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Abstract

A disaster is a sudden, calamitous event that disrupts the functioning of a commu-

nity and causes human, material and economic damage that exceeds the society’s

ability to cope using its own resources. Each year there are about 500 disasters

directly affecting approximately 200 million people across the world (Wassenhove,

2006). The unpredictability of disasters and the challenges in the response to these

disasters has led to an increase in research on humanitarian logistics and disas-

ter operations management. Disaster operations management research encompasses

four phases: mitigation, preparation, immediate response, and reconstruction phase.

Mitigation phase focuses on reducing possible risk or impact of a disaster, prepa-

ration phase involves planning to cope with the disaster consequences, immediate

response phase focuses on operations to help relieve the immediate impact of the

disaster and the reconstruction phase encompasses activities to help restore the

community to its original state. This thesis focuses on the challenges faced in the

immediate response phase.

The immediate response phase is the most challenging phase where relief operations

including search and rescue efforts, relief item distribution to victims, and provi-

sion of medical aid take place. Relief item distribution to disaster victims include

providing food, water, blankets, tents for the victims that have suffered from the

disaster. This key activity has an important role in relieving human suffering caused

by the disaster. Our interviews with Salvation Army, Red Cross, South East Wis-

consin Citizens and Organizations Active in Disasters (COAD) practitioners and

study of the literature suggest, there are opportunities for increasing the efficiency

of relief distribution. Prior research on immediate response has largely focused on

the logistics component of procuring and transporting the required items to the
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disaster region. In comparison, there has been very little work on how to efficiently

distribute the relief supplies once the items arrive at the disaster site. This thesis

focuses specifically on the problems related to the efficient distribution of relief items

once they arrive at the disaster site, which occurs at the very end of the “last mile”.

We define efficiency in relief item distribution as a combination of the following

metrics; the reduction in waiting time experienced by the victims to receive aid,

maximizing the total number of victims that are served, and the effective usage of

available space and volunteer capacity.

In this research, we first focus our attention on analyzing relief center (RC) designs,

to control the crowd and minimize the waiting time of victims that queue up to

receive aid. A relief center is composed of points of distribution, each staffed with

volunteers distributing relief items. We model the flow of victims through the re-

lief center and effects of congestion using finite capacity, state dependent queuing

networks. We provide analytic expressions to estimate the performance measures of

this queuing system and compute the expected deprivation for the target commu-

nity. Using this model, we first analyze RC operations based on current guidelines

for relief centers. Then we propose alternative relief center designs based on the

observed opportunities for improvement.

Next, we focus on problems across relief centers caused by imbalances in work load

due to supply and demand uncertainties. We model a network of relief centers dis-

tributing aid in an affected region, as a generalized queuing network (G-network).

The G-network structure allows to model probabilistic flow of victims between RCs.

G-networks with single probabilistic victim movements and signals have been shown

to have product form results, however for complex cases including batch transfers
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product form solutions are not guaranteed. We derive conditions under which G-

networks with batch transfer have product form solutions. We leverage this result

to develop product form approximations that apply to settings with varying batch

sizes and imbalances in queue utilization. We use these approximations to estimate

the performance of the distribution operations.

Next, we focus on quantifying material convergence, a problem that commonly oc-

curs in the immediate response phase. It refers to the convergence of relief related

items, from many sources, including purchased goods, pre-positioned stock, and in-

kind donations into the disaster affected region, in very high volumes, over a short

period of time. We study how relief agencies should effectively manage available

resources to maximize relief distribution to victims under material convergence. To

quantify material convergence, we model both solicited and unsolicited donation

arrival-sorting processes as a queuing process. We use transient analysis to quan-

tify the level of material convergence and evaluate the impact of resource allocation

decisions on relief item output. We provide insights on the dependent relationship

between convergence and resource allocation through numerical studies based on

Goodwill and Salvation Army data and inputs (Ozen and Krishnamurthy (2017)).

Next, we focus our attention to conducting a transient analysis of performance for

relief centers. We relax the assumptions related to the probability distributions gov-

erning arrival and service processes, and analyze the relief distribution operations

using a transient model instead of a steady state model. We use discrete event

simulation to investigate the effects these modeling assumptions had both on the

estimated performance measures and on the insights for relief center designs.
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Finally, we conduct a simulation study to search for the optimal relief center design

that minimizes victim waiting times and maximizes the throughput from a relief

center. We enumerate several design options for a set of resource constraints and

use discrete event simulation to evaluate each design. We study both the optimal

design, as well as the performance difference between designs. We provide insights

on key design parameters to achieve optimal performance during relief distribution.

This research provides contributions to both theory and practice. First, we propose

queuing models to represent the inherent queuing effects that impact the efficiency of

disaster relief operations. We develop efficient solution methodologies to solve these

queuing models and determine operational insights. Finally, we use discrete event

simulation models to investigate issues that are difficult to evaluate using queuing

models. Where possible, we use insights from interviews with the Salvation Army,

FEMA, International Federation of Red Cross and Red Crescent Societies (IFRC),

National Voluntary Organizations Active in Disasters (NVOAD) and South East

Wisconsin Citizens and Organizations Active in Disasters (COAD) and data from

disaster response efforts to 2015 Nepal earthquake.
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Chapter 1

Introduction

Each year disasters effect millions of people worldwide and effective disaster opera-

tions management is essential to minimize the suffering of communities impacted by

these disasters. Disaster operations management (DOM) can be categorized into 4

phases: mitigation, preparedness, response and recovery (McLoughlin, 1985). The

mitigation phase focuses on eliminating or reducing the possible impacts and risks of

disasters, which happens before a disaster occurs. The preparedness phase also hap-

pens prior to the disaster, and focuses on finding ways to effectively cope with the

consequences of the disaster. It includes actions such as setting coordination struc-

tures, planning evacuation routes and pre-positioning relief items. The response

phase focuses on saving lives and providing relief during the immediate aftermath

of the disaster. The preparedness and response phases are tightly coupled, however

the response phase is more complex as demand, supply and resource availability

changes dynamically. The final phase of DOM is the recovery phase, which can

last years depending on the level of the catastrophe. In this phase the community

slowly returns back to a stage where it can sustain itself. This thesis focuses on the

response phase (See Figure 1.1).
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Figure 1.1: Phases of Disaster Operations Management

Prior work on DOM has a heavy focus on the preparedness stage. The impor-

tant operational questions in the preparedness phase include how to plan for critical

supply distribution, how to plan for evacuation activities, where to position relief

organization facilities, and how to coordinate efforts during the response. Once the

disaster hits, the response phase needs to bridge the gap between the planning and

real time needs and effective resource allocation, donations management, coordina-

tion and crowd control become priorities.

The rest of the chapter is organized as follows. In Section 1.1 we discuss chal-

lenges of the disaster response phase, identify research needs and summarize the

research questions that are the focus of this thesis. In Section 1.3 we discuss our

research approach and highlight our research contributions.

1.1 The Disaster Response Phase

The response phase is the most challenging phase of disaster operations manage-

ment. In this phase, search and rescue operations, first aid medical attention, dis-

tribution of critical supplies and restoration of critical infrastructure activities take

place. This thesis focuses on the distribution of critical relief supplies to victims.
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The relief supplies go through a multi-tier supply chain (the relief distribution sup-

ply chain) where they are procured, transported through multiple channels and

distributed at the disaster site. Figure 1.2 shows the relief chain and the associated

problems with each tier of the supply chain.

Figure 1.2: The Relief Distribution Supply Chain

The relief distribution supply chain has 6 key differences when compared to

commercial supply chains:

1. The primary objective of commercial operations is to maximize profits (or

minimize costs) while the objective of relief distribution supply chain is to

minimize human deprivation.

2. The number of steps in the supply chain and the number of parties involved

is higher for the relief distribution supply chain.

3. In commercial operations, resources are constrained (since they have associ-

ated costs), in disaster operations resources are constrained by cost and limited

in availability.
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4. Commercial operations have fewer decision makers than disaster operations.

5. The transportation needs of commercial logistics are considerably less while

disaster relief items can block international airports due to the sudden and

high volume of need.

6. Commercial logistics operate when all infrastructure is intact and operational,

for disaster relief operations this is not always the case.

In the light of these key differences, the models addressing relief distribution sup-

ply chain problems should take into account appropriate objective functions, limited

resources, congestion created by crowds and materials and damaged infrastructures.

This is challenging for modeling due to the need to consider many aspects includ-

ing (i) uncertainty in demand, supply, capacity, (ii) the many players (agencies,

governments, companies, individuals) involved in the effort, (iii) modeling resource

allocation and coordination aspects, (iv) modeling effects of crowds and congestion

(both for materials and victims) and (v) modeling the dynamically changing nature

of the response environment. In addition to constructing a versatile model, there

is also the challenge of providing analytical solutions for these models. Therefore

research on new solution methodologies is a pressing research need.

1.2 Challenges in Disaster Relief Distribution

One of the first steps in relief distribution is to set up the relief centers and deliver

aid. Relief centers (RC) are setup by relief agencies, where victims arrive and wait in

line to receive the supplies they need. The RCs are usually setup in large, open areas
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to allow for crowd access, while the particular setup of an RC can vary depending

on available staff, number of items being distributed and the expected crowd size

and safety concerns. Figure 1.3 shows a relief center and the queuing and crowding

that is often observed during relief distribution efforts. As seen from Figure 1.3,

setting up the relief center so that crowds are effectively managed to ensure timely

distribution and safety is a major challenge. In addition, even when the queues

are orderly, waiting times can still be of major concern. Therefore, utilizing the

RC setup and staffing so that the waiting times are minimized is a challenge faced

during every relief distribution. Other operational problems are related to, man-

aging a network of relief centers, and managing the in-kind donations in a disaster

affected region. For all these problems, estimating the relief center performance (the

expected throughput and victim waiting times) accurately under different decision

variables is critical and can be challenging given the dynamically changing variables.

Figure 1.3: Distribution via Relief Centers

In this thesis we aim to model these challenges and provide insights on best

practices and trade-offs for managing both the relief items and their distribution.

Next we discuss each particular challenge in more detail and summarize the research

questions this thesis focuses on.
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Challenge 1: RC Layout and Congestion

To further understand the specific problems faced during relief distribution on

the field, we interviewed practitioners and organized working group sessions with

representatives from the Salvation Army, International Federation of Red Cross

and Red Crescent Societies, Wisconsin Division of Emergency Management, Dodge

County Office of Emergency Management, Federal Emergency Management Agency

(FEMA) and the Disaster Management Center at UW Madison. The interviews re-

vealed that established relief agencies including FEMA, Red Cross and the Salvation

Army all have guidelines and procedures for setting up relief centers and distribut-

ing relief (Federal Emergency Management Agency (2008)), USAID (United States

Agency for International Development (2005)) and IFRC (International Federa-

tion of Red Cross and Red Crescent Societies (2008)). However, they emphasized

that even though the guidelines present a starting point, there are limited decision

support tools to help agencies quickly adapt to the unique needs of the situation.

Moreover, for the disasters where the affected population is large, how best to control

the crowd and increase efficiency of distribution operations simultaneously becomes

a pressing question. This leads to the following research questions:

RQ1: How can an RC be setup to control effects of crowding, increase throughput

and decrease victim waiting times?

RQ2: Can operational strategies like triaging help improve the RC performance?
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Figure 1.4: From the Salvation Army Port-au-Prince Relief Distribution Efforts

Figure 1.4 shows the effects of crowding at the Salvation Army relief center dis-

tribution area. To answer these research questions we analyze different relief center

designs including the current practice design adapted from FEMA documentation

and proposed designs to disperse and control crowds. In our models, we explicitly

consider how excessive crowds slow down the movement of victims and the distri-

bution efficiency, as well as create bottlenecks in the distribution. We discuss the

details of the model, our solution methodology and the associated numerical exper-

iments in Chapter 3.

Challenge 2: Dynamic Changes in Victim Needs and Behavior

The disaster relief efforts in a given region involves multiple relief agencies and

multiple relief centers distributing various relief supplies. The displaced victim pop-

ulation in the region, based on their needs can wait at any RC to receive the supplies

they need. Therefore, the relief distribution in a given region can be represented

as a network of RCs. In this network, both the victim’s needs and the disaster
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environment conditions can dynamically change. This creates victim mobility in

the network and varies arrival rates experienced by different RCs, which can lead

to varying degrees of congestion in the network, effecting the performance of the

overall relief distribution.

Efficiency of the overall distribution network is critical for minimizing the de-

privation experienced by victims. In order to be efficient, the execution of response

activities need to be agile and respond well to the inherent variability of the disaster

aftermath conditions. Operations research (OR) models can help identify opportu-

nities for improvement in efficiency of response activities, as well as serve as decision

support tools. The success of such models rely on their ability to capture the de-

scribed stochastic nature of disaster response environment, which includes various

victim behavior and mobility patterns. Example scenarios that can cause victims

to move or transfer between relief centers are:

• Increase in demand: An example would be the weather getting colder can

increase the overall demand for blankets, causing more victims to move to

RCs that are distributing blankets. Multiple demand shifts for multiple items

can be experienced simultaneously and over different periods of time.

• Changes in victim needs: A victim waiting in line to receive water, can quit

this queue and transfer to another RC to wait for receiving tarpaulins. This

type of behavior usually happens due to different family members queuing to

receive different supplies.

• Victim perception: Victims can have different perceptions of supply availabil-

ity, congestion or waiting times at RCs and move between queues due to their

perception. This does not always coincide with reality. However, it can create
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significant victim mobility.

These probabilistic victim behaviors, coupled with multiple relief centers dis-

tributing multiple items, with varying levels of capacity, make operating the relief

distribution efforts a challenging issue. These challenges lead to the following re-

search questions:

RQ3: What is the effect of victim movement between relief centers on the perfor-

mance of the relief distribution network?

To answer this question, we develop a framework that can take into account,

probabilistic changes in demand for items and probabilistic victim movements using

a generalized queuing network. We describe the details of the model, the proposed

solution methodology as well as the numerical experiments in Chapter 4.

Challenge 3: Material Convergence

Immediately after the disaster; relief items, from many sources such as, purchased

goods, pre-positioned stock, and in-kind donations flow into the disaster affected re-

gion, in high volumes and over a short period of time. This phenomenon is known

as material convergence. Among the sources that contribute to the material flow,

in-kind donations make up the bulk of the supplies received and handled during an

emergency. When these donations include high proportions of low-priority items,

they can exasperate the complexity of donations management and divert critical

resources away. We will refer to this problem of high volumes of incoming donations

coupled with high percentages of low-priority items as the material convergence

problem.
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Figure 1.5: Solicited versus Unsolicited Donations

Relief agencies including Salvation Army and the Red Cross purchase items or

solicit donations of specific items to meet the needs of victims. Unsolicited dona-

tions from individuals or groups also get sent to the disaster affected region. These

unsolicited donations can contain high-priority (HP) items that are urgently needed

for distribution, low-priority (LP) items which are not urgent but can be useful for

relief agencies and non-priority (NP) items which are not at all needed. In many

disasters, the percentage of NP items for unsolicited donations can exceed 50%.

Figure 1.5 shows examples of solicited and unsolicited donations from the Haiti

earthquake and hurricane Sandy. As seen from these pictures, sorting unsolicited

donations is often a more complex activity with less return. However, dedicating

resources to sort unsolicited donations is usually a must due to the high levels of de-

mand that solicited donations and purchased goods alone can not satisfy. Therefore,

the decision of how to allocate resources between solicited and unsolicited donations

is a big challenge. This decision becomes even more challenging as the arrival rates

for both types of donations change over time and the expected levels of high-priority

good percentages for unsolicited donations vary.
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The challenges identified led to the following research questions:

RQ4: How can we quantify material convergence?

RQ5: How does the mix of high priority and non priority items and arrival patterns

impact material convergence and volunteer assignment decisions?

To answer these questions we develop analytical queuing models to quantify ma-

terial convergence. This is a challenging analytical problem due to its transient

nature. Thousands of donations of either kind can arrive by the hour and pile up,

and the arrival rates, available resources and the allocation of resources change over

time. To solve this problem we use numerical methods that increase the solution

efficiency. We discuss the details of the model and the solution approach in detail

in Chapter 5.

Challenge 4: Transient Analysis of Relief Center Performance

The disaster relief distribution setup and operations take place during a time of

great urgency, uncertainty and need. Hence, both accuracy of evaluating options for

relief center designs and doing so in a timely fashion is critical. Analytical models,

such as the one proposed in Chapter 3 are very computationally efficient compared

to extensive simulation models. However, to get analytical results, these models

rely on key assumptions. The model developed in Chapter 3, assumes exponential

distributed inter-arrival and service times and the performance measure estimates

reflect steady state measures. We conduct a transient analysis of relief center perfor-

mance that relaxes these assumptions and answers the following research question:

RQ6: What additional insights on RC performance can be obtained using transient
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analysis that relaxes the Markovian assumptions?

To answer this research question, we model the relief center designs using Arena R©

discrete event simulation. We describe the details of the simulation models and nu-

merical experiments investigating transient behavior of RC operations in Chapter

6.

Challenge 5: Optimizing the Relief Center Designs

Disaster relief distribution is a critical activity during disaster response that

helps reduce the suffering imposed on communities. Increasing the relief distribu-

tion efficiency and quantifying impacts of crowds and changes in relief center design

is an important first step. However, using the available resources to achieve the best

possible relief distribution performance is a critical next step.

In relief center design, the availability of resources such as the number of volun-

teers and the size of the relief center area may be difficult to control. However, given

these resource constraints, the challenge is setting up the relief center for optimal

performance. This challenge leads us to the following research question:

RQ7: What is the optimal relief center design under resource constraints?

To answer this research question, we enumerate several relief center designs given

constraints on resources. We then use Arena R© discrete event simulation to evaluate

the designs in the design space and find the optimal relief center design. We describe

the details of constructing the design space, the simulation models and numerical
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experiments in Chapter 7.

1.3 Research Approach and Contributions

Our research approach aims to integrate theory and practice by grounding the re-

search problems in challenges faced by the disaster responders in the field, developing

stochastic models, and integrating disaster response data with stochastic models to

provide managerial insights for disaster response managers.

The research questions in this work were all motivated by discussions, interviews

and working group sessions conducted with Red Cross, Salvation Army, National

Voluntary Organizations Active in Disaster, Goodwill Industries, the Disaster Man-

agement Center and Wisconsin Division of Emergency Management. The practi-

tioners we worked with had experience responding to disasters both nationally and

internationally including the Haiti earthquake, Hurricane Sandy and Hurricane An-

drew.

To answer the research questions, we developed analytical and simulation mod-

els that captured the effects of crowds, queuing of victims, dynamically changing

victim needs, uncertainties in demand and supply, convergence of materials, limited

capacity and deprivation experienced by victims. We collected data on Nepal earth-

quake relief distribution and Goodwill Industries donations management process.

We conducted numerical experiments using the developed models and the data col-

lected to gain insights into improving relief distribution operations. Through our

practically grounded research approach, this work makes several contributions both
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to the theory and practice. We hope that the findings of this research will impact

how disaster response activities are planned and conducted.

In Chapter 3, we model relief center setup and operation practices. We model

each point of distribution (POD) and the access walkways to the PODs within the

RC as finite capacity queues with state dependent service rates. We derive analytic

solutions to estimate the performance measures of the queuing network, taking into

account blocking probabilities and state dependent service rates that model con-

gestion. We analyze the trade-off between the length of queues victims need to go

through and the congestion of the queues (RQ 1). We observe that congestion is a

key driver in increasing victim waiting times and propose relief center designs that

leverage crowd dissipation strategies, including alternative uses for the triage queue

at the RC (RQ 2). We also compare the current practice layout used by FEMA and

alternative designs leveraging the insights obtained from the model.

In Chapter 4, we model the relief distribution effort in a disaster affected region

as a generalized queuing network (G-network), where we model the probabilistic

victim movements between points of distribution and agency interventions that can

redirect victims between RCs using routing probabilities and signal entities. To

estimate performance measures for the relief centers under these dynamic changes,

we provide a new product form result for G-networks with full batch transfer of

victims via signals. We also propose product form approximations for G-networks

with partial batch transfer of victims. We apply the proposed G-network model and

quantify the impact of victim mobility on relief distribution performance (RQ 3).

In Chapter 5, we model the donation arrival-sorting process as multi-server
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queues and analyze the transient evolution of the material convergence phenomenon.

To our knowledge this work is the first in the literature to aim at quantifying ma-

terial convergence (RQ 4). We use data from Goodwill to understand the donation

sorting process and conduct numerical studies on volunteer assignment decisions un-

der varying levels of high-priority percentage of unsolicited donations and changing

arrival patterns (RQ 5).

In Chapter 6, we use discrete event simulation to model relief center designs.

We use the simulation models to relax assumptions made in analytical models. In

specific, we investigate the effects of Markovian assumptions and steady state mea-

sures on performance measure estimates and insights related to relief center setup

and operations (RQ 6).

In Chapter 7, we focus on optimizing the relief center design for both throughput

and victim waiting time measures under resource constraints. For a given level of

available space and volunteers, we enumerate all possible relief center designs and

exhaustively analyze each design using discrete event simulation. We comment on

the optimal design (RQ 7) and the variation in performance between different de-

signs.

The analytic models and results from this research can be used to create deci-

sion support tools that can evaluate, compare, optimize relief distribution related

decisions.
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Chapter 2

Literature Review

In this chapter we present an overview of the literature related to disaster relief

operations. In the literature review, we discuss prior work in relief center design,

relief distribution networks and coordination, and material convergence areas and

use our discussion to position the contributions of this research.

2.1 Related Work on Disaster Preparedness

Disaster preparedness involves: (i) planning for relief item distribution, (ii) planning

for a possible evacuation, (iii) deciding on facility and warehouse locations and min-

imizing transportation costs between facilities. Preparedness efforts start locally in

counties and states but extent nationally and internationally. In the United States,

Department of Homeland Security (DHS) prepared the National Preparedness Goal

Report Department of Homeland Security (2011) to identify core capabilities re-

quired for responding to a disaster. Each year the National Preparedness Report

is published to assess the progress on the goals set for preparednessDepartment of

Homeland Security (2012). Technical reports by Royal et al. (2014); Executive Of-
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fice of the President of the United States: Subcommittee on Disaster Reduction

(2005) provide more detailed information on specific technology and strategy needs.

Next we survey the preparedness literature in detail.

(i) Planning for Relief Item Distribution: Efficient distribution of relief items

require pre-positioning supplies, choosing key suppliers, reserving supply capacity

and planning transportation capacity and transportation routes. Balcik and Ak

(2014) discuss supplier selection and supplier aggrements for relief supplies. Akkihal

(2006) investigates inventory pre-positioning of non-consumable items for human-

itarian operations, Wang et al. (2015a) looks at pre-purchasing decisions using an

options contract framework for humanitarian supply chains. Adida et al. (2011)

focus specifically on stockpiling at hospitals for disaster planning and Duran et al.

(2011) discuss pre-positioning of relief items for CARE International. Acimovic and

Goentzel (2016) investigate stock piling decisions for non-food items including blan-

kets, buckets, mosquito nets based on stochastic optimization models to investigate

the effect of making combined stock-piling decisions. Sodhi and Tang (2014) focus

on integrating local micro-retailers while solving the pre-positioning problem to sup-

port local economies affected by disasters.

Other papers study the inventory management problem related to disasters. Clay

(2007) discusses the challenges related to inventory management following a disas-

ter. Das and Hanaoka (2014) and Ozbay and Ozguven (2008) present stochastic

inventory replenishment models for inventory control. Natarajan and Swaminathan

(2014) construct a multi-period stochastic inventory model with financial constraints

to investigate the impact funding uncertainty on relief item inventories. Wu et al.

(2010) combine inventory management with a demand forecasting approach to im-
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prove the forecasts using similar case based reasoning to improve the emergency

supplies management system. Xu et al. (2010), Deqiang et al. (2011), Zhao and

Cao (2015), Sheu (2010) and Li (2010) discuss forecasting approaches applicable in

a disaster setting. Taskin and Lodree (2011) use forecasting data for hurricanes to

manage emergency supply.

(ii) Evacuation Planning: Issues related to evacuation of victims has been the

subject of some studies. Tanaka et al. (2006) analyze traffic congestion effects for

hurricane evacuation, Fang et al. (2011) analyze possible evacuation routes for a

stadium and Hobeika et al. (1994) propose an evacuation decision support tool for

evacuation planning in nuclear power station regions. Uno and Kashiyama (2008) in-

tegrate geographical information into a simulation model to investigate both damage

and appropriate evacuation routes. Chiu et al. (2007) use a dynamic traffic flow op-

timization model to establish an evacuation network. Simonovic and Ahmad (2005)

simulate a flood emergency evacuation taking into account certain human behavior

characteristics and evaluates effectiveness of different flood emergency management

procedures. Pidd et al. (1996) also use a simulation approach and describes a spa-

tial decision support system to be used by emergency planners. Chen et al. (2012)

develop a model for assessing risks associated with the evacuation process including

both pre and post disaster factors. Aksu and Ozdamar (2014) focus on road restora-

tion efforts and use a mathematical model to maximize network access for efficient

evacuation of victims. Lo et al. (2006) use a game theory approach to model exit

choice of victims evacuating a building.

(iii) Facility Location and Transportation: Transporting supplies from the

stock points to the last mile distribution points usually involves a multi-tier supply
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chain which includes facilities (warehouse, staging area) and transportation between

these facilities and the final distribution points.Jia et al. (2007) provide a survey for

facility location problems and proposes a model specifically for large scale emergen-

cies. The proposed model can be cast as a generalization of the covering, P-median,

and P-center models taking into account characteristics of large-scale emergencies.

Balcik and Beamon (2008) analyze a distribution network design problem, which

combines facility location and stock pre-positioning decisions. Hong et al. (2015)

use a stochastic model to determine the size and the location of the response facili-

ties and the inventory levels of relief supplies at each facility. Cho et al. (2014) look

specifically at deciding locations for trauma centers and helicopters using a math-

ematical modeling approach and propose a specialized algorithm. Iakovou et al.

(1996) focus on finding the optimal location for cleanup equipment for responding

to possible oil spills using a linear integer programming model while Batta and

Mannur (1990) study a covering-location problem for ambulances and fire trucks.

Barbarosoglu and Arda (2004) model the transportation of first-aid commodities

during a disaster as a multi-commodity, multi-modal two-stage stochastic program.

Campbell et al. (2008) analyze routing problems relevant to disaster relief operations

using the objective of minimizing arrival times. Manoj et al. (2016) combine deci-

sion for locating staging areas, assigning inventory to staging locations and routing

trucks from staging areas to distribution sites. Han et al. (2011) use an optimization

method to decide on warehouse locations, fleet routing and scheduling.

2.2 Related Work on Disaster Response

Wright et al. (2006) provides a survey of operations research (OR) literature on
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disasters and emergency management, highlighting the need for more research in

the disaster response phase. Larson et al. (2006) discuss lessons learned from 5 ma-

jor emergencies and highlight the needs for more research related to emergencies.

Larson (2004) provides a discussion on OR models in emergency management and

homeland security related problems. Altay and Green (2006) and Galindo and Batta

(2013) provide literature surveys in disaster operations management and highlight

the need for models that take into account unique characteristics of the disaster

environment. They also state that aid collection, allocation, and distribution prob-

lems as areas that need attention from the OR community. Simpson and Hancock

(2009) survey emergency response articles and highlight appropriate performance

measures and volunteer management for disaster operations as future research di-

rections. Kovacs and Spens (2007) and Jiang et al. (2012) survey logistics issues in

humanitarian relief operations and emphasize the need for additional research on

stochastic models that use appropriate objective functions. Caunhye et al. (2012)

surveys the optimization models in disaster operations, particularly related to relief

distribution.

Next we discuss the literature related to (i) relief distribution at relief centers,

(ii) relief distribution networks and coordination and (iii) the material convergence

problem.

(i) Relief Distribution at the Disaster Site: Once the relief items are procured

and transported, they are distributed to the victims at the affected region via dis-

tribution areas staffed by volunteers called relief centers (RC). The location of the

RCs, the design of the RCs, its staffing and operational policies are all problems

that require attention to make this process efficient. To the best of our knowledge,
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Roy et al. (2011) is the only prior work in the literature that focus on relief supply

distribution at the disaster site. The authors compare various relief center designs

using queuing models.

(ii) Relief Distribution Networks and Coordination: To our knowledge, there

is no prior work that considers a network of relief centers for relief item distribution.

The closest line of work is related to coordination of the immediate response activ-

ities. Coordination both at the strategic level and the operational level has been

identified as an area that needs further research (Simpson and Hancock (2009)).

The literature has analyzed costs and benefits of inter agency coordination, coordi-

nating procurement of supplies and coordinating transportation of supplies (Balcik

et al. (2010)), Ergun et al. (2014), Tomasini and Van Wassenhove (2009), Altay and

Pal (2014), Schulz and Blecken (2010), Wang et al. (2015b)). To our knowledge,

operational coordination and strategies to deal with changing victim need and mo-

bility for disaster relief distribution has received very little attention in the literature.

(iii) Material Convergence: Prior literature on humanitarian logistics and dis-

aster operations management has recognized material convergence as a catastrophic

and understudied problem in disaster response. Many case studies and empirical

papers document the occurrence of material convergence and the strain it created on

critical resources following disasters. Arnette and Zobel (2015) document material

convergence during the 2013 flooding in Colorado. Thomas and Fritz (2006) docu-

ment the convergence issues in the 2004 earthquake and tsunami in Southeast Asia.

Holguin-Veras et al. (2007) discuss material convergence related problems in Hurri-

cane Katrina. Holguin-Veras et al. (2012b) identify material convergence issues that

occurred during the 2011 Tohoku earthquake in Japan. Holguin-Veras et al. (2014)
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provide examples of material convergence problems that arose during 1953 Arkansas

Tornado, 2004 Hurricane Charley, 2001 World Trade Center, 2010 Colombia Floods,

2011 Joplin Tornado, 2012 Hurricane Sandy and many more. Holguin-Veras et al.

(2012a) provide an excellent discussion on material convergence and state that there

is no established procedure for simultaneously handling the material convergence

problem and expediting the flow of high-priority items to disaster survivors. They

emphasize that this is mainly due to the lack of analytic models for material conver-

gence in the literature. They specifically highlight the need for dynamic models to

allocate resources to manage material convergence. To our knowledge, the closest

line of research related to quantifying material convergence has been by Martelo

(2011) where they use a mathematical programming model to determine optimal

allocation of resources. However, the paper assumes that there is no accumulation

of flows between time periods and therefore does not quantify the actual material

convergence. In addition, the optimization model is based on estimating many cost

parameters like, volunteer allocation and volunteer re-allocation costs, opportunity

cost of rejecting donations and the delay cost, that might be hard to estimate in

practice.

Other papers in the literature focus on the donors and donor types. For in-

stance, Ülkü et al. (2015) and Destro and Holguin-Veras (2010) both analyze the

socio-economic characteristics of donors to understand the expected donation flows

more accurately. Stapleton et al. (2010) provide an overview of types of donors and

discuss the pros and cons of different types of donations. Islam et al. (2013) discuss

the use of donation registry or donation portals for matching donors with actual

need. Ozpolat and Rilling (2015) and United States Agency for International De-

velopment (2016) focus on donor education to raise awareness regarding unsolicited
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donations.

