521 996 226 77 4, 797 1, 185 5, 100 4, 313 136 71 848	208 231 242 226 172 244 197 156 207 200 176 209 136 161 168	1, 101, 415 3, 592, 227 110, 900 240, 888 89, 715 242, 724 44, 613 12, 039 995, 023 237, 442 18, 430 11, 400 142, 259 142, 580	4. 4. 2. 3. 4. 2. 2. 1. 4. 3. 5.
821, 596 431, 801 640, 350 4, 214, 610 802, 385 4, 525, 881 4, 535, 071 343, 432 202, 741	236, 093 6, 205 20, 572 98, 456 19, 355 10, 783 3, 540 8, 586 24, 266 45, 376 24, 815 30, 789 15, 433 14, 647	5, 995 1, 771 3, 205 690 20 28, 789 11, 363 112, 337 231, 999 42 2, 924 1, 15	10 6, 106 1, 574 2, 500 976 541 140 1, 863	242, 199 829, 165 439, 777 686, 627 100, 122 19, 375 4, 254, 723 817, 288 4, 646, 944 4, 793, 199 45, 417 24, 815 386, 200 15, 450	1, 84 2, 29 1, 84 1, 80 1, 95 1, 86 1, 90 2, 01 1, 87 1, 76 1, 80 1, 95 2, 11 1, 88	393 952 447 860 156 63 4, 317 1, 035 4, 413 3, 686 109 58 732	7	66 112 74 136 63 14 480 150 687 627 27 13 102 5	15, 557 459 1, 064 521 996 226 77 4, 797 1, 185 5, 100 4, 313 136 71 848	231 242 226 172 244 197 156 207 200 176 209 136 161 168	3, 592, 227 110, 900 240, 888 89, 715 242, 724 44, 613 12, 039 995, 023 237, 442 897, 741 900, 542 18, 430 11, 400 142, 259 45, 580	4. 2. 3. 4. 2. 1. 4. 8. 5. 5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
431, 801 640, 350 4, 214, 610 802, 385 4, 525, 881 4, 535, 071 343, 432	6, 205 20, 572 98, 456 19, 355 10, 783 3, 540 8, 586 24, 266 45, 375 24, 915 30, 789 15, 433 14, 647	1, 771 3, 205 690 20 28, 789 11, 363 112, 337 231, 999 42 2, 924	1, 574 2, 500 976 541 140 1, 863	829, 165 439, 777 686, 627 100, 122 19, 375 4, 254, 723 817, 288 4, 646, 944 4, 793, 199 45, 417 24, 815 386, 200 15, 450	2. 29 1. 84 1. 80 1. 95 1. 86 1. 90 2. 01 1. 87 1. 76 1. 80 1. 95 2. 11 1. 88	952 447 860 156 63 4, 317 1, 035 4, 413 3, 686 109 58 732 26	7	112 74 136 63 14 480 150 687 627 27 13 102 5	1, 064 521 996 226 77 4, 797 1, 185 5, 100 4, 313 136 71 848	226 172 244 197 156 207 200 176 209 136 161 168	240, 888 89, 715 242, 724 44, 613 12, 039 995, 023 237, 442 897, 741 900, 542 18, 430 11, 400 142, 259 5, 580	3 4 2 2 1 1 4 3 5 5 2 2 2 2 2
431, 801 640, 350 4, 214, 610 802, 385 4, 525, 881 4, 535, 071 343, 432	20, 572 98, 456 19, 355 10, 783 3, 540 8, 586 24, 266 45, 375 24, 815 30, 789 15, 433 14, 647	1, 771 3, 205 690 20 28, 789 11, 363 112, 337 231, 999 42 2, 924	2, 500 976 541 140 1, 863	439, 777 666, 627 100, 122 19, 375 4, 254, 723 817, 288 4, 646, 944 4, 793, 199 45, 417 24, 815 386, 200 15, 450	1.84 1.80 1.95 1.86 1.90 2.01 1.87 1.76 1.80 1.95 2.11	447 860 156 63 4, 317 1, 035 4, 413 3, 686 109 58 732 26	7	74 136 63 14 480 150 687 627 27 13 102 5	521 996 226 77 4, 797 1, 185 5, 100 4, 313 136 71 848	172 244 197 156 207 200 176 209 136 161 168	89, 715 242, 724 44, 613 12, 039 995, 023 237, 442 897, 741 900, 542 18, 430 11, 400 142, 259 5, 580	22 22 11 44 33 55 22 22 22
4, 214, 610 802, 385 4, 525, 881 4, 535, 071 343, 432 292, 741	98, 456 19, 365 10, 783 3, 540 8, 586 24, 266 45, 375 24, 815 30, 789 15, 433 14, 647	3, 205 690 20 28, 789 11, 363 112, 337 231, 999 42 2, 924 15	976 541 140 1,863	666, 627 100, 122 19, 375 4, 254, 723 817, 288 4, 646, 944 4, 793, 199 45, 417 24, 815 386, 200 15, 450	1.80 1.95 1.86 1.90 2.01 1.87 1.76 1.80 1.95 2.11 1.88	860 156 63 4, 317 1, 035 4, 413 3, 686 109 58 732 26	7	136 63 14 480 150 687 627 27 13 102 5	996 226 77 4,797 1,185 5,100 4,313 136 71 848	244 197 156 207 200 176 209 136 161 168	242, 724 44, 613 12, 039 995, 023 237, 442 897, 741 900, 542 18, 430 11, 400 142, 259 5, 580	2 2 1 4 3 5 5 2 2 2 2
802, 385 4, 525, 881 4, 535, 071 343, 432 292, 741	19, 355 10, 783 3, 540 8, 586 24, 266 45, 375 24, 815 30, 789 15, 433 14, 647	20 28, 789 11, 363 112, 337 231, 999 42 2, 924 15	541 140 1, 863	19, 375 4, 254, 723 817, 288 4, 646, 944 4, 793, 199 45, 417 24, 815 386, 200 15, 450	1.86 1.90 2.01 1.87 1.76 1.80 1.95 2.11	63 4, 317 1, 035 4, 413 3, 686 109 58 732 26		63 14 480 150 687 627 27 13 102 5	226 77 4, 797 1, 185 5, 100 4, 313 136 71 848	197 156 207 200 176 209 136 161 168	44, 613 12, 039 995, 023 237, 442 897, 741 900, 542 18, 430 11, 400 142, 259 5, 580	2 1 4 3 5 5 2 2 2 2
802, 385 4, 525, 881 4, 535, 071 343, 432 292, 741	10, 783 3, 540 8, 586 24, 286 45, 375 24, 815 30, 789 15, 433 14, 647	28, 789 11, 363 112, 337 231, 999 42 2, 924 15	140 1, 863	4, 254, 723 817, 288 4, 646, 944 4, 793, 199 45, 417 24, 815 386, 200 15, 450	1.90 2.01 1.87 1.76 1.80 1.95 2.11 1.88	4, 317 1, 035 4, 413 3, 686 109 58 732 26		480 150 687 627 27 13 102 5	4, 797 1, 185 5, 100 4, 313 136 71 848	207 200 176 209 136 161 168	995, 023 237, 442 897, 741 900, 542 18, 430 11, 400 142, 259 5, 580	4 3 5 5 2 2 2 2
802, 385 4, 525, 881 4, 535, 071 343, 432 292, 741	3, 540 8, 586 24, 266 45, 375 24, 815 30, 789 15, 433 14, 647	11, 363 112, 337 231, 999 42 2, 924 15	140 1, 863	817, 288 4, 646, 944 4, 793, 199 45, 417 24, 815 386, 200 15, 450	2. 01 1. 87 1. 76 1. 80 1. 95 2. 11 1. 88	1, 035 4, 413 3, 686 109 58 732 26		150 687 627 27 13 102 5	1, 185 5, 100 4, 313 136 71 848	200 176 209 136 161 168	237, 442 897, 741 900, 542 18, 430 11, 400 142, 259 5, 580	5 5 2 2 2 2
4, 525, 881 4, 535, 071 343, 432 292, 741	24, 266 45, 375 24, 815 30, 789 15, 433 14, 647	231, 999 42 2, 924 15	140 1, 863	4, 646, 944 4, 793, 199 45, 417 24, 815 386, 200 15, 450	1.87 1.76 1.80 1.95 2.11 1.88	4, 413 3, 686 109 58 732 26		687 627 27 13 102 5	5, 100 4, 313 136 71 848	176 209 136 161 168	897, 741 900, 542 18, 430 11, 400 142, 259 5, 580	2 2 2 2 2
343, 432 292, 741	45, 375 24, 815 30, 789 15, 433 14, 647	2, 924 15		45, 417 24, 815 386, 200 15, 450	1.80 1.95 2.11 1.88	109 58 732 26		627 27 13 102 5	4, 313 136 71 848	209 136 161 168	900, 542 18, 430 11, 400 142, 259 5, 580	2 2 2
343, 432 292, 741	24, 815 30, 789 15, 433 14, 647	2, 924 15	9, 055 2 5	24, 815 386, 200 15, 450	1. 95 2. 11 1. 88	58 732 26		13 102 5	71 848	161 168	18, 430 11, 400 142, 259 5, 580	2
343, 432 292, 741	30, 789 15, 433 14, 647	15	9, 055 2 5	386, 200 15, 450	2.11 1.88	732 26	14	102°	848	168	142, 259 5, 580	2
	14, 647	15	5,002	15, 450	1.88	26		5			5, 580	1 2
		172	5	307, 565	1 22							
38 815 915					1.00	327		60	387	153	59, 260	I 5
00, 010, 210	915, 467	555, 727	10 59, 271	40, 345, 680	1.96	39, 694	21	5, 664	45, 379	210	9, 540, 156	-
	22, 297	63		22, 360	1.69	60		14	74	142	10, 478	. 2
20, 250							4	13	84	147	12, 354	3
			1,877		1.59	192				156	36, 122	a
	11, 308							2		160		2
10, 445	96, 792	781	8, 496	116, 514	1.69	169		40		152		2
3, 437, 653		38, 030	7, 282	3, 784, 026	1.43	2, 540	75	654	3, 269	*155	518. 721	7 7
2 601 030		16 602	41 000						12		1.820	4
100, 522	41, 388	2, 324	227			2, 505		480 62	2,985	. Je7	469,905	. 6 4
	122, 040	3, 489	19, 421	687, 947	1.38	645			762		SOS BOR	5
973, 371	36, 170	547	14, 360	1, 024, 448	1. 33	1, 238		161	1, 390		92,447	. š
7, 686, 268	952, 858	62, 415	93, 683	8, 795, 224	1.39	7, 748	79	1, 590	9, 41	ź	440, 277	6
46, 501, 483	1, 868, 325	618, 142	10 152, 954	40 140 004						MEN.	0.486, 433	4
	542, 997 973, 371 7, 686, 268	121, 293 4, 923 10, 445 96, 792 3, 437, 653 301, 061 2, 601, 030 158, 824 100, 522 41, 388 542, 997 122, 040 973, 371 36, 170 7, 686, 268 952, 858	121, 293 327 4, 923 41 11, 308 20 781 38, 030 10, 445 3, 061 38, 030 100, 522 41, 388 2, 324 100, 522 41, 388 2, 324 542, 997 3, 371 36, 170 547 7, 686, 268 952, 858 62, 415			20, 250 28, 651 100 200 49, 201 1, 28 121, 293 327 1, 877 123, 497 1, 59 4, 923 41 4, 964 1, 86 10, 445 96, 792 781 8, 496 116, 514 1, 60 3, 437, 653 301, 061 38, 030 7, 282 3, 784, 026 1, 43 2, 601, 030 158, 824 16, 693 41, 820 2, 818, 367 1, 33 100, 522 41, 388 2, 324 227 144, 461 1, 31 542, 997 122, 040 3, 489 19, 421 687, 947 1, 38 973, 371 36, 170 547 14, 300 1, 024, 448 1, 33 7, 686, 268 952, 858 62, 415 93, 683 8, 795, 224 1, 39	20, 250. 28, 651. 100. 200. 49, 201. 1, 28. 67.	20, 250 28, 661 100 200 49, 201 1.28 67 4	20, 250. 28, 651 100 200 49, 201 1, 28 67 4 13	20, 250 23, 661 100 200 49, 201 1.28 67 4 13 84	20, 250. 28, 651 100 200 49, 201 1, 28 67 4 13 84 147 121, 293 327 1, 877 123, 497 1, 59 192 39 231 156 150 11, 368 20 11, 368 20 11, 368 20 11, 328 1, 60 28 4 32 127 160 28 14, 364 18, 37, 658 301, 061 38, 030 7, 282 3, 784, 026 1, 43 2, 540 75 664 3, 269 162 3, 437, 658 24 16, 693 41, 820 2, 8111 1, 36 9 3 11, 28 100, 522 41, 388 2, 324 16, 693 41, 820 2, 818, 367 1, 33 2, 505 480 2, 984 100, 522 41, 388 2, 324 227 144, 461 1, 31 285 63 348 100, 522 41, 388 2, 324 227 144, 461 1, 31 285 63 348 100, 522 41, 388 2, 324 227 144, 461 1, 31 285 63 348 100, 522 41, 388 2, 324 227 144, 461 1, 31 285 63 348 100, 522 41, 388 2, 324 227 144, 461 1, 31 285 63 348 100, 522 41, 388 2, 324 227 144, 461 1, 31 285 63 348 100, 522 41, 388 2, 324 227 144, 461 1, 31 285 63 348 100, 522 41, 388 2, 324 227 144, 461 1, 31 285 645 117 769 973, 371 36, 170 547 14, 360 1, 024, 448 1, 33 1, 238 161 1, 399 77, 688, 288 952, 888 62, 415 93, 683 8, 795, 224 1, 39 7, 748 79 1, 590 9, 41	20, 250 28, 651 100 200 49, 201 1.28 67 4 13 84 147 12, 354

Table 46.—Production, value, employment, days active, man-days, and output per man per day at bituminous coal an in the United States in 1940, by States and counties—Continued

		Disposition of	of coal produc	ed (net tons)		Avera	ge numb	er of emp	ployees		1.	
		Shipped	Used by mine	Used at mine		Aver-		Sur	face	1		a mober	Aver- age tons
County	Loaded for shipment by rail or water ¹	by truck or wagon (excluding coal used by mine employees)	employees, taken by locomotive tenders at tipple, or other uses at mine ?	for power and heat or made into bea- hive coke at mine	Total quantity	age value per ton 3	Under- ground	In strip pits	All others	Total	eottys	ed Heavs Hed	per man per day
				MARYLAI	ND								
Allegany Garrett	713, 685 462, 893	252, 815 58, 571	6, 362 4, 448	842 3, 817	973, 704 529, 729	\$2. 18 1. 98	1, 191 863		156 129	1, 347 992	209 145	280, 856 144, 080	3. 47 3. 68
Total Maryland	1, 176, 578	311, 386	10, 810	4 4, 659	1, 503, 433	2. 11	2, 054		285	2, 339	182	424, 936	3. 54
	•			MICHIGA	N	<u> </u>	*				- 		,
Saginaw Other counties (Bay, Shiawassee, and Tus-	9, 274	82, 020	2, 652	11, 794	105, 740	\$4.01	235		43	278	168	46, 608	2. 27
cola)	93, 808	192, 038	6, 143	12, 440	304, 429	3. 84	538		54	592	197	116, 483	2. 61
Total Míchigan	103, 082	274, 058	8, 795	4 24, 234	410, 169	3. 88	773		97	870	187	163, 091	2. 51
				MISSOUI	SI .								
Adair Barton Bates Boone Callaway Clay Harrison		51, 019 28, 306 21, 773 15, 459 153, 562 140, 748 22, 831	933 113 199 15 460 1,790	2, 717 1, 480 2, 790 342 25 3, 353 470	71, 851 182, 482 110, 363 15, 816 154, 047 145, 891 23, 451	\$2.09 1.94 1.65 2.22 2.14 2.88 2.69	162 18 15 11 100 56	68 74 13 37	28 27 23 7 25 39 10	190 95 115 35 73 439 66	129 135 121 124 252 172 226	24, 458 12, 824 13, 951 4, 332 18, 429 75, 700	2. 94 14. 23 7. 91 3. 65 8. 36 1. 93
Henry LafayetteLinn	508, 451 143, 094	148, 482 104, 396 72, 120	381 4, 890 1, 469	9, 884 2, 512 79	667, 198 254, 892 87, 896	1. 78 2. 52 2. 30	50 711 199	209 21	105 75 20	364 807 219	199 166 257	14,990 72,491 133,742 56,376	1, 57 9 9, 20 1, 91 1, 56

Macon	401, 348	61, 376 37, 954	9, 380 397	-1, 726 10		1.76 1.84	136 144	49	66 21	251 165	201 120	50, 573 19, 780	9.37 1.94
Ralls. Randolph Ray Vernon. Other counties ¹²	400, 066	21, 452 107, 819	430	319	21, 452 508, 634	2. 47 1. 88	43 210	42	10 84 87	60 336	201 210	12, 040 70, 576	1.78 7.21
Vernon	19, 039 19, 024	155, 358 48, 732	2, 828 257	913 3, 270	178, 138 71, 283	2.75 1.74	671 15	45	87 13	758 73	124 155	93, 906 11, 339	1.90 6.29
Other counties 12		89, 190	297	1, 669	91, 156	2.45	79	53	44	176	189	33, 338	2. 73
Total Missouri 8	1, 760, 616	1, 280, 577	23, 989	4 31, 559	3, 096, 741	2.04	2, 920	618	684	4, 222	170	718, 755	4. 31
				MONTAN	A			•					
Montana bituminous coal:		1 4 5 4									1		
Carbon	350, 226	35, 451	2, 750	476	388, 903	\$1.95	170		84 88 3	254	205	51, 956	7. 49
Cascade	424, 994	34, 802 4, 988	1,771	125	461, 692 5, 018	1.46 3.79	266 11		38	304 14	187 131	56, 843 1, 838	8. 12 2. 73
Custer		12,802	25		12, 827	1.49	12		8	15	167	2, 504	5. 12
Hill Musselshell	739, 364	7, 933 42, 298	3, 227		7, 988	3. 47	12		4	16	183	2, 928	2, 73
Rosebud	1, 124, 052	2, 978	3, 227 885	2, 466	787, 355 1, 127, 915	1.91 .87	406 5	46	186 16	592 67	179 244	106, 213 16, 329	7. 41 •69. 07
Rosebud Other counties 18		27, 027	205	6	27, 238	3. 24	53	2	iŏ	65	197	12, 801	2. 13
Total bituminous coal	2, 638, 636 5, 472	168, 279 41, 666	8, 948 1, 030	3, 073 96	2, 818, 936 48, 264	1. 45 15 1. 78	935 60	48 8	344 16	1, 327 84	189 161	251, 412 13, 499	11. 21 3. 58
Total Montana	2, 644, 108	209, 945	9, 978	4 3, 169	2, 867, 200	1. 45	995	56	360	1, 411	188	264, 911	10. 82
	<u> </u>		N	EW MEX	CO	•		·				· · · · · · · · · · · · · · · · · · ·	
Colfax	502, 121	29, 972	2, 988	2, 615	537, 696	\$2,89	644		135	779	140	108, 884	4. 94
McKinley	324, 528	53, 611	4, 108	26, 225	408, 472	3.06	609		198	807	160	129, 154	3. 16
Rio Arriba. Other counties (Bernalillo, San Juan, Santa	24, 833	2, 558			27, 391	2.10	34		-7	41	250	10, 235	2.68
Fe, and Socorro)	97, 384	28, 266	3, 856	7, 550	137, 056	3. 21	275		56	331	242	80, 143	1.71
Total New Mexico	948, 866	114, 407	10, 952	4 36, 390	1, 110, 615	2. 97	1, 562		396	1, 958	168	328, 416	3. 38
		· · · · · · · · · · · · · · · · · · ·	NORTH	DAKOTA	LIGNITE)					<u> </u>		
Total North Dakota 14	1, 566, 976	508, 119	116, 946	4 26, 393	2, 218, 434	15 \$117	654	371	352	1, 377	182	251, 216	8. 83

Table 46.—Production, value, employment, days active, man-days, and output per man per day at bituminous coal and lignite mines in the United States in 1940, by States and counties—Continued

		Disposition (of coal produc	ed (net tons)		Avera	ge numb	er of emp	ployees			
		Shipped	Used by mine	Used at mine		Aver-		Sur	face		Aver- age num- ber	Number	Aver- age
County	Loaded for shipment by rail or water 1	by fruck or wagon (excluding coal used by mine employees)	employees, taken by locomotive tenders at tipple, or other uses at mine ³	for power and heat or made into bee- hive coke at mine	Total quantity	age value per ton 3	Under- ground	In strip pits	All others	Total	of days mines were active	of man-days worked	tons per man per day
		•		оню							:		
Athens Belmont Carroll Columbiana Coshocton Gallia Guernsey Harrison Hocking Holmes Jackson Jefferson Lawrence Mahoning Melgs Morgan Muskingum Perry Stark Tuscarawas	73, 662 5, 073, 151 60, 998 67, 565 810, 879 540, 377 43, 521	69, 016 183, 320 332, 352, 356 681, 507 242, 416 41, 991 93, 623 38, 181 136, 896 40, 274 86, 533 283, 144, 975 6, 686 237, 593 248, 032 812, 144 843, 209	3, 131 27, 277 3, 275 488 5, 619 4, 805 4, 805 1, 138 29, 042 10, 128 10, 678 10, 128 304 304 50 1, 377 3, 069 741	17, 272 10, 024 389 1, 575 1, 060 162 12, 564 1 49 5 18, 026 2, 618 15 260 576 110 208	1, 961, 204 5, 513, 485 432, 619 708, 759 263, 833 42, 389 568, 356 2, 964, 802 298, 480 40, 461 189, 242 5, 384, 449 74, 578 348, 417 159, 867 74, 301 1, 050, 109 792, 053 812, 996 887, 862	\$1. 89 1. 68 1. 88 1. 86 1. 87 1. 79 1. 61 1. 53 1. 76 2. 21 2. 22 2. 25 2. 66 1. 95 2. 00 1. 61 2. 00 1. 83 1. 67	2, 123 5, 359 335 248 268 41 485 1, 005 320 43 227 3, 241 98 51 51 75 74 81 1, 279 181 585	477 499 1166 1144 222 1266 77 77 738 2822 1 1111 233 400 1439 1339	347 750 55 56 45 6 52 302 53 10 46 671 14 30 38 19 99 196 105	2, 470 6, 156 439 415 327 7, 433 380 60 311 4, 194 113 199 270 1, 515 429 838	191 182 204 219 220 234 225 251 181 1223 188 199 245 245 270 116 223 233 202	472, 700 1, 121, 546 89, 485 91, 019 71, 830, 16, 155 120, 737 359, 101 68, 776 13, 396 58, 572 818, 671 27, 706 48, 496 46, 009 19, 577 141, 789 99, 922 169, 440	4. 15 4. 92 4. 83 7. 7. 93 3. 67 2. 62 4. 71 7. 8. 26 4. 3. 02 3. 23 7. 6. 58 9. 7. 147 3. 80 7. 4. 51 7. 8. 14
Vinton Wayne Other counties (Noble, Portage, Summit, and Washington)	250	77, 513 17, 821 105, 492	315 185	908 187 645	78, 986 18, 008 106, 322	2. 01 2. 99 1. 97	37 25 50	39 6 17	22 7 17	98 38 84	206 181 226	20, 206 6, 860 19, 006	3. 91 2. 63 5. 59
Total Ohio		5, 085, 213.	104, 210	4 66, 653	22, 771, 552	1. 71	16, 893	1, 227	3, 054	21, 174	193	4, 076, 578	5, 59

Coal Craig. Latimer LeFlore Okmulgee Pittsburg. Rogers Tulsa Other counties: Haskell and Sequoyah Muskogee and Wagoner Total Oklahoma	22, 581 344, 605 316, 789	24, 378 10, 303 4, 607 8, 712 33, 584 24, 562 49, 025 24, 857 2, 009 27, 002	68 26 141 653 278 922 224 35 183 200 2, 730	80 574 1, 208 7, 242 6, 128 290 335 400	24, 451 10, 329 27, 409 354, 544 351, 859 196, 494 96, 727 44, 817 85, 811 453, 540 1, 645, 981	\$3. 22 2. 43 2. 24 2. 86 2. 36 2. 91 2. 12 2. 51 2. 30 2. 04	43 48 685 259 302 2 93 39	10 41 5 43 79 183	10 4 16 126 49 74 15 19 26 55	58 14 64 811 308 376 58 117 108 134 2,048	164 172 192 139 224 205 223 157 189 183	9, 527 2, 404 12, 263 113, 065 69, 072 77, 199 12, 933 18, 323 20, 361 24, 528 359, 675	2. 57 4. 30 2. 24 3. 14 5. 09 2. 55 7. 48 2. 45 4. 21 1. 18. 49
		PE	NNSYLVA	NIA (BITU	MINOUS C	OAL)			1, 7, 1				
Allegheny Armstrong Beaver Bedford Blair Bradford Butler Cambria Center Clarion Clearfield Clinton Elk Fayette Greene Huntingdon Indiana Jefferson Lawrence Lycoming Mercer Somerset Tioga Venango Washington Westmoreland Other counties (Cameron, Crawford, Forest, Fulton, and McKean) Total Pennsylvania	229, 751 70, 341 87, 477 391, 007 13, 074, 735 438, 265 1, 409, 694 3, 096, 809 731, 378 19, 258, 729 5, 152, 483 415, 186 8, 814, 991 1, 970, 248 218, 717 7, 492 79, 494 4, 705, 960 177, 939 18, 694, 881 7, 295, 472 163, 034	2, 152, 569 123, 251 471, 546 108, 270 90, 408 7, 161 435, 184 490, 315 220, 961 306, 612 48, 692 48, 693 80, 278 586, 308 81, 753 93, 348 132, 036 61, 130 63, 762 244, 889 170, 665 85, 107 47, 709 437, 733 737, 987 31, 078	1, 052, 753 45, 953 218, 964 2, 002 15, 6, 835 1, 739, 636 1, 739, 636 1, 750 10, 000 26, 814 13, 903 17, 241 3, 207 284, 823 4, 337 2, 290 284, 823 11, 395 31, 284 11, 395 31, 284 31, 10, 647 705 5, 332 16 1, 598 202 777 18 181, 558 238, 27, 265 44 17, 377 18 20, 846 2, 935 16 313, 330 1, 585 1, 173 52; 414 6, 956 6 22, 408 18 800, 417 352	15, 676, 475 4, 151, 576 706, 955 399, 173 180, 179 7, 176 833, 103 18, 386, 244 668, 799 1, 727, 707 3, 436, 036 50, 467 832, 673 22, 191, 047 5, 202, 159 503, 031 7, 006, 282, 137 72, 056 328, 951 48, 554 19, 305, 154 8, 985, 347 194, 464 116, 602, 999	\$1. 93 1. 92 2. 04 2. 69 2. 30 3. 11 1. 84 2. 23 2. 02 1. 72 2. 04 1. 90 2. 10 2. 10 2. 10 2. 12 2. 36 2. 12 2. 36 2. 12 2. 12 2. 16 2. 19 1. 90 1. 002 3, 549 169 586 368 16, 1096 11, 006 11, 029 17, 290 17, 018 19	229 777 2000 	1, 608 396 102 86 48 83 184 2, 397 207 624 166 1, 971 657 87 803 240 46 62 22 65 9 1, 872 1, 087 36	12, 839 4, 072 471 672 416 11, 366 20, 426 1, 169 1, 905 5, 326 1, 206 19, 509 4, 221 4, 221 4, 221 4, 709 2, 454 4, 499 135 6, 798 4, 617 201 17, 604 8, 617 294 118, 420	226 223 194 175 167 165 173 202 186 194 218 219 201 196 195 217 203 182 166 208 230 211 212 212	2, 907, 702 895, 687 91, 373 117, 902 69, 580 3, 139 236, 876 4, 117, 613 201, 206 4, 482, 274 918, 723 183, 586 1, 345, 692 480, 368 97, 727 22, 332 53, 890 1, 239, 082 67, 911 14, 580 4, 042, 024 1, 815, 869 62, 192 25, 115, 380	5. 39 4. 64 7.7.74 3. 39 2. 59 2. 29 3. 52 3. 98 3. 07 4. 68 3. 51 3. 12 3. 19 4. 95 5. 66 2. 74 4. 39 2. 90 2. 46 6. 07 4. 00 3. 98 3. 3. 31 4. 60 4. 95 3. 33 4. 80 4. 95 4. 80 4. 95 5. 96 6. 97 6. 97 6. 97 7. 98 7.		
			SOUTH	DAKOTA	(LIGNITE)								
Total South Dakota 16	87, 285	28, 521	284	15	66, 085	18 \$1. 33	12	39	12	63	168	10, 577	6. 25

Table 46.—Production, value, employment, days active, man-days, and output per man per day at bituminous coal and lignite mines in the United States in 1940, by States and counties—Continued

	i					1	i		<u> </u>		1		
	-	Disposition of	of coal produ	ced (net tons			Avera	ge numb	er of em	oloyees	Aver-		
County	Loaded for shipment by rail or water ¹	Shipped by truck or wagon (excluding coal used by mine employees)	Used by mine employees, taken by locomotive tenders at tipple, or other uses at mine 2	Used at mine for power and heat or made into beehive coke at mine	Total quantity	Average value per ton 3	Under- ground	In strip pits	All others	Total	age num- ber of days mines were active	Number of man-days worked	Average tons per man per day
			<u> </u>	TENNESS	EE	G. G. A.			100	1 41			1.1
Anderson Bledsoe Campbell Campbell Claiborne Fentress Hamilton Marion Morgan Overton Scott Sequatchie Van Buren White Other counties: Cumberland and Putnam Grundy and Rhea Total Tennessee	264, 909 447, 802 191, 739 1, 969 96, 761 18, 426	58, 346 9, 569 19, 662 41, 782 11, 925 25, 305 43, 942 18, 527 18, 117 10, 979 50, 722 16, 007 5, 920 17, 381 36, 639 384, 823	8, 418 430 27, 749 14, 638 2, 149 5, 155 4, 120 2, 096 912 142 239 54 791 6, 133	1, 573 1, 741 1, 741 12, 258 1, 750 9, 228 2, 860 281 90 105 17 9, 594	1, 117, 612 52, 999 1, 722, 844 1, 357, 812 291, 241 25, 380 497, 614 221, 590 20, 126 111, 512 60, 571 16, 336 6, 079 78, 551 419, 209 6, 008, 456	\$2. 03 1. 50 2. 15 1. 83 1. 59 1. 80 2. 24 1. 71 1. 61 1. 76 2. 22 2. 02 1. 89 1. 64 2. 02	1, 250 80, 2, 031 1, 698 395 395 33 139 98 36 19 98 505 7, 413	3	168 111 300 202 511 3 106 103 8 38 24 12 4 50 70	1, 418 91 2, 331 1, 900 446 42 773 432 41 180 122 48 23 144 575 8, 566	202 198 218 204 223 170 208 230 188 187 150 175 179 192 208	286, 290 18, 030 507, 213 388, 158 99, 352 7, 130 160, "42 99, 489 7, 710 33, 629 18, 351 8, 384 4, 120 27, 595 112, 864	3. 90 2. 94 3. 40 3. 50 2. 93 3. 56 3. 10 2. 23 2. 61 3. 32 2. 61 3. 32 1. 95 1. 48 2. 85 3. 71
				TEXAS									1 64. 2011
Texas bituminous coal: Palo Pinto, Webb, and Wise	8, 530	5, 565	42		14, 137	\$3.42	67		14	81	99	8,003	1. 77
Total bituminous coal	8, 530 592, 720	5, 565 6, 784	42 3, 650	3, 264	14, 137 606, 418	3. 42 18 1. 05	67 476	16	14 54	81 546	99 170	8, 003 92, 615	1. 77 6. 55
Total Texas	601, 250	12, 349	3, 692	4 3, 264	620, 555	1. 10	543	16	68	627	160	100, 618	6. 17

UTAH

Carbon Emery Sevier Summit Other counties (Grand, Iron, and Uintah) Total Utah		264, 446 111, 889 4, 528 21, 998 13, 360 416, 221	15, 280 4, 846 28 648 161 20, 963	18 21, 301 4, 613 35 24 18 25, 973	2, 779, 712 691, 595 4, 556 50, 520 49, 203 3, 575, 586	\$2. 21 2. 18 2. 30 1. 92 2. 49 2. 20	1, 523 267 10 42 40 1, 882		552 121 3 20 12 708	2, 075 388 13 62 52 2, 590	176 201 117 247 216 182	365, 533 78, 037 1, 522 15, 304 11, 210 471, 606	7. 60 8. 86 2. 99 3. 30 4. 39
				VIRGINIA					** **. 				
Buchanan Dickenson Lee Montgomery Russell Tazewell Wise Other counties (Chesterfield and Scott) Total Virginia	2, 754, 286 4, 003	4, 321 13, 937 79, 247 8, 734 56, 689 54, 891 80, 019 24, 125 321, 963	9, 925 6, 815 12, 672 6, 320 30, 734 23, 921 919 91, 306	120 799 18 898 1, 500 3, 168 10, 223 19 335, 214 150	4, 874, 311 1, 767, 582 1, 420, 683 173, 457 606, 270 3, 283, 135 3, 193, 440 29, 197 15, 348, 075	\$1.84 1.82 2.15 2.08 2.00 2.08 1.95 2.38	3, 664 1, 540 1, 581 220 696 3, 313 3, 722 57 14, 793	5 5	440 233 298 45 158 525 501 22 2, 222	4, 104 1, 773 1, 879 265 854 3, 838 4, 223 84 17, 020	205 246 215 183 154 203 174 233	839, 496 436, 780 403, 084 48, 620 131, 370 779, 150 733, 163 19, 560 3, 391, 223	5. 81 4. 05 3. 52 3. 57 4. 61 4. 21 4. 36 1. 49
WASHINGTON													
King Kittitas Lewis Pierce Other counties (Thurston and Whatcom) Total Washington	9, 765 23, 107 174, 566	265, 265 23, 482 27, 988 15, 028 41, 844 373, 607	5, 379 36, 839 95 381 1, 307 44, 001	489 9, 885 371 70 2, 837	592, 008 760, 985 38, 219 38, 586 220, 554 1, 650, 352	\$3. 41 2. 94 2. 57 3. 49 3. 32 3. 16	667 738 39 57 337	5	190 207 7 9 69	862 945 46 66 406 2,325	214 186 202 189 134	184, 493 176, 060 9, 274 12, 493 54, 210 436, 530	3. 21 4. 32 4. 12 3. 09 4. 07

Table 46.—Production, value, employment, days active, man-days, and output per man per day at bituminous coal and lignite mines in the United States in 1940, by States and counties—Continued

		D	isposition of	coal produce	d (net tons)			A vera	ge numb	er of emi	oloyees			
	Q		Shipped	Used by mine	Used at mine		Aver-		Sur	face		Aver- age num-	Number	Aver-
	County	Loaded for shipment by rail or water	by truck or wagon (excluding coal used by mine employees)	employees, taken by locomotive tenders at tipple or other uses at mine?	for power and heat or made into bee- hive coke at mine	Total quantity	age value per ton 3	Under- ground	In strip pits	All others	Total	ber of days mines were active	of man-days worked	tons per man per day
				w	EST VIRG	INIA				 	·	•		
Boone Braxton Brooke Clay Fayette Gilmer Grant Greenbrier Hancock Harrison Kanawha Lewis Logan McDowell Marion Marshall Mason Mercer		3, 824, 535 3, 552 519, 806 738, 178 11, 840, 162 13, 435 1, 559, 311 8, 552 7, 133, 162 17, 062, 227 24, 503, 550 8, 732, 274 317, 507 3, 4991 3, 749, 608	20, 169 3, 485 47, 291 69, 249 171, 997	1, 825 17, 675 10, 880 951, 095 20, 364 292, 087 16 398 10, 159 71, 326 65, 192 40 115, 695 274, 980 219, 012 160, 474 305 29, 024	92 2, 013 73 26, 931 19 334, 895 328 306 4, 228 5, 994 3, 157 83, 119 44, 035 2, 859 265 1, 213	1, 509, 845 3, 849, 793 15, 695 1, 943, 194 785, 473 12, 487, 313 16, 936 48, 017 1, 639, 025 180, 549 3, 939, 546 7, 262, 420 17, 198, 855 24, 894, 925 9, 048, 171, 587, 306 84, 892 87, 306 84, 892 87, 306 84, 892 87, 306 84, 892 87, 306 84, 892 87, 306 84, 892 87, 306 84, 892 87, 306 84, 892 87, 306 84, 892	\$1.70 1.83 1.66 1.63 1.80 2.04 1.57 2.24 1.95 1.22 1.64 1.14 1.68 1.92 1.95 1.95	1, 361 3, 010 22 770 429 10, 814 217 110 1, 655 38 2, 071 6, 030 12, 262 17, 171 5, 080 470 133 3, 181	72 18 7	167 556 5 164 120 1, 529 6 20 225 211 516 768 2, 183 3, 370 829 67 34	1, 528 3, 566 27 1, 056 12, 343 33 130 1, 880 77 2, 594 6, 798 11, 445 20, 541 5, 797 167 387 187	186 196 129 228 280 211 123 214 181 194 211 240 211 219 229 171 227	284, 933 698, 179 3, 476 229, 735 153, 811 2, 801, 450 4, 075 27, 836 341, 171 15, 111 504, 395 1, 434, 719 3, 355 2, 420, 329 4, 498, 992 1, 277, 108 122, 760 28, 589	5. 30 5. 51 4. 52 7. 8. 46 5. 11 4. 80 4. 16 1. 72 4. 80 7. 11. 95 7. 7. 81 5. 53 7. 7. 08 4. 78 4. 78 4. 80
Mineral Mingo Mingo Monongalia Nicholas Ohio Preston Putnam Raleigh Randolph Taylor Fucker		125, 243 3, 414, 228 7, 974, 667 22, 564 1, 560, 992 647, 238 557, 026 15, 284, 168 1, 038, 313 311, 924 508, 392	43, 653 4, 802 69, 047 62, 466 194, 086 17, 533 2, 160 47, 623 58, 986 19, 261 5, 021 18, 131	320 24, 428 27, 549 3, 288 8 122, 287 4, 077 136, 396 5, 925 548 3, 655 139	1, 213 56 156 20 48, 164 222 61, 518 19, 447 5 20, 404 831	3, 780, 282 169, 272 3, 443, 458 8, 071, 419 88, 318 1, 755, 086 835, 212 563, 485 15, 529, 705 1, 122, 671 331, 738 537, 469 131, 444	1.96 2.33 1.71 1.46 1.74 1.66 1.82 1.99 1.94 1.75 2.20	3, 181 432 2, 694 3, 437 156 1, 266 814 636 11, 645 1, 067 348 478	30	59 463 873 21 154 163 57 1,904 222 62 64 41	3, 803 491 3, 157 4, 310 177 1, 420 1, 007 693 13, 549 1, 289 410 542 165	227 159 199 225 144 269 197 222 233 198 153 210	861, 388 77, 933 626, 953 971, 458 25, 451 381, 836 198, 864 154, 111 3, 151, 433 254, 795 62, 792 113, 581 22, 820	4. 41 2. 17 5. 48 7 8. 31 3. 46 4. 20 3. 60 4. 93 4. 41 5. 28 4. 73

Webster	1, 028, 344 3, 441, 204	7, 412	774 28, 176	3, 135 20, 829	1, 032, 274 3, 497, 621	2. 20 2. 14	936 2, 967		153 474	1, 089 3, 441	199 227	217, 062 782, 170	4. 76 4. 47
Other counties (Lincoln, Summers, and Wayne)	13, 348	13, 518	56		26, 922	1. 13	38		10	48	154	7, 398	3. 64
Total West Virginia	121, 411, 168	1, 744, 018	2, 598, 170	²⁰ 684, 265	126, 437, 621	1.83	88, 684	127	15, 924	104, 735	215	22, 560, 069	5. 60
	` 				·		<u> </u>						

Carbon. Converse Fremont Hot Springs. Johnson Lincoln Sheridan Sweetwater. Other countles (Camobell, Park, and	581, 664 21, 250 47, 653 411, 937 561, 233 3, 758, 276	29, 528 18, 355 11, 299 22, 402 11, 432 28, 206 32, 410 10, 389	2, 852 20 415 327 85 4, 379 8, 502 21, 795	16, 416 4, 769 6 253 7, 706 670 59, 231	630, 460 18, 375 37, 733 70, 388 11, 770 452, 228 602, 815 3, 849, 691	\$2.02 1.76 2.40 3.19 1.80 2.50 1.68 2.07	242 4 25 118 8 375 320 2, 237	16 8	92 2 10 20 4 111 93 483	350 14 35 138 12 486 416 2,720	192 245 140 130 245 184 161	67, 265 3, 425 4, 906 17, 944 2, 936 89, 643 66, 875 466, 224	9. 37 5. 36 7. 69 3. 92 4. 01 5. 04 9. 01 8. 26
Other counties (Campbell, Park, and Uinta)	99, 924	23, 756	675	10, 227	134, 582	1. 30	17	22	15	54	256	13, 818	9.74
Total Wyoming	5, 481, 937	187, 777	39, 050	4 99, 278	5, 808, 042	2.06	3, 346	49	830	4, 225	173	733, 036	7 7. 92

1 Includes coal loaded at mine directly into railroad cars or river barges, hauled by truck to railroad siding for shipment by rail, and hauled by truck to waterway for shipment by Includes coal transported from mines to points of use by conveyor, chute, or aerial tramway.

Value received or charged for coal, f. o. b. mine, including selling cost. (Includes a value for coal not sold but used by producer, such as mine fuel and coal coked inot cokel as estimated by producer at average prices that might have been received if such coal had been sold commercially.)

1 No coal was made into beehive coke at mines in 1940.

Includes 95.735 tons made into beehive coke at mines in Las Animas County, Colo., in 1940.

6 "Other counties" in Illinois include Adams, Bond, Crawford, Hancock, Jefferson, Logan, McDonough, Macon, Marion, Marshall, Montgomery, Scott, Warren, White, Will. and Woodford.

7 Much of output is obtained from strip pits or by use of loading machines, in which types of operations production per man per day is large.

8 Production of Hume-Singlair (Tiger mine) is credited to Missouri; production of Hume-Singlair (Tiger mine) is credited to Kansas.

Output obtained chiefly from strip pits in which production per man per day is large.

Includes 1,273 tons made into beehive coke at mines in Jackson County, Ky., in 1940.

""Other counties" in Missouri include Audrsin, Charlton, Clark, Dade, Daviess, Grundy, Howard, Jasper, Johnson, Lincoln, Miller, Monroe, Morgan, and Saline.

13 "Other counties" in Montana bituminous coal include Blaine, Fergus, Flathead, Judith Basin, Park, Phillips, Pondera, and Powder River.

14 Figures on lightle dby Bureau of Mines; see lightle tables, 1940, at end of this chapter. As lightle schedule did not require exactly same break-down on disposition of coal produced as shown in this table, an estimate has been made where feasible for items "shipped by truck or wagon," "used by mine employees," "taken by locomotive tenders at tipple," and "transported from mines to points of use by conveyor, chute, or aerial tramway." Sum of these items equals sum of items "commercial sales by truck or wagon" and "other sales to local trade, or used by employees, or taken by locomotives at tipple," as published by Bureau of Mines. For more detailed information on lightle by counties, see section on lightle at end of chapter.

15 Excludes selling cost.

16 Includes coal made into beehive coke at mines in following counties in Pennsylvania in 1940: Bedford, 989 tons; Cambria, 45,882 tons; Fayette, 2,199,593 tons; Greene, 3.098 tons; Indiana, 233,673 tons; and Westmoreland, 756,229 tons—State total, 3,239,464 tons.

if Includes 8,818 tons made into beehive coke at mines in Grundy County, Tenn., in 1940.

If Includes 14,637 tons made into beehive coke at mines in Carbon County, Utah, in 1940.

Includes coal made into beehive coke at mines in following counties in Virginia in 1940: Loe, 800 tons; Wise, 830,018 tons; State total, 830,818 tons.

Includes coal made into beehive coke at mines in following counties in West Virginia in 1940: Fayette, 308,487 tons; Preston, 47,918 tons; State total, 354,405 tons.

STATISTICS ON LIGNITE IN 1940 2

PRODUCTION

The Bureau of Mines prepares final statistics of the lignite industry from an annual canvass, by mail, of operators of lignite properties included in the areas mapped as "lignite" in Geological Survey Professional Paper 100-A, The Coal Fields of the United States. Subbituminous coal is not included. The data on individual operations furnished by the producers are voluntary and confidential, as is cus-

tomary in the statistical surveys of the Bureau of Mines.

Lignite production in 1940 totaled 2,939,201 net tons, a small decrease from the 3,042,537 tons produced in 1939. These figures are exclusive of many of the small mines producing less than 1,000 tons. The average value per ton was \$1.16 in 1940 compared with \$1.13 in The average value per ton by States ranged from a low of \$1.05 for Texas to a high of \$1.78 for Montana. The number of men employed in 1940 totaled 2,070 compared with 2,096 in 1939, and the average output per man per day for the same periods was 7.99 and 7.61 tons, respectively. The average number of days worked by the industry was 178 in 1940 compared with 191 in 1939. A much larger percentage of the total output of lignite results from stripping operations than in either anthracite or bituminous-coal mining. Of the total lignite output 48 percent (1,447,449 tons) was produced in strip pits in 1939 whereas 51 percent (1,512,308 tons) of the total in 1940 resulted from strip-pit operations. No labor disturbances were reported.

In 1940, as for many years in the past, North Dakota was the largest producer of lignite, followed in order by Texas, South Dakota, and Montana. The North Dakota output represented 75 percent of the United States total, that of Texas 21 percent, and South Dakota and

Montana together 4 percent.

Reports of the Federal Power Commission show that 1,538,174 tons of lignite were consumed in 1939 for generating electric energy in the United States. In 1940, 1,452,412 tons were so used, and this tonnage was equivalent to 49 percent of the total production. Consumption in the West North Central Division was 547,366 tons, in the West South Central and Mountain Divisions 516,531 and 386,991 tons, respectively, and in the East South Central Division, 1,524 tons.

The following tables include detailed statistics on the lignite industry in 1940. Similar data for 1941 were not available in time to be included in this chapter, but they will be published later in mimeographed form and may be obtained upon request to the Coal Eco-

nomics Division of the Bureau of Mines.

² Compiled by J. A. Corgan and A. V. Coleman, Coal Economics Division, Bureau of Mines.

TABLE 47.—Summary of production, value, men employed, days operated, mandays of labor, and output per man per day at lignite mines in the United States in 1940, by States

	North Dakota	Texas	South Dakota	Montana 1	Total
Production (net tons): Loaded at mines for shipment Commercial sales by truck or wagon Other sales to local trade, or used by	1, 566, 976	592, 720	37, 285	5, 472	2, 202, 453
	447, 694	6, 784	28, 521	41, 666	524, 665
employees, or taken by locomotives	2 177, 371	3, 650	3 279	1, 030	³ 182, 330
at tipple	26, 393	3, 264	(³)	96	³ 29, 753
Total production: 1940	2, 218, 434	606, 418	66, 085	48, 264	2, 939, 201
	2, 131, 252	814, 022	49, 495	47, 768	3, 042, 53 7
Value: Total: 1940	\$2, 587, 000	\$637, 000	\$88,000	\$86,000	\$3, 398, 000
	\$2, 425, 000	\$875, 000	\$69,000	\$83,000	\$3, 452, 000
	\$1. 17	\$1, 05	\$1.33	\$1.78	\$1. 16
	\$1. 14	\$1, 07	\$1.39	\$1.74	\$1. 13
Number of employees: Underground. Surface (including strip pits)	654	476	12	60	1, 202
	723	70	51	24	868
Total employees: 1940	1,377	546	63	84	2, 070
	1,391	559	53	93	2, 096
Average number of days mines operated: 1940	182	170	168	161	178
	179	231	160	146	191
	251,216	92, 615	10, 577	13, 499	367, 907
Man-days of labor: 1940 4	248,755	129, 120	8, 502	13, 565	399, 942
1940	8. 83	6. 55	6. 25	3. 58	7. 99
1939	8. 57	6. 30	5. 82	3. 52	7. 61

Table 48.—Production, value, men employed, days operated, man-days of labor, and output per man per day at lignite mines in the United States in 1940, by States and counties MONTANA

Value Average Total A verage Total Mannumber net tons produc-tion (net number days of labor 1 Total of days County per man per day 1 of em-Average mine (thouper net ployees tons) operated sand ton dollars) 4. 55 2. 94 3. 40 3. 60 8, 579 4, 358 19, 362 15, 965 135 \$1.63 Custer, Dawson, and Valley 14 1, 484 5, 689 4, 440 1.84 2.01 10 148 McCone Richland and Roosevelt 15836 24 185 25 1, 57 Sheridan.... 84 93 13, 499 13, 565 161 3, 59 48, 264 47, 768 1.78 1.74 Total Montana: 1940... 1939.... 146

¹ Includes output of Custer, Dawson, McCone, Richland, Roosevelt, Sheridan, and Valley Counties.
2 Includes some lignite "made into briquets."
3 Small amount of colliery fuel included in "Other sales to local trade."
4 Based upon (1) "reported" number of man-shifts where operator keeps a record thereof; otherwise upon (2) "calculated" number of man-shifts, obtained by multiplying average number of men employed underground and or surface at each mine by number of days worked by mine and tipple, respectively. Using throughout "calculated" man-shifts as developed before the year 1932—namely, product of total number of men employed at each mine times tipple days—the average output per man per day was 8.69 in 1940.

Table 48.—Production, value, men employed, days operated, man-days of labor. and output per man per day at lignite mines in the United States in 1940, by States and counties-Continued

NORTH DAKOTA

		Va	lue				
County	Total produc- tion (net tons)	Total (thou- sand dollars)	Average per net ton	Total number of em- ployees	Man- days of labor i	Average number of days mine operated	A verage net ton per man per day
Adams Billings, Bowman, Dunn, and	48, 434	61	\$1.26	80	11, 977	150	4.0
Slope	12, 163	19	1.56	19	3, 020	159	4.0
Burke	260, 480	305	1.17	84	17, 468	208	2 14.
Burleigh	255, 885	307	1.20	85	18, 726	220	2 13.
Divide	154, 070	204	1.32	62	9, 877	159	2 15.
Golden Valley	6, 825	. 8	1.17	15	2, 286	152	2.9
Grant		31	1. 25	35	5, 070	145	4.8
Hettinger McKenzie	14,800	19	1.28	24	3, 828	160	3. 8
McLean	5, 690 142, 123	170	1.41	12	1,550	129	3. (
Mercer	621, 905	178 661	1. 25 1. 06	173 270	24, 278	140	5. 8
Morton	24, 107	30	1.00		54, 813	203	11.
Mountrail	6,041	8	1. 32	44 18	5, 744 2, 823	131	4.2
Oliver	13, 023	13	1.00	23	3, 585	157 156	2.1
Stark	113, 457	127	1.12	75	18, 960	253	3. 6 5. 9
Ward	477, 016	558	1. 17	300	58, 334	194	28.1
Williams	37, 624	50	1. 33	58	8, 877	153	4. 2
Total North Dakota: 1940_ 1939.	2, 218, 434 2, 131, 252	2, 587 2, 425	1. 17 1. 14	1, 377 1, 391	251, 216 248, 755	182 179	8. 8 8. 5
		SOUTH I	OAKOTA				
Corson and Dewey	61, 077	80	\$1, 31	44	8, 813	200	6.9
Harding and Meade	1,809	4	2.21	10	770	77	2.3
Perkins	3, 199	4	1. 25	9	994	110	3. 2
Total South Dakota: 1940_ 1939_	66, 085 49, 495	88 69	1. 33 1. 39	63 53	10, 577 8, 502	168 160	6. 2 5. 8
		TEX	AS				
Bastrop and Milam Henderson, Titus, and Wood	73, 947 532, 471	48 589	\$0. 65 1. 11	113 433	11, 195 81, 420	99	6. 6 6. 5
Total Texas: 1940	606, 418						
1939	814, 022	637 875	1. 05 1. 07	546 559	92, 615 129, 120	170 231	6. 5 6. 3

¹ Based upon (1) "reported" number of man-shifts where operator keeps a record thereof; otherwise upon (2) "calculated" number of man-shifts obtained by multiplying average number of men employed underground and on surface at each mine by number of days worked by mine and tipple, respectively. Using throughout "calculated" man-shifts as developed before the year 1932—namely, product of total number of men employed at each mine times tipple days—the average output per man per day in 1940 was 3.58 in Montana, 9.88 in North Dakota, 5.48 in South Dakota, and 6.56 in Texas.

2 Output obtained chiefly from strip pits, in which production per man per day is large.

NUMBER AND SIZE OF MINES

Reports were received from 208 lignite mines in 1940. exclusive of many small mines producing less than 1,000 tons a year and is comparable with 206 mines reporting in 1939. North Dakota, producing about 75 percent of the total lignite output, reported 164 mines; Montana was next in order with 22 mines; South Dakota and Texas followed with 14 and 8, respectively. Five mines produced from 200,000 to more than 500,000 tons each, and the output of these mines amounted to 57 percent of the total production; 2 reported production of 100,000 to 200,000 tons each and accounted for 11 percent of the total; 3 mines reported an output of 50,000 to 100,000

tons each and accounted for 8 percent of the total; 15 mines in the 10,000- to 50,000-ton class reported 10 percent of the total; and 183 mines producing less than 10,000 tons each accounted for 14 percent of the total.

METHODS OF RECOVERY

Table 49.—Lignite mined by different methods in the United States in 1940, by States, in net tons

State	Mined by hand	Shot off the solid	Cut by machines 1	From strip pits	Not speci- fied	Total
Montana North Dakota South Dakota	² 53, 622 111, 044 2, 465	² 538, 396 119, 274	12, 964 557, 408	² 44, 916 1, 405, 590 61, 802	4, 784 25, 118 1, 818	48, 264 2, 218, 434 66, 085
Texas	(2)	(2)		(2)		606, 418
Total	167, 131	657. 670	570, 372	1, 512, 308	31, 720	2, 939, 201

A total of 20 machines was used-13 "permissible" and 7 of other types.

STRIPPING OPERATIONS

Lignite recovered by stripping operations in 1940 totaled 1,512,308 tons-51 percent of the output of the industry. In 1940 the total production of lignite in North Dakota was 2,218,434 net tons; of this amount, 1,405,590 tons (63 percent) came from strip-pit opera-The output from strip pits in Texas, Montana, and South Dakota was only 106,718 tons. The number of men employed in stripping operations was 588, with an average output per man per day of 12.87 tons; 200 days was the average worked.

Table 50 gives detailed statistics for stripping operations in the

lignite industry in 1940.

Table 50.—Summary of stripping operations that produced lignite in the United States in 1940, by States

	-	Num- ber of shovels.		Total			ımbei iploye		Aver-		Aver-
State	Num- ber of strip pits		Coal mined by stripping (net tons)	value at mines (thou- sand dollars)	A ver- age value per net ton	In strip pits	All oth- ers	To- tal	age num- ber of days mines oper- ated	9, 023	age net tons per man per day 2
Montana and Texas- North Dakota South Dakota	5 52 8	2 35 2	44, 916 1, 405, 590 61, 802	26 1,605 81	\$0. 58 1. 14 1. 31	24 371 39	1 144 9	25 515 48	104 206 188	105, 868	17. 28 13. 28 6. 85
Total	65	39	1, 512, 308	1,712	1. 13	434	154	588	200	117, 490	12.87

¹ Includes some pits in which stripping is done by hand.

² Texas included with Montana.

Includes some pits in which stripping is done by hand.

In some cases, same equipment was used for stripping or excavating and for loading coal; such duplication has been eliminated. In some cases, coal was excavated by machine and loaded by hand.

Based upon (1) "reported" number of man-shifts where operator keeps an accurate record thereof; otherwise upon (2) "calculated" number of man-shifts, obtained by multiplying number of men employed at tipple, in loading coal, etc., and in stripping overburden by number of days worked in each department in so far as separately reported by operator.

WORLD PRODUCTION

Table 51.—World production of lignite (including brown coal), 1936-41, in metric tons 1

[Compiled by B	. B. Waldbauer
----------------	----------------

Country 1	1936	1937	1938	1939	1940	1941
North America:						
Canada	3, 507, 895	3, 352, 316	3, 153, 377	3, 093, 514	3, 294, 621	3, 666, 604
United States	2, 821, 048	2, 919, 685	2, 719, 654	2, 760, 129	2, 666, 384	(2)
Europe:	7,022,020	2,010,000	2,110,001	2, 100, 120	2,000,004	(-)
Albania	3, 130	3, 500	3, 866	(2)	(2)	(9)
Bulgaria	1, 576, 098		1, 855, 198	2, 134, 051	2, 700, 000	(2)
Czechoslovakia	15, 948, 767				2, 700, 000	(2)
Faroe Islands	10, 510, 101	11,000,411	14, 716, 693	(2)	(2) (2)	(2)
France	943, 230	1, 015, 000	8,000	8,000		() () () () () ()
	100 070 000			(2)	(2) (2) (2)	(3)
Germany		183, 538, 054	195, 312, 067	230, 000, 000	(2)	(2)
Austria		3, 241, 770	3, 341, 730	(2)	(2)	(2)
Greece		131, 083	108, 010	139, 095	(2)	(2)
Hungary		8, 055, 123	8, 317, 600	9, 518, 400	9, 484, 600	(2)
Italy		1, 059, 231	872, 950	1, 058, 000	(2)	(2)
Netherlands	88, 779	143, 057	170, 637	196, 810	(2)	(2)
Poland	13, 518	18, 915	9, 526	(2)	(2)	(2)
Portugal	20,677	23, 098	14, 854	35, 113	66, 658	92, 731
Rumania	1, 671, 825	1, 880, 477	2, 096, 698	2, 300, 000	(2)	(2)
Spain	199, 031	207, 896	165, 801	205, 000	567, 930	³ 381, 000
U. S. S. R.	(4) [′]	(4) [']	(4)	(2)	15, 900	(2)
Yugoslavia	4, 034, 577	4, 574, 232	5, 286, 781	5, 621, 972	(2)	(2) (2)
Asia:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-, 0, 1, 202	0, 200, 102	0,021,012	(5)	(-)
Indochina	1		4, 200	27,000	30,000	(2)
Japan	109, 494	(4)	(4)	(2)	(2)	(2) (2)
Syria and Lebanon		4, 658	700	1,000	2, 365	123
Turkey	95, 234	116, 397	129, 315	151, 267	4,000	(2) (2)
Oceania:	00, 201	110, 007	120, 010	101, 201	(2)	(*)
Australia: Victoria	3, 093, 768	3, 448, 391	9 794 441	2 700 612	(0)	(8)
New Zealand	1, 301, 895		3, 734, 441	3, 709, 613	(2)	(2) (2)
THE PERIOD L	1, 301, 695	1, 328, 805	1, 264, 208	1, 318, 863	1, 393, 555	(3)
	224, 408, 000	254, 814, 000	264, 469, 000	(2)	(2)	(2)

¹Lignite is also mined in Italian East Africa, but complete production figures are not available.

¹Data not available.

²January to June, inclusive.

⁴Estimate included in total.

IMPORTS AND EXPORTS

Table 52.—Bituminous coal 1 imported for consumption in the United States, 1940-41, by countries and customs districts, in net tons

	1940	1941 (Jan- Sept.)		1940	1941 (Jan:- Sept.)
COUNTRY			CUSTOMS DISTRICT—Continued		
North America: Canada Europe: United Kingdom	360, 975 10, 596	276, 619 2, 133	Hawaii Maine and New Hampshire	1, 496 191, 429	153, 392
	371, 571	278, 752	Maryland Montana and Idaho New Orleans	1, 792 127, 274 140	96, 332
CUSTOMS DISTRICT Alaska Buffalo Chicago Dakota	6, 339 22 2	3, 410	New York Philadelphia St. Lawrence Vermont	896 1, 344 634 202	1, 953 376 670
Duluth and Superior	272 333	1, 412	Washington	39, 396 371, 571	278, 752

¹ Includes slack, culm, and lignite.

Table 53.—Bituminous coal exported from the United States, 1937-41

Year	Net tons 1	Value	Year	Net tons 1	Value
1937 1938 1939	13, 144, 678 10, 490, 269 11, 590, 478	\$48, 821, 270 38, 104, 926 42, 778, 473	1940 1941 (JanSept.)	16, 465, 928 13, 845, 158	\$60, 832, 066 56, 624, 365

¹ Quantities stated do not include fuel or bunker coal loaded on vessels engaged in foreign trade, which aggregated 1,831,650 tons in 1937, 1,352,480 tons in 1938, 1,476,556 tons in 1939, 1,426,836 tons in 1940, and 1,119,812 tons in 1941 (January-September).

WORLD PRODUCTION

Table 54.—World production of coal and lignite, 1937–41, by countries, in thousands of metric tons 1

[Compiled by B. B. Waldbauer, Bureau of Mines]

Country 1	1937	1938	1939	1940	1941
North America:					
Canada:					1
Coal	11,014	9, 815	10, 985	12, 628	12, 87
Lignite	3, 352	3, 153	3, 094	3, 295	3,660
Greenland		. 7	(2)	6	(2)
Mexico.	912	893	628	816	85
United States:			·		
Anthracite	47, 043	41, 820	46, 708	46, 706	51, 13
Bituminous	401, 257	313, 473	355, 445	415, 336	463, 83
Lignite	2,920	2, 720	2, 760	2, 666	1 200,00
outh America:					
Brazil		883	1,047	1, 336	1, 40
Chile		2,044	1,850	1, 937	2,05
Colombia		331	349	521	(2)
Peru	- 99	75	108	153	. 19
Venezuela	- 7	6	3	5	(2)
urope:	1 .1				
Albania: Lignite	. 4	4	(2) 29, 847	(2)	(2)
Belgium	29, 859	29, 585	29, 847	(2)	(2)
Bulgaria:					
Coal	. 120	142	164	188	(2)
Lignite	1,732	1,855	2, 134	2, 700	(3)
Czechoslovakia:	1 1	427.0.2.2			
Coal	16,778	15, 800	(2) (2)	(3)	(4)
_ Lignite	- 17, 895	14, 717	(2)	(2)	(3)
Eire	128	120	120	118	15
Faroe Islands: Lignite		.8	8	(3)	(3)
France:				1	
Coal		46, 498	51,000	(3)	(2)
Lignite	1,015	1,057	31,000	(5)	(-)
Germany:					*
Coal	184, 513	186, 177	200,000	(2)	(2)
Lignite	183, 538	195, 312	230, 000	(2)	(2)
Austria:			i.	''	.,
Coal	230	227	(2)	(2)	(2)
Lignite	3, 242	3, 342	(3)	3	(2)
Greece: Lignite	131	108	139	(3)	(2)
Hungary:				` '	
Coal	917	1,042	1, 107	1, 207	(2)
Lignite	8,055	8, 317	9, 518	9, 485	(2)
Italy:			•		
Coal	. 964	1, 480	2, 025	(2)	(3)
Lignite	1,059	873	1,058	(2)	8
Netherlands:	1 -,000			``	
Coal	14,321	13, 488	12, 861	(3)	(2)
Lignite	143	171	197	(3)	(2)
Poland:	1			` '	()
Coal	36, 218	38, 104	(3)	(3)	(2)
Lignite	19	10	(2)	(2)	(2)
Portugal:	1 1		•	' '	
Coal	259	299	313	310	46
Lignite	23	15	35	67	9
Rumania:	· • •		•		
Coal	303	299	285	(2)	(3)
Lignite		2.097	2, 300	(2)	(3)
Spain:	1,000	2,001	2,000		. (-)
Coal	2,084	5, 649	6, 755	8, 849	14.2
Lignite	4,00%	166	205	568	3:
Svalbard (Spitsbergen)	208	627	640	/\ 000	/a\ * 3/-
Sweden.	460	431	444	8	X
Switzerland	400	3	3	8	Ö
United Kingdom:	•	۰	9	o l	(*)
Great Britain	044 000	020 650	996 700	(9)	/en
Monthern Trolond	244, 268	230, 659	236, 700	(2)	(2)
Northern Ireland	. 1	(4)	(2)	(4)	(4)
U. S. S. R.:	<u>, </u>			. 140 700	· m
Coal	94, 525	98, 627	(2)	∫ 148,700	3
Lignite	ا مدر را	,	` '	15,900	(2)
Yugoslavia:	1	450			400
Coal Lignite	428	450	444	(2)	(2)
	4, 574	5, 287	5, 622	أكوذا) · (

Table 54.—World production of coal and lignite, 1937-41, by countries, in thousands of metric tons 1—Continued

Country 1	1937	1938	1939	1940	1941
sis:					40
British Borneo	(4)	(4)	(*) (2)	(2)	(3) (3) (3)
China				6 17, 829	(2)
Chosen	2, 348	3, 200	4, 481	(3)	(3)
Federated Malay States	638	486	448	794	(3)
India, British	26, 074	28, 798	28, 214	(2)	(2)
Indochina:	1	i			
Coal	2, 308	2, 340	2, 588	2, 456	(3)
Lignite		4	27	30	(2)
Japan:		- 1	1	- 1	• • •
Japan proper:				- 1	
Coal	(5)	(6)	(2)	(2)	(a)
Lignite	(5) (5) (5) (5)	· }5	(2)	(2) (3) (2)	(3)
Karafuto	75	≥ 6)2 \	7 6	2
Taiwan	8) ₂ (8	8	X
Netherlands Indies	1.364	1, 457	1,781	2,009	(3) (3) (3) (3)
	1, 304	41	47	(2), 000	X
Philippine Islands					(2)
Syria and Lebanon: Lignite	5	(4)	1	2	(2)
Turkey:				- m	-
Coal	2, 307	2, 589	2, 696	(2)	(2)
Lignite	116	129	151	(2)	(2)
U. S. Š. R.:		- 1		- }	
Coal	32, 616	34, 261	(3)	(2)	(3)
Lignite	02,010	01, 201	(9)	(-)	(*)
frica:			1	· · · · · · · · · · · · · · · · · · ·	
Algeria	14	13	(2)	50	(2)
Belgian Congo: Coal	36	42	(2)	23	(2)
Morocco, French	107	123	``116	143	(8)
Nigeria	369	268	311	313	(ž) (ž)
Portuguese East Africa.	19	10	8	20	25
Southern Rhodesia	1.029	1.044	1, 118		6
Union of South Africa	15, 491	16, 284	16, 890	(2) 17, 176	(2) 7 13, 56
cennia:	10, 401	10, 201	10,000	11,110	10,00
Australia:	,	l l		- 1	
Australia.	10 012	9, 725	11, 376	(1)	(9)
New South Wales	10, 213	9, 120	11, 370	13	(2)
Queensland	1, 138	1, 131	1, 339	(2) (2) (2)	(2) (2)
Tasmania	93	85	99	(²)	(2)
Victoria:		1	}		
Coal	262	312	371	(2)	(3)
Lignite	3, 448	3, 734	3, 710		(3)
Western Australia	562	614	566	548	(2)
New Zealand:			i		• • •
Coal	986	994	1.061	1, 163	(2)
Lignite	1, 329	1, 264	1, 319	1, 393	(2) (2)
Total, all grades	1, 550, 000	1, 469, 000	(2)	(3)	(3)
ignite (total of items shown above)	255, 000	264, 000	(2)	(2)	(3)
Bituminous and anthracite (by subtrac-	200, 000	-0-,000	· · · · · · · · · · · · · · · · · · ·	. ''	• • •
tion)	1, 295, 000	1, 205, 000	(2)	(3)	. (3)

¹ Coal is also mined in Argentina, Iran, and Italian East Africa. Production figures for these countries are not available, but estimates are included in the totals.

¹ Data not yet available.

² January to June, inclusive.

⁴ Production less than 1,000 tons.

⁵ Estimate included in total.

⁶ Exclusive of Kwantung Leased Territory and Manchuria.

⁷ January to September, inclusive.

PENNSYLVANIA ANTHRACITE

By J. A. CORGAN, ROBERT H. RIDGWAY, AND A. V. COLEMAN

SUMMARY OUTLINE

	Page		Pag
Review of 1941	903	Production—Continued.	
Definition of Pennsylvania anthracite in-		Small mines and intercompany sales	922
dustry	905	Regions, fields, and counties	922
Statistical trends	905	Culm-bank coal	922
The war and anthracite		Reconciliation of fresh-mined, culm-bank,	
Anthracite program	910	and breaker product	924
Federal Anthracite Coal Commission	910	Interregional variation in sizes	925
Illicit coal	911	Average sales realization	929
Research and technologic developments	911	Labor statistics	931
Anthracite Institute		Equipment and methods of mining	933
Distribution	912	Mechanical loading	
Competitive fuels in the United States and		Cutting machines	
in principal markets	915	Strip-pit operations	935
Transportation of anthracite to principal		"River" or "dredge" coal	
markets	915	Review of the river-coal industry	
Consumption	916	Early river-coal operations	
Changes in stocks	917	Early preparation methods and sizes pro-	
Trend of employment	919	duced	937
Trend of prices	919	Production	
Sales realization	919	Quality and uses	940
Imports and exports	919	Operations in 1941	
Mechanical stokers and oil burners	920		941
Sources and acknowledgments	920	Canadian market	
Production	920	World production	942
Weeks and months	921		

REVIEW OF 1941

The production of Pennsylvania anthracite in 1941 was 56,368,267 net tons—a substantial increase from the 51,484,640 tons produced in 1940, due in part to increased consumer purchasing power, high industrial activity under pressure of war, substitution of anthracite for coke in some sections of the market, and inclusion in the 1941 figures of some illicit coal heretofore not considered in the Bureau's statistics. Compared with the First World War, the 1941 output was only a little more than half the 99,611,811 tons produced in 1917. The notable decrease in production during the period between the two wars has been due mostly to the inroads made by oil, coke, and bituminous coal in the principal anthracite markets and the loss of a large part of the market west of Buffalo, N. Y. The production figures include fresh-mined coal from underground and strip-pit operations, culmbank output, and river coal recovered from the streams draining the Pennsylvania anthracite fields.

Much of the industry continued to operate under the voluntary production-control program inaugurated in January 1940 by the Commonwealth of Pennsylvania, the United Mine Workers of America, and producers representing more than 90 percent of the total anthracite production. By act of the General Assembly of the

Commonwealth of Pennsylvania, the State Secretary of Commerce took over administration of the program, effective November 10, 1941. It is believed that the program has benefited the anthracite industry and doubtless has brought production in closer alinement with current demand. Operation of the plan has helped also to partially solve the "bootleg" or illicit-coal problem, which has created undesirable social

and industrial conditions in Pennsylvania for several years.

A joint resolution passed by the United States Senate and House of Representatives and approved by the President in December 1941 created a body known as the Federal Anthracite Coal Commission to investigate ways and means for improving economic conditions in the anthracite-producing regions of the United States. The Commission met several times in the Pennsylvania anthracite regions early in 1942, and representatives of the anthracite industry and others interested in the welfare of the anthracite regions presented a picture of the social and economic conditions resulting from the decline in anthracite production. Facts pertaining to these conditions were gathered and in April 1942 were submitted in a report to the President and the Congress.

Freight rates for anthracite were not changed greatly during 1941. Minor adjustments and equalizations were made. The so-called motor-compelled rates—inaugurated originally to compete with the trucking of anthracite—were to expire December 20, 1941, but were

extended for 6 months.

Early in 1942 the Interstate Commerce Commission authorized the rail and water carriers to increase the freight rates and charges on all commodities, with a few exceptions. The authorized increase on anthracite was in direct relation to the present rate. Specifically, on the present rate of \$1.00 or less the increase approved was 3 cents per net ton and 4 cents per gross ton; on the present rate of over \$1.00 the increases authorized were 5 cents per net ton and 6 cents per gross ton. Authorization for the increases was issued by the Interstate Commerce Commission on March 2, 1942, and the charges may become effective not later than May 15, 1942. The increases as approved

apply to the war period and 6 months thereafter.

The anthracite industry had no major labor disturbances in 1941, although several thousand miners in the lower fields, especially in the Lehigh region, were away from work for about a month. The dissatisfaction of the miners was a union matter and concerned union dues and assessments. The wage agreement between the anthracite mine operators and the United Mine Workers of America, effected in May 1939, expired April 30, 1941. After a 1-day suspension, a new contract was arranged between the operators and the mine workers. The agreement became effective May 1, 1941, and expires April 30, 1943. The miners were given a compensation payment, with 1 week's vacation, and also received a graduated percentage increase over the old wage scale.

Research at the Pennsylvania State College School of Mineral Industries, which was begun in 1939 when the Miller bill passed the Pennsylvania General Assembly, was continued. The Miller bill expired on May 31, 1941, but enactment of the Williams-Kenehan bill continued the work until May 31, 1943. Research also was continued within the industry, where special efforts are being made to

find new uses for anthracite and more efficient utilization of that fuel

in modern coal-burning equipment.

Definition of Pennsylvania anthracite industry.—Based upon differences in composition and characteristics of the product, trade practice and historical usage recognize two major divisions in the coal industry of the United States—bituminous coal and Pennsylvania anthracite. Anthracite and semianthracite also are mined in parts of Virginia, Arkansas, Colorado, and New Mexico. Locally these coals represent distinct and important industries, but the tonnages involved are small and for statistical convenience usually are grouped with the totals of the bituminous-coal industry.

The Pennsylvania anthracite industry, as here defined, includes all onbituminous fields of that State. Trade usage commonly innonbituminous fields of that State. Trade usage commonly includes the output of the Bernice Basin in Sullivan County with Pennsylvania anthracite, although the coal of this basin is classified

officially as semianthracite.

Statistical trends.—Tables 1 and 2 present statistical data on the

Pennsylvania anthracite industry.

The war and anthracite.—Pennsylvania anthracite contributes to the war program chiefly on the home front. It is primarily a domestic fuel and is used for heating homes and apartment houses, as well as for hot water and cooking purposes; moreover, Army camps are using considerable quantities. The homes of thousands of war workers are made comfortable by this fuel, which contributes in this way to the moral and physical well-being of those employed in vital industries. It has similar uses in Canada, to which the United States exports large quantities, mostly domestic sizes for heating homes and small apartment houses. Anthracite is also consumed by public utilities, railroads, and manufacturers connected directly or indirectly with the production of war materials.

The Pennsylvania anthracite industry would be able to increase its output substantially whenever necessary if there should be any disruption in the continued supply or flow of other fuels, such as bituminous coal, coke, and oil, to the New England and Middle Atlantic States. Many of the small heating plants in that area, which now burn coke or oil but at one time used anthracite, can be converted at relatively small expense to use that fuel again. Then too, the anthracite regions are much nearer the highly populated areas of the New England and Middle Atlantic States than are the bituminouscoal and oil fields; if allocation of fuels is necessary, as in the First World War, anthracite may be drafted for more extensive service in both domestic heating and industry, where these fuels are now used.

In November 1941 the President requested that the Secretary of the Interior act as Solid Fuels Coordinator to take care of many difficult problems of production, distribution, utilization, and transportation of solid fuels. The defense and Lease-Lend programs created a large increase in the demand for anthracite and bituminous coal, and it was these fuels with which the Office of Solid Fuels Coordination was primarily concerned. The Bureau of Mines has cooperated closely

with that office in its work on anthracite.

Table 1.—Statistical trends of Pennsylvania anthracite industry, 1937-41

	1937	1938	1939	1940	1941
Production:					
Loaded at mines for shipment: Breakersnet tons	44 040 045	00 010 00#	1 40 000 000		
Washeriesdo	- 44, 016, 915 1, 837, 879	39, 010, 935 1, 679, 509	1 43, 660, 662 1, 766, 384	1 43, 800, 127 1, 761, 942	46, 864, 422 2, 538, 692
Dradge	940 950	373. 425	565, 236	613. 884	2, 538, 692 1, 008, 983
Sold to local trade and used by employees do	2, 981, 391	2, 722, 206	3, 081, 073	3, 052, 626	3, 695, 125
Used at collieries for power and heatdo	2, 671, 898	2, 312, 952	2, 414, 022	2, 256, 061	2, 261, 045
Total productiondo	51, 856, 433	46, 099, 027	51, 487, 377	51, 484, 640	56, 368, 267
Value at breaker, washery, or dredge	_ \$197, 599, 000	\$180, 600, 000	\$187, 175, 000	\$205, 490, 000	\$240, 275, 000
A verage sales realization per net ton on breaker snipments: Domestic:					•
Lump and Broken	\$5,08	\$5, 24	\$4.63	\$5, 49	\$5. 72
Egg	\$5.06	\$5. 18	\$4.73	\$5. 32	\$5. 84
Stove	\$5. 21	\$5. 33	\$4.84	\$5. 47	\$5. 93
Chestnut	\$5, 23	\$5. 36	\$4.87	\$5.49	\$5. 93
Pea.	. \$4.01	\$3. 88	\$3.65	\$4.13	\$4. 50
Total domesticSteam:	\$5.01	\$5. 10	\$4.64	\$5. 24	\$5. 68
Buckwheat No. 1	40.05	40.00	00.00	40.40	
Buckwheat No. 2 (Rice)	\$2.95 \$2.26	\$3. 03 \$2. 35	\$2. 90 \$2. 20	\$3. 18 \$2. 35	\$3. 37 \$2. 52
Buckwheat No. 3 (Barley)	\$1.45	\$1. 61	\$2. 20 \$1. 62	\$2. 35 \$1. 68	\$2. 52 \$1. 78
Buckwheat No. 3 (Barley) Other, including Buckwheat No. 4	\$. 79	\$. 87	\$. 91	\$, 92	\$1.78 \$1.02
Total steam	\$2.21	\$2. 33	\$2. 25	\$2.41	\$2. 55
Total all sizes	\$4.03	\$4.16	\$3.85	\$4. 27	\$4, 59
rereent by sizes in total breaker shipments:					•
Domestic:					
Lump and Broken	0.4	0.3	0.6	0.3	0.3
Egg Stove	5.7	5. 4	5. 2	4.5	4. 2
Chestnut	22. 1 26. 2	23. 7 26. 0	24. 1 25. 8	24. 1 25. 9	24. 3 25. 5
Pea	10.8	20. 0 10. 6	20. 8 11. 0	25. 9 11. 1	25. 5 10. 8
Total domestic	65. 2	66.0	66.7	65. 9	65. 1
Steam:		00.0	00.7	00. 0	00.1
Buckwheat No. 1	14.7	14.8	14.3	14.7	14. 6
Buckwheat No. 2 (Rice)	7.9	7. 7	7.8	7.8	8. 2
Buckwheat No. 3 (Barley) Other, including Buckwheat No. 4	8.9	8.6	8. 5	8.8	8.9
Total steam	3.3	2.9	2.7	2.8	3. 2
Total steam	34. 8 2, 154, 000	34. 0 1, 458, 000	33. 3 994, 000	34. 1 939. 000	34. 9
Exports do do do do do do do do do do do do do	1, 914, 000	1, 458, 000	2, 590, 000	2, 668, 000	1, 274, 000 3 2, 416, 000
mports do	396,000	363, 000	298,000	135, 000	³ 64, 000
Consumption (calculated)	50 400 000	45, 200, 000	49, 700, 000	49, 000, 000	4 53, 700, 000
verage number of days worked	189	171	183	186	203
VIBII-QBVS lost on account of strikes and lock-outs	580 469	579, 457	241, 688	176, 432	397, 61d
Number of men on strike during year.	34, 346	27, 435	27, 795	19, 464	39, 765

Average number of men employed	99, 085	96, 417	93, 138	91, 313	88, 054
Output per man per daynet tons	2.77	2.79	3.02	3.02	3. 04
Output per man per yeardo	523	478	553	562	617
Quantity cut by machinesdo	1, 984, 512	1, 588, 407	1, 881, 884	1, 816, 483	1, 855, 422
Quantity mined by strippingdo	5, 696, 018	5, 095, 341	5, 486, 479	6, 352, 700	7, 316, 574
Quantity loaded by machines undergrounddo	10, 683, 837	10, 151, 669	11, 773, 833	12, 326, 000	13, 441, 987
Distribution:			, , , , , ,	, , ,	, , , , , , , , , , , , , , , , , , , ,
Total receipts in New England 5	4, 761, 000	4, 468, 000	4, 902, 000	6 4, 822, 000	5, 551, 000
Exports to Canada do	1, 893, 000	1, 896, 000	2, 577, 000	2, 627, 000	(7)
Loaded into vessels at Lake Erie 8do	674,000	450,000	531,000	430,000	536, 000
Receipts at Duluth-Superior •do	296, 000	155,000	202, 000	138,000	253, 000
•		1	1		

Includes small quantity of washery coal.
 Anthracite Committee. Figures represent prepared coal in ground storage. 1940 figures are through December 28. 1941 figures are through December 27.
 Figures cover January to September, inclusive.
 Consumption calculated using imports and exports for 9 months only.

<sup>Commonwealth of Massachusetts, Division on the Necessaries of Life.
Revised figure.
Not available.
Ore and Coal Exchange, Cleveland, Ohio.
U. S. Engineer Office, Duluth, Minn.</sup>

Table 2.—Statistical summary of monthly developments in Pennsylvania anthracite industry in 1941

[All tonnage figures represent net tons]

And the second s	1941														
									-				Yes	ar	1940
	Jan- uary	Febru- ary	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total	Change from 1940 (per- cent)	(4a+a1)
Production, including mine fuel,											2				
local sales, and dredge coal: Monthly total Shipments, breakers, and wash-	5, 162, 000	4, 596, 000	4, 765, 000	3, 317, 000	4, 001, 000	5, 072, 000	4, 855, 000	5, 441, 000	5, 334, 000	5, 580, 000	3, 974, 000	4, 271, 000	56, 368, 000	+9.5	51, 485, 000
orion order: 1 Monthly total all	4. 210. 156	3, 808, 336	3, 856, 734	2, 674, 168	3, 563, 905	4, 573, 788	4, 093, 880	4, 763, 599	4, 347, 808	4, 374, 251	3, 166, 083	3, 366, 111	46, 798, 819	+8.8	43, 023, 750
Distribution: Lake Erie loadings 2 Receipts at Duluth-Superior 3 Upper Lake dock trade: 4				22, 124	61, 353 41, 378	70, 963	58, 116		72, 643	65, 287	101, 243	124	1		430, 192 137, 688
Receipts: Lake Superior Lake Michigan Deliveries (reloadings):	855	1, 139	1, 419	74 15, 824		41, 959 31, 927	24, 529 31, 619	15, 173 38, 309	71, 824 32, 352	21, 049 44, 450	28, 383 61, 542		244, 370 289, 987	+86. 9 +2. 7	
Lake Superior Lake Michigan	18, 379 22, 443		5, 368 18, 231	7, 102 6, 425	18, 091 17, 054	27, 279 61, 712	21, 448 33, 670	15, 769 31, 052	17, 488 22, 248	14, 274 24, 844	21, 561 14, 573	14, 485 14, 462	194, 112 287, 687	-4.4 +1.3	
Retail yards—164 selected dealers: Deliveries 4 New England receipts: 6	326, 000	293, 380	318, 404	169, 741	192, 078	344, 984	320, 255	265, 151	222, 302	162, 495	146, 245	238, 372	2, 999, 407		(5)
By tide (including imports) By rail Exports 7 Imports 7	43, 423 419, 106 163, 379 11, 971	388, 874 177, 930		40, 892 225, 338 109, 018 7, 338	405, 214 346, 193	73, 336 452, 746 375, 720 224	70, 002 439, 695 250, 088 17, 492	80, 512 537, 413 340, 479 6, 771	499, 971	68, 823 481, 393 (⁵)	59, 212 358, 411 (⁵)	42, 677 273, 211 (⁵)			
Industrial consumption by— Railroads (class I only) * Electric power utilities * Other industrial consumers 10	121, 582 210, 131 106, 788	190, 012	206, 561	190, 260 199, 073 110, 896	257, 972	102, 960 252, 877 104, 396	99, 975 272, 561	88, 474 289, 552		273, 145	235, 741	240, 416	1, 394, 211 2, 893, 270 1, 254, 682	+1. 1 +19. 3 +15. 1	2, 425, 134
Number of industrial firms report- ing 10	75	83	76	85	76	76	73	71	71	69	73	72	(8)		(8)
Stocks at end of period shown: Railroads (class I only) 8 Electric power utilities 9	132, 493 1, 252, 751	131, 564 1, 234, 429	134, 078 1, 217, 678	138, 660 1, 189, 760	103, 685 1, 178, 164	100, 885 1, 210, 485	87, 546 1, 263, 568	117, 778 1, 357, 305	172, 616 1, 317, 242	216, 977 1, 371, 655	239, 465 1, 338, 915	238, 871 1, 257, 478	238, 871 1, 257, 478	+65.7 +3.4	144, 149 1, 216, 695

Other industrial consumers 10	167, 411	196, 446	226, 550	227, 018	213, 524	229, 756	205, 221	277, 330	265, 999	230, 578	254, 635	288, 526	288, 526	+26.2	228, 583
Stocks on Upper Lake docks: 4 Lake Superior Lake Michigan	59, 331 118, 668	47, 104 98, 833	41, 761 81, 210	33, 933 91, 366	54, 704 96, 738	69, 093 66, 928	72, 171 64, 861	71, 165 72, 118	125, 499 82, 223	132, 273 101, 829	139, 092 155, 460	124, 603 149, 124	124, 603 149, 124	+60.3 +6.3	77, 714 140, 256
Retail stocks—164 selected dealers 4	338, 797	277, 944	248, 206	269, 451	331, 353	341, 606	331, 448	410, 286	456, 469	502, 544	532, 196	484, 036	484, 036	+30.5	370, 964
ton: 11 Company Stove	\$6. 25 \$3. 50	\$6. 25 \$3. 50	\$6. 25 \$3. 50	\$6. 25 \$3. 50	\$6, 25 \$3, 60	\$6. 33 \$3. 75	\$6. 40 \$3. 75	\$6. 54 \$3. 75	\$6. 71 \$3. 75	\$6. 75 \$3. 75	\$6. 75 \$3. 75	\$6.75 \$3.75	\$6. 46 \$3. 65	+5.6 +4.3	\$6. 12 \$3. 50
On tracks, destination: Chestnut Pea Index numbers (1926=100)	\$9, 83 \$8, 40 81, 1	\$9. 83 \$8. 40 81. 1	\$9. 81 \$8. 40 81. 0	\$9. 81 \$8. 39 80. 9	\$9. 79 \$8. 36 80. 7	\$9. 81 \$8. 41 81. 0	\$9. 95 \$8. 56 82. 2	\$10, 10 \$8, 68 83, 3	\$10. 25 \$8. 83 84. 5	\$10. 30 \$8. 89 85. 3	\$10. 30 \$8. 89 85. 3	\$10. 29 \$8. 89 85. 3	\$10. 01 \$8. 59 82. 7	+4.8 +5.0 +4.8	\$9. 55 \$8. 18 78. 9
abor conditions: 12 Average weekly earnings	\$25. 13	\$29.35	\$27.79	\$ 16. 4 3	\$22. 59	\$34. 20	\$23. 25	\$3 56	\$32.60	\$32. 12	\$27. 38	\$24.05	\$27.41	+9.9	\$24.95
Index of employment (1929 average=100)	50. 3	50. 6	50. 2	48.7	48.6	49. 2	49. 3	50.0	50.0	50. 3	50. 2	49. 1	49. 7	-2.0	50. 7
Index of pay-roll totals (1929 average=100)	38. 5	45. 2	42. 4	24. 3	33. 4	51. 2	34.8	51. 1	49. 6	49. 2	41.8	35. 9	41. 4	+7.5	38. 5

¹ Furnished by Anthracite Institute. Rall shipments only.
2 Ore and Coal Exchange, Cleveland, Ohio.
3 U. S. Engineer Office, Duluth, Minn.
4 Bituminous Coal Division, U. S. Department of the Interior.
5 Data not available.
6 Furnished by Commonwealth of Massachusetts, Division on the Necessaries of Life. Figures for 1941 preliminary.
7 Department of Commerce.
8 Association of American Rallroads.
9 Federal Power Commission.
10 National Association of Purchasing Agents.
11 Computed from weekly quotations from trade journals. Figures represent circular prices quoted on white ash by leading anthracite-producing companies.
13 Bureau of Labor Statistics.

Anthracite program.—Producers whose output comprised a large proportion of the total tonnage of the anthracite industry continued to operate under the voluntary production-control program inaugurated early in 1940 and sponsored by the Commonwealth of Pennsylvania, the operators, and the United Mine Workers of America.

In accordance with the Act of General Assembly No. 125, July 1941, the Commonwealth of Pennsylvania, Department of Commerce, having received petitions signed by producers whose output was more than 95 percent of the total anthracite production and by the United Mine Workers of America, adopted the Anthracite Emergency Program as a production-control plan for the anthracite industry. The order became effective November 10, 1941, when the Secretary of the Pennsylvania Department of Commerce began to administer the program. The Anthracite Emergency Committee is now known as the Anthracite Committee.

For several years before the plan was adopted, the industry was in a demoralized state owing to inroads of other fuels and keen competition for the anthracite markets within the industry itself. The primary purpose of the plan was to create some degree of stabilization within the industry and to bring production in closer alinement with current demand. The plan is credited with having helped to bring about this condition. The illicit or "bootleg" mining of anthracite and its marketing created a highly unfavorable condition in the hard-coal regions and in the market territory where the coal was sold. The Anthracite Committee has helped to alleviate this problem by making arrangements for the legitimate industry to buy the "bootleg" product and wherever possible to employ former miners of illicit coal.

Federal Anthracite Coal Commission.—In December 1941 the President approved House Joint Resolution No. 255 creating the Federal Anthracite Coal Commission. The Commission was composed of two members of the Senate, two members of the House of Representatives, the Director of the Federal Bureau of Mines, an employee of the National Resources Planning Board, and an employee of the Interstate Commerce Commission. The Commission was to determine facts relating to and investigate ways and means for improving economic conditions in the anthracite-producing regions of the United States. After hearings in the Pennsylvania anthracite regions and study of special reports from Federal, State, and local Government agencies, civic organizations, and private citizens, the Commission in April 1942 submitted its report to the President and the Congress. The report contained recommendations for both short-term and long-term measures of improvement.

Recommendations for immediate improvement called attention to the unused manpower and housing facilities in the anthracite regions and suggested that consideration be given to the establishment of war plants and industries of more permanent nature. Vocational schools were mentioned as a means of educating persons in the specialized training required by war industries. The report urged that surveys of mine flooding should be pressed to completion and that the industry should continue development of stokers and automatic equipment and investigate ways to expand industrial uses for anthracite.

As regards long-term improvement, it was suggested that a Federal Bureau of Mines research station be established in the anthracite area to develop new and extended uses for anthracite, study methods of mining, and coordinate activities of Pennsylvania State and local agencies with those of the United States Government. It was also suggested than an economic survey be made concerning the possibilities of reforesting the anthracite area and that an agency be created to deal with economic problems resulting from gradual depletion of

anthracite reserves.

Illicit coal.—The illicit or "bootleg" mining of anthracite, which was begun in the early 1930's when unemployed miners dug coal from land owned by anthracite-operating companies, continued in 1941, when about 5 million tons of coal were produced by activity of this In 1936 illicit production totaled about 2½ million net tons: and, according to the Anthracite Institute, that for 1940 totaled more Early in 1941 the Anthracite Committee adopted than 4 million tons. a plan, the successful operation of which it was hoped would eliminate this kind of mining. For example, it provided that any cooperating producer may make lawful arrangements to purchase the output of a "bootleg" hole or holes in addition to his own quota (assigned under the emergency program), which will not be affected thereby. Coal bought in accordance with this agreement is included in the production statistics of this chapter. The plan provided also that cooperating producers may employ former "bootleggers," and such producers are granted a supplemental allocation equal to 31/4 net tons per man per day of commercial output for each man so employed.

According to a survey by the Anthracite Emergency Committee (now the Anthracite Committee) in March 1941, 10,762 men were working in 3,006 "bootleg" holes, whereas in May 1942 a comparable survey revealed 7,554 men employed in 2,029 holes—a reduction of 30 percent in men and 33 percent in the number of holes being operated. Some of this decrease probably can be attributed to efforts of the Anthractic Committee to eliminate this undersirable type of mining. Then, too, the heavy demand for men due to the accelerated industrial activity and restrictions on automotive equipment undoubtedly has tended to decrease the mining of "bootleg" coal. It is expected that the output from illicit mines will be much

less in 1942 than in 1941.

Research and technologic developments.—The annual anthracite conferences have been recessed for the duration of the war because of the present great demands on the time of technical men. The fifth such conference was originally scheduled to be held at Lehigh University on May 7 and 8, 1942. Many fine papers on research and technologic developments in the anthracite industry have been presented at these conferences in the past. The fourth annual conference, at Bethlehem in May 1941, is discussed briefly in Minerals Year-book, Review of 1940.

The cooperative research program, sponsored by the Commonwealth of Pennsylvania and the anthracite industry at the Pennsylvania State College, was continued. Among other subjects, special attention was paid to the use of anthracite in water-gas generators and the preparation of activated carbon from Pennsylvania anthracite.

Experiments concerning the resistance of anthracite to mechanical

and thermal shock were also conducted.

In the nineteenth century, anthracite was employed extensively in foundries and blast furnaces as metallurgical fuel; in 1890 alone, 2,186,411 gross tons of pig iron were made using anthracite as fuel. Considerable research and experiments have been under way within the industry for the last several years in an attempt to revive this one-time important industrial use for anthracite. Experiments also are being conducted on the possibility of using anthracite culm and ashes in the manufacture of lightweight aggregate to be used in concrete construction materials. Studies are being made concerning the use of anthracite for soil improvement and the production of mineral wool from anthracite culm and ashes.

Anthracite Industries, Inc., conducted extensive investigations concerning oil-burner installations and factors to be considered in connection with conversion from oil to anthracite, with special reference to the possible shortage of petroleum products along the Atlantic Research was continued in the Anthracite Industries laboratory on more efficient utilization of anthracite in automatic

burning equipment.

Anthracite Institute.—The Anthracite Institute, through its information services, kept the industry informed on many Federal, State. and local matters concerning anthracite. Members of the institute staff appeared before various groups in the interest of the anthracite industry. It was particularly active in voicing its opposition to hydroelectric projects that might interfere with the consumption of anthracite and also actively disapproved the extension of natural-gas

lines into the primary anthracite markets.

Distribution.—During the First World War, the distribution of Pennsylvania anthracite in the United States covered a wider area than in 1941. In the coal year 1916-17 anthracite was shipped to 44 States and to the District of Columbia, whereas in the calendar year 1941, according to the Pennsylvania State Department of Mines. shipments were made to 42 States and to the District of Columbia. Not only has the area of distribution changed, but the percentage of shipments to various sections has definitely changed. For the coal year 1916-17 the New England and Middle Atlantic States received 75 percent of the total anthracite shipped to destinations in the United States, whereas in 1941 this same group of States received 94 Details of anthracite distribution for the coal year 1916-17 and the calendar year 1941 are given in tables 3 and 7.

According to the Commonwealth of Massachusetts, Division on the Necessaries of Life, rail receipts of Pennsylvania anthracite in New England in 1941 were 4,869,640 net tons. Tidewater receipts in 1941, including imports during the first 9 months of the year, were 681,733 tons. Table 4 gives details of anthracite movement into

New England.

Table 3.—Pennsylvania anthracite sold in coal year April 1, 1916, to March 31, 1917, in net tons

	10 1000 00 100			
Consuming States	Domestic sizes, includ- ing pea	Steam sizes	Total	Percent of total
Middle Atlantic States: Pennsylvania	8, 109, 089 15, 870, 681	5, 512, 244 6, 780, 216	13, 621, 333)
New York New Jersey	15, 870, 681 5, 320, 870	6, 780, 216 4, 594, 287	22, 650, 897 9, 915, 157	57.
	29, 300, 640	16, 886, 747	46, 187, 387	57.
New England States: Maine	630, 808	3, 725	634, 533	,
New Hampshire Vermont Massachusetts	630, 808 352, 326 349, 374 5, 636, 662	3, 725 173, 207 47, 779 396, 282	634, 533 525, 533 397, 153 6, 032, 944 819, 110	13.
Rhode Island Connecticut	739, 652 2, 240, 041	79, 458 108, 970	819, 110 2, 349, 011	
	9, 948, 863	809, 421	10, 758, 284	13.
outh Atlantic and Southern States: Alabama	1, 084		1 004	
Arkansas	998		1, 084 998	
Delaware District of Columbia	250, 779 590, 087	23, 890 18, 020	274, 669 608, 107	
Florida	9, 586	9,009	18, 595	
Georgia Kentucky		52	25, 029	
Louisiana	10, 154 7, 007		10, 154 7, 007	
Maryland	1, 045, 557	36, 261	1, 081, 818	3
Mississippi	681		681	
North Carolina Oklahoma	29, 910 808	123	30, 033 808	1
South Carolina	26, 290		26, 290	
Tennessee	4, 423	638	5, 061	
Texas	7, 781		7, 781	
Virginia West Virginia	265, 868 17, 490	5, 093 47, 807	270, 961 65, 297	j
	2 293, 480	140, 893	2, 434, 373	3.
orth Central States:				
Illinois	2, 639, 102	167, 265	2, 806, 367	
Indiana	512, 234	5,056	517, 290	1
Iowa	469, 010	2, 684	471, 694	
Kansas Michigan	19, 746 1, 782, 145	928 15, 930	20, 674 1, 798, 075	
Minnesota	1, 177, 898	149, 152	1, 327, 050	١
Missouri	197, 882	660	198, 542) 12
Nebraska	177, 610	215	177, 825	
North DakotaOhio	271, 509	11, 750	283, 259 668, 058	
South Dakota	649, 914 236, 835	18, 144 3, 463	240, 298	
Wisconsin	1, 343, 953	201, 537	1, 545, 490)
	9, 477, 838	576, 784	10, 054, 622	12
estern States:				
California Colorado	1, 175 477		1, 175 `477	}
Idaho	460		460	1
Montana	9, 887	67	9, 954	(1)
Oregon	143		143	1
Washington Wyoming	1, 845 159		1, 845 159)
	14, 146	67	14, 213	(1)
otal distribution in United States for purposes other than railroad fuel.	E1 024 007	10 412 010	60 440 070	
sed for railroad fuel	51, 034, 967 2, 779, 564	18, 413, 912 3, 653, 978	69, 448, 879 6, 433, 542	86. 7.
iscellaneous	10, 656	37, 238	47, 894	
otal distribution in United States	53, 825, 187	22, 105, 128	75, 930, 315	94.
xports: Canada	4, 318, 744	971 940	4 500 509	,
Newfoundland	5, 419	271, 849	4, 590, 593 5, 419	5
Other exports	42, 087		42, 087	<u></u> "
	4, 366, 250	271, 849	4, 638, 099	5.
Total distribution	58, 191, 437	22, 376, 977	80, 568, 414	100
Total shipments by railroad companies			75, 909, 780	

¹ Less than 0.1 percent.

TABLE 4.—Receipts of anthracite in New England, 1917, 1920, 1923, and 1927-41. in thousands of net tons

•			Receipts				Total receipts		
Year	Maine Home Massa- Rh	Rhode Island	Con- necticut	Total	Receipts by rail ¹	Im- ports ²	of Penn- sylvania anthra- cite 3		
1917	432	47	2, 222	555	1, 165	4, 421	7, 259		11, 679
1920	307	6	2,015	450	743	3, 521	7, 804	î	11, 324
1923	437	27	2, 216	511	891	4,082	8, 102	145	12, 039
1927	242	33	1, 220	311	615	2, 421	6, 725	106	9, 040
1928	205	35	1,373	301	528	2, 442	6, 934	369	9, 007
1929	237	17	1, 227	329	450	2, 260	6, 781	483	8, 558
1930	275	17	1, 236	271	422	2, 221	6.169	658	7, 732
1931	164	18	1,125	282	348	1, 937	5, 125	611	6, 45
1932	148	10	1,014	212	275	1,659	3, 980	574	5, 06!
1933	195	7	1,027	202	259	1,690	3, 562	443	4,809
1934	168	20	946	190	266	1, 590	4, 382	477	5, 49
1935	121	7	802	205	237	1, 372	4,030	559	4,84
1936	127	14	792	198	267	1, 398	3, 889	612	4, 67
1937	81	11	604	152	200	1,048	3, 713	395	4, 366
1938	93	2	554	137	191	977	3, 491	363	4, 105
1939	74	3	488	83	227	875	4,027	298	4, 604
1940 4	48	4	350	74	172	648	4, 174	135	4, 687
1941 4	57	9	348	58	210	682	4,870	6 64	5, 488

¹ Commonwealth of Massachusetts, Division on the Necessaries of Life.

2 Department of Commerce.
3 Total receipts by rail and by tide less imports.
4 Revised figures.
5 Preliminary figures.
6 Figures cover January to September, inclusive.

Loadings at Lake Erie ports increased from 430,192 net tons in 1940 to 536,490 in 1941, or 25 percent. Receipts at Duluth-Superior increased 84 percent and those on the Upper Lake docks 29 percent. Figure 1 illustrates graphically shipments of anthracite from the Lehigh, Schuylkill, and Wyoming regions, 1850–1940.

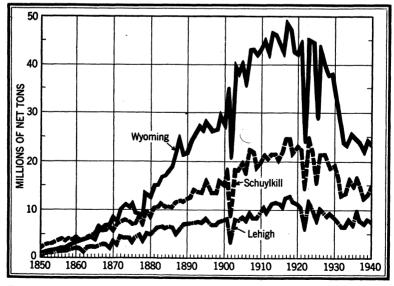


FIGURE 1.—Anthracite shipped from the Lehigh, Schuylkill, and Wyoming regions, 1850-1940.

Competitive fuels in the United States and in principal markets.— The principal anthracite markets today are the New England States, New York, New Jersey, Pennsylvania, Maryland, Delaware, and the District of Columbia. Data on the consumption of all fuels in these markets are not available; however, the apparent consumption of anthracite, coke, briquets, and heating and range oils, in terms of anthracite, amounted to 80,615,000 net tons in 1940. The sales of anthracite, amounted to 80,615,000 net tons in 1940. heating and range oils in this area in 1940 were the equivalent of 32,543,000 tons of coal, and the mine shipments of anthracite to these States were 43,718,000 tons. According to the Pennsylvania State Department of Mines, anthracite shipments in 1941, rail and truck, to this area totaled 47,466,000 tons. In addition, considerable quantities of "bootleg" or illicit coal were shipped into these markets. The demand for coke for metallurgical use was chiefly responsible for the decline in its consumption for domestic heating from 4,052,000 tons in 1940 to 3,688,000 tons in 1941. Details are shown in table 5.

In general, the supplies of fuel commonly used for space-heating purposes in the United States increased in 1941 over 1940. The increase in anthracite was quite pronounced, but estimates for sales of heating and range oils show only minor gains when compared with the large increase in 1940 over 1939. Sales of byproduct and beehive coke for domestic heating decreased about 19 percent in 1941 compared with 1940. Details on the supplies of various fuels are given

in table 6.

Transportation of anthracite to principal markets.—Anthracite allrail and truck shipments from the mine to destinations in the United States increased 8 percent in 1941 over 1940, according to data compiled from records of the Pennsylvania State Department of Mines. Rail shipments increased 6 percent; truck shipments, 22 percent. Of the total shipments in 1941, the railroads hauled 85 percent and trucks 15 percent. In 1940, of the total shipments, 86 percent moved by rail and 14 percent by truck; in 1939 the percentages were 89 and 11 percent, respectively.

Pennsylvania received 66 percent of the total truck shipments in 1941; New Jersey and New York followed with 18 and 14 percent, respectively. It is also of interest to note that of the 7,529,479 tons trucked in 1941, 3,252,787 tons were handled in January, February,

March, and December.

The trucking of anthracite from the mines has more than doubled since 1936, when the tonnage totaled 3,177,656. It is questionable, however, whether transportation by this method will continue throughout 1942 at the 1941 rate with war restrictions on rubber tires and other vital materials.

The distribution of rail shipments of anthracite, by States of destination, for 1939-41 is shown in table 7, and truck movement of Pennsylvania anthracite by months in 1941, by States of destination, in table 8.

Table 5.—Apparent consumption of anthracite and selected competitive fuels in the principal anthracite markets, 1938-41

Thousan	de o	f not	tonel
I I HOUSEH	us o	и пег	LOHSI

	1							Т	otal
Fuel	New Eng- land	New York	New Jersey	Dela- ware	Mary- land	Penn- syl- vania	District of Co- lumbia	Thou- sands of net tons	Percen of total fuels
Anthracite:									
All users: 1	1	1	1	ı		1	1		l
1938	3, 553	2 13, 452	2 6, 421	198	574	9, 603	254	34, 055	55.0
1939	4 492	216, 716	2 9, 060	259	634	12,077	264	43, 502	58.
1940	4 520	2 16, 249	2 8, 814	304	608	12, 915	201	40, 502	
1041	5, 540	216, 308	210, 190	361			289	43, 718	54.
1941 Imports: 4	0,020	10, 300	10, 190	201	681	14, 103	283	47, 466	(8)
1938	363	1		1.00	! ·	1			
1939	303							363	
1909								298	. 4
1940					I		1	135	
19414	64		l	l				64	(8)
Briquets:	1	1	1		1			-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Domestic use:			1					1.0	
1938	38	27	1	1 8	3	- 11		80	
1939	46	23	l i		2	ii	1	84	.!
1940	52	26	i	(6)	2	10	/m * l		
1941	59	25	l î	(5)	3	14	(5)	91	
Imports: 4			-	(3)	9	14	(9)	95	(3)
Imports: 4 1938	14		J 7 1		1				
1939	1							14	(6) (6)
1940	1							1	(6)
19414									
Ooke:						l			
				l					
Domestic use:		1	i i	l		1	1		
1938 7 1939 7	1,018	1,604	395	5	7	563	1	3, 593	5.8
1939 7	1,077	1.696	413	5	7	596	2	3, 796	5.0
1940	1,430	1.564	489	2	28	537	2	4, 052	5. 0
1941	1, 363	1, 350	470	ī	28	474	2	3, 688	(3) U
	_,	-,000	1,0	-	20	212		3,100	(3)
1938	21	7		1					_
1939	12	19						28	.1
1940	15	- 58						31	. 1
19414	64	37			. 3			76	. 1
Oil:	04	31			107 '			208	(3)
Heating and range:								- 1	
Treating and range.								- 1	
1938	9, 649	7,677	3, 269	101	591	2,052	406	23, 745	38. 4
1939	10, 787	8, 967	3, 770	107	694	2, 279	458	27,062	36. 2
1940	13, 027	10, 726	4, 503	120	885	2,704	578	32, 543	40. 4
1941	(3)	(8)	(3)	(8)	(3)	(3)	(3)	(3)	(3)
					= <u>`</u>			- (7	(-)
Total fuel: 9									
1938	14, 656	22, 767	10,086	304	1, 175	12, 229	661	61, 878	100 0
1939	16, 713	27, 421	13, 244	371	1, 337	14 000	001	01, 8/8	100.0
1940	19, 198	28, 623	13, 807		1,00/	14, 963	725	74, 774	100.0
1941	(3)	(3)	(3)	426 (3)	1, 526 (3)	16, 166	869 (8)	80, 615	100. 0 (8)

Pennsylvania Department of Mines; illicit coal not included.

An important but undetermined part of anthracite shown as shipped to New Jersey is reshipped to New York City.

Data not yet available.

Department of Commerce; 1941 totals cover January to September, inclusive. Less than 1,000 tons.

Less than 0.05 percent.

Estimated upon basis of distribution in 1936.

Converted to coal equivalent upon basis of 4 barrels of fuel oil equaling 1 ton of coal.

• Excludes bituminous coal.

Consumption.—War-time restrictions limit the publication of import and export statistics for 1941 to the first 9 months of the year. Taking this into consideration and making allowances for changes in producers'stocks, the consumption of anthracite in the United States in 1941 amounted to 53,700,000 net tons, an increase of about 4,700,000 tons over the calculated consumption in 1940. Changes in retail dealers, and small consumers' stocks are not included in these calculations, as data on variations are insufficient. Class I railroads and electric power utilities consumed 4,287,481 net tons of anthracite in 1941 compared with 3,804,209 tons in 1940.

Table 6.—Total supplies of fuels commonly used for domestic purposes in the United States, 1924 and 1938-41

[Wherever available, figures represent quantity actually consumed for domestic heating or for heating offices, apartments, hotels, schools, hospitals, etc. Where such figures are not available but where the fuel is known to be used chiefly for domestic purposes, total production (or imports) is shown to indicate trend of growth]

	1924	1938	1939	1940	1941
SOLID FUELS (NET TONS)					
Anthracite: Production:	FG F7G 000	00 000 500	00 504 600	00 070 579	20 010 840
Shipments of domestic sizes. Shipments of Buckwheat No. 1¹. Shipments of smaller steam sizes ¹. Local sales.	11, 160, 695	8, 698, 355	6, 569, 902 9, 917, 748	6, 771, 387 10, 327, 993	7, 357, 542
Total commercial production Exports Imports for consumption (chiefly from	80, 291, 438 4, 017, 785	43, 786, 075 1, 908, 911			
United Kingdom and U. S. S. R.) Fuel briquets 3 Packaged-fuel production Coke:	580, 508		880, 981	1, 027, 585	² 64, 267 ⁴ 1, 271, 413 269, 844
Byproduct sales for domestic use. Beehive sales for domestic use Imports for consumption Gas-house-coke sales 5 Petroleum-coke production	139, 886 82, 833 1, 400, 000 761, 100	93, 306 135, 240 342, 300	88, 204 141, 911 362, 000	99, 066 112, 550 (6)	² 241, 690 (6)
Anthracite and semianthracite production outside of Pennsylvania Lignite production 7. Bituminous-coal sales for domestic use	2, 255, 385	370, 665 2, 997, 921 (⁸)		2, 939, 201 (⁸)	(6) (6) (8)
OIL (BARRELS OF 42 GALLONS)					
Oil sales for heating buildings; Range oil Heating oils: 10	(4)	33, 707, 000	⁹ 37, 061, 000	9 44, 692, 00 0	4 45, 700, 000
Domestic Commercial Liquefied petroleum gases, domestic	5, 021, 000 (6) (6)	}118, 323, 000 1, 377, 000		9 160, 379, 000 3, 191, 000	
GAS (MILLION CUBIC FEET)					
Natural-gas consumption for domestic and commercial use ¹¹	285, 152	482, 068	9 509, 487	9 578, 290	4 590, 000
Domestic use	(6)	195, 887 47, 634			

¹ A considerable part of Buckwheat No. 1 and smaller steam sizes is used by industries, railroads, and public utilities.

 Figures cover January to September, inclusive.
 Production plus imports less exports. Import and export figures for 1941 cover January to September, inclusive.

Changes in stocks.—Producers' stocks totaled 1,273,788 net tons on December 27, 1941, and 939,227 tons on December 28, 1940.

Stocks held by 164 selected retail dealers totaled 338,797 tons in January, reached a low of 248,206 tons in March, and increased to a high of 532,196 tons in November.

⁴ Subject to revision. Partly estimated.
Data not available

An estimated one-half is used for domestic purposes.

* Exact data not available; estimated between 55 and 77 million tons a year, including lignite and anthracite and semianthracite outside of Pennsylvania, shown separately. Revised figures.

Includes all grades of fuel oil used for heating buildings.
 Includes gas used for heating offices, hotels, apartments, schools, hospitals, and stores and other large buildings, as well as houses.
 American Gas Association.

Table 7.—Shipments of Pennsylvania anthracite, 1939-41, by destinations, in net tons 1

Destination	1939	1940	1941
New England States	4, 489, 970	4, 539, 026	5, 539, 936
New York	16, 251, 195	15, 477, 318	15, 269, 752
New Jersey	8, 494, 964	7, 906, 071	8, 858, 652
Pennsylvania	8, 407, 564	8, 569, 913	9, 168, 068
Delaware		197, 456	234, 454
Maryland	592, 627	570, 771	627, 936
District of Columbia.	256, 936	280, 415	271, 921
Virginia		106, 713	118, 805
Ohio		113, 553	119, 710
Indiana	98, 090	83, 539	86, 809
Illinois	277, 166	265, 424	281, 548
Wisconsin	355, 291	347, 223	320, 500
Minnesota		61, 203	75, 334
Michigan	245, 519	203, 299	247, 703
Other States	66, 217	68, 372	52, 223
Total United States	40, 044, 916	38, 790, 296	41, 273, 351
Canada	2, 441, 070	2, 312, 531	2 2, 106, 299
Other foreign countries	4, 456	2, 525	² 9, 431
Grand total	42, 490, 442	41, 105, 352	43, 389, 081

Pennsylvania Department of Mines.
January to September, inclusive.

Table 8.—Truck shipments of Pennsylvania anthracite by months in 1941, by States of destination, in net tons 1

			,			1.67	
Destination	January	February	March	April	May	June	July
Pennsylvania: Within region Outside region New York	104.881	370, 326 204, 562 100, 387	369, 683 200, 722 103, 508	173, 014 93, 886 42, 552	171, 723 120, 082 54, 979	210, 642 172, 945 96, 185	162, 722 157, 021 84, 803
New Jersey Maryland Delsware District of Columbia Other States	4, 012 16, 264	116, 912 6, 454 16, 076 1, 247 1, 528	114, 787 4, 014 13, 631 1, 317 1, 143	41, 708 963 5, 016 752 897	68, 298 770 5, 603 488 3, 045	122, 819 5, 437 9, 526 12 4, 088	114, 717 6, 592 11, 936 822 1, 692
Total: 1941	805, 254 750, 253	817, 492 576, 073	808, 805 623, 967	358, 788 503, 276	424, 988 384, 929	621, 654 294, 215	540, 308 298, 417
Destination	August	Septem- ber	October	Novem- ber	Decem- ber	Total	Percent of total trucked
Pennsylvania: Within region Outside region New York New Jersey Maryland Delaware District of Columbia Other States	107, 486 121, 372 7, 351 10, 907	211, 917 148, 436 86, 311 113, 617 5, 811 11, 210 1, 582 2, 994	233, 360 166, 264 82, 195 102, 364 5, 598 10, 755 1, 630 6, 072	240, 396 114, 696 72, 001 81, 952 3, 082 7, 523 799 3, 201	146, 981 102, 878	3, 080, 652 1, 853, 870 1, 038, 166 1, 331, 373 53, 425 127, 160 10, 705 34, 128	40. 9 24. 6 13. 8 17. 7 . 7 1. 7
Total: 1941 1940	617, 188 351, 544	581, 878 487, 681	608, 238 601, 285	523, 650 591, 567	821, 236 733, 860	7, 529, 479 6, 192, 067	100. (100. (

¹ Compiled from reports of Pennsylvania Department of Mines.

On December 31, 1941, stocks of anthracite held by railroads (class I only), electric power utilities, and other industrial consumers amounted to 1,784,875 net tons, compared with 1,589,427 tons on the same date in 1940. Stocks held by the railroads increased 66 percent followed in order, with smaller increases, by other industrial consumers and electric power utilities.

The stocks of anthracite on the Upper Lake docks on December 31, 1941, amounted to 273,727 net tons—a substantial increase from the 217,970 tons on this date in 1940.

Trend of employment.—The average number of men employed in the Pennsylvania anthracite industry in 1941 was 88,054, which is comparable with a total of 91,313 men in 1940. Men working in

"bootleg" or illicit mining are not included in these figures.

Trend of prices.—Circular f. o. b. mine prices as quoted by leading anthracite-producing companies in trade journals were firm throughout 1941 and contrasted sharply with the chaotic price situation in 1939. The prices in January 1941 were as follows: For Broken, Egg, Stove, and Chestnut, \$6.25 a net ton; for Pea, \$4.75 a ton. In June, prices on these sizes advanced 10 cents a ton, and additional increases in July, August, and September raised them to \$6.75 a ton for Broken, Egg, Stove, and Chestnut and \$5.25 a ton for Pea. At the close of 1941, the prices for these sizes had not changed from the September quotations. In January, Buckwheat, Rice, and Barley were quoted at \$3.50, \$2.75, and \$2.00 a ton, respectively. In May the prices on these sizes advanced to \$3.75, \$2.90, and \$2.15 a ton and were still at this level when the year ended.

During 1941 several conferences concerning anthracite prices were held between representatives of the anthracite industry and members of the Office of Price Administration. After the September advance in prices, the producers agreed to make no further increases without

consulting the Office of Price Administration.

According to the Bureau of Labor Statistics, Department of Labor, the retail prices for Stove size on December 15, 1940, in Boston, New York City, Buffalo, Philadelphia, and Washington, D. C., were \$13.75, \$11.72, \$11.72, \$10.40, and \$12.95 a net ton, respectively. On the same date in 1941, comparable prices were \$14.50, \$12.35, \$12.38, \$11.64, and \$13.70 a ton. At the same periods, the prices for Buckwheat No. 1 in these cities were \$10.00, \$8.38, \$8.48, \$7.75, and \$9.60 in 1940 compared with \$11.00, \$8.48, \$8.73, \$8.50, and \$10.00 in 1941.

The prices apply to a net ton of 2,000 pounds except in the District of Columbia, where the gross ton of 2,240 pounds is used. New York City prices include a 2-percent sales tax in 1940 and 1 percent in 1941.

Sales realization.—The average realization on breaker shipments increased from \$4.27 a net ton in 1940 to \$4.59 in 1941, an increase of 7 percent. The average value per net ton of the total anthracite

production in 1941 was \$4.26 compared with \$3.99 in 1940.

Imports and exports.—As previously mentioned, war restrictions permit publication of import and export statistics on anthracite in 1941 for the first 9 months only. For the January—September period of 1941, exports of Pennsylvania anthracite amounted to 2,416,104 net tons valued at \$19,657,920. Exports for the entire calendar year 1940 totaled 2,667,632 tons valued at \$21,210,499. Imports of anthracite for the first 9 months of 1941 amounted to 64,267 net tons, whereas in the entire calendar year 1940 imports were 135,436 tons. In both periods all the imported coal came from Canada and the United Kingdom. (See tables 36 and 37.)

Mechanical stokers and oil burners.—According to the Bureau of the Census, Department of Commerce, factory sales of mechanical stokers for burning anthracite increased 28 percent in 1941 over 1940. Sales of class 1 stokers (capacity under 61 pounds of coal an hour) increased from 12,837 units in 1940 to 17,110 units in 1941. Sales of class 2 stokers (capacity 61 to 100 pounds of coal an hour) decreased from 970 units in 1940 to 599 in 1941.

In 1941, 303,869 oil burners were shipped compared with 264,232 in 1940—an increase of 15 percent. These figures include both domestic and foreign shipments but do not include burners used in

ranges, stoves, water heaters, and space heaters.

SOURCES AND ACKNOWLEDGMENTS

Final statistics of the Pennsylvania anthracite-mining industry are prepared from an annual canvass, by mail, of all known legitimate anthracite operations that are active producers. More than 95 percent of the tonnage is reported direct, and the remainder is collected by personal visits or from reliable collateral evidence. The data on individual operations furnished by the producers are voluntary and confidential, as is customary in the statistical services of the Bureau of Mines.

In assembling available detailed information, free use has been made of pertinent figures prepared by the Anthracite Institute, the Anthracite Committee, the American Association of Railroads, and the Pennsylvania Department of Mines; the cordial and continued cooperation of all of these and of others from whom information has been received is gratefully acknowledged. Especial thanks are also due to the producers for reporting so promptly and, in general, so

fully regarding their operations during 1941.

PRODUCTION

The output of Pennsylvania anthracite in 1941 totaled 56,368,267 net tons—a substantial increase over the 51,484,640 net tons produced in 1940. For historical comparison, these figures include a small amount of semianthracite produced in Sullivan County (37,020 net tons in 1941). Included also is the production of river coal, which is recovered by dredging from the streams draining the anthracite

fields. This source supplied 1,517,563 net tons in 1941.

Before 1941 the Bureau had not considered the production of "bootleg" or illicit coal in its statistics on the Pennsylvania anthracite industry. The output from unauthorized mines has been considerable, and in 1941 totaled about 5,000,000 tons, of which about 2,000,000 tons were purchased by the legitimate industry and included in the production statistics in this chapter. In an effort to eliminate this undesirable condition, the legitimate industry (through the Anthracite Committee) decided upon a plan whereby it would lawfully buy the output from "bootleg" holes and at the same time attempt to employ the miners working the "bootleg" operations in the legitimate mines. This plan was put into effect in the first part of 1941; during the course of the year, the legitimate operators purchased run-of-mine coal from the bootleggers and shipped 1,902,481 tons of the prepared product to market. It would be very difficult if not impossible to segregate this purchased "bootleg" production from the output of

the legitimate industry, and it is therefore included in the various production tables in this chapter. Because of the inclusion of this quantity of illicit coal, the production statistics for 1941 are not exactly comparable with previous years. No attempt has been made to include in the statistics any other illicit coal than that purchased by legitimate operators.

Weeks and months.—Tables 9 and 10 summarize the statistics of weekly and monthly production of anthracite. Statistics of current output are estimated from records of car loadings and other pertinent data. The weekly and monthly figures in tables 9 and 10 have been adjusted to the annual total ascertained by direct canvass of the

operators.

Table 9.—Estimated weekly production of Pennsylvania anthracite in 1941, in net tons

	Week ended—	Net tons	Week ended—	Net tons
Jan. 4.		1 377, 000	July 19	1, 314, 000
11.		1, 095, 000	26	1, 330, 000
18.		1, 228, 000	Aug. 2.	1, 299, 000
		1, 304, 000	9	1, 335, 000
Feb. 1.		1, 234, 000	16	1, 218, 000
8.		1, 183, 000	23	1, 305, 000
		1, 262, 000	30	1, 279, 000
		983, 000	Sept. 6	
		1, 130, 000	13	
		1, 161, 000	20	1, 183, 000
		1, 137, 000	27	1, 194, 000
		1, 146, 000	Oct. 4	1, 088, 000
		1, 124, 000	11	1, 329, 000
apr. 5.		679, 000	18	1, 279, 000
12.		657,000	25	1, 269, 000
		611,000	Nov. 1	1, 063, 000
		715,000	.8	1, 090, 000
		1, 097, 000 860, 000	15	1, 105, 000
10.		904, 000	22	907,000
24		871, 000	29 Dec. 6	838, 000 804, 000
		1, 082, 000	13	863, 000
[11na 7		1, 167, 000	20	1, 094, 000
14		1, 325, 000	27	871,000
21		1, 255, 000	Jan. 3, 1942	1 639, 000
28		1, 314, 000	Van. U, 1024	- 500, 000
		64,000	Calendar year	56, 368, 000
		1, 164, 000	Caronia John	00,000,000
		-, 131, 000		

¹ Figures represent output of working days in that part of week included in the calendar year 1941. Preliminary production for week of January 3, 1942, was 728,000 tons. Revised total for week of January 4, 1941, was 843,000 tons.

Table 10.—Estimated monthly production of Pennsylvania anthracite, 1934-41, in thousands of net tons ¹

Month	1934	1935	1936	1937	1938	1939	1940	1941 *
JanuaryFebruary	6, 102	5, 790	5, 315	4, 236	4, 978	5, 019	5, 783	5, 162
	5, 930	4, 652	6, 952	3, 671	3, 646	4, 169	3, 648	4, 596
March	6, 394	3, 228	3, 051	4, 795	4, 257	3, 652	3, 881	4, 765
April	4, 819	4, 763	4, 757	6, 779	3, 149	5, 367	3, 853	3, 317
May	5, 230	5, 118	5, 104	4, 361	4, 400	5, 141	4, 070	4, 001
June	4, 168	5, 724	4, 292	4, 635	4, 450	3, 577	4, 492	5, 072
JulyAugust	3, 430	3, 502	3, 912	2, 748	2, 580	2, 951	4, 534	4, 855
	3, 570	3, 073	3, 492	2, 903	2, 735	3, 883	3, 883	5, 441
September	3, 962	4, 113	3, 861	3, 682	3, 388	4, 840	4, 172	5, 334
October	4, 711	4, 132	4, 593	4, 848	4, 180	4, 985	4, 355	5, 580
November December	4, 165	3, 432	4, 320	4, 439	3, 803	3, 989	3, 980	3, 974
	4, 687	4, 632	4, 931	4, 759	4, 533	3, 914	4, 834	4, 271
·	57, 168	52, 159	54, 580	51, 856	46, 099	51, 487	51, 485	56, 368

¹ Production is estimated from weekly carloadings as reported by the Association of American Railroads and includes mine fuel, coal sold locally, and dredge coal. Monthly statistics from 1905 to 1925 will be found in Mineral Resources, 1926, pt. II, pp. 247-242, and from 1925 to 1930 in Mineral Resources, 1930, pt. II, p. 741. ¹ Includes some "bootleg" coal purchased by legitimate operators and prepared at their breakers.

Small mines and intercompany sales.—All known legitimate operations are included in the statistics. In recent years conditions have favored the development of numerous small mines operating on lease or subcontract and producing run-of-mine coal, which is sold to larger companies for preparation at a breaker. At the same time, an increasing transfer of coal from one operation to another has developed, and some of the companies have built central breakers to which coal from numerous mines is shipped, by rail or truck, for preparation. These tendencies have increased the complexity of the task of collecting and compiling statistics of the industry; but great care has been exercised to avoid double counting of tonnages produced by one operator and prepared for market by another, and the figures herein represent the net quantity of merchantable coal plus the fuel used by the collieries themselves. The employees of legitimate operators producing run-of-mine only have been included in the employment statistics, as they have received wages from the industry and have

contributed to the final product.

Regions, fields, and counties.—The anthracite fields are divided into three trade regions—Lehigh, Schuylkill, and Wyoming. This classification is generally used by the trade, and it is also followed in the district organization of the United Mine Workers of America, in which District 1 corresponds to the Wyoming region, District 7 to the Lehigh region, and District 9 to the Schuylkill region. Geographically the anthracite area is classified by fields—the Northern, Eastern Middle, Western Middle, and Southern. This classification is used in technical operating studies because it follows more closely the geologic conditions that largely influence the methods and cost of mining. The Northern field is the same as the Wyoming region. The Lehigh field and that part of the Southern field lying east of Tamaqua (known as the Panther Creek Valley) make up the Lehigh region. The Schuylkill region comprises the Western Middle field and that part of the Southern field lying west of Tamaqua. For historical comparison, the tonnage of the small Bernice Basin is often included with the statistics of the Northern field, although the coal is classified officially as The total area of the four fields is about 484 square semianthracite. miles—the Northern covers 176 square miles, the Eastern Middle 33, the Western Middle 94, and the Southern 181.

Based upon the quantity of minable reserves, the Southern field is first, followed by the Western Middle, Northern, and Eastern Middle. Tables 11 to 13 present production data by regions, fields, and

counties.

Culm-bank coal.—In the early days of anthracite mining, the smaller sizes of anthracite—especially Pea and smaller—were not used, as they are today, and these sizes and larger pieces of refuse containing much good coal were piled in large banks throughout the region. In 1879 the recovery of the sizes smaller than Pea coal was less than 1 percent of all sizes made, but in 1940 these sizes comprised 34 percent of the total breaker shipments. In recent years, with the increased demand for the smaller sizes and the use of modern and efficient preparation methods, material from the culm banks is run through washeries or breakers, and a clean, prepared coal is obtained. This source supplied 2,783,038 tons in 1940 and 3,656,866 tons in 1941. Tables 14 and 15 give a detailed break-down of culm-bank production, by regions and fields.

TABLE 11.—Pennsylvania anthracite shipped, sold locally, and used as colliery fuel in 1941, by regions

Region	Shipi	ments	Local	l sales	Collie	ry fuel	Tot	tal
Region	Net tons	Value ¹	Net tons	Value	Net tons	Value	Net tons	Value 1
Lehigh: Breakers Washeries Dredges	7, 606, 556 207, 121 35, 408	\$34, 227, 000 662, 000 42, 000	391, 689 14, 133 12, 430	\$1, 987, 000 50, 000 15, 000	397, 118 2, 000	\$823, 000 5, 000	8, 395, 363 223, 254 47, 838	\$37, 037, 000 717, 000 57, 000
Total Lehigh	7, 849, 085	34, 931, 000	418, 252	2, 052, 000	399, 118	828, 000	8, 666, 455	37, 811, 000
Schuylkill: Breakers Washeries Dredges	14, 567, 737 1, 988, 632 967, 630	62, 088, 000 4, 157, 000 1, 137, 000	778, 616 46, 148 493, 700	3, 055, 000 105, 000 637, 000	301, 809 22, 840 2, 450	519, 000 47, 000 3, 000	15, 648, 162 2, 057, 620 1, 463, 780	65, 662, 000 4, 309, 000 1, 777, 000
Total Schuylkill	17, 523, 999	67, 382, 000	1, 318, 464	3, 797, 000	327, 099	569, 000	19, 169, 562	71, 748, 000
Wyoming: Breakers. Washeries. Dredges.	24, 671, 656 3 ² 2, 939 5, 945	118, 807, 000 1, 016, 000 5, 000	1, 930, 706 10, 347	8, 896, 000 30, 000	1, 495, 471 38, 166	1, 843, 000 36, 000	28, 097, 833 391, 452 5, 945	129, 546, 000 1, 082, 000 5, 000
Total Wyoming	25, 020, 540	119, 828, 000	1, 941, 053	8, 926, 000	1, 533, 637	1, 879, 000	28, 495, 230	130, 633, 000
Total, excluding Sullivan County: Breakers. Washeries Dredges	46, 845, 949 2, 538, 692 1, 008, 983	215, 122, 000 5, 835, 000 1, 184, 000	3, 101, 011 70, 628 506, 130	13, 938, 000 185, 000 652, 000	2, 194, 398 63, 006 2, 450	3, 185, 000 88, 000 3, 000	52, 141, 358 2, 672, 326 1, 517, 563	232, 245, 000 6, 108, 000 1, 839, 000
Total Sullivan County: ² Breakers	50, 393, 624 18, 473	222, 141, 000 32, 000	3, 677, 769 17, 356	14, 775, 000 50, 000	2, 259, 854 1, 191	3, 276, 000 1, 000	56, 331, 247 37, 020	240, 192, 000 83, 000
Grand total: 1941	50, 412, 097 46, 175, 953 +9. 2	222, 173, 000 191, 332, 000 +16. 1	3, 695, 125 3, 052, 626 +21. 0	14, 825, 000 11, 314, 000 +31. 0	2, 261, 045 2, 256, 061 +0. 2	3, 277, 000 2, 844, 000 +15. 2	56, 368, 267 51, 484, 640 +9. 5	240, 275, 000 205, 490, 000 +16. 9

¹ Value given is value at which coal left possession of producing company; does not include margins of separately incorporated sales companies.

¹ For purposes of historical comparison and statistical convenience, the mines of Sullivan County are grouped with the Pennsylvania anthracite region, although the product is classified as semianthracite according to the American Society for Testing Materials Tentative Standard.

TABLE 12.—Pennsylvania anthracite produced, 1937-41, by fields, in net tons

[The figures of breaker product include a certain quantity of culm-bank coal, which amounted to 1,705,977 tons in 1941. Data for 1913-25 will be found in Mineral Resources, 1925, pt. II, p. 517, and for 1919-30 in Mineral Resources 1930, pt. II, p. 747]

Field	1937	1938	1939	1940	1941
Eastern Middle: Breakers Washeries Dredges	6, 045, 813	5, 217, 169	1 5, 444, 335 (1)	1 5, 104, 708 (¹)	5, 066, 892 217, 642 5, 032
Total Eastern Middle	6, 045, 813	5, 217, 169	5, 444. 335	5, 104, 708	5, 289, 566
Western Middle: Breakers Washeries Dredges	1, 456, 505	8, 877, 485 940, 938 223, 961	9, 242, 223 906, 992 253, 819	10, 168, 142 734, 541 447, 760	11, 531, 105 946, 794 531, 129
Total Western Middle	12, 102, 614	10, 042, 384	10, 403, 034	11, 350, 443	13, 009, 028
Southern: Breakers Washeries Dredges		5, 447, 804 625, 335 317, 572	6, 196, 051 855, 659 432, 974	6, 615, 347 812, 162 492, 684	7, 445, 528 1, 116, 438 975, 457
Total Southern	6, 536, 308	6, 390, 711	7, 484, 684	7, 920, 193	9, 537, 423
Breakers	26, 707, 743 347, 959 27, 500	24, 059, 598 310, 491 29, 491	27, 806, 467 295, 103 17, 067	26, 571, 383 484, 569 2, 500	28, 097, 833 391, 452 5, 945
Total Northern	27, 083, 202	24, 399, 580	28, 118, 637	27, 058, 452	28, 495, 230
Total, excluding Sullivan County: Breakers. Washeries Dredges	48, 984, 458 2, 023, 005 760, 474	43, 602, 056 1, 876, 764 571, 024	1 48, 689, 076 1 2, 057, 754 703, 860	148, 459, 580 1 2, 031, 272 942, 944	52, 141, 358 2, 672, 326 1, 517, 563
TotalSullivan County: Breakers	51, 767, 937 88, 496	46, 049, 844 49, 183	51, 450, 690 36, 687	51, 433, 796 50, 844	56, 331, 247 37, 020
Grand total	51, 856, 433	46, 099, 027	51, 487, 377	51, 484, 640	56, 368, 267

¹ Small amount of washery coal included with breaker.

Table 13.—Pennsylvania anthracite produced in 1941, by counties

County	Total sl	nipments	Sold to l	ocal trade	Used fo	r power	Total p	roduction
County	Net tons	Value 1	Net tons	Value	Net tons	Value	Net tons	Value 1
Carbon Columbia Dauphin and Lebanon Lackawanna Luzerne	247, 872 459, 893 7, 351, 141 21, 122, 739	1, 912, 000 34, 379, 000 101, 620, 000	30, 088 294, 670 712, 332 1, 402, 704	53, 000 496, 000 3, 386, 000 6, 430, 000	7, 158 5, 206 467, 774 1, 309, 396	21, 000 8, 000 638, 000 1, 766, 000	285, 118 759, 769 8, 531, 247 23, 834, 839	2, 416, 000 38, 403, 000 109, 816, 000
Northumberland Schuylkill Sullivan Snyder, Susque-	5, 337, 886 13, 207, 645 18, 473	50, 564, 000 32, 000	577.728 17,356	2, 600, 000 50, 000	275, 045 1, 191	505, 000 1, 000		53, 669, 000
hanna, and Wayne Berks, Lancaster, Northampton, and York	115, 920 68, 676		•	47, 000 253, 000	,	16, 000	152, 169 263, 506	
Total	50, 412, 097	222, 173, 000	3, 695, 125	14, 826, 000	2, 261, 045	3, 276, 000	56, 368, 267	240, 275, 000

¹ Value given for shipments is value at which coal left possession of producing company and does not include margins of separately incorporated sales companies.
² Counties producing dredge coal only.

Reconciliation of fresh-mined, culm-bank, and breaker product.—Anthracite is now produced from three sources—mines (including strip pits), culm banks, and the rivers and creeks that drain the

anthracite region. As all three sources contribute to the country's supply, it is necessary to consider them all to ascertain the total production. No difficulty is experienced in separating the figures of production by dredges, as this is a distinct industry. It is difficult, however, to make a sharp differentiation between fresh-mined and culm-bank coal that can be maintained throughout the statistics of the industry.

Table 14.—Pennsylvania anthracite produced in 1941, classified as fresh-mined, culm-bank, and river coal and as breaker, washery, and dredge product, by regions, in net tons

		From mines	3			
Region and type of plant	Under	ground		From culm	From river	Total
region and type of passes	Mechan- ically loaded	Hand- loaded	Strip pits	banks	dredging	
T At all			374			
Lehigh: Breakers Washeries Dredges	756, 562	5, 551, 949	1, 983, 351	103, 501 223, 254	47, 838	8, 395, 363 223, 254 47, 838
Total Lehigh	756, 562	5, 551, 949	1, 983, 351	326, 755	47, 838	8, 666, 455
Schuylkill: Breakers Washeries Dredges	1, 784, 098	9, 102, 039	3, 902, 363 36, 233	859, 662 2, 021, 387	1, 463, 780	15, 648, 162 2, 057, 620 1, 463, 780
Total Schuylkill	1, 784, 098	9, 102, 039	3, 938, 596	2, 881, 049	1, 463, 780	19, 169, 562
Wyoming: Breakers Washeries Dredges	10, 901, 327	15, 744, 269	1, 339, 423 55, 204	112, 814 336, 248	5, 945	28, 097, 833 391, 452 5, 945
Total Wyoming	10, 901, 327	15, 744, 269	1, 394, 627	449, 062	5, 945	28, 495, 230
Total, excluding Sullivan County: Breakers Washeries Dredges	13, 441, 987	30, 398, 257	7, 225, 137 91, 437	1, 075, 977 2, 580, 889	1, 517, 563	52, 141, 358 2, 672, 326 1, 517, 563
Total	13, 441, 987	30, 398, 257 37, 020	7, 316, 574	3, 656, 866	1, 517, 563	56, 331, 247 37, 020
Grand total	13, 441, 987	30, 435, 277	7, 316, 574	3, 656, 866	1, 517, 563	56, 368, 267

As the best solution of this problem, the individual breaker, washery, or dredging operation is taken as the unit in compiling the statistics, and the producing companies are asked to supply separate statements for each type of plant. These are totaled to form the primary tables of this report to show the total quantity of breaker product, washery product, and dredge product, with related figures of value and number of employees.

The figures from breaker and washery plants, however, are not exactly equivalent to the fresh-mined and culm-bank coal because of the practice, sometimes adopted, of putting culm-bank coal through a breaker, either directly from the bank or after preliminary treatment in a washery. The tonnage of culm-bank coal prepared at the breakers is broken down by fields and shown in table 16.

Interregional variation in sizes.—Geologic conditions affect the percentages of domestic and steam sizes produced and consequently the value of the product as a whole. In the Wyoming and Lehigh regions,

the percentage yield of the higher-priced domestic sizes is relatively high; in the Schuylkill region, it is less because of the crushing of the coal by faulting and folding of the beds. In 1941, the breaker output of the Wyoming region comprised 70.2 percent domestic sizes and 29.8 percent steam sizes; the Lehigh region—62.8 percent domestic and 37.2 percent steam sizes; the Schuylkill region—57.7 percent domestic and 42.3 percent steam sizes. Table 17 shows shipments of anthracite by regions and sizes. Table 18 shows by regions the percentages of various sizes in relation to total breaker product.

Table 15.—Pennsylvania anthracite produced in 1941, classified as fresh-mined, culm-bank, and river coal and as breaker, washery, and dredge product, by fields, in net tons

		From mine	s			
Field and type of plant	Under	ground		From culm	From river	Total
	Mechani- cally loaded	Hand- loaded	Strip pits	banks	dredging	10001
Eastern Middle: Breakers Washeries Dredges	756, 562	3, 182, 504	1, 070, 385	57, 441 217, 642	5, 032	5, 066, 892 217, 642 5, 032
Total Eastern Middle	756, 562	3, 182, 504	1, 070, 385	275, 083	5, 032	5, 289, 566
Western Middle: Breakers		6, 823, 859	2, 507, 723 36, 233	518, 530 910, 561	531, 129	11, 531, 105 946, 794 531, 129
Total Western Middle	1, 680, 993	6, 823, 859	2, 543, 956	1, 429, 091	531, 129	13, 009, 028
Southern: Breakers	103, 105	4, 647, 625	2, 307, 606	387, 192 1, 116, 438	975, 457	7, 455, 528 1, 116, 438 975, 457
Total Southern	103, 105	4, 647, 625	2, 307, 606	1, 503, 630	975, 457	9, 537, 423
Washeries Dredges		15, 744, 269	1, 339, 423 55, 204	112, 814 336, 248	5, 945	28, 097, 833 391, 452 5, 945
Total Northern	10, 901, 327	15, 744, 269	1, 394, 627	449, 062	5, 945	28, 495, 230
Washeries 9 Dredges		30, 398, 257	7, 225, 137 91, 437	1, 075, 977 2, 580, 889	1, 517, 563	52, 141, 358 2, 672, 326 1, 517, 563
TotalSullivan County: Breakers	13, 441, 987	30, 398, 257 37, 020	7, 316, 574	3, 656, 866	1, 517, 563	56, 331, 247 37, 020
Grand total	13, 441, 987		7, 316, 574	3, 656, 866	1, 517, 563	56, 368, 267

Table 16.—Culm-bank coal put through breakers, 1937-41, by fields, in net tons

Year	Northern	Eastern Middle	Western Middle	Southern	Total 1
1937	95, 000	67, 000	102, 000	606, 000	870, 000
1938	52, 000	11, 000	44, 000	455, 000	562, 000
1939	70, 000	17, 000	204, 000	295, 000	586, 000
1940	13, 000	2 139, 000	250, 000	362, 000	764, 000
1941	113, 000	57, 000	519, 000	387, 000	1, 076, 000

¹ No culm-bank coal is put through breakers in Sullivan County.
² Includes some washery coal.

Table 17.—Pennsylvania anthracite shipped in 1941, by regions and sizes

			Breaker sh	ipments 1		:			
Size					То	tal	Washery shipments	Dredge ship- ments	Grand total
*	Lehigh region	Schuylkill region	Wyoming region	Sullivan County	Excluding Sullivan County	Including Sullivan County	J	<u> </u>	
Net tons									
Lump [‡] and Broken Egg. Stove Chestnut Pea	280 038	73, 827 520, 574 2, 846, 927 3, 303, 451 1, 665, 471	39, 035 1, 153, 935 6, 807, 603 6, 826, 353 2, 504, 357	977 2, 710 2, 201	150, 453 1, 943, 545 11, 407, 393 11, 964, 047 5, 051, 394	150, 453 1, 943, 545 11, 408, 370 11, 966, 757 5, 053, 595	00 390	(3)	150, 453 1, 943, 545 11, 474, 708 12, 179, 546 5, 164, 397
Total domestic sizes	4, 775, 299	8, 410, 250	17, 331, 283	5, 888	30, 516, 832	30, 522, 720	389, 929		30, 912, 649
Buckwheat No. 1. Buckwheat No. 2 (Rice). Buckwheat No. 3 (Barley) Buckwheat No. 4. Other. Silt.	641, 228 676, 411 262, 562	2, 369, 344 1, 419, 552 1, 660, 730 595, 754 57, 491 54, 616	3, 298, 618 1, 760, 417 1, 827, 157 278, 844 1, 025 174, 312	690 1, 361 4 10, 534 (4)	6, 836, 665 3, 821, 197 4, 164, 298 1, 137, 160 58, 516 311, 281	6, 837, 355 3, 821, 197 4, 165, 659 1, 147, 694 58, 516 311, 281	467, 130 450, 174 602, 841 596, 132 32, 486	\$ 53, 057 128, 963 344, 099 450, 593 32, 271	7, 357, 542 4, 400, 334 5, 112, 599 2, 194, 419 90, 787 343, 767
Total steam sizes	2, 831, 257	6, 157, 487	7, 340, 373	12, 585	16, 329, 117	16, 341, 702	2, 148, 763	1, 008, 983	19, 499, 448
Grand total	7, 606, 556	14, 567, 737	24, 671, 656	18, 473	46, 845, 949	46, 864, 422	2, 538, 692	1, 008, 983	50, 412, 097
Value									
Lump ³ and Broken Egg. Stove Chestnut Pea.	\$211, 000 1, 557, 000 10, 383, 000 10, 922, 000 3, 990, 000	\$430, 000 3; 042, 000 16, 898, 000 19, 416, 000 7, 415, 000	\$219,000 6,748,000 40,378,000 40,564,000 11,311,000	\$4,000 10,000 6,000	\$860, 000 11, 347, 000 67, 659, 000 70, 902, 000 22, 716, 000	\$860, 000 11, 347, 000 67, 663, 000 70, 912, 000 22, 722, 000		(3)	\$860, 000 11, 347, 000 67, 997, 000 71, 932, 000 23, 166, 000
Total domestic	27, 063, 000	47, 201, 000	99, 220, 000	20, 000	173, 484, 000	173, 504, 000	1, 798, 000		175, 302, 000
Buckwheat No. 1 Buckwheat No. 2 (Rice) Buckwheat No. 3 (Barley) Buckwheat No. 4	1, 627, 000 1, 244, 000	7, 918, 000 3, 447, 000 2, 775, 000 612, 000	11, 205, 000 4, 563, 000 3, 387, 000 301, 000	1,000 1,000 10,000	23, 051, 000 9, 637, 000 7, 406, 000 1, 222, 000	23, 052, 000 9, 637, 000 7, 407, 000 1, 232, 000	1, 478, 000 990, 000 954, 000 586, 000	³ \$162,000 233,000 392,000 370,000	24, 692, 000 10, 860, 000 8, 753, 000 2, 188, 000

See footnotes at end of table

TABLE 17.—Pennsylvania anthracite shipped in 1941, by regions and sizes—Continued

			Breaker sl	ipments					
Size					То	tal	Washery shipments	Dredge ship- ments	Grand total
	Lehigh region	Schuylkill region	Wyoming region	Sullivan County	Excluding Sullivan County	Including Sullivan County	surpments	ments	
Value—Continued OtherSlit	\$56,000	\$108,000 27,000	\$3,000 128,000		\$111,000 211,000	\$111,000 211,000	\$29,000	\$27,000	\$138, 000 240, 000
Total steam	7, 164, 000	14, 887, 000	19, 587, 000	\$12,000	41, 638, 000	41, 650, 000	4, 037, 000	1, 184, 000	46, 871, 000
Grand total	34, 227, 000	62, 088, 000	118, 807, 000	32, 000	215, 122, 000	215, 154, 000	5, 835, 000	1, 184, 000	222, 173, 000
Average value per ton									
Lump ² and Broken	\$5. 61 5. 79 5. 92 5. 95 4. 53	\$5. 82 5. 84 5. 94 5. 88 4. 45	\$5. 61 5. 85 5. 93 5. 94 4. 52	\$4. 09 3. 69 2. 73	\$5. 72 5. 84 5. 93 5. 93 4. 50	\$5. 72 5. 84 5. 93 5. 93 4. 50	\$5. 03 4. 79 4. 01	(3)	\$5. 72 5. 84 5. 93 5. 91 4. 49
Total domestic	5. 67	5. 61	5. 72	3. 40	5. 68	5. 68	4. 61		5. 67
Buckwheat No. 1 Buckwheat No. 2 (Rice) Buckwheat No. 3 (Barley) Buckwheat No. 4 Other Silt	1. 18	3. 34 2. 43 1. 67 1. 03 1. 88 . 49	3. 40 2. 59 1. 85 1. 08 2. 93 . 73	1. 45 . 73 . 95	3. 37 2. 52 1. 78 1. 07 1. 90 . 68	3. 37 2. 52 1. 78 1. 07 1. 90 . 68	3. 16 2. 20 1. 58 . 98	3 \$3.05 1.81 1.14 .82 .84	3. 36 2. 47 1. 71 1. 00 1. 52 . 70
Total steam	2. 53	2. 42	2. 67	. 95	2. 55	2. 55	1.88	1. 17	2. 40
Grand total	4. 50	4. 26	4.82	1. 73	4. 59	4. 59	2. 30	1. 17	4. 41

Includes some culm-bank coal handled in the breakers.
Quantity of Lump included is insignificant.
Small amount of Pea included in Buckwheat No. 1.
Some Silt included in Buckwheat No. 4.

Table 18.—Sizes of Pennsylvania anthracite shipped from breakers, 1939-41, by regions, in percent of total

[Note that shipments of dredge and washery coal are not included]

			Per	rcent of	total s	shipme	nts		
Size	Lel	nigh reg	gion	Schu	ylkill r	egion	Wyo	ming r	egion
	1939	1940	1941	1939	1940	1941	1939	1940	1941
Lump ¹ and Broken	23.1	0. 5 3. 8 23. 3 24. 7 11. 5	0. 5 3. 5 23. 1 24. 1 11. 6	0. 4 3. 9 19. 0 23. 9 11. 6	0. 4 3. 9 19. 1 23. 3 11. 8	0. 5 3. 6 19. 5 22. 7 11. 4	0.7 6.2 26.8 27.1 10.5	0. 2 5. 0 27. 0 27. 6 10. 6	0. 1 4. 7 27. 6 27. 7 10. 1
Total domestic	64.3	63.8	62.8	58.8	58. 5	57.7	71.3	70.4	70. 2
Buckwheat No. 1 Buckwheat No. 2 (Rice) Búckwheat No. 3 (Barley) Other, including Buckwheat No. 4	8.3	15. 6 8. 3 8. 4 3. 9	15. 4 8. 4 8. 9 3. 4 1. 1	15.8 8.9 11.7 4.8	16. 2 9. 3 11. 4 4. 6	16.3 9.7 11.4 4.5 .4	13. 2 7. 1 7. 0 1. 4	13.6 6.9 7.6 1.5	13. 4 7. 2 7. 4 1, 1
Total steam 3	35.7	36. 2	37. 2	41.2	41.5	42.3	28.7	29. 6	29. 8
						Tot	al—		
Sizə	Sulli	van Co	ounty		ding St		Inclu	ding Su County	illivan
Lump ¹ and Broken	14.1	13. 8 18. 7	5. 3 14. 7	0.6 5.2 24.1 25.8	0.3 4.5 24.1 25.9	0.3 4.1 24.4 25.5	0.6 5.2 24.1 25.8	0.3 4.5 24.1 25.9	0. 3 4. 2 24. 3 25. 5
Chestnut Pea	13.5	12.6	11.9	11.0	11.1	10.8	11.0	11.1	10. 8
	13.5								65. 1
Pea	13. 5 46. 9 9. 1 14. 8	12.6 45.1 9.7 15.8	11.9	11.0	11.1	10.8	11.0	11.1	

Quantity of Lump included is insignificant.
 Includes all steam sizes.
 Some Silt included in Buckwheat No. 4.

AVERAGE SALES REALIZATION

The valuation figures in this study represent value at the breaker or washery reported by the operating companies. The company is requested to "estimate value of the product not sold" and to "exclude

selling expenses" in making its report.

From this it will be seen that when a producing concern sells its output to a separately organized sales company, the value reported will exclude the margin of the sales company and may therefore be somewhat less than the circular price at which the coal is placed on the general market. This fact should be borne in mind in considering the variations in value among different regions, shown in the tables, for the same sizes of coal.

The average sales realization per net ton on breaker shipments was \$4.59 in 1941 compared with \$4.27 in 1940 (see table 19). If local sales, colliery fuel, and washery and dredge coal are included, the average value per net ton of the total 1941 production was \$4.26

compared with \$3.99 in 1940 (see table 20).

Table 19.—Average sales realization per net ton on Pennsylvania anthracite ship-ments from breakers, 1939-41, by regions and sizes

[Value does not include margins of separately incorporated sales companies]

	1						1			
Size	Le	high re	gion	Schu	ylkill	region	Wyo	Wyoming region		
5126	1939	1940	1941	1939	1940	1941	1939	1940	1941	
Lump ¹ and Broken	4. 73 4. 87 4. 95	\$5. 31 5. 27 5. 45 5. 51 4. 15	\$5. 61 5. 79 5. 92 5. 95 4. 53	\$5. 26 4. 95 4. 98 4. 98 3. 69	\$5.82 5.38 5.50 5.46 4.09	\$5.82 5.84 5.94 5.88 4.45	\$4.38 4.67 4.79 4.79 3.60	\$5. 21 5. 30 5. 46 5. 50 4. 15	\$5. 61 5. 85 5. 93 5. 94 4. 52	
Total domestic	4. 69	5. 23	5. 67	4.73	5. 19	5. 61	4. 60	5. 27	5. 72	
Buckwheat No. 1 Buckwheat No. 2 (Rice) Buckwheat No. 3 (Barley)	2. 17 1. 65	3. 16 2. 32 1. 70	3. 36 2. 54 1. 84	2. 84 2. 21 1. 51	3. 16 2. 31 1. 59	3. 34 2. 43 1. 67	2. 92 2. 21 1. 70	3. 19 2. 39 1. 75	3. 40 2. 59 1. 85	
Total steam 2	2. 25	2.37	2. 53	2.10	2. 29	2. 42	2. 35	2. 52	2.67	
Total all sizes	3. 81	4. 18	4. 50	3.64	3. 99	4. 26	3. 95	4.45	4. 82	
		1. H 1		Ī		т	otal—			
Size	Sulli	van C	ounty	<u> </u>			Γ.			

				Total—					
Size		van Co	ounty	Excluding Sullivan County			Including Sullivan County		
Lump ¹ and Broken. Egg. Stove. Chestnut. Pea. Total domestic. Buckwheat No. 1. Buckwheat No. 2 (Rice). Buckwheat No. 3 (Barley). Total steam ² . Total all sizes.	\$4. 03 4. 40 3. 15 3. 93 3. 13 . 96 1. 07	\$4.31 4.29 3.32 4.02 2.51 1.10 	\$4.09 3.69 2.73 3.40 1.45 .73 .95	\$4. 63 4. 73 4. 84 4. 87 3. 65 4. 64 2. 90 2. 20 1. 62 2. 25 3. 85	\$5. 49 5. 32 5. 47 5. 49 4. 13 5. 24 3. 18 2. 35 1. 68 2. 41 4. 27	\$5. 72 5. 84 5. 93 5. 93 4. 50 5. 68 3. 37 2. 52 1. 78 2. 55 4. 59	\$4. 63 4. 73 4. 84 4. 87 3. 65 4. 64 2. 90 2. 20 1. 62 2. 25 3. 85	\$5. 49 5. 32 5. 47 5. 49 4. 13 5. 24 3. 18 2. 35 1. 68 2. 41 4. 27	\$5. 72 5. 84 5. 93 5. 93 4. 50 5. 68 3. 37 2. 52 1. 78 2. 55 4. 59

Quantity of Lump included is insignificant.
 Includes all steam sizes.

Table 20.—Average value per net ton of Pennsylvania anthracite shipments, local sales, colliery fuel, and total production, 1940-41, by regions ¹

[Note that values in this table include washery and dredge coal]

		19	40			1941			
Region	Ship- ments	Local sales	Col- liery fuel	Total produc- tion	Ship- ments	Local sales	Col- liery fuel	Total produc- tion	
Lehigh Schuylkill Wyoming	\$4. 16 3. 67 4. 43	\$4. 76 2. 29 4. 25	\$1.83 1.53 1.06	\$4. 08 3. 55 4. 23	\$4.45 3.85 4.79	\$4. 91 2. 88 4. 60	\$2.07 1.74 1.23	\$4.36 3.74 4.58	
Total, excluding Sullivan County Sullivan County	4. 14 2. 41	3. 71 2. 51	1. 26 1. 10	3. 99 2. 40	4. 41 1. 73	4. 02 2. 88	1. 45 . 84	4. 26 2. 24	
Grand total	4. 14	3. 71	1. 26	3. 99	4. 41	4. 01	1.45	4. 26	

¹ Value given for shipments is value at which coal left possession of producing company and does not include margins of separately incorporated sales companies.

LABOR STATISTICS

The peak year for employment in the Pennsylvania anthracite industry was 1914, when 179,679 men were employed; in 1917, the year of largest output, the number was 154,174. The average number of men employed in 1941 was 88,054, a decrease of 3,259 from the 91,313 employed in 1940 (see tables 21 and 22). The number employed is based upon reports by the operators and includes the

workers from strip-pit and dredge operations.

These statistics do not consider the men and boys working in "bootleg" or illicit coal mining, which has increased in output considerably since its start in the early 1930's. Before 1941, production statistics of the Bureau did not include "bootleg" coal; however, in 1941 many legitimate operators purchased run-of-mine coal from the "bootleggers," prepared it at their breakers for shipment to market, and, in their annual reports to the Bureau, included this purchased coal with the legitimate output. It would be very difficult to obtain employment data for the holes from which this "bootleg" coal was dug. Therefore, in calculating the output per man per day, the tons of "bootleg" purchased were deducted from the total output as reported by the operators, and the resulting legitimate production was then used to calculate the output per man per day. Part of the time of the preparation men in legitimate plants was, of course, required for preparing the illicit product; however, on a per-ton basis this time is very small, and its omission will not detract materially from the validity of the result obtained.

Although there were no major labor disturbances in 1941, several thousand miners in the Schuylkill and Lehigh regions were away from work for about a month because of some dissatisfaction concerning union dues and assessments. The number of man-days lost because of strikes totaled 176,432 and 397,616 in 1940 and 1941, respectively, and the average days lost per man employed in the industry was 1.9

and 4.5 in these respective years (see table 23).

According to the Bureau of Labor Statistics, average weekly earnings in 1941 ranged from a low of \$16.43 in April to a high of \$34.20 in June and were \$27.41 for the year as a whole compared with \$24.95 in 1940. The index of employment (1929 average=100) fluctuated between 48.6 percent in May and 50.6 percent in February and for the year as a whole averaged 2 percent below 1940. The index of pay rolls (1929 average=100) reached a low of 24.3 in April and a high of 51.2 in June and averaged 7.5 percent above 1940.

Table 21.—Men employed and days worked at operations producing Pennsylvania anthracite in 1941, by regions 1 [Includes operations of strip contractors]

			Ave	rage number	of men emple	yed					
Region	τ	Inderground			Surf	асе			Average number of	Man-days of	Average tons per
	Miners and their laborers	Other	Total under- ground	In strip pits	In prepara- tion plant	Other	Total surface	Grand total	days plant operated	labor	man per day
Lehigh: Breaker	5, 958	4, 204	10, 162	1, 566	1, 105 39 8	2, 464 98 20	5, 135 137 28	15, 297 137 28	193 166 142	2, 948, 832 22, 800 3, 982	² 2. 83 ³ 9. 79 12. 01
Total Lehigh	5, 958	4, 204	10, 162	1, 566	1, 152	2, 582	5, 300	15, 462	192	2, 975, 614	2 2. 90
Schuylkill: Breaker Washery Dredge	8, 484	4, 932	13, 416	2, 355	1, 768 123 140	2, 977 716 320	7, 100 839 460	20, 516 839 460	211 172 221	4, 320, 174 144, 153 101, 827	² 3. 19 ³ 14. 27 14. 38
Total Schuylkill	8, 484	4, 932	13, 416	2, 355	2, 031	4, 013	8, 399	21, 815	209	4, 566, 154	2 3, 79
Wyoming: Breaker Washery Dredge		13, 950	41, 546	674 14	2, 488 94 8	5, 776 82 6	8, 938 190 14	50, 484 190 14	204 165 74	10, 323, 894 31, 342 1, 036	2. 72 8 12. 49 5. 74
Total Wyoming	27, 596	13, 950	41, 546	688	2, 590	5, 864	9, 142	50, 688	204	10, 356, 272	2. 75
Total, excluding Sullivan County: Breaker Washery Dredge		23, 086	65, 124	4, 595 14	5, 361 256 156	11, 217 896 346	. 21, 173 1, 166 502	86, 297 1, 166 502	204 170 213	17, 592, 900 198, 295 106, 845	² 2. 86 ⁸ 13. 48 14. 20
TotalSullivan County: Breaker	42, 038 46	23, 086 14	65, 124 60	4, 609	5, 773 10	12, 459 19	22, 841 29	87, 965 89	203 225	17, 898, 040 20, 020	² 3. 04 1. 85
Grand total	42, 084	23, 100	65, 184	4, 609	5, 783	12, 478	22, 870	88, 054	203	17, 918, 060	2 3. 04

Men employed in "bootleg" operations excluded.
 Output per man per day calculated on legitimate tonnages only; "bootleg" purchases excluded.
 Represents washeries for which both production and employment were separately reported.

Table 22.—Men employed at operations producing Pennsylvania anthracite, 1940-41, by counties

[Includes operations of strip contractors]

	Me	en	Gt-	Me	n
County	1940	1941	County	1940	1941
Carbon Columbia Dauphin and Lebanon Lackawanna Luzerne Northumberland Schuylkill	4, 906 500 1, 045 17, 381 43, 086 7, 556 16, 308	5, 058 444 861 15, 153 42, 773 6, 494 16, 940	Sullivan Snyder, Susquehanna, and Wayne Berks, Lancaster, North- ampton, and York 2	182 1 302 2 47 91, 313	124 118 88, 054

Table 23.—Strikes, suspensions, and lock-outs in Pennsylvania anthracite region in 1941

	Lehigh	Schuyl- kill	Wyo- ming	Total, excluding Sullivan County	Sullivan County	Grand total
Total men employed	15, 462 12, 383 237, 701	21, 815 10, 955 46, 268	50, 688 16, 430 113, 647	87, 965 39, 768 397, 616	89	88, 054 39, 768 397, 616
Average days lost— Per man employed Per man on strike	15.4 19.2	2. 1 4. 2	2. 2 6. 9	4.5 10.0		4. 5 10. 0

EQUIPMENT AND METHODS OF MINING

Mechanical loading.—The quantity of coal loaded mechanically underground increased from 12,326,000 net tons in 1940 to 13,442,000 tons in 1941. Hand-loaded tonnage also increased in 1941 over 1940, but upon a percentage basis the gain in mechanically loaded coal was greater than the increase in the hand-loaded anthracite. Details of mechanical loading, hand loading, and stripping are given in tables 24 to 26. Figure 2 illustrates the relative growth of mechanical loading, hand loading, and stripping in the Pennsylvania anthracite region, 1927-41.

TABLE 24.—Relative growth of mechanical loading, hand loading, and stripping in Pennsylvania anthracite mines, 1937-41

[Mechanical loading includes coal handled on pit-car loaders and hand-loaded face conveyors]

		Net tons	_	Index numbers: 1927=100		
Year	Mechani- cal loading under- ground	Stripping	Hand loading	Mechani- cal loading under- ground	Stripping	Hand loading
1937 1938 1939 1940	10, 684, 000 10, 152, 000 11, 774, 000 12, 326, 000 13, 442, 000	5, 696, 090 5, 095, 030 5, 486, 000 6, 353, 000 7, 317, 000	31, 883, 000 27, 990, 000 30, 798, 000 29, 191, 000 30, 435, 000	481 457 530 554 605	265 237 255 295 340	45 39 43 41 43

None in Snyder County in 1940.
 Counties producing dredge coal only.
 None in Lancaster County in 1940.

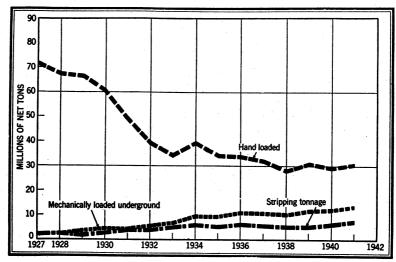


FIGURE 2.—Relative growth of mechanical loading, hand loading, and stripping of Pennsylvania anthracite, 1927-41.

Table 25.—Pennsylvania anthracite loaded mechanically underground, 1937-41

Year	Sci	rapers	Conveyors and pit- car loaders ¹		Total loaded me- chanically	
	Number of units	Net tons loaded	Number of units	Net tons handled	Number of units	Net tons handled
1937 1938 1939 1940	539 545 535 2 547 2 505	2, 873, 289 2, 589, 954 3, 088, 956 2, 983, 792 2, 673, 983	2 1, 855 3 1, 831 1, 997 2, 189 2, 432	² 7, 810, 548 ² 7, 561, 715 8, 684, 877 9, 342, 208 10, 768, 004	2, 394 2, 376 2, 532 2, 736 2, 937	10, 683, 83 10, 151, 66 11, 773, 83 12, 326, 00 13, 441, 98

¹ Includes duckbills and other self-loading conveyors, which account for only a small part of the total.
² Includes mobile loaders.

Table 26.—Pennsylvania anthracite handled by mobile loaders and scrapers and by all types of conveyors in 1941, by fields, in net tons

Field	Scraper loaders	Pit-car loaders	Hand- loaded face con- veyors, all types ¹	Total me- chanically loaded under- ground
Northern Eastern Middle Western Middle Southern	2, 295, 015	228, 350	8, 377, 962	10, 901, 327
	127, 505	47, 213	581, 844	756, 562
	248, 103	106, 795	1, 326, 095	1, 680, 993
	3, 360	79, 745	20, 000	103, 105
	2, 673, 983	462, 103	10, 305, 901	13, 441, 987

¹ Shaker chutes, etc., including those equipped with duckbills.

Cutting machines.—The quantity cut by machines increased from 1,816,483 net tons in 1940 to 1,855,422 in 1941. Details are shown in table 27.

Table 27.—Pennsylvania anthracite cut by machines, 1940-41, by regions

		1940			1941	
Region	Cutting	machines	Net tons	Cutting	machines	Net tons
	Permis- sible	All other types	cut by machines	Permis- sible	All other types	cut by machines
Lehigh						
Schuylkill	185	65	1, 816, 483	161	61	1, 855, 422
Total, excluding Sullivan CountySullivan County	185	65	1, 816, 483	161	61	1, 855, 422
Grand total	185	65	1, 816, 483	161	61	1, 855, 422

Strip-pit operations.—Strip-pit tonnage increased from 6,353,000 net tons in 1940 to 7,317,000 in 1941. In 1941 more than half of the stripping tonnage was recovered from pits in the Schuylkill region, and the Lehigh and Wyoming regions followed in order of output. For details of anthracite mined from strip pits see table 28. Figure 3 illustrates graphically the production of anthracite from strip pits, by regions, 1927-41.

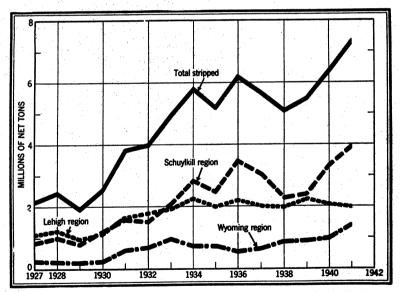


FIGURE 3.—Pennsylvania anthracite mined from strip pits, by regions, 1927-41.

TABLE 28.—Relative growth of	Pennsylvania anthracite mined from strip pits, 1915,
1920,	1925, 1930, and 1938-41

	Number of	Net tons i		Percent of fresh-mined	Number of	Average
Year	shovels in use 1	Total	Average per shovel	total that was stripped	men employed	number of days worked
1915 1920 1925 1930 1930 1938 1938 1939	57 96 97 108 331 346 348	1, 121, 603 2, 054, 441 1, 578, 478 2, 526, 288 5, 095, 341 5, 486, 479 6, 352, 700	19, 677 21, 400 16, 273 23, 484 15, 394 15, 857 18, 255	(2) 2. 5 2. 7 3. 7 11. 8 11. 4 13. 3	(2) (2) (2) (2) (2) 3,642 3,924 4,114	(2) (2) (2) (2) (2) 186 156 190
1941: Lehigh region Schuylkill region Wyoming region	(2) (2) (2)	1, 983, 351 3, 938, 596 1, 394, 627	(2) (2) (2)	23. 9 26. 6 5. 0	1, 566 2, 355 688	192 190 188
Total, 1941	(2)	7, 316, 574	(2)	14.3	4,609	191

¹ Certain equipment reported by stripping contractors may have been counted twice when moved from one small job to another during the year. The amount of such double counting is unknown but presumably s not great.

2 Data not available.

"RIVER" OR "DREDGE" COAL 2

Review of the river-coal industry.—The rivers and creeks that traverse the anthracite fields of Pennsylvania have been dredged for "river" or "dredge" coal since about 1890. The principal rivers draining the fields, where dredging is being carried on, are the Susquehanna, Schuylkill, and Lehigh. Several creeks—the Shamokin, Mahanoy, Wiconisco, and Swatara—also are productive sources of river or creek coal. Operations along the streams cover a wide territory, and along the Susquehanna alone dredges are recovering coal for about 160 miles.

Early in the history of the Pennsylvania anthracite industry the small sizes of coal were not used as extensively as they are today. Grate, Egg, Stove, and Chestnut were the principal sizes shipped to market and used by the local trade. Pea and smaller sizes were not considered to have any great value and generally were discarded on culm banks with other refuse from cleaning, or they were washed into the rivers and creeks coursing through the anthracite fields. In recent years, with modern preparation methods and increasing demand for small sizes, the anthracite industry has recovered virtually all coal larger than Barley (1/16 by 1/32 inch) and a substantial percentage of the still smaller sizes. Consequently, not nearly as much coal is deposited in the streams today as in the early days of the industry.

As stated, river coal was first dredged in the 1890's, but the earliest production reports received by the Geological Survey were for 1909. From 1909 to 1940, inclusive, dredge operators reported—to the Geological Survey and subsequently to the Bureau of Mines-the recovery of 17,624,533 net tons. Although this is only a small fraction of the total output of anthracite, it is important from the standpoint of conservation of natural resources. In 1940 this source

supplied 942,944 tons of anthracite valued at \$1,097,000.

² For detailed information on "river" or "dredge" coal, reader is referred to Corgan, Joseph A., Dredging Pennsylvania Anthracite: Bureau of Mines Inf. Circ. 7213, 1942, 25 pp.

Early river-coal operations.—The first commercial operations to recover river anthracite were begun in the Susquehanna River in the 1890's, when sand and gravel producers working the Susquehanna recovered coal as a byproduct. It is quite likely that private individuals living along the rivers and creeks recovered by hand some of the large sizes, such as Chestnut and Pea, before 1890 for use in their homes. At that time heating and power plants were not equipped, as they are today, to burn the fine coal taken from the streams, and there was little demand for the product. When it became known that the dredged product could be used advantageously, the river coal became more popular, and industries and utilities began using it to generate steam.

Early preparation methods and sizes produced.—To show more clearly how anthracite came into the rivers and creeks, it is well to give a short résumé of the early methods used by the anthracite

industry for cleaning and preparing the product for market.

Anthracite was first sold as run-of-mine, but it was not long before the producers realized that the coal was better-received by the public when it was sized and the small coal taken out. With the advent of breakers and shaking screens, the coal was sized more systematically; anything smaller than Stove was not considered marketable and was piled in culm banks outside the mine. These culm banks contained much good coal and over a period of years rainstorms washed part of the banks into the streams, adding to the river coal. The jigging or wet method of cleaning anthracite for market was introduced in the 1870's. The water used in wet cleaning carried large quantities of the smaller coal to creeks and rivers. In time, more efficient ways of using water to clean coal were devised, and there is no resemblance between the quantity of culm discharged in waste water now and that of 50 or even 25 years ago.

Statistics of production before 1890, by sizes, are not available for the entire anthracite region. Tables 29 and 30 reveal that in 1879 less than 1 percent of the coal smaller than Pea size was prepared for market. As shown in tables 29, 30, and 31, recovery of small sizes and a decline in percentage of Lump, Steamer, and Broken coal were

underway in 1889.

Table 29.—Sizes of Pennsylvania anthracite made by a producer in the Lehigh region, 1879 and 1889, in percent of total

Size	1879	1889	Size	1879	1889
Lump and Steamer	15. 8 19. 4 15. 9 15. 8	8. 91 16. 69 13. 13 13. 35	Chestnut	17. 4 15. 2 . 5 100. 0	15. 58 14. 27 18. 07

Table 32 gives statistics of sizes for the anthracite region in selected years. The definite trend from larger to smaller sizes is evident. Lump and Broken coal, which in 1890 constituted 25 percent of total shipments, were negligible in 1940, representing only 0.3 percent of the total product, whereas Buckwheat No. 1 and smaller, comprising

² Sisler, James D., Fraser, Thomas, and Ashmead, Dever C., Anthracite, Culm, and Silt: Pennsylvania Geol. Survey, 4th ser., Bull. M-12, 1928, p. 168.

10 percent of the shipments in 1890, amounted to 36 percent of the shipments in 1940. It is apparent from these tables that sizes considered unmarketable years ago are now treated as valuable and comprise a large percentage of the anthracite shipped.

Table 30.—Sizes of Pennsylvania anthracite made by a producer in the Wyoming region, 1879 and 1889, in percent of total

	Size	1879	1889	Size	1879	1889
Broke Egg.		11. 13 16. 11 14. 06	11.00 11.00 15.00	Chestnut Pea Buckwheat and small coals	20.32 7.47 .27	21. 00 9. 00 8. 00
Stove		30.64	25. 00	Total for the producer	100.00	100.00

Table 31.—Sizes of Pennsylvania anthracite produced in the Schuylkill region, 1883 and 1889, in percent of total

Size	1883	1889	Size	1883	1889
Lump and Steamer Broken	14.3 14.7 15.5	9. 4 14. 5 13. 6	Chestnut Pea Buckwheat	11. 6 14. 8 5. 0	12. 8 18. 3 8. 2
StoveSmall stove	19. 0 5. 1	14. 8 8. 4	Total for Schuylkill region	100.0	100. 0

Table 32.—Shipments of Pennsylvania anthracite, 1890, 1901, 1910, 1920, 1930, and 1940, by sizes

[Excludes Sullivan County and dredge production; includes washery product] -

1890)	1901		1910)
Net tons	Percent of total	Net tons	Percent of total	Net tons	Percent of total
4, 825, 276 5, 216, 032 5, 246, 274 9, 345, 896 6, 899, 761 5, 268, 246 3, 303, 543 904, 286 41, 009, 314	11. 8 12. 7 12. 8 22. 8 16. 8 12. 8 8. 1 2. 2 100. 0	2, 450, 059 4, 954, 414 7, 828, 050 11, 829, 392 11, 480, 616 8, 462, 662 8, 841, 966 4, 149, 674	4. 1 8. 3 13. 1 19. 7 19. 1 14. 1 14. 7 6. 9	809, 499 3, 745, 904 8, 844, 518 13, 404, 003 15, 964, 918 8, 716, 780 10, 600, 271 10, 931, 244 73, 017, 137	1. 1 5. 1 12. 1 18. 4 21. 9 11. 9 14. 5
1920)	1930		1940	
Net tons	Percent of total	Net tons	Percent of total	Net tons	Percent of total
37, 323 3, 676, 531 11, 092, 039 13, 800, 437 19, 310, 694 6, 051, 116 10, 254, 003 11, 706, 173	0. 1 4. 8 14. 6 18. 2 25. 4 8. 0 13. 5 15. 4	290, 843 6, 305, 322 15, 418, 753 15, 463, 954 4, 992, 326 8, 566, 726 9, 752, 646 60, 790, 570	0. 5 10. 4 25. 4 25. 4 8. 2 14. 1 16. 0	127, 966 1, 963, 954 10, 533, 860 11, 490, 689 4, 947, 184 6, 727, 098 9, 742, 639	0. 3 4. 3 23. 1 25. 2 10. 9 14. 8 21. 4
	Net tons 4, 825, 276 5, 216, 032 5, 246, 274 9, 345, 896 6, 899, 761 5, 268, 246 3, 303, 543 904, 286 41, 009, 314 1920 Net tons 37, 323 3, 676, 531 11, 092, 039 13, 800, 437 19, 310, 694 6, 051, 116 10, 254, 003 11, 706, 173	Net tons	Net tons Percent of total Net tons 4, 825, 276 11. 8 2, 450, 059 5, 216, 032 12. 7 4, 934, 414 5, 246, 274 12. 8 7, 828, 050 9, 345, 896 22. 8 11, 829, 392 6, 899, 761 16. 8 11, 480, 616 5, 268, 246 12. 8 8, 462, 662 3, 303, 543 8. 1 8, 841, 966 904, 286 2. 2 4, 149, 674 41, 009, 314 100. 0 59, 996, 833 1920 1930 Net tons Percent of total Net tons 37, 323 0. 1 3, 676, 531 4. 8 11, 992, 039 14. 6 6, 305, 322 15, 418, 753 19, 310, 694 25. 4 6, 051, 116 8. 0 4, 992, 326 10, 254, 003 13. 5 8, 566, 726 11, 706, 173 15. 4 9, 752, 646	Net tons Percent of total Net tons Percent of total 4, 825, 276 11. 8 2, 450, 059 4. 1 5, 216, 032 12. 7 4, 954, 414 8. 3 5, 246, 274 12. 8 7, 828, 050 13. 1 9, 345, 896 22. 8 11, 829, 392 19. 7 6, 899, 761 16. 8 11, 480, 616 19. 1 5, 268, 246 12. 8 8, 462, 662 14. 1 3, 303, 543 8. 1 8, 841, 966 14. 7 904, 286 2. 2 4, 149, 674 6. 9 41, 009, 314 100. 0 59, 996, 833 100. 0 1930 Net tons Percent of total Net tons Percent of total 37, 323 0. 1 290, 843 0. 5 11, 092, 039 14. 6 6, 305, 322 10. 4 13, 800, 437 18. 2 15, 418, 763 25. 4 19, 310, 694 25. 4 15, 463, 954 25. 4 6, 051, 116 8. 0 4, 992, 326 8. 2 <td>Net tons Percent of total Net tons Percent of total Net tons 4, 825, 276 11. 8 2, 450, 059 4. 1 809, 499 5, 216, 032 12. 7 4, 954, 414 8. 3 3, 745, 904 5, 246, 274 12. 8 7, 828, 050 13. 1 8, 844, 518 9, 345, 896 22. 8 11, 829, 392 19. 7 13, 404, 003 6, 899, 761 16. 8 11, 480, 616 19. 1 15, 964, 918 5, 268, 246 12. 8 8, 462, 662 14. 1 8, 716, 780 3, 303, 543 8. 1 8, 841, 966 14. 7 10, 609, 271 904, 286 2. 2 4, 149, 674 6. 9 10, 931, 244 41, 009, 314 100. 0 59, 996, 833 100. 0 73, 017, 137 1920 1930 1930 1940 Net tons Percent of total Net tons Percent of total Net tons 1930, 437 4. 8 1, 963, 954 1, 963, 954 11, 992, 039 14. 6 6, 305, 322 <t< td=""></t<></td>	Net tons Percent of total Net tons Percent of total Net tons 4, 825, 276 11. 8 2, 450, 059 4. 1 809, 499 5, 216, 032 12. 7 4, 954, 414 8. 3 3, 745, 904 5, 246, 274 12. 8 7, 828, 050 13. 1 8, 844, 518 9, 345, 896 22. 8 11, 829, 392 19. 7 13, 404, 003 6, 899, 761 16. 8 11, 480, 616 19. 1 15, 964, 918 5, 268, 246 12. 8 8, 462, 662 14. 1 8, 716, 780 3, 303, 543 8. 1 8, 841, 966 14. 7 10, 609, 271 904, 286 2. 2 4, 149, 674 6. 9 10, 931, 244 41, 009, 314 100. 0 59, 996, 833 100. 0 73, 017, 137 1920 1930 1930 1940 Net tons Percent of total Net tons Percent of total Net tons 1930, 437 4. 8 1, 963, 954 1, 963, 954 11, 992, 039 14. 6 6, 305, 322 <t< td=""></t<>

Production.—River-coal statistics were published first by the Geological Survey in 1909, when the output reported by dredge-coal operators was 107,788 net tons. In 1940 production as reported to the Bureau of Mines was 942,944 tons, with an indicated value of \$1,097,000. The total output reported from 1909 to 1940 to the Geological Survey and subsequently to the Bureau of Mines was 17,624,533 net tons. Statistics for some of the early years may not have been complete, because many of the dredge operations were small and the operators could not be reached easily by correspondence.

As shown in table 33, the first year in which statistics were reported by rivers (including tributaries) was 1923, when the total production was 956,368 net tons valued at \$811,065. It is to be noted that in 1923, as in every succeeding year to date, the output from the Susquehanna River and its tributaries was far greater than that of the

Lehigh or Schuylkill Rivers.

Table 33.—Pennsylvania anthracite produced by dredges, 1909-40, by rivers (including tributaries)

		Net	tons	1 1 1 1 1 1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	Va	due
Year	Lehigh River	Schuylkill River	Susque- hanna River	Total	Total	Average per ton
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921	(1)	(1)	(1)	107, 788 102, 853 106, 005 96, 009 150, 064 115, 257 138, 421 160, 507 170, 672 282, 930 693, 093 740, 453 623, 329 904, 108	\$100, 744 110, 831 206, 754 366, 565 368, 746 862, 296 650, 654 989, 709	(1) \$0. 73 . 69 1. 21 1. 30 1. 25 1. 16 1. 04
Total 1909-22 2	(1)	(1)	(1)	4, 391, 489	2 4, 156, 299	2 1. 12
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1933 1934 1935 1936 1937 1938 1937	80, 301 99, 614 88, 544 85, 177 89, 304 87, 241 60, 219 11, 083 33, 014 42, 091 51, 083 91, 346 78, 578 63, 327 1 95, 065 123, 452 62, 134	97, 254 74, 359 173, 639 131, 654 127, 705 157, 449 133, 720 138, 236 90, 855 106, 990 106, 004 100, 873 73, 326 31, 669 (4) (67, 539	753, 022 670, 734 742, 456 724, 566 758, 935 696, 648 495, 983 444, 881 331, 960 881, 837 459, 961 438, 563 451, 688 665, 409 447, 574 863, 997	956, 368 825, 394 1, 015, 708 914, 764 971, 817 943, 401 716, 944 643, 750 480, 050 480, 050 588, 950 652, 180 590, 487 760, 474 571, 024 703, 880 942, 944	811, 065 681, 181 929, 292 828, 398 794, 807 821, 530 626, 187 538, 682 445, 799 442, 153 636, 038 517, 304 581, 679 842, 052 746, 000 1, 007, 000	. 85 . 83 . 91 . 91 . 82 . 87 . 87 . 83 . 93 . 88 . 98 . 1. 00 1. 11 1. 00 1. 10
Total 1923-40	1 1, 385, 529	1, 610, 272	10, 237, 243	13, 233, 044	12, 299, 014	. 93
Grand total	(1)	(1)	(1)	17, 624, 533	(1)	(1)

¹ Data not available.

The average value per ton of the river product reached a high of \$1.30 in 1918 and in 1940 was reported to the Bureau of Mines as

Figures for value cover 1915-22.
 Schuylkill included with Lehigh in 1937, 1938, and 1940.

\$1.16. These values are low compared with the value per ton of all

Pennsylvania anthracite, which averaged \$3.99 in 1940.

The average output per man per day in river-coal operations is much higher than in the anthracite industry proper; in 1940 it was 12.60 tons compared with 3.02 tons for the entire Pennsylvania anthracite industry.

According to Geological Survey records, of the total shipments of river coal in 1920, Buckwheat No. 3 and larger comprised 59.5 percent, whereas Buckwheat No. 4 and smaller represented 40.5 percent. In 1940 Buckwheat No. 3 and larger decreased to 46.3 percent of the shipped coal, and Buckwheat No. 4 and smaller increased to 53.7

percent.

Quality and uses.—The quality of river coal depends to a great extent on the preparation it receives after it is taken from the river. A large part of the river-coal output is not cleaned after the initial screening and washing, and it may contain some sand and gravel and be irregular in size, whereas the coal prepared over concentrating tables is clean and free from sand and gravel. Table 34 shows analyses of a combination of Barley and Buckwheat No. 4 coal

dredged from the Susquehanna River near Harrisburg.

In the early days of the dredge industry, the sizes recovered were much larger than the coal taken from the rivers and creeks today; it was large enough so that considerable quantities could be used for domestic heating. As the methods of preparing coal at the breakers in the anthracite region were improved and new markets for the small sizes discovered, the coal finding its way into the rivers became smaller and smaller. In 1940, according to reports received by the Bureau of Mines, 83 percent of the river coal shipped was Buckwheat No. 3 or smaller. Domestic heating plants cannot burn such small coal without special equipment, and today virtually all of the river coal is sold for utility or industrial purposes.

Table 34.—Proximate analyses of anthracite dredged from Susquehanna River, in percent

	Air-dried; not	tabled]			
Sample	Moisture	Volatile matter	Fixed carbon	Ash	Total
11	3. 6 3. 3 3. 5	6. 6 6. 9 6. 7	68. 8 71. 4 73. 9	21. 0 18. 4 15. 9	100. 0 100. 0 100. 0

¹ From river barges about 15 miles south of Harrisburg.

Table 35.—Pennyslvania anthracite produced by dredges in 1941, by rivers

River (including tributaries)	Net tons	Value		
	Net tons	Total	Average	
Lehigh Schuylkill Susquebanna	47, 838 396, 522 1, 073, 203 1, 517, 563	\$57, 217 489, 187 1, 293, 380 1, 839, 784	\$1. 20 1. 23 1. 21	

From river barges at Harrisburg.
 From river barges three-fourths of a mile north of Harrisburg.

Operations in 1941.—In 1941 dredge operators reported a production of 1,517,563 net tons with a value of \$1,839,784. For detailed statistics by rivers, see table 35.

FOREIGN TRADE 4

Data on imports and exports of anthracite in 1941 may be published for the first 9 months only. During this January-September period, exports totaled 2,416,104 net tons, whereas in the full calendar year 1940 exports were 2,667,632 tons. Imports in the 9-month period of 1941 were 64,267 tons and in the entire year 1940 135,436 tons. It will be noted that in each year a small proportion of the imported coal came from Canada; this tonnage, no doubt, represents re-exports. Details of imports and exports are shown in tables 36 and 37.

Table 36.—Anthracite imported for consumption in the United States, 1940-41, by countries and customs districts, in net tons

	1940	1941 (Jan Sept.)		1940	1941 (Jan.– Sept.)
CanadaUnited Kingdom	3, 026 132, 410 135, 436	948 63, 319 64, 267	Customs district—Con. Dakota Maine and New Hampshire Massachusetts Montana and Idaho	16 3, 026 101, 200	903 39, 210 45
Customs district			Rhode Island	28, 280	6, 729
AlaskaConnecticut	2, 914	17, 380		135, 436	64, 267

Table 37.—Anthracite exported from the United States, 1937-41

Year	Net tons	Value	Year	Net tons	Value
1987	1, 914, 173 1, 908, 911 2, 590, 000	\$14, 795, 748 14, 634, 504 19, 919, 651	1940 1941 (JanSept.)	2, 667, 632 2, 416, 104	\$21, 210, 499 19, 657, 920

Canadian market.—Coal and lignite production in Canada in 1941 totaled 18,222,107 net tons (a 3.7-percent increase over 1940).

Coal available for consumption in Canada (production, plus imports, minus exports) totaled 39,499,519 tons and exceeded the 1918 record by 4,078,179 tons or 12 percent. Imports of bituminous coal increased 32 percent over 1940 and 3.4 percent over 1918. The quantity of anthracite imported was 0.6 percent less than in 1940.

Outstanding features of the coal and coke industry and foreign trade of Canada in 1940 and 1941 are shown in table 38.

brade of Canada in 1940 and 1941 are shown in babie 50.

Imports of coal in 1941 increased 24 percent over 1940 and were 20

percent greater than Canadian coal production.

Nova Scotia mines, which supplied 40 percent of the coal and lignite produced in 1941, operated at approximately 82 percent of capacity; and Alberta, which produced 38 percent of Dominion output, operated at about 83 percent of capacity.

⁴ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Under normal conditions a large part of Nova Scotia coal production reaches its markets by steamers up the St. Lawrence River. war necessitated requisitioning these vessels for trans-Atlantic trade and thus increased the burden on the Canadian National Railway.

Table 38.—Coal and coke industry and foreign trade of Canada, 1940-41.1 in thousands of net tons

	Coal									
	Anth	racite	Bituminous and subbituminous		Lignite		Total		Coke from coal	
and the second	1940	1941	1940	1941	1940	1941	1940	1941	1940	1941
ProductionImports	3, 965	3, 941	13, 932 13, 578 498	14, 188 17, 867 525	3, 635 3 7	4, 034 1 6	17, 567 17, 546 505	18, 222 21, 809 531	3, 015 719 35	3, 150 614 40
Available for consumption	3, 965	3, 941	27, 012	31, 530	3, 631	4, 029	34, 608	39, 500	3, 699	3, 724

¹ Quarterly Coal and Coke Statistics for Canada, 1940 and 1941 preliminary.

WORLD PRODUCTION

Statistics on world production of anthracite are incomplete because of unsettled conditions in foreign countries. Available data for 1936 to 1941 are shown in table 39.

Table 39.—World production of anthracite, 1936-41, in metric tons [Compiled by B. B. Waldbauer]

Country	1936	1937	1938	1939	1940	1941
Belgium	6, 077, 907	6, 694, 049	6, 874, 520	(1)	(1)	(I)
Bulgaria		2, 542	4,000	6,038	8,000	l à
China	(2)	(1)	(1)	(1)	(1)	闪
Chosen	1, 051, 853	1, 101, 500	1, 664, 000	2, 064, 000	is	ìή
France		(1)	(1)	(1)	(1)	首
Germany		5, 627, 000	(i)	Ìί	is in	й
Germany Indochina	2, 150, 654	2, 264, 978	2, 289, 832	2, 534, 000	2, 400, 000	(i)
Irish Free State	96, 742	106, 651	92, 157	90, 455	74, 170	讨
Italy	79, 972	95, 060	132, 197	100,000	(1)	Ìί
Italy Japan ³	(2)	(1)	(1)	(1)	(1)	(1)
Morocco, French	49, 388	107, 150	123, 200	115,600	4 143, 000	(1)
Peru		2, 918	1,500	3, 514	4, 500	5,000
Portugal	207, 890	241, 163	281, 740	294, 081	286, 854	(1)
Rumania	3,708	3, 646	3, 266	(1)	(1)	(1)
Spain Switzerland	309, 930	407, 838	496, 000	666,000	1, 098, 050	5 533, 000
Switzerland	3,000	4,000	3,000	2,500	6 7, 000	(1)
U. S. S. R.:	}.	,	1			, ,
Asiatic	410,000	(1)	(1)	(1)	(1)	(1)
European	28, 100, 000	(1)	(1)	(1)	(1)	(1)
United Kingdom	6, 629, 955	6, 437, 465	6, 378, 904	(1)	(1)	(1)
United States	49, 513, 463	47, 043, 119	41, 820, 115	46, 708, 319	46, 705, 836	51, 136, 164
World total	113, 733, 463	(1)	(1)	(1)	(1)	(1)
Total, exclusive of	1 / /	''	`'	.,	''	
United States	64, 220, 000	(1)	(1)	(1)	(1)	(1)

Data not available.

Estimate included in total.

Anthracite output of Japan said to average about 225,000 tons a year. Production figures not available.

4 Production of Djerada Basin only.

4 January to June, inclusive.

5 Estimated.

COKE AND BYPRODUCTS

By ROBERT H. RIDGWAY, J. A. DE CARLO, AND M. M. OTERO

SUMMARY OUTLINE

	Page	Coke and coke breeze—Continued.	Page
Summary	943	Consumption of coke	970
Government control measures	945	Furnace, foundry, domestic, and other coke.	971
Salient statistics	947	Consumption of foundry coke	973
Statistical trends	949	Stocks of coke and coking coal	975
Scope of report		Value and price	
Coke and coke breeze		Shipments by rail, water, and truck	980
Monthly and weekly production	950	Distribution of byproduct and beehive coke.	980
Production by furnace and nonfurnace		Exports and imports	987
plants	952	World production	988
Production by States and districts		Coke-oven byproducts	989
Number and type of ovens		Summary of byproducts	989
Capacity of byproduct plants		Coke-oven gas	. 993
Quantity and cost of coal charged		Tar	
Preparation and source of coal		Ammonia	
Yield of coke per ton of coal		Naphthalene	997
Sources of coking coals		Byproduct-coke ovens owned by city-gas com-	
Coke breeze	969	panies	997

SUMMARY

Responding to the demands of the defense program, production of coke in 1941 exceeded all previous records. Output from byproduct ovens—58,482,422 net tons (see table 1)—was the highest on record, and that from beehive ovens—6,704,156 tons—was more than double

the quantity produced in 1940.

The total output from byproduct ovens (see table 2) exceeded by 4,468,113 tons the previous maximum of 54,014,309 tons established in 1940 and represented an 8-percent increase. Impelled by the need for more coke in the iron and steel industry, beehive-coke production rose from 3,057,825 tons in 1940 to 6,704,156 tons in 1941, an increase of 3,646,331 net tons or about 119 percent. (See fig. 1.)

The dominance of byproduct ovens was again emphasized, for even during a year of peak activity in the steel industry they contributed 90 percent of all coke consumed and the beehive ovens 10 percent. Byproduct ovens operated at 92 percent of estimated

capacity for the year compared with 86 percent in 1940.

The value of sales of coke, breeze, tar, and other byproducts in 1941 totaled \$536,147,279 and exceeded the 1940 total of \$442,282,951 by

\$93,864,328, an increase of 21 percent.

Prices of coke per net ton sold by the producers increased sharply over 1940. Average receipts per ton of coke sold by the producers were: Furnace coke, \$5.63, an increase of \$1.23 over 1940 (28 percent); foundry coke, \$9.35, exceeded the 1940 figure by \$1.07; coke used in the manufacture of water gas, \$6.74 compared with \$5.99 for 1940; and domestic coke, \$6.93, an increase of \$0.93 over 1940. Coke used for other industrial purposes, at \$6.38, showed an increase of \$0.96.

Coke screenings or breeze produced in 1941 totaled 4,554,513 tons and surpassed the 1940 production by 389,060 tons. The increase was accompanied by an increase in average receipts, as the \$2.35 realized per ton was \$0.11 higher than the amount received in 1940.

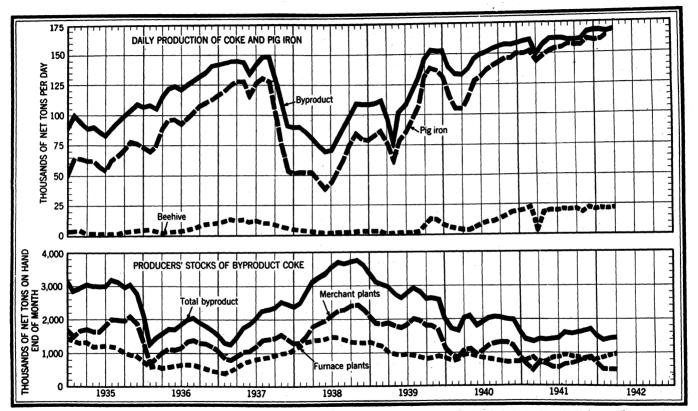


FIGURE 1.—Average daily production of beehive and byproduct coke and pig iron; and producers' stocks of byproduct coke, 1935-42, by months.

According to the principal uses to which it is put, coke may be classified as (1) blast-furnace coke; (2) foundry coke; (3) domestic coke; (4) coke for all other industrial uses, including water-gas coke. Coke used in blast furnaces totaled 50,454,325 net tons, an all-time high, compared with 42,483,624 net tons in 1940, an increase of 7,970,701 tons (19 percent). Coke sold for domestic purposes dropped 1,548,054 tons in 1941—6,682,959 tons against 8,231,013 tons in 1940—and emphasized the demand by the iron and steel industry. Sales of foundry coke increased sharply; 1941 sales of 2,846,459 tons exceeded the 1940 figure by 756,497 tons (36 percent). Coke sold for other purposes, including all other industrial uses, totaled 5,390,123 tons.

The consumption of coke in 1941 was the highest ever recorded—

65,101,401 tons, or 8,075,155 tons above 1940.

The increased production of byproduct coke substantially increased the output of the major byproducts gas, tar, light oil, and ammonia. The average yield of each of the principal byproducts recovered per ton of coal carbonized declined a little from 1940, owing to shorter coking time. The unit prices received for the coke byproducts varied only slightly from those of 1940. The value of the coke byproducts produced was \$158.809,184.

The total output of gas from byproduct ovens was 892,819,811 M cubic feet compared with 833,761,720 M cubic feet in 1940. Total tar produced amounted to 704,149,468 gallons compared with 673,286,517 gallons in 1940. Ammonium sulfate or equivalent showed a marked increase in production—1,741,503,884 pounds against 1,664,217,195 pounds in 1940. The output of crude light oil in 1941 surpassed the

215,213,667 gallons recovered in 1940.

Tables 1 and 2 present the principal statistical facts of the coke industry in 1941.

GOVERNMENT CONTROL MEASURES

During the calendar year 1941, activities of the Office of Production Management (now the War Production Board) relative to coke consisted in approving projects for new byproduct-coke plants necessary to supply blast-furnace coke for the expanded program of iron production for the iron and steel industries. In all, 443 new byproduct ovens were put into operation in 1941. Of these, 171 were constructed for merchant plants, 235 for iron and steel producers, and 37 for gas producers.

Maximum prices for byproduct foundry and byproduct blastfurnace coke were established in 1941 by the Office of Price Administration in Price Schedule 29, published September 20, 1941, in the Federal Register (No. 184, vol. 6, title 32, pp. 4821–4822). The prices became effective on and after October 1, 1941, and under general provisions (a) in appendix A of Price Schedule 29, the maximum prices of byproduct foundry coke are given for the various established coke markets. Ceiling prices for byproduct foundry coke were established as follows:

eation of plant:					plan (pen
Alabama		عادتات		 	
Ashland, Ky					 _ :
Cmcago, m	_ =				
Detroit, Mich				 	
Aearny, N. J.				 	
Бипаю, N. Y			24 2 2 2		
Ironton, Ohio				 	
ramesyme, Omo					
Portsmouth, Ohio				 	
Erie, Pa				 	
Philadelphia, Pa				 	
Chattanooga, Tenn	 -			 	
Fairmont, W. Va				 	
Milwaukee, Wis				 	

However, the complexity of the price structure was recognized; several exceptions to the general provisions were made and are shown in section (b) of appendix A. Amendment 1 of Price Schedule 29 was issued February 2, 1942, effective February 7, 1942, to describe the areas governed by specific oven prices so that they would conform with the industry's established practice; it did not affect the prices in Schedule 29. This amendment appeared in the February 4, 1942, issue of the Federal Register, (No. 24, vol. 7, title 32, p. 721). Appendix B of Price Schedule 29 outlines the maximum prices govern-

ing byproduct blast-furnace coke.

With only partial control of coke prices in effect, pressure was brought to bear upon the iron and steel industry by the rise in price of beehive-oven blast-furnace coke, which resulted in a thorough survey of the beehive-coke industry. As a result of study of the relationship between price and available supply of beehive coke, the Office of Price Administration in 1941 issued Price Schedule 77. which appeared in the Federal Register (No. 18, vol. 7, title 32, pp. 545-546) issued January 27, 1942, and effective on and after January This price schedule established the maximum prices for beehive-oven furnace coke produced in Pennsylvania. Over 88 percent of the entire beehive-coke output was produced in Pennsylvania during the past year. Maximum prices on beehive coke other than Pennsylvania beehive blast-furnace coke were established by Maximum Price Schedule 121, effective May 18, 1942, which appeared in the Federal Register (Nos. 85-105, vol. 7, title 32, pp. 3237-3989 and 4483).

The activities of the Office of Production Management in 1941 with regard to coke byproducts centered on the available supply of and the requirements for the essential war products derived therefrom. The first control measure that became effective in 1941 concerning the supply and distribution of toluol was shown in the Federal Register (No. 171, vol. 6, title 32, pp. 4532–4533), issued and effective August 28, 1941; it related to conservation of supplies and directed distribution. Amendment 1, shown December 31, 1941, in the Federal Register (No. 253, vol. 6, title 32, p. 6853) placed further restrictions on

uses, allocated supply, and extended the order indefinitely.

Phenol was another byproduct on which control measures were issued. Deliveries and acceptance were placed under the Director

of Priorities and appeared on September 3, 1941, in the Federal Register (No. 171, vol. 6, title 32, p. 4527), and the order was effective as of August 30, 1941. Amendment 1, issued and effective November 10, 1941, was shown in the Federal Register (No. 200, vol. 6, title 32, p. 5730).

Restrictions on the export of a large number of materials derived from the byproducts obtained from coke ovens became effective in 1941. The President of the United States, by proclamation, placed restrictions on the exportation of many coal-tar derivatives. The complete text of the proclamation appeared April 1, 1941, in the

Federal Register (No. 63, vol. 6, title 32, p. 1703).

The necessity for controlling exports of important and essential materials derived from coke byproducts resulted in the issuance of Export-Control Schedules 1 and 2 by the Director of Export Control. Schedule 1, issued March 15, 1941, and effective April 15, 1941, was printed in the March 21, 1941, issue of the Federal Register (No. 56, vol. 6, title 32, ch. 8, p. 1540). Schedule 2, issued April 1, 1941, effective April 15, 1941, appeared in the April 8, 1941, issue of the Federal Register (No. 68, vol. 6, title 32, p. 1815).

Table 1.—Salient statistics of the coke industry in 1941

	Byproduct	Beehive	Total
Coke produced—			
At merchant plants:			
Quantitynet tons_			13, 494, 509
Value	\$96, 343, 846		\$96, 343, 846
At furnace plants:	44 007 010		44 000 040
Quantitynet tons	44, 987, 913		44, 987, 913
v anue	\$220, 133, 383		\$220, 133, 385
Total:			
Quantitynet tons	58, 482, 422	6, 704, 156	65, 186, 578
Value	\$316, 477, 231	\$36, 490, 006	\$352, 967, 237
Screenings or breeze produced:	4010, 111, 201	400, 200, 000	4002, 001, 201
Quantity net tons	4, 432, 864	121, 649	4, 554, 513
Value	\$9, 530, 433	\$131,570	\$9, 662, 003
Value Coal charged into ovens:			
Quantitynet tons	82, 608, 837	10, 529, 316	93, 138, 153
Value	\$323, 530, 081	\$24, 541, 962	\$348, 072, 043
Average value per ton	\$3.92	\$2.33	\$3.74
Average yield in percent of coal charged:	-		
Coke.	70. 79	63.67	69. 99
Breeze (at plants actually recovering)	5.41	2. 43	5. 24
Ovens: In existence January 1	12, 734	15 150	07.004
In existence December 31	12, 734	15, 150 1 18, 669	27, 884
Dismantled during year	15,010	286	31, 685 444
In course of construction December 31	181	<i>2</i> 00 ∣	181
Annual capacity of ovens December 31net tons.		11, 209, 851	73, 772, 199
Coke used by producer—	02, 002, 020	22, 200, 002	10, 112, 100
To black Positions			
Quantitynet tons_	39, 137, 521	1,011,724	40, 149, 245
Value	\$190, 331, 548	\$4,957,622	\$195, 289, 170
To make medican con		, , , , , , , , , , , , , , , , , , , ,	
Quantitynet tons	772, 720		772, 720
Value	\$4, 562, 760		\$4, 562, 760
To make water gas:			
Quantitynet tons			1, 174, 279
Value	\$6, 142, 787		\$ 6, 142, 787
For other purposes: Quantitynet tons	445 000	4 000	440.000
Quantitynet tons	445, 878		449, 906
Value	\$2, 431, 872	\$20, 145	\$2, 452, 017
Sold to financially affiliated corporations—			
For bleet-formane use			
For blast-furnace use: Quantitynet tons	3, 690, 730	962, 586	4, 653, 316
Value	\$18,009,551	\$4, 759, 191	\$22, 768, 742
For other nurnoses:	420,000,001	42, 100, 201	
Quantitynet tons	707, 118	8, 502	715, 620
Value	\$4, 161, 299		\$4, 203, 406

See footnotes at end of table.

TABLE 1.—Salient statistics of the coke industry in 1941—Continued

vigioni i, lesued and effective November	Byproduct	Beehive	Total
Disposal of coke—Continued.	di suli m	CVCALE ELEC	7.1391.0
Sold to other consumers—			THE TALL
For hlast furnace use	1		1 1140334
For blast-furnace use: Quantity net tons Value	1, 817, 753	3, 834, 011	5, 651, 76
LL 271 Value 111 294 1119 Va A7 15 1519 1	\$10, 367, 313	\$21, 478, 978	\$31, 846, 29
For foundry use: Quantity net tons Value For manufacture of water gas: Quantity net tons		Ψ41, 110, 510	φυ1, 0±0, 28
Quantitynet tons_	2, 494, 393	352,066	2, 846, 45
Value	\$24, 342, 509	\$2, 283, 630	\$26, 626, 13
For manufacture of water gas:	de angraite	Carrier Carrier	14545 DI 1466
Quantity 16001 1601241114 net tons	542, 073	85, 926	627, 99
Value Value For other industrial use: Quantity net tons	\$3, 827, 345	\$405, 080	\$4, 232, 42
For other industrial use:	#44 (60 .O	[4] THB(29	M. Mitaba'
Quantity	1, 302, 053	347, 546	1, 649, 59
Value	\$8, 482, 456	\$2,040,539	\$10, 522, 99
For domestic use:	mier met	L Accentab	Leighararar
Value For domestic use: Quantity Value Quantity Line tons Value Disposal of screenings or breeze: Used by producer—	6, 596, 969	85, 990	6, 682, 95
Value	\$45, 910, 660	\$424,736	\$46, 335, 39
usposal of screenings or preeze:	El doraly	beweei d	al Abasia
pagosal of screenings of preeze: Used by producer— For raising steam: Quantity— net tons Value To make producer or water gas: Quantity— Value For other purposes: For other purposes:		1	VP 00.7 A 2078, E-25
ror raising steam: As the second of the Second	PYL JALI	MIS (M. SUL	rsc nointi
Quantitynet tons	3, 335, 705	35, 925	3, 371, 63
Value	\$6, 962, 011	\$52, 395	\$7,014,40
10 make producer or water gas:	100 4 000	Lati fore?	tive consum 22
Quantitynet tons.	46, 852		46, 85
For other purposes:	\$151,051		\$151,05
Overtity not tone	201 000	700	901.00
Quantity net tons Value	381, 200	780	381,98
		\$1,308	\$732, 40
Onentity	926 150	32, 963	869, 12
Value	\$2 014 560	\$31, 158	\$2,045,71
verage receipts per top sold.	Ψ2, 011, 000	φ01, 100	
Valueverage receipts per ton sold: Furnace coke (merchant sales)	\$5.70	\$5.60	\$5.6
Foundry coke	\$9.76	\$6.40	\$9. 3
For manufacture of water gas.	\$7.06	\$4.71	\$6.7
Other industrial coke	\$6.51	\$5.87	\$6.3
Domestic coke	\$6,96	\$4.94	\$6.9 \$2.3
Screenings or breeze	\$2.41	\$0.95	32.3
tocks on hand January 1, 1942:		#184£;	Maniel 17
Furnace net tons:	697, 898	20, 311	718, 20
Foundrydo	20, 448	4,987	25, 43
Domestic and otherdo	991, 045	23, 397	1, 014, 44
Screenings or breezedo	443, 366	1,682	445, 04
xportsdo	100000000000000000000000000000000000000		¹ 525, 22
Furnace coke (merchant sales) Foundry coke For manufacture of water gas Other industrial coke Domestic coke Screenings or breeze tocks on hand January 1, 1942: Furnace Foundry Domestic and other Screenings or breeze do Screenings or breeze do Screenings or breeze do Screenings or breeze do Screenings or breeze do Screenings or breeze do Sports do Sports do Sports Go Sports			2 241, 69
aculated consumptiondo		207700011 53800	8 65, 101, 40
yproducts produced: Gas M cubic feet			1-3000 0 AMB)
GasM cubic feet_	892, 819, 811		
wastedpercent_	1. 18	180001174	1. 18 36. 78
Burned in coking processdodo	36. 75	************	36. 7
Wasted percent Burned in coking process do Surplus sold or used do Tar gallons Ammonium sulfate or equivalent pounds ield of byproducts per ton of coal:	62.07		62.0
Targallons_	704, 149, 468		704, 149, 468
Ammonium sunate or equivalent pounds	1, 741, 503, 884		1, 741, 503, 884
Gos			
Gas	10.81	41-4120-200-43	10. 81
Tar gallons Ammonium sulfate or equivalent pounds	8. 52		8. 52
alue of byproducts sold:	21.34		21.34
alue of byproducts sold: Gas (surplus)	\$05.040.e00		CON 040 000
Tar:	\$85, 040, 609		\$85, 040, 609
Sold	\$10 20¢ 170		\$10 90¢ 17¢
Used by producer	\$18, 386, 170 \$14, 708, 855		\$18, 386, 170
Ammonium sulfate or equivolent	\$14, 708, 855 \$21, 709, 619		\$14, 708, 85, \$21, 709, 619
Used by producer	\$21, 709, 619 \$23, 668, 801		\$41, (US, 01)
Other hyproducts 4	\$23, 668, 801		\$23, 668, 801
Other byproducts 4otal value of coke and breeze produced and byproducts sold 5	\$10,003,985 \$499,525,703	\$36, 621, 576	\$10, 003, 985 \$536, 147, 279
			maan, 144, 275

Increase in number of ovens in existence is due to number of old ovens previously reported abandoned that were rehabilitated in 1941.
 Figures cover January to September, inclusive.
 Subject to revision. Includes net difference between imports and exports for first 9 months only.
 Includes naphthalene and tar derivatives.
 Includes value of tar used by producer.

TABLE 2.—Statistical trends of the coke industry in the United States, 1923 and 1938-41

					
	1923	1938	1939	1940	1941
Coke produced:					
Beehivenet tons_	19, 379, 870	837, 412	1, 444, 328	3, 057, 825	6, 704, 156
Byproductdo	37, 597, 664	31, 658, 403	42, 882, 313	54, 014, 309	58, 482, 422
Totaldo Percent of total from byproduct	56, 977, 534	32, 495, 815	44, 326, 641	57, 072, 134	65, 186, 578
ovens	66. 0	97.4	96. 7	94. 6	89.7
Stocks of producers, end of year, all coke	1 1, 221, 737	3, 676, 554	2, 602, 099	1, 956, 442	1, 758, 096
Exports, all cokedo	1, 237, 342	486, 571	589, 925	804, 095	2 525, 223
Imports, all coke	85, 002	135, 240	141, 911	112, 550	2 241, 690
Imports, all coke 3do Consumption, calculated, all cokedo	55, 173, 457	31, 063, 217	44, 953, 082	57, 026, 246	4 65, 101, 401
Disposal of coke, all coke sold or used:					
Furnace cokenet tons	47, 774, 408	19, 070, 186	31, 498, 557	42, 483, 624	50, 454, 325
Foundry cokedo Other industrial (including water gas)	3, 600, 719	1, 215, 780	1, 682, 200	2, 089, 962	2, 846, 459
net tons	5 2, 283, 888	2, 786, 710	3, 193, 068	3, 581, 676	4, 224, 597
Domestic cokedo	2, 733, 414	7, 222, 690	7, 638, 141	8, 231, 013	6, 682, 959
For all other purposesdo	(5)	1, 175, 346	1, 311, 559	1, 458, 435	1, 165, 526
Ovens:					
Beehive, in existence, end of year	62, 349	10, 816	10, 934	15, 150	
Byproduct, in existence, end of year	11, 156	12,724	12,732	12, 734	13, 016
Byproduct under construction, end of					
vear	629	146		492	181
Cost of coal charged, byproduct ovens,	-				
average per ton	\$4.76	\$3.92	\$ 3.75	\$3.68	\$3, 92
Prices of coke:					1
Average spot price of Connellsville fur-					
nace coke, f. o. b. ovens	\$5. 33	\$3.86	\$4.09	\$4.42	\$5, 92
Average realization on byproduct coke sold:					
Furnace coke (merchant sales)	\$6.74	\$4, 41	\$4.38	\$4, 55	\$5, 70
Foundry coke	\$10.54	\$8, 39	\$8. 15	\$8.67	\$9.76
Foundry coke Other industrial (including water gas)	\$9.06	\$5.68	\$5, 64	\$5, 86	\$6,68
Domestic	\$9.05	\$6.17	\$5. 90		\$6,96
Yield of byproducts per ton of coal charged: Targallons_ Ammonium sulfate or equivalent	40.00	40.	*****		-
Tar gallons	8.1	9, 27	9.06	8.79	8. 52
Ammonium sulfate or equivalent					ĺ
		23, 36	22. 33	22.00	21.34
Light oil gallons	2.7	2, 99	2, 99	2. 93	(6)
Light oil gallons Surplus gas sold or used M cubic feet.	5, 9	7. 14	7.08	6.84	6.71
Average gross receipts for byproducts, per	100				
ton of coke produced:					
Tar sold and used	\$0.51	\$0.654	\$0.622	\$0.571	\$0.566
Ammonia and its compounds	\$0.84	\$0.380	\$0.341	\$0.364	\$0.371
Light oil and its derivatives (including					
naphthalene)	\$0. 51	\$0.423	\$0.414	\$0.421	(4)
Surplus gas sold or used	\$1.37	\$1.907	\$1.676	\$1.507	\$1.454
Total byproducts, including breeze	\$3.48	\$3.647	\$3, 315	\$3, 117	\$3, 130

1 Furnace and foundry coke only.

² Figures cover January to September, inclusive. ³ Before 1934, figures represent general imports; beginning with 1934, they represent imports for con-• Subject to revision. Includes net difference between imports and exports for first 9 months only.
• Subject to revision. Includes net difference between imports and exports for first 9 months only.
• "For all other purposes" included under "Other industrial (including water gas)."
• Figures withheld in accordance with Government policy.

SCOPE OF REPORT

This report presents, by means of selected tables, the essential facts concerning the 1941 production of byproduct and beehive coke (tables 3 to 45), coke breeze (table 26), coke byproducts (tables 46 to 51), and city-gas company statistics (table 52). In addition to the customary annual data, the report embodies the result of a survey of coking coal, which shows the State and county of origin, the tonnage supplied by the principal counties, and the percentage of total State tonnages by seams. As a result of a survey covering 1941, statistics showing the consumption of foundry coke in the United States, by States and regions, appear in this chapter for the first time.

Coke is produced by a group of four different industries in the United States. Most of the output comes from byproduct and beehive ovens, but small quantities are also made by petroleum refineries, coal-gas retorts, and tar refineries. The coke manufactured by each of these industries, however, varies greatly in character, and the problems affecting each are separate and distinct.

About 1,648,800 tons of petroleum coke and 91,800 tons of coal-tar pitch coke were produced in 1941 compared with 1,526,600 and 90,906 tons, respectively, in 1940. The tonnage of coke produced in coal-gas retorts is relatively small, and the 1941 figure is not available at

present.

Only coke made from byproduct and beehive ovens is suitable for blast-furnace and foundry uses. As the metallurgical industries consume the bulk of all coke produced, the trade is concerned chiefly with byproduct and beehive coke, and the statistics of this report are confined to these two types.

The standard unit of measurement in the coke industry is the short or net ton of 2,000 pounds, and unless otherwise specified that unit is

employed throughout this report.

COKE AND COKE BREEZE MONTHLY AND WEEKLY PRODUCTION

Table 3.—Byproduct, beehive, and total coke produced in the United States, 1938–41, by months and average per day, in net tons

3.5	193	8	193	39	194	10	194	1,
Month	Total	Daily average	Total	Daily average	Total	Daily average	Total	Daily average
Byproduct:								
January	2, 749, 100	88, 700	3, 355, 200	108, 200	4, 720, 600	152, 300	4, 938, 800	159, 300
February	1 2, 481, 600	88,600	3, 066, 800	109, 500	4, 028, 300	138, 900	4, 507, 400	161,000
March	2, 661, 700	85, 900	3, 425, 700	110, 500	4, 136, 600	133, 400	5, 005, 200	161, 500
April	2, 424, 100	80,800	2, 903, 800	96, 800	3, 995, 800	133, 200	4, 479, 600	149, 300
May	2, 272, 100	73, 300	2, 387, 100	77,000	4, 256, 000	137, 300	4, 851, 600	156, 500
June	2, 056, 300	68, 500	3, 078, 500	102,600	4, 387, 200	146, 200	4, 841, 700	161, 400
July	2, 166, 100	69, 900	3, 354, 100	108, 200	4, 632, 400	149, 400	5, 019, 600	161, 900
August	2, 484, 000	80, 100	3, 652, 900	117,800	4, 695, 500	151, 500	5, 018, 900	161, 900
September	2,665,100	88, 800	3, 890, 600	129, 700	4, 640, 700	154, 700	4, 811, 400	160, 400
October	3,081,200	99, 400	4, 512, 300	145, 600	4, 853, 600	156, 600	4, 976, 500	160, 500
November	3, 266, 300	108, 900	4, 551, 900	151, 700	4, 763, 500	158, 800	4, 839, 200	161, 300
December	3, 350, 800	108, 100	4, 703, 400	151,700	4, 904, 100	158, 200	5, 192, 500	167, 500
	31, 658, 400	86, 700	42, 882, 300	117, 500	54, 014, 300	147, 600	58, 482, 400	160, 200
Beehive:								
January	114, 100	4,400	78, 400	3,000	252, 300	9, 300	542, 500	17, 500
February	102, 200	4, 300	72,000	3,000	164, 400	6,600	523, 900	18, 700
March	95, 200	3,500	69, 600	2,600	143, 100	5, 500	618, 100	19, 900
April	73, 100	2,800	20,000	800	108, 400	4, 200	98, 200	3, 300
May	56, 700	2,200	24, 700	900	112, 300	4, 200	571, 200	18, 400
April May June	49,800	1,900	52, 300	2,000	159, 800	6, 400	595, 400	19,800
July	1 42,000	1,700	47, 100	1,900	244, 400	9,400	610, 400	19,700
August September	47, 700	1,800	44, 900	1,700	294, 200	10, 900	644, 500	20,800
September	53, 600	2, 100	77,000	3,000	287, 800	11, 500	605, 800	20, 200
October	60, 700	2, 300	266, 800	10, 300	384, 200	14, 200	646, 800	20,900
November	66, 700	2,600	362, 700	14,000	416, 800	16,000	561, 300	18, 700
December	75, 600	2, 900	328, 800	13, 200	490, 100	19, 600	686, 100	22, 100
	837, 400	2, 700	1, 444, 300	4,700	3, 057, 800	9, 800	6, 704, 200	18, 400
Total coke:								
January	2, 863, 200	93, 100	3, 433, 600	111, 200	4, 972, 900	161, 600	5, 481, 300	176, 800
February	2, 583, 800	92, 900	3, 138, 800	112, 500	4, 192, 700	145, 500	5, 031, 300	179, 700
February March	2, 756, 900	89, 400	3, 495, 300	113, 100	4, 279, 700	138, 900	5, 623, 300	181, 400
April	2, 497, 200	83, 600	2, 923, 800	97, 600	4, 104, 200	137, 400	4, 577, 800	152, 600
May	2, 328, 800	75, 500	2, 411, 800	77, 900	4, 368, 300	141, 500	5, 422, 800	174, 900
June	2, 106, 100	70, 400	3, 130, 800	104, 600	4, 547, 000	152, 600	5, 437, 100	181, 200
July	2, 208, 100	71,600	3, 401, 200	110, 100	4, 876, 800	158, 800	5, 630, 000	181, 600
August	2, 531, 700	81, 900	3, 697, 800	119, 500	4, 989, 700	162, 400	5, 663, 400	182, 700
September	2, 718, 700	90, 900	3, 967, 600	132, 700	4, 928, 500	166, 200	5, 417, 200	180,600
October	3, 141, 900 1	101, 700	4, 779, 100	155, 900	5, 237, 800	170, 800	5, 623, 300	181, 400
November	3, 333, 000	111, 500	4, 914, 600	165, 700	5, 180, 300	174, 800	5, 400, 500	180,000
December	3, 426, 400	111,000	5, 032, 200	164, 900	5, 394, 200	177, 800	5, 878, 600	189, 600
- 000								

Table 4.—Beehive coke produced in the United States in 1941, by weeks [Estimated from railroad shipments]

Week ended—	Net tons	Week ended—	Net tons	Week ended—	Net tons
fan. 4	1 61, 700	May 17	133, 600	Sept. 27	143, 300
11	113, 900	24 31	155, 600 131, 300	Oct. 4	136, 900
25	126, 800 119, 100	June 7	128, 600	18	131, 700 165, 300
reb. 1	145, 300	14	158, 000	25	154, 400
8	129, 400	21:	136, 300	Nov. 1	124, 900
15	132,800	28	148, 300	8	139, 600
22	131, 200	July 5	121, 400	15	144, 700
Mar. 1	127, 500	12	136, 000	22	112,700
8	145, 800	19	128, 400	29	143, 400
15 22	147, 600 145, 700	26Aug. 2	154, 800 141, 100	Dec. 6	157, 100 141, 300
22 29	144, 800	Aug. 2	145, 900	20	157, 600
Apr. 5	78, 700	16	145, 900	27	154, 800
12	7,400	23	165, 600	28-31 1	75, 200
19	8, 200	30	140, 000		
26	7, 200	Sept. 6	143, 100		6, 704, 200
May 3	41, 300	13	133, 700		
10	119, 200	20	140, 100		

^{1 4} days only.

TABLE 5.—Byproduct coke produced in the United States in 1941, by months and States, in net tons

[Based upon reports from all producers] Stata July January February March April May June 345, 700 49, 100 251, 600 552, 500 142, 100 89, 700 202, 200 47, 100 84, 400 417, 000 695, 500 381, 400 49, 700 286, 300 594, 700 424, 800 53, 400 322, 300 435, 700 52, 200 314, 900 658, 500 146, 600 92, 400 252, 800 53, 100 88, 100 423, 100 324, 000 8, 700 Alabama 405, 000 381, 300 421, 800 381, 300 54, 000 308, 800 632, 800 147, 500 97, 100 220, 000 51, 000 88, 100 47, 600 298, 700 623, 400 142, 400 98, 300 51, 200 83, 700 419, 800 765, 100 280, 200 8, 300 19, 700 162, 200 Colorado 54, 400 306, 900 Illinois. 636, 600 148, 100 100, 500 Indiana 616, 800 144, 200 100, 600 253, 700 46, 700 88, 400 445, 300 130, 500 91, 200 231, 900 42, 000 80, 200 Maryland Massachusetts Michigan Minnesota 261, 800 261, 800 48, 400 88, 200 423, 700 795, 900 330, 500 8, 900 21, 000 166, 600 51, 000 88, 100 430, 200 761, 100 308, 800 9, 900 20, 600 166, 600 New Jersey. New York... 80, 200 361, 500 716, 100 , 205, 100 8, 000 18, 300 150, 000 784, 400 329, 300 8, 800 19, 700 156, 200 417, 000 695, 500 253, 100 9, 200 15, 600 159, 500 Ohio_ Pennsylvania..... Tennessee..... 20, 300 168, 600 Utah. West Virginia
Connecticut, Kentucky, Missouri, Rhode Island, and
Wisconsin 178, 400 160, 500 174, 500 165, 300 173, 800 181,000 186, 400 4, 479, 600 5, 019, 600 4, 938, 800 4, 507, 400 5, 005, 200 4, 851, 600 4, 841, 700 1, 055, 900 3, 423, 700 1, 113, 200 3, 728, 500 1, 144, 000 3, 875, 600 1, 113, 600 3, 825, 200 039, 200 468, 200 1, 154, 800 3, 850, 400 119,800 At merchant plants.... 1, 119, 800 3, 731, 800 At furnace plants..... Septem-ber Novem-Decem-Total October State August ber ber 390, 800 54, 300 318, 900 591, 600 147, 100 101, 100 235, 100 77, 400 88,000 334, 900 48, 200 310, 500 614, 200 142, 700 97, 100 4, 759, 800 622, 800 3, 660, 900 7, 406, 700 1, 752, 500 1, 161, 700 433, 000 52, 000 319, 300 473, 200 55, 000 315, 800 689, 800 172, 500 102, 200 257, 000 77, 400 87, 200 458, 100 335, 800 12, 100 342, 200 52, 900 306, 900 605, 500 142, 300 99, 200 243, 200 75, 200 446, 000 774, 200 281, 800 19, 500 168, 100 Alahama Colorado..... Illinois..... 319, 300 640, 300 146, 500 92, 300 236, 400 53, 000 87, 800 414, 600 Indiana Maryland. Massachusetts..... 97, 100 231, 200 63, 400 84, 000 433, 000 777, 200 , 297, 700 9, 000 19, 200 166, 200 1, 161, 700 2, 863, 600 685, 900 1, 031, 600 5, 116, 300 9, 284, 200 15, 632, 300 Michigan.... Minnesota... New Jersey... New York... 88, 000 444, 000 805, 300 337, 400 9, 300 Ohio... 803, 800 348, 600 9, 800 Pennsylvania_____ 111, 300 236, 600 1, 983, 600 Tennessee... 20, 700 170, 500 20, 800 21, 200 177, 100 West Virginia. 172,000 West Virginia

Connecticut, Kentucky, Missouri, Rhode

Island, and Wisconsin 182, 900 2, 172, 600 190, 300 193, 400 189, 400 196, 700 5, 018, 900 4, 811, 400 4, 976, 500 4, 839, 200 5, 192, 500 58, 482, 400 1, 143, 400 3, 875, 500 103, 000 1 708, 400 3 148, 600 827, 900 214, 600 977, 900 At merchant plants.

At furnace plants..

Table 6.—Beehive coke produced in the United States in 1941, by months and States, in net tons

[Based	upon	railroad	shipments]
--------	------	----------	------------

State		January	February	March	April	Мау	June
Alabama . Celorado and Utah . Kentucky and Tennessee . Pennsylvania . West Virginia	7, 200 3, 600 480, 600 26, 800 24, 300	6, 800 3, 300 465, 460 27, 000 21, 400	7, 800 3, 900 548, 200 31, 600 26, 600	3, 600 2, 800 85, 200 2, 900 3, 700	6, 500 4, 600 509, 400 28, 900 21, 800	3, 400 7, 800 3, 900 526, 800 29, 300 24, 200	
		542, 500	523, 900	618, 100	98, 200	571, 200	595, 400
State	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
Alabama. Colorado and Utah Kentucky and Tennessee. Pemsylvania. Virginia. West Virginia.	13, 800 7, 400 3, 800 535, 600 27, 600 22, 800 610, 400	17, 500 7, 800 2, 700 560, 900 29, 400 26, 200	12, 300 8, 800 2, 500 530, 800 29, 500 21, 900 605, 800	14, 100 9, 200 3, 600 563, 400 32, 800 23, 700	15, 000 8, 700 2, 900 484, 600 29, 600 20, 500	19, 100 8, 800 3, 600 600, 800 29, 200 24, 600	95, 200 90, 400 41, 200 5, 891, 100 324, 600 261, 700

PRODUCTION BY FURNACE AND NONFURNACE PLANTS

The terms "furnace" and "merchant" plants originated in the Connellsville beehive-coke trade, although in this report the distinction is applied to byproduct-coke plants only. Furnace plants are those affiliated with the iron and steel industry, with an output that does not ordinarily enter the open market. Merchant plants include some that are affiliated with local iron furnaces but produce more coke than the furnaces can consume and therefore depend on foundry, domestic, or other markets. The term also includes producers of coke who sell their entire output on the competitive market; the plants affiliated with alkali works; low-temperature carbonization plants; and, in addition, a number of plants that, although not public utilities, were constructed primarily to supply city gas and sell their coke for domestic, industrial, and metallurgical use.

Production of coke follows closely the trend of the iron and steel industry. In 1941, 45 furnace plants produced 44,987,913 tons of coke (77 percent), and 42 nonfurnace plants produced only 13,494,509 tons (23 percent) of the total, which was the same ratio as in 1940.

Table 7.—Number and production of byproduct-coke plants connected with iron furnaces and of other byproduct plants in the United States, 1913, 1918, and 1939-41

Year		of active nts	Coke produc	ed (net tons)	Percent of pro- duction		
	Furnace plants	Other plants	Furnace plants	Other plants	Furnace plants	Other plants	
1913	20 36 45 45 45	16 24 39 40 42	9, 277, 832 19, 220, 342 31, 811, 807 41, 465, 177 44, 987, 913	3, 436, 868 6, 777, 238 11, 070, 506 12, 549, 132 13, 494, 509	73. 0 73. 9 74. 2 76. 8 76. 9	27. 0 26. 1 25. 8 23. 2 23. 1	

Table 8.—Monthly and average daily production of byproduct coke by plants associated with iron furnaces and by all other plants in the United States, 1939-41, in net tons

Monthly production: January 2, 388, 000 967, 200 3, 644, 300 1, 076, 300 3, 825, 200 1, 113,			19	39	19	140	19	941
January		onth						Other plants
February 78, 500 31,000 104,800 34,100 123,900 37, March 80,500 30,000 99,400 34,000 124,200 37, April 88,200 28,600 99,500 33,700 114,100 35, May 25,400 24,600 104,800 32,500 120,400 36, June 74,300 23,300 113,200 33,000 124,300 37,	January February March April May June July Angust September October November	ত তেওঁ কা প্ৰকৃতি ত বৰ্ণ কৰিব কা বাবি কা বৰ্ণ কৰিব কা বাবি কা বাবি কা কা বিক্ৰা কা বাবিক কা বিক্ৰা কা বাবিক কা বিক্ৰা কা বাবিক কা বিক্ৰা কা বাবিক	2, 199, 000 2, 495, 000 2, 045, 700 1, 625, 900 2, 230, 200 2, 480, 600 2, 759, 900 2, 960, 400 3, 463, 300 3, 526, 400 3, 637, 400	867, 800 930, 700 858, 100 761, 200 848, 300 873, 500 930, 200 1, 049, 000 1, 025, 500	3, 038, 200 3, 082, 700 2, 985, 700 3, 248, 200 3, 395, 800 3, 599, 800 3, 596, 900 3, 750, 800 3, 674, 700 3, 789, 300	990, 100 1, 053, 900 1, 010, 100 1, 007, 800 991, 400 1, 032, 600 1, 036, 700 1, 043, 800 1, 102, 800 1, 1088, 800 1, 114, 800	3, 468, 200 3, 850, 400 3, 423, 700 3, 731, 800 3, 728, 500 3, 875, 600 3, 875, 500 3, 708, 400 3, 827, 900 3, 944, 800 3, 977, 900	1, 113, 600 1, 639, 200 1, 154, 800 1, 055, 900 1, 119, 800 1, 113, 200 1, 144, 000 1, 143, 400 1, 144, 400 1, 214, 600 1, 214, 600
September 98,700 31,000 119,900 34,800 123,600 36, October 111,700 33,900 121,000 35,600 123,500 36, November 117,500 34,200 122,500 36,300 123,200 38,	February March April May June	03 000 00 - 1550 00 500 00 - 150 00 500 00	78, 500 80, 500 68, 200 52, 400 74, 300 80, 000 89, 000 98, 700 111, 700	31, 000 30, 000 28, 600 24, 600 28, 300 28, 200 28, 800 31, 000 33, 900 34, 200	104, 800 99, 400 99, 500 104, 800 113, 200 116, 100 118, 000 121, 000 122, 500	34, 100 34, 000 33, 700 32, 500 33, 000 33, 500 34, 800 35, 600 36, 300	123, 900 124, 200 114, 100 120, 400 124, 300 125, 000 125, 000 123, 600 123, 500 123, 200	35, 900 37, 100 35, 200 36, 100 36, 900 36, 900 36, 800 37, 000 38, 100 38, 200

PRODUCTION BY STATES AND DISTRICTS

All coke-producing States except Michigan increased their output in 1941. The total output of byproduct coke (exclusive of screenings and breeze) in 1941 was 8 percent greater than in 1940, and the output of beehive coke was 119 percent greater than in 1940.

As in previous years, Pennsylvania was the leading producing State, contributing 27 percent of the byproduct and 88 percent of the beehive output. The largest gains were reported by Minnesota with an increase of 31 percent, Illinois with 21 percent, Tennessee and Ohio each with 18 percent, Indiana with 16 percent, and Colorado

with 15 percent over the 1940 output.

133 11

The rehabilitation and operation during 1941 of a large number of beehive ovens that had long been idle partly explained the increased beehive-coke production. Alabama manufactured beehive coke in 1941 for the first time in many years. All producing States shared the increase in beehive-coke output. Pennsylvania produced approximately 88 percent of the Nation's total; Virginia, West Virginia, Alabama, and Colorado together contributed 11 percent; and all other States furnished only 1 percent (table 9.)

Table 9.—Byproduct and beehive coke produced in the United States, 1918 and 1938-41, by States, in net tons

[Exclusive of screenings or breeze]

State	1918	1938	1939	1940	1941
syproduct:					
Alabama		3, 378, 044	3, 854, 505	4, 727, 378	4, 759, 862
Colorado	280, 663	186, 805	398, 033	543, 548	622, 807
Connecticut		(1)	(1)	(1)	(1)
Illinois	2, 285, 610	1, 734, 511	1.884.240	3.014.840	3, 660, 878
Indiana		2, 904, 779	4, 878, 033	6, 412, 716	7, 406, 72
Kentucky	517, 749	2,007	1,010,000	(1)	(1)
Maryland		1, 105, 262	1, 578, 973	1, 682, 701	1, 752, 53
Massachusetts	556, 397	1, 019, 302	1, 057, 158	1, 130, 311	1, 161, 73
Michigan			2, 430, 688	2, 872, 026	
Minnesota		1, 742, 787			2, 863, 563
		540, 447	497, 079	524, 360	685, 87
Missouri		1 2 2	(1)	(1)	(1)
New Jersey		1,007,394	1, 003, 197	1, 016, 481	1, 031, 569
New York		3, 945, 358	4, 468, 437	5, 080, 403	5, 116, 30
Ohio	5, 226, 334	3, 699, 995	6, 135, 949	7, 897, 929	9, 284, 19
Pennsylvania	4, 586, 981	7, 119, 328	10, 994, 254	14, 861, 657	15, 632, 35
Rhode Island		(1)	(1)	(1)	(1)
Tennessee	124, 469	76, 123	79,448	94.454	111.31
Utah		132, 513	189, 194	218, 949	236, 607
Washington	30, 129				
West Virginia	603, 393	1, 346, 734	1, 598, 198	1, 899, 849	1, 983, 619
Wisconsin		2,010,.01	1,000,100	1,000,010	1,000,01
Combined States		1, 719, 021	1, 834, 927	2, 036, 707	2, 172, 484
	25, 997, 580	31, 658, 403	42, 882, 313	54, 014, 309	58, 482, 422
eehive:					
Alabama	1, 717, 721				95, 200
Colorado	758, 784	54, 721	56, 836	62, 417	80, 196
Georgia	22, 048			,	
Kentucky	301, 036			(1)	2, 05
New Mexico	597, 072			• • •	-, 00
Ohio	138, 909				
Oklahoma					
Pennsylvania	22, 136, 664	482, 105	1, 125, 971	2, 550, 367	5, 891, 118
Tennessee.	302, 637	5, 500	1, 120, 011	5, 251	39, 08
Utah		7, 668	8, 332	7, 398	10, 244
Virginia			0,002		
		133, 905	165, 317	198, 379	324, 573
Washington				(1)	
West Virginia		153, 513	87,872	233, 154	261, 688
Combined States	461, 393			859	
	30, 486, 792	837, 412	1, 444, 328	3, 057, 825	6, 704, 156
Grand total	56, 478, 372	32, 495, 815	44, 326, 641	57, 072, 134	65, 186, 578

Included under "Combined States."

TABLE 10.—Coke produced, value, number of ovens, coal charged, and average yield in 1941, by States
[Exclusive of screenings or breeze]

				Byprod	uct					Ве	ehive			To	tal
State	Plants	Ovens	Coal used	Yield of coke from	Coke pro-	Value of c		Ovens	Coal used	Yield of coke from	Coke pro-	Value of over		Coke pro-	Value of coke at
	Fiants	Ovens	(net tons)	coal (per- cent)	(net tons)	Total	Per ton	Ovens	(net tons)	coal (per- cent)	(net tons)	Total	Per ton	(net tons)	ovens
AlabamaColoradoIllinois	9	1, 352 188 915	6, 656, 387 956, 279 5, 141, 881	71, 51 65, 13 71, 20	622, 807 3, 660, 878	\$18, 026, 799 (1) 25, 214, 769	\$3.79 (1) 6.89	545 260	156, 940 124, 198	60. 66 64. 57	95, 200 80, 196	\$601, 735 (1)	\$6.32 (1)	703, 003 3, 660, 878	\$18, 628, 534 (1) 25, 214, 769
Indiana Maryland Massachusetts Michigan Minnesota	1 2	1, 452 422 215 660 196	10, 103, 930 2, 413, 996 1, 651, 177 4, 015, 810 950, 812	73. 31 72. 60 70. 36 71. 31 72. 13	7, 406, 724 1, 752, 538 1, 161, 732 2, 863, 563 685, 873	48, 432, 824 (1) (1) (1) 18, 213, 048 5, 082, 787	6. 54 (1) (1) 6. 36 7. 41							7, 406, 724 1, 752, 538 1, 161, 732 2, 863, 563 685, 873	48, 432, 824 (1) (1) (1) 18, 213, 048 5, 082, 787
New Jersey New York Ohio Pennsylvania	15	239 1,054 1,963 3,322	1, 439, 711 7, 166, 526 12, 959, 480 22, 850, 457	71. 65 71. 39 71. 64 68. 41	1, 031, 569 5, 116, 308 9, 284, 194 15, 632, 354	(1) 32, 808, 937 48, 491, 596 66, 163, 689	(1) 6. 41 5. 22 4. 23	14, 410						1, 031, 569 5, 116, 308 9, 284, 194 21, 523, 472	32, 808, 93 48, 491, 596 97, 735, 96
Tennessee Utah Virginia Washington	1	56 56	154, 723 397, 125	71. 94 59. 58	111, 310 236, 607	824, 146 (¹)	7. 40 (1)	246 814 1, 286 160	66, 035 20, 106 540, 759	59. 19 50. 95 60. 02	39, 083 10, 244 324, 573	294, 579 (1) 1, 922, 181	7. 54 (1) 5. 92	150, 393 246, 851 324, 573	1, 118, 725 (1) 1, 922, 181
West Virginia. Connecticut, Kentucky, Missouri, Rhode Is- land, and Wisconsin	5 6	424 514	2, 872, 087 2, 878, 456	69. 07 75. 47	1, 983, 619	6, 192, 305 15, 821, 177	3. 12 7. 28	934	421, 491	62. 09 59. 99	261, 688	1, 434, 518	5.48	2, 245, 307	7, 626, 823
Undistributed			4, 010, 400	10.41	2, 172, 484	31, 205, 154	6.49	14	3, 424	09.99	2,054	664, 717	7. 19	2, 174, 538	47, 691, 049
Total: 1941	87 89	13, 016 12, 734	82, 608, 837 76, 582, 780	70. 79 70. 53		316, 477, 231 260, 356, 566	5. 41 4. 82	18, 669 15, 150	10, 529, 316 4, 802, 996			36, 490, 006 13, 475, 844	5. 44 4. 41	65, 186, 578 57, 072, 134	352, 967, 237 273, 832, 410

Included under "Undistributed."

Table 11.—Byproduct and beehive coke produced in Pennsylvania in 1941, by districts

[Number of plants and ovens includes those idle during the year; 14 plants were under construction or reconstruction in 1941]

District	Plants	Ovens	Coal used	Yield of coke from coal	Coke produced	Value of o	
			(net tons)	(percent)	(net tons)	Total	Per ton
Byproduct:	V. 1-						
Eastern Pennsylvania 1 Western Pennsylvania 2	4 8	705 2,617	3, 681, 564 19, 168, 893	71. 21 67. 87	2, 621, 582 13, 010, 772	\$17, 565, 844 48, 597, 845	\$6. 70 3. 74
	12	3, 322	22, 850, 457	68. 41	15, 632, 354	66, 163, 689	4. 23
Beehive: Allegheny Mountain and Allegheny Valley Conneilsville Lower Conneilsville Upper Conneilsville Pittsburgh and other districts *	2 50 16 7 7	242 8, 597 3, 121 1, 134 1, 316	92, 699 4, 631, 345 2, 959, 236 412, 293 1, 100, 790	61. 98 64. 86 63. 79 63. 42 61. 84	57, 452 3, 003, 692 1, 887, 751 261, 458 680, 765	341, 839 16, 111, 440 9, 839, 849 1, 502, 656 3, 776, 492	5. 95 5. 36 5. 21 5. 75 5. 55
	82	14, 410	9, 196, 363	64.06	5, 891, 118	31, 572, 276	5. 36
Grand total	94	17, 732	32, 046, 820	67. 16	21, 523, 472	97, 735, 965	4.54

¹ Includes plants at Bethlehem, Philadelphia, Steelton, and Swedeland.

¹ Includes plants at Aliquippa, Champion, Clairton, Erie, Johnstown, Midland, Neville Island, and

Includes Bedford and parts of Indiana and Westmoreland Counties.

Table 12.—Byproduct coke produced in Ohio in 1941, by districts

District	Plants	Ovens	Coal used	Yield of coke from coal	Coke produced	Value of o	
			(net tons)	(percent)	(net tons)	Total	Per ton
Canton, Cleveland, and Massillon Youngstown Other districts 1	5 3 7	595 602 766 1, 963	4, 204, 377 4, 033, 907 4, 721, 196 12, 959, 480	72. 92 70. 72 71. 29 71. 64	3, 065, 770 2, 852, 827 3, 365, 597 9, 284, 194	\$17, 133, 163 13, 259, 425 18, 099, 008 48, 491, 596	\$5. 59 4. 65 5. 38 5. 22

¹ Includes plants at Hamilton, Ironton, Lorain, Painesville, Portsmouth, Toledo, and Warren.

NUMBER AND TYPE OF OVENS

On December 31, 1941, 13,016 byproduct-coke ovens—an all-time peak—were in existence. During the year, 443 new ovens were completed and put into operation, and 158 ovens were abandoned. total number on December 31, 1941, represented the ovens in existence at the end of 1940 plus the difference in new ovens completed and old ones abandoned, taking into consideration changes due to replacement and reclassification (footnotes 2 and 3, table 13).

During the year the Office of Production Management approved a number of new byproduct-coke plants required to supply blastfurnace coke for the expansion program of iron production. At the end of 1941, 181 new byproduct ovens, with an estimated annual capacity of 1,017,319 tons, were under construction. In general, there was enough coke during the year to take care of industrial requirements.

Impelled by the growing need for furnace coke in 1941, many beehive ovens that had been abandoned for several years were rehabilitated and restored to active operation. The average number of ovens in operation—8,895 in December 1940—rose to 9,473 in January 1941. The number was increased in February and March but dropped in April to 3,212, owing to labor difficulties. Thereafter the monthly average of active ovens increased steadily for the remainder of the year and reached a peak of 12,321 in December, exceeding the December 1940 figure by 39 percent.

Table 13.—Coke ovens completed and abandoned in the United States in 1941 and total number in existence at end of year, by States

					Ovens			
State	Plants in exist- ence		ence Dec. 31, 1941		New	Aban-		construc- c. 31, 1941
blate	Dec. 31, 1941	Num- ber	Annual capacity (net tons of coke)	Num- ber	Annual capacity (net tons of coke)	doned during year	Num- ber	Annual capacity (net tons of coke)
Byproduct: Alabama	8	1, 352 188	5, 790, 315 645, 300	98	547, 500			
Colorado	1	70	(1)	9	(1)			
IllinoisIndiana	9 5	915 2 1, 452	4, 185, 300 7, 134, 400	41	(1)	1 41		
Kentucky	1	120	(1)					
Maryland	1 2	422 215	2, 124, 000 1, 165, 880	61	396, 000			
Michigan	2 8 3	660 196	3, 132, 168 943, 500			87		-,
Minnesota Missouri	1	64	(1)					
New Jersey New York	2 8	2 239 1, 054	1, 032, 000 5, 571, 563	76	384, 000			
Ohio	15	1,963	9, 313, 900	101	(1)	29	99	(1)
Pennsylvania	12 1	3, 322 65	16, 604, 800					(·)
Tennessee Utah	1	44 56	219, 982 238, 710	20	116, 508			
West Virginia	5	424	2, 232, 250	37	(1)		82	(1)
Wisconsin Undistributed	2	195	2, 228, 280		934, 000			1, 017, 319
	87	13, 016	62, 562, 348	443	2, 378, 008	158	181	1, 017, 319
At merchant plants	42	3, 549	15, 303, 525 47, 258, 823	208 235	1, 059, 008 1, 319, 000	154	37 144	200, 000 817, 319
At furnace plants	45	9, 467	41, 200, 020	200	1, 010, 000			011,010
Beehive:	4	545	233, 012		1		<u> </u>	
Colorado	i	260	(1)					
Kentucky Pennsylvania	1 82	14 14, 410	9, 248, 265			278		
Tennessee	2	246 814	97, 500 (1)					
UtahVirginia	8	1, 286	684, 774					
Washington West Virginia		160 934	370, 100			8		
Undistributed			576, 200					
	109	118, 669	11, 209, 851			286		

¹ Included under "Undistributed."

Table 14.—Average number of beehive ovens active in the United States in 1941, by months

Month	Number	Month	Number	Month	Number
January February March	9, 473 10, 186 10, 846 3, 212	MayJuneJulyAugust	11, 125 11, 277 11, 450 11, 537	September October November December	11, 781 11, 942 12, 080 12, 321

 ¹ old battery replaced by a new battery of 2 less ovens.
 5 ovens heretofore included are for making pitch coke.
 4 Increase in number of ovens is due to number previously reported abandoned that were returned by operators to "in existence" list.

Table 15.—By product ovens of each type in the United States at end of 1941, by States

State	Koppers 1	Semet- Solvay	Wilputte	Cambria	American Foundation	All others 2	Total
AlabamaColorado	872 188	420	60				1, 35
Connecticut	70						18 7
Ilinois	661	120	88			46	91
indiana	932	120	400			10	1, 45
Kentucky		120					12
Maryland	422						42
Massachusetts	160		55				2
Michigan	314	346					-66
Minnesota	196						19
Missouri	56			,		8	(
New Jersey	239						2
New York	743	180	76		55		1, 0
Ohio Pennsylvania	1, 594 3, 014	369 88	97	120		3	1,96
Rhode Island	3, 014		97	120		. 3	3, 32
Tennessee	w	24	20				9
Jtah	56						4
West Virginia	316		108				42
Wisconsin	115	80					i
	10, 013	1, 867	904	120	55	57	13, 01
At merchant plants	1, 993	1, 141	303		55	57	3, 54
At furnace plants	8,020	726	601	120			9, 40

CAPACITY OF BYPRODUCT PLANTS

The relationship of production to maximum capacity of byproductcoke plants in 1941 is shown in table 16. The maximum capacity of a byproduct plant is calculated by estimating the minimum coking time at which the ovens in that plant can be operated efficiently to produce coke suitable for the use for which it is intended. The theoretical maximum capacity seldom is attained in actual operation for various practical reasons that are governed by operating, economic, or labor conditions at the plant.

The efficiency attained by byproduct-coke plant operators in 1941 was the highest ever recorded in this country; production amounted

to 92 percent of the maximum capacity of the ovens.

The maximum daily capacity of the 87 byproduct-coke plants in existence December 31, 1941, was 171,404 tons compared with 170,467 tons for 89 plants at the end of 1940. The daily capacity of the 42 merchant plants was 41,928 tons and that of the 45 furnace plants 129,476 tons.

Table 16.—Relationship of production to potential maximum capacity 1 at byproduct-coke plants in the United States, 1929 and 1938-41, by months, in percent

Month	1929	1938	1939	1940	1941	Month	1929	1938	1939	1940	1941
January February March April May June July	88. 6 91. 3 93. 0 92. 8 94. 0 93. 9 93. 0	52. 4 52. 3 50. 7 47. 7 43. 2 40. 4 41. 3	62.8 63.5 64.1 56.2 44.4 59.2 64.4	89. 2 81. 3 78. 1 78. 0 80. 4 85. 6 86. 1	92. 0 92. 9 93. 2 86. 4 90. 6 93. 3 93. 7	August September October November December The year	93. 6 91. 9 92. 3 89. 0 83. 1	47. 3 52. 4 57. 9 63. 3 62. 8	70. 2 77. 2 86. 6 90. 3 89. 7	87. 3 89. 2 90. 2 91. 5 91. 2	93. 4 91. 9 92. 0 92. 1 94. 8

¹ Capacity of all ovens in existence, whether active or idle, based upon maximum daily capacity times

Includes Koppers-Becker type.
 Includes 46 Curran-Knowles, 8 Piette, and 3 Disco ovens.

QUANTITY AND COST OF COAL CHARGED

The quantity of coal used for making coke in 1941 totaled 93,138,153 tons; this amount was the highest on record and exceeded that used in 1940 by 11,752,377 tons or 14 percent. Byproduct ovens consumed 82,608,837 tons of coal, an increase of 6,026,057 tons (8 percent); and beehive ovens used 10,529,316 tons, or 5,726,320 tons more than in 1940. Coal charged into coke ovens represented 18 percent of the total estimated production of bituminous coal for the year.

The cost of coking coal rose sharply in 1941. The average cost of coal charged into byproduct ovens was \$3.92 compared with \$3.68 in 1940, an increase of \$0.24 per ton. It is of interest to note that, although the cost of coking coal throughout the Nation increased, the cost per ton of coal charged into byproduct ovens in Pennsylvania

declined from \$2.84 in 1940 to \$2.69 in 1941.

The cost per ton of coal charged into byproduct ovens is determined chiefly by the location of the coke plant with relation to its sources of coal—in other words by the cost of transportation. West Virginia, with an average cost of \$2.63 per ton, was the lowest in the country;

Minnesota, with a cost of \$5.19 per ton, was the highest.

The average cost per ton of coal charged into beehive ovens was \$2.33 compared with \$3.92 for byproduct ovens, as beehive ovens generally are situated near the sources of coal. The yield of coke per ton of coal charged into beehive ovens is less than the yield from byproduct ovens. However, the lower cost per ton of coal charged into beehive ovens explains the lower cost of the quantity of coal required to produce 1 ton of coke—\$3.66 for beehive ovens compared with \$5.53 for byproduct ovens.

The cost per ton of the coal used in beehive ovens in 1941 ranged from \$1.94 in Virginia to \$3.64 in two Western States—Colorado

and Utah.

TABLE 17.—Coal consumed in coke ovens in the United States, 1939-41, by months, in net tons

		1939			1940			1941	• •
Month	By- product	Bee- hive	Total	By- product	Bee- hive	Total	By- product	Bee- hive	Total
January February March April May June July August September October November December	4, 785, 200 4, 377, 200 4, 890, 000 4, 143, 400 3, 407, 500 4, 782, 900 5, 214, 200 5, 556, 700 6, 446, 503, 500 6, 716, 100	113, 200 32, 700 40, 900 85, 400 76, 300 72, 700 123, 900 421, 200	4, 494, 000 5, 003, 200 4, 176, 100 3, 448, 400 4, 477, 700 4, 859, 200 5, 286, 900 5, 688, 100 7, 074, 000	5, 671, 400 5, 824, 900 5, 627, 800 5, 995, 000 6, 179, 500 6, 608, 300 6, 697, 900 6, 619, 200 6, 922, 500 6, 793, 800	254, 700 221, 600 167, 800 173, 900 252, 100 385, 700 464, 500 454, 300 606, 400 657, 700	5, 926, 100 6, 046, 500 5, 795, 600 6, 168, 900 6, 431, 600 7, 162, 400 7, 073, 500 7, 528, 900 7, 451, 500	6, 408, 900 7, 116, 400 6, 367, 800 6, 832, 500 6, 816, 700 7, 067, 100 7, 067, 700 6, 775, 400 7, 010, 200 6, 814, 600	830, 600 979, 800 155, 600 894, 100 931, 900 955, 400 1, 008, 700 948, 300 1, 012, 400 878, 600	7, 239, 500 8, 096, 200 6, 523, 490 7, 726, 600 7, 748, 600 8, 076, 460 7, 723, 700 8, 022, 600 7, 693, 200
	61, 215, 900	2, 297, 800	63, 513, 700	76, 582, 800	4, 803, 000	81, 385, 800	82, 608, 900	10, 529, 300	93, 138, 200

Table 18.—Total quantity and value at ovens of coal used in manufacturing coke in the United States in 1941, by States

State	Coal used	Cost of	coal	Coal pe	er ton ke
	(net tons)	Total	Average	Net tons	Cost
Byproduct plants:				7	
Alabama	6, 656, 387	\$18, 541, 003	\$2,79	1.40	\$3, 91
Colorado	956, 279	(1)	(1)	1.54	(1)
Illinois	5, 141, 881	25, 319, 026	4, 92	1.40	`6,89
Indiana	10, 103, 930	52, 172, 332	5. 16	1.36	7.02
Maryland	2, 413, 996	(1)	(1)	1, 38	(1)
Massachusetts	1, 651, 177	(1)	(1)	1.42	(1)
Michigan		17, 465, 376	4. 35	1.40	6.09
Minnesota		4, 936, 804	5. 19	1.39	7.21
New Jersey		(1)	(1)	1.40	(1)
New York	7, 166, 526	34, 894, 188	4, 87	1.40	6.82
Ohio	12, 959, 480	53, 475, 938	4. 13	1.40	5. 78
PennsylvaniaTennessee		61, 498, 347	2.69	1.46	3. 93
Utah	154, 723	567, 205	3.67	1.39	5. 10
West Virginia	397, 125	F 550 000	(1)	1.68	(¹) 3.81
Connecticut Kontucky Microusi Phode	2, 872, 087	7, 556, 800	2.63	1.45	3. 81
Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin	2, 878, 456	13, 755, 294	4.78	1.32	0.01
Undistributed	2,010, 400	33, 347, 768	4.40	1. 32	6. 31 6. 29
Olidiswibuca		30, 347, 708	4.40		0. 29
	82, 608, 837	323, 530, 081	3. 92	1.41	5. 53
At merchant plants	18, 666, 784	87, 192, 047	4.67	1.38	6.44
At furnace plants	63, 942, 053	236, 338, 034	3. 70	1.42	5. 25
Beehive plants:					
Alabama	156, 940	388, 512	2, 48	1.65	4. 09
Colorado and Utah	144, 304	524, 988	3, 64	1.60	5. 82
Kentucky and Tennessee	69, 459	174, 008	2. 51	1.69	4. 24
Pennsylvania	9, 196, 363	21, 503, 971	2. 34	1.56	3, 65
Virginia	540, 759	1, 048, 667	1.94	1.67	3.24
West Virginia	421, 491	901, 816	2. 14	1, 61	3.45
	10, 529, 316	24, 541, 962	2. 33	1. 57	3.66

¹ Included under "Undistributed."

Table 19.— Average cost per net ton of coal charged into byproduct-coke ovens in the United States, 1929 and 1938-41, by States

State	1929	1938	1939	1940	1941	State	1929	1938	1939	1940	1941
Alabama Illinois Indiana Massachusetts Michigan Minnesota New York Ohio Pennsylvania	\$2. 49 4. 29 4. 61 4. 70 4. 29 5. 04 4. 22 3. 31 2. 73	4. 59 4. 90 (1) 4. 06 5. 53 4. 71	4. 55 4. 68 (1) 4. 08 5. 49 4. 61 3. 81	4. 57 4. 72 (1) 3. 99 5. 16 4. 56 3. 78	5. 16 (1) 4. 35 5. 19 4. 87 4. 13	Washington West Virginia United States av-	\$3. 02 5. 26 2. 41 3. 50 5. 04	2. 46 3. 92		2. 39	2. 63 3. 92

¹ Bureau of Mines not at liberty to publish data.

PREPARATION AND SOURCE OF COAL

The cleaning of coal to reduce its ash and sulfur content is of increasing importance to the coke industry in the United States. Many inferior coals require only washing to produce a good-quality metallurgical or domestic coke in coke ovens. Coke made from highash and high-sulfur coals causes definite economic losses in the blast furnace. If the coal charged into ovens is high in ash content, the coke produced has an even higher ash content, which is not desirable in industrial or domestic coke.

Of the coal consumed in byproduct ovens during 1941, all of that used in Colorado and Tennessee, 90 percent of that used in Alabama, and more than a third of that used in Pennsylvania was washed (table 20). Both pneumatic cleaning and wet washing methods are employed to prepare coal for use in coke ovens, depending on local conditions. Some coal is washed by producers at mines and some by coke-plant operators at plants. Of the total coal charged into byproduct ovens during 1941, 20,671,576 tons (25 percent) were washed. In the beehive-coke industry only 1,441,757 tons (14 percent of the total) were washed.

Table 20.—Washed and unwashed coal used in manufacturing coke in the United States in 1941, by States in which used, in net tons

State	Washed	Unwashed	Total
Byproduct plants:			
Alabama	5, 963, 603	692, 784	6, 656, 387
Colorado	956, 279		956, 279
Illinois	308, 831	4, 833, 050	5, 141, 881
Indiana		10, 103, 930	10, 103, 930
Maryland		2, 413, 996	2, 413, 996
Massachusetts		1, 651, 177	1, 651, 177
Michigan		3, 796, 829	4, 015, 810
Minnesota	70, 937	879, 875	950, 812
New Jersey		1, 439, 711	1, 439, 711
New York	877, 033	6, 289, 493	7, 166, 526
Ohio	2, 810, 861	10, 148, 619	12, 959, 480
Pennsylvania	8, 300, 936	14, 549, 521	22, 850, 457
Tennessee	154, 723		154, 723
Utah		397, 125	397, 125
West Virginia	982, 279	1, 889, 808	2, 872, 087
Connecticut, Kentucky, Missouri, Rhode Island,			
and Wisconsin	27, 113	2, 851, 343	2, 878, 456
	20, 671, 576	61, 937, 261	82, 608, 837
At merchant plants	1, 756, 311	16, 910, 473	18, 666, 784
At furnace plants	18, 915, 265	45, 026, 788	63, 942, 053
Bechive plants:			
Alabama	154, 740	2, 200	156, 940
Colorado and Utah	124, 198	20, 106	144, 304
Kentucky and Tennessee	66, 035	3, 424	69, 450
Pennsylvania.	1, 096, 784	8, 099, 579	9, 196, 363
		540, 759	540, 750
Virginia West Virginia		421, 491	421, 491
	1, 441, 757	9, 087, 559	10, 529, 316

Four States furnished most of the coal consumed in byproduct-coke plants. Pennsylvania, with 34,670,699 tons, led the Nation, followed by West Virginia, with 29,425,684 tons; Kentucky, with 9,271,279 tons; and Alabama, with 6,462,661 tons. Together these States supplied 96 percent of all coal used in byproduct ovens in 1941.

Table 21.—Coal purchased for manufacture of byproduct coke in the United States in 1941, by fields of origin, in net tons

(Based upon detailed reports from each coke plant. Difference between these totals and those shown in tables 1, 10, 17, etc., is due to change in stock, loss of weight in handling, and the fact that these represent purchases during the year rather than actual consumption]

State and district where coal was produced	Total purchased	States where coal was consumed—in order of importance
Alabama	6, 462, 661	Alabama.
Colorado	1. 005, 101	Colorado.
Georgia	19, 659	
Ilinois	236, 251	Illinois.
ndiana	45 500	
Kentucky, Eastern:	- 45, 589	Do.
Elkhorn (including Hazard)	2, 467, 411	Indiana, Ohio, Illinois, New York, Michigan, Ne
Harlan	4, 255, 124	Indiana, Illinois, Minnesota, Ohio, Michigan No.
Kenova-Thacker	1 010 000	I UCK, ADO W ISCONSIN
Misselloneous	1, 613, 608	Michigan, Ohio, Wisconsin, and West Virginia.
Miscellaneous	- 935, 136	indiana, Onio, and Illinois.
Maryland	- 170	Pennsylvania.
New Mexico	53, 050	Colorado.
Pennsylvania:		
Central Pennsylvania:		
Central Pennsylvania: Medium-volatile Low-volatile	563, 138	New York, Maryland, and Pennsylvania.
	2, 400, 013	Minnesota Onio, New York, Connecticut, an
Connellsville	1 -1,000,020	Pennsylvania, Ohio, West Virginia, New Yorl
Freeport	1, 877, 533	Connecticuit. West Virginia, Ohio, Michigan, New York, and Pennsylvania.
Pittsburgh	11, 867, 295	Pennsylvania, New York, Ohio, Michigan, Illinoi.
Somerset	1	Pennsylvania, West Virginia, New York, an Massachusetts.
Westmoreland		Pennsylvania, New York, Maryland, Minnesots and Connecticut.
Miscellaneous	1,402	Pennsylvania.
ennessee	166 262	Tennessee and Illinois.
tah	207 195	Utah.
irginia	1, 433, 771	Indiana, Michigan, New Jersey, New York, Peni
	-, -00,	sylvania, Ohio, Connecticut, and Illinois.
Vest Virginia:		syrvania, Omo, Connecticut, and Illinois.
Coal and Coke	110, 209	Demo-d-
Kanawha-Logan	110, 209	Pennsylvania.
	8, 994, 964	Ohio, Massachusetts, Illinois, Indiana, West Virginia, Kentucky, Michigan, New Jersey, Nev York, Wisconsin, Pennsylvania, Connecticut
		Tork, wisconsin, Pennsylvania, Connecticut
New River:	1	Rhode Island, Missouri, and Minnesota.
High-volatile	P00 000	37
PTI_A ANTOPTIQ	738, 963	New York, New Jersey, Massachusetts, and Con
Low-volatile (including Wind-		necticut.
ing Guli)	2, 619, 679	New Jersey, New York, Massachusetts, Michigan
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Maryland, Missouri, Rhode Island, Plinois Wisconsin, Connecticut, West Virginia, Minne sota, Kentucky, Ohio, and Pennsylvania.
	i 1	sota, Kentucky, Ohio and Donnayland's
Northern	4, 272, 101	Maryland, Pennsylvania, Ohio, Michigan, Wes Virginia, Illinois, and Minnesota.
Pocahontas (including Tug River)	12, 259, 354	Indiana Ohio Illinois Now York
(,00, 001	Morriand Minnesote Deve 10rk, Michigan
		Indiana, Ohio, Illinois, New York, Michigan Maryland, Minnesota, Pennsylvania, Wiscon sin, Kentucky, Connecticut, Alabama, and Wes
Wahston Cauler		virginia.
Webster-Gauley Williamson	370, 741 59, 673	Pennsylvania, New York, and New Jersey. Ohio, Massachusetts, Pennsylvania, and Connecticut.
		HOUMURE.
	83, 187, 302	
	,,	

Table 22.—Coal purchased for manufacture of byproduct coke in the United States in 1941, by States where produced and where consumed and by merchant and furnace plants, in net tons

							Coal pr	oduced i	n —					
State where coal was consumed	Alabama	Colorado	Geor- gia	Illinois	Indi- ana	Kentucky	Mary- land	New Mexico	Pennsyl- vania	Ten- nessee	Utah	Virginia	West Virginia	Total
Alabama: Merchant plants Furnace plants	1, 367, 507 5, 095, 154												88, 601 8, 902	1, 456, 108 5, 104, 056
Total Alabama Colorado: Furnace plant	6, 462, 661	1, 005, 101						53, 050					97, 503	6, 560, 164 1, 058, 151
Illinois: Merchant plants				236, 251	45, 589	123, 333 1, 295, 594			97, 783 280, 657	14, 224		11,301	1, 640, 017 1, 418, 714	2, 108, 685 3, 054, 778
Total Illinois				236, 251	45, 589	1, 418, 927			378, 440	14, 224		11, 301	3, 058, 731	5, 163, 463
Indiana: Merchant plants Furnace plants						4, 151, 761				,		663, 061	706, 197 4, 540, 256	706, 197 9, 355, 078
Total Indiana Maryland: Furnace plant Massachussetts: Merchant plants						4, 151, 761			139, 089 11, 270			663, 061	5, 246, 453 2, 276, 426 1, 645, 514	10, 061, 275 2, 415, 515 1, 656, 784
Michigan: Merchant plants Furnace plants						76, 042 1, 326, 727			320, 655 195, 253			133, 536 271, 166	820, 538 974, 307	1, 350, 771 2, 767, 453
Total Michigan						1, 402, 769			515, 908			404, 702	1, 794. 845	4, 118, 224
Minnesota: Merchant plants Furnace plants						61, 793 394, 783			85, 064 46, 940				238, 266 294, 796	385, 123 736, 519
Total Minnesota New Jersey: Merchant plants						456, 576 95, 235			132, 004 12, 922			139, 488	533, 062 1, 178, 572	1, 121, 642 1, 426, 217
New York: Merchant plants Furnace plants						271, 126			1, 954, 141 2, 338, 147			107, 614 15, 425	1, 652, 834 800, 681	3, 985, 715 3, 154, 253
Total New York						271, 126			4, 292, 288			123, 039	2, 453, 515	7, 139, 968
Ohio: Merchant plants Furnace plants						13, 653 1, 389, 499			6, 580, 959			30, 694 1, 527	819, 961 4, 261, 038	864, 308 12, 233, 023
Total Ohio						1, 403, 152			6, 580, 959			32, 221	5, 080, 999	13, 097, 331

Table 22.—Coal purchased for manufacture of byproduct coke in the United States in 1941, by States where produced and where consumed and by merchant and furnace plants, in net tons—Continued

					·					···			***************************************	
State where coal was consumed		Coal produced in—											·	,
State where coar was consumed	Alabama	Colorado	Geor- gia	Illinois	Indi- ana	Kentucky	Mary- land	New Mexico	Pennsyl- vania	Ten- nessee	Utah	Virginia	West Virginia	Total
Pennsylvania: Merchant plants Furnace plants							170		135, 744 20, 486, 922			39, 421	647, 987 1, 677, 928	783, 73 22, 204, 44
Total PennsylvaniaTennessee: Merchant plantUtah: Furnace plant			19, 659				170		20, 622, 666	152, 039	397, 125	39, 421	2, 325, 915	22, 988 17 171, 69 397, 12
West Virginia: Merchant plants Furnace plants						10, 143			7, 663 1, 929, 012				943, 288	950, 95 1, 939, 26
Total West Virginia						10, 143			1, 936, 675				943, 395	2, 890, 21
Merchant plants						61, 590			48, 478			20, 538	2, 790, 754	2, 921, 360
	6, 462, 661	1, 005. 101	19, 659	236, 251	45, 589	9, 271, 279	170	53, 050	34, 670, 699	166, 263	397, 125	1, 433, 771	29, 425, 684	83, 187, 302
At merchant plants	1, 367, 507 5, 095, 154	1, 005, 101	19, 659	236, 251	45, 589	702, 772 8, 568, 507	170	53, 050	2, 673, 720 31, 996, 979	152, 039 14, 224	397, 125	443, 171 990, 600	13, 172, 529 16, 253, 155	18, 767, 648 64, 419, 654

The examination and development of new sources of coking coal are important because of the irregular and limited distribution of high-grade coals of established coking quality. Owing to the rapid rate at which the reserves of such coals are being depleted, the blending of various types of coal is a conservational as well as an efficiency measure. The custom of mixing a variety of coking coals before charging into the ovens is primarily to produce economically coke of a quality satisfactory for the use for which it is intended. Some coals with many satisfactory coking qualities expand when coked, and their use alone would cause difficulty in discharging the coke from the oven and might even injure the byproduct-oven walls. For this reason, it is customary to mix such coals with others having a lower coefficient of expansion. This practice also permits the use of coals that have good coking qualities but have objectionable impurities, such as high content of ash, sulfur, and phosphorus. Such coals should not be used as a 100-percent charge in the ovens. Coal mixtures are commonly used at byproduct-coke plants, and this practice has resulted not only in the production of superior coke but also in the extensive utilization of coals, which, in unmixed condition, would not be suitable for coke manufacture.

Classification of all coal purchased for coking in byproduct ovens in 1941 from the data supplied by the operators showed that 53,875,666 tons (65 percent) were high volatile coal containing over 32 percent volatile matter; 10,880,601 tons (13 percent), medium-volatile coal containing 23 to 31 percent volatile matter; and 18,431,035 tons (22 percent), low-volatile coal or coal containing 14 to 22 percent volatile

matter.

