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abstract

There is a growing interest in estimating heterogeneous treatment effects in randomized and

observational studies. However, most of the work relies on the assumption of ignorability, or

no unmeasured confounding on the treatment effect. While instrumental variables (IV) are

a popular technique to control for unmeasured confounding, there has been little research

conducted to study heterogeneous treatment effects with the use of an IV. This dissertation

introduces methods using an IV to discover novel subgroups, estimate their heterogeneous

treatment effects, and identify individualized treatment rules (ITR) when ignorability is

expected to be violated.

In Chapter 2, we present a two-part algorithm to estimate heterogeneous treatment effects

and detect novel subgroups using an IV with matching. The first part uses interpretable

machine learning techniques, such as classification and regression trees, to discover potential

effect modifiers. The second part uses closed testing to test for statistical significance of

each effect modifier while strongly controlling the familywise error rate. We apply this

method on the Oregon Health Insurance Experiment, estimating the effect of Medicaid on

the number of days an individual’s health does not impede their usual activities by using a

randomized lottery as an instrument.

In Chapter 3, we generalize methods to identify ITR using a binary IV to using multiple,

discrete valued instruments, or equivalently, multilevel instruments. Several new problems

arise when generalizing to multilevel instruments, requiring novel solutions. In particular,

multilevel IV give rise to many latent subgroups that may experience heterogeneous

treatment effects. Additionally, it may be unclear how to combine and compare the different

levels of the IV to estimate treatment heterogeneity. We provide methods that use a

prediction of the latent subgroup to identify optimal ITR, and methods to dynamically

combine levels of the multilevel IV to estimate the heterogeneous treatment effects, effectively

individualizing estimation of an ITR. Further, we provide and discuss necessary and sufficient

conditions to identify an optimal ITR using a multilevel IV. We apply our methods to

identify an ITR for two competing treatments, carotid endarterectomy and carotid artery

stenting, on preventing stroke or death within 30 days of their index procedure.
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1 introduction

When comparing the effectiveness of two or more treatments, in addition to assessing the

overall treatment effects, it is often of interest to analyze treatment effects within subgroups.

Traditionally, approaches to study the heterogeneous treatment effects (i.e. the various

treatment effects exhibited by the subgroups) required prespecification of subpopulations

rather than using data to suggest unknown subgroups [Stallones (1987), Yusuf et al. (1991),

CPMP (1995), Rothwell (2005)]. However, particularly in the era of Big Data [Hilbert and

López (2011)], there exists too many possible subgroups for domain experts to prespecify,

necessitating the development of methods that can detect novel subgroups and estimate the

heterogeneous treatment effects from data. Recently, there have been extensive research on

techniques to identify data-driven subgroups and estimate effect heterogeneity; see Su et al.

(2009), Hill (2011), Hsu et al. (2013), Tian et al. (2014), Hsu et al. (2015), Athey and Imbens

(2016), Lee et al. (2018b), Lee et al. (2018a), Wager and Athey (2018), Chernozhukov et al.

(2018), Hahn, Murray, and Carvalho (2020), Wang and Rudin (2021), Lee et al. (2021a) and

references therein. Further, as many practitioners and policy-makers are most interested in

using the understood subgroups and estimated heterogeneous effects to inform decisions,

the subgroup-specific treatment effects can be used to develop decision strategies to provide

the treatment most appropriate for the subgroup. Such decision strategies are referred to

as optimal decision rules, or individualized treatment rules (ITR). Recently, there has been

much progress made in developing methods identifying such rules; see Zhao et al. (2009),

Qian and Murphy (2011), Zhao et al. (2012), Zhang et al. (2012), Moodie et al. (2014), Xu

et al. (2015), Chen et al. (2016), Chen et al. (2017), Sutton and Barto (2018), Lou et al.

(2018), Chen et al. (2018) and references therein. However, the aforementioned works rely

on the assumption of ignorability, that there is no unmeasured confounding on the effect of

the treatment on the outcome. Unfortunately, this condition may not hold in observational

studies or randomized trials with noncompliance.

Instrumental variables (IV) are variables related to the outcome only through the

treatment and methods using an IV were developed to control for unmeasured confounding.

The general idea of an IV method has two parts, (i) find a variable, called an instrument,

that influences the treatment of interest, but is otherwise not associated with the out-

come, and is independent of unmeasured confounders, and (ii) use the variation free of

unmeasured confounding in the treatment, elicited by the IV, to estimate causal effects of
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the treatment. Some commonly used IVs are assignment to a treatment in randomized

trials with noncompliance, randomized encouragement to take a treatment, randomized

lotteries, regression discontinuity designs, distance to specialty care providers, physician or

hospital preference, and multiple genetic variants; for additional discussions and review, see

Angrist et al. (1996), Hernán and Robins (2006), and Baiocchi et al. (2014). Estimation and

inference of causal effects using IV have been extensively studied, mostly using likelihood,

series, sieve, minimum distance, matching, and/or moment-based methods; see Abadie

(2003); Blundell and Powell (2003); Newey and Powell (2003); Ai and Chen (2003); Hall

and Horowitz (2005); Tan (2006); Blundell et al. (2007); Baiocchi et al. (2010); Kang et al.

(2016a); Darolles et al. (2011); Chen and Pouzo (2012); Okui et al. (2012); Su et al. (2013);

Athey et al. (2019) and references therein. However, work on developing methods for

estimating and inferring heterogeneous treatment effects using IV is understudied.

Recently, there has been some work to incorporate IV techniques to identify optimal

ITR. Methods estimating heterogeneous treatment effects and identifying subgroups using

IV and tree-based methods have been proposed by Bargagli-Stoffi and Gnecco (2018),

Bargagli-Stoffi et al. (2019), and Athey et al. (2019). An extension of Outcome Weighted

Learning, a popular technique for identifying ITR, to include IV was provided by Cui and

Tchetgen Tchetgen (2021b). Alternative approaches estimating heterogeneous treatment

effects with an IV to identify an ITR were presented by Pu and Zhang (2020) where different

assumptions surrounding the instrument were considered, and Qiu et al. (2021) where

settings with restrictions placed on resources were examined. Time varying treatment

rules, or dynamic treatment regimes, using an IV were proposed by Chen and Zhang

(2021). For further discussions on identifying ITR with IV, see Cui and Tchetgen Tchetgen

(2021a). However, no techniques have used matching, a popular and intuitive method in

causal inference, to nonparametrically estimate treatment heterogeneity and identify novel

subgroups with the use of an IV. Further, all of the methods identifying ITR consider the

use of a binary IV, which, as many of the IVs commonly used in practice are not binary,

can be a limitation in practice.

The focus of this dissertation is to provide additional techniques to estimate hetero-

geneous treatment effects, identify novel subgroups, and develop optimal ITR using IV

and provide practical guidance on the use of such methods. Specifically, in Chapter 2, an

algorithm to discover novel subgroups and estimate heterogeneous treatment effects using

an IV is proposed. In this algorithm, we incorporate IV with matching, classification and

regression trees, and closed testing to provide inferential guarantees by strongly controlling
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familywise error rates. In numerical examples, we demonstrate the algorithm’s capability to

detect existing subgroups while maintaining honest inference (i.e. controlling the familywise

error rate). Finally, We apply our method to the Oregon Health Insurance Experiment,

a natural experiment, to study heterogeneous treatment effects of Medicaid among the

complier subpopulation, while adding details on how to perform similar analyses. In Chapter

3, we introduce methods to identify optimal ITR in the presence of unmeasured confounding

using multiple, discrete valued instruments, or equivalently, multilevel instruments. In

particular, we provide extensions of the existing literature using binary IV and discussion

on the assumptions required to identify ITR using an IV. As extending to multilevel IV

introduces several aspects not considered when using a binary IV, we also provide novel

methods that use observed and latent effect modifiers and methods that individualize

estimation of ITR. We additionally provide extensive discussion on how to use the methods,

specifically in the decisions on how to use the different levels of the IV. In simulation studies,

we demonstrate how using a multilevel IV over its natural support improves estimation

over the use of a dichotomized IV. Lastly, we apply our methods to data from the Vascular

Quality Initiative (https://www.vqi.org) to develop an optimal ITR between competing

treatments for patients at risk of stroke or death from carotid artery disease. The techniques

detailed in this dissertation help to fill the methodology gaps in studying heterogeneous

treatment effects with an IV.

https://www.vqi.org
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2 detecting heterogeneous treatment effects with

instrumental variables and application to the oregon

health insurance experiment

2.1 Introduction

2.1.1 Motivation: Utilization of Medicaid in Oregon and the Complier

Average Causal Effect

In January of 2008, Oregon reopened its Medicaid-based health insurance plan for its eligible

residents and, for a brief period, allowed a limited number of individuals to enroll in the

program. Specifically, a household in Oregon was randomly selected by a lottery system

run by the state and any eligible individual in the household can choose to enroll in the

new health insurance plan; households that weren’t selected by the lottery could not enroll

whatsoever.

For policymakers, Oregon’s randomized lottery system was a unique opportunity, specif-

ically a natural experiment, to study Medicaid’s causal effect on a variety of health and

economic outcomes, as directly randomizing Medicaid (or withholding it) to individuals

would be infeasible and unethical. In this natural experiment, commonly referred to as the

Oregon Health Insurance Experiment (OHIE), Finkelstein et al. (2012) used the randomized

lottery as an instrumental variable (see Section 2.2.2 for details) to study the complier

average causal effect (CACE), or the effect of Medicaid among individuals who enrolled in

Medicaid after winning the lottery (Angrist, Imbens, and Rubin, 1996). The CACE reflects

Medicaid’s impact among a subgroup of individuals and differs from the average treatment

effect for the entire population (ATE) or the intent-to-treat (ITT) effect of the lottery

itself on the outcome. In this paper, we focus on studying the CACE; see Imbens (2010),

Swanson and Hernán (2013), and Swanson and Hernán (2014) for additional discussions on

the CACE.

Often in studying the CACE, the population of compliers is assumed to be homogeneous

whereby two compliers are alike and have the same treatment effect. But, no two individuals

are the same and it is plausible that some compliers may benefit more from the treatment

than other compliers. For example, sick individuals who enroll in Medicaid after winning the

lottery may benefit more from Medicaid than healthy individuals. Also, the perceived benefit
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of enrolling in Medicaid among sick versus healthy individuals may create heterogeneity in

the compliance rate, i.e. the number of people who sign up when they win the lottery, with

sick people presumably signing up more than healthy people. Alternatively, if people are

equally likely to enroll in Medicaid when they win the lottery, those who are unemployed

may benefit more from Medicaid in terms of reducing out-of-pocket healthcare spending

and medical debt than those who are employed. The theme of this paper is to explore these

issues, specifically the heterogeneity of CACE and how to discover them in an honest manner

by using well-known matching methods and recent tree-based methods in heterogeneous

treatment effect estimation.

2.1.2 Prior Work and Our Contributions

Traditional approaches to study heterogeneous effects required subgroups to be specified a

priori rather than allowing for unknown subgroups to be discovered by the data (Stallones,

1987; Yusuf et al., 1991; Rothwell, 2005). In recent years, there have been many works in

causal inference using tree-based methods to estimate effect heterogeneity or to identify

data-driven subgroups when there is full compliance; see Su et al. (2009), Hill (2011), Athey

and Imbens (2016), Wager and Athey (2018), Chernozhukov et al. (2018), Athey, Tibshirani,

and Wager (2019), Hahn, Murray, and Carvalho (2020), Wang and Rudin (2021), Lee et al.

(2021a) and references therein. Notably, Wang and Rudin (2021), Lee et al. (2021b), and

Lee et al. (2021a) used data to suggest novel effect modifiers, aiding domain experts identify

new subgroups when there are too many possible subgroups to consider. The majority of

the aforementioned work utilizes sample splitting or sub-sampling to obtain honest inference.

Here, honest inference refers to a procedure that controls the Type I error rate (or the

familywise error rate) of testing a null hypothesis about a treatment effect at a desired level

α; see Section 2.2.4 for additional discussions. However, Hsu, Small, and Rosenbaum (2013)

used pair matching and classification and regression trees (CART) (Breiman et al., 1984)

to conduct honest inference, all without sample splitting. A follow-up work by Hsu et al.

(2015) formally showed that the procedure strongly controls the familywise error rate for

testing heterogeneous treatment effects, again without sample splitting. Subsequent works

by Lee et al. (2018a), Lee et al. (2018b), and Lee, Small, and Dominici (2021b) extended

this idea to increase statistical power of detecting such effects.

There is also work on nonparametrically estimating treatment effects using instrumental

variables (IV), mostly using likelihood, series, sieve, minimum distance, and/or moment-



6

based methods; see Abadie (2003); Blundell and Powell (2003); Newey and Powell (2003);

Ai and Chen (2003); Hall and Horowitz (2005); Blundell et al. (2007); Darolles et al.

(2011); Chen and Pouzo (2012); Su et al. (2013); Athey et al. (2019) and references therein.

Recently, Bargagli-Stoffi and Gnecco (2018) and Bargagli-Stoffi et al. (2019) explored effect

heterogeneity in the CACE by using causal trees (Athey and Imbens, 2015) and Bayesian

causal forests (Hahn et al., 2020), specifically by estimating heterogeneity in the ITT effect

and dividing it by the compliance rate. However, to the best of our knowledge, none have

used matching, a popular, intuitive, and easy-to-understand method in causal inference, as a

device to nonparametrically estimate treatment heterogeneity in the CACE and to guarantee

strong familywise Type I error control. Works on using matching with an instrument by

Baiocchi et al. (2010) and Kang et al. (2013, 2016a) only focused on the population CACE;

they do not explore heterogeneity in the CACE. Also, aforementioned works by Hsu et al.

(2013) and Hsu et al. (2015) using matching and CART did not consider instruments.

The goal of this paper is to propose a matching-based method to study effect het-

erogeneity and identify novel, data-driven subgroups in instrumental variables settings.

Specifically, the target estimand of interest is what we call the heterogeneous complier

average causal effect (H-CACE). A heterogeneous complier average causal effect (H-CACE)

is the usual complier average causal effect, but for a subgroup of individuals defined by

their pre-instrument covariates. At a high level, H-CACE explores treatment heterogeneity

in the complier population, where we suspect that not all compliers in the data react to

the treatment in the same way. Some subgroup of compliers may respond to the treatment

differently than another subgroup of compliers, who may not respond to the treatment at

all; some may even be more likely to be compliers if they believe the treatment would benefit

them and they may actually benefit from the treatment. The usual CACE obscures the

underlying heterogeneity among compliers by averaging across different types of compliers

whereas H-CACE attempts to expose it. Also, in the case where the four compliance types

in Angrist et al. (1996), specifically compliers, never-takers, always-takers, and defiers, have

identical effects, the H-CACE can identify the heterogeneous treatment effect for the entire

population using an instrument. Section 2.2.3 formalizes H-CACE and provides additional

discussions.

Methodologically, to study H-CACE, we combine existing ideas of heterogeneous treat-

ment effect estimation in non-IV matching contexts by Hsu et al. (2015) and matching

with IVs by Baiocchi et al. (2010) and Kang et al. (2016a). Specifically, we first follow

Baiocchi et al. (2010) and Kang et al. (2016a) and conduct pair matching on a set of pre-
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instrument covariates. Second, we follow Hsu et al. (2015) where we obscure the difference

in the outcomes between treated and controls by using absolute differences and use CART

to discover novel subgroups of study units without contaminating downstream inference.

Specifically, we use closed testing to test the H-CACE in different subgroups while strongly

controlling for familywise error rate (Marcus, Eric, and Gabriel, 1976). Simulation studies

are conducted to evaluate the performance of our proposed method under varying levels

of compliance and effect heterogeneity. The simulation study also compares our method

to the recent aforementioned method by Bargagli-Stoffi et al. (2019). We then use our

method to analyze heterogeneity in the effect of Medicaid on increasing the number of days

a complying individual’s health does not hamper their usual activities.

2.2 Methodology

2.2.1 Notation

Let i = 1, . . . , I index the I matched pairs and j = 1, 2 index the units within each matched

pair i. Let Zij be a binary instrument for unit j in matched pair i where one unit in the

pair receives the instrument value Zij = 1 and the other receives the value Zij = 0. In

the OHIE data, Zij = 1 and Zij = 0 denotes an individual winning or losing the Medicaid

lottery, respectively. Let Z be the vector of instruments, Z = (Z11, Z12, . . . , ZI1, ZI2) and

Z denote an event of instrument assignments for all units.

For unit j in matched pair i, let d1ij and d0ij denote the binary potential treatmen-

t/exposure given the instrument value of Zij = 1 and Zij = 0 respectively. Further,

define the potential response r
(d1ij)
1ij for unit j in matched set i with exposure d1ij receiving

instrument value Zij = 1; we define r
(d0ij)
0ij similarly but with instrument value Zij = 0.

For the OHIE data, d1ij denotes whether an individual enrolled in Medicaid and r
(d1ij)
1ij

denotes the potential outcome when the individual wins the lottery Zij = 1. For unit j

in matched set i, the observed response is defined as Rij = r
(d1ij)
1ij Zij + r

(d0ij)
0ij (1− Zij) and

the observed treatment is defined as Dij = d1ijZij + d0ij(1− Zij). The notation assumes

that the Stable Unit Treatment Value Assumption (SUTVA) holds (Rubin, 1980). Define

F = {(r(d1ij)1ij , r
(d0ij)
0ij , d1ij , d0ij ,Xij , uij), i = 1, . . . , I, j = 1, 2} to be the set of potential

outcomes, treatments, and covariates, both observed, Xij , and unobserved, uij .

When partitioning the matched sets into subgroups for discovering effect heterogeneity,

the following notation is used. We define a “set of sets”, or grouping G, which contains mu-
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tually exclusive and exhaustive subsets of the pairs sg ⊆ {1, . . . , I} so that G = {s1, . . . , sG}.
The subscript g in sg is used to denote a unit partitioned into the gth subset sg. To avoid over-

loading the notation, s and sg will be used interchangeably when it isn’t necessary to specify

a subgroup g. The set of potential outcomes, treatments, and covariates for subset sg are

defined as Fsg = {(r(d1sij)1sij , r
(d0sij)
0sij , d1sij , d0sij ,Xsij , usij) : sg ⊆ {1, . . . , I}, i ∈ sg, j = 1, 2},

where F =
⋃

sFs. For example, consider a grouping of two subgroups, G = {s1, s2}, for
I = 10 matched pairs. Suppose the first few pairs and the last pair make up the first sub-

group and the rest are in the second subgroup, say s1 = {1, 2, 3, 10} and s2 = {4, 5, 6, 7, 8, 9}.
The set of potential responses, treatments, and covariates for the first group is then

Fs1 = {(r(d1s1ij)1s1ij
, r

(d0s1ij)
0s1ij

, d1s1ij , d0s1ij ,Xs1ij , us1ij) : s1 = {1, 2, 3, 10}, i ∈ s1, j = 1, 2}. The
observed response, binary instrument, and exposure for a given unit in subset sg is denoted

as Zsgij , Rsgij , and Dsgij respectively.

2.2.2 Review: Matching, Instrumental Variables, and the CACE

Matching is a popular non-parametric technique in observational studies to balance the

distribution of the observed covariates between treated and control units by grouping units

based on the similarity of their covariates; see Stuart (2010), Chapters 3 and 8 of Rosenbaum

(2010), and Rosenbaum (2020) for overviews of matching. Pair matching is a specific type

of matching where each treated unit is only matched to one control unit. In the context of

instrumental variables and pair matching, the instrument serves as the treatment/control

variable and the matching algorithm creates I matched pairs where the two units in a

matched pair are similar in their observed covariates xij , but one receives the instrument

value Zij = 1 and the other receives the instrument value Zij = 0.

Instrumental variables (IV) is a popular approach to analyze causal effects when

unmeasured confounding is present and is based on using a variable called an instrument

(Angrist et al., 1996; Hernán and Robins, 2006; Baiocchi et al., 2014). The instrument

must satisfy three core assumptions: (A1) the instrument is related to the exposure or

treatment, or
∑I

i=1

∑2
j=1(d1ij − d0ij) ̸= 0 (commonly referred to as instrument relevance);

(A2) the instrument is not related to the outcome in any way except through the treatment,

or r
(d)
0ij = r

(d)
1ij ≡ r

(d)
ij for a fixed d (commonly referred to as the exclusion restriction);

and (A3) the instrument is not related to any unmeasured confounders that affect the

treatment and the outcome, or P (Zij = 1|F ,Z) = 1
2 within each pair i (commonly referred

to as instrument ignorability or exchangeability). If these core assumptions are satisfied,
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it is possible to obtain bounds on the average treatment effect (Balke and Pearl, 1997).

To point identify a treatment effect, one needs to make additional assumptions. Here,

we assume (A4) monotonicity where the potential treatment is a monotonic function of

the instrument values, or d0ij ≤ d1ij . Assumption (A4) can be interpreted in terms of

four sub-populations: compliers, always-takers, never-takers, and defiers (Angrist et al.,

1996). Compliers are units which their treatment values follow their instrument values, or

d0ij = 0, d1ij = 1. Always-takers always take the treatment regardless of their instrument

values, or d0ij = d1ij = 1. Never-takers never take the treatment regardless of their

instrument values, or d0ij = d1ij = 0. Defiers act against their instrument values, or

d0ij = 1, d1ij = 0. Assumption (A4) then states that no defiers exist.

Let NCO be the total number of compliers in the population. Under the IV assumptions

(A1)-(A4), the CACE, formally defined as

λ =

∑I
i=1(r

(1)
1ij − r

(0)
0ij)I(d1ij = 1, d0ij = 0)∑I

i=1

∑2
j=1 d1ij − d0ij

=
1

NCO

I∑
i=1

(r
(1)
1ij − r

(0)
0ij)I(ij is a complier)

can be identified from data by taking the ratio of the estimated ITT effect over the estimated

compliance rate. In the context of matching and instrumental variables, Baiocchi et al.

(2010) and Kang et al. (2016a) proposed a test statistic to test the null H0 : λ = λ0 by

using differences in the adjusted outcomes

T (λ0) =
2

I

I∑
i=1

2∑
j=1

Zij(Rij − λ0Dij)− (1− Zij)(Rij − λ0Dij) (2.1)

along with an estimator for the variance of T (λ0),

S2(λ0) =
1

I(I − 1)

I∑
i=1

2∑
j=1

(Zij(Rij − λ0Dij)− (1− Zij)(Rij − λ0Dij)− T (λ0))
2 (2.2)

Under the null, Baiocchi et al. (2010) and Kang et al. (2016a) showed that T (λ0)
S(λ0)

asymptoti-

cally follows a standard Normal distribution. For point estimation, the same set of authors

proposed a Hodges-Lehmann type estimator (Hodges and Lehmann, 1963) which involves

solving λ in the equation T (λ)/S(λ) = 0. For a 1− α % confidence interval, the equation

T (λ)/S(λ) ≤ z1−α/2 is solved for λ, where z1−α/2 is the 1− α/2 quantile of the standard

Normal distribution; see Kang et al. (2016a) and Kang et al. (2018) for details.
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2.2.3 Heterogeneous Complier Average Causal Effect (H-CACE)

We formally define the target estimand of interest in the paper, the heterogeneous treatment

effect among compliers, or H-CACE. Formally, the H-CACE is defined as the CACE for a

subgroup of compliers with a specific value of covariates

λ(x) =

∑I
i=1

∑2
j=1(r

(1)
1ij − r

(0)
0ij)I(d1ij = 1, d0ij = 0,Xij = x)∑I

i=1

∑2
j=1(d1ij − d0ij)I(Xij = x)

(2.3)

Because two units are assumed to have identical covariate values within each matched pair,

λ(x) can be rewritten as taking a subset of I matched pairs with identical covariates x, say

s ⊆ {1, . . . , I}

λs =

∑
i∈s
∑2

j=1 r
(d1sij)
1sij − r

(d0sij)
0sij∑

i∈s
∑2

j=1 d1sij − d0sij

Since each H-CACE λs has the same form as the original CACE, we can apply the test

statistic in Section 2.2.2. Formally, consider the subset-specific hypothesis H0s : λs = λ0

against H1s : λs ̸= λ0. We can use the test statistic (2.1) with variance (2.2) among the

pairs specific to subset s.

Also, under assumptions (A1)-(A4), for a mutually exclusive and exhaustive grouping

G = {s1, . . . , sG} of a set of pairs sg ⊆ {1, . . . , I} with at least one complier within each

subgroup sg, the original CACE is equal to a weighted version of H-CACE:

λ =
G∑

g=1

wsgλsg , wsg =

∑
i∈sg

∑2
j=1 d1sij − d0sij

NCO
.

An implication of this expression is that typical analysis of the CACE hides underlying

effect heterogeneity. For example, suppose there are two subgroups defined by a binary

covariate, say male or female, and consider two scenarios. In the first scenario, among

compliers, 80% are male and 20% are female. Also, the H-CACE of male is 1.25 and the

H-CACE of female is 0. In the second scenario, the male/female complier proportions

remain the same, but the H-CACE of male is now 1.5 and the H-CACE of female is -1.

In both scenarios, the CACE is 1. But, in the second scenario, females have a negative

treatment effect. By only studying the CACE, as is typical in practice, variations in the

treatment effects defined by H-CACEs would have been masked. The next section presents

a way to unwrap the CACE and discover novel H-CACEs.
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2.2.4 Discovering and Testing Novel H-CACE

A naive approach to finding and testing novel H-CACE would be to exhaustively test every

H-CACE for every subset of matched pairs and gradually aggregate them based on their

covariate similarities with appropriate statistical tests. However, this procedure will not

only lead to false discoveries, but it will also be grossly underpowered.

Instead, based on the work by Hsu et al. (2015), we propose to use exploratory machine

learning methods, such as CART, to discover and aggregate matched pairs into subgroups

with similar treatment effects, formulating grouping G. We will then use closed testing to

test effect heterogeneity defined by these groups while strongly controlling the familywise

error rate; see Algorithm 1 for details.

We explain in some detail the key steps in Algorithm 1. First, the specification of the

null value λ0 is for testing the sharp null of the form H0 : r
(d1ij)
1ij − r

(d0ij)
0ij = λ0(d1ij − d0ij);

this sharp null implies the “weak” or composite null H0 : λ = λ0 (Baiocchi et al., 2010).

Setting λ0 = 0 would test whether the H-CACE is zero or not and is the typical choice

in most applications unless other null values are of scientific interest. Second, under

the sharp null, the absolute value of the difference in adjusted outcomes between pairs,∣∣Yi∣∣ = ∣∣(Zi1−Zi2)(Ri1−λ0Di1− (Ri2−λ0Di2))
∣∣, obscures the instrument assignment vector

making
∣∣Yi∣∣ a function of F only, a fixed (and unknown) quantity. In contrast, Yi is a

function of both F and Z. Consequently, conditional on F , building a CART tree based on

|Yi| as the response and Xi as the explanatory variables does not affect the distribution of

Z. The distribution of Z within each pair remains 1/2 as stated in assumption (A3) and is

a key ingredient to achieve familywise error rate control for downstream inference; see our

discussion on honest inference below.

Third, Algorithm 1 applies closed testing, a multiple inference procedure by Marcus et al.

(1976), to test for multiple hypotheses about H-CACEs generated by CART’s grouping

G = {s1, . . . , sG}. Broadly speaking, closed testing will test sharp null hypotheses defined

by every parent and child node of the estimated tree from CART and reject/accept these

hypotheses while controlling for multiple testing issues; see Section 2.4.4 and Figure 2.5

for visualizations. A bit more formally, closed testing will test the global sharp null

hypothesis H0 : r
(d1ij)
1ij − r

(d0ij)
0ij = λ0(d1ij − d0ij) and subsequent subset-specific hypotheses

H0L : r
(d1sgij)

1sgij
− r

(d0sgij)

0sgij
= λ0(d1sgij − d0sgij) for all g ∈ L, where L is a subset of the G

groups formed by CART. We note that the difference between the global null and the subset-

specific nulls is only in the pairs under consideration; all the nulls use the test statistics
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Given :Observed outcome R, binary instrument Z, exposure D, covariates X,
null value λ0 for testing, and desired familywise error rate α

1 Pair match on observed covariates.
2 Calculate absolute value of pairwise differences for each matched pair∣∣Yi∣∣ = ∣∣(Zi1 − Zi2)(Ri1 − λ0Di1 − (Ri2 − λ0Di2))

∣∣
3 Construct mutually exclusive and exhaustive grouping using CART. Here, CART

takes |Yi| as the outcome and Xi from each matched pair as the predictors.
CART outputs a partition of covariates, which we use to define G = {s1, . . . , sG}
and consequently, H-CACEs.

