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Abstract 

 Regularly evaluating best management practices for soybean is important 

to maintaining agronomic crop production as the climate and seed varieties 

change over time. Many phosphorous and potassium fertilizer recommendations 

in the North Central US are based on the build-maintain framework and were 

developed in 1970s and 80s and are due to be reevaluated. To estimate the 

yield-maximizing soil test potassium level (YMK) under current growing 

conditions, nutrient management records and yield maps from southern WI were 

analyzed via quadratic quantile regression to estimate both overall YMK and 

determine if YMK varied across the study space. The overall YMK was 76 ppm, 

and lower buffer pH and organic matter levels were associated with higher YMK. 

Some fertilizer recommendations include leaf tissue K concentrations in addition 

to soil test K levels. Results of a 2021 on-farm trial indicate that the critical K 

concentration in soybean leaf tissue is 2.04%. The relationship between K soil 

test results from Bray-1 extraction and Mehlich-3 extraction for silty loam soils 

was represented by the linear regression line Bray = 0.77 * Mehlich - 0.75.  

Management decisions that increase soybean yield are region-specific 

and vary between planting dates, so larger multi-state research projects are 

valuable for developing best management practices. In a survey study of 

soybean farmers in ten North Central US states, late-planted fields had higher 

yields associated with tillage and using both a PRE and POST herbicide 

application. Early-planted fields had higher yields associated with artificial 

drainage, insecticide seed treatment, and lower seeding rates. Less variation 

between sites was observed in a small-plot study of foliar fertilizers across 46 

site-years in 16 eastern US states. Foliar fertilizers did not increase soybean 
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yield in the absence of visual symptoms of nutrient deficiency. In multi-state and 

on-farm research, efficient processing of yield maps represents a research 

bottleneck. A new R package, cleanRfield, allows for more efficient processing of 

yield maps. Together, these projects represent ways for multistate and 

multidisciplinary teams to leverage technology and improve best management 

practices for soybean production.   
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Chapter 1: A Review of Current Soybean Fertility 

Recommendations 

Soybean Production 

The United States (US) produces 34% of the world’s soybeans, more 

than any other country (American Soybean Association, 2019). Of the roughly 2 

million farms in the US, over 300,000 grew soybeans in 2017. In total, 36.5 

million hectares of soybean were harvested, producing 117.3 billion kg of 

soybean seed (USDA NASS, 2019). 

 Wisconsin (WI) produced 2.8 billion kg of soybean seed in 2017 (USDA 

NASS, 2019). In 2019, there were 890,000 hectares of soybeans planted in WI, 

the 14th most of any state (American Soybean Association, 2019). Average WI 

soybean yield in 2018 was 3,233 kg ha-1, slightly lower than the national average 

of 3,476 kg ha-1  (American Soybean Association, 2019; USDA NASS, 2020) 

 While management practices vary between fields and years, WI 

producers typially plant soybean in the second or third week of May (Rattalino 

Edreira et al., 2019). In southern WI, seeding rates generally range from 333k to 

408k seeds ha-1 In northern WI, seeding rates can be as high as 445k seeds/acre 

(Rattalino Edreira et al., 2019). Most fields in WI are planted with treated seed, 

and most soybeans are planted following a corn crop. The most common row 

spacing in WI is 38 cm, although parts of eastern WI have more hectarage with 

76 cm row spacing. Fewer than half of WI soybean fields have artificial drainage 

(Rattalino Edreira et al., 2019).  
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Current Fertilizer Recommendations 

Potassium (K) and phosphorous (P) are essential plant macronutrients. 

Potassium is used in plants to activate enzymes and open and close stomata, 

regulating transpiration (Tisdale et al., 1985). Phosphorous is crucial for storing 

chemical energy in plants, such as in  adenosine triphosphate (ATP) (Tisdale et 

al., 1985).  

 Plant available soil nutrients are estimated using soil sampling. Potassium 

in the soil solution is available for plant uptake. Exchangeable K, or K+ ions from 

the surface of clay particles, can enter the soil solution to replenish soil solution K 

(Franzen & Bu, 2018). Non-exchangeable K, tightly held between layers of clays, 

is sometimes available to plants when held between illite particles but not when 

held by other clays. Mineral K, or K that is a part of the micas and feldspars clays 

form from does not enter the soil solution within a given growing season 

(Franzen & Bu, 2018).   

When soybeans are harvested, nutrients are removed with the grain. 

Without fertilization, available nutrients in the soil will become depleted over time 

(Tisdale et al., 1985). State fertilizer rate recommendations for P and K generally 

follow either a sufficiency or a build-maintain approach (Macnack, 2017). The 

sufficiency approach sets a soil test level at which soils are considered 

“sufficient” for a given crop. When soils are at 80% sufficiency, they can reach 

80% of their yield potential. Nutrients are applied annually to meet crop need; 

however, additional nutrients are not applied to keep soil test levels sufficient for 

future growing seasons (Hoskins, 1997; Macnack, 2017).  

Unlike the sufficiency approach, the build-maintain approach accounts for 

nutrients removed in crop harvest. Those nutrients are replaced using fertilizer 
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prior to, or during the following growing season. Soils are divided into three 

categories based on soil test values: build, maintain, and drawdown (Heckman, 

2012; Macnack, 2017; Vitosh et al., 1995). In WI and IA, soils are split into six or 

five categories, respectively, but the same general build-maintain approach is 

followed (Laboksi & Peters, 2012; A. Mallarino, 2013). When soils are above the 

soil test critical level for a given crop, nutrients are applied to replace the 

nutrientslost in crop removal. When soils are below the soil test critical level, 

fertilizers that exceed crop removal are applied over a period of four or more 

years to spread out fertilizer cost as soil test values slowly increase (Macnack, 

2017). Applications for multiple seasons can be made at once (Macnack, 2017). 

Critical levels from the build-maintain approach are the same as the 100% 

sufficiency level in the sufficiency approach (Macnack, 2017).  

  

Methods to Calculate Critical Levels 

Soils above the critical level for a given nutrient have sufficient available 

nutrients for a given crop (Cox, 1992). Crops grown on soils below the critical 

level are likely to respond to fertilizer (Heckman, 2012; Vitosh et al., 1995). In a 

survey of Ohio fields, fields below the STK critical level had an average yield of 

296 kg ha-1 lower than fields above the critical level for STK (Brooker et al., 

2017). 

Typically, critical levels are estimated using fertilizer rate trials. For each 

trial, the relative grain yield is calculated by dividing the yield of the unfertilized 

plots by the yield of the fertilized plots. The Cate-Nelson graphical method was 

historically used to estimate the critical level from the relative grain yield and soil 

test values (Nelson & Anderson, 1977). The responsive trials, or trials where 

yield was higher in fertilized plots than in unfertilized plots, were plotted with one 



4 
 

 

symbol and the non-responsive trials were planted with another color. A clear 

sheet of plastic divided into four quadrants was laid over a scatter plot of relative 

grain yield and soil test value. The sheet of plastic was moved across the scatter 

plot to maximize the number of responsive trials falling in the lower-left quadrant 

and the number of non-responsive trials falling in the upper-right quadrant while 

keeping the quadrant lines square with the scatter plot axes. Once the plastic 

sheet was appropriately placed, the intersection of the vertical line on the plastic 

sheet with the x-axis represented the critical level (Nelson & Anderson, 1977). 

Cate and Nelson later released an updated method that uses an iterative process 

to divide the data based on soil test value. The final estimate of the critical value 

is the soil test value where the R2 value of the prediction of whether there will be 

a response to fertilizer is highest (Cate & Nelson, 1971). The R package 

rcompanion can implement this procedure without the need to physically 

manipulate a plastic sheet and has been used by Ohio researchers looking at 

both soil test critical level and critical leaf nutrient concentrations (Fulford & 

Culman, 2018; Mangiafico, 2017). The Cate-Nelson method, as implemented by 

the NLIN procedure in SAS, has also been used to relate critical K concentration 

to anthracnose severity for annual bluegrass (Schmid et al., 2018).  

Other methods based on plotting relative grain yield against soil test value 

can also be used to estimate the critical level. A regression can predict relative 

yield from soil test value. Early regressions for determining critical levels used a 

modified Mitscherlich growth curve (Nelson & Anderson, 1977). Today, a 

quadratic plateau model is commonly used (Dodd & Mallarino, 2005; Van 

Scoyoc, 2004). The soil test level where the model plateaus and relative yield no 

longer increases is considered the soil test critical level (Dodd & Mallarino, 2005; 

Singh et al., 2019; Van Scoyoc, 2004; Williams et al., 2017, 2018). Similar 
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methods are used to predict critical concentration ranges of nutrients in plant 

tissues using linear plateau models (Stammer & Mallarino, 2018; Williams et al., 

2018). 

Studies to estimate the critical level will place fertilizer trials across ten or 

more site-years. Instead of estimating the critical level using quadratic plateau 

models, some studies determine whether there is a difference in grain yield 

between fertilized and unfertilized plots for each site-year using an ANOVA 

(Clover & Mallarino, 2013; Culman, S et al., 2017; Fulford & Culman, 2018; 

Nelson & Anderson, 1977). The highest soil test value where the site still 

maintained higher yield in fertilized plots than in unfertilized plots is considered 

an estimate of the critical level (Antonangelo et al., 2019; Clover & Mallarino, 

2013).  

Boundary line analysis (BLA) is a useful approach for estimating the yield 

potential at a range of soil nutrient values (Shatar & McBratney, 2004). This 

technique is an extension of Liebig’s Law of the Minimum, which proports that 

yield is most limited by the nutrient that is available in the lowest quantity relative 

to the plant’s total need for that nutrient. Early implementations of BLA were 

performed by hand-drawing curves on scatter plots with soil nutrient status on the 

X axis and yield on the Y axis such that the curve approximated the maximum 

yield across the domain of soil nutrient status. Shatar and McBratney (2004) 

have since developed a standardized method for implementing BLA in S-PLUS, 

incorporating a spline model so that the regression can fit the maximum possible 

yield across a wider range of yield distributions. Boundary line analysis has also 

been used to evaluate soil nutrient concentration recommendations and to 

quantify yield gaps for wheat at both whole-field and within-field scales 

(Hajjarpoor et al., 2018; Lark et al., 2020). 
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Measuring Soil Nutrients 

 Soil sampling is used to determine if the level of nutrients in a field is 

above or below the soil test critical level. In WI, state recommendations indicate 

that one sample should be taken for every 2 hectares. Ten cores from a uniform 

depth of at least 15 cm should be taken for every composite sample, and 

composite samples should be dried and sent to a reputable lab (Laboksi & 

Peters, 2012).  

Nutrient levels in soil samples can be measured using a variety of lab 

methods. In WI, Bray extractant is used for both P and K (Laboksi & Peters, 

2012). Iowa P fertilizer recommendations are available for Bray, Mehlich-3, and 

Olsen extractants, and K recommendations are available for ammonium acetate 

and Mehlich-3 tests (Mallarino, 2013). Ohio, Indiana, and Michigan fertilizer 

recommendations had been based on a Bray extractant for P and ammonium 

acetate for K until 2020 when new recommendations were released based on 

Mehlich-3 extractant for both P and K (Culman et al., 2019, 2020; Vitosh et al., 

1995). North and South Dakota both use the Olsen method for measuring P 

since it is less sensitive than Bray extraction to calcium carbonate in soils. 

Mehlich-3 or ammonium acetate can both be used to extract K, but most state 

recommendations are based on ammonium acetate since it extracts similar 

amounts of K from samples regardless of soil pH (Eliason et al., 2015). As an 

alternative to measuring extractable K, a study of Italian ryegrass grown in nine 

different soils indicates that measuring soil solution K+ concentration may be a 

more accurate way to predict plant-available K and estimate critical levels due to 

the close relationship between K+ buffer power and soil solution K+ concentration 

(Mengel & Busch, 1982).  
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In addition to measuring soil nutrients, some fertilizer rate trials also 

measure leaf K concentration. Increases in leaf K concentrations due to fertilizer 

applications are observed even when K fertilizer does not result in increased 

yield (Farmaha et al., 2011; Fulford & Culman, 2018). In an Ohio fertilizer rate 

trial, leaf K concentration was better predicted by fertilizer rate than by STK 

levels (Fulford & Culman, 2018). Current estimates of soybean plant critical K 

concentration in Iowa were 18.8-22.7 g K kg-1, and leaf tissue critical K 

concentration was slightly lower at 15.6-19.9 g K per kg. Critical P concentrations 

for soybean plants and leaves, respectively, were 3.3- 4.1 and 3.5-4.7 g P per kg 

(Stammer & Mallarino, 2018).  

Farmers in the UK use the Agriculture and Horticulture Development 

Board Nutrient Management Guide (RB209) to make fertilizer rate and timing 

decisions, which uses tissue nutrient concentration to determine sufficient field 

fertility for S, Zn, and other nutrients. But, soil nutrient concentration is used for P 

and K fertilizer rate recommendations (Agriculture and Horticulture Development 

Board, 2021, p. 209). Other European countries also use tissue nutrient 

concentration instead of or in addition to the soil nutrient critical level methods 

that are common in the US. The nutrient management guide for the UK, RB209, 

states that arable crop yield is maximized when soil P and K concentrations are 

16-25 and 121-180 mg l-1, respectively (Agriculture and Horticulture Development 

Board, 2021). In 2020, this range of critical concentrations was confirmed using 

boundary line analysis by Lark, et al.  

  

Estimating Nutrient Removal Rates 

Accurate estimates of nutrient removal are crucial for implementing a 

build-maintain strategy, since fertilizer recommendations are intended to return 
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the nutrients removed through harvest so that soil test values remain stable over 

time (Laboksi & Peters, 2012). Soybean accumulates 172 kg ha-1 K to produce 

3.5 Mg ha-1 of grain (Bender et al., 2015). Soybean K concentration in WI is 

estimated to be 0.016 kg K kg-1 grain and 0.0054 kg P kg-1 grain (Gaspar et al., 

2017). Potassium uptake is highest during late vegetative growth, and 75-100% 

of K is taken up before grain fill (Bender et al., 2015; Gaspar et al., 2017). 

Phosphorous accumulation is generally lower (21 kg ha-1 P) and occurs later in 

the season (Bender et al., 2015; Gaspar et al., 2017). To grow 3,435 kg ha-1 

soybeans in WI (state average) on optimum soils and replace the nutrients 

removed, an annual application of 79 kg ha-1 of K2O is recommended (Laboksi & 

Peters, 2012). 

Removal rates on an area basis are more affected by grain yield than 

potassium concentration (Clover & Mallarino, 2013; Gaspar et al., 2017); thus, 

nutrient removal rates are presented as pounds of K2O per bushel of grain, or as 

kilograms of K2O per kilogram of grain (Culman et al., 2020; Mallarino, 2013). 

Yield level did not change grain K concentration (Gaspar et al., 2017). Ohio 

recommendations from 1995 estimate 0.53 kg of K2O are removed with every 

bushel of soybeans (Culman et al., 2020). A study taking place from 2006 to 

2014, soil test values fell even when fertilizer was applied at the estimated crop 

removal rate, and soil test values did not rise when fertilizer was applied at twice 

the estimated crop removal rate (Fulford & Culman, 2018). Kansas has also 

observed a long-term reduction in STK levels and a subsequent increase in K 

deficiency symptoms due to nutrient applications under the KSU sufficiency 

recommendations being below the nutrient removal rate (Matz, 2012). Both Ohio 

and Kansas may need to increase crop removal estimates to maintain STK and 

STP levels.  
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In Illinois, updated estimates of nutrient removal for soybeans based on 

samples from 2,620 fields over three years indicate soybeans remove 0.34 kg 

P2O5 and 0.53 kg K2O per bushel, which is roughly 11% lower than past 

estimates. Nutrient removal per bushel did not vary based on field average yield 

or location (Nafziger, 2017). Iowa researchers estimate nutrient removal rates for 

soybean are 0.33 kg P2O5 and 0.55 kg K2O per bushel of grain, which is very 

similar to the revised IL estimates (Mallarino, 2013). 

 

Spatial Variability in Soil 

Soils vary in STK due to both natural anthropogenic processes. Steeper 

slopes have lower STK, likely due to higher erosion rates (Jiang & Thelen, 2004; 

Kravchenko & Bullock, 2000). Backslopes have greater STK than other 

landscape positions. In areas with a greater depth to claypan, K buffering is also 

decreased (Conway et al., 2018). Crop rotation can impact STK due to previous 

crops removing different amounts of K in their grain (Conway et al., 2018; Singer 

et al., 2004).  

Quantifying expected variation in STK is important for planning sampling 

regimes. Reported coefficients of variation (CV) for STK in an Iowa grid soil 

sampling study range from 19-43% (Mallarino & Wittry, 2004). In cultivated fields 

in Australia, the CV for STK ranged from 24-64% (Bolland & Allen, 1998). In 

Mississippi, the CV for STK was 22-85% (Cox et al., 2003). Coefficients of 

variation for STP have a narrower observed range than STK, with CVs ranging 

from 30-55% in Iowa and from 32-44% in Australia (Bolland & Allen, 1998;  

Mallarino & Wittry, 2004).   
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Predicting where and how STK levels will vary is important for planning 

effective soil sampling. The spatial structure of variability can be illuminated 

through semivariogram analysis. The range of a variogram is the maximum 

distance where spatial autocorrelation is observed between samples (Avendaño 

et al., 2004).  Semivariograms of STK in eight Iowa fields and two Michigan fields 

had ranges between 25 and 100m (Avendaño et al., 2004; Mallarino, 1996). 

Current 1-3 ha grid sampling may not be dense enough to see spatial structure in 

STK levels due to samples being spaced further apart than the range of their 

variograms (Mallarino, 1996).  

In addition to the range distance determined through semivariograms, the 

direction of spatial autocorrelation is also important to understanding the spatial 

structure of soil properties. Anisotrophic properties have spatial autocorrelation 

patterns that differ with both distance and direction between sample locations 

(Esri Support GIS Dictionary, 2021). The spatial structures of soil properties 

including STK, Mg, pH, and electrical conductivity exhibit anisotrophy (Fu et al., 

2010; Kitchen et al., 2005; Piepho et al., 2011). Yield monitor observations from 

two soybean fields was also observed to be anisotrophic (Avendaño et al., 2004). 

In this same study, soil properties including STK, STP, pH, Ca, and Mg were not 

anisotrophic, and other studies have observed that electrical conductivity was not 

anisotrophic for some fields (Avendaño et al., 2004; Landrum et al., 2015). 

Testing properties for anisotrophy is important because it varies between fields 

and properties, and it impacts the types of interpolation methods that can be 

used on the data (Hengl et al., 2007). 
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Within-Field Soybean Yield Patterns 

Soil properties vary between and within fields, but the relationship 

between soybean yield and different soil properties is inconsistent at the within-

field scale. STP and STK were important predictors of between- and within-field 

soybean yield variation in WI (Smidt et al., 2016). In three of four MI site years, 

STK was correlated with soybean yield when STK varied between 50 and 550 

kg/ha (Avendaño et al., 2004). In a Mississippi study of within-field yield variation, 

STK was negatively correlated with yield and observed correlation coefficient 

values between -0.33 and -0.48 for each field. Authors hypothesize this inverse 

relationship between STK and yield could be due to low-yielding areas of the field 

accumulating K over time due to lower crop removal rates (Cox et al., 2003). 

Other studies did not observe correlation between STK and soybean 

yield. When STK levels are above the critical level, it is not a predictor of 

soybean yield (Culman et al., 2017; Kravchenko & Bullock, 2000). In a MN study 

where yield was inversely related to pH and OM over 6 site-years, there was no 

relation between yield and STK. Seed protein concentration was negatively 

related to STK (Anthony et al., 2012). 

Terrain can also impact soybean growth. Slope was correlated with yield 

at three out of eight sites in IL and IN. Correlation coefficient values ranged from 

0.11 to 0.39 (Kravchenko & Bullock, 2000). The most important factor for 

predicting within-field soybean yield across 22 WI site years was elevation (Smidt 

et al., 2016).  

 

Variable Rate Fertilizer Application 

Variable rate fertilizer allows producers to apply fertilizer to parts of the 

field that are below the critical level without applying fertilizer to parts of the field 



12 
 

 

that are above the critical level and unlikely to see a yield response to fertilizer. 

