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Abstract

It is known that the Onsager algebra O can be embedded as a Lie subalgebra in the
sly loop algebra L(sly). We give an attractive presentation of L(sly) by generators and
relations. There are three generators A, B, H and as we will see, O can be identified
with the Lie subalgebra of L(sly) generated by A, B. Let V' denote a finite-dimensional
irreducible O-module of type (0,0). It is known that the O-action on V' extends to an
L(sly)-action on V. We classify the L(sly)-actions on V' that extend the O-action on V.
We show that these L(sly)-actions have a certain geometric significance, which is best
described using the theory of tridiagonal pairs. It is known that the O-generators A, B
act on V as a tridiagonal pair of Krawtchouk type. A linear transformation H : V' — V' is
said to be compatible with this tridiagonal pair whenever there exists an L(sly)-action on
V that extends the O-action on V', such that H = H on V. We describe the compatible
elements in detail. For instance, we show that they are diagonalizable, they mutually
commute, and their common eigenspaces all have dimension 1. We define an undirected
graph whose vertex set consists of the common eigenspaces for the compatible elements.

We describe the actions of A, B on V' in terms of this graph structure.
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Chapter 1

Introduction

We will be discussing the following related things: (i) a linear algebraic object called a
tridiagonal pair of Krawtchouk type; (ii) a Lie algebra O called the Onsager algebra,; (iii)
a Lie algebra L(sly) called the sly loop algebra. The tridiagonal pairs were introduced
in [9]. The Onsager algebra O was introduced in [12]. The finite-dimensional irreducible
O-modules were classified in [3]. See also [4], [5]. We will be considering a class of
finite-dimensional irreducible O-modules said to have type (0,0). In [7], B. Hartwig
showed that this kind of O-module is essentially the same thing as a tridiagonal pair
of Krawtchouk type. The finite-dimensional irreducible L(sly)-modules were classified

in [2].

By [3, p. 3277], O can be embedded as a Lie subalgebra in L(sly). We give an attractive
presentation of L(sly) by generators and relations. There are three generators A, B, H
and as we will see, O can be identified with the Lie subalgebra of L(sly) generated by
A, B. Let V' denote a finite-dimensional irreducible O-module of type (0,0). By [3, The-
orem 6], the O-action on V' extends to an L(sly)-action on V. Moreover, [3, Proposition
5] indicates that this L(sly)-action on V' is not unique in general. In this thesis, we
classify the L(sly)-actions on V' that extend the O-action on V. We show that these

L(sly)-actions have a certain geometric significance, which is best described using the



theory of tridiagonal pairs. We will summarize our main results later in this introduc-

tion. To prepare for this, we review some preliminaries.

Let F denote an algebraically closed field with characteristic 0. We now recall the
definition of sly and its loop algebra L(sly). Let sly denote the Lie algebra over F with

basis e, f, h and Lie bracket

le, f] = h, [h,e] = 2e, [h, f] = —2f.

Let t denote an indeterminate, and let F[t, t~!] denote the associative F-algebra consist-
ing of the Laurent polynomials in ¢ that have all coefficients in F. Let L(sly) denote the

Lie algebra over [ consisting of the F-vector space
sly @ F[t, t71], ® = ®F
and Lie bracket
[u® a,v® b = [u,v] ® ab, u,v € sly, a,beF[t,t7.
We call L(sly) the sl loop algebra.
We now recall the Onsager algebra O. This infinite dimensional Lie algebra was in-

troduced in [12]. By [13], O has a presentation by generators A, B subject to the

Dolan-Grady relations
[A[A A, Bl = 4[A, B], B, B, [B, All] = 4[B, AJ.

Recall the integers Z = {0, 41, £2,...}. By [12], the F-vector space O has a basis



{Ai,Gj|1,7 € Z,j > 0} such that
[Ak, Al] =2GL_y k > l,
Gr, Ai) = A — Aiy,
|G, Gi] = 0.

Moreover Ay = A and A; = B. Note that the elements {G;|j € Z,j > 0} form a basis

for an abelian Lie subalgebra of O.

By [3, p. 3277], there exists an injective homomorphism of Lie algebras O — L(sly) that

sends
A—sel+ f®l, Boext+foth
This homomorphism sends
A et + fot i € 7,
Gi—hot —t7)/2 jE€Z, j§>0.

For notational convenience, we identify O with its image in L(sly) under the above
injection. This embedding suggests that there exists an attractive presentation of L(sls)
that has A, B among the generators. In this thesis, one of our results is that L(sly) has

a presentation by generators A, B, H and relations

A, [A,H]] = 4H, [, [H, Al = 4A, (1.1)
B, B, H]] = 4H, [, [#, B]] = 4B, (1.2)
(A, [A,[A, B]] = 4[A, B], 1B, [B,[B, Al]] = 4B, Al (1.3)

[H,[A,B] = 0. (1.4)



The element H is h ® 1. As we will see, the elements H, A generate a Lie subalgebra of
L(sly) that is isomorphic to sly. Similarly the elements H, B generate a Lie subalgebra

of L(sly) that is isomorphic to sls.

Let V' denote a finite-dimensional irreducible O-module. By [7, Theorem 2.4], the O-
generators A, B are diagonalizable on V. Furthermore there exist an integer d > 0
and scalars «, f € F such that the set of distinct eigenvalues of A (resp. B) on V is
{d—=2i4+ a|0 <i < d} (resp. {d—2i+ B|0 <i < d}) [7, Theorem 2.4]. We call the
ordered pair (o, 8) the type of V. Subtracting « (resp. ) times the identity from A

(resp. B) the type becomes (0,0).

Let V' denote a finite-dimensional irreducible L(sly)-module. We restrict the L(sls)-
action on V to O to get an O-action on V. In [3], E. Date and S. S. Roan give necessary

and sufficient conditions for the O-module V' to be irreducible. In this case, the O-

module V' has type (0,0).

Let V denote a finite-dimensional irreducible O-module of type (0,0). By [3, Theorem
6], the O-action on V' extends to an L(sly)-action on V. Moreover, [3, Proposition 5
indicates that this L(sly)-action on V' is not unique in general. In this thesis, we classify
the L(sly)-actions on V' that extend the O-action on V. By construction, the resulting
L(sly)-module structures on V' are irreducible. As we will see, these L(sly)-module struc-
tures on V' are mutually non-isomorphic. We explain how these L(sly)-actions on V' are
related to one another. In this explanation we make use of the presentation (1.1)—(1.4)

above.



We now recall the notion of a tridiagonal pair. Let V' denote a vector space over F with
finite positive dimension. Let End(V") denote the F-algebra of all linear transformations
from V to V. By a tridiagonal pair on V' we mean an ordered pair A, B of linear trans-
formations in End(V') such that (i) each of A, B is diagonalizable; (ii) there exists an
ordering {V;}L, of the eigenspaces of A such that BV; C V;_; + Vi + Vi, for 0 <i < d,
where V_; = 0 and V,y; = 0; (iii) there exists an ordering {V/}?_, of the eigenspaces
of B such that AV C V', +V/ +V/, for 0 <i <6, where V/| = 0 and Vj,, = 0;
(iv) there does not exist a subspace W of V' such that AW C W, BW C W, W # 0,

W £V [9].

Let A, B denote a tridiagonal pair on V. It is known that d and ¢ above are equal [9,
Lemma 4.5]; we call this common value the diameter of A, B. An ordering of the
eigenspaces of A (resp. B) will be called standard whenever it satisfies condition (ii)
(resp. (iii)) above. We comment on the uniqueness of the standard ordering. Let
{Vi}L, denote a standard ordering of the eigenspaces of A. Then the ordering {V;_;}%,
is standard and no other ordering is standard. A similar result holds for the eigenspaces
of B. An ordering of the eigenvalues of A (resp. B) will be called standard whenever the
corresponding ordering of the eigenspaces of A (resp. B) is standard. Let {V;}&, (resp.
{V/}L ) denote a standard ordering of the eigenspaces of A (resp. B). For 0 <i <d
the subspaces V;, V/ have the same dimension [9, Corollary 5.7]; we denote this common
dimension by p;. The sequence {p;}, is symmetric and unimodal; that is p; = pg_; for
0<i<dand p_1 < p; for 1 <i<d/2 |9, Corollaries 5.7, 6.6]. By [11, Corollary 1.4]

and since [ is algebraically closed, p; < (‘f) for 0 <1 < d. In particular pg = 1. We call



the sequence {p;}¢, the shape of A, B. The tridiagonal pair A, B is called a Leonard
pair whenever p; = 1 for 0 < i < d. The tridiagonal pair A, B is said to have Krawtchouk
type whenever {d — 2i|0 < i < d} is a standard ordering of the eigenvalues of A and
B. In this case A, B satisfy the Dolan-Grady relations [7, Corollary 2.7]. This suggests
that tridiagonal pairs of Krawtchouk type are related to O-modules. This relationship

was worked out in detail by B. Hartwig [7]. We now summarize his results.

Theorem 1.1 [7, Corollary 2.7] Let A, B denote a tridiagonal pair on' V' of Krawtchouk
type. Then there exists a unique O-module structure on V' such that the generators A, B

act on V' as A, B respectively. This O-module is irreducible and of type (0,0).

Theorem 1.2 [7, Corollary 2.7] Let V' denote a finite-dimensional irreducible O-module
of type (0,0). Then the generators A,B act on V as a tridiagonal pair of Krawtchouk

type.

Remark 1.3 [7, Corollary 2.7] Combining the previous two theorems we obtain a

bijection between the following two sets:

(i) the isomorphism classes of tridiagonal pairs over F that have Krawtchouk type;

(ii) the isomorphism classes of finite-dimensional irreducible O-modules of type (0, 0).

For the remainder of this section A, B will denote a tridiagonal pair on V that has
Krawtchouk type. An element H € End (V) is said to be compatible with A, B whenever
the following relations hold:
[A,[A, H]] = 4H, [H,[H, A]] = 4A, (1.5)
[B,[B, H|| = 4H, [H,[H, B]] = 4B, (1.6)

[Hv [Av BH = 0. (1.7)



Let Com(A, B) denote the set of elements in End(V') that are compatible with A, B.

For our tridiagonal pair A, B, consider the associated O-module structure on V' from
Theorem 1.1. Comparing the relations in (1.1)—(1.4) and (1.5)—(1.7), we obtain the

following results.

Lemma 1.4 Consider an L(sly)-action on V' that extends the O-action on V. For the

L(sly)-module V', the action of H on V is an element of Com(A, B).

Lemma 1.5 Let H € Com(A, B). Then there exists a unique L(sly)-action on V' that

extends the O-action on V', such that the element H of L(sly) acts on'V as H.

Remark 1.6 Combining the previous two lemmas we obtain a bijection between the

following two sets:
(i) Com(A, B);
(ii) the L(sly)-actions on V that extend the O-action on V.

By Remark 1.6, in order to describe the L(sly)-actions on V' that extend the given O-
action on V, it suffices to describe the set Com(A, B). We do this as follows. Let d
denote the diameter of A, B. Recall the shape {p;}¢, of A, B. Abbreviate p = p;. We

show that there exist elements {#;}/_; in End(V) such that

Com(A, B) { Zfz ; ’ =41, 1<i<p }

The elements {H;}?_; are uniquely determined up to sign and permutation. These

elements are linearly independent, they mutually commute, and they are diagonalizable



on V. Therefore the set Com(A, B) has cardinality 2°. Moreover, the elements of
Com(A, B) mutually commute and are diagonalizable on V. For 1 < i < p there exists
an integer d; > 1 such that the set of distinct eigenvalues of H; on V' is {d; —2k |0 < k <
d;}. Let X denote an indeterminate. We show that the sequences {p;}{_, and {d;}"_,

determine each other via the polynomial identity

p

d
SToN =TA+A+ A2+ 2D,
=0

j=1

From this identity we see that d = Z§=1 d;. For the moment, fix an integer ¢ (1 <1 < p).
For 0 < k < d; let W}, denote the eigenspace of H; corresponding to eigenvalue d; — 2k.

We show that
AW C Wiy + Wi + Wi, BW;, € Wi_1 + Wi + Wi,

where W_; = 0 and Wy,4; = 0.

Let X denote the set of common eigenspaces for the elements of Com(A, B). We show
that the elements of X all have dimension 1. We now define an undirected graph struc-
ture on the set X. For 1 < i < p, elements x,y € X are said to be i-adjacent whenever
the following two conditions hold: (i) the eigenvalues of H; corresponding to = and y
differ by 2; (ii) for 1 < j < p such that j # i, the eigenvalues of H; corresponding to
x and y are equal. The elements x,y € X are said to be adjacent whenever there exists
1 <17 < psuch that x and y are i-adjacent. The set X together with this adjacency rela-
tion is an undirected graph. This graph is a Cartesian product of p many chains, where
the i*" chain has length d; for 1 < i < p. The graph X has the following property: for all

x € X, Az and Bz are contained in the sum of those elements of X that are adjacent to x.



An element z € X will be called a corner whenever for 1 < ¢ < p, the eigenvalue of
H; on x is d; or —d;. Let Corner(X) denote the set of corners of X. The cardinality of

Corner(X) is 2°.

Pick H € Com(A, B). We now describe H. The eigenvalues of H are {d—2i |0 < i < d}.
For 0 <i < d let U; denote the eigenspace of H corresponding to the eigenvalue d — 2i.
The subspace U; has dimension p;. The subspace Uy is a corner of X. For 0 < < d, U;

is the sum of the elements in X at (path-length) distance ¢ from Uy. We show that
AU; C Uimq + Uiy, BU; C Ui—1 + Ui,

where U_; =0 and Uy, 1 = 0.

We obtain a bijection Corner(X) — Com(A, B), z — H,. For z € Corner(X), H, is the

unique element of Com(A, B) that has eigenspace x for the eigenvalue d.

We have been discussing the eigenvalues of the elements of Com(A, B). We pick a
nonzero vector from each element of X to get an attractive basis for V. By construction,
this basis consists of common eigenvectors for Com(A, B). We find the matrices that

represent A, B with respect to this basis.

Let C denote the subspace of End(V) spanned by Com(A, B). The elements {H;};_,
form a basis for C. We now describe the action of C on the eigenspaces of A and B. Let

{Vi}d, (resp. {V/}%,) denote a standard ordering of the eigenspaces of A (resp. B).
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We show that for C € C,
CV; CVii + Viga, CVi Vi, + Vi,

where V; =0 and V/ =0 for i € {—1,d + 1}.

Recall the elements {G;|j € Z,j > 0} of O. We show that the actions of {G;}/_; on V

form a basis for C. We display the transition matrix from the basis {#;}/_; to the basis

{Gi}i_y

Pick H € Com(A, B). As we saw in Lemma 2.94, there exists a unique L(sly)-module
structure on V such that the L(sly)-generators A, B, H act on V as A, B, H respectively.
Recall that the elements #,.A generate a Lie subalgebra of L(sly) that is isomorphic to
sly, and the elements H, B generate a Lie subalgebra of L(sly) that is isomorphic to sls.
Restricting the L(sly)-action on V' to either of these two Lie subalgebras, V' becomes an
slo-module. As we will see, the resulting two sly-module structures on V' are isomorphic.
Moreover, the isomorphism class of the sl,-module V' is independent of the choice of
H € Com(A, B). The sly-module V' is a direct sum of irreducible sly-submodules. We
now describe the summands. By [8, p. 31], up to isomorphism, there exists a unique
irreducible sly-module of every finite positive dimension. We show that every irreducible
slo-submodule of the slo-module V' has dimension among d+1,d—1,d—3, .... Moreover,
for 0 < j < d/2, the multiplicity with which the irreducible sly-module of dimension
d—2j+1 appears in V' is p; — p;_1, where p_; = 0. We will show that on each irreducible

sly-submodule of V/, the pair H, A and the pair H, B act as Leonard pairs of Krawtchouk

type.
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We have been discussing tridiagonal pairs of Krawtchouk type. We now mention a spe-
cial case in which the elements of Com(A, B) have an attractive interpretation. Assume
pi = (f) for 0 < i < d. In this case, d = p. Alsod; =1 for 1 <i < p, and the graph X is
a d-cube. Moreover, Corner(X) = X. So our earlier bijection Corner(X) — Com(A, B)
becomes a bijection X — Com(A, B). We remark that for every x € X, H, is the dual

adjacency map with respect to x in the sense of J. T. Go [6].

In Chapter 2, we prove our results concerning compatible elements. In [2], Chari classi-
fied up to isomorphism the finite-dimensional irreducible modules for the sl; loop algebra.
In Chapter 3, we give an elementary version of this classification. Chapter 3 is meant for
graduate students and researchers who are unfamiliar with the general representation

theory of loop algebras.
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Chapter 2

Tridiagonal pairs of Krawtchouk

type and their compatible elements

2.1 Assumptions and preliminaries

In this section we collect some definitions and notation that will be used through-
out the chapter. Recall the natural numbers N = {0,1,2,...} and the integers Z =
{0,4£1,+2,...}. Let F denote an algebraically closed field with characteristic 0. Let
V' denote a vector space over F with finite positive dimension. Let End(V') denote the
F-algebra of all linear transformations from V' to V. Let I denote the identity element

of End(V). For F' € End(V') and 0 € F, define
Vie(0) = {v € V|Fv = 0v}. (2.1)

We say that 6 is an eigenvalue for F' whenever Vg () # 0, and in this case Vx(0) is called
the eigenspace of F' corresponding to 6. We say that F'is diagonalizable whenever V' is

spanned by the eigenspaces of F'.

We now turn our attention to Lie algebras. For basic definitions and facts about Lie

algebras, we refer the reader to the books [1,8]. The F-vector space End(V') becomes a
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Lie algebra over F with Lie bracket
[F,G] = FG — GF,  F,G € End(V).

This Lie algebra is often denoted by gl(V'), but we will not use this notation.
Lemma 2.1 For F,G € End(V) and § € F the following (1), (ii) are equivalent:

(i) the map [F,[F,G]] — 4G vanishes on Vi(0);

(il) GVp(0) C VR0 —2)+ Vp(0+2).
Proof: Let ® denote the map in (i) and observe

® = F?°G — 2FGF + GF* — 4G.