4 Run closed testing (Marcus et al., 1976) to test statistical significance of
H-CACEs for every subset L ⊆ {1, . . . , G} of G groups where each subset defines

the null hypothesis of the form H0L : r
(d1ij)
1ij − r

(d0ij)
0ij = λ0(d1ij − d0ij) for all

g ∈ L. Formally, run

for L ⊆ {1, . . . , G} do
if H0L has not been accepted then

Calculate Ts(λ0) and Ss(λ0) for s =
⋃

g∈L sg

if
∣∣Ts(λ0)
Ss(λ0)

∣∣ ≤ z1−α/2 then
Accept the null hypothesis H0K : λK = λ0 for all
K ⊆ L ⊆ {1, . . . ,G}

end
else

Reject H0L
end

end

end
Output :Estimated and inferential quantities for H-CACEs (e.g. effect size,

confidence interval, p-value) and novel H-CACEs from closed testing.

Algorithm 1: Proposed method to discover and test effect heterogeneity in IV
with matching

introduced in Section 2.2.2. Also, the subset-specific hypotheses imply H0L : λs = λ0 for

s =
⋃

g∈L sg. Closed testing would only reject the subset-specific hypotheses H0L if all of

the p-values from superset hypotheses H0L′ , L ⊆ L′, are less than α.

As mentioned earlier, the key step of using |Yi| in CART allows for both discovery and

downstream honest testing of H-CACEs via closed testing; again, honesty refers to control of

the familywise error rate at level α when testing multiple hypotheses about H-CACEs that
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were discovered by data. Because |Yi| is not a function of Z, the original distribution of Z is

preserved and we can use the standard randomization inference null distribution to honestly

test each H-CACE discovered by CART. In fact, as noted in Hsu et al. (2015), this honesty

property is preserved for any supervised machine learning algorithm that forms groups based

on X and |Y | as well as subsequent visual heuristics to check the algorithms’ performance.

Also, in recent work on estimating heterogeneous causal effects (Chernozhukov et al., 2018;

Athey et al., 2019; Park and Kang, 2020), the notion of ”honest” inference is often tied to

sample splitting, where one subsample is used to discover different subgroups or to estimate

nuisance parameters and the other subgroup is used to test the causal effect. Our approach

does not have to use sample splitting to obtain honest inference and Proposition 2.1 shows

this principle formally; Appendix A.2 shows this principle numerically.

Proposition 2.1 (Familywise Error Rate Control of Algorithm 1). Under the sharp null

hypotheses H0L in Algorithm 1, the conditional probability given (F ,Z,G) that the algorithm

makes at least one false rejection of the set of hypotheses is at most α.

We now discuss some important limitations of Proposition 2.1 and the proposed algorithm.

First, our algorithm’s guarantee on controlling the familywise error rate is only for testing

sharp nulls. As noted in Section 2, page 289 of Rosenbaum (2002a), testing for sharp nulls

does not necessarily imply that the true data generating process always follow the sharp

null and as such, the proposition makes no claims about how the true data generating

process actually looks like. Having said that, the limitation of testing a sharp null versus a

weak null has been discussed extensively; see Sections 3 and 4 of Rosenbaum (2002b), Ding

(2017), Fogarty (2018), and Fogarty (2020). But, a recent work by Fogarty et al. (2021)

has shown that testing the sharp null based on our test is an asymptotically valid test

for the weak null; see Remark 1 of their Proposition 1. This suggests that the guarantees

from Proposition 1 will likely hold even if we are testing weaker nulls with our algorithm.

Second, a price we pay for using |Yi| to achieve honest inference is that we collapse the

sign of the effect and therefore, CART treats subgroups with positive or negative effects

equally. This is potentially problematic in settings where two different covariate values lead

to identical effects (in magnitude), but different in signs; see Hsu et al. (2013) for additional

discussions and Appendix A.4 for a numerical illustration. For our Medicaid example, if

there is a partition of the covariates that leads to two identical H-CACEs in magnitude, but

different in signs, our algorithm may not be able to detect the two subgroups. But, since

using Medicaid is unlikely to be harmful, we don’t believe this will be a significant concern
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in our example, especially compared to the alternatives of not obtaining honest inference.

Third, Proposition 2.1 does not describe the algorithm’s statistical power to detect effect

heterogeneity. The next section uses a simulation study to address power and other factors

influencing discovery of H-CACEs.

2.3 Simulations

We conduct a simulation study to measure the performance of the proposed algorithm

in two ways: (1) statistical power to test H-CACEs and (2) recovering effect modifiers.

Throughout the simulation study, we vary the the compliance rate because prior works

have shown that performance of IV methods depends heavily on the compliance rate, or

more generally on the instrument’s association to the treatment (i.e. instrument strength).

In particular, problems can arise when the compliance rate is low; see Staiger and Stock

(1997), Stock, Wright, and Yogo (2002), and references therein for more details.

Following Hsu et al. (2015), each simulation setting fixes the potential outcomes r
(d0ij)
0ij

and r
(d1ij)
1ij , potential treatments d0ij and d1ij , and covariates Xij of each unit j within

each of the I = 2000 pairs. There are six pre-instrument covariates, each generated from

independent Bernoulli trials with 0.5 probability of success. At most two covariates, x1 and

x2, modify the treatment effect. That is, H-CACEs defined by λ(x1, . . . , x6) in equation (2.3)

depend on at most two covariates, x1 and x2. Also, because both x1 and x2 are binary, there

are at most four different H-CACEs defined by different combinations of binary variables

λ00, λ01, λ10, and λ11; for notational simplicity, we use λx1x2 to represent equation (2.3).

Similar to the design of the OHIE, the data is generated under the assumption of one-sided

compliance. This means that for every unit, the potential treatment having not received

the instrument is 0, d0ij = 0. The potential treatment having received the instrument, d1ij ,

is then a Bernoulli trial with success rate π; π is also the compliance rate. In Appendix A.3,

we consider the setting in which the compliance rate may depend on x1 and x2, say via

πx1x2 . Finally, the potential outcomes having not received the instrument r
(d0ij)
0ij are from a

standard normal distribution r
(d0ij)
0ij ∼ N(0, 1), and the potential outcomes having received

the instrument r
(d1ij)
1ij are a function of the H-CACE r

(d1ij)
1ij = r

(d0ij)
0ij + d1ijλx1x2 . Once all

the potential treatment and outcomes are generated, the observed treatment and outcome

are determined based on the value of the instrument and SUTVA. Finally, the regression

tree in Algorithm 1 is estimated in R using the package rpart, version 4.1-15 (Therneau,
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Atkinson, and Ripley, 2015). Unless specified otherwise, we use a complexity parameter of

0.005 (half of the default setting) and use defaults for the rest of rpart ’s parameters. Our

proposed method is referred to as “H-CACE” in the results below.

For comparison, we also apply a recent method by Bargagli-Stoffi et al. (2019) to discover

and test H-CACEs. Briefly, their method, which we refer to as “BCF-IV” in the results

below, utilizes modern tree-based methods (Athey and Imbens, 2015; Hahn et al., 2020) to

estimate heterogeneous intent-to-treat (ITT) effects and suggests different sub-populations

of interest; we remark that unlike our proposal, their method does not use matching and uses

the original, untransformed Rij inside the tree fitting step. Then, for each sub-population,

the method estimates and tests its H-CACE using the two-stage least square estimator.

We use the bcf iv function available on the authors’ Github repository and use the default

parameters of rpart and bcf (Hahn et al., 2020).

2.3.1 Statistical Power

To measure a method’s statistical power when the subgroup-specific null hypotheses aren’t

specified a priori, we divide the number of false null hypotheses rejected by the total number

of false null hypotheses suggested by the method. We refer to this rate as the true discovery

rate; note that if the number of false nulls being suggested is fixed, the true discovery rate

is one minus the proportion of false null hypotheses retained.

We compute the true discovery rate at varying levels of instrument strength and four

heterogeneous treatment settings: (a) No Heterogeneity, (b) Slight Heterogeneity, (c) Strong

Heterogeneity, and (d) Complex Heterogeneity. In setting (a), there are no effect modifiers

resulting in one subgroup with equal treatment effects, λ00 = λ01 = λ10 = λ11 = 0.5.

In setting (b), there is one effect modifier x1 resulting in two subgroups with similar

but different treatment effects, λ00 = λ01 = 0.7 and λ10 = λ11 = 0.3. In setting (c),

there is one effect modifier x1 resulting in two subgroups with dissimilar treatment effects,

λ00 = λ01 = 0.9 and λ10 = λ11 = 0.1. And, in setting (d), there are two effect modifiers

x1 and x2 resulting in three subgroups, one with a strong effect, two with no effects, and

the last group with the average effect, λ00 = 1.5, λ01 = λ10 = 0 and λ11 = 0.5. In all four

settings, the overall complier average causal effect is λ = 0.5.

We repeat the simulation 1000 times for each treatment heterogeneity and instrument

strength combination. We remark that the null hypothesis is that of no treatment effect (i.e.

λ0 = 0) and only the hypotheses consisting of pairs with λx1x2 = 0 are true null hypotheses.
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Figure 2.1: True discovery rate as a function of the compliance rate and heterogeneity
settings. The dashed and solid lines denote the BCF-IV procedure and our proposed
algorithm, respectively.

Figure 2.1 shows the true discovery rate under four treatment heterogeneity settings. We

see that as the compliance rate (i.e. instrument strength) increases, the true discovery rate

of our method grows across all settings. In particular, our approach has the best power in

the region where the compliance rate is low, roughly under 40%. Even when the compliance

rate is high, we see that BCF-IV generally has lower power than our method across different

heterogeneity settings, especially in the No Heterogeneity, Slight Heterogeneity, and Strong

Heterogeneity settings. In the complex heterogeneity setting, we see the true discovery

rate is rather similar between the two methods. This is because this setting has the largest

discrepancies in H-CACEs between subgroups, and thus, it is easy for CART to correctly

split on the covariates x1 and x2. Further, with the large magnitudes of H-CACEs in this

setting, the null hypothesis tests are more easily rejected in favor of the alternative.

We also take a moment to explain a counter-intuitive dip in our method’s true discovery

rate under the strong and complex heterogeneity settings in Figure 2.1. Briefly, this drop in

the true discovery rate is due to the formation of leaves with smaller treatment effects. As

the compliance rate becomes large, these small effects begin to be get suggested by CART.

But, the power to reject the null in favor of these small effects are small and the overall

true discovery rate dips briefly. However, as the compliance rate reaches one, we see the
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true discovery rate of our method begin to climb again; Appendix A.5 contains additional

details surrounding this phenomena.

Another interpretation of this dip reflects a limitation of the true discovery rate as a

metric for statistical power in certain settings of multiple testing with hypotheses adaptively

generated by tree-based algorithms. Specifically, because the true discovery rate only

considers hypotheses generated by the tree, if a tree were to not split (or rarely split)

and the overall effect is strong, there would only be one hypothesis in the denominator

of the true discovery rate and the lone hypothesis would likely be rejected, leading to a

true discovery rate of one. The Strong and Complex Heterogeneity settings under low

compliance rates, especially before the dip, is a reflection of this phenomena where our tree

fails to split, resulting in one single hypothesis that is eventually rejected; see Appendix A.5

for additional discussions. Nevertheless, as Figure 2.1 shows, our method consistently shows

a higher true discovery rate compared to BCF-IV across many settings and our method is

more likely to discover true non-zero effects than BCF-IV.

2.3.2 False Positive Rate and F-Score

We also assess our algorithm’s ability to predict effect modifiers from Xij . Specifically, we

say that a method predicts a variable to be an effect modifier when the tree splits on the

variable and rejects one of the hypotheses of the split’s children. In contrast, if either (a)

the tree splits on a variable, but none of the hypotheses defined by the split is rejected

or (b) the tree does not split on the variable, the variable is not predicted to be an effect

modifier. For example, for a given tree that splits only on covariate x1, if at least one of

the subgroup-specific null hypotheses is rejected, x1 is predicted to be an effect modifier.

Instead, if none of the subgroup-specific null hypotheses are rejected then x1, as well as

other variables not selected by the tree, are not predicted to be effect modifiers. We then

use the F-score and the false positive rate (FPR) common in the classification literature to

measure a method’s ability to correctly predict effect modifiers. The F-score is the harmonic

mean of recall and precision, or alternatively,

F =
TP

TP + 0.5(FP + FN)

where TP stands for true positives, FP stands for false positives, and FN stands for false

negatives; see Table 2.1 for details. The F-score ranges from zero to one with a value closer
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to one implying greater accuracy. The FPR is defined as FPR = FP/(FP + TN) and

ranges from zero to one, with a value close to zero being preferred.

True Condition

Method’s Prediction Variable is an effect modifier Variable is not an effect modifier

Predicted as effect modifier True Positive (TP) False Positive (FP)

Not predicted as effect modifier False Negative (FN) True Negative (TN)

Table 2.1: Binary classification table for effect modifiers.

We use the same four heterogeneity settings of (a) No Heterogeneity, (b) Slight Het-

erogeneity, (c) Strong Heterogeneity, and (d) Complex Heterogeneity. Figure 2.2 shows

the results of the F-score and FPR from our proposed algorithm and BCF-IV. Across

four settings, our proposal has a false positive rate of nearly zero, never falsely declaring

a variable to be an effect modifier. In contrast, BCF-IV has a larger false positive rate,

declaring variables to be effect modifiers when they do not actually modify the compliers’

effect. For example, in setting (a) without any effect modifiers, BCF-IV has a false positive

rate hovering above 50% whereas our method has a false positive rate of 0%. In other words,

BCF-IV falsely declared at least one of the six covariates as an effect modifier roughly 50%

of the time whereas our method never declared any of the six covariates as effect modifiers.

However, our algorithm’s F-score is generally smaller than that from BCF-IV unless

the compliance rate is high and the effect heterogeneity is strong. In particular, when the

compliance rate is roughly under 50% or if two subgroups have similar effect sizes, our

method cannot predict the effect modifiers as well as BCF-IV. But, when the compliance

rate is above 50% and the effect heterogeneity is strong, our algorithm has a similar F-score

as BCF-IV. Overall, the low F-score is a price that our algorithm pays for making sure that

the FPR is small. In contrast, BCF-IV has a higher F-score, but pays a price with a high

FPR.

In the supplementary materials Appendices A.3, A.4, A.6, we conduct additional

simulation studies where we (i) vary the compliance rate by covariates, (ii) allow H-CACEs

to be equal in magnitude, but opposite in direction to measure the effect of using |Yi| in our

algorithm, and (iii) demonstrate the two methods in a simulation that closely resembles the

data from the OHIE, where there are more than two effect modifiers. To summarize the

results, for (i) and (iii), the story is very similar to what’s presented here, where our method

has high true discovery rate, low FPR and F-score compared to those from BCF-IV. For
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Figure 2.2: F-score and false positive rate as a function of compliance rate and heterogeneity
settings. The solid lines with circles denote our proposed algorithm and the dashed lines
with triangles denote BCF-IV.

(ii), as expected, we find that our method has a low true discovery rate, FPR, and F-score.

But, as soon as the magnitudes of the H-CACEs are dissimilar, our method returns to the

case presented here.

2.3.3 Takeaways from the Simulation Study

Overall, the simulation study shows that our algorithm has large statistical power and low

false positive rates across all settings. In contrast, the BCF-IV algorithm has low power

and produces large FPRs, especially when no effect heterogeneity exists in the data; in

other words, BCF-IV often falsely declares a variable to be an effect modifier. But, our

algorithm generally has a low F-score compared to that from BCF-IV except in regimes

where the effect heterogeneity is strong and the compliance rate is high.

We remark that the simulations studies do not encapsulate every type of effect hetero-

geneity and it is possible that our method may suffer in certain settings. In particular, as

discussed above, because our method tends to be conservative in predicting effect modi-

fiers in order to guard against discovering spurious heterogeneity, we suspect that if there
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are many effect modifiers compared to spurious effect modifiers, our method may not be

able to detect all of the effect modifiers. This suspected degradation in performance was

not observed when we had 5 effect modifiers among 15 potential effect modifiers in our

simulation study that mimicked the data from the OHIE. But, further investigation is

warranted, especially if the number of effect modifiers and/or the number of covariates is

high dimensional.

We also remark that the simulation results in Sections 2.3.1 and 2.3.2 do not necessarily

contradict each other. Roughly speaking, the result in Section 2.3.1 concerns the ability

for algorithms to have high statistical power whereas the result in Section 2.3.2 concerns

the ability for algorithms to predict variables. An algorithm like BCF-IV could liberally

predict many effect modifiers, generally leading to a high F-score, but a high FPR. Also,

the power to test the nulls suggested by the predicted effect modifiers could be low since

the selected variables will define many (likely small) subgroups. In contrast, an algorithm

like ours could conservatively predict effect modifiers, leading to a small F-score, but a

low FPR. Also, the power to test the nulls suggested by the predicted variables could be

high since most of the selected variables will be effect modifiers. In short, our method is

somewhat cautious, but certain whereas BCF-IV is optimistic, but somewhat error-prone.

2.4 Analysis of the Oregon Health Insurance Experiment

2.4.1 Data Description

We use our method to analyze the heterogeneous effects of Medicaid on the number of days

an individual’s physical or mental health prevented their usual activities in the past month.

In brief, the OHIE collected administrative data on hospital discharges, credit reports, and

mortality, survey data on health care utilization, financial strain, and overall health, and

pre-randomization demographic data. There were 11,808 lottery winners and 11,933 lottery

losers in the publicly available survey data for a total sample size of 23,741 individuals; see

Finkelstein et al. (2012) for details.

We matched on the following demographic, pre-randomization variables recorded by

Finkelstein et al. (2012): sex, age, whether they preferred English materials when signing up

for the lottery, whether they lived in a metropolitan statistical area (MSA), their education

level (less than high school, high school diploma or General Educational Development

(GED), vocational or 2-year degree, 4-year college degree or more), and self-identified race
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(as the individual reported in the survey). Since some of the covariates had missing data,

namely self-identifying as Hispanic or Black and their level of education, we also matched

on indicators of their missingness; see Section 9.4 of Rosenbaum (2010) for details. We used

the R package bigmatch, version 0.6.1, (Yu, 2019) with an optimal caliper and a robust

rank-based Mahalanobis distance to generate our optimal pair match. Figure 2.3 shows

covariate balance before and after matching.

Education NA
Black NA

Hispanic NA
Other

Pacific
American Indian

Asian
Hispanic

Black
White
MSA

Education
Prefer English

Age
Sex

0.00 0.01 0.02

Absolute standardized differences

After Matching

Before Matching

Pair Matching Diagnostic

Figure 2.3: Covariate balance as measured by difference in means of the covariates between
the treated and control groups, before and after matching.

For the majority of covariates, the matching algorithm did little to change the absolute

standard differences between lottery winners and losers. This is not surprising given that the

lottery was randomized. However, the indicator for missingness in education, self-identified

American Indian, and Black were made to be more similar after matching. An absolute

standardized difference of 0.25 is deemed acceptable (Rubin, 2001; Stuart, 2010), which our

covariates satisfied after matching.

2.4.2 Instrument Validity

Before we present the results of our analysis using the proposed method, we discuss the

plausibility of the lottery as an instrument. The lottery is randomized which ensures that

the instrument is unrelated to unmeasured confounders and satisfying (A3). Winning the

lottery, on average, increased enrollment of Medicaid by 30% (Finkelstein et al., 2012),
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satisfying (A1). Assumption (A4) in the context of the OHIE states that there are no

individuals who defy the lottery assignment to take (or not take) Medicaid if they lost (or

won) the lottery. This is guaranteed by the design of the lottery, since an individual who

lost the lottery cannot have access to Medicaid. However, we remark that Finkelstein et al.

(2012) measured the treatment as whether or not an individual has ever had Medicaid during

the study and a few individuals were already enrolled in Medicaid before the lottery winners

were announced. Finally, assumption (A2) is the only assumption that could potentially be

violated since individuals were not blind to their lottery results. This theoretically allowed

lottery losers to seek other health insurance or lottery winners to make less healthy decisions

since they’re now able to be insured. These changes in an individual’s behavior could affect

his/her outcome regardless of his/her treatment and thus, may violate (A2).

2.4.3 Analysis and Results

We run Algorithm 1 and present the results in Figure 2.4. We remark that we used rpart in

R with a complexity parameter of 0 and maximum depth of 4. The depth of the tree was

chosen by forming trees of larger depth and then pruning back until a more interpretable

tree was obtained. For each node of the CART, we tested whether or not there is an

effect of enrolling in Medicaid H0s : λs = 0. In Figure 2.4, a solid lined box denotes a null

hypothesis that was rejected and a dashed lined box denotes a null hypothesis that was

retained, both by the closed testing procedure. Each node contains its estimated H-CACE

λ̂s, 95% confidence interval, the number of pairs Is, and the estimated compliance rate π̂s.

Here, a positive H-CACE implies a decrease in the number of days where the individual’s

physical and mental health prevented them from their usual activities, and a negative value

implies an increase; in short, positive effects are beneficial to individuals. Also, some nodes

imply a significant effect of Medicaid at level 0.05, but are enclosed in a dashed lined box.

This is due to the closed testing procedure; an intersection of hypotheses containing the

node in question was not rejected, and so any hypotheses in this intersection could not be

rejected.

From Figure 2.4, we can see evidence of heterogeneous treatment effects among the

complier population. Specifically, Medicaid had a strong effect (1) among complying non-

Asian men over the age of 36 and who prefer English, as well as (2) complying individuals

younger than 36, who prefer English, and do not have more than a high school diploma or

GED. Interestingly, among non-Asians over the age of 36 and who prefer English, females
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did not benefit from Medicaid as much as males even though the female subgroup was

larger than the male subgroup and the compliance rates between the two subgroups were

similar.

More generally, while there is some variation in the compliance rates between groups,

most of them are minor and hover between 25% to 30%. The minor variation suggests

that while some subgroups are more likely to be compliers than others, most of the effect

heterogeneity is likely driven by the variation in how the treatment differentially changes

the response across subgroups; a bit more formally, most of the effect heterogeneity is likely

arising from the numerator of the H-CACE rather than the denominator of the H-CACE.

Figure 2.4: Results of our proposed method on the effect of enrolling in Medicaid on
the number of days physical or mental health did not prevent usual activities. Here, less
educated refers to pairs with at most a high school diploma or GED and more educated
refers to pairs with a higher education. Also, positive effects are beneficial to individuals.
Solid lined boxes denote hypothesis tests that were rejected and dashed lined boxes denote
hypotheses that were retained by closed testing. Within each box, the subgroup-specific
estimated H-CACE λ̂s, its 95% confidence interval, sample size of pairs Is, and the estimated
compliance rate π̂s are provided.
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(a) Subgroup L′ = {3, 4} (b) Overall set {1, . . . , 8}

(c) Set {1, . . . , 4} (d) Set {3, 4, 6}

Figure 2.5: Illustration of closed testing to test the null hypothesis H0s4 for all j = 1, 2 and
i ∈ s4. Each subplot highlights subsets required to be tested and rejected as part of closed
testing.

2.4.4 An Example of Closed Testing

To better illustrate the closed testing portion of Algorithm 1, we walk through an example

of the testing procedure based on the OHIE. As seen in Figure 2.4, CART produced a tree

with G = 8 leaves. Now, consider testing whether there is evidence of a heterogeneous

effect of Medicaid for young individuals who prefer English and have at most a high school

diploma or GED, i.e. node s4 in Figure 2.5 and L = {4} using Algorithm 1’s notation. The

null hypothesis of interest would be H0s4 , for all j = 1, 2 and i ∈ s4. We then test and

reject all of the hypothesis tests containing group s4. For example, we need to test the null

hypothesis concerning the ancestor of s4, say the subgroup of individuals who are younger

than 36 and have at most a high school diploma or GED denoted as L′ = {3, 4}; see part

(a) of Figure 2.5. Additionally, we need to test and reject all of the supersets containing

L′, which include but are not limited to the overall set {1, . . . , 8}, {1, . . . , 4}, and {3, 4, 6}.
If every superset hypothesis and H0s4 are rejected at level α, we can declare the effect in

node s4 to be significant and, by Proposition 2.1, the familywise error rate is controlled at

α. Repeating this process for every node in the tree will give the results in Figure 2.4.
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2.5 Discussion

In this paper, we propose a method based on matching to detect effect heterogeneity

using an instrument. Under the usual IV assumptions, our method discovers and tests

heterogeneity in the complier average treatment effect by combining matching, CART,

and closed testing, all without the need to do sample splitting. The latter is achieved by

taking the absolute value of the adjusted pairwise differences to conceal the instrument

assignment and this allows our proposed method to control the familywise error rate. We

also conducted a simulation study to examine the performance of our method and compared

it to a recent method referred to as BCF-IV. Our method was then used to study the effect

of Medicaid on the number of days an individual’s physical or mental health did not prevent

their usual activities where we used the lottery selection as an instrument. We found that

Medicaid benefited complying, older, non-Asian men who selected English materials at

lottery sign-up and for complying, younger, less educated individuals who selected English

materials at lottery sign-up.

We conclude by making some recommendations about how to properly use our algorithm

in practice, especially in light of existing approaches. First, as explained in the introduction,

when there is noncompliance, exploring heterogeneity in the ITT alone with existing methods

may provide an incomplete picture of the nature of the treatment effect. Relatedly, in

settings where unmeasured confounding is unavoidable, our method based on an instrument

is a promising way to discover and test effect heterogeneity.

Second, as alluded to in Section 2.3.3, the simulation results suggest that our algorithm

tends to be conservative in discovering novel effect modifiers, reporting effect modifiers only

if there is strong evidence for heterogeneity and minimizing prediction of spurious effect

modifiers. In other words, investigators can be reasonably confident that effect heterogeneity

exists among the variables declared by our algorithm as “real” effect modifiers. But, those

variables that are not predicted by our algorithm may also be true effect modifiers, and in

such cases, investigators may need additional samples to detect them using our method. In

contrast, BCF-IV tends to be anti-conservative, reporting more effect modifiers, some of

which may be spurious effect modifiers. While this may be advantageous in situations where

there is slight effect heterogeneity or where exploration for effect heterogeneity is encouraged,

investigators may not feel as confident about whether the detected effect heterogeneity truly

exists.

Third, how our method performs in settings with potentially high dimensional effect
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modifiers is not fully understood. In particular, while our method performed well when the

structure of effect heterogeneity grew more complex, or when the number of effect modifiers

were 5 out of 15 potential effect modifiers, the simulations did not consider the setting of

moderate to high dimensional effect modifiers, and future research is warranted.

Fourth, most recent approaches on effect heterogeneity, notably Chernozhukov et al.

(2018), utilize sample splitting to achieve honest inference (i.e. type I error rate control)

whereas our method uses absolute value of matched pairs to achieve it; note that both meth-

ods theoretically allow for a large class of machine learning methods to detect heterogeneous

treatment effects, even though ours focused on CART for its simplicity and interpretability.

While our method uses the full sample for both discovery and honest testing compared to

those based on sample splitting, one of the caveats of our method is that our method may

not be able to detect subgroups with identical effect sizes, but in opposite signs. Overall,

every algorithm for effect heterogeneity carries some trade-offs and we urge investigators to

understand their strengths and limitations to solidify and strengthen causal conclusions

about effect heterogeneity in IV studies.
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3 individualized treatment rules with multilevel

instrumental variables

3.1 Introduction

Choosing between competing treatments for different patients can be a challenging endeavor,

particularly when the different patients exhibit different demographics, health statuses, and

medical histories. As investigators and practitioners work to decide which treatment would

most benefit a patient, it may be advantageous to estimate treatment effects specific to

subgroups. The subgroup-specific treatment effects can then be used to develop individual-

ized treatment strategies to provide the treatment most appropriate for the patient. Such

treatment strategies are referred to as individualized treatment rules (ITR), or optimal

decision rules, and are typically used to optimize the value function, or the expected mean

outcome over a target population.

