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Abstract 

Sweet corn has a long history of economic and cultural significance and an equally long 

history of working its way through the institutions of plant breeding. Sweet corn breeders, in 

addition to improving the agronomic traits desired for row and commodity crops, must also 

improve traits such as nutritional value, appearance, and eating quality that promote consumer 

appeal. This dichotomy means that, despite the extensive public and private interest in sweet 

corn breeding, opportunities remain for furthering understanding of how current sweet corn 

germplasm can be used to improve desired traits. This work promotes these goals by studying the 

interactions and associations between the Sugaryenhancer1 (Se1) gene and the levels of 

nutritionally relevant vitamin A- and vitamin E-related traits, by leveraging transcriptomics and 

metabolomics to investigate specific effects of the Se1 gene, and by using a divergently selected 

sweet corn population to explore the limits of selection and variation.  

The first chapter is a literature review to introduce the topics of sweet corn, maize starch 

synthesis, and endosperm development. The second chapter focuses on the relationship between 

the presence of the Se1 and the levels of carotenoid and tocochromanol traits. As vitamins and 

antioxidants, these compounds are of increasing interest to both sweet corn breeders and 

consumers. This research used a diverse panel of sugary1 sweet corn lines both with and without 

a functional Se1 gene to compare the amounts of secondary metabolites. Here, even in the 

presence of effects from population structure and kinship, the Se1 locus was found to contribute 

to significant variation in the levels of certain carotenoids and certain tocochromanols. Notably, 

the levels of lutein, zeaxanthin, and tocotrienols were decreased in lines homozygous for the 

recessive se1 allele, but levels of the lutein intermediate zeinoxanthin were increased.  
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The third chapter is a continuation of the work with sugaryenhancer1, and, given the 

associations with sugars, carotenoids, and tocochromanols, investigate the relevant metabolic 

pathways. A set of near-isogenic lines with and without Se1 were screened for differentially 

expressed genes (DEGs) and differentially accumulated metabolites. Results showed that se1 

affected sugar and starch metabolism at both the transcript and metabolite level, and expression 

of the cytochrome P450 gene that converts zeinoxanthin to lutein was reduced. Both the gene 

expression analysis and the widely-targeted metabolomics analysis highlighted differences in 

genes and compounds associated with the phytohormone regulation of the developing 

endosperm. This adds to the body of evidence that, instead of a direct role in starch metabolism, 

Se1 has a regulatory role upstream of the production of starch, carotenoids, and tocochromanols, 

warranting additional studies into the role of phytohormones in affecting sweet corn quality.  

The final chapter used a divergently selected sugary1 sweet corn population to observe 

the effects of long-term selection on the timing of vegetative phase change, and on a suite of 

traits related to plant growth and disease resistance. Using the last leaf with juvenile wax as a 

metric, divergent selection resulted in plants with an extremely accelerated or extremely delayed 

vegetative phase change compared to the source population. Later vegetative phase change 

resulted in increases in susceptibility to common rust infection and greater plant height, and 

earlier vegetative phase change affected ear length and ear width. Beyond relevance for disease 

management, this study presents a case of the effects of divergent selection and the ability for 

plant breeders to continue to exploit genetic variation through many cycles of selection.
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1 Chapter One: Literature Review 

1.1 Importance of maize and starch 

Through a sequence of both natural and artificial selection, the wild grass teosinte (Zea 

mays ssp. parviglumis) was domesticated into maize (Zea mays ssp. mays), which in 2022 was 

grown over 200 million hectares globally and had an agricultural value of $324 billion dollars 

(Food and Agricultural Organization of the United Nations, 2022). The vast majority of this 

value is driven by the plant’s ability to fix carbon from CO2 into glucose, and store it in kernels 

as starch, a stable polymer of linked glucose molecules (Martin & Smith, 1995). For that reason, 

the production of starch in maize endosperm, or reduction in the amount of starch in sweet corn, 

is essential to maize as food, feed, or fuel. Many of the major steps of starch synthesis and the 

evolution of causal genes important in maize kernel development have been described (L. C. 

Hannah, 2005; James & Myers, 2009). However, the regulation of starch synthesis is still only 

partially elucidated even after decades of maize being a plant model for quantitative genetics, 

biochemistry, and molecular biology. From a plant breeding perspective, understanding the 

regulation of starch synthesis during kernel development would identify new breeding targets 

and allow for the development of maize for new uses and markets (Tracy, Shuler, & Dodson-

Swenson, 2019).   

Of the types of maize that predominate the US market, the form of carbohydrates stored 

in kernels draws a contrast between the two most widely-grown types. Dent corn is the high-

starch maize that makes up the majority of corn grown in the US. The starch synthesis pathway 

in dent corn has fully-functional enzymes at all major steps, resulting in a kernel that is near 70% 

starch, with the ratio of amylose to amylopectin being about 25:75 (Darrah, McMullen, & Zuber, 
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2018; L. C. Hannah, 2005; James & Myers, 2009). In comparison, most sweet corn kernels 

contain between 15% and 35% starch (Creech & McArdle, 1966). Modern dent corn is derived 

from a combination of ‘Northern Flint’ and ‘Southern Dent’ landraces, with most of the 

contribution coming from Southern Dent (Van Heerwaarden, Hufford, & Ross-Ibarra, 2012). In 

comparison, sweet corn originated as the result of mutations in the starch synthesis gene Su1. In 

developing sweet corn types, indigenous people observed and fixed a recessive su1 allele; this 

occurred in five independent events (Tracy, Whitt, & Buckler, 2006). However, there are dozens 

of other alleles at the su1 locus that have been observed and studied. Many su1 mutations reduce 

starch levels and increase sucrose and phytoglycogen, giving dry kernels a wrinkled, glassy 

appearance. 

1.2 Domestication of maize from teosinte 

Emergence of maize from teosinte involved an increase of starch and a reduction of 

protein relative to overall kernel mass; starch granules in maize kernels are both larger and more 

abundant than in teosinte grains (Holst, Moreno, & Piperno, 2007). Genes in the starch synthesis 

pathway have been implicated as being under selection during domestication and diversification 

of maize (Whitt, Wilson, Tenaillon, Gaut, & Buckler IV, 2002), including starch and sucrose 

synthases and starch branching and debranching enzymes (Tracy, Whitt, & Buckler, 2006; Whitt 

et al., 2002). Since these genes affect the amount and composition of endosperm starch, selection 

for or against recessive mutations resulted in large changes in kernel phenotype important for 

culinary properties, further increasing the food value of ancient maize.  

The derivation of ancient maize from the teosinte Zea mays ssp. parviglumis is a classic 

example of domestication syndrome, or the collection of traits that are commonly changed in the 

development of a cultivated crop from a wild relative. Compared to the wild relative, a 
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domesticated plant will tend to have larger or more numerous seeds per seed head, altered seed 

composition, reduced seed dormancy, and reduced lateral growth (Moyers, Morrell, & Mckay, 

2018; Piperno, Ranere, Holst, Iriarte, & Dickau, 2009). Domestication of teosinte began in the 

Balsas River drainage of southwest Mexico around 9000 years before present. Zea mays ssp. 

parviglumis is a highly branched grass, with each branch bearing a terminal staminate 

inflorescence (Doebley, 2004). Teosinte produces a large number of “ears”—lacking central cob 

and open glume structures—each bearing up to 12 fruitcases, each with a single kernel, in 

contrast to the several hundred kernels produced in an ear of modern maize (Doebley, Stec, 

Wendelt, & Edwardst, 1990; C. J. Yang et al., 2019). Despite similar grain weight per plant, 114 

grams for teosinte and 122 grams for maize landraces, teosinte has much greater fecundity, with 

over 4,300 seeds per plant compared to 350 in landraces (C. J. Yang et al., 2019). Teosinte 

fruitcases are composed of hardened glumes and cupules, which were an obstacle to using 

teosinte as a food source (Stitzer & Ross-Ibarra, 2018; Swarts et al., 2017). A handful of large-

effect genes regulate much of the plant architecture differences that separate teosinte and maize. 

Teosinte branched1 (Tb1) is a major driver of domestication traits in maize, controlling the apical 

dominance traits that result in the differences in lateral branching between teosinte and maize 

(Doebley, 2004). Another gene, teosinte glume architecture1 (tga1), has even more profound 

effects on the domestication phenotype in maize; this locus controls the presence of the teosinte 

fruitcase which is absent in the naked kernels of modern maize. Regulatory networks built in and 

around these major domestication genes also contribute the modern maize phenotype (Doebley, 

2004; Guan et al., 2023). Maize populations genetically and morphologically close to modern 

maize were emerging 4,400 years ago; at this point, maize was beginning to diversify into the 

types and market classes recognized today (Swarts et al., 2017).  
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1.3 Maize kernel development 

The development of maize kernels begins with the double fertilization found in flowering 

plants. Pollen lands on the silk, the stigma of the female flower, and a pollen tube grows toward 

the ovule via the silk, at rate near 1 cm per hour (Barnabas & Fidvalsky, 1984; Vollbrecht & 

Evans, 2017). The pollen tube releases two sperm cells into the ovule; one sperm cell fertilizes 

the haploid egg, resulting in a diploid zygote. The other fertilizes the central cell containing two 

nuclei, creating the triploid endosperm (Faure et al., 2003; Olsen, 2020). After double 

fertilization, there are three stages of endosperm development: early development, up until 7 

days after pollination (DAP), endosperm differentiation, lasting until 12 to 13 DAP, and the 

grain-filling stage which continues until the kernel is fully developed (Dai, Ma, & Song, 2021; 

Olsen, 2020; Sabelli & Larkins, 2009b). Early endosperm development consists of rapid mitotic 

divisions followed by cell wall growth (Dai et al., 2021; Sabelli & Larkins, 2009a). Endosperm 

differentiation results in distinct regions by 12-13 DAP. The aleurone layer is the outermost 

endosperm region. Aleurone cells function in metabolism of nutrient storage molecules in seed 

germination (Hoecker, Vasil, & McCarty, 1995; H. Wu, Becraft, & Dannenhoffer, 2022). The 

starchy endosperm occupies most of the endosperm space and contains starch and protein bodies. 

Starch granules are produced and stored in amyloplasts. Zein bodies account for 60% of kernel 

protein mass (H. Wu et al., 2022). Endosperm starch will eventually form 70% of kernel dry 

weight (L. C. Hannah, 2005; James & Myers, 2009). The basal endosperm transfer layer 

(BETL), the region where nutrients enter the endosperm from the pedicel, has a role in 

movement of compounds necessary for production of starch and other storage molecules. Sugar 

transport through the BETL will affect the rate of starch synthesis. (Olsen, 2020). The embryo 
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surrounding region (ESR), basal intermediate zone, conduction zone, and subaleurone region 

also develop during endosperm differentiation (Sabelli & Larkins, 2009b; H. Wu et al., 2022).  

The next stage of endosperm development is the maturation stage, when endosperm cells 

increase in size and deposition of starch and other storage molecules, including lipids and 

proteins occurs (Ingle, Beitz, & Hageman, 1965). The central endosperm region is most active 

until around 8-12 DAP, with high rates of mitosis and endoreduplication, when genome content 

and cell size increase (Sabelli & Larkins, 2009a). At around 16 DAP, programmed cell death 

begins and kernel dry weight increases rapidly. Programmed cell death and accumulation of 

storage compounds continues through the end of kernel maturation, which ends in seed 

dormancy and kernel desiccation. After desiccation, a mature maize kernel will be at 15% 

percent moisture or less and can maintain viability during storage under good conditions, 

(Capelle et al., 2010). 

1.4 Regulation of maize kernel development via phytohormones 

Plant hormones have a part in dictating almost every aspect of plant development, and 

can be grouped into eleven major classes; abscisic acid (ABA), auxin, brassinosteroids, 

cytokinins, ethylene, gibberellins (GA), jasmonic acid, polyamines, salicylic acid, nitric oxide, 

and strigolactone (R. Jones, Ougham, Thomas, & Waaland, 2013). Different hormones dominate 

at different stages of kernel development, and control seed germination and maintain dormancy. 

Major hormones regulating kernel and endosperm development include auxin, ABA, GA, and 

cytokinin. The biosynthesis and degradation of these hormones, and the interactions between 

them, help regulate starch synthesis, seed dormancy, germination, stress tolerance, and seed 

longevity (Hoecker et al., 1995; R. J. Jones & Setter, 2000; Locascio, Roig-Villanova, Bernardi, 

& Varotto, 2014). 
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Auxins are amino acid-derived phytohormones that contain an indole ring. Indole-3-

acetic acid (IAA) is the most abundant auxin. Early in endosperm development, around 4 DAP, 

auxin responses are detected (Doll, Depège-Fargeix, Rogowsky, & Widiez, 2017). Auxin levels 

increase rapidly at 10-15 DAP promoting endoreduplication and cell differentiation, and shift the 

kernel metabolism towards accumulation of storage molecules (R. J. Jones & Setter, 2000). The 

production of auxin is partly controlled by the level of sugars in developing kernels.  This 

interaction regulates the movement of sugars through the BETL, when auxin levels are high 

(Doll et al., 2017; Leclere, Schmelz, & Chourey, 2010). At later stages, auxin will regulate seed 

dormancy through interactions with the ABA signaling pathway (Hussain et al., 2020; Liu et al., 

2013).  

ABA is another key hormone regulating maize development, even though it is often 

considered a stress-response hormone (R. J. Jones & Setter, 2000). In developing kernels under 

normal environmental conditions, ABA is required to maintain dormancy and prevent precocious 

germination; it will also affect grain fill. When applied at the early endosperm development 

stage, ABA decreases kernel fill; ABA applied later will increase kernel size (R. J. Jones & 

Brenner, 1987; Yue, Lingling, Xie, Coulter, & Luo, 2021). Part of this temporally-dependent 

effect is thought to be due to the interaction between sucrose and ABA as a part of the regulation 

of starch synthesis (Huang et al., 2016). In the presence of heat or drought stress, ABA 

accumulation will increase more rapidly at later developmental stages, and result in an earlier 

cessation of starch synthesis and grain fill (Z. Wang, Mambelli, & Setter, 2002). The stress-

induced ABA mechanism aid the kernel in adapting to abiotic stress via activating responses to 

reactive oxygen species and altering solute movement (Rajasheker et al., 2019; J. Zhang, Jia, 

Yang, & Ismail, 2006). 
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The ratio and antagonism between ABA and GA regulates the dormancy-inducing 

functions of ABA, balancing the germination pathways that are positively regulated by GA 

(White & Rivin, 2000). During germination, the aleurone layer releases amylases and proteases 

that break down starchy endosperm and allow use of the nutrient reserves initiating plant growth 

(Sabelli, 2012; Sabelli & Larkins, 2009b). ABA can inhibit production of these hydrolytic 

enzymes; GA will stimulate production of these enzymes to allow germination (Harvey & Oaks, 

1974). If a mutation results in in a deficiency of ABA, or elevates GA production, precocious 

germination occurs rather than seed dormancy (Hoecker et al., 1995). The interaction between 

these hormones has practical applications in the production of maize seed; even in the absence of 

environmental stress, a genetic inclination towards this “pre-germ” can result in non-viable seed 

and losses in yield. 

Similar to how ABA and GA antagonistically regulate plant processes, auxin and 

cytokinin also function in tandem balancing various aspects of growth and development, best 

illustrated by the auxin/cytokinin ratios needed in tissue culture to generate roots and stems from 

callus tissue (R. Jones et al., 2013). In maize endosperm development, cytokinins promote cell 

division, and levels increase early in endosperm development, and decline during starch 

accumulation as auxin levels increase (R. J. Jones & Setter, 2000; Sabelli, 2012). Cytokinins 

contribute to heat tolerance and supplementation will help maintain kernel set and yield (Cheikh 

& Jones, 1994).  

1.5 The starch synthesis pathway 

Maize, like all plants, relies on starch for both short and long-term energy storage. For 

short-term storage in leaves, starch is produced during the daytime and degraded at night to 

support metabolic function in the absence of photosynthesis. For long-term storage, as in maize 
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kernels, endosperm starch provides an energy source for  germinating embryos (Lloyd & 

Kossmann, 2015). Production of starch in the endosperm, in addition to resulting in sufficient 

germination and seed quality, is the primary driver of maize economic and nutritional value 

(Sabelli & Larkins, 2009b).  

Endosperm starch synthesis begins in leaf tissue with sucrose synthesized from the 

photosynthesis product glyceraldehyde-3-phosphate (L. C. Hannah, 2005; L. Curtis Hannah, 

Shaw, Clancy, Georgelis, & Boehlein, 2017). Sucrose is transported via phloem and enters the 

developing seed through the pedicel (Boehlein, Shaw, Boehlein, Boehlein, & Hannah, 2018). 

Sucrose synthases then produce uridine diphosphate glucose (UDP-glucose) and fructose from 

sucrose and UDP. Through a series of transferases both UDP-glucose and a portion of the 

fructose are separately converted to glucose-1-phosphate, which is the substrate for the primary 

dedicated reaction of starch synthesis (L. C. Hannah & Nelson, 1976). UDP-glucose 

pyrophosphorylase produces glucose-1-phosphate. Next, glucose-1-phosphate is combined with 

a single ATP molecule to produce adenosine diphosphate (ADP) glucose and a pyrophosphate 

byproduct. ADP-glucose is then moved into the amyloplast, where the majority of starch 

synthesis occurs relevant to endosperm development (James & Myers, 2009).  

In the amyloplast, starch synthesis is initiated by adding glucose monomers, from ADP-

glucose, onto malto-oligosaccharides; these are short chains of three or more maltose molecules 

connected by alpha-(1-4)-glycosidic linkages (Cao, James, & Myers, 2000). These chains are 

extended and modified by starch synthases and starch branching and debranching enzymes. 

Starch synthases add monomers to the end of the chain with additional alpha-(1-4) linkages; 

starch branching enzymes cause branching of starch chains using alpha-{1-6) linkages (Gao, 

Wanat, Stinard, James, & Myers, 1998; Hennen-Bierwagen et al., 2008). Different classes of 
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starch synthases affect starch composition. Granule-bound starch synthase (GBSS) elongate 

glucan chains linearly only, resulting in the production of amylose (Lloyd & Kossmann, 2015; 

Macdonald & Preiss, 1983). Other starch synthases, classified as SSI – SSIV, including starch 

synthases IIa and IIb, elongate amylopectin molecules, also through alpha-(1,4) glycosidic bonds 

(Hennen-Bierwagen et al., 2008). Removing GBSS from the system will result in endosperm 

deficient in amylose, while altering the other starch synthases will affect the chain lengths and 

overall physical qualities of amylopectin (Darrah et al., 2018). Starch branching enzymes SBEI, 

SBEIIa, and SBEIIb support production of amylopectin by breaking alpha-(1-4) linkages and 

creating alpha-(1-6) linkages. By cleaving the alpha-(1,6) bonds in amylopectin, starch 

debranching enzymes (DBE) are thought to allow for the proper crystallization of the starch 

molecules in the amyloplast (Lin et al., 2013). The isoamylases Su1 ( Isa1), Isa2, and Isa3, as 

well as pullulanase, all trim growing starch molecules and produce shorter glucan chains (Lin et 

al., 2013). Isoamylase1 cleaves glycosidic bonds within phytoglycogen, and mutating Su1 results 

in an endosperm very high in water-soluble phytoglycogen (Li, Ilarslan, James, Myers, & 

Wurtele, 2007; Lin et al., 2013). Isa2 protein is thought to physically interact with isoamylase1 

as an heterodimer protein complex, though the isa2 mutation has little or no effect on endosperm 

starch production (Lin et al., 2013). Pullulanase degrades starch and short-chain malto-

oligosaccharides to produce maltose and panose (Hii, Tan, Ling, & Ariff, 2012; Shi, Sweedman, 

& Shi, 2018; C. Wu, Colleoni, Myers, & James, 2002). As endosperm development continues, 

semi-crystalline starch granules accumulate in the amyloplast for long-term energy storage 

(Sabelli & Larkins, 2009b).  

Degradation is the fate of much of the endosperm starch, either during endosperm 

development or during germination (Kowles & Phillips, 1988; Lloyd & Kossmann, 2015). After 
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reaching physiological maturity, maize kernels can remain stable for decades; after planting and 

imbibition, alpha- and beta- amylase enyzmes are activated to break down starch polymers, 

either internally, for alpha-amylase, or from the non-reducing end, for beta-amylase. The 

products of degradation, maltose and glucose fuel cellular processes in early seedling 

development (Struk, 2018; Xue et al., 2021).  

1.6 Regulation and Disruption of Starch Synthesis 

Regulation of endosperm starch synthesis is required by the plant to ensure seed quality 

and a next generation; disruptions in this pathway are required in pursuit of breeding high quality 

sweet corn (Tracy et al., 2019, 2006). A regulatory balance between starch for seed quality and 

sugar for eating quality is found in sweet corn, where endosperm starch synthesis is influenced 

by many plant processes at different levels of regulation (Huang et al., 2016; Sun et al., 2021).  