In addition, there have been studies related to the relief chain, donations and

material convergence. Gatignon et al. (2010) compare centralized and decentral-

ized supply chain operations to increase responsiveness and state reduced material

convergence as a positive effect of decentralization. Aflaki and Pedraza-Martinez

(2016) analyze the effects of different funding strategies and specifically focus on

earmarked financial donations.

2.3 Perspective on the Literature

In disaster response literature, distributing relief items at the disaster site received

minimal attention. Most of the research related to disaster relief items, focuses

on the preparedness stage and studies problems related to pre-positioning supplies,

supplier agreements, supply chain design, facility location problems and inventory

management problems. The problems that disaster response agencies face in the

field, while managing and distributing the relief supplies that arrive is a major gap

in the literature. In addition, many surveys of disaster operations management

(DOM) literature identified quantitative models, stochastic and dynamic features in

modeling and appropriate objective functions as major needs for all DOM research.

We aim to fill these gaps in the literature.

We first focus our attention on relief center design at the disaster site. To our

knowledge there is only one prior work (Roy et al. (2011)) highlighting the need

to understand trade-offs in relief center design. Our work differs from the prior
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literature in the following ways: (1) We analyze the current practice on relief center

design and propose alternate RC designs to improve operations, taking into account

the area and design guidelines provided by FEMA; (2) We model the effects of

congestion caused by crowding via state dependent queues and take into account

blocking between the queues and (3) We explore ways to use triaging to improve

RC performance.

Next, we consider a network of relief centers and propose a model that takes into

account dynamically changing victim routing, victim mobility and external inter-

ventions that can act as operational coordination actions to balance network work

load. To our knowledge, there is no prior research that considers a relief distribu-

tion network. Moreover, many prior studies highlight the need for dynamic and

flexible modeling techniques for disaster response problems. We aim to fill this gap

in the literature. We use a generalized queuing network with probabilistic transfers

and batch movement of victims to model the dynamic aspects. In this research, we

also contribute to the queuing literature by providing a new product form result and

a product form approximation for cases where the product form result does not hold.

We then focus our attention to the material convergence problem, which directly

affects the relief centers’ access to supplies in a timely manner to distribute to the

victims. The prior literature has very minimal quantitative models that aim to

capture effects of material convergence. In this paper we aim to fill this gap in the

literature by quantifying material convergence and providing an analytic model for

resource allocation decisions under material convergence. We develop a multi-server

transient queuing model representing the donations and apply numerical techniques

to efficiently solve the model. We capture the relationship between material con-
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vergence levels and resource allocation decisions, under varying donation arrival

patters and high-priority item percentages. Our model allows the decision maker

to evaluate multiple decisions (optimal and sub-optimal) and observe the trade-offs.

We believe that this model can serve as a basis for decision support tools in the field.

Next, we analyze the impact of assumptions related to exponential inter-arrival

and service rates, stationary arrival patterns, and steady state analysis used in the

modeling of relief centers. We use discrete event simulation to model relief center

layouts and relax the assumptions made previously. To our knowledge, there is only

one prior work (Roy et al. (2011)) on relief center designs. This work, as well as our

relief center model in Chapter 3, use these assumptions to obtain analytic results

and expressions. Hence, this research contributes to understanding the impact of

prior assumptions on the insights related to relief center design and operations.

Finally, we focus our attention on optimizing relief center layouts given con-

straints on resources. We use an exhaustive enumeration approach, coupled with

simulation analysis to find the optimal relief center design considering both the

throughput and the victim waiting time performance measures. The disaster re-

sponse literature has used both simulation and optimization tools to model different

problems. However, to our knowledge this is the first work to optimize relief center

layouts.
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Chapter 3

Relief Center Setup and

Operations

3.1 Introduction

At the disaster site, the relief items are distributed to victims through temporary

structures setup by the humanitarian organizations called relief centers (RCs). RCs

are usually set up in large open areas (parking lots, play grounds) for ease of access

and safety reasons. RCs usually have multiple points of distribution (PODs) each

staffed with volunteers distributing the supplies. Each POD in a relief center is

accessed via an entry walkway and exited via an exit walkway. In case of multiple

PODs, there exits connecting walkways between the PODs. The disaster victims

arrive to the RC and collect the supplies they need from the PODs. During the

immediate aftermath of a disaster, demand for relief items is high, congestion is

heavy due to crowds and resources are limited. Hence, victims might spend large

amounts of time waiting in congested queues to receive critical relief supplies, or not

receive the items at all.
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Crowding experienced during distribution is a significant problem that can hin-

der the efficiency of relief distribution. In the case of Salvation Army, 2010 Haiti

earthquake response, relief distribution efforts in Port-au-Prince came to halt due to

the crowds converging around the relief center. One of the Salvation Army respon-

ders remembers it as: “Too many people gathered too fast. People were crushed

and we had to shut down the distribution (Ozen and Krishnamurthy (2017)).” After

several days a new relief center design was implemented where the crowd was more

strictly controlled, and victims were accepted one by one to the relief center. As in

the example of Haiti relief distribution, relief center design and staffing changes can

help manage the crowds better, and decrease victim waiting times.

Even though effects of congestion has been documented by relief agencies, there

has been very limited research on modeling and quantifying this phenomenon for dis-

aster relief distribution. Previous research on relief distribution focused on procuring

and transporting the relief supplies to the disaster affected region, and lacked focus

on the distribution of the supplies at the disaster site. The current relief distri-

bution practice is based on prior experience of relief agencies. To understand the

current practice and the challenges faced, we interviewed practitioners and organized

working group sessions with representatives from the Salvation Army, Red Cross,

South East Wisconsin Citizens and Organizations Active in Disasters (COAD), and

Federal Emergency Management Agency (FEMA). The interviews revealed that re-

lief agencies including FEMA, Red Cross and the Salvation Army have guidelines

for setting up RCs and distributing relief (Federal Emergency Management Agency

(2008)), USAID (United States Agency for International Development (2005)) and

IFRC (International Federation of Red Cross and Red Crescent Societies (2008)).
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However, they emphasized that the guidelines merely provide a starting point and

there is currently no tool that can be used to evaluate alternative relief center de-

signs based on the unique needs of a disaster. In this paper, we aim to address this

need to quantify the impact of various RC design strategies. In particular, we aim

to answer the following research questions: (1) How can an RC be setup to control

effects of crowding, increase throughput and decrease waiting times? (2) What are

some operational strategies that can help improve RC performance such as triaging?

To answer these research questions, we model each relief center as a finite ca-

pacity queuing network, where both the walkways and the PODs are represented as

individual queues. To take into account effects of congestion, we model walkways

within the RC as queues with state dependent (level of congestion) service rates.

We model the PODs in the RC, as queues with service rates that are independent

of congestion. To estimate performance measures of the queuing network model, we

propose a solution approach based on decomposition. Using our solution method-

ology, we conduct numerical experiments where we compare different layouts and

investigate the components of a layout that can reduce effects of crowding. We use

data from the 2015 Nepal earthquake to estimate victim arrival rates and relief item

distribution rates to test our model. Our main findings are: (1) given the same

resources, how a relief center is setup has a significant impact on relief distribution

performance, (2) dissipating the crowd by leveraging multiple distribution points

within the RC decreases waiting times considerably, (3) triage queues can be lever-

aged to balance the workload in the RC to alleviate bottlenecks, (4) limiting number

of victims allowed within the RC at once can decrease victim waiting times, however

if decreased beyond a certain level, it can impair the throughput of the RC. All of our

findings point to the importance of decision support models that can help practition-
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ers decide on RC design strategies to serve more victims in a shorter amount of time.

The rest of this chapter is organized as follows. Section 3.2 provides a literature

review, Section 3.3 describes the current and proposed RC layouts and models the

associated queuing networks. Section 3.4 describes the solution methodology in-

cluding the decomposition algorithm and the analytic formulas used for solving the

decomposed queues. Section 3.5 explains the case study application of the Nepal

earthquake and discusses the numerical studies and Section 3.6 concludes the chap-

ter.

3.2 Literature Review

The work in this chapter is related to two main literature streams: relief center

design and queuing network approximations.

Relief center design: To the best of our knowledge, Roy et al. (2011) and Ozen

and Krishnamurthy (2013) are the only prior work in the literature that focus on

relief supply distribution at the disaster site. These papers both highlight the im-

portance of relief center design and emphasize the impact large crowds can have on

relief distribution performance. Roy et al. (2011) compare different layouts using a

network of M/G/C/C queues. Our work differs from Roy et al. (2011) by using a

different queuing approach, where the blocking relationship between queues in the

network is captured explicitly. Therefore, the model proposed in this paper can pro-

vide more realistic performance measure estimates. This work also differs from Ozen

and Krishnamurthy (2013) by modeling effects of crowding using state dependent

queues. Due to these enhancements, new analytic formulas are derived in this paper
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to solve the resulting queuing network. In addition to the mentioned modeling and

theoretical differences, this work differs from the prior studies by evaluating lay-

outs that are currently used in the field based on FEMA guidelines and uses Nepal

earthquake data to bridge the gap between theory and practice of relief distribution.

Queuing network approximations: From a queuing network perspective, we

model victims arriving and waiting at an RC to receive relief items as a network of

finite capacity queues. Due to propagation of blocking in finite capacity networks,

exact analytic solutions are hard to obtain and prior studies have focused on de-

composition methods for approximate analysis. These decomposition methods are

based on the idea of decomposing the system down to two-queue pairs, determining

sub-system parameters and ensuring consistency and conservation of flow. Dallery

and Frein (1993); Gershwin (1987); Brandwajn and Jow (1988); Altiok (1982) pro-

vide three popular decomposition methods for analyzing these queuing networks.

Subsequently other studies have extended these methods to analyze more complex

systems such as those with unreliable servers (Bihan and Dallery, 2000), closed-loop

networks (Maggio et al., 2009), rework loops (Li, 2004) and assembly-type systems

(Gershwin and Burman, 2000). Our work contributes to this line of literature by

providing a solution methodology for queuing networks with blocking and state de-

pendent service rates.

Like the prior studies, we also employ a decomposition approach to solve the

queuing network model of the RC. In addition, we use state dependent service rates

to capture the decreasing speed of crowd movement, resulting from increasing levels

of congestion in the queues. Since existing methods cannot be applied directly to

solve these networks, we derive new analytic expressions to characterize the system
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of queues and obtain estimates of throughput and system time measures. Prior

studies by Kerbache and Smith (1987); Smith (1991); Cheah and Smith (1994),

use state dependent M/G/C/C queues to model congestion effects. The solution

methodology is based on an “expansion method” that adds an artificial node to

the network to hold the blocked victims and re-introduce them to the network via

a feedback loop. The procedure proposed in this paper provides a more direct

formulation of congestion effects and is more accurate under high utilization levels

(common for disaster response).

3.3 The Relief Center Model

Relief centers have points of distribution (PODs), triage queues, volunteers and

inventory and replenishment areas. The efficiency of relief center operations is im-

pacted by the following criteria:

(i) Number of PODs: The number of PODs to open in a relief center can

depend on number available volunteers, volume of relief supplies available at the

RC, the area of the relief center and the number of victims the RC is serving.

(ii) Item assignment to PODs: The decision on how to assign the relief sup-

plies to the points of distribution, will depend on the types of items and the total

number of items being distributed, as well as the packaging of the delivered items.

As an example, tarpaulins are large and bulky, hence it might be preferable to dis-

tribute them separately. Some items such as cleaning supplies come as a set and are

distributed together. The assignment decision of items to PODs, can also impact

the time it takes to distribute the items. If an RC decides to distribute tarpaulins
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with cleaning sets at a POD, the time it takes to distribute items from that POD

will increase (to the summation of both service times), compared to distributing

these items separately. We will refer to this phenomenon as the additive service

time assumption.

(iii) Physical capacity of the RC: The term physical RC capacity, refers to

the number of victims that can be physically present in the RC at a time. Note

that this is different than the RC throughput. This physical capacity will depend

on the RC area, the number of victims the RC is serving, the number of available

volunteers and the level of available supply. The decision parameter here is the

number of victims allowed to queue within the RC at once. Note that, increasing

the allowed RC capacity will increase the congestion within the relief center, and

can increase waiting times of victims and decrease throughput. We investigate this

trade-off using our model.

(iv) Triage queue: The triage queue is used to check victim information prior

to item distribution. Note that triage, as it is used in relief distribution, is different

from how it is used in medical emergency response (Iserson and Moskop (2007);

Ergun et al. (2014)). In medical emergency response the aim is to prioritize victims

according to the urgency of the problem. In contrast, at an RC, the triage is used

to check information and route the victims to the correct locations to minimize con-

gestion. How much service should be provided at the triage queue is an important

decision parameter for relief center design.

(v) Walkways in the RC: The victims access the relief center using walkways,

move between PODs via walkways and exits the RC via walkways. When congestion
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in a walkway increases, the rate at which victims can move decreases significantly.

This phenomenon is known as effects of crowding and has been quantified via em-

pirical studies (Tregenza (1976)). The number, size and length of the walkways will

all impact how fast victims can move within the relief center. Moreover, expanding

the allowed physical capacity of the RC by accepting more victims to access the RC

at once, will increase crowding and slow down movement of victims. In fact, this

was the reason why the Salvation Army Port-au-Prince distribution came to a halt.

In order to capture the effects of these design criteria on the performance of the

RC, we model the relief centers as a network of finite capacity queues where walk-

ways, points of distribution and the triage are all represented as separate queues

in the network. The number of PODs and the number of walkways will impact

the number of queues in the network. The assignment of items to PODs and the

tasks associated with triage will impact the distribution speed at these queues. The

walkway queue service rates are dependent on the congestion in the relief center

and are modeled using state dependent finite capacity queues. Next we discuss two

layouts (one adapted from FEMA and one alternative layout we designed) using

these decision criteria.

The Guide to Points of Distribution by FEMA and US Army Corps of Engineers

(Federal Emergency Management Agency, 2008) provides one of the most detailed

guidelines in terms of the current practice related to the setup of the relief center,

the total required RC area, and the sizing of the pedestrian walkways. Figure 3.1

summarizes the design and essential parameters provided by FEMA (Federal Emer-

gency Management Agency (2008)).
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Figure 3.1: RC Layout: Current Practice (Federal Emergency Management Agency,
2008)

In this RC layout, there are 4 PODs staffed with a volunteer each, all PODs dis-

tribute all four of the available items and all victims access the RC using the same

walkway. The triage queue is used to check victim information and track family

affiliations prior item distribution. Note that triage as it is used in relief distribu-

tion is different from how it is used in medical emergency response (Iserson and

Moskop (2007); Ergun et al. (2014)) where the aim is to prioritize victims according

to urgency of treatment needed. In contrast, at an RC, the triage is used to check in-

formation and route the victims to the correct locations to minimize congestion. In

the aftermath of a disaster, the number of victims that need supplies is often higher

than the available distribution capacity. In a design where all victims converge to

queue along the same entry walkway, congestion will increase and slow down the

movement of the victims. Moreover, due to all PODs distributing all items, the ser-

vice time at each POD is equal, and higher compared to only distributing a subset

of items at a POD.

Based on these observations and the decision criteria discussed previously, we

design an alternative RC layout shown in Figure 3.2. In this alternative layout, we
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keep the overall RC area, the total number of PODs, the total number of volunteers

and the walkway widths equal to the FEMA guidelines. This allows us to separate

design decisions from effects of resource availability. In the alternative design, we

change the item assignment to PODs and increase the number of walkways in the

RC. Our aim here is to: (1) decrease the service time at each POD by distribut-

ing a subset of items (due to the additive service time assumption), and (2) create

alternative routes for victims which can ”thin” the crowd within the RC, and as a

result can increase the service rate of the walkways (note the initial division of crowd

to two). Note that, this design may effectively spread the crowd, however, it also

results in victims going through a larger network of queues. We aim to investigate

the trade-off between victims going through more queues which are less congested,

and victims going through less queues which are more congested. Moreover, in our

numerical studies we vary the physical relief center capacity and work assigned to

triage queue and investigate the impact these decisions have on both RC layouts.

In particular we aim to investigate the impact of the following design decisions: (i)

What is the impact of crowd dissipating layout designs on victim waiting times and

RC throughput? (ii) What is the impact of item assignment to PODs and number

of walkways in an RC design on performance? (iii) What is the impact of the phys-

ical RC capacity on performance? (iv) How can triaging be utilized to improve RC

performance? Note that other alternative designs than the ones we discuss in this

Chapter are possible. Our aim is not to present an optimal layout, it is to emphasize

non-obvious trade-offs in RC design and demonstrate the impact decision support

models can have on relief distribution efforts. Our methodology can be used to eval-

uate a broad class of layouts in addition to the ones shown in Figures 3.1 and 3.2.

In Section 3.5 we show how our method can be used to evaluate other layout designs.
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Figure 3.2: RC Layout: Proposed Layout

3.3.1 Queuing Model Representation of Relief Centers

We model the RC where victims wait in line to receive supplies from one or more

PODs as a queuing network of finite capacity queues. We explicitly model both the

walkways that provide access to the PODs and the PODs themselves as queues in

the network. We model the walkways as finite capacity queues with state dependent

service rates, where the rate of service is dependent on the speed at which pedes-

trians are able to move on the walkway. As the number of victims on the walkway

(congestion) increases, the movement speed will slow down. We use empirical stud-

ies by Tregenza (1976) to model this relationship. We model the PODs as finite

capacity queues with steady service rates where the service time only depends on

the items that are being distributed.
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Let the set i = 1, 2, .., i, ..N represent the queues in the RC, and Ki represent the

finite capacity of each queue. Also let µi(ki) and µi represent the exponential service

rate parameters for walkways and pods respectively, where ki = 1, 2, ..., ki, .., Ki. For

analytic tractability, we assume that the external arrival rate of victims to the relief

center follows a Poisson process with parameter λ. Although, the arrival rate to

the RC is the same regardless of the design, the arrival rate to a particular POD

depends on the set of items available at that POD and the demand for that subset

of items. For the layout in Figure 3.2, a victim needing all items will go through

both PODs 1 and 2, while a victim needing only item 1 will only visit POD 1. The

queuing model therefore allows for converging and diverging flow of victims while

keeping the overall flow of victims consistent.

Figure 3.3 depicts the resulting queuing network for the RC layout shown in

Figure 3.1 representing the current practice and the flow corresponding to a victim

visiting POD 1. Victims visiting PODs 2, 3 or 4 will only experience higher conges-

tion and waiting times at the RC. Figure 3.4 depicts the resulting queuing network

from Figure 3.2 for a victim requiring all items. By leveraging the symmetry of the

RC design we only model pods 1 and 2.

Figure 3.3: Current Practice: Queuing Network Representation
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Figure 3.4: Proposed Design: Queuing Network Representation

Note that in the layout design given by Figure 3.1 (queuing network represen-

tation shown in Figure 3.3) all victims, irrespective of the set of items they require,

use the same walkway to access the RC and the same long walkway is used to access

each POD. In this design, even though victims go through less number of queues in

total, the queues they go through are more congested. Moreover, a victim needing a

single item or all items will go through the same network of queues. In the proposed

design (see Figure 3.2 for layout and Figure 3.4 for queuing network), there are two

entry points to the RC following the triage queue aiming to divide the crowd from

the beginning. In addition, item assignment to each POD is varied so that a victim

needing a single item need not go through all queues in the RC and a victim need-

ing all items will go through less congested queues. Moreover, item assignment to

PODs, not only creates alternative routes for victims but also can decrease the ser-

vice time at the PODs. By distributing fewer number of items the time it takes for

distribution can be shortened, resulting in faster queues. In Section 3.5 we consider

various item assignments to analyze the impact of both varied routing and service

rate balancing can have on victim suffering.

It is possible to analyze the layout in Figure 3.2 as a multi-class queuing network.

However, in our solution approach we use input aggregation used by Whitt (1983)

and calculate the arrival rate and service rate at each queue for a typical aggregate

victim. See Whitt (1983) for the details and accuracy of the aggregation approach.
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Next we discuss the methodology proposed to solve the resulting queuing net-

works. Using this methodology we estimate the performance measures (average

time a victim going through the RC experiences and throughput of the RC) and we

determine them using a decomposition methodology since exact analytic solutions

are hard to obtain. The overall performance measure we use (victim deprivation

objective) combines these two measures.

3.4 Performance Evaluation

The RC designs result in open queuing networks with finite capacity queues and

blocking after service. Let ki denote the number of victims at queue i and let

P = (k1, k2, ...ki, ..., kN) represent the steady state probability for the network. To

estimate the network performance measures we first need to solve this queuing net-

work for its steady state probabilities, which we do so following a three step process.

(1) We first decompose the network of queues into 2-queue subsystems, each char-

acterized with an effective arrival rate and a 2-phase Coxian effective service rate.

(2) We then analyze each subsystem in isolation using the analytic formulas derived

in Section 3.4.1. (3) Next, we use a recursive algorithm (See Section 3.4.2), to link

back the network and capture the inter-dependencies via blocking probability esti-

mations to calculate accurate performance measures for the network.

The two main assumptions made during decomposition are: (i) a queue may

only be blocked by its immediate successor queue and (ii) the arrival rate to each

queue is Poisson. Each individual queue obtained from the decomposition is defined

by its effective arrival rate and the effective service rate. The effective arrival rate
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Figure 3.5: Queuing Network after Decomposition

must ensure that the system throughput stays constant while the effective service

rate must account for the additional time spent at service due to the victim being

served possibly getting blocked after service (See Figure 3.5).

Blocking in the system occurs after service completion at queue i when the down-

stream queue i+ 1 is at capacity, although the downstream queue being at capacity

does not always imply blocking. To distinguish the two states, we increase the queue

capacities by 1 to represent the blocked victim in queue. Then the probability of

blocking for queue i can be written as ai = P (ki = Ki + 1) for i = 2, 3, ..., N . Next

we describe the effective arrival and service rate calculations.

The external arrival rate to the network is known and is assumed to be Pois-

son with parameter λ. Then the throughput of the network can be written as

TH1 = λ ∗ (1 − a1), where a1 is the probability that queue 1 is at capacity. This

implies that the RC is unable to provide service to λ∗a1 victims. Then, the effective

arrival rate to each subsequent queue is defined as λi = TH1/(1 − ai), i = 2, ..., N ,

where ai, i = 2, ..., N is the probability queue i is full.
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The service time at each queue is assumed to be exponential with a fixed rate for

the distribution pods and state dependent exponential for queues representing RC

walkways. Due to the memory-less property of the exponential distribution, the time

a station is blocked can also be characterized by the exponential distribution (See

Figure 3.6). This implies that effective service time at queue i has a 2-phase Coxian

distribution, where the first phase represents the actual service time and the second

phase represents the time spent blocked, and ai+1 represents the probability of block-

ing. Note that all queues in the system besides the final queue can be characterized

as an M/C2(ki)/1/Ki. Note that a queue with service time that is independent of

the state ki, is a special case of a queue with state dependent service times. Since

the last queue can not be blocked it is characterized as an M/M(ki)/1/Ki queue.

Next we derive the formulas required to solve M/C2(ki)/1/Ki and M/M(ki)/1/Ki

queues in isolation.

Figure 3.6: Model of a Queue in Isolation

3.4.1 Analysis of Queues in Isolation

We defined each queue in the network as a standalone queue with Poisson arrivals

with rate λi = TH1/(1−ai) and a two-phase Coxian distributed service time with pa-

rameters µi and (µi+1∗ai+1) characterizing the first and second phases of the service

time respectively. To calculate the steady state probabilities of the M/C2(ki)/1/K

queue in isolation we analyze the Markov Chain embedded at departure epochs.

Let π(ki), ki = 0, 1, ..., Ki− 1 denote the steady state probabilities of the embedded
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Markov chain and let P (ki), ki = 0, 1, 2, ..., Ki represent the steady state probabilities

of the M/C2(ki)/1/Ki queue. Note that for simplicity the subscript i representing

a specific queue in the network will be suppressed throughout the remainder of this

section.

Let Xk denote the state of the Markov chain representing the number of victims

present in the queue right after the kth departure and let qk,n represent the probabil-

ity that, following a departure leaving the queue in state k, exactly n victims arrive

during the service time. Then, the transition probability matrix for the Markov

chain embedded at departure instances can be written as:

Q =



q0,0 q0,1 q0,2 . . . q0,K−2 r0,K−1

q1,0 q1,1 q1,2 . . . q1,K−2 r1,K−1

0 q2,0 q2,1 . . . q2,K−3 r2,K−2

0
...

...

0
. . .

0 qK−1,0 rK−1,1


To estimate qk,n, we repeatedly use the memory-less property of the exponential

distribution along with the probability representing the minimum of two exponential

random variables. Note that µd(Kd + 1) represents the service time of the down-

stream queue when it blocks its upstream queue.

For k ≥ 0 and n = 0 :

qk,n = (1− a)

(
µ(k)

λ+ µ(k)

)
+ a

(
µ(k)

λ+ µ(k)

)(
µd(Kd + 1)

λ+ µd(Kd + 1)

)
(3.1)
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For k ≥ 0 and n = 1 :

qk,n = (1− a)

(
λ

λ+ µ(k)

)(
µ(k + 1)

λ+ µ(k + 1)

)
+ a

[(
λ

λ+ µ(k)

µ(k + 1)

λ+ µ(k + 1)

µd(Kd + 1)

λ+ µd(Kd + 1)

)]
+

(
µ(k)

λ+ µ(k)

λ

λ+ µd(Kd + 1)

µd(Kd + 1)

λ+ µd(Kd + 1)

)
(3.2)

For k ≥ 0 and n > 1 :

qk,n = (1− a)
k+n−1∏
j=k

λ

λ+ µ(j)

µ(n+ k)

λ+ µ(n+ k)

+ a
n∑
b=1

[(
k+b−1∏
j=k

λ

λ+ µ(j)

)
µ(k + b)

λ+ µ(k + b)

]

∗

(
k+n−1∏
j=k+b

λ

λ+ µd(Kd + 1)

)
µd(Kd + 1)

λ+ µd(Kd + 1)

+ a

[(
k+n−1∏
j=k

λ

λ+ µ(j)

)
µ(n+ k)

λ+ µ(n+ k)

µd(Kd + 1)

λ+ µd(Kd + 1)

]

+ a

[
µ(k)

λ+ µ(k)

(
k+n−1∏
j=k

λ

λ+ µd(Kd + 1)

)
µd(Kd + 1)

λ+ µd(Kd + 1)

]
(3.3)

For k ≥ 0 and n ≥ 0 :

rk,n = qn,k + qk,n+1 + qk,n+2 + qk,n+3 + ... (3.4)

Now that the matrix Q is completely defined, we solve the equation π = πQ to

determine the steady state probabilities of the Markov chain, π.
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π(k) =
P (k)

1− P (K)
for k = 0, 1, 2, . . . , K − 1

λ(1− P (K)) =
K∑
i=1

µeff (i)P (i) (3.5)

Then using π(k), k = 1, 2, ..K − 1 we get the steady state probabilities P (k)

using Equations 3.5 where µeff (k) is defined as
(

1
µ(k)

+ ad
µd(Kd+1)

)−1

. Then we can

use Equations 3.6 to get the steady state probabilities from departure epoch prob-

abilities.

P (k) =
π(k)

π(0) + ρ
, k = 0, 1, 2, . . . , K − 1

P (K) =
ρ− 1 + P (0)

ρ
(3.6)

Finally, we can calculate the throughput, average number of victims in each

queue and the average time spent at each queue using Equations 3.7 respectively

for each queue i. Note that, the overall waiting time W̄i of a victim is obtained by

summing over all waiting times of the queues the victim goes through. The overall

throughput of the RC is equal to λ ∗ (1− a1) due to the conservation of mass.

THi = λi ∗ (1− ai)

Li =

Ki∑
j=0

Pi(j)j, i = 1, 2..., N

W̄i = Li/TH, i = 1, 2..., N (3.7)
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Recall that every queue except the last queue in the queuing network in Figure

3.3 and 3.4 are M/C2(k)/1/K queues. The last queue in each of these networks

is an M/M(k)/1/K queue. Next we describe how we compute the steady state

probabilities for these queues.

The steady state probabilities of the M/M(k)/1/K queue can be obtained by

constructing and solving the balance equations given by Equation 3.8.

P (0)λ = P (1)µ(1)

P (1)λ+ P (1)µ(1) = P (0)λ+ P (2)µ(2)

P (2)λ+ P (1)µ(1) = P (1)λ+ P (3)µ(3)

...

P (K − 1)λ = P (K)µ(K) (3.8)

Solving the above equations, we can obtain:

P (0) =
1

1 +
K∑
n=1

λn

µ(1)...µ(n)

(3.9)

P (k) = P (0)
λn

µ(1) . . . µ(k)
(3.10)

We then use Equation 3.7 to obtain the throughput (TH) and total time (W )

performance measures.
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3.4.2 Iterative Algorithm to Link Queues

The steady state probabilities of any queue i in the network is dependent on the

probability that their downstream queue (i+ 1) is full and the probability that the

first queue is full (since it governs the overall system throughput). Formally, the

probability ai is a function of a1 and ai+1, ∀i = 1, 2, 3, .., N − 1 and aN is solely

dependent on a1. Therefore, to accurately estimate the steady state probabilities of

each queue, we solve each queue in isolation assuming starting blocking probabili-

ties (using equations derived in Section 3.4) and iterate until all blocking probability

estimates converge. The iterative algorithm is summarized below:

Inputs: λ, Ki, µi(ki), for all i = 1, 2, ..N , initial estimates a
(0)
i , i = 1, 2, ..N and ε

Step 1: For m = 1, 2, ...,M execute steps 2-4.

Step 2: For queue i = N :

2.1 Analyze queue N as an M/M(kN)/1/KN queue with arrival rate λN ,

service rate µN(kN) and capacity KN and obtain steady state probabilities

PN(kN = j), j = 1, 2, . . . , KN .

2.2 Update arrival rate λN with revised estimate of aN = PN(kN = KN).

2.3 Iterate until estimate of PN(kN = KN) converges.

2.4 Let a
(m)
N correspond to this estimate of PN(kN = KN).

Step 3: For queues i = N − 1, N − 2, . . . , 2:

3.1 Analyze queue i as an M/C2(k)/1/Ki queue with arrival rate λi,

service rate µi(ki) and capacity Ki + 1 and obtain steady state probabilities

Pi(ki = j), j = 1, 2, .., Ki + 1.

3.2 Update arrival rate λi with revised estimate of ai = Pi(ki = Ki + 1).
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3.3 Iterate until estimate of Pi(ki = Ki + 1) converges.

3.4 Let a
(m)
i correspond to this estimate of Pi(ki = Ki + 1).

Step 4: For queue i = 1:

4.1 Analyze queue 1 as an M/C2(k)/1/K1 queue with arrival rate λ,

service rate µ1(k1) and capacity K1 + 1 and obtain steady state probabilities

P1(k1 = j), j = 1, 2, .., K1 + 1.