Table 23.—Coal purchased for manufacture of byproduct coke in the United States in 1941, by States where consumed and by volatile content ¹

•	Low-vo	latile	Medium-	volatile	High-vo	olatile	m-+-11
State where coal was consumed	Net tons	Percent of total	Net tons	Percent of total	Net tons	Percent of total	Total coal consumed (net tons)
Alabama: Merchant plants Furnace plants	88, 601 8, 902	6. 1 . 2	1, 307, 509 5, 002, 992	89. 8 98. 0	59, 998 92, 162	4. 1 1. 8	1, 456, 108 5, 104, 056
Total Alabama Colorado: Furnace plant	97, 503	1. 5	6, 310, 501	96. 2	152, 160 1, 058, 151	2. 3 100. 0	6, 560, 164 1, 058, 151
Illinois: Merchant plants Furnace plants	580, 621 1, 314, 499	27. 5 43. 0	967, 635	45. 9	560, 429 1, 740, 279	26. 6 57. 0	2, 108, 685 3, 054, 778
Total Illinois	1, 895, 120	36.7	967, 635	18.7	2, 300, 708	44. 6	5, 163, 463
Indiana: Merchant plants Furnace plants	315, 864 4, 495, 858	44. 7 48. 1	390, 333	55. 3	4, 859, 220	51.9	706, 197 9, 355, 078
Total Indiana	4, 811, 722 562, 083 424, 712	47. 8 23. 3 25. 6	390, 333 139, 089 328, 091	3.9 5.7 19.8	4, 859, 220 1, 714, 343 903, 981	48. 3 71. 0 54. 6	10, 061, 275 2, 415, 515 1, 656, 784
Michigan: Merchant plants Furnace plants	449, 782 536, 692	33. 3 19. 4	313, 507 6, 035	23. 2 . 2	587, 482 2, 224, 726	43. 5 80. 4	1, 350, 771 2, 767, 453
Total Michigan	986, 474	24.0	319, 542	7.7	2, 812, 208	68. 3	4, 118, 224
Minnesota: Merchant plants Furnace plants	78, 292 285, 369	20. 3 38. 7	21, 483 9, 427	5.6 1.3	285, 348 441, 723	74. 1 60. 0	385, 123 736, 519
Total Minnesota	363, 661	, 32.4	30, 910	2.8	727, 071	64.8	1, 121, 642

See footnote at end of table.

Table 23.—Coal purchased for manufacture of byproduct coke in the United States in 1941, by States where consumed and by volatile content — Continued

	Low-vo	latile	Medium-	volatile	High-v	olatile	
State where coal was consumed	Net tons	Percent of total	Net tons	Percent of total	Net tons	Percent of total	Total coal consumed (net tons)
New Jersey: Merchant plants	342, 696	24.0			1, 083, 521	76. 0	1, 426, 217
New York: Merchant plants Furnace plants	581, 579 946, 537	14. 6 30. 0	1, 209, 579 357, 529	30.3 11.3	2, 194, 557 1, 850, 187	55. 1 58. 7	3, 985, 715 3, 154, 253
Total New York	1, 528, 116	21.4	1, 567, 108	21.9	4, 044, 744	56.7	7, 139, 968
Ohio: Merchant plants Furnace plants	264, 278 3, 321, 661	30.6 27.1	218, 334	1.8	600, 030 8, 693, 028	69. 4 71. 1	864, 308 12, 233, 023
Total Ohio	3, 585, 939	27.4	218, 334	1.7	9, 293, 058	70.9	13, 097, 331
Pennsylvania: Merchant plants Furnace plants	174, 052 2, 492, 105	22. 2 11. 2	218, 674 126, 410	27. 9 . 6	391, 005 19, 585, 926	49. 9 88. 2	783, 731 22, 204, 441
Total Pennsylvania Tennessee: Merchant plant Utah: Furnace plant	2, 666, 157 19, 659	11.6 11.4	345, 084 152, 039	1.5 88.6	19, 976, 931 397, 125	86. 9 100. 0	22, 988, 172 171, 698 397, 125
West Virginia: Merchant plants Furnace plants	75, 940 147, 222	8. 0 7. 6	7, 663	.8	867, 348 1, 792, 040	91. 2 92. 4	950, 951 1, 939, 262
Total West Virginia. Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin:	223, 162	7. 7	7, 663	.3	2, 659, 388	92. 0	2, 890, 213
Merchant plants	924, 031	31.6	104, 272	3.6	1, 893, 057	64.8	2, 921, 360
	18, 431, 035	22. 1	10, 880, 601	13. 1	53, 875, 666	64.8	83, 187, 302
At merchant plants At furnace plants	4, 320, 107 14, 110, 928	23. 0 21. 9	5, 020, 785 5, 859, 816	26.8 9.1	9, 426, 756 44, 448, 910	50. 2 69. 0	18, 767, 648 64, 419, 654

¹ Low-volatile coals range from 14 to 22 percent volatile matter; medium-volatile, from 23 to 31 percent; and high-volatile, 32 percent and over.

YIELD OF COKE PER TON OF COAL

Table 24.—Yield of coke from coal in byproduct and beehive ovens in the United States, 1938-41, by States, in percent

~.	19	38	19	039	19	140	19	41
State	Byprod- uct	Beehive	Byprod- uct	Beehive	Byprod- uct	Beehive	Byprod- uct	Beehive
Alabama	70. 93.		71.01		71.03		71. 51	60. 66
Illinois	66. 79 67. 05	65. 01	66.03 68.12	65. 41	63. 95 70. 56	65. 20	65. 13 71. 20	64. 57
Indiana Maryland	70.32 72.14		70. 26 72. 88		73. 24 72. 33		73.31	
Massachusetts	70. 42		70.72		71.11		72.60 70.36	
Michigan Minnesota	69. 17 70. 19		69. 34 69. 92		70.06 70.50		71. 31 72. 13	
New Jersey New York	71.84		71.05		71.67		71.65	
Ohio	71. 14 71. 02		71. 16 71. 09		71.34 71.48		71. 39 71. 64	
Pennsylvania Tennessee	68. 46 68. 70	63.00 55.00	68.71 73.00	63. 42	68. 43 70. 51	63. 80 59. 55	68. 41 71. 94	64.06
Utah	58.08	48. 94	58.38	60. 27	59. 31	50.89	59. 58	59. 19 50. 98
Virginia Washington		57.04		56.87		59. 97 60. 20		60. 02
West Virginia	68. 02	61.40	68. 12	67.04	69.05	65. 79	69.07	62. 09
United States average	69. 94	61. 58	70.05	62. 86	70, 53	62.66	70.70	en en
Grorage	00.04	01.08	10.00	02.80	10.53	63.66	70.79	63. 67

SOURCES OF COKING COALS 1

The increased emphasis placed upon the coke industry by the war program has created widespread interest in coke production. An adequate supply of suitable coal is the prime requisite of the coke industry, and the urgent demand for metallurgical coke by the iron

¹ Prepared by J. R. Bradley, Coal Economics Division, Bureau of Mines.

and steel industry has greatly augmented the need for coking coal. The following table shows the sources of production of coking coals by States, counties, and beds. Four Eastern States (Pennsylvania, West Virginia, Kentucky, and Alabama) mined 93 percent of the output, and only a small percentage of coking coal is mined west of the Mississippi River. Production in 1940 by mines that shipped coal to coke plants in 1941 totaled 171,440,000 tons, of which Pennsylvania's Connellsville region contributed 25 percent, Pennsylvania outside of the Connellsville region 13 percent, West Virginia 40 percent, Kentucky 10 percent, and Alabama 5 percent. The principal producing counties in West Virginia were McDowell, Raleigh, Fayette, and Marion, which supplied 35, 20, 12, and 11 percent, respectively. The Pocahontas bed produced 48 percent of the State total, Pittsburgh bed 11 percent, Eagle bed 8 percent, and all other beds 33 In Pennsylvania the Connellsville region produced 42,473,000 tons, of which that supplied by Fayette County represented 47 percent, Washington County 24 percent, and Westmoreland and Greene Counties about 11 percent each; of the Connelsville total the Pittsburgh bed supplied 89 percent and the Freeport bed 8 percent. Pennsylvania outside of the Connellsville region produced 21,741,000 tons, of which Allegheny County supplied 42 percent and Cambria County 41 percent; the principal beds from which the coal was produced were the Kittanning (33 percent), Freeport (29

percent), and Pittsburgh (17 percent).

Of the 17,371,000 tons of coal produced in Kentucky, Harlan County supplied 49 percent, and Floyd, Letcher, and Pike Counties 18, 16, and 13 percent, respectively. The principal beds mined were the Elkhorn, with 35 percent of the State total, Kellioka 23 percent, and Harlan 19 percent. In 1940 Alabama produced 9,283,000 tons, of which Jefferson County supplied 88 percent. The principal beds mined were the Pratt, which supplied 44 percent, and the Mary

Lee, 42 percent.

Table 25.—Production of coking coal in 1940, by States, counties, and beds, from mines shipping to coke ovens in 1941

		Bed	411
State and county	Production (thousand net tons)	Name	Percent of State total
Alabama: Jefferson Walker Bibb Shelby	8, 173 560 293 257	Pratt Mary Lee	4 4 1
	9, 283		10
Colorado: Las Animas	1, 061 214 176 62	Raton	4 2 1 1
Georgia: Walker	1, 513 37	Unknown	10 10
Illinois: FranklinSt. Clair	612 496	No. 6St. Clair	5 4
Indiana: Spencer	1, 108 77	Brazil Block	10 10

TABLE 25.—Production of coking coal in 1940, by States, counties, and beds, from mines shipping to coke ovens in 1941—Continued

State and county Chousand net tons Name Percont of State total		Production	Bed	
Harlain	State and county	(thousand	Name	of State
Floyd				
Piete		8, 510	Elkhorn	3
Pike	Lotobox	3, 166	Kellioka	2
Bell.	Pika	2,000	Freeham	
Maryland: Allegany		502	All others	
Pennsylvania: Concellar 19,77			The College of the Co	1
Maryland: Allegany 65 Pittsburgh 10 10 10 10 10 10 10 1			 	
Pennsylvanis: Comelisville: Fayette 19,797 Weshington 10,225 Freeport 36 Westmoreland 4,655 Greene 4,503 Indiana 3,293	Maryland: Allegany New Mexico: Colfax	65	PittsburghRaton	100 100 100
Connellsyille: Fayette 19,797 Washington 10,225 Westmoreland 4,655 Greene 4,503 Indiana 3,223 All others 42,473 60	Ponneylvania.			
Fayette	Connellsville:			
Westmoreland	Favette	19, 797	Pittsburgh	
Westmoreland	Washington	10, 225	Freeport	· ·
Outside Connellsville:	Westmoreland	4, 655	All others	
Outside Connellsville: Allegheny	Greene	4, 503		
Outside Connellsville: Allegheny	Indiana	3, 293		-
Outside Connellsville: Allegheny		49 472		
Allegheny 9, 198 Cambria 8, 872 Somerset 3, 646 Bedford 25 Bedford 6 25	0-4-11- 0	=======================================		
Cambria 8,872 Somerset 3,046 Bedford 25	Outside ConneilsVille:	0 *00	water	
Somerset	Combrie	9, 198	Kittanning	
Bedford	Somoreet		Pittaburah	
Cennessee:	Redford	o, 040	Millor	
Tennessee:	Dediora	20	All others	
Tennessee: Marion			All others	
Marion Afelo Rhea 37 Grundy 35 Morgan 4 Cumberland 3 White 2 2		21, 741		34
Marion 460 Rhea 37 Grundy 33 Morgan 4 4 4 4 4 4 4 4 4	Pompossos:			
Rhea 37 Grundy 35 Morgan 4 Cumberland 3 White 2	Marion	460	g	
Grundy	Phoe		All others	
Morgan 4 Cumberland 3 White 2	Grundy		All others	
White	Morgan			y
White	Cumberland			
Utah: Carbon 483	White			
Carbon				
Carbon. 483 Castle Gate Mesa Verde. 76 Mesa Verde. 16 Mesa Verde. 16 Mesa Verde. 16 Mesa Verde. 160 7irginia: 2,848 Pocahontas. 28 Mesa Mesa. 28 Mesa. 18 Mesa. 18 Mesa. 18 Mesa. 18 Mesa. 18 Mesa. 19 Mesa. 18 Mesa. 19 Mesa.		541		100
Mesa Verde. 19				
Mesa Verde	Carbon	483	Castle Gate	76
All others			Mesa Verde	19
Tazewell			All others	5
Tazewell	· · · · · · · · · · · · · · · · · · ·	402		
Tazewell		604		100
Buchanan 2,575 Taggart 18 Wise 1,898 1,898 490 1215 Clintwood 12 120 1	Virginia:			
Wise	Tazewell	2, 848	Pocahontas	29
Lee	Wise	2, 575	Taggart	
Lee	W 196	1,898	Splashdam	14
Section Sect	Too	490	Jewel	13
All others. 8	100	215	Clintwood	
Mest Virginia:			Upper Banner	6
West Virginia: McDowell 24, 127 Pocahontas 48 Raleigh 13, 895 Pittsburgh 11 Fayette 8, 322 Eagle 8 Marion 7, 628 Sewell 8 Logan 4, 024 War Creek 6 Mercer 3, 228 Wyoming 2, 685 Kanawha 1, 658 Boone 1, 256 Webster 888 Monongalia 588 Greenbrier 215 Preston 158 Randolph 158 Randolph 158 Mingo 101 Harrison 32 Upshur 68, 415 100	•		An outers	8
McDowell		8, 026		100
McDowell	Vest Virginia:			
Raleigh 13, 895 Pittsburgh 11 Fayette 8, 322 Marion 7, 628 Logan 4, 024 War Creek 6 Mercer 3, 228 Wwar Creek 6 Wyoming 2, 085 All others 14 Kanawha 1, 536 Boone 1, 286 Webster 88 Monongalia 598 Greenbrier 215 Preston 158 Randolph 158 Randolph 158 Mingo 101 Harrison 32 Upshur 12 68, 415 100	McDowell	24. 127	Pocahontas	40
Fayette 8, 322 Marion Eagle 8 Marion 7, 628 Marion 8 Logan 4, 024 Mercer 8 Mercer 3, 228 Monding 9 Wyoming 2, 085 Kanawha 1, 658 Monding Boone 1, 286 Monongalia 588 Monongalia Greenbrier 215 Preston 158 Mandolph Randolph 158 Mingo 101 Marrison Harrison 32 Upshur 12 68, 415 100	Raleigh	13, 895	Pittshurgh	
Marion 7, 628 Logan 8 Logan 4, 024 Mercer 3, 228 War Creek 6 Wyoming 2, 085 All others 14 Kanawha 1, 688 Boone 1, 286 Webster 88 Monongalia 598 Greenbrier 215 Preston 188 Randolph 188 8 Mingo 101 101 Harrison 32 12 Upshur 68, 415 100	Fayette	8. 322	Eagle	
Logan	Marion	7, 628	Sewell	8
Mercer 3, 228 Powellton 5 Wyoming 2, 085 1, 658 14 Kanawha 1, 526 14 14 Webster 888 Monongalia 598 588 Greenbrier 215 215 215 Preston 158 158 16 Randolph 158 158 16 Mingo 101 16 16 Harrison 32 12 12 Upshur 68, 415 100	Logan	4,024	War Creek	6
Wyoming 2,085 All others 14 Kanawha 1,688 1,286 Boone 1,286 888 Webster 888 888 Monongalia 598 598 Greenbrier 215 215 Preston 158 888 Randolph 158 888 Mingo 101 101 Harrison 32 2 Upshur 12 68,415 100	Mercer	3, 228	Powellton	
Boone 1, 286 Webster 88 Monongalia 598 Greenbrier 215 Preston 158 Randolph 158 Mingo 101 Harrison 32 Upshur 12 68,415 100			All others	14
Monongalia	Kanawha	1,658		
Monongalia	Boone	1, 286	1	
Greenbrier 215 Preston 158 Randolph 158 Mingo 101 Harrison 32 Upshur 12 68,415 100	webster	888	j l	
Preston 158 Randolph 158 Mingo 101 Harrison 32 Upshur 12 68,415 100	Organia.			
Randolph 158 Mingo 101 Harrison 32 Upshur 12 68,415 100	Ureenbrier			
Mingo	Pendelph			
Harrison 32 Upshur 12 68, 415 100	Mingo		· 1	
Upshur 12 68,415 100	Harrison			
68, 415	Upshur			
	-			100
	Total United States			100
Total United States				

Table 26.—Coke breeze recovered at coke plants in the United States in 1941, by States

e.					Used by	producer					
State	Yield per ton of coal (per- cent) 1	Prod	uced	For steam	n raising	For other including	purposes, water gas	So	ld :	Wasted (net tons)	On hand Dec. 31 (net tons)
		Net tons	Value	Net tons	Value	Net tons	Value	Net tons	Value		
Byproduct ovens: Alabama	4. 68 7. 38	311, 772 70, 552	\$679, 841	182, 032 30, 628	\$306, 825	27, 968	\$59, 768	156, 005 54, 922	\$434, 240 (2)		17, 290 161
Illinois Indiana Maryland	6.34 4.24 7.40	326, 085 428, 905 178, 701	782, 171 876, 028 (3)	162, 763 321, 608 124, 103	437, 508 642, 175 (3) (2)	28, 209 69, 957 30, 401	61, 001 149, 239 (3) (3)	113, 592 65, 289	237, 435 132, 968		74, 712 24, 139 85, 168
Massachusetts	4. 84 5. 08	109. 378 194. 337 48, 319 83. 726	918, 967 150, 651	83. 431 149, 357 21, 111 84. 651	(2) 722, 433 59, 213 (2)	8, 116 17, 269 6, 173	(2) 53, 431 12, 346 (2)	16, 763 21, 655 23, 869 1, 093	(2) 91, 029 88, 400 (2)		5, 646 4, 025 11, 844 1, 718
New YorkOhioPennsylvania	4. 55 5. 18 6. 12	325, 833 671, 498 1, 392, 269	980, 852 1, 335, 562 2, 288, 268 38, 510	239, 476 481, 054 1, 228, 381	666, 311 968, 950 2, 019, 334	48, 668 120, 945 47, 421	149, 519 240, 374 55, 906	87, 257 90, 335 123, 728	301, 766 154, 284 233, 577 48, 124	2, 505	52, 207 91, 757 53, 310 428
Tennessee	5. 22 5. 20	7, 551 20, 723 115, 632	38, 510 (2) 184, 941	2, 489 92, 037	(³) 131, 094	5, 403 17, 521	(²) 23, 829	9, 436 20, 997 21, 606	⁽²⁾ 57, 007		1, 711 8, 531
Island, and Wisconsin	5. 13	147, 583	439, 473 855, 169	132, 584	379, 851 628, 317		76, 733	29, 612	104, 552 131, 178		10, 719
Total byproduct, 1941	5. 41	4, 432, 864	9. 530, 433	3, 335, 705	6. 962, 011	428, 058	882, 146	836, 159	2, 014, 560	2, 505	443, 366
At merchant plantsAt furnace plants	5. 57 5. 37	998, 687 3, 434, 177	2, 765, 049 6, 765, 384	692, 374 2, 643, 331	1, 848, 587 5, 113, 424	51, 253 376, 805	148, 781 733, 365	307, 500 528, 659	938, 097 1, 076, 463	2, 505	136, 631 306, 735
Total byproduct, 1940	5. 37	4, 078, 037	8, 472, 114	3, 013, 070	6, 139, 014	465, 871	958, 183	603, 657	1, 377, 970	17,008	419, 867
Beehive ovens: Alabama Colorado and Utah	5. 08 3. 40	7, 592 4, 911	15, 630 4, 616	7, 592	15, 630			4, 911	4, 616		
Kentucky and Tennessee Pennsylvania Virginia	2.75 2.57	94 103, 287 563	102, 085 2, 655	28, 333	36, 765	624 136	618 670	90 26, 993 427	428 23, 481 1, 985	47, 066	1,388
West Virginia	1.47	5, 202	6, 137			20	20	542	648	4,600	40
Total beehive, 1941	2. 43	121, 649	131, 570	35, 925	52, 395	780	1,308	32, 963	31, 158	3 51, 670	1,448

Yield computed by dividing production of breeze by coal charged at plants actually recovering.
 Included under "Undistributed."
 As reported; quantity produced but not used was undoubtedly greater. See Mineral Resources of the United States, 1922, part 2, pp. 726-727.

CONSUMPTION OF COKE

Records of the consumption of coke are important because of the light that they throw on the trend of demand and hence on the prospects for future expansion of the industry. The calculated consumption of coke in 1941, making allowance for imports and exports from January through September only and changes in producers' stocks, was 65,101,401 tons. In comparison with 1940, the year showed an increase of 8,075,155 tons.

The principal use of coke in 1941 was in blast furnaces, where it is one of the basic materials employed for smelting iron ore. Unprecedented activity in the iron and steel industry in 1941 was due to the demand for steel to build war equipment. According to figures compiled by the American Iron and Steel Institute, 49,469,972 tons of coke (approximately 76 percent of the total coke consumption) went into blast furnaces for the manufacture of pig iron and ferro-alloys. The remainder—24 percent—was used in foundries, in smelting the nonferrous metals, in the manufacture of water gas, in miscellaneous other industrial uses, and in domestic heating.

Improvements in blast-furnace fuel efficiency and in the quality of the coke have resulted in a decline in coke requirements per net ton of pig iron produced (table 28). In 1913 blast furnaces required 2,172.6 pounds of coke per ton of pig iron; this has decreased until an all-time low of 1,767.8 pounds of coke per ton of pig iron and ferro-allovs was established in 1941.

Table 27.—Coke consumed in manufacture of pig iron and for other purposes in the United States, 1913, 1918, and 1938-41, in net tons

Year	Total production	Imports	Exports	Net change	Indicated United States con-	way			
	production			in stocks	sumption 1	Quantity	Per- cent	Quantity	Per- cent
1913 1918 1938 1939 1940 1941	46, 299, 530 56, 478, 372 32, 495, 815 44, 326, 641 57, 072, 134 65, 186, 578	101, 212 30, 168 135, 240 141, 911 112, 550 4 241, 690	987, 395 1, 687, 824 486, 571 589, 925 804, 095 4 525, 223	(3) (3) +1, 081, 267 -1, 074, 455 -645, 657 -198, 356	45, 413, 347 54, 820, 716 31, 063, 217 44, 953, 082 57, 026, 246 5 65, 101, 401	37, 192, 287 45, 703, 594 19, 035, 270 31, 422, 272 41, 839, 039 49, 469, 972	81. 9 83. 4 61. 3 69. 9 73. 4 76. 0	8, 221, 060 9, 117, 122 12, 027, 947 13, 530, 810 15, 187, 207 15, 631, 429	18. 1 16. 6 38. 7 30. 1 26. 6 24. 0

¹ Production plus imports minus exports, plus or minus decrease or increase, respectively, of net changes

TABLE 28.—Coke and coking coal consumed per net ton of pig iron made in the United States, 1913, 1918, and 1938-41

Year	Coke per net ton of pig iron and ferro- alloys ¹ (pounds)	Yield of coke from coal (per- cent)	Coking coal per net ton of pig iron and ferro- alloys (pounds calculated)	Year	Coke per net ton of pig iron and ferro- alloys ¹ (pounds)	Yield of coke from coal (per- cent)	Coking coal per net ton of pig iron and ferro- alloys (pounds calculated)
1913	2, 172. 6	66. 9	3, 247. 5	1939	1, 778. 0	69. 8	2, 547. 3
	2, 120. 7	66. 4	3, 193. 8	1940	1, 781. 2	70. 1	2, 540. 9
	1, 801. 0	69. 7	2, 583. 9	1941	1, 767. 8	70. 0	2, 525. 4

¹ From Report of American Iron and Steel Institute; consumption per ton of pig iron only, excluding furnaces making ferro-alloys, was 2,172.6 in 1913, 2, 120.7 in 1918, 1,774.6 in 1938, 1,760.0 in 1939, 1,756.9 in 1940, and 1,745.2 in 1941.

² From Report of American Iron and Steel Institute. Figures include coke consumed in manufacture of ferro-alloys.

Data not available.

Figures cover January to September, inclusive.
 Subject to revision. Includes net difference between imports and exports for first 9 months only.

FURNACE, FOUNDRY, DOMESTIC, AND OTHER COKE

The trade terms "furnace coke" and "foundry coke" refer to the size and grade, as well as to the use for which the coke may be intended. The requirements for good furnace coke and good foundry coke differ in some respects. Uniformity is vital to successful and economical blast-furnace operation. Furnace coke preferably should be uniform in size and in ash, sulfur, and phosphorus content; it usually is run-of-

oven minus the small coke and breeze.

Foundry coke is somewhat different from furnace, as its only function in the cupola is to furnish heat to melt the iron, whereas in the blast furnace the function is twofold—to supply carbon monoxide for reduction and heat to melt the iron. The requirements of good foundry coke are minimum reactivity with carbon dioxide gas, larger size than blast-furnace coke (over 2½ to 3 inches), hardness and strength sufficient to prevent excessive degradation by impact of the massive iron charged into the cupola shaft, and relative freedom from impurities.

The most important characteristics of domestic coke are the ash content, fusing temperature of the ash, and density. Domestic coke may be screened from furnace or foundry coke, or it can be obtained by crushing the larger sizes. Special purposes may require other sizes and grades of coke. Not all furnace coke is used in blast furnaces or all foundry coke in foundries; and either grade may be pur-

chased by other classes of consumers.

Coke as a domestic fuel is used chiefly in regions where there is a surplus of metallurgical coke or where there is a large production of city gas and corresponding large quantities of coke that must find a market. In the latter case, gas is the primary product and coke a byproduct in contrast to furnace and merchant plants, where coke is the primary product and gas a byproduct. Most of the coking plants

are equipped to screen and size coke for domestic use.

In 1941 the sales of all kinds of coke except that for domestic use increased substantially. The demand for metallurgical fuel caused diversion of coke from domestic use to the metallurgical industry. Byproduct coke sold for furnace use, including coke sold to financially affiliated corporations, totaled 6,215,601 tons—21 percent more than in 1940. Foundries purchased 2,494,393 tons, a 34-percent increase over 1940. The increase in coke for metallurgical use resulted in a 19-percent decrease from 1940 in sales of domestic coke. The sales of byproduct coke for domestic use totaled 6,596,969 tons compared with 8,131,947 tons in 1940. Sales of industrial coke in 1941, including that used for the manufacture of water gas, amounted to 1,844,126 tons, an increase of 5 percent.

Sales of beehive coke in 1941 increased in proportion to the large increase in production. Coke sold by producers for blast-furnace use amounted to 4,805,099 tons compared with 1,799,292 tons in 1940, an increase of 167 percent. Most of the beehive coke is used in blast furnaces. Sales for foundry use increased 52 percent and those for industrial and other uses (including water gas) 46 percent. Beehive coke sold for domestic use declined from 99,066 tons in 1940

to 85,990 tons in 1941, or 13 percent.

TABLE 29.—Byproduct coke produced and sold or used by producer in the United States in 1941, by States [Exclusive of screenings or breeze]

							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Sold		H E		
State	Pro	duced	Used by p blast fi	producer in irnaces ¹	Fur	nace s	Fou	indry	Dome	stic use	other	rial and use (in- water gas)?	T	otal
	Net tons	Value	Net tons	Value	Net tons	Value	Net tons	Value	Net tons	Value	Net tons	Value	Net tons	Value
Tennessee. Utah. West Virginia. Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin	622, 867	25, 214, 769 48, 432, 824 (4) 18, 213, 048 5, 082, 787 (4) 32, 808, 937 48, 491, 596 66, 163, 689 824, 146 (6, 192, 305	567, 186 2, 584, 916 6, 694, 535 1, 678, 799 168, 257 1, 235, 545 289, 911 235, 673 1, 903, 456 7, 407, 632 13, 114, 906 31, 424 171, 315 1, 743, 234	42, 829, 283 (1) (2) (3) (4) (7) (7) (73, 265 1, 747, 885 (1) 12, 060, 560 37, 616, 296 (1) 219, 968 (4) 4, 766, 308 1, 082, 339	8, 160 (4) 9, 955 (4) 23, 353 1, 758, 964 1, 110, 796 1, 498, 875 (4)	(4) (4) (4) (4) (4) 10, 455, 112 6, 059, 839	8, 829 354, 340 (4) 84, 275 (4) 57, 186 254, 208 275, 194 34, 147	(4) (4) (4) (4) (4) (4) (4) (4) (1) 1,947,180 2,804,193 307,323	1, 603 733, 962 191, 699 23, 502 897, 532 773, 277 302, 755 460, 334 1, 236, 442 528, 335 144 2, 553 15, 402	(4) 4, 908, 462 1, 093, 758 (4) 4, 501, 890 2, 620, 697 (4) 8, 781, 055 1, 870, 681 3, 346, 324 (9)	43, 063 93, 377 67, 110 45, 611 45, 509 53, 001 (4) 256, 752 221, 013 126, 751 219, 496 45, 595 60, 690	(4) 677, 412 393, 529 (4) 380, 733 (9) 1, 562, 979 818, 934 1, 526, 239 295, 933 (4)	722, 241 69, 113 1, 037, 271 1, 635, 436 447, 338 797, 625 3, 216, 461 1, 848, 197 2, 521, 900	(4) 9, 437, 027 5, 673, 477 (4) 11, 165, 308 3, 710, 765 (9) 20, 799, 146 10, 696, 634 14, 318, 132 604, 178 (1) 1, 361, 028
Undistributed	58, 482, 422	31, 205, 154 316, 477, 231		15, 777, 614	762, 602	4, 679, 266	778, 149			10, 897, 003	69, 750	3, 480, 622		15, 724, 488
At merchant plants	13, 494, 509	96, 343, 846 220, 133, 385	2, 490, 547	14, 358, 030	2 397 658	13 873 058	2 071 736	20 808 122	5 452 D78	20 702 200	1 412 104	0.051.410	11 225 054	
Grand total, 1940	54, 014, 309	260, 356, 566	37, 865, 240	166, 130, 455	5, 134, 395	23, 720, 459	1, 858, 664	16, 116, 048	8, 131, 947	49, 014, 276	1, 754, 917	10, 281, 498	16, 879, 923	99, 132, 281

¹ Includes 772,720 net tons valued at \$4,562,760 used to make producer gas; 1,174,279 tons, \$6,142,787, used to make water gas; and 445,878 tons, \$2,431,872, used for other purposes

TABLE 30.—Beehive coke produced and sold or used by producer in the United States in 1941, by States

के निर्देश कर्षा प्रमान क्षेत्रमध्य उत्तरी र र	1	luced	Used by 1	producer in	So	lđ	
State	d padr	r viga in a	blast furnaces 1		Furnace 3		
The selfs apply his yes	Net tons	Value	Net tons	Value	Net tons	Value	
Alabama Colorado and Utah	95, 200 90, 440	\$601, 735 652, 430	(2)	(0)	(4)	(4)	
Kentucky and Tennessee Pennsylvania	41, 137 5, 891, 118 324, 573	306, 866 31, 572, 276 1, 922, 181	(4) 830, 308	(4) \$3, 694, 915	4, 471, 309 158, 097	(4) \$24, 520, 230 937, 791	
West Virginia Undistributed	261, 688	1, 434, 518	(4) 185, 444	(4) 1, 282, 852	162, 918 12, 775	744, 499 77, 756	
Total: 1941 1940	6, 704, 156 3, 057, 825	36, 490, 006 13, 475, 844	1, 015, 752 672, 371	4, 977, 767 3, 206, 770	4, 805, 099 1, 799, 292	26, 280, 276 7, 736, 480	

		Sold—Continued										
State	Fo	undry	Dome	stic use	use (i	al and other neluding r gas) ³	Total					
	Net tons	Value	Net tons	Value	Net tons	Value	Net tons	Value				
Alabama Colorado and Utah Kentucky and Ten-	···(1)	(4)	(4)	(4)	(4)	(4)	(4)	9				
nessee	(4) 230, 942 57, 815 44, 091 19, 218	(4) \$1, 453, 656 365, 316 333, 401 131, 257	79, 559 4, 290 1, 525 616	(4) \$395, 339 20, 072 6, 235 3, 090	(4) 275, 930 104, 765 51, 630 1, 147	(4) \$1, 482, 250 614, 169 341, 385 7, 815	(4) 5, 057, 740 324, 967 260, 164 33, 756	(*) \$27, 851, 475 1, 937, 348 1, 425, 520 219, 918				
Total: 1941 1940	352, 066 231, 298	2, 283, 630 1, 182, 808	85, 990 99, 066	424, 736 385, 365	433, 472 297, 520	2, 445, 619 1, 230, 954	5, 676, 627 2, 427, 176	31, 434, 261 10, 535, 607				

CONSUMPTION OF FOUNDRY COKE IN 1941

The important position of the foundry industry in the economic picture of the country is understood when it is pointed out that every one of the 3,000 foundries had to buy metals (mainly pig iron and ferrous scrap), coke, and sand. There resulted a large freight movement which utilized probably every railroad and waterway in the Nation to transport raw materials going into the foundry and castings coming out.

Coke is a basic fuel material in the cupolas and furnaces of the foundries, and coke must have suitable characteristics to meet the fuel

requirements.

The American Society for Testing Materials has adopted the following specification limits 2 for the composition of foundry coke:

	Percentage in dried sample
Volatile matter	(not over) 2.0 percent
Fixed carbon	(not over) 86.0 percent
Ash	(not over) 12.0 percent
Sulfur	(not over) 1.0 percent

³ American Society for Testing Materials, Specification D-17-16 for Foundry Coke: A. S. T. M. Standards for 1939, part III, Nonmetallic Materials, pp. 59-61.

¹ Includes 4,028 net tons valued at \$20,145 used for other purposes than in blast furnaces.

² Includes 962,586 net tons valued at \$4,759,191 sold to financially affiliated corporations for blast-furnace use; 8,602 tons, \$42,107, sold for other purposes; and 3,834,011 tons, \$21,478,978, reported as merchant sales.

³ Includes 85,926 net tons valued at \$405,080 sold for manufacture of water gas.

⁴ Included under "Undistributed."

Foundry coke must be of the highest quality; it therefore commands a premium over other grades of coke. The chemical and physical characteristics of coal-tar-pitch coke and petroleum coke make them unsuitable for foundry use. The only coke suitable for such use is that produced in byproduct or beehive ovens.

The national consumption of foundry coke in 1941 totaled 2,679,581

tons.

Widespread use of foundry coke is indicated by the fact that all States except Wyoming reported coke consumed for this purpose in 1941. Figures showing the consumption of foundry coke, by States, in 1941 reveal that Michigan consumed the largest amount—423,167 net tons. Pennsylvania was second with 321,892 tons, Ohio third with 321,693 tons, and Illinois fourth with 225,253 tons. These four States consumed a total of 1,292,005 tons, or 48 percent of the entire consumption of the country. Substantial tonnages of foundry coke, aggregating 737,206 tons, or about 28 percent of the total, were consumed in Alabama, New York, Indiana, New Jersey, and Wisconsin.

The comparative consumption of foundry coke, by regions, is shown in table 31. From this table it will be noted that the Midwest region was far ahead in foundry-coke consumption during the year. The seven States composing this region used 1,312,423 tons, or 49 percent of the total of 2,679,581 toos. The Central Atlantic region was next, with a consumption of 715,576 tons, representing 27 percent of the total. All other regions consumed the remainder of the tonnage, or about 24 percent.

According to the figures submitted by the operators, stocks of foundry coke amounted to 302,795 tons at the end of the year, and they estimated that coke requirements for foundry purposes in 1942 would reach 2,877,134 tons.

Table 31.—Consumption of foundry coke in the United States in 1941, by regions, in net tons

Region	Foundry col	ke consumed	Stocks of foundry coke, Dec. 31,	Estimated consumption of foundry	
	Byproduct	Beehive	1941	coke during 1942	
New England:					
Maine	5, 071	905	819	6, 481	
Connecticut	52,094	1.870	5, 096	67. 180	
Massachmentte	54, 456	3, 741	6, 980	67. 104	
New Hampshire	5, 356	400	589	6, 649	
Rhode Island	14, 558		754	16, 912	
Vermont	6, 973	25	1, 271	8, 818	
	138, 508	6, 941	15, 509	173, 144	
Central Atlantic:					
New York	147, 598	11, 132	23, 362	182, 855	
New Jersey	126, 461	9, 501	15, 034	149, 785	
Delaware	3, 687	685	587	5, 702	
Maryland	18, 151	13, 421	4, 337	36, 390	
Pennsylvania	220, 830	101, 062	38, 197	368, 222	
Virginia	27, 479	22, 798	5, 615	55, 338	
Virginia West Virginia	5, 675	6,812	837	14, 574	
District of Columbia		284	70	300	
	549, 881	165, 695	88, 039	813, 166	
Southeast:					
Mississippi	794	70	201	964	
Alabama	170, 142	845	14,066	179, 147	
Georgia	15, 172	2, 552	3, 250	18, 274	
Florida	1, 702	138	342	2, 186	
South Carolina		20, 519	717	26, 975	
North Carolina	8, 350	4, 256	1, 275	13, 169	
Tennessee	64, 128	7, 103	7, 425	76, 590	

Table 31.—Consumption of foundry coke in the United States in 1941, by regions, in net tons—Continued

	Foundry col	ke consumed	Stocks of foundry	Estimated consumption	
Region	Byproduct	Beehive	coke, Dec. 31, 1941	of foundry coke during 1942	
Aidwest:					
Ohio	305, 329	16, 364	39, 031	349, 95	
Michigan	409, 454	13, 713	22,992	361, 97	
Wisconsin	118, 326	5, 146	16,021	141, 2	
IndianaIowa	145, 375 47, 827	2, 680 3, 480	15, 242 6, 790	150, 63 50, 20	
Illinois	220, 990	4, 263	33, 124	249.9	
Kentucky	7, 846	11, 630	3, 694	21, 50	
	1, 255, 147	57, 276	136, 894	1, 325, 50	
Vest Mid-Continent:					
Colorado	10, 388	546	1,997	15,04	
Kansas	10, 213	40	1, 683	12, 8	
Nebraska	2, 975	126	324	3, 1	
	23, 576	712	4,004	31, 0	
fulf Southwest:	0.000		337	3, 6	
Louisiana Texas	2, 626 19, 134	171 3, 337	3, 537	26, 9	
Arkansas	374	73	105	20, 5	
Missouri	47, 900	568	4, 821	55, 8	
Oklahoma	2, 262	188	432	3, 1	
	72, 296	4, 337	9, 232	90, 0	
Central Northwest:					
Minnesota	23, 951	555	2, 865	30, 2	
Montana	2, 727	96	526 41	3, 1	
North Dakota	279	90	94	2	
-	26, 957	651	3, 526	33, 8	
Pacific Northwest:					
Idaho	78	452	247	6	
Washington	6, 576	2, 714	2, 651	11,3	
Oregon	3, 955	1, 306	1, 151	7, 1	
	10, 609	4, 472	4, 049	19, 1	
Pacific Southwest:					
Arizona	4, 655		98	4,9	
New Mexico	186		17	2	
Nevada California	59 43, 991	9 4, 592	13 12,606	58, 2	
Utah	9, 037	528	1, 542	10, 3	
	57, 928	5, 129	14, 266	73, 8	
Grand total	2, 398, 885	280, 696	302, 795	2,877,1	

STOCKS OF COKE AND COKING COAL

Stocks of coke are governed by the demand from industry. The abnormal demand for coke in 1941 resulted in a decrease in stocks held by the producers at the end of 1941. Total stocks of coke at the end of the year were 198,356 tons less than at the beginning. Byproduct coke declined 11 percent below the stocks at the beginning of the year and totaled 1,709,391 tons (table 33). The stocks of coke held at beehive plants, which are relatively small, increased during the year to 48,695 tons compared with 43,308 tons at the end of 1940.

The stocks of bituminous coal at byproduct ovens in 1941 closely followed the trend of monthly coke production. They were largest at the end of February and smallest at the end of May. Beginning

with June, stocks increased each month (except November) until the end of December, when they amounted to 8,901,462 tons.

Table 32.—Stocks of furnace, foundry, and domestic coke and of breeze in the United States on January 1, 1942, by States, in net tons

and the first of the second of the second			Coke	• 1 • • · · · · · · · · · · · · · · · ·	
State	Furnace	Foundry	Domestic and other	Total	Breeze
Byproduct plants:					1
Alabama	162, 800	1,700	10, 687	175, 187	17, 29
Colorado	4, 478	136	,	4, 614	16
Illinois	13, 085	3, 695	108, 738	125, 518	74, 71
Indiana	10, 585	831	22, 352	33, 768	24, 13
Marvland	50 040			50, 040	85, 16
Massachusetts	430	304	141, 756	142, 490	5, 64
Michigan	3, 233	5, 529	34, 872	43, 634	4.02
Minnesota	882	1,074	100. 448	102, 404	11.84
New Jersey		128	59, 709	59, 837	1.718
New York	10,072		211, 105	221, 177	52, 207
Ohio	181, 174	618	41, 756	223, 548	91, 757
Pennsylvania	188, 383	1.931	89, 109	279, 423	53, 310
Tennessee	22, 783	105	47	22, 935	429
Utah	2, 125		5, 071	7, 196	1, 711
West Virginia	47, 480	373	5, 968	53, 821	8, 531
Connecticut, Kentucky, Missouri, Rhode		"	ا ۵٫۰۵۵	00,021	0,001
Island, and Wisconsin	348	4,024	159, 427	163, 799	10, 719
	697, 898	20, 448	991, 045	1, 709, 391	443, 366
At merchant plants	30, 371	17, 633	836, 124	884, 128	136, 631
At furnace plants	667, 527	2,815	154, 921	825, 263	306, 735
Beehive plants:					
Alabama	3, 545				3.54
Colorado and Utah	0. 040 85			3, 545	
Kentucky and Tennessee		844		929	234
Pennsylvania.	4, 104 8, 347	410		4, 514	
Virginia.		1, 463	21, 535	31, 345	1,388
West Virginia	2,074	475	58	2.607	20
W Cos virginia	2, 156	1, 795	1,804	5, 755	40
	20, 311	4, 987	23, 397	48, 695	1, 682

Table 33.—Summary of total stocks of coke on hand at all byproduct and beehive plants in the United States on January 1, 1929 and 1938-42, in net tons

[Exclusive of screenings or breezel

(District of Scientings of Disease)											
	1929	1938	1939	1940	1941	1942					
Byproduct plants:											
Furnace	750, 318	610, 840	931, 644	597, 550	525, 798	697, 898					
Foundry Domestic and other	24. 426	29, 828	88, 334	49, 771	14. 123	20, 448					
Domestic and other	1, 018, 205	1, 878, 652	2, 611. 645	1, 922, 369	1, 373, 213	991, 045					
	1, 792, 949	2, 519, 320	3. 631. 623	2, 569. 690	1, 913, 134	1, 709. 391					
Beehive plants:						-					
Furnace	38, 446	13, 542	7, 228	16, 402	16, 022	20, 311					
Foundry Domestic and other	8 020	13, 264	8, 336	8, 312	3.973	4, 987					
Domestic and other	8, 511	49, 161	29, 367	7, 695	23, 313	23, 397					
	54, 977	75, 967	44, 931	32, 409	43, 308	48, 695					
Total:											
Furnace	788, 764	624, 382	938, 872	613, 952	541, 820	718, 209					
Foundry	32, 446	43,092	96, 670	58, 083	18,096	25, 435					
Domestic and other	1, 026, 716	1. 927, 813	2, 641, 012	1, 930, 064	1, 396, 526	1,014,442					
:	1, 847, 926	2. 595, 287	3, 676, 554	2, 602, 099	1, 956. 442	1, 758, 086					

Table 34.— Total stocks of coke at all furnace and nonfurnace byproduct plants in the United States on first of each month, 1940-41, in net tons

[Includes furnace, foundry, and domestic, but not breeze]

35-44	Furnace	plants	Other	plants	Total		
Month	1940	1941	1940	1941	1940	1941	
January February March April May June July August September October November	800, 388 930, 677 954, 997 877, 078 846, 352 807, 393	742, 306 731, 845 773, 666 845, 329 694, 433 741, 425 849, 329 949, 868 880, 824 870, 731 817, 004	1, 664, 617 1, 163, 723 914, 190 837, 927 1, 083, 632 1, 105, 553 935, 429 1, 068, 714 1, 219, 423 1, 281, 090 1, 289, 625 1, 283, 970	1, 170, 828 864, 873 617, 759 491, 967 706, 203 663, 714 578, 343 576, 752 661, 906 698, 764 744, 925 850, 750	2, 569, 690 2, 005, 846 1, 697, 985 1, 638, 315 2, 014, 309 2, 060, 550 1, 812, 507 1, 915, 066 2, 026, 816 2, 057, 536 2, 029, 395 1, 995, 974	1, 913, 13 1, 596, 71 1, 391, 42 1, 337, 29 1, 405, 13 1, 427, 66 1, 450, 34 1, 611, 77 1, 579, 58 1, 615, 65 1, 667, 75	

Table 35.—Stocks of bituminous coal at byproduct-coke plants in the United States at end of each month, 1938-41, in net tons

Month	1938	1939	1940	1941
January February March April May June July August September October November	6, 469, 457 5, 822, 943 5, 231, 300 4, 934, 840 4, 867, 332 4, 999, 856 5, 364, 442 5, 539, 623 5, 951, 617 6, 459, 096 7, 172, 900 7, 462, 163	7, 373, 871 7, 372, 654 7, 221, 632 4, 434, 124 2, 598, 470 3, 548, 326 4, 534, 922 5, 631, 984 6, 220, 015 7, 250, 436 8, 114, 807 7, 992, 848	6, 613, 253 5, 978, 167 5, 373, 567 5, 217, 870 5, 995, 170 6, 506, 396 7, 448, 266 7, 831, 640 8, 860, 832 9, 711, 983 10, 091, 250 10, 184, 443	9, 886, 936 9, 889, 674 9, 853, 544 4, 969, 865 4, 723, 316 5, 912, 877 7, 205, 844 7, 291, 646 8, 371, 372 8, 327, 473 8, 901, 465

VALUE AND PRICE

In previous years, reference has been made in the Coke chapters to the various accounting methods used by coke operators affiliated with iron and steel plants, by which the coke sometimes is charged to the furnace department at cost and sometimes includes a percentage of profit at the current market price. In the open market, however, price cutting, long-term contracts, and other factors materially affect the prices at which coke-plant operators actually dispose of coke. According to sales data furnished by the operators, average receipts per ton for byproduct coke sold rose as follows: Furnace coke, \$0.61; foundry, \$1.09; domestic, \$0.93; and other industrial, \$0.82. Average receipts from the sales of beehive coke in 1941 increased over 1940 as follows: Furnace coke, \$1.17; foundry coke, \$1.38; domestic coke, \$1.05; and other industrial coke, \$1.50.

Trade-journal quotations published in 1941 showed that the price of byproduct foundry coke increased in all markets. The increases ranged from \$0.96 in New England to \$0.33 at St. Louis, Mo. Connellsville prices for beehive coke, usually the basis for the beehive-coke industry, rose \$1.50 per ton for furnace coke and \$1.14 per ton for foundry coke.

Table 36.—Average receipts per net ton for coke sold in the United States in 1941, by States

	200	Ву	product		Beehive					
State	Fur- nace 1	Found- ry	Domes- tic	Other in- dustrial, including water gas	Fur.\	Found-	Domes- tic	Other in- dustrial, including water gas		
Alabama Colorado, Utah, and Wis-	\$4.03	\$7.91	\$4. 19	\$4.95	\$5. 52					
consin	7. 65	11.06	7. 73	5. 72		\$6.43	\$3.91	\$7. 3		
and Rhode Island Illinois Indiana	8. 02 4. 91 6. 33	10. 75 10. 76 (2)	8. 25 6. 69 5. 71	8. 14 7. 25 5. 86						
Kentucky, Michigan, and Missouri Maryland and New Jersey	5. 10 (2)	10. 27	5. 80 7. 31	6. 69 7. 00		5.86	(2)			
Minnesota New York	(2) 5. 94	(2) (2)	8. 66 7. 10	7. 49 7. 07						
Ohio Pennsylvania Tennessee and West Vir-	5. 46 4. 43	7. 66 10. 19	5. 25 6. 33	6. 46 6. 95	5. 48	6. 29	4.97	5. 3		
ginia Virginia	(2)	8. 49	4. 33	6. 47	4. 66 5. 93	7. 56 6. 32	(2) 4.68	6. 61 5. 86		
Undistributed	6. 27	10. 47					4.46			
United States average	5, 23	9. 76	6.96	6.68	5. 47	6. 49	4.94	5. 64		
At merchant plantsAt furnace plants	5. 79 4. 89	10.09 8.15	7. 30 5. 35	7. 04 5. 47						

¹ Includes coke sold to affiliated corporations for all other purposes and merchant sales. ² Included under "Undistributed."

Table 37.—Average monthly prices per net ton at ovens of spot or prompt Connellsville furnace and foundry coke, 1929 and 1938-41 i

Month Furnace coke					Foundry coke					
	1929	1938	1939	1940	1941	1929	1938	1939	1940	1941
January February March April May June July August September October November December	\$2. 75 2. 90 2. 98 2. 78 2. 75 2. 75 2. 75 2. 75 2. 65 2. 65 2. 65 2. 64	\$4. 00 4. 00 4. 00 4. 00 4. 00 3. 85 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75	\$3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 4. 25 4. 90 5. 00	\$4. 20 4. 00 4. 00 4. 00 4. 00 4. 20 4. 63 4. 75 4. 75 5. 10 5. 38	\$5. 50 5. 50 5. 52 5. 63 6. 00 6. 13 6. 13 6. 13 6. 13 6. 13 6. 13	\$3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75	\$5. 00 5. 00 5. 00 5. 00 5. 00 4. 85 4. 75 4. 75 4. 75 4. 75 4. 75	\$4. 75 4. 75 4. 75 4. 75 4. 75 4. 75 4. 75 4. 75 5. 12 5. 65 5. 75	\$5. 50 5. 31 5. 25 5. 25 5. 25 5. 25 5. 25 5. 25 5. 25 5. 25 5. 25 5. 63 5. 75	\$5. 75 5. 75 5. 85 5. 62 6. 72 6. 88 6. 88 6. 88 6. 88 6. 88 6. 88
Average	2.75	3.86	4.09	4.42	5. 92	3.75	4.86	5. 02	5. 35	6. 49

¹ Iron Age.

Table 38.—Average monthly prices per net ton of byproduct foundry coke in 11 markets in the United States, 1937-41, as quoted by Steel

	Ī		1		<u> </u>	Ι	<u> </u>			l .			ĕ
		Þ		4.					per		190	10	_
	anuary	February	원	_				ust	September	October	November	December	Average year
	Bug	epr	March	April	May	June	July	August	ept	5	TOV	96	146
Birmingham, Ala. (at ovens): 1937	-5	F4				<u></u>	5					-	
Birmingham, Ala. (at ovens):	00 50	ac F0	#0 FO	** 05	e7 05	\$7.95	e7 05	\$7 05	e7 20	e7 50	\$7 50	47 EO	97 10
1937	7. 50	7.50	7.50	7.50	7.50	7.50	7.00	7.00	7.00	7.00	7.00	7.00	7. 25
1939	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00 7.50	7.00	8.05 7.50	7.50 7.50	7.12 7.50
1941	7. 50	7: 50	7. 50	7. 50	8.30	8.50	8. 50	8.50	8. 50	8. 50	8. 50	8. 50	8. 15
Buffalo, N. Y. (delivered at													
1937	10. 50	10. 50	10. 50	10. 50	10.50	10.50	10.50	10.50	10.50	10.50	10.50	10.50	10.50
1938	10. 50	10.50	10. 50	10. 50	10. 50	10.50	10.50	10.50	10. 50	10. 50	11. 25	11. 25	10.62
1940	11. 25 11. 75	11. 25 11. 75	11. 25 11. 75	11. 25 11. 75	11. 25 12. 05	11. 25 12. 50	11. 25 12. 50	11. 25 12. 50	11. 25 12. 50	11. 25 12. 50	11. 75 12. 50	11.75 12.50	12.21
Chicago, Ill. (at ovens):	0.70	0 50	0 50	10.05	10.05	10.95	10.05	10.95	10.95	10. 95	10.95	10 95	10.08
1937	9. 50	9. 50 10. 25	9. 50 10. 25	10. 25 10. 25	10. 25	10. 25	10. 25	9.75	9. 75	9.75	9.75	9.75	10.03
1939	9.75	9. 75	9. 75	9.75	9.75	9.75	9.75	9.75	9.75	9.95	10.50	10.50	9.89
1941	11.00	11.00	11.00	11.00	11.50	11.50	11.50	11.50	11. 50	11. 50	11. 50	11.50	11. 33
Cincinnati, Ohio (delivered at													
1937	9. 70	9.75	9.75	10. 50	10. 50	10.50	10.50	10.50	10. 50	10. 50	10, 50	10.50	10.31
1938	9.75	9. 75	9.75	9.75	9.75	9.75	9.75	9.75	9. 75	9.75	10. 50	10. 50	9.88
1940	10.50	10.50	10.50	10.50	10.50	10. 50	10. 50	10.50	10. 50 11. 75	11.00	11.00	11.00 11.75	10.62 11.46
Cleveland, Ohio (delivered at	11.00	11.00	11.00	11.00	11.00	1							
consumers' works):	10, 30	10.30	10. 30	10. 80	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.05	10.81
1938	11.05	11.05	11.05	11.05	11.05	11.05	10.75	10.30	10.30	10.30	10.30	10.30	10.71
1939	11.05	11.05	11.05	11.05	11.05	11.05	11.05	11.05	11.05	11.55	11.55	11.55	11. 17
1941	11. 55	11. 55	11. 55	11. 55	12. 15	12. 30	12.30	12.30	12. 30	12.30	12.30	12.30	12.04
consumers' works):				10.00				11 10	11 10	11 10	11 10	11 10	10.07
1937	10. 50 11. 10	10.70 11.10	10.70	10. 89 11. 10	11. 10 11. 10	11. 10 11. 10	10.90	11. 10 10. 25	10. 25	10. 25	10. 25	10. 25	10. 73
1939	10. 25	10.25	10. 25	10.25	10.25	10.25	10. 25	10.25	10. 25	10. 25	11.00	11.00	10.38
1941	11.50	11.50	11.50	11.50	11.80	12. 25	12. 25	12. 25	12. 25	12. 25	12. 25	12. 25	11.96
Indianapolis, Ind. (delivered at													
1937	9.60	9.65	9. 65	10. 33	10. 50	10. 50	10.50	10.50	10.50	10. 50	10.50	10.50	10. 27
1938	10. 50	10. 50	10. 00	10. 50 10. 00	10.00	10. 00	10.00	10.00	10.00	10.00	10.75	10.75	10. 12
1940	10. 75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	11.25 12.00	11.25 12.00	11.25 12.00	10.87 11.71
Newark, N. J. (delivered at	11.20	11. 20	11. 20	11. 20	11.00	12.00	12.00	22.00					
consumers' works):	10, 17	10, 17	10. 17	10. 85	10.85	10. 85	10.85	10.85	10.85	10.85	10.85	10.88	10.68
1938	10.88	10.88	10.88	10.88	10.88	10.88	10.88	10.88	10.88	10.88	10.88	10.88	10.88
1939	11.38	11.38	11.38	11.38	11.38	11.38	11.38	11.38	11.38	11. 38	11.87	11.85	11.46
1941	11.85	11.85	11.85	11. 85	12.45	12.60	12.60	12.60	12.60	12. 60	12.60	12.60	12. 34
consumers' works):								10 50	10.50	10 50	10 50	10 50	10 90
1937	12.00 12.50	12.00 12.50	12.00 12.50	12. 50 12. 50	12. 50 12. 50	12. 50 12. 50	12. 50 12. 50	12. 50 12. 50	12. 50 12. 50	12. 50 12. 50	12. 50 12. 50	12. 50 12. 50	12. 50
1939	12. 50	12. 50	12. 50	12. 50	12. 50	12. 50	12. 50	12.50	12. 50	12. 50	12. 50	12. 50	12.50
1940 1941	12.50 12.50	12. 50 13. 00	12.00	12. 50 13. 00	12. 50 13. 75	13.75	13.75	13.75	13.75	13. 75	13.75	13.75	13.46
New England (delivered at consumers' works): 1937							1			1			
1937	9.85	9.85	9.85	10. 4 0	10.60	10.60	10.60	10.60	10.60	10.60	10.60	10.60	10.40
1938	10.62 10.65	10.63 10.65	10. 63 10. 65	10. 65 10. 65	10.65 10.65	10. 65 10. 65	10. 65 10. 65	10. 65 10. 65	10.65	11.02	10.05	11. 15	10.76
1940	11. 15	11. 15	11. 15	11. 15	11. 15	11. 15	11. 15	11. 15	11.15	11. 15	11.63	11.63	11.23
St. Louis, Mo. (delivered at	11.63	11.03	11.03	11.03	12. 13	12. 08	12. 08	12.00	12.00	12. 00	14. 00	22, 00	
consumers' works);	10 10	10 50	10 50	10 80	11 00	11 00	11.00	11.00	11.00	11.00	11.00	11.00	10.83
1938	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00
1939	11.00	11.00	11.00 11.75	11. 00 11. 75	11.00 11.75	11.00 11.75	11.00 11.75	11.00 11.75	11.00 11.75	11. 00 11. 75	11.75	11. 75 11. 75	11.75
1941	11.75	11.75	11. 75	11. 75	12. 15	12. 25	12. 25	12. 25	12. 25	12. 25	12. 25	12. 25	12.08
	<u> </u>		<u>'</u>										

SHIPMENTS BY RAIL, WATER, AND TRUCK

Table 39.—Beehive coke loaded for shipment on originating railroads, waterways, and trucks in the United States in 1941, by routes, as reported by coke producers

D.		Net	tons	Percent	
Route	State	By States	Total	of total	
Railroads:					
Baltimore & Ohio	Pennsylvania	1, 040, 511	} 1, 081, 943	16.8	
Chesapeake & Ohio	West Virginia	41, 432 45, 679	45, 679	.7	
Denver & Rio Grande Western	Colorado	84, 923	05 214	1. 5	
Huntingdon & Broad Top Mountain	Utah Pennsylvania	10, 393 10, 088	10, 088	.2	
	Virginia	281, 534		4.4	
Ligonier Valley	Pennsylvania	66, 543	66, 543	1.0	
Louisville & Nashville	Kentucky Alabama	1, 834 98, 709	100, 543	1. 6	
Monongahela	Pennsylvania	1, 571, 276	1, 571, 276	24. 2	
Nashville, Chattanooga, & St. Louis	Tennessee	17, 432	17, 432	. 3	
New York Central Norfolk & Western	West Virginia	172, 850	172, 850	2. 7	
Pennsylvania	Pennsylvania	42, 820 2, 784, 656	42, 820 2, 784, 656	. 7 43. 0	
Pittsburgh & Lake Erie	do	110, 644	110, 644	1.7	
Total railroad shipments		6, 381, 324	6, 381, 324	98.8	
Waterways: Monongahela and Ohio Rivers.	Pennsylvania	48, 151	48, 151	.8	
Trucks		1 27, 615	27, 615	. 4	
Grand total		6, 457, 090	6, 457, 090	100.0	

¹ Coke delivered by trucks to consumers in all States that produced beehive coke.

DISTRIBUTION OF BYPRODUCT AND BEEHIVE COKE IN 1941

Coke shipped by producers, or used by them, is shown by States and regions of destination and by uses in this analysis. The tonnage shipped to each destination represents approximately the coke consumed therein; and, for practical purposes, the terms "distribution" and "consumption" are interchangeable in this connection. However, the total coke shipped and used by producers shown in this separate study of coke distribution differs slightly from the total "calculated" consumption of coke in 1941, shown in the preceding section on Consumption of Coke.

The national consumption of byproduct and beehive coke, not including imports, in 1941, totaled 64,876,457 tons, a 13-percent increase over the 1940 total of 57,170,633 tons. Pennsylvania led in total tonnage consumed, with 17,867,567 tons, followed by Ohio, New York, Indiana, and Illinois in the order named.

As activity in the coke industry follows closely that in the iron and steel industry, it is interesting to note that the increase in blast-furnace coke consumption paralleled the increase in total coke production in 1941. Of the 64,876,457 tons of coke consumed in 1941, 50,331,675 tons went into blast furnaces. The trend of coke consumption from domestic to metallurgical use can be seen from the decrease in domestic tonnage from 1940. In 1941, 6,660,847 tons of domestic coke were consumed compared with 7,974,308 tons in 1940.

Every State in the Union, as well as the District of Columbia, consumed foundry coke during 1941. The total, amounting to 2,787,-527 tons, was 35 percent greater than in 1940. Coke used for making producer gas and water gas and for other industrial uses increased

8 percent, with a tonnage of 5,096,408 tons compared with 4,732,890 tons in 1940.

The total consumption of breeze in the United States in 1941 amounted to 4,651,982 net tons, an increase of 582,289 tons over the

1940 figure.

The consumption by uses in 1941, by geographical regions, is shown in table 41. When compared with 1940, consumption increased in seven of the nine regions and decreased in two of them. The largest increase was in the Ohio region, which gained 25 percent over the 1940 figure, followed by the Illinois-Indiana region, with a gain of 21 percent. The Missouri Valley region had the greatest decrease in coke requirements, with a 16-percent decline from the 1940 total, and Michigan declined 10 percent.

Table 42 shows where the coke produced in each State was consumed. Although Alabama shipped coke into the greatest number of States in 1941, the tonnage was relatively small, as 92 percent of the coke produced in the State was consumed there. Pennsylvania shipped into 27 States, leading the Nation in total tonnage shipped outside the State with 3,902,258 tons. Indiana, which was second

highest, shipped 1,935,028 net tons in 1941.

Table 40.—Summary of byproduct and beehive coke and breeze consumed in each
State in 1941, in net tons

[Based upon reports from all United States producers showing destination of coke used by producer or sold in 1941. Does not include imported coke, which totaled 241,690 net tons from January to September, inclusive]

				Coke				
Consuming State	Furnace use	Foundry use	Making producer gas	Making water gas	Other in- dustrial use	Domes- tic use	Total	Coke breeze
Alabama	4, 140, 855	164, 668 6 500			60, 799 315	74, 634 72	4, 440, 956 6, 887	
Arkansas	_	(1)		(1)	510	(1)	(1)	14, 944
California	_ 20, 375	72, 657			24, 343	`´ 25	117, 400	137
California Colorado	573, 925	21, 969		144		568	616, 140	
Connecticut		48, 562	84, 442	52, 961	11, 205	202, 160	399, 330	
Delaware	_ 284	4, 227		412	7, 186	1, 389	13, 498	2, 135
District of Columbia	_	(1)		(1)	189	1, 554	62, 335	_ _
FloridaGeorgia	_	1,641		29, 948	878		36, 807	
Georgia	_ 1, 220	19, 147		7, 197	5, 755		47, 011	
Idaho Illinois	-	2,873			2,640		5, 513	
Illinois	_ 4, 369, 826	241, 538	28, 119	31, 749	115, 447	•615, 516	5, 402, 195	304, 686
Indiana	_ 5, 231, 850	145, 936		31, 828	162, 184			
10wa		1 02.014		6, 981	28, 440	8, 657	96, 152	
Kansas		10,690			3, 413	54	14, 157	
Kentucky	_ 281,364	21,897		14, 627	8,084	36, 838		
Louisiana	-	3,785			24, 824		33, 487	
Maine		(1)		(¹) 37		52, 826	61, 588	
Massachusetts	_ 1, 920, 995	30, 550	77, 000	00 101		27,666	2, 042, 829	
Massachusetts	1 050 500	(1) 415, 126					1, 200, 719	108, 431 195, 444
Michigan Minnesota	200,022	24, 764	4 165	4, 405	219, 576 24, 908		2, 508, 416 640, 659	
Mississippi	_ 202,000	1,060	4, 100		330	2, 260	9 650	31, 133
Missouri	121	51 936		206	72, 778	136, 286	3, 650 261, 227	2, 615
Montana	93 088	2 515		200	5, 200	100, 200	31, 703	19, 386
Nebraska	108	5 087		15, 843	6, 551	806	29, 295	22
Neveds		56		10,010	6, 857		6, 913	
New Hampshire	-	(1)		(1)	312			
New Hampshire New Jersey	105	122, 896	94, 312	225, 852			1,016,129	89, 557
New Mexico	1	1, 259	01,011		336	24	1,619	00,000
New Mexico	3, 395, 181	201, 752		686, 306		1, 349, 687	6, 192, 370	
North Carolina	192	15, 406		6,082		2,710	25, 823	100, 200
North Dakota		(1)		163	138	1, 295	(1)	
Ohio	_ 11, 005, 454	307, 127	2, 234	16, 216	267, 761	342, 508	11. 941. 300	677, 515
Oklahoma Oregon	-1	0.4/0			(1)	(1)	3, 920	

¹ Included under "Undistributed."

Table 40.—Summary of byproduct and beehive coke and breeze consumed in each State in 1941, in net tons—Continued

[Based upon reports from all United States producers showing destination of coke used by producer or sold in 1941. Does not include imported coke, which totaled 241,690 net tons from January to September, inclusive]

				Coke				
Consuming State	Furnace use	Foundry use	Making producer gas	Making water gas	Other in- dustrial use	Domes- tic use	Total	Coke breeze
Pennsylvania	16, 663, 593	331, 451	69, 450	68, 797	259, 805	474, 471	17, 867, 567	1 396 305
Rhode Island	10, 000, 000	15, 613		2, 460				
South Carolina	64		,	2,848				
South Dakota	0.1	(1)		2,010	(1)	2, 156	2,866	
Tennessee	140, 162	76, 177		149				
Texas	18, 824			110	16, 940			
Utah	(1)	18, 074			50, 472		242, 799	
Vermont	(-)	8, 141		2, 034			34, 860	
Virginia	74, 491	46, 514		345, 156				
Washington	11, 101	8, 111		010, 100	3, 287	10, 200	11, 580	
West Virginia	874, 483			458, 177			1, 446, 327	
West virgilia	30	139, 350		34, 595				
Wisconsin	90		99,000	04, 090			630, 928	
Wyoming	050 070	(1)		C4 001	7, 135		7, 949	
Undistributed	252, 970	76, 705		64, 091	540	3, 347	3, 479	23, 351
United States total	50, 331, 675	2, 787, 527	789, 769	2, 201, 385	2, 105, 254	6, 660, 847	64, 876, 457	4, 651, 982

¹ Included under "Undistributed."

Table 41.—Comparative tonnages of byproduct and beehive coke consumed in each State and region, 1940-41, in net tons

[Exclusive of imported coke and of screenings or breeze]

Consuming region and	Furns	ice use	Found	lry use		ndustrial nestic use	Tota	l coke
State	1940	1941	1940	1941	1940	1941	1940	1941
New England: Maine. New Hampshire. Vermont Massachusetts. Connecticut Rhode Island.	88, 830		(1) 1, 443 5, 433 48, 872 34, 847 (1)	48, 562	1, 095, 954	1 61, 588 1 60, 066 26, 719 2 1, 200, 719 350, 768 178, 403	58, 768 41, 311 1, 233, 656 366, 521	60, 066 34, 860 1, 200, 719 399, 330
Middle Atlantic: New York New Jersey Pennsylvania Delaware Maryland Dist. of Columbia	651 14, 319, 836 764	3, 395, 181 105 16, 668, 593	86, 161 219, 232 2, 758	201, 752 122, 896 331, 451 4, 227	2, 947, 521 921, 763 850, 635 3, 524	872, 523 8, 987	5, 704, 001 1, 008, 575 15,389,703 7, 046 1, 959, 295	6, 192, 370 1, 016, 129 17, 867, 567 13, 498 2, 042, 829
Ohio	18, 786, 276 8, 619, 762 1, 076, 370	21, 980, 158 11, 005, 454 1, 058, 522	473, 809 304, 373 333, 791	307, 127	4, 875, 865 652, 815 1, 389, 182	628, 719	9, 576, 950	27, 194, 728 11, 941, 300 2, 508, 416
Illinois-Indiana: Illinois. Indiana	4, 305, 518	4, 369, 826 5, 231, 850 9, 601, 676	106, 063		518, 413	434, 610	4, 929, 994	5, 402, 195 5, 812, 396
Missouri Valley: Missouri Iowa. Nebraska. Kansas	19, 144 (³)	121	34, 426 33, 721 2, 320 7, 510	51, 836 52, 074 5, 987 10, 690	313, 661 42, 101 20, 996 2, 837	209, 270 44, 078 23, 200 3, 467	367, 231 75, 822 23, 316 10, 347	261, 227 96, 152 29, 295 14, 157
	19, 144	229	77, 977	120, 587	379, 595	280, 015	476, 716	400, 831

See footnotes at end of table.

Table 41.—Comparative tonnages of byproduct and beehive coke consumed in each State and region, 1940-41, in net tons—Continued

Consuming region and	Furna	ce use	Found	lry use		ndustrial nestic use	Tota	d coke
State	1940	1941	1940	1941	1940	1941	1940	1941
Lake Dock region:								
Wincommin		30	99, 327	139, 350	553, 703	491, 548	653, 030	630, 928
Minnesota	225, 569	282, 693	15, 684	24, 764	373, 685	333, 202	614, 938	640, 659
North Dakota				(4)	1,758	1, 596	1, 758	(9)
South Dakota			(1)	(1 4)	1 2, 449	1 2. 927	2. 449	(f) 4 4. 523
	225, 569	282, 723	115, 011	164, 114	931, 595	829, 273	1, 272, 175	1, 276, 110
Southeast:								
Virginia West Virginia	52, 715	74, 491	31, 258	46, 514	383, 798	443, 298	467, 771	564, 303
West Virginia	787, 694	874, 483	12,657	25, 678	479, 082	546, 166	1, 279, 433	1, 446, 327
North Carolina South Carolina Georgia		192				10, 225	23, 932	25, 823
South Carolina		64		4, 397	5, 896	6, 321		10, 782
Georgia.		1, 220	13, 765	19, 147				
Florida Kentucky		281, 364	1,017	1,641		35, 166		
Tennessee	54, 312	281, 364 140, 162		21, 897 76, 177	(⁵) 63, 113	59, 549 76, 124		
Alabama	4, 099, 434	4, 140, 855				10, 124	4, 364, 912	4, 440, 956
Mississippi	4, 099, 404	4, 140, 600	(1)	1,060		2, 590		
	5, 270, 378	5, 512, 831	279, 179	376, 585	1, 148, 387	1, 341, 516	6, 697, 944	7, 230, 932
outhwest, Mountain, and								
Pacific:		1.		1				
Louisiana			2, 883	3, 785		29, 702		
Arkansas			1, 444	(6)	605	(9)	2,049	(9)
Oklahoma			2, 205	6 4, 734	191	°1,008	2, 396	6 5, 742
Texas New Mexico	16, 286	18, 824	15, 991	24, 471 1, 259	15, 348 1 1, 237	18, 016 360	47, 625 1, 237	61, 311 1, 619
Arizona			(1) 4, 053	6, 500	295	387	4, 348	6, 887
Colorado	521 609	573, 925		21, 969		20, 246		616, 140
Colorado Utah	163 700	§ 224, 725	10, 337	18, 074	57, 347	(4)	231, 474	242, 799
Nevada			28	56	29	6, 857	57	
Wyoming				(1)	2, 472	1 7, 949	2, 472	7, 949
Wyoming Montana Idaho	19, 494	23, 988	2,060	(1) 2, 515	3, 239	5, 200	24, 793	31, 703
Idaho			(i)	2, 873	1 3, 900	2, 640	3, 900	5, 513
Washington			3, 089	8, 111	1, 630	3, 469	4, 719	11, 580
Oregon California			2, 821	4, 871	1, 788	5, 056	4, 609	9, 927
California	(1)	20, 375	747,720	72, 657	19, 960	24, 368	67, 680	117, 400
	721, 268	861, 837	104, 235	171, 875	149, 663	125, 258	975, 166	1, 158, 970

Table 42.—Distribution of coke shipped or used by producer in 1941, by destinations, in net tons

PRODUCED IN ALABAMA Coke Coke Destination For blast-For For other For breeze Total domestic use furnace foundry industrial coke use use use 419. 301 4, 027 43, 090 22. 498 36, 640 42, 271 28, 133 9, 206 236 759 46, 478 111 16, 517 9, 290 30, 733 12, 454 3, 691 332 160, 239 3, 916 25, 466 13, 208 1, 567 74,634 288,025 Arizona, Colorado, and Utah... Arkansas, Oklahoma, and Texas California... 1, 107 12,078 4, 340 13, 571 14, 432 1, 217 204 (1) 16, 246 10, 010 Georgia... 91 Illinois 7,657 Indiana 32 (1) (1)

See footuotes at end of table.

Foundry included under other industrial.
 Furnace and foundry included under other industrial.
 Furnace included under other industrial.
 North Dakota included under South Dakota.
 Other industrial included under furnace.
 Arkansas included under Oklahoma.
 Furnace included under foundry.

Table 42.—Distribution of coke shipped or used by producer in 1941, by destinations, in net tons—Continued

PRODUCED IN ALABAMA-Continued

1 HODOC	ED IM VI	MDAMIA	Сопиши	eu		
			Coke			[X .;
The second of th		,				
Destination		l _	l	l _	1	Coke
	For blast-	For	For other	For	Total	breeze
	furnace	foundry	industrial	domestic	coke	
	use	use	use	use		1
	-		ļ			-
Kentucky		5, 112	(1) 24, 824	(1)	6, 229	
Louisiana		3, 669	24, 824	(1) 4,777	33, 270	(1)
Michigan, New Jersey, and Ohio	.	3, 669 52, 902	110		53, 012	
Mississippi	.	1.060	330	2, 260	3, 650	
Missouri	.	6.916	1.002	396	3, 650 8, 314	81
Montana, Oregon, and Washington		775	1,695		2, 470	
Nebraska	-	1	(1)	0	86	
Missouri Montana, Oregon, and Washington Nebraska North Carolina	-	2,890		(1)	10, 957	
South Carolina Tennessee	-	2,890 2,796 37,057	(1)	(4)	10, 957 7, 782	
Tennessee	5,013	37,057	13, 294	4,623	59, 987	67, 70
Vírginia	-	9,535	(3)	(i)	14,009	
Wyoming	-	(1)	(1)		1, 141	
Undistributed	-	1,351	14,007	5, 272		4, 35
	4, 142, 963	362, 372	174, 900	126, 833	4 007 000	
	4, 142, 905	302, 372	174, 900	120, 833	4, 807, 068	373, 073
PRODUCE	D IN COL	ORADO	AND UT	AH		
Astrono		1 089		-		
Arkansas	-	1,977	315	72	2, 364	
Celifornia	20, 347	1 000	2 207			4, 443 137
California Colorado Idaho	573, 925	1,363	3, 367 17, 690	568	25, 077	137
Tdeho	010, 820	15, 474 2, 836	2,640	908	607, 657	39, 034
Illinois		2,000	2, 040		5, 476 25	84
Town			61		61	
IowaKansas		1,011	1,989	54	3 054	738
Montana	23, 988	184	583	02	3, 054 24, 755 6, 780 6, 913	19, 386
Nahraska	1 109	59	6, 277	336	6.780	22
Nevada_ New Mexico	1	56	6, 857		6, 913	
New Mexico		153	336	24	513	
Oklahoma			27	364	- 391	21, 880
Oregon	.		4,849		4, 849	
South Dakota Texas	.		47		47	
Texas	18, 797 171, 304	193	965	:	19, 955	12, 513
Utah	171,304	5, 405	50, 472	2, 949	230, 130	19,037
Washington		183	50, 472 3, 220 4, 048	182	3, 585 4, 051	12, 513 19, 037 2, 076
Wyoming			4,048	3	4,051	
	808, 469	28, 894	103, 768	4, 552	945, 683	119,350
	1	<u> </u>	<u> </u>			
PRODUCED IN CONNECTI	CUT, MAS	SACHUS	SETTS, A	ND RHO	DE ISLAN	ID .
Connecticut		41, 196	135, 182	202, 118	378, 496	42, 926
Maine Massachusetts		6, 485	2, 277	52, 402 875, 981 47, 478	61 18 <i>1</i>	20, 020
Massachusetts	(2)	³ 141, 630	2, 277 158, 250	875, 981	1, 175, 861	108, 310
New Hampshire		4,601	176	47, 478	1, 175, 861 52, 255 18, 929	
New York		18,866		63	18, 929	
Pennsylvania		7, 391			7, 391	
Vermont		8, 141 15, 175	128	5, 983 147, 374	7, 391 14, 252 193, 544	
Rhode Island		15, 175	30, 995	147, 374	193, 544	18, 650
	(3)	² 243, 485	327, 008	1, 331, 399	1, 901, 892	169, 886
	ODUGED	1 1	1			
	ODUCED	1	NOIS		г	
Arkansas, Nebraska, and Oklahoma Arizona, South Dakota, and Utah California, Oregon, and Washington Colorado		4, 366 5, 799 8, 889			4, 366	8, 462
Arizona, South Dakota, and Utah		5,799		408	6 207	l
California, Oregon, and Washington		8,889			X. XXV	69
Colorado		5.902			5 902	- -
11IIIIOIS	2, 524, 044	129, 371	134, 892	576, 236 10, 618 2, 929	3, 365, 143 61, 465 40, 172	269, 276
Indiana	9, 631	34, 553 34, 325	6, 663 2, 918 (¹)	10, 618	61, 465	16, 636
Voncos		34, 325	2,918	2, 929	40, 172	685
Iowa Kansas Michigan		(1)	(¹)		3,798	
Minnesota		53, 417	``726		54, 143	3, 277
Missouri		10, 362			10, 362	
Ohio		(1)	(1)	98, 601	(1) (1)	1, 170
Wisconsin		(1)			(1)	
Wisconsin		32, 228 32, 473	2,087	45, 170	79, 485 131, 766	4, 989
		34,413	4, 490		101, 700	
	2, 534, 275	351, 685	151, 776	733, 962	3, 771, 698	304, 564
	<u> </u>	l			<u> </u>	

See footnotes at end of table.

Table 42.—Distribution of coke shipped or used by producer in 1941, by destinations, in net tons.—Continued

PRODUCED IN INDIANA

Destination			~ .			
Destination	1		Coke		_	
	For blast- furnace use	For foundry use	For other industrial use	For domestic use	Total coke	Coke breeze
California		17, 436			17 496	
Ilinois	1,643,209	66, 853	15 404	12 185	17, 436 1, 738, 651 5, 481, 748	25, 06
ndiana	5, 108, 258	75, 945	15, 404 130, 234	13, 185 167, 311	5 491 749	392, 13
owa	- 0, 200, 200	10,662	4, 825	2, 444	17, 931	002, 10 A 85
Kansas		494	162	2, 111	656	4,65
Kentucky		156	102		156	Suppression 6.6
Michigan		69,618	234	5, 286	75, 138	
Minnesota		4, 318	201	0, 200	4, 318	
Missouri		6, 393	474	628	7, 495	
Montana	1	2, 109		020	2, 109	
Nebraska		203	43		246	
Ohio		26,691	31	348	27, 070	2.50 (0.00)
Oklahoma		579			579	3 35.
Oregon	.	1,487	170		1,657	
Washington	.	1,635			1,635	203 00 90
Wisconsin		28, 755	7, 136	2, 497	38, 388	35,00
	6, 751, 467	313, 334	158, 713	191, 699	7, 415, 213	456, 85
	0, 101, 101	010,001	100,110	101, 000	1, 410, 210	100,00
PRODUCED IN KENTUC	KY, MISSO	URI, TI	ENNESSE	E, AND	VIRGINIA	
labama	2,905	4, 297	11, 515		18, 717	
California	_ 28	8.082	207		8, 317	
District of Columbia		28	3, 719		8, 317 3, 747	
lorida		64	93		157	
leorgia	1,220	2, 901	498	121	4,740	
llinois	75, 120	8, 673	20,472	1,032	105, 297	9, 37
ndiana	276	3,080	(i) 19, 754	(1)	30, 093	
owa		371	19, 754	180	20, 305	
Cansas		2,094	1,009		3, 103	
Kentucky	281, 364	11,701	21, 999	20, 261	335, 325	(1)
ouisiana	.	116		101	217	
faryland		4, 939			4, 939	
Aichigan		788	(1)	(1)	33, 648	
Aissouri	. 121	22, 629	66, 947	36, 661	126, 358	630
Vebraska			5, 179		5, 179	
lew York	.	54	1, 271		1, 325	
Iorth Carolina	192	12, 516	1,016	872	14, 596	
lorth Dakota, Oregon, and Washington.		3, 227			3, 227	
hio		11, 786	(1)	(1)	118,864	(1)
klahoma		867			867	
outh Carolina	64	1,336	347	938	2, 685	47
ennessee	135, 149	39, 120	57, 728	479	232, 476	9, 578
'exas	27	296			323	34
tah		3, 583			3, 583	
irginia	73, 728	24,027	188, 925	5, 171 (¹)	291, 851	136
Vest Virginia		3, 038	(1)	(1)	18, 914	
Visconsin.		277			277	
Indistributed			58, 175	124, 376		40, 16
•	570, 194	169, 890	458, 854	190, 192	1, 389, 130	60, 397
PRO	DUCED IN	MARY	LAND			
	1	1	1			
	1, 677, 943		38 46, 429	23, 502	38 1, 747, 874	164 707
Delaware						154, 504
Jaryland			46, 467	23, 502	1, 747, 912	154, 504
	1, 677, 943		1		1	
	1 : 1	INNESO	TA, AND	WISCON	ISIN	
PRODUCED IN MICI	1 : 1		TA, AND	WISCON		
PRODUCED IN MICI	1 : 1	1, 678		WISCON	1, 678	
PRODUCED IN MICI	1 : 1	1, 678 24, 183	11, 479	WISCON	1, 678 35, 662	
PRODUCED IN MICI	1 : 1	1, 678 24, 183		WISCON	1, 678 35, 662 2, 338	
PRODUCED IN MICI	1 : 1	1, 678 24, 183 (¹) 37	11, 479 (¹)		1, 678 35, 662 2, 338 37	
faryland.	1 : 1	1, 678 24, 183	11, 479	WISCON	1, 678 35, 662 2, 338	(1)

Table 42.—Distribution of coke shipped or used by producer in 1941, by destinations, in net tons—Continued

PRODUCED IN MICHIGAN, MINNESOTA, AND WISCONSIN-Continued

			Coke			
Destination	For blast- furnace use	For foundry use	For other industrial use	For domestic use	Total coke	Coke breeze
lowa		6, 716	1,815	2,900	11. 431	
Kansas, Nebraska, and North Dakota		4, 704 104, 713 179, 764	1, 815 11, 088	1,608 (1)	11, 431 17, 400 108, 866	
Kentucky, Ohio, and West Virginia	(1)	104, 713	4, 040 236, 611	(1)	108, 866	32
Michigan Minnesota	1, 056, 112 282, 693	179, 764	236, 611	672,078	2, 144, 565	185, 41
Missouri	202, 093	10, 054 7, 502	29, 073	304, 129	625, 949 7, 502	51, 15
Montana		138	2,922		3,060	
New Jersey, Pennsylvania, and Rhode					3,000	
Island		6, 124	10		6, 134	37
New Mexico		1, 106 (¹)		-,	1, 106	
Oregon	251, 041	1,808	(1)		305, 019	(1)
South Dakota		1,000	413	1,748	1, 845 2, 161	
Utah		3, 539	110	1,110	3, 539	
Washington		1, 281 77, 479	67		1, 348	
Wisconsin		77, 479	100, 650	333, 683	511.812	50, 31
w yoming			2,757 27,585		2, 757	
Undistributed	13, 441	65, 122	27, 585	10, 197		64
	1, 679, 891	519, 300	428, 547	1, 326, 343	3, 954, 081	288, 22
PROD	UCED IN	NEW J	ERSEY			1
		1	1	ı		l .
New Jersey		49, 464	372, 632	432, 280	854, 376	85, 46
New York		7, 295	135, 407	35, 163	854, 376 177, 865	28
Pennsylvania		427	630		1, 057	
		57, 186	508, 669	467, 443	1, 033, 298	85, 75
PRO	DUCED II	NEW	YORK			
Connecticut		<u> </u>	T		150	
			152	6, 512	152 19. 363	
Massachusetts			152 12.851	6, 512	19, 363	
Massachusetts			152 12,851 (1)	(1)	19, 3€3 (¹) 5, 423	
Massachusetts Michigan New Hampshire New Jersev			152 12,851 (1)	(1)	19, 363 (1) 5, 423 43, 948	
Massachusetts Michigan New Hampshire New Jersey New York	2, 715, 700	3,066	152 12, 851 (1) (1) 21, 897 1, 085, 406	(1) 22, 051 1, 180, 139	19, 3€3 (1) 5, 423 43, 948 4, 984, 311	363, 85
Massachusetts Michigan New Hampshire New Jersey New York Pennsylvania	2, 715, 700		152 12,851 (¹) (1) 21,897 1,085,406	(1) 22, 051 1, 180, 139	19, 3€3 (1) 5, 423 43, 948 4, 984, 311	363, 85
Massachusetts Michigan New Hampshire New Jersey New York Pennsylvania Vermont	2, 715, 700		152 12, 851 (1) (1) 21, 897 1, 085, 406 (1) 4, 864	(1) 22, 051 1, 180, 139 (1) 12, 659	19, 363 (1) 5, 423 43, 948 4, 984, 311 (1) 17, 523	
Massachusetts Michigan New Hampshire New Jersey New York Pennsylvania Vermont		3,066	152 12, 851 (1) (1) 21, 897 1, 085, 406 (1) 4, 864 14, 050	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225	19, 363 (1) 5, 423 43, 948 4, 984, 311 (1) 17, 523 13, 852	363, 85
Massachusetts Michigan New Hampshire New Jersey New York Pennsylvania Vermont	2, 715, 700		152 12, 851 (1) (21, 897 1, 085, 406 (1) 4, 864 14, 050	(1) 22, 051 1, 180, 139 (1) 12, 659	19, 363 (1) 5, 423 43, 948 4, 984, 311 (1) 17, 523	
Massachusetts Michigan New Hampshire. New Jersey New York Pennsylvania Vermont Undistributed		3,066	152 12,851 (1) (1) 21,897 1,085,406 (1) 4,864 14,050 1,139,220	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225	19, 363 (1) 5, 423 43, 948 4, 984, 311 (1) 17, 523 13, 852	
Massachusetts Michigan New Hampshire. New Jersey. New York Pennsylvania. Vermont. Undistributed P Alabama, Kentucky, and North Caro-	2, 715, 700	3,066 3,066 D IN OE	152 12, 851 (1) 21, 897 1, 085, 406 (1) 4, 864 14, 050 1, 139, 220	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586	19, 3£3 (1) 5, 423 43, 948 4, 984, 311 (1) 17, 523 13, 852 5, 084, 572	363, 85
Massachusetts. Michigan New Hampshire. New Jersey. New York. Pennsylvania. Vermont. Undistributed. P Alabama, Kentucky, and North Carolina.	2, 715, 700 RODUCE	3,066 3,066 D IN OE	152 12,861 (1) (21,897 1,085,406 (1),4,864 14,050 1,139,220	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586	19, 363 (1) 5, 423 43, 948 4, 984, 311 (1) 17, 523 13, 852 5, 084, 572	363, 85
Massachusetts. Michigan New Hampshire. New Jersey. New York Pennsylvania. Vermont. Undistributed P Alabama, Kentucky, and North Carolina. Lina. Lindinois, Indiana, and Iowa.	2, 715, 700 RODUCE	3,066 3,066 D IN OE	152 12,851 (1) (1) 21,897 1,085,406 (1) 4,864 14,050 1,139,220 HIO	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586	19, 363 (1) 5, 423 43, 948 4, 984, 311 (1) 17, 523 13, 862 5, 084, 572	363, 85
Massachusetts. Michigan New Hampshire. New Jersey. New York Pennsylvania Vermont. Undistributed P Alabama, Kentucky, and North Carolina. Illinois, Indiana, and Iowa. Michigan and Pennsylvania. New York	2, 715, 700 RODUCE	3,066 3,066 D IN OE	152 12,861 (1) (1) 21,897 1,085,406 (1),864 14,050 1,139,220 HIO	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586 15, 786 44, 249 57, 293 468	19, 363 (1) 5, 423 43, 948 4, 984, 311 17, 523 13, 852 5, 084, 572	363, 85
Massachusetts Michigan New Hampshire. New Jersey. New York Pennsylvania. Vermont. Undistributed P Alabama, Kentucky, and North Carolina. Michigan and Pennsylvania. New York	2, 715, 700 RODUCE 40, 798 24, 716 24, 464 8, 074, 721	3, 066 3, 066 D IN OE 1, 219 12, 007 88, 309 24, 647 106, 292	152 12,851 (1) (1) 21,897 1,085,406 (1) 4,864 14,050 1,139,220 HIO	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586 15, 786 44, 249 57, 293 468	19, 363 (1) 5, 423 43, 948 4, 984, 311 17, 523 13, 852 5, 084, 572	363, 85 1, 79 5, 10 12, 63
Massachusetts Michigan New Hampshire New Jersey New York Pennsylvania Vermont Undistributed P Alabama, Kentucky, and North Carolina Ilina Michigan and Pennsylvania New York Dibio	2, 715, 700	3,066 3,066 D IN OE	152 12,851 (1) (1) 21,897 1,085,406 (1) 4,864 14,050 1,139,220 HIO	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586	19, 363 (1) 5, 423 43, 948 4, 984, 311 (1) 17, 523 13, 862 5, 084, 572	1, 79
Pennsylvania. Vermont. Undistributed. P Alabama, Kentucky, and North Caro-	2, 715, 700 RODUCE 40, 798 24, 716 24, 464 8, 074, 721	3, 066 3, 066 D IN OE 1, 219 12, 007 88, 309 24, 647 106, 292	152 12,851 (1) (1) 21,897 1,085,406 (1) 4,864 14,050 1,139,220 HIO 2,831 18,571 650 851 143,019	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586 15, 786 44, 249 57, 293 468 236, 666	19, 363 (1) 5, 423 43, 948 4, 984, 311 (1) 17, 523 13, 852 5, 084, 572 19, 836 115, 625 170, 968 50, 430 8, 560, 698	
Massachusetts. Michigan New Hampshire. New Jersey. New York Pennsylvania. Vermont. Undistributed P Alabama, Kentucky, and North Carolina. Ilinois, Indiana, and Iowa. Michigan and Pennsylvania. New York Ohio. Virginia and West Virginia.	2, 715, 700 RODUCE 40, 798 24, 716 24, 464 8, 074, 721 62, 337	3, 066 3, 066 D IN OE 1, 219 12, 007 88, 309 24, 647 106, 292 301 232, 775	152 12,861 (1) (1) 21,897 1,085,406 (1),864 14,050 1,139,220 HIO 2,831 18,571 650 851 143,019 248,344 414,266	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586 15, 786 44, 249 57, 293 468 236, 666 2, 838	19, 363 (1) 5, 423 43, 948 4, 984, 311 (1) 17, 523 13, 862 5, 084, 572 10, 836 115, 625 170, 968 50, 430 8, 560, 698 313, 820	1, 79 5, 10 12, 63 671, 42
Massachusetts. Michigan New Hampshire. New Jersey. New York Pennsylvania. Vermont. Undistributed P Alabama, Kentucky, and North Carolina. Illinois, Indiana, and Iowa Michigan and Pennsylvania. New York Dhio. Virginia and West Virginia. PRODU	2, 715, 700 RODUCE 40, 798 24, 716 24, 464 8, 074, 721 62, 337 8, 227, 036	3,066 3,066 D IN OE 1,219 12,007 88,309 24,647 106,292 301 232,775 PENNSY	152 12,861 (1) (21,897 1,085,406 (4),864 14,050 1,139,220 HIO 2,831 18,571 18,571 118,571 143,019 248,344 414,266	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586 15, 786 44, 249 57, 293 468 236, 666 2, 838 357, 300	19, 363 (1) 5, 423 43, 948 4, 984, 311 (1) 17, 523 13, 862 5, 084, 572 . 19, 836 115, 625 170, 968 50, 430 8, 560, 698 313, 820 9, 231, 377	1, 79 5, 10 12, 63 671, 42 690, 95
Massachusetts. Michigan New Hampshire. New Jersey. New York Pennsylvania. Vermont. Undistributed P Alabama, Kentucky, and North Carolina. Illinois, Indiana, and Iowa. Michigan and Pennsylvania. New York Ohio. Virginia and West Virginia. PRODU	2,715,700 RODUCE: 40,798 24,716 24,464 8,074,721 62,337 8,227,036	3,066 3,066 1,219 12,007 88,309 21,06,292 301 232,775 PENNSY	152 12,861 (1) (21,897 1,085,406 (4),864 14,050 1,139,220 HIO 2,831 18,571 18,571 118,571 143,019 248,344 414,266	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586 15, 786 44, 249 57, 293 236, 666 2, 838 357, 300	19, 363 (1) 5, 423 43, 948 4, 984, 311 (1) 17, 523 13, 852 5, 084, 572 19, 836 115, 625 170, 968 50, 430 8, 560, 698 313, 820 9, 231, 377	1, 79
Massachusetts. Michigan New Hampshire. New Jersey. New York Pennsylvania. Vermont. Undistributed P Alabama, Kentucky, and North Carolina. Illinois, Indiana, and Iowa. Michigan and Pennsylvania. New York Ohio. Virginia and West Virginia. PRODU Connecticut Delaware.	2, 715, 700 RODUCE 40, 798 24, 716 24, 464 8, 074, 721 62, 337 8, 227, 036	3,066 3,066 D IN OE 1,219 12,078 8,309 24,647 106,292 301 232,775 PENNSY 7,366 4,203	152 12,861 (1) (1) 21,897 1,085,406 (1),864 14,050 1,139,220 HIO 2,831 18,571 650 851 143,019 248,344 414,266 TLVANIA	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586 15, 786 44, 249 57, 293 468 236, 666 2, 838 357, 300	19, 363 (1) 423 43, 948 4, 984, 311 (1) 17, 523 13, 862 5, 084, 572 10, 430 8, 560, 430 8, 560, 698 313, 820 9, 231, 377	1, 79
Massachusetts. Michigan New Hampshire. New Jersey. New York Pennsylvania. Vermont. Undistributed P Alabama, Kentucky, and North Carolina. Ilinois, Indiana, and Iowa. Michigan and Pennsylvania. New York. Ohio. Virginia and West Virginia. PRODU Connecticut Delaware. District of Columbia Florida and South Carolina.	2,715,700 RODUCE: 40,798 24,716 24,464 8,074,721 62,337 8,227,036	3,066 3,066 D IN OE 1,219 12,007 88,309 24,647 106,292 301 232,775 PENNSY 7,366 4,203 (1)	152 12,861 (1) (21,897 1,085,406 (4),864 14,050 1,139,220 HIO 2,831 18,571 18,571 118,571 143,019 248,344 414,266	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586 15, 786 44, 249 57, 293 468 236, 666 2, 838 357, 300	19, 363 (1) 5, 423 43, 948 4, 984, 311 17, 523 13, 852 5, 084, 572 19, 836 115, 625 170, 925 170, 925	1, 79
Massachusetts. Michigan New Hampshire. New Jersey. New York Pennsylvania. Vermont. Undistributed. P Alabama, Kentucky, and North Carolina. Illinois, Indiana, and Iowa. Michigan and Pennsylvania. New York Ohio. Virginia and West Virginia. PRODU Connecticut. Delaware. District of Columbia Florida and South Carolina. Illinois.	2,715,700 RODUCE: 40,798 24,716 24,464 8,074,721 62,337 8,227,036	3,066 3,066 D IN OE 1,219 12,078 8,309 24,647 106,292 301 232,775 PENNSY 7,366 4,203	152 12,861 (1) (1) 21,897 1,085,406 (1),864 14,050 1,139,220 HIO 2,831 18,571 650 851 143,019 248,344 414,266 TLVANIA	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586 15, 786 44, 249 57, 293 468 236, 666 2, 838 357, 300	19, 363 (1) 423 44, 944, 311 (1) 17, 523 13, 852 5, 084, 572 - 19, 836 115, 625 170, 968 50, 430 8, 560, 698 313, 820 9, 231, 377	1, 79 5, 10 12, 63 671, 42
Massachusetts. Michigan New Hampshire. New Jersey. New York Pennsylvania. Vermont. Undistributed P Alabama, Kentucky, and North Carolina. Ilinois, Indiana, and Iowa. Michigan and Pennsylvania. New York. Ohio. Virginia and West Virginia. PRODU Connecticut Delaware. District of Columbia Florida and South Carolina.	2,715,700 RODUCE 40,798 24,716 24,464 8,074,721 62,337 8,227,036 CED IN 1	3,066 3,066 D IN OE 1, 219 12,007 88,3647 106,292 301 232,775 PENNSY 7,366 4,203 (1) (1)	152 12,851 (1) (1) 21,897 1,085,406 (1) 4,864 14,050 1,139,220 HIO 2,831 18,571 650 143,019 248,344 414,266 7LVANIA	(1) 22, 051 1, 180, 139 (1) 12, 659 5, 225 1, 226, 586 15, 786 44, 249 57, 293 468 236, 666 2, 838 357, 300	19, 363 (1) 5, 423 43, 948 4, 984, 311 17, 523 13, 852 5, 084, 572 19, 836 115, 625 170, 925 170, 925	1, 79 5, 10 12, 63 671, 42 690, 95

Table 42.—Distribution of coke shipped or used by producer in 1941, by destinations, in net tons.—Continued

PRODUCED IN PENNSYLVANIA-Continued

			Coke			
Destination	For blast- furnace use	For foundry use	For other industrial use	For domestic use	Total coke	Coke breeze
Kentucky Maine		63		424	63 424	
Maryland Massachusetts Michigan Minnesota	1, 105 2, 410	30, 466 940 1, 748 30	4, 688 98 1, 525	4, 164 1, 971 12, 180	264, 363 4, 114 17, 863 30	121
Missouri Nebraska New Hampshire		590	17 76 398	103 1, 730	607 179 2, 128	
New Jersey New York Dhio	105 403, 976 2, 203, 783	71, 606 93, 287 16, 988 73	25, 605 22, 316 113, 284	14, 263 130, 852 22, 025	111, 579 650, 431 2, 356, 080 73	3, 811 16, 274 3, 549
Oklahoma Pennsylvania Rhode Island Fexas		238, 084	366, 692 44	467, 500 34	17, 622, 596 34 68	1, 395, 769
Vermont Virginia West Virginia,	114, 089	3, 051 18, 716	5, 607 2, 469	3, 085 989 648	3, 085 9, 647 135, 922	18, 84
Wisconsin Undistributed	30 19, 610, 918	25 165 488, 814	325 629, 745	1, 149	380 21, 393, 586	1, 452, 57

PRODUCED IN WEST VIRGINIA

	(1		
Alabama		132			132	
Arizona		82			82	
California.		2, 143		25	2, 168	
Colorado		39			39	
Delaware		24	60	24	108	
District of Columbia			60	455	515	
Illinois		2, 830	51	28	2, 909	262
Indiana		597	30	85	712	134
Kansas		32			32	
Kentucky		1,820	233		2,053	
Maryland.	18, 007	1, 145	6, 501		25, 653	
Massachusetts	20,00.	1,047	,,,,,,	334	1, 381	
Michigan		6, 614	990	787	8, 391	1,650
Missouri		278	88		366	
Montana					84	
Nebraska					30	
New Hampshire		1		260	260	
New Jersey		1, 763	2,664	1,736	6, 163	
New York		1,058	_,,,,,,	3,002	4,060	16, 140
North Carolina		2,000	245	5,55=	245	
Ohio		4, 066	1, 322	1.022	733, 360	2, 207
Pennsylvania		61, 049	30, 718	6, 559	186, 883	437
South Carolina		265	00,.10	0,000	265	
Virginia		9, 659	10, 106	786	21, 314	27
West Virginia		1, 944	501, 407	1,824	1, 203, 156	110, 625
Wisconsin	001,001	586	001, 10.	1 2,022	586	
W ISCOUSIN		000				
	1, 532, 258	97, 287	554, 475	16, 927	2, 200, 947	131, 482
	1, 002, 200	0.,20	552, 210			,
	1 .	1		•	•	·

EXPORTS AND IMPORTS 3

The export movement of coke in 1941 was small compared with the total tonnage produced. From January through September 1941—the only period of the year for which foreign trade figures can be pub-

<sup>Included under "Undistributed."
Coke for blast-furnace use included under coke for foundry use.</sup>

³ Figures on exports and imports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

lished—the exports of coke from the United States totaled 525,223

net tons valued at \$4,021,357.

Imports of coke constitute a small part of this country's requirements in normal times. However, the need for coke by the metallurgical industry in 1941 resulted in more than doubling the 1940 imports during the first 9 months. The imports of coke are a factor in the home market only in certain localities. The entire tonnage of coke received by the United States from January through September 1941 was furnished by the United Kingdom and Canada, the largest tonnages coming through ports in Maryland, Massachusetts, and Buffalo.

Table 43.—Coke exported from the United States, 1937-41

Year	Net tons	Value	Year	Net tons	Value
1937 1938 1939	526, 683 486, 571 589, 925	\$3, 567, 828 3, 035, 105 3, 878, 235	1940. 1941 (JanSept.)	804. 095 525, 223	\$5, 024, 992 4, 021, 357
2000	 000, 920	0,010,230	The second of the second		

Table 44.—Coke imported for consumption in the United States, 1939-41, by countries and customs districts

ett (18 g.), dagen ett gett, der også ett. General	15	939	19	940	1941 (Jai	1Sep t.)
	Net tons	Value	Net tons	Value	Net tons	Value
Belgium COUNTRY Canada	37, 080 85, 818	\$152,606 1,129,337	77 642	\$1,114,683	63, 481	\$886, 24
Germany Netherlands United Kingdom	4, 321 10 14, 682	26, 126 80 79, 023	34, 908		178, 209	940, 51
	141, 911	1, 387, 172	112, 550	1, 305, 140	241, 690	1, 826, 756
CUSTOMS DISTRICT Connecticut	55, 425	956, 814	47, 377	949, 150	34, 016 3, 793	725, 080 27, 880
Los Angeles Maine and New Hampshire Maryland	350	64, 458 2, 590	3, 035 292 3, 390	13, 548 2, 145 27, 241	1, 690 146 107, 169	11, 870 1, 102 579, 442
Massachusetts Michigan Montana and Idaho	10, 976 11 26, 688	43, 871 65 148, 183	14, 091 10 26, 885	74, 196 74	60, 062 9	289, 517 76
New York Oregon St. Lawrence	19, 211	69, 445 6, 418	10, 782	141, 598 54, 888	27, 191 3, 351	145, 626 16, 752
San Francisco Vermont Washington State	9, 849 278	486 53, 879 1, 775	65 3, 611 291	20, 619 2, 247	2, 143 314	15, 051 2, 591
" acumgrou cusie	6, 499	39, 188 1, 387, 172	2, 721 112, 550	18, 988	1, 806 241, 690	11, 769

WORLD PRODUCTION

In consequence of the European War of 1939 and 1940, which expanded into a world war involving the United States in 1941, the number of countries releasing data on the production of coke decreased steadily. The statistics submitted in table 45 are incomplete, as data from the principal producing countries other than the United States are not available; however, Canada, as well as the United States, surpassed the peak year of 1929 in the production of coke.

TABLE 45.—Coke produced in principal countries of the world, 1929 and 1938-41, in metric tons 12

[Compiled by B. B. Waldbauer]

Country 3	1929	1938	1939	1940	1941
Australia:	grander der in				
New South Wales	471, 813		1, 370, 814	(3)	(9)
Queensland Belgium	4, 144 6, 192, 960	31, 481 4, 894, 980	31, 057 5, 176, 650	(8)	<u>(2)</u>
Bulgaria	0, 102, 000	3, 923	4, 758	6,000	1 2
Bulgaria Canada	1, 986, 532	1, 808, 588	1, 830, 425	2, 321, 775	2, 432, 79
China (exports)	12 467		22, 562	18, 456	4 11, 918
Czechoslovakia France	3, 170, 629	5 2, 367, 000	(3)	(4)	(9)
Germany	9, 080, 127	7, 785, 000	(4)	(9)	(3)
Saar	2, 423, 000	43, 511, 082	(3)	(3)	(3)
Germany Saar Great Britain (13, 637, 421	13, 031, 396	(3)	(3)	(8)
Hillngary			(8)	0	(6)
India, British 7	843, 504	1, 738, 178	1, 947, 455	(8)	(3)
Indochina	637 791, 607	3, 503 1, 739, 417	4,022	2, 608	(2)
Mexico	493, 777	1, 735, 417		(3)	\mathbb{R}
Mexico Netherlands	2, 402, 566	3, 158, 065	(3) (3) 8 2, 207, 501	(8)	(3)
New Caledonia		43, 317		00.000	(3)
Peru Peland	35, 899	0 700 000	(2)	(2)	(2)
Peru Poland Rhodesia, Southern	1, 858, 052 100, 001	2, 523, 290 47, 986	(9) (9) 32, 785 (3)	(3)	2
Kumania	4.7	86, 030	(8)	K	
Spain	768, 040	571, 469	685, 000	845,000	407, 00
Sweden Purkey	103, 778	112, 107	115, 150	(8)	(3)
Union of South Africa	00.007	84, 930	63, 472	60, 192	(2)
J. S. S. R	4, 700, 000	163, 315 20, 700, 000	184, 522 16, 670, 000	(3) 16, 500, 000	(A)
U. S. S. R United States	54, 325, 427	29, 479, 553	4 , 212, 242	51, 774, 699	59, 135, 96
	142, 926, 000	10 135, 103, 000	(8)	(3)	(3)

1 Gas-house coke is not included.

In addition to countries listed, coke is produced in Chosen and Japan, but data of production are not available.

available.

* Data not available.

* January to August, inclusive.

* Excluding Sudetenland since October.

* Excluding Sudetenland since October.

* Excluding Sudetenland in the production of gas-house coke (including breeze), not included above, is especially important and was 13,049,139 tons in 1938.

* Figures for 1929 represent "hard" and "soft" coke made at collieries only—73,616 tons of "hard" coke and 769,888 tons of "soft" coke. Data for other years shown represent total "hard" coke manufactured. In addition, the following quantities of "soft" coke were made at collieries: 1938, 921,479 tons; 1939, data not available. not available

Incomplete figure (from coke plants of only 2 mines).
 January to June, inclusive.
 Exclusive of Mexico.

COKE-OVEN BYPRODUCTS

SUMMARY OF BYPRODUCTS

The acute demand for toluol, benzol, phenol, naphthalene, and other valuable byproducts recovered from the carbonization of coal has definitely enhanced the importance of these commodities in the national economy. Basic materials derived from the distillation of coal in byproduct ovens are not only vital to the war program, but they are also an important source of revenue to plant operators and a means of reducing to a minimum the net cost of converting coal to Approximately one-fifth of the annual production of bituminous coal in the United States is consumed in byproduct ovens, a tonnage exceeded only by that consumed by railway locomotives. The increased production of coke for metallurgical purposes has augmented the production of all primary byproducts, the demand for which, fortunately, has also increased. In the past, however, conditions governing the demand for all the byproducts of the coking process have not always been favorable, and their economic distribution has been a problem to producers.

Because of the complex nature of many coke byproducts, which require special technical processes, equipment, and operating technique for their economical production, most byproduct coke plants do not have the necessary facilities for complete processing of the byproducts and are concerned only with the major byproducts—gas,

tar, light oil and its derivatives, and ammonia (table 46).

The total output of coke byproducts reached an all-time high in 1941, although the total value was slightly less than in 1929 due to the lower selling prices of ammonium sulfate and light-oil derivatives. In 1941 the total sales value of all coke byproducts exceeded that of 1940 by \$13,727,307 and totaled \$158,809,184. This figure represented 50 percent of the value of the coke produced in byproduct From these figures it can readily be seen why the byproduct ovens have largely replaced the beehive ovens in the coke industry (see also fig. 2). Of interest is the increased output and value of distillate creosote oil. Production in 1941 totaled 38,283,662 gallons compared with 27,150,656 gallons in 1940, an increase of 41 percent. Sales of distillate creosote oil rose from 62 percent of the total production in 1940 to 102 percent in 1941, thereby increasing the value of sales from \$1,832,348 to \$4,583,327. Tar-acid oil, another tar derivative, is also worthy of mention. The major use of creosote is in wood preservation, and tar-acid oils are used in the manufacture of plastics, disinfectants, and dips and for ore flotation.

Gas.—As gas is now the most valuable coke-oven byproduct, it is given special attention in the following tables. Tables 47 and 48 present details of the quantities recovered, used, and sold in 1941, by States. In addition to supplying the fuel needs of the coke ovens, a surplus of 554,126,449 M cubic feet (62 percent of the total of 892,819,811 M cubic feet of gas produced) was sold or used for industrial purposes and for distribution through city mains. Receipts from gas sold by byproduct-coke plants in 1941 totaled \$85,040,609, an advance of \$3,638,562 over the 1940 figure of \$81,402,047. The average unit price for 1941, as reported by the operators, was \$0.153 per M cubic feet, a decrease of \$0.002 per M cubic feet from the 1940 price of \$0.155. The sale of surplus gas produced approximately 53 percent of the total revenue derived from all the byproducts in 1941.

Tar.—Tar, a very important coke byproduct, is the basic material for hundreds of chemical compounds. The crude tar recovered requires special equipment for complete processing, and many plants that are not equipped to process the tar sell their crude tar to refineries. Statistics on the topping of coal tar were collected by the Bureau of Mines for the first time in 1940, when 94,890,278 gallons were topped. The tar topped in 1941 totaled 103,653,501 gallons. Topping is practiced to obtain from tar at byproduct plants, where complete refining equipment is not available, certain constituents, including light oil and tar acid fractions, and in some plants, even higher Growing recognition of the importance of creosote oil, a derivative of coal tar, is indicated by the increase in its production and value in 1941. The wasteful practice of burning tar for fuel is steadily being discontinued, and the recovery of its valuable constituents is being practiced by more plants each year. Statistics on the production and sales of coke-oven tar during 1941 are shown in table 49.

Ammonia.—Another major byproduct of the coke ovens is ammonia. It is used in the manufacture of nitric acid. explosives, and commer-

cial fertilizers. The relatively low cost of making ammonium sulfate from the ammonia recovered in the carbonization of coal and the large demand for sulfate to be used in commercial fertilizers accounts for the fact that the bulk of the ammonia recovered from byproduct-coke ovens goes into ammonium sulfate. The value of ammonia in relation to the total value of all byproducts has declined considerably from 1913, when 45 percent of the value of all byproducts was furnished by ammonia compared with 14 percent in 1941. This can be attributed to the development in recent years of more economical methods for the manufacture of ammonia. The 1941 production of ammonium sulfate totaled 1,490,395,760 pounds and exceeded the previous all-time high of 1,488,314,447 pounds produced in 1929. The value of ammonium sulfate, \$0.013 per pound, exceeded the 1940

figure by \$0.001 (table 50).

Light oil and its derivatives.—The derivatives of light oil are in acute demand by the war industries. Benzol is one of the major derivatives of light oil and is essential to the manufacture of so-called synthetic phenol. This in turn is required for the production of picric acid and is urgently needed as a high explosive and chemical warfare inter-Phenol is also essential in the manufacture of the phenol formaldehyde plastics used in our metal-substitution program and in the manufacture of nylon, a silk replacement. Benzol has wide application as a solvent and also as an ingredient in fuels for internalcombustion engines. Toluol is a basis of high explosive production when nitrated to di- and tri-nitrotoluol (TNT). The toluol used for making explosives is of very high quality and commands better prices than the industrial-grade toluol used as a commercial solvent. Xylol has many minor current demands as a relatively high boiling solvent and in many ways is being used to replace toluol. There was a substantial increase in the output of light oil and its derivatives in 1941 when compared with 1940. Receipts from the sales of light oil and its derivatives totaled \$23,668,801 in 1941, an increase of \$2,164,672 over the 1940 figure.

Naphthalene.—Naphthalene, another important byproduct derived from tar and light oil, is used in the manufacture of explosives, resins, and plasticizers. In addition, considerable quantities are used as a moth repellant for clothing. According to preliminary figures the

output of naphthalene in 1941 totaled 83,810,422 pounds.

TABLE 46.—Byproducts obtained from coke-oven operations in the United States in 1941 1

[Exclusive of screenings or breeze]

		¥	Sales		
Product	Production		Valu	le .	On hand Decem-
		Quantity	Total	Aver- age	ber 31
Targallons	704, 149, 468	392, 539, 793	\$18, 386, 170	\$0.047	30, 810, 806
Ammonia: Sulfate pounds Ammonia liquor (NH; content) do	1, 490, 395, 760 62, 777, 031	1, 513, 137, 970 60, 341, 804	19, 708, 646 2, 000, 973		62, 182, 393 1, 513, 180
Sulfate equivalent of all formsdo NH ₁ equivalent of all formsdo		1, 754, 505, 186 438, 626, 297			68, 235, 113 17, 058, 778
Gas: Used under boilers, etc M cubic feet M cubic feet M cubic feet M cubic feet	892, 819, 811	31, 404, 684 330, 452, 000 159, 746, 453 32, 523, 312	34, 448, 880 44, 108, 797	.075 .104 .276 .127	
Light oil and derivativespounds_ Naphthalene, crude and refinedpounds_ Tag derivatives:	* 892, 819, 811 (3) * 83, 810, 422	(8)	85, 040, 609 23, 668, 801 (3)	. 153 (3) (4)	(0)
Creosote oil, distillate as such gallons Creosote oil in coal-tar solution. do Pitch of tar net tons Tar acid oil gallons Other tar derivatives. Pyridine, crude and refined gallons		29, 620 3, 317 11, 794, 218	2, 718 25, 544 1, 359, 242 1, 584, 966	. 117 . 092 7. 701 . 115	6, 820 2, 807 476, 666
Other byproducts	211, 280	280, 030	286, 230 2, 161, 958	1.022	23, 250
Value of all byproducts sold			158,809,184		

¹ Includes products of tar distillation conducted by coke-oven operators under same corporate name, except, however, phenol and other tar acids produced at Clairton, Pa.

3 Includes gas wasted and gas used for heating ovens.

4 Final figures withheld in accordance with Government policy. Preliminary production figures of benzol and toluol were 145,448,733 and 29,056,551 gallons, respectively.

4 Preliminary figure.

4 Ammonium thiocyanate, cyanogen, phenol, sodium phenolate, sodium prussiate, spent soda solution, sultur, vented vapors, orthoxylene, dicycloentadiene, sal ammoniac, alpha picolene, and a small amount of miscellaneous products.

6 Exclusive of value of breeze production, which was \$9,630,433 in 1941.

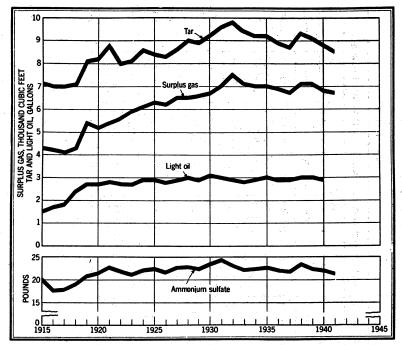


FIGURE 2.—Average yield of principal byproducts per net ton of coal carbonized in byproduct-coke ovens, 1915-41. Figures for light oil represent average at plants recovering light oil.

COKE-OVEN GAS

Table 47.—Coke-oven gas produced and sold in the United States in 1941, by States

				Surpl	us sold or us	ed		
State	Active plants	Produced (M cubic feet)	ovens (M	M cubic	Valu	e	Wasted (M cubic feet)	
		icce)	cubic feet)	feet	Total	Aver- age	\$ 8 1	
Alabama. Colorado. Illinois. Indiana. Maryland. Massachusetts. Michigan. Minnesota. New Jersey. New York. Ohio. Pennsylvania. Tennessee. Utah. West Virginia. Connecticut, Kentucky,	5 1 2 8	72, 138, 690 11, 653, 997 51, 266, 854 107, 611, 667 22, 712, 510 18, 158, 357 43, 632, 91 10, 794, 937 16, 659, 986 77, 296, 493 136, 262, 944 253, 153, 398 1, 424, 443 5, 288, 718 32, 070, 426	32, 322, 941 5, 418, 698 15, 833, 576 45, 242, 481 9, 743, 916 4, 376, 487 5, 848, 674 4, 229, 940 3, 548, 732 19, 889, 135 58, 639, 069 103, 884, 214 237, 047 9, 095, 951	38, 062, 387 6, 183, 840 34, 302, 467 61, 091, 644 12, 634, 670 137, 651, 284 6, 397, 898 13, 111, 254 56, 679, 891 148, 329, 055 2, 813, 238 22, 441, 409	\$2, 891, 655 (1) 5, 320, 341 10, 436, 616 (1) (2) 4, 631, 924 1, 673, 924 16, 314, 656 8, 347, 042 17, 264, 504 181, 180 (1) 1, 989, 017	\$0.076 (1) .155 .171 (1) .123 .246 (1) .288 .112 .116 .230 (1) .089	1, 753, 362 51, 459 1, 130, 811 1, 277, 542 333, 924 52, 594 132, 533 137, 099 727, 467 2, 769, 562 940, 129 227, 775 533, 066	
Missouri, Rhode Island, and Wisconsin Undistributed	6	32, 693, 900	7, 148, 680	25, 056, 427	6, 102, 003 9, 987, 696	. 244 . 206	488, 793	
Grand total, 1941	87	892, 819, 811	328, 137, 246	554, 126, 449	85, 040, 609	. 153	10, 556, 116	
At merchant plantsAt furnace plants		201, 941, 491 690, 878, 320	47, 651, 668 280, 485, 578	151, 056, 932 403, 069, 517	38, 882, 342 46, 158, 267	. 257 . 115	3, 232, 891 7, 323, 225	
Grand total, 1940	85	833, 761, 720	297, 566, 103	523, 640, 55 5	81, 402, 047	. 155	12, 555, 062	

¹ Included under "Undistributed."

TABLE 48.—Disposal of surplus coke-oven gas in the United States in 1941, by States

			Used by	producer-					80	old			
State	U	nder boilers		In steel or	other affiliat	ed plants	Distribute	d through ci	ty mains	Sold for	industrial pu	irposes	
SIBLE	M cubic	Val	110	M cubic	Val	ue	M cubic	Val	ue	M cubic	Val	ue	
Alahama	feet	Total	Average	feet	Total	Average	feet	Total	Average	feet	Total	Average	
AlabamaColorado	6, 887, 757	\$254, 192	\$0.037	23, 177, 871 6, 183, 840	\$1, 802, 772	\$0.078	5, 668, 016	\$608,606	\$0.107	2, 328, 743	\$226, 085	\$0.097	
Illinois Indiana Maryland	3. 538, 465 4, 433, 699 78, 250	270, 458 349, 181	.076 .079	5, 228, 752 48, 397, 507 7, 453, 512	760, 655 6, 275, 552	. 145 . 130	22, 524, 787 6, 918, 744 5, 102, 908	4, 001, 383 3, 324, 806	.178 .481	3, 010, 463 1, 341, 694	287, 845 487, 077	.096	
Massachusetts Michigan Minnesota	34, 974 1, 432, 344 796, 012	(1) (1) 160, 489 45, 113	(1) (1) .112 .057	730 29, 839, 801 1, 342, 980 463	3, 473, 321 210, 641	(1) (1) .116 .157	13, 573, 067 2, 873, 072 4, 258, 906	(1) 504, 733 1, 318, 221	(1) . 176 . 310	120, 505 3, 506, 067	(1) 493, 381	(¹) . 141	
New Jersey New York Ohio Pennsylvania Tennessee	2, 962, 546 4, 235, 093 4, 210, 720 72, 000	234, 286 396, 383 385, 189 24, 817	. 079 . 094 . 091 . 345	12, 800, 141 58, 242, 546 117, 335, 310	1, 479, 445 5, 816, 794 11, 340, 876	.115 .100 .097	13, 110, 791 38, 243, 243 8, 457, 215 18, 155, 221	14, 202, 990 1, 691, 585 4, 713, 979	.371 .200 .260	2, 673, 961 3, 919, 459 8, 627, 804 715, 396	397, 935 442, 280 824, 460 156, 363	. 149 . 113 . 096 . 219	
Utah	1, 949, 463 126, 764	6, 836	(1) .054	94, 593 20, 353, 954	(1) 1, 669, 177	.082	579, 103	(1)	(1)	190, 079 1, 960, 691	(1) 313, 004	(1) 160	
Rhode Island, and Wisconsin Undistributed	646, 597	62, 845 175, 870	. 097 . 085		1, 619, 647	. 118	20, 281, 380	5, 597, 838 8, 144, 656	. 276 . 252	4, 128, 450	441, 320 47, 523	. 107 . 153	
Grand total, 1941	31, 404, 684	2, 365, 659	. 075	330, 452, 000	34, 448, 880	. 104	159, 746, 453	44, 108, 797	. 276	32, 523, 312	4, 117, 273	. 127	
At merchant plants	9, 910, 551 21, 494, 133	721, 781 1, 643, 878	. 073 . 076	8, 042, 159 322, 409, 841	731, 947 33, 716, 933	. 091	113, 804, 836 45, 941, 617	34, 611, 865 9, 496, 932	. 304	19, 299, 386 13, 223, 926	2, 816, 749 1, 300. 524	. 146	
Grand total, 1940	36, 498, 403	2, 648, 328	. 073	305, 890, 735	31, 171, 675	. 102	151, 688, 271	43, 931, 892	. 290	29, 563, 146	3, 650, 152	. 123	

¹ Included under "Undistributed."

TAR TABLE 49.—Coke-oven tar produced and sold in the United States in 1941, by States

	Produc (gallon				Sold			U	sed by produce (gallons))r 3	On hand	
State	Total	Per ton	For use as	For refining into tar	Total	Val	ue	As fuel under	In open- hearth or	Otherwise	December 31 (gallons)	
Alabama		coked	(gallons)	products (gallons)	gallons	Total	Average	boilers	affiliated plants	Other wise	37	
AlabamaColorado	56, 506, 001 10, 306, 000	8. 49 10. 78	6, 546, 500	27, 164, 498 200, 593	33, 710, 998 200, 593	\$1, 604, 233	\$0.048 (4)	536, 234	21, 078, 644 312, 754	269, 091 8, 061	3, 335, 13 154, 88	
IllinoisIndiana	38 218 103	7. 43 5. 85 7. 86	1, 406, 338	31, 575, 550 35, 071, 827	31, 575, 550 36, 478, 165	1, 449, 096 1, 602, 657	.046		81, 944 9, 654, 691	124, 578	1, 494, 02 2, 415, 08 191, 46	
Maryland Massachusetts Michigan	59, 111, 084 18, 976, 866 12, 926, 536 32, 622, 795	7. 83 8. 12	523, 712	20, 071, 073 12, 195, 603 34, 197, 057	20, 071, 073 12, 719, 315 34, 197, 057	(4) (4) 1, 525, 493	(4) (4) . 045		29, 587 215, 423		465, 786 1, 231, 43	
Minnesota New Jersey New York	7, 499, 266 11, 849, 132 64, 367, 024	7. 89 8. 23 8. 98	3, 571, 966 451, 253	7, 361, 491 8, 349, 492 53, 430, 689	34, 197, 057 7, 361, 491 11, 921, 458 53, 881, 942	373, 276 (4) 2, 547, 375	. 051 (4) . 047		6, 229, 275	13, 704 1, 360	516, 85 642, 46 2, 868, 21	
Ohio Pennsylvania Fennessee	101, 792, 613 229, 170, 465 1, 068, 302	7. 85 10. 03 6. 90	1, 327 2, 114, 861	61, 725, 161 28, 140, 430 1, 074, 892	61, 726, 488 30, 255, 291 1, 074, 892	3, 057, 107 1, 384, 711 50, 302	. 050 . 046 . 047	2, 365, 591 323, 725	37, 055, 503 59, 100, 302	260, 010 719, 523	2, 950, 09 12, 761, 756 23, 86	
Utah West Virginia	4, 464, 200 31, 745, 557	11. 24 11. 05	157 133, 160	4, 443, 619 29, 059, 634	4, 443, 776 29, 192, 794	30, 302 (4) 1, 453, 778	(4) . 050		2, 332, 457	2, 400	23, 86 177, 95 902, 68	
Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin Undistributed	23, 525, 434	8. 17		23, 728, 910	23, 728, 910	1, 106, 572 2, 231, 570	. 047 . 045			2, 340	679, 10	
Grand total, 1941	704, 149, 468	8, 52	14, 749, 274	377, 790, 519	392, 539, 793	18, 386, 170	. 047	3, 225, 550	136, 090, 580	1, 401, 067	30, 810, 80	
At merchant plants	160, 965, 069 543, 184, 399	8. 62 8. 49	12, 563, 111 2, 186, 163	135, 717, 571 242, 072, 948	148, 280, 682 244, 259, 111	6, 671, 651 11, 714, 519	. 045 . 048	1, 520, 892 1, 704, 658	136, 090, 580	107, 190 1, 293, 877	6, 203, 88 24, 606, 92	
Frand total, 1940	673, 286, 517	8. 79	39, 642, 599	311, 048, 511	350, 691, 110	16, 051, 496	. 046	3, 215, 363	172, 738, 403	1, 408, 990	43, 317, 24	

Includes 80,543,705 gallons of tar "refined at plant" and 103,653,501 gallons of tar "topped."

Excludes 80,543,705 gallons of tar "refined at plant" and 103,653,501 gallons of tar "topped" that the Bureau of Mines is not at liberty to publish by States.

Comprises 203,808 gallons of tar sold to affiliated corporations and 14,645,466 gallons sold to other purchasers.

Included under "Undistributed."

AMMONIA Table 50.—Coke-oven ammonia produced and sold in the United States in 1941, by States

		Sulfate equiva forms (por	lent of all inds)	Produce	d as—	erte rogativer e gazenta tarigi	Sold a	S—	es a series	On hand D	
State	Active plants	Total	Per ton	Sulfate	Liquor (NH)	Sulfa	te	Liquor (N	H ₈ content)	Sulfate	Liquor
Alahama			coked	(pounds)	content) (pounds)	Pounds	Value	Pounds	Value	- Junior	(NH ₃ content)
Alabama Colorado	1	164, 301, 444 21, 719, 362	24. 68 22. 71	139, 381, 188 21, 719, 362 72, 664 004	6, 230, 064	140, 170, 109 25, 249, 554	\$1, 884, 333 (1)	6, 183, 599	\$230, 963	1, 002, 787 2, 101, 980	174, 38
Ulinois Indiana Maryland Massachusetts	5	95, 149, 928 166, 309, 982 44, 518, 836	19. 40 16. 46 18. 44	143, 705, 142 44, 518, 836	5, 621, 481 5, 651, 210	74, 550, 476 147, 022, 400 43, 301, 725 31, 574, 000	888, 877 1, 786, 605	5, 821, 551 5, 818, 563	(1) (1)	3, 514, 433 11, 806, 194 1, 700, 000	104, 72 192, 96
Michigan Minnesota	8 3	34, 040, 944 88, 411, 537 19, 592, 252	20. 62 22. 02 20. 61	30, 318, 000 33, 173, 617 19, 592, 252	930, 736 13, 809, 480	33, 248, 770 20, 623, 457	(1) (1) (1) 259, 658	938, 381 12, 015, 010	(1) 265, 807	284, 000 2, 394, 756 2, 150, 971	16, 24 312, 28
New Jersey New York Ohio Pennsylvania	2 8 15 11	30, 026, 360 151, 740 425 270, 673, 594 522, 401, 649	20. 86 21. 17 20. 89 22. 96	30, 026, 360 120, 992, 585 227, 171, 390 516, 902, 093	7. 686. 960 10. 875, 551 1, 374, 889	31, 548, 200 122, 519, 581 233, 232, 496 520, 133, 552	(1) 1, 719, 514 2, 929, 372 6, 720, 166	7, 613, 651 9, 772, 037 1, 466, 424	283, 735 346, 819	393, 560 5, 261, 246 3, 857, 228 25, 559, 935	149, 49 231, 61 12, 24
Tennessee Jtah Vest Virginia Connecticut, Kentucky, Mis-	1 1 3	3, 229, 401 10, 962, 859 56, 009, 707	20. 87 27. 61 25. 20	3, 229, 401 10, 962, 859 56, 009, 707		3, 108, 000 10, 070, 640 56, 435, 050	43, 778 (1) 806, 746			174, 647 1, 112, 899	
souri, Rhode Island, and Wis- consin	5	62, 415, 604	21.95	20, 028, 964	10, 596, 660	20, 349, 960	275, 449 2, 394, 148	10, 712, 588	380, 910 492, 739	649, 243	319, 2
Grand total, 1941	81	1, 741, 503, 884	21.34	1, 490, 395, 760	62, 777, 031	1, 513, 137, 970	19, 708, 646	60. 341, 804	2,000,973	62, 182, 393	1, 513, 18
t merchant plantst furnace plants	36 45	387, 573, 888 1, 353, 929, 996	21. 96 21. 17	223, 024, 364 1, 267, 371, 396	41, 137, 381 21, 639, 650	228, 762, 150 1, 284, 375, 820	3, 179, 253 16, 529 393	38, 377, 269 21, 964, 535	1,371,073 629,900	8, 255, 313 53, 927, 080	1, 148 60 364, 57
Frand total, 1940	80	1, 664, 217, 195	22.00	1, 436, 462, 003	56, 938, 798	1, 453, 008, 364	17, 876, 168	56, 249, 546	1, 798, 109	89, 110, 117	2, 534, 36

¹ Included under "Undistributed."

NAPHTHALENE

Table 51.—Crude and refined naphthalene sold by byproduct-coke operators in the United States, 1937-41

		Va	lue	
Year	Pounds	Total	Average receipts per pound (cents)	Receipts per ton of coke (cents)
1937	60, 315, 581 25, 456, 400 46, 551, 432 72, 522, 476	\$1, 182, 992 437, 654 727, 947 1, 248, 051	2.0 1.7 1.6 1.7	2.4 1.4 1.7 2.3

¹ Figures withheld in accordance with Government policy.

BYPRODUCT-COKE OVENS OWNED BY CITY-GAS COMPANIES (PUBLIC UTILITY PLANTS)

In city-gas plants more emphasis is placed upon the production of gas of proper analysis than upon the grade of coke made. However, with regard to the supply and demand for coke and byproducts, these installations belong to the byproduct-coke industry and are therefore included in the statistics supplied by the Bureau of Mines. The adaptability of byproduct ovens to the needs of city-gas manufacture has led a number of gas companies to install batteries of byproduct ovens to supplement or even replace coal or water-gas plants.

Sixteen byproduct plants owned by city-gas companies manufactured 3,403,374 tons of coke in 1941. This was an increase of 46,971 tons over 1940 and represented 6 percent of the byproduct-coke production of the country.

The following table presents salient statistics for 1940 and 1941 of the city-gas byproduct-coke plants in relation to the industry as a whole.

Table 52.—Production of coke, breeze, gas, and byproducts in the United States at byproduct-coke plants owned by city-gas companies (public utilities) and at all other byproduct-coke plants, 1940-41

	1940			1941	
Plants not owned by city-gas companies	Plants owned by city-gas companies (public utilities) ¹	Total	Plants not owned by city-gas companies	Plants owned by city-gas companies (public utilities) ¹	Total
69	16	85	71	16	87
\$238, 125, 557	\$22, 231, 009	\$260, 356, 566	\$291, 628, 638	\$24, 848, 593	58, 482, 422 \$316, 477, 231
3, 814, 091 565, 942 \$1, 285, 916	263, 946 37, 715 \$92, 054	4, 078, 037 603, 657 \$1, 377, 970	4, 146, 242 804, 324 \$1, 930, 149	286, 622 31, 835 \$84, 411	\$2,014,560
	owned by city-gas companies 69 50, 657, 906 \$238, 125, 557 \$4. 70 3, 814, 091 565, 942 \$1, 285, 916	Plants not owned by city-gas companies (public utilities) 1 69 50, 657, 906 \$238, 125, 557 \$22, 231, 009 \$6.62 3, 814, 091 \$655, 942 \$37, 715	Plants not owned by city-gas companies (public utilities) 1 69 16 85 50, 657, 906 3 356, 403 54, 014, 309 \$238, 125, 557 \$22, 231, 009 \$4. 70 \$65, 94. 37, 715 \$1, 285, 916 \$92, 054 \$1, 377, 970 \$1, 3	Plants not owned by city-gas companies (public utilities) 1 69 16 85 71 50,657,906 3 356,403 54,014,309 55,079,048 \$238,125,557 \$22,231,009 \$200,356,566 \$291,628,638 \$4.70 \$6.62 \$4.82 \$5.29 3,814,091 263,946 4,078,037 4,146,242 \$55,942 37,715 603,657 \$04,324 \$1,285,916 \$20,654 \$1,377,970	Plants not owned by city-gas companies (public utilities) 1 69

See footnotes at end of table.

Table 52.—Production of coke, breeze, gas, and byproducts in the United States at byproduct-coke plants owned by city-gas companies (public utilities) and at all other byproduct-coke plants, 1940-41—Continued

- Gyproduct-cono piant	1					
		1940			1941	
Product	Plants not owned by city-gas companies	Plants owned by city-gas companies (public utilities) ¹	Total	Plants not owned by city-gas companies	Plants owned by city-gas companies (public utilities) ¹	Total
Coal charged into ovens: Quantitynet tons Coke:	71, 803, 507	4, 779, 273	76, 582, 780	77, 763, 252	4, 845, 585	82, 608, 837
Used by producer: Quantitynet tons Value Sales:	37, 102, 304 \$161, 344, 141	\$4, 786, 314	37, 865, 240 \$166, 130, 455	40, 416, 930 \$196, 417, 684	9 5	41, 530, 398 \$203, 468, 967
Quantitynet tons Value	14, 102, 810 \$80, 485, 357	2, 777, 113 \$18, 646, 924	16, 879, 923 \$99, 132, 281	14, 747, 208 \$96, 481, 516	2, 403, 881 \$18, 619, 617	17, 151, 089 \$115, 101, 133
Gas: ProductionM cu. ft Sales of surplus: Used under boilers:	778, 583, 598					
Quantity_M cu. ft Value Used in steel or affili- ated plants:	36, 457, 763 \$2, 641, 776	40, 640 \$6, 552	36, 498, 403 \$2, 648, 328	31, 368, 112 \$2, 357, 378	36, 572 \$8, 281	31, 404, 684 \$2, 365, 656
Quantity_M cu. ft_ Value Distributed through city mains:	305, 874, 831 \$31, 166, 904	15, 904 \$4, 771	305, 890, 735 \$31, 171, 675	330, 443, 993 \$34, 446, 478	8, 007 \$2, 402	330, 452, 00 \$34, 448, 88
Quantity_M cu. ft ValueSold for industrial use:	\$25, 180, 149	48, 654, 223 \$18, 751, 743	151, 688, 271 \$43, 931, 892	\$26, 565, 768	49, 691, 802 \$17, 543, 029	159, 746, 45; \$44, 108, 79;
Quantity_M cu. ft Value Tar: Productiongallons	27, 341, 091 \$2, 982, 098 627, 585, 932		29, 563, 146 \$3, 650, 152 673, 286, 517	29, 820, 721 \$3, 293, 920 658, 263, 692	2, 702, 591 \$823, 353 45, 885, 776	32, 523, 31; \$4, 117, 27; 704, 149, 46;
Sales: Quantitydo Value Average	304, 117, 805 \$13, 880, 054 \$0. 046	46, 573, 305 \$2, 171, 442 \$0. 047	350, 691, 110 \$16, 051, 496 \$0. 046	345, 358, 272 \$16, 185, 453 \$0. 047	47, 181, 521 \$2, 200, 717 \$0, 047	392, 539, 790 \$18, 386, 170 \$0. 04
Ammonia: Production (NH ₁ equivalent of all forms)	391, 415, 668	24, 638, 631	416, 054, 299	410, 834, 145		
Liquor (NH; content): Production_pounds_ Salesdo	53, 322, 055 52, 659, 414	3, 616, 743 3, 590, 132	56, 938, 798	59, 596, 924 57, 167, 866	3, 180, 107 3, 173, 938	62, 777, 03 60, 341, 80
Value	\$1, 732, 850 1, 352, 374, 453 1, 368, 332, 551	84, 087, 550	9.7	\$1, 930, 241 1, 404, 948, 883 1, 425, 243, 940	\$70, 732 85, 446, 877 87, 894, 030	\$2, 000, 973 1, 490, 395, 760 1, 513, 137, 970
Value Crude light oil: Productiongallons	\$16, 794, 508 211, 282, 923	\$1, 081, 660 3, 930, 744	\$17, 876, 168 215, 213, 667 10, 324, 670	\$18, 499, 497	\$1, 209, 149 (2)	\$19, 708, 640 (2)
Sales do Value Light oil derivatives: Production gallons	7, 353, 610 \$597, 497 177, 134, 556	2, 971, 060 \$231, 534 660, 075	\$829, 031 177, 794, 631)]	(2)	() ()
Sales do Naphthalene, crude and refined:	166, 955, 002 \$20, 586, 693	603, 432 \$88, 405	* <u>.</u>			[3\$23, 668, 801
Production pounds Sales do Value All other byproducts,	71, 914, 774 71, 994, 045 \$1, 240, 402	528, 431	72, 426, 443 72, 522, 476 \$1, 248, 051	(2) (2) (2)	(2) (2) (2)	4 83, 810, 42: (2) (2)
value	\$5, 120, 569	\$81,308	\$5, 201, 877	\$9, 924, 426	\$79, 559	\$10, 003, 984

¹ Includes all byproduct ovens built by city-gas companies, some of which are operated in conjunction with coal, oil, and water-gas plants. Does not include independent byproduct plants, which may sell gas to public utility companies for distribution.
² Figures withheld in accordance with Government policy.
² Includes value of sales of both crude light oil and its derivatives.
⁴ Preliminary figure.

FUEL BRIQUETS AND PACKAGED FUEL¹

By G. S. GOODMAN

SUMMARY OUTLINE

Summary 990 Fuel briquets—Continued. Technologic developments 1000 Distribution 10 Fuel briquets 1001 Imports and exports 10 Salient statistics 1002 World production 11 Production 1003 Packaged fuel 16 Value 1003 Processes 16 Prices 1004 Salient statistics 11 Number of plants 1004 Production and value 16 Size of plants 1005 Number of plants 16		Page		Page
	Summary Technologic developments Fuel briquets Salient statistics Production Value Prices Number of plants	999 1000 1001 1002 1002 1003 1004	Fuel briquets—Continued. Distribution : Imports and exports World production Packaged fuel Processes Salient statistics Production and value	1008 1008 1009 1010 1010 1011
Binders and recarbonization 1006 Raw fuels 10	RawfuelsBinders and recarbonization	1005 1006	Size of plants Raw fuels	1014

The effect of the war was felt in both the fuel-briquet and packagedfuel industries in 1941 through increased costs of raw materials and labor but far more seriously in the packaged-fuel industry where shortage of paper caused cancelation of a number of contracts for installations of machinery at new plants and resulted in the shut-down of 22 plants—some permanently. One manufacturer of briquetting machinery reported diversion of his business to the construction of

special machines for briquetting ores and metal wastes for war work.

The world-wide reduction and dislocation of normal trade resulting from the war brought inquiries from Argentina for technical advice regarding the possibility of briquetting huge, unexportable surpluses of corn and corn husks to augment its reduced imports of coal and oil; and an American briquetting machine was shipped to the Institute of Technology at Rio de Janeiro, Brazil, to be tested in briquetting coal and other fuel materials—also in an effort to meet urgent fuel

The fuel industry is keeping close watch on national developments in order to be prepared to meet all possible fuel requirements. Although the fuel-briquet industry in the past few years has been expanding gradually upon a sound basis in well-established markets, potential operators might well recall that during the World War of 1914-18 scarcity of other fuels created an unprecedented demand for briquets for domestic use, but that the Armistice found this country stocked with coal far exceeding its peacetime requirements. When munitions plants were closed, industrial demand receded, flooding the domestic market with coal for household use and reducing the market for fuel briquets more than one-third in 1919. Whether the coal trade will return to its former channels of consumption after the present war or will establish new foreign markets for United States production cannot be forecast at this time.

Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the

Department of Commerce.

Data on employment and the principal expenses in the manufacture of fuel briquets may be obtained from the Bureau of the Census, which collects and publishes such data in alternate years; 1939 is the latest year for which such data have been collected.

Briquets made from charcoal, wood wastes, and fruit pits are not included in the Bureau of Mines review.

Fuel briquets produced in the United States reached an all-time high of 1,298,606 net tons in 1941—a 24-percent increase over 1940; the output of packaged fuel (considered separately in this report) amounted to 269,844 net tons—a 5-percent decrease from 1940. combined output totaled 1,568,450 tons, valued at \$10,473,396.

Records have been collected on the production of fuel briquets since 1907, when production was but 66,524 tons, with 11 plants in operation. Data on packaged fuel collected since 1935 show, for 1941, the first decline in production since its phenomenal record of growth.

Technologic developments. - Notwithstanding the war, the briquetting and packaged-fuel industries continued their research work in 1941 although a number of projects in the laboratory stage have been laid

aside in favor of military work.

In the fall of 1941, V. F. Parry of the Technologic Branch, Bureau of Mines, Golden, Colo., began a technologic and engineering study of the fuel-briquetting and packaged-fuel industries, visiting about 35 When additional plants are inspected the results of the study will be published.

Construction of the commercial-scale briquetting press designed by R. J. Piersol ² at the Illinois State Geological Survey was completed in 1941, but final demonstrations on briquetting various Illinois coals have been postponed until sometime in 1942, owing to delays in

delivery of necessary equipment because of war priorities.

In 1940 Dr. Piersol reported that deduster dust and sludges from many Illinois coals contain large quantities of fusain, which is relatively smokeless. When these dusts are briquetted the resulting fuel briquet is less smoky than average Illinois coal; if enough fusain is present, the briquets will meet the restrictions set up by the St. Louis smoke ordinance. During 1941 a major Illinois coal operator started large-scale production of briquets made of dust and screenings from mines and from a deduster plant in Franklin County, using a binder.

Komarek-Greaves & Co.,3 of Chicago, Ill., is reported to be experimenting in the manufacture of briquets from low-volatile coal without binder, using a roll press that develops 30,000 to 40,000 pounds pressure per square inch. Although briquets made by this method are not as strong as briquets made with binder, they will stand handling

and if bagged should make a satisfactory fuel.

A new, low-priced briquetting machine (with a capacity of about 70 tons per 24-hour day) to be used at docks, yards, and small coal mines for making pillow-shaped briquets to be sold in bulk was introduced in 1941 by the manufacturers of Eberling packaged-fuel ma-The product is said to be suitable for local truck delivery and storage in coal bins not exposed to the weather. The Smokeless Coal Blox Co. plant in St. Louis ' has been equipped with a machine of this type (as well as with several units of the Glenn-Smith type, making cubes).

^{&#}x27; Piersol, R. J., Briquetting Illinois Coals Without a Binder by Compression and by Impact: Illinois State Geol. Survey Rept. of Investigations 31, 1933, 70 pp.; Briquetting Illinois Coals Without a Binder by Impact: Illinois State Geol. Survey Rept. of Investigations 37, 1935, 75 pp.; Smokeless Briquets; Impacted Without Binder from Partially Volatilized Illinois Coals: Illinois State Geol. Survey Rept. of Investigations 41, 1936, 30 pp.; The Smoke Index: Coal Heat, vol. 39, No. 2, 1941, pp. 59-60; Study Illinois Coals: Coal Heat, vol. 40, No. 3, 1941, pp. 16.

Briquetting engineers; manufacturers of equipment installed at about two-thirds of the plants active in 1941.

⁴ Black Diamond, St. Louis News Notes: Vol. 107, No. 11, 1941, p. 43.

The new packaged-fuel process and machinery developed by the Viking Machinery Co., Jackson, Mich., are discussed under Processes

in the Packaged Fuel section of this report.

A new plant—Coal Logs Co., Inc., of Salt Lake City—to process Utah coals without binder and reported to produce a 100-percent smokeless fuel is scheduled for operation in April 1942.⁵ Test work during the past 2 years is said to have proved successful.

FUEL BRIQUETS

The salient statistics of the fuel-briquetting industry from 1937 to 1941 are summarized in the following table (data on imports and exports during the last quarter of 1941 are not available for publication). Detailed data for earlier years, beginning with 1907, are to

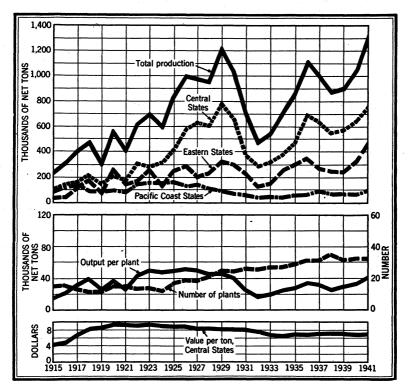


FIGURE 1.—Production of fuel briquets, number of plants in operation, and average value per ton, f. o. b. plant (Central States), 1915-41.

be found in annual issues of Mineral Resources (part II) and Minerals Yearbook, which include chapters on briquetting. Production and value from 1915 to 1941, inclusive, are presented graphically in figure 1 of this report.

⁸ Salt Lake City Tribune, Plant Prepares to Make Smokeless Fuel: December 23, 1941. Coal Age, To Make Utah Coal Smokeless: Vol. 47, No. 2, 1942, p. 118; Coal Logs Plant to Open Soon: Vol. 47, No. 4, 1942, pp. 125–126.

Salient statistics of the fuel-briquetting industry in the United States. 1937-41 [Data regarding packaged fuel are given separately at end of this chapter]

		Produ	ction				Ex- Con-	Con- Value of pro-	pro-	Aver- age out-	Average value per net ton, f. o. b. plant		
Year	East- ern States	Cen- tral States	Pacific Coast States	Total		ports ¹	sump- tion 2	duc- tion (thou- sands of dol-	Plants in opera- tion	per plant (thou- sands	East- ern States	Cen- tral States	Pacific Coast States
		Th	ousands	of net	tons			lars)		of net tons)			
1937 1938 1939 1940 1941	271 251 243 331 458	636 546 574 652 752	89 74 75 68 89	996 871 892 1, 051 1, 299	7 14 1 (3)	25 17 13 23 4 27	978 868 880 1, 028 41, 272	6, 394 5, 702 5, 802 6, 439 8, 002	31 35 31 32 32	32 25 29 33 41	\$4. 19 4. 34 4. 23 3. 95 4. 21	\$7. 01 7. 18 7. 15 6. 95 7. 09	\$8. 94 9. 38 8. 96 8. 84 8. 36

1 Exports reported separately by Department of Commerce beginning with 1937.

Production plus imports minus exports.
Imports for January to September, inclusive, totaled 108 tons.
Figures for imports and exports cover January to September, inclusive.

Production.—The output of fuel briquets in 1941—1,298,606 net tons valued at \$8,001,829—topped all previous records and represented a 24-percent increase in both tonnage and value over 1940. creased activity in 1941 is directly traceable to efforts to meet increased fuel demands in the national emergency. If operated at its full present capacity, the industry could more than double its 1941 production. An active promotional campaign by the operators 6 has seemed to stimulate both production and sales.

Briquets were produced in 17 States. Almost half of the entire output was concentrated in Wisconsin; West Virginia and Pennsylvania followed in order, with large increases. Other States producing over 20,000 tons were, in order of importance, Oregon, Missouri, Illinois, Minnesota, North Dakota, and Michigan. Increased production was reported in all but 6 States.

Packaging of bulk briquets at the plants, amounting to 37,000 tons, was reported by 17 fuel-briquet operators; no data are available on the quantity of briquets packaged by retailers.

Production of fuel briquets in the United States, 1940-41

		1940			1941				
	Plants	Net tons	Net tons Value		Net tons	Net tons Value		nt of e over in—	
	Tiants	Ties tons	V direc	Plants		v aiue	Ton- nage	Value	
Eastern StatesCentral StatesPacific Coast States	4 23 5	330, 985 651, 880 68, 005	\$1, 308, 789 4, 529, 114 601, 049	4 23 5	457, 511 751, 801 89, 294	\$1, 926, 048 5, 329, 408 746, 373	38. 2 15. 3 31. 3	47. 2 17. 7 24. 2	
`	1 32	1, 050, 870	6, 438, 952	1 32	1, 298, 606	8, 001, 829	23. 6	24. 3	

¹ 1940: 11 plants in Wisconsin; 2 each in California, Minnesota, Nebraska, Washington, and West Virginia; and 1 each in Arkansas, Illinois, Massachusetts, Michigan, Missouri, North Dakota, Ohio, Oregon, Pennsylvania, Texas, and Wyoming. 1941: 10 plants in Wisconsin; 2 each in California, Illinois, Michigan, Nebraska, Washington, and West Virginia; and 1 each in Arkansas, Massachusetts, Minnesota, Missouri, North Dakota, Ohio, Oregon, Pennsylvania, Texas, and Wyoming.

6 Coal Dealer, Biggest Stott Briquet Sales and Advertising Promotion Set for 1941-42 Season: Vol. 38, No. 5, 1941, p. 57; Berwind Anticipating Big Year: Vol. 38, No. 5, 1941, p. 49; United Briquets Growing in Popularity: Vol. 38, No. 5, 1941, p. 52.

Black Diamond, Binkley Entertains Kansas City Retailers: Vol. 107, No. 3, 1941, p. 37; Water-borne Shipments of Berwind Briquets: Vol. 107, No. 12, 1941, p. 30.

Large tonnages of bituminous coal moving over the Great Lakes during the summer months are stored at Lake ports. During the winter months, when the Lakes are closed, the coal is reloaded and shipped into the Northwest. The fine coal resulting from rehandling has a lower sales value than the coarser sizes, but a higher-grade product can be made by briquetting and a better sales realization obtained. The enormous supplies of bituminous slack thus made available at Lake ports has naturally made Wisconsin the nucleus of the briquetting industry. It is the only State for which production can be shown without revealing data on individual operations.

Production of fuel briquets in Wisconsin, 1936-41

Year	Plants	Net tons	Value	Year	Plants	Net tons	Value
1936	9	588, 163	\$4, 178, 981	1939	10	430, 554	\$3, 158, 859
1937	10	507, 462	3, 639, 183	1940	11	487, 574	3, 440, 676
1938	10	422, 281	3, 085, 873	1941	10	535, 457	3, 870, 077

There are other large plants located at coal mines, principally in West Virginia and Pennsylvania, and smaller operations at petroleum refineries and gas plants, mainly in the Pacific Coast area.

Briquets are used almost entirely for househeating; therefore, production is normally highly seasonal. In 1941, production was lowest in April, but in June—months earlier than usual—operations stepped up markedly, reaching their peak in November. Twenty of the 32 active plants operated every month of the year and only 3 less than 6 months.

According to the Weather Bureau, the winter was slightly colder than normal in parts of the Atlantic coast, but in all other sections—including the North Central States, where the bulk of the consumption of briquets is concentrated—above-normal warmth prevailed.

Monthly production of fuel briquets in the United States, 1939-41, in net tons

Month	1939	1940	1941	Month	1939	1940	1941
January February March April May June July	113, 698 99, 195 58, 840 34, 001 51, 384 71, 273 42, 184	157, 091 76, 550 68, 981 43, 936 66, 449 57, 814 76, 148	135, 532 118, 596 85, 728 27, 252 82, 723 105, 307 126, 022	August	57, 267 78, 012 113, 315 89, 465 83, 579	58, 706 84, 466 92, 295 128, 301 140, 133	109, 487 107, 257 120, 197 143, 339 137, 166

Value.—Sales realizations on briquets in the widely separated producing centers in a given year vary considerably. An average value per ton for the entire industry therefore has doubtful significance because conditions under which briquets are manufactured differ in various parts of the country. The most important factors that influence the value per ton realized at any plant probably are the cost of raw materials, labor, and the price of competing fuels; hence, the general trend of fuel-briquet prices in the past 5 years is indicated best in this review by the average values in the Eastern, Central, and Pacific Coast States, as shown in the last three columns of the

⁷ Mattice, W. A., The Weather of 1941 in the United States: U. S. Dept. of Agriculture Monthly Weather Rev., vol. 69, No. 12, December 1941, pp. 360-361.

first table of this chapter. These figures are not the prices paid by the consumers. Some plants are far from the markets they serve, and transportation charges and the margin of the wholesaler or retailer—sometimes both—must be added to the value at the plant.

The total value of fuel briquets manufactured in 1941 was \$8,001,829 f. o. b. plant—an increase of \$1,562,877 (24 percent) compared with

1940.

In the eastern part of the country the average value of \$4.21 per ton is relatively low because virtually all the output comes from plants in the low-volatile bituminous fields of West Virginia and in the anthracite region of Pennsylvania, where the freight charges are not so important an item in the cost of raw fuel. In the Central States most of the raw fuel (bituminous low-volatile and Pennsylvania anthracite) comes from Lake docks, and the average value of \$7.09 per ton discloses the extent to which freight charges affect value. In the Pacific Coast States, where residual carbon from the manufacture of oil gas forms the greater part of the raw fuel used, the average value dropped from \$8.84 in 1940 to \$8.36 in 1941.

Prices.—The following monthly fuel-briquet prices, by cities, for 1941 are based upon cash delivery in 1-ton (2,000-pound) lots for retail sales to household consumers at the curb or into the customer's

bin (without extra handling or additional charge).

Retail fuel-briquet prices per net ton, by cities, in 1941 1

City and State	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Baltimore, Md	\$9.75									\$11.00		
Boston, Mass	12.50	12, 50								13, 75		
Charleston, S. C.		13, 33										
Chicago, Ill	11.65					. 11. 71						
Cincinnati, Ohio		8. 56										
Columbus, Ohio		8. 39	8, 39	8.39							9, 63	
Fall River, Mass		12.50						13, 15	13, 75	13, 75	13. 75	13. 75
Kansas City, Mo	9.69	9.69										
Los Angeles, Calif	17.00	17.00	17. 20	17. 10	16.89	16.89	16.89	18.09	18.41	19. 12	19, 18	19.43
Louisville, Ky	8.00	8.00	8.00	8.00	8.00	8. 15	8.25	8.45	8.75	8.70	8, 70	8.70
Manchester, N. H	12.75	12, 75	12, 75	12.75	12.75	13.00	13.00	13, 50	13, 50	14.00	14.00	14.00
Milwaukee, Wis	10.90	10.90	10.90	10.90	10.89	10.80	10.86	11, 27	11, 27	11, 77	11.77	11.77
Minneapolis, Minn	12.80	12.80	12.80	12.80	12, 32	12, 45	12.70	12.95	13.05	13.05	13.05	13, 05
Norfolk, Va	10.50	10.50	10.50	10.50	10.50	10.50	10, 50	11.00	11.00	11.50	11.50	11.50
Providence, R. I					11,88					12, 13	12, 13	12, 13
Richmond, Va.	10.50	10.50	10.50									11.42
St. Louis. Mo	9. 95	9. 95	9. 95	9, 95							10, 80	
St. Paul. Minn	12.80	12.80			12, 40					13.05		
San Francisco, Calif	20,60	20,60	20,60	20,60							21,63	21, 63
Seattle, Wash	13.90	13, 90										14, 29
Washington, D. C	11.05	11.05			11.05							

¹ From monthly reports, Retail Fuel Prices by Cities, Retail Price Division, Bureau of Labor Statistics.

Number of plants.—Thirty-two plants reported commercial production in 1941; all but 2 of these (the new briquetting plant of the Coal Processing Corporation at Buckner, Ill., and that of the Scheele Coal Co. at Jackson, Mich.) were also active in 1940. Seven plants were idle in 1941; of these all but one were also idle in 1940. One idle plant—the Kleen Blox Coal Co., at Dickinson, N. Dak., which reported experimental production in 1938 and none since—went out of business. Two new plants (in Illinois and Missouri) were reported under construction in 1941, with operations to start in 1942. Of the

¹ From monthly reports, Retail Fuel Prices by Cities, Retail Price Division, Bureau of Labor Statistics.

¹ Black Diamond, St. Louis News Notes: Vol. 106, No. 12, 1941, p. 46.

five reported as under construction in 1940 to start in 1941, only one—that of the Coal Processing Corporation at Buckner, Ill.—began commercial operations in 1941.

Size of plants.—The following table classifies the plants operating in 1940-41 according to actual production as well as actual capacity; however, capacity affords a better indication of the size of the plants.

The total annual capacity of the 32 plants active in 1941, obtained from the operators' reports, is about 3,100,000 net tons. It is interesting to note that, although the industry reached an all-time high in 1941, should the demand warrant these 32 plants could provide more than twice their 1941 production.

The average output of the individual plants increased 24 percent—from 33,000 tons in 1940 to 41,000 in 1941. Twenty plants that operated every month in 1941 produced 1,074,811 tons—83 percent

of the total.

Classification of briquetting plants in the United States, 1940-41, by size of output and annual capacity

Output (net tons)	Pl	ants	Annual conscient (not tone)	Plants	
Output (net tons) Less than 2,000 2,000 and less than 5,000 5,000 and less than 10,000 10,000 and less than 100,000 100,000 and less than 100,000 100,000 and over	1940 5 5 5 3 8 6 5	1941 6 2 3 9 6 6	Annual capacity (net tons) Less than 5,000. 5,000 and less than 10,000. 10,000 and less than 25,000. 25,000 and less than 100,000. 100,000 and less than 200,000. 200,000 and less than 400,000. 400,000 and over.	1940 2 2 7 13 4 2 2	1941

Raw fuels.—The number of plants, by type of fuel used in 1941, is shown below.

Classification of fuel-briquetting plants in the United States in 1941, by kinds of raw fuel used

Kind of raw fuel used: Anthracite and semianthracite fines exclusively Mixture of Pennsylvania anthracite and bituminous	Plants 5 5
Bituminous: Low-volatile	13
High-volatile	3 1 1
Residual carbon from pyrolysis of natural gas Residual carbon from manufacture of oil gas	î 2
Petroleum coke	5

1 36

A considerable quantity of Illinois bituminous high-volatile slack is used as raw fuel at the new briquetting plant of the Coal Processing Corporation at Buckner, Ill. It is also noteworthy that the quantity (though relatively small) of residual carbon from pyrolysis of natural gas, used at a California briquetting plant, doubled in 1941. Petroleum coke is being used increasingly in the manufacture of briquets.¹⁰

 $^{^{1}}$ 3 plants made 2 kinds and 1 plant 3 kinds of briquets; hence the sum of these items exceeds the total number of plants.

¹⁰ Coal Dealer, Carbo Cok-ette Plant Running Full Blast: Vol. 38, No. 5, 1941, pp. 50-51.

The Consumers Lignite Co. at Alba, Tex., 11 using raw Texas lignite without charring in making briquets, began to operate commercially in 1940 and also reported a small tonnage in 1941.

Raw fuels used in making fuel briquets in the United States, 1940-41

	Net tons		Percent of total	
Raw fuel	1940	1941	1940	1941
Anthracite and semianthracite culm and fine sizes. Bituminous and subbituminous slack 1.	222, 618 636, 312	265, 637 787, 722	22. 2 63. 4	21. 6 64. 1
Residual carbons from oil-gas manufacture and natural-gas pyrolysis; petroleum coke; and semicoke (lignite char)	144, 167	175, 043	14.4	14. 3
	1, 003, 097	1, 228, 402	100.0	100.0

¹ Includes small tonnage of Texas lignite used without charring.

Seven operators reported washing their raw fuel (totaling 269,927

tons) before manufacturing it into briquets.

In 1941, as in 1940, four operations reported making more than one kind of briquet. One in Nebraska made three kinds in 1941 (petroleum coke, semianthracite, and low-volatile bituminous cubes); another in Nebraska made two kinds of cubes from petroleum coke and semianthracite. A large Wisconsin operator made small pillow briquets from a mixture of Pennsylvania anthracite and low-volatile bituminous coal as well as from low-volatile bituminous coal exclusively. The fourth, a Missouri operator, made two kinds of pillow briquets from the hard coals of Arkansas.

Production of fuel briquets, 1940-41, with reference to sources of raw fuels used

	Net to	Percent	
Location of plant	1940	1941	increase in 1941
At pr near Lake Superior or Lake Michigan coal docks	511, 336 414, 490 111, 667 13, 377	532, 728 539, 223 141, 405 15, 046	4. 2 30. 1 26. 6 12. 5

¹ Fall River, Mass.; Jackson, Mich.; and Omaha, Nebr.

Binders and recarbonization.—As the following table indicates, asphaltic pitch is the preferred binder in briquetting coal and coke. An approximate total of 80,000 tons of asphaltic pitch and 2,300 tons of starch and smaller amounts of other binders were used in the

manufacture of fuel briquets in 1941.

Of the three plants using no binder, two briquetted the carbon residue from the manufacture of oil gas and one used low-volatile bituminous coal. The last, which has been in operation since 1936, manufactures 3%-ounce pillow briquets by impact; capacity of the plant is about 1½ tons per hour and impact pressures of 50,000 to 60,000 pounds per square inch are obtained; the entire production is consumed locally.

[&]quot; Coal Age, Texas Lignite Mine—Develops Method of Briquetting in Struggle for Markets vs. Gas and Oil: Vol. 46, No. 11, 1941, p. 51.

No operators in 1940 or 1941 reported recarbonization of briquets to drive off smoke after leaving the presses. Whether the finished product will be of the smoky type or not depends primarily on the type of raw fuel used; if the raw fuel is smoky, the briquet will be also.

Classification of briquetting plants in the United States in 1941, by type and percentage of binder used

		Production				Production	
Type of binder	Plants	Net tons	Per- cent of total	Ratio of binder to raw fuel (by weight)	Plants	Net tons	Per- cent of total
Asphaltic pitch	1 24 2 1 2 2 3	1, 024, 902 200, 087 73, 617	78.9 15.4 5.7	Less than 5 percent 5 and less than 7 percent 7 and less than 9 percent 9 percent and over No binder.	4 13 10 2 2	165, 194 438, 852 } 620, 943 73, 617	12.7 33.8 47.8 5.7
	32	1, 298, 606	100.0		32	1, 298, 606	100.0

Weight and shape.—Pillow-shaped briquets predominate in the United States. Of the total production in 1941, 26 of the 32 active plants produced 921,310 tons (71 percent) of pillow-shaped briquets; with one exception—the new plant of the Coal Processing Corporation at Buckner, Ill., which makes so-called "Fireballs" weighing 11 ounces each—these pillow briquets weigh from 1% to 5 ounces. Three plants produced 359,395 tons (28 percent) of cylindrical type and three plants 17,901 tons (about 1 percent) of cube-shaped briquets.

According to reports received, only one plant made briquets in more than one shape in 1941—an operator in Wisconsin who produced a square-pillow type of a mixture of Pennsylvania anthracite and bituminous low-volatile and a modified-pillow type of bituminous

low-volatile.

Two plants made two sizes—one in Nebraska made a 20-ounce petroleum-coke cube, and a 24-ounce semianthracite cube as well as a 24-ounce bituminous low-volatile cube; the other in Wisconsin (the plant referred to above) made a Pennsylvania-anthracite and bituminous low-volatile pillow briquet (2 by 2 by 11/4 inches) and a bituminous low-volatile modified-pillow briquet (2 by 11/2 by 11/4 inches).

Prevailing weight of briquets produced in the United States in 1941

Weight (ounces) Plants		Production				Production	
	Net tons	Per- cent of total	Weight (ounces)	Plants	Net tons	Per cent of total	
Less than 2	13 6 4 1	67 *(4 744, 551 347, 063 } 89, 294	5. 2 57. 3 26. 7 6. 9	6 and under 10	1 3 	} 50, 414 1, 298, 606	3. 9 100. 0

One plant also uses a nearly equal amount of unspecified binder.
 Two plants use residual carbon from manufacture of oil gas, and 1 uses bituminous coal as raw fuel.

Distribution.—Shipments of briquets during 1941, as reported by the operators, increased 22 percent over 1940. Briquets are used widely in the United States; in 1941 they were shipped into 39 States, the District of Columbia, and Alaska and exported to other countries.¹²

Shipments from each producing State cannot be shown because there are only one or two producers in each of the States except Wisconsin and confidential reports of individual companies would thus be revealed. However, a graphic presentation of the centers of production with corresponding States of destination for 1928 and 1936 is included in Minerals Yearbook, 1937 (p. 965, fig. 65).

Shipments by truck in the Central States increased in 1941. Generally, rail movement represents shipments to considerable distances and shipment by truck represents local and nearby consumption.

Shipments of fuel briquets of domestic manufacture, 1940-41, by States of destination, in net tons

State	1940	1941	State	1940	1941
Alaska	94	2, 213	Nebraska		23, 992
Arkanas	.1 100	256	New Hampshire	2,412	3, 210
California	9,798	14,075	New Jersey New York	1, 176	871
Connecticut		844	New York	26, 091	25, 141
Delaware	250	208	North Carolina	12,770	13, 203
District of Columbia	423	248	North Dakota	66, 114	80, 136
Florida	671	591	Ohio	49, 722	67, 822
Florida Jeorgia	159	238	Oklahoma	24	43
daho	33	200	Oregon		32, 414
llinois		50, 398	Pennsylvania	10, 272	14, 166
ndiana		45, 934	Rhode Island	3, 793	3, 843
owa.	25, 509	31, 608	South Carolina	3, 820	4, 798
Zoncoe	5, 145	4, 957	South Dakota	60, 723	
Kansas Kentucky	5, 635	5, 734	Tennessee		64, 026
ouisiana	77	3, 734	Texas		
Maine					178
Maine		4, 828	Vermont		238
Maryiand	2,073	2, 969	Virginia		18, 187
Massachusetts		38, 756	Washington	20, 359	42, 977
Michigan		107, 217	West Virginia		339
Minnesota		244, 767	Wisconsin		220, 939
Missouri		82, 954	Wyoming	1,646	1, 576
Montana	50	22			
	1	1		1, 028, 175	1, 256, 964

Shipments of fuel briquets by rail and truck, 1940-41, in net tons

		1940		1941		
Produced in—	Rail	Truck ¹	Total	Rail	Truck 1	Total
Eastern States Central States Pacific Coast States	325, 175 489, 793 18, 087	4, 855 167, 255 40, 679	330, 030 657, 048 58, 766	447, 458 569, 295 38, 377	8, 428 181, 849 54, 184	455, 886 751, 144 92, 561
Total United States	833, 055	212, 789	1, 045, 844	1, 055, 130	244, 461	1, 299, 591

¹ Includes local deliveries.

Imports and exports.—Before 1922 the quantity of fuel briquets imported into the United States was negligible. The anthracite shortages of 1922–23 and 1925–26, however, created a demand for the European product (mostly from Germany, Belgium, and France, and mainly for consumption in the anthracite-consuming States), which in 1926 reached a record of 123,593 net tons. Imports continued at a comparatively high level in the following years; in 1932 they amounted to 80,288 tons but thereafter dropped sharply and since September 1939 have virtually ceased, the last overseas shipment (1,344 net tons), from Belgium to Massachusetts, arriving in February 1939. The

¹² See table of exports for quantities exported.

only record of imports since 1939 covers a shipment of 108 tons from Canada to Alaska in 1941.

Figures for imports of briquets since 1919, the first year of record, are included in annual volumes of Mineral Resources and Minerals Yearbook. 13

Briquets (coal and coke) and other composition coals for fuels imported for consumption in the United States, 1937-41

Year Year	Net tons	Value	Year	Net tons	Value
1937 1938 1939	6, 674 13, 814 1. 344	\$28, 549 67, 366 5, 752	19401941 (JanSept.)	108	\$548

Briquets (coal and coke) exported from the United States, 1937-41 1

Year	Net tons	Value	Year	Net tons	Value
1937	25, 350 16, 692 12, 576	\$166, 369 123, 309 97, 725	1940 1941 (JanSept.)	23, 285 27, 301	\$161, 619 199, 351

¹ Data for 1937-40, by countries and customs districts, shown in earlier reports of this series.

World production.—Official data on production of fuel briquets in other countries since 1939 have been meager, owing to the war. Any possible revisions will be made in forthcoming issues of this series.

World production of fuel briquets, 1937-41, by countries, in metric tons 1 [Compiled by D. D. Woldhousel

Country 1	1937	1938	1939	1940	1941
Algeria Australia: Victoria ³	68, 682	(2)	(2)	(3)	(2) (2)
	396, 760	420, 704	421, 254		(2)
Belgium	1,849,280	1, 712, 280	1, 561, 210	(2)	(2) (2)
Bulgaria	47, 106	85,770	88, 496	100,000	(3)
Czechoslovakia:	· · · · · · · · · · · · · · · · · · ·				
Coal	459, 680	(3) (2) 20, 501	(3) (3) (2) (3)	(2)	(2) (2)
Lignite	264, 482	(2)	(3)	(2)	(2)
Lignite Eire (Irish Free State)	10, 725	20, 501	(2)	5, 337	(2)
France	8, 321, 000	7, 475, 000	(2)	(2)	(2) (2)
dermany:	-,,	, ,	``		
Coal	6, 785, 537	6, 897, 245	(2)	(2)	(3) (2)
Lignite	41,951,141	44, 007, 268	(2)	(2)	(2)
Hungary	373, 519	441,081	(3) (2) (2)	(2)	(2)
ndochina	132, 225	131, 558	185, 400	114,000	(2)
taly	58, 860	51, 047	(2)	(2)	(r) (r) (r)
Netherlands:	00,000	0.,0	` '	``	
Coal	1, 277, 305	1, 262, 716	1, 268, 926	(2)	(2)
Lignite	49, 539	60, 543	68, 607	(2)	(2) (2)
Netherlands Indies	55, 349	82, 123	85, 079	99, 315	(2)
New Zealand	31, 582	29, 947	29, 889	28, 529	(3)
Poland	209, 347	222, 531		(2)	(2)
Portugal	7, 772	19, 865	(2)	(2)	(2)
Rumania	262, 330	232, 662	(2)	(2)	(2)
Spain	342,000	568,000	765,000	785,000	4 ì⁄78, 000
Punisia	82, 805	86, 478	(3)	(2)	(2)
Purkey	14, 761	37, 285	14, 792	24, 497	(2)
United Kingdom	826, 600	507, 415	(3)	(2)	(2)
United States	1, 035, 970	936, 402	1,004,902	1, 211, 433	1, 422, 866
Yugoslavia	61, 323	100, 945	132, 466	(2)	(3)
L USUSIG TIG.	01,020	200, 010	102, 100		
Total 6	64, 975, 680	65, 389, 366	(2)	(2)	(1)

In addition to the countries listed, briquets are produced in Canada and New Caledonia, but data on output are not available.
 Data not available.

<sup>Data not avaisable.
Data for year ended March 31 of year stated.
January to June, inclusive.
January to June, inclusive.
Includes packaged fuel as follows—1937: 132,482 tons; 1938: 146,012 tons; 1939: 195,504 tons; 1940: 258,105 tons; 1941: 244,797 tons.
Totals incomplete; they represent sum of figures given in table only.</sup>

¹³ 1919-29, Mineral Resources, 1929, part II, p. 32; 1930-35, Minerals Yearbook, 1936, p. 657; 1936, Minerals Yearbook, 1937, p. 964.

PACKAGED FUEL

Packaged fuel differs from fuel briquets in that the former is a more or less friable product wrapped to withstand weathering and breakage and designed primarily for local or nearby consumption. ages, tightly wrapped in heavy paper and sealed with gummed tape, consist of 3- to 4-inch cubes (six to a package, weighing 10 to 15 Packaged fuel is made from various types of high-quality coal or coke screenings, usually mixed with a neutral binder. Its growth in popularity has been due largely to convenience and cleanliness in handling and to the fact that it may be purchased in less-than-The output of packaged fuel, which rose so rapidly from 1935 to 1940, dropped in 1941 for the first time and was 5 percent less than in 1940, amounting to 269,844 tons valued at \$2,471,567

The war is seriously affecting the packaged-fuel industry. increased cost of raw fuels and labor and the shortages of paper, glue, etc., as well as competition within the industry itself, have reduced production at many plants and forced a number of others out of Machinery manufacturers reported virtual stoppage of sales for new installations in the summer and fall of 1941. reported that five orders for installation of completely automatic packaged-fuel machines were canceled in the United States and two in Canada because paper supplies were not available; and another reported diversion of his business to construction of special machines for briquetting ores and metal wastes for war work. Over 2 million pounds of paper were required to wrap the packaged fuel produced in However, it is believed that, if paper requirements can be even partly met, the industry will continue to operate during the emergency, because clean packaged fuel has proved attractive to many consumers.

The record of 62 plants, which began operations between 1935 and 1938 and were active each year through 1941, would indicate definitely that the industry was firmly established before the paper shortage. There seems to have been a gradual trend toward fewer but larger plants to reduce costs; but smaller units probably will continue to

operate in isolated sections.

Of the operators producing packaged fuel in 1941, one-third reported wrapping their product by machine, one-third by hand, and one-third

partly by machine and partly by hand.

Although packaged fuel is manufactured principally for local or nearby consumption, in 1941 eight operators reported shipping 4,399 tons by rail and 11,382 tons by truck within a radius of 500 miles.

Processes.—No new processes or types of machinery for use in the packaged-fuel industry were reported by United States operators in 1941. Eighty manufacturers used the Eberling process ¹⁴ in 1941; others used the Glenn-Smith ¹⁵ and Leemon ¹⁶ processes; and one the Johnson Coal Cubing Co., 17 of Detroit, Mich., largest operator since 1932—uses a process and equipment of its own design.

¹⁴ Eberling, C. M., Packaged Fuel by the Eberling Process: 1938 Catalog, 6002 Ellen Ave., Cleveland, Desiring, C. 1921, Pacage 2 and 3, 3.

10 Dio.

10 Black Diamond, Briquetting Plant Solves Slack Problem: Vol. 98, No. 6, March 13, 1937, p. 60.

10 Black Diamond, vol. 102, No. 12, June 17, 1939, p. 15.

17 Black Diamond, A Mammoth Package Fuel Plant: Vol. 102, No. 7, April 8, 1939, p. 23.

processes are discussed in earlier reports of this series and in the trade

iournals.

In 1941, several packaged-fuel plants using the "cold-mix" method started fluxing briquetting mixtures with live steam to improve the binding properties of starch and to increase the rate of drving the

finished packages, and some have reported favorable results.18

In 1939 the Viking Machinery Co. of Jackson, Mich., developed a process and machine for making packaged fuel, which comprises the manufacture of binder from off-grade grains at the briquetting plant, hot mixing of this prepared grain binder with the coal, making the cubes by mechanical vibration and tamping action and automatically The entire operation except the transfer of the wrapping the cubes. wrapped cubes to the drying conveyor is automatic. The Consolidation Coal Co., Windsor, Ontario, is reported to be successfully operating these machines 24 hours a day and to be unable to supply the demand. The plant is significant in that it, along with a few others in the United States, indicates a trend toward well-engineered packaged-fuel plants of greater capacity rather than small plants in retail No plants in the United States are at present equipped with vards. this machinery; five contracts for such installations in the States were canceled in 1941 owing to paper shortage and priorities.

Salient statistics of the packaged-fuel industry from 1936 to 1941 are summarized in the following table; 1935 is the first year for which

these data were collected by the Bureau of Mines.

Salient statistics of the packaged-fuel industry in the United States, 1936-41 [Data regarding fuel briquets are given separately at beginning of this chapter]

	Production	Production (thousands of net tons)				Average	Average value per net ton, f. o. b. plant		
Year	Eastern and Pacific Coast States	Central States	Total	produc- tion (thou- sands of dollars)	Plants in oper- ation	output per plant (thou- sands of net tons)	Eastern and Pacific Coast States	Central States	
1936	6 10 9 9 8 10	60 136 152 207 277 260	66 146 161 216 285 270	505 1, 287 1, 405 1, 867 2, 392 2, 472	48 64 76 103 106 103	1 2 2 2 2 3 3	\$8. 84 9. 62 9. 92 9. 69 10. 12 10. 95	\$7. 49 8. 76 8. 66 8. 62 8. 36 9. 09	

Production and value.—The 103 active plants, all but 7 of which are in the Central States, produced 269,844 net tons valued at \$2,471,567 in 1941 (see fig. 2). Production for the first time decreased—5 percent less than in 1940—but the value increased 3 percent.

Output declined in all but 4 of the 13 States producing packaged fuel; the States showing increases were Maine, Illinois, Iowa, and Missouri. However, Michigan, Ohio, and Wisconsin (in order named) continue to be the largest producers.

The increase in value probably is accounted for by the higher costs

of raw materials and labor.

¹⁶ From study in preparation by V. F Parry, Technologic Branch. Bureau of Mines, Golden, Colo.

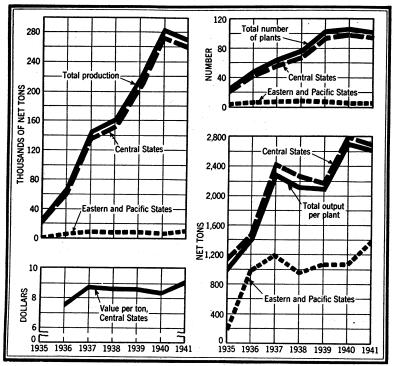


FIGURE 2.—Production of packaged fuel, number of plants in operation, output per plant, and average value per ton, f. o. b. plant (Central States), 1935-41.

Production of packaged fuel in the United States, 1940-41, by States [The plants and production in this table are not included in the preceding fuel-briquet tables]

	1940			1941			
	Plants	Net tons	Value	Plants	Net tons	Value	
Central States: Idaho Illinois Indiana Iowa Michigan Minnesota Missouri Nebraska Ohio Wisconsin Undistributed 2	1 6 7 2 36 7 3 1 23 13	(1) 3, 813 15, 774 (1) 112, 244 28, 931 9, 150 (1) 61, 941 37, 968 7, 173	(1) \$36, 531 123, 255 (1) 889, 720 293, 623 65, 353 (1) 513, 499 329, 101 64, 748	6 6 2 38 6 4 1 20 13	8, 924 13, 976 (1) 93, 213 28, 377 24, 356 (1) 46, 566 37, 747 7, 136	\$95, 431 126, 560 (1) 796, 226 307, 134 199, 379 (1) 429, 744 345, 239 67, 250	
Total Central States Eastern and Pacific Coast States	99 3 7	276, 994 7, 519	2, 315, 830 76, 092	96 3 7	260, 295 9, 549	2, 366, 963 104, 604	
Total United States	106	284, 513	2, 391, 922	103	269, 844	2, 471, 567	

Included under "Undistributed"; Bureau of Mines not at liberty to publish figures.
Includes States entered as "(1)" above.
Maine 2, Pennsylvania 1, Virginia 3, and Washington 1.

The values, by States, in the following table represent the average per ton received by operators in 1940 and 1941 and show the increased average realization at plants in 1941; similar advances also obtained in the other six producing States but cannot be shown because there were less than three operators in each State. As many plants sell to both consumers and retailers, the values do not represent the price per ton to consumers but indicate the average per ton received by producers on the total product (exclusive of delivery charges). The value at the plant comprises cost of coal at mine, freight rate, direct manufacturing cost, indirect manufacturing cost, and profit.

Average value received per net ton of packaged fuel, 1940-41

State	1940	1941	State	1940	1941
Illinois Indiana Michigan Minnesota	\$9. 58 7. 81 7. 93 10. 15	\$10.69 9.06 8.54 10.82	Missouri. Ohio. Wisconsin.	\$7. 14 8. 29 8. 67	\$8. 19 9. 23 9. 15

The peak producing season is generally from October through April. The sharp rise beginning in September 1940 continued through March 1941 but dropped sharply in April and May. Production for the 1941–42 heating season was behind the previous season's record from September through December 1941—due largely to the warmer-than-normal temperatures in the North Central States that produce most of the output.

Twenty-nine plants operated each month of the year, 58 from 7 to

11 months, and 16 from 2 to 6 months.

Monthly production of packaged fuel in the United States, 1940-41, in net tons

Month	1940	1941	Month	1940	1941
January February March April May June	36, 160 29, 460 34, 035 31, 518 17, 429 2, 811 2, 669	39, 594 37, 727 40, 893 17, 592 6, 318 5, 028 7, 101	August	7, 350 21, 680 29, 564 36, 181 35, 656 284, 513	10, 18 17, 42 27, 18 30, 50 30, 29 269, 84

Number of plants.—One hundred and three plants reported production of packaged fuel on a commercial scale in 1941 (3 less than in 1940); 96 of these were also active in 1940, but 6 additional plants—in Michigan, Minnesota, and Missouri—began operations on a small scale in 1941. Eight of the 103 plants went out of business after

operating part of the year.

Fourteen plants went out of business in 1941—the same number as in 1940. Since 1935 many plants have established themselves firmly and built up a stable business; however, during the development period of the packaged-fuel business a relatively large number of plants began to operate and soon thereafter went out of business. Records show that from 1935 to 1941, inclusive, of the 133 plants starting operations 43 went out of business. Cost of raw materials, prices of competing fuels, and, more recently, shortages of paper and

other equipment are influencing factors in the decreased packaged-fuel production and number of plants in operation. There seems to be considerable competition within the industry itself in cities having numerous packaged-fuel operations—notably in Detroit, Mich., and Cleveland, Ohio, each with more than 10 such plants. 19

Activity in number of packaged-fuel plants, 1936-41

Year	Active	New	Idle	Out of business	Year	Active	New	Idle	Out of business
1936	48	23	5	2	1939	103	29	11	9
1937	64	17	6	3	1940	106	16	15	14
1938	76	16	8	1	1941	103	1 7	28	8 14

14 in Michigan and 1 each in Indiana, Minnesota, and Missouri; all but 1 active in 1941.
14 in Ohio and 1 each in Idaho, Indiana, Michigan, and Missouri; 5 of these were also idle in 1940.
16 in Michigan, 2 each in Minnesota, Ohio, and Indiana, and 1 each in Missouri and Wisconsin; 11 of these were active in 1940.

Size of plants.—The average annual production per plant dropped slightly—from 2,700 tons in 1940 to 2,600 in 1941.

Reports submitted on individual capacity for 1941 indicate that the 103 active plants were equipped to produce about 698,000 tons (2.6 times the 1941 production) if operated at full capacity throughout the year. Few plants reported installation of additional equipment or replacements in 1941.

Classification of packaged-fuel plants in the United States, 1940-41, by size of output and annual capacity

Output (net tons)	Pla	ints	A	Plants	
Less than 500	1940 1 23 19 40 10 9 4 1 106	1941 225 19 39 5 9 5 1	Less than 5,000 5,000 and less than 15,000 15,000 and less than 15,000 25,000 and less than 25,000 25,000 and less than 40,000 40,000 and less than 60,000 60,000 and over	1940 62 25 6 7 5	1941 68 17 6 6 5 1 1

1 4 of these began operations in the fall of 1940.
2 of these began operations in the fall of 1941.

Raw fuels.—The tonnage of raw fuels used in the manufacture of packaged fuel in 1941 totaled 266,818 net tons. Low-volatile bituminous slack continued to be the principal raw fuel used, representing 80 percent of the total; petroleum coke, Arkansas semianthracite, high-volatile bituminous, and coke breeze followed in the order named. Petroleum coke rose significantly from 5 percent of the total raw fuels used in 1939 to over 18 percent in 1941; this type of packaged fuel is now made in Illinois, Iowa, Minnesota, Missouri, Nebraska, Ohio, Washington, and Wisconsin. Coke breeze, combined with petroleum coke, was reported for the first time in 1941 by an operator in Missouri.

¹⁹ Black Diamond, In the Realm of the Retail Merchant—Detroit Retailers Spend Enormous Sums for Price-cut Newspaper Ads: Vol. 106, No. 3, February 8, 1941, pp. 16, 46.

In 1941, low-volatile bituminous cubes were made at 90 plants, petroleum-coke cubes at 11, semianthracite cubes at 2, and high-volatile bituminous cubes at 1; cubes of mixtures of the various raw fuels were made at 5 plants. Six operators made more than one kind,

and three operators made cubes in two sizes.

Of the total raw fuels used, about 215,000 tons (81 percent) were shipped-in slack from the mines and from the Lake docks; the remainder (about 52,000 tons or 19 percent) represents the yard screenings used. Of the 103 operations in 1941, 51 operators used shipped-in slack exclusively; 29 packaged their yard screenings only; and 23 used both shipped-in slack and yard screenings.

Raw fuels used in making packaged fuel in the United States, 1940-41

D	Net to	ons	Percent of total		
Raw fuel	1940	1941	1940	1941	
Bituminous (high-volatile) and semianthracite Bituminous (low-volatile) Petroleum coke	4, 898 245, 881 30, 555	4, 784 213, 474 1 48, 560	1. 7 87. 4 10. 9	1. 8 80. 0 18. 2	
	281, 334	266, 818	100. 0	100. 0	

¹ Includes small tonnage of coke breeze.

Binders.—Cornstarches of various types, averaging about 15 pounds per ton of packaged fuel produced, are the principal binders. Cement, asphalt, and sulfite cellulose—either alone or in combination with starch—were also employed. An approximate total of 1,800 tons of starch and 1,500 tons of asphaltic pitch and smaller amounts of other binders were used by operators of packaged-fuel plants. The following table classifies the packaged-fuel plants in 1941 according to type and percentage of binder used.

Classification of packaged-fuel plants in the United States in 1941, by type and percentage of binder used

Type of binder	Plants	Ratio of binder to raw fuel (by weight)	Plants
Starch Starch and cement Starch and asphalt Cement Asphalt Suinte cellulose	91 3 1 5 2 1	Less than 0.5 percent	71 26 4 2 103

PEAT

By Joseph A. Corgan

SUMMARY OUTLINE

	Page		Page
Summary Reserves Reserves	1017	United States Government specifications	1019
Production	1017 1018	Imports World production	1020

Peat production in 1941 amounted to 86,503 short tons valued at \$657,556, a substantial increase over the 1940 output of 70,097 tons valued at \$516,865. The 1941 output, although the largest since the World War of 1914–18, did not equal the peak United States production of peat products in 1918—107,261 tons. The 1918 output was produced by 25 plants operating in 13 States, whereas the 1941 production came from 49 operators in 17 States; thus it would seem that should there be an increased demand (such as was experienced in 1918) for peat from domestic sources the peat industry today, being more widespread and comprising more producing plants, will be better equipped to fill it.

Imports of peat moss have been curtailed drastically on account of the war. During the first 9 months of 1941, 22,127 short tons of peat moss valued at \$507,856 were imported into the United States; owing to censorship, imports for the last 3 months of the year cannot be published. In 1940 peat-moss imports totaled 21,689 tons valued at \$454,632; and in 1939, before the war became world-wide, imports were 78,611 tons with a reported value of \$1,204,883. Although a decrease in foreign supplies of peat moss will no doubt inconvenience regular consumers, an opportunity is presented to producers in the United States to develop their deposits and expand the market for the domestic product.

A directory listing the names and addresses of operators who reported their production in 1941 to the Bureau of Mines has been prepared and will be sent, upon request, to those who may be interested.

Reserves.—About one-half of the States contain some peat reserves, which constitute an important asset to the natural resources of the country. The total, calculated as air-dried peat, has been estimated at 13,827,000,000 short tons.¹

PRODUCTION

The increase in domestic production from 70,097 short tons in 1940 to 86,503 tons in 1941 probably was due in part to the restriction of imports from foreign countries.

The 1941 output showed an increase of 23 percent in quantity and 27 percent in value over 1940. The average value a ton in 1941 was

¹ Soper, E. K., and Osbon, C. C., The Occurrence and Uses of Peat in the United States: Geol. Survey Bull. 728, 1922, p. 92.

\$7.60 compared with \$7.37 and \$6.53 in 1940 and 1939, respectively. The production and value of peat for the years 1936 to 1941 are shown in the following table.

Year	Short tons	Value	Year	Short tons	Value		
1936	46, 126	\$266, 883	1939	55, 483	\$362, 066		
	51, 223	305, 156	1940	70, 097	516, 865		
	45, 933	286, 127	1941	86, 503	657, 556		

The trend of peat production and value is presented graphically in figure 1 for 1908 to 1926 and 1934 to 1941. The Federal Government made no canvass of the peat industry from 1927 to 1933, inclusive, and no data for these years are available.

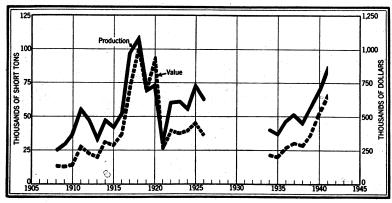


FIGURE 1.—Quantity and value of peat production, 1908-41; no data available for 1927-33.

Forty-nine operators in 17 States reported to the Bureau of Mines in 1941, a decrease of 1 producer compared with 1940; however, in 1940 reports were received from only 15 States. Thus, the industry is more widespread and should be better equipped to handle an increased demand for peat.

In 1941 the producing States, in order of output, were: New York, Illinois, New Jersey, Michigan, Maine, Iowa, Pennsylvania, California, Connecticut, Colorado, Florida, Wisconsin, Ohio, Minnesota, Massachusetts, Washington, and New Hampshire.

Of the total production, peat humus represented 41 percent; reed or sedge peat, 40 percent; and moss peat and other, 19 percent. Peat humus was produced in 12 States; reed or sedge peat, in 9 States; and moss peat and other in 9 States.

Thirty-six plants reported production of shredded peat; 17. raw peat; and 8, cultivated peat.

USES

As for many years in the past, a large percentage of the sales of peat in the United States has been for soil improvement. The reports of sales indicate that 75 percent was sold for this purpose in 1941; 20

PEAT 1019

percent for use in mixed fertilizers; and 5 percent for other uses, including litter for barns and poultry vards. Peat is utilized to some extent also as a packing material for fruits, vegetables, shrubs, and fragile articles. No sales of peat for fuel purposes were reported. Peat is burned extensively in some European countries as a fuel, and reports indicate that because of the dislocation of fuel supplies throughout the war zone efforts are being made to extend its use, in order that the deficiency in customary fuels may be partly filled. In the United States, with its plentiful supplies of higher-grade fuels. peat has not been able to compete on a commercial scale, although in 1918, during the World War, 20,567 tons were used for fuel purposes.

It is of interest to note that during the World War of 1914-18. moss peat was collected for surgical dressings and 595,540 2 moss-peat pads were prepared in this country and used in military hospitals both here and in Europe. Most of the moss peat was gathered from Maine, Oregon, and Washington bogs, and the pads were prepared under the direction of the American Red Cross. It has not been found necessary to do any work of this kind during the present war because of the plentiful supply of cotton and available facilities

for making surgical dressings and pads from that material.

United States Government specifications.—There are great differences in the kinds of peat, both as to character and value for specific uses. In purchasing its peat requirements, the Federal Government has certain specifications that must be met. These specifications may be obtained from the Procurement Division, United States Treasury Department, Washington, D. C.

IMPORTS 3

The decrease in peat-moss imports in 1940 and for the January-September period of 1941 may be attributed to a shortage of shipping facilities and general dislocation of commerce because of the war. For the first 9 months in 1941, imports totaled 22,127 short tons with a reported value of \$507,856. Imports in 1940 amounted to 21,689 tons valued at \$454,632, and in 1939 (the last year that might be considered normal), imports were 78,611 tons valued at \$1,204,883.

Before 1940, Germany was for many years the principal exporter of peat to the United States. In 1939, imports from Germany were 28,127 tons valued at \$389,597. In 1940 only 41 tons were imported from Germany, and during the first 9 months of 1941 only 15 tons

were received from that country.

Peat moss imported for consumption in the United States, 1936-41

Year	Short tons	Value	Year	Short tons	Value	
1936	75, 066	\$955, 807	1939	78, 611	\$1, 204, 883	
1937	86, 871	1, 219, 127	1940	21, 689	454, 632	
1938	69, 509	1, 092, 942	1941 (JanSept.)	22, 127	507, 856	

² Hotson, J. W., Sphagnum from Bog to Bandages: Washington Univ. Puget Sound Biol. Sta. Pub., tol. 2, No. 47, 1919, pp. 213, 243.

³ Figures on imports compiled by M. B. Price, of the Bureau of Mines, from records of the Department

Sweden and the Netherlands exported substantial quantities of peat to the United States before 1940, but in the January-September period of 1941 no imports were received from these countries. for the 15 tons received from Germany, all imports in the January-September period of 1941 came from Canada and the United Kingdom.

The average value of the imported product per ton increased from \$20.96 in 1940 to \$22.95 in the first 9 months of 1941. These values show a large increase over 1939 and 1938, when the averages were \$15.33 and \$15.72, respectively.

Peat moss imported for consumption in the United States, 1940-41, by countries

	All g	grades 1	Po	ultry and	l stable	grade	Fertilizer grade					
Country	1940 (Jan. 1– June 15)		(Ju	1940 (June 16- Dec. 31)		1941 (Jan.– Sept.)		1940 (June 16– Dec. 31)		941 an pt.)		
	Short tons	Value	Short	Value	Short tons	Value	Short tons	Value	Short tons	Value		
Canada Denmark	4, 294 389	\$105, 026 8, 556	1, 825	\$4 6, 857	8, 594	\$221, 128	7, 003	\$153, 661	12, 674	\$270, 717		
Germany Latvia Netherlands	41 146 3, 136	340 2, 889 44, 394			15	388						
Sweden United Kingdom	2, 679 787	64, 749 8, 758	120	2, 241	34	578	1, 269	17, 161	810	15, 045		
	11, 472	234, 712	1, 945	49, 098	8, 643	222, 094	8, 272	170, 822	13, 484	285, 762		

¹ Not separately classified.

WORLD PRODUCTION

Data on production of peat throughout the world are exceedingly incomplete, principally because of the war. The following table shows statistics for most countries in 1938 and 1939 and information available for 1940 and 1941.

World production of peat, 1938-41, by countries 1 [Compiled by B. B. Waldbauer]

454			
	404	27	454
(2)	(2)	3 2, 500, 000	(2) (2)
185, 600	(•)	(9)	(*)
90 369	80 000	(2)	(2)
		(2)	(2)
2, 440	3,000	(2)	(2) (3) (2) (2)
180,000	230, 000		(2)
800, 000	822, 400	842,000	(2)
		(2)	(2)
	(2)	(2)	(2)
	(2)		(2)
		12 000	83
			(2) (2)
			78, 47
ĵ,	90, 369 14, 901 2, 440	185, 600 (2) 90, 369 80, 000 14, 901 20, 000 2, 440 3, 000 180, 000 822, 400 25, 711 22, 953 99, 998 (2) 36, 578 (2) 31, 959 (2) 10, 000 (2) (20)	185, 600 (2) (2) (2) (2) (3) (4) (90, 369 80, 000 (2) (2) (2) (2) (2) (3) (800, 000 822, 400 842, 000 (2) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4

¹ In addition to the countries listed, Argentina, Austria, Eire, Finland, France, Germany, Hungary, Italy, Norway, and Poland produce peat, but data of production are not available.

² Data not available.

CRUDE PETROLEUM AND PETROLEUM PRODUCTS 1

By A. G. White, G. R. Hopkins, H. A. Breakey, and A. T. Coumbe

SUMMARY OUTLINE

	Page		Page
General review	1021	Refined products—Continued.	
Salient statistics		Motor fuel	. 1076
Reserves		Demand	
Legislation and administration	1027	Production	. 1078
Proration	1028	Yields	. 1080
Crude petroleum	1030	Prices	. 1080
Supply and demand	1030	Aviation gasoline	1082
Production		Stocks	. 1082
General	1030	Production and consumption by States	. 1085
By States	1031	Distribution	. 1085
Wells		Kerosine and range oil	. 1087
Stocks		Fuel oil	
Consumption and distribution	1055	Lubricating oil	. 1103
Runs to stills		Other products	
Distribution		World production	. 1109
Prices and value	1061	Foreign trade	
Refined products		Imports	
General review		Exports	
Definers conscitu		Intercontal chimments	1111

GENERAL REVIEW

A material expansion in normal business, combined with the rapidly growing production of war materials for domestic defense and export, raised the total demand for oil products above all former records in 1941.

Compared with 1940, there was a further substantial decline in this Nation's exports and an increase in imports from other American countries. As the net exports were reduced to less than 1 percent of total demand, the major factor in 1941 was the growth in domestic demand. The total domestic demand for all oils was about 11 percent higher than in 1940, giving an increase of 12 percent for motor fuel, 12 percent for residual fuel oils, 8 percent for distillate fuel oil, 20 percent for lubricating oils, and 26 percent for asphalt.

World production of crude petroleum in 1941 was less affected by the war than might have been expected; it is estimated at approximately 2,227 million barrels—an increase of 85 million barrels or approximately 4 percent. About 51 million of this increase was in the United States, whereas a gain of 38 million barrels is indicated for Venezuela and 20 million for Russia. The principal declines were 12 million barrels in Iraq, 8 million in the Netherlands Indies, and 4 million in Rumania.

Production in the United States was supplemented by a withdrawal of about 18 million barrels from stocks of domestic crude oil as compared with an increase of 23 million barrels in 1940. The demand for domestic crude oil in the United States rose from 1,330 million barrels in 1940 to 1,422 million in 1941—a gain of 92 million barrels or about 7 percent.

During 1941, crude runs to stills and crude production showed constant acceleration. Crude runs totaled 1,409 million barrels—a

¹ Data for 1941 are preliminary; detailed statistics with final revisions will be released later.

daily average of 3,861,000 barrels or a 9-percent gain over 1940. Crude production for the year amounted to 1,404 million barrels—a daily average of 3,847,000 barrels or a gain of about 3.8 percent over 1940. Stocks of all oils declined about 11 million barrels in 1941, representing a decrease of almost 19 million barrels in all crude stocks, a decline of over a million barrels in natural-gasoline stocks, and an increase of over 9 million barrels in stocks of refined oils.

Total demand for all oils in the United States, 1932-41
[Millions of barrels]

Year	Domestic demand	Exports	Total demand	Year	Domestic demand	Exports	Total demand
1932	835. 5	103. 3	938. 8	1937	1, 169. 7	172. 8	1, 342. 5
1933	868. 5	106. 7	975. 2	1938	1, 137. 1	193. 7	1, 330. 8
1934	920. 2	114. 5	1, 034. 7	1939	1, 231. 1	188. 9	1, 420. 0
1935	983. 7	129. 0	1, 112. 7	1940	1, 326. 6	130. 5	1, 457. 1
1936	1, 092. 7	132. 0	1, 224. 7	1941 i	(2)	(²)	1, 578. 3

¹ Subject to revision.

As import and export data for the last quarter of 1941 cannot be published, no exact figures of demand, by products, are available. The total demand for all oils increased more than 8 percent compared with 1940. During the first 9 months of 1941, compared with the same period of 1940, total exports were 27 million barrels less, total imports gained about 7 million barrels, and domestic demand for all oils increased about 114 million barrels, or almost 12 percent.

In the first quarter of 1941, the demand for all oils gained only 2.6 percent over the same period in 1940. Exports reached the lowest level and were only 19.7 million barrels for the quarter. The demand for heating oils increased to only a slight degree in comparison with the demand during the abnormally cold weather in the first quarter of 1940. The production of crude petroleum averaged 3,603,000 barrels daily, and about 2.6 million barrels were added to crude stocks of domestic origin. Daily average runs to stills of 3,580,000 barrels were supplemented by a reduction of 7.1 million barrels in stocks of refined oils. The increase in gasoline stocks was less than normal, and the peak of 98.7 million barrels of finished and unfinished gasoline stocks on March 31 was about 5 million barrels less than on the same date in 1940.

In the second quarter of 1941, the demand for all oils increased 7.8 percent over that in the same period of 1940. Total exports for the quarter rose to 26.5 million barrels. Crude production increased to a daily average of 3,770,000 barrels and was supplemented by a reduction of 8.1 million barrels in crude stocks of domestic origin. Runs to stills averaged 3,808,000 barrels daily, with a total gain of about 1.4 million barrels in stocks of refined oils. The loan of tankers to Great Britain reduced movements from the Gulf and led to curtailment of gasoline deliveries to distributors in the East Coast area in an effort to build up stocks of fuel oils to meet the winter peak demand.

In the third quarter of 1941, the demand for all oils gained 13.9 percent compared with the same period of 1940. Total exports rose to 29.1 million barrels in spite of the discontinuance of shipments to Japan in early August. Crude production rose to a daily average of

² Not available.

3,903,000 barrels, and daily runs to stills averaged 3,992,000 barrels. Crude stocks of domestic origin declined 13.6 million barrels during the quarter, but stocks of refined oils rose 7.2 million barrels. return of tankers loaned to Great Britain combined with restricted gasoline consumption in the East Coast district resulted in the rise of stocks of all oils in that district to 76.6 million barrels on September 30, a point still 5 million barrels below the stocks on the same date in 1940.

In the fourth quarter of 1941, the demand for all oils was approximately 9 percent above that for the same period in 1940. Exports continued to increase. Exceptionally mild weather reduced heatingoil demand below normal expectations, and stocks of all oils in the East Coast area reached a peak of 81.7 million barrels on November 30—a point 6.4 million barrels higher than on the same date in 1940. Crude production averaged 4,106,000 barrels daily for the quarter and runs to stills were 4,058,000 barrels daily; both figures represented new quarterly records. Crude stocks of domestic origin increased about 0.8 million barrels, and stocks of refined oils rose 8 million Stocks of finished and unfinished gasoline showed an abnormal increase of over 14 million barrels during the quarter and totaled 94.1 million barrels on December 31-almost 10 million barrels more than on December 31, 1940.

Salient statistics of crude petroleum, refined products, and natural gasoline in the United States, 1937-41

	1937	1938	1939	1940	1941 1
Crude petroleum:	1 X				
Domestic productionthousands of barrels?World productiondododo	1, 279, 160 2, 039, 231	1, 988, 041	2, 085, 444	2, 141, 946	1, 404, 182 2, 226, 836
percent	63 27, 484 67, 234	26, 412	33, 095	42,662	63 4 36, 334 4 25, 619
Stocks, end of period: Refinable crudedodo	305, 833	274, 958 274, 165	239, 978	264, 079	1 .
California heavy crude do do do Runs to stills do do do do do do do do do do do do do	14, 505	16, 467 1, 165, 015	13, 330 1, 237, 840	11, 906 1, 294, 162	10, 179 1, 409, 192
Total value of domestic production at wells thousands of dollars Average price per barrel at wells	1, 513, 340 \$1, 18	1, 373, 060 \$1. 13	1, 294, 470 \$1. 02	1, 385, 440 \$1.02	71,570,000 7\$1.12
Total producing oils wells in the United States, Dec. 31	363, 030	369, 640	380, 390	389, 010	(8)
during year	22, 143	18, 433	17, 485	19, 125	19, 195
Refined products: Imports 5thousands of barrels 5do	29, 673 105, 600	27, 896 116, 474	25, 965 116, 883	41, 089 78, 970	4 30, 697 4 49, 618
Stocks, end of perioddo	239, 632	259, 665 272, 241	268, 109	282, 265	290, 375
Output of motor fueldo Yield of gasolinepercent Completed refineries, end of year	571, 727 43. 9 551	569, 162 44. 3 538	611, 043 45. 0 547	616, 695 43. 1 556	690, 958 44. 2 522
Daily crude-oil capacity of refineries thousands of barrels 1	4, 351	4, 509	4, 629	4, 719	4, 957
A verage dealer's net price (excluding tax) of gaso- line in 50 United States cities cents per gallon •	10. 53	10.04	9. 58	9.08	9. 49
Natural gasoline: Productionthousands of barrels *tousands of barrels *	49, 177 4, 758	51, 347 4, 830	51, 650 4, 421	55, 700 5, 704	64, 204 4, 275

¹ Subject to revision.

As reported to the Bureau of Mines.

Figures for imports and exports for 1941 cover January to September, inclusive.

Department of Commerce; exports include shipments to noncontiguous Territories.

For comparison with succeeding year.

⁷ Estimated.

Figures not available.
American Petroleum Institute.

Supply and demand of all oils in the United States in 1941, by months

[Including wax, coke, asphalt, and still gasi n thousands of barrels]

							1941 1							1940
	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total	(total)
New supply: Domestic production: Crude petroleum. Natural gasoline Benzol.	110, 647 4, 884 313	100, 791 4, 565 280	112, 817 4, 916 317	111, 080 4, 980 277	116, 976 5, 181 288	115, 027 5, 095 274	118, 251 5, 252 271	121, 354 5, 639 277	119, 446 5, 664 266	126, 145 5, 952 296	123, 355 5, 994 287	128, 293 6, 082 323	1, 404, 182 64, 204 3, 469	1, 353, 214 55, 700 3, 167
Total production Imports: Crude petroleum	115, 844 2, 793	105, 636 3, 371	118, 050 3, 821	116, 337 3, 831	122, 445 3, 866	120, 396 4, 332	123, 774 5, 331	127, 270 4, 327	125, 376 4, 662	132, 393	129, 636	134, 698	1, 471, 855	1, 412, 081
Refined products Total new supply, all oils	2, 910 121, 547	3, 387	4, 977 126, 848	2, 888 123, 056	2, 811 129, 122	2,720	1,933	3, 627 135, 224	5, 444 135, 482	(2)	(2)	(2)	(2)	1, 495, 832
Change in stocks, all oils Demand:	126, 241	+240 112, 154	-831	-2,076	130, 363	130, 243	134, 879	-3, 390	+197	+3, 962	+2,066	+1,469	-10, 934	+38, 746
Total demand Exports: Crude petroleum Refined products	1, 687 5, 531	1, 342 4, 075	127, 679 1, 988 5, 063	125, 132 2, 503 5, 060	4, 339 5, 438	3, 934 5, 216	3, 651 4, 703	3, 275 8, 284	2, 900 6, 248	(2)	(2)	(2)	(2)	1, 457, 036 51, 496 78, 970
Domestic demand: Motor fuel. Kerosine. Distillate fuel oil. Residual fuel oil. Lubricating oil. Miscellaneous.	45, 344 7, 769 21, 010 32, 817 2, 367 9, 716	42, 001 6, 484 17, 783 30, 612 1, 798 8, 059	48, 760 6, 821 19, 847 32, 645 2, 263 10, 292	55, 154 5, 549 12, 264 30, 792 2, 712 11, 098	59, 307 4, 504 11, 233 29, 997 2, 732 12, 813	58, 360 3, 918 10, 853 29, 038 3, 171 15, 753	63, 093 4, 270 10, 586 28, 887 3, 074 16, 615	62, 944 4, 449 9, 667 30, 169 2, 562 17, 264	58, 995 5, 624 11, 670 31, 534 2, 638 15, 676	(2)	(2)	(2)	(2)	589, 490 68, 776 160, 851 340, 163 24, 690 142, 650
Total domestic demand	119, 023	106, 737	120, 628	117, 569	120, 586	121, 093	126, 525	127, 055	126, 137	(2)	(2)	(2)	(2)	1, 326, 620
Stocks: Refinable crude petroleum in U. S	263, 251	264, 432	266, 380	266, 012	262, 111	259, 075	255, 378	249, 620	246, 111	243, 735	243, 679	246, 884	246, 884	264, 709 3 264, 079
Heavy crude petroleum in Calif Natural gasoline Refined products	11, 839 5, 490 277, 373	11, 886 5, 311 276, 564	11,776 5,331 273,875	11, 802 5, 504 271, 968	11, 241 5, 856 274, 837	10, 711 6, 235 275, 229	10, 556 6, 317 275, 158	10, 942 6, 111 277, 346	10, 321 5, 373 282, 411	9, 869 4, 870 289, 704	10, 203 4, 557 291, 805	10, 179 4, 275 290, 375	10, 179 4, 275 290, 375	11, 906 5, 704 282, 265 3 280, 958
Total, all oils	557, 953	558, 193	557, 362	555, 286	554, 045	551, 250	547, 409	544, 019	544, 216	548, 178	550, 244	551, 713	551, 713	\$ 280, 958 \$ 564, 584 \$ 562, 647

¹ Subject to revision.

² Publication suspended.

^{*} For comparison with 1941.

Just before the United States entered the war, serious consideration was being given to the maintenance of crude production and refinery operations at even higher levels in expectation of a possible 5- to 10-percent increase in total demand during 1942. The whole trend of expected demand was reversed, however, by the subsequent loss of the principal sources of rubber supply and the curtailment of oil consumption in the major East Coast market owing to necessary readjustments in tanker transportation.

Fortunately for the East Coast area, the threatened shortage of supply due to diversion of tankers in the summer of 1941 had paved the way for initiating the steps necessary to increase overland tank-car movements, construct new pipe lines, speed tanker movements, pool supplies, and distribute extra costs. These measures and unusually mild fall weather combined to maintain stocks in the East Coast district at a high point to the end of 1941 and made it possible to bridge peak winter demand without serious inconvenience.

By February 1942 a drastic cut in expected domestic gasoline demand became apparent in consequence of the decreased use of automobiles to save wear on tires. By March, steps were taken to conserve the dwindling stocks of oil in the East Coast area by curtailing deliveries of gasoline to distributors one-third, and by May gasoline ration cards were in use. With prospects of a heavy cut in civilian gasoline consumption in 1942, runs to stills and the demand for crude oil began to drop far below expectations. This decline in runs was accentuated by the large stocks of gasoline on hand, by the problems of readjustment in refinery yields to produce more fuel oils and less gasoline, by changes in transportation routes at higher costs, and by the problem of price adjustments involved in the new movements and in the relatively greater output of heavy fuel oils required.

The long-term trends of supply and demand are shown in figure 1. The experience of the United States duplicates that of other countries, in that the direct and indirect effects of war tend to curtail civilian consumption of petroleum and thus offset increased military requirements. In nearly every instance the forecasts of large total increases in wartime consumption have proved erroneous. As regards this nation, the total oil supply and demand are so large that direct military and naval requirements are not likely to comprise more than a fraction of normal demand, and the effect on civilian consumption

would naturally be less drastic.

Naval use of fuel oil generally increases three to four times over peace-time requirements in war time. In the World War of 1914–18 the supply of naval fuel oil was a major problem, accentuated by almost complete conversion of navies from a coal-burning basis in 1914 to an oil-burning basis in 1918. The tremendous expansion in air warfare is characteristic of present war operations and doubtless will greatly increase the relative amount of gasoline required, as evidenced by the program initiated in 1941 to increase 100-octane aviation-gasoline capacity threefold.

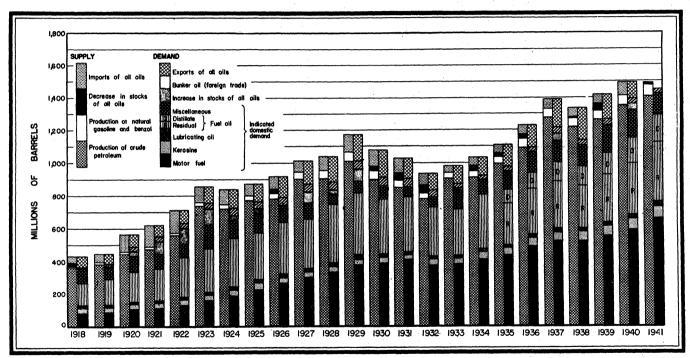


FIGURE 1.—Supply and demand of all oils in the United States, 1918-41.

RESERVES

Reserves of crude oil on January 1, 1942, were estimated by the American Petroleum Institute Committee on Petroleum Reserves at 19,589,296,000 barrels. These reserves include only crude oil and distillate, in known and proved fields, that are recoverable by present production methods. New discoveries in 1941 totaled 1,968,963,000 barrels, or 564,781,000 barrels more than was produced. Even though reserves are at the highest point they have ever reached, it is notable that there have been no large new discoveries in recent years. Of the additions to reserves in 1941, 1,538,989,000 barrels represented further development of fields discovered before 1941, leaving only 429,974,000 barrels as actual new field discoveries.

Estimates of proved oil reserves in the United States on January 1, 1935, and 1937-42, by States ¹

	[Millions of barrels]													
State	1935 ²	1937 1	1938 2	1939 ²	1940 ²	1941 2	1942 3							
Eastern States:			,											
Illinois	37	28	59	432	382	315	334							
Indiana	5	3	7	6	14	14	23							
Kentucky	50	39	38	49	44	41	23 36 56							
Michigan	64	63	46	74	51	35	56							
New York	75	66	45	40	51 35	65	60							
Ohio	40	32	30	33	32	30	37							
Pennsylvania	340	307	218	200	183	188	171							
West Virginia	40	32	28	50	46	53	50							
	651	570	471	884	787	741	767							
Central and Southern States:														
Arkansas	103	87	171	332	320	306	295							
Kansas	390	590	607	763	726	692	690							
Louisiana	513	657	1,049	1, 180	1, 173	1, 216	1,330							
Mississippi					7	40	80							
New Mexico	451	581	739	703	687	692	675							
Oklahoma	1, 235	1,384	1, 311	1, 206	1,063	1,002	1,036							
Texas	6, 643	8, 343	9, 692	10, 180	9, 768	10, 624	10, 976							
	9, 335	11, 642	13, 569	14, 364	13, 744	14, 572	15, 082							
Mountain States:														
Colorado.	16	19	19	22	20	23	23							
Montana	102	115	109	99	94	89	86							
Wyoming	267	260	280	327	306	305	304							
w young	201	200	200	021	300	300	30%							
· ·	385	394	408	448	420	417	413							
Pacific Coast States: California.	3, 261	3, 251	3, 303	3, 710	3, 532	3, 291	3, 323							
Other States						4	4							
Total United States	13, 632	15, 857	17, 751	19, 406	18, 483	19, 025	19, 589							

From reports of Committee on Petroleum Reserves, American Petroleum Institute.
 Final revised estimates of the amount of crude oil that may be extracted by present methods from fields completely developed or sufficiently explored to permit reasonably accurate calculations.
 Subject to revision.

LEGISLATION AND ADMINISTRATION

Little legislation affecting the oil industry was promulgated in 1941; but administrative acts, either by the President of the United States or by administrators or boards appointed by him, had a material influence on the petroleum industry. Congressional action that affected the industry included passage of the Lend-Lease Act; passage of the Cole Pipe Line Act, giving pipe lines the right of eminent domain when needed for national defense; extension of the Interstate Oil Compact for 2 years; investigation of the East coast oil shortage; and passage of the Bland Act, raising load limits on tankers.

The administrative acts affecting the industry were the appointment of a Petroleum Coordinator by the President; requests and orders by the Office of Price Administration and Civilian Supply affecting prices: priority rulings by the Office of Production Management and Priorities and Allocation Board (both later merged into the War Production Board), not only for the purpose of allocating steel and other deficient commodities, but also for enforcing rulings by other boards; limitation of earnings of pipe-line companies to 8 percent of their valuation, by order of the Interstate Commerce Commission; Presidential prohibition of exports of filled and empty oil drums, except under license; loan of tankers to Britain and U.S.S.R.; prohibition of exports of petroleum products to Japan; assumption of coordination of the aviation-gasoline industry by the Office of Petroleum Coordinator: signing by the State Department of an agreement with Mexico providing a plan for settlement of the controversy over expropriation of United States-owned oil properties in Mexico; coordination of oil production and allocation of production rates for each State by the Office of Petroleum Coordinator; and prohibition by the Office of Petroleum Coordinator of the drilling of more than 1 well to 40 acres, to be enforced by withholding priorities for drilling equipment from violators.

The action that affected the oil industry most was the establishment of the Office of Petroleum Coordinator by order of the President on May 28, 1941, with Harold L. Ickes, Secretary of the Interior, as Coordinator. The Coordinator is empowered to obtain information regarding the needs and availability of petroleum and petroleum products and to recommend action that will insure maintenance of a supply thereof. The country is divided into five districts, and each district has four industry advisory committees dealing with production, refining, transportation, and marketing. These committees are appointed by the Coordinator from nominees selected by the industry and have contact with the Coordinator through a general committee composed of the chairmen of each committee, as well as the general chairman of each district.

Toward the end of the year, the Coordinator organized the Petroleum Industry Council for National Defense, later called the Petroleum Industry War Council. This council comprises 66 members selected from the petroleum industry, and the 25 men on the general committee described above are ex-officio members. The functions of the Council are to mobilize most effectively the resources and abilities of the petroleum industry; to advise the Petroleum Coordinator with respect to the petroleum industry; and to carry into effect measures recommended by the Coordinator as essential to national defense.

The Petroleum Coordinator has no power to enforce his decisions; they must be executed through voluntary cooperation of the industry or through other agencies with enforcement power, such as the War Production Board, acting on the recommendations of the Coordinator. The petroleum industry, through its Petroleum Industry War Council and its general and district committees, enjoys unusual facilities for contact with the Government.

PRORATION

Any doubt of a State's right to prorate oil production was removed when the Supreme Court early in the year upheld the Texas system of proration.

The Interstate Oil Compact Commission gained strength during the year when, in addition to extension of the Compact Commission Act 2 years by Congress, four more States joined—Arkansas, Louisiana, New York, and Pennsylvania. These, added to the older member States-Colorado, Illinois, Kansas, Michigan, New Mexico, Oklahoma, and Texas-make a total of 11 States now in the Commission.

Late in the year the Office of Petroleum Coordinator assumed the function of designating the quantity of crude oil to be produced and allocating the rates of production for each State. One of the most important features in this connection was the new production plan for California put into effect on January 1, 1942. This is the first regulatory measure for California, as heretofore proration in that State has taken the form of voluntary curtailment. Two acts to regulate oil and gas production, passed by the legislature, were defeated by referendum.

State allowables and Bureau of Mines estimates of market demand ¹ compared with actual production ² in the United States in 1941

İ	Daily	averag	es, in t	housan	ids of b	earrels]			
Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Texas: State allowable 2	1 910	1 990	1 204	1 200	1 491	1 494	1 260	1 498	1 419	1 509	1 549	1,577
Bureau of Mines esti-	1, 516	1, 002	1, 304	1, 300	1, 451		l	l			1	-
mate	1, 298	1, 313	1, 327	1, 355	1, 382	1,372	1, 324	1, 361	1,379	1, 420	1, 455	1, 490
Actual production	1,280	1, 298	1, 329	1, 350	1,400	1,404	1, 344	1, 393	1, 387	1, 459	1,506	1, 532
California: State allowable 3	571	572	569	570	572	576	600	610	608	613	613	612
Bureau of Mines esti-	3/1	312	508	310	012	010	1 000	010	000	010	020	
mate	595	596	596	596	598	615	625	641	635	613	627	636
Actual production	609	613	610	614	623	639	639	642	647	651	651	632
Oklahoma:	1	1	1									
State allowable 4	390	400	400	400	410	415	415	415	428	428	428	428
Bureau of Mines esti-	439	443	437	429	440	460	499	492	490	482	469	460
MateActual production	417	423	421	418	416	422	434	429	437	419	425	428
Louisiana:	411	420	421	110	410		101	120	1 20.	1		
State allowable 5	293	295	306	301	320	320	310	325	329	339	347	355
Bureau of mines esti-						İ						
mate	287	289	291	300	320	320	304	325	324	332	333	340
Actual production	289	296	304	306	315	323	315	317	320	332	344	347
Kansas:	194	196	198	211	218	233	238	243	250	257	258	264
State allowable 6 Bureau of Mines esti-	194	190	199	21.1	210	200	200	240	200	201	200	202
mate	191	193	194	201	214	220	225	241	240	253	254	261
Actual production	197	199	202	208	210	230	241	244	246	252	249	257
New Mexico:								İ	l	1	i	
State allowable 7	104	106	110	110	114	113	109	113	113	115	117	117
Bureau of Mines esti-									113	115	115	116
mate	100	101	104	109 107	114 109	113 109	109 107	113 108	110	111	113	112
Actual production Arkansas:	101	103	105	107	109	109	107	100	110	1	11.0	
State allowable 8	71	71	71	72	72	72	74	74	74	73	73	73
Bureau of Mines esti-		٠^		'-		'-		'-				
mate	66	66	70	76	84	83	77	81	79	78	77	77
Actual production	70	70	71	72	72	72	73	75	74	72	72	74
Other States:		l		İ		1	l	ł .	l	l		
Bureau of Mines esti-	015	628	637	643	648	647	684	686	700	720	740	789
mate	615 606	598	597	628	628	635	662	707	761	773	752	757
Actual production	000	380	381	020	020							=
United States:			1				1	l	1			l
Rureau of Mines esti-		1	1			L :	L	١				
mate	3, 591	3, 629	3, 656	3, 709	3, 800	3, 830	3, 847	3, 940	3, 960	4,013	4,070	4, 139 4, 139
mate	3, 569	3, 600	3, 639	3, 703	3, 773	3, 834	3, 815	3, 915	3, 982	4,069	4, 112	3, 130
· ·	1	1	1									

¹ State figures are estimates of demand, hence in comparing demand data with actual production due regard should be given to changes in stocks by States of origin. (Changes in stocks and demand are given elsewhere in this chapter.)
2 Railroad Commission of Texas.
3 Conservation Committee of California Oil Producers.
4 Corporation Commission of Oklahoma.
5 Department of Conservation, Louisiana.
6 State Corporation Commission of Kansas.
7 Oil Conservation Commission of New Mexico.
8 Oil and Gas Commission.

Oil and Gas Commission.

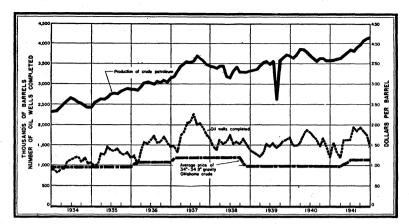
CRUDE PETROLEUM

SUPPLY AND DEMAND

The total demand for crude petroleum was approximately 1,474 million barrels in 1941—a gain of 101 million barrels or over 7 percent above that in the previous year. The domestic production of 1,404 million barrels was supplemented by a decline of almost 19 million barrels in all crude stocks compared with an increase of over 23 million in crude stocks in 1940. Imports of crude increased and exports declined, but total figures are not available for publication. Total runs to stills rose from 1,294 million barrels in 1940 to 1,409 million in 1941—a gain of 115 million barrels (8.9 percent).

Supply of and demand for crude petroleum in the United States, 1937-41 [Thousands of barrels]

	1937	1938	1939	1940	1941 1
Production Imports ³ . Changes in stocks ⁴ .	1, 279, 160 27, 484 +18, 247	1, 214, 355 26, 412 -28, 913	1, 264, 962 33, 095 -37, 324	1, 353, 214 42, 662 +23, 307	1, 404, 182 ³ 36, 334 -18, 922
Total demand	1, 288, 397	1, 269, 680	1, 335, 381	1, 372, 569	3 1, 459, 438
Runs to stills: Domestic	1, 157, 444	1, 138, 828	1, 204, 350	1, 252, 364	1, 358, 246
Foreign	25, 996	26, 187	33, 490	41, 798	50, 946
Exports	67, 234	77, 254	72,076	51, 496	³ 25, 619
Transfers to fuel-oil stocksOther fuel and losses	20, 909 16, 814	14, 042 13, 369	12, 409 13, 056	10, 275 16, 636	15, 482 9, 145
Total demand	1, 288, 397	1, 269, 680	1, 335, 381	1, 372, 569	³ 1, 459, 438


Subject to revision.
 As reported to Bureau of Mines.
 Figures for imports and exports for 1941 cover January to September, inclusive.
 Exclusive of heavy crude in California.

PRODUCTION

Despite declines in exports of petroleum and its products in 1941, an increase of 51 million barrels in production of crude oil was required to supply the demand, even with a substantial reduction in stocks. Daily average production rose from 3,569,000 barrels in January (as shown in fig. 2), crossed the 4-million mark in October, and reached an average of 4,139,000 in December. Total production was 1,404,182,000 barrels compared with 1,353,214,000 in 1940.

The gain of 17,122,000 barrels in Kansas was the greatest of any State. Production in Texas increased 14,375,000 barrels and that in Louisiana 12,324,000. Illinois and Michigan declined 13,509,000 and 3,392,000 barrels, respectively, although the trend was upward in both States at the end of the year. The relative rank of the three highest producing States—Texas, California, and Oklahoma declined further, so that in 1941 they supplied only 63.6 percent of the oil produced compared with 64.5 percent in 1940 (see fig. 3).

East Texas maintained its lead as the greatest producing field. The precipitous drop in output from the Salem (Ill.) field from 71 million barrels in 1940 to 30 million in 1941 reduced its rank from second to fourth. It was succeeded by the declining Oklahoma City field, whereas the Wilmington (Calif.) field, with a slight gain in production, ranked third.

TGURE 2.—Daily average production of crude petroleum, total number of oil wells completed, and average price per barrel of a selected grade of Oklahoma crude petroleum in the United States, 1934–41, by months. FIGURE 2.-

Petroleum produced in the United States, 1937-41, and total, 1859-1941, by States1 [Thousands of barrels]

	1937	1938	1939	1940	1941 2	1859-1941 (tote!)
Production:		1		ļ		
Arkansas	11,764	18, 180	21, 238	25, 775	26, 327	532, 744
California	230, 521	249, 749	224, 354	223, 881	230, 263	5, 800, 341
Colorado	1,605	1,412	1,404	1,626	1,875	41,771
Illinois	7, 499	24,075	94, 912	147, 647	134, 138	833, 810
Indiana		995	1,711	4,978	6, 634	137, 744
Kansas	70, 761	60,064	60, 703	66, 139	83, 261	31, 204, 194
Kentucky	5, 484	5, 821	5, 621	5, 188	4, 762	4 171, 923
Louisiana	90, 924	95, 208	93, 646	103, 584	115, 908	1, 175, 897
Michigan		18, 745	23, 462	19, 753	16, 361	5 161, 467
Mississippi			107	4,400	15, 314	19,821
Montana		4,946	5, 960	6,728	7, 526	91,018
Nebraska			2	276	1,636	1,912
New Mexico	38, 854	35, 759	37, 637	39, 129	39, 369	6 314, 126
New York	5, 478	5,045	5,098	4, 999	5, 185	7 123, 962
Ohio	3, 559	3, 298	3, 156	3, 159	3,340	591, 717
Oklahoma	228, 839	174, 994	159, 913	156, 164	154, 759	34, 960, 882
Pennsylvania		17, 426	17, 382	17, 353	16,750	71,013,818
Texas	510, 318	475, 850	483, 528	493, 209	507, 584	7, 087, 391
West Virginia	3,845	3,684	3,580	3, 444	3, 433	414, 203
Wyoming	19, 166	19,022	21, 454	25, 711	29, 694	530, 672
Other States 8	77	82	94	71	63	81, 185
Total United StatesValue at wells:	1, 279, 160	1, 214, 355	1, 264, 962	1, 353, 214	1, 404, 182	25, 210, 600
Total (thousands of dollars)	1 513 340	1 373 060	1 204 470	1 385 440	1 570 000	29 713 379
Average per barrel	\$1.18	\$1.13	\$1.02	\$1.02	\$1.12	\$1.18

¹ For detailed figures by States, 1859-1935, see Minerals Yearbook, 1937, p. 1008.

Subject to revision.
 Oklahoma included with Kansas in 1905 and 1906.

<sup>Oklanoma included with Kansas in 1900 and 1900.
Includes Tennessee, 1883-1907.
Figures represent 1925-41 production only; earlier years included under "Other States."
Figures represent 1924-41 production only; earlier years included under "Other States."
Early production in New York included with Pennsylvania.
Includes Alaska, 1912-33; Arkansas, 1920; Michigan, 1900-1919; Missouri, 1889-1911, 1913-16, 1919-23, 1932-41; New Mexico, 1913, 1919-23; Tennessee, 1916-41; Utah, 1907-11, 1920, 1924-41.</sup>

Production of crude petroleum in the United States in 1941, by districts, States, and months

[Thousands of barrels]

							1941 1							1
District and State	Janu- ary	Febru- ary	March	April	May	June	July	August	Sep- tember	Octo- ber	Novem- ber	Decem- ber	Total	1940 (total)
DISTRICT	l												l ———	
Pennsylvania Grade Other Appalachian Lima-Northeastern Indiana-Michigan Illinois-Southwestern Indiana Mid-Continent: North Louisiana, Arkansas, and Mis-	2, 225 554 1, 289 10, 908	1, 946 505 1, 106 9, 641	2, 129 540 1, 217 10, 946	2, 233 541 1, 178 10, 848	2, 247 536 1, 181 11, 042	2, 164 512 1, 212 10, 933	2, 293 552 1, 265 11, 419	2, 213 508 1, 342 12, 642	2, 308 516 1, 576 13, 222	2, 418 527 1, 877 13, 636	2, 191 471 1, 734 12, 603	2, 441 532 1, 788 12, 908	26, 808 6, 294 16, 765 140, 748	26, 972 6, 790 20, 182 152, 601
West Texas and Southeastern New	4, 814	4, 528	4, 901	5, 031	5, 263	5, 139	5, 969	6, 016	5, 916	6, 315	6, 526	6, 577	66, 995	54, 581
Mexico East Texas Oklahoma, Kansas, North Texas, etc. Gulf Coast. Rocky Mountain California	9, 730 10, 998 30, 893 17, 139 3, 216 18, 881	9, 174 9, 993 28, 122 15, 761 2, 858 17, 157	10, 327 11, 505 31, 364 17, 926 3, 059 18, 903	10, 453 10, 915 30, 548 17, 723 3, 188 18, 422	11, 238 11, 406 31, 951 19, 327 3, 467 19, 318	10, 971 10, 924 31, 780 18, 966 3, 258 19, 168	11, 044 10, 476 33, 416 18, 600 3, 412 19, 805	11, 341 11, 002 33, 562 19, 400 3, 416 19, 912	11, 072 10, 499 32, 933 18, 647 3, 354 19, 403	11, 911 11, 508 33, 991 20, 341 3, 434 20, 187	12, 091 11, 420 33, 217 20, 383 3, 202 19, 517	12, 725 11, 940 34, 878 21, 480 3, 434 19, 590	132, 077 132, 586 386, 655 225, 693 39, 298 230, 263	123, 224 141, 023 368, 149 201, 344 34, 467 223, 881
Total United States	110, 647	100, 791	112, 817	111,080	116, 976	115, 027	118, 251	121, 354	119, 446	126, 145	123, 355	128, 293	1, 404, 182	1, 353, 214
STATE Arkansas	2, 158	1, 950	0.101										=======================================	
California 2 Colorado Illinois Indiana Kansas Kentucky Louisiana Michigan Mississippi Montana New Mexico New York Ohio Oklahoma Pennsylvania Texas West Virginia W yoming Other Statesi	2, 18, 881 11, 293 6, 109 6, 109 8, 970 1, 252 597 3, 134 424 263 12, 924 1, 416 39, 674 2, 487 86	17, 157 100 9,069 574 5,575 8,296 1,070 6561 2,870 245 11,823 11,231 36,350 2,176 106	2, 191 18, 903 111 10, 392 6, 266 414 9, 421 1, 189 570 598 3, 263 41, 258 13, 040 1, 336 41, 185 2, 340 98	2, 147 18, 422 10, 296 6, 236 407 9, 192 1, 143 767 1, 143 767 1, 281 12, 527 1, 382 40, 491 30, 200 200 200 200 200 200 200 200 200 200	2, 237 19, 318 10, 499 6, 518 4003 1, 141 901 3, 369 435 285 12, 883 1, 407 43, 410 290 290 284 136	2, 163 19, 163 10, 405 6, 908 385 9, 696 1, 169 858 617 3, 272 284 12, 651 1, 345 42, 110 280 2, 472 139	2, 254 19, 805 160 10, 854 7, 484 418 9, 771 1, 234 1, 234 1, 234 1, 457 1, 419 41, 656 287 2, 587 2, 166	2, 315 19, 912 184 12, 086 7, 560 386 9, 838 1, 307 1, 598 646 3, 342 438 270 13, 309 13, 309 14, 183 283 2, 565 198	2, 226 19, 403 12, 692 7, 393 391 9, 595 1, 545 1, 694 3, 285 445 13, 102 1, 420 1, 440 1, 440 2, 515 171	2, 218 20, 187 13, 104 187 13, 104 7, 800 397 10, 283 1, 845 1, 932 465 300 13, 001 1, 501 1,	2, 164 19, 517 191 12, 116 47, 455 356 10, 326 11, 707 2, 249 3, 385 414 276 12, 758 11, 370 2, 348 150	2, 304 19, 509 189 12, 332 7, 957 394 11, 759 2, 185 683 3, 478 488 308 13, 257 1, 557 47, 500 302 2, 548 164	26, 327 230, 263 1, 875 134, 138 6, 634 83, 261 4, 762 115, 908 16, 361 15, 314 7, 526 39, 369 5, 185 3, 340 154, 759 16, 759 507, 584 3, 433 29, 694 3 1, 699	25, 775 223, 881 1, 626 147, 647 4, 978 66, 139 5, 188 103, 584 19, 753 4, 400 6, 728 39, 129 3, 159 3, 159 156, 164 17, 353 493, 293 39, 124 25, 711
Total United States: 1941 1940 1940 1941 1941 1941 1941 1941	110, 647 113, 056 3, 569	100, 791 108, 827 3, 600	112, 817 120, 165 3, 639	111, 080 116, 170 3, 703	116, 976 118, 471 3, 773	115, 027 111, 605 3, 834	118, 251 113, 340 3, 815	121, 354 110, 699 3, 915	119, 446 109, 405 3, 982	126, 145 113, 567 4, 069	123, 355 107, 137 4, 112	128, 293 110, 772 4, 139	1, 404, 182 3, 847	1, 353, 214 3, 697

¹ Subject to revision.

American Petroleum Institute.

³ Missouri (47), Nebraska (1,636), Tennessee (12), and Utah (4).

Pennsylvania Grade crude oil produced, 1932-41, by States

[Thousands of barrels]

State	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941 1
New York Pennsylvania West Virginia Central and eastern Ohio	3, 508 12, 396 3, 875 1, 741	3, 181 12, 607 3, 815 1, 594	3, 804 14, 462 4, 095 1, 597	4, 236 15, 794 3, 901 1, 547	4, 663 17, 053 3, 846 1, 510	5, 478 19, 173 3, 844 1, 367	5, 045 17, 407 3, 684 1, 180	5, 098 17, 363 3, 580 1, 179	4, 999 17, 334 3, 444 1, 195	5, 185 16, 731 3, 433 1, 459
	21, 520	21, 197	23, 958	25, 478	27, 072	29, 862	27, 316	27, 220	26, 972	26, 808

¹ Subject to revision.

Percentage of total crude petroleum produced in the United States, 1932-41, by principal States

							·			
State	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941
Texas	39. 8 22. 7	44.5 19.0	42.0 19.2	39. 4 20. 9	38. 9 19. 5	39. 9 18. 6	39. 2 20. 6	38. 2 17. 7	36. 4 16. 6	36. 2 16. 4
Oklahoma	19.5	20.1	19.9	18.6	18.8	17.9	14.4	12.7	11.5	11.0
Total, 3 States	82.0	83. 6	81.1	78. 9	77.2	76.4	74.2	68.6	64. 5	63. 6
Louisiana Kansas	2.8 4.4	2.8 4.6	3. 6 5. 1	5. 0 5. 5	7. 3 5. 3	7. 1 5. 5	7.8 5.0	7. 4 4. 8	7.7 4.9	8. 2 5. 9
Kansas New Mexico	1.6	1.6	1.9	2.1	2.5	3.1	2.9	3 0	2.9	2.8
Illinois	.6	. 5	.5	.4	.4	. 6	2.0	7.5	10.9	9.5
Michigan Arkansas		.9 1.3	1. 2 1. 1	1.5 1.1	1.1	1.3	1.5 1.5	1.8 1.7	1.5 1.9	1. 2 1. 9
Pennsylvania	1.6	1.4	1.6	1.6	1.6	1.5	1.4	1.4	1.3	1.2
All other	4.6	3. 3	3. 9	3. 9	3.7	3.6	3.7	3.8	4.4	5. 7
Total United States	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

¹ Subject to revision.

Production of crude petroleum in leading fields and districts in the United States, 1940-41,¹ and total production since discovery

[Thousands of barrels]

Field	State	1940	1941	Total since dis- covery
East Texas 2		141,000	³ 132, 600	1, 704, 000
Midway-Sunset		18, 400 27, 000	17, 500 23, 700	912, 500 870, 000
Seminole	Oklahoma		14,700	669, 000
Long Beach	California.		33, 200	560,000
Oklahoma City 2		9, 400	8,600	476, 000
Santa Fe Springs			17, 200	456,000
Bradford-Allegany			5, 400	421,000
Smackover		9,900	14, 200	385, 000
Coalinga		7, 600	6,700	351, 000
Yates district	TexasOklahoma	3, 400	3, 200	345, 000
Cushing-Shamrock	Kansas		5, 200	304,000
Augusta-Eldorado district	California	9, 600	10,700	302,000
Huntington Beach			3 5, 200	299, 000
Salt Creek 2		30, 200	30, 700	294,000
Wilmington Kettleman Hills		16, 700	14,000	253, 000
		12,000	12,500	183, 000
Gray County		2,900	3 3, 100	158,000
		70, 700	29, 500	153, 000
Salem		9, 900	11,700	139,000
Conroe		14, 200	10, 500	128,000
Rodessa		3, 800	3, 700	105,000
HobbsFitts			4, 200	94,000
			22, 900	70,000
Louden			6,700	55,000
Eunice	do		7,000	46,000
Lance Creek 2	Wyoming.	9, 100	3 8, 800	38,000
		11, 100	13, 200	33,000
Wasson			3 15, 300	20,000
Tinsley 2	MISSISSIPPI	2, 200	25,000	20,000
		·	•	·

Oil and Gas Journal, except as noted.
 Bureau of Mines.
 Subject to revision.
 Revised.

Arkansas.—A small gain (principally attributable to the younger fields, as the recoveries from the older ones were generally less than in the previous year)—552,000 barrels—raised the 1941 production to 26,327,000 barrels. The chief exception was the Urbana field, where more than doubling the number of wells in the past 2 years has increased the production from 381,000 barrels in 1939 to 837,000 in 1941. Production in the Atlanta field rose 292,000 barrels to 1,013,000, and the McKamie field—the largest gas reserve in the State—yielded 891,000 barrels of distillate.

Drilling operations continued to decline, as only 95 oil wells were completed in 1941 compared with 114 in 1940. The new Mount

Holly field was the only oil field discovered during the year.

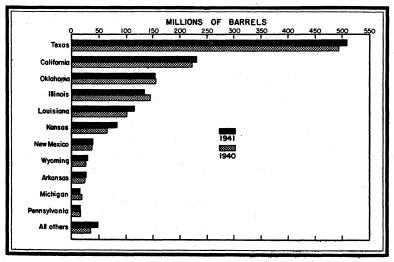


FIGURE 3.—Production of crude petroleum in the United States, 1940-41, by States.

Production of crude petroleum in Arkansas, 1937-41, by fields [Thousands of barrels]

Year	At- lanta	Buck- ner	Cham- pag- nolle	El Do- rado	Irma	Mag- nolia	Mc- Kamie	Ro- dessa	Schu- ler	Smack- over	Ur- bana	Other fields	Total
1937 1938 1939 1940 1941 ² _	108 721 1, 013	21 340 662 815 816	522 452 566 581 332	747 709 630 591 534	433 578 219 199 203	68 3, 639 7, 383 7, 121	74 891	1, 252 2, 317 1, 358 711 497	1, 153 6, 359 6, 430 6, 547 6, 055	6, 751 6, 406 5, 945 5, 500 5, 351	446 422 381 468 837	439 529 1, 300 12, 185 12, 677	11, 764 18, 180 21, 238 25, 775 26, 327

¹ Includes crude oil consumed on leases and net change in stocks held on leases for entire State.
² Subject to revision.

California.—Production in California gained 6,382,000 barrels in 1941 and reached 230,263,000 barrels, or an average of 631,000 daily. Although this is 19,000 barrels above the 1940 average, it is still far below the 1938 figure. About 11,000 barrels of this increase in the daily average is attributable to the reopening of heavy-oil wells—some of them closed for years—whose product is now in demand for naval and industrial fuel. That this developed during the latter half of the

year is indicated by the daily average production of 85,800 barrels of unrefinable crude for this period compared with 63,300 barrels for the first half of the year—the same as for 1940.

Nine hundred and twenty oil wells were completed in 1941 compared with 859 in 1940. The average initial daily production was 712

Production of crude petroleum in California, 1937-41, by districts and fields 1 [Thousands of barrels]

District and field	1937	1938	1939	1940	1941
an Joaquin Valley:					
Belridge	6, 332	5, 312	4, 781	4, 614	4, 185
Canal	31	849	1,855	2,034	1, 816
Coalinga	5,759	3, 898	5, 731	9, 916	14, 224
Coles Levee 2		12	526	2, 589	5, 717
Edison	1, 577	1, 102	838	868	1, 013
Elk Hills	3,787	3, 887	3,830	4, 427	3, 491
Fruitvale	3, 246	3,078	2, 377	2,072	2,085
Greeley	527	1, 164	811	1, 475	2, 480
Kern River	5, 639	4, 590	4, 133	4,082	4, 31
Kettleman Hills	29, 132	25, 609	19, 568	16, 730	13, 983
Lost Hills	1, 414	1, 297	1, 222	1, 405	1, 263
McKittrick	1,308	1, 289	1, 326	1, 317	1, 42
Midway-Sunset	26, 485	22, 875	18, 960	18, 397	17, 46
Mountain View	6, 843	4, 033	2, 983	2, 415	1, 910
Mount Poso	6,677	6, 235	4, 314	3, 425	4, 11
Rio Bravo	128	1, 945	2,875	3, 304	4, 534
Round Mountain	4,835	5, 474	3, 528	2,691	2, 81
Ten Section.	932	2, 473	3, 247	3, 518	5, 23
Other San Joaquin Valley	120	273	1, 152	2, 003	1, 74
Total San Joaquin Valley	104, 772	95, 395	84, 057	87, 282	93, 81
Coastal district:					
Capitan	918	1,067	876	651	740
Elwood	3, 203	-2, 247	1, 545	1, 286	1. 16
Rincon	1, 058	1, 395	1, 238	1,609	1, 54
San Miguelito	1, 147	1,044	952	1, 163	1, 42
Santa Maria	h '			2,216	3, 18
Santa Maria Valley	3,893	6, 128	6, 305	6.096	6, 90
Ventura Avenue	12, 685	12,926	12, 935	12,570	12, 89
Ventura-Newhall	1,831	1, 903	2, 317	2,866	4, 27
Other Coastal	282	186	132	101	8
Total Coastal	25, 017	26, 896	26, 300	28, 558	32, 22
os Angeles Basin:					
Brea Olinda	2,659	2, 125	2,063	2,070	2,07
Coyote	4, 269	4, 354	4,013	4,053	4, 46
Dominguez	9, 839	9,756	7, 131	7, 665	8, 49
El Segundo	3, 632	3, 872	1, 168	785	52
Huntington Beach	13, 255	11, 917	9, 983	9, 592	10, 74
	5, 530	5, 337	4, 605	4, 366	4, 90
Inglewood	21, 872	20, 599	17,004	16, 010	14, 69
Long Beach	3, 16/	4, 147	7, 455	7, 240	4.88
Montebello	3, 181	2, 305	1, 801	1, 498	1, 31
Playa del Rey	3, 158	3, 333	3, 134	3, 228	2, 71
Richfield	1, 259	3, 732	4, 459	4, 259	3, 43
Rosecrans		12, 630	10, 050	9, 438	8, 55
Santa Fe Springs	15, 745	3, 198	2,641	2, 557	2, 43
Seal Beach	3, 416		6,418	4,007	3, 21
Torrance	2,833	5, 203		30, 195	30, 67
Wilmington Other Los Angeles Basin	14, 186 731	34, 168 782	31, 100 972	1, 078	1, 10
Total Los Angeles Basin	108, 732	127, 458	113, 997	108, 041	104, 22
		249, 749	224, 354	223, 881	230, 26

¹ American Petroleum Institute. ² Includes Tupman.

barrels compared with 891 in 1940. Dry holes drilled numbered 179-23 more than in 1940.

Production gains were confined to the San Joaquin Valley and Coastal districts; the former increased 6,529,000 barrels and the latter 3,666,000. Production in the Los Angeles Basin declined 3,813,000

barrels. The Wilmington field still led, with an output of 30,672,000 barrels, whereas Kettleman Hills (which in 1940 yielded second place to Midway-Sunset) was exceeded also in 1941 by Long Beach and Coalinga, the latter rising from 9,916,000 barrels in 1940 to 14,224,000 in 1941 compared with a production of only 3,898,000 barrels in 1938.

Ten new fields were discovered in California in 1941, 8 of them in the San Joaquin Valley. The most important was the Raisin City, not because of its production but because it established the presence of oil north of Coalinga, a territory many theretofore had considered barren. Discoveries of the Helm and Riverdale fields later in the year expanded the oil possibilities in this area.

Colorado.—Production in Colorado increased from 1,626,000 barrels in 1940 to 1,875,000 in 1941. Chiefly responsible for this was the Wilson Creek field, where discovery of oil in the Sundance formation raised the output from 237,000 barrels in 1940 to 453,000 in 1941. The Hiawatha gas field, where oil was discovered in June 1940, increased production 116,000 barrels, bringing the yield for this field to

191,000 in 1941. Only 16 wells were completed during the year, 6 of them small ones in the Rangely field and 3 of them in the Wilson Creek field (the latter averaging 439 barrels a day initial production).

Production of crude petroleum in Colorado, 1937-41, by fields [Thousands of barrels]

Year	Florence 1	Fort Collins 3	Iles	Moffat	Price	Tow Creek	Wilson Creek	Other fields	Total
1937	57 64 62 56 55	90 109 116 128 116	1, 040 819 724 581 547	149 126 112 111 116	173 185 289 326 324	57 56 53 52 50	237 453	39 53 48 4135 214	1, 605 1, 412 1, 404 1, 626 1, 875

Illinois.—Production in Illinois declined from 147,647,000 barrels in 1940 to 134,138,000 in 1941. New discoveries brought the daily average output from 323,900 barrels in February to 423,100 in September, from which it dropped to 397,800 in December—slightly lower than the average for 1940. Federal restrictions on drilling and production, however, indicated that the production in Illinois would be even lower in 1942.

Outstanding in decreased yield was the big Salem field, whose 58-percent decline slashed its output from 70,734,000 barrels in 1940 to 29,539,000 in 1941. Other fields reporting notable declines were the Centralia field, which dropped from 10,642,000 barrels to 3,564,000, and the Louden field, which dropped from 26,596,000 barrels to 22,918,000.

New oil wells numbered 2,730, or 319 less than in 1940, and the initial daily average dropped from 620 barrels in 1940 to 277 in 1941 compared with 285 in 1939.

The Johnsonville field was the outstanding new discovery. first well in this field was brought in during July, and during the half year 217 oil wells were completed with an average initial daily pro-

Includes Canon City.
 Includes Wellington.
 Includes crude oil consumed on leases and net change in stocks held on leases for entire State.
 Subject to revision.

duction of 920 barrels. The original production in this field was found in the McClosky sand, but deeper drilling proved the Aux Vases formation productive. The Benton field, discovered in January, produced 5,769,000 barrels from 222 wells completed, with an average daily initial of 285 barrels. It is a significant fact that production in this field is from the Tar Springs formation, which heretofore has been the source of only small wells. The importance of the Benton discovery spurred search for the Tar Springs sand in other parts of the State and resulted in several other discoveries. Although a test of the Devonian lime in the Louden field proved oil in that formation, the quantity was disappointing. The most active field was the New Harmony in White County, where 439 oil wells were completed with an average initial daily production of 161 barrels. Worthy of mention among the new discoveries are the Rising Sun, East Centerville, and Roland fields, also in White County, and the Rural Hill and Woodlawn fields, in Hamilton and Jefferson Counties, respectively.

The Aux Vases sand, prominent in the Salem field, furnished much of the new production in 1941. As mentioned above, it is one of the sources of production in the Johnsonville field, and deeper drilling in the Dale and Hoodville fields to this formation raised the output from 314,000 barrels in 1940 to 2,483,000 in 1941 in the former and from 353,000 to 3,712,000 in the latter. These successes led to other discoveries, as yet too new to be evaluated.

Production of crude petroleum in Illinois, 1937-41, by fields ¹
[Thousands of barrels]

Field	1937	1938	1939	1940	1941
den-Northlbion		305	794	1, 009 1, 095	700
lantan	1 1			1,000	5, 766
Boyleston	-		169	1, 306	81
Centralia	5	3,022	2, 265	10, 642	3, 564
Disne	ا تـ ا	421	1, 224	479	219
Clay City		4,005	7, 694	6, 922	4, 680
Dale		2,000	., 552	314	2, 48
Dundas			209	2,341	4, 438
Hoodville				353	3, 712
ron				1, 120	800
rvington				509	1, 033
ohnsonville					5, 913
Ceensburg			987	2,709	2.000
ouden			18, 351	26, 596	22, 91
Mount Carmel		1,002	10,001	26	1, 690
New Harmony			5	1, 503	9, 931
New Harmony		4, 232	1, 644	2,744	2, 500
North Boos		1,202	2,011	249	82
				-10	1, 570
Rural Hill		2, 895	50, 179	70, 734	29, 53
alem		2,080	696	704	44
Sandoval	-,	77 1	439	1, 713	1, 87
st. James		:	42	1.514	1, 39
Storms			835	2, 556	1, 25
Conti			000	2,000	2, 46
Woodlawn			0.790	3, 329	3, 98
Old eastern fields		3,926	2, 738		3, 16 11, 19
Other fields	706	1, 588	3, 663	5, 984	11, 19
	7, 529	22, 349	91, 934	146, 451	128, 63

Oil and Gas Journal.

Indiana.—New discoveries in Indiana raised the production from 4,978,000 barrels in 1940 to 6,634,000 in 1941. More than half of the output, however, came from the Griffin field, and it was the scene of the greatest drilling activity.

Two hundred and sixty-two oil wells were completed averaging 109 barrels initial daily production compared with 231 completions and 139 barrels initial production in 1940; 128 of the completions were in the Griffin field and 25 in the New Harmony.

Production of crude petroleum in Indiana, 1937-41, by months
[Thousands of barrels]

Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1937 1938 1939 1940 1941	60 68 59 203 617	65 72 59 235 574	69 75 59 329 556	69 75 65 314 554	72 80 87 337 545	75 88 114 366 530	75 90 135 400 567	75 94 166 505 558	72 90 176 516 532	70 88 230 583 534	67 85 262 609 489	75 90 299 581 578	844 995 1,711 4,978 6,634

¹ Subject to revision.

Kansas.—Production in Kansas established a new record in 1941, when a 26-percent gain over 1940 raised the output to 83,261,000 barrels compared with the previous peak of 70,761,000 barrels in 1937. The increased output was in response to a greater demand to replace declining production in Illinois and Oklahoma and was made possible by the expansion of pipe-line facilities in Kansas. Production

Production of crude petroleum in Kansas, 1937-41, by counties and selected fields ¹
[Thousands of barrels]

County and field	1937	1938	1939	1940	1941
Barton:					
Silica-Raymond	7. 618	5, 534	5,000	5, 763	7, 615
Other fields	2, 505	2,739	3, 109	3, 344	5. 087
Butler:	2,000	2,100	0, 100	0, 044	0,007
Eldorado	3, 340	3, 023	2, 710	2, 651	2, 597
Other fields	2, 649	2, 671	2, 710		
Cowley	1, 963			2, 394	2, 633
Ellis:	1, 905	2, 318	2, 131	2, 672	2, 802
Bemis-Walters	0 104	0.000	0.001	0.410	
Burnett	2, 184	2, 826	2, 881	3, 419	4,866
Other fields	1	36	254	1, 771	3, 291
	444	254	332	342	477
	1, 972	1,140	1, 021	1, 603	2, 900
Greenwood	4,007	3, 834	3, 793	3, 227	3, 238
Harvey:		1			•
Hollow-Nikkel	1,112	773	738	511	513
Other fields	447	308	244	176	166
McPherson:					
Bornholdt-Welch	112	173	198	1,029	1, 783
Graber-Hesston	1, 233	1,082	965	947	951
Ritz Canton	1,872	1,650	1, 753	1, 373	1. 366
Voshell	931	765	574	562	586
Other fields	415	335	377	400	600
Reno:		000	٠., ا	100	000
Burrton.	5, 384	3, 521	3, 187	2, 625	2, 539
Other fields	1, 442	776	770	634	675
Rice:	~			001	010
Chase-Campbell	3, 591	2, 127	2, 256	2, 338	2, 746
Geneseo-Edwards	1. 292	1, 427	1, 753	1, 814	
Other fields	3, 438	1,744	1, 695		2, 694
Russell:	0, 400	1, (44	1,000	1, 653	1, 457
Hall-Gurney	594	610	1 011	0.040	0 500
Trapp-Sellens		613	1, 211	2, 243	3, 520
Other folds	4, 105	4, 162	4, 255	5, 481	7, 577
Other fields	6, 766	5, 081	4, 272	4, 709	4,826
SedgwickStafford:	1, 545	1, 418	1, 247	1, 156	1,093
	1				
		365	1, 294	1, 838	3, 176
Other fields	1,098	992	1,074	1, 361	2, 164
Sumner	2, 342	1,698	1, 494	1, 220	977
Other counties	3, 952	4, 769	5, 188	5, 790	7, 506
ľ	68, 354	58, 154	58, 129	65, 046	82, 421

¹ Oil and Gas Journal.

in Kansas has been restricted because of inadequate transportation facilities; but with the pressure of demand many pipe lines have been looped to enlarge their capacity, and new lines have been installed to fields not having that type of transportation in the past.

There were 1,420 wells drilled with an average initial daily production of 1,032 barrels compared with 1,410 wells drilled in 1940 with an average initial of 460 barrels. The number of wells increased

from 20,655 to 21,838, according to the Oil and Gas Journal.

Reno and Stafford Counties led in development during 1941. Success of 80 wells completed in the Zenith field with an average initial dail—production of 1,510 barrels spurred further exploration, leading to the discovery in July of the Peace Creek field, where 18 wells were completed with an average initial daily production of 2,830 barrels. The productive area was increased further by discovery of the Hendrickson pool in December. Production in these fields is from the Viola lime and overlying Misener sand. Discovery of oil in August in far western Kearny County in a stray Pennsylvanian sand, distant from any other production, was one of the most significant developments of the year because of the new possibilities it revealed.

Kentucky.—Crude-oil production in Kentucky continued to decline, dropping to 4,762,000 barrels in 1941 from 5,188,000 in 1940. Completions numbered 233 compared with 224 in 1940. The only development of interest in the State was the discovery of the Ordovician formation at Sinking Creek which resulted in some leasing

activity and hopes for future production.

Production of crude petroleum in Kentucky, 1937-41, by months
[Thousands of barrels]

Year	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1937	400	409	494	476	491	498	487	472	448	436	436	437	5, 484
1938	411	406	457	432	459	487	506	553	547	526	514	523	5, 821
1939	536	380	437	418	494	527	503	539	423	443	472	449	5, 621
1940	383	422	435	438	442	405	454	449	444	464	424	428	5, 188
1941	424	387	414	407	403	385	418	386	391	397	356	394	4, 762

¹ Subject to revision.

Louisiana.—Kansas and Texas were the only States where production increased more than it did in Louisiana. The gain of 12,324,000 barrels—12 percent—raised the output to 115,908,000 barrels com-

pared with 103,584,000 in 1940.

Despite a year of drilling activity, production in northern Louisiana increased only from 24,406,000 barrels in 1940 to 25,354,000 in 1941. The Rodessa field continued to decline but retained first place, and the Olla field, discovered in 1940, crossed the 4-million barrel mark to rank as second-largest in the northern part of the State. The Lisbon field, which ranked third in 1938 with over 3 million barrels production, dropped to less than 1 million in 1941.

The Cotton Valley field, ranking second in this area in 1940 but displaced by Olla in 1941, did not decline as the statistics seem to indicate. After completion of a large recycling plant in this field in July 1941 the condensate formerly included with crude-oil production was segregated into the individual products. In addition to the 3,459,000 barrels of crude oil produced from this field in 1941, con-

densate and natural-gasoline output totaled 2,186,000 barrels and butanes plus other products, 109,000 barrels; in 1940, 211,000 barrels of natural gasoline and condensate were produced separately, and crude-oil output, including condensate, totaled 5,189,000 barrels.

Production of crude petroleum in Louisiana, 1937-41, by districts and fields [Thousands of barrels]

District and field	1937	1938	1939	1940	1941 1
ulf Coast:			1		
Anse la Butte	70	74	24	380	1.4
		1, 285	1, 048	1,007	1,3
Black Bayou		1,200			
Bosco		2,085	1, 737	1,718	1,4
Caillou Island	6, 402	6, 249	4,078	2, 493	2,0
Cameron Meadows		1, 279	782	665	8
Charenton	236	1,085	2, 425	2,724	1.8
English Bayou	2, 871	2, 176	1, 613	1,565	1.3
Eola		_,	943	3, 935	3,
Garden Island	606	828	591	1, 106	1.
Gibson	453	984	1, 128	1, 335	1,
Golden Meadows		1	739	4,074	4,8
Grand Bay		50	496	1.168	2.0
Grand Lake	7 (5 (5 5 5 5)	0.21 (0.1.1.2.4)	130	1.417	1.0
Hackberry	4, 592	3, 728	3, 216	3, 312	3,
Town	6, 383	5, 641	4. 436	3, 475	3,
Iowa.					
Jeanerette		2, 485	1, 772	1, 203	
Jennings		7, 537	8, 119	5, 505	4,
Lafitte	4, 136	5, 862	4. 745	4,602	4.
Lake Barre	1, 368	657	347	317	-7
Leeville	2, 629	1, 867	1, 303	1, 135	1.
		5, 339			
New Iberia	0, 231		4, 204	3, 076	2,
North Crowley		362	827	1,602	2, (
Port Barre	600	612	681	810	1,0
Quarantine Bay	1	261	901	1, 585	2.
Roanoke		1, 339	1.076	965	
Sulphur		1, 244	1, 381	970	
		307	385		
Sweet Lake				532	
Tepetate		1, 985	2, 033	1,656	1,
University		170	1, 444	3, 496	3,
Valentine	968	1, 691	1, 127	877	· .
Venice	149	492	515	855	1.
Ville Platte	3	850	3, 352	4, 493	6.
White Castle	490	593	628	806	0,
Other Castle	490	090			
Other Gulf Coast	6, 971	7, 512	10, 017	² 14, 319	2 22,
Total Gulf Coast	62, 041	66, 630	68, 243	79, 178	90, 8
orthern:					
Caddo	2, 353	2,659	2, 663	2, 912	3, 0
Cotton Valley	1, 151	3, 527	4, 384	5, 189	3.
Haynesville.	1, 143	1, 107	1,064	987	٥,
Women	1,140				
Homer	932	952	988	1,041	1,
Lisbon.	2, 490	3, 368	1, 693	1, 482	
Nebo 3				54	
Olla 4				942	4.0
Rodessa	18,050	13, 443	9,042	6, 859	5,
Shreveport.	10,000			1, 555	1.0
		131	1,840		
	1,085	1,003	974	869	
Other Northern	1,679	2, 388	2, 755	² 2, 516	2 3,
Total Northern	28, 883	28, 578	25, 403	24, 406	25, 3
otal Louisiana	90, 924	95, 208	93, 646	103, 584	115, 9

1 Subject to revision.

2 Includes crude oil consumed on leases and net change in stocks held on leases for entire district.
3 Includes Hemphill and Trout Creek.
4 Includes Little Creek and Summerville.

There were 467 oil-well completions in northern Louisiana in 1941 with an average initial daily production of 106 barrels compared with 448 completions with an average initial of 114 barrels in 1940. est activity was in the Caddo field, where 163 wells were completed with an initial daily production of 57 barrels. Next greatest activity was in the 1940 discoveries—the Olla and Nebo fields producing from the Eocene Wilcox sands in La Salle Parish with 92 completions averaging 137 barrels daily in the former and 71 completions averaging 153 barrels daily in the latter. Further drilling in these sands discovered new fields the latter part of the year at a deeper level. The Wilcox trend is developing into one of the most important sources of production in northern Louisiana as well as upper Gulf Coast Texas. An important discovery late in the year was production in the Pettit

lime in the old Haynesville pool in Claiborne Parish.

Production in the Louisiana Gulf Coast district rose from 79,178,000 barrels in 1940 to 90,554,000 in 1941. This gain was widespread, and the output in 6 parishes increased more than 1 million barrels each. The greatest advance was in Plaquemines Parish, where production rose from 5,162,000 barrels in 1940 to 8,788,000 in 1941. The average initial daily production from the 67 wells drilled in this parish was 361 barrels. Grand Bay and West Bay fields were 1941 discoveries in Plaquemines Parish, with 12 completions having an initial daily production of 313 barrels in the former and 13 completions having an initial daily production of 386 barrels in the latter. Ville Platte, in Evangeline Parish, had the greatest increase of any one field, the output of 6,119,000 barrels compared with 4,493,000 in 1940 identifying it as the largest field in the State. The average initial daily production for the 65 wells drilled in this field was 230 barrels. duction from this field comes principally from the Wilcox trend. Jennings, highest producing pool in 1940, dropped to second place in 1941, being exceeded by Ville Platte only.

There were 614 oil-well completions in the Louisiana Gulf Coast district, with an average initial daily production of 252 barrels compared with 741 completions with an average initial of 307 barrels in 1940. Sixteen new fields were found; the most important were Bayou Sale in St. Mary Parish and St. Gabriel in Iberville Parish.

Michigan.—The decline in production from the large Michigan fields was so precipitous that despite many new discoveries the output dropped from 19,753,000 barrels in 1940 to 16,361,000 in 1941. Production in the Redding field dropped from 3,986,000 barrels to 1,749,000, and in the Walker field from 4,218,000 barrels to 1,292,000, in addition to declines of sizable proportions in many other fields. New discoveries during the year, however, reversed the trend, so that December production was almost half again as much as that of January, giving the prospect that the output in 1942 probably would exceed that of 1941.

Four hundred and thirty-three oil wells were completed in 1941 with an average initial daily production of 1,131 barrels, compared with 536 completions with an average initial of only 215 barrels in 1940.

The Reed City field, discovered in Osceola County late in 1940, had the greatest activity when deep drilling about the middle of the year revealed a large pool in the Monroe and Traverse formations. There were 113 wells completed in this field, with an average initial daily production of 3,511 barrels, and the pool supplied 2,754,000 barrels of the State production.

Oil was discovered in the Headquarters pool, Roscommon County, in June, and during the rest of the year 12 wells were completed with an average initial daily production of 3,695 barrels. Notwithstanding 77 completions in Allegan County, production dropped from 2,710,000 barrels in 1940 to 1,440,000 in 1941. Twenty-four completions in Arenac County caused a gain in production from the

Adams pool from 313,000 barrels in 1940 to 1,118,000 in 1941. The Winterfield pool, brought in as a gas field in Clare County in 1940, yielded 1,101,000 barrels of oil in 1941. The 30 wells drilled in this county had an average initial daily production of 424 barrels. Although there were numerous other discoveries, they seemed of minor importance.

Production of crude petroleum in Michigan, 1937-41, by fields ¹
[Thousands of barrels]

Year	Adams	Bloom- ing- dale	Buck- eye	Clay- ton	Porter	Red- ding	Reed City	Sher- man	Walk- er	Win- ter- field	Other fields	Total
1937 1938 1939 1940 1941	13 53 54 313 1, 118	514 3,371 1,001 529	6, 428 7, 385 2, 502 1, 004 665	1,030 1,071 638 410 254	2,707 1,798 1,331 1,234 1,136	874 3, 083 3, 986 1, 749	2 2,754	1, 532 1, 152 433 461 288	1 2, 821 4, 218 1, 292	8 1,101	4, 918 5, 897 9, 229 7, 116 5, 475	16, 628 18, 745 23, 462 19, 753 16, 361

¹ Data from Department of Conservation, Michigan.

Mississippi.—Youngest except one among the country's oil-producing States, at the end of 1941 Mississippi had taken the rank of ninth-largest, and the rapid expansion of its output indicated that it would soon reach seventh place. Total production for 1941 was 15,314,000 barrels compared with 4,400,000 in 1940. Most of this came from the Tinsley field, although the Pickens field was the source of a small amount.

There were 219 oil-well completions averaging 589 barrels initial daily production compared with 107 completions averaging 554 barrels initial production in 1940. All but two of these wells were drilled on the Tinsley dome, extending it and discovering production in newer zones. Seven producing zones have now been established in the field. The other two completions were discovery wells in new fields. One in Sharkey County, discovered in October, seems of little importance; but the other, discovered in Madison County in December, had a large initial daily production and caused immediate activity in the area.

Production of crude petroleum in Mississippi, 1939-41, by months
[Thousands of barrels]

Year	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1939 1940 1941 ¹	117 541	189 603	235 570	231 767	252 901	317 858	276 1, 42 5	578 1, 598	5 761 1,694	17 480 1, 932	32 448 2, 240	53 516 2, 185	107 4, 400 15, 314

¹ Subject to revision.

Montana.—Production in Montana continued to increase, rising from 6,728,000 barrels in 1940 to 7,526,000 in 1941. Although production for the entire State increased 798,000 barrels, that of the Cut Bank field rose 929,000 barrels to total 5,020,000, representing 67 percent of Montana's total. Despite active drilling and a new discovery on the west side, production from the Kevin-Sunburst field declined from 1,923,000 barrels to 1,753,000. All drilling activity

except one well completed in the Frannie field was concentrated in the Cut Bank and Kevin-Sunburst fields. Extension of the west and south sides of the Cut Bank field brought in 111 new wells with an average initial daily production of 177 barrels, and 48 wells were completed in the Kevin-Sunburst field with an average initial of 111 barrels.

Production of crude petroleum in Montana, 1937-41, by fields

[Thousands of barrels]

Year	Cat Creek	Cut Bank	Dry Creek	Elk Basin	Fran- nie	Kevin- Sun- burst	Lake Basin	Pon- dera	Other fields	Total
1937	227 211 196 187 173	3, 332 2, 809 3, 545 4, 091 5, 020	102 365 319 175 170	12 8 14 16 17	5 26	1, 634 1, 290 1, 576 1, 923 1, 753	(1) 18 18 18 18	418 210 276 305 286	80 35 16 8 8	5, 805 4, 946 5, 960 6, 728 7, 526

¹ Included under "Other fields."

Nebraska.—Crude-oil production in Nebraska became significant in 1941, when it amounted to 1,636,000 barrels compared with 276,000 in 1940. Most of this oil came from the Falls City pool. Completions numbered 38, with an average initial daily production of 360 barrels.

New Mexico.—The 39,369,000 barrels produced in New Mexico in 1941 was only a slight increase over the 1940 yield. The declining Monument and Eunice fields still maintained the lead, both having gained slightly over their 1940 output. Identified with these fields, the Arrowhead field, discovered in 1940, increased its production over one-half million barrels to 1,429,000. The south Maljamar field, however, increased from 760,000 barrels in 1940 to 1,651,000 in 1941 for the largest gain of any field. There were 63 completions in this field, with an average initial daily production of 361 barrels. tion from the Loco Hills field increased almost 350,000 barrels.

Oil-well completions numbered 209, with an average initial daily production of 221 barrels in 1941 compared with 479 completions

with an average initial production of 345 barrels in 1940.

Production of crude petroleum in New Mexico, 1937-41, by districts and fields 1

[Thousands of barrels]

·	1	Northwes	st			Sout	heast			
Year	Hog- back	Rattle- snake	Other North- west	Arte-	Eunice	Hobbs	Monu- ment	Vacu- um	Other South- east	Total
1937 1938 1939 1940 1941 3	70 70 69 74 73	283 245 204 143 97	31 29 30 37 36	1, 986 2, 188 1, 981 2, 686 3, 433	11, 043 8, 966 7, 863 6, 561 6, 658	7, 310 5, 040 4, 401 3, 785 3, 686	10, 968 9, 451 8, 206 6, 887 6, 960	7 886 3,028 4,738 4,800	6, 740 9, 134 11, 886 13, 846 13, 917	38, 438 36, 009 37, 668 38, 757 39, 6 60

Oil and Gas Journal.

Subject to revision.

Includes crude oil consumed on leases and net change in stocks held on leases for entire State.

³ Includes Grayburg, Jackson, and Maljamar. ³ Subject to revision.

New York.—Production in New York increased from 4,999,000 barrels in 1940 to 5,185,000 in 1941, the largest output since 1937. Production was encouraged by the strong demand for lubricating oil, which in June took the price of Bradford crude to \$2.75 per barrelthe "ceiling" imposed for this crude by the Price Administrator.

According to the Oil Weekly, new completions numbered 674, with an average initial daily production of 7 barrels. Repressuring opera-

tions were active, and 441 wells were drilled for water input.

Production of crude petroleum in New York, 1937-41, by months [Thousands of barrels]

Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1937. 1938. 1939. 1940.	440 444 402 458 424	408 409 363 430 372	467 455 418 438 410	455 429 406 444 436	461 447 439 439 435	481 418 435 402 422	484 404 416 425 456	469 429 441 396 438	453 406 434 383 445	444 404 448 408 465	453 391 453 379 414	463 409 443 397 468	5, 478 5, 045 5, 098 4, 999 5, 185

¹ Subject to revision.

Ohio.—Production in Ohio totaled 3,340,000 barrels in 1941 compared with 3,159,000 in 1940. Oil-well completions numbered 419, with an initial daily production of 27 barrels, compared with 323 completions in 1940.