Estimation of optimal ITR has been extensively studied, where methods generally fall

within two approaches, indirect and direct. Indirect methods implement a two-step process

using a regression model. First, the outcome is regressed on the treatment, covariates, and

treatment-covariates interactions. Second, the treatment that optimizes the predicted mean

outcome for given covariate values is chosen (e.g. Zhao et al. (2009); Qian and Murphy (2011);

Moodie et al. (2014); Sutton and Barto (2018)). Direct methods reformulate the problem as

a weighted misclassification problem, so as to avoid the need of modeling the outcome. The

direct method introduced by Zhao et al. (2012), referred to as Outcome Weighted Learning

(OWL), has been inspirational for further weighting techniques estimating optimal ITR

to better accommodate different data settings (e.g. Zhang et al. (2012); Xu et al. (2015);

Chen et al. (2016), Chen et al. (2017); Lou et al. (2018); Chen et al. (2018)). However,

both indirect and direct methods require the assumption of ignorability, that there is no

unmeasured confounding on the effect of the treatment on the outcome. Unfortunately, this

condition may not hold in observational studies or randomized trials with noncompliance.

Valid instrumental variables (IV) are variables related to the outcome only through

the treatment and can be used to infer treatment effects in the presence of unmeasured

confounding. Under some core IV assumptions, bounds on the treatment effect can be

obtained [Balke and Pearl (1997)]. To point identify a treatment effect, an additional point

identification assumption is used, namely monotonicity [Angrist et al. (1996)], or there is
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no interaction between the instrument and unmeasured confounder on the additive effects

of the instrument on the treatment [Wang and Tchetgen Tchetgen (2018)]. Some IVs

commonly used in health studies, many of which are not naturally binary, are assignment to

a treatment in randomized trials with noncompliance, encouragement to take a treatment,

distance to specialty care providers, physician or hospital preference, multiple genetic

variants, timing of admission, and insurance plans; for additional discussions and review,

see Hernán and Robins (2006) and Baiocchi et al. (2014). There has been much progress in

estimation and inference of treatment effects using IV, mostly using likelihood, series, sieve,

minimum distance, matching, and/or moment-based methods; see Abadie (2003); Blundell

and Powell (2003); Newey and Powell (2003); Ai and Chen (2003); Hall and Horowitz (2005);

Tan (2006); Blundell et al. (2007); Baiocchi et al. (2010); Kang et al. (2016a); Darolles et al.

(2011); Chen and Pouzo (2012); Okui et al. (2012); Su et al. (2013); Athey et al. (2019) and

references therein. However, work incorporating IV estimation to derive optimal ITR is

still understudied.

Only recently have IV techniques been used to identify optimal ITR. An extension of

OWL to utilize a valid instrument was proposed by Cui and Tchetgen Tchetgen (2021b), who

also provide multiply robust estimators for ITR identification. Qiu et al. (2021) exploit an

IV to estimate optimal ITR when the treatment is a limited resource. Pu and Zhang (2020)

estimate optimal ITR with an IV using only bounds on the treatment effect, when point

identification assumptions may not necessarily hold. A necessary and sufficient condition for

identifying optimal ITR using an IV was first proposed in Cui and Tchetgen Tchetgen (2020)

and later discussed in Cui and Tchetgen Tchetgen (2021a). Estimating dynamic treatment

rules, individualized treatment rules that may change over time, using an IV are presented

by Chen and Zhang (2021). For further discussions, see Cui and Tchetgen Tchetgen (2021a).

However, all of the previous work consider the use of a binary instrument to identify an

optimal ITR. As many of the IVs commonly used are not binary, treating them as such is a

limitation in practice.

Here, we introduce methods to identify optimal ITR in the presence of unmeasured

confounding using multiple, discrete valued instruments, or equivalently, multilevel instru-

ments. Specifically, we propose both indirect and direct methods to identify optimal ITR

using a multilevel IV for either the overall population or the subpopulation of compliers,

who are patients who comply with their assigned treatment. The methods proposed here

generalize techniques identifying optimal ITR using a binary IV to multilevel IV through

the use of contrasts, or linear combinations of variables with coefficients that sum to zero.
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When the instrument is binary, our proposed methods reduce to existing methods using

instruments to identify optimal ITR. As part of the extension of techniques using binary IV,

we propose methods using both observed covariates and latent effect modifiers to identify

optimal ITR, and methods individualizing the estimation of ITR. Additionally, we extend

the necessary and sufficient condition for identifying optimal ITR using a binary IV [Cui

and Tchetgen Tchetgen (2020)] to multilevel instruments and use it to bridge the setting of

identifying optimal ITR for the overall population with the setting of identifying optimal

ITR for the complier subpopulation. Extensive simulations are conducted to evaluate

the performance of our proposed methods for both the overall population and complier

subpopulation under varying strengths of a multilevel instrument. We then apply our

methods to an observational study comparing the effects of two competing treatments for

carotid-artery disease, carotid endarterectomy versus carotid artery stenting, on preventing

stroke or death within 30 days of their index procedure.

3.2 Methodology

3.2.1 Notation

Let Y denote the outcome of interest. Without loss of generality, we assume that a larger

outcome is preferred. The observed binary treatment A ∈ {−1, 1} is allowed to be con-

founded in its effect on Y by an unmeasured variable U , so that a naive estimate of the

treatment effect of A on Y would be biased. The discrete instrument is denoted as Z

and has support {1, . . . , k}, where k is the number of levels of the IV. We let X ∈ X
denote the observed pre-instrument covariates, where X is a p-dimensional vector. The

full data (Zi, Xi, Ai, Ui, Yi), for i = 1, . . . , n are assumed to be identically and indepen-

dently distributed across the n observations. As U is unobserved, the observed data is

(Zi, Xi, Ai, Yi).

To discuss the necessary assumptions and estimate the causal effects used to identify

optimal ITR, we adopt the potential outcomes framework in Neyman (1923) and Rubin

(1974). The potential outcomes for a given instrument value Zi = z and treatment Ai = a

are denoted Yi(z, a), and the potential treatments for a given instrument value Zi = z are

denoted Ai(z). We assume positivity for the instrument, that each individual can receive

any value of the discrete instrument (0 < P (Z = z|X) < 1 almost surely) and Stable

Unit Treatment Value Assumption (SUTVA) on both the outcome and treatment for the
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instrument. SUTVA here states that there is no interference among individuals, there is

only one version of the instrument levels, and we observe the potential treatment Ai(z) and

potential outcome Yi(z,Ai(z)) if individual i receives instrument value Zi = z [Rubin (1980)].

SUTVA can be written as Ai =
∑k

z=1 1{Zi = z}Ai(z) and Yi =
∑k

z=1 1{Zi = z}Yi
(
z,Ai(z)

)
.

We assume SUTVA and positivity on the instrument throughout this work, and therefore

do not explicitly refer to them when stating our results.

3.2.2 Review: Iindividualized Treatment Rules and Instrumental

Variables

Under the potential outcome framework, the optimal decision rule for individual i, denoted

di ∈ {−1, 1}, can be clearly defined as di = sign{Yi(1)−Yi(−1)}, where sign(x) = 1 if x > 0

and sign(x) = −1 if x < 0, since we assume larger outcomes are preferred. As only one of

the potential outcomes, Yi(1) or Yi(−1), can be observed [Holland (1986)], we must use

causal identification assumptions, SUTVA, positivity, and ignorability on the treatment, so

that there is no unmeasured variable U confounding the effect of the treatment, to identify

the average potential outcome E[Y (a)] = E[Y |A = a]. Under the assumptions SUTVA,

positivity, and ignorability on the treatment, we can further use the conditional average

treatment effects to define and identify the optimal ITR,

d∗(Xi) = sign{E[Yi(1)− Yi(−1)|Xi]} = sign{E[Yi|Ai = 1, Xi]− E[Yi|Ai = −1, Xi]}.

This motivates indirect methods, as the sign of the conditional treatment effects is the

treatment optimizing the predicted mean outcome when larger outcomes are preferred.

Assuming SUTVA on the treatment, Yi =
∑

a 1{Ai = a}Yi(a), the optimal treatment

rule can be rewritten as d∗(X) = argmaxd∈D E[Y (d(X))], where D is the set of allowable

treatments and Y (d(X)) denotes the potential outcome of being assigned decision d(X).

The optimal decision rule d∗(X) then satisfies E[Y (d(X))] ≤ E[Y (d∗(X))] for all d ∈ D and

maximizes the expected population outcome, or value function, V (d(X)) = E[Y (d(X))].

Alternatively, the identification of an ITR can be converted to a weighted classification

problem and solved directly by OWL methods [Qian and Murphy (2011); Zhang et al.

(2012); Zhao et al. (2012); Xu et al. (2015); Chen et al. (2016), Chen et al. (2017); Zhou and

Kosorok (2017); Lou et al. (2018)]. Leveraging inverse probability weighting, the optimal
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individualized treatment rule can be identified by directly maximizing the value function

d∗(X) = argmax
d∈D

E[Y (d(X))] = argmax
d∈D

E

[
1{A = D(X)}Y
P (A = 1|X)

]
.

In practice, the optimal decision rule is estimated by minimizing the empirical value of the

weighted misclassification error E
[

Y
P (A=1|X)1{A ̸= sign(f(Xi))}

]
over a prespecified set of

functions, since we can represent the set of decisions as D = sign{f(x)}. To overcome the

nonconvexity of the 0-1 loss, a surrogate loss function, such as the hinge loss, is used in its

place.

In observational studies or in randomized trials with noncompliance, due to unmea-

sured confounding, the expectation of the outcome conditioned on the treatment and

observed covariates no longer identifies the conditional expectation of the potential out-

comes, E[Y |A = a,X] ̸= E[Y (a)|X], preventing the identification of the optimal ITR.

However, when a suitable instrument is available, one can still identify an optimal treatment

rule in the presence of unmeasured confounding.

An instrumental variable Z is a variable related to the outcome Y only through the

treatment A that allows for the identification of unbiased aspects of the treatment effect

of A on Y , when the treatment is thought to be confounded by an unmeasured variable

U . A valid IV relies on three core assumptions (see Figure 3.1), which we write in two

Figure 3.1: Directed acyclic graph representing the core assumptions for a valid instrument.

ways. The first assumption is IV relevance, that the instrument is related to the treatment,

(A1) E[1{A(z) = 1}|X = x] − E[1{A(z′) = 1}|X = x] ̸= 0 for all x and z ̸= z′ and (B1)

Z ̸⊥ A|X. Here, we make the distinction between (A1) and (B1) so that under (A1), the

IV has a causal relationship with the treatment and under (B1) the instrument need only

be correlated. The second assumption is the exclusion restriction, that the instrument is
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not directly related to the outcome, (A2/B2) Yi(z, a) = Yi(z
′, a) = Yi(a) for z ≠ z′. The

third assumption is IV ignorability, that the instrument is unrelated to any unmeasured

confounders of the treatment’s effect on the outcome, (A3) A(z), Y
(
z,A(z)

)
⊥ Z|X for

all z and A(z), and (B3) Z ⊥ U |X and Y (z, a) ⊥ (Z,A)|X,U for all z and a. The

distinction between (A3) and (B3) is that (A3) requires any confounder of the instrument

and potential treatments has been measured, and (B3) allows for an unmeasured confounder

but requires the IV to be conditionally independent of the unmeasured confounder. The

three assumptions IV relevance, exclusion restriction, and IV ignorability are necessary for

an IV to identify unbiased bounds of the treatment effect [Balke and Pearl (1997)]. To

point identify a treatment effect, an additional assumption is needed, namely monotonicity

[Angrist et al. (1996)], or that there is no additive U -Z interaction in E[A|X,U,Z], [Wang

and Tchetgen Tchetgen (2018)]. The assumption of monotonicity, with (A1)-(A3), allows

for point identification of the treatment effect of the complier subpopulation, and the

assumption of no additive U -Z interaction in E[A|X,U,Z], with (B1)-(B3), allows for point

identification of the treatment effect of the overall population. We derive methods to

identify optimal ITR using either point identification assumption with multilevel IV, as

these two assumptions lead to different interpretations of treatment effects and different

interpretations of ITR.

Cui and Tchetgen Tchetgen (2021b) detail how to identify an ITR when unmeasured

confounding on the treatment effect is present using either the monotonicity or the no

additive U -Z interaction point identification assumptions, when a valid binary instrument

is available. However, many instruments commonly used in health studies are not actually

binary instruments, such as distance to the specialty care provider [Mcclellan et al. (1994);

Lorch et al. (2012)], physician or hospital preference [Brookhart and Schneeweiss (2007);

O’Malley et al. (2011); Columbo et al. (2018); Huling et al. (2019); Mart́ınez-Camblor

et al. (2019a,b)], multiple genetic variants [Kang et al. (2016b); Wang and Kang (2021);

Ye et al. (2021)], timing of admission [Malkin et al. (2000); Goyal et al. (2013)], and

insurance plan [Cole et al. (2006)]. While it is possible to dichotomize the non-binary

instruments, doing so may result in a loss of information and worsen estimation, resulting

in a suboptimal ITR. For example, consider a multilevel IV with k = 4 levels where, for

some X = x, the first 3 levels result in the same weak push toward taking the treatment,

P (A = 1|X = x, Z = z) = 0.25 for z = 1, 2, 3, and the 4th level of the IV results in a

stronger push, P (A = 1|X = x, Z = z) = 0.5 for z = 4. If an investigator was unaware that

the highest level of the IV resulted in the stronger push toward taking the treatment, they
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may dichotomize the multilevel IV at the median, resulting in the effect of the instrument on

the IV as P (A = 1|X = x, Z = 1)−P (A = 1|X = x, Z = 0) = 0.125 and artificially creating

a weak instrument. Further, the challenge of adequately dichotomizing a non-binary IV

grows as the number of levels k of the multilevel IV grows. To better retain and utilize

the information in the non-binary IV, we propose a generalization of the work in Cui and

Tchetgen Tchetgen (2021b) using monotonicity and no additive U -Z interaction point

identification assumptions along with contrast statements. Our work can be seen to be a

generalization as it reduces to the methods identifying an ITR with binary instruments

when k = 2.

To generalize to multilevel instruments, we use contrasts, defined as a linear combination

of variables whose coefficients sum to zero
∑k

z=1 cz = 0, to provide a general framework

under both sets of assumptions, (A) and (B), to identify the treatment effects, corresponding

value functions, and improve estimation. Without loss of generality, as the coefficients

can be standardized, we also require the coefficients to have support cz ∈ [−1, 1]. This

results in many possible contrasts to combine and compare the different levels of the IV.

For example, the difference of any two levels of the multilevel instrument, z and z′, can be

taken by setting level z to have coefficient cz = −1, level z′ to have coefficient cz′ = 1, and

the rest of the coefficients to be 0. Other possibilities include using polynomial contrasts,

such as, for k = 3 levels, the linear contrast c1 = −1, c2 = 0, and c3 = 1 if the investigator

believes the relationship between the IV and treatment is linear, or the quadratic contrast

c1 = 0.5, c2 = −1, and c3 = 0.5 if the investigator believes the relationship between the

IV and treatment is quadratic. The choice of contrast is a reflection of the investigator’s

expectation of the instrument’s relationship with the treatment and is largely made to

combine and compare levels of the instrument so that the contrast of the probability of

receiving the treatment is forced away from 0. For binary IV, there is only one contrast

available, which is the linear contrast taking the difference between the two instruments.

By dichotimizing a multilevel IV, this single contrast can result in different levels of the

IV, that have different effects on the treatment reception, being grouped together, possibly

resulting in poor estimation of treatment effects and a suboptimal ITR.

In the following two sections, we detail how to identify an ITR with a multilevel IV,

what value function is being optimized, and how to interpret the identified ITR for the two

target populations with their respective sets of assumptions.
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3.2.3 Identifying ITR with Multilevel IV for the Complier

Subpopulation

To identify optimal ITR with multilevel IV for the complier subpopulation, we assume the

core IV assumptions (A1)-(A3) and the point identification assumption (A4) monotonicity,

which states that no individual acts against the increasing levels of the IV. That is, there is

no individual i such that Ai(z) > Ai(z
′) for any z < z′ [Imbens and Angrist (1994)]. Without

loss of generality, for monotonicity, we’re assuming that an increase in the instrument level

leads to an increase in the treatment. We note that this assumption imposes a sort of

ordering on the support of the instrument, such that if patients are more likely to take

the treatment given the instrument value Z = z′ than given Z = z, then any patient who

would take the treatment for the instrument value Z = z must also take the treatment for

the value Z = z′ > z.

Motivated by Angrist et al. (1996), Frangakis and Rubin (2002), and Cheng and Small

(2006), we stratify individuals by their post-randomization potential treatment values.

With a multilevel instrument, there are different kinds of compliers, which we refer to

as sub-compliers. These sub-compliers can be defined by the level of the instrument

for which their treatment behavior changes. That is, an individual i is an ℓ-complier if

the level ℓi ∈ {2, . . . , k} of the IV changes the ith individual’s potential treatment from

Ai(1) = · · · = Ai(ℓ − 1) = −1 to Ai(ℓ) = · · · = Ai(k) = 1. Under monotonicity, the

ℓ-compliers can be defined as A(ℓ−1) < A(ℓ). For example, in a randomized encouragement

design with varying degrees of encouragement, where the IV is the encouragement, an

ℓ-complier is an individual who opts to take the treatment A = 1 if they receive at least the

level ℓ of encouragement, but would otherwise take the treatment A = −1, if they receive

any lower level of encouragement. We can then define the subpopulation of all ℓ-compliers

as the union of all k − 1 sub-compliers, or succinctly, the individuals such that A(1) < A(k)

under monotonicity. We further define the usual always-takers, never-takers, and defiers.

Always-takers always take the treatment regardless of their instrument values, A(z) = 1

for all Z = z. Never-takers never take the treatment regardless of their instrument values,

A(z) = −1 for all Z = z. Defiers act against their instrument values, A(z) > A(z′) for any

z < z′. Monotonicity then states that no defiers exist.

We define the conditional treatment effects of each sub-complier, and the unions of

different sub-compliers, by using the contrasts defined previously. We note that these

contrasts are not necessary for the definition of these local causal effects but rather a
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convenient framework that can generally express any local causal effect of interest. Under

assumptions (A1)-(A4), the ℓ-complier conditional average treatment effect is defined

as E[Y (1) − Y (−1)|X,A(ℓ − 1) < A(ℓ)], which we note can be equivalently written as

E[Y (1) − Y (−1)|X,1{A(ℓ) = 1} − 1{A(ℓ − 1) = 1} = 1]. Using our contrasts, we can

simply write this conditional local effect as

E

[
Y (1)− Y (−1)

∣∣∣∣∣X,
k∑

z=1

cz1{A(z) = 1} = 1

]
, (3.1)

where the contrast coefficients used are defined as cℓ−1 = −1, cℓ = 1, and cz = 0 for

z ̸= ℓ. We denote these contrast coefficients as contrast c
(ℓ)
z . Under monotonicity, the

contrast of the indicators of the potential treatments,
∑k

z=1 cz1{A(z) = 1}, is equal to 1

for ℓ-compliers when using the contrast c
(ℓ)
z . Also, the contrast of the indicators of the

potential treatments using c
(ℓ)
z sums to 0 for all other possible principal strata, as allowed

by montonicity. Therefore, (3.1) defines the local effects of the ℓ-complier when using

the contrasts c
(ℓ)
z . Further, we can use (3.1) to define the local effects of the unions of

different sub-compliers, where one only needs to use the appropriate contrast coefficients.

These contrast coefficients are derived by taking the sum across the c
(ℓ)
z contrasts of the

ℓ-compliers contained in the union of interest. In other words, as the contrasts can be

expressed as a vector in [−1, 1]k, the contrast coefficients for the union of ℓ-compliers

is the vector that is equal to the sum of the c
(ℓ)
z vectors of the individual ℓ-compliers

contained in the union. For example, let k = 5 and let the effects of the union of the

3- and 5-compliers be of interest, E[Y (1)− Y (−1)|X,A(2) < A(3) or A(4) < A(5)]. The

contrasts of the 3- and 5-compliers can be written as the vectors c
(3)
z = (0,−1, 1, 0, 0) and

c
(5)
z = (0, 0, 0,−1, 1), respectively. The contrast for the union of the 3- and 5-compliers is

then c
(3,5)
z = c

(3)
z + c

(5)
z = (0,−1, 1,−1, 1) and can be used with (3.1) to define their local

effects. Under monotonicity, using the the contrast c
(3,5)
z , the contrast of the potential

treatment indicators is equal to 1 only for both the 3- and 5-compliers, and equal to 0 for all

other principal strata (always-takers, never-takers, 2-compliers, and 4-compliers). Therefore,

(3.1) with the contrast c
(3,5)
z defines the local effects of the union of the 3- and 5-compliers.

Finally, the local effects for the union of all ℓ-compliers, E[Y (1)− Y (−1)|X,A(1) < A(k)],

can be seen to be defined by (3.1) with the contrast c
(all)
z which is defined as c1 = −1,

ck = 1, and cz = 0 for z ∈ {2, . . . , k−1}. That is, the contrast taking the difference between

the highest level and lowest level of the IV defines the local effects for the union of all
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ℓ-compliers.

The same contrasts used to define the ℓ-complier local effects can be used to identify

their local effects. Following a similar argument presented in Angrist et al. (1996), under

assumptions (A1)-(A4), the conditional local effects of the ℓ-complier or a union of ℓ-

compliers is identified by what we refer to as the contrast-specific Wald estimand,

∑k
z=1 czE[Y |X,Z = z]∑k

z=1 czP (A = 1|X,Z = z)
= E

[
Y (1)− Y (−1)

∣∣∣∣∣X,
k∑

z=1

cz1{A(z) = 1} = 1

]
, (3.2)

where the contrasts used are those that correspond to the sub-compliers of interest. For

example, using (3.2), the contrast c
(all)
z identifies the local effects for the union of all

ℓ-compliers, and contrast c
(ℓ)
z identifies the local effects for the ℓ-compliers. The contrast-

specific Wald estimand is similar to the usual Wald estimand [Wald (1940)] in the binary

IV setting, where the ratio of the intention-to-treat (ITT) is divided by the effect of the

instrument on receiving the treatment. The difference in the multilevel IV setting from the

binary IV setting is in the use of a contrast, as it is still a ratio of an ITT effect and the

effect of the instrument on the treatment. Similar to the binary IV setting, the denominator

of the contrast-specific Wald estimand can, under monotonicity and with the appropriate

contrast, be interpreted as the probability of being an ℓ-complier or the probability of

belonging to a union of ℓ-compliers. For example, using the contrast c
(ℓ)
z , the denominator

of the contrast-specific Wald estimand is the probability of being an ℓ-complier, and the

contrast c
(all)
z leads to the probability of being any of the k − 1 ℓ-compliers. Now that we

can identify the complier and ℓ-complier conditional treatment effects, we can determine

how to identify an optimal ITR.

The optimal ITR for the ℓ-compliers, or union of ℓ-compliers, is defined using their

respective conditional local treatment effects. This is written as,

d∗(A)(X) = sign

{
E

[
Y (1)− Y (−1)

∣∣∣∣∣X,

k∑
z=1

cz1{A(z) = 1} = 1

]}

= argmax
d∈D

E

[
Y (d(X))

∣∣∣∣∣
k∑

z=1

cz1{A(z) = 1} = 1

]
,

where the contrasts used correspond to the ℓ-compliers, or union of ℓ-compliers, that are of

interest. The choice of (A) in the subscript is used to denote the set of assumptions (A)
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under which this optimal ITR is defined. The value functions this decision rule maximizes

are defined as the expected outcome among the sub-compliers of interest for a given decision.

That is, the value function for the ℓ-compliers, or union of ℓ-compliers, can be generally

defined as,

V(A)(d(X)) = E

[
Y (d(X))

∣∣∣∣∣
k∑

z=1

cz1{A(z) = 1} = 1

]
,

where the contrasts used correspond to the ℓ-compliers, or union of ℓ-compliers, that

are of interest. Similar to the identification of an ITR without unmeasured confounding,

an ITR for the ℓ-compliers, or a union of ℓ-compliers, can be identified by using their

respective estimated treatment effects. That is, under the assumptions (A1)-(A4), an

ITR for the ℓ-compliers, or a union of ℓ-compliers, can be identified by taking the sign of

the corresponding contrast-specific Wald estimand. However, as similarly shown in Cui

and Tchetgen Tchetgen (2021b) and Qiu et al. (2021) for binary instruments, the ITR

for ℓ-compliers, or a union of ℓ-compliers, can be identified by their corresponding ITT

contrasts alone. That is, the denominator of the contrast-specific Wald estimand is not

needed. This brings us to our first result using the set of assumptions (A). The proof can

be found in Appendix B.1.

Theorem 3.1. Under the assumptions (A1)-(A4), the optimal ITR for ℓ-compliers, or a

union of ℓ-compliers, is identified by

d∗(A)(X) = sign

{
E

[
Y (1)− Y (−1)

∣∣∣∣∣X,

k∑
z=1

cz1{A(z) = 1} = 1

]}

= sign

{
k∑

z=1

czE[Y |X,Z = z]

}
,

where the contrast c
(ℓ)
z corresponds to the optimal ITR for the ℓ-compliers, and the contrast

for a union of ℓ-compliers can be derived by summing across the ℓ-complier contrasts.

Theorem 3.1 states that, for multilevel IV, the sign of the ITT contrast is equivalent

to the sign of the ℓ-complier, or union of ℓ-compliers, local treatment effects, under the

appropriate contrast. This can be a counter-intuitive result, as it implies that the optimal

ITR can be identified for ℓ-compliers without ever observing what treatment the individuals

received. Though surprising, some intuition for this fact may be gained by considering

the outcomes of the different possible subpopulations, always-takers, never-takers, and
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ℓ-compliers. For always-takers (A(z) = 1 for all Z = z), the outcome is always Y = Y (1),

and similarly, for never-takers (A(z) = −1 for all Z = z), the outcome is always Y = Y (−1).

Under monotonicity there are no defiers, so for ℓ-compliers we have A(ℓ− 1) < A(ℓ), and

thus, the outcome is Y =
(∑ℓ−1

z=1 1{Z = z}
)
Y (−1) +

(∑k
z=ℓ 1{Z = z}

)
Y (1), a function

of only Z. Therefore, under monotonicity, the exclusion restriction, and SUTVA, the IV

alone is sufficient for observing the potential outcome for compliers and ℓ-compliers.

Theorem 3.1 allows for the ITR estimation by indirect methods, where an outcome

model is used to identify the ITR. It is possible to also identify the optimal treatment

rule for ℓ-compliers, or a union of ℓ-compliers, using the direct method outcome weighted

learning with a multilevel IV. Using the respective contrasts for ℓ-compliers, or a union

of ℓ-compliers, under the assumptions (A1)-(A4), a rule d∗ ∈ D that maximizes the value

function V(A)(d) is one that maximizes

argmax
d∈D

V(A)(d) = argmax
d∈D

E

[
Y (d)

∣∣∣∣∣
k∑

z=1

cz1{A(z) = 1} = 1

]

= argmax
d∈D

E

[
k∑

z=1

cz1{Z = z}Y 1{d(X) = A}
P (Z = z|X)

]
.

This is a generalization of Theorem 6.2 in Cui and Tchetgen Tchetgen (2021b) to multilevel

IV and follows from a similar argument and taking note that
∑k

z=1 cz = 0. Though

the above OWL expression is written with 1{d(X) = A}, it does not in fact require the

treatment A to be measured, which coincides with the conclusion from Theorem 3.1. For

ℓ-compliers, A = −1 when Z = ℓ− 1 and A = 1 when Z = ℓ, so the treatment is known

given the instrument. Therefore, the optimal decision rule for ℓ-compliers, or a union of

ℓ-compliers, can be identified via OWL using only the instrument.

