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Abstract

As data becomes bigger and more relevant to our lives, high-performance
data processing systems are more critical. In such systems, storage de-
vices play an essential role as they store data and feed data for the pro-
cessing; e�cient interactions between the software and the storage de-
vices are important for achieving high performance.

E�cient interactions are beyond the storage interfaces. Storage de-
vices present a block interface; clients must comply with the specifications
of the interfaces, which we call “written contract”, to communicate with
the devices correctly. However, complying with the written contract is
not enough to achieve high performance; clients of storage devices must
follow a set of implicit rules, which we call “unwritten performance con-
tracts”, to achieve high performance. The specific contract of a device de-
pends on its internal architecture. Violating the unwritten contract lowers
the performance of the data processing system.

In this dissertation, we start by finding violations of the unwritten
contracts. First, we study the methodologies for finding violations of the
HDD unwritten contract. Specifically, we explore using statistical meth-
ods (e.g., Latin hypercube sampling and Sensitivity Analysis) to find vi-
olations of the HDD unwritten contract in file system block allocators.
The exploration leads to discoveries and fixes of four design issues in a
popular file system, Linux ext4.
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In addition to finding violations of the HDD unwritten contract, we
continue to study violations of the SSD unwritten contract. We begin by
formalizing the SSD unwritten contract, which includes five rules that
one must follow to achieve high performance on SSDs. We then con-
duct a vertical full-stack analysis of multiple popular applications and
file systems on top of a detailed SSD simulator that we build; the analysis
shows whether the combinations of applications and file systems violate
the rules of the unwritten contract. As a result, we make numerous inter-
esting observations that could shed light upon the future storage system
designing.

Finally, we exploit the unwritten contract of SSDs to build a cost-e�ective
and high-performance data processing system. As the SSD unwritten
contract suggests, SSDs o�er high internal I/O parallelism, which en-
ables high bandwidth and low latency on SSDs. The high performance
of SSDs brings new opportunities for a system to rely more on I/O and
less on expensive memory, reducing the cost of the system. To this end,
we propose Tiny-Memory Processing Systems (TMPS), which use a small
amount of RAM, along with fast and cheap SSDs. The resulting system
is cost-e�ective thanks to the limited size of expensive RAM. The ma-
jor challenge of the TMPS approach is to reduce I/O tra�c as most data
needs to be loaded from SSDs, which o�er lower data bandwidth than
memory. To study the TMPS approach, we build a complete search en-
gine that employs careful designs in data layout, early pruning, prefetch-
ing and space/tra�c tradeo�s. When compared with the state-of-the-art
search engine in a tiny-memory configuration, our search engine reduces
I/O amplification by up to 3.2 times, query latency by up to 16 times, and
increases the query throughput by up to 2.9 times.
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1

Introduction

Data has been transforming many aspects of our lives. Search engines [7,
15], which collect and organize data from the web, allow us to quickly
and accurately retrieve information; data-driven recommendation sys-
tems present contents that we are very likely to enjoy [2, 18, 30]; ride-share
services [25, 48], which match the real-time data of riders and drivers, sig-
nificantly ease our transportation. Data will continue to enhance our lives
in the days yet to come in health care, business, transportation, scientific
research, entertainment and so on.

To support and continue supporting the massive transformation in
our lives, data is getting bigger. More data is created automatically or
manually and captured by a variety of sensors, such as cameras and IoT
(Internet of Things) devices. The size of global data will increase by five
times from 2018 to 2025 and data will be even more critical for our lives[10].

In order to process the large volume of data to solve critical problems,
a data processing system must store and retrieve data quickly; the storage
stack, which involves storage hardware and software, plays a vital role
in such high-performance data processing systems, as the storage stack
is responsible for e�ciently transferring data between the CPU and the
storage hardware.

At the bottom of the storage stack are storage devices such as Hard
Disk Drives (HDDs) and Solid State Drives (SSDs). HDDs have domi-
nated the market for decades, and they will continue to play a critical
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role in the future due to its low cost. SSDs, which are more expensive
than HDDs, become more popular in recent years thanks to their high
performance. HDDs and SSDs will be the most important players in the
storage market in the foreseeable future [16].

Storage devices expose interfaces that allow clients to specify opera-
tions (e.g., read, write, trim) and the range of addresses to operate on [31,
40, 43]. We call the specifications of such interfaces the written contracts
of the storage devices, as it is indeed presented in the form of written
documents. The written contracts are easy to comply with because the
specifications clearly state the contract and the device will report errors
when the contract is violated. For example, the SATA specification [40]
clearly defines the format of commands; if a client sends a command in
an incorrect format, the devices will send back an error message.

However, understanding and complying with the written contract is
not enough; beyond the written contracts, there exist multiple unwrit-
ten contracts, which must be complied with to achieve high performance,
power e�ciency, high reliability, or other desired properties. A particu-
lar unwritten contract depends on the storage media and the architecture
of the devices. For example, Schlosser and Ganger state in the “unwrit-
ten performance contract” of HDDs [143] that “nearby accesses are bet-
ter than farther accesses” because moving disk head farther takes more
time. As another example, due to the limited life span of flash, one should
avoid access patterns that trigger overuses of flash-based SSDs; an “un-
written reliability contract” should describe such patterns. In this disser-
tation, we focus on the unwritten performance contracts, which we refer
to as “unwritten contracts" hereafter for brevity. Violations of the un-
written performance contracts will not lead to errors (which can be easily
detected) but to performance degradation.

In this dissertation, we investigate and find violations of the unwrit-
ten contracts of HDDs and SSDs, both of which are widely deployed in
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modern systems, supporting diverse workloads range from personal doc-
ument editors to distributed data analytics. HDDs and SSDs present dis-
tinct unwritten contracts due to the vastly di�erent internal structures. By
investigating and contrasting these contracts, we can better understand
the factors that impact performance and how the systems should be re-
structured.

After understanding the unwritten contracts, we study how we should
exploit them to maximize their performance. Our study of the SSD un-
written contract shows that the contract is often violated, leading to in-
su�cient systems. Therefore, we continue to study how one should ex-
ploit the SSD unwritten contract, specifically the high internal I/O par-
allelism suggested by the contract, to implement high-performance and
cost-e�ective systems by reducing the memory demand.

We believe that our studies on finding violations and exploiting the
unwritten contracts of storage devices, along with the tools and systems
that we build, will boost harmonious interactions among the storage lay-
ers and significantly improve the performance of data processing systems
that support our day-to-day life.

1.1 Do contractors comply?

In the first part of this dissertation, we investigate whether applications
and file systems comply with the contracts of HDDs and SSDs, separately.
Both HDDs and SSDs support a wide range of systems and thus are worth
studying. HDDs have been and will continue to be widely deployed due
to its low cost; flash-based SSDs have become increasingly popular thanks
to its high performance and decreasing costs. Another reason to study
both HDDs and SSDs is that they are distinct: HDDs employ rotatory
magnetic platters but SSDs employ static flash. Comparing the unwritten
contracts of these distinct devices will allow us to understand the extent
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of the unwritten contracts and how to discover unwritten contracts when
new types of devices come.

For HDDs, we present Chopper, a tool that e�ciently explores the vast
input space of file system policies to find behaviors that lead to violations
of the HDD contracts. We focus specifically on block allocation, as un-
expected poor layouts can lead to high tail latencies in critical large-scale
systems. Our approach utilizes sophisticated statistical methodologies,
based on Latin Hypercube Sampling (LHS) and sensitivity analysis, to
explore the search space e�ciently and diagnose intricate design prob-
lems. We apply Chopper to study the behavior of two file systems, and
to study Linux ext4 in depth. We identify four internal design issues in
the block allocator of ext4 which form a large tail in the distribution of
layout quality. By removing the underlying problems in the code, we cut
the size of the tail by an order of magnitude, producing consistent and
satisfactory file layouts that reduce data access latencies.

For SSDs, we perform a detailed vertical analysis of application perfor-
mance atop a range of modern file systems and SSD FTLs. We formalize
the “unwritten contract” of SSDs, and conduct our analysis to uncover
application and file system designs that violate the contract. Our anal-
ysis, which utilizes a highly detailed SSD simulation underneath traces
taken from real workloads and file systems, provides insight into how to
better construct applications, file systems, and FTLs to realize robust and
sustainable performance.

1.1.1 Hard Disk Drives

Hard Disk Drives (HDDs) have been the most important storage devices
for decades; they will continue to be popular in the future. Cost is the
most important factor in the continuing adoption of HDDs. High-capacity
HDDs are much cheaper than high-capacity SSDs; therefore, such HDDs
take less shelf space at a lower price, which makes them suitable for data
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centers, cloud storage providers and backup systems.
HDDs present its unique unwritten contract, summarized by Schlosser

and Ganger [143]. The unwritten contract of HDDs states that nearby ac-
cesses on the address space are faster and sequential accesses are faster
than random ones. The unwritten contract comes from the physical struc-
ture of HDDs: HDDs must physically move disk heads to access data on
di�erent locations. Due to the popularity of HDDs, the unwritten con-
tract of HDDs is crucial, as violations of the contract can lead to significant
performance loss on a large population of systems.

Local file systems, such as Linux ext4 and XFS, sit on top of storage
devices, such as HDDs, and interact directly with the devices; therefore,
local file systems play an essential part in complying with the unwritten
contract of the devices. Violations that come from the local file systems
can significantly degrade the performance of the storage stack. As a re-
sult, we must find the violations from the local file systems. However,
finding violations is challenging because the input space of file systems
is vast, which makes it hard to identify input that triggers problematic
behaviors.

We present Chopper, a tool that enables developers to discover (and
subsequently repair) violations in local file systems. Chopper currently
focuses on the HDD unwritten contract due to the popularity of HDDs.
We use Chopper to investigate a file system component that is critical for
contract compliance: block allocator, which can reduce file system perfor-
mance by one or more orders of magnitude on hard disks due to viola-
tions of the HDD unwritten contract [8, 70, 138]. With Chopper, we show
how to find behaviors that violate the unwritten contract of HDDs, and
then how to fix them (usually through simple file-system repairs).

The key and most novel aspect of Chopper is its use of advanced statisti-
cal techniques to search and investigate an infinite performance space sys-
tematically. Specifically, we use Latin hypercube sampling [119] and sen-
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sitivity analysis [142], which have been proven e�ective in the investiga-
tion of many-factor systems in other applications [95, 124, 141]. We show
how to apply such advanced techniques to the domain of file-system per-
formance analysis, and in doing so make finding violations of the unwrit-
ten contracts tractable.

We use Chopper to analyze the block allocators of Linux ext4 and XFS,
and then delve into a detailed analysis of ext4 as its behavior is more
complex and varied. We find four subtle violations in ext4, including be-
haviors that spread sequentially-written files over the entire disk volume,
grossly violating the HDD unwritten contract. We also show how simple
fixes can remedy these problems, resulting in an order-of-magnitude im-
provement in the tail layout quality of the block allocator. Chopper and
the ext4 patches are publicly available at:

research.cs.wisc.edu/adsl/Software/chopper

1.1.2 Solid State Drives

Solid State Drives (SSDs) are emerging, despite its higher cost than HDDs.
SSDs have higher bandwidth, higher IOPS and lower latency than HDDs.
SSDs perform much better than HDDs for random data accesses because
SSDs do not need to move mechanical parts to access data. As a result,
SSDs are suitable for OLTP (Online Transactional Processing), data ana-
lytics, data caching and many other critical data processing systems.

Due to the increasing popularity of SSDs, it is crucial to analyze to un-
derstand their properties and interactions with other layers of the storage
stack. However, perhaps due to the rapid evolution of storage systems in
recent years, there exists a large and important gap in our understanding
of I/O performance across the storage stack. New data-intensive applica-
tions, such as LSM-based (Log-Structured Merge-tree) key-value stores,
are increasingly common [22, 35]; new file systems, such as F2FS [110],
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have been created for SSDs; finally, the devices themselves are rapidly
evolving, with aggressive flash-based translation layers (FTLs) consisting
of a wide range of optimizations. How well do these applications work
on these modern file systems, when running on the most recent class of
SSDs? What aspects of the current stack work well, and which do not?

The goal of our work is to perform a detailed vertical analysis of the
application/file-system/SSD stack to answer the aforementioned ques-
tions. We frame our study around the file-system/SSD interface, as it is
critical for achieving high performance. While SSDs provide the same in-
terface as hard drives, how higher layers utilize said interface can greatly
a�ect overall throughput and latency.

Our first contribution is to formalize the “unwritten contract” between
file systems and SSDs, detailing how upper layers must treat SSDs to ex-
tract the highest instantaneous and long-term performance. Our work
here is inspired by Schlosser and Ganger’s unwritten contract for hard
drives [143].

We present five rules of the SSD unwritten contract that are critical for
users of SSDs. First, to exploit the internal parallelism of SSDs, SSD clients
should issue large requests or many outstanding requests (Request Scale
rule). Second, to reduce translation-cache misses in FTLs, SSDs should be
accessed with locality (Locality rule). Third, to reduce the cost of convert-
ing page-level to block-level mappings in hybrid-mapping FTLs, clients
of SSDs should start writing at the aligned beginning of a block boundary
and write sequentially (Aligned Sequentiality rule). Fourth, to reduce the
cost of garbage collection, SSD clients should group writes by the likely
death time of data (Grouping By Death Time rule). Fifth, to reduce the
cost of wear-leveling, SSD clients should create data with similar lifetimes
(Uniform Data Lifetime rule). The SSD rules are naturally more complex
than their HDD counterparts, as SSD FTLs (in their various flavors) have
more subtle performance properties due to features such as wear level-
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ing [66] and garbage collection [67, 121].
We utilize this contract to study application and file system pairings

atop a range of SSDs. Specifically, we study the performance of four ap-
plications – LevelDB (a key-value store), RocksDB (a LevelDB-based store
optimized for SSDs), SQLite (a more traditional embedded database), and
Varmail (an email server benchmark) – running atop a range of modern
file systems – Linux ext4 [118], XFS [150], and the flash-friendly F2FS [110].
To perform the study and extract the necessary level of detail our anal-
ysis requires, we build WiscSee, an analysis tool, along with WiscSim, a
detailed and extensively evaluated discrete-event SSD simulator that can
model a range of page-mapped and hybrid FTL designs [89, 98, 104, 128].
We extract traces from each application/file-system pairing, and then, by
applying said traces to WiscSim, study and understand details of system
performance that previously were not well understood. WiscSee and Wisc-
Sim are available at:

http://research.cs.wisc.edu/adsl/Software/wiscsee/
Our study yields numerous results regarding how well applications

and file systems adhere to the SSD contract; some results are surprising
whereas others confirm commonly-held beliefs. For each of the five con-
tract rules, our general findings are as follows. For request scale, we find
that log structure techniques in both applications and file systems gen-
erally increase the scale of writes, as desired to adhere to the contract;
however, frequent barriers in both applications and file systems limit per-
formance and some applications issue only a limited number of small
read requests. We find that locality is most strongly impacted by the
file system; specifically, locality is improved with aggressive space reuse
but harmed by poor log structuring practices and legacy HDD block-
allocation policies. I/O alignment and sequentiality are not achieved as
easily as expected, despite both application and file system log structur-
ing. For death time, we find that although applications often appropri-
ately separate data by death time, file systems and FTLs do not always
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maintain this separation. Finally, applications should ensure uniform
data lifetimes since in-place-update file systems preserve the lifetime of
application data.

We have learned several lessons from our study. First, log structur-
ing is helpful for generating write requests at a high scale, but it is not a
panacea and sometimes hurts performance (e.g., log-structured file sys-
tems fragment application data structures, producing workloads that in-
cur higher overhead). Second, due to subtle interactions between work-
loads and devices, device-specific optimizations require detailed under-
standing: some classic HDD optimizations perform surprisingly well on
SSDs while some SSD-optimized applications and file systems perform
poorly (e.g., F2FS delays trimming data, which subsequently increases
SSD space utilization, leading to higher garbage collection costs). Third,
simple workload classifications (e.g., random vs. sequential writes) are
orthogonal to important rules of the SSD unwritten contract (e.g., group-
ing by death time) and are therefore not useful; irrelevant workload clas-
sifications can lead to oversimplified myths about SSDs (e.g., “random
writes considered harmful” [121]).

1.2 How to exploit the unwritten contracts?

From our studies of the SSD unwritten contract, we find that the unwrit-
ten contract is often violated, leading to ine�cient usage of SSDs. We
believe that SSDs, which have a smaller performance gap to RAM than
HDDs, could bring much more benefits to data processing systems if they
are exploited better. Specifically, we think that the high internal I/O par-
allelism, which does not exist in HDDs, could enable new system designs
that could reduce the memory needed and build cost-e�ective and high-
performance data processing systems.

Due to changes in technology – specifically, the vast and growing per-
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formance di�erence between hard drives and main memories – the ef-
fectiveness of automatic paging by the VM system has been rendered
largely ine�ective. As a result, application and service implementation
has moved, in many performance-critical cases, to a one-level memory
approach: keep all relevant data in memory, and thus deliver predictable
high performance. This “all memory” approach is surprisingly common,
driving the design of distributed storage systems [126], processing infras-
tructures [6], databases [34], and many other applications and services.

Memory-only approaches are not a panacea, introducing serious cost
issues – DRAM costs dollars per GB, whereas hard drives fractions of
a penny – as well as energy demands. Furthermore, in the burgeoning
era of cloud computing, renting systems with high amounts of memory
can be cost prohibitive, costing orders of magnitude more than smaller-
memory instances [1]. Thus, a question arises: can traditionally memory-
only or large-memory applications and services be realized in a di�er-
ent more cost-e�ective manner, without losing their performance advan-
tages?

We believe the answer is (in some cases) yes. Specifically, the advent
of high-speed solid-state storage devices [38, 46] has radically altered the
performance gap between main memory and persistent storage, thus rais-
ing the possibility that storage-oriented approaches can once again be
successful. In current technology, flash-based SSDs [38, 46] are readily
available (and thus our focus). Flash-based SSDs o�er very high inter-
nal I/O parallelism, which brings high bandwidth and low latency and
enables new design opportunities. We exploit the high internal I/O par-
allelism to design a cost-e�ective and high-performance system.

The extreme point in the design spectrum that we study is something
we call an “tiny-memory” design, in which a traditional all-memory/large-
memory approach is supplanted by a system with meager memory re-
sources and an SSD-based storage system; we call such systems Tiny-
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Memory Processing Systems (TMPS). The hypothesis underlying this ap-
proach is that the high bandwidth provided by modern SSDs [38, 46] can
be e�ectively exploited to achieve application performance goals without
requiring copious amounts of main memory in addition.

Tiny-memory processing systems can significantly reduce the mon-
etary costs of critical data processing systems by reducing memory de-
mands. The price di�erence between an all-memory and a tiny-memory
system is significant; for example, renting a 512-GB all-memory instance
costs six times more than a 1-GB memory instance with NVMe SSDs on
Amazon Web Service (the cost of the 1-GB memory and SSD instance is
estimated). The cost of search engines can be significantly reduced when
they are deployed on tiny-memory systems as their dataset sizes are large
(and growing). For example, the Wikimedia organization, which owns
many wiki sites including Wikipedia, owns 6,500 shards of search indices
ranging from a few MBs to 50 GBs each [12]. Github maintains search in-
dices of 96 million code repositories [42]. The index sizes of web-scale
search engines, such as Google and Bing, are hundreds of exabytes [17].

To understand tiny-memory processing systems, we perform a de-
tailed case study, which serves as the technical focus of this paper: the
modern search engine [4, 5, 12]. We focus on search engines for two rea-
sons. First, they are important; search engines are widely used in many
industrial and scientific settings today, including popular open-source of-
ferings such as Elastisearch [12] and Solr [5]. Second, they are challeng-
ing: search engines demand high throughput and low latency and seem-
ingly, it should be hard to match the performance of the commonly used
in-memory/cache-based approach with a tiny-memory system.

In this dissertation, we present the design, implementation, and eval-
uation of Vacuum Search, a tiny-memory search engine. Vacuum Search
reorganizes traditional search data structures so as to be amenable to
flash, thus using little memory while exploiting the parallel bandwidth
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that modern SSDs provide. We propose several techniques to make the
tiny-memory search engine possible. First, we propose a technique called
data vacuuming, which produces storage-oriented data layout and sig-
nificantly reduces read amplification. Second, we propose two-way cost-
aware pruning by bloom filters to reduce I/O for phrase queries. Third,
we use adaptive prefetch to reduce latency and improve I/O e�ciency.
Fourth, we trade space on flash for less I/O; for example, we compress
documents individually, which consumes more space than compression
in groups but allows us to retrieve documents with less overall I/O.

We show that Vacuum, which exploits the high internal I/O paral-
lelism (the property behind the request scale rule in the unwritten con-
tract), performs significantly better than a state-of-the-art open-source
search engine (Elastisearch) in a tiny-memory system, where only a small
fraction of data is stored in memory. Vacuum delivers higher query through-
put (up to a factor of three) and lower tail latencies (by a factor of sixteen).
In multiple cases, Vacuum matches the performance of the popular search
engine, while using orders of magnitude less memory.

1.3 Contributions and Hightlights

We believe this dissertation makes the following contributions.

Finding Violations of the Unwritten Contract of HDDs.

• We propose to use statistical methods (e.g., Latin Hypercube Sam-
ple and sensitivity analysis) to e�ciently explore the vast input space
of file system policies, in order to find violations of the HDD con-
tract that lead to performance problems.

• The analysis tool, Chopper, that we built based on the statistical meth-
ods, finds multiple design problems and bugs in one of the most
popular file systems, Linux ext4.
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Finding Violations of the Unwritten Contract of SSDs.

• We formalize the rules of the SSD unwritten contract. As SSDs may
present di�erent rules due to their internal designs, we study the
rules individually, which allows future system designs to mix and
match these rules to evaluate their new systems.

• To find violations of the SSD contract, we perform a vertical anal-
ysis of the storage stack, involving four critical applications, three
popular file systems, and a detailed SSD simulator.

• From the vertical analysis, we made 24 observations; some of them
are surprising, and some are re-assuring. For example, we find that
the Linux page cache design, which was designed in the HDD era,
limits performance when running with an SSD.

• As the interactions among the layers of the storage stack are com-
plex, we have built tools to allow designers to easily investigate if
their systems comply with the SSD contract.

Exploiting the Unwritten Contract of SSDs

• Through the case study of search engines, we demonstrate that one
significantly reduces the cost of critical large-scale data processing
systems by replacing RAM with fast and cheap flash.

• We identify that the high data bandwidth of RAM is largely wasted.
By o�oading data to flash, we can build more flexible and cost-
e�ective systems.

• We find that fast flash makes cache misses tolerable, which allows
us to build a system with new assumptions that memory is tiny and
cache misses are the common case.
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• To build the search engine that performs well with tiny memory, we
propose four techniques in data layout, early pruning, prefetching
and space/tra�c tradeo�s. As a result, we built a complete search
engine that reduces query latency by up to 16 times and increases
query throughput by up to 3 times.