For v € Vp(6) we evaluate ®v using F'v = v to find

dv = (F*G —20FG +0*G — 4G)v

= (F—(0—2)I)(F—(0+2)1)Gv.

The scalars # — 2, 0+ 2 are mutually distinct since the characteristic of I is 0. The result

follows. O

Lemma 2.2 [7, Lemma 2.1] For F,G € End(V) and 0 € F the following (i), (ii) are

equivalent:
(i) the map [F,[F,[F,G]]] — 4[F, G| vanishes on Vg(0);

(i) GVr(0) C Vr(0 —2) + Vp(0) + Vr(0 + 2).



14

Proof: Let ® denote the map in (i) and observe
® = F°G — 3F°GF 4+ 3FGF? — GF® — 4FG 4 4GF.
For v € Vp(0) we evaluate v using F'v = fv to find

dv = (F*°G—30F°G+30°FG — 0°G — 4FG + 460G v

= (F—0=2)I)(F—-00)(F—(6+2)])Gv.
The scalars 8 — 2, 0, 6 + 2 are mutually distinct since the characteristic of F is 0. The
result follows. O
We end this section with some basic facts about Lie algebras. Let L denote a Lie algebra
over [F. Recall the Jacobi identity
[z, [y, 21 + [y, [z, 2] + [z, [, 9] = O, z,y,z € L. (2.2)

Lemma 2.3 Let L denote a Lie algebra over F. For all a,b,c,d € L,

[a, [b, [e,d]]] = [b, [d, [e, all] + [¢, [d, [b, al]] = [d, [e, [b a]]] = [b, [¢, [, al]]. - (2.3)
Proof: Observe that

[a, [b, [c, d]]] = [[[c.d], t], a]
= [[67 d]? [b> CLH - [ba HC, d]v CL]] by (2.2)

= [C’ [dv [bv am - [dv [C, [b7 am - ([b7 [Ca [da am - [bv [da [C’ am) by (2'2)'
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Let V denote a vector space over F with finite dimension n > 1. Suppose we are

given two bases for V', written uq,...,u, and vy, ...,v,. By the transition matriz from
Uy, ..., U, tO vy,...,V,, we mean the n by n matrix M with entries in F satisfying
i=1

Throughout this thesis all unadorned tensor products are taken over F.

2.2 Tridiagonal pairs

In this section we recall some definitions and basic facts concerning tridiagonal pairs.

These results will be used throughout the chapter.

Definition 2.4 [9] Let V' denote a vector space over F with finite positive dimension.
By a tridiagonal pair on V' we mean an ordered pair A, B of elements in End(V') that

satisfy the following four conditions.
(i) Each of A, B is diagonalizable.

(ii) There exists an ordering {V;}L, of the eigenspaces of A such that
BV, CVi i+ Vi+Vig (0 <i<d), (2.4)
where V_; =0 and V1 = 0.
(iii) There exists an ordering {V/}2_, of the eigenspaces of B such that
AV C VL + Vi + Vi (0 <i <9), (2.5)

where V/; = 0 and Vy,, = 0.
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(iv) There does not exist a subspace W of V' such that AW C W, BW CW, W # 0,
W #£V.

We say the pair A, B is over F. We call V' the vector space underlying A, B.

Referring to the tridiagonal pair A, B in Definition 2.4, observe that B, A is also a tridi-
agonal pair on V. By [9, Lemma 4.5], the integers d and J from conditions (ii) and (iii)
in Definition 2.4 are equal; we call this common value the diameter of A, B. An ordering
of the eigenspaces of A (resp. B) will be called standard whenever it satisfies (2.4) (resp.
(2.5)). We comment on the uniqueness of the standard ordering. Let {V;}%, denote a
standard ordering of the eigenspaces of A. Then the ordering {V;_;}%, is standard and
no other ordering is standard. A similar result holds for the eigenspaces of B. An order-
ing of the eigenvalues of A (resp. B) will be called standard whenever the corresponding
ordering of the eigenspaces of A (resp. B) is standard. Let {V;}¢, (resp. {V/}L,)
denote a standard ordering of the eigenspaces of A (resp. B). For 0 < i < d the spaces
Vi, V! have the same dimension [9, Corollary 5.7]; we denote this common dimension
by p;. By the construction p; # 0. The sequence {p;}¢_, is symmetric and unimodal;
that is p; = pg_; for 0 < i < d and p;_1 < p; for 1 < i < d/2 [9, Corollaries 5.7,
6.6]. By [11, Corollary 1.4] and since F is algebraically closed, p; < (f) for 0 <1 < d.
In particular py = 1. We call the sequence {p;}¢, the shape of A, B. We will often
abbreviate p = p;. The tridiagonal pair A, B is called a Leonard pair whenever p; = 1

for 1 <3 <d.

For the remainder of this chapter, A will denote an indeterminate. Let F[A] denote the

F-algebra consisting of the polynomials in A that have all coefficients in F.
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Definition 2.5 Let A, B denote a tridiagonal pair with shape {p;}%,. Consider the

polynomial in F[\] given by

d
1=0

We call this the shape polynomial of A, B.
Example 2.6 The shape polynomial of a Leonard pair with diameter d is given by
LA+ A+ 2

Definition 2.7 Let A, B and A’, B’ denote tridiagonal pairs over F. By an isomorphism
of tridiagonal pairs from A, B to A’, B’ we mean a vector space isomorphism ~ from the

vector space underlying A, B to the vector space underlying A’, B’ such that both

yA=Ay,  yB=DB".

2.3 'Tridiagonal pairs and the Onsager algebra

In this section we consider tridiagonal pairs of Krawtchouk type and their relationship

to the Onsager algebra.

Let A, B denote a tridiagonal pair with diameter d. We say that A, B has Krawtchouk
type whenever the sequence {d — 2i}2L, is a standard ordering of the eigenvalues of A
and a standard ordering of the eigenvalues of B. In this case, the tridiagonal pair B, A
also has Krawtchouk type. Moreover, by Definition 2.4 and Lemma 2.2, A and B satisfy

the Dolan-Grady relations

A, [A,[A, B]]| = 4[A, B], (B, [B,[B, A]]] = 4]B, A].
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Definition 2.8 [13] Let O denote the Lie algebra over F with generators A4, B and

relations
[A,[A A, B]l] = 4[A, B], B, B, B, All] = 4[B, AJ.
We call O the Onsager algebra. We call A, B the standard generators for O.
Theorem 2.9 [12] The F-vector space O has a basis {A;, G;|1,j € Z,j > 0} such that
[Alm Al] = 2G/€—l k> la
Gy, Ai] = Aipr — Ay,
Gy, G| =0.

Moreover Ag = A and A; = B.

Remark 2.10 The elements {G;|j € Z,j > 0} from Theorem 2.9 form a basis for an

abelian Lie subalgebra of O.

Let V' denote a finite-dimensional irreducible O-module. By [7, Theorem 2.4], the stan-
dard generators A, B are diagonalizable on V. Furthermore there exist an integer d > 0
and scalars «, f € F such that the set of distinct eigenvalues of A (resp. B) on V is
{d—2i+al0 <i<d} (resp. {d—2i+ p|0 <i<d})|[7, Theorem 2.4]. We call the
ordered pair («, 3) the type of V. Subtracting « (resp. () times the identity from A

(resp. B) the type becomes (0,0).

The following theorems give the relationship between finite-dimensional irreducible O-

modules and tridiagonal pairs of Krawtchouk type.
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Theorem 2.11 [7, Corollary 2.7] Let A, B denote a tridiagonal pair on' V' of Krawtchouk
type. Then there exists a unique O-module structure on V' such that the standard gen-
erators A, B act on V as A, B respectively. This O-module is irreducible and of type

(0,0).

Theorem 2.12 [7, Corollary 2.7] Let V' denote a finite-dimensional irreducible O-
module of type (0,0). Then the standard generators A,BB act on'V as a tridiagonal pair

of Krawtchouk type.

Remark 2.13 [7, Corollary 2.7] Combining the previous two theorems we obtain a

bijection between the following two sets:

(i) the isomorphism classes of tridiagonal pairs over F that have Krawtchouk type;
(ii) the isomorphism classes of finite-dimensional irreducible O-modules of type (0, 0).

Definition 2.14 Let V denote a finite-dimensional irreducible O-module of type (0, 0).
Let A, B denote a tridiagonal pair on V' that has Krawtchouk type. We say the O-
module V' and the tridiagonal pair A, B are associated whenever the O-generators A, B
act on V' as A, B respectively. By the diameter (resp. shape) (resp. shape polynomial)
of the O-module V' we mean the diameter (resp. shape) (resp. shape polynomial) of the
associated tridiagonal pair. We abbreviate Sy for the shape polynomial of the O-module

V.

Let V denote a finite-dimensional irreducible O-module of type (0,0). We call the O-

module V' trivial whenever the diameter of V' is zero.

Lemma 2.15 Up to isomorphism, there exists a unique trivial finite-dimensional irre-

ducible O-module of type (0,0). This O-module has dimension 1.
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Proof: Let V denote a trivial finite-dimensional irreducible O-module of type (0,0).
Since the diameter of V is zero, each of the O-generators A, B acts on V as the zero
map. Therefore any subspace of V' is an O-submodule of V', so V' has dimension 1. The

result follows. O

We will return to O shortly.

2.4 The Lie algebra sl

In this section we recall the Lie algebra sl, and its finite-dimensional modules.

Definition 2.16 Let sl, denote the Lie algebra over F with basis e, f, h and Lie bracket
le, /1= h, [h, €] = 2e, [h, f1==2f.

We call the basis e, f, h the Chevalley basis of sls.

In the following two lemmas we describe the finite-dimensional sl,-modules.

Lemma 2.17 [8,p. 28] Each finite-dimensional sly-module is a direct sum of irreducible

sly-modules.

Lemma 2.18 [8, p. 31| There ezists a family

' d=0,1,2,... (2.6)



21

of finite-dimensional irreducible sly-modules with the following property. The module V4

has a basis {v;}L, satisfying

Foi = (i + sy 0<i<d-1), foa=0,  (2.8)
evi = (d+1—1i)v;1 (1<i<d), evy = 0. (2.9)

FEvery finite-dimensional irreducible sly-module is isomorphic to exactly one of the mod-

ules in (3.2).
We mention a fact for later use.

Lemma 2.19 [10, p. 34] Let d denote a nonnegative integer. Let {p;}L, denote a
sequence of positive integers such that p; = pa_; for 0 < v < d and p; < piy1 for

0 <i<d/2. Then there exists an sly-module V' satisfying the following (i), (ii):
(i) the action of h on 'V is diagonalizable with eigenvalues {d — 2i}%_;

(ii) for 0 <i < d, p; = dim(U;), where U; is the eigenspace for the action of h on 'V

corresponding to the eigenvalue d — 21.

The sly-module V' is unique up to isomorphism. The only irreducible sly-submodules of

V are

Vi, Va2, Vg y,....

Moreover, for 0 < j < d/2, the multiplicity with which V4_o; appears in V is p; — pj_1,

where p_1 = 0.
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Proof: For notational convenience, abbreviate d; = d —2j and m; = p; — p;—1. Consider

the sly-module
/2

V=i
=0

where Vimj denotes the sly-module Vg, @ --- @ Vg, (m; times). By Lemma 2.18, h
is diagonalizable on V with eigenvalues {d — 2i}¢ .. For 0 < i < d/2, dim(U;) =
mo+my+---+m; = p;. Ford/2 <i<d,dim(U;) =mog+my+- - +Mag_i = pa—i = pi-
Therefore dim(U;) = p; for 0 < i < d. By construction, d and the sequence {p;}&,
uniquely determine the sequences {dj}?fo, {mj}?fo. The sequences {dj};lfo, {mj};lfo
uniquely determine the isomorphism type of the sls-module V. The previous two sen-

tences together prove the uniqueness claim in the result. The remaining two claims are

true by construction. O

With reference to Lemma 2.18, note that {v;}&, is an h-eigenbasis for V.

Definition 2.20 For d € N an h-eigenbasis {v;}%, for V,; will be called normalized

whenever it satisfies (2.7)-(2.9).

Lemma 2.21 Letd € N, and let {v;}%_, denote a normalized h-eigenbasis of V4. Given

vectors {u;}&y in Vg, the following are equivalent:
(i) the vectors {u;}&, form a normalized h-eigenbasis for Vg;

(i) there exists a nonzero s € F such that u; = sv; for 0 <1 <d.

Proof: Routine consequence of (2.7)—(2.9). O

We now give an alternate presentation of sls.
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Lemma 2.22 sly is isomorphic to the Lie algebra over F that has generators a,b and

relations

[Cl, [Cl, b“ = 4h7 [h7 [h7 Cl]] = 4aq.

An isomorphism with the presentation in Definition 2.16 is given by
a— e+ f, h— h.

The inverse of this isomorphism is given by

o [h,a]4+ 2a7 o

[a,b] + 2a

h—b.
— ~ b

The elements a, b, [a, b] form a basis for sls.

Proof: We routinely check that each map is a homomorphism of Lie algebras and that
the maps are inverses. It follows that each map is an isomorphism of Lie algebras. The

last assertion is routinely checked. O

Note 2.23 For notational convenience, for the rest of this chapter we identify the copy
of sly given in Definition 2.16 with the copy given in Lemma 2.22, via the isomorphism

given in Lemma 2.22.

Definition 2.24 We call the elements a,h from Lemma 2.22 the alternate generators

for sls.
We now describe three automorphisms of sl;.

Lemma 2.25 The following hold.

(i) There ezists an automorphism of sly that sends a — a, b — —b.
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(ii) There ezists an automorphism of sly that sends a — —a, h — b.
(iii) There exists an automorphism of sly that sends a +— b, h — a.

FEach of the automorphisms from (i)—(iil) has order 2.

Proof: Clear by the first assertion in Lemma 2.22. |

The automorphisms of sl from Lemma 2.25 do the following to the Chevalley basis.
Lemma 2.26 The following hold.
(i) The automorphism of sly from Lemma 2.25(1) sends e — f, f — e, h— —h.
(ii) The automorphism of sly from Lemma 2.25(ii) sends e — —e, f+— —f, h+— h.

(iii) The automorphism of sly from Lemma 2.25(iii) sends

e—f+h

Hf—e%—h |
2

5 , f— h— e+ f.

Proof: Routine. O

Lemma 2.27 For each d € N the actions of the alternate generators a,b on a normal-

ized h-eigenbasis {v;}&y of V4 are as follows:

av; = (d+1—=vig+(+ v (1<i<d-1), aw=v,  avg="v41,
Proof: Routine consequence of (2.7)—(2.9). O

Lemma 2.28 Let d € N. Let {v;}¢, be vectors in Vg, not all zero. Then {v;}L, form

a normalized h-eigenbasis of V4 if and only if the following (1) and (ii) hold:
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(i) bv; = (d—2t)v; for 0 <i <d;
(ii) the sum Z?:o v; 18 an etgenvector for a with eigenvalue d.

Proof: Routine consequence of (2.7)—(2.9). O

Interchanging the roles of a, b in Lemma 2.27 we obtain the following result.
Lemma 2.29 For each d € N the sly-module V4 has a basis {w;}L, such that

bw; = (d+1—d)wi1 + (i + Dwiyr (1 <i<d—1), bwo = wy, hwa = w41,

Proof: Routine using Lemma 2.27, Lemma 2.25(iii), and the last assertion in Lemma

2.18. ]

Lemma 2.30 Let V' denote a finite-dimensional irreducible sla-module. Then the alter-

nate generators a, b of sly act on V' as a Leonard pair of Krawtchouk type.

Proof: By the last assertion in Lemma 2.18, there exists d € N such that the sly-modules
V and V, are isomorphic. With respect to the basis {v;}%, from Lemma 2.27, the ma-
trix representing a is irredicuble tridiagonal and the matrix representing h is diagonal.
With respect to the basis {w;}%, from Lemma 2.29, the matrix representing b is irre-
ducible tridiagonal and the matrix representing a is diagonal. By Lemmas 2.27 and 2.29,
the sequence {d — 2i}%, is a standard ordering of the eigenvalues of a and a standard

ordering of the eigenvalues of . The result follows. O

Recall the notation Vp(6) from line (2.1).
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Lemma 2.31 Let V denote a finite-dimensional sly-module. Then each of the alter-
nate generators a,b is diagonalizable on V. Let A, H denote the actions of a,h on V

respectively. For 6 € F the spaces Va(0), Vi (0) have the same dimension.

Proof: If the slo-module V is irreducible, then the result holds by Lemma 2.30. The

general case follows by Lemma 3.6. O

2.5 The sl, loop algebra

Definition 2.32 Let ¢ denote an indeterminate, and let F[t,¢~!] denote the F-algebra
consisting of the Laurent polynomials in ¢ that have all coefficients in F. Let L(sly)
denote the Lie algebra over F consisting of the F-vector space sly ® F[t,t7!] and Lie

bracket
[u® a,v® b = [u,v] ® ab, u,v € sly, a,b € Flt, t71. (2.10)
We call L(sly) the sly loop algebra.

Observe that {t'};cz is a basis of the F-vector space F[t,t!]. Therefore the following is

a basis for L(sly):
e®t, fet ht ieZ. (2.11)

The sly loop algebra is related to the Kac-Moody algebra [10] associated with the Cartan

matrix

C .=
-2 2

This is made clear in the following lemma.
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Lemma 2.33 [10, p. 100] The loop algebra L(sly) is isomorphic to the Lie algebra over

F that has generators e;, fi, hi, i € {0,1} and the following relations:

ho +hy =0, lei, fi] = dijhy,
[hi, €] = Cijey, (i, i1 = —=Ci fj,
[€i>[€i7[ei7€j]]] :07 [fla[f“[fhfjm = 07 i 3&]

An isomorphism is given by
61'-)6@]., flf—>f®1, h1|—>h®1,

60'—>f®t71, fo'—>€®t, h0|—>—h®1

We now give an alternate presentation of L(sly).