Iowa research on the level of STK variation indicates that variable rate fertilizer 

could improve nutrient use efficiency and farm profitability (Wittry & Mallarino, 

2004). No-till sites had higher variability in the spatial structure of their STK 

levels, indicating that they might experience greater benefit of VR fertilizer 

(Mallarino, 1996). Sixty one percent of Minnesota fields have some areas below 

the optimum STK level, at the optimum STK range, and above the STK level. In 

these fields, it is economical to apply fertilizer only to the areas below the STK 

optimum level and conserve nutrients in high STK areas (McGraw, 1994).  

Adoption of variable rate technology varies by farm size. Larger farms are 

more likely to adopt precision agriculture technologies than smaller farms (Castle 

et al., 2016; Robertson et al., 2012). Thirty to 40% of US corn producers with 

over 1,175 ha in production use some type of variable rate technology, and 70-

80% use mapping technologies. This is double the national average for VRT and 

mapping technology adoption across all farm sizes (Schimmelpfennig, 2016). In 

2020, 81% of surveyed dealers reported using autosteer and other GPS 

technology for within-field navigation and 89% offer variable rate fertilizer 

application (Erickson & Lowenberg-DeBoer, 2020).  

 Effectively implementing variable rate fertilizer application can be 

challenging due to variation in fertilizer products and equipment limitations. 

Variation in particle size accounts for most variation in fertilizer application rates, 

with small and medium particles traveling shorter distances from the spreader-

disc (Fulton & Port, 2016; Virk et al., 2013). In fertilizer with high variation in 

particle size, the short movement of small particles leads to high application rates 

directly behind the spreader (Virk et al., 2013). Particle size differences are 

common with potassium fertilizer, since potash is irregular in shape (Fulton & 
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Port, 2016). Terrain and wind speed can also impact the accuracy of disc-

spreaders, with wind tending to move dust and fine particles further than heavy 

particles (Fulton & Port, 2016). All fertilizer applicators have inherent error, and 

additional error can be introduced due to differences in applicator speed and 

distance between equipment passes (Lawrence & Yule, 2007).  Variable rate 

fertilizer applicators also introduce error when changing between rates.   

Past studies have compared fertilizer prescriptions, as-applied maps, and 

field-collected fertilizer quantities to quantify spreader error. Fulton et al. (2013) 

found that as-applied maps correlated with field-collected fertilizer quantities and 

accurately represented where rate changes occurred for VR fertilizer 

applications. Fertilizer applicators were within 10% of their target rate 25-45% of 

the time (Fulton et al., 2013). A similar study found an R2 value of 0.47 relating 

as-applied maps to prescriptions (Fulton et al., 2001).  

 

Variable Crop Nutrient Need 

 Most fertilizer recommendations are based off a single estimate of the soil 

test critical level and nutrient removal, but there are some studies that indicate 

that the critical level is not constant. In Wisconsin, optimum soil test K (STK) for 

growing soybeans on loamy soil is 101-130 mg kg-1. On sandy or organic soils, 

the optimum STK is 66-90 mg kg-1 (Laboksi & Peters, 2012). The optimum range 

differs between soil textures because finer texture soils can supply more P and K 

than coarser soils. Iowa also varies state fertilizer recommendations based on 

soil texture, and OH, MI, and IN use CEC instead of soil texture (Mallarino, 2013; 

Vitosh et al., 1995).  

 North Dakota has observed differences in the STK critical level based on 

clay minerology of soils. Out of 25 sites between 2014 and 2016, those with a 
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smectite/illite ratio of greater than 3.5 had STK critical levels roughly 70 mg kg-1 

higher than those sites with a smectite/illite ratio of less than 3.5 (Breker et al., 

2019). Crop response to K fertilizer predictions on sites with STK between 130-

200 mg kg-1 were more accurate when accounting for clay minerology (Breker et 

al., 2019). Soils that are high in illite minerals hold more K that is not detected on 

a standard exchangeable K soil test, accounting for the differences in 

exchangeable STK critical levels (Franzen & Bu, 2018). Crops may need higher 

exchangeable STK levels when soil conditions are dry, due to dry soils having 

tighter clay interlayer spaces and not releasing non-exchangeable K into the soil 

solution as readily (Franzen & Bu, 2018). Differences in STK critical level based 

on minerology could be due to differences in how different clay minerals fix and 

release K ions. Clay minerals with more negative layer charges, such as 

vermiculites, tend to fix more K than minerals with less negative charges, such as 

smectites. Potassium fixation also increases when iron on clay layers is reduced, 

particularly when the iron is in tetrahedral layers as compared to octahedral 

layers (Florence et al., 2017). Since K fixation varies between clay minerals and 

is impacted by iron levels and oxidation states, minerology may change optimum 

STK levels for crop production. 

 Soybeans also have variable STP and zinc needs. Across six MN site-

years, Olsen STP critical levels consistently varied based on pH. Moderately 

acidic and neutral soils maximized soybean yield between 15-19 mg kg-1, while 

moderately alkaline soils maximized yield at 36 mg kg-1. These values 

correspond to an economic optimum STP rate of 15 for acidic and neutral soils 

and of 30 for alkaline soils (Anthony et al., 2012). Optimum zinc rates were also 

higher in alkaline soils than acidic soils (Anthony et al., 2012).  
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 Analyzing data across many response trials from different environments 

has helped identify site characteristics that predict differences in soil test critical 

level or optimum fertilizer rate. A meta-analysis of approximately 2000 site-years 

of P rate trials in Germany and Austria found that crop responses to phosphorous 

are variable but related to STP, SOM, and soil texture (Buczko et al., 2018). In a 

similar decision tree analysis of approximately 9000 central European P and K 

fertilizer response trials, K response was best predicted by crop and STK 

(Kuchenbuch & Buczko, 2011). For high STK sites planted with cereal crops, the 

final predictor of yield response was soil texture (Kuchenbuch & Buczko, 2011). 

The most important predictor of yield response to P fertilizer was STP. On low 

STP sites, yield increase was predicted by pH. On high STP sites, yield increase 

was predicted by soil texture and pH. Crop was relatively unimportant for 

predicting response to P fertilizer as compared to predicting response to K 

fertilizer (Kuchenbuch & Buczko, 2011).  

In a study of 43 soybean fields in China, soil properties accounted for only 

24% of yield variability using a generalized linear model. Soil organic carbon was 

only an important variable when predicting yield in a CART analysis of soil 

properties and in-season management when less than 22.37 kg ha-1 P was 

applied on non-manured fields (Zheng et al., 2009). Between field subsections, 

total soil potassium was the most important predictor of soybean yield. Available 

soil potassium and soil EC were important on sites with high total soil potassium 

(Zheng et al., 2009). 

Similar meta-analyses have been performed in corn for nitrogen (N) rate 

analysis using a variety of statistical approaches. Ridge regression using data 

from 47 N response trials has been used for N rate trials across the Corn Belt, 

demonstrating that soil hydrology was importing for predicting differences in 
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optimum rate between trials (Qin et al., 2018). Comparing methods for predicting 

optimum N rate using a similar dataset of 49 rate trials in the Corn Belt indicated 

that random forest had the highest predictive ability, but that decision trees could 

have comparable predictive strength while using fewer variables. Multiple 

regression methods, including LASSO and elastic net, were limited by 

multicollinearities (Ransom et al., 2019).  

Current state nutrient recommendations, individual fertilizer rate trials, 

and meta-analyses all indicate that soybean nutrient need varies based on soil 

test level, pH, and soil texture (Anthony et al., 2012; Buczko et al., 2018; 

Kuchenbuch & Buczko, 2011; Laboksi & Peters, 2012). Classification and 

regression trees and random forest analysis are able to accurately predict crop 

response to fertilizer for large datasets including yield, management, soil, and 

terrain variables (Buczko et al., 2018). Multiple linear regressions provide more 

information about how continuous independent variables impact the dependent 

variable compared to decision trees, greatly aiding the interpretation of CARTs 

and random forest analysis (Kuchenbuch & Buczko, 2011; Ransom et al., 2019; 

Zheng et al., 2009). 

 

Moving to Reevaluate Fertilizer Recommendations 

It is important to regularly evaluate the accuracy of fertilizer 

recommendations since changes in climate, average yields, and soybean 

genetics can all influence when soybean yield is likely to increase in response to 

potassium fertilizer application. Many states use a similar nutrient management 

framework to Wisconsin, including AR, IA, IN, MI, MN, and OH, and recent trials 

in some of these states has indicated that that fertilizer rates that were effective 
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when written may no longer be appropriate. In Ohio, current fertilizer rates do not 

effectively build STK, possibly due to crop removal being underestimated (Fulford 

& Culman, 2018). Current rate recommendations in KS are too low to maintain 

STK levels, indicating that their crop removal rates may also be underestimates 

(Matz, 2012). In IL, the opposite is true—a survey of grain at elevators indicated 

that potassium crop removal estimates are too high (Nafziger, 2017). Arkansas 

fertilizer response trials indicate that current recommendations predict that more 

fields will respond to fertilizer than are responsive, leading to many “false 

positive” recommendations for both soybeans and rice (Fryer, Slaton, Roberts, 

Hardke, et al., 2019; Fryer, Slaton, Roberts, & Ross, 2019). Wisconsin has not 

extensively reevaluated their soybean fertilizer recommendations in at least 3 

decades. Evaluating the efficacy of current potassium recommendations in the 

state is important to maintaining soybean yields and profitability for farmers 

throughout the state.  
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Chapter 2: Analyzing Historic Management Records to 

Evaluate the Soil Test Potassium – Soybean Grain 

Yield Relationship 

Abstract  

 Potassium is a critical nutrient for plant growth and soybean production, 

and potassium availability can vary based on the physical and chemical soil 

properties. The objectives of this study were to (1) estimate the yield-maximizing 

(YMK) soil test potassium (STK) level for soybeans in the study area and (2) 

determine whether the YMK varies across the study area in relation to 

management or environmental factors. A database of yield maps, management 

history, and soil test results was collected from fields in southern WI, totaling 

1080 observations. Quantile regression was used to estimate the YMK across all 

observations in the database, which was 76 ppm.  Variables of interest (VOI) that 

may be associated with differences in YMK value were identified and used to 

cluster the database into two groups per each identified variable of interest. The 

YMK was estimated for each cluster, and higher YMK was associated with lower 

buffer pH, lower organic matter, higher normal height, and lower temperature. 

Normal height is a scaled measure of elevation where locations with higher 

normal height are at higher elevations. When planning future trials to update 

nutrient management recommendations, placing trials on at sites with different 

organic matter and buffer pH levels could help to better predict the impact of 

potassium fertilizer application on soybean yield and STK levels.  
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Abbreviations 

Available water storage, AWS; cation exchange capacity, CEC; diammonium 

phosphate, DAP; digital elevation models, DEM; national commodity crop 

productivity index, NCCPI; soil organic carbon, SOC; soil test potassium, STK; 

variable of interest, VOI; yield-maximizing soil test potassium, YMK 

 

Introduction 

Potassium is a critical nutrient for plant growth and soybean production, 

and soybean fields regularly receive potassium fertilizer application in Wisconsin. 

Soils of different textures and cation exchange capacities have different optimum 

soil test potassium (STK) levels. Current potassium fertilizer recommendations in 

WI classify loamy soils with STK levels of 101-130 ppm as within the optimum 

range, whereas the optimum STK range for sandy soils is lower, only 66-90 ppm 

(Laboksi & Peters, 2012).  

Recommendations state that fields with soil test results within the 

optimum range should replace the nutrients lost through crop removal, or 

approximately 0.023 kg K2O5 per kg of soybean grain. On these fields within the 

optimum range, a yield response to fertilizer application is expected 20% of the 

time. These current WI soybean fertilizer recommendations have not been 

extensively updated or evaluated in at least three decades. These 

recommendations may be agronomically sound, as other states have similar 

recommendations (Culman et al., 2020; Kaiser et al., 2011; A. Mallarino, 2013). 

However, as other states reevaluate their recommendations there is increasing 

evidence that some older fertilizer recommendations may no longer be 

appropriate.  
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The Ohio State University has changed their potassium critical level to 

100 ppm regardless of soil texture or cation exchange capacity (CEC) (Culman et 

al., 2020). Older nutrient management guidelines in OH varied the critical level 

between 88 and 150 ppm based on soil CEC (Vitosh et al., 1995). North Dakota 

State University updated statewide potassium recommendations in 2018 to vary 

between fields based on their ratio of smectite clays to illite clays. Fields with a 

higher percentage of smectite clays have a higher estimated STK critical level  

(Franzen, 2018; Franzen & Bu, 2018). In Arkansas, current fertilizer 

recommendations predict that a higher percentage of soybean fields will respond 

to potassium application than has been observed through recent field trials, 

which suggests that current state nutrient management guidelines lead to 

fertilizer being applied to fields that are unlikely to respond to fertilizer application 

(Fryer, Slaton, Roberts, Hardke, et al., 2019; Fryer, Slaton, Roberts, & Ross, 

2019). 

Reevaluating nutrient management recommendations in Wisconsin helps 

ensure profitability for soybean farmers under current crop management 

conditions and a changing climate. Factors such as crop rotation, tillage, texture, 

CEC, pH, minerology, and terrain may impact K need (Buczko et al., 2018; 

Conway et al., 2018; Culman et al., 2020; D. W. Franzen & Bu, 2018; 

Kuchenbuch & Buczko, 2011; Vitosh et al., 1995). Evaluating recommendations 

using traditional small-plot trials would be time intensive and costly, and it would 

limit the number of environmental covariates investigated. 

In this trial we use a novel data mining approach to understand which 

environmental factors impact the relationship between soybean yield and soil test 

potassium. The objectives of this study were to (1) estimate the yield-maximizing 

STK level for soybeans in the study area and (2) determine whether the yield-
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maximizing STK level varies across the study area in relation to management or 

environmental factors.  

 

Methods 

Data Collection 

 Nutrient management plans, soybean yield maps, soil test results, and 

variable rate application prescriptions for lime, diammonium phosphate (DAP), 

and potassium chloride (potash) were collected from farmers through their local 

co-op, which manages the custom fertilizer and pesticide applications for the 

fields included in this study. Yield data were collected between 2014 and 2018, 

and management data were collected from 2013 through 2018. Soil test 

potassium and soil test phosphorous were measured using Bray extraction 

methods, and other soil properties were measured using methods in accordance 

with (Eliason et al., 2015).  

 The 1/3 arc-second resolution digital elevation models (DEMs) were 

downloaded from USGS National Map for the entire study region (USGS, 2019). 

Additional terrain properties, listed in Table 2.1, were calculated from the DEMs 

using the SAGA plugin for QGIS (QGIS Development Team, 2020).  

 

Table 2.1. Definitions of the terrain properties used in this study. All terrain properties 
were calculated from 1/3 arcsecond digital elevation models (DEMs).  

Terrain Property Description Reference 

Elevation 

Vertical distance from sea level, 
calculated from a digital elevation 

model that represents the surface of 
the earth 

(Hengl et al., 2007) 

Slope Rate of change of elevation (Peckham, 2011) 

Aspect 
Cardinal direction, measured in 

degrees, that the prevailing slope 
faces 

(Peckham, 2011) 
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Hillshade 

Measure of how much light hits the 
soil surface when the light originates 
from the northwest at an azimuth of 

45◦ from Earth’s surface 

(Conrad, 2015) 

Slope Height 
Measure of elevation compared to 
the lowest point within its channel 

network 
(Conrad, 2015) 

Midslope Position 
Identifies the mean elevation within 

a channel network 
(Conrad, 2015) 

Valley Depth 
Measure of elevation at a certain 

location as compared to the highest 
ridge within its channel network 

(Conrad, 2015) 

Standard Height 
Rescales elevation within a 

neighborhood such that mean = 0 
and a standard deviation = 1 

(Conrad, 2015) 

Normal Height 
Rescales elevation within a 

neighborhood so that all values fall 
between 0 and 1 

(Conrad, 2015) 

Length and 
Steepness Factor 

A value that combines a slope’s 
total length with its steepness to 

estimate erosion 
(Conrad, 2015) 

General Curvature 
Difference between profile curvature 

and plan curvature 
(Conrad, 2015) 

Minimum 
Curvature 

Smallest value of curvature in any 
plane at that location 

(Geomorphic 
Curvature, 2021; 

Olaya, 2009) 

Maximum 
Curvature 

Largest value of curvature in any 
plane at that location 

(Geomorphic 
Curvature, 2021; 

Olaya, 2009) 

Plan Curvature 

Measure of concavity (rate of 
change of slope) along the contour 
line, also described as change of 

surface aspect 

(Blaga, 2012; 
Geomorphic 

Curvature, 2021; 
Peckham, 2011) 

Profile Curvature 
Measure of concavity (rate of 

change of slope) along the same 
direction as the steepest slope 

(Conrad, 2015; 
Geomorphic 

Curvature, 2021) 

Tangential 
Curvature 

Measure of concavity (rate of 
change of slope) perpendicular to 

the direction of steepest slope 
(Blaga, 2012) 

Longitudinal 
Curvature 

Measure of concavity along the 
plane normal to both slope and 

aspect direction 

(Geomorphic 
Curvature, 2021) 

Cross Curvature 
Measure of concavity along the 

plane normal to slope and 
perpendicular to aspect direction 

(Geomorphic 
Curvature, 2021) 

Flow Line 
Curvature 

Describes the rate of flow line 
twisting along the horizontal plane; 
also known as streamline curvature 

(Wu et al., 2020) 

Total Curvature 
Sum of the second derivative of 

elevation in the horizontal plane and 
two planes normal to the horizontal 

(Conrad, 2015; 
Minár et al., 2020) 

Topographic 
Wetness Index 

An index that incorporates slope, 
upstream drainage area, and width 

of the upstream area 
(Conrad, 2015) 
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Soil map unit data for the state of Wisconsin, including available water 

storage (AWS), soil organic carbon (SOC), national commodity crop productivity 

index (NCCPI), maximum rooting depth, soil taxonomy, temperature regime, 

drainage class, and water regime, were downloaded from the gSSURGO 

database using the USDA Geospatial Data Gateway in November, 2021 (USDA 

NRCS, 2021).  

 Monthly total precipitation and average maximum daily temperature were 

downloaded from the Daymet THREDDS server as 1km grid summaries for May 

through August of each year where yield was collected (2014 – 2018) (Thornton 

et al., 2020).  

 

Yield Data Processing 

 Farmers provided their yield data to researchers as shapefiles, after 

performing pre-processing as recommended by their yield monitor and combine 

manufacturers. Pre-processing steps include correcting grain flow, combine 

header-up, and start-pass delays. More information on these types of delays and 

the importance of correcting for them can be found in Simbahan et al. (2004). 

Farmers also provided field boundary shapefiles for each field.  

 Shapefiles of yield data were further processed in two steps in QGIS 

3.4.14 (QGIS Development Team, 2020) to (1) remove yield monitor 

observations within 38 m of the field boundary and (2) remove observations 

where combine speed was outside of 3 standard deviations of the field average 

or yield was outside of 4 standard deviations of the field average.  

Tenth-hectare (0.1 ha) squares were centered over each grid soil 

sampling location. Mean yield and mean fertilizer application rate was calculated 
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within each square. Values for terrain attributes, temperature, and precipitation 

were also averaged within each 0.1 ha square. 

  

Database Structure 

 Each location in this database has soil test potassium measured at 

exactly one timepoint, and between one and four years of soybean yield data. 

The database is formatted so that each observation (row) is a single yield 

observation, and multiple observations (rows) correspond to the same physical 

location in space. Both, the calendar year soil sampling and yield data was 

collected and were included as independent variables (columns) in this database. 

Management decisions including fertilizer application and tillage are coded within 

the database based on their proximity in time to the yield data collection. For 

instance, three columns in this database are yield (Yield), year of yield 

observation (Yield Year), and potash application in the fall immediately preceding 

the yield observation (Potash_YY). A yield observation that took place in 2016 

would have fall 2015 potash rates in column Potash_YY, and a yield observation 

that took place in 2017 would have fall 2016 potash rates in column Potash_YY. 

For all variables, the suffix “_YY” indicates that the management took place 

during the same growing season as the yield observation or in the immediately 

preceding fall. The suffix “_YYM1” indicates that the management practice took 

place one year before management practices in columns with the suffix “_YY.” 