Greatest activity was in Medina County, where 132 small wells were completed, but the principal development was in Perry County, with 67 new wells. Of these, 45 with an average initial daily production of 152 barrels from the Clinton sand extended the Clayton pool. Eight wells were drilled in the northwestern part of the county, with an average initial daily production of 120 barrels.

Production of crude petroleum in Ohio, 1937-41, by months [Thousands of barrels]

Year	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1937	255	282	316	304	308	317	314	312	332	262	272	285	3, 559
1938	248	258	301	274	281	286	266	301	277	278	257	271	3, 298
1939	252	236	274	255	288	272	269	266	247	276	260	261	3, 156
1940	207	234	246	264	280	260	286	287	272	296	248	279	3, 159
1941	263	245	258	281	285	284	283	270	287	300	276	308	3, 340

¹ Subject to revision.

Oklahoma.—Notwithstanding great drilling activity, production in Oklahoma continued to decline and dropped to 154,759,000 barrels in 1941 compared with 156,164,000 in 1940 and 228,839,000 in 1937. Decreases in the Oklahoma City field output from 35,970,000 barrels in 1940 to 32,184,000 in 1941, and in the Seminole field from 26,989,000 barrels to 23,687,000, along with losses in smaller fields, more than offset the yield from new wells. The Fitts field, which produced more

than Seminole in 1937, was down to 4,223,000 barrels in 1941. Completions in 1941 totaled 1,099, with an average initial daily production of 226 barrels compared with 1,011 wells with an average initial of 204 barrels in 1940. The most important discovery was the Apache field in Caddo County in June, where the seven wells drilled

had an average initial daily production of 4,012 barrels from the Simpson sand. Most of the yield increases were in fields discovered before 1941. The Hewitt field, which has been producing for several years, had the greatest activity, as 119 wells were completed, mostly in the first half of the year. Their average initial daily production was 294 barrels, and the output in this field increased from 1,778,000 barrels in 1940 to 4,860,000 in 1941. Production in the Cumberland field increased from 393,000 barrels in the discovery year 1940 to 2,543,000 barrels in 1941. Completions in this field were 31, with an average initial daily production of 266 barrels. New completions also resulted in increased production in the Cement and Dill fields.

Production of crude petroleum in Oklahoma, 1937-41, by fields ¹
[Thousands of barrels]

Field	1937	1938	1939	1940	1941
Allen	2, 511	2,475	2, 289	2,066	1. 78
Beebe	928	1,017	1,005	1,828	1, 520
Billings	2, 349	2,108	2, 178	2, 209	2, 27
Dillings	2,790	2, 389	2,403	2, 213	1.95
Bristow-Slick			2, 689	2, 838	3, 28
Burbank	2,871	2, 814			3, 35
Cement	782	1, 336	1,826	2, 469	
Coyle			386	637	1, 46
Crescent	3,852	1,687	983	769	570
Cromwell	1, 265	1,288	1, 175	1, 357	1, 45
Cumberland.	l			393	2,543
Cushing-Shamrock	3,908	3,848	3, 446	3, 353	3, 22
Dill	640	405	358	635	1, 42
Rdmond	5, 884	2.030	1.675	1.488	1. 22
	2,077	1, 224	1,376	1, 153	1.35
ish			9, 120	6, 246	4, 22
Fitts	30, 977	16, 655			
Healdton	3,654	3, 401	3, 236	3, 177	3,09
Hewitt	1,583	1,400	1,362	1,778	4,86
Keokuk	2,979	1,713	1, 176	1,091	1,02
Lucien	5,047	3,324	3,017	2,750	2,06
Nowata County	3, 450	4, 390	4,348	4,306	3, 99
Oklahoma City	54, 776	38, 796	35, 728	35, 970	32, 18
	4, 315	1, 889	1,034	739	59
Olympic Osage (outside Burbank-South Burbank)	7,626	6, 438	6,063	5,904	6, 13
	1,020	528	1, 489	1,377	1.54
Ramsey					
Seminole field: Bowlegs	4, 178	3. 200	2, 678	2, 464	2.13
	1, 973	1. 294	922	840	79
Carr City		3, 751	3, 590	3,730	3.75
Earlsboro	2,945		3, 590 656	766	1.24
Konawa	592	569			
Little River	4, 222	3,040	2,865	2,875	2,70
St. Louis-Pearson	7, 528	7, 766	11, 303	9, 331	6,99
Seminole City	3,428	2,842	2,618	2, 501	2, 24
Other Seminole districts	5, 838	6, 390	5, 310	4,482	3, 81
Total Seminole field	30,704	28, 852	29, 942	26, 989	23,68
Sholem-Alechem-Tatums-Tussy	3, 129	2, 249	1,699	2, 169	2,82
South Burbank	5, 579	3, 938	3, 150	2, 927	2.78
Other fields	39, 431	32, 271	30, 331	31, 936	36, 79
Total Oklahoma	223, 107	168, 465	153, 484	150, 767	153, 25

¹ Oil and Gas Journal.

Pennsylvania. Despite heavy demand, crude-oil production slumped from 17,353,000 barrels in 1940 to 16,750,000 in 1941. The trend, however, was definitely upward the last 4 months of the year, as the output for this period was 6 percent higher than for the same period in 1940. Most of the drilling was in the Bradford district, where 1,540 wells were drilled with an average initial daily production of 1.2 barrels.

Consideration of intensive recovery methods in Pennsylvania has brought interest in horizontal wells in addition to the established practice of repressuring wells. Water-input wells drilled for this purpose numbered 1,675 in 1941.

Production of	crude	petroleum	in	Pennsylvania,	1937-41,	by	months
		[Thous	and	s of barrelsl			

Year	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1937	1, 497	1,390	1, 584	1,554	1, 581	1, 613	1, 689	1,703	1,678	1, 652	1,608	1,640	19, 189
1938	1, 566	1,466	1, 653	1,497	1, 517	1, 432	1, 385	1,460	1,377	1, 383	1,318	1,372	17, 426
1939	1, 346	1,255	1, 437	1,411	1, 558	1, 437	1, 405	1,479	1,414	1, 570	1,532	1,538	17, 382
1940	1, 522	1,505	1, 530	1,582	1, 585	1, 335	1, 418	1,387	1,321	1, 405	1,319	1,444	17, 353
1941 ¹	1, 416	1,231	1, 336	1,382	1, 407	1, 345	1, 419	1,376	1,440	1, 501	1,370	1,527	16, 750

1 Subject to revision.

Texas.—Texas production of 507,584,000 barrels was the greatest since 1937 and represented 14,375,000 barrels more than the 1940 output. The only districts to show material gains were the Gulf Coast and West Texas, and the greatest loss was in the declining East Texas, although it maintained its place as the greatest field in the world. Development of the Wilcox trend in the upper Gulf Coast district and of deeper sands in West Texas is responsible for the increases. In all, 7,262 oil wells were completed in 1941, with an average initial daily production of 373 barrels, compared with 6,632 completions with an average of 486 barrels in 1940.

Production in the Gulf Coast district increased from 122,166,000 barrels in 1940 to 135,139,000 in 1941, owing principally to development of the Wilcox trend in the upper Gulf Coast area. Although oil was discovered several years ago in the Eocene Wilcox Sand, it was not until 1939 that active development began, and the rewards

have come in 1940 and 1941.

The Conroe field gained 2,327,000 barrels, maintaining its place as the largest producer in the Texas Gulf Coast field with a total output of 11,630,000 barrels. Hastings, with a gain of 2,202,000 barrels, produced 7,623,000 barrels, but Saxet-Saxet Heights, displaced by Hastings, dropped from 5,634,000 barrels in 1940 to 4,578,000 in 1941. Development of the Marginulina-Frio sands in Jackson County re-

sulted in large gains in the Lolita and West Ranch fields.

There were 1,353 oil wells completed in the Gulf Coast area, with an average initial daily production of 196 barrels, compared with 1,072 completions having an initial production of 276 barrels in 1940. Greatest activity was in the West Ranch and Lolita fields, where 133 and 113 wells were completed with an average initial daily production of 243 and 196 barrels, respectively. Wells with the largest average initial daily production were in the Tom O'Connor field—19 with 548 barrels average; Fannett—16 with 539 barrels average; Anahuac—23 with 499 barrels average; and West Columbia—26 with 328 barrels average.

Production in West Texas increased from 84,494,000 barrels in 1940 to 92,907,000 in 1941. The Slaughter district had the largest gain, and Wasson and Cowden, the largest producing districts, ranked next in reverse order. There were 2,123 oil wells completed in West Texas with an average initial daily production of 841 barrels compared with 1,717 completions in 1940 averaging 891 barrels. Output from the Slaughter district, northernmost field in West Texas and the most active drilling center in the Nation in 1941, rose from 841,000 barrels in 1940 to 4,612,000 in 1941. Oil-well completions numbered 634, with an average initial daily production of 1,051 barrels. There were 284 wells drilled in the Wasson district, largest producing district in West Texas, averaging 692 barrels initial production. The North

Cowden, Foster, and Johnson fields in the Cowden district all showed large increases, and 120 new wells in Seminole almost tripled the

output from that field.

Despite great drilling activity, increased production from several fields, and the discovery of a new large field, yield from the eastern part of Texas dropped from 168,919,000 barrels in 1940 to 161,634,000 in 1941, owing principally to declines in the East Texas, Van, and Rodessa fields, whereas increases in Long Lake, Cayuga, and Talco, plus the output from the new Hawkins field, helped to stem the drop. In all, 798 wells were completed with an average initial daily production of 160 barrels.

The Hawkins field, discovered in the last days of 1940, produced 1,432,000 barrels of oil in 1941 from the 226 wells completed during the year, with an average initial daily production of 348 barrels.

Although there was a great amount of drilling activity in North Texas in 1941, production was little changed from that of 1940. There were 2,456 wells drilled of which 1,593 were oil completions. A number of new pools were discovered, and new production was found in deeper formations, particularly the Ellenburger. There were 268 completions to this formation in the K. M. A. field, with an average initial daily production of 326 barrels. Ninety-five wells completed in the Hull-Silk field raised its production more than a million barrels—the only field in North Texas to have a large gain.

Although 648 wells were completed in the Panhandle, no unusual developments or new discoveries were made. There was a small gain

in production.

Production of crude petroleum in Texas, 1937-41, by districts and fields
[Thousands of barrels]

District and field	1937	1938	1939	1940	1941 1
ulf Coast:					
Anahuac		2,887	2,604	2,683	4,65
Barbers Hill.		3, 413	3, 165	3, 180	3,07
Conroe	15, 191	11,606	9, 320	9, 303	11, 63
Dickinson-Gillock	1,432	2, 227	2,946	2,940	2, 19
Fairbanks		839	2,668	2,460	2, 93
Flour Bluff		1,736	1, 362	1, 151	1, 33
Friendswood	. 88	1,078	2, 323	2,542	2,9
Goose Creek	860	596	619	571	50
Greta	6,635	4, 190	1,993	1,493	2,3
Hardin	241	1,621	2, 180	1,646	1.6
Hastings	5, 835	6,940	6, 354	5, 421	7.6
Heyser		3, 051	3, 470	3, 399	2,6
High Island		900	866	966]
Hull		2,899	2,077	2,005	2.3
Humble		1, 202	1,041	957	9
Lovell's Lake		51	245	882	1.3
Luby		1.578	2, 472	1,459	1.3
Manyel		3, 222	2, 718	2, 627	1.9
Old Ocean		1, 782	3, 209	4, 165	4.7
Orange		483	887	889	
Pierce Junction	1, 243	1, 117	897	628	l š
Placedo		3,088	2, 298	1, 882	1, 4
Raccoon Bend		1, 206	1,034	1, 232	1.3
		2,093	2,097	2, 111	2, 2
Refugio Saxet-Saxet Heights	15, 763	13, 130	8, 953	5, 634	4,5
Segno	472	708	958	1,606	1,5
Spindletop		837	782	609	1,4
Sugarland		1. 222	1, 242	1, 354	6
		3, 998	4.617	4.384	4.6
Thompsons		2,635	2, 630	2,675	3, 3
		2, 033 571	1, 033	1.149	8
West Beaumont				2, 353	2.7
West Columbia		1,600	2, 261		
West Ranch		19	280	1,862	3,6
White Point		387	2,089	3,054	2,8
Withers	570	925	1,330	1,712	2,8
Other Gulf Coast	27, 764	29, 750	37, 503	² 39, 182	² 43, 3
Total Gulf Coast	114, 702	115, 587	122, 523	122, 166	135, 1

Production of crude petroleum in Texas, 1937-41, by districts and fields—Continued [Thousands of barrels]

•					
District and field	1937	1938	1939	1940	1941 1
East Texas:					
East Texas proper 4	170, 673	152, 116	144.615	141, 023	132, 586
Cayuga		3, 191	3, 472	4, 432	4, 859
Hawkins		l			1, 43
Long Lake		721	867	828	1,378
Rodessa	12,626	11, 373	9, 785	6,607	4, 712
Sulphur Bluff	1,627	1,653	1, 536	1, 522	1,582
Talco		9, 593	9, 609	8, 818	9, 038
Van	11,346	5, 630	5, 333	4, 512	3, 739
Other East Texas	589	611	738	1, 177	2, 311
Total East Texas	210, 325	184, 888	175, 955	168, 919	161, 634
Central Texas:	-				
Darst Creek	2,802	2, 816	2, 707	2, 178	1,845
		2, 497	2, 443	2, 256	1, 974
Luling Lytton Springs	120	1,057	867	649	577
Mexia 5	1,678	1,635	1,494	1, 418	1, 531
Pettus	3, 135	2,088	1, 515	1, 276	1,061
Salt Flat (Bruner)	1,586	1,419	1,594	1, 512	1,348
Other Central Texas	1,990	1, 175	1,049	1, 139	1, 256
Total Central Texas	13, 571	12, 687	11,669	10, 428	9, 592
North Texas 6	37, 580	36, 823	40, 371	7 48, 153	7 48, 568
Panhandle 8	27, 617	23, 556	24, 165	26, 716	27, 831
South Texas 9	_ 30, 780	29, 597	29, 392	32, 333	31, 913
West Texas:					
Andrews County	1,318	1, 309	1, 587	1, 506	2, 224
Big Lake		2, 381	2, 275	2,075	1, 938
Fisher County	1, 164	1, 208	1, 059	835	655
Slaughter		73	416	841	4, 612
Ward County	12, 561	8, 878	7, 795	7, 580	7, 189
Other West Texas	58,052	58, 863	66, 321	3 71, 657	³ 76, 289
Total West Texas	75, 743	72, 712	79, 453	84, 494	92, 907
Total Texas	510, 318	475, 850	483, 528	493, 209	507, 584
	1	, , ,		1	,

1 Subject to revision

Subject to revision.
 Included under "Other Gulf Coast."
 Includes crude oil consumed on leases and net change in stocks held on leases for entire district.
 Joiner, Kilgore, Lathrop, and other pools in Cherokee, Gregg, Rusk, Smith, and Upshur Counties.
 Includes other fields in Falls, Freestone, Limestone, and Navarro Counties.
 Includes the fields in and between Wilbarger, Wichita, Clay, Montague, and Cooke Counties on the north and Runnels, Coleman, Brown, and Comanche Counties on the south.
 Includes causical consumed on leases and not change in stocks held on leases for East Teyrs, exclusive

7 Includes crude oil consumed on leases and net change in stocks held on leases for East Texas, exclusive of East Texas proper, Central, North, and South Texas.

8 Carson, Gray, Hutchinson, Moore, Potter, and Wheeler Counties.

9 Includes fields in Duval, Hidalgo, Jim Hogg, Jim Wells, Starr, Webb, and Zapata Counties.

West Virginia.—The output of 3,433,000 barrels in 1941 was slightly less than the 3,444,000 barrels produced in 1940, but the trend was upward, as production in the last 4 months of 1941 was 2 percent higher than that for 1940.

There were 115 new wells drilled, with an average initial daily pro-

duction of 15 barrels.

Production of crude petroleum in West Virginia, 1937-41, by months [Thousands of barrels]

Year Jan. Feb. Mar. May June July Sept. Oct. Nov. Dec. Total Apr. Aug. 3, 845 3, 684 3, 580 3, 444 3, 433 367 257 282 1937 1938 322 320 311 290 294 282 337 312 326 309 277 311 317 304 325 315 320 279 1939 288 310 291 288 290 309 285 300 276 303 286 312 264 1941 1 270 302

¹ Subject to revision.

Wyoming.—Production rose from 25,711,000 barrels in 1940 to The greatest gain was in the Lost Soldier field, **29**.694.000 in 1941. where the output rose from 2,070,000 barrels in 1940 to 4,745,000 in 1941. Seven wells were completed in this field, with an average initial daily production of 784 barrels. A 63-percent gain raised production in the Grass Creek field from 718,000 barrels to 1,171,000, although no

new completions were reported.

There were 123 oil wells completed during 1941 but no new fields Drilling was most active in Lance Creek, where 26 wells were brought in with an average initial daily production of 608 barrels, notwithstanding which production dropped from 9,121,000 barrels to Production in La Barge field rose from 585,000 barrels to 769,000, in consequence of 16 completions; 13 wells were completed in the Osage field and 11 in Oregon Basin. Production in the latter field rose from 2,725,000 barrels to 3,197,000.

Production of crude petroleum in Wyoming, 1937-41, by fields [Thousands of barrels]

Year	Big Mud- dy	Byron- Gar- land	Elk Basin	Fran- nie	Grass Creek	Hamil- ton Dome- Warm Springs	La Barge	Lance Creek	Lander- Dallas- Derby Dome	Lost Sol- dier- Ferris
1937 1938 1939 1940 1941	484 441 435 429 421	1, 248 836 867 1, 411 1, 516	104 94 203 190 195	358 419 496 812 939	654 513 844 718 1, 171	437 346 240 353 264	423 395 379 585 767	4, 247 4, 846 6, 884 9, 121 8, 838	329 306 278 290 309	511 1,037 1,592 2,070 4,745
Year		Medi- cine Bow	Oregon Basin	Osage	Poison Spider- South Casper	Quealy	Rock Creek	Salt Creek	Other fields	Total
1937		1, 344 1, 040 544 251 245	1, 407 1, 648 1, 848 2, 725 3, 197	261 116 132 59 132	230 196 26 238 251	268 271 225 172 158	748 640 1,008 928 952	5, 874 5, 705 5, 331 5, 201 5, 146	239 173 122 2 158 2 448	19, 166 19, 022 21, 454 25, 711 29, 694

¹ Subject to revision.

WELLS

The lethargy in drilling that set in during June 1940 continued well into 1941 and oil-well completions in March 1941 were 382 less than in March 1940. However, an increase of 335 completions in July 1941 over those for June indicated the effect of the price increases earlier in the year and prompted new activity that raised the total of oil wells completed during the year to 19,195—70 more than in 1940 (see fig. 4). The total for the year was exceeded only in 1920 and 1937.

Total completions in 1941, including oil and gas wells and dry holes, were almost 1,000 more than in 1940—29,070 compared with Industrial needs for gas resulted in an increase of 608 gas-28.124. well completions to 2,990, and dry holes drilled increased 268 to total 6,885. The proportion of oil wells to total completions dropped about 2 percent; that of gas wells increased about 2 percent; and that of dry

wells remained virtually the same.

Includes crude oil consumed on leases and net change in stocks held on leases for entire State.

The 1,054 dry wells drilled in North Central Texas—37 percent of all completions in that area—indicate the great amount of wildcat activity in this area. Illinois had the next largest number—890—but they represented only 25 percent of total completions. Michigan's 419 dry wells, representing 45 percent of the total completions, was the largest proportion, and Ohio's 502 dry wells represented 30 percent of the completions.

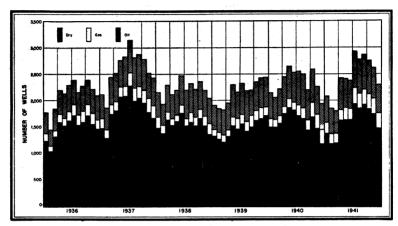


FIGURE 4.—Wells drilled in the United States, 1936-41, by months.

Elimination of excessive drilling was designed by General Preference Order M-68, issued by the Office of the Petroleum Coordinator in December, providing for easy acquisition of drilling and operating material and supplies by operators who conform to that office's spacing pattern—one well to each 40 acres. Further search for oil was encouraged by excluding wells drilled for exploratory operations from any restrictions. As this order was issued near the end of the year, it had no influence on 1941 completions, but it is expected to curtail drilling operations severely in 1942.

Wells drilled for oil and	gas in the United Sta	tes, 1940–41, by months ¹
---------------------------	-----------------------	--------------------------------------

													Tot	al
Wells	Jan.	ı. Feb.	Mar.	Apr.	Apr. May	May June		Aug. Sept.		Oct.	Nov.	Dec.	Num- ber	Per- cent
1940 Oil Gas Dry	1, 489 166 482	1, 489 149 417	1, 566 145 508				1, 709 203 646	210	1, 453 196 552	265	268		19, 125 2 2, 352 6, 617	
	2, 137	2, 055	2, 219	2, 441	2, 650	2, 553	2, 558	2, 500	2, 201	2, 572	2, 261	1, 947	2 28, 094	100.0
1941 Oil	1, 368 211 506	1, 150 198 487	1, 184 182 434				1, 934 296 687		1, 913 272 660		308		19, 195 2, 990 6, 885	66. 0 10. 3 23. 7
	2, 085	1, 835	1,800	2, 417	2, 405	2, 352	2, 917	2, 764	2, 845	2, 750	2, 615	2, 285	29, 070	100.0

Oil and Gas Journal east of California; American Petroleum Institute in California.
 Total by months d es not agree with total by States published elsewhere, as latter has been revised upon basis of annual data from State officials.

Wells drilled in the United States and estimated average daily initial oil production per well, 1940-41, by States and districts 2

			1940		1941					
	0	il			-					
State and district	Num-	Aver- age initial (bar- rels)	Gas	Dry	Total	Oil	Gas	Dry	Total	
Arkansas California Colorado Illinois Indiana Kansas Kentucky	114 859 10 3,049 231 1,410 224	881 891 130 620 139 460 61	13 15 1 15 77 130 128	60 156 8 750 220 342 231	187 1,030 19 3,814 528 1,882 583	95 920 16 2, 730 262 1, 420 233	20 19 4 12 48 76 275	83 179 13 890 203 517 198	198 1, 118 33 3, 632 513 2, 013	
Louisiana: Gulf Coast Northern	741 448	307 114	17 82	236 143	994 673	614 , 467	18 93	240 231	872 791	
Total Louisiana	1, 189 536 107 155 (4) 479	234 215 554 113 (4)	99 89 1 49	379 518 102 38 (4) 113	1, 667 1, 113 210 242 (1)	1, 081 433 219 160 38 209	111 86 4 70	471 419 59 53 51	1, 663 938 282 283 89	
New Mexico Oklahoma Pennsylvania, New York, Ohio, and West Virginia	1, 011 2, 963	345 204 5	19 176 1, 271	657 744	611 1,844 4,978	1, 099 2, 895	15 140 1,804	53 582 771	277 1, 821 5, 470	
Texas: Gulf Coast East Texas proper West Texas Rest of State	1, 072 291 1, 717 3, 552	276 1, 035 891 308	37 5 11 236	258 14 121 1,780	1, 367 310 1, 849 5, 568	1, 353 428 2, 123 3, 358	72 13 210	387 14 163 1,712	1, 812 442 2, 299 5, 280	
Total Texas	6, 632 124 32	486 727 396	289 8 32	2, 173 47 79	9, 094 179 143	7, 262 123	295 6 5	2, 276 33 34	9, 833 162 39	
Total United States	19, 125	396	4 2, 382	6, 617	5 28, 124	19, 195	2, 990	6, 885	29, 070	

Producing oil wells in the United States and average production per day in 1940, by
States and districts 1

	Producir	g oil wells		Producing oil wells			
State and district	Approxi- mate production per number, Dec. 31 Dec. 31 Average production per well per day (barrels) State and district and district state and dis		Approxi- mate number, Dec. 31	Average produc- tion per well per day (bar- rels)			
Arkansas California 2 Colorado Illinois Indiana Kansas Kentucky Louisiana: Gulf Coast Northern Total Louisiana Michigan Mississippi Montana	190 20, 500 1, 650 22, 100 14, 200	24. 0 41. 2 22. 8 21. 0 9. 0 8. 3 1. 0 96. 8 19. 2 49. 7 19. 2 193. 9	New York Ohio Ohio Okiahoma Pennsylvania Texas: Guli Coast East Texas proper West Texas Rest of State Total Texas West Virginia Wyoming Other States 3	53, 400 82, 100 11, 700 26, 300 12, 300 44, 900 95, 200 18, 100	0.7 .3 7.9 .6 29.8 14.7 20.0 9.1 14.5 .5 20.4 6.9		
New Mexico	3, 320	34. 3	Total wells	389, 010	9. 6		

¹ Figures for 1941 not yet available. ² American Petroleum Institute.

Not available for 1941.
 Oil and Gas Journal, except Californis.
 Included in "Other States."
 Total by States does not agree with total by months published elsewhere in the Yearbook, as former has been revised upon basis of annual data from State officials.

¹ Missouri, Nebraska, Tennessee, and Utah.

STOCKS

Total crude-oil stocks declined about 19 million barrels in 1941 compared with an increase of over 23 million barrels in 1940. increase of about 2 million barrels in the first quarter was followed by declines of over 8 million barrels in the second quarter and a further decline of 13 million barrels in the third quarter. These decreases were incident to a more rapid increase than had been anticipated in By the fourth quarter, production had been the demand for all oils. increased to a peak level, and crude stocks showed a slight increase. Total stocks of crude oil amounted to 257,063,000 barrels on December 31, 1941, compared with 275,985,000 barrels on December 31, 1940. Stocks of refinable grades declined by over 17 million barrels, and stocks of California heavy crude decreased less than 2 million.

Stocks of crude petroleum, natural gasoline, and refined products in the United States at end of year, 1937-41

[Thous	ands of ba	rrels]			
Product	1937	1938	1939	1940	1941 1
Crude petroleum (refinable): At refineries. Pipe line and tank farm Producers.	51, 041 243, 552 11, 240	51, 551 211, 931 2 211, 138 11, 476	49, 215 178, 810 11, 953	52, 448 200, 726 { 11, 535 2 10, 905	51, 319 183, 992 } 11, 573
Total refinable	305, 833 14, 505	274, 958 2 274, 165 16, 467	339, 978 13, 330	264, 709 2 264, 079 11, 906	} 246, 884 10, 179
Total crude petroleum Natural gasoline Refined products 3	320, 338 4, 758 239, 901	$ \left\{ \begin{array}{c} 291,425 \\ {}^{2}290,632 \\ {}^{4},830 \\ {}^{259,665} \\ {}^{2}272,241 \end{array} \right. $	253, 308 4, 421 268, 109	276, 615 ² 275, 985 5, 704 282, 265 ² 280, 958	257, 063 4, 275 290, 375
Grand total	564, 997	555, 920 2 567, 703	} 525, 838	\$ 564, 584 \$ 562, 647	551, 713

¹ Subject to revision.

The data on stocks of crude oil by States of origin for 1941 show that the largest declines were 11.7 million barrels for Oklahoma, 2.0 million for California crude of all grades, 1.9 million for Illinois, 1.6 million for Texas, 1.0 million for Kansas, and 0.9 million for Arkansas. Stocks of Appalachian crude decreased 0.7 million barrels and stocks of foreign crude about 0.6 million. The largest increases in crude stocks were 1.7 million barrels for Mississippi, 0.7 million for Michigan, and 0.4 million for Montana.

The demand for domestic crude was almost 7 percent greater in 1941 than in 1940, whereas crude production increased less than 4 This differential is accounted for by the addition to production of 18.3 million barrels taken from all stocks of domestic origin in computing demand for 1941, whereas 22.9 million barrels of the 1940 production went into storage.

Stopect to revision.
 For comparison with succeeding year.
 Includes also equivalents for wax, coke, and asphalt in barrels.

Stocks of refinable crude petroleum in the United States in 1941, by States of location and origin and by months 1 [Thousands of barrels]

State	Jan. 1	Jan. 31	Feb. 28	Mar. 31	Apr. 31	May 31	June 30	July 31	Aug. 31	Sept. 30	Oct. 31	Nov. 30	Dec. 3
LOCATION													
Arkansas	2, 197	2.120	1,899	1.818	1.676	1,684	1,589	1, 696	1,895	1,897	2,007	1, 961	1, 98
California 2 3	35. 695	35, 837	36, 876	37, 395	37, 172	36, 151	34, 909	35, 614	34, 527	34, 849	34, 835	35, 077	35, 59
llinois 4	13.944	14, 266	14, 557	14, 221	14, 475	13, 606	13, 402	14,066	14, 356	13,068	13, 019	12, 198	12, 74
ndiana	3, 393	3, 480	2,973	3,067	3, 184	2,830	3,063	3, 219	2, 930	3, 336	3, 271	3, 097	3, 0
ansas and Nebraska	10,612	9,950	9,974	9,817	9,982	9, 422	9, 326	9, 249	9, 454	9, 764	9, 612	8, 907	9.0
onisiana, Alabama, and Mississippi	11,497	11, 145	10, 438	10,707	10, 877	11, 190	11, 781	11, 746	11, 223	11,032	10, 238	10, 827	11, 7
A arviand 3	2.474	2, 517	2, 104	2, 459	2,835	1,916	2,418	2, 571	2, 850	2, 399	2,580	2, 313	2, 1
lichigan and Kentucky	2,873	2,580	2,654	2,639	2,692	2,897	2,818	2, 646	2, 957	3, 121	3, 236	3,504	3,8
Aichigan and Kentucky Aissouri 6 Aontana and Colorado	3, 831	3,980	4,015	4,013	4,053	3,973	3,684	3, 795	3, 995	4, 143	4, 114	4, 679	4.3
Iontana and Colorado	1,688	1,701	1,734	1,817	1,864	1,992	2,093	2,008	1, 988	1, 911	2,061	2, 164	2.1
lew Jersey	6,735	5, 463	5, 565	4,713	5, 699	6,018	6, 223	6, 925	6.964	6, 800	6, 180	6,046	5, 3
lew Mexico	1, 229	1,325	1, 189	1, 252	1, 280	1,274	1, 335	1, 281	1, 231	1, 160	1, 135	1, 265	1, 2
lew York		1,304	1, 218	1,317	1, 262	1,217	1, 193	1, 168	1, 282	1, 285	1, 110	1, 142	1, 1
)hio	9, 518	9,545	9,903	10, 257	10, 234	9,711	8, 793	8, 441	8, 344	8, 593	7, 713	7,673	8.5
klahoma	481, 838	49,749	49, 927	49,736	48, 804	47, 236	45, 295	42, 239	41, 168	40, 633	39, 850	39, 077	38, 7
'ennsylvania 'exas	6,586	7, 145	6,693	5,881	6, 197	6, 898	6,922	7, 084	6, 521	6, 660	6, 709	6, 647	6, 8
'exas	86, 689	86.092	87, 561	90, 207	88, 671	88, 630	88, 964	86, 469	82, 732	80, 869	81, 601	82, 549	84, 0
Vest Virginia	1,927	1,953	1,955	1,939	1,943	1,876	1,824	1,719	1,702	1, 511	1,468	1, 351	1, 3
Vyoming 7	13, 242	13,099	13, 207	13, 125	13, 112	13, 590	13, 443	13, 442	13, 501	13, 080	12, 996	13, 202	13, 3
Total United States	264, 079	263, 251	264, 432	266, 380	266, 012	262, 111	259, 075	255, 378	249, 620	246, 111	243, 735	243, 679	246, 8
ORIGIN													
Arkansas	3, 629	3, 439	3, 172	2, 881	2, 836	2,680	2, 479	2, 379	2, 586	2, 545	2, 579	2, 516	2.7
alifornia 3	25, 852	35, 961	36, 985	37, 451	37, 272	36, 221	34, 961	35, 651	34, 560	34, 875	34, 852	35, 082	35, 5
llinois and Indiana	20, 790	21,001	21,042	21, 167	21, 921	20,719	19, 577	18, 864	19, 284	18, 938	18, 447	17, 707	18, 4
Cansas and Nebraska	8 654	9.054	9, 177	9, 124	9, 277	8, 377	8, 300	7, 603	7, 657	7, 689	7, 144	7, 140	7. 7
ouisiana and Mississinni	14, 235	14. 262	13, 249	13, 629	14, 199	14, 111	14, 968	15, 521	14, 878	14, 238	14, 054	14. 718	15.3
Michigan and Kantucky	2, 115	1,902	1, 990	2.084	2,059	2, 175	2,009	1.741	1, 907	2, 149	2, 491	2.642	2, 9
ouisiana and Mississippi Aichigan and Kentucky Aontana and Colorado	1, 385	1,379	1, 416	1, 472	1, 496	1, 581	1,647	1, 579	1, 595	1, 471	1, 690	1, 823	1.8
New Mexico	7, 570	7, 252	7, 559	7, 357	7, 448	7, 205	7, 506	7, 504	7, 069	6, 915	6, 654	6, 717	7,0
hio	665	647	595	630	620	631	635	653	627	622	696	635	l "}
klahoma	63, 574	64. 197	63, 715	63, 351	61, 687	60, 128	57, 700	56, 022	54, 314	53, 928	53, 067	52, 438	51.
ennsylvania, New York, and West Vir-	00,014	04, 107	00, 110	00, 001	01,007	00, 120	01, 100	00,022	02,012	00, 720	00,001	02, 100	01,
ginia	4, 157	4, 173	4 164	4.051	4:070	4.004	4 000	3, 871	3,804	2 402	3, 642	3, 382	3, 4
exas	83, 908		4, 154	4,051	4,078	4,024	4,000	86, 595	84, 359	3, 693	81, 881	82, 224	82, 2
Vivoming	14 914	83, 015	84, 253	86, 299	86, 326	87,079	88, 518		14, 390	81, 961	14, 077	14, 325	14. 4
Vyoming Foreign	14, 314	14, 106	14, 297	14,073	14,090	14, 518	14, 286	14, 300		14, 306			
		2, 863	2,828	2, 811	2, 703	2, 662	2, 489	3, 095	2, 590	2, 781	2, 461	2, 330	2, 5
Total United States	264, 079	263, 251	264, 432	266, 380	266, 012	262, 111	259, 075	255, 378	249, 620	246, 111	243, 735	243, 679	246, 8
Heavy crude in California	11,906	11,839	11,886	11,776	11,802	11, 241	10, 711	10, 556	10, 942	10, 321	9, 869	10, 203	10, 1
		٠ .	'	'	,	,	, ,	l l					1

Subject to revision.
Includes Washington.
Heavy crude stocks in California given below.

Includes Minnesota and Wisconsin.
 Includes Massachusetts, Rhode Island, and Virginia.
 Includes Iowa.

⁷ Includes Idaho, South Dakota, and Utah.

Stocks of refinable crude petroleum 1 in the United States in 1941, by districts and months 2 [Thousands of barrels]

District	Jan. 1	Jan. 31	Feb. 28	Mar. 31	Apr. 30	May 31	June 30	July 31	Aug. 31	Sept. 30	Oct. 31	Nov. 30	Dec. 31
At refineries, by field of origin:													
Appalachian: Pennsylvania Grade	514	524	519	440	489	459	419	378	387	368	442	367	439
Other Appalachian (including Kentucky) Lima-Northeastern Indiana-Michigan	342	290	361	386	311	313	298	279	241	345	226	312	348
Illinois-Southwestern Indiana-Michigan	418 3, 397	392 3, 386	405 3, 117	382 2,994	347 3, 351	409 2, 671	379 2, 380	268 2, 795	331 3, 206	391 3, 052	657 3, 145	674 3,008	680 3, 423
Northern Louisiana, Arkansas, and Mississippi West Texas and Southeastern New Mexico	3, 588	3, 237	3, 294	2, 661	2, 858	2,398	3, 327	3, 504	3, 426	3, 136	3, 146	3, 868	3, 893
West Texas and Southeastern New Mexico	4, 976	4,977	4, 964	4,790	4, 444	4, 835	5, 203	4, 483	4, 453	4, 116	4,045	4, 957	4,892
East Texas	3, 476 11, 364	3, 837 11, 471	3, 065 11, 951	3, 161 11, 975	3, 625 11, 711	4, 023 11, 146	5, 044 11, 787	3, 723 12, 505	3, 791 11, 945	3, 302 11, 668	3, 834	3,048	3, 506
Oklahoma, Kansas, North Texas, etc Gulf Coast	10, 309	9, 778	9, 814	10, 172	10, 866	10, 596	10, 126	11, 520	11, 266	10, 895	11, 354 10, 632	11,060 10,697	10, 816 10, 344
Rocky Mountain California	2, 152	2,005	1,942	1,877	1,823	2,083	2,074	1,922	1,847	1,921	2, 204	2, 225	2, 230
California	8, 681 3, 231	8, 618 2, 863	9, 097 2, 828	8, 730 2, 811	8, 285 2, 703	8, 351	8, 054	9, 159	9, 288	9, 213	8, 645	9, 085	8, 165
Foreign		2, 800	2, 828	2, 811	2, 703	2, 662	2, 489	3, 095	2, 590	2, 781	2, 461	2, 330	2, 583
Total at refineries	52, 448	51, 378	51, 357	50, 379	50, 813	49, 946	51, 580	53, 631	52, 771	51, 188	51, 091	51, 631	51, 319
Pipe-line and tank-farm stocks, by fields of origin:													
Appalachian:													
Pennsylvania Grade	3, 520	3, 487	3, 463	3, 444	3, 411	3, 404	3, 420	3, 342	3, 249	3, 175	3, 083	2,900	2,880
Pennsylvania Grade Other Appalachian (including Kentucky) Lima-Northeastern Indiana-Michigan	1, 024 604	916 588	879 592	975 613	1, 013 666	1, 072 658	1, 023 595	984 499	1, 049 561	1,026 639	1, 102 774	1, 126 725	1, 124 875
		17, 180	17, 485	17, 678	18, 105	17, 563	16, 707	15, 564	15, 568	15, 366	14, 772	14, 154	14, 405
Northern Louisiana and Arkansas	5, 063	5, 035	4,926	4, 865	4,976	5, 322	5, 013	4,989	4, 813	4,702	4, 388	4, 446	4,968
Northern Louisiana and Arkansas West Texas and Southeastern New Mexico East Texas Oklahoma, Kansas, North Texas, etc. Gulf Coast	19, 672 14, 374	18, 067 14, 431	17, 710 16, 019	17, 759 17, 006	18, 166 17, 401	17, 317 17, 478	17, 920 16, 641	18, 522 16, 884	18, 172 16, 213	18, 507 15, 708	19, 272 15, 978	19, 232 16, 510	19,602 16,791
Oklahoma, Kansas, North Texas, etc	84, 823	85, 487	83, 977	83, 410	81, 579	79,646	75, 533	72, 119	68, 965	67. 540	65, 682	64, 992	65, 002
Gulf Coast	18, 097	18, 901	19, 382	20,670	19, 915	20, 705	22, 624	21, 204	21, 476	21, 442	20, 400	20, 497	20,958
Rocky MountainCalifornia	13, 129 23, 462	13, 053 23, 698	13, 353 24, 332	13, 250 25, 170	13, 360 25, 482	13, 595 24, 407	13, 452 23, 478	13, 553 22, 898	13, 676 21, 648	13, 401 22, 031	13, 151 22, 632	13, 474 21, 995	13, 664 23, 723
Total pipe line and tank farm	200, 726 10, 905	200, 843	202, 118	204, 840	204, 074	201, 167	196, 406	190, 558	185, 390	183, 537	181, 234	180, 051	183, 992
	10, 905	11, 030	10, 957	11, 161	11, 125	10,998	11,089	11, 189	11, 459	11, 386	11, 410	11, 997	11, 573
Total United States:									1.0				
1941	264, 079	263, 251	264, 432	266, 380	266, 012	262, 111	259, 075	255, 378	249, 620	246, 111	243, 735	243, 679	246, 884
1940 3	239, 978	240, 605	245, 210	251, 897	258, 836	262, 593	262, 654	264, 171	264, 913	263, 764	264, 501	263, 803	264,709 4 264,079
						-							(202,018

Excludes stocks of California heavy crude.

Subject to revision.

Revised figures for 1940 (Minerals Yearbook, Review of 1940, p. 962) are as follows (thousands of barrels): Producers' stocks—January 31, 12,310; February 28, 12,034; March 31, 12,200; April 30, 12,207; May 31, 12,105; June 30, 12,290; July 31, 11,886; August 31, 12,128; September 30, 11,903; October 31, 11,819; November 30, 11,778; December 31, 11,536.

For comparison with succeeding year.

CONSUMPTION AND DISTRIBUTION

Runs to stills.—Crude runs to stills again exceeded all previous records in 1941, with a total of 1,409 million barrels—an increase of 115 million (8.9 percent) over 1940. Foreign crude runs gained 9 million barrels, and domestic crude runs increased 106 million.

Refinery operations exceeded demand, as indicated by an increase of about 9 million barrels in stocks of refined oils. As there was a further decline in the total exports of refined oils and an increase in the imports of refined products, the gain in total demand for refined

products was due entirely to an increase in domestic demand.

There were substantial increases in refinery operations in all districts in 1941. Crude runs increased about 25 million barrels over 1940 in both the Indiana-Illinois-Kentucky and the Texas Gulf Coast districts. East Coast runs were about 13 million barrels greater, and the Oklahoma-Kansas-Missouri and the California districts each showed a gain of over 12 million. Runs in the Louisiana Gulf Coast district rose 9 million barrels. Increases of about 5 million barrels occurred in the Appalachian district and in the Texas Inland and Arkansas-Louisiana Inland districts, and the Rocky Mountain district gained over 3 million barrels.

Distribution.—Receipts of domestic and foreign crude petroleum at refineries in the United States totaled 1,299 million barrels in 1940 and 1,410 million in 1941. In 1941 receipts of foreign crude at refineries were about 51 million barrels or about 3.6 percent of the total compared with 3.3 percent in 1940; interstate receipts of domestic crude were 544 million barrels or 38.6 percent compared with 37.5 percent in 1940; and intrastate receipts were 815 million barrels or

57.8 percent compared with 59.2 percent in 1940.

Refinery receipts of crude in 1941, by methods of transportation, indicated that 73.9 percent of the total was delivered by pipe lines compared with 72.4 percent in 1940; that 22.7 percent was delivered by boat compared with 24.7 percent in 1940; and that 3.4 percent was delivered by tank car and truck compared with 2.9 percent in 1940.

The total demand for domestic crude petroleum in 1941 amounted to 1,422.5 million barrels—a gain of about 92 million (almost 7 percent) over 1940. Domestic crude run to stills was 1,358 million barrels, and the remainder (about 64 million) represented exports,

crude used for fuel, and losses.

The most important changes in market demand by States of origin (computed from production and changes in crude stocks by origin) in 1941 compared with 1940 were increases of about 29 million barrels for Texas, 20 million for Kansas, 15 million for Louisiana, 13 million for Oklahoma, 10 million for Mississippi, and 7 million for California. The largest declines in crude demand were about 9 million barrels for

Illinois and 5 million for Michigan.

The total demand for Texas crude rose from about 480 million barrels in 1940 to 509 million in 1941—an increase of about 6 percent. In 1941 about 344 million barrels of Texas crude were delivered to refineries within the State and 146 million barrels to refineries in other States; 108 million went to the East Coast district, 23 million to the Indiana-Illinois-Kentucky district, 11 million to refineries in Louisiana, and 3 million to the Oklahoma-Kansas-Missouri district. In addition

Runs to stills of crude petroleum in the United States in 1941, by districts and months 1 [Thousands of barrels]

District	January	February	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
East Coast: Domestic	13, 717	12, 750	14, 483	13, 321	14, 183	12, 882	13, 998	14, 640	14, 136	15, 431	14, 837	15, 491	169, 86
	2, 927	3, 003	3, 367	3, 491	3, 791	4, 073	4, 437	4, 435	4, 134	4, 716	4, 544	4, 259	47, 1
Total East Coast	16, 644	15, 753	17, 850	16, 812	17, 974	16, 955	18, 435	19, 075	18, 270	20, 147	19, 381	19, 750	217, 0
Appalachian	4, 441	3, 903	4, 347	4, 312	4, 430	4, 491	4, 801	4, 490	4, 650	4, 575	4, 484	4, 575	53, 49
Indiana, Illinois, Kentucky, etc.	19, 045	17, 884	19, 763	18, 907	21, 883	21, 225	22, 079	21, 759	22, 076	22, 764	21, 794	22, 078	251, 28
Oklahoma, Kansas, Missouri, etc.	9, 786	9, 148	10, 214	9, 950	10, 649	10, 831	11, 296	11, 321	11, 116	11, 411	10, 697	10, 711	127, 13
Texas Inland	5, 105	5, 047	5, 290	5, 474	5, 635	5, 551	5, 671	5, 910	5, 742	5, 948	5, 506	5, 761	66, 64
Fexas Gulf Coast: Domestic	29, 022	25, 555	27, 702	28, 558	30, 550	28, 174	30, 376	31, 421	30, 883	32, 000	31, 881	33, 674	359, 79
	218	350	462	386	89	308	267	300	309	236	286	245	3, 44
Total Texas Gulf Coast	29, 240	25, 905	28, 164	28, 944	30, 639	28, 482	30, 643	31, 721	31, 192	32, 236	32, 167	33, 919	363, 2
Louisiana Gulf Coast: Domestic	4, 156 2	3, 741 34	3, 990 10	3, 964 42	4, 472	4, 394 54	4, 934	4, 899 72	4, 861 44	4, 849 28	4, 822	4, 905 20	53, 98 31
Total Louisiana Gulf Coast	4, 158	3, 775	4, 000	4, 006	4, 472	4, 448	4, 934	4, 971	4, 905	4, 877	4, 829	4, 925	54, 30
Arkansas-Louisiana Inland	2, 262	2, 049	2, 267	2, 350	2, 472	2, 124	2, 661	2, 670	2, 694	2, 726	2, 477	2, 613	29, 36
	2, 702	2, 244	2, 579	2, 748	2, 608	2, 924	3, 138	2, 936	3, 273	2, 926	2, 644	2, 848	33, 57
	17, 300	14, 737	16, 585	17, 603	18, 673	18, 904	17, 522	19, 719	17, 563	19, 162	17, 560	17, 805	213, 13
Total domestic Total foreign	107, 536	97, 058	107, 220	107, 187	115, 555	111, 500	116, 476	119, 765	116, 994	121, 792	116, 702	120, 461	1, 358, 24
	3, 147	3, 387	3, 839	3, 919	3, 880	4,435	4, 704	4, 807	4, 487	4, 980	4, 837	4, 524	50, 94
Total United States	110, 683	100, 445	111, 059	111, 106	119, 435	115, 935	121, 180	124, 572	121, 481	126, 772	121, 539	124, 985	1, 409, 19
	3, 570	3, 587	3, 583	3, 704	3, 853	3, 865	3, 909	4, 018	4, 049	4, 089	4, 051	4, 032	3, 86

¹Subject to revision.

to crude, a large volume of products from Texas refineries is shipped to East Coast markets, so that any interruption in tanker transport seriously affects the market demand for Texas crude.

The demand for California crude increased from 225 million barrels in 1940 to 232 million in 1941—about 3.2 percent. The increase in Pacific coast demand for California oil offset the effects of the termination of exports to Japan in August and the elimination of shipments to The production of crude was about 230 million barthe East coast. rels, and this was supplemented by a decline of about 2 million barrels in crude stocks. Only about 0.1 million barrels of crude were sent to the East coast in 1941. Practically all of the crude output was refined in the State, except for relatively small exports to Japan and western Canada.

Demand for crude petroleum by States of origin, 1938-41 [Thousands of barrels]

	193	8	193	9	194	.0	. 194	11
State	Total	Daily ave.	Total	Daily ave.	Total	Daily ave.	Total	Daily ave.
rkansas	18, 797	51. 5	21, 491	58. 7	24, 992	68. 5	27, 206	74.
California		657. 7	228, 413	624.1	224, 931	616.3	232, 246	636.
olorado		4.1	1, 427	3.9	1,659	4.5	1,775	4.9
llinois		61.9	89, 023	243. 2	144, 658	396. 3	136, 057	372
ndiana	991	2.7	1, 596	4.4	4, 559	12.5	7,092	19.
Cansas		163. 5	60, 733	165. 9	64, 322	176. 2	84, 228	230.
Centucky	5, 648	15.5	5, 586	15.3	5, 075	13.9	4, 677	12.
ouisiana	94, 355	258. 5	96, 650	264.1	101, 185	277. 2	116, 520	319.
Michigan	18, 579	50.9	23, 363	63.8	20, 252	55. 5	15, 618	42.
<i>f</i> iggigginni			73	.2	3, 490	9.6	13, 619	37.
Montana	4, 894	13. 4	6, 227	17.0	6,964	19. 1	7, 146	19. 4.
Vebraska			2		270	.7	1, 619	
New Mexico	38, 579	105. 7	38, 954	106. 4	37.600	103.0	39, 861	109. 14.
lew York	4, 988	13.7	5, 352	14.6	4,908	13.4	5, 294	9.
hio	3, 435	9. 4	3, 242	8.9	3, 164	8.7	3, 496	455.
klahoma	195, 434	535. 4	169, 493	463. 1	153, 083	419, 4	166, 414 16, 771	455.
ennsylvania	17, 183	47.1	17, 834	48.7	17, 481	47.9		1, 395.
AYAS	1 490,056	1, 342. 6		1, 376. 4	480, 454	1, 316. 3	509, 195	1, 300.
Vest VirginiaVyoming	3, 410	9.3	3, 821	10.4	3, 680	10.1	4,006	81.
Vyoming	23, 056	63. 2	24, 436	66.8	27, 525	75. 4	29, 553 63	01.
ther States	82	.2	94	.3	71	.2	03	
Total United States	1, 243, 294	3, 406, 3	1, 301, 580	3, 556. 2	1, 330, 323	3, 644. 7	1, 422, 456	3, 897.

¹ Subject to revision.

The market demand for Oklahoma crude increased from 153 million barrels in 1940 to 166 million in 1941. In 1941 the production of 155 million barrels was supplemented by withdrawal of over 11 million barrels from stocks. Production has been declining steadily since 1937. Deliveries to refineries within the State amounted to 56 million barrels About 16 million barrels were delivered to refineries in Kansas and Missouri, 69 million barrels to Indiana-Illinois-Kentucky

refineries, and 14 million to East coast refineries.

The rapid rise in the demand for Illinois crude—from 23 million barrels in 1938 to a peak of almost 145 million in 1940—and then a drop to 136 million in 1941 has materially changed the trends in demand for other States. It has supplied much of the increased crude required in the refineries of the Indiana-Illinois-Kentucky district. Output exceeded demand from 1938 to 1940, resulting in an increase of about 10 million barrels in stocks by States of origin. production of about 134 million barrels was supplemented by a stock

MINERALS YEARBOOK, 1941

Daily average demand for crude petroleum by States of origin, in 1941,1 by months [Thousands of barrels]

State	January	February	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Year
Arkansas	75. 7	79. 2	80.0	73.0	77. 2	78.8	75. 9	68.0	75. 6	70. 5	74. 2	66.8	74. 5
California	607. 7	574.5	598. 3	619. 2	675. 2	698. 6	621.6	665. 1	657.0	666. 5	631. 8 3. 6	616. 1 5. 1	636. 3 4. 9
Colorado	4.8	4.8	3.6	5.7	2.4	4.7	6.6	6, 5	6.4	4. 2 437. 0	427.7	373.4	372. 8
Illinois	321.3	320. 5	330. 2	316.9	375.1	388. 7 13. 9	376. 4 15. 1	371. 4 23. 0	432. 1 20. 2	18.8	17. 2	20.3	19.4
Indiana	23.8	22. 5 194. 8	19. 0 203. 8	19. 6 202. 9	20.0 239.3	232.8	263. 9	242. 8	244.8	269. 4	248.7	238. 5	230. 8
Kansas	184. 2 19. 0	11.3	10.6	14.5	11.9	15.4	15.9	11.7	10.7	15.0	9.5	8.2	12.8
Kentucky Louisiana	287. 5	326.3	295.8	301. 1	327. 5	308. 5	303. 5	336. 3	334.6	343.6	328.5	338. 1	319. 2
Michigan	41.9	37.6	38.1	38. 0	34.1	41.9	46.0	37. 6	45.9	46. 3	54. 2	51.5	42.8
Mississippi		27.7	14. 2	11. 9	18. 9	14.7	39. 8	53. 4	63.0	56. 3	68. 2	60.5	37. 3
Montana	18.3	17.5	17. 5	18. 3	19.5	18.8	21.7	19.7	25.3	16.8	20.0	21.6	19. 6
Nebraska	2.6	3.6	3.0	3. 2	4.2	4.5	5.2	5, 5	6.1	5. 3	4.8	5.1	4.4
New Mexico	111.4	91.5	111.8	104.3	116.5	99.0	106.8	121.8	114.6	119. 5	110.7	100.6	109. 2
New York	13. 7	13.7	14.0	14.7	14.4	14.5	17.3	12.4	15.7	15. 1	14.3	14, 1	14, 5
Ohio	9.1	10.6	7.2	9. 7	8.8	9. 3	8.6	9.5	9.7	7.3	11.2	14.0	9.6
Oklahoma	396.8	440.4	432.4	473.0	465. 9	502.6	488. 2	484. 4	449.6	447. 2	446.2	444, 4	455. 9
Pennsylvania	45.6	44.3	44.8	46.4	44.2	42.8	45.3	47.1	46.8	48.1	50.3	45.6	45.9
Texas	1, 308. 6	1, 254. 0	1, 262. 5	1, 348. 8	1, 376. 0	1, 355. 7	1,405.8	1, 465. 1	1, 467. 1	1,461.7	1, 494. 4 12. 5	1, 529. 9 12. 0	1, 395. 0 11. 0
West Virginia	8.7	8.7	9.7	8.7	11.9	11.8	11.6	10.3	13. 6 86. 6	11. 9 89. 4	70.0	78.0	81.0
Wyoming	86. 9	70.9	82.7	80.4	72.8	90.1	83.0	79.8	.2	.2	10.0	18.0	01.0
Other States 2	. 2	.2	.2	. 2	.2	. z	. 2	. z	.2		.2		
Total United States	3, 586. 2	3, 554. 6	3, 579. 4	3, 710. 5	3, 916. 0	3, 947. 3	3, 958. 4	4, 071. 6	4, 125. 6	4, 150. 1	4, 098. 2	4, 044. 0	3, 897. 1

¹ Subject to revision.

² Missouri and Tennessee.

decrease of almost 2 million. Production reached a peak of 423,000 barrels daily in October 1941 and declined to about 292,000 barrels daily by May 1942. In 1941, intrastate deliveries of Illinois crude amounted to about 41 million barrels and represented almost half the crude refined in the State. Deliveries to refineries in other States totaled about 80 million barrels, of which 46 million went to other States included in the Indiana-Illinois-Kentucky refining district, 24 million to the Appalachian district, and 10 million to the East Coast district.

The demand for Louisiana crude has been steadily increasing and rose from 101 million barrels in 1940 to over 116 million in 1941. Deliveries to refineries within the State amounted to 39 million barrels in 1941. The principal outside markets are the Texas Gulf and East Coast refinery districts, which received 47 million and 21 million bar-

rels, respectively, in 1941.

The demand for Kansas crude rose to 84 million barrels in 1941—an increase of 20 million over 1940. Demand was about evenly divided between refineries within the State and shipments to other States. Shipments to refineries in Illinois and Indiana amounted to 32 million barrels in 1941 compared with 20 million in 1940.

The demand for New Mexico crude increased to 40 million barrels in 1941—a gain of 2 million. Less than 2 million barrels are used within the State. Deliveries to other districts in 1941 included 25 million barrels to Texas refineries, 7 million to the East Coast district,

and over 5 million to Illinois.

The demand for Wyoming crude increased about 2 million barrels to total over 29 million in 1941. Intrastate deliveries amounted to about 14 million barrels, shipments to other Mountain States were about 9 million, and refineries in Indiana, Illinois, Kansas, and Missouri

received over 5 million.

The demand for Arkansas crude amounted to 27 million barrels in 1941, of which 13 million barrels went to local refineries and an equal amount was sent to refineries in Louisiana. With the rapid rise in production, the demand for Mississippi crude increased 10 million barrels in 1941 to total about 14 million barrels. About half was delivered to Louisiana refineries, and the rest went to Illinois, Kentucky, and East Coast States. Declining production reduced the demand for Michigan crude to less than 16 million barrels in 1941, the major part being refined within the State.

Distribution of crude petroleum in the United States in 1941, by States 1 [Thousands of barrels]

State	Dundana		Ref	inery receipt	s of domestic	crude, by o	igin		Runs to	
State	Produc- tion	Illinois	Kansas	Louisiana	New Mexico	Oklahoma	Texas	Other	stills	Transfers to fuel
Arkansas California Colorado Georgía ³	26, 327 230, 263 1, 875				i			12, 882 213, 737 3, 775	12, 686 2 213, 133 3, 661 2, 533	281 9, 004 37
Illinois Indiana Kansas ⁵ Kentucky ⁶	134, 138 6, 634 84, 897 4, 774	4 41, 158 2, 497 7, 297	8, 165 23, 930 41, 890	182	5, 633	16, 910 36, 217 11, 847	9, 492 11, 617 885	3, 899 4, 913 2, 524 9, 322	2, 053 4 85, 206 79, 144 57, 651 16, 398	593 10 1288 45
Louisiana: Gulf. Inland. Maryland Massachusetts ⁸ Michigan.	25, 354	60		34, 332 5, 009 3, 749 1, 046	267 301	4. 793	7 7, 029 4, 438 5, 298 13, 791	12, 716 7, 205 881 246 16, 479	7 54, 300 16, 679 14, 004 16, 748 26, 013	1, 042 228
Mississippi Missouri Montana New Jersey New Mexico	15, 314 47 7, 526	7, 323	3, 059	10, 621	3, 719 1, 517	4, 593 3, 633	1, 121 33, 314 452	104 9, 430 5, 538 26	8, 824 9, 237 75, 103 1, 992	126 28 63
New York: East. West. Ohio: East	1	1, 073 7, 648 15, 816	14	377		121 600	6, 167	4, 135 1, 463	12, 591 12, 411 17, 414	
West Oklahoma. Pennsylvania: East.	380 154, 759	30, 869 1, 557	4, 501 629	5, 148	3, 216	11, 394 56, 016 10, 117	1, 554 853 49, 847	662 10 300	44, 496 60, 655 96, 067	234 666
West Texas: Gulf Inland Utah	16, 750 135, 139 372, 445 4	30		46, 740 1	22, 156 2, 919	2, 030 9, 907 1, 275	246 280, 904 62, 824	16, 947 838 4, 000	19, 255 363, 252 66, 640 3, 838	981 1, 147
West Virginia Wyoming	3, 433 29, 694	763	<u>1</u>			961		2, 712 • 14, 548	4, 419 9 14, 842	267
Total United States	1, 404, 182	121, 161	82, 189	107, 209	39, 729	170, 414	489, 832	349, 292	1, 409, 192	15, 482

Subject to revision.
 Includes Washington.
 Includes Delaware, South Carolina, and Virginia.

Includes Minnesota and Wisconsin.
 Includes East Nebraska.
 Includes Tennessee.

Includes Alabama and Mississippi.
 Includes Rhode Island.
 Includes Idaho, West Nebraska, and South Dakota.

Receipts of crude petroleum at refineries in the United States, 1937-41, by methods of transportation

[Millions of barrels]

Method of transportation	1937	1938	1939	1940	1941 1
By boat:					
Intrastate	. 78. 5 201. 8	74. 1 182. 8	72. 7 188. 6	72. 1 205. 6	69. 1 199. 9
Foreign	27.5	26.4	33.1	42.6	50.6
Total by boat	307.8	283.3	294.4	320.3	319.6
By pipe lines:					
Intrastate	569.6	600.1	651.3	671.0	728.9
Interstate	276.7	254.3	250. 5	268. 9	313. 1
Total by pipe lines	846.3	854.4	901.8	939. 9	1,042.0
By tank car and truck:					
Intrastate	28.2	21.9	29.5	26.1	17.2
Interstate	8.5	7.8	10.9	12.7	31.3
Total by tank car and truck	36.7	29.7	40.4	38.8	48.5
Grand total	1, 190. 8	1, 167. 4	1, 236. 6	1, 299. 0	1, 410, 1

¹ Subject to revision.

PRICES AND VALUE

Record demand for products of petroleum started crude-oil prices upward early in the year (see fig. 5). Changes to the latter part of May increased the price of Bradford Pennsylvania Grade crude from \$2.15 a barrel to \$2.55; Oklahoma (36°-36.9°) crude from \$1.02 to \$1.17; Santa Fe Springs, California, (33°-33.9°) crude from \$1.14 to \$1.26, and Kettleman Hills crude from \$1.19 (on March 12) to \$1.29. Toward the end of May the Office of Price Administration and Civilian Supply called a meeting of representatives of the oil industry to request that no changes be made in the prices of petroleum or its products without first consulting that office. Postings of higher prices in the Appalachian district in August and in North Texas in November were rescinded after hearings by the Office of Price Administration and Civilian Supply. The price increase in California on May 23, which was coincident with the last increases in other parts of the country, was also rescinded but after later hearings was permitted to stand. In October crude-oil prices were ordered frozen as of October 1, pending study and further action by the Price Administrator.

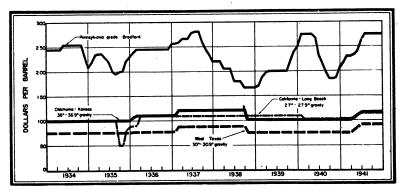


FIGURE 5.—Posted prices of selected grades of crude petroleum in the United States, 1934-41, by months.

Average monthly prices per barrel for selected grades of crude petroleum at wells in the United States in 1941

		ylvania ade		<u>,,,</u>	Panhan- dle, Tex.			Gulf-	
Month	Brad- ford	South- west Penn- syl- vania	Illinois Basin	Okla- homa- Kansas 36°-36.9°	(Carson and Hutch- inson Counties, 35°-35.9°)	West Texas, 30°- 30.9°	East Texas	Coast Grade, 30°- 30.9°	Califor- nia (Long Beach 27°-27.9°)
January	\$2.17	#1 00	41.15	A1 00	40.01	**	****		
February	2.30	\$1.82 1.95	\$1.15 1.15	\$1.02 1.02	\$0.81	\$0.75	\$1,10	\$1.08	\$1.03
March	2.30	1.95	1.15	1.02	.81	. 75	1.10	1.08	1.03
April	2.33	1.98	1. 13	1.02	.82 .92	. 76	1.10	1.08	1.03
May	2. 46	2.10	1.31	1.10		. 82	1.15	1.18	1.04
June	2. 40	2. 10	1.37	1.10	. 96 1. 02	.86	1.19	1. 22	1.11
July	2. 75	2. 40	1.37	1.17	1.02	. 92	1.25	1.28	1.15
August	2. 73	2.40	1.37	1.17		. 92	1.25	1.28	1.15
September	2.75	2.40	1.37	1.17	1. 02 1. 02	. 92	1. 25 1. 25	1.28	1. 15
October	2.75	2.40	1.37	1.17	1.02	. 92		1.28	1. 15
November	2.75	2.40	1.37	1. 17	1.02	. 92	1. 25 1. 25	1.28	1. 15
December	2.75	2.40	1.37	1.17	1.02	. 92	1. 25	1.28 1.28	1. 15 1. 15
		10			1.02	. 02	1.20	1. 20	1. 10
Average for year_	2. 57	2. 21	1.30	1. 12	. 96	. 86	1.20	1. 22	1.11

Posted price per barrel of petroleum at wells in the United States in 1941, by grades, with dates of change

		Pennsylv	ania Grade					Oklahom	a-Kansas •
Di	ate	Bradford and Alle- gany dis- tricts ¹	In South- west Pennsyl- vania pipe lines 2	Corning Grade in Buckeye Pipe Line Co.2	West- ern Ken- tucky ³	Illinois Basin ⁴	Midland, Mich.	34°-34.9°	36°-36.9°
Jan. 1 Jan. 2		\$2. 15	\$1.80	\$1.12 1.22	\$1.10	\$1.15	\$1.12	\$0.98	\$1.02
April 1		2.30	1.95	1.17		1. 20 1. 22	1. 27	1. 03	1. 07
April 23 April 28 May 1		2. 40	2.05	1.17	1. 22	1. 27	1.37		
May 20 May 20		2. 55	2, 20	1. 24	1. 32	1.37		1. 13	1. 17
June 18 Aug. 14		2.75 2.98	2.40	1.31			1.44		
Aug. 23		2.75							
		2. 57	2. 21	1. 25	1. 24	1.30	1.37	1.08	1. 12
	Pan- handle.			South-			Gulf	Coast	
Date	Texas (Carson and Hutch- inson Counties, 35°-35.9°)7	West Texas 30°- 30.9° 7	Lea County, N. Mex. 30°-30.9° 7	west Texas, Duval- Miran-	East Texas ⁷	Conroe, Tex. ⁸	30°- 30.9° 7	20°- 20.9° 7	Tepetate, La.º
Jan. 1 Mar. 29	\$0.81 .92	\$0.75 .82	\$0.75 .82	\$0. 92 . 99	\$1.10 1.15	\$1.27 1.33	\$1.08	· \$0. 88	\$1.03
Apr. 1 May 21	1. 02	. 92	. 92	1.09	1. 25	1. 43	1. 18 1. 28	. 98 1. 08	1.08 1.18
	.96	. 86	.86	1.03	1.20	1.38	1, 22	1.02	1. 13

See footnotes at end of table.

Posted price per barrel of petroleum at wells in the United States in 1941, by grades, with dates of change—Continued

			Salt	Lance	California 12						
Date Rodessa, La. 36°-36.9°10	Smack- over, Ark. ¹⁰	Creek, Wyo., 36°–36.9°11	Creek,	Kettle- man, 38°-38.9°	Long Beach, 27°-27.9°	Midway- Sunset, 19°-19.9°	Santa Fe Springs, 33°-33.9°				
Jan. 1	\$1.05	\$0.73	\$1.02	\$0.77	\$1.33 1.19	\$1.03	\$0. 64 . 65	\$1. 14			
Apr. 1	1.02	.76		.82	1. 26	1.09	. 75	1. 26			
May 20 May 21	1. 12	.83	1. 12	. 92							
May 23 July 1				1. 12	1.29	1. 15	.81	1. 26			
	1.09	.80	1, 08	. 97	1. 28	1. 11	. 89	1. 22			

Value of crude petroleum at wells in the United States, 1939-40, by States 1

	19	39	1940			
State	Total (thousands of dollars)	Average per barrel	Total (thou- sands of dol- lars)	Average per barrel		
Arkansas. California. Colorado. Illinois. Indiana Kansas. Kentucky.	16, 790 229, 000 1, 330 101, 200 1, 675 63, 100 5, 900	\$0. 79 1. 02 . 95 1. 07 . 98 1. 04 1. 05	21, 700 216, 720 1, 480 156, 500 5, 200 68, 700 5, 400	\$0. 84 . 97 . 91 1. 06 1. 04 1. 04		
Louisiana: Gulf Coast Northern	72, 300 25, 700	1. 06 1. 01	83, 200 24, 300	1. 05 1. 00		
Total Louisiana	98, 000 21, 350 94 5, 860 30, 850 10, 650 3, 600 166, 300 36, 200	1. 05 . 91 . 88 . 98 . 82 2. 09 1. 14 1. 04	107, 500 20, 150 3, 750 6, 660 32, 500 11, 600 4, 100 162, 500 39, 700	1. 04 1. 02 . 85 . 99 . 83 2. 32 1. 30 1. 04		
Texas: Gulf Coast East Texas proper West Texas proper Rest of State	132, 800 154, 700 64, 400 126, 430	1. 08 1. 07 . 81 . 92	134, 500 146, 900 67, 600 145, 000	1. 10 1. 04 . 80 1. 00		
Total Texas. West Virginia. Wyoming. Other States ¹ .	478, 330 6, 000 18, 150 91	. 99 1. 68 . 85 . 95	494, 000 6, 400 20, 600 280	1. 00 1. 86 . 80 . 81		
Total United States	1, 294, 470	1.02	1, 385, 440	1. 02		

Figures for 1941 not yet available.
 Missouri, Nebraska, Tennessee, and Utah.

¹ Tide-Water Associated Oil Co.
2 The South Penn Oil Co.
3 Ashland Refining Co.
4 The Ohio Oil Co.
5 The Pure Oil Co.
6 Standard Oil Co. (Indiana).
7 Humble Oil & Refining Co.
6 The Texas Co.
6 Continental Oil Co.
10 Standard Oil Co. of Louisiana.
11 Stanolind Oil & Gas Co.
12 Standard Oil Co. of California.

⁴⁹⁷⁷⁷⁹⁻⁻⁻⁴³⁻⁻⁻⁻⁻⁶⁹

REFINED PRODUCTS

Increase in defense activities during 1941 expanded the requirements from the oil industry so greatly as to tax its refining capacity. In addition to bringing record demands for all products, shifts in importance, although not in quantity, developed, which directed primary interest of the country to the production of aviation gasoline

and synthetic rubber.

The future promises an even greater upset in the balance of the products of crude oil. Difficulty in getting tires, along with cessation in the production of new cars, is destined to reduce gasoline consumption to an extent that cannot yet be foreseen. The demand for residual fuel oil for needed war production, however, is increasing. Hence the industry will be presented with the necessity of curtailing the proportion of gasoline produced and at the same time raising the proportion of fuel-oil output in the face of a probability of decreased imports of heavy foreign crude. Greater reforming of gasoline seems necessary to supply at least part of those octane elements lost in the butane, the high octane straight-run naphtha, and the tetraethyl lead being diverted for aviation gasoline. The greater losses in reforming will reduce the yield of gasoline but add to its quality and at the same time supply additional gases for the production of aviation fuel.

Comparative analyses of statistics for the major refined products in the United States, 1937-41

[Thousands of barrels, except as otherwise indicated]

	1937	1938	1939	1040	1041.
	1997	1999	1939	1940	1941 1
Motor fuel:					
ProductionImports	144	569, 162 79	611, 043	616, 695 97	690, 958 2 596
Exports Stocks, end of period	38, 306 74, 650	50, 109	44, 638	25, 377	2 16, 005
Domestic demand.	519, 352	70, 779 523, 003	81, 722 555, 509	83, 647 589, 490	90, 688
Kerosine:					
ProductionImports		64, 580	68, 521	73, 882 204	72, 586
Exports Stocks, end of period	8, 886	7,504	8, 241	3, 374	1, 626
Domestic demand	7, 083 54, 972	7, 799 56, 360	7, 576 60, 503	9, 512 68, 776	9, 599 (3)
Distillate fuel oil:					
Production Transfers 4	146, 706 (3)	151, 774 623	161, 746 2, 741	183, 304 2, 576	189, 177 2, 513
Imports	17] <u></u>	3, 333	3 3, 707
Exports		29, 641 27, 873	32,020	19, 140	3 11, 400
Domestic demand	1 '	117, 449	33, 718 6 134, 973	42, 940 160, 851	49, 926 (a)
Residual fuel oil:		=====	= 101,010	100, 801	
Production	312, 064	294, 890	305, 944	316, 221	342, 367
Transfers 4Imports	17, 423 22, 114	10, 037 21, 065	9, 668 15, 680	7, 699 29, 366	12, 969 2 23, 582
Exports.	15, 304	17, 920	17, 485	16, 109	² 10, 796
Stocks, end of period	81, 507	\$ 97,746 \$ 101,971	92, 290	89, 304	83, 195
Domestic demand	325, 514	291, 833	6 323, 488	340, 163	(3)
Lubricating oil:					
ProductionImports	35, 321	30, 826	35, 036 5	36, 765 11	39, 53°)
Exports	10, 975	9, 417	11, 881	10, 461	³ 6, 920
Domestic demand	7, 512 23, 323	7, 695 21, 233	7, 142 23, 713	8, 767 24, 690	8, 127

See footnotes at end of table.

Comparative analyses of statistics for the major refined products in the United States, 1937-41 — Continued

[Thousands of barrels, except as otherwise indicated]

1.1. a	1937	1938	1939	1940	1941 1
Wax (thousands of pounds): Production Imports Exports Stocks, end of period Domestic demand	521, 640	435, 400	464, 520	513, 240	676, 480
	86, 929	28, 927	39, 913	83, 102	² 6, 176
	231, 723	201, 447	232, 664	189, 794	² 132, 653
	144, 992	129, 340	75, 648	125, 272	74, 814
	297, 288	278, 532	325, 461	356, 924	(3)
Coke (thousands of short tons): Production Exports Stocks, end of period Domestic demand	1, 306. 6	1, 602. 2	1, 666. 4	1, 526. 6	1, 648. 8
	164. 3	155. 6	286. 2	298. 7	2 185. 1
	378. 6	707. 5	666. 0	487. 0	228. 0
	1, 153. 1	1, 117. 7	1, 421. 7	1, 406. 9	(3)
Asphalt (thousands of short tons): Production Imports Exports Stocks, end of period Domestic demand	557.4	4, 341. 4 33. 2 49. 9 490. 4 4, 391. 7	4, 954. 2 73. 9 42. 4 550. 0 4, 926. 1	5, 346. 7 137. 7 296. 4 614. 0 5, 124. 0	6, 557. 6 ² 80. 4 ² 187. 1 604. 0 (³)
Road oil: Production	8, 087	7, 543	7, 868	7, 771	9, 149
	984	680	702	624	793
	7, 954	7, 847	7, 846	7, 849	8, 980
Other finished products: Production Exports Stocks, end of period Domestic demand	2, 382	1, 921	2, 359	3, 202	3, 986
	101	112	123	708	2 442
	230	263	276	359	384
	2, 249	1, 776	2, 223	2, 411	(3)

Runs to stills and production at refineries in the United States of the various refined products, 1937-41

[Thousands of barrels, except as otherwise indicated]

Product	1937	1938	1939	1940	1941 1
Input:					
Crude petroleum: DomesticForeign	1, 157, 444 25, 996	1, 138, 828 26, 187	1, 2 04, 350 33, 490	1, 252, 364 41, 798	1, 358, 246 50, 946
Total crude petroleum Natural gasoline	1, 183, 440 39, 381	1, 165, 015 39, 961	1, 237, 840 39, 606	1, 294, 162 39, 547	1, 409, 192 47, 825
Total input	1, 222, 821	1, 204, 976	1, 277, 446	1, 333, 709	1, 457, 017
Output: Gasoline Kerosine Distillate fuel oil. Residual fuel oil Lubricating oil Wax Coke Asphalt Still gas Wax thousands of pounds Coke thousands of short tons	35, 321 1, 863 6, 533 23, 001 64, 218 521, 640	556, 012 64, 580 151, 774 294, 890 30, 826 1, 555 8, 011 23, 878 65, 890	596, 501 68, 521 161, 746 305, 944 35, 036 1, 659 8, 332 27, 248 68, 779	597, 375 73, 882 183, 304 316, 221 36, 765 1, 833 7, 633 29, 406 75, 950 513, 240 1, 526, 6	671, 110 72, 586 189, 177 342, 367 39, 539 2, 416 8, 244 36, 067 77, 254 676, 480 1, 648. 8
Asphalt	4, 182. 0 241, 981	4, 341. 4 250, 382	4, 954. 2 261, 360	5, 346. 7 273, 420	6, 557. 6 293, 565
Road oil Other finished products Crude gasoline (net) Other unfinished oils (net) Shortage.	2, 382 2 128	7, 543 1, 921 2 1, 616 2 4, 530 4, 242	7, 868 2, 359 2 439 2 11, 731 5, 623	7, 771 3, 202 902 2 3, 848 3, 313	9, 149 3, 986 1, 219 3, 204 7, 107
Total output	1, 222, 821	1, 204, 976	1, 277, 446	1, 333, 709	1, 457, 017

Subject to revision.
 Figures for imports and exports for 1941 cover January to September, inclusive.
 Figures not available.
 Net transfers from crude oil to fuel oil; California only, 1937-38.
 Includes terminal stocks; compares with succeeding years.
 Upon new basis with transfers east of California included.

Subject to revision.
 Negative quantity; represents net excess of unfinished oils rerun over unfinished oils produced.

Noteworthy among developments during 1941 were the controls of the oil industry brought about by the necessities of national defense. Price control was initiated on May 27, beginning with a requestlater followed by a number of other requests and orders—by the Office of Price Administration and Civilian Supply that no prices be advanced without prior consultation with that office. Immediately following, on May 31, a Coordinator of Petroleum was appointed, under whose jurisdiction a number of regulations affecting the industry were promulgated. Among these were a request to the motorists in the Atlantic States to reduce their gasoline consumption by one-third, restriction of gasoline deliveries to service stations, and closing of the stations from 7 p. m. to 7 a. m., prohibiting the use of high-octane blending agents in any except aviation gasoline, and requests not to drill unneces-Exports of petroleum to Japan were prohibited August 1. The Supplies Priority and Allocation Board, organized in September, allocated steel and equipment and controlled drilling and other operations by withholding priorities.

The advent of the heavy gasoline-consuming season raised a transportation problem because the United States Government loaned a large number of tankers to Great Britain, starting with 25 sent in May. The efforts to meet the domestic situation resulting from this loan included increased movement of oil by barge and railroad and attempts to restrict consumption of gasoline for nonessential uses along the Gasoline prices were raised in this area, deliveries to dealers were cut, and service stations closed 12 hours every day. The proposal to build a pipe line from Texas to the East coast was opposed by numerous interests, and on September 9 the Supply Priorities and Allocation Board refused to allot steel for its construction. A transportation pinch was felt on the Pacific coast also, although not sufficiently to create great difficulties. The return of 25 tankers from Great Britain in the latter part of October, coinciding with the end of the heavy motoring season, solved the problem temporarily, although the Japanese declaration of war on December 7 forecast even greater transportation difficulties for the future.

The domestic demand for motor fuel increased 12 percent in 1941, the same as for residual fuel oil. Distillate fuel oil gained 8 percent,

but wax—with an increase of almost 50 percent—had the greatest relative gain. The domestic demand for lubricating oil increased

more than 20 percent.

Crude-oil runs to stills in 1941 totaled 1,409 million barrels compared with 1,294 million in 1940—a gain of 115 million barrels (9 percent). Foreign crude runs amounted to 51 million barrels compared with 42 million in 1940.

Refinery output of motor fuel increased 12 percent—from 597 million barrels to 671 million—the latter comprising 279 million barrels of straight-run gasoline, 344 million of cracked gasoline, and 48 million

of natural gasoline.

The yield of gasoline, which had dropped from 45.0 percent of the crude oil run to stills in 1939 to 43.1 percent in 1940, recovered to 44.2 percent in 1941 (see fig. 6). Distillate fuel oil, influenced by a mild winter (see gasoline temperature index, under "Motor fuel"), receded from its 1940 record of 14.2 percent to 13.4. Of the other principal products, the yield of kerosine dropped from 5.7 to 4.2 and residual fuel oil from 24.4 to 24.3.

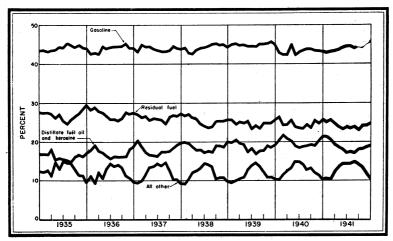


FIGURE 6.—Yields of principal petroleum products from crude oil run to stills in the United States, 1935-41, by months.

Summary of percentage yields of refined products in the United States, 1933-41 [Computed on total crude runs to stills]

Product	1933	1934	1935	1936	1937	1938	1939	1940	1941 1
Finished products:									
Gasoline 2	43. 7	43.4	44. 2	44.1	43.9	44.3	45.0	43.1	44.2
Kerosine	5. 7	6.0	5.8	5. 2	5. 5	5. 5	5. 5	5.7	5. 2
Distillate fuel oil	9. 2	10.6	10.4	11.8	12.4	13.0	13. 1	14. 2	13. 4
Residual fuel oil	27.6	26.8	26. 9	27.0	26.4	25. 3	24.7	24.4	24. 3
Lubricating oil	2.8	2.9	2. 9	2.9	3.0	2.6	2.8	2.8	2.8
Wax	. 2	.2	. 2	.2	. 2	.1	.1	.1	
Coke	. 9	.7	.7	.6	. 6	. 7	.7	. 6	. •
Asphalt	1.5	1.8	1.8	2.0	1.9	2.1	2. 2	2. 3	2. 8
Road oil	.6	.7	.6	.7	.7	.6	.6	.6	. (
Still gas	5. 2	5.0	5.3	5.3	5.4	5.7	5. 5	5. 5	5. 8
Other	. 2	.2	. 2	.2	.2	. 2	.2	.3	. 8
Unfinished products:									
Gasoline) -	1 3.3	.1	(4)	(3 4)	8.1	(34)	.1	.1
Other	.5	1 .2	8.3	(4) 3.8	8.7	8, 4	8.9	8.3	3, 2
Shortage	1.9	1.8	1. 2	.8	. 5	.4	.5	.6	. !
	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0

Subject to revision.

² Based upon total gasoline production minus natural gasoline used.

Negative percentage; represents excess percentage rerun over percentage produced.
Less than 0.1 percent.

The crude oil run of 1,409,192,000 barrels, mentioned before, represented an increase of 9 percent over the runs in 1940. These increases were distributed through all of the districts. Those in the Indiana, Illinois, Kentucky, etc., and the Texas Gulf Coast districts—25,410,000 and 25,329,000 barrels, respectively, representing relative increases of 11.3 and 7.5 percent—were greatest; however, the largest relative increases were in the Louisiana Gulf Coast and Inland Louisiana-Arkansas districts, where the gains were 20.4 and 18.5 percent, respectively.

Prices were weak during the first days of the year, and some of them sank below their low point at the close of 1940 (see fig. 7). As the year progressed, however, they gained strength, until the action of the Office of Price Administration and Civilian Supply ("Prices and value")

Stocks of refined products in the United States, 1940-41, by months [Thousands of barrels, except as otherwise indicated]

Product	Jan. 31	Feb. 28	Mar. 31	Apr. 30	May 31	June 30	July 31	Aug. 31	Sept. 30	Oct. 31	Nov. 30	Dec. 31
Gasoline	84, 863	92, 721	96, 467	96, 615	93, 474	86, 276	82, 025	77, 134	75, 915	73, 338	73, 429	77, 943
	4, 918	4, 302	4, 114	4, 351	5, 309	6, 810	8, 191	9, 476	10, 254	11, 000	10, 473	9, 512
	26, 462	24, 640	23, 086	25, 092	28, 220	33, 585	39, 412	45, 041	48, 828	49, 037	46, 624	1 42, 940
	89, 281	89, 784	89, 351	88, 932	89, 835	91, 148	93, 029	94, 421	94, 947	94, 658	92, 392	1 89, 304
	7, 328	7, 825	8, 084	8, 065	8, 170	8, 161	8, 573	8, 457	8, 596	8, 464	8, 365	8, 767
	266	295	323	346	369	394	407	401	393	407	429	447
	3, 140	3, 140	3, 120	3, 315	3, 405	3, 485	3, 390	3, 235	3, 085	2, 905	2, 635	2, 435
	3, 262	3, 559	3, 845	4, 224	4, 174	3, 745	3, 427	3, 234	2, 695	2, 579	2, 893	3, 377
Waxthousands of pounds. Cokethousands of short tons. Asphaltdo	74, 575	82, 631	90, 373	96, 910	103, 289	110, 346	113, 978	112, 359	110, 028	113, 827	120, 212	125, 272
	628. 0	628, 0	624. 0	663. 0	681. 0	697. 0	678. 0	647. 0	617. 0	581. 0	527, 0	487. 0
	593. 0	647, 0	699. 0	768. 0	759. 0	681. 0	623. 0	588. 0	490. 0	469. 0	526, 0	614. 0
Road oil. Other finished products Unfinished gasoline. Other unfinished oils.	763	809	924	1, 145	1, 360	1, 257	1, 077	892	844	719	570	624
	288	320	368	407	405	411	417	379	358	341	352	359
	6, 112	6, 574	7, 243	6, 948	7, 385	7, 293	7, 040	6, 567	5, 992	5, 847	6, 088	6, 466
	36, 108	36, 495	36, 920	38, 299	40, 070	41, 340	42, 083	41, 541	42, 188	41, 623	41, 052	40, 091
Total	262, 791	270, 464	273, 845	277, 739	282, 176	283, 905	289, 071	290, 778	294, 095	290, 918	285, 302	¹ 282, 265
Gasoline Kerosine Distillate fuel oil Residual fuel oil Lubricating oil Wax Coke Asphalt	83, 310	88, 609	91, 501	88, 414	85, 425	82, 411	77, 429	73, 094	72, 761	74, 698	79, 378	86, 413
	8, 312	7, 634	6, 724	7, 063	8, 421	9, 609	10, 635	11, 636	11, 662	11, 670	10, 843	9, 599
	37, 926	34, 790	29, 805	31, 725	35, 389	38, 274	43, 037	47, 163	51, 412	55, 385	55, 073	49, 926
	85, 092	82, 902	81, 634	79, 138	79, 218	79, 948	80, 760	82, 268	83, 752	94, 960	83, 730	83, 195
	8, 809	8, 790	8, 637	8, 363	7, 835	7, 353	7, 107	7, 206	7, 415	7, 487	7, 752	8, 127
	429	426	435	415	423	395	362	306	284	270	272	267
	2, 030	1, 875	1, 875	2, 000	1, 925	1, 910	1, 835	1, 860	1, 850	1, 810	1, 950	1, 140
	3, 790	4, 180	4, 571	5, 132	5, 302	4, 626	3, 922	3, 328	2, 607	2, 481	2, 816	3, 322
Waxthousands of pounds Coke.thousands of short tons Asphaltdo	120, 027	119, 150	121, 887	116, 096	118, 456	110, 481	101, 404	85, 824	79, 458	, 75, 467	76, 413	74, 814
	406. 0	375. 0	375. 0	400. 0	385. 0	382. 0	367. 0	372. 0	370. 0	362. 0	390. 0	228. 0
	689. 0	760. 0	831. 0	933. 0	964. 0	841. 0	713. 0	605. 0	474. 0	457. 0	512. 0	604. 0
Road oil. Other finished products. Unfinished gasoline. Other unfinished oils.	717	760	892	1, 047	1, 123	1, 150	1, 028	812	658	701	690	793
	360	365	369	459	378	381	382	385	344	379	426	384
	7, 056	6, 949	7, 205	7, 355	7, 406	7, 347	7, 272	7, 283	7, 202	7, 605	7, 900	7, 685
	39, 542	39, 284	40, 227	40, 857	41, 992	41, 825	41, 389	42, 005	42, 464	42, 25 8	40, 975	39, 524
Total	277, 373	276, 564	273, 875	271, 968	274, 837	275, 229	275, 158	277, 346	282, 411	289, 704	291, 805	290, 375

¹ Stocks upon new basis, which excludes stocks in bond, for January 1, 1941, are as follows: Distillate fuel oil, 42,911; residual fuel oil, 88,026; total stocks, 280,958. Subject to revision.

Runs to stills and production at refineries in the United States of the various refined products, 1940-41, by months
[Thousands of barrels, except as otherwise indicated]

	January	February	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
1940								1					
Input: Crude petroleum Natural gasoline	106, 530	101, 742	110, 034	106, 927	111, 817	108, 237	107, 902	108, 756	107, 756	109, 394	105, 364	109, 703	1, 294, 162
	3, 285	3, 091	3, 034	2, 853	3, 095	2, 620	2, 768	3, 092	3, 744	4, 156	4, 026	3, 783	39, 547
Total input	109, 815	104, 833	113, 068	109, 780	114, 912	110, 857	110, 670	111, 848	111, 500	113, 550	109, 390	113, 486	1, 333, 709
Output: Gasoline Kerosine Distillate fuel oil. Residual fuel oil. Lubricating oil. Wax. Coke Asphalt. Still gas.	48, 985	46, 253	49, 493	48, 784	50, 444	49, 281	49, 684	50, 799	51, 088	51, 726	49, 795	51, 043	597, 375
	5, 375	5, 945	6, 570	6, 257	6, 641	5, 785	5, 797	5, 629	6, 062	6, 496	6, 431	6, 894	73, 882
	16, 548	16, 262	16, 346	15, 260	14, 541	14, 154	14, 439	14, 957	14, 735	14, 381	15, 073	16, 608	183, 304
	28, 082	24, 680	26, 870	25, 372	26, 551	25, 469	25, 248	26, 451	25, 504	27, 944	26, 125	27, 925	316, 221
	3, 308	3, 108	3, 335	3, 280	3, 341	3, 212	3, 024	2, 635	2, 682	2, 954	3, 021	2, 865	36, 765
	173	177	169	152	158	142	134	119	142	154	157	156	1, 833
	582	656	648	696	762	743	607	613	596	657	442	631	7, 633
	1, 139	1, 208	1, 783	2, 200	2, 682	2, 900	3, 336	3, 509	3, 326	3, 346	2, 183	1, 794	29, 406
	5, 872	5, 742	6, 433	6, 293	6, 829	6, 768	6, 636	6, 780	6, 404	6, 234	5, 937	6, 022	75, 950
Wax thousands of pounds. Coke thousands of short tons. Asphalt do Still gas millions of cubic feet.	48, 440	49, 560	47, 320	42, 560	44, 240	39, 760	37, 520	33, 320	39, 760	43, 120	43, 960	43, 680	513, 240
	116. 4	131. 2	129. 6	139. 2	152. 4	148. 6	121. 4	122. 6	119. 2	131. 4	88. 4	126. 2	1, 526. 6
	207. 2	219. 6	324. 2	400. 0	487. 6	527. 3	606. 6	638. 0	604. 7	608. 4	396. 9	326. 2	5, 346. 7
	21, 139	20, 671	23, 159	22, 655	24, 584	24, 365	23, 890	24, 408	23, 054	22, 443	21, 373	21, 679	273. 420
Road oil Other finished products Unfinished gasoline (net) Other unfinished oils (net) Shortage	193	116	226	411	826	1, 172	1, 449	1, 368	1, 080	558	149	223	7, 771
	292	278	297	280	254	258	293	247	243	225	262	273	3, 202
	548	462	669	1 295	437	1 92	1 253	1 473	1 575	1 145	241	378	902
	1 1, 620	1 284	1 139	645	1,007	583	1 32	1 1, 231	64	1 961	1 685	1 1, 195	1 3, 848
	338	230	368	445	439	482	308	445	149	2 19	259	2 131	3, 313
Total output	109, 815	104, 833	113, 068	109, 780	114, 912	110, 857	110, 670	111, 848	111, 500	113, 550	109, 390	113, 486	1, 333, 709
Input: Crude petroleum 4. Natural gasoline.	110, 683	100, 445	111, 059	111, 106	119, 435	115, 935	121, 180	124, 572	121, 481	126, 772	121, 539	124, 985	1, 409, 192
	3, 828	3, 312	3, 774	3, 498	3, 399	3, 518	3, 628	4, 130	4, 751	4, 997	4, 518	4, 472	47, 825
Total input	114, 511	103, 757	114, 833	114, 604	122, 834	119, 453	124, 808	128, 702	126, 232	131, 769	126, 057	129, 457	1, 457, 017

See footnotes at end of table.

Runs to stills and production at refineries in the United States of the various refined products, 1940-41, by months—Continued [Thousands of barrels, except as otherwise indicated]

	January	February	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
1941 3													
Output: Gasoline Kerosine Distillate fuel oil Residual fuel oil Lubricating oil Wax Coke Asphalt Still gas	629	46, 841 5, 888 14, 732 25, 944 2, 522 139 513 1, 685 4, 960	51, 950 6, 033 15, 387 27, 677 2, 813 183 625 2, 053 6, 251	52, 009 6, 068 14, 692 26, 748 3, 213 201 641 2, 689 6, 443	56, 188 6, 033 15, 546 27, 994 3, 322 205 700 3, 310 7, 059	55, 136 5, 218 14, 697 27, 882 3, 520 195 722 3, 490 6, 759	57, 714 5, 406 15, 746 28, 624 3, 563 198 671 3, 779 6, 976	58, 954 5, 850 15, 409 29, 836 3, 561 194 685 4, 074 6, 991	58, 988 5, 949 16, 024 28, 118 3, 427 237 789 3, 741 6, 625	61, 037 6, 355 16, 554 30, 871 3, 494 242 768 3, 819 6, 774	59, 480 6, 443 16, 230 29, 666 3, 607 246 747 3, 194 6, 410	61, 640 6, 682 17, 142 31, 127 3, 554 215 754 2, 566 6, 657	671, 110 72, 586 189, 177 342, 367 39, 539 2, 416 8, 244 36, 067 77, 254
Wax thousands of pounds Coke thousands of short tons. Asphalt do Still gas millions of cubic feet.	45, 080 125. 8 303. 1 20, 326	38, 920 102. 6 306. 4 18, 848	51, 240 125. 0 373. 3 23, 754	56, 280 128. 2 488. 9 24, 483	57, 400 140. 0 601. 8 26, 824	54, 600 144. 4 634. 5 25, 684	55, 440 134. 2 687. 1 26, 509	54, 320 137. 0 740. 7 26, 566	66, 360 157. 8 680. 2 25, 175	67, 760 153. 6 694. 4 25, 741	68, 880 149. 4 580. 7 24, 358	60, 200 150. 8 466. 5 25, 297	676, 480 1, 648. 8 6, 557. 6 293, 565
Road oil. Other finished products. Unfinished gasoline (net) Other unfinished oils (net). Shortage.	218 282 590 1 824 764	107 282 1 107 1 484 735	198 368 256 567 472	347 351 150 372 680	846 390 51 780 410	1, 383 350 1 59 1 551 711	1,700 356 1 75 1 620 770	1, 478 333 11 509 817	1, 308 306 1 81 336 465	793 345 403 1 306 620	428 345 295 1 1, 407 373	343 278 1 215 1 1, 576 290	9, 149 3, 986 1, 219 1 3, 204 7, 107
Total output	114, 511	103, 757	114, 833	114, 604	122, 834	119, 453	124, 808	128, 702	126, 232	131, 769	126, 057	129, 457	1, 457, 017

¹ Negative quantity; represents net excess rerun over production. 2 Negative quantity (overage). 4 Detail by districts and months in section on "Consumption and distribution of crude petroleum."

³ Subject to revision.

Runs to stills and production at refineries in the United States of the various refined products, 1940-41, by districts

[Thousands of barrels, except as otherwise indicated]

	East Coast	Appalach- ian	Indiana, Illinois, Kentucky, etc.	Oklahoma, Kansas, and Missouri	Texas Inland	Texas Gulf Coast	Louisiana Gulf Coast	Arkansas- Louisiana Inland	Rocky Mountain	California	United States
1940 Input:											
Crude petroleum Natural gasoline	204, 469 1, 791	48, 225 384	225, 847 5, 685	114, 847 5, 238	61, 802 6, 651	337, 923 6, 350	45, 082 278	24, 788 361	30, 156 732	201, 023 12, 077	1, 294, 162 39, 547
Total input	206, 260	48, 609	231, 532	120, 085	68, 453	344, 273	45, 360	25, 149	30, 888	213, 100	1, 333, 709
Output: Gasoline Kerosine Distillate fuel oil Residual fuel oil Lubricating oil Wax Coke Asphalt Still gas	77, 344 11, 447 39, 976 53, 252 8, 550 700 26 9, 772 10, 779	23, 508 3, 213 4, 035 6, 350 6, 016 358 128 931 2, 800	125, 405 10, 344 23, 943 37, 817 3, 545 195 4, 718 5, 417 15, 586	65, 585 7, 196 11, 548 19, 787 3, 447 141 815 2, 219 6, 305	40, 0, 2 2, 753 2, 257 13, 703 238 5 384 1, 069 4, 217	144, 813 26, 164 62, 029 78, 850 9, 142 273 746 1, 904 24, 210	16, 514 5, 897 7, 407 9, 887 1, 630 100 2, 006 2, 671	10, 861 2, 722 1, 509 6, 279 680	16, 388 824 2, 182 6, 603 179 61 220 814 1, 573	76, 885 3, 322 28, 418 83, 693 3, 338 596 4, 163 6, 957	597, 375 73, 882 183, 304 316, 221 36, 765 1, 833 7, 633 29, 406 75, 950
Wax thousands of pounds. Coke thousands of short tons. Asphalt do Still gas millions of cubic feet.	196, 000 5. 2 1, 777. 0 38, 804	100, 240 25. 6 169. 3 10, 080	54, 600 943. 6 984. 9 56, 110	39, 480 163. 0 403. 5 22, 698	1, 400 76. 8 194. 5 15, 181	76, 440 149, 2 346, 1 87, 156	28, 000 364. 6 9, 616	202. 0 3, 067	17, 080 44. 0 147. 9 5, 663	119. 2 756. 9 25, 045	513, 240 1, 526. 6 5, 346. 7 273, 420
Road oil. Other finished products Unfinished gasoline (net). Other unfinished oils (net). Shortage.	273 1, 196 93 1 5, 395 2 1, 753	154 294 90 1 261 993	2, 274 850 1 380 1, 711 107	722 133 514 1 714 2, 387	140 151 1,087 2,377	216 283 1 222 1 231 2 3, 904	10 100 1 24 1 961 123	214 1 21 392 550	1, 267 28 21 1 51 779	2, 641 178 680 575 1, 654	7, 771 3, 202 902 1 3, 848 3, 313
Total output	206, 260	48, 609	231, 532	120, 085	68, 453	344, 273	45, 360	25, 149	30, 888	213, 100	1, 333, 709
1941 * Input: Crude petroleum	217. 046	53, 499	251, 257	127, 130	66, 640	363, 252	54, 300	29, 365	33, 570	213, 133	1, 409, 192
Crude petroleum Natural gasoline	1, 984	483	7, 371	4,700	7, 782	9, 349	779	803	789	13, 785	47, 825
Total input	219, 030	53, 982	258, 628	131,830	74, 422	372, 601	55, 079	30, 168	34, 359	226, 918	1, 457, 017

See footnotes at end of table.

Runs to stills and production at refineries in the United States of the various refined products, 1940-41, by districts—Continued [Thousands of barrels, except as otherwise indicated]

	East Coast	Appalach- ian	Indiana, Illinois, Kentucky, etc.	Oklahoma, Kansas, and Missouri	Texas Inland	Texas Gulf Coast	Louisiana Gulf Coast	Arkansas- Louisiana Inland	Rocky Mountain	California	United States
1941 ³ Output: Gasoline	85, 379	25, 606	138, 481	71, 388	44, 143	168, 204	21, 265	13, 079	17, 831	85, 734	671, 110
Kerosine. Distillate fuel oil. Residual fuel oil. Lubricating oil. Wax.	9, 169 40, 827 50, 113 8, 608 834	3, 166 4, 863 7, 709 6, 414 400	11, 864 26, 288 46, 761 4, 307 176	7, 505 13, 431 22, 408 3, 976 183	2, 987 2, 430 14, 280 358	24, 448 59, 591 84, 806 9, 677 438	7, 304 8, 631 13, 070 2, 093 319	3, 080 2, 535 7, 180 679	906 2, 778 7, 629 187 61	2, 157 27, 803 88, 411 3, 240	72, 586 189, 177 342, 367 39, 539 2, 416
Coke	22 11,759 11,720	130 1, 419 2, 796	4, 470 7, 303 15, 649	907 2, 757 6, 502	597 1, 342 4, 098	925 1,995 24,501	2, 294 2, 037	1,566 924	247 739 1,631	946 4, 893 7, 396	8, 244 36, 067 77, 254
Wax thousands of pcunds. Coke thousands of short tons. Asphalt do Still gas millions of cubic feet.	233, 520 4. 4 2, 138. 0 44, 536	112, 000 26. 0 258. 0 10, 625	49, 280 894. 0 1, 327. 8 59, 467	51, 240 181. 4 501. 3 24, 707	1, 400 119, 4 244, 0 15, 572	122, 640 185. 0 362. 7 93, 104	89, 320 417. 1 7, 741	284. 7 3, 511	17, 080 49. 4 134. 4 6, 198	189. 2 889. 6 28, 104	676, 480 1,648. 8 6, 557. 6 293, 565
Road oil. Other finished products	366 1, 574 212 1 181 2 1, 372	42 295 1 173 204 1, 111	2, 477 1, 213 1 30 372 2 703	697 176 1 88 1 662 2,650	146 126 1,012 2,898	173 126 618 1 1, 333 2 1, 568	3 158 99 1 2, 695 501	138 33 1 14 541 427	1, 651 56 1 12 100 555	3, 602 209 481 1 562 2, 608	9, 149 3, 986 1, 219 1 3, 204 7, 107
Total output	219, 030	53, 982	258, 628	131, 830	74, 422	372, 601	55, 079	30, 168	34, 359	226, 918	1, 457, 017

¹ Negative quantity; represents net excess rerun over production.

² Negative quantity (overage).

³ Subject to revision.

effectively halted advances in crude-oil prices, although those of refined products continual to rise. Refinery prices for gasoline reached their peak in July, but pervice-station prices advanced until December. Refinery prices of some lubricating oils reached their peak in the summer and declined the reafter, but others continued to rise until fall or near the end of the year. Most fuel-oil prices reached their peak during the summer or fall, as did also the price of wax. The request in the early part of the year that prices should not be changed became orders in October and November, when crude-oil prices were frozen as of October 1 and refined-oil prices as of November 7.

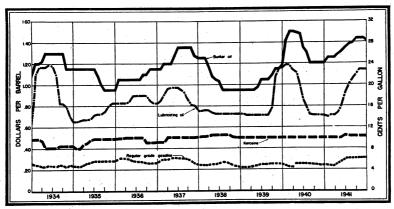


FIGURE 7.—Prices of Bunker "C" fuel oil at New York, bright stock at Oklahoma refineries, tank wagon price of kerosine at Chicago, and regular grade gasoline at refineries in Oklahoma, 1934-41, by months.

REFINERY CAPACITY

A huge program of refinery building was initiated in 1941, but little of it was destined to increase crude-oil capacity, as it was mostly earmarked for the production of such special commodities as butadiene, aviation gasoline, and toluene. Only one new plant of 4,000 barrels crude oil capacity was being built on January 1, 1942, and additional crude oil capacity of 39,400 barrels was under construction at refineries

already in existence.

Although the total number of refineries dropped from 562 to 523, their daily capacity rose from 4,860,194 barrels to 4,999,999, due largely to elimination of shut-down plants of small capacity, which declined in number from 136 to 92, and additional capacity completed for existing plants. The number operating increased from 420 to 430 and their daily capacity from 4,180,588 to 4,496,843 barrels. The largest increases in capacity were in the Texas Gulf Coast, California, and Indiana, Illinois, Kentucky, etc., districts, where the gains were 163,000, 157,000, and 149,000 barrels, respectively.

Cracking capacity rose from 1,151,193 barrels of gasoline output daily on January 1, 1941, to 1,222,684 on January 1, 1942. A decline in both the capacity shut-down and that under construction made the operating capacity 1,144,594 barrels compared with 1,021,006 on

January 1, 1941.

Emphasis in refinery construction during 1941 centered on aviation gasoline refineries, but interest in synthetic rubber plants developed at the end of the year. The former include catalytic cracking plants,

polymerization plants, alkylation plants, isobutane and isopentane

plants, and aviation-base stocks plants.

Production of high-octane blending agents by the alkylation method is rapidly supplanting the method of polymerizing butane to iso-octene followed by hydrogenation of the codimer obtained. The principal reason for this is that the alkylation method involves both a lower investment and lower operating costs. In addition to the thermal alkylation and the low-temperature sulfuric acid catalytic methods of alkylation described in a previous Minerals Yearbook, a patent was granted late in 1941 covering an alkylation method using hydrofluoric acid as a catalyst. One of the principal advantages claimed for this method is the ability to use propane as well as butane for a charging stock in addition to the advantage of being able to operate at normal temperatures, thus eliminating the need for refrigeration.

One plant to be completed early in 1942 will produce a new aviation-

gasoline blending agent—cumene or isopropyl benzene.

Summary of refinery capacity in the United States, January 1, 1938-42

Voor	N	umber o	f refiner	ies	Capacity (barrels per day)					
Year	Oper- ating	Shut down	Build- ing	Total	Operating	Shut down	Building	Total		
1938 1939 1940 1941 1942	431 435 461 420 430	120 103 86 136 92	10 7 10 6 1	561 545 557 562 523	1 3, 970, 196 3, 933, 785 4, 196, 694 4, 180, 588 4, 496, 843	1 380, 955 574, 770 431, 952 538, 381 459, 756	1 283, 020 142, 250 92, 567 141, 225 43, 400	4, 634, 171 4, 650, 805 4, 721, 213 4, 860, 194 4, 999, 999		

¹ New basis; for complete information see Bureau of Mines Information Circular 7034.

The increase in production of 100-octane aviation fuel from 40,000 barrels to 120,000 barrels daily was one of the most important defense projects initiated in 1941. Efforts in this direction include concentration on production of crude oils yielding high-octane gasoline, increasing the production of butane, diversion of butane from other uses to serve as a source of iso-octane, isomerization of butane, and raising the tolerance of tetraethyl lead from 3 cc. to 4 cc. per gallon of gasoline.

the tolerance of tetraethyl lead from 3 cc. to 4 cc. per gallon of gasoline. The high boiling range of iso-octane, 225°-263° F. (see Minerals Yearbook, 1940, Review of 1939, p. 991), necessitates blending it with other agents to produce an aviation fuel of required volatility. These blending agents usually are a light-gravity cut of straight-run gasoline of high octane number or a catalytically cracked gasoline, with isopentane. The naphthenic-base crude oils, which traditionally have been considered less desirable because of their low gasoline content, make the highest-octane gasoline, although the cut suitable for use as an aviation-fuel blending agent usually is very small. Texas, California, and Louisiana are the sources for most crude oils of this type.

The need for increasing the production of butane is most essential, both for the production of 100-octane fuel and for the synthesis of rubber. Greater efficiency in its recovery and the use of more absorber oil should supply a quantity that heretofore has been wasted, estimated by one authority at 15,000 barrels daily compared with 40,000 barrels used. An additional amount probably will have to

be produced from the cracking of oils.

The program also contemplates the diversion of butane used as liquefied petroleum gas, which is burned by about 2 million users on farms, in homes, and in industrial plants that have no convenient access to gas mains. Sales of this product, totaling 7,463,000 barrels in 1940 and estimated at about 11,500,000 barrels in 1941, comprised 1,835,000 barrels of butane, 2,600,000 barrels of propane, 2,937,000 barrels of butane-propane mixtures, and 91,000 barrels of pentane. Twenty-eight percent of the butane and 35 percent of the butanepropane mixtures served for domestic uses; 43 percent of the butane and 3 percent of the mixtures served for industrial uses; 14 percent of the butane and 34 percent of the mixtures were used in internalcombustion engines-principally trucks; 14 percent of the butane and 3 percent of the mixtures were used by gas companies; and 25 percent of the mixtures was used in chemical manufacture. users probably will have to depend largely on propane, 63 percent of which was consumed by domestic users and 30 percent for industrial fuel in 1940.

Isomerization is the changing of one chemical compound to another with the same percentage composition and molecular weight but with different physical properties. Applied to butane, it is the process of changing that gas, which is inert in the alkylation process, to The most usual raw materials for alkylation (which, as it pertains to the petroleum industry, brings about direct union of a paraffin molecule with an olefin molecule) are isobutane (C4H10) and butene (C4H8). When these products are alkylated they produce iso-octane (Č₈H₁₈), a saturated isoparaffin. Small proportions of natural gas consist of butane and isobutane, both constituents having the same chemical formula but isobutane having what is termed a "branched-chain molecule." To be used in the alkylation process, the butane must be isomerized to isobutane by a catalytic

process.

Considerable research has been made on isomerization in recent years, and several processes have been developed. Aside from their principal use of converting butane to isobutane, they can be applied (although not economically at present) to other hydrocarbons to produce the iso, or branched-chain molecules, which make Construction of a a higher-octane fuel than normal molecules. number of butane isomerization plants was started in 1941.

It is sometimes necessary to convert butane to butene by dehydrogenation where the still gases do not furnish sufficient olefins to make a balanced feed stock for the alkylation process. This is done by removing 2 hydrogen atoms from the butane molecule by catalytic

reaction, changing it from C₄H₁₀ to C₄H₈.

The deleterious effect of tetraethyl lead on motors long ago made it necessary to limit the proportion of this antiknock component in motor fuel. Although the Navy has permitted as much as 6 cc. a gallon to be used in its aviation fuel, specifications for all military gasoline in the recent past have set the limit at 3 cc. In December 1941 the maximum was raised to 4 cc. This will result in greater production of 100-octane gasoline by permitting lower-octane blending agents to be used.

Several hydroforming plants for aromatization of the nonaromatic constitutents of naphtha were either put in operation or were under construction during 1941. One such plant was designed to produce a new solvent claimed to be superior in many ways to present solvents. Hydroforming, though, is of even more immediate importance in the production of toluene, essential in the manufacture of explosives. The proportion obtainable through aromatization of crude oil is very small, and the aromatic naphtha produced by the hydroforming process must go through several highly complicated operations for separation and purification of the toluene.

It is estimated that war needs will require about 1,500,000 barrels of toluene annually. Although production from coking operations amounted to approximately 700,000 barrels in 1941, most of this was required in the chemical industry and could be diverted only at The hydroforming plants now under construction a serious loss. probably will be able to supply the needs for this product, although not all of these plants have provided for production of toluene.

The synthetic rubber industry will compete with 100-octane gasoline for the supply of butane. Because almost all natural rubber comes from the East Indies, Japan's declaration of war precipitated a problem that theretofore had been considered only as a long-time project—that of manufacturing rubber. Of all the major countries at war, the United States is the best-situated to meet this problem. Although Germany and Russia have had more experience in producing synthetic rubber for practical use, they-particularly Germany-do not have the petroleum resources available to this country. The petroleum industry has been called upon to furnish rubber at the rate of 400,000 tons annually within 18 months. Butadiene, from which petroleum-synthesized rubber is polymerized (see Minerals Yearbook, Review of 1940, pp. 978-979), is made from butane and must share the supply of this gas with 100-octane gasoline.

MOTOR FUEL

Demand.—Total demand and domestic demand for motor fuel were

both 12 percent higher than in 1940 (see fig. 8).

Domestic motor-fuel demand per motor vehicle in use increased from 19.7 barrels (827 gallons) in 1940 to 20.4 barrels (857 gallons) in Toll-bridge and other traffic statistics indicate that the truck traffic did not participate in the increased gasoline consumption to as great an extent as did passenger cars. Of 16 bridges in Kentucky, 13 showed a smaller proportion of truck traffic than in 1940, the average for all declining from 20.1 percent to 17.9 percent of the total passenger-car and truck traffic. Of 15 points throughout the rest of the country, 10 showed a smaller proportion of trucks, and the average for the 15 declined from 12.5 percent to 11.7 percent. This interruption in the increasing trend of truck traffic is reflected in the table entitled "Motor-fuel consumption per motor-vehicle unit in use on July 1, 1925-41."

Calculations from the gasoline-temperature index indicate that, because of favorable weather, gasoline consumption was 3,199,000 barrels more than might normally have been expected, particularly during the last 4 months of the year, as the spring, with the exception

of April. was backward.

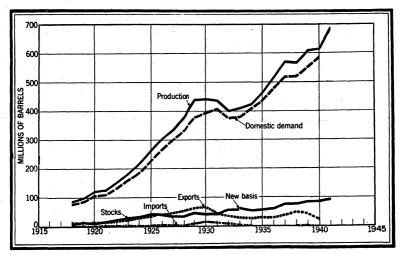


FIGURE 8.—Trends in production, domestic demand, exports, imports, and stocks of motor fuel in the United States, 1918-41.

Comparative analyses of statistics for motor fuel in the United States in 1941, by months ¹

[Thousands of barrels]

				1941 1			
	Jan.	Feb.	March	April	Мау	June	July
Production Daily average	52, 542 1, 695	48,374 1,728	53, 409 1, 723	53, 768 1, 792	58, 25 8 1, 879	56, 987 1, 900	59, 609 1, 923
Exports Daily average	2, 045 66 88, 800	1,253 45 93,920	1, 738 56 96, 832	1, 528 51 93, 918	1, 588 51 91, 281	1, 262 42 88, 646	1, 416 46 83, 746
Stocks, end of period	45, 344 1, 463	42,001 1,500	48, 760 1, 573	55, 154 1, 838	59, 307 1, 913	58, 360 1, 945	63, 093 2, 035
			194	11			1940
	Aug.	Sept.	Oct.	Nov.	Dec.	Total	(total)
Production	60, 740 1, 959 363	60,167 2,006 232 2,475	62, 288 2, 009 (2) (2) (2) (2)	61, 243 2, 041 (2) (2)	63, 573 2, 050 (²) (²)	690, 958 1, 893 2 596 2 16, 005	616, 695 1, 685 97 25, 377
Exports. Daily average	2, 700 87	2,473	7.7	8	(2)	2 59	69

Subject to revision.
 Figures for imports and exports for 1941 cover January to September, inclusive.
 Publication suspended.

Motor-fuel consumption per motor-vehicle unit in use on July 1, 1925-41 1

		Passenger cars			Trucks						
Year	Consump- tion (thousands of barrels)	Number of vehicles	Consumption per unit (barrels)	Consumption (thousands of barrels)	Number of vehicles	Consump- tion per unit (barrels)					
1925	154, 938 181, 239 205, 983 227, 497 256, 899 270, 347 276, 828 257, 703 258, 365 277, 735 294, 686 324, 078 347, 034 351, 015 369, 521 393, 015 444, 524	15, 453, 300 17, 120, 300 18, 413, 800 19, 026, 000 20, 532, 800 21, 306, 300 20, 854, 700 19, 510, 300 20, 127, 300 20, 760, 100 22, 007, 900 23, 435, 600 24, 342, 900 24, 342, 900 25, 339, 300 27, 328, 100	10. 03 10. 59 11. 19 11. 96 12. 51 12. 69 13. 27 12. 94 13. 24 13. 80 14. 19 14. 73 14. 81 15. 51 16. 27	43, 104 49, 420 55, 397 60, 764 68, 346 70, 140 64, 538 67, 058 67, 058 74, 949 82, 545 93, 991 103, 739 102, 693 112, 582 118, 665 127, 538	2, 372, 400 2, 682, 900 2, 906, 000 3, 024, 300 3, 194, 300 3, 382, 700 3, 397, 100 3, 290, 200 3, 234, 700 3, 581, 400 4, 223, 200 4, 233, 200 4, 339, 200 4, 389, 200 4, 389, 200 4, 887, 000	18. 1 18. 4 19. 0 20. 0 21. 4 20. 7 20. 8 19. 6 20. 7 22. 3 23. 0 24. 5 25. 6 25. 6 26. 6					

¹ Excludes gasoline consumed by busses and for nonautomotive uses.

Subject to revision.

Gasoline-temperature index and estimated influence of weather on motor-fuel demand in the United States in 1941, by months 1

Month	Gasoline- tempera- ture index ²	Influence on motor-fuel demand (thousands of barrels)	Month	Gasoline- tempera- ture index ²	Influence on motor-fuel demand (thousand of barrels)
January February March April May	1.6 7 -2.5 4.2 2.8	1,097 618	September October November December	2. 5 3. 6 3. 0 4. 0	453 959 719 1,065
June July August	1.1 1.5 .8	-387 -176 -476	A verage index Total influence	1.8	3, 199

¹See Breakey, Herbert A., Trends and Seasonal Variations in Factors Influencing Domestic Motor-Fuel Demand: Bureau of Mines Ec. Paper 21, 1940, pp. 19–31 and 61–65.

²In degrees departure from 46-year normal.

Production.—Motor-fuel production increased 12 percent—from 616,695,000 barrels in 1940 to 690,958,000 in 1941. The production in 1941 comprised 279,272,000 barrels of straight-run gasoline, 344,013,000 barrels of cracked gasoline, 3,469,000 barrels of benzol, and 64,204,000 barrels of natural gasoline. Natural gasoline used in producing motor fuel consisted of 47,825,000 barrels blended at the refineries and 17,808,000 barrels sold as such, including 1,429,000 barrels withdrawn from stocks in addition to the quantity produced. Straight-run gasoline represented only 40.4 percent of the motor

Straight-run gasoline represented only 40.4 percent of the motor fuel produced, compared with 42.7 percent in 1940, whereas the proportion of cracked gasoline increased from 47.7 percent to 49.8. The ratio for natural gasoline blended at refineries was 6.9 percent, and that sold directly as such was 2.6 percent—a total of 9.5 percent compared with 9.0 percent in 1940. These figures include 0.2 percent contributed from stocks rather than production in 1941.

Production of gasoline in the United States in 1941, by methods of manufacture, districts, and months ¹ [Thousands of barrels]

Method and district	January	February	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
Straight run: East Coast	2, 215 834 4, 099 2, 369 1, 360 5, 027 802 718 3, 347	2, 153 725 3, 747 2, 399 1, 234 4, 823 877 491 627 3, 036	2, 874 823 4, 131 2, 705 1, 493 4, 445 703 563 738 3, 520	2, 336 883 4, 303 2, 481 1, 610 4, 967 747 567 788 3, 449	2, 392 949 4, 915 2, 742 1, 657 5, 248 906 633 709 3, 730	2, 427 948 4, 707 2, 783 1, 717 4, 488 862 520 746 3, 942	2, 617 880 4, 609 2, 885 1, 789 5, 046 944 675 803 3, 714	2, 521 873 4, 682 3, 021 1, 708 5, 595 984 697 766 3, 943	2, 565 922 5, 199 2, 730 1, 744 4, 900 872 683 875 3, 549	2, 639 923 5, 389 2, 946 1, 534 5, 057 793 681 808 3, 942	3, 171 870 5, 236 2, 751 1, 638 4, 876 948 642 703 3, 409	2, 822 846 5, 357 2, 812 1, 836 5, 313 1, 008 705 775 3, 439	30, 732 10, 476 56, 374 32, 624 19, 320 59, 785 10, 446 7, 439 9, 056 43, 020
Total straight run Percent yield ²	21, 353 19. 3	20, 112 20. 0	21, 995 19. 8	22, 131 19. 9	23, 881 20. 0	23, 140 19. 9	23, 962 19. 8	24, 790 20. 0	24, 039 19. 8	24, 712 19. 5	24, 244 19. 9	24, 913 19. 9	279, 272 19. 8
Cracked: East Coast	5, 780 2, 486 1, 320 7, 331 712 369 717 2, 248	3, 433 1, 056 5, 258 2, 277 1, 402 6, 469 683 333 543 1, 963	3, 798 1, 161 5, 899 2, 712 1, 288 7, 349 718 394 623 2, 239	4, 289 1, 144 5, 306 2, 634 1, 269 7, 695 797 402 537 2, 307	4, 621 1, 172 6, 265 2, 904 1, 303 8, 369 788 452 746 2, 288	4, 340 1, 170 6, 468 2, 726 1, 311 8, 193 850 331 569 2, 520	4, 542 1, 363 7, 026 2, 897 1, 389 8, 899 884 463 726 1, 935	4, 517 1, 265 6, 638 3, 001 1, 548 8, 447 874 413 805 2, 526	4, 355 1, 271 6, 697 3, 152 1, 462 8, 558 870 405 671 2, 757	4, 990 1, 229 6, 795 3, 185 1, 697 8, 861 946 446 646 2, 533	4, 761 1, 221 6, 342 3, 027 1, 407 9, 078 932 406 806 2, 738	5, 202 1, 381 6, 262 3, 063 1, 645 9, 821 986 423 597 2, 875	52, 663 14, 647 74, 736 34, 064 17, 041 99, 070 10, 040 4, 837 7, 986 28, 929
Total cracked Percent yield 3	25, 992 23. 5	23, 417 23. 3	26, 181 23. 6	26, 380 23. 8	28, 908 24. 2	28, 478 24. 6	30, 124 24. 8	30, 034 24. 1	30, 198 24. 8	31, 328 24. 7	30, 718 25. 3	32, 255 25. 8	344, 013 24. 4
Total production including natural gaso- line: East Coast	2, 082 10, 469 5, 283 3, 442 12, 880 1, 539 1, 004 1, 525 6, 710 51, 173	5, 765 1, 822 9, 545 5, 028 3, 231 11, 748 1, 579 1, 244 6, 010 46, 841 46, 253	6, 821 2, 026 10, 575 5, 793 3, 423 12, 405 1, 455 992 1, 424 7, 036 51, 950 49, 493	6, 753 2, 078 10, 201 5, 450 3, 428 13, 309 1, 568 1, 002 1, 377 6, 843 52, 009 48, 784	7, 142 2, 158 11, 732 5, 973 3, 557 14, 214 1, 726 1, 112 1, 511 7, 083 56, 188 50, 444	6, 871 2, 147 11, 728 5, 817 3, 623 13, 386 1, 734 881 1, 365 7, 584 55, 136 49, 281	7, 294 2, 281 12, 234 6, 119 3, 770 14, 631 1, 850 1, 171 1, 568 6, 796	7, 183 2, 165 11, 944 6, 402 3, 924 14, 896 1, 951 1, 219 1, 627 7, 643 58, 954 50, 799	7, 105 2, 240 12, 568 6, 361 3, 890 14, 566 1, 844 1, 199 1, 601 7, 614 58, 988 51, 088	7, 814 2, 196 12, 913 6, 574 4, 006 14, 964 1, 867 1, 267 1, 529 7, 907	8, 136 2, 134 12, 253 6, 255 3, 690 14, 954 2, 011 1, 136 1, 600 7, 311 59, 480 49, 795	8, 256 2, 277 12, 319 6, 333 4, 179 16, 251 2, 141 1, 227 1, 460 7, 197 61, 640 51, 043	85, 379 25, 606 138, 481 71, 388 44, 143 168, 204 21, 265 13, 079 17, 831 85, 734 671, 110 597, 375

¹ Subject to revision.

² Based upon crude runs to stills.

Yields.—The yield of gasoline, which had dropped from 45.0 percent of the crude oil run to stills in 1939 to 43.1 percent in 1940, partly recovered in 1941 to 44.2 percent. The yield of straight-run gasoline, however, continued its downward trend, slipping from 20.4 percent in 1940 to 19.8 in 1941, whereas cracked gasoline, in response to increased re-forming, additional catalytic cracking, and other improved methods of motor-fuel production, rose from 22.8 percent in 1940 to 24.4 percent in 1941. The yields of straight-run gasoline stayed within a narrow range throughout the year, showing no trend, but those of cracked gasoline rose almost every month from a low of 23.3 percent in February to a high of 25.8 percent in December when the total yield was 45.7 percent.

Greatest gains in yields were in the Texas Gulf Coast, Louisiana Gulf Coast, California, and East Coast districts, which increased 2.7, 1.7, 1.6, and 1.4 percent, respectively. Yields in the Rocky Mountain, Appalachian, Indiana, Illinois, Kentucky, etc., and Inland Louisiana-Arkansas districts declined 1.1, 0.9, 0.8, and 0.6 percent, respectively.

Prices.—There were few advances in the refinery price of regular-grade gasoline after the request of the Office of Price Administration and Civilian Supply late in May to make no more increases without prior consultation with that office; in fact, the last one occurred early in July. During this period the Mid-Continent price for regular-grade gasoline rose from an average of 4.75 cents to 6.19 cents, at which quotation it held for the remainder of the year. Premium grade continued to advance until November 28, although a ceiling had been established in the Gulf Coast area on September 4. The Mid-Continent price for this grade rose from an average of 4.94 cents at the beginning of the year to 7.15 cents after the last increase.

Service-station prices for gasoline advanced steadily throughout the year until December 1, and thereafter suffered a late seasonal decline. Most of these gains occurred within the first 8 months of the year, as the Office of Price Administration and Civilian Supply established a ceiling for them on August 28 for 40 cities in the northern part of the East Coast district. There were only a few increases after that date,

principally in the Southeast and Midwest.

The posted price does not indicate the real amount received for the gasoline, as under the dealer-marketing plan now in effect in most States a retailer determines his own price for the gasoline he sells. At the beginning of the year discounts from the posted price, ranging as high as 3 cents a gallon, were quite general in some places. However, by the end of the year they had been nearly eliminated, owing partly to the strong demand for gasoline during the third quarter (which taxed the sources of supply) and partly to the shortage of gasoline on the East coast caused by the loan of tankers to Great Britain, with the resultant difficulty of transporting oils from the Gulf Coast area to the East coast.

The greatest change occurred in the East Coast district, where the averages increased 2.49 cents for South Atlantic cities and 1.91 cents for North Atlantic cities. These gains were particularly significant because almost one-third of the motor-fuel demand is marketed in this district. The price in Salisbury, N. C., increased the greatest—4.45 cents (from 10.50 cents (ex tax) to 14.95), and Charlotte, N. C., followed closely, with an increase from 10.00 cents to 14.40. The price in Burlington, Vt., increased 3.9 cents (from 9.80 cents to 13.70);

that in Syracuse, N. Y., increased 3.6 cents and that in Atlanta, Ga., and Manchester, N. H., 3.5 cents each. Des Moines, Iowa, where the price dropped from 12.90 cents to 10.90, had the greatest decrease of the few cities where gasoline prices declined.

Average monthly prices of gasoline in the United States, 1940-41, in cents per gallon

	January	February	March	April	May	June	July	August	September	October	November	December	Average for year
1940													
Monthly average at refineries in Oklahoma: ¹ 67-69 octane (L-3) ² 72-74 octane (A. S. T. M.) ² Average of 50 cities on 1st of	4. 67	4. 46	4. 43	4. 43 5. 00	5. 00	5. 00	5.00	4. 94	4.89	4. 79	4.75	4. 75	4. 50 4. 90
month: 3 Dealers' net Service station (including State tax)			1				1 33 4						9. 08 17. 16
1941							,						
Monthly average at refineries in Oklahoma: 72-74 octane 1	4.72	4. 69	4. 71	5. 09	5. 47	5. 99	6. 18	6. 19	6. 19	6. 19	6. 19	6. 19	5. 65
Dealer's net Service station (including State tax)	1										10. 02 18. 4 9		9. 49 17. 73

¹ National Petroleum News.
² 67-69 octane (L-3 method) discontinued April 11; 72-74 octane (A. S. T. M. method) initiated April 8.
³ American Petroleum Institute; compiled by The Texas Co.

Despite the increases, the cities along the North Atlantic coast had the lowest average price for gasoline—12.59 cents (ex tax)—followed by the cities in the central part of the United States, where the prices averaged 12.87 cents.

The average price for the Rocky Mountain area rose from 13.75 cents (revised) on December 31, 1940, to 15.00 cents on December 31, 1941, to make it again the highest for the country, although the Pacific Coast area followed closely with an average of 14.80 cents.

The highest prices paid by motorists for gasoline, including State, City, and Federal taxes, on January 1, 1942, were 25.1 cents at Twin Falls, Idaho, and 24.1 cents at Boise, Idaho (each including 6.6 cents tax). The price in Montgomery, Ala., was 24.0 cents (including 9.5 cents tax); in Knoxville, Tenn., 23.50 (including 8.5 cents tax); in Charleston, W. Va., 23.05 cents (including 6.5 cents tax); and in Pensacola, Fla., 23.00 cents (including 9.5 cents tax). Motorists in Des Moines, Iowa, paying 15.4 cents a gallon, enjoyed the lowest price for their gasoline, although the service-station price in the principal Oklahoma cities was only 15.5 cents until a 1½-cent increase in the State gasoline tax on July 1 raised it to 17 cents.

Another advantage to refiners, in addition to the price advance, was the lower quality of motor fuel. One feature of gasoline quality had been its continual improvement for several years at no additional cost to consumers. (See Minerals Yearbook, Review of 1940, pp. 985-986.) During 1941, however, the military requirements for high-octane fuel resulted in a reversal of this trend to divert some of the high-octane qualities to military fuel. The rating for regular-grade gasoline, for

which the Western Refiners Association in 1940 had adopted the specification of 72-74 octane, was found in the Bureau of Mines Cooperative Fuel Research Motor-Gasoline Survey for the Summer of 1941 (see Report of Investigations 3611) to average almost 75 octane for the country as a whole. Late in 1941 the refiners in the Gulf Coast area reduced this grade to 71-72 octane and the premium grade from 80 to 78. Refiners in other parts of the country followed with similar reductions. Pressure brought on refiners to lower octane rating was due to a shortage in the raw materials for tetraethyl lead. which resulted in the Ethyl Gasoline Corporation rationing its supply of lead for civilian uses to meet military requirements.

Gasoline tax rates were increased in two States and the District of Columbia in 1941. Minnesota, which permitted its emergency tax of 1 cent a gallon to lapse on September 1, 1940, reestablished it, effective May 1, 1941, raising the tax from 3 cents to 4 cents. The tax in Oklahoma was increased from 5½ cents to 7 cents, effective July 1, and that in the District of Columbia from 2 cents to 3 cents, effective January 1, 1942. At the beginning of 1942 4 States had a tax rate of 7 cents, 1 of 6½ cents, 5 of 6 cents, 10 of 5 cents, 18 of 4 cents, 9 and

the District of Columbia of 3 cents, and 1 of 2 cents.

Aviation gasoline.—Production of aviation gasoline in 1941 increased by about 50 percent, and more capacity was being added toward the end of the year as this country prepared to supply its allies with high-octane fuel for their war planes.

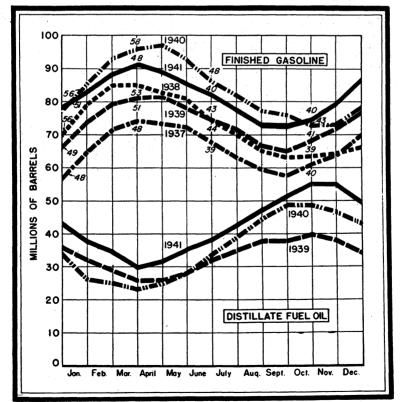
There were no changes in prices of aviation gasolines during 1941. Tank-wagon prices quoted by the Standard Oil Company of Ohio throughout the year were: Sohio Aviation, 14.5 cents; 74-octane, 15.5 cents; 87-octane, 16.5 cents; 100-octane, 24.5 cents.

Stocks.—Motor-fuel stocks were considerably lower throughout most of 1941 than they had been in 1940, and they maintained a more normal relationship throughout the year. The peak of 98,706,000 barrels of finished and unfinished gasoline on March 31 was 5 million barrels less than the peak on the same date in 1940 and represented only 52.2 days' supply compared with the 62.5 days' supply on March 31, 1940. Stocks again exceeded those of 1940 in October and totaled 94,098,000 barrels by December 31 compared with 84,409,000 barrels at the end of 1940. The days' supply on this date was 55.9 compared with 55.2 at the end of 1940.

All of the districts had larger stocks at the end of the year than at The greatest gains occurred in the East Coast and Indiana, Illinois, Kentucky, etc., districts, the increase being 2,250,000 barrels (12.1 percent) in the former and 2,444,000 (15.4 percent) in the latter. Although stocks in the Texas Gulf Coast district gained 1,398,000 barrels—from 14,433,000 to 15,831,000—more than half of this was in unfinished gasoline, leaving the gain in finished gasoline only 663,000 barrels. This indicates how the refiners in the Gulf Coast area took advantage of the return in October of some of the tankers loaned to Great Britain to move gasoline to the East coast, where stocks increased 2 million barrels from the end of September to the end of December compared with a decline of almost that amount during the same period in 1940.

Stocks in the East Coast district dropped only a little below those of 1940 during the heavy consuming period, notwithstanding transportation difficulties. This was probably due to measures adopted by

Days' supply of motor fuel on hand in the United States at end of month, 1939-41 1


		1939			1940 3			1941 *	
Month	Finished gasoline	Natural gasoline	Total motor fuel	Finished gasoline	Natural gasoline	Total motor fuel	Finished gasoline	Natural gasoline	Total motor fuel
January February March April May June July August September October November December	54. 6 52. 1 50. 8 46. 6 43. 1 42. 5 38. 3 37. 1 38. 1 40. 9 47. 3 56. 2	3.5 3.1 3.0 3.2 3.4 3.8 3.7 3.7 3.4 3.1 3.1 3.2	58. 1 55. 2 53. 8 49. 8 46. 5 46. 3 42. 0 40. 8 41. 5 50. 3 59. 4	62. 3 61. 3 58. 2 54. 5 48. 3 48. 1 44. 2 42. 7 42. 0 42. 9 47. 0 51. 0	3.3 3.2 3.4 3.3 3.9 4.1 4.2 3.9 3.89 3.89	65. 6 64. 5 61. 4 57. 9 51. 6 52. 0 48. 3 46. 9 45. 9 46. 7 50. 9 54. 7	53. 9 54. 4 48. 4 45. 0 43. 0 39. 6 36. 6 35. 7 37. 0 39. 4 43. 3 51. 3	3.6 3.3 2.8 2.9 3.0 3.0 2.7 2.6 2.5	57. 5 57. 7 51. 2 47. 9 42. 6 39. 6 38. 7 39. 7 42. 0 45. 8 53. 8

Stocks divided by the daily average total demand (domestic demand plus exports) for succeeding month.
 Revised figures.

the Petroleum Coordinator and the industry to meet the emergency. In addition to the publicity that served in the nature of a warning to the public, alternative methods of transportation were established (see Distribution), with the result that there was no real distress.

Figure 9 shows the monthly quantities of finished gasoline stocks,

in millions of barrels, from January 1, 1937, to December 31, 1941.

-Stocks of finished gasoline in the United States, 1937-41, by months, with figures representing days' supply at certain periods, also stocks of distillate fuel oil, 1939-41, by months.

Stocks of gasoline in the United States in 1941, by districts and months 1 [Thousands of barrels]

District	January 31	Febru- ary 28	March 31	April 30	May 31	June 30	July 31	August 31	Septem- ber 30	October 31	November 30	Decem- ber 31
Finished gasoline: ² East Coast Appalachian Indiana, Illinois, Kentucky, etc Oklahoma, Kansas, and Missouri Texas Inland Texas Gulf Coast Louisiana Gulf Coast Arkansas and Louisiana Inland Rocky Mountain California	18, 790 3, 151 17, 292 7, 618 2, 372 13, 246 2, 743 813 1, 978 15, 307	18, 936 3, 189 19, 272 8, 249 2, 511 14, 812 3, 084 831 2, 277 15, 448	19, 746 3, 169 20, 206 8, 747 2, 447 15, 184 3, 254 819 2, 405 15, 524	20, 101 3, 054 18, 772 8, 039 2, 360 14, 914 3, 242 836 2, 327 14, 769	21, 504 3, 058 17, 284 7, 482 2, 231 13, 429 3, 059 781 2, 209 14, 388	21, 585 2, 927 17, 148 7, 073 2, 175 11, 550 2, 988 692 1, 919 14, 354	20, 589 2, 810 16, 114 6, 227 2, 146 11, 038 2, 982 660 1, 633 13, 230	19, 375 2, 935 14, 863 6, 237 2, 170 9, 940 3, 050 590 1, 324 12, 610	17, 949 3, 148 14, 936 6, 507 2, 122 10, 462 2, 571 633 1, 267 13, 166	18, 642 3, 095 15, 460 7, 105 2, 156 10, 399 2, 135 633 1, 259 13, 814	19, 591 3, 223 16, 222 7, 754 2, 246 11, 128 2, 518 710 1, 552 14, 434	19, 956 3, 410 17, 662 8, 402 2, 653 13, 843 3, 165 794 1, 729 14, 799
Total finished gasoline	83, 310	88, 609	91, 501	88, 414	85, 425	82, 411	77, 429	73, 094	72, 761	74, 698	79, 378	86, 413
Unfinished gasoline:	946 458 715 648 399 1,590 425 22 93 1,760	1, 058 448 651 637 322 1, 596 386 30 89 1, 732	1, 151 459 576 483 518 1, 877 427 34 88 1, 592	1,061 434 596 516 567 1,876 439 28 100 1,738	1, 124 395 562 474 607 1, 921 406 13 106 1, 798	1, 029 365 638 522 634 1, 958 363 18 117 1, 703	1, 066 380 555 574 623 1, 940 417 12 106 1, 599	1, 162 331 561 528 694 1, 727 339 13 104 1, 824	1, 163 329 494 486 822 1, 599 352 14 106 1, 837	1, 204 315 536 527 902 1, 592 402 14 90 2, 023	1, 072 297 571 502 923 1, 821 475 16 91 2, 132	916 274 665 473 635 1, 988 449 12 80 2, 193
Total unfinished gasoline	7, 056	6, 949	7, 205	7, 355	7, 406	7, 347	7, 272	7, 283	7, 202	7, 605	7, 900	7, 685
Total finished and unfinished: East Coast Appalachian Indiana, Illinois, Kentucky, etc Oklahoma, Kansas, and Missouri Texas Inland Texas Gulf Coast Louisiana Gulf Coast Arkansas and Louisiana Inland Rocky Mountain California	19, 736 3, 609 18, 007 8, 266 2, 771 14, 836 3, 168 835 2, 071 17, 067	19, 994 3, 637 19, 923 8, 886 2, 833 16, 408 3, 470 861 2, 366 17, 180	20, 897 3, 628 20, 782 9, 230 2, 965 17, 061 3, 881 853 2, 493 17, 116	21, 162 3, 488 19, 368 8, 555 2, 927 16, 790 3, 681 864 2, 427 16, 507	22, 628 3, 453 17, 846 7, 956 2, 838 15, 350 3, 465 794 2, 315 16, 186	22, 614 3, 292 17, 786 7, 595 2, 809 13, 508 3, 351 710 2, 036 16, 057	21, 655 3, 190 16, 669 6, 801 2, 769 12, 978 3, 399 672 1, 739 14, 829	20, 537 3, 266 15, 424 6, 765 2, 864 11, 667 3, 389 603 1, 428 14, 434	19, 112 3, 477 15, 430 6, 993 2, 944 12, 061 2, 923 647 1, 373 15, 003	19, 846 3, 410 15, 996 7, 632 3, 058 11, 991 2, 537 647 1, 349 15, 837	20, 663 3, 520 16, 793 8, 256 3, 169 12, 949 2, 993 726 1, 643 16, 566	20, 872 3, 684 18, 327 8, 875 3, 288 15, 831 3, 614 806 1, 809 16, 992
Total United States: 1941	90, 366 90, 975	95, 558 99, 295	98, 706 103, 710	95, 769 103, 563	92, 831 100, 859	89, 758 93, 569	84, 701 89, 065	80, 377 83, 701	79, 963 81, 907	82, 303 79, 185	87, 278 79, 517	94, 098 84, 409

¹ Subject to revision.

² Includes stocks of finished gasoline at refineries, bulk terminals, and pipe lines.

The figures for days' supply on the chart represent the quantity of finished gasoline on hand at the end of the month divided by the total

demand for the succeeding month.

Figure 9 also shows the stocks of distillate fuel oil for 1939-41, to stress the contrast in seasonal variations in stocks of the two products. It also shows the effect of the warm autumn of 1941 on the accumulation of a generous supply of heating oil, which was fortunate for the East Coast district, where distress might have been occasioned because of lack of transportation facilities for oil had the fall and winter been severe.

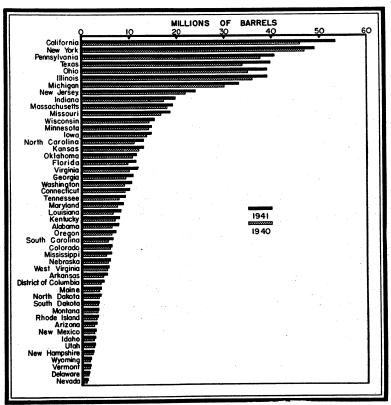


FIGURE 10.-Consumption of gasoline in the United States, 1940-41, by States.

Production and consumption by States.—Texas increased its relative standing by furnishing 32 percent of the gasoline produced in 1941. Percentages for the next important States were California, 13;

Pennsylvania, 8; and Indiana and Illinois, 7 each.

The same six States that led in gasoline consumption in 1940 were highest in 1941, but California took first place and Texas stepped up to fourth (see fig. 10). The percentage consumption of the principal States was as follows: California, 8.3; New York, 7.7; Pennsylvania, 6.3; Texas, 6.2; Ohio, 6.1; Illinois, 6.1; Michigan 5.2.

Distribution.—The withdrawal of a large number of tankers from domestic service during the summer and fall of 1941 for loan to Great

Britain necessitated considerable change in gasoline-transportation Fullest use was made of tank cars, and this movement amounted to about 150,000 barrels a day during the heavy motoring period. Although domestic shipments of gasoline on the Mississippi River and its tributaries had increased from 59,183,000 barrels in 1939 (unadjusted for duplications) to only 60,289,000 in 1940 (the latest data available), barge movement up the Mississippi River in 1941 almost doubled and amounted to 13,736,000 barrels compared

Production and consumption of gasoline in the United States, 1939-41, by States [Thousands of barrels]

	19	39	19	40	1941 1		
State	Dundana	G	Produc-	G	Produc-	C	
	Produc- tion	Consump- tion 2	tion	Consump- tion 2	tion	Consum tion 2	
labama	(3)	5, 869	(3)	6, 307	(3)	7,8	
rizona		2,550		2, 637		3, 0	
rkansas	3, 452	4, 339	3,702	4, 546	4,044	5, 3	
alifornia	4 79, 774	43, 760 5, 659	4 76, 885 2, 020	45, 904 5, 976	4 85, 734 2, 334	53, 6.	
oloradoonnecticut	1,720	8, 217	2,020	9, 068	2,004	10.	
oloworo		1, 391		1,495		1.	
elaware		3, 571		4,027		4.	
lorida		8, 710		9, 713		11.	
eorgia		8, 531	5 4, 329	9, 346	5 4, 983	10,	
laho	(6)	2, 387	(8)	2,547	(6) 7 49, 377	2,	
linois		33, 803	7 41, 386	35, 944		38,	
diana		15, 973	43, 180	17, 175	43,704	19,	
W8		13, 103		13, 637		14,	
ansas	8 31, 596	11, 353	8 32, 964	11, 943	8 37, 198	12,	
entucky	6,021	6, 545	9 7, 049	6, 954	98,523	7,	
ouisiana		6, 220 3, 575	3 23, 673	6, 627	³ 30, 300	8,	
laine	(5)	6, 945	(5)	3, 747 7, 491	(5)	4, 8.	
[aryland [assachusetts	10 4, 959	17, 170	10 6, 554	17, 791	(5) 10 5, 791	19.	
ichigan	7, 932	27, 455	10, 216	29, 979	11, 180	33.	
innesota		13, 111		13, 861		14.	
lississippi		4, 988	(7)	5, 219	(7)	6.	
issouri	(8)	15, 590	(8)	16, 623	(8)	18,	
Iontana	(⁸) 3, 313	3,012	3,836	3, 276	4, 293	3,	
ebraska	(6)	5, 607	(6)	5, 629	(6) (8)	5,	
evada		1, 045		1,043		1,	
ew Hampshire		2, 204		2,282		2,	
ew Jerseyew Mexico	28,539	20, 776	25, 451	22, 023	28, 312	23,	
ew Mexicoew York	11 3, 056	2,427	11 3, 320	2,630	11 3, 698	2,	
orth Carolina	6, 355	45, 255 10, 229	7,826	46, 918 10, 938	9,044	49,	
orth Dakota		3, 137		3, 638		12, 3.	
hio	94 043	32, 649	31, 603	35, 022	34, 816	39,	
klahoma	33, 898	10, 159	32,603	10, 584	34, 190	11,	
regon		5, 826	02,000	6, 250	01,100	7,	
ennsylvania	47, 014	35, 296	46, 550	37, 666	51, 419	40.	
hode Island	(10)	3,092	(10)	3, 190	(10)	3,	
outh Carolina	(5)	5, 055	(8)	5, 577	(5) (6)	6,	
outh Dakota	(6)	3, 174	(6)	3, 422		3,	
ennessee	(9)	6, 875	(9)	7, 785	(9)	9,	
exas	196, 935	31, 926	184, 885	33, 806	212, 347	39,	
tah	(11)	2,375	(11)	2, 552	(11)	2,	
ermontirginia		1,619		1,686		1,	
ashington	(4)	9, 098 8, 320		9, 943 9, 024		11, 8 10,	
ashingtonest Virginia	1,712	8, 320 4, 879	(4) 2.017	9, 024 5, 262	(4) 2, 317	10, 5.	
isconsin	1, 112	13, 494	2,017	5, 262 14, 049	(7)	15.	
yoming	6 6, 977	1, 619	6 7, 230	1, 668	6 7, 506	1,8	
Total United States	596, 501	539, 963	597, 279	574, 420	671, 110	639.	

Subject to revision.
 American Petroleum Institute.
 Alabama and Mississippi included with

Louisiana.

4 Washington included with California.

4 Maryland and South Carolina included with

Georgia.
Glaho, western Nebraska, and South Dakota included with Wyoming.

Minnesota and Wisconsin included with Illinois.
 Missouri and eastern Nebraska included with

<sup>Tennessee included with Kentucky.
Rhode Island included with Massachusetts.
Utah included with New Mexico.</sup>

with 7,941,000 in 1940. More significant, however, is the fact that the daily average, which was only 16,171 barrels for the first quarter of 1940, totaled 44,602 barrels for the peak months of June to Septem-

ber in 1941.

Notwithstanding the diversion of tankers, shipments of gasoline from the Gulf to the East coast increased from 119,142,000 barrels in 1940 to 130,534,000 in 1941, and even during the 5 months of the diversion period—June to October—they were 3,869,000 barrels more than for the same period in 1940. The tanker movement from California to the East coast, which gained 30 percent in the first 6 months of 1941 (from 1,737,000 barrels in 1940 to 2,251,000 in 1941) was completely stopped during the latter part of the year, so that the ships could be used for more necessary service. A small quantity of gasoline needed for special blending purposes continued to be moved across the country by railroad.

Shipments of motor fuel by pipe lines in the United States in 1941, by months
[Thousands of barrels]

							1940)						1940
	Jan.	Feb.	Mar	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total	tota
Motor fuel deliv- ered from lines Shortage	1	6, 814	8, 363	9, 365		9, 685	10, 494	10, 288	9, 518	9, 709	9, 438	9, 530	112, 976 111, 077 615	96, 65
Stocks in lines and working tanks, end of month	6, 192	6, 452	6, 765	6, 282	5, 699	5, 867	5, 301	5, 621	5, 435	5, 396	5, 816	6, 358	6, 358	5, 07

Pipe-line shipments of motor fuel increased from 96,657,000 barrels in 1940 to 111,077,000 in 1941. Important additions to pipe lines in 1941 include the Southeastern Pipe Line from Port St. Joe, Fla., to Chattanooga, Tenn.—450 miles; the Plantation Pipe Line from Baton Rouge, La., to Greensboro, N. C.—1,260 miles; and a line from Fall River to Worcester and Waltham, Mass.—86 miles. Work was begun in 1941 on a line from Marcus Hook, Pa., and Baltimore, Md., to Greensburg, Pa., via Schaefferstown, Pa.

KEROSINE AND RANGE OIL

The domestic demand for kerosine in 1941 changed little from the 1940 total of 68,776,000 barrels, and exports remained at a very low level in 1941, as in 1940. Kerosine is seldom imported into the United States; however, small quantities were received in both 1940 and 1941. Production of kerosine in 1941 was below the 1940 output, but year-end stocks for the 2 years remained at about the same volume.

Although 9 percent more crude petroleum was run to stills in 1941 than in 1940, the production of kerosine declined by 2 percent (from 73,882,000 barrels in 1940 to 72,586,000 in 1941) owing to a pronounced reduction in the percentage yield. The 5.2-percent yield of kerosine in 1941 (the lowest since 1936) compares with a relative high output of 5.7 percent in 1940. Refiners adjusted their runs to stills in 1941 to produce relatively more motor fuel and heavy fuel oil and correspondingly less kerosine and distillate fuel oil; however,

because of the larger quantity of crude petroleum processed in 1941, the change provided enough kerosine to satisfy all demands and to

increase stocks slightly.

Substantial gains in the production of kerosine were reported for the Indiana-Illinois and Louisiana Gulf Coast refinery districts in 1941 compared with 1940. Small increases in kerosine production were also realized in the Oklahoma-Kansas, Texas Inland, Arkansas-Louisiana Inland, and Rocky Mountain refinery areas. The out-

Comparative analyses of statistics for kerosine in the United States, 1940-41, by months and districts

Month and district	(thous	uction ands of rels)		ield cent)	mand	stic de- (thou- f barrels)	Stocks (thou- sands of barrels)		
	1940	1941 1	1940	1941 1	1940	1941 1	1940	1941 1	
By months:				S .					
January	5, 375	6, 661	5.0	6.0	7.642	7, 769	4, 918	8, 312	
February	5, 945	5, 888	5.8	5.9	6, 263	6, 484	4, 302	7, 634	
February	6, 570	6,033	6.0	5.4	6, 273	6, 821	4, 114	6, 724	
April	6, 257	6,068	5.8	5.5	5, 621	5, 549	4, 351	7, 063	
April May	6, 641	6,033	5.9	5.1	5, 297	4, 504	5, 309	8, 421	
June	5, 785	5, 218	5.4	4.5	3, 952	3, 918	6, 810	9, 609	
July		5, 406	5.4	4.5	4, 257	4, 270	8, 191	10, 635	
August	5, 629	5, 850	5. 2	4.7	4, 114	4, 449	9, 476	11, 636	
September	6,062	5, 949	5.6	4.9	5, 173	5, 624	10, 254	11, 662	
October	6.496	6, 355	5.9	5.0	5, 608	(2)	11,000	11, 670	
November	6, 431	6, 443	6.1	5.3	6, 768	(2)	10, 473	10, 843	
December	6, 894	6, 682	6.3	5.3	7, 808	(2) (2) (2)	9, 512	9, 599	
Total United States	73, 882	72, 586	5.7	5. 2	68, 776	(2)	9, 512	9, 599	
By districts:									
East Coast	11 447	9. 169	5.6	4.2			1 2,428	9 490	
Appalachian	3, 213	3, 166	6.7	5.9	11		183	2, 489 311	
Indiana Illinois Kantucky ata	10, 344	11.864	4.6	4.7			983	1, 168	
Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Mis-	10, 011	11,001	2.0	2.1			1 800	1, 100	
souri	7, 196	7, 505	6.3	5. 9			481	618	
Texas Inland	2,753	2, 987	4.5	4.5	(3)	(3)	159	282	
Teyes Gulf Coast	26 164	24, 448	7.7	6.7		(5)	3, 154	2, 949	
Louisiana Gulf Coast	5 907	7, 304	13. 1	13. 5			646	513	
Arkansas and Louisiana Inland.	2, 722	3, 080	11.0	10.5	1		224	213	
Rocky Mountain	824	906	2.7	2.7	1		128	129	
California	3, 322	2, 157	1.7	1.0)		1, 126	927	
Total United States	73, 882	72, 586	5. 7	5. 2	68, 776	(2)	9, 512	9, 599	

¹ Subject to revision.

put of kerosine declined sharply in the East Coast, Texas Gulf Coast, and California districts, owing to the lack of an active export market and the change in refinery runs to yield more motor fuel and heavy fuel oil.

Year-end stocks of kerosine increased by 1 percent from 9,512,000 barrels in 1940 to 9,599,000 in 1941, both totals representing 51 days' supply at the prevailing demand in the respective years. There were some shifts in the proportionate quantities of kerosine held in the several refinery districts at the end of 1941 compared with 1940. The inventory credited to the Indiana-Illinois area increased from 10 percent of all kerosine in storage at the close of 1940 to 12 percent in 1941, whereas quantities in the Texas Gulf Coast district declined from 33 percent of the 1940 total to 31 percent in 1941. California stocks of kerosine in 1941, representing 10 percent of the national total, were proportionately 2 percent below the quantity reported at the end of 1940. The East coast stocks remained at approximately 26 percent of the total inventory for both 1940 and 1941.

³ Publication suspended.

Figures not available.

Distributors reported sales of 67,662,000 barrels of kerosine for range-burner fuel, tractor fuel, and all other uses in 1940, a 13-percent gain over 1939 deliveries of 59,767,000 barrels. Range burners, widely used in the New England States and in New York, New Jersey, Pennsylvania, and Illinois and to a lesser degree in other areas, required the larger share of the marketed kerosine as fuel. Kerosine sold as range oil increased from 33,841,000 barrels in 1939 (57 percent of total kerosine sales) to 40,715,000 in 1940 (60 percent of total demand). Remaining kerosine deliveries in 1940 were reported as tractor fuel—4,683,000 barrels (4,346,000 in 1939)—and all other uses—22,264,000 barrels (21,580,000 in 1939).

Sales of kerosine in the United States, 1939-40, by regions, States, and uses 1
[Thousands of barrels]

Region and State		s range il	Tract	or fuel		ther ses	То	tal
Region and State	1939	1940	1939	1940	1939	1940	1939	1940
Pacific Coast:								
California	104	91		13	1, 170	985	1, 274	1,089
Oregon	1	11	6	6	62	53	69	70
Washington	7	5 5		2	141	130	148	135 97
Arizona Nevada	6 1	0		2	99 14	90 11	105 15	11
Rocky Mountain:					14		10	
Idaho	. 3	1	14	9	8	9	25	19
Montana	16	34	53	97	42	50	111	181
Wyoming	5	4	18	29	16	17	39	50
Utah	18	9	13	14	10	14	41	37
Colorado New Mexico	24 25	20 18	75 28	69 41	51 43	46 61	150 96	135 120
North Central:	20	10.	20	- 41	30	01	20	1.01
North Dakota	56	54	171	168	59	66	286	289
South Dakota	. 77	102	130	143	73	59	280	304
Minnesota	207	278	244	262	476	457	927	993
Nebraska	114	130	176	180	181	144	471	454
Iowa	206	191	309	282	698	659	1, 213	1, 13: 91:
Wisconsin	208 952	188 1,114	201 350	208 340	558 1, 549	516 1, 615	967 2, 851	3.06
Illinois Indiana	152	1, 114	124	168	1, 102	1, 211	1, 378	1, 556
Michigan	288	334	123	136	735	756	1, 146	1, 22
Ohio.	279	322	206	212	800	791	1, 285	1, 32
Kentucky	56	60	48	60	456	510	560	630
Tennessee	113	116	79	68	434	460	626	644
South Central:								
Missouri	295	380	159	157	702	653	1, 156	1, 19
Kansas	168	178	200	191	282	209	650	573 2, 420
Texas Oklahoma	279 114	306 148	425 171	509 212	1, 414 510	1, 611 550	2, 118 795	910
Arkansas	165	140	129	150	448	420	742	710
Louisiana	148	142	64	101	670	714	882	95
Mississippi	62	36	162	144	332	376	556	55
Alabama	89	61	24	18	366	377	479	450
New England:			_					
Maine	1, 219	1, 562	1		46	42	1, 266 819	1, 604 931
New Hampshire Vermont	781 468	894 560			38 84	39 73	552	63
Massachusetts	10, 455	13, 029			448	460	10, 903	13. 48
Rhode Island	2, 111	2, 547			82	80	2, 193	2,62
Connecticut	3, 219	3, 793	2	2	151	140	3, 372	3, 93
Middle Atlantic:	'	<u> </u>						
New York	5, 772	7, 110	132	148	1, 180	1, 352	7,084	8, 61
New Jersey	2,804	3, 316	36	28	1, 229	1, 295	4,069	4, 63 2, 36
Pennsylvania Delaware	619 96	830 118	160	124	1, 388 56	1, 412 63	2, 167 152	4,30
Maryland	490	529	25	28	543	685	1,058	1, 24
District of Columbia	771	78	2	5	85	92	158	17
South Atlantic:	i	1		1				
Virginia	186	198	9	19	576	658	771	87
West Virginia	33	29	3	10	181	191	217	. 23
North Carolina	513	573	94	80	652	678	1, 259	1, 33
South Carolina	166	171 214	34 38	32 76	434	425 499	634 687	62 78
GeorgiaFlorida	191 409	507	108	138	458 448	460	965	1, 10
Total United States	33, 841	40, 715	4, 346	4, 683	21, 580	22, 264	59, 767	67, 66

¹ Figures for 1941 by States not yet available.

Some light fuel oil (No. 1 grade) is sold for range fuel and should be added to the kerosine to determine the total demand for range fuel. Light fuel oil reported as range oil in 1940 totaled 3,977,000 barrels compared with 3,220,000 in 1939. Total range-oil sales (kerosine plus No. 1 fuel oil) were 44,692,000 barrels in 1940 or 21 percent over 1939 requirements of 37,061,000.

Sales of range oil in the United States, 1938-40, by States ¹
[Thousands of barrels]

			19	40
State	1938	1939	Total	Percent of total
Massachusetts	9, 959	10, 814	13, 419	30.0
New York	5, 951	6, 255	7, 613	17.0
	3, 191	3, 322	3, 921	8.8
New Jersey	2,854	3, 026	3, 556	8.0
llinois	2, 127 977	2, 172 1, 387	2, 619	5. 9
Maine	1, 174	1, 328	1, 733 1, 704	3. 9 3. 8
Pennsylvania	641	698	920	2.1
New Hampshire	701	781	898	2.0
Michigan	294	479	620	1.4
North Carolina	331	532	577	1. 2
Vermont	448	468	560	i.
Minnesota	296	403	555	î.
Florida	325	439	542	î.
Maryland	437	492	531	1. 2
Wisconsin	280	446	516	1.1
Missouri	306	355	485	1.1
Ohio	290	320	398	. 9
owa	204	291	335	.7
Texas	257	304	325	. 7
Other States	2, 664	2, 749	2, 865	6. 4
Total United States	33,707	37, 061	44, 692	100.0

¹ Figures for 1941 by States not yet avaliable.

There was an upward trend in kerosine prices in 1941. As an example, quotations for 41°-43° water-white kerosine at refineries in Oklahoma averaged 4.41 cents a gallon in 1941 compared with 4.04 cents in 1940. An average price of 4.12 cents per gallon in January, 1941, rose gradually during the spring months of the year and reached 4.56 cents in June and then remained at that level until the end of the year. The generally higher prices for kerosine in 1941 are reflected in the representative Chicago tank-wagon quotations, which increased from 10 cents a gallon in April to 10.5 cents in May. This top price did not hold, however, but settled to 10.3 cents in June, which quotation was in force until the end of 1941.

FUEL OIL

Increased refinery production, greater use of crude petroleum as fuel oil (transfers), a larger volume of imports, and curtailed exports were all factors that enabled oil companies to supply an increased domestic demand for fuel oil at fairly stable prices and to add slightly to stocks in 1941 compared with 1940. In other words, available supplies of fuel oil were ample in 1941 to satisfy an increased domestic demand and to maintain stocks without any appreciable advance in prices during a period when market quotations for most commodities were trending sharply upward.

In 1940 the domestic demand for fuel oil—501,014,000 barrels, a record up to that time—was exceeded by 11 percent in 1941, when heavy industries, such as railroads, gas and electric power plants, and manufacturing concerns, as well as the United States Navy, required substantially increased quantities of fuel oil. The weather in 1941 was comparatively mild in some important oil-heating areas compared with 1940, so that distillate fuel oils, mostly used for space heating, did not show a comparative increase in demand, as did that reported for residual grades or heavy fuel oils used for industrial purposes and for the Navy.

Salient statistics of fuel oil in the United States, 1940-41

[Thousands of barrels]

		1940	1 V		1941 1			
	Distillate fuel oil	Residual fuel oil	Total	Distillate fuel oil	Residual fuel oil	Total		
Stocks at beginning of year: Refinery Bulk terminal Production Transfers from crude oil to fuel oil: California.	26, 374 7, 344 ² 183, 304 279	87, 774 4, 516 3 316, 221 4, 070	114, 148 11, 860 499, 525 4, 349	32, 082 10, 858 4 189, 177	83, 548 5, 756 5 342, 367 8, 874	115, 630 16, 614 531, 544 9, 004		
East of California Imports: Bonded. Duty paid Exports. Stocks at end of year:	2, 297 257 3, 076 19, 140	3, 629 11, 432 17, 934 16, 109	5, 926 11, 689 21, 010 35, 249	2, 383 (6) (6) (6)	4, 095 (6) (6) (6)	6, 478 (6) (6) (6)		
RefineryBulk terminal	32, 082 10, 858	83, 548 5, 756	115, 630 16, 614	38, 895 11, 031	78, 054 5, 141	116, 949 16, 172		
Indicated domestic demand: Class I railroads, purchases ⁷ Public-utility power plants ⁸ Bunker oil, foreign trade ⁹ All other demands	(6) (6) (6) (6)	(6) (6) (6)	67, 131 16, 772 35, 037 382, 074	(6) (6) (6)	(6) (6) (6)	83, 563 20, 259 (6)		
	160, 851	340, 163	501, 014	(6)	(6)	(6)		

The Bureau's annual survey covering the distribution of fuel-oil sales by States and principal uses is still incomplete for 1941, so little is known about the various demands, except for releases covering certain requirements by other Government agencies, and for estimates. Monthly statistical statements compiled by the Interstate Commerce Commission show that Class 1 railroads purchased 83,563,000 barrels of fuel oil (including 2,838,000 barrels of Diesel fuel) in 1941—a 25percent gain over 1940 requirements of 67,131,000 (including 1,933,000 barrels of Diesel fuel). The Department of Commerce, did not release monthly export statistics, including bunker-oil loadings on vessels engaged in foreign trade after September 1941. The 9-month total for 1941 is 23,000,000 barrels of bunker fuel compared with 27,008,000 in the same period of 1940—a 15-percent decline—and it is believed that the total for all of 1941 will show a similar loss. No monthly

¹ Subject to revision.
2 Includes 52,827,000 barrels produced by cracking.
3 Includes 213,673,000 barrels produced by cracking.
4 Includes 56,870,000 barrels produced by cracking.
5 Includes 224,639,000 barrels produced by cracking.
6 Figures not available.
7 Interstate Commerce Commission; total includes Diesel fuel.
8 Federal Power Commission.
9 I. S. Popertment of Commerce.

⁹ U. S. Department of Commerce.

records covering oil bunkers lifted by vessels engaged in coastwise trade are available, but it is unlikely that this demand will show any gain or enough gain to counterbalance the loss in foreign bunker loadings, so that the total bunker-oil requirements in 1941 as revealed by the annual fuel-oil sales survey probably will show a total below the 1940 item of 74,803,000 barrels. Monthly releases of the Federal Power Commission indicate 20,259,000 barrels of fuel oil purchased by public-utility electric-power companies in 1941—a gain of 21 percent

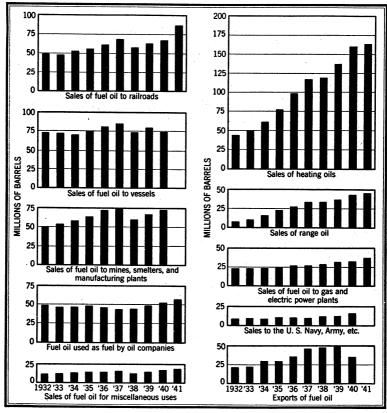


FIGURE 11.—Sales of fuel oil and range oil in the United States, 1932-41, by uses.

over the 1940 quantity, 16,772,000 barrels. When the fuel-oil purchases of the gas-manufacturing companies in 1941 compiled by the American Gas Association are added, it is believed that the fuel oil required by electric-power and gas-manufacturing industries will total approximately 39,000,000 barrels in 1941 compared with 32,795,000 in 1940. Estimates for other principal demands for fuel oil in 1941 are as follows: Smelters, mines, and manufacturing industries, 85,000,000 barrels; heating oils, 163,500,000; and oil-company fuel, 53,000,000.

Principal uses of fuel oil for the years 1932-41 are shown graphically in figure 11. The columns for 1932-40 are based upon totals derived from the Bureau's annual survey of fuel-oil sales, whereas those for 1941 are upon an estimated basis. Both distillate and residual fuel

Sales of fuel oil 1 and of range oil in the United States, 1936-40, by uses 2 [Thousands of barrels]

Use	1936	1937	1938	1939	1940
Fuel oil: Railroads	61, 727	69, 458	57, 829	63, 235	68, 098
	80, 324	84, 990	74, 266	79, 254	74, 803
Gas and electric power plants Smelters and mines. Manufacturing industries. Heating oils	26, 799 3, 768 67, 558 99, 257	26, 510 74, 798 116, 617	27, 567 60, 038 118, 323	32, 039 67, 043 136, 232	32, 795 73, 940 160, 379
Fuel oil (No. 1) sold as range oil U. S. Navy, Army transports, etc. Oil-company fuel Miscellaneous uses	(3)	2, 747	2, 902	3, 220	3, 977
	9, 241	9, 135	11, 756	12, 472	17, 183
	46, 021	42, 924	43, 517	49, 045	51, 928
	13, 714	14, 624	11, 652	14, 403	15, 655
Total United States	408, 409	441, 803	407, 850	456, 943	498, 758
Total	34, 883	45, 433	47, 561	49, 505	35, 249
	443, 292	487, 236	455, 411	506, 448	534, 007
	27, 292	32, 259	33, 707	37, 061	44, 692

Includes distillate fuel oil, residual fuel oil, and some crude oil burned as fuel.
 Figures for 1941 not yet available.
 Figures not available.

Sales of distillate fuel oil 1 in the United States, 1936-40, by uses 2

[Thousands of barrels]

Use	1936	1937	1938	1939	1940
Railroads. Ships' bunkers (including tankers) Gas and electric power plants. Smelters, mines, and manufacturing industries. Heating oils. Fuel oil (No. 1) sold as range oil. U. S. Navy, Army transports, etc. Oil-company fuel. Miscellaneous uses.	(3)	1, 629	1, 720	2, 258	3, 194
	(3)	13, 494	13, 088	14, 108	13, 249
	(3)	2, 989	3, 685	4, 131	4, 561
	(3)	5, 691	5, 224	6, 192	7, 330
	(69, 859	81, 235	82, 388	97, 131	115, 533
	(3)	2, 747	2, 902	3, 220	3, 977
	(3)	343	782	1, 313	1, 402
	(3)	803	939	804	1, 064
	(3)	7, 713	6, 713	9, 413	10, 342
Total United States. Exports and shipments to noncontiguous Territories.	102, 515	116, 644	117, 441	138, 570	160, 652
	20, 448	30, 129	29, 641	32, 020	19, 140

Sales of residual fuel oil in the United States, 1936-40, by uses 2

[Thousands of barrels]

Use	1936	1937	1938	1939	1940
Railroads. Ships' bunkers (including tankers). Gas and electric power plants. Smelters, mines, and manufacturing industries. Heating oils. U. S. Navy, Army transports, etc. Oil-company fuel. Miscellaneous uses.	(3) (3) (3) (3) 29, 398 (3) (3)	67, 829 71, 496 23, 521 69, 107 35, 382 8, 792 42, 121 6, 911	56, 109 61, 178 23, 882 54, 814 35, 935 10, 974 42, 578 4, 939	60, 977 65, 146 27, 908 60, 851 39, 101 11, 159 48, 241 4, 990	64, 904 61, 554 28, 234 66, 610 44, 846 15, 781 50, 864 5, 313
Total United States. Exports and shipments to noncontiguous Territories. Total	305, 894 14, 435 320, 329	325, 159 15, 304 340, 463	290, 409 17, 920 308, 329	318, 373 17, 485 335, 858	338, 106 16, 109 354, 215

Includes Navy grade and crude oil burned as fuel
 Figures for 1941 not yet available.
 Figures not available.

Includes Diesel fuel.
 Figures for 1941 not yet available.
 Figures not available.

oils are included. The range oil represented is all kerosine for the years 1932-36 and kerosine plus No. 1 fuel oil sold as range oil for

subsequent years.

An export total for distillate and residual fuel oils for all of 1941 comparable with the 1940 quantity of 35,249,000 barrels is not available because of censorship regulations. However, exports of 22,196,000 barrels (including shipments to noncontiguous Territories of the United States) for the first 9 months of 1941 are 21 percent below the comparative total for 1940 of 28,043,000 barrels. The 11,400,000 barrels of distillate fuel oil reported as exported during the first three quarters of 1941 are 27 percent under the 15,579,000

Sales of fuel oil 1 in the United States, 1936-40, by regions and States 2
[Thousands of barrels]

Region and State	1936	1937	1938	1939	1940
Pacific Coast:					
Washington	9, 331	11, 352	9, 241	9, 193	9, 688
Oregon	9, 918	10, 879	9, 308	8,752	11.089
California	65, 895	70, 952	59, 316	69, 790	71, 516
Arizona	2, 585	3, 994	2, 838	2, 220	3, 693
Nevada	2, 791	3,790	2,690		
Rocky Mountain:	2, 181	0,780	2,090	3, 109	3, 418
Idaho	900	100	400	400	***
Montone	223	520	420	483	568
Montana	1,652	1,802	1,451	1,947	2, 07
Wyoming	1, 549	1, 799	1,654	1,853	2, 012
Utah	404	508	471	485	603
Colorado	581	644	636	880	1, 097
New Mexico	715	561	502	557	630
North Central:	i i	i	1	1	
North Dakota	294	416	442	594	647
South Dakota	536	613	777	891	891
Minnesota	4.093	5, 184	4,974	5, 909	6, 939
Nebraska	1,743	1, 955	1, 982	2, 483	2, 721
Iowa.	1, 873	2, 261	2, 325	2, 969	3, 449
Wisconsin	4, 022	4, 823	4, 748	5, 793	6, 885
Illinois	18, 351	20, 964	19, 930	22, 561	26, 182
Indiana	7, 450	7, 905	7, 824	8, 977	9, 96
Michigan	9,000	9, 847	8, 228		
Ohio				10, 119	11, 967
Kentucky	7, 173	8, 030	7, 105	8, 161	9, 084
Topposso		973	840	1, 110	1, 355
Tennessee South Central:	387	593	557	695	1,045
Misservi					
Missouri	7,605	8, 980	8, 502	9, 339	10, 404
Kansas	7, 764	7, 364	6, 687	7, 605	8, 162
Texas	41, 841	43, 231	37,672	42, 012	43, 222
Oklahoma	9, 461	9, 083	8, 269	8, 112	8, 544
Arkansas	2, 876	2,658	2,056	2, 156	2, 562
Louisiana	11, 614	12, 350	10, 871	11, 318	11, 810
Mississippi	593	796	529	631	619
Alapama	1, 545	1,889	2, 113	2, 127	1, 976
New England:			· 1	-,	•
Maine	2, 328	2,490	2, 150	2,645	3, 040
New Hampshire	1, 363	1, 513	1, 431	1,812	2, 153
vermont	458	566	539	675	803
Massachusetts	18, 829	21, 798	21, 362	24, 392	26, 857
Rhode Island	6, 894	7, 283	6, 839	7, 893	8, 839
Connecticut	7, 047	7, 822	7, 482	9, 064	10, 675
Middle Atlantic	1,041	1,022	1,404	9,004	10,070
New York	42, 215	49 400	40.000	40 154	F4 F00
Now Torgon		43, 428	43, 389	48, 154	54, 520
New Jersey	41, 458	44, 232	42, 862	48, 087	49, 578
Pennsylvania	26, 098	26, 320	26, 213	27, 285	29, 269
Delaware	1, 335	1,666	1,400	1, 596	1, 717
Maryland	8, 423	9, 549	9,003	10, 218	12, 286
District of Columbia	1, 911	2, 108	2, 137	2, 541	2, 986
South Atlantic:					•
Virginia	3, 420	3,638	4, 824	4. 539	4, 794
West Virginia	840	807	912	1,046	1, 128
North Carolina	504	591	699	930	1, 112
South Carolina	591	679	757	1, 109	1, 253
Georgia	1, 744	1, 787	2, 022	2, 288	2, 418
Florida	8, 287	8, 810	8, 871	9, 838	10, 513
Total United States	408, 409	441, 803	407, 850	456, 943	498, 758

Includes distillate fuel oil, residual fuel oil, and some crude oil burned as fuel.
 Figures for 1941 not yet available.

barrels shipped abroad in the same period of 1940. The foreign demand for American residual fuel oil also declined but to a lesser degree than for the lighter grades. Exports of heavy fuel oils decreased 13 percent from 12,464,000 barrels for the January-September interval of 1940 to 10,796,000 barrels in the same months of 1941. The fact that the export trade in distillate fuel oils, following the trend noted in 1940, declined to a greater degree than for the heavy grades is understandable, as under war conditions heavy fuel oil required for industrial and bunker fuel by foreign countries is given priority in shipping space over the lighter fuel oils, the use of which can be

curtailed more easily. Crude runs to stills increased by 9 percent in 1941; however, the production of fuel oil did not show a proportionate gain, as the yield for the fuel fractions declined from 38.6 percent in 1940 to 37.7 in 1941. Refiners reported the production of 531,544,000 barrels of fuel oil in 1941—a 6-percent increase over the quantity in 1940. Considering distillate and residual fuel oils separately, it is found that the lower percentage yield for fuel oil in 1941 was confined to the lighter grades (14.2 percent in 1940 and 13.4 in 1941); consequently the gain in production for this group—189,177,000 barrels in 1941 compared with 183,304,000 in 1940—was only 3 percent, although 9 percent more crude oil was run to stills. The principal factor that determined the lower yield for distillate fuel oil in 1941 was, it is believed, the less active market for domestic heating oils, owing to mild weather in some areas. Accelerated activities in 1941 by railroads, gas and electricpower plants, manufacturing establishments, the United States Navy, and the oil companies—all important users of heavy fuel oils—created a market demand that forced the oil refiners to maintain the yield of this fuel at the 1940 level (24.4-percent yield in 1940 and 24.3 in 1941); consequently, the 8-percent gain in production (342,367,000 barrels produced in 1941 compared with 316,221,000 in 1940) approximately paralleled the increase in crude runs to stills.

Refiners operating in districts east of California, lacking an incentive in 1941 to produce above-normal quantities of light heating oils, as was done in 1940, lowered the percentage yield for distillate fuel oils (14.2 percent in 1940 and 13.5 in 1941); as a result, the gain in production was only 4 percent in 1941 compared with an 18-percent increase in 1940. A review of the output of light fuel oils in the various refinery districts for 1941 compared with 1940 shows smaller percentage gains in 1941 in most areas of large volume production (East Coast, 31-percent gain in 1940 and 2 in 1941; Indiana, Illinois, Kentucky, etc., 26-percent gain in 1940 and 10 in 1941) and an actual decline in the Texas Gulf Coast area, the most important of all, from a 14-percent increase in 1940 to a 4-percent decline in production in The lower relative outputs in these districts in 1941 counterbalanced larger percentage gains reported for areas where the production of distillate fuel oil is less significant as a source of national supply. Comparative percentage increases in production of light fuel oil for two representative refinery districts in the latter grouping are as follows: Oklahoma, Kansas, and Missouri, 7-percent gain in 1940 and 16 in 1941; and Louisiana Gulf Coast, loss of 4 percent in 1940 contrasted with a 17-percent gain in 1941. The production of distillate fuel oil in California has declined in recent years from 30,023,000 barrels in 1939 to 28,418,000 in 1940 and to 27,803,000 in 1941, because

Comparative analyses of statistics for distillate fuel oil in the United States, 1940-41, by months and districts [Thousands of barrels]

			37/41/4	6		Tran	sfers 1						Dom	estic		
Month and district	Prod	uction	Cei	(per- nt)	Eas Ca		Calif	ornia	Imp	orts	Exp	orts	dem		Sto	cks
	1940	1941 3	1940	1941 3	1940	1941 3	1940	1941 2	1940	1941 2	1940	1941 2	1940	1941 2	1940	1941 2
By months: January February March April May June July August September October November December	16, 346 15, 260 14, 541 14, 154 14, 439 14, 957 14, 735 14, 381 15, 073	17, 018 14, 732 15, 387 14, 692 15, 546 14, 697 15, 746 15, 409 16, 024 16, 554 16, 230 17, 142	15. 5 16. 0 14. 8 14. 3 13. 0 13. 1 13. 4 13. 7 13. 7 13. 1 14. 3 15. 1	15. 4 14. 7 13. 9 13. 2 13. 0 12. 7 13. 0 12. 4 13. 1 13. 4 13. 7	207 193 216 199 217 202 197 183 174 182 158 169	176 172 182 172 195 200 201 221 210 216 222 216	38 31 36 37 7 36 19 2 59 10 4	5 51 44 1 12 10 4	542 358 326 201 159 215 301 262 301 478 190	421 483 277 195 300 211 562 463 795 (3)	1,549 1,234 2,286 1,966 2,130 2,129 1,837 1,469 947 1,356 1,284 953	1, 595 791 1, 028 876 1, 156 1, 380 1, 164 2, 300 1, 110 (3) (3)	22, 462 17, 623 16, 219 11, 849 9, 738 7, 028 7, 223 8, 362 10, 439 13, 358 16, 848 19, 702	21, 010 17, 783 19, 847 12, 264 11, 233 10, 853 10, 586 9, 667 11, 670 (3) (3)	26, 462 24, 640 23, 086 25, 092 28, 220 33, 585 39, 412 45, 041 48, 828 49, 037 46, 624 42, 940	37, 926 34, 790 29, 805 31, 725 35, 389 38, 274 4z, 037 47, 163 51, 412 55, 385 55, 073 49, 926
Total United States	183, 304	189, 177	14. 2	13. 4	2, 297	2, 383	279	130	3, 333	(8)	19, 140	(3)	160, 851	(3)	42, 940	49, 926
By districts: East Coast. Appalachian Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri Texas Inland Texas Gulf Coast Louisiana Gulf Coast. Arkansas and Louisiana Inland Rocky Mountain California.	4, 035 23, 943 11, 548 2, 257 62, 029 7, 407 1, 509	40, 827 4, 863 26, 288 13, 431 2, 430 59, 591 8, 631 2, 535 2, 778 27, 803	19. 5 8. 4 10. 6 10. 1 3. 7 18. 4 16. 4 6. 1 7. 2 14. 1	18. 8 9. 1 10. 5 10. 6 3. 6 16. 4 15. 9 8. 6 8. 3 13. 0	561 549 644 302 123 16 102	503 699 718 234 97 13 119		130		8	91 4 6 23 7, 996 472 32 10, 516	(3)	(4)	(4)	(15, 922 537 4, 318 1, 231 288 8, 406 1, 593 252 328 10, 065	18, 631 704 5, 552 1, 766 301 7, 801 1, 798 341 319 12, 713
Total United States	183, 304	189, 177	14. 2	13. 4	2, 297	2, 383	279	130	3, 333	(8)	19, 140	(3)	160, 851	(3)	42, 940	49, 926

¹ Figures represent crude oil used as fuel on pipe lines.

² Subject to revision.

³ Publication suspended.

[•] Figures not available.

of a dwindling export trade and an approximately stationary domestic demand. However, increased runs to stills in 1941, even with a lower percentage yield (14.1 percent in 1940 and 13.0 in 1941), supplied light fuel oils adequate to satisfy all demands and to increase year-end

stocks from 10,065,000 barrels in 1940 to 12,713,000 in 1941.

Oil companies operating refineries east of California produced 253,956,000 barrels of residual fuel oil in 1941, a gain of 9 percent over the 1940 quantity. The increase in residual output in 1941 was in direct proportion to the gain in crude runs in the area, and the percentage yield was not a factor, as it remained approximately 21 percent for both 1940 and 1941. All refinery districts east of California reported gains in residual-fuel-oil output except the East Coast, which declined for the second consecutive year. The fact that the production of heavy fuel oil on the Atlantic coast dropped by 6 percent from 53,252,000 barrels in 1940 to 50,113,000 in 1941 would not be expected under conditions prevailing in 1941, as the market demand was brisk and crude runs to stills increased by 6 percent; furthermore, the proportion of foreign crude (which has a high residual-fuel-oil content) processed was greater (22 percent of total runs in 1941 compared with 16 in 1940). However, as the percentage yield of heavy fuel oil for the East Coast district declined from 26.0 percent in 1940 to 23.1 in 1941, it is evident that refiners did not cater to the heavy-fuel-oil market beyond supplying contract customers but adjusted their runs to make more profitable products such as gasoline, the percentage yield of which increased. The expanding market for heavy fuel oil in 1941 is reflected in the increased production in all other refinery districts east of California. The Indiana, Illinois, Kentucky, etc., area reported 24 percent more residual-fuel-oil production in 1941 than in 1940, and districts supplying heavy fuel oil for tanker shipments to the East coast, namely, Texas Gulf, and Louisiana Gulf, stepped up their output 8 and 32 percent, respectively, in 1941 over 1940. California refiners, attempting to meet naval and industrial demands for residual fuel oil, increased production by 6 percent to 88,411,000 barrels in 1941 compared with a 3-percent gain in 1940 over 1939.

The fuel-oil supply in some areas is supplemented by burning nongasoline-bearing crude petroleum directly as fuel. Crudes thus used are termed "transfers" in the petroleum statistics of the Bureau of Mines and must be added to other supply items, such as production, imports, and draft on stocks in computing the indicated domestic demand for fuel oil. Light crudes used as fuel by pipe lines are credited to distillate fuel oils, and heavy crudes burned on leases and as industrial fuel are added to residual fuel oils. Transfers reported for 1941 totaled 15,482,000 barrels—a 51-percent gain over the corresponding item for 1940. All of the increase in transfers is found under residual fuel oil, and the quantity was up by 68 percent from 7,699,000 barrels in 1940 to 12,969,000 in 1941. Transfers added to the distillate-fuel-oil supply in 1941, 2,513,000 barrels, were slightly below the 1940 quantity—2,576,000 barrels. There was some gain in transfers to residual fuel oil in areas east of California (3,629,000 barrels in 1940 and 4,095,000 in 1941—a 13-percent increase), but most of it was reported from California, where, because of the pressure for naval and industrial fuel, the 1941 transfers of 8,874,000 barrels more than doubled the 1940 total of 4,070,000. The larger share of transfers classified as distillate fuel oil is confined to districts east of

Comparative analyses of statistics for residual fuel oil in the United States, 1940-41, by months and districts [Thousands of barrels]

						Tran	sfers 1									
Month and district	Prod	uction	Yield (1	percent)	East of		Calif	ornia	Imp	orts	Exp	orts	dem	estic and	Sto	cks
	1940	1941 3	1940	1941 3	1940	1941 2	1940	1941 2	1940	1941 3	1940	1941 2	1940	1941 2	1940	1941 2
By months: January February March April May June July August September October November December	24, 680 26, 870 25, 372 26, 551 25, 469 25, 248 26, 451 25, 504 27, 944	27, 880 25, 944 27, 677 26, 748 27, 994 27, 882 28, 624 29, 836 28, 118 30, 871 29, 666 31, 127	26. 4 24. 3 24. 4 23. 7 23. 5 23. 4 24. 3 24. 3 25. 5 24. 8 25. 5	25. 2 25. 8 24. 9 24. 0 23. 4 24. 0 23. 6 24. 1 24. 3 24. 4 24. 9	325 307 307 361 321 299 270 370 276 216 287 290	299 277 294 327 360 281 277 323 394 452 417	314 364 382 337 424 413 343 269 218 241 333	495 560 366 193 561 789 667 1,758 1,086 982 910	1, 882 3, 044 4, 406 1, 930 1, 327 2, 446 1, 397 2, 384 1, 709 2, 891 2, 395 3, 555	2, 211 2, 616 4, 210 2, 406 2, 143 2, 083 1, 085 2, 611 4, 217 (3) (3)	1, 139 769 964 1, 532 1, 379 1, 959 1, 387 1, 815 1, 552 1, 366 1, 334 913	1,002 975 1,170 1,378 981 1,267 954 1,600 1,469 (3) (3)	32, 473 27, 123 31, 434 26, 887 26, 341 25, 355 23, 990 26, 267 25, 843 30, 192 29, 980 34, 278	32, 817 30, 612 32, 645 30, 792 29, 997 29, 038 28, 887 30, 169 31, 534 (3) (3)	89, 281 89, 784 89, 351 88, 932 89, 835 91, 148 93, 029 94, 421 94, 947 94, 658 92, 392 89, 304	85, 092 82, 902 81, 634 79, 138 79, 218 80, 760 82, 268 83, 752 84, 960 83, 730 83, 195
Total United States	316, 221	342, 367	24. 4	24. 3	3, 629	4, 095	4, 070	8,874	29, 366	(3)	16, 109	(8)	340, 163	(3)	89, 304	83, 195
By districts: East Coast Appalachian. Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri. Texas Inland. Texas Gulf Coast Louisiana Gulf Coast Arkansas and Louisiana Inland Rocky Mountain California.	6, 350 37, 817 19, 787 13, 703 78, 850 9, 887 6, 279	50. 113 7, 709 46, 761 22, 408 14, 280 84, 806 13, 070 7, 180 7, 629 88, 411	26. 0 13. 2 16. 7 17. 2 22. 2 23. 3 21. 9 25. 3 21. 9 41. 6	23. 1 14. 4 18. 6 17. 6 21. 4 23. 3 24. 1 24. 5 22. 7 41. 5	758 223 456 781 633 497 281	739 283 429 747 945 622 330		8,874	8	(4)	54 981 91 3,412 163 11,408	(3)	(4)	(4)	(10, 446 376 2, 972 2, 122 1, 725 8, 486 2, 306 389 590 59, 892	10, 041 578 4, 152 2, 046 1, 349 8, 710 2, 217 368 535 53, 199
Total United States	316, 221	342, 367	24. 4	24. 3	3, 629	4, 095	4, 070	8, 874	29, 366	(8)	16, 109	(3)	340, 163	(3)	89, 304	83, 195

Represents quantities used on leases and for general industrial purposes.
 Subject to revision.
 Publication suspended.
 Figures not available.

California, where the total increased by 4 percent to 2,383,000 barrels in 1941. Only minor quantities of transfers of light crude to the distillate-fuel-oil account are found in the statistics for California, and the total has diminished from 616,000 barrels in 1939 to 279,000 barrels in

1940 and 130,000 in 1941.

No release of petroleum import statistics was made after September 1941, owing to censorship regulations. A total of 27,289,000 barrels of fuel oil was imported in the 9-month period of 1941—a 22-percent increase over the 22,304,000 barrels received in the same months of 1940. The distillate fuel oil brought into the country from January through September 1941—3,707,000 barrels—was 57 percent above receipts in the corresponding months of 1940, and residual fuel oil received from abroad in the same period of 1941 was 23,582,000 barrels—an 18-percent increase over the comparative 1940 total of 19,-

940.000.

Total fuel-oil stocks changed very little during 1941. Stocks of 133,121,000 barrels on December 31, 1941, were less than 1 percent above the 132,244,000 barrels in storage at the close of 1940. However, if distillate- and residual-fuel-oil stocks are reviewed separately, it is noticed that the light-fuel-oil inventory of 49,926,000 barrels is 16 percent above the 42,940,000 held at the end of 1940, whereas the heavy fuel oil in storage declined by 7 percent from 89,304,000 barrels in 1940 to 83,195,000 in 1941. The export market for distillate fuel oil declined sharply in 1941; furthermore, the gain in domestic demand was not outstanding as in 1940, consequently there was a surplus to send to storage. Oil companies, however, even with greater supplies of residual fuel oil from increased production, imports, and transfers from crude, were forced to draw on stocks in 1941 to satisfy a very

active domestic market and a fair export demand.

Distillate-fuel-oil stocks held east of California increased by 13 percent or from 32,875,000 barrels in 1940 to 37,213,000 in 1941. All refinery districts in this territory reported stock increases for distillate fuel oils in 1941 except the Texas Gulf—an important supply area for the East coast—and the Rocky Mountain area, where the volume of stocks is comparatively small. A large share of the light fuel oil used in the important East coast market is normally brought in by tankers from Gulf coast refineries; consequently, it is desirable to maintain large quantities in storage, especially during the heating season. Stocks in the East coast area increased by 17 percent—from 15,922,000 barrels in 1940 to 18,631,000 in 1941—even though numerous tankers were diverted for war purposes. Large percentage gains in distillate-fuel-oil stocks in 1941, reported for refinery districts where volumes held are comparatively important, were as follows: Indiana, Illinois, Kentucky, etc., 29 percent; Oklahoma, Kansas, and Missouri, 44 percent; and Louisiana Gulf Coast, 13 percent. Oil companies operating in the California district, faced with a static domestic demand and a declining export trade in distillate fuel oils in 1941, sent large enough quantities to storage to increase the 1941 total to 12,713,-000 barrels—a 26-percent increase over the 1940 year-end inventory of 10,065,000.

The 7-percent decline in total residual-fuel-oil stocks held at the end of 1941 compared with 1940 was largely associated with an 11-percent decline in important quantities stored in California, as inventories for

the refinery districts east of California netted a 2-percent increase from 29,412,000 barrels in 1940 to 29,996,000 at the close of 1941. Six districts out of nine in the territory east of California showed residual-fuel-oil stock declines in 1941, so that the small net increase for the area as a whole is traceable to a 40-percent gain in the Indiana, Illinois, Kentucky, etc., district (2,972,000 barrels in 1940 and 4,152,-000 in 1941), where production of residual fuel oil increased 24 percent in 1941, and to a 3-percent stock expansion in the Texas Gulf (8,486,-000 barrels in 1940 and 8,710,000 in 1941). Heavy-fuel-oil stocks held in the Appalachian refinery district also rose by 54 percent in 1941, but the quantities involved are small. There was a fair increase (6 percent) in residual-fuel-oil production in California during 1941 plus greatly augmented (118-percent gain) transfers of non-gasolinebearing crude to the heavy-fuel-oil account. However, the larger supply did not meet increased demands; consequently a heavy draft on stocks reduced the inventory from 59,892,000 barrels in 1940 to 53,199,000 at the end of 1941.

Beginning in July 1941, tanker movements from Gulf ports to the East coast were counted only when the cargoes were intended primarily for domestic consumption; that is, fuel oil in this coastal movement earmarked for Lend-Lease or defense purposes was excluded. The tanker shipment of fuel oils from Gulf refinery districts to the Atlantic seaboard, even with the limitation as to ultimate domestic use invoked in the second half of 1941, increased by 6 percent from 111,775,000 barrels in 1940 to 118,543,000 in 1941. The gain in this trade, however, was limited to residual fuel oils, the total of which increased by 13 percent from 67,346,000 barrels in 1940 to 75,923,000 in 1941. The lack of a strong market for distillate fuel oils on the Atlantic coast in 1941, coupled with the difficulty of securing tankers, is shown in the movement of light fuel oils from the Gulf to the East coast, which declined from 44,429,000 barrels in 1940 to 42,620,000 in 1941.

A strong market for residual fuel oils in California in 1941 and the difficulty in obtaining boats were factors in the sharp decline reported in the tanker movement of fuel oils from California to Gulf and East coast points. Light fuel oils in this movement dropped from 721,000 barrels in 1940 to 203,000 in 1941, and for heavy grades the quantity declined from 566,000 barrels in 1940 to a negligible item of 23,000 barrels in 1941.

Small quantities of fuel oil moved out of the California marketing area (California, Oregon, Washington, Arizona, and Nevada) by railroad tank cars and trucks to adjoining States. Shipments of distillate fuel oil in this overland movement increased from 282,000 barrels in 1940 to 382,000 in 1941, but heavy fuel oils declined from 198,000 barrels in 1940 to 130,000 in 1941.

Tanker rates for both "clean" boats (carrying light petroleum products) and "dirty" boats (carrying crude and heavy fuel oils) on the Gulf to North Atlantic route not east of New York averaged higher in 1941 than in 1940. The average rate paid to tankers for moving No. 2 heating oil on this run advanced from 52.6 cents a barrel in 1940 to 55.7 in 1941 and was double the 1939 average of 27.8 cents. The 1941 average of 56.9 cents a barrel for transporting heavy residual fuel oil over the same route was 10 cents above the 1940 average of 46.9 and more than twice the 1939 average of 25.8

cents. Incidentally the 1941 average rate for heavy fuel oil from the Gulf coast to North Atlantic points was slightly above the average quotation for No. 2 fuel oil in "clean" boats, which is unusual, as "dirty" boats in which crude oil and residual fuel oil are carried

normally receive a lower rate per barrel.

The demand for "clean" tankers and their scarcity, owing to their diversion to other routes at the request of the Government, forced the Gulf coast-North Atlantic freight rate on light fuel oil up to 80 cents a barrel in December 1940. This high charge did not hold, however, and the quotation declined to 62 cents a barrel on January 6, 1941, and to 60 cents on January 20. The tanker rate, with the return of some boats to oil-company control and the larger share of the heating-oil load satisfied, declined to 42 cents on February 10 and to 40 cents on February 17, the lowest rate for the year; this quotation was double the low of 20 cents for 1940, in August of that year. A further shortage of tankers and the general uncertainty in shipping conditions started a rise in quotations in March 1941 to a month-end rate of 62 cents a barrel. The freight cost then declined to 57 cents a barrel on April 14 and remained at that level through November, after which month no rates were quoted.

The 1940 year-end rate of 66 cents a barrel for "dirty" boats used in transporting heavy residual fuel oil from the Gulf coast to North Atlantic points remained in force until February 17, 1941, when it dropped to 50 cents and then to 45 cents on February 24, the lowest quotation of the year and a rate well above the 20-cent-a-barrel low of 1940, in August-September of that year. The continued demand for tankers forced the freight quotation for residual fuel oil to 50 cents a barrel on March 17, to 55 cents on March 24, and finally to 57 cents on April 7, 1941, where it remained through November.

No tanker rates were posted in December 1941.

The average price of representative fuel oils in 1941 differed only slightly from 1940 quotations. Increased production, a greater use of crude petroleum as fuel oil, a larger volume of imports, and a lower export demand were all factors which enabled oil companies to supply an active domestic market without applying the brake of higher prices. Two quotations of the several representative fuel-oil prices under review showed slight advances in 1941—the price of No. 2 straw fuel oil (widely used for domestic heating) at refineries in Oklahoma increased from an average of 3.47 cents a gallon in 1940 to 3.69 in 1941, and Diesel fuel for ships' bunkers at New York harbor was quoted at an average of \$1.99 a barrel in 1941 compared with The average prices for other representative fuel oils \$1.98 in 1940. remained unchanged or actually declined in 1941. Bunker C fuel oil for ships loading in New York averaged \$1.34 a barrel for both 1940 and 1941, even though an average increase of 10 cents a barrel in the Gulf coast-North Atlantic tanker rate had to be absorbed in 1941. The price of Diesel fuel for ships' bunkers at Los Angeles also remained at an average of \$1.40 a barrel for 1940 and 1941. average quotation for several fuel oils declined in 1941 compared with 1940 as follows: Bunker C at Gulf ports 90 cents a barrel in 1940 and 87 cents in 1941; Bunker C at Los Angeles, 82 cents a barrel in 1940 and 80 cents in 1941; and Diesel fuel for ships' bunkers at Gulf ports, \$1.64 a barrel average in 1940 and \$1.56 in 1941.

Retail prices for various fuels are compiled by the Bureau of Labor Statistics, United States Department of Labor. Monthly releases of that Bureau show that No. 2 heating oil at Chicago averaged 7.73 cents a gallon for the first 3 months of 1941 or the same price as in the first quarter and in December 1940. The quotation declined to 7.47 cents a gallon in April 1941, and this price held until August, when a low for the year of 7.40 cents was reported compared with a low of 7.30 cents in the second and third quarters of 1940. The fall

Monthly average prices of kerosine and fuel oils in the United States, 1940-41 1

							5 4						
	January	February	March	April	May	June	July	August	September	October	November	December	Average for year
1040							-						
19 4 0		1											
41°-43° gravity w. w. kerosine at refiners, Oklahoma													
cents per gallon	3.95	4.00	4.02	4.09	4. 13	4.08	4.06	4.06	4.06	4.06	3.94	3.99	4.04
Kerosine, tank-wagon at Chi- cagocents per gallon	10.00	10.00	10.00	10.00	10.00	10 00	10 00	10.00	10 00	10 00	10 00	10 00	10.00
No. 2 straw fuel oil at refineries,	ł			l		1		l '		i .			
Oklahomacents per gallon Bunker C for ships: New York	3.43	3. 56	3.46	3.44	3.44	3.44	3.44	3.44	3. 44	3.48	3.50	3.54	3.47
dollars per barrel	1.42	1.50	1.50	1.49	1.48	1. 35	1.31	1. 20	1. 20	1. 20	1.20	1.20	1.34
Gulf coastdo	. 95	. 97	. 97	. 95	. 91	.88	. 86	. 85	. 85	. 85	. 85	. 85	
Californiado Diesel oil for ships: New York	. 82	.88	.88	.88	.86	.83	. 85	.88	. 85	.72	. 68	.70	.82
dollars per barrel Gulf coastdo	2. 15	2. 15	2. 21	2.28	2. 18	2.00	1.85	1.78	1.70	1, 70	1.82	1.98	1.98
Gulf coastdo Californiado	1.70 1.40	1.70 1.40	1.70 1.40	1.70 1.40	1.68 1.40	1.60 1.40	1.60 1.40	1.60 1.40	1.60 1.40	1.60 1.40	1.60 1.40	1.60 1.40	1.64 1.40
1941				1.4									
41°-43° gravity w. w. kerosine at refineries, Oklahoma						- 4.º							
cents per gallon Kerosine. tank-wagon at Chi-	4. 12	4. 13	4. 13	4.24	4.42	4.56	4.56	4.56	4.56	4.56	4.56	4. 56	4.41
cago cents per gallon	10.00	10.00	10.00	10.00	10. 50	10. 30	10, 30	10, 30	10, 30	10.30	10, 30	10, 30	10. 20
No. 2 straw fuel oil at refineries,						1		٠ .					
Oklahomacents per gallon Bunker C for ships: New York	3.68	3. 57	3.50	3. 50	3.53	3.63	3.63	3.81	3.81	3.87	3.88	3.88	3, 69
dollars per barrel	1. 25	1.25	1.25	1.28	1.30	1.34	1.38	1.39	1.43	1.43	1.43		
Gulf coastdo	.83	. 83	. 83	.86	.88	.88	.90	. 90	.90		.90	.90	
Californiado Diesel oil for ships: New York	. 03	.00	. 69	. 69	.82	.88	.88	.88	.88	.88	.88	. 88	.80
dollars per barrel	1.96	1.76	1.67	1.86	1.99	2.00	2.00	2.07	2. 15	2.15	2. 15	2. 15	1.99
Gulf coast do do California do do do do do do do do do do do do do	1.60	1.56	1.43	1.46	1.48	1.52	1.55	1.55	1.55	1.62	1.73	1.73	1.56
						1	<u> </u>	1	<u> </u>		l	<u> </u>	

¹ Platt's Oil Price Handbook.

heating demand forced up the price to 7.61 cents a gallon in September 1941 and to 7.65 cents in the final quarter—a quotation slightly above the average of 7.54 cents for the fourth quarter of 1940. The retail price of No. 2 heating oil in New York was 6.94 cents a gallon in January 1941, or the same as in the final month of 1940. The consumer price dropped to 6.45 cents a gallon in February 1941 and to 6.28 cents in March for the low of the year, a quotation just above the low of 1940—6.12 cents—reported for September and October of that year. Summer stocking by consumers forced up the price to 6.43 cents a gallon in April 1941 and then by gradual increases to 7.30 cents in October—the highest quotation of the year compared

with a top price in 1940 of 7.14 cents in March. There was a slight decline in the New York retail price of No. 2 fuel oil to 7.27 cents a gallon in November 1941.

LUBRICATING OIL

Domestic demand for lubricating oil increased more than 20 percent in 1941 over the 1940 record. Production increased 2,774,000 barrels to 39,539,000 barrels, exports declined, and 640,000 barrels were withdrawn from stocks. The greatest gain in demand for lubricating oil was in that used for industrial purposes, which increased 34 percent, although there was also a substantial gain in

automotive consumption.

Foremost in the increased use of industrial types is cutting oil. Transformer oil has also had a large gain in demand; and the use of hydraulic oil, though not so important in the total, has expanded rapidly. A number of installations formerly operated by cable are now being controlled hydraulically. Many operations, for example, on large planes now under construction will have this type of control. The expanding demand for lubricants for aviation and for tanks, included under industrial uses, as well as for heavy-duty trucks, has caused requirements to change from a large proportion of neutrals to a larger proportion of bright stock. Whereas refiners were only recently considering means of cracking the bright stock to get a larger proportion of neutrals, they are now having difficulty supplying the demand for it.

Comparative analyses of statistics for lubricating oil in the United States, 1940-41, by months and districts

	(thous	uction ands of rels)		eld cent)		estic l (thou- barrels)	Stocks (thousands of barrels)	
	1940	1941 1	1940	1941 1	1940	1941 ¹	1940	1941 1
By months:								
January	3,308	2,943	3.1	2.7	2,054	2,367	7,328	8,809
February	3, 108	2, 522	3.1	2.5	1, 522	1,798	7, 825	8, 790
March	3, 335	2, 813	3.0	2.5	1,899	2, 263	8,084	8, 637
April		3, 213	3.1	2.9 2.8	2,144	2,712	8,065	8, 363
May	3, 341	3, 322	3.0	2.8	2,069	2,732	8, 170	7, 835
May June	3, 212	3, 520	3.0	3.0	2, 151	3, 171	8, 161	7, 353
July	3,024	3, 563	2.8	2.9	1.871	3,074	8, 573	7, 107
August	2,635	3, 561	2.4	2.9	2,024	2, 562	8, 457	7, 206
September	2,682	3, 427	2.5	2.8	2,150	2,638	8,596	7, 415
October	2,954	3, 494	2.7	2.8	2,482	(2)	8,464	7, 487
November	3,021	3,607	2.9	3.0	2,449	25	8,365	7,752
December	2, 865	3, 554	2.6	2.8	1,875	(2) (2) (2)	8, 767	8, 127
Total United States	36, 765	39, 539	2.8	2.8	24,690	(2)	8, 767	8, 127
By districts:								
East Coast	8,550	8,608	4.2	4.0	h		/ 2,711	2,406
Appalachian	6,016	6, 414	12.5	12.0	11	-	949	745
Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Mis-	3, 545	4, 307	1.6	1.7	11		697	747
Oklahoma, Kansas, and Mis-	,,,,,,,	, -,			11		}	
souri	3, 447	3,976	3.0	3.1	li		672	749
Texas Inland	238	358	.4	. 5	(3)	(3)	58	126
Texas Gulf Coast	9. 142	9.677	2.7	2.7	II ''	,,,	1.977	1,588
Louisiana Gulf Coast	1,630	2,093	3.6	3.9	[[Ì	236	255
Arkansas and Louisiana Inland	680	679	2.7	2. 3) }		101	49
Rocky Mountain	179	187	.6	. 5	11		102	103
California	3, 338	3, 240	1.7	1.5)		1,264	1, 359
Total United States	36, 765	39, 539	2.8	2.8	24,690	(2)	8,767	8, 127

¹ Subject to revision.

² Publication suspended.

Figures not available.

Automotive consumption of lubricants in the United States, 1940-41 [Thousands of barrels]

<u>-</u>	Passen	ger cars	Tru	icks	Busses		
Use	1940	1941 ¹	1940	1941 1	1940	1941 1	
Crankcase oil	7, 800 590	8, 423 667	2, 113 214	2, 176 230	181 32	190 35	
Total lubricating oilsChassis greases	8, 390 531	9, 090 600	2, 327 107	2, 406 115	213 9	225 10	
Total lubricants	, 8, 921	9, 690	2, 434	2, 521	222	235	

¹ Subject to revision.

Domestic demand for lubricating oil, 1937-41

[Thousands of barrels]

		Auton				
Year - Year	Passenger cars ¹	Trucks ¹	Busses 1	Total	Industrial	Total demand
1937 1938 1939 1940 1940	8, 503 8, 195 8, 245 8, 390 9, 090	2, 305 2, 185 2, 298 2, 327 2, 406	197 199 205 213 225	11, 005 10, 579 10, 748 10, 930 11, 721	12, 318 10, 654 12, 965 13, 760 (³)	23, 323 21, 233 23, 713 24, 690 (1)

¹ Revised.

A decreasing ratio of lubricating oil used by motor vehicles in proportion to gasoline has retarded the growth in consumption of lubricants for several years. Prominent among the reasons for this are the practice among motorists of changing oil less frequently and the

reclamation of used lubricating oil.

The reclaiming of lubricating oil has grown considerably in the last decade. Many fleet owners operate oil purifiers that neutralize acids and extract water and gasoline by heating the oil with a clay and then filtering it. Used oils and crankcase drainings are also collected from industrial plants, service stations, and garages, particularly in the northeastern part of the United States. Formerly a charge was made for collecting the oil, and it was used as fuel. Later, with the advent of renovation of used oil, collection was made gratis, and in recent years a cent or two a gallon has been paid for the oil. Renovating plants range from small ones that can perform only the simpler reclaiming operations of neutralizing the acids and extracting gasoline, water, and carbonaceous and other foreign solids to large refineries operating stills, treatment agitators, settling tanks, and complete modern filter plants. In the small plants the waste lubricants that are contaminated with heavy oils and greases can be prepared only for use as fuel.

Although the collection and reclamation of crankcase drainings are quite complete in densely populated parts of the country, there are many large towns and cities where their disposal is less economic—some instances even where this waste oil is run into the sewer or dumped in pits or on vacant lots. Other applications include the lubrication of molds for cement, clay products, etc.; rustproofing and

² Subject to revision.

³ Publication suspended.

lubricating farming and mining equipment; and use as an insecticide for farm stock and buildings, as fuel, for laying dust on roads, driveways, and parking areas, for mosquito control, and in crankcases of older automobiles. An effort should be made during the war, particularly during transportation difficulties, to make the most economical use of crankcase drainings possible.

Lubricating-oil production totaled 39,539,000 barrels in 1941 compared with 36,765,000 barrels in 1940. The Texas Gulf Coast district maintained the lead, producing 9,677,000 barrels or 24.5 percent of the total. The East Coast district followed with 8,608,000 barrels or 21.8 percent, and the Appalachian was third with 6,414,000

barrels or 16.2 percent.

The decline of 640,000 barrels in stocks of lubricating oil—from 8,767,000 barrels on December 31, 1940, to 8,127,000 on December 31, 1941—left them higher than in any previous year since 1932 except 1940. The principal declines were in the Texas Gulf Coast, East Coast, and the Appalachian districts, where they dropped 389,000, 305,000, and 204,000 barrels, respectively. California had the largest gain—from 1,264,000 barrels to 1,359,000.

Average monthly refinery prices of 5 selected grades of lubricating oil in the United States, 1940-41, in cents per gallon 1

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Av.
1940								-					
Oklahoma:											١,	1 1	
200 viscosity, No. 3 color, neu-	14 00	12 00	12 38	13 25	12 80	11.56	10. 78	10, 10	9. 75	9. 75	9, 75	9.75	11.56
tral 150–160 viscosity at 210°, bright	1	l	1		l .	1	l		!	ł		1 1	
stock, 10-25 pour test	23 75	23. 75	22.77	22, 25	19. 70	17, 36	15. 76	14. 44	14, 25	14. 25	14. 25	14.20	18.06
Pennsylvania:	-00	١	1					1	l			1 1	İ
200 viscosity, No. 3 color, neu-	1		l	1.0	4.14		(ı
tral, 420-425 flash, 25 pour		1			-								
test	31.64	27.95	26. 55	25.00	22, 20	21. 70	21.00	21. 25	21. 50	21. 13	21. 25	21. 50	23. 50
600 steam-refined, cylinder	1	ļ								- 40		7 01	100 04
stock, filterable	18, 11	15. 58	14.08	13. 20	12, 32	11.20	8.73	8.00	7.65	7.42	1. 33	7.61	107.32
Gulf Coast: 500 viscosity, No.	1						0.05	0.00	0 75	0 50	0 50	e en	9 96
214-31/2 color, neutral	9. 13	9. 13	9. 13	9.08	9.00	9.00	8. 90	8.00	8. 70	8.00	0.00	8. 50	0. 50
											_		
1941	l l	1	1	l	ļ		l	ĺ	İ	1	i		1
Oklahoma:	i i		ł		l		1	1		i	1	1	
200 viscosity, No. 3 color, neu-	0.75	0.75	0.75	0.05	10 45	11 21	12 26	13, 38	14.56	15, 23	15, 25	15, 25	12, 23
tral	ł	1	1	ı		1	1	1	ı		1	1	1
150-160 viscosity at 210°, bright	12 04	14 95	14 25	14 69	15 83	18 21	20, 13	21.08	22, 17	22, 75	22, 75	22. 75	18.50
stock, 10-25 pour test	10.01	12.20	14.20	12.00	10.00	120.22	1	1					1
Pennsylvania: 200 viscosity, No. 3 color, neu-	1	l			l	l	1	ł	1	1	1	l	1
tral, 420-425 flash, 25 pour	1	}	i		l		[1	İ	1		1	1
test	21 50	21.50	22, 26	24, 20	27, 95	32, 07	35, 52	35. 07	33.98	33.00	33. 00	33.00	20. 42
600 steam-refined, cylinder	1	1	1	1	1 .	ì	1	1	1	ì	1	•	1
stock, filterable	8.05	8.96	9.40	10.09	11. 04	12. 42	13. 60	14. 71	15. 33	¦16. 00	15. 50	15. 50	,12, 5
Gulf Coast: 500 viscosity, No.			1	1		1 .	1	1	1	1	•	•	
2½-3½ color, neutral	8.50	8, 50	8.50	8.50	8.94	9.00	9.63	10.00	, 10, 00) 10. O();10. 0 0	10.00	9.30

¹ National Petroleum News.

A request of the Office of Price Administration and Civilian Supply on August 4, fixing the maximum price of Pennsylvania Grade neutral oil at 33 cents, retarded the rise in lubricating-oil prices. This grade had been quoted as high as 40 cents a gallon, and the average for July was 35.52 cents, or 14 cents higher than the price at the beginning of the year. The price of Pennsylvania steam-refined cylinder stock, after reaching an average of 16 cents during October, receded to 15.5 cents for the rest of the year, which was double the price prevailing at the close of 1940. Prices for Oklahoma neutral and

bright stock did not reach their high levels until November, when the Price Administrator established ceilings for refined products. The former stabilized at 15.25 cents and the latter at 22.75 cents, representing increases of 5½ and 9 cents, respectively, during the year.

OTHER PRODUCTS

WAX

The total demand for paraffin wax rose from 546,718,000 pounds in 1940 to 743,480,000 in 1941, and the domestic demand increased almost 50 percent. Stocks dropped from 125,272,000 pounds to

74,814,000, the lowest since 1933.

Production increased from 513,240,000 pounds in 1940 to 676,480,000 in 1941. The Louisiana Gulf Coast district made the greatest gain, as the production of 89,320,000 pounds more than tripled the 28,000,000 pounds produced in 1940; the increase in Texas Gulf Coast district—from 76,440,000 pounds to 122,640,000—came next. The Indiana, Illinois, Kentucky, etc., district was the only one where production declined. The East Coast district maintained first place, producing 233,520,000 pounds.

producing 233,520,000 pounds.

Prices for 122°-124° white crude scale wax, after receding slightly early in the year to a low of 2.5 cents a pound, began advancing until they reached a peak of 6.25 cents in September. The Price Administrator, however, set a maximum price of 4.25 cents effective December

1, which prevailed during the last month of the year.

Comparative analyses of statistics for wax in the United States, 1940-41, by months and districts

[Thousands of pounds]

	Prod	uction	Dome	stic de-		s	Stocks				
Month and district			m	and	Crude scale		Refined				
	1940	1941 1	1940	1941 1	1940	1941 1	1940	1941 1			
By months:											
January	48, 440	45, 080	35, 187	37, 276	54, 575	77, 441	20,000	42, 586			
February	49, 560	38, 920	17,028	31, 613	57, 017	75, 762	25, 614	43, 388			
Marcn	47 320	51, 240	19, 342	34, 804	62, 801	75, 767,	27, 572	46, 120			
ADrii	1 49 560	56, 280	29, 537	52, 151	66, 425	71, 928	30, 485	44, 168			
May	44, 240	57, 400	24, 264	40, 897	71, 415	76,052	31,874	42, 404			
June	39 760	54,600	21, 798	46, 975	73, 742	72, 457	36, 604	38, 024			
July	37, 520	55, 440	30, 333	47, 803	74, 750	70, 640	39, 228	30, 794			
August	33, 320	54, 320	41, 897	54,027	71, 193	59, 465	41, 166	26, 359			
September	39, 760	66.360	37, 988	53, 831	68, 544	57, 676	41, 484	21, 782			
October	43, 120	67, 760	37, 350	(2)	68, 940	54, 773	44, 887	20, 694			
November	43, 960	68, 880	30, 662	(2)	72,089	51, 657	48, 123	24, 756			
December	43, 680	60, 200	31, 538	(2) (2)	77, 428	46, 841	47, 844	27, 973			
Total United States	513, 240	676, 480	356, 924	(2)	77, 428	46, 841	47, 844	27, 973			
By districts:		<u> </u>									
Fact Coast			Ĺ		i .						
East Coast Appalachian	196,000	233, 520)		(26, 418	10, 522	23, 664	8,604			
Indiana, Illinois, Kentucky	100, 240	112,000	1		14, 974	10, 118	2,800	3,062			
Oklahoma, Kansas, and Missouri	54, 600	49, 280	il i		24, 135	19, 409	2, 523	2,086			
Texas Inland	39, 480	51, 240	(3)	(3)	3,898	2,869	1, 216	1, 930			
Texas Gulf Coast	1,400	1,400		()	126						
Louisiana Gulf Coast	76, 440	122, 640			1, 103	1, 479	14, 813	7, 765			
Louisiana Gulf Coast Rocky Mountain	28,000	89, 320	11 1		302	248	1, 192	3, 179			
arocky Wiodiffalli.	17,080	17, 080	ן ין		6,472	2, 196	1,636	1, 347			
Total United States	513, 240	676, 480	356, 924	(2)	77, 428	46, 841	47. 844	27, 973			

¹ Subject to revision.

² Publication suspended.

³ Figures not available.

Average monthly refinery price of 122°-124° white crude scale wax at Pennsylvania refineries, 1937-41, in cents per pound ¹

Year	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Aver- age for year
1937	2. 53	2. 65	2. 68	2. 69	2. 73	2.88	2. 95	2. 96	2. 95	2. 98	2. 98	2. 91	2. 82
1938	2. 52	2. 13	2. 02	1. 93	1. 93	2.17	2. 29	2. 37	2. 40	2. 39	2. 33	2. 32	2. 23
1939	2. 39	2. 49	2. 60	2. 73	2. 96	3.00	2. 95	2. 88	3. 47	4. 95	6. 56	6. 75	3. 64
1940	6. 21	5. 57	5. 32	4. 79	4. 69	4.19	2. 93	2. 21	2. 51	2. 81	2. 93	2. 87	3. 92
1941	2. 73	2. 63	2. 86	3. 28	3. 85	4.96	5. 13	5. 26	5. 96	6. 25	6. 21	4. 25	4. 45

¹ National Petroleum News.

COKE

The total demand for petroleum coke was 1,907,800 tons in 1941 compared with 1,705,600 in 1940. Stocks dropped to a record year-end low of 228,000 tons compared with 1,511,600 at the end of 1931. The Indiana, Illinois, Kentucky, etc., district furnished more than half of the 1,648,800 tons produced.

Comparative analyses of statistics for petroleum coke in the United States, 1940-41, by months and districts

	(thous	Production (thousands of short tons)		Yield (percent)		stic de- (thou- of short ns)	Stocks (thousands of short tons)	
	1940	1941 1	1940	1941 1	1940	1941 1	1940	1941 1
By months:								
By months: January	116.4	125. 8	0.5	0.6	137.8	195. 5	628.0	406.0
February March	131. 2	102.6	.6	5	125.7	118.6	628.0	375.0
March	129, 6	125. 0	.6	.6	123.8	114.5	624.0	375.0
April	139. 2	128. 2	.7	.6	72.7	86. 2	663.0	400.0
May	152.4	140.0	.7	.6	111.4	119.5	681.0	385.0
June	148.6	144. 4	.7	.6	101.9	116.0	697.0	382.0
July	121.4	134. 2	.5	.6	119.8	126.7	678.0	367.0
August	122.6	137.0	.6	.5	117.4	102.7	647.0	372.0
September October	119. 2	157.8	.6	.6	122.3	147. 2	617.0	370.0
October	131.4	153.6	.6	.6	134.0	(3)	581.0	362.0
November	88.4	149. 4	.4	.6	99.6	(3)	527.0	390.0
December	126. 2	150.8	.6	.6	140. 5	(3) (3)	487.0	228.0
Total United States	1, 526. 6	1,648.8	. 6	. 6	1, 406. 9	(2)	487. 0	228. 0
By districts:		1						
East Coast	5.2	4.4	(3)	(8)	1	l	/ 2.0	2.0
Appalachian	25.6	26.0	`.3	.2	11		17.0	9.0
Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Mis-	943.6	894. 0	2.1	1.8	11	1 1	107. 0	64.0
souri	163.0	181.4	.7	.7	11		7.0	17.0
Texas Inland	76.8	119.4	. 6	9.) (4)	(4)	31.0	51.0
Texas Gulf Coast	149. 2	185.0	2	.3	11	1	104.0	40.0
Louisiana Gulf Coast	-10.2	-50.0			11	1	1.0	1.0
Rocky Mountain		49.4	.7	.7	11	1	35.0	35.0
California	119. 2	189. 2	.3	.4	V		183.0	9.0
Total United States	1, 526. 6	-,548.8	.6	.6	1, 403. 5	(2)	487. 0	228. 0

¹ Subject to revision.

ASPHALT AND ROAD OIL

The total demand for asphalt in 1941—about 6,700,000 tons—represented a 24-percent gain over the 1940 demand of 5,420,400 tons. Production increased 1,210,900 tons to 6,557,600, but stocks decreased 10,000 tons to 604,000.

² Publication suspended.

Less than 0.1 percent.
 Figures not available.

rigures not available.

Road-oil production increased 1,378,000 barrels to 9,149,000, whereas domestic demand increased 1,131,000 barrels to 8,980,000. Stocks, which gained the 169,000 barrels difference, amounted to 793,000 barrels on December 31.

Detailed statistics on asphalt and road oil appear in the chapter on

Asphalt and Related Bitumens.

STILL GAS

Production of still gas in 1941 amounted to 293,565 million cubic feet (equivalent 77,254,000 barrels) compared with 273,420 million cubic feet produced in 1940. Of the latter, 252,914 million cubic feet (92.5 percent) were used as refinery fuel, which, in terms of British thermal units, constituted more than half of all the heat utilized at refineries.

The Texas Gulf Coast district continued to lead in the production of still gas in 1941, with the Indiana, Illinois, Kentucky, etc., and East Coast districts following in order.

Production of still gas in the United States, 1939-41, by districts

	1	1939]	940	1941 1		
District	Millions of cubic feet	Equivalent, in thou- sands of barrels	Millions of cubic feet	Equivalent, in thou- sands of barrels	Millions of cubic feet	Equivalent, in thou- sands of barrels	
East Coast Appalachian Indiana, Illinois, Kentucky, etc Oklahoma, Kansas, and Missouri Teras Inland Teras Gulf Coast Louisiana Gulf Coast Arkansas and Louisiana Inland Rocky Mountain California	33, 684 8, 698 52, 321 23, 038 13, 650 86, 244 8, 528 3, 365 5, 590 26, 242	8, 864 2, 289 13, 769 6, 063 3, 592 22, 696 2, 244 885 1, 471 6, 906	38, 804 10, 080 56, 110 22, 698 15, 181 87, 156 9, 616 3, 067 5, 663 25, 045	10, 779 2, 800 15, 586 6, 305 4, 217 24, 210 2, 671 852 1, 573 6, 957	44, 536 10, 625 59, 466 24, 707 15, 572 93, 104 7, 741 3, 511 6, 198 28, 105	11, 720 2, 796 15, 649 6, 502 4, 098 24, 501 2, 037 924 1, 631 7, 396	
Total United States	261, 360	68, 779	273, 420	75, 950	293, 565	77, 25	

¹ Subject to revision.

MISCELLANEOUS PRODUCTS

The output of miscellaneous oils in 1941 amounted to 3,986,000 barrels compared with 3,202,000 in 1940. The total demand increased

from 3,119,000 barrels in 1940 to 3,961,000 in 1941.

Detailed data, by products, for 1940, the latest year available, indicate that almost all of the gain of 843,000 barrels in production for that year is attributable to a gain in production of liquefied petroleum gas, which increased 761,000 barrels. The refinery production of liquefied petroleum gas (1,719,000 barrels) constituted 23 percent of the sales and exports of that product in 1940 and is almost as large as the total sales in 1935.

Production of miscellaneous oils in the United States, 1939-40, by districts and classes Introduction of miscellaneous oils in the United States, 1939-40, by districts and classes Introduction of miscellaneous oils in the United States, 1939-40, by districts and classes Introduction of miscellaneous oils in the United States, 1939-40, by districts and classes Introduction of miscellaneous oils in the United States, 1939-40, by districts and classes Introduction of miscellaneous oils in the United States, 1939-40, by districts and classes Introduction of miscellaneous oils in the United States, 1939-40, by districts and classes Introduction of miscellaneous oils in the United States, 1939-40, by districts and classes Introduction of miscellaneous oils in the United States, 1939-40, by districts and classes Introduction of miscellaneous oils in the United States, 1939-40, by districts and classes Introduction oils in the United States, 1939-40, by districts and classes Introduction oils in the United States, 1939-40, by districts and classes Introduction oils in the United States Introduction oi

						<u> </u>	
District	Petro- latum	Absorp- tion oil	Medici- nal oil	Special- ties	Lique- fied petro- leum gas	Other	Total
1939 East Coast	115 190 39		159	2	416 446	131 43 53	823 233 556
Oklahoma, Kansas, and Missouri Texas Inland Texas Gulf Coast Louisiana Gulf Coast	41 9	64 64		48	5 57 27	24 13 33 76	129 82 147 103
Arkansas and Louisiana Inland Rocky Mountain		2 42	33	4 81	7	61 55	1 74 211
Total United States	394	172	192	153	958	490	2, 359
East Coast	94 230 39 35	8 43	148	4 43	837 725 40	117 52 43 15	1, 196 294 850 133
Texas Inland Texas Gulf Coast Louisiana Gulf Coast Rocky Mountain	11 20 1	51		65	29 36 29 23	60 171 51 4	140 283 100 28
Total United States	430	130	185	174	1, 719	51	3, 202

¹ Figures for 1941 in detail not yet available.

WORLD PRODUCTION 2

Although war was being waged over extensive areas of the earth, the world production of crude petroleum increased 4 percent from 1940 to 1941, if numerous unofficial statistics and estimates can be considered reliable. The increase was due largely to the 4-percent augmented yield in the United States, which comprised 63 percent of the world total both in 1940 and in 1941. Venezuela and U. S. S. R. also contributed considerably to the increased world output. Canada, Trinidad, Argentina, Hungary, and Egypt produced more oil in 1941 than in 1940. However, these increases in crude-petroleum production were in part offset by declines in the petroleum output of European and Asiatic countries, as well as in Mexico, Ecuador, and Peru.

The Western Hemisphere supplied 78 percent of the world output in 1940 and 79 percent in 1941. Production of crude in Venezuela, third in rank in the world, revived in 1941 from the decline of the preceding year and surpassed all previous records. The 23-percent increase from 1940 to 1941 was due primarily to greater output in the Maracaibo fields of Tia Juana, Lagunillas, Cabimas, El Cubo, and La Concepcion and secondarily to increases in Cumarebo, and in the Eastern fields of Oficina, Jusepin, San Joaquin, El Roble, and Santa Ana. Production at Mene Grande revived, whereas Quiriquire, Temblador, Bachaquero, and Pedernales showed declines. A promising new field, Santa Barbara, in northern Monagas, was brought in near the end of 1941.

Increased output in the Comodoro Rivadavia field, the major producer, and especially in Mendoza raised the petroleum production of

² By A. H. Redfield, Petroleum Economics Division, Bureau of Mines.

Argentina from 1940 to 1941, in spite of a decline in the Plaza Huincul field. The Government enterprise (Y. P. F.) increased its yield 12 percent and supplied 64 percent of the national production, but both the absolute output and the proportional share of the private companies declined.

In Colombia, both the De Mares and the Barco concessions showed smaller yield in 1941 than in 1940. In Peru, a sharp decrease in the Lobitos field offset an increase in the La Brea and Parinas fields and

Crude petroleum produced in principal countries of the world, 1937-41, in thousands of barrels

[Compiled by B. B. Waldbauer]

Country	1937	1938	1939	1940 1	1941 1
North America:					44 L
Canada	2,944	6, 966	7,838	8, 591	10, 12
Mexico	46, 907	38, 506	42, 898	44, 036	43, 83
Trinidad	15, 503	17, 737	19, 270	20, 219	21, 21
United States	1, 279, 160	1, 214, 355	1, 264, 962	1, 353, 214	1, 404, 18
United States Other North America	33	78	1, 204, 302	1, 355, 214	1, 404, 104
Total North America	1, 344, 547	1, 277, 642	1, 335, 080	1, 426, 202	1, 479, 50
outh America:				1000	77.
Argentina	16, 355	17, 076	18, 613	20,609	21, 76
Bolivia		226	215	288	23
Colombia		21, 582	23, 857	25, 593	24, 55
Ecuador		2, 246	2, 313	2, 349	1, 55
Peru		15, 839	13, 508	12, 126	11, 92
Venezuela	186, 230	188, 174	206, 470	185, 570	223, 78
Total South America	242, 924	245, 143	264, 976	246, 535	283, 80
Curope:					
Albania	619	752	934	1, 497	1, 38
Czechoslovakia	123	130	120	119	10
France :	502	513	500	496	47
Germany	3, 176	3, 861	4. 487	4, 544	4, 43
					69
Austria		383	693	719	
Hungary	16	288	1, 103	1,755	2, 47
Italy		101	91	57	4
Poland	3, 716	3, 763	3, 898	3, 891	3, 31
Rumania	52, 452	48, 487	45, 483	42, 182	38, 14
U. S. S. R.2	193, 241	204, 956	216, 866	218,600	238, 15
Other Europe	4	9	10	10	1
Total Europe 2	254, 180	263, 243	274, 185	273, 870	289, 24
Asia:					·
Bahrein Island	7, 762	8, 298	7, 589	7,074	6. 79
Burma	7, 848	7, 538	7, 873	7, 731	7, 76
India, British		2, 488	2, 327	2, 250	2, 27
			78, 151	66, 900	64, 00
Iran (Persia)	77, 804	78, 372			
Trad.	31, 836	32, 643	30, 791	24, 225	12, 6
Iraq. Japan (including Taiwan)	2, 488	2, 511	2, 654	2, 639	2, 6
Netherlands Indies.	56, 724	57, 318	62, 087	62, 011	53, 70
Sakhalin	3, 656	3 3, 821	3 4, 000	3 4, 000	\$ 4, 00
Sarawak and Brunei		6, 913	7, 097	7,047	6, 86
Saudi Arabia		495	3, 934	5, 365	5, 87
Total Asia 4	196, 354	200, 397	206, 503	189, 242	166, 57
Africa:					
Egypt	1. 196	1, 581	4, 666	6, 053	7. 6
Other Africa	1, 150	27	27	0,000	1,00
Total Africa	1, 218	1, 608	4, 693	6, 080	7,68
Total Africaustralia and New Zealand	1, 210	1,000	1, 603	3	.,
Indistributed	4	4	4	14	1
Grand total	2, 039, 231	1, 988, 041	2, 085, 444	2, 141, 946	2, 226, 83

Approximate production. Data derived in part from World Petroleum, vol. 12, No. 2, February 1941, pp. 20-21, and vol. 13, No. 3, March 1942, p. 88.
 Includes U. S. S. R. fields in Asia, other than Sakhalin.
 Approximate production.
 Exclusive of U. S. S. R. fields in Asia, other than Sakhalin, which are included with U. S. S. R. in Europe.

lowered the national output of petroleum. Ecuadorian production of

crude petroleum also declined from 1940 to 1941.

In Mexico, although output of petroleum increased in the Naranjos and Isthmus fields, a decline in Poza Rica, the major producer, and in the Panuco field reduced the national output.

In Canada, the increased output of the limestone oil wells of Turner Valley, Alberta, raised the petroleum production of the Dominion.

In Europe, excluding U. S. S. R., Hungary was the only country that increased its petroleum production. Production in Rumania, the major producer of central and western Europe, was 10 percent less

in 1941 than in 1940, if unofficial figures are reliable.

In Asia difficulties of transport arising from the war reduced petroleum production. The output in Iraq in 1941 was little more than half of the 1940 figure. Iran and the Netherlands East Indies curtailed their petroleum production in 1941. Production in Burma and British India remained virtually stationary. In contrast, Saudi Arabia showed a small increase.

In Egypt the prolific Ras Gharib field increased the national pro-

duction of petroleum.

FOREIGN TRADE 8

Imports.—Imports of mineral oils, crude and refined, into continental United States increased 7,360,000 barrels in the first 9 months of 1941 over the corresponding months of 1940. During the same period the domestic demand for all oils rose 116,459,000 barrels, whereas exports declined 27,198,000 barrels, giving an increase of 89,261,000 barrels in total demand from January-September 1940 to January-September 1941. As the production of crude petroleum, natural gasoline, and benzol was only 11,421,000 barrels higher in the first three quarters of 1941 than in the corresponding quarters of 1940, altogether 18,431,000 barrels were withdrawn from storage between January and September 1941 compared with additions of 52,049,000 barrels added to stocks during the first 9 months of 1940. Imports of mineral oils, crude and refined, constituted 5.9 percent of the total new supply in continental United States during the first 9 months of 1941 compared with 5.3 percent during the corresponding months of 1940.

The chief increases in imports of mineral oils into continental United States from January-September 1940 to January-September 1941 were in crude petroleum, residual fuel oil, and distillate fuel oil. These increases were offset to a considerable extent by a sharp drop

in imports of unfinished oils for further processing.

Exports.—Continental United States continued to be a net exporter of mineral oils, but the excess of exports over imports in the first 9 months of 1940 was reduced from 42,764,000 barrels to 8,206,000 barrels in the corresponding months of 1941. The excess of exports over imports in the first 9 months of 1941 was in refined oils. Actually continental United States imported 10,715,000 barrels more crude petroleum than it exported during the first 9 months of 1941 compared with net exports of 10,194,000 barrels in the first three quarters of 1940. Owing to the war situation and the difficulty of shipping oils to Europe, net exports of gasoline, distillate fuel oil, lubricating oils,

By A. H. Redfield, Petroleum Economics Division, Bureau of Mines.

Mineral oils, crude and refined, imported into continental United States, January-September 1940-41 ¹

[Thousands of barrels]

Class	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Total Jan Sept.
1940										
Crude petroleum	1, 950	2, 343	2, 895	3, 169	4, 097	3, 688	3, 981	4, 223	3, 912	30, 258
Gasoline, finished Kerosine	18	3	, 24		16	3	5 68	. 2	8 67	79 135
Distillate fuel oil Residual fuel oil Paraffin wax	1, 882 24				1, 327	159 2, 139 8	215	301 2, 384 57	262	
AsphaltUnfinished oils, other	25 813		5 564			687	102 775	173	55	375
	4,712	6, 627	7, 993	6, 206	6, 434	6, 686	6, 562	7, 829	6, 622	59, 671
1941 Crude petroleum	2, 793	3, 371	3, 821	3, 831	3, 866	4, 332	5, 331	4, 327	4, 662	36, 334
Refined products: Gasoline, finished Kerosine			1 43					363	232	596
Distillate fuel oil Residual fuel oil Lubricating oil	421 2, 211	483 2, 616	277	195 2, 406			562 1, 085	463 2, 611	15 795 4 , 217	3, 707 23, 582
Paraffin wax Asphalt Unfinished oils, other	1 2 275	7 54 226	70 376	7 22 258	13 355	42 384	102 184	3 86 107	5 57 123	
Ommoned one, Other	5, 703			6, 719		7, 052		7, 954		2, 288 67, 03 1

¹ Imports of crude as reported to Bureau of Mines; imports of refined products compiled from data of Department of Commerce; figures may differ slightly from those used throughout other sections of this report.

and kerosine were less in the first 9 months of 1941 than in the corresponding months of 1940. Residual fuel oil constituted an exception to the refined oils, which are normally exported in greater quantities than they are imported. Net imports of residual fuel oil increased from 7,476,000 barrels in the first 9 months of 1940 to 12,786,000 barrels in the corresponding months of 1941.

In absolute amounts, exports and Territorial shipments of mineral oils, both crude and refined, were smaller from January to September 1941 than from January to September 1940. The sharpest decrease both absolutely and proportionally was in outward shipments of crude petroleum. Of the refined oils, the greatest decreases were in exports and shipments of motor fuel, of distillate fuel oil, of lubricating

oils, and of residual fuel oil.

Mineral oils, crude and refined, shipped from continental United States and including shipments to noncontiguous Territories, January-September 1940-41, by classes and months 1

[Thousands of barrels]

Class	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Total Jan Sept.
1940										
Crude petroleum	4, 202	3, 327	4, 046	4, 262	4, 886	5, 692	5, 607	4, 170	4, 260	40, 452
Refined products: Motor fuel: ²										
A viation 3 Other	155 2, 119	125 1, 778	249 2, 016	302 1, 773	415 1, 577	646 1, 935		569 1, 518	301 1, 606	2, 972 15, 798
Total motor fuel Kerosine Distillate fuel oil Residual fuel oil Lubricating oil Paraffin wax Coke Asphalt Miscellaneous oils	2, 274 391 1, 549 1, 139 1, 068 76 83 106 40	1, 903 298 1, 234 769 1, 089 101 27 133 211	2, 265 485 2, 318 932 1, 193 91 69 104 126	2, 075 399 1, 966 1, 532 1, 161 68 137 162 85	1, 992 386 2, 130 1, 379 1, 173 80 115 169 117	1, 959 1, 075	1, 837 1, 387 741 32 100 137	2, 087 230 1, 469 1, 815 727 32 181 176 43	1, 907 178 947 1, 552 393 41 135 93 42	18, 770 2, 926 15, 579 12, 464 8, 620 568 1, 001 1, 274 781
Total refined	6, 726	5, 765	7, 583	7, 585	7, 541	8, 516	6, 219	6, 760	5, 288	61, 983
Total crude and refined.	10, 928	9, 092	11, 629	11, 847	12, 427	14, 208	11, 826	10, 930	9, 548	102, 435
1941										
Crude petroleum	1, 687	1, 342	1, 988	2, 503	4, 339	3, 934	3, 651	3, 275	2, 900	25, 619
Refined products: Motor fuel: 3 Aviation 3 Other	440 1, 605	355 898	497 1, 241	63 1, 465	373 1, 215				483 1, 992	
Total motor fuel Kerosine Distillate fuel oil Residual fuel oil Lubricating oil Paraffin wax Coke Asphalt Miscellaneous oils	2, 045 92 1, 595 1, 002 534 47 57 120 39	1, 253 82 791 975 744 36 75 74	1, 738 165 1, 028 1, 170 703 49 52 105 53	1, 528 180 876 1, 378 775 42 85 128 68	1, 588 171 1, 156 981 1, 118 52 178 142 52	1, 267 831 56 157	1, 416 110 1, 164 954 735 60 113 103 48	2, 700 400 2, 300 1, 600 900 60 146 128 50	2, 475 314 1, 110 1, 469 580 72 63 126 39	16, 005 1, 626
Total refined	5, 531	4, 075	5, 063	5, 060	5, 438	5, 216	4, 703	8, 284	6, 248	49, 618
Total crude and refined.	7, 218	5, 417	7,051	7, 563	9, 777	9, 150	8, 354	11, 559	9, 148	75, 237

¹ Compiled from the records of the Department of Commerce; figures may differ slightly from those used

• Computed from the records of the Department of Commerce; ngures may differ singlely from those used throughout other sections of this report.

Includes benzol, natural gasoline, and (since June 1, 1940) antiknock compounds.

Includes antiknock compounds beginning with June 1940. Data for January to May 1940, inclusive, may be found in motor-fuel section.

INTERCOASTAL SHIPMENTS 4

Receipts of mineral oils, crude and refined, on the East coast from Gulf coast ports were slightly larger in 1941 than in 1940. Crude petroleum was the largest single item in these shipments and constituted 34 percent of the total shipments in 1941. However, shipments of crude petroleum from Gulf coast to East coast ports were 9.1 percent smaller in 1941 than in 1940. Increased shipments of refined oils, however, more than offset the decrease in shipments of crude petroleum from 1940 to 1941. The principal gain was in shipments of gasoline, which were 9.6 percent larger in 1941 than in 1940; however, less kerosine and less distillate fuel oil were shipped from Gulf coast to Atlantic coast ports in 1941 than in 1940.

⁴ By A. H. Redfield, Petroleum Economics Division, Bureau of Mines.

Mineral oils, crude and refined, shipped from Gulf coast to East coast ports of the United States, 1940-41, by classes 1

[Thousands of barrels]

Class				1941			
Class	Jan.	Feb.	Mar.	Apr.	May	June	July
Crude petroleum. Gasoline Kerosine Distillate fuel oil. Residual fuel oil. Lubricating oil. Miscellaneous oils.	12, 887 10, 035 3, 481 5, 752 7, 403 545 31	11, 591 8, 568 2, 450 4, 687 6, 969 383 4	12, 608 10, 021 2, 097 3, 159 6, 411 545 39	14, 198 11, 637 2, 075 3, 114 6, 613 770 96	13, 447 13, 877 1, 310 2, 774 5, 453 889 92	12, 318 12, 921 1, 200 2, 689 6, 536 854 152	13, 009 11, 948 1, 657 2, 876 6, 004 849 72
	40, 134	34, 652	34, 880	38, 503	37, 842	36, 670	36, 415
Class			19	41			1940
Causs	1			100			/4×4×11
	Aug.	Sept.	Oct.	Nov.	Dec.	Total	(total)
Crude petroleum	12, 866 11, 803 1, 724 3, 397 5, 871 973 141	Sept. 10, 704 9, 773 2, 417 3, 634 5, 185 590 63	10, 985 10, 672 2, 254 3, 211 6, 318 589 75	Nov. 11, 191 10, 020 2, 401 .2, 943 7, 010 700 79	Dec. 11, 484 9, 259 2, 234 4, 384 6, 150 461 112	Total 147, 288 130, 534 25, 300 42, 620 75, 923 8, 148 956	162, 063 119, 142 27, 262 44, 429 67, 346 7, 463

¹ Petroleum Conservation Division, U. S. Department of the Interior.

NATURAL GAS¹

By F. S. LOTT AND G. R. HOPKINS 2

SUMMARY OUTLINE

	Page		Page
Summary	1115	Consumption—Continued.	_
Salient statistics	1116		1142
Legislative and legal review	1117	Carbon-black manufacture	
Gross production	1118		
Marketed production	1120		1142
Wells	1121	Portland-cement plants	1142
Technologic developments	1122	Other industrial	1145
Review of field developments by States	1123	Mixed gas	1145
Consumption	1138	New markets	1146
Treated for natural gasoline	1140	Interstate shipments	1146
Domestic and commercial	1140	Pipe-line developments	1150

SUMMARY

The watchword of the natural-gas industry during 1941 was war service, as problems generated by the greatest industrial effort in history dominated policy and managerial activities in all parts of the country. These problems were mainly of four broad types: (1) Gas supply for expanding markets, particularly in the Appalachian region; (2) transportation facilities to bring gas to consuming centers whose requirements were growing rapidly; (3) availability of materials and equipment essential to effective functioning of gas utilities; and (4) measures to protect installations from possible damage by sabotage or enemy attack. As months passed, the solution of these problems became more urgent until hostilities opened on December 7, 1941. From that date it was fully realized that natural gas, wherever available, must aid war production without hindrance, despite increasing difficulties.

Marketed production of natural gas, in reaching a new high of 2,770 billion cubic feet in 1941, exceeded the record of 1940 by 4 percent (see fig. 1). The gain in demand was mostly from industrial consumers, as warm weather restricted domestic gas use to about the level of 1940. The sharpest gains were made in use by miscellaneous industrials (18 percent) and portland-cement plants (29 percent), which felt the full impetus of war demands.

The average value of natural gas at the producing wells is estimated to have reversed in 1941 the persistent decline of many years, and to have increased to 4.7 cents per thousand cubic feet from 4.5 cents in 1940. The chief causes were firming tendencies in the field price of gas in important southwestern fields and marked expansion of Appalachian gas production.

The average value at points of consumption increased to about 22.0 cents per thousand cubic feet in 1941 from 21.7 cents in 1940. A rise in the average industrial value to about 10.3 cents from 9.5 in 1940 is

¹ Data for 1941 are preliminary; detailed statistics with final revisions will be released later.

² Tables compiled by H. Backus, Petroleum Economics Division, Bureau of Mines.

thought to have more than balanced the effects of declines in domestic and commercial values. The total sales value of natural gas to ultimate consumers was about \$608,000,000 in 1941—5 percent more than in 1940 and the highest on record.

No imports of natural gas from Canada or Mexico were reported during 1941. Exports to Mexico increased 30 percent over 1940 to about 7,100 million cubic feet, highest since 1936. The small volume of natural gas piped to Canada in the form of mixed gas was about 121 million cubic feet in 1941, up from 90 million in 1940.

Salient statistics of natural gas in the United States, 1937-41

	· .				
	1937	1938	1939	1940	1941 1
Marketed production:	Astronomic Services				
California millions of cubic feet	329, 769	315, 168	348, 361	351, 950	370.00
Louisiana	315, 301	283, 899	294, 370	343, 191	410,00
Oklahomado	296, 260	263, 164	250, 875	257, 626	248, 00
UKIBHOHBdo		200, 107	070 407		
Texasdo	854, 561	882, 473	979, 427	1, 063, 538	1,060,0
West Virginiado	149, 084	134, 342	159, 226	188, 751	210, 0
Other Statesdo	462, 645	416, 516	444, 497	455, 166	472, 0
Total productiondo	2, 407, 620	2, 295, 562	2, 476, 756	2, 660, 222	2, 770, 0
Crnorts		1			
To Canadadodo	78	94	76	90	1
To Mexicodo	4, 790	1,743	3,046	5, 473	7, 1
mports from Canadadodo	289	372	131		
mports from Canada					
Consumption: Domesticdodo	071 044	207 770	201 152	449 646	447.0
Domesticdo	371,844	367, 772	391, 153	443, 646	447,0
Commercial do	117, 390	114, 296	118, 334	134, 644	143,0
Industrial:			1		i
Fielddo	651, 320	659, 203	680, 884	711, 861	640.0
Carbon-black plantsdo	341, 085	324, 950	347, 270	368, 802	365. 3
D. A. J a. Co do		109, 741	97, 685	128, 007	150, 0
Petroleum refineriesdo	113,005	109,741	81,000	120,007	100,0
Electric public-utility power plants 2			1		
millions of cubic feet	170, 567	169, 988	191, 131	183, 156	203, 3
Portland-cement plants 3do	40, 450	37, 336	40, 233	41, 949	54, 2
Other industrialdo	597, 380	510, 811	607, 075	642, 594	759, 8
Other moustrian	001,000	010,011	001,010	025,002	
Total consumptiondo	2, 403, 041	2, 294, 097	2, 473, 765	2, 654, 659	2, 762, 7
Domesticpercent of total	15	16	16	17	, , .
Commercial do		5	5	5	
	80	79	79	78	
Industrialdo	80	18	19	10	1
Number of consumers:				l	
Domestic thousands	8, 348	8, 570	8,888	9, 245	(4)
Commercial do do do do do do do do do do do do do	680	695	715	741	(1)
Industrial 5	39	39	40	41	(4)
Number of producing gas wells	55, 050	53, 770	53, 530	53, 880	(4) (4) (5)
Value (at wells) of gas produced:	'	,	'		' '
Total thousands of dollars thousands of dollars.	123, 457	113, 571	120, 243	120, 493	130, 1
Total thousands of dollars. Average per M cubic feet cents.	5.1	4.9	4.9	4.5	4
Value (at points of consumption) of gas consumed:					
Domestic thousands of dollars	273, 577	273, 070	287, 600	315, 515	316, 4
				64, 399	
Commercial do do do do do do do do do do do do do		56, 247	58, 494		67, 7
Industrialdo	196, 791	171, 233	187, 627	197, 090	223, 7
Total valuedodo	527, 529	500, 550	533, 721	577, 004	608, 0
Average per M cubic feet:	1	Í	1	ı	
Domestic cents.	73.6	74.2	73.5	71.1	70
Commercial do	48.7	49. 2	49.4	47.8	47
		9.4	9.6	9.5	10
Industrialdo	10.3				
Domestic and commercialdo	67.6	68.3	67.9	65.7	68
Domestic, commercial, and industrial	i	1	1	1	l
cents	22.0	21.8	21.6	21.7	22
Created for natural gasoline:	1	1	1	1	
Quantity millions of cubic feet	2.108.800	2, 035, 562	2, 150, 000	2, 471, 400	2, 900, 0
		_, 000, 000	1-, 200, 000		2,000,0
Percent of total consumption	. 88	89	87	93	

Subject to revision.

subject to revision.

2 Federal Power Commission.

3 Chapters on Cement in Minerals Yearbook.

4 Figures not yet available.

5 Exclusive of oil- and gas-field operators.

4 Exceeds 100 percent, as part of the natural gas treated for natural gasoline is not marketed.

The number of consumers of natural gas increased 4 percent over 1939 to a total of 10,027,000 in 1940. More meters were reported in each of the 34 States in which natural gas is sold and in the District of Columbia. By the end of 1941 the number of meters served with natural gas had risen to at least 10,400,000.

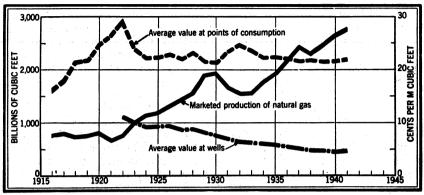


FIGURE 1.—Production and value of natural gas in the United States, 1916-41.

LEGISLATIVE AND LEGAL REVIEW

A natural-gas and natural-gasoline section was set up in the Office of the Petroleum Coordinator for National Defense on October 23, 1941. Its purposes are to integrate the activities of the gas industry in production, transportation, and distribution so as to serve the needs of a dynamic war economy effectively and to eliminate wasteful or nonessential use by the industry of critical materials, particularly steel.

Five district offices were opened, corresponding to those previously established for the petroleum industry, and surveys were begun in each district to determine the supply-and-demand situation and the problems to be anticipated. On December 23, 1941, General Preference Order M-68 was issued providing for acquisition of materials and supplies by oil and gas operators who comply with operating restrictions set up by the Petroleum Coordinator. The spacing pattern prescribed for gas wells was one well to each 640 surface acres of land. The immediate effect of this order was to curtail development work sharply in some currently active fields, but wildcatting did not seem to have been affected. The 640-acre-per-well rule was relaxed later in certain shallow producing areas where closer spacing had been common practice.

An amendment to the Natural Gas Act was signed by the President on February 7, 1942, broadening the jurisdiction of the Federal Power Commission over construction of natural-gas lines. Henceforth the approval of the Commission must be obtained before new gas-transmission lines are laid, whether or not the territory to be entered is

already served by a natural-gas company.

The Commission was also given great power over gas rates by an important decision of the United States Supreme Court rendered March 16, 1942. It provides that property valuation, a focus of contention for many years, is no longer required as a basis for making

natural-gas rates. The "prudent investment theory" or others may now be used, and courts are directed in future not to set aside rates that are reasonable and on which fair hearings have been held by regulatory bodies.

GROSS PRODUCTION

In 1940 the estimated gross production of natural gas (3,694,100 million cubic feet) was 11 percent above 1939. Continued sharp gains in Texas and Illinois supplied most of the increased volume, with West Virginia, Louisiana, and Arkansas contributing materially. Notable declines occurred in New Mexico, New York, and Mississippi, the last two being caused by shortages of supply.

Reported gas production from gas wells increased 40 percent from 1935 to 1940; the trend was dominated by marked expansion in Texas and lesser growth in West Virginia, Louisiana, Kansas, and California. The recorded gas output of oil wells increased more rapidly in this interval, gaining 59 percent. The exploitation of large fields with high gas: oil ratios in Illinois, Louisiana, New Mexico, and

Texas was the chief stimulus to this type of gas production.

The principal change in repressuring and pressure-maintenance operations in recent years is ascribed to the spectacular advance of the cycling process in Texas condensate fields, as indicated by volume data on Texas gas used for repressuring. It was as follows in cubic feet: 1938, 20 billion; 1939, 105 billion; and 1940, 294 billion. Similar activities in Louisiana are beginning to produce a pronounced upward trend there also. In California and Oklahoma the largest gas-repressuring volume was reported in 1935, but declining trends have persisted in both States since that year.

The volume of gas reported annually as stored in depleted natural reservoirs for future use has been relatively constant since 1935, averaging about 12 billion cubic feet a year. However, storage in 1940 was almost double the low volume of 1939 as the Appalachian States made sharp increases. Availability of numerous suitable fields in this region is a great aid to gas companies in meeting the winter peaks in demand

and permitting longer-term storage.

The apparent loss and waste of gas decreased slightly in 1940, dropping to 655,967 million cubic feet, or 18 percent of the estimated gross production. Large reductions were shown in Louisiana, New Mexico, and Texas. Waste of gas in Illinois became important in 1938, with the new flush oil development, and increased rapidly throughout 1940 in the absence of State regulation.

Gross production and disposition of natural gas in the United States, 1939-40, by States, in millions of cubic feet

All Salates	Estin	ated produc	tion 1	Estimated disposition				
State	From gas wells	From oil wells	Total	Marketed production	Repres- suring	Stored in ground	Losses and waste	
1939				*				
rkansas	6, 200	17, 800	24,000	10, 107	952		12, 9	
alifornia	27,000	403,000	430,000	348, 361	22, 487	5, 918	53, 2	
olorado	1,850	450	2, 300	2,015			- 2	
llinois	1, 200	61,800	63,000	2,746	397		59,8	
ndiana	950	450	1,400	791	1, 436	3 425	97.0	
Kansas Kentucky	66,000	44,000	110,000	80, 556 47, 771	1,430	• 420	27, 9 4, 8	
ouisiana	48, 500 288, 000	4, 500 125, 000	53, 000 413, 000	294, 370			109, 2	
ichigan	9, 150	2, 250	11, 400	10, 726	0,010		100,	
Aississippi	15, 290	2, 200	15, 300	14, 527				
Aissouri	640	ĩŏ	650	538			i	
fontana .	22, 800	1, 200	24,000	23, 178	23		. 7	
lew Mexico lew York	35,000	110,000	145, 000	60, 284	31		84,6	
Tew York	30, 900	100	31,000	29, 222	85		1,4	
)hio	40,600	3, 400	44,000	36, 469	3, 995	4 687	3, 3	
klahomaennsylvania	76,000	234,000	310,000	250, 875	13, 896	65	45,0	
ennsylvania	97, 000	6, 500	103, 500	93, 882	733 105, 000	831	8, 4 245, 3	
YexasVest Virginia	880,000	450,000	1, 330, 000	979, 427 159, 226	2,946	6 106	9,4	
Vest Virginia	158, 000 22, 500	14, 000 22, 200	172,000 44,700	26, 614	9, 872	100	8.0	
Vyoming Other States	5, 240	22, 200	5, 250	5,071	0,012		o o i	
	1, 832, 820	1, 500, 680	3, 333, 500	2, 476, 756	171, 401	8, 032	677, 3	
1940								
rkansas	8, 500	32, 500	41,000	14, 379	860		25, 7	
alifornia	25, 200	404, 800	430,000	351, 950	12, 145	6, 287	59, 6	
olorado	2, 500	400	2,900	2,533			101	
llinois	1,100	129, 900	131,000	8,359	749		121, 8 2, 0	
ndiana	1, 200 75, 000	2,000	3, 200 115, 000	1, 137 90, 003	2,817	0 1 189	21,	
Cansas	54, 000	40, 000 5, 000	59,000	53, 056	2,017	9 1, 162 10 483	4,	
ouisiana	285,000	150,000	435, 000	343, 191	21,000	200	70.	
fichigan	10,000	4,000	14,000	12,648	21,000		1.	
fississippi	6,500	300	6, 800	6, 365				
Iissouri	390	10	400	310				
Tontana	25, 900	1,300	27, 200	26, 231			- 1	
lew Mexico	32,000	94,000	126,000	63, 990	31		61,	
ew York	15, 100	100	15, 200	12, 187	12	11 414	2,	
hio	46, 400	3,600	50,000	40,639	3,050	12 3, 706	5,	
klahoma ennsylvania	90,000	220,000	310,000	257, 626	14, 463 826	794 13 1, 723	36, 7 9, 2	
ennsylvania	96,000	6,000	102,000	90, 725 1, 063, 538	294,000	1, (23	216.	
exasVest Virginia	1, 100, 000 193, 000	475, 000 12, 000	1, 575, 000 205, 000	188,751	3, 583	14 426	9, 8	
Vest virginia	22,000	18,000	40,000	27, 346	9, 170	17 420	3, 4	
Vyoming Other States 7	5, 390	10,000	5,400	5, 258			j	
	2, 095, 180	1, 598, 920	3, 694, 100	2, 660, 222	362, 916	14, 995	655, 9	

¹ Marketed production plus quantities used in repressuring, stored in ground, lost and wasted (see footnote 2)

³ Includes gas (mostly residue gas) blown to the air, shrinkage at natural-gasoline plants, and transportation losses but does not include direct waste on producing properties, except where data are available.

³ Produced approximately as follows: 220 million cubic feet in Texas, 122 million in Oklahoma, and 83 million in Kansas.

million in Kansas.

Produced approximately as follows: 86 million cubic feet in Kentucky, 4 million in Pennsylvania, 406 million in West Virginia, and 191 million in Ohio.

Produced approximately as follows: 227 million cubic feet in New York, 444 million in Pennsylvania, 128 million in West Virginia, and 32 million in Kentucky.

Produced approximately as follows: 58 million cubic feet in Kentucky and 48 million in West Virginia.

North Dakota, South Dakota, Tennessee, Utah, Virginia, and Washington.

Subject to revision.

Produced approximately as follows: 373 million cubic feet in Oklahoma, 525 million in Texas, and 264 million in Kansas.

Produced approximately as follows: 183 million cubic feet in West Virginia and 300 million in Kentucky.

Produced approximately as follows: 183 million cubic feet in West Virginia and 300 million in Kentucky.
 Produced approximately as follows: 109 million cubic feet in Pennsylvania and 305 million in New York.
 Produced approximately as follows: 397 million cubic feet in Kentucky, 2,216 million in West Virginia, and 1,093 million in Ohio.

and 1,055 million in Onio.

12 Produced approximately as follows: 178 million cubic feet in Kentucky, 424 million in West Virginia, and 1,121 million in Pennsylvania.

13 Produced approximately as follows: 148 million cubic feet in Kentucky, 7 million in Pennsylvania, and 271 million in West Virginia.

MARKETED PRODUCTION

A new peak in marketed production of natural gas was attained in 1941—an estimated total of 2,770 billion cubic feet, 4 percent above 1940. Larger output from producing States was general, but Louisiana apparently made the greatest gain. Production in Oklahoma declined slightly, and that of Mississippi and of New York fell sharply as available gas reserves continued to shrink, lacking the stimulus of substantial new discoveries.

Final 1940 data show expansion of output in all producing States except Mississippi, New York, Pennsylvania, and the "Other" group of small producers. New York reached a sharp peak in gas production in 1938 and Mississippi in 1939, followed by unusually abrupt declines.

Natural gas produced in the United States and delivered to consumers, 1936-40, by States, in millions of cubic feet

Year	Arkan- sas	Cali- fornia	Colo- rado	Illi- nois	Indi- ans	Kan- sas	Ken- tucky		uisi- na	Mich- igan	Missi sipp		New Mexi-
1936	8, 500 9, 690 11, 301 10, 107 14, 379	320, 406 329, 769 315, 168 348, 361 351, 950	3, 186 1, 904 2, 015	865 1, 040 1, 169 2, 746 8, 359	2, 241 1, 551 1, 299 791 1, 137	69, 178 83, 890 75, 203 80, 556 90, 003	43, 903 55, 719 46, 163 47, 771 53, 056	31 28 29	0, 151 5, 301 3, 899 4, 370 3, 191	7, 167 9, 080 10, 165 10, 726 12, 648	13, 3 13, 6 14, 5	48 24, 76, 56 21, 216 27 23, 178	5 46, 337 50, 706 6 60, 284
Year	New York	Ohio	Okla- homa	Penn- syl- vania	Texas	Wes Vir- ginis	, w	yo- ng	Othe		otal	Value a of consu Total (thousands of dollars)	
1936 1937 1938 1939 1940	12,431 21,325 39,402 29,222 12,187	35, 257			854, 561 882, 473	149, 0 134, 3 159, 2	84 31 42 26 26 26	, 322 , 023 , 678 , 614 , 346	2, 9 5, 8 5, 6	80 2, 40 50 2, 2 09 2, 4	67, 802 07, 620 95, 562 76, 756 60, 222	476, 813 528, 354 500, 698 534, 240 577, 939	22. 0 21. 9 21. 8 21. 6 21. 7

The average value of natural gas at the wells, which has been falling steadily for many years, reached a new low in 1940 at 4.5 cents per thousand cubic feet. Contributing to this decline have been reductions in average sales prices for gas in the field in nearly all producing districts and—of perhaps greater influence—the shift in location of the chief sources of gas supply from the old eastern fields to the Southwest, where unit costs of producing gas are much lower. Suggestive of these two processes are the following data: In 1928 the Appalachian States as a group sold 22 percent of the total marketed production of natural gas in the United States at an average wellhead value of 21.1 cents per thousand cubic feet. The principal southwestern gasproducing States marketed 57 percent of the total for the United States at a corresponding average of 4.7 cents per thousand cubic feet. In 1940 the same State groups marketed 15 and 68 percent, respectively, of the total at average values at the wells of 14.8 and 2.1 cents per thousand cubic feet.

Natural gas produced and consumed in the United States in 1940, by States

	Produced	Produced and delivered to consumers, including deliveries in other States						Consumed, including receipts from other States				
State	Quantity	7	Estimated at we		Value at p		Quantit	У	Value at points of consumption			
	M cubic feet	Per- cent of total	Total	Average per M cubic feet (cents)	Total	Average per M cubic feet (cents)	M cubic feet	Per- cent of total	Total	Average per M cubic feet (cents)		
Ala Ariz							23, 461, 000 18, 002, 000	0. 9 . 7		24. 7 29. 2		
Ark	14, 379, 000	0.5	\$510,000	3. 5	\$2,622,000	18. 2		1.5				
Calif	351, 950, 000	13. 2	19, 604, 000						90,006,000	25. 6		
Colo	2, 533, 000		100,000				22, 111, 000	.8	7, 995, 000			
D. C							4, 686, 000	.2	3, 262, 000	69. 6		
Fla							1,481,000		449,000			
Ga				<u>-</u>			20, 551, 000	.8 3.3	7, 867, 000 40, 232, 000			
m	8, 359, 000	.3	228,000	2.7	1,557,000 661,000	18. 6 58. 1		1.1		34.4		
[nd [owa	1, 137, 000	.1	154, 000	13. 5	001,000	30. 1	23, 460, 000		8, 611, 000			
Kans	90,003,000	3.4	3, 537, 000	3.9	31, 931, 000	35. 5		3.6	21, 057, 000			
Ку	53, 056, 000	2.0	6, 903, 000			43. 2			8, 433, 000			
La.	343, 191, 000						185, 089, 000	7.0	22, 759, 000	12.3		
Md							5, 855, 000	.2	2, 108, 000	36.0		
Mich	12, 648, 000	.5	1,561,000	12.3	8, 339, 000	65. 9				86.1		
Minn						===	19, 904, 000	.7				
Miss	6, 365, 000	2	294,000	4.6	1,637,000	25. 7				28.9 38.0		
Mo	310,000 26,231,000	(1)	41,000	13. 2		53. 5 27. 2						
Mont Nebr	20, 231, 000	1.0	1, 178, 000	4.5	1, 152,000	21.2	20, 087, 000	.8	7, 330, 000			
N. Mex.	2 63, 990, 000	2.4	985, 000	1.5	10, 317, 000	16. 1	40, 198, 000	1.5				
N. Y	3 12, 187, 000	. 5	2, 280, 000		8, 246, 000	67. 7		1.0	18, 958, 000	69.€		
N. Dak							1, 725, 000	.1	664,000	38. 5		
Ohio	40, 639, 000	1.5	6, 803, 000	16.7	20, 850, 000	51.3		4.9	66, 707, 500	51.4		
Okla	257, 626, 000	9.7 3.4	3, 813, 000	1.5	31, 603, 000	12. 3		8.7				
Pa	4 90, 725, 000	3.4	18, 009, 000	19.9		46.0		4.6				
3. Dak	9,000		600			33. 3	6, 454, 000	.2 .6	2, 210, 000 5, 425, 000			
renn	9,000	(1)	1,000	11.1	3,000			32.9				
Fex Utah	5, 124, 000		19, 356, 000	1.8 3.4	151, 580, 000 1, 063, 000		14, 802, 000	.6				
Va	80,000	a; 2	176, 400 8, 000	10.0				(1)	900,000	93. 8		
Wash	36,000	l XI	3,000	8.3				(1)	37,000	102.8		
W. Va	188, 751, 000		23, 179, 000	12.3			77, 540, 000	2.9	19, 388, 000	25.0		
W уо		1.0	801,000				17, 459, 000	.7	2, 855, 000	16.4		
Total:								100.0	004 000			
1940.	2, 660, 222, 000	100.0	120, 493, 000	4.5	577, 939, 000		2, 654, 659, 000		577, 004, 000			
1939.	2, 476, 756, 000	100.0	120, 243, 000	4.9	534, 240, 000	21.6	2, 473, 765, 000	100.0	533, 721, 000	٠.٠٠		

WELLS

Reported completions (2,911) of gas wells in 1941 were 22 percent larger than the 1940 total and exceeded the number reported in the previous peak years of 1937 and 1929. Operators throughout the Appalachian region stepped up their drilling sharply as actual and prospective requirements threatened to tax all developed producing capacity. The increase in Appalachian completions approximated that of the entire country, as minor gains and losses in other districts about balanced each other.

The total number of producing gas wells on December 31, 1940, increased slightly over that on the corresponding date in 1939 to 53,880. Indicated abandonments of gas wells in 1940 were 2,032 a reduction

¹ Less than 0.05 percent.
2 Includes 685,000 M cubic feet piped to Mexico.
3 Includes 54,000 M cubic feet piped to Canada.
4 Includes 36,000 M cubic feet piped to Canada.
5 Includes 4,788,000 M cubic feet piped to Mexico.

from 2,385 in 1939. Reports indicate that in recent years abandonments of old gas wells have exceeded total gas completions in the United States; thus, on December 31, 1930, 55,020 gas wells were reported, indicating that in the past decade 1,140 more gas wells have been abandoned than have been drilled.

Gas wells in the United States, 1939-41, by States

State	Producing Dec. 31, 1939	Drilled during 1940 1	Producing Dec. 31, 1940	Drilled during 1941 ¹
Arkansas California Colorado Illinois Indiana Kansas Kentucky Louislana Michigan Mississippi Missouri Montana	190 80 20 80 960 2, 140 2 2, 340 1, 520 310 30 110	13 15 1- 15 77 130 128 99 59 1 30 49	190 90 20 90 970 2,100 2 2,400 1,530 350 30 120	20 23 4 13 56 102 255 111 97 4 18
New Mexico. New York Ohio Oklahoma Pennsylvania Tennessee Texas West Virginia	90 2, 040 6, 270 2, 420 18, 100	19 20 491 176 273 289 487	100 2,030 6,300 2,430 18,130 (2) 3,150 13,300	19 18 701 159 386 294 558
Wyoming Other States 3	110 30 53, 530	2, 382	110 30 53, 880	2, 911

TECHNOLOGIC DEVELOPMENTS

War needs have caused rapid developments in the use of natural gas and its liquefied gases as constituents in the production of an ever-growing list of essential chemicals. Many well-known substances that have long been made from other source materials—for example, ammonia, ammonium nitrate, acetylene, certain anesthetics, and alcohols—are now being, or soon will be, produced in quantity by processing the ligher hydrocarbons associated with petroleum. In addition, entirely new compounds frequently are developed and put Valuable new explosives, for instance, have been produced by nitration of methane and synthesis of nitro-hydroxy compounds.

An interesting process for dehydrating alfalfa has been developed It is preferable to sun drying because it preserves the in Kansas. vitamin A content by preventing the destruction of carotin, a carbohydrate from which vitamin A is derived. The dehydration of vegetables by natural-gas heat is growing rapidly in California and promises to spread to other States. The shortage of transportation facilities, particularly shipping, resulting from the war is an active stimulant to use of foods that are dehydrated before shipment, reducing both the tonnage and bulk to be moved.

Few people apparently have realized until recently the extent to which the efficiency of gas pipe-lines has been reduced by corrosion and accumulation of dirt inside pipes. A few experimental runs were

From Oil and Gas Journal and State sources.
 Tennessee included with Kentucky.
 North Dakota, South Dakota, Utah, Virginia, and Washington.

made with scrapers adapted from types commonly used in cleaning the interior of oil and gasoline lines. A surprising quantity of debris and miscellaneous scrap metal was brought out; in consequence, the effective capacity of the pipe was increased materially. Systematic cleaning programs, as carried out by one large gas company in Texas during 1940 and 1941, have improved line efficiencies 15 to 25 percent. A much wider use of cleaning devices for the interior of gas lines is anticipated when the design of scrapers and the techniques of

using them are improved further.

Two circumstances are thought to have fostered for some years comparative neglect of gas pipe-line interiors by tending to mask true performance characteristics. First, the old formula that has been used most widely in calculating pipe-line capacity is now recognized as inaccurate for high-pressure lines in that it indicates line capacity materially below actual for clean pipe. Second, few large gas lines operate at or near maximum capacity in actual practice, except for brief periods of peak gas demand. Therefore, opportunities to observe line performance under conditions of stress are neither frequent nor prolonged.

REVIEW OF FIELD DEVELOPMENTS BY STATES

Arkansas.—Records of the Arkansas Department of Revenue indicate that natural-gas production in Arkansas in 1941 was 24,617 million cubic feet, a 10-percent increase over 1940. Output of the dry-gas fields in the northwestern district increased 18 percent to 6,384 million cubic feet and that of the southern fields 7 percent to 18,233 million cubic feet.

Important new markets for Arkansas natural gas will be provided by industrial plants projected under the war-production program at Malvern, Benton, Little Rock, and Pine Bluff. The new gas load is expected to exceed 150 million cubic feet daily and will be obtained chiefly from the McKamie, Macedonia, and Dorcheat fields, whose

combined gas reserves exceed 400 billion cubic feet.

Treating plants are under construction that will remove the sulfur and liquids from the gas efficiently before it enters transmission lines. About 200 tons a day of marketable sulfur will be recovered as a byproduct, as well as 70,000 or more gallons a day of natural gasoline

and liquefied petroleum gases.

Two discovery wells that produced gas and condensate were reported in 1941. In July the Macedonia field, Columbia County, was opened in sec. 16, T. 18 S., R. 21 W. by No. 1 Franks, which produced 330 barrels of condensate with gas from the Smackover limestone at 8,906 to 8,914 feet. The Patton field, Lafayette County, was discovered in November, when No. 1 Moore, in sec. 29, T. 17 S., R. 24 W., found 215 barrels a day of condensate with gas at 9,312 to 9,340 feet in the Smackover limestone.

Four condensate wells were completed in the Macedonia field in 1941, 11 at McKamie, and 2 at Dorcheat. One gas well was reported in sec. 3, T. 18 S., R. 13 W., Union County, which had a daily capacity of 20 million cubic feet from a depth of 3,569 feet. Only two gas completions were listed in the northwestern counties. One of these, in the Alma field, Crawford County, sec. 6, T. 9 N., R. 30 W., was drilled to 6,578 feet; the other, in sec. 31, T. 10 N., R. 26 W., Franklin

County, was completed for 12 million cubic feet a day from a total

depth of 1.717 feet.