Regulation of starch synthesis includes direct effects, as in the case of single protein-coding 

genes where a knockout has clear and discernable impacts, and more indirect regulatory 

conditions, such as heat stress causing a reduction in grain fill, where starch synthesis is reduced 

even though all genes directly in the pathway are functional (L. Curtis Hannah et al., 2017; X. 

Wang et al., 2019). The Shrunken2 gene, encoding the large subunit of adenosine diphosphate 

pyrophosphorylase, is an example of direct regulation. On the opposite side of the spectrum, 

abiotic factors such as heat stress can indirectly depress starch synthesis. Excessive heat, over 95 

degrees, has been shown to reduce starch accumulation by reducing enzyme function at major 

points in the starch synthesis pathway, including AGPases, starch synthases, and debranching 

enzymes (Cheikh & Jones, 1994; H. Yang, Gu, Ding, Lu, & Lu, 2018). Outside of the direct 

endosperm starch synthesis pathway, introducing heat-stable forms of key enzymes that work in 

the pentose-phosphate pathway to move glucose into the endosperm starch synthesis pathway 
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can prevent some of the heat-induced loss in kernel starch (Han et al., 2020; Ribeiro, Hennen-

Bierwagen, Myers, Cline, & Settles, 2020). 

1.7 Sweet Corn Breeding 

Effective control of the regulation and disruption of starch synthesis leads to a sweet corn 

with a suite of favorable traits that allows for both agronomic utility and consumer desirability 

(Revilla, Anibas, & Tracy, 2021; Tracy et al., 2019). In terms of agronomic utility, the ideal 

sweet corn plant has kernels with enough starch for good germination and vigor in a range of 

growing conditions. In terms of consumer desirability, the ideal sweet corn plant has ears with 

kernels high in sugar and low in starch (Tracy, 1996). Too little sugar and too much starch leads 

to a kernel that is tough and inedible, but too little starch results in kernels with weak 

germination in the field (Revilla et al., 2021). While not the only considerations of plant 

breeders, managing the tradeoffs between starch and sugar is a defining feature of sweet corn 

breeding (Creech & McArdle, 1966; Dodson-Swenson & Tracy, 2015). 

Early sweet corn breeding used material largely derived from two populations, ‘Stowell’s 

Evergreen’ and ‘Golden Bantam’, and these two groups form distinct groups within maize 

phylogeny. Compared to field corn, sweet corn clades are closer to teosinte progenitors (Y. Hu et 

al., 2021). All early sweet corn possessed su1 alleles (Tracy et al., 2006). As sweet corn breeding 

was commercialized and hybrid use became the norm, su1-reference, also known as the su1-ne 

allele became the dominant sweet corn allele. This particular allele makes a non-catalytic 

isoamylase1/starch debranching enzyme.  The wild type allele would normally trim glycan 

chains to allow for starch granule formation (Lin et al., 2013). The high levels of water-soluble 

polysaccharides instead of starch granules in su1 sweet corn are responsible for the desirable 
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creamy mouthfeel in commercial su1 hybrids; this endosperm type has kernels consisting of 

15.6% sugars, 22.8% water-soluble polysaccharides, and 28% starch (Creech, 1965). The 

relatively high starch content in su1 hybrids provides for good germination (Dodson-Swenson & 

Tracy, 2015; Tracy et al., 2006).  

In the 1940s and 1950s, work developed describing a new type of sweet corn, driven by a 

mutation distinct from su1. This shriveled-kernel mutation was named shrunken2 (sh2, sh2-ref) 

(Tracy, 1996). It was later shown to be a gene encoding the large subunit of AGPase, the rate-

limiting step in starch synthesis. Professor John Laughnan at the University of Illinois proposed 

the utility of the sh2 gene as a new sweet corn allele and he released the first sh2 hybrid. As a 

result of the high levels of sugar, sh2 has overtaken su1 types in the marketplace; contributing to 

this is the fact that most sh2 sweet corn has enough natural sugar to replace sugar that was 

generally added in processing. The low rate of sugar to starch conversion in sh2 kernels results in 

a longer shelf life of fresh ears than other sweet corn types. However, due to differences in 

polysaccharide levels, su1 hybrids outperform sh2 hybrids in cold-soil germination, so su1 sweet 

corn is used by processing companies for early harvests, despite the lower sugar levels. The sh2 

allele results in a non-functional large subunit of the cytoplasmic AGPase, and starch levels are 

reduced compared to the wild-type levels (L. C. Hannah & Nelson, 1976; Tracy, 1996). 

However, an intermediate mutation, sh2-i, does not completely eliminate AGPase function, 

(Dodson-Swenson & Tracy, 2015). Both of these mutations are used in commercial sweet corn, 

despite a trade-off between seed quality in the mature kernels and sugar content in immature 

kernels (Dodson-Swenson & Tracy, 2015; Tracy et al., 2019). 

Besides su1 and sh2, another gene used in sweet corn breeding is sugary enhancer1 (se1) 

and is only used with homozygous su1.   The name implies its function of “enhancing” the effect 
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of su1 on sugar levels in sweet corn kernels (Ferguson, Rhodes, & Dickinson, 1978; La Bonte & 

Juvik, 1990). Sweet corn homozygous for both se1 and su1 alleles possesses high sucrose levels, 

closer to that of sh2 hybrids, but levels of water-soluble polysaccharides close to that of su1 

(Finegan et al., 2022; La Bonte & Juvik, 1990; X. Zhang et al., 2019). At fresh eating stage, 

su1se1 sweet corn is tender and generally sweet, yet maintains the creamy texture of su1 corn 

(Ferguson et al., 1978). However, su1se1 types convert sugar to starch rapidly after harvest, and 

lack the longer shelf-life of sh2 hybrids.  

Unlike the other major sweet corn genes, the Se1 locus does not encode a gene with a 

confirmed place in the starch synthesis pathway. The se1 allele was initially identified  in the 

inbred IL677a, the product of a three-way cross between Bolivia 1035 and IL44b, and IL442a 

(Ferguson et al., 1978). Bolivia 1035 is a floury-type South American corn. RA Brink named the 

gene due to its effect on sweet corn quality (Brink, 1978). The se1 allele from IL677a was 

rapidly incorporated into public and private breeding programs, including those of the  

University of Illinois and the University of Wisconsin from which each developed a large 

number of homozygous se1 sweet corn inbreds. Since the release of IL677a, these two programs 

have released the majority of publicly available se1 germplasm (Gerdes, Behr, Coors, & Tracy, 

1993).  Later work showed that the original source of se1 in sweet corn was inbred IL44b, which 

was derived from a Stowell’s Evergreen open pollinated cultivar. 

1.8 Nutritional Value of Sweet Corn 

Sweet corn possesses desirable qualities as a vegetable in that it is high in vitamins and 

antioxidants, and certain minerals; due to fresh consumption of sweet corn, many of these 

compounds have greater bioavailability compared to field corn (Revilla et al., 2021; Rouf Shah, 
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Prasad, & Kumar, 2016). Other secondary metabolites also affect the nutritional quality of sweet 

corn, including phenolic acids, flavonoids, and anthocyanins. Compared to field corn, sweet corn 

is higher in vitamin C and folate (Siyuan, Tong, & Liu, 2018). Rates of nutrient accumulation 

changes with kernel maturity, meaning that any genetic manipulation of vitamin or antioxidant 

levels must take into account the process of endosperm development (X. Hu et al., 2021; 

Špoljarić Marković et al., 2020). Interest in vitamins and antioxidants in sweet corn has resulted 

in recent breeding objectives that have included both increasing nutrient levels and the screening 

and characterization of nutrients in existing germplasm (Ibrahim & Juvik, 2009; Siyuan et al., 

2018). In sweet corn, recent association studies have attempted to tease apart beneficial alleles 

and differences between endosperm types with regards to nutritional quality. Sweet corn with the 

shrunken2 endosperm type has been found to have greater levels of carotenoids--including 

provitamin A compounds and vitamin E than other types (Baseggio et al., 2020, 2019; 

Hershberger et al., 2022). Significant genetic variation has also been found for mineral 

components in sweet corn, including iron and zinc (Baseggio et al., 2021). This work suggests 

that loci exist that can be exploited using marker-based or genomic selection, but also that 

natural variation exists to lend itself to more traditional plant breeding methods. 

1.9 Research Objectives 

This dissertation seeks to build on existing knowledge of maize endosperm development, 

with particular emphasis on the regulation of the starch synthesis pathway in sweet corn, and 

with regards to the role of sugaryenhancer1. Furthermore, as sweet corn breeders seek to 

improve their germplasm by focusing on previously undervalued traits, such as vitamin or 

antioxidant content, and understanding of the effects of Se1 on maize kernel secondary 

metabolism is necessary. To achieve these ends, the research presented here includes an analysis 
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from a sweet corn diversity panel, including lines with and without a functional Se1 allele, 

focusing on carotenoids and tocochromanols. Using a pair of near-isogenic lines that differ only 

at the Se1 locus, additional analysis was done to assess the gene expression and metabolite 

accumulation with and without Se1. Analysis of the metabolic pathways involved in the 

transcriptomic or metabolic changes will help to further elucidate the functions of Se1 in the 

starch synthesis pathway and in other parts of kernel development.  
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2.1 Abstract 

A distinctive phenotype of homozygous sugary enhancer1 (se1) sweet corn inbreds and 

hybrids is a light-yellow color in mature kernels. Carotenoid pigments contribute to yellow 

endosperm color in maize and are of nutritional importance in the human diet along with the 

related tocochromanols, the E vitamins. Tocochromanols, including both tocopherols and 

tocotrienols, are antioxidants important in human nutrition and cardiovascular health. Effects of 

the presence of sugary enhancer1 allele on carotenoid and tocochromanol levels in 
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homozygous su1, Y1 endosperm were evaluated in the Wisconsin Sweet Corn Diversity Panel. 

While population structure was present in the panel, the majority of variation in carotenoid levels 

was explained by genotype at the se1 locus. se1 was associated with significant decreases in the 

amount of lutein (34%) and zeaxanthin (36%) and decreases of tocotrienols by 12-65%. There 

were no significant differences in β-carotene and tocopherol levels between the two groups. 

Given that the biosynthesis pathways for carotenoids and tocochromanols are well-defined, these 

differences in carotenoids and tocotrienols between su1Se1 and su1se1 inbreds point to a broader 

role of Se1 alleles in metabolic pathways beyond endosperm starch production. 

2.2 Introduction 

Sweet corn breeding has traditionally been shaped by the manipulation of a small number 

of key genes in the starch synthesis pathway, resulting in an increase in sugar accumulation in 

the developing maize endosperm at the cost of decreased starch production (Whitt et al. 2002). 

The sugary1 (su1) mutation, a defect in the isoamylase1 starch-debranching enzyme, has the 

longest history of use in commercial breeding (Tracy et al. 2006). The majority of commercial 

sweet corns currently in use are supersweet “shrunken” types. The shrunken2 (sh2) mutation is a 

null mutation in the AGPase large subunit (Preiss et al. 1990; Tracy et al. 2019). The sugary 

enhancer1 (se1) mutation is a recessive modifier of su1, and can result in elevated sugar levels 

compared to sugary types (Tracy et al. 2019). Along with increases in sucrose and maltose, se1 

confers a light yellow endosperm phenotype when compared to a homozygous Se1su1 sweet 

corn (Figure 2.1). While the exact mechanism through which se1 affects kernel phenotype is 

unknown, it is likely to have regulatory role in starch synthesis and accumulation (Zhang et al. 

2019). The taste and texture traits resulting from presence, absence, or combinations of these 

endosperm mutations have been the main targets of sweet corn breeding in the last half-century 
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(Tracy et al. 2019; Hu et al. 2021). However, as biofortified crops—plants where traditional 

breeding and/or gene editing have been used to specifically increase a food’s nutritional value—

have become a focus of plant breeders, sweet corn emerges as a viable candidate for 

biofortification.   

 

 

 

Biofortification approaches have been implemented with particular zeal in manipulating 

the levels of various vitamins and antioxidants, including but not limited to vitamin A and 

Figure 2.1. Phenotypes of sugary-enhancer sweet corn kernels differing at the 

se1 locus. Both ears are from the same homozygous se1 su1 inbred. The ear on 

the left was pollinated by a homozygous recessive  se1 su1 near isogenic inbred.  

The ear on the right was pollinated by a homozygous dominant  Se1 su1 isogenic 

inbred. 
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vitamin E compounds, as a way to reduce both severe nutrient deficiency in developing countries 

and prevent the more subtle subclinical micronutrient deficiencies that occur in developed 

regions (Wurtzel et al. 2012; HarvestPlus; Food and Agricultural Organization of the United 

Nations (FAO) 2019). Successful biofortification programs rely on a combination of 1) known 

metabolic pathways for the trait of interest; 2) a target species with existing variation for the trait 

of interest; 3) nutrient stability in the final biofortified product. Without a target species that 

allows for clear and achievable goals, these points will slow the development and release of 

biofortified cultivars and increase costs for breeders, growers, and consumers; the result is an 

inefficient and ineffective biofortification program. Sweet corn, as currently consumed globally, 

possesses all three of the qualities necessary for effective biofortification. First, since maize is a 

model species for the plant genetics community, the biosynthesis pathways have been at least 

partially characterized for a number of compounds relevant to human nutrition, including the 

carotenoids and tocochromanols that provide biologically active vitamin A and vitamin E 

(Azmach et al. 2018; Bao et al. 2020; Diepenbrock et al. 2021). Furthermore, in both sweet corn 

and maize as a whole, there is extensive variation for these compounds that can be mined as the 

foundation for traditional breeding pipelines (Baseggio et al. 2019; Baseggio et al. 2020). 

Carotenoids, as a component of kernel color in sweet corn, are already under direct and indirect 

selection pressure as breeders optimize kernel color for consumer tastes (Ibrahim and Juvik 

2009). Finally, in contrast to dried staple food products such grain corn or rice, sweet corn is 

eaten fresh, leaving less time for breakdown of any beneficial nutrients. Current forecasts 

suggest that sweet corn consumption in the United States will decline to 10 pounds per person, a 

50% drop from previous peak consumption (Davis and Lucier 2021). Increasing the nutritional 
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value of sweet corn would have an added benefit of promoting consumer appeal in the face of 

declining fresh, frozen, and canned sweet corn sales.  

Perhaps the most attractive biofortification targets in maize are high levels of provitamin 

A compounds and other carotenoids, and the tocochromanols, or vitamin E; these compounds fit 

into the framework for successful biofortification. Carotenoids, including but not limited to 

compounds with vitamin A activity, are naturally occurring pigments that function in light-

harvesting and control reactive oxygen species in plants; they function as antioxidants in humans 

and are obtained through dietary intake. The carotenoids α-carotene, β-carotene, and β-

cryptoxanthin are required for healthy vision, regular child development, and strong immune 

system function (Lima et al. 2016; Bird et al. 2017). Consumed from plant sources, these 

provitamin A carotenoids are cleaved to produce the biologically active vitamin A, or retinol. β-

carotene can produce two units of retinol, while α-carotene and β-cryptoxanthin each yield one 

unit. Other carotenoids with significant human health implications are the macular pigments 

lutein and zeaxanthin, which help to absorb blue light in the foveola of the eye (Lima et al. 

2016). 

Recent work has been done to understand the biosynthesis pathways controlling both 

carotenoid and tocochromanol production in sweet corn, as well as measure the levels of these 

compounds in existing breeding material (Diepenbrock et al. 2017; Baseggio et al. 2019; 

Baseggio et al. 2020; Diepenbrock et al. 2021). In maize, synthesis of carotenoids and the 

tocotrienol class of tocochromanols takes place in the endosperm. Carotenoid synthesis begins 

with the production of isoprenoid precursors in the amyloplast. Through the methylerythritol 

(MEP) pathway, glyceraldehyde-3-phosphate and pyruvate are converted to isopentenyl 

pyrophosphate (IPP). Geranylgeranyl pyrophosphate synthase joins two units of IPP into 
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geranylgeranyl pyrophosphate (GGPP). Carotenoid synthesis enzymes will convert GGPP into 

first phytoene and then lycopene. Lycopene-cyclase enzymes add cyclohexyl rings to both ends 

of the lycopene molecule; at this point, the pathway splits into α-branch carotenes and β-branch 

carotenes, depending on which form of lycopene-cyclase catalyzed the initial reaction (Cuttriss 

et al. 2011; Wurtzel et al. 2012). In both branches, the cytochrome 450 β-ring hydroxylase 

(LUT1) and the β-carotene hydroxylase (CRTRB) catalyze the reaction converting the α- and β-

carotene to zeinoxanthin and its isomer β-cryptoxanthin, respectively (Figure 2.2). The 

cytochrome 450 sigma-ring hydroxylase (LUT5) produces lutein from zeinoxanthin, and CRTRB 

produces zeaxanthin from lutein. As the accumulation products at the ends of the α- and β- 

branches of the pathway, lutein and zeaxanthin are the most abundant carotenoids in maize 

endosperm (Wurtzel et al. 2012). For this reason, increasing lutein and zeaxanthin production 

and storage is a logical place to begin carotenoid biofortification in sweet corn.  

 

Figure 2.2. Carotenoid synthesis pathway showing the relationship and divergence between the 

compounds and enzymes in α-branch and β-branch carotenoids, starting from lycopene. 
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Tocochromanols can be synthesized in either the endosperm or the embryo, depending on 

what form is being produced (Diepenbrock et al. 2017; Bao et al. 2020). Similar to carotenoid 

synthesis, production of tocochromanol compounds also starts in the endosperm with GGPP 

through the MEP pathway; the production of tocopherols begins with phytyl-pyrophosphate 

instead and occurs in the embryo. Phytyl-pryophospate and homogentisate are combined by 

homogentisate phytyltransferase to form tocopherols, and GGPP and homogentisate are 

catalyzed by homogentisate geranylgeranyltransferase to form tocotrienols (Sen et al. 2006). 

Given the similarity to carotenoids in the early biosynthesis steps, increasing levels of vitamin E 

in sweet corn can be undertaken in tandem with increasing vitamin A.  

Since almost most of the existing sweet corn germplasm uses one or more of the three 

primary endosperm mutations, breeders must pay close attention to interactions or associations 

between endosperm type and any potential biofortification trait. Sugar signaling in maize 

controls a range of biological processes; the combination of sucrose and abscisic acid regulates 

parts of starch synthesis via regulation of transcription (Huang et al. 2016). Abscisic acid is a 

derivative of zeaxanthin, presenting an intersection of starch and sugar synthesis and carotenoid 

accumulation. Understanding the carotenoid and tocochromanol traits in relation to the primary 

sweet corn endosperm types and their relative sugar levels is a foundation for future 

biofortification programs. 

Previous work has been done using a diversity panel constructed to represent most of the 

genetic variation present in modern temperate sweet corn. A genome-wide association study 

(GWAS) identified a collection of key genes that were associated with elevated carotenoid levels, 

particularly within sh2 inbreds (Baseggio et al., 2020). The same research group performed a 

similar GWAS using tocochromanol phenotype data, and found that variation in major genes and 
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differences between endosperm types were present in vitamin E-related traits as well (Baseggio 

et al. 2019). Included in both of these studies was the pair of near-isogenic lines (NILS) that was 

used to characterize se1, W822GSe and W822Gse, which are homozygous for the dominant and 

recessive se1 alleles, respectively, but are homozygous recessive at the sugary1 locus (Zhang et 

al. 2019). However, a limitation of these projects was that all inbreds in both studies, including 

the W822G NILS, were classified as either su1, sh2, or su1sh2 mutants; sugary-enhancer inbreds 

were not analyzed as a separate group. Given that se1 inbreds tend to have a lighter-colored 

kernel compared to their dominant-Se1 counterparts, the diversity panel datasets present an 

opportunity to test the hypothesis on a population level that se1 has less carotenoids than su1 

inbreds. Since any significant differences between endosperm types in the original analysis may 

have been confounded by including se1 inbreds with su1 inbreds, reanalyzing the carotenoid and 

tocopherol phenotypic data with the inclusion of se1 genotype information serves two purposes: 

1) to determine levels of carotenoids and tocochromanols in se1 inbreds relative to sugary and 

shrunken inbreds, and 2) to identify any associations between se1 and amounts of intermediates 

or products of the carotenoid and tocochromanol pathways. 