1.4 Overview

In Chapter 2 and Chapter 3, we find violations of the unwritten contracts
of HDDs and SSDs, respectively. We start by adopting statistics tools,
such as sensitivity analysis, to find violations of the HDD unwritten con-
tract in Chapter 2. We find four design issues in the Linux ext4 file sys-
tem that violate the HDD unwritten contract and could lead to long tail
latency in large-scale systems. After studying HDDs, we continue to for-
malize the SSD unwritten contract and find violations to the contract in
Chapter 3. We find violations in four applications and three file systems.

In Chapter 4, we exploit the unwritten contract of SSDs to achieve high
performance with only tiny memory. Specifically, by careful designs in
the data layout, early pruning, prefetching and space/IO tradeo�s, we
build a complete search engine that achieves three times higher query
throughput than the state-of-the-art search engine, Elasticsearch.

In Chapter 5, we introduce the related work. In Chapter 6, we intro-
duce the future work and the lessons learned, and then we conclude this
dissertation.
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2

Finding Violations of the HDD

Contract

HDDs have been the major storage devices for decades and will be a sig-
nificant player in the market for a long time. As a result, understanding
the unwritten contract of HDDs and finding its violations to improve the
performance of HDD-based systems are critical.

Thanks to the low cost of HDDs, they are widely deployed at large-
scale distributed systems, where violations of the HDD unwritten con-
tract could lead to significant performance problems. The performance,
especially the performance of interactive services, of large-scale distributed
systems, is significantly impacted by tail latency, which is the longest la-
tency of sub-requests of a big request. The impact of the tail latency is
significant because the big request is not completed until all sub-requests
are completed. As a critical part of a distributed system, distributed stor-
age systems may contribute significantly to tail latency if they misbehave.
The foundation of a distributed storage system is the local file system (e.g.,
Linux ext4 and XFS), on which the performance of the distributed system
depends. As a result, violations of the HDD unwritten contract from lo-
cal file systems could contribute to the tail latency of large distributed
systems; finding violations from local file systems is crucial.

Contract violations increase local data access latency, which will even-
tually increase tail latency of distributed systems. In this chapter, we fo-
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cus on finding violations in file-system block allocators, which determine
the layout of data on storage devices. The layout of data is critical for the
HDD unwritten contract, which specifies that the distance between data
chunks accessed consecutively is the key.

Finding violations of the HDD unwritten contract in block allocators
is challenging because the input space of block allocators is vast and it
is di�cult to identify a problematic input that triggers misbehaviors. To
address this challenge, we propose to apply statistical tools, such as Latin
Hypercube Sampling and Sensitivity Analysis, to e�ciently explore the
vast input space in order to find violations. We apply such tools to two
popular file systems, Linux ext4 and XFS. We find four critical design is-
sues in Linux ext4 that violate the unwritten contract of HDDs. Removing
the violations allows ext4 to produce consistent and satisfactory file lay-
outs that reduce data access latencies.

This chapter is organized as follows. We first describe the internal
structure of HDDs in Section 2.1 and the unwritten contract of HDDs in
Section 2.2. Section 2.3 introduces the experimental methodology. In Sec-
tion 2.4, we evaluate ext4 and XFS as black boxes and then go further to
explore ext4 as a white box since ext4 shows more problems than XFS; we
present detailed analysis and fixes for internal allocator design issues of
ext4. Section 2.5 concludes this chapter.

2.1 HDD Background

An HDD consists of multiple components: platters, a spindle, and disk
heads. Figure 2.1 shows a simplified structure of an HDD. A platter is
a circular magnetic surface on which data is stored persistently. Data is
recorded on the surface of platters in concentric circles of sectors; the con-
centric circles are referred to as tracks. Platters are bound together around
the spindle, which is attached to a motor that spins the platters. Disk
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Figure 2.1: HDD Internal Structure. This figure only shows one platter and
a very small portion of tracks on the platter.

heads are attached to disk arms, which position disk heads to specific
locations of the platters; each side of a platter has their own disk head.

Disk heads read and write data from the surfaces of platters, which
incur mechanical movements. To access a sector of data on a track, the
disk arm moves the disk head to the desired track; this movement is called
a “seek”. After the seek, the disk head waits until the desired sector is
rotated underneath the head and then reads or writes the sector; the time
of waiting is called “rotational delay”.

2.2 HDD Unwritten Contract

The physical structure of HDDs determines their performance properties.
A significant portion of the data access time comes from seek time and
rotational delay. If the sectors of data to be accessed consecutively are
farther apart on the platter, the seek time and rotational delay are longer
because disk heads have to move a longer distance and platters have to
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rotate more.
According to these properties of HDDs, Schlosser and Ganger [143]

summarize the unwritten contract of HDDs. The unwritten contract states
that two data accesses near one-another within the drive’s address space
are faster than two accesses that are far apart; sequential accesses are
faster than random accesses.

Because the address of data is ultimately important in the unwritten
contract, the block allocator, which determines the location of data, is a
key for the contract: if data accessed at the same time are placed far apart
on the disk, the contract will be violated.

2.3 Diagnosis Methodology

We now describe our methodology for discovering violations of the HDD
unwritten contract, particularly as related to block allocation in local file
systems. The file system input space is vast, and thus cannot be explored
exhaustively; we thus treat each file system experiment as a simulation,
and apply a sophisticated sampling technique to ensure that the large
input space is explored carefully.

In this section, we first describe our general experimental approach,
the inputs we use, and the output metric of choice. We conclude by pre-
senting our implementation.

2.3.1 Experimental Framework

The Monte Carlo method is a process of exploring simulation by obtain-
ing numeric results through repeated random sampling of inputs [140,
142, 149]. Here, we treat the file system itself as a simulator, thus placing
it into the Monte Carlo framework. Each run of the file system, given a set
of inputs, produces a single output, and we use this framework to explore
the file system as a black box.



19

Each input factor Xi (i = 1, 2, ...,K) (described further in Section 2.3.2)
is estimated to follow a distribution. For example, if small files are of par-
ticular interest, one can utilize a distribution that skews toward small file
sizes. In the experiments of this paper, we use a uniform distribution for
fair searching. For each factor Xi, we draw a sample from its distribution
and get a vector of values (X1

i,X2
i,X3

i, ..,XN
i ). Collecting samples of all the

factors, we obtain a matrix M.

M =

2

66664

X1
1 X1

2 ... X1
K

X2
1 X2

2 ... X2
K

...
XN

1 XN
2 ... XN

K

3

77775
Y =

2

66664

Y1

Y2

...
YN

3

77775

Each row in M, i.e., a treatment, is a vector to be used as input of one
run, which produces one row in vector Y. In our experiment, M consists
of columns such as the size of the file system and how much of it is cur-
rently in use. Y is a vector of the output metric; as described below, we use
a metric that captures how much a file is spread out over the disk called
d-span. M and Y are used for exploratory data analysis.

The framework described above allows us to explore file systems over
di�erent combinations of values for uncertain inputs. This is valuable
for file system studies where the access patterns are uncertain. With the
framework, block allocator designers can explore the consequences of de-
sign decisions and users can examine the allocator for their workload.

In the experiment framework, M is a set of treatments we would like
to test, which is called an experimental plan (or experimental design). With
a large input space, it is essential to pick input values of each factor and
organize them in a way to e�ciently explore the space in a limited number
of runs. For example, even with our refined space in Table 2.1 (introduced
in detail later), there are about 8 ⇥ 109 combinations to explore. With an
overly optimistic speed of one treatment per second, it still would take
250 compute-years to finish just one such exploration.
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Latin Hypercube Sampling (LHS) is a sampling method that e�ciently
explores many-factor systems with a large input space and helps discover
surprising behaviors [97, 119, 142]. A Latin hypercube is a generalization of
a Latin square, which is a square grid with only one sample point in each
row and each column, to an arbitrary number of dimensions [69]. LHS is
very e�ective in examining the influence of each factor when the number
of runs in the experiment is much larger than the number of factors. It
aids visual analysis as it exercises the system over the entire range of each
input factor and ensures all levels of it are explored evenly [140]. LHS
can e�ectively discover which factors and which combinations of factors
have a large influence on the response. A poor sampling method, such as
a completely random one, could have input points clustered in the input
space, leaving large unexplored gaps in-between [140]. Our experimental
plan, based on LHS, contains 16384 runs, large enough to discover subtle
behaviors but not so large as to require an impractical amount of time.

2.3.2 Factors to Explore

Factor Description Presented Space

FS

DiskSize Size of disk the file system is mounted on. 1,2,4,...,64GB
UsedRatio Ratio of used disk. 0, 0.2, 0.4, 0.6

FreeSpaceLayout Small number indicates high fragmenta-
tion.

1,2,...,6

OS CPUCount Number of CPUs available. 1,2

W
or

kl
oa

d

FileSize Size of file. 8,16,24,...,256KB
ChunkCount Number of chunks each file is evenly di-

vided into.
4

InternalDensity Degree of sparseness or overwriting. 0.2,0.4,...,2.0
ChunkOrder Order of writing the chunks. permutation(0,1,2,3)

Fsync Pattern of fsync(). ****, *=0 or 1
Sync Pattern of close(), sync(), and open(). ***1, *=0 or 1

FileCount Number of files to be written. 1,2
DirectorySpan Distance of files in the directory tree. 1,2,3,...,12

Table 2.1: Factors in Experiment.
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Figure 2.2: LayoutNumber. Degree of fragmentation represented as lognor-
mal distribution.

File systems are complex. It is virtually impossible to study all possi-
ble factors influencing performance. For example, the various file system
formatting and mounting options alone yield a large number of combi-
nations. In addition, the run-time environment is complex; for example,
file system data is often bu�ered in OS page caches in memory, and dif-
ferences in memory size can dramatically change file system behavior.

In this study, we choose to focus on a subset of factors that we believe
are most relevant to allocation behavior. As we will see, these factors are
broad enough to discover interesting performance oddities; they are also
not so broad as to make a thorough exploration intractable.

There are three categories of input factors in Chopper. The first cate-
gory of factors describes the initial state of the file system. The second
category includes a relevant OS state. The third category includes factors
describing the workload itself. All factors are picked to reveal potentially
interesting design issues. In the rest of this paper, a value picked for a
factor is called a level. A set of levels, each of which is selected for a fac-
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tor, is called a treatment. One execution of a treatment is called a run. We
picked twelve factors, which are summarized in Table 2.1 and introduced
as follows.

We create a virtual disk of DiskSize bytes, because block allocators
may have di�erent space management policies for disks of di�erent sizes.

The UsedRatio factor describes the ratio of disk that has been used.
Chopper includes it because block allocators may allocate blocks di�er-
ently when the availability of free space is di�erent.

The FreeSpaceLayout factor describes the contiguity of free space on
disk. Obtaining satisfactory layouts despite a paucity of free space, which
often arises when file systems are aged, is an important task for block al-
locators. Because enumerating all fragmentation states is impossible, we
use six numbers to represent degrees from extremely fragmented to gen-
erally contiguous. We use the distribution of free extent sizes to describe
the degree of fragmentations; the extent sizes follow lognormal distribu-
tions. Distributions of layout 1 to 5 are shown in Figure 2.2. For example,
if layout is number 2, about 0.1 ⇥DiskSize⇥ (1 -UsedRatio) bytes will
consist of 32KB extents, which are placed randomly in the free space. Lay-
out 6 is not manually fragmented, in order to have the most contiguous
free extents possible.

The CPUCount factor controls the number of CPUs the OS runs on. It
can be used to discover scalability issues of block allocators.

The FileSize factor represents the size of the file to be written, as allo-
cators may behave di�erently when di�erent sized files are allocated. For
simplicity, if there is more than one file in a treatment, all of them have
the same size.

A chunk is the data written by a write() call. A file is often not writ-
ten by only one call, but a series of writes. Thus, it is interesting to see
how block allocators act with di�erent numbers of chunks, which Chunk-
Count factor captures. In our experiments, a file is divided into multiple
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chunks of equal sizes. They are named by their positions in file, e.g., if
there are four chunks, chunk-0 is at the head of the file and chunk-3 is at
the end.

Sparse files, such as virtual machine images [100], are commonly-used
and important. Files written non-sequentially are sparse at some point in
their life, although the final state is not. On the other hand, overwrit-
ing is also common and can have e�ect if any copy-on-write strategy is
adopted [132]. The InternalDensity factor describes the degree of cov-
erage (e.g. sparseness or overwriting) of a file. For example, if Internal-
Density is 0.2 and chunk size is 10KB, only the 2KB at the end of each
chunk will be written. If InternalDensity is 1.2, there will be two writes
for each chunk; the first write of this chunk will be 10KB and the second
one will be 2KB at the end of the chunk.

The ChunkOrder factor defines the order in which the chunks are
written. It explores sequential and random write patterns, but with more
control. For example, if a file has four chunks, ChunkOrder=0123 speci-
fies that the file is written from the beginning to the end; ChunkOrder=3210
specifies that the file is written backwards.

The Fsync factor is defined as a bitmap describing whether Chopper
performs an fsync() call after each chunk is written. Applications, such
as databases, often use fsync() to force data durability immediately [74,
91]. This factor explores how fsync() may interplay with allocator fea-
tures (e.g., delayed allocation in Linux ext4 [117]). In the experiment, if
ChunkOrder=1230 and Fsync=1100, Chopper will perform an fsync() af-
ter chunk-1 and chunk-2 are written, but not otherwise.

The Sync factor defines how we open, close, or sync the file system
with each write. For example, if ChunkOrder=1230 and Sync=0011, Chop-
per will perform the three calls after chunk-3 and perform close() and
sync() after chunk-0; open() is not called after the last chunk is written.
All Sync bitmaps end with 1, in order to place data on disk before we in-
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quire about layout information. Chopper performs fsync() before sync()
if they both are requested for a chunk.

The FileCount factor describes the number of files written, which is
used to explore how block allocators preserve spatial locality for one file
and for multiple files. In the experiment, if there is more than one file, the
chunks of each file will be written in an interleaved fashion. The Chunk-
Order, Fsync, and Sync for all the files in a single treatment are identical.

Chopper places files in di�erent nodes of a directory tree to study how
parent directories can a�ect the data layouts. The DirectorySpan factor
describes the distance between parent directories of the first and last files
in a breadth-first traversal of the tree. If FileCount=1, DirectorySpan is
the index of the parent directory in the breadth-first traversal sequence. If
FileCount=2, the first file will be placed in the first directory, and the sec-
ond one will be at the DirectorySpan-th position of the traversal sequence.

In summary, the input space of the experiments presented is described
in Table 2.1. The choice is based on e�ciency and simplicity. For example,
we study relatively small file sizes because past studies of file systems in-
dicates most files are relatively small [54, 64, 136]. Specifically, Agrawal et.
al. found that over 90% of the files are below 256 KB across a wide range
of systems [54]. Our results reveal many interesting behaviors, many of
which also apply to larger files. In addition, we study relatively small
disk sizes as large ones slow down experiments and prevent broad ex-
plorations in limited time. The file system problems we found with small
disk sizes are also present with large disks.

Simplicity is also critical. For example, we use at most two files in
these experiments. Writing to just two files, we have found, can reveal
interesting nuances in block allocation. Exploring more files make the
results more challenging to interpret. We leave further exploration of the
file system input space to future work.
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2.3.3 Layout Diagnosis Response

To find contract violations from block allocators, which aim to place data
compactly to avoid time-consuming seeking on HDDs [58, 138], we need
an intuitive metric reflecting data layout quality. To this end, we define
d-span, the distance in bytes between the first and last physical block of a
file. In other words, d-span measures the worst allocation decision the al-
locator makes in terms of spreading data. As desired, d-span is an indirect
performance metric, and, more importantly, an intuitive diagnostic signal
that helps us find unexpected file-system behaviors. These behaviors may
produce poor layouts that eventually induce long data access latencies.
d-span captures subtle problematic behaviors which would be hidden if
end-to-end performance metrics were used. Ideally, d-span should be the
same size as the file.

d-span is not intended to be an one-size-fits-all metric. Being simple, it
has its weaknesses. For example, it cannot distinguish cases that have the
same span but di�erent internal layouts. An alternative of d-span that we
have investigated is to model data blocks as vertices in a graph and use
average path length [84] as the metric. The minimum distance between two
vertices in the graph is their corresponding distance on disk. Although
this metric is able to distinguish between various internal layouts, we have
found that it is often confusing. In contrast, d-span contains less informa-
tion but is much easier to interpret.

In addition to the metrics above, we have also explored metrics such as
number of data extents, layout score (fraction of contiguous blocks) [148],
and normalized versions of each metric (e.g. d-span/ideal d-span). One
can even create a metric by plugging in a disk model to measure quality.
Our diagnostic framework works with all of these metrics, each of which
allows us to view the system from a di�erent angle. However, d-span has
the best trade-o� between information gain and simplicity.
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Figure 2.3: Chopper components.
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Figure 2.4: d-span CDFs of ext4 and XFS. The 90th%, 95th%, and max d-
spans of ext4 are 10GB, 20GB, and 63GB, respectively. The 90th%, 95th%, and
max d-spans of XFS are 2MB, 4MB, and 6GB, respectively.

2.3.4 Implementation

The components of Chopper are presented in Figure 2.3. The Manager
builds an experimental plan and conducts the plan using the other com-
ponents. The FS Manipulator prepares the file system for subsequent
workloads. In order to speed up the experiments, the file system is mounted
on an in-memory virtual disk, which is implemented as a loop-back de-
vice backed by a file in a RAM file system. The initial disk images are
re-used whenever needed, thus speeding up experimentation and pro-
viding reproducibility. After the image is ready, the Workload Genera-
tor produces a workload description, which is then fed into the Workload
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Figure 2.5: Contribution to d-span variance. It shows contributions calcu-
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Player for running. After playing the workload, the Manager informs the
FS Monitor, which invokes existing system utilities, such as debugfs and
xfs_db, to collect layout information. No kernel changes are needed. Fi-
nally, layout information is merged with workload and system informa-
tion and fed into the Analyzer. The experiment runs can be executed in
parallel to significantly reduce time.

2.4 The Analysis of Violations

We use Chopper to help understand the policies of file system block al-
locators, to achieve more predictable and consistent data layouts, and to
reduce the chances of performance fluctuations. We focus on Linux ext4
[117] and XFS [145], which are among the most popular local file systems
[29, 33, 49, 131].

For each file system, we begin in Section 2.4.1 by asking whether or
not it provides robust file layout in the presence of uncertain workloads
(i.e., whether the unwritten contract is violated). If the file system is ro-
bust (i.e., XFS), then we claim success; however, if it is not (i.e., ext4), then
we delve further into understanding the workload and environment fac-
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tors that cause the unpredictable layouts. Once we understand the com-
bination of factors that are problematic, in Section 2.4.2, we search for
the responsible policies in the file system source code and improve those
policies.

2.4.1 File System as a Black Box

2.4.1.1 Does a Tail Exist?

The first question we ask is whether or not the file allocation policies in
Linux ext4 and XFS are robust to the input space introduced in Table 2.1.

To find out if there are tails (i.e., violations) in the resulting alloca-
tions, we conducted experiments with 16,384 runs using Chopper. The
experiments were conducted on a cluster of nodes with 16 GB RAM and
two Opteron-242 CPUs [87]. The nodes ran Linux v3.12.5. Exploiting
Chopper’s parallelism and optimizations, one full experiment on each file
system took about 30 minutes with 32 nodes.

Figure 2.4 presents the empirical CDF of the resulting d-spans for each
file system over all the runs; in runs with multiple files, the reported d-
span is the maximum d-span of the allocated files. A large d-span value
indicates a file with poor locality (i.e., a violation of the HDD unwritten
contract). Note that the file sizes are never larger than 256KB, so d-span
with optimal allocation would be only 256KB as well.

The figure shows that the CDF line for XFS is nearly vertical; thus, XFS
allocates files with relatively little variation in the d-span metric, even with
widely di�ering workloads and environmental factors. While XFS may
not be ideal, this CDF indicates that its block allocation policy is relatively
robust.

In contrast, the CDF for ext4 has a significant tail. Specifically, 10%
of the runs in ext4 have at least one file spreading over 10GB. This tail
indicates instability in the ext4 block allocation policy that could produce
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Figure 2.6: Tail Distribution of 11 Factors. In the figure, we can find
what levels of each factor have tail runs and percentage of tail runs in each level.
Regions with significantly more tail runs are marked bold. Note that the number
of total runs of each level is identical for each factor. Therefore, the percentages
between levels of a factor are comparable. For example, (a) shows all tail runs in
the experiment have disk sizes > 16GB. In addition, when DiskSize=16GB, 17%
of runs are in the tail (d-span>10GB) which is less than DiskSize=32GB.
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poor layouts inducing long access latencies.

2.4.1.2 Which factors contribute to the tail?

We next investigate which workload and environment factors contribute
most to the variation seen in ext4 layout. Understanding these factors is
important for two reasons. First, it can help file system users to see which
workloads run best on a given file system and to avoid those which do
not run well; second, it can help file system developers track down the
source of internal policy problems.

The contribution of a factor to variation can be calculated by variance-
based factor prioritization, a technique in sensitivity analysis [140]. Specif-
ically, the contribution of factor Xi is calculated by:

Si =
VXi

(EX⇠i
(Y|Xi = x⇤i ))

V(Y)

Si is always smaller than 1 and reports the ratio of the contribution
by factor Xi to the overall variation. In more detail, if factor Xi is fixed
at a particular level x⇤i , then EX⇠i

(Y|Xi = x⇤i ) is the resulting mean of re-
sponse values for that level, VXi

(EX⇠i
(Y|Xi = x⇤i )) is the variance among

level means ofXi, andV(Y) is the variance of all response values for an ex-
periment. Intuitively, Si indicates how much changing a factor can a�ect
the response.

Figure 2.5 presents the contribution of each factor for ext4; again, the
metric indicates the contribution of each factor to the variation of d-span
in the experiment. The figure shows that the most significant factors are
DiskSize, FileSize, Sync, ChunkOrder, and Fsync; that is, changing any
one of those factors may significantly a�ect d-span and layout quality.
DiskSize is the most sensitive factor, indicating that ext4 does not have
stable layout quality with di�erent disk sizes. It is not surprising that
FileSize a�ects d-span considering that the definition d-span depends on
the size of the file; however, the variance contributed by FileSize (0.14 ⇥
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V(dspanreal) = 3⇥1018) is much larger than ideally expected (V(dspanideal) =

6 ⇥ 1010,dspanideal = FileSize). The significance of Sync, ChunkOrder,
and Fsync imply that certain write patterns are much worse than others
for ext4 allocator.

Factor prioritization gives us an overview of the importance of each
factor and guides further exploration. We would also like to know which
factors and which levels of a factor are most responsible for the tail. This
can be determined with factor mapping [140]; factor mapping uses a thresh-
old value to group responses (i.e., d-span values) into tail and non-tail
categories and finds the input space of factors that drive the system into
each category. We define the threshold value as the 90th% (10GB in this
case) of all d-spans in the experiment. We say that a run is a tail run if its
response is in the tail category.

