
TRIDIAGONAL PAIRS OF
KRAWTCHOUK TYPE AND THEIR

COMPATIBLE ELEMENTS

By

Gabriel Hernán Pretel

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the

UNIVERSITY OF WISCONSIN – MADISON

2015

Date of final oral examination: April 27, 2015

The dissertation is approved by the following members of the Final Oral Committee:

Professor G. Benkart, Professor Emerita, Mathematics

Professor N. Boston, Professor, Mathematics

Professor T. Purnell, Associate Professor, English

Professor P. Terwilliger, Professor, Mathematics

Professor P. Matchett Wood, Associate Professor, Mathematics



i

Abstract

It is known that the Onsager algebra O can be embedded as a Lie subalgebra in the

sl2 loop algebra L(sl2). We give an attractive presentation of L(sl2) by generators and

relations. There are three generators A,B,H and as we will see, O can be identified

with the Lie subalgebra of L(sl2) generated by A,B. Let V denote a finite-dimensional

irreducible O-module of type (0, 0). It is known that the O-action on V extends to an

L(sl2)-action on V . We classify the L(sl2)-actions on V that extend the O-action on V .

We show that these L(sl2)-actions have a certain geometric significance, which is best

described using the theory of tridiagonal pairs. It is known that the O-generators A,B

act on V as a tridiagonal pair of Krawtchouk type. A linear transformation H : V → V is

said to be compatible with this tridiagonal pair whenever there exists an L(sl2)-action on

V that extends the O-action on V , such that H = H on V . We describe the compatible

elements in detail. For instance, we show that they are diagonalizable, they mutually

commute, and their common eigenspaces all have dimension 1. We define an undirected

graph whose vertex set consists of the common eigenspaces for the compatible elements.

We describe the actions of A,B on V in terms of this graph structure.
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Chapter 1

Introduction

We will be discussing the following related things: (i) a linear algebraic object called a

tridiagonal pair of Krawtchouk type; (ii) a Lie algebra O called the Onsager algebra; (iii)

a Lie algebra L(sl2) called the sl2 loop algebra. The tridiagonal pairs were introduced

in [9]. The Onsager algebra O was introduced in [12]. The finite-dimensional irreducible

O-modules were classified in [3]. See also [4], [5]. We will be considering a class of

finite-dimensional irreducible O-modules said to have type (0, 0). In [7], B. Hartwig

showed that this kind of O-module is essentially the same thing as a tridiagonal pair

of Krawtchouk type. The finite-dimensional irreducible L(sl2)-modules were classified

in [2].

By [3, p. 3277], O can be embedded as a Lie subalgebra in L(sl2). We give an attractive

presentation of L(sl2) by generators and relations. There are three generators A,B,H

and as we will see, O can be identified with the Lie subalgebra of L(sl2) generated by

A,B. Let V denote a finite-dimensional irreducible O-module of type (0, 0). By [3, The-

orem 6], the O-action on V extends to an L(sl2)-action on V . Moreover, [3, Proposition

5] indicates that this L(sl2)-action on V is not unique in general. In this thesis, we

classify the L(sl2)-actions on V that extend the O-action on V . We show that these

L(sl2)-actions have a certain geometric significance, which is best described using the
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theory of tridiagonal pairs. We will summarize our main results later in this introduc-

tion. To prepare for this, we review some preliminaries.

Let F denote an algebraically closed field with characteristic 0. We now recall the

definition of sl2 and its loop algebra L(sl2). Let sl2 denote the Lie algebra over F with

basis e, f, h and Lie bracket

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

Let t denote an indeterminate, and let F[t, t−1] denote the associative F-algebra consist-

ing of the Laurent polynomials in t that have all coefficients in F. Let L(sl2) denote the

Lie algebra over F consisting of the F-vector space

sl2 ⊗ F[t, t−1], ⊗ = ⊗F

and Lie bracket

[u⊗ a, v ⊗ b] = [u, v]⊗ ab, u, v ∈ sl2, a, b ∈ F[t, t−1].

We call L(sl2) the sl2 loop algebra.

We now recall the Onsager algebra O. This infinite dimensional Lie algebra was in-

troduced in [12]. By [13], O has a presentation by generators A,B subject to the

Dolan-Grady relations

[A, [A, [A,B]]] = 4[A,B], [B, [B, [B,A]]] = 4[B,A].

Recall the integers Z = {0,±1,±2, . . .}. By [12], the F-vector space O has a basis
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{Ai, Gj | i, j ∈ Z, j > 0} such that

[Ak, Al] = 2Gk−l k > l,

[Gk, Al] = Al+k − Al−k,

[Gk, Gl] = 0.

Moreover A0 = A and A1 = B. Note that the elements {Gj | j ∈ Z, j > 0} form a basis

for an abelian Lie subalgebra of O.

By [3, p. 3277], there exists an injective homomorphism of Lie algebras O → L(sl2) that

sends

A 7→ e⊗ 1 + f ⊗ 1, B 7→ e⊗ t+ f ⊗ t−1.

This homomorphism sends

Ai 7→ e⊗ ti + f ⊗ t−i i ∈ Z,

Gj 7→ h⊗ (tj − t−j)/2 j ∈ Z, j > 0.

For notational convenience, we identify O with its image in L(sl2) under the above

injection. This embedding suggests that there exists an attractive presentation of L(sl2)

that has A,B among the generators. In this thesis, one of our results is that L(sl2) has

a presentation by generators A,B,H and relations

[A, [A,H]] = 4H, [H, [H,A]] = 4A, (1.1)

[B, [B,H]] = 4H, [H, [H,B]] = 4B, (1.2)

[A, [A, [A,B]]] = 4[A,B], [B, [B, [B,A]]] = 4[B,A], (1.3)

[H, [A,B]] = 0. (1.4)
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The element H is h⊗ 1. As we will see, the elements H,A generate a Lie subalgebra of

L(sl2) that is isomorphic to sl2. Similarly the elements H,B generate a Lie subalgebra

of L(sl2) that is isomorphic to sl2.

Let V denote a finite-dimensional irreducible O-module. By [7, Theorem 2.4], the O-

generators A,B are diagonalizable on V . Furthermore there exist an integer d ≥ 0

and scalars α, β ∈ F such that the set of distinct eigenvalues of A (resp. B) on V is

{d − 2i + α|0 ≤ i ≤ d} (resp. {d − 2i + β|0 ≤ i ≤ d}) [7, Theorem 2.4]. We call the

ordered pair (α, β) the type of V . Subtracting α (resp. β) times the identity from A

(resp. B) the type becomes (0, 0).

Let V denote a finite-dimensional irreducible L(sl2)-module. We restrict the L(sl2)-

action on V to O to get an O-action on V . In [3], E. Date and S. S. Roan give necessary

and sufficient conditions for the O-module V to be irreducible. In this case, the O-

module V has type (0, 0).

Let V denote a finite-dimensional irreducible O-module of type (0, 0). By [3, Theorem

6], the O-action on V extends to an L(sl2)-action on V . Moreover, [3, Proposition 5]

indicates that this L(sl2)-action on V is not unique in general. In this thesis, we classify

the L(sl2)-actions on V that extend the O-action on V . By construction, the resulting

L(sl2)-module structures on V are irreducible. As we will see, these L(sl2)-module struc-

tures on V are mutually non-isomorphic. We explain how these L(sl2)-actions on V are

related to one another. In this explanation we make use of the presentation (1.1)–(1.4)

above.
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We now recall the notion of a tridiagonal pair. Let V denote a vector space over F with

finite positive dimension. Let End(V ) denote the F-algebra of all linear transformations

from V to V . By a tridiagonal pair on V we mean an ordered pair A,B of linear trans-

formations in End(V ) such that (i) each of A,B is diagonalizable; (ii) there exists an

ordering {Vi}di=0 of the eigenspaces of A such that BVi ⊆ Vi−1 + Vi + Vi+1 for 0 ≤ i ≤ d,

where V−1 = 0 and Vd+1 = 0; (iii) there exists an ordering {V ′i }δi=0 of the eigenspaces

of B such that AV ′i ⊆ V ′i−1 + V ′i + V ′i+1 for 0 ≤ i ≤ δ, where V ′−1 = 0 and V ′δ+1 = 0;

(iv) there does not exist a subspace W of V such that AW ⊆ W , BW ⊆ W , W 6= 0,

W 6= V [9].

Let A,B denote a tridiagonal pair on V . It is known that d and δ above are equal [9,

Lemma 4.5]; we call this common value the diameter of A,B. An ordering of the

eigenspaces of A (resp. B) will be called standard whenever it satisfies condition (ii)

(resp. (iii)) above. We comment on the uniqueness of the standard ordering. Let

{Vi}di=0 denote a standard ordering of the eigenspaces of A. Then the ordering {Vd−i}di=0

is standard and no other ordering is standard. A similar result holds for the eigenspaces

of B. An ordering of the eigenvalues of A (resp. B) will be called standard whenever the

corresponding ordering of the eigenspaces of A (resp. B) is standard. Let {Vi}di=0 (resp.

{V ′i }di=0) denote a standard ordering of the eigenspaces of A (resp. B). For 0 ≤ i ≤ d

the subspaces Vi, V
′
i have the same dimension [9, Corollary 5.7]; we denote this common

dimension by ρi. The sequence {ρi}di=0 is symmetric and unimodal; that is ρi = ρd−i for

0 ≤ i ≤ d and ρi−1 ≤ ρi for 1 ≤ i ≤ d/2 [9, Corollaries 5.7, 6.6]. By [11, Corollary 1.4]

and since F is algebraically closed, ρi ≤
(
d
i

)
for 0 ≤ i ≤ d. In particular ρ0 = 1. We call
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the sequence {ρi}di=0 the shape of A,B. The tridiagonal pair A,B is called a Leonard

pair whenever ρi = 1 for 0 ≤ i ≤ d. The tridiagonal pair A,B is said to have Krawtchouk

type whenever {d − 2i | 0 ≤ i ≤ d} is a standard ordering of the eigenvalues of A and

B. In this case A,B satisfy the Dolan-Grady relations [7, Corollary 2.7]. This suggests

that tridiagonal pairs of Krawtchouk type are related to O-modules. This relationship

was worked out in detail by B. Hartwig [7]. We now summarize his results.

Theorem 1.1 [7, Corollary 2.7] Let A,B denote a tridiagonal pair on V of Krawtchouk

type. Then there exists a unique O-module structure on V such that the generators A,B

act on V as A,B respectively. This O-module is irreducible and of type (0, 0).

Theorem 1.2 [7, Corollary 2.7] Let V denote a finite-dimensional irreducible O-module

of type (0, 0). Then the generators A,B act on V as a tridiagonal pair of Krawtchouk

type.

Remark 1.3 [7, Corollary 2.7] Combining the previous two theorems we obtain a

bijection between the following two sets:

(i) the isomorphism classes of tridiagonal pairs over F that have Krawtchouk type;

(ii) the isomorphism classes of finite-dimensional irreducible O-modules of type (0, 0).

For the remainder of this section A,B will denote a tridiagonal pair on V that has

Krawtchouk type. An element H ∈ End(V ) is said to be compatible with A,B whenever

the following relations hold:

[A, [A,H]] = 4H, [H, [H,A]] = 4A, (1.5)

[B, [B,H]] = 4H, [H, [H,B]] = 4B, (1.6)

[H, [A,B]] = 0. (1.7)
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Let Com(A,B) denote the set of elements in End(V ) that are compatible with A,B.

For our tridiagonal pair A,B, consider the associated O-module structure on V from

Theorem 1.1. Comparing the relations in (1.1)–(1.4) and (1.5)–(1.7), we obtain the

following results.

Lemma 1.4 Consider an L(sl2)-action on V that extends the O-action on V . For the

L(sl2)-module V , the action of H on V is an element of Com(A,B).

Lemma 1.5 Let H ∈ Com(A,B). Then there exists a unique L(sl2)-action on V that

extends the O-action on V , such that the element H of L(sl2) acts on V as H.

Remark 1.6 Combining the previous two lemmas we obtain a bijection between the

following two sets:

(i) Com(A,B);

(ii) the L(sl2)-actions on V that extend the O-action on V .

By Remark 1.6, in order to describe the L(sl2)-actions on V that extend the given O-

action on V , it suffices to describe the set Com(A,B). We do this as follows. Let d

denote the diameter of A,B. Recall the shape {ρi}di=0 of A,B. Abbreviate ρ = ρ1. We

show that there exist elements {Hi}ρi=1 in End(V ) such that

Com(A,B) =

{
ρ∑
i=1

εiHi

∣∣∣∣ εi = ±1, 1 ≤ i ≤ ρ

}
.

The elements {Hi}ρi=1 are uniquely determined up to sign and permutation. These

elements are linearly independent, they mutually commute, and they are diagonalizable
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on V . Therefore the set Com(A,B) has cardinality 2ρ. Moreover, the elements of

Com(A,B) mutually commute and are diagonalizable on V . For 1 ≤ i ≤ ρ there exists

an integer di ≥ 1 such that the set of distinct eigenvalues of Hi on V is {di−2k | 0 ≤ k ≤

di}. Let λ denote an indeterminate. We show that the sequences {ρi}di=0 and {dj}ρj=1

determine each other via the polynomial identity

d∑
i=0

ρiλ
i =

ρ∏
j=1

(1 + λ+ λ2 + · · ·+ λdj).

From this identity we see that d =
∑ρ

j=1 dj. For the moment, fix an integer i (1 ≤ i ≤ ρ).

For 0 ≤ k ≤ di let Wk denote the eigenspace of Hi corresponding to eigenvalue di − 2k.

We show that

AWk ⊆ Wk−1 +Wk +Wk+1, BWk ⊆ Wk−1 +Wk +Wk+1,

where W−1 = 0 and Wdi+1 = 0.

Let X denote the set of common eigenspaces for the elements of Com(A,B). We show

that the elements of X all have dimension 1. We now define an undirected graph struc-

ture on the set X. For 1 ≤ i ≤ ρ, elements x, y ∈ X are said to be i-adjacent whenever

the following two conditions hold: (i) the eigenvalues of Hi corresponding to x and y

differ by 2; (ii) for 1 ≤ j ≤ ρ such that j 6= i, the eigenvalues of Hj corresponding to

x and y are equal. The elements x, y ∈ X are said to be adjacent whenever there exists

1 ≤ i ≤ ρ such that x and y are i-adjacent. The set X together with this adjacency rela-

tion is an undirected graph. This graph is a Cartesian product of ρ many chains, where

the ith chain has length di for 1 ≤ i ≤ ρ. The graph X has the following property: for all

x ∈ X, Ax and Bx are contained in the sum of those elements of X that are adjacent to x.
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An element x ∈ X will be called a corner whenever for 1 ≤ i ≤ ρ, the eigenvalue of

Hi on x is di or −di. Let Corner(X) denote the set of corners of X. The cardinality of

Corner(X) is 2ρ.

Pick H ∈ Com(A,B). We now describe H. The eigenvalues of H are {d−2i | 0 ≤ i ≤ d}.

For 0 ≤ i ≤ d let Ui denote the eigenspace of H corresponding to the eigenvalue d− 2i.

The subspace Ui has dimension ρi. The subspace U0 is a corner of X. For 0 ≤ i ≤ d, Ui

is the sum of the elements in X at (path-length) distance i from U0. We show that

AUi ⊆ Ui−1 + Ui+1, BUi ⊆ Ui−1 + Ui+1,

where U−1 = 0 and Ud+1 = 0.

We obtain a bijection Corner(X)→ Com(A,B), x 7→ Hx. For x ∈ Corner(X), Hx is the

unique element of Com(A,B) that has eigenspace x for the eigenvalue d.

We have been discussing the eigenvalues of the elements of Com(A,B). We pick a

nonzero vector from each element of X to get an attractive basis for V . By construction,

this basis consists of common eigenvectors for Com(A,B). We find the matrices that

represent A,B with respect to this basis.

Let C denote the subspace of End(V ) spanned by Com(A,B). The elements {Hi}ρi=1

form a basis for C. We now describe the action of C on the eigenspaces of A and B. Let

{Vi}di=0 (resp. {V ′i }di=0) denote a standard ordering of the eigenspaces of A (resp. B).
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We show that for C ∈ C,

CVi ⊆ Vi−1 + Vi+1, CV ′i ⊆ V ′i−1 + V ′i+1,

where Vi = 0 and V ′i = 0 for i ∈ {−1, d+ 1}.

Recall the elements {Gj | j ∈ Z, j > 0} of O. We show that the actions of {Gi}ρi=1 on V

form a basis for C. We display the transition matrix from the basis {Hi}ρi=1 to the basis

{Gi}ρi=1.

Pick H ∈ Com(A,B). As we saw in Lemma 2.94, there exists a unique L(sl2)-module

structure on V such that the L(sl2)-generators A,B,H act on V as A,B,H respectively.

Recall that the elements H,A generate a Lie subalgebra of L(sl2) that is isomorphic to

sl2, and the elements H,B generate a Lie subalgebra of L(sl2) that is isomorphic to sl2.

Restricting the L(sl2)-action on V to either of these two Lie subalgebras, V becomes an

sl2-module. As we will see, the resulting two sl2-module structures on V are isomorphic.

Moreover, the isomorphism class of the sl2-module V is independent of the choice of

H ∈ Com(A,B). The sl2-module V is a direct sum of irreducible sl2-submodules. We

now describe the summands. By [8, p. 31], up to isomorphism, there exists a unique

irreducible sl2-module of every finite positive dimension. We show that every irreducible

sl2-submodule of the sl2-module V has dimension among d+1, d−1, d−3, . . . . Moreover,

for 0 ≤ j ≤ d/2, the multiplicity with which the irreducible sl2-module of dimension

d−2j+1 appears in V is ρj−ρj−1, where ρ−1 = 0. We will show that on each irreducible

sl2-submodule of V , the pair H,A and the pair H,B act as Leonard pairs of Krawtchouk

type.
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We have been discussing tridiagonal pairs of Krawtchouk type. We now mention a spe-

cial case in which the elements of Com(A,B) have an attractive interpretation. Assume

ρi =
(
d
i

)
for 0 ≤ i ≤ d. In this case, d = ρ. Also di = 1 for 1 ≤ i ≤ ρ, and the graph X is

a d-cube. Moreover, Corner(X) = X. So our earlier bijection Corner(X) → Com(A,B)

becomes a bijection X → Com(A,B). We remark that for every x ∈ X, Hx is the dual

adjacency map with respect to x in the sense of J. T. Go [6].

In Chapter 2, we prove our results concerning compatible elements. In [2], Chari classi-

fied up to isomorphism the finite-dimensional irreducible modules for the sl2 loop algebra.

In Chapter 3, we give an elementary version of this classification. Chapter 3 is meant for

graduate students and researchers who are unfamiliar with the general representation

theory of loop algebras.
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Chapter 2

Tridiagonal pairs of Krawtchouk

type and their compatible elements

2.1 Assumptions and preliminaries

In this section we collect some definitions and notation that will be used through-

out the chapter. Recall the natural numbers N = {0, 1, 2, . . .} and the integers Z =

{0,±1,±2, . . .}. Let F denote an algebraically closed field with characteristic 0. Let

V denote a vector space over F with finite positive dimension. Let End(V ) denote the

F-algebra of all linear transformations from V to V . Let I denote the identity element

of End(V ). For F ∈ End(V ) and θ ∈ F, define

VF (θ) = {v ∈ V |Fv = θv}. (2.1)

We say that θ is an eigenvalue for F whenever VF (θ) 6= 0, and in this case VF (θ) is called

the eigenspace of F corresponding to θ. We say that F is diagonalizable whenever V is

spanned by the eigenspaces of F .

We now turn our attention to Lie algebras. For basic definitions and facts about Lie

algebras, we refer the reader to the books [1, 8]. The F-vector space End(V ) becomes a
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Lie algebra over F with Lie bracket

[F,G] = FG−GF, F,G ∈ End(V ).

This Lie algebra is often denoted by gl(V ), but we will not use this notation.

Lemma 2.1 For F,G ∈ End(V ) and θ ∈ F the following (i), (ii) are equivalent:

(i) the map [F, [F,G]]− 4G vanishes on VF (θ);

(ii) GVF (θ) ⊆ VF (θ − 2) + VF (θ + 2).

Proof: Let Φ denote the map in (i) and observe

Φ = F 2G− 2FGF +GF 2 − 4G.

