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ABSTRACT 

 

Species invasions are a leading driver of biological change. They cause drastic ecological 

and economic impacts across the globe. Freshwaters are especially vulnerable to these negative 

effects. Due to the irreversibility and high cost associated with controlling established invaders, 

prevention is the key to management. The goal of prevention of invasive species, on landscapes 

where the species has already arrived, is to disrupt the species’ secondary spread. Secondary 

spread consists of colonization in new habitats, establishment, and impact. In this thesis, I 

evaluate aquatic invasive species with respect to these three stages. In Chapter 1, I investigate the 

extent to which aquatic invasions are linked to human activity variables including lake distance 

to road and shoreline residential development. Using a database of over 400 lakes across 

Wisconsin that spans gradients in both anthropogenic variables, we found high correlations 

between human activity and the number of species present, suggesting that prevention efforts 

targeting human pathways are worthwhile. In Chapter 2, I evaluate predictors of establishment 

potential for invasive snails and crayfish, all of which need sufficient chemical conditions to 

support calcium carbonate exoskeletons. We found that a surrogate predictor – conductivity, 

which is more easily measurable and widely available – was a sufficient replacement for 

biologically mechanistic variables in distribution models. In Chapter 3, I estimated the 

prevalence of invasive species across Wisconsin, and found that existing species occurrence 

records drastically underrepresent invasive species distributions. In Chapter 4, I use simulations 

and empirical data to estimate how the impacts of invasive species may be spread across 

landscapes. Estimates of impact are rarely taken into account in management decisions, and the 

variety of distributions that is possible suggests that such information may be valuable. Each of 
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these chapters seeks to answer a question or test a hypothesis about how invasions play out at 

landscape scales, and provides guidance for future invasive species research and management.  
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INTRODUCTION 

 

 Recent rapid and pervasive ecological change, driven by agricultural, industrial, 

technological and population growth by humans, has ushered our planet into a new geological 

epoch – the Anthropocene, in which the effects of humans on the planet have become the 

dominant force shaping Earth’s geological and biological characteristics (Crutzen 2006, Steffen 

et al. 2007). The scope and degree of changes induced by humans have created ecological 

conditions that may have no prior analog for comparison (Williams and Jackson 2007, Radeloff 

et al. in review – coauthored paper). Such novel ecosystems stretch across the globe, and may 

hamper ecologists’ abilities to predict changes, while also forcing policymakers and managers to 

abandon past approaches, such as using historical baselines as goals for ecological management, 

in favor of radically different ones better suited to the new status quo (Radeloff et al. in review  - 

coauthored paper). A primary driver of this novelty is the human-mediated introduction of 

species to environments outside of their native ranges (Lugo et al. 2012, Traveset et al. 2013). 

 Although species have always dispersed to new environments, current rates of species 

introductions between continents are several orders of magnitude higher than those in previous 

geological eras (Ricciardi 2007).  This rapid increase in the rate of biotic exchange was driven by 

a global transportation network that has linked countries and continents that would otherwise be 

biologically distinct (Hulme 2009). As a result, at global and regional scales, biota are becoming 

more and more homogenized (Olden and Poff 2003, Olden 2006), which threatens the sustained 

conservation of genetic, taxonomic, and functional biodiversity (Olden et al. 2004).  Of the 

species that are introduced, only a fraction become invasive (Williamson and Fitter 1996, 

Jeschke and Strayer 2005). When they do become invasive, there may be negative consequences, 

and they may be substantial (Simberloff 2011). Invasive species can compete with (Callaway and 
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Aschehoug 2000, Callaway and Ridenour 2004), prey upon (Cox and Lima 2006), parasitize 

(Hatcher et al. 2012), and otherwise negatively affect native species, sometimes putting them at 

risk of extirpation, especially in insular habitats like oceanic islands (Sax and Gaines 2008). 

Thus, invasive species are one of the leading drivers of global biodiversity loss (Vitousek et al. 

1996, Sala et al. 2000). Invasive species can function as ecosystem engineers that alter 

ecosystem structure and shift ecosystem processes (Vitousek and Walker 1989, Crooks 2002). 

Such changes can disrupt the delivery of ecosystem services to humans (Charles and Dukes 

2007, Pejchar and Mooney 2009), leading to losses and damages costing up to $120 billion per 

year in the United States alone (Pimentel et al. 2005). Moreover, species introductions and the 

ecological changes they induce are exceedingly difficult to reverse (Mack and Lonsdale 2002). 