Factor mapping visualization in Figure 2.6 shows how the tails are
distributed to the levels of each factor. Thanks to the balanced Latin hy-
percube design with large sample size, the di�erence between any two
levels of a factor is likely to be attributed to the level change of this factor
and not due to chance.

Figure 2.6a shows that all tail runs lay on disk sizes over 8GB because
the threshold d-span (10GB) is only possible when the disk size exceeds
that size. This result implies that blocks are spread farther as the capacity
of the disk increases, possibly due to poor allocation polices in ext4. Fig-
ure 2.6b shows a surprising result: there are significantly more tail runs
when the file size is larger than 64KB. This reveals that ext4 uses very
di�erent block allocation polices for files below and above 64KB.

Sync, ChunkOrder, and Fsync also present interesting behaviors, in
which the first written chunk plays an important role in deciding the
tail. Figure 2.6c shows that closing and sync-ing after the first written
chunk (coded 1***) causes more tail runs than otherwise. Figure 2.6d
shows that writing chunk-0 of a file first (coded 0***), including sequential
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writes (coded 0123) which are usually preferred, leads to more tail runs.
Figure 2.6e shows that, on average, not fsync-ing the first written chunk
(coded 0***) leads to more tail runs than otherwise.

The rest of the factors are less significant, but still reveal interesting
observations. Figure 2.6f and Figure 2.6g show that tail runs are always
present and not strongly correlated with free space layout or the amount
of free space, even given the small file sizes in our workloads (below
256KB). Even with layout number 6 (not manually fragmented), there are
still many tail runs. Similarly, having more free spaces does not reduce
tail cases. These facts indicate that many tail runs do not depend on the
disk state and instead it is the ext4 block allocation policy itself causing
these tail runs. After we fix the ext4 allocation polices in the next section,
the DiskUsed and FreespaceLayout factors will have a much stronger im-
pact.

Finally, Figure 2.6h and Figure 2.6i show that tail runs are generally
not a�ected by DirectorySpan and InternalDensity. Figure 2.6j shows that
having more files leads to 29% more tail cases, indicating potential layout
problems in production systems where multi-file operations are common.
Figure 2.6k shows that there are 6% more tail cases when there are two
CPUs.

2.4.1.3 Which factors interact in the tail?

In a complex system such as ext4 block allocator, performance may de-
pend on more than one factor. We have inspected all two-factor interac-
tions and select two cases in Figure 2.7 that present clear patterns. The
figures show how pairwise interactions may lead to tail runs, revealing
both dangerous and low-danger zones in the workload space; these zones
give us hints about the causes of the tail, which will be investigated in Sec-
tion 2.4.2. Figure 2.7a shows that, writing and fsync-ing chunk-3 first sig-
nificantly reduces tail cases. In Figure 2.7b, we see that, for files not larger



33

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

01
23

01
32

02
13

02
31

03
12

03
21

10
23

10
32

12
03

12
30

13
02

13
20

20
13

20
31

21
03

21
30

23
01

23
10

30
12

30
21

31
02

31
20

32
01

32
10

ChunkOrder

Fs
yn

c
● ●With tail Without tail

(a) ChunkOrder and Fsync.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

8K
B

16
K
B

24
K
B

32
K
B

40
K
B

48
K
B

56
K
B

64
K
B

72
KB

80
KB

88
KB

96
KB

10
4K

B
11

2K
B

12
0K

B
12

8K
B

13
6K

B
14

4K
B

15
2K

B
16

0K
B

16
8K

B
17

6K
B

18
4K

B
19

2K
B

20
0K

B
20

8K
B

21
6K

B
22

4K
B

23
2K

B
24

0K
B

24
8K

B
25

6K
B

FileSize

Fs
yn

c

● ●With tail Without tail

(b) FileSize and Fsync.

Figure 2.7: Tail Runs in the Interactions of Factors. Note that each
interaction data point corresponds to multiple runs with other factors varying.
A black dot means that there is at least one tail case in that interaction. Low-
danger zones are marked with bold labels.
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than 64KB, fsync-ing the first written chunk significantly reduces the pos-
sibility of producing tail runs. These two figures do not conflict with each
other; in fact, they indicate a low-danger zone in a three-dimension space.

Evaluating ext4 as black box, we have shown that ext4 does not consis-
tently provide good layouts given diverse inputs. Our results show that
unstable performance with ext4 is not due to the external state of the disk
(e.g., fragmentation or utilization), but to the internal policies of ext4. To
understand and fix the problems with ext4 allocation, we use detailed re-
sults from Chopper to guide our search through ext4 documentation and
source code.

2.4.2 File System as a White Box

Our previous analysis uncovered a number of violations from the layout
policies of ext4, but it did not pinpoint the location of those policies within
the ext4 source code. We now use the hints provided by our previous data
analysis to narrow down the sources of problems and to perform detailed
source code tracing given the set of workloads suggested by Chopper. In
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Figure 2.9: E�ect of fixing issues.. Vanilla: Linux v3.12.5. “!” means
“without”. SD: Scheduler Dependency; SE: Special End; SG: Shared Goal; NB:
Normalization Bug. !(X | Y) means X and Y are both removed in this version.

this manner, we are able to fix a series of violations in the ext4 layout
policies and show that each fix reduces the tail cases in ext4 layout.

Figure 2.8 compares the original version of ext4 and our final version
that has four violations of the HDD unwritten contract removed. We can
see that the fixes significantly reduce the size of the tail, providing better
and more consistent layout quality. We now connect the symptoms of
problems shown by Chopper to their root causes in the code.

2.4.2.1 Randomness ! Scheduler Dependency

Our first step is to remove non-determinism for experiments with the
same treatment. Our previous experiments corresponded to a single run
for each treatment; this approach was acceptable for summarizing from
a large sample space, but cannot show intra-treatment variation. After
we identify and remove this intra-treatment variation, it will be more
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straightforward to remove other tail e�ects.
We conducted two repeated experiments with the same input space

as in Table 2.1 and found that 6% of the runs have di�erent d-spans for
the same treatment; thus, ext4 can produce di�erent layouts for the same
controlled input. Figure 2.10a shows the distribution of the d-span dif-
ferences for those 6% of runs. The graph indicates that the physical data
layout can di�er by as much as 46GB for the same workload.

Examining the full set of factors responsible for this variation, we found
interesting interactions between FileSize, CPUCount, and ChunkOrder.
Figure 2.10b shows the count of runs in which d-span changed between
identical treatments as a function of CPUCount and FileSize. This fig-
ure gives us the hint that small files in multiple-CPU systems may su�er
from unpredictable layouts. Figure 2.10c shows the number of runs with
changed d-span as a function of ChunkOrder and FileSize. This figure
indicates that most small files and those large files written with more se-
quential patterns are a�ected.

Root Cause: With these symptoms as hints we focused on the inter-
action between small files and the CPU scheduler. Linux ext4 has an al-
location policy such that files not larger than 64KB (small files) are allo-
cated from locality group (LG) preallocations; further, the block allocator as-
sociates each LG preallocation with a CPU, in order to avoid contention.
Thus, for small files, the layout location is based solely on which CPU the
flusher thread is running. Since the flusher thread can be scheduled on
di�erent CPUs, the same small file can use di�erent LG preallocations
spread across the entire disk.

This policy is also the cause of the variation seen by some large files
written sequentially: large files written sequentially begin as small files
and are subject to LG preallocation; large files written backwards have
large sizes from the beginning and never trigger this scheduling depen-
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Figure 2.10: Symptoms of Randomness. (a): CDF of d-span variations be-
tween two experiments. The median is 1.9MB. The max is 46GB. (b): Number of
runs with changed d-span, shown as the interaction of FileSize and CPUCount.
(c): Number of runs with changed d-span, shown as the interaction of FileSize
and ChunkOrder. Regions with considerable tail runs are marked with bold la-
bels.
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dency1. In production systems with heavy loads, more cores, and more
files, we expect more unexpected poor layouts due to this e�ect.

Fix: We remove the problem of random layout by choosing the local-
ity group for a small file based on its i-number range instead of the CPU.
Using the i-number not only removes the dependency on the scheduler,
but also ensures that small files with close i-numbers are likely to be placed
close together. We refer to the ext4 version with this new policy as !SD,
for no Scheduler Dependency.

Figure 2.9a compares vanilla ext4 and !SD. The graph shows that the
new version slightly reduces the size of the tail. Further analysis shows
that in total d-span is reduced by 1.4 TB in 7% of the runs but is increased
by 0.8 TB in 3% of runs. These mixed results occur because this first fix
unmasks other problems which can lead to larger d-spans. In complex
systems such as ext4, performance problems interact in surprising ways;
we will progressively work to remove three more problems.

2.4.2.2 Allocating Last Chunk ! Special End

We now return to the interesting behaviors originally shown in Figure 2.7a,
which showed that allocating chunk-3 first (Fsync=1*** and ChunkOrder=3***)
helps to avoid tail runs. To determine the cause of poor allocations, we
compared traces from selected workloads in which a tail occurs to similar
workloads in which tails do not occur.

Root Cause: Linux ext4 uses a Special End policy to allocate the last
extent of a file when the file is no longer open; specifically, the last extent
does not trigger preallocation. The Special End policy is implemented by
checking three conditions - Condition 1: the extent is at the end of the file;
Condition 2: the file system is not busy; Condition 3: the file is not open. If

1Note that file size in ext4 is calculated by the ending logical block number of the
file, not the sum of physical blocks occupied.
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all conditions are satisfied, this request is marked with the hint “do not
preallocate", which is di�erent from other parts of the file2.

The motivation is that, since the status of a file is final (i.e., no process
can change the file until the next open), there is no need to reserve addi-
tional space. While this motivation is valid, the implementation causes
an inconsistent allocation for the last extent of the file compared to the
rest; the consequence is that blocks can be spread far apart. For example,
a small file may be inadvertently split because non-ending extents are al-
located with LG preallocations while the ending extent is not; thus, these
conflicting policies drag the extents of the file apart.

This policy explains the tail-free zone (Fsync=1*** and ChunkOrder=3***)
in Figure 2.7a. In these tail-free zones, the three conditions cannot be si-
multaneously satisfied since fsync-ing chunk-3 causes the last extent to
be allocated, while the file is still open; thus, the Special End policy is not
triggered.

Fix: To reduce the layout variability, we have removed the Special End
policy from ext4; in this version named !SE, the ending extent is treated
like all other parts of the file. Figure 2.9 shows that !SE reduces the size of
the tail. Further analysis of the results show that removing Special End
policy reduces d-spans for 32% of the runs by a total of 21TB, but increases
d-spans for 14% of the runs by a total of 9TB. The increasing of d-span is
primarily because removing this policy unmasks inconsistent policies in
File Size Dependency, which we will discuss next.

Figure 2.11a examines the benefits of the !SE policy compared to vanilla
ext4 in more detail; to compare only deterministic results, we set CPU-
Count=1. The graph shows that the !SE policy significantly reduces tail
runs when the workload begins with sync operations (combination of
close(), sync(), and open()); this is because the Special End policy is

2In fact, this hint is vague. It means: 1. if there is a preallocation solely for this file
(i.e., i-node preallocation), use it; 2. do not use LG preallocations, even they are available
3. do not create any new preallocations.
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Figure 2.11: E�ects of removing problematic policies. The d-spans could
be ‘Reduced’, ‘Unchanged’ or ‘Increased’ due to the removal. (a): removing Spe-
cial End; (b) and (c): removing Shared Global.

more likely to be triggered when the file is temporarily closed.

2.4.2.3 File Size Dependency ! Shared Global

After removing the Scheduler Dependency and Special End policies, ext4
layout still presents a significant tail. Experimenting with these two fixes,
we observe a new symptom that occurs due to the interaction of FileSize
and ChunkOrder, as shown in Figure 2.12. The stair shape of the tail runs
across workloads indicates that this policy only a�ects large files and it
depends upon the first written chunk.

Root Cause: Traces of several representative data points reveal the
source of the ‘stair’ symptom, which we call File Size Dependency. In ext4,
one of the design goals is to place small files (less than 64KB, which is
tunable) close and big files apart [58]. Blocks for small files are allocated
from LG preallocations, which are shared by all small files; blocks in large
files are allocated from per-file inode preallocations (except for the ending
extent of a closed file, due to the Special End policy).
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This file-size-dependant policy ignores the activeness of files, since
the dynamically changing size of a file may trigger inconsistent allocation
policies for the same file. In other words, blocks of a file larger than 64KB
can be allocated with two distinct policies as the file grows from small to
large. This changing policy explains why FileSize is the most significant
workload factor, as seen in Figure 2.5, and why Figure 2.6b shows such a
dramatic change at 64KB.

Sequential writes are likely to trigger this problem. For example, the
first 36KB extent of a 72KB file will be allocated from the LG preallocation;
the next 36KB extent will be allocated from a new i-node preallocation
(since the file is now classified as large with 72KB > 64KB). The allocator
will try to allocate the second extent next to the first, but the preferred
location is already occupied by the LG preallocation; the next choice is to
use the block group where the last big file in the whole file system was
allocated (Shared Global policy, coded SG), which can be far away. Grow-
ing a file often triggers this problem. File Size Dependency is the reason
why runs with ChunkOrder=0*** in Figure 2.6d and Figure 2.12 have rel-
atively more tail runs than other orders. Writing Chunk-0 first makes the
file grow from a small size and increases the chance of triggering two dis-
tinct policies.

Fix: Placing extents of large files together with a shared global policy
violates the initial design goal of placing big files apart and deteriorates
the consequences of File Size Dependency. To mitigate the problem, we
implemented a new policy (coded !SG) that tries to place extents of large
files close to existing extents of that file. Figure 2.9a shows that !SG sig-
nificantly reduces the size of the tail. In more detail, !SG reduces d-span
in 35% of the runs by a total of 45TB.

To demonstrate the e�ectiveness of the !SG version, we compare the
number of tail cases with it and vanilla ext4 for deterministic scenarios
(CPUCount=1). Figure 2.11b shows that the layout of large files (>64KB)
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Figure 2.12: Tail Runs in !(SD|SE). The figure shows tail runs in the inter-
action of ChunkOrder and FileSize, after removing Scheduler Dependency and
Special End.

is significantly improved with this fix. Figure 2.11c shows that the layout
of sparse files (with InternalDensity < 1) is also improved; the new policy
is able to separately allocate each extent while still keeping them near one
another.

2.4.2.4 Sparse Files ! Normalization Bug

With three problems fixed in version !(SD|SE|SG), we show an inter-
esting interaction that still remains between ChunkOrder and Internal-
Density. Figure 2.13 shows that while most of the workloads exhibit tails,
several workloads do not, specifically, all “solid” (InternalDensity>1) files
with ChunkOrder=3012. To identify the root cause, we focus only on
workloads with ChunkOrder=3012 and compare solid and sparse pat-
terns.
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Figure 2.13: Tail Runs in !(SD|SE|SG). This figure shows tail runs in the
interaction of ChunkOrder and InternalDensity on version !(SD|SE|SG).

Root Cause: Comparing solid and sparse runs with ChunkOrder=3012
shows that the source of the tail is a bug in ext4 normalization; normal-
ization enlarges requests so that the extra space can be used for a simi-
lar extent later. The normalization function should update the request’s
logical starting block number, corresponding physical block number, and
size; however, with the bug, the physical block number is not updated
and the old value is used later for allocation3.

Figure 2.14 illustrates how this bug can lead to poor layout. In this
scenario, an ill-normalized request is started (incorrectly) at the original
physical block number, but is of a new (correct) larger size; as a result, the
request will not fit in the desired gap within this file. Therefore, ext4 may
fail to allocate blocks from preferred locations and will perform a des-
perate search for free space elsewhere, spreading blocks. The solid files
with ChunkOrder of 3012 in Figure 2.13 avoid this bug because if chunks-
0,1,2 are written sequentially after chunk-3 exists, then the physical block

3This bug is present even in the currently latest version of Linux, Linux v3.17-rc6. It
has been confirmed by an ext4 developer and is waiting for further tests.
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Figure 2.14: Ill Implementation of Request Normalization. In this case,
the normalized request overlaps with the existing extent of the file, making it
impossible to fulfill the request at the preferred location.

number of the request does not need to be updated.
Fix: We fix the bug by correctly updating the physical starting block

of the request in version !NB. Figure 2.15 shows that large files were partic-
ularly susceptible to this bug, as were sparse files (InternalDensity < 1).
Figure 2.9a shows that fixing this bug reduces the tail cases, as desired.
In more detail, !NB reduces d-span for 19% of runs by 8.3 TB in total. Sur-
prisingly, fixing the bug increases d-span for 5% of runs by 1.5 TB in total.
Trace analysis reveals that, by pure luck, the mis-implemented normal-
ization sometimes sets the request to nearby space which happened to be
free, while the correct request fell in space occupied by another file; thus,
with the correct request, ext4 sometimes performs a desperate search and
chooses a more distant location.

Figure 2.9 summarizes the benefits of these four fixes. Overall, with
all four fixes, the 90th-percentile for d-span values is dramatically reduced
from well over 4GB to close to 4MB. Thus, as originally shown in Fig-
ure 2.8, our final version of ext4 has a much less significant tail than the
original ext4.
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Figure 2.15: Impact of Normalization Bug. This figure shows the count of
runs a�ected by Normalization Bug in the interaction of FileSize and Internal-
Density. The count is obtained by comparing experimental results ran with and
without the bug.

2.4.3 Latencies Reduced

Chopper uses d-span as a diagnostic signal to find violations of the HDD
unwritten contract that produce poor data layouts. The poor layouts,
which incur costly disk seeks on HDDs [138], and even CPU spikes [8],
can in turn result in long data access latencies. Our repairs based on Chop-
per’s findings reduce latencies caused by the problematic designs.

For example, Figure 2.16 demonstrates how Scheduler Dependency
incurs long latencies and how our repaired version, !SD, reduces laten-
cies on an HDD (Hitachi HUA723030ALA640: 3.0 TB, 7200 RPM). In the
experiment, files were created by multiple creating threads residing on dif-
ferent CPUs; each of the threads wrote a part of a 64KB file. We then
measured file access time by reading and over-writing with one thread,
which avoids resource contentions and maximizes performance. To ob-
tain application-disk data transfer performance, OS and disk cache e�ects
were circumvented. Figure 2.16 shows that with the SD version, access
time increases with more creating threads because SD splits each file into
more and potentially distant physical data pieces. Our fixed version, !SD,
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Figure 2.16: Latency Reduction. This figure shows that !SD significantly
reduces average data access time comparing with SD. All experiments were re-
peated 5 times. Standard errors are small and thus hidden for clarity.

reduced read and write time by up to 67 and 4 times proportionally, and
by up to 300 and 1400 ms. The reductions in this experiment, as well as ex-
pected greater ones with more creating threads and files, are significant
– as a comparison, a round trip between US and Europe for a network
packet takes 150 ms and a round trip within the same data center takes
0.5 ms [88, 125]. The time increase caused by Scheduler Dependency, as
well as other issues, may translate to long latencies in high-level data cen-
ter operations [80]. Chopper is able to find such issues, leading to fixes
reducing latencies.

2.4.4 Discussion

With the help of exploratory data analysis, we have found and removed
four violations of HDD unwritten contract in ext4 that can lead to unex-
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Issue Description

Scheduler Dependency Choice of preallocation group for small files depends on
CPU of flushing thread.

Special End The last extent of a closed file may be rejected to allocate
from preallocated spaces.

File Size Dependency Preferred target locations depend on file size which may
dynamically change.

Normalization Bug Block allocation requests for large files are not correctly
adjusted, causing the allocator to examine mis-aligned lo-
cations for free space.

Table 2.2: Linux ext4 Issues. This table summarizes issues we have found
and fixed.
pected tail latencies; these issues are summarized in Table 2.2. We have
made the patches for these issues publicly available with Chopper.

While these fixes do significantly reduce the tail behaviors, they have
several potential limitations. First, without the Scheduler Dependency
policy, flusher threads running on di�erent CPUs may contend for the
same preallocation groups. We believe that the contention degree is ac-
ceptable, since allocation within a preallocation is fast and files are dis-
tributed across many preallocations; if contention is found to be a prob-
lem, more preallocations can be added (the current ext4 creates preallo-
cations lazily, one for each CPU). Second, removing the Shared Global
policy mitigates but does not eliminate the layout problem for files with
dynamically changing sizes; choosing policies based on dynamic proper-
ties such as file size is complicated and requires more fundamental policy
revisions. Third, our final version, as shown in Figure 2.8, still contains
a small tail. This tail is due to the disk state (DiskUsed and Freespace-
Layout); as expected, when the file system is run on a disk that is more
heavily used and is more fragmented, the layout for new files su�ers.

The symptoms of violations revealed by Chopper drive us to reason
about their causes. In this process, time-consuming tracing is often nec-
essary to pinpoint a particular problematic code line as the code makes
complex decisions based on environmental factors. Fortunately, analyz-
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ing and visualizing the data sets produced by Chopper enabled us to fo-
cus on several representative runs. In addition, we can easily reproduce
and trace any runs in the controlled environmental provided by Chopper,
without worrying about confounding noises.

With Chopper, we have learned several lessons from our experience
with ext4 that may help build file systems that are robust to uncertain
workload and environmental factors in the future. First, policies for dif-
ferent circumstances should be harmonious with one another. For exam-
ple, ext4 tries to optimize allocation for di�erent scenarios and as a result
has a di�erent policy for each case (e.g., the ending extent, small and large
files); when multiple policies are triggered for the same file, the policies
conflict and the file is dragged apart. Second, policies should not depend
on environmental factors that may change and are outside the control of
the file system. In contrast, data layout in ext4 depends on the OS sched-
uler, which makes layout quality unpredictable. By simplifying the layout
policies in ext4 to avoid special cases and to be independent of environ-
mental factors, we have shown that file layout is much more compact and
predictable.

2.5 Conclusions

Violations of the HDD unwritten contract have high consequences and
cause unexpected system fluctuations. Removing such violations will
lead to a system with more consistent performance. However, identifying
violations and finding their sources are challenging in complex systems
because the input space can be infinite and exhaustive search is impossi-
ble. To study the violations in block allocations of XFS and ext4, we built
Chopper to facilitate carefully designed experiments to e�ectively explore
the input space of more than ten factors. We used Latin hypercube design
and sensitivity analysis to uncover unexpected violations among many of
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those factors. Analysis with Chopper helped us pinpoint and remove four
critical designs issues in ext4, which violates the unwritten contract of
HDDs. Our improvements significantly reduce the problematic behav-
iors causing violations.

We believe that the application of established statistical methodolo-
gies to system analysis can have a tremendous impact on system design
and implementation. We encourage developers and researchers alike to
make systems amenable to such experimentation, as experiments are es-
sential in the analysis and construction of robust systems. Rigorous statis-
tics will help to reduce unexpected issues caused by intuitive but unreli-
able design decisions.
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3

Finding Violations of the SSD Contract

The storage stack has been rapidly shifting from an HDD-based stack to
an SSD-based one, thanks to the advance in flash technology. Flash-based
SSDs store data on non-mechanical flash, which is very distinct from the
magnetic platters in HDDs. Consequently, SSDs employ very di�erent ar-
chitectures to HDDs and present a very di�erent unwritten performance
contract.