Repressuring with gas of the Jones oil sand in the Shuler field began in 1941 under a unit operating agreement fostered by the State regulatory authorities. By this means gas will be conserved, and recover-

able oil reserves are expected to be increased materially.

California.—For the first half of 1941 marketed production of natural gas in California was 184,554 million cubic feet, a 7-percent increase over the comparable 1940 period. The source of information is a report from E. F. McNaughton, California Railroad Commission. The volume of gas reported blown to the air-17.1 billion cubic feet during the first half of 1940—was reduced to 7.3 billion for the similar period in 1941 after the peak of flush oil production at Montebello

had passed.

Discoveries in 1941 included three oil fields with relatively high gas : oil ratios-Raisin City and Riverdale in Fresno County and Helms in Kings County. Large gas reserves were proved at Raisin City. A new dry-gas field of undetermined importance was discovered 12 miles southeast of the Tracy gas field, San Joaquin County, gas comes from a thin sand at relatively shallow depth. Several new productive zones were discovered in fields throughout the State. Paloma gas and "condensate" field was extended west and southeast. On March 24 all producing wells in this field except dry-gas wells were shut in to eliminate excessive waste of gas and pressure drop pending adoption of a unit plan of operation for gas injection and pressure maintenance. The wells were still shut in at the end of 1941.

In the Cole's Levee field important gas production was developed in 1941 about 3,000 feet above the oil-producing formation. Gas-

utility pipe lines are conveniently near this field.

Completions in gas fields during 1941 numbered 18, of which 14 were at Rio Vista, 2 at Vernalis, 1 at McDonald Island, and 1 at Delano. In addition, 3 gas wells were reported at Cole's Levee, 1 at Union Avenue, 1 at Elwood, and 1 at Santa Fe Springs oil fields.

All rights to the La Goleta gas field were acquired in 1941 by a utility company. Large compressor units and other equipment were in-

stalled to prepare the field for use as a gas storage reservoir.

The increased demand for gas resulting from war activities has strained the capacity of some gas producing and transmission facil-To guard against critical shortages of gas, the California Railroad Commission instituted a general investigation covering the State gas reserves, consumers' requirements and the ability to meet them, and the economic factors relating to industrial use of gas as opposed to oil or other fuels.

Colorado.—Natural-gas production continued to expand in 1941 to 2,713 million cubic feet—30 percent above the 1940 output. data are taken from a report by L. G. Snow, acting supervisor, Geological Survey, United States Department of the Interior, Casper, Wyo. Withdrawals from the Powder Wash field were begun in June 1941 after an outlet was provided by laying an 8-inch line connecting with the Salt Lake City transmission system in the Hiawatha field.

The Powder Wash production was 477.3 million cubic feet. watha and Thornburg production increased to 1,996.6 and 114.2 million cubic feet, respectively. The output of other fields declined and was as follows, in millions of cubic feet: Berthoud 50.4, Craig 4.2, and Garcia 70.2. Small amounts of gas were used in the field, and 110.3 million cubic feet were estimated to have been wasted in connection with the production of oil in the Wilson Creek field.

Four gas wells were completed in 1941, with a total daily initial capacity of 30.1 million cubic feet; two of these were at Powder Wash and

two at Hiawatha.

Illinois.-Natural gas produced and marketed, exclusive of that used for field purposes, increased 46 percent to 1,699.4 million cubic feet in 1941, as reported by A. H. Bell and G. V. Cohee, Illinois Geological Survey, Urbana, Ill. The gas was produced in five fields, as follows: Russellville and Ayers gas fields, 863 and 13.4 million cubic feet, respectively; and Salem, Louden, and Albion oil fields, 165, 536, and 122 million cubic feet, respectively. The Salem and Louden gas is residue from gasoline plants.

Eight new gas wells were drilled in the Russellville gas field during 1941, and one was abandoned, leaving 48 active. The productive area of the Buchanan sand is about 1,600 acres and of the Bridgeport sand 260 acres. The initial daily production of the new wells averaged

about 2 million cubic feet.

Estimated gas production of the Louden pool during 1941 was 13.7 billion cubic feet, and the daily average at the end of the year was about 36 million. Two gasoline plants process 15 million cubic feet daily, and 6 million cubic feet of residue gas are injected into the oil-producing sands. A line to St. Elmo and Brownstown takes about 1.4 million cubic feet of residue gas a day.

Salem-field gas production during 1941 is estimated to be 35.4 billion cubic feet, and production was about 82 million cubic feet daily at the end of the year. Three gasoline plants process 59 million cubic feet a day, of which 4 million cubic feet are returned to oil sands

and 1 million used in Salem, Centralia, and Mount Vernon.

The Centralia field produced only 1.8 billion cubic feet of gas during 1941, the daily output having declined to about 4 million cubic feet in December; about 100,000 cubic feet a day were being returned to producing formations.

In the Storms field, the daily rate of gas production had declined 95 percent in 2 years to 5 million cubic feet at the end of 1941. Estimated 1941 output of gas was 2.2 billion cubic feet. Injection of 120,000

cubic feet a day was begun during 1941.

The New Harmony, Griffin (Indiana), and Keensburg oil fields produced an estimated 9 billion cubic feet of gas in 1941, the daily production being about 25 million cubic feet. A gasoline plant under construction is designed to take 20 million a day of this gas, and it is planned to return the residue gas to producing sands.

The Albion pool, Edwards County, now making about 1 million cubic feet of gas a day, produced about 445 million cubic feet in 1941, part of which was sold to a brick plant at Albion.

A group of fields of the Central Basin area in Jasper, Richland, Clay, Wayne, northern Hamilton, and northwestern White Counties increased their estimated gas output to 24.5 billion cubic feet during The new Johnsonville field, Wayne County, supplies more than one-third of this volume.

The fields on the south and southwest margin of the Illinois Basin in southern Illinois produced an estimated 14.5 billion cubic feet of gas. These include, among others, the more important producing pools, such as Woodlawn, Jefferson County; Benton, Franklin County;

and Rural Hill, Hoodville, and Dale, Hamilton County.

Indiana.—Production of natural gas increased 9 percent in 1941 to 1,355 million cubic feet, chiefly in consequence of new supplies from the North Glendale field discovered in 1941 in southern Daviess County and from old wells in the Unionville gas field, Monroe County, which had been shut in since discovery. Information is taken from a report by Robert G. Reno, State gas supervisor, Indianapolis.

The North Glendale field was discovered in sec. 16, T. 2 N., R. 6 W., in June 1941 by the McCracken No. 1, which produced one-half million cubic feet a day from the Cypress sand at 728 to 735 feet. Seven gas wells were completed by the end of 1941. An isolated gas well was completed in the old, abandoned, Francisville field in southern Pulaski County. It made one-half million cubic feet, with a rock pressure of 155 pounds. No other gas wells have been com-

pleted in the area.

Gas completions fell from 77 in 1940 to 56 in 1941 owing to the sharp decline in drilling in the Rockport field, which was largely drilled up in 1940. Development work in the Old Trenton area increased. Four additional Trenton wells were completed in the Unionport field, Randolph County—a 1940 discovery—and the field began producing about one-half million cubic feet of gas a day commercially in the latter part of 1941. Gas-well completions, by fields, included: Buffkin 1 (no market), Greensburg 12, North Glendale 7, Iva 2, Harrison County 6, Loogootee 1, Merom-Raley 3, Oatsville 1, Rockport 3, Unionville 1, Unionport 4, Veale 1, and Old Trenton (many counties) 13.

Gas production from most fields decreased moderately in 1941, although rather sharp declines were reported from the Harrison County and Troy-Tell City fields. The Rockport field, which now supplies about one-third of the Indiana gas production, increased its output 17 percent in 1941. Production in 1941, by fields, in millions of cubic feet was: Alford 60, Francisco 4.5, Greensburg 177.9, Harrison County 100, Hudsonville (including North Glendale) 31, Loogootee 5, Oaktown 96.6, Rockport 461, Shelburn-Grayville 33.9, Old Trenton

(including Randolph County) 200, Troy-Tell City 1.5.

The Harmon gas field was abandoned in 1941 after 12 years of production. The Troy-Tell City field is almost depleted and probably

will be abandoned in 1942.

Kansas.—Marketed production of natural gas in Kansas increased 10 percent in 1941 to about 99 billion cubic feet. Although small declines in output of most fields were the rule, a few large fields—notably Cunningham, Hugoton, and Thurber—had sharp increases, according to the Kansas Corporation Commission records. The McLouth field in Jefferson and Leavenworth Counties, which did not produce during 1940, had an output of 1,667 million cubic feet in 1941. The more important gas-producing fields were drawn upon for the following volumes during 1941, in billions of cubic feet: Hugoton 36.4, Cunningham 18.0, Otis 9.0, Medicine Lodge 7.1, Burrton 4.5, McPherson County 4.2, Thurber 3.4, and Lyons 2.4.

According to a report by R. P. Keroher, Kansas Geological Survey, 102 gas wells were reported in 1941—52 in eastern Kansas and 50 in the western part. Thirteen of the western wells and three of the

eastern made oil with the gas.

Seven gas discoveries were reported, of which only one was in the eastern part of the State—the Robinson pool, Marion County, in sec. 15, T. 20 S., R. 5 E., where one well found gas in sand in the lower Cherokee formation. New gas wells were reported in certain eastern counties, including Cowley, Greenwood, Jefferson, Leavenworth, and Johnson. Development of the McLouth pool, a 1939 discovery, in Jefferson and Leavenworth Counties, was much the most important gas activity in eastern Kansas. A total daily potential of 260.6 million cubic feet was obtained from 39 wells.

Western Kansas discoveries were the Bergtal (sec. 22, T. 20 S., R. 15 W.) and Krukenberg (sec. 11, T. 19 S., R. 15 W.) pools in Barton County, the Zook (sec. 16, T. 23 S., R. 16 W.) pool in Pawnee County, the Preston (sec. 18, T. 26 S., R. 11 W.) and Ward (sec. 11, T. 26 S., R. 12 W.) pools in Pratt County, and the Hitz (sec. 4, T. 24 S., R. 12 W.) pool in Stafford County. The Bergtal and Zook pools produce from the Arbuckle limestone; the Krukenberg from the Lamotte sand; and the Preston, Ward, and Hitz pools from the Viola limestone.

New production was developed in old fields as follows: Otis pool had three wells with 24.6 million cubic feet of daily potential; Rick pool, one new well good for 1.8 million; Silica, two wells with 5.2 million; Kipp, two small wells; Zenith, three wells with 8.8 million; Medicine Lodge, one well with 22.8 million; Orth, one well with 38.4 million; and Thurber, three wells with 38.4 million. In the Cunningham-Cairo district of Kingman and Pratt Counties, 16 new wells were drilled, with a total daily capacity of 190.5 million cubic feet. Three of these were old wells that found deeper production. In the Hugoton field a daily potential of 184.1 million cubic feet was developed from 11 new wells.

According to available reports, which are not complete, the total daily potential of gas brought in during 1941 was 825.4 million cubic feet, of which 33 percent (276.7 million cubic feet) was in eastern Kansas. This represents a considerable decline in total new capacity from 1940, despite a sixfold increase in eastern counties owing to the

exceptional McLouth-pool development.

Kentucky.—Drilling for gas in eastern Kentucky, particularly in the Big Sandy area, was about 100 percent more active in 1941 than in 1940 because of the growing need for gas in industrial districts to the north and east. A total of 233 gas wells was reported compared with 113 in 1940. The most active counties, with the number of gas-well completions, were: Floyd 65, Pike 72, Knott 45, Martin 32, and Johnson 14. In western Kentucky, 23 gas completions were reported in 1941 compared with 12 in 1940; 3 were in Ohio County, 2 in Muhlenberg, 2 in Daviess, 5 in Clay, 4 in Jackson, 4 in Knox, and 3 in Clinton.

Marketed production of Kentucky gas is estimated to have increased 12 percent in 1941 over 1940, owing chiefly to increased movement

into West Virginia and Ohio.

A new gas field producing from the Big Six sand was opened in Johnson County 4 miles west of Paintsville. Extensions of gas-

producing areas were made in Pike and Knott Counties.

In 1941 four deep tests to the Knox dolomite (Cambro-Ordovician) were completed in eastern Kentucky; all were failures. These wells were in Magoffin County on the Paint Creek uplift, in Elliott County on the Burke dome, in Laurel County on the Sinking Creek dome, and in Clark County in the Ruckerville fault area.

Louisiana.—In north Louisiana, gas-well completions in 1941 increased to 93, or 24 percent. Forty-eight of these were in the Monroe gas field, and the remainder were scattered. Reported gas completions in south Louisiana totaled 12 in 1940 and 18 in 1941. The producing formation at Monroe has been extensively treated with acid in recent years resulting in the satisfactory revival of many

old wells of low current capacity.

Four gas discoveries were reported in northern Louisiana in 1941. Of possible wide significance was the finding of commercial quantities of oil or gas in the Smackover limestone for the first time in Louisiana. The discovery well was No. 1-A Meadows in the Lisbon field, Claiborne Parish, which was completed as a gas and condensate well from 10,148 to 10,398 feet. In sec. 36, T. 12 N., R. 3 E., Caldwell Parish, the No. 1 Lowe made 15 million cubic feet of gas from the Wilcox formation at 2,173 to 2,178 feet, after being plugged back from 4,009 feet. Three miles northwest of Lisbon, in sec. 11, T. 21 N., R. 4 W., the No. 1 Alford opened a new area when it produced 5 million cubic feet of gas and 80 barrels of condensate a day from the Pettit lime at 5,098 to 5,112 feet. A shallow discovery, in the Eocene at 1,462 to 1,465 feet, was made by No. 1 Hughes in sec. 22, T. 8 N., R. 1 E., La Salle Parish, good for 10 million cubic feet of gas after it had been plugged back from the Wilcox at 4,092 feet total depth.

In the Louisiana Gulf Coast section eight discoveries, all from the Miocene, were reported—one dry gas and seven condensate producers. The gas discovery, Bay Decherre in La Fourche Parish, was shallow (2,460 to 2,528 feet), but all the condensate wells were deep, producing at 6,750 to 10,883 feet. The latter were: Point Aufer and Lapeyrouse, Terrebonne Parish; Belle Isle, St. Mary's Parish; De Lacrois Island, Plaquemines Parish; Lakeside and Pecan Lake, Cameron Parish; and

Lewisburg, Acadia Parish.

Records of the Louisiana Department of Minerals indicate that gross measured gas production in 1941 was 574.8 billion cubic feet—375.1 billion from gas wells and 199.7 billion from oil wells. North Louisiana produced 333.3 billion cubic feet from gas wells and 66.0 billion from oil wells. South Louisiana produced 41.8 billion from gas wells and 133.7 billion from oil wells. Gas processed for gasoline extraction rose from 145.2 billion cubic feet in 1940 to an estimated 250 billion in 1941. Several pipe-line construction projects increased the facilities for transporting Louisiana gas to important markets in other States during 1941.

About 55 billion cubic feet of gas were returned to producing formations in pressure-maintenance operations during 1941, or more than double the volume in any previous year. Three major projects were operating—at Tepetate, Ville Platte, and Cotton Valley—in addition to small ones. The cooperative installation at Cotton Valley is the largest in existence, having a rated daily capacity of 150 million cubic feet of gas. It started operating in July 1941. Liquid-product pro-

duction is expected to exceed 10,500 barrels a day.

A fourth large pressure maintenance project, at South Jennings, Jefferson Davis Parish, began operating during the last week of 1941, Michigan.—Reported natural-gas production reached a new high of 15,092 million cubic feet in 1941, or 6 percent more than in 1940, according to information from F. R. Frye, petroleum engineer, Michigan Department of Conservation.

In all, 97 gas wells were drilled, more than in any year since 1936. Activity was due chiefly to the development of fields discovered in 1940 and to the discovery and partial development of the Deerfield pool in western Isabella County—an extension of the old Broomfield pool. The discovery well—Winesburg No. 1, sec. 20, T. 14 N., R. 5 W.was completed in March 1941 for 2.2 million cubic feet of gal a day from the Michigan Stray sand at 1,292 feet. Twelve wells drilled in 1941 provided 2,000 acres for production. Further development is expected. Six wells were drilled in the Broomfield pool.

The Reed City gas field, Osceola County, discovered in November 1940, was expanded to cover 4,100 acres by drilling 24 gas wells. Production is from the Michigan Stray sand at 1,150 to 1,250 feet.

Sixteen gas wells were completed in the Marion gas field, Clare and Osceola Counties. Proved territory covers about 5,000 acres. Five wells were added to the Riverside pool, Missaukee County, increasing

its probable productive area to 1,600 acres.

The Bateson No. 1 test in sec. 2, T. 14 N., R. 4 E., Bay County, which blew out in 1940 with a heavy flow of wet gas from 7,776 feet, was deepened to a record 10,445 feet. It penetrated the St. Peter sandstone but being dry in the deeper zones was plugged back to 7,800 feet and completed as a gas and "condensate" well.

In the Salem field, Allegan County, the Heasley No. 1 in sec. 21, T. 4 N., R. 13 W., was completed as a gas well in the Salina formation at 3,792 feet. Open-flow capacity was 304,000 cubic feet and closed pressure 1,150 pounds. The Evart gas pool was discovered in November 1941 by Wirth No. 1 in sec. 22, T. 18 N., R. 8 W., Osceola County. It made 388,000 cubic feet from the Michigan Stray sand at 1,467 feet. Two additional wells were drilled in 1941.

A well in sec. 7, T. 18 N., R. 7 W., Osceola County, found 1.9 million cubic feet of gas in the Michigan Stray sand at 1,528 feet to open a

new producing area. A second well was drilled in 1941.

Four Berea-sand gas wells completed in the Deep River pool in Arenac County at 1,500 to 1,550 feet proved an area of about 800 The largest of these wells made 3.5 million cubic feet a day.

Perhaps the most important gas discovery of 1941 was made by Turner No. 1 in sec. 15, T. 3 S., R. 4 W., Calhoun County, 60 miles from the nearest gas well. A reported daily flow of 10.5 million cubic feet was found in Traverse limestone at 1,609 feet. Closed pressure was about 720 pounds.

Mississippi.—At the end of 1941 the Jackson gas field had 23 producing wells; all but 5 were producing some salt water with the gas. Total gas production in 1941 was 3,878 million cubic feet, a reduction of 39 percent from 1940, according to information supplied by H. M. Morse, supervisor of the Mississippi State Oil and Gas Board.

Of five wells drilled on the Jackson structure during 1941, four were completed as gas wells and one was a dry hole. In addition, a 1940 dry hole was completed as a gas well in January 1941 after it blew in from a depth of about 1,100 feet while casing was being pulled. Nine wells in the field were abandoned during 1941.

The Jackson field continued to yield the only commercial gas production in Mississippi. Casinghead-gas production in the Tinsley

oil field is negligible; in fact, gas is piped in for fuel.

Missouri.—Information from Frank C. Greene, geologist, Missouri

Geological Survey, indicates that gas completions and new capacity fell off sharply in 1941 from the 1940 totals. Of the 18 gas wells drilled, 9 were in the Polo field, Caldwell County (a 1940 discovery), and had a total daily open-flow capacity of 4.4 million cubic feet. The Prairie Point field, Platte County, had 5 new wells with total daily capacity of 7.9 million cubic feet; 4 small wells were drilled in Jackson County. No new gas areas were opened.

Montana.—Completion of 59 gas wells in 1941 marked a continued expansion in gas development since the low point in 1938, when only 21 were reported. A report by L. G. Snow, acting supervisor, Geological Survey, United States Department of the Interior, Casper, Wyo., is the source of information. Only one new well was in wildcat territory; drilled in sec. 18, T. 35 N., R. 4 E., Liberty County, it opened the Haystack Butte field in November 1941, when it flowed 1.3 million cubic feet of gas a day from two sands in the Colorado shale at 1,938 and 2,162 feet.

Twenty-nine wells were drilled at Bowdoin to comply with lease agreements and to prepare for unitization of the field. The Kevin-Sunburst area had 9 gas completions; Cedar Creek had 7.

remainder of the new wells were scattered in other fields.

Marketed production increased 7 percent in 1941 to 27,319,244,000 Production of the Bowdoin field more than doubled, as cubic feet. it supplied a substantial portion of the gas requirements of the pipeline system formerly dependent on Cedar Creek alone. Cedar Creek withdrawals were reduced 12 percent to conserve its gas reserve for future peak loads. The production rates of other fields did not change radically from 1940. It is estimated that 13,214 million cubic feet of gas were used for domestic and commercial purposes (increase, 14 percent) and 14,152 million for industrial purposes (increase, 1 percent).

The two active gasoline plants in Montana processed 7 percent more gas in 1941 than in 1940. The absorption plant at Cut Bank handled 10,565 million cubic feet, from which it extracted over 4 million gallons of natural gasoline and liquefied gases. At the Dry Creek plant, 200 million cubic feet of gas were processed and 59,000 gallons of

natural gasoline recovered.

Number of wells and natural gas produced in Montana in 1941, by fields

Field	Number of wells pro- ducing gas Dec. 31, 1941	Marketed gas pro- duction (M cubic feet) ²	Gas used for repres- suring (M cubic feet)?	Estimated field use (M cubic feet) ²	Estimated waste (M cubic feet) ³
Bowdoin Bowes. Box Elder Cedar Creek Cut Bank Devon. Dry Creek Hardin Haystack Butte. Kevin-Sunburst. Whitlash	93 13 7 159 87 9 6 61 1 190	2, 334, 855 577, 240 479, 393 6, 642, 516 11, 426, 478 310, 664 1, 060, 381 82, 071 13, 152 3, 408, 472 984, 022		20, 000	2, 000 1, 000 500 10, 000 100, 000 2, 000 800 1, 500 18, 250
Total Montana	643	27, 319, 244	7, 200	20, 500	136, 650

¹ Compiled by Oil Conservation Board of Montana.
² Data supplied by L. G. Snow, acting supervisor, Geological Survey, U. S. Department of the Interior.

New Mexico.—Gas-well completions in southeastern New Mexico in 1941 about doubled the 1940 record in both number and initial capacity, according to information supplied by Foster Morrell, acting supervisor, Geological Survey, United States Department of the Interior, Roswell, N. Mex. Thirteen wells had a total initial daily

production of 158.5 million cubic feet.

Gas marketed from the Lea and Eddy County fields totaled 36,472 million cubic feet, 30 percent above the 1940 total. Only about 1 percent of this gas came from Eddy County. The throughput of gasoline plants was 109,756 million cubic feet, a 13-percent gain over 1940. Gas lift, other oil-field uses, and venting without gasoline-plant treatment are estimated to have consumed 19,289 million cubic feet. About 50 billion cubic feet of residue gas presumably were blown to the air. One gas pipe-line company has arranged to market increased volumes of residue gas in future.

A shallow gas discovery was reported in Eddy County in August. The No. 1 Willis in sec. 14, T. 20 S., R. 28 E., made 3 million cubic feet

of gas from the Permian at 830 to 930 feet.

In the northwestern part of the State, six gas wells were drilled in 1941 with a total initial capacity of 10.4 million cubic feet. Gas production was 28 percent larger than in 1940 and totaled 3,677 million cubic feet. The output of Fulger Basin increased severalfold in 1941 to 600 million cubic feet. Withdrawals from other fields increased moderately; Kutz Canyon produced 2,053 million cubic feet, Ute Dome 985 million, and Blanco 39 million.

New York.—Drilling for natural gas in the Oriskany sandstone obtained a smaller total of initial production during 1941 for the fourth successive year, according to information supplied by C. A. Hartnagel, State geologist. From a daily peak of 403.4 million cubic feet in 1937, the initial productive capacity has fallen to 91 million in 1941. Of 42 wells drilled in 1941, 18 were producers compared with

1940 totals of 50 and 20, respectively.

Allegany and Steuben Counties continued to lead in development, although Steuben replaced Allegany in 1941 as the area in which nearly all the substantial new production was found. Allegany County slipped badly from 13 wells with 84.6 million cubic feet initial capacity in 1940 to 2 wells with 8.3 million in 1941. Comparable data for Steuben County were 3 wells with 13.6 million cubic feet capacity in 1940 and 14 wells with 82.1 million in 1941. Half of the 42 Oriskany tests drilled during 1941 were in Steuben County. In Cameron Township all five of the wells drilled were successful, and their new daily production totaled 35.8 million cubic feet of gas. Three of five wells drilled in West Union Township came in with a total production of 39.3 million cubic feet. In Howard Township six wells drilled in 1941 were all small producers, but they are closely spaced and the life of the field may be short.

Other exploratory wells to the Oriskany sandstone were drilled in Tompkins, Chemung, and Wyoming Counties; of these, only two in the city of Elmira (Chemung County) gave production, and it was small. As a whole, the known fields producing from the Oriskany sandstone are being rapidly depleted; numerous tests during the last few years have failed to find any important new Oriskany pools. The Wayne-Dunde field, where gas from the Oriskany sandstone was

discovered in 1930, is now being used for storage of gas.

North Dakota.—Natural-gas production has been unimportant in the past in North Dakota, but growing interest in exploration by oil companies may presage a more active future. Wilson M. Laird, State geologist, has furnished the following information.

Five gas wells were drilled in 1941 in a southeastern extension of the Cedar Creek (Mont.) field, in the extreme southwestern corner of the State. At the end of 1941, eight small gas wells on the North Dakota side of the State boundary were producing from the "Eagle" They were shut in except for November and December, when 47 million cubic feet of gas were withdrawn. The gas is piped into Montana, where it enters the large pipe-line system that surplies parts of the Dakotas and eastern Montana.

In the Souris River gas area in the vicinity of Mohall, a number of small gas wells have produced for years from the Dakota sandstone, which occurs there at a depth of about 1,000 feet. The gas is used locally in a few homes, as the supply apparently is too small to encourage commercial exploitation. Small amounts of gas are also produced and used locally in an area near La Moure in the southeastern part of the State. It comes from the Dakota sandstone

with artesian water.

Ohio:—A 27-percent increase in drilling during 1941 resulted in 43 percent more gas-well completions and a 72-percent increase in volume of initial gas capacity. These ratios indicate a fair degree of success for the intensive efforts to develop more gas in Ohio. Data are taken from a report by Kenneth Cottingham, chief geologist, Ohio Fuel Gas Co. The average initial capacity per well increased from 581,900 cubic feet in 1940 to 702,000 in 1941. Larger average wells were completed in all producing formations except the Trenton, in which activity was negligible.

The Clinton sand continued dominant as a source of gas, with 325 wells averaging 1,092 thousand cubic feet of gas a day. Gas completions in other sands, with average initial daily capacity in thousands of cubic feet, were: Shallow sands 162 with 381 average, Berea 150 with 188, Ohio shale 26 with 191, Oriskany 7 with 432, Newburg 29

with 1,356, and Trenton 2 with 50.

A total of 35 counties—five more than in 1940—reported gas-well completions in 1941. The most active counties, in order, were: Licking 102, Meigs 63, Athens 60, Washington 46, Muskingum 45, Knox 43, Noble 34, and Monroe 31. The sharpest gain in number of wells was in Meigs County.

Four deep tests were drilled through the Trenton limestone. small show of gas was encountered in one of them in a sandy formation, called the St. Peter, at 3.975 feet in sec. 21, Jersey Township, Licking

Clinton-sand development was most active in Licking County, where 91 gas wells were completed, most of them in the area northeast of the city of Newark. Thirty-nine Clinton gas wells were drilled in Knox County and 45 in Muskingum. The largest well of the year in Ohio was Winters No. 1, in sec. 5, Salt Creek Township, Muskingum County, which made 12 million cubic feet from the Clinton sand at 4,123 feet and had a closed pressure of 1,120 pounds. Clinton-sand wells in Muskingum County and two in Morgan County tested 10 million cubic feet or more initially. A Newburg-sand well in Independence Township, Cuyahoga County, yielded 6 million cubic feet a day from a depth of 2,720 feet.

In Washington Township, Harrison County, several Clinton wells were drilled; two of them made producers of 471,000 and 365,000 cubic feet of gas initial daily capacity from depths below 5,800 feet. Another deep well made 559,000 cubic feet of gas from the Clinton sand with total depth of 5,289 feet. It was drilled in sec. 26, Union Township, Tuscarawas County. A number of deep dry holes were drilled in eastern Ohio through the Oriskany or Clinton sands, the deepest going to the Clinton at 7,887 feet in sec. 19, Smith Township, Belmont County; this was the second-deepest hole ever drilled in Ohio.

Oklahoma.—Continued decline in production of natural gas from oil wells caused a 6-percent drop in gas production for 1941 to 254,881 million cubic feet, according to the Oklahoma Tax Commission. A 3-percent increase in production from gas wells to 90,529 million cubic feet was overbalanced by an 11-percent decline in casinghead gas

output to 164,352 million cubic feet.

Although drilling for oil and gas increased moderately in Oklahoma in 1941, owing in part to a 30-percent increase in wildcatting ventures, gas-well completions apparently declined slightly to about 175 from about 180 in 1940. Most of the gas wells continued to be drilled in the old eastern areas, led by Muskogee, Okmulgee, Creek, Wagoner, Okfuskee, and Latimer Counties. Nine gas completions were reported in the Chickasha field and 5 at Cement, adding materially to productive capacity of these important fields. One well drilled in eastern Texas County increased the already vast area proved for gas production.

A total of 14 gas discoveries was reported—2 in the Wilcox sand, 3 in the Cromwell, and 1 each in 9 other formations above the Wilcox. By counties they were as follows: Hughes 2, Lincoln 2, Okfuskee 2, and 1 each in Carter, Le Flore, Osage, Pontotoc, Pottawatomie, Seminole, Stevens, and Texas. A new pay formation was found in the Centrahoma area of Coal County when a well in sec. 27, T. 2 N., R. 9 E., made 10.6 million cubic feet a day from a sand at a depth of 1,340 feet.

Gas output of the Oklahoma City field continued to shrink rapidly as pressures in several sands declined below pipe-line intake pressures. The oil operators who blew many billions of cubic feet of gas to the air to produce oil as rapidly as possible now regret the current absence of a vast quantity of natural gas at low prices such as would make repressuring profitable.

The volume of gas piped from Oklahoma fields to markets to the north and east probably was 10 percent larger in 1941 than in 1940, due chiefly to increased takings from the Chickasha-Cement district

and from Texas County.

Pennsylvania.—The outstanding trend during 1941 in Pennsylvania gas fields was intensification of development in shallow-sand territory, according to information from J. G. Montgomery, Jr., vice president, United Natural Gas Co. This was the natural result of increased gas demand from war-stimulated industry and the foreshadowed exhaustion of the northern Oriskany sand fields.

The active drilling campaign resulted in several discoveries; the most important was probably the Armbrust pool in Westmoreland County, where about 600 acres were proved for Fifth-sand gas production, with the limits of the pool still undefined. Average initial openflow capacity of the wells was 780,000 cubic feet and reservoir pressure

1,015 pounds at the year end. Fifteen wells had been completed by

the end of 1941, and 24 more were being drilled.

In East Franklin and Sugar Creek Townships, Armstrong County, a small gas pool was discovered in the Hundred Foot sand. A Kane sand well in Oliver Township, Jefferson County, completed for an initial daily production of over 2 million cubic feet, spurred activity in that region. In western Fayette and eastern Greene Counties a number of wells with an initial daily open-flow capacity of 1 to 5 million cubic feet were completed in the Big Injun sand and Mississippian. A well in Forward Township, Allegheny County, made 9 million cubic feet a day from the Bayard sand of the Upper Devonian. The smaller capacity of wells drilled recently in the Sliverville pool, McKean County, formerly prolific in gas as well as oil, indicates that it is nearing exhaustion.

Commercial exploitation of gas from the shallow Portage shales of western Erie County was attempted. Initial daily volumes varied

widely but averaged about 900,000 cubic feet.

Oriskany-sand development resulted in one small discovery and extension of the producing area of one field. The discovery well in Bingham Township, Potter County, made about 1 million cubic feet of gas a day from the Oriskany sand. Five scattered dry holes were drilled to this sand in the Potter-Tioga Counties district. mit gas pool, Fayette County, was extended 1 mile southwestward with the completion of three wells in South Union Township. initial daily capacities were 1, 2, and 3 million cubic feet from the Chert zone of the Onondaga formation and the underlying Oriskany Three more wells were being drilled in the field. Stewart Township the deepest test ever drilled in Pennsylvania shut down at 8.498 feet after encountering only 16,000 cubic feet of gas in the Oriskany.

Three Oriskany exploratory wells, drilled respectively in North Sewickley Township (Beaver County), Springfield Township (Mercer County), and West Franklin Township (Armstrong County), were completed as dry holes; the last two holes did not encounter the Oriskany sandstone. Other Oriskany tests were being drilled in Greene, Beaver, and Westmoreland Counties.

A small show of gas was found in the St. Peter sandstone in a well in Springfield Township, Erie County, which penetrated this formation

in Pennsylvania for the first time.

Gas production from shallow sands increased greatly during 1941, whereas Oriskany-sand production from the Potter-Tioga Counties fields continued its decline from 6.5 billion cubic feet in 1940 to 3.75 billion in 1941.

Blow-outs due to high-pressure gas pockets in the Marcellus shale were overcome at the Beaver County Oriskany test by drilling a pilot hole ahead of the larger tools and then reaming. Other operators have carried a column of brine in the hole to combat this nuisance.

South Dakota.—No wells were drilled in South Dakota during 1941, according to information from E. P. Rothrock, State geologist. The small gas production at Pierre and Fort Pierre continued to be

separated from artesian water and marketed locally.

Geological and geophysical prospecting by major oil companies continued in 1941. Large areas are under lease in central and extreme western South Dakota, and some wildcat drilling may be attempted in the spring of 1942.

Tennessee.—Kendall E. Born, assistant geologist, Department of Conservation, Nashville, Tenn., reports that natural gas is marketed from producing leases in two areas in Tennessee—Sunbright in northern Morgan County and Jamestown in Fentress County.

A small volume of gas is obtained from oil wells 5 miles northwest of Sunbright which produce from beds of lower Mississippian age at 1,150 to 1,400 feet. A 2-inch pipe line serves the small community.

Four shallow wells about 3 miles south of Jamestown produce gas from fractured limestones of Trenton age. The gas was piped into Jamestown about 2 years ago, but no production figures are available.

Texas.—Gross gas production in Texas continued its upward trend to new high levels in 1941 to total about 1,740 billion cubic feet, as estimated from incomplete State reports. Gas wells are thought to have produced about 1,200 billion and oil wells 540 billion cubic feet.

As in 1940, operations of cycling plants in condensate fields expanded rapidly (30 percent); about 420 billion cubic feet of gas were processed, accounting for the increase in gas-well output. During November and December 1941, recycling plants returned an average of 1,200 million cubic feet of gas a day to producing formations under high pressures, and the total daily intake volume of these plants slightly exceeded 1,400 million cubic feet. The average yield of petroleum liquids of all types from these plants was about 1.1 gallons per thousand cubic feet of gas processed. At the end of 1941, 280 producing wells were connected to recycling plants, an increase of 37 during the year.

Gas-well completions reported totaled 294 in 1941, an increase of 5 over 1940. Panhandle completions slumped from 81 in 1940 to 49 in 1941, and Eastern Texas completions were off slightly from 59 to 54. Modest gains were reported in other areas, led by Southwest Texas with 18 more gas wells to a total of 88 in 1941 and North Central

Texas with a gain of 17 to 54.

In 1941, 23 gas and condensate discoveries were reported, comprising 8 condensate producers and 15 dry gas wells. The Eastern Texas district had 3 condensate discoveries—Pleasant Grove, Rusk County; Willow Springs, Gregg County; and Grosbeck, Limestone County. These fields produce from the Woodbine, Rodessa, and Pettit formations, respectively. In the Hawkins field, Wood County, a substantial gas reserve was indicated in the sub-Clarksville sand just above the Woodbine oil sand.

In North Texas a single gas discovery was made by No. 1 Mosely, which produced 2.2 million cubic feet of gas from the Bend series at

4,498 to **4,510** feet.

On the Gulf coast, condensate discoveries were reported at Needville in Fort Bend County and Vienna in Lavaca County, producing from the Frio and Wilcox formations. A gas area was opened at Navidad, Jackson County, by No. 1 Terrell, which found pay in the Frio at

3,786 to 3,793 feet.

Of seven discoveries listed in Southwest Texas, five produced from the Jackson formation. Two of these were condensate wells at Genevieve, Bee County, and Rios, Duval County. Dry gas discoveries were made at Chaparosa and East Colorado, Jim Hogg County, and Heard, Bee County. A Frio sand condensate discovery was made at Coloma Creek, Calhoun County; and at Steamboat Pass, also in Calhoun, a well made 32 million cubic feet of gas from the Catahoula at 2,880 to 2,885 feet.

In West Texas a wildcat produced 2 million cubic feet of gas from a

limestone at 1,250 feet at Baldwin in Menard County.

Eight dry-gas discoveries were reported in West Central Texas. Largest initial capacity was from the No. 1 Hendricks, which made 13 million cubic feet a day from the Cisco at 1,476 to 1,489 feet to open the Crites pool in Haskell County. In Stevens County an unnamed pool was opened by No. 1 Wheland, which made 10.5 million cubic feet of gas from the Marble Falls limestone at 4,077 to 4,095 feet, and the Loving pool was discovered by No. 1 Walls Pasture Co., which found 1.2 million cubic feet in the lower Caddo lime at 4,069 to 4,082 feet. Other discoveries were: Kirk pool in Eastland County and Greynolds pool in Brown County which produced from the Caddo lime, the Elliott pool in Shackelford County which made gas from the Canyon limestone, the Silver Valley pool in Coleman County which produced from the Fry sand (Strawn), and the Noland pool in Palo Pinto County which produced from the Strawn series.

Utah.—Production of natural gas increased 9 percent in 1941 to 4,705 million cubic feet, as reported by L. G. Snow, acting supervisor, Geological Survey, United States Department of the Interior, Casper, Wyo. The Ashley Valley field, which furnished the only commercial gas production in Utah in addition to the Clay Basin field, was exhausted after producing only 15 million cubic feet in 1941. The wells were being abandoned and materials salvaged at the year end. The Last Chance gas field, with one well available, remains shut in because

of its isolated location and unknown reserves.

At Farnham 102 million cubic feet of carbon dioxide were taken

from one well and used in the manufacture of dry ice.

The only new gas well in the State in 1941 was completed in the Clay Basin field, with an initial daily capacity of 19.2 million cubic feet. Clay Basin has been operated under a unit agreement since January 1, 1940. It now has seven gas wells in the Dakota sand and two in the Frontier, which is not very productive. One Dakota well to each 600 acres is deemed to be productive.

Washington.—Unofficial reports indicate that natural-gas production in Washington ended in August or September 1941 with the shutting down of the depleted Rattlesnake Hills field and capping of the wells. Butane or propane gas probably was substituted for natural to meet obligations to customers in the Yakima Valley towns that

have been served.

West Virginia.—Exploration and development continued to expand vigorously during 1941 as current and prospective demand for gas threatened to exceed the supply "in sight." Information is taken from a report by David B. Reger, consulting geologist, Morgantown, W. Va.

Reported new gas wells increased 19 percent to 558 in 1941. Total new daily capacity developed was 1,005 million cubic feet—including 56 million from 86 old wells deepened—almost 50 percent larger than

the 1940 volume.

About 75 percent of the initial capacity added in 1941 was from the Oriskany sand, in which 166 gas wells were completed. Jackson supplanted Kanawha as the most active county, with 94 new Oriskany gas wells having a total initial daily capacity of 545 million cubic feet. About 14,800 additional acres were proved for Oriskany gas production in the Buttermilk-Sandyville gas pool. raising its total proved

territory to 16,000 acres. In Kanawha County, 68 Oriskany wells had 170.5 million cubic feet of initial daily capacity, averaging much smaller in size than the Jackson County wells. About 20,000 acres were added to the proved area of the Elk-Poca pool, making its total extent at the end of 1941 80,000 acres. The four Oriskany sand pools in the Charleston district now cover about 107,000 acres whose estimated original gas reserve in the Oriskany sand was approximately 600 billion cubic feet. Recovery thus far has been about 350 billion cubic feet, leaving an estimated supply of 250 billion available for

consumption at the beginning of 1942.

Two Oriskany wells were completed in the Union district, Putnam County, on the west edge of the Elk-Poca gas pool. A successful wildcat in Lewis County, Freeman's Creek district, was completed with rotary tools in the Oriskany at a reported total depth of 7,325 feet. The open-flow capacity was 474,000 cubic feet and closed pressure 2,300 pounds. Oriskany sand failures were drilled in Boone, Harrison, Lincoln, Monongalia, Roane, and Wood Counties. The White Clinton sand was tested unsuccessfully in Harrison County, Grand district, by a rotary-drilled well that went to the record depth of 10,018 feet without finding commercial quantities of gas. Two dry holes through the Clinton were drilled in Kanawha County and one in Wood County.

The Trace Fork gas pool in the Curry district, Putnam County, was the most actively developed shallow-sand area in 1941. In all, 38 gas wells were drilled with a total daily open-flow capacity of over 30 million cubic feet. The proved area of the field was enlarged from 10,000 to 15,000 acres during 1941, most production coming from Salt sand, Big Lime, and Berea. Only a few wells have been drilled to the Devonian brown shale, which may eventually furnish much additional

gas in this pool.

The total gas production in 1941 is estimated to have increased to

210 billion cubic feet.

Leading counties in gas-well completions were: Boone 32, Braxton 19, Cabell 16, Calhoun 46, Clay 20, Gilmer 37, Jackson 94, Kanawha 82, Lincoln 17, Putnam 46, Ritchie 33, Upshur 20, and Wayne 33.

Wyoming.—Five gas wells were drilled in old fields during 1941—one each at Bunker Hıll, East Allen Lake, Elk Basin, Hiawatha, and Muskrat. The total daily open-flow capacity was 56.4 million cubic feet. Information is taken from a summary by L. G. Snow, acting supervisor, Geological Survey, United States Department of the Interior, Casper, Wyo. The Elk Basin well was a field extension; the others were within the probable limits of fields previously established.

Three gas discoveries were made. A small well was drilled in sec. 10, T. 12 N., R. 101 W., at Canyon Creek, Sweetwater County, near an old and deeper dry hole. A wildcat well in sec. 31, T. 25 N., R. 88 W., on Sherard dome tested 5.8 million cubic feet from the Dakota and Lakota sands. It was continued unsuccessfully to the Tensleep formation in search of oil. A well in sec. 10, T. 29 N., R. 113 W., at Big Piney reported 15 million cubic feet of gas at a depth of 950 feet. Several good gas showings have been encountered in this area, but it is remote from existing gas lines or consuming centers.

The gross gas production increased 11 percent in 1941 to 43.4 billion

cubic feet, and metered or marketed production was 4 percent larger at 28.3 billion. Gas used in cycling or repressuring was 10.9 billion cubic feet in 1940 and 12.5 billion in 1941. The Salt Lake City gas system took 14.8 billion cubic feet of gas during 1941, an increase of 13

percent over 1940.

As a rule production was moderately higher in the principal fields, a notable exception being Big Medicine Bow, where a decline of over 50 percent was reported. Gas output of some larger fields in 1941 was as follows: Salt Creek 9,509 million cubic feet, Baxter Basin (entire field) 6,949 million, Lance Creek 7,294 million, Big Sand Draw 4,773 million, Muskrat 2,114 million, Little Buffalo Basin 1,737 million, Elk Basin 1,793 million, and Big Medicine Bow 584 million.

Salt Creek and Lance Creek continued to be the only fields where repressuring or pressure maintenance is being carried out on a large The volume of gas injected in these fields totaled 6.4 and 4.8 billion cubic feet, respectively, in 1941. Small amounts also were returned to formations at Elk Basin, La Barge, Rock Creek, Wertz,

and Grass Creek.

Gasoline plants processed 22,366 million cubic feet of gas in 1941. distributed by fields as follows, in millions of cubic feet: Salt Creek 9,466, Lance Creek 7,230, and Big Sand Draw 4,773, with small amounts at Rock Creek, Elk Basin, and Grass Creek.

CONSUMPTION

Consumption of natural gas in the United States in 1940 was the largest on record, increasing 7 percent over 1939 to 2,655 billion cubic feet. Domestic and commercial demand rose 13 percent—an unusual gain—owing to extremely cold weather in January and February 1940. The industrial load was higher than in 1939 by a modest 6 percent, as all types of demand expanded except that of fuel for electric power

The average unit sales value of domestic and commercial gas has trended slightly downward since 1932. The number of meters has grown rapidly (42 percent), while the average consumption per meter has shown no definite trend, apparently responding chiefly to varia-

tions in weather conditions.

In the 8 years following 1932 the demand for natural gas more than doubled in each of 20 States, and total consumption increased 71 per-

Natural gas consumed in the United States, 1936-40

	Domestic and commercial consumption										
	Consum	Consumers (thousands) Billions of cubic feet Average number						Average			
Year	Domes- tic	Com- mercial	Total	Domes- tic	Com- mercial	Total	M cubic feet used per domes- tic and commer- cial con- sumer	value at points of consump- tion per M cubic feet (cents)			
1936 1937 1938 1939 1940	8, 017 8, 348 8, 570 8, 888 9, 245	657 680 695 715 741	8, 674 9, 028 9, 265 9, 603 9, 986	343 372 368 391 444	112 117 114 119 134	455 489 482 510 578	52. 5 54. 2 52. 0 53. 1 57. 9	67. 1 67. 68. 3 67. 9 65. 7			

¹ Includes consumers served with mixed gas.

Natural gas consumed in the United States, 1936-40—Continued

			Inc	lustrial c	onsumpt	ion	-			l con- ption
•• *:			Bil	lions of c	ubic feet			Average		Aver-
Year	Field	Car- bon- black manu- facture	Petro- leum refin- eries	Electric publicutility power plants 2	Port- land- cement plants ³	Other indus- trial	Total indus- trial	value at points of consumption per M cubic feet (cents)	Bil- lions of cubic feet	value at points of consumption per M cubic feet (cents)
1936 1937 1938 1939 1940	619 651 659 681 712	283 341 325 347 369	93 113 110 98 128	156 171 170 191 183	37 41 37 40 42	518 597 511 607 643	1, 706 1, 914 1, 812 1, 964 2, 077	10. 0 10. 3 9. 4 9. 6 9. 5	2, 161 2, 403 2, 294 2, 474 2, 655	22. 0 22. 0 21. 8 21. 6 21. 7

Natural gas consumed in the United States, 1936-40, by States, in millions of cubic feet

State	1936	1937	1938	1939	1940
Alabama	16, 630	16, 593	14, 796	20, 093	23, 461
Arizona	8, 232	12, 857	12,660	16, 643	18, 002
Arkansas	30, 986	35, 074	34, 833	35, 673	39, 719
California	320, 406	329, 769	315, 168	348, 361	351, 950
Colorado	19, 713	20, 816	19, 212	21, 978	22, 111
District of Columbia.	3, 104	3, 458	3, 826	4, 069	4, 686
Florida		1, 389	1, 469	1, 658	1, 481
Jeorgia	11, 575	13, 893	14, 783	16, 296	20, 551
Olinois	72, 516	78, 650	66, 500	77, 134	88, 088
Indiana	18, 564	23, 551	26, 706	30, 795	29, 214
lowa.	20, 918	21. 354	20, 109	21, 732	23, 460
Kansas	82, 025	96, 822	86, 105	85, 865	96, 772
Kentucky	18, 159	18, 154	15, 350	16, 563	18, 881
Louisiana	166, 485	174, 153	162, 260	164, 667	185, 089
Maryland	915	1,011	1, 247	4, 907	5, 855
Michigan	11, 142	24, 112	24, 697	27, 316	32, 790
Minnesota	11, 918	13, 111	14, 641	17, 262	19, 904
Mississippi	11, 368	13, 327	12,785	14, 207	17, 657
Missouri	40, 124	46, 898	42, 505	47, 157	53, 141
Montana	1 19, 894	1 21, 594	1 18, 225	1 19, 765	22, 328
Nebraska	16, 780	17, 263	17, 539	19, 654	20, 087
New Mexico	19, 814	28, 056	32, 890	38, 981	40, 198
New York	40, 638	50, 080	47, 950	46, 877	27, 250
North Dakota	1, 578	1,641	1, 533	1, 607	1, 725
Ohio	121, 381	125, 133	108, 013	114, 720	129, 856
Oklahoma	260, 120	269, 604	244, 443	231, 005	230, 806
Pennsylvania	110, 195	119, 501	96, 285	109, 746	121, 230
South Dakota	5, 061	5, 519	5, 354	5, 712	6, 454
Cennessee	11, 913	13, 353	14, 047	2 15, 558	16, 819
Pexas	598, 088	706, 120	729, 603	796, 561	874, 294
Tank	10, 552	12, 449	11, 699	13, 172	14, 802
Jtah	10, 552	550	615	788	963
Virginia	141	143	117	63	36
Washington					
West Virginia	57, 978	65, 395	57, 478	69, 394	77, 540
Wyoming	20, 153	21, 648	18, 654	17, 786	17, 459
Total United States	2, 160, 518	2, 403, 041	2, 294, 097	2, 473, 765	2, 654, 659

The gain of 460 billion cubic feet in Texas overshadowed that in other States from the standpoint of total volume; other important gains were in California, Louisiana, Illinois, Pennsylvania, and Kan-Upon a percentage basis, the sharpest increases were in Michi-

Federal Power Commission.
Chapters on Cement in Minerals Yearbook.

Includes natural gas piped from Canada.
 Small amount of gas consumed in Tennessee included with Virginia; separate figures not available.

gan, Minnesota, Maryland, Arizona, and Georgia; major gas lines have been laid to all those States since 1928 to open up new market areas.

Treated for natural gasoline.—Continued growth in recycling-plant operations in the Gulf Coast region was the major factor in an estimated 17-percent increase in volume of gas treated for gasoline extraction in the United States in 1941 to about 2,900 billion cubic feet. The continued decline in gasoline yield evidenced during 1941 is suggested by natural-gasoline production statistics, which indicate small reductions in the output of such important States as California and Oklahoma, where yields are above the national average, and pronounced gains in Texas and Louisiana, where yields are below the national average.

Final data indicate that in 1940 the volume of gas processed exceeded that in 1939 by 15 percent. The largest gains over 1939 were in Texas, Louisiana, West Virginia, Pennsylvania, and Illinois.

industrial, 11 con 1 lightly 2 cities 11 and a little in.

Natural gas treated at natural-gasoline plants in the United States, 1936-40, by States, in millions of cubic feet

State	1936	1937	1938	1939	1940
Arkansas	2, 955	4, 031	21, 377	19, 171	26, 58
California	372, 118	381, 568	398, 187	377, 041	375, 40
olorado	223	153	145	130	14
Illinois	971	1,027	1, 110	2, 440	12,71
Cansas	106, 230	153, 416	144, 631	141, 945	150, 96
Kentucky	35, 493	34, 981	38, 446	36, 817	39, 66
ouisiana	115, 606	144, 474	116, 331	114, 960	145, 23
Iichigan	1,419	1, 381	1, 395	1, 019	1, 41
Iontana	8, 238	9,062	7, 126	8, 116	9, 52
Tew Mexico	29, 489	61, 625	97, 830	97, 010	101, 21
lew York	22	50	65	65	4
)h10	33, 103	33, 625	28, 488	32, 703	38, 54
Oklahoma	255, 433	338, 007	265, 746	219, 755	219, 25
Pennsylvania	34, 168	31, 508	22, 600	26, 662	40, 16
'exas	673, 483	754, 696	752, 784	914, 701	1, 123, 23
Vest Virginia	128, 488	140, 512	122, 301	140, 982	168, 20
Wyoming	17, 561	18, 684	17, 000	16, 483	19, 09
	1, 815, 000	2, 108, 800	2, 035, 562	2, 150, 000	2, 471, 40
Percent of total consumption	84	88	89	87	9

Domestic and commercial.—Consumption of natural gas by domestic and commercial customers was notably lower during the early months of 1941 than in the corresponding 1940 period in all districts except California, because higher average temperatures prevailed. Unseasonably warm weather throughout the fall and early winter of 1941 in the Appalachian region curtailed the retail distribution of gas somewhat below normal expectancy. Therefore, domestic consumption is estimated to have increased less than 1 percent to 447 billion cubic feet in 1941 despite sharply increased national income and more domestic meters in use. Commercial use of gas increased 6 percent in 1941 to a new peak of about 143 billion cubic feet.

The average revenue received in 1941 per thousand cubic feet for gas sold is thought to have declined slightly to 70.8 cents from domestic consumers and 47.4 cents from commercial consumers. In 1940 the average value of domestic and commercial gas declined in all the larger consuming States except Pennsylvania, where a 6-percent increase was reported, probably reflecting a tight sellers' market for gas in the producing fields.

		Dome	stic		Tan Carlo	Comme	rcial			Tot	al	
State	Consumers	M cubic feet	Value at po		Consumers	M cubic feet	Value at j		Consumers	M cubic feet	Value at p	
	Consumers	WI CUDIC 1991	Total	Average (cents)	Consumers	WI CUDIC ICE	Total	Average (cents)	Consumers	M cubic leet	Total	Average (cents)
Alabama Arizona Arkansas California Colorado District of Columbia Florida Georgia Illinois Indiana Illinois Indiana Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York North Dakota Ohlo Oklahoma South Dakota Tennessee Texas Utah Virginia Washington West Virginia Washington West Virginia Washington West Virginia Washington West Virginia Washington West Virginia	36, 860 71, 960 71, 960 71, 963 97, 750 (2) 4, 130 86, 160 132, 550 214, 148, 200 191, 440 172, 450 191, 840 2 224, 770 159, 690 44, 740 2 26, 900 41, 730 (2) 1, 220, 880 266, 820 691, 510 16, 960 49, 750 648, 800 8 31, 930 (2) (3) (4) (1) (1) (5) (6) (6) (6) (7) (8) (9) (9) (1) (1) (9) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	1, 867, 000 1, 219, 000 6, 516, 000 74, 795, 000 6, 073, 000 2, 148, 000 1, 455, 000 19, 269, 000 3, 346, 000 18, 484, 000 10, 656, 000 2, 5, 659, 000 20, 406, 000 5, 438, 000 40, 132, 624, 000 16, 934, 000 16, 934, 000 17, 800, 100, 100, 100, 100, 100, 100, 100	\$1, 856, 000 1, 559, 000 3, 264, 000 56, 994, 000 4, 726, 000 22, 684, 000 3, 791, 000 10, 805, 000 7, 405, 000 24, 340, 000 21, 096, 000 4, 938, 000 21, 096, 000 4, 185, 000 11, 571, 000 2, 649, 000 11, 571, 000 2, 688, 000 13, 558, 000 10, 749, 000 24, 586, 000 13, 558, 000 10, 749, 000 24, 585, 000 10, 749, 000 24, 5571, 000 27, 520, 000 3 1, 861, 000 (2) 7, 674, 000 1, 402, 000	99. 4 127. 9 50. 1 76. 2 2 77. 8 (2) 133. 1 84. 5 122. 7 113. 3 99. 3 58. 5 56. 6 60. 5 2 76. 7 103. 4 90. 8 65. 5 2 76. 7 69. 9 80. 1 (2) 66. 5 84. 9 86. 5 84. 9 86. 5 86. 6 86. 6 86. 7 87. 7 88. 9 88. 6 89. 7 89. 8 80. 1 (2) 89. 8 80. 1 (2) 89. 8 80. 1 80.	3, 890 3, 890 12, 350 92, 890 9, 820 (2) 470 7, 650 65, 920 8, 790 27, 000 17, 310 22, 190 210, 540 24, 210 8, 040 7, 660 36, 470 5, 290 8, 480 3, 290 (3) 115, 030 33, 070 7, 190 21, 570 (2) (3) (4) (5) (7) (8) (9) (9) (10) (9) (10) (10) (10) (10) (10) (10) (10) (10	789,000 785,000 3, 683,000 17, 335,000 1, 887,000 2, 2000 3, 080,000 5, 179,000 775,000 1, 470,000 9, 422,000 2, 430,000 2, 717,000 2, 825,000 2, 409,000 2, 498,000 4, 086,000 3, 750,000 1, 1593,000 1, 1593,000 1, 1593,000 1, 1593,000 1, 1233,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 612,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000 3, 996,000 2, 611,000	\$410,000 460,000 1,251,000 8,566,000 1,085,000 (4,33,000 1,135,000 4,547,000 678,000 1,102,000 3,103,000 1,208,000 2,242,000 1,208,000 2,725,000 1,035,000 2,448,000 2,470,000 1,008,000 2,403,000 2,403,000 2,403,000 3,107,000 4,600,000 4,500,000 5,17,000 1,005,900 6,721,000 2,346,100 (2) 2) 1,872,000 537,000	52.0 58.6 34.0 49.4 57.5 (2) 82.7 36.9 87.8 87.8 88.5 68.8 39.1 267.1 267.7 29.5 43.0 60.7 29.3 56.6 37.9 72.2 (3) 31.3 52.8 41.9 38.5 44.4 (4) (5) (6) (7) (8) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9	37, 280 40, 750 84, 310 1, 786, 380 1, 786, 380 107, 570 29, 38, 810 1, 302, 940 143, 240 241, 140 189, 760 214, 030 2 235, 310 596, 790 167, 730 30, 190 30, 190 446, 940 (3) 1, 335, 910 289, 890 749, 530 18, 930 56, 940 289, 890 749, 530 33, 500 (4) (3) 212, 310 224, 870	2, 656, 000 2, 004, 000 10, 198, 000 92, 130, 000 7, 960, 000 200, 000 8, 535, 000 24, 448, 000 4, 121, 000 12, 199, 000 16, 446, 000 27, 966, 600 28, 231, 000 7, 847, 000 17, 690, 000 17, 690, 000 20, 260, 000 20, 260, 000 20, 260, 000 20, 260, 000 33, 684, 000 48, 836, 000 48, 836, 000 48, 836, 000 54, 836, 000 54, 836, 000 37, 716, 000 28, 27, 716, 000 29, 298, 000 31, 684, 000 48, 836, 000 48, 836, 000 48, 836, 000 48, 836, 000 48, 836, 000 49, 298, 000 31, 684, 000 40, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71	\$2, 266, 000 2, 019, 000 4, 515, 000 65, 560, 000 5, 811, 000 240, 000 5, 742, 000 28, 181, 000 4, 469, 000 6, 009, 000 13, 908, 000 2, 48, 822, 000 23, 821, 000 3, 513, 000 14, 041, 000 2, 074, 000 15, 961, 000 15, 961, 000 15, 961, 000 15, 961, 000 15, 5086, 000 2, 074, 000 15, 961, 000 16, 960, 000 17, 500, 000 18, 856, 000 29, 159, 000 18, 856, 000 29, 159, 000 19, 500, 000 31, 576, 900 31, 274, 000 32, 207, 100 32, 207, 100 31, 576, 900	85.3 100.7 44.3 71.2 73.0 (2) (2) (2) (2) (3) (4) (67.3 115.3 108.4 40.8 2.75.6 6.1 55.2 2.5 8.8 2.75.6 6.1 77.9 4.9 9.9 4.9 9.9 4.9 9.9 9.9 9.9 9.9 9
Total: 1940	9, 245, 230 8, 887, 460	443, 646, 000 891, 153, 000	315, 515, 000 287, 600, 000	71. 1 73. 5	741, 020 715, 390	134, 644, 000 118, 334, 000	64, 399, 000 58, 494, 000	47. 8 49. 4	9, 986, 250 9, 602, 850	578, 290, 000 509, 487, 000	379, 914, 000 846, 094, 000	65. 7 67. 9

¹ Includes natural gas used with manufactured gas.

³ Maryland includes District of Columbia and Virginia.

Utah includes North Dakota and Washington.

Field.—The reported field use of gas during 1941 is estimated to have decreased rather abruptly to 640 billion cubic feet from 712 billion in 1940, in consequence of a drop in consumption in Texas and Oklahoma. The 5-percent gain in 1940 field use of gas reported over 1939 can be ascribed almost entirely to Texas. The total for all other States was little changed, a decline in Oklahoma being balanced by small increases in a number of other States. Illinois had an exceptional increase from 2.2 billion cubic feet in 1939 to 7.8 billion in 1940, influenced by a boom in oil production.

The field-gas volumes in past years probably have experienced some inflation, particularly in Texas and Oklahoma. The question-naire on which gas operations are currently reported defines more specifically the several types of gas utilization in the field, and it is anticipated that its effect will be to facilitate the construction of reports that will picture with increasing accuracy the actual functions

gas performs.

Carbon-black manufacture.—Although carbon-black production increased about 4 percent in 1941, the quantity of gas used in its manufacture was slightly reduced to 365 billion cubic feet from 369 billion in 1940. The average yield of black per thousand cubic feet of gas burned rose to a new high of over 1.6 pounds. A trend to higher yields has been evident for several years, due to rapid growth in the production of furnace blacks, for which the yields are several times the average.

Petroleum refineries.—Consumption of natural gas as fuel at petroleum refineries increased 31 percent in 1940 over 1939 to 128 billion cubic feet, as this fuel supplied 17.1 percent of total heat requirements

compared with 14.9 percent in 1939.3

Two principal trends encouraged the replacement of other fuels with natural gas in the Southwestern States. First, increasing quantities of refinery vapors formerly used as fuel are now utilized in production of "light-end" liquid petroleum products. Second, an upward trend in the market price of heavy fuel oil in 1940 and 1941 caused some diversion of this product from use as refinery fuel to sale on the open market. A further increase in use of natural gas as refinery fuel is estimated to have occurred in 1941, as it rose to 150 billion cubic feet, a new high.

Electric public-utility power plants.—Preliminary data indicate that 11 percent more natural gas was used at power plants in 1941 than in

1940—203,323 million cubic feet in 1941.

In 1940 such consumption dropped sharply in California as hydroelectric plants resumed normal operation after a severe drought. In New York, failing gas supplies virtually eliminated power plants as consumers. Consumption was lower also in the Illinois-Indiana-Ohio district and in Pennsylvania. Increases were general in areas of abundant gas supplies.

Portland-cement plants.—An unusually large increase (29 percent) in consumption of natural gas as fuel in portland-cement manufacture occurred in 1941 over 1940. The total consumed was 54,208 million cubic feet—a new high. Larger volumes of gas were used in all the chief consuming States, as cement production increased 26

percent over 1940.

³ Hopkins, G. R., Survey of Fuel Consumption at Refineries in 1940: Bureau of Mines Rept. of Investigations 3607, 1941, p. 2.

NATURAL GAS

Industrial consumption of natural gas in the United States in 1940, by States and uses

497779		Field (d pumping erating recovery	gasoline-	Carbon-bla	ack manu	acture	Fuel at pe	troleum refir cen	peries, elect nent plants	ric public-u , and other	tility power industrial	plants, por	tland-	Total	industrial		
<u>.</u>	State		Value at		Value at of consur	points nption	* 11	Ŋ	A cubic feet	. (1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1		Value at p			Value at p	points option	
		M cubic feet (esti- mated)	points of consump- tion (esti- mated)	M cubic feet	Total	Aver- age (cents)	Petro- leum re- fineries	Electric public-util- ity power plants	Portland- cement plants	Other in- dustrial	Total	Total	Aver- age (cents)	M cubic feet	Total	Average (cents)	
_	labama							913, 000	(1)	1 19, 892, 000	20, 805, 000	\$3, 528, 000	17.0	20, 805, 000	\$3, 528, 000	17.0	
A	rizone							2, 915, 000		13, 083, 000	15, 998, 000	3, 234, 000	20. 2	15, 998, 000			
Ā	rkansasalifornia	10, 762, 000	\$681,000				4, 627, 000	2, 221, 000	(1)	111, 911, 000	18, 759, 000	2, 048, 000		29, 521, 000	2, 729, 000		
C	alifornia	133, 189, 000	7, 540, 000				18, 975, 000	13, 967, 000	8, 319, 000	85, 370, 000	126, 631, 000	16, 906, 000		259, 820, 000	24, 446, 000		
C	olorado istrict of Co-	278,000	17,000				1,000	725, 000	(4)	113, 147, 000	13, 873, 000	2, 167, 000	15.6	14, 151, 000	2, 184, 000	15. 4	
I	istrict of Co-		1			j.		24		- m	(0)	/65		(4)	·	1 00	
_	lumbia									(3)	(3)	(3)	(2)	(3)	(3)	(9)	
	lorida							4, 745, 000	(1)	1, 281, 000	1, 281, 000			1, 281, 000	209,000		
Ç	eorgia						197, 000	3, 326, 000	()	1 7, 271, 000 52, 292, 000	12, 016, 000 55, 815, 000	2, 125, 000 11, 805, 000	17. 7 21. 2	12, 016, 000 63, 640, 000	2, 125, 000 12, 051, 000		
Ťī	linois	7, 825, 000	240,000				197,000	8, 599, 000		16 051 000	24, 850, 000	5, 580, 000		25, 093, 000			
#1	ndiana	243,000	10,000					5,099,000		111 407 000	16 056 000	0,000,000	15.3	16, 956, 000			
)W8	17, 309, 000	941,000		(8)	(8)	2, 334, 000	17 262 000	E 750 000	206 110 000	16, 956, 000 351, 557, 000	1 # 000 000	\$ 12.0	68, 866, 000			
IN T	ansasentucky						1,000	17, 505.000	0, 700, 000	5 276 000	5, 377, 000	1, 518, 000	28. 2	6, 682, 000			
	ouisiana		1 601 000	22, 599, 000	e206 000	3, 1		26, 246, 000	(1)	1 50 000 000	105, 327, 000	10, 765, 000	10. 2	168, 643, 000	13, 092, 000		
- 4	faryland	40, /1/, 000	1,021,000				20, 078, 000	20, 210, 000	(-)	3 5 198 000	2 5 128 000	21 449 000	2 28. 2		2 1, 448, 000		
	fichigan	1, 492, 000	100 000				190,000	18 000		7 850 000	2 5, 128, 000 8, 067, 000	4 394 000	53.6	9, 559, 000	4, 426, 000		
	finnesota						180,000	2 204 000		0 783 000	12, 057, 000	2, 303, 000	19.1	12, 057, 000			
	lississippi		51 000					967,000		9 104 000	10, 071, 000	1, 537, 000		11, 113, 000	1, 588, 000		
ñ	fissouri	523,000	45,000			l		10, 759, 000	(1)	1 24, 169, 000	34, 928, 000	6. 111. 000					
Ä	Iontana	1, 252, 000					728,000	905,000		9, 515, 000	11, 148, 000	1, 525, 000		12, 400, 000			
Ñ	lebraska	1, 202, 000	02,000					5, 835, 000		1 7, 127, 000	12, 962, 000	2, 244, 000		12, 962, 000			
N	lew Mexico	22, 734, 000	476, 000		1		47,000	4, 458, 000	1	9, 345, 000	13, 850, 000	2, 083, 000		36, 584, 000			
	ew York		113,000		I	1	134,000				6, 544, 000		44.1	6, 990, 000		42.9	
	orth Dakota	1 220,000	,				202,000	(4)		(1)	(4)	(4)	(4)	(4)	2, 001, 000	(1)	
	hio	1, 323, 000	221,500				1.000	968,000			49, 235, 000				17, 205, 500		
č	klehome	133, 771, 000	3. 150. 500	(8)	(8)	(8)	9, 580, 000	11, 867, 000	(1)	1 841,904,000	863, 351, 000	\$ 5, 289, 000	\$ 8.3		8, 439, 500		
ř	klahoma ennsylvania	6 074 000	1. 544, 000				1, 012, 000			64, 902, 000	66, 320, 000	19, 753, 000	29.8	72, 394, 000	21, 297, 000	29.4	
á	onth Dakota	3,012,000	-, 022, 000				, 0.2, 000	1, 210, 000	(1)	1 2, 722, 000	3, 932, 000	704, 000		3, 932, 000			
ä	outh Dakota	1,000	100				1.000	4, 511, 000		6, 260, 000	10, 772, 000	1.848.000					

See footnotes at end of table.

Industrial consumption of natural gas in the United States in 1940, by States and uses-Continued

	pumpin	drilling, g, and op- gasoline- plants)	Carbon-bl	ack manu	facture	Fuel at po	Fuel at petroleum refineries, electric public-utility power plants, portland- cement plants, and other industrial				Total industrial				
State	M cubic	Value at		Value at of consu			N	I cubic fee	t		Value at of consum			Value at j	
	feet (esti- mated)	points of consump- tion (esti- mated)		Total	Aver- age (cents)	Petro- leum re- fineries	Electric public-util- ity power plants	Portland- cement plants	Other in- dustrial	Total	Total	Aver- age (cents)	M cubic feet	Total	Aver- age (cents)
Texas	310, 426, 000 47, 000 13, 599, 000 7, 503, 000	1, 900 2, 332, 000 264, 000			0. 8 3 1. 6	66, 398, 000 14, 000 432, 000 3, 256, 000	4 251, 000 72, 000 785, 000		50. 597, 000 4 12, 535, 000 (2) 36, 679, 000 1, 243, 000	412, 800, 000 (2) 37, 183, 000	4 1, 571, 000 (2) 7, 510, 000	4 12. 3 (2) 20. 2	4 12, 847, 000 (2) 50, 782, 000	4 1, 572, 900 (2) 9, 842, 000	4 12, 2 (2) 19, 4
Total: 1940 1939	711, 861, 000 680, 884, 000	27, 158. 000 28, 610. 000	368. 802, 000 347, 270. 000	3, 702, 000 3, 263, 000		128, 007, 000 97, 685, 000		41, 949, 000 40, 233, 000	642, 594, 000 607, 075, 000	995, 706, 000 936, 124, 000	166, 230, 000 155, 754, 000		2, 076, 369, 000 1, 964, 278, 000		

¹ Gas used in portland-cement plants included under "Miscellaneous" for United States total and under "Other industrial" for State total to avoid disclosing figures of individual operators.

and of the state of Maryland includes District of Columbia and Virginia.

3 Maryland includes District of Columbia and Virginia.

3 Gas used in carbon-black manufacture included under "Miscellaneous" for United States total and under "Other industrial" for State total to avoid disclosing figures of individual operators.
4 Utah includes North Dakota.

Other industrial.—The demand for natural gas from miscellaneous industry is estimated to have increased 18 percent in 1941, rising to 760 billion cubic feet as the Federal Reserve Board index of industrial production rose from 136 for December 1940 to 163 for December 1941. Apparently this type of industrial use exceeded for the first time the volume of gas used in oil- and gas-field operations to become the most important class of natural-gas utilization from the standpoint of volume.

The demand from "Other industrial" had attained a new peak in 1940 at 642,594 million cubic feet, or 6 percent above 1939. The chief gains over 1939 were in such industrial States as Pennsylvania, Ohio, West Virginia, and Illinois. In sharp contrast was New York, where a shortage in gas supplies caused curtailment from 23.7 billion

cubic feet in 1939 to 6.4 billion in 1940.

California, Pennsylvania, and Louisiana, in order, were the largest users in 1940 of "Other industrial" gas. A decade earlier, in 1930, the first three States in rank were Texas, Pennsylvania, and Louisiana. The greatest expansion in this type of gas market during the 10-year interval has been in California (from 27.0 to 85.4 billion cubic feet) and Illinois (from 6.5 to 52.3 billion). States added to the list of industrial-gas consumers since 1930 as a result of pipe-line construction include Arizona, Florida, Iowa, Minnesota, Virginia, and the District of Columbia.

Mixed gas.—The volume of natural gas used in mixtures with manufactured gas increased 12 percent in 1940 over 1939 to 65,102 million cubic feet, the largest total ever reported. Domestic and commercial consumption increased 10 and 11 percent, respectively, and industrial consumption reversed a 3-year decline by gaining 22 percent to reach 9,822 million cubic feet. The largest gains in industrial use were in Nebraska and Illinois.

The number of domestic and commercial meters in use increased 3 percent; sharp gains in Michigan, Nebraska, and Minnesota more than offset large losses in Missouri, New York, Ohio, Pennsylvania, and Virginia.

Consumption of natural gas used with manufactured gas in the United States in 1940, by States

	Dor	nestic	Com	mercial		То	tal
State	Consum- ers	M cubic feet	Consum- ers	M cubic feet	Industrial (M cubic feet)	M cubic feet	Value at points of consumption
District of Columbia Illinois Indiana Iowa Kentucky Maryland Michigan Minnesota Missouri Nebraska New York Ohio Pennsylvania	158, 960 1, 110, 010 29, 130 54, 070 75, 820 21, 240 132, 540 231, 980 55, 470 274, 410 157, 730 54, 570 21, 230	3, 814, 000 16, 030, 000 440, 000 1, 574, 000 2, 883, 000 573, 000 3, 569, 000 1, 173, 000 8, 396, 000 1, 908, 000 1, 599, 000 258, 000	7, 450 57, 440 1, 440 3, 830 7, 290 380 5, 420 12, 050 390 22, 140 15, 740 2, 770 560 250	359, 000 4, 565, 000 136, 000 282, 000 16, 000 372, 000 59, 000 1, 547, 000 315, 000 18, 000	513,000 5,450,000 43,000 112,000 899,000 212,000 294,000 141,000 1,418,000 497,000 212,000 13,000	4, 686, 000 26, 045, 000 619, 000 1, 968, 000 4, 997, 000 4, 153, 000 1, 373, 000 11, 361, 000 2, 126, 000 289, 000	\$3, 262, 000 25, 710, 000 617, 000 2, 534, 000 3, 967, 000 4, 079, 000 8, 803, 000 1, 399, 000 301, 000 37, 000
Total: 1940 1939	2, 377, 760 2, 297, 010	45, 670, 000 41, 395, 000	137, 150 132, 990	9, 610, 000 8, 679, 000	9, 822, 000 8, 039, 000	65, 102, 000 58, 113, 000	56, 202, 000 53, 952, 000

The average value of the natural gas used with manufactured gas declined in 1940 to 86.3 cents per thousand cubic feet from 92.8 cents in 1939, influenced by the substantial gain in industrial consumption.

NEW MARKETS

Available reports indicate that natural-gas service was extended to over 50 communities in 12 States in 1941, affecting a population of about 300,000, of which more than half were in Illinois. A number of large military establishments and war industries were supplied with natural gas, particularly in the Southwest and in California, where this fuel is plentiful.

Larger municipalities reported as changing from manufactured gas to natural in 1941 included: Eureka (Calif.); Alton, Centralia, Mount Vernon, Belleville, and Granite City (Ill.); New Albany

(Ind.); and Monroe (Mich.).

Rapid expansion of facilities for producing aluminum, magnesium, and other strategic materials will create new demands for natural gas.

INTERSTATE SHIPMENTS

The normal upward trend of interstate movement of natural gas, which was resumed in 1939, continued to a new peak of 738.8 billion cubic feet in 1940, a 7-percent gain over 1939. The vigorous growth in interstate shipment of gas began in 1928 when the pioneer construction of long-distance gas-transmission facilities was completed. Since 1927 the total increase has been 280 percent, as declines occurred only in the 1931–32 and 1938 periods of depressed business conditions.

Although moderate expansion of exports from gas-producing States has been the rule, Texas and Louisiana have been the principal sources of new gas for markets in other States. Their importance is indicated by the fact that 71 percent of the total increase in interstate movement

in the 13-year period came from these two States.

In 1940, new peaks in gas exports were reported from Texas, Louisiana, Kansas, New Mexico, and Montana. The volume from West Virginia was the greatest in any year since 1920. Sharp declines in exports from Mississippi and New York occurred in 1940 because available gas reserves were being rapidly depleted. Demands for gas in Mississippi were met by increasing receipts from Louisiana. In New York many industrial consumers were compelled to change to other fuels because their normal demands could not be met from Pennsylvania sources, which also suffered from sharply reduced local supplies. Thus, shipments from Pennsylvania to New York were cut just when the need for them became great. The needs of Pennsylvania and Ohio consumers were met by substantially increasing receipts of gas from West Virginia, where important additions to available capacity have been made in recent years.

NATURAL GAS

Interstate transportation of natural gas in 1940 ¹

State from which gas was transported	State through which gas was transported	State to which gas was trans- ported	M cubic feet
Colorado	Wyoming	Utah Wyoming	2, 065, 000 126, 000
			2, 191, 000
Illinois	Indiana	IndianaKentucky	280, 000 549, 000
			829, 000
Indiana		IllinoisKentucky	7, 000 376, 000
		Rentucky	383, 000
		Colorado	513, 000
Kansas	Missourido	Illinois	2, 855, 000
	Illinois		4, 341, 000
	Nebraska	[Iowa	6, 305, 000
	South Dakota	}do	12, 000
	Missouri Illinois	Michigan	6, 529, 000
	Indiana		
	Nebraska Iowa	Minnesota	7, 415, 000
•	lowa	Missouri	8, 971, 000
		Nebraska	8, 785, 000
	Nebraska Iowa	do	5,000
	Missouri Illinois	Ohio	39,000
	Indiana	Oklahoma	627, 000
	Nebraska	South Dakota	983, 000
			47, 380, 000
Kentucky	West Virginia	District of Columbia	4, 686, 000
	Maryland	Indiana	96,000
	West Virginia Virginia	}Maryland	4, 219, 000
	West Virginia		611,000
	Maryland District of Columbia	do	
		Ohio	3, 424, 000
	West Virginiado		4, 000, 000 12, 913, 000
	do		623,000
	Vincinia		200,000
	Virginia Maryland	}do	290, 000
	District of Columbia	West Virginia	10, 959, 000
			41, 821, 000
			00 500 00
Louisiana	Mississippi	AlabamaArkansas	22, 729, 000 24, 360, 000
4	MississippiAlabama	- Delonido	1, 103, 000
	Mississippi Alabama	- Managia	20, 551, 00
•	Arkansas	-13	17, 917, 00
	Missouri	Mississippi	11, 157, 00
	Arkansas	- Mississippidodo	2, 394, 00
	do	Missouri	9, 926, 00
	Missouri	do	6, 293, 00
	Illinois		0, 200, 00
	Arkansas	Tennessee	16, 780, 00
	Mississippi	_ []	1
	Mississippi	Texas	41, 156, 00

MINERALS YEARBOOK, 1941

Interstate transportation of natural gas in 1940 —Continued

State from which gas was transported	State through which gas was transported	State to which gas was trans- ported	M cubic feet
Mississippi	A1.7	Alabama	732, 000
	Alabama	FloridaLouisiana	378, 000 1, 149, 000
			2, 259, 000
Missouri	- <u>-</u>	_ Illinois	18,000
	Illinoisdo	Indiana }Michigan	28,000
z transa na series de la companya de la companya de la companya de la companya de la companya de la companya d A companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp	Indiana	- Switchigan	43, 000
			89,000
Montana	North Dakota	North Dakota	1, 725, 000 3, 802, 000
			5, 527, 000
New Mexico	Texas	1	18, 002, 000
	New Mexico		1
	Texas)	164, 000
	New Mexico	Mexico	685, 000
		Texas	6, 521, 000
			25, 372, 000
New York		Canada	54.000
		Pennsylvania	2, 319, 000
Ohio			2, 373, 000
Onio		Indiana West Virginia	7, 000 101, 000
	AND A STORY		108, 000
Oklahoma		Arkansas	980, 000
	Kansas Missouri	}Illinois	66, 000
	Kansas Missouri	Indiana	102, 000
	Illinois Kansas	Į.	102, 000
	Nebraska Kansas]Iowa	1, 610, 000
	Nebraska	}dc	3, 000
	South Dakota.	Kansas	21, 004, 000
	Kansas Missouri	1	
	Illinois Indiana	}Michigan	153, 000
	Kansas	(Normanda	
	Nebraska Iowa	Minnesota	1, 889, 000
	Kansas	Missouri Nebraska	9, 024, 000 1, 687, 000
	Nebraska	}do	1,000
	Iowa Kansas		1,000
	Missouri	Ohio.	1, 000
	Illinois Indiana	Į	-, 000
·	Kansas Nebraska	South Dakota	251,000
		Texas	2, 529, 000
			39, 300, 000
Pennsylvania	New York	Canada New York	36, 000 17, 436, 000
		Ohio	63,000
	West Virginia	West Virginia	425, 000 3, 217, 000
ı		1	., .,

NATURAL GAS

Interstate transportation of natural gas in 1940—Continued

State from which gas was transported	State through which gas was transported	State to which gas was trans- ported	M cubic feet
Гехаз	New Mexico	Colorado	21, 020, 000
	Oklahoma Kansas Missouri	Illinois	5, 867, 000
	Oklahoma Kansas		
	NebraskaIowa	}do	53, 828, 000
	Oklahoma Kansas		
And the second s	Missouri Illinois	Indiana	8, 924, 000
	Oklahoma Kansas		
	NebraskaIowa	}do	14, 682, 00
grantan nagari # 15	IllinoisOklahoma		
1800 N 1 1 1	Kansas Nebraska	lowa	15, 512, 00
	Oklahoma Kansas		10.00
	Nebraska South Dakota	}do	18, 00
	Oklahoma	Kansas Louisiana	33, 145, 00 15, 115, 00 4, 788, 00
	Oklahoma	Mexico	4, 788, 00
o part di di di di	Kansas Missouri	Michigan	13, 417, 00
	IllinoisIndiana	A Truispai	10, 111,00
	Oklahoma Kansas Nebraska	Minnesota	10, 600, 00
	Iowa Oklahoma	Missouri	18, 706, 00
	Kansas Oklahoma Kansas	Nebraska	8, 346, 00
	Oklahoma Kansas Nebraska	}do	7,00
	IowaOklahoma	New Mexico	1, 580, 00
	Kansas Missouri Illinois	Ohio	81,00
	Indiana	Oklahoma	11, 853, 00
e gajara	Oklahoma Kansas	South Dakota.	1,409,00
	Nebraska New Mexico	Wyoming	
	Colorado	W yoming	552, 00
Jtah		do	239, 450, 00 68, 00 30, 00
irginia		Tennessee	30,00
Vest Virginia		Kentucky	6, 721, 00 1, 025, 00
	Kentucky	Ohiodo	77, 292, 00 4, 000, 00 36, 395, 00
*	Maryland	Pennsylvaniado	36, 395, 00 55, 00
,	, , , , , , , , , , , , , , , , , , ,		125, 488, 00
Vyoming		Colorado	72,00
		Nebraska Utah	1, 624, 00 1, 256, 00 7, 681, 00
			10, 633, 00
* *			738, 844, 00

PIPE-LINE DEVELOPMENTS

Construction of natural-gas pipe lines continued at a high rate in 1941 for the second successive year, and 2,165 miles were completed. In addition, 460 miles were under construction at the end of 1941 and

scheduled for early completion.

As in 1940, about one-third of the total new mileage was in loops added to existing major lines to increase their carrying capacity as market needs expand. In several instances, the 1941 expansion was a continuation of programs projected over a period of several years with the purpose of duplicating original trunk lines for their entire

length.

The larger looping projects included 403 miles of 26-inch on the Texas Panhandle to Chicago line, of which about 350 miles were completed in 1941; 203 miles of 10- to 16-inch pipe on the line from southeast New Mexico fields to El Paso, Tex., and markets in Arizona; 55 miles of 18-inch added to the line from Monroe, La., to Memphis, Tenn.; 26 miles of 24-inch loop added to the Texas Panhandle to Minneapolis (Minn.) line; and 64 miles of 8- and 18-inch installed in the system that brings gas from Wyoming and vicinity to Salt Lake

City, Utah.

About three-quarters of the new mileage was in the Southwestern States, with Texas most active. In all, 19 projects were reported in Texas, of which the following were the largest: 190 miles of 14- and 16-inch line from the West Ranch field to Beaumont to provide fuel for refineries; 27 miles of 12-inch from the Sewell field to Brad, Palo Pinto County; 19 miles of 12-inch to bring gas from the Grapeland cycling plant to the main line at Long Lake; 26 miles of 8-inch from West Beaumont to Port Arthur; 22 miles of 8-inch to bring gas from the Angleton field to Freeport; and 22 miles of 6- and 8-inch from Aldine to Houston.

Ten projects were reported for Louisiana, of which two were outstanding: The laying of 135 miles of 20-inch to bring gas from the Logansport field to a connection at Monroe with the main line serving Alabama and Georgia markets; and construction of a 216-mile line of 12-, 14-, and 16-inch originating in the Lirette field, La., and extending eastward to Mobile, Ala. A 25.6-mile section of this line is submerged

under Lake Pontchartrain.

Oklahoma also had 10 new lines, most of which were small. The largest consisted of 55 miles of 16-inch pipe from the Cement field to connect with a major system near Oklahoma City. An 8-inch line was laid from Elgin to bring gas to Fort Sill, and 7.5 miles of 16-inch were laid from the Cement-field line to an airport near Oklahoma City.

Of five Kansas projects, one was of considerable size, in addition to the loops; it consisted of 146 miles of 8-inch running from Scott City,

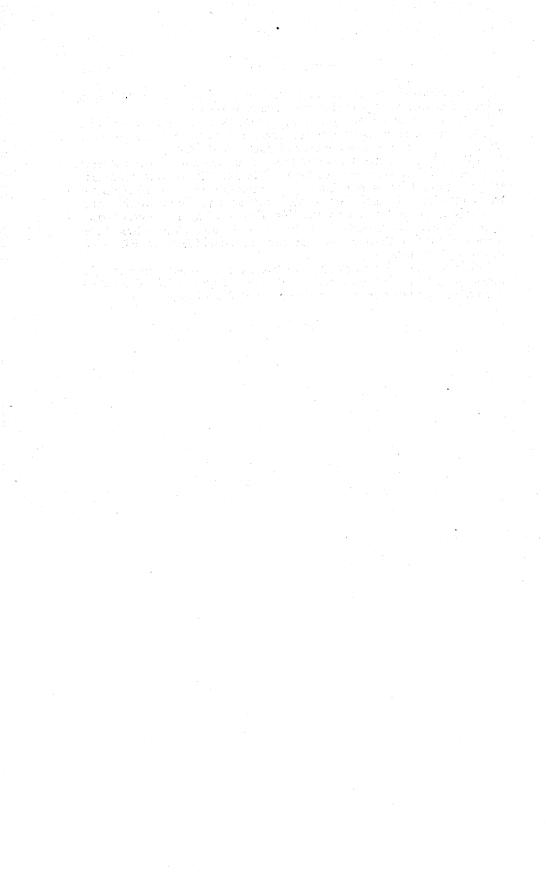
Kans., to Cambridge, Nebr.

No major new lines were reported in the Rocky Mountain States. The two largest were in Wyoming and consisted of 21 miles of 8-inch from the Garland field to the Elk Basin-Billings main line and 17 miles of 8-inch providing an outlet from the Powder Wash gas field to the Salt Lake City trunk line, connecting at Hiawatha.

Eight small lines were laid in the Illinois-Indiana area; the largest was 45 miles of 8-inch under construction from a trunk line at Peoria to

Galesburg, Ill.

Thirty miles of 12-inch were laid in Ohio in Hocking, Fairfield, and Richland Counties, apparently terminating at Lucas.


Michigan reported six projects, among which were a 45-mile, 12-inch line under construction from Saginaw to Flint and a 39-mile,

12-inch line from Wise Station near Midland to McBain.

In West Virginia continued development of new supplies of gas near Charleston stimulated construction. Nine new lines were reported, the two largest being scheduled for completion early in 1942; these were 46 miles of 12-inch from Ripley to Waverly, Wood County, and 38 miles of 14- and 18-inch from New Era, W. Va., to Gravel Bank, Ohio. In Jackson County 38 miles of 6-, 8-, and 10-inch field lines were laid, and a 12-inch line was run from Goldtown to Ripley, a distance of 16 miles.

California had little activity, with only four small projects; the largest was about 19 miles of 12-inch connecting the Rio Vista field

with the trunk line serving San Francisco at Woodbridge.

NATURAL GASOLINE

AND LIQUEFIED PETROLEUM GASES 1

By F. S. LOTT AND A. T. COUMBE 2

	Page	Natural gasoline—Continued.	Page
Natural gasoline	1153	Stocks	1163
Summary	1153	Technologic developments	1164
Salient statistics	1154	Cycling plants	
Prices and market conditions	1154	Yields	1164
Production	1155	Production by processes	1165
Consumption and movements	1159		1165
Refinery utilization	1159	Technical improvements	1165
"Direct" sales	1160		1165
Water-borne shipments	1163	•	

NATURAL GASOLINE

SUMMARY

To the natural-gasoline industry, 1941 was the most profitable of any recent year. The volume of production increased sharply (15 percent) to about 2,697 million gallons and set a new record for the second successive year. The total demand for natural gasoline outstripped production, gained 21 percent to 2,757 million gallons,

and caused a draft of 60 million gallons on stocks.

Spot Mid-Continent prices, which began to recover late in 1940 from extremely low levels, averaged 2.4 cents per gallon in January 1941 and advanced steadily throughout the year to an average of 5.1 cents in December. Estimated yearly average values realized by producers are approximately 1 cent per gallon above spot prices. Such average values of 2.9 cents per gallon for 1940 and 4.7 cents for 1941 indicate that the gross value of natural gasoline distributed was 95 percent higher in 1941 than in 1940—a surprising improvement. Early in 1942, however, prices broke sharply as marketing facilities were restricted by transportation difficulties attributable to the war.

The proportion of natural gasoline blended in refinery gasoline returned in 1941 to a more nearly normal level (7.1 percent) from

the 6.6 percent that had prevailed in 1939 and 1940.

Figures showing total exports for 1941 cannot be published; they

are therefore combined with "losses" in this report.

The average yield of gasoline from natural gas probably continued the declining trend of recent years. Average vapor pressure, however, recovered from the low point of 1940 owing to increased requirements for the lighter products by refiners. This change may have been influenced in some degree by sharply higher demand for the ingredients from which aviation gasoline could be manufactured.

Data for 1941 are preliminary; detailed statistics with final revisions will be released later. Tables compiled by E. M. Seeley, Petroleum Economics Division, Bureau of Mines.

Salient statistics of the natural-gasoline industry in the United States, 1937-41, in thousands of gallons

	1937	1938	1939	1940	1941 1	Percent of change from 1940
Production:						
Appalachian	72, 056	68, 541	71, 507	82, 232	92, 012	+11.9
Illinois, Kentucky, and		` '				
Michigan	12, 319	13, 057	14, 768	34, 957	68, 811	+96.8
Oklahoma City	166, 188	141, 516	104, 268	81, 560	70, 384	-13.7
Seminole	121, 839	122, 144	127, 214	117, 944	110, 371	-6.4
Texas Panhandle	230, 405	249, 968	260, 488	258, 465	290, 861	+12.5
East Texas	185, 313	188, 117	190, 267	165, 182	177, 035	+7.2
Rocky Mountain	74, 868	82, 397	88, 719	92, 798	100, 817	+8.6
Kettleman Hills	182, 894	186, 780	156, 514	127, 259	115, 568	-9.2
Long Beach	84, 297	92, 675	86, 213	89, 631	88, 290	-1.5
All other districts	935, 255	1, 011, 379	1, 069, 342	1, 289, 372	1, 582, 419	
Total production	2, 065, 434	2, 156, 574	2, 169, 300	2, 339, 400	2, 696, 568	+15.8
stocks:						
Total at plants, terminals, and refineries, Jan. 1	170, 310	199, 836	202, 860	185, 682	239, 568	
Total at plants, terminals,	100 000	900 000	105 600	239, 568	170 EEO	-25, 1
and refineries, Dec. 31	199, 836	202, 860	185, 682	208, 008	179, 550	-20. 1
Net change	+29, 526	+3.024	-17.178	53, 886	-60.018	
Total supply 3	2, 035, 908	2, 153, 550	2, 186, 478	2, 285, 514	2, 756, 586	+20.6
Distribution:	-	******				
Used at refineries *	1, 654, 002	1, 678, 362	1, 663, 452	1, 660, 974	2, 008, 650	+20.9
Refinery-owned bulk	1, 001, 002	1, 010, 002	1, 000, 102	1,000,011	2, 000, 000	1 20.0
plants	27, 888	39, 270	49, 938	64, 596	79, 002	+22.3
Exports	148, 428	256, 914	172, 662	71, 526	(4)	(4)
Jobbers and retailers	143, 640	137, 970	121, 128	218, 694	323, 316	+47.8
Losses	61, 950	11, 034	179, 298	269, 724	345, 618	(4)
Total distribution	2, 035, 908	2, 153, 550	2, 186, 478	2, 285, 514	2, 756, 586	+20.€

Subject to revision.
 Production plus or minus changes in stocks.
 Including quantities run through crude-oil pipe lines.
 Publication of exports suspended; figures combined with losses.

PRICES AND MARKET CONDITIONS

After an all-time low of 1.5 cents per gallon in June 1940, the price of natural gasoline, as indicated by the market for the 26-70 grade in the Mid-Continent district, hardened gradually, then moved upward vigorously. The pressure of demand exceeded the peak production of 1941 and drove prices progressively higher from an

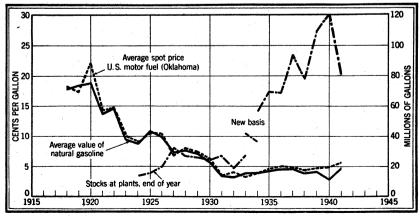


FIGURE 1.—Trends in average value of natural gasoline, spot price of gasoline, and stocks of natural gasoline, 1918-41.

average of 2.38 cents in January 1941 to the year's high of 5.13 cents in November and December; this proved to be the top of the rise, as a

drastic price decline followed early in 1942.

In figure 1 the curve showing average values of natural gasoline is based upon estimates of the Bureau of Mines. The curve of average spot prices of United States motor fuel (Oklahoma) currently refers to 72–74 octane, after several adjustments from lower octane specifications. Past changes are described in detail on pages 985–987 of Minerals Yearbook, Review of 1940.

Prices to blenders of Mid-Continent natural gasoline, grade 26-70, with dates of price changes in 1941 and monthly and yearly average in cents per gallon
[National Petroleum New]

Date	Cents	Date	Cents	Date	Cents
Jan. 1	2.38	June 3		Aug. 1	
Average	2, 38	5 6	3. 50 3. 38	2 12	3. 63-3. 75 3. 75
		12	3. 38-3. 50	13	3.75-4.00
Feb. 28	2. 38-2. 50	13 14	3. 38 3. 38-3. 50	18	3.75 3.88
Average	2.38	16	3, 38	20	3.88-4.00
Mar. 1	2.50	18	3. 38-3. 50	21	4.00
4		19 20	3. 38 3. 38-3. 50	23	4.18
25	2.75	23	3, 38	Average	3.88
28 29	2. 75–2. 88 2. 88	25 26	3. 38-3. 50 3. 38	Cant 0	4.2
		27	3. 38-3. 50	Sept. 2	4.20
Average	2.66	28	3.38	9	4.50
Apr. 21	3,00	Average	3. 40	16 18	4.63 4.63-4.75
22	3, 13	July 2	3 38_3 50	19	4.6
24 25	3. 13-3. 25 3. 13	7	3, 38	22	4.63-4.78
26	. 3. 13-3. 25	8 9		Average	4. 53
28 29		10			
28	3. 20	12	3.50	Oct. 1	4.88 5.13
Average	2.97	14	3. 38 3. 63	17	5. 13-5. 25
May 16	3. 25-3. 38	17	3. 50-3. 63	1820	5.13
19	3.25	18 19	3. 63 3. 50-3. 75	21	5. 13
20 21	3. 25-3. 38 3. 25-3. 50	21			T 01
22	3.38	23	3. 63-3. 75	Average	5. 07
23	3. 38-3. 50	26 29	3. 63 3. 63-3. 75	November: Average	5. 13
26 31	3. 38 3. 38-3. 50	30	3.63	December: Average	5. 13
Average	3, 31	Average		Average: 1941	3. 70
11 101080	0.01	A verage	0.00	1940	1.94

PRODUCTION

Trends in total output.—Except for temporary dislocations caused by unusual field developments, the trends of production of natural gasoline and crude oil have been roughly parallel for many years (see fig. 2). In 1941 the gain in natural-gasoline production over 1940 exceeded 15 percent, whereas that in crude-oil production was only 4 percent.

The chief cause of divergent trends in 1941 was rapid expansion of output by cycling plants whose operation is not directly related to rates of crude-oil yield. In Texas (and to a lesser extent in Louisiana) cycling-plant activity was reflected in sharply higher production of

natural gasoline.

The rate of natural-gasoline output for the United States increased consistently during 1941 from a daily average of 6.7 million gallons in the first quarter to over 8.2 million gallons in the fourth quarter. Production of crude oil followed a similar, though more gradual, upward course.

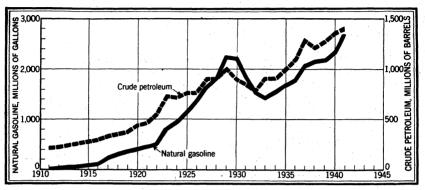


FIGURE 2.—Annual production of natural gasoline and crude petroleum, 1911-41.

Natural gasoline produced in the United States, 1937-41, by States, in thousands of gallons

1937. 11, 285 623, 8 1938. 25, 648 660, 8 1939. 24, 634 607, 2 1940. 32, 086 587, 4		Califor- nia	Colo- rado Illinois		s Kansa	Ken- tucky	Louis ana	i- Mich- igan	Mon- tana	New Mexico
		660, 890 607, 237 587, 476	404 386 390 380 268	2, 567 2, 436 4, 012 21, 499 55, 077	55, 986 62, 176 64, 69	7, 040 5 7, 78 1 9, 539	95, 63 5 94, 09 9 113, 74	4 3,581 0 2,971 1 3,919	2, 296 1, 768 2, 161 2, 603 2, 504	38, 25 49, 59 54, 70 55, 71 61, 63
									Total	
	New	Obli	Okla-	Penn-		West	Wyo-		Value s	t plant
Year	York		home	syl- vania	Texas	Vir- ginia	ming 2	Thou- sands of gallons	Thou- sands of dollars	Average per gallon (cents)
1937 1938 1939 1940	33 27 34 17	7, 382 4 7, 445 4	68, 499 36, 123 3	13, 940 10, 734 11, 756	615, 281 685, 920 770, 047	50, 379 50, 398 52, 272	30, 647 31, 461	2, 065, 434 2, 156, 574 2, 169, 300	97, 125 87, 266 90, 050	4. 4. 4.
1941 1	17			15, 371 15, 610	932, 040 1,182,872	58, 782 68, 348		2, 339, 400 2, 696, 568	68, 261 126, 700	2. 4.

¹ Subject to revision. ² Includes Utah in each year

Monthly production of natural gasoline in the United States, 1940-41, by fields, in millions of gallons

Field Lag Lag Lag Lag Lag Lag Lag Lag Lag Lag	December	न्न
Appalachian 9.2 8.3 8.1 6.9 5.8 4.8 4.7 4.7 5.5 7.0 8.3 Illinois, Kentucky, and Michigan 2.2 2.0 2.1 2.2 2.1 2.6 2.8 2.7 3.2 3.9 4.3		Total
Oklahoma:		1
Oklahoma City 7.5 6.9 6.7 6.8 6.9 6.3 6.4 6.6 6.9 7.8 6.7 Osage County 3.7 4.1 4.4 4.2 4.9 4.5 4.6 4.6 4.4 4.8 4.6 Seminole 8.3 9.2 10.3 10.2 10.6 10.1 10.4 10.3 10.1 10.2 9. Rest of State 11.9 11.5 12.5 12.3 12.7 12.1 12.2 12.2 11.9 11.8 12.5	4.4 9.1	53. 2 117. 9
Total Oklahoma 31.4 31.7 33.9 33.5 35.1 33.0 33.6 33.7 33.3 35.6 32. Kansas 6.1 5.7 5.4 5.3 5.2 4.9 4.6 4.8 4.8 5.7 5.5	31. 9	399. 4
Texas: 9.1 10.3 14.0 14.2 14.8 14.1 18.0 18.6 19.9 21.7 22. East Texas. 12.7 12.5 14.1 14.2 14.4 14.0 15.6 14.9 14.0 12.2 12.4 14.0 15.6 14.9 14.0 12.2 12.4 12.4 14.0 15.6 14.9 14.0 13.6 3.9 3.7 3.7 3.6 3.9 3.6	12. 0 3. 5 23. 7 5. 1 5. 8	165. 2 44. 9 258. 4 61. 9 80. 0
Total Texas 64.6 65.9 73.5 73.8 76.3 72.9 81.7 80.1 83.5 88.2 84.2 84.2 83.0 84.2 84.2 84.2 84.2 84.2 84.2 84.2 84.2	10. 4 2. 8	32.1
California: 2.6 2.5 2.8 2.7 2.8 2.6 2.7 2.7 2.5 2.6 2.5 2.8 2.7 2.8 2.6 2.7 2.7 2.5 2.6 2.1 2.6 2.7 2.7 2.7 2.5 2.6 2.7 2.0 2.0 10.5 10.1 10.7 10.4 10.6 10.9 10.5 12.0 10.0 Long Beach 7.2 6.9 7.5 7.3 7.7 7.4 7.8 7.9 7.6 7.6 7.5 Santa Fe Springs 4.8 4.5 4.8 4.5 4.7 4.8 4.8 4.9 4.7 4.8 4.8 4.9 4.7 4.9 5.1 5.1 5.4 5.4 5.1 5.5 5.5 5.5 4.9 17.8 17.6 17.9 17.8 18.6 18.9 18.1 19.0 18.2	10. 5 7. 5 4. 8 5. 4	127. 3 89. 7 56. 8 64. 1
Total California 49.6 46.2 48.9 47.1 48.9 48.1 49.9 50.7 48.5 51.6 48.0 Total United States 180.9 177.1 190.1 187.0 194.3 186.4 198.3 198.2 199.2 213.5 204.5		587. 5 2, 339. 4
Daily average 5.8 6.1 6.1 6.2 6.3 6.2 6.4 6.4 6.6 6.9 6.5		
Appalachian 9.3 8.5 9.1 7.2 6.9 6.0 5.6 5.9 6.3 7.9 9.3 Illinois, Kentucky, and Michigan 4.8 4.4 5.1 4.9 5.3 5.3 5.5 5.8 5.7 6.9 7.4		i
Oklahoma: 6.5 5.7 6.2 5.9 5.3 5.3 5.5 6.1 5.6 6.3 6.3 Osage County 4.0 4.1 4.5 4.6 4.7 4.8 5.0 5.1 5.6 6.3 6.3 Seminole 8.8 7.8 9.0 9.2 9.7 9.5 9.5 9.6 9.7 9.9 9.6 Rest of State 12.2 10.9 11.9 11.4 11.7 11.3 11.4 11.8 11.7 12.7 12.6	5. 0 8. 7	57. 6 110. 4
Total Oklahoma 31. 5 28. 5 31. 6 31. 1 31. 4 30. 9 31. 4 32. 6 32. 6 33. 9 33. Kansas 6. 8 6. 7 6. 3 5. 7 5. 5 5. 3 5. 2 5. 3 5. 6 6. 4 6. 8		381. 1 72. 5
Texas: 20.1 19.4 20.6 20.9 22.4 23.7 28.2 27.2 27.7 29.3 31.1 East Texas. 12.5 11.6 13.2 14.3 16.0 15.9 15.9 16.6 15.6 16.1 14.6 North Texas. 2.2 2.0 2.1 2.2 2.4 2.3 2.4 2.2 3.2 2.4 2.3 3.2 5.2 2.3 2.4 2.2 2.2 2.4 2.3 3.2 5.2 2.3 2.4 2.2 2.3 2.4 2.2 2.3 2.4 2.2 2.3 2.4 2.2 2.3 2.4 2.2 2.3 2.4 2.2 2.2 3.2 3.2 5.2 2.4 2.2 2.4 2.3 3.2 5.2 2.4 2.2 2.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.2 2.4 2.3 3.2 5.5 2.4 3.2 5.1 4.4	14.7 2.3 25.6 4.9 7.1	290. 9 59. 1 87. 9
Total Texas. 83.8 80.4 86.0 92.7 98.3 97.4 100.8 105.3 105.5 109.9 110. Louisiana. 9.3 9.1 10.0 9.9 9.3 9.6 10.5 20.3 22.1 23.0 25. Arkansas. 2.9 2.5 2.9 2.8 3.0 2.9 3.0 2.9 2.9 3.3 3.3 Rocky Mountain 7.9 7.1 7.9 8.1 8.7 8.7 8.9 8.9 8.5 8.6 8.6	24. 9 3. 1	183. 1 35. 4
California: Huntington Beach 2.6 2.3 2.6 2.4 2.7 2.7 2.9 2.8 2.8 2.8 Kettleman Hills 10.5 9.4 9.2 9.4 9.6 9.1 9.7 9.4 9.6 10.2 9.4 Long Beach 7.4 6.8 7.5 7.2 7.8 7.5 7.6 7.5 7.2 7.4 7.3 Santa Fe Springs 4.7 4.3 4.7 4.6 4.9 4.7 4.7 4.8 4.6 4.6 4.8 4.5 4.7 4.9 4.6 4.8 4.5 4.7 4.9 4.6 4.8 4.5 4.7 4.9 4.6 4.8 4.5 4.7 4.9 4.7 4.9 4.6 4.8 4.5 4.7 4.9 4.6 4.8 4.5 4.7 4.9 4.6 4.8 4.5 4.7 4.9 4.6 4.8 4.9 4.7 4.9 4.7 4.9	9.9 7.2 4.5 5.3	115.6 88.3 55.5 58.1
Total California 48.8 44.5 47.6 46.8 49.2 47.9 49.7 49.8 48.7 50.1 48.6	48.9	580. 0
Total United States	255. 4 8. 2	

¹ Subject to revision

California.—Natural-gasoline production fell 1 percent in 1941 to 580 million gallons and continued the decline that began in 1939, following the peak of gasoline yield from the great Kettleman Hills field. A modest gain in output of natural gasoline from the smaller fields included in the "Rest of State" section during 1941 could not offset the shrinkage in production from Kettleman Hills and Ventura Avenue.

Louisiana.—In 1941 production in Louisiana rose 61 percent to a new peak of 183 million gallons. Most of the increase in output was accredited to a new cycling plant in the Cotton Valley field in north-western Louisiana, which began operating in July 1941. Its reported capacity exceeds 12 million gallons of liquid products per month, or enough to double the State's recent output of these products.

Oklahoma.—In 1941 natural-gasoline production continued the decline that began in 1938, the total being 381 million gallons compared with 399 million in 1940. Moderate declines occurred in all areas except Osage County, where an increase of 4 million gallons

was reported.

Texas.—A 27-percent increase in Texas production to 1,183 million gallons in 1941 dwarfed the previous record output of 1940. Gains were reported in all districts except relatively unimportant North Texas and West Central Texas. The "Rest of State" and Gulf Coast areas, which include most cycling plants, showed conspicuous gains of 95 and 52 percent, respectively, in output over 1940.

As predicted in 1941 (in the preceding chapter of this series), the Gulf Coast area displaced the Panhandle as the leading producing district of Texas, despite a 13-percent increase in Panhandle production during 1941. Texas enlarged its proportion of the total natural-gasoline output of the United States to 44 percent in 1941 from 40 percent in 1940.

Natural gasoline produced and natural gas treated in the United States in 1940, by States ¹

	4 4 7		Natural	gasoline pr	Natural gas treated		
State	Number of opera-	Number of plants		Value a	t plants		Average
State	tors 3	operating	Thousands of gallons	Thou- sands of dollars	Average per gallon (cents)	Millions of cubic feet	yield per M cubic feet (gallons)
Arkansas California	6 33	8 90	32, 096 587, 476	818 27, 901	2.5 4.7	26, 584 375, 407	1. 2 1. 5
Colorado Illinois Kansas	23	2 53 15	380 21, 499 64, 691	14 805 1, 295	3. 7 3. 7 2. 0	142 12, 716 150, 963	2.66 1.66
Kentucky Louisiana	5 16	5 27	9, 539 113, 741	350 2, 552	3. 7 2. 2	39, 662 145, 234	.24 .78
Michigan Montana New Mexico	1 1 5	3 1	3, 919 2, 603 55, 713	162 162 879	4. 1 6. 2 1. 6	1, 414 9, 528 101, 213	2. 7 . 2 . 5
New YorkOhio	1 9	1 12	17 8, 062	1 333	5. 9 4. 1	40 38, 547	. 4.
Oklahoma Pennsylvania Texas	49 55 93	120 83 174	399, 369 15, 371 932, 040	8, 926 594 20, 322	2. 2 3. 9 2. 2	219, 255 40, 161 1, 123, 236	1. 8: . 3: . 8:
Utah West Virginia	22	76	722 58, 782	28 1, 848	3. 9 3. 1	168, 206	. 3
Wyoming Total: 1940	2 276	684	2, 339, 400	68, 261	3.8	19, 092 2, 471, 400	1.7
1939	² 260	684	2, 169, 300	90, 050	4.2	2, 150, 000	1.0

¹ Complete figures for 1941 not yet available.

A producer operating in more than 1 State is counted but once in arriving at total for United States,

Other States.—Except for insignificant declines in Colorado, Michigan, Montana, and Ohio, natural-gasoline production was larger in 1941 than in 1940 in each of the other producing States of this group. The largest gain (34 million gallons) occurred in Illinois, where rapid expansion of gasoline-plant operations continued for the third successive year in the wake of oil development. Material gains were reported also in West Virginia, Kansas, and New Mexico, where pronounced upward trends in natural-gasoline production have been evident for several years.

CONSUMPTION AND MOVEMENTS

Stimulated by conditions arising from the war situation abroad, the demand for natural gasoline in 1941 increased more than 20 percent to nearly 2,760 million gallons contrasted with 2,286 million in 1940. Production did not meet demand, prompting withdrawal of 60 million gallons from storage in 1941 and reversing the conditions of 1940, when 54 million gallons of natural gasoline were added to stocks.

Refinery utilization represented about 73 percent of total demand in 1941, as in 1940; "direct" sales absorbed 12 percent, and their relative importance increased from 10 percent in 1940. Exports and losses are grouped for 1941 to avoid disclosure of data regarding the former. They jointly amounted to 13 percent of total demand in 1941

and 15 percent in 1940.

Refinery utilization.—The proportion of natural gasoline used at refineries in motor fuel during 1941 increased to 7.1 percent after remaining at the comparatively low level of 6.6 percent in 1939 and 1940. A greater proportionate use of "natural" was reported generally in 1941, and the only notable decline was in the Oklahoma-Kansas-Missouri district (from 8.0 to 6.6 percent).

Percentage of natural gasoline in refinery gasoline in the United States, 1937-41, by districts

Year	East Coast	Appa- lachian	Indi- ana, Illi- nois, Ken- tucky	Okla- homa, Kansas, Mis- souri	Texas Inland	Texas Gulf Coast	Louisi- ana Gulf Coast	Arkan- sas and Louisi- ana Inland	Rocky	Cali- fornia	Total
1937 1938 1939 1940	1.9 1.6 2.7 2.0 2.3	1.8 1.4 1.4 1.6 1.9	4.3 4.7 4.1 4.5 5.3	8. 5 8. 8 7. 8 8. 0 6. 6	13. 1 15. 5 14. 3 16. 6 17. 6	5.3 4.3 3.5 4.4 5.6	4. 6 2. 2 2. 1 1. 7 3. 7	6. 5 6. 8 5. 0 3. 3 6. 1	6. 1 5. 8 4. 7 4. 5 4. 4	15. 7 17. 6 18. 0 15. 7 16. 1	7.0 7.2 6.6 6.6 7.1

¹ Subject to revision.

The wide variation among districts in the ratios of natural gasoline utilized in refinery gasoline (1.9 percent in the Appalachian region in 1941 to 17.6 in Texas Inland) suggests the great flexibility, from a technical standpoint, of this operation. Control of the ratio in a particular area is exercised chiefly by economic factors; geographic location and transportation costs probably dominate.

"Direct" sales.—The pronounced upward trend in shipments of natural gasoline to jobbers, retailers, and refinery-owned bulk plants (which began in 1940 and continued through 1941) has been due almost entirely to Texas intrastate deliveries which in 1941 were five times those in 1939 when they comprised 22 percent of all "direct" shipments, as contrasted with 49 percent in 1941. Gains were reported in Louisiana and Arkansas deliveries. Cycling-plant operations play an important part in the Texas situation, for they produce much material that can be used as motor fuel with little or no additional processing.

Distribution of natural gasoline in the United States, 1940-41, by months, in thousands of gallons

	January	Febru- ary	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
1940 Production Decrease in all stocks	180, 936	177, 072	190, 134	186, 984	194, 250	186, 396	198, 324	198, 156	199, 206 27, 888	213, 528 19, 698	204, 918 19, 614	209, 496 16, 716	2, 339, 400
	180, 936	177, 072	190, 134	186, 984	194, 250	186, 396	198, 324	198, 156	227, 094	233, 226	224, 532	226, 212	2, 339, 400
Used at refineries ¹ . Refinery-owned bulk plants. Jobbers and retailers. Exports ³ . Increase in all stocks.	137, 970 6, 552 11, 214 7, 728 2, 310	129, 822 4, 200 10, 710 3, 024 11, 802	127, 428 6, 132 15, 582 8, 904 26, 712	119, 826 4, 536 15, 078 2, 856 30, 198	129, 990 4, 746 14, 448 7, 224 16, 884	110, 040 6, 342 14, 490 11, 256 20, 412	116, 256 5, 040 16, 968 5, 292 24, 528	129, 864 4, 410 18, 018 6, 090 4, 956	157, 248 6, 594 22, 302 6, 804	174, 552 4, 746 29, 190 2, 940	169, 092 4, 494 25, 704 2, 772	158, 886 6, 804 24, 990 6, 636	1, 660, 974 64, 596 218, 694 71, 526 53, 886
Losses	15, 162	17, 514	5, 376	14, 490	20, 958	23, 856	30, 240	34, 818	34, 146	21, 798	22, 470	28, 896	269, 724
1941 3	180, 936	177, 072	190, 134	186, 984	194, 250	186, 396	198, 324	198, 156	227, 094	233, 226	224, 532	226, 212	2, 339, 400
Production	205, 128 8, 988	191, 730 7, 518	206, 472	209, 160	217, 602	213, 990	220, 584	236, 838 8, 652	237, 888 30, 996	249, 984 21, 126	251, 748 13, 146	255, 444 11, 844	2, 696, 568 60, 018
	214, 116	199, 248	206, 472	209, 160	217, 602	213, 990	220, 584	245, 490	268, 884	271, 110	264, 894	267, 288	2, 756, 586
Used at refinerics ¹ Refinery-owned bulk plants Jobbers and retailers Increase in all stocks	160, 776 7, 896 28, 812	139, 104 8, 316 22, 932	158, 508 8, 694 24, 234 840	146, 916 7, 980 19, 824 7, 266	142, 758 5, 964 22, 050 14, 784	147, 756 5, 460 23, 394 15, 918	152, 376 5, 922 22, 008 3, 444	173, 460 4, 494 28, 308	199, 542 4, 326 26, 922	209, 874 5, 292 28, 980	189, 756 8, 358 32, 340	187, 824 6, 300 43, 512	2, 008, 650 79, 002 323, 316
Losses and exports	16, 632	28, 896	14, 196	27, 174	32, 046	21, 462	36, 834	39, 228	38, 094	26, 964	34, 440	29, 652	345, 618
	214, 116	199, 248	206, 472	209, 160	217, 602	213, 990	220, 584	245, 490	268, 884	271, 110	264, 894	267, 288	2, 756, 586

¹ Includes quantities run through pipe lines.

² Figures compiled by the Department of Commerce.

³ Subject to revision.

Natural gasoline utilized at refineries in the United States, 1940-41, by districts and months, in thousands of gallons

District	January	Febru- ary	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
1940 East Coast	6, 762 1, 428 17, 220 21, 000	4, 074 1, 512 18, 858 17, 472	5, 208 1, 596 17, 892 17, 094	6, 384 1, 176 15, 876 16, 506	5, 922 840 17, 010 16, 296	5, 670 1, 008 16, 212 14, 868	4, 788 1, 344 17, 472 15, 414	3, 948 1, 050 19, 614 18, 060	6, 552 1, 470 22, 260 20, 748	8, 484 1, 512 26, 292 21, 840	8, 442 1, 638 26, 628 20, 538	8, 988 1, 554 23, 436 20, 160	75, 222 16, 128 238, 770 219, 996
Texas: Gulf Coast Inland	18, 732 25, 116	17, 094 24, 780	17, 934 23, 394	16, 254 21, 966	27, 972 21, 378	17, 220 17, 136	17, 136 18, 228	22, 092 21, 126	29, 190 27, 048	25, 536 29, 484	34, 020 23, 646	23, 520 26, 040	266, 700 279, 342
Total Texas	43, 848	41, 874	41, 328	38, 220	49, 350	34, 356	35, 364	43, 218	56, 238	55, 020	57, 666	49, 560	546, 042
Louisiana-Arkansas: Louisiana Gulf Coast Arkansas and Louisiana Inland	714 1, 512	462 1, 470	756 1, 470	924 882	630 1, 134	588 966	672 756	630 966	1, 344 1, 008	2, 478 1, 428	1, 008 1, 470	1, 470 2, 100	11, 676 15, 162
Total Louisiana-Arkansas Rocky Mountain California	2, 226 3, 444 42, 042	1, 932 3, 150 40, 950	2, 226 3, 318 38, 766	1, 806 1, 974 37, 884	1, 764 924 37, 884	1, 554 1, 512 34, 860	1, 428 1, 554 38, 892	1, 596 1, 638 40, 740	2, 352 2, 226 45, 402	3, 906 3, 192 54, 306	2, 478 4 074 47, 628	3, 570 3, 738 47, 880	26, 838 30, 744 507, 234
Total United States	137, 970	129, 822	127, 428	119, 826	129, 990	110, 040	116, 256	129, 864	157, 248	174, 552	169, 092	158, 886	1,-660, 974
East Coast Appalachian Indiana, Illinois, Kentucky, etc Oklahoma, Kansas, and Missouri	8, 778 1, 428 24, 780 17, 976	7, 518 1, 722 22, 680 14, 784	6, 258 1, 764 22, 890 15, 792	5, 376 2, 142 24, 864 14, 070	5, 418 1, 554 23, 184 13, 734	4, 368 1, 218 23, 226 12, 936	5, 670 1, 596 25, 158 14, 154	6, 090 1, 134 26, 208 15, 960	7, 770 1, 974 28, 224 20, 118	7, 770 1, 848 30, 618 18, 606	8, 568 1, 806 28, 350 20, 034	9, 744 2, 100 29, 400 19, 236	83, 328 20, 286 309, 582 197, 400
Texas: Gulf Coast Inland	21, 924 32, 004	19, 152 24, 990	25, 662 26, 964	27, 174 23, 058	25, 074 24, 234	29, 610 24, 990	28, 812 24, 864	35, 868 28, 056	46, 536 28, 728	43, 932 32, 550	42, 000 27, 090	46, 914 29, 316	392, 658 326, 844
Total Texas	53, 928	44, 142	52, 626	50, 232	49, 308	54, 600	53, 676	63, 924	75, 264	76, 482	69, 090	76, 230	719, 502
Louisiana-Arkansas: Louisiana Gulf Coast Arkansas and Louisiana Inland	1, 050 2, 226	798 1, 890	1, 428 1, 470	1, 008 1, 386	1, 344 1, 134	924 1, 260	924 1, 386	3, 906 4, 578	4, 284 4, 662	5, 376 5, 880	5, 502 3, 696	6, 174 4, 158	32, 718 33, 726
Total Louisiana-Arkansas	3, 276 3, 780 46, 830	2, 688 3, 108 42, 462	2, 898 2, 646 53, 634	2, 304 2, 184 45, 654	2, 478 2, 352 44, 730	2, 184 2, 100 47, 124	2, 310 1, 638 48, 174	8, 484 2, 352 49, 308	8, 946 2, 310 54, 936	11, 256 3, 150 60, 144	9, 198 3, 822 48, 888	10, 332 3, 696 37, 086	66, 444 33, 138 578, 970
Total United States	160, 776	139, 104	158, 508	146, 916	142, 758	147, 756	152, 376	173, 460	199, 542	209, 874	189, 756	187, 824	2, 008, 650

subject to revision

Shipments of natural gasoline to jobbers, retailers, and refinery-owned bulk plants in the United States in 1941, by States, in thousands of gallons 1

State from which		State to	which nat	ural gasoli	ne was trai	asported		
natural gasoline was transported	Texas	Minne- sota	Arkan- sas	Illinois	Louisi- ana	Iowa	Other States	Total
Texas Oklahoma Louisiana West Virginia	196, 378 1, 043 4, 131	23, 100 7, 776 716	26 180 600	10, 772 6, 185 837	567 40 17, 735	13, 812 2, 391 1, 583	27, 201 15, 490 2, 670 26, 164	271, 856 33, 105 28, 272 26, 164
ArkansasOhio	16		19, 541		347		355 6, 854	20, 259 6, 854
Other	122	1, 990		1, 542		578	11, 576	15, 808
	201, 690	33, 582	20, 347	19, 336	18, 689	18, 364	90, 310	402, 318

¹ Subject to revision.

Water-borne shipments.—All information regarding ocean movement of natural gasoline in 1941 must be withheld as a war measure to avoid giving possible aid to the enemy.

STOCKS

Stocks of natural gasoline in the United States declined from 240 million gallons at the end of 1940 to 180 million gallons on December 31, 1941, more than canceling the 54 million gallons added to stocks during 1940. Total stocks continued to accumulate in 1941 until a peak of 265 million gallons was reached in July; thereafter withdrawals were rapid until the end of the year.

About half of the net reduction in stocks took place at California refineries, where a downward trend persisted throughout the year. The other half was withdrawn from stocks at Texas plants and terminals during the latter 6 months of 1941. A 10-million-gallon increase in the relatively small stocks of natural gasoline at refineries outside of California was almost offset by an 8-million-gallon decline in plant and terminal stocks elsewhere than in Texas.

Stocks of natural gasoline in the United States, 1940-41, by months, in thousands of gallons

		At ref	ineries		At	plants a	FD-4-1			
Date	California		Other	Other States		Texas		States	Total	
	1940	1941 1	1940	1941 1	1940	1941 1	1940	1941 1	1940	1941 1
Aug. 31 Sept. 30	67, 494 74, 172	99, 624 96, 894 94, 962 87, 024 83, 580 82, 824 82, 530 83, 412 80, 052 7C, 182 61, 068 58, 506 69, 636	17, 430 17, 262 19, 110 20, 874 32, 928 33, 054 37, 758 43, 386 40, 614 33, 810 32, 298 24, 276 19, 614	19, 614 20, 622 17, 346 19, 194 18, 018 17, 472 20, 454 28, 224 27, 384 25, 116 25, 620 28, 476 29, 358	104, 167 116, 340	86, 045 77, 589 74, 000 78, 631 91, 736 102, 667 111, 210 106, 232 100, 222 84, 899 78, 780 67, 796 53, 904	30, 624 27, 138 30, 922 38, 113 46, 431 55, 315 56, 147 51, 828 48, 339 40, 192 35, 537 34, 361 34, 285	36, 754 39, 053 37, 834 42, 989 47, 676 47, 446 49, 004 45, 469 39, 072	185, 682 187, 992 199, 794 226, 506 256, 704 273, 588 294, 000 318, 528 323, 484 295, 596 275, 898 256, 284 239, 568	239, 568 "30, 580 223, 962 2231, 168 245, 952 261, 870 265, 314 256, 662 204, 580 191, 384 179, 580

¹ Subject to revision.

Natural gasoline produced in the United States in 1940, by States and by methods of manufacture ¹

	Number	of plants	operating	Production	ı (thousands	of gallons)
State	Com- pression 2	Absorp-	Charcoal	Com- pression 3	Absorp-	Charcoal
Arkansas California Colorado Illinois Kansas Kentucky Louisiana Michigan Montana New Mexico New York	1 49 3 1 3	8 87 1 4 12 3 24 3 1 7	1	8, 706 138 1, 916 1, 580 2 5, 013	32, 096 578, 770 242 19, 583 63, 111 9, 070 108, 728 3, 919 2, 603 55, 713	467
New Tork Ohio Okiahoma Pennsylvania Teras Utah West Virginia Wyoming	4 30	7 90 11 123 22 4	1 1 5	27, 632 2, 180 246, 852 14, 869 23, 230	6, 580 371, 737 13, 117 685, 188 4 722 41, 056 10, 150	1, 444 74 2, 857
Total: 1940	269 269	407 406	8 9	332, 172 257, 746	2, 002, 385 1, 905, 583	4, 84 5, 97

¹ Figures for 1941 not yet available.

Includes cycling.
 Includes combination of absorption process with compression and charcoal processes

4 Drip gasoline.

TECHNOLOGIC DEVELOPMENTS

Cycling plants.—Cycling operations in Texas increased at a slower rate in 1941 than in 1940. The daily average volume of gas processed in December 1941 was 1,413 million cubic feet—a 14-percent gain over December 1940. The yield of liquid products represented a daily rate of 37,458 barrels in December 1941 and 22,357 barrels in December 1940. The gain in cycling operations was somewhat greater than the foregoing data indicate because some repressuring-plant statistics were included in December 1940 totals and omitted in 1941.

During 1941 the number of cycling and repressuring plants reporting to the Railroad Commission of Texas increased from 32 to 45. In Louisiana the largest cycling plant in the world began operating in July 1941 in the Cotton Valley field, Webster Parish, and construction of a second large plant was started in December 1941 at South Jennings, Jefferson Davis Parish. Construction has begun on a cycling plant in the Katy field, Waller County, Tex., which may

surpass the Cotton Valley plant in volume of output.

Yields.—Minor reductions in yield of natural gasoline were reported in 1940 in all the prominent producing States except Illinois, where a slightly higher yield was obtained. The chief gains in production were in such States as Texas and Louisiana, where yields are below the national average owing partly to the low yields from cycling operations. The influence of these developments is expressed in a decline in average natural-gasoline yield in the United States from 1.01 gallons per thousand cubic feet of gas processed in 1939 to 0.95 gallon in 1940. Similar trends in production were evident in 1941 and are thought to have caused a further slight decline in average yields in that year.

Production by processes.—The total number of gasoline plants in 1940 was unchanged from 1939; the only shift was the net gain of one absorption plant and the loss in West Virginia of one charcoal plant. The gain of 11 compression (including cycling) plants reported in Texas was offset by the dismantling of 11 plants in 5 other States. In recent years, major changes in gasoline-plant facilities have been (1) a rapid increase in the number of plants in Texas and (2) notable decreases in Oklahoma, Pennsylvania, West Virginia, and Kansas.

Natural-gasoline production by compression plants is growing rapidly because of the cycling operations in Texas, which contribute a major part of such output. Production by the absorption process continues to expand moderately in all important producing States except California and Oklahoma, where failing gas supplies have restricted the throughput in certain important fields.

Trends in vapor pressures.—The average vapor pressure of all naturalgasoline shipments in 1941 was 19.7 pounds, up from the 1940 average of 19.3 pounds. The rise was due entirely to deliveries to refineries, which increased in vapor pressure to 20.6 pounds from 20.2 in 1940. while the vapor pressure of shipments to jobbers remained unchanged

at 13.8 pounds.

Technical improvements. - Mounting demand for suitable components for blending into 100-octane aviation gasoline caused rapid development of "superfractionation" equipment capable of isolating such lighter-end hydrocarbons as isobutane and isopentane in relatively pure form. This requires expensive apparatus designed to control critical processing conditions of temperature, flow, and fluid levels with an exactitude heretofore unrealized in commercial installations.

A general trend toward maximum recovery of the lighter hydrocarbons by gasoline plants was evident in 1941. These are useful as aviation-gasoline components, either direct or after conversion by isomerization and/or alkylation.

LIQUEFIED PETROLEUM GASES

The unusually active market for liquefied petroleum gases that prevailed throughout 1939 and 1940 continued with increased momentum into 1941, when sales of 462,852,000 gallons were reported, a 48-percent gain over the 1940 total of 313,456,000 gallons. The 1941 volume of deliveries to consumers would, it is believed, have been even greater had equipment for handling and using liquefied petroleum gases been freely available and diversions for consumption as raw material in the manufacture of high-octane gasoline and other products been less of a factor. The phenomenal growth in the demand for this fuel can be realized better when it is noted that the annual sales have quadrupled in 5 years; furthermore, the 1941 total for each of the several gases under review, except pentane, is above the combined total for all liquefied gases reported as recently as 1936.

Sales of liquefied petroleum gases in the United States, 1935-41, in thousands of gallons

			•		То	tal
Year	Butane	Propane	Butane- propane mixtures	Pentane	Quantity	Percent of increase over preceding year
1935.	34, 084	26, 814	13, 493	2, 464	76, 855	36. 2
1936.	40, 200	36, 502	27, 375	2, 575	106, 652	38. 8
1937.	45, 399	46, 474	46, 694	2, 833	141, 400	32. 6
1938.	52, 768	54, 130	56, 050	2, 253	165, 201	16. 8
1939	71, 351	79, 323	69, 020	3, 886	223, 580	35. 3
	77, 056	109, 216	123, 348	3, 836	313, 456	40. 2
	112, 244	126, 969	219, 252	4, 387	462, 852	47. 7

¹ Subject to revision.

All major demands for liquefied petroleum gases showed important gains in 1941 compared with 1940. Domestic requirements for cooking, water heating, and other household uses were 65 percent above the 1940 level compared with a 53-percent expansion in 1940 A 41-percent increase in deliveries of liquefied petroleum gases for industrial fuel in 1941 compared with a 12-percent increment in 1940 largely reflects stepped-up defense activities. Gains in sales of liquefied petroleum gases to manufactured-gas companies and to chemical manufacturers—25 and 28 percent, respectively—are slightly below comparative percentage increases for the same industries in 1940. The outstanding spurt (81 percent) in the demand for liquefied petroleum gases to be used as internal-combustion-engine fuel in 1940 was not repeated in 1941—probably due partly to diversion of butane to other channels and to the question of future supply—and the volume of sales for the purpose exceeded the 1940 total by only 24 pe cent.

Butane deliveries made up about one-quarter (24 percent) of the the total sales of liquefied petroleum gases in 1941, or the same proportionate share as in 1940. The propane total declined from 35 percent of all deliveries to 27 percent in 1941, and a corresponding gain (from 39 percent in 1940 to 47 percent in 1941) is found in the relative quantity of butane-propane mixtures reported. The decline in the proportionate volume of propane in the 1941 sales of liquefied petroleum gases is logical when it is considered that deliveries of propane gained only 16 percent compared with a 78-percent increase in The bulk of propane rethe market for butane-propane mixtures. quirements (77 percent in 1941) is reported for domestic use, where the unit of delivery is small and where consequently new customers, although numerous, add relatively little to the annual demand. the other hand, the larger share of butane-propane mixtures is credited to the manufacturing and chemical industries and to motor-fuel demand, where requirements of individual consumers are proportionately large and fewer accounts can add materially to the total. It is believed, therefore, that the percentage of butane-propane mixtures in the annual sales probably will expand and the relative propane total will decline. The pentane item represents a very small part of the liquefiedpetroleum-gas demand; furthermore, its proportionate share of the

total has dropped from about 2 percent in 1939 to less than 1 percent in 1941.

The marketed production of butane increased from 77.056.000 gallons in 1940 to 112,244,000 in 1941, or 46 percent, compared with a below-normal gain of 8 percent in 1940. Greatly increased demands for butane for domestic consumption (59 percent over 1940 requirements), industrial fuel (41 percent over 1940), and internal-combustionengine fuel (67 percent higher than in 1940) were all important factors

that caused the sharp rise in butane sales during 1941.

The demand for propane increased 16 percent—from 109,216,300 gallons in 1940 to 126,969,000 in 1941. The annual percentage gain for propane has declined noticeably for the third consecutive year from an increase of 47 percent in 1939 over 1938 to 38 percent in 1940 over 1939 and the still smaller increment in 1941 over 1940. Propane is used principally as a domestic fuel, a field in which the possibilities for great annual increases are less than for butane and butane-propane mixtures which go mostly to large-quantity consumers, such as industrial and chemical plants, and for motor-engine fuel. A 50percent decline in demand for propane as an industrial fuel in 1941 (16.730.000 gallons in 1941 compared with 33,122,000 in 1940) reflects a reasonable shift to butane and butane-propane mixtures, fuels that are cheaper, that have higher B. t. u. content per gallon, and that can be handled at lower pressures. The unusual increase in quantity of propane reported under "All other uses" for the Pacific Coast area (2,329,000 gallons in 1941 and no deliveries in 1940) is said to be gas delivered to various Army camps for fuel purposes. It is known that a similar demand has developed in other areas, but the volume evidently has been reported under domestic use.

An unusually high gain in sales of butane-propane mixtures in 1940 was repeated in 1941, and deliveries increased from 123.348.000 gallons in 1940 to 219,252,000, or 78 percent. The quantity of butanepropane mixtures reported for domestic use more than doubled (increasing from 43,133,000 gallons in 1940 to 87,673,000 in 1941) and the total was not far below the total for propane, the liquefied petroleum gas generally associated with the domestic trade. Butane-propane mixtures sold for industrial fuel increased from 3,508,000 gallons in 1940 to 35,287,000 in 1941. Butane-propane mixtures evidently are replacing butane as industrial fuel, because greater quantities of the latter gas are now being diverted for raw material and blending agents in the making of various products. Chemical plants use important amounts of butane-propane mixtures in their processes. and this demand increased from 30,636,000 gallons in 1940 to 39,243,-000 in 1941, or 28 percent. An unusually large volume of butanepropane mixtures was reported under "All other uses" in the Pacific Coast area; it is believed to cover deliveries to Army camps and defense

housing projects, as is true of propane already mentioned.

The market for pentane increased 14 percent from 3,836,000 gallons in 1940 to 4,387,000 in 1941. Pentane is used chiefly by chemical-manufacturing establishments as raw material; however, the proportionate share for this purpose declined from 79 percent of the total in 1940 to 72 percent in 1941, whereas the demand for domestic use

increased from 17 to 26 percent of total pentane deliveries.

Sales of liquefied petroleum gases in the United States, 1940-41, by uses, methods of transportation, and regional distribution, in thousands of gallons

	D4-		Butane-		To	otal
	Butane	Propane	propane mixtures	Pentane	Quantity	Percent
By uses: Domestic Gas manufacturing Industrial fuel Chemical manufacturing Internal-combustion-engine fuel All other uses	21, 302 10, 847 33, 166 10 11, 242 489	68, 927 5, 201 33, 122 987 915 64	43, 133 4, 191 3, 508 30, 636 41, 761 119	656 46 96 3,038	134, 018 20, 285 69, 892 34, 671 53, 918 672	42. 7 6. 5 22. 3 11. 1 17. 2
Percent of total	77, 056 24. 6	109, 216 34. 8	123, 348 39. 4	3, 836 1. 2	313, 456 100. 0	100. 0
By methods of transportation: Bulk Cylinders and drums	74, 828 2, 228	55, 218 53, 998	111, 543 11, 805	3, 588 248	245, 177 68, 279	78. 2 21. 8
	77, 056	109, 216	123, 348	3, 836	313, 456	100.0
Regional distribution: Pacific Coast area All other areas	18, 675 58, 381	9, 088 100, 128	44, 834 78, 514	3, 836	72, 597 240, 859	23. 2 76. 8
	77, 056	109, 216	123, 348	3, 836	313, 456	100.0
By uses: Domestic Gas manufacturing Industrial fuel Chemical manufacturing Internal-combustion-engine fuel All other uses	33, 873 12, 152 46, 677 289 18, 799 454	98, 048 6, 678 16, 730 1, 528 1, 631 2, 354	87, 673 6, 368 35, 287 39, 243 46, 441 4, 240	1, 128 57 34 3, 146	220, 722 25, 255 98, 728 44, 206 66, 871 7, 070	47. 7 5. 5 21. 3 9. 6 14. 4 1. 5
Percent of total	112, 244 24. 3	126, 969 27. 4	219, 252 47. 4	4, 387 0. 9	462, 852 100. 0	100.0
By methods of transportation: Bulk Cylinders.	111, 109 1, 135	55, 398 71, 571	202, 579 16, 673	4, 083 304	373, 169 89, 683	80. 6 19. 4
	112, 244	126, 969	219, 252	4. 387	462, 852	100.0
Regional distribution: Pacific Coast area All other areas	26, 628 85, 616	14, 006 112, 963	62, 251 157, 001	4, 387	102, 885 359, 967	22. 2 77. 8
	112, 244	126, 969	219, 252	4, 387	462, 852	100.0

¹ Subject to revision.

In reviewing the relative quantities of the several liquefied petroleum gases delivered to satisfy the various uses, it should be noted that the proportion of butane in the domestic total was approximately 16 percent in both 1940 and 1941; the share of the domestic trade supplied by propane was 44 percent in 1941 compared with 51 percent in 1940 and a compensating gain was reported for butane-propane mixtures. This shift in kinds of liquefied gases sold for household fuel undoubtedly was due in part to the installation in the South Central States of numerous underground systems handling butane-propane mixtures for domestic use.

The manufactured-gas companies show proportionately more butane-propane mixtures and less butane in their purchases of lique-fied petroleum gases in 1941 than in 1940. The butane share of such total requirements dropped from 53 percent in 1940 to 48 percent in 1941; most of this was compensated by the gain in butane-propane mixtures and the rest by propane deliveries.

Butane sold for industrial fuel was constant at about 47 percent of the total requirements for this use in both 1940 and 1941. Propane credited to industrial plants declined from 47 percent of the total in 1940 to 17 percent in 1941, but a corresponding gain (from 5 percent in 1940 to 36 percent in 1941) was reported for butane-propane mixtures in this particular use. Suppliers were believed to have been endeavoring to step up the volume of liquefied petroleum gases intended for industrial fuel by furnishing butane-propane mixtures, as they require less purification and consequently can be sold more cheaply. The demand for butane for other uses was another factor that caused more butane-propane mixtures to be used by industrial plants as fuel.

Liquefied petroleum gases credited to chemical plants for use as blending agents and raw material showed little change in their relative proportions in 1940 and 1941. Butane-propane mixtures comprised about 89 percent of the total in each year, and the rest was mainly pentane. Butane-propane mixtures are used widely as internal-combustion-engine fuel; however, the proportion of the total for mixtures dropped from 77 percent in 1940 to 69 percent in 1941, and most of the corresponding gain is found in the butane column and in a

small increase for propane.

The following summary covering the distribution of liquefied petroleum gases by manufactured-gas companies in 1941 has been furnished through the courtesy of the American Gas Association.

At the end of 1941, liquefied petroleum gas was being delivered through mains to consumers in 175 communities in 31 States by 90 companies supplying 65,300

customers.

Butane-air gas with a heating value ranging from 520 to 1,300 B. t. u. per cubic foot was supplied to 142 communities in 30 States by 73 companies. A mixture of undiluted butane and propane gas with a heating value of 2,800 to 3,000 B. t. u. per cubic foot was supplied to 16 communities in Arizona, California, and Nevada by 7 companies. Undiluted propane gas with a heating value of 2,550 B. t. u. per cubic foot was supplied to 19 communities in Maryland, Minnesota, New Jersey, North Dakota, Virginia, and Wisconsin by 6 companies.

There has been a decided trend in recent years toward bulk handling of liquefied petroleum gases, because of the rapid growth in the proportion of deliveries to gas-manufacturing, industrial, and chemical plants and the motor-fuel trade, users that receive virtually all their requirements in tank cars or tank trucks. Bulk shipments of liquefied petroleum gases increased from 245,177,000 gallons in 1940 (78 percent of total sales) to 373,169,000 gallons in 1941 (approximately 81 percent of all deliveries), whereas cylinder shipments (limited largely to the domestic trade) were 68,279,000 gallons in 1940 and 89,683,000 in 1941. Ninety-six percent of all cylinder sales were credited to the domestic or "bottled-gas" market in 1941 compared with 97 percent in 1940.

The Pacific Coast marketing area (California, Oregon, Washington, Arizona, and Nevada) reported the sale of 102,885,000 gallons, or 22 percent of total national deliveries, in 1941 compared with 72,597,000 in 1940, or 23 percent of all sales. Liquefied petroleum gases delivered in "All other areas" increased from 240,859,000 gallons in 1940—77 percent of total deliveries—to 359,967,000 in 1941—78 percent of the national demand.

CARBON BLACK

By G. R. HOPKINS AND H. BACKUS

SUMMARY OUTLINE

	Page		Page
Summary	1171	Production—Continued.	
Salient statistics	1172	Producers	1178
Historic data	1173	Demand	1178
Production		Total deliveries	
By States		Domestic consumption	1178
By months	1174	Exports and imports	1176
Methods and yields	1174	Stocks	1177
Mumber of plants	1175	Prices and values	1177

SUMMARY

The carbon-black industry experienced a profitable year in 1941, as new peaks were recorded for both production and sales. Because

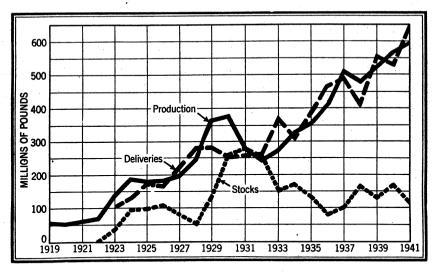


FIGURE 1.—Production, stocks, and deliveries of carbon black, 1919-41.

of the war, exports continued to decline but domestic sales advanced sharply. By the time the rubber shortage began to affect the market, other defense industries took up the slack, resulting in a 30-percent drop in producers' stocks between January 1 and December 31 (see fig. 1).

Prices were advanced on April 1 and July 1, then held firm until

January 1, 1942, when there was another advance.

The use of carbon black is increasing in reducing glare on airport runways, in making black-out materials, and for military purposes; but in 1941, as in former years, the rubber industry was the largest user, taking almost 90 percent of domestic sales.

Salient statistics of carbon black produced from natural gas in the United States, 1937-41

	1937	1938	1939	1940	1941
Number of producers reporting Number of plants	24 57	24 55	22 49	22 51	21 49
Quantity produced: By States and districts: Louisianapounds	66, 381, 000	39, 534, 000	51, 734, 000	55, 610, 000	78, 050, 000
Texas: Panhandle districtdo Rest of Statedo	405, 247, 000	382, 369, 000 34, 735, 000	410, 130, 000 43, 044, 000	423, 908, 000 55, 987, 000	415, 001, 000 65, 211, 000
Total Texasdo Other Statesdo	421, 068, 000 23, 157, 000	417, 104, 000 20, 401, 000	453, 174, 000 20, 258, 000	479, 895, 000 33, 287, 000	480, 212, 000 35, 803, 000
Total United Statesdo	510, 606, 000	477, 039, 000	525, 166, 000	568, 792, 000	594, 065, 000
By processes: Channel processdo Other processes 1do	444, 427, 000 66, 179, 000	441, 284, 000 35, 755, 000	464, 588, 000 60, 578, 000	491, 765, 000 77, 027, 000	487, 967, 000 106, 098, 000
Stocks held by producers Dec. 31 poundsdodo	100, 497, 000 76, 000	166, 159, 000 2 65, 000	130, 792, 000	169, 587, 000 223, 000	118, 847, 000 61, 000
Quantity sold: Domestic deliveries: To rubber companiesdo To ink companiesdo To paint companiesdo For miscellaneous purposes ³ pounds	18, 116, 000 6, 159, 000	217, 231, 000 14, 131, 000 4, 229, 000 7, 883, 000	316, 621, 000 21, 929, 000 6, 382, 000 11, 773, 000	310, 179, 000 24, 159, 000 6, 806, 000 11, 012, 000	439, 502, 000 28, 198, 000 5, 840, 000 8 58, 469, 000
Total domestic deliveries 3 pounds_ Exportdo	305, 362, 000 184, 253, 000	243, 474, 000 167, 968, 000	356, 705, 000 203, 828, 000	352, 156, 000 177, 618, 000	³ 532, 009, 000 ⁴ 112, 735, 000
Total sold do do do Value (at plants) of carbon black produced:	489, 615, 000	411, 442, 000	560, 533, 000	529, 774, 000	644, 744, 000
Tôtal	\$17, 389, 000 3. 41	\$11, 486, 000 2. 41	\$12, 857, 000 2. 45	\$16, 510, 000 2. 90	\$19, 341, 000 3. 26
used	341, 085, 000	324, 950, 000	347, 270, 000	368, 802, 000	365, 377, 000
M cubic feetpounds Average value of natural gas used	1. 50	1.47	1. 51	1.54	1.63
per M cubic feetcents	1.26	. 89	.94	1.00	1. 13

Lewis, roller, "special," and thermatomic.

The following table shows data for carbon black produced from natural gas in the United States since 1919, the earliest year for which a canvass was made.

^{*} Lewis, roller, special, and wholad the special speci

Summary of statistics for carbon black produced from natural gas in the United States, 1919-41

Year	Production (thousands	Value (thousands	Stocks at end of year		ousands of inds)	Average yield (pounds
1 cai	of pounds)	of dollars)	(thousands of pounds)	Domestic	Export	per M cubic feet of gas)
1919 1920 1921 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1937 1938 1937	51, 326 59, 766 67, 795 138, 263 186, 872 177, 417 180, 576 198, 429 248, 790 366, 442 379, 942 280, 907 242, 700 273, 125 328, 828 352, 749 411, 345 510, 606 477, 039 525, 166	3, 816 4, 032 5, 446 5, 820 11, 692 11, 565 9, 640 9, 939 10, 955 13, 782 18, 720 14, 852 8, 621 6, 664 7, 602 11, 654 13, 755 16, 110 17, 389 11, 485 12, 857 16, 510	(1) (2) 38, 321 95, 671 96, 023 108, 373 82, 831 50, 240 132, 259, 245 { 280, 010 3 281, 667 257, 998 155, 969 171, 799 136, 086 79, 582 100, 497 166, 159 130, 792 169, 587	(1) (1) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(2) (2) (2) (2) (3) (4) (43, 183 39, 211 54, 431 77, 903 91, 829 84, 260 96, 714 100, 072 152, 286 120, 620 142, 185 164, 718 184, 253 167, 620 177, 618	1. 04 1. 28 1. 18 1. 26 1. 27 1. 19 1. 26 1. 39 1. 38 1. 42 1. 40 1. 43 1. 44 1. 44 1. 43 1. 46 1. 45 1. 50 1. 47

Figures not available.

Exports not separately reported by the Department of Commerce before 1925.

For comparison with 1932.

Exports for October to December included with domestic sales to avoid disclosing export figures.

Figures cover January to September, inclusive.

PRODUCTION

By States.—In 1941 Texas produced 480,212,000 pounds of carbon black, or slightly more than in the former peak year of 1940. A decline of 9,000,000 pounds in production in the Panhandle was offset by the gain in output in the rest of the State. Texas supplied 81 percent of the total United States output in 1941 compared with 84 percent in 1940. Louisiana continued its upward trend and produced 78,050,000 pounds in 1941 compared with 55,610,000 pounds Kansas and Oklahoma combined made an output of 35,803,-000 pounds in 1941, compared with 33,287,000 in 1940.

Carbon black produced from natural gas in the United States in 1941, by States and by major producing districts

	_		Pr	oduction		N	tural g	as used	
	orting	nts		Value at p	lant		per	Valu	е
State and district	Producers reporting	Number of plants	Pounds	Total	A verage (cents)	M cubic feet	Average yield M cubic (pounds)	Total	Average per M cubic feet (cents)
Kansas Oklahoma Louisiana: Monroe-Rich- land district (More-	2 4	2 4	35, 803, 000	\$1, 216, 000	3. 40	16, 399, 000	2. 18	\$296, 000	1, 80
house and Ouachita Parishes)	6	6	78, 050, 000	2, 784, 000	3. 57	18, 627, 000	4. 19	576, 000	3.09
Texas: Panhandle district (Carson, Gray, Hutchinson, Moore, and Wheeler Coun-									
ties)	17	29	415, 001, 000	13, 239, 000	3. 19	292, 628, 000	1.42	2, 995, 000	1.02
Counties)	5	8	65, 211, 000	2, 102, 000	3. 22	37, 723, 000	1. 73	268, 000	. 71
Total Texas	1 17	37	480, 212, 000	15, 341, 000	3. 19	330, 351, 000	1. 45	3, 263, 000	. 99
Total United States	21	49	594, 065, 000	19, 341, 000	3. 26	365, 377, 000	1. 63	4, 135, 000	1.13

¹In counting the total number of producers reporting, a producer operating in more than 1 State, district, or county is counted but once.

By months.—War demands evidently influenced production, as the highest daily average output (obtained by prorating the Bureau's annual total upon the basis of monthly figures of the National Gas Products Association) was for December; the lowest were those for May and July.

Carbon black produced from natural gas in the United States in 1941, by months, in pounds

	National Gas Prod-	Bureau o	f Mines 2	-	National	Bureau of	Mines 3
Month	ucts Asso- ciation 1	Total	Daily average	Month	Gas Prod- ucts Asso- ciation ¹	Total	Daily average
January February March April May June July	41, 842, 851 37, 934, 158 42, 258, 613 41, 324, 480 41, 385, 780 40, 076, 944 41, 371, 402	50, 436, 000 45, 684, 000 50, 911, 000 49, 783, 000 49, 842, 000 48, 298, 000 49, 842, 000	1, 627, 000 1, 632, 000 1, 642, 000 1, 659, 000 1, 608, 000 1, 610, 000 1, 608, 000	August September October November December	41, 589, 962 40, 216, 651 40, 521, 599 41, 193, 670 43, 313, 845 493, 029, 955	50, 139, 000 48, 476, 000 48, 832, 000 49, 604, 000 52, 218, 000 594, 065, 000	1, 617, 000 1, 616, 000 1, 575, 000 1, 653, 000 1, 684, 000

[!] Represents output of contact black.

*Monthly figures obtained by allocating the Bureau's annual total proportionately to the association's monthly data.

Methods and yields.—Although the leading method of producing carbon black is still the channel process, the other processes—Lewis, roller, "special," and thermatomic—are gaining importance; they produced 18 percent of the total output in 1941 compared with 14 percent in 1940 and 12 percent in 1939. The principal gain was

made by the furnace or high-yield blacks; hence, the average yield rose to 1.63 pounds a thousand cubic feet of gas used compared

with 1.54 pounds in 1940.

Number of plants.—There were 49 plants in operation in 1941 compared with 51 in 1940; 2 new plants were built, and 4 that produced in 1940 were not operated in 1941. Publication of information relative to location and capacity of plants has been suspended.

Producers.—The Reliance Carbon Co. was dissolved in 1941. No

new names were added to the list of producers.

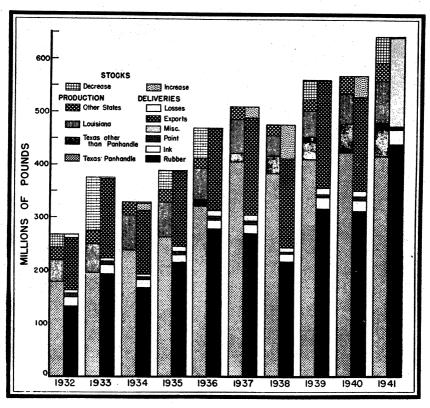


FIGURE 2.—Production and consumption of carbon black, 1932-41. Production in "Texas other than Panhandle" included in "Other States," 1932-35. Exports for 1941 included in "Miscellaneous."

DEMAND

Total deliveries.—Sales of carbon black, as reported by producers, were 644,744,000 pounds in 1941—22 percent above the 1940 figure

of 529,774,000 pounds.

Domestic consumption.—Domestic sales increased in all major classes except those to paint companies. Because publication of exports for October, November, and December 1941 has been suspended, exports for the entire year 1941 have been combined in figure 2 with sales for miscellaneous purposes. It is not possible to compare relative sales of the major classes in 1941 with those in 1940.

Reports from producers indicate that domestic sales in 1941 were divided as follows: Rubber companies, 439,502,000 pounds; ink companies, 28,198,000 pounds; paint companies, 5,840,000 pounds; miscellaneous purposes, including 3 months' exports, 58,469,000 pounds.

According to information supplied by the Bureau of Foreign and Domestic Commerce, the consumption of rubber, both at home and

abroad, increased sharply in 1941.

Consumption of rubber in the United States reached a new peak, with substantial gains in all three types—crude, reclaimed, and synthetic. Statistics of the Rubber Manufacturers Association indicate that the percentage of decrease in stocks at the end of 1941 far outweighed the gain in number of tire casings produced, showing an increased demand made by the war on other branches of the rubber industry that use carbon black. The increased use of retread for tires is reflected in a sharp rise in the production of camelback. As this has a relatively high carbon-black content, it was probably also a factor in the 42-percent increase in the quantity of carbon black delivered to rubber companies during 1941.

A 17-percent increase in the quantity of carbon black delivered to ink companies is confirmed by information supplied by the Bureau of Foreign and Domestic Commerce, which shows new gains in news-

print available for consumption in 1941.

A 14-percent decrease in carbon black delivered to paint companies seems to indicate that its use in black-out paints did not affect the

trade in 1941.

Exports and imports.\(^1\)—Exports for the first 9 months of 1941 totaled 112,734,841 pounds, valued at \$5,104,509; comparison with the corresponding period of 1940 shows a marked decline in shipments to foreign countries. The foregoing figures indicate an average value of 4.53 cents in 1941 compared with 4.38 cents in 1940. Publication of export figures for October, November, and December, and of the names of importing countries, has been suspended.

Imports of gas black for the first 9 months of 1941 were only 800 pounds, valued at \$101. Imports of acetylene black (all from Canada)

for the 9 months were 2,907,751 pounds, valued at \$310,084.

Carbon black exported from the United States, 1940-41, by months

	194	0	1941 (Jan	-Sept.)
Month	Pounds	Value	Pounds	Value
January February March April May June July August September October November December	22, 885, 685 27, 026, 918 15, 023, 991 8, 464, 702 11, 862, 418 19, 116, 627 8, 954, 840 10, 274, 304 13, 579, 306 10, 707, 700	\$874, 658 1, 034, 505 1, 189, 390 650, 748 381, 735 503, 178 811, 861 394, 645 452, 298 632, 906 489, 704 408, 192 7, 823, 820	9, 800, 208 9, 092, 813 12, 183, 017 11, 038, 325 15, 028, 478 7, 100, 275 14, 863, 785 11, 157, 609 22, 470, 331 (1) (1)	\$454, 687 384, 618 538, 411 508, 466 683, 493 298, 292 670, 866 503, 884 1, 061, 790 (1) (1)

¹ Publication suspended.

¹ Figures on exports and imports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

STOCKS

Favorable market conditions in 1941 were reflected in a 30-percent decrease in producers' stocks between January 1 and December 31. Stocks on hand at the end of the year were 118,847,000 pounds—the lowest figure since 1937, when 100,497,000 pounds were reported.

PRICES AND VALUES

The average value of carbon black at the plants rose from 2.90

cents a pound in 1940 to 3.26 cents in 1941.

The following table gives spot prices of representative grades of carbon black in 1941, as quoted by the Oil, Paint and Drug Reporter.

Quoted prices on various grades of carbon black in carlots in 1941, in cents a pound
[Oil, Paint and Drug Reporter]

	Regular,	Beads, com-	Bulk, cars		
Date	uncom- pressed, bags, f.o.b. plants	pressed, bags,	F. o. b. plants	F. o. b. N. Y. harbor	
January 1	3. 075 3. 325 3. 425	2. 925 3. 175 3. 350	2. 75 3. 00 3. 15	3. 63 3. 97	
Average	3. 314	3. 202	3. 01	(1)	

¹ Not quoted after April 1.

HELIUM

By H. S. KENNEDY AND R. A. CATTELL

SUMMARY OUTLINE

	Page		Page
Introduction	1179	Government use of heilum	1180
Expanded program	1179	Sales of helium for medical, scientific, and	
Protection of plant and gas field	1180	commercial use	1181
Operation of Amarillo plant	1180	Prices	1181
Cliffside gas field	1180	Outlook and plans	1182

Introduction.—Planning and research by Bureau of Mines engineers, extending without interruption since the First World War, have resulted in a helium project that plays an important role in the present emergency. About 1925 the Bureau initiated (1) an accelerated program of research on properties of gases suitable for extraction of helium and (2) engineering studies of fields found in the course of the survey of helium-bearing natural gas that offered possibilities for economical extraction of helium. A successful helium project not only requires a supply of natural gas of suitable helium content but also a large proved reserve under a pressure of several hundred pounds per square inch (which can be protected against waste or rapid depletion through excessive withdrawals), an adequate and dependable outlet for the residue gas from the helium plant, and various other conditions essential to successful and economical extraction of helium.

The Cliffside field near Amarillo, Tex., was selected for a helium project and has proved to be the best source of helium-bearing natural gas found in 25 years of concentrated search. All gas rights were acquired in 50,000 acres of land covering the field, equipment using a new method for extraction of helium was designed, and the Amarillo Helium Plant (with a rated annual capacity of 24 million cubic feet

of helium) was built in 1929.

Expanded program.—The importance of helium to the national defense program was recognized by the Congress in appropriating \$175,000 in an act approved April 1, 1941, to be used in a survey of sources of helium for new helium plants and for additions to the existing facilities near Amarillo. With the funds made available, the Bureau is collecting and analyzing samples from various gas fields and studying geological and engineering features of fields that offer possibilities for production of helium. The primary purpose of this work is to acquire data that will aid in developing plans for increasing the output of helium to meet any helium requirements that may arise in the future. Moreover, at the end of the fiscal year 1941, the Congress appropriated \$350,000 for another unit at the two-unit Amarillo plant and for drilling additional wells, thereby increasing the rated annual capacity of that plant to 36 million cubic feet. The new unit and other facilities being constructed near Amarillo will be ready for operation at the beginning of the fiscal year 1943.

The plans of the Army and Navy have progressed to such a point that the expanded facilities at the Amarillo plant will not supply enough helium for the war program. Therefore, the Congress made an additional \$1,250,000 available to the Bureau of Mines for new helium-producing facilities. As a result of the survey and engineering studies, the Channing area in the southwestern part of the main Panhandle field (Moore, Potter, Oldham, and Hartley Counties, Tex.), which produces gas with an average helium content of about 1 percent, was selected as a source of helium-bearing natural gas. A site at Exell, Tex., has been selected for a new helium plant, to be constructed with a rated annual capacity of 24 million cubic feet of helium. A contract permitting the Bureau to process the gas from this area for helium extraction and contracts for the design and construction of a new plant have been executed.

Protection of plant and gas field.—Helium is used to inflate aircraft that patrol the coasts. The Amarillo plant is the only operating helium plant in the world, and the Cliffside gas field is therefore an essential war area as the source of helium-bearing natural gas. The military authorities and the Federal Bureau of Investigation have cooperated with the Bureau of Mines in studying means of protecting the plant, pipe line, and gas wells, and their recommendations for guarding the properties against sabotage have been put into effect.

Operation of Amarillo plant.—During the fiscal year ended June 30, 1941, the Bureau of Mines Amarillo Helium Plant operated at a rate higher than in any previous year and produced 16,173,430 cubic feet of helium; the cumulative output from April 1929 to June 30, 1941, was 116,165,430 cubic feet. During the first half of the fiscal year ended June 30, 1942, 15,721,950 cubic feet of additional helium were produced, raising the plant's total output from April 1929 to December 31, 1941, to 131,887,380 cubic feet. This quantity of helium, added to the 49 million cubic feet produced at the Fort Worth plant before the Amarillo plant was built, raises the total production in Government plants to approximately 180 million cubic feet at the end of the calendar year 1941.

Residue natural gas from the helium plant sold for use as fuel in the fiscal year 1941 totaled 845,728,000 cubic feet and brought a return of \$38,057. The cumulative sales of residue gas for the 12-year operating period at the Amarillo plant (to June 30, 1941) totaled 5,997,936,000 cubic feet, for which \$305,037 was received.

Cliffside gas field.—In the fiscal year 1941, 951,031,000 cubic feet of helium-bearing natural gas were produced by the Bureau of Mines from the Government's Cliffside gas field to supply the Amarillo plant; the cumulative output of natural gas from the field is 6,934,920,000 cubic feet.

The Bureau began a drilling program in the Cliffside field for a supply of gas in addition to that from the five wells drilled before 1941. Contracts were let for four wells, which were completed with daily open flows ranging from 11 to 22 million cubic feet of gas. Gathering lines were constructed to connect the wells to the main pipe line.

Government use of helium.—The Navy, which continued to purchase the largest volume of helium, received about 7 million cubic feet during the fiscal year 1941. Increased volumes of helium are used for inflating lighter-than-air craft to meet the expanding program of coast patrol. Helium is used for diverse fleet operations, including admix-

HELIUM 1181

ture with oxygen to provide a breathing atmosphere that mitigates caisson disease (the "bends") in diving; the Bureau made pioneering

experiments in this field in 1923.

The Weather Eureau consumed about 3,700,000 cubic feet of helium during the fiscal year 1941—over 40 percent more than in the fiscal year 1940. This increase was due to establishment of new meteorological stations and reflects the increased operations to supply the military services with weather data for extended war activities.

The Army employs helium principally for inflating barrage balloons, which are used in the rapidly expanding program of training soldiers to operate this type of war weapon for protecting military objectives from bombing. It is probable that barrage balloons flown above most objectives will be filled with hydrogen, but helium may be used where severe fire hazards will arise from hydrogen-filled balloons that may be shot down in flames. The extent to which helium will be employed in actual barrage-balloon operations will depend on future developments.

Sales of helium for medical, scientific, and commercial use.—Public sale of helium was authorized by the amendatory Helium Act approved September 1, 1937. To June 30, 1941, 124 contracts for a total of 2,761,095 cubic feet of helium had been approved. In the fiscal year 1941, 1,246,940 cubic feet of helium (7.7 percent of the production) were sold to non-Government users. About 600,000 cubic feet were employed for medical use, for an estimated 50,000 hours of treatment.

New uses for helium center around developments in metallurgy. Helium is being used as an inert atmosphere for welding magnesium-alloy wings for war planes, and this development has speeded their manufacture. Another use of helium in the national war program is to provide an inert atmosphere for welding defects in magnesium-alloy castings. It is reported that this use of helium has accelerated

the production of magnesium castings.

Prices.—The estimated cost of producing helium for the fiscal year 1941, as approved by the Secretary of the Interior, was \$13.75 a thousand cubic feet. In accordance with the law and regulations, this estimate was used as the basis for computing the deposits made by non-Government buyers of helium. Increased volume of output has a marked effect in reducing the unit cost of helium. Although production in the fiscal year 1941 was 71 percent more than that in 1940, the decrease in the unit cost was much less than it would have been in normal times because new obligations were incurred for protecting the helium properties against sabotage. The actual selling prices for the fiscal year 1941, as approved by the Secretary of the Interior, were \$9.75 for helium for medical use, \$10.24 for helium for scientific use, and \$11.47 for helium for commercial use. The balances of the deposits under sales contracts, in excess of the total charges for helium and services applicable to the contracts, were refunded to the purchasers.

Government agencies were charged the record low price of \$6.42 per thousand cubic feet, irrespective of the use made of the helium. This represents operating cost only, because under the law depreciation and depletion are not assessed against Government agencies.

The price at which helium can be sold is influenced by the volume of production and improvements in the process. Over a period of

years, the price of helium has shown a marked decrease. The trend in recent years is indicated by the following table:

Prices charged for 1,000 cubic feet of helium, 1938-41

[Exclusive of service charges]

	:	Fiscal 3	rear—	
	1938	1939	1940	1941
Helium requisitioned by Government agencies Helium sold to non-Government purchasers:	\$11.16	\$11.47	\$8.43	\$6.42
Medical use	13. 471 13. 471	12.80 13.44	11. 17 11. 73	9.75

Outlook and plans.—As most of the world is at war, the War and Navy Departments and the Weather Bureau have been obliged continually to expand their war plans involving the use of helium. The production in the fiscal year 1942 was nearly double that in the fiscal year 1941. The anticipated demand in the fiscal year 1943 will require the full rated annual capacity of 36 million cubic feet of helium from the three units at the Amarillo plant (including the new third unit) and large quantities from the new plant being constructed at Exell, Tex. The usefulness of the airship patrol in locating enemy submarines off the coasts has accelerated the program for constructing additional lighter-than-air craft, which, in turn, has increased the demand for helium. An increase in the annual capacity of the new plant at Exell, Tex., from the 24 million cubic feet originally contemplated to 60 million cubic feet is being considered.

Work is continuing on the survey of helium-bearing natural gas and the geological and engineering study of fields that give promise as sources of helium. This work will enable the Bureau of Mines to select areas for establishing new helium plants whenever they are

needed to meet the requirements of war.

ASPHALT AND RELATED BITUMENS

By A. H. REDFIELD 1

SUMMARY OUTLINE

	Page		Page
Summary Native asphalt and bitumens Bituminous rock Gilsonite and wurtzilite	1183 1183 1183	Manufactured or petroleum asphalt Production Stocks	1184 1185
Sulfonated bitumen	1184	Foreign trade Distribution by rail Road oil	1188

SUMMARY

Refinery sales of petroleum asphalt (exclusive of road oil) to domestic consumers in the United States were 26 percent larger in tonnage in 1941 than in 1940, and, because of higher prices, they were 34 percent greater in total value. The average sales value per short ton increased 6 percent. To meet the augmented domestic demand, petroleum refineries enlarged their output 23 percent from 1940 to 1941 and decreased their stocks 1.6 percent. The increased domestic demand in 1941 was partly met by imports, which were 18 percent higher in the first 9 months of the year than in the corresponding months of 1940. At the same time, foreign demand was 22 percent less in the first three quarters of 1941 than in the corresponding period of 1940.

The tonnage of bituminous rock sold had an even greater proportional increase—43 percent—than did the total tonnage of solid and liquid petroleum asphalt sold for paving purposes—23 percent. The comparatively low valued products of Texas, Oklahoma, and Alabama accounted for the greater increases in sales of bituminous rock; consequently, the total value of bituminous rock sold increased only 19 percent, and the average value per short ton sold decreased 17 percent.

In spite of a slight decline in exports of natural unmanufactured asphalt (mostly gilsonite), sales of gilsonite increased 14 percent in quantity from 1940 to 1941. As the unit value of the gilsonite sold declined 3 percent, the total sales value increased only 10.5 percent.

NATIVE ASPHALT AND BITUMENS

Bituminous rock.—Bituminous rock shared the generally increased demand for asphaltic substances in 1941. Sales of rock asphalt by producers in the United States increased 43 percent in quantity—from 458,665 short tons in 1940 to 654,692 tons in 1941—and 19 percent in total value—from \$1,949,166 to \$2,312,227. Prices were lower than in 1940, and the average sales value at the mine decreased from \$4.25 per ton to \$3.53.

Operators in Texas and Oklahoma increased their sales from 282,250 tons valued at \$833,248 to 446,432 tons valued at \$1,197,319, but smaller sales in California more than offset an increase in Missouri.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

East of the Mississippi River, producers in Kentucky and Alabama enlarged their sales from 150,312 tons valued at \$1,031,646 to 193,887 tons valued at \$1,047,529.

Gilsonite and wurtzilite.—Greater demand in the domestic market boosted producers' sales of gilsonite in Utah from 31,930 short tons valued at \$770,711 in 1940 to 36,407 tons valued at \$851,623 in 1941. The average sales price per ton at the mine or railhead decreased from \$24.14 to \$23.39.

Sales of wurtzilite from Utah decreased from 70 tons valued at

\$5,460 in 1940 to 69 tons valued at \$5,343 in 1941.

Sulfonated bitumen.—In 1941, as in 1940, a small quantity of natural sulfonated bitumen was produced in Box Elder County, Utah, near

Ogden.

Exports.—Exports of natural unmanufactured asphalt were 8,223 short tons valued at \$266,404 in the first 9 months of 1941, compared with 8,382 tons valued at \$362,836 in the corresponding months of 1940. No data to indicate the destination of these exports in 1941 are available for publication.

MANUFACTURED OR PETROLEUM ASPHALT

Production.—Petroleum refineries in the United States produced 23 percent more asphalt in 1941 than in 1940. The Rocky Mountain district was the only exception to the general increase. The greatest gains in tonnage were made in the northeastern quarter of the United States and the Mid-Continent area; California and Gulf Coast refineries showed smaller increases.

Production, receipts, stocks, consumption, transfers, losses, exports, and domestic sales of asphalt (exclusive of road oil) at petroleum refineries in the United States in 1941, by districts, in short tons

		Receipts	Sto	cks	Consump- tion by	a
District	Produc- tion	from other sources	Dec. 31, 1940	Dec. 31, 1941	companies, transfers, losses, and exports	Sales to domestic consumers
East Coast Appalachian Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri	2, 138, 000 258, 000 1, 327, 800 501, 300	148, 600 300 161, 000 166, 100	137, 000 13, 000 170, 000 58, 000	120, 000 13, 000 171, 000 94, 000	137, 800 8, 900 461, 800 11, 200	2, 165, 800 249, 400 1, 026, 000 620, 200
Texas: Gulf Coast Inland	362, 700 244, 000	300 88, 000	17, 000 19, 000	23, 000 15, 000	161, 000	196, 000 336, 000
Total Texas	606, 700	88, 300	36,000	38, 000	161, 000	532, 000
Louisiana-Arkansas: Louisiana Gulf Coast Arkansas and Louisiana Inland	417, 100 284, 700	5, 700	51, 000 51, 000	47, 000 22, 000	57, 200 4, 300	363, 900 315, 100
Total Louisiana-Arkansas Rocky Mountain California	701, 800 134, 400 889, 600	5, 700 44, 300 38, 800	102, 000 20, 000 78, 000	69, 000 27, 000 72, 000	61, 500 10, 500 139, 300	679, 000 161, 200 795, 100
Total United States: 1941	6, 557, 600 5, 346, 700	653, 100 287, 400	614, 000 550, 000	604, 000 614, 000	992, 000 627, 800	6, 228, 700 4, 942, 300

Sales of asphalt (exclusive of road oil) at petroleum refineries to domestic consumers in the United States, 1940-41, by districts

District	19	40	1941			
÷	Short tons	Value	Short tons	Value		
East Coast. Appalachian Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri	1, 725, 036 171, 001 904, 532 452, 314	\$19, 995, 386 1, 972, 721 8, 332, 733 2, 729, 728	2, 165, 783 249, 362 1, 026, 016 620, 166	\$24, 799, 304 3, 071, 753 10, 506, 007 4, 373, 066		
Texas: Gulf Coast Inland	157, 696 207, 045	1, 493, 388 1, 788, 661	196, 015 336, 022	1, 773, 130 2, 948, 610		
Total Texas	364, 741	3, 282, 049	532, 037	4, 721, 740		
Louisiana-Arkansas: Louisiana Gulf Coast Arkansas and Louisiana Inland	309, 646 227, 986	2, 829, 484 1, 561, 379	363, 885 315, 116	3, 496, 201 2, 210, 082		
Total Louisiana-Arkansas	537, 632 133, 940 653, 093	4, 390, 863 946, 789 3, 540, 782	679, 001 161, 200 795, 158	5, 706, 283 1, 492, 574 5, 842, 416		
Total United States	4, 942, 289	45, 191, 051	6, 228, 723	60, 513, 143		
			the state of			

Stocks.—Throughout the Nation, stocks of petroleum asphalt at refineries decreased 10,000 short tons from December 31, 1940, to December 31, 1941, principally in Louisiana and Arkansas, the East Coast district, and California. On the other hand, refinery stocks increased in Oklahoma, Kansas, and Missouri; in the Rocky Mountain district; and in Texas.

Sales.—Sales of petroleum asphalt by refineries to domestic consumers in the United States increased 26 percent in quantity and 34 percent in total value from 1940 to 1941; the average value at the

refinery increased from \$9.14 to \$9.72.

Of the total petroleum asphalt sold to domestic consumers, 25 percent was manufactured from foreign petroleum (imported chiefly from Venezuela and Mexico), the same percentage as in 1940. Although runs of foreign crude oil to stills increased 22 percent—from 41,798,000 barrels in 1940 to 50,946,000 barrels in 1941—sales of petroleum asphalt from this source increased 27 percent in tonnage during the same period; apparently, more foreign crude oil was run to asphalt in 1940 than in 1941. East Coast refineries sold 91 percent of the total asphalt made from foreign crude in 1940 and 97 percent in 1941.

Highway and street construction and airport-runway surfacing used (in the form of paving asphalt, paving flux, cut-back asphalts, and asphalt emulsions) 64 percent of the total asphalt sold to domestic consumers by petroleum refineries in 1941, compared with 66 percent in 1940. Such statistics as are available indicate a sharp increase in the construction of paved highways over 1940. Not only was more mileage of high-type roadway laid down by the States, but the Federal Government contributed generously to the enlarged demand for paving grades of asphalt in 1941 by its program of constructing paved streets for camps and cantonments and runways for airports.

Domestic sales of paving asphalt of less than 200 penetration increased from 1,277,961 short tons in 1940 to 1,764,221 tons in 1941, or 38 percent. The gains were general but were greatest in the three

northeastern districts, in Louisiana and Arkansas, and in California. It is noteworthy that the three northeastern refining districts, which produced 58 percent of the paving asphalt sold in the United States in 1941, laid 62 percent of the high-type surface constructed in that year, according to Engineering News-Record.

Asphalt and asphaltic material (exclusive of road oil) sold at petroleum refineries to domestic consumers in the United States in 1941, by varieties

[Value f. o. b. refinery]

Variety		lomestic oleum	From petro	foreign leum	To	tal
	Short tons	Value	Short tons	Value	Short tons	Value
Solid and semisolid products of less than 200 penetration: Asphalt for—						
Paving	1, 178, 332	\$10, 433, 957	585, 889	\$6, 667, 974	1, 764, 221	\$17, 101, 931
Roome	990.010	8, 048, 283	255, 077	2, 907, 963	1, 111, 687	10, 956, 246
Waterproofing Blending with rubber	29,886	349, 872	10, 052 12, 616	124, 637 214, 093	39, 938 20, 536	474, 500 365, 950
Briquetting	7, 920 76, 941	151, 866 665, 757	234	2, 638	77, 175	668, 39
Mastic and mastic cake	2, 220	38, 836	9, 693	127, 347		166, 18
Pipe coatings	39, 561	482, 195	2, 328	32, 564	41,889	514, 75
Molding compounds	31,060	372, 310	3,786	49, 026	34, 846	421, 33
Miscellaneous uses	145, 395	1, 590, 694	83, 749	1, 157, 489	229, 144	2, 748, 18
	2, 367, 925	22, 133, 770	963, 424	11, 283, 731	3, 331, 349	33, 417, 50
Semisolid and liquid products of more than 200 penetration: Flux for—						
Paving	155, 779	1, 200, 602	57, 007	566, 302	212, 786	1, 766, 90
Koonng	4/2, 340	3, 013, 232	87, 664	1, 038, 338	560, 009	4, 051, 57
Waterproofing	3, 094	56, 145	1,853	25, 942	4, 947	82,08
Cut-back asphalts:	aww 000	0 701 007	040 550	0 007 400	1 017 047	10, 496, 75
Rapid-curing.	675, 088	6, 591, 325 7, 003, 345	342, 559 83, 082	3, 905, 429 1, 034, 382	1, 017, 647 885, 485	8, 037, 72
Medium-curing Emulsified asphalts and fluxes.	802, 403 126, 836	1, 555, 016	2, 170	21, 824	129,006	1, 576, 84
Paints, enamels, japans, and	120, 000	1, 000, 010	2,110	21,021	120,000	1,010,01
lacquers	31, 559	470,042	13, 479	214, 268	45, 038	684, 31
Other liquid products	41, 189	384, 738	1, 267	14, 712	42, 456	399, 45
	2, 308, 293	20, 274, 445	589, 081	6, 821, 197	2, 897, 374	27, 095, 64
Total:						
10tal: 1941	4, 676, 218	42, 408, 215	1, 552, 505	18, 104, 928	6, 228, 723	60, 513, 14
1940	3, 719, 218	31, 267, 837	1, 223, 071	13, 923, 214	4, 942, 289	45, 191, 05

Paving asphalt sold at petroleum refineries in the United States, 1940-41, by districts, in short tons

District	1940	1941
East Coast	609, 717 31, 270 110, 762 31, 753	779, 923 66, 940 178, 549 36, 526
Texas: Gulf Coast Inland	26, 029 58, 499	45, 575 64, 361
Total Texas	84, 528	109, 936
Louisiana-Arkansas: Louisiana Gulf Coast	118, 586 87, 632	145, 953 143, 562
Total Louisiana-Arkansas	206, 218 8, 165 195, 548	289, 515 26, 773 276, 059
Total United States.	1, 277, 961	1, 764, 221

Increased construction of lighter-type asphaltic highways is indicated by greater sales of cut-back asphalts than in 1940. Total sales of rapid-curing and medium-curing cut-backs increased 10 percent in quantity—from 1,722,475 to 1,903,132 tons. The greatest gains were in the East Coast district, the Oklahoma-Kansas-Missouri district, the Louisiana-Arkansas district, Texas, and the Rocky Mountain district. Against these gains were a sharp decline in the Indiana-Illinois-Kentucky-etc. district and smaller declines in California and the Appalachian district. Most of the gain in sales of cut-back asphalts was in the medium-curing type, and the greatest increases in that type were in the East Coast and Oklahoma-Kansas-Missouri districts.

Cut-back asphalts sold at petroleum refineries in the United States, 1940-41, by districts, in short tons

District	1940	1941
East CoastAppalachian	449, 368	576, 779
Indiana, Illinois, Kentucky, etc. Oklahom a, Kansas, and Missouri	340 173	46, 526 280, 437 323, 118
Texas: Gulf Coast Inland	73, 908 48, 520	75, 305 65, 753
Total Texas.	122, 428	141, 058
Louisiana-Arkansas: Louisiana Gulf Coast Arkansas and Louisiana Inland	125, 738 45, 835	143, 544 48, 507
Total Louisiana-Arkansas Rocky Mountain California	171, 573 100, 634 234, 320	192, 051 114, 739 228, 427
Total United States	1,722,475	1, 903, 132

Petroleum refineries sold 85,570 short tons (20,162,003 gallons) of emulsified asphalts and fluxes valued at \$887,202 in 1940 and 129,006 tons (30,396,265 gallons) valued at \$1,576,840 in 1941; in addition, 45,924,626 gallons valued at \$3,385,468 in 1940 and 76,830,549 gallons valued at \$6,919,102 in 1941 were sold by major industrial companies that purchased asphalt from petroleum refineries. Accordingly, total known sales of emulsified asphalts and fluxes increased 62 percent in quantity—from 66,086,629 to 107,226,814 gallons—and 99 percent in value—from \$4,272,670 to \$8,495,942.

Roofing manufacture made the second-largest demand for asphalt, absorbing 25 percent of the sales to domestic consumers in 1940 and 27 percent in 1941. Although shipments of prepared roofing and asphalt siding reported to the Bureau of the Census increased 29 percent—from 34,222,039 squares in 1940 to 44,112,699 squares in 1941—domestic sales of roofing asphalt and roofing flux combined increased 37 percent—from 1,218,695 to 1,671,696 tons. Some roofing and asphalt siding, however, is made by petroleum refiners who do not report their consumption of asphalt for roofing manufacture among their sales. The increase in sales of roofing asphalt and flux was general. The principal gain was in the northeastern quarter of the United States—notably in the East Coast and Indiana-Illinois-Kentucky-etc. districts. Substantial gains occurred also in the Oklahoma-

Kansas-Missouri district, in Inland Texas, in Inland Louisiana and Arkansas, and in California.

Roofing asphalt and flux sold at petroleum refineries in the United States, 1940–41, by districts, in short tons

District	1940	1941
East Coast	410, 728 76, 000 289, 598 80, 552	513, 927 120, 515 430, 365 136, 196
Texas: Gulf Coast Inland	31, 556 47, 098 78, 654	35, 603 79, 652 115, 255
Total Texas Louisiana-Arkansas: Gulf Coast Arkansas and Louisiana Inland	32, 443 85, 049	32, 757 116, 142
Total Louisiana-Arkansas	117, 492 1, 552 164, 119	148, 899 3, 789 202, 750
Total United States	1, 218, 695	1, 671, 696

FOREIGN TRADE

Imports.—Imports of natural asphalt and bitumen into the United States during the first 9 months of 1941 totaled 8,866 short tons valued at \$118,061 compared with 10,313 tons valued at \$120,163 in the corresponding months of 1940. For the same periods, imports of lake asphalt from Trinidad declined from 7,949 tons valued at \$81,353 in 1940 to 6,017 tons valued at \$66,323 in 1941. On the other hand, imports of grahamite from Cuba increased from 1,914 tons valued at \$33,907 in the first three-quarters of 1940 to 2,774 tons valued at \$47,813 in the corresponding period of 1941.

Imports of solid petroleum asphalt decreased from 30,230 short tons valued at \$168,006 in the first 9 months of 1940 to 18,987 tons valued at \$64,806 in the corresponding months of 1941. From January to September 1940, Netherlands West Indies supplied 28,517 tons valued at \$115,207 and Mexico 1,632 tons valued at \$51,350.

In addition, Mexico supplied 152,320 barrels (27,695 short tons) of liquid petroleum asphalt, including cut-backs and road oil, valued at \$127,949 during the first three quarters of 1940 and 291,531 barrels (53,006 tons) valued at \$352,220 during the corresponding quarters of 1941.

Exports.—Exports of petroleum asphalt decreased from 209,581 short tons valued at \$3,194,981 in the first 9 months of 1940 to 163,461 tons valued at \$2,500,001 in the corresponding months of 1941. No data to indicate the destination of exports during the first three quarters of 1941 are available for publication.

DISTRIBUTION BY RAIL

The tonnage of asphalt (natural, byproduct, or petroleum) terminated by class I railroads in the United States increased from 5,279,056 short tons in 1940 to 6,722,832 tons in 1941, according to freight-

commodity statistics compiled by the Interstate Commerce Commission. The increase was general; but the largest gains were in terminations by railroads of the Eastern district, operating east of the Mississippi and Illinois Rivers and north of the Ohio and Potomac Rivers. West of the Mississippi River the gains were greatest in the Central Western region, bounded by Chicago, Peoria, St. Louis, Kansas City, El Paso, the boundary with Mexico, and Portland, Oreg.

Asphalt (natural, byproduct, or petroleum) terminated by class I railroads in the United States, 1940-41, by districts and regions, in short tons

District and region	1940	1941
Eastern district:		
New England region Great Lakes region	205, 093	301, 764
Great Lakes region	1 000 400	
Central Eastern region	1,088,482	1, 482, 260
Ochtiai Dassorii regioti	1, 360, 132	1, 827, 661
Total Eastern district	2, 653, 707	3, 611, 685
	2,000,101	9, 611, 009
Southern district:		
Pocahontas region	166, 738	180, 007
Southern region.	100, (00	199, 807
	688, 415	862, 275
Total Southern district	055 150	1 000 000
	855, 153	1, 062, 082
Western district:		
37 13	F00 000	
Northwestern region Central Western region	538, 028	585, 743
Southwestern region		1, 109, 322
Southwestern region	307, 463	354, 000
Total Western district	1 770 100	0.040.000
* Over 11 COVOLIT CERVITON	1, 770, 196	2, 049, 06 5
Total United States	E 070 050	4 700 000
	5, 279, 056	6, 722, 832

ROAD OIL

Refinery sales of road oil to domestic consumers increased 5 percent in quantity—from 8,444,000 barrels in 1940 to 8,831,000 barrels in 1941. Higher prices brought an increase of 30 percent in value—from \$9,457,000 to \$12,252,000.

Of the road oil sold in the United States to domestic consumers in 1941, only 365,908 barrels valued at \$647,546 were made from foreign petroleum, imported chiefly from Venezuela and Mexico. Of the road oil made from foreign crude oil, nearly all was sold by refineries of the East Coast district.

Road oil sold by petroleum refineries to domestic consumers in the United States, 1940-41, by districts

	19	140	1941		
District	Thousands of barrels	Thousands of dollars	Thousands of barrels	Thousands of dollars	
East Coast Appalachian Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri Texas Louisiana-Arkansas Rocky Mountain California Total United States	846 159 2, 219 878 222 130 1, 259 2, 731	1, 464 178 2, 620 892 434 149 1, 433 2, 287	391 44 2, 603 682 237 121 1, 458 3, 295	1, 542 77 2, 683 1, 101 368 127 1, 851 3, 503	

Production, receipts, stocks, consumption, transfers, losses, exports, and domestic sales of road oil in the United States in 1941, by districts, in thousands of barrels

		Receipts	Sto	cks	Consump-		
District	Produc- tion	from other sources	Dec. 31, 1940	Dec. 31, 1941	companies, transfers, losses, and exports	Sales to domestic consumers	
East Coast Appalachian Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri Texas Louisiana-Arkansas	366 42 2,477 697 173 141	66 2 236 19 70	44 1 114 34 37 53	39 1 168 32 35 15	46 56 36 8 58	391 44 2, 609 682 237 121	
Rocky Mountain California	1, 651 3, 602	121	107 234	252 251	169 290	1, 458 3, 295	
Total: 1941 1940	9, 149 7, 769	514 937	624 702	793 624	663 340	8, 831 8, 444	

CEMENT

By Oliver Bowles and E. V. Balser

SUMMARY OUTLINE

	Page		Page
General conditions	1191	Portland cement—Continued.	
Salient statistics	1192	New developments	1213
Portland cement	1193		1214
Production, shipments, and stocks	1193	cements	
Domestic consumption	1200	Trends in employment and output per man	1215
Local supplies			1215
Transportation		Mill employees	1215
Prices	1205		1216
Location of plants		Hours per day	. 1216
Capacity of plants		District and State tables	1217
Production according to raw materials		Foreign trade	1223
Raw materials.		Imports	1223
Fuels and power			
C	1010		

GENERAL CONDITIONS

The portland-cement industry of the United States experienced unusual activity in 1941. Production increased from 130,216,511 barrels (376 pounds each) in 1940 to 164,030,559 barrels in 1941—a 26-percent gain—according to final annual returns submitted by cement companies to the Bureau of Mines. Shipments increased from 130,349,786 barrels valued at \$190,078,068 in 1940 to 167,439,237 barrels valued at \$246,621,914 in 1941—a gain of 28 percent in quantity and 30 percent in value. The preliminary figures on production for 1941 (published by the Bureau of Mines in January 1942) were 0.02 percent less and shipments 0.04 percent more than the final figures.

The Federal Reserve Board annual index (1935-39=100) for cement production was 154 in 1941 compared with 122 in 1940; for the durable-goods industries it was 193 in 1941 and 135 in 1940. Indexes for total new construction were, respectively, 208 and 137.

In 1941, 155 plants manufactured and shipped portland cement

compared with 152 plants in 1940.

The average factory value was \$1.47 a barrel in 1941 compared

with \$1.46 in 1940.

Shipments included 6,123,224 barrels of high-early-strength portland cement valued at \$11,443,792 (an average of \$1.87 a barrel) in 1941 compared with 4,401,449 barrels (revised figure) valued at \$8,243,315 (revised figure) (an average of \$1.87 a barrel) in 1940.

The quantity of natural, masonry (natural), and puzzolan cements produced increased 13 percent and shipments 16 percent compared with 1940. The value of shipments of these varieties gained 17

The preceding figures cover briefly the condition of the cement industry in 1941, and the following tables present its outstanding

features during recent years.

Salient statistics of the cement industry in the United States, 1938-41

	1938	1939 ¹	1940 1	1941 1
Domestic production:	*.			
Portland barrels Masonry, natural, and puzzolan (slag-lime)	105, 357, 000	122, 259, 154	130, 216, 511	164, 0 30, 559
barrels.	1, 820, 795	2, 439, 110	2, 534, 566	2, 875, 962
Total productiondoActive plants:	107, 177, 795	124, 698, 264	132, 751, 077	166, 906, 521
Portland	151	150	152	155
Masonry, natural, and puzzolan (slag-lime).	12	12	12	12
Domestic shipments:				
Portland barrels	106, 324, 127	122, 651, 459	130, 349, 786	167, 439, 237
Value Masonry, natural, and puzzolan (slag-lime)	\$153, 977, 226	\$180, 893, 208	\$190, 078, 068	\$246, 621, 914
barrels	1, 867, 949	2, 405, 135	2, 514, 597	2, 926, 203
Value	\$2, 725, 776	\$3, 361, 724	\$3, 386, 801	\$3, 967, 567
Total shipmentsbarrels	108, 192, 076	125, 056, 594	132, 864, 383	170, 365, 440
Value	\$156, 703, 002	\$184, 254, 932	\$193, 464, 869	\$250, 589, 481
Imports barrels	1,727,411	1, 913, 853	538, 060	43, 110
Exportsdo Apparent consumptiondo	558, 226 109, 361, 261	1, 146, 339 125, 824, 108	1, 667, 595 131, 734, 848	³ 1, 757, 172 ³ 168, 651, 378
Stocks at mills at end of year: Portland:	108, 501, 201	120, 021, 100	101, 702, 020	100, 001, 378
Finished cementdo	23, 992, 939	23, 645, 583	4 23, 364, 657	19, 955, 979
Clinkerdo	5, 286, 000	5, 165, 000	4, 886, 000	4, 575, 000
Masonry, natural, and puzzolan (slag-lime)	070 010	000 000	4 070 000	
barrels	373, 816	239, 938	4 259, 868	209, 627

Includes Puerto Rico (1939 was first year in production).
 Figures cover January to September, inclusive.
 Includes imports and exports for the first 9 months only.
 Revised figures.

Principal hydraulic cements produced and shipped in the United States, 1937-41

			. 7.7			- ** · · · · · · · · · · · · · · · · · ·
				Production		
Year	Active plants	Portland cement	Masonry and put lime) co	zzolan (slag-	,	rotal .
		(barrels)	Active plants	Barrels	Active plants	Barrels
1937 1938 1939 1940 1941	150 151 1 150 1 152 1 155	116, 174, 708 105, 357, 000 1 122, 259, 154 1 130, 216, 511 1 164, 030, 559	12 12 12 12 12 12	1, 900, 643 1, 820, 795 2, 439, 110 2, 534, 566 2, 875, 962	162 163 1 162 1 164 1 167	118, 075, 351 107, 177, 795 1 124, 698, 264 1 132, 751, 077 1 166, 906, 521

	Shipments											
Year	Portland	l cement		natural, and (slag-lime)	Total							
	Barrels	Value	Barrels Value		Barrels	Value						
1937 1938 1939 1940	113, 804, 782 106, 324, 127 1 122, 651, 459 1 130, 349, 786 1 167, 439, 237	\$168, 835, 208 153, 977, 226 1 180, 893, 208 1 190, 078, 068 1 246, 621, 914	1, 873, 400 1, 867, 949 2, 405, 135 2, 51±, 597 2, 926, 203	\$2, 578, 885 2, 725, 776 3, 361, 724 3, 386, 801 3, 967, 567	115, 678, 182 108, 192, 076 1 125, 056, 594 1 132, 864, 383 1 170, 365, 440	\$171, 414, 093 156, 703, 002 1 184, 254, 932 1 193, 464, 869 1 250, 589, 481						

Includes Puerto Rico (1939 was first year in production).

PORTLAND CEMENT

PRODUCTION, SHIPMENTS, AND STOCKS

Portland cement occupies a dominant position in modern civilization. Although invented only 118 years ago, it is now regarded as indispensable in highways, sidewalks, bridges, and dams; in the construction of virtually all large buildings; and in airport runways, dry docks, harbors, and a multitude of other major and minor projects. Both farmers and city dwellers use it in innumerable ways.

Cement is immeasurably important in facilitating the far-reaching program of military expansion that is steadily climbing toward a

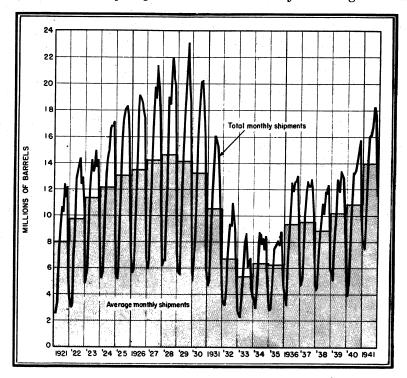


FIGURE 1.—Total monthly and average monthly shipments of portland cement in the United States, 1921-41.

climax. Many military projects require enormous quantities of cement, and even the hastily built temporary types of war construction ordinarily must have cement foundations if safety and stability are to be assured. The increase in shipments, amounting to 28 percent in 1941 compared with 1940, was due largely to the growing requirements of military establishments under construction in numerous localities throughout the United States.

Cement shipments fluctuate greatly, according to the season. Figure 1 shows the volume of portland cement shipped each month compared with the average monthly shipments for each year. The chart shows that the fluctuations are lessening gradually, a condition due partly to improved adaptability of cements to cold-weather use

and partly to a growing movement toward winter construction. Because of the strong demands for military uses, the recession in shipments during the latter months of 1941 was less pronounced than in

the pattern of previous years.

Common, general-purpose portland cement is the principal product, but large quantities of special types are also marketed. They have been developed during recent years to satisfy new conditions that have arisen in construction. Thus high-early-strength cement is used where time-saving is important, low- or moderate-heat-of-hydration cements have become a necessity in the construction of monolithic dams, and special oil-well cements have made it possible to solve difficult problems in the petroleum industry. Statistics for all varieties are given in the general portland-cement tables, and the special varieties are discussed in more detail, with statistics wherever available, in a later section of this report. The special portland cements are to be distinguished from certain other types, such as natural and slag-lime cements, which are not true portland cements and are covered in a separate section of this chapter.

The principal statistics of portland cement appear in the following tables. In the first, which relates to production, shipments, and stocks by States and districts, the term "active plant" is applied to a mill or group of mills situated at one place and operated by one company. If a company has establishments at different places, its mill or group of mills at each place is counted as one plant. The districts are

groups of States related geographically and commercially.

The tables giving data by months, compiled from monthly reports of the producers, include figures on clinker or unground cement produced and in reserve at the mills awaiting manufacture into finished cement. Although the figures may differ slightly from those based upon annual reports of the producers, they accurately reflect seasonal fluctuations in the industry.

Portland cement produced, shipped, and in stock in the United States, 1940-41, by States and districts

			F	roduction		Shipments							Stock at mills (Dec. 31)				
State and district	Active				Bai	rrels	In- crease or de-	19	940	19	941	tory	ge fac- value parrel	In- crease or de- crease	Bar	Barrels	
	1940	1941	1940	1941	crease in 1941 (per- cent)	Barrels	Value	Barrels	Value	1940	1941	in quan- tity in 1941 (per- cent)	1940	1941 ፣	or de- crease in 1941 (per- cent)		
STATE																	
Alabama California Illinois Iowa Kansas Michigan Missouri New York Ohio Pennsylvania Puerto Rico Tennessee Texas Other States 3	11 4 5 6 9 5 11 9 25 1 6 10 44	6 12 4 5 6 11 5 11 9 25 1 6 10 44	5, 122, 307 14, 215, 745 4, 974, 917 4, 605, 886 3, 433, 8603, 188 4, 968, 106 6, 664, 115 26, 853, 824 3, 808, 307 7, 374, 886 30, 769, 827	7, 410, 499 19, 935, 309 5, 854, 218 5, 064, 620 4, 680, 147 6, 328, 003 11, 444, 508 8, 155, 704 32, 199, 184 462, 628 5, 588, 488 9, 679, 696 37, 741, 919	+45 +40 +18 +10 +36 +10 +27 +36 +22 +20 +20 +47 +31 +23	5, 249, 759 13, 813, 362 4, 937, 127 4, 597, 781 3, 441, 612 8, 519, 416 4, 867, 799 8, 251, 038 6, 841, 129 27, 499, 786, 807 7, 383, 600 30, 796, 328	\$7, 617, 405 17, 296, 522 7, 296, 411 7, 641, 163 5, 192, 160 11, 389, 191 7, 616, 247 11, 687, 089 9, 202, 414 38, 350, 998 629, 876 5, 655, 635 12, 198, 800 48, 391, 137	20, 186, 028 5, 958, 376 5, 328, 398 4, 734, 129 9, 819, 218 6, 516, 345 11, 446, 292 8, 021, 857 32, 868, 220 465, 158 5, 623, 800 9, 842, 260 39, 019, 126	\$11, 142, 649 28, 019, 494 8, 660, 104 8, 659, 014 7, 136, 933 13, 333, 850 10, 272, 509 16, 073, 726 10, 657, 677 45, 833, 766 1, 005, 472 8, 520, 284 16, 362, 293 61, 394, 143 246, 621, 914	\$1. 45 1. 25 1. 46 1. 66 1. 51 1. 34 1. 56 1. 42 1. 35 1. 39 1. 64 1. 50 1. 57	\$1. 46 1. 39 1. 45 1. 63 1. 51 1. 36 1. 58 1. 40 1. 33 1. 38 2. 16 1. 52 1. 66 1. 57	+45 +46 +21 +16 +38 +15 +34 +39 +17 +20 +21 +49 +33 +27	2 543, 548 2 1, 623, 669 2 1, 550, 802 2 1, 550, 802 2 1, 067, 783 2 1, 152, 235 2 1, 178, 318 2 1, 111, 028 2 5, 000, 685 2 832 2 434, 977 2 901, 910 2 5, 425, 994 2 23, 364, 657	344, 017 1, 372, 950 614, 191 1, 287, 024 1, 014, 290 1, 698, 456 963, 893 1, 796, 534 1, 244, 875 4, 331, 649 399, 665 739, 346 4, 148, 787	-37 -15 -14 -17 -5 -16 -16 -16 -11 +12 -13 -8 -18 -18 -24 -15		
DISTRICT										-							
Eastern Pennsylvania, New Jersey, and Maryland New York and Maine Ohlo, western Pennsylvania, and West Virginia Michigan Wisconsin, Illinois, Indiana, and Kentucky	22 12 18 9	22 12 18 11	24, 970, 132 8, 784, 509 13, 374, 846 8, 603, 188 12, 663, 788	31, 017, 939 11, 995, 299 15, 153, 118 9, 485, 147 16, 224, 049	$^{+24}_{+37}$ $^{+13}_{+10}$ $^{+28}$	25, 497, 435 8, 613, 535 13, 641, 016 8, 519, 416 12, 735, 763	35, 525, 165 12, 305, 493 18, 425, 279 11, 389, 191 19, 158, 407	31, 482, 250 12, 049, 832 15, 340, 784 9, 819, 218 16, 750, 575	43, 493, 559 17, 099, 278 20, 509, 369 13, 333, 850 24, 981, 549	1. 39 1. 43 1. 35 1. 34	1. 38 1. 42 1. 34 1. 36	+23 +40 +12 +15 +32	2 4, 175, 002 2 1, 922, 757 2 2, 619, 082 2 2, 032, 527 2 2, 128, 641	3, 710, 691 1, 868, 224 2, 431, 416 1, 698, 456 1, 602, 115	-11 -3 -7 -16 -25		

¹ Subject to revision.

² Revised figures.

³ Arkansas, Colorado, Florida, Georgia, Idaho, Indiana, Kentucky, Louisiana, Maine, Maryland, Minnesota, Montana, Nebraska, New Jersey, Oklahoma, Oregon, South Dakota, Utah, Virginia, Washington, West Virginia, Wisconsin, and Wyoming.

Portland cement produced, shipped, and in stock in the United States, 1940-41, by States and districts—Continued

			1	Production				Stock at mills (Dec. 31)							
State and district		tive ints	Ва	rrels	In- crease or de-	1940		1941		tory	ge fac- value oarrel	In- crease or de- crease	Bar	rels	In- crease or de-
	1940	1941	1940	1941	crease in 1941 (per- cent)	Barrels	Value	Barrels	Value	1940	1941	in quan- tity in 1941 (per- cent)	1940	1941	crease in 1941 (per- cent)
DISTRICT—continued	.														
Virginia, Tennessee, Ala- bama, Georgia, Louisiana, and Florida Eastern Missouri, Iowa,	18	18	14, 710, 971	19, 982, 460	+36	14, 852, 453	\$22, 473, 321	20, 391, 422	\$ 30, 983, 258	\$ 1. 51	\$ 1. 52	+37	2 1, 513, 855	1, 104, 893	-27
Minnesota, and South Da- kota Western Missouri, Nebraska,	11	11	10, 304, 229	11, 856, 659	+15	10, 170, 536	16, 540, 187	12, 443, 248	19, 990, 722	1. 63	1. 61	+22	2 3, 013, 899	2, 427, 310	-19
Kansas, Oklahoma, and Arkansas Texas Colorado, Montana, Utah,	12 10	12 10	7, 597, 759 7, 374, 886	9, 903, 055 9, 679, 696	+30 +31	7, 614, 858 7, 383, 600	11, 527, 579 12, 198, 800	10, 179, 426 9, 842, 260	15, 372, 190 16, 362, 293	1. 51 1. 65	1. 51 1. 66	+34 +33	² 2, 115, 608 ² 901, 910	1, 839, 237 739, 346	-13 -18
Wyoming, and Idaho California. Oregon and Washington Puerto Rico	8 11 9 1	8 12 9 1	2, 961, 823 14, 215, 745 4, 268, 811 385, 824	3, 954, 582 19, 935, 309 4, 380, 618 462, 628	+34 +40 +3 +20	2, 951, 094 13, 813, 362 4, 172, 476 384, 242	5, 420, 245 17, 296, 522 7, 188, 003 629, 876	4, 024, 563 20, 186, 028 4, 464, 473 465, 158	7, 317, 339 28, 019, 494 8, 153, 541 1, 005, 472	1. 84 1. 25 1. 72 1. 64	1. 82 1. 39 1. 83 2. 16	+36 +46 +7 +21	² 609, 980 ² 1, 623, 669 ² 704, 895 ² 2, 832	539, 999 1, 372, 950 621, 040 302	-11 -15 -12 -89
	152	155	130, 216, 511	164, 030, 559	+26	130, 349, 786	190, 078, 068	167, 439, 237	246, 621, 914	1. 46	1. 47	+28	2 23, 364, 657	19, 955, 979	-15

² Revised figures.

Summary of monthly estimates of portland cement produced, shipped, and in stock at mills in the United States in 1941, by districts, in thousands of barrels

				-								
District	January	February	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber
PRODUCTION										:	l	
Eastern Pennsylvania, New Jersey, and Maryland. New York and Maine. Ohio, western Pennsylvania, and West Virginia Michigan Wisconsin, Illinois, Indiana, and Kentucky. Virginia, Tennessee, Alabama, Georgia, Louisiana,	1, 555 631 601 533 1, 152	1, 612 486 717 357 925	2, 335 663 973 359 1, 058	2, 482 869 1, 178 628 1, 281	2, 836 1, 142 1, 409 941 1, 355	2, 937 1, 176 1, 467 1, 082 1, 320	3, 045 1, 241 1, 518 970 1, 484	3, 000 1, 274 1, 594 841 1, 713	2, 816 1, 238 1, 425 1, 065 1, 599	2, 992 1, 209 1, 617 1, 069 1, 690	2, 829 1, 183 1, 362 942 1, 327	2, 603 876 1, 368 696 1, 316
and Florida. Eastern Missouri, Iowa, Minnesota, and South Dakota.	1, 496	1, 421	1, 448	1, 544	1, 674	1, 684	1,746	1, 769	1,764	1,870	1, 765	1, 791
Western Missouri, Nebraska, Kansas, Oklahoma, and Arkansas	426	376	529	644	1,006	1, 169	1, 348	1, 283	1, 357	1, 365	1, 234	1,096
Texas Texas Colorado, Montana, Utah, Wyoming, and Idaho California Oregon and Washington Puerto Rico	464 654 121 1, 266 88 34	358 637 127 1,098 201 30	482 742 282 1, 400 294 31	762 798 250 1, 389 347 24	1, 039 832 367 1, 695 419 17	1, 036 806 411 1, 659 430 46	1,007 837 420 1,844 494 46	969 976 431 1, 934 517 44	1, 085 930 394 1, 869 528 45	981 859 465 2, 074 447 50	866 779 375 1, 898 325 46	854 829 311 1, 728 288 48
United States: 1941	9, 021 6, 205	8, 345 5, 041	10, 596 7, 918	12, 196 10, 043	14, 732 12, 633	15, 223 12, 490	16, 000 12, 290	16, 345 12, 712	16, 115 13, 105	16, 688 13, 935	14, 931 12, 725	13, 810 11, 195
SHIPMENTS								7 :				
Eastern Pennsylvania, New Jersey, and Maryland New York and Maine Ohio, western Pennsylvania, and West Virginia Michigan Wisconsin, Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Louisiana,	1, 389 526 534 340 612	1, 458 471 522 295 600	1, 830 562 823 390 923	2, 969 1, 057 1, 351 778 1, 340	3, 188 1, 155 1, 535 953 1, 657	3, 127 1, 264 1, 512 1, 067 1, 697	3, 078 1, 176 1, 671 1, 058 1, 905	3, 093 1, 293 1, 734 1, 144 2, 045	3, 216 1, 388 1, 795 1, 221 1, 958	3, 313 1, 403 1, 744 1, 203 1, 828	2, 623 1, 015 1, 279 802 1, 275	2, 198 763 936 568 915
Eastern Missouri, Iowa, Minnesota, and South	1, 442	1, 254	1, 460	1, 830	1,828	1, 635	1, 725	1, 861	1, 980	2, 051	1, 736	1, 589
Western Missouri, Nebraska, Kansas, Oklahoma	325	303	489	893	1, 234	1, 260	1, 411	1, 641	1, 753	1, 528	917	691
and Arkansas. Texas. Colorado, Montana, Utah, Wyoming, and Idaho California. Oregon and Washington Puerto, Rico.	435 798 123 1, 243 190 82	441 628 153 1, 119 193 19	674 707 227 1, 540 256 34	837 779 313 1, 656 305 24	995 895 393 1,777 408 30	922 791 472 1,846 470 46	931 914 473 1,824 474 47	1, 060 975 493 1, 831 610 45	1, 119 885 493 1, 904 532 40	924 782 445 2, 075 483 54	901 850 271 1,716 295 44	941 844 170 1,590 256 50
United States: 1941	7, 984 3, 898	7, 456 4, 907	9, 915 7, 716	14, 132 10, 829	16, 048 1 3, 20 6	16, 109 18, 228	16, 687 13, 442	17, 825 14, 018	18, 284 14, 741	17, 888 15, 776	13, 724 10, 872	11, 511 8, 192

CEMENT

Summary of monthly estimates of portland cement produced, shipped, and in stock at mills in the United States in 1941, by districts, in thousands of barrels—Continued

	i	1	İ	ı	1	ī		ī	I	7	1	1
District	January	February	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber
STOCKS (END OF MONTH)												
Eastern Pennsylvania, New Jersey, and Maryland. New York and Maine Ohio, western Pennsylvania, and West Virginia Michigan Wisconsin, Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Louisiana,	4, 331 2, 038 2, 708 2, 226 2, 668	4, 486 2, 053 2, 903 2, 288 2, 993	4, 991 2, 153 3, 053 2, 256 3, 128	4, 506 1, 960 2, 880 2, 107 3, 069	4, 154 1, 948 2, 754 2, 094 2, 776	3, 963 1, 862 2, 708 2, 109 2, 399	3, 929 1, 927 2, 556 2, 021 1, 979	3, 836 1, 909 2, 424 1, 718 1, 646	3, 434 1, 760 2, 054 1, 561 1, 288	3, 113 1, 566 1, 926 1, 427 1, 150	3, 319 1, 735 2, 008 1, 568 1, 198	3, 723 1, 847 2, 432 1, 699 1, 602
and Florida Eastern Missouri, Iowa, Minnesota, and South	1, 568	1, 735	1, 724	1, 444	1, 291	1, 342	1, 362	1, 270	1, 054	874	902	1, 104
Dakota Western Missouri, Nebraska, Kansas, Oklahoma.	3, 121	3, 194	3, 234	2, 986	2, 757	2, 666	2, 604	2, 245	1, 850	1, 687	2,004	2, 410
and Arkansas Texas Colorado, Montana, Utah, Wyoming, and Idaho California Oregon and Washington Puerto Rico	2, 145 764 611 1, 633 598 5	2, 062 773 584 1, 612 608 16	1, 870 808 639 1, 473 646 13	1, 796 827 576 1, 205 687 13	1, 840 764 550 1, 119 698	1, 954 779 489 936 658	2, 029 702 435 956 678	1, 938 704 373 1, 083 586	1, 905 748 274 1, 047 582 4	1, 961 825 294 1, 047 547	1, 926 754 399 1, 234 589	1, 839 740 536 1, 372 621
United States: 1941	24, 416 25, 759	25, 307 25, 894	25, 988 26, 118	24, 056 25, 348	22, 745 24, 758	21, 865 24, 010	21, 178 22, 855	19, 732 21, 549	17, 561 19, 921	16, 417 18, 008	17, 638 20, 353	19, 925 23, 379

Summary of monthly estimates of clinker (unground portland cement) produced and in stock at mills in the United States in 1941, by districts, in thousands of barrels

									100			
District	January	February	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber
PRODUCTION											•	
Eastern Pennsylvania, New Jersey, and Maryland New York and Maine Ohlo, western Pennsylvania, and West Virginia Michigan Wisconsin, Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Louisiana,	1, 620 604 609 651 1, 183	1, 654 551 789 411 1, 036	2, 346 640 1, 179 554 1, 145	2, 418 867 1, 201 580 1, 225	2, 758 1, 112 1, 421 917 1, 343	2, 960 1, 055 1, 459 982 1, 433	2, 968 1, 224 1, 502 976 1, 527	2, 919 1, 286 1, 563 964 1, 593	2, 762 1, 201 1, 456 944 1, 493	2, 969 1, 138 1, 429 979 1, 589	2, 746 1, 121 1, 355 891 1, 420	2, 650 931 1, 295 757 1, 408
and Florida Eastern Missouri, Iowa, Minnesota, and South Da-	1, 453	1, 392	1, 526	1, 523	1,650	1, 640	1,772	1,714	1, 755	1,865	1, 761	1,815
kota Western Missouri, Nebraska, Kansas, Oklahoma,	534	413	521	664	1, 016	1, 190	1, 277	1, 325	1, 247	1, 343	1, 164	1, 116
and Arkensas Texas Colorado, Montana, Utah, Wyoming, and Idaho California. Oregón and Washington Puerto Rico.	390 613 155 1, 363 60 34	387 675 113 1, 163 159 30	530 798 226 1, 440 388 32	808 792 291 1, 352 387 21	1, 038 788 384 1, 617 462 18	977 730 378 1, 702 410 48	1, 015 809 374 1, 784 451 60	964 939 407 1, 863 501 48	1, 091 941 342 1, 960 444 32	948 855 464 1, 942 461 36	845 801 389 1, 948 443 51	809 900 341 1, 903 225 47
United States: 1941	9, 269 6, 720	8, 773 5, 776	11, 325 8, 127	12, 129 10, 199	14, 524 12, 154	14, 964 12, 303	15, 739 11, 916	16, 086 12, 283	15, 668 12, 799	16, 018 13, 569	14, 935 12, 779	14, 197 11, 517
STOCKS (END OF MONTH)												
Eastern Pennsylvania, New Jersey, and Maryland. New York and Maine. Ohlo. western Pennsylvania, and West Virginia Michigan. Wisconsin, Illinois, Indiana, and Kentucky. Virginia, Tennessee, Alabama, Georgia, Louisiana.	696 324 496 506 349	747 391 581 557 455	766 371 795 742 543	719 381 812 685 481	655 363 836 645 449	699 255 836 552 536	639 252 823 546 561	584 281 810 660 433	556 255 849 525 319	545 229 680 431 203	478 193 700 374 281	532 258 594 440 361
and Florida. Eastern Missouri, Iowa, Minnesota, and South Da-	326	306	390	406	383	339	357	304	291	286	285	304
kota	349	385	384	406	430	449	392	450	354	329	266	273
western Missouri, Nebraska, Kansas, Okianoma, and Arkansas. Texas. Colorado, Montana, Utah, Wyoming, and Idaho California Oregon and Washington Puerto Rico	267 213 260 984 311 11	297 233 247 1, 042 268 11	346 295 192 1, 075 364 13	387 264 233 1,016 406 11	389 226 252 914 451 12	332 156 220 934 434 15	345 136 176 870 395 30	327 109 153 691 381	337 129 103 762 299 25	301 134 103 622 317 12	282 171 118 647 436 19	236 249 149 795 364 20
United States: 1941	5, 092 5, 617	5, 520 6, 304	6, 276 6, 487	6, 207 6, 606	6, 005 6, 071	5, 757 5, 907	5, 522 5, 559	5, 219 5, 158	4, 804 4, 829	4, 192 4, 470	4, 250 4, 558	4, 575 4, 886

Producers' stocks of portland cement on hand at the mills were 15 percent lower at the end of 1941 than at the end of 1940. The following table gives stocks on December 31 and the seasonal fluctuations in stocks from 1937 to 1941.

Producers' stocks of finished portland cement and clinker (unground cement) on hand at mills in the United States on Dec. 31 and monthly range, 1937-41

			Monthly	7 range	
	Dec. 31 (barrels)	Low		High	
	er en en en en en en en en en en en en en	Month	Barrels	Month	Barrels
1937{Cement Clinker	24, 913, 245 6, 342, 000	September	21, 388, 000 5, 859, 000	April	25, 747, 000 7, 554, 000
1938 Cement Clinker Cement	23, 992, 939 5, 286, 000 1 23, 645, 583	do	20, 569, 000 4, 927, 000 19, 870, 000	January February do	25, 023, 000 6, 732, 000 24, 092, 000
Clinker	5, 165, 000 2 23, 364, 657	November	4, 824, 000 18, 008, 000	April	6, 568, 000 26, 118, 000
Clinker	4, 886, 000 19, 955, 979 4, 575, 000	October	4, 470, 000 16, 417, 000 4, 192, 000	April	6, 606, 000 25, 988, 000 6, 276, 000

¹ Includes Puerto Rico (1939 was first year in production).

Revised figure.

DOMESTIC CONSUMPTION

Apparent consumption (shipments plus imports minus exports) for the entire United States for a series of years is indicated in the salient statistics presented as the first table in this chapter. The only available gage of consumption by States is the record of shipments into States by manufacturers; it is therefore merely approximate. Cement shipped to destinations within a State in which it is manufactured is, of course, added to that shipped from other States. Shipments into a State during any year may not equal the consumption during that year but over a series of years should afford a fair index of consumption. The following table shows shipments into States in 1940 and 1941 and per capita consumption in each State.

Shipments of domestic portland cement from mills into States and per capita, 1940-41, in barrels

	194	0	1941		
State	Total	Per capita ¹	Total	Per capita 1	
Alabama	1, 458, 811	0. 51	2, 491, 851	0.88	
Arizona 2	558, 629	1.12	793, 838	1. 59	
Arkansas	812, 931	. 42	1, 146, 712	. 59	
California	11, 619, 397	1.68	16, 850, 718	2.44	
Colorado	1, 028, 753	. 92	1, 520, 646	1.35	
Connecticut 2	1, 893, 733	1.11	2, 379, 471	1.39	
Delaware 2	416, 056	1.56	394, 451	1.48	
District of Columbia 2	1, 605, 768	2.42	1, 590, 499	2.40	
Florida	2, 442, 623	1.29	3, 172, 179	1. 67	
Georgia	1, 901, 663	. 61	2, 671, 255	. 86	
Idaho	334, 360	. 64	448, 380	. 85	
Illinois	8, 584, 009	1.09	9, 165, 894	1. 16	
Indians	3, 628, 891	1.06	5, 319, 791	1. 55	
Iowa	2, 933, 570	1. 16	3, 259, 370	1. 28	
Kansas	1, 627, 535	.90	2, 061, 704	1. 14	

¹ Per capita figures based upon latest available estimates of population made by Bureau of the Census.
² Non-cement-producing State.

Shipments of domestic portland cement from mills into States and per capita, 1940-41, in barrels-Continued

	1940)	194	1
State	Total	Per capita	Total	Per capita
Kentucky	2, 006, 097	0.70	2, 705, 374	0.9
ouisiana	2, 168, 927	. 92	2, 837, 225	1.2
<u> [aine</u>	331, 685	. 39	623, 245	.7
Maryland	2, 141, 788	1.18	3, 093, 522	1.7
fassachusetts 3	2, 707, 242	. 63	3, 029, 370	.7
Aichigan	5, 760, 481	1.10	6, 907, 824	1.3
Ainnesota	2, 562, 578	. 92	3, 035, 480	1.0
Aississippi ²	1, 330, 367	. 61	1, 407, 063	.6
Aissouri	3, 150, 489	. 83	5, 029, 976	1.3
fontana	419, 796	. 75	457, 899	.8
lebraska	1, 122, 140	. 85	1, 380, 339	1.0
Tevada 1	172, 710	1. 57	250, 236	2.2
New Hampshire 2	428, 752	. 87	518, 691	1.0
lew Jersey	4, 165, 289	1.00	5, 353, 149	1.2
Jew Mexico 3	514, 490	. 97	749, 023	1.4
lew York	13, 119, 568	. 97	14, 096, 501	1.0
Jorth Carolina 2	1, 770, 738	. 50	2, 574, 455	- 7
Iorth Dakota 2	290, 711	. 45	361, 416	
Ohio	6, 538, 166	.95	8, 455, 877	1.2
klahoma	1, 886, 668	.81	2, 131, 784	- 9
regon	906, 358	.83	1, 529, 971	1.
ennsylvania	10, 008, 425	1.01	10, 000, 181	1.0
Shode Island 2	649, 373	. 91	834, 261	1.1
outh Carolina 2	1, 118, 340	.59	1, 759, 468	.9
outh Dakota	427, 254	.66	432, 431	.6
'ennessee	2, 455, 317	.84	4, 281, 918	
PAXAS	6, 478, 976	1.01		1.4 1.3
			8, 598, 148	
	679, 370	1. 23	1, 196, 451	2.1
ermont 3	246, 820	. 69	238, 436	6
rirginia	2, 381, 902	. 89	4, 771, 954	1.7
Vashington	3, 540, 956	2.04	3, 015, 298	1.7
Vest Virginia	1, 318, 364	. 69	1, 690, 142	.8
Visconsin	2, 604, 168	.83	3, 187, 293	1.0
Vyoming	250, 901	1.00	284, 771	1.1
	126, 501, 935	.96	160, 085, 931	1. 2
Jnspecified 3	3, 847, 851		7, 353, 306	
Total shipped from cement plants	130, 349, 786		167, 439, 237	

The per capita consumption indicated in the foregoing table falls short of the total apparent consumption by the quantity of imports, which affects to a limited extent certain States near the Canadian border and the seaboard.

The accompanying table of monthly shipments from portland-cement mills into States in 1941 is based upon monthly reports of producers. Although the totals may vary slightly from figures shown in tables based upon annual reports, they show seasonal fluctuations with fair accuracy.

Non-cement-producing State.
 Includes shipments to Alaska, Hawaii, Puerto Rico, and foreign countries.

Portland cement shipped from mills into States in 1941, by months, in barrels

		,		•								
Shipped to—	January	February	March	April	May	June	July	August	September	October	November	December
Alabama	132, 073	122, 487	137, 883	161, 922	189, 899	212, 447	198, 274	246, 147	258, 479	278, 201	245, 539	304, 018
Arizona	39, 629	46, 483	52, 787	50, 828	72, 599	82, 299	61, 381	44, 502	70, 229	99, 510	85, 809	74, 635
Arkansas		58, 870	78, 916	65, 051	76, 305	88, 902	82, 904	81, 599	76, 419	114, 218	187, 146	162, 232
California	1,001,303	918, 273	1, 298, 477	1, 364, 680	1, 422, 474	1, 589, 958	1, 538, 762	1, 620, 342	1, 654, 580	1, 662, 225	1, 421, 885	1, 329, 878
Colorado	42, 068	52, 311	67, 741	109, 831	156, 912	179, 732	193, 533	180, 789	178, 759	178, 724	109, 658	70, 140
Colorado	77, 324	79, 145	105, 923	195, 493	257, 149	271, 337	263, 027	273, 009	281, 712	252, 494	190, 800	132, 678
Delaware	15, 170	13, 865	22, 414	41, 562	37, 888	35, 077	46, 916	35, 037	46, 597	45, 150	32,077	23, 381
District of Columbia	83, 714	79, 633	94, 686	166, 220	147, 256	130, 542	141, 025	164, 674	158, 936	156, 284	141, 163	124, 829
Florida	257, 024	234, 896	215, 466	230, 987	229, 581	218, 922	251, 777	274, 295	302, 685	350, 971	325, 530	279, 310
Georgia	183, 489	145, 207	152, 602	172, 667	228, 892	235, 670	270, 480	250, 084	249, 452	290, 827	277, 704	213, 520
Idaho		21, 976	31, 686	38, 691	43, 435	46, 099	47, 580	56, 897	73, 071	34, 475	25, 564	14, 446
Illinois		327, 946	491, 089	776, 920	943, 024	942, 802	1, 102, 216	1, 093, 880	1, 047, 011	891, 095	706, 069	510, 108
Indiana	162, 013	171, 486	316, 909	474, 543	570, 316	598, 393	688, 713	732, 425	589, 159	457, 585	320, 147	226, 229
Iowa	38, 086	44, 732	113, 032	275, 598	383, 048	344, 311	355, 567	480, 806	506, 715	401, 547	183, 424	131, 209
Kansas	80, 013	92, 438	161, 608	213, 180	219, 694	198, 041	185, 357	173, 928	202, 188	163, 003	172, 945	188, 561
Kentucky Louisiana	103, 087	119, 352	156, 473	171, 613	200, 004	225, 542	248, 092	321, 899	396, 247	374, 093	240, 798	157, 551
Louisiana	297, 456	186, 496	217, 132	258, 250	240, 409	201, 132	219, 550	240, 237	231, 402	269, 788	247, 564	227, 053
Maine	5, 867	9, 229	16, 984	38, 356	61, 830	61, 020	57, 172	80, 671	116, 667	116, 583	36, 505	22, 384
Maryland	143, 208	158, 654	201, 339	323, 101	333, 897	269, 808	299, 131	307, 018	314, 301	311, 407	257, 070	191, 025
Massachusetts	124, 748	111, 247	132, 291	266, 133	308, 591	346, 248	314, 939	333, 835	357, 120	335, 047	244, 933	170, 894
Michigan	250,758	229, 949	273, 088	542, 441	623, 424	721, 620	734, 307	781, 449	844,056	881, 480	572,095	438, 621
Minnesota	53, 191	44, 105	85, 231	223, 254	329, 539	328, 053	338, 008	405, 994	505, 434	442, 324	189, 181	90, 289
Mississippi Missouri	92, 898	57, 190	79, 573	102, 676	105, 273	112, 496	104, 073	114, 455	156, 012	217, 862	127, 693	137, 263
Missouri	158, 298	201,077	312, 213	366, 822	480, 970	477, 607	553, 837	606, 398	571, 263	473, 929	415, 265	410, 999
Montana	17,803	17, 339	35, 654	47, 757	50, 697	66, 230	54, 366	38, 430	49, 422	42, 562	24, 246	13, 293
Nebraska	27, 121	29,035	57, 332	104, 471	162, 240	144, 799	138, 514	230, 273	181, 418	159, 808	90, 681	54, 212
Nevada	8, 520	8, 277	26, 402	16, 496	20, 608	17, 807	17, 409	14, 528	14, 586	22, 119	42, 618	36, 341
New Hampshire	16, 085	15, 219	27, 324	53, 001	47, 049	54, 741	63, 112	67, 069	60, 535	50, 554	34, 336	30, 082
New Jersey	235, 719	221, 115	271, 030	498, 113	535, 103	538, 464	517, 447	541, 471	568, 474	568, 696	442, 733	419, 471
New Mexico	32, 199	38, 038	46, 889	61,000	78, 989	87, 176	105, 768	105, 378	73, 220	42, 078	46, 531	31, 367
New York	695, 974	642, 436	785, 344	1, 322, 395	1, 472, 804	1, 438, 122	1, 408, 891	1, 452, 220	1, 478, 907	1, 531, 382	1,079,715	799, 478
North Carolina	164, 466	145, 553	182, 756	234, 893	284, 382	215, 033	206, 412	205, 482	255, 275	271, 254	229, 660	170, 561
North Dakota	3,877	4,053	8, 894	29, 173	44, 873	51, 491	71, 111	52, 894	39, 238	37, 282	11,859	6, 573
Ohio	306, 440	312,028	478, 082	762, 439	881, 841	890, 731	888, 329	922, 820	959, 731	905, 004	653, 598	495, 532
Oklahoma	110, 559	102, 816	168, 733	189, 895	202, 604	187, 736	180, 520	177, 152	237, 189	137, 803	193, 641	242, 782
Oregon	57, 298	64, 503	79, 779	102, 101	143, 988	154, 207	155, 629	194, 771	226, 276	209, 524	75, 955	61, 110
Pennsylvania	317, 385	293, 406	507, 993	896, 429	987, 105	963, 015	1, 110, 733	1, 159, 418	1, 263, 937	1, 130, 768	829, 359	593, 406
Rhode Island		45, 512	58, 891	98, 933	113, 640	111, 962	72, 174	68, 958	65, 026	62, 132	49, 439	38, 540
South Carolina	121,058	107, 245	118, 760	129, 623	152, 070	154, 547	152, 782	160, 893	191, 662	195, 978	161, 185	119, 530
South Dakota	12, 195	9, 522	18, 029	37, 612	53, 290	55, 154	51, 141	49,023	130, 994	43, 757	22, 514	13, 888
Tennessee	240, 590	215, 173	280, 285	351, 449	355, 532	322, 893	344, 055	387, 369	374, 249	526, 174	434, 652	385, 529
Texas		578, 311	634, 777	672, 989	779, 402	613, 637	760, 888	838, 810	805, 181	698, 206	718, 351	788, 065
Utah		34, 626	63, 248	77, 147	95, 482	123, 070	119, 932	177, 302	184, 693	163, 604	83, 478	48, 289
Vermont	4, 366	5,089	5, 396	22, 499	28, 859	25, 761	27, 202	31, 057	36, 577	26, 474	19,030	7, 283

Virginia	292, 108	261, 485	326, 523	475, 113	528, 713	385, 524	409, 564	396, 554	421, 428	456, 891	425, 188	397, 889
Washington	149, 228	151, 306	198, 392	226, 394	304, 749	347, 737	338, 457	410, 353	312, 492	301, 699	222, 906	194, 238
West Virginia	68, 870	64, 448	99, 031	175, 689	179, 702	165, 914	175, 061	177, 302	176, 026	179, 110	131, 042	100, 676
Wisconsin	73, 728	67, 736	109, 439	235, 974	309, 972	361, 376	357, 448	444, 352	426, 484	444, 955	222, 185	129, 127
Wyoming	20, 409	16, 707	15, 684	24, 790	29, 645	29, 224	31, 647	31, 973	32, 062	25, 769	16, 257	14, 204
Unspecified :	7, 543, 331	6, 978, 025	9, 420, 210	13, 477, 194	15, 505, 748	15, 424, 409	16, 055, 213	17, 237, 222	17, 753, 576	17, 032, 405	13, 017, 723	10, 822, 719
	440, 669	477, 97,5	494, 790	654, 806	542, 252	684, 591	631, 787	587, 778	530, 424	800, 595	706, 277	688, 2.1
Total shipped from cement plants	7, 984, 000	7, 456, 000	9, 915, 000	14, 132, 000	16, 048, 000	16, 109, 000	16, 687, 000	17, 825, 000	18, 284, 000	17, 833, 000	13, 724, 000	11, 511, 000

¹ Includes shipments to Alaska, Hawaii, Puerto Rico, and foreign countries.

LOCAL SUPPLIES

The following table compares the shipments from mills within a State or group of States with the estimated consumption (State receipts of mill shipments) and indicates the surplus or deficiency in the supply of cement locally available. Consumption in the States that do not produce cement is indicated in a preceding table showing

shipments into each State.

The surplus cement shown in this table was distributed as follows: In 1940—to non-cement-producing States 13,703,729 barrels and to foreign countries, Alaska, Hawaii, and unspecified destinations 2,863,034 barrels; in 1941—to non-cement-producing States 16,880,678 barrels and to foreign countries, Alaska, Hawaii, and unspecified destinations 5,919,919 barrels.

Estimated surplus or deficiency in local supply of portland cement in cement-producing States, 1940-41, in barrels

		1940			1941	
State or division	Shipments from mills	Estimated consump- tion	Surplus or deficiency	Shipments from mills	Estimated consump- tion	Surplus or deficiency
Alabama California Cal	13, 813, 362 4, 937, 127 4, 597, 781 3, 441, 612 8, 519, 416 4, 867, 799 6, 841, 129 27, 499, 786 384, 242 7, 783, 600 2, 951, 094 4, 172, 476 6, 727, 762 11, 784, 963 4, 797, 536 8, 613, 535	11, 619, 397 8, 584, 009 2, 933, 570 1, 627, 535 5, 760, 481 3, 150, 489 6, 538, 166 10, 008, 425 984, 817 2, 455, 317 6, 478, 976 2, 713, 180 4, 447, 314 10, 901, 212 13, 044, 630 7, 625, 441 13, 451, 253	+2, 193, 965 -3, 646, 882 +1, 664, 211 +1, 814, 077 +2, 758, 935 +1, 717, 310 +302, 963 +17, 491, 361 -600, 575 +1, 311, 490 +904, 624 +237, 914 -274, 838 -4, 173, 450 -1, 259, 667 -2, 827, 905 -4, 837, 718	20, 186, 028 5, 958, 376 5, 328, 398 4, 734, 129 9, 819, 218 6, 516, 345 8, 021, 857 32, 868, 220 465, 158 5, 623, 464, 473 8, 493, 161 15, 500, 432 5, 932, 957	16, 850, 718 9, 165, 894 3, 259, 370 2, 061, 704 6, 907, 824 5, 029, 976 8, 455, 877 10, 000, 181 1, 433, 387 4, 281, 918 3, 908, 147 4, 545, 269 16, 157, 987 16, 633, 830 10, 136, 813 14, 719, 746	+3, 335, 310 -3, 207, 518 +2, 069, 022 +2, 672, 422 +1, 486, 366 -443, 022 +28, 88, 035 -968, 222 +1, 341, 832 +1, 244, 112 +116, 416 -80, 796 -7, 664, 826 -1, 133, 398 -4, 203, 856 -2, 669, 914

TRANSPORTATION

The following table for 1939, 1940, and 1941, showing quantities of portland cement shipped from mills by truck, railroad, and boat, in bulk and in containers, is given because charges for transportation and delivery are important items in the cost of cement to consumers. Data for mode of shipping were lacking in 1939 for 5,681,405 barrels—about 5 percent of total shipments for the year.

The table presented herein is based upon the quantities of cement actually apportioned by the reporting companies; as it represents a very large proportion of the total quantity shipped, it may be assumed that the percentages thus obtained are approximately correct for the

industry as a whole.

The earliest data obtained by the Bureau of Mines, those for 1928, show that 2.4 percent of total cement shipments was shipped in bulk

and 97.6 percent in containers. Shipments in bulk were reported in 1939 by 137 plants, representing 33 States; in 1940 by 144 plants. representing 32 States; and in 1941 by 150 plants, representing 35 States.

Shipments of portland cement from mills in the United States, 1939-41, in bulk and in containers, by types of carriers

[Unit of measure, barrels of 376 pounds]

				In conta	iners			· · · · · · · · · · · · · · · · · · ·	
Type of carrier	In bul	k	In l	oags	In other	Total in	Mode of shipping not	Total ships	nents
			Paper	Cloth	tain- ers 1	tainers	stated		
1. 1.		Per-	1.0					r:t	Per-
1939 2	Barrels	cent	Barrels	Barrels	Barrels	Barrels	Barrels	Barrels.	cent
Truck	3 2, 078, 494	8.6						16, 458, 633	13. 4
Railroad	21, 255, 557	87.9		33, 360, 063				97, 977, 060	
Boat	600, 446	2.5				1, 933, 915	111561556	2, 534, 361	2.1
Not stated	250, 594	1.0	439, 221	498, 273		937, 494	4, 493, 317	5, 681, 405	4.6
4.5	24 105 001	100.0	59 204 441	41 402 406	175 194	93, 973, 051	4 402 217	122, 651, 459	100.0
Percent of total.	19. 7	100.0	42.7	33.8	0.1	76. 6	3. 7	100.0	100.0
Telcent of total.			12. 1	50.6		10.0		100.0	
1940 2	1-1			1.3	- 1				
Truck	3 3, 873, 113					416, 421, 972		4 20, 295, 085	15.6
Railroad	428, 870, 110		445, 724, 386	432, 522, 949	23, 527	478, 270, 862		107, 140, 972	
Boat	614, 471	1.9	1, 319, 683	4 971, 870		4 2, 291, 553		4 2, 906, 024	
Pipeline	7, 705	(5)		2-1				7, 705	(5)
	33, 365, 399	100.0	55 270 061	41, 590, 799	92 597	96, 984, 387		130, 349, 786	100 0
Percent of total.	25. 6	100.0	42. 5	31. 9	(5)	74. 4		100, 348, 780	IUU. G
Tolocal or total.	20.0		12.0	01.0	- (-)	71.1		100.0	
1941 ²	N 10					9. 1			
Truck	3 5, 481, 732	10.6				19, 300, 549		24, 782, 281	14.8
Railroad	44, 641, 936	86. 1						138, 043, 469	82.4
Boat	1, 559, 678	3.0		496, 452	150	2, 911, 444		4, 471, 122	2.7
Pipeline	142, 365	. 3						142, 365	. 1
and the second	51, 825, 711	100.0	ee 907 990	49, 314, 349	21 201	115, 613, 526		167, 439, 237	100.0
Percent of total.	31. 0	100.0	39.6			69. 0		107, 439, 237	100.0
refrent of total.	31. 0		00.0	40.4	(3)	08.0		100.0	

¹ Includes steel drums and iron and wood barrels.

Less than 0.05 percent.

PRICES

The average selling price of portland cement, f. o. b. factory (excluding the price of containers and cash discounts), as reported to the Bureau of Mines, is stated in the table of shipments by States and districts during 1940 and 1941. The average factory value in some States is higher than the average for ordinary structural cement because considerable quantities of certain special cements that command relatively high prices are included—for example, white portland cement manufactured in California, Pennsylvania, and Texas and high-earlystrength portland cement produced in many States. The average selling price per barrel, f. o. b. factory, of white portland cement in 1941 was \$3.99; in 1940 it was \$3.89. The average price f. o. b. mill of high-early-strength portland cement was \$1.87 a barrel in 1940 and The sales value of other hydraulic cements is given later in this 1941. chapter.

The following table shows the average factory value of portland

cement from 1937 through 1941.

Includes shipments for Puerto Rico. Includes cement used at mills by producers as follows: 1939, 132,238 barrels; 1940, 118,709 barrels; 1941, 196,765 barrels.

Average factory value per barrel in bulk of portland cement in the United States, 1937-41

1937	\$1, 48	1940 ¹	\$1, 46
1938	1. 45	1941 1	1. 47
1939 1	1. 47		

¹ Includes Puerto Rico (1939 was first year in production).

LOCATION OF PLANTS

The accompanying map (fig. 2) shows the location of cement plants in the United States. Raw materials for manufacture of portland cement are so plentiful and widely distributed that other factors, such as markets and transportation facilities, are usually the principal elements that control selection of plant location. Most of the plants are contiguous to populous industrial centers. About four-fifths of all the portland-cement plants in the United States are in the Eastern and Middle Western States. Throughout the Great Plains and Rocky Mountain country they are more scattered. Concentrations of plants on the Pacific coast (California and Washington) are due partly to the requirements of growing industrialization areas and partly to the extensive demands of great reclamation projects. Only 12 States and the District of Columbia have no cement plants, and the greatest number in any one State (Pennsylvania) is 26; the Nevada plant was under construction in 1941.

CAPACITY OF PLANTS

At the end of 1941 the capacity of plants producing finished portland cement was 247,359,000 barrels a year, according to manufacturers' reports. This comprised 155 plants active and shipping in 1941 and 1 plant inactive in 1941 but producing or shipping from stock on hand within the 7 previous years.

No new plants were reported producing in 1941. The total output for 1941 was 66.3 percent of the indicated capacity at the close of the year, based upon producers' reports; the corresponding figure for 1940 was 51.2 percent.

Plant capacity in 1941, by commercial districts, is indicated in the following table, with similar data for 1940.

The second table shows a grouping of plants by size.

Portland-cement-manufacturing capacity of the United States, 1940-41, by commercial districts

District		d capacity rels)		ent of scity ized
	1940	1941	1940	1941
Eastern Pennsylvania, New Jersey, and Maryland New York and Maine. Ohio, western Pennsylvania, and West Virginia. Michigan Wisconsin, Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Florida, and Louisiana Eastern Missouri, Iowa, Minnesota, and South Dakota. Western Missouri, Nebraska, Kansas, Oklahoma, and Arkansas Texas Colorado, Montana, Utah, Wyoming, and Idaho California Oregon and Washington Puerto Rico.	17, 408, 000 27, 526, 000 15, 196, 000 29, 724, 000 22, 871, 000 17, 113, 000 12, 240, 000 5, 690, 000 24, 040, 000 7, 447, 000 386, 000	45, 274, 000 17, 244, 000 26, 574, 000 14, 055, 000 28, 267, 000 24, 512, 000 16, 598, 000 12, 352, 000 5, 815, 000 26, 290, 000 7, 440, 000 463, 000	51. 3 50. 5 48. 6 56. 6 42. 6 57. 1 45. 1 44. 4 60. 3 52. 1 57. 3 100. 0	68. 5 69. 6 57. 0 67. 5 57. 4 81. 5 52. 8 59. 7 78. 4 68. 0 75. 8 99. 9

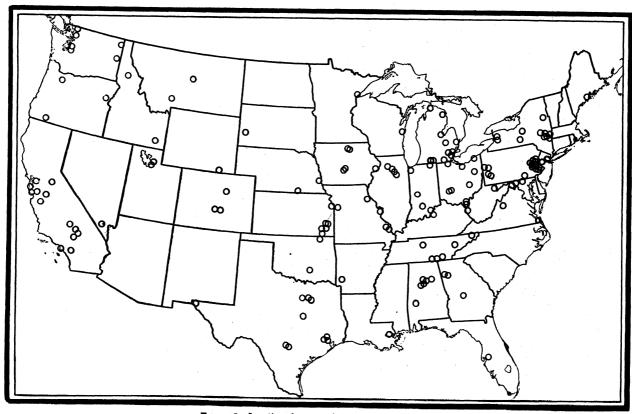


FIGURE 2.—Location of cement plants in the United States.

Range of plant capacity for manufacture of finished portland cement in the United
States in 1941

Estimated annual capacity, barrels:	en en en en en en en en en en en en en e	of plan
Less than 1,000,000		
1,000,000 to 1,999,000 2,000,000 to 2,999,000		5
Between 2.999.000 and 10.000.000		i
		1

The following estimates, based upon the monthly reports of producers, of the relationship between the production of finished portland cement and the manufacturing capacity of the industry for each month in 1940 and 1941 and for the 12 months ended with each month indicate the seasonal changes in capacity utilized.

Ratio (percent) of finished portland cement produced to manufacturing capacity of the United States, 1940-41

Month	Mor	nthly	y 12 months ended—		Month	Monthly		12 months ended—	
	1940	1941	1940	1941		1940	1941	1940	1941
anuaryFebruary	29 1 26	42 43	48 48	53 54	JulyAugust	56 58	75 77	48 48	9
March April May	36 47 58	50 59 69	47 48 48	56 57 57	September October November	62 64 60	78 79 73 65	49 49 50 51	

¹ Revised figure.

The following table gives statistics of capacity, 1939-41, by the two general methods—the "wet" and the "dry"—used in manufacturing cement at plants in the United States.

Portland-cement-manufacturing capacity of the United States, 1939-41, by processes

	Estimated capacity							ent of c			ent of		
Process	Thousands of barrels				Percent of total			ity utilized			finished cement produced		
	1939	1940	1941	1939	1940	1941	1939	1940	1941	1939	1940	1941	
WetDry	121, 337 135, 085	122, 266 131, 879	121, 065 126, 294	47. 3 52. 7	48. 1 51. 9	48. 9 51. 1	51. 8 43. 9	55. 4 47. 4	70. 3 62. 5	51. 4 48. 6	52. 0 48. 0	51. 9 48. 1	
	256, 422	254, 145	247, 359	100.0	100.0	100.0	47.7	51. 2	66. 3	100.0	100. 0	100.0	

PRODUCTION ACCORDING TO RAW MATERIALS

In the accompanying table, production is classified according to the kinds of raw materials from which the cement is manufactured.

Type 1 includes cement produced from argillaceous limestone ("cement rock") or from a mixture of cement rock with pure limestone. This is the combination of materials used in all the cement plants of the Lehigh district of Pennsylvania and New Jersey, and a few plants in certain other States.

CEMENT 1209

Type 2 includes cement made from a mixture of comparatively pure limestone with clay or shale. This mixture is employed at the majority of plants in the United States. In 1941 four plants reported the use of oystershells and clay; the output of these plants is included in type 2.

Type 3 includes cement manufactured from a mixture of marl and clay. This type of mixture has been used in certain plants in Michi-

gan, Ohio, Indiana, New York, and Virginia.

Type 4 includes portland cement manufactured from a mixture of limestone and blast-furnace slag.

Production and percent of total output of portland cement in the United States, 1898–1914, 1926, 1929, 1933, 1935, and 1941, according to types of material used

Year	Type 1. C rock and limestone	l pure	Type 2. Lim		Type 3. and cl		furnaces	Type 4. Blast- furnace slag and limestone	
	Barrels	Per- cent	Barrels	Per- cent	Barrels	Per- cent	Barrels	Per- cent	
1898 1899 1900 1901 1901 1902 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914	- 4, 010, 132 5, 960, 739 8, 503, 500 10, 953, 178 12, 493, 604 15, 173, 391 18, 454, 902 23, 896, 951 25, 859, 095 20, 678, 693 24, 274, 047 26, 520, 911 26, 812, 172, 780 29, 333, 490 24, 907, 047	74. 9 70. 9 70. 3 66. 9 63. 6 55. 9 57. 2 52. 4 51. 4 53. 0 40. 6 37. 3 34. 6 30. 0 31. 8 28. 2 26. 8	365, 408 546, 200 1, 034, 041 2, 042, 209 3, 738, 303 7, 526, 323 11, 172, 389 16, 532, 212 17, 190, 697 23, 047, 707 32, 219, 365 39, 720, 320 40, 665, 332 44, 607, 776 47, 831, 863 50, 168, 813 101, 637, 866	9. 9 9. 7 12. 2 16. 1 21. 7 28. 3 31. 7 35. 6 49. 6 51. 9 51. 9 56. 9	562, 092 1, 095, 934 1, 454, 797 2, 001, 200 2, 220, 453 3, 052, 948 3, 332, 873 3, 958, 201 3, 606, 598 2, 811, 212 2, 711, 219 2, 811, 212 2, 711, 219 2, 467, 368 3, 734, 778 4, 038, 310	15. 2 19. 4 17. 1 15. 7 12. 9 13. 7 12. 6 11. 0 8. 5 7. 4 2 3. 0 4. 1 4. 0 2. 0	32, 443 164, 316 318, 710 462, 930 473, 294 1, 735, 343 2, 076, 000 2, 129, 000 5, 786, 800 7, 737, 000 10, 650, 172 111, 197, 000 9, 116, 000	0.4 1.3 1.8 2.1 1.8 4.9 4.5 4.4 8.9 9.2 9.2 9.2 12.2 10.3	
929 933 935 941	51, 077, 034 14, 135, 171 23, 811, 687	29. 9 22. 3 31. 0 28. 4	1 97, 623, 502 1 43, 638, 023 1 45, 073, 144 1 102, 285, 699	57. 2 68. 7 58. 8 62. 4	4, 832, 700 1, 402, 744 1, 478, 569 3, 142, 021	2. 9 2. 2 1. 9 1. 9	17, 112, 800 4, 297, 251 6, 378, 170 12, 068, 646	10. 0 6. 8 8. 3 7. 4	

 $^{^1}$ Includes output of 2 plants using oystershells and clay in 1926; 3 plants in 1929, 1933, and 1935; and 4 plants in 1941.

RAW MATERIALS

The producers reported that approximately 52,755,253 short tons of raw materials (exclusive of fuels and explosives) entered into the manufacture of 164,030,559 barrels (30,837,745 short tons) of portland cement in the United States in 1941—an average of about 643 pounds The totals for 1941. to a barrel (376 pounds) of finished cement. with corresponding figures for 1940 (in parentheses) follow: 42,733,707 tons of limestone and cement rock (34,040,119 tons, revised figure); 4,726,192 tons of clay and shale (4,016,427 tons, revised figure); 659,201 tons of blast-furnace slag (581,873 tons); 1,066,635 tons of marl (932,339 tons); 1,035,179 tons of gypsum (807,938 tons, revised figure); and 2,534,339 tons of other materials, such as oystershells, sandstone, sand, cinders, fluorspar, iron ore, diatomaceous shale. pumicite, fuller's earth, bentonite, silica, quartz, ashes, pyrite ore, pyrite cinder, roll scale, calcium chloride, and hydrated lime (1,878,651 tons, revised figure).

FUELS AND POWER

Fuels.—According to monthly reports of producers, supplemented by a few estimates by the Bureau of Mines, the following quantities of fuel were consumed at portland-cement plants in the United States and Puerto Rico in 1941 in making 163,629,000 barrels of clinker (unground cement) and 164,030,559 barrels of finished cement: Coal, 6,831,825 short tons; oil, 3,552,030 barrels (42 gallons); and natural gas, 54,207,900,833 cubic feet. Corresponding figures for 1940 are: Clinker produced, 130,141,000 barrels, and finished cement produced, 130,216,511 barrels. Fuels consumed were: Coal, 5,633,156 short tons; oil, 2,424,976 barrels; and natural gas, 41,948,699,007 cubic feet.

The first and second of the accompanying tables on fuels compare the output of clinker and finished cement in 1940 and 1941 with the estimated fuel consumption by processes. Similar data were published in Statistical Appendix to Minerals Yearbook, 1935 (p. 200), covering 1933 and 1934. The third table on fuels shows detailed data

on quantities used in 1940 and 1941.

Cement clinker (unground cement) produced and in stock at mills in the United States, 1940-41, by processes, in barrels of 376 pounds ¹

Process	Numl plai		Produ	ction	Stock (Dec. 31)		
	1940	1941	1940	1941	1940 3	1941 3	
Wet	87 65	90 65	67, 905, 000 62, 236, 000	84, 568, 000 79, 061, 000	2, 847, 000 2, 039, 000	2, 508, 000 2, 075, 000	
	152	155	130, 141, 000	163, 629, 000	4, 886, 000	4, 583, 000	

[·] Compiled from monthly estimates of the producers.

Portland cement burned and fuels used in the United States, 1940-41, by processes

	Finish	ed cement pro	duced	I	ruel consume	11
Process	Number of plants	Barrels of 376 pounds	Percent of total	Coal (short tons)	Oil (barrels of 42 gal- lons)	Natural gas (cubic feet)
1940 WetDry	87 65	67, 689, 498 62, 527, 013	52. 0 48. 0	2 2, 818, 216 2, 814, 940	1, 385, 702 1, 039, 274	25, 821, 525, 30 16, 127, 173, 700
	152	130, 216, 511	100. 0	3 5, 633, 156	2, 424, 976	41, 948, 699, 00
1941 WetDry	90 65	85, 153, 919 78, 876, 640	51. 9 48. 1	4 3, 325, 823 3, 506, 002	2, 090, 700 1, 461, 330	34, 045, 968, 83 20, 161, 932, 00
	155	164, 030, 559	100. 0	5 6, 831, 825	3, 552, 030	54, 207, 900, 83

Figures compiled from monthly estimates of the producers.

Revised figures.
Subject to revision.

¹ In addition to the coal shown for this group, 1 plant reported the use of petroleum coke with coal and natural gas.

Includes 74,437 short tons of anthracite and 5,558,719 short tons of bituminous coal.
In addition to the coal shown for this group, 2 plants reported the use of petroleum coke with coal and

Includes 96,768 short tons of anthracite and 6,735,057 short tons of bituminous coal.

CEMENT

Portland cement burned in the United States, 1940-41, by kinds of fuel

	Fini	shed cement pr	oduced		Fuel consun	ned 1
Fuel	Num- ber of plants	Barrels of 376 pounds	Percent of total	Coal (short tons)	Oil (barrels of 42 gal- lons)	Natural gas (cubic feet)
1940 Coal	152 102 11	2 83, 864, 320 2 9, 426, 674 2 11, 758, 348 6, 765, 481 11, 384, 238 7, 017, 450 130, 216, 511 2 104, 385, 531 2 11, 341, 543	64. 4 7. 2 9. 0 5. 2 8. 8 5. 4 100. 0	5, 009, 265 410, 278 211, 015 {	2, 049, 203 230, 446 112, 305 33, 022 2, 424, 976	18, 350, 001, 017 14, 125, 049, 790 7, 017, 663, 200 2, 455, 985, 000 41, 948, 699, 007
Natural gas. Coal and oil. Coal and natural gas ⁵ . Oil and natural gas. Coal, oil, and natural gas.	15 6 15 5 1 155	3 14, 933, 181 9, 501, 559 13, 454, 345 } 10, 414, 400 164, 030, 559	9. 1 5. 8 8. 2 6. 4	508, 571 128, 659 {	567, 318 422, 223 37, 902 3, 552, 030	22, 127, 284, 511 19, 666, 186, 322 11, 073, 254, 000 1, 341, 176, 000 54, 207, 900, 833

Electric power.—The accompanying table gives the electric energy produced at portland-cement plants and that purchased from power companies during 1940 and 1941. The cement industry generated 47 percent of its electric-power requirements in 1941 compared with 49 percent in 1940 and 50 percent in 1939.

Electric energy used at portland-cement-producing plants in the United States, 1940-41, by processes, in kilowatt-hours

•			Electric	energy used				Average electric	
Process	Gener land-o	ated at port- ement plants	P	urchased	Total		Finished cement produced	energy used per barrel of cement produced	
	Active plants	Kilowatt- hours	Active plants	Kilowatt- hours	Kilowatt- hours	Per- cent	Barrels	Kilo- watt- hours	
1940									
Wet					1,543,484,315			22.8	
Dry	36				1, 431, 843, 866				
Percent of total elec-	69	1,460,388,346	124	1, 514, 939, 835	12,975,328,181	100. 0	130, 216, 511	22, 8	
tric energy used		49. 1		50. 9	100. 0				
1941									
Wet	32			1, 224, 801, 790	1, 868, 412, 578	51.3	85, 153, 919	21.9	
Dry	36	1, 076, 033, 868	54	700, 009, 725	1, 776, 043, 593	48.7	78, 876, 640	22. 5	
Percent of total elec-	68	1, 719, 644, 656	128	1, 924, 811, 515	3, 644, 456, 171	100. 0	164, 030, 559	22. 2	
tric energy used		47. 2		52. 8	100. 0				

¹ Revised figures.

¹ Figures compiled from monthly estimates of the producers.

Average consumption of fuel per barrel of cement produced was as follows: 1940—coal, 119.5 pounds; oil, 0.2174 barrel; natural gas, 1,561 cubic feet. 1941—coal, 118.7 pounds; oil, 0.2226 barrel; natural gas, 1,482

on, 0.21/4 parrer, flatural gas, 1,501 cupic teet. 1941—cual, 110.1 pounds, on, 0.2220 parrer, natural gas, 1,702 cubic feet.

3 In addition to the coal and natural gas included for this group, 1 plant reported the use of petroleum coke with coal and natural gas.

4 Includes 74,437 short tons of anthracite and 5,558,719 short tons of bituminous coal.

5 In addition to the coal and natural gas included for this group, 2 plants reported the use of petroleum coke with coal and natural gas.

coke with coal and natural gas.

6 Includes 96,768 short tons of anthracite and 6,735,057 short tons of bituminous coal.

SPECIAL CEMENTS

In addition to the regular standard portland cements that constitute the great bulk of production, several special varieties of cement also are manufactured. They are designed to satisfy unusual demands, for instance, in high-early-strength cement where time is an important element; in low- and moderate-heat-of-hardening cement for monolithic structures; and in puzzolan cements for use in places where resistance to chemical attack is demanded. These and other special varieties were discussed in some detail in the chapter on Cement in Minerals Yearbook, Review of 1940 (pp. 1125-1127). Accordingly the discussion is restricted this year to data on certain masonry cements, the statistics for which do not appear in the ac-The types referred to are certain masonry companying table. cements that are not true portlands but employ portland-cement clinker and finished portland cement as a base. To this base are added considerable quantities of lime or other constituents of various These specially prepared masonry cements are sold under proprietary names. Production, which was reported from 52 plants in 1941, totaled 3,097,382 barrels and shipments 3,080,605 barrels valued at \$4,636,497—an average of \$1.51 a barrel. Corresponding data for 1940, representing the output of 44 plants (revised figure) are: Production, 2,312,155 barrels, and shipments 2,260,636 barrels valued at \$3,175,088—an average of \$1.40 a barrel. As the finished portland cement and clinker used in making these types of masonry cement have been reported elsewhere by producers, to avoid duplication the above figures are not included in the totals.

The following table presents statistical data for recent years insofar as they are available covering special portland cements. All the figures except those for masonry cement (hydraulic but not portland) and "masonry natural" are included in the general tables earlier in this chapter.

Special portland cements produced and shipped in the United States, 1937-41, by kinds

				Shipments	
Kind and year	Active plants	Production (barrels)		Val	ue
•			Barrels	Total	Average
High-early-strength:					
1937	64	4, 192, 959	3, 845, 314	\$7, 134, 468	\$1.86
1938		3, 340, 582	3, 385, 523	6, 247, 699	1.85
1939		3, 780, 716	3, 693, 460	6, 964, 608	1.89
1940		1 4, 478, 797	1 4, 401, 449	1 8, 243, 315	1.87
1941		6, 0,63, 638	6, 123, 224	11, 443, 792	1.87
Masonry or mortar:	1	0, 000, 000	0,,	12, 120, 110	1
1937	10	257, 385	273, 144	362, 807	1.33
1938		84, 875	88, 905	124, 239	1.40
1939		173, 737	155, 781	211, 711	1.36
1940		219, 480	214, 303	308, 333	1.44
1941		210, 100	221,000	000,000	
Low and moderate-heat:					
1937	27	3, 158, 165	3, 499, 340	4, 989, 425	1.43
1938		4, 181, 568		5, 710, 698	1.50
1939		5, 564, 921	5, 761, 840	8, 237, 440	1.43
1940		1 8, 559, 487	1 7, 709, 503	110, 307, 976	1.34
1941		11, 290, 232	11, 177, 651	14, 963, 940	1.34

¹ Revised figures.

Special portland cements produced and shipped in the United States, 1937-41, by kinds—Continued

			Shipments			
Kind and year	Active plants	Production (barrels)	Barrels	Value		
		y -	241015	Total	Average	
Portland-puzzolan:						
1937 1938	. 8	263, 877	298, 067	\$423, 297	\$1.45	
1938. 1939.	9	198, 268	185, 664	285, 088	1.5	
1940.	10	337, 187 413, 870	321, 217 412, 143	434, 281	1.34 1.34	
1941	. 8	441, 500	439, 354	552, 830 632, 713	1.4	
Oil-well:		111,000	100,001	002, 110	4.72	
1937	10	342, 316	313, 064	652, 960	2.00	
1938	8	238, 966	232, 319	481, 401	2.00	
1939 1940	12	375, 866	375, 027	710, 032	1.8	
1940	22 19	711, 348	719, 022	1, 365, 840	1.90	
Sulfate-resisting:	19	786, 167	806, 364	1, 550, 301	1.9	
1937	2	(2)	,(2)·	(2)	(1)	
1938	a a	(2)	(2)	(2) (2)	(2)	
1939	4	38, 279	27, 362	57, 867	2.11	
1940	11	193, 348	200,090	316, 280	1.59	
1941 Miscellaneous:	9	342, 400	353, 885	544, 767	1.54	
1002						
1937	14 15	641, 960	648, 973	1, 014, 058	1.50	
1939.	15 15	642, 854 755, 833	625, 860	1,004,393	1.60	
1940	1 13	580, 502	775, 179 577, 579	1,067,699 755,764	1. 39 1. 31	
1941	14	668, 655	667, 206	1, 058, 108	1.5	

Revised figures.

NEW DEVELOPMENTS

Large-scale rehabilitation and modernization programs are in progress or have been completed recently by at least six cement companies, and less extensive improvements have been made by many others. A large number of mills are now equipped with unit coal pulverizers that discharge directly into the kilns. This is one of the most outstanding recent improvements in plant design. Automatic control of all elements pertaining to the preparation of raw materials, calcination, and clinker grinding is attaining increased refinements, owing partly to the necessity of meeting exacting specifications and partly to the need for more efficient combustion and plant operation.

In certain localities the demand for cement has been so active that it is delivered on the job within a relatively short time after it is made. Consequently, some difficulty has been experienced because recent specifications in force at some consuming centers require cement to be delivered on the job at a temperature not higher than 125° F., whereas formerly 140° F. was allowed. At least one company has introduced the use of finished-cement coolers.

Other important developments include a wider use of cement-mill stack dust as a cement raw material and the introduction of a Lepol kiln at the plant of the Santa Cruz Portland Cement Co., Davenport, Calif. This installation is the second one of this type of equipment in the United States, the first being that of the Spokane Portland Cement Co., Irvin, Wash., introduced in 1935.

Further progress has been made in air-quenching hot clinker. The advantages are (1) reduction in grinding cost; (2) fuel conservation

Bureau of Mines not at liberty to publish figures separately.

(heat from the clinker being transferred to the kilns in a secondary air supply); and (3) improved quality of the cement as indicated by

higher soundness tests.

Concrete ships gave unsatisfactory service in the World War of 1914–18, but their use has not been abandoned because of the failures of that period. They are again being built; and it is believed that those now under construction will give useful service, because the design has been improved, and the cement used is of higher quality than that which was available 25 years ago. The first concrete ships built during the present war were designed as tow barges, but more recently the Maritime Commission let contracts for 24 self-propelled seagoing craft, each of 5,200 tons. They will be built in a new ship-yard at Tampa, Fla.

White cement is now used for the finishing coat on concrete floors in airplane factories. The reflected light from such floor surfaces is of great assistance to those constructing the underside of wings and

fuselage.

Much progress has been made in the substitution of cement for iron, steel, or other metals urgently needed for military uses. The newer products include storage tanks for household oil burners, bleach tanks for laundries, septic tanks, bath tubs, and sash weights. A new type of manhole cover has been devised which requires only 15 to 20 pounds of reinforcing steel, whereas the ordinary 24-inch iron cover contains 85 to 100 pounds of metal.

NATURAL, MASONRY (NATURAL), AND PUZZOLAN CEMENTS

The term "natural" is used to designate certain cements made by calcining argillaceous limestone at a comparatively low temperature and pulverizing the calcined material. Some of them have special properties that adapt them to mortar uses for laying brick and stone; therefore, they are classed as masonry (natural) cements.

Another special non-portland cement consists of a mixture of blast-furnace slag and hydrated lime. It is classed with the puzzolan

cements.

Producers of these special non-portland cements reported that 48,091 short tons of coal and the gas equivalent of about 89 short tons of coal were used in their manufacture in 1941. Fuel consumed in 1940 totaled 42,873 short tons of coal and the gas equivalent of about 68 short tons of coal.

Production and shipments of these special types of cement combined are indicated in the following table.

Natural, masonry (natural), and puzzolan (slaq-lime) cements produced, shipped, and in stock at mills in the United States, 1937-41

	Prod	uction	Shipt	Stock (Dec. 31)	
Year	Active plants	Barrels (376 pounds)	Barrels (376 pounds)	Value	Barrels (376 pounds)
1937 1938 1939 1940	12 12 12 12 12	1, 900, 643 1, 820, 795 2, 439, 110 2, 534, 566 2, 875, 962	1, 873, 400 1, 867, 949 2, 405, 135 2, 514, 597 2, 926, 203	\$2, 578, 885 2, 725, 776 3, 361, 724 3, 386, 801 3, 967, 567	253, 518 373, 816 239, 938 1 259, 868 209, 627

¹ Revised figure.

CEMENT TRENDS IN EMPLOYMENT AND OUTPUT PER MAN 1

In Minerals Yearbook, 1935 (pp. 891-905) and 1940, Review of 1939 (pp. 1141-1153), trends in employment and output per man in the cement industry were traced from 1928 to 1938. The following data extend this 11-year period through 1939 and 1940.

GENERAL DATA

As may be noted in the first table, the number of men employed was greater in 1940 than in 1938 or 1939. The average number of days worked also was greater, but the average length of day has varied only slightly for several years. The average output of cement per man has increased progressively since 1937.

Employment in the portland-cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1936-40

			Employme	ent		Proc	luction		
Year	Average number	Aver-	Time e	employed Mar	i-hours	Finished portland	Avera man (t		Percent of indus- try repre- sented 1
134	of men	age num- ber of days	Total man- shifts	Average per man per day	Total	cement (barrels)	Per shift		sented .
1936 1937 1938 19392 19403	25, 406 26, 432 25, 036 25, 503 26, 038	272 279 256 273 279	6, 917, 074 7, 380, 028 6, 398, 178 6, 974,191 7, 276, 469	7.3 7.4 7.5 7.3 7.4	50, 688, 870 54, 714, 935 47, 729, 779 51, 184, 194 54, 116, 153	111, 238, 300 116, 174, 708 105, 357, 000 121, 934, 911 129, 830, 687	16. 08 15. 74 16. 47 17. 48 17. 84	2. 19 2. 12 2. 21 2. 38 2. 40	98. 7 100. 0 100. 6 99. 7 99. 7

¹ Calculated for each year by dividing quantity of finished cement produced at mills included in study by total production.

² Exclusive of Puerto Rico.

MILL EMPLOYEES

In 1928 mill employees averaged 9.5 hours a day for 332 days and produced 1.98 barrels of finished cement per man-hour; in 1940 they averaged 7.4 hours a day for only 287 days but produced 2.95 barrels of cement per man-hour. Thus productivity per man per hour increased 49 percent during this 13-year period.

Mill employees in the portland-cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1936-40

		Employ	yment—ceme	nt mill on	Pro				
Year Average number of men Average Total			Time e	mployed				ge per	Percent
		Mar	1-hours	Finished portland cement	man (t	of indus- try repre- sented ¹			
	of men	ber of s	Total man- shifts	Average per man per day	Total	(barrels)	Per shift	Per hour	
1936 1937 1938 1939 ² 1940 ³	19, 881 20, 925 19, 828 20, 186 20, 692	280 289 264 282 287	5, 564, 582 6, 041, 237 5, 224, 790 5, 691, 718 5, 930, 723	7.3 7.4 7.4 7.3 7.4	40, 634, 045 44, 553, 173 38, 866, 410 41, 518, 750 43, 967, 729	111, 029, 026 116, 174, 708 105, 357, 000 121, 934, 911 129, 830, 687	19. 95 19. 23 20. 16 21, 42 21. 89	2. 73 2. 61 2. 71 2. 94 2. 95	98. 6 100. 0 100. 0 99. 7 99. 7

¹ Calculated for each year by dividing quantity of finished cement produced at mills included in study by-tetal production.
² Exclusive of Puerto Rico.

¹ Statistics on employment and output per man presented in this discussion were compiled by E. T Shuey from records of the employment statistics section, Bureau of Mines.

QUARRY AND CRUSHER EMPLOYEES

From 1929—the first year for which data are available—to 1940 the number of quarry and crusher employees dropped from 5.123 to 4,394, the average hours per day declined from 9.6 to 7.6, but the tonnage of material handled per man per hour increased from 3.20 to 4.14. This increase no doubt reflects increased mechanization and greater efficiency.

Quarry and crusher employees in the portland-cement industry, material (quarry rock and overburden) handled at quarries included in study, and average output of material per man in the United States, 1936-40

	Em	ploymeı	nt—quarry :	and crushe	Material a	handled- nd overbu		rock		
Year		Time employed					Percent	Avera man (short	Percent of in- dustry
Toal	Average num- ber of	Aver-	Total	Mar	-hours	Short tons	of over- burden	tons)		repre- sented1
	men num- ber of days 10tal man- shifts		Average per man per day	Total		in- cluded	Per shift	Per hour		
1936 1937 1938 1939 ⁸ 1940 ³	5, 023 4, 980 4, 442 4, 433 4, 394	246 242 218 234 244	1, 233, 219 1, 203, 867 968, 873 1, 037, 183 1, 070, 881	7. 4 7. 6 7. 6 7. 6 7. 6	9, 174, 710 9, 169, 763 7, 384, 387 7, 904, 793 8, 171, 104	(2) (2) (2) (3) 31, 952, 378 33, 804, 500	(3) (2) (3) (3) 3. 9 2. 6	(3) (2) (2) 30. 81 31. 57	(3) (3) (4) 4.04 4.14	98. 7 90. 0 90. 3 85. 3 82. 6

¹ Calculated for each year by dividing quantity of finished cement produced at mills included in study by total production.
Figures not available.

HOURS PER DAY

⁸ Exclusive of Puerto Rico.

A remarkable change has taken place in the average number of hours per day of employment. In 1928, 58 percent of the employees

worked more than 9 hours a day; in 1940, only 2 percent. In 1928, 23 percent of the employees had a working day of 11 to 12 hours; in 1940, no employees worked more than 10 hours a day.

Number of men employed in the portland-cement industry in the United States and output per man-hour, 1938-40, classified according to hours of labor per day

		1938			1939 1		1940 1			
Hours per day	Men employed		Produc- tion per	Men employed		Produc- tion per	Men employed		Produc-	
	Num- ber	Percent of total	man- l our (bar- rels)	Num- ber	Percent of total	man-	Num- ber	Percent of total	man-	
Less than 6 6 and less than 7 7 and less than 8 8 and less than 9 9 and less than 10	319 6, 375 5, 608 12, 124 610	1. 3 25. 5 22. 4 48. 4 2. 4	2. 7 2. 2 2. 3 2. 2 1. 6	867 7, 958 4, 345 12, 333	3. 4 31. 2 17. 0 48. 4	2. 50 2. 42 2. 36 2. 36	681 6, 282 4, 679 14, 263 133	2. 6 24. 1 18. 0 54. 8 . 5	2. 44 2. 65 2. 20 2. 35 2. 25	
	25, 036	100.0	2. 2	25, 503	100.0	2. 38	26, 038	100.0	2. 4	

Exclusive of Puerto Rico

DISTRICT AND STATE TABLES

The following tables show a geographic break-down, by districts and States, of the statistical record of employment and productivity of labor in the cement industry. These data are primarily of interest in the study of regional relationships. The first table, covering employment in the portland-cement industry as a whole, and the second, relating to mill employees, give data for 1939 and 1940 supplementing similar figures for 1928 to 1933 in Minerals Yearbook, 1935 (pp. 897–902), and for 1934 to 1938 in Minerals Yearbook, 1940. Review of 1939 (pp. 1145–1152). The third table, comprising data for quarry and crusher employees in 1939 and 1940, supplements similar data for 1929 to 1933 in Minerals Yearbook, 1935 (pp. 903–905), and for 1934 in Minerals Yearbook, 1940, Review of 1939 (p. 1153); data for 1935 to 1938 are lacking.