4.2 Compute the absolute difference δ = |a(m)
1 − P1(k1 = K1 + 1)|.

4.3 If δ ≤ ε, go to step 5.

4.4 If δ > ε, set m = m+ 1 and repeat steps 2-4.

Step 5: Record steady state probabilities Pi(ki), ki = 1, 2, ..., Ki + 1, ∀i.

Step 6: Compute performance measures using Equation 3.7.

For a given value of a1, we start with the last queue N . We guess an initial value

for aN and solve this queue for its steady state probabilities and obtain a revised

estimate of aN = PN(nN = KN + 1). We iterate over values of aN until the estimate

of aN is consistent with λN . Using the solution for queue N , we analyze queue

N − 1. This process continues until we get a revised estimate of a1. If the error

between the current and previous estimate of a1 is greater than ε, we repeat the

solution process for queue N through queue 1, else we exit the loops. Note that for

the search for a1 we use a grid search while the search for all other ai follows a fixed

point iteration algorithm (Conte and de Boor (1980)). In the global loop we apply

a grid search over values of a1 as it allows us to solve for cases where the external

arrival rate greatly exceeds the achievable throughput of the network.
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3.4.3 Measuring Performance of a Relief Center

The two main RC performance measures are; the average time to service a victim and

the hourly throughput of the RC because minimizing suffering of victims requires

both reaching to all victims and reaching them as quickly as possible. Therefore,

maximizing both measures is the most preferred outcome, however there are deci-

sions that require trade-offs between these two measures. Moreover, the evaluation

of the throughput measure is dependent on the total population the RC needs to

serve. The throughput measure may be critical if the target population is large

and many victims face the risk of being denied service. Therefore a single objec-

tive function capturing these trade-offs is needed. There has been many disaster

response research on appropriate humanitarian objective functions such as minimiz-

ing waiting time, minimizing unsatisfied demand and ensuring equity. Among these,

the victim deprivation objective proposed by Holguin-Veras et al. (2013) is a good

candidate for evaluating relief centers because it quantifies the willingness to pay

for a critical relief supply in terms of the time for which the victim was deprived of

the item. The objective function takes into account: (1) the average waiting time

experienced by victims (W̄ ) and (2) the hourly rate at which the RC serves victims

(TH), and (3) if supply (or capacity) is less than demand, the number of victims the

RC was unable to serve. Equation 3.11 gives the objective function. The parameters

used are: P the effected population in need of items, ω per hour cost of a volunteer,

n the number of volunteers and τ the time period in hours.

The objective function is written as:

γ(W̄ , TH, ω, τ) = φ(W̄ , TH, τ) + ϕ(W̄ , TH, τ) + κ(ω, τ, n) (3.11)
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The components of the objective function φ(W̄ , TH), ϕ(W̄ , TH) and κ(ω, τ, n)

represent the deprivation function for victims (measured by waiting time (W )) that

receive service at the RC (charecterized by throughput (TH)), the deprivation func-

tion for victims that could not receive service at the RC and the labor cost function

respectively. The logistics cost for the RC is assumed to be the staffing cost alone

since we assume that the items to be distributed are already in the affected area

at the time of RC setup. The fucntions φ and ϕ have the exponential structure

following the willingness to pay function (WTP) reported in Holguin-Veras et al.

(2013), however in Section 3.5.6 we perform sensitivity analysis to understand the

effects of this particular parameter choice on RC decisions. Note that the objective

function uses the waiting time and throughput of the RC as input, which are the

outputs of the particular RC design and operation strategy and are obtained using

algorithm described in Section 3.4.

Deprivation function for victims that receive service at the RC:

φ(W̄ , TH, τ) =
[
exp(a+ (b ∗ W̄ ))− exp(a)

]
∗ TH ∗ τ (3.12)

Deprivation function for victims that do not receive service at the RC:

ϕ(W̄ , TH, τ) = [exp(a+ (b ∗ τ))− exp(a)] ∗ ((P − (TH ∗ τ))) (3.13)

Labor cost function at the RC:

κ(ω, τ, n) = ω ∗ n ∗ τ (3.14)



50

3.5 Case Study: Nepal Earthquake (2015)

In this section, we discuss the application of our model using the 2015 Nepal earth-

quake as a case study. The Nepal earthquake is a good case for analyzing relief

distribution because it resulted in the displacement of three million people, making

relief item distribution a top priority during the immediate response. Moreover,

due to inadequate infrastructure and limited number of volunteers and agencies, the

efficient distribution of relief was a significant challenge. Using Nepal data from Hu-

manitarian Data Exchange Database (2016), we estimate arrival and service rates

for relief centers and use our model to evaluate the RC designs given in Figures

3.1 and 3.2. In particular we quantify impact of congestion on RC performance,

analyze effects of the proposed crowd dissipation strategies and evaluate balancing

RC workload using the triage queue. We use the multi-criteria deprivation objective

function to evaluate the RC designs and operational strategies. Sections 3.5.2, 3.5.3

and 3.5.4 present numerical analysis that answer these research questions.

3.5.1 Parameter Estimation

To solve the queuing model and estimate RC performance measures, arrival rate to

the RC and service rate at the pods are required input parameters. We use data

from the Humanitarian Data Exchange Database (HDX), which is an open plat-

form for humanitarian data sharing (https://data.humdata.org/) to estimate these

key parameters. Details on the items distributed are obtained from (Meta Data

Source: https://data.hdx.rwlabs.org/dataset/scnepal-agency-data) and the demo-

graphics and casualty information is obtained from (Meta Data Source: https://data.

hdx.rwlabs.org/dataset/official-figures-for-casualties-and-damage). The distributed

supplies data set provides information on types of items distributed, the distribut-
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ing agency, number of households served and the dates the distribution took place.

The data set is prepared by the Global Shelter Cluster(GSC) which is a coordinat-

ing agency that brings together 35 global partners to coordinate and respond to

disasters and conflict situations. The GSC is co-chaired by the International Feder-

ation of Red Cross (IFRC) and the United Nations High Commissioner for Refugees

(UNHCR). The demographics and casualty data set provides population, number of

households, total number of deaths and injured victims per district. The data set is

provided by the Nepal United Nations Office for the Coordination of Humanitarian

Affairs (OCHA) with data contributions from the Nepal Ministry of Home Affairs

and the Nepali Police.

The data set on distributed supplies contains relief centers that were active for

7 months, distributing different types of items. Our study focuses on the items that

support the immediate needs of victims following an earthquake such as tarpaulins,

blankets, kitchen supplies (for water and food) and hygiene kits. Therefore we limit

the analysis time frame to the first 3 weeks. Note that the distribution of perishable

and repeat items such as water and food are not part of this analysis or data set.

Next we describe the process used to estimate the arrival and service rates from the

raw data. Note that as described in Section 3.4, these form crucial inputs to the

queuing model.

Arrival Rate Estimation: The arrival rate per relief center per day is estimated

for each district as the total survived population divided by the total relief center

days of active item distribution. To calculate the total survived population we use

the demographics information of each district and assume all earthquake survivors

needed critical relief supplies. This gives us the total demand rate. Estimating the
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Table 3.1: Nepal Data: Arrival Rate Estimation

District Arrival/RC day Arrival/RC hour
Bhaktapur 925 58
Dhading 465 29
Dolakha 461 29
Gorkha 168 10

Kathmandu 3,158 197
Lalitpur 643 40
Nuwakot 1,535 96

Ramechhap 368 23
Rasuwa 245 15

Sindhupalchok 138 9

arrival rate per hour per RC was challenging. To do so, we used the total RC days

parameter for each district, which refers to the total number of days an RC was

open, summed over all RCs. This parameter allows us to convert total demand to

an hourly arrival rate for an RC, by assuming that the distribution was carried out

for 16 hours each day.

While the demand per district is closely related to its population, the total RC

days varies between districts due to the accessibility of the district, and the differ-

ences in the number of agencies responding to needs in a district. Hence the arrival

rate to an RC vary between different districts. Table 3.1 provides the resulting

arrival rate per RC per hour data. In our analysis we first discuss insights with

respect to Bhaktapur since its arrival rate represents the average. Subsequently in

Section 3.12 we discuss insights for Nuwakot and Kathmandu to capture the effects

of increasing arrival rates.

Service Time Estimation: There are no standard times provided for disaster

relief item distribution. Therefore, we estimate the time it takes to distribute an
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Table 3.2: Items Required per Household

Item Conversion Parameter
Tarpaulin 1/Household
Blanket 2/Household

Kitchen Sets 1/Household
Sleeping Mat 5/Household

item of a particular type using the data set of distributed supplies. The data set

contains the number of households served in a given day for an agency, district, item

triplet. In our analysis, we distinguish item types but we do not distinguish districts

or agencies since the time to distribute a tarpaulin will be the same regardless of

location or agency. Finally, we estimate number of households served per day for a

given item type. The number of items required of each type of item per household is

different for different items. For example every household (made up of 5 people on

average) needs 1 tarpaulin while needing 2.5 blankets (2 per person). To calculate

the distribution time per item based on our estimate of number of households served

per day for a given item type, we need number of items (for a given item type) a

household needs. We obtain this information from Red Cross Nepal Emergency

Appeal Operation Update Reports as shown in Table 3.2. Then we calculate the

time it takes to distribute a specific item. Table 3.3 provides the average service

rates per item calculated over the 10 most effected districts.
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Table 3.3: Service Rates for Items Distributed

Item Average Distribution Rate

Tarpaulin 10.7/hr

Blanket 31.6/hr

Kitchen Sets 10.2/hr

Sleeping Mat 20.2/hr

3.5.2 Comparing RC Layout Designs

In the first set of experiments we compare layouts in Figure 3.1 (representing cur-

rent practice) and Figure 3.2 (representing alternative design) and two alternatives

to evaluate the separate impact of item assignment decisions and crowd dissipation

strategies. Layout alternative 1 is the queuing representation of current practice

adapted from FEMA guidelines, as previously given by Figures 3.1 and 3.3. Layout

alternative 4 leverages the multi-access points to the RC idea, however distributes

all items from all PODs as described in FEMA guidelines. Layout alternatives 1

and 4 are shown side by side in Figure 3.7. Both these layouts result in a 4 queue

network composed of the entry walkway to triage, the triage queue, entry walkway

to POD 1 and service queue for POD 1.

Layout alternatives 2 and 3 represent the queuing network representation of

the alternative design, where in alternative 2, POD 1 distributes tarpaulins and

blankets and POD 2 distributes kitchen sets and sleeping mats. Whereas in design

3, POD 1 distributes tarpaulins and kitchen sets while POD 2 distributes blankets

and sleeping mats. Layout alternatives 2 and 3 are shown side by side in Figure

3.8. Both these layouts result in a 7 queue network composed of the entry walkway
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to triage, the triage queue, entry walkway to POD 1, service queue for POD 1,

connecting walkway to POD 2, entry walkway to POD 2 and service queue for POD

2. Note that in all 4 designs, the total area of the RC and the walkway widths for

pedestrians are the same, as specified by FEMA documentation.

Figure 3.7: Queuing Network Representation of Layout Alternatives

Figure 3.8: Queuing Network Representation of Layout Alternatives

Comparing layouts 1 and 4, we aim to investigate the impact of dissipating the

crowd, on RC performance. In layout design 1, the entry walkway will be congested
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due to the single access point. In layout 4, we remedy this by creating multi-access

points in the layout. Next, we compare layouts 1 and 2. In layout 2, we assign a

subset of items to each POD, and dissipate the crowd entering the RC. By compar-

ing these two layouts, we aim to compare the combined impact of item assignment

and crowd dissipation. Assigning a subset of items to each POD, is expected to

decrease the distribution time. Note that in layout 2, victims will be going through

less congested queues and receive faster service at the PODs. However, they will

have to go through a higher number of queues (7 queues as opposed to 4). Through

numerical experiments, we aim to compare the impact between going through a

shorter network of queues, and going through a larger network with less congested,

faster queues. Finally, we compare layouts 2 and 3 to investigate the impact of

item assignment alone on RC performance. In layout 3, distributing tarpaulins and

kitchen sets together results in less victims arriving to this queue (see Table 3.2).

This results in lower blocking in the system, and therefore a higher throughput.

However, a higher throughput, increases the number of victims present in the RC at

once (hence increases the congestion), which in turn, creates higher victim waiting

times.

Table 3.4 provides the parameters for the numerical experiement. We use the

arrival rate of Bhaktapur (58/hour) as a representation of the average arrival rate.

Note that the overall arrival to the RC is the same for all designs. However, the

arrival rate to each queue may differ depending on the demand for items being dis-

tributed at a particular POD. To calculate arrival rate per POD, we use the data

provided in Table 3.2. We use the distribution rate per item as given in Table 3.3

and assume the rates are additive. Additivity is a reasonable assumption (if not nec-

essary) for items like tarpaulins and kitchen sets where handling takes considerable
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time. Note that for PODs at which not all arriving victims need all items, we use a

weighted average to calculate the service rate. For the walkway service rates we use

one of the empirical curves that charecterize the exponential relationship between

crowd density and walking speed given by Tregenza (1976). The exact exponential

decay function used in these experiments is given in Table 3.4. To compute the

suffering objective, we assume 16 hours of operation per day and for victims unable

to receive service at the RC, we assume a 24 hour daily deprivation. For the labor

cost we assume $10/hour per volunteer. Note that since the number of volunteers

in all layout designs are the same, the layout design evaluations are insensitive to

this assumption.

Table 3.4: Numerical Experiment 1 Parameters

Parameter Value

Arrival Rate λ = 58/hour (for Bhaktapur)

Service Rates µT = 10.7/hr, µB = 31.6/hr, µK = 10.2/hr, µS = 20.2/hr

Queue Capacity Ni = 50, ∀i

Walkway Service Rate µw(ki) = 60 ∗ exp((−c/d) ∗ (ki)
1/4),

b = 40/60, c = − log(b), d = (Ni)
1/4

Table 3.5: Numerical Experiment 1 Results

Layout Design W̄ TH φ(W̄ , TH) ϕ(W̄ , TH) κ(ω, τ, n) Total

Layout 1 6.63 hrs 27.14/hr $2,294 $25,744 $800 $28,838

Layout 2 2.79 hrs 33.64/hr $936 $18,424 $800 $20,160

Layout 3 3.59 hrs 46.86/hr $1,763 $3,536 $800 $6,099

Layout 4 6.39 hrs 27.14/hr $2,176 $25,744 $800 $28,720

Table 3.5 provides the results for the four different RC designs. In the table we
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report the average time experienced by a victim (W̄ ), the total hourly throughput

(TH) of the relief center, and the suffering objective. Note that in the Appendix we

validate our solution approach by comparing results obtained via the decomposition

algorithm with result from simulation.

Comparing the results for layouts 1 and 4, we observe that dissipating the crowd

by creating multiple access points, resulted in an improvement in victim waiting

times. Here it is important to note that, the waiting time estimate for layout 1 is

for victims going through POD 1 alone. Victims going through PODs 2,3 and 4 in

layout 1 will experience higher waiting times, especially under congestion. There-

fore, we conclude that when congestion is high, dissipating the crowd can have a

considerable impact on victim waiting times. Since the item assignment to PODs

is the same for layouts 1 and 4, the bottleneck service rate remains the same. And

that is why, the throughput for both layouts is equal. Next, we compare results

for layouts 1 and 2, and observe a significant improvement for both victim wait-

ing times and the RC throughput. This shows that changing item assignment to

PODs combined with crowd dissipation strategies (under the additive service time

assumption) can drastically improve RC performance. This is because in layout 2,

congestion in walkways is lower (crowd dissipation) and service time at the PODs

is lower (item assignment). Hence, all queues in the network can flow faster, result-

ing in increased throughput and decreased waiting times. Finally, we compare the

results for layouts 2 and 3. We observe that, item assignment can also impact both

the throughput and service time measures.

The results obtained in this experiment set lead us to several insights. First,

going through a larger number of queues can decrease the time victims spend in the



59

RC. This is a counter intuitive result, since waiting in more lines should result in an

increase in time spent waiting. However, our numerical experiments show that, if

creating more queues in the RC layout can be leveraged to decrease the congestion

and balance service times, larger networks can be preferred. Secondly, the deci-

sion of how to assign items to PODs can have a significant impact on performance.

Most often, having all items available at each POD is easier to setup. However, our

results show that it is important to think about whether this decision is creating

significantly higher service times at the PODs. This may not be the case for smaller

items or bundled items where the additive service time assumption does not hold.

However, quantifying the impact of assignment decision for cases where it will mat-

ter, can increase the awareness of practitioners making these decisions. Lastly, some

decisions can have an opposite impact on throughput and waiting time measures.

As an example, the throughput improvement in layout 3, comes at the expense of an

increase in waiting time. In such cases, having a performance measure such as the

suffering objective, that encompasses multiple criteria will be highly useful. Com-

paring the suffering function objective for layouts 2 and 3, we observe the cost of

layout 3 is much lower, even though it creates a higher waiting time for victims at

the RC. This is because, victims receiving their supplies waiting an additional hour

has less weight compared to 13 victims (every hour) not receiving items at all. This

showcases the need for humanitarian multi-criteria objective functions.

We would also like to note that in these experiments, we did not consider the

impact of number of available volunteers or available relief center area on RC design

decisions. If there are limited number of volunteers or if the area is limited which

limits the number of PODs the RC can operate, distributing all items from a single

point may be the only option. However, using models like the one proposed in



60

this paper, can estimate the impact these limitations will have on expected waiting

times, and when options present themselves, these models can help make more

efficient decisions.

3.5.3 Effect of Queue Capacity

The physical size of the RC and the walkways are given. However, the number of

victims allowed to queue inside the RC is a decision parameter. We investigate the

effectiveness of this decision called allowed physical queue capacity Ki, i = 1, 2, ..., N ,

as an alternative congestion control strategy. Since the actual queue capacity (for

walkways) is dependent on the size of the walkway, which we do not change for these

experiments, by varying Ki between 25 and 75 for all 4 layout designs, we impact

the congestion of queues in the RC. We keep the rest of the parameters constant as

given in Table 3.4. Figure 3.9 presents the resulting changes in RC throughput and

average service time while Table 3.6 reports the suffering objective results.

Figure 3.9: Increasing Queue Capacity Effects of the RC



61

Table 3.6: Numerical Experiment 2: Suffering Objective Results

Layout Design N = 25 N = 50 N = 75

Layout 1 $27,734 $28,838 $30,777

Layout 2 $19,713 $20,160 $20,676

Layout 3 $5,473 $6,099 $6,711

Layout 4 $27,436 $28,720 $30,670

We observe that, by limiting the number of victims allowed to wait at each queue,

we can control congestion and decrease waiting times for victims. The throughput

is unaffected due to being bounded by the service rate at the distribution PODs.

(Service rate for Tarpaulins is 10.7 per hour while the arrival rate to the RC is 58

victims per hour). Note that, the suffering function captures the cost of victims not

served by the RC for all cases. For a setting where the bottleneck is the walkways

instead of the distribution PODs, we would expect the throughput to improve as

well. An example of this strategy from practice is, after the Nepal Earthquake, Red

Cross relief distribution volunteers gated some of their relief centers and allowed

victims to enter the RC one by one. On the other hand there were many other

RCs which were flooded with victims. Through decision support models, this im-

pact could be quantified and can help humanitarian organizations make informed

decisions. By quantifying the effects of allowed capacity with these experiments,

we conclude that the best practice is to keep the walkway density between 0.5-0.7

victims/sqm (N = 25 for walkway sizes in this experiment).

The key insight to take away from this experiment is the fact that congestion has

a high impact on victim waiting times. And when possible, controlling the victim

flow within the RC can help manage high waiting times. However, it is important
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to note that, controlling the victim flow in practice will depend on how well the

RC can be monitored, the available staff to gate the RC and the particular RC

layout. Moreover, the extent at which crowding happens given a victim arrival rate,

will depend on the overall available RC area and walkway widths. However, given

these limitations, models that can quantify impact of decisions under many different

scenarios will be helpful. Next, we investigate how best to leverage the triage queue

to improve performance.

3.5.4 Effect of Triage

The triage queue is modeled in all designs and its primary function is to check identi-

fications and route victims to correct PODs. In our next experiment, we investigate

whether the triage queue can also be used to balance the queuing network and alle-

viate bottlenecks. To balance the work load in the relief center network, we look at

transferring a portion of the work performed at the PODs to the triage queue. In

this scenario, the triage queue will keep the victim routing function but might also

hand out a common item. We use RC layout design 2, and assume work transfer

from the bottleneck queue (K,S) to the triage queue, in increasing percentages.

We observe that work transfer whenever possible can be a very effective strategy

to both increase the throughput and decrease the average system time. However,

it is crucial to be aware of the risk of making triage the bottleneck in this process.

Deciding the amount of work to transfer (or initially assign to triage) is not trivial,

mainly because it is not only dependent on the rate of service, but also dependent

on the rates of arrival to each queue, and the particular RC design (area and length

of queues). Hence, models and fast solution algorithms such as those proposed in

Section 5.3, are valuable tools to relief agencies. Figure 3.10 presents the changes
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in throughput and average system time as a result of percentage work transfer from

service queue distributing kitchen supplies and sleeping mats to the triage queue.

The results of the experiments reveal an interesting queuing behavior. We observe

that the effects of moving work to triage queue can be characterized in 3 zones. Zone

1 (in this experiment until 25%) increases throughput while decreasing system time.

This is due to the common impact of bottleneck service rate increase and decreased

blocking. As the transferred work amount increases in Zone 2, the throughput

decreases. This decrease in throughput, decreases system congestion, resulting in

lower waiting times. Finally in Zone 3, the triage becomes a major bottleneck,

hurting both throughput and system time measures. Such threshold behavior is

useful to know when making decisions on site to improve RC performance.

Figure 3.10: Work Transfer to Triage Queue: RC Performance Results

The main limitation for moving work to the triage queue is that, the optimal

work distribution might not always be feasible. As an example, moving 20% of

tarpaulin distribution time, to the triage queue is not an option. However, dis-

tributing water in addition to checking IDs can be practical, can eliminate the need

for an additional queue and can speed distribution.
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Figure 3.11 provides the suffering objective results for this experiment. Due to

the limited available capacity to serve the affected crowd, the current objective puts

more emphasis on higher throughput. Therefore, the decrease in throughput in zone

2 is penalized, even with the decrease in waiting time. Appendix 3 in Section 3.5.6

provides a sensitivity analysis on willingness to pay function parameters used in

the suffering level calculations, and concludes that the results obtained are not very

sensitive to these parameters.

Figure 3.11: Numerical Experiment 3: Suffering Objective Results

3.5.5 Performance Under Increasing Arrival Rates

In previous experiments we used the arrival rate observed at Bhaktapur. However

there were districts observing much higher arrival rates due to higher earthquake

damage and less available resources. In this section we run experiments for Nuwakot

and Kathmandu to understand how the RC performance results would change under

heavier arrival rates. Figure 3.12 shows the system time results for Nuwakot and

Kathmandu for all 4 layout designs shown in Figure 3.7.
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Figure 3.12: Average System Time: Increasing Rates of Arrival

We observe that the throughput remains the same with increased arrivals due

to the limit on capacity (note that the service PODs are the bottleneck). Due to

finite capacity queues, arrivals beyond capacity are lost, keeping the throughput

measure steady. Figure 3.12 shows the average system time change for increasing

arrival rates. Increasing rates of arrival, increases the congestion causing the system

to be slower, resulting in a much lower performance. Strategies involving allowed

queue capacity and using more efficient layouts leveraging crowd dissipation becomes

increasingly important for cases such as Kathmandu and Nuwakot.

3.5.6 Impact of Deprivation Function Parameters

In the deprivation objective function, we use a willingness to pay (WTP) function

to express waiting (deprivation) time (both for served and not served victims) in

monetary terms so that system time, throughput and logistics cost can be expressed

with a single measure (dollar value). However, it is important to note that, the

resulting measure is dependent on the form of the particular function used for will-

ingness to pay. The function we used for our numerical experiments are based on the

willingness to pay function for water defined in Holguin-Veras et al. (2013). Given

that the relief items in our data set are tarpaulins and kitchen sets, which are less
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sensitive to deprivation we ran experiments to investigate how the objective function

results change for a WTP function that is less steep. For the new willingness to

pay function we decreased parameter (b) to obtain a less steep exponential curve.

Figure 3.13 graphs both functions g1 and g2, where g1 represents the function from

Holguin-Veras et al. (2013) and function g2 represents a more gradual incline.

Figure 3.13: Willingness to Pay Functions

Our numerical studies show that, the only differences we observed happened

for the triage experiments. Table 3.7 compares the objective function values for

triage experiments for both willingness to pay functions. The steepness of the func-

tion used effects the trade off between throughput and average system time. This

phenomenon changes the ranking of 5% and 35% work removal to triage scenarios.

Under the second exponential function (g2) the decrease in system time out weighs

the loss in throughput.

We conclude that the decisions are not very sensitive to the parameters of the

WTP function. What is more important is to use an objective function that takes

into account both victim deprivation and labor costs. Moreover the multi-criteria
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used by the deprivation objective allows for easier decision making for relief agencies.

If future empirical research provides item specific WTP parameters, we expect that

these improved estimates will only provide more robust decisions.

Table 3.7: Sensitivity Analysis: Deprivation Objective

Work Transfer to Triage Function g1 Function g2

Objective Value Ranking Objective Value Ranking

0% $20,163.9 8 $ 1,664.3 8

5% $ 18,187.4 6 $ 1,585.9 7

10% $ 15,986.0 5 $ 1,501.7 5

15% $ 13,571.9 3 $1,407.2 3

20% $11,783.2 2 $1,311.2 2

25% $9,764.7 1 $ 1,261.8 1

30% $ 14,715.1 4 $1,422.1 4

35% $ 19,033.5 7 $1,578.7 6

40% $ 22,601.7 9 $1,710.0 9

45% $ 25,796.0 10 $1,872.2 10

50% $28,550.3 11 $2,002.1 11

55% $30,711.8 12 $2,085.2 12

60% $ 32,575.0 13 $2,159.4 13

3.6 Conclusions

In this Chapter, we present a modeling and solution approach for relief centers

that distribute aid to victims at the disaster site. We model the relief distribution

operations through a relief center using a finite capacity queuing network, which

explicitly models effects of crowding via state dependent service rates. To solve this

queuing network, we derive new analytic formulas for steady state probabilities of
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state dependent Coxian queues, and estimate the throughput of the RC and the

waiting time of victims. We use this solution methodology and Nepal earthquake

data, to numerically investigate four layout designs. Using these layout designs we

analyze critical decision variables that can impact RC performance including; item

assignment decisions to points of distribution in the RC, the effects of crowding on

RC performance, the impact of physical RC capacity, and the impact of alternative

uses for the triage queue. We emphasize that, the methodology of this Chapter is

not specific to the layouts discussed here, and it can be used to evaluate the perfor-

mance of any relief center design.

Our findings from the analysis conducted has significant practical impacts. Firstly,

we find that, given a certain level of resource availability (available area, number of

volunteers, number of PODs), how the relief center is setup can have a significant

impact on performance. Our conversations with practitioners regarding the current

practice suggests that, there is a lack of awareness with respect to the impact cer-

tain decisions can have of relief distribution performance. We believe studies like

this one, that quantify trade-offs and effects of design decisions can impact the way

practitioners think about RC setup and operations.

We suggest that practitioners think about ways to dissipate the crowd within

the RC area. We find that, even when crowd dissipating designs create more queues

for victims to go through, the decrease in congestion can actually shorten the vic-

tim waiting times despite the longer route. We also suggest to be mindful of the

types of items an RC will be distributing and adjusting the design of the RC ac-

cordingly. When an RC is distributing large items such as tarpaulins, one-stop-shop

approaches can be more harmful than helpful for performance. We also suggest to
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limit physical RC capacity. This can be counter intuitive when lots of victims are

waiting to access the relief center. However, due to increasing congestion, allowing

as many victims as possible to enter the RC at once will increase the waiting time of

victims, not decrease it. Finally, we suggest practitioners to look for ways to balance

the workload between the PODs in the RC. We performed numerical experiments

using the triage queue to balance the workload, however this is not the only way.

The findings apply to balancing the service time between PODs as well.

We believe that the findings of this work will: (1) create awareness for the impact

design decisions have on relief distribution performance among practitioners, (2)

highlight the need for models that can quantify impact of RC design decisions and

(3) highlight some of the essential trade-offs (such as impact of crowd dissipation,

impact of item assignment, impact of allowed RC capacity) in RC design. This

study also contributes to the body of work that can increase the efficiency of relief

distribution during disaster response and relieve some of the suffering caused by

disasters.
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3.7 Appendix: Validation of the Model

We provide simulation results for the experiments to validate our mathematical

model and solution approach in Table 3.8. We use Arena R© simulation (version

15.0) of the queuing model for various cases where each run was for 100, 16 hour

days and the results show the average of 10 replications. The error for throughput

on average was between 0-2% and the errors for system time was on average 1-10%.

Table 3.8: Accuracy of Algorithm

Layout Design Model Results Simulation Results

W̄ TH W̄ TH

Layout 1 6.63 hrs 27.14/hr 6.90 hrs 26.74/hr

Layout 2 2.79 hrs 33.64/hr 3.70 hrs 46.54/hr

Layout 3 3.59 hrs 46.86/hr 3.07 hrs 33.29/hr

Layout 4 6.39 hrs 27.14/hr 6.46 hrs 26.8/hr
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Chapter 4

G-network Models for Disaster

Relief Distribution

4.1 Introduction

In a disaster affected region, multiple relief centers (RCs) are setup, by a variety of

relief agencies, to distribute a variety of supplies. The goal of the relief distribution

efforts is to minimize the deprivation experienced by the disaster victims. To do

so, the distribution activities should be efficient. In order to be efficient, the exe-

cution of response activities need to be agile and adapt to the inherent variability

of the disaster aftermath conditions. Operations research models can help identify

opportunities for improvement in efficiency of response activities, as well as provide

decision support to enable efficient response to changing needs. In this Chapter

we model the relief distribution operations as a generalized queuing network (G-

network). The contributions of this research are twofold. First, it contributes to the

disaster response literature by providing a flexible, evaluative model to investigate

relief distribution efficiency. The G-network framework provides a flexible struc-
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ture to model multiple RCs, changes in demand for items, victim needs, and victim

movement within the network. Changes in demand for items is a frequent occur-

rence because the number of victims that need a particular item (ex: blankets) can

increase due to changing conditions (ex:weather). Changes in victim needs refers

to the change in the types of items a particular victim needs. This often happens

because victims waiting in line at an RC collect items as a family, or they may

obtain items via trading with other victims. Changes in victim movement, refer

to victims jockeying between queues based on their perception of shorter queues or

more availability of supplies at another RC.

The second main contribution of this research is that it contributes to the queu-

ing literature by proving a new product form result for G-networks and proposing

an efficient product form approximation for G-networks based on this result. In

addition to providing a flexible framework, G-networks also have attractive solution

efficiencies. In particular, the existence of product form solutions is of interest, as it

can enable rapid performance evaluation. This becomes especially useful for large

relief distribution networks where alternative methods like solving a Markov chain

or a simulation model become computationally challenging. However, in the liter-

ature, there is no study that investigates product form result for G-networks with

batch departures and batch transfers. In this chapter, we show that product form

for such networks exist under certain conditions and approximations can be used

for cases where such conditions are not met.