As the storage stack shifts from HDDs to SSDs, many questions arise
regarding their distinct unwritten contracts. As many applications and
file systems that were designed in the HDD era but now run on SSDs,
do these old applications and file systems comply with the SSD contract?
Do SSDs work well with these old applications and file systems? As SSDs
become more popular, new applications and file systems are designed for
SSDs. Do these new applications and file systems really comply with the
contract of SSDs? Do SSDs work well for them?

In this chapter, we first formalize the unwritten contract of SSDs, which
was not well summarized before. Then, we conduct a vertical analysis of
the storage stack, involving four applications, three file systems, and a de-
tailed SSD simulator that we developed. Our vertical analysis finds many
surprising violations of the SSD unwritten contract.
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3.1 Background

The most popular storage technology for SSDs is NAND flash. A flash
chip consists of blocks, which are typically hundreds of KBs (e.g., 128 KB),
or much larger (e.g., 4 MB) for large-capacity SSDs [37, 45]. A block con-
sists of pages, which often range from 2 KB to 16 KB [26, 27, 39]. Single-
Level Cell (SLC) flash, which stores a single bit in a memory element, usu-
ally has smaller page sizes, lower latency, better endurance and higher
costs than Multi-Level Cell (MLC) flash, which stores multiple bits in a
memory element [59].

Flash chips support three operations: read, erase, and program (or
write). Reading and programming are usually performed at the granu-
larity of a page, whereas erasing can only be done for an entire block; one
can program pages only after erasing the whole block. Reading is often
much faster than programming (e.g., eight times faster [37]), and erasing
is the slowest, but can have higher in-chip bandwidth than programming
(e.g., 83 MB/s for erase as compared to 9.7 MB/s for write [37]). A block
is usually programmed from the low page to high page to avoid program
disturbance, an e�ect that changes nearby bits unintentionally [27, 28, 59].

Modern SSDs use a controller to connect flash chips via channels, which
are the major source of parallelism. The number of channels in modern
SSDs can range from a few to dozens [21, 75, 79, 127]. The controller uses
RAM to store its operational data, client data, and the mapping between
host logical addresses and physical addresses.

To hide the complexity of SSD internals, the controller usually con-
tains a piece of software called an FTL (Flash Translation Layer); the FTL
provides the host with a simple block interface and manages all the op-
erations on the flash chips. FTLs can employ vastly di�erent designs [89,
98, 104, 111, 112, 115, 128, 129, 160, 162]. Although not explicitly stated,
each FTL requires clients to follow a unique set of rules in order to achieve
good performance. We call these implicit rules the unwritten contract of



52

SSDs.

3.2 Unwritten Contract

Users of an SSD often read its written contract, which is a specification of
its interfaces. Violation of the written contract will lead to failures; for
example, incorrectly formatted commands will be rejected by the receiv-
ing storage device. In contrast, the unwritten contract [143] of an SSD is
an implicit performance specification that stems from its internal archi-
tecture and design. An unwritten contract is not enforced but violations
significantly impact performance.

SSDs have di�erent performance characteristics from HDDs in part
due to unpredictable background activities such as garbage collection and
wear-leveling. On an SSD, an access pattern may have excellent perfor-
mance at first, but degrade due to background activities [86, 110, 121, 146].
To reflect this distinction, we call these regimes immediate performance and
sustainable performance. Immediate performance is the maximum perfor-
mance achievable by a workload’s I/O pattern. Sustainable performance
is the performance that could be maintained by an SSD given this work-
load in the long term.

In this section, we summarize the rules of the unwritten contract of
SSDs and their impact on immediate and sustainable performance.

3.2.1 Request Scale

Modern SSDs have multiple independent units, such as channels, that
can work in parallel. To exploit this parallelism, one common technique
when request sizes are large is to stripe each request into sub-requests and
send them to di�erent units [55, 71, 83, 96]. When request sizes are small,
the FTL can distribute the requests to di�erent units. To concurrently
process multiple host requests, modern SSDs support Native Command
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Figure 3.1: Example of Aligned Sequentiality and a violation of it. Each
block has four pages. Writes must be programmed on a flash block from low to high pages
to avoid program disturbance. The page-level mapping on the left can be converted to a
single block-level mapping: logical block 2 ! physical block 4. The example on the right
cannot be converted without re-arranging the data.

Queuing (NCQ)1 or similar features [31, 43]; a typical maximum queue
depth of modern SATA SSDs is 32 requests [20, 71].

To capture the importance of exploiting internal parallelism in an SSD,
the first rule of our unwritten contract is Request Scale: SSD clients should
issue large data requests or multiple concurrent requests. A small request scale
leads to low resource utilization and reduces immediate and sustainable
performance [71, 96].

3.2.2 Locality

Because flash chips do not allow in-place updates, an FTL must main-
tain a dynamic mapping between logical2 and physical pages. A natural
choice is a page-level mapping, which maintains a one-to-one mapping

1NCQ technology was proposed to allow sending multiple requests to an HDD so
the HDD can reorder them to reduce seek time. Modern SSDs employ NCQ to increase
the concurrency of requests.

2We call the address space exposed by the SSD the logical space; a unit in the logical
space is a logical page.
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between logical and physical pages. Unfortunately, such a mapping re-
quires a large amount of RAM, which is scarce due to its high price, rel-
atively high power consumption, and competing demands for mapping
and data caching [89]. With a page size of 2 KB, a 512-GB SSD would
require 2 GB of RAM.3 Having larger pages, such as those (> 4 KB) of
popular MLC flash, will reduce the required space. However, SLC flash,
which often has pages that are not larger than 2 KB, is still often used to
cache bursty writes because of its lower latency [50]. The use of SLC flash
increases the demand for RAM.

On-demand FTLs, which store mappings in flash and cache them in
RAM, reduce the RAM needed for mappings. The mapping for a trans-
lation is loaded only when needed and may be evicted to make room for
new translations. Locality is needed for such a translation cache to work;
some FTLs exploit only temporal locality [89], while others exploit both
temporal and spatial locality [98, 111, 112].

Thus the contract has a Locality rule: SSD clients should access with
locality. Workloads without locality can incur a poor immediate perfor-
mance because frequent cache misses lead to many translation-related
reads and writes [89, 98]. Poor locality also impacts sustainable perfor-
mance because data movement during garbage collection and wear-leveling
requires translations and mapping updates.

Locality is not only valuable for reducing required RAM for transla-
tions, but also for other purposes. For example, all types of SSDs are
sensitive to locality due to their data cache. In addition, for SSDs that
arrange flash chips in a RAID-like fashion, writes with good locality are
more likely to update the same stripe and the parity calculation can thus
be batched and written concurrently [158], improving performance.

32GB = (512GB/2KB) ⇤ 8bytes, where the 8bytes include 4bytes for each logical
and physical page number.
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3.2.3 Aligned Sequentiality

Another choice for reducing memory requirements is hybrid mapping [104,
111, 112, 128], in which part of the address space is covered by page-
level mappings and the rest by block-level mappings. Since one entry of
a block-level map can cover much more space than a page-level mapping,
the memory requirements are significantly reduced. For example, if 90%
of a 512-GB SSD (128 KB block) is covered by block-level mapping, the hy-
brid FTL only needs 233 MB.4 A hybrid FTL uses page-level mappings for
new data and converts them to block-level mappings when it runs out of
mapping cache. The cost of such conversions (also known as merges) de-
pends on the existing page-level mapping, which in turn depends on the
alignment and sequentiality of writes. The example in Figure 3.1 demon-
strates aligned and sequential writes and an example of the opposite. To
convert the aligned mapping to block-level, the FTL can simply remove
all page-level mappings and add a block-level mapping. To convert the
unaligned mapping, the FTL has to read all the data, reorder, and write
the data to a new block.

Due to the high cost of moving data, clients of SSDs with hybrid FTLs
should start writing at the aligned beginning of a block boundary and write se-
quentially. This Aligned Sequentiality rule does not a�ect immediate
performance since the conversion happens later, but violating this rule
degrades sustainable performance because of costly data movement dur-
ing the delayed conversion.

3.2.4 Grouping by Death Time

The death time of a page is the time the page is discarded or overwritten
by the host. If a block has data with di�erent death times, then there is a
time window between the first and last page invalidations within which

4233MB = (512GB⇥ 0.9/128KB+ 512GB⇥ 0.1/2KB)⇥ 8bytes.
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Figure 3.2: Demonstration of Grouping by Death Time. Data A and B
have di�erent death times. In the figure, Vertical locations of the data in the same group
are randomized to emphasize its irrelevance to this rule. Note that grouping by space is
not available in non-segmented FTLs [89, 98, 162].

both live and dead data reside in the block. We call such a time window a
zombie window and a block in a zombie window a zombie block. In general,
larger zombie windows lead to increased odds of a block being selected
for garbage collection and incurring costly data movement, as the FTL
must move the live data to a new block and erase the victim block.

Zombie windows can be reduced if data with similar death times are
placed in the same block [73, 82, 103, 130]. There are two practical ways to
achieve this. First, the host can order the writes, so data with similar death
times are gathered in the write sequence. Because many FTLs append
data to a log, the consecutively written data is physically clustered, as
demonstrated in Figure 3.2 (left). We call this grouping by order.

Second, the host can place di�erent death groups in di�erent portions
of space. This approach relies on logical space segmentation, which is
a popular technique in FTLs [104, 112, 128]. Because FTLs place data
written in di�erent segments to di�erent logs, placing death groups to
di�erent logical segments isolates them physically, as demonstrated in
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Figure 3.2 (right). We call this grouping by space. Grouping by order and
grouping by space both help to conform to the Grouping By Death Time
rule. Note that clients of segmented FTLs can group by order or space.
However, on non-segmented FTLs, grouping by space does not have any
e�ect.

The rule of grouping by death time is often misunderstood as separat-
ing hot and cold data [129, 147, 161], which essentially can be described
as grouping by lifetime. Note that two pieces of data can have the same
lifetime (i.e., hotness) but distant death times. The advice of separating
hot and cold data is inaccurate and misleading.

Grouping by death time does not a�ect immediate performance in
page-level FTLs or hybrid FTLs, because in both cases data is simply ap-
pended to the log block. Violation of this rule impacts sustainable perfor-
mance due to increasing the cost of garbage collection.

3.2.5 Uniform Data Lifetime

Flash cells can endure a limited number of program/erase (P/E) cycles
before wearing out [99, 122]. The number of P/E cycles is on the order of
103 P/E cycles for recent commercial SSDs [27, 120, 144] and is expected
to decrease in the future [116]. A cell that is worn out becomes unstable or
completely unusable. Uneven block wearout can lead to loss of the over-
provisioning area of an SSD, which is critical for performance. Severely
uneven wearout can lead to premature loss of device capacity.

To prevent uneven wear out, FTLs conduct wear-leveling, which can
be dynamic or static [66]. Dynamic wear-leveling evens the P/E count by
using a less-used block when a new block is needed. Static wear-leveling
is often done by copying data in a rarely-used block to a new location
so the block can be used for more active data. Static wear-leveling can be
done periodically or triggered with a threshold. Since static wear-leveling
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Immediate Performance Sustainable Performance
Type RS LC AL GP LT RS LC AL GP LT
Page X X X X X X
Hybrid X X X X

Table 3.1: The contract rules of on-demand page-level FTLs and hybrid
FTLs. RS: Request Scale, LC: Locality, AL: Aligned Sequentiality, GP: Grouping By
Death Time, LT: Uniform Data Lifetime. A check mark (X) indicates that the immediate
or sustainable performance of a particular type of FTL is sensitive to a rule.

incurs costly data movement, which interferes foreground tra�c and in-
creases the total wear of the device, it is preferable to avoid.

To reduce wear-leveling cost, we introduce the Uniform Lifetime rule:
clients of SSDs should create data with similar lifetimes. Data with relatively
long lifetimes utilize blocks for long periods, during which data with
shorter lifetimes quickly use and reduce the available P/E cycles of other
blocks, leading to uneven wearout. If client data have more uniform life-
times, blocks will be released for reuse after roughly the same amount
of time. Lack of lifetime uniformity does not directly impact immedi-
ate performance, but impacts sustainable performance as it necessitates
wear-leveling and leads to loss of capacity.

3.2.6 Discussion

The unwritten contract of SSDs is summarized in Table 3.1. Some rules in
the contract are independent, and others are implicitly correlated. For ex-
ample, Request Scale does not conflict with the other rules, as it specifies
the count and size of requests, while the rest of the rules specifies the ad-
dress and time of data operations. However, some rules are interdepen-
dent in subtle ways; for example, data writes with aligned sequentiality
imply good locality; but good locality does not imply aligned sequential-
ity.

The performance impact of rule violations depends on the character-
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istics of the FTL and the architecture of the SSD. For example, violating
the request scale rule can have limited performance impact if the SSD has
only one channel and thus is insensitive to request scale; however, the vi-
olation may significantly reduce performance on an SSD with many chan-
nels. Although we do not focus on quantifying such performance impact
in this dissertation, in Table 3.2 we present the empirical performance im-
pact of rule violations reported, either directly or indirectly, by existing
literature.

The fact that an SSD presents certain rules does not necessarily mean
that SSD clients can always comply. For example, an SSD may require
a client to group data with the same death time by order, but this re-
quirement may conflict with the durability needs of the client; specifi-
cally, a client that needs durability may frequently flush metadata and
data together that have di�erent death times. Generally, a client should
not choose an SSD with rules that the client violates. However, due to
the multi-dimensional requirements of the rules, such an SSD may not
be available. To achieve high performance in such an environment, one
must carefully study the workloads of clients and the reactions of SSDs.

3.3 Methodology

The contractors of an SSD are the applications and file systems, which
generate the SSD workload, i.e., a sequence of I/O operations on the logi-
cal space. Both applications and file systems play important roles in deter-
mining the I/O pattern. Application developers choose data structures
for various purposes, producing di�erent I/O patterns; for example, for
searchable data records, using a B-tree to layout data in a file can reduce
the number of I/O transfers, compared with an array or a linked list. File
systems, residing between applications and the SSD, may alter the ac-
cess pattern of the workload; for example, a log-structured file system
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Rule Impact Metric

Request Scale 7.2⇥, 18⇥ Read bandwidth A
10⇥, 4⇥ Write bandwidth B

Locality 1.6⇥ Average response time C
2.2⇥ Average response time D

Aligned Sequentiality 2.5⇥ Execution time E
2.4⇥ Erasure count F

Grouping by Death Time
4.8⇥ Write bandwidth G
1.6⇥ Throughput (ops/sec) H
1.8⇥ Erasure count I

Uniform Data Lifetime 1.6⇥ Write latency J

Table 3.2: Empirical Performance Impact of Rule Violations. This table
shows the max impact of rule violations reported, directly or indirectly, by each related
paper. A (from Figure 5 of [71]): 7.2⇥ and 18⇥ was obtained by varying the number
of concurrent requests and request size, respectively. B is the same as A, but for write
bandwidth. C (from Figure 11 of [89]): 1.6⇥ was obtained by varying translation cache
size and subsequently cache hit ratio. Thus it demonstrates the impact of violating the
locality rule, which reduces hit ratio. D (from Figure 9 of [162]) is similar to C. E and F
(from Figure 10(e) of [111]): 2.5⇥ and 2.4⇥ are obtained by varying the number of blocks
with page-level mapping in a hybrid FTL, which leads to di�erent amounts of merge op-
erations. G (from Figure 8(b) of [110]): it is obtained by running a synthetic benchmark
on ext4 for multiple times on a full SSD. H (from Figure 3(a) of [103]) and I (from
Figure 8(a) of [73]): the di�erence is between grouping and non-grouping workloads. J
(from Figure 12 of [66]): the di�erence is due to static wear-leveling activities.

can turn random writes of applications into sequential ones [137], which
may make workloads comply with the contract of HDDs.

How to analyze SSD behaviors? We run combinations of applications
and file systems on a commodity SSD, collect block traces and feed the
traces to our discrete-event SSD simulator, WiscSim.5 WiscSim allows us to
investigate the internal behaviors of SSDs. To the best of our knowledge,

5WiscSim has 10,000 lines of code for SSD simulation core. WiscSee, which includes
WiscSim, has 32,000 lines of code in total. It is well tested with 350 tests, including end-
to-end data integrity tests.



61

WiscSim is the first SSD simulator that supports NCQ [55, 89, 96, 107].
WiscSim is fully functional, supporting multiple mapping and page allo-
cation schemes, garbage collection, and wear-leveling. The input trace of
WiscSim is collected on a 32-core machine with a modern SATA SSD with
a maximum NCQ depth of 32 [20], which allows concurrent processing of
up to 32 requests. We use a 1-GB partition of the 480 GB available space,
which allows us to simulate quickly. Our findings hold for larger devices
as our analysis will demonstrate.

Why design a new simulator? We develop a new simulator instead of
extending an existing one (e.g., FlashSim [89, 107], SSDsim [96], and SSD
extension for DiskSim [55]). One reason is that most existing simulators
(FlashSim and SSDsim) do not implement discrete-event simulation6 [89,
96, 107], a method for simulating queuing systems like SSDs [135]. With-
out discrete-event simulation, we found it challenging to implement crit-
ical functionality such as concurrent request handling (as mandated by
NCQ). The second reason is that existing simulators do not have compre-
hensive tests to ensure correctness. As a result, we concluded that the
amount of work to extend existing platforms exceeded the implementa-
tion of a new simulator.

Why focus on internal metrics instead of end-to-end performance? Our
analysis is based not on end-to-end performance7, but on the internal
states that impact end-to-end performance. The internal states (e.g., cache
miss ratio, zombie block states, misaligned block states) are fundamental
sources of performance change. We have validated the correctness of the
internal states with 350 unit tests; some of the tests examine the end-to-

6They are not discrete-event simulations, even though the source code contains data
structures with name “event”.

7Our simulator does show reasonable end-to-end performance.
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end data integrity to ensure that all components (e.g., address translation,
garbage collection) work as expected.

What are the applications studied? We study a variety of applications,
including LevelDB (version 1.18) [22], RocksDB (version 4.11.2) [35], SQLite
(Roll Back mode and Write-Ahead-Logging mode, version 3.8.2) [41] and
the Varmail benchmark [13]. LevelDB is a popular NoSQL database based
on log-structured merge trees; log-structured merge trees are designed to
avoid random writes through log structuring and occasional compaction
and garbage collection. Its periodic background compaction operations
read key-value pairs from multiple files and write them to new files. RocksDB
is based on LevelDB but optimizes its operations for SSDs by (among
other things) increasing the concurrency of its compaction operations.
SQLite is a popular B-tree based database widely used on mobile devices,
desktops and cloud servers. The default consistency implementation is
roll-back journaling (hereafter refer to as RB), in which a journal file, con-
taining data before a transaction, is frequently created and deleted. More
recent versions of SQLite also support write-ahead logging (hereafter re-
ferred to as WAL), in which a log file is used to keep data to be committed
to the database. The WAL mode typically performs less data flushing and
more sequential writes. Varmail is a benchmark that mimics the behavior
of email servers which append and read many small (tens of KBs) files us-
ing 16 threads. SSDs are often used to improve the performance of such
workloads.

Why are these applications chosen? Through these applications, we
examine how well application designs comply with the SSD contract in
interesting ways. With the collection of databases, we can study the dif-
ferences of access patterns between essential data structures: B-tree and
LSM-Tree. We can also study the e�ectiveness of SSD optimizations by
comparing LevelDB and RocksDB. Additionally, we can investigate di�er-
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ences between mechanisms implementing the same functionality – imple-
menting data consistency by Write-Ahead Logging and Roll Back journal-
ing in SQLite. Besides databases, we choose Varmail to represent a large
class of applications that operate on multiple files, flush frequently, and
request small data. These applications perform poorly on HDDs and de-
mand SSDs for high performance. The applications that we chose cover
a limited space of the population of existing applications, but we believe
that our findings can be generalized and the tools we designed are helpful
in analyzing other applications.

What access patterns are studied? We study a variety of usage pat-
terns for each application. These patterns include sequential, random
insertions and queries, as well as their mix, for all database applications.
Sequential and random queries are conducted on sequentially and ran-
domly inserted databases, respectively. LevelDB and RocksDB are driven
by their built-in benchmark db_bench, using 16 byte keys and 100 byte val-
ues. SQLite is driven by a simple microbenchmark that we developed to
perform basic operations; we commit a transaction after every 10 oper-
ations. The SQLite database has the same key and value sizes as Lev-
elDB and RocksDB. The exact number of operations (insertions, updates
or queries) performed on these database applications depend on the goal
of the experiment. For example, to evaluate the Uniform Data Lifetime
rule, we insert and update key-value records for hundreds of millions of
times. For Varmail, we study small, large, and mixed (i.e., both small
and large) collections of files, which reflect small, large, and mixed email
workloads on a single server. We limit the memory usage of each appli-
cation with Linux control groups [23] to avoid large cache e�ects.

What file systems are studied? We study two traditional file systems
(ext4 and XFS) and a newer one that is designed for SSDs (F2FS), all on
Linux 4.5.4. Both ext4 and XFS are among the most mature and popular
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Linux file systems. Although originally designed for HDDs, the fact that
they are stable and well-established has caused them to be widely used
for SSDs [3, 14]. F2FS (Flash-Friendly File System) is a log-structured file
system that is claimed to be optimized for modern SSDs. F2FS is a part
of the mainline Linux kernel and is under active development. In our
evaluation, we enable discard (also known as trim) support for all file
systems, as suggested by some major cloud providers [3, 14].

How to evaluate rule violations? We evaluate how well the contractors
conform to each rule with the help of WiscSee. WiscSee automatically exe-
cutes, traces and analyzes combinations of applications and file systems.
To examine request scale and uniform data lifetime, WiscSee analyzes the
traces directly; for locality, aligned sequentiality, and grouping by death
time, WiscSee feeds the traces through WiscSim as these items require un-
derstanding the internal states of the SSD. The best metrics for evaluations
are often suggested by the rule. For example, to evaluate locality we ex-
amine miss ratio curves [155, 156], whereas to understand death time, we
introduce a new metric, zombie curves.

We evaluate rules individually, which has several benefits. First, it
makes the analysis relevant to a wide spectrum of FTLs. An FTL is sensi-
tive to a subset of rules; understanding each rule separately allows us to
mix and match the rules and understand new FTLs. Second, it prevents
the e�ects of rules from confounding each other. For example, analyzing
a workload on an FTL that is sensitive to two rules can make it di�cult to
determine the source of performance degradation.