Employment in the portland-cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1939-40, by districts and by States (excluding Puerto Rico)

]	Employm	ent		Pro	duction		
		,	Time e	mploye	đ			rage	Per-
District and State	Aver-			Man-hours		Finished	per (bar	man rels)	cent of indus- try
1020	age num- ber of men	Average num- ber of days	ge Total . im- man- r of shifts	Average per man per day	Total	portland cement (barrels)	Per shift	Per hour	repre- sented ¹
1939			·						
DISTRICT									
Eastern Pennsylvania, New Jersey, and Mary- land	5, 305 1, 570	286 255	1, 519, 200 400, 941	6. 8 7. 7	10, 277, 957 3, 086, 473	23, 650, 626 7, 315, 716	15. 57 18. 25	2. 30 2. 37	100.0 100.0
Ohio, western Pennsylvania, and West Virginia	2, 895 1, 712	267 291	772, 727 498, 356	7.7 7.8			14. 67 16. 49	1.89 2.12	100.0 100.0
Wisconsin, Illinois, Indiana, and Kentucky. Virginia. Tennessee, Alabama, Georgia. Florida.	2, 531	274	693, 453	7.1	4, 898, 182	12, 276, 018	17. 70	2. 51	100.0
and Louisiana Eastern Missouri, Iowa, Minnesota, and South Dakota	2, 943 2, 367	258 271	758, 965 640, 394		5, 607, 834 4, 729, 626	, ,	17. 58 16. 36	2. 38 2. 21	100.0
Western Missouri, Ne- braska, Kansas, Okla- homa, and Arkansas	1, 665	269	447, 766	7.4	3, 315, 030	8, 038, 885	17. 95	2. 42	100.0
Texas	1, 287 634	269 258	346, 442 163, 274	7.5	2, 600, 919 1, 208, 928	7, 337, 246 3, 062, 889	21. 18 18. 76	2. 82 2. 53	100.0 100.0
California Oregon and Washington	1, 716 878	290	496, 962 235, 711	7.6	3, 797, 983 1, 794, 073		22, 11 24, 95	2. 89 3. 28	100. 0 100. 0
•	25, 503	273	6, 974, 191	7.3	51, 184, 194	121, 934, 911	17.48	2. 38	99.7
STATE					,				
Alabama California Illinois Iowa	995 1, 716 1, 034 1, 195	290 264	496, 962 273, 226	7. 6 6. 4	1, 791, 889 3, 797, 983 1, 748, 736 2, 416, 166	10, 990, 079 4, 648, 834	19.83 22.11 17.01 15.03	2. 81 2. 89 2. 66 1. 95	100.0 100.0 100.0 106.0

See footnotes at end of table.

Employment in the portland-cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1939-40, by districts and by States (excluding Puerto Rico)—Continued

		I	Employme	ent		Pro	duction		
			Time e	nploye	1		Ave		Per-
District and State	Aver-	A		Ma	n-hours	Finished portland	(bar		cent of indus- try
	num- ber of men	Aver- age num- ber of days	Total man- shifts	Average per man per day	Total	cement (barrels)	Per shift	Per hour	repre- sented
1939						A 14			
STATE—continued									
Kansas Michigan Missouri New York Dhio Pennsylvania Pennessee Fexas Dither States 2	798 1, 712 1, 048 1, 454 1, 378 5, 437 748 1, 287 6, 701	255 291 279 256 284 282 269 269 268	204, 684 498, 356 291, 923 372, 006 391, 588 1, 531, 712 201, 172 346, 442 1, 798, 218	7.9 7.8 7.1 7.6 7.8 6.9 7.6 7.5	3, 879, 845 2, 063, 735	3, 739, 004 8, 218, 760 4, 785, 594 6, 867, 614 5, 799, 726 25, 105, 902 3, 537, 208 7, 337, 246 31, 148, 520	18. 27 16. 49 16. 39 18. 46 14. 81 16. 39 17. 58 21. 18 17. 32	2. 33 2. 12 2. 32 2. 41 1. 91 2. 36 2. 31 2. 82 2. 35	100.0 100.0 100.0 100.0 100.0 100.0 100.0
5 MOI DUMOO	25, 503		6, 974, 191		51, 184, 194	121, 934, 911	17.48	2. 38	99.
1940									
DISTRICT Eastern Pennsylvania, New Jersey, and Mary- land New York and Maine Dhio, western Pennsyl-	5, 280 1, 714	293 264	1, 549, 450 452, 808	6. 9 7. 9	10, 767, 007 3, 572, 428	24, 970, 132 8, 784, 509	16. 12 19. 40	2. 32 2. 46	100. (100. (
vania, and West Vir- ginia	3, 042 1, 666	278 302	845, 251 502, 428	7. 7 8. 0	6, 514, 883 3, 996, 875	13, 374, 846 8, 603, 188	15. 82 17. 12	2.05 2.15	100.0 100.0
Michigan Wisconsin, Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Florida,	2, 478	287	710, 579	7.0		12, 663, 788	17.82	2. 55	100.
and Louisiana Lastern Missouri, Iowa, Minnesota, and South	3, 083	265	816, 568	7.4	6, 027, 203	14, 710, 971	18. 02	2. 44	100.
Minnesota, and South Dakota Vestern Missouri, Ne- braska, Kansas, Okla-	2, 324	265	616, 856	7. 4	4, 551, 707	10, 304, 229	16. 70	2. 26	100.
braska, Kansas, Okia- homa, and Arkansas Caras Colorado Montana, Utah, Wyoming, and	1, 613 1, 326	257 267	413, 905 353, 480	7.7		7, 374, 886	18. 36 20. 86	2. 39 2. 72	100. 100.
Idaho	578 2, 102 832	244	664, 436 202, 849		5, 182, 516 1, 542, 004	14, 215, 745 4, 268, 811	20. 03 21. 40 21. 04	2. 67 2. 74 2. 77	100. 100. 100.
STATE	26, 038	279	7, 276, 469	7.4	54, 116, 153	129, 830, 687	17.84	2. 40	99.
Alabama Salifornia Illinois owa Kansas Michigan Missouri Vew York Phio Fennsylvania Fennessee	1, 150 773 1, 666 1, 099 1, 607 1, 415 5, 541 768 1, 326	316 286 252 238 302 268 267 282 290 268 267	664, 436 280, 227 290, 208 184, 297 502, 428 294, 965 428, 757 398, 706 1, 605, 037 205, 776 353, 480	7. 8 6. 4 7. 8 8. 2 8. 0 7. 0 7. 9	5, 182, 516 1, 788, 551 2, 259, 916	4, 605, 886 3, 433, 033 8, 603, 188 4, 968, 106 8, 437, 368 6, 664, 115	19. 64 21. 40 17. 75 15. 87 19. 71 17. 12 16. 84 19. 68 16. 72 16. 73 18. 51	2. 74 2. 78 2. 04 2. 27 2. 15 2. 39 2. 50 2. 16 2. 38 2. 32 2. 72	100. 100. 100. 100. 100. 100. 100. 100.
Other States 2	6, 593 26, 038		1, 807, 386 7, 276, 469		13, 376, 652 54, 116, 153		$\frac{17.02}{17.84}$	2. 40	

¹ Calculated for each year by dividing quantity of finished cement produced at mills included in study

Jackinsked for each year by dividing quantity of minister values production.

Arkansas, Colorado, Florida, Georgia, Idaho, Indiana, Kentucky, Louisiana, Maine, Maryland, Minnesota, Montana, Nebraska, New Jersey, Oklahoma, Oregon, South Dakota, Utah, Virginia, Washington, West Virginia, Wisconsin, and Wyoming.

Mill employees in the portland-cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1939-40, by districts and by States (excluding Puerto Rico)

	Er	nploym	ent—ceme	nt mill	only	Prod	luction		
			Time e	mploye	i		A ver	age nan	Per
District and State	Aver- age num-	A ver-		Ma	n-hours	Finished portland	per man (barrels)		cent of indus- try
	ber of men	age num- ber of days	Total man- shifts	A ver- age per man per day	Total	cement (barrels)	Per shift	Per hour	represented 1
1939									
DISTRICT									
Eastern Pennsylvania, New Jersey, and Mary-		-							
New York and Maine Ohio, western Pennsylvania, and West Vir-	4, 347 1, 266	294 262	1, 276, 161 332, 035	6. 6 7. 7	8, 475, 081 2, 556, 160	23, 650, 626 7, 315, 716	18. 53 22. 03	2. 79 2. 86	100. 0 100. 0
ginia	2, 075 1, 478	275 300	571, 315 442, 907	7. 7 7. 8	4, 400, 659 3, 444, 296	11, 339, 742 8, 218, 760	19. 85 18. 56	2. 58 2. 39	100. 0 100. 0
Wisconsin, Illinois, Indi- ana, and Kentucky Virginia, Tennessee, Ala- bama, Georgia, Florida,	2, 215	279	617, 212	7. 1	4, 373, 453	12, 276, 018	19. 89	2. 81	100.0
bama, Georgia, Florida, and Louisiana Eastern Missouri, Iowa, Minnesota, and South	2, 211	266	588, 285	7. 3	4, 321, 454	13, 349, 464	22. 69	3. 09	100. 0
Dakota Western Missouri, Nebraska, Kansas, Okla-	1, 849	287	530, 164	7. 3	3, 888, 127	10, 474, 558	19. 76	2. 69	100.0
homa, and Arkansas Texas	1, 337 996	276 272	368, 719 270, 805	7. 4 7. 7	2, 717, 365 2, 073, 732	8, 038, 885 7, 337, 246	21.80 27.09	2. 96 3. 54	100. 0 100. 0
Idaho	479 1, 288 645	258 302 281	123, 424 389, 272 181, 419	7. 6 7. 6 7. 5	935, 555 2, 971, 103 1, 361, 765	3, 062, 889 10, 990, 079 5, 880, 928	24. 82 28. 23 32. 42	3. 27 3. 70 4. 32	100, 0 100, 0 100, 0
	20, 186	282	5, 691, 718	7. 3	41, 518, 750	121, 934, 911	21. 42	2. 94	99. 7
STATE			'						
Alabama California Illinois Iowa Kansas Michigan Missouri New York Ohio Pennsylvania Tennessee Texas Other States 2	759 1, 288 868 905 634 1, 478 836 1, 175 1, 110 4, 408 567 996 5, 162	268 302 270 275 260 300 298 261 297 291 280 272 273	203, 780 389, 272 234, 480 248, 969 164, 789 442, 907 248, 723 306, 917 330, 196 1, 281, 143 158, 851 270, 805 1, 410, 886	6.9 7.6 6.3 7.8 7.8 7.0 7.7 6.8 7.4 7.7	3, 444, 296 1, 742, 963 2, 344, 620 2, 554, 330	5, 038, 400 10, 990, 079 4, 648, 834 4, 718, 024 3, 739, 004 8, 218, 760 4, 785, 594 6, 867, 614 5, 799, 726 25, 105, 902 3, 537, 208 7, 337, 246 31, 148, 520	24. 72 28. 23 19. 83 18. 95 22. 69 18. 56 19. 24 22. 38 17. 56 19. 60 22. 27 27. 09 22. 08	3. 61 3. 70 3. 13 2. 48 2. 89 2. 39 2. 75 2. 27 2. 28 2. 99 3. 54 3. 00	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
	20, 186	282	5, 691, 718	7.3	41, 518, 750	121, 934, 911	21. 42	2. 94	99.7
1940									
DISTRICT				:					
Eastern Pennsylvania, New Jersey, and Mary- land New York and Maine Ohio, western Pennsyl-	4, 312 1, 415	301 270	1, 296, 255 382, 370	6. 8 7. 9	8, 860, 080 3, 037, 586	24, 970, 132 8, 784, 509	19. 26 22. 97	2. 82 2. 89	100. 0 100. 0
vania, and West Virginia. Michigan Misconsin, Illinois, Indiana, and Kentucky.	2, 161 1, 429 2, 093	283 308 291	611, 778 439, 581 609, 042	7. 7 8. 0		13, 374, 846 8, 603, 188 12, 663, 788	21. 86 19. 57 20. 79	2. 85 2. 45 2. 94	100. 0 100. 0

See foctnotes at end of table.

Mill employees in the portland-cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1939-40, by districts and by States (excluding Puerto Rico)—Continued

	E	mployn	nent—cem	ent mill	only	Pro	duction		
			Time e	mploye	d		Ave		
District and State	Aver- age	Aver-		Man		Finished	per man (barrels)		Per cent of industry
	num- ber of men	age num- ber of days	man- shifts	Average per man per day	Total	portland cement (barrels)	Per shift	Per hour	repre- sented :
1940			-						
DISTRICT—continued									
Virginia, Tennessee, Alabama, Georgia, Florida, and Louisiana. Eastern Missouri, Iowa,	2, 325	269	624, 580	7. 3	4, 558, 497	14, 710, 971	23 . 55	3. 2 3	100. (
Minnesota, and South Dakota Western Missouri, Ne- braska, Kansas, Okla-	1, 919	274	526, 589	7.4	3, 877, 577	10, 304, 229	19. 57	2. 66	100. 0
homa, and Arkansas Texas	1, 282 1, 033	263 273		7. 6 7. 8	2, 581, 558 2, 191, 595	7, 597, 759 7, 374, 886	22. 51 26. 14	2. 94 3. 37	100, 0 100, 0
Wyoming, and Idaho California Oregon and Washington	438 1, 660 625	258 330 256	547, 926	7. 6 7. 8 7. 5	4, 288, 886		26. 25 25. 94 26. 66	3. 44 3. 31 3. 55	100. 0 100. 0 100. 0
	20, 692	287	5,930,723	7. 4	43, 967, 729	129, 830, 687	21.89	2. 95	99. 7
STATE Alabama California. Illinois. Iowa. Kansas Michigan Missouri New York Ohio. Pennsylvania. Tennessee. Texas. Other States 3.	786 1, 660 765 965 965 616 1, 429 891 1, 327 1, 112 4, 480 568 1, 033 5, 060	270 273	210, 893 547, 926 224, 013 248, 883 148, 956 439, 581 249, 010 361, 418 321, 313 1, 336, 573 153, 481 282, 092 1, 406, 584	8. 0 7. 8	4, 288, 886 1, 431, 113 1, 938, 286 1, 221, 223 3, 516, 650 1, 739, 462 2, 869, 972	5, 122, 307 14, 215, 745 4, 974, 917 4, 605, 886 3, 433, 033 8, 603, 188 4, 968, 106 8, 437, 368 6, 664, 115 26, 853, 002 3, 808, 307 7, 374, 886 30, 769, 827	24. 29 25. 94 22. 21 18. 51 23. 05 19. 57 19. 95 23. 35 20. 74 20. 09 24. 81 26. 14 21. 88	3. 60 3. 31 3. 48 2. 38 2. 81 2. 45 2. 86 2. 96 2. 96 3. 12 3. 37 2. 97	100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0
	20, 692	287	5, 930, 723	7.4	43, 967, 729	129, 830, 687	21. 89	2. 95	99.7

¹ Calculated for each year by dividing quantity of finished cement produced at mills included in study by total production.

² Arkansas, Colorado, Florida, Georgia, Idaho, Indiana, Kentucky, Louisiana, Maine, Maryland, Minnesota, Montana, Nebraska, New Jersey, Oklahoma, Oregon, South Dakota, Utah, Virginia, Washington, West Virginia, Wisconsin, and Wyoming.

Quarry and crusher employees in the portland-cement industry, material (quarry rock and overburden) handled at quarries included in study, and average output of material per man in the United States, 1939–40, by districts and by States (excluding Puerto Rico)

	Em	ploym	ent—quar only	ry and	crusher		al handl and ove			
			Time er	nploye	1		Per-	Avera man (short	Per- cent of
District and State	Aver- age			Ma	n-hours		cent		, 	indus- try
	num- ber of men	Average number of days	Total man- shifts	Average per man per day	Total	Short tons	over- bur- den in- cluded	Per shift	Per hour	repre- sented 1
1939					l					
DISTRICT										
Eastern Pennsylvania,										
New Jersey, and Maryland	832	246	204, 379	7.7	1, 564, 080	6, 408, 686	2.9	31. 36	4. 10	
New York and Maine Ohio, western Pennsyl- vania, and West Vir-	244	220	53, 770	7.7	412, 666	1, 914, 288	5.8	35. 60	4.64	100.0
ginia.	728	238		7.9	1, 364, 361	3, 505, 461	3.8	20. 19	2. 57	74.1
Michigan Wisconsin, Illinois, In-	128	190	24, 318	7. 5	182, 196	614, 117	8.7	25. 25	3. 37	23.6
diana, and Kentucky Virginia, Tennessee,	316	241	76, 241	6. 9	524, 729	2, 416, 083	16. 5	31. 69	4.60	73.7
Alabama, Georgia, Florida, and Loui-										
siana Eastern Missouri,	670	227	152, 189	7. 7	1, 166, 852	4, 170, 731	4.1	27. 40	3. 57	100.0
Iowa, Minnesota, and South Dakota	392	208	81, 469	7. 7	628, 910	2, 835, 830	. 5	34, 81	4. 51	91.0
Western Missouri, Nebraska, Kansas,		, =00	01, 100	•••	020,020	2,000,000	. "	01.01		. 01.0
Oklahoma, and Ar- kansas	281	231	65, 003	7. 7	500, 275	1, 902, 639	3. 3	29. 27	3.80	78.3
Texas	179	231	41, 298	7. 3	303, 513	1, 739, 666	(2)	42. 12	5. 73	86.7
Colorado, Montana, Utah, Wyoming, and Idaho	84	235	19, 773	6. 7	131, 655	800, 346		40.40		
California	347	263	91, 144	7. 6		4, 025, 462	2.2	40. 48 44. 17	6.08 5.80	81. 5 97. 5
Oregon and Washing- ton	232	233	53, 978	8.0	431, 049	1, 619, 069	1.1	29. 99	3. 76	100.0
	4, 433	234	1, 037, 183	7. 6	7, 904, 793	31, 952, 378	3. 9	30. 81	4.04	85. 3
STATE						-				
Alabama	223	211	47, 066	7. 9	370, 027	1, 521, 152		32. 32	4.11	100.0
California Illinois	347 166	263 233	91, 144 38, 746	7. 6 6. 8	694, 507 264, 903	4, 025, 462 1, 588, 946	2. 2 19. 1	44. 17 41. 01	5. 80 6. 00	97. 5 100. 0
Iowa	196	216	42, 345	8.1	342, 763	1, 406, 181	(2)	3321	4. 10	100.0
Kansas Michigan	129 128	234 190	30, 147 24, 318	7. 9 7. 5	238, 910	846, 398	6. 7	28.08 25.25	3. 54 3. 37	79. 9 23. 6
Missouri	212	204	43, 200	7.4	182, 196 320, 772	614, 117 1, 470, 705	8.7	34.04	4.58	23. 0 100. 0
New York	219 240	228 222	49, 953	7.6	382, 131 422, 993	1, 789, 022	6. 2	35. 81	4.68	100.0
Ohio Pennsylvania	920	236	53, 389 217, 069	7. 9 7. 8	422, 993 1, 689, 999	1, 548, 275 6, 678, 696	6. 4 2. 1	29. 00 30. 77	3.66 3.95	85. 1 88. 0
Tennessee	181	234	42, 321	8.3	350, 528	1, 013, 871	40 41	23, 96	2, 89	100.0
TexasOther States	179 1, 293	231 245	41, 298 316, 187	7. 3 7. 4	303, 513 2, 341, 551	1, 739, 666 7, 709, 887	(2) 3. 5	42.12 24.38	5. 73 3. 29	86. 7 81. 6
ŀ	4, 433		1, 037, 183			31, 952, 378	3. 9	30. 81	4.04	85. 3

See footnotes at end of table.

Quarry and crusher employees in the portland-cement industry, material (quarry rock and overburden) handled at quarries included in study, and average output of material per man in the United States, 1939–40, by districts and by States (excluding Puerto Rico)—Continued

Time		the second second		rburde			
1	mployed	-hours		Per-	Average man (short	Per- cent of indus-
Total manshifts	Average per man per day	Total	Short tons	of over- bur- den in- cluded	Per shift	Per hour	try repre- sented ¹
55 210, 48 32 62, 38	5 7.6 9 7.8	1, 610, 017 485, 967	6, 662, 943 2, 364, 828	2. 6 5. 2	31. 66 37. 90	4. 14 4. 87	85. (100. (
57 190, 58 17 39, 54 54 79, 66	6 7.4	1, 481, 425 292, 399 534, 718		3. 9 3. 9 3. 6	21. 90 27. 14 24. 27	2. 82 3. 67 3. 62	74. 0 58. 7 57. 0
159, 69	7.8	1, 246, 363	4, 375, 004	3. 2	27. 4 0	3. 51	94. (
83, 30	7. 5	625, 410	2, 909, 406	(3)	34. 92	4. 65	93. (
22 65, 37 11 29, 31	8.0	517, 761 233, 191		3.8	56. 42	3. 73 7. 09	78.0 91.0
27 17, 71 74 90, 27	7.6	123, 658 683, 485	942, 410 4, 777, 911	.8 1.2	53. 20 52. 93	7. 62 6. 99	100.4 81.8
14 1, 070, 88	-	336, 710 8, 171, 104	1,008,436 33,804,500	3. 1 2. 6	23. 71 31. 57	2. 99 4. 14	80.
1,070,00	7.0	=====	=======================================		====		
47 39, 5 21 45, 99 37 59, 29 47 64, 00 45 224, 20 52 45, 30 11, 29, 3	0 7.6 6 6.6 7.8 7.8 8.6 7.4 7.3 7.7 7.7 7.7 8.1	321, 630 221, 508 292, 399 337, 765 461, 183 495, 844 1, 725, 870 368, 940 233, 191	1, 412, 081 817, 973 1, 073, 467 1, 552, 665 2, 252, 543 1, 856, 079 6, 628, 773 1, 113, 720 1, 653, 628	(2) 1. 2 2. 2 (2) 9. 0 3. 9 (2) 5. 4 8. 7 2. 2 . 5	27. 72 52. 93 39. 45 34. 17 31. 71 27. 14 33. 79 37. 99 28. 98 29. 56 24. 53 56. 42 24. 70	3. 56 6. 99 5. 99 4. 39 3. 69 3. 69 4. 60 4. 88 3. 74 3. 84 3. 02 7. 09 3. 29	82.7 81.8 100.0 76.9 58.7 100.0 81.9 77.6 100.0
	25, 79 447 39, 54 421 45, 95 337 59, 29 447 64, 05 445 224, 28 45, 29 111. 29, 31 254 325, 48	25, 797 8. 6 247 39, 546 7. 4 121 45, 955 7. 3 237 59, 290 7. 8 247 64, 057 7. 7 245 224, 281 7. 7 552 45, 397 8. 1 111 29, 311 8. 0 254 325, 489 7. 5	25, 797 8. 6 221, 508 447 39, 546 7. 4. 292, 399 121 45, 955 7. 3 337, 765 127 59, 290 7. 8 461, 183 147 64, 057 7. 7 495, 844 145 224, 281 7. 7 1, 725, 870 152 45, 397 8. 1 368, 940 111 29, 311 8. 0 233, 191 154 325, 489 7. 5 2, 446, 710	247 39,546 7.4 292,399 1,073,467 221 45,955 7.3 337,765 1,552,665 237 59,290 7.8 461,183 2,252,543 247 64,057 7.7 495,844 1,856,079 245 224,281 7.7 1,725,870 6,628,773 252 45,397 8.1 368,940 1,113,720 211 29,311 8.0 233,191 1,653,628 254 325,489 7.5 2,446,710 8,040,776	747 39, 546 7.4 292, 399 1, 073, 467 3.9 221 45, 955 7.3 337, 765 1, 552, 665 (2) 237 59, 290 7.8 461, 183 2, 252, 543 5.4 447 64, 057 7.7 7.7 1, 725, 870 6, 628, 773 2.2 452 244, 281 7.7 7, 725, 870 6, 628, 773 2.2 2 252 45, 397 8.1 368, 940 1, 113, 720 .5 251 325, 489 7.5 2, 446, 710 8, 040, 776 3.0	747 39, 546 7. 4 292, 399 1, 073, 467 3. 9 27. 14 221 45, 955 7. 3 337, 765 1, 552, 665 (4) 33. 79 237 59, 290 7. 8 461, 183 2, 252, 543 5. 4 37. 99 247 64, 057 7. 7 7, 725, 870 6, 628, 773 2. 2 29. 56 252 45, 397 8. 1 368, 940 1, 113, 720 . 5 24. 53 211 29, 311 8. 0 233, 191 1, 653, 628	747 39, 546 7. 4 292, 399 1, 073, 467 3. 9 27. 14 3. 67 221 45, 955 7. 3 337, 765 1, 552, 665 (2) 33. 79 4. 60 237 59, 290 7. 8 461, 183 2, 252, 543 5. 4 37. 99 4. 88 247 64, 057 7. 7 7. 79, 844 1, 856, 079 8. 7 28. 98 3. 74 245 224, 281 7. 71, 725, 870 6, 628, 773 2. 2 29. 56 3. 84 252 45, 397 8. 1 368, 940 1, 113, 720 . 5 24. 53 3. 02 251 325, 489 7. 5 2, 446, 710 8, 040, 776 3. 0 24. 70 3. 29

¹ Calculated for each year by dividing quantity of finished cement produced at mills included in study by

Less than 0.1 percent.

Less than 0.1 percent.

Arkansas, Colorado, Florida, Georgia, Idaho, Indiana, Kentucky, Louisiana, Maine, Maryland, Minnesota, Montana, Nebraska, New Jersey, Oklahoma, Oregon, South Dakota, Utah, Virginia, Washington, West Virginia, Wisconsin, and Wyoming.

FOREIGN TRADE 2

IMPORTS

The figures in the following table cover imports of hydraulic cements of all kinds. The values assigned represent those in the markets of the foreign countries from which the materials are exported, including the cost of containers or coverings. The second table shows imports by country of origin.

Hydraulic cement imported for consumption in the United States, 1937-41

Year	Barrels	Value	Year	Barrels	Value
1937 1938 1939	1, 803, 932 1, 727, 411 1, 913, 853	\$1, 392, 633 1, 436, 730 1, 860, 543	1940 1941 (JanSept.)	538, 060 43, 110	\$506, 191 57, 914

Roman, portland, and other hydraulic cements imported for consumption in the United States, 1940-41, by countries 1

	194	10	1941 (Јал	nSept.)
Country	Barrels	Value	Barrels	Value
Belgium Canada Denmark Italy Japan Mexico Netherlands Norway United Kingdom Yugoslavia	325, 937 2, 058 81, 848 581 23, 364 296 9, 000 3, 000 71, 596 17, 939	\$285, 193 4, 755 81, 635 2, 561 25, 241 308 7, 070 3, 744 72, 431 14, 900	14, 367 28, 326	\$760 16, 078 41, 076
Yugosiavia	535, 619	497, 838	43, 110	57, 914

¹ Excludes "White, nonstaining, and other special cements."

EXPORTS

Although the United States is the major cement-producing country of the world, its export trade as indicated in the following table is small. The value of exports is the actual cost at United States ports, as indicated by the shippers on the export declarations.

Hydraulic cement exported from the United States, 1937-41

Year	Barrels	Value	Percent of total ship- ments from mills
1937	378, 554	\$1, 044, 161	0.3
1938	558, 226	1, 294, 883	.5
1939	1, 146, 339	2, 352, 693	.9
1940	1, 667, 595	3, 294, 118	1.3
1941 (JanSept.)	1, 757, 172	3, 793, 511	1.0

² Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

STONE

By Oliver Bowles and M. S. Jensen

SUMMARY OUTLINE

	Page		Page
General conditions		Crushed and broken stone	1241
Dimension stone	1228	Salient statistics	1242
Salient statistics	1228	Geographic distribution of plants	1244
Building stone	1230	Commercial and noncommercial operations.	1244
Granite	1230	Methods of transportation	1244
Basalt	1232	Granite	1246
Marble	1233	Basalt	
Limestone	1234	Marble	1249
Sandstone		Limestone	1249
Miscellaneous stone		Sandstone	1253
Trends in use of dimension stone		Miscellaneous stone	
New developments		Markets	1258
		New developments	1258
		Foreign trade	1960

GENERAL CONDITIONS

Sales of crushed and dimension stone combined continued their upward course, attaining an all-time record of 183,107,960 short tons in 1941 and exceeding sales of 1940 by 19 percent. The total value of sales was also the highest on record and topped 1940 by 22 percent. The dimension-stone industry, however, was less active than in 1940 because much of the construction during 1941 was of the war emergency type that requires relatively little building stone. Sales of dimension stone (exclusive of slate) were 8 percent lower in quantity and 0.1 percent lower in value. The crushed-stone industry, on the other hand, gained 19 percent in quantity and 25 percent in value of output in 1941.

The present chapter follows the general plan inaugurated in 1938, whereby the data on dimension stone are separated from those on

crushed stone, except in the introductory general tables.

The tables of this report give the quantities sold or used by producers and the values f. o. b. quarries and mills insofar as these figures are obtainable. Stone quarried and used by producers is considered as sold and is included in the statistics of sales. The data, however, do not include stone made into abrasives (such as grindstones) or that used in making lime and cement. These materials are reported in terms of finished products in the Abrasive Materials, Lime, and Cement chapters of this volume. The following tables show the total sales of stone by kinds, uses, and States.

Stone sold or used by producers in the United States, 1937-41, by kinds

[Quantities approximate]

	Granite			nd related cap rock)	М	arble	Limestone		
Year	Short tons	Value	Short tons	Value	Short	Value	Short tons	Value	
1937 1938 1939 1940	9, 265, 830 10, 432, 980 12, 041, 360 10, 880, 580 14, 298, 750	\$20, 192, 882 20, 915, 609 22, 495, 983 21, 621, 943 24, 968, 489	13, 581, 460 13, 908, 790 16, 091, 250 15, 715, 890 17, 936, 950	\$12, 508, 276 12, 280, 016 14, 164, 016 15, 185, 652 18, 641, 852	207, 760 219, 390 228, 080 239, 730 176, 460	\$5, 456, 191 5, 248, 290 6, 688, 662 5, 196, 124 4, 785, 710	94, 577, 270 81, 679, 690 100, 846, 090 112, 658, 060 133, 163, 600	\$90, 901, 85 82, 286, 55 94, 817, 48 103, 007, 30 127, 585, 11	

Short tons Value Short tons Value Short tons Value Short tons Value		Sand	stone	Other	stone 1	Total		
	1938 1939 1940	5, 072, 660 6, 314, 430 8, 853, 680 6, 498, 960	\$7, 516, 136 8, 066, 200 11, 745, 631 8, 513, 654	10, 438, 260 12, 283, 660 9, 386, 670 7, 739, 820	\$9, 637, 766 10, 458, 376 8, 549, 742 6, 519, 437	133, 143, 240 124, 838, 940 147, 447, 130 153, 733, 040	Value \$146, 213, 128 139, 255, 046 158, 461, 515 160, 044, 115 195, 337, 426	

¹ Includes mica schist, conglomerate, argillite, various light-color volcanic rocks, serpentine not used as marble, soapstone sold as dimension stone, and such other stone as cannot properly be classed in any main group.

Stone sold or used by producers in the United States, 1940-41, by uses

	19	40	19	£ 1
Use	Quantity	Value	Quantity	Value
Dimension stone:				
Building stone: Rough constructionshort tons_	299, 090	\$1, 272, 588	389, 160	\$1, 706, 591
Cut stone, slabs, and mill blockscubic feet.	7, 012, 610	10, 228, 111	5, 596, 240	8, 111, 376
Approximate equivalent in short tons	536, 700	10, 22., 111	426, 850	
Rubble short tons.	916, 290	976, 872		870, 043
Rubble short tons Cubic feet	2, 378, 820		2, 882, 310	9, 110, 846
	196, 250		237, 440 1 2, 384, 110	1 255, 276
Paving blocksnumber_	1,868,790	240, 070	1 20, 850	- 200, 210
Approximate equivalent in short tons.	888, 740			1 896, 209
Approximate aggivelent in short tons	71, 450	000, 201	1 66, 240	
Flagging cubic feet.	884, 400	413, 049	990, 900	445, 493
Approximate equivalent in short tons. Approximate equivalent in short tons. Approximate equivalent in short tons. Curbing. Approximate equivalent in short tons. Flagging. cubic feet Approximate equivalent in short tons.	68, 300		76, 950	
Total dimension stone (quantities approximate, in short tons)	2, 106, 730	21, 416, 910	1, 946, 980	21, 395, 834
,				
Crushed and broken stone:	7 004 100	F 414 000	5, 152, 640	5, 226, 623
Riprapshort tons Crushed stone	5, 204, 100	5, 414, 038 91, 563, 088	120, 963, 910	114, 522, 259
Crushed stone	22 872 050	15, 754, 692	27, 436, 440	20, 069, 296
Refractory stone 2	1,740,420	2, 329, 200	2, 254, 120	3, 279, 104
Agricultural (limestone)	8, 724, 100	9, 910, 373	11, 909, 640	14, 395, 831
Other uses 3dodo	12, 757, 190	13, 655, 814	13, 444, 230	16, 448, 479
Total crushed and broken stonedo	151, 626, 310	138, 627, 205	181, 160, 980	173, 941, 592
Grand total (quantities approximate, in short tons)			183, 107, 960	195, 337, 426

¹ To avoid disclosing confidential information, sandstone paving blocks in 1941 are included under "Curb-

In a store a series of the ser

Stone sold or used by noncommercial producers in the United States in 1941, by uses [Included in total production]

Use	Short tons	Value	Use	Short tons	Value
Dimension stone: Building stoneRubbleTotal dimension stone	29, 410 10, 040 39, 450	\$121,438 17,389 138,827	Crushed and broken stone: Riprap Crushed stone Agricultural (limestone) Other uses		\$1, 241, 785 35, 898, 874 529, 573 895, 413
•			Total crushed and brokenGrand total		38, 565, 645 38, 704, 472

Stone sold or used by producers in the United States, 1940-41, by States

	194	0	1941		
State	Short tons (approximate)	Value	Short tons (approximate)	Value	
labama	2, 496, 480	\$3, 048, 043	2, 804, 740	\$3, 745, 6	
laska	(1)	(1)			
rizona	1, 149, 000	1, 043, 101	455, 900	340, 8	
rkansas	1, 222, 690	1, 152, 328	1, 788, 470	2 1, 763, 1	
alifornia	6,340,080	5, 048, 242	2 9, 139, 390	² 7, 535, 0	
olorado	1,089,650	1, 067, 788	1, 104, 820	1, 073, 4	
onnecticut	1,915,990	1, 918, 132	2 2, 244, 900	2, 435, 8	
elaware	114, 690	152, 313	109, 850	147, 2	
istrict of Columbia	(1)	(1)			
lorida	2 2,880,540	2, 750, 017	² 4, 065, 450	2 3, 852, 5	
eorgia	2,507,600	5, 034, 288	2, 808, 790	5, 809, 7	
awaii	2 705, 470	2 1, 140, 769	³ 1, 330, 170	2, 149, 8	
laho	967, 900	809, 797	767, 750	644. (
linois	2 9, 209, 170	2 7, 556, 497	² 11, 856, 340	² 10, 706, 9	
diana	2 4, 498, 490	2 5, 822, 006	5, 257, 530	6, 742,	
wa	4,013,740	3, 832, 070	5, 790, 920	5, 657,	
ansas	2,880,930	3, 672, 644	2, 727, 290	3, 171,	
entucky	4,620,750	4, 207, 875	2 5, 779, 800	2 5, 177,	
ouisiana	(1)	(1)	(1)	(1)	
aine	2 245, 580	1, 876, 198	324, 060	1, 295,	
[aryland	1, 109, 960	1, 395, 373	1, 604, 430	2, 218,	
assachusetts	2, 176, 340	3, 819, 708	2, 602, 120	4, 547,	
ichigan	13, 527, 170	6. 891, 433	15, 161, 820	8, 349,	
linnesota	1, 119, 230	1, 987, 822	1, 002, 190	1, 811,	
[ississippi	2 210	² 410	2 500	- 040	
issouri	6,085,790	6, 176, 867	6, 501, 460	7, 048,	
Iontana	829, 600	813, 286	455, 680	336,	
ebraska	832, 890	906, 563	328, 690	² 660,	
evada	171, 670	189, 143	183, 170	226,	
ew Hampshire	² 51, 250	2 409, 616	2 167, 270	373,	
ew Jersey	2, 705, 170	2, 888, 339	3, 206, 050	3, 782,	
ew Mexico		223, 680	118, 180	111,	
ew York	9, 782, 120	10, 398, 401	10, 406, 740	10, 806,	
orth Carolina	3,031,300	4, 850, 277	3, 820, 200	4, 806,	
orth Dakota	(1)	(1)	18, 590	19,	
hio	11,915,520	1 0, 234, 221	2 13, 842, 870	1 12, 469,	
klahoma	1,311,640	1, 217, 525	1, 876, 570	1, 945, 2, 436.	
regon	2,757,820	2, 234, 928	2, 836, 390	2, 430, 25, 013,	
ennsylvania	2 19, 277, 690	2 19, 855, 478	23, 506, 540	25, 013, 968.	
uerto Rico	406, 160	271, 022	675, 970	908, 493,	
hode Island	201, 380	² 511, 620	212, 580		
outh Carolina	1, 233, 610	3 1, 570, 689	2, 055, 090	2, 574, 2 1, 189.	
outh Dakota	255, 600	878, 866	² 401, 550	9, 157,	
ennessee	5, 604, 170	6, 674, 710	7, 896, 970	9, 137, 2, 908 ,	
exas	2, 737, 690	2, 581, 358	3, 497, 720	2, 908, 340,	
tah	1,024,660	693, 127	408, 140 185, 840	4, 190,	
ermont	135, 680	² 3, 681, 752		9, 586.	
irginia	6, 800, 640	6, 959, 136	9, 195, 450	9, 580, 1, 757.	
ashington	2, 347, 190	1, 941, 820	2, 148, 970	2 5, 988.	
Vest Virginia	3,719,950	3, 818, 788	² 4, 547, 200	5, 666,	
Visconsin	4, 330, 360	5, 030, 263	4, 376, 720	3, 000, 737,	
yoming	405, 140	375, 463	838, 050	563,	
'ndistributed	624, 670	430, 323	672, 080		
	153, 733, 040	160, 044, 115	183, 107, 960	195, 337.	

¹ Included under "Undistributed."
² To avoid disclosing confidential information, certain State totals are incomplete, the figures not included being combined under "Undistributed."

DIMENSION STONE

The term "dimension stone" is applied to blocks or slabs of natural stone, most of which are cut to definite shapes and sizes. These products are quite distinct from crushed, broken, and pulverized stone, which comprises irregular fragments or grains sized chiefly by mechanical screening or air separation. Crushed and broken stone is

covered in a later section of this chapter.

Dimension-stone producers may be divided into three main groups upon the basis of plant operation. The first group quarries stone and sells it as rough blocks or slabs; the second quarries stone and also manufactures it into finished products; and the third buys sawed slabs or rough blocks of stone and manufactures them into finished products but does not operate quarries. The Bureau of Mines statistical canvass covers the first and second groups, but as the third group comprises manufacturers rather than quarrymen it is canvassed by the Bureau of the Census. Bureau of Mines statistics are compiled from reports of quantities and values of original sales; hence they include some material sold as rough blocks and some sold as finished products.

Total sales of dimension stone in 1941 declined 6 percent in quantity but gained 4 percent in value compared with 1940. These figures include slate, but details of the slate industry are given in the separate chapter on Slate. Dimension marble, limestone, and basalt declined substantially in both quantity and value, but granite, sandstone, and

miscellaneous stone registered gains.

The following table of salient statistics for dimension stone includes figures for 1940 and 1941, as well as the percentage change from 1940 for each type of stone by principal products.

Dimension stone sold or used by producers in the United States, 1940-41, by kinds and uses

	· · · · · · · · · · · · · · · · · · ·		<u> </u>
		19	41
Kind and use	1940	Total	Percent of change
Granite: Building stone: Rough construction short tons Value	89, 040 \$245, 385 \$2, 76	167, 440 \$298, 253	+88. 1 +21. 5
Average per ton Cut stone, slabs, and mill blocks cubic feet Value A verage per cubic foot	1, 104, 590 \$2, 847, 082 \$2, 58 239, 560	\$1. 78 736, 730 \$1, 853, 203 \$2. 52 277, 950	-35.5 -33.3 -34.9 -2.3 +16.0
Value	\$288, 636 2, 108, 950 \$5, 906, 942 \$2, 80	\$349, 739 2, 576, 550 \$7, 489, 197 \$2, 91	+21. 2 +22. 2 +26. 8 +3. 9
Paving blocks number Value cubic feet Value cubic feet	1, 813, 130 \$236, 330 569, 290 \$563, 849	2, 384, 110 \$255, 276 528, 420 \$585, 808	+31. 5 +8. 0 -7. 2 +3. 9
Total: Quantityapproximate short tons Value	658, 250 \$10, 088, 224	782, 120 \$10, 831, 476	+18.8 +7.4
Basalt and related rocks (trap rock): Building stone:			
Reugh construction	€ 1 19	10, 170 \$17, 182 \$1.69 130 \$550	-35. 1 -2. 1 +50. 9 -97. 9 -82. 2

Dimension stone sold or used by producers in the United States, 1940-41, by kinds and uses—Continued

		19	41
Kind and use	1940	Total	Percent of change
Basalt and related rocks—Continued.	ar e	÷.	· · · · · · · ·
Total: Quantityshort tons_ Value	21, 800 \$20, 637	10, 300 \$17, 732	-52.8 -14.1
Marble: Building stone (cut stone, slabs, and mill blocks)_cubic feet	782, 600 \$3, 324, 029	511, 810	-34, (
Value	\$3, 324, 029 \$4. 25	\$2, 748, 572 \$5. 37	-17.8 +26.4
Monumental stone cubic feet	269, 870 \$1, 471, 074	305, 760 \$1, 621, 649	+13.3 +10.2
Average per cubic foot	\$5.45	\$5.30	-2.8
Total: Quantityapproximate short tons	89, 040	69, 300	-22.2
Value	\$4, 795, 103	\$4, 370, 221	-8. 9
Limestone: Building stone: Rough constructionshort tons	109 470	100 000	
Value	103, 470 \$174, 148 \$1.68	106, 290 \$367, 995 \$3, 46	+2.7 +111.3 +106.0
A verage per ton Cut stone, slabs, and mill blockscubic feet	4, 636, 950	3, 834, 860 \$2, 909, 728	_17 3
Value. Average per cubic footshort tons	\$3, 425, 411 \$0. 74		-15.1 +2.7
Rubble short tons Value	616, 250 \$582, 257	405, 220 \$439, 479	-34.2 -24.5
Value	236, 530 \$78, 149	210, 290 \$62, 794	-11.1 -19.6
Total:	\$10,149	\$02, 199	-19.0
Quantity approximate short tons Value	1, 082, 130 \$4, 259, 965	813, 620 \$3, 779, 996	-24.8 -11.3
Sandstone: Building stone: Rough constructionshort tons			
Value	33, 470 \$80, 750	31, 850 \$106, 426	-4.8 +31.8
Average per ton	\$2.41 488,470	\$3.34 512,840	+38.6 +5.0
Value	\$631, 589	\$399,873	-5.0
Rubble short tons	\$1, 29 31, 130 \$47, 201	\$1.17 33,990	-9.3 +9.2
Paying blocks	\$47, 201 55 660	\$46, 253	(¹) -2.0
Value cubic feet	55, 660 \$3, 740	(i)	ğ
Valuecubic leet	319, 450 \$344, 355	1 292, 050 1 \$310, 401	8
Valuecubic feetValue	614, 260 \$318, 569	743, 680 \$366, 426	+21.1 +15.0
Total:	4010, 000		1 20.0
Quantity approximate short tons Value	172, 130 \$1, 426, 204	183, 040 \$1, 429, 379	+6.3 +.2
M iscellaneous stone: ²	41, 120, 201	41, 120, 078	7.2
Duilding stone	680, 690 \$754, 757	870, 800	+27.9 +21.5
Average per cubic foot	\$754, 757 \$1, 11	\$916, 735 \$1.05	+21. 5 -5. 4
Rubble short tons.	23, 230	12, 200	-47. 5 -38. 9
Value. Short tons. Value Stage of cubic feet.	\$55, 689 33, 610	\$34,022 36,930	+9.9
value	\$16, 331	\$16, 273	4
Total: Quantity approximate short tons. Value	83, 380 \$826, 777	88, 600 \$967, 030	+6.3 +17.0
Total dimension stone, excluding slate:			
Quantity approximate short tons. Value approximate short tons. Slate as dimension stone approximate short tons.	2, 106, 730 \$21, 416, 910	1, 946, 980 \$21, 395, 834	-7.6 - 1
Slate as dimension stone 3approximate short tons.	154, 450 \$3, 436, 368	180, 990 \$4, 409, 834	1 +17.2 +28.3
Fotal dimension stone, including slate:	. en, 200, 005	#z, 7U8, 00%	T40. 3
Quantity approximate short tons.	2, 261, 180 \$24, 853, 278	2, 127, 970 \$25, 805, 668	-5.9 +3.8

¹ To avoid disclosing confidential information, paving blocks in 1941 are included under "Curbing."
² Includes soapstone, mica schist, volcanic rocks, argillite, and other varieties that cannot be classified in the principal groups.
³ Details of production, by uses, are given in the chapter on Slate in this volume.

BUILDING STONE

The largest use of dimension stone is for building. The following table gives the quantity and value of each kind of stone used for construction in 1941.

Building stone sold or used by producers in the United States in 1941, by kinds

				Roug	th.			
Kind			Construct	on	Architectural			
		Cubic	feet	Value	Cubic feet	Value		
GraniteBasalt			34, 920 08, 510	\$298, 253 17, 182	433, 350	\$514, 585		
Marble Limestone Sandstone Miscellaneous		1, 3	19, 870 02, 520 70, 800	367, 995 106, 426 916, 735	98, 800 1, 651, 910 256, 740	239, 376 666, 323 202, 165		
17 15001161110015			36, 620	1, 706, 591	2, 440, 800	1, 622, 449		
		Fini	shed		1	otal		
Kind	Saw	red 1		Out 1		otai		
	Cubic feet	Value	Cubic fee	t Value	Cubic feet	Value		
GraniteBasalt	83, 580	\$304, 338	219, 80	0 \$1, 034, 28	30 2, 771, 650 108, 510	\$2, 151, 456 17, 182		
	113, 920 1, 124, 520 1, 124, 520 1212, 450		299, 09 1, 058, 43 43, 65	0 1,611,29	511, 810 7 5, 154, 730	2, 748, 572 3, 277, 723		
	1, 534, 470	1, 482, 619	1, 620, 97	0 5, 006, 30	08 10, 332, 860	9, 817, 967		

¹ For granite, sawed stone corresponds to dressed stone for construction work (walls, foundations, bridges) and cut stone to architectural stone for high-class buildings.

GRANITE

Sales of block granite increased 19 percent in quantity and 7 percent in value in 1941 compared with 1940. Sales of rough architectural and dressed building stone declined greatly; but the cruder forms of building stone—namely, rubble and rough construction stone—made important gains. Net losses in the construction field were more than compensated by substantial gains in sales of both rough and dressed monumental stone. The value per cubic foot of dressed building stone increased from \$4.31 in 1940 to \$4.41 in 1941, and the value of dressed monumental stone increased from \$6.04 to \$6.35. The number of paving blocks sold in 1941 increased 31 percent over the number in 1940, but the quantity of curbing sold declined 7 percent. The unit value of paving blocks receded, but that of curbing advanced.

Granite (dimension stone) sold or used by producers in the United States in 1941, by States and uses

					Bu	ilding					Monun	nental							
			Ro	ugh		D.	essed	ъ.,	bble	Rot	u alb	D-	essed	Paving	blocks	Cur	bing	7	otal
State	Active plants	Consti	ruction	Archit	ectural			Ivu		- Rui	ugu	Di	esseu			:			
		Short	Value	Cubic feet	Value	Cubic feet	Value	Short tons	Value	Cubic feet	Value	Cubic feet	Value	Number	Value	Cubic feet	Value	Short tons (ap- proxi- mate)	Value
California	13 8 6 18 13 5	(1) 5, 620 2, 900 4, 120 16, 300 1, 010	(1) 13,879 5,600 23,815 66,000	6, 120 1, 500 74, 100 (1) 183, 300	6, 960 7, 530 59, 356 (1) 321, 169	(1) (1) 25, 890 124, 560 64, 940	(1) (1) 116, 441 538, 703	(1) 8, 550 (1) 69, 000 15, 530	(i) 119, 500	2, 380 2, 870 570, 770 9, 500	5, 672 9, 019 712, 378 6, 870	3, 520 (1) 169, 970 3, 260 25, 670	18, 432 (1) 699, 702 14, 555	(¹) 39, 690	(i)	1, 490 (1) 37, 870 8, 600 (1) 346, 190	(1) 61, 943 8, 340 (1)	570 10, 580 78, 440 35, 070 88, 990	25, 087 85, 669 1, 611, 285 818, 535 207, 881
Minnesota Missouri Montana New Hampshire New Jersey New York	23 4 7 9 1 2	1, 480 4, 520 (¹)	8, 412 (1) (1)	8, 190	(1) 8, 637	16, 130	80, 500	(1)	(1) (1) (2) (3) (4)	255, 620 11, 120 1, 670 4, 380	22, 230 2, 486 7, 370	7, 460	1, 743	(1)	(1)	(1)	(1)	32, 120 2, 430 190 10, 800 (1) (1)	634, 640 28, 348 6, 856 156, 016 (1)
North Carolina Oklahoma Pennsylvania Rhode Island South Carolina South Dakota	8 13 3 4	20, 500	47, 712		(1) (1) (1) 	(1)	(1)	118, 690 (1) (1) (1) (1)	(1) 127, 024 (1) (1) (1)	20, 730 31, 920 (1) (1) (1) (2) 82, 170	71, 021 (1) (1) (1)	16, 470 36, 000 (1) (1)	(1) 153, 915 169, 472 (1) (1) 633, 649	(1)	33, 551 (¹)	(1) (1) 4, 900 (1)	(1) (1) 2, 516	16, 170 4, 000 143, 740 (1) (1)	225, 314 367, 800 (1)
Texas	7 8 2 4 14	58, 230	35, 264	(1) (1) (1) 11, 490	(1) (1) (1) 10, 568	(¹) (¹) 	(1) (1) (1) (1) 8,000	(1)	(1)	14, 380 781, 280 (1) (1) (1) 6, 920	28, 930 2, 455, 652 (1) (1) 12, 303	(1) (1) (1) (1) 58, 030	109, 803 (1) (1) 715, 807	(¹) 327, 590	(¹) 45, 172			86, 320 61, 550 65, 950 (1) (1) 9, 730	
Undistributed Average unit value	202	47, 130 167, 440	298, 253	49, 880 433, 350	<u> </u>	303, 380	268, 574 1, 338, 618 \$4, 41		349, 739	221, 630	428, 156 4, 214, 611	15, 440	113, 234 3, 274, 586	1, 523, 360	172, 540	528, 420	' '	50, 050 782, 120	537, 852 10, 831, 476 \$13. 85
Short tons (approximate)		(2)		_								42, 580		20, 850	•	43, 580	φ1.11		Ø10. 80

¹ Included under "Undistributed." ² 2.034,920 ubic feet (approximate).

The following tables show sales of monumental granite in the Quincy (Mass.) and Barre (Vt.) centers.

Monumental granite sold by quarrymen at Quincy, Mass., 1937-411

Year	Active plants	Cubic feet	Value	Year	Active plants	Cubic feet	Value
1937 1938 1939	3 3 3	36, 020 33, 360 25, 620	\$80, 248 73, 832 61, 955	1940 1941	3	24, 540 26, 670	\$60, 139 65, 062

¹ Quincy granite is sold also for construction, curbing, rubble, riprap, and crushed stone.

Monumental granite sold by quarrymen in the Barre district, Vermont, 1937-411

Year	Cubic feet	Value	Year	Cubic feet	Value
1937 1938 1939	847, 740 605, 660 684, 310	\$2, 390, 377 1, 849, 607 2, 029, 801	1940	601, 190 764, 280	\$2, 039, 960 2, 431, 152

¹ Barre granite is sold also for construction and crushed stone.

Estimated output of monumental granite in the Barre district, Vermont, 1939-411

<u> </u>	1939	1940	1941
Total quarry output, rough stockcubic feet	614, 256	548, 412	668, 54
Shipped out of Barre district in roughdo	122, 852	109, 682	133, 70
Manufactured in Barre districtdo		438, 730	534, 83
Light stock consumed in districtdo Dark stock consumed in districtdo		274, 206 164, 524	334, 272 200, 563
Number of cutters in district.	184, 276 1, 550	1, 295	1, 29
A verage daily wage	\$8,50	\$8.50	\$9.0
A verage number of days worked	220	220	23
Fotal pay roll for year	\$2,898,500	\$2, 421, 650	\$3, 729, 60
Stimated overhead	1, 449, 250	1, 210, 825	1, 864, 80
Distillated value of fight stock	1, 471, 117	1, 199, 651	1, 398, 60
Estimated value of dark stock		874, 033	1, 097, 36
Estimated polishing cost		346, 980	422, 98
Output from saws	129, 546	115, 660	140, 99
Total value of granite	7, 104, 143	6, 168, 799	8, 654, 35

¹ Through the kindness of the Granite Manufacturers' Association, Barre, figures covering the entire granite industry of the Barre district are given in this table to supplement figures of sales reported by quarrymen.

BASALT AND RELATED ROCKS (TRAP ROCK)

Because of its dark color, basalt is not used extensively for building. The tonnage sold in 1941 was less than one-half that in 1940, but the value per ton increased from 95 cents to \$1.72. In 1939 considerable quantities were used for rubble, but this use declined greatly in 1940 and almost disappeared in 1941. Some of these dark rocks are used for memorials, but such stones are classed commercially as black granites and are therefore included with the figures for monumental granite.

Basalt and related rocks (trap rock) (dimension stone) sold or used by producers in the United States in 1941, by States and uses

State	Active plants	Building stone				Total	
		Rough construction		Rubble		Total	
		Short tons	Value	Short tons	Value	Short tons	Value
California Connecticut New Jersey Oregon Pennsylvania	1 3 1 1 3	3, 420 110 2, 260 4, 380	\$3, 325 110 9, 248 4, 499	30	\$400 150	30 3, 420 110 2, 260 4, 480	\$400 3, 325 110 9, 248 4, 649
Average unit value	9	1 10, 170	17, 182 \$1.69	130	550 \$4. 23	10, 300	17, 732 \$1. 72

^{1 108,510} cubic feet (approximate).

MARBLE

Sales of dimension marble in 1941 declined 22 percent in quantity and 9 percent in value compared with 1940. Large declines in sales of building marble were compensated to some extent by general increases in sales of monumental marble, which depend primarily on buying power. Decreases in total quantities sold were shared by all the leading States except Georgia, although the value of sales was higher in Vermont and Utah than in 1940.

Marble (dimension stone) sold by producers in the United States, 1940-41, by uses

en en en en en en en en en en en en en e	19	40	1941	
Use	Cubic feet	Value	Cubic feet	Value
Building stone:			- 44 to 12 to	
Rough: Exterior Interior	65, 070 111, 610	\$159, 337 270, 715	31, 300 67, 500	\$63, 647 175, 729
Finished: Exterior Interior	313, 300 292, 620	1, 214, 887 1, 679, 090	153, 360 259, 650	731, 479 1, 777, 717
Total exterior Total interior	378, 370 404, 230	1, 374, 224 1, 949, 805	184, 660 327, 150	795, 126 1, 953, 446
Total building stone	782, 600	3, 324, 029	511, 810	2, 748, 572
Monumental stone: Rough. Finished.	56, 190 213, 680	64, 122 1, 406, 952	61, 790 243, 970	68, 165 1, 553, 484
Total monumental stone	269, 870	1, 471, 074	305, 760	1, 621, 649
Total building and monumentalApproximate short tons	1, 052, 470 89, 040	4, 795, 103	817, 570 69, 300	4, 370, 221

¹ Includes onyx for the manufacture of mantels, lamp bases, desk sets, clock cases, and novelties.

Marble (dimension stone) sold by producers in the United States in 1941, by States and uses

		Buil	ding 1	Monu	mental		Total	
						Qua	ntity	
State	Active plants	Cubic feet	Value	Cubic feet	Value	Cubic feet	Short tons (ap- proxi- mate)	Value
Alabama Arkansas California Colorado Georgia Maryland Massachusetts Minnesota Missouri New York North Carolina Pennsylvania Tennessee Utah 1 Vermont Virginia Undistributed	2 3 1 1 1 1 1 4 1 1 7 7 1 6	(2) (2) (2) (2) (3) (5) (5) (2) (2) (3) (4) (6) (2) (124, 690 (2) (2) (90, 370	(2) (2) (3) (2) (3) (2) (4) (2) (2) (4) (2) (2) (2) (3) (4) (4) (5) (6) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	(2) (2) (2) (2) (160, 650 7, 990 (2) 8, 680 (2) (2) (2) 11, 670 96, 060	(2) (2) (2) \$717, 573 57, 566 (2) 19, 868 (2) 68, 414 591, 072 167, 156	(2) 11, 000 2, 130 2, 130 2, 130 2, 180 15, 540 (2) 71, 860 (2) (2) (2) (2) (2) 180, 100 960 220, 750 (2) 100, 080	(2) 940 180 (2) 18,030 250 1,320 (2) 5,930 (2) (2) 15,330 80 18,760 (2) 8,480	(2) \$15, 000 11, 393 (2) 1, 011, 914 23, 942 72, 541 (2) 275, 962 (2) (2) (2) 948, 394 9, 600 1, 412, 171 (2) 589, 296
Average unit value	36	511, 810 43, 330	2, 748, 572 \$5. 37	305, 760 25, 970	1, 621, 649 \$5. 30	817, 570	69, 300	4, 370, 221 4 \$5. 34

¹ Includes 4,720 cubic feet of serpentine marble (verde antique) valued at \$34,101, which was soluted ing and ornamental stone.

3 Included under "Undistributed."

• Average value per cubic foot.

LIMESTONE

Unlike granite and marble, of which substantial quantities are sold for memorial uses, block limestone is employed almost exclusively as building stone. Limestone is used in the United States more extensively than any other type of building stone, and Indiana producers supplied about 76 percent of the rough architectural and finished (sawed and cut) limestone sold in 1941. The total quantity of dimension limestone sold in 1941 was 25 percent less and its value 11 percent less than in 1940.

Rough building limestone sold made only a small gain in quantity, but the sales value was more than twice that in 1940. All other types of building limestone suffered serious declines because during a war emergency construction of buildings using stone as a major material is greatly restricted. Sales of flagging declined moderately in 1941.

Figures represent onyx rough blocks for the manufacture of mantels, lamp bases, desk sets, clock cases, and novelties.

			14.		Buile	ding				*	1			
			R	ough		Finished (cut and		Rubble		Flagging		Total		
State	Active plants	Constr	Construction		Architectural		sawed)		Trubble					
		Short tons	Value	Cubic feet	Value	Cubic feet	Value	Short tons	Value	Cubic feet	Value	Short tons (approxi- mate)	Value	
Alabama	3	(1)	(1) (1)	(1)	(1)	(1)	(1)					(1)	(1)	
California	5	2, 070	\$2,363	4, 860	\$9,726	(1)	(1)	420	\$312	2, 490	\$1,337	2, 680 360 1, 610	\$4, 01 9, 72 55, 90	
florida llinois ndiana	3 12 20	3, 130	15, 204	25, 000 1, 047, 000	7, 500 309, 444	1, 856, 480	\$1, 745, 357	1, 680 (¹) 2, 180	2, 438 (¹) 2, 108	(1) 2, 070 (1) 5, 730	(1) 779 (1) 799	7, 110 217, 780 5, 490	25, 92 25, 92 2, 060, 61 5, 75	
owa Kansas Kentucky	7 10 8	2, 820 17, 610 2, 990	2, 845 44, 691 3, 560	127, 130	22, 933	(1)	(1)	8, 420 3, 710	9, 004 2, 774	3, 730 (1) 280	(¹) ¹⁹⁹ 95	46, 780 6, 720	180, 28 6, 42	
faryland fassachusetts fichigan finnesota fissouri fontana	1 2 7 14	(1) (1) (1) (1)	(1) (1) (1)	26, 130	17, 408	(1) (1)	(1)	(1) 4, 030 44, 030	(1) (1) 5, 822 64, 516	(1) (1) 5, 650	(1) (1) (2, 492	(1) (1) (1) 15, 600 46, 530	(1) (1) (1) 167, 54 73, 58	
ebraskaew Mexicoew York	5 9	(¹) (¹) (¹) 12, 110 14, 620	(1) (1) (1) (1) 21, 280 19, 911					(1) (1) 12, 150	(1) (1) 12, 702	(¹) 9, 880	(¹) 1. 479	(1) (1) 970 20, 420 27, 590	(1) (1) 2, 0 28, 9 34, 0	
uerto Ricoennesseeexasirginia	2 2 5 2	(i) (i) (i)	(1) (1) (1)	(1)	(1)	(1)	(1)	(i) (1) 293, 790 (1)	(1) (1) 294, 891 (1)	(1)	(1)	(1) (1) 315, 320	(1) (1) 540, 67	
Visconsin Indistributed	17	15, 890 35, 050	88, 707 169, 434	341, 830 79, 960	236, 247 63, 065	59, 140 267, 330	49, 231 448, 817	10, 180 24, 630	20, 804 24, 108	92, 430 91, 760	30, 403 25, 410	65, 610 33, 050	425, 39 159, 08	
verage unit value	159	106, 290	367, 995 \$3. 46	1, 651, 910	666, 323 \$0. 40	2, 182, 950	2, 243, 405 \$1, 03	405, 220	439, 479 \$1. 08	210, 290	62, 794 \$0. 30	813, 620	3, 779, 99 \$4. 6	
hort tons (approximate)		(²)		124, 640		160, 440				17, 030				

¹ Included under "Undistributed." ² 1,319,870 cubic feet (approximate).

The following tables show detailed figures, by uses, for limestone produced near Bedford and Bloomington, Ind., and Carthage, Mo.

Limestone sold by producers in the Indiana oolitic-limestone district, 1937-41, by classes

	Construction									
Rough	block	Sawed and se	mifinished	Cut						
Cubic feet	Value	Cubic feet	Value	Cubic feet	Value					
2, 152, 560 2, 090, 110 2, 462, 860 1, 395, 910	\$727, 425 619, 602 845, 252 425, 990	957, 240 914, 180 1, 277, 730 994, 370	\$633, 350 561, 767 784, 247 573, 368	1, 332, 330 1, 147, 620 1, 534, 530 831, 900	\$2, 168, 229 2, 044, 210 2, 470, 720 1, 125, 820					
	Cubic feet 2, 152, 560 2, 090, 110 2, 462, 860	2, 152, 560 \$727, 425 2, 090, 110 619, 602 2, 462, 860 845, 252	Rough block Sawed and se Cubic feet Value Cubic feet 2, 152, 560 \$727, 425 957, 240 2, 090, 110 619, 602 914, 180 2, 462, 860 845, 252 1, 277, 730	Rough block Sawed and semifinished Cubic feet Value 2, 152, 560 \$727, 425 957, 240 \$633, 350 2, 090, 110 619, 602 914, 180 561, 767 2, 462, 860 845, 252 1, 277, 730 784, 247	Rough block Sawed and semifinished Cubic feet Cubic feet Value Cubic feet 2, 152, 560 \$727, 425 957, 240 \$633, 350 1, 332, 330 2, 090, 110 619, 602 914, 180 561, 767 1, 147, 620 2, 462, 860 845, 252 1, 277, 730 784, 247 1, 534, 530					

Year	Consti	ruction—Con Total	tinued	Other	uses	Total		
	Cubic feet	Short tons (approxi- mate)	Value	Short tons	Value	Short tons (approxi- mate)	Value	
1937 1938 1939 1940	4, 442, 130 4, 151, 910 5, 275, 120 3, 222, 180 2, 903, 480	322, 050 310, 000 383, 000 233, 600 210, 500	\$3, 529, 004 3, 225, 585 4, 100, 223 2, 125, 183 2, 054, 801	139, 250 41, 610 247, 680 79, 730 135, 610	\$58, 253 26, 595 117, 200 40, 676 98, 547	461, 300 351, 610 630, 680 313, 330 346, 110	\$3, 597, 257 3, 252, 180 4, 217, 423 2, 165, 859 2, 153, 348	

Indiana limestone sold by mills in the district not operated by quarry companies and by mills of quarry companies from stock obtained at quarries other than their own, 1937-41, by classes

		nd semi- shed	C	ut	Total		
Year	Cubic feet	Value	Cubic feet	Value	Cubic feet	Value	
1937	168, 340 110, 670 108, 360 272, 510	\$93, 815 69, 896 50, 338 182, 239	1, 142, 249 1, 136, 410 1, 839, 520 1, 034, 100	\$1, 931, 488 1, 703, 254 2, 966, 530 1, 629, 273	1, 310, 589 1, 247, 080 1, 947, 880 1, 306, 610	\$2, 025, 303 1, 773, 150 3, 016, 868 1, 811, 512	
1941: Mills not operated by quarry companies. Mills of quarry companies from stock obtained at quarries other than their own.	65, 310 21, 380	32, 382 15, 120	372, 690 317, 560	584, 891 458, 883	438, 000 338, 940	617, 273 474, 003	
their own.	86, 690	47, 502	690, 250	1, 043, 774	776, 940	1, 091, 276	

Limestone and marble sold by producers in the Carthage district, Jasper County, Mo., 1937-41, by classes

		Dim	ension st	one (rou	gh and d	ressed)		Otho	r uses	Total		
	Buil	ding	Monu	mental	Total		Othe	uses				
Year	Cubic feet	Value	Cubic feet	Value	Cubic feet	Short tons (ap- proxi- mate)	Value	Short tons	Value	Short tons(ap- proxi- mate)	Value	
1937	128, 570 113, 940 180, 040 124,180 50, 000	448, 966 248, 498	7, 530 8, 450 8, 400 8, 430 8, 680	\$14, 912 18, 831 18, 603 18, 844 19, 868	136, 100 122, 390 188, 440 1 132,610 58, 680	10, 220 15, 730 111, 070	467, 569 267, 342	95, 840 65, 560 60, 580 90, 390 253, 030	94, 215 128, 627	75, 780 76, 310 1101,460	\$481, 56 438, 11 561, 78 395, 96 653, 99	

¹ Revised figures.

SANDSTONE

Sales of dimension sandstone increased 6 percent in quantity in 1941 compared with 1940 but remained almost the same in value. Figures for sandstone used for rough construction, for rough architectural building purposes, as rubble, and for curbing show small changes from those of the corresponding classifications in 1940. Sales of sawed stone advanced, but those of cut stone declined. The largest gains were in sales of flagging. Paving-stone production, once an important branch of the industry, has declined almost to the vanishing point.

The second table following presents a 20-year history of the bluestone industry. This type of sandstone is used for building stone and for curbing and flagging. As "sidewalk stone" it has been replaced generally by concrete, but this loss of market has been compensated to some extent by enlarged demands for ornamental flagging. Sales in 1941 were 11 percent higher in quantity but 7 percent lower in value than in 1940.

Sandstone (dimension stone) sold or used by producers in the United States in 1941, by States and uses

					Bui	ilding			•			-					
		Ro	ugh	Ro	ugh		Dres	ssed		Rul	bble	Cu	rbing	Flag	gging	T	otal
State	Active plants	constr	uction	archite	ectural	Sa	wed	С	ut					1			
	•	Short tons	Value	Cubic feet	Value	Cubic feet	Value	Cubic feet	Value	Short tons	Value	Cubic feet	Value	Cubic feet	Value	Short tons (ap- prox- imate)	Value
CaliforniaColorado	9	2, 690	\$10, 500							2, 330 (1)	\$2, 816 (1)			31, 370			
ConnecticutGeorgia	î 1							1, 260	\$7,069					(1) 3,500	(¹) 1, 680	(1) 100 270	
Indiana Kansas	1 1	(1)	(1)							90	81			4, 700	3, 299	(¹) 460	(1)
Maryland Massachusetts	7 1	2, 850	7, 043	(1)	(1)			(1)	(1)	18, 760	15, 304			39, 680		24, 780 (1)	
Michigan Minnesota	1	1, 100 (¹)	5, 500 (1)	1, 250	\$1,200					200	1,000					1,400	7, 700
Mississippi New Jersey New York ² Ohio Pennsylvania ⁴ Tennessee	1 1 21 9 18	(1) (1) 2, 470 1, 030 10, 700 5, 880	(1) (1) 7, 472 2, 397 25, 122 24, 304	227, 820	(¹) 175, 854	(1) 205, 570	(1) \$233, 418	(1) 26, 200	(¹) 72, 739	(1) (1) 730 6, 2 90	(¹) (¹) 3, 090 11, 602	³ 119, 460 167, 810 4, 780		420, 260	76, 014 119, 629 79, 564 50, 684	(1) (1) 22, 210 77, 710 26, 030 8, 710	(1) (1) 234, 514 792, 533 120, 961
VermontVirginia	1 7	870	2, 934							3, 350 50	5, 730 50			8, 910	3, 653	3, 350 1, 630	5, 730
Washington	1					(1)	(1)	(1)	(1)	(1)	(1)					(1) (1)	(1)
Wisconsin Undistributed	5	4, 260	21, 154	20, 900 6, 770	15, 750 9, 361	6, 880	19, 194	(¹) 16, 190	(1)	(1)	(1) 6, 580			(¹) 3, 270	(¹) 1,850	1, 910 7, 010	19,038
Average unit value Short tons (approximate)	93	31, 850 (⁵)	106, 426 \$3. 34	256, 740 18, 830	\$0, 79	212, 450 15, 480	\$1.19	43, 650 3, 300	\$3.32	33, 990	46, 253 \$1. 36	³ 292, 050 22, 660	3 \$1.06	743, 680 56, 930	366, 426 \$0. 49	183, 040	1, 429, 379 \$7. 81

Included under "Undistributed."
 Includes 169,520 cubic feet of bluestone (approximately 14,320 short tons) valued at \$172,329 sold for construction, curbing, and flagging.
 Includes a small quantity of paving blocks.
 Includes 114,670 cubic feet of bluestone (approximately 9,690 short tons) valued at \$79,934 sold for construction, curbing, and flagging.
 402,520 cubic feet (approximate).

Bluestone (dimension stone) sold or used in the United States, 1922-411

Year	Cubic feet	Value	Year	Cubic feet	Value
1922 1923 1924 1925 1926 1926 1927 1927 1928 1929 1930	722, 830 618, 360 769, 240 987, 300 692, 640 815, 730 891, 190 670, 020 611, 240 356, 210	\$697, 341 747, 422 875, 734 910, 585 885, 597 1, 000, 217 1, 014, 843 773, 532 749, 703 427, 801	1932 1933 1934 1935 1936 1937 1937 1938 1939 1940	185, 960 116, 246 181, 960 215, 150 343, 040 308, 740 329, 670 254, 440 256, 900 284, 190	\$185, 643 123, 867 168, 720 203, 537 332, 749 346, 349 369, 857 319, 405 272, 501 252, 313

¹ New York and Pennsylvania are the only States that produce bluestone.

MISCELLANEOUS STONE

The following table gives data on certain types of dimension stone not included in the major groups already discussed. The principal varieties are mica schist, argillite, various light-color volcanic rocks, soapstone, and greenstone. The quantity sold in 1941 increased 6 percent and the value 17 percent over 1940.

Miscellaneous varieities of stone (dimension stone) sold or used by producers in the United States in 1941, by States and uses

			Bu	ilding					
State	Active plants	Rough and dressed		Rubble		Flag	ging	Total	
		Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
California Florida Georgia	1 1 2	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
Maryland New York Ohio	2 5 2 1	9, 670 (1) (1)	\$32, 476 (1) (1)		\$6,600	530	\$2,640	12, 300 (1)	\$41,71
PennsylvaniaVirginiaUndistributed	7 2	(1) (1) 63, 740	(1) (1) 884, 259	10, 100	(1) 27, 422	(1) 2, 460	(¹) 13, 633	58, 730 (1) 17, 570	85, 27 (1) 840, 03
Average unit value	21	² 73, 410	916, 735 \$12. 49	12, 200	34, 022 \$2. 79	2 2, 990	16, 273 \$5. 44	88, 600	967, 03 \$10. 9

Included under "Undistributed."

TRENDS IN USE OF DIMENSION STONE

Figure 1 shows graphically the history of production of dimension stone, by kinds, for a 26-year period. Dimension stone includes all classes of building stone, as well as memorial stone, paving blocks, curbing, and flagging. Limestone and granite are the leading varieties. All kinds of dimension stone follow essentially the same pattern throughout both lean and prosperous years.

Figure 2 traces the history of production of all building stones and of the principal variety—limestone—in their relation to non-residential building, the class of construction using stone most extensively. Stone is a dignified, substantial, and enduring building material that is used chiefly in permanent and relatively costly structures. The necessities of war stimulate enormous building

Building stone (rough and dressed), approximately 870,800 cubic feet; flagging, approximately 36,930 cubic feet.

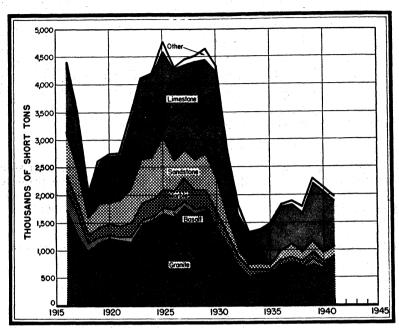


FIGURE 1.—Sales of dimension stone in the United States, by kinds, 1916-41.

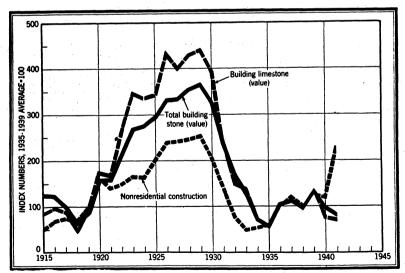


FIGURE 2.—Sales of all building stone and building limestone compared with nonresidential construction (public and private), 1915-41. Data on nonresidential building construction from Bureau of Foreign and Domestic Commerce.

STONE 1241

programs, but the types of construction demanded for such emergencies employ only limited quantities of dimension stone. As indicated in figure 2, wars and depressions are inimical to activity in the building-stone industries which flourish during eras of peace and general prosperity. Building-stone sales fell to a low point in 1918 at the close of the First World War; but they recovered rapidly and, upon the basis of the 1935-39 averages, attained much higher levels than nonresidential building (public plus private) during the prosperous years 1926-29. Sales of stone followed closely the rapid decline in nonresidential building during the depression years that followed. Although building has recovered substantially since 1935, stone has made only moderate gains, and the Second World War has depressed activity to an exceptional extent.

NEW DEVELOPMENTS

No important new developments were reported by the dimensionstone industries during 1941. One new marble quarry was opened near Bainbridge, Pa. In general, the demands for building and memorial stone were so limited that some units of unused machinery and facilities were diverted to the manufacture of war materials.

The Bureau of Mines has issued an index to locations of stone quarries. It is not a directory but indicates the kinds of stone

quarried, by States and counties.

CRUSHED AND BROKEN STONE

Over 181,000,000 short tons of crushed and broken stone were sold in 1941, exclusive of that used for making cement and lime. Sales increased 19 percent in quantity and 25 percent in value compared with 1940.

The following table of salient statistics shows the quantity and value of crushed and broken stone sold during 1940 and 1941, by uses. Detailed data on asphaltic stone and slate granules and flour are given

in the chapters on Asphalt and Slate.

Downey, M. G., Index to Locations of Stone Quarries: Bureau of Mines Inf. Circ. 7187, 1941, 9 pp.

Crushed and broken stone sold or used by producers in the United States, 1940-41, by principal uses

		1940			1941		
Use	Short	Val	lue	Short	Value		
	tons	Total	Average	tons	Total	Average	
Concrete and road metal	92, 814, 090	\$86, 331, 273		110, 192, 610	\$106,985,808	\$0.97	
Railroad ballast	7, 454, 300	5, 231, 815	. 70	10, 771, 300	7, 536, 451	. 70	
Metallurgical	22, 872, 050	15, 754, 692	. 69	27, 436, 440	20, 069, 296	. 73	
Alkali works	4, 848, 490	2, 017, 804	. 42	5, 888, 260	2, 721, 635	. 46	
Riprap	5, 264, 100	5, 414, 038	1.03	5, 152, 640	5, 226, 623	1.01	
Agricultural	8, 724, 160	9, 910, 373	1.14	11, 909, 640	14, 395, 831	1.21	
Refractory (ganister, mica schist,			1				
delomite, soapstone)	1, 740, 420	2, 329, 200	1.34	2, 254, 120	3, 279, 104	1.45	
Asphalt filler	320, 220	759, 399	2.37	443, 480	1, 050, 927	2. 37	
Calcium carbide works		389, 246	.81	468, 600	343, 241	. 73	
Sugar factories		868, 786	1.56	624, 450	936, 874	1.50	
Glass factories	300, 720	475, 273	1.58	385, 680	578, 226	1.50	
Paper mills	333, 800	575, 814	1.73	361, 830	643, 124	1.78	
Other uses	5, 912, 450	8, 569, 492	1.45	5, 271, 930	10, 174, 452	1.93	
	151, 626, 310	138, 627, 205	. 91	181, 160, 980	173, 941, 592	. 96	
Portland cement (including "ce-		-			400	4	
ment rock")1	2 34,041,000	(3)		42, 735, 000	(3)		
Natural cement ("cement rock")1	,	-					
Lime 4	9, 774, 000	(3)		12, 159, 000	(3)		
Total stone	2195,441,000	(3)		236, 055, 000	(3)		
Asphaltic stone	458, 665	1, 949, 166	4. 25	654, 692	2, 312, 227	3, 53	
Slate granules and flour	319,000	2, 301, 901	7. 22	437, 670	3, 105, 800	7.10	

¹ Value reported as cement in chapter on Cement.

The following tables show the tonnage and value of stone used for concrete aggregate, road construction, and railroad ballast for a series of years and by States for 1941.

Concrete and road metal and railroad ballast sold or used by producers in the United States, 1937-41

Year	Concrete an	d road metal	Railroad	i ballast	Total		
ı ear	Short tons	Value	Short tons	Value	Short tons	Value	
1937 1938 1939 1940	80, 271, 900 88, 787, 080 96, 894, 220 92, 814, 090 110, 192, 610	\$76, 972, 465 84, 212, 446 88, 988, 217 86, 331, 273 106, 985, 808	8, 160, 670 5, 975, 970 6, 996, 800 7, 454, 300 10, 771, 300	\$5, 852, 143 4, 554, 775 4, 970, 058 5, 231, 815 7, 536, 451	88, 432, 570 94, 763, 050 103, 891, 020 100, 268, 390 120, 963, 910	\$82, 824, 608 88, 767, 221 93, 958, 275 91, 563, 088 114, 522, 259	

Revised figures.

No value available for stone used in manufacture of cement and lime.

Value reported as lime in chapter on Lime.

Concrete and road metal and railroad ballast sold or used by producers in the United States in 1941, by States

71.	Concrete an	d road metal	Railroad	l ballast	To	tal
State	Short tons	Value	Short tons	Value	Short tons	Value
\labama	952, 860	\$1, 274, 813	(1)	(1)	2 952, 860	2 \$1, 274, 81
\rizona		284, 984	2 5,000	2 \$3,600	2 367, 790	2 288, 58
Arkansas		2 506, 388	2 27, 700	2 25, 000	1, 612, 770	1, 555, 00
California		4, 585, 155	² 297, 590	2 109, 129	27, 245, 020	2 4, 694, 20
Colorado	439, 370	417, 969	(1)	(1)	2 439, 370	2 417 04
Connecticut	2 1, 898, 860	2 1,891,085	118, 100	104, 639	2 2, 016, 960	² 1, 995, 7
Delaware	109, 510	146, 822			109, 510	146, 8
lorida		3, 214, 494	2 181, 470	² 133, 303	2 3, 574, 730	2 3, 347, 7
leorgia		² 1, 739, 926	(1)	(1)	1, 899, 780	2,090,1
Iawaii	2 1, 322, 660	2 2, 146, 673	(1)	(1)	1, 330, 030	2, 154, 7
dahod	683, 410	562, 582			683, 410	562, 5
llinois	7, 952, 250	6, 947, 128	495, 670	363, 446	8, 447, 920	7, 310, 5
ndiana	2 3, 728, 840	2 3, 469, 486	242, 220	164, 903	23,971,060	3,634,3
owa	4, 447, 080	4, 423, 396	590, 230	397, 786	5, 037, 310	4, 821, 1
Cansas	2 1, 971, 640	2 2, 419, 461	391, 520	195, 008	2 2, 363, 160	2 2, 614, 4
Centucky		2 3, 730, 075	459, 830	259, 005	2 4, 675, 300	2 3, 989, 0
ouisiana		(1)			(1)	(1)
Asine		2 169, 180	(1)	(1)	2 126, 880	2 169, 1
Marvland	1, 177, 480	1, 322, 178	129,010	131, 566	1, 306, 490	1, 453, 7
fassachusetts	2 1, 924, 850	2 2, 105, 829	249, 260	225, 772	2 2, 174, 110	2 2, 331, 6
1ichigan	1, 628, 050	977, 800	141, 930	81, 643	1, 769, 980	1, 059, 4
Innesota		812, 124	2 800	i 528	2 824, 940	2 812, 6
Aississippi	(1)	(1)			(1)	(1)
Aissouri	2 5, 016, 480	2 5, 398, 413	2 173, 910	2 129, 075	2 5, 190, 390	2 5, 527, 4
Montana	287, 190	153, 695	(1)	(1)	2 287, 190	2 153, 6
lebraska		161, 378			119,720	161, 3
levada		98, 354			76, 420	98,3
New Hampshire	2 140, 870	2 187, 954			2 140, 870	2 187, 9
lew Jersey		2, 905, 610	187, 120	202, 270	2, 904, 380	3, 107, 8
lew Mexico	21, 190	38, 436	(1)	(1)	2 21, 190	2 38, 4
lew York		7, 142, 945	769, 900	543, 567	7, 837, 170	7, 686, 5
orth Carolina		3, 929, 394	254, 900	227, 250	3, 697, 880	4, 156, 6
orth Dakota		19, 648			18, 520	19, 6
hio		5, 607, 296	1, 122, 580	786, 711	7, 962, 400	6, 394, 0
klahoma		1, 355, 427	(1)	(1)	2 1, 460, 500	² 1, 355, 4
regon		2 1, 929, 672			2 2, 487, 470	2 1, 929, 6
ennsylvania	9, 589, 120	9, 610, 005	830, 920	859, 383	10, 420, 040	10, 469, 3
uerto Rico		947, 867	2 9, 640	2 9, 746	2 665, 630	2 957, 6
hode Island	172, 720	207, 192			172, 720	207, 1
outh Carolina	2 1, 534, 860	2 1, 796, 742	286, 790	267, 638	2 1, 821, 650	2 2, 064, 3
outh Dakota	252, 170	326, 357	(1)	(1)	252, 170	2 326, 3
ennessee	5, 209, 760	5, 845, 890	429, 820	319,755	5, 639, 580	6, 165, 6
'exas	1, 823, 060	1, 303, 341	732, 060	258, 203	2, 555, 120	1, 561, 5
tah		55, 805			152, 990	55, 8
ermont		87, 484			58, 200	87,4
irginia		5, 357, 207	748, 620	604, 912	6, 520, 350	5, 962, 1
Vashington		2 813, 288	80, 440	35, 973	2 1, 374, 730	3 849, 2
Vest Virginia		4, 054, 055	341, 670	207, 678	2, 576, 630	4, 261, 7
Visconsin		2, 294, 254	2 7, 760	² 6, 210	2 3, 194, 960	2 2, 300, 4
V voming	667, 000	536, 079	(1)	(1)	2 667, 000	² 536, 0
Indistributed	1, 736, 310	1, 674, 472	1, 464, 840	882,752	1,758,660	1, 175, 3
7	-,,,					
	110, 192, 610	106, 985, 808	10, 771, 300	7, 536, 451	120, 963, 910	114, 522, 2

¹ Included under "Undistributed." ² To avoid disclosing confidential information certain totals are somewhat incomplete, the figures not included being combined under "Undistributed."

GEOGRAPHIC DISTRIBUTION OF PLANTS

Figure 3 shows the location of quarries in the United States producing concrete aggregate and road stone. Limestone quarries abound in the Appalachian Mountain area of the Eastern and Southeastern States. Granite quarries predominate in New England and are plentiful in other Eastern States. Trap rock is important in New Jersey, New York, and parts of New England.

In the Middle Western States limestone quarries predominate, but those in other kinds of rock are scattered widely, notably in the granites of the Northern States. Throughout the Rocky Mountain area quarries are relatively few; on the Pacific coast most are in rocks other

than limestone.

Quarries are most numerous in the thickly populated areas of the Eastern, Middle Western, and Pacific Coast States because large demands for highways and buildings have fostered the development of many producing units. Our stone resources are enormous and widely distributed. Their development depends primarily on local market demands. Stone is available within reasonable reach of

virtually every important market area.

Commercial and noncommercial operations.—The following table shows the production of crushed stone for concrete and road metal and railroad ballast during recent years by Government agencies of various kinds contrasted with that by commercial enterprises. Production by commercial companies increased 37 percent in 1941 compared with 1940, whereas production by Government agencies declined 7 percent. Seventy-one percent of the total production was made by commercial companies.

Concrete and road metal and railroad ballast sold or used by commercial and noncommercial operators in the United States, 1937-41

[Figures for "noncommercial operations" represent tonnages reported by States, counties, municipalities, and other Government agencies, produced either by themselves or by contractors expressly for their consumption, often with publicly owned equipment; they do not include purchases from commercial producers. Figures for "commercial operations" represent tonnages reported by all other producers]

	Com	mercial	operation	S	Noncoi	nmercia	Total			
Year	Short tons		Percent of change in quan- tity from preced- ing year		Short tons	Aver- age value per ton	Percent of change in quan- tity from preced- ing year		Short tons	Percent of change in quan- tity from preced- ing year
1937 1938 1939 1940 1941	62, 315, 350 60, 254, 170 59, 516, 270 63, 203, 240 86, 360, 120	\$0. 88 . 88 . 86 . 87 . 91	+8. 4 -3. 3 -1. 2 +6. 2 +36. 6	70. 5 63. 6 57. 3 63. 0 71. 4	26, 117, 220 34, 508, 880 44, 374, 750 37, 065, 150 34, 603, 790	\$1.06 1.04 .97 1.02 1.04	-12.3 +32.1 +28.6 -16.5 -6.6	29. 5 36. 4 42. 7 37. 0 28. 6	88, 432, 570 94, 763, 050 103, 891, 020 100, 268, 390 120, 963, 910	+1. 3 +7. 2 +9. 6 -3. 5 -20. 6

Methods of transportation.—The following table shows the quantities of concrete and road metal conveyed during 1940 and 1941 by each of the principal methods of transportation.

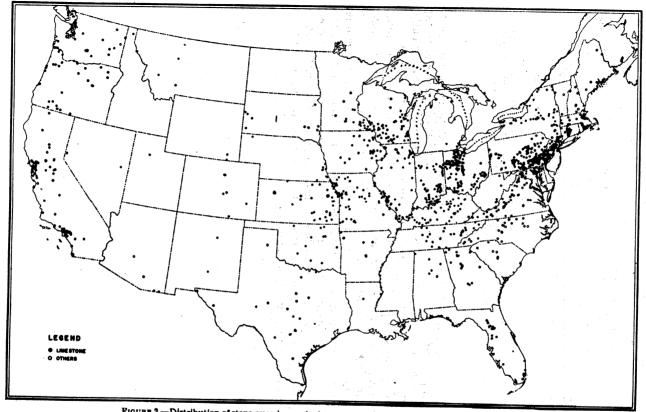


FIGURE 3.—Distribution of stone quarries producing aggregate and road stone in the United States.

Concrete and road metal sold or used by commercial producers in the United States, 1940-41, by methods of transportation ¹

	194	0	1941		
Method of transportation	Short tons	Percent of total	Short tons	Percent of total	
Truck Rail Unspecified	36, 069, 110 10, 911, 260 6, 072, 270 2, 696, 300	64. 7 19. 5 11. 0 4. 8	49, 107, 430 18, 047, 780 4, 690, 770 3, 742, 840	65. 0 23. 9 6. 2 4. 9	
	55, 748, 940	100.0	75, 588, 820	100.0	

¹ For practical purposes the entire output of noncommercial operations commonly is moved by truck. Including noncommercial production, crushed stone for concrete and road metal moved as follows—1940: Truck 79 percent, rail 12 percent, waterway 6 percent, and unspecified 3 percent; 1941: Truck 76 percent, rail 16 percent, waterway 4 percent, and unspecified 4 percent.

GRANITE

Sales of crushed and broken granite increased 32 percent in quantity and 23 percent in value in 1941 compared with 1940. Sales of riprap were 2½ times those in 1940. Such sales commonly fluctuate greatly, as they depend chiefly on special reclamation or other projects.

Noncommercial production, which is a substantial part of the total, is reported by city, county, and State governments, highway commissions, or other Government agencies. Because the number of individual operations supplying noncommercial crushed stone cannot be determined with any degree of accuracy from the reports submitted, the columns indicating the number of active plants (which have appeared in the granite and other tables covering the crushed-stone industry for many years before 1939) have been omitted in the reports covering 1939, 1940, and 1941.

Granite (crushed and broken stone) sold or used by producers in the United States in 1941, by States and uses

	Rin	man		Crushe	d stone		Other uses 1		Total	
State	, KI	гар	Concrete and road metal		Railroad ballast		Other uses -		Total	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Arizona California Colorado	951, 330	\$1, 131, 953	(2) 1, 088, 220	(2) \$795, 357 (2)	96, 130	\$57, 179	(2) 51, 930	(2) \$16, 906	93, 020 2, 187, 610	\$41, 032 2, 001, 398
Connecticut Delaware	(2) (2) 340	(2) (2) 390	109, 510	146, 822			(2)	(2)	148, 550 (2) 109, 850	94, 761 (2) 147, 212
Georgia	(2) 2, 600	(2) 3, 484	1, 337, 620 (2) 48, 830	1, 616, 975 (2) 72, 354	(2)	(2)	205, 880 (2) 5, 720	291, 905 (2) 6, 011	1, 987, 480 (2) 57, 150	2, 291, 146 (²) 81, 849
Maryland Massachusetts Minnesota Missouri	(2) 7, 650 5, 000 660	(2) 12, 814 4, 830	82, 780 406, 200 25, 640	112, 819 517, 505 46, 319	(2) 22, 570 800	(2) 35, 000 528	29, 090 680	15, 536 4, 450	129, 910 465, 510 32, 120	176, 890 580, 855 56, 127
Montans New Hampshire New Jersey	(2)	759 (2)	(2) 134, 810 68, 290	(2) 178, 251 80, 319	(²) 2, 310	(²) 2, 128	(²) 4. 040	(2) 7, 500	112, 290 148, 730 74, 640	759 44, 320 193, 998 89, 947
New York North Carolina North Dakota	60, 000 (2) (2) (2) (2)	56, 427 (2) (2) (2) (2)	313, 840 2, 875, 480	297, 433 3, 304, 286	17, 090 254, 900	13, 674 227, 250	3, 750 (²)	7, 500 750 (²)	394, 680 3, 206, 460	368, 284 3, 663, 459
Oklahoma Pennsylvania Puerto Rico			(2) 365, 180 (2)	(2) 430, 123 (2)			13, 590	13, 141	(2) 378, 770	(2) (2) 443, 264
Rhode Island South Carolina South Dakota	(2) 10, 250 (2)	12, 750 (2)	(2) (2) 1, 347, 530 (2)	1, 557, 620	286, 790	267, 638	27, 170 (²)	10, 867 (2)	(2) 1, 671, 740 104, 450	(2) (2) 1, 848, 875 165, 327
rennessee rexas Vermont	69, 810	63, 790	(2)	(2)					(2) 69, 810	(2) 63, 790
Virginia Washington Wisconsin	(2) (2) (2) (2)	(2) (2) (2)	914, 500 (2) 154, 910	913, 217 (2) 79, 605	(2)	(2)	(2) (2) (2)	(2) (2) (2)	1, 160, 780 354, 390 157, 140	(2) 1, 145, 653 231, 036 84, 124
WyomingUndistributed	351, 700	296, 610	1, 042, 910	(2) 747, 459	601, 570	538, 498	117, 030	147, 781	(2) 470, 890	(2) 322, 910
Average unit value	1, 459, 340	1, 583, 807 \$1. 09	10, 316, 250	10, 896, 464 \$1. 06	1, 282, 160	1, 141, 895 \$0. 89	458, 880	514, 847 \$1. 12	13, 516, 630	14, 137, 013 \$1. 05

¹ Includes stone used for artificial stone, asphalt filler, chips, fill material, poultry grit, road base, spalls, stone sand, and terrazzo.

² Included under "Undistributed."

BASALT AND RELATED ROCKS (TRAP ROCK)

Basalt, gabbro, diorite, and other dark igneous rocks (known commercially as trap rock) are used widely for highway construction and concrete aggregate. Sales of crushed and broken trap rock increased 14 percent in quantity and 23 percent in total value in 1941 compared with 1940, and the average value per ton increased

from 97 cents to \$1.04.

Sales of material classed as riprap, which suffered a marked decline in 1940, continued to move downward in 1941; projects using riprap probably are regarded as less essential than many others during the present war emergency. Stone used as concrete aggregate and for road construction increased 14 percent in quantity and 19 percent in value. Sales of trap rock for railroad ballast and for miscellaneous uses increased more than 60 percent.

Basalt and related rocks (trap rock) (crushed and broken stone) sold or used by producers in the United States in 1941, by States and uses

				Crushed	stone		Otl	her			
State	Rij	prap	Concrete me	and road tal	Rail ball	road last	use		Total		
	Short	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
Arizona California Colorado	99, 950	\$182, 245	(3) 963, 810 (3)	(2) \$843, 534 (2)	(2)	(2)	(2)	···(2)	1, 122, 650	(2) \$1, 057, 012 (3)	
Connecticut Hawaii Idaho	(2) (2) (2)		1, 898, 860 1, 322, 660 (2)	1, 891, 085 2, 146, 673 (2)	(2)	\$104, 639 (2)			2, 154, 750 1, 330, 170 698, 700 77, 220	2, 100, 077 2, 149, 535 582, 089	
Maine Maryland Massachusetts Michigan	(²) 21, 440		130, 890	(2) 1, 40 0, 724 145, 631	(2) 226, 690		35, 800	\$71, 592	537, 560	650, 094	
Minnesota Montana New Hampshire New Jersey	(2) (2) (2)	(2) (2) (2)		(2) (3) 2, 629, 367		200, 142	(2)	(2)	(2) (2) 2, 708, 020		
New York North Carolina Dregon Pennsylvania	13, 220 1, 630	3, 201 1, 901		280, 536 1, 858, 082 1, 013, 609	250, 420	⁽²⁾ 269, 046	2, 500	1, 250		280, 536 1, 861, 283 1, 285, 800	
Puerto Rico Rhode Island Fexas Utah	1, 190	1, 190	82, 360 (2)			9, 746 (2)			10, 240 83, 550 (2) (2)		
Virginia Washington Wisconsin Wyoming	206, 640	1	723, 160 1, 247, 600 (2)	570, 371 789, 969 (2)		(2) 35, 973 (2)	(2) (2)	(2)	732, 500 1, 534, 680 (2)		
Undistributed	137, 710 619, 570	i		2, 142, 799			<u> </u>				
A verage unit value		\$1.13		\$1.00		\$0.90		\$4 . 61		\$1.0	

¹ Includes stone sold for fill material, roofing granules, and unspecified uses.
² Included under "Undistributed."

MARBLE

Marble producers accumulate large quantities of waste material, consisting either of defective blocks or of cuttings and spalls that result from marble dressing, and they are constantly seeking profitable outlets for this waste. As the following table indicates, the price per ton realized varies greatly, because some States produce relatively high priced commodities, such as terrazzo, stucco, and marble flour, that may be worth several dollars a ton, whereas other States find outlets only in the form of riprap, road stone, and concrete aggregate that may command prices of only \$1 or less a ton.

Marble (crushed and broken stone) sold by producers in the United States in 1941, by States 1

State	Active plants	Short tons	Value	State	Active plants	Short tons	Value
Alabama Arkansas California. Georgia Maryland Massachusetts Minnesota Missouri New Jersey New York	2 2 3 1 1 1 1 1	(2) (2) 1, 950 30, 000 2, 670 3, 580 (2) 2, 210 (2) (2)	(2) (2) \$20, 930 30, 432 22, 981 4, 694 (2) 11, 819 (3) (2)	Tennessee Texas Utah Virginia Washington Undistributed A verage unit value	5 2 1 2 4	15, 370 (2) 5, 460 (2) (2) (2) 45, 920 107, 160	\$33, 593 (2) 30, 540 (2) (2) 260, 500 415, 489 \$3, 88

¹ Includes stone used for artificial stone, crushed stone, flux, mineral food, poultry grit, riprap, shingles, stucco, terrazzo, tile, whiting (excluding marble whiting made by companies that purchase their marble).

2 Included under "Undistributed,"

LIMESTONE

Limestone is used more widely for crushed and broken stone than any other rock, because it can be quarried and crushed at moderate cost, is available to a multitude of markets, and is essential to many chemical and manufacturing industries. In 1941 limestone constituted 73 percent of all crushed and broken stone sold (excluding that used for making cement and lime). Sales in 1941 were 19 percent higher in quantity and 25 percent higher in value than in 1940.

The following tables show production by States and uses in 1941 and sales for miscellaneous industrial uses in 1940 and 1941.

Limestone (crushed and broken stone) sold or used by producers in the United States in 1941, by States and uses

						· ·					, og 2000			4
						Crushed	l stone							
State	Rip	Riprap Fl		Fluxing stone		Concrete and road metal		Railroad ballast		Agriculture		Other		otal
	Short tons	Value	Short tons	Value	Short tons	. Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
AlabamaArizona		(1)	1, 530, 510	\$1, 321, 389	758, 920	\$987, 682	(1)	(1)	173, 470	\$159, 340	69, 520	\$471, 966	2, 549, 040 187, 880	
Arkansas California Colorado	(1)	(¹) \$82	1,750 39,780	2, 250 69, 029	273, 210	254, 181 135, 970	27, 700	\$25,000	22, 690 (¹)	29, 071 (¹)	40, 220 258, 680	80, 788 678, 259	365, 670	391, 372 1, 133, 905
Connecticut Florida Georgia	11, 570	.,	(1) (1)	(1) (1)	149, 410			133, 303			(1) (1) 455, 290 (1)	(1) (1) 378, 069 (1)	76, 050	239, 701 3, 796, 637
Hawaii Idaho Illinois	149, 360	156, 769	(1) 563, 990	(¹) 532, 874	(¹) 7, 846, 250		495, 670		2, 492, 870 771, 860			(1) 369, 568	(1) 14, 170 11, 743, 230	25, 227 10, 613, 741
Indiana Iowa Kansas Kentucky	79, 060 65, 820	75, 847 73, 434	6, 190		4, 447, 080 1, 966, 750	2, 417, 5061	391, 520	397, 786 195, 008	623, 970 55, 370	591, 693 58, 393	38, 900 65, 980	157, 707 91, 378	5, 785, 430 2, 545, 440	4, 671, 542 5, 651, 833 2, 835, 719
Louisiana Maine Maryland	66, 970	97, 234			4, 215, 470 (1) 830 638, 990	3, 730, 075 (1) 1, 659			41, 090	124, 246	(1) 41, 070	38, 185 (¹) 70, 204	(1) 149, 960	(1) 293, 343
Massachusetts Michigan Minnesota	980 11, 400	983 4, 833 11, 125	18, 540 8, 868, 030 380	27, 926 4, 747, 327 1, 000	1, 462, 410 772, 730	807, 445	(¹) 141, 930	(¹) 81, 643	22, 340 188, 870 211, 070	546, 853 141, 223	44, 790 4, 287, 500			780, 781 8, 081, 971
Mississippi Missouri Montana	102, 590	103, 059	14, 760 100, 980	21, 011 69, 138		5, 398, 413		129 075	43, 460 500 649, 010	750	20, 270 172, 450 52, 670	56, 258 300, 299 77, 345	849, 430 500 6, 129, 200 239, 810	750 6, 570, 98)
Nebraska Nevada New Jersey	152, 610	1	(1) (1)	(1)	119, 720 (1) 47, 530	(1)			(1)	(1)	(1) (1) (1)	(1) (1) (1)	328, 690 (1) 236, 800	
New Mexico New York North Carolina	206, 920	214, 107	103, 170	89, 881	5, 896, 700 172, 180	(1) 5, 912, 923 192, 944	(1)	(¹) 429, 393		989, 762 23, 173		1, 347, 455	117, 740 8, 964, 000 201, 010	110, 939 8, 983, 521 216, 117
Ohio Oklahoma Oregon Pennsylvania		(1)	3, 898, 280		6, 827, 040 1, 373, 730	5, 596, 891 1, 277, 378	(1)	(1)	1, 229, 570 9, 860	1, 313, 096 16, 263	470, 230 14, 620		13, 610, 660	11, 131, 589 1, 641, 390 79, 478
Pennsylvania Puerto Rico Rhode Island	6, 400	7,000	9, 409, 360	8, 185, 938	5, 782, 340 442, 370 (1)	5, 664, 753 646, 708 (1)	364, 450 (¹)	379, 370 (¹)				1, 930, 889	17, 291, 930 446, 460	17, 718, 599 651, 423

South Carolina South Dakota Tennessee Texas Utah	(1) (1) 569, 530 136, 040			36, 338 (1) 127, 888	1, 570, 870		(1) 429, 820			(1)	422, 000 189, 420 (¹)	484, 565 261, 776	369, 060 99, 200 7, 773, 740 2, 569, 820 387, 710	88, 773 8, 001, 736 1, 742, 962
Vermont. Virginia Washington West Virginia Wisconsin Wyoming Undistributed	2, 810 610 8, 230 (1) 447, 570	500 9, 097	(1) 1, 448, 970 47, 560 (1)	1, 093, 938 42, 329	(1)	2, 638, 431 2, 009, 223	341, 670 7, 760	207, 678 6, 210	(1)	591, 100	30, 110	317, 833 328, 301	(1) 6, 923, 620 171, 970 3, 774, 950 3, 393, 730 213, 320	357, 821 4, 446, 551 2, 713, 930 358, 374
		2, 058, 585		20, 064, 159		68, 840, 479		4, 657, 336			12, 303, 830		688, 940 132, 349, 980	

¹ Included under "Undistributed."

Limestone (crushed and broken stone) sold or used by producers in the United States for miscellaneous uses, 1940-41

Use	194	10	1941			
USB	Short tons	Value	Short tons	Value		
Alkali works	4, 848, 490	\$2,017,804	5, 888, 260	\$2, 721, 634		
Calcium carbide works	482, 950	389, 246	468, 600	343, 24		
Coal-mine dusting	99, 300	281, 320	136, 180	388, 96		
Asphalt	320, 220	759, 399	443, 480	1, 050, 92		
Fertilizer	233, 990	402, 191	301, 650	548, 10		
Other	93, 670	413, 311	68, 980	295, 71		
Filter beds	61, 290	37, 972	32, 950	41, 78		
Blass factories	300, 720	475, 273	385, 680	578, 22		
Limestone sand	407, 310	311, 722	877, 730	812, 51		
Limestone whiting 1	207, 910	1, 242, 448	417, 750	2, 421, 60		
Magnesia works (dolomite)	80, 210	105, 028	105, 670	136, 18		
Mineral food	93, 160	350, 964	115, 400	546, 78		
Mineral (rock) wool	123, 700	86, 488	115, 760	93, 16		
Paper mills	333, 800	575, 814	361, 830	643, 12		
Poultry grit	38, 910	149, 050	62,070	351, 80		
Refractory (dead-burned dolomite)	857, 950	632, 582	980, 190	729, 79		
Road base	1, 129, 690	843, 531	575, 130	441, 35		
stucco, terrazzo, and artificial stone	27, 320	167, 368	25, 840	166, 02		
Sugar factories	558, 560	868, 786	624, 450	936, 87		
Other uses 2	364, 690	406, 596	156, 250	287, 93		
Use unspecified	68, 150	112, 667	159, 980	252, 97		
	10, 731, 990	10, 629, 560	12, 303, 830	13, 788, 73		

¹ Includes stone for filler for calcimine, caulking compounds, cosmetics, explosives, imitation leather, linoleum, paint, paper, parting compounds, phonograph records, plastics, pottery, putty, regrinding, roofing, rubber, sealing wax, tile, tooth powder, wire, and unspecified uses.

² Includes stone for acid neutralization, carbon dloxide, chemicals (unspecified), concrete blocks and pipes, dye, foundry facings, motion-picture snow, oil wells, rayon, rice milling, spalls, and spray.

Sales of dolomite (calcium-magnesium carbonate) and its primary product of calcination—dolomitic lime—for certain special uses are covered in the following table:

Dolomite and dolomitic lime sold or used by producers in the United States for specified purposes, 1940-41

	1940	1941
Dolomite for—		
Basic magnesium carbonate:		
Short tons	80, 210	105, 670
Value	\$105, 028	\$136, 180
Dead-burned dolomite or refractory stone:	\$100,020	ψ100, 100
Short tons	857, 950	980, 190
Value	\$632, 582	\$729, 792
Value	4002, 002	ψ: 20, 102
Refractory (dead-burned dolomite):		
Short tons	867, 909	1, 069, 887
Value	\$6, 925, 328	\$9, 111, 172
Value Paper mills:	\$0, 820, 320	40, 111, 112
Short tons	59, 000	78, 000
		\$551,000
Value	\$390,000	\$551,000
Total (calculated as raw stone)short tons.	9.709.000	3, 382, 000
Total (calculated as law stone)Short tons	792, 000	0, 002, 000

Limestone is quarried not only for use raw but also for manufacture into cement and lime. The large and important industries manufacturing these products are covered in separate chapters. It is of interest, however, to show in one table, as follows, the total tonnage of limestone consumed for all purposes.

Limestone sold or used for all purposes in the United States, 1939-41, in short tons

Use	1939	1940	1941
Limestone (as given in this report) (approximate) Portland cement (including "cement rock") 1	100, 846, 000	112, 658, 000	133, 164, 000
Natural cement ("cement rock") 1	30, 463, 000	² 34, 041, 000	42, 735, 000
Lime *	8, 509, 000	9, 774, 000	12, 159, 000
	139, 818, 000	2 156, 473, 000	188, 058, 000

Reported in terms of cement in chapter on Cement.

SANDSTONE

The crushed-sandstone industry made substantial gains in 1938 and 1939, receded in 1940, and advanced in 1941, when sales were 17 percent higher in quantity and 32 percent higher in value than in 1940. Unusual activity in steel plants was indicated by a 45-percent increase in sales of refractory stone (ganister). Sales of riprap were more than twice those in 1940, and the output of aggregates, road stone, and railroad ballast made large gains. Sales of sandstone applied to various miscellaneous uses dropped to about one-third their 1940 volume.

The average value per ton of refractory stone increased from \$1.80 to \$1.89; of riprap from 84 to 99 cents; and of aggregates from \$1.07 to \$1.19. Railroad ballast, however, declined from 90 to 85 cents a ton. The average sales value at the mill or quarry for all crushed sandstone was \$1.26 a ton in 1941, whereas it was \$1.12 in 1940.

Revised figures.
Reported in terms of lime in chapter on Lime.

Sandstone (crushed and broken stone) sold or used by producers in the United States in 1941, by States and uses

	Refracto	rv stone	Di-			Crushe	d stone		Other	uses 1	То	tal
State		(ganister)		Riprap		Concrete and road metal		Railroad ballast		OVIIO1 4555		vo.
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
labama		(3)			(2)	(9) (9)					207, 670	\$318, 431 (2)
rizona						(3)	(3)	(3)			823, 160	869. 62
rkansasalifornia	(2)	(1)	(3) 8, 840 7, 080	(2) \$10, 700 7, 544	748, 700 88, 110	\$617, 476 110, 468	620	\$1,500	(2)	(2)	899, 100 114, 960	758, 75 144, 61
olorado		\$26, 603		(3)	(3), 110						(2)	(2)
eorgia				(2)	l (i) l	(2)						(8)
linois	(2)	(2)	(2)	(2) (3) (2)		(3)				<u>-</u>	(²) 123, 960	138, 74
ansas				(2)	(3) (3) (3)	(2)					(3)	(3)
entucky				(3)	1 2 1	1 23					(2)	(2)
Iaryland Iassachusetts					1 8	3					(2)	(2)
Iassachusetts Iichigan					(2)	(2)			(2)	(3)	(2)	(2)
innesota			(2)	(2)	(2)	(3)					(3)	(2)
Iississippi					(2)	(2)					(9)	(2)
lissouri			(2)	(2) (2)							(1) 83, 430	51,0
Iontana			(3)	(2)	(2)	(3)					(2)	(3)
ew Mexico					87, 570	107, 426					106, 810	134, 1
ew York		6, 725	13, 860	20, 032	87, 570						(2)	(3)
orth Carolina					2	(3)					(2)	(2)
orth Dakotahio		462, 383	(2)	(2)	1 2	(2)				(3)	134, 080	516, 4
klahoma		402, 000		(7)	61, 380	49, 200					61, 380	49, 2
regon			(2)	(2)	(2)	(3)					292, 300	415, 1
ennsylvania		1, 220, 355	3, 150	1, 227	1, 007, 240	1, 048, 414	216, 050	210, 967	169, 170	\$119,304		2, 600, 2
outh Dakota			(3)	(2)	69,660	81, 478			(2)	(2)	111, 580	126, 1
ennessee	(2)	(3)	(3)	(2) (2) (2)	(3)	(3)			(2)	(2)	26, 840 250, 180	33, 3 115, 4
exas			(2)	(3)	143, 470	76, 317			1 (9)		6,600	11.9
tah ₋		(3)			(2)	1 X					(3)	(2)
ermont		(3)	(9)	(2)	143, 080	134, 513	(2)	(2)	(2)	(2)	268, 920	233.9
irginia		()		(3)	140,000	101, 010	l	1		1	(2)	(3)
Vashington Vest Virginia		(2)		1 13	680, 590	1, 415, 624					772, 250	1, 542, 2
isconsin	233, 460	320, 635	(2)	785	(1)	(3)	l		(3)	(3)	358, 740	634, 7

MISCELLANEOUS STONE

Crushed and broken stone, other than the five principal varieties already discussed, includes light-color volcanic rocks, schists, boulders from river beds, serpentine, and flint. The following table shows sales of stone of these types, by States and uses, in 1941; such sales increased 29 percent in quantity and 34 percent in value over 1940.

Miscellaneous varieties of stone (crushed and broken stone) sold or used by producers in the United States in 1941, by States and uses

				Crushe	d stone		Other uses 1			
State	Rip	orap	Concrete and road metal		Railroad ballast		Other uses -		Total	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alabama			(2)	(2)					(2)	(2)
ArizonaArkansas		(2)	125, 880 289, 490	\$123, 275 252, 207	5,000	\$3, 600	1,500	\$850	132, 380 598, 700	\$127, 725 487, 202
California	75. 410	\$71,440	3, 976, 230	2, 192, 818	200, 840	šó, 450	3, 820	6, 601	4, 256, 300	2, 321, 309
ColoradoFlorida			(2) 43, 320	(2) 102, 270	(2)	.(2)			168, 760	83, 320
rioridaIdaho			43, 320 (2)	(2)	(*)	•(•)			1 22 1	(2)
Illinois.			106,000	67, 334				-	106,000	67, 334
Indiana			(2)	(2)					(2)	(2)
Kansas Maine			(2) 4, 890	1, 955	(2)	(2)	5, 760	11, 520	10, 650 4, 660	13, 475 6, 286
Maryland			5,000	10,000	(-)	(-)			5,000	10, 000
Massachusetts			156, 840	187, 600					156, 840	187, 600
Michigan			(2)	(2)			(2)	(2) (2)	39, 660	100, 460
Missouri Montana			1 12	8	(2)	(2)	(2)	(3)		(2)
Nevada			(2)	8					2	2
New Hampshire			6, 060	9, 703			1, 680	13, 440	7,740	`23, 143
New Jersey			174, 970	127, 727			8, 770	34, 311	183, 740	162, 038
New YorkNorth Carolina		(3)	(2)	(3)	(3)	(2)			201, 650 138, 470	118, 708 149, 168
North Dakota			(2)	2)					(2) 470	(2)
Ohio			(2)	(2)					(2)	(2)
Oklahoma			(2)	(3)					(2)	(2)
Oregon Pennsylvania		28, 800	124, 690 1, 366, 570	71, 590 1, 453, 106			769, 120	870, 778	124, 690 2, 159, 800	71, 590 2, 352, 684
Puerto Rico.			1, 300, 370	1, 100, 100			100, 120	010, 110	2, 109, 000	4, 302, 902 (2)
Rhode Island			(2)	(2)					(2)	(2)
South Carolina			(2)	(2)					(2)	(2)
South Dakota				(2)						(1)
Texas.			\bar{2}	B	(2)	(2)			138, 470	80, 494
Utah			(2)	[(6)			(2)	(3)	(2)	(2), 202
Vermont			(2)	(2)					(2)	(3)
Virginia		(3)	69, 130 46, 690	57, 896 23, 319			(2)	(2)	46, 690	⁽²⁾ 23, 219
Washington Wisconsin			40,090	(3)					20,090	28, 819

Wyoming Undistributed	50, 830	46, 078	1, 445, 970	1, 192, 43 2	685, 920	346, 433	(³) 76, 290	(2) 262; 946	256, 000 1, 114, 580	176, 371 1, 058, 253
Average unit value	150, 350	146, 318 \$0. 97	7, 941, 730	5, 873, 232 \$0. 74	891, 760	400, 483 \$0. 45	866, 940	1, 200, 446 \$1. 38	9, 850, 780	7, 620, 479 \$0. 77

¹ Includes stone used for filler (unspecified), poultry grit, refractory, road base, rock wool, roofing granules, stucco, tennis courts, and terrazzo.

² Included under "Undistributed."

MARKETS

As indicated in figure 4, sales of crushed stone have maintained a reasonably close relation to total building construction and cement shipments during recent years. Concrete pavements which consist of stone and cement naturally follow the same general trends. However, sales of stone fell below pavement construction from 1932 to 1937 but attained relatively higher levels during the following years.

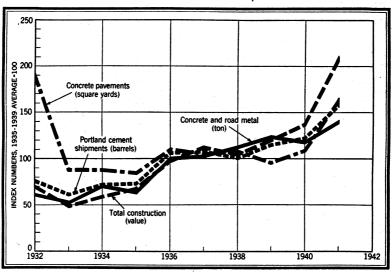


FIGURE 4.—Crushed-stone aggregates (concrete and road metal) sold or used in the United States compared with shipments of portland cement, total construction (value), and concrete pavements (contract awards, thousands of square yards), 1932-41. Data on construction and concrete pavements from Bureau of Foreign and Domestic Commerce.

Pig-iron production reached phenomenal heights in 1941, and in consonance therewith sales of limestone used as furnace flux were the highest on record. Moreover, steel mills were everywhere producing ingots at almost maximum capacity, and naturally large quantities of dolomite and ganister were needed to make furnace linings. Forcing steel furnaces to increase their output placed an unusual demand on producers of refractories. The relations of fluxing-stone output to pig-iron production and of refractory stone to steel-ingot manufacture over a 10-year period are indicated in figure 5.

NEW DEVELOPMENTS

Several new, highly efficient, crushed-stone plants were completed during 1941. New equipment was added to several plants, and considerable rehabilitation was accomplished before such programs were interrupted by priority requirements.

STONE 1259

Construction of the Delaware Aqueduct designed to supplement the water supply of New York City has created the unique situation of the project furnishing its own crushed stone. Large temporary crushing plants have been established to reduce the stone removed during excavation of the tunnels. The crushed stone is used as aggregate in the concrete structures of the aqueduct.

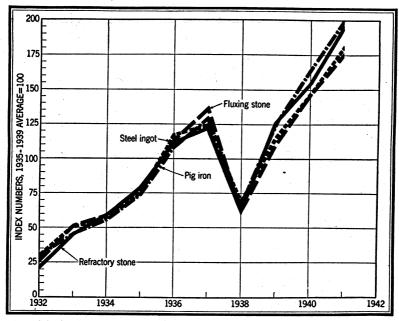


FIGURE 5.—Sales (tons) of fluxing stone and refractory stone including that used in making lime as recorded in the chapter on Lime compared with production of steel ingot and pig iron, 1932-41. Statistics of steelingot and pig-iron production compiled by American Iron and Steel Institute.

The most striking new development in the stone industries is the newly awakened interest in dolomite as a source of magnesium metal, of which large quantities are in demand for military equipment. Added to this new and outstanding use are many other industrial applications; the most important is the greatly increasing demand for refractory dolomite used in lining steel furnaces. To supply an insistent call for information on dolomite deposits, the Bureau of Mines prepared a report ² which appeared in November 1941. Because of the growing demand for more details concerning the dolomites of the United States, a supplementary report giving the location, extent, and chemical analyses of many deposits was in preparation early in 1942.

² Colby, Shirley F., Occurrences and Uses of Dolomite in the United States: Bureau of Mines Inf. Circ. 7192, 1941, 21 pp.

FOREIGN TRADE³

Exports.—The export trade in stone is relatively small.

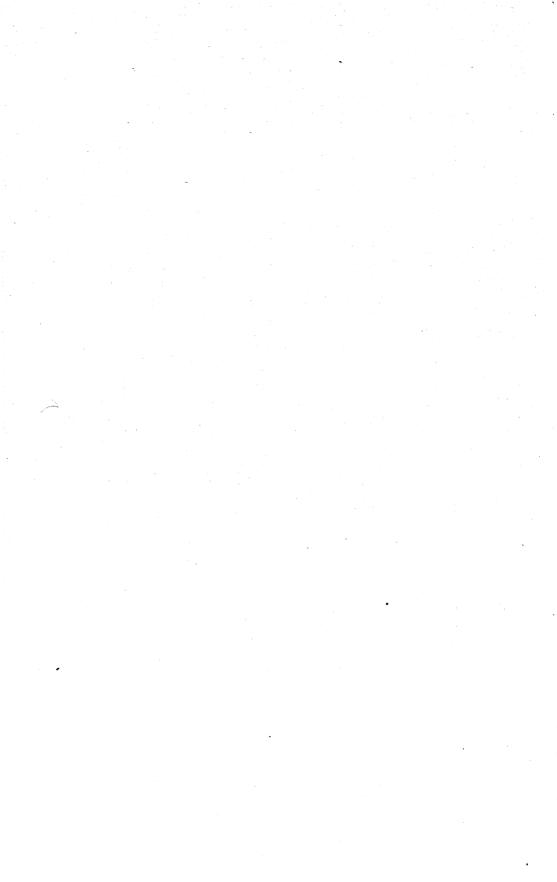
Stone exported from the United States, 1937-41

Year Subjective Stone St	build mon	and other ling and umental tone	Other manu- factures	Year	Marble build monu st	Other manu- factures of stone (value)	
	Value	of stone (value)		Cubic feet	Value		
1937 1938 1939	179, 456 78, 374 77, 147	1\$145, 454 141, 815 134, 416	2 \$631, 856 282, 422 366, 004	1940 1941 (JanSept.)	77, 896 54, 062	\$158, 008 108, 706	\$264, 949 289, 860

¹ Separately classified as—Marble in blocks, rough or dressed: 19,384 cubic feet valued at \$88,528; other building and monumental stone: 60,072 cubic feet valued at \$56,926.

² Separately classified as—Marble, breccia, and onyx, \$33,307; limestone, \$201,580; other manufactures of stone, \$396,969.

Imports.—Owing to military restrictions, imports in 1941 can be published for only the first 9 months. As might be inferred from the far-reaching and intensified effects of the war, imports of stone were very small; from sources outside the American Continent they were almost negligible.


Stone imported for consumption in the United States in 1941 (January-September, inclusive), by classes

Class	Quan- tity	Value	Class	Quan- tity	Value
Marble, breccia, and onyx: In blocks, rough, etc. cubic feet.	17, 121	\$94, 247	Quartzite short tons Travertine stone: Rough cubic feet	62, 048 1, 995	\$111, 055 3, 295
Slabs or paving tiles superficial feet All other manufactures	413	737 5, 875 100, 859	Stone (other): Dressed Rough (monumental or building stone) Rough (other) Short tons.	1, 250 45, 622	530 5, 580 28, 623
Granite: Dressedcubic feet Roughdo	6, 598 733	10, 262 4, 524	Marble chip or granito	102	794
	7, 331	14, 786	Grand total		35, 527 265, 522

³ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Stone imported for consumption in the United States in 1941 (January to September, inclusive), by classes and countries

·	Marble	, breccia, a	nd onyx	Gra	nite	Other		Qua	rtzite	Trav	ertine	
Country	Rough		Manu-	Cubic		building or monu- mental	Other stone, n. e. s.	G14		0.11		Total value
	Cubic fort	Value	factures (value)	feet	Value	stone (value)	(value)	Short tons	Value	Cubic feet	Value	
North America: Canada Cuba	91	\$413	\$3 20	5, 960	\$8, 504	\$134	\$28, 623 773	62, 048	\$111,055	1		\$148, 732 793
Mexico	11, 175 11, 266	41, 482	443	5, 960	8, 504	134	29, 396	62, 048	111, 055			41, 512 191, 037
South America: Argentina. Brazil	4, 888	50, 632	218	872	4, 560	101	20,000			1, 225	\$2, 476	53, 326 4, 560
ChilePeru	65 3	172 18	103				21			770	819	193 940
Total South America	4, 956	50, 822	321	872	4, 560		21			1, 995	3, 295	59, 019
Europe: Belgium Finland France			63	22	146							63 146 52
Italy Portugal United Kingdom Other Europe	739 160	1, 545 398	156 3, 268 554 62	194	399	21 6						156 4,813 1,372 68
Total Europe	899	1, 943	4, 155 1, 670	216 283	545 1, 177	27 369 5, 580						6, 670 3, 216 5, 580
Grand total	17, 121	94, 247	6, 612	7, 331	14, 786	6, 110	29, 417	62, 048	111, 055	1, 995	3, 295	265, 522

SLATE

By Oliver Bowles and M. S. Jensen

SUMMARY OUTLINE

	Page	N Company of the Comp	Page
Sales	1263 1264 1264	Review by States and districts	1267 1269 1269
Granules and flour Prices Price history	1266 1266	Imports	1270

Sales of slate as dimension stone increased 17 percent in quantity and 28 percent in value in 1941 compared with 1940. Sales were approximately the same in quantity as in 1939, but the value was considerably higher. In nearly all categories unit prices were sub-

stantially higher than in 1940.

Roofing-slate sales gained 9 percent in quantity over 1940 but were still much lower than in 1939. The value of sales, however, was the highest in any year since 1930. The average value per square in 1941 was \$8.39, whereas in 1940 it was \$7.02. Sales in the Pennsylvania area were 15 percent higher in quantity and 44 percent higher in value than in 1940. In the New York-Vermont area sales declined 4 percent in quantity but gained 10 percent in value. Virginia sales

increased 6 percent in quantity and 15 percent in value.

Sales of mill stock increased 4 percent in quantity and 15 percent in value compared with 1940. Although total new construction increased from 137 percent of the 1935-39 average in 1940 to 208 percent in 1941, sales of structural and sanitary slate declined 1 percent, indicating a growing trend toward substitution of other Sales of electrical slate (reflecting the rapidly increasing electric-power output) increased 43 percent in quantity and 50 percent in value and reached the highest level of output since 1930. of vaults and covers show little change from 1940—a gain of 2 percent in quantity and of 9 percent in value. Sales of blackboards and bulletin boards, which have declined sharply during the past 2 years, were the lowest since 1934. The year 1941 showed a 16-percent decrease in quantity and 14-percent in value compared with 1940. Sales of billiard-table tops, which in 1940 attained the highest level since 1928, receded slightly in 1941-1 percent in quantity and 11 percent in value. Sales of school slates increased 26 percent in quantity and 42 percent in value. Both the quantity and value of flagstones and stepping stones were more than twice those in 1940.

Statistics on slate granules and flour are included in this chapter, although these products have little connection with the dimension-slate industry except that granules are used in roofing products that compete in the roofing-slate market. For the most part, slate used for the manufacture of granules is unsuitable for other slate products. Sales of granules increased 40 percent in quantity and 35 percent in value and sales of flour 29 percent in quantity and 36 percent in value compared with 1940. The great increase in sales of granules probably reflects the extensive program of building military camps and other more or less temporary structures in connection with the preparedness program. The average sales value of granules f. o. b. mill was \$8.37

and flour \$3.49 per short ton in 1941 compared with \$8.72 and \$3.31, respectively, in 1940. Figures for sales of granules made of rock other than slate are given in the chapter of this volume on Stone.

The following table, presenting the principal statistical data for the slate industry during 1940 and 1941, is arranged to permit ready comparison of the 2 years.

Salient statistics of the slate industry in the United States, 1940-41

		1940				1941		1.5
	Quar	ntity		Quar	ntity		Perce	
	Unit of measure- ment	Approximate equivalent short tons	Volue	Unit of measure- ment	Approximate equivalent short tons	Walna	Quantity (unit as reported)	Value
Domestic production (sales by producers): Roofing slate	Squares 347, 130	127, 600	\$2, 436, 123	Squares 378, 980	140, 830	\$3, 180, 766	+9. 2	+30.6
Mill stock: Electrical slate Structural and sanitary	Sq. ft. 440, 080						+42.9	
slate Grave vaults and cov- ers Blackboards and bulle-	748, 160 251, 070		100		5, 740 2, 410	5 - 5	-1.3 +1.9	+5.9 +9.4
tin boards Billiard-table tops School slates	1, 023, 250 243, 700 1 413, 860	1,890	80, 364	241, 620	1,880		-16.2 9 +26.3	
Total mill stock Flagstones, etc.?	3, 120, 120 1, 380, 040			3, 245, 270 3, 002, 380				+15.1 +136.3
Total slate as dimension stone		154, 450 319, 000			180, 990 437, 670		+17.2 +37.2	+28.3 +34.9
Grand total domestic production		473, 450			618, 660			+31.0
Imports for consumption Exports: 4 Roofing Other dimension slate Granules and flour	l		520 5, 547 4 70, 109	(6)	(6)	* 1, 504	(4)	(9)

SALES

Dimension slate.—All slate products except granules and flour are classed as dimension slate because they consists of blocks or slabs cut to specified sizes and shapes. The following table shows sales of these products for a 5-year period.

Slate (other than granules and flour) sold by producers in the United States, 1937-41

	Roofing			Mi	ll stock	Oti	ner 1	Total		
Year	Squares Squares Squares short tons		Ap- proxi- mate short tons		Ap- proxi- mate short tons	Value	Ap- proxi- mate short tons	Value		
1937 1938 1939 1940 1941	365, 800 322, 040 399, 320 347, 130 378, 980	137, 400 119, 590 149, 410 127, 600 140, 830	\$2, 728, 109 2, 247, 910 2, 868, 961 2, 436, 123 3, 180, 766	21, 480 16, 310 21, 710 17, 070 18, 680	\$1, 225, 645 853, 602 1, 168, 671 935, 810 1, 076, 814	8, 670 7, 790 8, 480 9, 780 21, 480	\$73, 554 63, 839 63, 493 64, 435 152, 254	167, 550 143, 690 179, 600 154, 450 180, 990	\$4,027,308 3,165,351 4,101,125 3,436,368 4,409,834	

¹ Includes flagstones, walkways, stepping stones, and miscellaneous slate.

Figure 1 compares sales of roofing slate, as well as all slate except granules and flour, with the number of new residential units and total

Square feet approximate. Number of pieces: 1940, 773,690; 1941, 977,250.
 Includes walkways, stepping stones, and miscellaneous slate.
 January to September, inclusive.
 Figures obtained by Bureau of Mines from shippers.
 Exclusive of structural slate; Bureau of Mines not at liberty to publish figures.
 Bureau of Mines not at liberty to publish figures.

new construction from 1920 to 1941. Roofing slate is used principally in residential construction, but mill stock such as structural and sanitary products is used more generally in nonresidential building. Roofing slate failed to pace new residential building from 1921 to 1929, but thereafter both maintained a fairly uniform slow tempo until 1938.

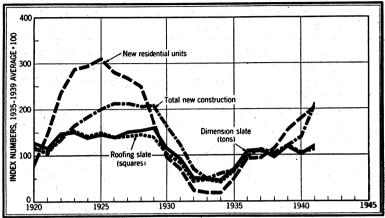


FIGURE 1.—Sales of dimension slate and roofing slate compared with total new construction and new residential units, 1920-11. Data on new construction from Bureau of Foreign and Domestic Commerce and on new residential units from Bureau of Labor Statistics.

From 1939 to 1941 new residential units increased greatly, but roofing slate made relatively small gains. The same general relationships hold when total dimension slate is compared with total new construction.

Figure 2 presents graphically a statistical history of all slate products except school slates over a 27-year period. The industry reached

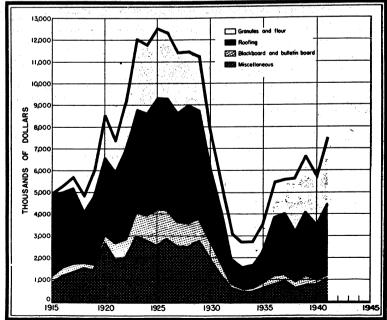


FIGURE 2.—Value of slate sold in the United States. 1915-41, by uses.

its peak of productive activity in 1925 and had already experienced a moderate decline at the beginning of the depression that culminated in 1933 in the smallest sales in any year since slate production was an infant industry. Subsequent recovery was strong at first but is still far below the 1925 level.

Figure 3 presents the same history as figure 2, except that quantities rather than values are used. Roofing granules and flour are most important upon a tonnage basis. Mill stock has a relatively high unit value, and the quantities involved are not great. It is noteworthy that for the year of peak production the value of mill stock was much greater than that of granules and flour, but upon a quantity basis mill-stock sales comprised scarcely one-tenth the tonnage of granules and flour.

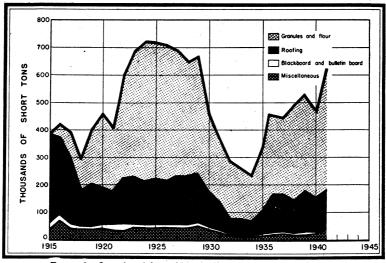


FIGURE 3.—Quantity of slate sold in the United States, 1915-41, by uses.

Granules and flour.—Slate granules are used extensively in surfacing prepared roofing; and slate flour is employed as a filler in paints, road asphalt-surface mixtures, roofing mastic, oilcloth, linoleum, and various other products. The following table shows sales of granules and flour by producers from 1937 to 1941.

Crushed slate (granules and flour) sold by producers in the United States, 1937-41

Year	Grai	nules	Flo	ur	Total			
	Short tons	Value	Short tons	Value	Short tons	Value		
1937	193, 950 258, 930 265, 830 230, 440 323, 740	\$1, 309, 549 2, 220, 306 2, 312, 177 2, 009, 151 2, 708, 246	83, 060 90, 070 85, 950 88, 560 113, 930	\$268, 465 269, 656 268, 912 292, 750 397, 554	277, 010 349, 000 351, 780 319, 000 437, 670	\$1, 578, 014 2, 489, 962 2, 581, 089 2, 301, 901 3, 105, 800		

PRICES

The average price of roofing slate f. o. b. quarry or mill, as reported to the Bureau of Mines, increased \$1.37 a square in 1941 compared with 1940. In Pennsylvania it increased \$1.65, in the Vermont-New York area \$1.04, and in Virginia 74 cents a square.

The price of mill stock increased from 30 cents a square foot in 1940 to an average of 33 cents in 1941. Average values of electrical, struc-

SLATE 1267

tural and sanitary slate, grave vaults and covers, and blackboards and bulletin boards increased moderately, whereas slate for billiard-table tops declined 3 cents a square foot. The average price of roofing granules and flour declined 12 cents a ton from 1940.

Price history.—Figure 4 shows the trend in slate prices compared with building materials in general over a 27-year period. Slate prices were lower than those of building materials in general from 1915 to 1920, but from that time until 1932 prices of both roofing and mill stock were well above the average of all building materials. Since 1932 slate prices have varied only moderately from the general average.

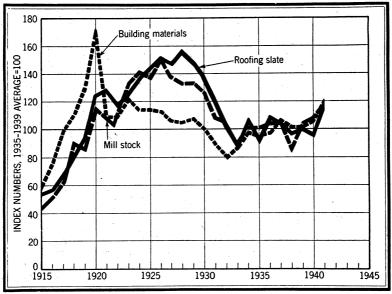


FIGURE 4.—Prices of slate compared with wholesale prices of building materials in general, 1915-41.

Wholesale prices are from Bureau of Labor Statistics.

REVIEW BY STATES AND DISTRICTS

The following table gives sales of slate in 1941, by States and uses.

Slate sold by producers in the United States in 1941, by States and uses

		Roo	fing	Mill	stock	Other		
State	Opera- tors	Squares (100 square feet)	Value	Square feet	Value	uses. 1 (value)	Total value	
Arkansas	2					(2)	(2)	
California	ī					\$53, 765	\$ 53, 765	
Georgia	1					(2)	(2)	
Maine	3	3, 270	\$27, 300	519, 880	\$414, 912		442, 212	
Maryland	1					(2)	(2)	
New York	11	1,780	18, 579	(3)	(3)	³ 666, 566	685, 145	
Pennsylvania 4	25	248, 980	2, 075, 490	2, 584, 310	582, 443	806, 415	3, 464, 348	
Vermont	35	83, 780	680, 805	141,080	79, 459	1, 161, 659	1, 921, 923	
Virginia	6	41, 170	378, 592			(2)	(2)	
Undistributed						569, 649	948, 241	
Total: 1941	85	378, 980	3, 180, 766	3 3, 245, 270	3 1, 076, 814	3 3, 258, 054	7, 515, 634	
1940	98	347, 130	2, 436, 123	3 3, 120, 120	3 935, 810	3 2, 366, 336	5, 738, 269	

¹ Flagging and similar products, granules, and flour. ² Included under "Undistributed."

³ Small amount of mill stock from New York in 1941 and from Vermont in 1940 included under "Other

For details of production in Pennsylvania, see following table.
 Includes output of States entered as "(2)" above.

Maine.—Sales of electrical slate—principal product of the Maine quarries—continued to climb in 1941, as shown by a 54-percent increase in total value of slate products sold compared with 1940, which, in turn, followed a 33-percent increase in 1940 from 1939. The growing demand for electrical slate accords with the great increase in electric-power production, which advanced from about 3 to 3½ billion kilowatt-hours from January to December 1941. Roofing slate, which is of minor importance in Maine, made a moderate gain.

New York-Vermont.—The number of squares of roofing slate sold in the New York-Vermont area in 1941 was 4 percent lower than in 1940, following an 18-percent decline in 1940 from 1939; unit prices were, however, so much higher in 1941 that the value of sales gained 10 percent. Mill-stock sales in this area receded 10 percent in quantity but gained 1 percent in value; and the value of other products, chiefly granules and flour, increased 39 percent. The value of all slate products sold in Vermont in 1941 was 24 percent higher and in New York 43 percent higher than in 1940. These substantial gains were, however, confined almost entirely to products other than roofing and mill stock.

Peach Bottom district.—Blue-black slate has been quarried for more than 200 years on the Maryland-Pennsylvania border near Delta, Pa. Roofing slate is now produced only on the Pennsylvania side of the line, but granules and slate flour are manufactured in both States.

Lehigh district.—The most productive slate area in the United States is in Lehigh and Northampton Counties, Pa. All kinds of slate products are manufactured in this district. As separate figures cannot be shown for York County, Pa., it is included with Northampton County in the accompanying table for Pennsylvania.

The value of total sales of slate products in the district was 33 percent higher in 1941 than in 1940. Sales of roofing slate increased 15 percent in quantity and 44 percent in value. The following mill-stock products showed gains in both quantity and value in 1941: Electrical

Slate sold by producers in Pennsylvania in 1941, by counties and uses

		Roofin	Mill stock									
County	Oper- ators	Squares (100	77-1	Elec	trical	Sti	ructu sanit				ts ar	d covers
		square feet)	Value	Square feet	Value		nare et	Value		Squ fee		Value
Lehigh	8	17, 590	\$108, 120	54,310	\$25, 217	6	,740	\$2,	337	(1))	(1)
Northampton and York 2	17	231, 390	1, 967, 370	24, 950	10, 279	631	, 940	204	544	1 246,	700	1 \$59, 65 9
Total: 1941	25 27		2, 075, 490 1. 444 696	79, 260 48, 440	35, 496 22, 110				, 881 , 716	246, 251,		59, 659 57, 604
			Mill stock	-Contin	ued							
County		Black boards and bulletin boards		d-table to	ps S	School sl		siates		her	То	tal value
	Squar feet	e Value	Squa			uare eet	Value		(₹8	due)		
Lehigh	177, 83	\$35, 20	5		52	2, 830	\$12, 2	267	(3)	13	\$183, 146
Northampton and York 2	680, 16	163, 26	1 238, 8	\$69,6	74				3 \$80	6, 415	133	, 281, 202
Total: 1941 1940	857, 99 1, 023, 25					2,830 3,860	12, 2			8, 415 1, 987		3, 464, 348 2, 609, 801

¹ Small amount of slate for grave vaults and covers produced in Lehigh County included under Northampton and York Counties.

ton and York Counties.

2 York County produced roofing slate, granules, and ficur only.

3 Small amount of flagging produced in Lehigh County included under Northampton and York Counties.

1269

slate (64 percent in quantity and 61 percent in value) and school slates (26 percent in quantity and 42 percent in value). Blackboard and bulletin-board sales declined 16 percent in quantity and 14 percent in value. There were only small changes in sales of structural and sanitary slate, vaults and covers, and billiard-table tops. Other products, chiefly granules and flour, gained 43 percent in value compared with 1940.

Virginia.—Sales of blue-black roofing slate—principal product of the Buckingham County area—increased moderately in 1941 compared with 1940. The granule industry of Esmont, Albemarle County, and

New Canton, Buckingham County, was active.

Other districts.—A small quantity of granules was produced in Arkansas at Caddo Gap, Montgomery County, and near Mena, Polk County. Larger quantities of granules and flour than in 1940 were produced near Placerville, Eldorado County, Calif., and Bartow County, Ga., near Fair Mount.

Map of slate areas.—The accompanying map, fgure 5, shows the location of slate mines and prospects in the Urited States. The prospects indicated are confined to those that have actually produced slate in substantial quantities some time during their history. As slate is a product of extreme regional metamorphism, active operations are

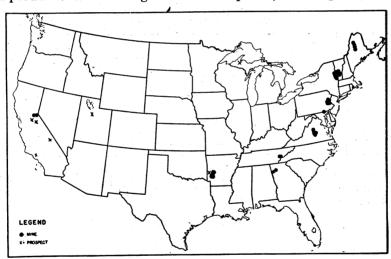


FIGURE 5.—Location of slate mines and prospects in the United States.

confined chiefly to the highly altered rocks of the eastern Appalachian belt extending from Maine to Georgia. No other slate areas have proved adequate to support sustained production, except on a small scale. Very little slate other than granules and flagging has been produced west of the Appalachian area or south of Virginia for many years.

NEW DEVELOPMENTS

The slate industry of the United States faces an unusual opportunity for winning new markets during the present emergency. The war program has created an unparalleled and ever-increasing demand for metals of all kinds; for lumber; and for the essentials of prepared roofing, namely, rag or wood-pulp felts and asphalt. On the other

hand, slate has few direct military uses and therefore may be utilized freely as roofing and for many interior structural applications, unhampered by priorities. Its wider use would thus release larger quantities of the more essential commodities for war needs. more, it has been found in England that slate roofs offer superior bombing protection and are particularly effective in reducing the spread of fires caused by incendiary bombs. Slate is used extensively in rebuilding bomb-devastated areas in Great Britain.

The field for expansion of the United States slate industry is very Although slate roofs are waterproof, attractive, and unusually enduring, they cover only 1 percent or less of our homes. Wales slate industry alone employs more than 8,000 workers in normal times; the entire United States slate (excluding granules) industry employed less than 1,000 wage earners in 1939, according to the

Bureau of the Census.

FOREIGN TRADE 1

Imports.—Imports of slate into the United States are very small. Their value for the past 5 years is indicated in the following table. Owing to war-time restrictions, data for 1941 have been released for only the first 9 months.

Slate imported for consumption in the United States, 1937-41, by countries

Country	1937	1938	1939	1940	1941 (Jan.–Sept.)
Canada	\$826	\$543 3	\$570 26	\$21	\$71 45
Czechoslovakia	990	1,037 895			
Germany Hong Kong	. 17 20	59	4		
Italy Japan	349 222	994 68	356 61	324 175	7
NorwayUnited Kingdom	381 2,019	3, 089			1, 381
	4,824	6, 688	1,017	520	1,504

Exports.—The following table lists the value of exports of slate products from 1937 to 1940, as reported to the Bureau of Mines by shippers.

Slate exported from the United States, 1937-40, by uses 1

Use	1937	1938	1939	1940
Roofing School slates Electrical Blackboards Billiard tables Structural ³ Slate granules and flour	\$9, 382 35, 011 2, 356 6, 853 16, 580 4, 393 77, 576	\$5,070 35,717 1,239 10,400 10,182 1,314 93,675	\$5, 244 2 17, 739 1, 726 8, 448 18, 111 5, 791 120, 731	\$5, 547 2 36, 503 4, 721 4, 688 24, 197 121, 038
	152, 151	157, 597	177, 790	196, 694

Figures collected by Bureau of Mines from shippers of products named.
 Includes slate used for pencils and educational toys.
 Includes slate for floors and walkways.

¹ Figures on imports and exports (unless otherwise indicated) compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

SAND AND GRAVEL

By Oliver Bowles and G. E. Tucker

SUMMARY OUTLINE

	Page		Page
Summary	1271	Principal trends	
Salient statistics	1272	Sand and gravel for construction	1283
Production	1273	Industrial sands	1922
Location of plants	1279	I Employment and productivity	1005
Government-and-contractor production	1279	Prices	1996
Method of transportation	1281	New developments	1287
Degree of preparation	1281	Foreign trade	1287
Size of plants	1282	Blast-furnace slag	1288

SUMMARY

Production of sand and gravel totaled 288,715,000 short tons in 1941 and surpassed all previous records. The quantity sold or used was 21 percent and the total value 33 percent higher than in 1940. The substantial gains were confined to commercial operations; Government-and-contractor 1 production was virtually unchanged. The average value per ton of all material handled was 51 cents in 1941 at point of production compared with 46 cents in 1940 and 47 cents in 1939. The quantity and value of total production over a period of years are indicated in figure 1.

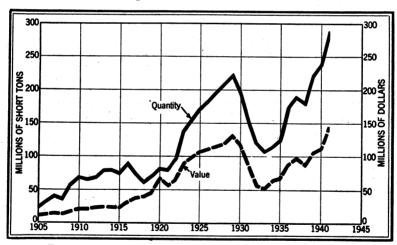


FIGURE 1.—Total production of sand and gravel in the United States, 1905-41.

As the major uses of sand and gravel are for concrete aggregate and road stone, a substantial increase in sales was to be expected in view of the fact that the value of all construction in 1941 was more than twice the 1935–39 average, and awards on contracts for concrete pavement (in thousands of square yards) were 36 percent greater in 1941 than in 1940.

Sales of industrial sands also made large gains. Molding and fire or furnace sands naturally registered substantial gains because of unusual

¹ Prior to 1939 classified as "noncommercial"; details of change in designation given in Minerals Yearbook, 1940, Review of 1939, p. 1214.

activity in foundry work in connection with the program of military preparedness.

Salient statistics on sand and gravel for 1940 and 1941 are sum-

marized in the following table.

Sand and gravel sold or used by producers in the United States, 1940-41, by commercial and Government-and-contractor operations and by uses

	* 1, 1, 1	1940			1941		Perce	nt of
		Value	3		Value		change	
	Short tons Total Average		Short tons	Total	Aver-	Ton- nage	Aver age value	
COMMERCIAL OPERATIONS								
						4000		
Sand: Glass	2, 759, 544	\$4,881,508	\$1.77	3, 475, 111	\$6, 113, 529	\$1.76	+26.0	-0.
Molding	5, 004, 807	5, 268, 974 15, 243, 151	1.05	7, 246, 081	8, 412, 725	1. 16	+44.8	+10.
Building	29, 591, 644	15, 243, 151	. 52	40, 164, 731	21, 698, 378	. 54	+35.7	+3.
Paving Grinding and polishing 1	20, 812, 866	10, 930, 249	. 53	27, 013, 283	14, 834, 378	. 55	+29.8	+3.
Grinding and polishing 1	856, 309	915, 925	1.07	1,001,814	1, 388, 966	1.39	$+17.0 \\ +20.3$	+30.
Fire or furnace	270, 715	325, 713	1. 20	325, 803	357, 240	1. 10	+20.3	-8.
Engine	1, 634, 968	1, 069, 630	, 65	2, 022, 782	1, 312, 433	. 65	+23.7	
Filter Railroad ballast 2	118, 600 957, 745	164, 061	1.38	263, 966	324, 107	1. 23		
Railroad ballast 2	957, 745	256, 439	. 27	1, 634, 335	445, 181	. 27	+70.6	
Other 3	1, 923, 042	1, 469, 979	. 76	2, 022, 604	1, 455, 384	. 72	+5.2	-5.
Total commercial sand	63, 930, 240	40, 525, 629	. 63	85, 170, 510	56, 342, 321	. 66	+33. 2	+4.
Gravel:								i
Building	23, 429, 541	15, 205, 100	. 65	37, 900, 243	26, 729, 788	.71	+61.8	+9.
Paving	30, 308, 100	17, 879, 012	. 59		24, 624, 898	. 64	+26.4	+8.
Paving Railroad ballast 4	10, 880, 779	3, 627, 796	. 33	16, 302, 175	5, 456, 300	. 33		
Other 5	2, 707, 607	1, 032, 597	. 38	3, 873, 235	1, 553, 606	. 40	+43.1	+5.
Total commercial gravel.	67, 326, 027	37, 744, 505	. 56	96, 385, 957	58, 364, 592	. 61	+43. 2	+9.
Total commercial sand and gravel	131, 256, 267	78, 270, 134	. 60	181, 556, 467	114, 706, 913	. 63	+38.3	+5.
GOVERNMENT-AND-CONTRAC- TOR OPERATIONS ⁶		<i>y</i>						
Sand: Building	5, 149, 000						+12.4	-22
Paving	9, 595, 000	2, 767, 000	. 29	12, 876, 000	4, 013, 000	. 31	+34. 2	T0.
Total Government-and- contractor sand	14, 744, 000	4, 806, 000	. 33	18, 665, 000	5, 810, 000	. 31	+26.6	-6.
Gravel.								
Building	9, 866, 000	4, 922, 000	. 50	8, 779, 000			-11.0	-14.
Paving	82, 442, 000	22, 690, 000	. 28	79, 715, 000	22, 893, 000	. 29	-3.3	+3.
Total Government-and-						-	4.	
contractor gravel	92, 308, 000	27, 612, 000	. 30	88, 494, 000	26, 690, 000	. 30	-4.1	
Total Government-and- contractor sand and gravel	107, 052, 000	32, 418, 000	. 30	107, 159, 000	32, 500, 000	. 30	+.1	
COMMERCIAL AND GOVERNMENT- AND-CONTRACTOR OPERATIONS								
Sand Gravel		45, 332, 000 65, 356, 000		103, 835, 000 184, 880, 000				+3 + 12
			!		147, 207, 000	i	+21.2	·
Grand total								

¹ Includes blast sand as follows—1940: 256,104 tons valued at \$597,198; 1941: 371,049 tons, \$912,626.
² Includes ballast sand produced by railroads for their own use as follows—1940: 57,741 tons valued at \$9,506; 1941: 37,911 tons, \$5,676.
³ Includes some sand used by railroads for fills and similar purposes as follows—1940: 207,941 tons valued at \$44,064; 1941: 351,537 tons, \$36,737.
¹ Includes ballast gravel produced by railroads for their own use as follows—1940: 4,913,809 tons valued at \$914,909; 1941: 7,536,591 tons, \$1,506,121.
¹ Includes some gravel used by railroads for fills and similar purposes as follows—1940: 793,709 tons valued at \$133,405; 1941: 1,157,557 tons, \$128,993.
⁰ Approximate figures for States, counties, municipalities, and other Government agencies directly or under lease.

PRODUCTION

As stocks of sand and gravel in the hands of producers are seldom large and as they do not vary greatly from year to year, the quantities of materials sold or used are virtually equivalent to production. Throughout this report sales and production are used interchangeably. The following table segregates sand and gravel and summarizes total production of each over a 5-year period.

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States, 1937-41

Year	Sa	and	Gravel (incl road b		Total		
1937	Short tons 63, 385, 071 57, 113, 828 72, 542, 000 78, 674, 000 103, 835, 000	Value \$40, 412, 497 33, 935, 725 41, 608, 000 45, 332, 000 62, 152, 000	Short tons 126, 275, 352 124, 206, 405- 159, 634, 000 184, 880, 000	\$57, 060, 500 51, 987, 122 64, 458, 000 65, 356, 000 85, 055, 000	189, 660, 423 181, 320, 233 226, 008, 000 238, 308, 000 288, 715, 000	\$97, 472, 997 85, 922, 847 106, 666, 000 110, 688, 000 147, 207, 000	

Details on production in 1941, by States and uses, are presented in the following tables. California, New York, Illinois, Ohio, Michigan, and Pennsylvania, in the order named, were the leading States in commercial output in 1941; each produced over 10 million tons.

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States in 1941, by States

State	Short tons	Value	State	Short tons	Value
Alabama		\$1, 556, 457	New Hampshire	1, 894, 074	\$336, 538
Alaska		1 87, 116	New Jersey		4, 897, 039
Arizona	702, 889	335, 474	New Mexico	1 1, 948, 587	1 1, 269, 813
Arkansas		1, 798, 307	New York	2 14, 923, 149	1 10, 096, 875
California	2 19, 617, 609	2 10, 988, 766	North Carolina	4, 473, 297	2, 345, 165
Colorado	2 809, 270	2 528, 116	North Dakota	2, 636, 039	238, 864
Connecticut	2, 076, 977	941, 902	Ohio	12, 473, 145	9, 230, 358
Connecticut Delaware	168, 359	102, 854	Oklahoma	1, 513, 988	627, 864
Florida	1, 462, 276	949, 980	Oregon	3, 968, 395	2, 159, 470
Georgia	615, 511	283, 148	Pennsylvania	10, 515, 940	9, 936, 898
[daho		882, 867	Puerto Rico	(2)	(2)
Illinois	13, 888, 985	8, 271, 170	Rhode Island	(2) 649, 289	459, 223
Indiana	8, 897, 976	4, 560, 652	South Carolina	1, 125, 725	611, 469
lowa		1, 728, 741	South Dakota	2, 627, 059	559, 766
Kansas		1, 288, 920	Tennessee	4, 811, 686	2, 829, 836
Kentucky	2 1, 654, 183	3 1, 124, 705	Texas	12, 134, 312	6, 681, 277
Louisiana	3, 700, 140	2, 386, 097	Utah	2, 760, 025	935, 371
Maine		935, 902	Vermont	í 601, 918	1 127, 149
Marvland	5, 167, 445	4, 446, 850	Virginia	4, 593, 193	3, 770, 650
Massachusetts	5, 351, 002	2, 674, 557	Washington	5, 583, 285	2, 476, 834
Michigan	15, 606, 215	6, 190, 336	West Virginia	2, 733, 607	3, 185, 639
Minnesota	13, 517, 009	2, 705, 534	Wisconsin	9, 263, 237	3, 398, 039
Mississippi		2 1, 018, 504	Wyoming	2, 003, 663	840, 933
Missouri	5, 401, 903	3, 220, 086	Undistributed 3	46, 147, 000	17, 145, 000
Montana		1, 871, 912			
Nebraska		1, 273, 066	i i	288, 715, 000	147, 207, 000
Nevada		894, 721		,,	,,

Output of commercial producers included under "Undistributed."
 Output of Government-and-contractor operations included under "Undistributed."
 Includes items covered by "!" and "!."

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States in 1941, by States and uses

[Commercial unless otherwise indicated]

				-	Building					
State	Gl	riss	Mol	ding	Comn	nercial	Governm			
	Short tons	Value	Short tons	Value	Short tons	Value	Short	Value		
labamalaska			96, 446	\$62, 541	288, 811	\$209, 092	24, 450	\$10,07		
rizona rkansas Salifornia	(¹) 134, 194	(1) \$483, 643	(1) 87, 666 (1)	(1) 232, 488 (1)	63, 227 275, 524 5, 601, 255 308, 288	45, 179 152, 830 2, 885, 751 151, 638	38, 304 98 (1) (1)	24, 11 7 (1) (1)		
Connecticut Delaware Torida	15 220	12 176	3, 887 1, 937	(1) (1) 1,751 2,574	605, 229 68, 476 913, 939 198, 878	285, 633 45, 364 565, 696 73, 036	1, 398 1, 475	27 83		
llinois ndiana	(1)	(1) (1)	1, 098, 227 266, 493	1, 210, 778 199, 845 (1)	52, 464 2, 744, 834 1, 745, 707 563, 637	26, 962 1, 320, 913 701, 073 283, 849	4, 486 2, 638	3, 81 50		
entucky			1, 500 9, 033	600 18, 161	790, 225 179, 500 516, 523 57, 920	367, 475 125, 160 170, 235 24, 733	25, 393 (1) 98 1, 830	5, 06 (1)		
faine	24, 000	38, 400	(1) 1, 729, 159 21, 035	(1) 624, 824 27, 163	875, 505 1, 641, 282 1, 760, 134 866, 611	575, 621 819, 459 681, 356 321, 517	2, 512 14, 774 1, 871, 079	3, 14 87, 3		
Aississippi Aissouri Aontana Vebraska	(1) 5, 025	(1) 5, 418	81, 086	79, 778	52, 783 1, 491, 397 46, 314 450, 773	16, 007 785, 150 38, 744 160, 109	(1) 70 6, 724 7, 864	(¹) 8.8		
levada lew Hampshire lew Jersey lew.Mexico lew York	(1)	(1) 403, 346	15, 434 1, 254, 861	32, 207 1, 950, 840	20, 323 (1) 1, 555, 550 (1)	14, 870 (1) 722, 298	13, 825 217 31, 005	6, 5 21, 7 21, 4		
North Carolina				1, 010, 051	4, 419, 626 252, 433 31, 620 2, 325, 082	(1) 2, 431, 573 74, 148 17, 490 1, 454, 560	227, 148 70 3, 522	(1) 57, 10 1, 1		
hio	80, 437 (¹)	(1) 128, 699 (1)	(1)	669, 450	303, 598 222, 621 2, 564, 736	159, 193 181, 789 2, 183, 062	233 414 725 (1)	1, 1		
regon eennsylvania uerto Rico thode Island outh Carolina outh Dakota			(1) 114, 519	(1) 216, 236	174, 171 293, 924 47, 824 459, 171	83, 656 131, 005 20, 435 354, 596	1,500 266,771 18,684 16,189	2, 2 124, 2 1, 2 11, 4		
outh Dakota ennessee exas tah ermont		(1) (1)	(1) (1) (23, 750	(1) (1) (21, 557	1, 468, 613 223, 407	829, 543 99, 973 (1)	147, 162 9, 700 5, 331	64, 4 7, 1 3, 8		
Vashington Vest Virginia	(1)	(1)	(1) (1) (1) 159, 729	(1) (1) (1) 138, 694	1, 151, 569 803, 907 344, 274 1, 254, 711	850, 185 422, 140 351, 738 430, 033	40, 158 19, 747 77, 498	1, 5 19, 9 49, 8		
Vyoming Indistributed 2	2, 919, 768	5, 041, 847	269, 432	353, 510	12, 102 76, 233	7, 881 45, 628	4, 984 2, 901, 000	4, 2 1, 253, 0		

See footnotes at end of table.

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States in 1941, by States and uses—Continued

			. 8	Sand—Con	tinued			
•		Pa	ving					
State	Comr	nercial		ent-and- actor		ing and hing ³	Fire or	furnace
	Short	Value	Short	Value	Short	Value	Short	Value
	tons	Value	tons	Value	tons	Value	tons	vaiue
Alabama Alaska	484, 170	\$233, 310	13, 210 10, 875	\$1,690 150	(1)	(1)		
Arizona	27, 837	17, 434	5, 378	2, 275				
Arkansas	234, 980	110, 304	1.846	797			(1)	(1)
California	2, 620, 958	1, 211, 480	(1)	(1)	34, 259	\$54, 266	1,000	\$1,000
Colorado Connecticut	25, 034 229, 991	14, 576 128, 894	411, 796	29, 414	1, 916	2,081		
Delaware	15, 300	9, 180	411,750	20, 111	5, 482	10, 849		
Florida	224, 148	136, 382	525	432	0, 102	10,010		
Georgia	277, 581	132, 111	1,427	1, 194	12, 594	16, 809		
daho	24, 131	17, 112	88,894	38, 261				
Illinois	1,061,569	483, 614	16,029	12, 134	(1)	(1)	56, 548	60, 956
Indiana	1, 260, 918	699, 935	378	323			120,000	40,000
lowa	287, 125	124, 124 293, 964	5, 665	526	(1)	(1)		
Kansas Kentucky	677, 410 546, 352	293, 904 344, 273	242, 896 (1)	91, 245	564	388		
Louisiana	446, 618	263, 566	245	182	(1)	(1)		
Maine	10, 726	2,577	111,845	24, 551		(-)	1 300	500
Maryland	(1)	(1)	111,010	22,002	(1)	(1)	1, 300 (1)	(1)
Massachusetts	509, 975	207, 283	110, 351	18, 446	ì. 140	5, 130		
Michigan	1,634,059	734, 349	194, 119	41, 168	(1)	(1)		
Minnesota	282, 110	166, 644	148, 409	27, 719	(1)	(1)	(1)	(1)
Mississippi	457, 264 526, 883	189, 470	(1)	(1)	1, 259	615		
Missouri	526, 883	279, 692	14, 412	10, 023	(1)	(1)	(1)	(1)
Montana Nebraska	15, 652 730, 963	8, 354 338, 131	4,576	4, 256 250	576	230		
Nevada	32, 523	33, 878	4,658	3, 583	1, 379	3, 448		
New Hampshire	42, 190	20, 327	478, 471	35, 248	1,019	0, 440		
New Jersey	1, 326, 648	600, 480	542	38	110, 596	224, 146	35, 707	42, 34
New Mexico	-,,		119,805	64, 656	120,000		00,	12,01
New York	3, 082, 806	1, 665, 993	l (1)	(1)			(1)	(1)
North Carolina	811, 941 17, 922	290, 381	1, 322, 428	230, 113				
North Dakota	17, 922	5, 720	280	200		(1)		
Ohio	1,662,985	1,030,338	2, 367	1,445	(1)	(1)	(1)	(1)
Oklahoma Oregon	156, 727 132, 406	74, 779 87, 686	62, 771 36, 573	13, 129 29, 036				
Pennsylvania	1, 802, 150	1, 580, 208	140	140	(1)	(1)	41, 893	60, 91
Puerto Rico	1,002,100	1,000,200	(1)	(1)		()	11,000	00, 814
Rhode Island	20, 592	8, 281	94, 386	69, 793				
South Carolina	81, 258	25, 481	189, 164	93, 720	(1)	(1)		
South Dakota	(1)	(1)	116, 777 81, 772	69, 998				
Tennessee	772, 442	540, 062	81,772	14, 835	17, 613	24, 555	145	159
Texas	1, 305, 914	752, 660	238, 640	180, 611	6, 510	10, 044	(1)	(1)
Utah	224, 812	83, 380 (1)	12, 420 5, 331	4, 790 3, 808				
Vermont Virginia	418, 019	214, 392	397, 349	52,010	(1)	(1)		
Washington	205, 689	109, 144	139, 678	58, 171	, 0	6		
West Virginia	338, 335	288, 024	22, 271	16, 361	(1)	(1)		
Wisconsin	273, 708	144, 977	323, 471	106, 937	6	(1)		
Wyoming	800	400	3, 034	1,090		l		
Undistributed 3	1,691,662	1, 131, 028	7, 840, 000	2, 658, 000	807, 926	1, 036, 405	69, 210	151, 372
	27, 013, 283	14, 834, 378	12, 876, 000	4, 013, 000	1,001,814	1, 388, 966	325, 803	357, 240

See footnotes at end of table.

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States in 1941, by States and uses—Continued

State	En	gine	Fil	ter	Railroad	ballast 4	Oth	er s
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
bamaska	(1)	(1)						
zona .			(1)	(1)				
ransas	(1)	(1)	(1)	(1)	(1)	(1) \$14,769	4, 312	\$30
lifornia	35, 097	\$16,796	3, 844	\$11, 259	44,064	\$14,769	199, 097	134, 81
lorado	36, 209	31, 373	92 2, 390	467 2, 180			30, 123	11,05
aware	58, 870	19. 313	2, 390 1, 116	2, 180 2, 512			(1) 3, 420	(1) 2.05
rida	(1)	(1)	1,110	2, 012			(1)	(1)
rgia	11,536	4, 628	1,757	5, 271			85, 950	28, 26
ho	630	400					2, 682	1.82
oisana.	82, 450 85, 731	42, 820	(1)	(1)	(1) 22, 340	(1)	(1)	(1)
ana	85, 731 39, 652	33, 594 23, 308	4, 063	14, 702	22, 340 2, 158	6, 111 854	51, 970 18, 7 63	13, 41 8, 22
888	79, 493	41, 346	(1)	(1)	4, 705	1, 943	17, 556	5, 86
tucky	40, 159	28, 478					(1)	
isiana	22, 202	5, 017			74, 933	21, 304	(1)	(9)
ne	(1)	(i)			(1)	(1)	(1)	(1)
yland sachusetts	(1) 4, 500	(1) 1, 125	(1)	(1)			(1)	(1)
igan		(1)			266, 506	(1) 44, 484	55, 079 73, 925	11, 50 34, 20
nesota	(1)	(i)	966	2, 636	354, 062	74, 327	40, 129	8,68
ssippi	14, 766	6, 257					5, 104	2,50
ouri	25, 863	24, 024	(1)	(1)	(1)	(1)	(1)	(1)
naska.							175, 825	22, 03
8	188, 095	63, 253			6, 041	2, 356	29, 227	6, 23
ampshire				-,,-			(1)	(1)
ersev	30, 336	16, 349	51, 648	79, 315			(1)	(1)
Mexico	(1)	(i)						
ork	46, 190	21, 378	(1)	(1)	(1)	(1)	70, 589	33, 46
Carolina Dakota	51,861	37, 437	(1)	(1)			28, 598	8,01
Dakota	68, 390	50, 162	6, 631	10, 700	53, 403	11,072	147 405	167, 88
ma	(1)	(1)	0,001	10, 700	00, 200	11,072	147, 425 17, 888	7,68
	17,717	3, 901			32, 162	12, 407	9,754	2,78
vania	327, 985	354, 943	(1)	(1)		,	228, 160	302, 12
Rico Island								
Carolina	(1) 23, 684	(¹) 7, 192	(1)	(1)	12, 675	1, 825	(1)	(1) 7, 30
Dakota	20,001	7, 192	(9)	(-)	12, 6/3	1, 829	15, 905 1, 872	1,48
see	23, 311	16, 554	(1)	(1)			43, 233	23, 54
	42, 350	22, 030	(i)	(1) (1)	98, 920	36, 613	117, 897	38.64
	(1)	g) ·	500	500			(1)	(0)
nta.	(1) 78, 324	(¹) 32,117					(1)	(1)
ngton	(1)	(1)				(1)	76, 370 47, 253	45, 48 13, 89
Virginia	298, 920	269, 035			(¹) 11, 500	6,000	(1)	(1)
nsin	(1)	(1)	(1)	(1)	40, 326	12,048	26,816	6, 10
ng							(1)	(1)
ributed ?	288, 461	139, 603	190, 959	194, 565	610, 5 4 0	199, 068	397, 682	505, 96
								,

See footnotes at end of table.

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States in 1941, by States and uses—Continued

	1.7			Gr	ravel					
		Buile	ling		Paving					
State	Comr	nercial		nent-and- ractor	Comi	nercial	Governm contr	ent-and- actor		
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value		
Alabama	362, 283	\$371, 716	33, 378	\$7, 649	907, 926	\$577, 716	73, 156 520, 122	\$22, 06 86, 96		
Arizona	75, 245	59, 687	86, 817	52, 746	127, 355	59, 763	219, 220	65, 95		
Arkansas	375, 679	320, 537	56, 586	8, 153	371. 426	209, 648	1, 260, 529	512,06		
California Colorado	6, 581, 234	3, 753, 562	(2)	(1)	3, 379, 252 186, 488	1, 936, 490 123, 664	8	(3)		
Connecticut	(1) 628, 214	389, 020	()		131, 170	68, 810		()		
Delaware	11,808	11, 833								
Florida	(1)	(1)	245	91	53, 466	58, 471	1,301	65		
Georgia Idaho	70, 901	37 743	1, 015 37, 792	661 12, 348	153, 469	97, 876	6, 141 1, 994, 191	5, 59 540, 85		
Ilinois Indiana	2, 985, 019	37, 743 1, 579, 731	216	108	1, 711, 802	762, 960	534, 819	190, 34		
[ndiana	1, 294, 900	784,050	45, 482	6, 464	2, 167, 262	1, 318, 556	498, 031	150, 34		
owa	406, 450	351, 546	1,829	246	1, 051, 900	360, 990	3, 448, 330	309, 04		
Kansas Kentucky	221, 575 233, 562	120, 851 184, 340	14,777 (1)	3, 283	309, 569 545, 577	183, 426 387, 043	534, 792	167, 99 (1)		
Louisiana	1, 028, 031	720, 722	245	91	1, 407, 270	1, 101, 151	22, 091	2,04		
Maine	59, 422	35, 385	64	69	172, 536	70, 704	3, 236, 439	700, 15		
Maryland Massachusetts	(1) 1, 357, 537	1, 056, 930			(1)	270 170	159, 819	11,39		
Michigan	2, 101, 135	1, 196, 559	284, 260	46, 688	754, 745 2, 430, 213	370, 179 1, 114, 651	388, 869 4, 061, 027	35, 49		
Minnesota	529, 968	566, 717	227, 013	80, 197	676, 623	361, 349 627, 347 371, 920	6, 823, 244	1, 157, 22 486, 49		
Mississippi	148, 573	66, 635	(1)	(1)	1, 124, 735 629, 671	627, 347	1 (1)	(1)		
Missouri		818,067	65, 422 10, 749	13, 115	629, 671	371, 920	615, 774	271, 45		
Montana Nebraska	123, 535 266, 364	818, 067 92, 185 167, 882	23, 834	14, 038 8, 442	435, 565 1, 031, 936	242, 511 324, 158	2, 555, 177 426, 751	1, 126, 41 186, 59		
Nevada	(1)	(1)	7,798	15, 468	1, 031, 936 30, 760	11, 344	1, 883, 234	536, 01		
New Hamp-		100	•		14.00		1 ' '			
shire New Jersey	(1) 735, 616	(1) 492, 296	11, 269	804	(1) 454, 273	(1) 276, 470	1, 122, 343 10, 193	96, 26 72		
New Mexico	(1)	(1)	57, 867	66, 408	202, 210	210, 410	1, 739, 910	1, 117, 29		
New York	3, 524, 752	2, 657, 021	(1)	(1)	2, 578, 382	2, 146, 409	(1)	(1)		
North Carolina.	473, 534	511,872	12, 158	5, 196	589, 231	657, 344	145, 421	30, 25		
North Dakota Ohio	40, 224 1, 879, 106	36, 707 1, 319, 771	140 17, 330	50 2, 751	54, 733 3, 023, 893	31, 179 1, 928, 436	2, 180, 117 498, 109	87, 87 70, 44		
Oklahoma	81, 647	53, 882	245	2, 131	197, 680	133, 110	582, 821	33, 17		
Oregon	670,058	403, 941	9, 594	739	805, 689	471, 173	1, 902, 144	901, 04		
Pennsylvania	2, 120, 100	1, 776, 787	400	1, 150	1, 910, 073	1, 558, 415	113, 053	24, 01		
Puerto Rico Rhode Island	164 796	111 824	2, 500	3, 750	36, 314	7, 482	(1) 82, 728	(1) 64, 31		
South Carolina.	164, 796 103, 546	111, 824 97, 158	2,500	91	102,946	96, 075	1,091	54		
South Dakota	12, 349 337, 838	8,082	49, 141	3, 241	102, 946 37, 882	8, 109 1, 017, 528	1, 091 2, 007, 917	378, 13		
l'ennessee	337, 838	264,601	42, 430	8, 334	1, 542, 164	1, 017, 528	1, 182, 040	207, 42		
Texas Utah	2, 275, 924 226, 526	1, 673, 674 104, 261	113, 804 17, 704	38, 444 11, 223	2, 473, 377 396, 010	1, 867, 323 154, 962	2, 329, 012 1, 344, 743	439, 04 393, 82		
Vermont		101,201	700	500	(1)	(1)	590, 556	119, 03		
Virginia	1, 249, 325	1, 703, 145			652, 697	666, 987	444, 484	105, 27 697, 25		
Washington	841, 451	505, 130	106, 704	65, 855	634, 067	367, 506	1,744,960	697, 25		
West Virginia Wisconsin	304, 088 956, 402	306, 309 441, 261	173, 449	109, 321	477, 980 954, 230	378, 877 418, 567	123, 086 3, 481, 301	59, 85 1, 154, 70		
Wyoming	17, 821	12, 527	8,698	6, 034	37, 432	34, 543	876, 153	438, 13		
Undistributed 2.	1, 575, 352	1, 563, 241	7, 257, 000	3, 203, 000	1, 560, 535	1, 663, 676	27, 950, 000	9, 909, 00		
	27 000 042	96 790 700	9 770 000	2 707 000	20 210 204	04 604 000	70 715 000	00 000 00		
	37, 900, 243	26, 729, 788	8, 779, 000	3, 797, 000	38, 310, 304	24, 624, 898	79, 715, 000	22, 893, 00		

See footnotes at end of table.

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States in 1941, by States and uses—Continued

		Gravel—C	Continued			Sand an	d gravel	
State	Railroad	ballast 6	Otl	ner 7	Total co	mmercial	Total Gov	ernment tractor
	Short	Value	Short	Value	Short tons	Value	Short tons	Value
Alabama		\$44, 933	4, 620	\$2,772	2, 284, 801	\$1, 514, 971	144, 194 530, 997	\$41, 48 87, 11
rizona	(1)	(1)	(1)	(1)	353, 170	190, 393	349, 719	145.00
rkansas	(1) 870, 894	(1) 315, 250	(1) 5, 014	819	2, 268, 847	1, 277, 222 10, 988, 766	1, 319, 059	521, 0
California	512,053	69, 599	383, 636	182, 849	2, 268, 847 19, 617, 609	10, 988, 766	(1)	(1)
Colorado	5, 302	3, 203	(1)	(1)	809, 270	528, 116	1 a)	à
Connecticut	29, 216	29, 216	35, 221	4, 835	1, 665, 181	912, 488	411, 796	29, 4
Delaware					168, 359	102, 854	l	
Clorida	(1)	(1)			1, 458, 807	948, 527 274, 868	3. 469	1,4
leorgia	405 010	01 140	11 000	14 500	605, 453	274, 868 287, 587	10,058	8, 2
dahollinois		91, 168 734, 703	11, 200 62, 132	14. 500 27. 460	721, 389 13, 335, 283	8, 068, 082	2, 125, 363 553, 702	595, 2 203, 0
ndiana	1, 225, 626	571. 835	(1)	(1)	8, 354, 085	4, 403. 517	543, 891	157. 1
OW8		150. 089	13, 430	19, 804	2, 815, 781	1, 418, 859	3, 455, 921	309, 8
Cansas	(1)	(1)	4, 318		2, 110, 063	1, 021, 312	817, 858	267, 6
Kentucky	(1)	71	1,010	0,001	1, 654, 183	1, 124, 705	(1)	(1)
ักท igiana	170.563	94, 036	(1)	(1)	3, 677, 461	2, 383, 706	22, 679	2.3
faine	148, 510	53, 132	80, 222	20, 031	541, 478	210, 797	3, 350, 178	725, 1
Maryland			3, 444	3,000	5, 007, 626	4, 435, 453	159, 819	11.3
Maine Maryland Massachusetts	(1)	(1)	(1)	(1)	4, 849, 270	2, 620, 414	501, 732	54, 14
Michigan	1 669. 929	214, 890	38, 924			4, 942, 113	4, 554, 180	1, 248, 2
		433, 176	344, 289	39, 479	4, 447, 324	2, 023, 730	9, 069, 745	681, 8
/Lississippi	385, 835	108, 361 81, 925	2, 510	1, 303	2, 192, 829 4, 706, 225	1, 018, 504 2, 925, 466	(1)	(1)
Aissouri	143, 954	81, 925	(1)	(1)	4, 706, 225	2, 925, 466	695, 678	294, 6
dontana	1, 133, 973	272, 475		36, 624	2, 129, 459	718, 349		1, 153, 5
Nedraska	10, 414	6, 625		2, 202		1,071,179	459, 149	201.8
Minnesota Mississippi Missouri Montana Nebraska New Hampshire New Hersey New Jersey	52, 102	5, 532	(1)	8	260, 630 281, 774	317, 953	1, 909, 515 1, 612, 300	576, 70 132, 3
New Torsov			8	(3)	5, 954, 134	204, 183 4, 896, 273	10, 735	132, 3
New Mexico			(-)	(-)	(1)	(1)	1, 948, 587	
Jew York	18 423	18, 657	522, 065	94, 225		10, 096, 875	(1)	(1)
Jorth Carolina	35, 219	24, 649		(1)	2, 766, 142	2 022 500	1 707 155	322.6
North Dakota	268, 026	55, 161	42, 907	4, 455	455, 432	150, 712	2, 180, 607	88, 1
)hio	1, 289, 905	598, 854	42, 907 187, 803	206, 469	11, 951, 817	9, 154, 542	2, 180, 607 521, 328	75, 8
New York North Carolina North Dakota Dhio Nakota			1,411	5, 930	455, 432 11, 951, 817 867, 918	150, 712 9, 154, 542 581, 389	646, 070	46. 4
Oregon Pennsylvania	82, 960	46, 682		17, 830	2, 019, 670	1, 228, 196	1, 948, 725	931, 2
ennsylvania			101, 379	74, 251	10, 401, 622	9, 910, 498	114, 318	26, 4
Puerto Rico Rhode Island South Carolina South Dakota							(2)	(1)
knode island		2, 301	(1)	(1)	468, 175	319, 111 392, 864	181, 114 457, 271	140, 1
South Carolina	10, 540	2, 301 54, 907	(1) 171	(1)		392, 804	457, 271	218, 60 452, 60
Cennessee	140, 537	85, 763		15, 334	434, 540 3, 489, 250	107, 165 2, 587, 791	2, 192, 519 1, 322, 436	242, 0
Cexas.	1, 337, 678	520, 738	127, 922	76, 089	9, 305, 694	5, 958, 685	2, 828, 618	799 50
Jtah	249, 159	50, 931	(1)	(1)	1, 375, 458	518, 386	1, 384, 567	722, 59 416, 90
Zermont	(1)	(1)		()	(1)	(1)	601, 918	127, 14
7iroinio	1 ''		22, 886	25, 481	3, 711, 202	3, 611, 773	881, 991	158. 8
Washington	716, 980	75, 926	274, 471	107, 103	3, 572, 196	1, 635, 631	2, 011, 089	841, 2
West Virginia	22, 444	10, 924	(1)	(1)	2, 588, 250	3, 109, 427	145, 357	76, 2
Vashington Vest Virginia Visconsin	1, 118, 231	243, 280	336, 315	78, 176		1, 977, 239	4, 055, 719	1, 420, 80
Wyoming Jndistributed 2	1, 008, 439	325, 344	(1)	(1)	1, 110, 794	3, 109, 427 1, 977, 239 391, 380	892, 869	449, 5
Jndistributed 2	272, 902	62, 035	1, 005, 498	476, 167	199, 108	122, 362	45, 948, 000	17, 023, 00
	16 200 155	E 450 000	9 070 00"	1 550 000	101 EFC 40=	114 700 010	107 150 000	20 500 0
	10, 302, 175	J. 400, 300	3. 8/3. 235	1. 555. 000	101, 550, 467	114, 706, 913	107, 159, 000	52. 5UU. O

¹ Included under "Undistributed."
2 Includes, in addition to items entered as "1" sand and gravel produced on W. P. A. projects.
3 Includes 371,049 tons of blast sand valued at \$912,626.
4 Includes 37,911 tons of ballast sand valued at \$5,676, produced by railroads for their own use.
5 Includes 351,537 tons of sand valued at \$36,737, used by railroads for fills and similar purposes.
6 Includes 7,536,591 tons of ballast gravel valued at \$1,506,12°, produced by railroads for their own use.
7 Includes 1,157,557 tons of gravel valued at \$128,993, used 5 or railroads for fills and similar purposes.

Location of plants.—Figure 2 shows the location of all pits reported to the Bureau of Mines as producing sand or gravel, or both, used in any kind of construction in 1940. Each dot represents an active pit, regardless of the volume of material produced. Inasmuch as 1940 was a fairly active year in the building trades and new pits can be opened without difficulty, the map may be regarded as a reasonably accurate index of commercial sources of supply. Sand and gravel pits are numerous and widely scattered. They are abundant in the glacial deposits of the northeastern quarter of the United States but are scattered south of the Ohio and Missouri Rivers, which mark the southern limits of the terminal moraines. Many deposits occur on the Pacific coastal plain. River beds and their banks are important sources of supply. The concentration of pits along the Mississippi and Ohio Rivers is noteworthy. The Arkansas, Missouri, and Willamette Rivers are not shown on the map, although their courses may be traced by the pits along their channels.

The extent of reserves of sand and gravel can be judged only in part from this map, for many large undeveloped deposits are situated in sparsely settled territory. On the other hand, the large number and close proximity of pits in the populous industrial areas of the Northeastern, Middle Western, and Pacific Coast States indicate intensive development of sand and gravel deposits, and not necessarily

a more abundant supply.

Government-and-contractor production.—The quantity of sand and gravel reported by State government agencies for 1941 increased 7 percent over that reported for 1940 and represented 37 percent of the total Government-and-contractor output during 1941; of this quantity, 54 percent was produced by contractors. Counties reported 21 percent and municipalities 1 percent of the production. The remaining 41 percent was produced largely by Federal agencies, including the Forest Service, National Park Service, Bureau of Public Roads, Bureau of Reclamation, Soil Conservation Service, United States Engineer Office, and Work Projects Administration.

Average values of the materials were higher than in 1940, except the output by or for counties. Other details are shown in the following

tables.

Sand and gravel sold or used by Government-and-contractor producers in the United States, 1937-41, by uses

		Sa	nd			G	Total Government-				
Year		ding	Pav	ing	Bui	ding				sand and gravel	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
1938_ 1939_ 1940_	5, 149, 000	890, 224 2, 255, 000 2, 039, 000	6, 623, 073 9, 114, 000 9, 595, 000	1, 373, 556 2, 767, 000 2, 767, 000	7, 299, 822 10,896,000 9, 866, 000	2, 454, 783 5, 586, 000 4, 922, 000	59, 480, 051 81, 790, 000 82, 442, 000	24, 275, 000 22, 690, 000	64, 317, 945 75, 560, 447 107, 615, 000 107, 052, 000 107, 159, 000	34, 883, 000 32, 418, 000	

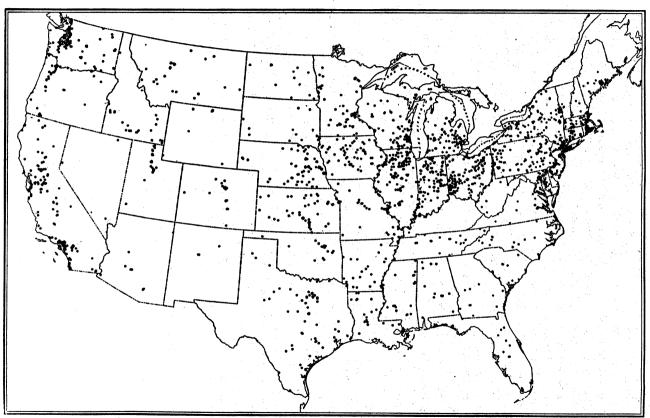


FIGURE 2.—Location of sand and gravel plants in the United States.

Sand and gravel sold or used by Government-and-contractor producers in the United States, 1938-41, by types of producers

	1938	3	1939		1940)	1941	1941	
Type of producer	Short tons	Aver- age value per ton	Short tons	Average value per ton	Short tons	Aver- age value per ton	Short tons	Aver- age value per ton	
Construction and mainte- nance crews.	44, 745, 693 30, 814, 754		71, 934, 000 35, 681, 000						
	75, 560, 447	. 28	107, 615, 000	. 32	107, 052, 000	. 30	107, 159, 000	. 30	
States	38, 434, 738 23, 892, 718 2, 232, 786 11, 000, 205	. 19 . 33 . 34	2, 093, 000 53, 164, 000	. 24 . 26 . 38	21, 685, 000 1, 923, 000 46, 787, 000	. 22 . 28 . 38	22, 772, 000 1, 637, 000 43, 573, 000	. 20 . 29 . 40	
	75, 560, 447	. 28	107, 615, 000	. 32	107, 052, 000	. 30	107, 159, 000	.30	

METHOD OF TRANSPORTATION

Sand and gravel are conveyed from pit to destination by truck, railway, or waterway. In 1934, 57.4 percent of the total shipment was by rail; a steady decline in rail shipments had been noted from that year until the recovery recorded in 1941.

Sand and gravel sold or used by commercial producers in the United States, 1940-41, by methods of transportation ¹

	194	0	1941	
Method of transportation	Short tons	Percent of total reported	Short tons	Percent of total reported
Truck Rail Waterway	54, 063, 146 45, 254, 984 18, 600, 060	45. 8 38. 4 15. 8	74, 452, 542 69, 225, 395 22, 201, 899	44.9 41.7 13.4
Total reported Percent of total commercial production covered	117, 918, 190	100. 0 89. 8	165, 879, 836	100.0 91.0

¹ For practical purposes the entire output of Government-and-contractor operations commonly is moved by truck. Including Government-and-contractor production, sand and gravel moved as follows—1946: Truck 72 percent, rail 20 percent, and waterway 8 percent; 1941: Truck 67 percent, rail 25 percent, and waterway 8 percent.

DEGREE OF PREPARATION

Specifications for sand and gravel are becoming increasingly rigid. Although in many regions nature has sorted its materials remarkably well, relatively few deposits supply products that will satisfy market requirements without screening or washing. In 1941, 88 percent of all commercial production was processed in some way, and the remainder was sold as bank-run material. On the other hand, only 21 percent of the Government-and-contractor production was processed. This accounts largely for the low average value per ton of the Government-and-contractor output compared with commercial production.

Sand and gravel (prepared or unprepared) sold or used by producers in the United States, 1940-41, by commercial and Government-and-contractor operations

		1940		1941			
	Quant	ity	Average	Quant	ity	Average	
	Short tens	Percent	value per ton	Short tons	Percent	value per ton	
Commercial operations: Prepared Unprepared	115, 425, 213 15, 831, 054	88 12	\$0. 63 . 36	159, 784, 239 21, 772, 228	88 12*	\$0. 67 . 33	
	131, 256, 267	100	. 60	181, 556, 467	100	. 63	
Government-and-contractor op- erations: Prepared Unprepared	35, 633, 000 71, 419, 000	33 67	. 43 . 24	22, 311, 000 84, 848, 000	21 79	. 49 . 25	
	107, 052, 000	100	. 30	107, 159, 000	100	. 30	
Grand total	238, 308, 000		. 46	288, 715, 000		. 51	

SIZE OF PLANTS

More than half of the commercial sand and gravel plants of the United States are in a size group that produces less than 25,000 tons annually, but this large group contributed only 8.1 percent of the total production in 1940. Medium-size plants furnish the bulk of the output. In 1940, 61.5 percent of the total came from plants having an annual production between 25,000 and 300,000 tons. Details of output, by size groups, for 1939 and 1940 are given in the following table.

Comparison of number and output of commercial sand and gravel plants in the United States, 1939-40, by size groups 1

			1939		1940				
Size group in short tons	Plants 2		Production		Plants 3		Production		
	Num- ber	Per- cent of total	Short tons	Per- cent of total	Num- ber	Per- cent of total	Short tons	Per- cent of total	
Less than 25,000	1, 133 365 286 186 50 26 11 11 } 3 4 6	54. 5 17. 5 13. 7 8. 9 2. 4 1. 3 . 5 . 5 . 2 . 2	- 9, 398, 000 13, 011, 000 20, 431, 000 25, 686, 000 12, 077, 000 9, 086, 000 4, 948, 000 4, 884, 000 2, 077, 000 3, 289, 000 7, 666, 000	8. 4 11. 6 18. 2 22. 8 10. 7 8. 1 4. 4 4. 3 1. 8 2. 9	1, 224 379 310 204 54 25 11 13 5 3 2 4 5	54. 7 17. 0 13. 8 9. 1 2. 4 1. 1 . 5 . 6 . 2 . 1 . 1 . 2 . 2	10, 218, 000 13, 538, 000 21, 901, 000 28, 525, 000 12, 981, 000 8, 546, 000 7, 007, 000 3, 181, 000 2, 230, 000 1, 646, 000 3, 712, 000 6, 855, 000	8. 1 10. 8 17. 5 22. 8 10. 4 6. 8 3. 9 5. 6 2. 5 1. 3 3. 0 5. 5	

¹ Plants operated by or for States, counties, and municipalities are not included; also not included are approximately 194 railroad plants with an output of 5,840,000 tons of sand and gravel in 1939 and 187 plants with an output of 5,973,000 tons in 1940.
¹ May include a few companies operating more than 1 plant but not submitting separate reports for indi-

vidual plants.

PRINCIPAL TRENDS

Sand and gravel for construction.—Markets for sand and gravel depend primarily on the construction industries. Figure 3 shows the correlation between highway construction and sales of gravel, as well as the relation of sand output to construction activity in general.

Construction of numerous military establishments during 1941 created a strong market for building sand and gravel, which was supplemented by the demands of active private construction and extensive highway work. The magnitude of the 1942 market is problematical because highway building, except that of military importance, has been curtailed drastically, and the program of private building has been reduced greatly. Direct military construction and all types of building that are or will be authorized because of their

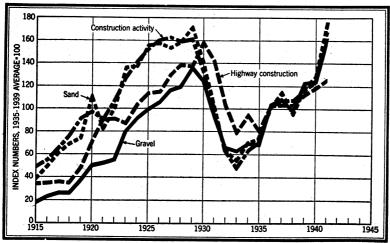


FIGURE 3.—Comparison of production of sand and gravel with highway construction (including maintenance) and construction activity (including maintenance and work relief) in the United States, 1915-41.

Data on highway construction and construction activity from Bureau of Foreign and Domestic Commerce.

indirect promotion of the military program will continue at a high level and may counteract the decline in nonmilitary construction.

Industrial sands.—Sand has important uses in manufacturing industries, and the volume of sales fluctuates in consonance with industrial activity. With foundries working at virtually 100 percent of capacity, the demand for molding and fire or furnace sand has been unparalleled. The glass industry has been active because of the movement to substitute glass for metals and the high level of carloadings is indicated by a growing demand for engine sand. Increased industrial activity in various fields has promoted a wider use of grinding and polishing sand. Figure 4 shows graphically the history of production of industrial sands since 1916.

As indicated in figure 5, sales of molding sand follow in general the trend of industrial production. They also show marked correlation with the number of automobiles manufactured during recent years, but

such correlation will cease in 1942.

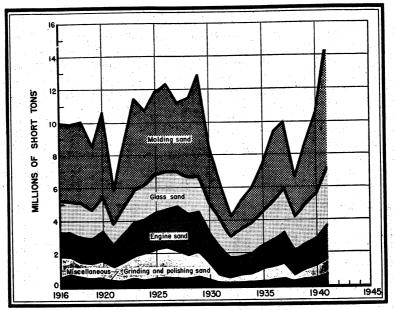


FIGURE 4.—Production of industrial sands in the United States, 1916-41.

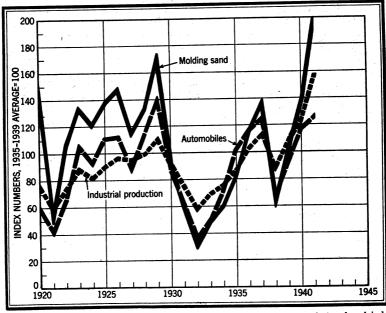


Figure 5.—Trends in sales of molding sand compared with automobiles manufactured and industrial production, 1920-41. Statistics on automobiles from Bureau of the Census. Index of industrial production from Federal Reserve Board.

EMPLOYMENT AND PRODUCTIVITY 2

Data on employment and output per man in the sand and gravel industry have been recorded since 1933.³ The figures for 1940 that follow are based upon operations reporting more than three-fourths of the total commercial production. Data for 1941 are not yet available.

The number of men employed was 6 percent higher in 1940 than in 1939, the average number of days employed increased 1 percent, and the average length of shift was virtually the same as in 1939. The average productivity was 3.3 short tons per man per hour, which is the same as the average for the 4 years 1936-39.

Employment in the commercial sand and gravel industry, sand and gravel produced at plants included in the study, and average output per man in the United States, 1935-40 ¹

***			Employ	nent		Pro	duction		
			Time e	mployed			Average per		Per- cent
Year	Aver-			Ма	n-hours	Com- mercial		an t tons)	of com- mer-
nt be	num- ber of men	per of age	Total man- shifts	Aver- age per man per day	Total	sand and gravel (short tons)	Per shift	Per hour	cial indus- try repre- sented
1935	11, 926 16, 127 16, 062 14, 971 15, 617 16, 595	197 207 215 201 214 217	2, 351, 453 3, 332, 532 3, 458, 994 3, 001, 796 3, 335, 321 3, 596, 886	8. 3 8. 6 8. 6 8. 5 8. 4 8. 4	19, 578, 368 28, 672, 615 29, 754, 746 25, 578, 807 28, 054, 960 30, 263, 744	60, 826, 691 95, 219, 468 97, 113, 001 81, 742, 896 96, 755, 364 101, 143, 305	25. 9 28. 6 28. 1 27. 2 29. 0 28. 1	3. 1 3. 3 3. 3 3. 2 3. 5 3. 3	75. 4 83. 8 81. 8 81. 1 81. 7 77. 1

¹ Excludes plants operated by or directly for States, counties, municipalities, and other Government agencies.

Productivity data by regions for 1940 are summarized in the accompanying table. The most notable changes to be observed in comparison with 1939 are the smaller output per man per hour in New York and in the Wyoming-Colorado-New Mexico-Utah-Arizona area and the increased productivity in the South Carolina-Georgia-Alabama-Florida-Mississippi area. The highest productivity (5.4 tons per man per hour) was attained in the Michigan-Wisconsin area.

² Statistics on employment and productivity compiled by Elva T. Shuey from records of the employment statistics section, Bureau of Mines.

³ See Minerals Yearbook 1935, pp. 941-943; 1936, pp. 843-845; 1940, Review of 1939, pp. 1218-1221; and Review of 1940, pp. 1191-1193.

Employment in the commercial sand and gravel industry, sand and gravel produced at plants included in the study, and average output per man in the United States in 1940, by regions ¹

			Employm	ent		Produ	ction		
			Time e	mploye	đ		Average per man		Per- cent
Region	Average num- ber of men		-	Ms	n-hours	Com- mercial	ton		com- mer- cial
rogiun		Average num- ber of days	Total man- shifts	Average per man per day	Total	sand and gravel (short tons)	Per shift	Per hour	indus- try repre- sented
Maine, New Hampshire, Vermont, Rhode Island,									
Massachusetts, and Con- necticut New York	637 1, 313	172 214	109, 519 281, 613	8. 5 8. 1	930, 527 2, 293, 227		38. 52 31. 39	4. 5 3. 9	84. 5 66. 8
Pennsylvania, New Jersey, and Delaware	2, 328	251	583, 303	8. 5	4, 961, 574	12, 464, 809	21.37	2. 5	92.7
Maryland, and District of Columbia	1, 018	234	238, 671	8.3	1, 988, 051	3, 643, 561	15. 27	1.8	51. 5
Alabama, Florida, and Mississippi North Carolina, Kentucky,	773	242	186, 854	8.7	1, 630, 246	4, 347, 188	23. 27	2.7	83. 2
and Tennessee Arkansas, Louisiana, and	793	239	189, 659	8.6	1, 627, 278	3, 367, 470	17. 76	2.1	77.6
Texas	1, 213 1, 502 1, 632 1, 128	208 245 211 188	252, 406 368, 255 343, 821 212, 048	9. 0 8. 4 8. 3 8. 6	2, 261, 392 3, 091, 009 2, 860, 729 1, 814, 194	5, 380, 140 7, 452, 901 13, 472, 265 9, 773, 703	21. 32 20. 24 49. 18 46. 09	2.4 2.4 4.7 5.4	61. 7 82. 3 84. 9 79. 3
North Dakota, South Dakota, and Minnesota Nebraska and Iowa	403 703	158 184	63, 681 129, 198	8. 4 9. 4	534, 115 1, 214, 179	2, 421, 076 4, 309, 467	38. 02 33. 36	4. 5 3. 5	57. 6 75. 9
Kansas, Missouri, and Okla- homa	864	194	167, 973	8.0	1, 347, 369	4, 318, 630	25. 71	3. 2	77. 1
zonaCalifornia and Nevada	300 1, 321	180 230	53, 949 303, 214	7.9 8.0	427, 197 2, 410, 957	1, 393, 686 12, 164, 123	25. 83 40. 12	3. 3 5. 0	57. 8 91. 9
Montana, Washington, Oregon, and Idaho	667	169	112, 722	7.7	871, 700	3, 576, 311	31.73	4.1	61. 1
Total United States	16, 595	217	3, 596, 886	8.4	30, 263, 744	101, 143, 305	28. 12	3. 3	77.1

¹ Excludes plants operated by or directly for States, counties, municipalities, and other Government agencies.

PRICES

Prices for commercial sand and gravel were, in general, higher in 1941 than in 1940. The largest gains were in molding sand, which increased from \$1.05 to \$1.16 a ton, and in grinding and polishing sand, which increased from \$1.07 to \$1.39 a ton. The prices of filter sand and fire or furnace sand declined. The average price of total commercial gravel increased 5 cents a ton. Building gravel increased from 65 to 71 cents a ton and paving gravel from 59 to 64 cents. Railroad-ballast prices remained unchanged.

The average price of total Government-and-contractor sand and gravel remained unchanged. Building sand declined from 40 to 31 cents, but paving sand increased from 29 to 31 cents a ton. The same trends were apparent in gravel; that used for building declined,

whereas that for paving rose.

NEW DEVELOPMENTS

New aggregate problems arise at each great dam built in the Far West. At Boulder Dam the problem was quantity production and storage; at Grand Coulee it was disposal of an excess of fine sand. At Shasta Dam just the reverse condition exists from that at Grand Coulee, because there is a dearth of fine sand. Ball mills and rod mills had to be installed to reduce the minus-\mathfrac{1}{16}-inch sand to three finer sizes, namely, 4- to 28-, 28- to 60-, and 60- to 100-mesh. The various sizes of gravel and sand are blended in exact proportions as required. Gold is recovered as a byproduct of the sand.

The plant supplying the aggregate, situated near Redding, Calif., has a 1,200-ton-per-hour washing and screening plant. A unique feature is a 10-mile belt-conveyor system to carry aggregates to the dams. The belts travel 550 feet a minute, and the haulage cost is

said to be only half as much as rail transportation.

A Pennsylvania gravel company reduces surplus gravel to sand sizes by means of a recently developed type of impact crusher. The size of the gravel and boulders is reduced by hurling them at high velocity against breaker plates. The method is said to be efficient. The impact crusher is employed at some plants simply to eliminate soft stone.

Research is being directed toward obtaining improved adhesion between aggregates and bituminous bonding materials, thus increasing

the durability of road surfaces.

The Los Angeles abrasive-testing machine has been adapted to test extremely small and exceptionally large aggregates, as well as intermediate grades.

The Bureau of Mines has developed refinements in the purification of glass sands involving application of froth flotation, agglomeration,

and attrition scrubbing to remove impurities.

The more-refined methods of treating sand include acid leaching to reduce the iron content to as low as 0.01 percent, fine grinding in airswept tube mills controlled by "electric ears," and the use of bag-type dust collectors, not only to protect workers from pulmonary diseases but also to recover considerable quantities of extremely fine grained materials that are salable for use in soaps, scouring powders, and other abrasive products.

FOREIGN TRADE 4

Because of intensified warfare and difficulties of transportation, imports of sand and gravel during 1941 were very small and were obtained chiefly from Canada. No glass sand was imported.

Exports of sand and gravel were not recorded separately in 1940

and 1941.

⁴ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Sand and gravel imported for consumption in the United States, 1940-41, by classes and countries

	Glass	sand 1	Other	sand 3	Gr	avel	Т	otal
Country	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1940								
North America: Canada Europe:	-		249, 829	\$78, 088	175, 140	\$25, 313	424, 969	\$103, 40 1
Belgium Denmark	4, 337	\$8,722	336 2, 106	750 360			4, 673 2, 106	9, 472 360
France Netherlands Norway			101 814 224	480 327 25			101 814	480 327
United Kingdom Asia: Japan Oceania: Australia			10, 754 (3) 6	10, 250 9 61	418	373	224 11, 172 (³)	25 10, 623 9 61
	4, 337	8, 722	264, 170	90, 350	175, 558	25, 686	444, 065	124, 758
1941		Spr .						
(JanSept.)						1 12		
North America: Canada Europe: United Kingdom Oceania: Australia			159, 709 6, 518 1	69, 404 3, 820 5	98, 748	15, 387	258, 457 6, 518 1	84, 791 3, 820 5
			166, 228	73, 229	98, 748	15, 387	264, 976	88, 616

¹ Classification reads "Sand containing 95 percent silica and not more than 0.6 percent oxide of iron and suitable for manufacture of glass."

Classification reads "Sand, n. s. p. f."

2 Less than 1 ton.

Sand and gravel exported from the United States, 1937-41

Year	Short tons	Value	Year	Short tons	Value
1937 1938 1939 ¹	67, 141 35, 572 27, 746	\$80, 197 30, 303 31, 931	1940_ 1941 (Jan,-Sept.)	33	9

Classification reads "Gravel and building stone."
 Not separately classified.

BLAST-FURNACE SLAG

Continuing the policy inaugurated in 1938, the National Slag Association conducted a canvass of 30 companies (64 plants) that prepare blast-furnace slag for commercial use. The total output for 1941 was 14,678,266 short tons valued at \$11,064,102. Of this total, 84 percent was air-cooled and screened, 5 percent air-cooled and unscreened, and the remainder granulated. Sales of screened and air-cooled slag were 52 percent greater in 1941 than in 1940, and the average value per ton was 2 cents lower.

About 73 percent of all slag processed is treated in Ohio, Alabama, and Pennsylvania; however, it is marketed in all States east of the Mississippi River except several New England States too far removed

from sources of supply to permit economic utilization.

Air-cooled slag is used principally in the construction and maintenance of highways, as well as in airport runways, parking lots, and building construction and as railway ballast. It is used quite extensively as roofing aggregate and in the manufacture of mineral wool. Granulated slag is used primarily as fill material and as an ingredient of portland cement. Other uses and the quantities involved are shown

in the accompanying table.

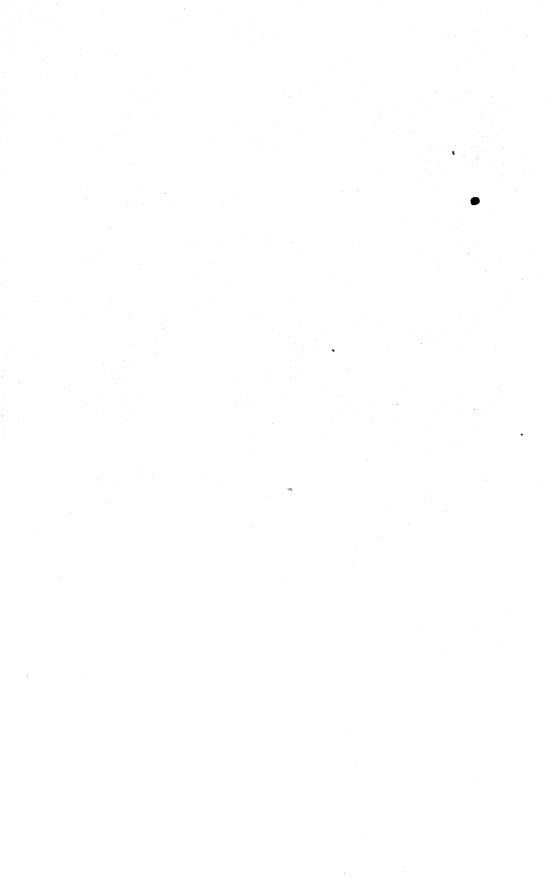
Particles of metallic iron that escape through the slag notch of the blast furnace are recovered during the screening process by means of a magnetic separator supplemented by hand picking. During 1941, 137,500 tons of metal were thus recovered and returned to the furnaces to augment supplies urgently needed for the war program.

Exclusive of administrative, office, and sales employees, 1,536 men were employed in processing slag in 1941. A production of 4.8

short tons per man-hour was attained.

Shipments of slag, by methods of transportation, were as follows: Railroad, 55 percent; truck, 43 percent; and waterway, 2 percent.

Air-cooled blast-furnace slag sold or used by producers in the United States, 1940-41, by States 1


State		1940		1941			
	Quan	tity		Quan			
	Short	Percent of total	Value	Short tons	Percent of total	Value	
Alabama Ohio Pennsylvania Other States ²	2, 609, 273 3, 021, 039 1, 363, 002 2, 369, 914	27. 9 32. 3 14. 5 25. 3	\$1, 718, 872 2, 647, 087 1, 295, 579 1, 861, 366	3, 698, 379 4, 239, 924 1, 667, 252 3, 564, 026	28. 1 32. 2 12. 6 27. 1	\$2, 528, 633 4, 000, 074 1, 564, 823 2, 730, 739	
	9, 363, 228	100.0	7, 522, 904	13, 169, 581	100.0	10, 824, 289	

National Slag Association.
 Colorado, Illinois, Kentucky, Maryland, Michigan, New York, Tennessee, and West Virginia.

Blast-furnace slag sold or used by producers in the United States in 1941, by uses 1

			Air	-cooled			Gr	anulated	
	Ur	screened	l	8	screened				
Use		Val	alue		Valu	Value		Value	
	Short tons	Total	Aver- age per ton	Short tons	Total	Aver- age per ton	Short tons	Total	Aver- age per ton
Concrete (pavements, buildings, bridges, etc.) Roads other than concrete. Bailroad ballast. Mineral wool. Roofing. Fill and subbase cushion courses, etc. Sewage trickle filter. Airport runways. Parking lots and private driveways. Agricultural purposes.	90, 667	32, 319	.51	6, 165, 928 2, 511, 994 155, 998 149, 268	145, 114 180, 724 128, 260 51, 971 341, 610 194, 916	.88 .65 .93 1.21 .70 1.11	810, 195		\$0.07
Cement manufacture Other uses			40	174, 551	195, 133	1.12	(2)	(2)	. 16
Total: 1941	797, 363 1, 230, 832 812, 220 1, 202, 754	507, 288	.41 .45	8, 132, 396 7, 108, 061		. 86	989, 814 1, 188, 094	257, 737 122, 017	. 16 . 25 . 10 . 12

National Slag Association.
 Concealed to avoid revealing data of individual company; figures included in total.

GYPSUM

By Forrest T. Moyer

SUMMARY OUTLINE

	Page		Page
General conditions	1291	Distribution of sales by uses	1297
Salient statistics		Prices	1299
Domestic production	1293	Recent developments	1299
Capacities and equipment of processing		Foreign trade	
nlants	1295	World production	1301

The total value of all gypsum products sold or used in 1941 was nearly 70 million dollars, or 30 percent higher than in 1940 and far above that of the previous record year, 1925. Outstanding products were portland-cement retarder, lath, wallboard, sheathing board, and miscellaneous tile shapes, for which striking gains were reported over sales during 1940. Crude supply in 1941 is estimated at 6,000,000 short tons and was attained principally by greatly increased production from domestic mines, which more than offset an indicated small decline in imported crude. Kettle and kiln output of calcined gypsum totaled nearly 4 million tons, or 20 percent more than in 1940 Despite increased costs of labor and materials, prices of gypsum products were relatively unchanged from 1940 in most_instances; uncalcined products were slightly higher, industrial plasters unchanged, building plasters slightly lower, and prefabricated products slightly higher in price.

The record annual dollar volume of business for the gypsum industry in 1941 resulted principally from the advanced rate of private building activity, to which was added an extensive program of cantonment and emergency housing for the armed forces and for industrial Private building activity was maintained well above that in 1940 until near the close of 1941, when "housing" priorities established September 22 on some structural materials first noticeably began to curtail the volume of construction not essential to the defense After declaration of war on Japan, Germany, and Italy in program. December, the accelerated military program greatly expanded cantonment and defense housing and thus bolstered a faltering market for gypsum products. The present type of residential construction consists largely of small, low-cost units in which speed and ease of erection and salvageability of materials have prime importance. These factors tend toward wider utilization of prefabricated materials, as is shown by the brisk market for gypsum board in contrast to the much less active demand for plasters.

The outstanding feature of the industry in 1941 was the strikingly increased demand for the three types of gypsum board—lath, wall-board, and sheathing—in each of which sales volumes set new annual

records. The net advance in sales of lath over 1940 was nearly 400 million square feet, which was by far the largest annual increment reported for this product. Indicative of its strong competitive position, sales of lath listed in Bureau of Mines Quarterly Gypsum Reports reached a new record quarterly total in the October-December period of 1941, when a volume of one-half billion square feet was exceeded for the first time. Also evident from this record is the apparent extensive substitution of gypsum lath for metal lath, which was placed under priority regulations after September.

Owing to its widespread use in the construction of barracks, consumption of wallboard in 1941 increased markedly over 1940 to a total of 757½ million square feet and greatly exceeded the quantity sold in

any other year.

Although gypsum sheathing was relatively unknown and sales were negligible as recently as 1939, its low cost and adaptability for construction of cantonments and other emergency housing were recognized early in the defense program. Sales jumped from 5½ million square feet in 1939 to 89½ million in 1940, nearly all of which was sold in the October-December period. In 1941, sales totaled 175 million square feet, another spectacular gain in use that indicates the widespread acceptance of this product as a proved and satisfactory material.

Salient statistics of the gypsum industry in the United States, 1937-41

	1937	1938	1939	1940	1941
Active establishments 1	92	90	92	91	93
Crude gypsum—3 Mined short tons Imported do	3, 058, 166 897, 484	2, 684, 205 789, 429	3, 226, 737 1, 308, 078	3, 699, 015 1, 405, 210	4, 788, 534 3 868, 234
Apparent supplydoCalcined gypsum produced: 5 Short tons	3, 955, 650 2, 411, 362	3, 473, 634 2, 252, 878	4, 534, 815 2, 881, 269	5, 104, 225 3, 307, 709	(4) 3, 980, 567
Value	\$11, 076, 205	\$10, 989, 626	\$14, 620, 597	\$17, 254, 667	\$19, 746, 914
Uncalcined uses: Short tons. Value. Industrial uses:	860, 825 \$1, 920, 706	756, 565 \$1, 681, 371	867, 782 \$1, 927, 415	929, 119 \$2, 250, 857	1, 320, 713 \$3, 138, 958
Short tons	125, 853 \$1, 363, 130	94, 248 \$1, 154, 517	\$1,373,564	123, 643 \$1, 532, 738	151, 960 \$1, 885, 313
Value	\$35, 516, 684	\$33,420,420	\$42,627,260	\$49, 709, 049	\$64, 734, 171
Total value	\$38, 800, 520	\$36, 256, 308	\$45, 928, 239	\$53, 492, 644	\$69, 758, 442
Imported for consumption Exported	\$1, 167, 872 \$271, 142	\$1,002,001 \$282,782	\$1, 363, 967 \$309, 453	\$1, 429, 289 \$264, 128	* \$844, 049 * \$311, 272

¹ Each mine, plant, or combination mine and plant is counted as 1 establishment.

Excludes byproduct gypsum.
 Figures cover January to September, inclusive.
 Data not available.

Despite greatly increased shipping difficulties due to the war, imports of crude gypsum in the first 9 months of 1941 totaled 868,234 short tons, a decline of only 15 percent from the record tonnage imported during the similar period of 1940. Tidewater calcining plants along the Atlantic coast appeared to have supplies of crude adequate for normal operations in 1941. However, about the middle of the year

Made from domestic, imported, and byproduct crude gypsum.

GYPSUM 1293

some crude reportedly was shipped from the Buffalo region to a calcining plant in the metropolitan New York area via the New York Barge Canal. If imports are halted completely and calcining capacity is needed, crude gypsum for at least partial operation of some tidewater plants probably could be transported from domestic mines by water. It would be more economical, however, to ship calcined gypsum or the finished products into the eastern market area.

Wage increases during 1941 were reported by operators in California, Iowa, Michigan, Nevada, Oklahoma, and Utah, and labor agreements were effected between operators and unions in several producing localities. Labor difficulties lasting through July and August closed nine gypsum operations (eight plants and one mine) in seven States; at the close of 1941 a final agreement had not been reached, although the case had been referred to the National War

Labor Board and work had been resumed in all plants.

Jury trial of the criminal charges of fixing prices on gypsum products, brought by the Department of Justice against five producing companies and eight officials, resulted in a directed verdict of acquittal. Still pending are the criminal actions against three companies for alleged illegal price control of perforated lath and a civil action on seven companies and seven officials for conspiring to restrain trade and control prices in violation of the Sherman Antitrust Act.

The wide and rather regular distribution of domestic mines and plants processing gypsum is shown on the map (fig. 1) of gypsum operations. The New England, Southeastern, and Pacific Northwest States lack domestic sources of crude supplies, but only the Pacific

Northwest is without a gypsum-processing plant.

DOMESTIC PRODUCTION

Domestic mines produced 29 percent more crude gypsum in 1941 than in 1940; the output was obtained in 16 States from 60 operations, comprising 28 underground mines, 26 open quarries, and 6 mine-quarry

		1939			1940		1941		
State	Active mines	Short tons	Value	Active mines	Short tons	Value	Active mines	Short tons	Value
California Colorado Lowa Michigan Newada New York Oklahoma Teras Utah Other States	5 3 9 5 4 9 3 6 4 12	188, 364 24, 013 430, 712 643, 180 205, 762 709, 495 161, 748 283, 912 58, 146 521, 405 3, 226, 737	\$306, 350 40, 694 510, 120 834, 856 484, 621 971, 229 207, 503 266, 265 65, 269 744, 098	6 3 8 5 4 9 3 7 4 10	259, 321 24, 641 487, 379 746, 982 250, 632 798, 229 176, 163 328, 261 45, 421 581, 983 3, 699, 015	\$437, 504 36, 787 587, 223 1, 017, 126 618, 050 1, 037, 181 227, 534 368, 882 60, 055 837, 568 5, 227, 910	3 7 4 13	381, 951 (1) 630, 930 805, 861 284, 795 1, 080, 320 258, 258 446, 419 61, 813 838, 187 4, 788, 534	\$618, 681 (2) 736, 181 1, 090, 300 754, 294 1, 500, 300 344, 484 467, 082 78, 142 1, 204, 720

¹ Included under "Other States."

² By groups of States as follows—1939: Arizona (1 active mine), Kansas (2), Montana (2), South Dakota (1), and Wyoming (2)—188,540 short tons valued at \$219,796; Ohio (2) and Virginia (2)—332,865 tons, \$224,302.

1940: Kansas (2), Montana (2), South Dakota (1), and Wyoming (1)—197,703 tons, \$227,025; Ohio (2) and Virginia (2)—384,280 tons, \$610,543. 1941: Arkansas (1) and Kansas (2)—174,918 tons, \$177,499; Colorado (2), Montana (2), South Dakota (1), and Wyoming (1)—149,848 tons, \$222,710; Ohio (2) and Virginia (2)—513,421 tons, \$804,511.

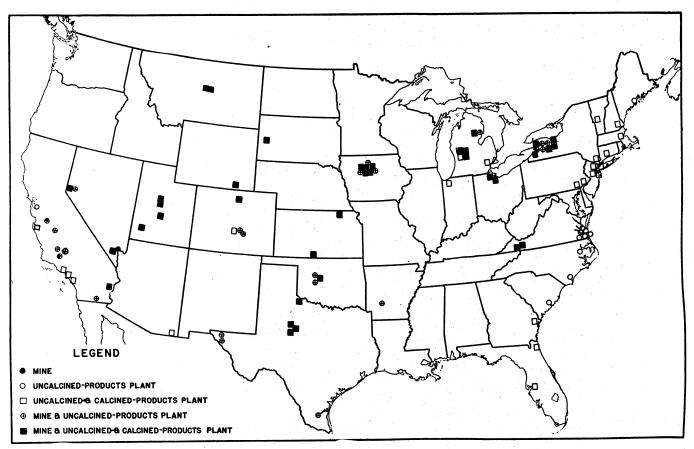


FIGURE 1.—Geographic distribution of gypsum mines and processing plants in the United States.

combinations. Output increased in nearly all the States, with New York, Michigan, Iowa, and Texas (in order of tonnage) continuing as

the leading producers.

Average estimated value of run-of-mine gypsum advanced 1 cent to \$1.42 per ton in 1941. As reported by the producers, this is essentially a "transfer" value, because run-of-mine material seldom is bought and sold in open market. Data in the preceding table do not include byproduct crude gypsum.

CAPACITIES AND EQUIPMENT OF PROCESSING PLANTS

Calcined gypsum was produced in 25 States by 57 plants-45 processing domestic crude, 11 imported crude, and 1 byproduct crude gypsum. Total kettle and kiln output was 3,980,567 short tons—a net gain of 672,858 tons over 1940. Active calcining equipment included 179 kettles, 13 rotary kilns, 8 beehive kilns, and 4 grindingcalcining kiln-mills. Equipment that was idle throughout 1941 included 10 kettles, 1 rotary kiln, and 1 beehive kiln.

Capacities and number of calcining units 1 in active gypsum calcining plants in the United States in 1941, by types and status of equipment and by districts

			Kettle	rs			Rotary	kiln	s	Total	capaci	ty per
	8	A	ctive	Ina	ctive	A	ctive	Ina	ctive	24-	hour d	lay
District	Active calcining plants	Number	Capacity per 24-hour day. (short tons)	Number	Capacity per 24-hour day (short tons)	Number	Capacity per 24-hour day (short tons)	Number	Capacity per 24-hour day (short tons)	Active (short tons)	Inactive (short tons)	Total (short tons)
New Hampshire, Vermont, Massachusetts, and Connec- ticut. Eastern New York, New Jer- sey, and Pennsylvania. Virginia, Georgia, and Florida. Western New York. Ohio, Michigan, and Indiana. Iowa. Kansas and Oklahoma. Texas. Colorado, Wyoming, South Dakota, and Montana. Utah. Nevada and Arizona. California.	4 5558534 6435	2 7 2 23 2 15 2 4 21 2 4 34 4 19 2 11 25 11 8	2 1, 399 2 4, 722 2 2, 124 2 4, 491 2 4 6, 144 4 2, 728 2 1, 305 2, 448 1, 003 495 1, 015 1, 480	(3) (3) (3) (3) (4)	(3) (3) (3) (3) 259	(3) (3) (3) (3) (3) (3) (3)	(3) (3) (3) (3) (3) (3)	1	50	1, 399 4, 722 2, 124 4, 491 6, 144 42, 728 1, 305 2, 448 1, 005 1, 015 1, 768	(8) (5) (6) (259	1, 513 4, 722 2, 124 4, 491 6, 144 2, 728 1, 305 2, 707 1, 003 1, 015 1, 768
Summary	57	179	22, 395	10	828	717	⁷ 6, 742	1	50	29, 137	878	30, 015

¹ Capacities expressed as output of "first-settle" calcined gypsum suitable for use in common wall or base-coat plasters. Figures do not include data on beehive kilns; see text.

² Includes data on active rotary kilns in this district.

³ Included with data on active kettles in this district.

Includes data on inactive kettles in this district.
Included with active capacity of this district.
Figures refer to grinding-calcining kiln-mills.

⁷ Includes data on active grinding-calcining kiln-mills.

The capacities of calcining equipment in plants that were active during all or part of 1941 totaled 30,015 short tons per 24 hours of "first-settle" calcined gypsum suitable for use in common wall or base-coat plasters. The data in the preceding table include the capacity of a new calcining plant in Nevada that did not begin operations until early in 1942 but do not include the capacities of two inactive calcining plants, one in California and the other in Washington. The capacities of beehive kilns are not included, as equipment of this type is adapted only to the manufacture of Keene's cement.

Processors' reports on the average number of operating days a year for each kettle after allowances for repair shut-downs, etc., ranged from 45 to 340 days. However, the largest grouping of kettles was in the range from 251 to 300 days, in which reports on 76 kettles had an arithmetical average of 294 days a year. For rotary kilns, reports on the number of working days a year ranged from 135 to 330 and averaged 252 days. By calculations employing the figures on operating days, active daily capacity of kettles and rotary kilns, and calcined gypsum production it is shown that only 48 percent of the calcining capacity of the country was utilized in 1941.

Plants along the Atlantic seaboard that depend on imported supplies of crude have an aggregate active calcining capacity of 6,917 short

tons and a total capacity of 7,031 tons per 24 hours.

Because gypsum board of different type and thickness is made at different speeds on account of drying problems, the total capacities of the manufacturing machines are shown in the accompanying table for each of three standard types and two thicknesses of board. capacities of a new machine that began operations early in 1942 are included in the data. The aggregate capacity of the 36 active board machines is 13,104,600 square feet of %-inch lath in 24 hours, but when making sheathing their capacity falls to 7,438,280 square feet. Reports on the number of operating days in the year per machine ranged from 217 to 350 and averaged 304 days.

Number and capacities 1 of active gypsum-board machines in the United States in 1941, by standard types of board and by districts

District	Num- ber of	Capacity	Capacity per 24-hour day, in square feet of—						
District	ma- chines	36-inch lath	36-inch wallboard	½-inch waliboard	½-inch sheathing board	Range *	Aver-		
New Hampshire, Massachusetts, eastern New York, New Jersey, and Pennsylvania. Western New York Ohio, Michigan, and Indiana. Iowa. Virginia, Georgia, Florida, Oklahoma, and Taxas. California, Nevada, and Montana. Total.	6 6 7 3 8 6	2, 562, 000 2, 130, 400 2, 576, 400 1, 280, 800 2, 795, 000 1, 760, 000	2, 059, 000 1, 945, 200 2, 126, 600 993, 800 2, 434, 000 1, 440, 000	1, 610, 000 1, 423, 000 1, 597, 200 777, 600 1, 889, 000 1, 070, 000 8, 366, 800	1, 321, 000 1, 340, 800 1, 336, 680 696, 800 1, 793, 000 950, 000 7, 438, 280	300-330 300-353 231-350 240-320 217-343 250-350	311 320 299 287 297 308		

Expressed as square feet per 24 hours upon basis of manufacturing only standard board of specified type during the 24 hours.
 Estimated by processor at capacity rate of operation, after allowances for repair shut-downs, etc.
 In reports on individual machines.

Sum of operating days for each machine divided by number of machines.

From the data in the table, multiplication factors to convert square footages of one board type into an equivalent area of %-inch lath are as follows: For %-inch wallboard, 1.191; for %-inch wallboard, 1.566; and for 1/2-inch sheathing, 1.762. Using the foregoing data and assuming that half of the wallboard sales were of %-inch thickness and the remainder of 1/2-inch thickness, it is calculated that the rate of board manufacture was 81 percent of the total available capacity at the end The actual rate of operations was higher, however, as the calculations do not allow for spoilage and breakage and all of the machines were not available throughout the year.

DISTRIBUTION OF SALES BY USES

The pronounced gain in sales of portland-cement retarder over 1940 correlates closely with the increased rate of operations in the portland-

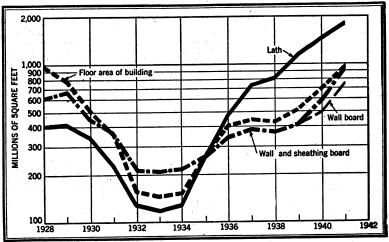


FIGURE 2.—Sales of gypsum lath and wall and sheathing boards compared with F. W. Dodge Carpuration figures on floor area of residential and nonresidential building, 1928–41.

cement industry. Although consumption of agricultural gypsum in the Virginia and Carolina peanut area declined to approximately 50,000 short tons in 1941, total consumption in the country, after adjustment for comparability, was about 10 percent higher than in 1940, principally because its use was increased in California on all types of soil for fertilizing potatoes, cotton, alfalfa, and grapevines.

All classes of industrial plasters showed marked sales increases

during 1941, and the total tonnage for this group was 23 percent above The use of gypsum plaster to make molds for metal castings is said to be increasing steadily under the stimulus of the war program.

Sales volumes of all the principal classes of building plasters were higher than in 1940, except for the group of miscellaneous plasters (patching, painter's, etc.) in which sales dropped 13 percent.

Notable features shown in figure 2 are the marked expansion in use of gypsum lath since 1933 and the effects of the defense and war programs upon consumption of the three types of gypsum board since 1940. Sales of sheathing before 1939 are said to be negligible and are included with those of wallboard The semilog or ratio scale used in figure 2 shows fluctuations in the annual physical volume of sales and floor area of building and also permits ready comparison of the rates of increase or decrease.

Gypsum products (made from domestic, imported, and byproduct crude gypsum) sold or used in the United States, 1940-41, by uses

		1940			19	41		
Use	Short	Val	ue	Short tons	Valt	Percent of change in—		
		Total	Aver- age		Total	Aver- age	Ton- nage	
Uncalcined:		Q. 1 mg - 1 . 1		4.7.0	124.00.25			
Portland-cement retarder Agricultural gypsum Other uses 3	02 232		5. 45	149, 196		4.47	(1)	(1) -1
Total uncalcined uses	929, 119	2, 250, 857		1, 320, 713	3, 138, 958		+42	
Industrial:								
Plate-glass and terra-cotta plasters. Pottery plasters Orthopedic and dental plasters Other industrial uses ?	20, 138	264, 975 324, 567	13. 16 33. 16	26, 022 11, 568	338, 708 394, 661	13.02 34.12	+29 +18	-1 +3
Total industrial uses					820, 084			1
Building:	120, 040	1, 002, 700		151, 900)	1, 885, 313		+ 23	
Cementitious: Plasters:								
Base-coatSanded	1, 475, 033			1, 532, 829	13, 505, 974	8. 81		
		732, 503 107, 671		132, 628 20, 878	774, 465 126, 391	5. 84 6. 05		+5
vauging and molding	163 650					12.36		-2 -1
		344, 908	27. 69	12,882	334. 040	25. 93		-6
Insulating and roof-deck	18.561	162, 100		24, 079	200, 912	8. 34	+30	
Other 4. Keene's cement.	26, 962	513, 621 419, 177		14. 031 29. 816	520, 755 464, 219	37. 11 15. 57	-13 + 11	+16
Total cementitious	1, 862, 527	17, 328, 795		1, 939, 097	18, 052, 682			
Prefshricated.								
Lath 5	1 072 555	19 190 259	6 10 54	1 257 641	02 504 610	. 10 70		
Wallboard 8	380, 125	10, 109, 330	6 21 57	612 203	23, 524, 812	6 91 99	7+27	. +2
Sheathing board	86, 945	1, 632, 688	6 18. 22	179, 275	3, 287, 699	6 18 73	1 108	1 12
Lath Wallboard Sheathing board Tile Ti	178, 315	1, 962, 963	11 45. 58	198, 578	3, 290, 280	39. 53	7+16	11 — 13
Total prefabricated	1, 717, 940	32, 380, 254		2, 347, 697	46, 681, 489		+37	
Total building uses		49, 709, 049			64, 734, 171			
Grand total value		53, 492, 644			69, 758, 442			

¹ Not comparable; see text.
3 Includes uncalcined gypsum sold for use as filler and rock dust, in paint manufacturing, and for minor

² Includes uncalcined gypsum sold for use as nizer and rock clust, in paint manufacturing, and miscellaneous sales.
³ Includes statuary, industrial casting and molding plasters, dead-burned filler, and miscellaneous sales.
⁴ Includes joint filler, patching and painter's plaster, and unclassified building plasters.
⁵ 1940: 1,450,469 M square feet; 1941: 1,843,648 M square feet.
⁶ Average value per M square feet.
⁷ Percent of change in square footage.
⁸ 1940: 491,291 M square feet; 1941: 757,588 M square feet.
⁹ 1940: 89,631 M square feet; 1941: 175,496 M square feet.
⁹ 1940: 89,631 M square feet; 1941: 175,496 M square feet.
⁹ 1940: 89,631 M square feet; 1941: 175,496 M square feet.
⁹ 1940: 89,631 M square feet; 1941: 175,496 M square feet.
⁹ 1940: 89,631 M square feet of partition tile only.

1299 GYPSUM

Although over-all consumption of gypsum tiles increased markedly in 1941, the gain was due entirely to greatly increased sales of miscellaneous tiles (roof, floor, shoe, etc.) and plank in which square footages sold were more than two and a half times those in 1940. In contrast, sales of partition tiles fell approximately one-fifth below the square footages sold in 1940.

PRICES

Prices of gypsum products, as indicated by the average unit values, f. o. b. plant, showed no general trend in 1941 but remained at essentially the same levels as in 1940. The only significant change was the 13-percent decline noted for the average value of partition tiles. In 1941, the unit value of agricultural gypsum comparable with the 1940 value was \$6.01 a ton, a 10-percent gain caused largely by price increases in the Southeastern States necessary to cover the higher transportation costs in obtaining crude supplies from Canada.

RECENT DEVELOPMENTS

Research and technical work in the gypsum industry in 1941 was directed toward the enlarging of capacity to produce gypsum board and the development of products to fit industrial, farming, and other nonbuilding uses. Further refinements were made in the highstrength gypsum cement used for oil-well drilling and in a new molding plaster used in place of sand molds in metal casting work. company established experimental farms to promote uses of its products.

Satisfactory alkali resistance in exterior concrete and brick paints of the conventional oil types is said to be obtained 1 when 15 to 20 percent of the pigment is gypsum, either as plaster of paris or as

Research 2 on calcium sulfate showed the high-temperature form to be unstable and did not confirm the existence of basic sulfates of calcium.

Gypsum or anhydrite in place of salt cake in the kraft-paper industry 3 continues to be a practical substitution in mills where gypsum supplies can be delivered for less than \$5 and salt cake for more than \$17.40 a ton.

FOREIGN TRADE 4

Imports and exports of crude gypsum and gypsum products in 1941 are available for publication for the first 9 months only; later data are to be confidential for the war period.

Imports.—Crude gypsum brought to processing plants on tidewater along the Atlantic coast comprises practically all of the import trade in gypsum. During the first 9 months of 1941 crude imports

¹ Fuller, Wayne R., Inert Materials for Admixture with Paint Pigments: Am. Soc. Test. Materials Bull. 105, August 1940, p. 37.
2 Newman, Edwin S., Behavior of Calcium Sulfate at High Temperatures: Nat. Bureau of Standards, Jour. Research, vol. 27, No. 2, August 1941, pp. 191–196.
2 Chemical and Metallurgical Engineering, Gypsum in Place of Salt Cake: Vol. 48, No. 2, February 1941, p. 163.
4 Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

were 15 percent below the record tonnage that entered the country during the same period of 1940. It is noteworthy, however, that the 9-month volume in 1941 was approximately the same as the 12-month totals in 1937 and 1938. Importations of gypsum products and manufactures virtually ceased in 1941, and 9-month values reported for these classifications aggregated only \$42,753, which represents a monthly rate 56 percent lower than in 1940.

Gypsum and gypsum products imported for consumption in the United States, 1987-41

Year		including drite)	Gro	ound	Calc	cined		ne's ient	Ala- baster	Other manu-	Total
1641	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	manu- fac- tures 1	factures, n. e. s.	value
1937 1938 1939 1940 1941		772, 026 1, 174, 117 1, 300, 450	1, 486 1, 475 1, 137	17, 606 16, 206	372 302 223	6, 551 5, 087	25 9 4 9 16	\$675 223 145 265 427	110, 136 71, 143	44, 878 55, 412	1, 363, 967 1, 429, 289

Includes imports of jet manufactures, which are reported to be negligible.
 January to September, inclusive.

Crude gypsum (including anhydrite) imported for consumption in the United States, 1939-41, by countries

Country	19	39	19	40	1941 (JanSept.)		
	Short tons	Value	Short tons	Value	Short tons	Value	
Canada	1, 243, 390 (¹)	\$1, 112, 967 18	1, 368, 194	\$1, 260, 076	865, 965 1	\$797, 213 15	
Italy Mexico United Kingdom	116 58, 955 5, 617	2, 942 53, 341 4, 849	184 32, 134 4, 698	4, 495 29, 056 6, 823	2, 268	4, 063	
	1, 308, 078	1, 174, 117	1, 405, 210	1, 300, 450	868, 234	801, 296	

¹ Less than 1 ton.

Tidewater quarries in New Brunswick and Nova Scotia, Canada, supplied nearly all the crude imported during the first 9 months of 1941. Imports into southern California from San Marcos Island, Baja California, Mexico, ceased in 1940, marking the first break in this raw-material flow that began in 1925 and usually comprised 5 to 10 percent of the total annual crude imports.

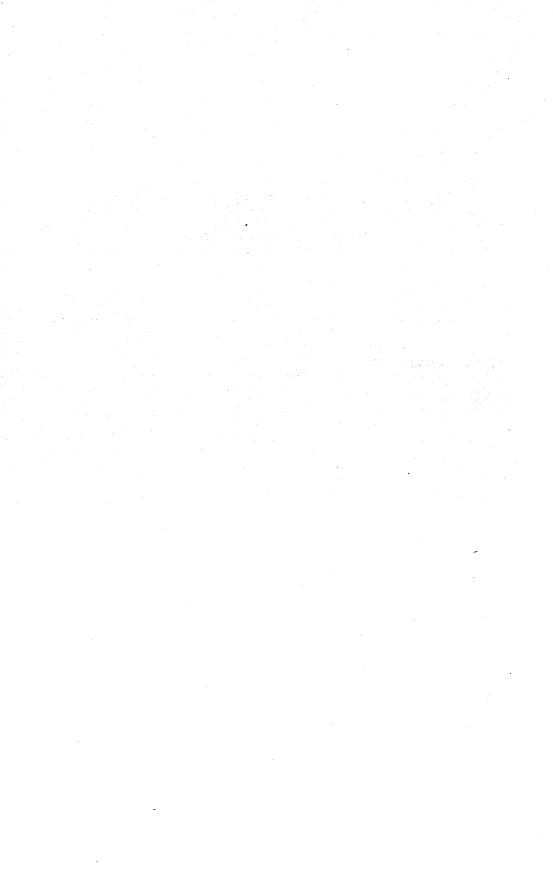
Gypsum and gypsum products exported from the United States, 1937-41

Year	Crude, crushed, or ground		Plasterbo wallb		Calc	ined	Other manu-	Total
7 (ta	Short tons	Value	Square feet	Value	Short tons	Value facture n. e. s		value
1937 1938 1939 1940 1941 (JanSept.)	4, 777 2, 844 10, 342 5, 209 9, 019	\$26, 692 17, 7€2 41, 012 31, 564 43, 179	4, 360, 404 3, 658, 647 5, 258, 249 4, 152, 452 7, 604, 879	\$96, 019 88, 822 130, 073 101, 680 159, 917	2, 847 3, 833 2, 913 2, 208 1, 986	\$61, 383 71, 914 69, 577 56, 419 54, 768	\$87, 048 104, 284 68, 791 74, 465 53, 408	\$271. 142 282, 782 309, 453 264, 128 311, 272

Export activity increased markedly during 1941, and the monthly rate of total value of materials exported during the first 9 months was 57 percent greater than that in the year 1940; however, exports comprise only a small part of the domestic industry.

WORLD PRODUCTION

The United States doubtless continued to be the leading producer of crude gypsum, although data on production in other countries are fragmentary. Output from Canadian operations was 10 percent higher than in 1940 and set a new record annual tonnage for that country. In other countries that formerly had large production, mining activities undoubtedly were curtailed drastically because of the war.


World production of gypsum, 1937-41, by countries, in metric tons 1 [Compiled by B. B. Waldbauer]

Country 1	1937	1938	1939	1940	1941
Algeria	46, 175	33, 325	(1)	(1)	(2)
Anglo-Egyptian Sudan				(2)	(4)
Argentina .	68, 220	70, 813	87, 328	103, 157	(2)
Australia:	00,0	1.5,5.5	5.,,	,	• • •
New South Wales	9, 300	12,712	(2)	(2)	(4)
South Australia	117, 985	148, 943	147, 266	155. 901	Ŏ O O
Victoria	21, 197	13, 596	11, 966	(2)	Ìń
Western Australia	9, 219	13, 645	14, 570	13, 020	m
Belgian Congo	(2)	1,000	(2)	500	Ø
	2.000	2,000	2,000	2,000	8
Brazil 4	1,044, 222	915, 169	1, 289, 950	1, 314, 311	1, 442, 707
Canada			22, 209	25, 865	
Chile	24, 980	24, 551 (2)	(1)	75, 000	8
China	(3)		6, 270	12,000	×
Cuba	15, 028	7, 257			Ø Ø
yprus	13, 576	9,729	5,058	1,400	\mathcal{Q}
Egypt	253, 641	212, 088	700, 166	61, 847	(2)
Eire	11,647	13, 364	16, 168	21, 662	24, 66
Estonia	12,748	13, 915	(2)	(2)	-8
France	1,320,400	(2)	(2)	(9)	(2)
dermany	(2)	(2)	(2)	(3)	<u> </u>
Austria 6	47, 000	(2)	(2)	(2)	(2)
3reece	17, 924	16,609	15, 219	(2)	. (?)
ndia, British	46, 830	70, 944	69, 786	(2)	(3)
raq			69, 545	34, 879	(3)
taly	416, 198	425, 299	(2)	(2)	(2)
Latvia	196, 911	220,000	245, 035	(2)	(3)
Luxemburg	19, 722	19, 901	(2)	(2)	(1)
New Caledonia	984	1,070	(3)	3,000	8
Palestine	3, 934	3,984	`4, 524	4, 403	(9)
Peru	12, 895	14,026	15, 655	21, 478	`25, 00
Portugal	11, 390	9, 036	(2)	(2)	
Rumania	70, 620	69, 079	(2)	(2)	725
	10,020	95	102	· (6)	66
SwedenSwitzerland	35,000	35,000	38, 000	30,000	වඩවඩව
	22, 800	(2)	(2)	(2)	λí
Punisia	33, 186	38, 849	40, 782	8	X
Union of South Africa			(1)	8	8
United Kingdom		1, 109, 928		3, 355, 672	4, 344, 06
United States	2,774,307	2, 435, 057	2, 927, 231	0, 000, 072	2, 324, 00

¹ In addition to the countries listed, gypsum is produced in Chosen, Japan, French Morocco, Mexico, Poland, Spain, U. S. S. R., and Yugoslavia, but production data are not available.

² Data not available.

Rail and river shipments.
 Approximate production.
 Exports of crude and calcined gypsum.
 Estimate furnished by Bundesministerium für Handel und Verkehr.

LIME

BY OLIVER BOWLES AND F. D. GRADIJAN

SUMMARY OUTLINE

	Page		rage
Summary	1303	Trends in principal uses	
Salient statistics	1304	Shipments	. 1314
Production		Total shipments	
Production by States	1304	Hydrated lime	
Location of plants	1305	Prices	1316
Production by uses	1306	Fuel ratios	1316
Lime and other liming materials used in		Size of companies	1318
agriculture	1309	New developments	1318
Building lime	1309	Foreign trade	
Chemical and industrial lime			
Hydrated lime			
Uses	1311	Exports	1320

SUMMARY

Production of lime attained an all-time high of 6,079,416 short tons in 1941 and exceeded the previous record of 1940 by 24 percent. This marked increase in output was accompanied by an increase of 11 cents a ton in average value for all lime at the point of production.

Sales of agricultural lime increased 5 percent in 1941 compared with 1940, and the average value per ton rose from \$5.71 to \$6.24. The increase is due in part to activities of Agricultural Adjustment Administration county agents in promoting wider use of liming materials.

Building lime increased 5 percent in volume of sales over 1940,

whereas the unit value advanced 3 percent.

Sales of lime for chemical and industrial purposes increased 35 percent over 1940, reflecting the tremendously increased activity in the heavy industries fostered by the war program. The price of chemical and industrial lime held steady, showing an increase of only 0.5 percent over 1940. Sales of refractory lime gained 23 percent in quantity over 1940, accompanied by a sharp upturn in unit value.

Among the major chemical and industrial uses, the most notable gains were in metallurgical lime (37 percent) and in lime used by tanneries (29 percent). For the third consecutive year, the quantity of metallurgical lime consumed in 1941 represented a new all-time high. As in 1940, sales of metallurgical lime increased far more than the increase in steel-ingot output would indicate. It is suggested that this discrepancy may be due in part to the increased use of brown iron ores, which—because of their higher phosphorus content—require larger quantities of flux than the average low-phosphorus ores.

Data on prices show that the steady decline in averages since 1937 has been arrested by an upward trend in all major categories in 1941.

Salient statistics of the lime industry in the United States, 1940-41

		1940			194	11		
	aht	Value)	a	Value		Percent of in-	
	Short tons	Total	Aver-	Short tons	Total	Aver-	Ton- nage	Aver- age value
Lime sold or used by producers: By classes: Quicklime	3, 501, 104 1, 385, 825	\$23, 433, 807 10, 522, 578	\$6.69 7.59	4, 489, 257 1, 590, 159	\$30, 586, 364 12, 354, 798	\$6. 81 7. 77	28. 2 14. 7	1.8 2.4
Total lime	4, 886, 929	33, 956, 385	6. 95	6, 079, 416	42, 941, 162	7.06	24. 4	1.6
By uses: Agricultural Building. Chemical and industrial Refractory (dead-burned dolomite)	364, 823 1, 010, 435 2, 643, 762 867, 909	2, 084, 462 8, 542, 207 16, 404, 388 6, 925, 328	1 .	382, 727 1, 065, 599 3, 561, 203 1, 069, 887	2, 387, 045 9, 259, 118 22, 183, 827 9, 111, 172	6. 24 8. 69 6. 23 8. 52	4. 9 5. 5 34. 7 23. 3	9. 3 2. 8 . 5 6. 8
Imports for consumption: Quicklime and hydrated lime. Exports	9, 205 31, 912	81, 888 311, 619	8. 90 9. 76	¹ 9, 165 ¹ 32, 444	¹ 78, 860 ¹ 318, 541	8. 60 9. 82		

¹ Figures cover January to September, inclusive.

PRODUCTION

As quicklime is a semiperishable product, stocks are never large. Quantities sold or used may therefore be considered equivalent to production.

Production of quicklime was 28 percent greater in 1941 than in 1940, and hydrated-lime production increased 15 percent. Average values were considerably higher. Data on unit values, by individual uses, are indicated in a later section of this chapter. The following table shows production during recent years.

Lime sold or used by producers in the United States, 1937-41

Year	Plants in	C1	Value ³		
Tear	operation	Short tons 1	Total 1	Average	
1937	314 321 311 314 309	4, 124, 165 3, 346, 954 4, 254, 348 4, 886, 929 6, 079, 416	\$30, 091, 168 24, 137, 638 30, 049, 394 33, 956, 385 42, 941, 162	\$7. 30 7. 21 7. 06 6. 95 7. 06	

 $[\]begin{array}{l} \hbox{1 Includes lime used by producers (captive tonnage) as follows-1937: } 270,192 \hbox{ tons valued at $1,388,052;} \\ 1938: 168,245 \hbox{ tons, $985,003; } 1939: 270,087 \hbox{ tons, $1,454,285; } 1940: 339,441 \hbox{ tons, $1,804,017; } 1941: 499,062 \hbox{ tons, $2,556,240.} \\ \end{array}$

PRODUCTION BY STATES

Lime was produced in 38 States and 2 Territories during 1941. The leading producers were Ohio, Pennsylvania, Missouri, and West Virginia, which together supplied 60 percent of the total. Ohio alone

² Value given represents value of bulk lime f. o. b. at point of shipment and does not include cost of barrel or package.

contributed 25 percent. The number of plants, production, and value of sales in each State are shown in the following table, insofar as the data can be presented without revealing figures of individual companies.

Lime sold or used by producers in the United States, 1940-41, by States

	1940			1941		
State	A -41					
	Active plants	Short tons	Value	Active plants	Short tons	Value
	planes			plants		
Alabama	8	234, 147	\$1, 359, 371	9	306, 836	\$1, 705, 550
Arizona	4	67, 882	502, 998	3	58, 146	413. 09
Arkansas	2	(1)	(1)	ž	(1)	(1)
California	12	112, 522	1, 031, 352	9	ìź2, 375	1, 168, 76
Colorado	5	7,944	82, 486	š	(1)	(1)
Connecticut.	ĭ	(1)	(1)	i	(1)	ďή
Clorida.	4	`25, 038	227. 440	4	`23, 265	216, 25
Jeorgia	ī	13, 774	92, 281	1	12, 515	85, 32
Tawaii	ī	(1)	(1)	ī	8, 681	137, 196
daho	2	h h	λí	. i l	120	2, 160
llinois	7	ì61.358	1, 150, 113	9	246, 574	1, 702, 120
ndiana	4	84, 462	457, 629	š	106, 407	588, 879
Kentucky	ī	(1)	(1)			
ouisiana		· · · · · · · · · · · · · · · · · · ·		2	(1)	(1)
Maine	2	(1)	(1)	2	(1) (1)	à
Maryland		63, 745	355, 771	13	65, 624	431, 20 0
Massachusetts	ě	108, 797	965, 333	6	106, 336	1,007,773
Michigan		41, 814	308, 926	4	55, 447	388, 10
Minnesota		(1)	(1)	$\bar{2}$	(1)	(1)
Missouri	10	607, 062	3, 184, 293	11	736, 200	4. ÌÓ6, 460
Montana		18, 797	77, 658	2	(1)	(1)
Vevada	2	(1)	(1)	ā	污	λí
New Jersey	4	28, 854	206, 326	4	i ii	ໄጎ
New Mexico	2	(1)	(1)	2	λί	λí
New York	5	54, 364	408, 645	5	62, 339	À63, 23
North Carolina	ĭ	(1)	(1)	i l	(1)	(1)
Ohio	23	1, 284, 877	10, 180, 785	22	1, 549, 246	12, 482, 100
Oklahoma	2	2,00	10, 100, 100	3	(1)	(1)
Oregon	ī	16) (6	ĭl	` 3,940	`ź1, 52
Pennsylvania	90	833, 038	5, 622, 725	89	1, 003, 039	7, 263, 779
Puerto Rico	4	3, 719	33, 120	6	8, 159	114, 72
Rhode Island	î	(1)	(1)	ĭ	(1)	(i)
South Dakota	2	h)) N	ž l	. h	讷
Cennessee	10	192, 133	1, 050, 199	1ō	239, 528	1, 354, 64
Texas	9	64, 274	543, 130	9	77, 783	632, 099
Jtah	8	49, 413	306, 357	ğ l	56, 221	352, 300
Vermont	5	61,026	430, 178	5	67, 824	479, 219
Virginia	23	178, 036	1, 044, 229	25	224, 293	1, 359, 28
Washington	6	53, 428	582, 416	- <u>4</u>	62, 309	656, 36
West Virginia	10	278, 300	1, 727, 844	10	372, 677	2, 350, 36
Wisconsin	îĭ	65, 632	542, 749	īŏ	79, 077	659, 32
Undistributed 2		192, 493	1, 482, 031		424, 455	2, 799, 29
	314/	4, 886, 929	33, 956, 385	309	6, 079, 416	42, 941, 165

¹ Included under "Undistributed."

² Includes items entered as "(¹)."

LOCATION OF PLANTS

The accompanying map (fig. 1) shows the location of active lime plants in the United States that reported to the Bureau of Mines for 1940. The largest demands for building lime, as well as for that used in the chemical and processing industries, are in populous industrial centers. This explains the intensive development of lime plants in Pennsylvania, Maryland, and Ohio. The metropolitan areas of Boston, New York, and Washington, D. C., are notably lacking in lime plants because limestone deposits are not available in these territories. The following nine States had no lime plants reporting activity in 1940: New Hampshire, Delaware, South Carolina, Mississippi,

Iowa, Kansas, Nebraska, North Dakota, and Wyoming. In some of these States, no satisfactory limestone deposits are available; in others, the market demands can be supplied more economically from sources outside the State than from development of local deposits. Limestones are widely distributed, and new plants could be estab-

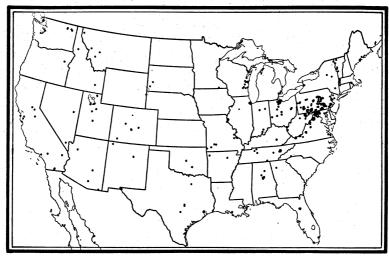


FIGURE 1.-Location of lime plants in the United States.

lished in many localities where they do not now exist, provided markets were large enough to justify operation.

PRODUCTION BY USES

Thirty years ago chemical and industrial plants consumed much less than half as much lime as the building trades. In 1941 the tonnage of lime applied to chemical and industrial uses was more than three times that used for building lime. On the other hand the quantity of lime used in agriculture has fluctuated only moderately, depending primarily on the buying power of the farmer. The most striking gain in any one use during 1941 was in metallurgical lime, which, under the stimulus of a steel industry operating at virtually 100 percent of capacity, increased 37 percent over 1940. The following table shows sales of lime, by principal uses.

LIME

Lime sold or used by producers in the United States, 1940-41, by uses

		1	940		1941					
	Qt	ıantity	Value	•	Qt	antity	Value			
Use	Per- cent of total	Short tons	Total	Aver- age	Per- cent of total	Short tons	Total	Aver-		
AgriculturalBuilding	7. 5 20. 7	364, 823 1, 010, 435	\$2, 084, 462 8, 542, 207	\$5.71 8.45	6. 3 17. 5	382, 727 1, 065, 599	\$2, 387, 045 9, 259, 118	\$6. 24 8. 69		
Chemical and industrial: Glassworks. Metallurgy. Paper mills. Sugar refineries. Tanneries. Water purification.	3. 4 20. 4 11. 6 . 4 1. 5 5. 4	168, 044 999, 215 566, 818 19, 089 72, 417 266, 088	1, 139, 381 5, 792, 745 3, 457, 354 197, 251 495, 864 1, 715, 849	6. 78 5. 80 6. 10 10. 33 6. 85 6. 45	3.0 22.5 11.1 .4 1.5 5.3	184, 559 1, 366, 899 677, 116 23, 169 93, 157 319, 244	1, 253, 700 8, 070, 180 4, 234, 772 248, 602 649, 002 2, 072, 807	6. 79 5. 90 6. 25 10. 73 6. 97 6. 49		
Other uses 1 Refractory lime (dead-	11.3 54.0	552, 091 2, 643, 762	3, 605, 944	6. 53	14. 8 58. 6	897, 059 3, 561, 203	5, 654, 764	6. 30		
Total lime	17. 8 100. 0 28. 4	867, 909 24, 886, 929 1, 385, 825	6, 925, 328 233, 956, 385 10, 522, 578	7. 98 6. 95 7. 59	17. 6 100. 0 26. 2	1,069,887 26,079,416 1,590,159	9, 111, 172 242, 941, 162 12, 354, 798	7. 06 7. 77		
III GOOTO GOGAS/	20. 4	1,000,020	10, 022, 010			1,000,100	12,001,100	l		

The following table shows production in each State in 1941 according to principal uses, insofar as the figures may be revealed.

¹ Details of distribution shown in a following table.

² Includes lime used by producers (captive tonnage), as follows—1940: 339,441 tons valued at \$1,804,017; 1941: 499,062 tons, \$2,556,240.

Lime sold or used by producers in the United States in 1941, by States and uses

	Agric	ultural	Buil	ding					Che	mical and	indust	rial					T	otal
State	Short	** 1	Short	***	Metall	urgical	Pape	r mills	Refr	actory	Tan	neries		purifi- tion	Otl	ner	Short	Yalaa
	tons	Value	tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	tons	Value
AlabamaArizonaArkansas	(1) (1)	(1) (1)	48, 938 (1) (1)	\$310, 713 (1) (1)	154, 736 45, 724 (1)	\$797, 854 286, 793	72, 837	\$409, 571	(1)	(1)	(1)	(1)	(1) (1) (1)	(1) (1) (1)	10, 032 (¹) (¹)	\$65, 581 (1) (1)	58, 146	(1)
California Colorado Connecticut	(1) (1) (1) (1)	(1)	27, 776 (¹) (¹)	(1) (1)	32, 325 (1)	313, 814 (¹)	(i) 134	·(i)	(1)	(1)	(1)	(1)	5, 994 (¹) 7, 255	\$50, 054 (1) 67, 564	52, 887 (1) (1) (1)	461, 591 (1) (1) (1)	122, 375 (1) (1) 23, 265	(1)
Florida Georgia Hawaii Idaho	2, 767	(1) 14, 570	6, 021 9, 748 1, 174 120	56, 550 70, 755 18, 960 2, 160			104	938					1, 200	07, 304	7, 507	118, 235	12, 515 8, 681 120	85, 325 137, 195
Illinois Indiana Louisiana	331 (1) (1)	2, 670 (1)	22, 628 6, 129	181, 192 41, 494	93, 646 (¹)	562, 116 (¹)	13, 896 19, 611	85, 884 107, 028	(1)	(1)	(1)	(1) (1)	31, 041 (¹)	208, 433 (¹)	(1) 32, 605	(1) 173, 585 (1)	246, 574 106, 407	1, 702, 129
Maine	(1) 49, 516 7, 865	(1) 311, 961 56, 424	(1) (1) 58, 136	(1) (1) 611, 545	(1) (1)	(1) (1)	(¹) (¹) 10, 566				(¹) 11, 995	(¹) \$107, 920	(¹)	(1) (1)	(1) (1) 14, 511	(1) (1) 121, 249	(1) 65, 624 106, 336	(1) 431, 200 1, 007, 773
Michigan Minnesota Missouri	2, 948 (¹)	5, 226 (¹)	3, 029 (1) 55, 559	26, 544 (1) 380, 129	(1) (1) 148, 446	(1) 735, 689	(1) (1) 89, 800	(1) (1) 440, 47 5	(1)	(1)	(1)	(i) (i)	4, 228 (1) 102, 265	25, 700 (1) 563, 629	7, 003	61, 642 (1) (1)	55, 447 (1) 736, 200	(1)
Montana Nevada New Jersey New Mexico	(1) (1)	(1) (1)	33.33 3 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.3	(1)	(1) (1)	(1) (1)					(1)	(1)	(1)	(1)	5 3 3 3	9999	1) 1) 1) 1)	
New York North Carolina	1, 109 23, 139	7, 266 155, 735	6, 727	40, 884 (1) 4, 221, 951	(¹) 116, 009	(¹) 676, 457	(¹) 37, 306	(¹) 222, 726	852 004	\$5, 563, 775	283	3, 476	(1) (1)	(1)	<i></i>	(i) 1. 416. 812	62, 339	463, 230 (1) 12, 482, 106
Oklahoma Oregon	(1) 3, 940 190, 553	(¹) 21, 524	473, 071 (1) 87, 453	(1)	(1)	(¹) 2, 048, 664	95, 005	(1)			31, 221		(1)	(1) (1)	(¹) 127, 235	(1)	(1) (3, 940 1, 003, 039	(1) 21, 524
Pennsylvania Puerto Rico Rhode Island South Dakota	2, 207 (1)	1, 225, 629 25, 250 (1)	(1) (1) 923	(1) (1) (1) 9, 643	(1)	(1)	90,000	019, 328		(·)			(i) (i)	(1) (1) (1)	(i) (i) (i) 30	(1)	8, 159	
Tennessee Texas Utah	(1)	(1) (1)	37, 131 31, 829 6, 324	283, 753 294, 187 67, 467	45, 170 (1) 49, 087	206, 559 (1) 274, 534	16, 566	93, 727	(¹)	(1)	7, 217	40, 490	18, 213 13, 903 314	110, 682 114, 008 4, 706	(1) 13, 605 (1)	(1)	239, 528 77, 783 56, 221	1, 354, 642 632, 099 352, 306
Vermont	6, 461 33, 692 4, 217	28, 408 206, 201 30, 216	14, 160 27, 935 13, 793	112, 182 186, 069 193, 955	56, 203 (1)	320, 524 (1)	30, 105	189, 069 161, 653 289, 505	(1)		1,496		(1) 7, 407 (1) 12, 338	(1) 51, 553 (1) 72, 147	(1) 71, 775 (1) (1)	424, 175	67, 824 224, 293 62, 309 372, 677	1, 359, 281 656, 363
West Virginia Wisconsin Undistributed 2	22, 711 2, 213 28, 422		7, 627 34, 106 83, 262				(1) 163, 855	(1) 1, 138, 195		(1) 3, 547, 397			(1) 116, 2 86	804, 331	19, 900 540, 986	198, 091 3, 040, 140	79, 077 424, 4 55	

¹ Included under "Undistributed."

Includes items entered as "(1)."

Lime and other liming materials used in agriculture.—Because of its quick reaction and consequent speedy effect in promoting plant growth, lime is widely used as a soil conditioner and fertilizer. same effect may be obtained by using finely divided uncalcined limestone or shells, but the action is slower. However, because of the low cost and ready availability of uncalcined limestone, it is used much more extensively than lime. The following table shows the quantities and values of various liming materials used in agriculture.

The effective lime content shown in this table has been calculated upon the basis of average percentages used by the National Lime Association, as follows: 85 percent of the quicklime (including lime from oystershells), 70 percent of the hydrated lime, 47 percent of the pulverized uncalcined limestone and ovstershells, and 42 percent of the calcareous marl.

Agricultural lime and other liming materials sold or used by producers in the United States, 1940-41, by kinds

	A # 4	194	0		1941						
Kind	Shor	t tons	Val	ue	Shor	tons	Value				
	Gross	Effective lime content 1	Total	Aver- age	Gross	Effective lime content 1	Total	Aver- age			
Lime from limestone: Quicklime Hydrated Lime from oystershells Oystershells (crushed) ³ Limestone Calcareous marl	165, 764 199, 059 29, 271 92, 213 8, 724, 160 25, 516	139, 340 24, 880 43, 340 4, 100, 360	1, 281, 785 ³ 208, 551 253, 776 9, 910, 373	6. 44 7. 12 2. 75 1. 14	2 221, 664 (2) 4 117,531 11, 909, 640	² 155, 170 (2) ⁴ 55, 240 5, 597, 530	² 1,520, 324 (²) ⁴ 411, 712 14, 395, 831	² 6. 86 (²) ⁴ 3. 50 1. 21			

Method of computing lime content described in preceding text.
 Lime from oystershells included with "lime from limestone."
 Figures supplied by Fish and Wildlife Service.
 Preliminary figure.

Building lime.—Building-lime sales as a whole and by States are shown in preceding tables. Sales of building lime by kind or class and the value per ton in 1941 were as follows: Finishing lime, 452,522 short tons, \$9.29; mason's lime, 464,564 tons, \$8.20; for manufacture of prepared masonry mortars, 64,572 tons, \$6.46; and for unspecified purposes, 83,941 tons, \$9.87.

Chemical and industrial lime.—The use of lime in manufacturing and processing industries has attained great importance. Lime is regarded as an indispensable ingredient in hundreds of products and is deemed necessary as an active reagent in scores of important These uses have been discussed largely from a statistical angle in a recent report 1 of the Bureau of Mines.

One of the important industrial uses is as a furnace flux and for other metallurgical applications. The quantities and average values per ton of lime applied to various metallurgical uses in 1941 were as follows: Flux for open-hearth steel manufacture, 998,968 short tons, \$5.81; flux for electric steel furnaces, 52,883 tons, \$7.05; flux for

¹ Bowles, Oliver, and Jensen, M. S., Limestone and Dolomite in the Chemical and Processing Industries: Bureau of Mines Inf. Circ. 7169, 1941, 15 pp.

smelting nonferrous metals, 76,112 tons, \$5.86; ore concentration (including cyanidation), 159,634 tons, \$5.81; wire drawing, 7,025 tons, \$7.74; other uses (including unspecified), 72,277 tons, \$6.40.

The quantity and value of chemical and industrial lime listed as "Other uses" in a previous table were reported for 1941 as follows:

Chemical and industrial lime sold or used by producers in the United States for "Other uses" in 1941

Use	Short tons	Value	Use	Short tons	Value
Acid neutralization	1, 739	\$14, 222	Insecticides, fungicides, and		
Asphalts and other bituminous	·		disinfectants	81, 955	\$587, 567
material	2,743	23, 112	Magnesia	51, 256	373, 999
Bleach, liquid and powder (ex-			Paints (calcimine, pigments,		
cludes bleach for paper manu-			etc.)	45, 513	258, 298
facture)	14, 687	100, 579	Petroleum refining	34, 696	252, 010
Brick, sand-lime and slag	21, 503	156, 081	Polishing and buffing com-		
Brick, silica (refractory)	24, 966	168, 819	pounds	3, 922	97, 987
Calcium carbide and cyanamide	132, 351	683, 410	Rubber	3, 058	22, 346
Calcium carbonate, precipi-			Salt refining	1, 956	12, 593
tated	9,677	69, 994	Sewage and trade-wastes treat-		4.1
Chromates and bichromates	18, 277	108, 649	ment	38, 256	245, 113
Coke and gas (gas purification			Textiles	1, 091	8, 210
and plant byproducts)	22, 011	139, 499	Varnish	864	5, 888
Food products:			Wood distillation	2, 557	24, 100
Creameries and dairies	1, 171	19, 877	Undistributed 2	156, 119	777, 442
Gelatin	4,846	32, 718	Unspecified	204, 952	1,346,218
Other 1	887	7, 658			
Giue	12,005	83, 580		897, 059	5,654,764
Grease, lubricating	4,001	34, 787			1

1 Includes lime used in chocolate, cocoa, fruit juices, phosphate baking powders, and other food products

not specified.

Includes acids (unspecified), alcohol, alkalies (ammonium, potassium, and sodium compounds), amiesite road surfacing, bromine, calcium phosphate, cement manufacturing, explosives, fertilizer filler, heavy chemicals, magnesia from sea water, medicines and drugs, neutralization of phosphate, nicotine, poultry feed, precipitation of phosphate in vanadium manufacture, retarder, rock wool, soap and fat, Spanish whiting, starfish control, sulfur, tobacco, and wool pullers.

HYDRATED LIME

If quicklime (high-calcium) is exposed to water, it reacts readily to form hydrated lime according to the following equation CaO+H₂O= The reaction is accompanied by evolution of heat. combination of lime and water upon a quantitative basis is as follows: 56 pounds of lime unites with 18 pounds of water to form 74 pounds of hydrated lime or "hydrate," as it is commonly termed. of hydrated lime may object to buying 18 pounds of water with every 56 pounds of quicklime and may on this account decide to buy quicklime and hydrate it himself. Some users do this, but in general the hydrating process is too precise an operation to be performed without adequate equipment or skill. For instance if too little water is added, part of the lime remains unslaked, which may cause trouble later. Unhydrated particles in a wall plaster, for example, will hydrate slowly, causing "popping" of the plaster. If, on the other hand, too much water is added, a damp, sticky, or muddy hydrate will be formed. Many lime companies are equipped with mechanical hydrators that automatically supply the exact quantity of water needed and agitate the product so thoroughly that virtually complete hydration of highcalcium lime is accomplished. Dolomitic (high-magnesium) lime hydrates less readily than high-calcium lime, therefore its preparation as a hydrate involves additional problems. Some lime producers have found it necessary to employ special equipment to attain adequate

Most users of hydrated lime prefer the hydration of dolomitic lime.

product sold by lime producers.

Hydrated lime was reported by 166 plants for 1941 (161 reported r 1940). The increase from 1,385,825 short tons in 1940 to 1,590,159 in 1941 was accompanied by an increase of 18 cents a ton in average value. Three States—Ohio, Pennsylvania, and Missouri—produced 61 percent of the total. Production for a series of years and by States appears in the accompanying tables.

Hydrated lime sold or used by producers in the United States, 1937-41

		Plants in		Value			
	Year	operation	Short tons	Total	Average		
1937 1938 1939 1940		170 165 159 161 166	1, 301, 333 1, 169, 804 1, 318, 053 1, 385, 825 1, 590, 159	\$10, 344, 470 9, 111, 575 10, 124, 241 10, 522, 578 12, 354, 798	\$7. 95 7. 79 7. 68 7. 59 7. 77		

Hydrated lime sold or used by producers in the United States, 1940-41, by States

State	194	0	1941			
State	Short tons	Value	Short tons	Value		
Alabama California Florida Georgia Hawaii Illinois Indiana Maryland Massachusetts Michigan Missouri New York Ohio Pennsylvania South Dakota Tennessee Texas Virginia Washington West Virginia Wisconsin Other States 3	22, 289 13, 737 (1) 26, 092 20, 375 22, 730 39, 144 10, 772 153, 213 14, 089 494, 057 217, 774 (1) 44, 096 22, 822 59, 243 36, 828	\$187, 803 222, 199 127, 528 91, 932 (1) 198, 194 126, 503 116, 006 292, 724 87, 386 878, 521 102, 423 4, 168, 505 1, 529, 138 (1) 328, 215 231, 459 378, 790 86, 974 234, 912 81, 485 1, 051, 881	31, 370 25, 540 12, 214 9, 748 8, 665 39, 496 24, 645 24, 826 41, 166 14, 464 179, 425 16, 784 539, 939 250, 733 698 45, 304 27, 415 74, 810 10, 803 48, 028 (1) 164, 086	\$224, 609 261, 622 119, 713 70, 755 136, 475 282, 634 158, 618 169, 349 321, 515 107, 493 1, 054, 833 112, 176 4, 601, 687 7, 393 348, 539 262, 349 486, 488 96, 474 254, 156 (1, 262, 163		

¹ Included under "Other States." ² 1940: Arizona, Arkansas, Colorado, Connecticut, Hawaii, Kentucky, Maine, Minnesota, Montana, Nevada, New Jersey, Oklahoma, Rhode Island, South Dakota, Utah, and Vermont. 1941: Arizona, Arkansas, Colorado, Connecticut, Maine, Minnesota, Montana, Nevada, New Jersey, North Carolina, Oklahoma, Puerto Rico, Rhode Island, Utah, Vermont, and Wisconsin.

Increased sales Uses.—Hydrated lime is utilized in many ways. in all important categories were reported in 1941. The largest increases were for sugar refineries (52 percent) and tanneries (38 percent).

Hydrated lime sold or used by producers in the United States, 1940-41, by uses

Use	19	40	1941			
Use	Short tons	Value	Short tons	Value		
Agricultural Building Chemical and industrial:	199, 059 723, 888	\$1, 281, 785 6, 002, 015	221, 664 780, 328	\$1, 520, 32 4 6, 665, 319		
Glassworks Metallurgy Paper mills Sugar refineries	2, 229 53, 554 39, 644 11, 603	13, 925 351, 945 262, 234 137, 345	2, 501 61, 174 47, 098	16, 163 392, 203 312, 470		
Tanneries Water purification Other uses	32, 259 126, 967 196, 622	233, 661 884, 199 1, 355, 469	17, 611 44, 484 158, 560 256, 739	199, 184 324, 044 1, 108, 883 1, 816, 200		
Total hydrated lime	462, 878 1, 385, 825	3, 238, 778 10, 522, 578	588, 167 1, 590, 159	4, 169, 150 12, 354, 796		

TRENDS IN PRINCIPAL USES

All major uses of lime increased during 1941, the greatest gain (35 percent) being for chemical and industrial purposes. Agricultural and building uses each gained 5 percent.

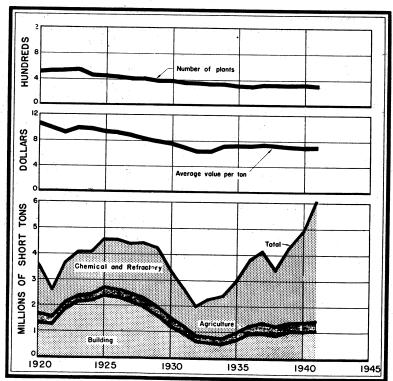


FIGURE 2.—Trends in number of active lime plants, average value per ton, and principal uses, 1920-41.

The gains in metallurgical and refractory lime were not consistent with each other—37 and 23 percent, respectively. The increase in chemical and industrial applications was accentuated further by large gains in the use of lime by manufacturers of calcium carbide and insecticides (50 percent over 1940). Trends in the principal uses over a 22-year period are indicated in figure 2.

LIME 1313

A graphic comparison of the total quantity of lime consumed in building with new construction activity for the past 22 years is shown in figure 3.

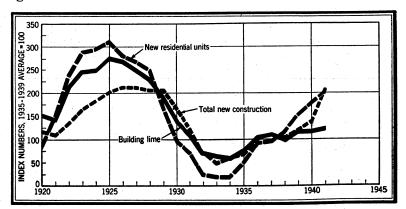


FIGURE 3.—Building-lime (quick and hydrated) value compared with total new construction and residential building, 1920-41. Data for new construction, 1920-41, from Department of Commerce. Data for new residential dwelling units (nonfarm) from Bureau of Labor Statistics.

Consumption of metallurgical lime has increased each year since 1932, except for the recession in 1938 (see fig. 4). The rate of increase has been greater in the past 3 years than the gain in steel-ingot output would indicate. This may be due in part to an increase in the use

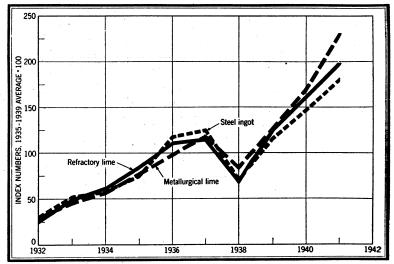


FIGURE 4.—Sales of metallurgical lime and refractory lime (dead-burned dolomite) compared with steelingot production, 1932-41. Index numbers for steel ingots computed by Federal Reserve Board from data of American Iron and Steel Institute.

of higher-phosphorus iron ores, as indicated earlier, and possibly to a decrease in the amount of scrap iron and steel used. The gain in production of metallurgical lime was accompanied by a less spectacular gain (20 percent from 1940 to 1941) in limestone for flux. Data on raw dolomite are given in the chapter on Stone.

SHIPMENTS

TOTAL SHIPMENTS

Sales, shipments, and supplies of lime available for consumption in continental United States, by States and groups of States that comprise approximate freight zones, are listed in the two tables that fol-Reshipments beyond original destinations are not indicated, and foreign shipments and tonnages for which distribution is not recorded are omitted.

Production of lime exceeds apparent consumption in 11 States, but only Ohio, Missouri, and Tennessee show large tonnages moving out of the State in excess of inward-moving shipments. Four leading States—Pennsylvania, New York, Illinois, and Michigan—consumed more than they produced.