The rest of this chapter is organized as follows. Section 4.2 provides a literature

review of G-networks, Section 5.2 describes the G-network model of relief centers.

Section 4.4 investigates the product form results while Section 4.5 proposes product
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form approximations for cases where exact results fail to hold. Section 5.4 discusses

numerical experiments that demonstrate the use of the proposed model.

4.2 G-network Literature Review and Gaps

The G-network framework can be a very useful way of modeling the queuing be-

havior during relief distribution due to the flexibility it provides in modeling and

the ease of performance estimation using product form results. G-networks differ

from other queuing networks such as BCMP and Jackson networks (Jackson (1963)

and Baskett et al. (1975)), as it allows for negative and/or signal entity arrivals. In

a G-network, the signal entities are assumed to arrive to the system according to

a Poisson process in addition to the regular customers. An arriving signal can (a)

remove work from a queue or (b) transfer work between queues in the network. We

use routing parameters and signals of the G-network to model the dynamic changes

in victim movement between RCs (due to changes in demand and in individual

needs) and interventions by the relief agencies that aim at improving performance.

The articles Bocharov and Vishnevskii (2003) and Artalejo (2000) provide de-

tailed surveys on G-network models. Gelenbe et al. (1991) and Gelenbe (1991) in-

troduced the first product form results for G-networks, followed by Gelenbe (1993b)

analyzing G-networks with signals. The G-network theory has later been extended

to cover multi-class arrivals (Gelenbe and Labed, 1998), generally distributed ser-

vice times (Harrison and Pitel, 1996), state dependent service times (Bocharov et al.,

2004a,b) and tandem queues with blocking (Gomez-Corral, 2002). In this paper, the

G-network model of relief centers allows single or batch transfer of victims between

queues in the network triggered by a signal arrival. The literature has shown exis-
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tence of product form results for networks where signals only cause batch removal of

customers from the network (Gelenbe (1993a)), networks with batch service (Chao

and Pinedo (1995)) and networks with batch arrival and batch service (Miyazawa

and Taylor (1997)). To our knowledge there is no prior work investigating existence

of product form solution for a generalized queuing network with signals causing

batch transfers of customers between queues in the network. This chapter attempts

to fill this gap.

4.3 The G-network Model of Relief Distribution

At a disaster affected region, multiple agencies distribute aid by setting up one or

more relief centers (RCs), each distributing a set of supplies. In this paper we model

each RC as a single server queue and the network of RCs as a G-network.

Figure 4.1: The G-network Representation of Relief Distribution Efforts

The G-network has 2 types of entities (victims and signals). We assume that

victims and signals arrive to any queue i, i = 1, 2, ..., N in the network from out-

side according to a Poisson process with parameter λ+
0i and λ−0i respectively. While

the arrival of a victim increases the queue length by one, the arrival of a signal

simply triggers movement and hence does not add to queue length. An arriving
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victim queues to eventually receive service at an RC. We assume that this service

time is characterized by an exponential distribution with parameter µi. Upon ser-

vice completion, victims can either depart the network (with probability d(i)), or

move to another queue j, j 6= i for additional needs (with probability p+(i, j)), where

d(i) = 1−
∑N

j=1 p
+(i, j). An arriving signal to queue i can either trigger a movement

of a batch of victims from queue i to another queue j or force a batch of victims to

depart the system altogether, with probabilities q(i, j) and D(i) respectively where

D(i) = 1 −
∑N

s=1(q(i, j)). Note that for the relief distribution network modeling,

we assume
∑N

s=1(q(i, j)) = 1 or equivalently D(i) = 0,∀i. This is based on the

assumption that no victim will leave the system without receiving any supplies or

be denied service. The batch size of victims impacted by a signal is random and

drawn from a probability distribution defined by P{Bi = s} = πis, s = 0, 1, 2, ...,∞.

We assume that a signal arriving to a queue that has less victims than the batch size

Bi will have no effect on queue i. We will refer to this assumption as the full batch

transfer assumption. Figure 4.1 summarizes the probabilistic routing for victims

and the effect of signals.

Figure 4.2: Service Completion Routing and Signal Routing Probabilities
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The described framework can be used to model a variety of scenarios that oc-

cur in relief distribution including; (i) increase in demand for a particular item, (ii)

change in the need of individual victims, (iii) victim jockeying between RCs. We

use the setting in Figure 4.2 to explain each scenario in detail.

(i) Increase in Demand: Assume items {Blanket,Water} are being distributed

at RC i and items {Tarpaulin,KitchenSets} are being distributed at RC j. Changes

in the area conditions, such as an earthquake aftershock damaging more buildings

and increasing the likelihood for more victims needing tarpaulins, can be modeled

by an increase in the p+(1, 2) probability.

(ii) Changes in Individual Victim Needs: Often victims queue at an RC to

collect items for their families. As family needs change or as different family mem-

bers collect or trade items, the needs of a victim in queue can vary with time. For

instance, a victim waiting at RC i to collect blankets and water, might quit RC i

and moves to queue at RC j to collect a kitchen set instead. This behavior can be

modeled by external signal arrivals moving victims to another RC.

(iii) Victim Jockeying: Jockeying happens when a victim waiting in queue at

one RC, moves to another RC to collect the same item, expecting a shorter waiting

time. This often happens due to the perception of shorter queues, better supply

availability, or lower congestion at an another RC. This perception does not always

coincide with reality, but it can create significant victim movement. This behavior

can be modeled using signals, that cause victims to move between RCs prior to

service.
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The ability to include such behaviors in models of relief distribution is important

to provide realistic estimates of RC performance. However, G-networks with signals

that cause batch transfer of victims are not guaranteed to have product form results.

In Section 4.4 we show product form result for G-networks with full batch transfer of

victims. Then in Section 4.5 we relax the full batch assumption and investigate the

accuracy of product form approximation for cases where transfer of partial batches

are allowed. Finally in Section 5.4 we conduct numerical experiments to model

scenarios (i), (ii) and (iii) described above. We investigate the effects of changes in

demand, changes in victim needs, and victim jockeying on RC performance. The

numerical experiments demonstrate the importance of modeling the dynamic aspects

of the disaster environment and provide high level insights for practice.

4.4 Product Form Result for G-Networks with

Full Batch Transfer

In this section, we derive product form results for a G-network with signals that

trigger a full batch transfer. Consider the G-network shown in Figure 4.1, with N

RCs, each modeled as an individual queue in the network.

Based on the assumptions (arrival of victims, signals and the service process),

the time evolution of this G-network can be characterized as a time-homogeneous

Continuous Time Markov Chain. We represent the state of the system by {k(t) : t ≥

0} where k(t) = (k1(t), ..., kN(t)) ∈ S, where each ki(t), i = 1, 2, ..., N represents the

number of victims at queue i, at time t and S represents the state space. Based on

the vector k(t), we define the vectors k+
i (t), k−i (t),k+−

i,j (t), k
++Bj
i,j (t) and k

++Bj−Bj
i,j,m (t)

as follows:
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k+
i (t) = (k1(t), . . . , ki(t) + 1, . . . , kn(t))

k−i (t) = (k1(t), . . . , ki(t)− 1, . . . , kn(t))

k+−
i,j (t) = (k1(t), . . . , ki(t) + 1, . . . , kj(t)− 1, . . . , kn(t))

k
++Bj
i,j (t) = (k1(t), . . . , ki(t) + 1, . . . , kj(t) +Bj, . . . , kn(t)), Bj ≥ 1

k
++Bj−Bj
i,j,m (t) = (k1(t), . . . , ki(t) + 1, . . . , kj(t) +Bj, . . . , km(t)−Bj, . . .), Bj ≥ 1

(4.1)

To determine the steady state probabilities of this Markov chain, we first define

the effective rate of victim arrivals λ+
i and the effective rate of signal arrivals λ−i

to each queue i. Let qi be the utilization of queue i, then Equation 4.2 provides a

function for qi.

qi =
λ+
i

µi + λ−i
∞∑
s=1

πissq
s−1
i

(4.2)

Equations 4.3 and 4.4 provide the associated non-linear equations that define

the effective rate of arrivals for victims and signals to each queue i, i = 1, ..., N .

Effective signal arrival rate is equal to the external arrival rate, while the effective

victim arrivals to queue i is the sum of external arrivals and batch transfers from

other queues j to queue i.
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λ+
i = λ+

0i +
∑
j

µjqjp
+(j, i)

+
∑
j

λ−0jq(j, i)
∞∑
s=1

πissq
s
j

= λ+
0i +

∑
j

µjqjp
+(j, i) +

∑
j

λ−j q(j, i)
∞∑
s=1

πissq
s
j (4.3)

λ−i = λ−0i (4.4)

The Chapman-Kolmogorov equations for state k is given by Equation 5. The left

hand side represents the rate out from the state k and the right hand side represents

the rate in to state k from all other possible states. The indicator functions, 1[X] = 1

if X is true and 0 otherwise, characterize the balance equations for different subsets

of the state space.

p(k)
∑
i

[
λ+

0i + λ−0i1[ki≥s] + µi1[ki>0]

]
=

∑
i

p(k+
i )µid(i) (4.5)

+
∑
i

p(k−i )λ+
0i1[ki>0]

+
∑
i

λ−0iD(i)
∞∑
s=1

πisp(k
+s
i )

+
∑
i

∑
j

[
p(k+−

ij )µip
+(i, j)1[kj>0]

]
+

∑
i

∑
j

∞∑
s=1

πis
[
p(k+s−s

ij )λ−0iq(i, j)1[kj≥s]
]

We next present an important product form result for this Markov chain.
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Theorem 1. For a G-network with victims and signals that cause a full batch of

victims, the steady state distribution p(k) can be represented as the product of the

marginal probabilities, i.e. p(k) =
N∏
i=1

p(ki) where p(ki) = (1 − qi)(q
ki
i ), ki ≥ 0 if

qi = qj < 1, for distinct pairs (i, j).

Proof. We show this result under the assumption that P{Bi = s} = πis and∑
j

q(i, j) = 1,∀ (i, j), i 6= j. To prove the product form result holds, we show

that the solution to Equation 5 can be expressed as the product of marginal prob-

abilities. Next, we partition the state space S, into 3 subsets S1, S2, S3 (see Figure

4.3).

1. S1 = {k1(t), ..., ki(t), ..., kN(t)} : ki(t) ≥ s ∀i, i = 1, 2, ..., N

2. S2 = {k1(t), ..., ki(t), ..., kj(t), ..., kN(t)} : ki(t) < s, for at least one i and

ki(t) 6= 0 ∀i i, j ∈ {1, 2, .., N}

3. S3 = {k1(t), ..., ki(t), ..., kj(t), ..., kN(t)} : ki(t) = 0, for at least one i,

i ∈ {1, 2, .., N}
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Figure 4.3: Subsets of the State Space

Then, using proof by substitution, we show that the product form result holds

for each subset and for each state k in each subset of the state space. We provide

the detailed steps of the proof for S1 below. The details of the proof for states in

S2 and S3 are given in the Appendix.

Proof for state k ∈ S1: We prove the product form result by substitution and using

the definitions of qi, λ
+
i and λ−i . The balance equations in Equation 5 take the form

given in Equation 4.6 for the states in S1.
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p(k)
∑
i

[
λ+

0i + λ−0i + µi
]

=
∑
i

p(k+
i )µid(i)

+
∑
i

p(k−i )λ+
0i

+
∑
i

λ−0iD(i)
∞∑
s=1

πisp(k
+s
i )

+
∑
i

∑
j

[
p(k+−

ij )µip
+(i, j)

]
+

∑
i

∑
j

∞∑
s=1

πisp(k
+s−s
ij )λ−0iq(i, j) (4.6)

Assuming the product form result holds for all states in S1, these balance equa-

tions reduce to Equation 4.7 below.

∑
i

[
λ+

0i + λ−0i + µi
]

=
∑
i

µiqid(i)

+
∑
i

λ+
0i

qi

+
∑
i

λ−0iD(i)
∞∑
s=1

πisq
s
i

+
∑
i

∑
j

µiqip
+(i, j)

qj

+
∑
i

∑
j

λ−0iq(i, j)
∞∑
s=1

πis
qsi
qsj

(4.7)

∑
i

λ+
0i

qi
+
∑
i

∑
j

µjqjp
+(j, i)

qi
=
∑
i

λ+
i

qi
−
∑
i

∑
j

∞∑
s=1

πjs
λ−j q(j, i)sq

s
j

qi
(4.8)
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We simplify the balance equations (Equation 4.7) by substituting Equation 4.8

obtained from Equation 4.3. Then we use Equation 4.8 and the definition of λ−i

given by Equation 4.4 to obtain Equation 4.9.

∑
i

[
λ+

0i + λ−0i + µi
]

=
∑
i

µiqid(i)

+
∑
i

λ−i D(i)
∞∑
s=1

πisq
s
i

+
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πis
qsi
qsj

−
∑
i

∑
j

∞∑
s=1

πjs
λ−j q(j, i)sq

s
j

qi

+
∑
i

λ+
i

qi
(4.9)

Next we insert definitions for λ+
i and λ−i (Equations 4.3 and 4.4) into the left

hand side (LHS) terms and D(i) and d(i) on the right hand side (RHS), to obtain

Equation 4.10.
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∑
i

λ+
i −

∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πissq
s
i +

∑
i

µi +
∑
i

λ−i =
∑
i

µiqi

+
∑
i

λ−i

∞∑
s=1

πisq
s
i

−
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πisq
s
i

+
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πis
qsi
qsj

−
∑
i

∑
j

λ−j q(j, i)
∞∑
s=1

πjssq
s
j

qi

+
∑
i

λ+
i

qi
(4.10)

Next, we use the definition of qi (from Equation 4.2) to rewrite λ+
i on both the

LHS and the RHS. We also interchange i and j in the 5th term, using the fact that

both i and j are in the set {1, 2, ..., N}. Then the balance equation (Equation 4.10)

can be written as Equation 4.11.

0 =
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πis
qsi
qsj

+
∑
i

λ−i

∞∑
s=1

πissq
s−1
i

−
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πis
sqsi
qj

+
∑
i

λ−i

∞∑
s=1

πisq
s
i

−
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πisq
s
i +

∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πissq
s
i

−
∑
i

λ−i

∞∑
s=1

πissq
s
i −

∑
i

λ−i (4.11)

Combining common terms we get Equation 4.12 and further simplify to get
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Equation 4.13.

0 =
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πis

[
qsi
qsj
− sqsi

qj
− qsi + sqsi

]

+
∑
i

λ−i

∞∑
s=1

πis
[
sqs−1
i + qsi − sqsi − 1

]
(4.12)

0 =
∑
i

λ−i

∞∑
s=1

πis
[
sqs−1
i − sqs−1

i + qsi − qsi − sqsi + sqsi − 1 + 1
]

(4.13)

It can be seen that the equation holds for balance networks where qi = qj, ∀(i, j) ∈

N given that
∑
j

q(i, j) = 1. This completes the proof for state subset S1. For sub-

sets S2 and S3 the proof starts by writing the balance equations for a state in the set

and using a similar process. The details of the proof are provided in the Appendix.

4.5 Product Form Approximations for Unbalanced

Networks and Partial Batch Transfer

Theorem 1 states that the steady state probabilities of a G-network can be expressed

in product form under assumptions of full batch transfer and balanced utilizations.

However in many practical cases, the utilization of queues in the network need not

be balanced, and partial batch transfers may occur.

However, the product form result fails to hold for unbalanced networks and
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when the full batch assumption is relaxed. However, our observations indicate that

the product of the marginal probabilities can provide a good approximation for

the steady state probabilities of these queuing networks. Table 4.1 summarizes the

product form results for G-networks with signals and batch transfer. We numerically

analyze the accuracy of the product form approximation for unbalanced networks

(qi 6= qj) both under the full batch assumption and when its relaxed. We investigate

how the accuracy of the approximation changes when the difference of utilization

between the queues increases.

Table 4.1: Product Form Results Summary

Balanced: qi = qj , i 6= j Unbalanced: qi 6= qj , i 6= j

Full Batch Product form holds Product form does not hold

Partial Batch Product form does not hold Product form does not hold

4.5.1 Product Form Approximation: Full Batch Transfer in

Unbalanced Networks

We numerically investigate the accuracy of the product form result for unbal-

anced networks where the utilization of queues in the network are not equal. Let

p(k) represent the actual steady state probability vector of the unbalanced G-

network with full batch transfer of victims and let p̂(k) represent the estimated

steady state probability vector calculated using the product of marginal probabil-

ities p̂(k) =
N∏
i=1

p̂(ki) where p̂(ki) = (1 − qi)(q
ki
i ), ki ≥ 0 and qi < 1, ∀i, where

i = 1, 2, ..., N .

Once we obtain p(k) and p̂(k) we compute the throughput (TH) and waiting
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time (W ) performance measures using Equation 4.16. We compare these perfor-

mance measures obtained via the product form approximation ( ˆTHi, Ŵi) and by

solving the Markov chain directly (THi,Wi) to assess accuracy of the approxima-

tion. We compute both the absolute and percentage errors as defined by Equations

4.17 and 4.18 respectively.

THi = µiqi,∀i = 1, .., N (4.14)

Li =
∑
n∈S

Pi(ki)ki (4.15)

W̄i = Li/THi (4.16)

Ea,i(TH) = |THi − ˆTHi|, i = 1, 2, .., N

Ea,i(W ) = |Wi − Ŵi|, i = 1, 2, .., N (4.17)

Ep,i(TH) =
|THi − ˆTHi|

THi

, i = 1, 2, .., N

Ep,i(W ) =
|Wi − Ŵi|

Wi

, i = 1, 2, .., N (4.18)

To investigate the accuracy of the approximation for unbalanced networks with

full batch transfers, we analyze a two queue network where each queue has one volun-

teer distributing supplies at the rate of 32 items per hour. We vary the overall arrival

rate as λ = 53, 50, 47, 44 victims per hour and use the parameter β = 0.60, 0.56 to
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divide the arrivals between the two queues in the network. This way we can vary the

utilization difference between the two queues. The experiment sets obtained by λ, β

combinations are summarized in Table 4.2. In each experiment set, we introduce

signal arrivals to queue 1 and vary the signal arrival rate and the batch size the signal

affects as (λ−1 , B1) = (1, 2), (1, 4), (1, 6), (1, 8), (2, 1), (4, 1), (6, 1), (8, 1), (2, 2)

(2, 3), (3, 2). In total we analyze 88 experiments and report on the errors observed.

Table 4.2: Full Batch Transfer in Unbalanced Networks

β = 0.60 β = 0.56

λ = 53/hr Experiment Set 1 Experiment Set 2

(ρ1, ρ2) = (0.99, 0.66) (ρ1, ρ2) = (0.93, 0.73)

λ = 50/hr Experiment Set 3 Experiment Set 4

(ρ1, ρ2) = (0.94, 0.63) (ρ1, ρ2) = (0.88, 0.69)

λ = 47/hr Experiment Set 5 Experiment Set 6

(ρ1, ρ2) = (0.88, 0.59) (ρ1, ρ2) = (0.82, 0.65)

λ = 44/hr Experiment Set 7 Experiment Set 8

(ρ1, ρ2) = (0.83, 0.55) (ρ1, ρ2) = (0.77, 0.61)

The errors from the 8 experiment sets are reported in Table 4.3, where through-

put (THi) is reported as victims per hour and the waiting time (Wi) is reported as

hours.
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Note that, we report the minimum and maximum errors measured, both in ab-

solute and percentage terms as defined by Equations 4.17 and 4.18. From these

results, we observe that the percentage errors are between 0 and 20%, while the ab-

solute errors are small throughout all experiments. We also observe that the errors

increase as the batch size increases for a given signal arrival rate and as the signal

arrival rate increases, for a given batch size. Finally, we observe that as utilization

of queues get closer the errors decrease. Over all, we conclude that for instances

where solution speed has priority over high accuracy, the product form approxima-

tion for unbalanced networks can perform well. We provide the detailed results of

all 8 experiment sets in the Appendix.

4.5.2 Product Form Approximation: Partial Batch Transfer

in Unbalanced Networks

In this section, in addition to unequal utilization, we also relax the full batch transfer

assumption and numerically investigate the errors for performance measures. The

experiment parameters remain the same as given in Table 4.2. The errors from the

8 experiment sets are reported in Table 4.4.

From these results, we observe that the percentage errors are between 0 and

28%, while the absolute errors are small throughout all experiments. We observe

that the error percentages are higher for the partial batch transfer case. However,

the behavior of the errors (increase with higher batch size, increase with higher

signal rate, decrease for closer utilization levels) remain the same. We provide the

detailed results of all 8 experiment sets in Appendix 2.
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We conclude that the product form result can be used as an approximation

method to calculate performance measures of G-networks with batch transfers and

departures. Next, we apply the G-network model using the product form approxi-

mation, to model scenarios (i) demand increase, (ii) changes in individual needs and

(iii) jockeying in Section 5.4.

4.6 Performance Evaluation Using a Case Study

In this section we use the G-network formulation to evaluate the relief distribution

efforts that took place during the 2015 Nepal earthquake. We first introduce the case

and discuss the data analysis efforts to estimate arrival and service rate parameters

at relief centers in Nepal. We summarize the parameter settings in Section 4.6.2.

Next, we analyze scenarios where the demand for items increase (see Section 4.6.3),

individual victim needs change (see Section 4.6.4), and victims jockey (see Section

4.6.5. Finally, in Section 4.6.6 we analyze a scenario where item assignment to RCs

change.

4.6.1 Disaster Scenario Based on 2015 Nepal Earthquake

During the aftermath of the Nepal earthquake relief efforts had to support three

million displaced people, making relief item distribution a top priority during the

immediate response. The data we analyzed included all relief efforts. However, for

the purposes of this chapter, we focus on the Thumi, a small district of the Gorkha

municipality.

The arrival rate of victims to the RCs and service rate distribution of items are re-

quired input parameters to the G-network. To estimate the service rates, we use data
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from the Humanitarian Data Exchange Database (HDX:https://data.humdata.org/).

We use the distributed supplies data set (Meta Data Source: https://data.hdx.rwl

abs.org/dataset/scnepal-agency-data) to extract data on types of items distributed,

the distributing agency, number of households served and the dates the distribution

took place. The data set is prepared by the Global Shelter Cluster (GSC) which

is a coordinating agency that brings together 35 global partners to coordinate and

respond to disasters and conflict situations. The GSC is co-chaired by the Interna-

tional Federation of Red Cross (IFRC) and the United Nations High Commissioner

for Refugees (UNHCR).

Service Time Estimation: We estimate the time it takes to distribute an item of

a particular type using the data set of distributed supplies. The data set contains

the number of households served in a given day for an agency, district, item triplet.

From this data, we estimate number of households served per day for a given item

type. To calculate the distribution time per item, in addition to our estimate of

number of households served per day for a given item type, we use data on the

number of items (for a given item type) needed by a household, for example 2.5

blankets per household. Using this additional data, we calculate the time it takes

to distribute a specific item. We use calculated maximum, minimum and average

values obtained by analyzing 10 most affected districts in Nepal. Table 4.5 shows

the obtained service rate estimates. In our numerical experiments we use the max-

imum service rates observed, since the distribution rates can be skewed down due

to supply availability in regions.



94

Table 4.5: Service Rate per Item

Item Minimum Average Maximum

Blanket 14.8/hr 31.6/hr 59.5/hr

Tarpaulin 4.9/hr 10.7/hr 19.1/hr

Cash Voucher 1/hr 29/hr 64.3/hr

Arrival Rate Estimation: To estimate the arrival rates of victims in need of var-

ious supplies, we use the demographics and casualty data set (Meta Data Source:

https://data.hdx.rwlabs.org) which provides population, number of households, to-

tal number of deaths and injured victims per district data. This data is provided

by the United Nations Office for the Coordination of Humanitarian Affairs (OCHA)

in Nepal with data contributions from the Nepal Ministry of Home Affairs and the

Nepali Police. To determine the population in need of supplies from the general

population we also use the affected districts and displaced population data provided

by the Center for Disaster Management and Risk Reduction Technology (CEDIM

Forensic Disaster Analysis Group and South Asia Institute (SAI) (2015)).

From these data sets we know that Thumi has a population of 4500 people,

making up 900 households, most of which were badly damaged or destroyed. We

focus our analysis to the 5 days immediately following the disaster and we assume

8 hours of distribution time per day. Given the whole population was impacted, we

calculate an hourly victim arrival rate of λ = 112 per hour.
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4.6.2 Thumi Distribution Base Case

From 2015 Nepal earthquake data, we have estimated victim arrival and item distri-

bution rates. Therefore, the known parameters are, the total arrival rate of victims,

the set of items distributed in Thumi, and the distribution rate for these items.

Based on these parameters, and assuming single staffing for distribution at each

RC, we construct the base case with 5 relief centers, distributing tarpaulins, blan-

kets and cash vouchers as shown in Figure 4.4. We use the maximum distribution

rate for each item given by Table 4.5 as service rate at the RCs and we use 112/hr

as the overall arrival rate λ to the network.

Figure 4.4: Thumi Relief Distribution: Base Case

For the base case, we assume that the arriving victims chose to queue for items

blanket (B), tarpaulin (T) or cash (C) with equal probability, and they move to

queue for another item following service completion based on the p+(i, j) probabil-

ities given in Table 4.6. In this table B, T1, T2, T3 and C refer to the item being

distributed and correspond to relief centers 1, 2, 3 and 4 respectively as shown in

Figure 4.4. Note that if the same item is available at multiple RCs (as in the case of
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tarpaulins), choosing any of these RCs is equally likely. Hence, the probability of a

victim collecting a tarpaulin following the blanket queue is equally divided between

all three tarpaulin queues. Also note that, the probabilities in Table 4.6 were chosen

to have roughly 80% utilization for all queues in the network.

Table 4.6: Victim Routing Probabilities Between RCs

RC1: B RC2: T1 RC3: T2 RC4: T3 RC5: C

RC1: B 0 0.066 0.066 0.066 0.1

RC2: T1 0.2 0 0 0 0.1

RC3: T2 0.2 0 0 0 0.1

RC4: T3 0.2 0 0 0 0.1

RC5: C 0.05 0.0166 0.0166 0.0166 0

Note that based on the p+(i, j) probabilities, there are 7 combinations of items

a victim can collect. Using the routing probabilities given in Table 4.6 we can

compute the expected number of victims that belong to each one of these cate-

gories. Note that the probabilities given in Table 4.6 are routing dependent while

the expectations given in Table 4.7 show the total number of victims that collected

the given subset of items, regardless of the sequence in which they collected them.

Computing the expected demand for each combination of items will help update the

service and arrival rates to each RC, if the item assignment to relief centers changes.
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Table 4.7: Expected Demand for Each Victim Category

Victim Category Expected Demand

{B} 26.6 victims/hr

{T} 25.6 victims/hr

{C} 33.4 victims/hr

{B, T} 15.2 victims/hr

{B,C} 5.7 victims/hr

{T,C} 5.7 victims/hr

{B, T,C} 2.6 victims/hr

Table 4.8 summarizes the results and reports on the expected throughput (TH),

queue length (L) and waiting time (W ) at each RC. Note that, all queues are uti-

lized around 80% and the time spent in each queue is related to its utilization and

service time, causing a higher waiting time at tarpaulin distributing RCs.

Table 4.8: Results: Base Case

RC Item Utilization Effective Arrivals (victims/hr) TH L W (hrs)

1 B 0.85 50.44 50.44 5.57 0.11

2 T1 0.88 16.73 16.73 7.36 0.44

3 T2 0.88 16.73 16.73 7.36 0.44

4 T3 0.88 16.73 16.73 7.36 0.44

5 C 0.75 48.06 48.06 2.96 0.06

4.6.3 Demand Increase for Blankets

Having established the base case and its performance, we next model the scenario

where demand for blankets increase. To model this demand increase, we increase
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the p+(i, B), i = T1, T2, T3, C probabilities (see Table 4.9), which represent the

probability of victims receiving service at other RCs (T1, T2, T3, C), moving to the

blanket RC (B) upon service completion. Note that the change in p+(i, j) proba-

bilities impact arrivals at every node in the network. Therefore any change in the

effective arrival rate to queue i, will change the effective arrival rate to all queues

connected to queue i in the network. In this particular case, an increase in blanket

demand will increase utilization, throughput and waiting time for all other queues

where p+(B, j), j = T1, T2, T3, C is nonzero. Since we are modeling a demand in-

crease for blankets alone, this should not impact the performance of the other RCs.

Hence, to keep the performance of all other queues the same, we adjust the p+(B, j)

probabilities using Equation 4.19. Note that the derivation of this equation uses

the definition of the effective victim arrival equation (Equation 4.3) and adjusts the

p+(B, j) probabilities based on the change in the effective victim arrival rate to the

blanket queue. The adjusted p+(B, j) probabilities are shown in Table 4.9.

(p+(B, i))new =

(λ+
B)old(p+(B, i))old(µB + λ−B

∞∑
s=1

πB,ss(q
s−1
B )new)

µB + (
∞∑
s=1

πB,ss(q
s−1
B )old)

,∀i (4.19)
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Table 4.9: Victim Routing Probabilities Between RCs: Blanket Demand Increase

B T1 T2 T3 C

B 0 0.0597 0.0597 0.0597 0.0905

T1 0.25 0 0 0 0.1

T2 0.25 0 0 0 0.1

T3 0.25 0 0 0 0.1

C 0.1 0.0166 0.0166 0.0166 0

Table 4.10 shows the results of the performance measures following the increase

in p+(i, B) probabilities for all RCs. We observe that, increasing p+(i, B) probabili-

ties increase the throughput from the blanket RC, the utilization of the blanket RC

and the waiting time at the blanket RC. Due to the adjusted p+(B, i) probabilities,

other queues in the network remain unaffected.

Table 4.10: Demand Increase for Blankets: Results

RC Item Utilization Effective Arrivals TH L W

1 B 0.93 55.33 55.33 13.27 0.24

2 T1 0.88 16.73 16.73 7.36 0.44

3 T2 0.88 16.73 16.73 7.36 0.44

4 T3 0.88 16.73 16.73 7.36 0.44

5 C 0.75 48.06 48.06 2.96 0.06

4.6.4 Changing Victim Needs

Next we model dynamically changing victim needs, using the signal entities of the

G-network. Signals arriving to RC i, coupled with their frequency and batch size

parameters, represent how often and how many victims experience a change in the
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items they need, and the probability q(i, j) represents the probability of these vic-

tims moving to RC j as a result. In this experiment set, we specifically model the

scenario where, some victims decide to collect cash vouchers instead of tarpaulins.