2.3 Methods 

2.3.1 Plant Materials and Metabolite Analysis 

Data from the Wisconsin Sweet Corn Diversity Panel was used in this study, and was 

originally collected for publication in (Baseggio et al. 2019) and (Baseggio et al. 2020). Sweet 

corn lines and checks were grown in Aurora, NY, in the 2014 and 2015 growing seasons, with 

the full panel consisting of 411 lines common to each year. The panel was grown as an 

augmented incomplete block design, with blocks grouped based on plant height and inbreds 

randomized within blocks. Each incomplete block contained 20 experimental entries. Field 
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placement of entries within blocks and of sets of blocks within the field was randomized. Typical 

practices for sweet corn cultivation were used. Harvest maturity was determined to be 400 

growing degree days, corresponding to approximately 21 days after pollination, when sweet corn 

is at the milk stage ideal for vegetable consumption. Before metabolite analysis, two self-

pollinated ears were harvested from each plot, flash frozen in liquid nitrogen, and kernels from 

the two ears pooled and stored at -80 C. Then, 20 to 30 kernels from each plot were ground in 

liquid nitrogen for extraction and quantification of either carotenoids or tocopherols. Metabolite 

analysis was done on ground samples at Michigan State University (East Lansing, MI) using 

high-performance liquid chromatography (HPLC). Full HPCL conditions are described in 

Baseggio et. al. 2019 and Baseggio et. al. 2020.  

After filtering for HPLC outliers and data normalization using Box-Cox transformation, 

HPLC data for the remaining samples were used to generate best linear unbiased predictors 

(BLUPs) using a mixed linear model in ASReml-r (Gilmour et al. 2009; Baseggio et al. 2019; 

Baseggio et al. 2020). In the full diversity panel, there were 308 lines with carotenoid phenotype 

data and 384 lines with tocochromanol phenotype data due to low-carotenoid, white-endosperm 

outliers being excluded from the carotenoid set (Baseggio et al. 2020). Endosperm mutations 

included in the full panel were su1, su1se1, sh2, su1 sh2-i, brittle2 (bt2), and ADX amylose-

extender (ae1), dull1 (du1) waxy1 (wx1). In this experiment, only data from su1/su1 Se1/Se1 and 

su1/su1 se1/se1 lines were used. 

2.3.2 Sugary-enhancer genotyping 

To determine differences in carotenoid and tocopherol levels between se1su1 and Se1su1 

lines, a subset of the su1 lines from the BLUP dataset was selected for genotyping. This subset 

was selected as representative of publicly available genetic diversity within su1 sweet corn 
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germplasm. Using PCR methods described in Zhang et. al. (2019), 115 su1/su1 lines from the 

diversity panel were genotyped at the se1 locus. Results were compared with genotype-by-

sequencing data provided by Marcio Resende; lines with disagreement between PCR and GBS 

methods were removed from the data. This resulted in a dataset consisting of 30 se1su1 and 58 

Se1su1 lines with carotenoid data, and 40 se1su1 and 68 Se1su1 lines with tocopherol data. All 

lines with carotenoid data had corresponding tocochromanol data, but 20 lines with tocopherol 

data did not have corresponding carotenoid data.  

2.3.3 Statistical Analysis 

First, 174,996 high-confidence single nucleotide polymorphisms (SNPs) were used to 

analyze population structure within TASSEL (Bradbury et al. 2007). These high-quality SNPs 

had a call rate above 70%, a minor allele frequency greater than 5%, and heterozygosity below 

10%. The PCA function within TASSEL, using a covariance matrix, was used to obtain principal 

coordinates for the 108 lines with tocochromanol data, which included all lines with carotenoid 

data.  

In order to detect statistically significant associations between endosperm type and levels 

of carotenoids or tocochromanols, a linear mixed model was constructed using the mmer 

function within the sommer package in R, using the BLUP datasets for phenotypic inputs 

(Covarrubias-Pazaran 2016). To control effects of different sample size and variance between the 

se1Su1 and su1su1 lines, sample weights, derived from the sample size over sample variance, 

were included. Population structure was controlled for by including the first four principal 

components and the kinship matrix from the TASSEL output. Wald tests within sommer were 

used to determine if there was a significant effect of genotype between se1su1 and Se1su1 lines 

on carotenoid or tocochromanol abundances (Covarrubias-Pazaran 2016). Pearson’s correlations 
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between all combinations of carotenoid and tocochromanol traits were calculated separately for 

se1 and Se1 lines. 

2.4 Results 

 

Figure. 2.3. Population structure by genotype at sugary-enhancer1 locus. The majority of 

variation in carotenoid and tocochromanol traits was not due to relatedness among the Wisconsin 

Sweet Corn Diversity Panel subset used for analysis. 

 

The first two principal coordinates explained 9.6 and 4.4 percent of the overall genetic 

variation in the dataset for this study (Fig. 2.3). Population structure is present in this dataset and 

does contribute significant variation for the majority of carotenoid and tocochromanol traits. 

However, the genotype at the se1 locus explains additional trait variation not accounted for due 

to population structure. The magnitude of the se1 effect varies by trait but is present to some 

degree in traits with significant differences. The majority of widely-used sugary-enhancer sweet 

corn inbreds have either been developed at public breeding programs at the University of 

Wisconsin-Madison and the University of Illinois or were derived from those lines, so some 
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structural effects are to be expected. Effects of population structure come from both public 

breeding programs each having a relatively small number of lines that can be found in pedigrees 

of much of their germplasm. Population structure and kinship cannot be ruled out as a factor 

driving differences in carotenoids and tocochromanols between Se1su1 and se1su1 lines, 

especially given the narrow genetic base in sweet corn compared to other types of corn (Hu et al. 

2021). Among single-metabolite phenotypes, kinship effects were statistically significant for β-

carotene (p < 0.05). In the case of lutein, PC1 significantly contributed to variation, but kinship 

did not (Supplementary Table S2.1).  

Confirming the results of previous studies of carotenoid levels in sweet corn, lutein and 

zeaxanthin were the most abundant carotenoids in sugary-enhancer inbreds as well as the Se1su1 

inbreds (Figure. 2.4, Table 2.1). However, there was significantly more lutein and zeaxanthin in 

the Se1su1 inbreds. There were differences with small effects between genotypes in the pathway 

intermediates β-cryptoxanthin and zeinoxanthin. Of the five carotenoid compounds with 

significant differences, zeinoxanthin was the only one enriched in the se1su1 lines; β-

cryptoxanthin, zeaxanthin, lutein, and antheraxanthin all had higher abundances in Se1 lines. The 

patterns of composite carotenoid traits primarily reflected changes in lutein, zeaxanthin, and 

zeinoxanthin between genotypes. Overall, the relative abundances and rankings of each 

carotenoid compound were not significantly different between the se1su1 group and the Se1su1 
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groups, with the exception of zeinoxanthin increasing in abundance and no difference in the 

amount of lutein and zeaxanthin in the se1su1 lines. 

 

Table 2.1. Change in means between se1su1 and Se1su1 inbreds for single and composite 

carotenoid and tocochromanol traits. 
Trait se1su1 Se1su1 Differencei 

mean (µg g-1) 

β-Cryptoxanthin 0.205 0.534 -0.328*** 

Zeaxanthin 3.404 5.480 -2.076*** 

Zeinoxanthin 1.385 0.372 1.013* 

Lutein 3.570 5.450 -1.88*** 

Other carotenes 0.866 1.364 -0.498** 

Antheraxanthin 1.028 1.320 -0.292* 

Violaxanthin 0.918 1.023 -0.105NS 

β-Carotene 0.442 0.489 -0.047NS 

Total xanthophylls 5.040 7.334 -2.294** 

Total carotenoids 11.302 17.124 -5.822*** 

α-Xanthophylls 1.736 3.588 -1.852NS 

β-Xanthophylls 5.698 8.232 -2.534** 

Total carotenes 1.392 1.932 -0.54** 

β-carotene over β-cryptoxanthin 2.407 1.008 1.399*** 

Figure 2.4. Variation in carotenoid and tocochromanol traits for Se1/Se1 and se1/se1 sweet corn 

lines. Boxplots for Se1/Se1 lines are shown in blue, se1/se1 lines are shown in red. Black points 

indicate trait values for the W822Gse (circle) and W822GSe (triangle) NILs as developed in 

Zhang et. al. (2019). All lines shown are homozygous for su1. 
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β-Cryptoxanthin over zeaxanthin 0.061 0.089 -0.029*** 

Zeinoxanthin over lutein 0.104 0.253 -0.149** 

β-Carotene over β-cryptoxanthin and zeaxanthin 0.161 0.090 0.07* 

Total carotenes over total xanthophylls 0.169 0.129 0.039NS 

γ-tocotrienol 6.026 9.693 -3.667*** 

δ-tocotrienol 0.186 0.416 -0.23*** 

α-tocotrienol 1.591 1.934 -0.343NS 

γ -tocopherol 9.320 8.588 0.731NS 

α-tocopherol 1.438 1.606 -0.167NS 

δ-tocopherol 0.326 0.314 0.012NS 

Total tocotrienols and tocopherols 18.387 22.319 -3.932NS 

Total tocotrienols 7.754 12.158 -4.404*** 

Total tocopherols 10.177 9.529 0.648NS 

Total tocopherols over total tocotrienols 1.453 0.802 0.651*** 

γ-tocotrienol over γ-tocotrienol plus α-tocotrienol 0.762 0.818 -0.056* 

α-tocotrienol over  γ-tocotrienol 0.324 0.224 0.1* 

δ-tocotrienol over γ-tocotrienol plus α-tocotrienol 0.025 0.035 -0.01NS 

δ-tocotrienol over α-tocotrienol 0.133 0.238 -0.105NS 

δ-tocotrienol over γ-tocotrienol 0.033 0.042 -0.009NS 

α-tocotrienol over γ-tocopherol 0.161 0.217 -0.056NS 

γ-tocopherol over γ-tocopherol plus α-tocopherol 0.861 0.827 0.034NS 

δ-tocopherol over α-tocopherol 0.283 0.230 0.053NS 

δ-tocopherol over δ-tocopherol 0.039 0.041 -0.003NS 

δ-tocopherol over δ-tocopherol and α-tocopherol 0.032 0.033 -0.001NS 

iNS, *, **, *** non-significant or significant at P ≤ 0.05, 0.01, or 0.001, respectively 

 

For tocochromanol levels, ranks by abundance were also different between genotypes. γ-

tocochromanols, including both tocopherols and tocotrienols, were the most abundant in both 

se1su1 and Se1su1 lines.  For each of the α-, γ-, and δ-tocochromanols, the levels of the 

corresponding α-, γ-, or δ-tocotrienols were significantly lower in sugary-enhancer inbreds lines 

compared to Se1su1 lines. Tocopherols were not significantly different between the two groups. 

Since tocotrienols, but not tocopherols, are synthesized in the endosperm, it follows that effects 

of the endosperm mutation se1 on carotenoids may be mirrored by tocotrienols, but not 

tocopherols. Our study is the first to confirm the association of se1 with specific tocochromanol 

effects and changes in abundance between different tocochromanol compounds. 
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These results support the hypothesis that the lighter-yellow pericarp associated with the 

sugary-enhancer endosperm mutant is at least partially due to changes in carotenoid 

biosynthesis. Using a larger range of genotypes and representing a broader section of the sweet 

corn breeding germplasm, this study confirms the findings of Juvik et. al. 2009 in that the se1 

endosperm mutation was associated with lower levels of lutein and zeaxanthin but had no effect 

on tocopherols.  

Correlations between and within the carotenoid and tocochromanol traits were similar to 

results seen in other studies (Baseggio et al. 2019; Baseggio et al. 2020). Within the se1 lines, 

lutein was negatively correlated with zeinoxanthin, which is an intermediate in lutein production 

(Figure. 2.5). Along with the increase in zeinoxanthin in se1 lines, this could indicate a 

bottleneck in lutein production within the endosperm as a result of either the se1 mutation 

directly or as a result of the carbohydrate changes caused by se1. γ-tocochropherol and γ-

Figure 2.5. Correlations among Se1/Se1 (left) and se1/se1 lines (right) for individual carotenoid 

and tocochromanol traits. All lines are homozygous for su1-ref. *, **, *** significant at P ≤ 0.05, 

0.01, or 0.001, respectively. 
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tocotrienol were the most abundant kernel tocochromanols; the two compounds are significantly 

correlated in Se1su1 lines but not in se1su1 lines.  

2.5 Discussion 

  This study is informative for plant breeders interested in working with high-

carotenoid or high-vitamin E sweet corn, especially those working in traditional breeding 

programs where gene editing, as has been done in other biofortified crops, faces cost or 

regulatory burdens.  As traditional hybrid breeding revolves around both parent selection and 

population improvement, it’s advantageous to use elite parents for producing new inbreds. In the 

case of carotenoids and tocochromanols in sweet corn, these results suggest that biofortification 

efforts should be focused on sh2 and su1 endosperm types rather than se1 types. Since se1 

inbreds have reduced carotenoid and tocochromanol levels compared to their Se1 counterparts, 

breeding with se1 lines should be focused on markets where these nutrients are not a concern.  

The results for each carotenoid or tocochromanol individual, sum or ratio trait can 

illuminate points in the biosynthesis pathways where se1 may be interacting and identify a priori 

genes of interest for future expression studies. For example, a change in the ratio between 

compounds in adjacent steps in their biosynthesis pathway could be a result of altered function or 

expression of the enzyme that converts between the compounds. se1su1 lines show an increase in 

zeinoxanthin but a decrease in β-cryptoxanthin. The carotenoid β-ring hydroxylase (CRTRB) is 

required for both steps from β-carotene to lutein, but a cytochrome P450 ε-ring hydroxylase 

(LUT1) is required to convert zeinoxanthin to lutein. Reduction in expression or activity of 

CRTRB would result in reduced conversion to zeaxanthin, and reduced expression of LUT1 

would cause reduced production of lutein from zeinoxanthin. A similar inspection of the 

tocochromanol pathway and ratios of the compounds in this study shows that while tocotrienol 
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quantities are altered in se1su1 lines, the ratios between tocochromanols traits and ratios between 

various tocotrienols are unchanged. This suggests that the key enzymes, tocopherol cyclase and 

tocopherol methyltransferase, which produce the α-, β-, and γ- tocochromanols, are not altered in 

expression or activity. A possible interaction between genes and substrates in the tocochromanol 

pathway and the se1 locus occurs at or before the split between junction of tocotrienol synthesis 

and tocochromanol synthesis. Homogentisate geranylgeranyltransferase activity and the 

production of geranylgeranylpyrosphospate are points where tocotrienol synthesis differs from 

tocopherol synthesis and may be points of interaction with se1. While the data and discussion 

here are relevant to the biosynthesis pathways, future work is necessary to identify the effects of 

catabolic processes on these compounds and the effect degradation and conversion have on 

carotenoids and tocochromanols.  

Carotenoids also serve as precursors to plant hormones, including abscisic acid (ABA); a 

change in carotenoid levels might shift ABA levels in the developing seed (Vallabhaneni and 

Wurtzel 2010). This may affect seed maturation and the balance between dormancy and 

germination processes, the latter of which also involves degradation of starch into simpler sugars 

(Huang et al. 2016). Taken together, the confluence of se1 with carotenoid and tocochromanol 

synthesis suggests that se1 may have systemic interactions beyond the starch synthesis pathway, 

possibly affecting CRTRB or LUT1, and shed light on possible roles of the dominant and 

recessive alleles at the se1 locus. Unlike the other primary sweet corn mutations su1 and sh2, 

where the mutation contributes to a direct change in a functional enzyme, se1 may have a more 

regulatory role in the starch synthesis pathway, where se1 is able to interact with the synthesis of 

a number of secondary metabolites, including the pathways looked at here. However, more 
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research is necessary to identify specific places in the carotenoid and tocochromanol gene 

expression networks where starch synthesis pathways may be interacting. 
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2.7 Chapter Two Supplementary Materials 

Supplementary Table S2.1. Chi-square p-values indicating statistical significance of model 

terms for 38 carotenoid and tocochromanol individual, sum, or ratio traits. Genotype refers to the 

dosage at the Se1 locus, and principal components PC1-PC4 were model covariates. Kinship 

refers to the significance of the kinship covariance matrix as a random effect. P-values are FDR-

adjusted. 
Trait Genotype PC1 PC2 PC3 PC4 Kinship 

β-Cryptoxanthin 0.0000 0.2606 0.1632 0.8335 0.4410 1.0000 

Zeaxanthin 0.0002 0.8593 0.6276 0.8610 0.7144 1.0000 

Zeinoxanthin 0.0164 0.8750 0.7618 0.9804 0.6563 0.3752 

Lutein 0.0000 0.0002 0.5409 0.5140 0.2617 0.8309 

Other carotenes 0.0012 0.7263 0.8598 0.4831 0.6125 1.0000 

Antheraxanthin 0.0323 0.9187 0.2249 0.7927 0.7453 0.2306 

Violaxanthin 0.4831 0.9187 0.6549 0.8599 0.9187 0.1228 

β-Carotene 0.6125 0.8732 0.2664 0.6125 0.9187 0.0239 

Total xanthophylls 0.0012 0.0522 0.5815 0.5970 0.3279 0.4831 

Total carotenoids 0.0001 0.0365 0.7818 0.5094 0.2874 0.7618 

α-Xanthophylls 0.3946 0.0023 0.7623 0.5982 0.1228 0.5815 

β-Xanthophylls 0.0016 0.8787 0.9187 0.5065 0.8622 0.3946 

Total carotenes 0.0016 0.5752 0.8593 0.7618 0.6563 1.0000 

β-carotene over β-cryptoxanthin 0.0000 0.9325 0.0006 0.0873 0.5499 0.5382 

β-Cryptoxanthin over zeaxanthin 0.0000 0.4469 0.7467 0.8598 0.6838 0.9064 

Zeinoxanthin over lutein 0.0097 0.8598 0.9187 0.8473 0.9187 0.0047 

β-Carotene over β-cryptoxanthin and zeaxanthin 0.0149 0.9187 0.0327 0.2461 0.8841 0.8610 

Total carotenes over total xanthophylls 0.5982 0.5970 0.9187 0.5815 0.9187 0.0089 

γ-tocotrienol 0.0000 0.2760 0.1102 0.0220 0.7818 0.4831 

δ-tocotrienol 0.0000 0.2041 0.6838 0.0073 0.2906 1.0000 

α-tocotrienol 0.0970 0.9066 0.3988 0.9187 0.2934 0.2095 

γ-tocopherol 0.3988 0.4831 0.8593 0.6563 0.5815 0.0864 

α-tocopherol 0.6563 0.5065 0.4799 0.6270 0.7386 0.1526 

δ-tocopherol 0.6270 0.6333 0.6270 0.9187 0.4386 0.1632 

Total tocotrienols and tocopherols 0.0614 0.2167 0.2249 0.2249 0.6196 0.1190 

Total tocotrienols 0.0000 0.2604 0.0572 0.0171 0.9187 0.5752 

Total tocopherols 0.4654 0.3853 0.7724 0.7724 0.6270 0.1228 

Total tocopherols over total tocotrienols 0.0000 0.7724 0.4799 0.5650 0.9203 0.1228 

γ-tocotrienol over γ-tocotrienol plus α-tocotrienol 0.0365 0.9121 0.7618 0.2934 0.4718 0.0700 

α-tocotrienol over  γ-tocotrienol 0.0323 0.9187 0.6563 0.3097 0.3988 0.1228 

δ-tocotrienol over γ-tocotrienol plus α-tocotrienol 0.4014 0.8610 0.6261 0.8593 0.4633 0.0000 

δ-tocotrienol over α-tocotrienol 0.0001 0.5524 0.6270 0.0133 0.2436 1.0000 

δ-tocotrienol over γ-tocotrienol 0.3725 0.9064 0.6125 0.9187 0.4344 0.0043 

α-tocopherol over γ-tocopherol 0.4342 0.9421 0.8598 0.5065 0.5970 0.0097 

γ-tocopherol over γ-tocopherol plus α-tocopherol 0.4344 0.9187 0.7927 0.5065 0.5970 0.0067 
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δ-tocopherol over α-tocopherol 0.3725 0.9187 0.1721 0.7649 0.4284 0.1722 

δ-tocopherol over γ-tocopherol 0.2606 0.7818 0.3988 0.8787 0.5982 0.0323 

δ-tocopherol over δ-tocopherol and α-tocopherol 0.2760 0.8523 0.4642 0.9187 0.5524 0.0221 

 

 

 

 

 

 

 

 

 

 

 

 

3 Chapter Three: sugaryenhancer1 Sweet Corn Exhibits Altered 

Stress-response and Phytohormone Metabolism 

3.1 Abstract 

Sweet corn breeding has pursued high eating quality through the manipulation of starch 

and sugar metabolism; of the major genes that define sweet corn endosperm types, the function 
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of Sugaryenhancer1 (Se1) is still unknown, though it contains a FANTASTIC FOUR (FAF) 

protein domain that has been implicated in stress response and growth regulation in other 

species. While the absence of a functional Se1 allele is associated with an increase in sugars and 

changes in carotenoids and tocochromanols, questions still remain as to the mechanisms through 

which these changes occur. Deeper knowledge of the effects of Se1 in maize kernel development 

will help plant breeders make choices as to what germplasm to include in breeding programs and 

contribute to our understanding of maize starch synthesis. In this research, near-isogenic lines of 

the sugary1 sweet corn W822, with genotypes Se1/Se1 and se1/se1, were screened for changes in 

gene expression at 13, 16, 19, and 22 days after pollination; a widely-targeted metabolomics 

analysis was done on kernels sampled at 22 days after pollination. Differentially expressed genes 

were involved in starch and sucrose metabolism, and also genes involved in carotenoid synthesis, 

and in the production of the isoprenoid precursors that form the basis of carotenoids and 

tocotrienols. In particular, lut5, the enzyme converts zeinoxanthin to lutein, was downregulated, 

which would contribute to the reduction of lutein and increase in zeinoxanthin found in previous 

work. Confirming Se1 as at least partially regulated starch and sugar metabolism, the 

metabolomic analysis found significant increases in malto-oligosaccharides and other starch 

degradation products. The combined metabolomics and transcriptomics also shed light on 

changes in phytohormone processes in se1/se1 endosperm. Changes were observed in the 

pathways relating to the production, activation, or degradation of auxin, abscisic acid, 

gibberellin, cytokinin, brassinosteroids, and strigolactones. Changes in abiotic stress response 

pathways were also observed, mirroring the effects of FAF genes in other crops. Given the 

metabolomic shifts observed here, it’s likely that Se1 has a broad regulatory role in endosperm 
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development, with only one of many effects being the changes in sugars that make it useful to 

sweet corn breeding.  