Lime supplies available in continental United States in 1941, by States, in short tons

	1	T .	ī	1			
			Ship-		Su	pply	
State	Sales by pro- ducers	Shipments from State ¹	ments into State	Hy- drated	Quick- lime	Total	Pounds per capita ²
Alabama	306, 836	84, 829	37, 729	13, 747	245, 989	259, 736	183.
Arizona	58, 146	27, 016	1, 299	3, 350	29,079	32, 429	129.
Arkansas	(3)	(3)	(3)	5, 064	15, 961	21, 025	21.
California		10, 982	34, 032	34, 851	110, 574	145, 425	42.
Colorado	(3)	(3)	(3)	4,052	12, 629	16, 681	29.
Connecticut	(3)	(3)	(3)	18, 684	22, 935	41,619	48.
Delaware District of Columbia			39, 302	14, 169	25, 133	39, 302	294.
District of Columbia			18, 272	15, 851	2, 421	18, 272	55.
Clorida	23, 265		44, 831	28, 407	39, 689	68, 096	71.
leorgia		1,875	67, 925	34, 928	43, 637	78, 565	50.
daho	120		2, 651	1,082	1, 689	2,771	10.
llinois		112, 854	258, 603	88, 060	304, 263	392, 323	99.
ndiana	106, 407	84, 127	192, 367	37, 754	176, 893	214, 647	125.
owa Kansas			63, 489	15, 742	47, 747	63, 489	50.
Kentucky			31, 127	14, 734	16, 393	31, 127	34.
ouisiana	(3)	(3)	101, 368	15, 833	85, 535	101, 368	71.
faine	(3)	(3) (3)	(3)	14, 391 8, 966	178, 021	192, 412	162.
Iaryland	65, 624	14, 050			71, 431	80, 397	189.
Aassachusetts	106, 336	81, 628	118, 743 47, 089	53, 957 32, 985	116, 360	170, 317	187.
Lichigan	55, 447	25, 165	221, 248	77, 536	38, 812	71, 797 251, 530	33. 95.
Innesota	(3)	(3)	(3)	15, 747	173, 994 46, 586	62, 333	95. 44.
// ississippi		(6)	13, 480	6, 004		13, 480	12.
I issouri	736, 200	471, 753	21, 061	96, 770	7, 476 188, 738	285, 508	150.
Iontana	(3)	411, 100	(3)	3, 088	22, 891	25, 979	92.
lebraska	()		8, 809	6, 878	1, 931	8, 809	13.
levada,	(3)	(3)	(3)	29, 197	5. 267	34, 464	625.
lew Hampshire	()	()	12, 058	3, 688	8, 370	12, 058	49.
lew Jersey	(3)	(3)	(3)	103, 133	47, 577	150, 710	72.
lew Mexico	(3)		(3)	2, 255	23, 536	25, 791	97.
lew York	62, 339	8, 225	340, 960	137, 446	257, 628	395, 074	58.
Iorth Carolina	(3)	(3)	(3)	31, 349	64, 373	95, 722	53.
orth Dakota	''		5, 872	5, 811	61	5, 872	18.
hio	1, 549, 246	1, 032, 426	161, 023	135, 671	542, 172	677, 843	196.
klahoma	(3)	(3)	(3)	16, 654	29, 657	46, 311	39.
regon	3, 940		13, 459	2, 448	14, 951	17, 399	31.
ennsylvania	1,003,039	334, 098	436, 611	209, 007	896, 545	1, 105, 552	223.
hode Island	(3)	(3)	(3)	6, 289	6, 881	13, 170	36.
outh Carolina			26, 815	15, 224	11, 591	26, 815	28.
outh Dakota	(3)	(3)	(3)	3, 228	3, 214	6, 442	20. 0
ennessee	239, 528	(3) 197, 329	11,653	28, 155	25, 697	53, 852	36. 9
exas	77, 783	15, 330	3, 808	25, 680	40, 581	66, 261	20. (
tah	56, 221	710	1, 295	4, 316	52, 490	56, 806	206. 4
ermont	67, 824	61, 689	1, 219	1, 296	6,058	7, 354	40. 9
irginia	224, 293	162, 039	71, 771	49, 101	84, 924	134, 025	100. 1
Vashington	62, 309	14, 559	2, 578	8, 996	41, 332	50, 328	58. (
est Virginia	372, 677	333, 441	200, 969	28, 958	211, 247	240, 205	252.
/isconsin	79, 077	38, 976	60, 934	29, 636	71, 399	101, 035	64. 4
yoming			1, 292	946	346	1, 292	10. 3
naistributea	424, 455	98, 720	487, 321				

Includes 48,758 tons unclassified as to destination.
 Per capita figures based upon latest available estimates of population made by Bureau of the Census.
 Included under "Undistributed."

⁴ Includes items entered as "(3).

		Origin													
Destination	Illinois	, Indian gan, Oh	a, Michi- io	Maryla New vania		Pennsyl-	Mass	cticut, achusett d, Verm	s,Rhodé		Georgia lina, Vir			ma, Lou Fennesse	
	Hy- drated lime	Quick- lime	Total	Hy- drated lime	Quick- lime	Total	Hy- drated lime	Quick- lime	Total	Hy- drated lime	Quick- lime	Total	Hy- drated lime	Quick- lime	Total
Illinois, Indiana, Michigan, Ohio Delaware, District of Columbia, Maryland,	287, 332	884, 187	1, 171, 519	8, 256	48, 085	56, 341	180	305	485	1, 716	20, 554	22, 270	1, 770	632	2, 402
New Jersey, New York, Pennsylvania, West Virginia	178, 256	333, 967	512, 223	334, 332	1, 041, 410	1, 375, 742	25, 381	53, 088	78, 469	18,009	84, 093	102, 102	959	15, 417	16, 376
Hampshire, Rhode Island, Vermont Florida, Georgia, North Carolina, South	25, 046	1, 690	26, 736	3, 975	50, 393	54, 368	41, 457	101, 443	142, 900	275	910	1, 185			
Carolina, Virginia	53, 725	4, 317	58, 042	9, 270	18, 413	27, 683		45	45	64, 788	58, 557	123, 345	30, 506	148, 119	178, 625
sissippi, Tennessee	28, 229	67, 886	96, 115	110	122	232				800		800	36, 871	407, 515	444, 386
Texas Iowa, Minnesota, Missouri, Wisconsin	3, 405 39, 978	760 39, 058	4, 165 79, 036								3	3			
Arizona, California, Colorado, Idaho, Mon- tana, Nevada, New Mexico, North Da-	00,010	00,000	. 2, 030								3	3			
kota. Oregon, South Dakota, Utah, Washington, Wyoming	1,607	3, 190	4, 797	30		30		l							

	Origin											
Destination	Arkansas	, Oklahom	a, Texas	Minnesota, Missouri, Wisconsin			rado, Í	Californi daho, Mon New Mexico Dakota, ngton	tána, Ne- o, Oregon,	United States		
	Hy- drated lime	Quick- lime	Total	Hy- drated lime	Quick- lime	Total	Hy- drated lime	Quick- lime	Total	Hy- drated lime	Quick- lime	Total
Illinois, Indiana, Michigan, Ohio	27	91	118	39, 740	243, 468	283, 208				339, 021	1, 197, 322	1, 536, 343
Delaware, District of Columbia, Maryland, New Jersey, New York, Pennsylvania, West Virginia. Connecticut, Maine, Massachusetts, New Hampshire,	18		18	5, 566	28, 936	34, 502				562, 521	1, 556, 911	2, 119, 432
Rhode Island, Vermont				1, 155	51	1, 206				71, 908	154, 487	226, 395
Virginia. Alabama, Kentucky, Louisiana, Mississippi, Tennessee. Arkansas, Kansas, Nebraska, Oklahoma, Texas. Iowa, Minnesota, Missouri, Wisconsin.	5, 033 43, 201 460	26, 170 82, 905 751	31, 203 126, 106 1, 211	720 7, 087 22, 404 117, 457	14, 763 41, 025 20, 858 314, 658	15, 483 48, 112 43, 262 432, 115				159, 009 78, 130 69, 010 157, 895	244, 214 542, 718 104, 523 354, 470	403, 223 620, 848 173, 533 512, 365
Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, North Dakota, Oregon, South Dakota, Utah, Washington, Wyoming	2,069	2,416	4, 485	10, 208	7, 129	17, 337	89, 706	305, 324	395, 030	103, 620	318, 059	421, 679

HYDRATED LIME

Apparent consumption of hydrated lime in the Middle Atlantic States has been high in recent years. During 1941 it rose in all regions, but the percentage of increase from 1940 to 1941 was greatest in the Upper Mississippi Valley States.

Shipments of hydrated lime from plants in continental United States and in Ohio in 1941, by destinations

	From all	plants	From Ohio plants			
Destination	Short tons	Distri- bution (per- cent)	Short tons	Distri- bution (per- cent)	Percent of total ship- ments	
Illinois, Indiana, Michigan, Ohio Delaware, District of Columbia, Maryland, New Jersey.	339, 021	21. 5	231, 979	43.0	68. 4	
New York, Pennsylvania, West Virginia Connecticut, Maine, Massachusetts, New Hampshire,	562, 521	35. 7	176, 533	32.7	31. 4	
Rhode Island, Vermont Florida, Georgia, North Carolina, South Carolina, Vir-	71, 908	4.5	25, 046	4.7	34. 8	
ginia.	159, 009	10.1	53, 725	10.0	33.8	
Alabama, Kentucky, Louisiana, Mississippi, Tennessee	78, 130	4.9	23, 902	4.4	30.6	
Arkansas, Kansas, Nebraska, Oklahoma, Texas	69,010	4.4	3, 376	.6	4.9	
Iowa, Minnesota, Missouri, Wisconsin Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, North Dakota, Oregon, South Dakota,	157, 895	10.0	23, 415	4.3	14.8	
Utah, Washington, Wyoming	103, 620	6.6	1, 177	.2	1.1	
Undistributed	36, 469	2. 3	786	.1	2. 2	
	1, 577, 583	100.0	539, 939	100.0	34. 2	

PRICES

Reversing the downward trend of the preceding 3 years, 1941 prices increased in all major categories over 1940. The increase in value of agricultural lime was greatest—9 percent. This price is the highest since 1938. Building lime increased 3 percent and came within 1 cent of the highest price during the past decade (that in 1935). The price of refractory lime rose to a new high, with a 7-percent increase. Values for the past 10 years are compared in the following table.

Average values of lime according to uses, 1932-41 1

Use	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941
Agricultural Building Chemical and industrial Refractory Total Hydrated	\$5. 59	\$5. 36	\$6. 66	\$6. 73	\$6. 26	\$6. 74	\$6. 52	\$6. 11	\$5. 71	\$6. 24
	6. 45	7. 18	8. 33	8. 70	8. 52	8. 66	8. 38	8. 56	8. 45	8. 69
	6. 13	5. 73	6. 52	6. 50	6. 42	6. 47	6. 53	6. 23	6. 20	6. 23
	7. 78	7. 89	8. 31	8. 32	8. 19	8. 45	8. 44	8. 11	7. 98	8. 52
	6. 28	6. 28	7. 16	7. 28	7. 18	7. 30	7. 21	7. 06	6. 95	7. 06
	6. 30	6. 69	7. 63	7. 90	7. 77	7. 95	7. 79	7. 68	7. 59	7. 77

¹ Value at place of manufacture, exclusive of containers.

FUEL RATIOS

A study of lime: fuel ratios of lime plants reporting for 1939 was made by Moyer ² to show the comparative efficiency of various kinds of fuel used in the three general types of kilns. This study indicated that pot kilns were most efficient and rotary types least efficient.

² Moyer, Forrest T., Lime:Fuel Ratios of Commercial Lime Plants in 1939: Bureau of Mines Inf. Circ. 7174, 1941, 9 pp.

Shaft kilns using coke showed the highest lime: fuel ratio of any

single type.

The accompanying table represents similar studies of reporting plants in 1940 and 1941. For each year, 60 percent of the active plants reported fuel ratios, representing over 75 percent of the total lime produced. A significant feature is the definite uptrend in efficiency of bituminous coal in shaft kilns and in rotary kilns producing dead-burned dolomite. Paradoxically, rotary kilns using bituminous coal, aside from those used to burn refractory dolomite, show a drop in lime: fuel ratio. In 1940 the greatest efficiency was attained by shaft kilns using coke, in 1941 by shaft kilns using anthracite. Kilns of all types using wood and oil decreased markedly in efficiency during 1941.

Lime: fuel ratios, by type of kiln and kind of fuel, for reporting plants, 1940-41

		Repo	orting	NT	Lime 1		used	Lime : fue	l ratio ³
Type of kiln	Kind of fuel	Oper- ators	Plants	Num- ber of kilns	produced (short tons)	Quantity 2	Unit	Range reported	Calcu- lated averag
Pot	Anthracite	3	3	33		10, 782, 537	Pounds		3. 7 3. 7
	Bituminous coal.	8 12	8 12	30 57	22, 602 79, 227	12, 129, 034 42, 149, 871	do	3.00-6.00	3.7
	Coke	3	3	7	10, 466	5, 098	Cords		4,105.9
Shaft	Anthracite	3	3	7	18, 235	9, 542, 889	Pounds	3. 22-8. 00	3.8
J110110	Bituminous coal.	51	54	399	1,078,038	679,041,096	do	1. 33-6. 00	3. 1
	Coke	4	4	14	30, 313	14, 175, 338	do	2.00-8.00	4.
	Producer gas	11	11	72	251, 795	125,882,489	Pounds of bit. coal.	3. 25-4. 87	4.0
	Natural gas	15	15	64	218, 307	1, 366, 022	`M cu. ft	225-420	319. 6
	Fuel oil	3	4	14	27, 794	33, 906	Barrels	1,400-2,350	1, 639. 4
	Wood	21	22	77	153, 314	65, 345	Cords	2,600-8,000	4, 692. 3
Rotary	Bituminous coal.	10	11	18	561, 416	312,803,653 101,725,846	Pounds Pounds of	2. 00-5. 00 2. 60-3. 00	2.6
	Producer gas	4	4	6	134, 635	101,720,010	bit. coal.	2.00 0.00	1 175
	Natural gas	6	6	8	110, 750	883, 697	M. cu. ft	190-364	250.
	Fuel oil		7	13	114, 622	158, 276	Barrels	1,000-1,700	1, 448.
	I	1	<u> </u>	ı — —	1	ED) DOLO		200 2 55	١٠
Rotary	RE Bituminous coal.	FRAC	<u> </u>	24	1	ED) DOLO 572,096,024		2. 00-2. 55	2. 8
Rotary	Bituminous coal.	6	8	24	671, 290 941	572,096,024	Pounds	I	2.8
Rotary	Bituminous coal.	6	8	24	671, 290 941 31, 855	572,096,024 18, 595, 254	Pounds	1.14-4.1	2. 3 3. 4 3. 6
	Bituminous coal. Anthracite Bituminous coal.	6	8	24	671, 290 941	18, 595, 254 12, 259, 667 76, 996, 506	Pounds	1, 14-4, 1 3, 00-6, 00 2, 75-6, 00	3.4
Pot	Anthracite	8 7 11 4	8 7 12 4	24 1 51 29 59 10	671, 290 941 31, 855 24, 329 149, 969 17, 247	18, 595, 254 12, 259, 667 76, 996, 506 8 941	Pounds Pounds do Cords	1, 14-4, 1 3, 00-6, 00 2, 75-6, 00 2,000-5,000	3. 3. 3. 3. 3. 3. 857.
Pot	Anthracite Bituminous coal. Coke Wood Anthracite	8 7 11 4 3	8 8 7 12 4 3	24 1 51 29 59 10 10	941 31, 855 24, 329 149, 969 17, 247 14, 743	18, 595, 254 12, 259, 667 76, 996, 506 8, 941 6, 694, 285	Pounds Pounds do Cords Pounds	1, 14-4, 1 3, 00-6, 00 2, 75-6, 00 2,000-5,000 4, 00-8, 00	3. 3. 3. 3. 3. 3. 857. 4.
Pot	Anthracite	8 7 11 4 3 50	8 7 12 4 3 54	24 1 51 29 59 10 10 429	941 31, 855 24, 329 149, 969 17, 247 14, 743 1,253,868	18, 595, 254 12, 259, 667 76, 996, 506 8, 941 6, 694, 285 724, 524, 319	Pounds Pounds do Cords Pounds	1. 14-4. 1 3. 00-6. 00 2. 75-6. 00 2,000-5,000 4. 00-8. 00 1. 47-7. 00	3. 4. 4. 3. 4. 4. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
Pot	Anthracite	8 7 11 4 3 50 5	8 8 7 12 4 3	24 1 51 29 59 10 10	941 31, 855 24, 329 149, 969 17, 247 14, 743	18, 595, 254 12, 259, 667 76, 996, 506 8, 941 6, 694, 285	Pounds Pounds do Cords Pounds do Pounds do Pounds of	1, 14-4, 1 3, 00-6, 00 2, 75-6, 00 2,000-5,000 4, 00-8, 00 1, 47-7, 00 2, 00-7, 00 3, 45-4, 87	3. 4. 4. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
	Anthracite	8 7 11 4 3 50 5	8 7 12 4 3 54 6 10	24 1 51 29 59 10 10 429 18 81	941 31, 855 24, 329 149, 969 17, 247 14, 743 1,253,868 36, 231 265, 382	572,096,024 18, 595, 254 12, 259, 667 76, 996, 506 8, 941 6, 694, 285 724,524,319 18, 634, 608 127,232,788	Pounds Pounds do Cords. Pounds do do Pounds of Pounds of bit. coal.	1, 14-4, 1 3, 00-6, 00 2, 75-6, 00 2, 000-5, 000 1, 47-7, 00 2, 00-7, 00 3, 45-4, 87	3. 4. 3. 4.
Pot	Anthracite	8 7 11 4 3 50 5 10	8 7 12 4 3 54 6 10 17	24 1 51 29 59 10 10 429 18 81 72	941 31, 855 24, 329 149, 969 17, 247 14, 743 1,253,868 36, 231 265, 382 322, 601	18, 595, 254 12, 259, 667 76, 996, 506 8, 941 6, 694, 285 724, 524, 319 18, 634, 608 127, 232, 788 2, 101, 943	Pounds Pounds do Cords Pounds do do Pounds of bit coal. M cu. ft.	1. 14-4. 1 3. 00-6. 00 2. 75-6. 00 2. 705-5,000 4. 00-8. 00 1. 47-7. 00 2. 00-7. 00 3. 45-4. 87	3.4 3.5 3.857.1 4.3 3.4 3.6 3.6
Pot	Anthracite	88 77 11 4 3 3 50 5 10 16 5	8 8 7 12 4 3 54 6 10 17 7	24 1 51 29 59 10 10 429 18 81 72	671, 290 941 31, 855 24, 329 149, 969 17, 247 14, 743 1,253,868 36, 231 265, 382 32, 601 39, 371	18, 595, 254 12, 259, 667 76, 996, 506 8, 941 6, 694, 285 724, 524, 319 18, 634, 608 127, 232, 788 2, 101, 943 53, 029	Pounds Pounds do Cords Pounds do do do do M cu. ft. Barrels	1. 14-4. 1 3. 00-6. 00 2. 75-6. 00 2. 75-6. 00 4. 00-8. 00 1. 47-7. 00 2. 00-7. 00 3. 45-4. 87 250-400 1. 200-2. 350	3. 3. 3. 3. 3. 3. 3. 4. 3. 4. 306. 1, 484.
Pot Shaft	Anthracite	8 7 11 4 3 50 5 10 16 5	8 7 12 4 3 54 66 10 17 7 18	24 1 51 29 59 10 10 429 18 81 72 17 75	31, 855 24, 329 149, 969 17, 247 14, 743 36, 231 265, 382 322, 601 39, 371 163, 247	18, 595, 254 12, 259, 667 76, 996, 506 8, 941 6, 694, 285 724, 524, 319 18, 634, 608 127, 232, 788 2, 101, 943 53, 029 70, 938	Pounds Pounds do Cords Pounds do do do do Hounds of bit. coal. M cu. ft. Barrels. Cords.	1. 14-4.1 3.00-6.00 2. 75-6.00 2.000-5,000 4. 00-8.00 1. 47-7.00 2. 00-7.00 3. 45-4.87 250-400 1. 200-2,350 2.000-8,000	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3
Pot	Anthracite Bituminous coal. Coke Wood Anthracite Bituminous coal. Coke Producer gas Natural gas Fuel oil Wood Bituminous coal.	8 7 11 4 4 3 50 5 10 16 5 17 12 8	8 7 12 4 3 54 6 6 0 17 7 18 14 18	24 51 29 59 10 10 429 18 81 72 17 75 26 20	671, 290 941 31, 855 24, 329 149, 969 17, 247 14, 743 1,253,688 36, 231 265, 382 322, 601 39, 371 163, 247 865, 221 368, 782	572,096,024 18, 595, 254 12, 259, 667 76, 996, 506 8, 941 6, 694, 285 724,524,319 18, 634, 608 127,232,788 2, 101, 943 53, 029 70, 938 527,496,602 3, 570, 380	Pounds Pounds do Cords. Pounds do do do M cu. ft. Barrels. Cords. Pounds M cu. ft. Barrels. M cu. ft. Barrels. M cu. ft.	1. 14-4. 1 3. 00-6. 00 2. 75-6. 00 2. 000-5,000 4. 00-8. 00 1. 47-7. 00 2. 00-7. 00 3. 45-4. 87 250-400 1,200-2,350 2,000-8,000 2. 00-5. 00 120-400	3. 4 3. 857. 1 3. 857. 1 3. 4 3. 4 4. 602. 1 3. 8
ot	Anthracite	8 7 11 4 3 50 5 10 16 5 17 12	8 7 12 4 3 54 6 10 17 7 18 14 14	24 1 51 29 59 10 10 429 18 81 72 17 75 26	671, 290 941 31, 855 24, 329 149, 969 17, 247 14, 743 1, 255, 868 36, 231 205, 382 322, 601 39, 371 163, 247 865, 221	18, 595, 254 12, 259, 667 76, 996, 506 8, 941 6, 694, 285 724, 524, 319 18, 634, 608 127, 232, 788 2, 101, 943 53, 029 70, 938 527,496,602	Pounds Pounds do do Cords Pounds do do do to Pounds of bit.coal. M cu. ft Barrels Cords Pounds	1. 14-4. 1 3. 00-6. 00 2. 75-6. 00 2. 000-5,000 4. 00-8. 00 1. 47-7. 00 2. 00-7. 00 3. 45-4. 87 250-400 1,200-2,350 2,000-8,000 2. 00-5. 00 120-400	3. 4 3. 857. 1 3. 857. 1 3. 4 3. 4 4. 602. 1 3. 8
Pot Shaft	Anthracite Bituminous coal. Anthracite Bituminous coal. Coke Bituminous coal. Coke Producer gas. Natural gas Fuel oil Wood Bituminous coal. Natural gas Fuel oil Fuel Fuel oil Fuel Fuel oil Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fue	8 7 11 4 3 50 5 10 16 5 17 12 8 7	8 7 12 4 3 3 54 6 10 17 7 18 14 8 8	24 1 51 29 59 10 10 429 18 81 72 217 75 26 20 15	671, 290 941 31, 855 24, 329 149, 969 17, 247 14, 743 1,255,868 36, 231 265, 382 322, 601 39, 371 163, 247 865, 221 388, 782 150, 340	572,096,024 18, 595, 254 12, 259, 667 76, 996, 506 8, 941 6, 694, 285 724,524,319 18, 634, 608 127,232,788 2, 101, 943 53, 029 70, 938 527,496,602 3, 570, 380	Pounds Pounds do Cords Pounds do do Barrels Cords Pounds of tit. coal. M cu. ft. Barrels Cords Pounds of tit. Barrels Barrels	1. 14-4. 1 3. 00-6. 00 2. 75-6. 00 2. 000-5,000 4. 00-8. 00 1. 47-7. 00 2. 00-7. 00 3. 45-4. 87 250-400 1,200-2,350 2,000-8,000 2. 00-5. 00 120-400	3. 4 3. 857. 1 3. 857. 1 3. 4 3. 4 4. 602. 1 3. 8

porting plants during year covered.

Reported and calculated as pounds of lime calcined by a unit quantity of fuel.

The quantity of lime burned by each of the several fuels increased in 1941 over 1940. The largest gain was in the use of natural gas, which more than doubled in importance. The tonnage of lime burned by bituminous coal decreased from 78 percent of the total in 1940 to 72 percent in 1941. Oil, wood, coke, and anthracite were used as fuels in burning 13 percent of the total lime in 1940 and 1941.

SIZE OF COMPANIES

A study of active commercial lime companies, comparing volumes of sales and numbers of companies in similar size groups, was made by Bowles and Coons in 1939.³ This study indicated that companies producing less than 25,000 tons annually were decreasing in number and total output, whereas those producing more than 25,000 tons were increasing in number and output. The trend toward larger and fewer companies was interrupted during the early 1930's but was resumed a few years later. The accompanying table shows that the larger size groups gained greatly from 1936 to 1941. Companies producing over 50,000 tons showed the most spectacular increases in the last 5-year period, doubling in number and in production. In 1941 more than two-thirds of the total lime output of the country was reported by companies producing 50,000 or more tons.

Comparison of number of companies and sales of lime (including dead-burned dolomite) in the United States in 1926, 1931, 1936, and 1941, by size groups

	1926		1931			1936	1	941
Size group (short tons)	Com- panies	Short tons	Com- panies	Short tons	Com- panies	Short tons	Com- panies	Short tons
Less than 1,000	156 80 49 58 20 14 9	33, 385 207, 658 359, 148 919, 182 727, 000 1, 018, 122 1, 295, 903	134 76 36 32 20 7 4	35, 966 198, 842 256, 792 527, 596 707, 822 505, 663 474, 933	86 69 32 35 24 8	24, 414 181, 384 239, 137 541, 610 839, 491 504, 531 1, 418, 816	77 60 37 33 26 21 12	24, 02 154, 43 265, 54 516, 45 914, 39 1, 449, 54 2, 755, 02
	386	4, 560, 398	309	2, 707, 614		3, 749, 383	266	6, 07

NEW DEVELOPMENTS

It is claimed that a new type of center burner now in use in shaft kilns gives increased output, better quality of lime, and higher fuel efficiency. Its greatest advantage, however, is its ability to utilize small stone, which is generally discarded as waste at plants where lime is burned in shaft kilns.

Unit coal pulverizers that discharge directly to rotary kilns—a type of equipment used at many cement plants—are now employed at lime plants.

Processes of pressure hydration have been perfected whereby 85 percent or more of the magnesia in dolomite is hydrated. The superhydrate, after supplementary treatment which varies in different plants, has unusual plasticity and sand-carrying capacity. Superhydration is especially advantageous in lime used for sand-lime brick manufacture and for wall plaster.

³ Bowles, Oliver, and Coons, A. T., Graphic Survey of the Lime Industry, 1910-38: Bureau of Mines Inf. Circ. 7088, 1939, 8 pp.

Fundamental research is in progress at the University of Illinois in cooperation with the National Lime Association, involving X-ray work as well as studies by means of an electron microscope, on the properties of calcium and magnesium oxides and hydroxides.

Further progress has been made with the use of lime on stabilized Hydrated lime mixed thoroughly with gumbo clay, wetted and compacted with a tamping roller, is said to provide a satisfactory base upon which an ordinary concrete or asphalt topping may be

Bureau of Mines Information Circular 6884, Lime, published in 1936, describing the principal features of the lime industry, was revised and republished 4 in 1941.

FOREIGN TRADE 5

Because of restrictions on publication of foreign trade data, figures for 1941 imports and exports are confined to the first 9 months of the vear.

IMPORTS

The following tables show imports by kind for a series of years and by country of origin and customs district for 1940 and 1941.

Lime imported for consumption in the United States 1087 11

Year	Hydrated lime		Other lime		Dead-burned dolo- mite 1		Total	
1 ear	Short tons 2	Value	Short tons 2	Value	Short tons	Value	Short tons	Value
1937 1938 1939 1940 1941 (JanSept.)	1, 174 858 1, 148 712 555	\$13, 885 10, 001 11, 242 6, 558 6, 364	7, 614 5, 960 6, 546 8, 493 8, 610	\$76, 720 56, 202 60, 660 75, 330 72, 496	9, 083 2, 875 186	\$231, 084 67, 340 4, 260	17, 871 9, 693 7, 880 9, 205 9, 165	\$321, 68 133, 54 76, 16 81, 88 78, 86

¹ Classification reads "Dead-burned basic refractory material containing 6 percent or more of lime and consisting chiefly of magnesia and lime."

Includes weight of immediate container.

Lime imported for consumption in the United States, 1940-41, by countries and customs districts 1

		19	40	1941 (JanSept.)		
Country	Customs district	Short tons 2	Value	Short tons 3	Value	
Canada	Florida. Los Angeles. Maine and New Hampshire. Michigan St. Lawrence. San Francisco. Vermont. Washington. Washington. San Francisco. New York.	529 53 5 92 3, 865 4, 641 (3) 3 17	\$4, 913 546 68 362 34, 410 41, 039 11 120 419 81, 888	15 300 14 7 3, 447 2 5, 380 9, 165	\$120 2, 852 98 184 31, 825 43 43, 738	

¹ Exclusive of dead-burned basic refractory material.

Less than 1 ton.

² Includes weight of immediate container

Bowles, Oliver, and Banks, D. M. (revised by Duncan McConnell), Lime. Bureau of Mines Inf. Circ.

⁶⁸⁸⁴R, 1941, 48 pp.

⁵ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

EXPORTS

Exports of lime in the past 5 years are indicated in the following table.

Lime exported from the United States, 1937-41

Year	Short tons	Value	Year	Short tons	Value
1937	11, 300	\$122, 895	1940 -	31, 912	\$311,619
1938 1939	13, 222 21, 477	121, 662 236, 497	1941 (JanSept.)	32, 444	318, 541
	22, 211	200, 101			

CLAYS

By PAUL M. TYLER AND A. LINN 1

SUMMARY OUTLINE

Clarism (green film don de la comanda)	Page		Page
General summary	1321	Bentonite	1331
Salient statistics	1322	Fuller's earth	1333
Consumption and uses			1334
China clay or kaolin	1325	Clay products	1335
Ball clay		Technologic developments	1336
Fire clay	1220		

GENERAL SUMMARY

Shipments of almost every variety of clay from domestic mines again made new high records in 1941. Even before the World War of 1914–18, clay mining had become a substantial industry in the United States. In fact, during the 5 years immediately preceding the outbreak of hostilities in 1914, annual shipments of merchant clay averaged 2,381,965 short tons. This sizable tonnage, however, was worth only \$3,736,487, and its low unit value testified that most of it was crude or ill prepared. Papermakers, pottery manufacturers, and other consumers of the better qualities of clay purchased their requirements abroad, and not until imports from overseas were endangered by submarines did American producers make serious efforts to improve their clays. Pioneered by the Bureau of Mines, beneficiation methods were worked out for refining Georgia clays so that they could be substituted successfully for imported clays.

During the interwar period, great progress was made in clay preparation, and the United States became potentially independent of foreign sources. The importation of high-grade clays continued but eventually was limited to certain localities where relative transportation costs made them cheaper or to certain branches of the ceramics industry (notably the manufacture of sanitary ware and semivitreous dinnerware) where changes in batch formulation are impeded by the excessive cost of possible spoilage compared with potential savings in cost of raw materials. Resumption of hostilities in Europe and the growing menace of submarines after September 1939 speeded the trend to displace imported with improved domestic clays. Meanwhile the rapidly expanding use of paper and the larger proportions of clay relative to other ingredients employed in the manufacture of paper, rubber, and other products increased the aggregate demand, so that the flow of kaolin and other high-grade

clay from American mines has increased year after year. In 1941

1 Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce. Domestic figures for fuller's earth compiled by R. W. Metcalf, of the Bureau of Mines.

the shipments of all kinds of domestic clay, excluding fuller's earth, totaled 7,018,056 tons valued at \$25,193,893. Although this is only three times the 1909–13 annual average quantity it was worth almost seven times as much, the unit value being \$3.59 a ton in 1941 com-

pared with \$1.57 before the first World War.

Bureau of Mines figures for clay shipments cover only a small fraction of the clay mined in the United States. No attempt is made to include the clay burned into common brick, build ng tile, sewer pipe, and other clay products at integrated plants situated at the mines or pits. On the assumption that it takes 3 tons of clay to make 1,000 brick, the production of common brick alone required over 22,000,000 tons of raw clay in the peak year 1925; notwithstanding diminished demand, structural clay products even now require from ten to fifteen million tons of raw clay a year. Only a little over half the total consumption of fire clay appears in the Bureau of Mines figures as shipments, because nearly half of the total (3,275,021 tons in 1941) is burned directly into refractories at pitside plants. About 4,000,000 tons of additional clay or shale are used in portland-cement manufacture, and most of this escapes inclusion in the annual clay statistics because it was neither sold nor shipped away from the mine. A rough calculation shows that shipments of what may be termed "merchant" clay comprised in 1941 only 20 percent and in some years not more than 10 percent of the total clay or shale mined in the United States.

Salient statistics of the clay industry in the United States, 1925-41

			144 July 197		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
	1925–29 (average)	1930-34 (average)	1935–39 (average)	1940	1941
Domestic clay sold or used by producers:			- 1 - 1 - 1 - N		
Kaolin, china clay short tons	450 010	401 000	074 147	000 450	
Doll olor	453, 618	431, 932	654, 147	833, 450	1, 087, 848
Ball claydo	116, 127	70, 299	108, 525	140, 707	198, 445
Fire clay (including stoneware clay)			1		
short tons	2, 898, 576	1, 487, 364	2, 175, 309	2, 765, 247	4, 167, 567
Bentonitedo	(1)	84, 762	188, 385	251, 032	354, 028
Fuller's earthdodo	261, 640	259, 354	204, 529	146, 568	207, 446
Miscellaneous claysdodo	1 575, 708	305, 973	360, 602	710, 515	1, 210, 168
				120,020	1, 210, 100
Total domestic:	100	100	1		
Quantitydodo	4, 305, 669	2, 639, 684	3, 691, 497	4, 847, 519	7, 225, 502
Value	\$17, 568, 812				
V datuc	417, 010, 012	\$10, 877, 776	\$15, 455, 392	\$19, 633, 568	\$27, 305, 567
Imports:					
Koolin on china alam	200 014				
Kaolin or china clayshort tons_	339, 014	140, 888	122, 232	105, 567	¹ 66, 945
Common blue and Gross-Almerode			1		1
short tons	12, 130	11, 306	27, 108	32, 141	20, 872
Fuller's earthdo	8, 118	4,708	2, 256	474	1 241
Other claydo	61, 048	24, 713	16, 922	2, 267	3 150
•	,	24,110	10,000	-, 201	- 100
Total imports:					
Quantitydo	420, 310	181, 615	100 510	140 440	* 00 000
Value			168, 518	140, 449	¹ 88, 208
value	\$3, 841, 462	\$1, 595, 101	\$1, 608, 395	\$1, 159, 790	2 \$890, 263
Exports:					
Exports:			1	1	1
Fire clayshort tons_	55, 316	39, 709	61, 247	96, 501	² 66, 080
Other clay (including fuller's earth)		i	i		1
short tons	54, 028	68, 978	87, 824	87, 667	2 81, 452
Total exports:	1		1	1	
Quantitydodo	109, 344	108, 687	149, 071	184, 168	3 147, 532
Value	\$1, 217, 769	\$1, 323, 744	\$1, 819, 242	\$2,071,336	2 \$1, 647, 435
	41, 21, 100	W1, 020, 177	ψ1, 018, 242	φ2, U/1, 000	- 41, 017, 100
	i .	1	ı	1	1

Sales of bentonite included under "Miscellaneous clay" before 1930.
 Figures cover January to September, inclusive.

However, virtually all the kaolin, ball clay, and bentonite, plus a large and increasing percentage of the fire clay output, is marketed or used elsewhere by the producers. These clays are worth many times as much per ton as those used generally for heavy clay products; therefore, the total value of a merchant clay probably is higher than the book value of the clay used in integrated plants. Whereas the tonnage and value of china clay sold and used elsewhere for paper or pottery is reported by the Bureau of Mines as raw clay and credited as a product of the State in which it was mined, clay converted into common brick or sewer pipe is not reported as raw clay because doing so would result in duplication; it is included in the value of clay products as reported by the Bureau of the Census and included by

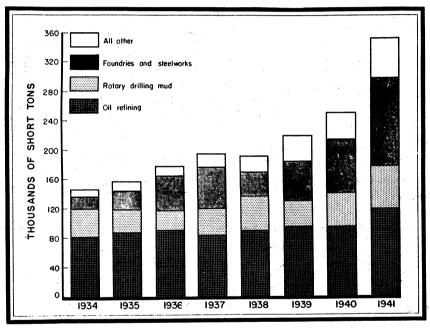


FIGURE 1.—Bentonite sold by domestic producers for specified uses, 1934-41.

the Bureau of Mines in its summarized mineral production statistics for the various States.

CONSUMPTION AND USES

The following table gives sales of specified domestic clays by kinds and uses in 1941, continuing the series begun in 1921. Data for total clay used in 1939 and earlier years by major uses (except refractories) were summarized in a bar chart in Minerals Yearbook, 1940 (p. 1268); and in the corresponding chapter of Minerals Yearbook, Review of 1940 (p. 1227), changes in distribution of sales of kaolin, by uses, were plotted. In the present chapter, figure 1 shows changes in distribution of sales of bentonite, by uses.

Clay (including fuller's earth) sold or used by producers in the United States in 1941, by kinds and uses, in short tons

Use	Kaolin	Ball clay	Fire clay and stoneware clay	Bentonite	Miscel- laneous clay, includ- ing slip clay	Fuller's earth	Total
Pottery and stoneware: Whiteware, etc Stoneware, including chemical stoneware.	102, 346	148, 600	1		509		267, 341
ical stoneware Art pottery, flowerpots, etc. Slip for glazing	103	609 544 500			7, 083 762		43, 214 16, 431 1, 262
Tile, high-grade	102, 449 23, 132	150, 253 32, 048	67, 192 7, 782		8, 354 1, 395		328, 248 64, 357
Kiln furniture, etc.: Saggers, pins, stilts Wads	3, 345	953	48, 839 8, 533			4	53, 137 8, 533
Architectural terra cotta	3, 345	953 217	57, 372 21, 021				61, 670 21, 238
Paper: Filler Coating	431, 493 173, 572	2, 000	. 743				434, 236 173, 572
Rubber	605, 065 127, 055 9, 813	2, 000 8, 792	743 9, 000 14, 315				607, 808 136, 055 32, 920
Paints: Filler or extenderCalcimine	12, 793 1, 660		5, 496			7	12, 797 7, 163
Cement manufacture	14, 453 42, 761		5, 500 18, 665	1, 935	298, 014	7	19, 960 361, 375
Refractories: Fire brick and block Bauxite, high-alumina brick	115, 781	491	, , , , , ,				2, 566, 373
Fire-clay mortar, including clay processed for laying fire brick	1, 283		105, 077 284, 255		693		105, 077 286, 231
Clay crucibles Glass refractories Zinc retorts and condensers Foundries and steel works	787 1, 553 4, 048	169 184	3, 770 43, 541 40, 966 762, 990	121, 283	48, 023	252	4, 726 45, 278 40, 966 936, 596
	123, 452	844	3, 690, 700	121, 283	48, 716	252	3, 985, 247
Miscellaneous: Rotary-drilling mud Filtering and decolorizing oils (raw and activated			348	58, 468	175, 539	3, 769	238, 124
earths)Other filtering and clarify- ing	130			118, 625		1 198, 991	317.616
Artificial abrasives Asbestos products Chemicals Enameling	275 1, 440 3, 526 51	250 2, 724	2, 282 777 13, 478 20, 071	1, 969	3, 766	3, 231	5, 330 6, 364 2, 467 17, 004 23, 571
paint) Plaster and plaster products Concrete admixture, seal-	1, 235 8, 306		100	6, 925	18, 041	278	26, 479 8, 406
ing dams, etc	21, 360	323	230, 467 7, 754	2, 519	642, 704 12, 914	918	2, 519 873, 171 85, 573
Grand total	36, 323	3, 338	275, 277	230, 810	853, 689	207, 187	1, 606, 624
Grand total: 1941 1940	1, 087, 848 833, 450	198, 445 140, 707	4, 167, 567 2, 765, 247	354, 028 251, 032	1, 210, 168 710, 515	207, 446 146, 568	7, 225, 502 4, 847, 519

¹ Comprises the following: Mineral oils, 177,151 short tons; vegetable oils, 21,840 short tons.

CHINA CLAY OR KAOLIN

Sales of domestic kaolin or china clay jumped to 1,087,848 short tons valued at \$9,205,892 in 1941 from 833,450 tons valued at \$6,994,106 in 1940. The tonnage topped that of the all-time record for the previous year by 31 percent and was more than double that of 1929. The paper industry alone required 110,000 tons more than in 1940 and consumed 56 percent of the total shipments. Percentagewise, however, the consumption of clay for refractories, pottery, rubber, paint, and certain minor uses increased even more than ship-

ments of paper clay.

Imports for the first 9 months of 1941—almost all English clay, which is used chiefly in paper, sanitary ware, and pottery and to a diminishing extent in porcelain and tile—amounted to only 66,945 short tons, with a foreign market value of \$698,502. Import statistics for the last quarter cannot be published, but the 1941 total was undoubtedly less than the 105,567 tons imported in 1940. Average figures for 1925–29 show imports of 339,014 tons and domestic shipments of only 453,618 tons a year, and for 1909–13 the ratio of imports to domestic shipments was nearly 2:1 (261,266 and 132,114 tons a year, respectively).

Georgia was the leading kaolin-mining State in 1941, as usual, producing 787,013 tons or 72 percent of the national output; South Carolina (with 177,276 tons or 16 percent of the total) ranked second, and Pennsylvania (with 44,277 tons or 4 percent) third. In order of output, the other producing States were Florida, California, North Carolina, Virginia, Delaware, Illinois, Alabama, Maryland, Vermont,

Utah, and Tennessee.

The location of kaolin mines in the United States is shown in

figure 2.

Nine firms, operating 14 mines and each producing 30,000 tons or more, supplied 80 percent of the quantity and 84 percent of the value of the total sales in 1941; in 1940 approximately the same percentages of the quantity and value of the total shipments (which were smaller) came from 10 firms operating 15 mines. More than half of the firms reporting output in 1941 produced less than 4,000 tons each, and their aggregate contribution represented only 3 percent of the total tonnage shipped. The total output of the 42 smallest firms was less than that of any of the three largest firms in 1941.

Price quotations for domestic clays have remained virtually unchanged for several years, and readjustments of English clay prices have largely followed changes in ocean freight and insurance. Availability of bottoms was indicated by a reduction of \$1 a long ton in the freight rate in the summer of 1941. The gradual increase in average value of domestic sales—from \$7.94 in 1939 to \$8.28 in 1940 and \$8.46 in 1941—shows that the proportion of higher-grade clays is now greater rather than that prices have experienced a general rise.

More than 50 geographically separate kaolin deposits associated with the Spruce Pine alaskite have been found in Avery, Mitchell, and Yancey Counties, N. C., where total reserves of crude kaolin have been estimated at 51,000,000 tons, of which perhaps 10 percent is recoverable as refined china clay. The Tennessee Valley Authority and the Bureau of Mines, in collaboration with local producers, have

tested thoroughly the application of North Carolina kaolins, feldspar, and other materials in the manufacture of all-American dinner-ware and sanitary-ware bodies. The State geologist ² published a brief report on the possibilities of producing high-grade ceramic products in western North Carolina.

Kaolin sold or used by producers in the United States, 1939-41, by States

Charles Constitution of the Constitution of th	19	39	19	40	19	41
State	Short tons	Value	Short tons	Value	Short tons	Value
Alabama	(1)	(1)	(1)	(1)	(1)	(1)
California Delaware	19, 481	\$111,719	14, 407	\$118, 481	20, 810	\$164, 110
Florida		8	8	\mathcal{H}	l X	K
Georgia	512, 214	4, 135, 727	570, 010	4, 834, 826	787, 013	6, 573, 60
[llinois Marvland					🙁	(1)
Maryland North Carolina	11, 308	(1) 165, 896	(1) 14, 602	(1) 202, 642		X
Pennsylvania.	49, 657	164, 562	49, 541	169, 981	44, 277	172, 78
South Carolina	158, 629	1, 297, 813	152, 227	1, 302, 812	177, 276	1, 596, 471
Cennessee	. <u>(1)</u>	(1)		(2)	1 🔅 1	(2)
Utah Vermont	1 8	8		8		X
/irginia	(1)	(1)	ii	(1)	16	(1)
Washington	(1)	(1)				
Indistributed 2	29, 515	324, 889	32, 663	365, 364	58, 472	698, 92
	780, 804	6, 200. 606	833, 450	6, 994, 106	1, 087, 848	9, 205, 892

¹ Included under "Undistributed."

Georgia kaolin sold or used by producers, 1937-41, by uses

	China c	ina clay, paper clay, etc.			fractory us	es	Total kaolin			
Year		Valu	ıe		Val	ue		Valu	Value	
rear	Short tons	Total	Average per ton	Short tons	Total	Average per ton	Short tons	Total	Average per	
1937 1938 1939 1940	423, 065 367, 612 450, 121 497, 881 669, 978	\$3, 332, 851 3, 199, 169 3, 956, 344 4, 625, 080 6, 216, 087	\$7. 88 8. 70 8. 79 9. 29 9. 28	80, 667 45, 020 62, 093 72, 129 117, 035	\$213, 208 115, 749 179, 383 209, 746 357, 518	\$2. 64 2. 57 2. 89 2. 91 3. 05	503, 732 412, 632 512, 214 570, 010 787, 013	\$3, 546, 059 3, 314, 918 4, 135, 727 4, 834, 826 6, 573, 605	\$7. 04 8. 03 8. 07 8. 48 8. 35	

For 1939 the Bureau of the Census reports (Preliminary Report, December 1941) the domestic production of kaolin as 751,000 short tons, or slightly less than the Bureau of Mines shipment figure of 780,000 tons which includes the output of operations too small for the Census to canvass as well as any quantities that were shipped from stock mined in earlier years. Including kaolin, ball clay, and certain miscellaneous clays (used principally for oil-well drilling muds), the Census reports a total production in 1939 of 1,050,000 tons of clay by the "Kaolin and ball-clay" industry, which comprised 95 pits or mines and 53 associated preparation plants in 19 States. Most of this was mined from open pits, although there were 5 small underground or combination underground and open-pit operations, 1 hydraulicking, and 1 dredge operation. The value of all products was \$7,239,000.

² Includes States indicated by "(1)" above.

² North Carolina Department of Conservation and Development, Division of Mineral Resources, Manufacturing China Clay Opportunities in North Carolina: Bull. 40, 1941, 24 pp.

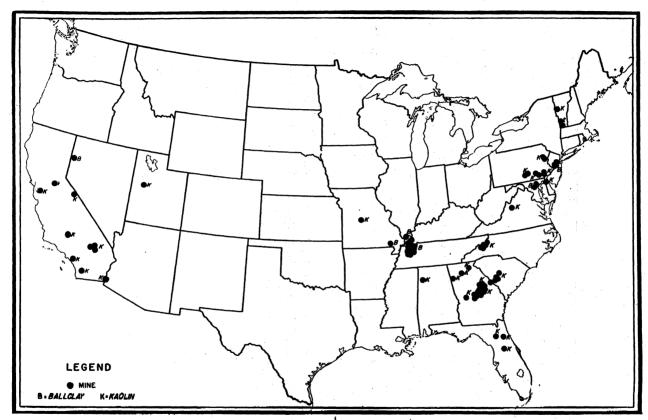


FIGURE 2.—Location of kaolin and ball-clay mines in the United States.

Wages were \$1,830,000, and salaries (266 employees) were \$637,000. Expenditures for supplies and materials (\$896,000), fuel (\$530,000), purchased electric energy (19,596 kw.-hr., \$241,000), and contract work (\$135,000) raised the reported expenses to an aggregate of \$4,269,000. Buildings, machinery, and equipment erected or installed during 1939 cost \$1,220,000. About 60 percent of the average of 3,168 wage earners were employed at operations in Georgia. Of the total number of man-hours worked by wage earners (5,987,000 or 7.3 hours per man per shift), about 40 percent was chargeable to mining and 60 percent to preparation. Average wage payments per hour ranged from 27 to 39 cents in Southeastern States and from 56 to 62 in Rocky Mountain and Pacific Coast States; the national average was 31 cents.

BALL CLAY

Reflecting increased activity by American potters and further displacement of imported clays, shipments of ball clay from domestic mines climbed to 198,445 short tons valued at \$1,677,600 in 1941, or 41 percent in quantity and 57 percent in value over the former record of 140,077 tons and \$1,065,432 in 1940, and continued a long ascent that has been interrupted seriously only once since 1932.

As in former years, most of the output in 1941 came from the Kentucky-Tennessee field. These two States furnished 94 percent of the total tonnage; the remainder was mined mostly in Maryland and New Jersey, although Mississippi, Missouri, and Nevada reported small shipments.

The location of ball-clay mines in the United States is shown in

figure 2.

The sharp advance in unit values was notable; the national average sales realization rose to \$8.45 a ton from \$7.57 in 1940 and \$7.28 in 1939. For Kentucky alone, the average sales price was \$8.95, 13 percent higher than the 1940 average and the highest in any year since 1931. These increases, however, were not due entirely to a mark-up in quotations but also represent steady improvement in quality and the fact that much of the clay, instead of being shipped crude, is now being shredded or even pulverized by producers before shipment to con-

One company, with clay pits in both Kentucky and Tennessee, has long been the largest single producer; in 1941, although 17 companies reported shipments of ball clay, 86 percent of the total tonnage was furnished by 5 companies.

Imports of English ball clay in 1941, as indicated by statistics that cover only the first 9 months of the year, were substantially less than the 1940 imports which amounted in the full year to 32,141 short tons having a foreign market value of approximately \$8 a ton, exclusive of freight, duty, and other charges. About half of the imported ball clay is used in sanitary ware. Formerly, it was demanded by virtually all manufacturers of electrical porcelain, vitrified china, and other high-grade products, but as domestic ball clays have been standardized and better-prepared they have been widely accepted by potters and ceramic engineers. Meanwhile, as noted in last year's chapter of this series, the ratio of ball clay to kaolin has tended to increase as a result of growing mechanization of the ceramic industry and new casting methods.

CLAYS 1329

True ball clays are fine-grained, sedimentary clays that are characteristically plastic and develop high strength, usually accompanied by rather high shrinkage, in drying and firing. They vitrify at low temperatures, having a long firing range, and may range in P.C.E. values from cone 18 to cone 34. The borderline between ball clays and certain other clays, especially plastic fire clay, is not always sharply drawn, but all the better ball clays burn to a cream white or a sufficiently light buff so that they can be used in whiteware bodies.

Ball clay sold by producers in the United States, 1939-41, by States

State	193	19	19	40	1941		
	Short tons	Value	Short tons	Value	Short tons	Value	
Kentucky Maryland Mississippi	66, 461 (¹)	\$507, 938 (1)	75, 933 (¹)	\$600, 264 (1)	105, 586 (1) (1)	\$944, 705	
Missouri Nevada	(1)	(1)	(!)	(1) (1)	(i)	(i) (i)	
New Jersey Tennessee Undistributed	3, 245 47, 971 10, 924	21, 651 365, 810 40, 322	(1) 53, 871 10, 903	(1) 414, 602 50, 566	(1) 80, 506 12, 353	(1) 664, 906 67, 989	
	128, 601	935, 721	140, 707	1, 065, 432	198, 445	1, 677, 600	

¹ Included under "Undistributed."

FIRE CLAY

Jumping far ahead of the rising index of steel production and other barometers of consumption, shipments of fire clay (including a small quantity of so-called "stoneware" clay) rose 51 percent in 1941 to 4,167,567 short tons worth \$10,455,909 from 2,765,247 tons and \$7,046,746 in 1940 and the previous all-time record of 3,266,261 tons and \$8,289,487 in 1929. These figures relate only to clay sold or shipped raw and do not include that burned into fire brick or clay products in integrated plants at the mine or pit, amounting to an additional 3,275,021 tons in 1941 and 2,039,377 tons in 1940.

Producers in 32 States shipped fire clay and stoneware clay in 1941, but as in former years more than one-fourth of the total was mined in Pennsylvania, and this State, together with Ohio and Missouri, furnished 63 percent of all the fire clay and stoneware clay sold or shipped raw and almost 70 percent of that made directly into fire brick or other products at the mines. Figure 3 shows the location of mines producing fire clay and stoneware clay in the United States.

As in other branches of the refractory industry, a few large companies are the principal miners of fire clay, each company owning and operating properties in various States and producing clay for use largely in its own plants. In addition, however, a score of other large or medium-size concerns are more or less completely self-contained and are important factors in their respective local markets. Of the total shipments in 1941, the 5 largest concerns furnished 36 percent; the next 5, 11 percent; and the next 15, 15 percent. Ranked in order of total clay, whether used at the pits or shipped, the 5 largest concerns represented 29 percent of the total tonnage; the next 5, 10 percent; and the next 15, 14 percent. Producers, including a great many small operators, totaled 499. Inspection of the returns indi-

² Includes States indicated by "(1)."

cates a relatively large number of mining units producing 10,000 to 50,000 tons a year—implying that this may be an economical size

of operation.

The main use of fire clay, of course, is in refractories. demands were boosted not only by the record rate of operations at steel and nonferrous metal plants but also by the large amount of new construction. Great quantities of fire brick, for example, were needed for lining new blast furnaces and relining old ones and for all of their accessory equipment, including stoves for heating the blast, boiler plants, and coke ovens. The consumption of brick for rebuilding beehive coke ovens was exceptionally large. Under normal conditions byproduct ovens are more economical than beehive, but they take

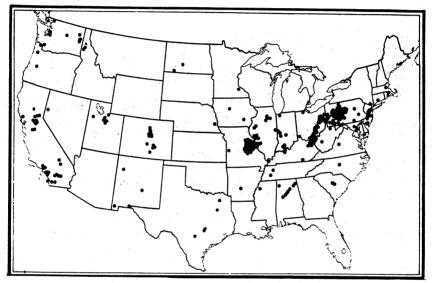


FIGURE 3.—Location of fire-clay mines in the United States.

longer to build. Many new furnaces had to be built for making shells,

heat treating, annealing, or normalizing.

The Bureau of the Census reports (Preliminary Report, November 1941) a total of 4,074,000 tons of fire clay and 27,000 tons of stoneware clay produced in 1939 from 306 operations in 19 States. Pennsylvania was the largest producing State, contributing 25 percent of the total, Ohio was a close second with 23 percent, and Missouri ranked third with 17 percent. Underground mines supplied almost half of the total output, and operations combining open-pit and underground methods recovered about 10 percent; 42 percent was produced from open pits. In Pennsylvania 10 percent was produced from open pits. For the country as a whole, the output was 0.95 ton per man-hour for open pits and 0.63 for underground mines, but in Pennsylvania the ratio was 0.66: 0.63. Wages (\$3,365,838) of 3,655 wage earners and salaries (\$498,506) of 255 other employees represented over 53 percent of the total value of products.

The Bureau of Mines figures for fire clay show a total of only 2,222,295 tons in 1939, but these data comprise only clay that was

1331 CLAYS

sold or shipped away from pits. Including the 1,984,709 tons reported as burned into clay products at the mine, the Bureau of Mines canvass showed 4,207,004 tons or slightly more than the quantity reported by the Census which does not cover small operations whose sales or expenditures were less than \$2,500 during the year.

Fire clay, including stoneware clay, sold or used by producers in the United States, 1939-41, by States

State	193	39	19	40	1941		
State	Short tons	Value	Short tons	Value	Short tons	Value	
labama	27, 715	\$51, 133	42, 843	\$74,868	52, 509	\$108, 70	
alifornia	162, 244	389, 448	193, 713	459, 680	316, 226	714, 77	
oloradolinois	52, 310 124, 778	72, 644 267, 254	52, 695 147, 148	89, 206 308, 711	84, 986 201, 139	143, 39 448, 00	
ndiana	40, 393	67, 669	69, 144	82, 962	111, 551	142, 32	
Centucky	181, 286	495, 818	269, 090	728, 380	395, 524	1, 288, 66	
Iaryland Iissouri	24, 091	83, 541	12, 582	67, 479	17, 790	99, 22	
		1, 171, 643	487, 650	1, 391, 045	794, 705	1, 782, 13	
lew Jersey		499, 720	91, 325	512, 546	133, 126	714, 92	
lew Mexico Phio		(2)	3, 263	10, 928	(2)	(2)	
ennsylvania	445, 610 572, 191	898, 429 1, 478, 729	470, 101 794, 702	1, 039, 228 1, 984, 272	689, 187 1, 130, 525	1, 689, 30	
outh Carolina	(2) 191	1, 170, 128 (2)	(2)	1, 904, 212 (2)	4,046	2, 848, 04 7, 57	
ennessee	13, 836	58, 943	(2)	(2)	38, 120	117, 16	
'ennessee 'exas	5, 837	34, 196	12,498	22, 686	31, 646	45, 88	
tah	20, 441	42, 137	20, 113	40, 107	15, 473	31, 14	
Vashington	20, 356	47, 734	21, 108	36, 097	65, 521	91, 60	
Vest Virginia	46, 758	93, 426	55, 853	103, 989	70, 885	133, 30	
ther States 3	6, 998	49, 529	21, 419	94, 562	14, 608	49, 70	
	2, 222, 295	5,801,993	2, 765, 247	7, 046, 746	4, 167, 567	10, 455, 90	

BENTONITE

Forty-one percent more bentonite was mined in the United States and sold during 1941 than during 1940, the former all-time record year for this remarkable clay, whose properties have only recently been put to extensive use. The output jumped to 354,028 short tons from 251,032 tons in 1940 and 219,720 tons in 1939; as recently as 1925, the total output was less than 5,000 tons. The value of the 1941 shipments increased to \$2,451,900 from \$1,919,461 and \$1,702,393 in 1940 and 1939, respectively.

Owing to the speed-up in munitions plants, the main increase in consumption was in foundry and core sands; 121,283 tons (34 percent) of the total in 1941 were used for this purpose as against 74,135 tons (only 30 percent) of the total in 1940. Substantial increases were noted in virtually all uses, of which oil-refining (118,625 tons) and oil-well drilling muds (58,468 tons) ranked next to foundry work in quantities consumed.

Fully 60 percent of the 1941 tonnage was Type 1 swelling or Black Hills-type bentonite, which is mined principally in eastern Wyoming, western South Dakota, and California. Much of the remainder was of the nonswelling, nonsuspendible type (sub-bentonite), employed largely for oil refining after activation with acid and to a minor extent for foundry and other uses.

¹ Includes diaspore and burley clay as follows—1939: 40,495 short tons, valued at \$174,144; 1940: 34,359 tons \$156,603; 1941: 79,897 tons, \$405,673.

² Included under "Other States."

³ Includes States indicated by "(2)" above, and Arkansas, Connecticut (1939-40), Idaho, Iowa, Massachusetts, Minnesota, Mississippi (1941), Nebraska, Nevada (1940-41), North Carolina, North Dakota, Oregon, Vermont (1941), and Virginia.

Figure 4 shows the location of bentonite mines in the United States. On the borderline between Type 2 bentonite and fuller's earth are various clays found in Texas and Utah, some of which are acid-sprayed or otherwise treated to enhance their natural bleaching or filtering properties when used in oil refining. Certain producers who formerly classified such clays as bentonite or miscellaneous clays now describe them as "fuller's earth."

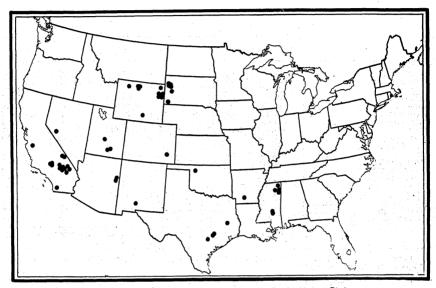


FIGURE 4.—Location of bentonite mines in the United States.

Bentonite sold or used by producers in the United States, 1938-41, by States

State	1938		1939		1940		1941	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alabama Arizona California Colorado Mississippi Nevada New Mexico Oklahoma South Dakota Texas Utah Wyoming Undistributed 2	(1) 15, 703 (1) (1) (20, 565 21, 744 (1) 58, 911 75, 260	(1) \$166, 998 (1) 155, 821 207, 084 (1) 530, 834 312, 445	(1) (1) 11, 699 (1) (1) (1) (31, 528 18, 132 (1) 76, 133 82, 228 219, 720	(1) (1) \$143, 314 (1) (1) 217, 622 148, 139 (1) 777, 722 415, 596	(1) 7, 867 (1) (1) (1) (1) 40, 481 14, 399 (1) 91, 714 96, 571	(1) \$99, 840 (1) (1) (1) (274, 714 127, 949 (1) 976, 844 440, 114	(1) 6, 981 (1) 57, 139 11, 593 145, 574 132, 741 354, 028	(1) \$69, 776 (1) 401, 75 105, 31: 1, 369, 05; 505, 99; 2, 451, 90

Included under "Undistributed."
 Includes States indicated by "(1)."

The Nation-wide average price of \$6.93 a ton f. o. b. mines in 1941 was much lower than the average of \$7.65 in 1940; for Wyoming alone the average declined to \$9.39 from \$10.65 in 1940 and \$10.22 in 1939. Trade-journal quotations, however, have remained for years at \$8 a

CLAYS 1333

ton for dried and crushed material in bulk and \$10 in bags f. o. b. Wyoming mines, carlots. Actual prices likewise have continued unchanged at around \$10.25 a ton for the widely used 200-mesh powder (f. o. b. Black Hills shipping point in 100-pound bags) and \$7 a ton for 4- to 20-mesh material in bulk or \$8.75 in bags. Bags are an important cost item but are not included in Bureau of Mines valuations. A steady decline in average unit values in recent years is due to larger quantities sold in carlots rather than less-than-carlots and possibly to a relative decline in the proportion of powdered clay. Sales of high-price, processed clay for specialized uses have increased but not enough to offset the effect of heavier sales of bulk products.

FULLER'S EARTH

Shipments of fuller's earth or natural bleaching clay increased in 1941 to 207,446 short tons valued at \$2,111,674 from only 146,568 tons and \$1,471,083 in 1940, or 42 percent in tonnage. Petroleum refining, which consumed 85 percent of the total in 1941 and 90 percent in 1940, increased only 9 percent. The quantity (21,840 tons) used for bleaching vegetable oils and animal fats nearly doubled, and the quantity (8,455 tons) used for other purposes more than doubled in 1941; but the apparent increase from 132,259 to 177,151 tons used in mineral-oil refining was due mainly to reclassification of

their material by several producers.

The distinction between fuller's earth and other clays used in oil refining is largely a matter of opinion, as virtually all clays have some natural bleaching power and it is difficult to classify clays whose bleaching properties have been enhanced by acid-spraying or other treatment. Certain types of bentonite having little or no natural bleaching power are not fuller's earth, even though they are highly activated by acid treatment. In former years, 20,000 to 40,000 tons of borderline material produced principally in Texas has been classed as "miscellaneous clay" or "sub-bentonite", but in 1941 the trend was to emphasize its natural bleaching powers and so to call it "fuller's earth." For this reason, the 1941 statistics should not be interpreted as indicating a definite reversal of the downward trend owing to the substitution of other bleaching or clarifying agents and the adoption of oil-refining methods that reduce the requirements of natural bleaching clays. On the other hand, they may indicate that this trend is retarded or perhaps even has run its course.

The competition of acid-treated bentonite, activated bauxite, synthetic magnesium silicate, and other processed bleaching materials has intensified the importance of transportation cost, which often exceeds the total production cost of fuller's earth. Although clays having high bleaching power in their natural state are not widely distributed, location is a leading factor in successful operation of fuller's earth deposits. Florida and Georgia usually have furnished more than half of the total domestic output, although Texas, Illinois, or Nevada occasionally has outranked one or the other of these older sources as regards tonnage produced in a given year. In 1941, due in part to the inclusion of acid-sprayed earths and other borderline material, Texas was the leading producing State. The average value of the Texas clay, however, was only \$9.26 a ton, f. o. b. mines, compared with \$11.70 for the combined output of Florida and Georgia.

Notwithstanding definite improvement in quality and preparation of the fuller's earth marketed, the average value of the entire domestic output has ranged only slightly above \$10 in recent years following an almost steady decline from \$19.51 in 1920 to \$13.64 in 1929 and a low point of \$9.28 in 1933.

Fuller's earth sold or used by producers in the United States, 1939-41, by States

1980 (2004) 1980 (1980) 1980 (1980) 1980 (1980)	1939		19	40	1941	
State	Short tons	Value	Short tons	Value	Short tons	Value
Florida and Georgia Illinois Texas Other States ²	91, 947 (¹) 38, 338 36, 785	\$1, 035, 066 (¹) 359, 058 297, 731	79, 898 (1) 34, 039 32, 631	\$917, 365 (1) 277, 229 276, 489	91, 925 26, 676 77, 033 11, 812	\$1, 075, 318 209, 577 713, 085 113, 694
	167, 070	1, 691, 855	146, 568	1, 471, 083	207, 446	2, 111, 674

Included under "Other States."
 1939: California, Colorado, Illinois, Nevada, and Tennessee; 1940: Colorado, Illinois, Nevada, New Mexico, and Tennessee; 1941: California, Nevada, New Mexico, Tennessee, and Utah.

MISCELLANEOUS CLAY

As previously noted, Bureau of Mines data on shipments of "miscellaneous clay" do not include clay burned into clay products at the mines; in fact, the above classification is largely a "catch-all" designed to cover merchant clays not elsewhere listed in this chapter. foregoing table of consumption by uses shows that most of the tonnage in this category is consumed in the manufacture of heavy clay products, followed by cement manufacture. The next largest item is rotary-drilling muds (in which it may be blended with bentonite), and substantial quantities are used in foundries and steel works. small quantities of slip clay are also included. The total shipments of miscellaneous clay in 1941 were 1,210,168 tons valued at \$1,402,592, 70 percent more in quantity than in 1940. In addition, mine operators reported the consumption of 7,261,513 tons of clay burned into clay products at the mines. The summation of these figures (8,471,681 tons in 1941), however, does not cover the entire common-clay and shale industry of the United States, which, according to the Bureau of the Census (Preliminary Report, December 1941), produced 16,062,000 short tons of clay in 1939; the 1941 total output was doubtless larger than that in the census year 1939. The Census Bureau figures include 1,088,000 tons of clay used in the manufacture of cement but exclude 1,235,000 tons of clay and shale from pits worked in conjunction with limestone quarries and consequently considered by the Census as products of the limestone industry.

Additional information abstracted from the Census report follows: The bulk of the tonnage was used in the manufacture of heavy clay products such as brick, hollow structural tile, architectural terra cotta, roofing tile, and sewer pipe. Open pits furnished 93 percent of the tonnage, underground mines 5 percent, and combination open-pit and underground operations, the remainder. Although common clay and shale are produced in 45 of the 48 States and in the District of Columbia about half the total quantity was mined in Ohio, New York, Pennsylvania, Illinois, Texas, North Carolina, and Georgia. Operations in Ohio employed 595 wage earners; those in Pennsylvania, 255; and those in Illinois, 172. Total monthly employment ranged from a low of 2,247 in February to a peak of 3,266 in June. The number of days operated ranged from only 74 in Oregon to

260 in South Carolina, and the tons of clay produced per man-hour averaged 2.93 to 3.36 for open pits and 1.04 for underground mines. In Ohio the output per wage-earner hour averaged 2.07; in New York, 5.92; in Pennsylvania, 2.66; and in Illinois, 3.35. The average hourly earnings of wage earners was 51 cents, ranging from 30 cents in the Southeastern States to about 65 cents in the Northeastern States.

The industry paid \$2,793,000 in wages to an average of 2,906 wage earners during the year. Salaried employees, numbering 61 in October, were paid \$94,000. Expenditures for supplies and materials amounted to \$629,000; for fuel, \$384,000; and for purchased electric energy, \$214,000. In addition, \$99,000 was paid for work done on contract. These reported expenses totaled \$4,213,000. The cost of buildings erected and machinery and equipment installed in 1939 was \$258,000.

Miscellaneous clay, including slip clay 1 and shale, sold or used by producers in the United States, 1938-41, by States

State	1938		1939		1940		1941	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alabama Arkansas Salifornia Colorado Ilinois Indiana Owa Outsiana Nebraska Dhio Pennsylvania Fexas Washington Other States 3	(2) (2) 135, 923 54, 115 (2) 3, 089 6, 055 (2) 16, 009 47, 226 39, 196 (2) 11, 901 76, 201	(2) (2) (3) (3) (4), 249 (2) (1, 692 36, 725 (2) (7, 532 28, 751 23, 136 (10, 638 329, 770 861, 659	(2) (2) 117, 286 76, 081 (2) 17, 402 4, 655 (2) 19, 567 23, 542 45, 292 (2) 8, 272 97, 177	(2) (2) \$250, 328 78, 159 (2) 12, 024 40, 081 (2) 8, 910 14, 351 31, 728 (2) 5, 744 272, 880 714, 205	100, 522 24, 421 127, 539 62, 803 (2) 20, 086 9, 548 10, 189 10, 406 44, 156 54, 930 65, 822 14, 807 165, 286	\$60, 583 10, 533 248, 632 64, 842 (2) 9, 756 96, 314 5, 516 18, 788 35, 256 257, 266 270, 466	125, 563 (2) 186, 123 79, 458 73, 468 106, 362 9, 690 111, 949 52, 468 59, 565 94, 698 (2) 410, 824	\$70, 27 (3) 473, 84 83, 24 66, 93 46, 75 (3) 5, 74 21, 76 24, 85 180, 68 (3) 394, 97

CLAY PRODUCTS

The total output of the clay-products industries has varied greatly, but in recent years its value has averaged close to \$250,000,000 annually, about half being structural products. Figure 5, furnished through courtesy of the National Clay Products Institute, Washington, D. C., shows the geographic distribution of clay-products plants in the United States.

A comprehensive report on the floor- and wall-tile industries was issued in 1941.3

The industries producing common brick and other heavy clay products were more active in 1941 than for many years previously, but their output still was not more than half that in the record year Further recovery is indicated. Masonry requires less metal than any other form of construction; and, particularly where permanence is desired, clay products are favorably considered. Adequate numbers of bricklayers and masons were available in 1941. Increased interest was shown in the larger building units, including tile up to

¹ Includes slip clay as follows: From Michigan and New York in 1938, 2,227 tons, valued at \$13,955, and in 1939, 2,564 tons, \$17,654; from Michigan, New York, and Ohio in 1940, 4,365 tons, \$29,268; and from Kentucky, Michigan, New York, Ohio, and Pennsylvania in 1941, 5,649 tons, \$40,797.

2 Included under "Other States."

3 Includes States indicated by "(2)" above, and Connecticut, Georgia, Kansas (1939-41), Kentucky (1939 and 1941), Maine (1939), Maryland, Massachusetts, Michigan, Minusota, Mississippi, Missouri (1940-41), Montana, Nevada (1939-41), New Jersey, New Mexico, New York, Oklahoma, Oregon (1941), Tennessee (1940-41), Utah, and Wisconsin (1941).

³ U. S. Tariff Commission, Earthen Floor and Wall Tile: Rept. 141, 2d Ser., 1941, 158 pp.

10 by 12 by 12 inches. In England, hollow tile filled with sand was an effective protection for store fronts and dwellings during aerial attack, and in the United States an air-raid shelter using steel-reinforced light tile has been designed. Loose piles of brick afforded excellent protection from bombs and have been recommended in some cases instead of sand bags owing to the shortage of burlap and the possible rotting of the fabric. Clay slabs laid over the attics or upper floors of residences are mentioned by the National Bureau of Standards as a protective measure against incendiary bombs.

The Wage and Hour Division of the United States Department of Labor issued a wage order effective September 1, 1941, establishing a minimum wage of 34 cents an hour for workers in brick factories, instead of the 30-cent hourly wage formerly in effect; approximately

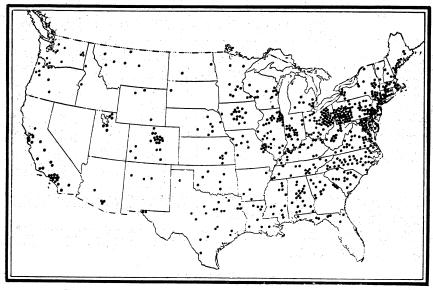


Figure 5.—Location of structural clay-products plants in the United States.

3,900 wage earners in 14 Southern States were benefited. Virtually all workers in the industry elsewhere in the Nation already received at least 40 cents an hour.

TECHNOLOGIC DEVELOPMENTS

Stepping up aluminum production to meet the ever-expanding needs of war-plant construction prompted reappraisal of clay as a possible source of the metal. Pure kaolin contains almost 40 percent alumina or roughly two-thirds as much as does bauxite, which hitherto has been considered the only economic ore of aluminum. Much of our bauxite comes from Surinam and after leaving the ship may be hauled hundreds of miles by rail to a chemical plant; the purified alumina then may go 2,000 miles farther to reach cheap electric power. Including mining, transportation, and treatment charges, purified alumina therefore costs \$45 to \$55 a short ton delivered at reduction plants in North America. As large clay deposits containing 30 per-

CLAYS 1337

cent or more alumina occur within a radius of 100 miles of most of these reduction works or power sites, the incentive to use clay instead of bauxite is sufficient on financial grounds alone, wholly apart from the wartime problems of bringing sea-borne cargoes to American ports.

In 1940, the Tennessee Valley Authority announced that it had developed a process for making aluminum from clay, and it is said to have operated a pilot plant successfully for over a year, although no technical details have been released. Prof. Arthur Hixson, of Columbia University, recently described ⁴ a process for digesting selected high-silica clay with hydrochloric acid and decomposing the resultant product to get hydrochloric acid (which is returned to the process), and alumina (which can be reduced to metal in the conventional way).

⁴ Hixson, Arthur W., Oil, Paint and Drug Reporter, vol. 140, No. 19, November 10, 1941, p. 81.

ABRASIVE MATERIALS

By ROBERT W. METCALF

SUMMARY OUTLINE

naman na manan nganan nganan naman da ana ana ana ana ana ana ana ana an	Page		Page
General conditions	1339	Natural silicate abrasives	1348
Soliant etatistics	1339	Pumice and pumicite	1348
Natural silica abrasives	1340	Garnet	1350
Diatomite	1340	Natural alumina abrasives	1351
Tripoli			1351
Quartz		Emery	1352
Ground sand and sandstone	1344	Natural carbon abrasives	1352
Abrasive sands	1345	Abrasive or industrial diamonds	1352
Special silica-stone products	1346	Artificial abrasives	1353
Grindstones and pulpstones		Miscellaneous mineral abrasive materials	1355
Oilstones and related products	1346	Foreign trade	1355
Millstones	1346		
Caladian ashblar and tasks mill linear	1947		

GENERAL CONDITIONS

The total value of products of the natural abrasives industries in 1941 was about 50 percent greater than in 1940. All types of abrasive materials except pulpstones and "oilstones and related products" made large gains over 1940 in value of sales. The value of pumice and pumicite sales established a new record, sales of ground sand and sandstone were the highest known except in 1917, and sales of emery were the highest since 1918. Garnet sales, except for 1937, had their greatest value since 1929.

Salient statistics of the abrasives industries in the United States, 1940-41

	1940	1941	Percent of increase, 1941 over 1940
Domestic production (sold or used by producers):			
Natural silica abrasives:			
Diatomite	(1)	(1)	-
		\$421,746	15
TripoliQuartz		228, 587	15 30
Quartz Ground sand and sandstone	2, 088, 314	3, 073, 730	47
Ground sand and sandstone	2,000,011	0,010,100	-
Special silica-stone products:	496, 448	545, 556	10
Grindstones and pulpstones	480, 430	(1)	
Oilstones and related products	(1)	15, 579	138
Millstones	6, 558		100
Flint lining and grinding pebbles	(1)	276, 042	
Natural silicate abrasives:	440.044	000 514	40
Pumice and pumicite	449, 914	669, 514	49 43
Garnet	259, 345	371, 752	20
Natural alumina abrasives:			1
Emery	9, 349	42, 484	354
	ļ		
Total natural abrasives 2	2 3, 852, 887	2 5, 644, 990	
Total artificial abrasives 3	10, 142, 691	16, 444, 319	62
Foreign trade:		1	1
Imports	11, 517, 117	4 7, 732, 963	
Exports	1 005 001	4 1, 884, 938	

¹ Bureau of Mines not at liberty to publish figures. Average for diatomite for 1939-41 was \$1, 915,405.

² Excludes in 1940 value of diatomite, flint lining and grinding pebbles, and oilstones and related products and in 1941 value of diatomite and oilstones and related products, which the Bureau of Mines is not at liberty to publish.

³ Includes some material produced in Canada; Bureau of Mines not at liberty to publish United States deta conservely.

data separately.

Figures cover January to September, inclusive.

Output of crude manufactured (artificial) abrasives broke all records for the second successive year, rising in 1941 to 279,030 short tons-54 percent above the former record year 1940; the total value also established an all-time high—\$16,444,319, or 52 percent above the previous high value in 1929. All three types of manufactured abrasives for which figures are shown surpassed by large margins the former records achieved in 1940. The percentages of increase in 1941 compared with 1940 were: Silicon carbide, 36 percent; aluminum oxide. 50 percent; and metallic abrasives, 73 percent. In the period of 1941 (January-September), for which foreign trade data may be published. imports of diamond dust and smaller industrial diamonds continued unabated, receipts of corundum ore were larger than in any full year since 1936, emery ore receipts ceased entirely, and crude pumice receipts were virtually nonexistent. Total exports of natural abrasive materials in this period were greater than in the full year 1940, in spite of a large decrease in exports of grindstones and of emery and corundum abrasive wheels.

This chapter includes data for most of the materials used chiefly as abrasives, although certain clays, oxides, and substances mentioned later under "Miscellaneous mineral abrasive materials" are not included in the statistics presented herein. On the other hand, certain of the "abrasive materials" for which figures are included

have important nonabrasive uses also.

On January 23, 1942, prices of both coated and bonded abrasive products virtually were fixed at the October 1941 level, at the request of the Office of Price Administration. Notification of any subsequent proposed increase in price and of the reasons for such action was required at least a month before the effective date of increase. Coated abrasives include sandpaper, garnet and emery cloth and paper, aluminous oxide cloth, and similar items, whereas bonded abrasives include manufactured grinding wheels, honing sticks, sharpening stones, and similar products.

The effect of grinding, lapping, superfinishing, and similar polishing operations upon metal surface finishes was studied by means of electron diffraction, microscopic experimentation, and corrosion The use of pumice and diatomaceous earth and other natural products, as well as byproduct and processed or expanded aggregates, in lightweight concrete was discussed by Moyer. The occurrences and uses of silica in its many forms, including vein quartz, quartz

crystals, tripoli, diatomaceous earth, and gem and ornamental varieties, were described.3

NATURAL SILICA ABRASIVES

Diatomite.—The Bureau of Mines has not been at liberty to publish annual production figures for diatomite since 1926. Total output (sales) for 3-year periods, however, may be shown. Total sales for the three most recent of such periods were as follows-1939-41: 360,502 short tons valued at \$5,746,216; 1936-38: 279,645 tons valued

1942, 39 pp.

i Wulff, J., Metallurgy of Surface Finish: Proc. Conf. Friction and Surface Finish, June 1940, pp. 13-21; abs. Bull. British Nonferrous Metals Research Assc., No. 138, December 1940, p. 332; Ceram. Abs. (Am; Ceram. Sec.), vol. 20, No. 9, September 1941, p. 211.

2 Moyer, Forrest T., Lightweight Aggregates for Concrete: Bureau of Mines Inf. Circ. 7195, 1942, 26 pp. 2 Jensen, Nan C., Marketing Silica (Quartz, Tripoli, Diatomite, etc.): Bureau of Mines Inf. Circ. 7202, 1442, 20 pp.

at \$4,377,353; and 1933-35: 244,342 tons valued at \$3,618,428. Sales during 1941 were at a considerably higher level than in prior years.

California and Oregon remained the principal producing States; other States in which diatomaceous earth was produced in 1941 were Florida, Idaho, Nevada, New Mexico, New York, and Washington

(see fig. 1).

Although new uses constantly are being developed, the chief marketing outlets for diatomite are as filter aids; as polish ingredient, especially silver polish; as an insulating material, either in board or as block; and as fillers or admixtures in a variety of products. diatomaceous earth operations of the Dicalite Co. in Oregon were reported by Manning, 4 who outlined the equipment and processes employed in treatment as well as the uses for which the finished product is adapted. The winning of commercial diatomite from freshwater bog deposits in Florida, the various grades marketed, and the uses of each type were described.5

Quotations on diatomite, as reported in Engineering and Mining Journal Metal and Mineral Markets, remained unchanged throughout 1941, as follows: Crude dried diatomite f. o. b. mines (Nevada), in bulk \$7 per ton, in bags \$12; low-temperature insulation, \$19

per ton; high-temperature insulation \$40.

The properties of diatomaceous earth and its uses as a filtering medium, a carrier for catalysts, and a filler, and in the plastics and papermaking industries were discussed by Hall.6 The effect of chlorine on diatomaceous earth was studied in Great Britain. Using a process developed by the Bureau of Mines,8 a pilot-plant run on a Maryland diatomite was made to ascertain operating costs and to determine the feasibility of producing this material on a commercial scale.9

Use of diatomaceous earth instead of flint in five different types of ceramic glazes resulted in improved gloss and an off-white color, according to Keith. 10 Diatomite as a base for chemical pigments 11

and its use in the match industry 12 were described.

Diatomaceous silica, also known as kieselguhr, was first used in the sugar industry in the United States about 25 years ago. ally increased numbers of units of modern filtration equipment were installed, especially after the introduction of faster-flowing filter aids in 1923. By 1930 filter aids of diatomaceous earth were being used by nearly all sugar refineries in the United States and Canada

⁴ Manning, Paul D. V., Products from Diatoms: Chem. and Met. Eng., vol. 48, No. 9, September 1941, pp. 114-115.

5 Pit and Quarry, Florida Bog Supplies Material Yielding Commercial Diatomite: December 1941,

pp. 48-49.

6 Hall, Howard W., Diatomaceous Silica—How It Serves Industry: Pacific Pulp and Paper Ind., vol. 15, April 1941, pp. 50-53; Chem. Abs., vol. 35, No. 19, October 10, 1941, p. 6743.

7 Barrett, L. R., Richardson, H. M., and Green, A. T., Action of Chlorine on Refractory Materials. III.—Diatomaceous Earth: Bull. British Refractory Research Assc., No. 57, 1940, p. 19; Ceram. Abs (Am. Ceram. Soc.), vol. 21, No. 1, January 1942, p. 13.

8 Norman, James, and Ralston, Oliver, Purification of Diatomite by Froth Flotation: Am. Inst. Min. and Met. Eng. Tech. Pub. 1198, New York, 1940, 11 pp.; Min. Technol., vol. 4, No. 3, May 1940.

9 Ralston, Oliver C., and Stern, A. George, Report of the Nonmetals Division, Fiscal Year 1941: Bureau of Mines Rept. of Investigations 3599, 1941, p. 23.

10 Keith, Wendell P., Comparison of Flint and Diatomite as a Source of Silica in Ceramic Glazes; 44th Annual Meeting, Am. Ceram. Soc., April 19-23, 1942; abs. Bull. Am. Ceram. Soc., vol. 21, No. 4, April 15, 1942, p. 18.

annual Meeting, Am. Ceram. Soc., April 19-23, 1942; abs. Bull. Am. Ceram. Soc., vol. 21, No. 4, April 18, 1942, p. 18.

11 Burwell, E. C., Diatomaceous Earth Base for Chemical Pigments: Ind. and Eng. Chem., ind. ed., vol. 33, No. 7, July 1941, pp. 915-918.

12 Crass, M. F., Jr., The Match Industry; Raw Materials Employed: Chem. Ind., vol. 48, No. 4, April 1941, pp. 424-433.

and by many refineries and other types of sugar factories in different countries, 13 particularly beet-sugar factories. Methods and equipment have frequently been developed and improved. Use, equipment, modern procedures, and the results obtained in sugar refineries by diatomaceous earth filter technique were discussed in a series of

articles in the technical press.14

Tripoli.—The total quantity of tripoli (including Pennsylvania rottenstone) sold was slightly less in 1941 than in 1940-29,301 short tons compared with 30,212 tons; the value of sales, however, rose 15 percent to \$421,746 from \$366,569 in 1940. Tripoli or amorphous silica was produced in the same States as in 1940, the output coming largely from Illinois, Missouri, and Oklahoma; other States reporting production were Arkansas, California, Pennsylvania (rottenstone), and Texas.

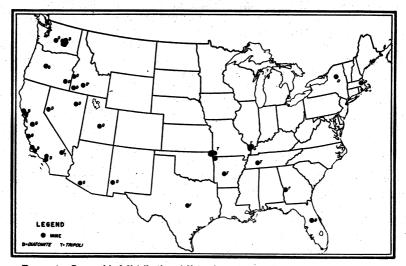


FIGURE 1.—Geographical distribution of diatomite and tripoli mines in the United States.

According to Engineering and Mining Journal Metal and Mineral Markets, prices of tripoli remained constant during 1941, as follows 15: Once-ground through 40-mesh, rose- and cream-colored, \$14.50; double-ground through 110-mesh, rose and cream, \$16; air-floated through 200-mesh, \$26.

¹³ Elsenbast, A. S., and Morris, D. C., Diatomaceous Silica Filter-Aid Clarification: Ind. and Eng. Chem., ind. ed., vol. 34, No. 4, April 1942, pp. 412-418.

14 Cummins, A. B., and Waymouth, C. E., Filtration of Sugar Solutions; Some Factors Determined by Laboratory Test Procedures: Ind. and Eng. Chem., ind. ed., vol. 34, No. 4, April 1942, pp. 392-398. Cummins, A. B., Calcium Phosphates in the Filtration of Sugar Liquors: Ind. and Eng. Chem., ind. ed., vol. 34, No. 4, April 1942, pp. 398-402; Clarifying Efficiency of Diatomaceous Filter-Aids: Ind. and Eng. Chem., ind. ed., vol. 34, No. 4, April 1942, pp. 398-402; Clarifying Efficiency of Diatomaceous Filter-Aids: Ind. and Eng. Chem., ind. ed., vol. 34, No. 4, April 1942, pp. 403-411.

Elsenbast, A. S., and Morris, D. C., Work cited in footnote 13.

14 Quotations are per ton f. o. b. Missouri, in burlap bags, with paper liners, minimum carload, 30 tons.

Tripoli (including Pennsylvania rottenstone) sold or used by producers in the United States, 1937-41

W	Illinois		Other States 1		Total	
Year 1937	Short tons 11, 647 8, 141 11, 134 11, 521 13, 833	\$151, 154 117, 107 148, 310 155, 576 200, 700	23, 289 14, 047 22, 340 18, 691 15, 468	\$299, 416 211, 974 318, 070 210, 993 221, 046	34, 936 22, 188 33, 474 30, 212 29, 301	Value \$450, 570 329, 081 466, 390 366, 569 421, 746

¹ 1937-38: Arkansas, California, Missouri, Oklahoma, Pennsylvania, and Tennessee; 1939: Arkansas, California, Missouri, Oklahoma, Pennsylvania, Tennessee, and Texas; 1940-41: Arkansas, California, Missouri, Oklahoma, Pennsylvania, and Texas.

Tripoli (including Pennsylvania rottenstone) sold or used by producers in the United States, 1939-41, by uses

Wee.	1939		1940		1941	
Use	Short tons	Value	Short tons	Value	Short tons	Value
Abrasives Concrete admixture Filler Oil-well drilling Other uses ³	10, 953 1, 653 9, 016 (1) 11, 852	\$169, 370 24, 580 120, 284 (1) 152, 146	10, 279 1, 683 8, 451 1, 840 7, 959	\$119, 609 15, 895 113, 862 16, 949 100, 254	13, 407 1, 179 10, 020 1, 925 2, 770	\$198, 252 15, 168 145, 063 22, 833 40, 428
	33, 474	466, 380	30, 212	366, 569	29, 301	421, 740

¹ Included under "Other uses." ² 1939: Foundry facing, oil-well drilling mud, and unspecified; 1940: Filter block, foundry facing, and unspecified; 1941: Foundry facing and unspecified.

Abrasives and fillers remained the largest outlets for tripoli in 1941, each showing a substantial gain over 1940, and combined they represented 80 percent of the total sales compared with 62 percent in 1940. Oil-well drilling made a small gain over 1940, whereas concrete admixture decreased as did "other uses," which in 1941 comprised

foundry and unspecified uses.

Quartz.—The output of crude, crushed, and ground quartz from pegmatite veins or dikes and from quartzite in 1941 increased to 41,685 short tons, valued at \$228,587, or 31 percent in tonnage and 30 percent in value over 1940. Production was much higher than in any year since 1920. The gain in 1941 in total sales of quartz was due to the greatly increased sales of crude and crushed material, as 19 percent less ground quartz was sold than in 1940; however, except for 1940, the quantity was larger in 1941 than in any year since 1935.

Quartz (crude, crushed, and ground) 1 sold or used by producers in the United States, 1937-41

	Crı	ıde	Crushed		Ground		Total	
Year	Short	Value	Short tons	Value	Short tons	Value	Short tons	Value
1937 1938 1939 1940	3, 252 4, 493 13, 739 3, 606 8, 977	\$10, 096 17, 023 45, 785 17, 099 39, 247	5, 891 9, 930 15, 504 17, 652 24, 101	\$24, 652 27, 941 49, 186 58, 897 94, 913	3, 869 4, 188 5, 716 10, 607 8, 607	\$31, 293 43, 233 58, 067 100, 394 94, 427	13, 012 18, 611 34, 959 31, 865 41, 685	\$66, 041 88, 197 153, 038 176, 390 228, 587

¹ To avoid duplication, the ground material shown here is only that ground by the original producers of the crude quartz or by grinders who purchase from small miners not reporting their production.

An output of quartz in 1941 was reported from 15 States compared with 13 in 1940. (See fig. 2). No sales in 1941 were reported from Virginia; and States producing in 1941 but not in 1940 were New Hampshire, Ohio, and Texas. Otherwise the same States furnished quartz in both years.

Quartz (crude, crushed, and ground) 1 sold or used by producers in the United States, 1939-41, by States

State	1939		19	40	1941		
	Short tons	Value	Short tons	Value	Short tons	Value	
Arizona	8, 442 910 644 515 442	\$37, 410 5, 600 1, 725 8, 010 2, 352	2, 141 1, 600 160 (2) 786	\$25, 548 10, 000 538 (2) 4, 716	3, 974 202 (2) 850	\$50, 243 722 (*) 5, 525	
Pennsylvania Ohio North Carolina	(3)	(2)	(2)	(3)	778	7, 181 (²)	
Virginia Texas	3, 702	22, 824	3,842	25, 063	1, 485	14, 345	
Other States 3	20, 304	74, 817	23, 336	110, 525	34, 396	150, 571	
추용하다 그 그 그래	34, 959	153, 038	31, 865	176, 390	41, 685	228, 587	

Ground sand and sandstone.—Sales of ground sand and sandstone in 1941 (487,665 short tons) were the largest ever recorded except in the war peak year 1917; the value of sales (\$3,073,730), however, was over two and a half times that in 1917 and 43 percent greater than the previous high value of \$2,146,464 in 1936. States producing substantial tonnages in 1941 were Illinois, New Jersey, Ohio, and Pennsylvania (see fig. 2).

Ground sand and sandstone sold or used by producers in the United States, 1937-41

Year	Short tons	Value	Year	Short tons	Value
1937. 1938. 1939.	328, 156 237, 167 310, 512	\$1, 996, 528 1, 425, 445 1, 930, 301	1940 1941	342, 218 487, 665	\$2, 088. 314 3, 073, 730

Ground sand and sandstone sold or used by producers in the United States, 1940-41, by States

State	194	0	1941		
2.000	Short tons	Value	Short tons	Value	
California Illinois Massachusetts New Jersey and Pennsylvania Ohio, Virginia, and West Virginia Other States ³	5, 505 106, 397 1, 425 122, 304 96, 133 10, 454	\$39, 080 628, 488 6, 240 641, 021 688, 321 85, 164	(1) 131, 581 1, 352 174, 305 149, 542 30, 885	(1) \$808, 402 6, 327 954, 929 1, 092, 784 211, 288	

¹ To avoid duplication, the ground material included is only that ground by the original producers of the crude quartz or by grinders who purchase from small miners not reporting their production.

2 Included under "Other States."

1939: New York, Ohio, Tennessee, and Wisconsin; 1940: Maryland, New Jersey, New York, Pennsylvania, Tennessee, and Wisconsin; 1941: Maryland, New Hampshire, New York, North Carolina, Tennessee, and Wisconsin; 1941: Maryland, New Hampshire, New York, North Carolina, Tennessee, and Wisconsin; 1941: Maryland, New Hampshire, New York, North Carolina, Tennessee, and Wisconsin; 1941: Maryland, New Hampshire, New York, North Carolina, Tennessee, and Wisconsin; 1941: Maryland, New Hampshire, New York, North Carolina, Tennessee, and Wisconsin; 1941: Maryland, New Hampshire, New York, North Carolina, Tennessee, and Wisconsin; 1941: Maryland, New Hampshire, New York, North Carolina, Tennessee, and Wisconsin; 1941: Maryland, New Hampshire, New York, North Carolina, Tennessee, and Wisconsin; 1941: Maryland, New Hampshire, New York, North Carolina, Tennessee, and Wisconsin; 1941: Maryland, New Hampshire, New York, North Carolina, Tennessee, and Wisconsin; 1941: Maryland, New Hampshire, New York, North Carolina, Tennessee, and Wisconsin; 1941: Maryland, New Hampshire, New York, North Carolina, Tennessee, Maryland, New Hampshire, New York, North Carolina, Tennessee, Maryland, New Hampshire, New York, North Carolina, Tennessee, Maryland, New Hampshire, New York, North Carolina, Tennessee, Maryland, New Hampshire, New York, North Carolina, Tennessee, Maryland, New Hampshire, New York, North Carolina, Tennessee, Maryland, New Hampshire, New York, North Carolina, Tennessee, Maryland, New Hampshire, New York, North Carolina, Maryland, New Hampshire, New York, North Carolina, Maryland, New Hampshire, New York, North Carolina, Maryland, New Hampshire, New York, North Carolina, Maryland, New Hampshire, New York, New York, New York, New York, New York, New York, New York, New York, New York, New York, New Yo and Wisconsin.

Included under "Other States."
 1940: Missouri, North Carolina, and Wisconsin; 1941: California, Missouri, and Wisconsin.

As in 1940, the three principal uses for ground sand and sandstone in 1941 were pottery, porcelain, and tile (38 percent of the total), abrasives (21 percent), and foundries (16 percent), or 75 percent of the total quantity marketed for these uses compared with 83 percent in 1940. Consumption for all the uses indicated in the accompanying table showed considerable increases over 1940; for example, the amount used in glass manufacture, fourth-largest use in 1941, was over three and a half times that consumed for this purpose in 1940.

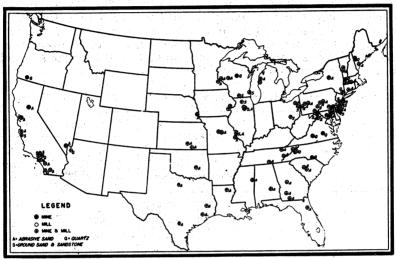


FIGURE 2.—Geographical distribution of plants producing quartz, abrasive sand, and ground sand and sandstone in the United States.

Ground sand and sandstone sold or used by producers in the United States in 1941, by uses

	Military Mark	Va	lue
Use	Short tons	Total	Average per ton
Abrasive: Cleansing and scouring compound	76, 557 26, 273 30, 983	\$415,043	\$5.42

Abrasive sands.—Production of natural sands with a high silica content, employed for sand blasting, scouring stone, grinding glass, sandpaper, and other abrasive uses, rose in 1941 to 1,001,814 short tons valued at \$1,388,966 from 856,309 tons valued at \$915,925 in 1940, or 17 percent in tonnage and 52 percent in value. It was only slightly less than that in 1937—1,067,178 tons valued at \$1,440,736. The 1941 total includes 371,049 tons of blast sand valued at \$912,626—45 percent more in quantity and 53 percent in value than the 256,104 tons valued at \$597,198 reported for 1940.

SPECIAL SILICA-STONE PRODUCTS

Grindstones and pulpstones.—Total sales of grindstones and pulpstones in 1941 rose to 15,536 short tons valued at \$545,556, or 17 percent in tonnage and 10 percent in value over 1940, although the output of pulpstones fell sharply. Both the tonnage and value of grindstones sold in 1941 were over 50 percent greater than in 1940 and higher than in any recent year. Approximately equal to the 1930 output, the total for 1941 remained considerably under the annual production for the decade ended with 1929. Owing chiefly to the severe competition of manufactured pulpstones made from aluminum oxide, production of natural pulpstones decreased 57 percent in tonnage and 47 percent in value from 1940. As in other recent years, grindstones were quarried in Ohio and West Virginia and pulpstones in Washington and West Virginia.

Grindstones and pulpstones sold by producers in the United States, 1937-41

		G-1-1			Pulpstones	
	Year	Grinds	stones	Qua	ntity	
		Short tons	Value	Pieces	Equivalent short tons	Value
1937		11, 617 4, 653 7, 917 8, 790 13, 573	\$352, 377 149, 019 257, 350 284, 809 434, 208	761 417 672 901 685	2, 924 1, 553 2, 517 4, 533 1, 963	\$220, 331 90, 987 169, 025 211, 639 111, 348

Oilstones and related products.—Sales of natural sharpening stones—including oilstones, whetstones, scythestones, and rubbing stones—decreased somewhat in 1941 compared with 1940. As in 1940, however, the Bureau of Mines is not at liberty to publish the figures. States that contributed to the total in 1941 and the type of stone reported from each were as follows: Arkansas, oilstones and whetstones; Indiana, scythestones and rubbing stones; New Hampshire, scythestones, whetstones, and lathestones; and West Virginia, rubbing stones.

Oilstones and other whetstones, hones, scythestones, and rubbing stones sold by producers in the United States, 1937-41

Year	Short tons	Value	Year	Short tons	Value
1937	810 511 620	\$112, 841 130, 277 115, 805	1940 1941	(1) (1)	(1) (1)

[!] Bureau of Mines not at liberty to publish figures.

Millstones.—The value of millstones sold in 1941 rose to \$15,579, or 138 percent above 1940 and 41 percent above 1939—the highest recent year. However, it was much less than the annual values recorded before 1930. In 1941 millstones were produced in Ulster County, N. Y.; Rowan County, N. C.; Montgomery County, Va.; and near Morgantown, W. Va. (see fig. 3). Output of chasers also was reported by two producers in New York.

Value of millstones, chasers, and dragstones sold by producers in the United States, 1937-41

en en en en en en en en en en en en en e	New York		Other S	tates 1	Total	
Year	Producers	Value	Producers	Value	Producers	Value
1937	- 6 4	(2) (2)	2 2	(2)	8 6	\$8, 305 3, 743 11, 084
1939 1940 1941	. 6 3 5	\$2, 584 (²) 3, 558	3 2 3	\$8, 500 (2) 12, 021	9 5 8	6, 558 15, 579

¹ 1937-38: Virginia; 1939-40: North Carolina and Virginia; 1941: North Carolina, Virginia, and West Virginia.
³ Bureau of Mines not at liberty to publish figures.

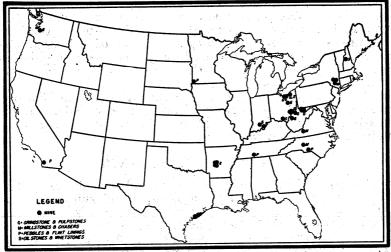


FIGURE 3.—Geographical distribution of sources of grindstones and pulpstones, millstones and chasers, pebbles (grinding), and tube-mill linings (flint linings), and oilstones and whetstones in the United

Grinding pebbles and tube-mill liners.—Because of the curtailment of receipts of foreign pebbles and liners—chiefly Danish and French pebbles and Belgian silex liners—strenuous efforts have been made to locate and market domestic materials. For many years, the principal domestic supply has come from quartzite deposits in Minnesota or from southern California beaches. Materials tested include shaped liners and tumbled cubes of granite, quartzite other than the Minnesota material, and quartz pebbles and other rounded or shaped rocks from Canada, Newfoundland, and the United States. Some of these have given, under difficult conditions, service as good as or better than the imported products.

In response to this increased interest in domestic sources, a number of new producers entered the field, and the sales of grinding pebbles and tube-mill liners in 1941 rose to 16,972 short tons valued at \$276,042—somewhat higher than the tonnage and more than twice the value in 1917, the previous high year. Of the total for 1941, grinding pebbles represented 13,561 tons valued at \$221,826 and tube-mill

liners 3,411 tons valued at \$54,216.

In 1941 the principal commercial producer of grinding pebbles and tube-mill liners was the Jasper Stone Co., Sioux City, Iowa, which marketed liners and artificially rounded quartzite pebbles from near Jasper, Minn. In California, John C. Momand, Carlsbad, again produced beach pebbles (mostly of granite, with no flint pebbles); the Crystal Silica Co., Los Angeles, and the Ocean Rock & Sand Co., Oceanside, also sold some grinding pebbles. Charlotte Chemical Laboratories, Inc., Charlotte, N. C., which in 1940 operated as the Southern Products & Silica Co., produced granite liners, rounded granite cubes, and milled-silica (quartz) pebbles; the Harris Granite Quarries Co., Salisbury, N. C., marketed both liners and rounded granite cubes; and Peeler & McCombs, Faith, N. C., sold granite pebbles and liners. Quartzite liners were produced by J. Howard Swaim, 918 Cotton States Bldg., Nashville, Tenn., from deposits near Iron City, Tenn.

Texas flint pebbles were marketed in 1941 by Philip S. Hoyt, Columbus, Tex., and the Dezendorf Marble Co., Austin, Tex.; these pebbles are said to be nearly as tough as the Danish pebbles formerly imported. Philip S. Hoyt produced some liners also. Another new source was the Baraboo Quartzite Co., Baraboo, Wis., which produced

quartzite pebbles in Sauk County, Wis.

In 1942 Texas pebbles are being marketed also by The Richard L. Cawood Co., 1250 St. George St., East Liverpool, Ohio. Grinding pebbles produced near Elmore, Ala., are sold through the Great Lakes Foundry Sand Co., United Artists Bldg., Detroit, Mich.

NATURAL SILICA ABRASIVES

Pumice and pumicite.—Sales of pumice and pumicite in 1941 rose to 117,310 short tons valued at \$669,514—an all-time high in both quantity and value; they were 42 percent greater in tonnage than in 1940 and 32 percent above 1939, the previous record year. The total value in 1941 surpassed by 49 percent the 1940 high of \$449,914. This large increase reflects both the greater use of pumice as a concrete aggregate in building and the more careful preparation of domestic pumice and its acceptance by consumers in place of the high-quality abrasive grades formerly imported.

Pumice and pumicite sold or used by producers in the United States, 1937-41

Year	Short tons	Value	Year	Short tons	Value
1937 1938 1939	71, 007 65, 742 89, 159	\$301, 936 312, 886 424, 780	1940 1941	82, 407 117, 310	\$449, 914 669, 514

Production of pumice and pumicite in 1941 was reported from California, Kansas, Nebraska, New Mexico, Oklahoma, Oregon, and

Texas (see fig. 4).

Pumice and pumicite used for concrete aggregate and admixture increased in 1941 to 56,159 short tons, or 155 percent above the 1940 figure. Use in acoustic plaster was 32 percent greater than in 1940. Consumption in abrasives, however, was slightly less than in 1940, although the value increased 62 percent—49,031 tons valued at \$392,364 in 1941 compared with 50,195 tons valued at \$242,331 in 1940 (see fig. 5).

Pumice and pumicite sold or used by producers in the United States, 1939-41, by uses

	19	1939		1940		1941	
Use	Short tons	Value	Short tons	Value	Short tons	Value	
Abrasive:			a ta ta	Tarjera e		10 mg	
Cleansing and scouring compounds and hard soaps	52, 521	\$227,447	49, 359	\$234,768	36, 246	\$265, 361	
Other abrasive uses	(1)	(1)	836	7, 563	12, 785	127, 003	
Acoustic plaster Concrete admixture and concrete ag-	5, 444	97, 181	3, 712	67, 906	4, 885	78, 538	
Concrete admixture and concrete aggregate	20, 719	24, 852	22, 045	48, 204	56, 159	72, 242	
Other uses ?	10, 475	75, 300	6, 455	91, 473	7, 235	126, 370	
	89, 159	424, 780	82, 407	449, 914	117, 310	669, 514	

Included under "Other uses."

² 1939: Asphalt, heat or cold insulation, or other abrasive use, insecticide, building tile and blocks, roofing, stucco, and unspecified uses; 1940: Asphalt, heat or cold insulation, insecticide, stucco, lime mortar, and unspecified uses; 1941: Asphalt, insulating mediums, insecticide, paint products, and unspecified.

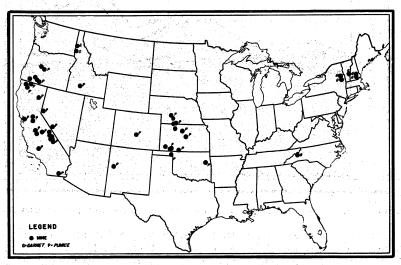


FIGURE 4.—Geographical distribution of garnet mines and pumice and pumicite mines in the United

The European War cut off supplies of Italian pumice, which usually has made up the bulk of the high-quality abrasive pumice sold in the eastern United States. Suitable domestic pumice was located in California. Increasingly difficult transportation conditions, however, led to the purchase by eastern importers of the pumice mill at Grants, N. Mex., heretofore operated by the Barnsdall Tripoli Co., Seneca, Mo. Under the name of the Pumice Corporation of America, this plant is now shipping high-grade pumice for abrasive use to eastern markets at an all-rail rate said to be comparable with rates by railwater routes formerly utilized 16 from California.

A brief paper by Adams 17 described the chemical and physical properties, uses, and economics of pumice and volcanic ash.

¹⁶ Bureau of Mines, Mineral Trade Notes: Vol. 13, No. 1, July 19, 1941, pp. 22-23; Rock Products, vol. 42, No. 8, August 1941, p. 120.

17 Adams, James A., Pumice and Pumicite: Oregon State Dept. Geol. and Min. Ind., G. M. I. Short Paper 6, Portland, Oreg., 1941, 7 pp.

pumice deposit of the West Coast Pumice Co. near Chemult, Oreg., and its commercial utilization were described. Pence 19 discussed the advantages of volcanic ash as a ceramic body constituent. After electromagnetic treatment, pumicite may be used in place of feldspar in ceramic bodies whose color has secondary importance. The mechanical strength of pumicite bodies is higher than that of feldspar bodies. Shrinkage is also somewhat higher. Other properties of ceramic mixes containing pumicite are similar to those using feldspar.

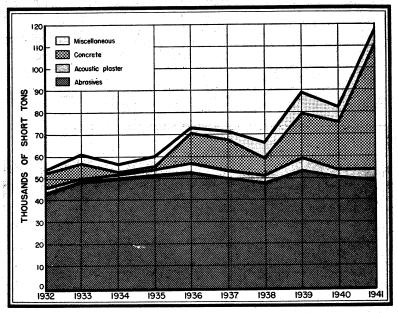


FIGURE 5.—Trends, by uses, of pumice and pumicite sold or used by producers in the United States, 1932-41.

Garnet.—Abrasive garnet sold or used by producers in the United States in 1941 totaled 5,501 short tons valued at \$371,752—a gain of 17 percent in tonnage and 43 percent in value over 1940 and higher than in any year since 1929 (fig. 6). Increased industrial activity on account of the munitions program contributed to the increased demand. The outlook for further expansion during 1942 seems favorable. In 1941, as in 1940, output of garnet produced for sale came from New York, North Carolina, Vermont, and Idaho (see fig. 4). After reorganization, Mas-Celo Mines, Inc., Burnsville, N. C., producers of byproduct garnet, took over and continued operation of the properties of Celo Mines, Inc.

Market quotations for garnet at the beginning of 1941, as reported by Engineering and Mining Journal Metal and Mineral Markets, were as follows: New Hampshire, f. o. b. mines, per ton, concentrate, \$30; grain, \$80 to \$140; New York, Adirondack garnet concentrates, grain, \$85 per ton; Spanish grades, c. i. f. port of entry, \$60 (nominal). These prices held firm throughout the year except for New Hampshire

Mining World, Oregon Pumice Deposit Put to Commercial Utilization: Vol. 3, No. 1, January 1941,
 P. 30.
 Pence, Forrest K., White-Firing Texas Volcanic Ash as a Body Ingredient: Bull. Am. Ceram. Soc.,
 vol. 20, No. 10, October 1941, pp. 327-329.

concentrate, which after August 14 was quoted at \$35 per ton, and Spanish garnet which after June 5 rose to \$70 per ton, c. i. f. port of entry.

Year	Short tons	Value	Year	Short tons	Value
1937 1938 1939	4, 863 2, 669 4, 056	\$382,535 191,658 278,534	1940 1941	4, 716 5, 501	\$259, 345 371, 752

A popular account of the garnet, its forms, varieties, and mineral associations, was published.²⁰ Operations of the Barton Mines Corporation on Gore Mountain near North Creek, N. Y. were described.²¹ The garnet-bearing rock is broken by blasting and hauled to a ramp which leads into the mill. After it passes through a roll crusher, the dirt and rock are removed by washing, and the clean garnets are graded for size, dried, and packed in bags for shipment. Some of the product is crushed further, according to customers' orders, but the greater part is sold in sizes as produced. Production averages 12 to 15 tons daily from rock containing 5 to 12 percent garnet.

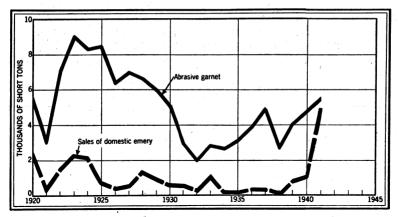


FIGURE 6.—Marketed production of abrasive garnet and domestic emery in the United States, 1920-41.

NATURAL ALUMINA ABRASIVES

Corundum.—Corundum exports from South Africa, chief source of world supply, were consigned chiefly to the United States in 1941. A large plant for the treatment of boulder corundum, to cost about £20,000, was being built in 1941 at Pietersburg, in Northern Transvaal. It is proposed to distribute corundum from Pietersburg direct to Australia, India, and other countries that hitherto have been supplied by way of the United States.²²

^{**} Trainor, John N., An Introduction to the Garnet: Rocks and Minerals, vol. 17, No. 5 (Whole No. 130), pp. 163-167.

** Diesel Power and Diesel Transportation, Mining Garnet with Diesel Power: Vol. 19, No. 12, December

^{1941,} pp. 1027-1029.

2 Mining and Industrial Magazine, Southern Africa, vol. 29, November 1941, p. 331; reported in Bureau of Mines Mineral Trade Notes: Vol. 14, No. 2, February 20, 1942, pp. 15-16.

The consumption of South African corundum in the United States has increased rapidly during the last few years. The material is crushed and sized, and the coarse grain products are sold to manufacturers of grinding wheels, especially snagging wheels, and the finer-grained products to optical lens grinders. The fine dust (minus-240-mesh) and the secondary materials mixed with glass and reduced in size after use by the optical instrument workers are sold to retail

With the issuance on February 10, 1942, of War Production Board General Preference Order M-89, corundum was made subject to full allocation. Under the order, corundum used in the manufacture of some civilian products may be curtailed, and suppliers will make deliveries only when specifically authorized by the Director of Industry Operations, War Production Board. The Director will periodically allocate corundum and specifically direct the manner and quantities in which deliveries shall be made. Future allocations may be made without regard to any preference ratings assigned to particular contracts or purchase orders, but they will be made to insure

Emery.—The production of emery in 1941 rose to 4,876 short tons valued at \$42,484—the highest output since World War I when production including a small quantity of corundum, reached 10,422 tons in 1918. In 1941, as in recent years, all the output came from the Peekskill district in southeastern New York State (see fig. 7). Increased shipments were reported by the three producers mining emery in 1941, who also produced in 1940—DiRubbo & Ellis, the Howard Emery Corporation, and Joe DeLuca; in addition, Scalzo & Pisano operated in 1941 and sold their entire output through DeLuca. Mining is conducted by crude hand methods on account of the toughness of the ore, which occurs in veins of norite. Demand is increasing as new uses are being developed. Production at the DeLuca mine in January and February 1942 is said to have been three times that in the corresponding months of 1941.²³

Emery sold or used by producers in the United States, 1937-41

Year	Short tons	Value	Year	Short tons	Value
1937	320	\$2,780	1940 1941	1, 046 4, 876	\$9, 349 42, 484
1939	765	6, 828	1011	2,010	12, 101

NATURAL CARBON ABRASIVES 24

Abrasive or industrial diamonds.—The demand for abrasive or industrial diamonds in the United States is satisfied principally through the importation of black diamonds or carbonados (largely from Brazil) and diamonds for industrial use (chiefly from the Union of South Africa but with increasing importations from Brazil). Some diamond dust and bort also are imported, although usually in comparatively small and decreasing quantities in recent years. Imports of "glaziers' and engravers', unset, and miners'" diamonds (a classification comprising

²² Rocks and Minerals, vol. 17, No. 3, March 1942, p. 107. ²⁴ See also chapter on Gem Stones in this volume.

mostly if not entirely diamonds for industrial use) in January-September 1941 continued at approximately the same high average monthly rate as in 1940 and totaled 2,911,117 carats valued at \$7,415,133. average value per carat in 1941 was \$2.55, a continuation of the trend since 1929 toward lower values per carat, broken only in 1934 and 1940.

A comprehensive review of the diamond trade in 1940 in all countries of the world, dealing with both mining and cutting operations and treating in detail the South African trade and mining conditions for each of the main factors in the industry, was presented by Ball.25 Discussion includes an excellent account of the industrial diamond situation and the elements contributing to the greatly augmented consumption of industrial stones in recent years.

A good description of the South African diamond mines, including methods of mining, processing of the "blue earth" to recover the stones, and a brief outline of the methods of cutting and the industrial uses, with several illuminating illustrations, was published.26 A great amount of information about industrial diamonds, contributed by outstanding authorities in the various phases of the industry, was

published in the early part of 1942.27

In addition to diamonds and synthetic and natural rubies and sapphires, a number of other hard and tough stones, such as garnet, chrysoberyl, spinel, zireon, topaz, rock crystal, and agate, are used as watch and chronometer jewels, as bearings for meters or other scientific instruments, and for timing instruments, such as mechanical fuses for bombs, switches, and microgears.28 Details of the chief uses of the various stones are given, as well as a résumé of the shifts in use from one type to another with changing industrial conditions, with particular reference to Montana sapphires.

Stress was placed on the importance of diamond, corundum, emery, and various gem stones, such as synthetic rubies and sapphires and natural rubies, sapphires, and amethysts, used for jewel bearings in watches and in precision instruments of various types.29 Jewel bearings, their relation to industrial precision instruments for both military and civilian use, and sources of supply of natural and synthetic material

were discussed by Jensen.⁸⁰

ARTIFICIAL ABRASIVES

Production of manufactured (artificial) abrasives in 1941 exceeded all previous records, the total quantity reported being 54 percent above 1940 and the value 52 percent above 1929, the previous record years for tonnage and value, respectively. Plants manufacturing aluminum oxide and silicon carbide (see fig. 7) in Canada and the United States operated at full capacity in 1941 and produced 44,962 short tons of silicon carbide valued at \$3,325,928 and 147,759 short tons of aluminum oxide valued at \$9,067,732—an increase of 36 percent over 1940

Ball, Sydney H., The Diamond Industry in 1940: Jewelers' Circ.-Keystone, New York, 16 pp.
 Greeves-Carpenter, C. F., The Power of Diamonds: Compressed Air Mag., vol. 46, No. 2, February

¹⁸ Greeves-Carpenter, C. F., The Power of Diamonds: Compressed Air Mag., vol. 26, No. 2, Fedinary 1941, pp. 6377-6361.
18 Kraus, Ed. H., Ball, Sydney H., and others, Symposium on Diamonds: Am. Mineral., vol. 27, 1942, pp. 162-191 (reprint).
18 Ball, Sydney H., Precious and Semiprecious Stones, Their Industrial Uses, Particularly in Relation to National Defense: Min. and Met.. vol. 22, No. 414, June 1941, pp. 312-313.
28 Compressed Air Magazine, Industrial Gems (editorial): Vol. 46, No. 2, February 1941, p. 6372.
29 Jensen, Nan C., Jewel Bearings: Bureau of Mines Mineral Trade Notes, vol. 14, No. 3, March 26, 1942, pp. 38-37.

in tonnage of silicon carbide and 50 percent in tonnage of aluminum oxide. Although manufacturers of metallic abrasives (steel shot and grit) operated at only slightly above 60 percent of capacity, sales of these commodities in 1941 also set an all-time record, rising to 86,309 short tons or 73 percent above the former record (in 1940).

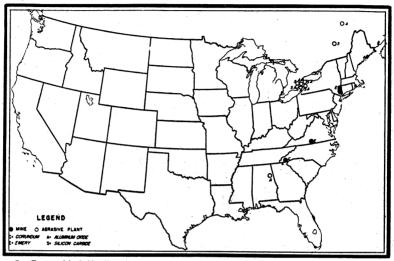


Figure 7.—Geographical distribution of corundum and emery deposits in the United States and plants manufacturing aluminum oxide and silicon carbide in the United States and Canada.

Crude artificial abrasives sold, shipped, or used, from manufacturing plants in the United States and Canada 1937-41 1

	Silicon carbide 2		Aluminum oxide 2		Metallic abrasives		Total	
Year	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1937. 1938. 1939. 1940.	30, 365 25, 346 24, 206 33, 042 44, 962	\$2, 215, 318 1, 904, 925 1, 713, 207 2, 359, 876 3, 325, 928	86, 401 53, 220 50, 468 98, 531 147, 759	\$4, 749, 497 3, 098, 132 3, 047, 337 5, 464, 986 9, 067, 732	28, 031 25, 771 42, 015 50, 016 86, 309	\$1, 399, 772 1, 234, 977 1, 743, 859 2, 317, 829 4, 050, 659	144, 797 104, 337 116, 689 181, 589 279, 030	\$8, 364, 587 6, 238, 034 6, 504, 403 10, 142, 691 16, 444, 319

Bureau of Mines not at liberty to publish data for United States separately.
 Production; includes material used for refractories and other nonabrasive uses.

Production of silicon carbide and aluminum oxide is concentrated chiefly in the Niagara Falls region of the United States and Canada, but some output of aluminum oxide comes from Quebec, Canada, and from Alabama. Producers of aluminum oxide in 1941 were requested to report separately the tonnage and value of "white—high-purity or special" aluminum oxide produced. These figures, not segregated heretofore from the total aluminum oxide output, were 22,659 short tons valued at \$2,676,753. Estimates based upon percentages reported by producers indicate that 32 percent of the silicon carbide output in 1941 and 3 percent of the aluminum oxide production were consumed for refractory or nonabrasive purposes compared with 32 and 2 percent, respectively, in 1940.

Steel shot and grit are manufactured largely in northern Ohio and in Pittsburgh, Pa., but some comes from Michigan and New Hampshire. Two new plants producing metallic abrasives were reported in 1941—a second mill of the Cleveland Metal Abrasive Co. (Cleveland, Ohio), at Howell, Mich., and the Industrial Metal Abrasives Co.,

Jackson, Mich.

The physical properties and industrial uses in special refractories of abrasives, such as fused alumina, silicon carbide, and electrically fused magnesia, were discussed by Fisher.³¹ Employment of these materials is desirable where operating temperatures are extremely high and high heat transfer is desired, where chemical erosion and mechanical abrasion are severe, and where contamination of the melt must be avoided.

MISCELLANEOUS MINERAL ABRASIVE MATERIALS

In addition to the natural and manufactured abrasive materials discussed, many other mineral substances have abrasive uses. Various oxides, including tin oxide, rouge, crocus, chromium oxide, magnesium oxide, and manganese oxide, are utilized as polishing agents. Finely ground as well as calcined clays, high-grade lime, talc, river silt, slate flour, whiting, feldspar, and other substances also are used as abrasives.

FOREIGN TRADE 32

In the period January-September 1941 imported crude pumice virtually dropped out of the domestic market and "manufactured"-pumice imports ceased because of the war and the difficulties of transportation from Italy, heretofore by far the chief source of foreign pumice. Receipts of bort also declined sharply. The value of diamond dust, however, was greater than in the full year 1940, and average monthly imports of "glaziers' and engravers', unset, and miners'" diamonds in the first 9 months of 1941 were only slightly less than in the year 1940. Imports of emery ore (from Greece) ceased, although receipts of corundum ore during January-September 1941 were larger than in any full year since 1936.

The total value of exports of natural abrasive materials in the January-September period of 1941 rose about 17 percent compared with the full year 1940, in spite of a severe drop in exports of both grindstones and emery and corundum abrasive wheels. The value of "All other natural abrasives, whetstones, hones, etc." exported during January-September 1941, however, jumped to \$1,716,054—42 percent above the entire year 1940 and higher than in any year since

1921.

³¹ Fisher, Henry C., Abrasives in the Role of Superrefractories: Metal Prog., vol. 40, No. 2, 1941, pp. 177-282; Ceram. Abs. (Am. Ceram. Soc.), vol. 21, No. 2, February 1942, p. 42.

³² Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Abrasive materials imported for consumption in the United States, 1939-41, by kinds

e e din e ee grok e ekseleid. Gebeure	1	939	1	940	1941 (Jan.–Sept.)	
	Quantity	Value	Quantity	Value	Quantity	Value
Millstones and burrstones: Rough or unmanufactured short tons	(1)	\$52		ing stage stage stage		Selfs Selfs its
Bound up into millstonesdo Grindstones, finished or unfinished do Hones, oilstones, and whetstonesdo	31 838 68	1, 678 26, 059 48, 261	40 634 37	\$2, 167 18, 275 42, 482	12 370 20	\$685 9, 743 26, 120
Emery: Ore	2, 191	29, 318	5, 718	73, 935		
Paper and cloth of emery or corun- dum	(3)	(2) 72, 966	(3)	(2) 91, 112	(3)	(²) 57, 639
Wheels, files, and other manufactures of emery or corundum or garnet	1.3.3 K -		14 J. (1)			
Corundum (see also "Emery"): Ore	10, 604 1, 964	5, 043 104, 724	4, 348 2, 922	2, 473 165, 270	723 4, 022	417 193, 345
Grains, ground, pulverized, or re- fined pounds. Tripoli and rottenstone short tons	² 129, 237	2 9, 793	2 134, 606	2 9, 262	³ 86, 306	2 3, 427
Pumice: Crude or unmanufactureddo	218 6, 656	2, 769 36, 463	3, 758	3, 767 20, 771	364 29	7, 563 671
Manufactures of, or of which pumice is the component material of chief value						
Diamond: Bort carats	(4) 1, 381	29, 221 34, 618	(4) 785	6, 468 19, 660	61	1, 025
Dust	(9)	4, 278	(4)	2, 515	(4)	2, 805
miners'carats Flint, flints, and flint stones, unground short tons	3, 568, 730 11, 987	9, 725, 683	3, 809, 071 2, 840	11, 026, 563 32, 397		7, 415, 133
5.10t v voiis		10, 246, 945	2,010	11, 517, 117	1, 195	14, 390 7, 732, 963

Value of domestic abrasive materials exported from the United States, 1937-41

Material	1937	1938	1939	1940	1941 1
Grindstones	\$193, 112	\$122, 720	\$173, 575	\$215, 156	\$89, 100
	140, 022	116, 456	125, 303	179, 514	79, 784
	826, 955	835, 894	1, 116, 711	1, 211, 291	1, 716, 054

¹ January to September, inclusive.

Less than 1 ton.
 Emery included with corundum; not separately classified.
 2.479 reams in 1939, 1,562 reams in 1940, 1,891 reams in 1941; weight not recorded.
 Quantity not recorded.

SULFUR AND PYRITES

By Allan F. Matthews and A. W. Mitchell 1

SUMMARY OUTLINE

		Page	1.	Page
General summary	A	1357	Sulfur—Continued.	
Salient statistics		1358	Foreign trade World production	1363 1334
Sulfur		1359	Pyrites	1366
Domestic productionThe industry in 1941 by State		1359	Domestic production	1366
Recovery as byproduct			The industry in 1941 by States	
Stocks		1362	Foreign trade World production	1367 1368
Price		1362	World production	1000

GENERAL SUMMARY

Spurred by the call for immense quantities of war products and nutritious food, world production of sulfur reached the highest rate in its history during 1941. Sulfur flowed in unprecedented quantities from the Gulf coast mines—largest in the world—to the industries of the United Nations. In the other camp, the Axis countries found their sulfur sources ample, although supplies at consumption centers apparently were not adequate at all times. Italy's economic dependence on Germany was alleviated to some extent by a large exportable surplus of sulfur. Not only Italian sulfur but also pyrites from Scandinavia, Germany proper, Yugoslavia, Poland, and other Continental regions, augmented by increased recoveries from industrial gases, contributed to the Reich's sulfuric acid supply. The volcanoes that built the Japanese archipelago make it self-sufficient in sulfur. Spain, normally the most important source of pyrites, suffered a mining slump in 1941 and, aside from some exports to the United States and Great Britain, consumed most of its pyrites domestically.

In the United States production of both sulfur and pyrites broke all previous records during 1941, and shipments of sulfur from the mines were a third higher than ever before. Native sulfur produced in the United States through 1941 has totaled more than 50 million long tons; virtually the entire quantity has been mined since 1900. The principal trends in the sulfur and pyrites industries are shown in figures 1 and 2. Mine stocks of sulfur at the close of 1941 were sufficient to last over a year, even at the increased current rate of consumption. New acid-plant capacity totaling more than 1,000 tons a day of sulfuric acid (100-percent basis) went into operation in 1941, according to Chemical and Metallurgical Engineering, and additional capacity planned for 1942 amounts to some 1,700 tons daily. No priorities were imposed on sulfur, pyrites, or sulfuric acid by the Office of Production Management in 1941. Prices of these commodities were under the surveillance of the Office of Price Administration but remained steady without official action. Early in 1942

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

one of the largest American sulfur producers announced that there would be no rise in the base price of the mineral during the coming year. However, rerouting of domestic shipments from coastwise traffic to rail and inland waterway is certain to increase the delivered price.

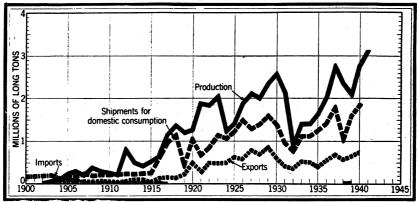


FIGURE 1.—Domestic production, shipments for domestic consumption, exports, and imports of crude sulfur, 1900-1941.

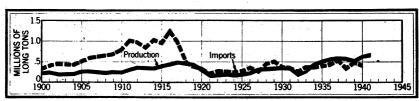


FIGURE 2.—Domestic production and imports of pyrites, 1900-1941.

Salient statistics of the sulfur industry in the United States, 1925-29 (average) and 1938-41

			. *		
	1925–29 (average)	1938	1939	1940	1941
Sulfur:					
Production of crude sulfur_long tons_	1, 951, 034	2, 393, 408	2, 090, 979	2, 732, 088	3, 139, 253
Shipments of crude sulfur:					
For domestic consumption_do	1, 397, 411	1, 049, 740	1, 605, 998	1, 812, 274	(1)
For exportdo	707, 175	579, 107	627, 819	746, 468	(1) 2 474, 551
Total shipmentsedo Imports:	2, 104, 586	1, 628, 847	2, 233, 817	2, 558, 742	3, 401, 410
Oredo	1,896	51	35	(3)	
Otherdo	295	2, 552	13, 941	27, 845	2 20, 954
Exports of treated sulfurdo	11, 956	12, 707	25,005	19, 745	² 24, 683
Producers' stocks at end of year_do Price of crude sulfur f. o. b. mines	2, 413, 000	4, 200, 000	4,000,000	4, 200, 000	3, 900, 000
per long ton	\$17.50	\$16-18	\$16	\$16	\$16
Pyrites:			· ·		-
Productionlong tons	273, 936	555, 629	4 519, 497	4 626, 640	659, 498
Importsdo	372, 958	334, 234	482, 336	407,004	2 224, 264
Price of imported pyrites c. i. f. At-					-
lantic ports cents per long-ton unit	12-13	12-13	12-13	12-13	12
Sulfuric acid: Production of byproduct					
sulfuric acid (60° B.) at copper and zinc					
plantsshort tons	1, 118, 453	687, 176	778, 441	840, 937	915, 989

Bureau of Mines not at liberty to publish figures.
 Figures cover January to September, inclusive.
 Less than 1 ton.
 Revised figures.

A sound motion-picture film, The Story of Sulfur, available for exhibition to responsible organizations, was prepared in 1941 under the supervision of the Bureau of Mines in cooperation with one of the principal sulfur-producing companies. Duecker and Eddy,² in an excellent article, reviewed some of the influences of sulfur in the development of American industry. The tribunal that studied the effects of sulfurous gases from the smelter at Trail, British Columbia, reported its decision in 1941.³

SULFUR

DOMESTIC PRODUCTION

Production of crude sulfur in the United States in 1941 attained a new record of 3,139,253 long tons, a 15-percent gain over the 1940 output. Mine shipments in 1941, exceeding those of 1940 by 33 percent, were likewise the highest ever reported. The United States sulfur-production figures do not include 414 long tons in 1941 and 330 in 1940 of sulfur-bearing material containing 12 to 70 percent sulfur and mined in Colorado, Nevada, and Texas for agricultural purposes.

Sulfur produced and shipped in the United States, 1937-41

		Shipped			D	Shi	pped		
Year	Produced (long tons)	Long tons	Approxi- mate value	Year	Year	Year	Produced (long tons)	Long tons	Approxi- mate value
1937 1938 1939	2, 741, 970 2, 393, 408 2, 090, 979	2, 466, 512 1, 628, 847 2, 233, 817	\$44, 300, 000 27, 300, 000 35, 500, 000	1940 1941	2, 732, 088 3, 139, 253	2, 558, 742 3, 401, 410	\$40, 900, 000 54, 400, 000		

THE INDUSTRY IN 1941 BY STATES

Nearly 83 percent of the domestic sulfur output in 1941 was from Texas, 17 percent from Louisiana, and less than 1 percent from California. No sulfur was mined in Utah in 1941.

Sulfur produced in the United States, 1937-41, by States, in long tons

Year	Texas	Louisiana	Other States 1	Total
1937 1938 1939 1940	2, 392, 680 2, 060, 845 1, 665, 400 2, 212, 839 2, 596, 731	342, 230 328, 405 422, 600 512, 935 533, 620	7, 060 4, 158 2, 979 6, 314 8, 902	2, 741, 970 2, 393, 408 2, 090, 979 2, 732, 088 3, 139, 253
	10, 928, 495	2, 139, 790	29, 413	13, 097, 698

^{1 1937-40:} California and Utah; 1941: California.

California.—Two operators—Paul Barnes and the Pacific Sulphur Co., at Bigpine, Inyo County—supplied the 1941 output.

Louisiana.—In 1941, for the fifth successive year, production was confined to that of the Freeport Sulphur Co., at Grande Ecaille, Port Sulphur, Plaquemines Parish.

² Duecker, W. W., and Eddy, E. W., Sulfur's Role in Industry: Chem. Ind., vol. 50, No. 2, February 1942, pp. 174–182.

³ Trail Smelter Arbitration Between the United States and Canada, Decision of the Tribunal, Reported March 11, 1941, U. S. Govt. Printing Office, 1941, 61 pp.

Texas.—The sulfur properties active in 1941 included those of the Duval Texas Sulphur Co. at Orchard Dome, Fort Bend County, and at Boling Dome, Boling, Wharton County; Freeport Sulphur Co. at Hoskins Mound, Brazoria County; Jefferson Lake Sulphur Co., Inc., at Clemens Dome, Brazoria County; and Texas Gulf Sulphur Co. at Boling Dome, Newgulf, Wharton County. Exploration for sulfur is being undertaken on Spindletop Dome, Jefferson County. The following table, compiled from information issued by the Texas State Comptroller's Office, shows the quarterly production of sulfur in Texas during 1941.

Sulfur produced in Texas in 1941, by companies, in long tons

Company	First quarter	Second quarter	Third quarter	Fourth quarter	Total
Texas Gulf Sulphur Co	361, 746 85, 545 47, 720 52, 675	385, 208 93, 470 46, 727 51, 979	481, 093 93, 365 48, 495 46, 123	611, 344 99, 200 58, 540 33, 501	1, 839, 391 371, 580 201, 482 184, 278
	547, 686	577, 384	669, 076	802, 585	2, 596, 731

Utah.—Elemental sulfur has been produced from smelter gases since 1940 at Garfield, Salt Lake County, by the American Smelting & Refining Co. as a byproduct of copper operations. It was expected that the initial output would be 2 long tons a day. This quantity is not included in the figures showing total United States sulfur production.

Washington.—A sulfur deposit on Mount Adams, Yakima County, estimated in 1935 to contain 842,000 long tons of material averaging 46 percent sulfur, has been explored further by Pacific Sulphur Mines, Inc., which reports that larger quantities of sulfur are present.

RECOVERY AS BYPRODUCT

The treatment of copper and zinc ores yields large quantities of sulfur, which is recovered at the mills as pyrites concentrate or at the smelters as sulfuric acid. The production of pyrites concentrate is discussed in the Pyrites section of this chapter. In smelting copper and zinc concentrates, sulfur is driven off as sulfur dioxide gas, which is used in the manufacture of sulfuric acid at many smelters. Means of increasing the recovery of sulfur dioxide from smelter gases have been described by the Bureau of Mines. The equivalent of about 180,000 long tons of sulfur was recovered as sulfuric acid annually from this source during the 5 years ended in 1941. Such sulfur is not included in the sulfur-production figures for the United States, but the following table shows the output of byproduct acid at both copperand zinc-smelting plants. The acid reported is only that made from the sulfur content of sulfide ores but does include, for 1937 to 1938, inclusive, the relatively small quantity of acid made from pyrites concentrate in Wisconsin.

⁴ Miller, Virgil, Bainbridge, R., and Ellison, R., Increasing the Concentration of Sulfur Dioxide in the Effluent Gases from Dwight-Lloyd Sintering Machines Treating Lead Products: Bureau of Mines Tech. Paper 624, 1941, 34 pp.

Byproduct sulfuric acid ¹ (expressed as 60° B.) produced at copper and zinc plants in the United States, 1937-41, in short tons

i di karangan kanasa da sa Kabupatèn Kanasa	1937	1938	1939	1940	1941
Copper plants 1Zinc plants	 291, 638 542, 356	220, 297 466, 879	249, 569 528, 872	254, 025 586, 912	243, 812 672, 177
	833, 994	687, 176	778, 441	840, 937	915, 989

¹ Includes a small amount of sulfuric acid produced as a byproduct in the roasting of high-sulfide gold and silver concentrates.

Byproduct sulfur is also recovered from coke-oven gas, water gas, refinery-still gas, natural gas, and other fuel gases. A pictorial flow sheet of the recovery of sulfuric acid from waste oil-refinery sludges was published in 1941.5 For a long time, hydrogen sulfide has been removed from manufactured gases by passing the gas through trays of iron hydroxide to form iron sulfide, known as spent oxide. material has been used as a source of sulfur in Europe but not to any appreciable extent in the United States. During the last decade, however, the recovery of sulfur from fuel gases has been expanding in this country as a result of developments in various liquid-purification Not all such processes are designed to permit recovery of sulfur as a byproduct, but those that do may be divided into two classes—those that recover elemental sulfur and those that give hydrogen sulfide as an end product. The latter have received increasing attention in recent years. Typically, processes that recover elemental sulfur operate on manufactured fuel gases, whereas those that recover hydrogen sulfide are applied to refinery-still gas and natural gas, and usually these gases are under high pressure. Investigation has indicated, however, that the phenolate processes, at least, are adapted to the removal and recovery of sulfur from low-pressure. low-sulfur gases, such as coke-oven gas.

Most of the elemental sulfur recovered from gas purification results from operations using the Thylox process; relatively minor quantities are recovered from the Ferrox and Nickel processes. Production in 1941 (reduced to 100 percent sulfur) totaled 5,493 long tons; 4,866 tons valued at \$136,000 were shipped. Output came from Illinois, Maryland, Massachusetts, Missouri, New Jersey, New York, Washington, West Virginia, and Wisconsin; Massachusetts and New York were the largest producers. The sulfur is produced and marketed either as a paste containing 37 to 50 percent sulfur or as a dried, relatively pure sulfur. The fine particle size of this sulfur makes it valuable as a fungicide and insecticide for agricultural purposes. Of the 1941 shipments (reduced to 100 percent sulfur), 34 percent was in

the form of paste and the remainder was dried sulfur.

Most of the hydrogen sulfide recovered as a byproduct from fuel gases is either converted to sulfuric acid or burned as fuel. Recovery is by the phenolate, phosphate, and Girbotol processes. In 1941 the output of hydrogen sulfide extracted from fuel gases (and, for the most part, converted to sulfuric acid) was equivalent to 21,197 long tons of sulfur. Most of this was recovered by petroleum refineries in California and the remainder by companies in Illinois, New Jersey, Pennsylvania, and Texas.

⁶ Chemical and Metallurgical Engineering, vol. 48, No. 5, May 1941, pp. 144-147.

The figures on byproduct yield of sulfur from gas purification are not included in the sulfur-production figures for the United States.

The reactions of sulfur dioxide from waste gases with oxide ores and common salt in the direct production of anhydrous sulfates and chlorides were studied recently.6

STOCKS

As shipments exceeded production in 1941, stocks at the mines decreased 300,000 long tons during the year and on December 31 amounted to 3,900,000 tons. PRICE

The price of crude sulfur held to the level of recent years and was quoted by trade journals throughout 1941 at \$16 a long ton, f. o. b. Sulfuric acid, 66° B., continued to be listed at \$16.50 a short ton.

CONSUMPTION

Apperent domestic consumption of sulfur in recent years is shown in the following table, although data for 1941 are incomplete as the figures for imports and exports cover only the first 9 months of the year.

Apparent consumption of sulfur in the United States, 1937-41, in long tons

•	1937	1938	1939	1940	1941
Shipments	2, 466, 512 628	1, 628, 847 2, 603	2, 233, 817 13, 976	2, 558, 742 27, 845	3, 401, 410 1 20, 954
	2, 467, 140	1, 631, 450	2, 247, 793	2, 586, 587	(2)
Exports: Crude Refined	675, 297 13, 533	579, 107 12, 707	627, 819 25, 005	746, 468 19, 745	¹ 474, 551 ¹ 24, 683
	688, 830	591, 814	652, 824	766, 213	1 499, 234
Apparent consumption	1, 778, 310	1, 039, 636	1, 594, 969	1, 820, 374	(2)

Figures cover January to September, inclusive.
 Figures not available.

The consumption of sulfur in various industries from 1937 through 1941 has been estimated by Chemical and Metallurgical Engineering as follows:

Sulfur consumed in the United States, 1937-41, by uses, in long tons 1

Use	1937 1	1938 1	1939	1940	1941
Chemicals Fertilizer and insecticides Pulp and paper Explosives Dyes and coal-tar products Rubber Paint and varnish Food products Miscellaneous	777, 000 415, 000 302, 000 68, 000 49, 000 37, 000 64, 000 6, 000 82, 000	484, 000 220, 000 174, 000 50, 000 40, 000 29, 000 50, 000 5, 500 47, 500	695, 000 370, 000 240, 000 64, 000 46, 000 43, 000 49, 000 82, 000	800, 000 410, 000 320, 000 74, 000 51, 000 47, 000 54, 000 6, 000 86, 000	2 1, 060, 000 450, 000 360, 000 2 83, 000 65, 000 65, 000 6, 000 95, 000

¹ Figures for 1937 and 1938 are not truly representative of consumption but rather of shipments to these specified industries. In 1938 consumers carried over large stocks from 1937, so that actual consumption in 1937 was less than the figures indicate and consumption in 1938 was larger than the total shown.

² To avoid disclosing estimated consumption of sulfur in direct defense applications, such as military explosives, sulfur so used in 1941 is included under "Chemicals."

⁶Johnstone, H. F., and Darbyshire, R. W., Sulfur Dioxide as a Raw Material: Ind. and Eng. Chem., ind. ed., vol. 34, No. 3, March 1942, pp. 280-286.

Most of the sulfur and pyrites are consumed as sulfuric acid—one of the most universally required of heavy chemicals. Production of sulfuric acid (50° B. basis) in the United States, as estimated by Chemical and Metallurgical Engineering, was 10,944,000 short tons in 1941 compared with 9,174,000 tons in 1940.7 Consumption of sulfuric acid in 1941 increased 20 percent over 1940. The largest consumer—the fertilizer industry—used 11 percent more acid than in 1940 as a result of increased demand for superphosphate. It is estimated that this industry will need about 2,980,000 tons of acid in 1942, an increase of approximately 18 percent over 1941.8 The iron and steel industry needed 21 percent more sulfuric acid in 1941 than in 1940, primarily for pickling purposes and the recovery of nitrogen as ammonium sulfate in the coking process. Petroleum refineries increased their acid consumption 11 percent during 1941, partly because of the augmented call for high-octane aviation gasoline. The tremendous increase in demand for fuming sulfuric acid (oleum), little used except for explosives, was met by erecting auxiliary equipment at existing acid plants. It may be significant that a process has been developed for the continuous nitration of benzene without the use of sulfuric acid.9

Chemical and Metallurgical Engineering has estimated the consumption of sulfuric acid, by industries, from 1937 through 1941 as follows:

Sulfuric acid (expressed as 50° B.) consumed in the United States, 1937-41, by industries, in short tons

Industry	1937	1938	1939	1940	1941
Fertilizer Petroloum refining Chemicals Coal products Iron and steel Other metallurgical Paints and pigments Explosives Rayon and cellulose film Textiles Miscellaneous	865, 000 1, 100, 000 625, 000 525, 000 190, 000 380, 000	1, 900, 000 1, 100, 000 800, 000 585, 000 590, 000 350, 000 140, 000 320, 000 90, 000 355, 000	1, 970, 000 1, 210, 000 975, 000 940, 000 980, 000 570, 000 160, 000 405, 000 116, 000 384, 000	2, 260, 000 1, 260, 000 1, 120, 000 900, 000 1, 200, 000 640, 000 170, 000 470, 000 125, 000 460, 000	2, 600, 000 1, 400, 000 1, 790, 000 940, 000 800, 000 700, 000 1190, 000 555, 000 165, 000 550, 000
	8, 587, 000	6, 660, 000	8, 030, 000	9, 185, 000	11, 040, 000

¹ To avoid disclosing estimated consumption of acid in direct defense applications, such as military explosives, acid so used in 1941 is included under "Chemicals."

A nonelectrolytic method of producing chlorine from common salt and sulfur was announced in 1941.10 The manufacture of sulfur pipe for corrosive liquids was described by Bencowitz.11 A pictorial flow sheet of the production of sulfite pulp was published.12

FOREIGN TRADE

Sulfur imports in the first 9 months of 1941 were 20,954 long tons, including 20,937 tons from Canada, 16 tons from the United Kingdom, and 1 ton from Japan. The Canadian material is elemental sulfur

⁷ Chemical and Metallurgical Engineering, Sulfuric Acid and Sulfur: Vol. 49, No. 2, February 1942, pp.

^{83-84, 105.}American Fertilizer, vol. 96, No. 1, January 3, 1942, pp. 10-11.

Chemical and Metallurgical Engineering, vol. 48, No. 11, November 1941, p. 165.

Science News Letter, vol. 40, No. 12, September 20, 1941, p. 183.
Bencowitz, I., Manufacturing Sulfur Pipe: Pit and Quarry, vol. 33, No. 12, June 1941, pp. 72-74.
Chemical and Metallurgical Engineering, vol. 48, No. 8, August 1941, pp. 106-109.

recovered from smelter gases. Imports of sulfuric acid in the same period totaled 2,292 short tons—74 percent from Canada and the

remainder from Mexico.

Distribution of exports in 1941 by countries of destination is not available for publication; figures for 1939 and 1940 are shown in the preceding chapter of this series. Exports of sulfuric acid in the first 9 months of 1941 totaled 9,937 short tons; 42 percent was oleum. The materials allocated to Latin America by the Office of Production Management for the first 3 months of 1942 included 1,000 tons of sulfuric acid.

Sulfur imported into and exported from the United States, 1937-41

		Imports				Exports			
Year	Ore		In any form, n. e. s.		C	rude	Crushed, ground, refined, sublimed, and flowers of		
	Long tons	Value	Long	Value	Long tons	Value	Long tons	Value	
1937 1938 1939 1940 1941 (JanSept.)	398 51 35 (¹)	\$4, 724 562 445 5	230 2, 552 13, 941 27, 845 20, 954	\$38, 171 71, 903 250, 422 473, 052 335, 359	675, 297 579, 107 627, 819 746, 468 474, 551	\$12, 155, 253 10, 378, 991 10, 771, 751 13, 041, 911 8, 098, 958	13, 533 12, 707 25, 005 19, 745 24, 683	\$509, 133 469, 773 909, 974 780, 968 994, 390	

¹ Less than 1 ton.

WORLD PRODUCTION

World production of sulfur in 1940, including elemental sulfur recovered in the treatment of pyrites and as a byproduct from the treatment of industrial gases, is estimated at 3,600,000 long tons.

World production of native sulfur, 1936-41, by countries, in long tons ¹
[Compiled by B. B. Waldbauer]

Country 1	1936	1937	1938	1939	1940	1941
Bolivia (exports)	935	1,712	1, 632 20, 959	2, 126	4, 065 28, 997	2, 315 24, 784
Chile 2	25, 525	16, 766	20, 939	26, 999 72	20, 881	
Ecuador	- 59	54	100	(2)	\mathbb{R}	\ \X
France (content of ore)	123	157	140 75	(3)	(3) (3)	000
Greece	150	67		. (9)	(9),	X
Guatemala	_ 16	11	15	12	11	X
GuatemalaItaly (crude) 4	322, 396	338, 101	374, 339	(3)	(2)	X
Japan	195, 107	138, 283	(3)	(9)	(3)	9999
Mexico.	s 1, 272	(3)	49	(8)	(3)	1 2
Netherlands East Indies	_ 11, 311	12, 474 494	15, 986	17, 293 829	16, 908 1, 248	9
Palestine	_ 79	494	1, 196	829	1, 248	(*)
Peru	_ 1,696	1, 551	1, 944	569	610	923
Spain 6	17. 742	27, 151	26, 153	(3)	(3)	(3)
Taiwan	1, 207	(8)	(3)	(3) 2, 560	(3)	(3)
Turkey	3, 139	2, 229	3, 684	2, 560	(3)	(3)
United States	2, 016, 338	2, 229 2, 741, 970	3, 684 2, 393, 408	2, 090, 979	2, 732, 088	3, 139, 25

¹ Native sulfur is believed to be produced also in Argentina, China, Cuba, India, Iran, and U. S. S. R., but the quantity is unknown.

but the quantity is unknown.

2 In addition, the following quantities of sulfur rock (40-80 percent sulfur) are reported: 1936, 11,612 tons; 1937, 1,050 tons.

3 Data not available.

Crude sulfur.
Refined sulfur, exclusive of that made from imported crude sulfur.

Data not available.
 Inaddition, the following quantities of sulfur rock are reported: 1936, 20,743 tons; 1937, 19,793 tons; 1938, 16,545 tons. Similar data are not available for later years.
 6 Cinde sulfur.

Australia.—Production of elemental sulfur from byproduct pyrites is being considered.

Bolivia.—Most of the current exports go to Argentina. A deposit at Napa, Department of Potosi, is reported to contain 5,000,000 tons

of material averaging 65 percent sulfur.

Canada.—Elemental sulfur is produced from base-metal smelter gases at Trail, British Columbia, and the feasibility of a similar operation at Montreal East, Quebec, is to be tested by a pilot plant now under construction. Canada exported 20,937 long tons of this byproduct sulfur to the United States in the first 9 months of 1941. The Aldermac project for the production of elemental sulfur from pyrites is still a possibility. Sulfuric acid is manufactured from smelter gases at Trail, British Columbia, and Copper Cliff, Ontario. Seven acid plants manufactured a total of 283,618 metric tons of sulfuric acid (66° B. basis) in 1940.¹³

Chile.—Exports of sulfur totaled 21,371 long tons in 1941 compared with 27,637 tons in 1940. A subsidy has been granted to a Chilean company that will supply 300 long tons of refined sulfur

monthly from a deposit in the Province of Arica.14

China.—Production of sulfur in Unoccupied China is estimated at

3,540 long tons in 1940.

Costa Rica.—Five deposits in the foothills of volcanoes in the Province of Guanacaste are said to analyze 85 to 95 percent sulfur. Cuba.—An apparently small underwater sulfur deposit is being

worked near Punto Carabela Chica, Province of Pinar del Rio.

Germany.—The Reich has access to large supplies of sulfur from Italy. Furthermore, production of elemental sulfur has been increased by new processes for recovering sulfur from coke-oven and coaldistillation gases at very low concentrations. German sulfuric acid output was reported at 2,800,000 metric tons in 1939.¹⁵

India, British.—Sulfur operations in the vicinity of the volcanic mountain of Koh-i-Sultan, near Nok Kundi, Baluchistan, were reported to have begun in 1941 with an expected output, for at least

a short time, of 60,000 long tons of crude ore annually.

Iran.—Sulfur production in 1939 was reported at approximately

1,000 long tons.

Japan.—The Matsuo mine, Province of Rikuchu, which normally supplies about 25 percent of Japan's sulfur output and which was wrecked by a fire in November 1939, was still idle during most of 1941 but was expected to be in operation again by the beginning of 1942. Sulfur was put under allocation on June 1, 1941, by the Japan Sulfur Control Association. Owing to a shortage of power and to insufficient sulfur supplies, the 1940 production of sulfuric acid is said to have declined to 70 percent of capacity, carbon bisulfide to 43 percent, sodium sulfide to 65 percent, and ammonium sulfate to 79 percent. Plans were instituted in 1941 to raise Japanese sulfuric acid production to 4,000,000 metric tons annually, which would represent a substantial advance over the 1938 output of approximately 2,800,000 tons. The contact process, according to Chemical Age, 16 represented 30 percent of the sulfuric acid capacity in 1939. Exports during the first 9

<sup>Canadian Chemistry and Process Industries, vol. 25, No. 5, May 1941, p. 223.
American Chemical Society, News Edition: Vol. 19, No. 24, December 25, 1941, p. 1477.
Chemical and Metallurgical Engineering, vol. 49, No. 1, January 1942, pp. 81 and 159.
Chemical Age, vol. 44, No. 1129, February 15, 1941, p. 100.</sup>

months of 1940 included 120 long tons of sulfur and 132 metric tons of sulfuric acid.

Mexico. 17—A plant has been completed for refining sulfur mined in the State of San Luis Potosi. Sulfuric acid is produced from smelter gases in northern Coahuila.

Norway.—Elemental sulfur is produced from pyrites at the Thamshavn plant of the Orkla Metal Co. An agreement to ship part of the output to Sweden during 1941 was extended to cover 1942.

Portugal.—Production of elemental sulfur from pyrites totaled

9,915 long tons in 1940.

Sweden.—Elemental sulfur is produced from smelter gases at

Ronskar, northern Sweden, by the Boliden Co.

United Kingdom.—Control of Sulfuric Acid (No. 2) Order, 1940, Direction 3, effective May 9, 1941, fixed the base price at 27s. a ton for 77-percent acid and 34s. 4d. for 98-percent acid.

PYRITES

DOMESTIC PRODUCTION

Pyrites production in the United States in 1941 exceeded that in 1940 by 5 percent and reached a new record. Ninety-five percent of the output was fines and the remainder lump, the former being principally flotation concentrates.

Pyrites ((ores and	concentrates)	produced in t	re United	l States, 1937-41

Quantity			<i>*</i>	Qua			
Year	Gross weight (long tons)	Sulfur content (percent)	Value	Year	Gross weight (long tons)	Sulfur content (percent)	Value
1937 1938 1939 1	584, 166 555, 629 519, 497	39. 7 39. 4 42. 3	\$1, 777, 787 1, 685, 766 1, 560, 000	1940 ¹ 1941	626, 640 659, 498	41. 8 41. 8	\$1, 920, 000 2, 035, 000

¹ Revised figures.

Producers consumed 443,983 long tons and sold 207,504 tons in 1941 compared with revised figures of 422,545 and 206,867 tons, respectively, in 1940. Domestic pyrites mined in 1941 had an average sulfur content of 42 percent and an average value of \$3.09 a long ton, f. o. b. mines. Spanish pyrites, minimum 48 percent sulfur, continued to be quoted nominally at 12 cents per long-ton unit of sulfur, c. i. f. U. S. ports, throughout 1941.

THE INDUSTRY IN 1941 BY STATES

California.—The Mountain Copper Co. was the only producer of pyrites in California in 1941; output came from the Hornet mine in Shasta County.

Colorado.—The output of pyrites in Colorado in 1941 totaled 11,774 long tons and was produced by Minnesota Mines, Inc., Clear Creek County, and by John Andrew from a mill tailings dump in Lake County.

[&]quot; Chemical and Engineering News, vol. 20, No. 4, February 25, 1942, p. 281.

Illinois.—From its coal-cleaning operations at the Atkinson mine in Henry County the Midland Electric Coal Corporation produced and shipped 12,026 long tons of pyrites (coal brasses) containing 46 percent sulfur in 1941.

Indiana.—The Snow Hill Coal Corporation produced pyrites (coal

brasses) at its Talleydale mine in Vigo County in 1941.

Kansas.—The Mineral Products Co. produced 3,902 long tons of pyrites (coal brasses) containing 44 percent sulfur at West Mineral, Cherokee County, in 1941.

Missouri.—No pyrites production was reported from Missouri in

1941.

Montana.—The pyrites produced in Montana in 1941 came from the Anaconda Copper Mining Co. at Anaconda, where it is recovered as a flotation concentrate in copper operations.

New York.—In 1941 New York produced 63,958 long tons of pyrites

containing 49 percent sulfur.

Pennsylvania.—Pyrites concentrates were produced in 1941 by the

Bethlehem Steel Co. at the Cornwall mine, Lebanon County.

Tennessee.—The output of the Tennessee Copper Co., Ducktown Basin, Polk County, enabled Tennessee to retain its rank as the principal producer of pyrites in 1941. The product, a flotation concentrate, does not enter the market but is consumed by the company in the manufacture of sulfuric acid.

Virginia.—The General Chemical Co. has been obtaining the only pyrites mined in Virginia in recent years from the Gossan mine at Cliffview, Carroll County. The output is concentrated by air tables for the manufacture of sulfuric acid in the company plant at Pulaski.

Wisconsin.—The one company reporting production of pyrites in Wisconsin in 1941 was the Vinegar Hill Zinc Co., which recovers pyrites by flotation from ores mined in the Platteville district, Grant County.

FOREIGN TRADE

Imports of pyrites, by countries of origin, in recent years are shown in the following table. Spanish shipments, normally the principal foreign source, dwindled to 21 percent of the imports in the first three quarters of 1941, while Canada supplied virtually all the rest.

Pyrites, containing more than 25 percent sulfur, imported into the United States, 1937-41, by countries

	1	937	1938		1939		1940		1941 (Jan.–Sept.)	
Country	Long tons	Value	Long tons	Value	Long- tons	Value	Long tons	Value .	Long tons	Value
CanadaGreece	20,458	\$74, 946	30, 064	\$135, 659	176, 804 22, 800		81, 157	\$560, 476	177, 030	\$855, 533
Mexico Portugal	549 21, 725	109, 395					203	719		
Spain		1, 158, 671 1, 344, 485				738, 439 1, 315, 046	325, 644 407, 004			

In keeping with the changing source of imported pyrites, shipments to Philadelphia, New York, and Baltimore slumped heavily in the first 9 months of 1941, and those to Buffalo more than doubled.

Pyrites, containing more than 25 percent sulfur, imported into the United States, 1937-41, by customs districts, in long tons

Customs district	1937	1938	1939	1940	1941 (Jan.–Sept.)
Buffalo	584 4,795	5, 130	21, 940	80, 076	168, 984
Georgia Maryland Michigan	220, 430	113, 838	176, 982	19, 702	9, 800 5, 963
New YorkOhio	64, 621	55, 830	46, 170 2, 000	82, 292	317
Olio Philadelphia San Diego South Carolina	194, 680 549 9, 519	130, 703 202 5, 265	189, 727 4, 396	215, 373 203	31, 118 12
Vermont Virginia Washington	19, 974 9, 278	15, 713 7, 553	31, 433 8, 885 803	937 8, 331 90	1, 764 6, 191 2
	524, 430	334, 234	482, 336	407, 004	224, 264

WORLD PRODUCTION

Recent figures on the pyrites output of many of the countries are not obtainable, but annual world production has been approximating 10,000,000 metric tons containing about 4,300,000 tons of sulfur.

World production of pyrites (including cupreous pyrites), 1938-40, by countries, in metric tons ¹

[Compiled by B. B. Waldbauer]

	19	38	19	39	1940		
Country 1	Gross weight	Sulfur content	Gross weight	Sulfur content	Gross weight	Sulfur content	
Algeria Australia: Tasmania Belgium Canada Cyprus (exports) Finland France Germany Greece ttaly Norway Poland Portugal Rumania Southern Rhodesia Spain 3 Sweden United Kingdom United States Uruguay Uruguay	44, 150 51, 084 (2) 40, 464 523, 574 102, 979 147, 208 465, 267 244, 000 930, 312 1, 027, 065 27, 065 2, 727, 065 2, 727, 065 31, 017 4, 351 564, 547	19, 430 (2) (2) (2) (2) (3) (2) (3) (2) (4) (4) (5) (5) (5) (5) (5) (5) (6) (5) (6) (7) (6) (7) (8) (8) (8) (8) (9) (1) (1) (1) (1) (1) (2) (2)	(2) 55, 099 29, 210 206, 507 403, 935 (2) (3) (2) (2) (2) (3) (4) (5) (6) (7) (7) (8) (8) (8) (9) (9) (9) (9) (1) (1) (1) (1) (2) (2) (3) (4) (4) (5) (6) (7) (7) (8) (8) (8) (9) (9) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(2) (3) (4) (10) (10) (10) (10) (10) (10) (10) (10	(2) (2) (2) (2) (3) (1) (4) (3) (4) (6) (7) (7) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	(2) (3) (4) (4) (5) (7) (7) (7) (8) (9) (1) (9) (1) (1) (2) (1) (2) (2) (2) (3) (4) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	

¹ In addition to countries listed, Brazil, China, Chosen, Czechoslovakia, Eire, India, Japan, and U. S. S. R. produced pyrites, but production data are not available.

² Data not available.

² Production data (gross weight) not heretofore available for 1936 and 1937 are 1,739,793 and 2,277,428 tons, respectively. Average sulfur content of Spanish pyrites was 42 percent in 1931, the latest year for which such information is available.

Estimated.
 Revised figures.

Australia.—The copper mines at Mount Lyell, Tasmania, have a daily output of 145 metric tons of pyrites concentrates containing 51 percent sulfur. 18 Proposals for expansion of Australian pyrites production are being considered.

Brazil.—A mine at Rio Claro, State of Rio de Janeiro, has a daily output of 2 metric tons of pyrites averaging 43 percent sulfur. Production of pyrites in Parana and also as a byproduct of coal mining

is contemplated.

Canada.—Pyrites concentrates are produced as an accessory to copper at the Aldermac and Noranda mines in Quebec and the Britannia mine in British Columbia. Output from Delestre Township, Quebec, is anticipated in 1942. Noranda Mines, Ltd., is now recovering essentially all of its pyrites concentrates, and drier equipment ordered in 1941 was expected to increase the capacity to about 450 metric tons daily.19 Canada exported 179,871 metric tons of pyrites to the United States during the first 9 months of 1941. A second paper mill in the Dominion has turned from imported sulfur to Canadian pyrites as a source of sulfur dioxide. Thousands of tons of pyrites cinder containing about 50 percent iron were shipped in 1941 from Ontario to the Republic Steel Corporation plant at Buffalo, N.Y.

Cyprus.—Production declined approximately 50 percent to 257,000 metric tons in 1940 and virtually ceased in 1941. Exports during the

first 5 months of 1941 were only about 5,000 metric tons.

Czechoslovakia.—Production of iron pyrites in the Province of Slovakia, according to the German press, was 11,000 metric tons in 1941 and 14,000 tons in 1940 compared with 10,000 tons in 1939 and 18,000 tons in 1937.20

Eire.—Iron pyrites mining has begun in County Wicklow for

production of sulfuric acid for fertilizer manufacture.

India, British.—Some pyrites is mined near Simla. A growing demand for sulfuric acid and the success of a pilot-plant extraction of elemental sulfur from pyrites may stimulate larger-scale exploitation of Indian pyrites.21

Norway.—New pyrites deposits were reported discovered in Norway Sulfur and pyrites valued at 5,000,000 kroner (about \$1,200,000) are to be exported to Sweden in 1942 in continuation of

a previous trade agreement.

Portugal.—Production of pyrites was 372,506 metric tons in 1940 compared with 502,311 tons in 1939.22 Exports were 179,423 tons in 1940 and 436,048 tons in 1939, going principally to France, the

United Kingdom, and Belgium.

Spain.—Spanish pyrites production during the first 10 months of 1941 was 381,778 metric tons.23 Water-borne shipments in 1940 were unofficially reported as 957,716 tons. The sharp decline in output is attributed primarily to limitations on available cargo space but also to lack of dynamite, coal, and equipment and loss of Continental markets. The Ministry of Industry in 1941 issued a decree, effective

<sup>Mining Magasine (London), vol. 64, No. 3, March 1941, p. 155.
Canadian Mining Journal, vol. 62, No. 9, September 1941, p. 662.
Metal Bulletin (London), No. 2680, March 27, 1942, p. 4.
Chemical Age (London), vol. 46, No. 1176, January 10, 1942, p. 33.
Mining Journal (London), vol. 213, No. 5527, July 26, 1941, p. 353.
Metal Bulletin (London), No. 2681, March 31, 1942, p. 6.</sup>

toward the end of the year, ordering cupriferous pyrites to be roasted within the country to recover the copper for the manufacture of copper sulfate. A plant is being built at Valencia for yearly extraction of 2,250 metric tons of copper, 71,500 tons of iron, and 3,750 tons of sodium sulfate from cupriferous pyrites.²⁴ Of the current Spanish pyrites output, about one-third is going to the United States and an occasional cargo to England; the bulk of the remainder is consumed domestically.²⁵ Despite rumors to the contrary, apparently little or none is reaching Germany.

Sweden.—Test drillings have revealed new deposits of cupriferous

pyrites in the Kuorbevaro district, Department of Västerbotten.

Union of South Africa.—Production was 16,118 metric tons in the first half of 1941 compared with 18,858 tons in the corresponding period of 1940.

United Kingdom.—Marcasite is produced as a byproduct in coal

mining.

Yugoslavia.—Trepca Mines, Ltd., reported that, in the 4 months from November 1940 to February 1941, 247,291 metric tons of ore were milled, yielding 16,971 tons of pyrites in addition to lead, zinc, and copper concentrates.²⁶ The mines were undamaged when the Germans took them over in April 1941, but a shortage of workers is said to have hindered subsequent operations to some extent.

Mining Journal (London), vol. 216, No. 5557, February 21, 1942, p. 95.
 Chemical and Metallurgical Engineering, vol. 49, No. 3, March 1942, p. 122.
 Metal Bulletin (London), No. 2654, December 23, 1941, p. 6.

PHOSPHATE ROCK

By Bertrand L. Johnson and K. G. Warner

SUMMARY OUTLINE

	- Page	1 The state of the	Page
General conditions			_ 1376
Salient statistics	1372	Foreign trade	_ 1381
		World reserves	
Sales	1373	World production	1383
Distribution of sales	1373	Technologic developments	_ 1383
Consumption	1375	Superphosphates	_ 138
Prices.		Basic slag	

GENERAL CONDITIONS

Never before was so much domestic phosphate rock marketed in a single year as in 1941. The quantity sold or used by producers exceeded the 4,103,982 long tons sold or used during the abnormal post-war boom year 1920 by over one-half million tons (see fig. 1). Shipments of phosphate rock from American mines in 1941 totaled 4,668,312 long tons 1 valued at \$15,587,738, an increase over 1940 of nearly 700, 000 tons (17 percent) and of 3½ million dollars (26 percent). Mined production in 1941—4, 920, 843 tons, 21 percent above the 1940 figures—likewise broke all previous records. Exports for the first 9 months of the year, the only period for which figures can be published, were much greater (9 percent in quantity and 20 percent in value) than for all 12 months of 1940. No imports of phosphate rock or apatite were recorded in 1941.

Reports published in 1941 covering the phosphate-rock industry in general include papers by Jacob, McCord, Logue, and the Bureau of

the Census.2

General scientific papers published include those by Mansfield,* Tremearne and Jacob, Jacob and Ross, Frondel, Fahey and Tunell, and Rader and Hill.8

The Bureau of Mines is not at liberty to publish the Utah output separately; therefore, it is not included in any of the figures in this chapter.

Jacob, K. D., Phosphate Rock [in 1940]: Mineral Ind., vol. 49, 1941, pp. 473-491.

McCord, M. H., Problems Confronting Phosphate Producers: Nat. Fertilizer Assoc., Proc. 17th Ann. Convention, White Sulphur Springs, W. Va., June 9-11, 1941, pp. 17-20.

Logue, Paul, The Family of Phosphates: Chem. Ind., part I, vol. 49, No. 3, September 1941, pp. 302-305; part II, vol. 49, No. 4, October 1941, pp. 456-459.

U. S. Department of Commerce, Bureau of the Census, Phosphate Rock: 16th Census of the United States, 1940, Mineral Industries, 1939 (Preliminary), Washington, D. C., July 1941, 5 pp.

J. Mansfield, G. R., Phosphate Deposits of the World, with Special Reference to those of the United States: Ind. and Eng. Chem., ind. ed., vol. 34, No. 1, January 1942, pp. 9-12.

Tremearne, T. H., and Jacob, K. D., Arsenic in Natural Phosphates and Phosphate Fertilizers: U. S. Dept. of Agriculture Tech. Bull. 781, November 1941, 39 pp.

Jacob, K. D., and Ross, W. H., Nutrient Value of the Phosphorus in Defluorinated Phosphate, Calcium Metaphosphate, and Other Phosphatic Materials as Determined by Growth of Plants in Pot Experiments: Jour. Agric. Research, vol. 61, No. 7, October 1, 1940, pp. 539-560.

Frondel, Clifford, Whitlockite—a New Calcium Phosphate: Am. Mineral., vol. 26, 1941, pp. 145-152.

Fahey, Joseph J., with an X-ray analysis by Tunell, George, Bradleyite, a New Mineral, Sodium Phosphates, and Defluorinated Phosphates, and Defluorinated Phosphates, Superphosphates, and Defluorinated Phosphates, Superphosphates, and Defluorinated Phosphate Rocks: Jour. Agric. Research, vol. 57, No. 12, December 15, 1938, pp. 901-916.

¹ In addition to this tonnage, a small quantity of phosphate rock was mined and sold in Utah dur**ing 1941.**The Bureau of Mines is not at liberty to publish the Utah output separately; therefore, it is not incl**uded in**

Salient statistics of the phosphate-rock industry in the United States, 1940-41

		1940		1941			
		Value at	mines	_	Value at mines		
	Long tons	Total	Average	Long tons	Total	Average	
Production (mined)	4, 068, 077	(1)	(1)	4, 920, 843	(1)	(1)	
Sold or used by producers: Florida: Land pebble Soft rock Hard rock Total Florida Tennessee 2 3 Idaho Montana Virginia 3	2, 845, 012 994, 361 90, 088	2 \$7, 538, 316 102, 508 100, 353 7, 741, 177 3, 967, 043 441, 508 184, 844 (3)	3 \$2. 71 2. 45 4. 49 2. 72 3. 99 4. 46 2. 88 (3)	47, 750 38, 116	\$9, 890, 510 132, 472 211, 049 10, 234, 031 4, 590, 965 444, 154 318, 588	\$3. 02 2. 77 5. 54 3. 04 4. 10 4. 57 3. 03	
Total United States	2, 953 751, 495	19, 536 3, 845, 495	3. 08 6. 62 5. 12	7 820, 396	15, 587, 738 74, 606, 449	3, 32 7 5, 61	
Apparent consumption 8 Stocks in producers' hands, Dec. 31: Florida. Tennessee 8 10 Other.			(1)	21, 483, 000 292, 000 3, 000	(1) (2) (4)	8	
Total stocks	1, 691, 000	(1)	(1)	1, 778, 000	(1)	(1)	

Figures not available.

² Includes sintered matrix.

3 Virginia included with Tennessee.

Market value (or price) at port and time of exportation to the United States.

1940: Excludes sintered matrix, which is included under "Other phosphate materials"; 1941: Includes

sintered matrix.

6 Value at port of exportation.

Figures cover January to September, inclusive.

Quantity sold or used by producers plus imports minus exports.

Figures not available for publication.

Includes brown-rock matrix of sinter grade and sintered brown rock.

PRODUCTION

Phosphate rock was mined in 1941 in Florida, Tennessee, Idaho, Montana, and Utah, and apatite was recovered from apatite-ilmenite Total mine production reached about 5 milore in central Virginia. lion tons (4,920,843 long tons), nearly two-thirds of a million tons than the previous all-time record of 4,261,416 tons Production increased in Florida, Tennessee, and reached in 1937. the Western States, and the mined production in each attained an all-time high.

Phosphate rock mined in the United States, 1932-41, by States, in long tons

Year	Florida	Tennes- see 1	West- ern States	United States	Year	Florida	Tennes- see ¹	West- ern States	United States
1932 1933 1934 1935 1936	1, 500, 891 2, 039, 531 2, 464, 969 2, 598, 337 2, 645, 819	296, 441 394, 311 493, 501	44, 724 23, 663 38, 958 67, 490 79, 152	2, 359, 635 2, 898, 238 3, 159, 328	1937 1938 1939 1940 1941	3, 179, 588 2, 722, 927 2, 791, 360 2, 782, 956 3, 417, 900	999, 551 1, 057, 570 1, 120, 551	139, 670 137, 998 139, 040 164, 570 201, 876	3, 860, 476

Includes small quantity of apartite from Virginia.
 Includes also small quantity of phosphate rock from South Carolina.

SALES

The quantity of phosphate rock sold or used by producers in 1941 (4,688,312 long tons) topped that in 1940 by over two-thirds of a million tons (17 percent) and the previous all-time high of 1920 (4,103,982 tons) by more than one-half million tons (see fig. 1). The total value in 1941 was 26 percent greater than the total in 1940; however, it was nearly 10 million dollars less than the 1920 peak, which was caused by the high average value (\$6.11) of sales during the 1920 boom. In 1941 the average value of total sales was only \$3.32 a ton, slightly higher than in 1940 but still in consonance with the slight downtrend of average values in recent years.

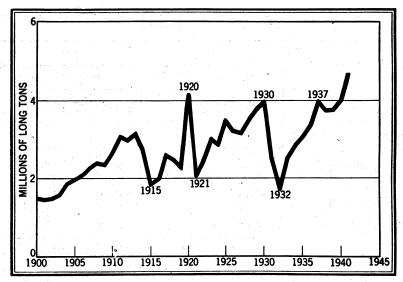


Figure 1.-Marketed production of domestic phosphate rock, 1900-1941.

Phosphate rock sold or used by producers in the United States, 1937-41

Year	Long tons	Value at mines		W	Long	Value at mines	
		Total	Average	Year	tons	Total	Average
1937 1938 1939	3, 956, 189 3, 739, 238 3, 757, 067	\$12, 975, 268 12, 952, 143 12, 294, 042	\$3. 28 3. 46 3. 27	1940 1941	4, 002, 700 4, 688, 312	\$12, 334, 662 15, 587, 738	\$3.08 3.32

DISTRIBUTION OF SALES

Shipments of domestic phosphate rock in recent years have fallen largely into two distinct groups according to grade—one below 60 percent B. P. L. (bone phosphate of lime) and the other containing 68 percent B. P. L. and higher grades. In 1941 the gap between these two groups became more distinct; larger quantities of the lower grade, much less of the 60- to 66-percent grade, and considerably less of the

68 basis, 66 minimum grade were sold. Ninety-one percent of the sales of phosphate rock in 1941 were, however, still of the higher grades, mostly between 70 and 77. Only 60 percent of the total sales of domestic phosphate rock sold or used by producers for consumption in the United States appears to have gone into the manufacture of superphosphates, although the quantity so consumed was much larger in 1941 than in 1940. The use of phosphate rock in chemicals and for direct application to soils increased.

The following table, showing distribution of phosphate rock sold or used by producers by grades, uses, and classes of consumers, was compiled from reports to the Bureau of Mines by domestic producing companies.

Phosphate rock sold or used by producers in the United States, 1940-41, by grades, uses, and classes of consumers

		1940		1941			
	Quan	tity		Quantity			
	Long tons	Percent of total	Value	Long tons	Percent of total	Value	
Grades—B. P. L.1 content (percent):							
Below 60	347, 696 55, 359 357, 983	9 1 9	(2) (3) (3) (4)	428, 869 9, 628 232, 540	(³) 5	99999	
66 basis, 66 minimum 70 minimum 72 minimum 75 basis, 74 minimum	339, 744 1, 390, 284	9 35	1	468, 454 1, 524, 476	9 32		
75 minimum 77 basis, 76 minimum 77 minimum	} 936, 309 } 328, 628	23 8	(2)	1, 065, 272 607, 480	23 13	(3) (3)	
Above 85 (apatite)Undistributed 4	246, 697	6	(2)	411, 593	9	(7)	
	4, 002, 700	100	\$12, 334, 662	4, 688, 312	100	\$15, 587, 73	
Uses: Domestic: Superphosphates Phosphates, phosphoric acid, phosphorus, ferrophos-	2, 564, 844	64	(2)	2, 825, 456	60	(4)	
phorus. Direct application to soil Fertilizer filler	532, 980 106, 292 32, 804	13 3 1	(2) (2) (2) (2)	644, 948 143, 196	14 3	(9)	
Stock and poultry feed Undistributed § Exports §	1, 311 6, 747 757, 722	(3) (3) 19	(2) (2) 2, 995, 591	1, 074, 712	23	(7)	
	4, 002, 700	100	12, 334, 662	4, 688, 312	100	15, 587, 73	
Classes of consumers: 6 Affiliated companies Other domestic consumers	1, 089, 045 2, 155, 933 757, 722	27 54 19	2, 961, 334 6, 377, 737 2, 995, 591	1, 134, 295 } 3, 554, 017	24 76	3, 257, 68 12, 330, 05	
Mapul V	4, 002, 700	100	12, 334, 662	4, 688, 312	100	15, 587, 73	

¹ Bone phosphate of lime.
2 Figures not available.
3 Less than 0.5 percent.
4 Includes grades of B. P. L. content between 69 and 72.9, 72-73, 73, 73.8, 74.8, 76, 76.9, and above 85 percent; also ground phosphate rock and dust, B. P. L. content not known.
4 Includes some calcined phosphate and phosphatic material used in pig iron blast furnaces, in manufacture of concentrated fertilizers, and in minor uses not specified.
6 As reported to Bureau of Mines by domestic producers.

CONSUMPTION

The annual consumption of phosphate rock in the United States for 1867-1940 (data for 1941 not available for publication) is graphed in the accompanying diagram (fig. 2).

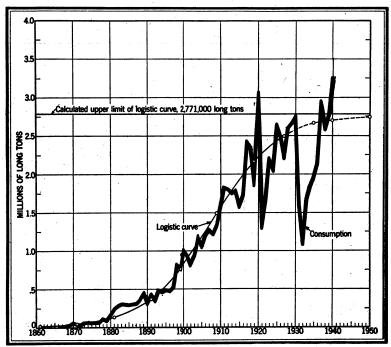


FIGURE 2.—Consumption of phosphate rock in the United States, 1867-1940.

PRICES

Trade-journal (Oil, Paint and Drug Reporter) quotations for the several grades of phosphate rock increased irregularly during the year, changes in one grade or another occurring in March, August, and September. The total advances ranged from 5 to over 38 percent. In December, a new method of stating grades, with lower ranges, was instituted; the prices, however, remained the same as the higher quotations of the period immediately preceding. The various changes in price quotations and grades throughout 1941 are shown

in the following table.

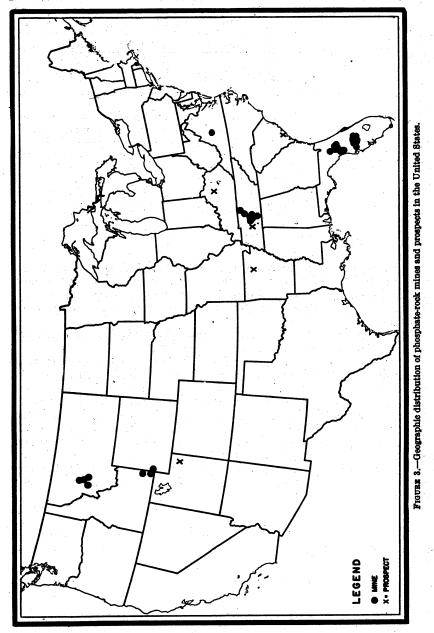
The antitrust suit, originally against 102 defendants—2 trade associations, 64 fertilizer companies, and 36 officials of the defendant corporations—charged with violation of the Sherman Act, was terminated March 24, 1942, in the Federal District Court of the Middle District of North Carolina at Winston-Salem. The defendants, except 7 as to whom the case was nolle-prossed, entered pleas of nolo contendere. In lieu of trial, informal hearings were held March 16 to 24, 1942, for the information of the judge. Judgment was rendered March 24, 1942. Fines are reported to have been imposed on 63 corporations and 31 individuals. The indictment contained

two counts, charging price fixing and suppression of competition, and in most instances fines are stated to have been imposed on both counts.9

Prices per long ton of Florida and Tennessee phosphate rock, bulk f. o. b. mine, in 1941

[Leaders indicate that prices are not quoted]

	Jan. 6- Mar. 10	Mar. 17- July 28	Aug. 4- Sept. 15	Sept. 22- Dec. 1	Dec. 8-29
Florida: High-grade hard rock: Grades—B. P. L. 2 content (percent): 77-percent basis, 76-percent min- imum	\$4. 35				
76-percent minimum 77-76 percent				\$5.00	\$5.00
Land pebble: Grades—B. P. L.'s content (percent): 68-percent minimum 70-percent minimum * 72-percent minimum * 75-percent basis, 74-percent minimum 74-percent minimum	1. 90 2. 15 2. 40 2. 90	\$1.90 * 2.15 * 2.50	\$2.00 \$2.30-2.40 2.75-3.00	2. 00 \$2. 30-2. 40 2. 75-3. 00	\$0. U
68-66 percent				2.00	2. 00 2. 40 3. 00
Tennessee: Grades—B. P. L. content (percent): 72 percent	4. 50 5. 50	4. 50 5. 50	4. 50 5. 50	5. 00 6. 00	4.00
72-70 percent		**************************************			5. 00 6. 00


REVIEW BY STATES

Florida.—Total shipments of phosphate rock from Florida were 18 percent greater in quantity and nearly 2½ million dollars in value in 1941 than in 1940, the average value of the shipments increasing from \$2.72 in 1940 to \$3.04 in 1941. Land-pebble shipments, which constituted 97 percent of all Florida phosphate-rock sales, likewise showed an 18-percent increase in quantity and more than a 2-milliondollar increase in value; the average value increased from \$2.71 to Soft-rock and hard-rock sales also increased. sales in 1941 were 14 percent greater in quantity and 29 percent in value than in 1940; hard-rock sales nearly doubled in quantity and more than doubled in value but still were far short of the 1939 figures. The average value reported for hard rock increased from \$4.49 a ton in 1940 to \$5.54 in 1941, the highest figure for several years. Hard rock-mining operations were conducted jointly by C. and J. Camp and J. Buttgenbach & Co. Operations started in October 1941 in sec. 22, where a preliminary washer feeds to the finishing washer at Felicia, 3 miles from Hernando. Shipments before October were made from stocks at the mines and at Fernandina. The other hard rock-operating company, Dunnellon Phosphate Mining Co., did

Weekly quotations of Oil, Paint and Drug Reporter.
 Bone phosphate of lime.
 During period May 12 to July 14, grade quoted as "70-percent minimum,72-percent minimum, \$2.50."

Oil, Paint and Drug Reporter, Fertilizer "Trust" Case Settled: Vol. 141, No. 13, March 30, 1942, pp. 3, 54. American Fertilizer, Fertilizer Antitrust Suit Settled: Vol. 96, No. 7, March 28, 1942, p. 10.

no mining in 1941 but shipped hard rock from stocks. The Pembroke Chemical Corporation, Pembroke, reported no shipments of sintered phosphate-rock matrix, but this company as well as the seven usual producers shipped land pebble. Total stocks of Florida phosphate

rock in the hands of producers were slighty larger at the end of 1941 than on December 31, 1940, and totaled nearly a million and a half long tons.

Florida phosphate rock sold or used by producers, 1937-41, by kinds

		Hard rock		Soft rock ¹			
Year		Value at	mines	T	Value at mines		
	Long tons	Total	Average	Long tons	Total	Average	
1937	64, 151 125, 048 89, 096 22, 367 38, 116	\$342, 202 601, 922 411, 455 100, 353 211, 049	\$5, 33 4, 81 4, 62 4, 49 5, 54	60, 256 53, 479 41, 906 41, 845 47, 750	\$200, 271 178, 093 128, 435 102, 508 132, 472	\$3, 32 3, 33 3, 06 2, 45 2, 77	
	Land pebble Total					·	
Year		Value at	mines		Value at mines		
	Long tons	Total	Average	Long tons	Total	Average	
1937	2, 872, 413 2, 528, 808 2, 547, 782 2, 780, 800	2 \$8, 600, 512 2 7, 993, 665 2 7, 353, 567 2 7, 538, 316	\$2.99 3.16 2.89 2.71	2 2, 996, 820 2 2, 707, 335 2 2, 678, 784 2 2, 845, 012	2 \$9, 142, 985 2 8, 773, 680 2 7, 893, 457 2 7, 741, 177	\$3. 05 3. 24 2. 95 2. 72	

¹ Includes material from waste-pond operations. 2 Includes sintered matrix.

The International Minerals & Chemical Corporation (formerly the International Agricultural Corporation) began operations on a new mine and plant to produce phosphate rock from other portions of its Florida reserves, owing to depletion of areas now being mined near Mulberry.

Cash io presents the data on accident experience of the pebble-

phosphate industry in Florida for 1939 and 1940.

The Southern Phosphate Corporation in 1941 built an agglomerate tabling plant of 36 Deister-Overstrom tables at its Pauway mine to treat washer tailings from previous mining operations. Jones 11 has prepared a detailed, illustrated description of this plant. Edwards' 12 survey of electrical distribution and power applications at the Southern Phosphate Corporation mines and plants was published late in 1941.

The American Agricultural Chemical Co. is reported to have added dry mixing to its sulfuric acid and superphosphate operations at Pierce in 1941, so that it now has a complete fertilizer plant at that place. Its No. 1 recovery unit at Alderman Station is described in a recent report.13

The American Cyanamid Co. is reported to have built a new drying plant with a capacity of 150 tons per hour of wet phosphate rock.

Three papers by Taylor 14 on the land-pebble phosphate-rock deposits of Florida and the operations in that area have appeared in recent months.

¹⁰ Cash, F. E., Accident Experience at Pebble Phosphate Operations in Florida, 1939-40: Bureau of Mines

Cash, F. E., Accident Experience at Pebble Phosphate Operations in Florida, 1939-40: Bureau of Mines Inf. Circ. 7186, 1941, 15 pp.
 Jones, Spencer, New Florida Tabling Plant Recovers Phosphate Fines from Tailings Dump: Pit and Quarry, vol. 34, No. 5, November 1941, pp. 43-49.
 Edwards, J. H., Southern Phosphate's Electric Load Now 6,500 Horsepower: Eng. and Min. Jour., vol. 142, No. 12, December 1941, pp. 51-53.
 Pit and Quarry, New Phosphate-Recovery Methods Make Reprocessing of Waste Profitable: Vol. 34, No. 3, September 1941, pp. 57-58.
 Taylor, W. H., Land-Pebble Deposits of Florida: Pit and Quarry, vol. 34, No. 1, July 1941, pp. 103-105; No. 4, October 1941, pp. 50-52; No. 10, April 1942, pp. 49-52.

Tennessee.—The tonnage of phosphate rock sold or used by Tennessee producers (plus a small quantity of apatite from Virginia) aggregated 1,120,358 long tons, exceeding the previous all-time high of 1940 by 13 percent and passing 1 million tons for the first time. The total value of shipments exceeded 4½ million dollars. All shipments from Tennessee were brown rock. Total stocks in the hands of producers at the close of 1941 were somewhat larger than on December 31, 1940, being a little over one-quarter million tons in each of the 2 years.

Tennessee phosphate rock (including sintered matrix) sold or used by producers, 1937-41

		(ALL	ciuucs apati	oc nom vnemmj			
	Long	Value a	t mines	V	Long	Value at	mines
Year	tons	Total	Average	Year	tons	Total Average	Average
1937 ¹	825, 099 899, 298 938, 448	\$3, 343, 108 3, 725, 601 3, 856, 505	\$4.05 4.14 4.11	1940 1941	994, 361 1, 120, 358	\$3, 967, 043 4, 590, 965	\$3.99 4.10

[Includes apatite from Virginia]

Late in 1940 Whitlatch ¹⁵ presented a paper on the current and past estimates of phosphate reserves in Tennessee; he critically examined the data available and gave supplementary information on Tennessee reserves, repeating the conclusions given in a previous paper (see Minerals Yearbook, 1940, Review of 1939, p. 1309). In concluding this paper he states that—

The history of reserve estimates clearly indicates the tendency of past investigators to underestimate the phosphate reserves, chiefly because of failure to properly evaluate future technologic advances and trade trends, which have had the effect of amplifying reserves. Although the latest (1938 and 1940) reserve estimates have endeavored to recognize such factors and have, in consequence, established record-breaking figures, the writer must conclude that probably within 10 to 25 years even these figures will be obsolete. Phosphate mining undoubtedly will continue in Tennessee long after the exhaustion of grades now included in reserve tonnages, and as these grades are exhausted, new means of recovery for still lower grades will be devised, and reserve estimates will be accordingly amplified.

Six private companies continued to supply by far the major part of the phosphate rock produced in Tennessee—the Armour Fertilizer Works, Charleston Mining Co., Federal Chemical Co., Hoover & Mason Phosphate Co., International Minerals & Chemical Corporation (formerly the International Agricultural Corporation), and Monsanto Chemical Co. Few changes have been reported in their operations. The Hoover & Mason Phosphate Co., however, made radical changes in the intake end of its washing plant by removing the high towers and blast-furnace skips ahead of the washing and drying plants. Both have been replaced by belt conveyors from ground storage. The grinding- and bagging-plant capacity was also increased.

The phosphate-rock matrix-nodulizing plant completed at the Mount Pleasant (Tenn.) plant of the Charleston Mining Co. in 1938,

¹ Separate figures for brown rock and blue rock cannot be given without disclosing confidential data regarding blue-rock production.

¹¹ Whitlatch, G. I., Current and Past Estimates of Phosphate Reserves in Tennessee: Jour. Tennessee Acad. Science, vol. 16, No. 4, 1941, pp. 310-325.

with added improvements in 1939 and 1940, is described in a recent illustrated article by Nordberg.16

The International Minerals & Chemical Corporation operations in the Tennessee brown-rock phosphate fields are described in an article

published early in 1942.17

According to the Annual Report of the Tennessee Valley Authority. studies during the fiscal year 1941 were directed toward improving several steps in the large-scale processes for manufacturing concentrated superphosphate and calcium metaphosphate. Further work was done, on a pilot-plant scale, in developing the blast-furnace process for producing phosphoric acid. Successful operation of a pilot plant was attained for the production of fused rock phosphate fertilizer of low fluorine content, and preliminary work was begun on the development of a process for producing fertilizer by fusing rock phosphate with olivine. Small-scale studies of various processes for manufacturing dicalcium phosphate fertilizer were initiated. As in previous years, the large-scale experimental fertilizer plant was employed to produce superphosphate and calcium metaphosphate. Part of the superphosphate was sold to the Agricultural Adjustment Corporation; the remainder, as well as all the calcium metaphosphate, was used in tests and farm demonstrations. Although operation of the plant was curtailed in the later months of the year to make additional power available for defense industries, production was greater than in the previous year. Several thousand tons of elemental phosphorus from the Muscle Shoals plant have gone into the manufacture of war This plant is now being adapted so that almost its full materials. capacity may be used for producing elemental phosphorus.

In Tennessee, construction work was under way during the year by T. V. A. at several localities, including a mining and washing plant in the Bear Creek area for the recovery and treatment of phosphate rock from the Authority's own deposits and a sintering unit at Godwin, near Columbia, for preparing material to be shipped to Muscle

Shoals, Ala.

Virginia.—The Southern Mineral Products Corporation, subsidiary of the Vanadium Corporation of America, operated its open-cut mine on a body of apatite-bearing titanium ore (nelsonite) at Piney River and treated the mined material in its nearby mill to separate and recover apatite and ilmenite.

The occurrence and origin of the titanium-bearing deposits of Nelson and Amherst Counties have been described in detail by Ross.¹⁸ Sawyer and Whittemore 19 discuss the utilization of apatite from

Virginia in the preparation of refractories; Whittemore, 20 in a short accompanying paper, considers the ceramic possibilities of apatite from that State. He points out that in the manufacture of a suitable aggregate or grog from Virginia kyanite for the refractories industries a "small addition of apatite was a very effective flux and mineralizer with aluminosilicates." An analysis of the fluorapatite from Piney River is given in the article.

¹⁶ Nordberg, Bror, Nodulizing Phosphate in Kilns: Rock Products, vol. 44, No. 9, September 1941, pp

¹⁸ Nordberg, Bfor, Nodulizing rhosphate in Kinis: Rock Frouties, vol. 47, No. 8, September 1921, pp. 37-40, 46.

18 Excavating Engineer, Mining Phosphate in Tennessee: Vol. 36, No. 4, April 1942, pp. 190-193, 198.

18 Ross, C. S., Occurrence and Origin of the Titamium Deposits of Nelson and Amherst Counties, Va.:

Geol. Survey Prof. Paper 198, 1941, 59 pp.

18 Sawyer, J. P., Jr., and Whittemore, J. W., The Development of a Refractory Aggregate from virginia Kyanite: Virginia Poly. Inst., vol. 35, No. 2, November 1941, pp. 5-36.

29 Whittemore, J. W., Ceramic Possibilities for Virginia Apatite: Virginia Poly. Inst., vol. 35, No. 2, November 1941, p. 37.

Western States.—In 1941, Idaho, Montana, and Utah were the only Western States that produced phosphate rock. In Idaho the Anaconda Copper Mining Co. operated its No. 3 mine at Conda, Caribou County. Montana had two producers. The larger of these—the Montana Phosphate Products Co., of Trail, British Columbia—operated the Anderson and Graveley mines and Federal Government leases, shipping the mined phosphate rock to the Consolidated Mining & Smelting Co. of Canada, at Trail. The other producer—the Mineral Hill Mining Co.—operated its mine near Avon, Powell County, and shipped the crude phosphate rock to the Anaconda Copper Mining Co. at Anaconda. In Utah John M. Uren and the Garfield Chemical & Mfg. Co. mined and shipped phosphate rock from Government-leased land near Spanish Fork, Utah County.

Early in 1942, the Teton Phosphate Co., Boise, Idaho, began to

ship phosphate rock from its holdings near Montpelier, Idaho.

The plant of the Anderson Phosphate Co. near Garrison, Mont.,

is reported to have been destroyed by fire late in 1941.

Idaho phosphate rock carries a small percentage of vanadium oxide; this material, needed for special steel alloys for war purposes, is recovered from these ores by the Anaconda Copper Mining Co. as a byproduct of its treatment of the phosphate rock from Conda.

In a recent report Richardson 21 describes the geology of a phos-

In a recent report Richardson 21 describes the geology of a phosphate area in the Randolph quadrangle which covers northeastern Utah and southwestern Wyoming. Small amounts of phosphate

rock formerly were mined in this region.

On November 12, 1941, Secretary of the Interior Harold L. Ickes announced the formation of a consulting committee which, it is reported, will investigate the possibilities of the production of low-cost fertilizer and its distribution to the farmers of the Northwest.

			12						
		Idaho			Montana		Total		
Year		Value at			Value at mines		_	Value at mines	
Long		Total	Aver- age	Long tons	Total	Aver- age	Long tons	Total	Aver-
1937	83, 436 66, 014 95, 451 99, 088 97, 274	\$356, 037 296, 595 431, 938 441, 598 444, 154	\$4.27 4.49 4.53 4.46 4.57	50, 834 66, 491 44, 384 64, 239 105, 108	\$133, 138 155, 917 112, 142 184, 844 318, 588	\$2.62 2.34 2.53 2.88 3.03	134, 270 132, 505 139, 835 163, 327 202, 382	\$489, 175 452, 512 544, 080 626, 442 762, 742	\$3. 64 3. 42 3. 89 3. 84 3. 77

Western States phosphate rock sold or used by producers, 1937-41

FOREIGN TRADE 22

Imports.—Total imports of phosphate rock declined gradually from 13,400 long tons in 1937 to 2,953 tons in 1940. Because of war restrictions, data on imports in 1941 are available for publication for the first 9 months only; during this period neither phosphate rock nor apatite was imported. Imports of ammonium phosphates used as fertilizer declined sharply in 1941, only 4,858 long tons entering the

²¹ Richardson, G. B., Geology and Mineral Resources of the Randolph Quadrangle, Utah-Wyoming: Geol. Survey Bull. 923, 1941, 54 pp.

²² Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

United States from January to September. In the same period no basic slag was imported. Imports of guano from January to September 1941 increased greatly and totaled 14,752 long tons, or more than in any full year since 1938.

Phosphate rock and phosphatic fertilizers imported for consumption in the United States, 1937-41

		1937	1938		1939		1940		1941 (Jan.–Sept.)	
Fertilizer	Long	Value	Long tons	Value	Long	Value	Long	Value	Long tons	Value
Apatite			2	\$5						
Phosphates, crude, not elsewhere specified	13, 400	\$115,926	7, 004		3, 500	\$23, 625	2, 953	\$19, 536		
Ammonium phosphates, used as fertilizer	27, 253	1, 089, 657	29, 028	1, 286, 935	34, 995	1, 627, 608	44, 782	1, 959, 900	4, 858	\$203, 34
Bone dust, or animal car- bon, and bone ash, fit										
only for fertilizing	37, 341 13, 104					799, 179 211, 941	27, 676 785		20, 418 14, 752	
Slag, basic, ground or un-	1		1							,
ground Precipitated bone, ferti-	714	7, 339	691	9, 547	405	5, 168		1		
lizer grade	4, 414	120, 225	3, 385	98, 725	2, 314	68, 611	1, 141	38, 225		

Exports.—Because of wartime restrictions on release of foreign trade data for 1941, the total quantity and value of exports from January to September only can be published; exports by countries of destination cannot be published. Exports of phosphate rock were much larger in these 9 months than in the whole 12 months of 1940. Florida land pebble and hard rock, and Western States hard rock also, were exported; as in former years, the greater part of the exports was Florida land pebble.

The accompanying tables show shipments of phosphate rock and "Other phosphate materials" from the United States in the years 1937 to 1940, inclusive, and in the first 9 months of 1941.

Phosphate rock 1 exported from the United States, 1937-41

Year Long tons	Long	Value		V	Long	Value	
		Total	Average	Year	tons	Total	Average
1937 1938 1939	1, 052, 802 1, 140, 841 949, 006	\$5, 818, 231 6, 637, 638 5, 233, 104	\$5. 53 5. 82 5. 51	1940 1941 (Jan.–Sept.)	751, 495 820, 396	\$3, 845, 495 4, 606, 449	\$5. 12 6. 61

^{1937-40:} Excludes sintered matrix, which is included under "Other phosphate materials"; 1941: Includes sintered matrix.

Other phosphate materials 1 exported from the United States, 1037-41

Year	Long tons	Value	Year	Long tons	Value
1937 1938 1939	55, 665 32, 581 29, 080	\$466, 850 208, 550 192, 306	1940 1941 (JanSept.)	11, 924 1, 870	\$201, 047 94, 750

¹ 1937-40: Includes bone ash, dust, and meal; animal carbon for fertilizer; basic slag, etc.; and sintered matrix. 1941: Excludes sintered matrix, which is included under "Phosphate rock."

WORLD RESERVES

The total phosphate-rock reserves of the world are now believed to exceed 26 billion tons 23—nearly 13% billion tons in North America (13% billion in the United States alone), nearly 8 billion tons in Europe (roughly 7½ billion tons in Russia), and over 3½ billion tons in Africa (by far the greater part in French North Africa). The remaining reserves, less than a billion tons, are scattered over South America Oceania, and Asia. These data are shown graphically in the following diagram (fig. 4).

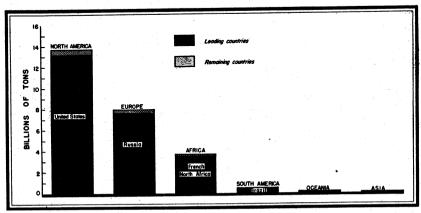


FIGURE 4.—Known phosphate-rock reserves of the world, by continents and countries, in 1942.

WORLD PRODUCTION

Few figures are available on phosphate production in foreign countries during 1941 (see following table). Presumably little change occurred in the general trends, save in the Mediterranean region and

In Canada, activity revived on a small scale at certain long-idle

apatite mines of the Liévre River district, Quebec.24

TECHNOLOGIC DEVELOPMENTS

Several papers on various phases of phosphate-rock technology, in addition to those mentioned in other parts of this chapter, have appeared; they are referred to briefly here.

Easterwood 25 discusses several of the more recent developments in

the phosphate industry.

Copson, Pole, and Baskervill 26 describe methods of producing metaphosphates of calcium, potassium, and sodium.

^{**} Mansfield, G. R., Phosphate Deposits of the World, with Special Reference to Those of the United States: Ind. and Eng. Chem., ind. ed., vol. 34, No. 1, January 1942, pp. 9-12.

Jacob, K. D., The Phosphate Rock Reserves of the United States: Commercial Fertilizer Yearbook, 1938 Issue, pp. 28-43, 55, 59.

** Johnson, Bertrand L. (from data received from W. B. Timm, Director, Mines and Geology Branch, Canadian Dept. of Mines and Resources), Phosphate-Canada: Bureau of Mines Mineral Trade Notes, vol. 14, No. 1, January 1942, pp. 25.

** Easterwood, H. W., Recent Developments in the Phosphate Field: Ind. and Eng. Chem., ind. ed., vol. 34, No. 1, January 1942, pp. 13-19.

** Copson, R. L., Pole, G. R., and Baskervill, W. H., Development of Processes for Metaphosphate Productions: Ind. and Eng. Chem., ind. ed., vol. 34, No. 1, January 1942, pp. 26-32.

World production of phosphate rock, 1937-41, by countries, in metric tons 1 [Compiled by B. B. Waldbauer]

Country 1	1937	1938	1939	1940	1941
lgeria	631, 148	584, 452	2 450, 000	(3)	an.
ngaur Island (exports)	90, 652	105, 578	(3)	(3)	8
New South Wales	20	244	(3)	(9)	(9)
South Australia Western Australia		254	(3)	(3)	9
Brazil		100	(3)	(3)	8
anada		189	142	325	2, 256
PhilePhina 4		(3)	(3)	32,000	(9)
hristmas Island, Straits Settlements (exports)	8,000 154,378	8,000 162,425	8,000 177,972	(3) 241, 826	(2)
gypt	517, 002	458, 404	547, 538	183, 182	0000
stonia	10, 112	13,012	(3)	(3)	X
rance		(3)	(8)	(3)	<u>න</u>
lermany	3, 314	3, 221	(4)	8	(3)
ndia, British		23	185	(9,)	(9)
taly	20, 252 260	37, 341	35, 694	22, 266	(2)
apan		(8)	8	(3)	(3) (3)
fadagascar	4, 290	5, 699	(8)	495	
fakatea Island (exports)	166, 726	102, 941	160, 680	173, 177	8
forocco, French (shipments) 5	1, 501, 767	1, 447, 544	1, 491, 754	(3)	(9)
etherlands Indies	1,024,168	1, 184, 816	1, 244, 170	1, 263, 385	(2)
etherlands West Indies: Curação (exports)	26, 167 101, 837	33, 113 99, 283	18, 777 (8)	34, 085 6, 047	(3)
ew Caledonia	307	5,000	N N	(8) 02.	(ð) (ð)
hilippine Islands	750	(3)	(i)	(6)	(b)
umania	950	`໌97∪	(3)	(3)	(b)
Bychelles Islands (exports)outh-West Africa	9, 594	21, 703	23, 545	14, 613	(3)
pain	10, 702	23, 429	(3)	869	(3)
weden (apatite)	4, 917	6, 192	6, 267	(3)	(2)
anganyika Territory	104	69	132	(9)	8
unisia	1, 771, 439	1, 934, 200	1, 608, 045		2 720, 000
. 8. S. R		(3)	(3)	(3)	(3)
nited States (sold or used by producers)	4, 019, 686	3, 799, 253	3, 817, 368	4, 066, 943	4, 763, 559

¹ In addition to countries listed, Austria, Belgium, Poland, and Taiwan produce phosphate rock, but data of output are not available.

² Estimated.

3 Data not available.

Schwartz and Munter²⁷ discuss in considerable detail the uses of various sodium and potassium phosphates in water softening.

Elmore, Huffman, and Wolf 28 present the results of a study of the defluorination of phosphate rock.

Larpenteur 29 discusses the application of hydroseparation and classification in the treatment of washer debris in the Florida landpebble and Tennessee brown-rock phosphate fields.

Walthall and Striplin 30 describe the pilot-plant development of a process for manufacturing phosphoric acid by burning phosphorus in dry air and absorbing the resulting P2O5 vapor in concentrated aqueous solutions containing 85 percent P₂O₅.

Estimated (Imp. Inst., London).

Including exports as follows: 1937, 1,484,562 tons; 1938, 1,427,643 tons; 1939, 1,465,673 tons.

Exports during fiscal year ended June 30 of year stated.

¹⁷ Schwartz, Charles, and Munter, C. J., Phosphates in Water Conditioning: Ind. and Eng. Chem., ind. ed., vol. 34, No. 1, January 1942, pp. 32-40.

¹⁸ Elmore, K. L., Huffman, E. O., and Wolf, W. W., Defluorinating of Phosphate Rock in the Molten State: Ind. and Eng. Chem., ind. ed., vol. 34, No. 1, January 1942, pp. 40-48.

¹⁹ Larpenteur, B. J., Particle Sizing and Hydroseparation in Phosphate Recovery: Eng. and Min. Jour., vol. 143, No. 3, March 1942, pp. 50-51.

²⁰ Walthall, J. H., and Striplin, M. M., Jr., Superphosphoric Acid by Absorption of Phosphorus Pentoxide Vapor: Ind. and Eng. Chem., ind. ed., vol. 33, No. 3, August 1941, pp. 995-1000.

Earhart 31 presents a study of the economic advantages and ceramic possibilities of using phosphates as opacifying agents in glazes.

Crass 32 describes the use of phosphorus in the match industry. The use of phosphates in ceramic ware is described in a series of

papers by Weyl,³³ Weyl and Kreidl,³⁴ and Kreidl and Weyl.³⁵

Brunauer and Shultz 36 show that if phosphate rock is present when phosphorus is oxidized by steam at 1,000°-1,100° C. certain undesirable products—phosphorus tetroxide and phosphine—are eliminated.

Armstrong 37 discusses phosphate treatment as a rust preventive

before painting.

The uses of various phosphates in ceramics are discussed in a recently issued Dictionary of Ceramic Materials.38

SUPERPHOSPHATES

The following table gives outstanding features of the superphosphate industry in the United States from 1938 to 1941.

Salient statistics of the superphosphate industry in the United States, 1938-41

	1938	1939	1940	1941
Production: Bulk superphosphateshort tons. Wet base and wet mixed goodsdo. Shipments: All superphosphate, to consumersdo. All superphosphate, to othersdo. Base and mixed goods Stocks in manufacturers' hands, Dec. 31: Bulk superphosphatedo. Base and mixed goods Bulk superphosphate	3, 575, 588	3, 801, 194	4, 385, 971	4, 867, 202
	156, 730	152, 500	136, 204	136, 631
	902, 490	897, 749	1, 048, 508	1, 503, 373
	1, 817, 293	2, 073, 123	2, 252, 620	2, 584, 732
	1, 537, 491	1, 526, 026	1, 519, 498	1, 648, 808
	1, 361, 127	1, 233, 297	1, 285, 408	1, 049, 268
	669, 503	701, 649	740, 914	812, 973
	90, 237	95, 224	141, 289	4 102, 784
	18, 753	17, 238	10, 017	4 6, 980
	2, 074, 779	2, 192, 779	2, 564, 844	2, 825, 456

¹ Bureau of the Census, Monthly Statistics, Superphosphate Industry, 16 percent available phosphoric acid.

Includes wet and dry bases and wet and dry mixed goods.

Department of Commerce.
Figures cover January to September, inclusive.

Imports of superphosphates have declined in recent years; in 1940 and 1941 all came from Canada. The following table gives imports by classes and countries in 1939, 1940, and the first 9 months of 1941.

³¹ Earhart, W. H., Use of Phosphate Opacifying Agents in Sanitary-Ware Glazes: Bull. Am. Ceram. Soc., vol. 20, No. 9, September 1941, pp. 312-313.

32 Crass, M. F., Jr., The Match Industry, Raw Materials Employed: Chem. Ind., vol. 48, No. 4, April 1941, pp. 424-433; No. 5, May 1941, pp. 575-579.

32 Weyl, W. A., Phosphates in Ceramic Ware; I. In Opal Glasses: Jour. Am. Ceram. Soc., vol. 24, No. 7, July 1941, pp. 221-225. Phosphates in Ceramic Ware; II. Role of Phosphorus in Bone China: Jour. Am. Ceram. Soc., vol. 24, No. 8, August 1941, pp. 245-247.

32 Weyl, W. A., and Kreidl, N. J., Phosphates in Ceramic Ware; III. Phosphorus Compounds as Reducing and Fining Agents in Glass: Jour. Am. Ceram. Soc., vol. 24, No. 10, October 1941, pp. 337-340.

33 Kreidl, N. J., and Weyl, W. A., Phosphates in Ceramic Ware; IV. Phosphate Glasses: Jour. Am. Ceram. Soc., vol. 24, No. 11, November 1941, pp. 372-378.

34 Brunauer, Stephen, and Shultz, J. F., Oxidation of Phosphorus by Steam; Investigations of the Gas-Phase Oxidation in the Presence and Absence of Phosphate Rock: Ind. and Eng. Chem., ind. ed., vol. 33, No. 6, June 1941, pp. 828-832.

35 Armstrong, E., Phosphatizing Aids Rapid Finishing: Metal Treatment, vol. 6, 1940, pp. 105-110, 118, 28 Ceramic Industry, A Complete Dictionary of Ceramic Materials: Vol. 38, No. 1, January 1942, pp. 26-116.

Superphosphates (acid phosphates) imported for consumption in the United States, 1939-41, by classes and countries

	1	939	1	940	1941 (Ja	mSept.)
Class and country	Long tons	Value	Long tons	Value	Long tons	Value
Normal (standard) (not over 25 percent P ₂ O ₅ content): Belgium	450	\$ 6, 717				
Canada Germany Netherlands	9, 864 198 1, 635	145, 772 2, 124 14, 769	7, 057	\$97, 682	4, 174	\$ 56, 187
	12, 147	169, 382	7,057	97, 682	4, 174	56, 187
Concentrated (treble) (over 25 percent P ₂ O ₄ content): Belgium Canada. Netherlands	4, 142 552 250	134, 208 23, 140 7, 955	2,864	39, 982	2, 788	69, 356
	4, 944	165, 303	2, 864	39, 982	2, 788	69, 356
Ammoniated: Belgium Canada	27 120	1, 585 3, 607	96	1, 951	18	376
	147	5, 192	96	1, 951	18	376
	17, 238	339, 877	10, 017	139, 615	6, 980	125, 919

Exports of superphosphates in recent years are shown in the following table; both the total quantity and value increased yearly from 1937 to 1940, but figures for the first 9 months of 1941 appear to indicate at least temporary cessation of growth in quantity (but not value) and virtual doubling of the average value per ton.

Superphosphates exported from the United States, 1937-41

Year	Long tons	Val		- 11		Value	
	Long was	Total	Average	Year	Long tons	Total	Average
1937 1938	78, 949 90, 237	\$841, 062 945, 351	\$10.65 10.48	1940 1941 (Jan	141, 289	\$1,655,336	\$11.72
1938 1939					102, 784	2, 203, 836	

Supplies of phosphate rock ample for the manufacture of superphosphates needed by this country are available at the mines. However, inadequate facilities for transporting this necessary raw material to the superphosphate-producing centers, increased demands by the munitions industry for sulfuric acid—the other essential in the manufacture of superphosphates—and consequent possible shortage of supply for fertilizer manufacture, and increased demands for superphosphate affected prices, which were advanced slightly late in 1941. On February 21, 1942, a price ceiling established on superphosphate fixed the price ³⁹ at that prevailing within 5 days before the temporary regulation was issued.

⁵⁰ Office of Price Administration, Title 32.—National Defense: Chap. 11, part 1367—Fertilizers—Temporary Maximum Price Regulation No. 1. Mixed Fertilizers, Superphosphate, and Potash.

Temporary price maximums for superphosphate, which expired April 27, 1942, were made permanent under Maximum Price Regulation 135, effective April 28, 1942, stabilizing the prices at the levels prevailing since February.

Several articles relating to the technology of the superphosphate

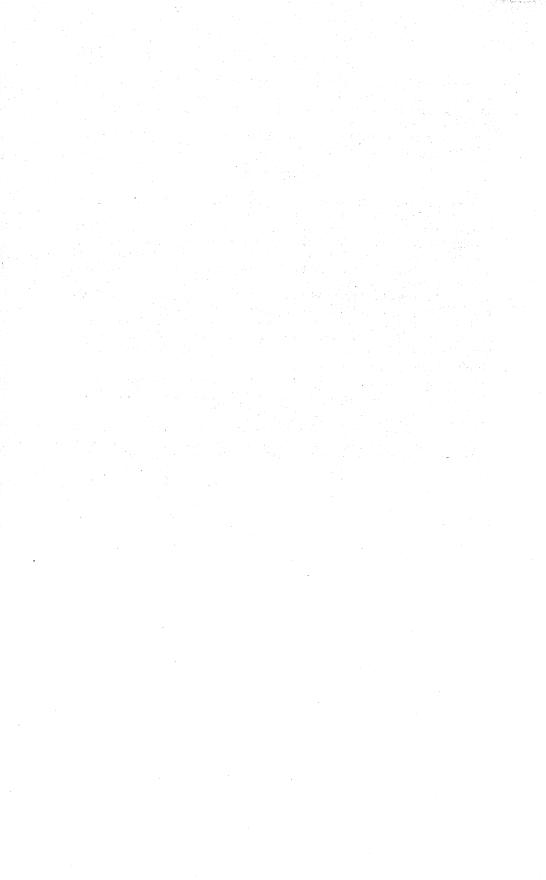
industry appeared recently.40

BASIC SLAG

Basic slag is an important source of fertilizer phosphorus in many European countries, where it has become an active competitor of phosphate rock and superphosphate for that purpose in agriculture. No figures for production in Europe during 1939, 1940, or 1941 are available; data for 1935-38 are given in Minerals Yearbook, 1940. Review of 1939, p. 1319. A total of at least 4 to nearly 6 million tons is produced annually.

Little basic slag is produced in the United States—probably 25,000 to 50,000 tons a year in the Birmingham iron district of Alabama.

Only a small quantity of basic slag is imported into the United States annually. Such imports in recent years (1937-40) ranged from 405 to 714 long tons. Annual figures, 1937-41, are given in the section of this chapter on "Foreign trade."


ordinary Superphosphates, Chemistry of Ordinary Superphosphates; Chemistry of Ordinary Superphosphate Manufacture: Presented at joint symposium of Division of Fertilizer Chemistry and Division of Industrial and Engineering Chemistry, American Chemical Society, Atlantic City, September 10, 1941; abs. Am. Fertilizer, vol. 95, No. 6, September 13, 1941, pp. 5-6.

Jacob, K. D., and Ross, W. H., Work cited in footnote 5.

Tremearne, T. H., and Jacob, K. D., Work cited in footnote 4.

Holmes, J. B. S., Composition of Ammoniated Superphosphate: Am. Fertilizer, vol. 95, No. 19, October

^{25, 1941,} pp. 5-8.
Bear, F. E., Liebig and the Superphosphate Industry: Am. Fertilizer, vol 94, No. 6, March 15, 1941,
pp. 10-11, 22; presented at Liebig Symposium, Am. Chem. Soc. meeting, Detroit, September 9-13, 1940.

TALC, PYROPHYLLITE, AND GROUND SOAPSTONE 1

By BERTRAND L. JOHNSON AND K. G. WARNER

SUMMARY OUTLINE

and the second of the second o	Page		Page
G	1220	Prices	1393
Callant statistics	1300	Developments in the industry	TORE
0-1	1300	Koreign trade	1900
Markete	1393	World production	1398

GENERAL CONDITIONS

Sales of talc, pyrophyllite, and ground soapstone in 1941 were 416,369 short tons valued at \$4,701,892 (see fig. 1), or 48 percent (134,994 tons) greater in quantity and 56 percent (\$1,693,572) greater in value than in 1940. Sales of crude, sawed and manufactured, and ground all increased in both quantity and value—the greatest tonnage

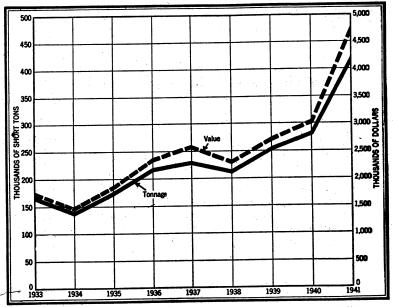


FIGURE 1.—Sales of domestic tale, pyrophyllite, and ground soapstone, 1933-41.

increase being in the ground products. Imports of crude materials were greater in both quantity and value in the 9 months of 1941 for which figures may be published than in the entire year 1940, but imports of other classes were less in both categories. Exports (both classes) for which data are available were less in the first 9 months of 1941 than in the whole year 1940.

¹ Scapstone sold in slabs or blocks is included in the chapter on Stone.

Pyrophyllite is included with talc in this discussion because it resembles talc in certain physical properties and is interchangeable with talc in some uses, although during recent years certain specialized uses for pyrophyllite have been developed. It is a hydrous aluminum silicate, Al₂Si₄O₁₀(OH)₂, whereas talc is a hydrous magnesium silicate, Mg₃Si₄O₁₀(OH)₂. Pyrophyllite sometimes is classed as one of the kaolin minerals (see Minerals Yearbook, 1939, p. 1273).

Salient statistics of the talc, pyrophyllite, and ground soapstone industries in the United States, 1940-41

	19	40	1941		
	Short tons	Value	Short tons	Value	
Mined: Total Used by producers	(0)	(1)	414, 544 370, 444	0)	
Sold by producers— Crude ² Sawed and manufactured Ground	17, 724 1, 894 261, 757	\$118, 424 140, 565 2, 749, 331	43, 823 4, 186 368, 360	\$393, 839 308, 467 3, 999, 586	
	281, 375	3, 008, 320	416, 369	4, 701, 892	
Imports for consumption: ³ Crude and unground steatite and French chalk Cut and sawed Ground, washed, or pulverized	93 125 28, 145	1, 479 20, 739 465, 049	4 223 4 71 4 14, 614	4 3, 249 4 10, 611 4 180, 651	
	28, 363	487, 267	4 14, 908	4 194, 511	
Exports: Tale, steatite, soapstone, and pyrophyllite, crude and ground Powder—talcum (in packages), face, and compact.	9, 402 (5)	167, 992 945, 530	4 7, 777 (*)	4 146, 674 4 865, 101	
		1, 113, 522		4 1, 011, 775	

¹ Data not available.

Figures cover January to September, inclusive.
Quantity not recorded.

Eleven States reported sales of talc, pyrophyllite, ground soapstone, or pinite in 1941, the same number as in 1940, but Montana replaced New Jersey as a producer. Western States increased their share of the total domestic sales from 14 to 17 percent. Eastern States furnished the remaining 83 percent in 1941—a slight decline from 1940 in relative performance.

SALES

Sales of talc, pyrophyllite, and ground soapstone by producers increased greatly in 1941 and reached an all-time record of 416,369 short tons valued at \$4,701,892 (see fig. 1), an increase of 48 percent in quantity and 56 percent in value over 1940. Sales of crude, sawed and manufactured, and ground materials were all greater than in 1940. The increase in sales of crude material, however, was not as great as it appears, for this year the Bureau has attempted to record the crude sold by the primary producers.

Indudes pinite from Nevada.
 Exclusive of "manufactures, n. s. p. f., except tollet preparations," as follows: 1940, \$21,568; 1941 (January-September), 79,915; quantities not available.

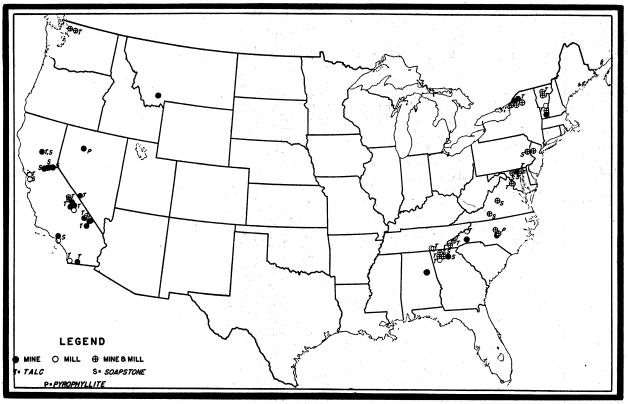


FIGURE 2.—Location of tale, pyrophyllite, and soapstone mines and mills in the United States.

Talc, pyrophyllite, and ground soapstone sold by producers in the United States, 1937-41, by classes

	eries per l'obligate	Crude	교육: 1683년	Sawed	and manufa	ctured
Year	Short	Value at s poi	shipping nt	Short	Value at shipping point	
	tons	Total	Average	tons	Total	Average
1937	11, 087 13, 498 15, 722 1 17, 724 1 43, 823	\$52, 750 72, 845 82, 188 1 118, 424 1 393, 839	\$4. 76 5. 40 5. 23 1 6. 68 1 8. 99	1, 101 1, 729 1, 871 1, 894 4, 186	\$111, 680 70, 268 77, 915 140, 565 308, 467	\$101. 44 40. 64 41. 64 74. 22 73. 69
		Ground			Total	Ę
Year	Short	Value at s poi	hipping nt	Short		
	60118	Total	Average	tons	Total	Average
1937	217, 811 197, 548 236, 383 261, 757 368, 360	\$2, 397, 323 2, 159, 447 2, 540, 731 2, 749, 331 3, 999, 586	\$11. 01 10. 93 10. 75 10. 50 10. 86	229, 999 212, 775 253, 976 281, 375 416, 369	\$2, 561, 753 2, 302, 560 2, 700, 834 3, 008, 320 4, 701, 892	\$11, 14 10, 82 10, 63 10, 69 11, 29

¹ Includes pinite from Nevada.

Sales by States.—Markedly larger tonnages were sold or used by producers in 1941 in all States for which comparative figures can be published for 1940 and 1941, and increases ranged from 35 to 65 percent. The greatest advances in tonnage sold were in New York, North Carolina, California, and Vermont. All-time high records are known to have been established in California, Georgia, North Carolina, and New York. New York remained by far the leading producing State; its output was more than double that of any other State.

Talc, pyrophyllite, and ground soapstone sold by producers in the United States, 1940-41, by States

State	19	40	1941		
	Short tons	Value	Short tons	Value	
California. Georgia. Maryland. Nevada. New York North Carolina. Vermont. Washington	36, 282 20, 104 (1) (1) 113, 611 39, 206 38, 516	\$476, 926 219, 959 (1) (1) 1, 402, 524 298, 382 423, 368	59, 203 28, 511 15, 628 2 13, 178 153, 560 64, 783 57, 248	\$811, 793 364, 560 105, 363 126, 433 1, 917, 732 567, 921 663, 468	
Washington Other States 3	2 33, 652	1, 394 2 185, 767	24, 252	2, 426 142, 196	
	281, 375	3, 008, 320	416, 369	4, 701, 892	

¹ Included under "Other States"; Bureau of Mines not at liberty to publish figures separately.

Includes Nevada pinite.
 1940: Maryland, Nevada, New Jersey, Pennsylvania, and Virginia; 1941: Montana, Pennsylvania, and Virginia.

MARKETS

The paint, ceramics, rubber, roofing, and paper industries consume most of the tale, pyrophyllite, and ground soapstone of domestic origin. Reports from producers to the Bureau of Mines show that these five industries took 81 percent of the total sales in 1941 compared with 75 percent in 1940. The tonnage of these commodities used by all the principal consuming industries increased sharply, an advance of over 52,000 tons being reported for the paint industry alone. The ceramic industry retained its position as the second most important market and again slightly increased its share of the total. The rubber industry more than doubled its consumption and rose to third place. Consumption in toilet preparations made a notable riseabout 140 percent—probably indicative of the replacement of foreign tales by those of domestic origin.

Talc. purophyllite, and ground soapstone sold by producers in the United States, 1940-41, by uses

	19	40	19	41
Use Vice Fig. 1	Short tons	Percent of total	Short tons	Percent of total
Paint Ceramics Rubber Roofing Service	67, 875 48, 661 28, 501 34, 347 31, 657 8, 818 (1) 5, 532 1, 829 29, 502 24, 653	24 18 10 12 11 3 (1) 2 1 10 9	120, 319 78, 990 78, 990 58, 114 40, 605 37, 884 21, 119 10, 479 6, 705 3, 186 24, 280 14, 688	20 19 14 10 9
	³ 281, 375	100	³ 416, 369	100

PRICES

The average values of sales of all grades of talc, pyrophyllite, and ground soapstone in the past 5 years, as reported to the Bureau of Mines by producers, are given in the table under Sales.

Quotations on finely ground domestic talc, per ton, f. o. b. works, carlots, on May 18, 1942, were as follows, according to the Oil. Paint

and Drug Reporter:

California: \$17.50 to \$43.

New York: Fibrous, 325-mesh, 93 to 94 percent, \$13 to \$18; 99 to 99½ percent, \$15.25 to \$19.25; 99.95 percent, \$17 to \$21.

Pennsylvania: \$11 to \$13.50.

Vermont: \$14.

Canadian talc: Carlots, delivered New York, quoted at \$24 to \$30 a ton.

No quotations were available on imported French and Italian talcs. The quoted prices on pyrophyllite in the same journal were: Standard, 200-mesh, carlots, mines, \$10 a ton; 325-mesh, \$13; No. 3, 200-mesh, carlots, mines, \$8 a ton; 325-mesh, \$11. All represent

¹ Included under "Other uses"; figures not available.
¹ 1940: Bleaching, insecticides, plaster, refractory, textile, and other minor uses; 1941: Bleaching, insulation, lubricants, refractory, textile, and other minor uses.
² Includes pinite.

increases over quotations of a year earlier, except the last one which declined from the previously published figure of \$12 a ton.

DEVELOPMENTS IN THE INDUSTRY

Talc.—Stimulated by the war need for high-frequency radioelectric insulating materials, the demand for steatite products has greatly increased. Several articles have appeared relating to the

preparation and uses of such products.

Gunzenhauser² has presented two recent papers. The first discusses in considerable detail the use of steatitic talc and soapstone and the various methods of treating the raw materials in the preparation of the numerous types of ceramic products for insulation; the second discusses the conversion of a whitewares plant to the production of steatite.

An electric kiln developed by the Tennessee Valley Authority in the course of ceramics research at Norris, Tenn., was made available late in 1941 to the American Lava Corporation, of Chattanooga. The purpose was to avert a bottleneck in the production of steatite electric insulators for radios pending installation of increased kiln facilities at the Chattanooga plant. Since August 1940 the kiln has been operated by the Bureau of Mines under lease from the Authority, in continuation of a research program on the use of electricity in the nonmetallic mineral industries. The unfired insulators are transported from Chattanooga to Norris by truck, and finished ware is taken back. Labor for the kiln is provided by the American Lava Corporation.3

Thurnauer and Rodriguez⁴ surveyed the literature on the crystal structure of calcined talc and steatite materials and presented the results of a study of the changes in the structure of talc and steatite bodies brought about by varying heat treatment and by the addition

of different fluxes.

O'Meara,⁵ of the Bureau of Mines, reported the results of a survey of domestic tales that were obtained from various producers and from different deposits.

A new use for ground talc is in the smothering of incendiary bombs, and Canadian talc is now being shipped to Great Britain for this

purpose.6

Davies, Pask, and Zwermann presented the results of a study of talc samples. Dried and fired properties and the relation between acid solubility and physical properties were determined in four series of bodies.

² Gunzenhauser, A., Steatite and Special Ceramic Materials; Their Development, Application, and Manufacture: Ceram. Ind., vol. 37, No. 6, December 1941, pp. 41-43, 46. Converting a Whitewares Plant to the Production of Steatite: Ceram. Ind., vol. 38, No. 5, May 1942, pp. 53-54.

³ Tennessee Valley Authority, Knoxville, Tenn., Press Release, September 17, 1941, 1 p.

⁴ Thurnauer, H., and Rodriguez, A. R., Notes on Constitution of Steatite: Pres. 44th Ann. Meeting, Am. Ceram. Soc., April 19-23, 1942; abs. Bull. Am. Ceram. Soc., vol. 21, No. 4, April 15, 1942, p. 6.

⁶ O'Meara, R. G., Beneficiation of Domestic Tales for Production of Radio Porcelain Grades: Pres. 44th Ann. Meeting, Am. Ceram. Soc., April 19-23, 1942; abs. Bull. Am. Ceram. Soc., vol. 21, No. 4, April 15, 1942, p. 6.

^{1942,} p. 6.

6 Bowles, Oliver, Talc, New Uses: Bureau of Mines Mineral Trade Notes, vol. 13, No. 6, December 20,

Jowies, Giver, Tais, Ten. Color.
 Josties, Ben, Pask, J. A., and Zwermann, C. H., Effect of Acid-Soluble Constituents in Talcon Physical Properties of Ceramic Bodies: Pres. 44th Ann. Meeting, Am. Ceram. Soc., April 19-23, 1942; abs. Bull. Am Ceram. Soc., vol. 21, No. 4, April 15, 1942, p. 18.

Pyrophyllite.—In 1937 Greaves-Walker and associates 8 presented the results of a study of the use of pyrophyllite in refractories, which indicated that this mineral could be made into a very satisfactory fired product with properties equal or superior to those of high-heatduty refractories. In 1941 Greaves-Walker and Amero 9 reported upon the use of pyrophyllite in unfired refractories; they concluded that a satisfactory unfired dry-pressed refractory for high heat duty may be produced, employing pyrophyllite as the major ingredient, with various specified bonding agents. The refractory would be used in operations not requiring it to come in contact with highly ferruginous or strongly basic slags.

Blume 10 describes a method of testing the fusion characteristics of nonplastic materials containing pyrophyllite, in which feldspar and

flint are varied and pyrophyllite is constant.

According to Ceramic Industry, 11 pyrophyllite is used in the ceramic industry in wall-tile bodies, semivitreous dinnerware, electrical insulator bodies, and enamels. In wall-tile bodies, substitution of pyrophyllite for part or all of the flint or feldspar causes a decrease in thermal expansion, with resultant decrease in tendency of both body and glaze to fail when subjected to sudden temperature changes. Pyrophyllite in wall-tile bodies is said to increase the firing range but to decrease crazing due to thermal shock or moisture expansion, firecracking, and shrinkage with a resultant decrease in warpage, and to

reduce wear on molds and dies.

According to the same authority, pyrophyllite is being used with talc to a limited extent in the manufacture of semivitreous dinnerware, but both minerals show a marked tendency to decrease the workability of a plastic body; for this reason, quantities sufficient to obtain the best results are not used. The total amount of pyrophyllite and talc in a dinnerware body should not exceed 20 percent; if this maximum amount is used the body should be deaired, otherwise it will When properly used, pyrophyllite will decrease the work too short. thermal and moisture expansion of semivitreous dinnerware bodies with a resulting decrease in the tendency to craze. In electrical insulation bodies very large amounts have been successfully used; it is said that bodies containing 94 to 96 percent pyrophyllite compare favorably with porcelain in mechanical and electrical characteristics and may be employed in applications not requiring high puncture values or zero porosity. They were stated to be superior to porcelain but inferior to steatite for certain high-frequency applications. phyllite is being increasingly used as a source of alumina for enamels.

Some service records of pinite, a hydrothermally altered acidic tuff suitable as a refractory lining, are summarized in a recent article.12 This rock, composed of a mixture of sericite and pyrophyllite, is mined near Rochester, Nev. (see Minerals Yearbook, Review of 1940,

p. 1291).

Greaves-Walker, A. F., Owens. C. W., Hurst, T. L., and Stone, R. L., The Development of Pyrophyllite Refractories and Refractory Cements: North Carolina State College Eng. Exp. Sta. Bull. 12, 1937,

phylitte Refractories and Refractory Centents. Notifi Carolina State Config. Exp. Exp. Sept. 105 pp.

9 Greaves-Walker, A. F., and Amero, J. J., The Development of an Unfired Pyrophyllite Refractory:
North Carolina State College Eng. Exp. Sta. Bull. 22, 1941, 108 pp.

18 Blume, A. J., Determination of Fusion Characteristics of Nonplastic Materials: Bull. Am. Ceram. Soc.,
vol. 20, No. 5, May 1941, pp. 153-154.

11 Ceramic Industry, A Complete Dictionary of Ceramic Materials: Ceram. Ind., vol. 38, No. 1, January
1942, pp. 36-116 (see p. 96).

12 Brick and Clay Record, Many American Refractory Materials can be Substituted for Foreign: Vol.
99, No. 4, October 1941, pp. 48-52.

FOREIGN TRADE 13

Imports.—In the first 9 months of 1941, imports for consumption of "talc, steatite or soapstone, and French chalk" were 14,908 short tons valued at \$194,511; figures for the entire year cannot be published.

In 1941, as in recent years, nearly all the imports consisted of materials "ground, washed, powdered, or pulverized, except toilet preparations"; only about 2 percent was of "crude and unground" and "cut

and sawed" materials.

The "crude and unground" material imported during the first 9 months of 1941 totaled 223 short tons—130 tons from British India and all but 2 tons of the remainder from China and the Union of South Africa. The "cut and sawed" varieties imported in the January-September period of 1941 came entirely from Japan. in the "ground, washed, powdered, or pulverized" category in the first 9 months of 1941 from both France and Italy dwindled to only a few tons each; imports from Japan proper were slightly greater in the first 9 months of 1941 than in the entire year 1940, but imports from Kwantung (Japanese-leased territory) appear separately as 3,669 tons in the first 9 months of 1941, whereas they are not itemized in the 1940 record; and imports from British India were 1,065 tons in the first 9 months of 1941, with a value of \$12,705. However, declared exports of ground talc from the port of Karachi in India to the United States in the first 6 months of 1941 are said to have been valued at \$76,991 compared with \$25,835 in the same months of 1940.14 Canada was the principal source of this grade of talc, and imports from that country during the first 9 months of 1941 were slightly greater than in the entire year 1940.

Talc, steatite or soapstone, and French chalk imported for consumption in the United States, 1937-41, by classes

Crude and unground		unground verized, except		ed, or pul- d, except	Cut and sawed		Total		Manufactures, n. s. p. f., ex- cept toilet preparations	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1937 1938 1939 1940 1941 (Jan Sept.)	324 337 133 93	\$7, 644 5, 956 2, 392 1, 479 3, 249	26, 379 21, 568 25, 943 28, 145 14, 614	\$423, 032 351, 541 408, 178 465, 049 180, 651	72 129 94 125	\$11, 799 7, 866 14, 651 20, 739 10, 611	26, 775 22, 034 26, 170 28, 363 14, 908	\$442, 475 365, 363 425, 221 487, 267	102 93 98 (¹)	\$30, 344 25, 835 27, 398 21, 568 9, 915

¹ Quantity not recorded.

Department of Commerce.

Bureau of Foreign and Domestic Commerce, Foreign Commerce Weekly: Vol. 5, No. 7, November 15, 1941, p. 37.

¹³ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the

Talc, steatite or soapstone, and French chalk imported for consumption in the United States, 1940-41, by classes and by countries

Country	Crude and unground		Ground, washed, powdered, or pulverized, ex- cept toilet preparations		washed, powdered, or pulverized, except toilet Cut and sawed Total				Total		Manu- factures, n.s.p.f., except toilet prepa-
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	rations (value)		
1040		100		-	7						
Canada	67	\$442	4, 725 3, 550 165	\$49, 737 34, 496 2, 818			4, 725 3, 617 165	\$49, 737 34, 938 2, 818	\$20 20,777		
FranceHong Kong			5, 732	94, 830	10	\$1, 174	5, 742	96,004	45		
India, British	l		3, 103	41,829			3, 103	41, 829			
Italy Japan Trinidad and Tobago		37	9, 456 1, 414	224, 007 17, 332	29 86	6, 154 13, 411	9, 485 1, 501	230, 161 30, 780	721		
Union of South Africa	25	1,000					25	1,000			
	93	1, 479	28, 145	465, 049	125	20, 739	28, 363	487, 267	21, 568		
1941 (JanSept.)		- 1									
Canada	2	14	4, 741	49, 460			4, 743	49, 474			
China France	66	562	3, 477 139	35, 610 3, 166			3, 543 139	36, 172 3, 166	9, 294		
Hong Kong India, British		1.866	1,065	12, 705			1, 195	14, 571	39		
Italy	190	1, 800	20	519			20	519			
Japan Kwantung			1, 503 3, 669	25, 392 53, 799	71	10, 611	1, 574 3, 669	36, 003 53, 799	539		
Union of South AfricaUnited Kingdom	25	807					25	807	43		
	223	3, 249	14, 614	180, 651	71	10, 611	14, 908	194, 511	9,915		

Exports.—Export figures on quantity and value of "talc, steatite, soapstone, and pyrophyllite, crude and ground," and on value of "powders—talcum (in packages), face, and compact," in 1941 are available for publication for the period January to September only and are so shown in the accompanying table.

Talcum and other powders exported from the United States, 1937-41

	The contract of the contract o	Short	Value		
Year	Description	tons	Total	Average	
1937	Talc, steatite, and soapstone, crude and groundPowders—talcum (in packages), face, and compact	8, 878 (¹)	\$149, 625 966, 473	\$16.85	
1938	Talc, steatite, and soapstone, crude and ground	7, 118 (¹)	124, 194 978, 100	17.45	
1939	Talc, steatite, and soapstone, crude and ground	9,047	162, 426 1, 115, 176	17.95	
1940	(Talc, steatite, soapstone, and pyrophyllite, crude and ground Powders—talcum (in packages), face, and compact	9, 402 (¹)	167, 992 945, 530	17.87	
1941 3	Talc, steatite, soapstone, and pyrophyllite, crude and ground. Powders—talcum (in packages), face, and compact		146, 674 865, 101	18.86	

¹ Quantity not recorded.
2 January to September, inclusive.

WORLD PRODUCTION

Few production figures for talc, pyrophyllite, and soapstone by countries in 1941 are available. The only figures for the entire year 1941 are those for the United States and Uruguay. Production for the first 6 months of 1941 is given for the Union of South Africa.

Data available indicate that the United States is still by far the

leading producing nation and is steadily increasing that lead.

In Scotland an impure grade of talc is being produced in Banffshire so that former imports from France and Italy can be partly replaced. 15 The talc deposits associated with the British serpentines were described in a publication issued in 1941.16 The Indian talc deposits were described by Lees.¹⁷ In Newfoundland some pyrophyllite is said to have been mined and shipped to England. In Canada, according to a letter in December 1941 from W. B. Timm, Director, Mines and Geology Branch, Canadian Department of Mines and Resources, to Oliver Bowles, of the Bureau of Mines, the talc industry is reported to have been extremely active throughout the year, with established producers working at capacity. As in recent years, the production came from the Madoc district, Ontario, and the Eastern Townships, Quebec. Two small new operators started work in the Madoc field in the latter part of 1941. Canadian talc is also 18 being ground for toilet preparations because Italian talc is no longer available.

World production of tale and soapstone, 1937-41, by countries, in metric tons 1 [Compiled by B. B. Waldbauer]

	Country 1	193	7	1938	1939	1940	1941
Argentina			208	80	303	1,168	(2)
Australia:					000	1,100	(-)
New South	n Wales		526	597	(2)	(2)	(2)
South Aus	tralia		991	973	ì. 115	1,349	(2) (2)
Tasmania.					-,	(2)	(2)
Canada 3		11,	301	9,846	11,924	(2)	(2) (2)
nina (Manch	uria) (exports)	111,	140	81, 215	93, 772	4 72, 495	(2)
			266	1, 251	833	2, 212	(2)
riniand			881	(2)	(2)	(2)	(2)
France		56,	300	(2)	(2)	(2)	(2) (2)
Germany:		1 .*		• • •	` '	1 1	•
Austria (ex	(ports)	14.	089	5, 625	(2)	(2)	(2)
Bavaria		7,	790	6,805	(2) (2)	(2)	(2)
Jreece		1 1	838	1, 293	ì.003	(2)	(2) (2) (2)
ndia, British		13,	249	18,888	22,616	(2) (2)	(2)
ndocnina			428		400	`′305	(2)
.UBH V		1 45		: 53,511	(2)	(2)	(2)
viorocco, Fren	ch (exports)		841	1,702	(2)	(2)	(2)
101 way		24,		23, 703	(2) (2)	(2)	(2)
линапіа	***************************************	1, 1	976	2, 256	(2) (2)	(2)	(2) (2) (2) (2) (2)
spani • Sweden			021	8, 438	(2)	(2) (2)	(2) (2)
		7,9	937	6, 797	7, 195	(2)	(2)
Trion of Court	erritory			38	5	` 6	(2)
United States	Africa: Transvaal		376	1, 554	449	1,757	` 6 883
		208, 0		193, 025	230, 402	255, 258	377, 722
ruguay (expo	rts)		437	952	2,460	1,699	1, 862

¹ In addition to countries listed, tale or pyrophyllite is reported produced in Brazil, Bulgaria, Newfoundland, and U. S. S. R., but data on production are not available. ² Data not available.

<sup>Data not available.
Excludes soapstone, which is reported only by value and was as follows: 1937, \$40,513; 1938, \$35,038;
1939, \$41,471. Soapstone is sold in the form of both blocks and powder.
January to September, inclusive.
Includes steatite, as follows—1937: 500 tons; 1938: 3,480 tons.
January to June, inclusive.
Talc, pyrophyllite, and ground soapstone sold by producers; includes also pinite in 1940 and 1941.</sup>

¹⁸ Chemical and Engineering News (Am. Chem. Soc.), vol. 20, No. 7, April 10, 1942, p. 467.
18 Wilson, G. V., and Phemister, J., Talc, Other Magnesium Minerals, and Chromite, Associated with British Serpentines: Geol. Survey of Great Britain, Dept. Sci. and Ind. Research, Wartime Pamphlet 9, 2d ed., October 1941, 27 pp.
17 Lees, R. C., Something about Talc: Compressed Air Mag., vol. 46, No. 6, June 1941, pp. 6455-6409.
18 Industrial Minerals Journal, vol. 14, No. 3, July 1941, p. 5.

FLUORSPAR AND CRYOLITE

By H. W. DAVIS 1

SUMMARY OUTLINE

	Page		Page
Fluorspar		Fluorspar—Continued.	
Summary	1399	Stocks at mines or shipping points	1405
Salient statistics	1400	Technologic developments	1406
Historical data	1401	Fluorspar industry in 1941, by States	1407
Production and shipments	1401	Imports and shipments for foreign consump	
Shipments, by uses		tion	1413
Uses	1403	World production	1414
Consumption and consumers' stocks	1404	Cryolite	1416
Quoted prices	1405	Imports	1416

FLUORSPAR

The domestic fluorspar industry was called upon to supply an unprecedented demand in 1941 in order to meet the requirements of steel mills and aluminum plants (both of which made new production records) and to supply the greatly accelerated needs of manufacturers of glass, enamel, and hydrofluoric acid. Producers responded by shipping 320,669 short tons of fluorspar and thus established a new record. Shipments were 37 percent greater than in 1940 and 22 percent more than the previous record (263,817 tons) made in 1918 during World War I. Shipments in 1941 were adequate not only to cover consumption, but they enabled consumers to increase inventories slightly. Moreover, there was only a small decline in stocks at mines. ments from Kentucky, Nevada, New Mexico, and Utah established all-time highs; the movement from Illinois (133,333 tons), although second-largest on record, was 15 percent less than the peak of 156,676 tons in 1917. Shipments by river or river-rail (74,616 tons) also made a new record. Sales of imported fluorspar, however, were 31 percent less than in 1940. On the other hand, shipments for foreign consumption, which usually are small, jumped to 12,184 tons and for the first time exceeded imports.

Sales of fluorspar to consumers in the United States totaled 316,074 short tons in 1941 (308,485 tons from domestic mines and 7,589 tons from foreign sources) compared with 236,042 tons in 1940 (225,118 tons from domestic mines and 10,924 tons from foreign sources). Total sales to the domestic steel industry increased to 220,222 tons in 1941 from 172,047 tons in 1940, sales to manufacturers of hydrofluoric acid (essential in the manufacture of artificial cryolite and aluminum fluoride—aluminum raw materials) advanced to 54,092 from 35,242 tons, and sales to makers of glass and enamel jumped to 32,051 from 20,280 tons.

¹ Figures on imports (unless otherwise indicated) compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce; those on shipments of fluorspar for foreign consumption supplied by the producers. No exports recorded by the Department of Commerce.

Despite the unprecedented demand for fluorspar in 1941, the average composite selling price (\$20.98 a ton) of all grades (both domestic and foreign) delivered to consumers in the United States was only slightly more than in 1940 (\$20.40). The average selling price f. o. b. Illinois-Kentucky mines of fluorspar shipped to domestic steel plants was \$19.62 a short ton (\$18.93 in 1940), of that shipped to manufacturers of hydrofluoric acid \$26.78 (\$26.10 in 1940), and of that to makers of glass and enamel \$27.39 (\$28.26 in 1940). The average selling price at seaboard (duty paid) of imported fluorspar shipped to steel plants was \$23.58 a short ton in 1941 (\$22.03 in 1940) and of that shipped to makers of hydrofluoric acid \$27.33 (\$27.44 in 1940).

The Office of Price Administration on January 20, 1942, requested producers not to publish or quote prices on or sell fluorspar at prices

above those in effect on January 2, 1942.

Fluorspar was placed on the list requiring license for export by official order published May 13, 1941.

Salient statistics of the fluorspar industry in the United States, 1940-41

	19	40	1941		
	Short tons	Value	Short tons	Value	
Shipments from domestic mines— To consumers in United States: Metallurgical. Ceramic. Chemical. To consumers in foreign countries.	170, 638 20, 872 33, 608 8, 482	\$3, 159, 531 554, 671 852, 139 178, 467	222, 832 32, 979 52, 674 12, 184	\$4, 239, 436 847, 941 1, 359, 622 277, 782	
이렇지도 하는 병사 전에 가지 않는 것이 없었다.	233, 600	4, 744, 808	320, 669	6, 724, 782	
Stocks at mines or shipping points Dec. 31: Finished	43, 866 30, 859	(1)	31, 997 40, 200	8	
	74, 725	(1)	72, 197	(1)	
Imports for consumption— Containing more than 97 percent CaF ₂ Containing not more than 97 percent CaF ₂	² 3, 052 8, 821	59, 398 83, 533	³ 1, 303 ³ 6, 008	³ 22, 814 ³ 50, 285	
	2 11, 873	142, 931	³ 7, 311	* 73, 099	
Consumption (by industries): Metallurgical Ceramic. Chemical	162, 100 19, 400 2 37, 000 2 218, 500	600	219, 100 28, 500 56, 000 303, 600	(9) (1) (1)	
Stocks at consumers' plants Dec. 31: Metallurgical Ceramic. Chemical	84, 500 4, 600 2 13, 000	(1)	89, 900 7, 800 10, 200	(1) (1) (1)	
	³ 102, 100	(1)	107, 900	(1)	

¹ Figures not available.

The total quantity of fluorspar shipped in and imported into the United States from about 1870 through 1941 was approximately 5,907,000 short tons, comprising about 82 percent from domestic mines and 18 percent from foreign sources.

The total shipments since commercial production was begun (around 1870) in the United States through 1941 were approximately 4,848,000 short tons, of which Illinois and Kentucky contributed 56 and 36 percent, respectively. Imports of fluorspar into the United

² Revised figures.

³ January to September, inclusive.

States from 1910 through 1941 were about 902.000 short tons. and imports before 1910 are estimated at 157,000 tons—a total of about 1,059,000 tons, of which the United Kingdom and Germany contributed 50 and 20 percent. respectively.

Fluorspar shipped 1 from mines in the United States. 1880-1941. bu States. in short tons 2

Year	Arizona	Colorado	Illinois	Kentucky	Nevada	New Mexico	Other States 3	Total
1880-1909 4	718	5, 807	330,120	203, 929		710	1, 020	542, 304
1910-19 4	843	83, 220	1,004,633	281, 124	400	20, 997	6. 110	1, 397, 327
1920-29 4	181	71,920	630,804	512, 518	2, 344	31, 216	2, 319	1, 251, 302
1930	l	9, 248	44, 134	39, 181	974	2, 312		95, 849
1931		529	28,072	23, 462	395	1,026		53, 484
1932		333	9.615	14, 725	49	529		25, 251
1933		742	36,075	34, 614	505	994		72,990
1934		6, 537	33,234	43, 163	631	2,040	181	85, 786
1935		6, 978	44,120	68, 679	1.040	2,726	198	123, 741
1936	40	9, 412	82,056	80, 241	2, 126	2,045	957	176, 877
1937	610	7, 883	78,664	87, 296	2, 544	3, 324	909	181, 230
1938	1,093	1.704	35,368	34, 803	2,909	4,066	460	80, 408
1939	(5)	7, 569	75, 257	89, 563	3, 520	(5)	385	182, 771
1940	(6)	11.032	104,698	103, 939	5, 803	(5)	142	233,600
1941	(6)	15, 566	133,333	142, 862	8, 967	(5)	922	320, 660
	(3)	238, 480	2, 670, 183	1, 760, 099	32, 207	(5)	13, 603	4, 823, 524
	1	1	l.	1				

Fluorspar imported into the United States, 1910-41, by countries, in short tons 1

Year	Africa	Canada	France	Germany	New- found- land	Spain	United King- dom	Other coun- tries 3	Total
1910-19 3 1920-29 4 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 4 1941	54, 550 2, 712 3, 672 1, 587 712 1, 997 1, 347 947 1, 194 3, 359	2, 433 16, 197 280 187 1	57, 565 23, 313 4, 462 1, 578 204 1, 595 14, 158 7, 411 13, 094 5, 735	1, 227 119, 903 23, 797 6, 491 5, 842 4, 333 8, 224 9, 843 12, 944 14, 501 3, 062 19	320 745 4, 317 5, 520 4, 752 2, 268 3, 640	11, 774 6, 784 4, 068 2, 659 4, 262 4, 914 5, 004 5, 701 5, 666 309 168 112 3, 070	183, 265 178, 482 5, 756 1 17 466 644 56	11 16, 161 2, 541 1, 736 1, 569 560 172 55 1, 124 85 697 2, 384 4, 239	186, 936 454, 632 64, 963 20, 760 13, 236 10, 467 16, 765 16, 340 25, 506 19, 622 11, 877 7, 311
	72, 077	19, 698	129, 115	210, 186	21, 562	49, 481	368, 689	31, 334	901, 545

¹ Imports Aug. 1 to Dec. 31, 1909, totaled 6,971 tons. Earlier imports not separately recorded but estimated at 150,000 tons and virtually all from United Kingdom.

² Argentina, Australia, Austria-Hungary, Belgium, China, Czechoslovakia, Italy, Mexico, Netherlands, Norway, Tunisia, and Soviet Russia in Asia.

³ Figures by years for 1910-29 are given in Minerals Yearbook, Review of 1940, p. 1298.

⁴ January to September, inclusive.

PRODUCTION AND SHIPMENTS

Production of fluorspar (expressed in terms of finished product) totaled 313,000 short tons in 1941 compared with 244,000 tons in 1940. Of the output in 1941, 7 mines producing over 10,000 tons each supplied 106,000 tons or 34 percent, 14 mines producing 5,000 to 10,000 tons each supplied 102,000 tons or 33 percent, 26 mines producing 1,000 to 5,000 tons each supplied 63,000 tons or 20 percent,

¹ Figures for 1880-1905 represent production.

² Figures on production not recorded for Colorado before 1905, for Illinois before 1880, and for Kentucky before 1886 and for 1889-5; total unrecorded production, chiefly from Illinois, estimated at 25,000 toms.

³ California, New Hampshire, Tennessee, Tenss, Utah, and Washington.

⁴ Figures by years for 1880-1909 are given in Mineral Resources of the United States, 1925, pt. 2, p. 13; for 1910-29 in Minerals Yearbook. Review of 1940, p. 1297.

⁸ Bureau of Mines not at liberty to publish figures.

and 12 mines producing 500 to 1,000 tons each supplied 8,000 tons or 2 percent. Thus, 59 mines produced 279,000 tons or 89 percent of the total. The remainder (34,000 tons or 11 percent) was produced in quantities ranging from a few tons to 500 tons from an undetermined number of small mines and prospects and reclaimed from mill ponds, waste dumps, and old workings of abandoned mines.

Fluorspar shipments from domestic mines in 1941 were the largest on record; they aggregated 320,669 short tons valued at \$6,724,782, increases of 37 percent in quantity and 42 percent in total value over 1940, and were equivalent to 257 percent of the average annual tonnage shipped in the 5-year period 1926-30. Of the 1941 total, 74,616 tons (an all-time high) was shipped by river or river-rail for delivery to consumers in Illinois, Indiana, Kentucky, Ohio, Pennsylvania, and West Virginia.

In 1941, mines operated by or for consumers shipped 59,644 short tons of fluorspar for use in their own plants compared with 53,162

tons in 1940.

The average value of all grades of domestic fluorspar shipped in 1941 was \$20.97 a short ton (\$0.66 more than the 1940 average).

The following table shows shipments of fluorspar, by States, during 1940 and 1941.

				the state of the s	
777	7 . 7 .		United States,	4010 14 7 6	
HIMPOMME	enamana tran	a mango an the	I IMATON STATES	TUME AT DATE	10100
I tuulopui e		e meneco em eme	· United Diales.	1040-41. UU K	· LULLO

		1940		1941			
State	Short	Va	lue	Short	Value		
	tons	Total	Average	tons	Total	Average	
Colorado Illinois Kentucky	11, 032 104, 698 103, 939	\$163, 285 2, 313, 747 2, 043, 866	\$14.80 22.10 19.66	15, 566 133, 333 142, 862	\$225, 069 3, 047, 247 2, 957, 982	\$14. 46 22. 88 20. 71	
Arizona	7,986	139, 675	17. 49	19,089	355, 951	18.6	
Nevada Utah Washington	5, 803 142	84, 235	14.17	8,967 748 104	38, 533	14. 1	
	233, 600	4, 744, 808	20.31	320, 669	6, 724, 782	20. 9	

SHIPMENTS, BY USES

The steel industry is the predominant purchaser of fluorspar, as is evident from the following table; it also consumes considerable hydrofluoric acid and sodium fluoride, in which fluorspar is the basic material.

Fluorspar shipped from mines in the United States, 1940-41, by uses

		19	140		1941				
Use	Quantity		Value		Quantity		Value		
	Percent of total	Short tons	Total	Aver- age	Percent of total	Short tons	Total	A ver- age	
Steel Foundry Glass and enamel Hydrofluoric acid Miscellaneous	69. 68 1. 21 8. 68 14. 39 2. 41	162, 772 2, 829 20, 269 33, 608 5, 640	\$2, 998, 054 50, 758 548, 069 852, 139 117, 321	\$18. 42 17. 94 27. 04 25. 36 20. 80	66. 77 . 85 9. 99 16. 43 2. 16	214, 120 2, 724 32, 051 52, 674 6, 916	\$4, 048, 454 53, 044 839, 547 1,359, 623 146, 332	\$19, 91 19, 47 26, 19 25, 81 21, 16	
Foreign consumption.	96. 37 3. 63	225, 118 8, 482	4, 566, 341 178, 467	20. 28 21. 04	96. 20 3. 80	308, 485 12, 184	6, 447, 000 277, 782	20. 90 22. 80	
	100.00	233, 600	4, 744, 808	20. 31	100.00	320, 669	6, 724, 782	20.97	

USES

As figure 1 shows graphically, the steel industry is the chief consumer of fluorspar in the United States. The second-largest use is in the manufacture of hydrofluoric acid, which is employed to make artificial cryolite and aluminum fluoride (aluminum raw materials) and refrigerating mediums; hydrofluoric acid is also used in the electrolytic refining of metals, the pickling of metals, chromium plating, and the etching of glassware, as well as for other purposes. The glass and enamel industries rank third and fourth, respectively. in importance. Comparatively small quantities of fluorspar are used in a number of miscellaneous operations, such as production of the finer grades of iron castings, chilled-iron rolls, brass and bronze ingots, nickel and Monel metal, magnesium, cement, ferro-alloys, carbon electrodes, and calcium carbide and cyanamid; in refining lead and silver; in extracting various rare metals from their ores; in smelting refractory ores of gold,

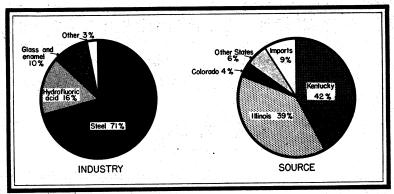


FIGURE 1.—Average annual fluorspar sales (domestic and foreign) to consumers in the United States, 1937-41, by consuming industries and by sources.

silver, and copper; as a paint pigment; as a binder for abrasives; and in a formula for coating welding rods.

Consumption of fluorspar in the manufacture of bessemer steel was reported to the Bureau of Mines for the first time in 1941. According to The Foundry: ²

While it is well-known that the basic bessemer process reduces the phosphorus content of steel, it is only recently that dephosphorization has been applied to the acid bessemer process using cold fluxes. Flux employed is composed of 50 percent impure lime, 30 percent dry roll scale, and 20 percent fluorspar. In use the regular slag formed after blowing the heat is removed by holding it back with a wooden block as the molten steel is poured into the ladle. The cold flux is added to the stream flowing into the ladle at a rate to insure a good boiling action. Reaction is said to be complete in about 30 seconds, and the phosphorus reduced from 0.095 to 0.100 percent to 0.020 to 0.040 percent in that time.

A comparatively small quantity of sodium fluoride—a derivative of hydrofluoric acid—is used in the steel industry. According to Metals and Alloys: 3

Rimming steels generally contain 0.12 percent C maximum and 0.5 percent Mn maximum. Solidification is decidedly affected by the evolution of gas, mainly carbon monoxide, resulting either from reaction or reduced solubility. The

² The Foundry, May 1941, vol. 69, No. 5, p. 146. ³ Metals and Alloys, April 1941, vol. 13, No. 4, p. 472.

principal recent innovations in manufacture are (1) special molds (their use is widespread in America) and (2) use of sodium fluoride. Sodium fluoride additions have an effect opposite to that of aluminum, namely, they speed up the effervescence of the ingot. The standard procedure is to add 2 ounces per ton during teeming. The effect is most marked in small ingots in which the height to cross-section ratio is over 4:1. Sodium fluoride addition at the start of pouring increases the rimming action in the lower half of the ingot, thereby giving an ingot with more uniform skin thickness and surface quality. Sodium fluoride is especially useful for heats that are somewhat sluggish in rimming and that might give second-grade ingots.

Chief commercial grades of fluorspar

			Spe	cification percent	
Name	Chief use	Form	CaF ₂ (mini- mum)	SiO ₂ (maxi- mum)	Fe ₂ O ₃ (maxi- mum)
Metallurgical Ceramic Acid	Basic open-hearth steel. Glass and enamel Hydrofluoric acid	Washed gravel, less than 1 inch and not more than 15 percent of fines. Ground: Coarse, fine, and extra fine Lump, gravel, and ground.	85 95 98	5 3 1	0. 12

CONSUMPTION AND CONSUMERS' STOCKS

The following tables give data on consumption and consumers' stocks of fluorspar.

Fluorspar (domestic and foreign) consumed and in stock in the United States, 1940-41; by industries, in short tons

	19) 40	1941		
Industry	Consump- tion	Stocks at consumers' plants Dec. 31	Consump- tion	Stocks at consumers' plants Dec. 31	
Basic open-hearth steel Electric-furnace steel Foundry Ferro-alloys Hydrofluoric acid Glass and enamel Miscellaneous	143, 800 11, 700 2, 700 1, 900 1 37, 000 18, 900 2, 500	79, 800 1, 700 900 900 1 13, 000 4, 400 1, 400	191, 300 18, 300 2, 600 2, 500 56, 000 27, 600 5, 300	84, 200 2, 500 1, 600 1, 000 10, 200 7, 500 1, 500	
	1 218, 500	1 102, 100	303, 600	107, 900	

¹ Revised figures.

Consumption and stocks of fluorspar (domestic and foreign) at basic open-hearth steel plants, 1937-41

	1937	1938	1939	1940	1941
Consumption of fluorspar in basic open-hearth	46, 361, 000	25, 868, 000	43, 368, 000	55, 038, 000	65, 993, 000
steel productionshort tons_ Consumption of fluorspar per ton of steel made	138, 900	73,600	116, 200	143, 800	191, 300
Stocks of fluorspar on hand at steel plants at end	6. 0	5.7	5.4	5. 2	5.8
of yearshort tons_	71, 400	55,000	69, 900	79, 800	84, 200

The quantity of fluorspar used by individual plants per long ton of basic open-hearth steel produced ranges from 1 to 50 pounds—a relatively small proportion of the furnace charge. The average is generally 5 to 8 pounds. It is noteworthy that from 1921 (the first year for which these data were collected) to 1940 the average consumption of fluorspar per ton of steel made declined almost steadily from 8.2 to 5.2 pounds. However, it increased to 5.8 pounds in 1941. The gain in 1941 was due partly to the manufacture of proportionately more armor steel, a poorer quality of scrap, higher charges of lime, and rushing of heats. Although electric-furnace steel plants are small users of fluorspar as compared with basic open-hearth steel plants, the average consumption of fluorspar (14 pounds) per long ton of electric steel made is substantially greater. The following table shows the variation in average consumption of fluorspar per ton of basic openhearth steel over a 5-year period in certain plants that make about 88 percent of the total.

Average consumption of fluorspar (domestic and foreign) per long ton of steel, 1937–41, in pounds

1937	1938	1939	1940	1941	1937	1938	1939	1940	1941
13. 867	12. 548	14. 079	15. 973	18. 231	7. 360	8. 420	6. 337	5. 972	6. 516
5. 623	4. 457	3. 623	3. 453	3. 716	6. 623	11. 984	8. 506	8. 369	9. 910
4. 376	3. 845	3. 793	3. 929	4. 268	4. 358	3. 831	3. 171	. 807	1. 977
8. 795	8. 297	8. 095	5. 566	5. 230	6. 619	6. 448	6. 551	7. 447	7. 436
3. 550	6. 843	6. 814	6. 137	6. 368	8. 895	8. 340	9. 370	8. 692	7. 940
5. 275	3. 694	3. 709	4. 183	4. 932	5. 236	6. 195	4. 578	5. 043	5. 924
6. 404	6. 806	4. 958	4. 599	5. 874	6. 816	6. 097	6. 896	7. 356	8. 263

QUOTED PRICES

According to Iron Age, in 1941 the quoted price f. o. b. Illinois-Kentucky mines for fluxing gravel and No. 2 lump fluorspar increased from \$20 a short ton on January 1 to \$25 by December 31. Smaller increases were made in the quoted prices of No. 1 ground and acid-grade fluorspar. Imported fluxing-gravel fluorspar (at seaboard, duty paid) was quoted nominally at \$25.50 a short ton throughout the year. As a consequence of the price rise in fluorspar, the Office of Price

As a consequence of the price rise in fluorspar, the Office of Price Administration on January 20, 1942, notified producers of fluorspar that it regarded any further increase in prices as inimical to the national welfare and requested producers "not to publish or quote prices on, nor sell your fluorspar at prices above your prices in effect on January 2, 1942." If any fluorspar producer considers it necessary to increase prices above the January 2 level, the Administrator requested him to notify the Office of Price Administration 1 month in advance of the date upon which the intended increase would take effect and to submit a detailed factual statement of reasons that the producer believed would justify the proposed increase, including financial data.

STOCKS AT MINES OR SHIPPING POINTS

According to reports of producers, the quantity of fluorspar in stock at mines or shipping points at the close of 1941 totaled 72,197 tons, or 3 percent less than in 1940. These stocks comprised about 40,000

tons of crude fluorspar (calculated to be equivalent to 25,000 tons of finished fluorspar) and 31,997 tons of finished fluorspar.

Stocks of fluorspar at mines or shipping points in the United States, December 31, 1940 and 1941, by States, in short tons

State		1940			1941	
5446	Crude 1	Finished	Total	Crude 1	Finished	Total
Arizona. California. Colorado Illinois. Kentucky New Mexico Texas Utah Washington	150 205 23, 934 3, 906 2, 604 60	364 18, 269 22, 707 2, 483 43 43, 866	150 569 42, 203 26, 613 5, 087 43 60	30 150 666 23, 711 12, 579 2, 539 525 40, 200	434 19,966 10,981 425 43 110 38 31,997	30 1,50 1,100 43,677 22,560 2,964 43 635 38

¹ The greater part of this crude (run-of-mine) fluorspar must be beneficiated before it can be marketed.

TECHNOLOGIC DEVELOPMENTS

The capacity of flotation plants in the United States was increased substantially in 1941 by additions to or improvements in present mills; new plants are now under construction. At the plant of the Rosiclare Lead & Fluorspar Mining Co., more flotation cells were added, the ball mill was enlarged, and other improvements were made. The Mahoning Mining Co. and Aluminum Ore Co. expanded and improved their flotation mills during 1941. The Colorado Fluorspar Corporation made improvements in its mill at Salida, Colo.; P. L. Grattan is rebuilding his flotation plant at Deming, N. Mex.; and J. Irving Crowell, Jr., installed flotation cells in his mill near Beatty, Nev. The General Chemical Co., which operates a flotation plant at Deming, N. Mex., is constructing a flotation plant near Jamestown, Colo., to treat ore from its mines in Boulder County. The Fluorspar Processing Co. is installing a combination flotation-concentrating mill near Salida, Colo. Output of flotation concentrates was 64,627 short tons in 1941 compared with 41,467 tons in 1940.

A Bendelari jig, the first to be used in the Illinois-Kentucky district, was installed in the mill of the Fluorspar Products Corporation near Rosiclare, Ill. This type of jig is also used by Navajo Fluorspar Mines in its mill near Grants, N. Mex.

Air tables, an innovation in milling fluorspar, were included in the equipment installed in the mill of the Big Creek Fluorspar Co. near Rosiclare, Ill.

A method of concentrating fluorspar ores is covered by United States Patent 2,263,552 granted to C. O. Anderson and others, assignors to Mahoning Mining Co. A principal object of the invention is to provide a method for flotation concentration of fluorspar from ores high in calcite, by means of which acid-grade fluorspar can be produced commercially without desliming treatment before flotation of the ore. A further object of the invention is to provide a method of this character that will avoid loss of material ore values through removal of the fines or slimes preparatory to flotation. Another object is to provide a method of flotation concentration of fluorspar

from ores high in calcite, in which the "middlings" can recirculate in the flow sheet without material objectionable effects.

FLUORSPAR INDUSTRY IN 1941, BY STATES

Arizona.—Production in Arizona came from mines and prospects in Greenlee and Pima Counties, and most of it was shipped to the flotation plants at Deming and Lordsburg, N. Mex. The flotation concentrates recovered from the fluorspar, instead of the run-of-mine material, have been credited to Arizona in the statistics. The flotation plant of the Southwestern Mineral Co. at Fox, Ariz., stopped milling fluorspar on April 1, 1940, and the mill was used to beneficiate complex ores from New Mexico. The fluorspar milled at the Fox plant in 1941 came from the Great Eagle and Mohawk mines in New Mexico. Plans for resuming production of fluorspar at the Fox plant in 1942 are under consideration. Bert L. Forbis and N. A. Gonzales shipped fluorspar to steel plants and iron foundries from the Polly Ann mine in Greenlee County and the Fluxore claims in Pima County, respectively.

California.—Some Nevada fluorspar was ground at the plant of the Industrial Minerals & Chemical Co. at West Berkeley and shipped to the ceramic trade during 1941. The ground fluorspar has been

credited to Nevada in the statistics.

Colorado.—Shipments of fluorspar from Colorado mines totaled 15,566 short tons in 1941 compared with 11,032 tons in 1940 and have been exceeded only in 1917 and 1918. Most of the 1941 shipments went to steel plants, but some went to iron foundries and to ferro-alloy, cement, glass, and enamel plants. Production in 1941 came from Boulder, Chaffee, Custer, Jackson, and Mineral Counties, but mines in Chaffee and Mineral Counties supplied 96 percent of the State total.

After considerable experimental work and a small production of fluxing-gravel fluorspar, Harry M. Williamson reports that his mill in Boulder County has been remodeled to produce acid-grade fluorspar and that the shaft at his Emmett mine was sunk about 175 feet during 1941. The General Chemical Co., which acquired the Chancellor, Yellow Girl, and Burlington mines in Boulder County in 1940, is rehabilitating these mines and building a flotation plant, which is expected to begin production in May 1942. The American Fluorspar Corporation did considerable development work at its mines in Chaffee County, and a flotation mill to be operated by the Fluorspar Processing Co. is being built on its property. The Colorado Fluorspar Corporation at Salida, in addition to a large increase in production of fluxing gravel and foundry lump fluorspar in 1941, shipped about 900 tons of flotation concentrate to the glass and enamel trades. The Western Feldspar Milling Co. shipped 731 tons of ground fluorspar to the glass trade in 1941. The Western Fluorspar Corporation in late 1941 leased the property of the Colorado Fluorspar Corporation (not affiliated with the Colorado Fluorspar Corporation, Salida) near Northgate, Jackson County; it has been rehabilitating the mine and remodeling and enlarging the mill, which is hoped to be in production in July 1942. Three 5-cell Harz jigs are being built, trommel screens are being replaced by vibrating screens, and Diesel power is being substituted for steam.

Illinois.—Approximately 248,000 short tons of fluorspar-bearing material, equivalent to 135,000 tons of finished fluorspar, were mined in 1941 compared with about 213,000 tons, equivalent to 111,000 tons of finished fluorspar, in 1940. Of the finished fluorspar produced in 1941, it is estimated that 71,000 tons were from mines where the fluorspar occurs in veins, chiefly fault fissures, and 64,000 tons from mines where the fluorspar occurs in flat-lying tabular masses, locally called blanket formations. Of the fluorspar produced in Illinois in 1941, about 97 percent came from Hardin County and 3 percent from Pope County.

Fluorspar-bearing material milled in Illinois in 1941 totaled 248,000 tons, from which about 135,000 tons of finished fluorspar were recovered—a ratio of 1.84:1. Considerable fluorspar of Kentucky origin is milled in Illinois, but the finished fluorspar so recovered, as

well as that shipped, is credited to Kentucky in the statistics.

Shipments from Illinois totaled 133,333 tons in 1941 compared with 104,698 tons in 1940; 39,918 tons were shipped by river or river-rail to consumers in 1941 compared with 36,756 tons in 1940. Shipments from Illinois were larger in 1941 than in any year except 1917, when

they totaled 156,676 tons.

The Argo, Blue Diggings, Cave in Rock, Crystal, Daisy, W. L. Davis, Deardorff, Hamp, Hillside, Humm, Lead Hill, Midway-Air Shaft, North Boundary, Rosiclare, Stewart, and Victory mines supplied about 85 percent of the total finished fluorspar produced in Hardin County in 1941; the remainder of the county production came from many mines and prospects. including the Big Creek, Boundary Shaft, Cooper, Diamond, Dimick, DuBois, Eureka No. 4 and No. 5, Indiana, Kamm, Pell, Preen, Sheldon, Spar Mountain, Twitchell, and Wall.

The Fluorspar Products Corporation operated the Lead Hill, Stewart, and Twitchell mines and also milled purchased ore from various properties. Shipments were 114 percent greater than in 1940. A 5-cell Bendelari jig was added to the mill, and a change from steam to electricity is reported to have effected much smoother operation.