Theorem 2.34 The loop algebra L(sly) is isomorphic to the Lie algebra over F that has

generators A, B,’H and relations

A, [A, H]) = 4%, [, [H, Al = 4A, (2.12)
B, (B, H]| = 4H, [H, [H,B] = 4B, (2.13)
[A,[A [A, B]l] = 4[A, B], B, B, [B, All] = 4[B, AJ, (2.14)
[, [A, B]] = 0. (2.15)

An isomorphism with the presentation from Lemma 2.33 is given by
A e+ fi, B ey + fo, H o hy. (2.16)

The inverse of this isomorphism is given by

(H, Al +2A A, H] +2A

H
“ 4 4

fi— hy — H, (2.17)

1B, H] + 28
4 )

H,B] + 28

Jor 1 : ho — —H. (2.18)

eg —
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The proof of Theorem 2.34 is given in Section 2.14.

Remark 2.35 We have used the same symbol to refer to the element A (resp. B) of
O from Definition 2.8 and the element A (resp. B) of L(sly) from Theorem 2.34. Our
justification for doing this will become clear prior to Note 2.39. As we proceed, it should

be clear from the context whether we are discussing O or L(sly).

In Lemma 2.33, we gave an isomorphism from the copy of L(sly) given in Definition
3.12 to the copy in Lemma 2.33. In Theorem 2.34, we gave an isomorphism from the
copy of L(sly) given in Lemma 2.33 to the copy in Theorem 2.34. Composing those
isomorphisms we get an isomorphism from the copy of L(sly) given in Definition 3.12 to

the copy in Theorem 2.34. This isomorphism is described as follows.

Corollary 2.36 The composition of the isomorphisms from Lemma 2.33 and Theorem

2.34 sends
A= el+ f®l, B=ext+fot! He—hel.
Proof: Immediate from Lemma 2.33 and Theorem 2.34. |

Note 2.37 For notational convenience, for the rest of this chapter we identify the copies
of L(sly) given in Definition 3.12, Lemma 2.33, Theorem 2.34, via the isomorphisms given

in Lemma 2.33, Theorem 2.34, Corollary 2.36.

By [3, p. 3277], there exists a homomorphism of Lie algebras O — L(sly) that sends

A e+ fol, B—ext+fot!h
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Moreover, this map is injective [3, p. 3277|. If we look at this map from the point of

view of the presentation in Theorem 2.34, then we see that it sends
A— A, B— B. (2.19)

We call the above homomorphism O — L(sly) natural.

Recall the basis {A;,G;|i,j € Z,j > 0} of O from Theorem 2.9.
Lemma 2.38 [3, p. 3277] The natural homomorphism O — L(sly) sends

A et + fot™ ieZ,

G he(t —t7))2 jeZ, j>0.

Note 2.39 For notational convenience, for the rest of this chapter we identify O with

its image in L(sly) under the natural homomorphism.
We now describe two automorphisms of L(sly).
Lemma 2.40 There ezists an automorphism 9 of L(sly) that sends
A= A, B— B, He— —H.
Moreover, there exists an automorphism T of L(sly) that sends
A B, B— A, H— H.

The automorphisms 9 and 7 satisfy 97 = 109, 92 =1, 72 = 1.
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Proof: The first and second assertions are clear by Theorem 2.34. The last assertion is

easily checked. O

By the last assertion in Lemma 2.40, ¥ and 7 induce an action of the Klein-four group

Zs X Zs on L(sly) as a group of automorphisms.

Lemma 2.41 The automorphisms O and T of L(sly) do the following to the generators

ei, fi, hi, i € {0,1} of L(sly) from Lemma 2.33.

(i) The map ¥ sends eq <> fo, €1 <> f1, ho <> hy.

(ii) The map T sends ey <> fi1, e1 <> fo, ho — hg, hy — hy.
(iii) The composition 9T sends ey <> ey, fo <> f1, ho <> hy.

Proof: Routine using Theorem 2.34 and Lemma 2.40. |

Lemma 2.42 For the automorphism ¥ of L(sly) from Lemma 2.40, we have 9 = 1 @15,
where ¥ denotes the automorphism of sly from Lemma 2.25(1), and ¥s denotes the

automorphism of F[t,t7] that sends t — ¢!
Proof: Routine using Lemma 2.25(i), Corollary 2.36, and Lemma 2.40. a
Lemma 2.43 [3, p. 3277] Pick x € L(sly). Then x € O if and only if 9(x) = x.

Recall the element a of sly from Lemma 2.22. For later use, we mention some elements

of L(sly) that are contained in O.

Lemma 2.44 For all k € Z, the element a ® (t* + t7%) of L(sl,) is contained in O.
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Proof: Use Lemmas 2.42 and 2.43. |

Note that there exists an injection of Lie algebras

sly — L(ﬁ[g)
(2.20)
r— x® 1.

If we look at this map from the point of view of the presentation of sl; in Lemma 2.22

and the presentation of L(sly) in Theorem 2.34, we obtain the following result.
Lemma 2.45 The injection of Lie algebras sly — L(sly) from (2.20) sends
a— A, h— H. (2.21)

Moreover, the composition of the injection from (2.20) and the automorphism 7 of L(sly)

from Lemma 2.40 sends

a— B, h— H. (2.22)

Proof: By Lemma 2.22, Note 2.37, and Lemma 2.40. O

Recall the notation Vp(6) from line (2.1).

Lemma 2.46 Let V denote a finite-dimensional L(sly)-module. Then each of A, B, H
is diagonalizable on V. Let A, B, H denote the actions of A, B, H on 'V respectively. For

0 € F the spaces Va(0),Vgp(0),Vy(0) have the same dimension.

Proof: Consider the L(sly)-module V. Pull back the L(sly)-action via the homomor-
phism given by (2.21). Then V becomes an sly-module on which the sly-generators a, b

act as A, H respectively. By Lemma 2.31, each of A, H is diagonalizable, and the spaces
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Va(0), Vi (6) have the same dimension. By a similar argument, B is diagonalizable, and

the spaces Vg(0), Vi (6) have the same dimension. O

We finish this section with a comment. Up to isomorphism, there exists a unique L(sl,)-
module of dimension 1. On this module every element of L(sly) acts as the zero map.

We call this L(sly)-module trivial.

2.6 Evaluation modules for L(sl)
In this section we discuss a type of L(sly)-module called an evaluation L(sly)-module.
Definition 2.47 For nonzero a € F, define a map EV, : L(sly) — sly by
EV,(u® g(t)) = g(a)u, u € sly, g(t) € Flt, t71).
The map EV, is a homomorphism of Lie algebras.

With reference to Definition 3.15, we routinely check that E'V, is surjective and its kernel

is sly @ (t — a)F[t, t71].

Definition 2.48 For a finite-dimensional sl,-module V' and for 0 # a € F, we pull
back the sly-action via EV, to obtain an L(sly)-action on V. We denote the resulting

L(sly)-module by V(a).

Definition 2.49 With reference to Lemma 2.18 and Definition 3.16, by an evaluation
L(sly)-module we mean an L(sly)-module Vy(a), where d is a positive integer and 0 #
a € F. By construction the evaluation L(sly)-module V,4(a) is nontrivial and irreducible.

We call a the evaluation parameter of V4(a). Note that V,(a) has dimension d + 1.
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Lemma 2.50 For a positive integer d and nonzero a € F, the evaluation L(sly)-module
Va(a) is described as follows. Let {v;}¢, denote a normalized h-eigenbasis of the sly-

module Vq. The elements (3.6) of L(sly) act on V4(a) as follows. For k € Z,

(h @ t*) v; = (d — 2i)a"v; (0 <i<d),
(f @t*) v = (i +1)a"via (O<i<d-1), (f@t) vy =0,
(e@t" v, = (d+ 1 —1i)a"v;_, (1<i<d), (e®t") vy = 0.

Note 2.51 With reference to Lemma 3.19, for any k € Z, vy spans the eigenspace of

h ® t* corresponding to eigenvalue a”d.

Lemma 2.52 The evaluation L(sly)-modules Vq(a) and Vg (a') are isomorphic if and

only ifd=d and a = d'.

Proof: Suppose V4(a) and V,(a’) are isomorphic. Isomorphic modules have the same
dimension, so d = d’. Considering the action of h®t, we see by Note 3.20 that ad = a'd.
Since d is positive, we have a = a’. This proves the lemma in one direction. The proof

for the other direction is immediate. |
Note 2.53 With reference to Lemma 3.19, the L(sly)-generators A, B, H act as follows:

Avi = (d+1—1i)vi_1 + (G + Dviag (1<i<d-1), Avg= vy, Avg = vg_1,
Buy=(d+1—i)avi 1+ G+ 1Da vy (1<i<d—1), Buy=atvy, Bug=avg,

Ho; = (d — 2i)v; (0<i<d).

Lemma 2.54 Let V' denote an evaluation L(sly)-module of dimension d+ 1. The fol-

lowing hold for Z € {A, B, H}.
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(i) Z is diagonalizable on V.
(ii) The set of distinct eigenvalues of Z on V is {d — 2i|0 <i < d}.
(i) The eigenspaces for Z all have dimension 1.

Proof: Write V' = V,(a). The result holds for Z = H by the last line in Note 2.53. For

the other cases use Lemma 2.46. O

We mention two facts for later use.

Note 2.55 With reference to Lemma 3.19, define w = Z;‘i:o v;. Then w spans the

eigenspace of A corresponding to eigenvalue d. Moreover, for all £ € Z, w is an eigen-

vector for a @ (tF 4 ¢=*) with eigenvalue (a* + a=*)d.

Note 2.56 Observe that [A, B] = h® (t~' —t). With reference to Lemma 3.19, we have

(A, Blv; = (a7! — a)(d — 2i)v; for 0 <i < d.

2.7 Twisting L(sl;)-modules

Recall the automorphism ¥ of L(sly) from Lemma 2.40. In this section we discuss how

to twist an L(sly)-module via 9.

Definition 2.57 Let V' denote an L(sly)-module. There exists an L(sly)-module struc-
ture on V, called V' twisted via 9, that behaves as follows: for all z € L(sly) and v € V,
the vector xv computed in V' twisted via 9 coincides with the vector ¥(x)v computed in

the original L(sly)-module V. We abbreviate *V for V twisted via 9.
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With reference to Definition 2.57, we emphasize that for all # € L(sly) the following are

the same:
(i) the action of x on the L(sly)-module *V;
(ii) the action of ¥(x) on the L(sly)-module V.

Special cases of particular interest are given in the following two lemmas.

Lemma 2.58 Let V' denote an L(sly)-module. For all z € O the following are the same:
(i) the action of x on the L(sly)-module °V;

(ii) the action of x on the L(sly)-module V.
Proof: By Lemma 2.43. O
Lemma 2.59 Let V' denote an L(sly)-module. The following are the same:

(i) the action of H on the L(sly)-module °V ;

(i) the action of —H on the L(sly)-module V.
Proof: By Lemma 2.40. O

Lemma 2.60 Let Vy(a) denote an evaluation L(sly)-module. Then the L(sly)-modules
"Va(a) and Vy(a™t) are isomorphic. Let {v;}&, denote a normalized h-eigenbasis of the
sly-module V4. There exists an isomorphism of L(sly)-modules "V y(a) — Vy(a™t) that

sends v; — vg_; for 0 < i <d.
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Proof: Let v denote the F-linear transformation *Vy(a) — V4(a™!) that sends v; — vy_;
for 0 <1 < d. By construction « is an isomorphism of vector spaces. To show that ~ is

a homomorphism of L(sly)-modules, we show that for Z € {A, B, H},

1Zvi) = Z.(y(vi)) (2.23)

for 0 < < d, where the action on the left in (2.23) is the *V(a)-action and the one on
the right in (2.23) is the V4(a™!)-action. We routinely verify (2.23) using Lemma 2.58,

Lemma 2.59, and the data in Note 2.53. O

2.8 Evaluation modules for O

In this section we discuss a type of O-module called an evaluation O-module. This
is an O-module that is obtained from an evaluation L(sly)-module by restricting the

L(sly)-action to O.

Definition 2.61 Let V and V' denote L(sly)-modules. We restrict the L(sly)-action on
V (resp. V') to O to get an O-action on V' (resp. V’). The L(sly)-modules V' and V'

are said to be related whenever the resulting O-modules are isomorphic.
Consider the set F\{0} of nonzero scalars in F.

Definition 2.62 We define a binary relation ~ on F\{0} as follows. Let a,a’ € F\{0}.
Then a ~ a’ whenever a = a’ or aa’ = 1. Observe that ~ is an equivalence relation.
Let E denote the set of equivalence classes for ~ on F\{0}. For a € F\{0} let @ € E
denote the equivalence class of ~ that contains a. Note that the equivalence classes 1
and —1 have cardinality one, and every other equivalence class has cardinality two. The

equivalence classes of cardinality two will be called feasible.
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Lemma 2.63 Let V,(a) and V4(a') denote evaluation L(sly)-modules. Then these L(sly)-

modules are related in the sense of Definition 2.61 if and only if a ~ a'.

Proof: Suppose a ~ a’. We show that the L(sly)-modules V,(a) and V,4(a’) are related.
This is trivial if a = d/, so suppose aa’ = 1. By Lemma 2.60, the L(sly)-modules
YVy(a) and V4(a') are isomorphic. Therefore the L(sly)-modules *V4(a) and Vy(a') are
related. By Lemma 2.58, the L(sly)-modules Vy(a) and ?V4(a) are related. Therefore

the L(sly)-modules V,(a) and V4(a’) are related.

Now suppose that the L(sly)-modules Vy(a) and Vy(a') are related. We show that
a ~ a'. Recall the element a ® (¢t +¢') € O from Lemma 2.44. Considering the action
of a® (t+1¢1), we see by Note 2.55 that (a+a~')d = (a’+ (a’)~')d. Since d is positive,

1

we have a + a™! = @’ + (a/)”!. Rewriting this equation we get (a — a')(ad’ — 1) = 0.

Therefore a ~ a’. O

The following definition is motivated by Lemma 2.63.

Definition 2.64 Let d denote a positive integer, and let b € E. By Lemma 2.63, up
to isomorphism there exists a unique O-module V4(b) with the following property. For

every a € b the restriction of the L(sly)-module Vy(a) to O is isomorphic to Vy(b).

Definition 2.65 By an evaluation O-module we mean an O-module V4(b), where b € E

and d is a positive integer. We call b the evaluation parameter of V4(b).
We now emphasize a few facts about evaluation O-modules.

Lemma 2.66 Let V4(b) and Vg (0') denote evaluation O-modules. Then these O-modules

are isomorphic if and only if d =d and b =1'.
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Proof: Suppose the O-modules V4(b) and V4 (V') are isomorphic. Isomorphic modules
have the same dimension, so d = d’. Pick a € b and o' € b'. Without loss we may assume
that the O-action on V4(b) (resp. V4(')) is obtained by restricting the L(sly)-action on
Va(a) (resp. V4(a’)) to O. Note that the L(sly)-modules V,(a) and V4(a') are related.
By Lemma 2.63, we get a ~ a’. Therefore b = /. This proves the lemma in one direction.

The other direction is proved in a similar fashion using Lemma 2.63. O

Let a € F be nonzero and recall the Lie algebra homomorphism EV, : L(sly) — sl from
Definition 3.15. Let ev, denote the restriction of EV, to @. Then ev, : O — sly is a Lie

algebra homomorphism.

Lemma 2.67 Let a € T be nonzero. Then the map ev, is surjective if and only if

a# +1.

Proof: Note that the image of O under ev, is the Lie subalgebra of sl, that is generated
by the elements ev,(A), ev,(B). These elements are e + f,ae + a~! f respectively. We
routinely check that these elements generate sl if and only if @ # +1. The result follows.

g

Lemma 2.68 Letb € E. Let V denote an evaluation O-module with evaluation param-
eter b. Then the O-module V is irreducible if and only if b is feasible in the sense of

Definition 2.62. In this case the O-module V' has type (0,0).

Proof: Write V' = V,(b) and pick a € b. Without loss we may assume that the O-
action on V' is obtained by restricting the L(sly)-action on V4(a) to O. Observe that

the O-action on V is obtained by pulling back the sly-action on V, via the map ev,.
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Suppose that b is feasible, so that a # £1. By Lemma 2.67, the map ev, is surjective.

Since the sly-module V is irreducible, we find that the O-module V is irreducible.

Now suppose that b is not feasible, so that a = £1. We show that the O-module V is
reducible by displaying a nonzero proper O-submodule of V. By Note 2.53, A = £ on
V. By Definition 2.8, A, B generate O. Therefore any eigenvector of A spans a nonzero

proper O-submodule of V.

The last assertion follows by Lemma 2.54(ii). O

Lemma 2.69 Let V4(b) denote an evaluation O-module, with b feasible. With reference

to Definition 2.14, the O-module V4(b) has diameter d and shape polynomial

LA+ A+ + 2

Proof: Pick a € b. Without loss we may assume that the O-action on V4(b) is obtained

by restricting the L(sly)-action on V4(a) to O. The result follows by Lemma 2.54. O

Lemma 2.70 Let V' denote an evaluation O-module with feasible evaluation parameter.
Then the O-action on V' can be extended to precisely two L(sly)-actions on V. The
resulting two L(sly)-module structures on V' are non-isomorphic. Fach of these two
L(sly)-module structures is obtained from the other by twisting the L(sly)-action via the

automorphism 9 of L(sly) from Lemma 2.40.