While using either the sign of the ITT contrast or the OWL expression to identify the

optimal ITR for ℓ-compliers is valid under the assumptions (A1)-(A4), it is challenging

to apply such rules when we cannot be certain for which sub-complier type an individual

belongs. However, an investigator may predict which sub-compliance type a patient belongs

by estimating the denominator of the contrast-specific Wald estimand,

k∑
z=1

czP (A = 1|X,Z = z) = P

(
k∑

z=1

cz1{A(z) = 1} = 1

∣∣∣∣∣X,Z = z

)
,
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using the contrasts c
(ℓ)
z . Because

∑k
z=1 c

(ℓ)
z 1{A(z) = 1} = 1 only for ℓ-compliers,

∑k
z=1 c

(ℓ)
z P (A =

1|X,Z = z) can be used to predict whether or not an individual is an ℓ-complier. This then

allows for the assignment of the optimal rule for ℓ-compliers to the individuals predicted as

ℓ-compliers. Concisely, predicting the sub-compliance type and applying the corresponding

sub-complier rule can be written as a single rule as follows

d(X, L̂) = sign

{
k∑

ℓ=2

k∑
z=1

c(ℓ)z P (A = 1|X,Z = z)d∗(ℓ)(X)

}

= sign

{
k∑

ℓ=2

P (A(ℓ) > A(ℓ− 1)|X)d∗(ℓ)(X)

}
,

where d∗(ℓ)(X) = d∗(A)(X) when using the contrast coefficients c
(ℓ)
z and is the optimal ITR

for the ℓ-compliers. The rule d(X, L̂) can be interpreted as a weighted vote for which

treatment the individual should receive with weights equal to the probability of being

an ℓ-complier. The treatment with plurality is then assigned for the given X. As the

notation d(X, L̂) implies, the decision is now a function of the observed covariates X and

the predicted sub-compliance type L̂. Further, d(X, L̂) no longer aims to optimize the

value function for the ℓ-compliers given the observed covariates X (V(A)(d(X)) with the

contrast c
(ℓ)
z ), but rather the value function for all ℓ-compliers given the observed X and

unobserved sub-compliance type L, V (d(X,L)) = E[Y (d(X,L))|A(1) < A(k)]. The value

function V (d(X,L)) can be interpreted as the expected outcome of the whole complier

subpopulation, or the union of all ℓ-compliers, for a given decision that depends on both

the observed effect modifiers X and latent effect modifier L. Due to the necessary step of

predicting L̂, an investigator may prefer a different rule to d(X, L̂), where the magnitude of

the sub-compliers’ effect is included in the weight, so that individuals who would benefit

the most are weighted more heavily. For this reason, we propose the rule

d̃(X, L̂) = sign

{
k∑

ℓ=2

k∑
z=1

c(ℓ)z P (A = 1|X,Z = z)E[Y |X,Z = z]

}

= sign

{
k∑

ℓ=2

P (A(ℓ) > A(ℓ− 1)|X)
(
E[Y |X,Z = ℓ]− E[Y |X,Z = ℓ− 1]

)}
.

(3.3)

The rule d̃(X, L̂) differs from d(X, L̂) by replacing d∗(ℓ)(X) with the ITT effect of the ℓ-
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compliers. This change effectively lessens the harm from assigning d∗(ℓ)(X) to an ℓ′-complier

when the ℓ-complier and ℓ′-complier rules differ for a given X, d∗(ℓ)(X) ̸= d∗(ℓ′)(X), for ℓ ̸= ℓ′.

That is, by including the ITT effects, we protect ourselves from assigning the wrong treatment

to the compliers who would most benefit. The rule d̃(X, L̂) can also be seen to be similar

to the rule for the union of all ℓ-compliers, d∗(all)(X) = d∗(A)(X) when using the contrast

coefficients c
(all)
z . This rule is identified by taking the ITT difference between the highest

and lowest level of the instrument and is equivalent to the sum of all ℓ-complier ITT effects,

d∗(all)(X) = E[Y |X,Z = k] − E[Y |X,Z = 1] =
∑k

ℓ=2E[Y |X,Z = ℓ] − E[Y |X,Z = ℓ − 1].

Both d̃(X, L̂) and d∗(all)(X) assign treatment based on which ℓ-complier subpopulation

has the larger ITT effect, but d̃(X, L̂) also takes into account the probability that an

individual belongs to the ℓ-complier subpopulation. The rule d̃(X, L̂) can therefore better

accommodate the setting where different ℓ-complier and ℓ′-complier rules differ for a given

X than the rule d∗(all)(X). However, unless we can predict the sub-compliance type with

certainty, P (A(ℓ) > A(ℓ− 1)|X) = 1 for all ℓ, so that the ITT effect of the ℓ-complier is

used to assign treatment for the ℓ-complier, the rule d̃(X, L̂) cannot be guaranteed to be

optimal. That is, d̃(X, L̂) cannot be guaranteed to maximize the value function V (d(X,L)),

as shown in our second result,

Proposition 3.1. Under the assumptions (A1)-(A4), we have that the decision maximizing

V (d(X,L)) maximizes

argmax
d∈D

V (d(X,L)) = argmax
d∈D

E
[
Y
(
d(X,L)

)∣∣A(1) < A(k)
]

= argmax
d∈D

E

[
k∑

ℓ=2

1{d(X, ℓ) = 1}
(
E[Y |X,Z = ℓ]− E[Y |X,Z = ℓ− 1]

)]
.
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Therefore, if P (A(ℓ) > A(ℓ− 1)|X) = 1, for all ℓ, we have that

d∗(X,L) = argmax
d∈D

E

[
k∑

ℓ=2

1{d(X, ℓ) = 1}
(
E[Y |X,Z = ℓ]− E[Y |X,Z = ℓ− 1]

)]

= argmax
d∈D

E

[
k∑

ℓ=2

1{d(X, ℓ) = 1}P (A(ℓ) > A(ℓ− 1)|X)

×
(
E[Y |X,Z = ℓ]− E[Y |X,Z = ℓ− 1]

)]

= sign

{
k∑

ℓ=2

k∑
z=1

c(ℓ)z P (A = 1|X,Z = z)E[Y |X,Z = z]

}
.

Proposition 3.1 states that if one correctly predicted the sub-compliance type L with

certainty, the decision rule d̃(X, L̂) is optimal for the value function for compliers given the

observed effect modifier X and latent effect modifier L, V (d(X,L)) = E[Y (d(X,L))|A(1) <

A(k)]. The proof can be found in Appendix B.2.Though in practice, we cannot predict the

sub-compliance type L with certainty, a benefit to using d̃(X, L̂) is in reducing potential

harm from using the rule for all ℓ-compliers, d∗(all)(X). If different ℓ-compliers, ℓ and ℓ′,

have treatment effects with opposite sign, using the rule d∗(all)(X) will cause harm to either

the ℓ-compliers or ℓ′−compliers, whichever have a lower ITT effect, and therefore a lower

value. Alternatively, d̃(X, L̂) takes into account the probability of being an ℓ-complier and

an aspect of their treatment effect in order to identify which ℓ-complier is most likely and

whether they most benefit to then assign the corresponding decision.

In order to evaluate the performance of a given decision rule, we must identify the value

function being optimized. To estimate the value function V(A)(d) for a given decision rule d,

we can leverage an IPW estimator, as in outcome weighted learning. That is, under the

assumptions (A1)-(A4), we can write V(A)(d) in terms of observables,

V(A)(d) = E

[
Y (d)

∣∣∣∣∣
k∑

z=1

cz1{A(z) = 1} = 1

]
= E

[
k∑

z=1

cz1{Z = z}AY 1{d(X) = A}
δcP (Z = z|X)

]
,

(3.4)

where δc =
∑k

z=1 czP (A = 1|Z = z) and the contrast to be used corresponds to the

ℓ-complier, or union of ℓ-complier, subpopulation of interest. This is a generalization

of Theorem 6.1 in Cui and Tchetgen Tchetgen (2021b) to multilevel IV and follows
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from a similar argument and taking note that
∑k

z=1 cz = 0. Therefore, to estimate the

value function V(A)(d), the empirical form of (3.4) can be used for a given decision and

choice of contrast. However, the instrument propensity may be unknown for observational

instruments satisfying monotonicity, so we additionally provide an augmented inverse

probability weighted (AIPW) estimator to identify the complier and ℓ-complier value

functions,

V(A)(d) = E

[
k∑

z=1

cz

(
1{Z = z}

(
1{A = a}Y − haz(X)

)
P (Z = z|X)

+ haz(X)

)
a1{d(X) = a}

δc

]
,

(3.5)

where haz(X) = E[1{A = a}Y |X,Z = z]. Under the assumptions (A1)-(A4), this AIPW

estimator identifies the value function V(A)(d) for a given decision and contrast that

corresponds to the ℓ-complier, or union of ℓ-complier, subpopulation of interest. The proof

can be found in Appendix B.3. The AIPW estimator, (3.5), is doubly robust in the sense

that either the instrument propensity or the model for the interaction of the treatment and

outcome, haz(X), need to be correctly specified, but not both, in order to identify the value

function. We note that δc must also be correctly specified, regardless of whether or not the

propensity score or haz(X) are correctly specified. For this reason, we suggest using the

doubly robust estimator

δc = E

[
k∑

z=1

cz

(
1{Z = z}

(
1{A = a} − P (A = a|X,Z = z)

)
P (Z = z|X)

+ P (A = a|X,Z = z)

)]
,

to ensure δc is correctly specified. The empirical form of the AIPW estimator, (3.5),

can be used to estimate the value function V(A)(d) for a given decision and contrast that

corresponds to the ℓ-complier, or union of ℓ-compliers, with either the instrument propensity

P (Z = z|X) or model haz(X) correctly specified.

3.2.4 Identifying ITR with Multilevel IV for the Overall Population

To identify optimal ITR with multilevel IV for the overall population, we assume the core

IV assumptions (B1)-(B3) and the point identification assumption (B4) no additive U -Z

interaction in E[Y |X,U,Z], which states that if an unmeasured variable U confounds the

treatment effect A on Y , it does not interact with the instrument Z on the additive scale

in predicting the treatment. Succinctly, the assumption of no additive U -Z interaction in
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E[Y |X,U,Z] can be written as δc(X) = δ̃c(X,U), where δc(X) =
∑k

z=1 czP (A = 1|X,Z =

z) and δ̃c(X,U) =
∑k

z=1 czP (A = 1|X,U,Z = z). An implication of the notation for this

assumption is that it depends on a choice of contrast. A plausible advantage to using a

multilevel instrument and contrasts is that it allows for some levels of the IV to dissatisfy

(B4), so long as we define contrast coefficients cz = 0 for levels Z = z of the IV that interact

with U , and the other levels of the instrument do not additively interact with U . However,

we cannot know which contrasts in fact satisfy (B4), so we assume that the assumption of

no additive U -Z interaction holds for all contrasts.

Under the point identification assumption of no additive U -Z interaction, the overall

population’s average treatment effect is identifiable. Therefore, the value function an

ITR optimizes in the setting with multilevel IV and assumptions (B1)-(B4) is the same

as the value function optimized in the setting that assumes no unmeasured confounding,

V(B)(d(X)) = E[Y (d(X))], the overall population outcome for a given decision. Here the

subscript of (B) is used to denote the use of the set of assumptions (B) used to identify an

optimal ITR. When using a binary IV, the overall population’s average treatment effect is

identified by the Wald estimand [Wang and Tchetgen Tchetgen (2018)]. Extending to a

multilevel IV, we use the contrast-specific Wald estimand, (3.2), to identify the population’s

average treatment effect. Though, similar to Section 3.2.3 in the use of contrasts, there are

two key differences. The first difference is that, without the (A4) monotonicity assumption,

the contrasts can no longer identify ℓ-complier subpopulations. So, while the same contrasts

may be used, they do not have the interpretation as in Section 3.2.3. The second difference

is that the choice of contrast is not used to identify certain subpopulations, but rather an

identifiability tool for the overall population’s conditional average treatment effect. That

is, under the assumptions (B1)-(B4), the contrast-specific Wald estimand is equal to the

conditional average treatment effect,

∑k
z=1 czE[Y |X,Z = z]∑k

z=1 czP (A = 1|X,Z = z)
=

E
[
E
{
Y (1)− Y (−1)

∣∣X,U
}∑k

z=1 czP (A = 1|X,U,Z = z)
∣∣∣X]∑k

z=1 czP (A = 1|X,Z = z)

= E

[
E
{
Y (1)− Y (−1)

∣∣X,U
}∑k

z=1 czP (A = 1|X,Z = z)∑k
z=1 czP (A = 1|X,Z = z)

∣∣∣∣∣X
]

= E [Y (1)− Y (−1)|X] ,

where the point identification assumption (B4) is used in the second equality. Additional
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details for the proof can be found in Appendix B.4. Therefore, any contrast can be used to

identify the conditional average treatment effect, so long as the contrast satisfies the point

identification assumption (B4) of no additive U -Z interaction.

While the no additive U -Z interaction assumption is necessary to identify the value

function V(B)(d(X)) = E[Y (d(X))], it can be relaxed to identify the optimal ITR using the

contrast-specific Wald estimand. For a binary IV, Cui and Tchetgen Tchetgen (2020) and

Cui and Tchetgen Tchetgen (2021a) provide a necessary and sufficient condition to identify

an optimal ITR under the core IV assumptions (B1)-(B3). We extend their necessary and

sufficient condition for binary IV to multilevel IV for an arbitrary contrast. The proof can

be found in Appendix B.4.

Theorem 3.2. Under the set of assumptions (B1)-(B3), the following condition is necessary

and sufficient for the sign of the contrast-specific Wald estimand to identify an optimal ITR

for the overall population,

E

[
γ̃(X,U)

γ(X)
× δ̃c(X,U)

δc(X)

∣∣∣∣∣X
]
> 0, (3.6)

where γ̃(X,U) = E[Y (1)−Y (−1)|X,U ], γ(X) = E[Y (1)−Y (−1)|X], δ̃c(X,U) =
∑k

z=1 czP (A =

1|X,U,Z = z), and δc(X) =
∑k

z=1 czP (A = 1|X,Z = z). The optimal ITR for the overall

population is then

d∗(B)(X) = sign {E [Y (1)− Y (−1)|X]} = sign

{ ∑k
z=1 czE[Y |X,Z = z]∑k

z=1 czP (A = 1|X,Z = z)

}
.

The necessary and sufficient condition (3.6) for multilevel IV and an arbitrary contrast

can be loosely interpreted as the four estimands, or pairs of the four estimands, γ̃(X,U),

γ(X), δ̃c(X,U), and δc(X), sharing the same sign on average, conditional on the observed

X. What this assumption rules out is the setting where three of the estimands share the

same sign, but one is different from the rest on average, conditional on X. For example,

an optimal ITR is unattainable in the setting γ̃(X,U) > 0, γ(X) > 0, δ̃c(X,U) > 0, but

δc(X) < 0 for all X and U . The signs of the estimands are allowed to differ for some U ,

so long as, conditioning on X, on average they are the same. Cui and Tchetgen Tchetgen

(2020) interpret this condition as allowing for the identification of the optimal ITR in

the setting “where individuals’ decision to uptake the intervention is concordant with an
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anticipated benefit from the intervention”, or where individuals opt into the treatment they

believe will best benefit them. The generalization to multilevel IV, where a contrast is used,

changes this interpretation only slightly on how individuals opt into the treatment, where

the contrast is a statement on how individuals behave with the different levels of the IV.

Theorem 3.2 allows for the ITR estimation by indirect methods, where outcome models

for the numerator and denominator of the contrast-specific Wald estimand is used to identify

the ITR. The necessary and sufficient condition also allows for the direct method using

OWL with a multilevel IV. That is, under the assumptions (B1)-(B3), a rule d∗ ∈ D that

maximizes the population value function is

argmax
d∈D

E [Y (d)] = argmax
d∈D

E

[
k∑

z=1

cz1{Z = z}AY 1{d(X) = A}
δc(X)P (Z = z|X)

]
, (3.7)

whenever the necessary and sufficient condition (3.6) holds. This is a generalization of

Theorem 3.1 in Cui and Tchetgen Tchetgen (2020) to multilevel IV and follows from a

similar argument and taking note that
∑k

z=1 cz = 0.

Though an optimal ITR is identifiable using either the contrast-specific Wald-estimand

or OWL whenever the necessary and sufficient condition holds, to estimate the ITR a

contrast needs to be chosen that satisfies the condition. Since we cannot know which

contrasts satisfy the necessary and sufficient condition, we assume that the condition is

satisfied for any contrast. However, there is still a choice of contrast to be made, where the

decision now is one of estimation performance. To avoid making a poor decision in contrast,

one that negates the effect of the instrument on the probability of receiving the treatment,

we propose learning the contrasts from the data. While it is possible for an investigator to

try several different contrasts, seeing which contrasts do not artificially introduce a weak

instrument bias by negating the effect of the instrument on receiving the treatment, this

solution quickly becomes intractable as the number of contrasts to consider grows rapidly

as the levels k of the IV increases. Additionally, for some values of the observed covariates

X, one contrast may perform better than another. That is, when the instrument interacts

with X in the contrast effect of the IV on the treatment, one contrast may negate the

effect of the instrument on the probability of receiving the treatment while another does

not, depending on the values of X. This would result in the investigator needing to try

many different contrasts for the different values of X. Instead, we propose a contrast that

forces the ITT contrast to better resemble the conditional average treatment effect. Such a
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contrast may be of interest for identifying the optimal ITR because it does not require a

point identification assumption and because the optimal treatment rule is equivalent to the

sign of the conditional average treatment effect. Further, as we will show, such a contrast

will prevent the use of a contrast that negates the effect of the instrument on the probability

of receiving the treatment. Such a contrast can be written in the form,

M∗(X) = argmin
m

∣∣∣∣∣E[Y (1)− Y (−1)
∣∣X]− k∑

z=1

c(m)
z E[Y |X,Z = z]

∣∣∣∣∣ ,
where m indexes the possible contrasts. An implication of this expression is that the contrast

forcing the ITT to resemble the conditional average treatment effect is one that is tailored

to an individual; this idealized contrast is a function of the observed covariates X. In effect,

the use of the this contrast M∗(X) is to use different contrasts for different individuals to

identify the optimal ITR, effectively individualizing ITR estimation.

Under the assumptions (B1)-(B3), the ITT contrast can be rewritten so that

k∑
z=1

czE[Y |X,Z = z] = E

[
E
[
Y (1)− Y (−1)

∣∣X,U
]( k∑

z=1

czP (A = 1|X,U,Z = z)

)∣∣∣∣∣X
]
.

This implies that the contrastM∗(X) is equivalent to the contrast that forces
∑k

z=1 czP (A =

1|X,U,Z) close to 1. Because the contrast coefficients have support cz ∈ [−1, 1] and are

constrained so that
∑k

z=1 cz = 0, the probability contrast
∑k

z=1 czP (A = 1|X,U,Z) is

bound between −1 and 1. Therefore, the contrast M∗(X) is equivalent to

M∗(X) = argmax
m

k∑
z=1

c(m)
z P (A = 1|X,U,Z = z).

Therefore, the contrast M∗(X) is effectively forcing the effect of the instrument on the

treatment away from 0, ensuring a contrast that may inadvertently negate the effect of the

instrument is not used. However, as P (A = 1|X,U,Z = z) is in terms of the unmeasured U ,

we cannot directly estimate this probability. The following result shows that the contrast

M∗(X) is still identifiable. The proof can be found in Appendix B.5.
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Proposition 3.2. Define the contrast M(X) as

M(X) = argmax
m

∣∣∣∣∣
k∑

z=1

c(m)
z E[Y |X,Z = z]

∣∣∣∣∣ .
Under the assumptions (B1)-(B3), we have

M(X) = M∗(X).

The contrast M(X) is the argmax of the absolute value of the ITT contrasts and

is a function of the observed covariates X. Proposition 3.2 allows for the learning of

contrast coefficients, effectively avoiding a single choice of contrast to identify an optimal

ITR. Though no assumption or condition using a contrast is needed to derive M(X), the

contrasts M(X) must satisfy the necessary and sufficient condition (3.6) in order for it to

be used to identify an optimal ITR.

We could similarly use the contrast M(X) under the set of assumptions (A) for the

complier subpopulation, though it will always result in the same contrast for all X under

the monotonicity assumption. That is, under the set of assumptions (A), the contrast M(X)

is no longer a function of X, but rather a constant contrast. To see this note that the ITT

contrast can be rewritten, under the assumptions (A1)-(A4) as

k∑
z=1

czE[Y |X,Z = z] = E

[
E
(
Y (1)− Y (−1)

) k∑
z=1

cz1{A(z) = 1}

∣∣∣∣∣X
]
.

Therefore, for the set of assumptions (A), the argmax of the absolute value of the ITT

contrast is maximizing
∑k

z=1 cz1{A(z) = 1} ∈ [−1, 1]. Under monotonicity, so that no

defiers exist, we have that
∑k

z=1 cz1{A(z) = 1} = 0 always for both never-takers and

always-takers, and for the contrast coefficients c
(all)
z ,

∑k
z=1 cz1{A(z) = 1} = 1 for all

ℓ-compliers. This results in the argmax contrast being equivalent to the single contrast that

identifies the average treatment effect for all ℓ-compliers, M(X) = c
(all)
z . The structure that

monotonicity imposes on the effect of the IV on the treatment provides a single solution for

the contrast learned from the argmax of the ITT contrasts.

Under either settings of assumptions, (A) for the complier subpopulation or (B) for the

overall population, are satisfied, the argmax contrast M(X) can be used to identify the

optimal ITR. The decision rule using the contrast M(X), which we refer to as the argmax
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rule, is written as

dM (X) = sign

{ ∑k
z=1 c

(M(X))
z E[Y |X,Z = z]∑k

z=1 c
(M(X))
z P (A = 1|X,Z = z)

}
. (3.8)

As shown in Section 3.2.3, the contrast-specific Wald estimand or the ITT contrast with

contrast coefficients c
(all)
z can be used to identify the optimal ITR for all of the compliers,

so using M(X) = c
(all)
z under monotonicity will identify the optimal ITR for all of the

compliers. For the assumptions (B), we assume that the necessary and sufficient condition

holds for all contrasts used in M(X), therefore, by Theorem 3.2, the argmax decision

dM (X) using the contrasts M(X), can be used to identify the optimal ITR for the overall

population, dM (X) = d∗(B)(X).

To identify the value function for the overall population and evaluate the performance

of a given decision rule, we leverage either an IPW estimator or an AIPW estimator. For

the IPW estimator, assuming (B4) no additive U -Z interaction, we can use the empirical

form of (3.7), as under assumption (B4) the value function, V(B)(d), is equivalent to the

outcome weighted learning expression, (3.7). That is, the empirical form of outcome

weighted learning expression estimates the value function V(B)(d) for the overall population

when the assumption of no additive U -Z interaction is satisfied. In the case that the

instrument propensity is unknown, we suggest an AIPW estimator to identify the overall

population value function. Under the assumptions (B1)-(B4), the value function for the

overall population V(B)(d) = E[Y (d)], is identified by

V(B)(d) = E

[
k∑

z=1

cz

(
1{Z = z}

(
1{A = a}Y − haz(X)

)
P (Z = z|X)

+ haz(X)

)
a1{d(X) = a}

δc(X)

]
,

(3.9)

where haz(X) is defined as before for the AIPW estimator under monotonicity (3.5). The

proof can be found in Appendix B.6. The AIPW estimator (3.9) is doubly robust in the

sense that either the instrument propensity P (Z = z|X) or the model haz(X) must be

correctly specified, but not both, in order to identify the value function V(B)(d). Further,

any contrast can be used to identify the value function, so long as it satisfies the assumption

of no additive U -Z interaction. We note that, regardless of whether or not the instrument

propensity or haz(X) is correctly specified, δc(X) must be correctly specified for the AIPW

estimator (3.9) to identify the value function. The empirical form of this AIPW estimator
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can then be used to estimate the overall population value function for contrasts that satisfy

the assumption of no additive U -Z interaction when either the instrument propensity or

model haz(X) is correctly specified.

As was the case in identifying the optimal ITR, to identify the value function V(B)(d)

there is a choice of contrast to be made. Though we assume that the assumption of no

additive U -Z interaction holds for all contrasts so that any choice can identify the value

function, the choice of contrast can result in different performances in estimation. Namely,

the choice of contrast should be made to mitigate the possibility of selecting a contrast

such that
∑k

z=1 P (A = 1|X,U,Z = z) is close to 0. To achieve this, we again use the

contrasts M(X) used for the argmax rule. That is, we use the learned contrasts M(X) that

maximize the absolute value of the ITT contrasts, which results in contrast coefficients

forcing
∑k

z=1 czP (A = 1|X,U,Z = z) toward 1. Using the learned contrasts removes the

need to choose a single contrast and protects from inadvertently using contrasts that negate

the effect of the instrument on receiving the treatment.

However, there may be concern that, by using the argmax contrasts M(X), we use

information on the outcome to evaluate the performance of the decision functions. It is

possible that this could introduce bias in the estimation of the value function. Because

M(X) is defined as the absolute value of the ITT contrast, there will exist correlations

between the chosen contrasts and the expected outcome. Though, this would affect the

variance of the estimated value function, and therefore any inference, we do not expect it

to be a cause of concern in our use. For sufficiently large samples, the empirical form of

the AIPW estimator (3.9) or the IPW estimator (3.7) using the argmax contrasts should

consistently estimate the value function. We demonstrate this numerically in Appendix

B.8 using the AIPW estimator. In the event that the sample is not sufficiently large, we

recommend choosing a contrast that does not negate the effect of the IV on the probability

of receiving the treatment.

3.2.5 Bridging ITR Identification for the Two Sets of Assumptions

The two sets of assumptions (A1)-(A4) for the complier subpopulation and (B1)-(B4) for

the overall population lead to different decision rules and value functions. The set of

assumptions (A1)-(A4) targets the value function for ℓ-compliers through the use of specific

contrasts c
(ℓ)
z . In the event that the different ℓ-compliers have different decisions for a

given X or when it is unclear which ℓ-complier rule to assign, it’s required to predict the
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latent sub-complier type and their respective decision rules to maximize the complier value

function. The set of assumptions (B1)-(B4) targets the overall population value function

and any contrast can be used as long as it satisfies the necessary and sufficient condition

(3.6). However, a choice of contrast, or learning contrasts as a function of the observed

covariates X, is still needed to maximize the overall population value function, where the

contrast used has implications on estimation. Though the assumptions and their respective

settings for identifying an optimal ITR are different, it is possible to bridge the two through

the necessary and sufficient condition.

The necessary and sufficient condition (3.6) is a statement on the unmeasured variable

U and its extent on modifying both the treatment effect and the propensity to take the

treatment. For example, let γ̃(X,U) ̸= γ(X), but sign{γ̃(X,U)} = sign{γ(X)}, and
similarly, δ̃c(X,U) ̸= δc(X), but sign{δ̃c(X,U)} = sign{δc(X)} for all U . This setting can

arise when U is an effect modifier that does not change the sign of the treatment effect

or contrast of the probability of receiving the treatment (e.g. γ̃(X,U) = γ(X)U2 and

δ̃c(X,U) = δc(X)U2 for U ∈ [−1, 1]). In such a setting, the variable U is an unmeasured

effect modifier that modifies the effects of the treatment on the outcome and the instrument

on the probability of receiving the treatment, but not in a way such that the condition

(3.6) is violated. Further, in the event that δ̃c(X,U) and δc(X) are both positive, the

ITT contrast alone can identify the optimal ITR; the contrast-specific Wald estimand isn’t

needed. That is, the sign of the ITT contrast is the same as the sign of γ(X). Though U is

a latent effect modifier, it does not change the sign of the treatment effect nor the sign of

the effect of the instrument on the treatment, and since the probability of receiving the

treatment contrast is positive, the sign of the effect of the instrument on the outcome alone

can identify the sign of the effect of the treatment on the outcome. So long as U modifies

the effects of γ̃(X,U) and δ̃c(X,U) in a way that the necessary and sufficient condition is

satisfied, then an optimal ITR is attainable using the sign of the contrast-specific Wald

estimand or the outcome weighted learning expressions.

A similar necessary and sufficient condition with largely the same interpretation can be

written for the setting using the assumptions (A1)-(A4) for the complier subpopulation.

Under the assumptions (A1)-(A4), the necessary and sufficient condition for multilevel IV,
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is written as

E

E[Y (1)− Y (−1)|X,L]

γ(X)
×

P
(∑k

z=1 cz1{A(z) = 1} = 1
∣∣∣X,A(1) < A(k)

)
δc(X)

∣∣∣∣∣∣X
 > 0,

(3.10)

where L denotes the latent sub-compliance type, the contrasts considered are c
(ℓ)
z , and γ(X)

and δc(X) are defined as above. The monotonicity assumption is used here to simplify this

necessary and sufficient condition (3.10) to a similar form as the necessary and sufficient

condition (3.6) for assumption setting (B); without the monotonicity assumption, the

condition is slightly less succinct. The details and proof of the necessary and sufficient

condition under assumptions (A1)-(A4) are in Appendix B.7. The necessary and sufficient

conditions are clearly similar for the two sets of assumptions (A) and (B). The differences are

in defining the unmeasured confounder as the latent sub-complier type L and conditioning

on the union of all ℓ-compliers, but the interpretation is much the same for the necessary

and sufficient condition for assumption setting (A).