Similarly, the suffixes “_YYM2” and “_YYM3” indicate management practices 

from 2 or 3 years, respectively, before practices in columns with the suffix “_YY.” 

Temperature and precipitation data was only included for the year of each yield 

observation, not previous growing seasons.  
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 There are 1080 observations in the complete database. In total, the 

database included 76 continuous variables (pH, buffer pH, soil test potassium, 

soil test phosphorous, soil test calcium, soil test magnesium, soil cation 

exchange capacity, soil sampling year, organic matter loss on ignition, soybean 

yield, year yield was collected, year soil samples were collected, multi-year 

average soybean yield, Lime_YY, Lime_YYM1, Lime_YYM2, Lime_YYM3, 

Lime_YYM4, DAP_YY, DAP_YYM1, DAP_YYM2, DAP_YYM3, DAP_YYM4, 

Potash_YY, Potash_YYM1, Potash_YYM2, Potash_YYM3, Potash_YYM4, 

StarterFertilizer_YY, StarterFertilizer_YYM1, StarterFertilizer_YYM2, elevation, 

slope, aspect, hillshade , slope height, midslope position, valley depth, standard 

height, normal height, length and steepness factor, general curvature, minimum 

curvature, maximum curvature, plan curvature, profile curvature, tangential 

curvature, longitudinal curvature, cross curvature, flow line curvature, total 

curvature, terrain wetness index, latitude, longitude, available water storage 

(AWS) 0-5 cm, AWS 5 -20 cm, AWS 20-50 cm, AWS 50-100 cm, AWS 0-20 cm, 

AWS 0-30 cm, AWS 0 -100 cm; AWS 0 – 999cm, soil organic carbon (SOC) 0-

5cm, SOC 5-20 cm, SOC 20-50 cm, SOC 50 -100 cm, SOC 0-20 cm, SOC 0-30 

cm, SOC 0-100 cm, SOC 0 – 999 cm, NCCPI corn, NCCPI soybean, NCCPI 

small grains, maximum rooting depth, summer precipitation, summer 

temperature), ten binary variables (recent tillage; FallTillage _YY, 

FallTillage_YYM1, FallTillage_YYM2, FallTillage_YYM3, FallTillage_YYM4, 

SpringTillage_YY, SpringTillage_YYM1, SpringTillage_YYM2, 

SpringTillage_YYM3), and 20 categorical variables (rotation, map unit, farmer, 

Crop_YYM1, Crop_YYM2, Crop_YYM3, Crop_YYM4, , drainage class, 

taxonomic class, taxonomic order, taxonomic suborder, taxonomic great group, 

taxonomic subgroup, taxonomic particle size, taxonomic particle size mod, 
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taxonomic CEC activity class, taxonomic reaction, taxonomic temperature class, 

taxonomic moisture class, taxonomic temperature regime).  Note that starter 

fertilizers include any combination of P, K, or N applied at plant, and NCCPI 

stands for national commodity crop productivity index. 

   

Analysis Methods 

Fourteen observations where STK values fell outside of three standard 

deviations from the database mean STK and were removed from further 

analysis. 1066 observations remained in the database for analysis after outlier 

removal (Figure 1). For binary and categorical variables, independent variables 

where 90% or more of fields had the same treatment were excluded from further 

analysis. Excluded variables include rotation, Crop_YYM2, Crop_YYM3, 

Crop_YYM4, FallTillage_YYM2, FallTillage_YYM3, FallTillage_YYM4, 

SpringTillage_YY, SpringTillage_YYM1, SpringTillage_YYM2, 

SpringTillage_YYM3, taxonomic particle size mod, taxonomic reaction, 

taxonomic temperature class, taxonomic moisture class, taxonomic temperature 

regime.  
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Figure 2.1. Map of Rock and Walworth counties in southern Wisconsin with locations of 
database observations shown as dark grey makers.  

Data analysis in this trial included four main steps: (1) estimating the 

yield-maximizing STK (YMK) value across all observations in the database, (2) 

identify variables of interest that may be associated with differences in YMK 

value, (3) cluster the database into two groups for each identified variable of 

interest, and (4) estimate the YMK for each cluster of observations to determine 

which variables of interest were associated with differences in YMK.  

Quadratic regression and boundary regression analysis were performed 

using quantile regression (95th percentile) to determine the relationship between 

soybean yield and STK. Boundary regression analyses, including quantile 

regression, are useful tools for understanding the yield-STK relationship in data 

sets without treatment effects since they can reduce the effect of other 

environmental factors on yield and better identify the impact of a single 

environmental factor on yield in a complex data set with many potential yield-

limiting conditions (Cade & Noon, 2003; Lark et al., 2020). The x-coordinate of 

the maxima of the regression line was considered the YMK, and quantile 
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regressions were calculated in R 4.1.2 using the package quantreg (Koenker et 

al., 2022; R Core Team, 2021).  

Conditional inference (CI) trees and random forest (RF) analysis were 

used to identify variables of interest that may be associated with differences in 

YMK. Six models were run via both CI trees and RF analysis to identify and rank 

variables that may have an impact on yield and potassium availability (Table 2.2). 

Models were selected based on the categories of independent variables, where 

model A includes all possible independent variables, model B includes all 

independent variables except latitude and longitude, model C includes only 

independent variables originally sourced from the gSSURGO database, model D 

includes only independent variables related to elevation and terrain, model E 

includes only independent variables from soil test results, and model F includes 

independent variables related to management history. Using multiple models and 

two different methods allowed us to better identify variables that had a consistent 

impact on yield, without the effect of the most important handful of variables 

masking the effect of independent variables that had a smaller but consistent 

association with yield and reduced the impact individual algorithms on the 

variable selection process.  

Table 2.2. Models used for variable selection via conditional inference trees and random 
forest analysis. The dependent variable for all models was soybean yield. 

Model Independent Variables 

A pH, buffer pH, soil test potassium, soil test phosphorous, soil test calcium, 
soil test magnesium, soil cation exchange capacity, soil sampling year, 

organic matter loss on ignition, soybean yield, year yield was collected, year 
soil samples were collected, multi-year average soybean yield, Lime_YY, 

Lime_YYM1, Lime_YYM2, Lime_YYM3, Lime_YYM4, DAP_YY, DAP_YYM1, 
DAP_YYM2, DAP_YYM3, DAP_YYM4, Potash_YY, Potash_YYM1, 
Potash_YYM2, Potash_YYM3, Potash_YYM4, StarterFertilizer_YY, 

StarterFertilizer_YYM1, StarterFertilizer_YYM2, elevation, slope, aspect, 
hillshade , slope height, midslope position, valley depth, standard height, 
normal height, length and steepness factor, general curvature, minimum 

curvature, maximum curvature, plan curvature, profile curvature, tangential 
curvature, longitudinal curvature, cross curvature, flow line curvature, total 

curvature, terrain wetness index, latitude, longitude, available water storage 
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(AWS) 0-5 cm, AWS 5 -20 cm, AWS 20-50 cm, AWS 50-100 cm, AWS 0-20 
cm, AWS 0-30 cm, AWS 0 -100 cm; AWS 0 – 999cm, soil organic carbon 
(SOC) 0-5cm, SOC 5-20 cm, SOC 20-50 cm, SOC 50 -100 cm, SOC 0-20 
cm, SOC 0-30 cm, SOC 0-100 cm, SOC 0 – 999 cm, NCCPI corn, NCCPI 

soybean, NCCPI small grains, maximum rooting depth, summer precipitation, 
summer temperature, recent tillage, map unit, farmer, FallTillage _YY, 
FallTillage_YYM1, drainage class, taxonomic class, taxonomic order, 

taxonomic suborder, taxonomic great group, taxonomic subgroup, taxonomic 
particle size, taxonomic CEC activity class 

B pH, buffer pH, soil test potassium, soil test phosphorous, soil test calcium, 
soil test magnesium, soil cation exchange capacity, soil sampling year, 

organic matter loss on ignition, soybean yield, year yield was collected, year 
soil samples were collected, multi-year average soybean yield, Lime_YY, 

Lime_YYM1, Lime_YYM2, Lime_YYM3, Lime_YYM4, DAP_YY, DAP_YYM1, 
DAP_YYM2, DAP_YYM3, DAP_YYM4, Potash_YY, Potash_YYM1, 
Potash_YYM2, Potash_YYM3, Potash_YYM4, StarterFertilizer_YY, 

StarterFertilizer_YYM1, StarterFertilizer_YYM2, elevation, slope, aspect, 
hillshade , slope height, midslope position, valley depth, standard height, 
normal height, length and steepness factor, general curvature, minimum 

curvature, maximum curvature, plan curvature, profile curvature, tangential 
curvature, longitudinal curvature, cross curvature, flow line curvature, total 
curvature, terrain wetness index, available water storage (AWS) 0-5 cm, 

AWS 5 -20 cm, AWS 20-50 cm, AWS 50-100 cm, AWS 0-20 cm, AWS 0-30 
cm, AWS 0 -100 cm; AWS 0 – 999cm, soil organic carbon (SOC) 0-5cm, 

SOC 5-20 cm, SOC 20-50 cm, SOC 50 -100 cm, SOC 0-20 cm, SOC 0-30 
cm, SOC 0-100 cm, SOC 0 – 999 cm, NCCPI corn, NCCPI soybean, NCCPI 

small grains, maximum rooting depth, summer precipitation, summer 
temperature, recent tillage, map unit, farmer, FallTillage _YY, 

FallTillage_YYM1, drainage class, taxonomic class, taxonomic order, 
taxonomic suborder, taxonomic great group, taxonomic subgroup, taxonomic 

particle size, taxonomic CEC activity class 
C available water storage (AWS) 0-5 cm, AWS 5 -20 cm, AWS 20-50 cm, AWS 

50-100 cm, AWS 0-20 cm, AWS 0-30 cm, AWS 0 -100 cm; AWS 0 – 999cm, 
soil organic carbon (SOC) 0-5cm, SOC 5-20 cm, SOC 20-50 cm, SOC 50 -

100 cm, SOC 0-20 cm, SOC 0-30 cm, SOC 0-100 cm, SOC 0 – 999 cm, 
NCCPI corn, NCCPI soybean, NCCPI small grains, maximum rooting depth, 

map unit, drainage class, taxonomic class, taxonomic order, taxonomic 
suborder, taxonomic great group, taxonomic subgroup, taxonomic particle 

size, taxonomic CEC activity class 
D elevation, slope, aspect, hillshade , slope height, midslope position, valley 

depth, standard height, normal height, length and steepness factor, general 
curvature, minimum curvature, maximum curvature, plan curvature, profile 
curvature, tangential curvature, longitudinal curvature, cross curvature, flow 

line curvature, total curvature, terrain wetness index 
E pH, buffer pH, soil test potassium, soil test phosphorous, soil test calcium, 

soil test magnesium, soil cation exchange capacity 
F year soil samples were collected, multi-year average soybean yield, 

Lime_YY, Lime_YYM1, Lime_YYM2, Lime_YYM3, Lime_YYM4, DAP_YY, 
DAP_YYM1, DAP_YYM2, DAP_YYM3, DAP_YYM4, Potash_YY, 

Potash_YYM1, Potash_YYM2, Potash_YYM3, Potash_YYM4, 
StarterFertilizer_YY, StarterFertilizer_YYM1, StarterFertilizer_YYM2, 
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Conditional inference tree analysis was implemented using the R 

package partykit (Hothorn et al., 2021). The independence-test criterion for splits 

was univariate p value (α = .05). Interior nodes were required to maintain at least 

100 observations. At minimum, terminal nodes included 10 fields. Overfitting was 

prevented by constraining trees at a maximum depth of 10 nodes.  

Random forest analysis was implemented using the R package 

randomForest (Cutler & Wiener, 2022). The number of trees in each RF model 

was 1000, and the number of independent variables are used to generate each 

individual tree was algorithmically tuned for each RF model using the command 

tuneRF within the package randomForest. Random forest analysis can only be 

performed on datasets without missing values. The full data set was reduced to 

only include complete cases using two steps: (1) independent variables that were 

missing for more than 10% of observations were excluded and (2) observations 

that still had missing values were removed (n = 1006, independent variables = 

60). Within each RF model, independent variables were ranked using 

importance, a measure of node purity used for evaluating which independent 

variables contribute to model stability and predictive power.  

The output CI trees and importance rankings from RF analysis were used 

to assign points to independent variables. A variable received a point for every 

time A) it has an importance ranking within 20% of the most important variable 

for that RF model or B) is as an internal node in a CI tree. The top 50% of point-

earning variables were considered variables of interest for paired quantile 

regression analysis.  

K-means clustering was used to separate the database into two clusters 

based on the value of each variable of interest that was identified via CI trees 

and RF analysis. K-means clustering was performed in R 4.1.2 and was run 
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separately for each variable of interest. Variables of interest where k-means 

clustering resulted in a cluster that contains 20% or less than the database 

overall were excluded from further analysis.  

After clustering the database using k-means, quadratic quantile 

regression was used to estimate YMK for each cluster of data, resulting in two 

YMK estimates associated with each variable of interest. When the two YMK 

estimates differed from each other by more than 13 ppm (10% of the current STK 

critical level in WI; Laboski and Peters, 2012), the variable of interest was 

considered to be associated with differences in YMK within the database.  

 

Results 

 Across all observations in the database, the relationship between yield 

and STK for the 95th quantile was described by the parabola Yield = 82 + 

0.03758K - 0.00025K2 (Figure 2.2).  

 

 

Figure 2.2. Scatterplot showing soybean yield at various soil test potassium (STK) levels. 
The red regression line represents the quadratic relationship between yield and STK for 
the 95% quantile of data, and the blue vertical line is at STK = 76 ppm, the yield 
maximizing STK level for this data set. 
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Through conditional inference trees and random forest analysis, 16 

variables of interest were identified, 14 of which were continuous (Table 2.3). 

Two variables that did not have continuous distributions, farmer and recent 

tillage, were summarized separately (Table 2.4).  
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Table 2.3. Mean [max, min] of yield (kg ha-1), soil test potassium (STK; ppm), and the variable of interest (VOI) for each cluster based on 
continuous variables of interest. Where appropriate, the unit for each VOI is listed parenthetically following the VOI, and n denotes the number of 
observations from the total database included in each cluster. For lime and potash variables, the suffix “_YY” indicates that the management took 
place during the same growing season as the yield observation or in the immediately preceding fall. The suffix “_YYM1” indicates that the 
management practice took place one year before management practices in columns with the suffix “_YY.” Similarly, the suffixes “_YYM2” and 
“_YYM3” indicate management practices from 2 or 3 years, respectively, before practices in columns with the suffix “_YY.”     

  Cluster 1 Cluster 2 

Variable of 
Interest 
Category 

Variable of 
Interest (unit) 

n 

Mean 
yield [min 
yield, max 

yield] 

Mean 
STK [min 
STK, max 

STK] 

Mean of 
VOI [min of 
VOI, max 
of VOI] 

n 

Mean 
yield [min 
yield, max 

yield] 

Mean 
STK [min 
STK, max 

STK] 

Mean of 
VOI [min of 
VOI, max 
of VOI] 

Soil Test 
Results 

Buffer pH 
427 4307 

[1412, 
8794] 

118 [41, 
229] 

 6.75 
639 

3985 [951, 
7295] 

113 [35, 
259] 

7.15 

Organic Matter (%) 
432 4411 

[1993, 
8793] 

132 [61, 
259] 

3.71 
634 

4037 [951, 
7303] 

109 [35, 
248] 

2.23 

Year soil samples 
were collected 

848 
4271 [951, 

8793] 
117 [41, 

248] 
2018.03 

218 3868 
[1412, 
5561] 

124 [35, 
259] 

2014.73 

gSSURGO 
Data 

National commodity 
crop productivity 
index—soybean* 

154 
- - - 

912 
- - - 

Terrain 

Flow line curvature* 6 - - - 1060 - - - 

Normal height 
488 

4236 [951, 
8594] 

116 [46, 
242] 

0.25 
578 4063 

[1412, 
8793] 

115 [35, 
259] 

0.76 

Slope height 870 - - - 196 - - - 

Management 

Lime_YY*  125 - - - 941 - - - 

Potash_YY(kg ha-1) 
568 

4182 [951, 
8793] 

119 [35, 
248] 

21.72 
498 4196 

[1412, 
7303] 

117 [35, 
259] 

258.18 
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Potash_YYM1(kg 
ha-1) 

817 
4029 [951, 

5991] 
122 [35, 

259] 
22.72 

249 4713 
[2342, 
8793] 

107 [41, 
248] 

264.39 

Potash_YYM2 (kg 
ha-1) 

699 
4263 [951, 

8793] 
122 [35, 

259] 
13.78 

367 4048 
[2230, 
6864] 

111 [35, 
241] 

316.55 

Potash_YYM3* 933 - - - 133 - - - 

Other 

Temperature (°C) 
697 

3937 [951, 
8793] 

119 [35, 
259] 

65306.37 
369 4664 

[2458z, 
7303] 

117 [55, 
240] 

69163.69 

Year of yield 
observation 

702 
4167 [951, 

7303] 
116 [35, 

248] 
2016.82 

364 4233 
[1412, 
8793] 

122 [35, 
259] 

2014.58 

* Denotes variables of interest where one cluster contains 20% or less of the overall database, and these variables of interest were 

excluded from further analysis 

 

 



42 
 

 

Table 2.4. Mean [max, min] of yield (kg ha-1) and soil test potassium (STK; ppm), for each 
cluster based on the categorical variables of interest, farmer and recent tillage. n denotes 
the number of observations from the total database included in each cluster.  

Cluster for 

categorical variables 

of interest 

n Mean yield [min 

yield, max yield] 

Mean STK 

[min STK, 

max STK] 

Farmer H Cluster 240 4654 [1993, 7303] 115 [41, 248] 

Farmer L Cluster 328 3767 [1412, 5991] 101 [35, 224] 

Farmer M Cluster 344 3983 [2369, 5542] 135 [55, 259] 

No-Till Cluster 298 4054 [951, 7010] 122 [55, 248] 

Tilled Cluster 604 4369 [1412, 8793] 117 [35, 259] 

 

 The quantile regressions for VOI had YMK values that varied by cluster, 

although not all clusters had a quadradic regression with a maxima value for 

estimating YMK. For the VOI with only one cluster that has a YMK value, the 

YMK value of the cluster was compared to the YMK value for the dataset overall.  

 The fields with higher buffer pH (Cluster 2; Figure 2.3 Panel D) had a QR 

model without a yield maximizing STK value. However, fields with lower pH 

(Cluster 2; Figure 2.3 Panel E) had a 46 ppm higher YMK than the dataset 

overall (Figure 2.2). The fields with higher organic matter (Cluster 1; Figure 2.3 

Panel B) had an 11 ppm lower YMK than the fields with lower organic matter 

(Cluster 2; Figure 2.3 Panel E). Both YMK values for organic matter clusters 

were within 10 ppm of the YMK for the database overall. The YMK for 

observations where STK was measured in 2017 – 2019 was 113 ppm (Cluster 1; 

Figure 2.3 Panel C), and the YMK for STK observations where was measured in 

2014-2016 had a YMK of 173 ppm (Cluster 2, Figure 2.3 Panel F).  
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Figure 2.3. Scatterplot showing soybean yield at various soil test potassium (STK)levels 
for different clusters of data. Cluster information can is available in Table 1. The red 
regression line represents the quadratic relationship between yield and STK for the 95% 
quantile of data, and the blue vertical line is the yield maximizing STK level (YMK) for this 
data set. 

 

Normal height is a terrain metric that compares elevation at a given raster 

cell to neighboring measures of elevation, and locations with lower normal height 

represent the low-elevation locations within a field (Conrad, 2015). Lower normal 

height (Cluster 1; Figure 2.4 Panel A) was associated with a 31 ppm lower YMK 

than higher normal height (Cluster 2; Figure 2.4 Panel B).  
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Figure 2.4. Scatterplot showing soybean yield at various soil test potassium (STK)levels 
for the two clusters of data determined by normal height, a terrain characteristic. Cluster 
information is available in Table 1. The red regression line represents the quadratic 
relationship between yield and STK for the 95% quantile of data, and the blue vertical line 
is the yield maximizing STK level (YMK) for this data set. 