Proof: Let A, B denote the actions of A, B on V respectively. Suppose we are given an
L(sly)-action on V' that extends the O-action on V. For this L(sly)-action, let H denote
the H-action. By Lemma 2.68, the O-module V' is irreducible and has type (0,0). Let d

denote the diameter of the O-module V. By construction the set of distinct eigenvalues
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of Ais {d—2i|0 < i < d}. By Lemma 2.46, the set of distinct eigenvalues of H is

{d —2i|0 <i < d}. Recall the notation Vr(#) from (2.1). By (2.12) and Lemma 2.1,

AVig(d) C Vir(d — 2),  AVi(—d) C V(2 — d), (2.24)

AVi(d—20) CVy(d—2i —2) + Vy(d—2i+2) (1<i<d—1). (2.25)

Let b denote the evaluation parameter for the O-module V', so that V = V,(b). Pick
a € b. Without loss we may assume that the O-action on V' is obtained by restricting
the L(sly)-action on Vy(a) to O. Let {v;}¢, denote a normalized h-eigenbasis of the
sly-module V. By construction b is feasible, so a # 41, and consequently a # a~*. By
this and Note 2.56, for 0 < ¢ < d, v; spans the eigenspace of [A, B] corresponding to
eigenvalue (@' — a)(d — 2i)v;. By (2.15), H commutes with [A, B]. Therefore {v;}%_,

are eigenvectors for H. By Note 2.53,

Avg = vy, Avg = vg_1, (2.26)

Avi=(d+1 -+ (i + v (1<i<d—1). (2.27)

Comparing lines (2.24), (2.25) with lines (2.26), (2.27), we see that either v; is a basis
for Viy(d — 2i) for 0 < i < d, or v; is a basis for V(2 — d) for 0 < i < d. Consequently
either Hu; = (d — 2i)v; for 0 < i < d, or Hv; = (2i — d)v; for 0 < i < d. In the former
case, H is the H-action on V4(a), by Note 2.53. In the latter case, H is the H-action on
"Vq4(a), by Lemma 2.59. The L(sly)-modules Vy(a) and ?V,(a) are non-isomorphic by

Lemma 3.21 and Lemma 2.60. The result follows. O
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2.9 Finite-dimensional irreducible modules for ©® and
L(ﬁ[g)

In Section 2.7 we discussed evaluation L(sly)-modules. In Section 2.8 we discussed eval-
uation O-modules, and we discussed how these are related to evaluation L(sly)-modules.
In this section we consider general finite-dimensional irreducible L(sl;)-modules and O-
modules. We then discuss how these L(sly)-modules and O-modules are related. First
we make a comment. Let L denote a Lie algebra over F, and let U, V' denote L-modules.

By [8, p. 26], U ® V has an L-module structure such that
r(u®v) = (ru) ®v+u® (zv) rel, velU wveV (2.28)
The following lemma is routinely checked.

Lemma 2.71 Let L denote a Lie algebra over F, and let U,V denote L-modules. Then

the following hold.

(i) There ezists an L-module isomorphism U @V — V @ U that sends u @ v — v @ u

forallueU andveV.

(ii) Assume the L-module U ® V is irreducible. Then U and V' are irreducible.

The classification of the finite-dimensional irreducible L(sly)-modules is given in the

following theorem.

Theorem 2.72 [2] Every finite-dimensional irreducible L(sly)-module is isomorphic to
a tensor product of evaluation L(sly)-modules. Two such tensor products are isomorphic

as L(sly)-modules if and only if one can be obtained from the other by permuting the
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factors in the tensor product. A tensor product of evaluation L(sly)-modules @7, V4. (a;)

is irreducible if and only if the {a;}1_, are mutually distinct.

We now give the classification of the finite-dimensional irreducible O-modules. By
the comments in Section 2.3, it suffices to classify the finite-dimensional irreducible

O-modules of type (0,0).

Theorem 2.73 [3, Proposition 5, Theorem 6] Every finite-dimensional irreducible O-
module of type (0,0) is isomorphic to a tensor product of evaluation O-modules. Two
such tensor products are isomorphic as O-modules if and only if one can be obtained from
the other by permuting the factors in the tensor product. A tensor product of evaluation
O-modules Q' V4, (b;) is irreducible if and only if the {b;}?_, are mutually distinct and

feasible.

Definition 2.74 Let V denote a finite-dimensional irreducible L(sl,)-module (resp. O-
module of type (0,0)). By Theorem 2.72 (resp. Theorem 2.73) there exists a unique
n € N such that the L(sly)-module (resp. O-module) V' is isomorphic to a tensor product
of n evaluation L(sly)-modules (resp. O-modules). We call n the tensor degree of V. If
V' is the trivial L(sly)-module or the trivial O-module, we interpret the tensor degree to

be zero.

In Theorems 2.72 and 2.73 we discussed the finite-dimensional irreducible modules for

L(sly) and O. We now discuss how these O-modules and L(sly)-modules are related.

Definition 2.75 Let V' denote a finite-dimensional irreducible L(sly)-module. By The-
orem 2.72, the L(sly)-module V is isomorphic to a tensor product ®7 V. (a;) of evalu-
ation L(sly)-modules. The L(sly)-module V' is said to be inverse-free whenever a;a; # 1

for 1 <i,5 <n.
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Note 2.76 Referring to Definition 2.75, the L(sly)-module V' is inverse-free if and only

if the {@;}!_, are mutually distinct and feasible.

Proposition 2.77 The following hold.

(i) Let V' denote a finite-dimensional irreducible L(sly)-module that is inverse-free.
When the L(sly)-action on V is restricted to O, the resulting O-module is ir-
reducible, with type (0,0). Moreover, the L(sly)-module structure on V' and the

O-module structure on V' have the same tensor degree.

(ii) LetV denote a finite-dimensional irreducible O-module, with type (0,0) and tensor
degree n. Then the O-action on 'V can be extended to precisely 2" L(sly)-actions
on V. The resulting 2" L(sly)-module structures on V' are irreducible, inverse-free,

and mutually non-isomorphic.

The proof of Proposition 2.77(i) is routine using Theorem 2.72, Theorem 2.73, and Note
2.76. The proof of Proposition 2.77(ii) will be completed shortly. This proof will involve

the following lemma.

Lemma 2.78 Let V denote a finite-dimensional irreducible O-module of type (0,0).
Assume we are given two L(sly)-actions on V' that extend the O-action on V. Then the

following are equivalent:
(i) the two L(sly)-module structures on V' are isomorphic;

(i) the two L(sly)-actions on V are the same.

Proof: (i) = (ii) Let A, B denote the actions of A, B on V respectively. Let H, H" denote

the H-actions on V' afforded by the given L(sly)-actions. We show that H = H'. By
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construction, there exists a vector space isomorphism ~ : V' — V such that v commutes
with each of A, B and

vH = H'y. (2.29)

Let W C V denote an eigenspace of 7. By Definition 2.8, A, B generate O. Therefore W
is a nonzero O-submodule of V. The O-module V is irreducible, so W = V. Therefore
7 is a scalar multiple of the identity element of End(V'). Since + is invertible, that scalar
is nonzero. Combining this with (2.29) we get H = H'. The result follows since A, B, H

generate the Lie algebra L(sly).

(ii) = (i) Immediate. O

Proof of Proposition 2.77(ii): Invoking Theorem 2.73, we identify the O-module V' with
a tensor product ®F_, V. (b;) of evaluation O-modules, with the {b;}! ; mutually distinct
and feasible. By construction {b;}? ; are mutually disjoint and each b; has cardinality

two. Consider the L(sly)-modules
®;L:1Vdi (az) a; € bi, 1 S ) S n. (230)

For each L(sly)-module in (2.30) the restriction to O is isomorphic to the O-module
V. By Theorem 2.72, the L(sly)-modules (2.30) are irreducible and mutually non-
isomorphic. By Note 2.76, each of these L(sly)-modules is inverse-free. Suppose we
are given an L(sly)-action on V that extends the O-action on V. By Theorem 2.72,
the resulting L(sly)-module V' is isomorphic to a tensor product ®§L':1Vd;(a;) of evalu-
ation L(sly)-modules. By Theorem 2.73, we have n = n’, and up to a permutation of
{Vg (@) }io, we have d; = d; and a; € b; for 1 < i < n. Therefore the L(sly)-module

V' is isomorphic to one of the L(sly)-modules (2.30). The result follows routinely using
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Lemma 2.78. |

Definition 2.79 Let V' denote a finite-dimensional irreducible L(sly)-module that is
inverse-free. When the L(sly)-action on V' is restricted to O, the resulting O-module is
irreducible, with type (0,0), by Proposition 2.77(i). We say this O-module is associated
with the L(sly)-module V. By the diameter (resp. shape) (resp. shape polynomial) of
the L(sly)-module V' we mean the diameter (resp. shape) (resp. shape polynomial) of

the associated O-module, in the sense of Definition 2.14.

2.10 Finite-dimensional irreducible modules for O
and L(sly); the shape polynomial

In this section we continue to discuss a finite-dimensional irreducible O-module V' of
type (0,0). We will obtain some results about the shape polynomial Sy from Definition
2.14. We then discuss the relationship between the shape and the tensor degree of V.
At the end of the section, we take the results earlier in the section and apply them to

obtain results for finite-dimensional irreducible L(sl;)-modules.

Let V,V’ denote finite-dimensional irreducible O-modules of type (0,0) such that the
O-module V ® V' is irreducible. In this case the O-module V' ® V"’ has type (0,0). We

are going to show that Sy gy = Sy Sy. We will use the following three lemmas.

Lemma 2.80 Let V.V’ denote finite-dimensional irreducible O-modules of type (0,0)
such that the O-module V-®@ V' is irreducible. Let d (resp. d') denote the diameter of V

(resp. V'). Then the diameter of V@ V' isd+d'.
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Proof: Routine using (3.7). O

Lemma 2.81 Adopt the notation of Lemma 2.80. For X € {A,B} the eigenspaces of
the action of X on V@ V' are given as follows. For 0 < r <d (resp. 0 < s < d') let
V. (resp. V) denote the eigenspace of the action of X on'V' (resp. V') corresponding to
the eigenvalue d — 2r (resp. d' —2s). For 0 <n < d+d the eigenspace of the action of

X on V@V’ corresponding to the eigenvalue d + d' — 2n is given by

d eV (2.31)
where the sum is over all ordered pairs r,s such that 0 <r <d,0<s<d,r+s=n.
Proof: Routine using (3.7). O

Lemma 2.82 Adopt the notation of Lemmas 2.80, 2.81. Let {p,}¢_, (resp. {p.}%,)
denote the shape of the O-module V' (resp. V'). Then the vector space in line (2.31) has

dimension
> oo
where the sum is over all ordered pairs r,s such that 0 <r <d, 0<s<d,r+s=n.

Proof: The sum in (2.31) is direct. The result follows. O

Proposition 2.83 Let V.V’ denote finite-dimensional irreducible O-modules of type

(0,0) such that the O-module V@ V' is irreducible. Then
Svey: = SvSyr.

Proof: Routine using Lemmas 2.80-2.82. O
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Proposition 2.84 Let V' denote a finite-dimensional irreducible O-module, with type
(0,0), shape {p;}L,, and tensor degree n. By Theorem 2.73, the O-module V is isomor-

phic to a tensor product ®5_,Vy,(b;) of evaluation O-modules. Then

n

d
D ooN =T+ A+ N4+ 2Y), (2.32)
=0

j=1

Proof: By construction Sy = Z?:o piAt. Combine Lemma 2.69 and Proposition 2.83. O
Remark 2.85 With reference to Proposition 2.84, we have d = Z?Zl d;.

Let V' denote a nontrivial finite-dimensional irreducible O-module of type (0,0). We
now discuss the relationship between the shape of V' and the tensor degree of V. Note

that the diameter of V is at least one since V' is nontrivial.

Corollary 2.86 For a nontrivial finite-dimensional irreducible O-module of type (0,0)

with shape {p;}_, the tensor degree is given by p;.

Proof: Adopt the notation in Proposition 2.84. Comparing the coefficient of A\ from each

side of (2.32) we get p; = n. The result follows. O

Proposition 2.84, Remark 2.85, and Corollary 2.86 are about finite-dimensional irre-
ducible O-modules of type (0,0). We now obtain similar results for finite-dimensional

irreducible L(sly)-modules that are inverse-free.

Proposition 2.87 Let V' denote a finite-dimensional irreducible L(sly)-module that is
inverse-free, with shape {p;}¢_, and tensor degree n. By Theorem 2.72, the L(sly)-module

V' is isomorphic to a tensor product ®%_,V 4, (a;) of evaluation L(sly)-modules. Then

d n
S N =TJA+ X+ X+ 4 2%). (2.33)
=0

J=1
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Proof: Combine Definition 2.79 and Proposition 2.84. O
Remark 2.88 With reference to Proposition 2.87, we have d = Z?:l d;.

Corollary 2.89 For a nontrivial finite-dimensional irreducible L(sly)-module that is

inverse-free, with shape {p;},, the tensor degree is given by p;.

Proof: Similar to the proof of Corollary 2.86. a

2.11 Compatible elements

For the moment let V' denote a finite-dimensional irreducible O-module, with type (0, 0)
and tensor degree n. By Proposition 2.77(ii), the O-action on V' can be extended to
precisely 2" L(sly)-actions on V. Our next general goal is to describe in detail how these
2™ extensions are related to one another. In this description we make use of Theorem
2.34. To aid in this description we introduce the notion of a compatible element for a

tridiagonal pair of Krawtchouk type.

Definition 2.90 Let V denote a vector space over F with finite positive dimension. Let
A, B denote a tridiagonal pair on V' that has Krawtchouk type. An element H € End (V)

is said to be compatible with A, B whenever the following relations hold:

A, [A, H]| = 4H, [H,[H, A]] = 44, (2.34)
(B, [B, H]] = 4H, [H,[H, B]] = 4B, (2.35)
[H,[A, B] = 0. (2.36)

Let Com(A, B) denote the set of elements in End(V') that are compatible with A, B.
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Remark 2.91 Referring to Definition 2.90, let H € Com(A, B). Then H commutes

with [A, B] by (2.36).

Remark 2.92 Let A, B denote a tridiagonal pair of Krawtchouk type. We mentioned
at the beginning of Section 2.3 that B, A is a tridiagonal pair of Krawtchouk type. By

Definition 2.90, Com(A, B) = Com(B, A).

From now until the end of Remark 2.95, V' will denote a finite-dimensional irreducible
O-module of type (0,0). Let A, B denote the tridiagonal pair that is associated with
the O-module V', in the sense of Definition 2.14. Consider the set Com(A, B). We
now explain how the elements of Com(A, B) are related to the L(sly)-actions on V' that

extend the O-action on V.

Lemma 2.93 Consider an L(sly)-action on V' that extends the O-action on V. For the

L(sly)-module V', the action of H on V is an element of Com(A, B).

Proof: Compare (2.12), (2.13), (2.15) with (2.34), (2.35), (2.36). O

Lemma 2.94 Let H € Com(A, B). Then there exists a unique L(sly)-action on V' that

extends the O-action on V', such that the element H of L(sly) acts on'V as H.

Proof: Compare (2.12), (2.13), (2.15) with (2.34), (2.35), (2.36). O

Remark 2.95 Combining Lemmas 2.93 and 2.94 we obtain a bijection between the

following two sets:
(i) Com(A, B);

(ii) the L(sly)-actions on V that extend the O-action on V.
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In view of Remark 2.95, we will describe the L(sly)-actions on V' that extend the O-action

on V by describing the set Com(A, B).

Definition 2.96 For a tridiagonal pair of Krawtchouk type, we define its tensor degree

to be the tensor degree of the associated O-module from Definition 2.14.

Remark 2.97 Let A, B denote a tridiagonal pair that has Krawtchouk type and diam-
eter d. First assume d = 0. By Definitions 2.74 and 2.96, the tensor degree of A, B is
zero. Now assume d > 1. Let {p;}¢, denote the shape of A, B. By Definition 2.96 and

Corollary 2.86, the tensor degree of A, B is equal to p;.

Lemma 2.98 Let A, B denote a tridiagonal pair that has Krawtchouk type and tensor

degree p. Then Com(A, B) has cardinality 2°.
Proof: Combine Proposition 2.77(ii) and Remark 2.95. O

Remark 2.99 Referring to Remark 2.97 and Lemma 2.98, if the diameter of A, B is
zero, then the tensor degree of A, B is zero, so the set Com(A, B) has cardinality 1. In
this case, Com(A, B) consists of the zero map on V. In order to avoid trivialities, for

the remainder of this section we will assume that the diameter of A, B is at least 1.

Theorem 2.100 Let V' denote a vector space over F with finite positive dimension. Let
A, B denote a tridiagonal pair on V' that has Krawtchouk type, with diameter at least 1

and tensor degree p. Then there exist elements {H;};_, in End(V') such that

P
=1

The elements {H;}i_, are uniquely determined up to sign and permutation. These ele-

ments are linearly independent, they mutually commute, and they are diagonalizable on
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V. Moreover, the elements of Com(A, B) mutually commute and are diagonalizable on

V.

We will prove Theorem 2.100 shortly. For the rest of this paragraph, we will set some
notation that will remain in effect for the rest of this section. Let V' denote a vector
space over IF with finite positive dimension. Let A, B denote a tridiagonal pair on V'
of Krawtchouk type, with diameter d > 1 and shape {p;}%,. Abbreviate p = p;. By
Remark 2.97, the tensor degree of A, B is equal to p. Fix H € Com(A, B). By Lemma
2.94, there exists a unique L(sly)-module structure on V' such that the L(sly)-generators
A, B, H act on V as A, B, H respectively. Invoking Theorem 2.72, we identify the L(sl,)-

module V' with a tensor product of evaluation L(slz)-modules:
V= le (al) & Vdp(ap). (238)
Recall the indeterminate A.

Proposition 2.101 The sequences {p;}{_, and {d;}]_, determine each other via the

polynomial identity

d p

Do N =JJA+ X+ X 4 2h).
=0 j=1
Proof: Use Proposition 2.87. o

Remark 2.102 With reference to Proposition 2.101, we have d = Z?:l d;.
Next we define elements {#;}?_; of End(V') that satisfy (2.37).

Definition 2.103 For Z € L(sly) and 1 < i < p, define Z; to be the element of End(V)

that sends

u1®---®upr—>u1®---®ui_1®Zui®ui+1®-~-®up,
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where u; € Vg (a;) for 1 < j < p. We call Z; the ith part of Z.

Remark 2.104 Referring to Definition 2.103, the element Z € L(sly) acts on V as

A

i=1
Lemma 2.105 For Z € L(sly) the elements {Z;};_; mutually commute.

Proof: Routine using Definition 2.103. a

For the element H of L(sls), consider the corresponding elements {H;}?_; from Definition
2.103. Recall that H acts on V as H. By Remark 2.104, H acts on V as > 0 | H,.

Therefore H = Y% | H;. Note that by Lemma 2.105, the {#,}/_; mutually commute.
Lemma 2.106 The elements {H;};_, satisfy (2.37).