How to identify the root of a violation? Although WiscSee shows the
performance problems, it does not directly reveal their root causes. How-
ever, using the hint from WiscSee, we can find out their causes by exam-
ining the internals of applications, file systems, and the SSD simulator.
Because the source code of the applications, file systems and WiscSim are
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Figure 3.3: Request Scale - Distributions of Request Size and NCQ
Depth. Data of di�erent applications is shown in columns. The top (read) and bot-
tom (write) panels show the read and write results, respectively; the X axis indicates I/O
patterns. Inside each panel, the top and bottom border of the box show the third and
first quartile; the heavy lines in the middle indicate the medians. The whiskers indicate
roughly how far data points extend [32]. Note that Linux block layer splits requests if
they exceed a maximum size limit (1280 KB in our case) [24].
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all available, we can understand them by freely tracing their behaviors or
making experimental changes. For example, with the information pro-
vided by applications and file systems, we can investigate WiscSim and
find the semantics of garbage data, why the garbage data was generated,
and who is responsible.

3.4 The Contractors

In this section, we present our observations based on vertical analysis of
applications, file systems, and FTLs. The observations are categorized
and labeled by their focuses. Category App presents general behaviors
and di�erences across applications. Category FS presents general behav-
iors and di�erences across file systems.

We will show, by analyzing how well each workload conforms to or
violates each rule of the contract, that we can understand its performance
characteristics. Additionally, by vertical analysis of these applications and
file systems with FTLs, we hope to provide insights about their interac-
tions and shed light on future designs in these layers.

3.4.1 Request scale

We evaluate and pinpoint request scale violations from applications and
file systems by analyzing block traces, which include the type (read, write,
and discard), size, and time (issue and completion) of each request. Since
the trace is collected using a small portion of a large SSD, the traced be-
haviors are unlikely to be a�ected by SSD background activities, which
should occur at a negligible frequency.

Figure 3.3 shows the distributions of request sizes and NCQ depths.
As we can see from the figures, the request scale varies significantly be-
tween di�erent applications, as well as file systems. The di�erence be-
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tween traditional file systems (i.e. ext4 and XFS) and log-structured file
system (i.e. F2FS) is often significant.

Observation #1 (App): Log structure increases the scale of write size

for applications, as expected. LevelDB and RocksDB are both log-structured,
generating larger write requests than SQLiteRB, SQLiteWAL, and Var-
mail, in which write requests are limited by transaction size (10 insertions
of 116-byte key-value pairs) or flush size (average 16 KB). However, the of-
ten large write amplification introduced by a log structure is harmful for
SSDs [109]. We do not discuss this issue here as we focus on SSD interface
usage.

Observation #2 (App): The scale of read requests is often low. Un-
like write requests, which can be bu�ered and enlarged, the scale of read
requests is harder to increase. Small requests, such as the database entries
used in our evaluation, cannot be batched or concurrently issued due to
dependencies. Users may need to query one key before another, or the
database may need to read an index before reading data from the loca-
tion given by the index. Figure 3.3a also shows that LevelDB issues larger
requests than RocksDB because RocksDB disables Linux’s default reada-
head behavior so the OS cache contains only explicitly requested data.

Observation #3 (App): SSD-conscious optimizations have room for

improvements. Neither RocksDB, which is optimized for SSDs, nor Lev-
elDB is able to saturate device resources. Figure 3.3b shows that RocksDB
is only able to use a few more NCQ slots than LevelDB, despite RocksDB’s
use of multi-threaded compaction to increase SSD parallelism [35].8 We
do see the number of writing processes increase, but the write concur-
rency does not increase and device bandwidth is underutilized. For ex-
ample, Figure 3.4 shows a snippet of NCQ depth over time on ext4 for
compaction operations in LevelDB and RocksDB. RocksDB does not ap-
pear to use NCQ slots more e�ciently than LevelDB during compaction.

8We have set the number of compaction threads to be 16.
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Figure 3.4: Request Scale - NCQ Depths During Compaction. The lower
data points are from read requests; higher ones are from writes.

One obvious optimization would be to perform reads in parallel, as the
figure shows that RocksDB reads several files serially, indicated by the
short spikes. The relatively higher queue depth shown in Figure 3.3b is
due to higher concurrency during flushing memory contents.

Observation #4 (App): Frequent data barriers in applications limit

request. scale. Data barriers are often created by synchronous data-
related system calls such as fsync() and read(), which LevelDB, RocksDB,
SQLite and Varmail all frequently use. Since a barrier has to wait for
all previous requests to finish, the longest request wait time determines
the time between barriers. For example, the writes in Figure 3.4 (higher
depth) are sent to the SSD (by fdatasync()) at the same time but com-
plete at di�erent times. While waiting, the SSD bandwidth is wasted. As
a result, frequent application data barriers significantly reduce the num-
ber of requests that can be concurrently issued. Although the write data
size between barriers in LevelDB and RocksDB is about 2 MB on average
(which is much larger than the sizes of SQLiteRB, SQLiteWAL, and Var-
mail), barriers still degrade performance. As Figure 3.4 shows, the write
and read barriers frequently drain the NCQ depth to 0, underutilizing the
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SSD.
Observation #5 (FS): Linux bu�ered I/O implementation limits re-

quest scale. Even though LevelDB and RocksDB read 2 MB files dur-
ing compactions, which are relatively large reads, their request scales to
the SSD are still small. In addition to previously mentioned reasons, the
request scale is small because the LevelDB compaction, as well as the
RocksDB compaction from the first to the second level (“the only com-
paction running in the system most of the time” [36]), are single-threaded
and use bu�ered reads.

The Linux bu�ered read implementation splits and serializes requests
before sending to the block layer and subsequently the SSD. If bu�ered
read() is used, Linux will form requests of read_ahead_kb (default: 128)
KB, send them to the block layer and wait for data one at a time. If
bu�ered mmap() is used, a request, which is up to read_ahead_kb KB, is
sent to the block layer only when the application thread reads a memory
address that triggers a page fault. In both bu�ered read() and mmap(),
only a small request is sent to the SSD at a time, which cannot exploit the
full capability of the SSD. In contrast to bu�ered reads, direct I/O pro-
duces much larger request scale. The direct I/O implementation sends
application requests in whole to the block layer. Then, the block layer
splits the large requests into smaller ones and sends them asynchronously
to the SSD.

Application developers may think reading 2 MB of data is large enough
and should achieve high performance on SSDs. Surprisingly, the per-
formance is low because the request scale is limited by a seemingly ir-
relevant setting for readahead. To mitigate the problem, one may set
read_ahead_kb to a higher value. However, such setting may force other
applications to unnecessarily read more data. In addition, the request
to the block layer is limited up to a hard-coded size (2 MB), to avoid
pinning too much memory on less capable machines. We believe this
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Figure 3.5: Request Scale - Ratio of Discard Operations. The discard ratios
of read workloads are not shown because they issue a negligible number of discards (or
none at all).

size should be tunable so that one can achieve larger request scale on
more capable machines and storage devices. Other ways to avoid the
bu�ered read problem include reading by multiple threads or by small
asynchronous I/Os. However, these approaches unnecessarily compli-
cate programming. We believe that the Linux I/O path should be re-
examined to find and fix similar problems when we transit from the HDD
to the SSD era.

Observation #6 (FS): Frequent data barriers in file systems limit re-

quest scale. File systems also issue barriers, which are often caused by
applications and a�ect all data in the file system [74, 133]. Journaling
in ext4 and XFS, often triggered by data flushing, is a frequent cause of
barriers. Checkpointing in F2FS, which is often triggered by fsync-ing di-
rectories for consistency in LevelDB, RocksDB, and SQLiteRB, suspends
all operations. Barriers in file systems, as well as in applications (Obser-
vation 4), limit the benefit of multi-process/thread data access.

Observation #7 (FS): File system log structuring fragments applica-

tion data structures. F2FS issues smaller reads and unnecessarily uses
more NCQ slots than ext4 and XFS for sequential queries of SQLiteRB
and SQLiteWAL. This performance problem arises because F2FS breaks
the assumption made by SQLiteRB and SQLiteWAL that file systems keep
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the B-tree format intact. For SQLiteRB, F2FS appends both the database
data and the database journal to the same log in an interleaved fashion,
which fragments the database. For SQLiteWAL, F2FS also breaks the B-
tree structure, because F2FS is log-structured, causing file data layout in
logical space to depend on the time of writing, not its o�set in the file.
Due to the broken B-tree structure, F2FS has to read discontiguous small
pieces to serve sequential queries, unnecessarily occupying more NCQ
slots, while ext4 and XFS can read from their more intact B-tree files.

When the number of available NCQ slots is limited or the number of
running applications is large, workloads that require more NCQ slots are
more likely to occupy all slots, causing congestion at the SSD interface. In
addition, for the same amount of data, the increased number of requests
incur more per-request overhead.

Observation #8 (FS): Delaying and merging slow non-data opera-

tions could boost immediate performance. Non-data discard opera-
tions occupy SSD resources, including NCQ slots, and therefore can re-
duce the scale of more immediately-valuable read and write operations.
We present the ratio of discard operations to all operations for all write
workloads in Figure 3.5. As we can see, ext4 and XFS often issue more
discard requests than F2FS, because ext4 and XFS both immediately dis-
card the logical space of a file when it is deleted. SQLiteWAL reuses its
write-ahead log file instead of deleting it and thus incurs very few dis-
card operations. On the other hand, SQLiteRB and Varmail frequently
create and delete small files, leading to many small discard operations.
Such behavior may lead to severe performance degradation on SSDs that
do not handle discard operations quickly (a common problem in modern
SSDs [47, 94]). In contrast to ext4 and XFS, F2FS attempts to delay and
merge discard operations, which boosts immediate performance by re-
ducing the frequency and increasing the size of discard operations. How-
ever, later we will show that this (sometimes infinite) delay in performing
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discards can significantly degrade sustainable performance.

3.4.2 Locality

We study locality by examining miss ratio curves [155, 156], obtained
from WiscSim with an on-demand page-level mapping scheme based on
DFTL [89]. We revise the cache replacement policy of the mapping scheme
to be aware of spatial locality, as it is a common and important attribute of
many workloads [81, 155, 156]. In this FTL, one translation page contains
entries that cover 1 MB of contiguous logical space. Our replacement pol-
icy prefers to evict clean entries rather than dirty ones. Our locality study
here is applicable in general, as locality is a valuable property in storage
systems.

Figure 3.6 presents the miss ratios curves. Columns indicate di�er-
ent combinations of applications and read/write modes. For example,
leveldb.read and level.write indicate LevelDB query and insertion work-
loads, respectively. Rows indicate workload I/O patterns. The x-axis
shows the fractions of logical space that can be covered by the di�erent
cache sizes. Intuitively, small and distant requests tend to have poor local-
ity and thus higher miss ratios. As we can see for writes, log-structured
applications (LevelDB, RocksDB, and SQLiteWAL) have better locality
than others, as log-structured writing produces a more sequential I/O
pattern. Read locality, on the other hand, is highly dependent on the pat-
tern of requests.

Observation #9 (App): SSDs demand aggressive and accurate prefetch-

ing. RocksDB queries (rocksdb.read) experience much higher miss
ratios than LevelDB, because RocksDB disables Linux’s readahead and
thus issues much smaller requests (as discussed in Section 3.4.1). The
high miss ratio, as well as low request scale, leads to low utilization of
the SSD. On the other hand, LevelDB enables readahead, which naively
prefetches data nearby; the prefetched data could go unused and unnec-
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essarily occupy host memory. We believe that, with powerful SSDs, ag-
gressive and accurate prefetching should be used to boost SSD utilization
and application performance.

Observation #10 (FS): Aggressively reusing space improves locality.

XFS achieves the best locality on all workloads, because XFS aggressively
reuses space from deleted files by always searching free space from the
beginning of a large region (XFS allocation group). In contrast, other
file systems delay reuse. F2FS delays discarding space of deleted files
(Observation 8) and therefore delays their reuse; ext4 prefers to allocate
new space near recent allocated space, which implicitly avoids immediate
space reuses.

Observation #11 (FS): Legacy policies could break locality. For the
Varmail write workload, ext4 has much higher miss ratios than XFS and
F2FS, because (ironically) an allocation policy called Locality Grouping
breaks locality. Locality grouping was originally designed to optimize
small file handling for HDDs by storing them in globally shared preallo-
cated regions to avoid long seeks between small files [58, 93]. However,
the small writes of Varmail in fact spread across a large area and increase
cache misses. Data is spread for several reasons. First, ext4 pre-allocates a
group of 2 MB regions (a locality group) for each core repeatedly as they
are filled. Second, the large number of CPU cores in modern machines
lead to a large number of locality groups. Third, writes can go to any
place within the locality groups depending on which core performs the
write. The combination of these factors leads to small and scattered write
requests for ext4 running Varmail. Similarly to Varmail, SQLiteRB read,
which also frequently creates and deletes files, su�ers slightly degraded
performance as a result of locality grouping.

Observation #12 (FS): Log structuring is not always log-structured.

For the Varmail write workload, F2FS often su�ers from larger miss ratios
than XFS, despite its log-structured design which should lead to good
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spatial locality and thus very low miss ratios. F2FS has high miss ratios
because it frequently switches to a special mode called in-place-update
mode, which issues many small, random writes over a large portion of
the device. The reason for F2FS to switch to in-place-update mode is to
reduce the metadata overhead of keeping track of new blocks. In-place-
update mode is triggered if the following two conditions are satisfied.
First, flush size must be less than 32 KB. Second, the workload must be
overwriting data. Surprisingly, despite its append-only nature, Varmail
still triggers F2FS’s in-place update. It satisfies the first condition easily,
because it flushes data in random small quantities (16 KB on average).
More subtly, while Varmail is only appending to each file, if the previous
append to the file only partially occupies its last sector (4 KB), the current
append operation will read, modify and overwrite the last sector of the
file, satisfying the second condition. We call such behavior partial sector
use. Because the two conditions are satisfied, partial sector use in Varmail
triggers in-place-update mode of F2FS, which results in small, scattered
write requests among many previously written files. It is easy to see how
such behavior can also break the Aligned Sequentiality rule, which we
will discuss in Section 3.4.3. Note that SQLite can also incur partial sector
use since its default operation unit size is 1 KB. 9

Observation #13 (FS): Log structuring can spread data widely across

a device and thus reduce locality. F2FS has the highest miss ratios for
most SQLiteRB and SQLiteWAL query workload. This poor cache perfor-
mance arises because F2FS spreads database data across logical space as
it appends data to its log and it breaks the B-tree structure of SQLite, as
we have mentioned in Section 3.4.1.
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3.4.3 Aligned Sequentiality

We study aligned sequentiality by examining the unaligned ratio, which
is the ratio of the size of data in the SSD with misaligned mappings (see
Figure 3.1) to total application file size. The data pages with misaligned
mapping are potential victims of expensive merging. The unaligned ratio
is obtained using a hybrid mapping scheme [128] in WiscSim. Requests
are not striped across channels in our multi-channel implementation of
this scheme as striping immediately fragments mappings.

Flash block size is an important factor that a�ects aligned sequential-
ity. If the block size is large, logical writes must be aligned and sequential
in a wider logical area in order to maintain logical-to-physical address
alignment. Therefore, smaller block sizes make an SSD less sensitive to
alignment. Unfortunately, block sizes tend to be large [44, 45]. We analyze
di�erent block sizes to understand how it impacts di�erent combinations
of applications and file systems.

Figure 3.7 shows the unaligned ratios of di�erent combinations of ap-
plications, I/O patterns, file systems and block sizes. Read workloads
do not create new data mappings and thus are not shown. As we can
see, applications with large log-structured files (LevelDB and RocksDB)
often have lower unaligned ratios than other applications. In addition,
unaligned ratios can be greater than 1, indicating that there is more un-
aligned data inside the SSD than the application file data. The figure also
shows that larger block sizes lead to higher unaligned rations.

Observation #14 (App): Application log structuring does not guar-

antee alignment. The log-structured LevelDB and RocksDB can also
have high unaligned ratios, despite writing their files sequentially. On
ext4 and XFS, the misalignment comes from aggressive reuse of space
from deleted files, which can cause the file system to partially overwrite

9Beginning with SQLite version 3.12.0 (2016-03-29), the default unit size has been
increased to 4 KB.



78

a region that is mapped to a flash block and break the aligned mapping
for that block. F2FS often has smaller unaligned ratios than ext4 and XFS
because it prefers to use clean F2FS segments that contain no valid data,
where F2FS can write sequentially; however, there is still misalignment
because if a clean F2FS segment is not available, F2FS triggers threaded
logging (filling holes in dirty segments).

Observation #15 (FS): Log-structured file systems may not be as se-

quential as commonly expected. Except for sequential insertion (seq/S)
on SQLiteWAL, both SQLiteRB and SQLiteWAL have very high unaligned
ratios on F2FS, which is supposed to be low [110]. For SQLiteRB, F2FS
sees high unaligned ratios for two reasons. First, in every transaction,
SQLiteRB overwrites the small journal file header and a small amount of
data inside the database file. Both cases trigger in-place updates, which
break sequentiality. Second, the FTL has to keep a large amount of ghost
data that is deleted by the application but not discarded by the file system,
which is one of the major reasons that unaligned ratio can be greater than
1. Ghost data is produced because F2FS delays discard operations until
an F2FS segment (2 MB) contains no valid application data and thus be-
comes “clean”. However, SQLiteRB’s valid data is spread across many
segments, which are considered “dirty” by F2FS. F2FS does not clean
these dirty segments as it would interfere with current application tra�c.
Thus, many segments are not discarded, leaving a large amount of ghost
data. The write pattern of SQLiteWAL is di�erent, however. The com-
bination of SQLiteWAL and F2FS violates aligned sequentiality because
merging data from the write-ahead log to the database also incurs small
discrete updates of the database file, triggering in-place updates in F2FS;
it also has a large amount of unaligned ghost data due to the delayed dis-
carding of dirty F2FS segments.

Observation #16 (FS): sequential+ sequential 6= sequential. Surpris-
ingly, the append-only Varmail with log-structured F2FS produces non-
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sequential writes and has high unaligned ratios. This non-sequentiality is
caused by partial-sector usage (discussed in Section 3.4.2) which triggers
F2FS in-place update mode, and F2FS produces ghost data from delayed
discards. Varmail has high unaligned ratios on ext4 and XFS as it appends
to random small files.

3.4.4 Grouping by Death Time

We introduce zombie curve analysis to study Grouping By Death Time. We
set the space over-provisioning of WiscSim to be infinitely large and ran
workloads on it for a long time. While running, we periodically take a
snapshot of the valid ratios of the used flash blocks, which is the ratio of
valid pages to all pages inside a block. The valid ratios provide useful
information about zombie (partially valid) blocks, which are the major
contributors to SSD garbage collection overhead. We find that the dis-
tribution of valid ratios quickly reaches a stable state. The zombie curve
formed by stable sorted valid ratios can be used to study how well each
file system groups data by death time. The WiscSim FTL used for this
study is based on DFTL [89], with added support for logical space seg-
mentation and multiple channels.

Figure 3.8 presents the zombie curve for each workload. An ideally
grouped workload would be shown as a vertical cli�, indicating zero
zombie blocks. In such a case, the garbage collector can simply erase and
reuse blocks without moving any data. A workload that grossly violates
grouping by death time has a curve with a large and long tail, which
is more likely to incur data movement during garbage collection. This
large and long tail arises because garbage collection must move the data
in zombie blocks to make free space if available flash space is limited.
Analysis by zombie curves is generally applicable because it is indepen-
dent of any particular garbage collection algorithm or parameter.

Observation #17 (App): Application log structuring does not reduce
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garbage collection. It has long been believed that application-level log
structure reduces garbage collection, but it does not. As shown in Fig-
ure 3.8, LevelDB and RocksDB have large tails (gradual slopes), especially
for rand/L and mix patterns. Sequential writes within individual files,
which are enabled by log structuring, do not reduce garbage collection
overhead as indicated by the zombie curves.

The fundamental requirement to reduce garbage collection overhead
is to group data by death time, which both LevelDB and RocksDB do not
satisfy. First, both LevelDB and RocksDB have many files that die at dif-
ferent times because compactions delete files at unpredictable times. Sec-
ond, data of di�erent files are often mixed in the same block. When Lev-
elDB and RocksDB flush a file (about 2 MB), the file data will be striped
across many channels to exploit the internal parallelism of the SSD [71].
Since each block receives a small piece of a file, data from multiple files
will be mixed in the same flash block. Our 128-KB block in the simulation
may mix data from two files since the 2-MB file data is striped across 16
channels and each channel receives 128 KB of data, which may land on
two blocks. As blocks are often bigger in modern SSDs, more files are
likely to be mixed together. Third, files flushed together by foreground
insertions (from memory to files) and background compactions are also
mixed in the same block, because the large application flush is split into
smaller ones and sent to the SSD in a mixed fashion by the Linux block
layer.

Another problem of LevelDB and RocksDB is that they both keep ghost
data, which increases garbage collection overhead. Even if users of Lev-
elDB and RocksDB delete or overwrite a key-value pair, the pair (i.e.,
ghost data) can still exist in a file for a long time until the compaction
process removes it. Such ghost data increases the tail size of a zombie
curve and the burden of garbage collection.

Observation #18 (FS): Applications often separate data of di�erent
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death time and file systems mix them. Both ext4 and XFS have thin long
tails for SQLiteRB and SQLiteWAL. These long tails occur because ext4
and XFS mix database data with the database journal and write-ahead
log for SQLiteRB and SQLiteWAL, respectively. Since database journal
and write-ahead log die sooner than the database data, only the database
data is left valid in zombie blocks. Note that our experiments involve only
up to two SQLite instances. Production systems running many instances
could end up with a fat, long tail.

Observation #19 (FS): All file systems typically have shorter tails

with segmented FTLs than they have with non-segmented FTLs, suggest-

ing that FTLs should always be segmented. Segmentation in logical
space enables grouping by space. Since file systems often place di�erent
types of data to di�erent locations, segmentation is often beneficial. The
longer tail of non-segmented FTL is due to mixing more data of di�er-
ent death times, such as application data and the file system journal. The
di�erence between segmented and non-segmented FTLs are most visible
with SQLiteRB.

Observation #20 (FS): All file systems fail to group data from di�er-

ent directories to prevent them from being mixed in the SSD. Data be-
longing to di�erent users or application instances, which are often stored
in di�erent file system directories, usually have di�erent death times. For
example, one database may be populated with long-lived data while an-
other is populated with short-lived data. Linux ext4 fails to group data
from di�erent directories because its locality group design (Section 3.4.2)
mixes all small files (â‰¤ 64 KB) and its stream optimization appends
chunks of large files (> 64KB) next to each other (stream optimization
was originally designed to avoid long seeks while streaming multiple files
on HDDs) [93]. XFS groups data from di�erent directories in di�erent
regions, known as allocation groups. However, data from di�erent di-
rectories may still end up mixed when allocation groups overflow or XFS
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runs out of empty allocation groups. F2FS tries to isolate di�erent types
of data, such as file data, file inodes, directory entries, and directory in-
odes. Unfortunately, F2FS mixes data from all files (except files with a few
specific extensions such as mp3) written to the file system into a single log
regardless of their parent directories, grossly violating grouping by death
time.