 The YMK for Farmer M was 58 ppm, and for Farmer L it was 201 ppm 

(Figure 2.5). Due to the shape of the parabola for Farmer H, a YMK could not be 

calculated.  
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Figure 2.5. Scatterplot showing soybean yield at various soil test potassium (STK) levels 
for the clusters of data determined by Farmer. Cluster information can is available in 
Table 1. The red regression line represents the quadratic relationship between yield and 
STK for the 95% quantile of data, and the blue vertical line is the yield maximizing STK 
level (YMK) for this data set. 

 The YMK for no-till locations it was 143 ppm, and for tilled locations was 

119 ppm (Figure 2.6, Panels A and B, respectively). Approximately 160 locations 

did not have tillage information, so not all observations in the database are 

encompassed by these two figures. Additional information about the number and 

distribution of observations is available in Table 2.2.  
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Figure 2.6. Scatterplot showing soybean yield at various soil test potassium (STK) levels 
for the clusters of data determined by past potash application and recent tillage. Cluster 
information is available in Table 1. The red regression line represents the quadratic 
relationship between yield and STK for the 95% quantile of data, and the blue vertical line 
is the yield maximizing STK level (YMK) for this data set. 

 For potash application in the fall immediately preceding yield data 

collection (YY), YMK at low potash locations (Cluster 1; Figure 2.6 Panel C) was 

132 ppm, which is much higher than the YMK for the dataset overall (Figure 2.2). 

YMK could not be calculated for higher potash locations (Cluster 2; Figure 2.6 

Panel D). When higher rates of potash were applied two falls preceding yield 

data collection (YYM1), the calculated YMK was 160 ppm (Cluster 2; Figure 2.6 
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Panel F)—nearly double the YMK of the dataset overall. YMK could not be 

calculated for fields with lower potash application (Cluster 1; Figure 2.6 Panel E).  

 Fields with lower potash application 3 falls before yield data collection 

took place (YYM2; Cluster 1; Figure 2.6 Panel G) have a YMK estimate of 121 

ppm. For fields with higher potash application in that year, YMK was estimated to 

be 13 ppm. Since the lowest value of STK in this dataset was 35 ppm, the YMK 

estimate of 13 ppm would be extrapolation and is not considered an accurate 

estimate of YMK (Cluster 2; Figure 2.6 Panel H).  

 

Figure 2.7. Scatterplot showing soybean yield at various soil test potassium (STK) levels 
for the clusters of data determined by temperature and year of yield observation. Cluster 
information is available in Table 1. The red regression line represents the quadratic 
relationship between yield and STK for the 95% quantile of data, and the blue vertical line 
is the yield maximizing STK level (YMK) for this data set. 

 The difference in cumulative summer temperature between Cluster 1 and 

Cluster 2 was less than 5% (Table 1). The YMK of cluster one, which had lower 

temperatures, was 152 ppm (Figure 2.7, Panel A). Yield observations that were 

collected in 2014-2016 also had a YMK of 152 ppm (Cluster 2; Figure 2.7, Panel 

D). The trends in temperature and year were likely similar due to annual trends in 

weather being a larger driver than spatial variation in temperature across the 

fields in this study.  
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Discussion 

 The YMK in this data set was slightly lower than the current soil test 

critical level in WI, which indicates that reviewing the critical level may be 

appropriate for the state. In this data set, environmental conditions that were 

associated with higher YMK include lower buffer pH, lower organic matter, higher 

normal height, and lower temperature. Most fields in this study had well-managed 

pH and had received lime in the last five years, so changes in pH management 

strategies are unlikely to change YMK. The differences in YMK between 

observations with different buffer pH levels are likely more related to variations in 

clay content and other physical properties that resist pH change than it is to pH 

concentration or lime history. The temperature range in this data set was narrow, 

and the inverse relationship between YMK and temperature may be different at 

temperatures higher or lower than those represented in this data set. Tilled fields 

had a lower YMK than no-till fields, which may be related to no-till fields having 

higher potassium ion concentration in shallow soil samples.  

 Lower potash application in the fall immediately preceding yield data 

collection (YY) was associated with higher YMK than the dataset overall, and 

higher rates of potash two falls preceding yield data collection (YYM1) was also 

associated with higher YMK than the dataset overall. These differences could be 

due to soil sampling timing relative to the yield observations, or due to changes in 

potassium variability based on whether it was applied in the fall immediately 

before soybean or in the fall previous to corn in a corn-soybean rotation. Small 

plot potassium fertilizer timing trials had previously focused on fall vs. spring 
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application, but future studies over multiple growing seasons in WI would be 

valuable when planning nutrient management recommendations.  

Results indicate that quadratic quantile regression is sensitive to changes 

in the input data set and can estimate differences in YMK without overfitting 

issues. Only one of the YMK estimates agronomically improbable (Figure 6 Panel 

H) at 13 ppm. Given that this database did not include sandy soils, the actual 

YMK is likely much higher. Even so, the fact that only one YMK estimate was 

unreasonable is a good indication that analysis through quadratic quantile 

regression is a promising method.  

 As is common with data sets that are collected without imposing 

treatments, it is difficult to separate the effect of different environmental 

conditions or management practices that are observed together. For instance, it 

is difficult to separate the impact of soil sampling year from the impact of specific 

fields being sampled at different intervals. A good example of this is the 

clustering variable Farmer (Figure 5), which is unlikely to be biologically 

important on its own, but clustering fields based on Farmer also groups fields 

based on management practices such as their year of soil sampling and whether 

pH was addressed with a single large lime application or multiple years of smaller 

lime applications. Additionally, Farmer can be a proxy for unmeasured variables 

that can impact data quality (e. g. combine operator, soil sampler, and yield 

monitor) and variables not measured that impact yield but not necessarily data 

quality (e. g. preferred herbicide program and brand of seed). These are common 

challenges with observational data analysis and emphasize the importance of 

follow up field trials to determine which of the associations identified in this study 

are due to causal relationships between environmental and management factors 

and the YMK.  
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Conclusions 

Yield maximizing STK level was 76 ppm across this data set in southern 

WI, or around half of the current soil test critical level in WI. Differences in YMK 

were associated with soil and terrain properties such as buffer pH, organic 

matter, and normal height, which indicates that the critical level may not be 

consistent across the whole state. Fields with a higher YMK may respond to 

potassium fertilizer applications when STK is at a higher concentration than fields 

with a lower YMK. On high-YMK fields, applying potassium fertilizer rates lower 

than crop removal rates may lower yields, even if STK is in the above-optimum 

range. When planning future trials to update nutrient management 

recommendations, placing trials on at sites with different organic matter and 

buffer pH levels could help to better predict the relationship between soybean 

yield and STK application on fields that receive potash applications.  
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Chapter 3: Field Evaluation of Soybean Response to 

Potassium Fertilizer 

Abstract 

Potassium fertilization is critical for soybean production in southern WI. 

On-farm potassium rate trials were established at 3 sites in southern WI during 

the 2021 growing season to compare soybean yield between treatments of 0 or 

213 kg ha-1 potash (potassium chloride; 0-0-60). Yield did not differ between 

treatments or sites. Analysis via the Cate-Nelson procedure indicated that the 

critical K concentration in soybean leaf tissue was 2.04%. The relationship 

between soil test results from Bray-1 extraction and Mehlich-3 extraction for silty 

loam soils was represented by the linear regression line Bray = 0.77 * Mehlich - 

0.75. The estimated soil test potassium critical level for soybean was 15 ppm 

lower than is currently recommended in WI nutrient management guidelines, 

which indicates that potassium fertilizer is being spread on some soybean fields 

that may have a low response or nonresponse to potash fertilizer application. 

These results suggest that a larger review of nutrient management guidelines 

would be timely in the state, especially as fertilizer costs continue to rise. 

 

Abbreviations 

Cation exchange capacity, CEC; soil test potassium, STK 

 

Introduction 

 Potassium (K) is a critical nutrient for plant growth and supports 

transpiration and other plant functions (Tisdale et al., 1985). Soybean plants 
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uptake K primarily from the soil solution, and nutrients are removed from the field 

with the soybean grain at harvest. Without adequate fertilization, available 

nutrients in the soil will become depleted over time (Tisdale et al., 1985).  

Current K fertilizer recommendations in WI classify loamy soils with soil 

test potassium (STK) levels of 101-130 ppm as within the optimum range. The 

optimum STK range for sandy soils is 66-90 ppm in WI (Laboksi & Peters, 2012). 

Within the optimum range, a yield response to fertilizer application is expected 

20% of the time. Recommended fertilizer rates for fields within the optimum soil 

test range are expected to replace the nutrients lost through crop removal, or 

approximately 0.023 kg K2O5 per kg of soybean grain (Laboksi & Peters, 2012).  

Wisconsin fertilizer guidelines have not been extensively evaluated or 

updated in at least three decades (Laboksi & Peters, 2012). Many states have 

similar recommendations, including OH, IN, MI, IA, MN, and ND, although WI is 

the only US state that recommends using Bray-1 extraction methods to measure 

STK (Franzen, 2018; Fulford & Culman, 2018; Kaiser et al., 2011; Laboksi & 

Peters, 2012; Mallarino, 2013).  

Three US states have found that some fertilizer application 

recommendations that were effective when recommendations were written may 

no longer be appropriate due to changes in STK critical level. The Ohio State 

University has changed their potassium critical level to 100 ppm regardless of 

soil texture or cation exchange capacity (CEC), and now recommends using 

Mehlich-3 extraction to analyze soil samples (Culman et al., 2020). Older nutrient 

management guidelines in OH varied the critical level between 88 and 150 ppm 

based on soil CEC and used ammonium acetate extraction for analyzing soil 

samples (Vitosh et al., 1995). North Dakota State University updated statewide K 

recommendations in 2018 to vary between fields based on the ratio of smectite 
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clays to illite clays. Fields with a higher percentage of smectite clays have a 

higher estimated STK critical level (Franzen, 2018; Franzen & Bu, 2018). 

In Arkansas, current fertilizer recommendations predict that a higher 

percentage of soybean fields will respond to K application than has been 

observed through recent field trials, which suggests that current state nutrient 

management guidelines lead to “false positive” K fertilizer application 

recommendations (Fryer, Slaton, Roberts, Hardke, et al., 2019; Fryer, Slaton, 

Roberts, & Ross, 2019).  

 The objectives of this research were to (1) calculate the soil test K critical 

level for soybean production in southern WI, (2) calculate the difference in critical 

level between soil samples extracted with Bray-1 and Mehlich-3 extraction, and 

(3) estimate the critical K concentration for soybean leaf tissue. 

 

Methods 

Field Trial Design 

 Field trials were established at three Rock County, WI sites in 2020 for 

growing season 2021. All sites were established on silty loam soils, and the 

number of replications varied based on field size (Table 3.1).  

 

Table 3.1. Soil properties and number of replications for each site.  

 Site A Site B Site C 

Replications 9 5 8 

Predominant Soil 

Series 

Plano Silt 

Loam 

Mahalasville Silt 

Loam 

Plano Silt 

Loam 

Taxonomy 

Fine-silty, 

mixed, 

superactive, 

mesic typic 

Argiudolls 

Fine-silty, mixed, 

superactive, 

mesic typic 

Argiaquolls 

Fine-silty, 

mixed, 

superactive, 

mesic typic 

Argiudolls 
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pH 6.3 6.1 6.1 

Organic Matter (%) 4.1 5.3 4.7 

 

The trial included two treatments: (1) 213 kg ha-1 potash (potassium 

chloride; 0-0-60) application or (2) no potash applied. Plots were arranged in a 

randomized complete block design where all plots were 146 m long. Treatment 

(1) plots (213 kg ha-1 potash applied) were 110 m wide to allow for 3 passes of 

the fertilizer applicator within each plot. Treatment (2) plots (no potash applied) 

were 37 m wide (Figure 3.1).  

 

Figure 3.1. Field map showing 8 replications of the 2-treatment potash trial layout at Site 
C. Plot size and fertilizer applicator pass width were the same at all sites.  

Potash was applied in November 2021 using a commercial 37 m spinner 

spreader that is owned and operated by the local co-op. All fields were planted 

within a 76-cm row spacing in the first week of May 2022 by farmer cooperators 

in each field. Site B experienced freeze damaged 4 weeks after planting and was 

replanted in the first week of June. Farmer cooperators managed each field with 
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herbicides and crop protectant products throughout the season. All replications 

within the same field received the same pesticide applications. 

In November 2021, composite soil samples were collected from two 

locations within every plot before fertilizer was applied (Figure 3.2). Each 

composite sample included 10, 1.9-cm wide, 20.3-cm deep soil cores. Soil 

samples were air dried and shipped to A&L Great Lakes Laboratories in Fort 

Wayne, IN for analysis. Soil test potassium was measured using both Bray-1 and 

Mehlich-3 extraction methods. Organic matter was measured using loss-on-

ignition. Full method details can be found in the Recommended Chemical Soil 

Test Procedures for the North Central Region (Eliason, et al., 2015).  

 

Figure 3.2. White circles represent the two soil and tissue sampling locations within each 
plot. 

Tissue samples were collected at the R1 growth stage at each of the 

locations used for soil sampling. At each sampling location, the newest fully-

expanded trifoliate leaf was collected from 20 plants. Samples were dried in 
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paper bags (dryer temperature 38–54 ˚C) until constant mass was achieved and 

shipped to A&L Great Lakes Laboratories for nutrient concentration analysis.  

 

Yield Data Collection 

 Yield data were collected by farmer cooperators using combine-mounted 

yield monitors with moisture sensors, and moisture values were used to adjust 

wet yield measurements to 130 g kg-1 moisture concentration. Farmers exported 

the data as a shapefile to share with researchers. Yield monitor flow delays were 

set during the export process and visually verified when the shapefile was 

opened in QGIS3 for further processing (QGIS Development Team, 2020). Yield 

observations that fell within 30.5 m of the field boundary were removed from 

further analysis, and further filtered to remove yield observations that were 

outside of three standard deviations of combine speed or dry yield. Less than 3% 

of observations were removed by the standard deviation filters.  

 The mean of yield monitor observations within the center 24 m by 116 m 

of each plot was calculated, and that mean value was used to represent the 

whole plot in further analyses (Figure 3.3). This area is smaller than the full plot 

size so that observations within 6 m of plot borders in the direction of combine 

travel or within 15 m of fertilizer applicator rate changes are not included in the 

plot average yield. This procedure ensures that no yield observations were 

collected from areas with known causes of potassium rate variation (partial rates 

from the spinner-spreader changing rates or from observations falling near the 

outer ranges of the spinner-spreader application width).  
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Figure 3.3. Map of an example field trial with yield monitor observations displayed as grey 
circles. Observations are averaged within the red dashed rectangles to estimate plot 
yields.  

 

Analysis Methods 

  Yield data were collected from 44 plots in total, and data from all sites 

were analyzed together. Mixed-model ANOVA was performed using R 4.1.2 (R 

Core Team, 2021) and the package lme4 to assess yields differed between 

treatments. Treatment and field were considered fixed variables, and replication 

nested within field was considered a random variable. Degrees of freedom were 

estimated using Kenward–Rogers approximation to account for unequal 

replication among fields. Data were not transformed, and residuals were plotted 

to assess for normality.  

 The relationship between Bray-1 and Mehlich-3 extraction was quantified 

using linear regression in R 4.2.1 (R Core Team, 2021). To calculate relative 

grain yield within each replication, the yield of the 0 kg ha-1 potash treatment plot 

was divided by the yield of the fertilized treatment plot within each experimental 

block, and then the quotient was multiplied by 100. Critical STK level and critical 
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tissue K concentration were calculated by comparing relative grain yield to the 

STK and tissue K concentration, respectively, using the Cate-Nelson procedure 

in the package rcompanion (Mangiafico, 2017). Soil test potassium values and 

tissue K concentrations from all four sampling locations within each replication 

were averaged before proceeding with critical STK level and critical tissue K 

concentration calculations. In cases where the Cate-Nelson procedure identified 

more than one critical level that minimizes sum of squares, the highest value was 

selected.  

 

Results and Discussion 

Soybean Yield 

Soybean yield did not differ among sites, nor did yield between potash 

and no potash treatments (Table 3.2) (p = 0.826). Since yield did not vary among 

sites and there was potash treatment by site interaction, data from all sites were 

pooled for subsequent analyses.  

Table 3.2. Analysis of variance to predict difference of yield among potassium rates (K), 
site (S), and their interaction. 

 F-value p-value 

Potassium (K) 0.05 0.826 
Site (S) 3.40 0.056 
K × S 0.12 0.883 

 

Soil Test Results 

 The relationship between STK results from Bray-1 extraction and STK 

results from Mehlich-3 extraction was linear (p < 0.001; Adj. R2 = 0.91). For each 

ppm of K+ ions removed from the soil sample by Mehlich-3 extraction, Bray-1 

removed approximately 0.77 ppm of K+ ions (Figure 3.4).  
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Figure 3.4. Scatter comparing two potassium extraction methods, Bray-1 and Mehlich-3. 

The linear regression line Bray = 0.77 * Mehlich - 0.75 (p < 0.001; Adj. R2 = 0.91) . 

The close correlation between Bray-1 and Mehlich-3 extraction methods 

suggests that in the future, WI nutrient management recommendations could be 

updated to utilize the more common Mehlich-3 test without reducing the accuracy 

of the nutrient management recommendations for silty loam soils with pH 

between 6 and 6.5, which is common in southern WI. Before recommending 

statewide adoption of Mehlich-3 extraction for K, additional studies should be 

performed to determine whether the same linear relationship holds for other soil 

textures or pH levels. 

The soil test critical level, when STK was measured using Bray-1 

extraction procedures, was estimated to be 115 ppm (p = 0.48) (Figure 3.5). This 

is slightly lower than the current critical level 0f 130 ppm for soybean grown on 

loamy soils in WI, but it does fall within the current “optimum” soil test category 

(101-130 ppm) (Laboksi & Peters, 2012). 

When Mehlich-3 extraction was used to measure K concentration, the soil 

test critical level was estimated to be 145 ppm (p = 1). Since Mehlich-3 extraction 
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tended to remove more K+ ions from soil samples than Bray-1 extraction (Figure 

3.4), it makes sense that the estimated critical level was higher when calculated 

using STK values measured using Mehlich-3 extraction procedures.  

 The Cate-Nelson plots for both Bray-1 and Mehlich-3 extraction (Figures 

3.5 and 3.6, respectively) are split into four quadrants. Observations that fall into 

quadrants II or IV (filled circles) are accurately classified in Cate-Nelson plots, 

and observations that are in quadrants I or III (open circles) are considered 

misclassified. Observations in quadrant I suggest increased risk of soybean 

nonresponse to applied potash. Quadrant IV observations suggest increased risk 

that potash would not be applied to responsive soybean. The Cate-Nelson plot 

for Bray-1 samples has six misclassified observations, five of which fall into 

quadrant I and the remaining one in quadrant III. Cate-Nelson plot for Mehlich-3 

samples has five misclassified observations in quadrant I and eight in quadrant 

III.  

 Since the critical level estimate that minimizes sum of squares fell within 

the current optimum category based on current state nutrient management 

guidelines and neither Cate-Nelson plot used to predict STK critical level was 

statistically significant, this trial does not provide evidence that the current STK 

critical level is no longer appropriate for the three sites studied. A larger study 

testing a wider range of environments would be needed to update the guidelines 

or set a new state critical level.  
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Figure 8. Cate-Nelson figure that shows the estimated soil test potassium (STK) Critical 
Level to be 115 ppm for soybeans grown in Southern WI in 2021 (p = 0.481). Soil 
samples were processed using Bray-1 extraction procedures, the current state standard 
in WI. 

 

 

Figure 3.6. Cate-Nelson figure that shows the estimated soil test potassium (STK) Critical 
Level to be 145 ppm for soybeans grown in southern WI in 2021 (p = 1). Soil samples 
were processed using Mehlich-3 extraction procedures, which are the current standard in 
many commercial soil laboratories.  

 

Tissue Nutrient Concentration 

Across these three sites, tissue K concentration varied less than in the 

soil test values. The critical K concentration in soybean leaf tissue was estimated 
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to be 2.04 % (p = 0.004), and all observations were classified into quadrants II 

and IV by the Cate-Nelson plot (Figure 3.7). Current WI nutrient management 

recommendations do not include a critical K concentration for soybean tissue, but 

similar tissue K critical concentrations (15.6 – 19.9 g K kg-1 or 1.56 - 1.99%, 

respectively) were observed by Stammer and Mallarino (2018).  