Proof: Recall the automorphism ) of L(sly) from Lemma 2.40. For € = (eq,...,¢,) €

{£1}” define the L(sly)-module V. by
V.=Ui®---®U, (2.39)

where for 1 < i < p, U; = Vy(a;) if & = 1 and U; = "V (a;) if s = —1. By Lemma

i

2.60 and Theorem 2.72, the L(sly)-modules
V. e € {£1} (2.40)

are mutually non-isomorphic. By Lemma 2.58, the elements A, 5 of L(sly) act as A, B on
each of the L(sly)-modules in (2.40). By Lemma 2.59, we find that for ¢ = (e1,...,¢,) €

{£1}*, the element H acts on V. as Y ©_, &;4;. Equation (2.37) follows from this along
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with Proposition 2.77(ii) and Remark 2.95. O

Refer to (2.38). For 1 <i < plet {v](-i)}?izo denote a normalized h-eigenbasis for the sly-
module Vy,, in the sense of Definition 2.20. Let I denote the set of p-tuples (ky, ..., k,)
of integers such that 0 < k; < d, for 1 <i < p. For k = (ki1,...,k,) € I define the vector

v € V by

Uk:v,(i)®v,g)®--~®v,(€i).

Note that the elements {vy}rer form a basis for V. For 1 < i < p, let e; denote the
element of F? with a 1 in the i™® coordinate and 0 in all other coordinates. For all k € F?

we define vy = 0 whenever k ¢ L.

Lemma 2.107 The following (i)—(iii) hold for all k = (k1,...,k,) € L.
(1) Avgp =37 (di +1 = k;)vg—e, + (ki + 1)k e, -
(i) Boe = >0 (di + 1 — ki)aive—e, + (ki + 1)a; ' Vpse,
(iil) Hop = >0 (di — 2k;)vg.
Proof: Routine using Note 2.53 and (3.7). O

Lemma 2.108 For k = (ky,...,k,) € I, vy is a common eigenvector for {H;};_,. The
corresponding eigenvalues are as follows. For 1 < i < p, vy is an eigenvector for H,;

with eigenvalue d; — 2k;.
Proof: Routine using Note 2.53 and Definition 2.103. O

Lemma 2.109 The following (i), (ii) hold for 1 < i < p.
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(1) H; is diagonalizable.
(ii) The set of distinct eigenvalues of H; is {d; — 27 |0 < j <d;}.
Proof: Use Lemma 2.108. o

Lemma 2.110 The common eigenspaces for {H;}:_, all have dimension 1. These com-

mon eigenspaces are {Fvy}rer.
Proof: Use Lemma 2.108. O
Lemma 2.111 The elements {H;};_, are linearly independent.

Proof: Let {s;}?_; denote scalars in F, and assume

> s =0. (2.41)

1<i<p

We prove s; = 0 for 1 <i < p. Let i be given. Consider the elements k = (0,...,0) and
k' =(0,...,0,d;,0,...,0) of I. By applying both sides of (2.41) to each of vy, —vp we
see that

Y osde =0, 2sd;— Y s,d, =0. (2.42)

1<r<p 1<r<p

In (2.42) we add the two equations to get s;d; = 0. Recall that d; is positive, so s; = 0. O

We are now ready to prove Theorem 2.100.

Proof of Theorem 2.100: Recall the elements {#;};_; from above Lemma 2.106. By
Lemma 2.106 and the comments immediately preceding it, the {H;}7_; mutually com-
mute and satisfy (2.37). By Lemmas 2.109 and 2.111, the {#;}?_; are linearly indepen-

dent and diagonalizable on V. Moreover, the elements of Com(A, B) mutually commute
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and are diagonalizable on V. It remains to prove the uniqueness claim. Define the set
S={(H-X)/2|X € Com(A, B)}.
Using (2.37) one routinely checks that

P
S:{ D st ‘ si€{0,1}, 1<i<p } (2.43)
=1

Let {H}}?_, denote elements in End(V) satisfying (2.37). Changing the signs of {H.}"_,
if necessary, we may assume that H = "7 H}. We will show that the sequence {H}!_,

is a permutation of the sequence {#;}7_,. Observe that

P
i=1

Comparing (2.43) and (2.44) one routinely checks that {H;};_; and {H.}/_, span the
same subspace of End(V'). Since the elements {H;}?_; are linearly independent, so are
the elements {H;}?_,. Let M denote the transition matrix from {H,;},_, to {H;}7_,. By

(2.43) and (2.44), each entry of M is either 0 or 1. Observe that

P P PP
i=1 i=1 i=1 j=1

For 1 <i < p, we compare the coefficients of {#;}{_; in (2.45) to obtain > *_, M;; = 1.

Therefore each row of M has exactly one entry equal to 1. Since the {H;}?_, are all

nonzero, each column of M has at least one entry equal to 1. Therefore M is a permu-

tation matrix. This shows that the sequence {H;}?_, is a permutation of the sequence

{H’i}ipzl' O

For 1 <i < p, we now consider the action of A, B on the eigenspaces of H,.
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Proposition 2.112 For 1 <i < p and 0 < j < d;, let W; denote the eigenspace of H;

corresponding to the eigenvalue d; — 25. Then
AW; C Wiy + W + Wi, BW; CW,_1 +W; + W, (1<j<dy),
where W_1 =0 and Wy, 41 = 0.

Proof: By Lemma 2.108, W; is spanned by the vectors vy such that k = (kq,...,k,) €1

and k; = j. The result follows by Lemma 2.107. a
Definition 2.113 Let C denote the subspace of End(V') spanned by Com(A, B).

Remark 2.114 By Theorem 2.100 and Definition 2.113, the elements {#H,};_; form a

basis for C.

Corollary 2.115 The common eigenspaces for C are the same as the common eigenspaces
for {H;}!_, discussed in Lemma 2.110. In particular these common eigenspaces all have

dimension 1.

Proof: Routine using Remark 2.114. O

We now describe the action of C on the eigenspaces of A and B.

Proposition 2.116 Let {V;}4, (resp. {V/}L,) denote a standard ordering of the

eigenspaces of A (resp. B). Then for all C € C,
CV; CVia + Vig, CV/ SV + Vi (0<i<d),

where V; =0 and V] =0 for j € {—1,d + 1}.
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Proof: Without loss of generality, C' € Com(A, B). The result follows by Lemma 2.1

and the equations on the left in lines (2.34) and (2.35). O

Recall from Theorem 2.9 the elements {G;|j € Z,j > 0} of O. Recall the equivalence
relation on F\{0} from Definition 2.62. Recall the evaluation parameters {a;}/_; from
(2.38). By Theorem 2.73, the {a;}/_, are mutually distinct and feasible, in the sense of

Definition 2.62.

Proposition 2.117 For all integers 7 > 0, the following holds on V :

Z a —a; /2.

Proof: For 1 < i < p, consider the i part of G}, in the sense of Definition 2.103. Using
Lemma 2.38 and Definition 3.18, one routinely checks that the i*" part of G; is equal to

H; (af —a;’ ) /2. The result follows by Remark 2.104. O

Proposition 2.118 The actions of {G;}i_; on V' form a basis for C.

Proof: Let M denote the p by p matrix whose (i,j)-entry is equal to a! — a;” for
1 <i,5 < p. By Proposition 2.117, it suffices to show that the matrix M is invertible.
One routinely checks that the determinant of M is equal to
H ar —ag ') H a;ta; H(aa; — 1) (a; — a;). (2.46)
1<k<p 1<i<j<p

The scalar (2.46) is nonzero because the {@;}7_; are mutually distinct and feasible.

Therefore M is invertible. O
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2.12 The graph X

Throughout this section the following notation will be in effect. Let V' denote a vector
space over [ with finite positive dimension. Let A, B denote a tridiagonal pair on V'
of Krawtchouk type, with diameter d > 1 and shape {p;}¢,. Abbreviate p = p;. By
Remark 2.97, the tensor degree of A, B is equal to p. By Theorem 2.100, the elements of
Com(A, B) mutually commute and are diagonalizable on V. In this section we discuss the
eigenvalues and the common eigenspaces for the elements of Com(A, B). These common
eigenspaces all have dimension 1. We view these common eigenspaces as vertices of a

certain undirected graph. We describe the action of A, B in terms of this graph structure.

Proposition 2.119 Pick H € Com(A, B). The eigenvalues of H are
{d—=2i]0 <i<d}. For0 <i <d, the eigenspace of H corresponding to eigenvalue

d — 21 has dimension p;.

Proof: By Lemma 2.94, there exists a unique L(sly)-module structure on V' such that
the L(sly)-generators A, B,H act on V as A, B, H respectively. By construction, the
eigenvalues of A are {d — 2i|0 < i < d}, and for 0 < i < d the eigenspace of A
corresponding to eigenvalue d — 2¢ has dimension p;. The result follows by Lemma 2.46.

O

Definition 2.120 Let X denote the set of common eigenspaces for the elements of

Com(A, B). By Corollary 2.115, the elements of X all have dimension 1.

Remark 2.121 Pick H € Com(A, B). Consider the basis {vg}rer of V' from Section
2.11. Using Theorem 2.100 and Lemma 2.108, one routinely checks that the elements of

X are {Fug }rer-
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We now define an undirected graph with vertex set X.

Definition 2.122 Let x,y € X. Then for 1 <1 < p, the elements x,y are said to be

1-adjacent whenever the following two conditions hold:
(i) the eigenvalues of H; corresponding to x and y differ by 2;

(ii) for 1 < j < p such that j # i, the eigenvalues of H; corresponding to x and y are

equal.

The elements z,y are said to be adjacent whenever there exists 1 < ¢ < p such that x
and y are i-adjacent. The set X together with this adjacency relation is an undirected

graph.

We will be discussing the (path-length) distance function for the graph from Definition

2.122.

Remark 2.123 Referring to Definition 2.122, the graph X is a Cartesian product of
p many chains, where the i*" chain has diameter d; for 1 < i < p. The graph X has

diameter d.

Definition 2.124 An element z € X will be called a corner whenever for 1 < ¢ < p,
the eigenvalue of H; on x is d; or —d;. Let Corner(X) denote the set of corners of X.

Note that the cardinality of Corner(X) is 27.

Proposition 2.125 Pick H € Com(A, B). For 0 < i < d, let U; denote the eigenspace
of H corresponding to the eigenvalue d — 2i. The subspace Uy is a corner of X. For

0 <1 <d, U; is the sum of the elements in X at distance i from Uj.
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Proof: Adopt the notation in Remark 2.121. By Lemma 2.107, U; is spanned by the set
of all vectors v, (k € I) such that the coordinates of k sum to i. The result follows using

Lemma 2.108, Definition 2.122, and Definition 2.124. O

Proposition 2.126 Pick x € Corner(X). Then there exists a unique H, € Com(A, B)

that has eigenspace x for the eigenvalue d.

Proof: Adopt the notation in Remark 2.121. Recall the corresponding {#;}/_; from
Definition 2.103. Since x € X, there exists k = (ky, ..., k,) € I such that = Fv,. Since
z € Corner(X), k; € {0,d;} for 1 < i < p by Lemma 2.108. Define H, = > 7_, s;H,,
where for 1 < ¢ < p, s;, = 1ift k; = 0and s; = —1if k; = d;. By Theorem 2.100,
H, € Com(A, B). By Lemma 2.108, x is the eigenspace of H, for the eigenvalue d. The

uniqueness claim follows from Proposition 2.125. O
Remark 2.127 Combining Propositions 2.125 and 2.126 we obtain a bijection

Corner(X) — Com(A, B)

r— H,.

In the next two propositions, we discuss the action of A, B on various subspaces of V.

We start by considering the action of A, B on the elements of X.

Proposition 2.128 For all x € X, Ax and Bz are contained in the sum of those

elements of X that are adjacent to x.

Proof: Adopt the notation in Remark 2.121. The result follows from Lemma 2.107,

Lemma 2.108, and Definition 2.122. O

We now discuss the action of A, B on the eigenspaces of the elements of Com(A, B).
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Proposition 2.129 Pick H € Com(A, B). For 0 <1 < d, let U; denote the eigenspace

of H corresponding to eigenvalue d — 2i. Then
AU; C Uiy + Ui, BU; C Uiy + Uiy,
where U_1 =0 and Ugyq = 0.

Proof: Use Proposition 2.125 and Proposition 2.128. O

2.13 Compatible elements, sl,-modules, and Leonard

pairs of Krawtchouk type

Throughout this section the following notation will be in effect. Let V denote a vector
space over [ with finite positive dimension. Let A, B denote a tridiagonal pair on V'
of Krawtchouk type, with diameter d > 1 and shape {p;}%,. Abbreviate p = p;.
By Remark 2.97, the tensor degree of A, B is equal to p. In this section we discuss
a relationship between the elements of Com(A, B), sly-modules, and Leonard pairs.
Fix H € Com(A, B). As we saw in Lemma 2.94, there exists a unique L(sly)-module
structure on V' such that the L(sly)-generators A, B, H act on V as A, B, H respectively.
By Lemma 2.45, the elements H, A generate a Lie subalgebra of L(sly) that is isomorphic
to sly, and the elements #H, B generate a Lie subalgebra of L(sly) that is isomorphic to
sly. Restricting the L(sly)-action on V' to either of these two Lie subalgebras, V' becomes

an sly-module.

Proposition 2.130 The two sly-module structures on V' defined in the previous para-
graph are isomorphic. Moreover, the isomorphism class of the slo-module V' is indepen-

dent of the choice of H € Com(A, B).
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Proof: Use Lemmas 2.19 and 2.31. |

By Lemma 3.6, the slo-module V' is a direct sum of irreducible sly-submodules. We now

describe the summands.
Proposition 2.131 The only irreducible sly-submodules of the slo-module V' are
Vi, Va0, Vg y,....

Moreover, for 0 < j < d/2, the multiplicity with which V4_o; appears in V' is p; — pj_1,

where p_1 = 0.

Proof: Use Lemmas 2.19 and 2.31. O
Corollary 2.132 The sly-module V' is irreducible if and only if p = 1.

Proof: Use Proposition 2.131. O

Proposition 2.133 On each irreducible sly-submodule of the slo-module V', the pair

H, A and the pair H, B act as Leonard pairs of Krawtchouk type.
Proof: Use Lemmas 2.18, 2.116, and 2.129. O
Proposition 2.134 The following (i)—(iii) are equivalent:
(i) the pair H, A and the pair H, B act on V as Leonard pairs of Krawtchouk type;
(ii) the pair H, A and the pair H, B act on 'V as tridiagonal pairs of Krawtchouk type;
(iii) p=1.

Proof: Immediate from Corollary 2.132 and Proposition 2.133. a
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2.14 The proof of Theorem 2.34

In this section we give a proof of Theorem 2.34.

Definition 2.135 Let £ denote the Lie algebra over F with generators A, B,H and

relations

A, [A H]) = 4H, [, [H, Al = 4A, (2.47)
B, [B,H]] = 4%, [, [H, B]] = 4B, (2.48)
[A,[A, [A,B]]] = 4]A, B], B, 1B, [B. All] = 4[B, A, (2.49)
[, [A, B]] = 0. (2.50)

We will show that the Lie algebras £ and L(sly) are isomorphic, with the isomorphism as
given in Theorem 2.34. First we show that there exists a homomorphism of Lie algebras

L — L(sly) that satisfies (2.16). By Lemma 2.33, it suffices to check that the elements
e@14+ f®1, e@t+ fOt hel

of L(sly) satisfy the defining relations (2.47)—(2.50) of £. This is routine using Definition
2.16 and (2.10). To illustrate, we verify the relation on the left in (2.48). First observe

that

e@t+fRt heoll=[e,h@t+[fhxt !

= 2e®@t+2f@t "
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Therefore

[e@t+fot ext+fot ! hol]]
—le@t+fRt 2ext+2f @t}
= —2e,el @t* +2[e, flo 1 —2[f,e] @1 +2[f, fl@t™?

=4h® 1.

We have now verified the relation on the left in (2.48). The other relations in (2.47)—
(2.50) are verified in a similar fashion. We have shown that there exists a homomorphism

L — L(sly) that satisfies (2.16).

Our next general goal is to show that there exists a homomorphism L(sly) — £ that

satisfies (2.17), (2.18). The following definition is for notational convenience.

Definition 2.136 For i € {0,1} define E;, F;, H; € L as follows:

Y L YRR

B, H] + 2B [H,B] + 28
Ve e Fy=

By = R
0 4 ) 4 )

H(] = —H

To show that there exists a homomorphism L(sly) — £ that satisfies (2.17), (2.18), it
suffices to prove that the elements of £ from Definition 2.136 satisfy the relations in
Lemma 2.33. This proof will be completed in Lemma 2.142. To prepare for this we
first describe two automorphisms of £. We then establish some relations involving the

generators A, B, H of L.
Lemma 2.137 There exists an automorphism ¥ of L that sends

A— A, B~ B, H— —H. (2.51)
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Moreover, there exists an automorphism T of L that sends
A — B, B— A, H— H. (2.52)
The automorphisms 9 and 7 satisfy 97 = 109, 92 =1, 72 = 1.

Proof: The first and second assertions are clear by Definition 2.135. The last assertion

is easily checked. |

By the last assertion in Lemma 2.137, 1 and 7 induce an action of the Klein-four group

Zo X Zs on L as a group of automorphisms.

Lemma 2.138 The automorphisms ¥ and 7 of L do the following to the elements of L

from Definition 2.136.
(i) The map ¥ sends Ey <> Fy, By <> Fy, Hy <> H;.
(ii) The map T sends Ey <> Fy, Ey <> Fy, Hy— Hy, H; — H;.
(iii) The composition 97 sends Eqg <> Ey, Fy <> Fy, Hy <> H;.
Proof: Routine using Definition 2.136 and Lemma 2.137. O

Lemma 2.139 For the Lie algebra L,
(i) [-’4’ [87 HH = [Bv [A> HH:
(ii) [H> [Av [87 Hm =0,

(iii) [[H. Al [B,H]] = 4[4, B].
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Proof: (i) Use (2.2) and (2.50).
(ii) In the equation on the right in (2.47), take the Lie bracket of each side with B to

get
B, [H, [H, All] = 4[B, A. (2.53)

By (2.3), the left-hand side of (2.53) equals
2[H7 [A7 [H7 Bm - [A7 [H, [H, Bm - [7—[7 [Ha [‘Av Bm (254>

Consider the three terms in (2.54). The term on the left equals —2[H, [A, [B, H]]], the
term in the middle equals 4[58, A] by (2.48), and the term on the right is zero by (2.50).