For v ∈ VF (θ) we evaluate Φv using Fv = θv to find

Φv = (F 2G− 2θFG+ θ2G− 4G)v

= (F − (θ − 2)I)(F − (θ + 2)I)Gv.

The scalars θ−2, θ+2 are mutually distinct since the characteristic of F is 0. The result

follows. 2

Lemma 2.2 [7, Lemma 2.1] For F,G ∈ End(V ) and θ ∈ F the following (i), (ii) are

equivalent:

(i) the map [F, [F, [F,G]]]− 4[F,G] vanishes on VF (θ);

(ii) GVF (θ) ⊆ VF (θ − 2) + VF (θ) + VF (θ + 2).
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Proof: Let Φ denote the map in (i) and observe

Φ = F 3G− 3F 2GF + 3FGF 2 −GF 3 − 4FG+ 4GF.

For v ∈ VF (θ) we evaluate Φv using Fv = θv to find

Φv = (F 3G− 3θF 2G+ 3θ2FG− θ3G− 4FG+ 4θG)v

= (F − (θ − 2)I)(F − θI)(F − (θ + 2)I)Gv.

The scalars θ − 2, θ, θ + 2 are mutually distinct since the characteristic of F is 0. The

result follows. 2

We end this section with some basic facts about Lie algebras. Let L denote a Lie algebra

over F. Recall the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, x, y, z ∈ L. (2.2)

Lemma 2.3 Let L denote a Lie algebra over F. For all a, b, c, d ∈ L,

[a, [b, [c, d]]] = [b, [d, [c, a]]] + [c, [d, [b, a]]]− [d, [c, [b, a]]]− [b, [c, [d, a]]]. (2.3)

Proof: Observe that

[a, [b, [c, d]]] = [[[c, d], b], a]

= [[c, d], [b, a]]− [b, [[c, d], a]] by (2.2)

= [c, [d, [b, a]]]− [d, [c, [b, a]]]− ([b, [c, [d, a]]]− [b, [d, [c, a]]]) by (2.2).

2
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Let V denote a vector space over F with finite dimension n ≥ 1. Suppose we are

given two bases for V , written u1, . . . , un and v1, . . . , vn. By the transition matrix from

u1, . . . , un to v1, . . . , vn, we mean the n by n matrix M with entries in F satisfying

vj =
n∑
i=1

Mijui (1 ≤ j ≤ n).

Throughout this thesis all unadorned tensor products are taken over F.

2.2 Tridiagonal pairs

In this section we recall some definitions and basic facts concerning tridiagonal pairs.

These results will be used throughout the chapter.

Definition 2.4 [9] Let V denote a vector space over F with finite positive dimension.

By a tridiagonal pair on V we mean an ordered pair A,B of elements in End(V ) that

satisfy the following four conditions.

(i) Each of A,B is diagonalizable.

(ii) There exists an ordering {Vi}di=0 of the eigenspaces of A such that

BVi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d), (2.4)

where V−1 = 0 and Vd+1 = 0.

(iii) There exists an ordering {V ′i }δi=0 of the eigenspaces of B such that

AV ′i ⊆ V ′i−1 + V ′i + V ′i+1 (0 ≤ i ≤ δ), (2.5)

where V ′−1 = 0 and V ′δ+1 = 0.
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(iv) There does not exist a subspace W of V such that AW ⊆ W , BW ⊆ W , W 6= 0,

W 6= V .

We say the pair A,B is over F. We call V the vector space underlying A,B.

Referring to the tridiagonal pair A,B in Definition 2.4, observe that B,A is also a tridi-

agonal pair on V . By [9, Lemma 4.5], the integers d and δ from conditions (ii) and (iii)

in Definition 2.4 are equal; we call this common value the diameter of A,B. An ordering

of the eigenspaces of A (resp. B) will be called standard whenever it satisfies (2.4) (resp.

(2.5)). We comment on the uniqueness of the standard ordering. Let {Vi}di=0 denote a

standard ordering of the eigenspaces of A. Then the ordering {Vd−i}di=0 is standard and

no other ordering is standard. A similar result holds for the eigenspaces of B. An order-

ing of the eigenvalues of A (resp. B) will be called standard whenever the corresponding

ordering of the eigenspaces of A (resp. B) is standard. Let {Vi}di=0 (resp. {V ′i }di=0)

denote a standard ordering of the eigenspaces of A (resp. B). For 0 ≤ i ≤ d the spaces

Vi, V
′
i have the same dimension [9, Corollary 5.7]; we denote this common dimension

by ρi. By the construction ρi 6= 0. The sequence {ρi}di=0 is symmetric and unimodal;

that is ρi = ρd−i for 0 ≤ i ≤ d and ρi−1 ≤ ρi for 1 ≤ i ≤ d/2 [9, Corollaries 5.7,

6.6]. By [11, Corollary 1.4] and since F is algebraically closed, ρi ≤
(
d
i

)
for 0 ≤ i ≤ d.

In particular ρ0 = 1. We call the sequence {ρi}di=0 the shape of A,B. We will often

abbreviate ρ = ρ1. The tridiagonal pair A,B is called a Leonard pair whenever ρi = 1

for 1 ≤ i ≤ d.

For the remainder of this chapter, λ will denote an indeterminate. Let F[λ] denote the

F-algebra consisting of the polynomials in λ that have all coefficients in F.
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Definition 2.5 Let A,B denote a tridiagonal pair with shape {ρi}di=0. Consider the

polynomial in F[λ] given by
d∑
i=0

ρiλ
i.

We call this the shape polynomial of A,B.

Example 2.6 The shape polynomial of a Leonard pair with diameter d is given by

1 + λ+ λ2 + · · ·+ λd.

Definition 2.7 Let A,B and A′, B′ denote tridiagonal pairs over F. By an isomorphism

of tridiagonal pairs from A,B to A′, B′ we mean a vector space isomorphism γ from the

vector space underlying A,B to the vector space underlying A′, B′ such that both

γA = A′γ, γB = B′γ.

2.3 Tridiagonal pairs and the Onsager algebra

In this section we consider tridiagonal pairs of Krawtchouk type and their relationship

to the Onsager algebra.

Let A,B denote a tridiagonal pair with diameter d. We say that A,B has Krawtchouk

type whenever the sequence {d − 2i}di=0 is a standard ordering of the eigenvalues of A

and a standard ordering of the eigenvalues of B. In this case, the tridiagonal pair B,A

also has Krawtchouk type. Moreover, by Definition 2.4 and Lemma 2.2, A and B satisfy

the Dolan-Grady relations

[A, [A, [A,B]]] = 4[A,B], [B, [B, [B,A]]] = 4[B,A].
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Definition 2.8 [13] Let O denote the Lie algebra over F with generators A,B and

relations

[A, [A, [A,B]]] = 4[A,B], [B, [B, [B,A]]] = 4[B,A].

We call O the Onsager algebra. We call A,B the standard generators for O.

Theorem 2.9 [12] The F-vector space O has a basis {Ai, Gj | i, j ∈ Z, j > 0} such that

[Ak, Al] = 2Gk−l k > l,

[Gk, Al] = Al+k − Al−k,

[Gk, Gl] = 0.

Moreover A0 = A and A1 = B.

Remark 2.10 The elements {Gj | j ∈ Z, j > 0} from Theorem 2.9 form a basis for an

abelian Lie subalgebra of O.

Let V denote a finite-dimensional irreducible O-module. By [7, Theorem 2.4], the stan-

dard generators A,B are diagonalizable on V . Furthermore there exist an integer d ≥ 0

and scalars α, β ∈ F such that the set of distinct eigenvalues of A (resp. B) on V is

{d − 2i + α|0 ≤ i ≤ d} (resp. {d − 2i + β|0 ≤ i ≤ d}) [7, Theorem 2.4]. We call the

ordered pair (α, β) the type of V . Subtracting α (resp. β) times the identity from A

(resp. B) the type becomes (0, 0).

The following theorems give the relationship between finite-dimensional irreducible O-

modules and tridiagonal pairs of Krawtchouk type.
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Theorem 2.11 [7, Corollary 2.7] Let A,B denote a tridiagonal pair on V of Krawtchouk

type. Then there exists a unique O-module structure on V such that the standard gen-

erators A,B act on V as A,B respectively. This O-module is irreducible and of type

(0, 0).

Theorem 2.12 [7, Corollary 2.7] Let V denote a finite-dimensional irreducible O-

module of type (0, 0). Then the standard generators A,B act on V as a tridiagonal pair

of Krawtchouk type.

Remark 2.13 [7, Corollary 2.7] Combining the previous two theorems we obtain a

bijection between the following two sets:

(i) the isomorphism classes of tridiagonal pairs over F that have Krawtchouk type;

(ii) the isomorphism classes of finite-dimensional irreducible O-modules of type (0, 0).

Definition 2.14 Let V denote a finite-dimensional irreducible O-module of type (0, 0).

Let A,B denote a tridiagonal pair on V that has Krawtchouk type. We say the O-

module V and the tridiagonal pair A,B are associated whenever the O-generators A,B

act on V as A,B respectively. By the diameter (resp. shape) (resp. shape polynomial)

of the O-module V we mean the diameter (resp. shape) (resp. shape polynomial) of the

associated tridiagonal pair. We abbreviate SV for the shape polynomial of the O-module

V .

Let V denote a finite-dimensional irreducible O-module of type (0, 0). We call the O-

module V trivial whenever the diameter of V is zero.

Lemma 2.15 Up to isomorphism, there exists a unique trivial finite-dimensional irre-

ducible O-module of type (0, 0). This O-module has dimension 1.
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Proof: Let V denote a trivial finite-dimensional irreducible O-module of type (0, 0).

Since the diameter of V is zero, each of the O-generators A,B acts on V as the zero

map. Therefore any subspace of V is an O-submodule of V , so V has dimension 1. The

result follows. 2

We will return to O shortly.

2.4 The Lie algebra sl2

In this section we recall the Lie algebra sl2 and its finite-dimensional modules.

Definition 2.16 Let sl2 denote the Lie algebra over F with basis e, f, h and Lie bracket

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

We call the basis e, f, h the Chevalley basis of sl2.

In the following two lemmas we describe the finite-dimensional sl2-modules.

Lemma 2.17 [8, p. 28] Each finite-dimensional sl2-module is a direct sum of irreducible

sl2-modules.

Lemma 2.18 [8, p. 31] There exists a family

Vd d = 0, 1, 2, . . . (2.6)
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of finite-dimensional irreducible sl2-modules with the following property. The module Vd

has a basis {vi}di=0 satisfying

hvi = (d− 2i)vi (0 ≤ i ≤ d), (2.7)

fvi = (i+ 1)vi+1 (0 ≤ i ≤ d− 1), fvd = 0, (2.8)

evi = (d+ 1− i)vi−1 (1 ≤ i ≤ d), ev0 = 0. (2.9)

Every finite-dimensional irreducible sl2-module is isomorphic to exactly one of the mod-

ules in (3.2).

We mention a fact for later use.

Lemma 2.19 [10, p. 34] Let d denote a nonnegative integer. Let {ρi}di=0 denote a

sequence of positive integers such that ρi = ρd−i for 0 ≤ i ≤ d and ρi ≤ ρi+1 for

0 ≤ i < d/2. Then there exists an sl2-module V satisfying the following (i), (ii):

(i) the action of h on V is diagonalizable with eigenvalues {d− 2i}di=0;

(ii) for 0 ≤ i ≤ d, ρi = dim(Ui), where Ui is the eigenspace for the action of h on V

corresponding to the eigenvalue d− 2i.

The sl2-module V is unique up to isomorphism. The only irreducible sl2-submodules of

V are

Vd,Vd−2,Vd−4, . . . .

Moreover, for 0 ≤ j ≤ d/2, the multiplicity with which Vd−2j appears in V is ρj − ρj−1,

where ρ−1 = 0.
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Proof: For notational convenience, abbreviate dj = d− 2j and mj = ρj−ρj−1. Consider

the sl2-module

V =

d/2⊕
j=0

V⊕mjdj
,

where V⊕mjdj
denotes the sl2-module Vdj ⊕ · · · ⊕ Vdj (mj times). By Lemma 2.18, h

is diagonalizable on V with eigenvalues {d − 2i}di=0. For 0 ≤ i ≤ d/2, dim(Ui) =

m0 +m1 + · · ·+mi = ρi. For d/2 < i ≤ d, dim(Ui) = m0 +m1 + · · ·+md−i = ρd−i = ρi.

Therefore dim(Ui) = ρi for 0 ≤ i ≤ d. By construction, d and the sequence {ρi}di=0

uniquely determine the sequences {dj}d/2j=0, {mj}d/2j=0. The sequences {dj}d/2j=0, {mj}d/2j=0

uniquely determine the isomorphism type of the sl2-module V . The previous two sen-

tences together prove the uniqueness claim in the result. The remaining two claims are

true by construction. 2

With reference to Lemma 2.18, note that {vi}di=0 is an h-eigenbasis for Vd.

Definition 2.20 For d ∈ N an h-eigenbasis {vi}di=0 for Vd will be called normalized

whenever it satisfies (2.7)–(2.9).

Lemma 2.21 Let d ∈ N, and let {vi}di=0 denote a normalized h-eigenbasis of Vd. Given

vectors {ui}di=0 in Vd, the following are equivalent:

(i) the vectors {ui}di=0 form a normalized h-eigenbasis for Vd;

(ii) there exists a nonzero s ∈ F such that ui = svi for 0 ≤ i ≤ d.

Proof: Routine consequence of (2.7)–(2.9). 2

We now give an alternate presentation of sl2.
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Lemma 2.22 sl2 is isomorphic to the Lie algebra over F that has generators a, h and

relations

[a, [a, h]] = 4h, [h, [h, a]] = 4a.

An isomorphism with the presentation in Definition 2.16 is given by

a 7→ e+ f, h 7→ h.

The inverse of this isomorphism is given by

e 7→ [h, a] + 2a

4
, f 7→ [a, h] + 2a

4
, h 7→ h.

The elements a, h, [a, h] form a basis for sl2.

Proof: We routinely check that each map is a homomorphism of Lie algebras and that

the maps are inverses. It follows that each map is an isomorphism of Lie algebras. The

last assertion is routinely checked. 2

Note 2.23 For notational convenience, for the rest of this chapter we identify the copy

of sl2 given in Definition 2.16 with the copy given in Lemma 2.22, via the isomorphism

given in Lemma 2.22.

Definition 2.24 We call the elements a, h from Lemma 2.22 the alternate generators

for sl2.

We now describe three automorphisms of sl2.

Lemma 2.25 The following hold.

(i) There exists an automorphism of sl2 that sends a 7→ a, h 7→ −h.
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(ii) There exists an automorphism of sl2 that sends a 7→ −a, h 7→ h.

(iii) There exists an automorphism of sl2 that sends a 7→ h, h 7→ a.

Each of the automorphisms from (i)–(iii) has order 2.

Proof: Clear by the first assertion in Lemma 2.22. 2

The automorphisms of sl2 from Lemma 2.25 do the following to the Chevalley basis.

Lemma 2.26 The following hold.

(i) The automorphism of sl2 from Lemma 2.25(i) sends e 7→ f , f 7→ e, h 7→ −h.

(ii) The automorphism of sl2 from Lemma 2.25(ii) sends e 7→ −e, f 7→ −f , h 7→ h.

(iii) The automorphism of sl2 from Lemma 2.25(iii) sends

e 7→ f − e+ h

2
, f 7→ e− f + h

2
, h 7→ e+ f.

Proof: Routine. 2

Lemma 2.27 For each d ∈ N the actions of the alternate generators a, h on a normal-

ized h-eigenbasis {vi}di=0 of Vd are as follows:

avi = (d+ 1− i)vi−1 + (i+ 1)vi+1 (1 ≤ i ≤ d− 1), av0 = v1, avd = vd−1,

hvi = (d− 2i)vi (0 ≤ i ≤ d).

Proof: Routine consequence of (2.7)–(2.9). 2

Lemma 2.28 Let d ∈ N. Let {vi}di=0 be vectors in Vd, not all zero. Then {vi}di=0 form

a normalized h-eigenbasis of Vd if and only if the following (i) and (ii) hold:
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(i) hvi = (d− 2i)vi for 0 ≤ i ≤ d;

(ii) the sum
∑d

i=0 vi is an eigenvector for a with eigenvalue d.

Proof: Routine consequence of (2.7)–(2.9). 2

Interchanging the roles of a, h in Lemma 2.27 we obtain the following result.

Lemma 2.29 For each d ∈ N the sl2-module Vd has a basis {wi}di=0 such that

hwi = (d+ 1− i)wi−1 + (i+ 1)wi+1 (1 ≤ i ≤ d− 1), hw0 = w1, hwd = wd−1,

awi = (d− 2i)wi (0 ≤ i ≤ d).

Proof: Routine using Lemma 2.27, Lemma 2.25(iii), and the last assertion in Lemma

2.18. 2

Lemma 2.30 Let V denote a finite-dimensional irreducible sl2-module. Then the alter-

nate generators a, h of sl2 act on V as a Leonard pair of Krawtchouk type.

Proof: By the last assertion in Lemma 2.18, there exists d ∈ N such that the sl2-modules

V and Vd are isomorphic. With respect to the basis {vi}di=0 from Lemma 2.27, the ma-

trix representing a is irredicuble tridiagonal and the matrix representing h is diagonal.

With respect to the basis {wi}di=0 from Lemma 2.29, the matrix representing h is irre-

ducible tridiagonal and the matrix representing a is diagonal. By Lemmas 2.27 and 2.29,

the sequence {d − 2i}di=0 is a standard ordering of the eigenvalues of a and a standard

ordering of the eigenvalues of h. The result follows. 2

Recall the notation VF (θ) from line (2.1).
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Lemma 2.31 Let V denote a finite-dimensional sl2-module. Then each of the alter-

nate generators a, h is diagonalizable on V . Let A,H denote the actions of a, h on V

respectively. For θ ∈ F the spaces VA(θ), VH(θ) have the same dimension.

Proof: If the sl2-module V is irreducible, then the result holds by Lemma 2.30. The

general case follows by Lemma 3.6. 2

2.5 The sl2 loop algebra

Definition 2.32 Let t denote an indeterminate, and let F[t, t−1] denote the F-algebra

consisting of the Laurent polynomials in t that have all coefficients in F. Let L(sl2)

denote the Lie algebra over F consisting of the F-vector space sl2 ⊗ F[t, t−1] and Lie

bracket

[u⊗ a, v ⊗ b] = [u, v]⊗ ab, u, v ∈ sl2, a, b ∈ F[t, t−1]. (2.10)

We call L(sl2) the sl2 loop algebra.

Observe that {ti}i∈Z is a basis of the F-vector space F[t, t−1]. Therefore the following is

a basis for L(sl2):

e⊗ ti, f ⊗ ti, h⊗ ti i ∈ Z. (2.11)

The sl2 loop algebra is related to the Kac-Moody algebra [10] associated with the Cartan

matrix

C :=

 2 −2

−2 2

 .

This is made clear in the following lemma.
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Lemma 2.33 [10, p. 100] The loop algebra L(sl2) is isomorphic to the Lie algebra over

F that has generators ei, fi, hi, i ∈ {0, 1} and the following relations:

h0 + h1 = 0, [ei, fj] = δijhj,

[hi, ej] = Cijej, [hi, fj] = −Cijfj,

[ei, [ei, [ei, ej]]] = 0, [fi, [fi, [fi, fj]]] = 0, i 6= j.

An isomorphism is given by

e1 7→ e⊗ 1, f1 7→ f ⊗ 1, h1 7→ h⊗ 1,

e0 7→ f ⊗ t−1, f0 7→ e⊗ t, h0 7→ −h⊗ 1.

We now give an alternate presentation of L(sl2).

Theorem 2.34 The loop algebra L(sl2) is isomorphic to the Lie algebra over F that has

generators A,B,H and relations

[A, [A,H]] = 4H, [H, [H,A]] = 4A, (2.12)

[B, [B,H]] = 4H, [H, [H,B]] = 4B, (2.13)

[A, [A, [A,B]]] = 4[A,B], [B, [B, [B,A]]] = 4[B,A], (2.14)

[H, [A,B]] = 0. (2.15)

An isomorphism with the presentation from Lemma 2.33 is given by

A 7→ e1 + f1, B 7→ e0 + f0, H 7→ h1. (2.16)

The inverse of this isomorphism is given by

e1 7→
[H,A] + 2A

4
, f1 7→

[A,H] + 2A
4

, h1 7→ H, (2.17)

e0 7→
[B,H] + 2B

4
, f0 7→

[H,B] + 2B
4

, h0 7→ −H. (2.18)
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The proof of Theorem 2.34 is given in Section 2.14.