3.2 Introduction 

While the vast majority of maize production is primarily grain corn meant for feed or 

fuel, sweet corn has economic and culinary importance in the United States, with domestic 

production centered in Washington, Florida, and the Upper Midwest (USDA-NASS, 2023). In 

addition to standard agronomic traits, sweet corn breeders have focused on manipulation of the 

endosperm starch pathways as the primary target of modern sweet corn breeding (Revilla, 

Anibas, & Tracy, 2021; William F. Tracy, Shuler, & Dodson-Swenson, 2019). Current breeding 

populations are increasingly dominated by the shrunken2 (sh2, Zm00001eb159060) endosperm 

mutation that provides the highest sugar levels and lowest starch at the fresh eating stage (Tracy 

et al., 2019). However, the rate of starch and sucrose accumulation in developing kernels is a 

highly polygenic trait, where levels of starch, sucrose, glucose, and fructose vary widely among 

genetic backgrounds, even in sh2 homozygotes (Azanza, Tadmor, Klein, Rocheford, & Juvik, 

1996; R. G. Creech & McArdle, 1966; Finegan et al., 2022; Soberalske & Andrew, 1978, 1980; 

T. Wang et al., 2015). Furthermore, simply introducing sh2 into a non-sweet corn will not result 

in a sweet and tender high-quality sweet corn without further breeding.  

Shrunken2 encodes the large subunit of adenosine-diphosphate pyrophosphorylase, 

which, as the enzyme responsible for creating the ADP-glucose required for starch synthesis, is 

the rate-limiting step in the pathway. When  sh2 is homozygous recessive, sucrose accumulates 

instead of starch (Hannah & Nelson, 1976; Hu et al., 2021). Other recessive alleles are used in 

sweet corn breeding, such as sugary1 (su1, Zm00001eb174590), which is the classic sweet corn 
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gene found in the earliest sweet corn populations and is still widely used in commercial 

production (William F. Tracy, Whitt, & Buckler, 2006). Su1 encodes a starch-debranching 

enzyme, isoamylase1. Recessive allele results in elevated sucrose levels and an increase in water-

soluble polysaccharides. Brittle1 (bt1, Zm00001eb235570) encodes the transmembrane protein 

that moves ADP-glucose into the amyloplast. Brittle2 (bt2, Zm00001eb176800) is a gene 

encoding the  AGPase small subunit and when recessive results in a kernel phenotype similar to 

sh2 ( Tracy et al., 2019). Neither of these mutations used in sweet corn as widely as sh2, though 

bt2 is used in “triplesweets”, which contain three or more recessive alleles (Tracy et al., 2019). 

The combination of mutant alleles amylose extender1 (ae1, Zm00001eb242610), dull 

endosperm1 (du1, Zm00001eb413290), and waxy1 (wx1, Zm00001eb378140), which are 

noncatalytic alleles of starch branching enzme IIb (SBEIIb), starch synthase IIIa, and granule-

bound starch synthase, respectively, has also been used in sweet corn, but have not had 

commercial impact. (Creech, 1965; Gao, Wanat, Stinard, James, & Myers, 1998; Revilla et al., 

2021). 

Sugaryenhancer1 (se1, Zm00001eb115450) is another gene that has been widely used in 

commercial germplasm, though not to the extent of sh2 and su1. Originally described as a 

recessive modifier of su1, it has primarily been used in combination with su1, and occasionally 

with other sweet corn genes (La Bonte & Juvik, 1990; Tracy et al., 2019). Compared to su1/su1 

kernels with the dominant Se1/Se1 genotype, su1/su1 se1/se1 kernels have more sucrose and 

maltose and a pale yellow endosperm color (La Bonte & Juvik, 1990; X. Zhang et al., 2019). The 

se1/se1 kernels are also reduced in reduced in carotenoids and tocotrienols (Branch, Baseggio, 

Resende, & Tracy, 2024). Sweet corn with se1 will also be noticeably more tender, perhaps 

through a reduction in pericarp thickness (W. F. Tracy & Galinat, 1987).  Germplasm from se1 
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inbreds has been used to improve tenderness in current  sh2 hybrids (A.M. Rhodes, personal 

communication to W.F. Tracy). 

Unlike other major sweet corn genes, researchers have not been able to associate se1 into 

a specific point in the starch synthesis pathway. Zhang et. al. (2019) provided a full 

characterization of the se1 in regards to its sequence and structure, and through RNA 

interference-mediated transgenic maize experiments, proved definitively that se1 was the cause 

of the distinctive high-maltose phenotype. The wild type Se1 allele was found to be an 

endosperm-specific gene encoding a 184 amino acid protein of unknown function but including a 

FANTASTIC FOUR (FAF) protein domain (X. Zhang et al., 2019).  

Fantastic four (FAF) genes were first identified as shoot meristem regulators in 

Arabidopsis, involving the CLV3-WUS feedback loop. In Arabidopsis, FAF genes act to repress 

WUSCHEL transcription factors, and are in turn repressed by CLAVATA proteins (Wahl, Brand, 

Guo, & Schmid, 2010). Also in Arabidopsis, EAR1, enhancer of ABA co-receptor1, contains the 

FAF protein domain; loss of EAR1 results in ABA hypersensitivity through interactions with 

protein phosphatases that negatively regulate ABA signaling (K. Wang et al., 2018). Other work 

has identified additional functions of additional FAF genes in Capsicum annuum and Solanum 

lycopersicum. In Capsicum annuum, FAF genes were identified with stress-tolerance functions. 

Drought and salt stress induced FAF expression; silencing of an FAF gene both enhanced 

drought tolerance and reduced tolerance to salt stress (Lim, Bae, & Lee, 2022). In S. 

lycopersicum, FAF genes contributed to regulatory control of flowering time (Shang et al., 2024; 

D. Zhang et al., 2024). While FAF genes have been demonstrated to have a range of functions in 

a variety of species, no definitive functions of FAF or FAF-like genes have been described in 

maize with the exception of se1 as involved in carbohydrate metabolism. 
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While no direct interaction between  the starch synthesis pathway and se1 or its FAF 

domain could be inferred, gene expression patterns, including an upregulation of a pullulanase-

type starch debranching enzyme (zpu1, Zm00001eb088740) suggested that se1 may be 

regulating starch degradation to produce maltose (X. Zhang et al., 2019). Other research 

identified Se1 as a central regulator of a gene expression network that included Scarecrow-like1 

(SCL1, Zm00001eb344400) and gibberellin and 26S proteasome-ubiquitin pathway genes, 

implicating Se1 as having a role in GA signaling, possibly regulating germination-like processes 

that lead to starch degradation and maltose production (Finegan et al., 2022). 

Despite uncertainty over the specific function of Se1 in maize development, a hypothesis 

emerges where Se1 has a broad regulatory function in kernel metabolism. Net biosynthesis of 

starch, carotenoids, and tocotrienols are suppressed in se1/se1 endosperm, indicating changes in 

nutrient storage and antioxidant activity (Ibrahim & Juvik, 2009; X. Zhang et al., 2019). Higher-

level control of these processes occurs through the balance of phytohormones present; the 

connection to GA signaling described in Finegan et. al. (2022) and the potential interactions of 

FAF-like genes with ABA regulatory and stress response pathways suggests that metabolic and 

transcriptomic profiling of se1/se1 kernels would reveal more diverse transformations than 

expected in a starch-synthesis gene.  

Here, transcriptomes of Se1/Se1 and se1/se1 isolines were analyzed for differential gene 

expression at multiple timepoints during kernel development to confirm the role of Se1 as 

modulating carotenoid and tocotrienol synthesis. A widely-targeted metabolomics assay followed 

to identify compounds enriched in se1/se1 genotype; the combined transcriptomic and 

metabolomic analyses point toward Se1 as also causing variation in phytohormone synthesis and 

regulation. Efforts to understand the interactions between various phytohormones and the 
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accumulation of starch, sugar, or other nutritional components in sweet corn will allow plant 

breeders the to exploit variation in these pathways as a route to maintain genetic gain. 

3.3 Methods and Materials 

3.3.1 Plant material and sample collection 

The su1/su1 sweet corn inbred W822Se1se1 was previously developed at the University 

of Wisconsin-Madison and used for sequencing and characterization of the Se1 and se1 alleles, 

(Zhang et. al. 2019). Briefly, the Wisconsin-developed supersweet (sh2sh2) inbred Wh8419 and  

‘Terminator’, a su1su1 Se1se1 hybrid, were crossed and offspring self-pollinated for 15 

generations. Progeny segregating smooth-kernel and wrinkled-kernel phenotypes were selected 

each generation of self-pollination and maintained as the heterozygous inbred family 

W822Se1se1. Smooth kernels had the homozygous dominant Se1/Se1 genotype, wrinkled 

kernels had the homozygous recessive se1/se1 genotype. The different genotypes were planted in 

the 2021 growing season as single replicates in four-row plots 3.5 meters long with .76 meter 

row spacing, and thinned to 12 plants per row. All plant material was grown at the West Madison 

Agricultural Research Station in Madison, Wisconsin. Plants were hand pollinated, either self- or 

cross-pollinated to produce three endosperm genotype classes: Se1/Se1/Se1, Se1/se1/se1, and 

se1/se1/se1. Heterozygote endosperm types were created by pollinating se1/se1 plants with 

pollen from Se1/Se1 plants. 

Pollinations were done on the same day, and all plants were hand pollinated to minimize 

cross contamination. Fresh corn sampling for analysis was done at 13,16, 19, and 22 days after 

pollination (DAP). Five ears, each a biological replicate, were harvested from each plot in the 
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morning at the set DAP. They were flash frozen in liquid nitrogen and stored at -80 C until RNA 

extraction.  

3.3.2 RNA extraction 

Bulk kernel extraction was done on developing endosperm from the frozen kernels, with 

kernels from each ear composing a biological replicate. While frozen, the pericarp and embryo 

were peeled away from the endosperm; endosperm from several kernels in a biological replicate 

were then pooled to obtain enough tissue for RNA extraction. Extraction was done using an acid 

phenol:chloroform method with a lithium-chloride precipitation step (Vennapusa, Somayanda, 

Doherty, & Jagadish, 2020). A modification to the published protocol was to homogenize tissue 

in reinforced microcentrifuge tubes in a bead mill with 1 mL of extraction buffer rather than use 

a mortar and pestle; this increased homogenization efficiency and preserved tissue integrity. To 

remove proteins, polysaccharides, and organic compounds, a second chloroform-only step was 

added. To further purify the sample after precipitation, an additional ethanol washing step was 

used.  

3.3.3 RNA Quality and Sequencing 

RNA quality was assessed using a Nanodrop spectrophotometer to assess RNA 

concentration and purity and then run on an Agilent Bioanalyzer to assess RNA integrity (RIN). 

RIN values ranged from 6.8 to 10, with an average value of 9.3, indicating extraction of high-

quality RNA. RNA evaluation and Illumina Truseq Stranded library preparation was done 

according to the manufacturer’s protocol by the University of Wisconsin Biotechnology Center, 

followed by sequencing to generate 150 bp paired-end reads on an Illumina NovaSeq X Plus. 46 

samples passed all stages of quality checks and library preparation; sequencing yielded 1350.8 

million total reads, with an average of 29.3 million reads per sample.  
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3.3.4 Sequence data processing and differential expression analysis 

Reads were trimmed and filtered using Trimmomatic and then mapped to the B73v5 

reference genome using the STAR aligner (Bolger, Lohse, & Usadel, 2014; Dobin et al., 2013; 

Hufford et al., 2021). Trimming and filtering provided paired reads and reads without a surviving 

mate; these orphan reads were aligned as single-end reads separately from the paired reads that 

had both mates remaining after trimming. Within the STAR command, the --quantMode flag was 

used to quantify reads per gene; raw count files from the paired and orphan reads for each 

sample were then merged and used for downstream analysis. The unique mapping rate ranged 

from 65.58 percent to 85.51 percent with an average mapping rate of 76.04 percent. All read 

processing was performed with computational resources provided by the UW-Madison Center 

For High Throughput Computing in the Department of Computer Sciences. Data from W822 

Se1/Se1 and W822 se1/se1 were used for further analysis. 

Raw count matrices from 18 W822 Se1/Se1 samples and 14 W822 se1/se1 samples were 

used to identify differentially expressed genes in DESeq2 in R, with each genotype/timepoint 

combination considered a separate treatment (Love, Huber, & Anders, 2014). Expression was 

normalized using the default options and low-expression genes filtered out to reduce noise, 

leaving only genes with at least ten reads in at least three samples. Principal component analysis 

was done using the PCAtools package in R (Blighe & Lun, 2021).  

3.3.5 Coexpression Network Analysis 

The same gene count matrices were used as input for identifying gene expression 

networks using the Weighted Correlation Network Analysis package in R (Langfelder & 

Horvath, 2008). A soft thresholding power of 18 was chosen using the sft() command to ensure a 

scale-free signed network and network modules were constructed with the blockwisemodules() 
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command. Module eigengene values, the value most representative of a gene expressions 

network’s modules, were used to find module-genotype associations. Correlations between the 

module eigengene value and both DAP and Se1 genotype were used to identify gene expression 

modules that were closely associated with the effects of the se1/se1 genotype. Modules with 

significant correlations were used in further analysis. 

3.3.6 Gene Ontology Enrichment Analysis 

Using the gprofiler2 package in R, the endosperm-expressed genes in this experiment 

were assigned gene ontology terms (GO terms) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway annotations from the Esembl Plants database (Kinsella et al., 2011; Raudvere 

et al., 2019). Differentially expressed genes within each timepoint and genes within each 

significant module were then search for enriched GO terms; significant GO terms or KEGG 

annotations were classifications that were impacted by genotype at the Se1 locus. The 

enrichment analysis was performed against a background gene list containing all endosperm-

expressed genes in this analysis and up- and downregulated genes were considered separately. 

3.3.7 Metabolomics analysis 

In order to identify metabolite differences between W822 Se1/Se1 and W822 se1/se1, 

three samples of each genotype were selected from 22 DAP frozen kernels for widely-targeted 

metabolomics analysis. Sample extraction and ultra-performance liquid chromatography tandem 

mass spectrometry (UPLC-MS/MS) analysis was performed as described in supplementary 

materials by MetwareBio (Metware Biotechnology Co., Ltd., Wuhan, China). Briefly, samples 

were lyophilized before a methanol extraction and centrifugation and supernatant was used for 

UPLC-MS/MS. Metabolites were semi-quantitatively identified using MetwareBio databases and 

relative content for each metabolite data was used for principal component analysis and 
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downstream analysis. Orthogonal partial least-squares analysis was done using MetaboAnalystR 

to determine the variable important in projection (VIP), p-value, and fold-change for each 

metabolite (Chong & Xia, 2018). Differentially accumulated metabolites (DAMs) were 

identified between W822 Se1/Se1 and W822 se1/se1 and selected based on a VIP score greater 

than 1 and p-value less than 0.05. Similar to gene ontology enrichment, differential metabolites 

were matched to KEGG pathway annotations and analyzed to find pathways that were enriched 

in DAMs using the hypergeometric method provided by the FELLA package in R (Picart-

Armada, Fernández-Albert, Vinaixa, Yanes, & Perera-Lluna, 2018). 

3.4 Results  

3.4.1 Structure and Expression of Se1 and se1 transcripts 

The se1 mutation is a deletion in the exon region of the gene; the promoter region, 5` 

UTR, and transcription start sites, as well as part of the 3` UTR, are still present as based on the 

B73v5 gene model. Putative non-coding transcripts were observed in lines with se1; all se1 

samples in this study showed reads mapping to the downstream region adjacent to Se1. These 

transcripts extend to the start of the Zm00001eb115470 promoter, a gene encoding a chloroplast 

glutathione synthetase. Previous studies have shown Se1 expression peaks around 16 DAP (X. 

Zhang et al., 2019). Here, the largest difference in Se1 expression occurred at 13 DAP and Se1 

transcripts were present throughout timepoints (Figure 3.1). Non-significant differences were 

observed in the expression of Se1 vs. se1 at 16 and 19 DAP.  Visualization of reads mapped to 

the reference genome in samples homozygous for the se1 allele all showed the se1 deletion in 

Zm0001eb115450 that was previously characterized (X. Zhang et al., 2019). Regardless of the 

number of reads aligned to the locus during read mapping, the W822 Se1/Se1 and W822 se1/se1 

lines in this experiment indeed differed at the Zm00001eb115450 locus (Figure 3.2).  
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Figure 3.1. Gene Expression at Se1 Locus. Normalized reads per gene for Zm00001eb115450 at 

each time-point x genotype combination. Significance values are given for contrast between 

se1/se1 and Se1/Se1. FDR-adjusted p-values and normalized count values were calculated within 

DESeq2. 

 

3.4.2 Principal component analysis 

Principal component analysis showed clustering based on genotype (Figure 3.3). To 

determine which principal components contributed to variance for specific experimental 

variables, Pearson’s correlation estimates were performed between the first ten principal 

Figure 3.2. Gene expression at Se1 locus. BAM alignments are shown at Zm00001eb115450 

gene model, with the exon in dark blue and UTRs in light blue. Alignments are representative of 

Se1/Se1 samples (lower) and se1/se1 samples (upper). The region of the se1 deletion as 

described in Zhang et. al. (2019) is shown in red. 

Figure 3.3. Principal Component Analysis. Samples were segregating at the Se1 locus; all 

genotypes are shown. DAP, days after pollination. 

se1/se1 

Se1/Se1 
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components and the variables sampling time (DAP) and genotype (Figure 3.4). PC1 and PC2 

were most significantly correlated with DAP (r = 0.9 and r = 0.28, respectively).  
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Significant correlations with genotype, measured as dosage at the Se1 locus were found with 

PC4, PC8, and PC9. Variables with the principal component loadings for the highly correlated 

PCs are genes that drive the difference between genotypes (Table 3.1). A beta-galactosidase 

(Zm00001eb152540), abscisic stress-ripening protein3 (aasr5, Zm00001eb422400), and an 

alkaline galactosidase (aga5, Zm00001eb079430) were all among the top genes that drove 

variation between genotypes. Gene ontology annotations suggest that the beta-galactosidase is 

involved in carbohydrate binding and carbohydrate metabolic processes, with additional 

annotations for cell wall and membrane components (Aleksander et al., 2023). In maize, aasr3 is 

a regulator of drought tolerance and ABA sensitivity (Liang et al., 2019; Virlouvet et al., 2011). 

The alkaline galactosidase, aga5, is involved in temperature stress tolerance, seed vigor, and 

Figure 3.4. Principal components variance and correlation. Scree plot (upper) shows 

cumulative variance and variance explained by each PC. Pearson correlations (lower) 

were calculated between each PC and numeric equivalents of either days after 

pollination (DAP) and dosage of a functional Se1 allele. *, significant at p < 0.05; **, 

significant at p < 0.01, ***, significant at p < 0.001. 
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synthesis of the raffinose-family oligosaccharides (RFOs) raffinose and stachyose (H. Liu, Wang, 

Liu, Kong, & Fang, 2024; Xu et al., 2023).  