 

Figure 3.7. Cate-Nelson figure that shows the estimated critical K concentration in leaf 
tissue of 2.04 % for soybeans grown in southern WI in 2021 (p = 0.004).   

 

Conclusions 

 A major limitation of this study is the sample size and variation in field 

properties. Although the three fields included in this study are reflective of 

southern WI soybean growing environments, they are not necessarily reflective 

of the state at large. Soybean grown in the Central Sands region would likely 

have a lower soil test critical level and may have a different relationship between 

STK values measured via Bray-1 and Mehlich-3 extraction.   

The estimated STK critical level for soybean was 15 ppm lower in this 

study than is currently recommended in the WI state nutrient management 

guidelines, which indicates that there may be risk that K fertilizer is being spread 
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on soybean fields that are likely nonresponsive to applied K. A larger review of 

nutrient management guidelines would be timely in the state, especially as 

fertilizer costs continue to rise.  
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Abstract 

It is widely recognized that planting soybean [Glycine max (L.) Merr.] 

early is critical to maximizing yield, but the influence of changing management 

factors when soybean planting is delayed is not well understood. The objectives 

of this research were to (a) identify management decisions that increase seed 

yield in either early- or late-planted soybean scenarios, and (b) estimate the 

https://doi.org/10.1002/agj2.20289
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maximum break-even price of each management factor identified to influence 

soybean seed yield in early- or late-planted soybean. Producer data on seed 

yield and management decisions were collected from 5682 fields planted with 

soybean during 2014−2016 and grouped into 10 technology extrapolation 

domains (TEDs) based on growing environment. A subsample of 1512 fields was 

classified into early and late-planted categories using terciles. Conditional 

inference trees were created for each TED to evaluate the effect of management 

decisions within the two planting date timeframes on seed yield. Management 

strategies that maximized yield and associated maximum break-even prices 

varied across TEDs and planting date. For early-planted fields, higher yields 

were associated with artificial drainage, insecticide seed treatment, and lower 

seeding rates. For late-planted fields, herbicide application timing and tillage 

intensity were related to higher yields. There was no individual management 

decision that consistently increased seed yield across all TEDs.  

 

Abbreviations 

AI, aridity index; AOSR, agronomic optimum seeding rate; CI, conditional 

inference; GDD, growing degree day; POST, post-emergence; PRE, pre-

emergence; RM, relative maturity; RSS, residual sum of squares; RZWHC, 

rhizosphere water holding capacity; ST, seed treatment; TED, technology 

extrapolation domain 

 

Core Ideas 

• Management decisions that increased soybean yield were region specific. 
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• No single management decision consistently increased seed yield across 

the entire study region. 

• Integrated pest management principles should be followed when deciding 

the use of pesticide inputs. 

 

Introduction 

Timely planting of soybean [Glycine max (L.) Merr.] is extremely important 

to maximize seed yield in the north-central United States. Several field 

experiments have shown seed yield reduction when planting date is delayed 

beyond early- to mid-May (Hu & Wiatrak, 2012; Robinson, Conley, Volenec, & 

Santini, 2009). For example, in Iowa, a seed yield reduction of 0.13 Mg ha−1 wk−1 

(−0.02 Mg ha−1 d−1) was observed for soybean planted from early May to late 

May and −0.40 Mg ha−1 wk−1 (−0.06 Mg ha−1 d−1) for planting dates from late May 

to early June (De Bruin & Pedersen, 2008). In Nebraska and Ohio, delayed 

planting after 1 May resulted in yield declines that ranged from −0.02 to −0.04 Mg 

ha−1 d−1 (Bastidas et al., 2008; Hankinson, Lindsey, & Culman, 2015). Apart from 

the aforementioned region-specific studies, a U.S.-wide study estimated a 10% 

increase in yield and approximately US$9 billion in monetary gains could be 

realized if soybean was planted at the optimal time across the United States 

(Mourtzinis, Specht, & Conley, 2019b). 

Recent studies using producer data identified planting date as the most 

important management practice explaining field-to-field variation across regions 

with similar weather and soil condition in the north-central United States 

(Mourtzinis et al., 2018; Rattalino Edreira et al., 2017). These studies showed 

maximum seed yield reductions of −0.34 Mg ha−1 d−1 for each day soybean was 
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planted after the last week of April. In regions where planting date was the most 

important factor influencing soybean yield, additional factors that explained a 

large percentage of field-to-field yield variation were topographic wetness index, 

subsoil pH, row width, foliar fungicide, and foliar insecticide (Mourtzinis et al., 

2018). 

In this study, the dataset described in Mourtzinis et al. (2018), which 

included data from 2014−2015, was expanded to include fields from 2014−2016 

and used to identify agronomic management decisions to optimize soybean yield 

in early- and late-planted situations. However, unlike the previously conducted 

analyses, this work focused on management practices and not factors beyond 

producers’ control such as topographic wetness index and subsoil pH. 

Furthermore, this research provided an estimate of the break-even price point for 

inputs identified as significant predictors of yield. The objectives of this research 

were to: (a) identify management decisions that increase seed yield in early- or 

late-planted soybean scenarios, and (b) estimate the maximum break-even price 

of each management factor identified to influence soybean seed yield in early- or 

late-planted soybean. 

 

Methods 

Data Collection and Database Description 

Between 2014 and 2016, researchers, extension educators, 

and crop consultants from 10 north-central U.S. states (Illinois, Indiana, Iowa, 

Kansas, Michigan, Minnesota, Ohio, North Dakota, Nebraska, and Wisconsin) 

collected data on seed yield and management decisions from 5682 producer 
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soybean fields. The resulting database was described in Rattalino Edreira et al. 

(2017) and Mourtzinis et al. (2018). Self-reported management practices 

included planting date, cultivar relative maturity (RM), seeding rate, row 

width, tillage type, artificial drainage, seed treatments, fertilizer type and amount, 

and lime, manure, and pesticide application. Year-specific conditions such as 

pest pressure, Fe deficiency chlorosis incidence, and weather adversities 

were reported by producers. A few fields with extremely low yield due to 

unmanageable production site adversities (hail, waterlogging, wind, and frost) 

were excluded from the analyses. The procedure to exclude these fields 

consisted of three steps: (a) grouping fields within regions with similar soil and 

climate (further described in Soybean Field Classification), (b) selecting fields 

within the 25th percentile of yield data distribution within each region–year, and 

(c) excluding fields affected by any of the aforementioned adversities reported by 

producers. Fields that were both affected by reported adversities and fell within 

the 25th percentile of yield within their region were excluded from further 

analysis. Fields planted after 15 June that also had wheat (Triticum aestivum L.) 

as a previous crop were removed from further analyses to exclude double crop 

soybean production systems, which are rare in the majority of the study area. 

 

Soybean Field Classification 

Fields were grouped into technology extrapolation domains (TEDs) 

according to growing conditions, as characterized by growing degree days 

(GDDs), aridity index (AI), and root zone water holding capacity (RZWHC). 

Growing degree days is a measure of heat accumulation and is used to predict 

crop development, and it was calculated using a base temperature of 0°C. Aridity 

index is a measure of how dry an area is and is calculated as the ratio of mean 
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annual precipitation and mean annual potential evapotranspiration. Root zone 

water holding capacity is a measure of how much water the soil can hold within 

the rootable depth. More information about TEDs and the calculation of GDDs 

and AI is available in Rattalino Edreira et al. (2018).  

Technology extrapolation domains were selected for this study when 

more than 180 fields were located within a TED, as that number balanced having 

a diversity of environments included while still having a sufficient number of fields 

to detect differences in yield due to management (see more information in 

Section 1.3 Statistical analysis). The 10 TEDs included in this study contained 

1512 of the 5682 total fields. Some soybean-producing regions were not included 

in this study due to an insufficient number of fields.  

The geographic distribution of the 10 TEDs is available in Figure 4.1. The 

six-digit numbers following the TED numbers in the legend of Figure 4.1 are the 

reference numbers to locate these TEDs in the global database at yieldgap.org. 

All TEDs were rainfed except for TED 2, which was irrigated. Within each TED, 

fields were classified as early- or late-planted when falling within the first or the 

third terciles of planting date data distribution, respectively (Table 4.1). Some 

TEDs have a different number of fields in the early- and late-planted tercile due 

to many fields being planted on the first or last day within each timeframe. 
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Figure 4.1. Technology extrapolation domains (TEDs) distributed across the north-central 
U.S. region. The six-digit numbers following the TED numbers are the reference numbers 
to locate these TEs in the global database at yieldgap.org 

 

Table 4.1. Range of planting dates and number of fields for early and late-planted 
soybean fields within each technology extrapolation domain (TED). 
 Early Late  

TED Dates 
Number 
of fields 

Dates 
Number 
of fields 

Minimum 
difference 

between early- 
and late-planted 

fields† 

     days 

1 24 Apr-18 May 65 26 May-14 Jun 71 8 

2 6 Apr-6 May 105 17 May-6 Jul 111 11 

3 21 Apr-14 May 59 22 May-1 Jul 64 8 

4 22 Apr-7 May 79 20 May-30 Jun 85 13 

5 18 Apr-11 May 90 22 May-13 Jun 84 11 

6 17 Apr-8 May 89 21 May-10 Jun 99 13 

7 10 Apr-7 May 54 22 May-23 Jun 59 15 

8 10 Apr-8 May 89 22 May-19 Jun 84 14 

9 29 Apr-15 May 56 26 May-16 Jun 62 11 

10 26 Apr-16 May 53 25 May-15 Jun 54 9 

†Minimum difference between early and late-planted fields is the number of days 
between the last early-planted field and the first late-planted field. 
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Statistical Analysis 

To explore the relationship between seed yield and management 

decisions within the two planting date timeframes, two conditional inference (CI) 

trees were created for each TED−one for early-planted fields and one for 

lateplanted fields (Table 2). Conditional inference trees were used to identify and 

visualize interactions among independent variables with less risk of overfitting 

than other recursive decision tree algorithms (Hothorn, Hornick, & Zeileis, 2006). 

Significance testing was used to perform splits within CI trees, with the lowest p 

value determining each split. The null hypothesis for each split was that the 

dependent variable (seed yield) was independent of the management decision 

variable. 

The above described CI tree analysis was implemented using the 

package partykit within R 3.2.4 statistical software (Hothorn & Zeileis, 2015; R 

Development Core Team, 2016). The independence-test criterion for splits was 

univariate p value (α = .05). Interior nodes were required to maintain at least 33% 

of the data. At minimum, terminal nodes included 10 fields. Overfitting was 

prevented by constraining trees at a maximum depth of 10 nodes. To 

quantify the minimum detectible yield difference given the number of trees used 

to create each CI tree, power analysis was performed using the package pwr 

within R 3.2.4 (Champley et al., 2018). One-way ANOVA tests were performed to 

determine the effect size (f) when the significance (alpha) level was .05 and the 

power level was 0.80. The average standard deviation of yield within each TED 

and planting date timeframe was 0.264 Mg ha−1, and was used to calculate 

minimum detectable difference from the effect size (f). Effect size as measured 

by Cohen’s f is a standardized, unitless measure. Under the range of sample 

sizes present between planting date timeframes and TEDs (Table 1) and the 
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possible unevenness of splits in the CI trees, the effect sizes ranged from 0.27 to 

0.66. After converting f to Cohen’s d, d was divided by standard deviation to 

estimate the minimum detectable difference in-yield. The range of effect size (f) 

of 0.27−0.66 corresponds to a range in minimum detectable difference in yield of 

0.033−0.088 Mg ha−1. 

The following variables were considered binary (yes/no): artificial 

drainage, fungicide seed treatment, insecticide seed treatment, inoculant seed 

treatment, nematicide seed treatment, starter fertilizer (all possible fertilizer 

sources and placements), starter P, foliar fungicide, foliar insecticide, and 

manure application. The following variables were considered categorical: tillage 

(minimal or intense), herbicide (none, pre-emergence only, post-emergence only, 

or both), row width (narrow, medium, or wide), and previous crop (corn [Zea 

mays L.], soybean, wheat, sunflower [Helianthus annuus L.], sorghum [Sorghum 

bicolor L.], cereal rye [Secale cereal L.], sugarbeet [Beta vulgaris L.], popcorn, 

alfalfa [Medicago sativa L.], oat [Avena sativa L.], barley [Hordeum vulgare L.], 

hay, potato [Solanum tuberosum L.], or corn silage) Minimal tillage included no-

tillage, strip-tillage, ridge tillage, or harrow while intense tillage included chisel 

plow, moldboard plow, disk, field cultivator, and/or soil finisher implements. For 

row width, <25 cm, 25−56 cm, and >56 cm were considered, narrow, medium, 

and wide, respectively. Seeding rate and RM were considered continuous 

variables. For each TED and planting date combination, independent variables 

where 90% of fields had the same treatment were excluded from the analysis, 

such as artificial drainage in early-planted fields in TED 2. If the management 

decision for more than half of the fields in a TED was not available from our 

survey form for a particular management decision, the management decision 

was also excluded from analysis, such as inoculant seed treatment in late-
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planted fields in TED 8. A summary of management decisions within each TED 

and planting date timeframe is shown in Table 4.2.
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Table 4.2.  Summary of management decisions within each technology extrapolation domain (TED) for early (E) and late (L) planting timeframes 
displayed as percent of fields with that treatment, except for average seeding rate (1000 seeds ha-1) and average yield (Mg-1). 

  TED 1 TED 2 TED 3 TED 4 TED 5 TED 6 TED 7 TED 8 TED 9 TED 10 

    E † L ‡ E L E L E L E L E L E L E L E L E L 

Artificial drainage 43 23 - § - 20 20 - 75 89 77 80 84 83 71 78 46 66 73 66 80 

Seed 
treatment 

Fungicide 55 68 46 - 59 50 71 69 61 64 71 63 - 59 - 61 - 73 53 56 

 Insecticide 42 46 44 - - 48 63 69 54 61 54 55 - 54 58 49 - 69 49 52 
 Inoculant 65 79 - - - - - - 10 - - - 19 - - - 20 - - - 
 Nematicide - - - - - - 30 26 14 - 24 - 20 - - - - - - - 

Starter 
fertilizer 

Starter fertilizer 28 44 16 - 15 14 - - - - - 10 - 15 - 10 - - 23 22 

 P fertilizer 37 39 - - 14 11 - - - - - - - - - - - - 21 19 

Manure Manure - - - - - - - 14 - 17 - - - - 11 1 14 8 15 2 

Foliar 
application 

Fungicide 12 - 23 - 25 13 20 31 61 19 45 48 65 19 34 - 29 - 26 - 

 Insecticide 40 31 19 - 20 11 19 29 39 29 43 35 61 24 33 21 23 19 19 17 

Average seeding rate (1,000 
ha-1) ¶ 

420 417 415 408 375 367 366 378 368 378 380 373 385 410 395 395 378 408 395 398 

Row width  Narrow 5 13 4 5 0 0 15 5 9 19 3 6 9 8 18 17 11 23 25 31 
 Medium 78 66 28 7 53 45 38 56 47 39 74 55 57 86 66 77 57 58 58 30 
 Wide 17 20 67 86 46 53 47 39 44 42 22 39 33 5 11 5 32 19 15 39 

Tillage Intense 22 17 16 39 - - 47 - 13 17 20 15 17 25 13 15 20 15 21 20 
 Minimal 35 27 82 57 - - 28 - 64 70 69 80 56 66 56 74 64 65 58 41 

Herbicide 
application 
timing 

PRE + POST 58 37 87 76 - 89 - - 80 74 78 79 83 83 82 89 80 65 57 67 

POST only 22 28 9 14 - 3 - - 20 20 12 13 7 8 15 5 18 29 43 30 

 PRE only 9 1 0 0 - 5 - - 0 6 6 3 0 2 1 6 2 6 0 4 
 None 11 5 5 10 - 3 - - 0 0 4 5 9 7 2 0 0 0 0 0 
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Previous 
crop 

Corn 43 33 93 92 - 80 100 95 91 86 99 93 96 92 92 87 84 85 83 74 

 Soybean 22 13 - - - 2 - - - 4 - - - - - 5 4 13 6 9 

Average yield (Mg ha-1) 
  

2.8 2.4 5 4.7 3.9 3.6 4.5 4 4.3 3.7 4.3 3.7 4.5 4.1 4.3 4 3.8 3.5 3.9 3.6 

† E is for early planted soybean, as determined using the first third of planted soybeans within each TED. 
‡ L is for late planted soybean, as determined using the last third of planted soybeans within each TED. 
§Variable excluded from analysis for that TED and planting date timeframe due to 90% or more of fields being treated 
identically or greater than 50% of fields not having adequate data for that particular variable. 
¶Average seeding rate for each TED and planting date timeframe is presented in 1,000 seeds ha-1, differing from other 
treatments that are displayed as percentages



79 
 

 

For in-season management decisions that increased yield, the maximum 

break-even price was calculated. The maximum break-even price is the highest 

price a producer can pay for a treatment and still expect a profit, or in other 

words, have a positive return on investment. Grain yield benefit was calculated 

using the CI trees by subtracting the average yield from the node without the 

yield-improving treatment from the average yield from the node with the yield-

improving treatment. Grain yield was multiplied by grain price to calculate the 

maximum break-even price under three different grain price scenarios: $297, 

$333, and $368 Mg−1. These three values represent conservative, but realistic, 

price scenarios, given that between January 2015 and June 2019, the lowest 

observed grain price was $297 Mg−1, and the median observed price was $368 

Mg−1 (USDA NASS, 2019). Costs for implementing each decision includes both 

products and their application. Product costs were estimated in 2017 using a 

phone survey of retailers in the 10 participating states (Illinois, Indiana, Iowa, 

Kansas, Michigan, Minnesota, Ohio, North Dakota, Nebraska, and Wisconsin), 

and application costs were averaged from state custom application budgets. 

 

Results 

Early-planted Fields 

Among early-planted fields, management factors that were associated 

most consistently with changes in soybean seed yield within several TEDs 

included artificial drainage (TEDs 1, 6, and 10), insecticide seed treatment (TEDs 

1, 6, and 10), and seeding rate (TEDs 7, 8, and 10) (Figure 4.2; Table 4.3). In 

TED 6, maximum average seed yield for early-planted soybean was 4.8 Mg ha−1 

and was associated with fields without artificial drainage (Figure 4.2). In TED 1, 
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soybean not treated with insecticide seed treatment yielded 0.39 Mg ha−1 more 

when artificial drainage was present, compared to yields in fields without artificial 

drainage (Table 4.3). There was also an increase in soybean seed yield in TED 

10 when artificial drainage was present (Table 4.3)
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Table 4.3. Summary of conditional inference trees for early and late-planted fields in technology extrapolation domains (TEDs) 1, 2, 3, 4, 5, 7, 9, 
and 10. Bracketed values are the number of fields (n) and average yield (Y, Mg ha−1), and RSS is the residual sum o squares. Conditional 
inference trees did not identify any significant decisions for late-planted fields in TED 3. 