Remark 2.35 We have used the same symbol to refer to the element A (resp. B) of

O from Definition 2.8 and the element A (resp. B) of L(sl2) from Theorem 2.34. Our

justification for doing this will become clear prior to Note 2.39. As we proceed, it should

be clear from the context whether we are discussing O or L(sl2).

In Lemma 2.33, we gave an isomorphism from the copy of L(sl2) given in Definition

3.12 to the copy in Lemma 2.33. In Theorem 2.34, we gave an isomorphism from the

copy of L(sl2) given in Lemma 2.33 to the copy in Theorem 2.34. Composing those

isomorphisms we get an isomorphism from the copy of L(sl2) given in Definition 3.12 to

the copy in Theorem 2.34. This isomorphism is described as follows.

Corollary 2.36 The composition of the isomorphisms from Lemma 2.33 and Theorem

2.34 sends

A 7→ e⊗ 1 + f ⊗ 1, B 7→ e⊗ t+ f ⊗ t−1, H 7→ h⊗ 1.

Proof: Immediate from Lemma 2.33 and Theorem 2.34. 2

Note 2.37 For notational convenience, for the rest of this chapter we identify the copies

of L(sl2) given in Definition 3.12, Lemma 2.33, Theorem 2.34, via the isomorphisms given

in Lemma 2.33, Theorem 2.34, Corollary 2.36.

By [3, p. 3277], there exists a homomorphism of Lie algebras O → L(sl2) that sends

A 7→ e⊗ 1 + f ⊗ 1, B 7→ e⊗ t+ f ⊗ t−1.
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Moreover, this map is injective [3, p. 3277]. If we look at this map from the point of

view of the presentation in Theorem 2.34, then we see that it sends

A 7→ A, B 7→ B. (2.19)

We call the above homomorphism O → L(sl2) natural.

Recall the basis {Ai, Gj | i, j ∈ Z, j > 0} of O from Theorem 2.9.

Lemma 2.38 [3, p. 3277] The natural homomorphism O → L(sl2) sends

Ai 7→ e⊗ ti + f ⊗ t−i i ∈ Z,

Gj 7→ h⊗ (tj − t−j)/2 j ∈ Z, j > 0.

Note 2.39 For notational convenience, for the rest of this chapter we identify O with

its image in L(sl2) under the natural homomorphism.

We now describe two automorphisms of L(sl2).

Lemma 2.40 There exists an automorphism ϑ of L(sl2) that sends

A 7→ A, B 7→ B, H 7→ −H.

Moreover, there exists an automorphism τ of L(sl2) that sends

A 7→ B, B 7→ A, H 7→ H.

The automorphisms ϑ and τ satisfy ϑτ = τϑ, ϑ2 = 1, τ 2 = 1.
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Proof: The first and second assertions are clear by Theorem 2.34. The last assertion is

easily checked. 2

By the last assertion in Lemma 2.40, ϑ and τ induce an action of the Klein-four group

Z2 × Z2 on L(sl2) as a group of automorphisms.

Lemma 2.41 The automorphisms ϑ and τ of L(sl2) do the following to the generators

ei, fi, hi, i ∈ {0, 1} of L(sl2) from Lemma 2.33.

(i) The map ϑ sends e0 ↔ f0, e1 ↔ f1, h0 ↔ h1.

(ii) The map τ sends e0 ↔ f1, e1 ↔ f0, h0 7→ h0, h1 7→ h1.

(iii) The composition ϑτ sends e0 ↔ e1, f0 ↔ f1, h0 ↔ h1.

Proof: Routine using Theorem 2.34 and Lemma 2.40. 2

Lemma 2.42 For the automorphism ϑ of L(sl2) from Lemma 2.40, we have ϑ = ϑ1⊗ϑ2,

where ϑ1 denotes the automorphism of sl2 from Lemma 2.25(i), and ϑ2 denotes the

automorphism of F[t, t−1] that sends t 7→ t−1.

Proof: Routine using Lemma 2.25(i), Corollary 2.36, and Lemma 2.40. 2

Lemma 2.43 [3, p. 3277] Pick x ∈ L(sl2). Then x ∈ O if and only if ϑ(x) = x.

Recall the element a of sl2 from Lemma 2.22. For later use, we mention some elements

of L(sl2) that are contained in O.

Lemma 2.44 For all k ∈ Z, the element a⊗ (tk + t−k) of L(sl2) is contained in O.
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Proof: Use Lemmas 2.42 and 2.43. 2

Note that there exists an injection of Lie algebras

sl2 → L(sl2)

x 7→ x⊗ 1.

(2.20)

If we look at this map from the point of view of the presentation of sl2 in Lemma 2.22

and the presentation of L(sl2) in Theorem 2.34, we obtain the following result.

Lemma 2.45 The injection of Lie algebras sl2 → L(sl2) from (2.20) sends

a 7→ A, h 7→ H. (2.21)

Moreover, the composition of the injection from (2.20) and the automorphism τ of L(sl2)

from Lemma 2.40 sends

a 7→ B, h 7→ H. (2.22)

Proof: By Lemma 2.22, Note 2.37, and Lemma 2.40. 2

Recall the notation VF (θ) from line (2.1).

Lemma 2.46 Let V denote a finite-dimensional L(sl2)-module. Then each of A,B,H

is diagonalizable on V . Let A,B,H denote the actions of A,B,H on V respectively. For

θ ∈ F the spaces VA(θ), VB(θ), VH(θ) have the same dimension.

Proof: Consider the L(sl2)-module V . Pull back the L(sl2)-action via the homomor-

phism given by (2.21). Then V becomes an sl2-module on which the sl2-generators a, h

act as A,H respectively. By Lemma 2.31, each of A,H is diagonalizable, and the spaces
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VA(θ), VH(θ) have the same dimension. By a similar argument, B is diagonalizable, and

the spaces VB(θ), VH(θ) have the same dimension. 2

We finish this section with a comment. Up to isomorphism, there exists a unique L(sl2)-

module of dimension 1. On this module every element of L(sl2) acts as the zero map.

We call this L(sl2)-module trivial.

2.6 Evaluation modules for L(sl2)

In this section we discuss a type of L(sl2)-module called an evaluation L(sl2)-module.

Definition 2.47 For nonzero a ∈ F, define a map EVa : L(sl2)→ sl2 by

EVa(u⊗ g(t)) = g(a)u, u ∈ sl2, g(t) ∈ F[t, t−1].

The map EVa is a homomorphism of Lie algebras.

With reference to Definition 3.15, we routinely check that EVa is surjective and its kernel

is sl2 ⊗ (t− a)F[t, t−1].

Definition 2.48 For a finite-dimensional sl2-module V and for 0 6= a ∈ F, we pull

back the sl2-action via EVa to obtain an L(sl2)-action on V . We denote the resulting

L(sl2)-module by V (a).

Definition 2.49 With reference to Lemma 2.18 and Definition 3.16, by an evaluation

L(sl2)-module we mean an L(sl2)-module Vd(a), where d is a positive integer and 0 6=

a ∈ F. By construction the evaluation L(sl2)-module Vd(a) is nontrivial and irreducible.

We call a the evaluation parameter of Vd(a). Note that Vd(a) has dimension d+ 1.
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Lemma 2.50 For a positive integer d and nonzero a ∈ F, the evaluation L(sl2)-module

Vd(a) is described as follows. Let {vi}di=0 denote a normalized h-eigenbasis of the sl2-

module Vd. The elements (3.6) of L(sl2) act on Vd(a) as follows. For k ∈ Z,

(h⊗ tk) vi = (d− 2i)akvi (0 ≤ i ≤ d),

(f ⊗ tk) vi = (i+ 1)akvi+1 (0 ≤ i ≤ d− 1), (f ⊗ tk) vd = 0,

(e⊗ tk) vi = (d+ 1− i)akvi−1 (1 ≤ i ≤ d), (e⊗ tk) v0 = 0.

Note 2.51 With reference to Lemma 3.19, for any k ∈ Z, v0 spans the eigenspace of

h⊗ tk corresponding to eigenvalue akd.

Lemma 2.52 The evaluation L(sl2)-modules Vd(a) and Vd′(a′) are isomorphic if and

only if d = d′ and a = a′.

Proof: Suppose Vd(a) and Vd(a′) are isomorphic. Isomorphic modules have the same

dimension, so d = d′. Considering the action of h⊗ t, we see by Note 3.20 that ad = a′d.

Since d is positive, we have a = a′. This proves the lemma in one direction. The proof

for the other direction is immediate. 2

Note 2.53 With reference to Lemma 3.19, the L(sl2)-generators A,B,H act as follows:

Avi = (d+ 1− i)vi−1 + (i+ 1)vi+1 (1 ≤ i ≤ d− 1), Av0 = v1, Avd = vd−1,

Bvi = (d+ 1− i)avi−1 + (i+ 1)a−1vi+1 (1 ≤ i ≤ d− 1), Bv0 = a−1v1, Bvd = avd−1,

Hvi = (d− 2i)vi (0 ≤ i ≤ d).

Lemma 2.54 Let V denote an evaluation L(sl2)-module of dimension d + 1. The fol-

lowing hold for Z ∈ {A,B,H}.
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(i) Z is diagonalizable on V .

(ii) The set of distinct eigenvalues of Z on V is {d− 2i|0 ≤ i ≤ d}.

(iii) The eigenspaces for Z all have dimension 1.

Proof: Write V = Vd(a). The result holds for Z = H by the last line in Note 2.53. For

the other cases use Lemma 2.46. 2

We mention two facts for later use.

Note 2.55 With reference to Lemma 3.19, define w =
∑d

i=0 vi. Then w spans the

eigenspace of A corresponding to eigenvalue d. Moreover, for all k ∈ Z, w is an eigen-

vector for a⊗ (tk + t−k) with eigenvalue (ak + a−k)d.

Note 2.56 Observe that [A,B] = h⊗ (t−1− t). With reference to Lemma 3.19, we have

[A,B]vi = (a−1 − a)(d− 2i)vi for 0 ≤ i ≤ d.

2.7 Twisting L(sl2)-modules

Recall the automorphism ϑ of L(sl2) from Lemma 2.40. In this section we discuss how

to twist an L(sl2)-module via ϑ.

Definition 2.57 Let V denote an L(sl2)-module. There exists an L(sl2)-module struc-

ture on V , called V twisted via ϑ, that behaves as follows: for all x ∈ L(sl2) and v ∈ V ,

the vector xv computed in V twisted via ϑ coincides with the vector ϑ(x)v computed in

the original L(sl2)-module V . We abbreviate ϑV for V twisted via ϑ.



35

With reference to Definition 2.57, we emphasize that for all x ∈ L(sl2) the following are

the same:

(i) the action of x on the L(sl2)-module ϑV ;

(ii) the action of ϑ(x) on the L(sl2)-module V .

Special cases of particular interest are given in the following two lemmas.

Lemma 2.58 Let V denote an L(sl2)-module. For all x ∈ O the following are the same:

(i) the action of x on the L(sl2)-module ϑV ;

(ii) the action of x on the L(sl2)-module V .

Proof: By Lemma 2.43. 2

Lemma 2.59 Let V denote an L(sl2)-module. The following are the same:

(i) the action of H on the L(sl2)-module ϑV ;

(ii) the action of −H on the L(sl2)-module V .

Proof: By Lemma 2.40. 2

Lemma 2.60 Let Vd(a) denote an evaluation L(sl2)-module. Then the L(sl2)-modules

ϑVd(a) and Vd(a−1) are isomorphic. Let {vi}di=0 denote a normalized h-eigenbasis of the

sl2-module Vd. There exists an isomorphism of L(sl2)-modules ϑVd(a) → Vd(a−1) that

sends vi 7→ vd−i for 0 ≤ i ≤ d.
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Proof: Let γ denote the F-linear transformation ϑVd(a)→ Vd(a−1) that sends vi 7→ vd−i

for 0 ≤ i ≤ d. By construction γ is an isomorphism of vector spaces. To show that γ is

a homomorphism of L(sl2)-modules, we show that for Z ∈ {A,B,H},

γ(Z.vi) = Z.(γ(vi)) (2.23)

for 0 ≤ i ≤ d, where the action on the left in (2.23) is the ϑVd(a)-action and the one on

the right in (2.23) is the Vd(a−1)-action. We routinely verify (2.23) using Lemma 2.58,

Lemma 2.59, and the data in Note 2.53. 2

2.8 Evaluation modules for O

In this section we discuss a type of O-module called an evaluation O-module. This

is an O-module that is obtained from an evaluation L(sl2)-module by restricting the

L(sl2)-action to O.

Definition 2.61 Let V and V ′ denote L(sl2)-modules. We restrict the L(sl2)-action on

V (resp. V ′) to O to get an O-action on V (resp. V ′). The L(sl2)-modules V and V ′

are said to be related whenever the resulting O-modules are isomorphic.

Consider the set F\{0} of nonzero scalars in F.

Definition 2.62 We define a binary relation ∼ on F\{0} as follows. Let a, a′ ∈ F\{0}.

Then a ∼ a′ whenever a = a′ or aa′ = 1. Observe that ∼ is an equivalence relation.

Let E denote the set of equivalence classes for ∼ on F\{0}. For a ∈ F\{0} let a ∈ E

denote the equivalence class of ∼ that contains a. Note that the equivalence classes 1

and −1 have cardinality one, and every other equivalence class has cardinality two. The

equivalence classes of cardinality two will be called feasible.
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Lemma 2.63 Let Vd(a) and Vd(a′) denote evaluation L(sl2)-modules. Then these L(sl2)-

modules are related in the sense of Definition 2.61 if and only if a ∼ a′.

Proof: Suppose a ∼ a′. We show that the L(sl2)-modules Vd(a) and Vd(a′) are related.

This is trivial if a = a′, so suppose aa′ = 1. By Lemma 2.60, the L(sl2)-modules

ϑVd(a) and Vd(a′) are isomorphic. Therefore the L(sl2)-modules ϑVd(a) and Vd(a′) are

related. By Lemma 2.58, the L(sl2)-modules Vd(a) and ϑVd(a) are related. Therefore

the L(sl2)-modules Vd(a) and Vd(a′) are related.

Now suppose that the L(sl2)-modules Vd(a) and Vd(a′) are related. We show that

a ∼ a′. Recall the element a⊗ (t+ t−1) ∈ O from Lemma 2.44. Considering the action

of a⊗ (t+ t−1), we see by Note 2.55 that (a+ a−1)d = (a′+ (a′)−1)d. Since d is positive,

we have a + a−1 = a′ + (a′)−1. Rewriting this equation we get (a − a′)(aa′ − 1) = 0.

Therefore a ∼ a′. 2

The following definition is motivated by Lemma 2.63.

Definition 2.64 Let d denote a positive integer, and let b ∈ E. By Lemma 2.63, up

to isomorphism there exists a unique O-module Vd(b) with the following property. For

every a ∈ b the restriction of the L(sl2)-module Vd(a) to O is isomorphic to Vd(b).

Definition 2.65 By an evaluation O-module we mean an O-module Vd(b), where b ∈ E

and d is a positive integer. We call b the evaluation parameter of Vd(b).

We now emphasize a few facts about evaluation O-modules.

Lemma 2.66 Let Vd(b) and Vd′(b′) denote evaluation O-modules. Then these O-modules

are isomorphic if and only if d = d′ and b = b′.
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Proof: Suppose the O-modules Vd(b) and Vd′(b′) are isomorphic. Isomorphic modules

have the same dimension, so d = d′. Pick a ∈ b and a′ ∈ b′. Without loss we may assume

that the O-action on Vd(b) (resp. Vd(b′)) is obtained by restricting the L(sl2)-action on

Vd(a) (resp. Vd(a′)) to O. Note that the L(sl2)-modules Vd(a) and Vd(a′) are related.

By Lemma 2.63, we get a ∼ a′. Therefore b = b′. This proves the lemma in one direction.

The other direction is proved in a similar fashion using Lemma 2.63. 2

Let a ∈ F be nonzero and recall the Lie algebra homomorphism EVa : L(sl2)→ sl2 from

Definition 3.15. Let eva denote the restriction of EVa to O. Then eva : O → sl2 is a Lie

algebra homomorphism.

Lemma 2.67 Let a ∈ F be nonzero. Then the map eva is surjective if and only if

a 6= ±1.

Proof: Note that the image of O under eva is the Lie subalgebra of sl2 that is generated

by the elements eva(A), eva(B). These elements are e + f, ae + a−1f respectively. We

routinely check that these elements generate sl2 if and only if a 6= ±1. The result follows.

2

Lemma 2.68 Let b ∈ E. Let V denote an evaluation O-module with evaluation param-

eter b. Then the O-module V is irreducible if and only if b is feasible in the sense of

Definition 2.62. In this case the O-module V has type (0, 0).

Proof: Write V = Vd(b) and pick a ∈ b. Without loss we may assume that the O-

action on V is obtained by restricting the L(sl2)-action on Vd(a) to O. Observe that

the O-action on V is obtained by pulling back the sl2-action on Vd via the map eva.
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Suppose that b is feasible, so that a 6= ±1. By Lemma 2.67, the map eva is surjective.

Since the sl2-module Vd is irreducible, we find that the O-module V is irreducible.

Now suppose that b is not feasible, so that a = ±1. We show that the O-module V is

reducible by displaying a nonzero proper O-submodule of V . By Note 2.53, A = ±B on

V . By Definition 2.8, A,B generate O. Therefore any eigenvector of A spans a nonzero

proper O-submodule of V .

The last assertion follows by Lemma 2.54(ii). 2

Lemma 2.69 Let Vd(b) denote an evaluation O-module, with b feasible. With reference

to Definition 2.14, the O-module Vd(b) has diameter d and shape polynomial

1 + λ+ λ2 + · · ·+ λd.

Proof: Pick a ∈ b. Without loss we may assume that the O-action on Vd(b) is obtained

by restricting the L(sl2)-action on Vd(a) to O. The result follows by Lemma 2.54. 2

Lemma 2.70 Let V denote an evaluation O-module with feasible evaluation parameter.

Then the O-action on V can be extended to precisely two L(sl2)-actions on V . The

resulting two L(sl2)-module structures on V are non-isomorphic. Each of these two

L(sl2)-module structures is obtained from the other by twisting the L(sl2)-action via the

automorphism ϑ of L(sl2) from Lemma 2.40.

Proof: Let A,B denote the actions of A,B on V respectively. Suppose we are given an

L(sl2)-action on V that extends the O-action on V . For this L(sl2)-action, let H denote

the H-action. By Lemma 2.68, the O-module V is irreducible and has type (0, 0). Let d

denote the diameter of the O-module V . By construction the set of distinct eigenvalues
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of A is {d − 2i|0 ≤ i ≤ d}. By Lemma 2.46, the set of distinct eigenvalues of H is

{d− 2i|0 ≤ i ≤ d}. Recall the notation VF (θ) from (2.1). By (2.12) and Lemma 2.1,

AVH(d) ⊆ VH(d− 2), AVH(−d) ⊆ VH(2− d), (2.24)

AVH(d− 2i) ⊆ VH(d− 2i− 2) + VH(d− 2i+ 2) (1 ≤ i ≤ d− 1). (2.25)

Let b denote the evaluation parameter for the O-module V , so that V = Vd(b). Pick

a ∈ b. Without loss we may assume that the O-action on V is obtained by restricting

the L(sl2)-action on Vd(a) to O. Let {vi}di=0 denote a normalized h-eigenbasis of the

sl2-module Vd. By construction b is feasible, so a 6= ±1, and consequently a 6= a−1. By

this and Note 2.56, for 0 ≤ i ≤ d, vi spans the eigenspace of [A,B] corresponding to

eigenvalue (a−1 − a)(d − 2i)vi. By (2.15), H commutes with [A,B]. Therefore {vi}di=0

are eigenvectors for H. By Note 2.53,

Av0 = v1, Avd = vd−1, (2.26)

Avi = (d+ 1− i)vi−1 + (i+ 1)vi+1 (1 ≤ i ≤ d− 1). (2.27)

Comparing lines (2.24), (2.25) with lines (2.26), (2.27), we see that either vi is a basis

for VH(d− 2i) for 0 ≤ i ≤ d, or vi is a basis for VH(2i− d) for 0 ≤ i ≤ d. Consequently

either Hvi = (d − 2i)vi for 0 ≤ i ≤ d, or Hvi = (2i − d)vi for 0 ≤ i ≤ d. In the former

case, H is the H-action on Vd(a), by Note 2.53. In the latter case, H is the H-action on

ϑVd(a), by Lemma 2.59. The L(sl2)-modules Vd(a) and ϑVd(a) are non-isomorphic by

Lemma 3.21 and Lemma 2.60. The result follows. 2
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2.9 Finite-dimensional irreducible modules for O and

L(sl2)

In Section 2.7 we discussed evaluation L(sl2)-modules. In Section 2.8 we discussed eval-

uation O-modules, and we discussed how these are related to evaluation L(sl2)-modules.