The necessary and sufficient condition (3.10) is again a statement on latent variables,

in this case L and A(1) < A(k), and their extent on modifying both the treatment effect

and the propensity to take the treatment. If the treatment effect for the ℓ-complier,

E[Y (1) − Y (−1)|X,L], and the probability of being an ℓ-complier given the individual

is a a type of complier, P
(∑k

z=1 cz1{A(z) = 1} = 1
∣∣∣X,A(1) < A(k)

)
, agree on average,

conditional on X, in sign with γ(X) and δc(X), then the sign of the contrast-specific

Wald estimand using contrast coefficients c
(ℓ)
z identifying the ℓ-complier treatment effect

will equal the sign of the overall treatment effect γ(X). Here, the overall treatment

effect is the average treatment effect for all compliers, never-takers, and always-takers.

Because, under monotonicity, the δc(X) is the probability of being an ℓ-complier, and

P
(∑k

z=1 cz1{A(z) = 1} = 1
∣∣∣X,A(1) < A(k)

)
is the probability of being an ℓ-complier

given the individual is a type of complier, the right-hand side of the product in (3.10)

will always be positive. That means, for the sign of the contrast-specific Wald estimand

identifying the ℓ-complier treatment effect to identify the optimal ITR for the overall

population, it must agree in sign with γ(X). That is, the monotonicity assumption

imposes a structure on the effect of the instrument on receiving the treatment, so that,

to identify the optimal ITR for a population/subpopulation other than the ℓ-complier,

the sign of the ℓ-complier treatment effect must agree in sign with the treatment effect of

the other population/subpopulation of interest. Under the interpretation of the necessary
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and sufficient conditions of how individuals opt into treatment, monotonicity imposes a

structure so that ℓ-compliers must opt into treatment at the instrument level Z = ℓ, so for

the optimal ITR to be identified the ℓ-complier local effect must agree in sign with the

treatment effect of the target population.

This interpretation coincides with the discussion in Section 3.2.3 on how the different

ℓ-compliers may have different treatment rules for a given X, so that using the ℓ-complier

rule, d∗(ℓ), may be suboptimal for the union of all ℓ-compliers. The necessary and sufficient

condition (3.10) states that, for the ℓ-complier treatment effect to identify the optimal ITR

for all the ℓ-compliers, it must agree in sign with the treatment effect for all the compliers.

This can be seen by removing γ(X) (as we are now discussing the effect for only compliers)

and rewriting the condition as

E[Y (1)− Y (−1)|X,L]

E[Y (1)− Y (−1)|X,A(1) < A(k)]
> 0,

where the ratio of P
(∑k

z=1 cz1{A(z) = 1} = 1
∣∣∣X,A(1) < A(k)

)
and δc(X) can be removed

because they will always be positive under the monotonicity assumption. This also reflects

the conclusion that the ITT contrast for the ℓ-complier can identify the optimal ITR for

all the ℓ-compliers when the sign of the treatment effects of all the ℓ-compliers agree. In

such a setting, the latent effect modifier L does not change the sign of the effect of the

instrument on receiving the treatment due to the structure monotonicity imposes, nor

does it change the sign of the treatment effect for the different ℓ-compliers. Therefore, the

sign of the ITT contrast using contrast coefficients c
(ℓ)
z identifies the optimal ITR for the

ℓ-compliers by Theorem 3.1, as well as the optimal ITR for all the ℓ-compliers when the

latent sub-compliance type L does not change the signs of the different ℓ-complier treatment

effects.

Under either set of assumptions (A) or (B), their respective necessary and sufficient

conditions are satisfied when identifying the optimal ITR for the corresponding target

populations. Due to the differences in assumption sets (A) and (B), the conditions are

slightly different in form, but the interpretations are largely the same. For a population in

which an unmeasured confounder, U or L, modifies the treatment effects, the unmeasured

effect modifier must modify both the treatment effect and propensity to take the treatment

so that the necessary and sufficient condition is satisfied in order to identify an optimal

ITR.
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3.3 Simulations

We conduct extensive simulation studies to measure the performance of the proposed decision

rules, with a multilevel instrument with k = 3 levels, for the two sets of assumptions, (A1)-

(A4) targeting the complier subpopulation, and (B1)-(B4) targeting the overall population.

In all the simulation studies, we vary the instrument’s association to the treatment because

prior works have shown that performance of IV methods depends heavily on IV strength.

In particular, problems can arise when the instrument has a weak effect on the treatment;

see Staiger and Stock (1997), Stock, Wright, and Yogo (2002), and references therein for

more details.

For comparisons, we estimate decision rules using a binary instrument, no instrument,

and as an oracle observing the unmeasured variables. For the setting under assumptions (A)

for the complier subpopulation, the binary instrument rule is the sign of the ITT effect, and

for the setting under assumptions (B), the binary instrument rule is the sign of the usual

Wald estimand. The rule estimated without the use of an IV is the sign of the conditional

average treatment effect, a rule relying on the assumption of no unmeasured confounding

between the treatment and outcome. For the setting under assumptions (A), the oracle rule

is the sign of the conditional average treatment effect for a model controlling for the latent

subpopulation types (always-takers, never-takers, and ℓ-compliers), and for the setting

under assumptions (B), the oracle rule is the sign of conditional average treatment effect

for a model controlling for the unmeasured confounder.

3.3.1 Complier Subpopulation

We generate the instrument Z ∈ {1, 2, 3} using the Categorical distribution with a probability

of success of 1/3 for each level. The binary instrument was then generated as 1 if Z = 3 and

-1 otherwise. We generate two observed variables X1 and X2 independently, each following

the Bernoulli distribution with probability 1/2 and coded as ±1. X1 is chosen to modify

the treatment effect and the subpopulation an individual belongs, and X2 predicts the

sub-compliance type. This way, the decision rules can be made to be exactly opposite for

the different subpopulations for a given X1. To satisfy the monotonicity assumption, we

first generate whether or not an individual was a complier (either a 2- or 3-complier) with

the probability of success P (A(1) < A(3)|X) = expit(α + 0.25X1), where α is chosen to

achieve a predetermined average compliance rate. The average compliance rate denotes the

strength of the instrument, where an average closer to 1 implies a stronger IV. Second, if
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the individual is not a complier, we generate whether they were a never-taker, as opposed to

an always-taker, with probability of success, P (A(1) = A(2) = A(3) = −1|X) = expit(X1),

and if the individual is a complier, we generated whether they were a 2-complier, as

opposed to a 3-complier, with probability of success, P (A(1) < A(2)|X) = expit(2X2).

The potential treatments are then defined as A(1) = A(2) = A(3) = −1 for never-takers,

A(1) = A(2) = A(3) = 1 for always-takers, A(1) = −1 and A(2) = A(3) = 1 for 2-compliers,

and A(1) = A(2) = −1 and A(3) = 1 for 3-compliers. The observed treatment is generated

as A =
∑k

z=1 1{Z = z}A(z). Finally, the outcome is generated as

Y = 0.5 + 0.5X1

+
{
(δNC +∆NCX1)(1 + 1{A(1) = 1} − 1{A(3) = 1})

+ (δ2 +∆2X1)(−1{A(1) = 1}+ 1{A(2) = 1})

+ (δ3 +∆3X1)(−1{A(2) = 1}+ 1{A(3) = 1})
}
A+ ϵ,

so that δNC and ∆NC are the non-compliers’ (never-takers and always-takers) treatment

parameters, δ2 and ∆2 are the 2-compliers’ treatment parameters, and δ3 and ∆3 are the 3-

compliers’ treatment parameters. The error term ϵ follows the standard normal distribution.

The outcome Y is generated for three different treatment effect scenarios: (1) the decision

for each subpopulation is the same, δNC = 0.2, ∆NC = −0.6, δ2 = 0.3, ∆2 = −0.8, δ3 = 0.25

and ∆3 = −0.7; (2) the decision for the never-takers and always-takers is exactly opposite

from the 2- and 3-compliers, δNC = −0.2, ∆NC = 0.6, δ2 = 0.3, ∆2 = −0.8, δ3 = 0.25 and

∆3 = −0.7; and (3) the decision for the 2-compliers is exactly opposite from the never-takers,

always-takers and 3-compliers decisions, δNC = 0.2, ∆NC = −0.6, δ2 = −0.3, ∆2 = 0.8,

δ3 = 0.25 and ∆3 = −0.7. Explicitly, the decision rules for the subpopulations are presented

in Table 3.1

Treatment Effect Scenario Non-complier 2-Complier 3-Complier

(1) 2(0.2− 0.6X1) 2(0.3− 0.8X1) 2(0.25− 0.7X1)

(2) 2(−0.2 + 0.6X1) 2(0.3− 0.8X1) 2(0.25− 0.7X1)

(3) 2(0.2− 0.6X1) 2(−0.3 + 0.8X1) 2(0.25− 0.7X1)

Table 3.1: The decision rule for each subpopulation in the three Treatment Effect Scenarios.

To identify the optimal ITR, we implement the proposed methods in Section 3.2.3.



55

Specifically, we use the contrast coefficients c
(all)
z to identify the optimal treatment rule

for all the ℓ-compliers and the rule d̃(X, L̂) (3.3), that uses a prediction of the latent sub-

compliance type and their corresponding ITT effects. To predict the latent sub-compliance

type and their ITT effects, we use the contrast coefficients c
(ℓ)
z . The ITT is estimated using

a linear model regressing the outcome on the covariates X1, X2, the instrument Z, and

the interactions between the instrument and covariates. For the binary IV, the ITT was

estimated using a similar model but with the binary instrument in place of the multilevel

instrument. For the rule d̃(X, L̂), the probability of receiving the treatment is modeled as a

logistic regression, regressing the observed treatment on the covariates and their interactions

with the instrument. For the rule using no instrument, a linear model regressing the outcome

on the covariates and their interactions with the observed treatment is used. For the oracle

rule, a linear model regressing the outcome on the covariates, never-takers, 2-compliers, and

3-compliers indicators, and their interactions with the observed treatment is used.

For each scenario, the training sample size is 500 with a test sample size of 10,000. The

simulations are repeated 500 times. We evaluate the different decision rules by the empirical

meanof the value functions and misclassification rates for the union of all ℓ-compliers, where

a larger value function and smaller misclassification rate are preferred. Figure 3.2 presents

the results of the simulations.

For Treatment Effect Scenario (1), each of the different decision rules perform well

and improve as the average compliance rate increases, where near 0 misclassification rates

are achieved and the value functions converge to that of the oracle rule. At lower levels

of the compliance rate the rule using no IV performs very well, but this is unsurprising

as all of the treatment effects for the different latent subpopulations are very similar and

no issues can arise due to weak instruments. The oracle model slightly underperforms

for very low compliance rates because some of the subpopulation indicator variables are

almost constant, as there are very few compliers, leading to less stable estimation. For

Treatment Effect Scenario (2), the decision rules using an instrument continue to perform

similarly well. The decision rule ignoring the instrument, however, performs very poorly,

particularly at lower compliance rates, where the decision rule conflates the compliers’ and

non-compliers’ effects. Other than the rule d̃(X, L̂) (denoted as d(X,L) in Figure 3.2), the

decision rules using an IV all achieve near perfect misclassification rates and converge to the

oracle rule’s value function. The rule d̃(X, L̂) performs slightly worse than the other rules

using an IV in Treatment Effect Scenarios (1) and (2), as it needs to additionally predict the

latent sub-compliance type. However, in Treatment Effect Scenario (3), d̃(X, L̂) is able to
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Figure 3.2: The average misclassification rates and value functions of the different decision
rules for the complier subpopulation across the three treatment scenarios. The solid squares

denote the rule derived using the contrast coefficients c
(all)
z , the solid circles denote the rule

derived for the binary IV, the solid triangles denote the rule d̃(X, L̂), the open squares
denote the rule derived using no IV, and the open circles denote the rule derived from the
oracle model.

perform well by using their predicted latent sub-compliance types and estimated ITT effects.

The other decision rules conflate the two opposite decisions for the 2- and 3-compliers,

and are unable to maximize the expected outcome of the union of all ℓ-compliers. We

note that the decision rule using the multilevel IV with contrast coefficients c
(all)
z , denoted

as “All Compliers” in Figure 3.2’s legend, performs very similarly to the binary IV rule,

however, across all settings the rule using the multilevel IV consistently performs better

than the binary IV rule across all average compliance rates. This implies that in this setting,

dichotimizing the IV still performs very well, but using the IV over its natural support will

lead to a more optimal rule.

In Appendix B.9, we present results for additional simulations evaluating the performance

for the 2- and 3-complier subpopulations, as well as rules using the contrasts c
(ℓ)
z separately

from d̃(X, L̂). We also present results for a smaller training sample size of 250 and a larger

training sample size of 1000. The results are presented in Figures B.2-B.7. The results
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in the additional simulations mimic the results presented here, where the methods using

IV are able obtain near perfect misclassification rates for the Treatment Effect Scenarios

(1) and (2), but failing to maximize the value function for the union of all ℓ-compliers

for Treatment Effect Scenarios (3). Only the rule d̃(X, L̂) is able to treat the 2-compliers

and 3-compliers separately to increase the value function for the union of all ℓ-compliers

in Treatment Effect Scenario (3). In Treament Effect Scenarios (1) and (2), where the 2-

and 3-compliers have the same decision rule, the estimated 2- and 3-complier rules, using

contrast coefficients, c
(2)
z and c

(3)
z respectively, perform slightly worse for the entire complier

subpopulation, reflecting a loss in efficiency when not combining the two sub-compliance

types. The simulations presented in the Appendix B.9 also show a a gradual improvement

in misclassification rates and value function as the sample size grows.

3.3.2 Overall Population

We generate the instrument Z ∈ {−1, 0, 1} using the Categorical distribution with a

probability of success of 1/4 for levels Z = −1 and Z = 0 and 1/2 for level Z = 1. We

change the support of the instrument here for convenience in the data generation process.

The binary instrument is then generated as 1 if Z = 1 and -1 otherwise. Similar to the

simulation settings in Cui and Tchetgen Tchetgen (2021b), we generate five independent

Uniformly distributed observed variables over the support [−1, 1] for X and generate the

treatment A ∈ {−1, 1} using a logistic regression under three different success probabilities

P (A = 1|X,U,Z):

(1) P (A = 1|X,U,Z) = expit(2X1 + βZ − 0.5U),

(2) P (A = 1|X,U,Z) = expit(2X1 + βZ2 − 0.5U), and

(3) P (A = 1|X,U,Z) =

expit(2X1 + βZ − 0.5U), X2 < 0,

expit(2X1 + βZ2 − 0.5U), X2 ≥ 0,

where β is allowed to vary to change the strength of the IV. A larger magnitude of β

implies greater IV strength. For P (A = 1|X,U,Z) Scenario (1), the probability of receiving

the treatment increases as the instrument increases. For P (A = 1|X,U,Z) Scenario

(2), the probability of receiving the treatment increases for values Z = −1 and Z = 1

of the instrument. For P (A = 1|X,U,Z) Scenario (3), the probability of receiving the

treatment is equivalent to Scenario (1) when X2 < 0 and equivalent to Scenario (2) when

X2 ≥ 0, creating a setting where the IV interacts with X2 so that some contrasts may
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perform better than others. As in Cui and Tchetgen Tchetgen (2021b), the unmeasured

U follows a bridge distribution with parameter ϕ = 1/2 [Wang and Louis (2003)]. The

outcome is then generated as Y = h(X) + q(X)A+ 0.5U + ϵ, where the main effects and

treatment effects are, respectively, h(X) = 0.5 + 0.5X1 + 0.8X2 + 0.3X3 − 0.5X4 + 0.7X5,

and q(X) = 0.2− 0.6X1 − 0.8X2, and ϵ follows the standard normal distribution. Under

this data generation process, we note that the necessary and sufficient condition is satisfied

for both the multilevel and binary instruments.

To identify the optimal ITR, we implement the proposed methods in Section 3.2.4.

Specifically, we use the argmax rule, dM (X) (3.8), which uses the contrasts that maximize

the absolute magnitude of the ITT contrast. To derive the argmax contrasts M(X), we

consider the following six contrasts: (c1) comparing the lowest level of the IV with the

higher two levels, c−1 = −1, c0 = c1 = 1/2; (c2) comparing the middle level of the IV with

the highest and lowest levels, c−1 = −1/2, c0 = 1, c1 = −1/2; (c3) comparing the lower

two levels of the IV with the highest level, c−1 = c0 = −1/2, c1 = 1; (c4) comparing the

lowest and middle levels of the IV, c−1 = −1, c0 = 1, c1 = 0; (c5) comparing the lowest

and highest levels of the IV, c−1 = −1, c0 = 0, c1 = 1; and (c6) comparing the middle and

highest levels of the IV, c−1 = 0, c0 = −1, c1 = 1.

To estimate the ITT, E[Y |X,Z] is estimated by a linear model regressing the outcome

on the observed covariates X and their interaction with the multilevel instrument Z. The

probability of receiving the treatment, P (A = 1|X,Z), is estimated by a logistic regression,

regressing the treatment on the observed covariates and their interaction with the instrument.

We then estimate the argmax contrasts M̂(X) by seeing which of the (c1)-(c6) contrasts

maximize the absolute value of the ITT contrast for a given X. The argmax rule is estimated

as described in Section 3.2.4. Similarly, for the binary IV rule, we use a linear model for

the outcome and a logistic regression for the probability of receiving the treatment, each

regressing the covariates and their interaction with the binary instrument. To estimate the

rule using no IV, we estimate E[Y |X,A] with a linear model regressing the outcome on the

covariates and and their interactions with the treatment. For the oracle rule, we estimate

E[Y |X,U,A] with a linear model regressing the outcome on the observed and unobserved

covariates and the interactions of the observed covariates with the treatment.

For each success probability P (A = 1|X,U,Z) Scenario, the training sample size is 500

with a test sample size of 10,000. The simulations were repeated 500 times. We evaluate the

different decision rules by the empirical mean of the value functions and misclassification

rates for the overall population. Figure 3.3 presents the results of the simulations.
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Figure 3.3: The average misclassification rates and value functions of the different decision
rules for the overall population across the three P (A = 1|X,U,Z) Scenarios. The solid
squares denote the argmax rule using the contrast M(X), the solid circles denote the rule
derived for the binary IV, the solid triangles denote the rule using no IV, and the open
squares denote the rule derived from the oracle model.

In P (A = 1|X,U,Z = z) Scenario (1), we see both the argmax rule and the rule using a

binary IV perform similarly in reducing the misclassification rate and maximizing the value

function, particularly at large magnitudes of the IV coefficient β where the instrument is

stronger. As the probability of receiving the treatment increases as the instrument increases,

dichotomizing the IV does not negate the information provided by the instrument, and so

it is not surprising to see the argmax and binary IV rule perform similarly. At smaller IV

coefficient magnitudes, we see that the decision rules using the instruments fail to identify

an optimal treatment rule, preforming worse than the rule not using an IV. This is due

to weak instrument bias. In P (A = 1|X,U,Z = z) Scenario (2), where the lowest level

and highest level of the instrument have the same effect on the probability of receiving the

treatment, the rule using a binary IV is no longer able to identify an optimal treatment

rule. Even at larger magnitudes of the IV coefficient, the rule using the binary IV performs

as well as flipping a coin, as seen by a miclassification rate of about 0.5 for all values of the

IV coefficient. Though, theoretically, the necessary and sufficient condition is satisfied for a
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binary IV in this Scenario, the dichotomization of the multilevel IV by grouping the lower

two levels together neutralizes the instrument’s effect on the treatment effectively turning a

non-weak instrument into a weak instrument. By leaving the multilevel instrument defined

over its natural support, the argmax rule is able to use contrasts that do not neutralize

the effect of the instrument on the treatment and identify treatment rules that perform

much better than the binary IV rule. In P (A = 1|X,U,Z = z) Scenario (3), where the

relationship of the instrument on the treatment depends on the value of covariate X2, the

two rules using an IV perform very similarly until larger magnitudes of the IV coefficient

when the argmax begins to outperform the rule using the binary IV. The argmax rule begins

to achieve greater value than the binary IV rule because it dynamically assigns contrasts

to individuals to identify the decision rule depending on the values of X2. The rule using

the binary IV, on the other hand, uses the single difference between levels of the IV, only

capturing information that the IV provides when X2 < 0. The rule that does not use an IV

performs suboptimally to the rules using the instrument at larger magnitudes of the IV

coefficient across all of the success probability P (A = 1|X,U,Z = z) Scenarios, showing

that the rule not accounting for the unmeasured confounding on the treatment and outcome

fail to identify an optimal treatment rule. At weaker instrument values, the rule using no IV

performs as well or better than the rules using IV, however, as the treatment’s effect on the

outcome is confounded, this result cannot be expected to hold for other settings. Further,

as shown in Appendix B.10, when the training sample size grows, the performance of the

rules using the IV improves towards the optimal treatment rule while the performance of

the rule not using the IV remains the same. Across all of the success probability for the

treatment P (A = 1|X,U,Z = z) scenarios, the argmax rule performs well, decreasing the

misclassification rate and increasing the overall population’s value. The performance of the

rules using an IV is largely impacted by the instrument’s strength, where performance can

vary from the equivalent of flipping a coin to a nearly optimal rule.

In Appendix B.10, we present results for additional simulations evaluating the per-

formance of the argmax rule, a rule using the linear contrast (c5), and a rule using the

quadratic contrast (c2) for a smaller training sample size of 250 and a larger training

sample size of 1000. The results are presented in Figure B.8 and B.9 of the additional

simulations for the overall population. The results in the additional simulations mimic

the results presented here, where the rules using an IV outperform the rule not using

the IV for all sample sizes across all P (A = 1|X,U,Z = z) Scenarios whenever the IV

isn’t weak. For the P (A = 1|X,U,Z = z) Scenario (1), the rule using the binary IV and
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the argmax rule perform very similarly and improve as the sample size increases. For

the P (A = 1|X,U,Z = z) Scenario (2), only the argmax rule’s performance approaches

the optimal ITR as the sample size grows, as the binary IV rule is still subject to weak

instrument bias. In P (A = 1|X,U,Z = z) Scenario (3), the argmax rule has the strongest

performance which continues to improve as the sample size grows. The rule using the

binary IV generally performs well, but does not see large improvements as the sample size

grows. Due to the generation of the multilevel instrument and definition of the binary

instrument, the rule using the (c5) linear contrast and the rule using the binary IV perform

very similarly in all scenarios. In P (A = 1|X,U,Z = z) Scenario (2), the rule using the (c2)

quadratic rule performs best, but suffers in P (A = 1|X,U,Z = z) Scenarios (1) and (3).

These results reflect that a single contrast works very well when there is no interaction of

the instrument with covariates, as in P (A = 1|X,U,Z = z) Scenarios (1) and (2), but their

performance is inferior to the argmax rule in P (A = 1|X,U,Z = z) Scenario (3) when the

instrument interacts with covariate X2.

3.4 Data Analysis

3.4.1 Study Objective and Data Description

We apply our methods to identify optimal ITR for two competing treatments carotid

endarterectomy (CEA) and carotid artery stenting (CAS) on treating carotid-artery disease,

often referred to as carotid stenosis. The two treatment arms are still regarded as competing

despite being well studied, because randomized trials and observational studies disagree

in their results as to which procedure is better. Specifically, observational studies suggest

that the endarterectomy procedure generally results in better outcomes than the stenting

procedure [McPhee et al. (2008); Giles et al. (2010); Wang et al. (2011); Nolan et al.

(2012)], whereas randomized trials suggest there is no significant improvement for CEA

over CAS [Rosenfield et al. (2016); Brott et al. (2016)]. The current understanding is that

the observational studies may be subject to unmeasured selection biases, where sicker, less

medically fit patients are disproportionately being selected into the less invasive treatment

CAS. As these patients are typically sicker and less medically fit, they are prone to worse

outcomes. This selection bias would lead to results showing that CAS is an inferior treatment

when variables connected to the selection of treatment are unmeasured. To provide results

for an observational study, which may have better external validity, but still control for
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unmeasured confounding, studies using an IV are performed, which generally show that

there is a smaller difference between the CEA and CAS treatments than presented in

the observational studies without an IV [Columbo et al. (2018), Mart́ınez-Camblor et al.

(2019a), Mart́ınez-Camblor et al. (2019a)]. The IV used for these studies is center, or

hospital, preference and is the same IV used in our analysis.

The data for our analysis was obtained from the Vascular Quality Initiative (https:

//www.vqi.org), a national quality improvement registry containing demographic, clinical,

procedural, and outcomes data from over 850 participating centers across the United States

and Canada with the purpose of improving vascular care and determining which treatment

yields the best results for patients. Specifically, the data included the number of each

procedure (CEA and CAS) conducted at the participating centers in the past 6 months

prior to the patient’s index procedure, an indicator for all-cause mortality or stroke within

30 days of the index procedure, a patient’s age, race, sex, and smoking status, whether the

patient presented neurologic symptoms, whether the patient elected into treatment, was in

need of urgent care, or in need of emergent care, whether the patient was taking any of

the preoperative medications, aspirin, P2y12 inhibitors, dual antiplatelets, statins, beta

blockers, anticoagulants, or ACE inhibitors, had any of the comorbid conditions, congestive

heart failure, coronary revascularization, hypertension, chronic obstructive pulmonary

disease (COPD), or COPD treated with home oxygen, or had any prior ipsilateral carotid

procedure, prior contralateral carotid procedure, or been diagnosed with coronary-artery

disease. Despite such a rich set of covariates, the data are still expected to be exposed to

unmeasured selection biases motivating the use of an IV.

Our IV was the center’s preference for the treatment CEA and was estimated as the

proportion of CEA out of the total number of procedures (CEA and CAS) conducted at

each center in the past 6 months prior to a patient’s index procedure. The outcome used

was the indicator for all-cause mortality or stroke within 30 days of the index procedure.

As there are no requirements for a center to join a registry apart of the Vascular Quality

Initiative, we excluded hospitals with fewer than 10 total procedures in the 6 months prior

to the index procedure. In practice, a recommendation for CEA (or CAS) at a center that

performs only CAS (or CEA) would either require the patient to find a different center for

their procedure, or the hospital obtain the resources required for the procedure they never

perform. These are options that may not be possible if the patient is in need of urgent

or emergent care. To focus on the population for which a recommendation can be most

practical, we further removed centers that have only conducted one treatment. After the

https://www.vqi.org
https://www.vqi.org
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removal of centers preferring only one treatment and centers conducting fewer than 10 total

procedures, we further removed 9,929 patients (about 17%), were lost to follow-up within

30 days of their index procedure and 323 patients (less than 1%) with missing variables and

were removed from the analysis. The final data set consisted of 47,930 patients, between 20

and 90 years of age, and 263 centers, where 39,255 patients (about 82%) received the CEA

procedure.

3.4.2 Instrument Validity

Before we present the results of our analysis, we discuss the plausibility of the center’s

preference for treatment CEA as an instrument. We define both a multilevel IV with k = 3

levels and a binary IV using the continuous instrument’s tertiles and median, respectively.

Attending a center with the highest level versus the lowest level of the multilevel instrument

resulted in an increased probability of receiving the treatment CEA by about 26%. For

the binary IV, the increase in probability of receiving the treatment between the two levels

of the IV was about 20%. This satisfies version (B1) of the IV relevance assumption.

Though hospital or physician preference is often measured as a surrogate so that the IV

is not causally associated with the treatment [Hernán and Robins (2006)], here, the IV is

measured as the number of procedures performed in the 6-months prior to the patient’s

index procedure and so is an estimate of the center’s preference. Therefore, the version (A1)

of the IV relevance assumption is thought to be satisfied. The (A2/B2) exclusion restriction

assumption, states that a center’s preference does not affect the outcome except through

the procedure performed, and the (A3/B3) IV ignorability assumption, states that the

center’s preference is unrelated to any unmeasured confounding. Both of these assumptions

may be violated, since patients may be aware of what hospital generally performs certain

procedures, and they can elect to attend centers that prefer the procedure the patients

themselves prefer. Specifically, if some centers have a higher frequency of procedures, it

is possible the institution also has a procedure-specific learning effect leading to better

outcomes; there has been extensive research on volume-outcome effects in health services

literature (see Luft et al. (1979), Halm et al. (2002), and references therein). However,

to account for these potential violations of our IV assumptions, we control for the total

number of procedures a center has performed in the 6-months prior to the patient’s index

procedure. This variable is calculated as the sum of total CEA and CAS procedures for the

center and including it in our models controls for the possible procedure-specific learning



64

effect providing plausibility to the exclusion restriction and IV ignorability assumptions.