Table 3.1. Major Drivers of Variation. Top genes that drive variation along significant principal 

components are listed. Some genes are significant in more than one PC. Descriptions and gene 

ontology annotations were sourced from the MaizeMine database (Shamimuzzaman et al., 2020). 
Gene PC Gene Symbol Description Gene Ontology Annotations 

Zm00001eb030160 PC1 az19D2 alpha zein 19Kda D2 nutrient reservoir activity 

Zm00001eb286170 PC1 esp1 embryo specific protein1 response to ABA, seed dormancy, 

desication tolerance 

Zm00001eb302070 PC1 meg6 maternally expressed gene6 cell wall, plasma membrane 

Zm00001eb302150 PC1 
 

thioredoxin-containing 

protein 

 

Zm00001eb350070 PC1 rip1 ribosome inactivating protein1 rRNA N-glycosylase 

Zm00001eb413750 PC1 def2 defensin-like protein2 
 

Zm00001eb413770 PC1 def1 defensin-like protein1 
 

Zm00001eb355410 PC1,8 
 

dirigent protein carbohydrate binding, apoplast 

Zm00001eb267000 PC1,9 
 

subtilisin-chymotrypsin 

inhibitor 

 

Zm00001eb392940 PC1,9 
 

3-beta-hydroxy-delta5-steroid 

dehydrogenase 

steroid biosynthesis 

Zm00001eb142290 PC4 betl10 basal endosperm transfer 

layer 

 

Zm00001eb168400 PC4 
 

bifunctional inhibitor/plant lipid transfer/seed storage protein 

Zm00001eb172830 PC4 bap2 basal layer antifungal 

protein2 

 

Zm00001eb199720 PC4 
   

Zm00001eb207110 PC4 def6 defensin-like protein6 defense response 

Zm00001eb388490 PC4 
 

alpha-carbonic anhydrase response to CO2 

Zm00001eb152540 PC4,8 
 

beta-galactosidase cell wall, beta galactosidase activity 

Zm00001eb411870 PC4,8 
 

secreted protein 
 

Zm00001eb079430 PC4,9 aga5 alkaline 

galactosidase/stachyose 

synthase 

galactinol-sucrose galactosyltranferase 

Zm00001eb153360 PC4,9 
 

coiled-coil domain 
 

Zm00001eb005200 PC8 esr2 embryo surrounding region2 
 

Zm00001eb060460 PC8 glb2 globulin2 
 

Zm00001eb266150 PC8 
 

transmembrane protein 
 

Zm00001eb301380 PC8 mmp81 germin-like protein nutrient reservoir activity 

Zm00001eb330460 PC8 csu27 UVB-repressible protein thylakoid membrane 

Zm00001eb353760 PC8 at-S40-3 
  

Zm00001eb399450 PC8 psk3 phytosulfokine peptide 

precursor3 

 

Zm00001eb034220 PC9 TUB8 induced stolon tip ribosome 

Zm00001eb044060 PC9 
 

copper transport protein 

family 

ribosome 

Zm00001eb338370 PC9 
 

calcium ion binding vacuole, transmembrane, salt stress 
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Zm00001eb391160 PC9 
 

RRM domain-containing 

protein 

 

Zm00001eb422400 PC9 aasr5 abscisic acid stress ripening5 
 

Zm00001eb430890 PC9 
 

cystein-rich transmembrane 

protein 

plasma membrane, kinase activity 

 

3.4.3 Differential Expression Analysis 

 

Figure 3.5 Summary of differentially expressed genes between W822 Se1/Se1 and W822 se1/se1. A. 

DEGs downregulated in W822 se1/se1. B. DEGs upregulated in W822 se1/se1. Set size is the total 

number of DEGs up- or downregulated at each timepoint. Intersection size is the number of genes 

belonging to each category. For each DAP category, points indicate membership in a shared or unique 

category. DEGs common to all time points are shown at the far right of the plot. 

A 

B 

A 

B 
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Table 3.2. DEGs up- or downregulated at all DAP. Table of DEGs with significant changes in 

expression (adjusted p-value < 0.05, log2FoldChange > 1) at all sampled time points. 

Descriptions and gene ontology annotations were sourced from the MaizeMine database 

(Shamimuzzaman et al., 2020). 

Gene ID log2FoldChange Description GO annotations 

Zm00001eb303870 3.03 
 

NA 

Zm00001eb411870 2.91 NA NA 

Zm00001eb153360 2.53 Coiled-coil domain-

containing 

protein 25, 27 

DAP 

NA 

Zm00001eb411870 2.49 secreted protein, 

expressed at 27 

DAP, heat 

treated 

seedlings, 1 

DAP ovaries 

drought 

NA 

Zm00001eb307510 2.45 probable 

serine/threonine-

protein kinase 

PBL23 

protein kinase activity, ATP binding, protein 

phosphorylation, peptidyl-tyrosine modification, 

microbody 

Zm00001eb199720 1.86 NA NA 

Zm00001eb226430 1.61 ABC transporter 

domain-

containing 

protein 

inorganic phosphate transmembrane transporter activity, 

UDP-glucose transmembrane transporter activity, 

protein binding, ATP binding, vacuolar membrane, 

plasma membrane, lipid transport, plastid, response 

to aluminum ion, vesicle membrane, UDP-glucose 

transmembrane transport, membrane, lyase 

activity, phosphate ion transmembrane transport 

Zm00001eb244910 1.47 Aldose 1-epimerase aldose 1-epimerase activity, integral component of 

membrane, hexose metabolic process, carbohydrate 

binding, monosaccharide catabolic process 

Zm00001eb083840 1.35 Carbonic anhydrase carbonate dehydratase activity, one-carbon metabolic 

process, zinc ion binding, chloroplast stroma, 

integral component of membrane, hydro-lyase 

activity 

Zm00001eb304520 1.34 IAA-amino acid 

hydrolase ILR1 

endoplasmic reticulum, auxin metabolic process, IAA-

Ala conjugate hydrolase activity, integral 

component of membrane, hydrolase activity 

Zm00001eb321820 -1.29 MATH domain-

containing 

protein 

hydrolase activity 

Zm00001eb380430 -1.66 Putative somatic 

embryogenesis 

protein kinase 1 

protein kinase activity, protein serine/threonine kinase 

activity, ATP binding, nucleoplasm, cytoplasm, 

plasma membrane, protein phosphorylation, 

defense response, immune response, response to 

virus, integral component of membrane, protein 

localization to nucleus, negative regulation of 

multicellular organism growth, identical protein 

binding 

Zm00001eb391160 -1.98 NA NA 

Zm00001eb056900 -2.05 calmodulin-like protein 

11 

calcium ion binding, integral component of membrane, 

enzyme regulator activity, regulation of catalytic 

activity 

Zm00001eb166580 -2.43 NA nutrient reservoir activity 
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After normalization and filtering with DESeq2, a total of 22,811 genes were expressed in 

the endosperm tissue. Within each time point, data was screened for differentially expressed 

genes (DEGs), defined as having a log2 fold-change of greater than 1 or less than -1 and a false 

discovery rate-adjusted p-value less than 0.05. An interaction effect was observed between 

genotype and developmental stage, where the number of genes showing an increase or decrease 

in expression varied between each time point (Figure 3.5, Table 3.2). In the W822 background, 

more genes were either upregulated or downregulated in the se1 lines at both 13 DAP and 22 

DAP, as compared to 16 and 19 DAP.  

3.4.4 Changes in gene expression 

To identify changes in patterns of gene expression, gene ontology and KEGG enrichment 

analysis was done using W822 se1/se1 and W822 Se1/Se1 (Figure 3.6). For gene-ontology 

enrichment, up- and down- regulated DEGs were considered separately. For KEGG enrichment 

analysis, to identify the strongest changes in gene activity, DEGs with a log2FoldChange with a 

magnitude greater than one was used. To identify pathways with moderate changes, DEGs with a 

log2FoldChange with a magnitude greater than 0.5 were used. Over all time points, in the 

strongly DE pathways, upregulated genes were enriched in terms associated phenylpropanoid 

biosynthesis, biosynthesis of secondary metabolites, and starch and sucrose metabolism, while 

downregulated genes were enriched in diterpenoid biosynthesis and glutathione metabolism 

(Figure 3.6). Interestingly, the KEGG term for “protein processing in the endoplasmic reticulum” 

was enriched in all three groups with significant KEGG terms. When moderately-expressed 

Zm00001eb388490 -4.28 Carbonic anhydrase carbonate dehydratase activity, one-carbon metabolic 

process, zinc ion binding, chloroplast stroma, 

response to carbon dioxide, integral component of 

membrane 
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genes were included in the analysis for all time points, tyrosine and phenylalanine metabolism 

the most highly enriched pathways in downregulated genes; there were no DEG-enriched 

pathways that were significantly upregulated when moderately-differentially expressed genes 

were included.  

 

Figure 3.6. KEGG pathway annotations for differentially expressed genes. Pathway enrichment 

of differentially expressed genes throughout development. Panels are arranged by strength of 

expression changes and by up- or down-regulation in W822 se1/se1 relative to W822 Se1/Se1.. 

Moderately DE includes gene with absolute log2FoldChange > 0.5 and strongly DE includes 

gene with absolute log2FoldChange >1. Rich factor indicates proportion of DE genes detected 

against the total genes annotated in a pathway. 

 

Differentially expressed genes were further grouped and analyzed via gene ontology 

enrichment (Aleksander et al., 2023). Early in endosperm development, at 13 DAP, nutrient 

reservoir activity is the GO term most enriched in downregulated genes. For genes upregulated at 

13 DAP, GO terms include abiotic and xenobiotic stress responses, as well as membrane-



63 

 

associated GO terms. Transmembrane transport functions were the most-enriched terms in both 

molecular functions and biological processes, and the cell periphery and plasma membrane were 

the most enriched cellular component terms. At 16 DAP, responses to heat and stress were 

upregulated, as well as cellular component GO terms for thylakoid and plastid membrane 

association. At this time point, downregulated genes are enriched in glutathione transferase 

activity and in 1-deoxy-xylulose-5-phosphate synthase activity. By 19 DAP, the GO term 

circadian rhythm (plant) was the only term enriched in downregulated in the se1 NILs. GO terms 

enriched in upregulated genes at 19 DAP were associated with nucleotide disphosphate activity 

and carbon and nitrogen metabolism. Hydrolase activity also appears here as an enriched term. 

At 22 DAP, there were again a large number of DEG-enriched GO terms; this was the first time 

point with more downregulated terms than upregulated terms. Terms enriched in downregulated 

DEGs included stress and signaling responses, such as response to abscisic acid, salt stress, and 

oxidative stress. At 22 DAP GO terms enriched in upregulated DEGs were carbohydrate-

centered, including oligo-, di-, and polysaccharide processes, and activity of glucanases, 

galactosidases, and glycosyl hydrolases. At this point, stress-response terms such as hormone 

responses and response to heat or salt are enriched in downregulated genes. Here, gene ontology 

enrichment suggests differing effects of se1 across developmental timepoints. Early in 

development, at 13 and 16 DAP, stress responses are upregulated in absence of a functional se1 

allele; GO enrichments suggest that these effects may be localized to cell membranes, including 

plastid membranes. Later in endosperm development, DEGs are enriched in GO terms for 

carbohydrate metabolism, while stress response terms, many of which were associated with 

upregulated genes earlier, becomes downregulated.  



64 

 

3.4.5 Weighted Gene Coexpression Network Analysis 

Coexpression networks were used to identify gene expression trends, including those of 

non-DE genes, within transcriptomic changes between W822 Se1/Se1 and W822 se1/se1. In a 

network built from 2,2811 endosperm-expressed genes obtained from 14 Se1/Se1 samples and 18 

se1/se1 samples, 42 coexpression modules were identified using the WGCNA package in R 

(Langfelder & Horvath, 2008). Module sizes ranged from 33 to 4325 genes. Nine modules with 

an absolute value of correlation greater than 0.5 were selected for further analysis (Table 3.3).  

Table 3.3. Gene Ontology (GO) Enrichments for WGCNA modules. Modules were selected 

based on significant correlations with the se1/se1 genotype. *, significant at p < 0.05; **, 

significant at p < 0.01, ***, significant at p < 0.001. GO terms derived from the Ensembl Plants 

database via gprofiler2, and selected GO terms were significant at the p < 0.05 level. 
Module, 

number of 

genes 

Correlation GO terms 

lightcyan1 

n = 33 

-0.88*** plant-type cell wall biogenesis, plant-type cell wall organization or biogenesis, cell wall 

biogenesis, cell wall organization or biogenesis, side of membrane 

orangered4 

n = 72 

-0.57*** RNA binding, mRNA binding, protein import into chloroplast stroma, condensed nuclear 

chromosome, mitochondrial outer membrane translocase complex, mitochondrial 

outer membrane, outer mitochondrial membrane protein complex, SAM complex 

Purple 

n = 491 

-0.51** cytoplasm, extracellular region, chloroplast, plastid, photosynthetic membrane, plastid 

envelope, photosynthesis, photosystem, chloroplast thylakoid membrane, plastid 

thylakoid membrane, plastid membrane, thylakoid, chloroplast thylakoid, plastid 

thylakoid, peroxisome, microbody, thylakoid membrane, chloroplast stroma, plastid 

stroma, outer membrane, organelle outer membrane, photosystem II, chloroplast 

envelope, photosynthesis, light reaction, photosystem I 

Steelblue 

n = 121 

0.53** single-stranded telomeric DNA binding, sequence-specific single stranded DNA binding, 

telomere maintenance via telomerase, telomere maintenance via telomere 

lengthening, RNA-templated DNA biosynthetic process 

Yellowgreen 

n = 81 

-0.55*** defense response, indole-containing compound catabolic process, tryptophan catabolic 

process to kynurenine, tryptophan catabolic process, N-acetylglucosamine metabolic 

process, beta-1,4-mannosylglycoprotein 4-beta-N-acetylglucosaminyltransferase 

activity, kynurenine metabolic process, glucosamine-containing compound 

metabolic process 

 

Zm00001eb115450 was in a module containing 1167 genes. The lightcyan1 module, containing 

33 genes, was enriched in GO terms for plant cell wall functions. This module contained the hub 

gene Zm00001eb421200 , an acetylglucosaminyltransferase and Zm00001eb115470, which is 

just downstream from Se1. MAX2 F-box proteins encoded by Zm00001eb3766660 and 
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Zm00001eb270950 were also included in this module. MAX2 is part of the strigolactone 

signaling pathway and has stress response functions (Conn & Nelson, 2016; Struk, 2018). 

Module lightcyan1, which was strongly associated with the se1/se1 genotype, also included 

genes encoding alpha-amylase and a tryptophan aminotransferase involved in auxin biosynthesis 

(Glawischnig et al., 2000; Leclere, Schmelz, & Chourey, 2010).  

3.4.6 Metabolomic Analysis 

Untargeted metabolomics was performed on samples collected from the Se1/Se1 and 

se1/se1 genotypes at 22 days after pollination in order to identify differential metabolites at a 

developmental stage comparable to harvest-maturity in commercial sweet corn. 1,803 

metabolites were detected using UPLC-MS/MS, with 138 metabolites upregulated in the se1/se1 

NILs compared to the Se1/Se1 NILs, and 159 metabolites downregulated. Discriminant analysis 

by orthogonal partial least squares was used to identify which variables contributed the most to 

differentiation between groups, ranked by variable importance in projection (VIP), with VIP 

values greater than 1 suggesting differentiation between Se1/Se1 and se1/se1. Here, methyl 

gallate, a phenylpropanoid, was identified as having the highest VIP with a value of 1.626. 

Compounds involved in starch and sucrose metabolism are show in Table 3.4. 

Table 3.4. Saccharide compounds differing between Se1/Se1 and se1/se1 samples. VIP, variable 

importance in projection from orthogonal partial least-squares. Log2FC, log2 fold change of 

se1/se1 over Se1/Se1 samples. Significant compounds had VIP values greater than 1 and p < 

0.05.  
Compounds VIP P-value Log2FC 

Raffinose 1.60 0.00 0.56 

D-Panose 1.60 0.00 0.44 

Dihydroxyoctanoic acid glucoside 1.60 0.00 -1.15 

Stachyose 1.59 0.00 0.92 

D-Arabinose 1.57 0.00 -0.53 

N-Acetyl-D-glucosamine 1.56 0.00 -1.02 

Verbascose 1.56 0.01 1.77 
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D-Maltotetraose 1.54 0.02 1.24 

Manninotriose 1.54 0.01 1.10 

4-(3-Methylbutanoyl)Sucrose 1.53 0.01 -1.96 

D-Galactaric acid 1.52 0.01 -0.52 

DL-Xylose 1.51 0.01 -0.95 

D-Saccharic acid 1.47 0.02 -0.59 

Glucopyranose 6-Hydroxydecanoate 1.46 0.01 -1.04 

Sedoheptulose 1.46 0.02 -0.45 

DMelezitose O-rhamnoside 1.46 0.02 0.88 

  

45 upregulated metabolites had current functional annotations from the KEGG database, 

as did 72 downregulated metabolites; KEGG annotations were used in a pathway enrichment 

analysis. Only compounds associated with amino sugar/nucleotide sugar metabolism were down 

represented. Biosynthesis pathways for sphingolipids, stilbenoids, and phenylpropanoids were 

contra-regulated, with these pathways enriched for both higher- and lower-accumulating 

metabolites. However, even within contra-regulated pathways, there were greater numbers of 

pathways overrepresented in W822 se1/se1 than those underrepresented.  KEGG pathways for 

ABC transporters and nucleotide metabolism were most enriched in higher-abundance 

metabolites.  

3.5 Discussion 

3.5.1 Altered expression of starch and sucrose metabolism genes in W822 se1/se1 

In terms of sweet corn breeding for commercial markets, the se1 gene is associated with 

higher eating quality when combined with su1, relative to su1 alone (Tracy et al., 2019). Sugars 

and other carbohydrate compounds are of particular interest in sweet corn metabolomics, given 

the potential quality implications. At the fresh-eating stage, se1/se1 inbreds have higher sucrose, 

similar starch content, and fewer water-soluble polysaccharides (La Bonte & Juvik, 1990; X. 
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Zhang et al., 2019). The increased abundance of maltose and other products of starch degradation 

in mature se1/se1 inbreds is the strongest piece of evidence that se1 is involved in starch and 

sucrose metabolism (La Bonte & Juvik, 1990; X. Zhang et al., 2019). In this experiment, two 

important starch degradation products were enriched in W822 se1/se1; maltotetraose, which is a 

product of amylase activity on starch, and a trisaccharide identified as panose, which is a product 

of pullulanase activity on starch (Hii, Tan, Ling, & Ariff, 2012; Naik et al., 2023). The 

combination of both high VIP values and strong fold-changes on the aforementioned metabolites 

indicates that carbohydrate metabolism is a primary effect of se1. Enzymes in the starch 

synthesis pathway, including genes used in sweet corn breeding, were also highly differentially 

expressed in the endosperm at the time points in this study (Figure 3.7, Supplementary figure 

3.1).  

 

Figure 3.7. Differential expression of genes uses in sweet corn breeding. Starch synthesis genes 

shown are either currently used or have been experimented with in sweet corn breeding 

programs. Genes with higher expression are lower on the heatmap. Genes are up- (blue) or 

downregulated (red) in W822 se1/se1 compared to W822 Se1/Se1. *, significant at p < 0.05; **, 

significant at p < 0.01, ***, significant at p < 0.001, **** significant at p < 0.0001. Expression 

changes for additional genes involved in the starch synthesis pathway are shown in 

Supplementary Figure S3.1. 
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ADP-glucose pyrophosphorylase, including the large subunit Sh2 and small subunit Bt2, were 

the most abundant transcripts in the endosperm starch synthesis pathway. Bt2 and Sh2 were 

downregulated in se1/se1 endosperm at 13 DAP. Also at 13 DAP, starch synthases 

(Zm00001eb353810, Zm00001eb191890, Zm00001eb376100) and amylose extender1 (ae1, 

Zm00001eb242610) were downregulated in W822 se1/se1 relative Se1/Se1. Later in endosperm 

development, genes for starch degradation enzymes are upregulated. At 19 and at 22 DAP, there 

was an upregulation of the pullulanase Zpu1 (Zm00001eb088740), and at 22 DAP,  the starch 

degradation enzymes Zm00001eb273940, a glycosyl-hydrolase, Zm00001eb307700, a beta-

amylase, and Zm00001eb390820, an alpha-glucosidase, are all upregulated. The upregulation of 

starch-degrading enzymes in W822 se1/se1 explains the increased abundance of panose and 

maltooligosaccharides.  

Other key carbohydrate metabolites that were enriched in W822 se1/se1 relative to W822 

Se1 were the raffinose-family oligosaccharides (RFOs) raffinose, stachyose, and verbascose. 