These victims who are in line at the tarpaulin RC might move to the cash RC be-

cause they can utilize the cash to purchase tarpaulins and they expect a shorter

waiting time at the cash distributing RC. We model this behavior by introducing

signal arrivals to the queues T1, T2, T3. We assume that the signal arrival rate and

the batch size for each tarpaulin queue is equal. We vary the signal arrival rates

and the batch size the signals affect, to investigate the impact of both the signal

arrivals and batch size on the performance measures. Note that the external victim

arrival rates and the service rates remain the same as given in the base case. Table

4.11 summarizes the signal and batch size parameters.

Table 4.11: Changing Victim Needs: Parameters

Experiment λ−T1 = λ−T2 = λ−T3 πT1,s = πT2,s = πT3,s q(i, j)

1 1/hr 1 q(i, C) = 1, i = T1, T2, T3

2 1/hr 2 q(i, C) = 1, i = T1, T2, T3

3 1/hr 3 q(i, C) = 1, i = T1, T2, T3

4 1/hr 4 q(i, C) = 1, i = T1, T2, T3

5 2/hr 1 q(i, C) = 1, i = T1, T2, T3

6 3/hr 1 q(i, C) = 1, i = T1, T2, T3

7 4/hr 1 q(i, C) = 1, i = T1, T2, T3

Table 4.22 in Appendix 4 provides the performance measures for all RCs and

compares the results of all 7 experiments. We observe that, both increasing signal

frequency and increasing batch size, increases the number of victims that move from

the tarpaulin RCs to the cash RC. As more victims move to collect cash vouchers
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instead of tarpaulins, the utilization and throughput of relief centers T1, T2 and T3

decrease. However, the effective arrival rate and the average queue length of relief

centers T1, T2, T3 remain the same. This is because the victims that join this queue

that later change their minds (or needs), still add to the congestion experienced in

these queues. Hence, the movement in the network triggered by victims changing

their minds, not only fails to relieve the waiting time experienced at the tarpaulin

RCs, but also significantly increases the waiting time at the cash RC. The impact

of such victim behavior can be more pronounced for scenarios with higher demand

or stricter resources. From these results, we conclude that victim mobility due to

changing victim needs can significantly impact the relief distribution efficiency for

the whole network. Hence, it is critical for relief agencies to inform the crowd in

need, track the distribution and control victim movement to the extent possible.

Note that, the change in utilization of the cash distributing RC will impact

effective arrival rate to the tarpaulin RCs T1, T2 and T3. Hence, we adjusted

p+(C, i), i = T1, T2, T3 probabilities using Equation 4.19 for queue (C) such that

the effective arrival rate to tarpaulin queues will remain the same. In addition, the

change in utilization for both the tarpaulin and cash distributing RCs will impact

the effective arrival rate to the blanket distributing RC. Therefore, we also adjusted

p+(C,B) and p+(i, B), i = T1, T2, T3 probabilities such that the performance of

the blanket RC remains unaffected.

4.6.5 Victim Jockeying

In Section 4.6.2 we assumed an equal distribution of victims between tarpaulin RCs,

T1, T2 and T3, without any victim switching between the tarpaulin RCs. However,
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due to varying victim perception, victims often jockey between queues that dis-

tribute the same relief item. In this numerical experiment, we model a scenario

in which victims at RCs T1 and T3, jockey and move to RC T2. We model this

scenario, using signal entities arriving to RCs T1 and T3 to move victims of batch

size s, to RC T2. We vary the signal arrival rates and the batch size the signals

affect, to investigate the impact of both the signal arrivals and batch size on the

performance measures. Note that the external victim arrival rates and the service

rates remain the same as the base case. Table 4.12 summarizes the signal and batch

size parameters.

Table 4.12: Victim Jockeying: Parameters

Experiment λ−T1 = λ−T3 πT1,s = πT3,s q(i, j)

1 1/hr 1 q(i, T2) = 1, i = T1, T3

2 1/hr 2 q(i, T2) = 1, i = T1, T3

3 1/hr 3 q(i, T2) = 1, i = T1, T3

4 2/hr 1 q(i, T2) = 1, i = T1, T3

5 2/hr 2 q(i, T2) = 1, i = T1, T3

6 2/hr 3 q(i, T2) = 1, i = T1, T3

7 3/hr 1 q(i, T2) = 1, i = T1, T3

8 3/hr 2 q(i, T2) = 1, i = T1, T3

9 3/hr 3 q(i, T2) = 1, i = T1, T3

Table 4.23 in Appendix 3 shows the detailed performance measure results for all 9

experiments. First we observe that, both increasing signal frequency and increasing

batch size, increase the number of victims that jockey from RCs T1 and T3 to RC

T2. In this set of experiments, we again observe that increasing signal frequency

is more effective in transferring victims due to the associated probability of having

batch size number of victims in queue. Next, we observe that as more victims jockey
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from RCs T1, T3 to RC T2, the utilization and throughput of relief centers T1, T3

are decreasing while the average queue length stays the same. This is because the

victims that jockey still add to the congestion experienced in RCs T1 and T3. As

more victims move to RC T2, the utilization, waiting time and queue length at T2

all increase. This increase is observed to be steep and starting from experiment 2,

RC T2 is over utilized. The observed increase in utilization for RC T2 is due to:

(i) the tarpaulin RC T2 has a high utilization prior to jockeying and (ii) the service

time to distribute tarpaulins is high. Note that, the over utilized RCs are marked

by an asterisk in Table 4.23 and the performance measures for these cases can not

be calculated. We conclude that, victim jockeying can significantly decrease system

performance and create higher waiting times for victims.

4.6.6 Changing Item Assignment to Relief Centers

In this experiment set, we investigate the effects of changing item assignment at

the RCs on performance measures. The assignment decisions are based on various

factors such as, types of items being distributed by each agency, coordination level

between agencies and available staff for distribution. We model the scenario where

all items are available at all RCs. The overall arrival rate of 112 victims per hour

and an equal distribution of victims between all RCs applies to this scenario as well.

Figure 4.5 shows the relief distribution setting.
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Figure 4.5: Item Assignment Change

Depending on the subset of items each victim collects at each RC, the average

service time at the RCs need to be updated. To estimate the new service times, we

assume that each victim category given in Table 4.7 is equally represented at each

RC and we take the weighted average and estimate the service rate as 27.6 victims

per hour at each RC. Note that, since all items are available at all RCs, we assume

that p+(i, j) = 0,∀(i, j).

Table 4.13 shows the resulting performance measures for all RCs. The results

show that making all items available in all RCs improve the waiting times at the

tarpaulin RCs and increase the waiting times for blanket and cash RCs, with the

decrease at tarpaulin RCs being more significant. Overall, we observe that the per-

formance of the network improves. However, it is important to note that this result

is dependent on the assumption that all victim categories are equally distributed

between all RCs. If more victims that need all items (or higher service time items

like tarpaulins) converge to a single RC, the waiting times at that RC can increase

significantly. Moreover, for different demand parameters, such as all victims need-
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ing all items, this design can again result in high waiting times. Therefore, it is

important for practitioners to estimate performance measures using models such

as the one we propose before deciding on the relief distribution setup. Lastly it is

important to note that, even for cases where having all items available at all RCs

can provide a better performance, such a configuration might not be feasible. This

is due to different relief agencies sourcing different supplies and limited coordination

capabilities in the field.

Table 4.13: Results: Changing Item Assignment

RC Utilization Effective Arrivals TH L W

1 0.81 22.40 22.40 4.31 0.19

2 0.81 22.40 22.40 4.31 0.19

3 0.81 22.40 22.40 4.31 0.19

4 0.81 22.40 22.40 4.31 0.19

5 0.81 22.40 22.40 4.31 0.19

4.7 Conclusions

In this Chapter we model the relief distribution in a disaster affected area as a

G-network where we model victim mobility due to changes in need, changes in de-

mand and changes in perception. To solve the G-network model, we investigate

the existence of product form solution for G-networks with batch transfer and de-

parture of victims. The product form results are of interest in this setting due to

the computational advantages they can provide, especially for large networks. We

show a new product form result for G-networks with signals and full batch transfers

for balanced networks. For the conditions under which the product form does not

analytically hold, we investigate the accuracy of the product form approximation to
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estimate the performance measures of the G-network. We numerically conclude that

the product form approximation can provide good performance estimations where

solution speed is important.

We apply the analytic results to analyze relief distribution performance using a

case study. We investigate the impacts of victim mobility under the three scenarios;

changes in need, changes in demand and changes in perception.

From our numerical studies we learn the following insights: (i) Victim mobil-

ity has a significant impact on performance measure estimates, (ii) The extent of

the impact of victim mobility is difficult to estimate without models, due to the

probabilistic nature of victim demand and victim mobility, (iii) Decisions such as

number of relief centers to open and the assignment of items to relief centers need to

depend on demand estimates as well as expected victim movements. These insights

all highlight the need for integrating victim movement and victim behavior aspects

to models for relief distribution.

We believe that this research will motivate future work on extending operations

research tools and models to include victim mobility aspects for disaster response

support.
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4.8 Appendix 1

4.8.1 Product Form Proof For Full Batch Transfer For State

Group S2

Recall that state group S2 is defined as S2 = {k1(t), ..., ki(t), ..., kj(t), ..., kN(t)} :

ki(t) < s, for at least one i and ki(t) 6= 0 ∀i i, j ∈ {1, 2, .., N}. The proof below

considers the case where ki(t) < s, ∀i. The proof where ki(t) < s for some but

not all i is a combination of the proof for this special case and the proof for states

in S1.

Proof. For the states in S1 the balance equations given by Equation 5 take the form

given in 4.20 following the substitution of product form p(k) =
N∏
i=1

p(ki) where

p(ki) = (1− qi)(qkii ).

∑
i

[
λ+

0i + µi
]

=
∑
i

µiqid(i)

+
∑
i

λ+
0i

qi

+
∑
i

λ−0iD(i)
∞∑
s=1

πisq
s
i

+
∑
i

∑
j

µiqip
+(i, j)

qj
(4.20)

We simplify the balance equations by using Equations 4.21 and obtain the bal-

ance equations given by 4.22.

∑
i

λ+
0i

qi
+
∑
i

∑
j

µjqjp
+(j, i)

qi
=
∑
i

λ+
i

qi
−
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πis
sqsi
qj

(4.21)
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∑
i

[
λ+

0i + µi
]

=
∑
i

µiqid(i)

+
∑
i

λ−i D(i)
∞∑
s=1

πisq
s
i

+
∑
i

λ+
i

qi

−
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πissq
s
i

qj
(4.22)

Next we insert the definition for λ+
i given by 4.3 on both the LHS and the RHS

while inserting the definitions of D(i) and d(i) to the RHS, which yields Equation

4.23.

∑
i

λ+
i −

∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πissq
s
i +

∑
i

µi =
∑
i

µiqi

+
∑
i

λ−i

∞∑
s=1

πisq
s
i

−
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πisq
s
i

−
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πis
sqsi
qj

+
∑
i

λ+
i

qi
(4.23)

Next we use the definition of qi in Equation 4.2 to rewrite λ+
i on both the LHS

and the RHS. Then the balance equations can be written as Equation 4.24.
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0 =
∑
i

λ−i

∞∑
s=1

πissq
s−1
i

−
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πis
sqsi
qj

+
∑
i

λ−i

∞∑
s=1

πisq
s
i

−
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πisq
s
i

+
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πissq
s
i

−
∑
i

λ−i

∞∑
s=1

πissq
s
i (4.24)

Rearranging the terms we get Equation 4.25 where it can be seen that the equa-

tion holds for balance networks where qi = qj, ∀(i, j) ∈ N given that
∑
j

q(i, j) =

1∀i ∈ N .

0 =
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πis

[
−sq

s
i

qj
− qsi + sqsi

]

+
∑
i

λ−i

∞∑
s=1

πis
[
sqs−1
i + qsi − sqsi

]
(4.25)

This proves the product form result for states in S2.
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4.8.2 Product Form Proof for Full Batch Departure For

State Group S3

Recall that state group S3 is defined as S3 = {k1(t), ..., ki(t), ..., kj(t), ..., kN(t)} :

ki(t) = 0, for at least one i, i ∈ {1, 2, .., N}. The proof below considers the case

where ki(t) = 0, ∀i. The proof where ki(t) = 0 for some but not all i is a

combination of the proof for this special case and the proof for states in S1 and S2.

Proof. For the states in S3 the balance equations given by Equation 5 take the form

given in 4.26 following the substitution of product form p(k) =
N∏
i=1

p(ki) where

p(ki) = (1− qi)(qkii ).

∑
i

λ+
0i =

∑
i

µiqid(i)

+
∑
i

λ−0iD(i)
∞∑
s=1

πisq
s
i (4.26)

Next we insert the definition for λ+
i given by 4.3 on the LHS terms and insert

the definitions of D(i) and d(i) to the RHS terms yielding Equation 4.27.

∑
i

λ+
i −

∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πissq
s
i =

∑
i

µiqi

+
∑
i

λ−i

∞∑
s=1

πisq
s
i

−
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πisq
s
i (4.27)

Next we use the definition of qi in Equation 4.2 to rewrite λ+
i on the LHS and

the RHS. Then the balance equations can be written as Equation 4.28.
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0 =
∑
i

λ−i

∞∑
s=1

πisq
s
i

−
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πisq
s
i

+
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πissq
s
i

−
∑
i

λ−i

∞∑
s=1

πissq
s
i (4.28)

Rearranging the terms we get Equation 4.29 where it can be seen that the equa-

tion holds for balance networks where qi = qj, ∀(i, j) ∈ N given that
∑
j

q(i, j) =

1 ∀i ∈ N .

0 =
∑
i

∑
j

λ−i q(i, j)
∞∑
s=1

πis [sqsi − qsi ]

+
∑
i

λ−i

∞∑
s=1

πis [qsi − sqsi ] (4.29)

This proves the product form result for states in S3.
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Table 4.22: Change in Victim Needs (Tarpaulin to Cash): Results

Experiment RC Item Utilization Effective Arrivals TH L W

1 1 B 0.850 50.44 50.44 5.57 0.11

2 T1 0.832 16.73 15.89 7.05 0.44

3 T2 0.832 16.73 15.89 7.05 0.44

4 T3 0.832 16.73 15.89 7.05 0.44

5 C 0.786 50.55 50.55 3.67 0.07

2 1 B 0.850 50.44 50.44 5.57 0.11

2 T1 0.807 16.73 15.41 7.05 0.45

3 T2 0.807 16.73 15.41 7.05 0.45

4 T3 0.807 16.73 15.41 7.05 0.45

5 C 0.808 51.97 51.97 4.21 0.08

3 1 B 0.850 50.44 50.44 5.57 0.11

2 T1 0.796 16.73 15.20 7.05 0.46

3 T2 0.796 16.73 15.20 7.05 0.46

4 T3 0.796 16.73 15.20 7.05 0.46

5 C 0.818 52.60 52.60 4.49 0.085

4 1 B 0.850 50.44 50.44 5.57 0.11

2 T1 0.793 16.73 15.14 7.05 0.46

3 T2 0.793 16.73 15.14 7.05 0.46

4 T3 0.793 16.73 15.14 7.05 0.46

5 C 0.821 52.80 52.80 4.59 0.087

5 1 B 0.850 50.44 50.44 5.57 0.11

2 T1 0.792 16.73 15.12 7.05 0.46

3 T2 0.792 16.73 15.12 7.05 0.46

4 T3 0.792 16.73 15.12 7.05 0.46

5 C 0.821 52.81 52.81 4.59 0.087

6 1 B 0.850 50.44 50.44 5.57 0.11

2 T1 0.757 16.73 14.45 7.05 0.48

3 T2 0.757 16.73 14.45 7.05 0.48

4 T3 0.757 16.73 14.45 7.05 0.48

5 C 0.853 54.87 54.87 5.81 0.10

7 1 B 0.850 50.44 50.44 5.57 0.11

2 T1 0.724 16.73 13.82 7.05 0.51

3 T2 0.724 16.73 13.82 7.05 0.51

4 T3 0.724 16.73 13.82 7.05 0.51

5 C 0.882 56.75 56.75 7.51 0.13
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Table 4.23: Victim Jockeying: Results

Experiment RC Utilization Effective Arrivals TH L W

1 B 0.85 50.44 50.44 5.57 0.11

T1 0.84 16.73 15.89 7.36 0.46

T2 0.97 18.40 18.40 30.64 1.67

T3 0.84 16.73 15.89 7.36 0.46

C 0.75 48.06 48.06 2.96 0.06

2 B 0.85 50.44 50.44 5.57 0.11

T1 0.81 16.73 15.41 7.36 0.48

T2 1.02* 19.36* N/A N/A N/A

T3 0.81 16.73 15.41 7.36 0.48

C 0.75 48.06 48.06 2.96 0.06

3 B 0.85 50.44 50.44 5.57 0.11

T1 0.80 16.73 15.19 7.36 0.48

T2 1.04* 19.79* N/A N/A N/A

T3 0.80 16.73 15.19 7.36 0.48

C 0.75 48.06 48.06 2.96 0.06

4 B 0.85 50.44 50.44 5.57 0.11

T1 0.80 16.73 15.13 7.36 0.49

T2 1.05* 19.91* N/A N/A N/A

T3 0.80 16.73 15.13 7.36 0.49

C 0.75 48.06 48.06 2.96 0.06

5 B 0.85 50.44 50.44 5.57 0.11

T1 0.76 16.73 14.42 7.36 0.51

T2 1.12* 21.34* N/A N/A N/A

T3 0.76 16.73 14.42 7.36 0.51

C 0.75 48.06 48.06 2.96 0.06

6 B 0.85 50.44 50.44 5.57 0.11

T1 0.75 16.73 14.21 7.36 0.52

T2 1.14* 21.75* N/A N/A N/A
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T3 0.75 16.73 14.21 7.36 0.52

C 0.75 48.06 48.06 2.96 0.06

7 B 0.85 50.44 50.44 5.57 0.11

T1 0.76 16.73 14.45 7.36 0.51

T2 1.12* 21.29* N/A N/A N/A

T3 0.76 16.73 14.45 7.36 0.51

C 0.75 48.06 48.06 2.96 0.06

8 B 0.85 50.44 50.44 5.57 0.11

T1 0.72 16.73 13.64 7.36 0.54

T2 1.21* 22.91* N/A N/A N/A

T3 0.72 16.73 13.64 7.36 0.54

C 0.75 48.06 48.06 2.96 0.06

9 B 0.85 50.44 50.44 5.57 0.11

T1 0.71 16.73 13.50 7.36 0.55

T2 1.22* 23.18* N/A N/A N/A

T3 0.71 16.73 13.50 7.36 0.55

C 0.75 48.06 48.06 2.96 0.06
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Chapter 5

Resource Allocation Models for

Material Convergence

5.1 The Material Convergence Problem

Immediately after the disaster relief items, from purchased goods, pre-positioned

stock, and in-kind donations flow into the disaster affected region, in high volumes

and over a short period of time. The arriving in-kind donations can be classidied into

three groups as (i) high-priority (HP), (ii) low-priority (LP) and (iii) non-priority

(NP) items (Pan American Health Organization and World Health Organization

(2001)). The HP items refer to the supplies needed for immediate distribution, the

LP items refer to supplies that are not of immediate need but can be used in later

stages and NP items refer to supplies that are not at all needed and should not have

been sent to the disaster region in the first place. Past disasters indicate that in

many cases the NP items exceeded 50% of all donated items (Arnette and Zobel

(2015)). The high proportions of non-urgent items can exasperate the complexity

of donations management and divert critical resources away from high-priority ac-
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tivities. This problem of high volumes of incoming donations coupled with high

percentages of non-priority items is often referred to as the material convergence

problem (Holguin-Veras et al. (2012a)).

In order to further understand the problems created by material convergence

and low-priority goods, we interviewed practitioners from the Salvation Army and

the National Voluntary Organizations Active in Disaster (NVOAD). The National

VOAD is a coordinating body with 62 national members including the Salvation

Army, the Red Cross, Federal Emergency Management Agency (FEMA) and many

others. The interviews conducted, as well as the research on prior disasters showed

the following as the top problems created by material convergence: (i) Diversion of

volunteer capacity, (ii) Diversion of transportation capacity, (iii) Diversion of stor-

age space, (iv) Requirement of waste management/recycling activities, (v) Increased

complexity of coordination and decision making.

For example, the Salvation Army director who was a part of the response to

the Haiti Earthquake, stated that there had to be full time dedicated people at the

airport to manage and move arriving items. Many of the arriving donations were

unnecessary items, that consumed volunteer capacity and created storage space is-

sues at the airport. Another Salvation Army officer involved in the response efforts

related to Hurricane Sandy, noted that the Yankee stadium was half full of in-kind,

unsolicited donations. Roughly 30 Salvation Army trucks were dedicated to col-

lecting unsolicited donations left in trash bags along the streets and this collection

effort went on for three weeks. Once the donated items of bags were off the streets,

they had to be sorted. The sorting process revealed that a high percentage of do-

nated items were not usable for the disaster response purposes which required more
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volunteer capacity to adequately recycle the donations. It was noted that the New

York City Department of Sanitation provided the planning and resources required

for the waste management stage.

Our interviews with NVOAD revealed that the unsolicited donations created do-

nations management problems in almost every disaster. One of our interviews was

with the director of NVOAD who has been involved in many response efforts. He

stated that, the first in-kind donations are usually from the local community and

they start to pile up hours after the disaster. The media has major impact on the

timing and volume of arriving donations, underlining that excessive media coverage

can result in increased material convergence. Although, this did not mean in-kind

donations were not needed, saying: “In fact lots of donations are needed, if they are

the right product.”

The problems created by material convergence and the high volumes of low-

priority in-kind donations have been recognized as a major problem during disaster

response by the prior literature. Many papers focused on case studies and inter-

views documenting the extent of the problems created by material convergence,

often times referring to it as a “second tier disaster” (Islam et al. (2013)). Even

though the prior literature recognized the extent and importance of the material

convergence problem, there is very little work in the literature that tries to quantify

material convergence using an analytical model.

This chapter models and quantifies material convergence caused by two streams

of donations arrivals, representing the solicited and unsolicited donations respec-

tively. We use a transient queuing model to quantify material convergence and
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throughput of high priority goods based on volunteer assignment decisions. In par-

ticular, we aim to answer the following research questions: (1) How can we quantify

material convergence?, (2) How does the mix of high-priority and non-priority items

and arrival patterns impact material convergence and volunteer assignment deci-

sions?

To answer these research questions we model the material convergence process

using a multi-server transient queuing model where the decision is to allocate avail-

able servers to between the solicited and unsolicited donation arrivals. We conclude

that the evolution of queue length can be used to quantify the level of material

convergence. We further conclude that, while allocating resources one should take

into account high priority item percentage, the current material convergence level

and the arrival rates together.

The rest of this chapter is organized as follows. Section 5.2 provides the details

of the queuing model used to study the material convergence problem. Section 5.3

discusses the solution approach and Section 5.4 discusses numerical experiments

and managerial insights on effective resource assignment to address material con-

vergence. Finally, Section 5.5 concludes the chapter.

5.2 The Analytical Model for Donations

In the aftermath of a disaster, both solicited and unsolicited donations arrive to

the disaster affected region, packed in boxes, pallets or crates. Prior to distribution

these goods need to be unpacked. The unsolicited goods, in addition to being un-
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packed, need to be sorted to separate the HP items from the NP items, and this

is often a time-consuming task. We model the arrival and sorting of solicited and

unsolicited donations using separate multi-server queues. We analyze the problem

over T time periods, t = 1, 2, ..., T , and t′ denotes the duration of each time period.

We assume that the arrival process for both the solicited and unsolicited donations

follow a time dependent Poisson process with parameters λs,t and λu,t respectively,

where t = 1, 2, ..., T . We assume that there are a fixed number of total available

volunteers during each period, Ct, that can be assigned to either queue, and the

decision variables cs,t and cu,t, represent the particular assignment of volunteers for

period t, to sort the solicited and unsolicited items respectively, i.e. Ct = cs,t + cu,t.

We assume that the service time for a volunteer to sort the arriving items follow an

exponential distribution with parameter µs,t and µu,t for solicited and unsolicited

items respectively and that µ−1
u,t ≥ µ−1

s,t due to the more involved process needed

to sort the unsolicited items. Figure 5.1 shows both the solicited and unsolicited

donation queues for sorting. Let ρi,t =
λi,t

µi,tci,t
, i = s, u, t = 1, .., T denote the

utilization of queue i where ρi,t ≥ 0, ∀(i, t). Note that we permit ρi,t ≥ 0; i.e queues

are allowed to be unstable. We assume that solicited donations received contain

only high-priority items ready for distribution, whereas for unsolicited donations

received, the fraction of high-priority items in the arriving donations at the time t

is given by ht where 0 ≤ ht ≤ 1.
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Figure 5.1: Donation Sorting Process

We analyze the queues over T time periods and quantify the material conver-

gence. The main performance measures of interest are the throughput and queue

build up at each time period. Next we describe the solution methodology.

5.3 Solution Methodology

We solve the queuing model for each period t ∈ T that represent a t′ length of inter-

val. The state for each queue i corresponds to the number of donations in each queue

i. Let Ss,t = 0, 1, 2, ... and Su,t = 0, 1, 2, ... represent the state space of each queue for

period t ∈ T . Then the evolution of the queues can be represented as a continuous

time Markov processes (CTMC) denoted by Xs,t(t
′), t′ ≥ 0 and Xu,t(t

′), t′ ≥ 0, on

state spaces Ss,t and Su,t. Let Ls,t and Lu,t, t = 1, 2, ..., T denote the queue length

at each queue at the end of time period t. Then Li,t is the starting state for queue

i at time period t+ 1.
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The stochastic evolution of each queue i, i = s, u, is characterized by the CTMC

and its generator matrix Qi,t where qi,t,j,k represent the rate of transition from state

j to state k and is given by Equation 5.1, where i = s, u j, k ∈ Si and t ∈ T and

qi,t,j,j = −
∑

j 6=k qi,t,j,k.

qi,t,j,k =


λi,t

λi,t+(µi,t∗ci,t) , if k = j + 1

µi,t∗min(j,ci,t)

λi,t+(µi,t∗ci,t) , if k = j − 1

(5.1)

Let Pi,t(t
′) represent the state probability matrix and let pi,t,j,k(t

′) represent the

transition probability starting from state j at time t = 0, to state k at time t,

after a length of t′ hours, where pi,t,j,k(t
′) = Pi,t(Xi,t(t

′) = k|Xi,t(0) = j), j, k ∈

Si,t i = u, s , t ∈ T . Note that we assume without loss of generality that, each

period t starts at zero and is of length t′ hours. Then Pi,t(t
′) satisfies the Chapman-

Kolmogorov forward and backward differential equations as given by Equations 5.2

and 5.3. It is well known that the solution to the Chapman-Kolmogorov differential

Equations 5.2 and 5.3 is given by Equation 5.4.

P ′i,t(t
′) = Pi,t(t

′) ∗Qi,t, i = u, s and t ∈ T (5.2)

P ′i,t(t
′) = Qi,t ∗ Pi,t(t′), i = u, s and t ∈ T (5.3)

Pi,t(t
′) = eQi,tt

′
, i = u, s and t ∈ T (5.4)

Theoretically, the matrix exponential solution eQi,tt
′

can be defined by the series

given by Equation 5.5. However, computing the solution using this series approach

creates efficiency and accuracy problems in estimating the exponential of matrix

Qi,t, especially if Qi,t has a high dimension.
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eQi,tt
′
=
∞∑
k=0

1

k!
(Qi,tt

′)k (5.5)

Moler and Loan (2003) provide numerical examples showcasing the efficiency and

accuracy problems even for a 2 by 2 matrix and they also provide a survey of meth-

ods to compute the exponential of a matrix which involve approximation theory,

differential equations, matrix eigenvalues and the matrix characteristic polynomial.

All mentioned methods are effective for small enough matrices. For a typical dis-

aster relief distribution, hourly arrival rates (λs,t, λu,t) can exceed 1000 items per

hour and the size of the Qi,t matrix can increase to tens of thousands, which makes

the computation of the matrix exponential very difficult. Hence other methods such

as the uniformization technique, Runge-Kutta methods and the predictor-corrector

methods (Maron (1987); Arsham et al. (1983)) are needed to obtain Pi,t(t
′) proba-

bilities.

The uniformization method is especially useful in our setting due to three rea-

sons: (i) it has been shown to provide greater accuracy at a lower computational

cost (Reibman and Trivedi (1988)), (ii) it allows for further improvements on com-

putational time by allowing to leverage the form of the generator matrix and (iii)

it has a clear probabilistic interpretation that translates well to the original prob-

lem (Gross and Miller (1984)). Next we discuss the uniformization method and its

application to our problem setting.

5.3.1 Uniformization and the SERT Method

To apply the uniformization method, we first approximate the M/M/C queues using

a finite state space for numerical tractability. We truncate the infinite state space at
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a large Ni,t (discussed in Section 5.4). The truncation introduces an approximation

error in the calculations. This error can be bound by collapsing all the truncated

states into one absorbing state (states As,t = Ns,t + 1 and Au,t = Nu,t + 1). The

probability that the system is in the absorbing state will be the bound on the er-

ror introduced by truncating the infinite state space (Gross and Miller (1982)). We

further report on the choice of Ni,t and the associated truncation error in Section 5.4.

The uniformization method is based on the subordination of a Markov chain

to a Poisson process. The probabilistic process of the CTMC Xi,t(t
′), t′ ≥ 0, i =

u, s, t ∈ T , on countable state space Si,t = {0, 1, 2..., Ni,t, Ai,t} is first represented

using a DTMC, Yi,t,n, n = 0, 1, 2, ... on Si,t with transition probability matrix P̄i,t =

Qi,t/Λi,t + I where Λi,t = supj∈Si,t qi,t,j,j and a Poisson process {N̄i,t(t
′), t′ ≥ 0}

with rate Λi,t, i = s, u, t ∈ T . The Poisson process and the DTMC are inde-

pendent of each other. Note that the initial distribution of the CTMC and the

constructed DTMC are the same. Then it can be shown that {Yi,t,N̄i(t′), t′ ≥ 0} and

{Xi,t(t
′), t′ ≥ 0} are probabilistically identical (Heyman and Sobel (1982)).

This construction provides a meaningful and computationally efficient formula

for the transient probabilities of the CTMC model. The number of jumps the

DTMC goes through between the discrete observation epochs is modeled by the

Poisson process and the multi-step transition probabilities of the DTMC identifies

what state the CTMC evolves to as a result of the transition. To get the transient

probabilities for Xi,t(t
′), t′ ≥ 0, we condition on the number of arrivals in [0, t′] and

we use the law of total probability as shown in Equation 5.6.