 Early     Late    

TED Decision 1 Decision 2 Decision 3 [n,Y] RSS Decision 1 Decision 2 [n,Y] RSS 

1 
Insecticide ST 

(No) 
-- -- [33, 2.56] -- Starter P (No) -- [43, 2.56] -- 

 -- 
Artificial 

Drainage (No) 
-- [26, 2.51] 3.6 -- 

Fungicide ST 
(No) 

[11, 2.16] 3.4 

 -- 
Artificial 

Drainage (Yes) 
-- [10, 2.90] 2.9 -- 

Fungicide ST 
(Yes) 

[32, 2.62] 6.8 

 
Insecticide ST 

(Yes) 
-- -- [27, 2.96] -- Starter P (Yes) -- [28, 2.18] 11.4 

 -- 
Relative 

Maturity ≤0.9 
-- [17, 2.98] 5.4 -- -- -- -- 

 -- 
Relative 

Maturity >0.9 
-- [12, 3.06] 2.5 -- -- -- -- 

2 
Starter 

Fertilizer (No) 
-- -- [88, 4.91] 18.6 

Herbicide 
(Both) 

-- [84, 4.84] -- 

 
Starter 

Fertilizer (Yes) 
-- -- [17, 5.41] 5.2 -- 

Relative 
Maturity ≤2.7 

[31, 5.02] 3.5 

 -- -- -- -- -- -- 
Relative 

Maturity >2.7 
[53, 4.74] 7.1 

 -- -- -- -- -- 
Herbicide 
(None or 
POST) 

-- [27, 4.33] 12.2 

3 
Foliar 

Fungicide (No) 
-- -- [44, 3.65] 22.3 -- -- -- -- 

 
Foliar 

Fungicide 
(Yes) 

-- -- [15, 4.63] 6.3 -- -- -- -- 

4 
Relative 

Maturity ≤3 
-- -- [45, 4.33] 7.3 

Relative 
Maturity ≤3.4 

-- [57, 4.10] 11.8 

 Relative 
Maturity >3 

-- -- [34, 4.70] 8.2 
Relative 

Maturity >3.4 
-- [28, 3.79] 15.5 
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5 
Foliar 

Insecticide 
(No) 

-- -- [55, 4.16] 21.5 

Row Width 
(Medium or 

Narrow) † 

-- [49, 3.53] -- 

 
Foliar 

Insecticide 
(Yes) 

-- -- [35, 4.52] 12.0 -- 
Herbicide 

(Both) 
[37, 3.70] 18.0 

 -- -- -- -- -- -- 
Herbicide 

(Post or Pre) 
[12, 2.98] 5.6 

 -- -- -- -- -- 
Row Width 

(Wide) 
-- [35, 4.00] 10.9 

7 
Seeding Rate 

≤403k 
seeds/ha 

-- -- [36, 4.81] 19.7 
Seeding Rate 

≤358k 
seeds/ha 

-- [10, 4.94] 4.3 

 
Seeding Rate 

>403k 
seeds/ha 

-- -- [18, 3.91] 8.5 
Seeding Rate 

>358k 
seeds/ha 

-- [49, 3.97] -- 

 -- -- -- -- -- -- 
Seeding Rate 

≤432k 
seeds/ha 

[33, 4.17] 9.7 

 -- -- -- -- -- -- 
Seeding Rate 

>432k 
seeds/ha 

[16, 3.57] 3.2 

9 
Inoculant ST 

(No) 
-- -- [38, 4.00] -- 

Foliar 
Insecticide 

(No) 
-- [50, 3.42] 22.9 

 -- 
Foliar 

Fungicide (N) 
-- [26, 3.71] 16.8 

Foliar 
Insecticide 

(Yes) 
-- [12, 3.98] 2.7 

 -- 
Foliar 

Fungicide (Y) 
-- [12, 4.62] 2.0 -- -- -- -- 

 Inoculant ST 
(Yes) 

-- -- [18, 3.47] 8.5 -- -- -- -- 

10 
Artificial 

Drainage (No) 
-- -- [18, 3.42] 6.1 

Herbicide  
(Both, PRE) 

-- [38, 3.83] 20.6 

 Artificial 
Drainage (Yes) 

-- -- [35, 4.09] -- 
Herbicide 
(POST) 

-- [16, 3.08] 3.2 
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 -- 
Insecticide ST 

(No) 
-- [13, 3.72] 3.8     

 -- 
Insecticide ST 

(Yes) 
-- [22, 4.31]  -- -- -- -- 

 -- -- 
Seeding 

Rate ≤383 
seeds/ha 

[12, 4.57] 4.2 -- -- -- -- 

 -- -- 
Seeding 

Rate >383 
seeds/ha 

[10, 4.00] 1.6 -- -- -- -- 

† Narrow rows were < 25 cm, medium rows were 25 to 56 cm, and wide rows were > 56 cm in width. 
‡ Seed treatment
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In TED 1, the highest seed yield (3.06 Mg ha−1) was achieved when 

insecticide seed treatment was applied to soybean cultivars with a MG > 0.9. On 

average, TED 1 fields with insecticide seed treatment yielded 0.5 Mg ha−1 greater 

than fields without insecticide seed treatment (Table 4.3). In TED 6, fields with 

artificial drainage and both herbicide timings, but lacking nematicide seed 

treatment, had 0.09 Mg ha−1 greater yield with insecticide seed treatments 

compared to fields without insecticide seed treatments (Figure 4.2). Technology 

extrapolation domain 10 also had higher yield in fields that had artificial drainage. 

Seed yield was further associated with insecticide seed treatment, resulting in 

lower seed yield when seed was not treated with an insecticide compared to 

seed treated with an insecticide (Table 4.3). 
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Figure 4.2. Conditional inference tree for technology extrapolation domain (TED) 6 
showing significant management decisions for predicting yield in early-planted soybean 
fields where RSS is the residual sum of squares for each terminal node, and n is the 
number of fields present in each node.  
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Of the TEDs with a significant difference in yield corresponding to seeding 

rate, higher yields were consistently observed where seeding rate was lower. 

Among TED 10 fields with artificial drainage and where insecticide seed 

treatment was applied, soybean yield was greater when seeding rate was 

≤383,000 seeds ha−1 (Table 4.3). Other TEDs with higher yield at lower seeding 

rates were TEDs 7 and 8. In TED 7, fields planted early at ≤403,000 seeds ha−1 

resulted in a soybean seed yield 0.90 Mg ha−1 greater than fields planted at 

>403,000 seeds ha−1 (Table 3). In TED 8, fields with seeding rates ≤383,000 

seeds ha−1 showed greater seed yield than fields with higher seeding rates 

(Figure 4.3). 

 

 

Figure 4.3. Conditional inference tree for technology extrapolation domain (TED) 8 
showing significant management decisions for predicting yield in early-planted soybean 
fields where RSS is the residual sum of squares for each terminal node, and n is the 
number of fields present in each node.  
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Late-planted Fields 

Among late-planted fields, management factors that were 

correlated with changes in soybean seed yield within several TEDs included 

herbicide application timing (TEDs 2, 5, and 10) (Table 4.3) and tillage intensity 

(TEDs 6 and 8) (Figures 4.4 and 4.5, respectively). In TED 2, fields that received 

no herbicide application or only a POST-herbicide application were associated 

with the lowest soybean seed yield (4.33 Mg ha−1). In TED 5 fields where 

soybean was planted in narrow or medium row widths, seed yield was correlated 

with herbicide application. Greater soybean seed yield (0.72 Mg ha−1) was 

associated with fields that received a PRE- and POST-herbicide application 

compared to fields that only received a PRE or POST herbicide application 

(Table 4.3). Across late-planted fields in TED 10, when a PRE and POST or only 

a PRE herbicide was applied, soybean seed yield was greater compared to fields 

that only received a POST-herbicide application (Table 4.3). 

In TED 6, late-planted fields receiving intense tillage were associated with 

the greatest seed yield at 4.1 Mg ha−1 (Figure 4.4). In fields with minimal tillage, 

foliar fungicide increased yield by 0.29 Mg ha−1 compared with fields without a 

foliar fungicide application. In TED 8, the highest yields were observed in fields 

with intensive tillage when corn or sorghum was the previous crop and there was 

no artificial drainage. Minimally tilled fields had 0.21 Mg ha−1 higher yield for 

cultivars of ≤3.8 RM compared to cultivars of >3.8 RM (Figure 4.5). 
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Figure 4.49. Conditional inference tree for technology extrapolation domain (TED) 6 
showing significant management decisions for predicting yield in late-planted soybean 
fields where RSS is the residual sum of squares for each terminal node, and n is the 
number of fields present in each node.  
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Figure 4.5. Conditional inference tree for technology extrapolation domain (TED) 8 
showing significant management decisions for predicting yield in late-planted soybean 
fields where RSS is the residual sum of squares for each terminal node, and n is the 
number of fields present in each node.  
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Foliar fungicides and insecticides improved yield for late-planted fields in 

three TEDs. In minimally tilled TED 6 fields, seed yield was 0.29 Mg ha−1 greater 

with an application of foliar fungicide compared to yields in fields without foliar 

fungicide (Figure 4.4). In TED 9 fields where foliar insecticide was applied, there 

was an increase in yield of 0.56 Mg ha−1 (Table 4.3). 

 

Economics 

Maximum break-even price for insecticide seed treatment ranged from 

$63 to $196 ha−1 at a grain price of $333 Mg−1 (Table 4.4). More frequent 

herbicide applications improved yield for late-planted soybean in TEDs 2, 5, and 

10, and for early planted soybean in TED 6 (Table 4.3), with the maximum break-

even price for herbicide ranging from $50 to $250 ha−1 at a grain price of $333 

Mg−1 (Table 4.4). For late-planted soybean in TEDs 2, 5, and 10, this maximum 

break-even price at a grain price of $333 Mg−1 covers the cost of moving from an 

herbicide program with only a POST application to a program with both a PRE 

and a POST. The maximum break-even price was not high enough to cover the 

cost of implementing a PRE and POST program for early-planted soybean in 

TED 6 (Table 4.4). Foliar insecticide improved yields in TEDs 5 and 8 for early-

planted soybean, and in TED 9 for late-planted soybean. The maximum break-

even price for foliar insecticide ranged from $120 to $206 ha−1 at a grain price of 

$333 Mg−1. For early-planted soybean in TEDs 5 and 8, and late-planted 

soybean in TED 9, the estimated cost of applying foliar insecticide is lower than 

the maximum breakeven price (Table 4.4). Foliar fungicide improved yield for 

early planted soybean in TEDs 3 and 9, and for late-planted soybean in TED 6, 

with a maximum break-even price of $326 ha−1. The cost of applying foliar 

fungicide was lower than the maximum break-even price at a grain price of $333 
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Mg−1 for early-planted soybean in TEDs 3 and 9. The cost of applying foliar 

fungicide was higher than the maximum break-even price for late-planted fields in 

TED 6. 

 

Table 4.4. Maximum break-even price a producer should pay for specific management 
decisions or inputs that improved yield at three grain prices ($297, $333, and $368 Mg−1), 
where TED is the technology extrapolation domain and PD is the planting date timeframe 
(E = early, L = late). Yield benefit was taken by subtracting the average yield in fields 
without that treatment from fields with that treatment in the conditional inference trees 
from Table 3. Technology extrapolation domains 4 and 7 (both planting windows) and 3 
for late planting did not have in-season decisions that would have an associated break-
even price. Costs for implementing each decision includes both products and their 
application. Product costs were estimated using a phone survey of retailers in the 10 
participating states (IL, IN, IA, KS, MI, MN, OH, ND, NE, and WI), and application costs 
were averaged from state custom application budgets.  

    
Maximum break-even price 

at the given grain price 
 

TED PD Decision 
Yield 

benefit 

297 
USD 
Mg-1 

333 
USD 
Mg-1 

368 
USD 
Mg-1 

Estimated cost 
of 

implementation 

   Mg ha-1 -------USD ha-1-------  

1 E Insecticide ST † 0.40 119 133 147 37 
1 L Fungicide ST 0.46 137 153 169 37 
2 E Starter Fertilizer 0.50 149 167 184 81 
2 L Herbicide 0.51 151 170 188 123* 
3 E Foliar Fungicide 0.98 291 326 361 117 
5 E Foliar Insecticide 0.36 107 120 132 65 
5 L Herbicide 0.72 214 240 265 123* 
6 E Herbicide 0.15 45 50 55 123* 
6 E Nematicide ST 0.25 74 83 92 46 
6 E Insecticide ST 0.19 56 63 70 37 
6 L Foliar Fungicide 0.28 83 93 103 117 
8 E Foliar Insecticide 0.62 184 206 228 65 
9 E Foliar Fungicide 0.91 270 303 335 117 
9 L Foliar Insecticide 0.56 166 186 206 65 
10 E Insecticide ST 0.59 175 196 217 37 
10 L Herbicide 0.75 223 250 276 123* 

†ST: Seed treatment 
*Cost of adding a PRE-emergence herbicide 
 

Discussion 

While each TED had a different combination of treatments that maximized 

yield under different planting date timeframes, there were some commonalities 

among TEDs. Among early-planted fields, management factors that influenced 

soybean seed yield within a few TEDs included artificial drainage (TEDs 1, 6, and 
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10), insecticide seed treatment (TEDs 1, 6, and 10), and seeding rate (TEDs 7, 8, 

and 10). Improved yield in fields with artificial drainage as compared to fields 

without artificial drainage is likely due to a combination of reduced plant damage 

from flooding and improved timeliness of farm operations such as tillage, 

planting, and spraying (Aldabagh & Beer, 1975; Kanwar, Johnson, Schult, 

Fenton, & Hickman, 1983). Improved planting conditions, particularly in wet 

springs, could be part of the reason there was an association between artificial 

drainage and higher yields for early-planted fields in three TEDs (1, 6, and 10), 

but the same association was only seen in one TED 8 for late-planted fields. 

While insecticide seed treatments were associated with higher yields in 

three TEDs (1, 6, and 10) for early-planted soybean, they were not associated 

with a change in yield for any late-planted soybean. In Wisconsin, combined 

insecticide−fungicide seed treatments improved yield by 4−12% (Gaspar, 

Mitchell, & Conley, 2015). However, Mourtzinis et al. (2019a) recently reported a 

minimal yield increase (0.13 Mg ha−1) across 14 states due to combined 

insecticide–fungicide seed treatments. While insecticide seed treatments were 

not associated with a change in yield for late-planted soybean, higher yields for 

late-planted fields treated with foliar insecticides were observed in TED 9. Insect 

pest pressure can vary by soybean-planting date (Hammond, Higgins, Mack, 

Pedigo, & Bachinski, 1991; Zeiss & Klubertanz, 1994). Technology extrapolation 

domains with an association between insecticides and soybean yield had 

maximum break-even prices that were higher than the estimated cost of 

implementing the insecticide seed treatments or foliar sprays, which indicates 

that insecticides may be an economically feasible treatment for producers (Table 

4.4).  
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Among early-planted fields in TEDs 8 and 10, fields with seeding rates 

greater than 383,000 seeds ha−1 yielded significantly less than fields with lower 

seeding rates. Early-planted fields in TED 7 yielded less when their seeding rate 

was in excess of 403,000 seeds ha−1. Past studies indicate that the agronomic 

optimum seeding rate (AOSR) for soybean in the north-central United States is 

variable. For May-planted soybean in Iowa and Ohio, AOSR has been observed 

to vary between 157,000 and 211,800 seeds ha−1 and 345,800 and 481,650 

seeds ha−1, respectively (Barker et al., 2017; De Bruin & Pedersen, 2008). In 

Wisconsin, seeding rates between 296,400 and 345,800 seeds ha−1 yielded 

similarly (Gaspar et al., 2015). In a regional study, the AOSR for the Midwest was 

365,000 seeds ha−1 (Gaspar et al., 2020). The seeding rate value selected in the 

CI tree analysis is likely near or in excess of the AOSR for each TED given past 

seeding rate studies, so the lower yield in fields with higher seeding rates in 

TEDs 7, 8, and 10 was likely due at least in part to high seeding rate and not just 

an artifact of farmers selecting higher seeding rates for fields with lower yield 

potential. Fields in these TEDs had similar use of tillage, foliar fungicide, foliar 

insecticide, and seed treatment regardless of seeding rate. 

Foliar fungicides were associated with increased yield in early-planted 

fields in two TEDs (3 and 9) and late-planted fields in one TED 6. In TED 6 where 

foliar fungicide was associated with higher yields in late-planted fields, it was only 

in minimally tilled fields. Minimally tilled fields yielded less than intensively tilled 

fields, but foliar fungicide helped recover part of the difference in yield between 

tillage regimes in late-planted fields. 

This dataset did not include information on scouting practices or insect 

and disease pressure. Since insect and pathogen pressure vary annually, the 

association between greater yields and pesticide application could change 
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among growing seasons. It is recommended to follow state guidelines for insect 

and disease management based on an integrated pest management (IPM) 

approach. Prophylactic applications of foliar insecticide and fungicide are not 

recommended as they are generally not associated with an economic benefit 

(Bluck, Lindsey, Dorrance, & Metzger, 2015; Mourtzinis, Marburger, Gaska, & 

Conley, 2016; Ng, Lindsey, Michel, & Dorrance, 2018). Similarly, prophylactic 

use of fungicide- and/or insecticide-treated seed does not provide a consistent 

economic benefit for different combinations of consequential management 

practices, such as seeding rate (Mourtzinis et al., 2019a). Market prices and pest 

pressure both play an important role in determining where insecticide and 

fungicide applications are likely to be profitable (Gaspar et al., 2015) 

Among late-planted fields, management factors that were associated with 

soybean seed yield within several TEDs included herbicide application timing 

(TEDs 2, 5, and 10) and tillage intensity (TEDs 6 and 8). Response to herbicide 

could be related to delayed planting resulting in the soybean canopy fully closing 

later in the growing season, and in some cases, never completely closing (Steele 

& Grabau, 1997). Full canopy closure is necessary to minimize weed pressure, 

especially from weeds with an extended emergence period, such as Palmer 

amaranth (Amaranthus palmeri S. Wat.) (Hock, Knezevic, Martin, & Lindquist, 

2005; Jha & Norwsorthy, 2009). Of total Palmer amaranth germination 

throughout the growing season, more than 90% occurred prior to soybean 

canopy closure (Jha & Norsworthy, 2009). In TED 5, herbicide timing was 

associated with increase yield only when medium or narrow rows were used. 

Management decisions that best correlated with soybean yield differed 

between early- and late-planted fields in every TED. In TED 4, RM was the 

decision most strongly associated with yield for both early- and late-planted 
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fields; however, in early-planted fields longer RMs yielded better, whereas in late-

planted fields the opposite was true. The management decision best correlated 

with yield was seeding rate for both early- and late-planted fields in TED 7, but 

the binary split occurred at different seeding rates 

In TED 2, starter P was associated with lower yield and in TED 6, artificial 

drainage was associated with lower yield. This could be due to treatments being 

selected by producers for specific fields, not randomly applied. Producers likely 

applied starter P or installed artificial drainage on fields with lower yield potential 

due to known fertility or drainage issues, respectively. The decrease in yield at 

higher seeding rates observed in early-planted soybean in TEDs 7, 8, and 10 and 

late-planted soybean in TED 7 could be due to producers selecting higher rates 

for fields with lower yield potential, since lower yield potential areas have higher 

agronomic optimum plant densities (Carciochi et al., 2019). 

 

Conclusions 

The challenges associated with treatments being nonrandomly assigned 

to fields and applied in combination were outweighed by the effectiveness of 

survey data collection. Surveys allowed for data to be collected on 16 different 

management factors applied in varying combinationsacross 10 different states 

over three growing seasons. Small plot research studying a similar number of 

treatments and combinations in multiple environments would be cost prohibitive. 

Conditional inference trees did not identify all potentially significant decisions, but 

were useful for identifying interactions among management decisions, such as 

herbicide and row width in late-planted fields in TED 5 or tillage and foliar 

fungicide in late-planted fields in TED 6. Since producers used a combination of 
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management decisions on each field, identifying interactions was important for 

this work. 

Across all TEDs, early-planted soybean fields yielded higher than late-

planted soybean fields. Our results showed no single management factor was 

responsible for higher yields across TEDs and planting windows, thus decisions 

need to be both region and planting date specific. These results confirm the 

importance of and continued need for locally driven data and IPM practices from 

which research-based best management practices can be developed. Our results 

also suggest the use of producer survey data can complement and expand the 

interpretative reach of in-field replicated research. 
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Chapter 5: Foliar Fertilizers Rarely Increase Yield in US 
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Abstract 

Farmers have been interested in using foliar-applied nutrient products to 

increase soybean [Glycine max (L.) Merr.] yield since at least the 1970s, despite 
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limited evidence that these products offer consistent yield increases when used 

prophylactically. Recently, interest in foliar fertilizer products for soybean 

production has been renewed, likely related to elevated soybean prices. Over the 

2019 and 2020 growing seasons (46 site-years), agronomists in 16 states 

collaborated to test six foliar nutrient treatments (commercial mixtures of macro- 

and micro-nutrients) on soybean grain yield and composition. Soybean grain 

yield and composition differed among sites but not among foliar fertilizer 

treatments. Results show that prophylactic foliar fertilization is likely to decrease 

the profitability of soybean production. Foliar fertilizer products tested in this 

study and similar products should not be recommended to U.S. soybean farmers 

in the absence of visual symptoms of nutrient deficiency. 