These compounds had a log2 fold change of 0.92, 0.56, and 1.77, respectively. Supporting the 

changes in RFO levels is the differential expression of genes in the RFO biosynthesis pathway 

(Supplementary Table S3.4). The same alkaline galactosidase aga5 (Zm00001eb079430) 

contributing significant variation for principal component separation between W822 se1/se1 and 

W822 Se1/Se1 is strongly downregulated; the genes aga4 (Zm00001eb061880) and aga2 

(Zm00001eb281720), genes for two other enzymes with RFO synthetic activity, are significantly 

upregulated at 22 DAP. According to the maize Qteller database, all three raffinose-synthase 

genes show a response to salt or temperature stress (Woodhouse et al., 2022). Other literature 

points to RFOs as critical compounds in abiotic stress tolerance and desiccation tolerance in 
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developing seeds (H. Liu et al., 2024). Zm00001eb079430 is also annotated as a seed imbibition 

protein involved in seed vigor (T. Li et al., 2017).  

3.5.2 Altered expression of carotenoid and tocotrienol synthesis genes in W822 se1/se1 

Genome-wide association studies, in both sweet corn and field corn, have identified 

genes that contribute to variation in kernel carotenoid levels, including important genes in the 

carotenoid biosynthesis pathway (Baseggio et al., 2020; Diepenbrock et al., 2021; Finegan et al., 

2022). Similar studies have done the same with regards to tocochromanols (Baseggio et al., 

2019; Diepenbrock et al., 2017; Hershberger et al., 2022). Carotenoid beta-ring hydroxylases 

(crtRB1 and crtRB3), lycopene epsilon cyclase (lcyE), phytoene synthase (PSY1), deoxyxylulose 

synthase (DXS2), and plastid terminal oxidase (PTOX) control kernel carotenoid levels in maize; 

homogentisate geranylgeranyltranferase (hggt1), gamma-tocopherol methyltransferase (vte4), 

and tocopherol cyclase (vte1) control significant variation for tocochromanols. crtRB1, lcyE , 

vte4, and hggt1 were again identified in a sweet corn-only panel. As part of previous work on the 

genetic associations of vitamin levels in sweet corn, W822 se1/se1 has been shown to have lower 

levels of certain carotenoids and tocotrienols compared to W822 Se1/Se1 (Branch, Baseggio, 

Resende, & Tracy, 2024). Exploring the combined transcriptomics and metabolomics in this 

study provides a way to further explore those pathways in the context of the Se1 gene. 

Differentially-expressed genes were found between W822 Se1/Se1 and W822 se1/se1 in both the 

carotenoid and tocochromanol pathways.  

In the primary carotenoid synthesis pathway (Supplementary figure S3.2), the phytoene 

synthase (Y1, Zm00001eb271860) was downregulated at 13 DAP and upregulated at 22 DAP, 

change in expression of this gene would affect the movement entering the main carotenoid 

synthetic pathway. This could at least partially explain the pale endosperm color of se1 inbreds; 
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kernels with defective y1 alleles have no carotenoids and are white in color. Early in 

development, at 13 and 16 DAP, a carotene beta-ring hydroxylase (lut5, Zm00001eb258960), 

that converts zeinoxanthin to lutein, was also downregulated. This is particularly notable; 

zeinoxanthin was the only carotenoid to be more abundant in se1/se1 inbreds compared to 

Se1/Se1 inbreds, and a downward shift in lut5 expression would explain that change. Other 

changes in the carotenoid synthesis pathway included a decrease in expression of another 

carotenoid beta-ring hydroxylase (crtRB5, Zm00001eb403700) in W822 se1/se1 at 19 and 22 

DAP. Violaxanthin de-epoxidase (vde1, Zm00001eb085840), which converts violaxanthin to 

antheraxanthin and then antheraxanthin to zeaxanthin was upregulated at 16 and 22 DAP. Also in 

the xanthophyll cycle, a zeaxanthin epoxidase/temperature induced lipocalin (zep1, 

Zm00001eb247000) was upregulated at 13 DAP.  

Carotenoid levels can also be influenced by the rates of carotenoid degradation and 

conversion to other substances. Carotenoid-derived compounds are also a large part of the 

metabolic interactions within the developing endosperm. Abscisic acid, ABA, is produced from 

zeaxanthin through the action of nine’-carotenoid-cleavage dioxygenases (NCEDs); 

downregulation of NCEDs is another potential avenue in producing stable high-carotenoid levels 

in maize and other crops (Cuttriss, Cazzonelli, Wurtzel, & Pogson, 2011; Perrin et al., 2017; 

Song et al., 2022). However, there were no significant changes in NCED gene expression in this 

experiment. 

Se1 is also associated with changes in tocochromanols, specifically the abundances of the 

tocotrienols; unlike tocopherols, tocotrienols are plastid-synthesized in the endosperm (Sen, 

Khanna, & Roy, 2006). Genes in the tocotrienol biosynthesis pathway showed fewer changes in 

expression than genes in the carotenoid pathway (Supplementary Table S3.3). The only gene 
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with significance at the 0.05 level was a plastid homogentisate geranylgeranyltransferase 

(Zm00001eb382300) which was downregulated at 13 DAP. While other genes in the 

tocochromanol pathway showed slight downregulation at 22 DAP, none were statistically 

significant.  

Geranylgeranyl diphosphate (GGPP) is a common substrate in synthesis of both 

carotenoids, where lycopene is formed from two units of GGPP, and tocotrienols, where initial 

synthesis requires join?? GGPP with homogentisate. The methylerythritol pathway (MEP) 

contributes to GGPP production; genes in the MEP pathway have also been associated with 

carotenoid and tocochromanol variation. In W822 se1/se1, dxs1 and dxs2 (Zm00001eb287860 

and Zm00001eb302370, respectively) were downregulated at 16 and 22 DAP; these enzymes 

catalzye a rate limiting step in GGPP synthesis, and reduced expression could lower metabolic 

flux through the MEP pathway and indirectly reduce abundance of MEP-derived compounds. 

GGPP is a link between carbon metabolism and a number of secondary metabolites; through the 

MEP pathway, glyceraldehde-3-phosphate and pyruvate can be turned into GGPP, which is a 

precursor to not only carotenoids and tocochromanols, but gibberellins as well, making it an 

indirect factor in the abundance of both ABA and GA in the developing kernel (Cordoba, Salmi, 

& León, 2009; Kasahara et al., 2002).  

3.5.3 Gene expression in se1/se1 endosperm is enriched in stress response and 

germination pathways 

Gene ontology and KEGG pathway enrichment analysis, using both transcriptomic and 

metabolomic data, suggests that Se1 has a role in modulating stress responses in the developing 

kernel; this also hints at a function for the FAF domain present in the Se1 exon and a connection 

between Se1 and hormonal regulation of a variety of plant metabolic processes. FAF and FAF-
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like genes are implicated in stress and phytohormone responses (Lim et al., 2022). This 

experiment suggests parallels between the effects of the loss of Se1 in maize endosperm and role 

of C. annuum FAF genes in drought and salt stress.  At 13, 16, and 22 DAP time points, GO 

terms for salt and osmotic stress were over-represented among DEGs upregulated in W822 

se1/se1. Furthermore, specific genes in with roles in stress response are differentially expressed, 

with roles in carbohydrate metabolism and in antioxidant activity. The salt-responsive 

transcription factor Zm00001eb184100 and a glyceraldehyde-3-phosphate dehydrogenase, 

Zm00001eb246370, which converts between glyceraldehyde-3-phosphate and 3-phospho-

glyceroyl phosphate in glycolysis and gluconeogenesis, were each strongly downregulated in 

W822 se1/se1. Superoxide dismutases (Zm00001eb016940, Zm00001eb394700, 

Zm00001eb285090, and Zm00001eb347200), which have antioxidant activity associated with an 

increase in stress tolerance, were also downregulated. These superoxide dismutatase, or SOD, 

genes participate in ROS degradation by catalyzing the production of hydrogen peroxide from 

superoxide (Ali, Sami, Haider, Ashfaq, & Javed, 2024; L. Guan & Scandalios, 1998). SOD 

proteins are also less abundant in ABA-deficient vp5 mutants, which lack a phytoene desaturase 

and have decreased levels of both carotenoids and ABA. In this case, in W822 se1/se1, several 

distinct and highly expressed SOD genes were downregulated. Two heat shock proteins with salt 

stress, heat stress, and H2O2 response GO terms, Zm00001eb011900 and Zm00001eb121900, 

were downregulated. In the C. annuum FAF study, both the accumulation of proline and the 

expression of genes involved in proline synthesis were used as markers for tolerance to salt and 

osmotic stress (Lim et al., 2022). W822 se1/se1 shows altered proline metabolism; metabolomics 

data indicates that proline is less abundant than in W822 Se1/Se1, and a delta-pyrroline 

carboxylase (pcs1, Zm00001eb289900) was upregulated at 16, 19, and 22 DAP. Increased pcs1 
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activity could favor proline degradation to glutamate, reducing the ability of cells to use proline 

for osmotic stability (Ghosh, Islam, Siddiqui, Cao, & Khan, 2022).  

In addition to changes in salt-stress associated responses, W822 se1/se1 shows 

transcriptomic and metabolic changes indicative of drought response; drought and salt stress 

responses are phenotypically similar and rely on many of the same regulators and reaction. ABA 

is a key regulator of both of these pathways, along with other types of abiotic stress (North et al., 

2007; J. Zhang, Jia, Yang, & Ismail, 2006). Both drought and salt stress affect water dynamics. In 

leaves, drought stress will result in ABA-mediated stomatal closure to prevent water loss and salt 

stress can further reduce a plant’s ability to take in water. In a greenhouse study evaluating 

drought stress in maize plants, seedlings four weeks after emergence showed a reduction in 

caffeoylshikimate and coumaroylquinate (Tugizimana et al., 2022). These compounds, known as 

chlorogenic acids, are secondary metabolites that participate in abiotic stress responses (Surówka 

et al., 2021; Tugizimana et al., 2022). Here, in W822 se1/se1, multiple isomers of 

caffeoylshikimic acid and coumaroylquinic acid were less abundant than in W822 Se1/Se1, 

mirroring an expected drought response. 

The mobilization of storage reserves, including carbohydrates, is a hallmark of seed 

germination; this process is tightly controlled by hormonal regulation, primarily abscisic acid, 

which promotes seed dormancy, and gibberellin, which promotes germination (Hoecker, Vasil, & 

McCarty, 1995; Xue et al., 2021). During early stages of germination, amylase, glucosidase, and 

galactosidase activity increases to break down starch into its component sugars (Han et al., 2020; 

Hoecker et al., 1995). In W822 se1/se1 compared to W822 Se1/Se1, differentially expressed 

genes are associated with seed germination, including an upregulation in W822 se1/se1 of alpha-

amylase Zm00001eb25580 and the alpha galactosidases Zm00001eb330650 and 
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Zm00001eb044860. Together with the accumulation of starch degradation products, including 

malto-oligosaccharides and panose, the transcriptional changes in W822 se1/se1 suggest a 

metabolism more similar to seed germination than seed dormancy. Changes in expression of 

genes in several major plant hormone pathways, including altered metabolism and function of 

abscisic acid, gibberellin, brassinosteroids, cytokinin, and auxin are also observed. These 

changes could result in a shift towards germination-like processes, but not to the extent required 

to develop the vivipary seen in mutants that completely lack steps in hormonal pathways. 

This experiment confirms the effects of se1 on carbohydrate metabolism, characterized 

by an increase in starch-degradation products. However, a close association between presence of 

se1 and decreased levels of carotenoids and tocotrienols suggests that the Se1 gene has a broader 

regulatory function in the developing endosperm. This broad role is further hinted at by changes 

in the biosynthesis and signaling pathways of several phytohormones; not only do shifts in 

hormonal balance between W822 Se1/Se1 and W822 se1/se1 offer a connection to the function 

of Se1 as a regulatory component, but the effects of phytohormone rebalancing suggests 

mechanisms for the observed effects on kernel carbohydrate phenotypes.  

3.5.4 Phytohormone synthesis and signaling pathways are differentially regulated in 

W822 se1/se1 

3.5.4.1 Auxin 

The auxin indole-acetic acid (IAA) has a role in almost all plant growth processes, 

including endosperm development, seed maturation, and germination. In maize, IAA is primarily 

synthesized through tryptophan via indole pyruvate, with tryptophan-pyruvate aminotransferases 

and indole-3-pyruvate monooxygenases catalyzing the reactions (Glawischnig et al., 2000; Jones 

& Setter, 2000; Yue, Lingling, Xie, Coulter, & Luo, 2021). In W822 se1/se1, tryptophan 



75 

 

aminotransferase (Zm00001eb336530) and indole-3-pyruvate monooxygenases 

(Zm00001eb409250 and Zm00001eb332870) are upregulated at 13 DAP, possibly leading to 

greater auxin levels in se1 endosperm.  

In addition to direct biosynthesis from precursor amino acids, IAA levels can also be 

regulated through the conjugation or hydrolysis of IAA from different amino acids (Leclere et 

al., 2010). The IAA-amino acid hydrolase (ILR1, Zm00001eb304520), which releases active 

IAA, is upregulated at all time points in W822 se1/se1, most strongly at 13 DAP. At the same 

time as this IAA activation is a shift in expression of auxin amido synthetases 

(Zm00001eb020510, Zm00001eb108330,  and Zm00001eb326420); these are all downregulated 

at 22 DAP, which would reduce the rate that IAA is stored as amino acid conjugates, further 

increasing the free IAA levels.  

Transcriptional changes in W822 correspond to changes in compounds detected in the 

widely-targeted metabolomics analysis. Levels of IAA-amino acid conjugates indole-3-acetyl-L-

aspartic acid and indole-3-acetyl-L-alanine are decreased, reflecting both the increased gene 

expression in the IAA activation pathway and the decreased expression in the IAA deactivation 

pathway. Free IAA was also detected as a metabolite driving differences between W822 se1/se1 

and W822 Se1/Se1 and was the most strongly upregulated metabolite in the plumerane class, 

with a log2-fold change of 1.80.  

Several defective kernel mutants, such as dek18, are auxin deficient, while other 

defective kernel mutants have abnormally high auxin levels; a change in either direction has the 

potential to disrupt normal endosperm development (Bernardi et al., 2016).  Interestingly, auxin 

can also contribute to seed dormancy through the interactions of the auxin-responsive 

transcription factor iaa8 (Zm00001eb122410) and the ABA receptor abscisic acid insensitive3 
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(X. Liu et al., 2013). If an increase in auxin levels suggest a dormancy response in developing 

endosperm, any germination-like activity would require a change in that particular auxin 

interaction, and that is observed here. In W822 se1/se1, iaa8 was upregulated at 13 DAP but 

downregulated at 22 DAP.  

3.5.4.2 Abscisic acid 

In maize, abscisic acid (ABA) is a cleavage product of higher carotenoids; ABA synthesis 

requires 9’-carotenoid cleavage dioxygenases (NCEDs) to produce xanthoxin, which is then 

converted to abscisic aldehyde via xanthoxin dehydrogenase and then oxidized into abscisic acid 

via ABA aldehyde oxidase (Vallabhaneni & Wurtzel, 2010; Yue et al., 2021). Here, the xanthoxin 

dehydrogenase SCA1 (Zm00001eb212270) was upregulated at 13 DAP. Zeaxanthin epoxidase 

(til1, Zm00001eb247000), which produces ABA-precursor xanthophylls from zeaxanthin, was 

also upregulated. These changes would lead to an increase in ABA availability at early time 

points. Inactivation of ABA, through hydroxylation to phaseic acid, is catalyzed by ABA 8’-

hydroxylases. One such such enzyme, abh3, (Zm00001eb176720) was strongly upregulated in 

W822 se1/se1 at 22 DAP, which would hasten the degradation and reduce the pool of available 

ABA. However, the metabolic analysis did not detect any differences in ABA levels between 

W822 se1/se1 and W822 Se1/Se1. ZmPTF1 (Zm00001eb374120), is a transcription factor that 

upregulates NCED genes; this was upregulated in W822 se1/se1 at 22 DAP.  

In addition to transcriptional changes relating to synthesis and degradation, modulating 

sensitivity is another way that a plant can regulate a hormone pathway; upregulation of a 

receptor gene will increase sensitivity, and downregulation of a receptor will decrease sensitivity 

(X. Liu et al., 2013; K. Wang et al., 2018). A central regulator of the ABA response pathway is 

abscisic acid insensitive5 (ABI5), which is a transcription factor that will promote germination 
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inhibition, fatty acid synthesis, stress adaptation, chlorophyll production, and inhibit leaf 

senescence (Skubacz, Daszkowska-Golec, & Szarejko, 2016).  

At 13 DAP in W822 se1/se1, there was significant differential expression of ABA-

insensitive 5-like (ABI5) transcription factors.  ABI5-like 5 proteins (Zm00001eb176680, 

Zm00001eb038010, Zm00001eb314860, Zm00001eb100750) are upregulated at 13 DAP; ABI5-

like protein 2 factors are downregulated at 13 DAP. Accordingly, genes and pathways that are 

upregulated by ABI5 were in turn upregulated at 13 DAP. Overexpression studies with ABI5 

have observed enhanced effects of ABA, including an increase in raffinose production 

(Zinsmeister et al., 2016). At 22 DAP, ABI5 expression is reversed, with ABI5-5 transcription 

factors being downregulated in W822 se1/se1. One gene known to downregulate ABI5 is MFT 

(MOTHER OF FT AND TFL1, Zm00001eb126300), which is also a positive regulator of 

germination, and could contribute to the transcriptional changes in W822 se1/se1 (Xi, Liu, Hou, 

& Yu, 2010). Here, MFT was upregulated at 22 DAP, but not earlier. By suppressing ABI5, MFT 

would reduce ABA sensitivity, further shifting the hormone balance towards germination.  

3.5.4.3 Gibberellin 

Based on a coexpression network analysis, Finegan et. al. 2021 suggested that se1 has a 

role in allowing for starch degradation through gibberellin signaling (Finegan et al., 2022). 

Gibberellin synthesis, like carotenoid and tocotrienol synthesis starts with the production of 

geranylgeranyl diphosphate (GGPP); in the case of gibberellins, GGPP is then converted into 

ent-kaurene via ent-copalyl diphosphate synthase and ent-kaurene synthase. GA12 is then 

produced from ent-kaurene via a series of oxidation reactions. Bioactive forms of GA are GA1, 

GA3, and GA4, which are all produced from GA12 via gibberellin-3-oxidases (Hedden, 2020; 

White & Rivin, 2000). The transcriptional effects of the se1 deletion on gibberellin metabolism 
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are opposite of the effects on the metabolism of IAA. The expression of genes encoding enzymes 

for early steps towards GA production, GGPP synthesis, is largely unchanged at earlier time 

points. However, at 22 DAP in W822 se1/se1, GGPP synthesis genes, especially those in the 

mevalonate pathway, trend toward downregulation. A 3-hydroxy-3-methylglutaryl coenzyme A 

synthase (Zm00001eb403920), a isopentenyl diphosphate isomerase (Zm00001eb349410), a 

diphosphomevalonate decarboxylase (Zm00001eb257840), and a phosphomevalonate kinase 

(Zm00001eb010900), are downregulated; these enzymes function to convert acetyl-CoA to 

prenyl diphosphate, the major GGPP precursor (Cordoba et al., 2009). The synthesis of bioactive 

GAs from GA12, including enzymes for gibberellin oxidases (Zm00001eb303030, 

Zm00001eb219040, and Zm00001eb095390), is also downregulated at 22 DAP. These 

transcriptomic changes indicate a shift towards higher GA levels in W822 se1/se1. Gibberellin 2-

beta-dioxygenases, which turn active forms of GA into inactive forms, are strongly 

downregulated at 13 DAP, but are slightly upregulated at 22 DAP. Together, these transcriptional 

changes show a trend toward higher GA synthesis early in development, but a reduction in GA 

precursor-generating enzymes at 22 DAP. High GA production, especially early in development, 

could play a role in initiating some of the germination-like processes seen in W822 se1/se1.  

3.5.4.4 Brassinosteroids 

With the exception of Zm00001eb196530, which encodes a cytochrome P450 

monooxygenase, brassinosteroid synthesis is largely unchanged. However, in the pathway for 

inactivation and catabolism of brassinosteroids, the P450 enzyme brc2 (Zm00001eb385730) is 

strongly upregulated at 13 DAP in W822 se1/se1, which would reduce the level of 

brassinosteroid activity. The brassinosteroid signaling pathway was also modified in W822 

se1/se1. Genes for brassinosteroid-insensitive1-associated receptor kinase-like (bak1) proteins, in 
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particular, were affected. As a whole, genes with bak1-like annotations were contra-regulated in 

the absence of Se1; some, including Zm00001eb369250 and Zm00001eb112380, were 

upregulated at 13 DAP but not at later time points. Interestingly, another bak1 gene, 

Zm00001eb380430, was downregulated at all time points. At 22 DAP, brassinosteroid signaling 

kinases are downregulated. Overall, this would lead to a subdued brassinosteroid signaling 

pathway in W822 se1/se1.  