Observation #21 (FS): F2FS sacrifices too much sustainable perfor-

mance for immediate performance. F2FS exhibits a much larger tail than
ext4 and XFS for SQLiteRB, SQLiteWAL, Varmail, and non-sequential pat-
terns of LevelDB and RocksDB. This poor behaviors materializes because
F2FS delays discards, sometimes infinitely, of data that is already over-
written or deleted by applications, whereas ext4 and XFS discard them
immediately, as discussed in Section 3.4.1 and 3.4.3. We determine that
F2FS sacrifices sustainable performance for immediate performance be-
cause the un-discarded data becomes ghost data which produces a large
number of zombie blocks and increases garbage collection overhead. The
large amount of zombie blocks makes the pair of SQLiteRB and F2FS very
sensitive to SSD garbage collection capabilities. On SSDs with fast discard
operations this trade-o� could be counterproductive, because it may not
improve immediate performance but could degrade sustainable perfor-
mance significantly.

3.4.5 Uniform Data Lifetime

The uniform data lifetime rule is for reducing flash cell program/erase
variance and wear-leveling cost. The exact cost of wear-leveling varies
significantly between di�erent algorithms and architectures [66, 99, 122].
Data lifetime variance is the fundamental source of program/erase vari-
ance and wear-leveling cost.

We use the write count of logical pages to estimate data lifetime. The
lifetime of a piece of data starts when it is written to a logical page address,
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and ends when the physical page address is discarded or overwritten by
new data. If one logical page address has many more writes than another
during the same time period, the data written on the former logical page
address has much shorter lifetime than the later on average. Therefore, a
higher write count on a logical page address indicates that the address is
written with data of shorter lifetime and with more data.

Since program/erase variance is a long-term e�ect, we run our appli-
cations much longer to gather statistics. Each combination of application
and file system generates at least 50 times and up to 800 times more data
tra�c than the logical capacity. Based on our analysis, we believe our
results are representative even for much larger tra�c sizes.

In Figure 3.9, we show the logical space write count of di�erent com-
binations of applications and file systems. For ease of comparison, the x-
axis (logical pages) is sorted by write count and normalized to the written
area. Ideally, the curve should be flat. We can see that log-structured ap-
plications are more robust than others across di�erent file systems. Also,
small portions of the logical space tend to be written at vastly higher or
lower frequencies than the rest.

Observation #22 (FS): Application and file system data lifetimes dif-

fer significantly. The write counts of application data and the file system
journal often vary significantly. For example, when running SQLiteWAL
(rand/L) on XFS, the database data is written 20 times more than the jour-
nal on average (the flat line on the right side of the curve is the journal).
In addition, when running Varmail (rand/L) on ext4, the journal is on
average written 23 times more than Varmail data. The most frequently
written data (the journal superblock) is written 2600 times more than av-
erage Varmail data. Such a di�erence can lead to significant variance in
flash cell wear.

F2FS shows high peaks on LevelDB, RocksDB, and SQLiteRB, which
is due to F2FS checkpointing. F2FS conducts checkpointing, which writes
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to fixed locations (checkpoint segment, segment information table, etc.),
when applications call fsync on directories. Since LevelDB, RocksDB and
SQLiteRB call fsync on directories for crash consistency, they frequently
trigger F2FS checkpointing, which writes to fixed locations. Such high
peaks are particularly harmful because the large amount of short-lived
tra�c frequently programs and erases a small set of blocks, while most
blocks are held by the long-lived data.

Observation #23 (FS): All file systems have allocation biases. Both
ext4 and XFS prefer to allocate logical space from low to high addresses
due to their implementations of space search. F2FS prefers to put user
data at the beginning of logical space and node data (e.g. inode, direc-
tory entries) at the end. These biases could lead to significant lifetime
di�erences. For example, on Varmail (seq/S) ext4 touches a large area
but also prefers to allocate from low addresses, incurring significant data
lifetime variance.

Observation #24 (FS): In-place-update file systems preserve data life-

time of applications. Both ext4 and XFS show high peaks with SQLiteRB
and SQLiteWAL because SQLite creates data of di�erent lifetimes and
both file systems preserve it. The high peak of SQLiteRB is due to over-
writing the database header on every transaction. For SQLiteWAL, the
high peak is due to repeatedly overwriting the write-ahead log. The large
portion of ext4 logical space with low write count is the inode table, which
is initialized and not written again for this workload (sqlite-wal col-
umn). The inode table of SQLiteRB is also only written once, but it ac-
counts for a much smaller portion because SQLiteRB touches more logical
space (as discussed in Section 3.4.2).

3.4.6 Discussion

By analyzing the interactions between applications, file systems and FTLs,
we have learned the following lessons.
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Being friendly to one rule is not enough: the SSD contract is multi-
dimensional. Log-structured file systems such as F2FS are not a silver
bullet. Although pure log-structured file systems conform to the aligned
sequentiality rule well, it su�ers from other drawbacks. First, it breaks
apart application data structures, such as SQLite’s B-tree structure, and
thus breaks optimizations based on the structures. Second, log-structured
file systems usually mix data of di�erent death times and generate ghost
data, making garbage collection very costly.

Although not perfect, traditional file systems still perform well upon
SSDs. Traditional file systems have HDD-oriented optimizations that
can violate the SSD contract. For example, locality grouping and stream
optimization in ext4 were designed to avoid long seeks. Unfortunately,
they now violate the grouping by death time rule of the SSD contract as
we have shown. However, these traditional file systems continue to work
well on SSDs, often better than the log-structured F2FS. This surprising
result occurs because the HDD unwritten contract shares some similarity
with the SSD contract. For example, HDDs also require large requests
and strong locality to achieve good performance.

The complex interactions between applications, file systems, and FTLs
demand tooling for analysis. There are countless applications and dozens
of file systems, all of which behave di�erently with di�erent inputs or
configurations. The interactions between layers are often di�cult to un-
derstand and we have often found them surprising. For example, running
append-only Varmail on log-structured F2FS produces non-sequential pat-
terns. To help deal with the diversity and complexity of applications and
file systems, we provide an easy-to-use toolkit, WiscSee, to simplify the
examination of arbitrary workloads and aid in understanding the per-
formance robustness of applications and file systems on di�erent SSDs.
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Practically, WiscSee could also be used to find the appropriate provision-
ing ratio before deployment, using visualizations such as the zombie curves.

Myths spread if the unwritten contract is not clarified. Random writes
are often considered harmful for SSDs because they are believed to in-
crease garbage collection overhead [67, 70, 110, 121]. As a result, pes-
simistic views have spread and systems are built or optimized based on
this assumption [35, 53, 68, 108].

We advocate an optimistic view for random writes. Random writes of-
ten show low sustainable performance because benchmarks spread writes
across a large portion of the logical space without discarding them and
e�ectively create a large amount of valid data without grouping by death
time [67, 106, 134], which would show as a large tail in our zombie curve.
However, random writes can perform well as long as they produce a good
zombie curve so that SSDs do not need to move data before reusing a
flash block. For example, random writes perform well if they spread only
across a small logical region, or data that is randomly written together
is discarded together to comply with the rule of grouping by death time.
Essentially, write randomness is not correlated with the rule of grouping
by death time and garbage collection overhead.

Sequential writes, often enabled by log structure, are believed to re-
duce garbage collection overhead inside SSDs. Sequential writes across
a large logical space, as often produced by benchmarks, show high sus-
tainable performance because data that is written together will be later
overwritten at the same time, implicitly complying with the rule of group-
ing by death time. However, as we have observed, log-structured writes
in applications such as LevelDB and RocksDB often do not turn into re-
peated sequential writes across a large logical space, but sporadic sequen-
tial writes (often 2 MB) at di�erent locations with data that die at di�erent
times. These writes violate the rule of grouping by death time and do not
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help garbage collection. In addition, log-structured file systems, such as
F2FS, may not produce large sequential writes as we have often observed.

We advocate dropping the terms “random write” and “sequential write”
for discussing SSD workloads regarding garbage collections. Instead, one
should study death time and use zombie curves as a graphic tool to char-
acterize workloads. The terms “random” and “sequential” are fine for
HDDs as HDD performance is impacted only by the characteristic of two
consecutive accesses [143]. However, SSDs are very di�erent as their per-
formance relies also on accesses that are long before the most recent ones.
Such out-of-date and overly simplified terms bring misconceptions and
suboptimal system designs for SSDs.

3.5 Conclusions

Due to the sophisticated nature of modern FTLs, SSD performance is a
complex subject. To better understand SSD performance, we formalize
the rules that SSD clients need to follow and evaluate how well four ap-
plications (one with two configurations) and three file systems (two tra-
ditional and one flash-friendly) conform to these rules on a full-function
SSD simulator that we have developed. This simulation-based analysis
allows us to not only pinpoint rule violations, but also the root causes in
all layers, including the SSD itself. We have found multiple rule violations
in applications, file systems, and from the interactions between them. We
believe our analysis here can shed light on design and optimization across
applications, file systems, and FTLs; the tool we have developed could
benefit future SSD workload analysis.
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4

Exploiting the SSD Contract

In our previous studies, we have found many violations to the unwritten
contract of SSDs. As a result, a question arises: how can we design a
system to avoid violations and exploit SSDs better?

One SSD feature that is worth exploiting is the rich internal I/O par-
allelism, which is behind the request scale rule in the SSD unwritten con-
tract. According to our study, I/O parallelism has the most significant
impact among all the rules and thus is of great importance. The rich in-
ternal I/O parallelism, which does not exist in HDDs, enables high band-
width and low latency in SSDs. The high I/O performance brought by
SSDs allows systems to rely more on the I/O and subsequently less on
the expensive memory, reducing the cost of data processing systems. As a
result, by exploiting SSDs well, we can build high-performance and cost-
e�ective systems.

In this chapter, we demonstrate how to exploit SSDs by building high-
performance and cost-e�ective systems that we refer to as a Tiny-Memory
Processing System (TMPS). As a case study, we have built a complete
search engine that only uses a small memory and a fast SSD, by applying
our TMPS approach. Search engines naturally demand high through-
put and low latency to support a large amount of concurrent and interac-
tive queries; however, by carefully designs in data layout, early pruning,
prefetching and space tradeo�s, we show that our search engine with tiny
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memory, named Vacuum, can e�ectively exploit SSDs and perform sig-
nificantly better than the state-of-the-art search engine, Elasticsearch.

4.1 Search Engine Background

Search engines play a crucial role in retrieving information from large
data collections. Although search engines are designed for text search,
they are increasingly being used for data analytics because search engines
do not need fixed data schemes and allow flexible data exploration. Pop-
ular modern search engines, which share similar features, include Elas-
ticsearch, Solr, and Splunk [11]. Elasticsearch and Solr are open-source
projects based on Lucene [4], an information retrieval library. Elastic-
search and Solr wrap Lucene by implementing practical features such as
sharding, replication, and network capability.

We use Elasticsearch as our baseline as it is the most popular [11] and
well-maintained project. Elasticsearch is used at Wikipedia and Github
to power text (edited contents or source code) search [12, 52]. It is also
widely used for data analytics [12]; for example, Uber uses Elasticsearch
to generate dynamic prices in real time based on users’ locations. Al-
though we only study Elasticsearch, our results also apply to other en-
gines, which share the same underlying library (i.e., Lucene) or key data
structures. We also believe what we have found for building low-memory
high-I/O search engines can apply to systems beyond search engines.

4.1.1 Data Structures

Search engines allow users to quickly find documents (e.g., text files, web
pages) that contain desired information. Documents must be indexed to
allow fast searches; the core index structure in popular engines is the in-
verted index, which stores a mapping from a term (e.g., a word) to all the
documents that contain the term.
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Term Index
Term Dictionary

Skiplist 
ID-TF

POS OFF

1
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Figure 4.1: Inverted Index in Elasticsearch. Term Index maps a term to
an entry in Term Dictionary. A Term Dictionary entry contains metadata about
a term (e.g., doc frequency) and multiple pointers pointing to files that contain
document IDs and Term Frequencies (ID-TF), positions (POS), and byte o�sets
(OFF). The number in the figure indicates a typical data access sequence to serve
a query. No.3, 4, and 5 indicate the access of skip lists, document ID and Term
Frequencies. For Wikipedia, the sizes of each component are Term Index: 4 MB,
Term Dictionary: 200 MB, Skiplist.ID.TF: 2.7 GB, POS: 4.8 GB, OFF: 2.8 GB.

ID Text
1 cheese is a dairy product. i am a dairy king.
2 o�ce products
3 the products of dairy farms

Table 4.1: An Example of Documents. An indexer parses the documents to
build an inverted index; a document store will keep the original text.

Figure 4.1 shows the data structures of Elasticsearch. To serve a query
with a single term, Elasticsearch follows these steps. First, Elasticsearch
locates a postings list by Term Index (1) and a Term Dictionary (2). The
Term Index and Term Dictionary contain location information of the skip
lists, document IDs, positions, and o�sets (details below). Second, the
engine will load the skip list, which contains more information for nav-
igating document IDs, term frequencies, positions, and o�sets. Third,
it will iterate through the document IDs and use the corresponding term
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Figure 4.2: An Example of Inverted Index. This figure shows the general
contents of inverted index without specific layout information. Term Map allows
one to look up the location of the postings list of a term.

frequencies to rank documents. Fourth, after finding the documents with
top scores, it will read o�sets and document text to generate snippets.

An indexer in a search engine builds the inverted index. Table 4.1
shows an example of documents to be indexed. First, the indexer splits a
document into tokens by separators such as space and punctuation marks.
Second, the indexer transforms the tokens. A common transformation is
stemming, which unifies tokens (e.g., worlds) to their roots (e.g., world).
The transformed tokens are usually referred to as terms. Finally, the loca-
tion information of the term is inserted to a list, called a postings list. The
resulting inverted is shown in Figure 4.2.

A posting, as shown in Figure 4.2, contains the location information
of a term in a particular document. Such information often includes a
document ID, positions, and byte o�sets of the term in the document. A
position records, for example, that term “dairy” is the 4-th and 9-th to-
ken in document 1. Positions enable the processing of phrase queries:
given a phrase such as “dairy product”, we know that a document con-
tains the phrase if the first term, “dairy”, is the x-th token and the sec-
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ond term “product” is the x + 1-th one. An o�set pair records the start
and end byte address of a term in the original document. O�sets enable
quick highlighting; the engine presents the most relevant parts (with the
queried terms highlighted) of a document to the user. A posting also con-
tains information such as term frequency for ranking the corresponding
document.

Query processing includes multiple stages: document matching, rank-
ing, phrase matching, highlighting; di�erent types of queries go through
di�erent stages. For queries with a single term (e.g., “dairy”), an engine
executes the following stages: iterating through document IDs in a term’s
postings list (document matching); calculating the relevance score of each
document, which usually uses term frequencies, and finding the top doc-
uments (ranking); and highlighting queried terms in the top documents
(highlighting). For AND queries such as “dairy AND product”, which
look for documents containing multiple terms, document matching in-
cludes intersecting the document IDs in multiple postings lists. For the
example in Figure 4.2, intersecting [1, 3] and [1, 2, 3] produces [1, 3], which
are the IDs of documents that contain both “dairy” and “product”. For
phrase queries, a search engine needs to use positions to perform phrase
matching after document matching.

4.1.2 Performance Problems of Cache-Oriented Systems

Cache-oriented systems, such as Elasticsearch, cannot achieve high per-
formance on a tiny-memory configuration because cache-oriented data
structures introduce significant read amplification if memory is tiny.

Elasticsearch divides data of di�erent stages into multiple locations
and uses memory to cache the data in early stages, which are smaller and
accessed more frequently than later stages (i.e., a cache-oriented design).
Therefore, data for a particular stage is grouped; data of di�erent stages
is stored separately. Such cache-oriented systems are justified for slow



95

●

●
●

●
●

● ●

●

● ● ● ● ● ●

●

● ● ●
●

● ●

ideally−needed
1

10

100

in−mem 16 8 4 2 1 0.5
memory size(GB)

R
ea

d 
Tr

af
fic

 (G
B

)
● ● ●es es_no_pref vacuum

Figure 4.3: Read Tra�c of Search Engines. This figure shows read I/O
tra�c of various search engines as the size of memory decreases. Note that search
engines only read while serving queries. The ideally-needed tra�c is calculated
by assuming an unrealistic byte-addressable storage device.

storage, where frequent cache misses are intolerable; they assume that the
system will run with a reasonable amount of memory as a cache.

If we run the cache-oriented Elasticsearch on a tiny-memory system,
read amplification will be high. Figure 4.3 shows the I/O tra�c of a re-
alistic query workload on Wikipedia; as we decrease the size of memory,
the I/O tra�c increases significantly. The tra�c increases because cache
hits become cache misses, as expected. However, we find that putting a
cache-oriented design on a tiny-memory system incurs unexpected high
read amplification; we may reduce read amplification considerably if we
redesign a search engine for tiny-memory systems.

4.2 Vacuum: A Tiny-Memory Search Engine

A tiny-memory processing system works on a large dataset with a small
fraction of memory relative to the dataset size. As a result, the I/O traf-
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fic becomes large because every data access is a cache miss. Therefore,
reducing read amplification is of the highest priority in a tiny-memory sys-
tem. Another critical task to realize a tiny-memory system is to hide I/O
latency, as retrieving data from SSDs may incur long latency. Finally, a
tiny-memory system needs to maximize I/O e�ciency; for example, issu-
ing large I/O requests increases I/O e�ciency because data bandwidth
is higher with large requests [92].

We introduce several techniques that allow Vacuum to achieve high
performance in tiny-memory configurations. First, cross-stage data vacu-
uming creates a data layout that combines data of di�erent stages and
stores it compactly. Second, we propose two-way cost-aware filtering, which
employs special Bloom filters to prune early and reduce I/O for positions
in the inverted index. The proposed Bloom filters are di�erent to tradi-
tional Bloom filters; our Bloom filters are novel in that they are tightly in-
tegrated to the query processing pipeline and exploits unique properties
of search engines. Third, we adaptively prefetch data to increase e�ective
bandwidth (for I/O e�ciency) and reduce query latency (for low latency).
Unlike the prefetch (i.e., OS readahead) employed by Elasticsearch, our
prefetch mechanism dynamically adjusts prefetch size to avoid reading
unnecessary data. Fourth, we take advantage of the cheap and ample
space of SSDs by trading disk space for I/O speed. For example, Vacuum
aligns document to file system blocks to prevent the data from crossing
multiple blocks unnecessarily, which speeds up I/O.

4.2.1 Cross-Stage Data Vacuuming

The key to building a low-memory high-I/O search engine is to reduce
read amplification because the memory (cache) size is small and cache
misses become the common (or only) case. As a result, we can only a�ord
to read data that is needed definitely and immediately, as we have no
memory for caching potential future data. In other words, we optimize
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Figure 4.4: Structure of Vacuum’s Inverted Index. Contents of each post-
ings list are placed together. Within each postings list, IDs, TFs and so on are also
placed together to maximize compression ratio, which is the same as Elasticsearch.

for now, not the future, in such tiny-memory systems. In tiny-memory
systems, memory is not used as a cache, but rather a bu�er for the CPU.

We propose a technique, called data vacuuming, to reduce read am-
plification for posting lists of small or medium sizes. The processing of
such postings lists is critical because usually most of the postings lists fall
into this category. For example, 99% of the postings lists in the represen-
tative Wikipedia are in this category (less than 10,000 documents are in
the postings list). Also, search engines often divide large postings lists to
smaller ones to reduce processing latency, which increase the quantity of
postings lists in this category.

Vacuuming is similar in spirit to what a vacuum can do: pulling data
(or dirt for a real vacuum) into a container. In our case, the containers are
file system blocks. The vacuuming process groups data needed for dif-
ferent stages of a query into one or more continuous and compact blocks
on the storage device, which increases block utilization when transfer-
ring data for a query. Figure 4.4 shows the resulting data structures after
vacuuming; data needed for a query is placed in one place and in the or-
der that they will be accessed. Essentially, the vacuumed data becomes
a stream of data, in which each piece of data is expected to be used at
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most once. Such expectation matches the query processing in a search
engine, in which multiple iterators iterate over lists of data. Such streams
can flow through a small bu�er e�ciently with high block utilization and
low read amplification.

Vacuumed data introduces significantly less read amplification than
Elasticsearch in tiny-memory configurations for postings lists of small
and medium sizes. Due to highly e�cient compression, the space con-
sumed by each postings list is often small; however, due to Elasticsearch’s
cache-oriented layout, the data required to serve a query is spread across
multiple distant locations (Term Dictionary, ID-TF, POS, and OFF) as shown
in Figure 4.1, increasing the I/O tra�c and also the number of I/O op-
erations. On the other hand, as shown in Figure 4.4, the vacuumed data
can often be stored in the one block (e.g., 99% of the terms in Wikipedia
can be stored in a block), incurring only one I/O.

As expected, the vacuumed data is not cache-friendly. Vacuum’s data
layout is ine�cient for systems with a relatively large cache because the
layout would waste a large amount of cache. The vacuumed layout uses
cache ine�ciently because the layout mixes frequently used data (e.g.,
skip lists) with a large amount of infrequently used data (e.g., o�sets) in
the same page. The cache space occupied by infrequently used data is
better used for more frequently used data, as what is done by Elastic-
search. However, as we have stated, the vacuumed data layout is friendly
to tiny-memory systems.

4.2.2 Two-way Cost-aware Filters

Phrase queries are pervasive and are often used to improve search pre-
cision [76]. Unfortunately, phrase queries put great pressure on a search
engine’s storage system, as they require retrieving a large amount of po-
sitions data (as described in Section 4.1). To build a low-memory search
engine, we must reduce the I/O tra�c of phrase queries.
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Bloom filters, which can test if an element is a member of a set, are of-
ten used to reduce I/O; however, we find that plain Bloom filters, which
are often directly used in data stores [22, 114, 123], surprisingly increases
I/O tra�c for phrase queries because individual positions data is rela-
tively small due to compression and the corresponding Bloom filter can
be larger than the positions data, which is the data to be avoided.

As a result, we propose special two-way cost-aware Bloom filters by ex-
ploiting unique properties of search engines to reduce I/O. The design
of such Bloom filters is based on the observation that the data sizes of
two (or more) terms in a phrase query are often very di�erent. Therefore,
we construct the Bloom filters in a way to allow us to pick the smaller
Bloom filter to filter out a larger amount of positions data. In addition,
we design special bitmap-based structure to store Bloom filters in order to
further reduce I/O. This section gives more details on our Bloom filters.

Plain Bloom filter set contains terms that are after a particular term; for
example, the set.after of term “dairy” in document 1 of Table 4.1 contains
“product” and “king”. To test the existence of a phrase “dairy product”,
an engine can simply test if “product” is in set.after of “dairy”, without
reading any positions. If the test result is negative, we stop and conse-
quently avoid reading the corresponding positions. If the test result is
positive, we must confirm the existence of the phrase by checking posi-
tions because false positives are possible in Bloom filters; also, we may
have to use positions to locate the phrase within a document for high-
lighting.