The result follows.

(iii) By (2.2), [[H,A], [B,H]| = [H,[A, [B,H]]] — [A, [H,[B,H]]]. In this equation eval-
uate the right-hand side using part (ii) of this lemma and the equation on the right in

(2.48). The result follows. O

We will show that the elements E;, F;, H; of L satisfy the relations in Lemma 2.33. We
will do this in two steps. The first step will be accomplished in Lemma 2.140, and the

second step will be accomplished in Lemma 2.142.

Lemma 2.140 Referring to Definition 2.136,

H() + Hl - O, [EZ, F}] — 5inj7 (255)

[H;, B;] = Ci; B, [H;, Fy] = —Cy; Fj, (2.56)

where C' is the Cartan matriz immediately preceding Lemma 2.33.
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Proof: The equation on the left in (2.55) is immediate from Definition 2.136. Consider
the equations on the right in (2.55). For i = j these relations are checked using the
relations on the left in (2.47), (2.48). For i # j these relations are checked using parts
(i), (iii) of Lemma 2.139. We routinely check (2.56) using the relations on the right in

(2.47), (2.48). O
Lemma 2.141 For the Lie algebra L,

(i) [A [A LA [B H]JI] = 4[A, [B, H]];

(i) [B,[B, [B, [A, H]]]| = 4B, [A, H]].

Proof: (i) In the equation on the left in (2.49), take the Lie bracket of each side with H,

and evaluate the right-hand side using (2.50) to get
[H[A, [A, [A, B]]]] = 0. (2.57)
Abbreviate D = [A, B]. By (2.3), the left-hand side of (2.57) equals
2[A, [D, [AH]]] - [D, [A, [AH]] - [A [A [D, H]]. (2.58)

Consider the three terms in (2.58). The term in the middle is zero by (2.47) and (2.50),
and the term on the right is zero by (2.50). Next we evaluate the term on the left.
By (2.2), [D,[A,H]] = [A, [B,[A, H]]] — [B,[A, A, H]]]. In this equation evaluate the

right-hand side using Lemma 2.139(i) and (2.47) to get

To evaluate the term on the left in (2.58), take the Lie bracket of each side of (2.59)

with A. The result follows.

(ii) Apply the automorphism 7 to (i). O
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Lemma 2.142 The elements Ey, By, Fo, F1 of L from Definition 2.136 satisfy the fol-

lowing relations:

[Ei [Ez’, [Ez', EJH] =0, i # J, (2-60)

[ [ [, ) = 0, i# ) (2.61)

Proof: By Lemma 2.138, it suffices to prove (2.60) for (7,7) = (1,0). Add 1/2 times the

equation on the left in (2.49) to 1/4 times the equation in Lemma 2.141(i). This yields
[A, [A, [A, Eo]]] = 4[A, Ep]. (2.62)

Note A = FE; + F; by Definition 2.136. By the equation on the right in (2.55), we find

that [A, Eo] = [E1, Ey]. Therefore the left-hand side of (2.62) equals
[Ev, [Ens [y, Eol]] + [By [Fr [y El]] + [y (B (B El]] + [F [F [Ev, Eol]] (2.63)

Consider the four terms in (2.63). Our goal is to show that the first term from the left is
zero. Consider the other three terms. Using (2.2) and Lemma 2.140, we routinely check
that

IR, [Ey, Eo]] = 25,. (2.64)

In (2.64), take the Lie bracket of each side with F; to get
[E1, [Fy, [Ev, Eol]] = 2[Eh, Eyl. (2.65)

In (2.64), take the Lie bracket of each side with Fj, and evaluate the right-hand side

using the equation on the right in (2.55) to get

[Flv [Fh [Ela EO]H = 0. (266)
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By (23), [Fl, [El, [El, E()H] equals

2[Ey, [Eo, [Ey, FA]]] = [Eo, (B, [Ey, B = (B [By [Eo, F1)- (2.67)

Consider the three terms in (2.67). Using Lemma 2.140, we routinely check that the
term on the left is 4[E, Ep|, the term in the middle is —2[E}, Ey], and the term on the

right is zero. Therefore we get

[F1, (B, [Bn, Eoll] = 2[E, Eql. (2.68)

Evaluate (2.62) using (2.65), (2.66), (2.68) to get [Ey, [E1, [E1, Eo]]] = 0. This proves

(2.60) for (i,7) = (1,0). The result follows. O

We are ready to complete the proof of Theorem 2.34. We have shown that there exists
a homomorphism £ — L(sly) that satisfies (2.16). We have shown that there exists a
homomorphism L(sly) — £ that satisfies (2.17), (2.18). We routinely check that these

homomorphisms are inverses. It follows that each map is an isomorphism of Lie algebras.



70

Chapter 3

The classification of the

finite-dimensional irreducible

modules for the sly loop algebra

3.1 Introduction

In [2], Chari classified up to isomorphism the finite-dimensional irreducible modules for
the sly loop algebra. Our purpose in this chapter is to give an elementary version of
this classification. This chapter is meant for graduate students and researchers who are

unfamiliar with the general representation theory of loop algebras.

We now recall the definition of sly and its loop algebra L(sly). Let F denote an alge-
braically closed field with characteristic 0. Let sly denote the Lie algebra over F with

basis e, f, h and Lie bracket

le, f] = h, [h,e] = 2e, [h, f] = —2f.

Let t denote an indeterminate, and let F[t,¢~!] denote the F-algebra consisting of the

Laurent polynomials in ¢ that have all coefficients in F. Let L(sly) denote the Lie algebra
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over [F consisting of the F-vector space
sly @ F[t, t71], ® = QF
and Lie bracket
[u® a,v® b = [u,v] ® ab, u,v € sly, a,beF[t,t7].

We are going to classify up to isomorphism the finite-dimensional irreducible modules

for L(sly). This classification is stated in Theorems 3.23-3.25.

3.2 Assumptions and preliminaries

In this section we collect some definitions and basic facts that will be used throughout
this chapter. Recall the natural numbers N = {0,1,2,...} and the integers

7 = {0,£1,£2,...}. Let F denote an algebraically closed field with characteristic 0.
Let V' denote a vector space over F with finite positive dimension. Let End(V') denote
the F-algebra of all linear transformations from V to V. For A € End(V) and 0 € F,

define
Va(0) = {v e V|Av = Ov}. (3.1)

We say that 6 is an eigenvalue for A whenever V4 (6) # 0, and in this case V4(0) is called
the eigenspace of A corresponding to 6. We say that A is diagonalizable whenever V' is

spanned by the eigenspaces of A.

We now turn our attention to Lie algebras. For basic definitions and facts about Lie

algebras, we refer the reader to the books [1,8]. The F-vector space End(V') becomes a
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Lie algebra over F with Lie bracket
X,Y]=XY -YX, X,Y €End(V).
This Lie algebra is often denoted gl(V'), but we will not use this notation.
Lemma 3.1 For X,Y € End(V) and 0 € F, the following are equivalent.
(i) The map [X,Y] —2Y wvanishes on Vx(0).
(i) YVx(0) C Vx(0 +2).

Proof: Abbreviate ® for [X,Y] —2Y. Let v € Vx(6). It suffices to show ®v = 0 if and
only if Yv € Vx(0 +2). Using Xv = 0v we find ®v = (X — (6 + 2))Yv. The result

follows. U

Lemma 3.2 For X, Y € End(V) and 6 € F, the following are equivalent.

(i) The map [X,Y]+ 2Y wvanishes on Vx(0).
(i) YVx(0) C Vx(6 —2).

Proof: Similar to the proof of Lemma 3.1. |

Let L denote a Lie algebra over F. There exists an L-module of dimension 1 on which
every element of L acts as zero. This L-module is unique up to isomorphism. We call

this L-module trivial. The proofs of the following basic facts are left as an exercise.

Lemma 3.3 Let Ly, Ly denote Lie algebras over F. Assume p: Ly — Lo is a surjective
Lie algebra homomorphism. Let V' denote an Lo-module. Pulling back the Lo-action on
V' wvia p we turn V' into an Li-module. Then V is irreducible as an Li-module if and

only if V' is wrreducible as an Lo-module.
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Lemma 3.4 Let Ly, Ly denote Lie algebras over F. Assume p: Ly — Lo is a surjective
Lie algebra homomorphism. Let V,V' denote Lo-modules. Pulling back the Lo-action on
V' (resp. V') via p we turn V' (resp. V') into an Li-module. Given an F-linear map

X :V = V', the following are equivalent.

(i) X is a homomorphism of Li-modules.
(ii) X is a homomorphism of Lay-modules.

Let L denote a Lie algebra over F. Let K, K’ denote subspaces of L. Define [K, K'] to

be the subspace of L spanned by the elements [k, k'] with k € K and k' € K.

Throughout this chapter all unadorned tensor products are taken over .

3.3 The Lie algebra sl,

In this section we recall the Lie algebra sl and its finite-dimensional modules.
Definition 3.5 Let sl denote the Lie algebra over F with basis e, f, h and Lie bracket

le, /1= h, [h, €] = 2e, [h, f1 = =2F.
We call the basis e, f, h the Chevalley basis of sls.
Let L denote a Lie algebra over F. Observe that the subspace [L, L] is an ideal of L.
The Lie algebra L is called abelian whenever [L, L] = 0. L is called simple whenever it

is not abelian and the only ideals of L are 0 and L. In this case, the center of L is 0 and

[L, L] = L [8, p. 6]. The Lie algebra sly is simple [8, p. 6].
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In the following two lemmas we describe the finite-dimensional sl;-modules.

Lemma 3.6 [8, p. 28] Each finite-dimensional sly-module is a direct sum of irreducible

sly-modules.
Lemma 3.7 [8, p. 31| There exists a family
Vg d=0,1,2,... (3.2)

of finite-dimensional irreducible sla-modules with the following property. The module V4

has a basis {v;}L, satisfying

hv; = (d — 2i)v; (0 <i<d), (3.3)
fvi:Ui+1 (OSZSd_1>7 fUd:O, (34)
evi =i(d+1—1d)v;_ (1<i<d), evy = 0. (3.5)

Every finite-dimensional irreducible sly-module is isomorphic to exactly one of the mod-

ules in (3.2).
Note that Vj is the trivial sly-module.

Definition 3.8 With reference to Lemma 3.7, a basis {v;}¢_, of V, satisfying (3.3)—(3.5)

is said to be standard.

Lemma 3.9 Let d € N, and let {v;}L, denote a standard basis of V4. Given vectors

{u;}L in Vg, the following are equivalent.
(i) The vectors {u;}¢_, form a standard basis of V.

(ii) There ezists a nonzero s € F such that u; = sv; for 0 <i <d.
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Proof: Routine. |
Lemma 3.10 The sly-action on V, is faithful provided that d is at least 1.

Proof: Let K denote the kernel of the sly-action on V,;, and note that K is an ideal of
sly. Since sly is simple, either K = 0 or K = sly. By (3.3) and since d is nonzero, we see

h ¢ K. Therefore K # sly, so K = 0. The result follows. O

Lemma 3.11 [10, p. 31] Let V' denote a finite-dimensional sla-module. Let 0 # v € V
denote an eigenvector of h such that ev = 0. Then the eigenvalue for h corresponding
to v is a nonnegative integer. Denote this eigenvalue by d. The elements { fiv}d, form

a standard basis for an sly-submodule of V' that is isomorphic to V.

3.4 The sl; loop algebra and its irreducible modules

In this section we discuss the sly loop algebra L(sly) and its finite-dimensional irreducible
modules. First we recall the definition of L(sly). We then discuss some basic results
about L(sly)-modules, with an emphasis on a special case called an evaluation module.
At the end of this section we give three theorems, which taken together amount to a
classification of the finite-dimensional irreducible L(sly)-modules. These theorems are

the main results of the chapter.

Definition 3.12 Let ¢ denote an indeterminate, and let F[¢,¢~!] denote the F-algebra
consisting of the Laurent polynomials in ¢ that have all coefficients in F. Let L(sls)
denote the Lie algebra over F consisting of the F-vector space sly @ F[t,¢t7!] and Lie

bracket

[u® a,v® b = [u,v] ® ab, u,v € sly, a,beF[t, 1.
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We call L(sly) the sly loop algebra.

Observe that {t'};cz is a basis of the F-vector space F[t,t7!]. By construction, the

following is a basis of L(sl).

e®t, fet, h &t ieZ (3.6)
Lemma 3.13 We have L(sly) = [L(sly), L(sly)].
Proof: This follows from Definition 3.12 and the fact that sly = [sly, sl5]. O
Lemma 3.14 Every L(sly)-module of dimension 1 is trivial.

Proof: Let W denote an L(sly)-module of dimension 1. We show that every element of
L(sly) is zero on W. Observe that each element of L(sly) acts on W as a scalar multiple

of the identity. Therefore any two elements of L(sly) commute on W, so every element

of [L(sly), L(sly)] is zero on W. The result follows by Lemma 3.13. O

Definition 3.15 For nonzero a € F, define a map EV, : L(sly) — sly by
EV,(u®mn(t)) =nla)u, u € sly, n(t) € Flt,t7Y.

The map EV, is a homomorphism of Lie algebras.

With reference to Definition 3.15, one routinely checks that EV, is surjective and its

kernel is sly ® (¢t — a)F[t, t71].

Definition 3.16 For a finite-dimensional sl,-module V' and for 0 # a € F, we pull
back the sly-action via E'V, to obtain an L(sly)-action on V. We denote the resulting

L(sly)-module by V(a).
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Lemma 3.17 Let V denote a finite-dimensional sly-module, and let a € F be nonzero.

Then the L(sly)-module V (a) is irreducible if and only if the sly-module V' is irreducible.
Proof: By Lemma 3.3. O

Definition 3.18 With reference to Lemma 3.7 and Definition 3.16, by an evaluation
module for L(sly) we mean an L(sly)-module Vy(a), where d is a positive integer and

0 # a € F. By construction, the evaluation module V,(a) is nontrivial and irreducible.

From the construction, we have the following description of the evaluation modules for

L(ﬁ[g).

Lemma 3.19 For a positive integer d and nonzero a € F, the evaluation module Vq(a)
is described as follows. Let {v;}%, denote a standard basis of the sly-module V4. The

elements (3.6) of L(sly) act on V4(a) as follows. For k € Z,

(h @ tF)v; = (d — 2i)a*v; (0 <i<ad),
(f @ tF)v; = afviy 0<i<d—1), (feoth)v=0,
(e@tF) vy =i(d+1—i)afv;_y (1<i<ad), (e®tF) vy = 0.

Note 3.20 With reference to Lemma 3.19, for any k € Z, vy spans the eigenspace of

h ® t* corresponding to eigenvalue a”*d.

Lemma 3.21 The evaluation modules Vq(a) and Vg (a') are isomorphic if and only if

d=d anda=d.

Proof: Suppose Vy(a) and Vg (a’) are isomorphic. Isomorphic modules have the same
dimension, so d = d’. Considering the action of h ®t, we see by Note 3.20 that ad = a'd.

Since d is positive, we have a = a'.
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The converse is immediate. O

Let L denote a Lie algebra over F, and let U,V denote L-modules. By [8; p. 26], U® V

has an L-module structure given by
r(u®@v) = (zu) @ v+ u (zv) rel, uwelU vel. (3.7)

Let U', V' denote L-modules such that U and U’ are isomorphic and V and V' are
isomorphic. Then the L-modules U ® V and U’ ® V' are isomorphic. The following

lemma is routinely checked.

Lemma 3.22 Let L denote a Lie algebra over F, and let U,V denote L-modules. Then

the following hold.

(i) There ezists an L-module isomorphism U @V — V @ U that sends u® v +— v @ u

forallueU andveV.
(ii) Assume the L-module U ® V is irreducible. Then U and V' are irreducible.

The classification of finite-dimensional irreducible L(sly)-modules is stated in the fol-
lowing three theorems. We acknowledge that these theorems are a reformulation of the

classification of finite-dimensional irreducible L(sly)-modules from [2].

Theorem 3.23 Let N denote a positive integer. For 1 < i < N let V4, (a;) denote an
evaluation module for L(sly). Then the L(sly)-module @YV, (a;) is irreducible if and

only if {a;}X., are mutually distinct.

Theorem 3.24 Let N, N’ denote positive integers. For 1 <i < N and 1 < j < N’ let

Ui and U} denote evaluation modules for L(sly). Consider the L(sly)-modules
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V=N U and V' = ®§V:/1UJ’-, and assume V and V' are irreducible. Then the following

are equivalent.

i) The L(sly)-modules V and V' are isomorphic.
(i)

(ii) N = N, and up to a permutation of {U/}N,, for 1 < i < N the L(sly)-modules

=1

U; and U] are isomorphic.

Theorem 3.25 Every nontrivial finite-dimensional irreducible L(sly)-module is isomor-

phic to a tensor product of evaluation modules.

Our goal for the rest of the chapter is to prove these theorems. The proofs of Theorems
3.23 and 3.24 will be completed in Section 3.13. The proof of Theorem 3.25 will be

completed in Section 3.14.

3.5 The Lie algebra g

In this section we bring in a certain Lie algebra g that will play an important role in
our description of L(sly)-modules. First we make a comment. Let L;, Ly denote Lie
algebras over F. Recall that the direct sum L; & Lo becomes a Lie algebra over F with

Lie bracket
[(u1,us), (v, v9)] = ([ug, v1], [ug, va]), u,v1 € Ly, U, vs € Lo.
Fix a positive integer N and consider the Lie algebra
g=slb@---dsly (N copies). (3.8)

Our next general goal is to classify up to isomorphism the finite-dimensional irreducible

g-modules. The proof of this classification will be completed in Section 3.8. Beginning
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in Section 3.12, we will consider how g-modules and L(slz)-modules are related.

For 1 <i < N and z € sly, define z; € g by

Ii:<0,...,0,$,0,...,0),

where x above is in the i coordinate.

For 1 < i < N there exists a Lie algebra homomorphism

sly — g
(3.9)
T = ;.