132

pi,t,j,k(t) = P{Xi,t(t
′) = k|Xi,t(0) = j}

= P{Yi,tN̄i,t(t′) = k|Xi,t(0) = j}

=
∞∑
n=0

P{Yi,tN̄i,t(t′) = k|N̄i,t(t
′) = n,Xi,t(0) = j}P{Yi,tN̄i,t(t′) = n}

=
∞∑
n=0

P{Yi,t,n = k|Xi,t(0) = j}eΛi,tt
′
(Λi,tt

′)n/n! (5.6)

Finally we obtain Equation 5.7 for the state probability vector of the CTMC

represented by pi,t(t
′), where p̄i,t(n) = p̄i,t(0)P̄ n

i,t represent the state probabilities of

the DTMC. Note that the initial state probabilities are assumed to be the same for

both the DTMC and the CTMC, pi,t(0) = p̄i,t(0), i = u, s, t ∈ T .

pi,t(t
′) =

∞∑
n=0

p̄i,t(n)eΛi,tt
′
(Λi,tt

′)n/n! i = u, s, t ∈ T (5.7)

Note that, Equation 5.7 also involves the computation of an infinite series. For

numerical computation, we truncate the series at n = K. We can bound the error

this truncation creates, by letting K satisfy Equation 5.8 (Fox and Glynn (1988)).

Note that including this truncation, the solution approach now has two sources of

error; the truncation of the state space of the CTMC and the truncation of the

Poisson process in the uniformization. The first error is estimated by adding an

absorbing state to the CTMC and the latter is bounded by choosing an appropriate

ε. We report on both of these errors in Section 5.4.

1− eΛi,tt
′
K∑
n=0

(Λi,tt
′)n/n! ≤ ε, i = u, s, t ∈ T (5.8)
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Computationally the uniformization approach is more efficient and stable than

computing the matrix exponential since it requires less terms until the series con-

verge and avoids problems due to the truncation of arithmetic. However, the size of

the probability transition matrix, P̄i,t for the DTMC and computing its powers (P̄ n
i,t)

can be computationally cumbersome for our setting. To increase the computational

efficiency we use the SERT modeling approach (Gross and Miller (1984)). This

approach represents the transitions of the matrix by storing the state space, types

of events, transition probabilities and target states for the transitions as separate

vectors. Specifically, S - denotes the state space, E - denotes the set of events, R

(or P) - denotes the rate (or probability) vectors and, T - denotes the target state

vector. This approach also allows us to take advantage of the sparsity of the P̄i,t

matrix and increase computational efficiency.

Si,t = state space

Ei,t = set of types of events

P̄i,t = set of probability (P̄i,t) vectors (one for each element of Ei,t, each with |Si,t|

components)

Ti,t = set of target state vectors (one for each element of Ei,t, each with |Si,t| com-

ponents)

For an arrival rate λi,t, service rate µi,t and volunteer allocation of ci,t for each

i = u, s and t = 1, 2, .., T we can define the SERT sets as follows:
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Si,t = {0, 1, 2, ..., Ni,t, Ai,t} where Ai,t = Ni,t + 1 represents the absorbing state

Ei,t = {a, d, n} where a, d, n represent arrival, departure and null events

P̄ a
i,t = { λi,t

λi,t + (ci,tµi,t)
,

λi,t
λi,t + (ci,tµi,t)

, ..., 0}

P̄ d
i,t = { 0

λi,t + (ci,tµi,t)
,

µi,t
λi,t + (ci,tµi,t)

,
2µi,t

λi,t + (ci,tµi,t)
, ...,

ci,tµi,t
λi,t + (ci,tµi,t)

, 0}

P̄ n
i,t = {1− λi,t

λi,t + (ci,tmui,t)
, 1− λi,t + µi,t

λi,t + (ci,tµi,t)
, ..., 1}

T ai,t = {1, 2, ..., Ni,t, Ai,t, Ai,t}

T di,t = {0, 0, 1, ..., Ni,t − 1, Ai,t}

T ni,t = {0, 1, 2, ..., Ni,t, Ai,t} (5.9)

In this representation, P a
i,t represents the set of probabilities where the event

is an arrival instead of a departure or null event (meaning the state remains the

same) and the T ai,t vector represents the target state the DTMC will transition to

upon an arrival event. Each entry in both vectors correspond to an element of the

state space. The exact same structure applies to the departure and null events.

An example is, the first entry of the P d
i,t vector is 0 representing the probability of

having a departure when the system is at state 0 (empty) being 0 and the first entry

of the vector T di,t is also 0 representing the state we transition to as state 0, since

there was no change to the number in queue. The above sets fully define the DTMC.

The SERT approach reduces computational complexity involved in calculating

the DTMC probability transitions in two ways: (1) instead of using matrix multi-

plications to compute all state transition probabilities (P̄ n
i,t), it only computes the

transition probabilities from the given starting state vector and (2) it only takes
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into account positive entries in P̄i,t (represented as events) therefore minimizing

multiplications by 0. This becomes especially effective for sparse matrices such as

P̄i,t. For example if P̄i,t was a 4 by 4 matrix, calculating P̄ 3
i,t would require 128

multiplications. This number goes down to 20 multiplications by using the SERT

representation.

Using the sets defined by Equation 5.9, we can calculate the state probability

vector of the DTMC, p̄i,t(n), using Equation 5.10. Note that Equation 5.10 calcu-

lates the state probabilities individually for all states s ∈ Si,t. Note that the third

subscript s refers to the s-th element of that vector.

p̄i,t,s(n+ 1) = p̄i,t,s(n)P n
i,t,s

p̄{tai,t,s∈Tai,t}(n+ 1) = p̄i,t,s(n)P a
i,t,s

p̄{tdi,t,s∈T di,t}(n+ 1) = p̄i,t,s(n)P d
i,t,s (5.10)

Substituting solutions of Equation 5.10 in Equation 5.7, we can obtain the state

probabilities, pi,t,j,k(t), that denote the length of queue i at time t.

Once we obtain the probabilities pi,t,j,k(t), we calculate the expected throughput

from each donation queue i, for time interval t, given a specific volunteer assignment

ci,t. This proves to be challenging since the throughput THi,t is path dependent. As

an example, if the queue i transitions from state j = 1 at t = 0 to k = 2 at time t,

it could follow many paths such as, (i) exactly one arrival happening between time

t = 0 and t = t′ and no service completion, or (ii) exactly two arrivals and one de-

parture happening between time t = 0 and t = t′, or (iii) exactly three arrivals and
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two departures happening between time t = 0 and t = t′, or (iv) exactly n arrivals

and (n-1) departures happening between time t = 0 and t = t′ and so on. Note

that the throughput from queue i between t = 0 and t = t′ depends on the number

of departures from the queue in this time period. Therefore we use Algorithm 1

to compute the expected throughput, THi,t for each queue i during time period t.

In the inner most loop, the algorithm first calculates TH ′j,k, which is the expected

throughput of each possible transition. To calculate TH ′j,k, the algorithm loops

through possible paths (truncated at Mi,t), given an initial state j = ai,t and for

each path, conditions the calculations based on queue length increasing or decreas-

ing. It calculates the probability of each path, using the probability distribution of

the arrival process alone (Poisson) since the path probability is conditioned over the

particular state transition. Here, Vi,t(t
′), t′ ≥ 0 represents the random variable for

the Poisson process with rate (λi,tt
′). Then in the outer loop, the algorithm loops

through all possible transitions in the state space. Finally in the outer most loop,

the algorithm computes the overall expected throughput for the queue.

The performance measure we use is the total high-priority item throughput for

each t ∈ T and we track the length of each queue i as a measure of material conver-

gence. Both the material convergence and the queue throughput evolve over time.

The connection between time periods are made by updating the starting state ai,t

for each time interval. The decision parameter at each interval is the volunteer

assignment to each queue ci,t, i = s, u. The arrival rates, service rates, volunteer as-

signment and the current material convergence level impact the throughput measure.

Moreover, the volunteer assignment decision and the level of material convergence

depend on each other as well. In the next section, we numerically investigate the

relationship between material convergence, volunteer assignment and throughput.
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Algorithm 1 Estimating Expected Throughput

For any (i, t) pair where i = u, s t = 1, 2, .., T
ai,t ← starting state
k ← k in state space Si,t
Mi,t ← sum limit; greater than size of state space Ni,t

for k = 0 : Ni,t do
if k ≥ ai,t then

dif = k − ai,t

TH ′ai,t,k = [
Mi,t∑
j=0

P{Vi,t(t′) = dif + j} ∗ j]

else if k < ai,t then
dif = ai,t − k

TH ′ai,t,k = [
Mi,t∑
j=0

P{Vi,t(t′) = j} ∗ (dif + j)]

end if

end for

THi,t =
Ni,t∑
k=0

THai,t,k ∗ pi,t,ai,t,k(t)

5.4 Numerical Experiments

We present two sets of numerical experiments to investigate: (1) effects of material

convergence and (2) effects of HP item percentage of unsolicited donations on re-

source allocation decisions. In experiment set 1 we focus on quantifying material

convergence and investigating the relationship between material convergence and

volunteer assignment. In experiment set 2, we add the consideration of HP percent-

age for unsolicited donations and observe how the volunteer assignment strategy

changes as the unsolicited donations have less and less high-priority goods.

5.4.1 Experiment Set 1: Effect of Volunteer Assignment

The parameter setup for the numerical experiments are based on our collaboration

with Goodwill and the Salvation Army, both of which carry out voucher programs

to distribute household and clothing type of relief items for disaster relief. Accord-
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ing to data from Goodwill stores, the sorting rate of donations vary between 150

to 240 items per hour. We base the service rate used in our models for unsolicited

donation sorting, on this data obtained from Goodwill and use an average of 200

items per hour per volunteer for unsolicited donations and 300 per hour per volun-

teer for solicited donations. The sorting process during the disaster response period

is very similar to sorting mixed, unsolicited items at Goodwill. However, the arrival

rate of donations during disaster response is much higher than what is observed day

to day at a Goodwill store. Therefore, we vary the arrival rate in our numerical

experiments based on the expected utilization levels during the disaster aftermath.

It is expected that the donation arrival rates will vary from disaster to disaster and

even hourly. For more details on interviews with Goodwill and Salvation Army, we

refer the reader to the technical report, Ozen and Krishnamurthy (2017).

Experiment cases 1, 2 and 3 represent different levels of arrival rates. In case 1

we picked an arrival rate such that the utilization of both queues can be kept below

1 with the total number of available volunteers. In case 2, we picked an arrival rate

to represent a scenario where no allocation of resources will make the utilization

of either queue less than 1. Finally in case 3, we picked an arrival rate such that,

depending on the allocation of resources, one of the queues can have a utilization

less than 1. In all three cases, arrivals to both queues are assumed to be from a

Poisson process with λs,t = λu,t, ∀t. We assume a total of Ct = 10, ∀t volunteers

are available, all unsolicited donations are high-priority, ht = 100%, ∀t and all items

have equal priority.

We investigate the evolution of material convergence and resource assignment

decisions over 12 time intervals, i.e t = 1, 2, ..., T where T = 12, and each time
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interval represents an 8 hour period, i.e t′ = 8. We assume the arrival and service

rates are equal for each time period, i.e λs,t = λu,t, µs,t = µu,t, t = 1, 2, ..., 12, to

clearly see the relationship between material convergence and resource allocation.

We investigate the impact of high priority item percentage in the experiment set 2.

Also note that we choose the truncation point Ni,t = a+(λi,t∗t′), i = s, u, t ∈ T

where a represents the starting state and is equal to the average queue length of

queue i during the previous time period (a = W̄i,t−1) while t′ represents the number

of hours in a given time interval. The truncation point used aims to make the ca-

pacity large enough to accommodate the total number of arrivals and to make sure

the probability of an arrival finding the queue full is minimal.

Table 5.1: Experiment 1: Parameters

Parameters Case 1 Case 2 Case 3
λs,t, ∀t 1000/hr 3000/hr 1250/hr
λu,t, ∀t 1000/hr 3000/hr 1250/hr
µs,t, ∀t 300/hr 300/hr 300/hr
µu,t, ∀t 200/hr 200/hr 200/hr
Ct, ∀t 10 10 10

Average System Utilization 80 % 240 % 100 %
ht, ∀t 1 1 1

Priority Equal Equal Equal
Demand Pattern Steady Steady Steady

In each time interval, we search over all possible volunteer allocation decisions

and choose the allocation that provides the optimal high-priority item throughput.

It is important to note that this allocation may not reflect the global optimum so-

lution for the resource allocation problem. The approach used to get these results,

evaluates the overall throughput, given the current queue length, for all possible

allocation decisions in the given time interval and hence represent a local optimum
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decision for the overall performance. We will call this policy the single-period opti-

mal policy (SOP).

Tables 5.2, 5.3, 5.4 show the results resource allocation, throughput and material

convergence (queue length) results for cases 1, 2 and 3 respectively. We observe that

for case 1, the allocation of cu,t = 6 and cs,t = 4 is optimal for all t, since it makes

the utilization of both queues less than 1. Material convergence does not happen

since both queues are balanced and almost all arrivals are serviced.

Table 5.2: Case 1 Material Convergence: System Utilization Below 1

Resources Utilization Queue Length Throughput

t cu,t cs,t ρu,t ρs,t Lu,t Ls,t THu,t THs,t
∑

i THi, t

1 6 4 0.83 0.83 7.93 6.62 7,988.10 7,989.42 15,977.52

2 6 4 0.83 0.83 7.93 6.62 7,995.51 7,995.79 15,991.30

3 6 4 0.83 0.83 7.93 6.62 7,995.51 7,995.79 15,991.30

4 6 4 0.83 0.83 7.93 6.62 7,995.51 7,995.79 15,991.30

5 6 4 0.83 0.83 7.93 6.62 7,995.51 7,995.79 15,991.30

6 6 4 0.83 0.83 7.93 6.62 7,995.51 7,995.79 15,991.30

7 6 4 0.83 0.83 7.93 6.62 7,995.51 7,995.79 15,991.30

8 6 4 0.83 0.83 7.93 6.62 7,995.51 7,995.79 15,991.30

9 6 4 0.83 0.83 7.93 6.62 7,995.51 7,995.79 15,991.30

10 6 4 0.83 0.83 7.93 6.62 7,995.51 7,995.79 15,991.30

11 6 4 0.83 0.83 7.93 6.62 7,995.51 7,995.79 15,991.30

12 6 4 0.83 0.83 7.93 6.62 7,995.51 7,995.79 15,991.30

For case 2, we observe a very different behavior. No allocation of available re-
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sources make the utilization of either queue less than 1 and therefore most resources

(all volunteers) are allocated to the faster queue (solicited donations). Material con-

vergence is observed for both queues, with the unsolicited queue lengths exceeding

40,000 within the first three days. The overall throughput is equal to the through-

put of the solicited donations queue. Note that, in Table 5.3 queue length for the

unsolicited donations queue is unreported due to computational time and storage

space problems.

Table 5.3: Case 2 Material Convergence: System Utilization Above 1

Resources Utilization Queue Length Throughput

t cu,t cs,t ρu,t ρs,t Lu,t Ls,t THu,t THs,t
∑

i THi, t

1 0 10 ∞ 1.00 0.0 0.0 0.0 23,807.67 23,807.67

2 0 10 ∞ 1.00 23,988.10 180.51 0.0 23,935.05 23,935.05

3 0 10 ∞ 1.00 46,364.00 233.60 0.0 23,954.00 23,954.00

4 0 10 ∞ 1.00 68,728.91 267.58 0.0 23,962.95 23,962.95

5 0 10 ∞ 1.00 * 292.61 0.0 23,968.20 23,968.20

6 0 10 ∞ 1.00 * 312.34 0.0 23,971.54 23,971.54

7 0 10 ∞ 1.00 * 327.99 0.0 23,973.96 23,973.96

8 0 10 ∞ 1.00 * 341.56 0.0 23,975.82 23,975.82

9 0 10 ∞ 1.00 * 353.69 0.0 23,977.24 23,977.24

10 0 10 ∞ 1.00 * 364.27 0.0 23,978.31 23,978.31

11 0 10 ∞ 1.00 * 373.19 0.0 23,979.19 23,979.19

12 0 10 ∞ 1.00 * 381.31 0.0 22,387.84 22,387.84

Case 3 represents the scenario where the overall system utilization is equal to
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1. Table 5.4 shows the SOP resource allocation, the material convergence (queue

lengths) and the throughput results. The first observation we make based on the

results is, neither the queue lengths nor the local optimum allocation decisions con-

verge. The second observation is the interaction between material convergence and

resource allocation decisions. Given empty queues at the beginning, we would expect

a (cu,t, cs,t) = (6, 4) assignment throughout the time horizon, since this allocation

would make both the queues to be utilized 104%, and result in neither queue having

a utilization way over 1. However, as the system evolves , we observe material con-

vergence increasing in both queues. When the convergence at the solicited donations

queue hits the 1200 mark at t = 4 , it makes sense to move an additional resource to

this queue since it has a faster service rate and the convergence of materials creates

a sense of increasing arrival rate (hence increasing utilization). We observe that this

decision decreases the material convergence at the solicited donations queue down

to 7 by the next time interval. Then over the next three time intervals we observe

the material convergence increase in both queues. Then at time interval t = 8 the

material convergence at the solicited donations queue hits 1200 again and results

in a volunteer to be moved to the solicited donations queue. The reason behind

this behavior repeating is due to the material convergence increasing over time and

warranting additional resources periodically.
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Table 5.4: Case 3 Material Convergence: System Utilization at 1

Resources Utilization Queue Length Throughput

t cu,t cs,t ρu,t ρs,t Lu,t Ls,t THu,t THs,t
∑

i THi, t

1 6 4 1.04 1.04 0.0 0.0 9,568.22 9,569.58 19,137.80

2 6 4 1.04 1.04 426.81 425.44 9,595.25 9,595.25 19,190.49

3 6 4 1.04 1.04 826.56 824.56 9,595.25 9,595.25 19,190.49

4 5 5 1.25 0.83 1,226.36 1,224.36 7,996.18 11,210.23 19,206.41

5 6 4 1.04 1.04 3,224.27 7.26 9,595.25 9,575.87 19,171.11

6 6 4 1.04 1.04 3,622.17 426.15 9,595.25 9,595.25 19,190.49

7 6 4 1.04 1.04 4,019.97 825.56 9,595.25 9,595.25 19,190.49

8 5 5 1.25 0.83 4,417.78 1,225.36 7,996.18 11,211.23 19,207.41

9 6 4 1.04 1.04 6,414.69 7.26 9,595.25 9,575.87 19,171.11

10 6 4 1.04 1.04 6,811.58 426.15 9,595.25 9,595.25 19,190.49

11 6 4 1.04 1.04 7,208.39 825.56 9,595.25 9,595.25 19,190.49

12 5 5 1.25 0.83 7,604.19 1,225.36 7,996.18 11,211.23 19,207.41

Figures 5.2 and 5.3 compare the material convergence for unsolicited and so-

licited donations respectively, for all 3 cases. Comparing the material convergence

levels, we observe that the convergence experienced at the unsolicited donations

queue is higher than the solicited donations in all cases. This is because more re-

sources are allocated to the solicited donations queue due to having a higher service

rate and equivalent arrival rate. For the solicited donations queue, we observe the

oscillating behavior for case 3, because the allocation of resources shifts based on

convergence. For case 1, both queues have a utilization well below 1, and hence no

major convergence issues are observed. For case 2, both queues have a utilization

equal to or above 1, and hence we observe a steadily increasing convergence for both

queues.
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Figure 5.2: Material Convergence for Unsolicited Donations

Figure 5.3: Material Convergence for Solicited Donations

In Table 5.5 we compare the throughput results of optimally allocating resources

in each interval to a stationary policy that is based on the arrival and service rates

alone. Given the unsolicited donations sorting rate of 200 per hour and the solicited

donations sorting rate of 300 per hour, the stationary policy makes the assignment

of cu,t = 6 and cu,t = 4, which makes utilization of both queues 1.04. The stationary

policy does not take into account the effect of material convergence on resource allo-

cation and throughput. We observe that the SOP policy allocation performs better

from a total high-priority item perspective, since it takes into account the combined
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impact of material convergence and volunteer allocation on throughput. Moreover,

it is important to note the difference in the material convergence evolution for the

SOP and stationary policies as it is given in Figure 5.5 and Table 5.5. In the SOP

policy, the solicited donations queue length does not grow beyond 1300. This is due

to the pattern of allocation where every 4 time intervals, an additional resource is

allocated to the solicited donations queue due to the effect of increasing material

convergence. The material convergence at the unsolicited queue keeps increasing

since its utilization never falls below 1. For the stationary policy, we observe that

the material convergence in both queues increase steadily over time. This is because

the initial allocation makes the utilization of both queues over 1, for all time periods.

Table 5.5: Comparison of SOP and Stationary Policy

SOP Policy Stationary Policy
t Lu,t Ls,t

∑
i THi, t Lu,t Ls,t

∑
i THi, t

1 0.0 0.0 19,137.80 0.0 0.0 19,135.80
2 426.81 425.44 19,190.49 426.81 425.44 19,190.49
3 826.56 824.56 19,190.49 826.56 824.56 19,190.49
4 1,226.36 1,224.36 19,206.41 1,226.36 1,224.36 19,190.49
5 3,224.27 7.26 19,171.11 1,625.17 1,623.17 19,190.49
6 3,622.17 426.15 19,190.49 2,023.97 2,021.97 19,190.49
7 4,019.97 825.56 19,190.49 2,422.77 2,420.77 19,190.49
8 4,417.78 1,225.36 19,207.41 2,422.77 2,420.77 19,190.49
9 6,414.69 7.26 19,171.11 2,821.57 2,819.57 19,190.49
10 6,811.58 426.15 19,190.49 3,220.37 3,218.37 19,190.49
11 7,208.39 825.56 19,190.49 3,618.17 3,616.17 19,190.49
12 7,604.19 1,225.36 19,207.41 4,015.98 4,013.98 19,190.49

Total 230,244.21 230,231.22

Material convergence and resource allocation decisions are interdependent due to

the change in the probability that the queue is empty. When material convergence

increases, the probability that the server of this queue will ever be idle decreases

significantly. This is why the SOP moves resources to the solicited donations queue
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when the material convergence increases in that queue, which results in a higher

total throughput. We observe the same trade-off at multiple points in time as the

queue lengths grow.

One of the important takeaways from experiment set 1 is that the service rate,

the arrival rate and the level of convergence effect the resource allocation decisions

even for the most simple case where ht = 100%, ∀t ∈ T , item priorities are equal and

arrival rates are stable. Therefore, it is crucial to understand the effect of material

convergence and provide practitioners with analytic tools to evaluate the impact of

possible decisions.

5.4.2 Experiment Set 2: Effect of HP Item Percentage

In experiment set 2, we compare 4 different cases where the high priority (HP)

item percentage is 0.8, 0.6, 0.4 and 0.2. The rest of the parameters are same as

experiment 1. Table 5.6 summarizes the parameters. We discuss the evolution of

volunteer assignments, the material convergence at each queue and the throughput

of the system for each case.

Table 5.6: Experiment 2: Parameters

Parameters Case 1 Case 2 Case 3 Case 4
ht, ∀t 0.8 0.6 0.4 0.2
λs,t, ∀t 1250/hr
λu,t, ∀t 1250/hr
µs,t, ∀t 300/hr
µu,t, ∀t 200/hr
Ct, ∀t 10

In Tables 5.7, 5.8, 5.9 and 5.10 we report the resource allocation, material con-
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vergence and throughput results for ht = 0.8, 0.6, 0.4, 0.2 cases respectively. First

observation is the difference in the volunteer assignment decisions (See Table 5.11

for a comparison). In particular the frequency of an additional resource allocation to

the solicited donations queue increases as the HP item percentage of the unsolicited

donations increase. This is due to the material convergence (queue length) at the

solicited queue becoming more and more important, due to the HP item throughput

from the unsolicited queue decreasing. Next, we compare the material convergence

behavior and observe that as the HP item percentage decreases for the unsolicited

donations, the material convergence in this queue increases significantly. In the

ht = 0.2 cases, this behavior is at its most extreme. For ht = 0.2 the unsolicited

donations pile up significantly, while the solicited donations have an average of 7

items in queue. At this point, the solicited donations queue is the top priority and

resources are allocated such that the utilization of this queue is at 80%. Since going

below 80% utilization does not result in a notable increase in the throughput, the

remaining resources are allocated to the unsolicited queue. Finally, we compare the

HP item throughput from each queue and the total expected HP item throughput

(See Figure 5.4 for an overall throughput comparison). We observe that there is

an increase in solicited donations queue throughput when ht drops from 0.8 to 0.6.

This is due to more resources being allocated to the solicited donations queue. How-

ever, as ht drops further and more resources are allocated to the solicited donations

queue, we observe that the throughput of the solicited donations queue remain at

the same level. This is because allocating more and more resources to the solicited

donations queue has diminishing returns on throughput.
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Figure 5.4: Cumulative Throughput from All Donations

Figure 5.5 and 5.6 show the material convergence at the unsolicited and solicited

donation queues respectively. There are two take-aways from these graphs: first,

the material convergence at the unsolicited donations queue steadily increases over

time for any HP percentage level. This happens because the system prioritizes the

solicited donations queue since it is faster, has the same arrival rate and has equal

or higher proportion of high-priority items. The second important take away is the

material convergence pattern observed for the solicited donations queue. When the

queue length of solicited donations hit a certain level (determined by the HP per-

centage of the unsolicited donations), this queue warrants an additional volunteer.

The required queue length is lower for lower HP percentage.
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Figure 5.5: Unsolicited Donations Material Convergence

Figure 5.6: Solicited Donations Material Convergence

Next we compare the local optimum allocation patterns with the stationary

policy of (cu,t, cs,t) = (6, 4), ∀t. Table 5.11 compares the overall HP item throughput.

Here we observe that, the stationary allocation becomes less and less effective as

HP% increases. This is because the stationary allocation only considers the initial

arrival and service rates and disregards the effects of both the HP% and material

convergence.
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Table 5.11: Stationary Policy Comparison

Case SOP Policy
∑

i THi, t Stationary Policy
∑

i THi, t
ht = 0.8 208,179.00 207,208.24
ht = 0.6 185,158.00 184,185.25
ht = 0.4 162,132.00 161,162.27
ht = 0.2 139,114.00 138,139.28

5.5 Conclusions

This chapter quantifies material convergence of both solicited and unsolicited in-

kind donations using a transient queuing model. Convergence of donated items is

a critical and common phenomenon recorded in almost all major disasters. Often

the material convergence happens in such high volumes that donations block inter-

national airports, fill warehouses and stadiums and divert significant resources from

other disaster response tasks. In addition to the complexities created by volume, un-

solicited donations containing useless items exasperate the problem greatly. These

items that have no use for the relief efforts take away significant volunteer capacity.

We model the donation arrivals and sorting for both solicited and unsolicited do-

nations as separate multi-server transient queues over multiple periods. We discuss

efficient ways to solve this model for high disaster response parameters. We esti-

mate model parameters based on our interviews and data from the Salvation Army

and Goodwill. In our first numerical experiment set we investigate the relationship

between material convergence and resource allocation decisions. We observe that

material convergence and resource allocation decisions are inter-dependent. The

numerical experiments showed the interaction between material convergence and al-

location of resources. Next we investigate the effects of varying high-priority goods

percentage of unsolicited donations and whether there is a point under which re-
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source allocation to unsolicited donations is not warranted.

In our numerical studies, we investigate the relationships between resource alloca-

tion decision, material convergence and high-priority item percentage of unsolicited

donations. We use high-priority item throughput maximization as a performance

measure in our experiments and we observe that some decisions that increase the

HP throughput can result in very high material convergence levels. It is important

to note that material convergence increasing to very high levels can be an unde-

sired result in practice. Hence, policies that maximize HP item throughput with

no regard to material convergence may not be optimal. Using models like the one

proposed in this chapter can help decision makers observe such trade-offs and make

decisions accordingly.

For future studies, we will also investigate how resource allocation decisions

are impacted if the arrival rate of solicited and unsolicited donations vary between

periods. We will model different patterns (both increasing, both decreasing and

opposite) to observe how the relationship impacts resource allocations.
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Chapter 6

Transient Analysis of Relief

Center Performance

6.1 Introduction

At the disaster site, the relief items are distributed to victims through relief centers

(RCs) with multiple points of distribution (PODs), each staffed with volunteers dis-

tributing relief supplies. These RCs can be setup and staffed in various ways and the

RC design and staffing can have a big impact on performance, measured by victim

waiting times and RC throughput. In Chapter 3, we introduced a queuing model

and a solution algorithm that can analyticaly solve for the performance measures

for any layout design.

The development of an analytical solution to the queuing network model of an

RC is very practically beneficial, since it allows for the fast and computationally

efficient evaluation of alternative designs. However, assumptions related to Pois-

son arrivals and exponential service can be restrictive. Moreover, the analytical
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formulas provide the steady state system measures. Therefore, in this chapter we

develop simulation models to answer the following research questions: (i) What is

the impact of non-stationary arrivals on RC performance?, (ii) What is the impact

of relaxing assumptions related to Poisson arrivals and exponential service on RC

performance?, (iii) What are insights obtained from transient analysis of RC per-

formance?

To answer these research questions, we build simulation models of each RC de-

sign. In specific we use Arena R©, a discrete event simulation software (version 15.0)

to relax the Markovian assumptions, model non-stationary arrival patterns and an-

alyze the transient behavior of the relief distribution operations.

The rest of the chapter is organized as follows. Section 6.2 reviews literature on

simulation models for disaster response operations. Section 6.3 describes the relief

center designs and the simulation models representing the different relief center

designs. Next, in Section 7.4 we validate the simulation models and investigate the

impact of relaxing stationary arrivals and Markovian assumptions. Finally, Section

6.5 concludes this chapter.

6.2 Literature Review

Simulation models are widely used in the disaster response literature to model victim

(or agency) behavior, understand complex systems and use simulation-optimization

models to optimize performance for a variety of disaster response operations.

Simulation-Optimization Models: Yang et al. (2013) use simulation optimiza-
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tion techniques to analyze the resource allocation problem under equity. Zou et al.

(2005) propose a simulation-optimization model for evacuation plans for hurricanes

in Maryland. Niessner et al. (2017) use a simulation-optimization approach to an-

alyze the operational policy of field hospitals following mass casualty events, while

Ahmed and Alkhamis (2009) use simulation- optimization to design a decision sup-

port tool for an emergency department. Min et al. (2005) propose an analysis

framework to combine simulation, system dynamics, functional models, and non-

linear optimization algorithms to analyze inter-dependencies of national infrastruc-

tures. In this study, we do not integrate simulation and optimization models and

use discrete event simulation solely.

Agent Based Simulation Models: Aros and Gibbons (2018) use agent based

simulation to analyze the effect of different communication lines between agencies

on response times. Y.Wang et al. (2012) use agen-based simulation to model coordi-

nation between multiple response agencies during mass casulty incidents. Nagarajan

et al. (2012) use agent based simulation to model the impact of warning channels

on evacuation success. Chen and Zhan (2008) use agent based modeling to evaluate

evacuation strategies. Fikar et al. (2017) use agent based simulation optimization

to select optimal distribution points for disaster relief. Hawe et al. (2015) use agent-

based simulation for resource allocation between two disaster sites. Agent based

simulations are mainly used to integrate entity characteristics into the model. In

this study we are interested in the system-wide behavior, hence we do not use an

agent based simulation model.