As growth regulators, brassinosteroids are implicated in affecting grain filling and starch 

synthesis in monocots; overexpression of brassinosteroid synthesis leads to increased seed size 

and starch content (Kour et al., 2021; Sun et al., 2021; Xiong et al., 2022). Drg10 

(Zm00001eb080110), when overexpressed, led to an increase brassinosteroid levels as well as an 

increase in total starch, but a decrease in amylose content (Sun et al., 2021). In addition, 

brassinosteroids also contribute to abiotic stress tolerance, including promoting resistance to 

drought and salt stress (S. Li, Zheng, Lin, Wang, & Sui, 2021). An overexpression of 

brassinosteroid signaling kinase bsk1 increased responses to salt stress by promoting ROS 

scavenging and proline synthesis. In the presence of other hormones, brassinosteroids can work 

antagonistically with abscisic acid by downregulating PP2C proteins and reducing ABA 

signaling (Kour et al., 2021; Skubacz et al., 2016).  

3.5.4.5 Cytokinins 

Cytokinins are plant hormones that generally complement auxins as plant growth 

regulators. In maize tissues, including maize endosperm, the prominent cytokinin is trans-zeatin 

(Jones & Setter, 2000). Like the GGPP leading to GA synthesis, zeatin synthesis begins with 

prenyl diphosphate, a product of the mevalonate or MEP pathways. Zeatin is then created by the 

activities of dimethylallyltransferases and  zeatin riboside phosphoribohydrolases (Hluska et al., 



80 

 

2016). Two of the Cytokinin riboside 5'-monophosphate phosphoribohydrolases, 

Zm00001eb294370 and Zm00001eb15520, either of which catalyze the final step in trans-zeatin 

production, are downregulated in W822 se1/se1 at 22 DAP.  

Here, the widely-targeted metabolomics assay was able to detect several forms of zeatin 

or zeatin-adjacent metabolites. The abundances of zeatin, in both the cis- and trans- form, were 

significantly increased in W822 se1/se1 based on VIP score, with log2 fold-changes of 2.5 and 

2.18, respectively. Cis-zeatin riboside, an intermediate in the zeatin synthetic process, was also 

moderately more abundant.  

3.5.4.6 Strigolactone 

Closely correlated to the synthesis of ABA is the metabolism of another phytohormone, 

strigolactone. Like ABA, strigolactone starts out as carotenoids precursors (Yoda et al., 2021). 

Beta-carotene, instead of proceeding towards zeaxanthin and ABA synthesis, is, in the case of 

strigolactone, instead converted to carlactone and then to 5-deoxystrigol, the bioactive 

strigolactone (J. C. Guan et al., 2023; Struk, 2018). In this pathway, the beta-carotene isomerase 

Zm00001eb417120 is downregulated at 16 and 19 DAP; the beta-carotene isomerase 

Zm00001eb260820 is slightly upregulated at 22 DAP.  

Perception of strigolactones involves KAI2-like esterases, which then bind to 

MAX2/More Axillary Growth; the KAI2/MAX2 complex is involved in ubiquination and 

degradation of SMAX1/Suppressor of MAX1, and the strigolactones responses, including 

helping to induce germination, occur (Conn & Nelson, 2016; Zheng et al., 2020). In W822 

se1/se1, KAI2 esterases Zm00001eb393500 and Zm00001eb020660 are upregulated at 13 DAP, 

and the former is also downregulated at 22 DAP. Genes encoding MAX2 proteins, 

Zm00001eb376660 and Zm00001eb270950, are upregulated at 13 and 16 DAP. Strigolactone 
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signaling has been shown to have played a role in maize domestication. Koch et. al. (2022) 

identified strigolactone as contributing to the tga1 domestication phenotypes, including kernel 

size and kernel biomass, and strigolactone deficiency led to decreased seed size (J. C. Guan et 

al., 2023).  

3.6 Conclusion 

Modern sweet corn breeding has shifted away from the use of se1 in most commercial 

germplasm; this decision has been based less on an understanding of the function of Se1 in sugar 

and starch metabolism than on the greater impact of other endosperm mutations. However, 

interest in other quality traits in sweet corn, including levels of carotenoids and tocochromanols, 

has revealed connections to the Se1 gene in these compounds as well. In this study, further 

evidence is provided that Se1 is a regulatory gene, with effects beyond in the starch synthesis 

pathway. The transcriptomic and metabolomic profiles of se1/se1 kernels show patterns relating 

to germination and abiotic stress response. An investigation into the corresponding 

phytohormone pathways shows changes the metabolism of several different hormones, but most 

notably an increase in IAA in W822 se1/se1. Not only would it explain the role of the gene’s 

FAF domain, loss of Se1 and the induced change in phytohormone regulation would be a global 

link between starch synthesis, carotenoid and tocochromanol production, and the germination 

and stress-response pathways in developing kernels. 
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3.8 Chapter Three Appendix 

3.8.1 Chapter Three Supplementary Figures 

 

 

 

 

 

 

Supplementary Figure S3.1. Gene expression in the starch synthesis pathway at four time 

points. Genes with higher expression are lower on the heatmap. Genes are up- (blue) or 

downregulated (red) in W822 se1/se1 compared to W822 Se1/Se1. •, 0.05 < p < 0.01; *, 

significant at p < 0.05; **, significant at p < 0.01, ***, significant at p < 0.001, **** 

significant at p < 0.0001. 
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Supplementary Figure S3.2. Gene expression in the carotenoid synthesis pathway at four time 

points. Genes are up- (blue) or downregulated (red) in W822 se1/se1 compared to W822 

Se1/Se1. •, 0.05 < p < 0.01; *, significant at p < 0.05; **, significant at p < 0.01, ***, significant 

at p < 0.001. 
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Supplementary Figure S3.3. Gene expression in the tocotrienol synthesis pathway at four time 

points. Genes are up- (blue) or downregulated (red) in W822 se1/se1 compared to W822 

Se1/Se1. •, 0.05 < p < 0.01; •, 0.05 < p < 0.01; *, significant at p < 0.05; **, significant at p < 

0.01, ***, significant at p < 0.001, **** significant at p < 0.0001 

 

Supplementary Figure S3.4. Gene expression in the raffinose-family oligosaccharide synthesis 

pathway at four time points. Genes with higher expression are placed lower on the heatmap. 

Genes are up- (blue) or downregulated (red) in W822 se1/se1 compared to W822 Se1/Se1. •, 0.05 

< p < 0.01; *, significant at p < 0.05; **, significant at p < 0.01, ***, significant at p < 0.001, 

**** significant at p < 0.0001 

 

3.8.2 Supplementary material describing widely-targeted metabolomics sample 

processing and UPLC-MS/MS analysis 

3.8.2.1 Dry sample extraction 

Lyophilized samples were ground in a ball mill grinder (30 Hz, 1.5 min) (MM 400, 

Retsch). 50 mg of the ground sample was mixed with 1200 μL of -20°C pre-cooled 70% 

methanol with internal standards. The mixture was mixed by vortex for 30 sec every 30 min for a 

total of 6 times, followed by centrifugation (12000 rpm, 3 min, 4°C). The supernatant was 

collected and filtered through a 0.22um filter membrane and kept for UPLC-MS/MS analysis. 
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3.8.2.2 Chromatography-mass spectrometry acquisition conditions 

The data acquisition instruments consisted of Ultra Performance Liquid Chromatography 

(UPLC) (ExionLC™ AD, https://sciex.com/) and tandem mass spectrometry (MS/MS) (Applied 

Biosystems QTRAP 6500, https://sciex.com/). 

Liquid phase conditions were as follows: 

（1）Chromatographic column: Agilent SB-C18 1.8 µm, 2.1 mm * 100 mm; 

（2）Mobile phase: A phase was ultrapure water (0.1% formic acid added), B phase was 

acetonitrile (0.1% formic acid added); 

（3）Elution gradient: 0.00 min, the proportion of B phase was 5%, within 9.00 min, the 

proportion of B phase increased linearly to 95%, and remained at 95% for 1 min, 10.00-11.10 

min, the proportion of B phase decreased to 5%, and balanced at 5% upto 14 min; 

（4）Flow rate: 0.35 mL/min; 

（5）Column temperature: 40 °C; 

（6）Injection volume 2 μL. 

The mass spectrum conditions were as follows: 

LIT and Triple Quadrupole (QQQ) scans were obtained on a triple quadrupole Linear Ion TRAP 

Mass Spectrometer (Q TRAP) (AB6500 Q TRAP UPLC/MS/MS system). Operating parameters 

of ESI source were as follows: ion source, turbine spray; Source temperature 550°C; Ion spray 

voltage (IS) 5500 V (positive ion mode) /-4500 V (negative ion mode); The ion source gas I 

(GSI), gas II (GSII) and curtain gas (CUR) were set to 50, 60 and 25.0 psi respectively, and the 
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collision-induced ionization parameter was set to high. QQQ scan used MRM mode and collision 

gas (nitrogen) was set to medium. DP and CE of each MRM ion pair were completed by further 

DP and CE optimization. A specific set of MRM ion pairs was monitored at each period based on 

the eluted metabolites in each period. 

3.8.2.3 qualitative and quantitative analysis of metabolites 

Analyst 1.6.3 was used to process mass spectrum data. The characteristic ions of each 

compound were selected by triple quadrupole and measured for their signal intensity (CPS). The 

mass spectrometry data was analyzed using MultiQuant software and the chromatographic peaks 

were integrated and corrected. The peak area of each chromatographic peak represents the 

relative abundance of the corresponding compound. Mass spectrum peak of each metabolite in 

different samples was corrected based on retention time and peak distribution information to 

ensure the accuracy of qualitative and quantitative analysis. A quality control (QC) sample was 

prepared from a mixture of all sample extracts to examine the reproducibility of the entire 

metabolomics process. During data collection, one quality control sample was inserted for every 

10 test samples. 
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4.1 Preface 

As discussed in previous chapters, sweet corn breeding is unusual in that it relies on the 

disruption of the starch synthesis pathway during endosperm development. While newer 

technologies increasingly support exploration and exploitation of these key starch synthesis 

genes and their regulators as way to increase quality, no plant breeding education is complete 

without gaining a respect for the power of selection as what really results in crop improvement 

over time. Maintaining variation is equally important for allowing continued genetic gain in a 

population. This chapter describes work that takes advantage of a divergently selected sweet corn 

population, unique in that the timing of certain stages of plant development was pushed in 

opposite directions in each of two subpopulations. The results indicate, first and foremost, that 

selection works. This is an idea that plant breeders must not forget among the temptations to get 

lost in various metabolomic pathways for a trait of interest—when in doubt, make selections. 

Where variation exists, selection can lead to great phenotypic change and start to push biological 

limits, as shown in this research, without requiring any knowledge of specific genes or proteins. 

Using methods described by  S.A. Eberhart in 1964, this work illustrates the continued relevance 

of classical plant breeding for improving quantitative traits and demonstrates that the maize 

mailto:cbranch2@wisc.edu
https://doi.org/10.1002/csc2.21016
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genome provides extensive and continued variation to fuel improvement, even over long-term 

selection.  

With the exception of this preface, the chapter is presented as published.  

4.2 Abstract 

Vegetative phase change is a key trait in plant development and marks the transition from 

juvenile to adult growth phases. In maize (Zea mays L.), juvenile plants and plants with a late 

phase change can be identified by the increased production of tillers, aerial roots, and distinctive 

epicuticular wax. Resistance to agronomically significant pathogens can also differ between 

juvenile and adult plants. Using last leaf with juvenile wax as the target of selection, the maize 

population Minnesota 11 underwent 16 cycles of divergent selection. The objectives of this 

research were to identify emergent trends for each trait and to determine the magnitude and 

direction of phenotypic changes over long-term selection compared to the source population. 

Phenotypic data on plant architecture traits, ear traits, and common rust resistance were collected 

in 2020 and 2021 by concurrently growing plants from selection cycles representing both 

directions of selection. Last leaf with juvenile wax, the direct target of selection increased to leaf 

17.8 in the late phase change population and decreased to leaf 5 in the early phase change 

population from leaf 9 in the source population. Late vegetative phase change was positively 

correlated with increased common rust infection and plant height, and negatively correlated with 

ear size traits. This study shows that the observed phenotypic changes follow patterns of genetic 

variation consistent with divergent selection, but with possible effects of inbreeding. 
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4.3 Introduction 

Normal plant development is marked by a series of distinct growth phases, juvenile 

vegetative, adult vegetative, and reproductive (R. S. Poethig, 2010). Plants move through both 

vegetative growth phases before floral initiation and seed development, thus the timing of these 

growth phases and the regulation of the transition is an area of agronomic importance in maize 

(Zea mays L.), with implications for yield, plant architecture, and pathogen interactions (Basso, 

Hurkman, Riedeman, & Tracy, 2008; Lawrence, Springer, Helliker, & Poethig, 2021; Riedeman, 

Chandler, & Tracy, 2008). 

In maize, the juvenile and adult vegetative phases are marked by distinct tissue types. 

Juvenile leaf tissue is identified by a thick blue gray epicuticular leaf wax, lack of trichomes, and 

rounded epidermal cells. In contrast, adult vegetative growth produces trichome-covered leaves, 

3 µm cuticles, transparent leaf wax, and a plant able to initiate reproductive growth. Reduced 

apical dominance in juvenile plants also increases the number of  basal lateral branches (tillers) 

and aerial root production compared to the adult phase (R. S. Poethig, 2010). The first leaves are 

fully juvenile tissue, followed by a transition zone composed of leaves with both juvenile and 

adult traits (Figure 1).  
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The uppermost leaf of the transition zone will have only a small region of juvenile tissue, marked 

by juvenile leaf wax at the leaf tip. The appearance of the last leaf with juvenile wax (LLJW) 

indicates that vegetative phase change has fully occurred. After the transition zone comes the 

adult phase in which the leaves are fully adult tissue (Revilla et al., 2002). Vegetative phase 

change, or the transition between the juvenile and adult vegetative growth phases, is regulated in 

part by light intensity but is largely under genetic control (Xu, Hu, & Poethig, 2021). In a panel 

of historically significant open-pollinated sweet corn cultivars, phase change traits were found to 

be both variable and highly heritable (Abedon, Revilla, & Tracy, 1996). Early research into 

regulators of vegetative phase change identified a number of single-gene mutations with 

significant effects; the teopod genes Tp1, Tp2, and Tp3 are a group of dominant mutations that 

prolong the juvenile growth phase (Poethig, 1988). Corngrass1 (Cg1) is another dominant allele 

that confers a highly juvenile phenotype—highly expressed Cg1 mutants present the classic 

juvenile leaf traits described above, but also have staminate reproductive structures replaced with 

Figure 4.1. The transition from juvenile vegetative phase to adult vegetative phase as indicated 

by epicuticular juvenile leaf wax. (a) transition leaves have blue-grey epicuticular wax at leaf 

margins (red arrows);  (b) shaded areas indicate distribution of juvenile leaf wax on consecutive 

leaves  during vegetative phase change. 
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vegetative growth and small ears often with enlarged glumes (B. G. Abedon & Tracy, 1996). 

Large-effect quantitative trait loci (QTL), including Glossy15, were identified as being 

significant in the control of phase change related traits; more recently, systemic signaling 

pathways have been shown to be intimately involved in the control of the juvenile to adult 

vegetative transition (Foerster, Beissinger, de Leon, & Kaeppler, 2015). MicroRNAs (miRNAs) 

have emerged as one of the most significant regulators controlling the timing of vegetative phase 

change, in particular the ratio of the juvenility-inducing miR156 and the flowering-promoting 

miR172 (Fouracre, He, Chen, Sidoli, & Poethig, 2021; Poethig, 2009). Cg1 encodes two versions 

of miR156; the overexpression of which causes the extreme corngrass phenotypes (Chuck, 

Cigan, Saeteurn, & Hake, 2007). These small RNAs are produced in and accumulate at the shoot 

apex, where there they interact with transcription factors to control shoot and tissue 

development, resulting in differential gene expression between juvenile and adult tissue 

(Nogueira et al., 2009; Strable et al., 2008). Application of jasmonic acid, which is coexpressed 

with miR156, will prolong the juvenile growth phase (Beydler et al., 2016). 

Among the agronomic traits that are affected by the timing of vegetative phase change in 

maize, biotic stress tolerances, in the form of interactions with pathogens and insect predators, is 

the most economically significant in maize. Common rust, Puccinia sorghi, can result in 

substantial yield losses in both sweet corn and field corn (Shah & Dillard, 2006). Juvenile- and 

adult-phase plants have been shown to differ in susceptibility to common rust and there are 

associations between growth phase and European corn borer predation (Riedeman et al., 2008). 

Both of these interactions are hypothesized to be related to the differences between juvenile and 

adult tissue, including the higher lignin content and thicker cuticle of adult leaves and the 

epicuticular leaf wax on juvenile leaves (Abedon, Hatfield, & Tracy, 2006). Plant architecture 
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traits resulting from the lateral shoot development from nodes in juvenile plants, adventitious 

aerial roots and the production of tillers are also both strongly associated with juvenility in maize 

and have the potential to affect the favorability of canopy conditions for disease progression.  

Vegetative phase change typically occurs between the fifth and eighth leaf in most maize 

genotypes (Foerster et al., 2015; Riedeman & Tracy, 2010). In order to take advantage of the 

genetic variation for the timing of vegetative phase change and investigate the effects of phase 

change on traits of agronomic importance, divergently selected populations from a single source 

population can be used to quantitatively assess phenotypic traits of interest. Divergent recurrent 

selection studies are a way to observe the intersection of selection, inbreeding, pleiotropy, and 

genetic linkage; the combination of these factors will determine the trends in genetic gain over 

time. Eberhart (1964) suggests that as genetic variance in a population is affected by a 

combination of inbreeding and the effects of selection, a quantitative trait will exhibit quadratic 

and then cubic trends as variance increases and then finally decreases as the frequency of desired 

alleles approaches 1 (Eberhart, 1964). If this is the case for the timing of vegetative phase 

change, then the expectation would be for a reduction and leveling-off in genetic gain in later 

cycles.  Conversely, Crow uses the Illinois Long Term Selection Experiment as evidence that 

genetic variance (and then genetic gain) can be maintained over many cycles of recurrent 

selection. Mid to high frequency alleles in their respective directions of selection increase in 

frequency, reducing overall variance, but low frequency favorable alleles also increase in 

frequency, maintaining genetic variance (Crow, 2008). This has the overall effect of allowing 

gains from selection in a quantitative trait to continue over time, as demonstrated by changes in 

oil content in the Illinois Long Term Selection Experiment, and would contribute to genetic gain 

in a constant, linear trend for the timing of vegetative phase change. Here, divergent selection for 
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the timing of vegetative phase change can be done efficiently by selecting for LLJW, the direct 

target of selection.  By selecting only on  LLJW, researchers have altered a suite of phase 

change-related traits, including architecture traits, ear size, lodging, flowering time, and 

resistance to common rust (Revilla et al., 2002; Riedeman et al., 2008). Previous studies have 

demonstrated that timing of vegetative phase change is a highly polygenic trait with substantial 

variation within populations, providing an opportunity to investigate the effects of selection for 

altered timing of the vegetative phase change transition. 

The University of Wisconsin-Madison sweet corn breeding and genetics program has 

continued to divergently select an open-pollinated maize population for both early and late phase 

change; these populations present an opportunity to quantitatively study the effects of altered 

timing of phase change in maize (Basso et al., 2008; Riedeman et al., 2008; Riedeman & Tracy, 

2010). These previous studies have determined that selection for timing of the vegetative phase 

transition using LLJW affected other traits. The objectives of this research were to identify 

emergent trends for each trait to evaluate flux in the levels of genetic variation and inbreeding 

over long-term selection compared to the source population. If divergent selection is driving any 

phenotypic changes, then hypotheses on the magnitude and direction of direct and indirect 

selection can be tested through a comparison with selection for the LLJW. If factors other than 

divergent selection are present, such as inbreeding, then phenotypic changes may have a lower 

correlation with the LLJW. 
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4.4 Materials and Methods 

4.4.1 Population Development 

Minnesota 11 (Minn11) is a sugary1 open-pollinated sweet corn population from the 

University of Minnesota breeding program, and has been the base of divergent selection work at 

the UW-Madison (Basso et al., 2008; De Vries, Shuler, & Tracy, 2016). To initiate the vegetative 

phase change divergent selection study, seed from 100 Minn11 ears were planted ear-to-row as 

half-sib families. The timing of vegetative phase change was assessed using LLJW. Leaves 

above the LLJW have no juvenile leaf wax and signal that vegetative phase change has fully 

occurred. LLJW was visually determined for five plants in each family, and the average leaf 

number was calculated for each row. The twenty families with the smallest average last leaf 

values were selected as the parents of the cycle 1 early phase change population (C1E) and 

twenty families with the largest average values were selected as the parents of the cycle 1 late 

phase change population (C1L). Within each of the early and late populations, five plants from 

each selected family were used as males, pollen from those plants was bulked over rows and then 

used to pollinate as many plants as possible in the selected families. Balanced seed bulks of the 

bulk pollinated ears were C1E and C1L. Individual seed samples from each of the ears were also 

saved.  Plants from these individual ears were then grown in an ear to row fashion for selection 

in each direction the following season. For each subsequent cycle of selection, ear-rows from the 

previous cycle’s selections were planted and a selection intensity of 20% was targeted for both 

early and late cycles. This has been repeated for eighteen cycles of selection in each direction. 