The homomorphism (3.9) is injective. Let g; denote the image of sl, under (3.9). By
construction, g; is a Lie subalgebra of g that is isomorphic to sl;. Note that g; is simple
since sly is simple. Let e, f, h denote the Chevalley basis of sl,. The elements e;, f;, h;

form a basis for g;. We have

0,9, =0, if i#j (1<ij<N) (3.10)

Observe that
g=g1+ - +0gn (direct sum), (3.11)
so {e;, fi,hi|i=1,...,N} is a basis for g. Combining (3.10) and (3.11) we see that g;

is an ideal of g for 1 <7 < N.

Lemma 3.26 Given a subspace K of g the following are equivalent.

(i) K is an ideal of g.
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(i) There exists a subset S of {1,..., N} such that K =3 _cgr.

Proof: (i) = (ii) Define S = {r|1 <r < N,g, € K}. By construction, K 2 > _<g,,
so it suffices to show that K C > _cg,. Let k € K. By (3.11), there exists g; € g;
(1 <i < N) such that k=3 | g;. We now show that g; = 0 for all i ¢ S (1 <4 < N).
Let 7 be given. Since K and g; are ideals of g, we find K g;] is contained in the ideal
K Ng, of g;. Recall g; is simple, so K N g; is either 0 or g;. Note K N g; # g;; otherwise
g; C K, so i € S for a contradiction. Therefore K Ng; = 0. Consequently [K,g;] = 0,
so [k,g] = 0 for all g € g;. Now using (3.10) we find [g;, 9] = [k, g] = 0 for all g € g;.
Therefore g; is in the center of g;. The center of g; is 0 since g; is simple. So g; = 0.

This proves k € ) ¢ g-. The result follows.

(ii) = (i) Routine. O

We now discuss a way to construct g-modules by taking tensor products of sl,-modules.
For 1 <7 < N let V; denote a finite-dimensional sly-module, and consider the F-vector
space V. = @ |V;. By [1, p. 85], V has a g-module structure which is described as

follows. Given u = @ij\ilu(i) cgand w; ®---Ruwy €V,
N
ww @ @uwy) =Y w @ @wi @uw @wi @ @wy. (3.12)
i=1

Lemma 3.27 For 1 < i < N let V; denote a finite-dimensional sly-module. Consider

the g-module V = @, V;. Then the following are equivalent.
(i) The g-action on V' is faithful.

(ii) For 1 <i < N the sly-action on V; is faithful.
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Proof: For 1 < i < N the g-module V is a g;-module by restriction. Observe that for
x € sly, x is zero on V; if and only if x; is zero on V. Therefore the sly-action on V; is

faithful if and only if the g;-action on V' is faithful.

(i) = (ii) Since the g-action on V is faithful, the g;,~action on V' is faithful. The result
follows by the above comments.

(ii) = (i) Let K denote the kernel of the g-action on V', and note that K is an ideal of

g. For 1 < i < N the g;-action on V is faithful, since the sly-action on V; is faithful.

Therefore K Ng; =0 for 1 <i < N. By Lemma 3.26, K = 0. The result follows. O

3.6 g-modules

Fix a positive integer N, and recall the corresponding Lie algebra g from (3.8). In this

section we consider the finite-dimensional g-modules.

Throughout this section V' will denote a g-module of finite positive dimension.

Lemma 3.28 For 1 < i < N the element h; is diagonalizable on V', and the elements

e; and f; are nilpotent on V.

Proof: Consider the g-module V. Pull back the g-action via the homomorphism in line
(3.9). Then V becomes an sly-module on which z acts as z; for all x € sl,. Combining
Lemma 3.6 and Lemma 3.7 we find the element A is diagonalizable on V', and the ele-

ments e and f are nilpotent on V. The result follows. O
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Recall the notation from line (3.1). For A = (A1, ..., Ay) € FY define
V(A) = Vi, (M) NNV (M) (3.13)

By Lemma 3.28, each of {h;}, is diagonalizable on V. By (3.10), {h;}}¥Y, mutually
commute. Therefore

V= Z V(A) (direct sum). (3.14)

AEFN

Observe that the nonzero summands in (3.14) are the common eigenspaces for {h;}¥,.

A nonzero element of V() is said to be a weight vector with weight .

For 1 < i < N let ¢; denote the element of FV with a 1 in the i** coordinate and 0 in

all other coordinates. Let I denote the identity element of End (V).
Lemma 3.29 The following hold for 1 <i < N and A = (\1,...,\y) € FV.
(i) eV(A) S V(A+2e).
(i) fiV(N) C V(XA —2g).
(iii) (h; — NMI)V(X) = 0.

Proof: (i) Use [h;, e;] = 2e;, Lemma 3.1, and (3.10).
(i) Use [h;, fi] = —2f;, Lemma 3.2, and (3.10).

(iii) By construction. O

Definition 3.30 A given vector v € V' is said to be a highest weight vector whenever v

is a weight vector and e;uv =0 for 1 <7 < N.

Lemma 3.31 V' has a highest weight vector.
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Proof: By (3.14), there exists A € FY with V(\) # 0 and V(A +2¢;) =0for 1 <i < N.
By Lemma 3.29(i), ¢;V(A\) = 0 for 1 < ¢ < N. Therefore any nonzero element of V()

is a highest weight vector. |

Until further notice v will denote a highest weight vector in V. Consider the g-module
V. For 1 < i < N pull back the g-action via the homomorphism in line (3.9). Then
V' becomes an sly-module on which x acts as z; for all x € sl;. Invoking Lemma 3.11,
we obtain the following results. There exists d; € N such that h;v = d;v. The elements
{fro}®, form a standard basis for an sly-submodule of V' that is isomorphic to Vg,. By
construction, fidiﬂv =0 for 1 <i < N. Define d = (dy,...,dy), and note that v has
weight d. By (3.10), the elements { f;}}¥; mutually commute. For k = (ky, ..., ky) € NV
define

vp = fI - RNy, (3.15)

By Lemma 3.29(ii),

vy € V(d — 2k) (k € NY). (3.16)
Lemma 3.32 The following hold for 1 <i < N and k = (ki,...,ky) € NV,
(1) hyv, = (d; — 2k;)vg.
(i) fivr = Ukse,-
(iil) e;vp = ki(d; + 1 — ki)vg_e,, where vg_., =0 if k; = 0.

Proof: (i) By (3.16).
(ii) By construction.

(iii) Consider the g-module V. Pull back the g-action via the homomorphism in line
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(3.9). Then V becomes an sly-module on which z acts as z; for all z € sl,. By the
comments following Lemma 3.31, the elements {f/v}% , form a standard basis for an

sly-submodule of V' that is isomorphic to V4,. Therefore
eiffo=r(d+1-r)f""v (reN,r>1), e;v = 0. (3.17)

The result follows by lines (3.10), (3.15), (3.17). O

We now define a partial order on NV,

Notation 3.33 For 1 <i < N let k;,m; € N. Write k = (ky,...,ky) and

m = (mq,...,my). We define k& < m whenever k; <m,; for 1 <i < N.
Lemma 3.34 For k € NV the following are equivalent.

(i) vx # 0.

(ii) k <d.

Proof: Write k = (ky,...,kn).

(i) = (ii) We assume that k £ d and show that v, = 0. There exists 1 <4 < N such
that k; > d;. By the comments following Lemma 3.31, we have fid"ﬂv =0, so ff"v =0.
Since {f;}¥, mutually commute, we get vy = fF* ... fri7! Z»]fﬁl o fRN Ry = 0.

)

(ii) = (i) By construction, k; < d; for 1 < ¢ < N. By Lemma 3.32(iii), the vec-

tor e’fl e e’f\,N vg is a nonzero scalar multiple of the highest weight vector v. Therefore
Vg 7& 0. O

Let w € V. We will be discussing the g-submodule of V' generated by w. By definition

this is the intersection of all g-submodules of V' that contain w.



86

Lemma 3.35 Let v denote a highest weight vector in V. Recall the vectors vy from
(3.15). Then the vectors

o keNY k<d (3.18)

form a basis for the g-submodule of V' generated by v.

Proof: Abbreviate U for the subspace of V' spanned by the vectors (3.18). Note U is a
g-module by Lemma 3.32 and Lemma 3.34. The vectors (3.18) are linearly independent
by Lemma 3.34 and lines (3.14), (3.16). Therefore the vectors (3.18) form a basis for the
g-module U. Abbreviate W for the g-submodule of V' generated by v. We now prove
that W = U. Note v € U, so W C U. We now prove that W D U. It suffices to show
v, € W for k € NN, Since W is a g-module and v € W, we get v, € W by (3.15). This

shows W = U. The result follows. O

Lemma 3.36 Let v denote a highest weight vector in V. Let W denote the g-submodule

of V' generated by v. Given w € W the following are equivalent.
(i) w is a highest weight vector.

(ii) There exists a nonzero s € F such that w = sv.

Proof: (i) = (ii) By Lemma 3.35, the vectors (3.18) form a basis for W. Note w is a
weight vector in W by construction. By Lemma 3.32(i), w is a nonzero scalar multiple
of some vector in (3.18). The only highest weight vector in (3.18) is v. Therefore w is a

nonzero scalar multiple of v.

(ii) = (i) Routine. O
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3.7 Highest weight modules for g

Fix a positive integer N, and recall the corresponding Lie algebra g from (3.8). In
Section 3.6 we proved some results about finite-dimensional g-modules. We now restrict

our attention to a special case, called a highest weight module.

Definition 3.37 A g-module is said to be highest weight whenever it is generated by a

highest weight vector.

Let V' denote a finite-dimensional highest weight g-module. By construction, V' is gen-
erated by a highest weight vector. By Lemma 3.36, any two highest weight vectors in V'
have the same weight. We define the highest weight of V' to be the weight of a highest

weight vector in V.

Lemma 3.38 For1 <i < N letV; denote an irreducible sla-module of finite dimension

d; + 1. Then the g-module @ ,V; is highest weight with highest weight (dy, ..., dx).

Proof: For 1 < i < N pick 0 # u; € V; such that hu; = d;u;. Define v = ®ij\;1ui, and
write A\ = (dy,...,dy). Abbreviate V for the g-module @Y ,V;. One routinely checks

that v € V() is a highest weight vector and that V' is generated by v. O
Lemma 3.39 For a finite-dimensional g-module V' the following are equivalent.

(i) V is highest weight.

(ii) V is irreducible.

Proof: (i) = (ii) By construction, V' is generated by a highest weight vector v € V.

Note V' # 0 because 0 # v € V. Let U be a nonzero g-submodule of V. We now prove
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that U = V. It suffices to show that v € U. By Lemma 3.31 applied to U, there exists
a highest weight vector u € U. Note u is a highest weight vector in V' by construction.
By Lemma 3.36, u is a nonzero scalar multiple of v, so v € U. This proves U = V.
Therefore V' is irreducible.

(ii) = (i) By Lemma 3.31, there exists a highest weight vector v € V. Let W denote
the submodule of V' that is generated by v. Note that W # 0 because 0 # v € W.

Therefore W =V by the irreducibility of V. O

Lemma 3.40 Let V.V’ denote finite-dimensional highest weight g-modules with highest
weights d,d’, respectively. Then the g-modules V' and V' are isomorphic if and only if

d=d.

Proof: Combine Lemma 3.32 and Lemma 3.35. a

3.8 The classification of the finite-dimensional irre-
ducible g-modules

Fix a positive integer N, and recall the corresponding Lie algebra g from (3.8). We now
classify up to isomorphism the finite-dimensional irreducible g-modules. This classifica-

tion is given in the following three theorems.

Theorem 3.41 For1l < i < N letV; denote a finite-dimensional irreducible sla-module.

Then the g-module @Y |V; is irreducible.

Proof: Combine Lemma 3.38 and Lemma 3.39. a
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Theorem 3.42 For 1 < ¢ < N let V; and V] denote finite-dimensional irreducible
sly-modules. Then the g-modules @Y., V; and @N,V! are isomorphic if and only if the

slo-modules V; and V; are isomorphic for 1 <i < N.

Proof: For 1 < i < N denote the dimensions of V;, V! by d; + 1,d}, + 1, respectively.
By Lemma 3.38, the g-modules V = @, V; and V' = @Y ,V/ are highest weight with
highest weights d = (dy,...,dy) and d' = (d},...,dy), respectively. By Lemma 3.40,
the g-modules V and V' are isomorphic if and only if d = d’. For 1 < ¢ < N the

slp-modules V; and V/ are isomorphic if and only if d; = d]. The result follows. ]

Theorem 3.43 Let V' denote a finite-dimensional irreducible g-module. Then for
1 < i < N there exists a finite-dimensional irreducible slo-module V; such that the g-

modules V and @Y,V are isomorphic.

Proof: V is highest weight by Lemma 3.39. Let d = (dy,...,dy) denote the highest
weight of V. Consider the g-module V' = ®¥,V,. By Lemma 3.38, V' is highest
weight with highest weight d. By Lemma 3.40, the g-modules V and V' are isomorphic.

|

3.9 The ideals of L(sly)

We now turn our attention back to the Lie algebra L(sly). In this section we describe

the ideals of L(sly).

Lemma 3.44 Let K denote an ideal of L(sly) and p € F[t,t7']. Then sly ® p is either

contained in K or has zero intersection with K.
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Proof: We assume that sl ® p has nonzero intersection with K and show sl ® p is
contained in K. Define a subspace W of sly by W = {y € slh|y ® p € K}. Note
W # 0. We show W is an ideal of sly. Suppose w € W, z € sly. We show [w, z] € W.
Since w € W, we have w ® p € K. Since K is an ideal, [w®p,z® 1] € K. But
w®p,z®1] = [w,z] @p, so [w,z] € W. Therefore W is an ideal of sly. Since W # 0

and sl is simple, we must have W = sly. The result follows. a

Lemma 3.45 Let K denote an ideal of L(sly). Define J = {p € F[t,t7!]|slb®p C K}.

Then J is an ideal of F[t,t7].

Proof: By construction, J is a subspace of F[t,t7!]. Note that F[t,¢7!] is generated by
t and ¢t~!. To prove that J is an ideal it suffices to show t*J C J for ¢ = £1. By
construction, sly® J C K. Therefore [sly ® J,sly ® t°] C K since K is an ideal of L(sly).
Note [sly ® J, sl @ t°] = [sly, sl5] @ t°J, and [sly, sl5] = sly, so sly ® t°J C K. Therefore

t¢J C J. The result follows. O

We now describe the ideals of L(sly).

Theorem 3.46 Given a subspace K of L(sly) the following are equivalent.
(i) K is an ideal of L(sly).
(ii) There exists an ideal J of F[t,t7] such that sly ® J = K.

Suppose (1) and (ii) hold. Then J is uniquely determined by K.

Proof: (i) = (ii) Consider the ideal J of F[t,¢t7'] from Lemma 3.45. We show that

sly ® J = K. By construction, sl ® J C K, so it suffices to show that
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sl J DK. Letue K. Write u=e® g1 + [ @ go + h @ g3, where g1, g, g3 € F[t, t7!]
and e, f,h is the Chevalley basis of sly. We show that ¢i,¢2,93 € J. Observe that
u,h®@1] € K, s0 e®@ g — f® gy € K. We have [e®¢g; — f® ¢, f®1] € K, so
h®g € K. Consequently g; € J by Lemma 3.44. Similarly [e® g1 — f ® g2, e ® 1] € K,
so h®gy € K. Consequently go € J by Lemma 3.44. By the above comments K contains
e®¢g; and f ® go. Therefore h®@ g3 =u—e® g1 — f ® g2 € K. Consequently g3 € J by

Lemma 3.44. We have shown g1, g2, 93 € J, so u € sly ® J. The result follows.
(ii) = (i) Routine.

The last assertion is routinely checked. O

Theorem 3.46 motivates us to describe the ideals of the algebra F[t,¢!]. In Section 3.10
we will describe the ideals and quotients of F[t,¢71]. In Section 3.11 we will use Theorem

3.46 and the results in Section 3.10 to describe the quotients of the Lie algebra L(sly).

3.10 The ideals and quotients of F[t,t‘l]

In this section we describe the ideals and quotients of the algebra F[t, ¢!].

Throughout this section let J denote a nonzero proper ideal of F[t,¢~!]. Consider the
subalgebra F[t] of F[t,t!]. The algebra F[t] is a principal ideal domain, and J N F[t] is
an ideal of F[t]. Therefore there exists g € F[t] such that JNF[t] = gF[t]. We now prove
that J = gF[t,t™!]. Since J is an ideal of F[t,t '] and g € J, we have J D gF[t,t"!]. We
now show that J C gF[t,t7!]. Let n € J. There exists i € N such that t'n € F[t]. Since J

is an ideal of F[t,¢7'] and n € J, we have that t'n € J. Therefore t'n € JNTF[t] = gF|t],
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son € gt 'F[t] C gF[t,t7']. We have now shown that J = ¢gF[t,t"!]. The polyno-
mial g is nonzero because J is nonzero. Without loss we can assume that ¢ is monic.
Let [ be the minimal degree of a nonzero polynomial in J N F[t]. By construction,
g is the unique monic polynomial in J N F[¢t] with degree I. We call g the standard
generator of J. The constant term of ¢ is nonzero; otherwise g = th for some h € F[t],

and h = t~1g € JNF|t] has lower degree than g, which contradicts our earlier comments.

Let N denote the degree of g. Since J is properly contained in F[t,¢7!], J does not

contain any units of F[t,¢7!]. Therefore N is at least one. Factor the polynomial g as
g=(t—a))(t—asz) - (t—ap), (3.19)

where a; € F for 1 <i < N. Note that the constant term of ¢ is (—1)ajas - - - ay. This

constant term is nonzero, so a; # 0 for 1 <i < N.

Consider the quotient algebra F[t,¢t7]/J. Let T denote the image of ¢ under the canon-
ical homomorphism F[t,¢t™'] — F[t,t7']/J. Recall J = ¢gF[t,t"!] and g has minimal
degree among all the nonzero elements of JNF[t]. Using this we find that ¢g(7") = 0, and
we find that the elements 1,7,..., 7V~ form a basis of the F-vector space F[t,t7]/J.
We now give another basis of F[t,¢7!]/J that will be more convenient for us in later

sections. For 0 < ¢ < N — 1 define p; to be the polynomial

pi(t) = (t —a1)(t —az) -~ (t — ;).

Note that pg = 1. Observe that the degree of p; is i for 0 < ¢ < N — 1. Therefore

{pi(T)}¥,! is a basis of F[t,t71]/J.
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3.11 The quotients of L(sly)

In this section we describe the quotients of the Lie algebra L(sl).