In this section we consider general finite-dimensional irreducible L(sl2)-modules and O-

modules. We then discuss how these L(sl2)-modules and O-modules are related. First

we make a comment. Let L denote a Lie algebra over F, and let U, V denote L-modules.

By [8, p. 26], U ⊗ V has an L-module structure such that

x(u⊗ v) = (xu)⊗ v + u⊗ (xv) x ∈ L, u ∈ U, v ∈ V. (2.28)

The following lemma is routinely checked.

Lemma 2.71 Let L denote a Lie algebra over F, and let U, V denote L-modules. Then

the following hold.

(i) There exists an L-module isomorphism U ⊗ V → V ⊗U that sends u⊗ v 7→ v⊗ u

for all u ∈ U and v ∈ V .

(ii) Assume the L-module U ⊗ V is irreducible. Then U and V are irreducible.

The classification of the finite-dimensional irreducible L(sl2)-modules is given in the

following theorem.

Theorem 2.72 [2] Every finite-dimensional irreducible L(sl2)-module is isomorphic to

a tensor product of evaluation L(sl2)-modules. Two such tensor products are isomorphic

as L(sl2)-modules if and only if one can be obtained from the other by permuting the
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factors in the tensor product. A tensor product of evaluation L(sl2)-modules ⊗ni=1Vdi(ai)

is irreducible if and only if the {ai}ni=1 are mutually distinct.

We now give the classification of the finite-dimensional irreducible O-modules. By

the comments in Section 2.3, it suffices to classify the finite-dimensional irreducible

O-modules of type (0, 0).

Theorem 2.73 [3, Proposition 5, Theorem 6] Every finite-dimensional irreducible O-

module of type (0, 0) is isomorphic to a tensor product of evaluation O-modules. Two

such tensor products are isomorphic as O-modules if and only if one can be obtained from

the other by permuting the factors in the tensor product. A tensor product of evaluation

O-modules ⊗ni=1Vdi(bi) is irreducible if and only if the {bi}ni=1 are mutually distinct and

feasible.

Definition 2.74 Let V denote a finite-dimensional irreducible L(sl2)-module (resp. O-

module of type (0, 0)). By Theorem 2.72 (resp. Theorem 2.73) there exists a unique

n ∈ N such that the L(sl2)-module (resp. O-module) V is isomorphic to a tensor product

of n evaluation L(sl2)-modules (resp. O-modules). We call n the tensor degree of V . If

V is the trivial L(sl2)-module or the trivial O-module, we interpret the tensor degree to

be zero.

In Theorems 2.72 and 2.73 we discussed the finite-dimensional irreducible modules for

L(sl2) and O. We now discuss how these O-modules and L(sl2)-modules are related.

Definition 2.75 Let V denote a finite-dimensional irreducible L(sl2)-module. By The-

orem 2.72, the L(sl2)-module V is isomorphic to a tensor product ⊗ni=1Vdi(ai) of evalu-

ation L(sl2)-modules. The L(sl2)-module V is said to be inverse-free whenever aiaj 6= 1

for 1 ≤ i, j ≤ n.
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Note 2.76 Referring to Definition 2.75, the L(sl2)-module V is inverse-free if and only

if the {ai}ni=1 are mutually distinct and feasible.

Proposition 2.77 The following hold.

(i) Let V denote a finite-dimensional irreducible L(sl2)-module that is inverse-free.

When the L(sl2)-action on V is restricted to O, the resulting O-module is ir-

reducible, with type (0, 0). Moreover, the L(sl2)-module structure on V and the

O-module structure on V have the same tensor degree.

(ii) Let V denote a finite-dimensional irreducible O-module, with type (0, 0) and tensor

degree n. Then the O-action on V can be extended to precisely 2n L(sl2)-actions

on V . The resulting 2n L(sl2)-module structures on V are irreducible, inverse-free,

and mutually non-isomorphic.

The proof of Proposition 2.77(i) is routine using Theorem 2.72, Theorem 2.73, and Note

2.76. The proof of Proposition 2.77(ii) will be completed shortly. This proof will involve

the following lemma.

Lemma 2.78 Let V denote a finite-dimensional irreducible O-module of type (0, 0).

Assume we are given two L(sl2)-actions on V that extend the O-action on V . Then the

following are equivalent:

(i) the two L(sl2)-module structures on V are isomorphic;

(ii) the two L(sl2)-actions on V are the same.

Proof: (i)⇒ (ii) Let A,B denote the actions of A,B on V respectively. Let H,H ′ denote

the H-actions on V afforded by the given L(sl2)-actions. We show that H = H ′. By
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construction, there exists a vector space isomorphism γ : V → V such that γ commutes

with each of A,B and

γH = H ′γ. (2.29)

Let W ⊆ V denote an eigenspace of γ. By Definition 2.8, A,B generate O. Therefore W

is a nonzero O-submodule of V . The O-module V is irreducible, so W = V . Therefore

γ is a scalar multiple of the identity element of End(V ). Since γ is invertible, that scalar

is nonzero. Combining this with (2.29) we get H = H ′. The result follows since A,B,H

generate the Lie algebra L(sl2).

(ii) ⇒ (i) Immediate. 2

Proof of Proposition 2.77(ii): Invoking Theorem 2.73, we identify the O-module V with

a tensor product ⊗ni=1Vdi(bi) of evaluation O-modules, with the {bi}ni=1 mutually distinct

and feasible. By construction {bi}ni=1 are mutually disjoint and each bi has cardinality

two. Consider the L(sl2)-modules

⊗ni=1Vdi(ai) ai ∈ bi, 1 ≤ i ≤ n. (2.30)

For each L(sl2)-module in (2.30) the restriction to O is isomorphic to the O-module

V . By Theorem 2.72, the L(sl2)-modules (2.30) are irreducible and mutually non-

isomorphic. By Note 2.76, each of these L(sl2)-modules is inverse-free. Suppose we

are given an L(sl2)-action on V that extends the O-action on V . By Theorem 2.72,

the resulting L(sl2)-module V is isomorphic to a tensor product ⊗n′j=1Vd′j(a
′
j) of evalu-

ation L(sl2)-modules. By Theorem 2.73, we have n = n′, and up to a permutation of

{Vd′i(a
′
i)}ni=1 we have di = d′i and a′i ∈ bi for 1 ≤ i ≤ n. Therefore the L(sl2)-module

V is isomorphic to one of the L(sl2)-modules (2.30). The result follows routinely using
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Lemma 2.78. 2

Definition 2.79 Let V denote a finite-dimensional irreducible L(sl2)-module that is

inverse-free. When the L(sl2)-action on V is restricted to O, the resulting O-module is

irreducible, with type (0, 0), by Proposition 2.77(i). We say this O-module is associated

with the L(sl2)-module V . By the diameter (resp. shape) (resp. shape polynomial) of

the L(sl2)-module V we mean the diameter (resp. shape) (resp. shape polynomial) of

the associated O-module, in the sense of Definition 2.14.

2.10 Finite-dimensional irreducible modules for O

and L(sl2); the shape polynomial

In this section we continue to discuss a finite-dimensional irreducible O-module V of

type (0, 0). We will obtain some results about the shape polynomial SV from Definition

2.14. We then discuss the relationship between the shape and the tensor degree of V .

At the end of the section, we take the results earlier in the section and apply them to

obtain results for finite-dimensional irreducible L(sl2)-modules.

Let V, V ′ denote finite-dimensional irreducible O-modules of type (0, 0) such that the

O-module V ⊗ V ′ is irreducible. In this case the O-module V ⊗ V ′ has type (0, 0). We

are going to show that SV⊗V ′ = SV SV ′ . We will use the following three lemmas.

Lemma 2.80 Let V, V ′ denote finite-dimensional irreducible O-modules of type (0, 0)

such that the O-module V ⊗ V ′ is irreducible. Let d (resp. d′) denote the diameter of V

(resp. V ′). Then the diameter of V ⊗ V ′ is d+ d′.
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Proof: Routine using (3.7). 2

Lemma 2.81 Adopt the notation of Lemma 2.80. For X ∈ {A,B} the eigenspaces of

the action of X on V ⊗ V ′ are given as follows. For 0 ≤ r ≤ d (resp. 0 ≤ s ≤ d′) let

Vr (resp. V ′s ) denote the eigenspace of the action of X on V (resp. V ′) corresponding to

the eigenvalue d− 2r (resp. d′ − 2s). For 0 ≤ n ≤ d+ d′ the eigenspace of the action of

X on V ⊗ V ′ corresponding to the eigenvalue d+ d′ − 2n is given by

∑
r,s

Vr ⊗ V ′s , (2.31)

where the sum is over all ordered pairs r, s such that 0 ≤ r ≤ d, 0 ≤ s ≤ d′, r + s = n.

Proof: Routine using (3.7). 2

Lemma 2.82 Adopt the notation of Lemmas 2.80, 2.81. Let {ρr}dr=0 (resp. {ρ′s}d
′
s=0)

denote the shape of the O-module V (resp. V ′). Then the vector space in line (2.31) has

dimension

∑
r,s

ρrρ
′
s,

where the sum is over all ordered pairs r, s such that 0 ≤ r ≤ d, 0 ≤ s ≤ d′, r + s = n.

Proof: The sum in (2.31) is direct. The result follows. 2

Proposition 2.83 Let V, V ′ denote finite-dimensional irreducible O-modules of type

(0, 0) such that the O-module V ⊗ V ′ is irreducible. Then

SV⊗V ′ = SV SV ′ .

Proof: Routine using Lemmas 2.80–2.82. 2
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Proposition 2.84 Let V denote a finite-dimensional irreducible O-module, with type

(0, 0), shape {ρi}di=0, and tensor degree n. By Theorem 2.73, the O-module V is isomor-

phic to a tensor product ⊗nj=1Vdj(bj) of evaluation O-modules. Then

d∑
i=0

ρiλ
i =

n∏
j=1

(1 + λ+ λ2 + · · ·+ λdj). (2.32)

Proof: By construction SV =
∑d

i=0 ρiλ
i. Combine Lemma 2.69 and Proposition 2.83. 2

Remark 2.85 With reference to Proposition 2.84, we have d =
∑n

j=1 dj.

Let V denote a nontrivial finite-dimensional irreducible O-module of type (0, 0). We

now discuss the relationship between the shape of V and the tensor degree of V . Note

that the diameter of V is at least one since V is nontrivial.

Corollary 2.86 For a nontrivial finite-dimensional irreducible O-module of type (0, 0)

with shape {ρi}di=0 the tensor degree is given by ρ1.

Proof: Adopt the notation in Proposition 2.84. Comparing the coefficient of λ from each

side of (2.32) we get ρ1 = n. The result follows. 2

Proposition 2.84, Remark 2.85, and Corollary 2.86 are about finite-dimensional irre-

ducible O-modules of type (0, 0). We now obtain similar results for finite-dimensional

irreducible L(sl2)-modules that are inverse-free.

Proposition 2.87 Let V denote a finite-dimensional irreducible L(sl2)-module that is

inverse-free, with shape {ρi}di=0 and tensor degree n. By Theorem 2.72, the L(sl2)-module

V is isomorphic to a tensor product ⊗nj=1Vdj(aj) of evaluation L(sl2)-modules. Then

d∑
i=0

ρiλ
i =

n∏
j=1

(1 + λ+ λ2 + · · ·+ λdj). (2.33)
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Proof: Combine Definition 2.79 and Proposition 2.84. 2

Remark 2.88 With reference to Proposition 2.87, we have d =
∑n

j=1 dj.

Corollary 2.89 For a nontrivial finite-dimensional irreducible L(sl2)-module that is

inverse-free, with shape {ρi}di=0, the tensor degree is given by ρ1.

Proof: Similar to the proof of Corollary 2.86. 2

2.11 Compatible elements

For the moment let V denote a finite-dimensional irreducible O-module, with type (0, 0)

and tensor degree n. By Proposition 2.77(ii), the O-action on V can be extended to

precisely 2n L(sl2)-actions on V . Our next general goal is to describe in detail how these

2n extensions are related to one another. In this description we make use of Theorem

2.34. To aid in this description we introduce the notion of a compatible element for a

tridiagonal pair of Krawtchouk type.

Definition 2.90 Let V denote a vector space over F with finite positive dimension. Let

A,B denote a tridiagonal pair on V that has Krawtchouk type. An element H ∈ End(V )

is said to be compatible with A,B whenever the following relations hold:

[A, [A,H]] = 4H, [H, [H,A]] = 4A, (2.34)

[B, [B,H]] = 4H, [H, [H,B]] = 4B, (2.35)

[H, [A,B]] = 0. (2.36)

Let Com(A,B) denote the set of elements in End(V ) that are compatible with A,B.
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Remark 2.91 Referring to Definition 2.90, let H ∈ Com(A,B). Then H commutes

with [A,B] by (2.36).

Remark 2.92 Let A,B denote a tridiagonal pair of Krawtchouk type. We mentioned

at the beginning of Section 2.3 that B,A is a tridiagonal pair of Krawtchouk type. By

Definition 2.90, Com(A,B) = Com(B,A).

From now until the end of Remark 2.95, V will denote a finite-dimensional irreducible

O-module of type (0, 0). Let A,B denote the tridiagonal pair that is associated with

the O-module V , in the sense of Definition 2.14. Consider the set Com(A,B). We

now explain how the elements of Com(A,B) are related to the L(sl2)-actions on V that

extend the O-action on V .

Lemma 2.93 Consider an L(sl2)-action on V that extends the O-action on V . For the

L(sl2)-module V , the action of H on V is an element of Com(A,B).

Proof: Compare (2.12), (2.13), (2.15) with (2.34), (2.35), (2.36). 2

Lemma 2.94 Let H ∈ Com(A,B). Then there exists a unique L(sl2)-action on V that

extends the O-action on V , such that the element H of L(sl2) acts on V as H.

Proof: Compare (2.12), (2.13), (2.15) with (2.34), (2.35), (2.36). 2

Remark 2.95 Combining Lemmas 2.93 and 2.94 we obtain a bijection between the

following two sets:

(i) Com(A,B);

(ii) the L(sl2)-actions on V that extend the O-action on V .
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In view of Remark 2.95, we will describe the L(sl2)-actions on V that extend theO-action

on V by describing the set Com(A,B).

Definition 2.96 For a tridiagonal pair of Krawtchouk type, we define its tensor degree

to be the tensor degree of the associated O-module from Definition 2.14.

Remark 2.97 Let A,B denote a tridiagonal pair that has Krawtchouk type and diam-

eter d. First assume d = 0. By Definitions 2.74 and 2.96, the tensor degree of A,B is

zero. Now assume d ≥ 1. Let {ρi}di=0 denote the shape of A,B. By Definition 2.96 and

Corollary 2.86, the tensor degree of A,B is equal to ρ1.

Lemma 2.98 Let A,B denote a tridiagonal pair that has Krawtchouk type and tensor

degree ρ. Then Com(A,B) has cardinality 2ρ.

Proof: Combine Proposition 2.77(ii) and Remark 2.95. 2

Remark 2.99 Referring to Remark 2.97 and Lemma 2.98, if the diameter of A,B is

zero, then the tensor degree of A,B is zero, so the set Com(A,B) has cardinality 1. In

this case, Com(A,B) consists of the zero map on V . In order to avoid trivialities, for

the remainder of this section we will assume that the diameter of A,B is at least 1.

Theorem 2.100 Let V denote a vector space over F with finite positive dimension. Let

A,B denote a tridiagonal pair on V that has Krawtchouk type, with diameter at least 1

and tensor degree ρ. Then there exist elements {Hi}ρi=1 in End(V ) such that

Com(A,B) =

{
ρ∑
i=1

εiHi

∣∣∣∣ εi = ±1, 1 ≤ i ≤ ρ

}
. (2.37)

The elements {Hi}ρi=1 are uniquely determined up to sign and permutation. These ele-

ments are linearly independent, they mutually commute, and they are diagonalizable on
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V . Moreover, the elements of Com(A,B) mutually commute and are diagonalizable on

V .

We will prove Theorem 2.100 shortly. For the rest of this paragraph, we will set some

notation that will remain in effect for the rest of this section. Let V denote a vector

space over F with finite positive dimension. Let A,B denote a tridiagonal pair on V

of Krawtchouk type, with diameter d ≥ 1 and shape {ρi}di=0. Abbreviate ρ = ρ1. By

Remark 2.97, the tensor degree of A,B is equal to ρ. Fix H ∈ Com(A,B). By Lemma

2.94, there exists a unique L(sl2)-module structure on V such that the L(sl2)-generators

A,B,H act on V as A,B,H respectively. Invoking Theorem 2.72, we identify the L(sl2)-

module V with a tensor product of evaluation L(sl2)-modules:

V = Vd1(a1)⊗ · · · ⊗ Vdρ(aρ). (2.38)

Recall the indeterminate λ.

Proposition 2.101 The sequences {ρi}di=0 and {dj}ρj=1 determine each other via the

polynomial identity

d∑
i=0

ρiλ
i =

ρ∏
j=1

(1 + λ+ λ2 + · · ·+ λdj).

Proof: Use Proposition 2.87. 2

Remark 2.102 With reference to Proposition 2.101, we have d =
∑ρ

j=1 dj.

Next we define elements {Hi}ρi=1 of End(V ) that satisfy (2.37).

Definition 2.103 For Z ∈ L(sl2) and 1 ≤ i ≤ ρ, define Zi to be the element of End(V )

that sends

u1 ⊗ · · · ⊗ uρ 7→ u1 ⊗ · · · ⊗ ui−1 ⊗ Zui ⊗ ui+1 ⊗ · · · ⊗ uρ,
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where uj ∈ Vdj(aj) for 1 ≤ j ≤ ρ. We call Zi the ith part of Z.

Remark 2.104 Referring to Definition 2.103, the element Z ∈ L(sl2) acts on V as∑ρ
i=1 Zi.

Lemma 2.105 For Z ∈ L(sl2) the elements {Zi}ρi=1 mutually commute.

Proof: Routine using Definition 2.103. 2

For the elementH of L(sl2), consider the corresponding elements {Hi}ρi=1 from Definition

2.103. Recall that H acts on V as H. By Remark 2.104, H acts on V as
∑ρ

i=1Hi.

Therefore H =
∑ρ

i=1Hi. Note that by Lemma 2.105, the {Hi}ρi=1 mutually commute.

Lemma 2.106 The elements {Hi}ρi=1 satisfy (2.37).

Proof: Recall the automorphism ϑ of L(sl2) from Lemma 2.40. For ε = (ε1, . . . , ερ) ∈

{±1}ρ define the L(sl2)-module Vε by

Vε = U1 ⊗ · · · ⊗ Uρ, (2.39)

where for 1 ≤ i ≤ ρ, Ui = Vdi(ai) if εi = 1 and Ui = ϑVdi(ai) if εi = −1. By Lemma

2.60 and Theorem 2.72, the L(sl2)-modules

Vε ε ∈ {±1}ρ (2.40)

are mutually non-isomorphic. By Lemma 2.58, the elements A,B of L(sl2) act as A,B on

each of the L(sl2)-modules in (2.40). By Lemma 2.59, we find that for ε = (ε1, . . . , ερ) ∈

{±1}ρ, the element H acts on Vε as
∑ρ

i=1 εiHi. Equation (2.37) follows from this along
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with Proposition 2.77(ii) and Remark 2.95. 2

Refer to (2.38). For 1 ≤ i ≤ ρ let {v(i)j }
di
j=0 denote a normalized h-eigenbasis for the sl2-

module Vdi , in the sense of Definition 2.20. Let I denote the set of ρ-tuples (k1, . . . , kρ)

of integers such that 0 ≤ ki ≤ di for 1 ≤ i ≤ ρ. For k = (k1, . . . , kρ) ∈ I define the vector

vk ∈ V by

vk = v
(1)
k1
⊗ v(2)k2

⊗ · · · ⊗ v(ρ)kρ
.