To identify the value function for the ℓ-complier subpopulations, the (A4) monotonicity

assumption is required. This assumption states that no patient who (i) visits a hospital

with a higher level of preference for CEA and receives CAS, and (ii) visits a hospital with a

lower level of preference for CEA and receives CEA exists in the data. For the multilevel IV,

this rules out patients who would receive CEA at level Z = 1 but CAS at Z = 2 or Z = 3

and patients who would receive CEA at level Z = 2 but CAS at Z = 3. This assumption is

plausible, as it follows to reason that if a patient i received CAS (Ai = −1) at a center that

largely prefers CEA (Zi = 3), then the same patient would have received CAS (Ai = −1)

at an institution that largely prefers CAS (Zi = 1). However, the monotonicity assumption

would be violated if there exist defiers who have variables that lead institutions to select

certain treatments against their preference. Swanson and Hernán (2014) give an example

of a defier in the similar setting with physician preference as the IV. Consider a patient

who is diabetic and physically fit. If this patient were to see a physician who generally

prefers the treatment but not for diabetics, or see another physician who generally does

not prefer the treatment but makes exceptions for physically fit patients, then this patient

would be a defier. Though it is possible that defiers exist, we do not have reason to believe

centers have such exceptions to their preferences for the CEA or CAS procedures, and so

we assume that monotonicity holds.

To identify the value function for the overall population, the assumption (B4) of no

additive U -Z interaction is required. This assumption states that δc(X) = δ̃c(X,U) for all

contrasts considered. For this analysis, we consider the same contrasts as in the Section

3.3.2, and that assumption (B4) holds for each. Namely, the contrasts are (c1) comparing

the lowest level of the IV with the higher two levels, c1 = −1, c2 = c3 = 1/2; (c2) comparing

the middle level of the IV with the highest and lowest levels, c1 = −1/2, c2 = 1, c3 = −1/2;

(c3) comparing the lower two levels of the IV with the highest level, c1 = c2 = −1/2,

c3 = 1; (c4) comparing the lowest and middle levels of the IV, c1 = −1, c2 = 1, c3 = 0;

(c5) comparing the lowest and highest levels of the IV, c1 = −1, c2 = 0, c3 = 1; and (c6)

comparing the middle and highest levels of the IV, c1 = 0, c2 = −1, c3 = 1. For the binary

IV, the assumption of no additive U -Z interaction states that P (A = 1|X,Z = 1)− P (A =

1|X,Z = −1) = P (A = 1|X,U,Z = 1)−P (A = 1|X,U,Z = −1). We cannot know whether

an unmeasured variable interacts with center preference, but given we have a rich set of

covariates we assume that the assumptions hold. While the assumption of no additive

U -Z interaction is needed to hold in order to identify the value function for the overall
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population, the necessary and sufficient condition (3.6) needs to be satisfied to identify

an optimal ITR for the overall population. That is, an optimal ITR cannot be identified

if an unmeasured confounder modifies both the treatment effect and the contrast of the

probability of receiving the treatment in a way that the necessary and sufficient condition

is violated. As the assumption (B4) of no additive U -Z interaction implies the necessary

and sufficient condition holds, we expect to be able to identify an optimal ITR by assuming

(B4).

3.4.3 Results

To evaluate the performance of our methods relative to the methods using a binary IV

or no IV, we randomly select 75% of patients to train the conditional ITT, probability

of receiving the treatment, the interaction of the treatment and outcome (haz(X)), and

the conditional average treatment effects. The remaining 25% were used as a test set to

estimate the value functions. Random forests were chosen for each of these models for its

ability to nonparametrically predict the outcomes of interest, its resistance to overfitting,

and to allow for many different interaction terms that don’t need to be pre-specified in the

model. We remark that for each of these models, the R function randomForest from version

4.6.14 of the randomForest package [Liaw and Wiener (2002)] is used with the default

settings. We then apply apply our rule d̃(X, L̂) (3.3) and the rule d(all)(X) (Theorem 3.1)

to identify an optimal ITR for the ℓ-compliers, detailed in Section 3.2.3. And, our argmax

rule (3.8) over the potential contrasts (c1)-(c6), detailed in Section 3.2.4, is used to identify

an optimal ITR for the overall population. For the comparisons using a binary IV, the

ITT and the Wald estimand was used to identify an optimal ITR for the ℓ-compliers and

the overall population, respectively. For the comparison with the rule using no IV, the

conditional average treatment effect was used. To evaluate the performance, we estimated

the value function for a given decision rule relative to the value function of the treatment

regime of assigning CEA to every patient. That is, we estimated the difference in value

functions for a given method and the constant rule of assigning CEA to every patient,

V (d)− V (CEA). The value functions were estimated using the empirical forms of (3.5) for

the value function of the sub-complier subpopulations, and (3.9) for the value function of the

overall population, where the instrument propensity was modeled using a Lasso-penalized

multinomial logistic model with shrinkage parameters selected via cross-validation (the

default settings of cv.glmnet were used for version 4.0.2 of the glmnet package [Friedman
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et al. (2010)]). The c
(ℓ)
z contrasts were used to estimate the value for the ℓ-compliers, the

c
(all)
z contrasts were used to estimate the value for combined group of ℓ-compliers, and the

argmax M(X) contrasts were used to estimate the value for the overall population. In

Appendix B.11, we present the results using each contrast (c1)-(c6) to estimate the value

function of the overall population. We repeated this procedure 200 times. For some of

the 200 random splits of the data, in estimating the value for the overall population, the

individual value of a few patients was infinite due to the contrast of the probability of

receiving the treatment δc(X) = 0 in the denominator. In this case, we instead use the

truncated mean of the empirical form of (3.9) for more computationally stable results, where

5% of the ends were trimmed. We note that this issue arose in evaluating the performance of

the decision rules, so that the estimation of the value for each method was treated similarly.

We present the mean (and standard error) of the difference in value functions across

the 200 random splits for the different methods, under the assumptions (A1)-(A4) for the

complier subpopulation, in Table 3.2. V(2)(d), V(3)(d), and V(all)(d) denote the estimated

value function V(A)(d) using the contrast coefficients c
(2)
z , c

(3)
z , and c

(all)
z respectively. Given

the outcome is an indicator for all-cause mortality or stroke within 30-days, a smaller

value is preferred. A negative number have the interpretation of reducing the number of

all-cause mortality or stroke within 30-days of the patient’s procedure for the different

sub-complier subpopulations relative to the treatment strategy of assigning only CEA to

patients. A positive value has the opposite interpretation of increasing the number of

all-cause mortality or stroke within 30-days relative to the treatment strategy of assigning

only CEA to patients.

We see in Table 3.2 that our proposed methods perform best for the 2-complier sub-

population and the combined 2- and 3-complier subpopulation. Particularly, our rules

d(all)(X) and d̃(X, L̂) reduces the amount of all-cause mortality and stroke within 30-days

by 1.4% and 2% for the 2-compliers, and 0.7% and 0.7% for the combined 2- and 3-compliers,

respectively. Our rule appears to be causing harm among 3-compliers however, by increasing

the amount of all-cause mortality and stroke within 30-days by 0.8% for the d(all)(X) rule

and 1.9% for the d̃(X, L̂) rule. Because both the d(all)(X) rule and the d̃(X, L̂) rule uses the

ITT effects of the 2- and 3-compliers, it appears these rules are favoring the 2-compliers over

the 3-compliers implying that 2-compliers benefit more from receiving the correct treatment.

We remark that a 2-compliers treatment behavior won’t change if they attend a center with

preference for CEA between the 33% and 66% quantiles, Z = 2, or a center with a greater

preference for CEA, Z = 3, suggesting that their decision rule may be clearer to determine.
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The rule using the binary IV and rule using no IV cause less harm for the 3-compliers than

our proposed methods, but also provide less benefit for the 2-compliers and combined group

of 2- and 3-compliers. This implies that for the more general population of the union of 2-

and 3-compliers, using a multilevel IV can result in better decision rules than a binary IV

or no IV.

Method V(2)(d)− V(2)(CEA) V(3)(d)− V(3)(CEA) V(all)(d)− V(all)(CEA)

No IV -0.0045 (0.0132) 0.0041 (0.0295) -0.0016 (0.0088)

Binary IV -0.0067 (0.0186) 0.0013 (0.0454) -0.0040 (0.0131)

d(all)(X) -0.0139 (0.0175) 0.0078 (0.0434) -0.0068 (0.0121)

d̃(X, L̂) -0.0196 (0.0176) 0.0185 (0.0422) -0.0072 (0.0115)

Table 3.2: Mean (and standard error) of the difference between the estimated sub-complier
value functions for the different decision methods and the estimated sub-complier value
function for the decision rule of assigning every patient CEA across the 200 random splits of
the carotid-artery data. V(2)(d), V(3)(d), and V(all)(d) denote the estimated value function

V(A)(d) using the contrast coefficients c
(2)
z , c

(3)
z , and c

(all)
z , respectively.

We present the mean (and standard error) of the difference in value functions across the

200 random splits for the different methods, under the assumptions (B1)-(B4) for the overall

population, in Table 3.3. We see that our proposed method performs best for the overall

population, as our argmax rule reduces the amount of all-cause mortality and stroke within

30-days by 7.4% for the overall population as compared to the treatment regime of assigning

CEA to all patients. For comparison, the rule using the binary IV shows a reduction in the

amount of all-cause mortality and stroke within 30-days by 0.4% for the overall population

implying that a better rule can be obtained when using a multilevel IV. This is likely due

to an improvement in estimation as the binary IV rule may have smaller magnitudes of

the differences in the probability of receiving the treatment than the magnitudes of the

contrasts of the probability of receiving the treatment used by the argmax rule. The rule

not using the IV, which is expected to be confounded by unmeasured variables, appears

to cause harm relative to assigning CEA to all patients, where an increase of 0.6% of the

amount of all-cause mortality and stroke within 30-days is estimated. In Appendix B.11,

where we present the results of the difference in value functions as estimated using single

contrasts (c1)-(c6), we see similar results; our proposed argmax rule performs best for
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almost all contrasts, though the estimated benefit is more modest when the value functions

are estimated using a single contrast.

Method V(B)(d)− V(B)(CEA)

No IV 0.0063 (0.0196)

Binary IV -0.0039 (0.0296)

Argmax -0.0736 (0.0278)

Table 3.3: Mean (and standard error) of the difference between the estimated overall
population value function for the different decision methods and the estimated overall
population value function for the decision rule of assigning every patient CEA across the
200 random splits of the carotid-artery data.

In a setting where an investigator estimated a single rule to help guide practice, they may

want to analyze the covariates to see how the decision rules are recommending CEA versus

CAS. By taking the mean of the covariates for the two recommended arms of treatment,

an investigator could use an appropriate hypothesis test to see whether the mean of the

covariates are dissimilar and gain some insight as to how their decision rule is recommending

the two treatments. Such a procedure would provide descriptive statistics of single covariates

to see how their decision rule generally prefers assigning one treatment over the other. We

perform this procedure for our data set, but because we have 200 random splits of the data,

we perform this procedure for each random split and then take the average of the covariates

when the hypothesis test deemed the means of the covariates different between the two

recommended arms. In particular, we perform this procedure for the age categories to gain

insight as to how our rules recommend CEA versus CAS for younger and older patients, as,

in general, surgeon’s prefer selecting the less invasive treatment CAS for older patients who

tend to be less medically fit and the more invasive treatment CEA for younger patients who

are tend to be more medically fit. This allows us to determine whether our methods and the

rules using the IV follow the surgeon’s intuition or not. In Table 3.4, we report the number

of random splits (out of 200) the means of the age categories, or the proportions of patients

within an age category, were shown to be different by the two-sided Pearson’s chi-squared

hypothesis test at the level α = 0.05. The averages of the proportions of patients within an

age category for the different recommended treatment arms is presented in Figure 3.4.

In Figure 3.4, we see that our rules, argmax, d(all)(X), and d̃(X, L̂) agree for all age

categories, generally preferring CAS for patients less than 65 and patients greater than
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Age Category Argmax Wald; Bin. d(all) d̃(X, L̂) ITT; Bin. No IV

Less than 65 197 155 193 174 134 200

65 - 69 199 188 198 193 181 85

70 - 74 74 62 78 65 72 78

75 - 79 83 43 76 111 56 164

Greater than 79 187 136 168 190 150 186

Table 3.4: The number of random splits (out of 200) used to calculate the average of the
proportions of patients within an age category for the different decision rules. “Argmax”
refers to our argmax rule dM (X), “Wald; Bin.” refers to the rule estimated using a binary
IV under the set (B) of assumptions, “ITT; Bin.” refers to the rule estimated using a binary
IV under the set (A) of assumptions, and “No IV” refers to the rule not using an IV.

79, and preferring CEA for patients between 65 and 79 years of age. This can be seen

by noting that the proportion of patients is larger for CAS for patients less than 65 and

patients greater than 79 for our rules, implying a general preference for CAS for patients

within those age categories, and vice versa for patients between 65 and 79 years of age.

The rules using the binary IV generally agree with our rules, except to show a smaller

difference between the proportion of patients between the ages of 75 and 79. The rule

not using an IV, however, generally disagree with the rules using an IV, where the gap

between the mean proportions is much larger for patients age 65 or younger and patients

between the ages of 75 and 79. Further, the rule not using an IV disagrees with our rules

in treatment preference for patients between the ages of 70 and 74, and for patients older

than 79 years of age. We believe the rules using an IV better align with the surgeon’s

intuition and the rule not using an IV better align with the selection bias expected to exist

in this data. Other than for patients younger than 65, we see the rules using an IV have

a preference for CEA that declines as the patients get older with a change in preference

to CAS for patients older than 79 years of age. This reflects the surgeon’s preference of

assigning the more invasive treatment CEA to younger, more medically fit patients, and the

less invasive treatment CAS to older, less medically fit patients. The rule not using an IV,

instead, generally prefers to assign CEA to older, less medically fit patients. Such a result

reflects a setting in which the treatment effect of CAS is biased by unmeasured variables

toward appearing to be a worse treatment than CEA. Older, typically less medically fit
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patients are selected to receive CAS but result in poor outcomes, so the rule not using an

IV recommends CEA. For patients younger than 65, the results seem to run counter to the

surgeon’s preference, but we note the gap between the mean proportion of patients is much

smaller for the rules using IV than the rule not using IV.

Less than 65 65−69 70−74 75−79 Greater than 79

0.15 0.20 0.25 0.30 0.15 0.20 0.25 0.30 0.15 0.20 0.25 0.30 0.15 0.20 0.25 0.30 0.15 0.20 0.25 0.30

No IV

ITT; Binary IV

d(X,L)

All Compliers

Wald; Binary IV

Argmax

Proportion of patients

Recommended 
Treatment

CAS

CEA

Figure 3.4: The averages of the proportions of patients within an age category for the
different recommended treatment arms. The recommended treatment arm that has a larger
proportion of patients implies a preference for that treatment for a decision rule. “Argmax”
refers to our argmax rule dM (X), “Wald; Binary IV” refers to the rule estimated using a
binary IV under the set (B) of assumptions, “All Compliers” refers to our rule d(all)(X),

“d(X,L)” refers to our rule d̃(X, L̂), “ITT; Binary IV” refers to the rule estimated using a
binary IV under the set (A) of assumptions, and “No IV” refers to the rule not using an IV.

3.5 Discussion

In this paper, we propose indirect and direct methods to identify optimal ITR in the

presence of unmeasured confounding using a multilevel instrument. Our methods can easily

be shown to be a generalization of the existing work for IV and ITR for binary IV when

the number of levels of the instrument is k = 2. We provide similar but distinct approaches

to identify optimal ITR for the complier subpopulation under the monotonicity assumption

and under the assumption of no additive U -Z interaction in E[A|X,U,Z], and doubly robust

AIPW estimates of the value functions under each set of assumptions. Our approaches for

identifying optimal ITR contained novel extensions of existing methods. Namely, under

monotonicity, we allow for decisions to change based on a latent effect modifier, so long as

we can predict this latent effect modifier. And, under the assumption of no additive U -Z
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interaction, we use different contrasts of the level of the IV to individualize the estimation

of the ITR. We further bridge the two settings of assumptions using necessary and sufficient

conditions to describe how the existing unmeasured confounding impacts the identification

of an optimal ITR. Our methods were shown to outperform methods using a binary IV

in a variety of settings in our simulations. Finally, our methods were also used to identify

optimal ITR recommending either CEA or CAS treatment for patients at risk of death or

stroke due to carotid-artery disease where we better reduce the number of death or stroke

for patients, relative to the rule of assigning CEA to all patients, than the rules using a

binary IV.

We conclude by making some recommendations about how to properly use our methods

in practice. First, as explained in the introduction, when there is unmeasured confounding

present, identifying ITR without IV may provide suboptimal rules. Further, when a non-

binary IV is available, which is often the case for health studies, using a binary IV may

result in poor estimation of the ITR and value function.

Second, when identifying an optimal ITR for the complier subpopulation under the

monotonicity assumption, if there is no specific ℓ-complier subpopulation of particular

interest, then we recommend either the rule d(all) using the ITT contrast c
(all)
z or the rule

d̃(X, L̂) to identify an optimal ITR for the union of all ℓ-compliers. The distinction between

using the rule d(all) or d̃(X, L̂) is in the expectation of whether or not ℓ-compliers will have

the same or different decisions for a given set of covariate value X = x. If an investigator

has no prior information on whether the decision rules will agree or disagree for certain

covariate values, we recommend using whichever rule d(all) or d̃(X, L̂) results in a better

estimated value.

Third, when identifying an optimal ITR for the overall population under the assumption

of no additive U -Z interaction in E[A|X,U,Z], we recommend the use of the argmax rule

to dynamically use contrasts to estimate the ITR. If an investigator has a preconceived

notion of the relationship the instrument has on uptake of the treatment, and that the

instrument does not interact much with the observed covariates, then a particular contrast

or form of contrasts reflecting this relationship can result in improvement of ITR estimation.

That is, we recommend using a single contrast, or limiting the form of contrasts for the

argmax rule to consider, if an expert already understands how the instrument affects the

probability of receiving the treatment.

Fourth, in light of existing approaches using a binary IV, we observe improvements

to using the instrument over its natural support over dichotomizing the IV. However, in
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the event that several levels of a multilevel IV, or regions of a continuous IV, have similar

effects on the probability of receiving the instrument, efficiency gains in estimation can be

attained when grouping these levels together.
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4 discussion and future work

In this dissertation, we provide several techniques to fill the existing methodology gaps for

studying heterogeneous treatment effects with an IV. Specifically, we provide an algorithm to

discover novel subgroups and estimate their heterogeneous treatment effects while providing

inferential guarantees, and methods to identify optimal ITR using a multilevel IV. We

study our methods extensively in simulations and apply our methods to data to study

heterogeneous treatment effects of Medicaid and two competing treatments for carotid

artery disease.

In Chapter 2, we use IV with matching to detect novel subgroups of compliers and

estimate their heterogeneity. Our method first proposes effect modifiers by using an

interpretable machine learning technique, namely CART, and second tests whether the

proposed effect modifiers are true drivers of heterogeneity through closed testing to strongly

control familywise error rate. Further, our method is capable of using the entire data set,

avoiding losses in power and efficiency from sample splitting. The simulations demonstrated

the method’s ability to detect heterogeneous subgroups for varying levels of compliance,

where our method was able to generally outperform the BCF-IV method. We applied

our method to the OHIE, which used a random lottery as the instrument, to study the

heterogeneous effects of Medicaid on the number of days an individual’s physical or mental

health did not prevent their usual activities. We found that Medicaid benefited complying,

older, non-Asian men who selected English materials at lottery sign-up and for complying,

younger, less educated individuals who selected English materials at lottery sign-up.

While the work in Chapter 2 aims to provide further methods to study complier

treatment effect heterogeneity with an IV, there still remains many avenues of future work.

In our algorithm, we allow for any interpretable machine learning technique to be used to

suggest potential effect modifiers, but we only study the use of CART. Other techniques less

prone to overfitting may lead to a more promising set of effect modifiers. Further, making

uninterpretable techniques that are less prone to overfitting more interpretable may also

lead to improvements in the true discovery rate and F-score. As our method can incorporate

any technique to suggest potential subgroups and still maintain our inferential guarantees,

such improvements are a natural direction for improvement. Another possible improvement

to our proposed method is the development of different hypothesis tests to use with closed

testing. Currently we test whether or not a given subgroup has treatment effects equal to
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the hypothesized value, but it may be of more interest to some practitioners to test whether

a subgroup’s effects are equal to another’s, similar to testing whether multiple groups have

the same mean in an Analysis of Variance. Such a test is unlikely to suffer in its ability to

detect true effect modifiers when treatment effects are opposite but equal.

In Chapter 3, we provide direct and indirect methods using a multilevel IV to identify

optimal ITR when the ignorability assumption is assumed to be violated. We use contrasts

to generalize from methods using binary IV, which enables the identification of optimal

ITR for the latent subpopulations of ℓ-compliers and individualizing ITR estimation for

the overall population. We bridge the two settings using slightly different assumptions by

providing necessary and sufficient conditions to identify optimal ITR and discussing their

similarities. The simulations demonstrated the benefits to estimation by using a multilevel

IV over its natural support rather than dichotimizing to a binary IV and suggested how

different contrasts can improve ITR estimation in different settings. We applied our methods

to the carotid artery data from the Vascular Quality Initiative, using hospital preference as

the instrument. We found our methods showed marked improvement over rules using a

binary IV and the rule not using an IV, under both settings of assumptions.

While the work in Chapter 3 extends the existing literature using binary IV, more

appropriately handling the many common IVs that are not binary in practice, there are

several avenues for future work. While we set the framework to use multilevel IV, the first

and foremost extension would be to develop methods using a continuous IV to identify

ITR. Methods presented in Angrist et al. (2000) and Kennedy et al. (2019) may prove

useful to extend our work further to continuous IV. Another extension of our work is to

determine optimal ITR using IV for nonbinary treatments. Though no work yet exists

studying optimal ITR with IV for nonbinary treatment, there does exist several works

extending optimal ITR for a binary treatment to nonbinary IV. Namely, Lou et al. (2018)

generalize to a multilevel treatment, Chen et al. (2018) generalize to an ordinal treatment,

and Chen et al. (2016) generalize to continuous treatment. As we use contrasts to combine

and compare different levels of the multilevel IV, and as contrasts have been used to study

heterogeneous treatment effects before [Liang and Yu (2020)], we expect that again contrasts

can be used to generalize to multilevel treatment. However, instead of a single vector of

contrast coefficients, a matrix of contrast coefficients would be used, where the columns

are the contrasts pertaining to the instrument and rows are the contrasts pertaining to the

treatment.

Beyond extending to higher dimensions for the instrument and treatment, the work in
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Chapter 3 also presents some ideas that are suggestive of possible future work. Namely,

we estimate decision rules that map from both observed effect modifiers and latent effect

modifiers to the treatment space. Understanding the limits of optimizing the value function

when using a latent effect modifier and further methods to use latent effect modifiers are

warranted. In Chapter 3, we also provide the argmax rule, which effectively individualizes

the estimation of ITR. Conceptually, it is possible some methods work well for certain

covariate values, but perform poorly for others. Care would need to be taken to prevent

over fitting, but exploring methods to individualize ITR estimation is another avenue of

future work.

Finally, in the event that a practitioner believes the ignorability assumption is violated

in their data and a valid IV is unavailable, developing sensitivity analyses for estimating

heterogeneous treatment effects and identifying optimal ITR is another direction of research.

While Kallus and Zhou (2019) and Kallus et al. (2019) present promising techniques, they

rely on some assumptions. Namely, they use a marginal sensitivity model that relies on the

propensity score to be known or to be consistently estimated. Developing methods under

different sensitivity models or sensitivity analyses is warranted.
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a appendix for chapter 2 “detecting heterogeneous

treatment effects with instrumental variables and

application to the oregon health insurance experiment”

A.1 Proof of Proposition 2.1: Familywise Error Rate

Control

We recall Proposition 2.1:

Proposition 2.1 (Familywise Error Rate Control of Algorithm 1). Under the sharp null

hypotheses H0L in Algorithm 1, the conditional probability given (F ,Z,G) that the algorithm

makes at least one false rejection of the set of hypotheses is at most α.

Proof. Define h ⊆ {1, . . . , I} to be the union of all groups of pairs for which the null

hypothesis is true; the groups of pairs of individuals which have an effect ratio of λ0. In

order to have a notion of Type I error, some hypothesis or hypotheses must be true, so we

assume that h ̸= ∅ and that hypothesis H0K : λs = λ0 for s =
⋃

g∈K sg is true. Note that

by definition of h, in order for H0K to be true, the groups in K are also contained in h,

s ⊆ h. To make a Type I error and reject hypothesis H0K, Algorithm 1 must reject the

intersection of all true hypotheses H0T , where h =
⋃

g∈T and K ⊆ T . Yet, rejecting H0T

requires
∣∣∣T (λ0)
S(λ0)

∣∣∣ ≥ z1−α/2, where P
(∣∣∣T (λ0)

S(λ0)

∣∣∣ ≥ z1−α/2

∣∣∣F ,Z,G
)
= α

2 . Therefore, to make a

Type I error and reject H0K, one must reject H0T which is a level α test.

A.2 Additional Simulations: Honest Simultaneous Discovery

and Inference

One advantage of our method is being able to use the entire data for discovering and testing

effect modifiers. In order to simultaneously discover and draw inference on the sample, we

use the absolute value of the pairwise differences |Y | as the outcome of CART to obscure

the sign of the difference in adjusted outcomes and preserve the original distribution of the

instrumental variables (i.e. distribution based on assumption (A3)). We can then use this

distribution to draw inference on our discovered potential effect modifiers. We study this

phenomenon in two cases: (1) testing a single effect modifier (i.e. one hypothesis) and (2)

testing multiple effect modifiers (i.e. multiple hypothesis).
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In the first case, we are concerned about testing a single hypothesis and controlling

the Type I error rate after discovering the hypothesis via CART. To investigate the effect

of simultaneously discovering and drawing inference, we generate the potential outcomes

with no treatment effect, λx1x2 = 0 for all x1, x2, and form potential effect modifiers for

two different cases, (i) using |Y | and (ii) Y as the outcome for CART. The first leaf of each

tree (or tree’s root if no leaves are formed) is then used to test the null hypothesis of no

treatment effect. As a result of conducting CART to form a hypothesis 2000 times, Figure

A.1 shows the histogram of p-values when we use |Y | as the outcome for CART versus Y

as the outcome for CART. Under |Y |, the p-values resemble a uniform distribution and

hence, Type I error is controlled. However, under Y , the p-values are right-skewed implying

that Type I error is inflated. In other words, the null hypothesis is rejected more frequently

when using Y as the outcome of CART, demonstrating the “winner’s curse” phenomena.

Therefore, as predicted by Proposition 2.1, using |Y | as the outcome in CART prevents the

contamination of the α level of the hypothesis test and allow for simultaneous discovery

and inference.
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p−value
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nt |Y|

Y

Histogram of p−values

Figure A.1: Histogram of p-values obtained from using |Y | and Y as the outcomes in CART
in discovery of potential effect modifiers. The black dashed line denotes the alpha level of
0.05 of the hypothesis tests.

In the second case, with multiple hypotheses, we are concerned with the average Type

I error rate and strong control of the familywise error rate rate when testing multiple
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Simulation Setting Mean Type I error rate Familywise error rate

|Y | 0.0008 0.028

Y 0.0003 0.028

Table A.1: Results of simulations analyzing strong control of familywise error rate.

hypotheses. To evaluate strong control of the familywise error rate, we generate the data

where there is an effect in some groups and no effect in others, λ00 = 2, λ01 = λ10 =

0 = λ11 = 0. Furthermore, for rpart, we reduce the complexity parameter to 0.0001 to

encourage more liberal splitting and set the max depth of the regression tree to be 4 to

save on computational time. After data generation we randomly assign instrument values

within pairs and split the data using |Y | and Y 2000 times. Each hypothesis is tested for

whether or not there is a treatment effect H0 : λ = 0, so true hypotheses are hypotheses

of groups of pairs generated with λ01 = λ10 = λ11 = 0. The average Type I error rate is

computed by taking the average of the proportion of false rejections from each of the 2000

simulated trees and the familywise error rate is computed by taking the average of any false

rejections among the 2000 simulated trees.

The results of this simulation show that the average type I error rate and familywise

error rate are below the α level of the hypothesis tests in both simulation settings |Y |
and Y . The average Type I error rate for |Y | and Y is 0.0008 and 0.0003, respectively.