The Aluminum Ore Co. produced 27 percent more fluorspar at its flotation plant in 1941 than in 1940; the plant was closed from January 11 to 23, 1941, and during November 1940 because of a strike at its East St. Louis plant, where artificial cryolite and aluminum fluoride are made from fluorspar. The capacity of the flotation plant was enlarged substantially in 1941, and another substantial expansion, which will be completed about July 1, 1942, is now in progress. Additional drying and grinding facilities are also being installed to handle the increased output. Drifting and raising at the Argo mine extended levels down to 700 feet; minor developments were carried out at the Blue Diggings mine; and a vertical shaft to a depth of 300 feet was completed at the Hamp mine.

At the Crystal mine of the Crystal Fluorspar Co. additions were made to the mill between January 1 and March 21 (there was no production during this interval); consequently, output during 1941 was 10 percent less than in 1940. Prospecting and development

work included 13,695 feet of churn drilling.

Output of gravel fluorspar and flotation concentrates by Hillside Fluor Spar Mines was 36 and 353 percent, respectively, greater than in 1940. The mill feed came chiefly from the Hillside mine at Rosi-

clare, Ill., Keystone and Ada Florence mines near Marion, Ky., and

tailings from previous milling operations.

The Rosiclare Lead & Fluorspar Mining Co. operated the Boundary Shaft, Daisy, Eureka No. 4 and No. 5, Midway-Air Shaft, North Boundary, and Rosiclare mines in 1941; production was at about the same rate as in 1940. Output at its flotation plant, however, was about five times that in 1940. The flotation plant has been described by Edwards.⁴ The Rosiclare mine, which had been flooded since January 1924, resumed production in 1941; it has now been cleaned out to the 700-foot level, where development work will soon be initiated. Unwatering the Rosiclare mine has been described by Cronk 5 and the mine pumping plant and new power plant by The company did considerable development work to determine the extension of the Argo fault on its property; a 1,000-foot crosscut has been driven from the 600-foot level of the Daisy mine west to intersect the Argo fault.

The Victory mine of the Victory Fluorspar Mining Co. produced

187 percent more fluorspar than in 1940.

The Cave-in-Rock Spar Co. operated its No. 1 and No. 2 mills on ore from its own mines, as well as on purchased ore; production of finished fluorspar was substantially greater than in 1940. No. 1 mill was leased to and operated by the Continental Fluorspar Co. for a 4-month period and milled purchased ore. The company did some developing at the Pell and Teems properties and made improvements in both mills.

The flotation mill of the Mahoning Mining Co. operated at capacity in 1941, and production of fluorspar concentrates was 50 percent greater than in 1940. The mill feed comprised ore from the W. L. Davis and Deardorff mines and a small quantity of purchased ore. Of the fluorspar shipped in 1941, 86 percent was acid-grade and 14 percent pelletized gravel; 25 percent of the acid-grade was shipped for foreign consumption The flotation plant has been described by Trauffer.

Ralph E. Jones and J. R. Ginn completed small mills near Rosiclare and Elizabethtown, respectively, in 1941. The Big Creek Fluorspar Co. also completed a mill near Rosiclare in 1941; equipment includes

air tables, an innovation in fluorspar milling.

The Atlas Fluorspar Co. operated its jig mill on purchased ore and did some custom milling. The mill was run during the latter part of 1941 by the Crown Fluorspar Co., which also milled purchased ore and reported exploration and development work at properties it has under lease.

Production at the Humm mine, operated by C. C. Mackey, was about the same as in 1940. Beecher Williams reported sinking a

160-foot shaft on the Humm property in 1941.

The Douglas, Lost 40, and Roberts mines were the chief producers of fluorspar in Pope County during 1941. Knight, Knight & Clark operated its mill on ore from the Douglas mine. Production at the Lost 40 mine was sold to local mills for milling. The Kentucky

⁴ Edwards, J. H., Use of Flotation Increases in Illinois Fluorspar Field: Eng. and Min. Jour., October 1941, vol. 142, No. 10, pp. 47–48.

⁵ Cronk, A. H., Unwatering the Rosiclare Mine: Min. Cong. Jour., July 1941, vol. 27, No. 7, pp. 10–13.

⁶ Edwards, J. H., Mine Pumping Plant Electrified at Rosiclare Fluorspar Property: Eng. and Min. Jour., June 1941, vol. 142, No. 6, pp. 39–41; New Power Plant for Rosiclare Fluorspar Operations: Eng. and Min. Jour., July 1941, vol. 142, No. 7, pp. 49–50.

⁷ Tranffer, W. E., Fluorspar Separated by Flotation at New Plant in Illinois-Kentucky Field: Pit and Quarry, May 1941, vol. 33, pp. 39–42.

Fluor Spar Co. acquired the Knight mine on June 28 and renamed it the Roberts mine. It was equipped and brought into production

the latter part of 1941.

Kentucky.—Production of fluorspar (expressed in terms of finished product) in Kentucky was about 136,000 short tons in 1941 compared with 107,000 tons in 1940. Shipments, which exceeded the previous all-time record of 1940 by 37 percent, were 142,862 tons compared with 103,939 tons in 1940; of the 1941 total, 34,698 tons were shipped by rail or river-rail to consumers compared with 29,672 tons

Production in Caldwell County, totaling about 8,000 tons, came chiefly from the H. & W., Hollowell & Hobby, Marble, McNeely, and Tyrie mines. A large increase in production was reported at the Hollowell & Hobby mine, which was acquired by the New York & Kentucky Mining Co. in 1940.

The Marble mine was leased on June 19 by the Marble Mining Co., which also leased the Crook mill at Crider. A 96-foot shaft was sunk at the mine; and the mill, which had been idle for many years, was rehabilitated.

Production at the McNeely mine, operated by J. D. Summers & Co., was discontinued in May, owing to exhaustion of known ore

Production in Crittenden County, totaling 105,000 short tons, came chiefly from the Ada Florence, Bachelor, Davenport, Gillis, Keystone, Pigmy, Summers, Tabb, and Watson (Eagle) mines, which contributed 85 percent of the county total. Most of the remainder came from many smaller mines (including the Beard, Blue, Brown, Dyke, Haffaw, Mary Belle, Memphis, Pogue, Susie Beeler, and Watkins) and from numerous prospects; some was reclaimed from mill ponds, waste dumps, and old workings of abandoned mines.

The Beard, Brown, Cross, Haffaw, Mary Belle, Memphis, and Susie Beeler mines of the Aluminum Ore Co. were operated by lessees at a greatly reduced rate during 1941. The surface plants at these mines, as well as those at other mines of the company in Kentucky, have been removed, and its mill at Marion has discon-The mill site will be used for the accumulation of tinued operation. fluorspar purchased from local contractors. The company operates mines and a flotation mill near Rosiclare, Ill., where operations will proceed at a greatly increased rate.

The Watson mine of the Eagle Fluor Spar Co. was operated on a two-shift basis, and the output of finished fluorspar was 13 percent

larger than in 1940.

R. J. Forester's mill handled ore from his Summers mine and some purchased ore, recovering 37 percent more finished fluorspar than in

The Tabb mines and mill of the United States Coal & Coke Co. produced 19 percent more finished fluorspar than in 1940; shipments, however, were 4 percent less. In addition to the production from the Tabb mines, a contractor made a small output on the company property. Some purchased ore was also treated in the company mill.

The Kentucky Fluor Spar Co., which operates a mill a short distance south of Marion, did the largest volume of business in its history; sales were 35 percent greater than in 1940. In 1941 the company operated the C. R. Babb and Ellis mines in Livingston County, Ky., and the Roberts mine in Pope County, Ill.; about half the company supply came from these mines. The remainder was purchased chiefly from the Blue, Dyke, Hollowell & Hobby, McNeely, Nancy Hanks, and Watkins mines in Kentucky and the Humm and Kamm mines in Illinois.

The Ada Florence and Keystone mines of Hillside Fluor Spar Mines were operated at a substantially increased rate in 1941. Although the fluorspar from these mines is finished at the company mill at Rosiclare, Ill., production and shipments are credited to Kentucky in

the statistics.

A newly discovered ore body of considerable length and depth was developed at the Pigmy mine of the Pigmy Corporation in 1941.

Production was about double that in 1940.

Exploration by crosscut at the 130- and 260-foot levels of the Davenport mine, both in the vicinity of the main shaft, disclosed at least two hitherto unknown ore bodies east of those already worked; they promise considerable tonnage. Production was about the same as

during 1940.

The Pogue mine was leased in July 1941 by the Marble Mining Co., which cleaned out an old filled-in abandoned shaft and retimbered it to the 175-foot level. Washing equipment was installed at the mine. A small tonnage of fluxing-gravel fluorspar was produced in 1941. During October the company also leased the Sullinger mine and installed washing equipment.

In 1941 the Delhi Fluorspar Corporation did considerable development work at its Bachelor mine and installed a new double log washer

and bath house. Production was about double that in 1940.

The capacity of the mill of the Howard Easley Corporation was enlarged to handle one-third more tonnage. This corporation does not operate any mines but does milling upon a custom basis for others. It also purchases fluorspar from many mines and prospects, milling some of this before shipment.

In Livingston County 23,000 short tons of finished fluorspar were produced in 1941 compared with 21,000 tons in 1940. Of the county total in 1941, the C. R. Babb, Ellis, Mineral Ridge, and Nancy Hanks mines and the jig plant reclaiming fluorspar from Klondike tailings

supplied about 91 percent.

Output at the C. R. Babb and Ellis mines of the Kentucky Fluor Spar Co. was 25 and 27 percent, respectively, greater than in 1940. The company also made a small production at the Wright mine. The shaft at the C. R. Babb mine was sunk 100 feet, making a total depth of 450 feet, where levels are being driven along the vein; the power plant at this mine was improved and enlarged. The lease on the Wright mine was acquired by C. W. Haynes, who sank a 50-foot shaft and mined a small tonnage of mixed fluorspar-barite ore.

Production at the Nancy Hanks mine, operated by the Haynes Fluorspar Co., was 17 percent less than in 1940; sales, however, were

11 percent greater.

The Mineral Ridge Fluorspar Co. produced and shipped fluorspar

from the Mineral Ridge mine in 1941.

The Klondike mine made no production in 1941, but the remainder of the mine stock pile was shipped.

Shipments by Butler & Moodie, who operate a jig plant reclaiming fluorspar from Klondike tailings, were considerably larger than in 1940.

In the central Kentucky district a small carload of fluorspar was shipped from the Faircloth mine in Woodford County, near Wilmore.

Nevada.—Shipments of fluorspar from Nevada in 1941—8,967 short tons—exceeded the previous all-time record of 5,803 tons in 1940. Most of the 1941 total went to steel mills and hydrofluoric-acid plants.

The chief producing mine in Nevada in 1941 was the Baxter in Mineral County, operated by V. S. Baxter, where some development The other active mine was the Daisy in Nye County, work was done. operated by J. Irving Crowell, Jr. New equipment was installed at the Daisy mine and mill to increase productive capacity: a flotation

unit was also installed but did not operate.

New Mexico.—Production of fluorspar in New Mexico also established a new record in 1941. Shipments from New Mexico, Arizona, and Texas were 19,089 short tons and comprised flotation concentrates (which went chiefly to ceramic and hydrofluoric-acid plants), metallurgical grade (which went chiefly to steel plants), and acid grade (which went to hydrofluoric-acid plants).

Production in New Mexico came from Grant, Hidalgo, Luna,

Sierra, and Valencia Counties.

Output at the flotation mill of the Indian Metals Co. at Lordsburg gained 17 percent over 1940. The ore milled came from many properties, but the greater part came from the Howard mine in Luna County and the Shrine mine in Grant County.

The flotation mill of the General Chemical Co. at Deming was

operated on a substantially larger scale than in 1940. Most of the ore milled was purchased from producers in New Mexico and Arizona.

The gravity-flotation plant of the Non-Metallic Corporation at .

Silver City was not operated in 1941.

P. L. Grattan is remodeling his flotation plant at Deming; meanwhile, ore was produced at his mine in Luna County and stock-piled at the mill.

The Howard mine in Luna County, operated by D. F. McCabe, was the largest producer in New Mexico in 1941. About one-third of the output was shipped to steel plants and two-thirds to the flota-

tion plants at Deming and Lordsburg.

The Navajo mines in Valencia County, which have been under development for some time by Navajo Fluorspar Mines, became an important producer in 1941. Production comprised chiefly metallurgical gravel fluorspar shipped to steel mills, but a small quantity of acid grade was shipped to hydrofluoric-acid plants. From July through December 1941 shipments averaged about 700 tons monthly and in January 1942 totaled 1,250 tons. Four tunnels above water level are in active operation on two veins. Although one of the veins is reported to yield acid grade by careful sorting, the output is blended with the lower-grade product from the other vein to make fluxing The mining property is in the Zuni Mountains about 25 miles south of Grants, the shipping point. Ore from the mine is trucked to the mill at Grants, where it is dumped into a hopper that is carried by elevators to a 400-ton bin, which discharges through an automatic feeder to the crusher, rolls, and washer. After washing, the ore is put through screens before going to two 4-cell Bendelari jigs and a smaller Harz jig; some of the fines pass over a concentrating table. The

finished fluorspar is carried by another set of elevators to a bin for loading into cars. Additions to the mill to produce acid-grade fluorspar are contemplated.

Small outputs were made at the Montezuma, Mirabal, and Porter

mines, also in Valencia County.

Texas.—In the course of surface prospecting at the Horse Shoe prospect near Hot Wells, Hudspeth County, U. B. Melton produced and shipped a small tonnage of fluorspar to the flotation plant at Deming, N. Mex. It is planned to sink a shaft at the property in 1942.

Utah.—Shipments of fluorspar from Utah were 748 short tons in 1941 compared with 142 tons in 1940, all from the Fred Staats mine in Beaver County. Development work under way at this mine is expected to result in a much larger output in 1942. The Western Fluorite Co. continued development work at its properties in Beaver County and made a trial run at its mill.

Washington.—Crushing, screening, and concentrating equipment was installed at the Mitchem mine in Ferry County, and new stopes were opened in the mine. Two cars of fluorspar were shipped in 1941. This mine was received in 1940 and shipped a car of fluorspar, but the report was received too late for inclusion in the statistics for that

year; consequently, it has been included in the total for 1941.

IMPORTS AND SHIPMENTS FOR FOREIGN CONSUMPTION

Imports of fluorspar for consumption in the United States during the 9 months January to September 1941 were 7,311 short tons (1,303 tons containing more than 97 percent and 6,008 containing not more than 97 percent calcium fluoride) valued ⁸ at \$73,099. Publication of foreign trade statistics was suspended beginning October 1, 1941. Imports during the year 1940 were 11,873 tons (3,052 containing more than 97 percent and 8,821 containing not more than 97 percent calcium fluoride) valued ⁸ at \$142,931. The value assigned to the foreign fluorspar in 1941 averaged \$10 a ton. The cost to consumers in the United States also includes duty, loading charges at the docks, ocean freight, insurance, consular fee, and freight from docks to consuming plants. The duty on fluorspar containing not more than 97 percent calcium fluoride is \$7.50 a short ton and on fluorspar containing more than 97 percent calcium fluoride \$3.75 a short ton.

Fluorspar imported for consumption in the United States in 1941 (January to September, inclusive), by countries and customs districts

Country and customs district	Containing more than 97 percent calcium fluoride		Containing not more than 97 percent calcium fluoride		Total	
	Short tons	Value	Short tons	Value	Short tons	Value
Mexico: Laredo Maryland	69	\$863	1, 621	\$14, 704	69 1, 621	\$863 14,704
New York Philadelphia	1, 234	21, 951	1,315	12,777	1, 234 1, 315	21, 951 12, 777
Spain: Philadelphia	1,303	22, 814	2, 936 3, 070 2	27, 481 22, 772 32	4, 239 3, 070 2	50, 295 22, 772 32
	1, 303	22, 814	6,008	50, 285	7, 311	73,009

⁸ As defined in sec. 402 of the tariff act of 1930, "The value of imported merchandise * * * is the foreign value or the export value, whichever is higher—that is, the market value or the price at which the merchandise, at the time of exportation to the United States, is offered for sale in the principal markets of the country from which exported, including the cost of containers or coverings and all expenses (including any export tax) incident to placing the merchandise in condition ready for shipment to the United States."

The foregoing imports for 1941 comprised 82 percent metallurgical gravel fluorspar and 18 percent acid-grade fluorspar. The former was imported from Mexico, Spain, and United Kingdom and the latter from Mexico.

The following table, compiled from data furnished to the Bureau of Mines by importers, shows the quantities of imported fluorspar delivered to consumers in the United States in 1940 and 1941 and the selling price at tidewater (duty paid), irrespective of the year of importation into the United States; it differs from the preceding table, which shows the quantities received in the United States during the first 9 months of 1941. The quantities in the following table are based upon the actual outturn weights ascertained by sworn weighers and represent the weights on which duty was paid and entries were liquidated.

Imported fluorspar delivered to consumers in the United States, 1940-41, by uses

		1940			1941	
Use	Short tons	Selling pr water, duty	ice at tide- including	Short tons	Selling pr water, duty	ice at tide- including
		Total	Average		Total	Average
Steel	9, 275 11	\$204, 342 361	\$22. 03 32, 82	6, 102	\$143, 863	\$23. 58
Glass and enamel	1, 634	44, 845 160	27. 44 40. 00	1, 418 69	38, 760 1, 380	27. 33 20. 00
	10, 924	249, 708	22, 86	7, 589	184, 003	24. 25

Producers of fluorspar reported shipments of 12,184 short tons of fluorspar valued at \$277,782 in 1941 for foreign consumption compared with 8,482 tons valued at \$178,467 in 1940.

Fluorspar reported by producers as shipped from the United States for foreign consumption, 1937-41

-	Short	Va	lue	_	Short	Va	lue
Year snort tons		Total	Average	Year	tons	Total	Average
1937 1938 1939	456 788 2, 976	\$9, 091 9, 061 74, 443	\$19. 94 11. 50 25. 01	19401941	8, 482 12, 184	\$178, 467 277, 782	\$21. 04 22. 80

WORLD PRODUCTION

The following table shows world production of fluorspar by countries from 1937 to 1941, insofar as statistics are available. Because of Government restriction on the publication of statistics for many countries, few figures for 1940 and 1941 are available. However, as the output of steel and aluminum increased greatly in many countries, no doubt world production of fluorspar also gained in 1940 and 1941. Despite the fact that fluorspar is produced in about 20 countries, the United States, Germany, U. S. S. R., United Kingdom, and France normally supply about four-fifths of the world total.

World production of fluorspar, 1937-41, by countries, in metric tons 1 [Compiled by B. B. Waldbauer]

Country 1	1937	1938	1939	1940	1941
Argentina 2	350	1, 406	739	597	(3)
Australia:	55		(3)	(3)	(3)
New South Wales		2,479	20	8	(B) (B) (B) (B) (B) (B) (B) (B) (B) (B)
Queensland South Australia		2, 419	20	(3) (3) (3) (3) (3) (3)	િ
Victoria		804		(3)	}₃∖
Canada		197	218	े कि	₹3
Chosen		4 34, 207		(3)	(ક)
France		51, 920	(3) (3)	(3)	ો
Germany:	01, 200	01,020	'/	· · · ·	``
Anhalt	13,662	10, 462	(3)	(3)	(3)
Baden		21, 350	(3) (3) (3) (3) (3) (3)	0 0 0 0 0 0	(3)
Bavaria		59, 919	(3)	(3)	(3)
Prussia		22, 956	(3)	(3)	(3)
Saxony		12,063	(3)	(3)	(3)
Thuringia	16, 117	22, 405	(3)	(3)	(3) (3) (3)
India, British		İ	20	(3)	(3)
Italy	13, 385	12, 186	(3)	(3)	(3)
Newfoundland (shipments)	8, 479	8,944	11, 227	14, 697	11, 581
Norway	1,692	1,676	2, 367	(3)	(3)
Southern Rhodesia		156		(3)	(3)
South-West Africa		585	105	(3) (3) (3) (3)	(3)
Spain	4, 250	8, 596	(3)	(3)	(3)
Tinnisia	1,070	2,060	2,473	(3)	(3)
Union of South Africa	3,615	4,736	10, 322	7, 421	1,836
U. S. S. R	6 70,000	(7)	(3)	(3) (3)	(3) (8)
United Kingdom	42, 837	33, 866	5 17, 521		(8)
United States (shipments)	164, 408	72, 940	165, 806	211, 917	290, 905
	519,000	456, 000	(3)	(3)	(3)

¹ In addition to countries listed, China and Mexico produce fluorspar but data of output are not available.

² Railway shipments.

³ Data not available.

⁴ Exports.

² Railway shipments. ³ January to June, inclusive. ⁶ Estimated.

7 Estimate included in total.

Canada.—The North American Molybdenum Corporation has erected a new head frame at the Madoc property, and the old shaft has been retimbered to its bottom level at 80 feet; plans call for deepening the shaft to 150 feet and establishing a main level at that

horizon. The company has started mining operations, and material is being stock-piled for shipment. China. China. Learning Co. (Sino-Japanese subsidiary of the Japanese semioficial Central China Development Co.) announced in September 1940 that it would open fluorite mines in northern Chekiang Province. The Japan Iron Mining Co. is stated to have been producing 20,000 tons from mines in that region, but the Central China Mining Co. plans call for an additional production of 200,000 tons annually, the entire output to be exported to Japan. Chosen. 12—The Chosen Development Co. is reported to have com-

pleted arrangements for the purchase of the Chosen Fluorspar Co., capitalized at approximately \$42,192, and for the operation of the

mine and sorting mill at Talden, South Chusei Province.

Mexico. 13—Installation of a 500-ton mill is being completed at the

La Azul fluorspar mine, Taxco, Guerrero.

Newfoundland.—Shipments of fluorspar from Newfoundland in 1941 were 12,766 short tons, comprising 4,448 tons of acid grade and 8,313 tons of fluxing grade. Shipments were 16,201 tons in 1940. The decline in shipments was due to labor troubles.

According to Canadian Chemistry and Process Industries: 14

<sup>Northern Miner, May 22, 1941, vol. 27, No. 9, p. 23.
Northern Miner, October 2, 1941, vol. 27, No. 28, p. 5.
Foreign Minerals Quarterly, October 1941, vol. 4, No. 2, p. 13.
Foreign Commerce Weekly, August 16, 1941, vol. 4, No. 7, p. 36.
Engineering and Mining Journal, October 1941, vol. 142, No. 10, p. 94.
Canadian Chemistry and Process Industries, January 1941, vol. 25, No. 1, p. 15.</sup>

No attempt has been made to estimate the reserves [of fluorspar] of the [St. Lawrence] district, but the St. Lawrence Corporation of Newfoundland, Ltd., has obtained its production from one vein along a length of 1,200 feet on the 50-foot level and has, among other veins, one with a surface length of 5,500 feet, with widths varying from 2 to 24 feet. Another company, Newfoundland Fluorspar, Ltd., a subsidiary of Aluminum Co. of Canada, Ltd., has been doing exploration and development work for the past 3 years, having drifted for 1,800 feet on the 150-foot level, with crosscuts every 100 feet showing widths from 10 to 35 feet.

Union of South Africa.—Figures on production of fluorspar in the Union of South Africa in 1941 are available for only the first 6 months of the year and totaled 2,024 short tons; shipments during this period were 2,765 tons, of which 1,291 tons were exported to Japan, 280 tons to India, and 43 tons to Northern Rhodesia, and 1,151 tons were sold to local consumers. Production in the year 1940 was 8,180 short tons; shipments were 6,995 tons, of which 4,621 tons were exported to Japan, 103 tons to India, 19 tons to United Kingdom, 6 tons to Southern Rhodesia, and 3 tons to Belgian Congo, and 2,243 tons were sold to local consumers.

CRYOLITE

Cryolite occurs in commercial quantity and is mined at only one place—Ivigtut, Greenland. Gibbs 15 has described the mine at Ivigtut, the grades of ore produced, methods of processing and purification, and various uses of cryolite.

A considerable proportion of the cryolite used in the United States is made from fluorspar. According to Frary: 16

The fluorspar is treated with sulfuric acid to produce hydrofluoric acid, and this is neutralized with the proper amounts of soda ash and aluminum hydrate to produce the cryolite, which is a double fluoride of sodium and aluminum (Na₂AlF₆). The artificial cryolite is quite satisfactory and, in fact, considerably lower in objectionable impurities than the natural cryolite usually used. There would be no serious difficulty in getting along with the artificial product if the supply of natural cryolite from Greenland is shut off.

The chief uses of cryolite are in the metallurgy of aluminum, in the manufacture of glass and enamels, and in insecticides.

Artificial cryolite is manufactured by the Aluminum Ore Co. at East St. Louis, Ill.; the capacity of the plant was enlarged substantially in 1941. A small quantity of artificial cryolite was made in a pilot plant by the Pennsylvania Salt Manufacturing Co. in 1941, and construction of a commercial plant is under consideration.

Imports.—The following table shows imports of cryolite into the

United States in 1940 and in the first 9 months of 1941.

Cryolite (natural and artificial) imported for consumption in the United States, 1940-41, by countries

Country	19	40	1941 (Jan.–Sept.)		
	Long tons	Value	Long tons	Value	
Canada France Germany	20 20	\$3,300 3,713	4	\$1, 118	
Greenland	25, 818	1, 322, 775	14, 924	823, 850	
	25, 858	1, 329, 788	14, 928	824, 968	

Gibbs, A. E. (technical director, Pennsylvania Salt Manufacturing Co.), Cryolite as a Chemical Raw Material: Chem. Ind., vol. 38, May 1936, pp. 471-476.
 Frary, F. C., Cryolite from Fluorspar: Steel, June 30, 1941, vol. 108, No. 26, p. 4.

FELDSPAR

By ROBERT W. METCALF

SUMMARY OUTLINE

والمناب الموارات المستسمين فسودا ساكتاب	Page		Page
Summary		Nepheline syenite	1422
Solient statistics	1417	Aplite	1423
Domestic production	1418	Technologic developments	1424
Crude feldspar	1418	Other developments	1424
Ground feldspar	1419	Imports	1425 1425
Consumption and uses	1421	Feldspar	
Crude leidspar	1421	World production	1426
Crude feldspar	1421	Cornwall stone	1425

SUMMARY

Paralleling record production and shipments of glass containers, both crude and ground feldspar in 1941 again established new production (sales) highs, despite curtailment of new home construction during the last quarter of the year. Sales of crude spar rose to 338,860 long tons, valued at \$1,519,456; thus tonnage was 17 percent higher and value 19 percent higher than in 1940. Sales of ground spar in 1941 totaled 354,417 short tons, a 24-percent increase over the 285,713 tons reported for 1940. Total values of crude and ground feldspar in 1941 were 19 and 23 percent, respectively, above 1940 levels; these values, however, were 5 percent less for crude spar and only 0.2 percent greater for ground spar than in 1926, the year of highest realization for crude output.

Salient statistics of the feldspar industry in the United States, 1940-41

	1940	1941	Percent of change in 1941
Crude feldspar: Domestic sales: Long tons. Value	290, 763 \$1, 271, 995	338, 860 \$1, 519, 456	+16.5 +19.5 +2.5
Average per long ton Imports: Long tons Value	\$4.37 12,522 \$80,274 \$6.41	\$4.48 18,934 1\$56,731 1\$6.35	
Average per long ton. Ground feldspar sold by merchant mills: Short tons. Value. Average per short ton.	285, 713 \$3, 065, 482 \$10. 73	354, 417 \$3, 782, 603 \$10. 67	+24.0 +23.4 6

¹ Figures cover January to September, inclusive.

Imports of crude feldspar (all from Canada) during the first 9 months of 1941 totaled 8,934 long tons valued at \$56,731 compared with 12,522

tons, \$80,274, during the full year 1940.
California, Colorado, Maine, New Hampshire, North Carolina, South Dakota, and Wyoming each made a substantially increased output of crude feldspar in 1941. Colorado, New Hampshire, and South Dakota produced record tonnages, and the North Carolina output reached 100,000 tons for the first time since 1936. Production of ground spar showed large increases in California, New Jersey-Connecticut, and North Carolina-Tennessee, with record tonnages in both Colorado and South Dakota.

DOMESTIC PRODUCTION

In accordance with the usual practice in the industry, crude feldspar is reported in long tons of 2,240 pounds and ground feldspar in short (net) tons of 2,000 pounds, although some leading producers report sales of crude spar in short tons.

Crude feldspar.—Output of crude feldspar reached a new high in 1941, rising to 338,860 long tons or 17 percent above the former record year 1940. The total value (\$1,519,456) in 1941 was 19 percent above that in 1940 but 5 percent less than in the record year 1926.

Crude feldspar sold or used by producers in the United States, 1937-41

- 1	Value	at mine	or nearest	shipping	noint?

	Long Valu		це		Long	Val	118
Year	tons	Total	Average	Year	tons	Total	Average
1937 1938 1939	268, 532 196, 119 253, 466	\$1, 383, 249 895, 081 1, 112, 857	\$5, 15 4, 56 4, 39	1940 1941	290, 763 338, 860	\$1, 271, £95 1, 519, 456	\$4.37 4.48

Crude feldspar sold or used by producers in the United States, 1939-41, by States

[Value at mine or nearest shipping point]

State	19	39	194	10	1941		
State	Long tons	Value	Long tons	Value	Long tons	Value	
Arizona California Colorado Connecticut Maine Maryland Massachusetts New Hampshire New York North Carolina Pennsylvania South Dakota Texas Virginia Wyoming Undistributed 2	(1) 76, 738 (1) 48, 328	(1) \$12,655 107,536 53,120 74,165 (1) 161,968 (1) 397,631 (1) 133,893 100,299 25,008 46,582 1,112,857	(1) 2,711 34,105 24,404 18,390 (1) 38,589 (1) 79,312 (1) 54,692 21,705 7,833 9,022 290,763	(1) \$18, 254 123, 514 128, 348 84, 796 (1) 149, 031 (1) 426, 784 (1) 157, 323 116, 531 29, 128 38, 286 1, 271, 995	(1) 4, 464 42, 326 13, 693 22, 566 (1) 52, 219 (1) 100, 016 (1) 59, 015 (1) (1) 446 32, 715	(1) \$22, 490 147, 640 92, 397 116, 610 (1) 200, 569 (1) 552, 386 (1), 723 (1) 43, 484 173, 157	

¹ Included under "Undistributed."

Texas reported output of crude spar in 1941 for the first time and Massachusetts for the first time since 1910; otherwise, spar was mined during 1941 in the same States that produced in 1940. Three States made record outputs in 1941—South Dakota (59,015 long tons), New

² Includes States indicated by "(1)."

Hampshire (52,219 tons), and Colorado (42,326 tons). North Carolina's output increased about one-fourth; it represented 30 percent of the national total compared with 27 percent in 1940 and 35 percent in 1937. California's output jumped 65 percent to 4,464 tons. Maine, with a production of 22,566 tons, mined more spar than in any year since 1930. The accompanying map (fig. 1) shows the geographical distribution of feldspar mines and grinding plants in the United States. Average sales realization per long ton for crude feldspar increased

Average sales realization per long ton for crude feldspar increased about 3 percent to \$4.48 in 1941 from \$4.37 in 1940. Average values reported for North Carolina, Maine, Virginia, and Connecticut were somewhat higher than in 1940, whereas those for South Dakota and New Hampshire were virtually the same as in 1940. Colorado showed a small decrease. Averages per ton for selected States in both years (1940 in parentheses) follow: North Carolina, \$5.52 (\$5.38); Maine, \$5.17 (\$4.61); Virginia, \$5.58 (\$5.37); South Dakota, \$2.89 (\$2.88); New Hampshire, \$3.84 (\$3.86); and Colorado, \$3.49 (\$3.62).

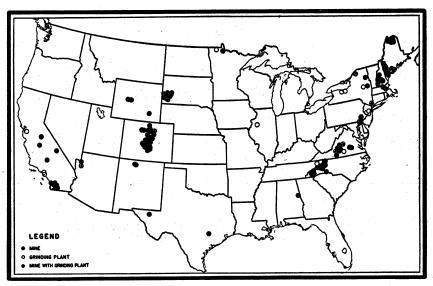


FIGURE 1.—Geographical distribution of feldspar mines and grinding plants in the United States.

Ground feldspar.—Ground feldspar sold by merchant mills in 1941 again established a new high, rising to 354,417 short tons or 24 percent above the former record year 1940. The total value in 1941 (\$3,782,603) exceeded slightly (0.2 percent) that reported for 1926, the previous record year for total realization. Colorado and South Dakota together supplied 34 percent of the total ground spar sold or used during 1941 compared with 35 percent in each of the 3 years immediately preceding and 30 percent in 1937. North Carolina-Tennessee, although showing a 22-percent increase over 1940, furnished about the same percentage (27 percent) of the total sales in 1941 as in 1940, compared with about 29 percent in both 1938 and 1939 and 32 percent in 1937. Only 2 percent of the total sales of ground spar from United States mills in 1941 was of Canadian origin, compared with 3 percent in 1940, 4 percent in both 1938 and 1939, and 6 percent in 1937.

Colorado in 1941 rose to first place in output (tons) of ground feld-spar and produced more than in any year in its history. The output was 61;141 short tons valued at \$387,338 in 1941, or 38 percent more in quantity than in 1940. South Dakota, again with a record tonnage, followed closely with 59,581 tons and \$407,454. Tennessee, New Hampshire, and North Carolina ranked next in order. Output from Tennessee and North Carolina combined (95,391 tons) was the largest since 1929. Sales by mills in other States increased from 1940 to 1941, as follows: Arizona, 23 percent; California, 55 percent; Maine, 1 percent; New Jersey and Connecticut combined, 21 percent; New York, 39 percent; and Virginia, 60 percent. Figure 1 shows the distribution of feldspar grinding plants in the United States.

Ground feldspar sold by merchant mills 1 in the United States, 1937-41

	- -		Domestic			Canadian	1	Total		
Year	Year Active mills S		Val	Value		Value		Short	Value	
	tons	Total	Average	Short	Total	Average	tons	V and		
1937 1938 1939 1940 1941	31 30 31 29 29	263, 387 206, 646 249, 889 277, 612 347, 092	\$3, 187, 185 2, 314, 675 2, 685, 473 2, 912, 470 3, 646, 404	\$12. 10 11. 20 10. 75 10. 49 10. 51	15, 885 7, 868 9, 305 8, 101 7, 325	\$299, 556 151, 577 176, 805 153, 012 136, 199	\$18. 86 19. 26 19. 00 18. 89 18. 59	279, 272 214, 514 259, 194 285, 713 354, 417	\$3, 486, 741 2, 466, 252 2, 862, 278 3, 065, 482 3, 782, 603	

¹ Excludes potters or others who grind for consumption in their own plants.

The average sales realization for ground feldspar in 1941 declined further to \$10.67 per ton from \$10.73 in 1940 and \$11.04 in 1939. Average values for individual States also were generally slightly less in 1941 than in earlier years—ranging from \$6.34 to \$17.92 in 1941, \$6.38 to \$17.96 in 1940, and \$6.42 to \$18.01 in 1939. Average values for specified States in 1941 follow: Colorado, \$6.34; South Dakota, \$6.84; California, \$11.84; North Carolina-Tennessee, \$12.37; Maine,

\$13.72; and New Jersey and Connecticut combined, \$17.92.

Quoted prices on ground feldspar, however, remained unchanged throughout 1941 and into 1942, according to Engineering and Mining Journal Metal and Mineral Markets. As of January 29, 1942, quotations were reported as follows: Potash spar, f. o. b. North Carolina, 200-mesh, white, \$17 per ton in bulk; soda spar, \$19 per ton; potash spar, f. o. b. Maine, 200-mesh, white, \$17 per ton in bulk; North Carolina granular glass spar, 20-mesh, white, f. o. b., \$12.50 per ton in bulk; semigranular, \$11.75 per ton; Virginia feldspar, No. 1, 230-mesh, \$18, 200-mesh, \$17; No. 17 glassmakers' spar, \$11.75, No. 18 glassmakers' spar, \$12.50; and enamelers' spar, \$14 to \$16 (quotations upon Spruce Pine, N. C., or Keene, N. H., basis).

Ground feldspar sold by merchant mills 1 in the United States, 1939-41, by States

,		1939			1940		1941		
State	Active mills	Short tons	Value	Active mills	Short tons	Value	Active mills	Short tons	Value
Arizona California Colorado Connecticut Illinois Maine Minnesota New Hampshire New Jersey North Carolina Tennessee South Dakota Virginia Undistributed 4	1 3 3 1 4 1 2 3 4 3 2 2 2 2	(2) 2, 082 41, 176 (2) 15, 246 (2) (2) 18, 727 (2) 75, 740 49, 497 (2) 56, 726	(2) \$27, 149 264, 153 (2) 193, 352 (2) (2) 337, 359 (2) 920, 556 340, 424 (2) 779, 285	1 3 3 1 1 1 3 2 3 4 4 3 2 2 2	(2) 2, 624 44, 260 (3) (2) 19, 580 (2) 3 21, 158 (2) 78, 077 54, 783 (2) 65, 231	(2) \$32, 847 282, 178 (3) (2) 255, 020 (2) 3 379, 899 (2) 934, 702 374, 024 (2) 806, 812	1 3 3 1 1 3 3 4 4 2 2 2 2 2	(2) 4, 079 61, 141 (3) (2) 19, 713 (2) 3 25, 672 (2) 9 95, 391 59, 581 (2) 88, 840	(2) \$48, 292 387, 338 (3) (2) 270, 434 (2) 3 459, 974 (2) 1, 179, 577 407, 454 (2) 1, 029, 534
	31	259, 194	2, 862, 278	29	285, 713	3, 065, 482	29	354, 417	3, 782, 603

Excludes potters or others who grind for consumption in their own plants.
 Included under "Undistributed."
 Connecticut included with New Jersey.
 Includes items indicated by "(3)."

CONSUMPTION AND USES

Crude feldspar.—Most crude feldspar is sold to merchant mills, which obtain their supply from a number of mines or localities, stockpile and sort it according to grade and source, blend and grind it to required purity and fineness, and sell the ground product. some pottery and enamel manufacturers purchase part of their feldspar supply crude and grind it with their own equipment as needed; at least two sanitary-ware manufacturers mine and grind spar for their own Makers of soap, cleansers, and sweeping compounds also mine crude feldspar or purchase it—chiefly in New England, Virginia, and North Carolina—and, after grinding or other processing, utilize it as an abrasive in their products. Manufacturers of artificial teeth each year use a small tonnage of carefully selected crude material, which is sold at a substantial premium over No. 1 grade commercial feldspar.

Ground feldspar.—Over 95 percent of the ground feldspar sold by merchant mills in the United States is consumed in ceramics in the manufacture of glass, pottery, and enamel. The quantity consumed in 1941 by the glass industry—principal marketing outlet—totaled 182,878 short tons, an increase of 22 percent over 1940. The proportion of total sales used in glass, however, declined slightly to 51.6 percent from 52.4 percent in 1940 and 53.4 percent in 1939; these figures exclude nepheline syenite, "aplite", and other sources of alumina used in glass-making, the competitive importance of which is increasing steadily. Sales (127,140 tons) to potteries in 1941 increased 22 percent over 1940, and those (34,841 tons) to enamel manufacturers rose 32 percent. Ground spar sold for use in soaps and abrasives—a minor sales outlet for material ground by merchant mills-decreased sharply from 1940 but amounted to nearly twice the 1939 figure. The remainder of the ground spar sold by merchant mills was utilized for purposes not specified and for various ceramic uses other than glass. pottery, or enamel.

Ground feldspar sold by merchant mills in the United States, 1939-41, by uses, in short tons

	19	939	19)40		
Use	Short tons	Percent of total	Short	Percent of total	Short	Percent of total
Ceramic: Glass. Pottery. Enamel. Other ceramic uses. Soaps and abrasives. Other uses.	138, 336 87, 209 28, 356 2, 132 770 2, 391	53. 4 33. 7 10. 9 . 8 . 3 . 9	149, 623 104, 586 26, 420 649 2, 682 1, 753	52. 4 36. 6 9. 3 . 2 . 9	182, 878 127, 140 34, 841 563 1, 490 7, 505	51. 6 35. 9 9. 8 . 2 . 4 2. 1
	259, 194	100.0	285, 713	100.0	354, 417	100.0

Shipments of ground spar from merchant mills into the principal consuming States were larger in 1941 than in 1940 for all destinations shown separately. Pennsylvania, receiving 54,534 short tons, topped Ohio by a narrow margin and was the largest consuming State; each of these States contributed about 15 percent of the total. Next in order were Illinois (receiving 13 percent), New Jersey (13 percent), Indiana (11 percent), West Virginia (8 percent), New York (5 percent), and Wisconsin, California, and Tennessee combined (9 percent). Shipments to "Other destinations" in 1941 (comprising 11 percent of the total) included sizable tonnages to Louisiana, Maryland (incomplete returns indicate an approximate consumption of 15,000 tons), Michigan, Minnesota, Mississippi, and Oklahoma, and smaller shipments to some 17 other States, District of Columbia, Hawaii, and Canada.

Ground feldspar shipped from merchant mills in the United States, 1940-41, by destinations, in short tons

Destination	1940	1941	Destination	1940	1941
California Illinois Indiana New Jersey New York Ohio Pennsylvania	7, 897 32, 811 28, 634 42, 381 13, 236 50, 835 47, 431	10, 444 44, 573 39, 620 44, 249 18, 326 52, 270 54, 534	Tennessee West Virginia Wisconsin Other destinations ¹	5, 911 21, 889 6, 967 27, 721 285, 713	9, 697 29, 916 10, 517 40, 271 354, 417

¹ Arkansas, Colorado, District of Columbia, Hawaii, Kentucky, Louisiana, Maryland (estimated at 15,000 tons in 1941), Michigan, Minnesota, Mississippi, Missouri, Oklahoma, Puerto Rico, South Carolina, and other States for which shipments cannot be segregated. Small shipments to Canada, England, and Mexico also included.

NEPHELINE SYENITE

Industrial interest in nepheline syenite for ceramic purposes continued active, with expanding sales for general pottery use. The glass industry, however, remains the chief consumer of this comparatively recently used raw material. Imports of crude nepheline syenite from Canada into the United States in the first 9 months of 1941 amounted to 23,773 short tons, valued at \$74,429; 27,888 tons, valued at \$87,162, were received during the entire year 1940. In addition, 718 short tons of ground nepheline syenite (all from Canada), valued at \$7,448, were imported during the first 9 months of 1941 compared with 6 tons, valued at \$25, in the entire year 1940.

Market quotations on ground nepheline syenite, f. o. b. Rochester, N. Y., as reported in Ceramic Industry, February 1942, were as follows: Glass grade, \$12 per (short) ton, and pottery grade, \$15.50 per ton.

Research was being continued in the Canadian Bureau of Mines laboratories on the feasibility of treating nepheline syenite for the recovery of alumina and alkalies, the former as a substitute for bauxite in the production of aluminum. Field explorations and drilling of nepheline syenite bodies were undertaken in the Bancroft district in an effort to locate deposits of higher grade and greater uniformity.

A detailed description of nepheline syenite, giving its composition and properties, as well as its advantages in making glass, various types of pottery and enamels, was published at the beginning of 1942.1

Baggs 2 has described a number of bodies and glazes containing nepheline syenite. Nogai and Yamabe 3 made studies of special glasses containing large amounts of alumina and magnesia, using nepheline or nepheline syenite as raw materials. Priest 4 discussed the use of nepheline syenite in enamels for cast iron. According to Koenig,5 the greater fluxing power of nepheline syenite tested in hotel chinaware bodies in place of potash feldspar allowed a lower firing temperature, reduced the amount of principal flux, and reduced or eliminated the use of auxiliary flux. A study of electrical porcelain fluxed with nepheline syenite rather than potash feldspar has indicated an earlier vitrification, about the same firing shrinkage at maturing temperatures, an equal or greater transverse strength, dense well-vitrified bodies, and similar thermal expansion.6

APLITE

The mine and nearby mill of Dominion Minerals, Inc., Piney River, Va., producing "aplite" since 1938, were described by Trauffer. "Aplite," a complex silicate rock composed chiefly of the four minerals albite, microcline, sericite, and zoisite, is used as a source of alumina in the manufacture of glass containers and more recently for flat glass and glass fibers. Production has increased steadily each year. equipment added during 1941 included two additional magnetic sepa-An average analysis of "aplite" from Nelson County, Va., supplied by V. V. Kelsey, president, Dominion Minerals, Inc., follows: Silica (SiO2), 57.75 percent; ferric oxide (Fe2O3), 0.80 percent; alumina (Al₂O₃), 24.00 percent; calcia (CaO), 5.60 percent; alkalies (soda, Na₂O, potash, K₂O), 9.15 percent; loss on ignition, 0.70 percent. new mill in the same locality was erected during 1941 by the Carolina Mineral Co., Erwin, Tenn., subsidiary of the Consolidated Feldspar Corporation; operation began during the early months of 1942.

¹ Ceramic Industry, A Complete Directory of Ceramic Materials Used in the Manufacture of Enamel, Glass, and Pottery Products, with Details of Their Properties and Functions: Vol. 38, No. 1, January 1942, pp. 36-116 (p. 88).

² Baggs, Arthur E., Experiments with Nepheline Syenite Bodies: Bull. Am. Ceram. Soc., vol. 21, No. 4, April 1942, p. 7 (abs.).

³ Nogai, S., and Yamabe, I., Special Glasses Using Nepheline and Talc as Raw Materials: Jour. Japanese Ceram. Assoc., vol. 48, No. 572, 1940, pp. 365-370; Ceram. Abs. (Am. Ceram. Soc.), vol. 20, No. 8, August 1941, p. 192.

Ceram. Assoc., vol. 48, No. 572, 1940, pp. 365-370; Ceram. Abs. (Am. Ceram. Soc.), vol. 20, No. 3, August 1941, p. 192.

4 Priest, Harry C., Use of Nepheline Syenite in Enamels for Cast Iron: Jour. Canadian Ceram. Soc., vol. 9, 1940, pp. 53-55; Ceram. Abs. (Am. Ceram. Soc.), vol. 20, No. 7, July 1941, p. 166.

5 Koenig, C. G., Nepheline Syenite in Hotel Chinaware Bodies: Jour. Am. Ceram. Soc., vol. 25, No. 3, February 1, 1942, pp. 90-92.

5 Semple, W. A., Substitution of Nepheline Syenite for Potash Feldspar in Electrical Porcelain: Jour. Canadian Ceram. Soc., vol. 10, 1941, pp. 51-62; Ceram. Abs. (Am. Ceram. Soc.), vol. 21, No. 4, April 1, 1042, p. 51-62; Ceram. Abs. (Am. Ceram. Soc.), vol. 21, No. 4, April 1, 1042, p. 51-62; Ceram. Abs. (Am. Ceram. Soc.)

^{1942,} p. 85.

7 Trauffer, W. E., Piney River Plant Processes Virginia Aplite: Mineral Used in Glassmaking: Pit and Quarry, vol. 34, No. 3, September 1941, pp. 44-45.

TECHNOLOGIC DEVELOPMENTS

A study of engobe composition with varying contents of kaolin, feldspar, and flint 8 indicated that an increase in the proportion of feldspar increases vitrification and crazing of the glaze whereas low feldspar and flint in the engobes cause dullness in the glaze. Experiments with Italian porcelain bodies have shown an increase in refractoriness and viscosity with use of potash feldspar. Substitution of soda feldspar results in a less-transparent porcelain and higher thermal expansion 9 Introduction of too much alumina into enamels as an opacifier in the form of feldspar is not recommended unless a mat enamel is desired owing to the sudden change from glossy to mat when alumina is used.10 Mixtures of microcline and plagioclase in porcelain ware were studied.11 According to Norwegian sources, it has been found that labradorite may be used in making aluminum.12

The translucency of whiteware bodies containing feldspar or lepidolite, and those containing mixtures of feldspar and lepidolite, was measured, using a photronic cell and spectrophotometer. 13 Bodies composed of mixtures of feldspar and lepidolite were found to be translucent over a greater range of temperature than those containing feldspar or lepidolite alone, although feldspar bodies of equivalent absorption were more translucent than those using lepidolite alone. The spectrophotometer gives a more complete record of the translucency of porcelain, as it may be used to measure the transmittance of ultraviolet, visible, and infrared light. The use of infrared radiation for dehydration of silicic acid derived from feldspar proved definitely superior to present methods 14 and reduced the analytical time materially. Application of the proposed method to other silicates is suggested.

OTHER DEVELOPMENTS

The grinding mill of the Virginia Feldspar Co., Bedford, Va., now taken over by the Carolina Mineral Co., Erwin, Tenn., subsidiary of the Consolidated Feldspar Corporation, was described in detail during the year. Granular glass spar is shipped. 15 The Seaboard Feldspar Co., whose plant at Brookneal, Va., was destroyed by fire, built a new mill at Bedford,16 in the heart of the principal Virginia feldspar district; the name of the company also was changed to that of the parent firm—the Clinchfield Sand & Feldspar Co.

Possibilities of commercial deposits of feldspar, mica, beryl, and spodumene in the known pegmatite occurrences in Massachusetts were discussed by Billings.¹⁷

^{**}Phillipson, E. G., Use of Canadian Clays in Engobes: Jour. Canadian Ceram. Soc., vol. 9, 1940, pp. 50-52; Ceram. Abs. (Am. Ceram. Soc.), vol. 20, No. 7, July 1941, p. 172.

**Fical, C. (Possibility of Substituting Sodium Feldspar for Potassium Feldspar in Porcelain Pastes): Ceramica, vol. 3, 1941, pp. 141-155; Chem. Abs., vol. 35, No. 18, September 20, 1941, p. 6407; Ceram. Abs. (Am. Ceram. Soc.), vol. 20, No. 10, October 1941, p. 240.

**Vielhaber, L. (Alumina in Enamels): Emailwaren-Ind., vol. 17, Nos. 27-28, 1940, pp. 73-74; Ceram. Abs. (Am. Ceram. Soc.), vol. 21, No. 2, February 1942, p. 35.

**Il Popova, V. T. (Behavior of Mixes of Microcline and Plagioclase Feldspars in Porcelain Studies): Keram. Sbornik, 1940, No. 6, pp. 28-40; Ceram. Abs. (Am. Ceram. Soc.), vol. 20, No. 9, September 1941, p. 218.

**BHamor, William A., Industrial Research in Foreign Countries During 1941: Chem. and Eng. News (Am. Chem. Soc.), vol. 20, No. 2, January 25, 1942, pp. 77-109 (p. 96).

**Arrance, F. C., Use of the Photronic Cell and Spectrophotometer for Measuring Translucency of Whiteware: Jour. Am. Ceram. Soc., vol. 25, No. 4, February 15, 1942, pp. 116-122, ills. and diags.

**Koenig, E. W., Infrared as an Analytical Tool; Dehydration of Silicic A edd Derived from Feldspars: Bull. Am. Ceram. Soc., vol. 20, No. 12, December 1941, pp. 447-450.

**Bock Products, Process Feldspar for Glass: Vol. 44, No. 9, September 1941, pp. 52, 57.

**Rock Products, Vol. 44, No. 11, November 1941, p. 83.

**Billings, Marland P., Pegmatites of Massachusetts: Massachusetts Dept. of Public Works and Geol. Survey Coop. Geol. Project Bull. 5, 1941, 22 pp.

A 3-percent increase in freight rates for certain minerals (including feldspar) was approved, to be effective May 15 and until 6 months after the end of the war.18

A brief published description of the properties, occurrences, and market classifications of feldspar 19 included lists of producers of crude

and ground spar and a selected list of buyers.

Feldspar mining in Canada during 1941 showed little change. Production continued to come chiefly from the two large-scale operators in the Buckingham district, Quebec, and in Bathurst Township, The only other consern making important shipments operated near Madawaska in Nipissing district, Ontario, and produced

both potash and soda spar.

Large quantities of feldspar are available in the Salem district in southern India, according to a recent survey, to but recovery would be difficult. Feldspar is now being mined in Mysore State for the ceramic industry. If the feldspar in the Salem district can be extracted economically, the combined output of the two regions may be adequate for any present or future demand in the neighboring Indian States.

IMPORTS 21

Feldspar.—Imports of crude feldspar into the United States from January through September 1941 totaled 8,934 long tons valued at \$56,731 compared with 12,522 tons valued at \$80,274 in the full year All imports originated in Canada. No receipts of ground feldspar in 1941 were reported.

Feldspar imported for consu	ption in the United States, 1937-41
-----------------------------	-------------------------------------

	Cr	rude	Ground			Cr	ude	Ground	
Year	Long tons	Value	Short tons	Value	Year	Long tons	Value	Short tons	Value
1937 1938 1939	12, 956 7, 651 7, 460	\$91, 885 56, 126 52, 141	2	\$54	1940 1941 (Jan Sept.)	12, 522 8, 934	\$80, 274 56, 731		

Cornwall stone.—Imports for consumption of both unmanufactured and ground Cornwall stone from the United Kingdom, sole source of supply, continued at an active rate during the first 9 months of 1941. Unmanufactured Cornwall stone received during this period totaled 1,931 long tons valued at \$20,949 compared with 2,261 tons valued at \$20,812 during the full year 1940. Imports of ground Cornwall stone during the first 9 months of 1941 amounted to 182 long tons valued at \$2,658 compared with 228 tons valued at \$2,758 in the entire The average value (foreign market value) per ton for unmanufactured Cornwall stone increased from an average of \$9.20 in 1940 to \$10.85 in the 1941 period and for ground Cornwall stone from \$12.10 to \$14.60.

Oil, Paint and Drug Reporter, Freight Rates Increase Approved: Vol. 41, No. 10, March 9, 1942, p. 4.
 Metcalf, Robert W., Marketing Feldspar: Bureau of Mines Inf. Circ. 7184, 1941, 13 pp.
 Jordan, Curtis C. (American consul, Madras), March 12, 1941: Bureau of Mines Mineral Trade Notes, vol. 12, No. 6, June 20, 1941, p. 23.
 Figures on imports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Computers.

Commerce.

Nominal quotations on Cornwall stone in the spot market at New York during 1941 and continuing into the early months of 1942 were reported in Ceramic Industry at \$26 to \$30 per long ton.

Cornwall stone imported for consumption in the United States, 1937-41

	Unman	ufactured	Ground		Ground		Unmanufactured		Ground	
Year	Long tons	Value	Long	Value	Year	Long tons	Value	Long tons	Value	
1937 1938 1939	1, 899 513 1, 684	\$16, 864 4, 976 17, 233	323 233 348	\$4, 267 1, 797 3, 965	1940 1941 (Jan Sept.)	2, 261 1, 931	\$20, 812 20, 949	228 182	\$2, 758 2, 658	

WORLD PRODUCTION

Feldspar sold or used in the United States represents the greater part of the feldspar produced or marketed in the world, according to In addition, a large part—often over half—of the available data. output (shipments) of crude spar from Canadian mines is ground in the United States. Total Canadian shipments in 1941 reached 25,740 metric tons, the highest since 1929 and 32 percent greater than in 1940. Other data available for 1941 indicate a 17-percent rise in United States production to a record output and a jump in Argentine shipments from 1,220 metric tons in 1940 to 2,981 tons in 1941, or 144 percent.

Feldspar produced in Sweden, Norway, and Finland in normal times is exported largely to the United Kingdom, Germany, and other European countries. Production of feldspar, though generally small, is reported from other widely scattered regions, including Brazil, British India, and Australia.

World production of feldspar from 1937 to 1941, insofar as figures are available, is shown in the following table.

World production of feldspar, 1937-41, by countries, in metric tons 1 [Compiled by B. B. Waldbauer]

Country 1	1937	1938	1939	1940	1941
Argentina (shipments) Australia: New South Wales ² South Australia ² Western Australia (exports) Brazil Canada (shipments) Egypt. Finland (exports) France Germany: Bavaria India, British Italy Norway (exports) Rumania Sweden United States (sold or used)	669 3, 031 8, 400 19, 365 158 3, 232 8, 900 9, 986 495	620 178 502 2, 919 (2) 12, 753 199 5, 046 (3) 10, 419 702 13, 391 21, 761 1, 690 45, 111 199, 267	1, 051 (3) 615 3,853 (4) 11, 306 74 5, 596 (3) (5) 501 (21, 282 (40, 792 257, 534	1, 220 (3) 1, 072 3, 561 (9) 19, 464 138 (3) (3) (3) (4) (9) (2) (9) (295, 430	2, 981 (3) (3) (3) (3) (25, 740 (3) (3) (3) (3) (3) (3) (4) (29) (344, 299

¹ In addition to countries listed, feldspar is produced in China (Manchuria) and Czechoslovakia. Official figures of Czechoslovak output are not available, but it is estimated that the annual production is approximately 30,000 metric tons (Stat. Comm. Czechoslovak Ceram. Soc.).

² Includes some china stone.

3 Data not available.

ASBESTOS

By OLIVER BOWLES AND A. C. PETRON

SUMMARY OUTLINE

	Page		Page
Summary	1427	New developments	1433
Salient statistics	1428	Foreign trade	1433
Domestic industry	1429	World production	1435
Review by States	1429	Canada	1436
Location of deposits		Africa	1436
Trends in consumption		Cyprus	1438
Market conditions	1432		1438
Drings	1432		

Sales of domestic asbestos, which reached 24,391 short tons in 1941, were the highest in the history of the industry, exceeding those of 1940 by 22 percent. Their value was 8 percent greater than in 1940. Most of the United States production is of the shorter grades of chrysotile, but long-fiber chrysotile obtained in Arizona is attaining increasing importance. During recent years domestic production has supplied only 4 to 8 percent of national requirements, the rest being imported. The ratio of imports to production was approximately the same in 1941 as in recent years.

As for many years, Canada supplied most of the United States imports. Canadian chrysotile is of superior quality and is a satisfactory raw material for most asbestos products. African chrysotile, of which considerable quantities have been imported during recent years, is interchangeable with Canadian asbestos for many uses, and continuation of such imports is highly desirable to supplement the supply of Canadian long fiber, which may be inadequate to meet

growing military requirements.

Chrysotile obtained in Rhodesia and, to some extent, in other African localities is very low in iron and therefore is preferred for the manufacture of electrical tapes and other equipment designed for high electrical resistance. Canadian chrysotile contains considerable magnetic iron oxide (magnetite, Fe3O4); in consequence, it is less suitable for the more exacting uses than the African fiber. Furthermore, certain varieties of asbestos, such as amosite and crocidolite (blue), which are obtainable in quantity only in Africa, are adapted to specialized uses for which Canadian nbers are less suitable. For instance, amosite can be made into insulation mattresses of exceptionally low weight per cubic foot and hence is well-qualified for use on naval vessels; and blue asbestos is so resistant to chemical action and so strong that it is preferred for acid filters, and as a constituent of asbestos-cement pressure pipe. As these uses are related intimately to the military program, problems of African supplies and possible utilization of asbestos from alternate sources are subjects of constant and careful study. 1427

The Bureau of Mines has made a detailed investigation of essential requirements for the various grades of asbestos fiber and has explored the possibilities of using substitutes for the more critical grades. The problem of substitution involves replacement wherever possible of critical grades with fibers that are abundant and easily accessible, as well as the use of synthetic fibers in place of asbestos. It has been established that the demand for low-iron chrysotile can be met to some extent by the use of fiber-glass products.

The Bureau of Mines and the Geological Survey made a brief field study of the Arizona asbestos area to determine the facilities afforded by that territory for producing asbestos having qualities that would permit its substitution for special grades of low-iron African chrysotile. A confidential report for use of the War Production Board, covering the major problems of asbestos in its relation to the military program, was prepared by the Bureau of Mines under the auspices

of the National Research Council.

To supply defense agencies with current data on the asbestos situation, the Bureau of Mines has, since May 1941, conducted a monthly canvass covering consumption and stocks of all important asbestos-products manufacturers. Although consumption increased progressively throughout the year owing to accelerated demands for military equipment, stocks have increased even more. Unless some unforeseeu circumstance should arise to paralyze shipping from Africa, no serious difficulty in providing necessary supplies of essential grades is anticipated.

The accompanying table of salient statistics compares 1941 data with those of 1940. Apparent consumption of raw asbestos (sales plus imports minus exports) reached the highest point in 1941 in the

history of the industry.

Salient statistics of the asbestos industry in the United States, 1940-41

	19	940	1941		
	Short tons	Value	Short tons	Value	
Domestic asbestos— Produced: Chrysotile Amphibole Total produced	17, 481 1, 693 19, 174	(i) (i)	20, 144 2, 252 22, 396	(i) (i)	
Sold or used by producers: Chrysotile	18, 672 1, 388	\$664, 520 9, 988	22, 439 1, 952	\$707, 589 18, 164	
Total sold or used by producers Imports (unmanufactured) Exports (unmanufactured) Apparent consumption: Exports of asbestos products	20,060 246,613 4,474 262,199 (1)	674, 508 10, 034, 433 449, 105 10, 259, 836 3, 473, 248	24, 391 419, 446 4, 846 438, 991 (1)	725, 753 17, 913, 265 325, 825 18, 313, 193 4, 832, 948	

¹ Figures not available.

² Quantity sold or used by producers, plus imports, minus exports.

The following table shows the domestic production of asbestos during recent years.

Asbestos sold or used by producers in the United States, 1937-41, by varieties

Year	Chrysotile		Amph	ibole	Total	
Teal	Short tons	Value	Short tons	Value	Short tons	Value
1937	11, 547 (1) 15, 043 18, 672 22, 439	\$332, 747 (1) 503, 097 664, 520 707, 589	532 (1) 416 1, 388 1, 952	\$11, 897 (1) 9, 691 9, 988 18, 164	12, 079 10, 440 15, 459 20, 060 24, 391	\$344, 644 247, 264 512, 788 674, 508 725, 753

¹Bureau of Mines not at liberty to publish figures separately for chrysotile and amphibole.

DOMESTIC INDUSTRY REVIEW BY STATES

Arizona.—According to reports received by the Bureau of Mines, the production of asbestos in Arizona in 1941 (all from Gila County) was more than twice as great as that in 1940. Sales, also much larger than in 1940, were made by the following companies: Arizona Chrysotile Asbestos Co., Bear Canyon Asbestos Co., Arthur Enders, Roger Q. Kyle, Neighbors & Spencer, Ltd., and Guy Phillips, all of Globe, Ariz.; Fibre & Metal Products, Inc. (formerly Emsco Asbestos Co.), Downey, Calif.; Gladding, McBean Co., 2901 Los Feliz Blvd., Los Angeles, Calif. (formerly owned by Arizona Asbestos Co.); and Johns-Manville Products Corporation, 22 E. 40th St., New York, N. Y. In addition to the firms mentioned, a few small producers made sales to the larger operators.

The Johns-Manville Products Corporation is constructing a new mill at Chrysotile, Ariz., designed in accordance with the results of tests made for several years at Manville, N. J., to determine the best type of equipment for milling Arizona rock and grading the fiber The output of this mill will add substantially to the supply of Arizona chrysotile, which, because of its low iron content, is especially valuable for certain military manufacturing needs, particularly

electrical insulation.

California.—R. B. McIllroy, Lone Pine, produced a small quantity of amphibole asbestos in Inyo County. Kohler & Chase, 26 O'Farrell St., San Francisco, is developing a short-fiber chrysotile asbestos deposit near Monticello, Napa County, about 18 miles north of Napa. Quarry equipment was procured, and a mill was under construction A small quantity of fiber has already been produced and in 1941. sold.

Georgia.—Amphibole asbestos was produced by Philip S. Hoyt near Clayton and by the Powhatan Mining Co. (Woodlawn, Baltimore, Md.) near Dillard, both in Rabun County.

Maryland.—The Todd mine near Pylesville, Harford County, which has for many years produced tremolite asbestos well-suited for making

chemical filters, is virtually exhausted.

North Carolina.—Production and sales of amphibole asbestos in North Carolina were over three times as large in 1941 as in 1940. Philip S. Hoyt (Franklin), W. T. Hippey (Micaville), and the Powhatan Mining Co. (Woodlawn, Baltimore, Md.) operated mines in the Micaville-Burnsville area, Yancey County.

Oregon.—Mrs. Flora Winsenberg, Azalea, produced a small tonnage

of amphibole asbestos near Rogue River, Jackson County.

Vermont.—Vermont Asbestos Mines Division of the Kuberoid Co., 500 Fifth Avenue, New York City, is the largest producer of asbestos in the United States. An extensive deposit of slip-fiber chrysotile near Eden, Lamoille County, is excavated by open-pit methods, and the rock is milled in a large, well-equipped establishment. fiber, special brake-lining fibers, and shorter grades were produced in larger quantities in 1941 than in 1940.

LOCATION OF DEPOSITS

The accompanying map (fig. 1) shows the location of chrysotile and amphibole asbestos mines and prospects in the United States. prospects recorded are confined to those that appear to have commercial importance. More or less promising specimens have been

found in many other localities.

The eastern deposits follow closely the highly metamorphosed areas of the Appalachian Mountains. Alteration of ultrabasic rocks (chiefly dunites) resulted—in Vermont and farther north in Quebec, Canada—in the development of chrysotile asbestos, whereas in the southern belt, extending from Pennsylvania to Georgia, the asbestos formed was of the amphibole type, associated with talc, soapstone, greenstone, and other secondary rocks and minerals. Chrysotile is rarely found in the Southeastern States.

The Arizona chrysotile differs entirely in origin from that found in Vermont and Canada. It occurs in bedded veins associated with siliceous dolomites metamorphosed by diabase intrusions. Other western deposits occur generally in highly altered zones of the Rocky

Mountain and Coast Ranges.

TRENDS IN CONSUMPTION

The following table shows trends in the asbestos-products industries in the United States during recent years.

Raw asbestos consumed in the United States and asbestos products manufactured in and exported from the United States, 1936-41

	Raw as- bestos—	Asbestos products—			Raw as- bestos—	Asbestos products—		
Year	apparent consump- tion (short tons)	Manufac- tured 1	Exported 2	Year	Year	apparent consump- tion (short tons)	Manufac- tured ¹	Exported 2
1936 1937 1938	250, 922 316, 263 187, 150	\$96, 347, 570	\$2, 479, 273 3, 047, 078 2, 533, 916	1939 1940 1941	255, 547 262, 199 438, 991	\$97, 944, 735 (1) (3)	\$3, 354, 920 3, 473, 248 4, 832, 948	

Figures of Bureau of the Census (collected biennially for odd years) include value of certain gaskets, packing, and similar products in which little asbestos was employed.
 Compiled from records of the Department of Commerce.
 Data not yet available.

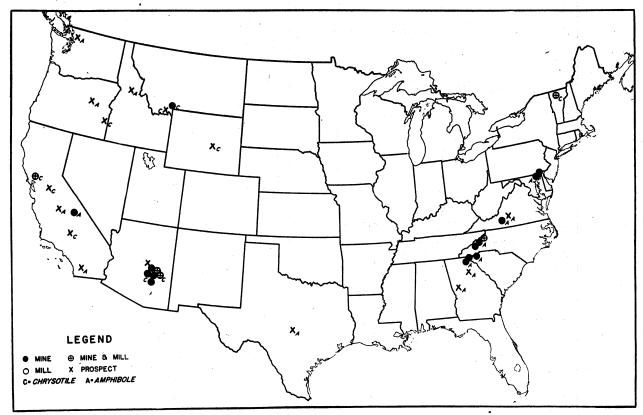


FIGURE 1.—Location of asbestos mines, mills, and prospects in the United States.

The consumption of asbestos is governed to quite an extent by the number of automobiles manufactured because all kinds of automotive transport equipment require brake bands and clutch facings. Activity in building construction also has a decided influence on asbestos sales because asbestos heat-insulation and fireproofing materials, as well as asbestos-cement products (such as shingles, siding, and wallboard), are used extensively. Consumption of asbestos bears a definite relation also to the manufacture of steam engines and similar machinery, because it is used extensively for packings and gaskets, and also for heat insulation in the form of boiler lagging and pipe covering. Figure 2 shows the relationship of asbestos consumption to building construction and the output of automobiles for a period of years.

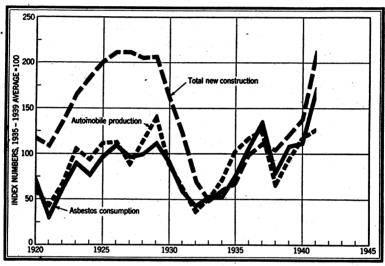


FIGURE 2.—Consumption of asbestos compared with automobile production and construction activity in the United States, 1920-41. Units are reduced to percentages of the 1935-39 average. Statistics on automobiles are from the Bureau of the Census and value of construction from the Bureau of Foreign and Domestic Commerce.

MARKET CONDITIONS

The demand for asbestos attained unparalleled proportions during 1941. The program of national defense created increasing markets for building materials, heat-insulation products, packings, gaskets, and numerous other commodities in which asbestos is an important constituent. The interruption in automobile manufacture was not felt until after the close of the year.

PRICES

Prices for asbestos are quoted upon a short-ton basis from Metal and Mineral Markets, published by the McGraw-Hill Publishing Co.,Inc.,New York City. Canadian prices are f. o. b. Quebec mines, tax and bags included; Rhodesian, South African, and Russian prices, c. i. f. New York; and Vermont prices, f. o. b. mines, Vermont.

After small advances in shingle, paper, and cement stock during the early months, prices of Canadian fibers were constant from June until the end of 1941, as follows: Crude No. 1, \$700-\$750; Crude No. 2 and sundry crudes, \$150-\$350; spinning fibers, magnesia, and compressed sheet fibers, \$110-\$200; shingle stock, \$57-\$85; paper stock, \$40-\$49; cement stock, \$22-\$30; floats, \$19-\$21; and shorts, \$13-\$17.50. Canadian prices are in United States dollars.

During 1941 African and Russian fibers were quoted only in February, as follows: Rhodesian: Crude No. 1, \$300; Crude No. 2, \$260. South African: Amosite: Grade B 1 (white), \$150; Grade B 3 (dark), \$120; Transvaal Blue: Grade B (long fiber), \$400; Grade

S (short fiber), \$150.

Russian quotations were unchanged from 1940 but were purely nominal because no imports of Russian fiber were reported for 1941.

Prices of Vermont shingle and paper stocks were advanced from the 1940 levels in June and other grades in July. Quotations from July to the end of the year 1941 were as follows: Shingle stock, \$57-\$60; paper stock, \$40-\$48; waste, \$30; shorts, \$13-\$26; and floats, \$18.

NEW DEVELOPMENTS

An asbestos deposit that may attain importance is situated 6 kilometers west of Tinaquillo, State of Cojedes, Venezuela. Compania Anonima Minas de Amianto de Tinaquillo, with office in Caracas, has prospected a considerable area by core drilling, and a mill was under construction late in 1941. The fiber is of the chrysotile variety, similar to that in Quebec, Canada. An output of about 6,000 tons of asbestos a year, chiefly of shingle-stock grade, is forecast.

Asbestos-products plants operate in Argentina, Brazil, and Chile. Brazil has deposits of both chrysotile and amphibole. Small exports

are reported from Bolivia.

A unique block-caving method has been adopted in several of the large Quebec asbestos mines, with satisfactory results. It is especially advantageous at this time when the industry is operating virtually at capacity to supply British and United States war needs, because underground methods permit almost uninterrupted winter operation whereas activity in open-pit mines is seriously handicapped by the severity of winter weather.

FOREIGN TRADE 1

The following table shows imports of unmanufactured asbestos into the United States in 1940 and 1941. Total imports in 1941 were considerably larger, both in tonuage and value, than in any previous year. Imports from Africa were at a considerably greater rate than in 1940, a circumstance regarded as highly favorable because much of the African fiber consists of critical grades unobtainable elsewhere.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Asbestos (unmanufactured) imported for consumption in the United States, 1940-41, by countries and classes

		(including e fiber)	Mi	ll fibers	Shor	rt fibers 1	1	otal
Country	Short tons	Value	Short	Value	Short	Value	Short	Value
1940 Africa: Union of South Africa. "Other British". Australia. Bolivia. Canada. India, British Italy. Malta, Gozo, Cyprus. Netherlands Indies. United Kingdom Venezuela.	17 19 18	\$835, 649 1, 005, 844 7, 569 118 400, 501 647 13, 031 1, 738 3, 239		\$4,960,416	170 3,266 	\$2,721,871 3,453 80,057	1 187 3,266 19 18 23	80, 057 1, 738 3, 239 300
Africa: Union of South Africa. "Other British". Australia. Bolivia. Brazil Canada. India, British	21, 447 8, 234 62 22 3, 362 35	2, 268, 336 2, 075, 360 1, 273, 203 12, 769 2, 504 889, 291 12, 646	163, 631	9, 401, 893	4	142	35	2, 075, 360 1, 273, 203 12, 769 2, 504 142 14, 536, 131 12, 646
United Kingdom	33, 163	510 4, 266, 283	163, 631	9, 401, 893	222, 652	4, 245, 089	419, 446	510 17, 913, 265

¹ Asbestos, n. e. s., containing not over 15 percent foreign matter.

The following table shows imports and exports of unmanufactured asbestos for the 5-year period 1937-41.

Asbestos (unmanufactured) imported for consumption in and exported from the United States, 1937-41

Year	Imp	orts	Exports		
I ear	Short tons	Value	Short tons	Value	
1937 1938 1939 1940 1941	307, 188 179, 490 242, 561 246, 613 419, 446	\$10, 470, 208 6, 160, 602 9, 094, 538 10, 034, 433 17, 913, 265	3, 004 2, 780 2, 473 4, 474 4, 846	\$253, 734 288, 617 218, 830 449, 105 325, 825	

The following table shows exports of asbestos products in 1940 and 1941.

Manufactured asbestos products exported from the United States, 1940-41, by kinds

n de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	1940			1941		
Product	Quantity	Value	Quantity	Value		
Brake lining: Molded and semimolded	(1)	\$635, 425	(1)	\$1, 150, 386		
	638, 037	139, 146	1, 277, 562	285, 192		
	411, 958	147, 169	-1, 006, 371	364, 420		
	1, 231	196, 232	1, 540	212, 157		
	1, 667	171, 558	1, 187	136, 501		
	1, 124	1, 028, 229	1, 556	1, 356, 793		
	70, 505	413, 735	82, 149	334, 246		
Magnesia and manufactures short tons do	2, 956	515, 769	4, 431	679, 466		
	1, 373	225, 985	2, 149	313, 787		

¹ Quantity not recorded.

WORLD PRODUCTION

The following table shows world production of asbestos, by countries, from 1937 to 1941, insofar as figures are available.

World production of asbestos, 1937-41, by countries, in metric tons 1 [Compiled by B. B. Waldbauer]

Country 1	1937	1938	1939	1940	1941
Argentina			110	150	(2)
Australia: South Australia	123	49	46	119	(1)
Tasmania	123	4	40	119	(3) (3) (2)
Western Australia		123	279	364	24
Bolivia		21	3 2	8 71	3 21
Brazil		120	45	500	*1
anada 4	371, 967	262, 894	330, 642	313, 504	(2)
hina	(1)	(2)	(2)	100	(2)
Chosen	70	(2)		(2)	(2)
yprus (exports)	11,892	5, 668	9, 970	9,652	(2)
inland i	7, 260	(2)	(2)	(3)	(2)
rance	250	(2)	(2) (2) (2)	(2)	(2)
łreece	2	85	(2)	(2)	(2) (2)
ndia, British	102	90	266	(2) (3) (4)	(2)
ndochina			(2)	8	(2)
talyapan (approximate)	6, 393 1, 000	6, 860 1, 000	1,000	1,000	X
Kenya Colony	1,000	1,000	(1),000	(2)	2
Vew Zealand	(1)	(3)	- K	3	(2) (3) (3)
outhern Rhodesia	51, 722	53, 352	52,900	622, 127	(3)
waziland			7, 233	18, 873	(2)
urkey		668	88		(2)
ganda		53	(2)	(2)	(2)
nion of South Africa	25, 975	21, 025	20,003	24,849	7 12, 35
S. S. R.	125,000	86, 000	(2)	(2)	(2) ·
nited States (sold or used by producers)	10, 958	9, 471	14,024	18, 198	22, 12
enezuela	(2)	(2)	(2)	20	(2)

In addition to countries listed, asbestos is produced in Bulgaria, Czechoslovakia, and Madagascar.
 Data not available.
 Exports.
 Exclusive of sand, gravel, and stone (waste rock only), production of which is reported as follows: 1937, 3,611 tons; 1938, 2,975 tons; 1939, 3,535 tons; 1940 and 1941, data not available.
 Includes asbestos flour.
 January to May, inclusive.
 January to June, inclusive.

CANADA

Owing to war conditions, no figures for production of asbestos in Canada during 1941 have been released. Production has probably exceeded by a wide margin all previous records because the greatly expanded asbestos-products industries of the United States have depended chiefly on Canada for supplies of raw materials, and England likewise has drawn large supplies from the Canadian mines. Both open pits and underground mines are worked. During much of the year, the mines were operated 24 hours a day on three shifts, and some of them were on a 7-day-week schedule. The asbestos mills were running virtually at maximum capacity. All grades of asbestos were in demand because sales of all types of asbestos products were heavy Sometimes Canadian producers are overstocked with certain grades that move slowly in the market, but during 1941 the demand was distributed so uniformly over the whole range of products that stocks were low in all categories.

Although no figures are available for 1941, the following table is

repeated to show conditions as of 1939 and 1940.

Sales of asbestos in Canada, 1939-40, by grades

		1939			1940			
Grade	-	Value			Value			
	Short tons	Total	Average per ton	Short tons	Total	Average per ton		
Crudes	3, 121 193, 992 167, 359	\$938, 718 12, 049, 539 2, 870, 955	\$300. 68 62. 12 17. 15	2, 076 181, 890 161, 615	(1) (1)	(1)		
	364, 472	15, 859, 212	43. 51	345, 581	\$15, 620, 000	\$45.		

¹ Data not available.

AFRICA

Southern Rhodesia.—The largest asbestos mine in Rhodesia is the Shabani, which has been a prolific producer for many years. Its output of chrysotile is supplemented by that of the Birthday, Nil Desperandum, Pangani, and Croft mines. No figures are available for production in 1941, but it was probably larger than in 1940. The following table shows production during recent years.

Asbestos produced in Southern Rhodesia, 1937-41

Year	Short tons	Value	Year	Short tons	Value
1937 1938 1939	57, 014 58, 811 58, 313	£840, 025 1, 020, 921 1, 088, 782	1940 ¹	24, 391 (²)	£474, 617

¹ January to May, inclusive. ² Data not available.

Union of South Africa.—The Union of South Africa is unique among asbestos producers because it furnishes four varieties of fiberchrysotile, amosite, crocidolite (blue), and anthophyllite. The last variety is used locally, but the other types have a world-wide market.

Amosite and blue are in such active demand for military needs that the schedule of production of these varieties was expanded during the last 6 months of 1941 and will be enlarged further during 1942.

The following table shows production during recent years, but statistics for 1941 are available for the first 6 months only. Figures for the corresponding period in 1940 are: Transvaal 10,371 and Cape Province 3,095 short tons; total value £234,232.

Asbestos produced in the Union of South Africa, 1937-41, by sources

		Short	tons		
Year	Transvaal	Cape Province	Natal	Total	Total value ¹
1937 1938 1939 1940 1941 4	23, 921 16, 505 15, 827 21, 011 10, 444	4,712 6,484 6,144 6,381 3,172	(2) 2 187 79 (3) (3)	2 28, 633 2 23, 176 22, 050 3 27, 392 3 13, 616	£431, 21: 416, 40: 517, 53: 492, 12: 213, 43:

Value of local sales plus value of exports.
 Small production in Natal in December 1936 and in 1937 included in 1938 figures.
 Data for Natal not available.
 January to June, inclusive.

The following table shows the tonnage of each variety produced from 1937 to 1940 and in the first 6 months of 1941. Figures for the corresponding 6 months of 1940 are as follows: Amosite (Transvaal) 8,368 short tons; chrysotile (Transvaal) 209; blue (Transvaal) 1,730; blue (Cape) 3.095; and anthophyllite (Transvaal) 64.

Asbestos produced in the Union of South Africa, 1937-41, by varieties and sources, in short tons

Variety and source	1937 1	1938 1	1939 3	1940 2	1941 3
Amosite (Transvaal) Chrysotile (Transvaal) Blue (Transvaal) Blue (Cape) Anthophyllite (Transvaal)	6, 531 16, 855 535 4, 712	8, 793 4 5, 573 2, 326 6, 484	11, 299 4 612 3, 983 6, 144 12	17, 767 646 2, 520 6, 381 78	9, 210 696 503 3, 172 33
	28, 633	23, 176	22, 050	27, 392	13, 616

Data from Union of South Africa, Department of Mines, Monthly Reports.
 Data from Union of South Africa, Department of Mines, Quarterly Reports.
 January to June, inclusive.
 Includes 187 tons in 1938 and 79 tons in 1939 produced in Natal.

Swaziland.—The Havelock mine in Swaziland near the Transvaal border has become one of the great asbestos mines of the world. Turner & Newall, Ltd., owner of the property, evidently has unbounded confidence in the future of this important chrysotile area because the claims alone cost the company £240,000, and thereafter an additional heavy investment in equipment and development was required before any return was possible. A difficult transportation problem was overcome by means of a 12.6-mile aerial ropeway, with a capacity of 7.5 tons of fiber an hour. Supplies and equipment consti-It is fortunate that the Havelock mine could attain tute return loads. the status of a major producer at this time and thus offset the great reduction in output of chrysotile in the Transvaal due to depletion of the once famous Amianthus mine. Production in 1940 was at a rate exceeding 18,000 tons per year, and 1941 production probably was much higher.

CYPRUS

Cyprus normally produces several thousand tons of short-fiber chrysotile a year, and virtually the entire output is exported. However, the island found it rather difficult to carry on foreign trade during 1940 and 1941, and its asbestos-producing activities probably have been curtailed. Exports during recent years are indicated in the following table, but no data are available on production or shipments in 1941.

Asbestos exported from Cyprus, 1937-41

Year	Long tons	Value	Year	Long tons	Value
1937	11, 704 5, 578 9, 813	£126, 371 88, 290 (¹)	1940 1941	9, 500 (¹)	(1) (1)

¹ Data not available.

U. S. S. R.

Large quantities of chrysotile asbestos, similar to that obtained in Canada, are produced in the Bajenova district in the Ural Mountains. A production of 125,000 metric tons was reported for 1937 and of 86,000 tons for 1938, but no data on either production or exports are available for later years. An important asbestos-products-manufacturing industry was established in the country a few years ago, and the factories consume an increasingly large proportion of the asbestos output. Before the war most of the exports were consigned to Germany.

BARITE, WITHERITE, AND BARIUM CHEMICALS

By BERTRAND L. JOHNSON AND K. G. WARNER 1

SUMMARY OUTLINE

Summary 1439 Barite—Continued. Salient statistics 1440 Ground (and crushed)—Continued.	7
Salient statistics 1440 Ground (and crushed)—Continued.	
	445
Criido 1440 FOFEIGN LIBRE	145
Production 1440 Witherite 14	146
Solos 1440 Deposits in North America	446
Prices 1442 Production 14	147
Consumption 1442 Prices 15	548
Deposits and technologic developments 1443 Foreign trade	448
Foreign trade 1443 Barium chemicals 14	448
World production 1443 Sales 14	448
Ground (ond grushed) 1445 Prices	449
Soles 1445 Foreign trade 14	449

SUMMARY

New all-time peaks characterized many phases of the domestic barite industry in 1941. All-time highs were reached in the mined production of crude barite (483,391 short tons), an increase of 24 percent over 1940; in the domestic crude barite sold or used by the producers (503,156 tons), an increase of 23 percent; and in the reported consumption of domestic and imported crude barite (490,833 tons), an increase of 21 percent. A new record was also set for the total value of domestic crude barite sold or used by producers in 1941 (\$3,134,234), at an average value of \$6.23, a little less than that in 1940 (\$6.34). Increased demands for crude barite came from the ground (and crushed) barite and barium chemical industries. Imports of crude barite for the 9 months for which data can be published came entirely from Cuba and were far less than for the whole year 1940; the average value also dropped-from \$5.59 in 1940 to \$5.27 in 1941. Imports of witherite for 9 months were 2,470 short tons; imports for the entire year 1940 were 3,584 tons.

Total sales of barium chemicals were higher both in quantity and value than in recent years. The quantities of lithopone, blanc fixe, artificial barium carbonate, and "other barium chemicals" sold or

used by producers in 1941 were all greater than in 1940.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Salient statistics of the barite, witherite, and barium chemical industries in the United States, 1937-41

	1937	1938	1939	1940	1941
Barite:					
Crude:	1	1	1	1	
Producedshort tons	360, 877	335, 433	365, 870	390, 462	483, 391
Sold or used by producers:			1 200,000	000, 102	250, 002
Short tons	355, 888	309, 663	383, 609	409, 353	503, 150
Value: 1	1		1	200,000	000, 10
Total	\$2, 240, 970	\$2,004,521	\$2, 344, 103	\$2, 596, 743	\$3, 134, 234
Average Imports for consumption:	\$6.30	\$6.47	\$6, 11	\$6,34	\$6, 23
Imports for consumption:				1	1
Short tons	64, 992	24, 845	11, 588	7, 391	2 169
Value: 3 Total		1		.,	
Total	\$327, 224	\$151, 235	\$55, 985	\$41,342	2 \$886
Average	\$5.03	\$6.09	\$4.83	\$5.59	2 \$5. 2
Apparent new supply 'short tons_	420, 880	334, 508	395, 197	416, 744	(4)
Apparent new supply 4short tons. Domesticpercent. Reported consumption (total)	84.6	92.6	97.1	98. 2	(4)
Reported consumption (total)			-		1
short tons	383, 982	364, 985	391, 683	404, 388	490, 833
Ground (and crushed):		1		,	1
Sold or used by producers:		4	1		
Short tons	129, 777	161, 422	170, 695	184, 390	234, 877
Value	\$2, 249, 612	\$2, 786, 823	\$2,902,973	\$3, 697, 806	\$4,606,832
Imports for consumption: Short tons			1	1	
Short tons	3, 313	1,700	1, 590	314	
Value Vitherite:	\$35, 046	\$15, 466	\$14,999	\$3, 299	l
		1			
Imports for consumption: Short tons					N
	4, 556			3, 584	
valuearium chemicals:	\$82, 341	\$43, 568	\$64, 106	\$70, 126	2 \$56, 789
Sold or used by producers: 6	1.5		100	1	
Short tons	000 100				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	202, 408	165, 680	183, 748	198, 201	245, 952
Imports for consumption:	\$14, 992, 899	\$12, 085, 012	\$12, 791, 269	\$12, 868, 417	\$16, 949, 120
Imports for consumption: Short tons	0.550			11.	
Value	6, 550		3, 205	191	2 247
Exports of lithopone:	\$368, 133	\$254, 874	\$172, 490	\$9, 045	2 \$8, 427
Short tons.	0.071	1 704			
Value		1,734	4, 845	14, 298	² 16, 954
T G14V	\$231, 622	\$153, 567	\$392, 798	\$1, 112, 362	² \$1, 454, 520

1 F. o. b. mine shipping point.
2 Figures coverJanuary to September, inclusive.
3 Declared value f. o. b. foreign market.
4 Barite sold or used by producers plus imports.
5 Figures not available for publication.
6 To avoid duplication, the barium chemicals reported here do not include the output of firms that make these chemicals from such products as barium chemicals and imported barite and witherite purchased in the

BARITE

CRUDE

Production.—The same 10 States produced barite in 1941 as in 1940—Arkansas, California, Colorado, Georgia, Missouri, Nevada, South Carolina, Tennessee, Texas, and Virginia. Mine production in 1941 totaled 483,391 short tons, a 24-percent increase over the 390,462 tons mined in 1940. The location of barite mines and barium products plants in the United States is shown on the accompanying map (fig. 1).

Sales.2—A new peak was reached in 1941 (see fig. 2) in the quantity of crude barite sold or used by producers in the United States—503,156 short tons. The total value (\$3,134,234) was much higher than in any previous year, and there was an increase of 23 percent in quantity and 21 percent in value over 1940. Missouri continued to lead in sales of crude barite, with sales twice as great as those of the next largest producing State and considerably greater than in 1940.

² See also Johnson, Bertrand L., Marketing of Barite: Bureau of Mines Inf. Circ. 7149, 1941, 16 pp.

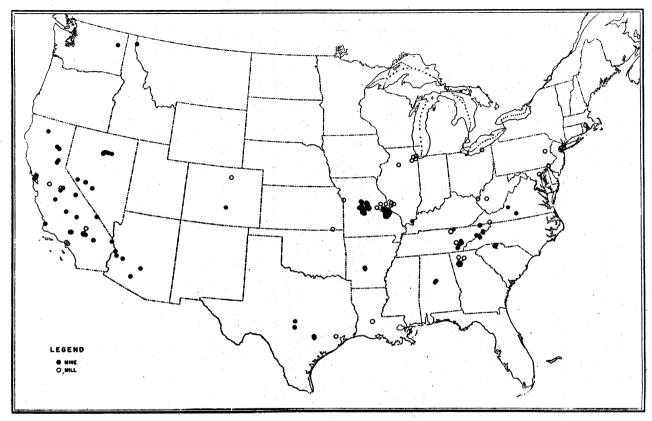


FIGURE 1.—Location of barite mines and barium products plants in the United States.

Tennessee and Georgia were close competitors for second place, Tennessee being apparently slightly in the lead. Both States had large increases over 1940.

Crude barite sold or used by producers in the United States, 1940-41, by States

State	1940		1941	
	Short tons	Value	Short tons	Value
Georgia	92, 302 179, 455	\$464, 590 1, 216, 069	104, 446 212, 718	\$553, 445 1, 337, 756
Tennessee Other States ¹	70, 767 66, 829	503, 204 412, 880	104, 511 81, 481	779, 565 463, 468
	409, 353	2, 596, 743	503, 156	3, 134, 234

¹ Arkansas, California, Colorado, Nevada, South Carolina, Texas, and Virginia.

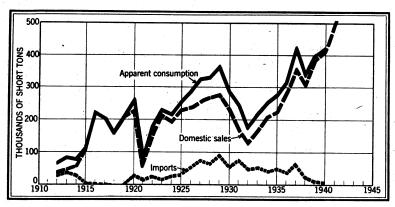


FIGURE 2.—Trends in domestic sales, imports, and apparent consumption of crude barite, 1912-41.

Prices.—The market quotation for crude barite from Georgia, f. o. b. mines, after remaining unchanged at \$7 a long ton from 1935 to 1940, increased to \$8 a ton in March 1941 and to \$9 a ton in April 1942, according to the Engineering and Mining Journal Metal and Mineral Markets.

The price of Missouri crude barite (95 percent BaSO₄, less than 1 percent iron) was quoted at \$6.25 to \$7.00 a short ton throughout 1941, the same as in the later months of 1940, but in April 1942 the quotations rose to \$7 to \$7.50 a ton. The 93-percent-grade quotations opened in 1941 at \$6 to \$6.50 a short ton but were lowered slightly to \$6 to \$6.35 in March 1941 and then in April 1942 were raised to \$6.75 to \$7.25 a ton.

The average value, f. o. b. mine shipping point, of crude barite for the entire United States declined slightly from \$6.34 in 1940 to \$6.23 in 1941.

Consumption.—The following tables show the consumption of crude barite by uses and by States.

Crude barite (domestic and imported) used in the manufacture of ground barite and barium chemicals in the United States, 1937-41, in short tons

	In manufacture of—					In manufacture of—		e of—	
Year	Ground barite	Litho- pone	Barium chemi- cals	Total	Year	Ground barite	Litho- pone	Barium chemi- cals	Total
1937 1938 1939	148, 930 1 193, 728 1 192, 112	162, 681 117, 007 141, 556	72, 371 54, 250 58, 015	383, 982 364, 985 391, 683	1940 1941	1 200, 899 1 243, 846	136, 885 153, 982	66, 604 93, 005	404, 388 490, 833

¹ Includes some crushed barite.

Crude barite (domestic and imported) used in the manufacture of ground barite and barium chemicals in the United States in 1941, by States

State	Product manufactured	Plants 1	Barite used (short tons) 2
Missouri California	Ground barite and chemicals	3 7	123, 921 41, 508
Delaware and New Jersey Illinois Colorado		4) 6	71, 605 59, 336
Rhode Island	do	1 2	
MarylandPennsylvauia	Lithoponedo		194, 463
Georgia New York Arkansas	Ground barite	2 1	
South Carolina Tennessee Texas	do	1 1)
		35	490, 833

¹ A plant producing more than 1 product is counted but once in arriving at State totals.
² Includes some crushed barite.

Deposits and technologic developments.—Several articles descriptive of barite deposits and technology, other than those referred to in

other parts of this chapter, have appeared in recent months.3

Foreign trade.—All of the crude barite imported into the United States in the first 9 months of 1941 came from Cuba. The rate of importation, however, was far less than in 1940, and only 168 tons valued at \$886 came into this country from January to September 1941, compared with 7,391 tons valued at \$41,342 in the whole year 1940. The average value of the barite imported declined slightly-from \$5.59 in 1940 to \$5.27 in the first 9 months of 1941. Exports of crude barite from the United States are not separately recorded in the foreign trade statistics.

World production.—Barite production throughout the world, insofar

as figures are available, is shown in the accompanying table.

Canadian production of barite was small until mining operations were begun in 1941 at the deposit discovered the preceding year at

Michell, F. B., Barytes and Witherite: Mine and Quarry Eng., vol. 7, No. 2, February 1942, pp. 37-

A Michell, F. B., Barytes and Witherite: Mine and Quarry Edg., vol. 1, 140. 2, February 1922, pp. 3040, 44.

Norman, James, and Lindsey, B. S., Flotation of Barite from Magnet Cove, Ark.: Am. Inst. Min. and Met. Eng., Tech. Pub. 1826, Mining Technol., May 1941, 5 pp.; discussion in Am. Inst. Min. and Met. Eng., Tech. Pub. 1412, Mining Technol., November 1941.

Schallis, Alvin, Barite—United States Industry Expands: Bureau of Mines Mineral Trade Notes, vol. 13, No. 6, December 20, 1941, pp. 20-21.

Zadra, J. B., Fine, M. M., Shelton, S. M., and Johnston, T. L., Concentration of Manganese-Bearing Ore from the Mayfield Property, Van Horn, Tex.: Bureau of Mines Rept. of Investigations 3632, 1942, 18 pp. (A barium-bearing ore.)

Pembroke, Nova Scotia. Production in Canada during 1940 was only 307 metric tons, whereas in 1941, largely because of the above-mentioned operations, it rose to 6,043 metric tons. Most of this came from the Nova Scotia deposit, but a few hundred tons were shipped from a deposit near Golden, British Columbia, most of it to a grinding plant in Montreal and the remainder to oil wells in Turner Valley.

The Pembroke barite deposit in Nova Scotia is owned by the Springer Sturgeon Gold Mines, Ltd., and operated by its subsidiary, Canadian Industrial Minerals, Ltd. Two recent papers by Cameron⁵ and Campbell⁶ describe the deposit, the barite, the mine and mill operations, and possible markets. The barite is hard and massive and is gray to dark red, replacing iron-bearing calcareous sediments.

World production of barite, 1937-41, by countries, in metric tons1 [Compiled by B. B. Waldbauer]

Country 1	1937	1938	1939	1940	1941
AlgeriaArgentina	2, 137	3, 069	(²) 768	(2) 2, 680	(2)
A metrolia ·			708	2,080	4, 174
New South Wales South Australia	268	322	(0)	(0)	(6)
South Australia	2,736	2,909	(2)	(2)	(2)
Tasmania		2, 909	3, 886	3, 672	(2)
Victoria	1 71			(2) (3) (2)	(2)
Brazil (exports)	600		·	. (2)	(2)
Canada	. 000	(2)	(2) (2) (2)	(3)	(3)
Chosen			(2)	307	6, 043
Cuba		(2)	(3)	(2)	(2)
Caret	3,849		12,000	16, 105	(ž) (3) (2)
Egypt		20	31	61	(3)
France	,	(3)	(2)	(2)	(2)
Germany: Austria					
Austria	. 855	373	(2)	(2)	(2)
Baden	21, 653	36, 305	(2)	(2)	(2)
Bavaria	. 11,832	26, 748	(2)	(2) (2) (2)	(3)
Prussia 3	410, 634	401, 906	(3)	(2)	(3)
Saxony	432	230	(2)	(2)	(2)
Thuringia	6,790	15, 315	(2)	(2)	(2)
Württemburg	192		(2)	(2)	(2)
Freece		34, 700	24,055	(2)	(3)
ndia, British	15, 941	8, 205	9, 404	(2)	(2)
ndochina	. 45	50	155	185	. (2)
.taly	45, 202	48, 169	(2)	(2)	(2)
Vorway	70			(2)	(2)
ortugal	101	24	(2)	(2)	(2)
Southern Rhodesia		91	50	(2) (2) (2)	(i) (i)
Inion of South Africa	570	491	439	691	4 584
Jnited Kingdom	74 485	77. 543	(2)	(2)	(2)
United States	327, 380	304, 298	331, 910	354, 219	438, 523

¹ In addition to the countries listed, barite is produced in China, Czechoslovakia, Japan, Spain, and U. S. S. R., but data on production are not available.

² Data not available.

Official figures which, it is reported, cover only output of mines included under the mining law.

Figures cover January to June, inclusive.

Quarrying operations, and the construction of a 100-ton mill at tidewater at Walton on the Midas Basin arm of the Bay of Fundy, were commenced in February 1941. The mill was put in operation late in May 1941. Ore containing admixed impurities is treated at a washing plant adjacent to the quarry to remove the impurities before it is trucked to the mill over an all-weather road. The first shipment of the ground barite (96.85 percent BaSO₄) was made to Trinidad in June 1941. Several other shipments have since been made to Trinidad and one small shipment to Peru. In addition, about 100 tons of ground

⁴Timm, W. B., Industrial Minerals and the War Effort: Canadian Inst. Min. and Met. Bull. 361, May 1942, pp. 181-191.

² Cameron, A. E., Barytes Deposit at Pembroke, Hants County, Nova Scotia: Proc. Nova Scotia Inst. Science, Halifax, Nova Scotia, vol. 20, part 3, 1940-41, 1941, pp. 57-63.

⁴ Campbell, C. O., Barytes at Pembroke, Hants County, Nova Scotia: Canadian Inst. Min. and Met. Bull. 362, June 1942, pp. 299-310.

barite were marketed in Ontario as a filler in rubber, paints, and varnishes, and a carload of crude ore was shipped to Montreal to determine its suitability for use in the manufacture of various barium compounds. Campbell pointed out that the Canadian market for barite and barium products is small, and to take care of any substantial domestic production it would be necessary to develop export markets; the most promising outlet appears to be in its application as a weighting material in oil-well drilling, in which the color of the barite is said to be of little or no importance. However, leaching of this ore with a 10-percent acid solution is said to remove the iron and to yield a white product.

In 1940 a barite-grinding plant was built at Regla near Habana, Cuba; according to report, most of the Cuban production is shipped to this plant, and in consequence shipments to the United States have dropped. Barite production in Cuba in 1940 is reported to have been 16,105 metric tons compared with 12,000 tons in 1939. Figures for 1941 are not available. Much of the ground barite from the Regla

plant is shipped to Trinidad for use in oil-well drilling.

GROUND (AND CRUSHED)

Sales.—The quantity of ground (and crushed) barite sold or used by producers in the United States in 1941 was much larger than the previous all-time high of 1940—234,877 short tons in 1941 compared with 184,390 tons in 1940—and the total sales value likewise showed a marked increase over 1940, rising to \$4,606,832. The number of plants producing ground or crushed barite remained at 16, as in 1940 (see accompanying table). By far the predominant use of this material continued to be in well drilling.

Ground (and crushed) barite sold or used by producers in the United States, 1937-41

	1937	1938	1939	1940	1941
Plants Short tons Value	129, 777 \$2, 249, 612	14 161, 422 \$2, 786, 823	13 170, 695 \$2, 902, 973	16 184, 390 \$3, 697, 806	16 234, 877 \$4, 606, 832

Ground (and crushed) barite sold or used by producers, 1939-41, by consuming industries

	1939		1940		1941	
Industry	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total
Well drilling Paint Glass	125, 560 9, 750 12, 586	74 6 7 2	138, 055 11, 056 12, 697 4, 283	75 6 7 2	154, 760 31, 009 22, 615 9, 800	66 13 10
RubberUndistributed	3, 319 19, 480	11	18, 299	10	16, 693	
	170, 695	100	184, 390	100	234, 877	100

Prices.—Prices quoted from Chemical Industries, New York, for ground barite, carlots, 350-pound barrels, works, ranged from \$25.15 to \$27.65 a short ton for 1941 compared with \$25.15 for 1940.

Foreign trade.—Considerable ground barite is exported from the

United States, but the data regarding these exports are not separately recorded. A few thousand tons are usually imported annually; but in 1940 only 314 short tons were entered, and in the first 9 months of 1941 there were no imports of ground barite.

Ground barite imported for consumption in the United States, 1937-41 [Value at port of shipment]

Year	Short tons	Value	Value Year Short ton		Value	
1937 1938.	3, 313 1, 700	\$35, 046 15, 466	1940 1941 (JanSept.)	314	\$3, 299	
1939	14, 999	(cum ~opu)				

WITHERITE

Deposits in North America.—Witherite deposits have been reported in both Canada and the United States, but the only occurrence of present commercial importance is in the latter country. In Canada two occurrences of witherite are known, neither of which is believed to have economic importance. The first is in the old Porcupine mine in the Rabbit Mountain area of the Thunder Bay district of Ontario, about 20 miles west-southwest of Port Arthur on Lake Ontario. witherite here occurs 7 in a composite vein 1 to 4 feet thick in a fault cutting gently dipping pre-Cambrian black slates and associated diabases. The vein filling consists chiefly of calcite, quartz, fluorite, witherite, galena, sphalerite, pyrite, argentite, and native silver, as well as some chalcopyrite and pyrrhotite. Witherite lenses up to 3 inches thick and 2 feet long have been reported. The other Canadian occurrence is in the recently developed barite deposit at Pembroke, Hants County, Nova Scotia, where Campbell⁸ states that a small amount of barium is invariably present in the ore as witherite, and that some samples have shown as high as 1.5 percent witherite. barite deposit apparently resulted from replacement of a limestone conglomerate of Upper Mississippian age along a zone of brecciation.

In the United States, witherite deposits occur in Alaska, Arizona, California, Kentucky, Montana, Nevada, New Mexico, and Ten-The deposits in Kentucky, Nevada, and Tennessee appear to be small and of mineralogic interest only. In Kentucky crystals of witherite have been found in some of the fluorspar-galena veins in the central part of the State.9 In Nevada only occasional small crystals of witherite have been found. These were in barite veins

⁷ Ingall, E. D., Report on Mines and Mining on Lake Superior: Geological and Natural History Survey of Canada. Ann. Rept. (n. s.), vol. 3, part 2, report H, 1887–88, Montreal, 1889, 139 pp. Coste, Eugene, Report on the Mining and Mineral Statistics of Canada for the Year 1887: Geological and Natural History Survey of Canada. Annual Rept. (n. s.), vol. 3, part 2, report S, 1887–88, Montreal, 1889,

Natural History Survey of Calascia. Administrative Canada. Ammuniants and Canada. Ammuniants and Canada. Ammuniants and Canada. Ammuniants and Canada. Ammuniants and Canada. Parsons, A. L., Economic Deposits in Thunder Bay District: Ontario Bureau of Mines, vol. 30, part 4, 1921, 1922, pp. 27-38.

Carter, W. E. H., The Mines of Ontario: Ontario Bureau of Mines, vol. 11, 1902, pp. 231-298.

Tanton, T. L., Fort William and Port Arthur, and Thunder Cape Map Areas, Thunder Bay District, Ontario: Canadian Geol. Survey Mem. 167, 1931, 222 pp.

Johnson, Bertrand L., Witherite—Canada: Bureau of Mines Mineral Trade Notes, vol. 14, No. 1, January 20, 1942, pp. 28-30.

Johnson, Bertrand L., witherite—Canada. Dataset 20, 1942, pp. 28-30.

Hoffman, G. C., Chemical Contributions to the Geology of Canada from the Laboratory of the Survey: Geological and Natural History Survey of Canada, Ann. Rept. (n. s.), vol. 1, report M, 1885, 1886, 29 pp. 8 Campbell, C. O., Work cited in footnote 6.

Jillson, W. R., The Geology and Mineral Resources of Kentucky: Kentucky Geol. Survey, 1928, 409 pp. (See p. 103.)

pp. (See p. 103.) Robinson, L. C., Vein Deposits of Central Kentucky: Kentucky Geol. Survey, ser. 6, vol. 41, 1931. (See pp. 23, 48, 118.)

near Argenta, Lander County.10 In Tennessee a small quantity of witherite is reported as a surface alteration product in a barite vein in Rutherford County. 11 No details are available regarding the New Mexican occurrences reported in Socorro and Dona Ana Counties. 12 The deposits in Alaska, Arizona, and Montana contain considerable witherite, but the extent of each of these deposits is still unknown. According to correspondence from the Alaska Department of Mines dated November 24, 1941, and February 17, 1942, the Alaska deposits, on the shore of Kuiu Island, in southeastern Alaska, consist of a short irregular vein averaging 16 inches thick, scattered small veinlets, and beach pebbles, comprising in all a very small tonnage. In Arizona, witherite forms about 5 percent of the gangue of certain lead veins in the Castle Dome district, Yuma County, according to a letter from F. W. Galbraith of the Arizona Bureau of Mines dated January 20, 1942.13 The Montana deposits consist of lenses and masses of witherite and irregular lumps up to 2 feet in diameter in solution cavities in Altyn pre-Cambrian limestone just above the plane of the Lewis overthrust fault at Many Glacier in Glacier National Park.14

Witherite occurs in California in Mariposa and Shasta Counties. In Mariposa County it is associated with barite in veins cutting sedimentary rocks on the western flank of the Sierra Nevada granite batholith in two localities about 6 miles apart. The northernmost of these, in the Merced River Valley near the El Portal entrance to Yosemite National Park, consists of a group of steeply dipping veins striking north. The veins apparently were formed by replacement of limestone in an isoclinally folded series of Carboniferous sediments by barium-bearing solutions given off by the underlying Jurassic (or Cretaceous) Sierra Nevada granite batholith. This group of veins, reported traceable over a distance of 3 miles, provides a mixture of witherite and barite sold as a flux to glassmakers.15 This deposit is the only commercial producer of witherite in the United States.

The other locality in Mariposa County is at Devil's Gulch, 6 miles south of El Portal, where a north-striking replacement deposit of barite and witherite in limestone is reported traceable 4,500 feet.¹⁶

In Shasta County massive witherite is reported on Beegum Creek near Platina.17

Production.—The Baroid Sales Division of the National Lead Co., which operates the mine near El Portal, Calif., is the only producer of witherite in the United States. Figures on output are not available for separate publication but are combined with those of barite.

¹⁶ Gianella, V. P., Barite Deposits of Northern Nevada: Am. Inst. Min. and Met. Eng., Tech. Pub. 10 Gianella, V. P., Barite Deposits of Northern Nevada: Am. Inst. Min. and Met. Eng., Tech. Pub. 1200, 1940, 6 pp.
11 Jewell, W. B., Barite, Fluorite, Galena, Sphalerite Veins in Central Tennessee: Paper presented at the Tuscaloosa (Ala.) meeting of the Industrial Minerals Division, Am. Inst. Min. and Met. Eng., November 3, 1939.
19 Jones, F. A., The Mineral Resources of New Mexico: State School of Mines, Mineral Resources Survey of New Mexico, Bull. 1, Socorro, N. Mex., 1915, 77 pp.
11 Johnson, Bertrand L., Witherite—Arizona: Bureau of Mines Mineral Trade Notes, vol. 14, No. 2, February 20, 1942, p. 27.
14 Fuller, M. B., An Occurrence of Witherite in the Altyn Limestone at Many Glacier, Mont.: Am. Mineral., vol. 9, No. 7, July 1924, p. 154.
15 Fitch, A. A., Barite and Witherite from near El Portal, Mariposa County, Calif.: Am. Mineral., vol. 16, 1931, pp. 461-468.
Bradley, W. W., Witherite in the Americas: Eng. and Min. Jour., vol. 132, No. 12, December 28, 1931, p. 538. Barite in California: Trans. Am. Inst. Min. and Met. Eng., 1931, pp. 170-176.
Julihn, C. E., and Horton, F. W., Mineral Industries Survey of the United States, California. Mines of the Southern Mother Lode Region. Part II, Tuolumne and Mariposa Counties: Bureau of Mines Bull. 424, 1940, 179 pp.
Harding, A. C., Ground Barytes for Weighting Drilling Mud: Eng. and Min. Jour., vol. 142. No. 1. January 1941, pp. 33-36.

14 Julihn, C. E., and Horton, F. W., Work cited in footnote 15.
15 Bradley, W. W., Works cited in footnote 15.

Prices.—The price of ground witherite in 1941, according to Chemical Industries, New York, remained constant at \$43.00 a ton in carlots, bags, works, for the 90-percent grade. In 1940 prices had

ranged between \$43 and \$47 a ton.

Foreign trade.—Imports into the United States come entirely from England and range from 2,000 to nearly 5,000 tons a year. Imports for the first 9 months of 1941 totaled 2,470 short tons valued at \$56,789. Exports of witherite from the United States, if any, are not separately recorded in the foreign trade statistics.

Witherite, crude, unground, imported for consumption in the United States, 1937-41 [Value at port of shipment]

Year	Short tons	Value	Year	Short tons	Value
1937 1938 1939	4, 556 2, 115 3, 819	\$82, 341 43, 568 64, 106	1940 1941 (JanSept.)	3, 584 2, 470	\$70, 126 56, 789

BARIUM CHEMICALS

Sales.—Both the total quantity and the value of barium chemicals sold or used by producers in 1941 were much larger than in 1940. Greater quantities of lithopone, blanc fixe, artificial barium carbonate, and "other barium chemicals" were sold. Another new high record was made in sales of artificial barium carbonate (chemically precipitated). Increases in value in 1941 over 1940 were recorded for all the barium chemicals listed in the accompanying table.

Lithopone is used principally in the manufacture of paints, enamels, and lacquers, 75 percent of the total sold or used by producers in

1941 going into those products.

Barium chemicals sold or used by producers in the United States, 1937-411

Chemical	1937	1938	1939	1940	1941	
Lithopone: 2						
Plants	. 11	111	11	11	1 .	
Short tons	154, 771	125, 746	142, 759	151, 802	176, 64	
Value	\$12,069,790		\$10, 461, 102	\$10, 197, 897	\$12, 550, 193	
Blanc fixe (precipitated barium sulfate):	1	1	,,,	120, 201, 001	412, 000, 100	
Plants	7	7	6	6	1 (
Short tonsValue	28, 250	19, 428	18, 653	22, 247	29, 352	
	\$1,614,764	\$921, 203	\$898, 198	\$1, 250, 303	\$1,806,882	
Artificial barium carbonate (chemically precipitated):				1	, , , , , ,	
Dianta				1		
Short tons	3	4	5	5	5	
Value	10, 755	9, 543	12, 478	13, 339	17, 477	
Other barium chemicals: 3	\$511, 357	\$459, 901	\$617, 799	\$616, 331	\$785 , 48 6	
Plants	6		_	_	_	
Short tons	8, 632	10.963	0.000	10.010	22 427	
Value	\$796, 988	\$728, 896	9, 858	10, 813	22, 481	
	ψ100, 866	\$120,090	\$814, 170	\$803, 886	\$1,806,559	
Fotal barium chemicals:						
Short tons	202, 408	165, 680	183, 748	198, 201	245, 952	
Value	\$14, 992, 899			\$12, 868, 417	\$16, 949, 120	
	. , ,	7, 400, 012	412, 101, 200	Ψ12, 000, 111	φ10, στο, 120	

¹ To avoid duplication, the barium chemicals reported here do not include the output of firms that make these chemicals from such products as barium chemicals and imported barite and witherite purchased in

these enemicals from such products as darium enemicals and imported darite and witherite purchased in the open market.

2 Does not include cadmium lithopone.

3 Figures cover chemicals, in order of value, as follows: 1937: Chloride, dioxide, sulfide, and hydroxide; 1938: Chloride, dioxide, sulfide, hydroxide, and oxide; 1939: Chloride, dioxide, hydroxide, and oxide; 1940: Chloride, dioxide, hydroxide, sulfide, oxide, and nitrate; 1941: Chloride, sulfide, dioxide, hydroxide, nitrate, oxide, and tribarium aluminate.

Lithopone 1 sold or used by producers, 1939-41, by consuming industries

	1939		1940		1941	
Industry	Short	Percent	Short	Percent	Short	Percent
	tons	of total	tons	of total	tons	of total
Paints, enamels, and lacquersFloor coverings and textiles	113, 995	80	117, 075	77	132, 691	75
	17, 429	12	18, 738	13	21, 114	12
	3, 189	2	3, 387	2	3, 547	2
	8, 146	6	12, 602	8	19, 290	11
	142, 759	100	151, 802	100	176, 642	100

¹ Does not include cadmium lithopone.

Prices.—Quoted prices for domestic lithopone in 1941 were higher than in 1940, and prices for titanated lithopones likewise rose above the 1940 level. Prices for precipitated barium carbonate in 1941 ranged from \$45.00 to \$65.00 compared with \$45.00 to \$62.50 in 1940. There were no changes in barium chloride prices. Barium chlorate prices remained at 45 cents a pound throughout 1941, which was the peak price of 1940. Barium dioxide was quoted at 10 cents a pound throughout 1941 compared with a range of 10 to 12 cents a pound in 1940. There were no changes in barium hydrate prices. Barium nitrate had a wider range of prices in 1941 than in 1940 and rose to a higher price—12½ cents a pound. Blanc fixe quotations showed a marked decrease—\$50.00 to \$80.00 a ton in 1940 and \$35.00 to \$46.50 in 1941.

Range of quotations on barium chemicals, 1939-41 1

Chemical Industries (formerly Chemical Markets), New York (monthly).
 Lowest price for pulp grade, highest for high-grade precipitated.

Foreign trade.—Foreign trade figures for barium chemicals are available for publication only for the first 9 months of 1941. During this period the hydroxide and lithopone were the only barium chemicals imported. Both the quantity imported (247 short tons) and the value (\$8,418) of the barium hydroxide were much larger than for the entire 12 months of 1940. Only 112 pounds of lithopone were imported from January to September.

Exports of lithopone in the first three quarters of 1941 were greater than in the entire year 1940, both in quantity and total value, and

had a much larger average value. They were greater than in any year since 1922, when exports of barium products were first recorded separately.

Barium chemicals imported for consumption in the United States, 1937-41
[Value at port of shipment]

Year	L	ithopon	в	Barium	dioxide	Bland cipi sulf	tated bar	pre- ium I	Barium ca (precipi	
	Shor		alue 1	Pounds	Value	Shor		lue	Short tons	Value
1937 1938 1939 1940 1941 (JanSept.)	5, 6 3, 9 2, 6	32 20	2, 417 7, 121 0, 893	229 100 350	\$34 13 51	1	06 5	, 617 , 102 , 891	(1) 30	\$845 32
Year		n chlo- de	Bariun	n nitrate	Bariu dro	m hy- xide	Bariur	n oxide	pot	m com- mds e. s.)
	Short	Value	Short	Value	Short	Value	Pounds	Value	Short tons	Value
1937	315 69 39	\$13, 761 2, 351 1, 329	157 126 100 18	\$15, 836 12, 061 11, 094 1, 427	310 236 360 151 247	\$21, 004 16, 874 19, 975 3, 332 8, 418	298	\$161 13	28 50 27 22	\$6, 455 11, 320 7, 244 4, 286

^{1 110} pounds.

Lithopone exported from the United States, 1937-41

Year	Short	Va	lue	Year	Short	Va	alue	
1 tai	tons	Total	Average	1 car	tons	Total	Average	
1937 1938 1939	2, 671 1, 734 4, 845	\$231, 622 153, 567 392, 798	\$86. 72 88. 56 81. 07	1940 1941(JanSept.)	14, 298 16, 954	\$1, 112, 362 1, 454, 520	\$77. 80 85. 79	

^{2 112} pounds.

POTASH

By J. H. HEDGES

SUMMARY OUTLINE

	Page		Page
General conditions		Government activities	1455
Salient statistics	1453	Review by States	1456
Prices	1453	Foreign trade	1459
Consumption and uses	1454	World production	1460
Production and sales		Foreign developments	1462

The often-repeated claim that development of potash resources within the United States in the brief period since the last war had relieved this country from dependence on foreign supplies was confirmed definitely in 1941, when imports dropped to a few thousand tons and were exceeded by exports drawn from domestic sources and shipped to neighboring countries. Receipts of foreign potash declined sharply in 1940, but imports still were substantial and permitted gradual shifting of the load to American producers. In 1941, although one major plant was strike-bound for 3½ months and its output for the year thereby reduced more than 30 percent, production was greater than ever before, and supplies were adequate to meet a 13-percent rise

in consumption.

The United States potash industry is virtually a post-war product of the First World War, born of the realization that complete dependence on foreign supplies invited repetition of the serious wartime shortage that skyrocketed prices of muriate to over \$500 a ton in 1915–16. In the intervening 25 years, the combined efforts of Government and private agencies have built up an industry that in 1941 produced almost a million tons of marketable salts containing 525,000 tons of K₂O. Plant additions during the year increased further the capacity to produce refined salts, now estimated to total well over a million tons a year, equivalent to more than 600,000 tons of K₂O. The mines in the Carlsbad area are capable of producing in excess of refinery capacity up to 200,000 tons a year of 20- to 25-percent manure salts that can be employed satisfactorily in compounding some fertilizer mixtures.

The virtual cessation of imports and the increased industrial use of chemical grades were the chief war-induced factors affecting the potash industry. Formerly extensively imported, all potash salts used in the manufacture of black powder, in the Houdry process for the manufacture of aviation gasoline, in the glass industry, and in the heat treatment of aluminum alloys had to be supplied by American producers. The manufacture of potassium chlorate, made by electrolysis of a solution of potassium chloride, was resumed in this country in 1939 in anticipation of interruption of imports. Classed as a material essential for national defense, normal consumption has been 5,000 to 7,000 tons a year. Its principal peacetime use is as the active oxidizing

agent in match heads. Other uses are in flares, fusees, and fireworks for military operations. Production from several plants is reported

to be at the rate of about 7,200 tons a year.

Potassium chloride pure enough to be acceptable for industrial and chemical use is made by only two plants, one of which suffered a prolonged strike that reduced output materially. By Government order chemical requirements were given priority over fertilizer needs. As a result, supplies at times were short and open-market offerings were limited, although contract deliveries were well-maintained. The tight spot market brought out some resale offerings at premium prices. Except for these speculative flurries, prices were steady throughout the year.

Except for shipments to Canada, exports were sharply reduced. By Presidential proclamation of January 10, 1941, effective February 3, potash salts were placed under export control. Thereafter export licenses were required for all shipments abroad. Cessation of shipments to Japan, formerly the largest importer of American potash, more than offset increases in other directions and resulted in a sharp

drop in total exports.

The potash salts sold were largely refined or processed products derived from bedded deposits in New Mexico, brines in California and Utah, and as a byproduct of manufacturing processes in Maryland. A few tons of cotton-boll ashes were sold in Texas for their potash content. In former years crude alunite has been used in a limited way for fertilizer, but no shipments were reported in 1941. The United States Potash Co., Potash Co. of America, and Union Potash & Chemical Co. mined 82 percent of the total output (K₂O) from salt beds; and the American Potash & Chemical Corporation and Bonneville, Ltd., produced 17 percent from brines. U. S. Industrial Chemicals, Inc., and the North American Cement Corporation accounted for the

other 1 percent, which was salvaged from waste products.

Uninterrupted operation of the five principal plants during 1942 should provide ample potash for presumptive needs. Continued in-

should provide ample potash for presumptive needs. Continued increase in use of fertilizers in this country is anticipated but may be checked by shortage of ingredients other than potash needed for preparing the customary mixtures. Explosives manufacture and other war uses doubtless will have first call on nitrates, hence some stringency in supplies for use in fertilizers is not unlikely. Reserves of Chilean nitrate are ample, but supplies from that source are subject to the difficulties and hazards of ocean transportation. New nitrogen plants recently or soon to be completed will increase the domestic supply materially. If the war continues to follow the present pattern, in which bombing plays the leading role, there probably will be enough nitrogen for all uses. Bombs impelled by gravity are much more economical in expenditure of explosives than shells propelled from great guns by enormous charges of powder. Greater use of artillery might result in a shortage of nitrogen for fertilizer and a corresponding reduction in the demand for potash. The needs of other nations that look to the United States for their potash are moderate and can easily be supplied. Except for Canada and Cuba, transportation and distribution are likely to present greater difficulties than supply. The industry appears to be in a favorable position to meet any demands likely to be made upon it in 1942.

Salient statistics of the potash industry in the United States, 1940-41

		1940	1941
Production:			
Potassium salts (merchantable)	short tons	658, 249	986, 458
Approximate equivalent, K2O	do	379, 679	524, 875
Sales by producers:	_		l
Potassium salts Approximate equivalent, K20	do	677, 892	994, 843
Approximate equivalent, K2O	do	393, 058	531, 346
Value at plant		\$12, 562, 050	\$17, 368, 237
Average per ton		\$18. 53	\$17.46
Imports:			:
Fertilizer materials	short tons	274, 473	1 36, 499
Fertilizer materials	do	115, 241	¹ 10, 948
Value		\$5, 148, 852	1 \$753, 786
Chamical materials	chort tone	14, 564	
Approximate equivalent, K ₂ O	do	3, 449	1 2, 075
Value		\$2, 4 11, 919	¹ \$3, 49 1, 535
Exports:			
Fertilizer materials			1 69, 092
Approximate equivalent, K20	dq	55, 836	
Value		\$3, 141, 170	1 \$1, 991, 727
Chemical materials	short tons	14, 180	1 9, 497
Approximate equivalent, K20	do	7,000	1 4, 700
Value		\$3,096,909	1 \$2, 040, 956

¹ January to September, inclusive.

PRICES

Prices quoted in schedules issued by producers in 1940 for the 1940-41 fertilizer season were unchanged through May 1941. Price lists for the new season—June 1, 1941, to May 31, 1942—continued the old prices and terms, except for an increase of 1½ cents to 55 cents per unit for 50-percent muriate, produced chiefly by dilution of the standard 60-percent product. As long as refining capacity is adequate there seems to be little excuse for the 50-percent grade, and producers have sought to discourage its use. Wartime shortage of rail and ocean transportation facilities furnishes another potent argument for employing the more concentrated material. Base prices were as follows:

Muriate of potash, of percent K ₂ O minimum
Muriate of potash, 50 percent K2O minimum
Manure salts, run-of-mine grade
Sulfate of potash, 90/95 percent K2SO4—basis 90 per-
cent K ₂ SO ₄
Sulfate of potash-magnesia-minimum 40 percent
K ₂ SO ₄ , 18.50 percent MgO

53½ cents per unit K₂O. 55 cents per unit K₂O. 60 cents per unit K₂O.

\$36.25 per short ton.

\$26.00 per short ton.

These prices were ex-vessel at customary Atlantic and Gulf ports and were subject to the following discounts:

On orders placed by June 30, 1941, for delivery during June or in substantially equal monthly quantities from July 1, 1941, to January 31, 1942, a discount of 8 percent.

Upon acceptance of delivery of entire tonnage on order by January

31, 1942, an additional allowance of 4 percent.

On orders placed after June 30, 1941, for delivery at buyer's plant

before and including May 31, 1942, list prices applied.

Deductions of 11.2 cents a unit and 8 cents a unit from ex-vessel prices for muriate were offered for purchase f. o. b. Carlsbad and Trona, respectively. This provision was operative throughout the calendar year 1941 and appears to have benefited about one-third of the tonnage sold through saving in freight. Around 40 percent of the f. o. b. shipments were manure salts. The split-discount system inaugurated in 1940 functioned successfully to discourage overorder-

ing and subsequent cancelations, long a disturbing factor in the market and a hazard for producers.

Perhaps the most startling price development was a cut early in June in the base price for manure salts from 60 to 21 cents per The supplementary schedule announcing the price reduction stated by way of explanation-

The very serious scarcity of ships and prohibitive charter rates asked when boats are obtainable combine to make it economically unsound and next to impossible to move this low-grade commodity to Atlantic ports via water transportation at the present time. The outlook for the balance of the season is even less hopeful. For these reasons it is found necessary to announce the above stated price change.

Average prices for the various fertilizer salts for each month are shown in the following table.

Ex-vessel port prices of potash salts in the United States in 1941

		f potash in ılk	Sulfate of potesh, 90	Sulfate of potash-mag-	Manure salts, 25 to
Period	60 percent K ₂ O, per unit	50 percent K ₂ O, per unit	percent K ₂ SO ₄ , per short ton	nesia, 40 per- cent K ₂ SO ₄ , per short ton	30 percent K ₂ O, per unit
January to May, inclusive	\$0. 535 . 471 . 471 . 535	\$0. 535 . 484 . 55 . 55	\$36. 25 31. 90 36. 25 36. 25	\$22, 88 26, 00 26, 00	\$0. 60 . 185 . 21 . 21

CONSUMPTION AND USES

Potash salts containing approximately 500,000 short tons of K₂O moved into channels for consumption in the United States and its possessions in 1941. About 90 percent was for fertilizer and 10 percent for industrial use. Consumption in industry was around 14,000 tons of K₂O more than in 1940, due mainly to expanded manufacture of black powder and aviation gasoline, in which potash salts are employed. Other uses that have increased as a result of the war include the manufacture of glass and the heat treatment of aluminum The following table, combining information from various sources, indicates that consumption in the United States and its possessions in 1941 was 504,500 short tons of K₂O—an increase of around 15 percent from 1940. The picture is incomplete, as it is not permitted to disclose foreign trade statistics for the final quarter of 1941.

Sales of primary potash in the United States for consumption and export, 1940-41, in short tons of K2O

	1940	1941 1
Deliveries of potash by member companies reported by American Potash Institute— In United States and possessions:		
Agricultural	417, 943	435, 940
ChemicalFor export	37, 815 24, 046	51, 962 26, 868
Imports plus sales of nonmember producers.	479, 804 21, 737	514, 770 1 32, 330
Total exports	501, 541 2 62, 836	1 547, 100 1 42, 600
Actual sales for consumption in the United States	² 438, 705	1 504, 500

¹ Figures for imports and exports for 1941 cover January to September, inclusive.
² Corrected figure.

PRODUCTION AND SALES

The rising production curve turned more sharply upward in 1941 to record an increase of 50 percent over 1940 in marketable potash salts produced by mines and plants in the United States. The average grade was 53.21 percent potash, and the gain in equivalent potash was 38 percent. Sales 47 percent above 1940 closely approached a million tons of salts containing 531,346 short tons of K_2O , equal to 97 percent of total deliveries for consumption and export and exceeding production by 6,471 tons. The prolonged strike at Trona cost some 30,000 to 40,000 tons of potential K_2O production.

The uneconomic demand for 50-percent muriate continued, despite the fact that this impure material costs the consumer more per unit of potash than the 60-percent grade. Fifty-percent muriate is made by mixing the normal product of the refining processes with run-of-mine salts in suitable proportions or by adjusting the process to leave more impurities in the product. If wartime demand should outstrip refinery capacity, this uneconomic practice might be justified as a temporary expedient; otherwise, it seems inexcusable.

Production of the various grades of salts in 1941 was as follows:

	8	Short tons
Muriate of potash, 60 percent Ka	O minimum	663, 608
	O minimum	
Manure salts, run-of-mine		154, 979
Sulfate of potash and sulfate of	potash-magnesia	82, 473
		986.458

Potassium salts produced, sold, and in producers' stocks in the United States, 1937-41

	Production			Sales Pro			Production Sales			ducers' st	ocks
Year	Opera- tors	Potas- sium salts (short tons)	Equivalent as potash (K2O) (short tons)	Opera- tors	Potas- sium salts (short tons)	Equivalent as potash (K2O) (short tons)	Value f. o. b. plant	Opera- tors	Potas- sium salts (short tons)	Equivalent as potash (K ₂ O) (short tons)	
1937 1938 1939 1940 1941	7 9 6 7 7	486, 090 534, 945 546, 757 658, 249 986, 458	284, 497 316, 951 312, 201 379, 679 524, 875	7 9 6 7 7	466, 933 498, 189 634, 014 677, 892 994, 843	266, 938 286, 437 366, 287 393, 058 531, 346	\$9, 019, 534 9, 748, 290 12, 028, 195 12, 562, 050 17, 368, 237	5 6 5 7 7	105, 900 158, 540 54, 233 35, 060 26, 374	55, 620 87, 440 29, 440 16, 370 9, 712	

GOVERNMENT ACTIVITIES

On recommendation of the Administrator of Export Control and pursuant to the provisions of section 6 of the act of July 2, 1940, entitled "An Act to Expedite the Strengthening of the National Defense," the President on January 10, 1941, issued a proclamation placing copper, brass, bronze, zinc, nickel, and potash under the export-licensing system. The effective date of the proclamation was February 3, 1941.

The Executive order prescribing regulations governing the exportation of materials designated in the proclamation of January 10 stated that potash should be construed to include the following:

Potassium salts and compounds

Potassium hydroxide (KOH)
Potassium carbonate (K₂CO₃)
Potassium chlorate (KClO₄)
Potassium perchlorate (KClO₄)
Potassium cyanide (KCN)
Potassium iodide (KI)
Potassium nitrate (KNO₅)
Potassium permanganate (KMnO₄)
Potassium acetate (KC₂H₃O₂)

Potassium bicarbonate (KHCO₈) Potassium bitartrate (KHC₄H₄O₆)

Potassic fertilizer materials

Potassium chloride (KCl) Potassium sulfate (K₂SO₄)

All other potassic fertilizer materials containing 27 percent or more potassium oxide (K₂O) equivalent

All combinations and mixtures of any of the foregoing containing potash salts of 27 percent or more potassium oxide (K₂O) equivalent

The Government-sponsored program for expanding aluminum production to meet wartime needs has again focused attention on alunite deposits in several of the Western States. Attempts during the last war to utilize alunite for the production of potash, with alumina as a byproducts, proved noncommercial under normal conditions, and plants have remained idle since 1918. However, experimentation eveloped. The interest now continued, and several processes were developed. has shifted to aluminum, but for every ton of aluminum produced from alunite the process will yield about a ton of potassium sulfate. Virtually all alunites contain some sodium, replacing the potassium of the pure mineral. Soda and potash are difficult to separate, hence potassium sulfate from alunite would be contaminated with sodium sulfate to some degree. If proposed plants to make 60,000,000 pounds of aluminum a year from alunite are built they will produce around 30,000 tons a year of potassium sulfate. Both Kalunite, Inc., and the Reynolds Metal Co. are seeking Government funds for aluminum Kalunite controls deposits in Utah and Washington, and Reynolds is reported to be investigating a deposit in Arizona.

REVIEW BY STATES

California.—A strike, called March 14, closed the plant of the American Potash & Chemical Corporation at Trona. Operations were not resumed until July 2, when two-thirds of the workers accepted a company offer and returned to work. Some strikers continued to hold out and picketed the plant for another month before voting to return to work. The settlement was reported to provide a wage scale of 78 cents to \$1.20 an hour compared with a previous scale of 67½ cents to \$1.05. This company—only producer of potash in the State—is likewise an important producer of borax. Supplies of both potash and borax were seriously affected by the shut-down. Other products of the plant are soda ash, salt cake, sodium-lithium phosphate, and bromide, all extracted from the brine of Searles Lake. The original holdings of the company, which has been operating at Trona contin-

1457

uously since 1915 and was the first American producer of potash in important quantity, comprised placer claims located and patented before enactment of the mineral-leasing law in 1922. Present pro-

duction is largely from areas leased from the Government.

Maryland.—At the Security plant of the North American Cement Corporation near Hagerstown, impure sulfate of potash was recovered from cement-kiln flue dust. At Baltimore, United States Industral Chemicals, Inc., produced mixed sulfate and chloride as a byproduct of the manufacture of industrial alcohols from molasses. During the acute potash shortage that developed during the World War of 1914–18, a number of industrial plants devised methods for recovering potash salts from plant wastes. However, when imports

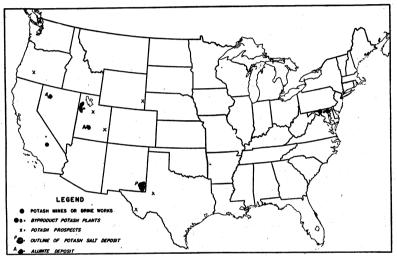


FIGURE 1.—Location of potash mines or brine works, prospects, deposits, and byproduct potash plants in the United States.

were resumed after the war and prices returned to normal, most of these operations became unprofitable and were discontinued. The only exceptions were these two plants in Maryland that each year have contributed several thousand tons to the potash supply.

New Mexico.—The three companies operating in the Carlsbad area mined 2,270,000 tons of ore from rich sylvinite and langbeinite beds at depths ranging from 800 to 1,000 feet. Some run-of-mine ore was shipped to satisfy the demand for manure salts and some was used in mixing to make the 50-percent grade, but the bulk of the raw ore was processed to yield the high-grade salts that constitute a growing percentage of the total output of marketable salts. Production from this field began only 10 years ago with the shipment of a few carloads of manure salts by the United States Potash Co. in 1931, followed a few months later by first shipments from its refinery. The Potash Co. of America was next in the field, beginning to ship manure salts in 1934 and high-grade concentrates in 1935. The growth of these two companies was rapid, and rising output from the district received a further boost with the advent of the Union Potash & Chemical Cor-

poration, which began shipments late in 1940 and completed its first full year of operation in 1941. Although underground conditions are similar at the three properties, operations of the three companies differ markedly in some respects. The refinery of the United States Potash Co. extracts high-purity potassium chloride from sylvinite by solution and fractional crystallization. More recently, a gravityconcentration unit has been added that yields a somewhat lower-grade The Potash Co. of America employs a soap flotation process characterized by flotation of the sodium chloride mineral halite and depression of the potassium chloride mineral sylvite. ing high-grade product retains the characteristic reddish color of the ore, which is derived from minute impurities. The Union Potash & Chemical Corporation mines both sylvinite (a mixture of sylvite and halite) and langbeinite (K₂SO₄, 2MgSO₄). The sylvinite is treated by tabling and flotation, using a reagent that floats the sylvite. The langbeinite is washed to remove sodium chloride, centrifuged, and kiln-dried. Some is marketed in this form as sulfate of potashmagnesia, and some is hydrated and used in the manufacture of potassium sulfate by base exchange with potassium chloride. Under carefully controlled conditions, the reaction between the magnesium sulfate of the hydrated langbeinite and potassium chloride brine is rapid and virtually complete. The potassium sulfate produced by this method is high-grade and the byproduct magnesium chloride will

be utilized for the production of magnesium metal in a plant soon to be operated by the company near Austin, Tex., where low-cost hydroelectric power is available.

Utah.—Bonneville, Ltd., 540 West Seventh South, Salt Lake City, operating on the salt flats near Wendover in western Utah, doubled the area of its evaporating ponds in preparation for the 1941 season. Earlier difficulties experienced in preventing loss of brine due to leakage from the ponds have been overcome, and improvements in operating the ponds and harvesting the crystallized salts have been introduced. Over 40 miles of collector ditches, fanning out from two

duced. Over 40 miles of collector ditches, fanning out from two pump stations, convey brine to pumps that deliver it to desired points in the ponds. Evaporating ponds extend about 9 miles south from the highway and back on a parallel line to the crytallizing ponds adjacent to the highway. Baffles in the evaporating ponds cause the brine to travel about 30 miles from the point of entry to the crystallizing ponds, where a crystalline mixture of KCl and NaCl is precipitated. The crystallized salts are harvested at the end of the evaporating season and hauled to the mill, where the potash salt is separated by flotation. The muriate produced is about 96 percent KCl. Output in 1941 was nearly double that in 1940 but was less than anticipated because the unusually wet season was unfavorable for this type of operation. Precipitation at Wendover in 1941 was reported to be the heaviest since 1926. The capacity of the present lay-out in a favorable season is believed to be nearly double the quantity produced in 1941. Dry winds, usually prevalent for 6 months or more of the year in this desert region, are the chief agents of rapid evaporation and are more effective than a few extra degrees of temperature. The air immediately above the ponds becomes saturated, and evaporation

virtually ceases unless there is enough wind to carry away the vapor.

FOREIGN TRADE 1

The publication of information regarding exports and imports of all kinds was discontinued October 1. Hence, any data on foreign trade in 1941 contained in this report cover only the 9-month period from January to September.

Imports.—The quantity, average grade, and total declared value of potash salts imported in 1940 and during the first 9 months of 1941, the approximate K_2O equivalent of imports, and the countries from which shipments were made in 1941 are shown in the following tables.

Potash materials imported for consumption in the United States, 1940-41

	Ap-		19	940			19 (Jan.–		
Material	proxi- mate equiv- alent as potash	Short	Approx equive as pot (K ₂ c	lent ash	77-1	Short	Approx equive as pot (K ₂ c	lent ash	Value
	(K ₂ O) (percent)	tons	Short tons	Percent of total	Value	tons	Short	Percent of total	
Used chiefly in fertilizers:	20.0	36, 175	7, 235	6.1	\$231, 426				
Kainite Manure salts	31.4	442	139	0.1	4, 432				
Muriate (chloride) Potash-magnesia sul-		152, 494	86, 007	72.5	2, 835, 765	13, 671	7, 710	59. 2	\$268, 309
fate	27.0	3,900	1, 053	.9	59, 793				
Potassium nitrate, crude	40.0	1, 308	523	.4	57, 478				
Potassium-sodium ni-		FF 010	7, 702	6.5	1, 366, 131	22, 736	3, 183	24. 5	484, 280
trate mixtures, crude_	14. 0 50. 0	55, 016 25, 013	12, 507	10.5	592, 318	22, 100	0, 100	2	201,200
Sulfate Other potash fertilizer	30.0	20, 013	12, 007	10.0	002,010				
material 1	60.0	125	75	.1	1, 509	92	55	.4	1, 197
Total fertilizer		274, 473	115, 241	97.1	5, 148, 852	36, 499	10, 948	84.1	753, 786
Used chiefly in chemical industries:									-
Bicarbonate	46.0	14	6	h'	2,996			h	1
Bitartrate:	l			1		0.000]]	0.405 000
Argols	20.0	11,903	2, 381	H	2, 086, 867	9, 968 22	1,994		3, 405, 236 14, 427
Cream of tartar	25.0	9	5	il .	1, 116	4	2	1	1, 010
Carbonate	61. 0 80. 0	46	37	11	20, 164	12	10	1	4, 284
Caustic	80.0	***	31	11	20, 101				1
rate	36.0	1,789	644	2.9	198, 373	123	44	15.9	44,460
Cyanide	70.0	10	7	Ш	6, 967			1	
Ferricyanide (red prus-	1	l .		11		١.	_	ll	360
siate)		31	13	11	15, 307	(2)	(2) (2) (2)	1	14
Iodide		616	(²) 283	1	41, 317	(3)		1	130
Nitrate, refined	46. 0 29. 0	(2)		Ш	13	13	4	11	4, 352
PermanganateAll other	50.0	146	(2)	J)	38, 718	30	15	ען	17, 262
Total chemical		14, 564	3, 449	2.9	2, 411, 919	10, 173	2, 075	15. 9	3, 491, 535
Grand total		289, 037	118, 690	100. 0	7, 560, 771	46, 672	13, 023	100. 0	4, 245, 321

Chiefly wood ashes from Canada.

² Less than 1 ton.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Potash materials imported for consumption in the United States in 1941 (January-September, inclusive), by countries, in short tons 1

[Figures in parentheses in column headings indicate, in percent, approximate equivalent as	potash ((K•O)1

	Muri-	Bita	rtrate	,		Potas-	Gh)t.		т	otal
Country	ate (chlo- ride) (56.4)	Argols or wine lees (20)	Cream of tartar (25)	Caus- tic (80)	Car- bonate (61)	sodium nitrate mix- tures, crude (14)	Chlorate and per- chlorate (36)	All other (55)	Short tons	Value
AlgeriaArgentina		660 3, 047							660 3, 047	\$238, 407 938, 529
Brazil Canada Chile	16	86 5 266	16			22, 736	1 13	93	86 115 23, 031	26, 547 4, 439 580, 250
China France Germany					3		30 2	(2)	30 2	766 2,870 704
Hong Kong Japan					1		61	13	1 74	278 38, 001
Mexico Morocco Peru		64 11							35 64 11	336 8, 492 2, 027
Portugal Spain Sweden		2, 837 2, 957	6	12			5		2, 837 16, 618 17	1, 284, 036 1, 094, 038 5, 123
Switzerland United Kingdom							1ĭ	30	11 30	3, 115 17, 363
	13, 671	9, 968	22	12	4	22, 736	123	136	46, 672	4, 245, 321

¹ Figures for 1940 in Minerals Yearbook, Review of 1940, p. 1351, should read—Muriate: France, 124,995 tons; Belgium, none. Sulfate: Germany, 195 tons; Netherlands, 305. Potash-magnesia sulfate: Germany, 3,885 tons; Netherlands, 15. Caustic: Germany, 5 tons; France, none. "410 ther": Italy, 22 tons; Japan, 9. Country totals: Belgium, 748 tons, \$31,079; France, 186,308 tons, \$3,206,431; Germany, 5,711 tons, \$144,421; Italy, 1,479 tons, \$291,054; Latvia, 9 tons, \$1,880; and Netherlands, 345 tons, \$18,854. No change in grand totals.

² Less than 1 ton.

Exports.—Effective February 3, 1941, Federal licenses were required for all exports of potash salts. Shipments by producers outside the immediate American market, which is considered to include continental United States, Puerto Rico, Hawaii, Canada, and Cuba, were relatively small, as the need for supplying domestic requirements in the absence of imports left little surplus for export. The bulk of potash fertilizer shipments to countries other than those listed above were drawn from consumers' or speculators' stocks. During the early months of the year Japan continued to receive sizable cargoes, although less than in 1940.

Potash materials exported from the United States, 1937-41

	Fe	rtilizer	Chemical			Fe	ertilizer	Chemical		
Year	Short tons	Value	Short tons	Value	Year	Short tons	Value	Short tons	Value	
1937	103, 031 84, 137 136, 750	\$3, 278, 895 2, 599, 772 4, 446, 853	2, 094 2, 616 3, 579	\$484, 450 485, 672 807, 987	1940 1941 ¹	93, 060 69, 092	\$3, 141, 170 1, 991, 727	14, 180 9, 497	\$3, 096, 909 2, 040, 956	

¹ January to September, inclusive.

WORLD PRODUCTION

With the exception of the United States, potash-producing countries have issued no official statistics of production or trade since the out-

World production of potash minerals and equivalent K₂O, 1937-41, by countries, in metric tons¹

[Compiled by B. B. Waldbauer]

	19	37	19	138	19	39	19	140	19	941
Country and mineral 1	Output	Equivalent K ₂ O	Output	Equivalent K ₂ O	Output	Equivalent K ₂ O	Output	Equivalent K ₂ O	Output	Equivalent K ₂ O
North America: United States, potassium saltsouth America: Chile, crude potassium nitrate	440, 971 (²)	258, 090 (²)	485, 291 (²)	287, 532 (²)	496, 007 (²)	283, 223 (²)	597, 150 62, 208	344, 437 8, 585	894, 895 (²)	476, 15 (2)
Europe: France (Alsace), crude potassium salts Germany, crude potassium salts:	2, 883, 502	489, 801	3, 374, 811	581, 790	(2)	(2)	(2)	(2)	(2)	(2)
Carnallite 3 Kainite, sylvinite, and hartsalz	1, 672, 417 12, 787, 735 3, 500	170, 550 1, 797, 866 420	1, 874, 375 14, 567, 896	} 1, 861, 000	(2) (2)	(2) (2)	(2) (2)	(2) (2)	(2)	(2) (2)
Italy, alunite	111, 357	11, 136	2, 778 120, 100	12,010	, .	(2)	(2)	(2)	(2) (2) (2)	(2)
Sylvite	395, 885 14, 241 51, 913	87, 095 1, 709	427, 200 19, 644	93, 984 2, 358	(2) (2) (2)	(2)	(2)	(2)	(2)	(2)
U. S. S. R., crude potassium satts	2, 400, 000	266, 000	49, 572 (²)	⁵ 122, 000	(2)	8	(2)	(2)		(2)
China, potash	6 32 149, 000 5 9, 000	(2) (2) 5 4, 300	(2) 5 8, 200	(2) (2) 5 4, 000	(2) 8, 697	(2) (2) 4, 175	3, 317 (²) (²)	(2) (2) (2)	(2) (2) (2)	(2) (2) (2)
Palestine, crude potassium salts 7	36, 467 (²) 339	18, 234 (2) (2)	58, 118 (2) 445	29, 059 (2) (2)	8 63, 527 (2) (2)	31, 764 (2) (2)	(2) (2) (2)	(2)	(2) (2) (2)	(2)

In addition to countries listed, Iran is reported to produce a small quantity of potash salts, but statistics of production are not available.
Data not available.
Includes some natural kiescrite.
Salable.
Estimated production (Imperial Institute, London).
Exports of potassium carbonate.
Exports of potassium carbonate.
Exported from waters of Dead Sea.

⁸ Exports.
9 Extracted from waters of Red Sea.

break of hostilities in Europe in 1939; hence, there has been a dearth of information on world production of potash in recent years. The appended table represents a compilation of all official statistics on production that have been issued for 1937 to 1941.

FOREIGN DEVELOPMENTS

Australia.—Reports from London state that potash resources in Australia are being explored through the Commonwealth Council for Scientific and Industrial Research. Deposits in the bed of Lake Campion in Western Australia are estimated to contain 2,000,000 tons of alunite, from which 250,000 tons of potassium sulfate could be obtained. Plans are said to include dredging the deposit and constructing a plant to produce 200 tons per week of sulfate or chloride. This would satisfy demands of the Commonwealth, which normally imports around 12,000 tons of potash salts a year. Stocks accumulated in anticipation of interrupted imports are believed to be adequate to last until production can start. The possibility of applying American processes for the production of alumina and aluminum metal

from alunite likewise is being studied.

Chile.—Potash production in Chile has been a relatively unimportant offshoot of the sodium nitrate industry. A mixture of sodium and potassium nitrates containing about 14 percent potash found favor in the American market during the last war and earned a profit for the manufacturers. Shipments have continued ever since and in 1941 constituted about two-thirds of the potash fertilizer salts imported. A significant new development is foreshadowed in the recent announcement that the Chilean Government has contracted with the Compañia Salitrera de Tarapacá y Antofagasta (nitrate producers) to organize a company to be known as Sociedad Chilena Explotadora de Potasa to work potash deposits in the Salar de Pintados, in the Province of Tarapacá near Iquique. Plans are said to call for immediate construction of a plant to produce 30,000 tons of refined potash salts a year.

France.—No longer a producer of potash after the loss to Germany of the Alsatian mines in 1940, Unoccupied France is receiving its potash supplies from Spain, doubtless with the consent of German authorities and probably due to transportation difficulties from Alsace. Shipments from Barcelona enter at the port of Cette on the Mediterranean. Rumored plans called for delivery of about 50,000 tons in 1941, but it is believed that less than this amount actually was

supplied.

Germany.—The potash mines in Alsace, formerly German-owned but operated by the French Government after the Treaty of Versailles until retaken by the Germans in 1940, are believed to have been returned to their original owners for reincorporation into the German industry. It is not known what disposition has been or will be made of the privately owned Mines de Kali Sainte Thèrése. It is reported that they are being operated by a German company organized for the purpose, but it appears that the French company is being kept alive by the Germans. It is understood that considerable difficulty has been experienced in reestablishing the Alsatian industry. When this operated under French control nearly half the output was ex-

POTASH 1463

ported through Belgian or Netherlands ports. These outlets now are closed, and transportation in other directions is difficult. Shortages likewise are felt in supplies, equipment, and manpower. Similar problems face the industry in Germany proper. It is believed that little, if any, German potash is being shipped overseas, and it is doubtful whether increased use at home and in the German-dominated countries in an effort to obtain maximum crop production can offset the loss of overseas trade. As previously reported, the big potash companies have attempted to stabilize their operations by branching out into other fields, such as the production and refining of oil, the manufacture of synthetic motor fuels and other byproducts from coal, and the production of magnesium metal and magnesium products.

Under agreements with the German-French Potash Cartel, entered into in 1935 by Spanish producers, Germany delivered several hundred thousand tons to foreign buyers for the account of Spanish producers in 1936, 1937, and 1938, when the Spanish mines were closed by the civil war. The agreements were understood to provide that Spanish producers would be entitled at a later date to indemnification or an increased share in the export market. The Spanish companies are controlled by French and Belgian interests, but both countries are under German domination. There are indications of German interest in rehabilitation of the Spanish mines that resumed production in 1939 but are still far below their maximum pre-war output. If Germany could help to build up Spanish exports, it would serve the double purpose of liquidating indebtedness and conserving foreign markets, insofar as that may be possible.

Palestine.—The chairman of Palestine Potash, Ltd., in his statement to stockholders at the annual meeting November 12, 1941, reported that progress in output and sales had continued without interruption, despite shipping difficulties and delays in obtaining plant and materials brought about by prevailing conditions. From the start of operations, costs decreased steadily until the outbreak of war. Since then there have been certain inevitable increases. £250,000 spent in the 3 years 1938—41 on plant, machinery, and buildings increased output, rationalized production, and maintained for the company its status as what is believed to be the cheapest potash producer in the world. Although profit on trading increased from £199,000 in 1939 to £292,000 in 1940, provision for excess-profit taxes, participation in profits by the Governments of Palestine and Transjordan, and United Kingdom taxation reduced the net profit from £80,254 in 1939 to £15,773 in 1940. Since the outbreak of war, information regarding production and shipments has been considered confidential.

Spain.—Production of potash was resumed in 1939 after the close of the Spanish Civil War, which interrupted operations in 1936. The properties were rehabilitated slowly under difficult conditions. The damage suffered by mines and plants is reported to have been largely from disuse rather than from sabotage. Although no definite information is available regarding the present scale of operations, it is believed that the three operating companies—Minas de Potasa de Suria, Potasas Ibericas S. A., and Union Española de Explosivos—are producing refined salts at the rate of 100,000 to 120,000 tons of K₂O per year. Imports into the United States from Spain in 1941 included 13,655 short tons of muriate. One shipload consigned to

the United States in December was reported to have been recalled and unloaded at Lisbon. The American market is not particularly attractive to the Spanish exporters because prices are considerably lower than in other markets and high ocean freight and insurance rates leave little profit. Union Española de Explosivos is export selling agent for all three companies, and sales in the United States are handled by the French Potash & Import Co., formed to take over French business when war between France and Germany caused dissolution of the joint sales agency N. V. Potash Export My. Spanish consumption of potash has increased greatly and may now be as much as 40,000 tons of K₂O a year. Spain is supplying potash to Unoccupied France and is reported to have delivered a substantial tonnage to England. It is understood that shipments will be made only on navicerts from Britain and Germany.

MICA

By Paul M. Tyler and K. G. Warner

SUMMARY OUTLINE

	Page (Page
Summary	1465	Mica splittings	1474
Salient statistics	1466	Built-up mica	1476
Domestic production	1466	Prices	1477
Sheet mica	1466	Foreign trade	1478
Scrap mica		Imports	1478
Ground mica	1469	Exports	1480
Total consumption of block and sheet mica	1471	World production	1481

SUMMARY

After making new records during 1940, the demand for all kinds of mica continued to increase in the United States until the fourth quarter of 1941, when curtailed manufacture of civilian goods and other conservation measures temporarily offset the growing needs of war industries. Domestic production of sheet mica responded to the increased demand with a 64-percent expansion, and imports increased 31 percent. After Pearl Harbor, estimates of 1942 requirements were boosted to 5,000,000 pounds for strategic block mica alone; but even this high figure, calling for more than doubling normal world production, was viewed with complacency in the expectation that with Continental Europe and Japan out of the market the United States could procure about 50 percent of its expanded needs from British India, 40 percent from Brazil, and 10 percent from other sources (chiefly domestic).

Stocks of splittings at the year end were highly satisfactory, particularly in view of the reduced civilian demand; and, with the possible exception of condenser mica, stocks of block mica in private hands and in Government stock pile were fairly well maintained. Not until Japanese successes in the Pacific threatened to cut off further deliveries from India did fears of an acute shortage of mica become at all general.

The rapidly expanding output of combat equipment created an unprecedented demand for strategic mica, which is defined as block and punch mica of better than heavy-stained quality, free of mineral inclusions (black or red spots, stains, or streaks), cracks, pinholes, cross grains, reeves, and ribs and relatively free of clay staining. It must be hard, clear, reasonably flat, and capable of being evenly and easily split into laminations or sheets of uniform thickness over the entire area, yielding sheets at least 1 by 1 inch in size. The heaviest demand is for 1½- by 2-inch, 2- by 2-inch, and 2- by 3-inch sizes. The principal strategic applications are for making parts of radio transmitting and receiving equipment, aviation magneto condensers and spark plugs, and electrical power development machinery.

To stimulate domestic production, the War Production Board took steps to finance the purchase of strategic mica through the Metals Reserve Co., a subsidiary of the Reconstruction Finance Corporation. Miners were urged to attain maximum output; and, because of the complexities of mica classification, instructions on grading and trimming were prepared.

Splittings, nearly all of which are obtained in India, are also important to the war program. Consumption of splittings, which are used for making a great variety of "built-up" mica products, increased

48 percent in 1941 compared with 1940.

Figures for scrap and ground mica are of lesser significance because

they are not regarded as strategic.

The accompanying table of salient statistics portrays outstanding features of the mica industry during the past 5 years.

Salient statistics of the mica industry in the United States, 1937-41

1937	1938	1939	1940	1941
		l		1
1,694,538	939, 507	813, 708	1, 625, 437	2, 666, 453
\$285, 244	\$139, 333	\$138,963	\$291,685	\$566, 85
\$0.17	\$0.15	\$0.17	\$0.18	\$0. 2
	• 7	****	•	
25, 196	20, 257	24,672	22, 386	32, 50
\$354,737	\$256, 382	\$311,895	\$314,565	\$442,78
\$14.08	\$12.66	\$12.64	\$14.05	\$13.6
26, 043	20, 727	25, 079	23, 199	33, 83
\$639, 981				\$1,009,64
,	4000,120	4200,000	4000, 200	41,000,01
27, 245	27, 086	30, 924	27, 984	43, 41
\$839, 812				\$1, 532, 35
, ,,	* ,	*-,,	4-,,	Ψ=, σσ=, σσ
4, 347, 435	1, 667, 806	3, 423, 044	4.918.861	7, 297, 62
\$1, 257, 645	\$612, 465	\$1,089,683	\$1,725,522	\$2, 832, 93
1 004 950	301 125	002 508	1 534 199	2, 016, 85
				\$1, 119, 58
φ200, 200	φ110, 100	φ211, 012	φυιυ, υυυ	φ1, 110, 00
6 723	4 450	4 970	3 061	1, 25
\$36, 355	\$28,590	\$29, 493	\$22,611	\$12,79
7 996	4 646	4 790	2 000	9.05
4222 500			9500 176	2, 25 \$1, 132, 37
\$552,090	\$141, 995	\$300,000	\$999,170	\$1, 132, 37
4 119	1 115	1 550	9 000	0.04
4,113				6,04
\$1,735,009	\$522, 420	\$758, 745	\$1,884,952	\$3, 282, 65
				8, 300
\$2,067,599	\$664,419	\$1,059,310	\$2, 484, 128	\$4, 415, 03
	1			
1,795				1, 16
\$216, 858	\$183,889	\$226, 364	\$191,550	\$280, 810
	1, 694, 538 \$285, 244 \$0.17 25, 196 \$354, 737 \$14.08 26, 043 \$639, 981 27, 245 \$839, 812 4, 347, 435 \$1, 257, 645 1, 004, 950 \$296, 235 6, 723 \$36, 355 7, 226 \$332, 590 4, 113 \$1, 735, 009 11, 339 \$2, 067, 599 1, 795	1, 694, 538	1, 694, 538	1, 694, 538

Includes mica recovered from kaolin and mica schists, as follows: 1937, 10,536 tons, \$149,931; 1938, 6,550 tons, \$86,602; 1939, 10,011 tons, \$108,899; 1940, 9,674 tons, \$138,148; 1941, 15,583 tons, \$185,486.
 Exclusive of a nominal quantity of splittings produced in the United States and South America.

DOMESTIC PRODUCTION

Sheet mica.—Production of sheet mica in the United States increased sharply in 1941 to an all-time record total of 2,666,453 pounds (valued at \$566,858). This compares with a previous record quantity of 2,476,190 pounds worth only \$283,832 in 1910. The value of the 1941 MICA 1467

output, however, fell short of the record established in 1917 and of 1918. In the former year the output was only 1,276,533 pounds, but it was valued at the high figure of \$753,874; the 1,644,200 pounds produced in 1918 were valued at \$731,810.

As usual, most of the 1941 output was punch mica. Production of this material increased to 2,342,237 pounds valued at \$206,947, representing an increase of 67 percent in quantity and 78 percent in value over that of the preceding year. Although the production of sheet larger than punch showed a smaller percentage increase in quantity, it increased much more in value, the 1941 total being 324,216 pounds worth \$359,911 compared with 220,132 pounds and \$175,598

in 1940, and only 147,953 pounds and \$99,756 in 1939.

About 61 percent of the punch and 54 percent of the larger sheet were produced in North Carolina in 1941. Sales of punch in that State were 70 percent and in the United States as a whole 67 percent greater in 1941 than in 1940. Sheet-mica sales, however, increased only 13 percent in North Carolina, whereas the increase for the country as a whole was 47 percent. New Hampshire, the second-largest producing State, made a large percentage increase in output, as did several of the smaller producing States. In Connecticut, a small reduction in the output of punch was more than offset by a 133-percent increase in yield of sheet.

Mica sold or used by producers in the United States, 1925-41

			Sheet	mica				mica.			
Year	Uncut punch and circle mica ¹		larger	Uncut mica larger than punch and circle		uncut mica	reco	mica vered kaolin schists	Total		
	Pounds	Value	Pounds	Value	Pounds	Value	Short tons	Value	Short	Value	
1925-29 (average) 1930-34 (average) 1935-39 (average) 1937 1938	1, 433, 684 589, 668 888, 313 1, 312, 900 774, 121 665, 755	25, 764 46, 408 70, 493 45, 566		69, 930 139, 306 214, 751 93, 767	1, 140, 724 1, 694, 538 939, 507	95, 694 185, 714 285, 244 139, 333	10, 869	285, 512 354, 737 256, 382	12, 607 11, 241 22, 557 26, 043 20, 727 25, 079	471, 226 639, 381	
1940: Connecticut New Hampshire. North Carolina Other States 3	848, 663 143, 692	14, 849 10, 747 78, 214 12, 277	40, 70% (2) 153, 983 2 25, 440	³ 10, 191	² 167, 969 1, 002, 646 ² 169, 132	¹ 10, 747 218, 154 ² 22, 468	(2) 11, 595 2 10,491	(²) 173, 327 ² 136,338	12,096 10,576	³ 10, 747 391, 481 ² 158,806	
1941: Connecticut New Hampshire North Carolina. Other States 3	157, 816 368, 794 1, 440, 349 375, 278 2, 342, 237	11, 135 36, 172 124, 355	26, 113 174, 514	118, 761 28, 932 194, 428 17, 790	394, 907 1, 614, 863	318, 783 53, 075	201 171 18, 234 13, 894	3, 983 3, 700 268, 596 166, 510	327 369 19, 041 14, 096	133, 879 68, 804 587, 379	

Includes small quantities of splittings in certain years.
"Uncut mica larger than punch and circle" and scrap for New Hampshire included with "Other States."
1940: Alabama, Arizona, California, Colorado, Georgia, Maine, New Mexico, New York, South Carolina, South Dakota, Vermont, and Virginia; includes also "Uncut mica larger than punch and circle" and scrap for New Hampshire; 1941: Alabama, Arizona, California, Colorado, Georgia, Maine, New Mexico, New York, Pennsylvania, South Carolina, South Dakota, Vermont, Virginia, and Wyoming.

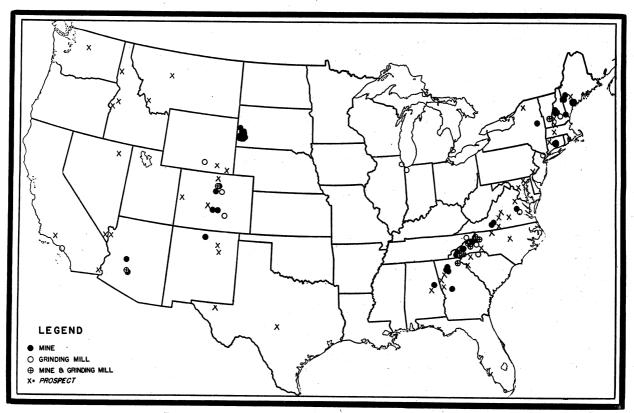


FIGURE 1.—Mica mines, prospects, and grinding mills in the United States.

MICA 1469

In North Carolina more than 16,500,000 pounds of sheet and punch mica have been produced since 1868 in the 250-square-mile area around Spruce Pine, N. C. T. L. Kesler and J. C. Olson of the Geological Survey report that mica or feldspar has been mined in this area from more than 500 pegmatite bodies. These bodies, some of them more than 100 feet thick, are most closely associated with alaskite (a variety of granite) and occur both in the alaskite and in adjacent metamorphic rocks. Commercial mica is commonly localized in irregular shoots or "streaks" and even in these shoots is distributed so irregularly as to preclude adequate prospecting or development in advance of mining. From field studies and analysis of production records for 131 mines, these geologists concluded that systematic planning of mica mining in this area as a whole could easily raise the output of relatively clear sheet mica to 90,000 pounds a year, perhaps several times this amount. Careful measurements were made by E. L. Hall of the National Bureau of Standards of 196 samples collected from 109 mica mines and 15 feldspar mines, and samples from 71 mines were found to have power factors low enough to meet the rigid requirements of radio-transmitter and high-tension magneto-condenser manufacturers.

Scrap mica.—After a slight set-back in 1940, the production of "scrap mica" from domestic sources jumped to 32,500 short tons valued at \$442,789, reflecting a sharp upturn in the rising demand curve and a reduction of imports from overseas. In addition to mine scrap, these figures include mica, recovered from washing kaolin or kyanite or by milling schist, amounting to 15,583 tons valued at \$185,486, compared with 9,674 tons valued at \$138,148 in 1940 and 10,011 tons valued at

\$108,899 in 1939.

Ground mica.—The production of ground mica likewise resumed its upward trend, advancing to 43,419 tons valued at \$1,532,351 compared with the previous record of 30,924 tons worth \$1,156,333 in 1939. Of special interest is the increase in output of wet-ground mica, which remained almost stationary around 3,000 tons a year until 1937, when it began to rise irregularly but rapidly. Following its rapid rise during the early 1930's, when other industries were in the doldrums, the output of dry-ground mica was seemingly stabilized after 1936, but in 1941 it also jumped into new high ground. Demand was active in all consuming outlets, and, although demands of the roofing industry accounted for the bulk of the increase, consumption in paint and miscellaneous uses showed the largest percentage gains.

The history of the scrap- and ground-mica industries over a series

of years is indicated in figure 2.

Ground mica sold by producers in the United States, 1937-41, by methods of grinding

	Dry-gr	ound 1	Wet-gr	ound	Total ¹		
Year	Short tons	Value	Short tons	Value	Short tons	Value	
1937	21, 150 19, 757 23, 222 21, 809 31, 914	\$457, 879 466, 959 547, 539 515, 930 733, 559	6, 095 7, 329 7, 702 6, 175 1 11, 505	\$381, 933 457, 595 608, 794 500, 698 1 798, 792	27, 245 27, 086 30, 924 27, 984 43, 419	\$839, 812 924, 554 1, 156, 333 1, 016, 628 1, 532, 351	

¹ Includes mica from kaolin and schists; some from sericite schist included in wet-ground in 1941.

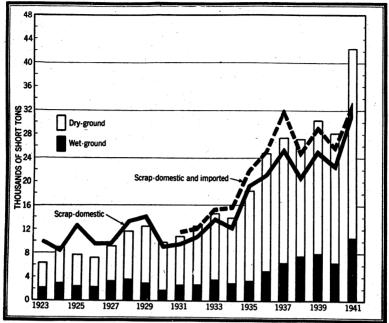


FIGURE 2.—Scrap and ground mica sold in the United States, 1923-41.

Ground mica sold by producers in the United States to various industries, 1940-41

		1940		1941				
Industry	Qua	ntity		Qua				
	Short tons	Percent of total	Value	Short tons	Percent of total	Value		
Roofing ¹ . Wallpaper Rubber Paint Miscellaneous ³	18, 359 2, 915 1, 731 1, 874 3, 105 27, 984	66 10 6 7 11	\$385, 720 220, 995 144, 202 141, 192 124, 519 1, 016, 628	25, 178 3, 219 3, 476 4, 020 7, 526 43, 419	58 8 8 9 17	\$498, 946 256, 067 223, 182 253, 294 300, 862 1, 532, 351		

The question as to whether ground sericite can be commercially designated as "ground muscovite" or even as "ground mica" is controversial. Ordinary muscovite, damourite or hydromica, and oncosine or pinite all have roughly the same composition. Sericite and metasericite may be classified as subvarieties of damourite, which in turn is a variety of muscovite distinguished by small scales, which are less elastic, unctuous, and pearly to silky in luster. The term "sericite" is derived from the Greek word for "silky." It has been contended that the original sericite from the silky schist of the Nerothal near Wiesbaden was derived from the alteration of feldspar; some geologists insist that sericite is a secondary mineral and thus distinguishable from ordinary muscovite, which is primary.

Sericite is ground much more easily than ordinary muscovite or other forms of mica. Roughly prepared, it has been used extensively for roofing, as a refractory, in foundry facings, and as decorative

Includes mica from kaolin and schist.
 Includes mica used for molded electric insulation, house insulation, Christmas-tree snow, manufacture of axle greases and oil, annealing, pipe-line enamel, plastic specialties, textiles, and other purposes.

MICA 1471

material (for example, Christmas-tree snow). In 1941, sericite from a gold mine at Kershaw, S. C., was actively marketed. This new product, which requires only light disintegration and washing to yield a 325-mesh product, is used mainly for casein paint. Although selling for less than half the price, it is claimed to be better than ordinary water-ground mica in varnishes and certain other protective coatings because it lacks sheen yet retains the fish-scale form, which is one of the superior properties of wet-ground compared with dry-ground muscovite.

Mixing ground mica (325-mesh) with aluminum bronze powder to save aluminum has produced a paint having superior resistance to salt air and chemical fumes. Micronized mica, which is produced under exclusive franchise by one North Carolina company, yields a product marketed as 100 percent passing the equivalent of 3,000-mesh and used as an extender or filler in paints and plastics. Biotite, similarly ground, is employed in lubricating greases, leather finishes, and other special applications. Alone or combined with graphite, increasing quantities of ground mica are used in foundry facings, parting base, and core or mold washes.

TOTAL CONSUMPTION OF BLOCK AND SHEET MICA

Economists unfamiliar with the mica business are amazed to find that it is impossible to establish a satisfactory statistical picture of the industry. By eliminating scrap and considering the production and trade in ground mica as a distinct industry, the problem is clarified; a further simplification is to segregate splittings and built-up mica, but even when the discussion is narrowed to uncut sheet or block mica, it is still impossible to give a satisfactory answer to the seemingly simple question as to how much is consumed in the United States.

During 1941, the consumption of virtually every class of mica increased greatly, but the principal increases were of the better qualities used for military radio and magneto condensers, airplane spark plugs, and other strategic uses. Monthly statistics of actual consumption and stocks of specified grades and qualities of block mica were first collected by the Bureau of Mines in July 1940, and these figures are summarized upon a quarterly basis in the form of bar charts in

figure 3.

The statistics on domestic production of raw sheet or block and imports for consumption of all kinds of mica (manufactured as well as unmanufactured) other than scrap and ground mica are shown in the form of 5-year averages in an accompanying table. The sum of these figures tends to show that the average annual consumption of sheet mica, including imported manufactures, declined about 10 percent from 1925–29 to 1935–39. Actually, however, the total consumption was greater during the latter period, or at least the potential services rendered by the 6,038,958 pounds available annually during 1935–39 were greater than those afforded by the 6,672,519 pounds average total for 1925–29. This anomaly is due not only to the losses in manufacturing where parts of the sheet are trimmed away (in the same fashion that a suit of clothes weighs less than the material cut from the original bolt of cloth), but also to the difference in preparation of the so-called "uncut" sheets.

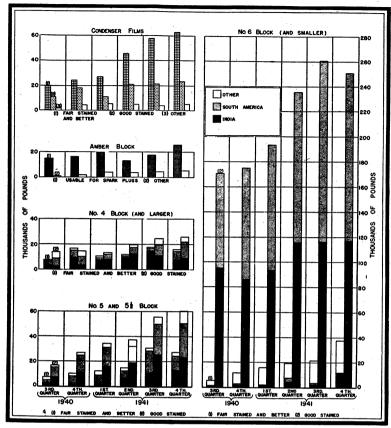


FIGURE 3.—Consumption of specified kinds of block mica in the United States, by quarters, July 1940 to December 1941.

Apparent consumption and changes in sources of supply of sheet mica (excluding scrap and ground mica), annual averages, 1925–29 and 1935–39

		quantity, ounds	Average p total appare	ercent of ent supply
	1925-29	1935-39	1925-29	1935-39
Domestic production (sales): Uncut punch Uncut sheet larger than punch	1, 433, 684 405, 400	888, 313 252, 411	21. 5 6. 1	14.7 4.2
Total production	1, 839, 084	1, 140, 724	27. 6	18.9
Imports for consumption: Uncut block valued not above 15 cents Uncut block valued above 15 cents	138, 495 666, 374	264, 794 485, 879	2. 1 10. 0	4. 4 8. 0
Cut or trimmed to size (sheet) Other manufactured sheet Splittings Built-up mica	804, 869 63, 960 31, 928 3, 921, 373 11, 305	750, 673 81, 209 4, 261 4, 020, 860 41, 231	12. 1 . 9 . 5 58. 7 . 2	12. 4 1. 3 . 1 66. 6
Total imports	4. 833, 435	4, 898. 234	72.4	81. 1
Grand total	6, 672, 519	6, 038, 958	100.0	100.0

MICA 1473

Mica comes from the ground in irregular pieces, which are roughly sorted or "cobbed" to remove the bulk of the scrap or waste mica suitable only for grinding. The remaining crystals or blocks are split roughly ("rifted") into thicknesses that permit careful inspection and easy cutting (usually less than ¼ inch). The next step is "trimming" or cutting away imperfections. In Bengal all edge imperfections are removed by sickle, which leaves an irregular and often indented outline. Madras mica is trimmed by knife or guillotine shears; the outline is much more regular, the edges being all straight, corners sharp, and re-entrant angles absent. Smaller sizes of Madras sheet may be knife-cut into "rounds," but all Madras is closely trimmed. According to Wierum:

After trimming, the sheets are graded or sized, generally by the use of a template upon which each piece is laid. The horizontal and vertical lines of the chart that are at the greatest distance from a given corner, and that are entirely covered by the piece of mica indicate its "grade" number or size. The sized sheets then go to sorters, who determine the quality of each piece. They are the most responsible and the best-paid workers at an Indian mica plant. Frequently these men are able greatly to improve the quality by removing stained films from the interior of a sheet, thus making two or more thinner pieces, but of perhaps double the value per pound with a loss of only a small fraction of the original weight.

Practically all countries except the United States and Canada follow approximately India's methods of trimming sheet mica, but few of them use the meticulous care of the native Indians or offer a product so entirely free from surface and edge imperfections. There is one peculiarity of the Bengal trim, however, that is not generally imitated in other producing countries, largely because it is unnecessary unless splittings are to be made from the sheets. It is the beveling of the edges, produced by holding the native sickle at a sharp angle when trimming

the sheet.

The wastage in ordinary thumb-trimmed domestic mica has been estimated at fully 35 percent more than in Indian knife-trimmed. The waste in respect to domestic punch is much greater. One large consumer reports using about 350 pounds of North Carolina punch mica to make 100 pounds of washers and disks and approximately 155 pounds of domestic punch for 100 pounds of other die-cut products. A rough average for knife-trimmed mica is 150 pounds of raw mica for 100 pounds of stampings. In respect to condenser films, due to additional losses in splitting it takes less than 200 pounds of imported and 300 to 400 pounds of domestic condenser splits to make 100 pounds of finished rectangular films. South American mica in general is trimmed less closely than Indian but more closely than domestic.

In Minerals Yearbook, 1940, an attempt was made to show the domestic consumption of sheet mica in 1937 by uses. Of an estimated total of 2,600,000 pounds used in the United States in that year, 43 percent was used for washers, disks, and other small stampings; 29 percent for radio-tube parts; 19 percent for electrical appliances; 6 percent for condensers; 2 percent for aviation spark plugs; and less than 1 percent for miscellaneous uses. An estimate for July 1941 shows only 26 percent for washers, etc.; 35 percent for radio-tube parts; 10 percent for electrical appliances; 23 percent for condensers; 5 percent for spark plugs; and 1 percent for miscellaneous uses.

The foregoing figures include allowances for block-mica equivalents of imported condenser splits and involve other broad assumptions but tend to confirm the increasing importance of radio condensers

¹ Wierum, H. F., The Mica Industry: U. S. Tariff Commission Report 130, 2d ser., 1938, pp. 51-52.

and tubes for military communications and aviation spark plugs relative to consumers' durable goods and even industrial equipment. A further effect of this wartime change in the pattern of demand is the relative increase in requirements for the better grades of mica, notably condenser mica. Approximately half of the consumption of condenser mica in 1941 was of fair-stained or better qualities, chiefly sizes 5 and 5½, for transmitter or high-tension condensers.

Figure 4 summarizes graphically the situation with respect to imports and domestic production. The tremendous and growing importance of imported mica splittings is clearly shown in this chart. As regards block mica, because no adjustment is made for the large

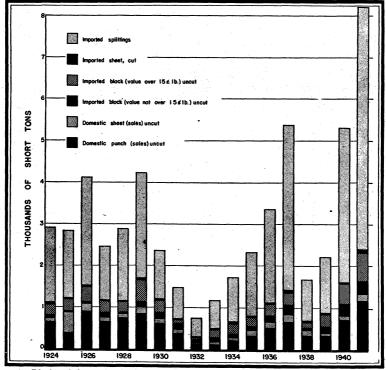


FIGURE 4.—Block and sheet mica (cut) and splittings imported for consumption in the United States, and sales of domestic sheet and punch mica, 1924-41.

wastage due to the rough trimming of domestic mica, the relative importance of domestic production is much less even than the chart indicates. The comparison probably would more nearly approximate actual manufacturing conditions if the quantities of domestic punch were reduced at least one-half and possibly two-thirds.

MICA SPLITTINGS

Notwithstanding a large increase in consumption over the 1940 alltime record, industry stocks of mica splittings increased during 1941, and a sizable Government-owned stock pile was created. Consumption of amber splittings increased even more rapidly than that of

1475

muscovite splittings during the latter half of 1940; but before the end of the first quarter of 1941 stocks were depleted, and prospects of obtaining supplies from Madagascar worsened so that consumption of such splittings began to decline sharply. Consumption of muscovite splittings reached a peak in May 1941 but rose to even higher levels in October, after which various voluntary conservation measures and the prospective curtailment in manufacture of civilian goods reduced the demand for built-up mica and consequently the consumption of splittings of all categories. No. 6 loose splittings represented 85 percent of the total consumption of muscovite splittings during the fourth quarter of 1940 and 80 percent of the total during the corresponding period of 1941. Even in this group, the proportion of first and second qualities increased sharply, whereas that of third quality diminished, but the trend to use higher grades was more marked in respect to larger splittings, especially those that were bookpacked.

Production of splittings in the Western Hemisphere has been confined largely to Canada. Phlogopite tends to split somewhat more readily than muscovite, and, in addition to the hand-made splittings produced in Quebec, variable but in some years substantial quantities of Canadian phlogopite have been imported (under lower-duty brackets) and split mechanically. Serious consideration has been given to increasing this business, and additional equipment was installed in 1941 for this purpose. As Canadian experience indicated a definite correlation between aptitude for splitting mica and ability to execute fine needlework, consideration also has been given to establishing a mica-splitting industry based upon Brazilian block mica in Puerto Rico; but this plan has not materialized, and steps have been taken to expand the small production of splittings in Brazil. Still another proposal is to bring small Brazilian block mica to Mexico for splitting. Late in 1941, the mining of amber mica near Oaxaca, Mexico, attained some importance, and several hundred Mexicans were trained in the art of making splittings. They have shown more aptitude for this work than Brazilians or Anglo-Saxon workers, and, as wages in the small towns or villages are I peso or less than \$0.25 a day, it would seem possible to expand the Mexican splitting industry to include Brazilian or even domestic muscovite.

Consumption and stocks of mica splittings in the United States, 1937-41, by sources, as reported by the consumers

	In	dia	Can	ada .	Mada	gascar	To	otal
Year	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
Consumption: 1 1937 1938 1939 1940 1941 Stocks in consumers' hands	3, 721, 594 1, 446, 349 2, 995, 626 4, 252, 120 6, 473, 459	\$965, 418 511, 674 905, 763 1, 358, 534 2, 334, 432	98, 618 41, 100 107, 101 54, 044 179, 783	\$51, 960 20, 401 44, 065 28, 491 131, 350	527, 223 180, 357 320, 317 612, 697 644, 386	\$240, 267 80, 390 139, 855 338, 497 367, 157	4, 347, 435 1, 667, 806 3, 423, 044 4, 918, 861 7, 297, 628	\$1, 257, 645 612, 465 1, 089, 683 1, 725, 522 2, 832, 939
Dec. 31: 1937	2, 754, 748	1, 094, 414 1, 128, 075 857, 656 1, 776, 974 3, 434, 336	77, 130 55, 827 52, 523 53, 378 115, 529	33, 722 24, 378 17, 697 35, 581 81, 988	444, 762 631, 119 673, 354 738, 489 223, 235	273, 465 410, 068	4, 442, 622 4, 744, 627 3, 480, 625 5, 412, 801 9, 551, 655	1, 324, 112 1, 426, 379 1, 148, 818 2, 222, 623 3, 650, 467

¹ Exclusive of a nominal quantity of splittings produced in the United States and South America.

Beginning with July 1940 the Bureau of Mines began to collect monthly statistics of consumption and stocks of mica splittings by sizes and qualities for the information of all the defense agencies. The consumption figures are summarized graphically upon a quarterly basis in figure 5.

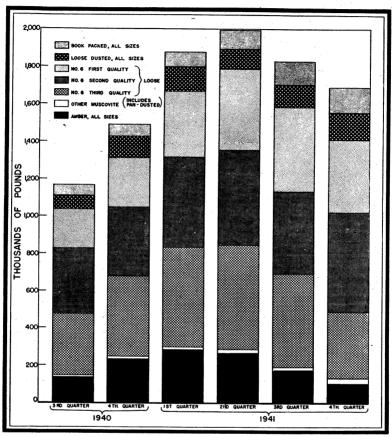


FIGURE 5.—Consumption of specified sizes and qualities of mica splittings in the United States, by quarters, July 1940 to December 1941.

BUILT-UP MICA

As indicated by the quarterly consumption figures for mica splittings shown in figure 5, factories handling built-up mica were operating virtually at capacity during the early part of 1941, but, as the growing shortages of metals and other materials brought about curtailment in the manufacture of electrical appliances and other consumers' durable goods and as some wartime substitution and conservation of mica began to take effect, demand for built-up mica diminished during the latter half of the year. Nevertheless, the total poundage for the year was 50 percent higher than the previous all-time record of 1940, and the value of the output was almost 40 percent higher.

MICA 1477

Built-up mica produced in the United States, 1940-41, by kind of product 1

.	194	40	1941		
Product	Pounds	Value	Pounds	Value	
Molding plate Segment plate Heater plate Flexible (cold) All other (tape, etc.).	1, 315, 000 1, 510, 000 561, 000 330, 000 697, 000	\$1, 410, 000 2, 024, 000 878, 000 383, 000 1, 116, 000	1, 873, 822 2, 317, 364 539, 410 705, 532 1, 199, 361	\$1, 854, 000 2, 599, 000 789, 000 754, 000 2, 089, 000	
	4, 413, 000	5, 811, 000	6, 635, 489	8, 085, 000	

¹ Partly estimated.

PRICES

It is generally conceded that, during the 1930's and for some time before, the broad trend of mica prices was upward, with prices of smaller and poorer kinds increasing relatively faster than those of the larger and better grades and sizes. Military requirements, however, have taxed the ability of the world's miners to supply mica of qualities equal to India good-stained or better. Late in 1941, progressive curtailment in production of refrigerators and other electrical appliances for civilian use diminished the demand for ordinary electrical and stove mica, and even before that the demand for these lower grades did not keep pace with that for higher qualities. Consumer acceptance of Brazilian mica and to some extent of domestic mica also has tended to place mica from other countries more nearly on the same price levels as comparable Indian grades. The net result of these market forces has been to advance prices of all kinds of mica together in response to the much higher cost of ocean transportation and insurance on shipments from India.

During 1940, efforts to stimulate domestic production resulted in relatively higher prices for punch and circle mica on the theory that this was the bulk-line product and so would afford maximum encouragement to the miners, but in 1941 the prices of North Carolina punch remained almost stationary while those of sheet or pattern mica increased. Toward the end of the year, owing to the falling off in demand for washers and other die-cut or shear-cut mica for household-appliance manufacturers who were unable to get priorities on metallic parts, prices of all kinds of domestic electrical mica began to weaken, suggesting a definite reversal of the pre-war trends favoring No. 6

Indian good-stained and lower grades.

Quantitative comparisons of mica prices, especially over a period of years, are impaired by the flexibility of standards and the fact that prices quoted by different suppliers, even on the same day, may vary widely. In December 1941, for example, one importer quoted two classes of No. 6 first-quality loose muscovite splittings at 36 and 46 cents a pound, respectively, and during the latter half of 1941 an important consumer paid as little as 34 and as much as 47 cents for splittings of this same designation. Weighted averages of all purchases by this consumer advanced from 31.1 cents during the prewar period July 1 to September 30, 1939, to 39.8 cents during the period July 1, 1941, to January 31, 1942—an increase of 28 percent. Another large consumer reported an apparent increase averaging

more than 30 percent (on a lower price range), whereas one leading importer reported an average advance of 35 percent and another 14 percent on this same large volume item. In respect to No. 6 seconds, an even larger tonnage item, reports from various users indicate a pre-war range of 18½ to 26 cents and 1941 year-end figures of 23 to 30 cents, indicating an average increase of at least 25 percent. Prices of Indian block mica are even more difficult to evaluate, as the spread between f. o. b. prices of different shippers tends to be greater even than that for splittings. Based upon the meager evidence available, it would appear that wartime increases in prices of standard good-stained Indian mica at the end of 1941 ranged from 10 to 25 percent, whereas those of Brazilian mica increased 25 to 50 percent or even more as a result of the narrowing of discounts on such mica as compared with similar Indian grades and sizes. In respect to the better grades of condenser splits, the increases were at least 50 percent and often more.

Before the war, the rupee depreciated in value from 37½ cents in 1936 to 30 cents in September 1939, but this was more than offset by higher prices in the bazaars, so that even in United States currency the mica price trend during that period was upward. After the outbreak of hostilities and throughout 1940 and 1941, rupee exchange remained steady while freight and insurance advanced. Based upon the net mica content of all shipments, ocean freight was equivalent to about 6 mills a pound until September 1939 but rose to 17 mills at the end of 1941. War risk and marine insurance, which before the war was 0.25 percent from Calcutta to New York, after Pearl Harbor jumped to 8 percent by way of Cape of Good Hope and 10 percent across the Pacific. Even as late as the early summer of 1941, the insurance rates on shipments in United States vessels were only 1.5 percent via the Cape and 0.5 percent via Panama or Transpacific. On shipments from Brazil, war-risk insurance was 0.10 percent before Pearl Harbor, after which it jumped to 1.5 percent.

FOREIGN TRADE 2

Imports.—In 1941 the total imports of all kinds of mica increased to 8,300 short tons valued at \$4,415,031 compared with 7,688 tons valued at \$2,484,128 in 1940. Waste and scrap phlogopite imports nearly doubled, but imports of other waste and scrap declined to a mere fraction of their 1940 volume. Imports of untrimmed phlogopite declined moderately, while those of the higher grades of sheet mica increased substantially. Further details on imports by kinds and sources of origin are indicated in the following tables.

² Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

Mica imported for consumption in the United States in 1941, by kinds and by countries

					Unma	anufa	cture	đ			
	Waste more t	and scra han 5 ce	ap, value nts per pe	d not ound	ph:	trimn logop ca fro	ite			Other	
Country	Phlog (duty, cen	15 per-	Other (duty, 25 per- cent)		which no rectangular plece exceed- ing in size 1 inch by 2 inches may be cut (duty, 10 percent)		above per n. (duty	ned not 15 cents pound e. s. 4 cents pound)	Valued above 15 cents per pound (duty, 4 cents per pound+25 percent)		
	Pounds	Value	Pounds	Value	Pour	nds V	alue	Pound	ls Value	Pounds	Value
Africa: Madagascar Portuguese Africa Union of South								2:	20 \$19	21, 732 3, 182	\$15, 302 1, 423
AfricaArgentina								125, 5 4 294, 3	10 49	93, 895 163 706, 098	197 53, 351 65 409, 231
Brazil Canada Canada Guatemala India, British Japan Mexico	2, 434, 080	\$12, 452	48, 600 4, 200	\$266 52	164,	870 \$2	1,904	37, 79 12, 13		94, 227 1, 272 3 435, 423	65, 705 357 477, 627
Japan Mexico Peru United Kingdom			14, 583	21				2, 9			959 2, 385 1, 461 9, 254
Total: 1941		12, 452	67, 383 4, 897, 935	339			1, 904 0, 171	473, 74	19 60, 363	1, 378, 233	1, 037, 317
				Man	ıfactu	red—	Films	s and s	plittings		
		Not cu	t or stam	ped to d	limens	sions		Cut			
Country	i	Not above 12 ten- thousandths of an inch in thick- ness (duty, 25 percent)		an inc	er 12 t sandt ch in (duty ercent	hs of thick- y, 40	of dut		or ed to sions 5 per- t)	Total fil splitt	
		Pounds	Value	Poun	ds	Value	Po	ounds	Value	Pounds	Value
Africa: Madagascar. Argentina Brazil Canada		53 294, 28	9 34 8 432 1 159, 856	13,	244 002 110	\$12 5, 55 17	5	100	\$350	107, 420 303 13, 540 294, 491 794	\$21, 979 156 5, 983 160, 38- 200
France India, British Japan United Kingdom		10, 694, 56 42, 93	0 2,486,63	499,	587 980 146	416, 68 8, 54 1, 05	9	14, 710		11, 208, 857 20, 980 43, 082	2, 942, 23
Total: 1941		11, 140, 58 7, 016, 66	2,681,563 66 1,568,483	534, 2 350,		432, 14 203, 62		14, 810 19, 676		11, 689, 467 7, 386, 397	

 $\begin{tabular}{ll} \it Mica imported for consumption in the \it United \it States in 1941, by kinds and \it by countries- \\ \it Continued \end{tabular}$

		Manufactured—Other									
Country	Manufac Cut or sta dimen shape, o (duty, 40	amped to sions, or form	Mica pla built-ur (duty, 40)	mica .	All manu of which the com material value (d perce	mica is ponent of chief uty, 40	Ground or pulverized (duty, 15 percent)				
	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value			
Brazil Canada Custemala India, British Peru United Kingdom	7, 359 350 2, 192 148, 624 2, 026 1, 200	550 1,030 97,844 1,174		\$997 12, 869	4, 850	\$7,025	197, 750	\$2,625			
Total: 1941 1940	161, 751 76, 010	106, 164 69, 641	27, 874 16, 605	13, 866 15, 001	4, 850 540	7, 025 540	197, 750 239, 280	2, 625 3, 846			

Exports.—Exports of mica, both unmanufactured and manufactured, were higher in 1941 than in 1940. The great increase in exports to Africa and to Latin America is noteworthy.

Mica and manufactures of mica exported from the United States in 1941, by countries

			Manufactured				
Country	Unmanı			nd or erized	Other		
	Pounds	Value	Pounds	Value	Pounds	Value	
North America:							
Canada Cuba	428, 775	\$4,967	690, 238	\$25, 311	97, 436	\$165, 298	
Mexico	2.000	94	12,000 18,550	455 1, 183	1, 276 3, 152	3, 044	
Other North America			2, 773	187	1, 955	4, 594 2, 414	
Argentina Brazil			53, 405	2, 153	1, 255	2, 779	
Brazil			49, 750	1, 665	9, 551	6, 741	
Chile Vonezuela					5, 851	11, 194	
Other South America			258, 000 4, 400	6, 570 168	261	296	
				108	4, 548	3, 740	
Spain			2,000	80	333	495	
Onica Kingdom		1	336 (W)	9, 580	30	600	
Other Europe					717	946	
China	1				FOR	055	
India, British	1		40,000	1, 173	506 1,093	855 2, 624	
Netherlands Indies	l l		47, 700	1, 869	1,732	5, 734	
Other Asia	_ 1			2,000	1, 537	3, 903	
Airica	2.000	80	208, 460	4,681	979	1, 955	
Oceania			26, 900	1, 132	2, 720	2, 253	
Total: 1941		5, 141	1, 759, 176	56, 207	134, 932	219, 462	
1940	315, 565	2, 524	1, 412, 309	52, 284	78, 467	136, 742	

WORLD PRODUCTION

Owing to disturbed conditions throughout the world, data on production in foreign countries are scanty. The following table presents available figures.

World production of mica, 1937-41, in metric tons 1

[Compiled by B. B. Waldbauer]

Country 1	1937	1938	1939	1940	1941	
North America:						
Canada (sales)	857	470	790	(2)	(2)	
Mexico (exports)	(2)	(2)	(2)	39	. 36	
United States (sold or used by producers) 3	23, 626	18,803	22, 751	21,046	30, 693	
South America:	1	1			•	
Argentina 4	225	250	298	442	⁵ 550	
Bolivia (exports)	9	4		1	(2)	
Bolivia (exports) Brazil (exports)	330	521	435	1, 117	867	
Peru	5	24	9	4	- 8	
Europe:		1 1		- 1		
Lurope. Italy	24	122	(2)	(2)	(2)	
Norway (exports)	42	104	25	(2)	(P) (P) (P)	
Rumania	27	22	18	(2)	(2)	
Sweden	68	131	126	(2) (2) (2) (2)	(2)	
Asia:		1 1		1		
Ceylon (exports)	1	(6) (2)	(6) (2)	2.	(P)	
Chosen	5 70	(2)	(2)	(2) (2)	(2)	
India, British (exports)	15, 106	8,896	10, 104	(2)	(2)	
Africa:				1		
Madagascar	583	677	(2)	531	(2)	
Nigeria		3	(2) (2)	(2)	(2) (2)	
Portuguese East Africa			17	(2)	(²)	
Rhodesia:						
Northern		4	2	(2) (2)	(2)	
Southern	17	13	6	(2)	(2) (2) (2)	
Tanganyika Territory Union of South Africa: Transvaal	71	37	36	10	(2)	
Union of South Africa: Transvaal	1,740	1, 116	972	1, 252	7 538	
Oceania:				1		
Australia:						
Northern Territory		49	34	32	(2)	
South Australia	43	17	56	70	(Ý) (P)	
Western Australia			(6) (2)	1	(2)	
New Zealand	(2)	(2)	· (2)	(6)	(2)	

¹ In addition to the countries listed, mica is also produced in Australia (Queensland and New South Wales), Eritrea, Kenya, and U. S. S. R., but data on production are not available.

² Data not available.
² Includes following quantities recovered from kaolin and schists: 1937, 9,558 tons; 1938, 5,942 tons; 1939.
9,082 tons; 1940, 8,776 tons; 1941, 14,137 tons.
² Rail and river shipments.
² Official estimate.
² Less than 1 ton.
² January to June, inclusive.

SALT

By F. E. HARRIS AND K. G. WARNER

SUMMARY OUTLINE

	Page		Page
Summary	1483	Uses	1487
Salient statistics	1483	Marketing	1490
Production	1485	Prices	1490
By States	1485	Market grades and packages	1490
Methods of manufacture	1485	Distribution of sales	1491
Evaporated salt	1486	New sources	1492
Rock salt		Imports and exports	
Pressed blocks		World production	1494
Salt content of brine	1487		

SUMMARY

Total salt production in 1941, which aggregated 12,720,629 short tons valued at \$33,620,376, increased 23 percent in quantity and 27 percent in value compared with 10,359,960 tons valued at \$26,474,619 (revised figures) in 1940. Of the total in 1941, salt in brine increased 27 percent, evaporated salt 20 percent, and rock salt 16 percent. unit value per ton of the total salt increased from \$2.56 (revised figure) to \$2.64.

Increased supplies of various kinds for waging war required larger quantities of salt of all classes—a fact confirmed not only by the following table of salient statistics but by figures obtained regarding uses Although the import statistics for 1941 given below cover only 9 months of the year, they indicate a declining rate. Exports likewise declined; however, they maintained the favorable trade balance that has existed for some years past.

Salient statistics of the salt industry in the United States, 1930-34 (average), 1935-39 (average), and 1940-41

	1930–34 (average)	1935–39 (average)	1940	1941	
old or used by producers: Manufactured (evaporated)short tons In brine	2, 251, 226	2, 507, 374	2, 782, 741	3, 3 3 0, 106	
	3, 333, 391	4, 205, 587	1 5, 311, 671	6, 771, 43 6	
Rock saltdo	1, 822, 889	1, 947, 254	2, 265, 548	2, 619, 087	
Total: Short tons. Value ³ A verage per ton ²	7, 407, 506	8, 660, 215	¹ 10, 359, 960	12, 720, 629	
	\$22, 331, 641	\$23, 405, 612	¹ \$26, 474, 619	\$33, 620, 376	
	\$3. 01	\$2. 70	¹ \$2. 56	\$2, 64	
mports for consumption; For curing fish short tons.	20, 360	\$ 21, 250	³ 12, 965	4 4, 820	
	\$34, 492	\$ \$43, 722	³ \$25, 174	4 \$16, 421	
In bags, barrels, etcshort tons	2, 620	1, 385	1, 024	4 \$9.300	
Value	\$24, 796	\$11, 813	\$6, 601		
In bulk short tons Value short tons	16, 721	24, 131	16, 413	4 5, 870	
	\$37, 579	\$55, 876	\$59, 029	4 \$13, 3 31	
Total:	00 801	40 800	20, 400	4 11 601	
Short tons Value Exports:	39, 701 \$96, 867	46, 766 \$111, 411	30, 402 \$90, 804	4 11, 605 4 \$39, 052	
Short tons	88, 662	90, 214	147, 044	4 87, 807	
Value	\$642, 384	\$521, 652	\$699, 340	4 \$575, 988	
Apparent consumption short tons	7, 358, 545	8, 616, 767	1 10, 243, 318	<u>(4)</u>	

Revised figures.
 Values are f. o. b. mine or refinery and do not include cost of cooperage or containers.
 Includes salt in bags, sacks, barrels, or other packages: 1938, 93 tons valued at \$673; 1940, 6 tons, \$12.
 Figures cover January to September, inclusive.
 Figures not available for publication.

The accompanying graph (fig. 1) illustrates how strikingly the great demand on the chemical industries affected the curve that represents the quantity of salt in brine produced and used in 1941. The index for salt in this category paralleled very closely the index of industrial activity throughout the period graphed (1935–41) and during 1941 accompanied the rising index of general business, passing it by 5 points. The curve of the combined quantity of evaporated and rock salt produced or sold was not quite so spectacular in its progress. In 1935 this salt of commerce began at a higher level and rose until 1937, but thereafter, in common with salt in brine and general business, it dropped and reached a low point in 1938. However, this drop was in the nature of a sag rather than a sharp decline, for it was still 8

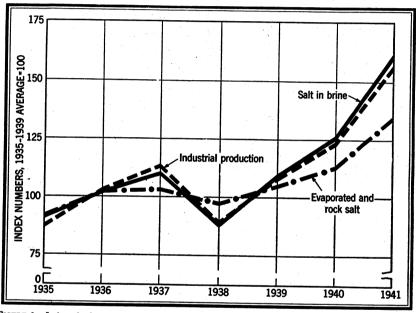


FIGURE 1.—Index of salt used in brine and of evaporated and rock salt compared with Federal Reserve Board index of industrial activity, 1935–41.

points above general business and 9 above salt in brine. From 1938 on it rose steadily, and although in 1941 it failed to attain the height of general business by 22 points its tonnage was the highest in history.

In numerous sections of the country wages increased as much as 13 to 45 percent. In some localities labor was scarce or not available. Fuel costs in one area increased as much as 60 percent. Bags and other packaging material cost considerably more. Where producers had difficulty in obtaining the required materials with which to work and could not make necessary repairs on their plants their output declined. Those who experienced a combination of all these difficulties plus competition—which precluded higher prices—said the profits in 1941 were negligible.

In Puerto Rico the imposed tax of 1 cent per pound of salt sold pre-

vailed until August 12, 1941, when it was repealed.

PRODUCTION

The output of salt from mines, wells, and ponds in the United States was reported to the Bureau of Mines by 83 plants of 65 companies in 13 States and Puerto Rico for 1941 compared with 83 plants of 66 companies that reported for 1940.

Production by States.—In 1941, as in years past, Michigan ranked first in total production of salt, as well as of evaporated salt, and New

York led in rock-salt production.

Salt sold or used by producers in the United States, 1939-41, by States

State	1939		19	40	1941		
	Short tons	Value	Short tons	Value	Short tons	Value	
California Kansas Louisiana Michigan New Mexico New York	404, 689 641, 752 1, 072, 540 2, 408, 872 (3) 2, 041, 492	\$1, 980, 777 2, 591, 934 2, 830, 331 6, 726, 912 (2) 5, 855, 422 2, 647, 355	469, 354 684, 053 1, 132, 594 1 2, 863, 035 13, 915 2, 117, 671 2, 080, 133	\$2, 200, 640 2, 710, 847 2, 804, 406 1 7, 479, 905 41, 573 6, 523, 775 2, 781, 599	484, 632 781, 014 1, 242, 242 3, 620, 649 16, 641 2, 719, 586 2, 510, 096	\$2, 290, 26 3, 254, 82 3, 251, 49 10, 975, 87 51, 51 7, 416, 73 3, 367, 54	
Ohio Oklahoma Puerto Rico Texas Utah West Virginia Other States 3	1, 794, 788 (2) 13, 325 352, 008 68, 100 144, 727 335, 618	(2) 57, 707 604, 633 202, 244 773, 988 238, 377	(1) 11, 724 402, 165 71, 472 144, 312 369, 532	(2) 62, 645 792, 214 191, 263 701, 953 183, 799	10, 743 14, 444 656, 569 107, 079 143, 780 413, 154	42, 73 72, 22 1, 713, 50 196, 41 792, 10 195, 14	
	9, 277, 911	24, 509, 680	110, 359, 960	126, 474, 619	12, 720, 629	33, 620, 3	

Methods of manufacture.—Evaporated salt is manufactured either from natural brine of wells and ponds or by forcing water into salt beds and withdrawing it. The brine is evaporated by one of several Salt evaporated in open pans or grainers is flaky and differs physically from the resulting grains of other methods. It is commonly known as flake salt and in the industry as grainer salt, and it is classified on standard lists as "medium" salt, being popular for certain food uses. Salt quoted on the market as vacuum fine is evaporated in vacuum "pans," which are mainly upright cylinders in single or multiple "effects." The product is a fine salt classified as evaporated granulated. Most of it is used for table salt. Solar salt is the product of sea water or inland playas. After the salt water goes through a series of settling ponds the salt is harvested. It may then be treated further in vacuum pans to produce fine table salt, or it may be screened and sized. The coarse salt is employed for or it may be screened and sized. industrial purposes for which rock salt may be used. Rock salt is mined or quarried and is crushed and sized for industrial uses. In some deposits it is pure enough for table salt after crushing and screening.

¹ Revised figures.

Included under "Other States."

Included under "Other States."

Inspl. Colorado, New Mexico, Oklahoma, and Virginia; 1940: Colorado, Oklahoma, and Virginia; 1941: Colorado and Virginia.

Salt sold or used by producers in the United States, 1940-41, by methods of manufacture

Method of manufacture	19	140	1941		
	Short tons	Value	Short tons	Value	
Evaporated: Bulk:					
Open pans or grainers Vacuum pans	505, 491 1, 667, 273	\$4, 247, 212 9, 753, 419	501, 236 2, 192, 142	\$4, 100, 293 12, 596, 983	
Solar Pressed blocks Rock:	457, 710 152, 267	1, 634, 603 1, 193, 237	454, 397 182, 331	1, 577, 740 1, 505, 040	
Bulk Pressed blocks	2, 225, 377 40, 171	7, 102, 404 282, 435	2, 562, 386 56, 701	8, 300, 562 461, 265	
Salt in brine (sold or used as such)	1 5, 311, 671	1 2, 261, 309	6, 771, 436	5, 078, 498	
	1 10, 359, 960	1 26, 474, 619	12, 720, 629	33, 620, 376	

¹ Revised figures.

Evaporated salt.—Sixty-one plants in 12 States and Puerto Rico supplied evaporated salt, as shown in the following table:

Evaporated salt sold or used by producers in the United States, 1940-41, by State

State	194	1 0	1941		
	Short tons	Value	Short tons	Value	
California Kansas Louisiana Michigan ¹ New York Ohio Oklahoma Puerto Rico Texas Utah West Virginia ¹ Other States ³	57, 868 964, 491 372, 049 419, 054 (3) 11, 724 (2)	\$2, 172, 666 1, 782, 079 320, 127 5, 232, 490 3, 683, 490 2, 436, 929 (2) 62, 645 (2) 701, 953 486, 173	455, 038 279, 115 38, 138 1, 129, 714 438, 451 481, 364 10, 743 14, 444 232, 643 69, 426 143, 780 7, 250	\$2, 171, 888 2, 119, 912 294, 558 6, 027, 100 4, 006, 454 2, 817, 183 42, 737 72, 220 1, 190, 684 172, 954 792, 104 72, 256	
	2, 782, 741	16, 828, 471	3, 330, 106	19, 780, 056	

¹ Includes a quantity of salt contained in brine for chemical use reported as evaporated salt with value as evaporated salt.

Included under "Other States."

1940: Colorado, New Mexico, Oklahoma, Texas, and Utah; 1941: Colorado and New Mexico.

Rock salt.—The output of rock salt came from 22 plants in 8 States chiefly New York, Louisiana, Kansas, Michigan, and Texas, in order of output; California, New Mexico, and Utah also produced some.

Rock salt sold by producers in the United States, 1937-41

Year	Short tons	Value	Year	Short tons	Value
1937	2, 030, 432 1, 901, 861 2, 035, 157	\$6, 447, 648 6, 252, 081 6, 496, 807	1940. 1941.	2, 265, 548 2, 619, 087	\$7, 384, 839 8, 761, 827

Pressed blocks.—The output of pressed blocks from both evaporated and rock salt totaled 239,032 short tons valued at \$1,966,305 in 1941 and increased over 1940. This does not include blocks that may have been made from salt bought on the open market but is confined to

SALT 1487

sales by the original producers of the salt. As in 1940, 19 evaporated-salt plants and 8 rock-salt plants made the output of pressed

blocks reported.

The Department of Agriculture says that the quantity of salt required by cattle varies according to forage and other conditions but that it is well to allow an average of 2 pounds a month per head for all cattle 1 year old and over. For calves, it was concluded that 0.5 to 1 percent of salt may be added to the grain mixture to supplement the ration and that it may also be kept in a box available to the calves at all times. The average for sheep is about 1 pound a month. For mules and draft horses, some of the tests showed that the average consumption a month was 3.4 pounds; heavy labor and warm weather influence the requirements so that under such conditions they consumed almost twice that average. Practical experience showed that unless the salt lost by sweating was replaced the animals soon exhibited signs of excessive fatigue.

Pressed-salt blocks sold by original producers of the salt in the United States, 1937-41

	From evap	From evaporated salt From roc		ck salt	Total	
Year	Short tons	Value	Short tons	Value	Short tons	Value
1937	120, 061 136, 699 152, 121 152, 267 182, 331	\$966, 812 1, 116, 272 1, 136, 527 1, 193, 237 1, 505, 040	28, 981 36, 258 39, 242 40, 171 56, 701	\$240, 251 281, 109 263, 300 282, 435 461, 265	149, 042 172, 957 191, 363 192, 438 239, 032	\$1, 207, 063 1, 397, 381 1, 399, 827 1, 475, 672 1, 966, 305

Salt content of brine.—In 1941, as in the past few years, the salt of brine registered the greatest increase in output; most of it is utilized in the manufacture of chemicals. The Federal Reserve index shows that production of chemicals in 1941 averaged 137 (1935–39=100) compared with 115 in 1940, 102 in 1939, and 96 in 1938. Bureau of Mines statistics indicate that salt of brine was 53 percent of the total salt produced in 1941 and was supplied by 10 plants in various parts of the United States.

USES

As is well-known, there is no scarcity of this most commonly used chemical raw material—salt. Furthermore, producers of the raw material can increase their capacity at a greater rate than the consuming industries can expand their plants. In 1941 the increased requirements for salt were satisfied even though many new chemical plants and additions to existing plants were built during the year.

Salt sold or used by producers in the United States, 1940-41, by classes and uses, in short tons

		1940	-	1941			
Use	Evapo-	Rock	Brine	Evapo-	Rock	Brine	
Chlorine, bleaches, chlorates, etc	1 381, 553 500 1 222, 425 18, 171 58, 700 40, 804 97, 848 368, 664 34, 207 80, 300 98, 527 149, 771 27, 411 478, 448 25, 596 428, 557 123, 624 26, 552 18, 602	539, 471 24, 123 17, 918 180, 585 55, 398 116, 201 334, 528 2, 260 5, 922 16, 144 5, 292 74, 121 288, 975 138, 880 65, 775 65, 739 25, 808 43, 065 285, 843	(3)	2710, 013 1, 500 291, 052 35, 196 61, 924 63, 523 79, 063 422, 017 34, 939 105, 179 128, 143 172, 068 30, 489 519, 027 26, 382 420, 532	619, 489	496, 122 6, 226, 82	
	2, 782, 741	2, 265, 548	45, 311, 671	3, 330, 106	2, 619, 087	6, 771, 436	

Some salt used for chlorine included under "Dyes and organic chemicals."
 Some salt used for dyes and organic chemicals included under "Chlorine."
 Included under "Other uses."

4 Revised figures.

As may be seen in the accompanying table of uses for 1940 and 1941, large quantities of both evaporated and rock salt, as well as salt in brine, were used in manufacture of chemicals. The quantities so used increased in 1941—more of the increase being in evaporated than in rock salt.

As glass has been relied upon increasingly to replace some of the metals heretofore used in such articles as refrigerator and stove parts, cooking utensils and other items, and containers to substitute for tin cans, demands on soda-ash plants have increased tremendously. the fall of 1941, soda plants were producing at full capacity and were beginning to run behind in deliveries. For making glass a dense type of soda ash is used; hence, there is said to be slight competition or none with most of the other industries for supplies because the majority of the latter use a light type. However, there was an important increase in requirements of soda ash for many uses.

The other element in salt—chlorine—has been prominent in the news in many ways, as here, too, the war has made huge additional Control of its use had to be tightened even more than in 1940, and Government defense agencies issued several pronouncements in this regard. In July 1941, full priority control of chlorine became New units for making chlorine were completed in 1941, but the chlorine situation is still tense. Large quantities are employed in high-octane gasoline for tanks and planes. The manufacture of munitions (particularly smokeless powder and explosives), parachutes, and antifreeze agents also consumes chlorine. The use of chlorine in water purification has increased tremendously in view of the necessity for providing ample water supplies in new industrial areas, army camps, air fields, and naval bases. Chlorine enters into the processing of great quantities of textiles for such quartermaster supplies as

SALT 1489

sheets, blankets, and tents. Some chlorine is used in plastic parts of

airplanes.

Chlorine is incorporated in sprays to fumigate stored grain against weevils and various bacteria, including the fermenting bacteria, which increased last year because of weather and other conditions. Some methods of cleaning clothes require in the aggregate a great deal of chlorine. Many metallurgical processes require chlorine in some form. Production of magnesium metal has soared in the last year. In the process utilizing sea water from the Gulf of Mexico, hydrochloric acid (made from salt) converts the magnesium hydrate into magnesium chloride. Much of the chlorine, however, is recycled through the process, and only limited quantities are required to counteract process losses. Plants now under construction in the West will manufacture magnesium metal by another method that will utilize chlorine gas from salt.

Iron and steel smelting and refining consume by far the greatest part of the salt used in metallurgical plants; zinc processing and vana-

dium roasting utilize minor quantities.

Salt serves a very important purpose in the treatment and softening of water, because in many industries the quality of the water bears directly on both the processing and the quality of the finished products. In some industries water is used in such large quantities that it constitutes one of the raw processing materials. For example, great volumes of treated water are needed in paper making. In textile manufacture, as well as in paper making, impure water may affect bleaching and dyeing. Moreover, hard water may have an injurious effect on sizing. In water softening the salt is not used direct but to regenerate the zeolite which is the real softener. Chlorine is the most important chemical, derived from nonmetallic minerals, that is employed in water purification. It also prevents collection of slime and corrects corrosive waters.

For years salt has been used for ice control on city streets and on the subsurface soil of railroad beds to prevent the tracks from heaving, as it reduces freezing. It is also used to stabilize clay and gravel roads. The method has proved particularly successful for such roads in cold climates, where freezing is the chief cause of cracks. Wartime economy directs special attention to the fact that cracks in highways are exceedingly hard on rubber tires and probably will be still harder on a synthetic substitute; the suggestion has been made that cracking of clay and gravel roads be taken care of by salt treatment. Literature has been cited and quotations given in past issues of Minerals Yearbook and other Bureau of Mines reports, bearing on the use of

salt for stabilizing roads.

Information with regard to the use of salt in drinking water to replace the chloride lost from the human body through sweating when working in hot places was included in a Bureau of Mines report in 1941. In this connection a large steel company that has supplied its workers with salt tablets beside the drinking fountains for 10 years now has in addition a drinking-water system in which the proper quantity of salt is introduced mechanically. Thus, cool salt water may now be obtained by the workmen from the drinking fountains.

¹ Harrington, D., and Davenport, Sara J., Review of Literature on Conditioning Air for Advancement of Health and Safety in Mines: Bureau of Mines Inf. Circ. 7128, 1941, p. 88.

Although the statistics available on uses include farm consumption in the general break-down, uses for farms alone are not separated. It is well-known, however, that the largest part of the salt reported under evaporated- and rock-salt blocks is consumed on the farms and grazing ranges of the country, but a certain quantity is also used in prepared feed. In addition, food preparation requires considerable quantities in canning and preserving vegetables, fruits, and meats, as well as in baking and other cooking. Weed killers and insecticides also require salt. The quantity used as fertilizer is not definitely known. Salt derivatives certainly are fertilizer ingredients, but the effect of the application of salt directly on soils is still being studied. A recent report ² recommends the use of common salt as a fertilizer in certain cases. When used in mixtures of phosphate and potash, the growth of certain vegetables and the keeping and eating qualities of celery were improved. Some crops showed no benefit, and some were injured. In the absence of potash fertilizers, salt was not beneficial. The benefits obtained were attributed to the sodium and not the chlorine. The Na ion appeared to be needed almost as much for a nutrient in the NaCl-responsive crops as was the K ion.

MARKETING

The pattern of marketing the salt of commerce probably has changed most on the eastern seaboard. As no salt deposits are known to be nearer than about 200 miles from the coast, such industries as fish curing and others in coastal areas sometimes have found it easier to use salt imported mainly from the West Indies. The submarine menace has made it increasingly impracticable to use boats to haul salt from the islands, and seaboard consumers are turning to sources within the United States and Canada. This did not apply so much in the early part of 1941 but became evident by the end of the year, and increased shipping difficulties were experienced early in 1942.

Prices.—New York prices quoted on rock and evaporated salt were firm throughout the year; changes were made only once or twice during 1941 and then chiefly in the price for less than carlots. Bagged rock salt in carlots, delivered at New York, was quoted at \$13.70 a ton from January until June, when the price rose to \$14.20, where it continued throughout the remainder of the year; in less than carlots, rock salt was quoted at \$15.50 to \$16.10 at the beginning of the year and advanced to \$16 to \$16.60 in June and to \$17 to \$18 in October, at which prices it held the rest of the year. Bagged vacuum fine salt was quoted at \$15.70 a ton in carlots throughout the entire year; in less than carlots it was quoted at \$16.60 to \$19.70, changed in June to \$18.20 to \$21, and rose in October to \$19.40 to \$23.20, which was unchanged to the end of the year.

Demand for salt was steady, and shipments moved regularly throughout the year. In September there was an unusually early

demand from municipalities for salt for ice control.

Market grades and packages.—As reported in Minerals Yearbook, Review of 1940, a committee of salt producers and distributors, in cooperation with the Division of Simplified Practice of the National Bureau of Standards, completed a revision of standards recommended

² Harmer, Paul M., and Benne, Erwin J., Effects of Applying Common Salt to a Muck Soil on the Yield, Composition, and Quality of Certain Vegetable Crops and on the Composition of the Soil Producing Them: Jour. Am. Soc. Agron., vol. 33, 1941, pp. 952-979.

SALT 1491

for market grades and packages of salt and published its recommendation (R70) in March 1941. Because of the shortage of certain packing material in 1941, it has been impracticable to apply these recommendations, even in the simpler form that was entirely satisfactory to the industry when received; therefore, they have had to be modified somewhat and some of them discontinued (at least temporarily). In the classification for the larger part of the United States, about 15 of the various sizes and packages have been dropped tentatively, chiefly pockets and cotton and burlap bags although certain square cartons and the oval tin packages also are included in the elimination. In the Pacific Coast area, 13 packages of various kinds and capacities have been dropped, whereas 2 new packages for table salt have been added.

Although neither new nor included in the listed standard sizes, salt may be obtained also in canners' tablets in sizes ranging from 10 to 150 grains. They are dispensed electrically or mechanically, at a rate

of as many as 180 to 200 tablets a minute.

Distribution of sales.—A majority of the salt producers were engaged in interstate business. Most of the plants that did no interstate business were producers of solar-evaporated salt, but several rock-salt producers were in this category. Brine was used close at hand at most plants, and none could be considered interstate trade in salt. Movement of evaporated and rock salt into the various States is shown in the following table.

Distribution (shipments) of evaporated and rock salt in the United States, 1940-41, by States of destination, in short tons

Destination	194	0	1941		
Destination	Evaporated	Rock	Evaporated	Rock	
Alabama	6, 975	31, 253	7 619	32, 790	
Arizona		2, 707	7, 613 10, 350	3, 03	
				26, 968	
Arkansas		21, 286	9, 262		
California		6, 951	275, 417	29, 594	
Colorado		11, 671	29, 086	12, 774	
Connecticut		6,008	16, 574	6, 796	
Delaware		29, 407	4, 599	23, 655	
District of Columbia		1, 339	5, 517	1, 511	
Florida		16, 706	6, 243	24, 389	
Georgia.		43, 092	19, 145	50, 64 7	
[daho	9,816	3, 698	11, 181	1, 396	
Illinois	_ 224, 514	134, 412	259, 413	163, 994	
Indiana		49, 451	80, 798	58, 060	
lowa	_i 80,600 l	86, 474	98, 653	88, 771	
Kansas	36, 825	162, 612	39, 225	211, 447	
Kentucky	34,706	16, 897	38, 195	17, 654	
Louisiana	5, 898	54, 683	4, 833	71,012	
Maine	7, 743	26, 346	10, 212	31, 470	
Maryland	27, 527	23, 503	29, 977	26, 27	
Massachusetts	51, 281	43, 999	64,006	43, 260	
Michigan	267, 733	55, 032	356, 194	60, 201	
Minnesota	99, 323	63, 657	114, 029	66, 290	
Mississippi	2,652	27, 861	2, 624	31. 493	
Mississippi	63, 640	51, 609	76, 748	51, 991	
Missouri	- 03,040			6, 494	
Montana	15,881	2,718	17, 537		
Nebraska		55, 616	30, 112	46, 171	
Nevada	2,009	243	3,948	310	
New Hampshire		33, 074	8, 544	34, 330	
New Jersey	- 72, 245	129, 842	83, 200	161, 04	
New Mexico		13, 244	7,974	17, 548	
New York		386, 666	228, 127	449, 549	
North Carolina	40, 861	44, 687	49, 257	55, 740	
North Dakota	10, 105	4, 319	13, 225	4, 110	
Ohio	_ 148,901	74, 332	201, 234	82, 333	
Oklahoma		27, 269	35, 080	33, 67	
Oregon		279	29, 354	123	
Pennsylvania		88, 320	156, 657	111, 300	
Rhode Island		9, 868	11,760	10, 789	

Distribution (shipments) of evaporated and rock salt in the United States, 1940-41, by States of destination, in short tons-Continued

	1940)	1941		
Destination					
	Evaporated	Rock	Evaporated	Rock	
South Carolina	9, 024	14, 375	8, 584	17, 67	
South Dakota	14, 615	14, 732	16, 209	11, 48	
Cennessee	22, 304	41, 838	22, 558	47, 54	
rexas	46, 284	144, 204	244, 055	166, 45	
Utah	14, 625	3, 793	14, 902	3, 21	
Vermont	5, 179	5, 702	5, 722	7, 66	
Virginia	46, 536	44,061	57, 585	50, 12	
Washington	108, 070	682	116, 187	53	
West Virginia	165, 999	47, 291	171, 727	60, 98	
Wisconsin	113, 613	22, 451	132, 958	25, 74	
Wyoming	6, 920	2, 443	6, 763	1, 76	
Other 1	232, 237	82, 845	86, 953	76, 88	
	2, 782, 741	2, 265, 548	3, 330, 106	2, 619, 08	

¹ Includes production of Puerto Rico (evaporated salt); exports to Africa, Asia, Canada, Central America, Mexico, South America, West Indies, and other countries; shipments to Alaska, Hawaii, Puerto Rico, and Virgin Islands; and some shipments to unspecified destinations.

NEW SOURCES

With the exception of a few additional areas adjacent to those reported previously for Louisiana and Texas, no extensive discoveries of salt deposits in the United States have been reported beyond those shown on the map given in Minerals Yearbook, 1939 (p. 1358).

Directory changes.—Changes that have occurred since the directory of the salt industry was published in Minerals Yearbook, Review of

1940, are as follows:

New enterprises include the Desert Chemical Co. (4031 Goodwin Ave., Los Angeles, Calif.), which began operations at its Dale Lake plant at Twentynine Palms, Calif.; it made little production in 1941 but is looking to a larger output in 1942. The Dow Chemical Co. (Midland, Mich.) began to produce evaporated salt from Texas wells, for use electrolytically in the manufacture of magnesium metal from sea water at its Freeport (Tex.) plant. Bonneville, Ltd. (540 W. 7th St. S., Salt Lake City, Utah), began to produce solar-evaporated salt from the marshes at its Wendover plant in Tooele County, Utah. The Oklahoma Salt Industries Co. began to produce evaporated salt at its plant at Sayre, Beckham County, Okla. The Jefferson Island Salt Mining Co. (mine and refinery at New Iberia, Iberia Parish, La.) spent 9 months of 1941 building a new plant to replace the plant totally destroyed by fire in August 1940; in the last 3 months of the year the company mined and sold rock salt and pressed blocks made of rock salt, and it also made evaporated salt in vacuum pans but no pressed blocks from evaporated salt. The Avery plant of the International Salt Co. in Iberia Parish, La., added to its products in 1941 pressed blocks made from both rock and evaporated salt. The Morton Salt Co. (Chicago, Ill.) bought the rock-salt mine of the Crystal Salt Co. at Kanopolis, Ellsworth County, Kans., took possession in September 1941, and mined rock salt for the remainder of the year. The Crystal Salt Co. mined salt during the first 2 months of the year, then was idle for 7 months because of a caved shaft. Following the passage of a special leasing law by the Federal Government, the Metropolitan Water District of Southern California prepared to mine salt for treatment of city water. In January 1942 the water district obtained two permits to mine salt from a large deposit on the public domain in San Bernardino County. None of the salt produced will be sold. Several salt companies were idle in 1941 because of too much rain or other reasons.

IMPORTS AND EXPORTS 3

Salt imported for consumption in the United States, 1937-41, by classes

	In bags, sacks, barrels, or other packages (dutiable)		Bulk				
Year			Dutiable		Free (used in curing fish)		
	Short tons	Value	Short tons	Value	Short tons	Value	
1937 1938 1939 1940 1941 (JanSept.)	802 654 2, 121 1, 024 915	\$8,008 8,228 14,977 6,601 9,300	24, 115 17, 849 28, 451 16, 413 5, 870	\$80, 248 45, 897 58, 540 59, 029 13, 331	21, 079 1 21, 010 15, 461 1 12, 965 4, 820	\$45, 106 1 47, 800 27, 700 1 25, 174 16, 421	

Includes salt in bags, sacks, barrels, or other packages, as follows: 1938, 93 tons, valued at \$673; 1940, 6 tons, \$12; 1937, 1939, and 1941, none reported.

Salt imported for consumption in the United States, 1940-41, by countries

Country	194	:0	1941 (JanSept.)	
	Short tons	Value	Short tons	Value
North America: Canada West Indies:	3,818	\$10,548	5, 939	\$17, 07
British: Jamaica. Other British. Netherlands: Curação. Europe: United Kingdom.	10, 972 15, 481 40 91	22, 788 55, 575 121 1, 772	1, 137 4, 434 28 67	5, 876 14, 60 6 1, 43
	30, 402	90, 804	11,605	39, 06

Salt exported from the United States, 1937-41

Year	Short tons	Value	Year	Short tons	Value
1937 1938 1939	70, 111 67, 498 124, 273	\$514, 858 469, 708 610, 501	1940 1941 (JanSept.)	147, 044 87, 807	\$600, 340 575, 988

⁸ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

WORLD PRODUCTION

World production of salt, 1937-41, by countries, in metric tons ¹ [Compiled by B. B. Waldbauer]

	·				
Country 1	1937	1938	1939	1940	1941
North America:					
Canada.	415, 994	200 012	205 550	100 074	
Costa Pico	4, 287	398, 013 4, 740	385, 550	420, 974	508, 77
Costa Rica Dominican Republic Guatemala	(2)	9, 286	6,822	(2) 7, 500	6,00
Guetamala	12, 610	10, 465	9, 536	7,500	14,70
Mexico	82, 876	10, 400	(2)	(2)	(2)
Panama.		107, 701		(2)	(2)
United States:	6, 898	3, 332	4, 536	5, 199	(2)
Rock salt	1 041 007	1, 725, 330	1 040 054	0.055.000	0.0== 00
Other salt	1, 841, 967 6, 541, 795	5, 555, 486	1, 846, 254 6, 570, 481	2, 055, 260	2, 375, 98
West Indies:	0, 041, 790	0, 000, 400	0, 570, 481	7, 343, 089	9, 163, 91
British:		!		1	
Rahamas	2,000	17 000	11 800	97.000	05.40
Turks and Caicos Islands (exports)	50, 833	17, 900 35, 578	47 200	27,000	25, 40
Cuba.	36,806	57, 970	11,600 47,389 113,398	27, 000 67, 028 113, 398	48, 17
Netherlands (exports)	2, 337	2,013	110,000	113,380	(2)
South America:	2,001	2,010	(2)	(2)	(9)
Argentina (railway shipments)	290, 084	264, 150	303, 321	292, 307	(4)
Browil	770, 403	700 010	500, 521	292, 307	(2)
Brazil Chile		788, 218 27, 772	502, 203	(2) 44, 317	550,00
Colombia:	36, 697	21,112	(2)	44, 317	(2)
Rock salt	4, 211	4,010	(9)	/a\	(A)
Other salt	104,211	100,000	(2) 104	(2) 228, 750	(3)
Ecuador:	184, 609	199, 022	218, 134	228,750	(3)
	100				
Rock salt	138			(2)	
Other salt	13, 800	13, 800	16, 145	(2) 29, 900	20, 20
Peru Venezuela.	39, 010	38, 451	39, 669	41,320	46, 70
venezueia	26, 298	22, 658	20, 473	52, 540	(2)
Surope: Bulgaria:	1				
Rock salt	0 747	10.040	-0 -00		-
Other cold	9, 745	10, 242	13, 168	15, 000 65, 000	(2)
Other salt Czechoslovakia	43, 602	10, 242 66, 258 174, 000	(2)	65,000	(2) (2) (2)
France:	165, 898	174,000	(3)	(2)	(2)
Prance:	- 045 - 50				
Rock salt and salt from springs Other salt	1,847,179	1, 264, 230	(2)	(2) (2)	(2) (2)
Company	490, 906	346, 046	(3)	(2)	(2)
Germany:	0.0				
Rock saltOther salt	2, 757, 242	2, 694, 984	(2) (2)	(2) (2)	(2) (2)
Augustain	608, 046	585, 326	(2)	(3)	(2)
Austria: Rock salt	2000	=00	- m		-
Other self	908	786	(2)	(P)	(2) (2) (2)
Other salt	169, 883	93, 576	(2) (2)	22 1	(2)
Greece	102, 285	102, 057	(2)	(3)	(3)
	400, 200	0.0 0.00	~		•
Rock salt	603, 798	013, 870	(2) (2)	22	(3)
Other salt	952, 655	613, 870 885, 205 1, 523 164, 266 642, 875	(2)	9 9	9 9 9
Malta Netherlands: Rock salt	1, 829 132, 430 602, 746	1, 523	1, 753	(2)	(3)
Delend	132, 430	164, 266	(2) (2)	(3)	(3)
Poland.	602, 746	642, 875	(3)	(2)	(2)
Portugal (exports)	4, 633	6, 096	9, 289	11, 955	. (3)
Rumania;					
Rock salt	308, 882	350, 618	. (2)	(2)	(2) (2)
Other salt	2,077	1, 140	(2)	(3)	(3)
Spain:					
Rock salt	29, 673	150, 878	(2)	(2)	(9)
Other salt	120, 175	102, 671	(2)	(2)	(3)
Switzerland	81, 969	84,049	90,000	77,000	(²)
United Kingdom:	i	1			
Great Britain:					
Rock salt:	18, 666	19, 974	(2) (2)	(2)	(2) (2)
Other salt	3, 101, 511	19, 974 2, 651, 939	(2)	(2)	(2)
Ireland, Northern:			1		
Rock salt	4, 254	2, 362	(2)	(2)	(2)
Other salt	8, 818	5, 757	(2)	(2)	(2) (2) (2)
Yugoslavia	46, 323	52, 634	54, 213	(2)	(2)
sia:			,	``	
Aden	360, 866	282, 510	294, 077	258, 714	(2)
Burma	54, 677	39, 319	(2)	(2)	(2)
Ceylon	38, 815	36, 490	37, 556	(2) 29, 973	(2)
Ceylon China (including Manchuria) 3 Chosen 3	3, 000, 000	3, 000, 000	3, 000, 000	3, 000, 000	(2) (2) (3) (3) (3)
Chosen 3	138,000	138, 000	138,000	138,000	(2)
Cyprus 3	3,000	3,000	3,000	3,000	λί

See footnotes at end of table.

1495

Country	1937	1938	1939	1940	1941
Asia—Continued.					
India:					
British:				- 1	
Rock salt	190, 103	191, 395	196, 505	(2)	731
Other salt	1, 516, 984	1, 372, 979	1, 326, 544	(2)	ĸ
Portuguese	26, 095	29, 527	27, 979	38, 564	00000
Indochina	193, 558	193, 050	213, 526	166, 000	×
Iraq	1,810	7, 907	9, 107	8,779	. 🔀
Tanan.		.,	5, 101	0,110	. (-)
Japan proper 4	535, 775	(2)	(2)	(2)	an.
Taiwan	210, 471	(2)	(2) (2)	(2) (2)	ල ල
Netherlands Indies	75, 780	90, 909	⁵ 141, 208	5 388, 837	X .
D 1		. 50, 500	111, 200	- 000, 001	(-)
Rock salt	727	444	645	599	cro.
Other salt	11, 717	8, 065	8, 736	9, 944	ලලලල <u>ල</u>
Philippine Islands	48, 905	(2)	(2)	(2), 541	X
Syria 8	10,000	10.000	10.000	10,000	. 🕱
Thailand (exports)	107, 731	156, 268	95, 170	112, 197	2
Turkey	262, 226	247, 293	(2)	(2)	X
A frica:	202, 220	241, 200	(-)	(7)	(-)
Algeria	63, 767	74, 630	(2)	(9)	. ~
Deleien Conce		1, 013	(2) (2)	(²) 1, 038	X
Canary Islands Egypt (exports) Ethiopia: Rock salt French West Africa (exports)	2,000	2,000	2,000		ලලලලල <u>ල</u>
Egypt (avnorts)	276, 735		442, 532	2, 000 (2)	2
Ethionia Poor selt 1	10,000	284, 949 10, 000	10,000	10,000	(2)
Franch West Africa (owners)	643	51	10,000	10,000	. 63
Kenva Colony	020	3, 250	(2) (2)	(2) 9, 425	23
Kenya ColonyLibya (Italian Africa):		0, 200	(9)	9, 420	(*)
Curencies i	10,000	10,000	10,000	10 000	~
Cyrenaica ³ Tripolitania ³	20,000	20, 000	20,000	10, 000 20, 000	St
Mauritius 3	1,500	1, 500	1,500	1,500	X
Morocco, French	11, 207	909	(2) 1, 500	(2)	x
Nigeria 3	400	400	400	400	\mathbf{g}
Portuguese East Africa	2,605	6, 448	6, 628	251	X
Portuguese West Africa (Angola) 3	25,000	25, 000	25,000	25, 000	ð e e
Somaliland:	20,000	20,000	20,000	20,000	(4)
British (exports)	950	353	(2)	(2)	790
French (exports)	85, 273	(2)	(2)	(2) (2)	2
South-West Africa:	00, 210	. (7)	(-)	(-)	(3)
Rock salt	669	641	751	1, 125	6 6 2
Other salt	3, 443	4. 431	4, 704	5, 364	13.44
Suden Angle Fountier	34, 553	37, 532	40, 633	40. 471	
Sudan, Anglo-Egyptian Tanganyika Territory	8, 723	9, 678	9, 472	9, 505	g
Tunisia.	129, 708	129, 287	(2) 472	(2)	g
Uganda	3, 133	3, 169	2, 626	3, 374	2
Union of South Africa	106, 338		(2), 020		Ä
Omon of South Africa	100, 558	117, 717	(9)	(2)	(4)
Australia:	ł		ł	1	
South Australia	74, 739	78 012	90 750	140 001	C9 0
Western Australia		76, 013	80, 759	146, 991	@
AA COLOTTI WRINING	3, 729	3, 850	(2)	(2)	(*)

¹ In addition to the countries listed, salt is produced in Albania, Bolivia, Eritrea, Gold Coast, Leeward Islands, Madagascar, Southern Rhodesia, U. S. S. R., and Victoria (Australia), but figures of production are not available.

² Data not available.

³ Estimated annual production.

⁴ Year ended Mar. 31 of year following that stated. The figures do not include output from salt beds which, although situated on Government beach lands, have no fixed areas.

⁴ Incomplete data.

⁶ January to June, inclusive.

MAGNESIUM COMPOUNDS AND MISCELLANEOUS SALINES

By ALVIN SCHALLIS AND K. G. WARNER 1

SUMMARY OUTLINE

	Page	l .	Page
Summary	1497	Calcium chloride	1508
Magnesium compounds	1498	Bromine	1509
Magnesite	1498	Iodine	1511
Refractory magnesia from sources other than		Sodium sulfates and carbonates	1513
		Borates	. 1514
Dolomite	1505		
Other magnesium compounds	1506		

SUMMARY

The unprecedented activity of the United States in connection with the national defense program vastly increased the requirements for magnesia products during 1941. The manufacture of basic refractories was the chief use for magnesium compounds, but it is expected that before the end of 1942 their use in the manufacture of magnesium metal will be equally important. The Nevada magnesite industry is being rapidly expanded to huge proportions to supply in part requirements of magnesite for metal and refractory purposes. A flotation plant was installed at Chewelah, Wash., to increase production, reduce waste, and improve the quality of the products. Construction was begun in New Jersey on a plant to make refractory magnesia from sea water and dolomite, and other plants to use similar processes for supplying high purity magnesia to reduction plants were contemplated for the California coast. Several refractory plants that will use natural brines as sources of magnesia were being constructed during 1941, and additional plants of similar nature were planned. Dolomite, already the raw material in several plants manufacturing highmagnesia refractories, is the scheduled raw material for nine magnesium-metal plants now under construction. The further use of dolomite in the manufacture of magnesia refractories is likewise considered. Natural brines rich in magnesium compounds, which were discovered recently in Michigan and Texas, as well as the hitherto wasted magnesium chloride byproduct from the reaction between langbeinite and sylvite in New Mexico, were welcome sources of raw materials for proposed magnesium-metal plants. The output to be obtained from all of these new facilities, plus that from previously existing plants, will be used almost exclusively in the production of munitions.

The demand for salines followed the general trend of business to increased levels. The production of bromine and bromine compounds, largely used in the manufacture of the antiknock fluids added to gasoline, continued to increase during 1941. The new magnesium plant of the Dow Chemical Co. at Freeport, Tex., became another important

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

producer of Ethyl-Dow ethylene dibromide in 1941. The Desert Chemical Co. produced sodium sulfate products in its newly completed plant at Dale Lake, Calif., and the Washington Chemical Co. built a plant at Monse, Wash., to recover sodium sulfate from four deposits in that area. The need for additional soda ash production capacity has focused attention upon the natural sources of this commodity. A huge chemical industry based upon large deposits of trona recently discovered in southwestern Wyoming has been proposed, and exploratory work on this project is now under way. Substitution of enamel and ceramic ware for metals and alloys needed for war purposes greatly increased the requirements for borates. A prolonged strike at the American Potash & Chemical Corporation plant at Trona, Calif., caused a serious shortage of boron compounds during 1941, but the situation cleared after the men went back to work.

MAGNESIUM COMPOUNDS

MAGNESITE

Spurred by emergency conditions during 1941, domestic magnesite production advanced 12 percent over the 1940 production level to reach a new high of 374,799 short tons. The intense activity of the metallurgical industries and the greatly increasing demands for magnesium oxychloride cements taxed productive facilities of the magnesite producers to the limit. In addition to the unprecedented requirements of magnesite for long-established outlets, substantial quantities of magnesite were required for magnesium-metal production during 1941, and it is estimated that before the end of 1942 magnesite will be consumed in this application at the rate of more than 200,000 tons annually. Owing to the essential nature of these requirements and the threat of insufficient supplies, magnesite was placed on the critical list of essential materials on March 6, 1942.

Sales of dead-burned magnesite (not including refractory magnesia from sources other than magnesite) increased somewhat in 1941 over the 1940 level and totaled 135,956 short tons. Increased production activity of the steel industry was largely responsible for this increase, although new open-hearth furnace construction, increased application of basic refractories in steel production, and expanded industrial activity also played important roles. The use of refractory magnesia to replace imported refractory chromite has been considered, but it seems as yet to be merely a future possibility, inasmuch as adequate supplies of refractory-grade chromite are apparently readily available from Cuba.

Sales of caustic calcined magnesite rose sharply during 1941, reaching 30,225 short tons, an 86-percent gain over sales in 1940. Oxychloride cements for production of ship flooring consumed the greatest quantity of caustic calcined magnesite, although important increases in quantities used in rubber, rayon manufacture, and leather tanning were reported. Substantial quantities were likewise reported to have been used in the manufacture of magnesium metal; this use for caustic calcined magnesite will be vastly expanded in the near future by the construction of huge magnesium-metal plants in the West.

Salient statistics of the magnesite industry in the United States, 1937-41

	. 1937	1938	1939	19 4 0	1941
Crude:					
Mined: Short tons	203, 437	1 97, 000	1 198, 980	1 333, 166	374, 799
Value 1	\$1, 483, 492	\$725,000	\$1, 465, 190	\$2, 487, 969	\$2, 655, 547
Sold by producers:					
Short tons	1,952	919	1, 123	2, 133	4, 536
ValueAverage per ton 2	\$29, 203	\$12, 332 \$13, 42	\$15,752	\$32,810	\$54, 045 \$11. 91
Importa for consumption:	\$14.96	\$13.44	\$14.03	\$15.38	\$11.91
Short tons	34	36	569	22	
Value	\$313	\$777	\$5, 456	\$761	
Apparent new supplyshort tons_	1,986	955	1, 692	2, 155	4, 536
Percent domestic	98. 2	96, 2	66. 4	99.0	100.0
Caustic calcined:					
Sold by producers:					
Short tons	10, 031	7,400	10, 157	16, 261	30, 225
ValueA verage per ton 2	\$311, 326 \$31, 04	\$228, 498 \$30, 88	\$310, 102 \$30, 53	\$512,607 \$31,52	\$1,052,077 \$34,81
	\$11.UI	400.00	φου. σο	φο1. 02	φυ 1 , 01
Short tons	2, 798	1,452	2, 218	928	* 527
Value	\$62,420	\$39, 551	\$51,884	\$21, 301	⁸ \$11, 538
Apparent new supplyshort tons	12, 829	8,852	12, 375	17, 189	(3)
Percent domestic	78. 2	83. 6	82. 1	94.6	(4)
Refractory magnesia:					
Sold by producers: 5	00.004	90 700	00 077	140.000	001 401
Short tonsValue	83, 204 \$1, 598, 336	38, 738 \$730, 978	86, 077 \$1, 699, 723	140, 668 \$2, 802, 537	201, 481 \$5, 052, 879
Average per ton 2	\$19.21	\$18.87	\$19.75	\$19.92	\$25.08
	410.21	420.07	4100	420.02	420.00
Short tons	56,020	24, 990	44, 420	30, 951	* 36, 574
Value	\$795, 047	\$371, 669	\$800,664	\$551, 536	* \$802, 844
Apparent new supplyshort tons	139, 224	63, 728	130, 497	171, 619	(*)
Percent domestic	59.8	60.8	66. 0	82.0	(4)

¹ Partly estimated; most of the crude is processed by the mining companies, and very little enters open market.

The Northwest Magnesite Co. (Farmers Bank Bldg., Pittsburgh, Pa.) operated five or all of its six kilns at Chewelah, Wash., throughout 1941 and in December began to operate a new kiln having a daily capacity of 100 to 150 tons of dead-burned magnesite. A 300-tonper-day flotation plant, which operates on a process developed in cooperation with the Bureau of Mines, was completed in June 1941, and test operation to determine the best commercial application of this equipment has since been under way. A preliminary geological report of the magnesite deposits of Stevens County, Wash., has been published by Bennett.² Figure 1 gives the location of magnesite and brucite mines, mills, and prospects.

The Westvaco Chlorine-Products Corporation (405 Lexington Ave., New York, N. Y.) operated its Patterson and Newark plants (in California) at capacity during 1941. The Patterson plant processed magnesite mined at the Bald Eagle mine near Gustine, Calif., and at the Western mine above Livermore, Calif. (both owned and operated by the company), as well as ere shipped from Nevada. Magnesite from the Luning district—principal source of magnesite in Nevada-

market.

2 Average receipts f. o. b. mine shipping point.

3 Figures cover January to September, inclusive.

4 Figures not available for publication.

4 Figures not available for publication.

5 1937-04: Includes dead-burned magnesite and refractory magnesia from sea-water bitterns; 1941: Includes dead-burned magnesite and refractory magnesia from sea-water bitterns, brucite, and dolomite.

³ Bennett, W. A. G., Preliminary Report on Magnesite Deposits of Stevens County, Wash.: Washington Dept. of Conservation and Development, Div. of Geol., Rept. of Investigations 5, 1941, 25 pp.

was supplied by the Barium Products Co., Ltd., to the Newark (Calif.) plant of the Westvaco Chlorine Products Corporation until July 26, 1941. After that date the Sierra Magnesite Co.—a company in which the interests of the Todd-California Ship Building Corporation and the Westvaco Chlorine Products Corporation are joined—took over the magnesite-mining operations of the Barium Products Co., Ltd., in supplying magnesite to its parent companies. Relatively minor amounts of magnesite were furnished to the California plants of the Westvaco Chlorine Products Corporation from the East Elymine in eastern Nevada.

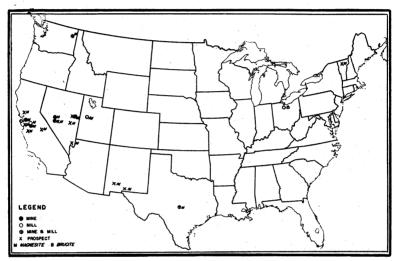


FIGURE 1.—Geographic distribution of magnesite and brucite mines, mills, and prospects in the United States.

The production of magnesite in Nevada increased greatly during In addition to the large shipments made by the Sierra Magnesite Co. to the magnesium-metal-producing plant of the Permanente Corporation and to the calcining and processing plants of the Westvaco Chlorine Products Corporation, substantially increased production of magnesite and brucite was reported by Basic Ores, Inc., subsidiary of Basic Refractories, Inc. (454 Hanna Bldg., Cleveland, Ohio), during Basic Magnesium, Inc., also a subsidiary of Basic Refractories, 1941. Inc., was organized during the year and has started construction of a \$3,000,000 plant designed to produce and process 2,000 tons of magnesite a day; this plant will include crushing, grinding, flotation, and calcining units and is expected to be completed by December 1942. Products from this area must be trucked 32 miles to Luning, Nev., nearest rail shipping point. Magnesia produced by Basic Magnesium, Inc., will be sent to Las Vegas, Nev., to be converted into magnesium metal.

In a paper read before the Industrial Minerals Division of the American Institute of Mining and Metallurgical Engineers at Rolla, Mo., October 1941, Max Y. Seaton discussed the magnesite holdings near Luning, Nev.:

As there has been a considerable amount of confusion in published statements with reference to holdings in the district, it may be well to briefly clarify them. The oldest interests are those of the U. S. Brucite Co., whose property apparently

contains the principal deposit of brucite, together with large tonnages of magnesite. This property is leased to Basic Ores, Inc., a subsidiary of Basic Refractories, Inc., of Cleveland. Under this lease, U. S. Brucite retains the rights to magnesium-containing materials used for other than refractory purposes. In addition to Basic Ores' leasehold of the property mentioned, it holds, as mineral claims or as patented mineral land, a substantially larger area than that comprising U. S. Brucite's holdings. Much of this land contains showings of magnesite, and certain proportions of it are under active development at the present time. The certain proportions of it are under active development at the present time. The third holder of property in the district is the Nevada Massachusetts Co. (including the interests of Charles Segerstrom and Frederick Thornton). The so-called Segerstrom property, a relatively small but extremely rich area, is a section originally prospected for tungsten and is under lease to the Sierra Magnesite Co., which nally prospected for tungsten and is under lease to the Sierra Magnesite Co., which is a corporation in which the interests of Henry J. Kaiser and his associates and Westvaco Chlorine Products Corporation are joined. The Sierra Magnesite Co.'s operations are directed toward supplying both the needs of Kaiser and Westvaco for magnesite ore. The fourth holder of properties near Luning is the Standard Slag Co. of Youngstown. Its property is substantially smaller than the U. S. Brucite's holdings but probably contains at least some brucite in addition to much medium-grade magnesite. In the condensed description above, some general idea as to the areas of the various holdings has been suggested; relatively exact knowledge as to ore reserves exists only with reference to the brucite on the U. S. Brucite Corporation's claims and with reference to magnesite on a small portion of the Segerstrom property. Data are not yet available to indicate the relative tonnages of usable ore likely to occur in the four properties in this district.

Two companies reported production of magnesite from the Llano district of Texas and one from Juab County, Utah, during 1941. Consideration has been given to the production of refractory magnesia from a high-grade magnesite deposit in the Burro Mountains about 35 miles northeast of Lordsburg in southwestern New Mexico. deposit is reported to consist of three veins, each 14 feet wide and 1,500 feet on the strike. A typical analysis of the crude magnesite indicates the presence of 41.31 percent MgO, 1.55 percent CaO, 1.07 percent SiO₂, 0.32 percent Fe₂O₃, 0.43 percent Al₂O₃, and 55.32 percent ignition loss. A corresponding analysis of the calcined material indicates 92.46 percent MgO, 3.47 percent CaO, 2.39 percent SiO₂, 0.72 percent Fe₂O₃, and 0.96 percent Al₂O₃.

In the Federal District Court for the Southern District of New York, on July 22, 1941, four corporations and seven individuals were assessed fines totaling \$76,500 for violation of the antitrust laws in the production and sale of magnesite and magnesite brick. ment returned on January 20, 1941, charged the Harbison-Walker Refractories Co., General Refractories Co., American-Austrian Magnesite Corporation, and Austrian Magnesite Co., Ltd., with entering into contracts with a group of foreign companies whereby the world markets were so divided as to give each group exclusive territories with-

out competition.

Several proposals for the recovery of Canadian magnesite were given serious consideration during 1941. The British Columbia Magnesium Co. was organized and has done considerable exploratory work on several hydromagnesite deposits in the Williams Lake district and in the Clinton district of British Columbia. The concentration of magnesitic dolomite from Kilmar, Quebec, by flotation processes was studied by the Canadian Department of Mines and Resources. Magnesite recoveries of 50 to 60 percent, having a lime content of 2.0 to 4.5 percent, depending on the nature of the feed, were obtained

³ Canadian Mining Journal, The Concentration of Magnesitic Dolomite from Kilmar, Quebec, Magnesite Recoveries Bears Relation to Lime Content of Native Rock: Vol. 63, No. 3, March 1942, pp. 157-165

from feeds containing 13 percent lime and 46 percent magnesite. The reagents used were soda ash, quebracho extract, oleic acid, and American Cyanamid frother No. 60. A brief review of the Canadian resources of magnesite, as well as other sources of magnesia including brucite, dolomite, magnesitic dolomite, magnesium silicates, brines,

and salines is given in a recent article by Goudge.4

Owing to the cessation of imports from Axis-controlled countries, considerable interest was attached to the development of sources of magnesite in Latin America. Two large deposits of satisfactorygrade magnesite occur near Brumado in the southwestern part of the State of Baía, Brazil. Adequate transportation facilities are, however, lacking, and several years would be required for large-scale production to be realized. Perhaps of more interest is the discovery of high-grade magnesite in northeastern Honduras. This deposit, reported to be large, is fairly accessible to the railroad. The importation of crude magnesite from Santa Margarita Island off the west coast of Lower California, Mexico, to be calcined at Chula Vista, Calif., has been proposed. The present duty of \$9.375 per short ton on imported crude magnesite, however, makes such an operation uneconomical. A relatively large deposit of good-grade magnesite near Gatooma, Southern Rhodesia, has likewise been suggested as a source of magnesite for export both to the United States and to Eng-The critical lack of available shipping facilities, however, makes this, as well as magnesite deposits in Latin America, of doubtful value at present.

The maximum price of the maintenance grade of domestic grain magnesite in bulk, f. o. b. Chewelah, Wash., was established at \$22 a ton on January 28, 1942, by the Office of Price Administration. For carlots of the product, in bags or sacks, the price established was \$4 above the ceiling price for magnesite sold in bulk. The maximum price established by the schedule was that which had prevailed for the previous 3 years. On March 6, 1942, however, some sales of deadburned grain magnesite at a maximum of \$32 per ton f. o. b. California shipping points were permitted to cover high-cost production necessitated by the great wartime demand for refractory magnesite. Although only maintenance grades of dead-burned magnesite were covered by the price limitation, maximum price schedules were planned for other grades of magnesite and basic refractories. Prices of the chemical grade of domestic caustic calcined magnesite in bags, f. o. b. New York, N. Y., in less than carlots started a gradual increase in April 1941 and rose from \$65 to \$70 per ton to \$83 to \$88 per ton in April 1942, according to price quotations listed in the Oil, Paint and Drug Reporter. The corresponding price f. o. b. mines in

California in April 1942 was \$58.75 per ton.

REFRACTORY MAGNESIA FROM SOURCES OTHER THAN MAGNESITE

Sources of magnesia other than magnesite have gained importance rapidly. Almost 33 percent of the refractory magnesia produced in the United States during 1941 originated from these sources. Production of brucite by Basic Ores, Inc., from the Luning district of Nevada, only commercial source of brucite in the United States, reached a

⁴ Goudge, M. F., Sources of Magnesia and Magnesium in Canada: Trans. Canadian Inst. Min. and Met., vol. 45, 1942, pp. 191-207.

new high; the ore was shipped largely to the Maple Grove plant of Basic Refractories, Inc., of Cleveland, Ohio, to be combined with dolomite, iron oxide, and silica or silicates for the manufacture of a stabilized dolomitic refractory. The Aluminum Co. of Canada, Ltd., started to construct a plant at Wakefield, Quebec, for the recovery of magnesia from the extensive brucite deposits in the Gatineau River Valley some 14 miles northwest of Hull, Gatineau County, Quebec. The process to be used has been developed by the Canadian Department of Mines and Resources during the last 3 years. Other large deposits of brucite have been found in and around BrysonTownship, Quebec, and in the vicinity of Rutherglen, Ontario. Consideration has been given to the plan to use brucite from these deposits for the manufacture of magnesium metal as well as of basic refractories.

Other sources of magnesia also were actively exploited during 1941. The Newark (Calif.) plant of the Westvaco Chlorine Products Corporation operated at capacity, preparing high-grade magnesia products from sea-water bitterns obtained from salt plants in the vicinity of San Francisco. Recent improvements in the plant have been described. An important plant to be operated on sea-water bitterns is being constructed by the West Indies Sales Co. in the Bahama Islands to supplement domestic production of much-needed high-grade re-

fractory magnesia.

Owing to the high purity of the magnesia required for magnesiummetal production, considerable quantities of the raw material required for this purpose have been supplied from the Newark sea-water product in an exchange agreement between the Permanente Corporation and the Westvaco Chlorine Products Corporation. Moreover, at least one plant to produce additional magnesia from raw sea water

and dolomite is being constructed on the California coast.

Late in 1941 the Northwest Magnesite Co. announced plans for the construction, at Cape May, N. J., of a refractory magnesia plant which is to use dolomite (shipped from near Philadelphia) and raw sea water as sources of magnesia. This plant is designed to produce about 40,000 tons of refractory magnesia a year, but provisions have been made for the addition of more units. Priorities have been granted for the materials used in its construction, which is being financed entirely by the Northwest Magnesite Co., and it is expected to be completed during July 1942. In the process to be used here and at the plants on the California coast, the calcium hydroxide of milk of dolomite is used to precipitate magnesium hydroxide from the magnesium chlo-The precipitated magnesium hydroxide and the ride in sea water. unreacted magnesium hydroxide from the milk of dolomite are settled, filtered, and calcined to yield the desired products. This magnesia contains as impurities small quantities of lime that do not react completely with the magnesium chloride or are carbonated by the atmosphere, all the siliceous impurities in the milk of dolomite, and quantities of reagents (such as iron oxide) added for their modifying effects Developments similar to these are occurring throughin processing. out the world.

Recovery of magnesia from natural brines is also increasing. The Michigan Chemical Co. is constructing a plant at Saint Louis, Mich.,

Pit and Quarry, Sea-Water Magnesite Plant Improved: Vol. 33, No. 10, 1941, pp. 45, 47.

which is expected to yield 15,000 tons of refractory magnesia from dolomite and from natural brines in that area. Completion of this plant is expected during the latter half of 1942. It is reported that refractory magnesia is to be recovered from the magnesium content of the brines of Great Salt Lake in Utah. The salt content of the lake ranges from 14 to almost 28 percent, depending on the level of the lake, and is composed of 55.5 percent chloride ions, 6.6 percent sulfate ions, 33.4 percent sodium ions, 1.9 percent potassium ions, 2.3 percent magnesium ions, and 0.3 percent calcium ions. Precipitated gypsum

undoubtedly would be a byproduct of the operation.

Increased production of magnesia from dolomite was recorded during 1941. The Standard Lime & Stone Co. of Baltimore, Md., operated its process at capacity during the year, leaching calcium hydroxide from milk of dolomite to produce a high-MgO product for refractory use. The Diamond Alkali Co., in cooperation with Basic Refractories, Inc., is reported to have produced a limited quantity of magnesia from calcined dolomite by treating this material in its ammonia stills. The bulk of the magnesia so recovered was said to have been shipped to the Maple Grove (Ohio) plant of Basic Refractories, Inc., for conversion to refractory products. The Diamond Alkali Co. will utilize this operation as part of its process for the manufacture of magnesium metal.

Basic Refractories, Inc., continued to manufacture its stabilized dolomitic refractory from dolomite, brucite, silica or magnesium silicates, iron oxide, and other components. Although this product contains only 65 percent magnesia, it competes directly with deadburned magnesite for many uses and may therefore be considered in this discussion of refractory magnesias from sources other than

magnesite

The Warner Co. of Philadelphia, Pa., continued work in the pilot plant on methods of recovering magnesia from dolomite by dissolving the calcium content as calcium bisulfide with hydrogen sulfide. Owing to the urgent need for high-grade refractory magnesia, a large commercial plant to use this process is being constructed. MacIntire, working for the American Lead, Zinc & Smelting Co., patented a process for recovering magnesia from dolomite. His process involves treating half-burned dolomite with water and hydrogen sulfide to form a solution of magnesium bisulfide. The calcium carbonate is removed, and magnesium hydroxide and hydrogen sulfide are recovered by boiling the solution. Stump patented a method of differentially carbonating a milk of dolomite in such a way that only the Ca(OH)₂ is carbonated, whereas the Mg(OH)₂ is left unaffected. The calcium carbonate and magnesium hydroxide are separated by mechanical means.

The possibility of using magnesium silicates in the manufacture of magnesia attracted increasing attention during 1941. Olivine has been used for several years in the manufacture of Epsom salts on a small scale, and much experimentation has indicated the feasibility of using olivine and serpentine in the manufacture of magnesium metal. H. R. Brandenburg 8 has patented a process for obtaining

MacIntire, W. H., Magnesium Oxide from Dolomitic Rock: U. S. Patent 2,118,353, May 24, 1938. Stump, Horace, E., Carbonating Lime and Separating it from Magnesia: U. S. Patent 2,231,965, February 18, 1941.

magnesia from serpentine. In this process, serpentine calcined at about 700° C. is leached with water and carbon dioxide to form magnesium bicarbonate. Magnesia is obtained by calcining the precipitated basic magnesium carbonate resulting from heating the solution of magnesium bicarbonate. About one-third of the magnesium in serpentine may be recovered in this manner.

DOLOMITE

Responding to the demands of the steel industry, sales of deadburned dolomite by domestic producers advanced 23 percent over the 1940 level to a new high of 1,069,887 short tons. Most refractory dolomite plants were operated at or near capacity, and increased production facilities seemed to be needed in some places. As in 1940, no imports of dead-burned dolomite into the United States were reported. The year 1941 was marked by an increased use of dolomite as a source of magnesia. As noted in the preceding section on Refractory Magnesia from Sources Other than Magnesite, two companies utilized dolomite for the manufacture of refractory magnesia, and several more were constructing plants or studying processes for that purpose. However, the various magnesium-metal plants now under construction probably will consume far more calcined dolomite than those in which refractory magnesias are or will be produced.

Dead-burned dolomite sold in and imported into the United States, 1937-41

	Sales		Imp	oorts 1		s	ales	Imports 1	
Year	Short tons	Value Short tons Value		Value	Year	Short tons	Value	Short tons	Value
1937 1938 1939	617, 706 366, 626 671, 561	\$5, 217, 833 3, 095, 355 5, 447, 554	9, 083 2, 875 186	\$231, 084 67, 340 4, 260	1940 1941	867, 909 1, 069, 887	\$6, 925, 328 9, 111, 172		

¹ Reported as "dead-burned basic refractory material."

Nine plants that will use dolomite in the production of magnesium are now under construction. The processes to be used are described in some detail in the Magnesium chapter of this volume. Estimates place the total calcined dolomite to be used in the war program for production of magnesium metal at nearly 600,000 tons annually. Important as this quantity may be, however, it is less than that used for refractory purposes in normal peace times.

An interesting information circular on dolomite was published by the Bureau of Mines. This paper discusses most of the uses of dolomite in some detail and also indicates the location of the principal deposits from which dolomite has been recovered. Another information circular dealing more particularly with the uses of dolomite in the chemical and processing industries was also published by the Bureau of Mines during 1941.10

⁹ Colby, Shirley F., Occurrences and Uses of Dolomite in the United States: Bureau of Mines Inf. Circ. 7192, 1941, 21 pp.

¹⁰ Bowles, Oliver, and Jensen, Mabel S., Limestone and Dolomite in the Chemical and Processing Industries: Bureau of Mines Inf. Circ. 7169, 1941, 15 pp.

OTHER MAGNESIUM COMPOUNDS

Production of magnesium compounds (other than magnesias similar to caustic calcined or dead-burned magnesite) from natural brines. bitterns, or saline deposits continued to expand and reached a new high level of 137,357 tons valued at \$3,587,784 in 1941, a 27-percent increase in quantity over the previous high of 108,266 tons valued at \$2,452,814 in 1940. The huge war demand for magnesium metal spurred the production of magnesium chloride and increased its lead over other magnesium compounds still further. Almost two-thirds of the projected 362,500 tons of annual magnesium-producing capacity for the war program will utilize electrolysis of magnesium chloride. Adding other consumption of magnesium chloride to that for magnesium metal, the total will approach a million tons annually, which is many times the 1940 total. To produce the great tonnages of magnesium chloride required, operations of the Dow Chemical Co. at Midland, Mich., and at Freeport, Tex., and of the Westvaco Chlorine Products Corporation at Chula Vista, Calif., were maintained at capacity during the year.

Magnesium compounds imported for consumption in the United States, 1937-41

ride		ium chlo- anhydrous s. p. f.) Magnesium fate (Epsom s					Oxide or calcined magnesia		
	Short tons	Value	Short tons	Value		ort Val	ue	Short	Value
1937 1938 1939. 1940. 1941 (JanSept.)	32 41 28 (1)	1,572	1, 953 799 198 6 1	\$26, 771 12, 328 3, 641 898 170	3	\$71, 117 \$, 193 \$, 472 \$43,	889 470 435	109 46 38 18	15, 947 14, 755
Year		Magnesiur preci	n carbonate, pitated			res of car- magnesia			salts and
		Short tons	Value	Short t	ons	Value	Sho	ort tons	Value
1937		521 470 776 754 634	\$51, 684 53, 151 68, 934 82, 764 74, 994		7 3	\$562 209		70 48 59 92 19	\$20, 462 17, 146 26, 788 44, 492 8, 861

The Bureau of Mines is conducting exploratory work to determine the feasibility of a plant to produce magnesium chloride from saline deposits at depths ranging from 2,200 to 4,200 feet near Thompsons, 30 miles north of Moab, Grand County, Utah. The brines are said to contain almost 32 percent solids that consist approximately of 52 percent magnesium chloride, 27 percent calcium chloride, 13 percent potassium chloride, and 8 percent sodium chloride; about 0.15 to 0.20 percent of bromine is also present. The erection of a plant capable of producing 500 tons of anhydrous magnesium chloride daily has been proposed. Bromine and potassium chloride also would be recovered.

 ^{1 109} pounds.
 2 Magnesium silicofluoride or fluosilicate included under "Magnesium salts and compounds, n. s. p. f."

Recently a large deposit of brine about three times as rich in magnesium salts as that used by the Dow Chemical Co. at its Midland (Mich.) plant has been discovered near Ludington, Mich. planned to use magnesium chloride extracted from this brine for the annual production of 72,000 tons of magnesium metal, most of which

will be manufactured by the Dow Chemical Co.

The magnesium chloride obtained as a byproduct of the production of potassium sulfate by the Union Potash & Chemical Co., Carlsbad. N. Mex., subsidiary of the International Minerals & Chemical Co.. is also to be used as a source of magnesium metal. Anhydrous magnesium chloride will be shipped to Austin, Tex., for conversion into metal. Additional metal will be produced at this plant from dolomite as raw material.

Production of magnesium chloride from other sources, notably dolomite and magnesium silicates, is expanding rapidly. Of the huge quantity of magnesium chloride needed for magnesium-metal production, over 200,000 tons will be derived from dolomite and additional quantities may be obtained from olivine and serpentine. chapter on Magnesium in this volume contains further details concern-

ing these developments.

Production of magnesium sulfate from natural brines increased substantially during 1941. Production was reported in Michigan, Texas, and Washington, with one plant in each State. The recovery of Epsom salts from Epso Lake in north central Washington by the C. A. Kearney Co. of Tonasket, Wash., has been discussed in Mining

World, July 1941 (pp. 29–31).

Naturally occurring brines rich in magnesium sulfate found west of the Pecos River in Eddy County, southeastern New Mexico, were described by Lang.¹¹ These brines average 382 grams per liter solids content, of which 44 percent is magnesium sulfate, 39 percent sodium sulfate, 10 percent magnesium chloride, 4 percent potassium sulfate, 2 percent magnesium borate, and 1 percent magnesium carbonate. Interest was expressed in utilization of these brines as a source of raw material for magnesium-metal production.

Considerable expansion of the magnesium sulfate plant near Sylva, N. C., is contemplated, although no action was taken during 1941. This plant produces Epsom salts by the digestion of olivine with sulfuric acid, followed by leaching, purification, and crystallization of

the magnesium sulfate so produced.

Methods for preparing magnesium sulfate by treatment of magnesium hydroxide and gypsum with CO₂ ¹² and by calcination of a mixture of serpentine and iron pyrites ¹³ have been described. The first of these methods is carried out in an aqueous medium always containing some magnesium hydroxide rather than in a solution saturated with carbon dioxide. In the other method, only about one-third of the magnesium present in the serpentine may be recovered as magnesium sulfate.

¹¹ Lang, Walter B., New Source for Sodium Sulfate in New Mexico: Bull. Am. Assoc. Petrol. Geol., vol. 25, No. 1, January 1941, pp. 152-160.

12 Farnsworth, Wm. H., and Martin, Clair H., Magnesium Sulfate from Magnesium Carbonate and Calcium Sulfate: U. S. Patent 2,231,327, February 11, 1941.

13 Brandenburg, Hellmuth R., Serpentine as a Source of Magnesia: Min. Jour. (Phoenix, Ariz.), vol. 24, No. 10, 1940, pp. 2-3.

A strong plaster, described by Cunningham, 14 has been prepared by heating gypsum in 30- to 35-percent magnesium sulfate solution at 265° F. for about 45 minutes. The calcium sulfate hemihydrate resulting from heat treatment of the gypsum is filtered from the Epsom salts solution and is washed, dried, and ground in a ball mill to produce a plaster holding 33 to 45 cc. of water per 100 grams and having a tensile strength when set of 490 pounds per square inch and

a compressive strength of 4,610 pounds per square inch.

A series of British patents ¹⁵ on a new process for the recovery of magnesium compounds from sea water has been issued. involves precipitation of magnesium hydroxide from sea water in the usual manner, followed by dissolution of this precipitate with carbon dioxide under pressure. The resulting solution of magnesium bicarbonate is passed through a column of an organic cation-exchange material saturated with a sodium compound. This results in the formation of a solution of sodium bicarbonate from which sodium carbonate may be recovered. Magnesium chloride may be obtained by passing raw or treated sea water through the column saturated with magnesium ions. Magnesium sulfate may be obtained by treating the magnesium-saturated cation-exchange material with sulfuric acid followed by neutralization. Patents on pretreatment of sea water and on the precipitation of magnesium hydroxide and magnesium silicate are included in this series.

Prices of most magnesium compounds remained constant during Anhydrous magnesium chloride sold at 13 cents per pound delivered in barrels, while the price of flake magnesium chloride packed in barrels remained at \$32.00 per ton, f. o. b. works. Technical Epsom salts sold at \$1.80 per 100 pounds in bags. No changes in price occurred among the more usual grades of magnesium carbonate,

oxide, or hydroxide.

A new magnesium mineral, bradleyite (Na₃PO₄.MgCO₃), was reported by Fahey and Tunell. This mineral occurs as a 1-inch layer at a depth of 1,343 feet in the drill core in which the mineral shortite was found in Sweetwater County, Wyo.

CALCIUM CHLORIDE

Sales of calcium chloride and mixed calcium-magnesium chloride obtained from natural brines totaled 165,932 short tons in 1941, basis 75 percent (Ca, Mg) Cl₂, a 67-percent increase over the 1940 total, resulting largely from increased business activity noted generally throughout the Nation. Exports of calcium chloride in the first 9 months of 1941 were 15,961 short tons, or almost double the total for Customarily exports of calcium chloride, although having a wide distribution, go largely to Canada, Argentina, Venezuela, Cuba, Netherlands Indies, and Mexico.

 ¹⁴ Cunningham, W. A., A Strong Plaster for Paperless Wallboard: Rock Products, vol. 45, No. 4, April 1942, pp. 50-53; Schoch, E. P., Wall Plaster: U. S. Patent 1,989,712, February 5, 1935.
 ¹⁵ Adams, Basil A. (assr. to Ocean Salts Products, Ltd.), Magnesium Sulfate from Magnesium Hydroxide Prepared from Sea Water: British Patent 532,786, January 30, 1941; Treatment of Sea Water and the Like: British Patent 533,509, August 8, 1939; Pure Magnesium Hydroxide: British Patent 535,852, September 20, 1939; Producing Solutions of Alkali Compounds from Sea Water: British Patent 535,854, September 20, 1939; Magnesium Chloride: British Patent 536,266, November 13, 1939; Preparation of Magnesium Fluoride: British Patents 540,076, July 26, 1940.
 ¹⁶ Fahey, Joseph J., and Tunell, Geo., Bradleyite, a New Mineral, Sodium Phosphate-Magnesium Carbonate: Am. Mineral., vol. 26, 1941, pp. 646-650.

Calcium (calcium-magnesium) chloride from natural brines sold by producers in the United States, 1937-41

[In terms of 75 percent (Ca, Mg) Cl₂]

Year	Short tons	Value	Year	Short tons	Value
1937	97, 142 96, 470 108, 441	\$1, 295, 403 1, 218, 938 1, 307, 717	1940 1941	1 99, 536 165, 932	1 \$998, 241 1, 333, 370

¹ Revised figures.

Calcium chloride imported for consumption in and exported from the United States, 1937-41

enter de la companya de la companya de la companya de la companya de la companya de la companya de la companya	Imp	orts	Exports	
Year	Short tons	Value	Short tons	Value
1937	2, 205 1, 642	\$24,908 21,174	21, 731 24, 118	\$415, 306 396, 98
1939. 1940. 1941 (January-September)	996	12, 314 795	19, 382 8, 907 15, 961	318, 199 194, 738 376, 912

Calcium chloride is consumed chiefly in road stabilization, surface consolidation, and dust laying; other uses are for highway ice control, dust-proofing coke and coal, refrigeration, concrete acceleration and conditioning, manufacture of chemicals, and air conditioning. Substantially increased consumption for concrete acceleration and conditioning during 1941 resulted primarily from increased construction of defense projects. It is expected that the use of calcium chloride in dust- and freeze-proofing coal and dust-proofing coke will increase if oil-transportation difficulties cause increased utilization of coal for domestic heating purposes.

A new use for calcium chloride, and one that will doubtless become very important in the near future, is in conjunction with dolomite in the manufacture of magnesium metal by processes to be used by several alkali companies. It is estimated that the production of magnesium metal alone will consume about 300,000 tons of the equivalent of 75-percent calcium chloride annually before 1943.