Note that the elements {vk}k∈I form a basis for V . For 1 ≤ i ≤ ρ, let ei denote the

element of Fρ with a 1 in the ith coordinate and 0 in all other coordinates. For all k ∈ Fρ

we define vk = 0 whenever k /∈ I.

Lemma 2.107 The following (i)–(iii) hold for all k = (k1, . . . , kρ) ∈ I.

(i) Avk =
∑ρ

i=1(di + 1− ki)vk−ei + (ki + 1)vk+ei.

(ii) Bvk =
∑ρ

i=1(di + 1− ki)aivk−ei + (ki + 1)a−1i vk+ei.

(iii) Hvk =
∑ρ

i=1(di − 2ki)vk.

Proof: Routine using Note 2.53 and (3.7). 2

Lemma 2.108 For k = (k1, . . . , kρ) ∈ I, vk is a common eigenvector for {Hi}ρi=1. The

corresponding eigenvalues are as follows. For 1 ≤ i ≤ ρ, vk is an eigenvector for Hi

with eigenvalue di − 2ki.

Proof: Routine using Note 2.53 and Definition 2.103. 2

Lemma 2.109 The following (i), (ii) hold for 1 ≤ i ≤ ρ.
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(i) Hi is diagonalizable.

(ii) The set of distinct eigenvalues of Hi is {di − 2j | 0 ≤ j ≤ di}.

Proof: Use Lemma 2.108. 2

Lemma 2.110 The common eigenspaces for {Hi}ρi=1 all have dimension 1. These com-

mon eigenspaces are {Fvk}k∈I.

Proof: Use Lemma 2.108. 2

Lemma 2.111 The elements {Hi}ρi=1 are linearly independent.

Proof: Let {si}ρi=1 denote scalars in F, and assume

∑
1≤i≤ρ

siHi = 0. (2.41)

We prove si = 0 for 1 ≤ i ≤ ρ. Let i be given. Consider the elements k = (0, . . . , 0) and

k′ = (0, . . . , 0, di, 0, . . . , 0) of I. By applying both sides of (2.41) to each of vk,−vk′ we

see that ∑
1≤r≤ρ

srdr = 0, 2sidi −
∑

1≤r≤ρ

srdr = 0. (2.42)

In (2.42) we add the two equations to get sidi = 0. Recall that di is positive, so si = 0. 2

We are now ready to prove Theorem 2.100.

Proof of Theorem 2.100: Recall the elements {Hi}ρi=1 from above Lemma 2.106. By

Lemma 2.106 and the comments immediately preceding it, the {Hi}ρi=1 mutually com-

mute and satisfy (2.37). By Lemmas 2.109 and 2.111, the {Hi}ρi=1 are linearly indepen-

dent and diagonalizable on V . Moreover, the elements of Com(A,B) mutually commute
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and are diagonalizable on V . It remains to prove the uniqueness claim. Define the set

S = {(H −X)/2 |X ∈ Com(A,B)}.

Using (2.37) one routinely checks that

S =

{
ρ∑
i=1

siHi

∣∣∣∣ si ∈ {0, 1}, 1 ≤ i ≤ ρ

}
. (2.43)

Let {H′i}
ρ
i=1 denote elements in End(V ) satisfying (2.37). Changing the signs of {H′i}

ρ
i=1

if necessary, we may assume that H =
∑ρ

i=1H′i. We will show that the sequence {H′i}
ρ
i=1

is a permutation of the sequence {Hi}ρi=1. Observe that

S =

{
ρ∑
i=1

siH′i
∣∣∣∣ si ∈ {0, 1}, 1 ≤ i ≤ ρ

}
. (2.44)

Comparing (2.43) and (2.44) one routinely checks that {Hi}ρi=1 and {H′i}
ρ
i=1 span the

same subspace of End(V ). Since the elements {Hi}ρi=1 are linearly independent, so are

the elements {H′i}
ρ
i=1. Let M denote the transition matrix from {Hi}ρi=1 to {H′i}

ρ
i=1. By

(2.43) and (2.44), each entry of M is either 0 or 1. Observe that

ρ∑
i=1

Hi = H =

ρ∑
i=1

H′i =

ρ∑
i=1

ρ∑
j=1

MijHi. (2.45)

For 1 ≤ i ≤ ρ, we compare the coefficients of {Hi}ρi=1 in (2.45) to obtain
∑ρ

j=1Mij = 1.

Therefore each row of M has exactly one entry equal to 1. Since the {H′i}
ρ
i=1 are all

nonzero, each column of M has at least one entry equal to 1. Therefore M is a permu-

tation matrix. This shows that the sequence {H′i}
ρ
i=1 is a permutation of the sequence

{Hi}ρi=1. 2

For 1 ≤ i ≤ ρ, we now consider the action of A,B on the eigenspaces of Hi.
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Proposition 2.112 For 1 ≤ i ≤ ρ and 0 ≤ j ≤ di, let Wj denote the eigenspace of Hi

corresponding to the eigenvalue di − 2j. Then

AWj ⊆ Wj−1 +Wj +Wj+1, BWj ⊆ Wj−1 +Wj +Wj+1 (1 ≤ j ≤ di),

where W−1 = 0 and Wdi+1 = 0.

Proof: By Lemma 2.108, Wj is spanned by the vectors vk such that k = (k1, . . . , kρ) ∈ I

and ki = j. The result follows by Lemma 2.107. 2

Definition 2.113 Let C denote the subspace of End(V ) spanned by Com(A,B).

Remark 2.114 By Theorem 2.100 and Definition 2.113, the elements {Hi}ρi=1 form a

basis for C.

Corollary 2.115 The common eigenspaces for C are the same as the common eigenspaces

for {Hi}ρi=1 discussed in Lemma 2.110. In particular these common eigenspaces all have

dimension 1.

Proof: Routine using Remark 2.114. 2

We now describe the action of C on the eigenspaces of A and B.

Proposition 2.116 Let {Vi}di=0 (resp. {V ′i }di=0) denote a standard ordering of the

eigenspaces of A (resp. B). Then for all C ∈ C,

CVi ⊆ Vi−1 + Vi+1, CV ′i ⊆ V ′i−1 + V ′i+1 (0 ≤ i ≤ d),

where Vj = 0 and V ′j = 0 for j ∈ {−1, d+ 1}.
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Proof: Without loss of generality, C ∈ Com(A,B). The result follows by Lemma 2.1

and the equations on the left in lines (2.34) and (2.35). 2

Recall from Theorem 2.9 the elements {Gj | j ∈ Z, j > 0} of O. Recall the equivalence

relation on F\{0} from Definition 2.62. Recall the evaluation parameters {ai}ρi=1 from

(2.38). By Theorem 2.73, the {ai}ρi=1 are mutually distinct and feasible, in the sense of

Definition 2.62.

Proposition 2.117 For all integers j > 0, the following holds on V :

Gj =

ρ∑
i=1

Hi

(
aji − a

−j
i

)
/2.

Proof: For 1 ≤ i ≤ ρ, consider the ith part of Gj, in the sense of Definition 2.103. Using

Lemma 2.38 and Definition 3.18, one routinely checks that the ith part of Gj is equal to

Hi

(
aji − a

−j
i

)
/2. The result follows by Remark 2.104. 2

Proposition 2.118 The actions of {Gi}ρi=1 on V form a basis for C.

Proof: Let M denote the ρ by ρ matrix whose (i, j)-entry is equal to aji − a−ji for

1 ≤ i, j ≤ ρ. By Proposition 2.117, it suffices to show that the matrix M is invertible.

One routinely checks that the determinant of M is equal to

∏
1≤k≤ρ

(ak − a−1k )
∏

1≤i<j≤ρ

a−1i a−1j (aiaj − 1)(aj − ai). (2.46)

The scalar (2.46) is nonzero because the {ai}ρi=1 are mutually distinct and feasible.

Therefore M is invertible. 2
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2.12 The graph X

Throughout this section the following notation will be in effect. Let V denote a vector

space over F with finite positive dimension. Let A,B denote a tridiagonal pair on V

of Krawtchouk type, with diameter d ≥ 1 and shape {ρi}di=0. Abbreviate ρ = ρ1. By

Remark 2.97, the tensor degree of A,B is equal to ρ. By Theorem 2.100, the elements of

Com(A,B) mutually commute and are diagonalizable on V . In this section we discuss the

eigenvalues and the common eigenspaces for the elements of Com(A,B). These common

eigenspaces all have dimension 1. We view these common eigenspaces as vertices of a

certain undirected graph. We describe the action of A,B in terms of this graph structure.

Proposition 2.119 Pick H ∈ Com(A,B). The eigenvalues of H are

{d − 2i | 0 ≤ i ≤ d}. For 0 ≤ i ≤ d, the eigenspace of H corresponding to eigenvalue

d− 2i has dimension ρi.

Proof: By Lemma 2.94, there exists a unique L(sl2)-module structure on V such that

the L(sl2)-generators A,B,H act on V as A,B,H respectively. By construction, the

eigenvalues of A are {d − 2i | 0 ≤ i ≤ d}, and for 0 ≤ i ≤ d the eigenspace of A

corresponding to eigenvalue d− 2i has dimension ρi. The result follows by Lemma 2.46.

2

Definition 2.120 Let X denote the set of common eigenspaces for the elements of

Com(A,B). By Corollary 2.115, the elements of X all have dimension 1.

Remark 2.121 Pick H ∈ Com(A,B). Consider the basis {vk}k∈I of V from Section

2.11. Using Theorem 2.100 and Lemma 2.108, one routinely checks that the elements of

X are {Fvk}k∈I.
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We now define an undirected graph with vertex set X.

Definition 2.122 Let x, y ∈ X. Then for 1 ≤ i ≤ ρ, the elements x, y are said to be

i-adjacent whenever the following two conditions hold:

(i) the eigenvalues of Hi corresponding to x and y differ by 2;

(ii) for 1 ≤ j ≤ ρ such that j 6= i, the eigenvalues of Hj corresponding to x and y are

equal.

The elements x, y are said to be adjacent whenever there exists 1 ≤ i ≤ ρ such that x

and y are i-adjacent. The set X together with this adjacency relation is an undirected

graph.

We will be discussing the (path-length) distance function for the graph from Definition

2.122.

Remark 2.123 Referring to Definition 2.122, the graph X is a Cartesian product of

ρ many chains, where the ith chain has diameter di for 1 ≤ i ≤ ρ. The graph X has

diameter d.

Definition 2.124 An element x ∈ X will be called a corner whenever for 1 ≤ i ≤ ρ,

the eigenvalue of Hi on x is di or −di. Let Corner(X) denote the set of corners of X.

Note that the cardinality of Corner(X) is 2ρ.

Proposition 2.125 Pick H ∈ Com(A,B). For 0 ≤ i ≤ d, let Ui denote the eigenspace

of H corresponding to the eigenvalue d − 2i. The subspace U0 is a corner of X. For

0 ≤ i ≤ d, Ui is the sum of the elements in X at distance i from U0.
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Proof: Adopt the notation in Remark 2.121. By Lemma 2.107, Ui is spanned by the set

of all vectors vk (k ∈ I) such that the coordinates of k sum to i. The result follows using

Lemma 2.108, Definition 2.122, and Definition 2.124. 2

Proposition 2.126 Pick x ∈ Corner(X). Then there exists a unique Hx ∈ Com(A,B)

that has eigenspace x for the eigenvalue d.

Proof: Adopt the notation in Remark 2.121. Recall the corresponding {Hi}ρi=1 from

Definition 2.103. Since x ∈ X, there exists k = (k1, . . . , kρ) ∈ I such that x = Fvk. Since

x ∈ Corner(X), ki ∈ {0, di} for 1 ≤ i ≤ ρ by Lemma 2.108. Define Hx =
∑ρ

i=1 siHi,

where for 1 ≤ i ≤ ρ, si = 1 if ki = 0 and si = −1 if ki = di. By Theorem 2.100,

Hx ∈ Com(A,B). By Lemma 2.108, x is the eigenspace of Hx for the eigenvalue d. The

uniqueness claim follows from Proposition 2.125. 2

Remark 2.127 Combining Propositions 2.125 and 2.126 we obtain a bijection

Corner(X)→ Com(A,B)

x 7→ Hx.

In the next two propositions, we discuss the action of A,B on various subspaces of V .

We start by considering the action of A,B on the elements of X.

Proposition 2.128 For all x ∈ X, Ax and Bx are contained in the sum of those

elements of X that are adjacent to x.

Proof: Adopt the notation in Remark 2.121. The result follows from Lemma 2.107,

Lemma 2.108, and Definition 2.122. 2

We now discuss the action of A,B on the eigenspaces of the elements of Com(A,B).
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Proposition 2.129 Pick H ∈ Com(A,B). For 0 ≤ i ≤ d, let Ui denote the eigenspace

of H corresponding to eigenvalue d− 2i. Then

AUi ⊆ Ui−1 + Ui+1, BUi ⊆ Ui−1 + Ui+1,

where U−1 = 0 and Ud+1 = 0.

Proof: Use Proposition 2.125 and Proposition 2.128. 2

2.13 Compatible elements, sl2-modules, and Leonard

pairs of Krawtchouk type

Throughout this section the following notation will be in effect. Let V denote a vector

space over F with finite positive dimension. Let A,B denote a tridiagonal pair on V

of Krawtchouk type, with diameter d ≥ 1 and shape {ρi}di=0. Abbreviate ρ = ρ1.

By Remark 2.97, the tensor degree of A,B is equal to ρ. In this section we discuss

a relationship between the elements of Com(A,B), sl2-modules, and Leonard pairs.

Fix H ∈ Com(A,B). As we saw in Lemma 2.94, there exists a unique L(sl2)-module

structure on V such that the L(sl2)-generators A,B,H act on V as A,B,H respectively.

By Lemma 2.45, the elementsH,A generate a Lie subalgebra of L(sl2) that is isomorphic

to sl2, and the elements H,B generate a Lie subalgebra of L(sl2) that is isomorphic to

sl2. Restricting the L(sl2)-action on V to either of these two Lie subalgebras, V becomes

an sl2-module.

Proposition 2.130 The two sl2-module structures on V defined in the previous para-

graph are isomorphic. Moreover, the isomorphism class of the sl2-module V is indepen-

dent of the choice of H ∈ Com(A,B).
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Proof: Use Lemmas 2.19 and 2.31. 2

By Lemma 3.6, the sl2-module V is a direct sum of irreducible sl2-submodules. We now

describe the summands.

Proposition 2.131 The only irreducible sl2-submodules of the sl2-module V are

Vd,Vd−2,Vd−4, . . . .

Moreover, for 0 ≤ j ≤ d/2, the multiplicity with which Vd−2j appears in V is ρj − ρj−1,

where ρ−1 = 0.

Proof: Use Lemmas 2.19 and 2.31. 2

Corollary 2.132 The sl2-module V is irreducible if and only if ρ = 1.

Proof: Use Proposition 2.131. 2

Proposition 2.133 On each irreducible sl2-submodule of the sl2-module V , the pair

H,A and the pair H,B act as Leonard pairs of Krawtchouk type.

Proof: Use Lemmas 2.18, 2.116, and 2.129. 2

Proposition 2.134 The following (i)–(iii) are equivalent:

(i) the pair H,A and the pair H,B act on V as Leonard pairs of Krawtchouk type;

(ii) the pair H,A and the pair H,B act on V as tridiagonal pairs of Krawtchouk type;

(iii) ρ = 1.

Proof: Immediate from Corollary 2.132 and Proposition 2.133. 2
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2.14 The proof of Theorem 2.34

In this section we give a proof of Theorem 2.34.

Definition 2.135 Let L denote the Lie algebra over F with generators A,B,H and

relations

[A, [A,H]] = 4H, [H, [H,A]] = 4A, (2.47)

[B, [B,H]] = 4H, [H, [H,B]] = 4B, (2.48)

[A, [A, [A,B]]] = 4[A,B], [B, [B, [B,A]]] = 4[B,A], (2.49)

[H, [A,B]] = 0. (2.50)

We will show that the Lie algebras L and L(sl2) are isomorphic, with the isomorphism as

given in Theorem 2.34. First we show that there exists a homomorphism of Lie algebras

L → L(sl2) that satisfies (2.16). By Lemma 2.33, it suffices to check that the elements

e⊗ 1 + f ⊗ 1, e⊗ t+ f ⊗ t−1, h⊗ 1

of L(sl2) satisfy the defining relations (2.47)–(2.50) of L. This is routine using Definition

2.16 and (2.10). To illustrate, we verify the relation on the left in (2.48). First observe

that

[e⊗ t+ f ⊗ t−1, h⊗ 1] = [e, h]⊗ t+ [f, h]⊗ t−1

= −2e⊗ t+ 2f ⊗ t−1.
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Therefore

[ e⊗ t+ f ⊗ t−1 , [e⊗ t+ f ⊗ t−1, h⊗ 1] ]

= [e⊗ t+ f ⊗ t−1,−2e⊗ t+ 2f ⊗ t−1]

= −2[e, e]⊗ t2 + 2[e, f ]⊗ 1− 2[f, e]⊗ 1 + 2[f, f ]⊗ t−2

= 4h⊗ 1.

We have now verified the relation on the left in (2.48). The other relations in (2.47)–

(2.50) are verified in a similar fashion. We have shown that there exists a homomorphism

L → L(sl2) that satisfies (2.16).

Our next general goal is to show that there exists a homomorphism L(sl2) → L that

satisfies (2.17), (2.18). The following definition is for notational convenience.

Definition 2.136 For i ∈ {0, 1} define Ei, Fi, Hi ∈ L as follows:

E1 =
[H,A] + 2A

4
, F1 =

[A,H] + 2A
4

, H1 = H,

E0 =
[B,H] + 2B

4
, F0 =

[H,B] + 2B
4

, H0 = −H.

To show that there exists a homomorphism L(sl2) → L that satisfies (2.17), (2.18), it

suffices to prove that the elements of L from Definition 2.136 satisfy the relations in

Lemma 2.33. This proof will be completed in Lemma 2.142. To prepare for this we

first describe two automorphisms of L. We then establish some relations involving the

generators A,B,H of L.

Lemma 2.137 There exists an automorphism ϑ of L that sends

A 7→ A, B 7→ B, H 7→ −H. (2.51)
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Moreover, there exists an automorphism τ of L that sends

A 7→ B, B 7→ A, H 7→ H. (2.52)

The automorphisms ϑ and τ satisfy ϑτ = τϑ, ϑ2 = 1, τ 2 = 1.

Proof: The first and second assertions are clear by Definition 2.135. The last assertion

is easily checked. 2

By the last assertion in Lemma 2.137, ϑ and τ induce an action of the Klein-four group

Z2 × Z2 on L as a group of automorphisms.

Lemma 2.138 The automorphisms ϑ and τ of L do the following to the elements of L

from Definition 2.136.

(i) The map ϑ sends E0 ↔ F0, E1 ↔ F1, H0 ↔ H1.

(ii) The map τ sends E0 ↔ F1, E1 ↔ F0, H0 7→ H0, H1 7→ H1.

(iii) The composition ϑτ sends E0 ↔ E1, F0 ↔ F1, H0 ↔ H1.

Proof: Routine using Definition 2.136 and Lemma 2.137. 2

Lemma 2.139 For the Lie algebra L,

(i) [A, [B,H]] = [B, [A,H]];

(ii) [H, [A, [B,H]]] = 0;

(iii) [[H,A], [B,H]] = 4[A,B].
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Proof: (i) Use (2.2) and (2.50).

(ii) In the equation on the right in (2.47), take the Lie bracket of each side with B to

get

[B, [H, [H,A]]] = 4[B,A]. (2.53)

By (2.3), the left-hand side of (2.53) equals

2[H, [A, [H,B]]]− [A, [H, [H,B]]]− [H, [H, [A,B]]]. (2.54)

Consider the three terms in (2.54). The term on the left equals −2[H, [A, [B,H]]], the

term in the middle equals 4[B,A] by (2.48), and the term on the right is zero by (2.50).

The result follows.