Sixteen cycles were completed when this study was initiated. 
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4.4.2 Trait Evaluation 

Seed of nine cycles were planted in a randomized complete-block design, Minn11 

starting population (C0), and cycles from both early and late directions including cycles four, 

eight, twelve, and sixteen (C4E, C8E, C12E, C16E and C4L, C8L, C12L, and C16L). Each entry 

was grown in four row plots with four replicates per environment in a total of four environments. 

All trials were grown in Madison, WI in a Plano silt loam, with planting dates of May 22, 2020, 

June 5, 2020, May 18, 2021, and June 3, 2021. Rows were 3.5 meters long and 0.76 meters apart. 

Each plot was thinned to twelve plants per row for a final density of 46,970 plants per hectare. In 

order to keep accurate track of leaf numbers for LLJW and total leaf count data, the fifth, eighth, 

twelfth, and sixteenth leaves were marked using a paper punch.  

Twelve traits were evaluated for each of the nine evaluated cycles, including numbers of 

leaves, number of tillers, number of nodes with aerial roots, rust infection, plant height, ear 

height, days after planting to midpollen, days after planting to midsilk, ear length, ear width, tip 

fill, and row count. Phenotypic data were taken on the interior plants from the center rows of 

each plot. Juvenile wax data on seven plants per row were taken after the appearance of LLJW. 

Data on tiller number, total leaf number, plant and ear height, and number of nodes with 

aboveground aerial roots were collected for ten plants per row. Flowering time was recorded as a 

whole-plot average for days after planting until 50% silk and 50% pollen shed. Rust infection 

was assessed as percentage of leaf area infected with common rust within a plot. Plots were not 

inoculated with common rust spores, because the pathogen is endemic and highly mobile. In this 

study 100% of the plants were infected. Row count and ear dimensions were taken as a five-ear 

average.   
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4.4.3 Statistical Analysis 

In order to test whether or not there were differences among cycles of selections, all data 

was compiled into plot means for each entry and each replicate within each environment, and an 

analysis of variance (ANOVA) was performed for each trait in order to determine the 

significance of cycle effects at the α = .05 level. Here, cycle of selection was treated as a fixed 

effect for each trait, with all other effects being random. Pearson correlation coefficients were 

also calculated between traits. If significant cycle effects showed that means were different 

among cycles of selection, then the data were fit to four models of orthogonal polynomial 

contrasts with a single intercept as described in Eberhart (1964) and as used by Riedeman et al. 

(2008). Selection for early vegetative phase change and selection for late vegetative phase 

change were each considered a separate method of selection for the purposes of comparison. For 

each trait, a single linear model was fit to determine effects and statistical significance averaged 

between directions of selection. Next, this average model was expanded to two linear models, 

representing early and late vegetative phase change populations. Traits with significant linear 

trends were similarly fit with an average quadratic trend and then quadratic trends split by 

direction. Slopes or derivatives of these models represent genetic gain per cycle. Due to the 

nature of the experimental design, with orthogonal treatments in a balanced design, these models 

could be analyzed as contrasts between directions of selection, or the difference between slopes, 

and contrasts among directions of selection, or the average slope. Using these methods, the 

magnitude, symmetry, and direction of response to selection can be quantified. Wright’s 

inbreeding coefficient was calculated from the equation F = 1/(2N) + [1 − 1/ (2N)]F’, with N 

being the effective population size and F’ being the inbreeding coefficient from the previous 

generation (Hallauer, Carena, & Filho, 2012). Statistical analysis was done using R 4.1.2 with 
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the lme4 and emmeans packages with FDR-adjusted p-values (Bates, Mächler, Bolker, & Walker, 

2015; Lenth, 2022; R Core Team, 2021). 

4.5 Results 

Significant environmental effects were found for a subset of phenotypic traits, with only 

LLJW, plant height, row count, and tip fill having non-significant environmental effects. 

Genotype by environment interactions were significant for flowering time, plant height, ear 

width, and tip fill. Block effects were significant only for common rust infection, number of 

tillers, ear length, and plant height (Table 1). The main effect of cycle of selection was significant 

for all traits except tip fill, which was not further analyzed. The inbreeding coefficients after 16 

cycles of selection were 0.259 and 0.251 in the early and late directions, respectively.  

Table 4.1. Mean Squares from the ANOVA for Divergently Selected Minnesota 11 grown in four 

environments over the 2020 and 2021 growing seasons. 
Source of 

Variation 

Mean Squares 

LLJW† Total leaves‡ Tiller 

numb

er† 

Total nodes with 

aerial 

roots† 

Rust infection† Plant height† 

Environment 1.79 32.37*** 6.78*** 1.12*** 2287.45*** 560.89*** 

Block/environme

nt 

0.38 1.01 0.33 0.08 472.71* 158.50** 

Cycle 399.39*** 32.09*** 0.49** 1.43*** 3550.00*** 1414.80*** 

Two linear 

regressions 

3048.53*** 232.11*** 2.72*** 9.18*** 22041.67*** 10241.07*** 

Avg. linear 

regression 

80.11 20.49 0.12 1.48** 4180.18** 39.99 

Among linear 

regressions 

6016.95*** 443.77*** 5.32*** 16.61*** 42551.93*** 20442.15*** 

Two quadratic 

regressions 

25.94*** 1.31 0.12 0.12 668.05* 190.03* 

Avg. quadratic 

regression 

0.88 nc nc nc 429.69 60.90 

Among quadratic 

regressions 

51.57 nc nc nc 906.48* 319.26* 

cycle x 

environment 

1.29 0.47 0.06 0.04 35.80 393.67*** 

error 0.62 0.94 0.10 0.07 130.13 109.45 

Source of 

Variation 

Mean Squares 

Ear height† Days to 

midpollen† 

Days to 

midsilk† 

Ear length† Ear width† Kernel row  

count† 

Tip fill† 

Environment 1677.74*** 460.08*** 425.72*** 29.06*** 1.22*** 33.56 2.57 
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Block/environme

nt 

47.88 2.89 1.92 8.19* 0.03 82.66 1.49 

Cycle 3618.63*** 129.60*** 153.69*** 20.70*** 1.19*** 711.818*** 1.08 

Two linear 

regressions 

26113.32**

* 

698.70*** 733.51*** 109.35*** 2.69*** 5087.60*** nc 

Avg. linear 

regression 

2068.845** 284.03* 486.88*** 32.06* 1.28 61.11 nc 

Among linear 

regressions 

50157.85**

* 

1113.86*** 979.61*** 186.64*** 4.09*** 10114.09**

* 

nc 

Two quadratic 

regressions 

22.51 0.26 0.091 0.91 0.19* 2.68 nc 

Avg. quadratic 

regression 

nc nc nc nc 0.04 nc nc 

Among quadratic 

regressions 

nc nc nc nc 0.33 nc nc 

cycle x 

environment 

105.06 14.55*** 9.14* 3084 0.20* 173.5 4.91* 

error 81.89 2.09 1.78 3.16 0.06 87.05 1.14 

*Significant at the 0.05 probability level; 

**Significant at the 0.01 probability level; 

***Significant at the 0.001 probability level. 

†Evaluated in four environments 

‡Evaluated in two environments 

nc: not calculated 
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Figure 4.2. Direct and indirect responses to divergent recurrent selection for last leaf with 

juvenile wax (LLJW). (a) LLJW; (b) P. sorghi infection; (c) total leaf number; (d) days to 

midsilk. Statistically significant linear or quadratic trends are shown; significant average linear 

trends are shown in black. Red lines indicate early direction of selection, blue lines indicate late 

direction of selection. Population means are shown with standard errors. In the presence of a 

significant quadratic trend, first-order linear trends are not shown for the given trait or direction. 

 

The direct target of selection LLJW (Figure 4.2, Table 4.1, and Supplemental Table S4.1) 

changed significantly in both directions and has continued to respond for 16 cycles. The linear 

model for LLJW split into two linear models was significant, with contrast among linear models 

also significant (p < 0.001). The regression trend for LLJW had a negative slope in the early 

direction and a positive slope for late direction. The average trend for LLJW was not significant, 

indicating that the response to selection was not only different between early and late 
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populations, but that there is an equal and opposite response for each direction of selection. 

LLJW was fit with a quadratic trend for both directions of selection; indicating that quadratic 

models explained significant variation that was not included in the linear models (p < 0.01). As 

with the LLJW linear trend, the average quadratic trend was not significant. Phase change traits 

directly associated with juvenile plant phenotypes were all significantly correlated with LLJW 

and with each other (Table 4.2). 

Table 4.2 Phenotypic correlation coefficients between cycle means in Minn11 divergently 

selected for timing of vegetative phase change. 

 

Leaf count (R2 = 0.82), number of tillers (R2 = 0.65), and number of nodes with aerial 

roots (R2 = 0.61) were each fit by two linear models (p < 0.001, Supplementary Figure S1). 

Contrasts among the two linear models for leaf count and tiller number were significant, but the 

average trend was not, showing that the response to selection was different for each direction of 

selection, and was roughly equal in magnitude. However, for nodes with aerial roots, the average 

Trait Total 

leaves‡ 

Tiller 

number† 

Total 

nodes 

with 

aerial 

roots† 

Rust 

infection† 

Plant 

height† 

Ear 

height† 

Days to 

midpollen† 

Days to 

midsilk† 

Ear 

length† 

Ear 

width† 

Kernel row count† 

LLJW 0.86*** 0.27 0.62*** 0.64*** 0.56*** 0.82*** 0.57*** 0.59*** -

0.37*** 

-

0.39*** 

-0.52*** 

Total leaves‡  0.33 0.57*** 0.62*** 0.34 0.71*** 0.69*** 0.72*** -0.38 -0.5*** -0.49** 

Tiller number   0.42*** 0.12 0.26 0.41*** -0.03 0.28 0.13 -0.0059 -0.14 

Total nodes 

with aerial 

roots† 

   0.48*** -0.34** 0.6*** 0.23 0.32*** -0.045 -

0.43*** 

-0.36*** 

Rust infection     0.31** 0.59*** 0.36*** 0.41*** -0.33** -

0.43*** 

-0.28 

Plant height      0.52*** 0.45*** 0.43*** -0.17 -0.029 -0.34** 

Ear height       0.46*** 0.51*** -0.27 -0.33** -0.4*** 

Days to 

midpollen 
       0.95*** -0.2 -0.12 -0.32* 

Days to 

midsilk† 
        -0.14 -0.2 -0.31* 

Ear length          0.17 0.18 

Ear width           0.42*** 

Kernel row 

count 
           

*Significant at the 0.05 probability level. 

**Significant at the 0.01 probability level. 

***Significant at the 0.001 probability level. 
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linear trend was significant. Quadratic models and their respective contrasts were not significant 

any of the associated phase change traits. For this set of traits, values increased with cycle of 

selection in the late direction and decreased with selection in the early direction.  

Common rust infection was also highly correlated with the timing of vegetative phase 

change; two-linear and among-linear model contrasts were significant, with late vegetative phase 

change populations becoming more susceptible to infection (R2 = 0.68, p < 0.001). The linear 

regression in the early phase did not have a significant slope; the regression for the late phase 

change had a significant and positive slope as well as a significant quadratic trend. Here, the 

average linear trend was significant and positive, showing that the strong effect in the late 

direction were much greater in magnitude than any effects of selection in the early direction.  

Plant growth traits, including plant and ear height and days to flowering showed 

significant cycle effects and significant two-linear model fits, and plant height showed a 

significant quadratic trend in the late direction of selection. Ear height (R2 = 0.87) showed a 

linear increase in the late phase change populations (p < 0.05). However, flowering traits—days 

to midpollen (R2 = 0.88) and days to midsilk (R2 = 0.86) showed different trends. Distinct linear 

trends were observed in each flowering trait, and a significant positive average trend (p < 0.01) 

was also seen, indicating that selection for both early and late phase change resulted in delayed 

flowering. The two flowering traits were also the pair of traits with the highest phenotypic 

correlation. 

Ear and yield traits were also affected by phase change selection. The two-linear model 

was significant for ear length (R2 = 0.44), ear width (R2 = 0.62), and kernel row count (R2 = 

0.40) with a significant contrasts among linear models for each trait indicating that there was 

distinct response in both directions due to cycles of selection; significant average trends were 
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observed in ear dimensions but not kernel row count. Ear length is slowly increasing in the early 

phase change populations and ear width is decreasing in the late phase change populations.  

4.6 Discussion 

After sixteen cycles of selection for early or late vegetative phase change, there are 

indications that selection is either depleting the genetic variation in the population or that limits 

to selection are being reached. While the strong linear trend for each direction of selection 

illustrates that genetic gain, as measured by LLJW, is predominately both constant and 

consistent, the significant quadratic trends suggest a decline in genetic variation after long-term 

selection. It remains to be seen if magnitude of quadratic trends increases with further selection; 

the majority of current variation is still explained by purely linear trends. Average LLJW went 

from 8.9 in the source population to 4.9 in the early population and 18.3 in the late population. 

There is a biological limit to selection in the early direction compared to the late direction; here, 

the early direction (where the rate of gain has been lower) exhibits the strongest quadratic trends 

as the limit is approached. Previous work has shown that using seven cycles of selection, the 

only trait that exhibited a quadratic trend was ear length; quadratic trends emerged for LLJW, 

plant height, rust infection, and ear width after  sixteen cycles (Riedeman et al., 2008). While 

statistical inferences cannot be made, LLJW means in the newest populations, C17 and C18 

exhibit smaller changes than were observed in the randomized trials including cycles up to C16. 

If balanced and randomized trials are repeated with additional cycles of selection, it’s possible 

that stronger quadratic or cubic trends will emerge as genetic variance continues to change over 

time with long-term selection as suggested in Eberhart (1964). Further genetic studies would 

shed light on the primary mechanisms that allow for the demonstrated shifts in genetic variance. 

Genetic gain in both directions could be due to selection on targets of the miRNAs that regulate 
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vegetative phase change, selection on heritable epigenetic variation, selection of gene groups that 

regulate the production and accumulation of the miRNAs themselves, or a combination thereof.  

Common rust was the only disease considered in this study. We clearly show that while 

selection for early vegetative phase change does not increase resistance and is in fact neutral in 

terms of changes in overall infection, increasing the timing of late vegetative phase change 

greatly increases susceptibility to common rust. Given that environmental conditions have a large 

role in most plant pathogen interactions, abundant vegetative growth, including production of 

tillers, in the C12L and C16L populations may have contributed to higher rust infection by better 

maintaining a higher humidity environment compared the early phase change populations, in 

addition to increasing amounts of juvenile vegetation. The juvenile wax itself remains a likely 

cause of increased susceptibility; compositional differences between juvenile and adult leaf wax 

and the effects on the physical properties of leaf surfaces have been implicated in rust resistance 

and susceptibility. Interestingly, absence of leaf wax has been shown to prevent differentiation 

and development of rust spore germ tubes, and in wheat and barley, non-waxy traits are linked to 

multiple rust-resistance genes (Uppalapati et al., 2012; Vaz Patto & Niks, 2001). A more closely 

controlled experiment would be required to determine specific mechanisms that control 

resistance in response to changes in divergent Minnesota 11 populations.  

While many traits evaluated here showed response to selection in opposite directions, 

with the response in each direction positively correlated with LLJW, flowering time was 

positively correlated with LLJW in late populations, and negatively correlated in early 

populations.  In both directions of selection, later generations had delayed flowering for both silk 

and tassels, contrary to the expectation that early phase change populations would have an earlier 

flowering time. When evaluated after only seven cycles of selection, the delay in flowering time 
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was only observed in the late direction of selection (Riedeman et al., 2008). Later flowering time 

occurs with inbreeding in maize and the later flowering time in both directions indicates that our 

population sizes may have been too small. However, the calculated inbreeding coefficients of 

0.251 in the late direction and 0.259 in the early direction were low enough that inbreeding, 

while likely a factor, is far from being the main driver of the observed phenotypic changes in this 

population. Additionally, the anthesis-silk interval increased with later cycles of selection in both 

early and late populations. As this interval increases, it becomes more difficult to ensure good 

quality pollination and seed production, which may become a limiting factor for genetic gain if 

selection is continued for many cycles.   

Here, the timing of vegetative phase change is shown to have heritable variation that 

provides a base for divergent recurrent selection. Considerable phenotypic changes differentiate 

early phase change populations and late phase change populations; despite a marked increases in 

disease susceptibility and flowering time after selecting for LLJW, distinct linear trends illustrate 

that the limits of selection have not yet been reached, but genetic gain is slowing. The divergent 

Minnesota 11 populations used in this study will serve as a platform for future studies on the 

genetic control of the vegetative phase change transition. 
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4.10 Chapter Four Supplemental Material 

 

 

 

Supplemental Figure 1. Response to selection for traits affected by timing of vegetative phase 

change. Number of tillers (a); total nodes with aerial roots (b), plant height (c); ear height (d); 

days to midpollen (e); ear length (f); ear width (g); and row count (h). Means and standard errors 

for each cycle are shown along with significant trends; Early direction (red), late direction (blue), 

source population (green), average linear trend (black). 
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Supplementary Table S4.1 Phenotypic means and least-squares estimates for divergently 

selected Minnesota 11 sweet corn populations grown in four environments. 

 

 

 

 

 

 

 

Cycle† LLJW Total 

leaves 

Tiller 

number 

Total 

nodes 

with 

aerial 

roots 

Rust 

infection 

Plant 

height 

Ear 

height 

Days to 

midpollen 

Days to 

midsilk 

Ear 

length 

Ear 

width 

Kernel row 

count 

 Leaf no.   % leaf 

area 

cm cm d d cm cm  

16E 5.00 17.74 1.17 1.65 31.25 204.65 97.56 57.50 60.13 21.50 4.55 14.79 

12E 5.51 17.43 1.03 1.73 28.75 202.73 97.63 57.06 59.50 20.13 4.49 14.65 

8E 6.02 18.11 1.18 1.83 25.00 206.82 99.39 56.56 59.19 19.81 4.56 14.69 

4E 7.35 17.93 1.17 1.70 26.25 216.42 109.27 57.13 58.81 19.00 4.71 14.34 

C0 8.97 18.63 1.50 1.89 25.00 213.99 103.28 55.75 57.63 19.19 4.79 13.88 

4L 12.89 19.95 1.35 1.84 42.50 221.70 113.44 58.75 60.81 18.00 4.81 14.18 

8L 14.10 21.01 1.40 2.05 52.50 225.07 123.69 60.06 62.31 17.88 4.50 13.33 

12L 16.79 22.06 1.51 2.34 50.00 226.69 130.44 62.50 64.81 18.50 4.09 13.53 

16L 17.85 22.75 1.45 2.52 60.00 225.24 138.00 64.06 67.19 18.88 4.06 12.90 

LSD  0.42 0.96 0.22 0.163 7.75 6.65 5.79 1.02 0.91 1.24 0.16 0.652 

b0 9.24*** 18.61** 1.35* 1.78*** 30.89** 217.17*** 106.11*** 56.30*** 58.05*** 18.41*** 4.83** 14.13*** 

bx
L 0.83*** 0.28* 0.008 0.044** 4.52* 1.692* 2.025*** 0.50** 0.57** 0.005 -0.05** -0.69*** 

bq
L -0.018**    -0.15* -0.07*       

bx
E -0.52*** -0.072* -.073* -0.005 -0.17 -0.96* -0.58* 0.071 0.131* 0.17*** -0.02 0.045* 

bq
E -0.016**  0.003*          

bx
avg 0.14 0.11 0.005 0.02*** 1.025*** -0.14 .72** 0.269* 0.35*** 0.09*** -0.04 -0.12 

bq
avg -0.89            

R2 0.97 0.82 0.67 0.61 0.68 0.49 0.87 0.92 0.93 0.42 0.64 0.32 

†Cycle of selection (16x,12x, …), early direction of selection (E), late direction of selection (L), least significant different at 0.05 level (LSD), intercept (b0), linear (bx), 

quadratic (bq), response in the late direction of selection (bL), response in the early direction of selection (bE), average linear (bx
avg), average quadratic (bq

avg) 

*Significant at the 0.05 probability level. 

**Significant at the 0.01 probability level. 

***Significant at the 0.001 probability level. 