Discrete Event Simulation Models: Pitana and Kobayashi (2009) use discrete

event simulation to evaluate scenarios related to ship evacuation for tsunami prepa-



159

ration. Hobeika et al. (1994) propose a simulation based decision support model

for developing evacuation plans for nuclear power stations. Chiu et al. (2008) use

simulation to evaluate traffic evacuation strategies. Albores and Shaw (2008) use

discrete event simulation to understand resource positioning requirements for differ-

ent incident and locations. de Silva and Eglese (2000) propose a simulation model

connected to a geographical information system for enhanced evacuation modeling.

Reshetin and Regens (2003) use simulation to model a bio-terrorism attack and

possible dispersion scenarios, and Das et al. (2008) present a large-scale simulation

model for the stochastic propagation of an influenza pandemic. Jain and McLean

(2003) propose a framework for integration of modeling, simulation, and visualiza-

tion tools for emergency response. This branch of the literature is the most relevant

to our study. The main difference between our work and the other discrete event

simulation papers in the literature is the focus on relief center design in this work.

To our knowledge, there are no prior simulation papers on relief center design.

6.3 System Description

The first layout we consider has been adapted from The Guide to Points of Distribu-

tion by FEMA and US Army Corps of Engineers (Federal Emergency Management

Agency, 2008) as a representation of current practice for relief center setup (See

Figure 6.1). Note that in this layout, the whole crowd accesses the RC from the a

single point of entry, all 4 points of distribution (POD) within the RC distribute all

four of the available items and the PODs are aligned in a linear fashion.
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Figure 6.1: RC Layout: Current Practice (Federal Emergency Management Agency,
2008)

The second layout we consider is an alternative design we propose (shown in

Figure 6.2) where we aim to dissipate the crowd by creating multiple access points

and variability in routings via item assignment. Note that item assignment can: (1)

create different routing options to dissipate the crowd, (2) influence arrival rate to a

POD based on the assigned items and their associated demand, (3) balance service

times at the PODS. In this design, the overall area, the number of distribution

PODs and the width of the pedestrian walkways are kept the same as prescribed in

Federal Emergency Management Agency (2008).
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Figure 6.2: Proposed RC Layout

We model each RC design as a queuing network where victims arrive, queue and

receive their supplies. Each POD in a relief center is accessed via an entry walkway

and exited via an exit walkway. In case of multiple PODs, there exists connect-

ing walkways between the PODs. The walkways (entry, exit, connecting) and the

points of distribution within the relief center design are all modeled as finite capacity

queues. The service rate of a walkway queue represents the rate at which victims

can move within the walkway, while the service rate of a POD represents the rate

at which the relief items can be distributed. Note that, the rate at which victims

can move within the walkway decrease as congestion increases. This phenomenon

is known as the “crowd effect” and has been document via empirical studies by

Tregenza (1976). On the other hand, the distribution rate of each relief item is

only dependent on its type and is unaffected by the level of crowding. If multiple

items are being distributed from a POD, then the time it takes to distribute these
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items is the sum of distribution time for each item at the POD. We will refer to this

assumption as the “additive service time” assumption.

Figure 6.3 shows the three layouts we analyze in this Chapter. We assume that

the four items being distributed from the relief center are blankets (B), tarpaulins

(T), kitchen sets (K) and sleeping mats (S). Layout 1 represents the current prac-

tice adapted from FEMA, where all items are available at all four PODs and all

victims access the RC from the same entry point. Layouts 2 and 3 both represent

the alternative layouts, where there are multiple entry points and the crowd can

be dissipated based on the items each victim needs. The difference between layout

alternative 2 and 3 is the item assignment to PODs.

Figure 6.3: Layout Alternatives

Figure 6.4 shows the queuing network representation associated with all three

layouts. Note that, in layout 1, a victim who needs all 4 items will need to go

through 4 queues and in layouts 2 and 3, a victim who needs all four items will need

to go through 7 queues.
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Figure 6.4: Queuing Network Model of the Layout Alternatives

Next, we describe the simulation models for the three layouts previously de-

scribed. Figure 6.5 depicts the simulation model for RC layout 1, and Figure 6.6

depicts the simulation model for RC layout 2 and 3. For layouts 2 and 3, the logic

of the model is similar, however the parameters representing demand and service

time experienced at each POD changes in parallel to the item assignments. We next

discuss the modeling logic in detail.

Figure 6.5: Arena Simulation Model of Layout 1
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Figure 6.6: Arena Simulation Model of Layouts 2 and 3

6.3.1 Modeling the Queues in the Network

There are two types of queues in the network, walkway queues with state depen-

dent service rates and distribution queues with state independent service rates. Let

i ∈ N represent the queue in the network, let Ki represent the capacity of queue i

and let µi(ki) represent the hourly service rate at queue i.

Distribution queues: The distribution queues model the relief item distribution

rate at each POD. Each POD is assumed to be staffed with a single volunteer, where

the distribution rate is only dependent on the subset of items being distributed at

the given POD. To model the queuing behavior of queue i, we use a Hold-Process-

Hold-Release logic in Arena R©, where the first hold module assures that no more

than one victim is served at a time and the second hold module assures that queue

i+1 has capacity before the victim is released to the next queue. If the downstream

queue is full at the time of service completion, then the victim is blocked in ser-



165

vice and no other victim can be served until the downstream queue has a service

completion (blocking after service). Note that, since all queues have finite capacity,

blocking can propagate through the network, starting from the end of the network

towards the beginning. This blocking logic is critical in determining the system

throughput. If an arrival to the system finds the first queue full, than the arrival

is rejected. This is ensured via the decide modules shown as 1.A and 2.A in both

Figures 6.5 and 6.6. The process module is modeled as a seize-delay type, where

the volunteer resource is seized throughout the service time. The releasing of the

volunteer is controlled by a separate release module at the end of the sequence to

ensure the service gets blocked if the downstream queue is at capacity.

Walkway queues: The walkway queues are modeled based on the same Hold-

Process-Hold-Release logic with one difference being the state dependent service

rates to model the effects of congestion. According to empirical studies by Tregenza

(1976), the traveling speed V (ki) at which victims can move on the walkway, ex-

ponentially decreases with the number of occupants (ki) on the walkway, for any i

representing a walkway queue. Let L represent the walkway length and let W rep-

resent the walkway width. The empirical studies report the following parameters:

• The victim movement comes to a halt when the crowd density on the walkway

approaches 5 people per square meter, resulting in an effective capacity of

C = b5LW c.

• The average walking speed is (A = 1.5m/s).

• The speed for the density of a = 2 victims per square meter is Va = 0.64m/s.

• The speed for the density of b = 4 victims per square meter is Vb = 0.25m/s.
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Figure 6.7: Walking Speed Changes by Number of Victims on Walkway

Based on these empirical parameters Cheah and Smith (1994), Smith (1994)

characterize the walking speed as given by Equation 6.1, while Figure 6.7 shows the

graphical representation of the speed and crowd relationship.

V (k) = A exp

{
−
(
k − 1

β

)γ}
β =

a− 1[
ln
(
A
Va

)](1/γ)

γ =
ln
[
ln(Va/A)
ln(Vb/A)

]
ln
(
a−1
b−1

) (6.1)

This relationship between walking speed and congestion have been modeled via

different approaches in the literature. These approaches mainly fall into three cat-

egories: (1) Microscopic models, which take into account dynamics between pedes-

trians, (2) Macroscopic models that focus on the behavior of the crowd as a whole,

and (3) Mesoscopic models that combine the properties of both macroscopic and mi-

croscopic modeling techniques. See Xiaoping et al. (2009) for a discussion on these

categories. Modeling walkway pedestrian flow via queuing falls under the macro-
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scopic models category. The queuing literature has also taken varying approaches

in modeling pedestrian flow on a walkway. Cruz et al. (2003), Cheah and Smith

(1994), Smith (1991) models the pedestrian flow via a state dependent M/G/C/C

queues, while Woensel et al. (2005) model it via state dependent M/M/1, M/G/1,

G/G/1 queues.

In this chapter we use a state dependent M/M(k)/1/K queue to model the walk-

ways. The state is the number of victims present in the walkway, which determines

the current walkway speed V (k) (as given by Equation 6.1), which is then used

to calculate the service rate based on the walkway length. In the M/M(k)/1/K

model of pedestrian flow, the queue length performance measure is anologous to

the number of people on the walkway and the waiting time performance measure is

anologous to the pedestrian walking speed. Hence, we would expect to see a similar

relationship to the one observed by Tregenza (1976) between these two measures.

Figure 6.8 shows the graph of the relationship between the queue length and the

waiting time obtained from solving the state dependent M/M(k)/1/K model. Note

that steady state equations were used to obtain the graph and both W̄ and L̄ are

outputs for different arrival rates. As seen, the M/M(k)/1/K model represents the

crowd density and pedestrian movement relationship accurately.
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Figure 6.8: Effects of Congestion: M/M(k)/1/K Queuing Model

6.3.2 Modeling Victim Routing

Victim routing is modeled by decide modules in Arena R©, using the n-way by chance

option. Below we describe the probabilistic routing for each layout design:

In layout 1, all PODs distribute all available items. Hence, victims choose one

of the four PODs with equal probability. This is modeled using a 4-way by chance

decide module in Arena R© with equal probabilities of p = 0.25. In layouts 2 and 3,

the design is symmetric. Hence, following the triage queue, the victims are divided

into two streams using a 2-way by chance decide module in Arena R© with equal

probabilities of p = 0.5. In these designs, the first and second POD in the routing

distributes different items. We utilize a second decide module, and route the victims

probabilistically based on the demand for each item pair.
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6.3.3 Model Outputs

There are two main performance measures we are interested in: (1) the average

waiting time of victims to receive supplies at the RC, and (2) the throughput of the

RC. For all models, we record the time stamp of entry, when a victim first enters the

relief center using a record module. Next, we record the time stamp of the victim

exiting the relief center at the end of the network and record the total time spent

at the RC for each victim. We then utilize a read/write module to export all data

for victim waiting times as a csv file for analysis.

In our models, we allow for arrival rates higher than the capacity. Hence, in

certain cases, the RC is not able to serve all arrivals. Therefore, in addition to the

throughput, which is defined as the number of victims that completed service at the

RC within a given time period τ , we also track the number of victims that arrived

and could not get into the RC, as well as the total number of arrivals. To obtain

these statistics, we use the statistics module combined with a record module to

define the described counters. Lastly, we track the probability of an arriving victim

finding the first queue full (or the probability of an arriving victim being denied

service), represented as a1.

6.4 Design of Experiments

In this section, we present numerical experiments to answer our research questions.

We first describe the parameter estimation based on Nepal earthquake data and

validate the simulation models. In Section 6.4.1 we present the input parameters

and validate the simulation models. Then, in Section 6.4.2 we analyze the effect

of non-stationary arrival schedules on RC performance for the 3 different layout
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configurations. Lastly, in Section 6.4.3 we relax the Markovian assumptions and

experiment using different probability distributions for both the inter-arrival and

service times.

6.4.1 Inputs and Validation

The arrival rate to the relief center and service rate at the PODs are the input

parameters we estimate using Nepal earthquake relief distribution data. This data

was obtained from the Humanitarian Data Exchange Database (an open platform

for humanitarian data sharing: https://data.humdata.org/), which was prepared by

contributions from the International Federation of Red Cross (IFRC), the United

Nations High Commissioner for Refugees (UNHCR), Nepal United Nations Office

for the Coordination of Humanitarian Affairs (OCHA), the Nepal Ministry of Home

Affairs, and the Nepali Police. In Table 6.1 we summarize the arrival and service

rate parameters estimated using the data obtained. The details of data analysis are

given in Chapter 3.

Table 6.1: Parameters Used in Simulations

Parameter Value

Arrival Rate λ = 58/hour

Service Rate by Item µT = 10.7/hr, µB = 31.6/hr,

µK = 10.2/hr, µS = 20.2/hr

Service Rate for Walkways Exp with parameter = (216 ∗ exp(−0.024 ∗ k))

Queue Capacity Ki = 50, ∀i

Note that the service rate function for walkways in Table 6.1 is based on the for-

mulas given in Section 6.3.1. For the service rate at PODs, we use the distribution
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rate per item as given in Table 3.3 and assume the rates are additive. Additivity is

a reasonable assumption (if not necessary) for items like tarpaulins and kitchen sets

where handling takes considerable time. Note that for PODs at which not all ar-

riving victims need all items, we use a weighted average to calculate the service rate.

Also note that, the overall arrival to the RC is the same for all designs. However,

the arrival rate to each queue may differ depending on the demand for items being

distributed at a particular POD. To calculate arrival rate per POD we use the data

provided in Table 3.2 coupled with the assumption that the average household size is

5 victims per household. Based on this data, we assume that one fifth of all arriving

victims need tarpaulins and kitchen sets, two fifths need blankets and all arriving

victims need sleeping mats.

Table 6.2: Items Required per Household

Item Conversion Parameter

Tarpaulin 1/Household

Blanket 2/Household

Kitchen Sets 1/Household

Sleeping Mat 5/Household

Number of Replications: The minimum number of replications needed is based

on the desired confidence interval range and level (Kelton et al. (2004)). The formula

used to calculate the replication number is given by Equation 6.2, where n repre-

sents the number of replications, s represents the sample standard deviation, and h

represents the desired confidence interval range. In our numerical experiments we

use a 95% confidence interval level and set h = 2 hours for the average waiting time
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measure. We first take a sample run and calculate the sample standard deviation.

Then we use the formula to compute the minimum number of replications.

n = t2n−1,1−α/2
s2

h2
(6.2)

The Warm-up Period: For transient analysis, we do not use a warm-up period

and the terminating condition used is the length of the distribution period. For

validation, we do a steady state analysis, for which we need to choose an appro-

priate warm-up length such that the system will reach its steady state. The time

the system reaches steady state can vary based on the design and parameters used.

Hence, for each experiment, we take a long sample run (200 days) and plot both

the throughout and average waiting time measures over time to decide the required

warm-up period for each experiment.

We validate the simulation model of all three layouts by comparing the simu-

lation results to the analytical results obtained under assumptions of exponential

service rates, Poisson arrivals and steady state estimates. To obtain steady state

performance measures, the simulations were run for a 100 replications, each repli-

cation for 20 days with a 10 day warm-up period. From the results, we conclude

that the simulation models are a valid representation of the RC layouts. Appendix

1 in section 6.6 provides a detailed discussion of numerical studies related to model

validation.

6.4.2 Impact of Non-Stationary Arrivals

In this section we investigate the impact of non-stationary arrivals on the perfor-

mance of all three layouts. The analytical model assumed Poisson arrivals with a
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steady arrival rate of 58 victims per hour. However, during the disaster aftermath

arrival rates of victims can vary daily for the following reasons:

• The time elapsed after the disaster: Immediately after a disaster, the

majority of the efforts are usually focused on search and rescue operations

and relief distribution can take lower priority in the first few days of disaster

response.

• Demand peaks: Victim arrival rates can vary and peak at certain times. This

can have many reasons including disaster aftershocks, changes in environment

and number of RCs currently open.

In addition to modeling non-stationary arrivals, we also analyze the transient

behavior of relief distribution at the RCs. We specifically focus on the first 10 days

after the disaster, since this is the critical period for relief distribution efforts. We

use a terminating simulation model, where the model terminates after 10, 16 hour

distribution days with no warm up period. We analyze three different non-stationary

schedules as listed in Table 6.3. We keep the total victim arrival over the 10 days

equal for all schedules, but vary the daily rates. To model these schedules, we use

the schedule module in Arena R©.

Table 6.3: Arrival Schedules

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

Schedule 1 (per hr) 29 29 58 58 87 116 87 58 29 29

Schedule 2 (per hr) 14.5 29 145 145 101.5 58 29 29 14.5 14.5

Schedule 3 (per hr) 29 29 116 29 29 29 174 87 29 29

In schedule 1, we model an arrival pattern where fewer arrivals happen the first 2

days while the search and rescue operations are going on. Then for the next 6 days,

the arrival rates are much higher as the victims are looking to collect the supplies
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Figure 6.9: Arrival Schedules

they need. Then, towards the end of the period, the arrival rates are lower again. In

schedule 2, we model a similar pattern as schedule 1, however the peak rates expe-

rienced in schedule 2 are considerably higher. In schedule 3, we model a multi-peak

arrival pattern, where unforeseen events such as disaster aftershocks or changes in

the disaster aftermath conditions cause peaks in victim arrivals. Schedule 3 also

assumes lower arrival rates for the beginning and end of the 10 day period. Figure

6.9 compares the three arrival schedules.

Figure 6.10 compares the daily average throughput and average waiting time

measures for all three layouts under all arrival schedules. Tables 6.9, 6.10 and 6.11

in the Appendix 3 in section 6.8 provide the detailed results.

For layout 1 we make the following observations:

• The maximum throughput for layout 1 (due to the bottleneck rate) is an

average of 27 per hour. As long as the minimum daily arrival rate for a
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schedule is greater than or equal to 27, there will be no throughput loss. In

addition, since 27 per hour represents the maximum capacity, arrival rates

much higher will not result in a throughput increase. As a result, schedules

1 and 3 do not impact the throughput measure, while schedule 2 results in a

loss in throughput.

• The average waiting time is lower for the first few days of both for the sta-

tionary and non-stationary arrival schedules due to the system being empty

at the beginning of the simulation.

• The average waiting time is lower for the non-stationary schedules due to the

lower arrival rate days having lower waiting times due to lower congestion.

Note that the higher arrival rate days, cannot create higher congestion due

to the finite capacity of the network. However, this comes at the expense of

loss in throughput, resulting in 59, 340 and 25 victims not being able to get

service from this RC layout under schedules 1, 2 and 3 respectively over the

course of the 10 days.

For layout 2 we make the following observations:

• The maximum throughput for layout 2 (due to the bottleneck rate) is an

average of 47 per hour. Note that, this is a much higher maximum throughput

than layout 1. Since all 3 of the non-stationary schedules have days with

arrival rates smaller than 47 per hour, under all three schedules, the average

throughput from layout 2 decreases. Among all arrival schedules, schedule 2

results in the highest throughput loss.

• The average waiting time is lower for the first few days for both for the sta-

tionary and non-stationary arrival schedules due to the system being empty
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at the beginning of the simulation.

• The average waiting time is lower for all the non-stationary schedules due to

the lower arrival rate days having lower waiting times due to lower congestion.

Note that the higher arrival rate days, can not create higher congestion due

to the finite capacity of the network. However, this comes at the expense of

loss in throughput, resulting in 875, 2098 and 1343 victims not being able to

get service from this RC layout under schedules 1, 2 and 3 respectively over

the course of the 10 days.

For layout 3 we make the following observations:

• The maximum throughput for layout 3 (due to the bottleneck rate) is an

average of 33.6 per hour. Note that, this is higher than layout alternative

1 and a lower than layout alternative 2. Since all 3 of the non-stationary

schedules have days with arrival rates smaller than 33.6 per hour, under all

three schedules, the average throughput from layout alternative 3 decreases.

Among all arrival schedules, schedule 2 results in the highest throughput loss

for layout 3.

• The average waiting time is lower for the first few days of both for the sta-

tionary and non-stationary arrival schedules due to the system being empty

at the beginning of the simulation.

• The average waiting time is lower for all the non-stationary schedules due to

the lower arrival rate days having lower waiting times due to lower congestion.

Note that the higher arrival rate days, can not create higher congestion due

to the finite capacity of the network. However, this comes at the expense of

loss in throughput, resulting in 162, 668 and 134 victims not being able to get



177

service from this RC layout under schedules 1, 2 and 3 respectively over the

course of the 10 days.

We conclude that, non-stationary arrivals do impact the average throughput and

average waiting time measures. However, under a given arrival schedule, dispersing

the crowd and leveraging item assignment to PODs still improves both performance

measures.

Figure 6.10: Performance Comparison: Non-stationary Arrivals
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6.4.3 Impact of Markovian Assumptions

In this section, we investigate the impact of the Markovian assumptions (exponen-

tially distributed service and inter-arrival times) on the results and insights obtained

from the analytical modeling of relief center designs. We relax the Markovian as-

sumption for both the service time distribution at the PODs and the inter-arrival

time distribution of the victims.

We use Gamma, Weibull, Lognormal and Hyperexponential distributions to

model the service and inter-arrival times. For all cases, we equate the first moments

(the mean) of the distributions. Then we choose the second moments (variance)

to consider low-medium-high variability cases. Hopp and Spearman (2008) defines

low variability distribution as having a coefficient of variation (CV ) less than or

equal to 3/4, medium variability as having a CV between 3/4 and 4/3 and high

variability as having a CV greater than or equal to 4/3. As it follows, the Marko-

vian model represents a medium variability case. To model low variability, we use

Gamma and Weibull distributions with CV = 1/3 and to model high variability we

use Log-normal and Hyper-exponential distributions with CV = 4/3. In section 6.7

(Appendix 2) , we provide the formulas for mean and variance for all four distribu-

tions, which we used to obtain the parameters to define the probability distributions.

Tables 6.4 and 6.5 below summarize these parameters.
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Table 6.4: Gamma and Weibull Distribution Parameters (CV = 1/3)

Gamma Distribution Weibull Distribution

Shape Parameter Scale Parameter Shape Parameter Scale Parameter

Inter-arrival Time α = 9 β = 0.001915 k = 3.3035 λ = 0.0192

Service at Triage α = 9 β = 0.000926 k = 3.3035 λ = 0.0093

Service: Layout 1 PODs α = 9 β = 0.016388 k = 3.3035 λ = 0.1644

Service: Layout 2 PODs 1&3 α = 9 β = 0.021164 k = 3.3035 λ = 0.2123

Service: Layout 2 PODs 2&4 α = 9 β = 0.004744 k = 3.3035 λ = 0.0476

Service: Layout 3 PODs 1&3 α = 9 β = 0.010915 k = 3.3035 λ = 0.1095

Service: Layout 3 PODs 2&4 α = 9 β = 0.006606 k = 3.3035 λ = 0.0663

Table 6.5: LogNormal and HyperExponential Distribution Parameters (CV = 4/3)

LogNormal Distribution Hyper Exponential Distribution

Mean Variance (p1, p2) (λ1, λ2)

Inter-arrival Time µ = 0.017241 σ = 0.022988 (0.5,0.5) (154.0953,35.7229)

Service at Triage µ = 0.008333 σ = 0.01111 (0.5,0.5) (318.8179,73.9094)

Service: Layout 1 PODs µ = 0.147492 σ = 0.196656 (0.5,0.5) (18.0132,4.1759)

Service: Layout 2 PODs 1&3 µ = 0.190476 σ = 0.253968 (0.5,0.5) (13.9483,3.2335)

Service: Layout 2 PODs 2&4 µ = 0.042698 σ = 0.056931 (0.5,0.5) (62.2226,14.4247)

Service: Layout 3 PODs 1&3 µ = 0.098231 σ = 0.130975 (0.5,0.5) (27.0464,6.2700)

Service: Layout 3 PODs 2&4 µ = 0.059453 σ = 0.079271 (0.5,0.5) (44.6876,10.3596)

We run the Arena R© models for each layout alternative, for each distribution

specified in Tables 6.4 and 6.5. The experiments are run for a 100 replications,

each replication is run as a transient model terminating at 10 days, each day com-

posed of 16 hours. Figure 6.11 compares the average throughput and waiting time

performance measures from the simulation experiments, for Exponential, Gamma,

Weibull, Lognormal and Hyper-exponential distributions used for inter-arrival and

service times for layouts 1, 2 and 3 respectively. The details of the numerical results

can also be found in Tables 6.12, 6.13 and 6.14 in the Appendix. From these results

we conclude that both the performance measures themselves, as well as their com-

parisons are robust to the chosen probability distribution and the level of variability.
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Figure 6.11: Performance Comparison: Inter-arrival and Service Time Distributions

6.5 Conclusions

In this chapter we analyze the relief center designs introduced in Chapter 3 and

investigate the impact of the Markovian assumptions as well as the steady state

analysis. We model the three relief center designs using discrete event simulation

model built in Arena R©.

We first relax the stationary arrivals assumption and model three different sched-
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ules of arrivals as non-stationary Poisson arrivals to the relief centers. We conclude

that varying arrival rates over time impact the throughput and waiting time mea-

sures of the relief centers. However, crowd dissipation strategies and item assignment

to RCs remain to be impactful strategies in improving RC performance.

Next, we relax the Markovian assumption for both the inter-arrival time and

the service time distributions. We use Gamma, Weibull, Log-Normal and Hyper-

Exponential distributions with equal mean under high and low variance compared

to the exponential distribution. We conclude that both the average throughput and

the average waiting time performance measures are very robust to the chosen prob-

ability distribution.
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6.6 Appendix 1: Numerical Details of Validation

This appendix discusses numerical details of the validation of the simulation model.

We validate the simulation model of all three layout alternatives by comparing the

performance measures obtained from simulation models with the analytical model

results.

It is important to note that the analytical model assumes utilization of all queues

in the network to be below 1. However, the input parameters we use for the numer-

ical studies have an arrival rate higher than the network capacity. To handle such

cases, the analytical model’s outer loop runs on a grid search and picks the largest

a1 (the probability that the first queue is full) such that ρ < 1 for all queues in the

network. Following this, the analytical model estimates the performance measures

based on an arrival rate of λ(1− a1) to the system, where λ represents the external

arrival rate. To model this behavior in the simulation models, we use the a1 prob-

ability as an input to the simulation model and truncate λa1 of all arrivals to the

system. Table 6.6 compares the performance measure results from these two models

and as seen from the results, the performance of both systems is equivalent.

Table 6.6: Comparison of Simulation and Analytical Model

Layout Design Analytical Model Simulation Results

W̄ TH a1 W̄ TH a1

Layout 1 6.39 hrs 27.14/hr 0.53 6.32 hrs 27/hr 0.53

Layout 2 3.59 hrs 46.86/hr 0.19 3.87 hrs 46/hr 0.19

Layout 3 2.79 hrs 33.64/hr 0.42 3.24 hrs 33/hr 0.42

We next update the simulation model such that we do not dictate the a1 pa-
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rameter. Instead, we let all arrivals into the system and only if the first queue

is full (k1 = K1), the system will not be able to accept the arriving victim. We

provide the results of this simulation model in Table 6.7 based on 100 replications

of 20 days each with a 10 day warm-up period. Note that the a1 parameters are

close, however slightly lower than the previous case, putting the system utilization

close to 1 (ρ ∼= 1). This results in a much higher waiting time estimate due to

the exponential relationship between utilization and waiting time. The analytical

model shows numerical issues ρ ∼= 1 and shows convergence problems. Hence, the

analytical model can only provide accurate results when ρ < 1, which is ensured by

the outer loop that searches for a1.

Table 6.7: Simulation Model Results: Free Truncation

Layout Design Simulation Results

W̄ TH a1

Layout 1 12.3 hrs 26/hr 0.49

Layout 2 5.9 hrs 46/hr 0.16

Layout 3 12.09 hrs 33/hr 0.38
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6.9 Appendix 4: Detailed Numerical Results for

Performance under Different Distributions

Table 6.12: Layout 1: Comparison of Performance under Different Distributions

Day Exponential Gamma Weibull LogNormal Hyper-Exp

W̄ ¯TH W̄ ¯TH W̄ ¯TH W̄ ¯TH W̄ ¯TH

1 4.28 27.77 4.34 27.18 4.33 27.21 4.28 27.00 4.33 27.57

2 12.38 27.09 12.69 27.15 12.70 27.19 12.31 27.71 12.63 26.98

3 15.45 27.55 16.13 27.28 16.13 27.11 14.95 26.60 15.52 26.83

4 14.60 27.36 15.60 26.95 15.68 27.28 14.47 27.38 14.95 27.28

5 14.19 27.06 15.36 26.87 15.39 26.76 14.10 25.70 14.58 26.81

6 13.97 26.71 14.97 27.15 15.04 27.03 13.68 25.45 14.06 26.56

7 13.60 26.37 14.65 27.01 14.71 27.07 13.29 26.60 13.59 27.10

8 13.21 26.43 14.36 27.35 14.27 27.23 13.07 25.78 13.24 27.29

9 12.96 26.61 14.11 26.97 13.96 26.95 12.71 25.49 13.06 26.98

10 12.85 25.62 13.84 27.14 13.67 27.15 12.52 26.89 12.88 27.03
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Table 6.13: Layout 2: Comparison of Performance under Different Distributions

Day Exponential Gamma Weibull LogNormal Hyper-Exp

W̄ ¯TH W̄ ¯TH W̄ ¯TH W̄ ¯TH W̄ ¯TH

1 1.72 45.81 1.54 46.36 1.55 46.55 1.72 44.94 1.65 46.45

2 4.78 47.44 2.98 46.91 2.98 46.83 4.74 45.59 4.32 46.03

3 6.38 46.77 6.84 46.54 6.62 46.92 6.38 45.11 6.83 46.73

4 6.28 46.59 9.05 46.51 9.29 46.83 6.46 46.27 7.90 46.23

5 6.11 47.42 9.29 46.76 9.34 46.84 6.21 45.99 8.25 46.59

6 6.17 47.11 9.20 46.63 9.14 46.64 6.13 46.63 8.28 45.63

7 6.10 46.37 9.16 46.35 9.25 46.72 6.15 47.03 8.51 46.33

8 6.06 45.27 9.03 46.89 9.24 46.59 6.22 45.11 8.57 46.19

9 6.02 45.61 8.95 47.11 9.29 46.64 6.16 46.31 8.39 46.00

10 5.90 46.81 8.74 46.80 9.00 46.36 6.08 46.21 8.54 47.20
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Table 6.14: Layout 3: Comparison of Performance under Different Distributions

Day Exponential Gamma Weibull LogNormal Hyper-Exp

W̄ ¯TH W̄ ¯TH W̄ ¯TH W̄ ¯TH W̄ ¯TH

1 2.96 33.36 2.66 33.15 2.64 33.23 2.88 33.51 2.75 33.99

2 8.68 33.51 8.83 33.89 8.80 33.83 8.74 34.06 8.68 33.51

3 13.19 33.74 13.19 33.73 13.19 33.31 12.89 34.12 13.14 32.90

4 14.06 32.96 14.05 33.73 14.26 33.58 13.55 33.38 13.78 34.26

5 13.71 32.93 13.86 33.56 14.05 33.27 13.45 34.04 13.79 33.58

6 13.29 33.61 13.51 33.66 13.97 33.36 13.15 33.23 13.76 33.90

7 13.12 32.62 13.62 33.71 13.87 33.60 13.03 33.81 13.54 33.67

8 13.08 33.31 13.40 33.34 13.64 33.63 12.90 33.93 13.33 33.49

9 12.90 33.96 13.19 33.71 13.36 33.57 12.81 31.87 13.15 33.40

10 12.93 33.93 13.12 33.42 13.31 33.59 12.32 33.56 12.95 33.68
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Chapter 7

Simulation Study: Optimal Relief

Center Layout

7.1 Introduction

Relief centers (RCs) are temporary structures setup following a disaster, where vic-

tims arrive, queue and collect critical relief supplies. RCs can have varying sizes,

number of volunteers and number of points of distribution (PODs). In Chapters 3

and 6, we analyzed the RC layout used in the field by FEMA and proposed alter-

native layouts to improve the RC performance and obtain insights. In this chapter,

we aim to identify the optimal layout design through a simulation study.