 

Abbreviations 

NIR, near-infrared spectroscopy 

 

Core Ideas 

• The tested prophylactic foliar fertilizers did not increase soybean yield. 

• Foliar fertilizers did not change grain composition.  

• Prophylactic foliar fertilizers tested decreased profitability. 

 

Introduction 

Annual soybean [Glycine max (L.) Merr.] production in the United States 

varied between 97 and 121 billion kilograms between 2015 and 2020 (USDA-

NASS, 2021b). Many soybean farmers are interested in foliar products that apply 
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a mixture of micronutrients and macronutrients and can be tank-mixed with 

insecticides and fungicides and applied during reproductive growth. This timeline 

corresponds with a period of high nutrient uptake for soybean (Gaspar et al., 

2017). There has been interest in testing different fertilizer methods that may 

increase soybean yield as the United States has reached record high soybean 

yields, since some farmers are concerned that fields with higher yields may need 

nutrients supplied at different times or in different forms. Recently, questions 

regarding foliar fertilizers have been increasing. Thus, interest in foliar fertilizer 

products for soybean production has been renewed. 

Past foliar fertilizer research has shown inconsistent impacts on soybean 

yield. In the 1970s, a study in Iowa associated up to 538 kg ha−1 yield increases 

to foliar application of N, P, K, and S in combination, while a similar study in 

Wisconsin reported no yield increase in soybean yield with P, K, and S foliar 

applications and a smaller yield increase when N was applied foliarly (Garcia & 

Hanway, 1976; Syverud et al., 1980). A contemporaneous study in Minnesota 

showed a yield benefit to N–P–K–S foliar fertilization in only 1 out of 16 trial site-

years, and no yield benefit to micronutrient application (Poole et al., 1983). 

Larger studies in the 1990s in Iowa showed small, inconsistent increases 

in yield with early-season prophylactic foliar fertilizer application. Treatments 

contained N, P, and K and increased yield as compared to untreated controls by 

30–60 kg ha−1 at 10 of the 48 site-years (Haq & Mallarino, 1998). In a 

subsequent on-farm strip trial, comparing an untreated control to soybean treated 

with 1.2 kg N, 3.1 kg P, and 5.9 kg K (elemental rate per hectare) during 

reproductive growth, there was a 35 kg ha−1 increase in soybean yield at one out 

of eight sites (Mallarino et al., 2001). The associated small-plot trial tested a 

wider range of nutrient rates and had two responsive locations out of 18 with a 
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93–360 kg ha−1 increase in soybean yield when N, P, and K were applied 

(Mallarino et al., 2001). 

Agronomists in Michigan have performed extensive foliar fertilizer trials in 

soybean since 2000. Out of the 51 location N–P–K product trials, four locations 

had increased yield and the fertilized plots had lower profitability than the 

unfertilized control at all locations. Foliarly applied N alone in 18 Michigan trials 

resulted in higher yield in three trial locations (Staton, 2019). 

Prophylactic application of micronutrients has shown similarly minimal 

effects on soybean yield. Between the 1980s and today, trials in Iowa, 

Minnesota, and Michigan have not shown a yield increase in soybean associated 

with Fe, Zn, B, Co, Cu, Zn, Mn, or Mo foliar prophylactic application (Mallarino et 

al., 2001; Poole et al., 1983). Rare response to micronutrients has been 

observed in Ohio, where <2% of Mn trials have seen an increase in yield when 

fertilizer was applied and <5% of trials treated with a mixture of Mn, Fe, Cu, Mo, 

and B fertilizers had an observed soybean yield increase (Sharma et al., 2018). 

In Michigan fields with high pH lakebed soils that are likely to respond to Mn 

application, foliar Mn application only increased yield when it was applied after 

visual symptoms of nutrient deficiency began, but not when Mn was applied 

prophylactically (Staton, 2019). 

One challenge to assessing the efficacy of foliar fertilization in soybean is 

that when yield increases have been observed, the magnitude of yield 

improvement is relatively small and generally does not pay for the cost of 

application. Additionally, it is difficult to identify field conditions where 

agronomists should recommend foliar fertilizer application in soybean because 

past studies have shown that soybean yield response to foliar fertilizer is 

inconsistent. Despite the lack of evidence that soybean yield and farm profit 
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increase with prophylactic foliar nutrient application in the United States, these 

products are still commonly marketed for soybean in the United States. 

Past foliar fertilization in soybean research in the United States has been 

isolated to a few states in the upper Midwest (Iowa, Wisconsin, Michigan, and 

Ohio). This study is a coordinated effort across 16 states (Arkansas, Florida, 

Kentucky, Louisiana, Michigan, Minnesota, Missouri, Mississippi, Ohio, 

Oklahoma, North Carolina, North Dakota, South Carolina, South Dakota, 

Wisconsin, Virginia) that allowed us to test the effects of macronutrient and 

micronutrient foliar fertilization throughout the primary soybean-producing region 

of the United States and includes a broad range of commercially available foliar 

fertilizer products to assess the efficacy of both macronutrient and micronutrient 

applications. The objectives of this study were to (a) identify soybean grain yield 

response to prophylactic foliar fertilizer application across a broad range of 

environments, (b) determine if foliar fertilizer application changes soybean grain 

composition, and (c) conduct economic analyses on the value of these products 

in U.S. soybean-growing environments. 

 

Methods 

Field Methods 

In 2019 and 2020, small-plot trials were established at a total of 46 sites 

in 16 states (Figure 5.1). Six foliar nutrient products (Table 5.1) and the untreated 

control were applied in a randomized complete block design with four to eight 

replications depending on site. Products were selected with the input of industry 

professionals to identify foliar fertilizers that are nationally marketed to soybean 

producers. Products were applied at soybean growth stage R3 to align with 
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commonly used fungicide and insecticide application timing. Growth stage R3 

was defined by one pod of at least 5 mm in length on one or more of the top four 

nodes of the plant (University of Wisconsin-Extension, 2017). Due to lack of 

product availability, HarvestMore UreaMate was not applied in Lexington, KY, in 

2019 and Smart Quatro Plus was not applied at any 2019 Wisconsin sites and 

the Arlington, WI, site in 2020. 

 

 

Figure 5.1. Trial locations in 2019 and 2020, displayed with red stars and black 
diamonds, respectively. South Carolina and Louisiana have two nearby sites each that 
appear as a single marker due to the scale of this map. 
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Table 5.1.  List of foliar products names, application rate, cost of product, and nutrients applied for each treatment.  

Treatment Name Manufacturer 
Application 

Rate 
Cost of 
Product 

 
N P K S Mn Fe Mo Zn B Other 

   USD ha-1  ----------------------------------------- kg ha-1---------------------------------------- 

FertiRain AgroLiquid 28.0 l ha-1 $55  3.1 1.0 1.0 0.6 0.02 0.03 - 0.03 - - 

Sure-K Agroliquid 28.0 l ha-1 $48  0.7 0.3 1.0 - - - - - - - 

HarvestMore 
Ureamate 

Stoller 2.8 kg ha-1 $12 
 

0.1 0.3 - - 0.01 - 0.002 0.01 - 
Ca, Mg, 

B, Co, Cu 

Smart B-Mo Brandt 1.2 l ha-1 $9  - - - - - - 0.007 - 0.08 - 

Smart Quatro Plus Brandt 4.7 l ha-1 $16  - - - 0.04 0.09 - 0.003 0.09 0.07 - 

Maximum NPact K Nutrien 14.0 l ha-1 $52  2.1 - 2.1 - - - - - - - 

Untreated Control - - -  - - - - - - - - - - 
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Composite soil samples were taken from each replication at each site in 

the spring. Samples were air-dried, and soil physical and chemical properties 

were measured by A&L Great Lakes (Fort Wayne, IN). Soil sample results and 

site management practices can be found in Supplemental Table S1. 

Backpack sprayers were used to to apply foliar fertilizers at the R3 growth 

stage. Visual symptoms of nutrient deficiency were not present at any site prior to 

foliar fertilizer application. Selected application rates (Table 5.1) were within the 

range of rates recommended on each product’s label. Leaf tissue samples were 

taken before foliar products were applied at R3 and 2 wk following application. At 

both sampling time points, the newest fully-expanded trifoliate leaf was collected 

from 20 plants per plot. Samples were dried in paper bags (dryer temperature 

38–54 ˚C) until constant weight was achieved and shipped to the North Carolina 

Department of Agriculture & Consumer Services Agronomic Division (Raleigh, 

NC) for analysis of N, P, K, Ca, Mg, S, Fe, Mn, Zn, Cu, and B. The North 

Carolina Department of Agriculture Agronomic Division’s Plant Tissue lab 

measures N using oxygen combustion with gas chromatography, NO3
−–N using 

an electrode, and all other nutrients using HNO3 closed vessel microwave 

digestion followed by inductively coupled plasma (ICP). Tissue samples were 

taken from all sites in 2020 but were not collected at seven sites in 2019: 

Newport, AR; Pine Tree, AR; Florida; Princeton, KY; Missouri; Minnesota Lake, 

MN; and Danvers, MN. 

Yield data were collected using plot combines at each site and adjusted 

to 130 g kg−1 moisture concentration. Grain samples were taken at harvest from 

all sites except in Missouri in 2019; Oklahoma in 2020; and Hoytville, OH, in 

2020. In 2019, grain protein and oil concentration were analyzed via near-

infrared spectroscopy (NIR) using a Perten DA7520 machine. The NIR 
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calibration curve was developed from hundreds of soybean samples with known 

composition values (Soybean NIR Consortium). In 2020, grain protein and oil 

were determined using the Perten Instruments Inframatic 9500 NIR Grain 

Analyzer. Calibration curves were provided and validated by Perten and were 

normalized using a polystyrene reference standard. Grain protein and oil 

concentration were reported at a standard moisture of 130 g kg−1. 

Cost of foliar fertilizer products were assessed by calling retailers in the 

study region in 2019 and averaging the cost of product per hectare at the 

application rate used in the study (Table 1). Partial profits were calculated by 

multiplying yield by the price of soybean grain and subtracting the cost of the 

foliar fertilizer product. Application costs were not considered since these 

products are frequently applied by farmers as part of a tank-mix with foliar 

fungicides and insecticides. Calculations were performed at $0.550 and $0.367 

kg−1 to be reflective of recent soybean prices (USDA-NASS, 2021a). 

 

Analysis Methods 

Change in tissue nutrient concentration was calculated by subtracting 

nutrient concentration from the pre-application samples from the nutrient 

concentration from the 2 wk post application samples. Yield, protein, oil, and 

change in tissue nutrient concentration values that fell outside of three standard 

deviations of each site’s mean value were considered outliers and removed from 

further analysis. Yield data was collected or 1,868 plots in total, and 34 of those 

observations (<2%) were considered outliers and removed from further analysis 

because they fell outside of three standard deviations of each site’s mean yield. 

Mixed-model ANOVA was performed using R 3.6.2 and the package 

lme4. All site-years were analyzed together with treatment and site-year 
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considered fixed variables, and replication nested within site-year being 

considered a random variable. Throughout the manuscript, site-years will be 

referred to as “site.” Degrees of freedom were estimated using Kenward–Rogers 

approximation to account for unequal replication among site years. Data were not 

transformed, and residuals were plotted to assess for normality. Means 

comparisons were performed using Bonferroni adjustments. 

 

Results 

Soybean Grain Yield 

In 2019, the highest-yielding site was Arlington, WI (5,513 kg ha−1) and 

the lowest-yielding site was Yadkin, NC (1,824 kg ha−1). Yields were overall 

higher in 2020, with the highest yields observed at Arlington, WI (5,592 kg ha−1). 

Figure 5.2 compares site average yield for each treatment to the control at each 

site, and additional summaries of site mean yield are available in Supplemental 

Table S2. Most observations fall near or on the 1:1 line (Figure 5.2), indicating 

that the treated plots and untreated control plots yielded similarly. The few points 

that fell above the 10% yield increase line tended to have yields near 4,000 kg 

ha−1. All sites with yields higher than 5,000 kg ha−1 had mean treated plot yield 

within 10% of the untreated control plots for all foliar fertilizer products (Figure 

5.2). Observed differences in yield among treatments were not statistically 

significant (F = 0.23, p = .9663), although there was a significant difference in 

yield among sites. There was not a significant interaction between site and 

treatment (Table 5.2). 
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Figure 5.2. Average yield (kg ha−1) at each site for each treatment plotted against the 
average yield of the untreated control at the same site. Solid lines represent x = y, and 
the dashed lines represent ±10% of yield. (a) Average yield of plots treated with FertiRain 
compared to Untreated Control plots, (b) average yield of plots treated with HarvestMore 
UreaMate compared to Untreated Control plots, (c) average yield of plots treated with 
Maximum NPact K compared to Untreated Control plots, (d) average yield of plots treated 
with Smart B-Mo compared to Untreated Control plots, (e) average yield of plots treated 
with Smart Quatro Plus compared to Untreated Control plots, and (f) average yield of 
plots treated with Sure-K compared to Untreated Control plots. 

 

Table 5.25. Results from Analysis of Variance used to identify differences in yield, 
protein, and oil based on treatment, site, and their interaction. 

  F-value p-value 

Yield 
Treatment (T) 0.23 0.9663 

Site (S) 61.05 <0.001 
T × S 1.00 0.4812 

Protein 
Treatment (T) 1.37 0.2248 

Site (S) 557.92 <0.001 
T × S 1.15 0.0703 

Oil 
Treatment (T) 1.62 0.1382 

Site (S) 392.72 <0.001 
T × S 1.17 0.0490 

 

 

An additional ANOVA model was run to determine whether low- (<3,000 

kg ha−1), medium- (3,000–4,000 kg ha−1), or high-yielding (>4,000 kg ha−1) sites 
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responded to treatment differently, with sites grouped into yield environments 

based on the average yield of the untreated control. All site-years were analyzed 

together with treatment and yield environment considered fixed variables, and 

site-year nested within yield environment and replication nested within site-year 

and yield environment being considered random variables. This model confirmed 

that there were neither differences in yield among treatments (F = 0.44, p = 

.8532), nor an interaction between treatment and yield environment (F = 0.89, p 

= .5540). 

The sites tested in this trial include a wide range of soil chemical and 

physical properties (Supplemental Table S1). Even at sites such as Princeton, 

KY (2019 and 2020) and North Dakota (2019) where soil test P concentration 

was below 15 mg kg−1, there was not a yield response to treatment. Site soil pH 

ranged from 4.7 to 8.3, but sites did not have significant differences in response 

to nutrient application even though high pH can reduce micronutrient availability. 

Given the uniformity of the response across these 46 sites, there is no evidence 

that foliar fertilizers increase soybean yield in the absence of visual symptoms of 

nutrient deficiency. Similar results were observed in a smaller geographic area in 

past trials from Iowa and Michigan, where micronutrient and macronutrient foliar 

fertilization did not consistently increase soybean grain yield (Mallarino et al., 

2001; Staton, 2019). 

 

Grain Composition 

Grain samples from each plot were collected in 19 sites in 2019 and 24 

sites in 2020. Average protein and oil content across all sites and treatments was 

376 and 206 g kg−1, respectively. Differences in grain protein and oil content 

were observed among sites but not treatments (Table 5.2). Most sites had similar 
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oil content across all treatments, but there was a treatment × site interaction 

related to two differences between sites: the Ohio 2019 site had approximately 

0.5% higher average oil content in the untreated control and FertiRain-treated 

plots and the Sampson, NC, 2019 site had slightly lower oil content in the plots 

treated with Sure-K as compared with other treatments. At nutrient application 

rates currently recommended by foliar fertilizer manufacturers, there is no 

evidence that fields that receive foliar fertilizer should be expected to have 

different grain protein or oil content as compared to fields that do not receive 

foliar fertilizer. 

 

Leaf Nutrient Content 

Across all sites and treatments, average leaf tissue Ca, Mn, and B 

concentration increased by 1.5, 78, and 19 g kg−1, respectively, between the pre-

application sampling timepoint and the 2 wk after application timepoint 

(Supplemental Table S3). Leaf tissue S concentration did not change between 

sampling timepoints. Concentration of N, P, K, Mg, Fe, and Cu decreased slightly 

(<10 g kg−1) between the preapplication sampling timepoint and the 2 wk after 

application timepoint, likely due to soybean plants partitioning an increasing 

proportion of their nutrient uptake to seeds relative to other plant parts after R4 

(Gaspar et al., 2017). Observed decreases in tissue nutrient concentrations were 

<10 g kg−1 on average, with the exception of Fe which decreased by an average 

of 70 g kg−1 between the sampling timepoints. 

Across all nutrients tested (N, P, K, Ca, Mg, S, Fe, Mn, Cu, and B), there 

was a significant difference in leaf tissue nutrient content among sites (Table 

5.3). Leaf tissue Mn, Cu, and B content varied among treatments (Table 5.3). 

While past studies indicate that fields with low leaf tissue P concentration may be 
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more likely to see a yield response to foliar fertilization (Haq & Mallarino, 1998), 

foliar fertilizer treatments in our study and others did not necessarily cause 

differences in leaf tissue nutrient concentrations for most nutrients. Application of 

micronutrients such as Cu and B are more likely to result in differences in leaf 

tissue micronutrient concentration. Application of P frequently does not change 

leaf tissue P concentration (Alt et al., 2018; Haq & Mallarino, 1998; Nelson et al., 

2012). 
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Table 5.3. Results from analysis of variance used to identify differences in leaf nutrient concentration based on treatment, site, and the interaction 
of site and treatment. 

 Nitrogen Phosphorus Potassium Calcium Manganese 

 F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value 

Treatment (T) 1.20 0.3037 0.89 0.5029 1.28 0.2614 0.63 0.7026 0.94 0.4666 
Site (S) 31.37 <0.001 3.28 <0.001 5.92 <0.001 39.39 <0.001 47.42 <0.001 
T × S 0.82 0.9673 1.18 0.0565 1.19 0.0422 0.98 0.5522 1.18 0.0489 

 Sulfur Iron Manganese Copper Boron 

 F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value 

Treatment (T) 0.55 0.7728 1.62 0.1368 2.58 0.0174 6.86 <0.001 40.16 <0.001 
Site (S) 27.29 <0.001 14.50 <0.001 16.56 <0.001 21.84 <0.001 52.65 <0.001 
T × S 1.00 0.4994 1.00 0.5019 0.78 0.9875 1.24 0.0168 2.28 <0.001 
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Cost of Foliar Fertilzer Products 

Cost of foliar fertilizer products ranged from US$9 to $55 ha−1 (Table 5.1). 

Partial profits were different among treatments and sites at both tested soybean 

grain prices ($0.550and $0.367 kg−1), and there was no interaction between 

treatment and site at either tested soybean grain price (Table 5.4). At $0.550 

kg−1, plots treated with Maximum NPact K had $60 ha−1 lower profits than the 

untreated control and at $0.367 kg−1, plots treated with Maximum NPact K or 

FertiRain had lower profits than the untreated control by $58 and $53 ha−1, 

respectively (Table 5.5). While other treatments did not have statistically lower 

profits than the untreated control at the tested grain prices, application of foliar 

fertilizer products included in this study would not increase profit since foliar 

fertilizer treatments did not statistically increase soybean grain yield. Further 

reductions in profit may occur when applying foliar fertilizer using a ground-based 

applicator since wheel damage can reduce soybean yield by 3–5% after R1 

(Hanna et al., 2008). 

 

Table 5.46. Results from analysis of variance used to identify differences in partial profits 
based on treatment, site, and the interaction of site and treatment. 

  F-value p-value 

Profit at soybean grain 
price of $0.550 kg-1 

Treatment (T) 5.74 <0.001 
Site (S) 59.31 <0.001 
T x S 1.01 0.4396 

Profit at soybean grain 
price of  $0.367 kg-1 

Treatment (T) 5.74 <0.001 

Site (S) 59.31 <0.001 

T x S 1.01 0.4396 

 

Table 5.5. Mean partial profit at two soybean grain prices and mean grain yield, oil 
concentration, and protein concentration among foliar fertilizer treatments. 