Throughout this section let K denote a nonzero proper ideal of L(sly). By Theorem
3.46, there exists an ideal J of F[t,¢7!] such that K = sl, ® J. Note that J is nonzero

and properly contained in F[¢, ¢71].

Consider the quotient algebra F[t, t~!]/.J. Observe that the F-vector space sly®(F[t,t71]/J)

becomes a Lie algebra over F with Lie bracket
[u® a,v® b] = [u,v] @ ab, u,v € sly, a,beF[t,t7]/J.

Let o : F[t,t7!] — F[t,t7!]/J denote the canonical homomorphism. Consider the quo-

tient Lie algebra L(sly)/K.

Lemma 3.47 The Lie algebra homomorphism
L(sly) — sl ® (F[t,t"]/J)
u®a— u® p(a)

18 surjective and its kernel is K. Therefore the homomorphism

L(slh) /K — sl ® (F[t,t7']/J)
(3.20)
u®a+ K —u® p(a)

is an 1somorphism of Lie algebras.

Proof: Routine. |



We identify L(sly)/K with sly @ (F[t,¢7']/J) via the isomorphism (3.20).
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Recall the standard generator (3.19) of J and the basis {p;(T)}X;" of F[t,t~1]/J from

Section 3.10. By Lemma 3.47, the quotient Lie algebra L(sly)/K has a basis
{E;,F;,H;|i=1,..., N} where

Ei=e@p(T), F,=f®p(T), H =hop_(T),

for 1 <i{<N.

One routinely checks that the following hold in L(sly)/K for all 1 < k,r < N.

|Ex, F.] € Span{Hy,...,Hy},
[Hy, E.] € Span{FEi,...,Ex},
[Hy, F.] € Span{Fi,...,Fn},

[Ey, Er] =0, [Fy, Fy] = 0, [Hy, H,] =0,

[EhFr] = Hr‘7 [HlaEr] = 2E7”7 [HlaFr] = —2F;.

We abbreviate

E=E, F=F, H=H,.

In view of relations (3.26) with r = 1, there exists an injection of Lie algebras

sly — L(sly)/K that sends

e— F, f—F, h+— H.

(3.21)

(3.22)
(3.23)
(3.24)
(3.25)

(3.26)

(3.27)

(3.28)

The image of sl under this map is the Lie subalgebra of L(sly)/K with basis E, F, H.
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3.12 The homomorphism v : L(sly) — g

Fix a positive integer N, and recall the corresponding Lie algebra g from (3.8). In this
section we consider a homomorphism ¢ : L(sly) — g. We use this homomorphism to

describe a relationship between g-modules and L(sly)-modules.

For 1 < ¢ < N let a; € F be nonzero and recall the Lie algebra homomorphism

EV,, : L(sly) — sly from Definition 3.15. We define the Lie algebra homomorphism

¥ L(sly) — g by
(u) = (EVy, (u),. .., EVy(u)), u € L(sly). (3.29)

Let S denote the set of distinct elements among {a;}¥,. Define G to be the polynomial

Gty =] t-a). (3.30)

a€eS

Lemma 3.48 The kernel of ¢ is sly @ GF[t, 7], where G is from (3.30).

Proof: Observe that

ker(y) = ] ker(EV,,)

i=1

= ker(EV,)

a€eS

=[] sh® (t—a)F[t,t"]
a€eS

=sl, @ GF[t, t71).

Lemma 3.49 The map v is surjective if and only if {a;}¥, are mutually distinct.
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Proof: Let n denote the cardinality of S. Abbreviate K for sly ® G F[t,t™!], where G is
from (3.30). By Lemma 3.48, K is the kernel of ¢. Note G is the standard generator
of the ideal GF[t,t7!] of F[t,t~!]. By construction, G has degree n. By the comments
in Section 3.11, the quotient Lie algebra L(sly)/K has dimension 3n. The Lie algebra g
has dimension 3/N. Therefore the map 1 is surjective if and only if n = N. The result

follows. U

Lemma 3.50 For 1 <i < N letd; € N. Consider the L(sly)-module W = @ V. (a;).

Then the following hold.

(i) The L(sly)-action on W is obtained by pulling back the g-action on @Y ,V, via

the map .

(ii) Assume that d; # 0 for 1 <i < N. Then the kernel of the L(sly)-action on W is

sly ® GF[t,t7], where G is from (3.30).

Proof: (i) Routine.
(i) By Lemma 3.48, the kernel of ¢ is sl, ® GF[t,t~']. By Lemmas 3.10 and 3.27, the
g-action on ®N,Vy, is faithful. Combining these facts with part (i) of this lemma gives

the result. O

3.13 The proof of Theorems 3.23 and 3.24

We are now ready to prove Theorems 3.23 and 3.24.

Proof of Theorem 3.23: Abbreviate V for the L(sly)-module @,V (a;).
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Suppose {a;}¥, are mutually distinct. We will show that the L(sly)-module V is ir-
reducible. Consider the corresponding Lie algebra g from (3.8), and recall the map
¥ L(sly) — g from (3.29). By Lemma 3.49, 9 is surjective, and by Lemma 3.50(i), the
L(sly)-action on V is obtained by pulling back the g-action on ®2 V. via the map ¢. By
Theorem 3.41, the g-module ® V. is irreducible, so by Lemma 3.3, the L(sly)-module

V is irreducible.

Now suppose {a;}~, are not mutually distinct. Then N is at least 2. We will show
that the L(sly)-module V' is reducible. By Lemma 3.22(i), we may assume without loss
of generality that a; = ay. Denote this common value by a. Consider the sly-action
on Vg, ® Vy, given by (3.7). By construction, d; and dy are positive. Using (3.7) one
can check that the sly-module V; ® Vg, is reducible. One routinely checks that the
L(sly)-action on Vg, (a) ® V4, (a) is obtained by pulling back the sly-action on Vg4, ® Vg,
via the map EV, : L(sly) — sly. By these comments and Lemma 3.3, the L(sly)-module

Vg, (a) ® Vg, (a) is reducible. By Lemma 3.22(ii), the L(sly)-module V' is reducible. O

Proof of Theorem 3.24: Write U; = Vg,(a;) for 1 < @ < N and Uj = Vg /(aj) for
1<j<N.

(i) = (ii) By Theorem 3.23, {a;};_, are mutually distinct and {a] é\il are mutually
distinct. By Lemma 3.50(ii), the kernel of the L(sly)-action on V is sly @ GF[t,t7!],
where the polynomial G = (t —ay) - - - (t — ay). Similarly, the kernel of the L(sl;)-action
on V' is sly @ G'F[t,t7'], where the polynomial G’ = (¢t — a})---(t — dy,). Since the
L(sly)-modules V, V" are isomorphic, the kernels of the L(sly)-actions on V and V' are
the same. Therefore sly ® GF[t,t7!] = sl ® G'F[t,t']. Invoking the last assertion in

Theorem 3.46 we get GF[t,t7'] = G'F[t,t~']. For this common ideal of F[t,¢7!], both
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G and G’ are the standard generator, so G = G'. Therefore N = N’| and a},d), ..., d}y
is a permutation of a;,as, ...,ay. After permuting {U/}Y | we may assume a; = a/ for
1 < ¢ < N. So far we have U/ = Vd(i(ai) for 1 < i < N. We now show that d; = d,
for 1 < i < N. Consider the corresponding Lie algebra g from (3.8). The map 1
from Lemma 3.49 is surjective. By Lemma 3.50(i), the L(sly)-action on V' (resp. V')
is obtained by pulling back the g-action on ®,V, (resp. ®fi1Vd; ) via the map .
By Lemma 3.4, the g-modules @Y, Vg, and ®;,Vy are isomorphic. By Theorem 3.42,

d; = d} for 1 <i < N. The result follows.

(ii) = (i) By Lemma 3.22(i). O

3.14 The proof of Theorem 3.25

Let V' denote a nontrivial finite-dimensional irreducible L(sly)-module. Let K denote
the kernel of the L(sly)-action on V', and observe that K is an ideal of L(sly). We shall
view V' as a module for L(sly)/K. Note that this module is faithful and irreducible.
Observe that K is nonzero because End(V) is finite-dimensional while L(sly) is not.
Furthermore K is properly contained in L(sly) because V' is nontrivial and irreducible.
By Theorem 3.46 there exists an ideal J of F[t,t7!] such that K = sl, ® J. Note that
J is nonzero and properly contained in F[t,¢!]. Recall the standard generator g of J

from Section 3.10.

In this section we have two related goals. We will invoke the results in Section 3.8 and
Section 3.12 to prove Theorem 3.25. In order to do this we first need to show that g has

no repeated roots.
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Consider the basis (3.21) of L(sly)/K, and recall the notation from (3.27).
Lemma 3.51 H is diagonalizable on V.

Proof: Consider the L(sly)/K-module V. Pull back the L(sly)/K-action via the ho-
momorphism in line (3.28). Then V becomes an sly-module on which h acts as H.
Combining Lemma 3.6 and Lemma 3.7 we find h is diagonalizable on V. The result

follows. U

Recall the notation from line (3.1).
Lemma 3.52 The following hold for y € F and 1 <i < N.
() EiVi(p) € Va(p+2).
(ii) FiVu(p) S Vi(p —2).
(i) HiVu(p) € Va(p).

Proof: (i) Use Lemma 3.1 and relations (3.26).
(ii) Use Lemma 3.2 and relations (3.26).

(iii) Use relations (3.25). O
Lemma 3.53 For 1 <i < N the elements E; and F; are nilpotent on V.
Proof: Combine Lemma 3.51 and Lemma 3.52. O

Definition 3.54 A given vector v € V is said to be a highest weight vector whenever

v#0, Ew=0for 1 <i< N, and v is a common eigenvector of {H;}¥ .
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Lemma 3.55 V' has a highest weight vector.

Proof: Since V has finite dimension, there exists p € F with Vi (u) # 0 and
Vi (u+2) = 0. By Lemma 3.52(1), we get that E;Vi (1) = 0 for 1 <4 < N. Since {H;}Y,
mutually commute by (3.25), there exists v € V(1) that it is a common eigenvector of

{H;}Y,. By construction, { E;}.-, annihilate v. Therefore v is a highest weight vector. O

Let F denote the subalgebra of End(V') generated by the actions of {Fl}f\il By (3.25),

F is spanned by the actions of
FMFy? - Y, ni,...,ny € N.
Lemma 3.56 Let v € V' denote a highest weight vector. Then V = Fu.

Proof: Abbreviate W for Fv. By construction, W is a subspace of V, and W # 0
because 0 # v € W. By the irreducibility of the L(sly)/K-module V| it suffices to show
that W is a submodule of V. To show this it suffices to check that W is closed under the
action of Fy, Fy, Hy for 1 < k < N. By construction, W is closed under the action of Fj,
for 1 < k < N. Next we show that W is closed under the action of Hy for 1 < k < N.
Let k be given. By the comments immediately preceding the statement of the lemma,

it suffices to show that
H,F{"Fy? - FyNo e W, ni,...,ny € N. (3.31)

The proof of (3.31) is by induction on ny + - -+ + ny. For the case ny + -+ +ny = 0,
the claim is true because v is a common eigenvector of {Hl}fil Now suppose that

ny + -+ ny > 0. Therefore there exists 1 < r < N such that n, > 0. By (3.25),

HyFUFy? o F\Ny = H B FJUFy? - Er =t RN, (3.32)
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The right hand side of (3.32) equals
FoH FEy? - Frr= bt  FYNg 4 [Hy, F ) FFy? - Frmh e RNy, (3.33)

In line (3.33), the term on the left is in W by the induction hypothesis, and the term on
the right is in W by (3.24). We have now shown (3.31) for 1 < k < N. Now we show
that W is closed under the action of Fj for 1 < k < N. Let k be given. It suffices to
show that

ExyFFy2 . FiNy € W, ny,...,ny € N. (3.34)

The proof of (3.34) is by induction on ny + -- - + ny. For the case
ny + .-+ + ny = 0, the claim is true because v is annihilated by each of {EZ}ZA;1 Now
suppose that n; +---+ny > 0. Therefore there exists 1 < r < N such that n, > 0. By

(3.25),
E FFy? - FiNy = B F FEy? - Frr=ho o RNy, (3.35)
The right hand side of (3.35) equals
E EL N Fy? - Er b Ny - [Ey, F | FEy? - Fim e FYN, (3.36)

In line (3.36), the term on the left is in W by the induction hypothesis. The term on
the right is in W by (3.22) and since W is closed under the action of each of {H;}. .

This shows (3.34) for 1 <k < N. The result follows. O
Theorem 3.57 The polynomial g has no repeated roots.

Proof: Recall the roots {a;}., of g from line (3.19). We will show that {a;}, are

1=

mutually distinct. Suppose by way of contradiction that g has a repeated root. Then



102

N is at least 2. Relabeling the roots of g if necessary, we may assume that a; = ay. We

first show that the following relations hold in L(sly)/K for 2 <r < N.

[Ex,F,] =0, [Fy,E] = 0, [Hy, E]=0, (3.37)

[EN, Hr] =0, [FNa Hr] = 0, [HNa FT] =0. (338)

We check the relation on the left in (3.37). Observe [En, F,| = [e, f] @ py—1(T)pr—1(T).

Note that py_1(T)p,—1(T) is equal to
(T —a ) (T —ag)- - (T—an_1)(T —ay) - (T — a,_1).
Keeping in mind that a; = ay and r > 2, we see that
(T —a ) (T —ag) - (T —ay)

is a factor of px_1(T)p,—1(T"). But this factor is ¢(T") = 0, so px—1(T)p,—1(T") = 0. The
relation on the left in (3.37) now follows. The other relations in (3.37) and (3.38) are

proved in a similar fashion.

Fix a highest weight vector v of V', and consider Fyv. We will show that
Fyv=0. (3.39)

Suppose by way of contradiction that Fyv # 0. We now show that Fyv is a highest

weight vector.

First we check that Fyv is an eigenvector of Hy. By construction, v € Vg (u) for some

€ F. By Lemma 3.52(ii), Fyv € Vy(u —2). Thus Fyv is an eigenvector of H;.
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Now we check that Fyyv is an eigenvector of H, for 2 <r < N. Fix r with 2 <r < N.
Recall that H, and Fy commute by (3.38). So Fxyv must be an eigenvector of H, since

v is an eigenvector of H,.

Next we check that F; annihilates Fyv. First we need to make a few observations. By

construction, Hyv = A\v for some A € F. We claim that for all j € N the following holds.
E\Fi ™o = (54 DAF,v. (3.40)
To show (3.40), we proceed by induction on j. Observe that
Ei\Fyv=FyEwv+ Hyv = A,

where the first equality holds by (3.26) and the second since Fiv = 0 and Hyv = Av.

This shows (3.40) holds when j = 0. Now suppose j > 1, and observe that
E\F™w = FyE/Flv+ HyFlv
= jAFLv+ HyFlo
= jAFLv+ F Hyv
= (j+ DAFw,

where the first equality holds by (3.26), the second by the induction hypothesis, and the

third by (3.38). This shows (3.40) holds for all j € N. Now we show that
A=0. (3.41)

To see why (3.41) holds we argue as follows. By Lemma 3.53, Fy is nilpotent on V. By

this and since v # 0, there exists M € N such that F¥v # 0 while F&'™v = 0. Setting
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Jj = M in (3.40) we obtain A = 0. This shows that (3.41) holds. If we set j = 0 in (3.40)

and we combine this with (3.41), then we get that E; annihilates Fiyv, as desired.

Finally, we check that FE, annihilates Fyv for 2 < r < N. Fix r with 2 < r < N.
Recall that E, and Fy commute by (3.37) and that F, annihilates v. It follows that

E.Fyv=FyE,.v=0. So E, annihilates Fyuv.

We have shown that Fyv is a highest weight vector. We apply Lemma 3.56 to the

highest weight vector Fiyv to get that
V = FFyv. (3.42)
Recall that v € V(). Therefore the right hand side of (3.42) is contained in the space
Vi(p—2) 4+ V(e —4) + -

by Lemma 3.52(ii). So v is contained in the left hand side of (3.42) but not in the right
hand side of (3.42), which is a contradiction. In conclusion, we have seen that assuming

Fxnv # 0 has led to a contradiction, so (3.39) holds.

To finish the proof of Theorem 3.57, we note the following. By (3.39), (3.25), and
Lemma 3.56, applied to the highest weight vector v, we see that Fy vanishes on V.
However the action of L(sly)/K on V is faithful. This gives a contradiction. Therefore

our assumption that g has a repeated root is false. This proves the result. O

We are now ready to prove Theorem 3.25.
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Proof of Theorem 3.25: Let V' denote a nontrivial finite-dimensional irreducible L(sly)-
module. We will show that V' is isomorphic to a tensor product of evaluation modules.
We will be referring to the discussion in the first paragraph of this section, in particular
the ideals J and K and the standard generator g of J. By Theorem 3.57, the polynomial
¢ has no repeated roots. In other words, the roots {ai}fil of g from (3.19) are mutually
distinct. For that N, we consider the Lie algebra g from (3.8). By Lemma 3.48 and
Lemma 3.49, the Lie algebra homomorphism ¢ from (3.29) is surjective and its kernel

is K. By the construction, the homomorphism

L(sl)/K — g

u+ K — (EVy(u),...,EV,,(u))

is an isomorphism of Lie algebras. Therefore there exists an irreducible g-module struc-
ture on V' such that the L(sly)-action on V' is obtained by pulling back the g-action
on V via the map ¢. By Theorem 3.43, there exists d; € N (1 < ¢ < N) such that
the g-modules V and ®,V,, are isomorphic. By Lemma 3.50(i), the L(sl)-action on
®N Vg4 (a;) is obtained by pulling back the g-action on ® ,V, via the map 1. Com-
bining the above observations with Lemma 3.4 we get that the L(sl;)-modules V' and
@Y V4. (a;) are isomorphic. Finally, note that the g-action on @YV, is faithful since
the L(sly)/K-action on V is faithful. By Lemma 3.27, d; is postive for 1 < ¢ < N.
This proves that the L(sly)-module V' is isomorphic to a tensor product of evaluation

modules. O
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