However, we must satisfy the following two conditions for Bloom fil-
ters to reduce I/O. First, the ratio of negative tests must be high because
in this case we only need to read Bloom filters, which can potentially re-
duce I/O. If the test is positive (a phrase may exist), we have to read both
Bloom filters and positions, which increases I/O. Statistically, the ratio of
the positive result is low for real phrase queries to Wikipedia: only 12% of
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Figure 4.5: Phrase Processing With Bloom Filters. Vacuum uses one of
the Bloom filters to test the existence of a phrase (step 1) and then read positions
for the positive tests to confirm (step 2).

the tests are positive. Intuitively, the probability for two random terms to
form a phrase in a document is also low due to a large number of terms
in a regular document. The second condition is that the I/O tra�c to
the Bloom filters must be smaller than the tra�c to positions needed to
identify a phrase; otherwise, we would just use the positions.

Meeting the second condition is challenging because the sizes of Bloom
filters are too large in our case, although they are considered space-e�cient
in other uses [22, 114]. Bloom filters can be larger than their correspond-
ing positions because positions are already space e�cient after compres-
sion (delta encoding and bit packing). In addition, Bloom filters are con-
figured to be relatively large because their false positive ratios must be
low. The first reason to reduce false positive is to increase negative test
results, as mentioned above. The second reason is to avoid reading unnec-
essary blocks. Note that a 4-KB I/O block contains positions of hundreds
of postings. If any of the positions are requested due to false positive tests,
the whole 4-KB block must be read; however, none of the data in the block
is useful. Through our evaluation, we find that storing 5 entries with a
false positive probability of 0.0009 (9 bytes) in the Bloom filter o�ers a
balanced tradeo� between space and test accuracy.

We now show how we can reduce I/O tra�c to both Bloom filters and
positions with cost-aware pruning and a bitmap-based store. To realize
it, first we estimate I/O cost and use Bloom filters conditionally (i.e., cost-
aware): we only use Bloom filters when the I/O cost of reading Bloom
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Bitmap Filter Array Bitmap Filter Array Bitmap Filter Array …

…Skip List

Figure 4.6: Bloom Filter Store. The sizes of the arrays may vary because some
Bloom filters contain no entries and thus are not stored in the array.

filters is much smaller than the cost of reading positions if Bloom filters
are not used. For example, in Figure 4.5, we will not use Bloom filters
for query “term1 term2” as the I/O cost of reading the Bloom filters is
too large. We estimate the relative I/O costs of Bloom filter and positions
among di�erent terms by the popularity of the terms, which is propor-
tional to the sizes of Bloom filters and positions.

Second, we build two Bloom filters for each term to allow filtering in
either direction (i.e., two-way): a set for all following terms and another
set for all preceding terms of each term. This design is based on the obser-
vation that the data sizes of terms in a query are often very di�erent. With
these two Bloom filters, we can apply filters in forward or backward di-
rections, whichever can reduce I/O. For example, in Figure 4.5, instead of
using Bloom filters of term1 to test if term2 is after term1, we can now use
Bloom filters of term2 to test if term1 is before term2. Because the Bloom
filters of term2 are much smaller, we can apply it to significantly reduce
I/O.

To further reduce the size of Bloom filters, we employ a bitmap-based
data layout to store Bloom filters. Figure 4.6 shows the data layout. Bloom
filters are separated into groups, each of which contains a fixed number
of filters (e.g., 128); the groups are indexed by a skip list to allow skipping
reading large chunks of filters. In each group, we use a bitmap to mark
the empty filters and only store non-empty filters in the array; thus, empty
Bloom filters only take one bit of space (in the bitmap). Reducing the
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space usage of empty filters can significantly reduce overall space usage
of Bloom filters because empty filters are very common. For instance,
about one-third of the filters for Wikipedia are empty. Empty filters of
a term come from surrounding punctuations and stop words (e.g., “a”,
“is”, “the”), which are not added to filters.

4.2.3 Adaptive Prefetching

Although the latency of NVMe devices is low, it is still much higher than
that of memory. The relatively high latency of NVMe devices adds to
query processing time, especially the processing of long postings lists,
which demands a large amount of I/O. If we load one page at a time as
needed, query processing will frequently stop and wait for data, which
also increases system overhead. In addition, the I/O e�ciency will be
low due to small request sizes [92].

To mitigate the impact of high I/O latency and improve the I/O e�-
ciency, we propose adaptive prefetching. Prefetching, a commonly used
technique, can reduce I/O stall time, increase the size of I/O requests,
and reduce the number of requests, which boosts the e�ciency of flash
devices and reduces system overhead. However, naive prefetching, such
as the Linux readahead [19], used by Elasticsearch, will su�er from signif-
icant read amplification in a tiny-memory system. Linux unconditionally
prefetches data of a fixed size (default: 128 KB), which causes high read
amplification due to the diverse data sizes needed.

Prefetching in a tiny-memory system must adapt to the queries and
the structures of persistent data. Among all data in the inverted index,
the most commonly accessed data includes metadata, skip lists, docu-
ment IDs, and term frequencies, which are often accessed together and
sequentially; thus we place them together in an area called the prefetch
zone. Our adaptive approach prefetches data when doing so can bring
significant benefits. We prefetch when all prefetch zones involved in a
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query are larger than a threshold (e.g., 128 KB); we divide the prefetch
zone into small prefetch segments to avoid accessing too much data at a
time.

To enable adaptive prefetch, Vacuum employs prefetch-friendly data
structures, as shown in Figure 4.4. A search engine should know the
size of the prefetch zone before reading the posting list (so the prefetch
size can be adapted). To enable such prefetching, we hide the size of the
prefetch zone in the highest 16 bits of the o�set in Vacuum’s Term Map
(The 48 bits left is more than enough to address large files). In addition,
the structure in the prefetch zone is also prefetch-friendly. Data in the
prefetch zone is placed by the order they are used, which avoid jumping
ahead and waiting for data that has not been prefetched. Finally, com-
pressed data is naturally prefetch-friendly. Even if there are data “holes”
in the prefetch zone that are unnecessary for some queries, prefetching
data with such holes is still beneficial because these holes are usually
small due to compression and the improved I/O e�ciency can well o�set
the cost of such small read amplification.

4.2.4 Trade Disk Space for Less I/O

Because tiny-memory systems reduce the amount of memory and the
saved budget can be used to increase flash size substantially, tiny-memory
systems can tolerate storage space amplification. Therefore, we can re-
lax the space constraints and utilize the additional space to speed up the
system. We apply this technique to Vacuum’s document store, which is
frequently accessed to generate snippets.

We compress each document individually in Vacuum, which often in-
creases space usage but avoids reading and decompressing unnecessary
documents. Compression algorithms, such as LZ4, achieve higher com-
pression ratios when more data is compressed together. As a result, when
compressing documents, engines like Elasticsearch put documents into
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a bu�er (default size: 16 KB) and compresses all data in the bu�er to-
gether. Unfortunately, decompressing a document requires reading and
decompressing all documents before the document, leading to more I/O
and computation. In Vacuum, we trade space for less I/O by using more
space but reducing the I/O while processing queries.

In addition, we align compressed documents to the boundaries of file
system blocks if the unaligned data would incur more I/O. A document
may su�er from the block-crossing problem, where a document is unnec-
essarily placed across two (or more) file system blocks and requires read-
ing two blocks during decompression. For example, a 3-KB data chunk
has a 75% chance of spanning across two 4-KB file system blocks. To avoid
this problem, Vacuum applies a simple heuristic to trade a small amount
of space for I/O reduction: if aligning a compressed document reduces
the block span, align it.

4.2.5 Implementation

We have implemented Vacuum with 11,000 lines of core code in C++,
which allows us to interact with OS more directly than higher-level lan-
guages. We also rigorously conducted hundreds of unit tests to ensure
the correctness of our code. The query processor in Vacuum is carefully
optimized for high performance. For example, we switched from C++
virtualization to metaprogramming to avoid runtime costs. Data files are
mapped by mmap() to avoid complex bu�er management. Prefetch is im-
plemented by madvise() with the MADV_SEQUENTIAL hint.

4.3 Evaluation

In this section, we evaluate Vacuum with WSBench, a benchmark suite
we built, which includes synthetic workloads and a realistic workload.
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First, we will analyze in detail how each of the proposed techniques
in Vacuum is able to improve performance. Most importantly, we will
show that the techniques are able to significantly reduce read amplifica-
tion, which is key to building a tiny-memory processing system as data is
o�oaded to SSDs but SSDs o�er limited bandwidth. We will show that:
cross-stage data vacuuming reduces I/O tra�c by 2.9 times by comparing
Elasticsearch’s data layout and the vacuumed data layout; two-way cost-
aware Bloom filters reduce I/O tra�c by 3.2 times by comparing Vacuum
with and without Bloom filters; adaptive prefetching is able to prefetch
only necessary data; trading disk space for less I/O reduces I/O tra�c
by 1.7 times by comparing the document store with and without such
tradeo�s.

Second, we will show that the techniques that we propose improve
end-to-end performance. For example, we compare Vacuum (with Bloom
filters) and Vacuum (without Bloom filters) to show that our Bloom filters
increase query throughput by up to 2.6x. We will also show that Vacuum
delivers higher end-to-end performance than Elasticsearch, thanks to the
combined e�ect of all our techniques. Specifically, Vaccum delivers up to
2.7 times higher query throughput and up to 16 times lower latency than
Elasticsearch.

We conduct our experiments on machines with 16 CPU cores, 64-GB
RAM and NVMe SSD (peak read bandwidth is 2.0 GB/s; peak IOPS is
200,000)[9]. Our OS is Ubuntu 16.04 with Linux 4.4.0. Our tiny-memory
machine configuration is with 512-MB memory, which is the smallest
memory size of AWS instances (t3.nano). 512-MB memory is truly tiny
as the footprint of multi-thread applications can easily approach 512 MB,
and we observe that the OS page cache has little cache e�ect with such
small memory. We choose such a small memory to demonstrate the ir-
relevance of memory in our system and consequently the ability to scale
with little memory. We use Cgroup tools to limit memory size for exper-
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iments.

4.3.1 WSBench

We create WSBench, a benchmark based on the Wikipedia corpus, to eval-
uate Vacuum and Elasticsearch. The corpus is a snapshot of English Wikipedia
in May 2018, which includes 5.8 million documents and 5,785,696 unique
terms (excluding stop words).

WSBench contains 24 workloads with various I/O characteristics, in-
cluding 21 synthetic query workloads with di�erent types of queries, e.g.,
single-term, two-term, and phrase queries. For each type of queries, WS-
Bench produces di�erent workloads by varying the popularity level (also
known as document frequency: the number of documents in which a
term appears) of the queried terms. In general, a high popularity level in-
dicates a long postings list and large data size per query. WSBench also in-
cludes one realistic query workload extracted from production Wikipedia
servers [51], as well as three workloads with di�erent query types derived
from the original realistic workload.

4.3.2 Impact of Proposed Techniques

We evaluate the proposed techniques in Vacuum by three types of syn-
thetic workloads: single-term queries, two-term queries, and phrase queries.
Such evaluations allow us to investigate how the proposed techniques
impact various aspects of the system as di�erent techniques have di�er-
ent impacts on workloads. We investigate low-level metrics such as traf-
fic sizes to precisely show the impact and why the proposed techniques
could lead to end-to-end performance gain.
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4.3.2.1 Cross-stage Data Vacuuming

Cross-stage vacuuming can reduce the read amplification for all types of
queries. Here we show its impact on single-term and two-term queries
where vacuuming plays the most important role; phrase queries are dom-
inated by positions data where two-way cost-aware Bloom filters play a
more important role (we will soon show).

Figure 4.7 shows the decomposed read tra�c for single-term queries.
The figure shows that Vacuum can significantly reduce read amplifica-
tion (indicated by lower waste than Elasticsearch); the reduction is up to
2.9 times. The reduction is more when the popularity level is lower be-
cause the block utilization is lower with lower popularity levels. To pro-
cess queries with low-popularity terms, a search engine only needs a very
small amount of data; for example, an engine only needs approximately
30 bytes of data to process the term “tugman” (popularity=8). To retrieve
such small data, read amplification is inevitable as the minimal I/O re-
quest size is 4 KB, which leads to higher waste when the popularity level
is low. However, we can minimize the read amplification. Elasticsearch,
which employs cache-oriented a design, often needs three separate I/O
requests for such queries: one to term index, one to document IDs/term
frequency, and one to o�sets. In contrast, Vacuum only needs one I/O
request because the data is ‘vacuumed’ to one block.

For high popularity levels (popularity=100,000), the tra�c reduction
is inconspicuous because queries with very popular terms require a large
amount of data for each stage (KBs or even MBs). In that case, the waste
from splitting data into di�erent stages in Elasticsearch is negligible.

Figure 4.8 shows the aggregated I/O tra�c for two-term queries, which
read two postings lists. Similar to Figure 4.7, we can see that Vacuum
(vacuum) incurs significantly less tra�c than Elasticsearch. In this figure,
we show two configurations of Elasticsearch: one with prefetch (es) and
one without prefetch (es_no_pref). Prefetch is a common technique to
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Figure 4.8: I/O Tra�c of Two-term Match Queries. The size (GB) is
normalized to the tra�c size of Elasticsearch without prefetching.

boost performance in systems with ample memory; however, as shown
in Figure 4.8, naive prefetch in Elasticsearch can increase read amplifica-
tion significantly. Such a dilemma motivates our adaptive prefetch.

4.3.2.2 Two-Way Cost-Aware Bloom Filters

Two-way cost-aware Bloom filters only a�ect phrase queries as filters are
only used to avoid positions data, which is used for phrase queries. We
will show that Vacuum without two-way cost-aware Bloom filters de-
mands a similar amount of data as Elasticsearch; the Vacuum with two-
way cost-aware Bloom filters incurs much less I/O tra�c than Vacuum
without them and Elasticsearch, which demonstrates the e�ect of our
novel Bloom filters.

Figure 4.9 shows the read amplification by the decomposed tra�c in
Elasticsearch, Vacuum without Bloom filters, and Vacuum with Bloom fil-
ters. The bars labeled with data type names show the data needed ideally;
the waste bars show the data that is unnecessarily read (e.g., undesired
positions in a 4-KB I/O block). First, we can see that applying filters sig-
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Figure 4.10: Bloom Filter Footprint. Our bitmap-based layout reduces foot-
print by 29%

nificantly reduce the data needed ideally (the size is calculated by assum-
ing a byte-addressable SSD) which is shown by the reduced aggregated
size of all the bars except waste. As shown in the figure, both Elasticsearch
(es) and Vacuum without filters (vacuum) demands a very large amount
of position data; in contrast, Vacuum with our two-way cost-aware filters
(vacuum_bf) significantly reduces positions needed in all workloads. Sur-
prisingly, we find that our filters also significantly reduce the tra�c from
term frequencies (tf), which is used to iterate positions (an engine needs
to know the number of positions in each document in order to iterate to
the positions of the destination document). The tra�c to term frequencies
is reduced because the engine no longer need to iterate many positions.

Note that the introduction of our Bloom filters only adds a very small
amount of tra�c to the Bloom filters (Figure 4.9), thanks to our two-way
cost-aware design and the bitmap-based data layout of Bloom filters. The
two-way cost-aware design allows us to prune by the smaller Bloom filter
between the two Bloom filters of the two terms in the query. The bitmap-
based layout, which uses only one bit to store an empty Bloom filter, sig-
nificantly compresses Bloom filters, reducing tra�c. We observe that 32%
of the Bloom filters for Wikipedia are empty, which motivates the bitmap-
based layout. Figure 4.10 shows that using bitmap-based layout reduces
the Bloom filter footprint by 29%.
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Figure 4.11: Document Store Tra�c. doc indicates ideal tra�c size. The
relative quantity between Elasticsearch and Vacuum is the same across di�erent
workloads; therefore, we show the result of one workload here for brevity (single-
term queries with the popularity level = 10).

4.3.2.3 Adaptive Prefetching

Adaptive prefetching aims to avoid the frequent wait for I/O and, in the
meantime, reduce read amplification by prefetching only the data needed
for the current queries. As shown in Figure 4.7 and Figure 4.8, Vacuum
incurs less tra�c than Elasticsearch that is with and without prefetching.
As expected, by taking advantage of the information embedded in the in-
memory data structure (Section 4.2.3), Vacuum only prefetches the nec-
essary data. Later in this section, we will show that adaptive prefetching
is able to avoid frequent I/O wait and improve end-to-end performance.

4.3.2.4 Trade Disk Space for Less I/O

The process of highlighting, which is the last step of all common queries,
reads documents from the document store and produces snippets of the
documents. Figure 4.11 show that Vacuum’s highlighting incurs signif-
icantly less I/O tra�c (42%) to the document store than Elasticsearch
because in Vacuum documents are decompressed individually and are
aligned, whereas Elasticsearch may have to decompress irrelevant docu-
ments and read more I/O blocks due to misalignment. The size of Vac-
uum’s document store (9.5 GB) is 25% larger than that of Elasticsearch
(7.6 GB); however, we argue that the space amplification can be well jus-
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tified by the 42% I/O tra�c reduction. Vacuum still wastes much tra�c
because the compressed documents in Wikipedia is small (average: 1.44
KB) but Vacuum has to read at least 4 KB.

4.3.3 End-to-end Performance

We examine various types of workloads in this section, including match
queries (single-term and multi-term), phrase queries, and real workloads.
For match queries, Vacuum achieves 2.5 times higher throughput than
Elasticsearch with tiny memory, thanks to cross-stage data vacuuming.
For phrase queries, Vacuum achieves 2.7 times higher throughput than
Elasticsearch, thanks to our two-way cost-aware pruning. Vacuum achieves
consistently higher performance than Elasticsearch for real-world queries.

4.3.3.1 Match Queries

We now describe the results for the single-term and multi-term queries.
Because queries that match more than two terms share similar charac-
teristics with two-terms queries, we only present the results of two-term
queries here.

Figure 4.12 presents the single-term match QPS (Queries Per Second)
of Vacuum, which is normalized to that of Elasticsearch with default prefetch
(i.e., 128 KB). The default Elasticsearch is much worse than other engines
when the popular levels are low because Elasticsearch incurs significant
read amplification: it reads 128 KB of data when only a much smaller
amount is needed (e.g., dozens of bytes). Elasticsearch without prefetch
(es_no_pref) performs much better than es_default, thanks for much
less read amplification.

Vacuum achieves higher throughput than Elasticsearch without prefetch
(es_no_pref) for low/medium popularity levels, which accounts for a
large portion of the postings lists; the speedup is up to 2.5 times. When
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Figure 4.12: Single Term Matching Throughput. The throughput (QPS)
is normalized to the performance of Elasticsearch with prefetch (the default).

popularity level is 100,000, the query throughput of Vacuum is 14% worse
than Elasticsearch with default prefetching. We found that the di�erence
is related to Vacuum’s less e�cient score calculation, which is not directly
linked to I/O.

The query throughput improvement largely comes from the reduced
I/O tra�c as queries with low popularity levels are I/O intensive and
I/O is the system bottleneck. Indeed, we see that the query throughput
improvement is highly correlated with the I/O reduction. For example,
Vacuum’s query throughput for popularity level 10 is 2.6 times higher
than Elasticsearch’s; Vacuum’s I/O tra�c for the same workload is 2.9
times lower than Elasticsearch’s.

Vacuum achieves better median latency and tail latency than Elastic-
search, thanks to adaptive prefetch and cross-stage data vacuuming. Fig-
ure 4.13 shows that Vacuum achieves up to 16x and 11x lower median
latency than Elasticsearch, for median and tail latency respectively. The
latency of Elasticsearch is longer due to similar reasons for its low query
throughput. Elasticsearch’s data layout incurs more I/O requests than
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Figure 4.13: Single Term Matching Latency. The latency (ms) is normal-
ized to the median latency of Elasticsearch with default prefetching.

Vacuum; the time of waiting for page faults adds to the query latency. In
contrast, Vacuum’s more compact data layout and adaptive prefetch incur
minimal I/O requests, eliminating unnecessary I/O wait.

Vacuuming data layout also benefits two-term match queries. Fig-
ure 4.14. presents results for two-term match queries, which are simi-
lar to single-term match queries. As shown in the figure, Vacuum re-
duces by 17% to 51% of I/O tra�c for workloads with popularity levels
no more than 1,000. As a result, Vacuum achieves 1.5x to 2.6x higher
query throughput compared with Elasticsearch. When a workload in-
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cludes very popular terms (popularity=100,000), Vacuum’s tra�c reduc-
tion becomes negligible since data vacuuming has little e�ects.
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Figure 4.16: Phrase Queries Latency. The latency (ms) is normalized to the
corresponding latency of Elasticsearch with default prefetching.

4.3.3.2 Phrase Queries

In this section, we will show that our two-way cost-aware Bloom filters
make fast phrase query processing possible on tiny-memory systems. Specif-
ically, Vacuum can achieve up to 2.7 times higher query throughput and
up to 8 times lower latency, relative to Elasticsearch with tiny memory.
To support early pruning, Vacuum needs to store 9 GB of Bloom filters
(the overall index size increases from 18GB to 27GB, a 50% increase). We
believe such space amplification is reasonable because flash is an order of
magnitude cheaper than RAM.
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WSBench produces the phrase query workloads by varying the prob-
ability that the two terms in a phrase query become a phrase. WSBench
chooses one term from popular terms (popularity level is larger than 10,000);
then it varies the popularity level of another term from low to high. As
the popularity increases, the two terms are more likely to co-exist in the
same document, also more likely to appear as a phrase in the document.

Figure 4.15 presents the phrase queries results among workloads in
Elasticsearch (es and es_no_pref), Vacuum (vacuum), and Vacuum with
two-way cost-aware pruning (vacuum_bf). The QPS of the basic Vacuum
(vacuum and Elasticsearch with no prefetch (es_no_pref) are very similar
because our techniques in the basic Vacuum (cross-stage data vacuuming,
adaptive prefetch, trading space for less I/O) have little e�ect for phrase
query. Vacuum with two-way cost-aware Bloom filters achieves from 1.3x
to 2.7x higher query throughput than that of basic Vacuum, thanks to
significantly lower read amplification brought by the filters.