Treatment 

Mean partial 
profit at 

soybean grain 
price of 

$0.550 kg-1 

Mean partial 
profit at 

soybean grain 
price of 

$0.367 kg-1 

Mean 
yield 

 

Mean grain oil 
concentration 

Mean grain 
protein 

concentration 

 USD kg-1 USD kg-1 
kg 

ha-1 
g kg-1 g kg-1 
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Untreated 
Control 

2202 aa 1470 a 
4004b 20.6 37.5 

Smart B-Mo 2198 ab 1464 a 4013 20.6 37.6 
HarvestMore 
UreaMate 

2193 ab 1459 a 
4008 20.5 37.6 

Smart 
Quatro Plus 

2168 ab 1442 ab 
3972 20.6 37.6 

FertiRain 2151 ab 1417 b 4012 20.6 37.5 
Sure-K 2149 ab 1418 b 3994 20.6 37.6 
Maximum 
NPact K 

2142 b 1412 b 
3990 20.6 37.6 

aMeans not sharing common letters within each column denote statistical 
differences among treatments (α = .05). Bonferroni adjustments were used to 
adjust for multiplicity. 
bMeans separation was not performed for yield or grain composition (oil and 
protein) due to no significant differences among treatments. 
 

Conclusions 

Prophylactic foliar fertilizer applications did not consistently increase 

soybean yield or alter grain composition when applied at rates recommended by 

their manufacturer, and foliar fertilizer application may decrease farm profitability. 

None of the tested foliar fertilizer treatments had higher partial profits than the 

untreated control. Agronomists and farmers interested in increasing soybean 

yield or farm profitability are unlikely to see benefit from foliar fertilizer application 

in the absence of visual symptoms of nutrient deficiency. 
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Abstract 

Cleaning yield monitor observations to remove erroneous points can 

improve the accuracy of yield estimates used for farm record keeping or on-farm 

research data collection, but current practices are time-intensive and 

cumbersome. cleanRfield is an open-source R package to improve the efficiency 

of processing spatial agricultural data such as yield maps. Compared to current 

standard yield monitor data cleaning solutions, cleanRfield can read and interpret 

a broader range of input data formats. Other key features of cleanRfield include 

automatic field boundary delineation and batch processing of data from multiple 

fields. In this Scientific note, we overview functions within the cleanRfield 

package and introduce an integrative pipeline to evaluate and visualize yield 

monitor data. The package is being distributed under the GNU General Public 

License 2, and a more detailed tutorial including downloading instructions is 

available at https://github.com/filipematias23/cleanRfield. 

 

https://github.com/filipematias23/cleanRfield
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Abbreviations 

comma separated values, CSV; Global Navigation Satellite System, GNSS; 

GNU's Not Unix, GNU; standard deviation, sd 

 

Core Ideas 

• Open-source tool for cleaning and filtering yield maps using R language  

• Easily builds vector polygon files and rasters of field boundaries from 

yield maps  

• Reads and interprets shapefiles, CSVs, or textfiles 

• An integrative pipeline to evaluate and visualize yield monitor data 

 

Introduction  

Current combine and yield monitor technology coupled with global 

navigational satellite system (GNSS) technology allows farmers to utilize yield 

maps to measure yield within management zones or conduct precision 

agriculture experiments with on-farm trials. Over half of US soybean farms use 

yield monitors on combines to map within-field yield patterns (Schimmelpfennig, 

2016). Yield monitors typically measure grain flow using volume samples or 

pressure plates within the clean grain elevators of combines at regular intervals, 

commonly every one to three seconds (Casady & Shannon, 1998). Yield 

estimates are recorded alongside other metrics, including grain moisture, 

combine speed, location, and time (Casady & Shannon, 1998). 

Raw yield files are stored on monitors using manufacturer-specific, 

proprietary formatting and must be converted to shapefile (.shp) or text file (.txt) 

format for further processing by using agricultural software (Griffin, Brown, & 



122 
 

 

1
2

2
 

Lowenberg-DeBoer, 2007). This initial conversion usually corrects for grain flow 

delay, which helps place each yield monitor observation in the correct geographic 

location within the field (Kleinjan et al, 2002; Simbahan, Doberman, & Ping, 

2004). Once the data is stored in a general file format, it can be further 

processed, mapped, or summarized.  

Processing and filtering of yield monitor observations improves the accuracy 

of whole-field and within-field yield estimates (Kleinjan et al., 2002; Simbahan, 

Dobermann & Ping, 2004; Griffin, Brown, & Lowenberg-DeBoer, 2007; Kharel et 

al., 2019), and cleaning yield data can improve the accuracy of conclusions from 

on-farm research and farmer decision support tools (Griffin, Brown, & 

Lowenberg-DeBoer, 2007; Kharel et al., 2019). Current standard practice for 

filtering yield maps includes using Yield Editor, a free software program written 

by USDA (Sudduth, Drummond, & Myers, 2012; USDA Ag Data Commons, 

2021). Automatic filtering is available for corn, soybean, wheat, and other crops 

in Yield Editor, and generally results in similar final maps to manual filtering 

performed by experienced Yield Editor users (Kharel et al., 2019). Removing low-

moisture data is not currently a part of Yield Editor’s automatic filtering, but 

adding a low-moisture filter does improve the quality of final cleaned yield maps 

and indicates that there is benefit to studying additional yield filtering options 

(Kharel et al., 2019).  

Errors in yield maps can be systematic or random, and calibrating yield 

monitors and processing the data before mapping or summarizing can improve 

the accuracy of the yield estimates (Simbahan, Dobermann & Ping, 2004). 

Calibrating yield monitors before harvesting a field using procedures 

recommended by the monitor’s manufacturer helps reduce errors related to 

combine speed or grain flow. Other inaccurate yield monitor observations are 
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more likely to occur on steep slopes, places where the combine speed is 

fluctuating, in point rows where the full header width is not being utilized, or near 

field borders where the combine is turning. Cleaning maps can reduce the impact 

of these errors on yield estimates. 

Automatic filtering using Yield Editor is a commonly accepted method for 

cleaning yield maps, but it has many limitations. Within Yield Editor, all yield 

maps must be formatted as AgLeader Advanced or Greenstar text files and must 

include longitude (decimal degrees), latitude (decimal degrees), flow (lbs s-1), 

GNSS time (s), logged interval (s), distance (in), swath width (in), moisture 

(percentage), header status (up or down), and pass number without flexibility for 

processing files with data in different units (metric units are not supported within 

Yield Editor), or with columns in a different order. Some combines also record 

other information like elevation and combine speed that may be useful for 

filtering.  

The package cleanRfield is a compilation of functions to clean and filter 

observations from yield monitors or other agricultural spatial point data. Yield 

monitors are prone to error, and filtering the observations or removing 

observations from near field boundaries can improve estimates of whole-field 

yield, combine speed, grain moisture, or other parameters. In this package, users 

can easily select filters thresholding for one or more attributes and prepare a 

smaller dataset for analysis or decision making. 

In this Scientific Note, we illustrate key features of the cleanRfield package 

using soybean yield maps from Wisconsin, USA. The package is being 

distributed under the GNU General Public License 2. A more detailed tutorial is 

available at https://github.com/filipematias23/cleanRfield. 

 

https://github.com/filipematias23/cleanRfield
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Materials and Methods 

Data Preparation 

Yield data is collected using combine-mounted yield monitors. Data quality is 

significantly improved by properly calibrating the yield monitor. Calibration 

instructions vary by monitor make and model, but multipoint calibration improves 

calibration accuracy (Bergman, 2020).  

Monitors using mass-flow, weight, optical, and nuclear sensors all collect 

point data observations that are compatible with filtering data in cleanRfield. After 

data are collected on yield monitors, the raw yield maps (.yld files or other 

machinery-specific file type) must be exported off the monitor as shapefiles 

(.shp), comma separated value (.csv) or other delimited text format. If data are 

exported off the monitor as .yld files or another unsupported file type, they may 

be converted to a supported file type (.shp, .csv, or delimited text) using an 

intermediate software that is compatible with the combine and monitor before 

opening the data within the R environment. Yield maps must be formatted as 

vector data when exported, as clearRfield does not currently support filtering of 

raster data. 

 

Cropping Fields to Areas of Interest 

The function cropField() allows drawing one or more polygons within the 

dataset to be used as a boundary file (Table 6.1). The output of cropField() is a 

List of three items within the R working environment that includes the drawn 

boundary saved as a SpatialPolygonDataFrame, the yield observations from the 

input map that fall within the drawn boundary saved as a 

SpatialPointsDataFrame, and points that define the corners of the boundary file 
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saved as a SpatialPoints object. This approach is useful for selecting or removing 

a specific region in the field that was affected by biotic or abiotic stresses during 

the season or evaluate regions with different yield performance. It allows 

overlaying multiple data layers and making informative visualizations. Users can 

apply different filters or cleaning criteria to different field regions to better 

evaluate and understand yield and other metrics at the sub-field scale. The 

output polygon from cropField() also can be used as a boundary for other point 

datasets collected at the same location in different years, allowing cleanRfield 

users to evaluate the field performance across time. cropField() facilitates 

measuring the impact of different management approaches (e.g., fertilization, 

pesticide application, irrigation, etc.) between locations and crop years.  
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Table 6.1. Functions within the cleanRfield package.  
Function 

Name 
Formal Class of Input Objects 

Formal Class of Output 

Objects 
Function Description 

cropField() 

LargeSpatialPointsDataFrame, number of 

polygons to draw, number of points that 

define the boundary of each polygon 

List of 3: 

LargeSpatialPointsDataFrame, 

SpatialPolygonDataFrame, 

and a SpatialPoints object per 

polygon 

Opens a map of the input data set and allows 

users to use point-and-click functionality to 

define regions to be evaluated 

 

boundaryField() 
LargeSpatialPointsDataFrame or 

RasterStack 

SpatialPolygonsDataFrame or 

raster 

Allows users to manually draw a boundary 

around a field using point-and-click 

functionality or automatically draws a 

boundary around a field. Requires a 

RasterStack input for automatic boundary 

drawing 

 

rasterField() 

LargeSpatialPointsDataFrame, trait of 

interest within the 

lLargeSpatialPointsDataFrame, and the 

resolution to use for the raster 

RasterStack 

Converts the point data from the user-

supplied yield map to a raster file with the 

user-defined resolution 

 

bufferField() 

LargeSpatialPointsDataFrame, 

SpatialPolygonsDataFrame, linear 

distance to reduce the field size 

List of 2: SpatialPolygons and 

SpatialPointsDataFrame  

Removes point observations that fall within 

the user-defined distance from the border of 

the input SpatialPolygonsDataFrame, and 

provides a new SpatialPolgyon that matches 

the extent of the output 

SpatialPointsDataFrame 

 

sampleField() 

LargeSpatialPointsDataFrame, 

percentage of observations to randomly 

sample 

SpatialPointsDataFrame 

Randomly samples a user-defined 

percentage of the observations from the input 

data set 
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filterField() 

LargeSpatialPointsDataFrame, trait of 

interest within the 

LargeSpatialPointsDataFrame, value of 

the trait that will become the threshold, 

and a logical statement to denote whether 

the threshold value represents the 

highest or lowest value to remove from 

the LargeSpatialPointsDataFrame 

 

LargeSpatialPointsDataFrame 

Removes observations from the input 

LargeSpatialPointsDataFrame based on the 

threshold values set via the user-defined 

input values 

 

sdField() 

LargeSpatialPointsDataFrame, trait of 

interest within the 

LargeSpatialPointsDataFrame, maximum 

number of standard deviations the value 

of the trait can vary from the mean value 

of the trait before that observation is 

removed from the 

LargeSpatialPointsDataFrame  

LargeSpatialPointsDataFrame 

Removes observations from the input 

LargeSpatialPointsDataFrame based on the 

standard deviation threshold set via the user-

defined input values 
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In the example below only the central part of the field was selected to be 

evaluated and filtered (Figure 6.1). After cropping the field to select data from 

only a portion of the field, users can continue to process data using further steps 

in the cleanRfield pipeline (see full pipeline in Figure 6.4). If users are interested 

in selecting 2 or more polygons within cropField(), the parameter nPolygon 

should be increased to reflect the number of desired polygon. When running 

cropField() for multiple polygons, the help text within the R Console will inform 

viewers when they are done selecting points for a given polygon and should 

begin selecting points for the subsequent polygon. Utilizing cropField() for 

multiple polygons will save all polygons to the same output SpatialPolygons 

object. Users who wish to save each polygon as separate SpatialPolygons 

objects would be better served by using boundaryField() instead of cropField(). 

Summarized use of boundaryField() is shown in Figure 6.2, and example code 

for drawing multiple polygons from the same field and saving them as separatem 

SpatialPolygons objects is provided in full on the Github tutorial.  
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Figure 6.1. Using function cropField() from cleanRfield R package to select and extract 
data from a rectangular area of interest in the center of the field. Selected data can be 
further filtered and analyzed within the cleanRfield pipeline. 

 

 

Figure 6.2. The cleanRfield step by step pipeline to build the boundary shapefile and 
reduce the boundary with a buffer. The function rasterField() was used to transform the 
original data to a raster. The function boundaryField() was used to draw the boundary 
shapefile automatically or manually. And the function bufferField() to reduce the manually 
drawn boundary using a buffer of fixed width. 
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Building Boundaries and Buffering 

Managing field boundary files can be very time consuming for researchers or 

crop consultants that cover large geographic ranges. Therefore, we developed a 

function called boundaryField() that allows users to build a boundary polygon by 

(1) drawing the boundary manually or (2) automatically generating the boundary 

from the yield data. In the first method, the user utilizes the cursor to click within 

the plot area of RStudio and draw the border around the field data visualization. 

The process for drawing boundaries on multiple fields and then merging 

boundaries together for subsequent cleaning steps within the cleanRfield pipeline 

is described in full on the Github tutorial 

(https://github.com/filipematias23/cleanRfield), and boundaries can be exported 

as shapefiles or other vector data files such as geopackages for use in other 

software programs. 

The automatic boundary method transforms the dataset from data points to a 

raster using the function rasterField(). This function allows the transformation of 

data point layers on raster layers from where the boundaries can be identified 

automatically by boundaryField(). The resolution chosen during rasterization 

impacts the appearance of the final map, especially near the edges of the field, 

and can impact the accuracy of automatic boundary delineation. Optimum 

resolution varies based on both the coordinate reference system of the input data 

set and the header width of the combine used while collecting the yield monitor 

observations, and more information on resolution suggestions is available in the 

Github tutorial (https://github.com/filipematias23/cleanRfield).  

Once the boundaries are created the user can apply a buffer to eliminate the 

observations within the point data set that are located near the edge of the field, 

since yield monitor observations near the edges of fields frequently contain errors 
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due to the motion of the combine and/or monitor errors (e.g., combine turns, 

stops and starts, changing speed, etc.). The function bufferField() allows users to 

buffer the entire field boundary according to the buffer value. Buffer values must 

be negative, and the function bufferField() works with boundary polygons 

delineated using any linear unit (units: in, m, us_feet, etc.). The steps described 

above are summarized in Figure 6.2, (1) starting by transforming the original 

dataset into a raster, (2) followed by building the boundary automatically or 

manually, and (3) ending by applying the buffer reduction. Note the differences 

between automatic and manual boundary delineation: jagged field edges and 

occasional holes or patches within the field boundary are typical of automatic 

field boundary delineation.  

 

Filtering Data 

The package cleanRfield has different methods to clean, filter, and evaluate 

datasets. (1) The first and simplest method is the reduction of data by randomly 

sampling points using the function sampleField(). This function allows the user to 

select any percentage of points either sampling the entire spatial extent of the 

input file or using polygons from cropField() to sample only a subset of the field. 

The sampleField() function may be useful for exploratory analysis of very large 

data sets, or for users looking to build smaller datasets for learning spatial data 

processing in R. Additionally, sampling large data sets can help users determine 

the optimum number yield monitor observations during power analysis and trial 

planning. (2) The second method is filtering by using collected data values with 

the function filterField(). This function allows the user to choose one or more 

layers in the dataset (e.g., dry yield, speed, etc.) in order of priority and filtering 
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for minimum or maximum permitted values for each attribute. (3) The third 

method uses the standard deviation (sd) of each data layer to select points that 

are inside the thresholding value. The function sdField() determines the minimum 

and the maximum values to select only the points inside the sd interval. All 

filtering methods can be combined in a pipeline where the output dataset from 

one filtering step will be the input of the next filtering step. For example, on 

Figure 6.3 the first filter method used was the buffering to eliminate boundary 

effects followed by filtering data points based on collected data values. For 

instance, the buffered shapefile with 5 meters reduced from the border was used 

in the function filterField() associated with a second step of filtering where only 

data points with “Dry_Yield” greater than 70 bu/acre and speed lower than 5 mph 

were retained. 

 

Figure 6.3. Different filtering steps used on cleanRfield pipeline. Initially the buffered 
boundary from bufferField() function was used to remove the borders effects followed by 
filtering data points to retain observations where Dry_Yield>70 and Speed<5 using the 
function filterField. The second and third panels display the points retained by each filter 
in brown—white space represents areas where points were removed via filtering. These 
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filtering parameters were used only for example purposes and are not necessarily the 
appropriate thresholds for most cleaning procedures. 
 

Parallel Processing for Multiple Fields 

Processing yield data in parallel is an important step when there are different 

field trials or datasets to be evaluated. This is a common practice in agriculture 

where many crop trials are harvested in a short window of time and the data 

must be evaluated as soon as possible for decision making. In the online tutorial 

available on GitHub we developed a sequence of code as a suggestion about 

how to use cleanRfield functions in parallel to evaluate three different yield data 

trials at the same time. For instance, for this specific case the same criteria of 

filtering were applied in all fields. However, it is possible including conditions 

(e.g., if and else) for applying different filtering steps for each trial according to 

the user's needs. 

 

Discussion  

This manuscript describes functions available in cleanRfield R package and 

potential applications for using the package to analyze agricultural point data, 

such as yield maps collected with combines. However, the pipeline can be easily 

adapted for filtering different sources of point data (e.g., demographic, political 

health, economic, etc.). Following steps in Figure 6.4, the cleanRfield pipeline 

starts by collecting the data (e.g., combine) and preparing it to upload in R (e.g., 

.csv, .txt, .shp, etc.). From this point, users have different options as (1) making 

rasters, (2) using rasters to define field boundaries, (3) manually drawing polygon 

boundaries, or (4) importing preexisting boundary shapefiles to determine the 

geographic extent for the software to evaluate and filter data points. The next 

step is using different strategies available on cleanRfield for cleaning data such 
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as (1) buffering the boundary, (2) filtering by setting thresholds on data values, or 

(3) determining threshold limits with standard deviation. As far as we are aware, 

this is the first package in R with a detailed pipeline to process multiple yield 

maps at the same time, improving the standardization and reproducibility of yield 

monitor data cleaning procedures. This package helped to increase the efficiency 

of our team’s daily activities due to its relative speed over point-and-click 

software alternatives and easy adaptability to different applications.  
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Figure 6.4. Workflow illustrating the main steps of cleanRfield pipeline, starting with data 
collection using combines with yield monitors, then preparing the yield monitor data for 
import into R as a .shp, .txt, or .csv file. The remaining steps, including data importation, 
making field boundaries, filtering observations, and data visualization can all occur 
efficiently within R. 
 

Limitations 

 While cleanRfield will continue to improve functionality by addressing user 

feedback, at the time of publication it has some noteworthy limitations. Firstly, 
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cleanRfield cannot read the proprietary file formats that combines and yield 

monitors use to store raw data unless those yield maps are converted to a more 

general file format such as shapefiles or delimited text before being used as input 

data for cleanRfield functions. Additionally, there are not functions within 

cleanRfield that can be used to adjust sensor delay values. While these 

limitations do constrain the useage of cleanRfield, this package still represents 

an improvement over other currently available yield cleaning software options.  

 

Conclusions  

The cleanRfield package offers crop advisors and researchers a 

convenient set of tools to evaluate and filter data points in a friendly and open-

source way using R. We developed a detailed and straightforward online tutorial 

to illustrate each step of this software with more detail at 

https://github.com/filipematias23/cleanRfield. For instance, users can download 

data examples and follow the pipeline to understand and adapt the code for 

different applications. cleanRfield will help the agricultural community quickly and 

accurately clean yield monitor data which will improve time to decision making, 

and the package tutorial also provides users with open feedback channels to 

further improve the features and the quality of this tool.  
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