We model the RC layouts as a queuing network, where both the walkways used

to access and move between PODs, and the PODs themselves are modeled as finite

capacity queues. The analyses and results from Chapters 3 and 6 shed light into

the possible ways to improve the performance of a relief center without additional

resources (space or volunteers). In this chapter we use simulation studies to answer
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the following research questions: (1) What is the optimal RC layout design for a

given set of resource constraints?, (2) What is the performance difference between

the optimal layout and the rest of the alternatives?

The rest of the chapter is organized as follows. Section 7.2 provides a literature

review. Section 7.3 discusses relief center designs and enumerates all alternatives in

the design space. Section 7.4 leverages results from the literature to eliminate dom-

inated configurations and presents the numerical results obtained from simulation

studies. Finally, Section 7.6 concludes the chapter.

7.2 Literature Review

Recall that in Chapter 3, the relief center was modeled as a tandem queuing network

with finite buffers and state dependent service rates(See Figure 7.1). In this section

we review the queuing literature on tandem lines. Dallery and Gershwin (1992)

provide a detailed summary of models and results for tandem lines. Buzacott and

Shanthikumar (1992) review queuing models used in manufacturing systems design

and connect the theoretical findings to design problems. Papadopoulos and Heavey

(1996) provide a survey of the literature on tandem queuing networks and categorize

the literature based on their modeling assumptions. Li et al. (2009) survey analyti-

cal models in throughput analysis of production systems including tandem lines.
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Figure 7.1: Tandem Queuing Network Model of an Relief Center

The following papers in the literature provide important results that can be used

in the optimal design of tandem lines. Hillier and Boling (1966) introduce what is

known as the ”bowl phenomenon”, which is a useful way of improving tandem line

throughput by unbalancing the line such that the fastest station is placed in the

middle. Hillier and Boling (1979) extend the initial result and conclude that for

longer lines the improvement obtained in throughput from unbalancing the line is

greater and increasing buffers decrease the average imbalance needed for the op-

timal work allocation. Iyama and Ito (1987) analyze the design of a tandem line

with multiple servers of unequal operation rates to maximize system throughput.

They analyze an exact Markov model and an approximation and they conclude that

multi-server systems preserve the bowl phenomenon. Other papers to date extend

this phenomenon to different settings including to longer tandem lines, unbalanced

lines, effect of buffer capacities and effects of variance and McNamara et al. (2016)

review the related literature to date. However, none of the results in this branch of

the literature are directly applicable to the queuing network model of a relief center,

due to the state dependent queues in the network.

Other papers in the literature focus on developing analytical solution methodolo-

gies (exact or approximate) for the optimal allocation of work, buffers and servers to

improve performance measures of a tandem queuing system. Tcha et al. (1992) an-
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alyze a server allocation problem for a tandem line with finite buffers and blocking.

They propose an algorithm for server assignment based on increasing the through-

put upper bound. Hillier and So (1996) analyze a multi-server tandem line with

exponential service times and investigate the allocation of work and servers simul-

taneously. Vuuren et al. (2005) study multi-server tandem queues with finite buffer

and blocking and propose an approximation method based on decomposition to

estimate performance measures. Li et al. (2010) provide characterizations of pro-

duction system problems and provides insights on performance analysis, lean buffer

allocation and reliability of production lines. Fleuren et al. (2014) present an ap-

proximation method for flow lines with multiple unreliable servers and finite buffers.

One of the most relevant work in the literature is Buzacott and Shanthikumar

(1992). They provide analytical results for optimal allocation of buffer and work-

load in a multi-stage, finite capacity queuing network with exponential service times.

However, these analytical results are not directly applicable to the models we con-

sider due to having state dependent service queues as part of the network. Calabrese

(1992) analyzes the optimal workload allocation in open multi-server Jackson net-

works. They provide useful optimality conditions. However, these results are not

directly applicable to the RC queuing model either due to the state dependent model

used for the RCs being more general. In addition to these papers, Mandelbaum and

Reiman (1998) and Argon and Andradottir (2017) analyze pooling service stations

in tandem queuing networks. They provide results on work allocation and per-

formance improvement due to pooling. Pooling is related to our discussion since

we consider relief center designs where a subset of distribution points are pooled

together. However, due to having state dependent queues in the queuing network

representation of the RC layouts, these results do not directly apply to our settings
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either. We conclude that among many related articles we surveyed, very few results

are directly applicable to the tandem line model of a relief center.

Some papers integrate an optimization model to the queuing network analysis.

Smith et al. (2009) analyze queuing networks with finite buffers, multiple servers and

general time distributions and model the problem of optimally allocating servers.

Woensel et al. (2010) formulate a non-linear program to jointly optimize buffer and

server allocation in networks with varying topologies and with general service times.

7.3 The Design Space for Relief Center Layouts

In this section we discuss the design space under volunteer and area constraints and

enumerate all possible relief center designs. We start by introducing the components

of a relief center layout that need to be decided prior to setup:

• The size (area) of the relief center

• Number of points of distribution (POD)

• Assignment of items to the points of distribution

The size of the RC area is dependent on the number of victims the RC is planned

to serve, as well as the availability of space. The maximum number of points of dis-

tribution is equal to the number of volunteers available. The number of PODs to

setup is related to the decision of item assignment to PODs, which will also be

impacted by the types of items being distributed and the demand for each type

of item. Often, the availability of space and the availability of volunteers will be

dictated by the disaster aftermath conditions. Hence, the relief organizations have

the most control over decisions related to the number of PODs and the assignment
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of items to PODs.

For the design space we consider in this chapter, to be consistent with our as-

sumptions in chapter 3, we assume that a fixed total area is available, 4 volunteers

are present and 4 items (tarpaulins, blankets, kitchen sets, sleeping mats) are being

distributed from the RC. Lastly, we assume that all victims requiring service from

this RC, need all four of the items. Given these assumptions, we focus on search-

ing the optimal number of PODs and item assignment combination. Note that the

optimal buffer allocation is not considered in this chapter. Next, we describe the

process of enumeration for all possible designs in the design space.

Within the design space, we consider all possibilities of number of distribution

points, several variations of item assignment to distribution points, and several vari-

ations of volunteer assignments. Figure 7.2 provides a graphical representation of

the enumeration logic, which first divides the design space into the number of PODs

a victim would need to visit to collect all available items. Since there are four avail-

able volunteers, it is possible to assign items such that items are distributed among

1, 2, 3, or 4 PODs. Correspondingly we define four sets of designs, group A, B, C

and D respectively.
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Figure 7.2: The Design Space

Group A: In this set of layout designs, the number of PODs any individual victim

has to go through is one. Hence, all PODs in this group carry all available items.

Based on possible volunteer assignments, there can be 4 configurations in this group

as listed below. For all four configurations, each POD has its own queue character-

ized by λ/n, where λ is the total external arrival rate and n is the total number of

PODs. See Figure 7.3, Group A-1 through Group A-4 for these configurations. In

addition to these separate flow configurations, one can also design the system such

that there is a common queue where all servers pull from, as shown in Figure 7.3,

configuration Group A-5.
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Figure 7.3: Configurations: Group A

Group B: In this set of designs, the number of PODs an individual victim has to

go through is 2. Hence, the four available items need to be allocated between two

PODs. The possible item assignments for these two PODs are given in Table 7.1

and there a total of seven (7) item assignment possibilities.

Table 7.1: Group B: Possible Item Assignment to PODs

POD 1 POD 2

1 {T} {B,K, S}

2 {B} {T,K, S}

3 {K} {T,B, S}

4 {S} {T,B,K}

5 {T,B} {K,S}

6 {T,K} {B, S}

7 {T, S} {B,K}

For each item assignment there are three possible volunteer assignments denoted

by (2,2), (3,1) or (1,3), where the first entry denotes the number of volunteers as-

signed to POD 1, and the second entry denotes the number of volunteers assigned

to POD 2. This makes up three (3) possible volunteer assignments for each item as-

signment option. For the multi-server assignments, we can design the system either
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with separating arrival streams or as a common queue, creating two (2) options for

each item-server assignment pair. See Figure 7.4 for a depiction of the difference

in queuing between completely pooled and completely separated arrival streams.

This Figure also graphically summarizes the configurations in Group B. Note that

configurations in between, where one POD is pooled and the other is not, is also

possible. Lastly, the sequence in which the victims flow through the two PODs can

vary, and with two PODs the number of possible sequences is two (2). Therefore,

the total number of configurations in group B is 84 (7x3x2x2).

Figure 7.4: Configurations: Group B

Group C: In this set of layout designs, the number of PODs an individual victim

has to go through is three. Hence, the four available items need to be allocated

between three PODs. The possible item assignments are given in Table 7.2.
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Table 7.2: Group C: Possible Item Assignment to PODs

POD 1 POD 2 POD 3

1 {T} {B} {K,S}

2 {T} {K} {B, S}

3 {T} {S} {B,K}

4 {B} {K} {T, S}

5 {B} {S} {T,K}

6 {K} {S} {T,B}

For each item assignment there are three possible volunteer assignments as

(1,2,1), (2,1,1) or (1,1,2), where the first, second and third entry denote the num-

ber of volunteers assigned to POD 1, POD 2 and POD 3 respectively. This makes

up three (3) possible volunteer assignments for each item assignment option. For

the multi-server assignments, we can design the system either with separate arrival

streams or as a common queue, creating two (2) options for each item-server assign-

ment pair. Lastly, the sequence in which the victims flow through the two PODs

can be designed in 3! ways. Therefore, the total number of configurations in group

C is 216 (6x3x2x6). Figure 7.5 summarizes all configurations in group C.
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Figure 7.5: Configurations: Group C

Group D: The number of PODs an individual victim has to go through is four.

Since, the four available items can only be allocated with a single item per POD,

the only assignment configuration is {T} & {B} & {K} & {S}. And since every

POD needs to be staffed, the only possible volunteer assignment is (1,1,1,1), where

the first, second, third and fourth entry denote the number of volunteers assigned

to POD 1, POD 2, POD 3 and POD 4 respectively. However, the sequence in which

the victims flow through the network can be designed in 4! ways. Therefore, the

total number of configurations in group D is 24 (1x1x24). Figure 7.6 summarizes

all configurations in group D.

Figure 7.6: Configurations: Group D

Combining all configurations in Groups A, B, C and D, the total number of

configurations to be evaluated is 329.
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7.4 Simulation Design

In this section, we first describe the modeling of the RC layouts in Arena R© and

present the parameter setting used. Next, we discuss how to leverage the known re-

sults from the queuing literature to reduce the number of configurations to simulate.

Finally, we present the numerical results and discuss the insights.

7.4.1 Simulation Model of the Relief Center Configurations

All the relief center designs are modeled as finite capacity queuing networks with

state dependent (walkways) and state independent (PODs) queues. Next we de-

scribe the modeling of both types of queues in Arena R©.

Modeling the Queues in the Network: Let i ∈ N represent a queue in the

network, let Ki represent the capacity of queue i and let µi(ki) represent the hourly

service rate at queue i. To model the queuing behavior at queue i, we use a Hold-

Process-Hold-Release logic in Arena R©, where the first hold module assures that the

server is idle and not blocked prior to a victim moving into service and the second

hold module assures that queue i + 1 has capacity before the victim is released to

the next queue (blocking after service). If queue i is blocked, then the server i stays

blocked until a service completion at the downstream queue. Note that, since all

queues have finite capacity, blocking can propagate through the network. This logic

is critical in determining the system throughput, which is equal to λ(1− a1), where

λ is the external arrival rate to the network and a1 is the probability that the first

queue in the network is at capacity. The only difference between the modeling of

walkway and distribution queues is the service rate. We assume that the distribution

PODs have an exponential service time with rate µi, while the walkway’s have an
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exponential service time with rate µi(ki). The rate of the walkway service decreases

as the number in queue (ki) increases. The mathematical relationship between the

number of people on the walkway and the service rate has been captured by Tre-

genza (1976) and is modeled using the Equations given in Chapter 6, Section 6.3.1.

Victim Routing: In this chapter, we assume that all victims arriving to the RC

need all items being distributed at the RC. Hence, the exact routing will depend on

the layout configuration (specifically item assignment decision to PODs).

Model Outputs: There are two main performance measures of interest: (1) the

average waiting time of victims to receive supplies at the RC, and (2) the average

throughput of the RC. For all models, we record the time stamp of entry, when a

victim first enters the relief center using a record module. Next, we record the time

stamp of the victim exiting the relief center at the end of the network and record

the total time spent at the RC for each victim. We then utilize a read/write module

to export all data for victim waiting times as a .csv file for analysis.

Modeling Separate versus Common Arrival Streams: For the PODs with

multiple servers in all designs, we differentiate between separate and common ar-

rival flows. Figure 7.7 shows the Arena R© model of the separate arrival streams for

two different PODs with single servers each. Note that each POD is accessed by

a separate walkway. Since these two PODs are identical, the arriving victims can

pick either POD with 50% probability. Figure 7.8 shows the Arena R© model for the

common arrival case. In this case, there is a single POD with 2 servers. The POD is

accessed via a single walkway and a victim gets served by one of the victims based

on whichever server is idle. Note that both the walkways and the PODs in Figure



204

7.7 is pooled in the case of Figure 7.8. We assume that for pooled walkways, the

size and capacity of the walkway increases to the sum of the walkways pooled, and

the curve corresponding to state dependent service time is adjusted appropriately

to reflect the same relationship between crowd density and service rate.

Figure 7.7: Separate Arrival Streams

Figure 7.8: Common Arrival Stream for 2 Servers

7.4.2 The Simulation Parameters

The arrival rate to the RC and service rate at the PODs are the input parame-

ters required for the simulation studies. We use parameters estimated from the

Nepal earthquake relief distribution data. This data was obtained from the Human-

itarian Data Exchange Database (an open platform for humanitarian data sharing:

https://data.humdata.org/), which was prepared by contributions from the Interna-

tional Federation of Red Cross (IFRC), the United Nations High Commissioner for

Refugees (UNHCR), Nepal United Nations Office for the Coordination of Humani-

tarian Affairs (OCHA), the Nepal Ministry of Home Affairs, and the Nepali Police.
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In Table 7.3 we summarize the arrival and service rate parameters estimated using

the data obtained. The details of data analysis are given in Chapter 3.

Note that we assume that the service rates are additive and all victims need all

items. For example, if blankets and tarpaulins are distributed together at a POD,

we sum the individual service times to estimate the service time at this POD. Also

note that, the walkway service rate function differs based on the buffer size (num-

ber of walkways pooled). This is because the walkway speed is dependent on the

number of victims present on the walkway, through the increase in density, which is

a function of both the buffer space and occupants.

Table 7.3: Parameters Used in Simulations

Parameter Value

Arrival Rate λ = 58/hour

Service Rate by Item µT = 10.7/hr, µB = 31.6/hr,

µK = 10.2/hr, µS = 20.2/hr

Walkway Service Rate for Ki = 50 (216 ∗ exp(−0.024 ∗ k))

Walkway Service Rate for Ki = 100 (216 ∗ exp(−0.012 ∗ k))

Walkway Service Rate for Ki = 150 (216 ∗ exp(−0.008 ∗ k))

Walkway Service Rate for Ki = 200 (216 ∗ exp(−0.006 ∗ k))

Single Queue Capacity Ki = 50, ∀i

We note the following characteristics of all layout designs due to the parameter

setting:

• In all designs the POD service rates are the bottleneck. This is because the

buffer size of walkways are chosen such that the walkway speed never falls
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below a certain level. For effects of lower & higher buffer levels on both

walkway speed and RC performance refer to Chapter 3.

• In all of our settings the external arrival rate is higher than the maximum

service rate of the PODs. Consequently, in all designs one of the PODs will

be the rate determining step (the bottleneck).

• In all designs the bottleneck service rate will dictate the throughput.

7.4.3 Leveraging Results from the Queuing Literature

In this section we discuss if and when we can leverage the existing results in the lit-

erature to determine dominated designs in the design space. As presented in Section

7.2, the queuing literature has many results on optimal work and server allocation

in tandem lines. Below we highlight the most relevant work and if and how the

results can help us limit the number of designs to evaluate.

For a given item assignment decision, Smith et al. (2009) provide a simple and

useful way of allocating servers. They show that Equation 7.1 can be used to bound

the optimal server allocation in finite queuing networks with varying topologies. In

this equation, λi represents the arrival rate to node i, c∗i represents the optimal

server allocation, µi is the service rate at node i, and γ is a constant showing the

grade of service. Hence, the optimal server allocation is directly dependent on the

utilization of the queue in a given setting.

⌈λi
µi

⌉
≤ c∗i ≤

⌈λi
µi

+ γ

√
λi
µi

⌉
(7.1)



207

Using this result and by considering the utilization of each queue in a design,

we can eliminate some of the design configurations as being less efficient than other

configurations.

Table 7.4 describes the reduced scenarios for group A. In the table, the first

column enumerates the five configurations. In each configuration, all PODs carry

all items and the associated service rate at each POD is determined as 3.67/hour.

The server assignment column in the table shows the number of servers assigned to

each POD in the configuration and the last column specifies the queuing discipline.

Table 7.5 describes the reduced scenarios for group B. In the table, the first

column enumerates the configurations. In all configurations there are two PODs

and the item assignment for each scenario is given in column four. Column five

shows the service rate at each POD in the given configuration and column six shows

the server assignment for each POD. The last column specifies the queuing discipline.

Table 7.6 describes the reduced scenarios for group C. In the table, the first

column enumerates the configurations. In all configurations there are three PODs

and the item assignment for each scenario is given in column four. Column five

shows the service rate at each POD in the given configuration and column six shows

the server assignment for each POD. The last column specifies the queuing discipline.

Table 7.7 describes the reduced scenarios for group D. In the table, we show one

configurations since there is one item and server assignment option. Column five

shows the service rate at each POD in the given configuration and column six shows

the server assignment for each POD. The last column specifies the queuing discipline.
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Note that in the tables showing the reduced configurations, we did not enumer-

ate alternative scenarios based on the sequence of PODs. Including the sequence

variation, for each configuration given in Table 7.5, there can be 2 alternatives for

each configuration considering sequence of PODs in the network, while for configu-

rations given in Table 7.6 there can be 6 alternatives for each and for configurations

given in Table 7.7 there can be 24 alternatives.
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7.5 Simulation Results

In our numerical studies, we evaluate all the configurations detailed in Section 7.4.3.

For all models, a sample run of 20 days was evaluated first to determine the warm-

up period length and the number of replications required.

After determining the warm-up period, we next determine the number of repli-

cations. In Equation 7.2 n represents the number of replications, s represents the

sample standard deviation, and h represents the desired confidence interval range.

In our numerical experiments we use a 95% confidence interval level and set h = 2

hours for the average waiting time measure. The number of replications requirement

ranged between 3 and 75 for different designs. Hence, we run each experiment for

100 replications in all the simulations.

n = t2n−1,1−α/2
s2

h2
(7.2)

Next, we present the results of the configurations listed in Tables 7.4, 7.5, 7.6,

7.7 and we discuss the impact of sequence of PODs on the performance measures.

Tables 7.8, 7.9, 7.10 and 7.11 show the average throughput (in victims per hour)

and average waiting time (in hours) measures for configurations in Groups A, B, C

and D respectively. Next we discuss the results for each group.

Insight for Group A: Firstly, with respect to the throughput performance mea-

sure, the configurations in Group A perform the best. However, they also result in

a high average waiting time for victims. This is because the the service rate at the

PODs are higher due to the additive service times. Thus, even though the network
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is shorter, the queues are slower, causing higher waiting times. Note that in all

configurations, the throughput measure is more consistent compared to the waiting

time measure. This is because the throughput measure is tightly correlated with

the combined effect of service time and server assignment, which is steady in all

Group A configurations. Lastly, the lower the number of PODs (and for combined

configurations) the waiting time is higher. This is bacause when we combine the

PODs, we also combine the buffer space, and greater buffer space results in a higher

average number in queue, causing victims to wait behind more individuals prior to

service.

Insight for Group B: Looking at the combined results for both the RC throughput

and victim waiting time measures, we conclude that configurations 20, 21, 22 are the

best performing designs both within group B and overall. They all have a relatively

high throughput for a considerably low average victim waiting time. Comparing

these configurations with the other in the group, we first note that the throughput

is again driven by the combination of service rate and item assignment for the slowest

queue in the network. Hence, the throughput measure does not vary much based

on queue type. However, the waiting time does depend on the queue type. This is

because we combine the buffer space for the common queue, creating a possibility

for a higher average number in queue, which in turn can increase the average waiting

time metric. We observe that balanced networks perform the best and the queuing

discipline (hence the buffer space) matter the least. This is because with balanced

service rates at the PODs, blocking is minimal (note that for blocking to happen

the downstream queue need to be full). For the networks with greater imbalances

in service rates (ex: see rows 14 and 15), the common queuing discipline where we

pool the buffers increase the average number in queue in drive the waiting times up.
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Insight for Group C: The throughput measure for configuration in group C is

again driven by the combination of service rate and item assignment for the slow-

est queue in the network. Since the slowest service rate for these configurations is

slower than configurations in group B, we observe lower average throughput. Also

note that, the configurations in group C have a more balanced work load assignment,

resulting in a waiting time measure less effected by the queue type. Note that rows

31 and 32 are the only configurations in group C with higher waiting time measure

due to having more buffer space at the beginning of the network, increasing the

average number in queue.

Insight for Group D: The throughput measure for the configuration in group

D is again driven by the combination of service rate and item assignment for the

slowest queue in the network. Since the slowest service rate for these configurations

is slower than configurations in group B, we observe lower average throughput. One

important result to note here is that the waiting time measure is lower compared

to the results of group A. This comparison lead us to the conclusion that a longer

network of queues is not necessarily harmful when the queues are faster.
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Next, we focus on investigating the impact of sequence of PODs on the perfor-

mance measures of a relief center design. Table 7.12 compares all sequence combi-

nations for a select set of configurations (configuration number 6, 7 and 23). We

specifically chose configurations 6 and 7 to show the effects of sequence on different

queue types (common versus separate), and we chose configuration 23 since con-

figurations is group C have more sequence combinations. Note that in Table 7.12

the numbering enumerates the sequence combinations for each configuration. First,

we conclude that the sequence of PODs for a given configuration does not have a

considerable impact on throughput but can greatly change the waiting time experi-

enced. Secondly, the average waiting time is the shortest when the slowest POD is at

the beginning of the route. This happens since it causes the majority of the arrivals

that are above capacity, to be truncated at the beginning of the network, instead

of increasing the work in process, hence congestion. This effect is doubled since all

configurations have state dependent queues in the network, and these queues slow

down as congestion increases. As a result, the waiting time measure suffers even

further. It is important to note that due to the way the capacity of the walkways

were set, the walkway speed can not fall below a minimum bound. Hence, in none

of the configurations considered in this chapter, the bottleneck is the walkways.

This is why the sequence only impacts the waiting time measure. However, if the

capacity of the walkways are not setup adequately and can allow congestion to in-

crease steeply, the sequence and its effects on increasing congestion can lead to both

performance measures to suffer greatly.
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Table 7.12: Impact of Sequence

Number Group Item Assignment Queue Type ¯TH W̄

6.1 B {B,K, S} & {T} Common 11.128 18.351

6.2 B {T} & {B,K, S} Common 11.175 36.294

7.1 B {B,K, S} & {T} Separate 10.087 17.594

7.2 B {T} & {B,K, S} Separate 10.304 32.595

23.1 C {T} & {B} & {K,S} Common 10.717 9.957

23.2 C {T} & {K,S} & {B} Common 10.696 10.324

23.3 C {B} & {T} & {K,S} Common 10.684 19.813

23.4 C {B} & {K,S} & {T} Common 10.734 31.140

23.5 C {K,S} & {B} & {T} Common 10.701 31.405

23.6 C {K,S} & {T} & {B} Common 10.690 21.748

7.6 Conclusions

In this chapter, we determine the optimal layout configuration under constraints re-

lated to the pre-determined number of volunteers and types items being distributed.

We exhaustively enumerate the number of possible relief center layout designs. We

consider all possible combinations of number of points of distribution (PODs) in

an RC, the assignment of items to the PODs, the assignment of volunteers to the

PODs and the sequence of the PODs in the constructed layout. In total we find 329

possible designs.

We then discuss the known results in the literature for tandem queuing net-

works and eliminate designs that are dominated based on server assignment for a
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given item assignment. We highlight that, even though the queuing literature has

many results on optimizing tandem queuing networks for maximizing the system

throughput, we find many of them are not directly applicable to a network with

state dependent queues.

We evaluate the remaining configurations in the design space using Arena R©

simulation. From our results we conclude that: (1) The throughput of the RC is

governed by the bottleneck rate, which is determined by the combination of the item

and volunteer assignment decision, (2) Placing the slowest POD to the beginning of

the network , limits the congestion within the RC and results in the lowest waiting

time measures, (3) State dependent queues increase the impact of congestion (mea-

sured by average queue lengths) on waiting times and for designs with higher buffer

space can lead to a significant decrease in throughput as well.

The main takeaways from this study for the practitioners are, first to assign

items to PODs in conjunction with available volunteer capacity and to consider the

bottleneck rate of service as a good indicator of RC throughput. Secondly, it is

critical for practitioners to be aware of the effects of increased congestion within the

relief center. Hence designs that limit congestion (by limiting buffer space, sequence

of PODs or volunteer assignment) will perform the best.



221

Chapter 8

Conclusions and Future Research

Directions

In this chapter, we summarize our main conclusions and discuss future research

directions.

8.1 Conclusions

In this thesis, we focus on improving relief distribution operations during the imme-

diate response phase of a disaster to help relieve the human suffering inflicted by a

disaster. The operations research literature on relief distribution has mostly focused

on getting the relief items to the disaster effected region. However, challenges faced

once the relief items arrive at the disaster site has received little attention. This

thesis aims to fill this gap.

The challenges this thesis focuses on were all motivated by the needs in the

field. These needs were identified by a series of interviews with Salvation Army,
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Red Cross, South East Wisconsin Citizens and Organizations Active in Disasters

(COAD) practitioners.

The first challenge we focus on is how to set up a relief center for the most effec-

tive distribution of relief items to victims. We define effectiveness by increasing the

number of victims served and decreasing the average victim waiting time. We model

the relief distribution operations through a relief center using a finite capacity state

dependent queuing network. To estimate the performance of a relief center using

this model, we derive new analytic formulas for steady state probabilities of state

dependent Coxian queues. We then apply the proposed model to Nepal earthquake

data. Our analysis of relief centers lead us to the following insights: (1) Strategies

that dissipate the crowds in the design of a relief center can greatly improve the ef-

ficiency of relief distribution, (2) Operational strategies including work assignment

within the relief center, limiting queue lengths at the relief center and alternative

uses of a triage queue can also increase relief distribution efficiency.

Next, we model a network of relief centers distributing aid in a given area as

a generalized queuing network (G-network). We specifically model increase in de-

mand for items, jockeying of victims and changing victim needs. We use a G-network

model, (i) since it allows for a flexible probabilistic structure to model such victim

behavior and (2) G-networks have been shown to have product form results, which

can be of great computational advantage. In this chapter, we first prove a new prod-

uct form result for G-networks with batch transfers under certain conditions. Then,

we relax these conditions and propose a product form approximation. Finally, we

use the model and solution methodology on a case study and obtain the following

insights: (1) Victim mobility has a significant impact on performance measure es-
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timates, (2) Decisions such as number of relief centers to open and the assignment

of items to relief centers need to depend on demand estimates as well as expected

victim movements.

Next, we focus our attention on the problem of material convergence and how

to effectively allocate resources to the solicited and unsolicited in-kind donations

to obtain the maximum number of high-priority items. We model the donation

arrival and sorting process for both solicited and unsolicited donations as separate

multi-server transient queues over multiple periods. In the model, the evolution of

queue lengths represent the material convergence levels. Material convergence is a

frequently observed phenomenon, however, to our knowledge this work is the first

in the literature to propose a model to quantify it. Through numerical experiments

we arrive at the following insights: (1) Material convergence and resource allocation

decisions are inter-dependent, (2) Decisions that increase the high priority (HP)

item throughput can result in very high material convergence levels, hence, policies

that maximize HP item throughput with no regard to material convergence may

not be optimal.

Next, we focus on analyzing the transient behavior of relief center design and op-

erations using a simulation study. The queuing models previously used to estimate

relief center performance, analyze steady state performance and assume Markovian

inter-arrival and service times. In Chapter 6, we aim to relax these assumptions

and analyze the transient behavior. We conclude that: (1) Non-stationary arrival

rates impact the throughput and waiting time measures of the relief centers, (2)

In the transient analysis, crowd dissipation strategies and item assignment to RCs

remain to be effective strategies in improving RC performance, (3) Both the average



224

throughput and the average waiting time performance measures are very robust to

the probability distribution chosen to represent the inter-arrival and service time

distributions.

Finally, we focus on determining the optimal layout configuration for a relief

center under resource constraints using discrete event simulation. We again model

the relief center as a finite capacity, state dependent queuing network. Then, we

enumerate layout designs in the design space and leverage known queuing network

results to eliminate less efficient layout designs. Finally, we simulate the remaining

designs and reach the following conclusions: (1) Assign items to the points of dis-

tribution in conjunction with available volunteer capacity. (2) Designs that limit

congestion (by limiting buffer space, sequence of PODs or volunteer assignment)

perform the best.

We hope that the insights obtained in this thesis will increase our ability to more

effectively respond to disasters and the models in this thesis will enrich the literature

and create future research directions.

8.2 Future Research Directions

Optimal Buffer Allocation in State Dependent Queuing Networks: In

Chapter 7 we model the relief center layout as a finite capacity, state dependent

queuing network. We then survey the related literature on optimal buffer, work and

server allocation results in tandem lines to limit our design space. We find that

the literature on tandem lines is rich, however very few results are applicable to a

network with state dependent queues. Hence, we foresee the extension of analytic
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results on optimal buffer and work load allocation in tandem lines with state de-

pendent service rates, as an important future research direction.

We believe such results can be utilized in disaster response literature to optimize

relief center layouts and model relief distribution operations. In addition, these re-

sults can also transcend this application and be used in many manufacturing system

design and optimization problems.

Using Crowd Sourced Data to Manage Material Convergence: In Chapter

5 we model the material convergence problem that occurs in almost all disasters due

to the convergence of in-kind donations that contain non-priority supplies in large

volumes over a short period of time. We believe it would be worthwhile to extend

this model so that crowd sourced data can be integrated with the model. In specific,

crowd sourced data can be used to track the donation arrivals and feed the analytic

model. In turn, the model will output resource assignment decisions.

The level of donations sent to the disaster region is closely related to social

media and news cycles calling for supplies (Yates and Paquette (2011); Gao et al.

(2011)). Moreover, many crowd sourced donations are organized via social media

(during Haiti earthquake response, approximately 2.3 million tweets included the

word “Haiti” or “Red Cross” between January 12 and January 14) (The New Media

Index (2017)). We believe this data can be mined to estimate the expected arrival

rate of donations. Using real time data mining, the model developed can be inte-

grated to become a real time decision support tool to manage material convergence.
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