(iii) By (2.2), [[H,A], [B,H]] = [H, [A, [B,H]]] − [A, [H, [B,H]]]. In this equation eval-

uate the right-hand side using part (ii) of this lemma and the equation on the right in

(2.48). The result follows. 2

We will show that the elements Ei, Fi, Hi of L satisfy the relations in Lemma 2.33. We

will do this in two steps. The first step will be accomplished in Lemma 2.140, and the

second step will be accomplished in Lemma 2.142.

Lemma 2.140 Referring to Definition 2.136,

H0 +H1 = 0, [Ei, Fj] = δijHj, (2.55)

[Hi, Ej] = CijEj, [Hi, Fj] = −CijFj, (2.56)

where C is the Cartan matrix immediately preceding Lemma 2.33.
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Proof: The equation on the left in (2.55) is immediate from Definition 2.136. Consider

the equations on the right in (2.55). For i = j these relations are checked using the

relations on the left in (2.47), (2.48). For i 6= j these relations are checked using parts

(i), (iii) of Lemma 2.139. We routinely check (2.56) using the relations on the right in

(2.47), (2.48). 2

Lemma 2.141 For the Lie algebra L,

(i) [A, [A, [A, [B,H]]]] = 4[A, [B,H]];

(ii) [B, [B, [B, [A,H]]]] = 4[B, [A,H]].

Proof: (i) In the equation on the left in (2.49), take the Lie bracket of each side with H,

and evaluate the right-hand side using (2.50) to get

[H[A, [A, [A,B]]]] = 0. (2.57)

Abbreviate D = [A,B]. By (2.3), the left-hand side of (2.57) equals

2[A, [D, [A,H]]]− [D, [A, [A,H]]]− [A, [A, [D,H]]]. (2.58)

Consider the three terms in (2.58). The term in the middle is zero by (2.47) and (2.50),

and the term on the right is zero by (2.50). Next we evaluate the term on the left.

By (2.2), [D, [A,H]] = [A, [B, [A,H]]] − [B, [A, [A,H]]]. In this equation evaluate the

right-hand side using Lemma 2.139(i) and (2.47) to get

[D, [A,H]] = [A, [A, [B,H]]]− 4[B,H]. (2.59)

To evaluate the term on the left in (2.58), take the Lie bracket of each side of (2.59)

with A. The result follows.

(ii) Apply the automorphism τ to (i). 2
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Lemma 2.142 The elements E0, E1, F0, F1 of L from Definition 2.136 satisfy the fol-

lowing relations:

[Ei, [Ei, [Ei, Ej]]] = 0, i 6= j, (2.60)

[Fi, [Fi, [Fi, Fj]]] = 0, i 6= j. (2.61)

Proof: By Lemma 2.138, it suffices to prove (2.60) for (i, j) = (1, 0). Add 1/2 times the

equation on the left in (2.49) to 1/4 times the equation in Lemma 2.141(i). This yields

[A, [A, [A, E0]]] = 4[A, E0]. (2.62)

Note A = E1 + F1 by Definition 2.136. By the equation on the right in (2.55), we find

that [A, E0] = [E1, E0]. Therefore the left-hand side of (2.62) equals

[E1, [E1, [E1, E0]]] + [E1, [F1, [E1, E0]]] + [F1, [E1, [E1, E0]]] + [F1, [F1, [E1, E0]]]. (2.63)

Consider the four terms in (2.63). Our goal is to show that the first term from the left is

zero. Consider the other three terms. Using (2.2) and Lemma 2.140, we routinely check

that

[F1, [E1, E0]] = 2E0. (2.64)

In (2.64), take the Lie bracket of each side with E1 to get

[E1, [F1, [E1, E0]]] = 2[E1, E0]. (2.65)

In (2.64), take the Lie bracket of each side with F1, and evaluate the right-hand side

using the equation on the right in (2.55) to get

[F1, [F1, [E1, E0]]] = 0. (2.66)
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By (2.3), [F1, [E1, [E1, E0]]] equals

2[E1, [E0, [E1, F1]]]− [E0, [E1, [E1, F1]]]− [E1, [E1, [E0, F1]]]. (2.67)

Consider the three terms in (2.67). Using Lemma 2.140, we routinely check that the

term on the left is 4[E1, E0], the term in the middle is −2[E1, E0], and the term on the

right is zero. Therefore we get

[F1, [E1, [E1, E0]]] = 2[E1, E0]. (2.68)

Evaluate (2.62) using (2.65), (2.66), (2.68) to get [E1, [E1, [E1, E0]]] = 0. This proves

(2.60) for (i, j) = (1, 0). The result follows. 2

We are ready to complete the proof of Theorem 2.34. We have shown that there exists

a homomorphism L → L(sl2) that satisfies (2.16). We have shown that there exists a

homomorphism L(sl2) → L that satisfies (2.17), (2.18). We routinely check that these

homomorphisms are inverses. It follows that each map is an isomorphism of Lie algebras.
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Chapter 3

The classification of the

finite-dimensional irreducible

modules for the sl2 loop algebra

3.1 Introduction

In [2], Chari classified up to isomorphism the finite-dimensional irreducible modules for

the sl2 loop algebra. Our purpose in this chapter is to give an elementary version of

this classification. This chapter is meant for graduate students and researchers who are

unfamiliar with the general representation theory of loop algebras.

We now recall the definition of sl2 and its loop algebra L(sl2). Let F denote an alge-

braically closed field with characteristic 0. Let sl2 denote the Lie algebra over F with

basis e, f, h and Lie bracket

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

Let t denote an indeterminate, and let F[t, t−1] denote the F-algebra consisting of the

Laurent polynomials in t that have all coefficients in F. Let L(sl2) denote the Lie algebra
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over F consisting of the F-vector space

sl2 ⊗ F[t, t−1], ⊗ = ⊗F

and Lie bracket

[u⊗ a, v ⊗ b] = [u, v]⊗ ab, u, v ∈ sl2, a, b ∈ F[t, t−1].

We are going to classify up to isomorphism the finite-dimensional irreducible modules

for L(sl2). This classification is stated in Theorems 3.23–3.25.

3.2 Assumptions and preliminaries

In this section we collect some definitions and basic facts that will be used throughout

this chapter. Recall the natural numbers N = {0, 1, 2, . . .} and the integers

Z = {0,±1,±2, . . .}. Let F denote an algebraically closed field with characteristic 0.

Let V denote a vector space over F with finite positive dimension. Let End(V ) denote

the F-algebra of all linear transformations from V to V . For A ∈ End(V ) and θ ∈ F,

define

VA(θ) = {v ∈ V |Av = θv}. (3.1)

We say that θ is an eigenvalue for A whenever VA(θ) 6= 0, and in this case VA(θ) is called

the eigenspace of A corresponding to θ. We say that A is diagonalizable whenever V is

spanned by the eigenspaces of A.

We now turn our attention to Lie algebras. For basic definitions and facts about Lie

algebras, we refer the reader to the books [1, 8]. The F-vector space End(V ) becomes a
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Lie algebra over F with Lie bracket

[X, Y ] = XY − Y X, X, Y ∈ End(V ).

This Lie algebra is often denoted gl(V ), but we will not use this notation.

Lemma 3.1 For X, Y ∈ End(V ) and θ ∈ F, the following are equivalent.

(i) The map [X, Y ]− 2Y vanishes on VX(θ).

(ii) Y VX(θ) ⊆ VX(θ + 2).

Proof: Abbreviate Φ for [X, Y ]− 2Y . Let v ∈ VX(θ). It suffices to show Φv = 0 if and

only if Y v ∈ VX(θ + 2). Using Xv = θv we find Φv = (X − (θ + 2))Y v. The result

follows. 2

Lemma 3.2 For X, Y ∈ End(V ) and θ ∈ F, the following are equivalent.

(i) The map [X, Y ] + 2Y vanishes on VX(θ).

(ii) Y VX(θ) ⊆ VX(θ − 2).

Proof: Similar to the proof of Lemma 3.1. 2

Let L denote a Lie algebra over F. There exists an L-module of dimension 1 on which

every element of L acts as zero. This L-module is unique up to isomorphism. We call

this L-module trivial. The proofs of the following basic facts are left as an exercise.

Lemma 3.3 Let L1, L2 denote Lie algebras over F. Assume µ : L1 → L2 is a surjective

Lie algebra homomorphism. Let V denote an L2-module. Pulling back the L2-action on

V via µ we turn V into an L1-module. Then V is irreducible as an L1-module if and

only if V is irreducible as an L2-module.
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Lemma 3.4 Let L1, L2 denote Lie algebras over F. Assume µ : L1 → L2 is a surjective

Lie algebra homomorphism. Let V, V ′ denote L2-modules. Pulling back the L2-action on

V (resp. V ′) via µ we turn V (resp. V ′) into an L1-module. Given an F-linear map

X : V → V ′, the following are equivalent.

(i) X is a homomorphism of L1-modules.

(ii) X is a homomorphism of L2-modules.

Let L denote a Lie algebra over F. Let K,K ′ denote subspaces of L. Define [K,K ′] to

be the subspace of L spanned by the elements [k, k′] with k ∈ K and k′ ∈ K ′.

Throughout this chapter all unadorned tensor products are taken over F.

3.3 The Lie algebra sl2

In this section we recall the Lie algebra sl2 and its finite-dimensional modules.

Definition 3.5 Let sl2 denote the Lie algebra over F with basis e, f, h and Lie bracket

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

We call the basis e, f, h the Chevalley basis of sl2.

Let L denote a Lie algebra over F. Observe that the subspace [L,L] is an ideal of L.

The Lie algebra L is called abelian whenever [L,L] = 0. L is called simple whenever it

is not abelian and the only ideals of L are 0 and L. In this case, the center of L is 0 and

[L,L] = L [8, p. 6]. The Lie algebra sl2 is simple [8, p. 6].
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In the following two lemmas we describe the finite-dimensional sl2-modules.

Lemma 3.6 [8, p. 28] Each finite-dimensional sl2-module is a direct sum of irreducible

sl2-modules.

Lemma 3.7 [8, p. 31] There exists a family

Vd d = 0, 1, 2, . . . (3.2)

of finite-dimensional irreducible sl2-modules with the following property. The module Vd

has a basis {vi}di=0 satisfying

hvi = (d− 2i)vi (0 ≤ i ≤ d), (3.3)

fvi = vi+1 (0 ≤ i ≤ d− 1), fvd = 0, (3.4)

evi = i(d+ 1− i)vi−1 (1 ≤ i ≤ d), ev0 = 0. (3.5)

Every finite-dimensional irreducible sl2-module is isomorphic to exactly one of the mod-

ules in (3.2).

Note that V0 is the trivial sl2-module.

Definition 3.8 With reference to Lemma 3.7, a basis {vi}di=0 of Vd satisfying (3.3)–(3.5)

is said to be standard.

Lemma 3.9 Let d ∈ N, and let {vi}di=0 denote a standard basis of Vd. Given vectors

{ui}di=0 in Vd, the following are equivalent.

(i) The vectors {ui}di=0 form a standard basis of Vd.

(ii) There exists a nonzero s ∈ F such that ui = svi for 0 ≤ i ≤ d.
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Proof: Routine. 2

Lemma 3.10 The sl2-action on Vd is faithful provided that d is at least 1.

Proof: Let K denote the kernel of the sl2-action on Vd, and note that K is an ideal of

sl2. Since sl2 is simple, either K = 0 or K = sl2. By (3.3) and since d is nonzero, we see

h /∈ K. Therefore K 6= sl2, so K = 0. The result follows. 2

Lemma 3.11 [10, p. 31] Let V denote a finite-dimensional sl2-module. Let 0 6= v ∈ V

denote an eigenvector of h such that ev = 0. Then the eigenvalue for h corresponding

to v is a nonnegative integer. Denote this eigenvalue by d. The elements {f iv}di=0 form

a standard basis for an sl2-submodule of V that is isomorphic to Vd.

3.4 The sl2 loop algebra and its irreducible modules

In this section we discuss the sl2 loop algebra L(sl2) and its finite-dimensional irreducible

modules. First we recall the definition of L(sl2). We then discuss some basic results

about L(sl2)-modules, with an emphasis on a special case called an evaluation module.

At the end of this section we give three theorems, which taken together amount to a

classification of the finite-dimensional irreducible L(sl2)-modules. These theorems are

the main results of the chapter.

Definition 3.12 Let t denote an indeterminate, and let F[t, t−1] denote the F-algebra

consisting of the Laurent polynomials in t that have all coefficients in F. Let L(sl2)

denote the Lie algebra over F consisting of the F-vector space sl2 ⊗ F[t, t−1] and Lie

bracket

[u⊗ a, v ⊗ b] = [u, v]⊗ ab, u, v ∈ sl2, a, b ∈ F[t, t−1].
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We call L(sl2) the sl2 loop algebra.

Observe that {ti}i∈Z is a basis of the F-vector space F[t, t−1]. By construction, the

following is a basis of L(sl2).

e⊗ ti, f ⊗ ti, h⊗ ti i ∈ Z (3.6)

Lemma 3.13 We have L(sl2) = [L(sl2), L(sl2)].

Proof: This follows from Definition 3.12 and the fact that sl2 = [sl2, sl2]. 2

Lemma 3.14 Every L(sl2)-module of dimension 1 is trivial.

Proof: Let W denote an L(sl2)-module of dimension 1. We show that every element of

L(sl2) is zero on W . Observe that each element of L(sl2) acts on W as a scalar multiple

of the identity. Therefore any two elements of L(sl2) commute on W , so every element

of [L(sl2), L(sl2)] is zero on W . The result follows by Lemma 3.13. 2

Definition 3.15 For nonzero a ∈ F, define a map EVa : L(sl2)→ sl2 by

EVa(u⊗ η(t)) = η(a)u, u ∈ sl2, η(t) ∈ F[t, t−1].

The map EVa is a homomorphism of Lie algebras.

With reference to Definition 3.15, one routinely checks that EVa is surjective and its

kernel is sl2 ⊗ (t− a)F[t, t−1].

Definition 3.16 For a finite-dimensional sl2-module V and for 0 6= a ∈ F, we pull

back the sl2-action via EVa to obtain an L(sl2)-action on V . We denote the resulting

L(sl2)-module by V (a).
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Lemma 3.17 Let V denote a finite-dimensional sl2-module, and let a ∈ F be nonzero.

Then the L(sl2)-module V (a) is irreducible if and only if the sl2-module V is irreducible.

Proof: By Lemma 3.3. 2

Definition 3.18 With reference to Lemma 3.7 and Definition 3.16, by an evaluation

module for L(sl2) we mean an L(sl2)-module Vd(a), where d is a positive integer and

0 6= a ∈ F. By construction, the evaluation module Vd(a) is nontrivial and irreducible.

From the construction, we have the following description of the evaluation modules for

L(sl2).

Lemma 3.19 For a positive integer d and nonzero a ∈ F, the evaluation module Vd(a)

is described as follows. Let {vi}di=0 denote a standard basis of the sl2-module Vd. The

elements (3.6) of L(sl2) act on Vd(a) as follows. For k ∈ Z,

(h⊗ tk) vi = (d− 2i)akvi (0 ≤ i ≤ d),

(f ⊗ tk) vi = akvi+1 (0 ≤ i ≤ d− 1), (f ⊗ tk) vd = 0,

(e⊗ tk) vi = i(d+ 1− i)akvi−1 (1 ≤ i ≤ d), (e⊗ tk) v0 = 0.

Note 3.20 With reference to Lemma 3.19, for any k ∈ Z, v0 spans the eigenspace of

h⊗ tk corresponding to eigenvalue akd.

Lemma 3.21 The evaluation modules Vd(a) and Vd′(a′) are isomorphic if and only if

d = d′ and a = a′.

Proof: Suppose Vd(a) and Vd′(a′) are isomorphic. Isomorphic modules have the same

dimension, so d = d′. Considering the action of h⊗ t, we see by Note 3.20 that ad = a′d.

Since d is positive, we have a = a′.
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The converse is immediate. 2

Let L denote a Lie algebra over F, and let U, V denote L-modules. By [8, p. 26], U ⊗ V

has an L-module structure given by

x(u⊗ v) = (xu)⊗ v + u⊗ (xv) x ∈ L, u ∈ U, v ∈ V. (3.7)

Let U ′, V ′ denote L-modules such that U and U ′ are isomorphic and V and V ′ are

isomorphic. Then the L-modules U ⊗ V and U ′ ⊗ V ′ are isomorphic. The following

lemma is routinely checked.

Lemma 3.22 Let L denote a Lie algebra over F, and let U, V denote L-modules. Then

the following hold.

(i) There exists an L-module isomorphism U ⊗ V → V ⊗U that sends u⊗ v 7→ v⊗ u

for all u ∈ U and v ∈ V .

(ii) Assume the L-module U ⊗ V is irreducible. Then U and V are irreducible.

The classification of finite-dimensional irreducible L(sl2)-modules is stated in the fol-

lowing three theorems. We acknowledge that these theorems are a reformulation of the

classification of finite-dimensional irreducible L(sl2)-modules from [2].

Theorem 3.23 Let N denote a positive integer. For 1 ≤ i ≤ N let Vdi(ai) denote an

evaluation module for L(sl2). Then the L(sl2)-module ⊗Ni=1Vdi(ai) is irreducible if and

only if {ai}Ni=1 are mutually distinct.

Theorem 3.24 Let N,N ′ denote positive integers. For 1 ≤ i ≤ N and 1 ≤ j ≤ N ′ let

Ui and U ′j denote evaluation modules for L(sl2). Consider the L(sl2)-modules
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V = ⊗Ni=1Ui and V ′ = ⊗N ′j=1U
′
j, and assume V and V ′ are irreducible. Then the following

are equivalent.

(i) The L(sl2)-modules V and V ′ are isomorphic.

(ii) N = N ′, and up to a permutation of {U ′i}Ni=1, for 1 ≤ i ≤ N the L(sl2)-modules

Ui and U ′i are isomorphic.

Theorem 3.25 Every nontrivial finite-dimensional irreducible L(sl2)-module is isomor-

phic to a tensor product of evaluation modules.

Our goal for the rest of the chapter is to prove these theorems. The proofs of Theorems

3.23 and 3.24 will be completed in Section 3.13. The proof of Theorem 3.25 will be

completed in Section 3.14.

3.5 The Lie algebra g

In this section we bring in a certain Lie algebra g that will play an important role in

our description of L(sl2)-modules. First we make a comment. Let L1, L2 denote Lie

algebras over F. Recall that the direct sum L1 ⊕ L2 becomes a Lie algebra over F with

Lie bracket

[(u1, u2), (v1, v2)] = ([u1, v1], [u2, v2]), u1, v1 ∈ L1, u2, v2 ∈ L2.

Fix a positive integer N and consider the Lie algebra

g = sl2 ⊕ · · · ⊕ sl2 (N copies). (3.8)

Our next general goal is to classify up to isomorphism the finite-dimensional irreducible

g-modules. The proof of this classification will be completed in Section 3.8. Beginning
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in Section 3.12, we will consider how g-modules and L(sl2)-modules are related.

For 1 ≤ i ≤ N and x ∈ sl2, define xi ∈ g by

xi = (0, . . . , 0, x, 0, . . . , 0),

where x above is in the ith coordinate.

For 1 ≤ i ≤ N there exists a Lie algebra homomorphism

sl2 → g

x 7→ xi.

(3.9)

The homomorphism (3.9) is injective. Let gi denote the image of sl2 under (3.9). By

construction, gi is a Lie subalgebra of g that is isomorphic to sl2. Note that gi is simple

since sl2 is simple. Let e, f, h denote the Chevalley basis of sl2. The elements ei, fi, hi

form a basis for gi. We have

[gi, gj] = 0, if i 6= j (1 ≤ i, j ≤ N). (3.10)

Observe that

g = g1 + · · ·+ gN (direct sum), (3.11)

so {ei, fi, hi | i = 1, . . . , N} is a basis for g. Combining (3.10) and (3.11) we see that gi

is an ideal of g for 1 ≤ i ≤ N .

Lemma 3.26 Given a subspace K of g the following are equivalent.

(i) K is an ideal of g.
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(ii) There exists a subset S of {1, . . . , N} such that K =
∑

r∈S gr.

Proof: (i) ⇒ (ii) Define S = {r | 1 ≤ r ≤ N, gr ⊆ K}. By construction, K ⊇
∑

r∈S gr,

so it suffices to show that K ⊆
∑

r∈S gr. Let k ∈ K. By (3.11), there exists gi ∈ gi

(1 ≤ i ≤ N) such that k =
∑N

i=1 gi. We now show that gi = 0 for all i /∈ S (1 ≤ i ≤ N).