The familywise error rate for both |Y | and Y is 0.028 (See Table A.1). This is surprising

considering that closed testing requires that each hypothesis test be level α to strongly

control the familywise error rate and using Y as the outcome contaminates the test’s level.

Despite the theoretical underpinnings for this data generation process, closed testing seems

to strongly control the familywise error rate regardless of whether or not the test’s size is

preserved by a technique such as taking the absolute value. Upon closer investigation, it

seems that the trees formed in both Y and |Y | cases are the same at the upper levels of the

tree, as there is a particularly strong signal for a certain group λ00 = 2. This then leads to

the same hypotheses in both settings resulting in similar Type I error rates and familywise

error rates. Overall, the simulation suggests that in the case where there is one very strong

signal the difference between using |Y | and Y is minor. But, we do stress familywise error

control is only guaranteed for the |Y | case.
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A.3 Additional Simulations: Detecting H-CACE under

Varying Compliance

In Section 2.3, the simulation settings assumed constant compliance rates across the groups.

But it is possible that the compliance rates vary between subgroups. Therefore, we further

consider four varying compliance rate settings as an extension of understanding the method’s

performance. These four different compliance settings are referred to as (a) Same, (b)

Similar, (c) Different (1), and (d) Different (2) and are functions of the overall compliance

rate π. Each are categorized based on the distance from the overall compliance rate. If the

overall compliance is less than a half, π ≤ 0.5, a group’s compliance rate is πx1x2 = π+cx1x2π,

and if π > 0.5, a group’s compliance rate is πx1x2 = π + cx1x2(1 − π) for some constant

cx1x2 ∈ [0, 1]. The four settings are then defined by the constants cx1x2 ; (a) Same compliance:

c00 = c01 = c10 = c11 = 0; (b) Similar compliance: c00 = c01 = −0.1 and c10 = c11 = +0.1;

(c) Different (1) compliance: c00 = c01 = −0.5 and c10 = c11 = +0.5; and Different (2)

compliance: c00 = −0.3, c01 = −0.5, c10 = +0.1, and c11 = +0.7. When combined with the

treatment heterogeneity settings, we have a total of 16 possible settings of heterogeneity

in H-CACE. We also remark that subgroups experiencing a larger H-CACE have a small

compliance rate. Again, we compare our method to the BCF-IV method (Bargagli-Stoffi

et al., 2019).

Figure A.2 shows the true discovery rate of the four compliance types for each treatment

heterogeneity setting. As in Section 2.3, this is a measure of the statistical power, where

the true discovery rate is defined as the number of false hypotheses rejected out of all

false hypotheses tested by closed testing. The different facets denote the treatment effect

heterogeneity and the compliance heterogeneity. As the compliance rates get more different,

we observe a reduction in the true discovery rate. This is most noticeable in the strong

heterogeneity setting, where we see pronounced differences in the true discovery rate among

the different compliance settings. In this setting, we also see a change in the true discovery

rate between the more different (Different (1) and (2)) and more similar (Same and Similar)

compliance groups; the more different compliance groups have an increased true discovery

rate after an overall compliance rate of π ≈ 0.45. This is due to the low compliance rate in

the groups with stronger H-CACE in Different (1) and Different (2) settings, obscuring the

signal for which CART uses to define subgroups. Therefore, the dip described in Section 2.3

and explained in Web Appendix E that is observed in the Strong Heterogeneous and Same

Compliance settings (Figure A.2) occurs at a high overall compliance rate for the Different
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(1) and Different (2) settings. In the heterogeneity settings, as the overall compliance rate

grows, so too does the subgroup-specific compliance rates, and so the true discovery rates

of the compliance settings converge. This is evidence that our method’s true discovery rate

relies on both the subgroup-specific size of H-CACEs and subgroup-specific compliance

rates.

Figure A.3 shows the F-score and false positive rate (FPR) of the four compliance types

for each treatment heterogeneity setting. As in Section 2.3, these are binary classification

measures evaluating the algorithms’ ability to predict effect modifiers. For true positives

(TP), false positives (FP), and false negatives (FN), the F-score is defined to be F =
TP

TP+0.5(FP+FN) , and the FPR is defined as the number of false positives out of the negative

conditions. Similarly to Figure A.2, as the compliance rates get more different, we observe

a reduction in the performance of the algorithms. This is most noticeable in the Slight and

Strong Heterogeneity settings for the BCF-IV algorithm and in the Strong and Complex

Heterogeneity settings for our proposed algorithm. For the BCF-IV algorithm, the FPR

begins to decline at a larger overall compliance rate in the more heterogeneous compliance

settings, and the F-score of our algorithm climbs at a later overall compliance rate as well.

As was the case with the true discovery rate, this is evidence that the FPR and F-score

rely on both the H-CACE and compliance rate heterogeneity.

These simulations are evidence that our method’s ability, as measured in statistical

power and prediction of effect modifiers relies on both the subgroup-specific size of H-CACEs

and the subgroup-specific compliance rates.

A.4 Additional Simulations: Testing for Equal, But

Opposite Effects

As it is possible that H-CACEs are equal in magnitude but opposite in direction, it is a

question of how our method performs when we take the absolute value of the pairwise

differences. To evaluate our method in this specific situation, we generate data as described in

Section 2.3 but now considering only the heterogeneity setting λ00 = 0.3, λ01 = −0.3, λ10 =

0.7 and λ11 = −0.7. Now, there are two effect modifiers x1 and x2 where x1 changes the

magnitude of the H-CACE and x2 changes the direction. We compare our method to the

BCF-IV method (Bargagli-Stoffi et al., 2019) as it does not transform the outcome and

should still be able to detect the effect modification in this setting.
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Figure A.2: True discovery rate as a function of overall compliance rate for the four
treatment and four compliance heterogeneity settings. The color and line type denote the
method, where the red dashed line denotes BCF-IV and the blue solid line denotes our
method.
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Figure A.3: F-score and false positive rates (FPR) as a function of overall compliance rate
for the four treatment and four compliance heterogeneity settings. The shape of the points
denote the measure, where a circle denotes the F-score and the triangle denotes the FPR.
The color and line type denote the method, where the red dashed line denotes BCF-IV and
the blue solid line denotes our method.
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Figure A.4: True discovery rate as a function of overall compliance rate for four compliance
heterogeneity settings. The linetype denotes the two methods, where a dashed line denotes
the BCF-IV method and the solid line denotes our method.
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Figure A.5: False positive rate (FPR) and F-score as a function of overall compliance rate
for the four compliance heterogeneity settings. The color denotes the two methods, where
a red line denotes the BCF-IV method and the blue line denotes our method. The point
shapes denote the measure, where a triangle denotes FPR and a circle denotes F-score.
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In Figures A.4 and A.5, we see our method underperform in detecting heterogeneous

treatment effects in this setting of equal but opposite effects, both in true discovery rate

and F-score. The reason is twofold. First, in the transformation of the outcome of CART,

the absolute value of the pairwise differences obscures the signal and hinders CART’s ability

to properly split. Second, in the case that CART does split, our closed testing procedure

makes it challenging to reject the hypotheses suggested, since we must first reject the global

hypothesis of H0 : λ0 = 0. As we point out in Section 2.3, the CACE λ is a weighted

average of the H-CACEs in the global test, and it is therefore unlikely to reject as the

average of the H-CACEs is 0. Together, CART’s inability to split and the global hypothesis

needing to be first rejected, our proposed method underperforms in the setting with equal

but opposite effects. We therefore express caution in using our algorithm in the occasion

an investigator believes the effect sizes are equal but opposite.

Interestingly, we see a spike of increased true discovery rate for both methods in the

Different (2) compliance setting. In this setting, the compliance rates for the four groups

are π00 = 0.7π, π01 = 0.5π, π10 = 1.1π, and π11 = 1.7π when the overall compliance rate π

is less than or equal to 0.5, and π00 = −0.3+1.3π, π01 = −0.5+1.5π, π10 = 0.1+0.9π, and

π11 = 0.7 + 0.3π when π > 0.5. Therefore, when π is close to 0.5, the compliance rates are

approach π00 = 0.35, π01 = 0.25, π10 = 0.55, and π11 = 0.85 for the four groups, changing

the weights of the H-CACEs in the average for the global effect and shifting its value away

from 0. As the overall compliance approaches 0 or 1, the heterogeneity in the compliance of

the four groups reduces so the average of the H-CACEs approaches 0. This all improves our

statistical test’s ability to reject the global hypothesis and increase the true discovery rate.

We note that in the case that the magnitudes are unequal, then our method will return to

the performance demonstrated in Section 2.3, as CART will have signal to split on and our

global hypothesis will more easily be correctly rejected. This can be seen in an example

that the heterogeneity has the form λ00 = λ01 = 0.9, and the dotted line represents pairs

from λ10 = λ11 = −0.1. With the absolute value transformation of the pairwise differences,

our algorithm would treat this setting as in the Strong Heterogeneity setting we simulate in

Section 2.3.
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A.5 Additional Simulations: Additional Details about the

True Discovery Rate

A.5.1 Counter-Intuitive Dip

As mentioned in Section 2.3.1 and shown in Figure A.6, we observe a counter-intuitive dip

in true discovery rate as compliance rate grows for our proposed method. To investigate

this drop, we also plot the true discovery rate of single subgroups formed by CART. The

dashed lines denote leaves containing pairs with a stronger treatment effect and the dotted

lines denote leaves containing pairs with a weaker treatment effect. For example, in the

strong heterogeneity setting, the dashed line represents pairs from λ00 = λ01 = 0.9, and the

dotted line represents pairs from λ10 = λ11 = 0.1. For the complex heterogeneity setting,

the dashed line denotes pairs generated by λ00 = 1.5; dotted lines aren’t shown because

CART fails to form a group consisting of only pairs generated by λ11 = 0.5. By comparing

the curves, we see that as the compliance rate grows the drop in the true discovery rate

is due to the formation of leaves with smaller treatment effects. Because the compliance

rate is large enough, these small effects are beginning to be detected by CART. But, the

power to detect these effects are much smaller than the large effects, and so the overall true

discovery rate, which is roughly the average of these two curves, dips briefly. However, As

the compliance rate grows, we see the true discovery rate of our method begin to climb

again, as more signal for the smaller H-CACE groups is gained.

A.5.2 Total False Hypotheses

As discussed in Section 2.3.1, the true discovery rate, the number of false null hypotheses

rejected divided by the total number of false null hypotheses suggested by the method,

is an imperfect measure of the statistical power in some settings of multiple testing with

hypotheses generated by a tree-based algorithm. A tree may fail to split resulting in one

hypothesis in the denominator of the true discovery rate. If the overall effect is large, this

hypothesis test would be rejected and result in a true discovery rate of one. This phenomena

is most notable at the strong and complex heterogeneity settings before the dip in the true

discovery rate. As shown in Figure A.7, the average number of false hypotheses suggested

by our proposed algorithm is close to one at low compliance rates, showing that CART

is failing to split. Despite this limitation of the true discover rate as a metric in some

settings, our proposed method maintains a high true discovery rate across many settings,



86

Heterogeneity: Strong Heterogeneity: Complex

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.25

0.50

0.75

1.00

Overall Compliance Rate

Tr
ue

 D
is

co
ve

ry
 R

at
e

Figure A.6: True discovery rate as a function of overall compliance rate for the strong
heterogeneity and complex heterogeneity settings. The line type denotes a single subgroup’s
treatment effect, where a dashed line denotes the stronger treatment effect and a dotted
line the weaker treatment effect.

and suggests that it should be preferred over the competing approach BCF-IV.

A.6 Additional Simulations: Oregon Health Insurance

Experiment Semi-Synthetic Simulation

Using the Oregon Health Insurance Experiment (OHIE) as a template for another simulation,

we evaluate the performance of the proposed method under treatment magnitudes using the

true discovery rate as a measure of the method’s statistical power, and false positive rate

(FPR) and F-score to measure the method’s performance in determining effect modifiers.

Using the matched pairs from the OHIE and their pre-instrument covariates Xij, we generate

the potential treatments d0ij and d1ij and potential outcomes r
(d0ij)
0ij and r

(d1ij)
1ij . Since the

design of the OHIE ensures one-sided compliance, we generate the potential treatment

without receiving the outcome to also satisfy one-sided compliance, d0ij = 0. To have

similar compliance rates as observed in Section 2.4, the potential treatment having received

the instrument is a Bernoulli trial with success rate π(Xij) = 0.32− 0.15(1− English) +

0.15(English×Asian)−0.05(Age < 36). Here, English is a binary indicator where a value

of 1 denotes the individual’s preference for English materials in signing up for the lottery,

and Asian is a binary indicator where a value of 1 denotes the race reported in the survey

as Asian. With this heterogeneous compliance rate, the overall compliance is the same as
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Figure A.7: The average number of false hypotheses suggested by the two algorithms
(i.e. the denominator of the true discovery rate) as a function of the compliance rate and
heterogeneity settings. The dashed and solid lines denote the BCF-IV procedure and our
proposed algorithm, respectively.

that estimated for the sample in Section 2.4, π = 0.29. We then generate the potential

outcomes as in Section 2.3, the potential outcomes having not received the instrument are

from a standard normal distribution r
(d0ij)
0ij ∼ N(0, 1), and the potential outcomes having

received the instrument are a function of the H-CACE and effect modifiers detected in

Section 2.4, r
(d1ij)
1ij = r

(d0ij)
0ij + d1ijλ(Xij). The H-CACE λ(Xij) is a function of the effect

modifiers Age, Education, English, Asian, and Sex and the magnitude of the effects are

defined in three settings:

(i) Small: λ(Xij) = 0.25+4Age−1+0.1(1−Education)−0.25(1−English)+0.35Asian+

0.2(1− Sex)(Age ≥ 36)

(ii) Moderate: λ(Xij) = 0.5+8Age−1+0.2(1−Education)−0.5(1−English)+0.7Asian+

0.4(1− Sex)(Age ≥ 36)

(iii) Large: λ(Xij) = 1 + 16Age−1 + 0.4(1− Education)− 1(1− English) + 1.4Asian+

0.8(1− Sex)(Age ≥ 36)
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As in Section 2.4, Education is a binary variable where a value of 1 denotes a vocational

degree, 2-year degree, 4-year college degree, or more.

For our proposed method, we use the R package rpart with a complexity parameter

of 0.001, max depth of 7, and minimum number of observations needed for a split to be

90. This allows CART to split on more variables than the number of effect modifiers while

preventing the creation of nodes with very few observations. For BCF-IV, we use the default

rpart settings as in Section 2.3. The averages of the 1000 simulations at each treatment

magnitude level are provided in Table A.2.

The results of this simulation are similar to those seen in Section 2.3, where our proposed

method performs well in the true discovery rate, but performs poorly in the FPR and F-score

when the compliance rate is low and the heterogeneity magnitudes are weak. This further

aligns with our results in Section 2.3, as we found our method struggles to predict effect

modifiers as measured by the F-score at compliance rates below 50% and the compliance

rate is 29% in this setting. However, we see that our method improves in the F-score as

the treatment magnitude increases. In contrast, BCF-IV outperforms our method in the

F-score, but has an inflated FPR and a deflated true discovery rate. However, as the signal

improves, BCF-IV’s FPR reduces to a more ideal value and the true discovery rate grows.

Method λ(Xij) True Discovery Rate FPR F-Score

H-CACE

Small 1.00 0.00 0.00

Moderate 0.99 0.02 0.04

Large 0.99 0.06 0.76

BCF-IV

Small 0.72 0.17 0.56

Moderate 0.83 0.05 0.74

Large 0.93 0.01 0.88

Table A.2: Average true discovery rate, false positive rate (FPR), and F-score of the two
methods, H-CACE and BCF-IV, at the different treatment magnitudes.
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b appendix for chapter 3 “individualized treatment

rules with multilevel instrumental variables”

B.1 Proof of Theorem 3.1

We recall Theorem 3.1:

Theorem 3.1. Under the assumptions (A1)-(A4), the optimal ITR for ℓ-compliers, or a

union of ℓ-compliers, is identified by

d∗(A)(X) = sign

{
E

[
Y (1)− Y (−1)

∣∣∣∣∣X,
k∑

z=1

cz1{A(z) = 1} = 1

]}

= sign

{
k∑

z=1

czE[Y |X,Z = z]

}
,

where the contrast c
(ℓ)
z corresponds to the optimal ITR for the ℓ-compliers, and the contrast

for a union of ℓ-compliers can be derived by summing across the ℓ-complier contrasts.
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Proof. We have that the ITT contrast is

k∑
z=1

czE[Y |X,Z = z] =

k∑
z=1

czE

[
k∑

z=1

1{Z = z}Y (z,A(z))

∣∣∣∣∣X,Z = z

]

=
k∑

z=1

czE
[
Y
(
z,A(z)

)
|X
]

=
k∑

z=1

czE
[
1{A(z) = 1}Y (1) + 1{A(z) = −1}Y (−1)

∣∣X]
=

k∑
z=1

czE
[
1{A(z) = 1}

(
Y (1)− Y (−1)

)∣∣X]+ k∑
z=1

czE
[
(Y (−1)

∣∣X]
= E

[(
Y (1)− Y (−1)

) k∑
z=1

cz1{A(z) = 1}

∣∣∣∣∣X
]

= E

[
Y (1)− Y (−1)

∣∣∣∣∣X,
k∑

z=1

cz1{A(z) = 1} = 1

]

× P

(
k∑

z=1

cz1{A(z) = 1} = 1

∣∣∣∣∣X
)

+ E

[(
Y (1)− Y (−1)

) k∑
z=1

cz1{A(z) = 1}

∣∣∣∣∣X,
k∑

z=1

cz1{A(z) = 1} ≠ 1

]

× P

(
k∑

z=1

cz1{A(z) = 1} ≠ 1

∣∣∣∣∣X
)
.

Using the contrast c
(ℓ)
z , defined as cℓ−1 = −1, cℓ = 1, and cz = 0 for z ̸= ℓ for ℓ-compliers,

or the sum across the c
(ℓ)
z contrasts for a union of ℓ-compliers completes the proof. This is

seen because
∑k

z=1 cz1{A(z) = 1} = 0 for all never-takers, always-takers, and ℓ-compliers

not contained in the union of interest, so that

sign

{
k∑

z=1

czE[Y |X,Z = z]

}
= sign

{
E

[
Y (1)− Y (−1)

∣∣∣∣∣X,
k∑

z=1

cz1{A(z) = 1} = 1

]}
.
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B.2 Proof of Proposition 3.1

We recall Proposition 3.1:

Proposition 3.1. Under the assumptions (A1)-(A4), we have that the decision maximizing

V (d(X,L)) maximizes

argmax
d∈D

V (d(X,L)) = argmax
d∈D

E
[
Y
(
d(X,L)

)∣∣A(1) < A(k)
]

= argmax
d∈D

E

[
k∑

ℓ=2

1{d(X, ℓ) = 1}
(
E[Y |X,Z = ℓ]− E[Y |X,Z = ℓ− 1]

)]
.

Therefore, if P (A(ℓ) > A(ℓ− 1)|X) = 1, for all ℓ, we have that

d∗(X,L) = argmax
d∈D

E

[
k∑

ℓ=2

1{d(X, ℓ) = 1}
(
E[Y |X,Z = ℓ]− E[Y |X,Z = ℓ− 1]

)]

= argmax
d∈D

E

[
k∑

ℓ=2

1{d(X, ℓ) = 1}P (A(ℓ) > A(ℓ− 1)|X)

×
(
E[Y |X,Z = ℓ]− E[Y |X,Z = ℓ− 1]

)]

= sign

{
k∑

ℓ=2

k∑
z=1

c(ℓ)z P (A = 1|X,Z = z)E[Y |X,Z = z]

}
.

Proof. We first note that

E[Y (d(X,L))|A(k) > A(1)] =
E[Y (d(X,L))(1{A(k) = 1} − 1{A(1) = 1})]

P (1{A(k) = 1} − 1{A(1) = 1} = 1)

As P (1{A(k) = 1} − 1{A(1) = 1} = 1) doesn’t depend on d, we have that
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E[Y (d(X,L))(1{A(k) = 1} − 1{A(1) = 1})]

= E

[
Y
(
d(X,L)

)( k∑
ℓ=2

1{A(ℓ) = 1} − 1{A(ℓ− 1) = 1}

)]

= E

[
1{d(X,L) = 1}

(
Y (1)− Y (−1)

)
×

(
k∑

ℓ=2

1{A(ℓ) = 1} − 1{A(ℓ− 1) = 1}

)]
+ κ

= E

[(
k∑

ℓ=2

1{L = ℓ}1{d(X, ℓ) = 1}

)(
Y (1)− Y (−1)

)
×

(
k∑

ℓ=2

1{A(ℓ) = 1} − 1{A(ℓ− 1) = 1}

)]
+ κ

= E

[
k∑

ℓ=2

1{d(X, ℓ) = 1}
(
Y (1)− Y (−1)

)(
1{A(ℓ) = 1} − 1{A(ℓ− 1) = 1}

)]
+ κ

= E

[
k∑

ℓ=2

1{d(X, ℓ) = 1}
(
1{A(ℓ) = 1}Y (1) + 1{A(ℓ) = −1}Y (−1)

)]

− E

[
k∑

ℓ=2

1{d(X, ℓ) = 1}
(
1{A(ℓ− 1) = 1}Y (1) + 1{A(ℓ− 1) = −1}Y (−1)

)]
+ κ

= E

[
k∑

ℓ=2

1{d(X, ℓ) = 1}
(
Y
(
ℓ, A(ℓ)

)
− Y

(
ℓ− 1, A(ℓ− 1)

))]
+ κ

= E

[
k∑

ℓ=2

1{d(X, ℓ) = 1}E
[
Y
(
ℓ, A(ℓ)

)
− Y

(
ℓ− 1, A(ℓ− 1)

)∣∣∣X]]+ κ

= E

[
k∑

ℓ=2

1{d(X, ℓ) = 1}
(
E[Y |X,Z = ℓ]− E[Y |X,Z = ℓ− 1]

)]
+ κ,

where κ = E
[
Y (−1)

(∑k
ℓ=2 1{A(ℓ) = 1} − 1{A(ℓ− 1) = 1}

)]
does not depend on d. There-
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fore,

argmax
d∈D

V (d(X,L)) = argmax
d∈D

E

[
k∑

ℓ=2

1{d(X, ℓ) = 1}
(
E[Y |X,Z = ℓ]− E[Y |X,Z = ℓ− 1]

)]
.

B.3 Proof of AIPW Estimator of the Sub-Complier Value

Function

Proof. For targeting a specific union of ℓ-compliers, we use the contrast equal to the sum

across contrasts c
(ℓ)
z for the ℓ-compliers contained in the union, so that

∑k
z=1 cz1{A(z) =

1} = 1 for all ℓ-compliers contained in the union of interest and
∑k

z=1 cz1{A(z) = 1} = 0

for all ℓ-compliers not contained in the union, never-takers, and always-takers.

Then we have that, under (A4) monotonicity,

k∑
z=1

czP (A = 1|Z = z) = E

[
k∑

z=1

cz1{A = 1}|Z = z

]

= E

[
k∑

z=1

cz1{A(z) = 1}

]

= P

(
k∑

z=1

cz1{A(z) = 1} = 1

)
:= δc.
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The AIPW estimate is then

k∑
z=1

czE

[(
1{Z = z}

(
1{A = a}Y − haz(X)

)
P (Z = z|X)

+ haz(X)

)
a1{d(X) = a}

]

=
k∑

z=1

czE

{
a1{d(X) = a}
P (Z = z|X)

(
E [1{Z = z}1{A = a}Y |X]− haz(X)E [1{Z = z}|X]

)
+ a1{d(X) = a}haz(X)

}
=

k∑
z=1

czE

{
a1{d(X) = a}
P (Z = z|X)

(
E [1{A = a}Y |X,Z = z]P (Z = z|X)− haz(X)P (Z = z|X)

)
+ a1{d(X) = a}haz(X)

}
=

k∑
z=1

czE
{
a1{d(X) = a}

(
haz(X)− haz(X)

)
+ a1{d(X) = a}haz(X)

}
=

k∑
z=1

czE {a1{d(X) = a}haz(X)}

= E

{
a1{d(X) = a}

k∑
z=1

czE
[
1{A(z) = a}Y (z,A(z))

∣∣∣X,Z = z
]}

= E

{
a1{d(X) = a}

k∑
z=1

czE
[
1{A(z) = a}Y (a)

∣∣∣X]}

= E

{
a1{d(X) = a}E

[
aY (a)

(
k∑

z=1

cz1{A(z) = 1}

)∣∣∣∣∣X
]}

= E

{
1{d(X) = a}Y (a)

k∑
z=1

cz1{A(z) = 1}

}

= E

{
1{d(X) = a}Y (a)

∣∣∣∣∣
k∑

z=1

cz1{A(z) = 1} = 1

}
P

(
k∑

z=1

cz1{A(z) = 1} = 1

)

+ E

{
1{d(X) = a}Y (a)

k∑
z=1

cz1{A(z) = 1}

∣∣∣∣∣
k∑

z=1

cz1{A(z) = 1} ≠ 1

}

× P

(
k∑

z=1

cz1{A(z) = 1} ≠ 1

)
.
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Therefore, using our contrasts for the corresponding target union of ℓ-compliers, we have

k∑
z=1

czE

[(
1{Z = z}

(
1{A = a}Y − haz(X)

)
P (Z = z|X)

+ haz(X)

)
a1{d(X) = a}

]

= E

{
Y (d)

∣∣∣∣∣
k∑

z=1

cz1{A(z) = 1} = 1

}
P

(
k∑

z=1

cz1{A(z) = 1} = 1

)
.

For a misspecified propensity score P̂ (Z = z|X), we have

k∑
z=1

czE

[(
1{Z = z}

(
1{A = a}Y − haz(X)

)
P̂ (Z = z|X)

+ haz(X)

)
a1{d(X) = a}

]

=

k∑
z=1

czE

{
a1{d(X) = a}f(z,X)

P̂ (Z = z|X)

(
haz(X)− haz(X)

)
+ a1{d(X) = a}haz(X)

}

=
k∑

z=1

czE {a1{d(X) = a}haz(X)}

= E

{
Y (d)

∣∣∣∣∣
k∑

z=1

cz1{A(z) = 1} = 1

}
P

(
k∑

z=1

cz1{A(z) = 1} = 1

)

And for misspecified ĥaz(X), we have

k∑
z=1

czE

[(
1{Z = z}

(
1{A = a}Y − ĥaz(X)

)
P (Z = z|X)

+ ĥaz(X)

)
a1{d(X) = a}

]

=

k∑
z=1

czE

{
a1{d(X) = a}
P (Z = z|X)

(
E [1{Z = z}1{A = a}Y |X]− ĥaz(X)E [1{Z = z}|X]

+ P (Z = z|X)ĥaz(X)
)}

=

k∑
z=1

czE

{
a1{d(X) = a}
P (Z = z|X)

(
E [1{Z = z}1{A = a}Y |X]

)}

= E

{
Y (d)

∣∣∣∣∣
k∑

z=1

cz1{A(z) = 1} = 1

}
P

(
k∑

z=1

cz1{A(z) = 1} = 1

)
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B.4 Proof of Theorem 3.2

We recall Theorem 3.2:

Theorem 3.2. Under the set of assumptions (B1)-(B3), the following condition is necessary

and sufficient for the sign of the contrast-specific Wald estimand to identify an optimal ITR

for the overall population,

E

[
γ̃(X,U)

γ(X)
× δ̃c(X,U)

δc(X)

∣∣∣∣∣X
]
> 0, (3.6)

where γ̃(X,U) = E[Y (1)−Y (−1)|X,U ], γ(X) = E[Y (1)−Y (−1)|X], δ̃c(X,U) =
∑k

z=1 czP (A =

1|X,U,Z = z), and δc(X) =
∑k

z=1 czP (A = 1|X,Z = z). The optimal ITR for the overall

population is then

d∗(B)(X) = sign {E [Y (1)− Y (−1)|X]} = sign

{ ∑k
z=1 czE[Y |X,Z = z]∑k

z=1 czP (A = 1|X,Z = z)

}
.