Figure 4.16 shows that Bloom filters can significantly reduce latency
(vacuum vs. vacuum_bf); also Vacuum reduces median and tail latency by
up to 3.2x and 8.7x respectively, compared to Elasticsearch. The reduction
is more evident when the probability of forming a phrase is lower (low
popularity level) because the Bloom filters are smaller in that case. Inter-
estingly, Elasticsearch with OS prefetch (es) achieves the lowest latency
when the probability of forming phrases is higher. The latency is lower
because the OS prefetches 128 KB of positions data and avoids waiting
for many page faults, although the large prefetch increases read amplifi-
cation. In contrast, Elasticsearch without prefetch (es_no_pref) and Vac-
uum do not prefetch; thus they may have to frequently stop query pro-
cessing to wait for data (Vacuum’s adaptive prefetch does not prefetch
position data due to fragments of unnecessary data.). However, the re-
duction of latency comes at a cost: although the latency of individual
queries is lower, the query throughput is also lower due to the read am-
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Figure 4.17: Throughput of Derived Workloads. The throughput (QPS)
is normalized to the throughput of Elasticsearch without Prefetching

plification caused by prefetch (Figure 4.15).
Interestingly, our Bloom filters also speed up the computation of phrase

checking. The search engine checks if a phrase in a document by testing
the Bloom filter, which is done mathematically. In the common case that
the Bloom filter is empty, Vacuum can even check faster because an empty
Bloom filter is marked as 0 in the bitmap and we only need to check this
bit. As a result, in addition to avoiding reading positions, Bloom filters
also allow us to avoid the subsequent computations on the positions.

4.3.3.3 Real Workload

WSBench also includes realistic workloads. We compare Elasticsearch
and Vacuum’s query throughput on the real query log; we also split the
query log into di�erent types of query workloads to examine the perfor-
mance closely.

Vacuum performs significantly better than Elasticsearch as shown in
Figure 4.17. For example, for single-term queries, Vacuum achieves as
high as 2.2x throughput compared to Elasticsearch. We observe that around
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Figure 4.18: Classes of Systems. The axes indicate the capability of memory
and CPU.

60% queries in the real workload are of popularity less than 10,000, which
benefits from our cross-stage data vacuuming. For multi-term match queries,
vacuumed data layout also helps to increase throughput by more than
60%. For phrase queries extracted from the realistic workload, Vacuum
with Bloom filters increases throughput by more than 60% compared to
Elasticsearch. Note that Vacuum cannot achieve 2.7x higher through-
out as shown in our synthetic phrase queries because, in this real work-
load, many phrases are the names of people, brand, or events and so on.
Among these names, many terms are unpopular terms that are not I/O
intensive, where pruning has limited e�ect. Finally, the overall perfor-
mance of Vacuum is similar to that of real single-term query log because
single-term queries occupy half of the overall query log.

4.4 Discussion

In this section, we discuss several questions regarding tiny-memory search
engines and tiny-memory processing systems.

How do the proposed techniques a�ect indexing? The proposed techniques,
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which optimize query processing, can add overhead to engine indexing;
however, the e�ect is limited. Cross-stage data vacuuming does not add
overhead as it simply places the same data in di�erent places. Build-
ing two-way cost-aware Bloom filters requires additional computation,
which is very manageable as we have seen in our experiments. Adap-
tive prefetching only employs existing information and thus does not add
computation overhead. Aligning document store and individually com-
pressing documents have little e�ect on computation. Overall, indexing
is a far less frequent operation than query processing in a search engine
and we believe the overhead can be well justified by the significant per-
formance improvements on query processing.

Why can tiny-memory systems (low-memory high-I/O) achieve high perfor-
mance? There are several reasons. First, thanks to modern high-bandwidth
storage devices, frequent cache misses are now tolerable. Previously, slow
devices such HDDs can only process one request at a time and may in-
cur high (millisecond) latencies. Now, fast devices such as NVMe SSDs
can process hundreds of requests at a time with latency on the order of
microseconds, feeding GB/s of data to CPU. Second, some applications
can be re-constructed specifically to demand less I/O bandwidth so that
they can run on tiny-memory systems well, as we have done for search
engines in this paper. In addition, I/O latency can be hidden by overlap-
ping computation and I/O.

What is the role of memory in a tiny-memory system? In a tiny-memory
processing system, we downplay the role of memory significantly, keep
strong CPUs, and employ high-performance SSDs; in TMPS, memory
no longer serves as a cache, but rather a bu�er that allows data to flow
through. Figure 4.18 shows a comparison with relevant systems. Tra-
ditional systems equipped with a weak storage system (i.e., HDDs) rely
on large memory as a cache to achieve high performance. Low-cost sys-
tems, exemplified by FAWN (Fast Array of Wimpy Nodes) [57], use weak
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hardware components to achieve high power e�ciency. TMPS aims to
achieve high performance and low cost by exploiting modern SSDs with
high bandwidth and reducing memory.

4.5 Conclusions

In this chapter, we propose to exploit SSDs to build tiny-memory pro-
cessing systems to reduce the cost of search engines; we propose four
techniques to reduce read amplification, latency and increase I/O e�-
ciency, in order to take full advantage of SSDs. We design and implement
a new search engine, Vacuum, that reduces read amplification by up to 3.2
times, reduces latency by up to 16 times, and increases query throughput
by up to 2.7 times, when compared to a state-of-the-art engine. Vacuum
exemplifies an approach that allows us to e�ciently exploit SSDs to build
better modern systems.



123

5

Related Work

5.1 Finding Violations of the HDD Contract

Chopper is a comprehensive diagnostic tool that provides techniques to
explore file system block allocation designs and find the violations of the
HDD unwritten contract. It shares similarities and has notable di�erences
with traditional benchmarks and with model checkers.

File system benchmarks have been criticized for decades [151, 152,
154]. Many file system benchmarks target many aspects of file system
performance and thus include many factors that a�ect the results in un-
predictable ways. In contrast, Chopper leverages well-developed statistical
techniques [139, 140, 157] to isolate the impact of various factors and avoid
noise. With its sole focus on block allocation, Chopper is able to isolate its
behavior and reveal problems with data layout quality.

The self-scaling I/O benchmark [72] is similar to Chopper, but the self-
scaling benchmark searches a five-dimension workload parameter space
by dynamically adjusting one parameter at a time while keeping the rest
constant; its goal is to converge all parameters to values that uniformly
achieve a specific percentage of max performance, which is called a focal
point. This approach was able to find interesting behaviors, but it is lim-
ited and has several problems. First, the experiments may never find such
a focal point. Second, the approach is not feasible given a large number
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of parameters. Third, changing one parameter at a time may miss inter-
esting points in the space and interactions between parameters. In con-
trast, Chopper has been designed to systematically extract the maximum
amount of information from limited runs.

Model checking is a verification process that explores system state
space [77]; it has also been used to diagnose latent performance bugs.
For example, MacePC [105] can identify bad performance and pinpoint
the causing state. One problem with this approach is that it requires a
simulation which may not perfectly match the desired implementation.
Implementation-level model checkers, such as FiSC [159], address this
problem by checking the actual system. FiSC checks a real Linux ker-
nel in a customized environment to find file system bugs; however, FiSC
needs to run the whole OS in the model checker and intercept calls. In
contrast, Chopper can run in an unmodified, low-overhead environment.
In addition, Chopper explores the input space di�erently; model checkers
consider transitions between states and often use tree search algorithms,
which may have clustered exploration states and leave gaps unexplored.
In Chopper, we precisely define a large number of factors and ensure the
e�ects and interactions of these factors are evenly explored by statistical
experimental design [119, 139, 140, 157].

5.2 Finding Violations of the SSD Contract

Our dissertation uncovers the unwritten contract of SSDs and analyzes
application and file system behaviors with the contract. We believe it is
novel in several aspects.

Previous work often o�ers incomplete pictures of SSD performance [67,
106, 110, 121]. A recent study by Yadgar et al. [158] analyzes multiple as-
pects of SSD performance such as spatial locality, but omits critical com-
ponents such as the concurrency of requests. The study by Lee et al. eval-
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uates only the immediate performance of F2FS and real applications, but
neglects sustainable performance problems [110]. Our investigation ana-
lyzes five dimensions of the SSD contract for both immediate and sustain-
able performance, providing a more complete view of SSD performance.

Previous studies fail to connect applications, file systems and FTLs.
Studies using existing block traces [89, 98, 162], including the recent study
by Yadgar et al. [158], cannot reason about the behaviors of applications
and file systems because the semantics of the data is lost and it is impossi-
ble to re-create the same environment for further investigation. Another
problem of such traces is that they are not appropriate for SSD related
studies, because they were collected in old HDD environments which are
optimized for HDDs. Studies that evaluate applications and file systems
on black-box SSDs [107, 110] cannot accurately link the application and
file system to hidden internal behaviors of the SSD. In addition, studies
that benchmark black-box SSDs [67, 71] or SSD simulators [90] provide
few insights about applications and file systems, which can use SSDs in
surprising ways. In contrast, we conduct full-stack analysis with diverse
applications, file systems, and a fully functioning modern SSD simulator,
which allows us to investigate not only what happened, but why it hap-
pened.

5.3 Exploiting the SSD Contract

Much work has gone into building cost-e�ective storage systems by cou-
pling SSDs with reduced RAM. FAWN-KV [56] is a power-e�cient key-
value store with wimpy CPUs, small RAM and some flash. SILT [114] is
another SSD-based key-value store, which employs innovative in-memory
index and persistent data layout to reduce memory requirement. Face-
book [85] proposes yet another SSD-based key-value store to reduce the
consumption of DRAM by small block sizes with partitioned index, align-
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ing blocks with physical NVM pages and reducing the interrupt latency
with adaptive polling. Vacuum shares the same general goal of reducing
system cost with the above systems; however, Vacuum is a complete data
processing system with more complex data manipulation and data struc-
tures than data stores (e.g., key-value store). Such complete and holis-
tic system designing exposes new opportunities and interesting insights;
for example, while using Bloom filters is straightforward in a key-value
store, using them in Vacuum requires understanding the search engine
pipeline, which leads us to the novel two-way cost-aware Bloom filter for
search engines.

Accelerated flash storage is also proposed to support external pro-
cessing, such as BlueDBM[101] and GraFBoost [102]. While these solu-
tions require specific hardware support, Vacuum only focuses on opti-
mizations from application data layout and processing strategy. A study
of the memory hierarchy for a search engine is presented in [63]. Many
proposed techniques for search engines seek to reduce the overhead/-
cost of query processing for di�erent workloads or di�erent scenarios[60–
62, 65, 78, 113, 153]. These techniques may be adapted for Vacuum to
further improve its performance.
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6

Conclusions

The volume of data is becoming more substantial and more relevant to
our lives; therefore, fast data processing is critical. Data processing re-
lies on the storage stack to store and retrieve data; one key component
of the storage stack is the storage device, where data is stored. Although
storage devices present the same block interface, di�erent ways of using
the interface could lead to vastly di�erent performance because perfor-
mance relies on the “unwritten performance contracts”, which are rules
one should follow to achieve high performance.

HDDs and SSDs present very di�erent contracts due to their distinct
internal structures. HDDs physically move disk heads to access data on
magnetic platters. On the other hand, SSDs do not contain moving parts;
data is stored on an array of NAND flash, which presents special proper-
ties such as “erasing flash block before rewriting”. To manage such spe-
cial media, SSDs employ a complex piece of software, FTL, which makes
SSDs more complex. As a result, SSDs has more intrinsic performance
properties.

Although the same software can interact with both HDDs and SSDs
via the same block interface, the performance utilization can be signif-
icantly di�erent due to the di�erent unwritten contracts of HDDs and
SSDs. On HDDs only the locations of consecutive accesses by the soft-
ware matter; however, on SSDs, the contract-violating writes made a few
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days ago may trigger background activities (e.g., garbage collections) to-
day, leading to unexpected low performance.

Software (i.e., contractors of storage devices) should be constructed
di�erently to honor the di�erences between HDDs and SSDs. For exam-
ple, we find that Linux is conservative in sending requests to storage de-
vices, probably due to the decade-long assumption of HDDs underneath.
With SSDs, operating systems can be more aggressive as SSDs are much
more capable, thanks to the high internal I/O parallelism. In addition,
because I/O becomes faster, the software overhead will occupy a large
portion of the end-to-end data access time. Consequently, we must re-
think the software design.

In this dissertation, we show how software should be constructed to
maximize the performance of the underlying storage devices, by finding
the violations of the unwritten contracts and by building a new system
to better exploit the contracts. Experimenting is one key method of our
studies as it allows us to explore and understand the complex interac-
tions between software and the storage hardware; without the carefully
designed experiments, it would be impossible to systematically reveal the
subtle interactions. To accelerate the explorations, we build tools, which
can be applied to future system designs. To demonstrate the exploita-
tion of the unwritten contract, we build a new system (i.e., Vacuum) that
optimizes the interaction between software and SSDs.

In this chapter, we first summarize our work on finding violations of
the unwritten contracts and exploiting the contracts. We then introduce
future work and the lessons learned from the studies. Finally, we will
conclude.
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6.1 Summary

This dissertation consists of two parts. In the first part, we find viola-
tions of the HDD unwritten contract and the SSD unwritten contract. In
the second part, we exploit the SSD unwritten contract to build a high-
performance and cost-e�ective system. We now summarize these two
parts.

6.1.1 Finding Violations of Unwritten Contracts

In the first part of the dissertation, we systematically find violations of the
unwritten contracts of HDDs and SSDs.

We begin by identifying the violations of HDDs. Thanks to their low
costs, HDDs are widely deployed in large-scale systems, where tail la-
tency is critical for overall performance. Violations of the HDD unwritten
contract could contribute to the tail latency; however finding rare, corner-
case behaviors that lead to long tail latency is challenging. To e�ectively
find the violations, we propose to use statistical tools, such as sensitiv-
ity analysis; we focus on the block allocators of file systems, which de-
termines the data layout and thus how data is accessed on disk. We find
four design issues in the popular Linux ext4 file system, which could lead
to long tail latency. Our subsequent fixes of the issues cut the size of the
tail by an order of magnitude, producing consistent and satisfactory file
layout that reduce data access latency.

After finding violations of HDD unwritten contract, we continue to
find violations of the SSD unwritten contract. We start by clearly defining
the five rules of the unwritten contract. Then, we conduct a vertical anal-
ysis of various applications, file systems atop a detailed SSD simulator,
in order to find the violations of the SSD unwritten contract and the root
causes of the violations. As a result, we find 24 observations. Some of the
observations confirm common beliefs; some are surprising. For example,
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the Linux page cache throttles read bandwidth on SSDs due to legacy de-
signs. We hope that our observations from the thorough vertical analysis
can shed lights into future storage system design.

6.1.2 Exploiting Unwritten Contracts

From our studies of the violations to the SSD unwritten contract, we find
that the contract is often violated, underutilizing the SSD. Among the
five rules of the unwritten contract of the SSD, request scale has the most
significant impact on immediate performance; violating the request scale
rule can lead to underutilized I/O parallelism in the SSD and significant
performance loss. Therefore, we explore ways to e�ectively take advan-
tage of the internal I/O parallelism of SSDs.

Interestingly, if the I/O parallelism is well exploited, the resulting
high data bandwidth will make cache misses tolerable, which allows us
to build systems with tiny cache and still achieve high performance. Such
systems, which we refer to as Tiny Memory Processing Systems (TMPS),
significantly reduce memory usage and make large-scale systems more
cost-e�ective. We demonstrate the TMPS approach through a case study
of search engines; we build a search engine, Vaccum, that exploits SSDs
e�ciently.

Vacuum employs several carefully designed techniques. First, we de-
sign a new data layout that is based on the assumption that cache misses
are common. The new data layout significantly reduce read amplification
and thus make tiny-memory systems feasible. Second, we propose two-
way cost-aware bloom filters, which prunes data by checking multiple
bloom filters in a cost-aware fashion and reduce the read tra�c of phrase
queries. Third, Vacuum performs adaptive prefetching that adjusts the
size of prefetches by the specific query. Adaptive prefetch increases I/O
e�ciency and reduces read amplification. Finally, we trade space for less
read tra�c, taking advantage of the large space of SSDs with the budget.
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For example, we compress documents individually, which lead to large
space usage, but small read tra�c, as we can avoiding entangled docu-
ments.

Vacuum is very e�cient at exploiting SSDs. Comparing with Elastic-
search, a very popular open-source search engine, Vacuum reduces read
amplification by up to 3.2 times, query latency by up to 16 times, and
increases query throughput by up to 2.7 times.

6.2 Future Work

We believe that system builders should apply more statistics tools to more
components of computer systems. Statistics tools such as the ones used
in this dissertation (e.g., Latin hypercube design and Sensitivity Analy-
sis) and in a bigger scope (e.g., Design of Experiments and Uncertainty
Quantification) have been proved to help building better products, such
as cars, by quantitatively studying how products should be built so that
they can perform well in an uncertain environment, where temperature
and road conditions may vary. Computer systems are the same as such
products: we build computer systems so that they perform well when
they are deployed in an uncertain environment, where the workloads,
the components interacted and hardware may vary. More rigorous stud-
ies using statistics will allow us to build systems with better tradeo�s and
more predictable performance.

We believe that the process of diagnosing performance problems could
be further automated by better tools. Currently, we often pinpoint the
root cause of a problem by manually designing and running additional
experiments to “zoom in”. The process is tedious, ad hoc and requires
strong domain knowledge in related components. We think that there
could be a triage framework with built-in domain knowledge that can
automatically plan and run experiments to narrow down the problem to
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a su�ciently small component, or even to a specific line of code.
More data processing systems could benefit from the TMPS (Tiny-

Memory Processing System) approach, which redesigns a system to of-
fload data from RAM to SSDs to reduce the cost of the system. Although
the bandwidth of SSDs is much lower than RAM, the bandwidth of SSDs
is su�cient for many data processing systems. Many systems seem to de-
mand high data bandwidth because they are evaluated in an isolated way;
for example, evaluating a key-value store, which is only one of many com-
ponents of a system, may show high data bandwidth demand. However,
if we take a holistic view, a full system usually conducts computation,
or machines in the system communicate over the slow network, which
limits the internal bandwidth demand to an amount that can be satisfied
by SSDs. Even if one SSD is not enough, one can design the system in a
way to exploit the higher aggregated bandwidth from multiple SSDs. As
data becomes more substantial and requires faster processing, the TMPS
approach encourages system designers to make new tradeo�s with new
hardware, to reduce the cost of large-scale systems.

6.3 Lessons Learned

In this section, we present the general lessons that we learned from ana-
lyzing and building complex systems.

6.3.1 Systems studies need to be more systematic

System designing is often considered as art instead of rigorous science
probably because systems are complex “living organs”. There are many
components interacting with each other in a system; a system will also
interact with other systems. A great deal of uncertainty is involved in
designing a system. As a result, system designers often rely on experi-
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ments to discover unpredicted system behaviors. However, the experi-
ments used are often unmethodical and ine�cient.

We realize that computer systems are very similar to simulators, such
as aircraft engine simulators, which have established methodologies of
experimenting to find performance problems. Essentially, both computer
systems and simulators are computer programs that take some inputs and
produce some outputs. For example, the inputs of a computer file system
can be the position and size of data; one example of the outputs is the
quality of data placement. In the example of aircraft engine simulator, the
inputs can be the altitude, temperature, and wind speed at which the en-
gine is simulated to run; the output can be the performance of the engine.
By systematically studying the inputs and outputs the engine simulator,
one can revise the design of the engine to improve the performance.

Because computer systems are very similar to simulators, we can take
advantage of systematic methodologies for studying simulators to study
computer systems. In our Chopper work, we applied Latin hypercube
design (a method in Experimental Design), which is often used to study
simulations, to systematically and e�ciently explore the vast input space
of file system block allocators. In addition, we applied Sensitivity Analy-
sis, also a common method used in simulator studies, to analyze the rela-
tionship between the input of block allocators and the quality of data lay-
out. With Experimental Design and Sensitivity Analysis, we were able to
identify issues in a popular file system and subsequently fix them. Rigor-
ous and systematic methodologies will help to reduce unexpected issues
caused by intuitive but unreliable design decisions.

6.3.2 Analysis of complex systems demands
sophisticated tools.

Methodological ideas are more useful when they are built into tools that
can be readily used. With well-built tools, one can immediately apply the
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idea to solve critical problems, instead of implementing the idea.
In this dissertation, we built Chopper, a tool to explore the design is-

sues in file system block allocators. The idea of Latin hypercube design
is built into Chopper. Chopper automatically plans and runs the exper-
iments and collects the results for further analysis. Although we only
studied XFS and ext4 in this dissertation, Chopper can be used for other
file systems, such as Btrfs.

We also built WiscSee, a vertical analysis tool that examines if applica-
tions and file systems comply with the unwritten contract of SSDs. With
a few lines of configuration scripts, one can run a new application and a
new file system in WiscSee. WiscSee will produce well-formatted data,
showing the metrics for all of the five rules of SSD unwritten contract.
One can then tell how well the combination of the particular application
and file system comply with the contract. WiscSee allows us to find many
surprising interactions among the layers of the storage stack.

6.3.3 Be aware of and validate assumptions.

When improving existing systems or designing a new system, we must be
aware of the assumptions made in the system and validate them in a case-
by-case fashion. As components or the running environment of a system
change, invalid assumptions may limit the performance of the system. In
addition, we may fail to exploit new opportunities that require removing
constraints.

In this dissertation, we found many invalid assumptions as systems
evolve. For example, we found that the design of Linux page cache as-
sumes that the underlying storage device is an HDD, which is slow and
can only process requests serially. With this assumption, Linux page cache
serially issues relatively small read requests even when a user requests a
large chunk of data. Such an assumption is invalid when the underlying
device is an SSD, which is fast and can process requests concurrently. The
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old design of Linux page cache limits performance on SSDs. Being aware
of the assumption will allow one to work around the issue or invalidate
the assumption to design new systems.

By re-thinking assumptions, one can find new opportunities to im-
prove systems. For example, we found that many systems rely on us-
ing RAM (as cache) because storage devices (e.g., HDDs) are assumed to
be slow. As a result, systems are designed to be cache-oriented; cache
misses are intolerable as they incur slow I/O operations. However, such
an assumption is invalid when the system runs on SSDs, which can of-
fer much higher bandwidth and lower latency than HDDs. Thanks to
SSDs, cache misses are much more tolerable. With the new assumption
that storage devices are fast, we build a storage-oriented search engine,
which employs careful designs in data layout, early pruning, prefetch-
ing and space/tra�c tradeo�s to exploit the fast storage. The resulting
storage-oriented search engine demands much less RAM than the exist-
ing engines to achieve the same performance.

6.4 Closing Words

As the size of data keeps growing, e�ciently processing data becomes
more critical to support decisions in our lives and businesses. A vital com-
ponent of a data processing system is the storage device, which presents
written contracts one must follow to use the device correctly. However,
storage devices also present unwritten performance contracts one must
follow to achieve high performance.

In this dissertation, we found violations of the HDD and SSD unwrit-
ten contracts and exploit the SSD contract to build a high-performance
and cost-e�ective data processing system. We proposed to use statisti-
cal tools to explore violations of HDD unwritten contract. We conducted
a full-stack vertical analysis to investigate the violations of the SSD un-
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written contract. To exploit the high internal I/O parallelism suggested
by the unwritten contract of SSDs, we built a high-performance and cost-
e�ective data processing system (a search engine) that takes advantage of
fast and cheap SSDs, while using a small amount of RAM.

This dissertation presents the study, design, and implementation of
high-performance storage stacks. We hope that the methodologies we
proposed, the observations we found, the tools we built, and the designs
we made can help system designers better understand the complex inter-
actions between the software and storage devices.
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