Let i be given. Since K and gi are ideals of g, we find [K, gi] is contained in the ideal

K ∩ gi of gi. Recall gi is simple, so K ∩ gi is either 0 or gi. Note K ∩ gi 6= gi; otherwise

gi ⊆ K, so i ∈ S for a contradiction. Therefore K ∩ gi = 0. Consequently [K, gi] = 0,

so [k, g] = 0 for all g ∈ gi. Now using (3.10) we find [gi, g] = [k, g] = 0 for all g ∈ gi.

Therefore gi is in the center of gi. The center of gi is 0 since gi is simple. So gi = 0.

This proves k ∈
∑

r∈S gr. The result follows.

(ii) ⇒ (i) Routine. 2

We now discuss a way to construct g-modules by taking tensor products of sl2-modules.

For 1 ≤ i ≤ N let Vi denote a finite-dimensional sl2-module, and consider the F-vector

space V = ⊗Ni=1Vi. By [1, p. 85], V has a g-module structure which is described as

follows. Given u = ⊕Ni=1u
(i) ∈ g and w1 ⊗ · · · ⊗ wN ∈ V ,

u (w1 ⊗ · · · ⊗ wN) =
N∑
i=1

w1 ⊗ · · · ⊗ wi−1 ⊗ u(i)wi ⊗ wi+1 ⊗ · · · ⊗ wN . (3.12)

Lemma 3.27 For 1 ≤ i ≤ N let Vi denote a finite-dimensional sl2-module. Consider

the g-module V = ⊗Ni=1Vi. Then the following are equivalent.

(i) The g-action on V is faithful.

(ii) For 1 ≤ i ≤ N the sl2-action on Vi is faithful.
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Proof: For 1 ≤ i ≤ N the g-module V is a gi-module by restriction. Observe that for

x ∈ sl2, x is zero on Vi if and only if xi is zero on V . Therefore the sl2-action on Vi is

faithful if and only if the gi-action on V is faithful.

(i) ⇒ (ii) Since the g-action on V is faithful, the gi-action on V is faithful. The result

follows by the above comments.

(ii) ⇒ (i) Let K denote the kernel of the g-action on V , and note that K is an ideal of

g. For 1 ≤ i ≤ N the gi-action on V is faithful, since the sl2-action on Vi is faithful.

Therefore K ∩ gi = 0 for 1 ≤ i ≤ N . By Lemma 3.26, K = 0. The result follows. 2

3.6 g-modules

Fix a positive integer N , and recall the corresponding Lie algebra g from (3.8). In this

section we consider the finite-dimensional g-modules.

Throughout this section V will denote a g-module of finite positive dimension.

Lemma 3.28 For 1 ≤ i ≤ N the element hi is diagonalizable on V , and the elements

ei and fi are nilpotent on V .

Proof: Consider the g-module V . Pull back the g-action via the homomorphism in line

(3.9). Then V becomes an sl2-module on which x acts as xi for all x ∈ sl2. Combining

Lemma 3.6 and Lemma 3.7 we find the element h is diagonalizable on V , and the ele-

ments e and f are nilpotent on V . The result follows. 2
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Recall the notation from line (3.1). For λ = (λ1, . . . , λN) ∈ FN define

V (λ) = Vh1(λ1) ∩ · · · ∩ VhN (λN). (3.13)

By Lemma 3.28, each of {hi}Ni=1 is diagonalizable on V . By (3.10), {hi}Ni=1 mutually

commute. Therefore

V =
∑
λ∈FN

V (λ) (direct sum). (3.14)

Observe that the nonzero summands in (3.14) are the common eigenspaces for {hi}Ni=1.

A nonzero element of V (λ) is said to be a weight vector with weight λ.

For 1 ≤ i ≤ N let εi denote the element of FN with a 1 in the ith coordinate and 0 in

all other coordinates. Let I denote the identity element of End(V ).

Lemma 3.29 The following hold for 1 ≤ i ≤ N and λ = (λ1, . . . , λN) ∈ FN .

(i) eiV (λ) ⊆ V (λ+ 2εi).

(ii) fiV (λ) ⊆ V (λ− 2εi).

(iii) (hi − λiI)V (λ) = 0.

Proof: (i) Use [hi, ei] = 2ei, Lemma 3.1, and (3.10).

(ii) Use [hi, fi] = −2fi, Lemma 3.2, and (3.10).

(iii) By construction. 2

Definition 3.30 A given vector v ∈ V is said to be a highest weight vector whenever v

is a weight vector and eiv = 0 for 1 ≤ i ≤ N .

Lemma 3.31 V has a highest weight vector.
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Proof: By (3.14), there exists λ ∈ FN with V (λ) 6= 0 and V (λ+ 2εi) = 0 for 1 ≤ i ≤ N .

By Lemma 3.29(i), eiV (λ) = 0 for 1 ≤ i ≤ N . Therefore any nonzero element of V (λ)

is a highest weight vector. 2

Until further notice v will denote a highest weight vector in V . Consider the g-module

V . For 1 ≤ i ≤ N pull back the g-action via the homomorphism in line (3.9). Then

V becomes an sl2-module on which x acts as xi for all x ∈ sl2. Invoking Lemma 3.11,

we obtain the following results. There exists di ∈ N such that hiv = div. The elements

{f ri v}
di
r=0 form a standard basis for an sl2-submodule of V that is isomorphic to Vdi . By

construction, fdi+1
i v = 0 for 1 ≤ i ≤ N . Define d = (d1, . . . , dN), and note that v has

weight d. By (3.10), the elements {fi}Ni=1 mutually commute. For k = (k1, . . . , kN) ∈ NN

define

vk = fk11 · · · f
kN
N v. (3.15)

By Lemma 3.29(ii),

vk ∈ V (d− 2k) (k ∈ NN). (3.16)

Lemma 3.32 The following hold for 1 ≤ i ≤ N and k = (k1, . . . , kN) ∈ NN .

(i) hivk = (di − 2ki)vk.

(ii) fivk = vk+εi.

(iii) eivk = ki(di + 1− ki)vk−εi, where vk−εi = 0 if ki = 0.

Proof: (i) By (3.16).

(ii) By construction.

(iii) Consider the g-module V . Pull back the g-action via the homomorphism in line
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(3.9). Then V becomes an sl2-module on which x acts as xi for all x ∈ sl2. By the

comments following Lemma 3.31, the elements {f ri v}
di
r=0 form a standard basis for an

sl2-submodule of V that is isomorphic to Vdi . Therefore

eif
r
i v = r(di + 1− r)f r−1i v (r ∈ N, r ≥ 1), eiv = 0. (3.17)

The result follows by lines (3.10), (3.15), (3.17). 2

We now define a partial order on NN .

Notation 3.33 For 1 ≤ i ≤ N let ki,mi ∈ N. Write k = (k1, . . . , kN) and

m = (m1, . . . ,mN). We define k ≤ m whenever ki ≤ mi for 1 ≤ i ≤ N .

Lemma 3.34 For k ∈ NN the following are equivalent.

(i) vk 6= 0.

(ii) k ≤ d.

Proof: Write k = (k1, . . . , kN).

(i) ⇒ (ii) We assume that k � d and show that vk = 0. There exists 1 ≤ i ≤ N such

that ki > di. By the comments following Lemma 3.31, we have fdi+1
i v = 0, so fkii v = 0.

Since {fi}Ni=1 mutually commute, we get vk = fk11 · · · f
ki−1

i−1 f
ki+1

i+1 · · · f
kN
N fkii v = 0.

(ii) ⇒ (i) By construction, ki ≤ di for 1 ≤ i ≤ N . By Lemma 3.32(iii), the vec-

tor ek11 · · · e
kN
N vk is a nonzero scalar multiple of the highest weight vector v. Therefore

vk 6= 0. 2

Let w ∈ V . We will be discussing the g-submodule of V generated by w. By definition

this is the intersection of all g-submodules of V that contain w.
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Lemma 3.35 Let v denote a highest weight vector in V . Recall the vectors vk from

(3.15). Then the vectors

vk k ∈ NN , k ≤ d (3.18)

form a basis for the g-submodule of V generated by v.

Proof: Abbreviate U for the subspace of V spanned by the vectors (3.18). Note U is a

g-module by Lemma 3.32 and Lemma 3.34. The vectors (3.18) are linearly independent

by Lemma 3.34 and lines (3.14), (3.16). Therefore the vectors (3.18) form a basis for the

g-module U . Abbreviate W for the g-submodule of V generated by v. We now prove

that W = U . Note v ∈ U , so W ⊆ U . We now prove that W ⊇ U . It suffices to show

vk ∈ W for k ∈ NN . Since W is a g-module and v ∈ W , we get vk ∈ W by (3.15). This

shows W = U . The result follows. 2

Lemma 3.36 Let v denote a highest weight vector in V . Let W denote the g-submodule

of V generated by v. Given w ∈ W the following are equivalent.

(i) w is a highest weight vector.

(ii) There exists a nonzero s ∈ F such that w = sv.

Proof: (i) ⇒ (ii) By Lemma 3.35, the vectors (3.18) form a basis for W . Note w is a

weight vector in W by construction. By Lemma 3.32(i), w is a nonzero scalar multiple

of some vector in (3.18). The only highest weight vector in (3.18) is v. Therefore w is a

nonzero scalar multiple of v.

(ii) ⇒ (i) Routine. 2
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3.7 Highest weight modules for g

Fix a positive integer N , and recall the corresponding Lie algebra g from (3.8). In

Section 3.6 we proved some results about finite-dimensional g-modules. We now restrict

our attention to a special case, called a highest weight module.

Definition 3.37 A g-module is said to be highest weight whenever it is generated by a

highest weight vector.

Let V denote a finite-dimensional highest weight g-module. By construction, V is gen-

erated by a highest weight vector. By Lemma 3.36, any two highest weight vectors in V

have the same weight. We define the highest weight of V to be the weight of a highest

weight vector in V .

Lemma 3.38 For 1 ≤ i ≤ N let Vi denote an irreducible sl2-module of finite dimension

di + 1. Then the g-module ⊗Ni=1Vi is highest weight with highest weight (d1, . . . , dN).

Proof: For 1 ≤ i ≤ N pick 0 6= ui ∈ Vi such that hui = diui. Define v = ⊗Ni=1ui, and

write λ = (d1, . . . , dN). Abbreviate V for the g-module ⊗Ni=1Vi. One routinely checks

that v ∈ V (λ) is a highest weight vector and that V is generated by v. 2

Lemma 3.39 For a finite-dimensional g-module V the following are equivalent.

(i) V is highest weight.

(ii) V is irreducible.

Proof: (i) ⇒ (ii) By construction, V is generated by a highest weight vector v ∈ V .

Note V 6= 0 because 0 6= v ∈ V . Let U be a nonzero g-submodule of V . We now prove
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that U = V . It suffices to show that v ∈ U . By Lemma 3.31 applied to U , there exists

a highest weight vector u ∈ U . Note u is a highest weight vector in V by construction.

By Lemma 3.36, u is a nonzero scalar multiple of v, so v ∈ U . This proves U = V .

Therefore V is irreducible.

(ii) ⇒ (i) By Lemma 3.31, there exists a highest weight vector v ∈ V . Let W denote

the submodule of V that is generated by v. Note that W 6= 0 because 0 6= v ∈ W .

Therefore W = V by the irreducibility of V . 2

Lemma 3.40 Let V, V ′ denote finite-dimensional highest weight g-modules with highest

weights d, d′, respectively. Then the g-modules V and V ′ are isomorphic if and only if

d = d′.

Proof: Combine Lemma 3.32 and Lemma 3.35. 2

3.8 The classification of the finite-dimensional irre-

ducible g-modules

Fix a positive integer N , and recall the corresponding Lie algebra g from (3.8). We now

classify up to isomorphism the finite-dimensional irreducible g-modules. This classifica-

tion is given in the following three theorems.

Theorem 3.41 For 1 ≤ i ≤ N let Vi denote a finite-dimensional irreducible sl2-module.

Then the g-module ⊗Ni=1Vi is irreducible.

Proof: Combine Lemma 3.38 and Lemma 3.39. 2
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Theorem 3.42 For 1 ≤ i ≤ N let Vi and V ′i denote finite-dimensional irreducible

sl2-modules. Then the g-modules ⊗Ni=1Vi and ⊗Ni=1V
′
i are isomorphic if and only if the

sl2-modules Vi and V ′i are isomorphic for 1 ≤ i ≤ N .

Proof: For 1 ≤ i ≤ N denote the dimensions of Vi, V
′
i by di + 1, d′i + 1, respectively.

By Lemma 3.38, the g-modules V = ⊗Ni=1Vi and V ′ = ⊗Ni=1V
′
i are highest weight with

highest weights d = (d1, . . . , dN) and d′ = (d′1, . . . , d
′
N), respectively. By Lemma 3.40,

the g-modules V and V ′ are isomorphic if and only if d = d′. For 1 ≤ i ≤ N the

sl2-modules Vi and V ′i are isomorphic if and only if di = d′i. The result follows. 2

Theorem 3.43 Let V denote a finite-dimensional irreducible g-module. Then for

1 ≤ i ≤ N there exists a finite-dimensional irreducible sl2-module Vi such that the g-

modules V and ⊗Ni=1Vi are isomorphic.

Proof: V is highest weight by Lemma 3.39. Let d = (d1, . . . , dN) denote the highest

weight of V . Consider the g-module V ′ = ⊗Ni=1Vdi . By Lemma 3.38, V ′ is highest

weight with highest weight d. By Lemma 3.40, the g-modules V and V ′ are isomorphic.

2

3.9 The ideals of L(sl2)

We now turn our attention back to the Lie algebra L(sl2). In this section we describe

the ideals of L(sl2).

Lemma 3.44 Let K denote an ideal of L(sl2) and p ∈ F[t, t−1]. Then sl2 ⊗ p is either

contained in K or has zero intersection with K.
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Proof: We assume that sl2 ⊗ p has nonzero intersection with K and show sl2 ⊗ p is

contained in K. Define a subspace W of sl2 by W = {y ∈ sl2 | y ⊗ p ∈ K}. Note

W 6= 0. We show W is an ideal of sl2. Suppose w ∈ W , z ∈ sl2. We show [w, z] ∈ W .

Since w ∈ W , we have w ⊗ p ∈ K. Since K is an ideal, [w ⊗ p, z ⊗ 1] ∈ K. But

[w ⊗ p, z ⊗ 1] = [w, z] ⊗ p, so [w, z] ∈ W . Therefore W is an ideal of sl2. Since W 6= 0

and sl2 is simple, we must have W = sl2. The result follows. 2

Lemma 3.45 Let K denote an ideal of L(sl2). Define J = {p ∈ F[t, t−1] | sl2⊗ p ⊆ K}.

Then J is an ideal of F[t, t−1].

Proof: By construction, J is a subspace of F[t, t−1]. Note that F[t, t−1] is generated by

t and t−1. To prove that J is an ideal it suffices to show tεJ ⊆ J for ε = ±1. By

construction, sl2⊗J ⊆ K. Therefore [sl2 ⊗ J, sl2 ⊗ tε] ⊆ K since K is an ideal of L(sl2).

Note [sl2 ⊗ J, sl2 ⊗ tε] = [sl2, sl2]⊗ tεJ , and [sl2, sl2] = sl2, so sl2 ⊗ tεJ ⊆ K. Therefore

tεJ ⊆ J . The result follows. 2

We now describe the ideals of L(sl2).

Theorem 3.46 Given a subspace K of L(sl2) the following are equivalent.

(i) K is an ideal of L(sl2).

(ii) There exists an ideal J of F[t, t−1] such that sl2 ⊗ J = K.

Suppose (i) and (ii) hold. Then J is uniquely determined by K.

Proof: (i) ⇒ (ii) Consider the ideal J of F[t, t−1] from Lemma 3.45. We show that

sl2 ⊗ J = K. By construction, sl2 ⊗ J ⊆ K, so it suffices to show that
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sl2 ⊗ J ⊇ K. Let u ∈ K. Write u = e⊗ g1 + f ⊗ g2 + h⊗ g3, where g1, g2, g3 ∈ F[t, t−1]

and e, f, h is the Chevalley basis of sl2. We show that g1, g2, g3 ∈ J . Observe that

[u, h⊗ 1] ∈ K, so e ⊗ g1 − f ⊗ g2 ∈ K. We have [e⊗ g1 − f ⊗ g2, f ⊗ 1] ∈ K, so

h⊗g1 ∈ K. Consequently g1 ∈ J by Lemma 3.44. Similarly [e⊗ g1 − f ⊗ g2, e⊗ 1] ∈ K,

so h⊗g2 ∈ K. Consequently g2 ∈ J by Lemma 3.44. By the above comments K contains

e⊗ g1 and f ⊗ g2. Therefore h⊗ g3 = u− e⊗ g1 − f ⊗ g2 ∈ K. Consequently g3 ∈ J by

Lemma 3.44. We have shown g1, g2, g3 ∈ J , so u ∈ sl2 ⊗ J . The result follows.

(ii) ⇒ (i) Routine.

The last assertion is routinely checked. 2

Theorem 3.46 motivates us to describe the ideals of the algebra F[t, t−1]. In Section 3.10

we will describe the ideals and quotients of F[t, t−1]. In Section 3.11 we will use Theorem

3.46 and the results in Section 3.10 to describe the quotients of the Lie algebra L(sl2).

3.10 The ideals and quotients of F[t, t−1]

In this section we describe the ideals and quotients of the algebra F[t, t−1].

Throughout this section let J denote a nonzero proper ideal of F[t, t−1]. Consider the

subalgebra F[t] of F[t, t−1]. The algebra F[t] is a principal ideal domain, and J ∩ F[t] is

an ideal of F[t]. Therefore there exists g ∈ F[t] such that J ∩F[t] = g F[t]. We now prove

that J = g F[t, t−1]. Since J is an ideal of F[t, t−1] and g ∈ J , we have J ⊇ g F[t, t−1]. We

now show that J ⊆ g F[t, t−1]. Let η ∈ J . There exists i ∈ N such that tiη ∈ F[t]. Since J

is an ideal of F[t, t−1] and η ∈ J , we have that tiη ∈ J . Therefore tiη ∈ J ∩ F[t] = g F[t],
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so η ∈ gt−i F[t] ⊆ g F[t, t−1]. We have now shown that J = g F[t, t−1]. The polyno-

mial g is nonzero because J is nonzero. Without loss we can assume that g is monic.

Let l be the minimal degree of a nonzero polynomial in J ∩ F[t]. By construction,

g is the unique monic polynomial in J ∩ F[t] with degree l. We call g the standard

generator of J . The constant term of g is nonzero; otherwise g = th for some h ∈ F[t],

and h = t−1g ∈ J∩F[t] has lower degree than g, which contradicts our earlier comments.

Let N denote the degree of g. Since J is properly contained in F[t, t−1], J does not

contain any units of F[t, t−1]. Therefore N is at least one. Factor the polynomial g as

g = (t− a1)(t− a2) · · · (t− aN), (3.19)

where ai ∈ F for 1 ≤ i ≤ N . Note that the constant term of g is (−1)Na1a2 · · · aN . This

constant term is nonzero, so ai 6= 0 for 1 ≤ i ≤ N .

Consider the quotient algebra F[t, t−1]/J . Let T denote the image of t under the canon-

ical homomorphism F[t, t−1] → F[t, t−1]/J . Recall J = g F[t, t−1] and g has minimal

degree among all the nonzero elements of J ∩F[t]. Using this we find that g(T ) = 0, and

we find that the elements 1, T, . . . , TN−1 form a basis of the F-vector space F[t, t−1]/J .

We now give another basis of F[t, t−1]/J that will be more convenient for us in later

sections. For 0 ≤ i ≤ N − 1 define pi to be the polynomial

pi(t) = (t− a1)(t− a2) · · · (t− ai).

Note that p0 = 1. Observe that the degree of pi is i for 0 ≤ i ≤ N − 1. Therefore

{pi(T )}N−1i=0 is a basis of F[t, t−1]/J .
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3.11 The quotients of L(sl2)

In this section we describe the quotients of the Lie algebra L(sl2).

Throughout this section let K denote a nonzero proper ideal of L(sl2). By Theorem

3.46, there exists an ideal J of F[t, t−1] such that K = sl2 ⊗ J . Note that J is nonzero

and properly contained in F[t, t−1].