Calcium chloride prices tended to decrease during 1941. Prices of flake calcium chloride of 77- to 80-percent concentration, which at the beginning of the year were quoted by the Oil, Paint and Drug Reporter at \$20.50 to \$35.00 per ton in carlots of material packed in drums, by the middle of June were quoted for material in paper bags because of increased package costs. Prices for calcium chloride in drums were \$3.50 per ton more and those for calcium chloride in burlap bags \$2.50 per ton more than for material in paper bags. Early in November the prices of calcium chloride in paper bags were reduced to the range of \$18.50 to \$35.00 per ton.

BROMINE

Production of bromine continued its phenomenal rise which began in 1926 by advancing 15 percent from its 1940 level to 34,159 short tons in 1941. The high pitch of business activity, involving increased consumption of gasoline of ever-improving antiknock rating, has been chiefly responsible for this increase, although the expanding miscellaneous uses for bromine compounds have also played important roles. During 1941 bromine was produced in 14 plants distributed throughout the Nation, as follows: Michigan, 5; Ohio, 1; West Virginia, 4; California, 2; and North Carolina and Texas, 1 each.

The Ethyl-Dow plant at Freeport, Tex., was a very important new domestic producer of bromine, having gone into production in March 1941; it operates in conjunction with the Dow plant that produces magnesium metal at the same location. The bromine from the plant appears largely in the form of ethylene dibromide, a compound produced from the recovered bromine and the natural gas piped to the plant. The addition of this new plant to the Ethyl-Dow bromine-production facilities increases still further the already great fraction of the total domestic bromine production controlled by the company.

Bromine and bromine in compounds sold or used by producers in the United States, 1937-41

Year	Pounds	Value	Year	Pounds	Value
1937	26, 200, 256 33, 324, 116 37, 882, 005	\$5, 180, 177 6, 610, 056 7, 611, 400	1940 1941	59, 266, 275 68, 317, 019	\$11, 772, 515 11, 506, 213

The process used by the American Potash & Chemical Corporation. another relatively new producer in the field, for recovering bromine is described in a recent patent.¹⁷ It involves concentrating the raw brine from Searles Lake substantially to saturation with respect to potassium chloride and then cooling the liquor to separate mixed crystals of potassium chloride and of potassium bromide, which is isomorphous with it. Concentrations of potassium bromide as high as 1.8 percent of the crystalline product are obtained. These crystals are separated from the mother liquor and dissolved, and the solution is treated with chlorine to release the bromine, which is recovered by steam distillation. Pure potassium chloride is crystallized from the debrominated solution. Bromides will be prepared from bromine by a recent modification of the van der Meulen process, 18 in which bromine is reacted with a metal hydroxide or carbonate in the presence of an easily reduced material, yielding only water and gases as products of reduction.

By far the greatest part of the bromine manufactured in this country is used as ethylene dibromide in the preparation of ethyl fluid, which is added to gasolines to improve their antiknock qualities. Other important uses for bromine compounds are in photography, medicine, fumigation, and chemical synthesis. Although not yet used to an appreciable extent in World War II, many war gases and lachrymators contain bromine and consumed a very appreciable tonnage of bromine during World War I. Germany is reported to have large stores of poison gases on hand, and it is probable that other warring nations likewise are producing such weapons in appreciable quantities. Should

Gale, Wm. A., and Pearson, E. P., Recovery of Bromine and Iodine from Brines Such as Searles Lake
 Brine: U. S. Patent 2,251,353, August 5, 1941.
 Meulen, J. H. van der, Alkali or Alkaline Earth Metal Bromides: U. S. Patent 1,775,598, September 9, 1930.

poison-gas warfare become active, large quantities of bromine doubtless would be necessary for the manufacture of the requisite gases and

other chemical agents.

Some progress has been made in the problem of shipping elementary bromine. Under present practice, bromine is shipped in cases of nine glass bottles, each containing 6.5 pounds of bromine. The net weight of this unit is 58.5 pounds of bromine, and the gross weight is about 140 pounds. A recent German patent (No. 694,408) suggests packaging the bromine in light sheet-iron containers coated with lead and partly filled with tetramethyl-ammonium bromide. Bromine is added to this compound in the container to form a solid molecular compound, of which 93 percent is bromine. The containers are equipped with openings, and the bromine is introduced through tubes. When it is desired to remove the bromine, hot air or steam is injected, and at 40° C. the bromine melts and can be withdrawn, leaving the tetramethyl-ammonium bromide, which can be used again. It is claimed that by this means the packing weight may be reduced to one-tenth of its former poundage.

Bromine prices remained constant during 1941, being quoted at 25 to 30 cents per pound for the purified material in 1,000-pound cases.

IODINE

Production of iodine in the United States again increased during 1941. Current figures may not be published, however, owing to the fact that only the Dow Chemical Co. and the Deepwater Chemical Co. reported production. The domestic output of iodine during 1937 (the latest year for which statistics have been published by the Bureau of Mines) was 299,286 pounds valued at \$242,422. Imports of crude iodine amounted to somewhat over 339 short tons in the first 9 months of 1941; however, they are not a reliable index of consumption or activity in the iodine industry in a given year. This is due to the relatively limited use of this commodity and to the fact that the Chilean Nitrate & Iodine Sales Corporation, only iodine-importing organization, maintains large stocks in this country.

Crude iodine imported for consumption in the United States, 1937-41

Year	Pounds	Value	Year	Pounds	Value
1937 1938 1939	1, 967, 148 570, 532 200, 000	\$1, 784, 491 464, 303 168, 238	1940 1941 (JanSept.)	1, 244, 146 678, 865	\$1, 296, 181 769, 272

Prices of crude iodine were the same at the end of 1941 as at the beginning. On June 16, 1941, the Chilean Nitrate & Iodine Sales Corporation raised the price of crude iodine from \$1.35 per pound to \$1.60, but when domestic producers failed to follow this advance the importers soon were forced to restore their quotation to its former level.

Iodine is used chiefly in pharmacy and photography, in table salt, and as a mineral supplement to animal feeds. Factors responsible for loss of iodine from iodized salt and iodized feeding stuffs have been studied by the Iodine Educational Bureau in collaboration with the Mellon Institute for Industrial Research. It was found that iodized

salt may lose as much as 40 percent of its iodine content during 18 months' storage, and iodized-mineral feeding mixtures may lose 9 to 20 percent in 4 months. This loss, however, has been overcome by milling 10 percent of the stearate of either calcium or magnesium with 300-mesh potassium iodide before mixing with the salt or feeding compound. This process, which is now in commercial application, is said to impart great stability to the iodide in the presence of salt or mineral oxidizing agents but to leave the iodide in a completely assimilable form.

SODIUM SULFATES AND CARBONATES

Production of natural sodium sulfate reversed its upward trend by decreasing 16 percent from the 1940 level to 157,524 short tons in 1941 owing partly to a 3½-month strike at the plant of one of the principal producers. It has been estimated ¹⁹ that the total 1941 consumption of salt cake was 525,000 to 550,000 tons, an increase of some 100,000 tons over the preceding year. Extended use of paper, especially for packaging, was largely responsible for this gain. Imports of sodium sulfate (almost all salt cake) during the first 9 months of 1941 were 61,508 short tons valued at \$664,985, indicating an increased over-all rate of importation despite cessation of imports from Continental Europe.

Natural sodium sulfates and sodium carbonates sold or used by producers in the United States, 1935-41

Year	Sodium s	ulfates 1	Sodium carbonates 3		
1935	38, 706 51, 608 80, 053 80, 210 137, 479 187, 233	\$275, 943 336, 559 599, 266 596, 812 1, 027, 876 1, 528, 633	93, 230 102, 866 104, 711 100, 010 114, 743 180, 034	Value \$1, 173, 003 1, 106, 364 1, 191, 485 1, 235, 325 1, 528, 810 1, 629, 283	

 $^{^1}$ 1935–38: Salt cake and Glauber's salt; 1939–41: Salt cake, Glauber's salt, and burkeite. 2 Soda ash, bicarbonate, and trona.

Commercial shipments of sodium sulfate products from the plant of the Desert Chemical Co. of Dale Lake, Calif., were begun in September 1941. This plant recovers sodium sulfate and sodium chloride from a subterranean brine lake containing 22.5 percent NaCl and 7.5 percent Na₂SO₄. Fractional crystallization, dependent on natural variations in climatic conditions, is used to effect separation of the constituents of the brine.

The American Potash & Chemical Corporation, Trona, Calif., already leading producer of natural sodium sulfate products, will increase its annual productive capacity for salt cake by 50,000 tons during 1942. The entire production of the company was halted for almost 15 weeks (from March 15 until July 1, 1941) by a strike of plant workers. The process used by this company has been interestingly described by Robertson.²⁰ Use is made of the phase-rule rela-

¹⁸ Oil, Paint and Drug Reporter, Salt Cake: Vol. 141, No. 5, February 3, 1942, p. 38.
28 Robertson, G. Ross, Expansion of the Trona Enterprise: Ind. and Eng. Chem., ind. ed., vol. 34, No. 2, February 1942, pp. 133-137.

tionships between solutions of sodium chloride and the other salts involved, whereby sodium sulfate and sodium carbonate are recovered from burkeite obtained as a byproduct in the recovery of potassium

chloride and borax from the brines in Searles Lake, Calif.

The process used by the Ozark Chemical Co. at its Monahans (Tex.) plant to recover and dehydrate sodium sulfate has been described by Douglass and Anderson. Glauber's salt is dehydrated at this plant by "submerged combustion." A somewhat similar process of evaporation of hydrous sodium sulfate has been described by Schultz and Lavine. Their process of "interphase evaporation" by hot combustion gases from burning peat was suggested for the commercial development of the natural sodium sulfate of North Dakota.

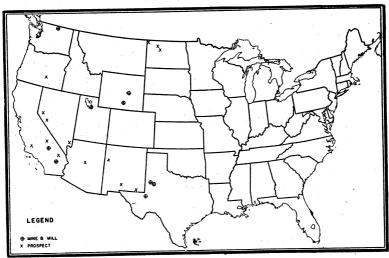


FIGURE 2.—Geographic distribution of sodium sulfate mines and prospects in the United States.

Several new sources of sodium sulfate have been discovered in New Mexico (see fig. 2). H. P. Powers of Gallup, N. Mex., reports discovery in that State of a large deposit containing over 80 percent sodium sulfate based upon the dry weight of the salts present. Minor constituents include magnesium sulfate and sodium chloride. The salts as recovered from the deposit contain some 45 percent moisture. The previously mentioned natural brines of southeastern New Mexico, described by Lang,²² were also considered to be sources of sodium sulfate. It is suggested that sodium sulfate produced from this source could be sold to the nearby potash industry, to be used for converting sylvite into potassium sulfate and sodium chloride.

Prices of domestic salt cake in bulk were reduced to \$13.00 per ton early in June 1941, despite the reduction in supplies brought about by the strike at the American Potash & Chemical Corporation. Prices,

however, were increased to \$15.00 per ton in September.

²¹ Douglass, E. W., and Anderson, C. O., Submerged Combustion as Applied to Sodium Sulfate Production: Chem. and Met. Eng., vol. 48, No. 5, May 1941, pp. 135-137.
22 Schultz, Robert F., and Lavine, Irvin, Interphase Evaporation of Sodium Sulfate Solutions: Ind. and Eng. Chem., ind. ed., vol. 34, No. 1, January 1942, pp. 59-64.
23 Lang, Walter B., Article cited in footnote 11.

Sales of natural sodium carbonates, all produced in California, increased 13 percent from the 1940 total to 146,677 short tons during 1941. Estimated 24 production of sodium carbonate by chemical means during 1941 was 3.512,000 short tons of ammonia-soda process sodium carbonate and 18,000 short tons of electrolytic sodium carbonate, indicating an increase of almost 16 percent over the 1940 total for chemically manufactured soda. Virtually all major consuming industries required more soda ash to cope with higher operating schedules. New munition plants and increased requirements of the aluminum industry because of vastly expanded production and utilization of lower-grade ores, however, were direct factors resulting from the great defense effort of 1941. Reduced consumption of sodium carbonate in the manufacture of plate glass (owing to the ban on manufacture of private automobiles) is likely to be more than offset by substitution of glass for other less available materials and by increases in glass-container manufacture resulting from efforts to conserve the supplies of tin. It has been suggested that the use of soda ash in the desulfurization of steel be greatly increased to save man-This use of soda ash is widely practiced in Europe. Estimated possible consumption of soda ash in this application is of the order of 35,000 tons.

To meet the expanded requirements for sodium carbonate, emphasis was placed on recovery from natural sources by rapidly constructed and relatively simple temporary plants rather than on large and costly soda-ammonia process plants. Because some of the temporary plants would operate on submarginal deposits, they would require higher prices for their products; but they could be dismantled after the emergency with little loss, whereas the larger ammonia-soda plants might create a relatively large overcapacity for a considerable period.

Pike 25 suggested the establishment of a huge chemical industry in Wyoming based upon large deposits of trona discovered in 1939 about 20 miles west of Green River. It is proposed to sink a shaft to the deposits, which lie at a depth of 1,500 to 1,600 feet. The estimated cost of producing the trona by using room-and-pillar mining methods is \$1.50 per ton.

Prices of sodium carbonates remained constant during 1941, but a slight revision was made in contract prices for 1942 to cover the cost of burlap packings. The light and extra-light soda ash in carlots, in bags, ranges from \$1.05 to \$1.13 per 100 pounds and the dense, in bags, \$1.15 per 100 pounds, according to the Oil, Paint and Drug Reporter.

The American Potash & Chemical Corporation of Trona, Calif., is making additions to its plant for recovering soda ash from burkeite, a byproduct of the recovery of potassium chloride and borax from the brines of Searles Lake. The additions are expected to make possible an increased output of 40,000 tons of soda ash annually.

BORATES

-Domestic production of borates during 1941 reached 301,282 short tons, a 24-percent increase over 1940, despite the 3½-month strike

²⁴ Chemical and Metallurgical Engineering, Commodity Reviews, Alkalis, and Chlorine: Vol. 49, No. 2, February 1942, pp. 84-86.
25 Pike, Robert D., Possibilities for a Wyoming Chemical Industry; Statement before the Subcommittee of Public Lands Committee of the United States Senate, July 23, 1941; Chem. and Met. Eng. vol. 48, No. 9, September 1941, pp. 112-113.

at the plant of one of the leading producers and a sharp decline in exports. Apparent consumption of borates is estimated to have reached an all-time high, greatly exceeding the previous high of 211,739 tons attained in 1936. Increased industrial activity, substitution of ceramic and enameled ware for metals and alloys needed for war purposes, and military needs were largely responsible for the expanded consumption.

Salient statistics of the boron-mineral industry in the United States, 1937-41

	1937	1938	1939	1940	1941
Sold or used by producers: 1	970.000	017 000	045 004	040.055	001.000
Short tonsValue	358, 898 \$7, 232, 897	215, 662 \$4, 739, 291	245, 284 \$5, 689, 797	243, 355 \$5, 643, 390	301, 282 \$8, 455, 422
Imports for consumption (refined): 2					(0, 200, 22
Pounds Value	724 \$176	631 \$131	2 774 2 \$170	752 \$185	
Exports:		, , , , , ,	· ·		
Short tonsValue	154, 052 \$4, 715, 691	77, 519 \$2, 642, 446	91, 139 \$3, 230, 304	64, 313 \$2, 456, 523	\$ 28,746 \$1,271,509
			13, 23, 332		
Apparent consumption: 4 Short tons	204, 846	138, 143	154, 145	179, 042	(6)

¹ 1937: Borax, colemanite, kernite, and boric acid (calculated as borax); 1938: Borax, kernite, and boric acid; 1939: Borax, colemanite, kernite, ulexite, and boric acid; 1940-41: Borax, kernite, boric acid, and colemanite.

2 Also 348 pounds of crude valued at \$7 in 1939.

Figures cover January to September, inclusive.
Quantity sold or used by producers plus imports minus exports.
Figures not available for publication.

Owing to the strike at Trona, Calif., mentioned heretofore, a temporary but acute shortage of berates developed, and it became necessary for the Office of Production Management to place borax and boric acid under full priority control from June 9 until August 30, 1941, to assure adequate supplies for military requirements. ment of the strike, however, soon restored conditions to normal, and continuance of priority control became unnecessary after August 30.

Producers held prices of borates constant during 1941, although resale prices often were much higher during the strike period. the basis of increased manufacturing costs, a price advance was allowed on January 28, 1942, by the Office of Price Administration, which undertook to review and determine prices at the request of producers. This advance amounted to \$1.00 a ton over the figure of \$40.50 per ton of granular borax, bulk, carlots, and \$2.00 per ton for boric acid, the technical grade of which sold at \$93.50 per ton.

Research on the production and uses of boron compounds was active Their use as fertilizers for soils deficient in boron continued to engage scientists, and some progress was reported in this field. Powers, 26 in summarizing the biological effects of boron, says-

Boron appears to give elasticity to the plant cell membranes and to aid cell division. It seems to regulate respiration, lessen effect of drought, has improved keeping qualities of apples and prunes, and prevents swelling and blocking of roots and pollen tubes. Boron prevents break-down of conduction tissues, is important in nitrogen metabolism, and aids development of nodules and nodule bacteria. Boron affects carbohydrate translocation and pectin formation and amount of calcium in tissues. Eaton (1940) reported boron to be essential to formation of auxin in plants, and Goldschmidt and Peters reported it essential in metabolism Boron is a constituent of animal tissues. of brown algae.

²⁸ Powers, W. L., Boron—A Minor Plant Nutrient of Major Importance: Better Crops with Plant Food, vol. 25, No. 6, 1941, pp. 3–11, 39–40.

The use of manganese or zinc borates together with chlorinated organic materials in fire-proofing compositions for textiles was begun during 1941. These borates, being fusible at low temperatures, cover the fibers on exposure to the flames. Thus, glowing and creeping of the fire are prevented; the chlorinated material alone could not do this. Zinc borate has the additional advantage of giving good resistance to mildew. A British patent ²⁷ describes the use of boric acid esters as efficacious antioxidants for rubber and similar materials. Warth ²⁸ reported tests indicating that borax has a rust-inhibitive action superior to that of any of the various alkaline reagents found in commerce and even to many so-called rust inhibitors. An Australian report indicated that boric acid was effective in the protection of timber against the powder post borers. Eight mills in Queensland and four in New South Wales are employing the new process, which has been in commercial use for approximately 2 years.

U. S. Rubber Products, Inc., Preserving Rubber, etc.: British Patent 509,459, July 17, 1939.
 Warth, A. H., Borax as a Rust Inhibitor: The Crown, vol. 30, No. 5, 1942, p. 20

GEM STONES

By Sydney H. Ball

SUMMARY OUTLINE

	Page		Page
Jewelry industry in 1941	1517	Diamond-Continued.	
Fashions in jewels		Imports	
Domestic production		Cutting	. 1524
Imports			. 1525
Government regulations		Industrial diamonds	. 1526
Effect of war on sources of gems		Ruby, sapphire, and emerald	. 1527
Diamond	1523	Lesser gems	. 1527
Share dealings	1523	Bibliography	
Market	1523		

JEWELRY INDUSTRY IN 1941

Retail sales by jewelry stores in the United States totaled about \$526,000,000 in 1941, a 30-percent increase over 1940 (when sales totaled about \$405,000,000) and within 2 percent of those in 1929. An additional 18 to 24 percent was sold by department stores.

Arkansas, Connecticut, and Indiana showed notable advances over 1940 in retail sales. Again, as in 1940, gains were due mainly to larger turn-over of relatively inexpensive items, and sales of high-priced articles were the exception. This can be explained, in New York at

least, by the colorless stock market.

The jewelry trade had two "Christmases"—the first late in September, when taxwise buyers bought heavily to avoid the 10-percent excise tax, and the real Christmas. During both periods the buying rate was higher than at any corresponding time since 1929. Some expensive articles were sold during both buying seasons, and certain of these, strangely enough, were purchased by European refugees. In 1941 the gain in sales may have been in part a hedge against inflation, that is, investment buying; but furthermore, compared with 1940 the Nation's income had risen from about \$72,000,000,000 to about \$92,000,000,000. Sales were also increased by an all-time record number of marriages (1,565,000), over 16 percent above those in 1940, which had been the banner year.

From year to year in the larger cities, a few of the better department stores are cutting into sales of retail jewelers, and it may be added that, on the average, they are handling stock of finer grade year after year.

Wholesale jewelry sales in 1941 were somewhat greater even than those of the retailers, and stocks in retail jewelry shops increased 14 percent. Manufacturers' personnel was employed full time. During the year, exports to South America, which normally obtains its jewelry supplies from Germany, were large.

The national income of Canada is also rising (\$5,180,000,000 in 1940—\$6,200,000,000 in 1941), and retail jewelry sales in 1941 topped those of 1940. Canadian prices have as their ceiling those of the basic

period September 15-October 11, 1941. Luckily, the more important shops had fairly extensive stocks when the price order went into effect; but as the war progresses, the transfer of machinery and artisans to war work and the lack of certain materials may cause a shortage of articles, resulting in smaller retail sales.

FASHIONS IN JEWELS

Large, flamboyant jewelry characterized the mode in 1941, a year in which it was used even with sport clothes. Gold continued to be worn more than platinum, although the latter was used in the finer diamond mountings. For the first time, however, industrial consumption of platinum exceeded that of the jewelry trade. Regimental and other military insignia and the "V for Victory" pins and clips were popular, but floral decorations, grotesque animals, geometric designs, and Victorian and South American motifs were also seen. Ensembles set with similar stones and large jewelry pieces divisible into several ornaments continued in favor. Clips and lapel pins were especially popular; watches, bracelets, earrings, and necklaces were less so. Double wedding rings are gaining popularity.

The shortage of melee is decreasing the use of pavé mountings, and more and more fine gems are being set "sec." Stones, such as citrine and aquamarine, weighing up to 400 carats (over 2 ounces), were used in bracelets and pins. Diamond (including some brown stones for men), sapphire (largely blue, but also yellow and pink), and ruby were the most popular gems, followed by topaz, moonstone, emerald, aquamarine, and amethyst. Due to the insistent demand for diamonds, colorless stones were dominant, followed by blue, red, yellow, and green. For the first time in many years, yellow stones were more popular than green and were used almost as commonly as blue and red stones. Owing to wider knowledge of gem stones in the United States, some 40 varieties were used in jewelry in 1941, in contrast to the few kinds once worn.

DOMESTIC PRODUCTION

From the 1909 peak output of gem stones valued at \$534,280, domestic production dwindled to only \$3,000 in 1934; but since that year productior has increased progressively and markedly and in 1941 was valued at \$240,000 to \$770,000. The first figure is a rough estimate of the value of uncut stones used in jewelry and the second an estimate of the total value after cutting, including stones added to mineralogists' collections or sold to tourists, collectors, and rock gardeners. Of the total value, 70 percent represents members of the quartz family, 18 percent sapphires (largely used industrially), and 12 percent turquoise. The principal producing States (in approximate order of output) were Oregon, Montana, Washington, Nevada, Wyoming, and Colorado.

The interest in beautiful minerals continues to grow; the number of professional and amateur lapidaries is increasing, particularly in Oregon (largely Portland and Newport) and Washington. Dr. H. C. Dake says that in those States the shops are operating at capacity and there is a shortage of skilled labor; cabochon-cut gems are being sold to American makers of costume jewelry; and agate balance knives and

mortars and pestles are being produced. Local machine shops

manufacture cutting equipment, including diamond saws.

Professional gem cutters operate also in New York, Rhode Island (Providence), Maine, North Carolina, Montana, and South Dakota. Gem cutting is carried on as a hobby in many States, notably in Idaho, Wyoming, Utah, and North Carolina. Owners of preciousstone claims complain that amateur mineralogists "high-grade" the

deposits in the absence of a resident watchman.

Agate and jasper are collected in quantity in Oregon and Washington, particularly on the beaches of Lincoln County, Oreg. Most of this is cut by local lapidaries, although some rough is shipped to other States. Montana continues to produce a considerable quantity of fine moss agate from the gravels of Yellowstone River in the southeastern part of the State. Wyoming also furnishes good material. Alfred M. Buranek states that Utah produced about \$10,000 worth of agate in 1941. Arthur L. Crawford describes the principal varieties as jasper from the east bank of the Colorado River in Grand County; agate from 6 miles east of Cisco, Grand County; and red jasper geodes from Tidwell, Emery County. Arkansas produces considerable rock crystal from the vicinity of Hot Springs. Farmers dig most of it in the winter, but mineral dealers also mine some. Most of it is sold to tourists as curios, but some is used in jewelry. Scott's Rose Quartz Co. produced considerable rose quartz from its mine near Custer, S. Dak., and sold some for jewelry use.

In 1941, Montana produced about 3,720 troy pounds of sapphire (of which perhaps 50 percent was first-grade material), valued at some \$43,000. The principal producers are American Gem Mines at Philipsburg, owned by Charles H. Carp and J. S. and R. M. Kaiser, and the Perry-Schroeder Mining Co., dredge operator of Helena. The former company operates on the West Fork of Rock Creek in Granite County, and the latter obtains its stones as a byproduct of gold-dredging Missouri River bars in Lewis and Clark County. Most of the stones are sold for industrial use; if for any reason the supply of synthetic sapphire should be inadequate to satisfy war demands for instrument jewels, Montana sapphire would have prime importance. Carl J. Trauerman (Butte Daily Post, June 3, 1941) believes that, if necessary, Montana could produce 150,000 to 200,000 ounces yearly. Besides the two localities mentioned above, production could be obtained from Brown's Gulch in Silver Bow County, Dry Cottonwood

Creek in Powell County, and lode mines of Yogo Gulch.

Turquoise ranks after the quartz family and sapphire in value of production, with a total of about \$28,000. Nevada ranks first in output and Colorado second. The principal producer in Nevada was the Smith mine at Cortez, operated by A. Guisti, which produced over 7,550 pounds; the material is shipped to E. C. Smith, Santa Barbara, Calif. The King mine at Manassa, Colo., had an unusually successful year, as one "pocket" alone produced almost 700 pounds of good material. Richard M. Pearl reports that W. S. Kettering of Pueblo opened up a deposit in Pueblo County, Colo., in 1941, some of the product being good gem material. Imitation turquoise is cutting somewhat into western turquoise sales.

Further data furnished by B. F. Couch, Reno, Nev., suggests that Nevada alone produced turquoise worth at least \$20,000 in 1940, so that the author's estimate of \$20,000 as the country's production in 1940 (Gem Stones, p. 1401, Minerals Yearbook, Review of 1940) is probably somewhat low. The chief production centers are Royston and southern Death Valley (Nye County), Battle Mountain, Cortez, and Austin (Lander County), and one deposit in Mineral County. Couch says also that in 1941 Nevada produced over 2,175 pounds of good material worth \$13,775, with two producers not reporting. The Smith mine in the Bullion district, Lander County, was the chief producer, followed by mines in northern Lander County and the Royston and Beatty districts, both in Nye County

Royston and Beatty districts, both in Nye County.

Richard M. Pearl (see Bibliography) states that Colorado has for several years ranked second among the States as a turquoise producer, the gem stone occurring at four localities in the southwestern part of the State. The principal mines are the Hall near Villagrove and the King near Manassa; both of these deposits occur in felsite porphyry. The deposit near Leadville occurs in Silver Plume (Algonkian) granite, and turquoise near Creede occurs as stream pebbles. The turquoise of the lode deposits is believed to have been deposited by

cold meteoric waters in fractures and shear zones.

Alfred M. Buranek states that about \$2,000 worth of variscite was produced from the Clay Canyon deposit near Fairview, Utah. Jewel-

ers, museums, and mineral collectors were the purchasers.

Vergil E. Barnes (North American Tektites, University of Texas Publication 3945, Austin, June 1940, pp. 477–582) describes the only tektites yet found in North America. The first of these, which have been dubbed "bediastites," was found in Grimes County in 1936, and in all 482 have been recovered. To the local residents they are known as "black diamonds," and some have been cut for jewelry. They are found in an area 10 miles long and 5 miles wide. The tektites are black and have an average specific gravity of 2.37; the largest weighed 59.4 grams. Most of them are ellipsoidal, and a few are spherical or tabular with their exterior deeply furrowed. The tektites consist dominantly of silica (73.52 to 77.76 percent) and alumina (13.3 to 15.88 percent), with low lime. Barnes considers them fulgurites.

Several hundred carats of colorless and yellowish topaz was obtained from the Tarryall Mountains, Park County, Colo. Gems up to 5 carats in weight have been cut from this material (according to a letter from R. M. Pearl). Topaz Mountain in the Thomas Range, Juab County, Utah, also produced a little topaz. Dr. H. C. Dake reports that some nephrite of gem quality was obtained from the two Wyoming localities (Fremont County and 48 miles southwest of Lander); at the first locality the material is mined from a dike, and at the second it occurs as boulders. One mass weighed 119 pounds. He states that in 1941 about 1 ton of this variety of jade was produced, the best rough material selling for \$5 a pound. Alfred M. Buranek states that a little fine pyrope garnet was mined near Mexican Hat in southeastern Utah. Some was sold to prominent jewelers. Only three or four Indians worked the catlinite deposit at Pipestone, Minn., in 1941.

Other gem stones produced in the United States in 1941 included agate (Arizona, Colorado, Georgia, Montana, Oregon, South Dakota, and Utah); agatized wood (Arizona (private lands surrounding Petrified Forest National Monument) and Wyoming); alabaster (South Dakota); amazonstone (central Colorado); amethyst (Colorado, Georgia, South Carolina, LaSal Mountains and San Rafael Swell in

Utah, and near Liberty, Wash.); apatite (South Dakota); aquamarine (Colorado, Georgia, North Carolina, South Dakota, and Wyoming); azurite (northern Colorado); carnelian (Bastrop and Colorado Counties, Tex.); chalcedony (Colorado); chrysoprase (North Carolina); emerald matrix (North Carolina); epidote (Milford, Utah); garnet (Georgia; rhodolite from Mason County, N. C.; and a variety from the Oregon coast known locally as "Oregon jade"); hematite (Platte County, Wyo.); jasper (Socorro County, N. Mex.); jet (Mesa County, Colo.); lapis lazuli (Gunnison County, Colo.); opal (Georgia and Wyoming); moonstone (North Carolina); opalized wood (central Washington); rhodonite (North Carolina); rock crystal (Colorado, Georgia, and Idaho); rose quartz (Maine and North Carolina); rutilated quartz (North Carolina); smoky quartz (Colorado, North Carolina, and Utah); sapphire and pink sapphire (Macon County, N. C.); and tourmaline (Milford, Utah).

A little pale emerald occurs in the beryl-bearing pegmatites north-

east of Winnipeg, Manitoba, Canada.

IMPORTS

On January 2, 1942, the United States Department of Commerce announced that "in the interest of national and hemisphere war effort, no further detailed statistics concerning the foreign trade of the United States" would be published. Imports of precious and imitation stones (exclusive of industrial diamonds) into the United States for the first 9 months of 1941 totaled \$22,802,940, a 19-percent decrease compared with the corresponding period of 1940. Details for 1941 are shown in the following table.

Precious and semiprecious stones (exclusive of industrial diamonds) imported for consumption in the United States in 1941 (January-September, inclusive) 1

Diamonds:	Carats	Value	
Rough or uncut (suitable for cutting into gem stones),		0 = 00 =	000
duty from	124, 202	\$5, 967,	
Cut but unset, suitable for jewelry, dutiable	182, 652	13, 570,	481
Emeralds:			
Rough or uncut, free			720
Cut but not set, dutiable	18, 497	247,	(au
Pearls and parts, not strung or set, dutiable:		4.45	007
Natural		145,	
Cultured or cultivated		423,	918
Other precious and semiprecious stones:			
Dough or unout free			111
Cut but not set, dutiable		2, 074,	363
Imitation, except opaque, dutiable:		_	
Not cut or faceted		9,	703
Cut or faceted:			
Synthetic		217,	
Other		18,	806
Imitation, opaque, including imitation pearls, duti-			
able		` 26 ,	957
Managitas dutiables			
Marcasites, dutiable: Real 1		22,	208
Keal			840
Imitation			
		22, 802,	940

Figures for 1940 in Minerals Yearbook, Review of 1940, p. 1403, should read—Marcasites, real, \$8,220; grand total, \$37,769,135.

Imports of pearls and cut precious stones and imitation stones increased notably, while all other subdivisions decreased. Imports of uncut diamonds decreased sharply, suggesting that American cutters overbought in 1940. The decrease in cut imported was somewhat less drastic. The number of watch jewels imported in the first 9 months of 1941 totaled 79,875,751 valued at \$1,769,689, compared with 98,771,042 valued at \$1,831,007 in the 12 months of 1940.

Synthetic rubies and sapphires imported in the first 9 months of 1941 totaled 440,491 pieces worth \$217,988, or 71.8 percent of the quantity and 75.3 percent of the value imported in the corresponding period of 1940. Imports of synthetics were small in the third quarter of 1941 and are believed to have been negligible in the fourth quarter.

GOVERNMENT REGULATIONS

Again, due to the war, Government regulations covering the jewelry trade were legion in 1941. Great Britain, Germany, Italy, and France made strong efforts to divert funds normally spent on jewelry to Government securities.

EFFECT OF WAR ON SOURCES OF GEMS

The prices of colored stones, like those for diamonds, have increased since the Second World War started. For instance, fine rubies and emeralds are 15 to 20 percent higher and some of the less noble gems

and all synthetics even more.

War in the Pacific has removed Thailand and Indochina from the list of countries from which the United States obtains precious stones. The principal sources of zircons (rough, Indochina; cut in Thailand) therefore can no longer trade with us. Thailand also supplied a few sapphires and rubies. Japan provided most of our cultured pearls. Furthermore, as a result of the war, imports of gems from India will have to be rerouted, and receipt of precious stones from Burma may be temporarily interrupted.

With the declaration of war imports from Germany (largely imitation stones) and Italy ceased, and the difficulty of importing watches

and watch parts-notably jewels-from Switzerland increased.

Bombay (Bureau of Mines Mineral Trade Notes, August 20, 1941. pp. 27-30) has long been one of the more important precious stone markets of the world. However, before the war started, Bombay had virtually no direct trade with the United States; its stones were exported to London or Paris—then the center of the trade in colored stones—where American gem merchants purchased their requirements. Bombay does not control the output of any important gem-stone deposits but has always been only a junction point in the world circulation of precious stones. However, conditions have changed since the In 1938 Bombay exported \$35,169 worth of gem stones and The increase of its exports to the United pearls; in 1940, \$443,020. States has been even more remarkable, because American importers now look to Bombay instead of Paris for their colored stones. quantity of stones exported is controlled by the Reserve Bank of India. Rubies from Mogak, Burma, are the principal exports. Although star rubies are cut in Burma, other Burmese rubies are cut largely in Cambay, India, and a few in Bombay itself. The price of

rough rubies has increased 15 to 20 percent since the war began, although the price of cut stones has changed little. Star rubies and sapphires sell for four or five times their pre-war price. Sapphires are imported from Burma, Ceylon, and Kashmir and emeralds from Ceylon and U. S. S. R.; diamonds, formerly imported from Europe, usually are sold locally. Since March 1940, an export certificate, obtained at an accredited bank, is required before gems can be exported to the "hard-currency" countries. Precious stones cannot be imported from "hard-currency" countries. An ad valorem duty of 5 percent is paid on most stones imported, although gems from Burma are exempt from duty.

China is sending us tiger-eye and quartz cameos, which formerly were purchased in Germany.

Although there seems to be no deficiency in the supply of fine rubies, sapphires, and emeralds, there is a distinct shortage of the less expensive grades of these gems, of some of the lesser gems, and of synthetics. Brazil, however, is supplying the United States with sufficient aquamarine, topaz, citrine, amethyst, and tourmaline, and our imports (both cut and rough) from that country are increasing. In view of the unusually good demand for colored stones, the lack of adequate cutting facilities in the United States is unfortunate. American lapidaries are working overtime cutting South American rough and recutting into modern shapes stones recovered from old jewelry. Some South American chalcedony is being stained into black onvx.

DIAMOND

A layman would have expected the diamond industry, which produces a luxury, to be one of the first adversely affected by the war. In reality, in 1941 it enjoyed relative prosperity, notwithstanding the - fact that its processing branch—the cutting of gem stones—is about one-eighth as large as normally since the invasion of the Low Countries.

Production was appreciably smaller than in 1940 and, indeed, less than in any year since 1937. Sales of rough, on the other hand, were large, due partly to a slight increase in sales of gem stones in America but largely to huge sales of industrials. Prices of rough and fine large cut advanced; prices of small cut held at two to four times those of early 1940. "Investment" buying increased in 1941—in Europe in "black markets," in the United States in a free market.

Share dealings.—The shares of diamond-mining companies, virtually all of which are listed on the London Stock Exchange, gained over 75 percent during the year and in the fall were market leaders. Russia showed its strength, the market was uninteresting, but by mid-September a gain of 50 percent had been made. Prices sagged in October, rose sharply in November, weakened on the entrance of the United States (the chief market for cut) into the war, and at the year end strengthened on good dividend declarations. The market rise was in contradistinction to a 14-percent rise in English industrials and a loss of 18 percent during 1941 on the New York Stock Exchange. At the year end, diamond-mining stocks were 39 percent of their high (1927) and 445 percent of their low (1932). Of the 12 leading diamond-mining companies, 11 paid dividends; the twelfth, Cape Coast Exploration, is soon to make a handsome liquidation payment.

Market.—In 1941, the Diamond Trading Co., which in normal times controls the sale of about 95 percent of world production, sold rough valued at about £7,500,000 (£6,144,314 in 1940). The United States bought such "American qualities" (fine, relatively large stones) as were available and some fine small rough, but the increase in sales was due principally to large purchases of industrial diamonds by the Governments of the United States and Russia and by American brokers. In addition to its London and Kimberley offices, the Diamond Trading Co. in the fall opened an office at Hamilton, Bermuda, to deal with cutters and brokers residing in the United States.

In 1941 the American market for cut was featured by an increasing demand, a reasonable supply of large cut, and a wholly inadequate supply of small cut. There was a fair turn-over in polished stones in Great Britain, notwithstanding Government attempts to restrict it. The finer stones were sold for "investment" purposes in a thriving "black market." South America, Canada, and India were relatively large buyers of cut. Citizens of Nazi-occupied Europe desired to "invest" in diamonds, but opportunities were few.

Prices of rough diamonds advanced 10 to 15 percent, and a further rise is likely early in 1942. Prices of fine, large cut are 10 to 20 percent higher than in pre-war days, and prices of small cut have doubled or quadrupled. In America, a fine 1-carat stone costs what it did before the 1929 crash; in Nazi-occupied lands and in the British "black

market," prices are much higher.

Stocks of rough increased somewhat in 1941 but will decrease in 1942. Those in the hands of American cutters are adequate, as are those of fine, large cut; however, the supply of small cut is pitifully low.

those of fine, large cut; however, the supply of small cut is pitifully low. *Imports*.—On September 30, 1941, the Department of Commerce ceased to publish import figures. Imports from January 1 to September 30, 1941, were as follows:

Diamonds imported into the United States in 1941 (January-September, inclusive), by countries

	[Exclus	ive of indust	rial diamonds	s]			
	Rough or uncut			Cut but unset			
Country	Carats	Vε	lue	Carats	Value		
	Carats	Total	Average	Carais	Total	Average	
Argentina Belgium				146 123, 052	\$8, 607 6, 722, 113	\$58. 95 54. 63	
Brazil British Malaya Cuba				2, 470 73	276, 702 6, 872	112. 03 94. 14	
France Germany				3, 867 539	16, 947 474, 752 42, 337	88. 73 122. 77 78. 55	
Mexico Netherlands Netherlands Indies		l	1	432 1, 123 104	35, 314 42, 384 5, 339	81. 75 37. 74 51. 34	
Palestine Switzerland Union of South Africa				3, 409 630	398, 123 108, 796	116. 79 172. 69	
U. S. S. R. United Kingdom		4, 706, 223	53, 25	31, 043 30 15, 543	3, 776, 182 2, 250 1, 653, 763	121. 64 75. 00 106. 40	
	124, 202	5, 967, 938	48. 05	182, 652	13, 570, 481	74. 30	

Cutting.—In May 1940 the world cutting industry was completely disorganized, having lost 90 percent of its operatives as a result of German invasion of the Low Countries. A few cutters escaped and

reestablished their trade in far corners of the earth, others were marooned in France, but most were caught in the Low Countries. The United States and South Africa and, to a smaller extent, Great Britain and Palestine furnish an adequate supply of "American qualities" (fine, large cut), but there is a woeful shortage of small cut. Germany has attempted without success to reestablish the industry in Belgium and the Netherlands.

By a fluke, New York is now the leading diamond-cutting center of the world, with some 650 cutters and a large number of apprentices. Several firms are attempting to cut melee. Some of the more experienced cutters make over \$235 a week. South Africa has 300 to 400 cutters, Great Britain 200 to 250, Palestine perhaps 200, Puerto Rico 75, and Java a few. Borneo and Brazil cut some diamonds for the local trade, but their product is not cut well enough for the

American market.

World production.—For the second year, due to the war, actual diamond-production figures are not available, but the estimates in the following table are believed to be fairly accurate. World production (gems and industrials) in 1941 is estimated to have been 9,088,000 carats (1.817 metric tons) valued at about \$27,000,000. Compared with 1940, the total weight decreased 36 percent and the value 19 percent. The average quality of the stones produced was better than in 1940, bort representing perhaps 78 percent of the caratage and gem stones 22 percent. Belgian Congo was the leading world producer, both in weight (over 67 percent of the total) and in value (27 percent). The British Empire produced 19 percent of the total by weight and 31 percent by value. The South African pipe mines were not operated; consequently, all production was from alluvial mines.

The following table shows, as accurately as available statistics

permit, world production for the past 5 years.

World production of diamonds, 1937-41, by countries, in metric carats [Including industrial diamonds]

Country	1937	1938	1939	1940	1941
Africa: Angola Belgian Congo French Equatorial Africa Gold Coast (exports) Sierra Leone South-West Africa Tanganyika (exports)	626, 424 4, 925, 228 5, 588 54, 687 1, 577, 661 913, 401 196, 803 3, 234	651, 265 7, 205, 620 16, 013 61, 928 1, 296, 763 689, 621 154, 856 3, 576	690, 353 8, 344, 765 1 16, 000 56, 314 1, 087, 652 1 600, 000 35, 470 3, 445	784, 270 1 10, 900, 000 1 16, 000 1 75, 000 1 825, 000 750, 000 30, 017 2, 250	787, 000 6, 106, 000 20, 000 35, 000 743, 000 850, 000 46, 61- 1 1, 750
Union of South Africa: MinesAlluvial	820, 284 207, 359	979, 460 259, 147	1, 089, 144 160, 684	1 351, 447 1 172, 027	112, 30
Total Union of South Africa Brazil Other countries 3	* 1, 030, 434 238, 606 35, 958 6, 000	1, 238, 607 235, 000 32, 522 34, 200	1, 249, 828 1 350, 000 32, 491 19, 000	1 523, 474 1 325, 000 1 26, 764 31, 750	112, 300 325, 000 27, 000 34, 35
Grand total	9, 614, 024	11, 619, 971	12, 485, 318	1 14, 289, 525	9, 088, 01

Estimated.
 Includes small quantity of diamonds derived from re-treatment of tailings.
 Includes Metherlands Indies (Borneo), India, Australia (New South Wales), Liberia, Venezuela,
 1937: Includes Netherlands Indies (Borneo, New South Wales, and Venezuela; 1939: Venezuela, India,
 Borneo, New South Wales, and U. S. S. R.; 1940 and 1941: Borneo, India, New South Wales, U. S. S. R., and

Most countries showed decreased production as compared with 1940, although Sierra Leone and South-West Africa made minor increases.

During the year, DeBeers Consolidated Mines, Ltd., absorbed Cape Coast Exploration, Ltd., and now owns or controls all important diamond mines in the Union of South Africa and South-West Africa

except the State mines of Namaqualand.

In 1942 some of the companies are to attempt to increase production of the industrial stones so necessary today and may succeed. If the war continues, however, the long-term outlook is for a drying up of production as certain essential supplies will be lacking owing to

the isolated position of the mines now producing.

Industrial diamonds.—The use of industrial diamonds continues to increase amazingly. The expansion, of course, is due largely to the national defense and war programs, but even without a war the increase would have been marked. World consumption in 1942 is expected to approach 7,500,000 carats, or more than the world production of industrial grades. For several years, stocks of certain types of fine industrial diamonds have been small; however, users will find that the grades substituted are satisfactory.

With signing of the United States-Brazil Trade Agreement (May 15, 1941), the Axis Powers lost their last primary source of industrial diamonds. It is reported that Germany is now using gem stones

industrially.

On March 18, 1941, industrial diamonds were classified among the critical war materials, and after April 15 they could not be exported from the United States without an affidavit, except to the British Empire. Since October 31, 1941, American dealers and users have had to report quarterly stocks on hand and transactions completed. The United States Government began to stock-pile diamonds in June 1940.

The percentages, by value, of the chief uses for industrial diamonds follow:

Diam. 1.1 mi	Percent.
Diamond drilling	45-40
Diamond-set tools	20-25
Diamond dies	10 7
Crushing port (bonded wheels and tools)	10 7
Miscellaneous	5-11

In 1940, for the first time in 3 years, diamond drilling in Canada by contractors increased (1939: 391 miles; 1940: 459 miles). The use of diamond drills in stope blast-hole drilling also increased in Canada, and it is reported in the copper mines of Rhodesia and Belgian Congo. The use of diamond-impregnated bits in drilling is increasing.

The demand for diamond dies is large. Formerly the specialty of France, they are now being produced in America, and mechanical

methods successfully replace meticulous hand methods.

The Diamond Trading Co. announced that it would not raise the price of industrial stones during the war Indeed, the price of Congo (Beceka) crushing bort was reduced in the summer of 1941. Whether the price differential between this grade and those of South Africa and Gold Coast is warranted seems questionable.

Imports of industrial diamonds into the United States during the

past 5 years were as follows:

Industrial diamonds (glaziers', engravers', and miners') imported into the United States, 1937-41

Year Carats		Value		. Voca	Carats	Value		
	Total	Average	Year	Carats	Total	Average		
1937	1, 885, 970	\$6, 542, 365	\$3.47	1940 1941 (Jan	3, 809, 071	\$11, 026, 563	\$2.89	
1938	1, 396, 247 3, 568, 730	4, 213, 412 9, 725, 683	3. 02 2. 73	Sept.)	2, 911, 117	7, 415, 133	2. 55	

RUBY, SAPPHIRE, AND EMERALD

Production of precious stones in Burma seems fairly well stabilized. The 1939 production was 211,570 carats of rubies and 10,532 carats of sapphires. A few spinels and other gem stones are byproducts.

Sapphires continued to be produced in 1941 in the Anakie field, Central Queensland. Prices reached perhaps an all-time peak; £85 an ounce was refused for high-quality gems, blue stones brought £45 an ounce, and second-grade stones realized 15 to 30s. an ounce. Ceylon is changing its mining laws. The Revenue Office now deter-

Ceylon is changing its mining laws. The Revenue Office now determines gem-mining royalties, the land (both Crown land and that alienated by the Crown) to be exploited, and the location of the workings. Natives are to be trained, after the European method, to cut gems for beauty and not for weight. As Ceylon is a tourist center from which every globetrotter desires to bring a precious stone, prices are higher on the average than they are in Europe. A fine star ruby weighing 310 carats was found in Ceylon by Dr. D. P. E. de Silva late in 1941. Some 15 years ago one weighing 215 carats was found and sold for Rs. 85,000.

LESSER GEMS

Australia is the world's principal source of opals, and its output from 1936 to 1939 ranged in value from \$40,000 to \$75,000 a year. Since 1936 South Australia (1938, £4,750; 1939, £6,020) has been the principal producer, followed by New South Wales. Queensland's production is small (1938, £80; 1939, £50). In 1941 the fields were reported to be doing well and the diggers busy. The market for opals was said to be good.

The ancient turquoise mines of Madan are about 30 miles west of Nishapur, Iran (Bureau of Mines Mineral Trade Notes, January 20, 1942, pp. 26–28). The Iranian Government farms out the mines to operators for about \$2,000 a year. When India, the principal market, is buying in quantity 150 men are employed; at present the demand is poor, and only 20 men are employed. As for most gem mines other than those producing diamonds, profits are small. Turquoise occurs as seams and nodules in brecciated trachyte porphyry. Mining consists of open pits, shafts, and tunnels. To minimize shattering, powder is used instead of dynamite. If the color of the gem does not change within 2 weeks of mining, it is likely to be relatively stable.

The stones are cut at Meshed, 75 miles from the mines. The Iranian market absorbs 10 percent of the product; of the remainder, the best goes to India, and the poorer qualities go to Mecca for the pilgrim

trade. From June 21, 1936, to March 20, 1940, yearly exports have averaged about 822 kilos of cut and 825 kilos of uncut, worth, respectively, 884 rials and 19 rials per kilo (at 50 rials to the dollar,

\$17.68 and \$0.38, respectively.)

Brazil produces a number of gem stones, notably aquamarine, pale emerald, tourmaline, amethyst, yellow and blue topaz, and citrine. The value of aquamarine exported is normally 10 times that of tourmaline. Exports are considerably larger than the declared value. recently estimated as \$10,000. Minas Gerais is the principal pro-The war apparently reduced 1941 exports somewhat.

Chile exports considerable tonnages of green "onyx" to the United

States through the port of Antofagasta.

Despite Government restrictions, zircon continued for a time to pass the Indochinese border into Thailand for cutting at Bangkok. As already stated, upon the outbreak of the war in the Pacific, Thailand ceased to be a source of zircon for the United States.

South-West Africa, normally a large producer of aquamarine, tourmaline, and other lesser gems, produced 4,075.031 kilos of gems As Germany had been the chief buyer, trade languished in 1939.

after the war started.

BIBLIOGRAPHY

Ball, Sydney H. Precious and Semiprecious Stones, Their Industrial Uses Particularly in Relation to National Defense. Min. and Met., June 1941, pp. 311-313, 319.

The Mining of Gems and Ornamental Stones by American Indians. Smithsonian Inst., Bureau Am. Ethnology, Anthropological Paper 13, Bull. 128, 1941, pp. XI-77.

The Diamond Industry in 1941. Jewelers' Circ.-Keystone, New York,

July 1942, 16 pp.

July 1942, 16 pp.

GÜBELIN, EDWARD, AND SHIPLEY, ROBERT M. Synthetic Emeralds. Gems and Gemology, vol. 3, 1941, pp. 146-150.

HODGE-SMITH, T. 1. The Percy Marks Collection of Opals. Australian Mus. Mag., vol. 7, No. 1, June 1, 1939, pp. 3-4, 1 pl.

KERR, PAUL F., AND ERICHSEN, ALBERTO. Origin of the Quartz Deposit at Fazenda Pacu, Brazil. Geol. Soc. America, December 29-31, 1941.

KONITZER, LOUIS. The Jeweled Trail. Sheridan House, New York, 1941, 280 pp.

280 pp. McCarthy, James R. Fire in the Earth: The Story of the Diamond. Harper

PENHA, LALA. What Causes the Star in Ruby and Sapphire. Jewelers' Circ.Keystone, August 1941, pp. 78, 80, 88-89.

Potent It Isospan H. Synthetic Emerald Made in the United States. How

to Detect It. Jewelers' Circ.-Keystone, July 1941, pp. 44, 46, 54-55. ROSENCRANS, HAROLD I. Colorado Lapis Lazuli. Gems and Gemology, vol. 3,

1941, pp. 154-156.

Webster, Robert. Practical Germology. N. A. G. Press, London, England, 1941, 180 pp. (approx.).

MINOR NONMETALS

By Paul M. Tyler and Charles L. Harness 1

SUMMARY OUTLINE

	Page	1	Page
Graphite	1529	Olivine	1536
Greensand	1531	Quartz crystal	1536
Kyanite, and alusite, and dumortierite	1531	Strontium minerals	1537
Lithium minerals.	1533	Topaz	1537
Mineral wool	1535	Vermiculite	1538
Monazita	1535		

GRAPHITE

Demand for almost every quality of graphite rose sharply in 1941 in response to expanded industrial activity and soaring requirements of munitions industries. The increase in tonnage was greatest in respect to Mexican amorphous, but percentagewise the demand for crucible grades was greatest. Stocks of Madagascar flake graphite were only moderate at the beginning of the year, and procurement of additional supplies was complicated by the fact that the island was Vichy-controlled. Under British and American Government auspices, certain quantities of Madagascar flake graphite were loaded and shipped to the United States; but further increases in the demand for crucibles from shipyards and other establishments producing matériel threatened to force the crucible industry to substitute Ceylon plumbago, even though this would have involved going back to World War I practice and manufacturing crucibles that would last only about half as many heats as modern crucibles made with Madagascar flake. After Pearl Harbor, the Far Eastern situation worsened steadily, so that it seemed doubtful whether even Ceylon plumbago would be available in quantities adequate for British and American needs. On February 17, 1942, the War Production Board issued Order M-61 restricting the use of plus-35-mesh Madagascar flake graphite to the manufacture of crucibles for the war effort only and naming the Metals Reserve Co. as sole importer of graphite of this quality. order permits use of fines in ladle stoppers.

Meanwhile domestic mining possibilities were actively investigated. The Southern Experiment Station of the Bureau of Mines, Tuscaloosa, Ala., obtained samples from abandoned mines in Alabama in cooperation with the State University. In tests of samples of the crude graphite by improved methods of beneficiation, the Bureau investigators found a wide variation in quality but succeeded in producing a medium-coarse flake product containing 85 percent or more carbon

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Department of Commerce.

with good recoveries. From a group of 22 samples, said to represent a fairly complete cross section of the district, an average yield of 33 pounds of coarse flake was obtained per ton of raw material. Samples from certain mines indicated a yield of about 30 pounds per ton of small-size flake, which would have industrial uses. Tests of these concentrates by crucible manufacturers indicated that Alabama graphite could be used, although it was not a wholly satisfactory substitute for Madagascar flake, owing to the absence of coarser screen sizes. The following comparison was given by Clemmer and associates: ²

Screen analyses of Madagascar and Domestic No. 1 flake graphite

Mesh range					Weight, percen	t
			Madagasc	Domestic		
-				A	В	sample
Plus-20 Minus-20, plu Minus-35, plu Minus-65	s-35s-65			7. 8 65. 7 24. 9 1. 6	11. 5 59. 4 24. 9 4. 2	4. 17. 62. 15.
			MATERIA DE LA CASA DEL CASA DE LA	100. 0	100.0	100.

Further experimentation subsequently was directed toward avoiding destruction of coarse flake in grinding, and preparations were made early in 1942 to foster new commercial production with the aid of Government financing. Geological investigations indicated the possibility of getting crucible-grade flake from Pennsylvania, and early in 1942 old mining areas in the Chester (Pa.) district were being prospected. Plans were also made to resume the production of small-flake graphite in Texas. During 1941, however, except for small shipments from the Ceylon Graphite Co. operations near Good Water, Coosa County, Ala., virtually all the domestic output of crystalline graphite was furnished by the St. Lawrence Graphite Co., which took over the properties of the Long Valley Ore Co. in St. Lawrence County, N. Y. Minor quantities were shipped from stock at Dillon, Mont.; Elberton and Royston, Ga.; and Omak, Wash.

As in former years, amorphous graphite for paint was mined by the Carson Black Lead Co. in Nevada, and artificial graphite was manufactured and sold by the Acheson Graphite Co. (30 East 42d Street, New York, N. Y.) at Niagara Falls and by the Exolon Co. at Blasdell, N. Y. Early in the summer of 1941 the low-grade anthracite-graphite deposits of the Graphite Mines Co. at Cranston (Providence), R. I., were being reopened after several years idleness. This material is used principally in foundry facings. In Canada the Black Donald Graphite Co., Calobogie, Renfrew County, Ont., continued to keep its mill running on material dumped during earlier operations. The mine seems to have been virtually worked out. Until recently much of this graphite, which is a very small flake, had been sold to American pencil-lead manufacturers; but in 1941 exports were prohibited, and the Canadian Government was investigating ways to revive graphite

² Clemmer, J. Bruce, Smith, R. W., Clemmons, B. H., and Stacy, R. H., Flotation of Weathered Alabama Graphitic Schist for Crucible Flake: Geol. Survey Alabama Bull. 49, 1941, 101 pp.

mining in the Dominion. Graphite claims at Sagalen Bay, Labrador,

were said to have commercial possibilities.

Notwithstanding the growing shortage of Madagascar and Ceylon graphite, prices were held down by suppliers. Typical quotations for carload shipments ex-dock, New York City, duty paid, in 1941 (1940 figures in parentheses) were as follows: Madagascar flake, 8 to 9½ cents per pound (6½ to 8 cents); Ceylon lump, 8 to 17 cents (7 to 15 cents); chip, 7 to 12 cents (5 to 10 cents); and dust, 3½ to 8 cents (3½ to 8 cents).

Ocean freight on Madagascar flake, which before the war was about \$11 a ton, advanced in 1941 to as much as \$40. The 1941 prices for Ceylon lump were only one-fourth to one-half what they were in the World War of 1914–18, when they ranged from 28 to 32 cents a pound.

During the first 9 months of 1941 imports of all grades of graphite totaled 20,051 short tons valued at \$1,297,402. Figures for 1941 cannot be published by grade or by country of origin. Data for the entire year 1940 were: Flake, 6,551 tons valued at \$340,396; lump, chip, and dust, 752 tons, \$54,027; natural amorphous, 23,766 tons,

\$487, 675; and total, 31,069 tons, \$882,098.

Information on world production of graphite has been meager since 1938, when the output was over 140,000 metric tons. The following production data are for 1940: Madagascar, 15,311 metric tons; Ceylon, 24,414 tons; and Mexico, 12,327 tons. Mexican production in 1941 was 16,928 tons. A table covering the period 1915–39 appeared in Minerals Yearbook, Review of 1940, p. 1414.

GREENSAND

Shipments of greensand by four companies in New Jersey reached 11,120 short tons valued at \$619,664 in 1941, compared with 6,697 tons, \$389,888 (revised figure), in 1940 and 6,466 tons, \$318,550 (revised figure), in 1939. In earlier years, the value recorded for greensand by the Bureau of Mines was that of the refined greensand produced. For 1941, the value is that of the product as sold—refined or processed further—and the values for 1940 and 1939 have been revised to this basis. Whereas refined greensand is available at \$16 to \$25 a short ton f. o. b. works, a large part of the output is processed further by the same companies that mine the raw sand and is sold as a water softener at prices up to \$115 a ton. Although New Jersey greensands contain a small quantity of potash and phosphorus, very little is used as a fertilizer, the output being consumed almost entirely in water-softening compounds.

KYANITE, ANDALUSITE, AND DUMORTIERITE

Consumption of the sillimanite-group minerals increased sharply in 1941. Shipments of domestic kyanite by five firms rose to 8,335 short tons valued at \$175,581, topping the previous all-time record (4,241 tons valued at \$93,716) made in 1940. Notwithstanding the shortage of shipping space, imports of British Indian kyanite also increased in 1941; receipts during the first 9 months (the period for which figures can be published) amounted to 6,211 short tons having a foreign market value of \$81,356, compared with the previous record of 7,658 tons valued at \$92,159 in the full year 1940.

³ Bureau of Foreign and Domestic Commerce, Foreign Commerce Weekly: Vol. 5, No. 1, October 11, 1941, p. 31.

Andalusite is mined on White Mountain, Mono County, Calif., by Champion Sillimanite, Inc., Merced. The same firm—only domestic producer of either mineral in 1941—also ships dumortierite from its mine at Oreana, Pershing County, Nev., to the parent firm—Champion Spark Plug Co., Detroit, Mich.—which uses both materials in sparkplug cores and other electrical porcelains.

Celo Mines, pioneer producer of kyanite at Burnsville, N. C., suspended operations temporarily in 1941 but reopened later in the year as Mas-Celo Mines, Inc., subsidiary of Munn & Steel, Inc.,

130 Lister Avenue, Newark, N. J.

One of the largest kyanite deposits in the United States is on Baker Mountain in Prince Edward County, Va., near Pamplin and about 20 miles from Farmville. As stated in several recent publica-

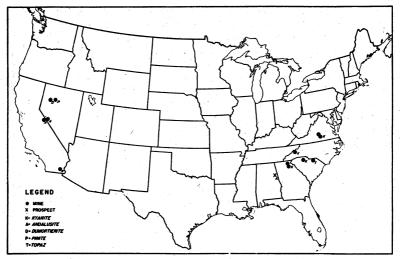


FIGURE 1.—Occurrence of minerals of the sillimanite group in the United States.

tions,4 the kyanite occurs there in a quartzite schist as abundant massive kyanite-quartzite bodies with impurities such as rutile, hematite, pyrite, and quartz. To remove the impurities the quarried product is ground to at least 35-mesh and processed by flotation and magnetic separation, yielding a 93-percent kyanite concentrate which may be washed in acid to give an even purer product (0.32 percent Fe_2O_3).

A digest follows of a report by R. B. Heuer, chairman of the Nonmetals Group of the National Academy of Sciences Advisory Committee on Metals and Minerals, to the Office of Production Management

in late 1941:

The metallurgical industries account for about 50 percent of the total kyanite refractories used in the United States. Kyanite or other superrefractories (alumina, spinel, fused aluminosilicate, chrome, etc.) are not really needed in brass melting except for high-melting alloys, less than 25 percent of the total

⁴Hubbell, A. H., Preparing Baker Mountain Kyanite for Market: Eng. and Min. Jour., vol. 142, No. 10, October 1941, pp. 53-55.

Sawyer, J. P., and Whittemore, J. W., The Development of a Refractory Aggregate from Virginia Kyanite: Bull. Virginia Polytech. Inst., Eng. Exp. Sta. Ser. 49, November 1941, pp. 5-36.

Anderson, C. E., Electricity Furnishes Power for Kyanite Production in Virginia: Southern Power and Industry, vol. 58, No. 10, 1940, pp. 76-79; Ceram. Abs., vol. 20, No. 6, June 1941, p. 145.

tonnage. In ferrous melting, high-alumina refractories, which cost only one-fifth as much as kyanite products, are equally serviceable when temperatures are not too high, but above 3,000° F. the latter have twice the life. In smaller furnaces, fused alumina and magnesia linings have life equal to kyanite. Kyanite roofs in small, direct-arc, electric furnaces (1,000 pounds or less) will last longer than silica, even under continuous operation, and afford at least five times the life in intermittent operation. In the glass industry kyanite, due to its refractoriness, high density, resistance to corrosion, and low spalling, is in a class by itself in respect to feeders, plungers, and intricate shapes and is economical to use in the superstructure or bottom at various critical points. The chief ceramic use is in high-temperature kiln furniture for open-type firing in tunnel kilns. For laboratory test kilns for intermittent, extremely high temperature service, especially under load, kyanite has no general substitute, although fused cast products of mullite or high alumina have been used successfully on a limited scale. There are many miscellaneous minor refractory uses for kyanite which in the aggregate account for only 5 percent of the consumption. Many of these are intricate shapes that can be made from kyanite because the volume change in burning is negligible. Fire-clay products shrink on firing, and volume-stable products made from alumina or fused magnesia spall too much.

Shipping rates on kyanite from Calcutta increased from \$11.20 to \$16.80 a short ton during 1941, and the cost of Indian kyanite delivered at Atlantic seaports rose from about \$25 to over \$30 a short ton. Prices for domestic kyanite in 1941 ranged from \$3 a short ton, works, for crudes to around \$78 a ton f. o. b. plant for high-grade, low-iron domestic material ground to 325-mesh. Andalusite and dumortierite, virtually unknown on the open market, were arbitrarily valued at \$10 to \$15 a ton at the mine.

LITHIUM MINERALS

Shipments of lithium minerals and compounds reached 3,832 short tons valued at \$115,718, a record for recent years, compared with 2,011 tons and \$80,679 in 1940 (revised figures). Shortly before the World War of 1914–18, output was about 500 tons annually, with an average value of \$20 a short ton at works. The largest production ever recorded was in 1920, when the total jumped to 11,696 tons valued at \$173,002 owing to a sudden demand for lepidolite from California and New Mexico mines, but immediately thereafter production declined sharply and subsequently averaged less than 2,000 tons annually.

The quantity of lithium compounds required for the war program was not large in 1941 but may increase greatly. Hitherto the principal uses of the ores and salts have been in ceramics, glassware, air conditioning, and pharmaceuticals. Lithia is a powerful flux, particularly when used with feldspar, and is usually added to ceramic batches in the form of lithium carbonate, less often as ground spodumene or lepidolite. It improves the gloss, strength, and weathering-resistance of glazes. Relatively small quantities of lithia in glass insure working fluidity without sacrificing desirable physical and chemical properties. As ceramic bodies containing spodumene generally expand on firing, this property can be used to neutralize shrinkage exactly, and porosity can be reduced by a sintering operation in processing the raw material. A spodumene feldspar mixture that fuses at 6 or 7 pyrometric cone equivalents below the fusion temperature of pure feldspar has been placed on the market by the United Feldspar & Minerals Corporation, Spruce Pine, N. C., under the trade name Lithospar; the material is derived from pegmatites at Kings Mountain, N. C. A similar product is available from Tinton, in the Black

Hills of South Dakota. Additions of lepidolite mica afford a convenient source of alumina for opal or flint glass and increase the index of refraction and the toughness of the product. Amblygonite is rarely used directly in glassware or ceramics. Owing to its relatively high lithia content, this mineral is a preferred material for making lithium salts. A small amount of mixed lithium chloride and fluoride

is used in welding-rod coatings.

The three principal shippers of lithium minerals and salts in 1941 were the American Potash & Chemical Co., producers of lithium-sodium phosphate from brines at Trona, Calif.; the Black Hills Keystone Corporation, whose output is largely lepidolite from the Black Hills of South Dakota; and the Maywood Chemical Works of Maywood, N. J., also working Black Hills pegmatites but recovering spodumene. The high price of lithium-sodium phosphate raises considerably the average price per ton of total lithium products shipped in the United States.

Use of lithium for high-conductivity copper castings more than doubled in 1941 compared with 1940, and its use in special bronzes is

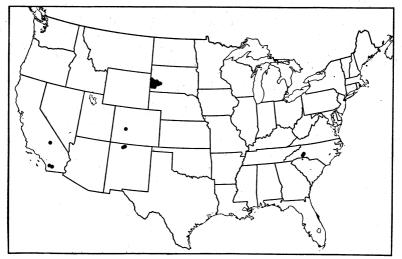


FIGURE 2.—Occurrence of lithium minerals in the United States.

now on a commercial scale. The element is added either in the form of a 50-50 lithium-calcium alloy or as an alloy of 98 percent copper

and 2 percent lithium.

Only small quantities of lithium minerals enter the open market. Nominal prices quoted by Engineering and Mining Journal Metal and Mineral Markets were unaltered during 1941 and for spodumene were \$5 per 20 pounds of contained lithia (Li₂O), 6 percent minimum, relatively iron-, quartz-, and tourmaline-free. Lepidolite, ordinary grade, lump, was quoted at \$24 to \$25 a short ton f. o. b. mine. Amblygonite, 8 to 9 percent Li₂O, was priced at \$40 a ton f. o. b. mine.

Jeffries, Zay, Rare and Precious Metals: Min. and Met., vol. 23, No. 422, February 1942, p. 69.

MINERAL WOOL

Notwithstanding an estimated increase of 40 percent in dollar sales in 1941 over 1940, existing mineral-wool plants were able to handle the business. No new plants were completed during the year, although one was reported to be under construction in Missouri and another to be contemplated in Georgia. Unit prices of products were unchanged. The year-end forecast was for continued expansion, especially in pneumatic treatment of homes already built, due to fears of fuel shortage as well as to growing recognition of the true economy of insulation. Air-raid preparations also emphasized the fire-retarding properties of mineral wool. War Production Board orders to conserve metal for heating plants virtually required insulation of all new homes, heat losses being limited to 66 B. t. u. per square foot of floor area per hour per degree difference between inside and outside temperature.

MONAZITE

Formerly the only commercial constituent of monazite was thoria, which was used in gas mantles, and monazite is still marketed upon the basis of its thoria content, although commercial interest now centers on its content of ceria and other rare earth oxides. Probably 50 percent of of monazite derivatives are consumed (chiefly as fluorides) in the cores of arc carbons to increase lighting intensity in motion picture projectors, therapeutic lamps, and searchlights—in about that order. Pyrophoric alloys for use in sparking flints for cigar lighters take about 25 percent of the monazite consumed, and the remainder is distributed among a large variety of specialty uses, principally optical glassware. A summary of uses has been published elsewhere.

The Consolidated Operations Corporation (reorganized in 1941 as Riz Mineral Co., 505 Park Street, West Palm Beach, Fla.) produced a small quantity of byproduct monazite in 1941 from rutile-ilmenite-

zircon operations near Melbourne, Fla.

Nominal prices quoted by Engineering and Mining Journal Metal and Mineral Markets remained throughout 1941 at \$60 a short ton

ex-dock, 8 percent minimum thoria.

Beach deposits of black sands in Travancore in British India, along the coasts of Espirito Santo, Rio de Janeiro, and Bahia in Brazil, and in Netherlands Indies have supplied the bulk of United States monazite requirements in the past, as a byproduct in the recovery of ilmenite, rutile, and zircon sands. World production has been approximately 4,000 to 5,000 tons annually in recent years, British India furnishing over 80 percent and the remainder divided about equally between Brazil and Netherlands Indies. However, monazite has been produced from stream sands in the Piedmont region of the Carolinas, in Florida, and in Idaho. The domestic sands are lean and normally cannot compete with the Indian concentrates (8.8 to 10.1 percent thoria—ThO₂) or with Brazilian monazite (6 percent thoria). As mixed sands are imported under the same classification as high-purity monazite, the import statistics for different years are not always comparable.

O'Neill, Leo J., Monazite: Bureau of Mines Mineral Trade Notes, vol. 13, No. 1, July 19, 1941, p. 20. Harness, Charles L., Rare Earths: Bureau of Mines Mineral Trade Notes, vol. 13, No. 3, September 20, 1941, pp. 26-28.

Monazite sand and other thorium ore imported into the United States for consumption, 1937-41 1

Country of origin	1	937	1	938	19	039	19	40	19 (Jan.	41 -Sept.)
Country of origin	Short tons 1	Value	Short tons 1	Value	Short tons 1	Value	Short tons 1	Value	Short tons 1	Value
Brazil India, British Netherlands Indies United Kingdom		\$13, 579	110 339 7	\$3, 421 14, 402	54 1, 336 170	\$1,516 46,753 3,747	201 2, 766	\$7, 440 92, 387	411 1, 146	\$14, 440 37, 468
Total	336	13, 579	456	18, 210	1, 560	52, 016	2, 967	99, 827	1, 557	51, 908

¹ Quantities are gross weight; monazite content not reported.

OLIVINE

Shipments of olivine in 1941 rose to 4,828 short tons valued at \$24,401, the highest tonnage since 1936. With the exception of a small quantity used in the production of Epsom salt, the entire output was consumed in refractories.

A review of olivine deposits of North Carolina and Georgia 8 estimates reserves of 230,000,000 short tons of high-grade forsterite olivine in the area, averaging 48 percent MgO. Domestic developments during 1941 have been reported elsewhere.9

Engineering and Mining Journal Metal and Mineral Markets in 1941 quoted crude North Carolina olivine at \$5 to \$7 a short ton at works; ground 200-mesh, \$17 a ton; and 20-mesh to dust, \$12 a ton.

QUARTZ CRYSTAL

Modern mechanized warfare depends upon instantaneous two-way radio communication, which to be effective must rely upon accurately ground wafers of crystal, two in each circuit; dozens are needed for a single tank or airplane. Brazil remains the only known commercial source of quartz suitable for radio-frequency control, and radio quartz crystal has been classified as a strategic mineral by the Army and Navy Munitions Board.

Quartz crystals of commercial size, found near Hot Springs, Ark., almost without exception show twinning, and crystal plates made from them do not have piezoelectric properties unless the twinned portion is cut away—a costly process. Cracks and inclusions of other minerals and of air render most domestic crystals and fragments subject to rejection, even before examination for piezoelectric properties.

In Brazil, the annual production of quartz crystal jumped to over 1,000 short tons in 1940 from about 250 tons in 1937. One-fourth of the output is consumed as piezoelectric (radio) quartz, and the remainder is used as optical, instrument, or fusing quartz. Before 1941 Japan's purchases were the backbone of the Brazilian crystal industry. United States had comparatively small peacetime requirements and bought only high-grade material.

In 1941 the Governments of the United States and Great Britain agreed to buy all stocks of Brazilian quartz crystals remaining after

Hunter, Charles E., Forsterite Olivine Deposits of North Carolina and Georgia: North Carolina Dept. Conservation and Development Bull. 41, 1941, 117 pp.
 Harness, C. L., Olivine Developments in 1941: Bureau of Mines Mineral Trade Notes, vol. 14, No. 4

April 20, 1942, p. 26.

their nationals had made purchases for private industry. The Brazilian Department of Mineral Production, Ministry of Agriculture, introduced export control through licenses and levied a 10-percent tax based upon export prices. Exports may clear only through the ports

of Rio de Janeiro and Salvador.

A schedule of prices for the various grades of crystal as of April 1941 has been reported. For example, "A" (piezeolectric) grade crystals weighing 1.5 to 2.0 kilograms with growth faces were quoted at 250,000 milreis a kilogram (about \$6, United States currency, a pound). Owing to tremendous increases in demand and slight revision in specifications for oscillator plates, many of the manufacturers began to use smaller crystals down to 200 grams each. Prices of larger crystals advanced as much as threefold during the year, but even at the peak these represented only a minor factor in the cost of the final product.

STRONTIUM MINERALS

Wartime requirements of strontium salts for tracer bullets and signal flares, superimposed upon increased civilian requirements for railway fusees and for superpurification of caustic soda for rayon manufacture, created a market in 1941 for celestite producers on the West coast, where the mines had been virtually idle since 1918. The total shipments of strontium minerals in 1941 amounted to 4,724 short tons valued at \$69,054 compared with less than half that quantity in 1940. In peacetime, virtually all'the strontium ore consumed in the United States has been British celestite, owing to its greater purity and the cheaper freight rates for ocean than for rail transport. Import data for the first 9 months of 1941 indicate increased receipts of celestite from England and substantial quantities from Mexico—a new source—the total imports in that period being 3,172 short tons valued at \$49,367 compared with the 12-month receipts in 1940 of 2,751 tons valued at only \$28,686.

The outstanding producer of strontium minerals sold for chemical purposes was the Pan Chemical Co., 205 First National Bank Building, Pomona, Calif., which worked an open-pit deposit near Westmoreland, Imperial County, Calif. Crude ground celestite for use in drilling-mud admixes was produced by three Texas firms in 1941: The Bennett-Clark Co., Inc., Nacogdoches (deposit at Sweetwater, Nolan County); the Milwhite Co., Inc., of Houston (deposit at Blanket, Brown County); and Mudrite Chemicals, Inc. (deposit at Blanket). Strontianite was produced by the Manufacturers Mineral Co., Seattle, Wash. (mine at La Conner, Wash.), and by C. Solomon of

San Francisco, Calif. (mine at Barstow, Calif.).

A general review of the strontium-minerals industry was published by the Bureau of Mines in February 1942.¹¹

TOPAZ

Promising results are being obtained in substituting properly calcined topaz for kyanite in refractories. The massive deposit in Chesterfield County, S. C., is now estimated to contain at least 60,000 tons of commercial topaz.

Bureau of Mines Mineral Trade Notes: Vol. 13, No. 3, September 20, 1941, pp. 25-26.
 Harness, C. L., Strontium Minerals: Bureau of Mines Inf. Circ. 7200, 1942, 17 pp.

VERMICULITE

Vermiculite was shipped by six operators in 1941, and sales of crude and refined material totaled 23,438 short tons valued at \$125,444 at works, compared with 22,299 tons valued at \$137,698 in 1940 (revised figures). The Universal Zonolite Insulation Co. (2601 West 107th Street, Chicago, Ill.), operating properties at Libby, Mont., remains the predominant producer and processor, with 47 plants, although smaller producers have developed local markets.

Standard uses for expanded (heat-treated) vermiculite are as house fill; in insulating, acoustical, and lightweight plasters; in cements; and in coatings. When ground it may be used in aluminum and bronze powder paints as an extender or replacement, and this outlet may be

developed further in view of metal shortages.

North Carolina reserves of commercial-grade vermiculite have been estimated ¹² at 250,000 to 500,000 tons. Recent tests by the University of North Carolina laboratories indicate that local vermiculites are equivalent to and interchangeable with the western product. Houses using precast North Carolina vermiculite wall panels and vermiculite concrete flooring were erected in 1941. In St. Louis, Mo., poured slabs of vermiculite concrete were used successfully in the roof of a large, new, small-arms factory; 180 carloads of vermiculite were used on this job alone. In North Carolina, vermiculite fines have been used ni the inner soles of shoes.

Little or no run-of-mine vermiculite enters the domestic market. Virtually all is screened and cleaned at the mine, and some is exfoliated by the producer or may be sold to a processor for heat treatment. Screened vermiculite from Montana and Wyoming operations was sold to processors at \$5 to \$10 a short ton f. o. b. mine. Screened North Carolina vermiculite was sold at \$10 to \$15 a short ton f. o. b. mine. Western exclusive material was quoted at \$40 to \$55 a short ton and

North Carolina at \$35 to \$45 f. o. b. works.

¹² Murdock, T. G., Vermiculite Mining in North Carolina: Paper presented at meeting of Am. Inst. Min. and Met. Eng., New York, N. Y., February 9, 1942.

PART IV. MINE SAFETY

EMPLOYMENT AND ACCIDENTS IN THE MINERAL INDUSTRIES

By W. W. Adams

SUMMARY OUTLINE

	Page		
Introduction	1539	Employment and accidents—Continued.	Page
Employment and accidents	1542	Slate quarries	1546
Bituminous-coal mines	1542	Traprock quarries	
Anthracite mines	1543	Granite quarries	1547
Iron-ore mines		Sandstone quarries	1547
Copper mines	1544	Limestone quarries	1547
Lead and zinc mines (Mississippi Valley		Limekilns and quarries	1548
States)	1545	Byproduct coke ovens.	1548
Gold and silver mines (lode and placer, in-		Beehive coke ovens	1548
cluding copper, lead, and zinc)	1545	Ore-dressing plants	1548
Miscellaneous metal mines	1545	Smelters	1549
Nonmetallic-mineral mines	1546	Auxiliary works at ore-dressing plants and	
Cement mills and quarries	1546	smelters	1549
Marble quarries.	1546	Summary, 1932-41	1549

INTRODUCTION

Employment in nearly all branches of the mineral industry of the United States made gains during 1941, according to information sent by operating companies to the Bureau of Mines. Although reports received thus far do not cover all active operations, they reveal that of the 22 groups of mineral industries for which separate figures have been compiled 17 groups employed more men and 20 worked a larger aggregate number of man-hours than in 1940; these 22 classes are listed in an accompanying table. As far as can be judged from information now available, the only groups that experienced a reduction in total employee-hours worked during 1941 were gold placer mines and marble quarries, both of which apparently suffered a loss in number of employees and in man-hours worked.

The increase in number of employees and in total man-hours of work performed during the year were natural results of war demands

for mineral products.

With larger volume and accelerated tempo of work came a larger number of injuries from accidents to employees. Fortunately, the number of fatal accidents decreased; the number of nonfatal lost-time injuries was larger than in 1940. The gain in man-hours worked, however, prevented a large rise in the accident-frequency rate (number of accidents per million man-hours of work) which was only slightly higher in 1941 than in 1940. The rate for fatal accidents was reduced, so the slight increase in total accident frequency was solely in the rate for nonfatal injuries.

A review of employment and accidents in the mineral industries of the United States for the 11 years 1931-41 shows that the number of employees reached a maximum in 1937. The maximum volume of

employment, as measured by man-hours of work performed, however, was attained in 1941, according to estimates based upon the latest available information; this achievement may doubtless be attributed to work required to supply domestic and foreign demands that can only be met, directly or indirectly, by greater production of minerals in the world's largest mineral-producing nation.

Number of men employed in the mineral industries of the United States, 1939-41

	1939	1940	1941 1
Coal mines:			1.1
Dituminana	445, 044	440, 847	448, 000
Pennsylvania anthracite	94, 331	92, 420	88, 900
	539, 375	533, 267	536, 900
Metal mines:			
Taon	19, 769	23, 250	23, 800
Lead-zinc (Mississippi Valley)	7, 237	7,644	7, 900
	18, 436	19, 498	21, 500
Copper Gold and silver lode mines (including lead, zinc, and copper, except as listed above)	38, 439	39, 128	39, 900
except as listed above)	14, 775	15, 701	15, 500
Gold placer mines	3, 623	5, 119	5, 400
Miscellaneous (tungsten, manganese, etc.)	3,023	5, 119	0, 400
entropies and the control of the con	102, 279	110.340	114, 000
Nonmetallic-mineral mines	9, 630	9, 780	10, 600
Quarries:	26, 045	26, 695	28, 600
Cement	3, 697	3, 240	2, 500
Marble	2, 833	2,800	2, 700
Slate		2,951	2, 700
Traprock	2,771		7, 300
Granite	8, 390	7, 162	
Sandstone	3, 113	3, 078	3, 400
Limestone	22, 968	23, 251	25, 100
Lime	9, 632	10, 332	11, 100
	79, 449	79, 509	83, 400
Coke ovens:		-	
Byproduct	14, 852	17, 469	18, 600
Beehive	1,757	2, 493	4,000
	16, 609	19, 962	22, 600
Metallurgical plants: Mills	12, 476	13, 990	14, 400
	15, 905	20, 120	21, 300
Smelters	13, 202	14, 958	16, 500
Auxiliary works	15, 202	14, 808	10, 000
	41, 583	49, 068	52, 200
Grand total	788, 925	801, 926	819, 700

¹ Subject to revision.

The following table presents annual figures from 1931 to 1941 covering number of employees, number of man-days and man-hours worked, and number of men killed and injured by accidents, as well as the yearly fatality and injury rates for the mineral industries—mines, quarries, coke ovens, ore-dressing plants, smelters, and auxiliary works connected with ore-dressing plants and smelters. Figure 1 graphs these trends from 1932 to 1941.

Employment and accident record of mineral industries of the United States, 1931-41

Year	Men em- ployed			Number		Rate per million man-hours		
· Control of the Cont			employment	Killed	Injured	Killed	Injured	
1931	784, 347 671, 343	147, 602, 799 110, 655, 616	1, 209, 270, 036 900, 211, 723	1,707 1,368	96, 412 68, 717	1.41 1.52	79, 73 76, 33	
1933 1934	677, 722 739, 817	122, 787, 658 144, 566, 133	984, 570, 160 1, 081, 694, 716	1,242 1,429	72, 342 81, 660	1. 26 1. 32	70. 33 73. 48 75. 49	
1935 1936 1937	783, 139 824, 514 859, 951	152, 354, 170 177, 920, 334 186, 790, 283	1, 128, 808, 465 1, 326, 347, 029 1, 381, 261, 415	1, 495 1, 686	82, 219 92, 644	1. 32 1. 27	72. 84 69. 85	
1938 1939	774, 894	145, 056, 875 159, 388, 490	1, 069, 729, 725 1, 169, 351, 497	1,759 1,369 1,334	96, 484 71, 618 75, 495	1. 27 1. 28 1. 14	69. 85 66. 95 64. 56	
1940 1941 ¹	801, 926 819, 700	175, 663, 792 191, 426, 000	1, 293, 131, 693 1, 405, 113, 000	1,716 1,620	82, 861 91, 188	1.33 1.15	64. 08 64. 90	

¹ Subject to revision.

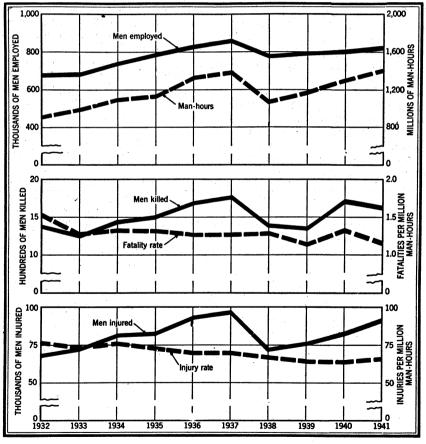


FIGURE 1.—Trend of employment and fatal and nonfatal accidents in the mineral industries of the United States, 1932-41.

EMPLOYMENT AND ACCIDENTS

BITUMINOUS-COAL MINES

Employment.—About 666,000,000 man-hours of work were required to furnish the United States with approximately 504,577,000 short tons of bituminous coal in 1941. This work was done by a labor force estimated at 448,000 men. The mines were in operation for about 213 Seven hours was the standard daily work shift. estimated figures indicate an increase of about 43,000,000 tons in production, of about 7,000 employees, and of the work year by an

average of 12 days per man.

Accidents.—Although fatal accidents (now estimated at 1,064) were less numerous during 1941 than in 1940, the estimated number of nonfatal injuries to employees rose from nearly 44,000 to more than 47,000; and the larger number of nonfatal accidents caused a small increase in the rate per million man-hours of exposure, as the tentative rate was 71 in 1941 compared with 70 in 1940. The year 1941 was marked by 2 more major disasters in the mines than in the preceding year—8 compared with 6 in 1940; however, 73 men were killed by major disasters in 1941 compared with 276 in 1940.

The eight major disasters during 1941 were not confined to any particular State; two occurred in Illinois, two in Alabama, and one each in West Virginia, Kentucky, Pennsylvania, and Indiana. All the major disasters were explosions except the one in Illinois, which

was due to explosives.

Even though 1941 had two more major disasters than 1940, the overall fatality rate from all causes was only 1.60 per million man-hours of exposure, indicating a much better record in this respect than in 1940,

when the rate was 1.92.

More than half of the total number of workers at all classes of mines and quarries are employed in bituminous-coal mines. Four-fifths of all fatal accidents and three-fourths of all nonfatal accidents in the mineral industries also occur at bituminous mines. Special importance therefore attaches to the accident record of the industry that has such a determining influence on the over-all accident costs incident to the production and development of the mineral resources of the United

Yearly records of fatal accidents at bituminous-coal mines are available for all States, covering all years beginning with 1910, and for the principal coal-producing States back to 1906. Similar records on nonfatal accidents are available only since 1931. These records show that the chief cause of both fatal and nonfatal accidents is falls of roof and coal. The actual number of deaths and injuries from this hazard has been greatly reduced, but the accident rates per million man-hours do not show an equal decline because the number of employees and man-hours has also been reduced. The reduction in employment without an equal loss in production of coal has been made possible by the rapid mechanization of many operations that formerly were carried on by hand or with hand-operated tools, such as drills, picks, and shovels. Productivity per man-hour worked has therefore increased, and the coal industry has been able to supply the fuel needs of the country with fewer men exposed to the accident hazards of mining. Simultaneously, accident-prevention programs of mining companies have been effective in reducing the number of accidents;

but the reduction in accidents has resulted in only a slight downward trend in accident rates per million man-hours of exposure over a period of years. An important factor inherent in any Nation-wide effort to reduce the per-million-man-hour accident rate from falls of roof and coal is the difficulty attending the safety training of around 300,000 men in the mines, the employees at the "working face," who, more than other classes of underground employees, are exposed to

the falls-of-roof hazard.

Haulage accidents rank next to falls of roof among the occupational hazards to which coal miners are exposed. The long-time trend of accident rates for accidents of this class is upward. Contributing causes are probably the lengthening of haulageways following the extension of mined-out areas underground and the use of larger cars and their more rapid movement because of increasing productivity per man-hour of labor incident to the replacement of hand methods by machine methods of work; thus production is being accelerated without a corresponding increase in the intensity and scope of accident-prevention methods and installation of safety appliances. vital part of haulage operations in the production of coal and the upward trend in accidents that involve haulage equipment suggest the importance of special study by mining companies and others of means whereby haulage accidents to the mine workers may be reduced.

Fortunately, gas and dust explosions that occurred so often and on so large a scale in earlier years have been greatly reduced in frequency and severity, both absolutely and in relation to the number of man-hours of exposure to risk. Even in recent years, such explosions have occurred all too frequently, but the progress made by the coal industry in preventing loss of life from this class of accidents will become apparent to anyone who examines the record of the coal-

mining industry.

Accidents directly chargeable to explosives have likewise been greatly reduced, both absolutely and relatively. Much of this improvement may be credited to the adoption of "permissible" explosives by mines that formerly used more dangerous types of explosives,

usually black blasting powder.

Electricity, although not the chief mining hazard because relatively few accidents result from its use compared with those from haulage and from falls of roof, is nevertheless among the risks to which coal miners are exposed because of its major role as a source of power for operating mining machines and mine haulage motors. The fatality rate from electricity, though not as high as those for roof falls and haulage, is higher than it was when electric current was used less extensively in mining. The increasing application of electric power in coal mines demands special study by safety engineers.

ANTHRACITE MINES

Employment.—This group includes all mines in the eastern part of Pennsylvania that produce coal generally known as "hard coal" or Output from legitimate mines, as distinguished from so-called "bootleg" operations, amounted to about 54,000,000 short tons in 1941 and required the work of approximately 88,900 men for 130.1 million man-hours. According to tentative figures now available, the number of employees was slightly less than in 1940 but

the total man-hours worked was greater. The average employee worked about 18 workdays more than in 1940.

Accidents.—Accidents to men working in and about the mines and breakers caused 194 fatalities and 16,828 nonfatal lost-time injuries. Final reports for 1941 probably will show a fatality rate of about 1.49 and a nonfatal-injury rate of about 129 per million manhours worked. The combined accident frequency rate is slightly less favorable than that of 1940. No major disaster occurred in 1941; in fact, no major disaster has occurred in an anthracite mine since June 2, 1938, when 10 men were killed in an explosion in a mine in Luzerne County.

IRON-ORE MINES

Employment.—The demand for iron to meet the needs of American industry in the general war program of the United States continued to move the trend of employment at iron-ore mines upward during 1941. Incomplete reports from operators indicate a 15-percent increase in man-hours worked. The gain in number of men employed was relatively small, as the estimated number of employees in 1941 was 23,800 compared with 23,250 in 1940. In 1941 the average employee worked 275 days and thus had 32 more days of employment than in 1940. Man-hours of labor in 1941 numbered about 52,000,000.

Accidents.—Available reports indicate that 45 men were killed by accidents at iron-ore mines during 1941; 35 men were killed during 1940. Reports for 1941 also indicated that 1,158 employees received nonfatal injuries that caused them to lose time from their work. The accident-frequency rate rose from 19.63 in 1940 to 23.08 (tentative) in 1941. These figures include a fatality rate of 0.77 in 1940 and 0.86 in 1941. Among the major metal-mining industries in the country, iron-ore mines consistently report the lowest accident-frequency rate. The preponderance of open-cut mines in Minnesota is partly responsible for this favorable record, although the unflagging prosecution of safety programs by the operating companies is doubtless the most potent factor.

COPPER MINES

Employment.—Reports for copper mines in 1941 showed continued gains in number of employees and man-hours worked. Approximately 21,500 men were engaged in mining copper ore, and they labored approximately 55,000,000 man-hours during the year. These figures relate to mines whose chief product was copper; they do not cover mines whose ores, though containing some copper, were valuable chiefly because of their content of some other metal. Judging from reports now available, the workyear 1941 averaged 319 days per man, an increase of 7 days for the average worker. The total man-hours worked in the industry as a whole represent a 13-percent gain over 1940.

Accidents.—The increased employment in 1941 brought in its train a larger number of accidents to employees. The fatality rate, as at present estimated, was 1.11 compared with 0.99 in 1940; the tentative rate for nonfatal injuries was 53.14 compared with 52.91. Sixtyone of the accidents in 1941 resulted fatally; an estimated 2,920 were nonfatal lost-time injuries.

LEAD AND ZINC MINES (MISSISSIPPI VALLEY STATES)

Employment.—This group comprises all lead- and zinc-producing mines in the Mississippi Valley States, chiefly Oklahoma, Missouri, and Kansas; it also includes mines in Illinois and Kentucky that produce fluorspar. Fluorspar mines in these two States are included for two reasons: First, it is desirable to maintain unbroken a statistical series in the Bureau of Mines accident records that extends back to 1911. Second, natural conditions regarding safety are similar in the two classes of mines in the States named. Therefore, by combining the two classes of mines, the number of operating companies becomes large enough to permit separate figures to be published for Illinois and Kentucky. With this explanation, it may be stated that mines in the Mississippi Valley States employed about 7,900 men in 1941, an increase over the 7,644 men employed in 1940. Man-hours of employment rose from 13.7 million in 1940 to 16.4 million in 1941, or more than 19 percent. The average employee had a longer workyear than in 1940.

Accidents.—From reports now available, the accident-frequency rate for 1941 appears to have been 52.08 per million man-hours, which compares favorably with the rate of 56.92 for 1940. The rate for 1941 is based upon an estimate of 855 injuries, including 19 fatalities.

GOLD AND SILVER MINES (LODE AND PLACER)

Employment.—This group includes not only mines that were operated chiefly for the gold or silver contained in their ores but also lead and zinc mines outside the Mississippi Valley States and mines that produced some copper but whose ores were valuable chiefly because they contained metal other than copper. Placer mines as well as lode mines are included in the group.

The group as a whole employed about 55,400 men in 1941 compared with 54,829 in 1940. Man-hours of employment increased from 94.1 to 95.4 million. The fact that the group did not show a loss in employment probably can be attributed to the inclusion of mines

whose ores contained some copper, zinc, or lead.

Accidents.—Tentative figures now available reveal that the accident-frequency rate for this group of mines was 102.55 per million man-hours, which compares unfavorably with the rate of 97.43 for 1940. Accidents during 1941 caused injuries estimated at 9,784, including 103 fatalities.

MISCELLANEOUS METAL MINES

Employment.—This group includes all mines that produce metallic ores exclusive of gold, silver, copper, lead, zinc, and iron; these mines yield such strategic minerals as tungsten, mercury, manganese, bauxite, and molybdenum, as well as various other metals. Tentative figures now available suggest that war production was an influencing factor in raising the employment figures in 1941 to approximately 5,400 men, or more than 5 percent above the 5,119 men employed in 1940. The man-hours of employment rose from 10,000,000 to nearly 12,000,000, or more than 19 percent.

Accidents.—The safety record for mines in the "Miscellaneous metalmines" group was less favorable in 1941 than in 1940. The accident frequency rate per million man-hours of employment rose to approximately 74.32 from 68.87 in 1940, including a fatality rate of 0.80 in 1940 and an estimated fatality rate of 1.25 in 1941.

NONMETALLIC-MINERAL MINES

Employment.—This group comprises mines that yield any kind of nonmetallic mineral except coal, stone, sand, gravel, and clay. It therefore includes mines that produce phosphate rock, rock salt, sulfur, gypsum, feldspar, barite, and many other minerals. Employment in 1941 was 10,600 men, an 8-percent increase over the 9,780 men employed in 1940; whereas the man-hours of employment in 1941 totaled 22,000,000 compared with 19,000,000 in 1940, an increase of approximately 17 percent.

Accidents.—Tentative figures to date reveal that the accident-frequency rate for 1941 was 48.64 per million man-hours worked;

this compares unfavorably with the rate of 44.24 for 1940.

CEMENT MILLS AND QUARRIES

Employment.—Increased employment was reported in the cement industry in 1941; approximately 28,600 men were employed, or 7 percent more than in 1940. The men worked an estimated 63,000,000 man-hours, an increase of 15 percent. The men averaged 305 days of employment during the year and thereby gained 27 days per man

over the average work period in 1940.

Accidents.—The rise in employment at cement plants in 1941 was accompanied by an increase in the total number of accidents to employees; 14 men were killed, and about 692 were injured. These accidents resulted in a fatality rate of 0.22 per million man-hours of employment, a decrease from the previous year's rate of 0.27. The nonfatal-injury rate was 10.90 per million man-hours compared with 9.44 in 1940.

MARBLE QUARRIES

Employment.—Employment at marble quarries and related operations continued the downward trend in employment that began in 1940. An estimated 2,500 men were employed, or more than 700 men less than the total of 3,240 in 1940. Man-hours of employment amounted to approximately 4.9 million, a decrease of 19 percent from 1940.

Accidents.—Preliminary figures indicate that no fatalities occurred in the marble industry during 1941. Although the number of accidents probably will show little change from 1940, the accident-frequency rate per million man-hours of employment will show a decided increase because of the large drop in man-hours worked. The rate for 1941 is estimated at 49.70 compared with 40.82 for 1940.

SLATE QUARRIES

Employment.—Although the number of men employed in the slate industry decreased in 1941, according to preliminary figures, the number of man-hours of employment increased, indicating a longer workyear per man. It is estimated that 2,700 men worked 5.4 million

man-hours and that the average employee had 19 more workdays

during 1941 than during 1940.

Accidents.—One man was killed and 330 were injured in 1941 in the course of their employment. The fatality rate for 1941 was 0.19 and the nonfatal-injury rate 61.46, corresponding rates for 1940 being 0.20 and 70.83, respectively.

TRAPROCK QUARRIES

Employment.—The traprock industry employed 2,700 men in 1941, according to preliminary reports to the Bureau of Mines. worked 4.9 million man-hours. The man-hours of employment represent a gain of about 15 percent over the 1940 total compared with a loss of nearly 9 percent in the number of employees.

Accidents.—Four men were killed in 1941. Approximately 334 men suffered nonfatal lost-time injuries from accidents during their employment. The fatality rate was 0.82 and the nonfatal-injury rate 68.08, compared with 0.70 and 62.94, respectively, in 1940.

GRANITE QUARRIES

Employment.—Employment at granite quarries rose in 1941 over 1940, according to preliminary figures; about 7,300 men were employed, an increase of approximately 2 percent. These men worked an average of 238 days each, or 15 more days per man per year than in 1940. The number of man-hours worked reached approximately 14,000,000, a gain of 14 percent.

Accidents.—Nine men were killed and 694 injured, resulting in a fatality rate of 0.64 per million man-hours of exposure and a nonfatal rate of 49.51. Although the fatality rate in 1941 was lower than the rate of 0.98 in 1940, the nonfatal-injury rate increased over the rate

of 44.26 in 1940.

SANDSTONE QUARRIES

Employment.—The number of men employed at sandstone quarries and related plants increased in 1941, the tentative figure being 3,400 compared with 3,078 in 1940. Man-hours of work also made a substantial gain and totaled 6,000,000, a considerable advance (24) percent) over the 4.9 million hours worked in 1940. The average days of employment also increased, apparently about 26 days per man over the average of 199 workdays per man in 1940.

Accidents.—Accidents in sandstone quarries resulted in 2 deaths among the employees, giving a fatality rate of 0.31 per million manhours of exposure to risk. It is estimated that 348 nonfatal injuries occurred among the employees. This estimate indicates an injury

rate of 57.48 compared with 50.80 for 1940.

LIMESTONE QUARRIES

Employment.—The number of men employed in limestone quarries was 8 percent greater than in 1940, or an estimated total of 25,100 men; these figures do not include employment at limestone quarries at which the stone was used in manufacturing cement or lime. man-hours of employment increased 20 percent, or in larger proportion than the men employed. A total of nearly 45,000,000 man-hours was worked during 1941 compared with 37,000,000 in 1940.

Accidents.—Accidents caused the death of 24 men and nonfatal lost-time injuries to approximately 2,436. The combined accidentfrequency rate for 1941 was 55.01, and for 1940 it was 53.10.

LIMEKILNS AND QUARRIES

Employment.—Men employed, man-days, and man-hours at quarries producing limestone for the manufacture of lime increased in 1941, according to preliminary reports from operating companies to the Bureau of Mines. Approximately 11,100 men were employed for a total of more than 24,000,000 man-hours. The average number of days of work per man differed little in 1941 from 1940.

Accidents.—Accidents increased in greater proportion than employment, as revealed by an accident-frequency rate of 63.61 compared with 47.60 in 1940. The 1,565 accidents estimated for 1941 included

15 fatalities and 1,550 nonfatal injuries.

BYPRODUCT COKE OVENS

Employment.—Employment at byproduct coke ovens advanced in Complete reports indicate that 18,600 men were employed and that nearly 54,000,000 man-hours were worked compared with 17.469 men and about 50,000,000 man-hours in 1940. The number of men employed was 6 percent greater and the number of manhours of employment 7 percent greater than in 1940.

Accidents.—Twelve men were killed and 435 men injured at byproduct coke ovens in 1941. The fatality rate was 0.22 and the nonfatal-injury rate 8.07 per million man-hours of employment com-

pared with 0.30 and 7.94, respectively, in 1940.

BEEHIVE COKE OVENS

Employment.—The number of men employed at behive coke ovens in 1941 rose 60 percent to a total of 4,000. These men performed 7,000,000 man-hours of work during the year, or more than twice the hours worked in 1940. The number of employees at beehive coke ovens reached a higher figure in 1941 than in any year since 1926, and the number of man-hours of employment was greater than in any year since 1927.

Accidents.—For the first time since 1937, fatalities occurred during operations at beehive coke ovens. Three men were killed in 1941, and these accidents resulted in a fatality rate of 0.43 per million man-hours of exposure. In all, 367 men suffered nonfatal lost-time injuries, resulting in a nonfatal-injury rate of 52.71, which compares

unfavorably with the 1940 rate of 44.00 per million man-hours.

ORE-DRESSING PLANTS

Employment.—Ore-dressing and beneficiating plants or mills employed approximately 14,400 men in 1941 compared with 13,990 in 1940. The plants, considered as a group, were in operation 33,000,000 man-hours; this figure reveals a 7-percent gain over the record of nearly 31,000,000 man-hours worked in 1940.

Accidents.—Accidents to men employed at the mills occurred at the rate of 27.38 per million man-hours, a rate that compares favorably

with 31.99 in 1940.

SMELTERS

Employment.—The smelting industry, as the term is here used, covers the smelting and refining of all metallic ores except iron ore. Employment and accident statistics covering iron-ore smelting and steel manufacturing are collected and compiled by the United States Department of Labor and hence are not included in Bureau of Mines figures. The smelting industry, as thus defined, employed approximately 21,300 men in 1941, an increase of nearly 6 percent over the 20,120 men employed in 1940. The man-hours of employment totaled 53.4 million in 1941 compared with 46.8 million in 1940, an advance of 14 percent.

Accidents.—Accidents to men employed at smelters in 1941 occurred at the rate of 24.77 per million man-hours worked. As the corresponding rate for 1940 was 19.71, it is apparent that the safety record

of 1941 was unfavorable.

AUXILIARY WORKS AT ORE-DRESSING PLANTS AND SMELTERS

Employment.—Auxiliary works cover all operations at mills and smelters not directly connected with milling and smelting processes. About 16,500 men were employed in 1941, 10 percent more than the 14,958 employed in 1940. Man-hours worked increased to 40.5 million from 35.3 million in 1940, or 15 percent.

Accidents.—Tentative figures reveal an accident-frequency rate of 22.88 per million man-hours in 1941. The 1940 rate of 19.44 indicates a less-favorable safety record in 1941. Accidents during 1941 are

estimated at 927, including 10 fatalities.

SUMMARY, 1932-41

While the Nation is at war, loss of manpower in industry means loss of time needed to produce essential war materials. Accidents disabling employees in the mining, quarrying, and related mineral industries referred to in this chapter not only cost the men who work in these industries suffering and loss of income but also hamper the Nation in its effort to obtain maximum production of war materials. During 1941, for example, temporary injuries alone caused an estimated loss of approximately 3.3 million man-days to the war-production program of the United States when our country was aiding nations that after December 7 became our Allies. Additional losses were caused by accidents resulting in the death of injured employees and by other accidents causing permanent, total, or partial disablement. cannot be stated in terms of man-days except in the customary way of considering that an industrial accident that kills an employee thereby destroys 6,000 days life-expectancy of usefulness in industry, that a similar loss results from each case of permanent total disability. and that some part of 6,000 days of usefulness in industry is destroyed by each case of permanent partial disability, the exact amount depending on the severity of injury and the part of the body affected. methods of considering deaths and permanent injuries suggest a loss of more than 12,500,000 man-days because of such accidents during Thus, all classes of accidents in the mineral industries during 1941 may be fairly considered to have destroyed nearly 16,000,000

man-days of labor that might have otherwise contributed to the production of mineral commodities during the present war and, later, during the years of peace.

In bituminous coal-mining alone, and considering temporary injuries only, the loss of about 1.7 million man-days from accidents during 1941 meant that nearly 9,000,000 more tons of coal could have been produced in that year.

Losses of manpower such as those described here challenge the ingenuity of mine managers and the cooperative spirit of mine employees. Such losses, greater or less, are but every-year experiences in the United States, a fact demanding investigation at least equal in continuity and intensity to that often applied to problems apparently

more important commercially.

The marked success that attends the accident-prevention programs of many mining companies indicates what may be accomplished by other operators in the saving of life and limb and in promoting contentment among the large group of Americans who have chosen the production of minerals as their life work. Both humanitarian and monetary considerations suggest that maximum effort of employees, operators, and Government be devoted to attaining these great objectives.

By M. E. Winstow

		n.	
.	Page		age
Abrasives, artificial, review	1353		655
sales	1354		674
foreign trade	, 1355		337 677
miscellaneous, uses	1355		675
price control	1339	maintenant congrumntion 655 668	870
salient statistics.	1998	foreign trade 657, 670,	671
Abrasive diamond. See Diamond, industrial. Abrasives industries, annual review	1339		
Absorption oil, production	1109	production 655, 663, priority control 655, 663, production, capacity expansion 655, 664, 666, 667, Office of Production Management, pro-	678
Acknowledgments iv		priority control	675
Acknowledgments i Africa. See Belgian Congo; British Africa;		production, capacity	665
Cyprus: Gold Coast: Madagascar;		expansion 655, 664, 666, 667,	676
Nigeria; Rhodesia, Northern; Rho-		Office of Production Management, pro-	
desia, Southern; South-West Africa;		gram	664 677
Swaziland; Union of South Africa.	1510	power difficulties War Production Board, program	665
Agate, deposits	1519	reduction facilities, expansion 605, 666,	
Agatized wood, deposits	1520 534	salient statistics	657
Air furnaces, scrap and pig iron consumption.	1520	secondary, consumption	496
Alabaster, deposit		prices	497
826, 829, 830, 831, 832, 833, 834, 840, 841	. 842.	price control	497
843, 846, 850, 851, 852, 855, 856, 858, 860	. 862.		668
867, 882.		war aspects	675
ooke industry data 946	6, 951,	Aluminum-base scrap, stocks	497
952, 954, 955, 957, 958, 960, 961, 962, 963 966, 967, 969, 972, 973, 974, 976, 978, 979 981, 983, 993, 994, 995, 996.	, 965,	Aluminum industry, annual review 655,	663
966, 967, 969, 972, 973, 974, 976, 978, 979	, 980,	labor troubles	666
981, 983, 993, 994, 995, 996.		monopoly litigation, review	667 672
gold, production	2. 324	technologic developments wages, differential, elimination, by War	0/4
graphite mines, investigation 547	1029	Labor Board order	666
iron ore, data 547	, 020,	world aspects	677
549, 551, 552, 553, 554, 558, 562, 566, 568. manganese ore, data	9. 590	Aluminum plants, construction, Defense Plant	•••
metals, production, annual review	326	Corporation	664
minerals, production 9,	13, 14	Aluminum salts, foreign trade	662
tin belt, reexamination	708	production	662
Aleska entimeny review	760	Aluminum scrap, collection, campaign	676
bituminous-coal industry, data 817	7, 824,	price, establishment	676
826, 829, 830, 831, 832, 833, 834, 840, 841	, 842,	Aluminum substitutes, investigation	675
868, 882.	COE	Alunite, extraction of alumina from, by	279
chromite, deposits, investigations	605 182	Kalunite process	673 1520
Cook Inlet-Susitna region, mining industry	183	Amblygonito uses	1534
Copper River region, mining industry gold dredges, list	75	American Republics, Office for Coordination	1001
Kenai Peninsula region, mining industry	184	of Commercial and Cultural Rela-	
Kodiak Island region, mining industry	184	tions Between, transfer	xvii
Kuskokwim region, mining industry	184	Amethyst, deposits	1520
metals, production, annual review	179	Ammonia, production 948, 990, 992,	996
mercury, data 68	39, 692	l sales	, yyu
mercury, data 68 metallurgic industry, review 68	181	value 948, 992,	, 996
minerals, production	10, 14	yield 948, 949,	993
nickel, investigations, Geological Survey	618 184	Amosite, uses	1427
Northwestern region, mining industry	181	Amphibole. See Asbestos.	1532
ores, marketsplatinum metals, production	784		1533
Seward Peninsula region, mining industry	184	Anthracite, as source of energy 821, 822,	823
Southeastern region, mining industry	186	competitive fuels	915
tin, sources, study	709	consumption 906, 908, 916,	917
tungsten concentrates, production 6	45, 646	distribution 907, 908,	912
witherite, deposits	1447	foreign trade	, 941
Yukon River Basinr egion, mining industry	188	freight rates	904
Allied Nations, industrial war power, poten-		fuel efficiency 822,	, 823
tialities	xi	fuel efficiency 822, new uses, research 822	905
Alumina, extraction from clay, patent	674	prices 900, 909,	, a18
production	662	l production	Ant
by new process	673	903, 906, 908, 917, 920, 924, 925, 926,	020
capacity	665 1339	river-coal industry, review	030
review	1351	salient statistics	906
TOATOM	TOOL	PORTOR PORTIONS	

Anthracite, shipments 906, 908, 906, 908, 917, 918 transportation, methods 906, 908, 917, 918 transportation, methods 906, 908, 917, 918 transportation, methods 906, 908, 917, 918 transportation, methods 906, 908, 917, 918 transportation, methods 906, 908, 917, 918 transportation, methods 906, 908, 917, 918 transportation, methods 906, 908, 919, 910 transportation, methods 906, 908, 919, 910 transportation, methods 906, 908, 919, 910 transportation, methods 906, 908, 919, 910 transportation, methods 906, 908, 919, 910 transportation, methods 906, 908, 919, 910 transportation, methods 906, 908, 919, 910 transportation, methods 906, 908, 919, 910 transportation, methods 906, 908, 919, 910 transportation, methods 906, 908, 919, 910 transportation, methods 908, 919, 910 transportation, methods 908, 919, 910 transportation, methods 908, 919, 910 transportation, methods 908, 919, 910 transportation, methods 908, 919, 910 transportation, methods 908, 919, 910 transportation, methods 908, 919, 910 transportation, methods 908, 919, 910 transportation, methods 908, 909, 919, 910 transportation	02, 203, 205, 02, 203, 205, 101, 203, 206, 102, 203, 206, 101, 202, 203,	197
stocks 906, 908, 917, 918 transportation, methods 915 Anthracite Coal Commission, Federal, activities 904, 910 Anthracite Committee, functions 915 Anthracite industry, annual review 903 definition 905 effects of war 904, 906, 909, 919, 931 production-control plan 903 stransportation, methods 915 Santa Cruz County, metals, production 918, 200, 201, 2 silver, production 53, 68, 69, 70, 71 tungsten, data viherite, deposits vanadium, data viherite, deposits. Yayangi County, metals production 918, 200, 201, 2 vanadium, data viherite, deposits. Yayangi County, metals production 918, 200, 201, 2 vanadium, data Viherite, deposits. Yayangi County, metals production 918, 200, 201, 2 vanadium, data Viherite, deposits. Yayangi County, metals, production 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 201, 201, 201, 201, 201, 201, 201, 201	02, 203, 205, 02, 203, 205, 10tion 02, 203, 206, 172, 73, 74, 01, 202, 203,	197 21 197
stocks 906, 908, 917, 918 transportation, methods 915 Anthracite Coal Commission, Federal, activities 904, 910 Anthracite Committee, functions 915 Anthracite industry, annual review 903 definition 905 effects of war 904, 906, 909, 919, 931 production-control plan 903 stransportation, methods 915 Santa Cruz County, metals, production 918, 200, 201, 2 silver, production 53, 68, 69, 70, 71 tungsten, data viherite, deposits vanadium, data viherite, deposits. Yayangi County, metals production 918, 200, 201, 2 vanadium, data viherite, deposits. Yayangi County, metals production 918, 200, 201, 2 vanadium, data Viherite, deposits. Yayangi County, metals production 918, 200, 201, 2 vanadium, data Viherite, deposits. Yayangi County, metals, production 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 200, 201, 2 vanadium, data Viherite, deposits 918, 201, 201, 201, 201, 201, 201, 201, 201	02, 203, 205, 02, 203, 205, 1ction 02, 203, 206, . 72, 73, 74, 01, 202, 203,	21 197
Anthracite Committee, functions. 910 Anthracite industry, annual review 903 definition 905 effects of war 904, 906, 909, 919, 931 production-control plan 903 Anthracite Committee, functions 910, 910 silver, production 53, 88, 69, 70, 71 silver, production 53, 88, 89, 70, 71 silver, production 53, 88, 89, 70, 71 silver, production 53, 88, 89, 70 silver, production 53, 88,	02, 203, 205, ection 02, 203, 206, . 72, 73, 74, 01, 202, 203,	197
Anthracite Committee, functions. 910 Anthracite industry, annual review 903 definition 905 effects of war 904, 906, 909, 919, 931 production-control plan 903 Anthracite Committee, functions 910, 910 silver, production 53, 88, 69, 70, 71 silver, production 53, 88, 89, 70, 71 silver, production 53, 88, 89, 70, 71 silver, production 53, 88, 89, 70 silver, production 53, 88,	02, 203, 205, iction 02, 203, 206, , 72, 73, 74, 1 01, 202, 203,	01
Anthracite Committee, functions. 910 Anthracite industry, annual review 903 definition 905 effects of war 904, 906, 909, 919, 931 production-control plan 903 Anthracite Committee, functions 910, 910 silver, production 53, 88, 69, 70, 71 silver, production 53, 88, 89, 70, 71 silver, production 53, 88, 89, 70, 71 silver, production 53, 88, 89, 70 silver, production 53, 88,	oction 02, 203, 206, , 72, 73, 74, 1 01, 202, 203,	197 21
Anthracite Committee, functions. 910 Anthracite industry, annual review 903 definition 905 effects of war 904, 906, 909, 919, 931 production-control plan 903 Anthracite Committee, functions 910, 910 silver, production 53, 88, 69, 70, 71 silver, production 53, 88, 89, 70, 71 silver, production 53, 88, 89, 70, 71 silver, production 53, 88, 89, 70 silver, production 53, 88,	01, 202, 203,	21
definition 905 effects of war 904, 906, 909, 919, 931 production-control plan 903 tungsten, data vanadium, data witherite, deposits witherite, deposits Yayapai County, metals, production	01, 202, 203,	
definition 905 effects of war 904, 906, 909, 919, 931 production-control plan 903 tungsten, data vanadium, data witherite, deposits witherite, deposits Yayapai County, metals, production	01, 202, 203,	194
labor conditions 904, 906, 909, 919, 931 witherite, deposits production-control plan 903 Yayapai County, metals, production	645.	
production-control plan 903 Yavapai County, metals, production		64
production-control plan 903 Yavapai County, metals, production		63
technologic developments 911	<u>1</u>	44
	00 000 000	197
Anthracite Institute, activities 912 Yuma County motels production	12, 200, 200,	21 105
	32 202 207	21
Cutting machines 024 ging production	12, 200, 201,	152
equipment 933 194 196 199 200 20	11 202 202	20
loading, mechanical 853, 854, 933, 934 Arkansas, bauxite, Government purch mechanization, data 853, 854, 855 treatment, by new process		
mechanization, data		67
men employed 1540, 1543 bituminous-coal industry, data strip-pit operations 935, 936 830, 831, 832, 833, 834, 84	817, 8	329
Satirpht operations 935, 936 830, 831, 832, 833, 834, 84 Anthracite stokers, sales 920 846, 850, 852, 856, 858, 86	0, 841, 842, 8	343
Anthracite stokers, sales 920 846, 850, 852, 856, 858, 86 Antimony, allocation control 759 lead production		
Antimony, allocation control 759 lead, production consumption 758, 763, 764 manganese ore, data received foreign trade 757, 787, 789, 786	131, 267,	26
Antimony, allocation control 758, 763, 764 consumption 758, 763, 764 prices 757, 758, 762, 766 prices 757, 758, 762, 766 prices 757, 758, 762, 766 prices 757, 758, 762, 766	058, 089,	09
foreign trade 757, 758, 762, 766 prices 757, 758, 759, 765 primary, production, mine 757, 758, 759, 765 primary, production, mine 757, 758, 759, 765		69 27
primary, production, mine 759 minerals, production	0 12	-1
purchases, Metals Reserve Co	1027 10	, i
salient statistics 758 1031, 1032, 1033, 1034, 1051, 105	3, 1054. 10)56
secondary, consumption 499 1057, 1058, 1064, 1061, 106 1057, 1058, 1064, 1061, 106 1057, 1058, 1064, 1064, 1061, 106 1057, 1058, 1064, 1064, 1061, 106 1067, 1068,	9, 1084, 10	385
stock pile 759 1086, 1089, 1094, 1096, 1098, 110	3, 1106, 1	107
Stock Pile		
War aspects 750 quality for detailing details	1	53
Antimony compounds, producers, list 765 1121, 1122, 1123.	1119, 11	120
Antimony industry, annual review	.139, 1140, 1	14.
		73
Antimony smelters, list		73
A THE PARTY OF THE		730
		73
definition 1423 priority control		734
saient statistics		731
Argentina, antimony, data 767, 768 technologic developments		736
arsenic, supplies 737 beryl, production 797 briquetting, request for advice 999 gold, review 78, 91 production 78, 91		733
briquetting, request for advice 999 foreign trade foreign trade	791	791
gold, review 78, 91 production 128, 140 America industrial	721	138 796
lead, review 138, 140 Arsenic industry, annual review		731
mineral output, purchase, negotiations XXV Arsenite, oxidation to arsenate, patent.		736
70.91 Arsellous Oxide, recovery natent		736
tin, data 720, 721, 723 Asbestos, amphibole, sales 159, 162 uses	14	429
Arizona, antimony, production 760 blue. See Crocidolite.	14	427
zinc, review 159, 162 Arizona, antimony, production 760 asbestos, review 1429, 1430 subsets review 159, 162 Lises 1888 Lises 1888 Licesous, ambilione, sales 1888 Lises 1888 Licesous, review 1889 Lises 1888 Licesous, review 1888 Lises 1888 Licesous, review 1888 Lises 1888 Licesous, review 1888 Licesous, revi		
asbestos, review 1429, 1430 bituminous-coal industry, data 24, 826, 236, Uses consumption	l	429
833, 834, 840, 841, 842, 868, 882 consumption		427
Cochise County, metals, production 197, 198, deposits	1430 1	102 121
200, 201, 202, 203, 204, 208 foreign trade	1428 1	437
product that it is in the contract of the cont	14	132
198, 203, 204, 209 Drices	1/	490
190, 190, 197, 199, 200, 201, 202, 204, L. coliont statistics	1428, 14	135
195, 196, 197, 199, 200, 201, 202, 203, 204 salient statistics.	14	128
copper mines, marginal, report 97 Open pit, increased production 97 Muorspar, data 97 Muorspar, data 97 Mors	• •	127
muoispai, uata 1401. 1402. 1406. 1407 Ashestos industry annual review	19	128
Ulla County, metals, production 107 now developments	1/	127 133
198, 200, 201, 212, 203, 204, 209 Asia. See British Malaya: British	India:	(OO)
25, 68, 69, 70, 71, 72, 73, 74, Burma; Ceylon; China: Chosen;	India:	
Galance 194, 197, 198, 199, 200, 201, 202, 203, 204 Iran; Japan; Netherlands India	· Phil.	
Graham County, metals, production 197, ips, 201, 202, 203, 204, 210 Union of Soviet Socialist Reput	urkey;	
Greenlee County, metals, production 197, ippine Islands; Thailand; Tourism of Soviet Socialist Reput	olics.	
100 201 202 204 214 ASPIRIT, distribution	11	88
lead, production 131, 132, production production 131, 132,	1184, 11	88
manganese ore data production. 131, 132, production. 194, 196, 197, 199, 200, 201, 202, 203, 204 sale to statistics.	1183, 11	ŏ4
	11	69
manganese ore, data 588, 589, 590 Asphalt industry annual review	11	99
manganese ore, data 588, 589, 590 Asphalt industry, annual review Australia, alunite, data 14	60 1461 14	
manganese ore, data	6	79
Maricopa County, metals, production 197, Australia, alunite, data 4 deposits, discovery data 602 deposits, discovery bauxiet, review bauxiet, review	6 678 6	79
692 Dauxite, review	6 678 6	79
metals, production, annual review 193 borates, uses metallurgic industry, review 199 copper industry review	678, 6 15	79 79 16
metals, production, annual review 193 borates, uses metallurgic industry, review 199 copper industry review	678, 6 15	79 79 16
metals, production, annual review 193 borates, uses metallurgic industry, review 199 copper industry review	678, 6 15	79 79 16
metals, production, annual review 193 borates, uses. metallurgic industry, review 199 copper industry, review 199	678, 6 678, 6 15 117, 1 138, 1 754, 7	79 79 16 18 40 55

Page	Page
Australia, sulphur, productions from pyrites. 1365	Bitterns, sea water, as source of magnesia 1503
tin data 720.721.723	Ritumen, sulfonated, deposit
titanium ores, production 808 zinc, review 159, 162	Bituminous coal, as source of energy 821, 822, 823 cleaning, mechanical 812, 863
zircon, imports	competition from other fuels 814, 820
A viction resoline data 1074, 1082	competition from other fuels 814, 820 consumption 811, 818
monufacture method 1074	distribution 824, 826, 867, 882
Axis Powers, mineral resources, extension of control x,xi	foreign trade 815, 900 fuel efficiency 812, 819
notroloum shortage alleviation X	mining methods 840, 841, 865 prices 812, 815, 824, 867, 882
tin resources control (US	prices 812, 815, 824, 867, 882
Azurite, deposits	production 811, 812, 813, 814, 815, 816, 817, 824, 828, 829, 830, 835,
В	867, 882, 901.
	salient statistics
Bahama Islands, bitterns, as source of magnesia 1503	Shipments
Rell clay sales 1322, 1324	value 833
	value 833 Bituminous Coal Division, acknowledgments 814
Dall alay industry annual review 1325	ments 814
foreign trade 1440, 1442, 1443, 1445	Bituminous-coal industry, annual review 811 labor data 813, 824, 833, 834, 835, 867, 882
Barite, consumption 1440, 1442 foreign trade 1440, 1442, 1443, 1445 prices 1440, 1442, 1445	Bituminous-coal mines, accidents 1542
production 1440, 1444 sales 1440, 1442, 1445	capacity814
\$81651440, 1442, 1440 solient statistics 1440	capacity
salient statistics 1440 Barite industry, annual review 1439, 1440	loading, mechanical 853 mechanization 812,
Barite mines, location 1441	835, 840, 852, 853, 854, 855, 856, 858, 860, 862, 863,
Barium carbonate, foreign trade 1450 prices 1449	864, 865.
color 1770	men employed
Davium chemicals annual review 1448	l nower drilling 855
foreign trade 1440, 1449 prices 1449	size 831, 832 stripping operations 840, 841, 843, 846, 850, 851
sales1440, 1448	stripping operations 840, 841, 843, 846, 850, 851
salient statistics 1440	Blanc fixe, foreign trade 1450 prices 1449
Barium products plants, location 1441 Barium sulfate, foreign trade 1450	golog 1448
Barium sulfate, foreign trade 1450 prices 1449	Blast furnaces, scrap and pig iron consump-
sales 1448 Basalt, sales 1226, 1228, 1232, 1240, 1248	tion 536 Blue vitriol, exports 116
Basalt, sales 1226, 1228, 1232, 1240, 1248	Bolivia antimony data 767, 768
shipments 584 587 589 599	bismuth, foreign trade /41
Bauxite, consumption 659, 660	gold review 78.91
Sanipheness	140 140
prices 007, 002	silver, review 80, 91
production 657, 659	tin review 703, 704, 720, 722, 724
reserves, estimate 658 salient statistics 657	tin ore, phrchases, Metals Reserve Co
submarginal, as source of alumina, Bureau	tungsten, purchases, Metals Reserve Co 644 tungsten, Metals Reserve Co. contract to
of Mines investigations	I purpohogo XXV
treatment, by new process 673	review
Bauxite industry, annual review 655, 657 world aspects 677	Borates demand increase 1498
Bediastites, deposits	Borates, demand, increase 1498 prices 1515
Beehive coke. See Coke. Belgian Congo, copper industry, review 112, 117, 118	research 1515
	salient statistics
tin, review	shortage, caused by labor troubles 1515 Borates industry, annual review 1514
radium-uranium ore, annual reve 720, 721, 722, 724 tin, review 720, 721, 722, 724 Belgium, cadmium, data 781 Bentonite, defense aspects 1331 1323 1323	Boron compounds, uses
salas 1323, 1324, 1332	Digate just a destruction and a second
salient statistics 1322 Bentonite industry, annual review 1331	machinability, effect of bismuth
	secondary, export control 503 foreign trade 503
Benzol, production 1024	JULCIEN MUCCILLIANT
Berul foreign trade 794, 795	Brazil, aluminum, review 678, 679
Beralite, properties. 796 Beryl, foreign trade. 794, 795 prices. 790	antimony, deposits 768
production	arsenic, production
Bervilium alloys, properties 793, 796	bismuth, sources 741
Rerulium-conner allovs, uses	
Beryllium industry, annual review 793	cobalt Japanese operations 625
Bessemer converters, scrap and pig iron con-	copper, deposits
sumption	gems, foreign trade
Biotite, uses	78 01
foreign trade 740	lead, review 139, 140
metallic, allovs 739	magnesite, deposits
prices 740 production 730	
11909 740	
Bismuth industry, annual review	nickel, review 620, 621

	Page	C 1	Page
Braxil, pyrites, sources	1369	Cadmium, civilian use, restriction	773
Braxil, pyrites, sources quartz crystal, production	1536	consumption	775
sliver, review	78, 91	foreign trade	
titanium ores, foreign trade	808	imports, control	773
Trade Agreement, effect on industrial dia-		prices	778
mond supply	1526	prices	4, 711
zinc, review	162	production, Government supervision	773
zirc, review zircon, foreign trade	809	salient statistics	774
Brines, natural, as source of magnesia	. 1497	secondary, recovery	774
salt content	. 1487	shipments	774
Brine works, location	1457	stocks	778
Briquets. See Fuel briquets.	1000	stock pile, Metals Reserve Co	773
Briquetting press, data		toxicology uses	780
British Africa, copper, foreign trade, decline	112	Cadmium alloys, uses 770	775 8 777
British Guiana, bauxite, foreign trade 6	78 99	Cadmium compounds, production	775
gold, production British India, bauxite, review 6	78 681	uses	777
Bombay, as source of gems	1522	Cadmium industry, annual review	773
chromite, data 610, 6 kyanite, foreign trade 610, 6	14. 615	world aspects	780
kyanite, foreign trade	1531	Cadmium solders, uses	776
pyrites, data	1369	Calcium, annual review	798
sulfur, production	1365	Calcium arsenate, use, as insecticide	733
pyrites, data sulfur, production British Malaya, tin, review	22, 725	Calcium chloride, annual review	1508
British Ministry of Supply, copper, buyers'		as source of magnesium metal	1509
price	. 110	foreign trade 1508,	
Bromine, manufacture, increase	1497	prices	1509
prices	1511	sales 1508,	1509
shipmont mathods	1510	uses	1509
ampinent, methous	1511 1510	utilization, in manufacture of magnesium	746
Bromine industry annual review	1509	Calcium metal, foreign trade	798
sales shipment, methods. uses. Bromine industry, annual review. Bronze, exports.	116	uses	798
secondary, export control	503	California, Alpine County, metals, produc- tion 227, 232, 234, 236 Amador County, metals, production	
foreign trade	503	tion 227, 232, 234, 236	3, 242
Brown coal. See Lignite.		Amador County, metals, production	227,
Brucite, as source of magnesia	1503	antimony, review	, 242
mines, mills, and prospects, map		antimony, review	760
output, increase Bunker oil, demand	1500	asbestos, data	1429
Bunker oil, demand	1091	bitterns, sea water, as source of magnesia.	1503 1515
Bureau of Budget, determination of confiden-		borates, shortage boron compounds, reduced production	
tial material in Minerals Yearbook Bureau of Labor Statistics, metals, wholesale	. vi		
price index		Butte County, metals, production	227,
Bureau of Mines, consumer survey, arsenic	733	232, 233, 234, 235, 236	. 243
development, antimony reserves	760	Calaveras County, metals, production	227,
domestic program, manganese production	583	232, 233, 234, 235, 236	, 244
estimates, petroleum, demand	1029	chromite, deposits, investigation	605
fuel briquetting, technologic study	1000	copper, production 98, 100, 101	102,
investigations, asbestos deposits	1428	103, 222, 226, 228, 230, 231, 232, 233, 234, 235	
bauxite, beneficiation	673	Eldorado County, metals, production 232, 233, 234, 235, 236	227,
resourcesdolomite	659 1505	fluorspar, data	
granhita	1529	France Country motels and dustion	007
graphite magnesium processes saline deposits, as source of magneisum	753	232, 233, 234, 236	. 247
saline deposits, as source of magneisum		gold, production 53, 66	ś. 69.
chloride	1506	gold, production 53, 66 70, 71, 72, 73, 74, 77, 222, 223, 224, 227, 231, 232, 233, 234, 235, 236.	230,
chloride Strategic Materials Act	XX	231, 232, 233, 234, 235, 236.	
asbestos	1428	gold dredges, listgold mines, list	
chromite		goid mines, list	225
mercury	688	Humboldt County, metals, production	227, 5, 247
nickel tin	618 708	Imperial County, metals, production	227,
tungsten ore		232, 235, 237	. 247
vanadium ores	636	Inyo County, metals, production	227.
iron-scrap surveys, expansion	518		
manganese, war program	583	iron ore, data	, 568
manganese ore, beneficiation	584	Kern County, metals, production	227,
packaged fuel, technologic study	1000	232, 233, 234, 237	, 248
scrap surveys, expansion	518	lead, production 131,	222,
war activities	XX	226, 228, 230, 231, 232, 233, 234, 235	, 236
wulfenite, gravity-concentration tests	633	Los Angeles County, metals, production	227,
Burkeite, as source of soda ash	1514	232, 234, 235, 237 Madera County, metals, production	, 20U 227
Burma, rubies, foreign trade	1522	232, 234, 235, 237 Madera County, metals, production 232, 234, 238	. 250
tin, data 77 tungsten, production 6	60, 120	magnesia, manulacture, from sea water and	
sine series		dolomite1497,	
zinc, review	163	magnesite, data	1500
Butane, demand, for synthetic rubber indus-	1076	manganese ore, data588, 589	, 590
try	1073	Mariposa County, metals, production	227,
isomerization	1075	232, 233, 234, 235, 238	, 250
isomerization production, increase, need	1074	Merced County, metals, production 227, 238 mercury, review 688, 692	602
sales	7, 1168	metals, production, annual review	221
uses	1168	metallurgic industry, review	230
Butane-propane mixtures, sales 1166, 1167		minerals, production 9.1	3, 17
uses		minerals, production 9, 1 mining industry, review	229

	Page	Pa	age
_	alifornia, molybdenum, operations	Canada, pyrites, data 1367, 1368, 1	369
·	Mono County, metals, production 221,	garon industry data	7.XX
	232, 234, 235, 238, 251 1	silver, review 80	, 88 285
	Napa County, metals, production 227, 233, 234, 238, 252	tin review 723.	726
	natural gas, data	sulfur, data 1384, 1 tin, review 723, titanium ores, data 723,	809
	1190 1191 1199 1194 1139 1140 1141	tingsten, data	OO T
	metural resoline data 1156, 1157, 1158, 1159 (witherite, deposits1	446
		zinc, review	103 352
	232, 233, 234, 230, 230, 202 1	Carbonados, foreign trade	352
	Orange County, metals, production 227, 233, 234, 238, 253	Cowhon blook congumntion	175
	ore, classification 230 petroleum industry, data 1027, 1029, 1030, 1031, 1032, 1033, 1034, 1051, 1053, 1054, 1057,	deliveries 11(1, 1	172
	petroleum industry, data 1027,	foreign trade 1 manufacture, methods 1 natural gas used 1139, 1142, 1	176
	1029, 1030, 1031, 1032, 1033, 1034, 1051, 1053,	manufacture, methods	1/4
	1004, 1000, 1007, 1008, 1000, 1002, 1000, 1071, 1	nlonta I	170
	1079, 1084, 1085, 1086, 1089, 1094, 1096, 1098, 1103, 1106, 1107, 1108, 1109.	pries 1171, 1172, 1 production 1171, 1172, 1173, 1 salient statistics 1171, 1172, 1173, 1 stocks 1171, 1172, 1173,	177
-20	Placer County, metals, production 227,	production	175
	232, 234, 235, 238, 253	salient statistics	172
	Plumas County, metals, production 227,	stocks	1177
	232, 234, 235, 239, 254 potash, review 1456	Uses Carbon-black industry, annual review	177
	pyrites, source	Carbon-black industry, annual review	521
	Disposside Country metals production 227. 1	Carnotite, metallurgical treatment, Bureau of	
	232, 235, 239, 255	Mines	636
	Secremento County, metals, production 227, 1	Catlinite, deposit	1520
	232, 235, 239, 255		1537
	San Bernardino County, metals, production 227 232, 233, 234, 235, 239, 256	Cement, consumption 1193, 1 foreign trade 1192, 1	1222
	San Diego County, metals, production 227,	production.	1192
	232, 234, 235, 240, 257	Federal Reserve Board index	1191
	San Logguin County metals production 227	colient statistics	1192
	240, 257	shipments 1191, 1192, 1193, 1195, 1197, 1200,	1204
	Shasta County, metals, production 227,	See also Portland cement.	1191
	232, 234, 235, 240, 257 Sierra County, metals, production	Cement industry, annual review	1540
	232, 234, 235, 240, 259	men employed 1215, 1540,	1546
	silver, production 53,	Cement mills, accidents men employed Censorship, Office of, creation	xvii
	68, 69, 70, 71, 72, 73, 74, 222, 223, 226, 227,	Censorship limitations, on distribution of Minerals Yearbook	
	silver, production 53, 68, 69, 70, 71, 72, 73, 74, 222, 223, 226, 227, 230, 231, 232, 233, 234, 235, 236.	Minerals Yearbook	vii 98,
	silver mines, list 226 Siskiyou County, metals, production 227,	Central States, copper, production	267
	silver mines, list	100, 101, 102, 103, 266, lead, production	268
	Siskiyou County, metals, production 222, 233, 234, 235, 240, 259 sodium sulfates, data 1512 production 1498 Stanislaus County, metals, production 227, 241, 250	metals, production, annual review	200
	production 1498	metallurgic industry, review	269
	Stanislaus County, metals, production 227, 241, 260	mining industry, review 52 69 79 266	269
	sulfur, output 1359 tin deposits, study 709	silver, production 53, 68, 72, 266, 251, 252, 266, 267, 268, 267, 268, 268, 268, 268, 268, 268, 268, 268	268
	Trinity County, metals, production 227,		
		nonholina evonita 11969	1422
	tungsten, review 644, 645, 646	mamon by lite areas	1395
	Tuolumne County, metals, production 227, 232, 233, 234, 235, 241, 262 witherite, denosits 1447	tale 1180	1394 1527
	232, 233, 234, 235, 241, 202	Chalcedony, deposit	152
	Vuba County metals production 227.	Chasers, sources	1347
	witherite, deposits	value	194
		Value Chile, arsenic, requirements cobalt, review copper, sales, to United States	737
	222, 226, 228, 230, 231, 233, 234, 235, 236 Canada, aluminum, Metals Reserve Co. con-	cobalt, review	120
•	Canada, aluminum, Metals Reserve Co. con- tracts 677	copper, sales, to United States	120
	tracts 677 review 678, 680	copper industry, review	, 60
	anthracite, imports941	mercury, data	700
	entimony data 768	mineral output, purchases, negotiations	XXV
	arsenic, production 737	molybdenum, production	146
	arsenic, production 737 asbestos, review 1427, 1433, 1434, 1435, 1436 beryl, production 797, 798	molybdenum, production	136
	brucite, data1503	sulfur, data	76
	andminim data 781	arsenic production 737	, 73
	chromite data 510.014	bismuth, production	74
	coal industry, data	fluorspar, data	141
	cobalt, increased activity 626	bismuth, production fluorspar, data gems, foreign trade	152
	coke industry, data 942 copper industry, review 117, 118	mercury, data	, 7U 136
	Anomore data 1401 1415	gems, foreign trade 699 mercury, data 699 sulfur, production strategic materials, loss to Allied Nations 720, 721 turgeten foreign trade 644, 650, 651	X. X
	gold, review 51, 78, 87	tin. review 720, 721	, 72
	geld, review 51, 78, 87 jewelry, sales, increase 1517 léad, review 137, 138, 139, 141		
	lead, review	China alaw faraign trade	132
	magnesite data	l odlog	134
	magnesium, review	l salient statistics	104
	molybdenum, operations		132
		Chlorine, defense aspects	50 730
	Northwest Territory, radium-uranium ore,	Chosen, obelt, deposit, discovery	1911
	annual review 802 platinum metals, review 783, 789, 790	fluorspar, data652	65
	piatinum metals, review 783, 789, 790	. emigaem, 10.10.4	

Page	Pag
Chrome ore, purchasing schedule, Metals Re-	Coke ovens, coal charged 947, 949
serve Co607	955, 956, 959, 960, 962, 963, 964, 965, 96
Chromite, consumption 611	
deposits, investigation, Strategic Materials	_types95
Act, Bureau of Mines 604, 605	types
Geological Survey 604, 605 foreign trade 604, 610	948, 990, 992, 993, 99
metallurgical studies605	sales
prices603, 611	yield 948, 949, 99
production 604, 609	Colombia, gold, review 76 0
salient statistics 604	Colombia, gold, review 76, 9 platinum metals, data 789, 79
shipments 603	silver, review 80, 9 Colorado, Adams County, metals, production 28
supply 603 uses 612	Colorado, Adams County, metals, production 288
Uses 612 Chromite industry, annual review 602	290, 296, 29 Arapahoe County, metals, production 286 290, 296, 29 Arabuleta County, metals, production 290, 296, 29
Chromite industry, annual review 608 Chromium, imports, regulation 607	Arapanoe County, metals, production 280
	Archuleta County, metals, production 288
sponge, metallurgical process 605	289, 295, 296, 29
sponge, metallurgical process 605 Chromium ore, truckload lots, Government	
	824, 826, 829, 830, 831, 832, 833, 834, 844
Chromium plating, importance 613	841, 842, 892, 896, 898, 860, 862, 864, 865
Chromium steel, priority control 607 Chrom-X development 613	866, 869, 883.
Chrom-X, development 613 Chrysoprase, deposit 1521 Clay, alumina from extraction 673, 674	Boulder County, metals, production 288, 289, 290
Clay, alumina from extraction 673, 674	292, 293, 294, 295, 296, 29 Chaffee County, metals, production 288, 289
atummum from, manuscoure 1337	290, 292, 293, 294, 295, 296, 30
consumption 1323	Clear Creek County, metals, production. 288, 289
consumption 1323 domestic, substitution for imported 1321	290, 292, 293, 294, 295, 296, 30
European War, effects	COKE industry data osi
miscellaneous, annual review 1334	952, 954, 955, 957, 958, 960, 961, 962, 963 965, 966, 967, 969, 972, 973, 975, 976, 980 981, 983, 984, 993, 994, 995, 996.
prices 1322 sales 1322, 1324	900, 900, 907, 969, 972, 973, 975, 976, 980
salient statistics 1322, 1322	Conejos County, metals, production 288
salient statistics 1322 Clay industries, annual review 1321	
technologic developments 1336	289, 292, 293, 296, 30 copper, production
Clay products industries, annual review 1335	287, 289, 291, 292, 293, 294, 295, 29
Clay products plants, location 1336	Cosuma County, metals, production 20
wages 1336 Coal industry. See Anthracite industry;	980 905 908 20
Bituminous-coal industry: Fuel-hei	Cripple Creek district, metals, production 31
Bituminous-coal industry; Fuel-bri- quets industry; Lignite industry;	Custer County, metals, production 288
Packaged-fuel industry; Peat indus-	289, 295, 296, 30 Denver County, metals, production 288
try.	290, 296, 30
Coal brasses. See Pyrites.	Dolores County, metals, production 288
Coal-Mine Inspection Law, enactment, re-	289, 293, 294, 295, 30
sults xvi Cobalt, consumption 623	Douglas County, metals, production 288
foreign trade 624	290, 296, 303 Eagle County, metals, production 288, 289
prices 623	288, 289 290, 292, 293, 294, 295, 296, 300
priority control 623	ferberite, production
production 623	ferberite, production 64' fluorspar, data 1401, 1402, 1406, 1407
uses	remont County, metals, production 288
Cobalt industry annual review 892 i	289, 295, 296, 30
Coke, beehive, production 943, 944, 947, 949, 950,	Garneld County, metals, production 288, 289
951, 952, 954, 955, 956, 973 byproduct, production 943, 944, 947, 949, 950	292, 293, 294, 295, 296, 304
byproduct, production 943, 944, 947, 949, 950, 951, 953, 954, 955, 956, 972	Gilpin County, metals, production 288, 289
CONSUMDION 917.945.947.949.970.973.980.981.1	290, 292, 293, 294, 295, 297, 30- gold, production 53, 68, 69, 70, 71, 72, 73, 74, 286
distribution 945 947 990 i	287, 288, 290, 291, 292, 293, 294, 295, 296
foreign trade 948, 949, 987 gas house, sales 917	gold dredges
gas nouse, sales 917	Golden Cycle mill, production 303
petroleum. See Petroleum coke.	Grand County, metals, production 288
prices	289, 295, 297, 306
price control 946 salient statistics 947, 949	Gunnison County, metals, production 288, 289 292, 293, 294, 295, 297, 305
shipments 980	292, 293, 294, 295, 297, 303 Hinsdale County, metals, production 288, 289,
stocks 944, 948, 949, 975	293, 294, 295, 297, 305
supplies 917 value 943, 948, 977	Jefferson County, metals, production 288,
Value 943, 948, 977	289, 290, 293, 294, 297, 306
war aspects943 yield, per ton of coal947, 955, 956, 966	Lake County, metals, production 288.
Coke breeze production 947, 955, 956, 966	289, 290, 292, 293, 294, 295, 297, 306
Coke breeze, production 943, 947, 950, 969	La risks County, metals, production 288,
Coke byproducts, demand 989	Larimer County, metals production
export control 947	289, 292, 295, 207, 207
Coke byproducts industry, Government ac-	lead, production 131 286 287
tivities	289, 280, 282, 283, 294, 295, 297, 306 La Plata County, metals, production
Coke industry, annual review 943	Leadville district, metals, production 306 manganese ore, data 588, 589, 590
Government activities 945 Coke overs beebige accidents	manganese ore, data 588, 589, 590
Coke ovens, beehive, accidents 1548 men employed 1540, 1548	
number 947 040 055 057	minerals, production
number 947, 949, 955, 957 byproduct, accidents 1548	288, 900 903 904 905 907 907
capacity 958	mining industry, annual review 925
men employed	molybdenum, review 630
capacity 958 men employed 1540, 1548 number 947, 949, 955, 956, 957, 958 owned by city gas companies 947	mining industry, annual review 285 molybdenum, review 630 Montezuma County, metals, production 288,
Owned by city gas companies 907 l	900 000 004 005 007 907

	7
Page	Page
Colorado, Montrose County, metals, produc-	Corundum, foreign trade
tion 200, 209, 290, 291, 300	Committee deposits legation 1354
natural gas, data 1119, 1120, 1121, 1122, 1124, 1139, 1140, 1141, 1141, 1141	
ore electification	Council of National Detense. Advisory Com-
Oursey County metals production 288.	mission, functions, transfer xvii Price Stabilization Division, scrap prices 520
289, 292, 293, 294, 293, 297, 308	Crocidolite uses 1427
Park County, metals, production 288, 289, 290, 292, 293, 294, 295, 297, 308	Crucible furnaces, scrap and pig iron con-
petroleum industry, data1027.	
petroleum industry, data 1027. 1031, 1032, 1036, 1051, 1057, 1058, 1060, 1067,	Cryolite, foreign trade 1416 occurrence 1416
1063, 1085, 1086, 1089, 1094.	11000
Pitkin County, metals, production 288, 289, 293, 294, 295, 297, 310	Cuba abramita data NIA NIU NIA
pyrites, production 1366	l conner production 117, 120
pyrites, production	gold, review 78, 90 iron-ore mining, review 555
289, 292, 294, 297, 310 Routt County, metals, production 288,	
290, 298, 310	manganese ore, data 600, 601 nickel, review 620, 622 sulfur, underwater deposit 1365
Saguache County, metals, production 288,	sulfur, underwater deposit 1365
289, 293, 294, 295, 298, 311	Cupois lumaces, scrap and pig non con
San Juan County, metals, production 288, 289, 292, 293, 294, 295, 298, 311	Cymrus ashastas raview 1434, 1435, 1438
San Miguel County, metals, production 288,	pyrites, data 1368, 1369 Czechoslovakia, pyrites, production 1369
290, 292, 293, 294, 295, 298, 312	Czechoslovakia, pyrites, production 1309
silver, production 53, 68, 69, 70, 71, 72, 73, 74,	D
286, 287, 288, 290, 291, 292, 293, 294, 295, 296 Summit County, metals, production 288,	.
290, 292, 293, 294, 295, 298, 312	Defense activities, review
Teller County, metals, production 288,	See also War, aspects.
290, 292, 293, 294, 293, 296, 313	functions
topaz, production 1520 tungsten concentrates, production 646,647	construction
turquoise, production 1519, 1520	copper contracts 97
turquoise, production	stimulation of mineral production, by con- tract or subsidy
zinc, production 152, 286, 288, 289, 291, 293 Columbium, annual review	Defense Supplies Corporation, stock pile, ni-
11909	trate of soda, purchase xxii
Columbium ore, foreign trade 800	Defense Transportation, Office of, creation xvii Dehydrating, natural gas for 1122
price 799	Delaware minerals production 9, 13, 19
Commodity Exchange, Inc., copper trading, suspension 109	Delaware, minerals, production 9, 13, 19 Descloizite, metallurgical treatment, Bureau
Concrete criished stone for, Sales 1240,	of Mines 000
1247, 1248, 1250, 1254, 1250, 1258	Diamonde obrecive review 1352
Connecticut, coke, data 954, 961, 969, 974, 981, 982, 984	
957, 958, 961, 969, 974, 981, 982, 984 iron ore, data	foreign trade 1521, 1524 industrial, foreign trade 1356, 1527
minorale production 9.15.19	industrial, foreign trade 1550, 1527 use, increase 1550
Copper, conservation orders, effects 95 consumption 94, 105	l morbot
	nvoduction 1523, 1525
marginal mines, potential production 97 prices 94, 108 price control 95	l share dealings 1020
prices	Diamond industry, annual review 1523 iatomite, prices 1341, 1524
price control 94. 99	sales
primary, production, mine 94, 99 refinery 94, 98, 104	uses
	mines, location 1342 Dimension stone, sales 1226, 1228, 1240
priority control 93, 95	District of Columbia, minerals, production 9, 13, 19
purchases, Metals Reserve Co 96, 97, 120	Dolomite, as source of magnesia 1497, 1504
priority control 98, 100, 101, 103, 180, 181 purchases, Metals Reserve Co 96, 97, 120 salient statistics 94	l as source of magnesium metal 746, 748, 1497
secondary, consumption 501 export control 503	Bureau of Mines investigations 1505 foreign trade 1505
	nolos 1505
nrices 002	industry annual review
price control 502 priority control 502	Dominican Republic, gold, review
	Dumortierite, price 1530 source 1533
	source
	E
allocation, Metals Reserve Co	n
supply problems	Eastern States, copper, production
11000	gold, production 53, 68,
Copper contracts, purchasing, Government	gold, production 53, 68, 70, 71, 72, 73, 74, 322, 324, 325, 326 lead, production 131, 322, 323, 324, 324, 325, 326
organizations	lead, production 131, 322, 323, 324, 323
Copper industry, annual review 93	metals, production, annual review
Company minos posidents 1344	324
men employed 1540, 1544 Copper ores, production 101, 102, 103	ore, classification
Copper Recovery Corporation, duties 96	
Copper scrap, priority control	zinc, production 148, 152, 322, 323, 324, 325
Copper sulfate, exports	Economic Defense Board, creation xvi
Copper trading, suspension	Economic Warfare, Board of, creation xvi
Cornwall stone, imports	functions xix

	Page		_
Ecuador, gold, review			Pag
silver, review	20, 91	Fluorspar, salient statistics 1399, 1400, 1401, stocks 1400, 1400, 1400, 1400, 1800	140
silver, review Eire, pyrites, as source of sulfuric acid	1369	stocks 1400, 1401,	141
Electric steel furnaces, scrap and pig iron con-		uses. 1400, Fluorspar industry, annual review technologic development	140
sumption	531	Fluorspar industry, annual review.	139
Emeraid, foreign trade	1521	recunologic developments	140
Sources Emerald matrix deposit		Fluorspar ores, concentration, patent	140
Emerald matrix, deposit. Emergency Management, Office for, copper,	1521	I FOUNDTY COKE Nee Coke	
data	94	Fluxing stone, sales 1256,	125
lunctions	vviii	Flint, foreign trade	135
Emery, foreign trade	1356	Flint lining, sales France, aluminum, review 678	₹88
	, 1352	bauxite, data 678	. 68
Linery deposits, location	1354	bauxite, data 678 magnesium, data 754	į. 75
Epidote, deposit	1521	potash, data 1460, 1461, French chalk, foreign trade 1396,	146
Epsom salts, data 1506 Europe. See Belgium; Eire; Finland; France;	, 1507	French chalk, foreign trade 1396,	139
Germany: Greenland: Italy: Norway:		Fuel briquets, binders	100
Germany; Greenland; Italy; Norway; Portugal, Spain; Sweden; Turkey; Union of Soviet Socialist Republics;		consumption distribution	
Union of Soviet Socialist Republics:		l foreign trade	100
United Kingdom.		l plants number 1001 1009	100
Export Control, Office of Administrator, transfer		l Size	100
transfer	xvii	prices 1002, production 917, 1000, 1001, 1002,	100
See also Brass, secondary; Bronze, secondary;	r	production 917, 1000, 1001, 1002,	100
Copper, secondary; Copper byprod- ucts; Lead; Nickel, secondary; Potash;		raw ruels	100
Zinc.		recarbonization	100
F		salient statistics shape	100
Bed-ulp-ulp-ulp-ulp-ulp-ulp-ulp-ulp-ulp-ulp		technologic developments value 1000, 1001, 1002, weight	100
Federal Power Commission, natural-gas lines,		value 1000 1001 1002	100
jurisdiction natural-gas rates, jurisdiction	1117	weight	1007
Federal Reserve Board, index of construction	1117	Fuel briquets industry, annual review 999.	1001
awards	xiv	Fuel briquetting, technologic study, Bureau	
index of mineral consumption	xiv	of Mines	1000
Feldspar, foreign trade 1417.	1425	ruel oil, annual review	
Drices 1/10	1420	consumption	917
production 1418,	1426	foreign trade1024, 1024, 1091, 1096, 1	1006
sales 1417,		plants	LUBC
salient statisticstechnologic developments	1417	i Drices 1073 1101 1	1102
uses	1424 1421	l production 1064 1065 1069 1071 1091 1096 1	1098
Feldspar grinding plants, location	1419	raw fuels 917, 1092, 1093, 1	
Feldspar industry, annual review	1417	Sales	1094
reidspar mines, location	1419	salient statistics.	1091
Ferberite, production Ferro-alloys, foreign trade 542, 546, 576, 580	647	shipments 1064, 1068, 1091, 1096, 1	1000
rerro-alloys, foreign trade 542, 546, 576, 580	, 581	i transiers insa ing ing i	I I K.B.
production 542	2, 543	yield 1066, 1067, 1096, 1 Fuller's earth, foreign trade 1 sales 1322, 3124, 1	1098
salient statistics Ferro-alloys industry, annual review541	542	Fuller's earth, foreign trade1	322
Ferrochromium, foreign trade	576	sales	334
metallurgical studies	605	salient statistics	1322
specifications, change	612		1333
ferromanganese, consumption	594	Furnaces, consumption of scrap and pig iron, by types	530
foreign trade	, 597	~ J • J • J • J • J • J • J • J • J • J	••••
prices 545		G	
producers, list	596		
production 584 shipments	596 l	Garnet, abrasive, sales 1339, 1	351
stocks	594	gem, deposits 1	521
Perrosilicon, foreign trade 542, 576	577	Garnet mines, location 1	04 (070
Ferrosilicon, foreign trade 542, 576 Ferrosilicon reduction process, for production		consumption 1076 1078 1085 10	010
of magnesium 747 Ferrotitanium, imports	, 748	Gasoline, annual review 1076, 1078, 1085, 10 foreign trade 11076, 1078, 1085, 10 foreign trade 11079	077
errotitanium, imports	807	prices 1073, 10 production 1070, 1071, 1072, 1077, 1078, 1079, 10 production 1070, 1071, 1072, 1077, 1078, 1079, 10	080
uses Cerrovanadium, prices	808	production 1070, 1071, 1072, 1077, 1078, 1079, 10	086
ertilizers, phosphatic, foreign trade	638 1382	shipments	087
prices	1376	stocks	084
prices sales	1374	yield 10 Gem stones, bibliography 1	080 528
inland, nickel, review	622	foreign trade1	521
ireclay, foreign trade	1322	production 19	519
Sales	2. 13	sources, effect of war 1	522
salient statistics	1322	sources, effect of war 19 Gem-stone industry, annual review 19 Geological Conduction 19	517
ire-clay industry, annual review	1329	deological Survey, investigations, pauxite,	
rire-clay mines, location	1330	resources	658
lorida, minerals, production 9, 1	3, 20	Strategic Materials Act, asbestos 14	428
Dhosphate rock data 1379	1376	chromite604,6 mércury	688 688
zircon, recovery	809	nickel	618
Unorganar consumption 1400	1404	tin	708
in manufacture of bessemer steel	1403	tungsten ore	644
notation, plants	1406	vanadium ore(636
foreign trade 1400, 1401, 1	1413	war activities	xxi
grades	1404	war activities	129
production 1401,	414	220, 221, 222, 224, 246, 220, 22	202
sales	1399	coke industry, data 954, 962, 967, 974, 981, 9	183

Page	Page
Georgia, gold, production 53, 68, 72, 322, 324 iron ore, data 547, 548, 549, 551, 552, 559, 568, 56	Helium, production1180facilities, increase1179, 1182
iron ore, data 547, 548, 549, 551, 552, 559, 563, 56	uses, Government 1179, 1182
kaolin, sales 132 manganese ore, data 588, 589, 59	non-Government 1181
motole production enning review 321	war aspects 1179, 1182
	Telium plant, protection 1180
minerais, production 53, 68, 72, 32: Silver, production 53, 68, 72, 32: Germany, aluminum, review 678, 68: arsenic, available supplies 73: Chromite data 61:	Hematite, deposit
Germany, aluminum, review 0/8, 08	See also Iron ore.
arsenic, available supplies 616	Honduras, antimony, data
copper, sources, control 116	bauxite, deposit 681 magnesite, deposit 1502
arsenic, available supplies 616 chromite, data 617 copper, sources, control 117, 126 magnesium, data 754, 75 potash, review 1460, 1461, 1462 scrap industry, data 538, 539 strategic materials, gain 3	Hones, foreign trade 1356
magnesium, data	Huebnerite, production647, 648
potasn, review 1400, 1401, 1402	• • • • • • • • • • • • • • • • • • •
strategic materials, gain X	${f I}$
sulfur, data1365	Idaha Ada County motels production 228 229
tin, review 720, 721, 723, 727	Idaho, Ada County, metals, production 336, 338, 342, 346
Strategic materials, gain 1365	Adams County, metals, production336, 342, 346
Glauber's salt, dehydration, method	antimony, review
Gold, loreign dade	bituminous-coal industry, data
measurement, unit 64	826, 833, 834, 840, 841, 868, 882 Blaine County, metals, production 336,
prices54 production53, 68, 69, 70, 71, 72, 73, 74, 77, 180, 181	Blaine County, metals, production
	Boise County, metals, production
mine 63 67 69 70 71 72 73 l	338, 339, 340, 342, 346
placer 74	Bonner County, metals, production 336, 339, 340, 342, 347
placer 74 refinery 52, 53, 78 supply, domestic 63 uses, in arts and industries 57	339, 340, 342, 347 Bonneville County, metals, production 335,
supply, domestic 57	Bonneville County, metals, production 335, 336, 341, 342, 347
Gold Coast, bauxite, data 681	Boundary County, metals, production 335,
Gold dredges, list	336, 339, 340, 342, 347
Gold industry, annual review	Butte County, metals, production 335, 336, 339, 340, 342, 358
Gold mines, accidents 1545 men employed 1540, 1545	Camas County, metals, production 335,
number 66	Camas County, metals, production
number 66 Gold producers, leading, list 64	Cassia County, metals, production 335,
Granite, sales	336, 341, 348
	Clearwater County, metals, production 335, 336, 338, 348
men employed 1540, 1547 Graphite analyses 1530	Coeur d'Alene region, metals, production 353
annual review	copper, production98, 100,
domestic mines, investigation	copper, production
foreign trade 1531 imports, control, Metals Reserve Co 1520	341, 342. Custer County, metals, production 335,
investigations, Bureau of Mines 1529	Custer County, metals, production
prices 1531	Elmore County, metals, production 335,
production 1531	Elmore County, metals, production
Gravel, foreign trade 1287	Gem County, metals, production
prices. 1271, 1286 production 1271, 1273, 1274, 1279, 1283, 1284	l gold production 53
	68, 69, 70, 71, 72, 73, 74, 332, 333, 335, 336, 337,
Gravel industry, annual review 1271	338, 339, 341, 342.
labor data 1285 Gravel plants, data 1279, 1280, 1282	gold dredges, list 76 Idaho County, metals, production 335,
Greenland, cryolite, occurrence 1416	Idaho County, metals, production
Greensand, shipments 1531	Jerome County, metals, production 335,
Greensand, shipments. 1531 Grinding pebbles, sales. 1339, 1347 sources. 1347, 1348	336, 344, 351
sources 1347, 1348	Latah County, metals, production 335,
Grindstones, foreign trade 1356 sales 1339, 1346	336, 344, 351 lead, production131,
SOUTCES 1346, 1347	332, 333, 334, 335, 337, 338, 339, 341, 342
Gneternele gold review 78.90	Lemhi County, metals, production
Gynsum, foreign trade	336, 338, 339, 340, 341, 344, 351 Lewis County, metals, production 335,
prices 1299	000 044 070
production 1291, 1293, 1301	manganese ore, data
production 1291, 1293, 3301 sales 1292, 1297	manganese ore, data 588, 589, 590 mercury, data 688, 692, 695
salient statistics 1292 Gypsum industry, annual review 1291	metals, production, annual review 331 metallurgic industry 337
Government investigation 1293	minerals, production 9, 13, 21
statistical study, Bureau of Mines 1292	mining industry, review 336
Gypsum plants, data 1294, 1295	mining industry, review 336 Nez Perce County, metals, production 335,
Gypsum products, sales 1298 Gypsum sheathing, demand, in emergency	336, 344, 353
housing 1292	ore, classification 337 Owyhee County, metals, production 335,
HOUSING 1202	1 336, 338, 339, 340, 341, 344, 353
H	Power County, metals, production 335, 344, 353
	Shoshone County, metals, production 335,
Hansgirg process, for carbothermal production of magnesium 747	336, 338, 339, 341, 344, 353 silver, production53,
of magnesium 747 Hartsalz. See Potash.	68, 69, 70, 71, 72, 73, 74, 332, 333, 335, 336, 337,
Heavy clay products, data	338, 339, 341, 342.
Helium, annual review 1179	tungsten, review 644, 645, 648
new sources, search 1179, 1182 prices 1181	Twin Falls County, metals, production 335,
hrwos 1191	345, 357

rage	rage
Idaho, Valley County, metals, productio.n 335, 336, 338, 339, 341, 345, 357	Iron ore, prices 546 production 542, 543, 547, 548, 549, 569 salient statistics 542, 543, 547, 549, 551 stocke 542, 547, 549, 551
vanadium, data639	salient statistics 542
Washington County, metals, production 335, 336, 341, 345, 357	shipments
zinc, production 148,	Sample S
152, 332, 333, 334, 335, 338, 339, 341, 342	Iron mines, accidents 1544
Illinois, bituminous-coal industry, data	list
842, 843, 846, 850, 851, 852, 855, 856, 858, 860,	men employed 1540, 1544
coke industry, data 946.	sion 518
951, 954, 955, 957, 958, 960, 961, 962, 963, 965, 966, 967, 969, 972, 975, 976, 978, 979, 981, 982, 983, 984, 993, 994, 995, 996.	cartel activities, discontinuance. 538 consumption. 517, 519, 520, 525, 528 duties, suspension, bill. 517, 519, 521, 537 foreign trade. 517, 519, 521, 537
966, 967, 969, 972, 975, 976, 978, 979, 981, 982,	consumption 517, 519, 520, 525, 528
fluorspar, review 1401, 1402, 1406, 1408	foreign trade 517, 519, 521, 537
lead, production 131, 267, 268	inventory accumulations, restriction, Omce
fluorspar, review	legislation, new 521
11aturar gas, uata	prices 518, 519
1120, 1121, 1122, 1125, 1139, 1140, 1141, 1147	Council of National Deleuse, Price Stabili-
1120, 1121, 1122, 1125, 1139, 1140, 1141, 1147, petroleum industry, data. 1027, 1030, 1031, 1032, 1033, 1034, 1036, 1051, 1053, 1054, 1056, 1057, 1058, 1060, 1062, 1063, 1071, 1079, 1084, 1085, 1086, 1089, 1094, 1096, 1098, 1103, 1106, 1107, 1108, 1109.	Office of Price Administration 518, 520
1054, 1056, 1057, 1058, 1060, 1062, 1063, 1071,	Office of Price Administration and Civilian
1079, 1084, 1085, 1086, 1089, 1094, 1096, 1098,	Supply 521 priority control 518 salient statistics 519
pyrites, source 1367	salient statistics 519
pyrites, source 1367 silver, production 267 zinc, production 148, 152, 267, 268 Ilmenite, prices 807 production 806, 809 self-sufficiency, attainment 805 Iddia antimony data 769	Frongeron industry, annual region 517
Ilmenite, prices 807	Italy, aluminum, review
production 806, 809	magnesium, data
India, antimony, data 769	Hollestra Holl
silver consumption 56	
Indiana, bituminous-coal industry, data	
842, 843, 846, 850, 851, 852, 855, 856, 858, 860,	Japan, aluminum, review 678, 682
862, 864, 865, 866, 870, 885.	antimony, data 769 cobalt, shipments from South America 626
954, 955, 957, 958, 960, 961, 962, 963, 965, 966,	copper, attempts to purchase from Chile 120
967, 969, 972, 975, 976, 978, 979, 981, 982, 983,	imports 114, 115
985, 993, 994, 995, 996. limestone, sales	magnesium, data
minerals, production 9, 13, 23	cobalt, shipments from South America 626 copper, attempts to purchase from Chile 120 imports 114, 115 magnesium, data 754, 755 mercury, data 687, 698, 699, 700 scrap industry, data 538, 539 strategic materials, gain x xulfur, data 1364, 1365 tin, review 720, 721, 723, 725, 728 Jasper, deposits 1519, 1521 Jewelry, fashions 1518 sales 1517
natural gas, data 1119, 1120, 1121, 1122, 1126, 1139, 1140, 1141, 1147	strategic materials, gain X
netroleum industry data 1027. I	tin, review
1031, 1032, 1037, 1051, 1053, 1054, 1056, 1057, 1058, 1060, 1063, 1071, 1079, 1084, 1085, 1086, 1089, 1094, 1096, 1098, 1103, 1106, 1107, 1108,	Jasper, deposits 1519, 1521
1089, 1094, 1096, 1098, 1103, 1106, 1107, 1108,	Jewelry, fashions
1109.	sales 1517
pyrites, source 1367 Indium, annual review 801	Jewelry industry, annual review 1517
prices 801	K
Industrial diamond. See Diamond, industrial. Inkrom process, description	Kainite, foreign trade
Insecticides argenic in use 733 l	Kalunite process, for extracting alumina from
inter-American Auairs, Office of Coordinator,	alunite 673, 1456
transfer xvii Interstate Commerce Commission, freight	Kansas, bituminous-coal industry, data
rates, anthracite, increase, authoriza-	844, 847, 850, 851, 852, 856, 858, 860, 862, 864, 865,
tion 904 Iodine, foreign trade 1511	866, 871, 886. carbon black, data
prices	lead, production 131, 267, 268, 269
USes 1511 Iodine industry, annual review 1511	carbon black, data
Iowa, bituminous-coal industry, data 817,	naturar gas, uata
Iowa, bituminous-coal industry, data 817, 824, 826, 829, 830, 831, 832, 833, 834, 840, 841, 842, 844, 847, 850, 851, 852, 856, 858, 860, 862,	1120, 1121, 1122, 1126, 1139, 1140, 1141, 1147
871, 886.	1029, 1030, 1031, 1032, 1033, 1034, 1038, 1051,
minerals production 9.13.23	1029, 1030, 1031, 1032, 1033, 1034, 1038, 1051, 1053, 1054, 1058, 1060, 1062, 1063, 1071, 1079, 1084, 1085, 1086, 1089, 1094, 1103, 1106, 1107,
turquoise, mining methods 1527	
Iran, sulfur, production 1365 turquoise, mining methods 1527 Iridium, foreign trade 788, 789 importance in war program 784 785 785	1108, 1109. 1367 1367 1367 1367 1367 1367 1368, production 152, 267, 268, 269 1320, 1320
importance in war program 784 recovery 785	zinc, production: 152, 267, 268, 269 Kaolin, annual review 1325
secondary, recovery	foreign trade 1322
stocks 788	Sales 1322, 1324, 1326
	Kaolin mines legation 1327
uses 767 Iron, production, capacity, increase, War Production Board regulations 546 Iron ore, beneficiation 550 consumption 552 foreign trade 542, 546, 554	Kentucky, bituminous-coal industry, data
Iron ore, beneficiation 550	824, 826, 829, 830, 831, 832, 833, 834, 840, 841, 842, 844, 847, 850, 851, 852, 855, 856, 858, 860;
foreign trade 542, 546, 554	862, 864, 865, 866, 871, 887.
manganiferous, consumption 599	Kentucky, coke, data 952, 954, 957, 958, 960,

Page	Page
Kentucky, fluorspar, review 1401, 1402, 1406, 1410	Lignite, prices
Kentucky, lead, production	production813,
Kentucky, metals, production, annual review 272	814, 816, 824, 828, 829, 830, 835, 867, 882, 896, 897,
	900, 901, 917.
Kentucky, natural gas, data	salient statistics
1120, 1121, 1122, 1127, 1139, 1140, 1141, 1147	shipments 835 stocks 815,824
Kentucky, minerals, production 9, 13, 24 Kentucky, natural gas, data 1119. 1120, 1120, 1121, 1122, 1127, 1139, 1140, 1141, 1147 Kentucky, petroleum industry, data 1027, 1031, 1032, 1039, 1051, 1053, 1054, 1056, 1057, 1058, 1060, 1062, 1063, 1071, 1079, 1084, 1085, 1086, 1089, 1094, 1096, 1098, 1103, 1106, 1107, 1108, 1109.	stocks
1031, 1032, 1039, 1051, 1053, 1054, 1056, 1057,	value833, 897, 898
1058, 1060, 1062, 1063, 1071, 1079, 1084, 1085,	Lignite industry, annual review 811,896
1086, 1089, 1094, 1096, 1098, 1103, 1106, 1107,	labor data 813, 824, 833, 834, 867, 882, 897
1108, 1109.	824, 833, 834, 867, 882, 897 Lignite mines, capacity
Kentucky, witherite, occurrence 1446 Kentucky, zinc, production 152, 267, 268	Lignite mines, capacity 814 cutting, mechanical 840, 841, 842 loading, mechanical 853 mechanization 812,
Kentucky, zinc, production 152, 267, 268	cutting, mechanical 040, 841, 842
Kerosine, annual review 1087 demand 1024, 1026, 1064, 1087, 1088 foreign trade 1064	mochanization 919
foreign trade 1064	835, 840, 852, 853, 854, 855, 856, 858, 860, 862, 863,
production 1064, 1065, 1069, 1071, 1080	864, 865.
production 1064 1065 1060 1071 1088	men employed 824, 826, 867, 882, 897
sales	
shipments 1114	number 831, 832, 835, 898 power drilling 852 size 831, 832, 898 stripping operations 840, 843, 846, 850, 851, 899 Lime, foreign trade 1304, 1319
shipments 1114 stocks 1064, 1068, 1088	size 831, 832, 898
yield	stripping operations 840,
Kingolouhr 11909 1341	841, 843, 846, 850, 851, 899
Kieserite, data 1506	841, 843, 846, 850, 851, 899 Lime, foreign trade
Korea. See Unosen.	hydrated, production
Kyanite, deposits 1532	uses
prices	prices 1303, 1316
shipments 1531	prices 1303, 1316 production 1303, 1304 sales 1303, 1307, 1308, 1313
uses	saies1303, 1307, 1308, 1313
	Salient statistics 1304
L	shipments
Lake Superior district iron-ore mining re-	Lime industry annual raviow 1302
Lake Superior district, iron-ore mining, review 555	new developments 1318
Land pebble, foreign trade	Limekilne accidents 1548
prices1376	Limekilns, accidents 1548 men employed 1540, 1548
enlos 1372 1378	Lime plants date 1305 1306 1312 1318
Lanis lazuli denosit 1521	Lime plants, data 1305, 1306, 1312, 1318 fuel ratios 1316
Latin America, as source of strategic minerals,	Limestone, sales 1226, 1229, 1234, 1240, 1249
DOSSIBILITIES XXIII	Limestone quarries, accidents 1547
copper mines, priority assistance 95	men employed 1540, 1547
Lead, antimonial, foreign trade	
production	Litharge, consumption 169
secondary, price control 499	foreign trade 177
consumption 126, 133 export control 126	prices 166, 176 production 168, 167, 168
export control	sales
for defense needs, shortage 126 foreign trade 126, 137	value166, 168
prices 126, 135	Lithia, uses
price control 126	Lithium minerals, occurrence
price control 126 primary, production, refinery 126, 127, 128, 129	
	nrices 1534
priority control	prices 1534
priority control 127 production 131, 180, 181	prices
priority control 127 production 131, 180, 181 increase, request 127	prices 1534 shipments 1533 shippers 1534
priority control 127 production 131, 180, 181 mine 127 127 131	prices 1534 shipments 1533 shippers 1534 uses 1533, 1534
127	prices 1534 shipments 1533 shippers 1534 uses 1533, 1534 Lithopone, consumption 172 foreign trade 177, 178, 1440, 1449, 1450
127	prices 1534 shipments 1533 shippers 1534 uses 1533, 1534 Lithopone, consumption 172 foreign trade 177, 178, 1440, 1449, 1450 metal content 175
127	prices 1534 shipments 1533 shippers 1534 uses 1533, 1534 Lithopone, consumption 172 foreign trade 177, 178, 1440, 1449, 1450 metal content 175 prices 176, 1449
127 production 131, 180, 181 increase, request 127 mine 131 salient statistics 126 secondary, consumption 505 recovery 126, 130, 493, 503 stocks 506	prices 1534 shipments 1533 shippers 1534 uses 1533, 1534 Lithopone, consumption 172 foreign trade 177, 178, 1440, 1449, 1450 metal content 175 prices 176, 1449 production 166, 168
127	prices 1534 shipments 1533 shippers 1534 uses 1533, 1534 Lithopone, consumption 172 foreign trade 177, 178, 1440, 1449, 1450 metal content 175 prices 176, 1449 production 166, 168, 148, 148 sales 166, 168, 1448, 1448
127 production 131, 180, 181 increase, request 127 mine 131 salient statistics 126 secondary, consumption 505 recovery 126, 130, 493, 503 stocks 126, 132 Lead arsenate, use, as insecticide 733	prices 1534 shipments 1533 shippers 1534 uses 1533, 1534 Lithopone, consumption 172 foreign trade 177, 178, 1440, 1449, 1450 metal content 176, 178 prices 176, 184 production 166, 168 sales 166, 168, 148, 1449 value 166
127	prices 1534 1534 1533 1534 1533 1534 1533 1534 1533 1534 1533 1534 1533 1534 1536 1537
127	prices 1534 shipments 1533 shippers 1534 uses 1533, 1534 Lithopone, consumption 15172 foreign trade 177, 178, 1440, 1449, 1450 metal content 177, 178, 1440, 1449, 1450 prices 176, 1449 production 166, 168 sales 166, 168, 1444, 1449 value 166 Loans, Government, to mining enterprises, modification xxiii
127 production 131, 180, 181 increase, request 127 mine 131 salient statistics 126 secondary, consumption 126, 130, 493, 503 stocks 126, 130, 493, 503 stocks 126, 132 Lead arsenate, use, as insecticide 733 Lead industry, annual review 125, 126, 132 Lead mines, accidents 1540, 1545 men employed 1540, 1545 Lead pigments, consumption 166, 169	prices
127 production 131, 180, 181 increase, request 127 mine 131 salient statistics 126 secondary, consumption 505 recovery 126, 130, 493, 503 stocks 126, 132 Lead arsenate, use, as insecticide 733 Lead industry, annual review 125, 132 Lead mines, accidents 1545 men employed 1540, 1545 Lead pigments, consumption 166, 169 foreign trade 166, 176 foreign trade 166, 176 foreign trade 166, 176 127 foreign trade 166, 176 foreign trade 166, 17	prices
127	prices
127 production 131, 180, 181 increase, request 127 mine 131 salient statistics 126 secondary, consumption 505 recovery 126, 130, 493, 503 stocks 506 stocks 126, 132 Lead arsenate, use, as insecticide 733 Lead industry, annual review 125, 132 Lead industry, annual review 126, 134 men employed 1540, 1545 men employed 166, 169 foreign trade 166, 176 metal content 174, 175 prices 166, 175 prices 166, 175	prices
127	prices
127 128 128	prices 1534 shipments 1533 shippers 1534 uses 1533, 1534 Lithopone, consumption 172 foreign trade 177, 178, 1440, 1449, 1450 metal content 177, 178, 1440, 1449, 1450 production 166, 168 sales 166, 168, 1448, 1449 value 166, 168, 168, 1448, 1449 value 166, 168 Loans, Government, to mining enterprises, modification xxiii London Metal Exchange, transactions, suspension 110 Louisiana, carbon black, data 1173, 1175 minerals, production 9, 13, 25 natural gas, data 1119,
127 production 131, 180, 181 increase, request 127 mine 131 salient statistics 126 secondary, consumption 505 recovery 126, 130, 493, 503 stocks 506 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 Lead arsenate, use, as insecticide 733 Lead industry, annual review 125, 132, 132, 133, 134, 134, 134, 134, 134, 134, 134	prices 1534 shipments 1533 shippers 1534 uses 1533, 1534 uses 1533, 1534 Lithopone, consumption 172 foreign trade 177, 178, 1440, 1449, 1450 metal content 175 prices 176, 1449 production 166, 168 sales 166, 168, 1448, 1449 value 166, 168, 1448, 1449 value 166 Loans, Government, to mining enterprises, modification xxiii London Metal Exchange, transactions, suspension 110 Louisiana, carbon black, data 1173, 1175 minerals, production 9, 13, 25 natural gas, data 1119, 1141, 1147 natural gasoline, data 1156, 1157, 1158, 1159 petroleum industry data 1027, 1029, 1030, 1030
127	prices 1534 shipments 1533 shippers 1534 tuses 1533, 1534 Lithopone, consumption 172 foreign trade 177, 178, 1440, 1449, 1450 metal content 175 prices 176, 1449 production 166, 168 sales 166, 168, 1448, 1449 value 160 Loans, Government, to mining enterprises, modification xxiii London Metal Exchange, transactions, suspension 110 Louisiana, carbon black, data 1173, 1175 minerals, production 9, 13, 25 natural gas, data 1119, 1122, 1128, 1139, 1140, 1141, 1147 natural gasoline, data 1156, 1157, 1158, 1159 petroleum industry data 1027, 1029, 1030, 1030
127	prices 1534 shipments 1533 shippers 1534 uses 1533, 1534 Lithopone, consumption 177 foreign trade 177, 178, 1440, 1449, 1450 metal content 177, 178, 1440, 1449, 1450 production 166, 168 sales 166, 168, 1448, 1449 value 166, 168, 1448, 1449 value 166, 168, 1448, 1449 value 176, 168, 168, 1448, 1449 value 176, 168, 168, 1481, 1481 uses 1882 pension 110 Louisiana, carbon black, data 1173, 1175 minerals, production 9, 13, 25 natural gas, data 1119, 1121, 1121, 1121, 1121, 1121, 1121, 1121, 1122, 1128, 1139, 1140, 1141, 1147 natural gasoline, data 1156, 1157, 1158, 1159 petroleum industry, data 1027, 1029, 1030, 1031, 1032, 1033, 1034, 1039, 1051, 1053, 1054, 1065, 1067, 1068, 1060, 1062, 1063, 1071, 1079,
127 production 131, 180, 181 increase, request 127 mine 131 salient statistics 126 secondary, consumption 505 recovery 126, 130, 493, 503 stocks 506 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 Lead arsenate, use, as insecticide 733 Lead industry, annual review 125, 142, 143, 143, 144, 144, 145, 144, 145, 145, 145, 145	prices
Description	prices
127 production 131, 180, 181 increase, request 127 mine 131 salient statistics 126 secondary, consumption 126, 130, 493, 503 stocks 506 stocks 126, 130, 493, 503 stocks 126, 132 Lead arsenate, use, as insecticide 733 Lead industry, annual review 125, 134, 134, 134, 134, 134, 134, 134, 134	prices
127 production 131, 180, 181 increase, request 127 mine 131 salient statistics 126 secondary, consumption 505 recovery 126, 130, 493, 503 stocks 506 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 130, 493, 503 Lead arsenate, use, as insecticide 733 Lead industry, annual review 125, 493 Lead industry, annual review 164, 164, 165, 166, 167 men employed 166, 167 metal content 174, 175 prices 166, 167 salient statistics 166, 167 salient statistics 166, 167 Lead sulfate, basic, consumption 170 metal content 175 Lend-Lease Administration, Office of, creation xviii Lepidolite, demand 1533 Light oil, production 948, 949, 991, 992	prices
127 127 127 127 127 127 127 127 127 127 127 127 127 127 128	prices
127 production 131, 180, 181 increase, request 127 mine 131 salient statistics 126 secondary, consumption 505 recovery 126, 130, 493, 503 stocks 506 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 Lead arient use, as insecticide 733 Lead industry, annual review 125, 142, 143, 144, 154, 154, 154, 154, 154, 154, 154	prices
127 production 131, 180, 181 increase, request 127 mine 131 salient statistics 126 secondary, consumption 505 recovery 126, 130, 493, 503 stocks 506 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 Lead andustry, annual review 125, 493, 494, 125, 493, 494, 991, 992 sales 126, 132, 132, 132, 133, 133, 133, 133, 133	prices
127 127 127 127 127 127 127 127 127 127 127 128	prices
127 production 131, 180, 181 increase, request 127 mine 131 salient statistics 126 secondary, consumption 505 recovery 126, 130, 493, 503 stocks 506 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 Lead arsenate, use, as insecticide 733 Lead industry, annual review 125, 132, 134, 1545 men employed 1540, 1545 Lead pigments, consumption 166, 166, 167 metal content 174, 175 production 166, 167 salient statistics 166, 167 salient statistics 166, 167 salient statistics 166, 167 salient statistics 166, 167 salient statistics 165 Lead sulfate, basic, consumption 170 metal content 175 Lend-Lease Administration, Office of, creation 179 Lepidolite, demand 1533 Light oil, production 948, 949, 991, 992 sales 992 yield 949, 993 Lignite, cleaning, mechanical 863 competition from other fuels 814, 818 consumption 811, 818	prices
Description	prices
127 production 131, 180, 181 increase, request 127 mine 131 salient statistics 126 secondary, consumption 505 recovery 126, 130, 493, 503 stocks 506 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 stocks 126, 132, 493, 503 Lead arsenate, use, as insecticide 733 Lead industry, annual review 125, 132, 134, 1545 men employed 1540, 1545 Lead pigments, consumption 166, 166, 167 metal content 174, 175 production 166, 167 salient statistics 166, 167 salient statistics 166, 167 salient statistics 166, 167 salient statistics 166, 167 salient statistics 165 Lead sulfate, basic, consumption 170 metal content 175 Lend-Lease Administration, Office of, creation 179 Lepidolite, demand 1533 Light oil, production 948, 949, 991, 992 sales 992 yield 949, 993 Lignite, cleaning, mechanical 863 competition from other fuels 814, 818 consumption 811, 818	prices 1534 shipments 1533 shippers 1534 uses 1533 1534 Lithopone, consumption 177, 178, 1440, 1449, 1450 metal content 177, 178, 1440, 1449, 1450 metal content 166, 168 sales 166, 168, 1448 value 166 168, 1448 value 166 168, 1448 value 166 168, 1448 value 166 168 1

M	Page
Madagascar, flake graphite, import control 1529	Maryland, minerals, production 9, 13, 26
Magnesia, production, from dolomite 1504	potash, review 1457
from magnesium silicates 1504	Masonry cement, data 1191, 1192, 1212
refractory, manufacture, from sea water and dolomite1497	954, 955, 957, 958, 960, 961, 963, 965, 966, 969,
new sources 1502	Massachusetts, coke industry, data 951, 954, 955, 957, 958, 960, 961, 963, 965, 966, 969, 972, 974, 976, 981, 982, 984, 993, 994, 995, 996.
Magnesite, demand, for war program 1498	granite, sales 1232 manganese ore, data 588, 589, 590 minerals, production 9, 13, 26 Medicinal oil, production 1109 Moreurr, Burseu, of Mines explorations Stre.
mines, mills, and prospests, map 1500	manganese ore, data
prices 1502	Madicinal oil production 1100
production 1498, 1499 sales 1498, 1499	Mercury, Bureau of Mines explorations, Stra-
salient statistics 1499	tegic Materials Act
salient statistics 1499 Magnesite industry, annual review 1498	consumption 690
	foreign trade
Magnesium, consumption 750 foreign trade 753	Control 687
foreign trade 753 manufacturing processes 745	Geological Survey explorations, Strategic Materials Act. 688
102	import control by Office of Production Management 687
nrimary production (43, 744, 754	Management 687
priority control	price 686, 689
producers, list	
production, capacity	production 686, 692, 699 purchases, Metals Reserve Co 687
salient statistics	salient statistics 686
secondary consumption 508	stocks
recovery 493, 507, 749	stock-pile purchases 688
stocks 508 technologic developments 753	surplus supplies, agreement with Mexican Government, to obtain 687
war aspects	use, conservation 687
	Mercury industry, annual review 685
Magnesium carbonate, data 1506 Magnesium chloride, as source of magnesium	Mesothorium, uses 804
metal1007	Meta-arsenite, cupric, manufacture, patent 736
data1506 electrolysis, for manufacture of magnesium745,	Metals, minor, annual review793
746	production, review 3, 51 Metal mines, miscellaneous, accidents 1546
saline deposits as source	Metal mines, miscellaneous, accidents 1546 men employed 1540, 1545
Magnesium compounds, annual review 1497, 1498	Metals Reserve Co., agreement with Peru,
prices 1508	to purchase strategic minerals xxv
recovery from sea water, patents 1508 Magnesium industry, annual review 743	contract with Bolivia, to purchase tungsten. xxv
Magnesium metal, calcium chloride as source. 1509	contract with Brazil, to purchase all mineral
magnesium chloride as source 1507	output xxiv
magnesium sulfate as source	contract with Mexico, to purchase all mineral output xxiv
Magnesium oxide, data1506	functions xxi
Magnesium powder, fabrication methods, development 753	imports, control, graphite 1529
Magnesium products, manufactures	negotiations, to buy mineral output of
manufacturers, list 752	Argentina and Chile xxv specifications, manganese ore 585
Magnesium silicates, as source of magnesia 1504	nurchases See Aluminum: Antimony:
Magnesium sulfate, as source of magnesium metal1507	Bauxite: Chrome ore; Copper; Mer-
data1506	specifications, manganese ore 585 purchases. See Aluminum; Antimony; Bauxite; Chrome ore; Copper; Mercury; Tin; Tin ore; Tungsten.
in manufacture of plaster 1508	Stimulation of mineral production, by con-
Magnetite, as source of titanium 800	
titaniferous vanadum in occurrence 930	Diocal part part and a second
Maine, minerals, production 9, 13, 25	Mexico, antimony, review 767, 769
slate, data 1267, 1268 Manganese, in dust, toxic effects 587	arsenic, production 737, 738
metallurgy, review	Districti, data
coliant statistics 584	cadmium, data
war program, Bureau of Mines 583 Manganese industry, annual review 583	duorspor data 1415
Manganese ore, beneficiation, Bureau of Mines consumption 584	lead, review 137, 138, 139, 141
formginous consumption 596, 599	magnesite, deposit1502
shipments	manganese ore, data686 687 607 700 701
foreign trade 584, 585, 596	surplus supplies, agreement with United
Government purchases 588 Government specifications 588	States 687
nrices 599	
prices598 shipments584, 585, 587, 588, 589, 600	I tract to nurchase XXIV
stocks	oil properties, expropriation, settlement 1028
Manufactured gas, sales 917	
Marble, sales 1226, 1229, 1233, 1249	'l fin dafa /20.721.725
Marble quarries accidents 1540	zinc review 159, 163
men employed 1540, 1540	I Mico os stratogio minoral supply 1465 1466
Marcasites, foreign trade 152	built-up, production1476
Marl, calcareous, sales 130	consumption
Maryland, asbestos, data	domestic quality 1469
bituminous-coal industry, data817 824, 826, 829, 830, 831, 832, 833, 834, 840, 841	foreign trade 1466, 1474, 1478
842, 852, 855, 856, 858, 860, 862, 873 888.	ground, production 1469, 1470
coke industry data 951	, preparation 1473
954, 955, 957, 985, 960, 961, 962, 963, 965, 966 968, 969, 972, 974, 976, 981, 982, 985, 993, 994	Prices 1476
968, 969, 972, 974, 976, 981, 982, 985, 993, 994	scrap, production 1469, 1470

Page	Page
Mica, sheet, production 1466, 1471	Molybdenum, inventory control 628
sales 1467	priority control
war, effects	production 628, 629, 634
Mica industry, annual review	salient statistics 628 substitution for tungsten 628
Mica splittings, consumption 1466, 1475, 1476	substitution for tungsten 628 technology 533
source1466, 1475	uses 632
Mica mines, location 1468 1475 1476 1475 1476 1475 1476 1476 1475 1476 1476 1474 1475 1476 1475 1476 1475	war aspects 628
Michigan, Dituminous-coal industry, data 817,	Molybdenum industry, annual review 627
824, 826, 829, 830, 831, 832, 833, 834, 840, 841, 842, 852, 855, 856, 858, 860, 862, 873, 888	Molybdenum-tungsten steels, substitution for
brines, as source of magnesium 1497, 1503, 1507	tungsten steels 651
coke industry, data 946,	Monazite, foreign trade 1536 prices 1535
951, 954, 955, 957, 958, 960, 961, 963, 965, 966,	prices 1535 sources 1535
969, 972, 975, 976, 979, 981, 982, 985, 993, 994, 995, 996	Monazite derivatives, uses 1535
copper, production 267, 269	Montana, antimony ore, production 762
copper, production 267, 269 sales, to Treasury Department 109	arsenic, possibilities 733
tron ore, data 547.	Beaverhead County, metals, production 363,
548, 549, 552, 553, 554, 559, 563, 568 reserves 558	364, 367, 368, 369, 370, 374 bituminous-coal industry, data
metals, production, annual review 273	824, 826, 829, 830, 831, 832, 833, 834, 840, 841, 842,
minerals, production 9, 13, 27	844, 852, 856, 858, 860, 862, 874, 889.
natural gas, data1119,	Broadwater County, metals, production 363,
1120, 1121, 1122, 1128, 1139, 1140, 1141 petroleum industry, data	364, 367, 368, 369, 370, 375 Cascade County, metals, production
1031, 1032, 1034, 1041, 1051, 1053, 1054, 1057,	364, 367, 368, 369, 370, 376
1058, 1060, 1063, 1085, 1086, 1089, 1094	chromite, deposits, investigation 604
silver, production 267	copper, production 98,
Millstones, foreign trade 1356 sales 1339	100, 101, 102, 103, 360, 362, 363, 365, 366, 367, 368, 369, 370.
sources1346, 1347	Deer Lodge County, metals, production 363,
value 1347	364, 367, 368, 369, 370, 376
Minerals, consumption xiv	Fergus County, metals, production 363,
demand ix prices ix	364, 367, 369, 370, 376 Flathead County, metals, production 363.
productionix. xii	364, 369, 370, 376
stimulation, by Government contracts xxiii	Gallatin County, metals, production 363,
summary 1, 3, 10	364, 370, 377
value 7, 9 strategic, Latin America as source xxiii	gold, production 53, 68, 69, 70, 71, 72, 73, 74, 360, 363, 364, 365, 366,
stocks, status xiii	367, 368, 369, 370.
stock piling, expansion xiv	gold dredges, list
strategic, loss to Allied Nations x	gold dredges, list 76 Granite County, metals, production 363,
Mineral commodities, raw, prices xiv Mineral industries, accident data 1539, 1541	364, 367, 368, 369, 370, 377 Tefferson County metals production 363
annual review ix	Jefferson County, metals, production 363, 364, 367, 368, 369, 371, 378
annual review	Judith Basin County, metals, production 363,
safety status	364, 369, 371, 379 lead, production 131,
war agencies affecting, organization xvi	132, 360, 362, 363, 365, 366, 367, 368, 369, 370
Mineral wool, review	Lewis and Clark County, metals, production 363,
Minerals Yearbook, status as confidential re-	364, 367, 368, 369, 371, 379
port vii Minnesota, catlinite, deposit 1520	lignite industry, data
Minnesota, catlinite, deposit 1520 coke industry, data 951,	874, 889, 897, 898, 899.
954, 955, 957, 958, 960, 961, 963, 965, 966, 969, 972,	Lincoln County, metals, production 363,
975, 976, 978, 981, 983, 985, 993, 994, 995, 996.	364, 367, 368, 369, 371, 381 Madison County, metals, production
iron ore, data	364, 367, 368, 369, 371, 381
iron ore, reserves	manganese ore, data
manganese ore, data 588, 589, 590	Meagher County, metals, production 363,
minerals, production 9, 13, 28	364, 369, 372, 383 metals, production, annual review 359
Minor nonmetals, annual review 1529	metallurgic industry, review
Mississippi, minerals, production	metallurgic industry, review 366 minerals, production 9, 13, 30
1120, 1121, 1122, 1129, 1139, 1141, 1148	Mineral County, metals, production 363, 364, 372, 383
petroleum maustry, data 1027,	mining industry, review
1031, 1032, 1042, 1051, 1053, 1054, 1057, 1058, 1060, 1063, 1085, 1086, 1089, 1094.	Missoula County, metals, production 363.
Missouri, bituminous-coal industry, data 817,	moss agate, deposits 364, 369, 372, 383
824, 826, 833, 834, 840, 841, 842, 844, 846, 850, 851,	natural gas, data 1119,
873. 888.	1120, 1121, 1122, 1130, 1139, 1140, 1141, 1148
copper, production 267, 269 iron ore, data 547, 548, 549, 552, 554, 569, 563, 568 lead, production 267, 548, 549, 552, 554, 569, 563, 568	ore, classification 365 Park County, metals, production 363,
lead, production 131. 267. 268. 269	rark county, metals, production 363,
manganese ore, data	364, 367, 368, 369, 372, 384 petroleum industry, data 1027, 1031, 1032, 1042, 1051, 1053, 1057, 1058, 1060, 1063,
lead, production 131, 287, 288, 289 manganese ore, data 588, 589, 591 metals, production, annual review 775 minerals, production 9, 13, 29	1031, 1032, 1042, 1051, 1053, 1057, 1058, 1060, 1063,
natural cas. data	1085, 1086, 1089, 1094.
natural gas, data 1119, 1121, 1122, 1129, 1139, 1141, 1148	Phillips County, metals, production 363, 364, 367, 384
silver, production 267	Powell County, metals, production 363.
silver, production 287 tungsten, data 645, 648 ginc, production 152, 267, 268, 299	364, 367, 368, 369 , 372, 384
molybdenum, bibliography 634	pyrites, source 1367
foreign trade 628, 631	Ravalli County, metals, production 363, 364, 367, 368, 372, 385
	402, 001, 000, 012, 000

Page	ĺ
Montana, Sanders County, metals, production 363, 364, 367, 368, 369, 372, 385 sapphire, sales 1519 scheelite concentrates, production 645, 648 silver, production 53	N
tion 363, 364, 367, 368, 369, 372, 385	
scheelite concentrates, production 645, 648	
scheente concentrates, production 53, vises, production 53, 68, 69, 70, 71, 72, 73, 74, 360, 361, 363, 364, 365, 366, 367, 368, 369, 370.	N
68, 69, 70, 71, 72, 73, 74, 300, 301, 303, 304, 305, 306,	ŀ
Silver Bow County, metals, production 363,	N
Silver Bow County, metals, production 363, 364, 367, 368, 369, 372, 385 Stillwater County, metals, production 363, 373, 387	
Sweet Gress County metals, production 363.	
Sweet Grass County, metals, production 363, 364, 369, 373 Toole County, metals, production 363, 373, 387	
Toole County, metals, production 363, 373, 387 zinc, production	
152, 360, 362, 363, 365, 366, 367, 368, 399, 370 Monstone, deposit. 1521 Mortar cement, data. 1212 Moss agate, deposits. 1619 Motor fuel, annual review 1024, 1026, 1076, 1077 dermand. 1024, 1026, 1076, 1077 distribution 1085 foreign trade. 1077 prices. 1080 production 1077, 1078, 1079, 1086 stocks. 1077, 1082, 1083, 1084 Muscovite, derivation 1470 Naphtha, nonaromatic constituents, aromatization 1075	
Mortar cement, data 1212	
Motor fuel, annual review 1076	١,
demand 1024, 1026, 1076, 1077	
foreign trade 1077	
prices	
production	
Muscovite, derivation 1470	
Naphtha, nonaromatic constituents, aromati-	
zation 1075 Naphthalene, production 949, 991, 992, 997	
National Academy of Sciences, aluminum substitutes, investigation 675	1
stitutes, investigation 675 tin conservation study 707 National Defense Mediation Board, arbitra-	
National Defense Mediation Board, arbitra- tion aluminum industry labor troubles 667	
	l
National Defense Research Committee,	l
transfer xvii National War Labor Board, creation xvii	
order, to eliminate differential in aluminum-	ŀ
industry wages 666	
consumption 917, 1116, 1138	
at petroleum refineries 1139, 1142, 1143	
at portland-cement plants 1139, 1142, 1143 at power plants 1139, 1142, 1143	ŀ
with manufactured gas1145	
fuel efficiency 822, 823	l
production 1115, 1116, 1117, 1118, 1120	l
rates, Federal Power Commission, jurisdic-	
salient statistics 1116	
shipments, interstate 1146	
use, for war needs 1122	l
used in carbon black	l
Value 1115, 1116, 1117	l
Natural Gas Act, amendment, provisions 1117	l
National War Labor Board, creation	l
technologic developments	1
Natural-gas pipe lines, construction	ł
	1
Natural-gas section, Petroleum Coordinator's	
Natural gasoline consumption 1159	1
cycling plants, data	1
distribution 1154, 1161	1
production 1023,	1
Tederal Power Commission, jurisdiction 1117	
memous	
salient statistics 1154	
stocks 1023, 1024, 1154, 1163	1
technologic developments 1164	
treatment of natural gas for 1140	1
Natural-gasoline section, Petroleum Coordi-	1
refinery utilization	ſ
petroleum industry, data	1
1043, 1051, 1057, 1058, 1085, 1086, 1089, 1094	1

prices 1 review 1 uses 1 etherlands Indies, bauxite, data 678, tin, review 720, 721, 722, tin ore, Metals Reserve Co., purchases evada, antimony ore, production	422 423 422 423 683
review 1 1 uses 1 therlands Indies, bauxite, data 720, 721, 722, tin ore, Metals Reserve Co., purchases evada, antimony ore, production	400
uses 1 etherlands Indies, bauxite, data 678, tin, review 720, 721, 722, tin ore, Metals Reserve Co., purchases evada, antimony ore, production	422 423 683
evada, antimony ore, production	423 683
evada, antimony ore, production	683
evada, antimony ore, production	
evada, antimony ore, production	728
	100
arsenic, recovery	762
	732
Orucite, usta	500
Churchii County, metals, production	404
Clerk County, metals, production 395, 397, 398, 399,	392,
Clark County, metals, production 305 306 307 308 300	404
395, 396, 397, 398, 399, copper, production 98, 100, 101, 102, 1 390, 391, 392, 394, 395, 396, 397, 398, Files County periods are displayed as a second support of the county periods are displayed as	103
200 201 202 204 205 206 207 208	200
File County motels production	392,
Elko County, metals, production 205 206 207 308 300	<i>4</i> ∩5
395, 396, 397, 398, 399, Esmeralda County, metals, production	302
Esmeralda County, metals, production	406
Eureka County, metals, production	392.
396, 397, 398, 400,	407
fluorspar, data 1401, 1402, 1 gold, production 53, 68, 69, 70, 71, 72, 74, 390, 392, 394, 395, 396, 397, 398,	412
fluorspar, data 1401, 1402, 1 gold, production 53, 68, 69, 70, 71, 72,	73.
74, 390, 392, 394, 395, 396, 397, 398,	399
gold mines, list	391
gold mines, list	392.
395, 396, 397, 398, 400,	407
iron ore, data547, 548, 549, 560, 563,	568
iron ore, data 547, 548, 549, 560, 563, Lander County, metals, production 3	92,
395, 396, 397, 398, 401, lead, production	408
lead, production	131,
390, 392, 394, 395, 396, 397, 398, Lincoln County, metals, production	399
Lincoln County, metals, production	392,
206 207 208 401	408
Lyon County, metals, production	392,
395, 397, 398, 401,	409
magnesite, data 1497, 1	500
manganese ore, data 588, 589,	591
mercury, review	695
metals, production, annual review	389
	393
metallurgic industry, review	
Lyon County, metals, production	, 31
metallurgic industry, review	392,
Mineral County, metals, production 395, 396, 397, 398, 401,	392, 409
Mineral County, metals, production 395, 396, 397, 398, 401,	392, 409 392
Mineral County, metals, production 395, 396, 397, 398, 401,	392, 409 392 631
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review molybdenum, operations Nye County, metals, production 3	392, 409 392 631 892,
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review molybdenum, operations. Nye County, metals, production 395, 396, 397, 398, 401, 395, 396, 397, 398, 401,	392, 409 392 631 892, 410
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review molybdenum, operations. Nye County, metals, production 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401,	392, 409 392 631 892, 410 393
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification Pershing County, metals, production	392, 409 392 631 892, 410 393
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification Pershing County, metals, production	392, 409 392 631 892, 410 393
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification Pershing County, metals, production	392, 409 392 631 892, 410 393
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review molybdenum, operations. Nye County, metals, production 395, 396, 397, 398, 401, ore, classification Pershing County, metals, production 395, 396, 397, 398, 402, Silver, production 53, 68, 69, 70, 71, 72, 73, 74, 391, 392, 394, 395, 396, 397, 398,	392, 409 392 631 892, 410 393 392, 411 890, 399
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification Pershing County, metals, production 395, 396, 397, 398, 402, Silver, production 53, 68, 69, 70, 71, 72, 73, 74, 391, 392, 394, 395, 396, 397, 398, silver mines, list	392, 409 392 631 892, 410 393 392, 411 390, 399 391
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification Pershing County, metals, production 395, 396, 397, 398, 401, ore, production 53, 68, 69, 70, 71, 72, 73, 74, 391, 392, 394, 395, 396, 397, 398, silver mines, list Storey County, metals, production 500, 397, 398, silver mines, list Storey County, metals, production 395, 396, 397, 398, silver mines, list Storey County, metals, production 395, 396, 397, 398, silver mines, list Storey County, metals, production 395, 396, 397, 398, silver mines, list Storey County, metals, production 395, 396, 397, 398, 401, mining industry, production 395, 396, 397, 398, 401, mini	392, 409 392 631 392, 410 393 392, 411 390, 399 391
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification Pershing County, metals, production 395, 396, 397, 398, 402, Silver, production 53, 68, 69, 70, 71, 72, 73, 74, 391, 392, 394, 395, 396, 397, 398, silver mines, list Storey County, metals, production 395, 398, 403, 403, 403, 403, 403, 403, 403, 403	392, 409 392 631 392, 410 393 392, 411 390, 399 391 392, 411
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification 9ershing County, metals, production 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 397, 398, 397, 398, 391, 392, 394, 395, 396, 397, 398, silver mines, list Storey County, metals, production 395, 398, 403, tin deposits, exploration 395, 398, 403, tin deposits, exploration	392, 409 392 631 392, 410 393 392, 411 390, 399 391 392, 411 708
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, molybdenum, operations. Nye County, metals, production 395, 396, 397, 398, 401, ore, classification. Pershing County, metals, production 395, 396, 397, 398, 402, silver, production 53, 68, 69, 70, 71, 72, 73, 74, 391, 392, 394, 395, 396, 397, 398, 403, tin deposits, exploration 395, 398, 403, tin deposits, exploration tungsten, review 645,	392, 409 392 631, 92, 410 393, 392, 411 390, 399 391 392, 411 708 648
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, my County, metals, production 395, 396, 397, 398, 401, ore, classification 9ershing County, metals, production 395, 396, 397, 398, 401, 391, 392, 394, 395, 396, 397, 398, 402, 391, 392, 394, 395, 396, 397, 398, silver mines, list. 391, 392, 394, 395, 396, 397, 398, silver mines, list. Storey County, metals, production 395, 398, 403, tin deposits, exploration tungsten, review 645, turquoise, production 1519, 1	392, 409 392 631, 92, 410 393, 392, 411 390, 399 391 392, 411 708 648
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification Pershing County, metals, production 395, 396, 397, 398, 402, Silver, production 53, 68, 69, 70, 71, 72, 73, 74, 31, 392, 394, 395, 396, 397, 398, silver mines, list 391, 392, 394, 395, 396, 397, 398, silver mines, list 395, 398, 403, tin deposits, exploration 4395, 398, 403, tungsten, review 645, turquoise, production 1519, 1 Washoe County, metals, production 1519, 1	392, 409 392 631 392, 410 393 392, 411 390, 399 391 392, 411 708 648 520 392,
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification Pershing County, metals, production 395, 396, 397, 398, 402, Silver, production 53, 68, 69, 70, 71, 72, 73, 74, 391, 392, 394, 395, 396, 397, 398, silver mines, list 391, 392, 394, 395, 396, 397, 398, silver mines, list 391, 392, 394, 395, 398, 403, tin deposits, exploration 395, 398, 403, tunguisen, review 645, turquoise, production 1519, 1 Washoe County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals,	392, 409 392, 631 392, 410 393, 392, 411 390, 399 411 500, 648 5520 412 392,
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification Pershing County, metals, production 395, 396, 397, 398, 402, Silver, production 53, 68, 69, 70, 71, 72, 73, 74, 391, 392, 394, 395, 396, 397, 398, 403, tin deposits, exploration 395, 398, 403, tin deposits, exploration 1519, 1 Washoe County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, 397, 398, 395, 396, 397, 398, 395, 396, 397, 398, 395, 396, 397, 398, 395, 396, 397, 398, 403, 403, 403, 403, 403, 403, 403, 403	392, 409 392, 410 393, 410 393, 411 708 648 5520, 412 392, 411 708 648 412 392, 412
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification Pershing County, metals, production 395, 396, 397, 398, 402, Silver, production 53, 68, 69, 70, 71, 72, 73, 74, 391, 392, 394, 395, 396, 397, 398, silver mines, list 391, 392, 394, 395, 396, 397, 398, silver mines, list 391, 392, 394, 395, 398, 403, tin deposits, exploration 395, 398, 403, tunguisen, review 645, turquoise, production 1519, 1 Washoe County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, 398, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals, production 395, White Pine County, metals,	392, 409 392, 410 393, 410 393, 411 708 648 5520, 412 392, 411 708 648 412 392, 412
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification 935, 396, 397, 398, 401, ore, classification 935, 396, 397, 398, 402, silver, production 53, 68, 69, 70, 71, 72, 73, 74, 31, 392, 394, 395, 396, 397, 398, silver mines, list 55 crey County, metals, production 395, 398, 403, tin deposits, exploration tungsten, review 645, turquoise, production 1519, 1 Washoe County, metals, production 395, 398, White Pine County, metals, production 395, 398, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390	392, 409 392, 410 392, 410 393, 393, 393, 399, 399, 391, 411 648, 5520, 412, 392, 412, 393, 413, 648, 648, 6520, 668, 67
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification 935, 396, 397, 398, 401, ore, classification 935, 396, 397, 398, 402, silver, production 53, 68, 69, 70, 71, 72, 73, 74, 31, 392, 394, 395, 396, 397, 398, silver mines, list 55 crey County, metals, production 395, 398, 403, tin deposits, exploration tungsten, review 645, turquoise, production 1519, 1 Washoe County, metals, production 395, 398, White Pine County, metals, production 395, 398, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390, 392, 394, 396, 397, 398, 201c, production 152, 390	392, 409 392, 410 392, 410 393, 393, 393, 399, 399, 391, 411 648, 5520, 412, 392, 412, 393, 413, 648, 648, 6520, 668, 67
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification 9ershing County, metals, production 395, 396, 397, 398, 402, Silver, production 53, 68, 69, 70, 71, 72, 73, 74, 391, 392, 394, 395, 396, 397, 398, silver mines, list 391, 392, 394, 395, 396, 397, 398, 403, tin deposits, exploration 395, 398, 403, tin deposits, exploration 519, 100, 100, 100, 100, 100, 100, 100, 1	392, 409 392, 410 392, 410 393, 393, 394, 411 390, 399, 412, 392, 412, 392, 412, 393, 413, 648, 6520, 668, 678, 688, 689
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification 935, 396, 397, 398, 401, ore, classification 935, 396, 397, 398, 402, silver, production 53, 68, 69, 70, 71, 72, 73, 74, 391, 392, 394, 395, 396, 397, 398, silver mines, list 52 storey County, metals, production 395, 398, 403, tin deposits, exploration tungsten, review 645, turquoise, production 1519, 1 Washoe County, metals, production 395, 398, 397, 398, 2inc, production 152, 390, 392, 394, 396, 397, 398, zinc, production 152, 390, 392, 394, 396, 397, 398, zinc, production 152, 390, 392, 394, 396, 397, 398, cw Caledonia, chromite, data 604, 614, nickel, review 620, ew England, anthracite, receipts 912, ewfoundland, chromite, data	392, 409 392, 410 393, 410 393, 399, 391, 399, 412, 399, 412, 399, 615, 621, 621, 615, 615, 615, 615, 615,
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, molybdenum, operations Nye County, metals, production 395, 396, 397, 398, 401, ore, classification 935, 396, 397, 398, 401, ore, classification 935, 396, 397, 398, 402, silver, production 53, 68, 69, 70, 71, 72, 73, 74, 391, 392, 394, 395, 396, 397, 398, silver mines, list 52 storey County, metals, production 395, 398, 403, tin deposits, exploration tungsten, review 645, turquoise, production 1519, 1 Washoe County, metals, production 395, 398, 397, 398, 2inc, production 152, 390, 392, 394, 396, 397, 398, zinc, production 152, 390, 392, 394, 396, 397, 398, zinc, production 152, 390, 392, 394, 396, 397, 398, cw Caledonia, chromite, data 604, 614, nickel, review 620, ew England, anthracite, receipts 912, ewfoundland, chromite, data	392, 409 392, 410 393, 410 393, 399, 391, 399, 412, 399, 412, 399, 615, 621, 621, 615, 615, 615, 615, 615,
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, my county, metals, production 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, 391, 392, 394, 395, 396, 397, 398, 402, 391, 392, 394, 395, 396, 397, 398, 391, 392, 394, 395, 396, 397, 398, 391, 392, 394, 395, 396, 397, 398, 403, 402, 391, 392, 394, 396, 397, 398, 403, 402, 402, 402, 402, 402, 402, 402, 402	392, 409 392, 410 393, 392, 410 393, 392, 411 708 648 5520, 412 399, 615 622 914 615
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, mye County, metals, production 395, 396, 397, 398, 401, ore, classification 9ershing County, metals, production 395, 396, 397, 398, 401, ore, classification 997, 397, 398, 401, ore, classification 395, 396, 397, 398, 402, silver, production 53, 68, 69, 70, 71, 72, 73, 74, 391, 392, 394, 395, 396, 397, 398, silver mines, list 391, 392, 394, 395, 396, 397, 398, silver mines, list 395, 398, 403, tin deposits, exploration 395, 398, 403, tin deposits, exploration 1519, 1 Washoe County, metals, production 395, 396, 397, 398, with Pine County, metals, production 395, 396, 397, 398, ew Caledonia, chromite, data 604, 614, nickel, review 620, ew England, anthracite, receipts 912, ewfoundland, chromite, data 1401, 1 ew Hampshire, minerals, production 9, 13	392, 409 392, 410 393, 411 393, 411 708 392, 412 399, 615 622 915 615 622 915 615 623 615 633 643 644 644 645 645 645 645 645 645 645 645
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, mye County, metals, production 395, 396, 397, 398, 401, ore, classification 9ershing County, metals, production 395, 396, 397, 398, 401, ore, classification 997, 397, 398, 401, ore, classification 395, 396, 397, 398, 402, silver, production 53, 68, 69, 70, 71, 72, 73, 74, 391, 392, 394, 395, 396, 397, 398, silver mines, list 391, 392, 394, 395, 396, 397, 398, silver mines, list 395, 398, 403, tin deposits, exploration 395, 398, 403, tin deposits, exploration 1519, 1 Washoe County, metals, production 395, 396, 397, 398, with Pine County, metals, production 395, 396, 397, 398, ew Caledonia, chromite, data 604, 614, nickel, review 620, ew England, anthracite, receipts 912, ewfoundland, chromite, data 1401, 1 ew Hampshire, minerals, production 9, 13	392, 409 392, 410 393, 392, 410 393, 392, 411 708 648 5520, 412 399, 615 622 914 615
Mineral County, metals, production mining industry, review molybdenum, operations Nye County, metals, production Pershing County, metals, production Pershing County, metals, production 395, 396, 397, 398, 401, 395, 396, 397, 398, 401, Silver, production 391, 392, 394, 395, 396, 397, 398, silver mines, list Storey County, metals, production 395, 398, 403, silver mines, list Storey County, metals, production 395, 398, 403, tin deposits, exploration tungsten, review 645, turquoise, production 395, 398, 397, 398, white Pine County, metals, production 395, 396, 397, 398, ew Caledonia, chromite, data 604, 614, nickel, review 620, ew England, anthracite, receipts 912, ewfoundland, chromite, data fluorspar, data 910, 198 ew Hampshire, minerals, production 911, 94, 955, 957, 958, 960, 961, 963, 966, 963, 967, 976, 979, 975, 975, 975, 975, 975, 975, 975	392, 409 409 392, 410 392, 411 3393, 391, 399, 391, 708 648 5520 914, 412 392, 411 411 622 914 415, 415, 417, 417, 417, 417, 417, 417, 417, 417
Mineral County, metals, production mining industry, review molybdenum, operations Nye County, metals, production Pershing County, metals, production Pershing County, metals, production 395, 396, 397, 398, 401, 395, 396, 397, 398, 401, Silver, production 391, 392, 394, 395, 396, 397, 398, silver mines, list Storey County, metals, production 395, 398, 403, silver mines, list Storey County, metals, production 395, 398, 403, tin deposits, exploration tungsten, review 645, turquoise, production 395, 398, 397, 398, white Pine County, metals, production 395, 396, 397, 398, ew Caledonia, chromite, data 604, 614, nickel, review 620, ew England, anthracite, receipts 912, ewfoundland, chromite, data fluorspar, data 910, 198 ew Hampshire, minerals, production 911, 94, 955, 957, 958, 960, 961, 963, 966, 963, 967, 976, 979, 975, 975, 975, 975, 975, 975, 975	392, 409 409 392, 410 392, 411 3393, 391, 399, 391, 708 648 5520 914, 412 392, 411 411 622 914 415, 415, 417, 417, 417, 417, 417, 417, 417, 417
Mineral County, metals, production mining industry, review molybdenum, operations Nye County, metals, production Pershing County, metals, production 9395, 396, 397, 398, 401, 978, 398, 401, 978, 398, 398, 397, 398, 401, 978, 398, 398, 397, 398, 398, 397, 398, 398, 397, 398, 398, 397, 398, 398, 398, 397, 398, 398, 398, 398, 398, 398, 398, 398	392, 409 409 392, 410 392, 411 3393, 391, 399, 391, 708 648 5520 914, 412 392, 411 411 622 914 415, 415, 417, 417, 417, 417, 417, 417, 417, 417
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, my County, metals, production 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, 391, 392, 394, 395, 396, 397, 398, 402, 391, 392, 394, 395, 396, 397, 398, 310 er mines, list. 391, 392, 394, 395, 396, 397, 398, 310 er mines, list. 395, 398, 403, 395, 398, 403, 391, 392, 394, 395, 398, 403, 402, 391, 392, 394, 396, 397, 398, 403, 402, 402, 402, 402, 402, 402, 402, 402	392, 409 409 631 992, 4393 392, 411 708 391, 399 391, 411 708 412 399 412 399 412 412 412 412 412 415 415 415 415 415 415 415 415 415 415
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, my County, metals, production 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, 391, 392, 394, 395, 396, 397, 398, 402, 391, 392, 394, 395, 396, 397, 398, 310 er mines, list. 391, 392, 394, 395, 396, 397, 398, 310 er mines, list. 395, 398, 403, 395, 398, 403, 391, 392, 394, 395, 398, 403, 402, 391, 392, 394, 396, 397, 398, 403, 402, 402, 402, 402, 402, 402, 402, 402	392, 409 409 631 992, 4393 392, 411 708 391, 399 391, 411 708 412 399 412 399 412 412 412 412 412 415 415 415 415 415 415 415 415 415 415
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, my County, metals, production 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, 391, 392, 394, 395, 396, 397, 398, 402, 391, 392, 394, 395, 396, 397, 398, 310 er mines, list. 391, 392, 394, 395, 396, 397, 398, 310 er mines, list. 395, 398, 403, 395, 398, 403, 391, 392, 394, 395, 398, 403, 402, 391, 392, 394, 396, 397, 398, 403, 402, 402, 402, 402, 402, 402, 402, 402	392, 409 409 631 992, 4393 392, 411 708 391, 399 391, 411 708 412 399 412 399 412 412 412 412 412 415 415 415 415 415 415 415 415 415 415
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, my County, metals, production 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, 391, 392, 394, 395, 396, 397, 398, 402, 391, 392, 394, 395, 396, 397, 398, 310 er mines, list. 391, 392, 394, 395, 396, 397, 398, 310 er mines, list. 395, 398, 403, 395, 398, 403, 391, 392, 394, 395, 398, 403, 402, 391, 392, 394, 396, 397, 398, 403, 402, 402, 402, 402, 402, 402, 402, 402	392, 409 409 631 992, 4393 392, 411 708 391, 399 391, 411 708 412 399 412 399 412 412 412 412 412 415 415 415 415 415 415 415 415 415 415
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, my County, metals, production 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, 391, 392, 394, 395, 396, 397, 398, 402, 391, 392, 394, 395, 396, 397, 398, 310 er mines, list. 391, 392, 394, 395, 396, 397, 398, 310 er mines, list. 395, 398, 403, 395, 398, 403, 391, 392, 394, 395, 398, 403, 402, 391, 392, 394, 396, 397, 398, 403, 402, 402, 402, 402, 402, 402, 402, 402	392, 409 409 631 992, 4393 392, 411 708 391, 399 391, 411 708 412 399 412 399 412 412 412 412 412 415 415 415 415 415 415 415 415 415 415
Mineral County, metals, production	792, 409 409 631, 992, 393 393 394, 410 393, 393, 394, 410 399, 399, 410 399, 412 399, 412 391, 415 562 914 415 563 672, 972, 563 332, 415 563 332, 415 563 415 563 415 563 415 563 563 563 563 563 563 563 563 563 56
Mineral County, metals, production	792, 409 409 631, 992, 393 393 394, 410 393, 393, 394, 410 399, 399, 410 399, 412 399, 412 391, 415 562 914 415 563 672, 972, 563 332, 415 563 332, 415 563 415 563 415 563 415 563 563 563 563 563 563 563 563 563 56
Mineral County, metals, production 395, 396, 397, 398, 401, mining industry, review 395, 396, 397, 398, 401, my County, metals, production 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, ore, classification 395, 396, 397, 398, 401, 391, 392, 394, 395, 396, 397, 398, 402, 391, 392, 394, 395, 396, 397, 398, 310 er mines, list. 391, 392, 394, 395, 396, 397, 398, 310 er mines, list. 395, 398, 403, 395, 398, 403, 391, 392, 394, 395, 398, 403, 402, 391, 392, 394, 396, 397, 398, 403, 402, 402, 402, 402, 402, 402, 402, 402	792, 409 409 631, 992, 393 393 394, 410 393, 393, 394, 410 399, 399, 410 399, 412 399, 412 391, 415 562 914 415 563 672, 972, 563 332, 415 563 332, 415 563 415 563 415 563 415 563 563 563 563 563 563 563 563 563 56

	Page	Page
N	ew Mexico Catron County, metals, produc-	Nickel, Strategic Materials Act, investigations,
• •	tion 416, 418, 421, 422, 424 coke industry, data 954, 962, 968, 975, 981, 983	Bureau of Mines 618
	coke industry, data 954, 962, 968, 975, 981, 983	Nickel industry, annual review
	Colfax County, metals, production 416.	Nitrate of soda, stock-pile purchases, Defense Supplies Corporation xxii
	copper, production	Nonmetals, production, review 4
	101, 102, 103, 413, 414, 415, 416, 417, 418,	Nonmetal mines, accidents 1546 men employed 1540, 1546
	419, 420, 421, 422.	men employed 1540, 1546
	Dona Ana County, metals, production 416, 419. 420, 421, 422, 424	North America. See Bahamas; Canada; Costa Rica; Cuba; Dominican Republic;
	Eddy County, metals, production 416, 421, 422, 424	Guatemala; Honduras; Mexico; New-
	fluorspar, review 1401, 1402, 1406, 1412 gold, production 53, 68, 69, 70, 71, 72, 73, 74,	ioundiand: Nicaragua: Panama:
	gold, production 53, 68, 69, 70, 71, 72, 73, 74,	Puerto Rico; Salvador; United States.
	413, 414, 415, 416, 417, 418, 419, 420, 421, 422 Grant County, metals, production 416, 418,	copper production 99 100 101 324
	419, 420, 421, 422, 424	gold, production 53, 68, 72, 322, 324
	Guadalupe County, metals, production 416, 421,	magnesium sulfate, data 1507
	Hidalgo County, metals, production 422, 427 416, 419,	North Carolina, asbestos, data 1429 copper, production 99, 100, 101, 324 gold, production 53, 68, 72, 322, 324 magnesium sulfate, data 588, 589, 591 metals, production propular project
	420, 421, 422, 427	metals, production, annual review 327 minerals, production 9, 13, 35
	land mandanation 101 410	silver, production
	131, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422	tin deposits, examination 708
	Lincoln County, metals, production 416, 417,	vermiculite, reserves 1538 North Dakota, lignite industry, data 817,
	419, 420, 421, 422, 427 Luna County, metals, production 416, 421, 422, 428	North Dakota, lignite industry, data
	magnesite deposit	842, 847, 850, 852, 856, 858, 860, 862, 875, 889,
	magnesium chloride, as byproduct of potash	897, 898, 899.
	salts 1497 as source of magnesium metal 1507	minerals, production 9, 13, 35 natural gas, data 1121, 1132, 1139, 1141
	magnesium sulfate, as source of magnesium	Norway, aluminum, review 678, 683
	metal 1507	Norway, aluminum, review 678, 683 pyrites, data 1368, 1369
	manganese ore, data	sulfur, data 1366
	metals, production, annual review 413 metallurgic industry, review 418	titanium, deposits 809
	minerals, production 9, 13, 33	0
	mining industry, review 417 natural gas, data 1119, 1120, 1121, 1122, 1131, 1139, 1140, 1141, 1148	
	natural gas, data 1119, 1120, 1121, 1120	Oceania. See Australia; New Caledonia. Ohio, bituminous-coal industry, data
	ore classification 417	824, 826, 829, 830, 831, 832, 833, 834, 840, 841,
	ore, classification 417 petroleum industry, data 1027, 1029, 1031, 1032, 1033, 1034, 1043, 1051, 1053, 1054,	842, 845, 847, 850, 852, 855, 856, 858, 860, 862,
	1032, 1033, 1034, 1043, 1051, 1053, 1054,	864, 865, 866, 875, 890.
	1057, 1062, 1063, 1085, 1086, 1089, 1094.	coke industry, data 946, 951, 954, 955, 956, 957, 958, 960, 961, 963, 966,
	potash, review 1457 Santa Fe County, metals, production 416, 417,	969, 972, 975, 976, 978, 979, 981, 982, 986, 993,
	418, 419, 420, 421, 422, 428	994, 995, 996.
	Sierra County, metals, production 416, 417, 418, 419, 420, 421, 422, 428	minerals, production 9, 13, 36 natural gas, data 1119,
	silver production 53.68.69.70.71.72.73	1120, 1121, 1122, 1132, 1139, 1140, 1141, 1148
	silver, production 53, 68, 69, 70, 71, 72, 73, 74, 413, 414, 415, 416, 417, 418, 419, 420, 421,	netroleum industry data 1027.
	422.	1031, 1032, 1033, 1044, 1051, 1053, 1054, 1057,
	Socorro County, metals, production 416, 419, 419, 420, 421, 423, 428	1058, 1060, 1063, 1085, 1086, 1089, 1094. Oil burners, sales
	sodium sulfates, deposits 1513	Oil Compact Commission, Interstate, gains 1029
	tungsten concentrates, production 645, 649 zinc, production 152, 413,	Olistones, foreign trade 1356
	zinc, production 152, 413,	Sales 1339, 1346 sources 1346, 1347
	414, 415, 416, 417, 418, 419, 420, 421, 422	Oil wells. See Petroleum wells.
N	ew York, coke industry, data 946, 951, 954, 955, 957, 958, 960, 961, 963, 966, 969, 972,	Oil-well cement, data
	974, 976, 978, 979, 981, 982, 986, 993, 994,	Oklahoma, bituminous-coal industry, data 824, 826, 829, 830, 831, 832, 833, 834, 840, 841, 842, 845, 848, 850, 852, 856, 858, 860, 862, 876, 891.
	995, 996.	845, 848, 850, 852, 856, 858, 860, 862, 876, 891,
	iron ore, data 547, 548, 549, 551, 552, 553, 554, 561, 563 lead, production 131, 323, 324	carbon black, data
	magnetite deposits, as source of titantium_ 805, 806	carbon black, data 1173 iron ore, data 547, 548, 549, 561, 563 lead, production 131, 267, 268, 263, 289 manganese ore, data 588, 589, 591 metals, production, annual review 200 minosule, production 212, 272
		manganese ore data 588 589 591
	minerals, production	metals, production, annual review 280
	metas, production, annual review 327 minerals, production 9, 13, 34 natural gas, data 1119, 1120, 1121, 1122, 1131, 1139, 1140, 1141, 1148 netroleum industry, data 1027, 1031, 1032,	minerals, production
	petroleum industry, data	natural gas, data
	1033, 1044, 1051, 1053, 1057, 1058, 1060,	natural gasoline, data 1156, 1157, 1158, 1159
	1063, 1085, 1086, 1089, 1094.	petroleum industry, data 1027,
	pyrites, production 1367 silver, production 53, 68, 72, 324	1029, 1030, 1031, 1032, 1033, 1034, 1044, 1051,
	SISTE, OSTS 1267, 1268 (1053, 1054, 1056, 1057, 1058, 1060, 1062, 1063,
N	zinc, production 152, 323, 324 ew Zealand, mercury, data 699, 701	natural gas, data
Ň	icaragua, gold, review 78, 90	
N	igeria, tin, review	Olivine, deposits
Ń	ickel, foreign trade	prices 1536 shipments 1536
	primary, production	Opal, deposits 1521
	salient statistics 617 secondary, consumption 509	production 1527
	export control 510	Opalized wood, deposit
	price control 510	Open-hearth furnaces, scrap and pig iron con-
	production 617	sumption 530
	recovery 493, 508 stocks 509	Orange, mineral, consumption
	OPPG	10101841 11 QUU 1//

Page	Page
Orange, metal content 175	Pennsylvania, bituminous-coal industry, data_ 817,
prices 176	824, 826, 829, 830, 831, 832, 833, 834, 840, 841,
sales 168 Ore-dressing plants, accidents 1548	842, 845, 848, 850, 852, 856, 858, 860, 862, 864, 865, 866, 877, 801
men employed	865, 866, 877, 891. "bootleg" coal problem, remedies 904, 910
Omeon egoto deposite 1510 l	coke industry, data
antimony, shipments. 762 asbestos, data. 1429	coke industry, data 946, 951, 952, 954, 955, 956, 957, 958, 960, 961, 962, 964, 966, 968, 969, 972, 973, 974, 976, 978, 979,
asbestos, data	964, 966, 968, 969, 972, 973, 974, 976, 978, 979,
asbestos, data	980, 982, 986, 993, 994, 995, 996.
hituminous-coal industry, data	gold production 53,68,72,324
bituminous-coal industry, data	copper, production 99, 324 gold, productio n 53, 68, 72, 324 graphite mines, investigation 1530 1530
conner production 99.	1ron ore, 0x1x 347, 384, 349, 331, 332, 333, 334, 301
100, 102, 103, 432, 434, 435, 436, 437, 438, 439	metals, production, annual review 328 minerals, production 9, 13, 39
gold, production53, 68, 69, 70, 71,	minerals, production 9, 13, 39
eopper, production 99, 100, 102, 103, 432, 434, 435, 436, 437, 438, 439 gold, production 53, 68, 69, 70, 71, 72, 73, 74, 432, 433, 434, 436, 437, 438, 439 gold dredges, list 434	natural gas, data 1119, 1120, 1121, 1122, 1133, 1139, 1140, 1141, 1148
gold dredges, list	netroleum industry, data 1027.
Grant County, metals, production 434, 435, 439, 442	petroleum industry, data 1027, 1031, 1032, 1033, 1034, 1045, 1051, 1053, 1057,
Harney County, metals, production434,	1058, 1060, 1062, 1063, 1085, 1086, 1089, 1094.
435, 439, 442	pyrites, source 1367
Jackson County, metals, production 434,	rottenstone, sales 1342, 1343 silver, production 53, 68, 72, 324
435, 440, 443 1	slate data 1267, 1268
jasper, deposits 1519 Jefferson County, metals, production 434.	slate, data. 1267, 1268 Pentane, sales 1166, 1167, 1168
435, 440, 443	
Josephine County, metals, production 434,	Ports agreement to sell strategic minerals XXV
435, 440, 443	antimony, review 767, 770 arsenic, data 738
lapidaries, increase 1518 lead, production 131, 432, 434, 435, 436, 437, 438, 439	bismuth, data 740, 741
Malheur County, metals, production 434, 435, 436, 437, 436, 434,	cadmium, data 781
435 440 444	cadmium, data 781 copper, production 117, 122 lead, review 138, 141
manganese ore, data 588, 589, 591 mercury, review 688, 692, 696 metals, production, annual review 431	lead, review
mercury, review	mercury, da.a. 701 molybdenum, production 634
metals, production, annual review	silver, production 80,92
metallurgic industry, review 450	Trade Agreement, effect on bismuth trade738
metallurgic industry, review 436 minerals, production 9, 13, 38 mining industry, review 435 nickel, investigations, Geological Survey 618 436 436	tungsten, data 650, 652, 653
nickel, investigations, Geological Survey 618	wonodium data 640 641
ore, classification 436 silver, production 53, 68, 69, 70, 71,	zinc, review
silver, production 53, 68, 69, 70, 71,	Petroleum as source of energy 821, 822, 823
72, 73, 74, 432, 434, 435, 436, 437, 438, 439 Osmiridium, foreign trade	consumption 1055
Osmium, foreign trade	consumption 1055 demand 1022, 1024, 1025, 1026, 1030, 1057, 1058
nrice 786	Bureau of Mines estimates
price 786 recovery 785	foreign trade 1021, 1023, 1030, 1111
uses	Gemand 1022, 1024, 1025, 1035, 1031, 1031, 1031 Bureau of Mines estimates 1029 distribution 1055, 1030, 1031, 1031 foreign trade 1021, 1023, 1030, 1111 full fleiency 822, 823 prices 1023, 1031, 1061
Oxychloride cements, for ship flooring, con-	prices 1023, 1031, 1061
sumption of magnesite in 1498	regulation, by Office of Price Administra- tion and Civilian Supply 1028, 1066
P	nriorities 1028
	priorities 1028 production 1021, 1030, 1032, 1033, 1034, 1159
Packaged fuel, binders 1015	proration 1028 State allowables 1029
definition 1010 plants, number 1011, 1013	State allowables 1029
size 1011, 1014	reserves 1021 1023 1030 1055 1056
preparation, processes	reserves 1027 runs to stills 1021, 1023, 1030, 1055, 1056 salient statistics 1023
preparation, processes 1010 production 917, 1011, 1012, 1013	l shinments 1115
raw fuels 1014	shortage, Axis Powers, alleviation X stocks 1022, 1023, 1024, 1025, 1030, 1052
raw fuels	stocks 1022, 1023, 1024, 1025, 1030, 1052 supply 1024, 1026 1030
Packaged-fuel industry, annual review 999, 1010	value 1023, 1016
Palestine, potash, data	value 1023, 1016 Petroleum asphalt, demand 1065, 1107, 1187
Palladium, foreign trade	
nwico 786	Greign trade
recovery 783, 785	enles 1183, 1184, 1185, 1186, 1187
sales 788 secondary, recovery 783, 785	1065 1069 1107 1184 1185
stocks 788	SLOCKS 1000, 1000, 1101, 1101, 1101
11808 787	
	Detroloum asks annual region 1107
Panama, gold, review 78, 90	Detroloum asks annual region 1107
Panama, gold, review	Detroloum asks annual region 1107
Panama, gold, review 78, 90 Pearls, foreign trade 1521, 1522 Pearls annual review 1017	Petroleum coke, annual review 1107
Panama, gold, review	Petroleum coke, annual review 1107
Panama, gold, review 78, 90 Pearls, foreign trade 1521, 1522 Peat, annual review 1017 production 1017, 1018, 1020 production 1017, 1018, 1020	Petroleum coke, annual review
Panama, gold, review 78, 90 Pearls, foreign trade 1521, 1522 Peat, annual review 1017 production 1017, 1018, 1020 reserves 1017 specifications Government 3	Petroleum coke, annual review
Panama, gold, review 78, 90 Pearls, foreign trade 1521, 1522 Peat, annual review 1017 production 1017, 1018, 1020 reserves 1017 specifications, Government 3 nses 1018	Petroleum coke, annual review
Panama, gold, review 78, 90 Pearls, foreign trade 1521, 1522 Peat, annual review 1017 production 1017, 1018, 1020 reserves 1017 specifications, Government 3 uses 1018 value 1018	Petroleum coke, annual review
Panama, gold, review 78, 90 Pearls, foreign trade 1521, 1522 Peat, annual review 1017 production 1017, 1018, 1020 reserves 1017 specifications, Government 107 suses 1018 value 1018 Peat moss, imports, curtailment 1017, 1019 Pennsylvania, anthracite, production 903,	Petroleum coke, annual review
Panama, gold, review 78, 90 Pearls, foreign trade 1521, 1522 Peat, annual review 1017 production 1017, 1018, 1020 reserves 1017 specifications, Government 3 uses 1018 value 1018 Peat moss, imports, curtailment 1017, 1019 Pennsylvania, anthracite, production 908, 908, 917, 920, 924, 925, 926	Petroleum coke, annual review
Panama, gold, review 78, 90 Pearls, foreign trade 1521, 1522 Peat, annual review 1017 production 1017, 1018, 1020 reserves 1017 specifications, Government 3 uses 1018 value 1018 Peat moss, imports, curtailment 1017, 1019 Pennsylvania, anthracite, production 903, 906, 908, 917, 920, 924, 925, 926 See also Anthracite; Anthracite industry;	Petroleum coke, annual review
Panama, gold, review 78, 90 Pearls, foreign trade 1521, 1522 Peat, annual review 1017 production 1017, 1018, 1020 reserves 1017 specifications, Government 3 uses 1018 value 1018 Peat moss, imports, curtailment 1017, 1019 Pennsylvania, anthracite, production 908, 908, 917, 920, 924, 925, 926	Petroleum coke, annual review

Page	rage
Petroleum industry, legislative control 1027	Potash, production 1453, 1455, 1450 recovery, from brine 1452 sales 1452, 1453, 1454 salient statistics 1453
Petroleum Industry war Council, iunctions 1020	recovery, from brine 1452
Petroleum refineries, capacity 1078	sales
fuel, natural gas consumed	salient statistics 1453
Petroleum refineries, capacity 1075 fuel, natural gas consumed 1139, 1142, 1143 Petroleum wells, number 1023, 1031, 1049	
Phenol, priorities, control	Potash industry, annual review 1451
Philippine Islands, chromite, data 610, 614, 615	Potash mines, location 1457
copper industry, review 117, 122	Potash plants, domestic, capacity 1452
copper industry, review 117, 122 gold, production 68, 79 gold industry, review 82 gold industry, review 600 601	Potassium salts. See Potash.
gold industry, review82	Power plants, public-utility, electric, natural
	gas consumed 1139, 1142, 1143 Prices mineral commodities, raw xiv
foreign trade	functions xix premium-price quota plan, for stimulating
prices 13/3	mineral productionxxiii
processing, study	Price Administration and Civilian Supply,
production 1372 reports 1371	Office of, creationxvii
reserves 1383	Price control, Federal
reserves	See also A bresives: A luminum: A luminum.
stocks	secondary; Arsenic; Coke; Copper; Copper, secondary; Lead; Lead, anti- monial, secondary; Mercury; Nickel,
technology 1383	Copper, secondary; Lead; Lead, anti-
technology 1383 Phosphate-rock industry, annual review 1371	monial, secondary; Mercury; Nickel,
antitrust suit, termination 1375	secondary; Petroleum; Steel scrap;
	Superphosphates: Zinc.
Piersol briquetting press, data	Price Stabilization Division. See Council of
Pig iron, consumption 519, 525, 528, 573	National Defense.
Piersol briquetting press, data 1000 Pig fron, consumption 519, 525, 528, 573 foreign trade 542, 544, 572 manganiferous, production 598 prices 519, 545, 572 production 542, 543, 570, 575, 944, 1259 salient statistics 519, 542	Priority control. See Aluminum; Chromium;
manganiferous, production 598	Chromium steel; Cobalt; Copper;
prices 519, 545, 572	Copper, secondary; Iron scrap; Lead; Magnesium; Molybdenum; Petro- leum; Phenol; Steel scrap; Toluol;
production 542, 543, 570, 575, 944, 1259	Magnesium; Molybdenum; Petro-
salient statistics	Venedium: Zine: Zine secondery
shipments 570	Vanadium; Zinc; Zinc, secondary. Procurement Division, stock-pile purchases xxii
	110curement 21, mich percent percent
value, at blast furnaces 571 Pig-iron industry, annual review 541, 570	Production Management, Office of, aluminum,
Pig-iron industry, annual review 041, 370	production, expansion 664, 676
Pipe lines, natural gas, developments	coke byproducts, activities 945
purchases 784 foreign trade 788, 789, 790	import control, chromium
nrices 785, 786	mercury 05/
prices 785, 786 recovery 783, 785	inventory accumulations, scrap, restric-
sales 788 secondary, recovery 783, 785	tion
secondary, recovery	iron and steel capacity, regulations 546
stocks	magnesium, expansion program 752
uses	premium-price quota plan, for stimulating
Platinum industry, annual review	mineral production
Platinum metals, consumption 786	priority control, aluminum 675
foreign trade 788	chromium 606
prices 786 production 783, 784	chromium steel 607
recovery 783	cobalt 623
sales 788	copper 93, 95
stocks 788	secondary 502
uses	iron scrap
Plumbago, substitution for graphite in cruci-	lead 127
bles, possibility 1529	magnesium 744
Polonium, uses	molybdenum 628 petroleum 1028
Portland coment consumption 1192.1200	
grinding technical improvements 1213 high-early-strength, description 1194, 1212 prices 1191, 1205	phenol 946 steel scrap 518
high-early-strength, description 1194, 1212	tobuol 946
prices 1191, 1205 production 1192,	vanadium 637
production 1102 1105 1107 1100 1200 1217 1210	tin, conservation program 707
1193, 1195, 1197, 1199, 1209, 1217, 1219 raw materials, consumption	tie stock piles, attempt to control 705 See also War Production Board.
shipments 1191,	See also War Production Board.
1192, 1193, 1195, 1197, 1199, 1200, 1204, 1258	Propane, sales 1166, 1107, 1105
stocks 1193, 1195, 1197, 1199, 1200	1 11969 1108
supplies 1204	Puddling furnaces, scrap and pig iron con-
uses 1193	Sumption
white, description 1214	Puerto Rico, gold, review
Portland-cement industry, annual review 1191	Pulpstones, sales 1339, 1340, 1347
Dowtland-compant plants data 1191.	sources
	11909 135
fuels 1210 natural gas burned 1139, 1142, 1143, 1211	uses 1350 Pumicite mines, location 134
natural gas Durneu 1139, 1142, 1143, 1211	Pumice, sales 1339, 1349
power 1211 Portland-puzzolan cement, data 1213, 1214	Tumice, Sales
Portugal puritae data 1220, 1214	uses 1350 Pumice mines, location 1342
Portugal, pyrites, data 1368, 1369 sulfur, production 1366	rumice mines, location
Potash, consumption 1454	Puzzolan cement, data
European War, effects	Pyridine, production 992
export control 1455	Pyrites, foreign trade
export control 1455 foreign trade 1452, 1453, 1459	production 1357, 1358, 1366, 1366
prices 1453 establishment 1453	salient statistics 1356
establishment 1453	Pyrites industry, annual review 1357, 1366

Pa		8 Pa
Pyrophyllite, in ceramics, use13	Salines industry, ann	ual review1
markets 13	Salt, consumption	1483, 1484, 1
occurrences 13	grades	
production 13	manufacture meth	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
sales		1
salient statistics 13	prices	1
salient statistics 13 Pyrophyllite industry, annual review 1389, 13	producers, list	
	production	
${f Q}$	salient statistics	
	shipments	1
Quartz, rutilated, deposit1	sources, new	1 1
sales 1339, 1343, 13	war aspects	
smoky, deposits	Salt blocks, production	n1
Quartz cameos, source 15	Salt cake foreign trade	e 1
Quartz crystal, prices 15	manufacture, dome	stic 1
war uses 15 Quartz plants, distribution 13	natural, production	
Quartz plants, distribution	price	1
	Supplies	
${f R}$	Salvador molybdony	review 1 m deposit, discovery
Radium, annual review	production	1
foreign trade	foreign trade	
price	ground, plants, dist	ribution 1
uses	sales	ribution 1339, 1
Radon, uses	uses	
Railroad ballast, sales	prices	1271, 1
consumption	sales	1339, 1 1 1271, 1273, 1274, 1279, 1283, 1 1 1271, 1273, 1274, 1279, 1283, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
sales 917, 1089, 1090, 1092, 10	salient statistics	1
Reconstruction Finance Corporation, develop-		
ment loans, on mining property xx	labor data	
stock-pile purchases x	trends	
Red lead, consumption	Sand plants, data	1 1 1279, 1280, 1
foreign trade166, 1	sandstone, ground, pr	ants, distribution 1
production 166, 167, 1	11505	1339, 1
sales	sales	1226, 1229, 1237, 1240, 1
value	Sandstone quarries, ac	cidents 1
Refractory stone, sales 19	men employed	1540, 1
Rhode Island, coke industry, data 9	Sapphire, deposits	
957, 958, 974, 982, 9 minerals, production 9, 13,	Sales	
minerals, production 9, 13,	Scheelite, prices	
Rhodesia, Northern, copper industry, review	Scheelite concentrates	production 645.
Southern, aluminum sulfate, manufac-	Scientific Research an	id Development, Office
ture 678, 6	OI, Creation	X
asbestos, review 1427, 1435, 14	Scrap, ferrous. See Ir Scrap metal, legislatio	n
chromite, data 610, 614, 6 magnesite, deposit 15	Sealles alumina proces	ss, for treating bauxite,
Rhodium, foreign trade 788, 7	tests	
price	Secondary metals, no	nferrous, annual review
recovery	selient statistics	ew
Rhodolite, deposit	Sericite derivation	
Rhodonité, deposit 15 Riprap, sales 1227, 1247, 1248, 1250, 1254, 12 Road metal, sales 124		
Inplay, Sales 1221, 1221, 1220, 1230, 1234, 12	Siam. See Thailand.	
1247, 1248, 1250, 1254, 1256, 12	Silica abrasives, produ	etion 13
Road oil, demand	review	
foreign trade	review	production 13
production	Silicate abrasives pro	luction 13
review11	review	
sales 11	Silicomanganese, consi	umption
stocks	stocks	
yield 10 lock, bituminous, data 11	Sillimanite minerals, c	onsumption 15
foreign trade11	occurrence	15
ock crystal, deposits	price	
ock salt, production14	production 5	3, 68, 69, 70, 71, 72, 73, 74, 180, 1
sales	mine	63, 67, 69, 70, 71, 72,
lose quartz, deposits	refinery	52, 53,
Sales1342, 13	uses, in arts and ind	ustries
bubber, synthetic, demand for butane 10	Suver industry, annua	l review
tubble, sales 1227, 12	Silver mines, accidents	S 15 1540. 15
Rubies, sources	number	1540, 15
uthenium, foreign trade 788, 7	Silver producers, leadi	ng, list
price 7	Slag, basic, as source o	f phosphorus
recovery	data	13
uses	blast-furnace, data	12 1263, 1264, 1265, 1266, 12
	orace, dimension, sales	1263, 1264, 1265, 1266, 12
iridium in iewelry	foreign trade	, , , , , , , , , , , , , , , , , , , ,
iridium in jewelry	ioreign trade	

Page I	Page	•
Page 1964 1965 1966	Steel industry, annual review541, 57	
Slate flour, sales 1264, 1265, 1266 Slate granules, sales 1264, 1265, 1266 Slate industry, annual review 1263	teel ingots, production 517, 1256 Steel scrap, cartel activities, discontinuance 53 Steel scrap, cartel activities, discontinuance 53	5
Slate industry, annual review 1263	Steel ingots, production 517, 125	9
	consumption 517, 519, 520, 525, 52	8
1269 1269	duties, suspension, bill 51; foreign trade 517, 519, 521, 53	8
Slate quarries, accidents 1547	foreign trade517, 519, 521, 53	7
men employed 1540, 1541	inventory accumulations, restriction 52 legislation, new 52	
	prices 518, 519, 545, 54	6
Soapstone, ground, annual review 1386	price control 518, 520, 52 priority control 518, 520, 52	8
morkets 139	solient statistics 31	Ly -
occurrences	stocks 519, 52	2
prices1390	surveys, expansion 51 steel-scrap industry, annual review 51	17
production 1399 sales 1389, 1390, 1390	Still gas, production 1069, 1071, 110)8
salient statistics	still gas, production 1069, 1071, 110 Stock piles, Government, expansion xiv, xx	ii
Soda ash, capacity, increase, necessity	Stock-pile purchases, and mony	38
uses 1514)5
Sodium carbonates, annual review	Stone, broken. See Stone, crushed.	
increased demand 1514 prices 1514	markets 125	58
Sales 1512	plants	15
Sodium sulfates, annual review 1512	sales1226, 1227, 1242, 124	₽7 80
mines and prospects, map 1513 sales 1512	sales1226, 125	55
Solders hismuth content, advantages	Stone industries annual review 122	25
Solid Fuels, Coordinator of, functions xvii, xx, 905 South America. See Bolivia; Brazil; British	Stoneware clay, sales 1322, 132 salient statistics 132	24 22
South America. See Bolivia; Brazil; British	Strategic Materials Act, investigations. See	
Guiana; Chile; Colombia; Ecuador; Peru; Surinam; Uruguay; Venezuela.	various strategic and critical minerals.	0.77
South Carolina, copper, production 99, 100, 324 gold, production 53, 68, 72, 322, 324	Strontium minerals, producers 153 war uses 153	
metals, production, annual review	Submarinewar fare, effect on mineral supplies.	ix
metals, production, annual review 328 minerals, production 9, 13, 40 silver, production 53, 68, 72, 324	Cultur concumption 13f	
silver, production 53, 68, 72, 324 South Dakota, Custer County, metals, pro-	European War, effects	63
duction 447, 448	foreign trade 1358, 136 price 1362	62
gold, production 53, 68, 69, 70, 71, 72, 73, 74, 440, 447	production 1357, 1358, 1359, 136 recovery as byproduct 1367	54 60
Homestake mine, gold, production 448 iron ore, data 547, 548, 561	salient statistics 135	58
	l shinmonts lái	58
lignite industry, data	stocks 1357, 1358, 136 Sulfur dioxide fumes, effect on vegetation 136	52 59
824, 826, 829, 830, 831, 832, 833, 834, 840, 841,	l Culfur inductry annual review . 136	57
842, 844, 848, 877, 891, 897, 898, 899. manganese ore, data 588, 589, 591	Sulfuric scid. hyproduct. production 1358, 130	61
metals, production, annual review	consumption 13d defense aspect 13	
0 12 41	nroduction 100	60
minerals, production mining industry, review 1121, 1134, 1139, 114 Pennington County, metals, production 447, 450 silver, production 53, 68,	recovery from zinc smelting 1. Superphosphates, foreign trade 1385, 138	49 96
natural gas, data 1121, 1134, 1139, 1141		87
silver, production	sales13	74
	salient statistics 13 Supply, Priorities, and Allocations Board, func-	50
tin-bearing pegmatites, report 709 tungsten ore, production 645,649	l fione XV	
SOUTH West Airing as source of Pellis	Surinam hauvite foreign trade 678.68	84 02
cadmium, data	gold, production 78, Swaziland, asbestos, review 1435, 14	37
vanadium, data 640, 641 Spain, aluminum, data 678, 683 738 738	l Sweden aluminum review	104
arsenic, production		
bauxité, data 683 lead, review 142	Arsenic Industry, German Commission Comm	22
mercury, data 697, 699, 700	lead, review 139, 1	42
mercury, data 697, 699, 700 potash, review 1460, 1461, 1463 pyrites data 1368, 1369	pyrites, deposits13	66
tungsten, data 652, 653 zinc, review 159, 164	T	
Spiegeleisen, consumption 594 foreign trade 542, 576, 584, 595, 598 manufacturers, list 548, 558, 558	Taggers tin, foreign trade	16
manufacturers, list 598	Tale foreign trade 1389, 1390, 13	196
production 584, 585, 585	in ceramics, use	394 393
\$hipments 598 stocks 594	occurrences 13	391
Specimena uses 1533	prices 13	393
Steatite, foreign trade 1390, 1396, 1397	production 1390 1290 12	398 392
Steel, capacity, increase 545 consumption 543	18 18 18 18 18 18 18 18	390
	Talc industry, annual review	194
foreign trade 542, 546, 579	l l'antallim, annual review	799 300
prices	Tantalum ore, foreign trade	300
canacity, increase, regulations		799 201
salient statistics 542)95
Prainices, Dismain, Ranameres		-

Page	Page
Tar, value 948, 992, 995	Tin, secondary, allocation 512
yield 948, 949, 993 Tektites, description 1520	consumption 511
Tellurium, annual review 804	foreign trade 513
salient statistics one	prices511 recovery493, 510, 704, 711
Tennessee, bituminous-coal industry, data	
824, 826, 829, 830, 831, 832, 833, 834, 840, 841.	stocks 511 stocks 7718 stock-pile program 703, 705 Tin Control Scheme, International, termina- tion 721
877, 892.	Stock-pile program 703, 705
coke industry, data 946,	tion tion 701
951, 954, 955, 957, 958, 960, 961, 962, 964, 966	Tin Committee, International, tin, purchases 705
951, 954, 955, 957, 958, 960, 961, 962, 964, 966, 968, 969, 972, 973, 974, 976, 980, 982, 983, 985,	Tin industry, annual review 703
993, 994, 995, 996.	world aspects
copper, production 99, 100, 101, 324 gold, production 53, 68, 72, 322, 324	Tin ore, Metals Reserve Co., purchases 706
iron ore date 549 540 551 561 562	Tin plate, foreign trade 715, 716 Tin-plate scrap, foreign trade 519
lead. production 131 324	Tin Salvage Institute, duties 708
manganese ore, data 588, 589, 592	Tin smelter, Government, progress 702 706
metals, production, annual review	Tin supply, blockade 703 Titanium, uses 807
minerals, production 9, 13, 42	Titanium, uses 807 war demands 805
nhosnhate rock deta 127, 1122, 1130, 1139, 1141	Titanium concentrates, production 809
gold, production 53, 68, 72, 322, 324 iron ore, data 548, 549, 551, 561, 563 lead, production 131, 324 manganese ore, data 588, 589, 592 metals, production, annual review 329 minerals, production 9, 13, 42 astural gas, data 1121, 1122, 1135, 1139, 1141 phosphate rock, data 1372, 1379 pyrites, production 53, 68, 72, 324 zine, production 53, 68, 72, 324 zine, production 152, 324 Tennessee Valley Authority, manufacture of aluminum from clays, method 1337 Terneplate, foreign trade 715, 716	I Titonium oro importo
silver, production	Toluene, war needs
zinc, production 152, 324	Toluol, priority control
1 ennessee valley Authority, manufacture of	production 1590
Terneplate, foreign trade 715, 716	substitution for kyanite in refractories 1537
Tetraethyl lead, deleterious effects 1075	Tourmaline, deposit1521
Texas, Amarillo, helium plant, operations 1179,	Trap rock, sales 1226, 1228, 1232, 1248
1180	men employed 1547
arsenic, treatment 732	Trap rock, sales
bituminous-coal industry, data 817, 825, 827, 829, 830, 831, 832, 833, 834, 840, 841, 842	Tripoli, foreign trade
bromine, data	Tripoli, foreign trade 1356
carbon black, data 1173, 1175 Cliffside gas field, helium, production 1179, 1180	prices1342
Cliffside gas field, helium, production 1179, 1180	11868 1242
copper, production 99, 100, 102, 103, 452 Culberson County, metals, review 452, 453	Tripoli mines, location 1342
fluorspar, data 1402 1406	,,
gold, production 53, 68, 69, 71, 72, 73, 74, 452 Government tin smelter, progress	Tungsten, foreign trade643,649
Government tin smelter, progress 703, 706	nurchases Metals Reserve Co contract
Hardeman County, metals, review 452, 454	purchases, Metals Reserve Co., contract with Bolivia
Hudspeth County, metals, production 452, 454 iron ore, data 547, 548, 549, 551, 554, 561, 563	substitution of molybdenum
lead, production 131, 452 lignite industry, data 817, 825, 827, 829, 830, 831, 832, 833, 834, 840, 841, 842,	uses 650
lignite industry, data 817,	Tungsten concentrates, production 643, 645 Tungsten industry, annual review 643
825, 827, 829, 830, 831, 832, 833, 834, 840, 841, 842,	Tungsten ore, deposits, Bureau of Mines ex-
844, 847, 878, 892, 897, 898, 899. magnesite, data	ploration 644
magnesium plant, production of ethylene di-	Geological Survey exploration 644
magnesium plant, production of ethylene di- bromide	prices
mercury, data 692, 696	salient statistics 643
mercury, data 692, 696 metals, production, annual review 451 minerals, production 9, 13, 43 mining industry, review 452	salient statistics 643 shipments 643, 645, 646
mining industry, review 459	Tungsten concentrates, salient statistics 643
natural brines, as source of magnesium compounds 1497	Tungsten steels, substitution of molybdenum-
compounds 1497	tungsten steels 651 Turkey, chromite, data 604, 610, 614, 616 Turquoise, mining methods 1527
natural gas, data 1119, 1120, 1121, 1122, 1135, 1139, 1140, 1141, 11149	Turquoise, mining methods 1527
natural gasoline, data 1156 1157 1158 1150 l	output, value1519
ore, classification	•
petroleum maustry, data 1027, 1029, 1	U
1031, 1032, 1033, 1034, 1046, 1051, 1053, 1054, 1056, 1057, 1058, 1060, 1062, 1063, 1071, 1079,	TT
1084, 1085, 1086, 1089, 1094, 1096, 1098, 1103,	Union of South Africa, abrasive diamonds,
1106, 1107, 1108, 1109.	production 1353 antimony, data 771
Presidio County, metals, production 452, 454	asbestos, review 1434, 1435, 1436
refining plants 453 silver, production 53, 68, 69, 71, 72, 73, 74, 452, 454	copper industry, review 117, 123
smelting industry review 453	corundum, review 1351
sodium sulfates, data	fluorspar, data
smelting industry, review 453 sodium sulfates, data 1513 sulfur, production 1359, 1360	mercury, review 608 702
tektites, deposits	platinum metals, data
Phailand, zircon, data 1528	pyrites, production
Piger-eye, source 1523 Pin, conservation 707	tin, review 720, 729 Union of Soviet Socialist Republics, alumi-
consumption 711.712	num, data678, 684
consumption 711, 712 deposits, investigation, Bureau of Mines 708	asbestos, review 1435, 1438
tteningiegi Stirvev 708 i	manganese ore, data 600, 601
nriese 704, 714	tin, review 723, 729
foreign trade 704, 714 prices 704, 716 primary, production, mine 704, 710, 719, 720	Ukraine, mineral resources, loss
smeiter 710, 721 I	arsenic, production 737. 738
purchases, Government 705, 709 salient statistics 704	arsenic, production 737, 738 bismuth, purchasing licenses, granting 742

Page	Page
United Kingdom, chromite, data 614, 616	Utah, Washington County, metals, produc-
	tion 458, 465, 474 zinc, production 152,
marcasite, source	456, 458, 459, 460, 461, 462, 463, 464
sulfur prices 1366	100, 100, 100, 100, 100, 100, 100
tin. review 720, 721, 723, 729	$oldsymbol{v}$
United States, gold, reserves	VI 31
magnesitin, data 334, 135 335 335 335 337	Vanadinite, metallurgical treatment, Bureau of Mines 636
Summary	Vanadium hibliography 641
	consumption
mineral industries, annual review ix	consumption
silver reserves 55	in fuel-oil flue dust, occurrence 636 in titaniferous magnetites, occurrence 636
Uranium, annual review 802 price 803	inventory control
uses 804	production635, 637
uses 804 Uranium ore, foreign trade 802 Uruguay, arsenic, consumption 738	uses 639
Jruguay, arsenic, consumption	war aspects637
Utah, agate, deposits1519 alumina plant, using Kalunite process, con-	Vanadium ore, prices 638 salient statistics 637
struction	l import control 638
Beaver County, metals, production 458,	Vanadium industry, annual review 635
461, 462, 463, 464, 466	vanadium ores, deposits, investigations, Bu-
Bingham district, metals, production 469	reau of Mines 636
bituminous-coal industry, data 817, 825, 827, 829, 830, 831, 832, 833, 834, 840, 841, 842, 844, 852, 856, 858, 860, 862, 879, 893.	metallurgical treatment, Bureau of Mines investigations
842. 844. 852. 856. 858. 860. 862. 879. 893.	investigations 636 Variscite, production 1520
Box Elder County, metals, production 400,	Venereal diseases, arsenic, consumption 734
463, 464, 466	Venezuela, asbestos, deposit 1433
brines, recovery of magnesia	fuel oil, flue dust, vanadium content 636
coke industry data	Vermiculite, prices 1538
952, 954, 955, 957, 958, 960, 961, 962, 964, 966,	mercury, review 698, 702 Vermiculite, prices 1538 producers 1538
968, 969, 972, 973, 975, 976, 980, 982, 983, 984,	reserves 1538
993, 994, 995, 996. copper, production 99, 100,	Uses 1538
copper, production 99, 100, 101, 102, 103, 456, 457, 459, 460, 461, 462, 463, 464	Vermont, asbestos, data 1429, 1430 minerals, production 9, 13, 45 slate, data 1267, 1268
fluorspar, data1402, 1406	slate, data1267, 1268
fluorspar, data 1402, 1406 gold, production 53, 68, 69, 70, 71, 72, 73, 74, 99, 456, 458, 469, 461, 462, 463, 464, 464 Iron County, metals, production 458, 463, 464, 464	Virginia, bituminous coal industry, data
71, 72, 73, 74, 99, 456, 458, 460, 461, 462, 463, 464	825, 827, 829, 830, 831, 832, 833, 834, 840, 841, 842, 852, 855, 856, 858, 860, 862, 864, 865, 866,
iron ore, data	879, 893.
Juab County, metals, production	coke, data 952, 954, 955, 957, 960, 961,
461, 462, 463, 464, 466	962, 968, 969, 973, 974, 976, 978, 980, 982, 985
lead, production 131, 456, 457, 459, 460, 461, 462, 463, 464	gold, production 53, 68, 72, 322, 324 iron ore, data 547, 548, 549, 554, 562 lead, production 131, 324
magnesite data (50)	lead, production 131, 324
manganese ore, data	
mercury, data 692, 697	metals, production, annual review
metals, production, annual review	minerals, production 9, 15, 40
	pyrites, source 1367
463, 464, 468	metals, production, annual review 330 minerals, production 9, 13, 46 phosphate rock, data 1372, 1380 pyrites, source 1367 silver, production 53, 68, 72, 324 tin deposits, study 709 titanium, deposits 306 zinc, production 152, 324
minerals, production 9, 13, 44 mining industry, review 459	tin deposits, study 709
mining industry, review	titanium, deposits
molybdenum, producer	2mc, production
463, 464, 468	777
natural gas, data	W
ore, classification 460	War, aspects. See Aluminum; Antimony;
Park City region, metals, production 471 Pinte County metals, production 458 463 464 468	Coke; Helium; Magnesite: Magne-
Piute County, metals, production 458, 463, 464, 468 potash, review 1458 saline deposits, Bureau of Mines investiga	Coke; Helium; Magnesite; Magnesium; Molybdenum; Natural gas; Salt; Strontium minerals; Titanium;
saline deposits, Bureau of Mines investiga	sium; Molybdenum; Natural gas; Salt; Strontium minerals; Titanium;
tions 1506 Salt Lake County, metals, production 458.	Toluene; Vanadium; Zinc. War agencies, affecting mineral industries,
Sait Lake County, metals, production 458.	organization xvi
461, 462, 463, 464, 468 Sevier County, metals, production	War Department, Director of Production,
463, 465, 470	appointmentxviii
oll-non mand-ration E2 60 60 70 71	War Information, Committee on, classification of Minerals Yearbook as confidential vii
72, 73, 74, 99, 456, 457, 458, 460, 461, 462, 463, 464	War Manpower Commission, functions xvii
sulfur, production 1360	War Production Board, allocation controls,
72. 73. 74. 99. 456, 457, 458, 460, 461, 462, 463, 464 sulfur, production 1360 Summit County, metals, production 458, 461, 462, 465, 471	antimony 759
	aluminum, production, expansion 665
Tintic district, metals, production 466 Tooele County, metals, production 458,	chromium, orders
462, 465, 472	functions xviii
topaz, production 1520	functions xviii iron and steel capacity, regulations 546 See also Production Management, Office of.
tungsten, review 645, 649 Uintah County, metals, production 458, 465, 474	See also Production Management, Office of.
Utah County, metals, production 458, 403, 474	Washington, antimony ore, shipments
461.162.465.474	479.484.485
vanadium, data 638 variscite, production 1520 Wasatch County, metals, production 458,	Benton County, metals, production 478, 479, 484, 485
variscite, production 1520	bituminous-coal industry, data _ 817, 825, 827, 829, 830, 831, 832, 833, 834, 840, 841, 842, 852, 856,
weep to I county motors production 459	
461, 462, 465, 471	858, 860, 862, 864, 865, 866, 879, 893.

Washington, Chelan County, metals, produc-	Page
tion 478, 479, 481, 482, 483, 484, 485	Whetstones, sources 1347 White lead, consumption 169
coke industry, data	foreign trade
955, 957, 966, 974, 975, 982, 983	177 177
copper, production 99, 100, 101, 102, 103, 476, 477,	production 166, 167, 168
478, 479, 480, 481, 482, 483, 484	sales 166, 167, 168
Douglas County, metals, production 478,	Value 166, 168
479, 484, 485 Epsom salts, data 1507 Ferry County, metals, production 478, 481, 482, 483, 484, 485 fluorspar, data 1402, 1406 gold, production 53, 68, 69, 70, 71, 72, 73, 74, 476, 477, 478, 479, 481, 482, 483, 484	SaleS
Ferry County, metals, production 478.	fuel briquets, production 1003
479, 481, 482, 483, 484, 485	iron ore, data 547, 548, 549, 552, 554, 562, 563, 568
fluorspar, data	lead, production 131, 267, 268, 269
gold, production 53, 68, 69, 70, 71, 72, 73, 74, 476,	metals, production, annual review282
Grant County, metals, production 478, 479, 484, 486	minerals, production 9, 13, 48 pyrites, source 1367 zinc, production 152, 267, 268, 269 Witherite, deposits 1446 foreign trade 1448
iron ore, data	zine, production 152 267 268 269
King County, metals, production. 478,	Witherite, deposits 1446
479, 482, 483, 484, 480	foreign trade
Kittitas County, metals, production 478,	Drices 1448
Kittitas County, metals, production 478, 479, 484, 486	production 1447 salient statistics 1440
lapidaries, increase 1518 lead, production 131,	Witherite industry, annual review 1446
476, 477, 478, 479, 480, 481, 482, 483, 484	Wolframite concentrates, production 649
476, 477, 478, 479, 480, 481, 482, 483, 484 magnesite, data 1499 magnesite deposits, report 1499	Wulfenite, gravity concentration tests, Bu-
magnesite deposits, report 1499	reau of Mines 633
magnesite products, quality, improvement. 1497	Wurtzilite, sales 1184 Wyoming, Albany County, metals, produc-
magnesium investigations, Bureau of Mines	wyoming, Albany County, metals, produc-
pilot plant 753 manganese ore, data 588, 589, 592 mercury, data 692, 697	tion 490 Big Horn County, metals, production 490
mercury, data 692, 697	bituminous-coal industry, data 817,
	825, 827, 829, 830, 831, 832, 833, 834, 840,
metallurgic industry, review	841, 842, 845, 849, 850, 852, 856, 858, 860,
Metallurgic industry, review	862, 881, 895.
mining industry, review	bradleyite, discovery 1508 Carbon County, metals, production 490, 491
nickel, investigations, Geological Survey 618	copper, production 99, 100, 102, 103, 490
Okanogan County, metals, production 478,	Fremont County, metals, production 490, 491
Okanogan County, metals, production. 478, 479, 481, 482, 483, 484, 486	gold, production 53, 68, 69, 70, 71, 72, 73, 74, 490 iron ore, data 547, 548, 549, 562, 563, 568
Are electrication 470	Iron ore, data
Pend Oreille County, metals, production 478, 479, 481, 482, 484, 486	Johnson County, metals, production 490, 492 metals, production, annual review 489
Pierce County metals, production 478.	minerals, production 9. 13. 49
483 484 487	minerals, production 9, 13, 49 natural gas, data 1119,
silver, production 53, 68, 69, 70, 71, 72, 73, 74, 476,	1120, 1121, 1122, 1137, 1139, 1140, 1141, 1149 petroleum industry, data 1027, 1031, 1032, 1034, 1049, 1051, 1053, 1057,
477, 478, 479, 480, 481, 482, 483, 484	petroleum industry, data 1027,
Snohomish County, metals, production 478,	1051, 1052, 1054, 1049, 1051, 1053, 1057, 1058, 1060, 1063, 1085, 1086, 1089, 1094.
479,481, 483, 484, 487 sodium sulfate, production 1498 Stevens County, metals, production 478,	Platte County, metals, production 490, 492
Stevens County, metals, production 478,	Platte County, metals, production 490, 492 silver, production 53, 68, 69, 70, 71, 72, 73, 74, 492
479, 481, 483, 484, 487	topaz, production 1500
sulfur, deposit 1360 tin deposits, exploration 758 tungsten, data 645, 649	trona, as raw material for chemical in-
tungsten data 645 649	dustry
Whatcom County, metals, production 478,	Y
479, 481, 483, 484, 488	1
Whitman County, metals, production 478,	Yugoslavia, bauxite, data
Yakima County, metals, production 478,	pyrites, production
402 404 400	Z
zinc, production	Zinc, consumption
476, 477, 478, 479, 480, 481, 482, 484	export control 144
	foreign trade
Wax, annual review 1106 demand 1065, 1106 foreign trade 1065 prices 1067, 1107 production 1065, 1069, 1071, 1106 stocks 1065, 1068, 1106 yield 1067 West Virginia bituminas coal industry data 1071	price control 144, 150
foreign trade 1065	primary, production, distilled 144 147
prices 1067, 1107	price control. 156 primary, production, distilled 144, 147 electrolytic 144, 147
production 1065, 1069, 1071, 1106	mine
stocks 1065, 1068, 1106	slab 147, 148
Vield 1067	Smelter 144, 145
	rolled production 149
825, 827, 829, 830, 831, 832, 833, 834, 840, 841, 842, 845, 849, 850, 852, 855, 856, 858,	salient statistics 144
860. 862. 864. 865. 866. 880. 894.	secondary, consumption 514, 515
coke industry, data	Similar 144, 145
954, 955, 957, 958, 959, 960, 961, 962, 964,	prices
986, 988, 989, 972, 973, 974, 976, 978, 980, 982, 983, 987, 993, 994, 995, 996.	priority control 516 recovery 149, 493, 513
manganese ore, data	
minerals, production 9, 13, 48	stocks 515
natural gas, data	shortage 144
1120, 1121, 1122, 1136, 1139, 1140, 1141, 1149	stocks 144, 153
petroleum industry, data 1027, 1031, 1032, 1033, 1048, 1051, 1053, 1057, 1058, 1060,	war aspects 144 Zinc chloride, foreign trade 177, 178
1063, 1048, 1051, 1053, 1057, 1058, 1060, 1063, 1085, 1086, 1089, 1094.	metal content 175
Whetstones, foreign trade	prices
sales 1346	

1573

INDEX

Pagé	Page	
Zinc concentrates, prices	Zinc pool, expansion 516	
Zine dust- production 150	Zinc salts, metal content	
secondary production 513	prices 176	
Zinc industry, annual review 143	sales168, 169	
Zinc mines, accidents 1545	Zinc smetters, number	
men-employed 1540, 1545	smelting, sulfuric acid as byproduct 149	
Zinc oxide, consumption 169	Zinc sulfate, foreign trade 177, 178	
foreign trade	metal content 175	
monthly pool	prices	
prices 166, 176	1 89 Jes 108	
priority control	Zinc salts industry, annual review	
production 166, 167, 168	Zinc sulfide, foreign trade	
sales 166, 167, 168	metal content	
value 166, 168	prices 176	
Zinc pigments, metal content 174, 175	Zircon, source 1528	
salient statistics 166		
Zinc pigments industry, annual review 165	uses	
Zinc plants, electrolytic, number 158		
Zine pool creation 145	prices 810	

C