Proof. Let γ̃(X,U) = E[Y (1) − Y (−1)|X,U ], γ(X) = E[Y (1) − Y (−1)|X], δ̃c(X,U) =∑k
z=1 czP (A = 1|X,U,Z = z), and δc(X) =

∑k
z=1 czP (A = 1|X,Z = z). The ITT contrast

for an arbitrary contrast, such that
∑k

z=1 cz = 0, under assumptions (B1)-(B3) can be
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written as

k∑
z=1

czE[Y |X,Z = z] =
k∑

z=1

czE[E(Y |X,U,Z = z)|X]

= E

[
k∑

z=1

czE

(
k∑

z=1

1{Z = z}Y (z,A(z))

∣∣∣∣∣X,U,Z = z

)∣∣∣∣∣X
]

= E

[
k∑

z=1

czE

(
k∑

z=1

1{Z = z}
(
1{A(z) = 1}Y (1)

+ 1{A(z) = −1}Y (−1)
)∣∣∣∣∣X,U,Z = z

)∣∣∣∣∣X
]

= E

[
k∑

z=1

czE

(
k∑

z=1

1{Z = z}
(
1{A = 1}Y (1)

+ 1{A = −1}Y (−1)
)∣∣∣∣∣X,U,Z = z

)∣∣∣∣∣X
]

= E

[
k∑

z=1

czE
(
1{A = 1}

(
Y (1)− Y (−1)

)∣∣∣∣∣X,U,Z = z
)∣∣∣∣∣X

]

+ E

[
k∑

z=1

czE(Y (−1)|X,U,Z = z)

∣∣∣∣∣X
]

= E

[
k∑

z=1

czE
(
1{A = 1}

(
Y (1)− Y (−1)

)∣∣X,U,Z = z
)∣∣∣∣∣X

]

= E

[
E
{
Y (1)− Y (−1)

∣∣X,U
}( k∑

z=1

czP (A = 1|X,U,Z = z)

)∣∣∣∣∣X
]

= E
[
γ̃(X,U)δ̃c(X,U)

∣∣∣X] .
Therefore, the contrast-specific Wald estimand can be written as∑k

z=1 czE[Y |X,Z = z]

δc(X)
= E

[
γ̃(X,U)δ̃c(X,U)

δc(X)

∣∣∣∣∣X
]
.
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Thus, we have that,∑k
z=1 czE[Y |X,Z = z]/δc(X)

γ(X)
= E

[
γ̃(X,U)

γ(X)
× δ̃c(X,U)

δc(X)

∣∣∣∣∣X
]
,

and so the sign of γ(X) necessarily agrees with the conditional contrast-specific Wald

estimand whenever the condition above is positive.

B.5 Proof of Proposition 3.2

We recall Proposition 3.2:

Proposition 3.2. Define the contrast M(X) as

M(X) = argmax
m

∣∣∣∣∣
k∑

z=1

c(m)
z E[Y |X,Z = z]

∣∣∣∣∣ .
Under the assumptions (B1)-(B3), we have

M(X) = M∗(X).

Proof. Define M(X) and M∗(X) as

M(X) = argmax
m

∣∣∣∣∣
k∑

z=1

c(m)
z E[Y |X,Z = z]

∣∣∣∣∣ ,
and

M∗(X) = argmin
m

∣∣∣∣∣E[Y (1)− Y (−1)
∣∣X]− k∑

z=1

c(m)
z E[Y |X,Z = z]

∣∣∣∣∣ .
Note that M∗(X) is equivalent to argmaxm

∑k
z=1 c

(m)
z P (A = 1|X,U,Z = z). The argument

is made by contradiction.

Let M(X) ̸= M∗(X), then ∃ an M †(X) ̸= M(X) such that

k∑
z=1

c(M
†)

z P (A = 1|X,U,Z = z) >

k∑
z=1

c(M)
z P (A = 1|X,U,Z = z)
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However, this implies for the ITT contrasts that∣∣∣∣∣E
[
E
[
Y (1)− Y (−1)

∣∣X,U
]( k∑

z=1

c(M
†)

z P (A = 1|X,U,Z = z)

)∣∣∣∣∣X
]∣∣∣∣∣

>

∣∣∣∣∣E
[
E
[
Y (1)− Y (−1)

∣∣X,U
]( k∑

z=1

c(M)
z P (A = 1|X,U,Z = z)

)∣∣∣∣∣X
]∣∣∣∣∣

and that M(X) ̸= argmaxm

∣∣∣∑k
z=1 c

m
z E[Y |X,Z = z]

∣∣∣. Therefore M(X) = M∗(X).
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B.6 Proof of AIPW Estimator of the Overall Population

Value Function

Proof.

k∑
z=1

czE

[(
1{Z = z}

(
1{A = a}Y − haz(X)

)
P (Z = z|X)

+ haz(X)

)
a1{d(X) = a}

δc(X)

]

=

k∑
z=1

czE

{
a1{d(X) = a}

P (Z = z|X)δc(X)

(
E [1{Z = z}1{A = a}Y |X]− haz(X)E [1{Z = z}|X]

)
+

a1{d(X) = a}
δc(X)

haz(X)

}
=

k∑
z=1

czE

{
a1{d(X) = a}

P (Z = z|X)δc(X)

(
E [1{A = a}Y |X,Z = z]P (Z = z|X)− haz(X)P (Z = z|X)

)
+

a1{d(X) = a}
δc(X)

haz(X)

}
=

k∑
z=1

czE

{
a1{d(X) = a}

δc(X)

(
haz(X)− haz(X)

)
+

a1{d(X) = a}
δc(X)

haz(X)

}

=
k∑

z=1

czE

{
a1{d(X) = a}

δc(X)
haz(X)

}

= E

{
a1{d(X) = a}

δc(X)

k∑
z=1

czE
[
E
(
1{A = a}Y

∣∣X,U,Z = z
)∣∣∣X]}

= E

{
a1{d(X) = a}

δc(X)

k∑
z=1

czE
[
E
(
1{A = a}Y (a)1{A = a}

∣∣X,U,Z = z
)∣∣∣X]}

= E

{
a1{d(X) = a}

δc(X)

k∑
z=1

czE
[
E
(
Y (a)

∣∣X,U
)
P
(
A = a

∣∣X,U,Z = z)
∣∣∣X]}

= E

{
a1{d(X) = a}

δc(X)
E
[
E
(
Y (a)

∣∣X,U
)
aδ̃c(X,U)

∣∣∣X]}
= E

{
1{d(X) = a}

δc(X)
E
[
E
(
Y (a)

∣∣X,U
)
δc(X)

∣∣∣X]}
= E

{
E
[
1{d(X) = a}Y (a)

∣∣∣X]}
= E {Y (d)}
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For a misspecified propensity score P̂ (Z = z|X), we have

k∑
z=1

czE

[(
1{Z = z}

(
1{A = a}Y − haz(X)

)
P̂ (Z = z|X)

+ haz(X)

)
a1{d(X) = a}

δc(X)

]

=
k∑

z=1

czE

{
a1{d(X) = a}f(z,X)

P̂ (Z = z|X)δc(X)

(
haz(X)− haz(X)

)
+

a1{d(X) = a}
δc(X)

haz(X)

}

=
k∑

z=1

czE

{
a1{d(X) = a}

δc(X)
haz(X)

}
= E {Y (d)} .

And for misspecified ĥaz(X), we have

k∑
z=1

czE

[(
1{Z = z}

(
1{A = a}Y − ĥaz(X)

)
P (Z = z|X)

+ ĥaz(X)

)
a1{d(X) = a}

δc(X)

]

=

k∑
z=1

czE

{
a1{d(X) = a}

P (Z = z|X)δc(X)

(
E [1{Z = z}1{A = a}Y |X]− ĥaz(X)E [1{Z = z}|X]

+ P (Z = z|X)ĥaz(X)
)}

=
k∑

z=1

czE

{
a1{d(X) = a}

P (Z = z|X)δc(X)

(
E [1{Z = z}1{A = a}Y |X]

)}
= E {Y (d)} ,

where the last equality follows from a similar argument as shown in Cui and Tchetgen Tch-

etgen (2021b) and the fact that
∑k

z=1 cz = 0.

B.7 Proof of Necessary and Sufficient Conditions Under

Assumption Set (A)

Proof. Under the assumptions (A1)-(A4), we have from the proof of Theorem 3.1 that

k∑
z=1

czE[Y |X,Z = z] = E

[(
Y (1)− Y (−1)

) k∑
z=1

cz1{A(z) = 1}

∣∣∣∣∣X
]
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Therefore, defining L as the latent sub-compliance type, we have

k∑
z=1

czE[Y |X,Z = z] = E

[(
Y (1)− Y (−1)

) k∑
z=1

cz1{A(z) = 1}

∣∣∣∣∣X
]

= E

{
E

[(
Y (1)− Y (−1)

) k∑
z=1

cz1{A(z) = 1}

∣∣∣∣∣X,A(1) < A(k)

]∣∣∣∣∣X
}

= E

{
k∑

ℓ=2

E

[(
Y (1)− Y (−1)

) k∑
z=1

cz1{A(z) = 1}

∣∣∣∣∣X,L = ℓ

]

× P
(
L = ℓ|X,A(1) < A(k)

)∣∣∣∣∣X
}

We only now use the assumption (A4) monotonicity, so that when using the contrast

coefficients c
(ℓ)
z so that

∑k
z=1 cz1{A(z) = 1} = 1 only for the ℓ-compliers and is equal to 0

for all other subpopulations. We then have that

k∑
z=1

czE[Y |X,Z = z] = E

{
k∑

ℓ=2

E

[(
Y (1)− Y (−1)

) k∑
z=1

cz1{A(z) = 1}

∣∣∣∣∣X,L = ℓ

]

× P
(
L = ℓ|X,A(1) < A(k)

)∣∣∣∣∣X
}

= E

{
E [Y (1)− Y (−1)|X,L]P

(
k∑

z=1

cz1{A(z) = 1} = 1

∣∣∣∣∣X,A(1) < A(k

)∣∣∣∣∣X
}

Thus, we have that ∑k
z=1 czE[Y |X,Z = z]/δc(X)

γ(X)
,

is equivalent to

E

E [Y (1)− Y (−1)|X,L]

γ(X)
×

P
(∑k

z=1 cz1{A(z) = 1} = 1
∣∣∣X,A(1) < A(k

)
δc(X)

∣∣∣∣∣∣X


and so the sign of γ(X) necessarily agrees with the conditional Wald estimand using contrast

coefficients c
(ℓ)
z whenever the above expression above. Without the monotonicity assumption,
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the necessary and sufficient condition has the form

E


∑k

ℓ=2E
[(
Y (1)− Y (−1)

)∑k
z=1 cz1{A(z) = 1}

∣∣∣X,L = ℓ
]
P (L = ℓ|X,A(1) < A(k)

γ(X)δc(X)

∣∣∣∣∣∣X
 > 0

for the set (A) of assumptions.

B.8 Additional Simulations: Estimating the Value Function

with the Argmax Contrasts

We conduct additional simulations to evaluate the consistency of using the argmax contrasts

to estimate the value function of the overall population. The settings for this simulation

study are the same as those described in Section 3.3.2, except we use an observed IV so that

the instrument propensity depends on the observed covariatesX. Otherwise, we generate the

observed covariates, the unobserved covariates U , treatment A, and the potential outcomes

Y (−1) and Y (1) as described in Section 3.3.2. For these simulations, we consider the success

probability P (A = 1|X,U,Z) Scenario (1). The observed IV, Z ∈ {−1, 0, 1}, follows a

multinomial distribution with instrument propensities P (Z = −1|X) = 1/(1+ eXβ0 + eXβ1),

P (Z = 0|X) = eXβ0/(1 + eXβ0 + eXβ1), and P (Z = 1|X) = eXβ1/(1 + eXβ0 + eXβ1), where

the regression coefficients are different for the different levels of the IV; for Z = 0 the

regression coefficient is β0 = (1/2, 1/2, 0, 0, 0)′, and for Z = 1 the regression coefficient is

β1 = (1, 1, 0, 0, 0)′. To derive the decision rules we use our argmax rule, the linear contrast

c−1 = −1, c0 = 0, and c1 = 1, and the quadratic contrast c−1 = −1/2, c0 = 1, and

c1 = −1/2, where the models used are the same as described in Section 3.3.2. To evaluate

the consistency of using the argmax contrasts to estimate the value function, we estimate

the value function using the the AIPW estimator (3.9) with the argmax contrasts M(X)

and compare it with the empirical mean of the value function. We use a multinomial model

regressing the IV on the observed covariates to estimate the IV propensity scores and linear

models to estimate haz for the AIPW estimates. We perform these simulations 500 times

at varying training sample sizes for the models and present the results in Figure B.1.

The results shown in Figure B.1 imply that using the argmax contrasts with the AIPW

estimator can consistently estimate the value function for larger magnitudes of the IV
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rule, a rule using a linear contrast, and a rule using a quadratic contrast. The red points
denote the AIPW estimates using the argmax contrasts and the blue points denote the
empirical mean.
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coefficient. This can be seen by the mean of the AIPW estimates with the argmax contrast

overlapping the empirical mean of the value function for all three decision rules at larger

magnitudes of IV coefficients. For IV coefficients close to 0, the instrument becomes too

weak for the value function to be consistently estimated, however, the weak instrument bias

can be mitigated as the training sample size increases.

B.9 Additional Simulations: Sub-Complier Subpopulations

We conduct additional simulations under the set (A) of assumptions. The settings from the

original simulations in Section 3.3.1 are unchanged, except to include sample sizes of 250

and 1000, and consider rule d(2)(X) using the c
(2)
z contrast to identify the optimal ITR for

2-compliers, and the rule d(3)(X) using the c
(3)
z contrast to identify the optimal ITR for

3-compliers,. Figure B.2 presents the misclassification rates of the different decision rules

for the union of both 2- and 3-compliers and Figure B.3 presents the value functions of the

different decision rules for the union of both 2- and 3-compliers.

The results in Figures B.2 and B.3 mimic those seen in Section 3.3.1, where all rules

using an IV generally perform well for Treatment Scenarios (1) and (2), but only the rule

d̃(X, L̂) performs well in Treatment Scenario (3) when the 2- and 3-compliers have opposite

decision rules for the different values of X1. What we see from these results is the gain

in performance as the sample size increases for all rules, as well as how rules targeting

the 2- and 3-compliers perform. Given that the rules for the 2- and 3-compliers agree for

Treatment Effect Scenarios (2) and (3), it is unsurprising to see both of the rules d(2)(X)

and d(3)(X) reducing the misclassification rate and maximizing the value function as the

average compliance rate grows. Given that there are fewer 2- and 3-compliers separately,

it is also unsurprising to see the rule d(all)(X) using the contrast c
(all)
z outperform d(2)(X)

and d(3)(X). As the rule using d(all)(X) pools together the 2- and 3-compliers, it gains

efficiency when the decision rules of 2- and 3-compliers agree.

Figure B.4 presents the misclassification rates of the different decision rules for the

2-compliers and Figure B.5 presents the value functions of the different decision rules for

the 2-compliers. The misclassification rates and value function results for the 2-compliers

mirror those seen for the union of all ℓ-compliers for Treatment Effect Scenarios (1) and (2),

which is expected since the decision rules for the 2- and 3-compliers are the same in those

Scenarios. For Treatment Effect Scenario (3), however, we see that d(2)(X) performs best

as it focuses only on estimating the treatment decision for the 2-compliers. Further, d(3)(X)
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Figure B.2: The average misclassification rates of the different decision rules for all ℓ-
compliers across the three treatment scenarios and for the three training sample sizes. The
red line denotes the rule d(2)(X), the blue line denotes the rule d(3)(X), the green line
denotes the rule d(all)(X), the purple line denotes the rule using the binary IV, the orange
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line denotes the oracle model.
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Figure B.3: The average value functions of the different decision rules for all ℓ-compliers
across the three treatment scenarios and for the three training sample sizes. The red line
denotes the rule d(2)(X), the blue line denotes the rule d(3)(X), the green line denotes the
rule d(all)(X), the purple line denotes the rule using the binary IV, the orange line denotes

the rule d̃(X, L̂), the yellow line denotes the rule using no IV, and the brown line denotes
the oracle model.
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and the rule using the binary IV cause harm as seen by the increasing misclassification rate

and decreasing value function as the average compliance rate grows. This is unsurprising

for d(3)(X) considering it focuses on estimating the ITR for the 3-compliers, who have the

opposite rule to the 2-compliers. The binary IV appears to be favoring the 3-compliers over

the 2-compliers in estimation of the ITR resulting in poor performance for the 2-complier

subpopulation.

Figure B.6 presents the misclassification rates of the different decision rules for the

3-compliers and Figure B.7 presents the value functions of the different decision rules for

the 3-compliers. The misclassification rates and value function results for the 3-compliers

continue to mirror those seen for the union of all ℓ-compliers for Treatment Effect Scenarios

(1) and (2), as the decision rules for the 2- and 3-compliers are the same. For Treatment

Effect Scenario (3), we see the reverse of what is shown in Figures B.4 and B.5 for the

2-compliers. Namely, d(3)(X) now performs well whereas d(2)(X) and the binary IV rule

perform poorly. The rule using no IV performs very well in Treatment Effect Scenario (3)

at lower average compliance rates. This is because the non-compliers and 3-compliers have

the same decision rules for this Scenario, and at low average compliance rates there are

few compliers and therefore few 2-compliers. As the number of 2-compliers in the data

increases, the rule using no IV begins to conflate the treatment effects and performance

declines.

B.10 Additional Simulations: Overall Population

We conduct additional simulations under the set (B) of assumptions. The settings from the

original simulations in Section 3.3.2 are unchanged, except to include sample sizes of 250

and 1000, and consider rules using the linear contrast, c−1 = −1, c0 = 0, c1 = 1, and the

quadratic contrast c−1 = −1/2, c0 = 1, c1 = −1/2. Figure B.8 presents the misclassification

rates of the different decision rules and Figure B.9 presents the value functions for the

different decision rules.

The results mimic those seen in Section 3.3.2, where our argmax rule performs well

across all success probability P (A = 1|X,U,Z) Scenarios. This can be seen from the

low misclassification rates and larger value functions. Further, as the sample size grows,

we see our argmax rule continue to approach the oracle rule in performance across all

P (A = 1|X,U,Z) Scenarios. As the conditional average treatment effect estimates are

confounded by the unmeasured variable U , we see the rule not using the IV generally
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Figure B.4: The average misclassification rates of the different decision rules for the 2-
compliers across the three treatment scenarios and for the three training sample sizes. The
red line denotes the rule d(2)(X), the blue line denotes the rule d(3)(X), the green line
denotes the rule d(all)(X), the purple line denotes the rule using the binary IV, the orange

line denotes the rule d̃(X, L̂), the yellow line denotes the rule using no IV, and the brown
line denotes the oracle model.
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Figure B.5: The average value functions of the different decision rules for the 2-compliers
across the three treatment scenarios and for the three training sample sizes. The red line
denotes the rule d(2)(X), the blue line denotes the rule d(3)(X), the green line denotes the
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the oracle model.
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Figure B.6: The average misclassification rates of the different decision rules for the 3-
compliers across the three treatment scenarios and for the three training sample sizes. The
red line denotes the rule d(2)(X), the blue line denotes the rule d(3)(X), the green line
denotes the rule d(all)(X), the purple line denotes the rule using the binary IV, the orange

line denotes the rule d̃(X, L̂), the yellow line denotes the rule using no IV, and the brown
line denotes the oracle model.



112

n: 250 n: 500 n: 1000

Treatm
ent E

ffect S
cenario: 1

Treatm
ent E

ffect S
cenario: 2

Treatm
ent E

ffect S
cenario: 3

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

Average compliance rate

V
al

ue
 fu

nc
tio

n

Decision rule

2−Compliers

3−Compliers

All Compliers

Binary IV

d(X,L)

No IV

Oracle

3−Complier value function for the decision rules

Figure B.7: The average value functions of the different decision rules for the 3-compliers
across the three treatment scenarios and for the three training sample sizes. The red line
denotes the rule d(2)(X), the blue line denotes the rule d(3)(X), the green line denotes the
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performing worse than the rules using IV, except at IV coefficients near 0, where the

rules using IV are subject to weak instrument bias. As the sample size grows, due to the

unmeasured confounder, the rule not using the IV does not improve, reflecting the biased

estimates. The rule using the binary IV performs well in P (A = 1|X,U,Z) Scenario (1) and

(3), but performs very poorly in P (A = 1|X,U,Z) Scenario (2), where the dichotomization

of the multilevel IV negates the information the instrument provides on the probability of

receiving the treatment. The rule using the linear contrast performs nearly identically to

the rule using the binary IV. This is due to the way the multilevel instrument is distributed,

coded, and dichotomized (for the binary IV), where the instrument Z ∈ {−1, 0, 1} follows

the Categorical distribution with a probability of success of 1/4 for levels Z = −1 and

Z = 0 and 1/2 for level Z = 1, and the binary IV is defined as 1 if Z = 1 and -1 otherwise.

Under these definitions, the instrument has a very similar affect on the probability of

receiving the treatment for the multilevel IV with linear contrast and the binary IV. The

quadratic contrast only performs well for success probability P (A = 1|X,U,Z) Scenario

(2), where the higher and lower level of the IV have a similar effect on the probability

of receiving the treatment. It is in this Scenario where the quadratic contrast is most

appropriate as it combines the levels which are similar (Z = −1 and Z = 1) to compare

it with the dissimilar level (Z = 0). For P (A = 1|X,U,Z) Scenario (3), the performance

of the rule using the quadratic contrast is somewhat surprising, as approximately half

of the data is generated using the success probability from P (A = 1|X,U,Z) Scenario

(2) and so expected to perform better. This is likely due to the fact that the difference

between P (A = 1|X,U,Z = −1) and P (A = 1|X,U,Z = 1) in Scenario (1) is greater than

the difference between P (A = 1|X,U,Z = 0) and P (A = 1|X,U,Z = 1) in Scenario (2)

and so resulting in a slightly weaker instrument for Scenario (2). This can also be seen

by comparing the results between P (A = 1|X,U,Z) Scenario (1) and P (A = 1|X,U,Z)

Scenario (2) where the performance of the argmax rule and the quadratic rule is slightly

weaker in Scenario (2) relative to the argmax rule and linear rule in Scenario (1).

B.11 Additional Analysis: Estimation of Overall Population

Value Function Using Single Contrasts

We provide the results of our argmax rule, the rule using the binary IV, and the rule

using no IV here when using a single contrast to estimate the value function for the overall
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Figure B.9: The average value functions of the different decision rules for the overall
population across the three treatment scenarios and for the three training sample sizes. The
red line denotes the argmax rule dM (X), the blue line denotes the rule using the binary
IV, the green line denotes the rule using the linear contrast, the purple line denotes the
rule using no IV, the orange line denotes the oracle rule, and the yellow line denotes the
quadratic rule.
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population. The contrasts used to estimate the value function are (c1) comparing the lowest

level of the IV with the higher two levels, c1 = −1, c2 = c3 = 1/2; (c2) comparing the

middle level of the IV with the highest and lowest levels, c1 = −1/2, c2 = 1, c3 = −1/2; (c3)

comparing the lower two levels of the IV with the highest level, c1 = c2 = −1/2, c3 = 1; (c4)

comparing the lowest and middle levels of the IV, c1 = −1, c2 = 1, c3 = 0; (c5) comparing

the lowest and highest levels of the IV, c1 = −1, c2 = 0, c3 = 1; and (c6) comparing the

middle and highest levels of the IV, c1 = 0, c2 = −1, c3 = 1. Other than to use a single

contrast to estimate the value function, the analysis was conducted as described in Section

3.4.3.

We present the mean (and standard error) of the difference in value functions across

the 200 random splits for the different methods, under the assumptions (B1)-(B4) for the

overall population, where the value functions are estimated using one of the contrasts

(c1)-(c6) in Table B.1. We see that our proposed method performs best for almost all

contrasts, except for contrast (c2), as seen by either most reducing the amount of all-cause

mortality and stroke within 30-days or causing the least amount of harm as compared to

the treatment regime of assigning CEA to all patients. In particular, our proposed argmax

rule is estimated to provide the most benefit under contrasts (c1), (c3), (c5), and (c6), and

estimated to provide the least harm under contrast (c4). It is for contrasts (c2) and (c4)

that all rules are estimated to commit harm relative to assigning CEA to all patients. It

is also for these contrasts that the standard errors of the estimated value functions are

largest. Due to the large standard errors and our understanding of how the instrument

influences the treatment, we believe that contrasts (c2) and (c4) may be artificially imposing

a weak instrument bias by negating some of the IV’s effect on the probability of receiving

the treatment. Because the IV is the center’s preference for the CEA procedure, we know

that an increasing level of the IV results in an increased probability to receive CEA. A

contrast treating the lowest level and the highest level as equal, as in contrast (c2), is

likely to result in poor estimation of the value function. This notion is reflected in the

larger standard error. Further, ignoring the highest level of the IV which results in the

largest probability of receiving CEA, appears to lose too much of the information of how

the IV affects the treatment. This is seen in the relatively large standard errors of the

estimated value functions under contrast (c4) relative to the other contrasts. As contrasts

(c1), (c3), (c5), and (c6) are more stable and contrasts (c2) and (c4) are likely subject to

weak instrument bias, we believe that contrasts (c1), (c3), (c5), and (c6) are the better

representations of the value function for the given decision rules.
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Contrast Method V(B)(d)− V(B)(CEA)

(c1)

No IV 0.0037 (0.0115)

Binary IV -0.0089 (0.0181)

Argmax -0.0124 (0.0163)

(c2)

No IV 0.0139 (0.0230)

Binary IV 0.0361 (0.0346)

Argmax 0.0247 (0.0342)

(c3)

No IV -0.0027 (0.0077)

Binary IV 0.0020 (0.0134)

Argmax -0.0060 (0.0127)

(c4)

No IV 0.0659 (0.1989)

Binary IV 0.1071 (0.2621)

Argmax 0.0657 (0.2579)

(c5)

No IV -0.0005 (0.0068)

Binary IV -0.0061 (0.0102)

Argmax -0.0171 (0.0097)

(c6)

No IV 0.0000 (0.0097)

Binary IV -0.0029 (0.0156)

Argmax -0.0191 (0.0148)

Table B.1: Mean (and standard error) of the difference between the estimated overall
population value function for the different decision methods and the estimated overall
population value function for the decision rule of assigning every patient CEA across the
200 random splits of the carotid-artery data. The value functions were estimated using the
corresponding contrast.
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In comparison to the difference in value functions estimated using the argmax contrasts

M(X) in Table 3.3, the estimates of the difference in value functions using single contrasts

in Table B.1 are more modest for the argmax rule. As we assume (B4) no additive U -Z

interaction is satisfied for every contrast, we expect these estimates to be somewhat similar

so long as no weak instrument bias is artificially introduced. There are two possibilities for

this discrepancy, either the estimation of the value function using the argmax contrasts is

biased or it is a more efficient estimate. It is possible the estimates of the value function

are biased due to using contrasts that are correlated with the expected outcome, however,

the results in Appendix B.11 imply this may not be the case. It is also possible that the

dynamic use of contrasts for certain covariate values allows for gains in efficiency, as it

uses certain contrasts for different values of the observed covariates. As there may be an

interaction with the IV and a covariate resulting in different relationships of the IV on

the probability of receiving the treatment, some contrasts may be more appropriate for

estimating the value function at certain values of the covariates then others, resulting in an

increase in efficiency. Regardless, using either the argmax contrasts or the single contrasts

to estimate the value function largely agree in their consensus that the argmax rule leads

to the greatest benefit in reducing stroke or death within 30-days, as compared to a rule

using a binary IV and a rule not using an IV.

Finally, we note that the the rules using an IV generally outperform the rule not using

the IV. For the contrasts that are not expected to be subject to an artificial weak instrument

bias, (c1), (c3), (c5), and (c6), the rules using an IV generally outperform the rule not

using an IV. It is only for the contrast (c3) that the rule not using an IV is estimated to

outperform the rule using a binary IV. This is likely due to an unmeasured confounder

biasing the conditional average treatment effect and preventing the rule not using an IV

from identifying an optimal ITR.
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Hilbert, Martin, and Priscila López. 2011. The world’s technological capacity to store,

communicate, and compute information. Science 332(6025):60–65.

Hill, Jennifer L. 2011. Bayesian nonparametric modeling for causal inference. Journal of

Computational and Graphical Statistics 20(1):217–240.

Hodges, Joseph L, and Erich L Lehmann. 1963. Estimates of location based on rank tests.

The Annals of Mathematical Statistics 34(2):598–611.

Holland, Paul W. 1986. Statistics and causal inference. Journal of the American Statistical

Association 81(396):945–960.

Hsu, Jesse Y, Dylan S Small, and Paul R Rosenbaum. 2013. Effect modification and

design sensitivity in observational studies. Journal of the American Statistical Association

108(501):135–148.
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