Consider the quotient algebra F[t, t−1]/J . Observe that the F-vector space sl2⊗(F[t, t−1]/J)

becomes a Lie algebra over F with Lie bracket

[u⊗ a, v ⊗ b] = [u, v]⊗ ab, u, v ∈ sl2, a, b ∈ F[t, t−1]/J.

Let ϕ : F[t, t−1] → F[t, t−1]/J denote the canonical homomorphism. Consider the quo-

tient Lie algebra L(sl2)/K.

Lemma 3.47 The Lie algebra homomorphism

L(sl2)→ sl2 ⊗
(
F[t, t−1]/J

)
u⊗ a 7→ u⊗ ϕ(a)

is surjective and its kernel is K. Therefore the homomorphism

L(sl2)/K → sl2 ⊗
(
F[t, t−1]/J

)
u⊗ a+K 7→ u⊗ ϕ(a)

(3.20)

is an isomorphism of Lie algebras.

Proof: Routine. 2
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We identify L(sl2)/K with sl2 ⊗ (F[t, t−1]/J) via the isomorphism (3.20).

Recall the standard generator (3.19) of J and the basis {pi(T )}N−1i=0 of F[t, t−1]/J from

Section 3.10. By Lemma 3.47, the quotient Lie algebra L(sl2)/K has a basis

{Ei, Fi, Hi | i = 1, . . . , N} where

Ei = e⊗ pi−1(T ), Fi = f ⊗ pi−1(T ), Hi = h⊗ pi−1(T ), (3.21)

for 1 ≤ i ≤ N .

One routinely checks that the following hold in L(sl2)/K for all 1 ≤ k, r ≤ N .

[Ek, Fr] ∈ Span{H1, . . . , HN}, (3.22)

[Hk, Er] ∈ Span{E1, . . . , EN}, (3.23)

[Hk, Fr] ∈ Span{F1, . . . , FN}, (3.24)

[Ek, Er] = 0, [Fk, Fr] = 0, [Hk, Hr] = 0, (3.25)

[E1, Fr] = Hr, [H1, Er] = 2Er, [H1, Fr] = −2Fr. (3.26)

We abbreviate

E = E1, F = F1, H = H1. (3.27)

In view of relations (3.26) with r = 1, there exists an injection of Lie algebras

sl2 → L(sl2)/K that sends

e 7→ E, f 7→ F, h 7→ H. (3.28)

The image of sl2 under this map is the Lie subalgebra of L(sl2)/K with basis E,F,H.
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3.12 The homomorphism ψ : L(sl2)→ g

Fix a positive integer N , and recall the corresponding Lie algebra g from (3.8). In this

section we consider a homomorphism ψ : L(sl2) → g. We use this homomorphism to

describe a relationship between g-modules and L(sl2)-modules.

For 1 ≤ i ≤ N let ai ∈ F be nonzero and recall the Lie algebra homomorphism

EVai : L(sl2) → sl2 from Definition 3.15. We define the Lie algebra homomorphism

ψ : L(sl2)→ g by

ψ(u) = (EVa1(u), . . . , EVaN (u)), u ∈ L(sl2). (3.29)

Let S denote the set of distinct elements among {ai}Ni=1. Define G to be the polynomial

G(t) =
∏
a∈S

(t− a). (3.30)

Lemma 3.48 The kernel of ψ is sl2 ⊗GF[t, t−1], where G is from (3.30).

Proof: Observe that

ker(ψ) =
N⋂
i=1

ker(EVai)

=
⋂
a∈S

ker(EVa)

=
⋂
a∈S

sl2 ⊗ (t− a)F[t, t−1]

= sl2 ⊗GF[t, t−1].

2

Lemma 3.49 The map ψ is surjective if and only if {ai}Ni=1 are mutually distinct.
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Proof: Let n denote the cardinality of S. Abbreviate K for sl2 ⊗GF[t, t−1], where G is

from (3.30). By Lemma 3.48, K is the kernel of ψ. Note G is the standard generator

of the ideal GF[t, t−1] of F[t, t−1]. By construction, G has degree n. By the comments

in Section 3.11, the quotient Lie algebra L(sl2)/K has dimension 3n. The Lie algebra g

has dimension 3N . Therefore the map ψ is surjective if and only if n = N . The result

follows. 2

Lemma 3.50 For 1 ≤ i ≤ N let di ∈ N. Consider the L(sl2)-module W = ⊗Ni=1Vdi(ai).

Then the following hold.

(i) The L(sl2)-action on W is obtained by pulling back the g-action on ⊗Ni=1Vdi via

the map ψ.

(ii) Assume that di 6= 0 for 1 ≤ i ≤ N . Then the kernel of the L(sl2)-action on W is

sl2 ⊗GF[t, t−1], where G is from (3.30).

Proof: (i) Routine.

(ii) By Lemma 3.48, the kernel of ψ is sl2 ⊗ GF[t, t−1]. By Lemmas 3.10 and 3.27, the

g-action on ⊗Ni=1Vdi is faithful. Combining these facts with part (i) of this lemma gives

the result. 2

3.13 The proof of Theorems 3.23 and 3.24

We are now ready to prove Theorems 3.23 and 3.24.

Proof of Theorem 3.23: Abbreviate V for the L(sl2)-module ⊗Ni=1Vdi(ai).
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Suppose {ai}Ni=1 are mutually distinct. We will show that the L(sl2)-module V is ir-

reducible. Consider the corresponding Lie algebra g from (3.8), and recall the map

ψ : L(sl2)→ g from (3.29). By Lemma 3.49, ψ is surjective, and by Lemma 3.50(i), the

L(sl2)-action on V is obtained by pulling back the g-action on ⊗Ni=1Vdi via the map ψ. By

Theorem 3.41, the g-module ⊗Ni=1Vdi is irreducible, so by Lemma 3.3, the L(sl2)-module

V is irreducible.

Now suppose {ai}Ni=1 are not mutually distinct. Then N is at least 2. We will show

that the L(sl2)-module V is reducible. By Lemma 3.22(i), we may assume without loss

of generality that a1 = a2. Denote this common value by a. Consider the sl2-action

on Vd1 ⊗ Vd2 given by (3.7). By construction, d1 and d2 are positive. Using (3.7) one

can check that the sl2-module Vd1 ⊗ Vd2 is reducible. One routinely checks that the

L(sl2)-action on Vd1(a)⊗Vd2(a) is obtained by pulling back the sl2-action on Vd1 ⊗Vd2

via the map EVa : L(sl2)→ sl2. By these comments and Lemma 3.3, the L(sl2)-module

Vd1(a)⊗ Vd2(a) is reducible. By Lemma 3.22(ii), the L(sl2)-module V is reducible. 2

Proof of Theorem 3.24: Write Ui = Vdi(ai) for 1 ≤ i ≤ N and U ′j = Vd′j(a
′
j) for

1 ≤ j ≤ N ′.

(i) ⇒ (ii) By Theorem 3.23, {ai}Ni=1 are mutually distinct and {a′j}N
′

j=1 are mutually

distinct. By Lemma 3.50(ii), the kernel of the L(sl2)-action on V is sl2 ⊗ GF[t, t−1],

where the polynomial G = (t− a1) · · · (t− aN). Similarly, the kernel of the L(sl2)-action

on V ′ is sl2 ⊗ G′ F[t, t−1], where the polynomial G′ = (t − a′1) · · · (t − a′N ′). Since the

L(sl2)-modules V, V ′ are isomorphic, the kernels of the L(sl2)-actions on V and V ′ are

the same. Therefore sl2 ⊗ GF[t, t−1] = sl2 ⊗ G′ F[t, t−1]. Invoking the last assertion in

Theorem 3.46 we get GF[t, t−1] = G′ F[t, t−1]. For this common ideal of F[t, t−1], both
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G and G′ are the standard generator, so G = G′. Therefore N = N ′, and a′1, a
′
2, . . . , a

′
N

is a permutation of a1, a2, . . . , aN . After permuting {U ′i}Ni=1 we may assume ai = a′i for

1 ≤ i ≤ N . So far we have U ′i = Vd′i(ai) for 1 ≤ i ≤ N . We now show that di = d′i

for 1 ≤ i ≤ N . Consider the corresponding Lie algebra g from (3.8). The map ψ

from Lemma 3.49 is surjective. By Lemma 3.50(i), the L(sl2)-action on V (resp. V ′)

is obtained by pulling back the g-action on ⊗Ni=1Vdi (resp. ⊗Ni=1Vd′i) via the map ψ.

By Lemma 3.4, the g-modules ⊗Ni=1Vdi and ⊗Ni=1Vd′i are isomorphic. By Theorem 3.42,

di = d′i for 1 ≤ i ≤ N . The result follows.

(ii) ⇒ (i) By Lemma 3.22(i). 2

3.14 The proof of Theorem 3.25

Let V denote a nontrivial finite-dimensional irreducible L(sl2)-module. Let K denote

the kernel of the L(sl2)-action on V , and observe that K is an ideal of L(sl2). We shall

view V as a module for L(sl2)/K. Note that this module is faithful and irreducible.

Observe that K is nonzero because End(V ) is finite-dimensional while L(sl2) is not.

Furthermore K is properly contained in L(sl2) because V is nontrivial and irreducible.

By Theorem 3.46 there exists an ideal J of F[t, t−1] such that K = sl2 ⊗ J . Note that

J is nonzero and properly contained in F[t, t−1]. Recall the standard generator g of J

from Section 3.10.

In this section we have two related goals. We will invoke the results in Section 3.8 and

Section 3.12 to prove Theorem 3.25. In order to do this we first need to show that g has

no repeated roots.
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Consider the basis (3.21) of L(sl2)/K, and recall the notation from (3.27).

Lemma 3.51 H is diagonalizable on V .

Proof: Consider the L(sl2)/K-module V . Pull back the L(sl2)/K-action via the ho-

momorphism in line (3.28). Then V becomes an sl2-module on which h acts as H.

Combining Lemma 3.6 and Lemma 3.7 we find h is diagonalizable on V . The result

follows. 2

Recall the notation from line (3.1).

Lemma 3.52 The following hold for µ ∈ F and 1 ≤ i ≤ N .

(i) EiVH(µ) ⊆ VH(µ+ 2).

(ii) FiVH(µ) ⊆ VH(µ− 2).

(iii) HiVH(µ) ⊆ VH(µ).

Proof: (i) Use Lemma 3.1 and relations (3.26).

(ii) Use Lemma 3.2 and relations (3.26).

(iii) Use relations (3.25). 2

Lemma 3.53 For 1 ≤ i ≤ N the elements Ei and Fi are nilpotent on V .

Proof: Combine Lemma 3.51 and Lemma 3.52. 2

Definition 3.54 A given vector v ∈ V is said to be a highest weight vector whenever

v 6= 0, Eiv = 0 for 1 ≤ i ≤ N , and v is a common eigenvector of {Hi}Ni=1.
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Lemma 3.55 V has a highest weight vector.

Proof: Since V has finite dimension, there exists µ ∈ F with VH(µ) 6= 0 and

VH(µ+2) = 0. By Lemma 3.52(i), we get that EiVH(µ) = 0 for 1 ≤ i ≤ N . Since {Hi}Ni=1

mutually commute by (3.25), there exists v ∈ VH(µ) that it is a common eigenvector of

{Hi}Ni=1. By construction, {Ei}Ni=1 annihilate v. Therefore v is a highest weight vector. 2

Let F denote the subalgebra of End(V ) generated by the actions of {Fi}Ni=1. By (3.25),

F is spanned by the actions of

F n1
1 F n2

2 · · ·F
nN
N , n1, . . . , nN ∈ N.

Lemma 3.56 Let v ∈ V denote a highest weight vector. Then V = Fv.

Proof: Abbreviate W for Fv. By construction, W is a subspace of V , and W 6= 0

because 0 6= v ∈ W . By the irreducibility of the L(sl2)/K-module V , it suffices to show

that W is a submodule of V . To show this it suffices to check that W is closed under the

action of Ek, Fk, Hk for 1 ≤ k ≤ N . By construction, W is closed under the action of Fk

for 1 ≤ k ≤ N . Next we show that W is closed under the action of Hk for 1 ≤ k ≤ N .

Let k be given. By the comments immediately preceding the statement of the lemma,

it suffices to show that

HkF
n1
1 F n2

2 · · ·F
nN
N v ∈ W, n1, . . . , nN ∈ N. (3.31)

The proof of (3.31) is by induction on n1 + · · · + nN . For the case n1 + · · · + nN = 0,

the claim is true because v is a common eigenvector of {Hi}Ni=1. Now suppose that

n1 + · · ·+ nN > 0. Therefore there exists 1 ≤ r ≤ N such that nr > 0. By (3.25),

HkF
n1
1 F n2

2 · · ·F
nN
N v = HkFrF

n1
1 F n2

2 · · ·F nr−1
r · · ·F nN

N v. (3.32)
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The right hand side of (3.32) equals

FrHkF
n1
1 F n2

2 · · ·F nr−1
r · · ·F nN

N v + [Hk, Fr]F
n1
1 F n2

2 · · ·F nr−1
r · · ·F nN

N v. (3.33)

In line (3.33), the term on the left is in W by the induction hypothesis, and the term on

the right is in W by (3.24). We have now shown (3.31) for 1 ≤ k ≤ N . Now we show

that W is closed under the action of Ek for 1 ≤ k ≤ N . Let k be given. It suffices to

show that

EkF
n1
1 F n2

2 · · ·F
nN
N v ∈ W, n1, . . . , nN ∈ N. (3.34)

The proof of (3.34) is by induction on n1 + · · ·+ nN . For the case

n1 + · · · + nN = 0, the claim is true because v is annihilated by each of {Ei}Ni=1. Now

suppose that n1 + · · ·+ nN > 0. Therefore there exists 1 ≤ r ≤ N such that nr > 0. By

(3.25),

EkF
n1
1 F n2

2 · · ·F
nN
N v = EkFrF

n1
1 F n2

2 · · ·F nr−1
r · · ·F nN

N v. (3.35)

The right hand side of (3.35) equals

FrEkF
n1
1 F n2

2 · · ·F nr−1
r · · ·F nN

N v + [Ek, Fr]F
n1
1 F n2

2 · · ·F nr−1
r · · ·F nN

N v. (3.36)

In line (3.36), the term on the left is in W by the induction hypothesis. The term on

the right is in W by (3.22) and since W is closed under the action of each of {Hi}Ni=1.

This shows (3.34) for 1 ≤ k ≤ N . The result follows. 2

Theorem 3.57 The polynomial g has no repeated roots.

Proof: Recall the roots {ai}Ni=1 of g from line (3.19). We will show that {ai}Ni=1 are

mutually distinct. Suppose by way of contradiction that g has a repeated root. Then
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N is at least 2. Relabeling the roots of g if necessary, we may assume that a1 = aN . We

first show that the following relations hold in L(sl2)/K for 2 ≤ r ≤ N .

[EN , Fr] = 0, [FN , Er] = 0, [HN , Er] = 0, (3.37)

[EN , Hr] = 0, [FN , Hr] = 0, [HN , Fr] = 0. (3.38)

We check the relation on the left in (3.37). Observe [EN , Fr] = [e, f ]⊗ pN−1(T )pr−1(T ).

Note that pN−1(T )pr−1(T ) is equal to

(T − a1)(T − a2) · · · (T − aN−1)(T − a1) · · · (T − ar−1).

Keeping in mind that a1 = aN and r ≥ 2, we see that

(T − a1)(T − a2) · · · (T − aN)

is a factor of pN−1(T )pr−1(T ). But this factor is g(T ) = 0, so pN−1(T )pr−1(T ) = 0. The

relation on the left in (3.37) now follows. The other relations in (3.37) and (3.38) are

proved in a similar fashion.

Fix a highest weight vector v of V , and consider FNv. We will show that

FNv = 0. (3.39)

Suppose by way of contradiction that FNv 6= 0. We now show that FNv is a highest

weight vector.

First we check that FNv is an eigenvector of H1. By construction, v ∈ VH(µ) for some

µ ∈ F. By Lemma 3.52(ii), FNv ∈ VH(µ− 2). Thus FNv is an eigenvector of H1.



103

Now we check that FNv is an eigenvector of Hr for 2 ≤ r ≤ N . Fix r with 2 ≤ r ≤ N .

Recall that Hr and FN commute by (3.38). So FNv must be an eigenvector of Hr since

v is an eigenvector of Hr.

Next we check that E1 annihilates FNv. First we need to make a few observations. By

construction, HNv = λv for some λ ∈ F. We claim that for all j ∈ N the following holds.

E1F
j+1
N v = (j + 1)λF j

Nv. (3.40)

To show (3.40), we proceed by induction on j. Observe that

E1FNv = FNE1v +HNv = λv,

where the first equality holds by (3.26) and the second since E1v = 0 and HNv = λv.

This shows (3.40) holds when j = 0. Now suppose j ≥ 1, and observe that

E1F
j+1
N v = FNE1F

j
Nv +HNF

j
Nv

= jλF j
Nv +HNF

j
Nv

= jλF j
Nv + F j

NHNv

= (j + 1)λF j
Nv,

where the first equality holds by (3.26), the second by the induction hypothesis, and the

third by (3.38). This shows (3.40) holds for all j ∈ N. Now we show that

λ = 0. (3.41)

To see why (3.41) holds we argue as follows. By Lemma 3.53, FN is nilpotent on V . By

this and since v 6= 0, there exists M ∈ N such that FM
N v 6= 0 while FM+1

N v = 0. Setting
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j = M in (3.40) we obtain λ = 0. This shows that (3.41) holds. If we set j = 0 in (3.40)

and we combine this with (3.41), then we get that E1 annihilates FNv, as desired.

Finally, we check that Er annihilates FNv for 2 ≤ r ≤ N . Fix r with 2 ≤ r ≤ N .

Recall that Er and FN commute by (3.37) and that Er annihilates v. It follows that

ErFNv = FNErv = 0. So Er annihilates FNv.

We have shown that FNv is a highest weight vector. We apply Lemma 3.56 to the

highest weight vector FNv to get that

V = FFNv. (3.42)

Recall that v ∈ VH(µ). Therefore the right hand side of (3.42) is contained in the space

VH(µ− 2) + VH(µ− 4) + · · ·

by Lemma 3.52(ii). So v is contained in the left hand side of (3.42) but not in the right

hand side of (3.42), which is a contradiction. In conclusion, we have seen that assuming

FNv 6= 0 has led to a contradiction, so (3.39) holds.

To finish the proof of Theorem 3.57, we note the following. By (3.39), (3.25), and

Lemma 3.56, applied to the highest weight vector v, we see that FN vanishes on V .

However the action of L(sl2)/K on V is faithful. This gives a contradiction. Therefore

our assumption that g has a repeated root is false. This proves the result. 2

We are now ready to prove Theorem 3.25.
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Proof of Theorem 3.25: Let V denote a nontrivial finite-dimensional irreducible L(sl2)-

module. We will show that V is isomorphic to a tensor product of evaluation modules.

We will be referring to the discussion in the first paragraph of this section, in particular

the ideals J and K and the standard generator g of J . By Theorem 3.57, the polynomial

g has no repeated roots. In other words, the roots {ai}Ni=1 of g from (3.19) are mutually

distinct. For that N , we consider the Lie algebra g from (3.8). By Lemma 3.48 and

Lemma 3.49, the Lie algebra homomorphism ψ from (3.29) is surjective and its kernel

is K. By the construction, the homomorphism

L(sl2)/K → g

u+K 7→ (EVa1(u), . . . , EVaN (u))

is an isomorphism of Lie algebras. Therefore there exists an irreducible g-module struc-

ture on V such that the L(sl2)-action on V is obtained by pulling back the g-action

on V via the map ψ. By Theorem 3.43, there exists di ∈ N (1 ≤ i ≤ N) such that

the g-modules V and ⊗Ni=1Vdi are isomorphic. By Lemma 3.50(i), the L(sl2)-action on

⊗Ni=1Vdi(ai) is obtained by pulling back the g-action on ⊗Ni=1Vdi via the map ψ. Com-

bining the above observations with Lemma 3.4 we get that the L(sl2)-modules V and

⊗Ni=1Vdi(ai) are isomorphic. Finally, note that the g-action on ⊗Ni=1Vdi is faithful since

the L(sl2)/K-action on V is faithful. By Lemma 3.27, di is postive for 1 ≤ i ≤ N .

This proves that the L(sl2)-module V is isomorphic to a tensor product of evaluation

modules. 2
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