Thus, the prevention of new invasions is the most cost-effective method of invasive species 

management (Leung et al. 2002).  

 Freshwaters may be particularly vulnerable to the effects of species invasions (Sala et al. 

2000, Moorhouse and Macdonald 2015), and so preventing invasions of freshwaters may be 

particularly important.  Additionally, freshwaters provide provisioning, regulating, and cultural 

ecosystem services (Postel and Carpenter 1997).  In areas where freshwaters make up a dominant 

feature of the landscape, they may be a crucial component of regional economies and cultural 

identities.  Such areas, like the Northern Highlands Lake District of Wisconsin, where some of 

this work was carried out, may be vulnerable to aquatic invasive species (Peterson et al. 2003). 

For instance, invasive rainbow smelt can reduce recruitment of walleye, a popular gamefish in 

the region (Mercado-Silva et al. 2007), and the presence of an invasive macrophyte on lakes in 

the region is associated with decreases in home values of up to 15% (Horsch and Lewis 2009, 

Provencher et al. 2012). Prevention of new invasions in these regions requires stopping the 
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secondary spread of aquatic invasive species that have already established in the region (Vander 

Zanden and Olden 2008).  Many aquatic invasive species in Wisconsin were first introduced to 

the region in the Great Lakes via canal openings (sea lamprey) and ballast water (round goby, 

zebra mussel, quagga mussel), or via the aquarium (several invasive macrophytes), aquaculture 

(common carp, Asian carp), and culinary (Chinese mystery snail) trades.  Once these species 

have arrived in the region, they may spread to new lakes, often via hitchhiking on boats (Johnson 

et al. 2001, Rothlisberger et al. 2010) or by transporting angling bait to new locations (Litvak 

and Mandrak 1993, DiStefano et al. 2009), although natural dispersal via surface water 

connections (Havel and Shurin 2004) or dispersal via waterfowl are also possible (Green and 

Figuerola 2005), the latter of which has been observed at least since Darwin first documented 

this occurrence in The Origin of Species. The goal of prevention is to interrupt this process of 

secondary spread.  

 Secondary spread involves three stages, or filters: colonization, establishment, and impact 

(Vander Zanden and Olden 2008). For an invasive species to colonize a new lake, it must 

disperse to or be brought to a new environment by a vector, which may or may not be a human 

pathway. In Chapter 1 of this dissertation, we evaluate the extent to which invasions of 

Wisconsin lakes are associated with human activities, and whether lakes that receive very few 

human visitors are uninvaded. We use lakes’ distance to their nearest roads and the degree of 

lakeshore development to represent human accessibility and activity on lakes. We show that 

lakes that are far from roads serve as a refuge from invasive species, lakes that are close to roads 

may become invaded, and lakes that are close to roads with high levels of development are likely 

to be invaded by multiple species. Even though waterfowl may act as an occasional disperser of 
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aquatic invasive species, these results suggest that humans are the primary and most important 

vector, and that prevention efforts ought to continue targeting human pathways.  

 Once an invasive species arrives at a new location, it may or may not establish a 

population. Establishment is a function of the propagule size (are enough individuals introduced 

at the same time to overcome Allee effects?) (Drake and Lodge 2006) and environmental 

matching (does the environment match the species’ niche?) (Thuiller et al. 2005). In order to 

effectively prevent new invasions on a landscape with thousands of lakes, we need to identify 

and target prevention efforts on the subset of lakes that are environmentally suitable.  Thus, we 

require predictions of environmental suitability based on empirical measurements of abiotic 

conditions. However, we often use surrogate variables to make these predictions, rather than 

variables that are closely associated with the biological mechanisms that determine whether a 

population can establish or not. In Chapter 2, we test whether mechanistic variables can 

improve model predictions from those based on surrogates. Many aquatic invasive species in 

Wisconsin, such as rusty crayfish, Chinese mystery snails, and banded mystery snails, need 

water conditions that favor the construction and maintenance of calcium carbonate exoskeletons. 

The ability to form these exoskeletons is dictated by the water’s calcium carbonate saturation 

state, a variable used widely in ocean acidification research to forecast declines of corals and 

marine bivalves.  However, calcium carbonate saturation state is difficult to measure, so data 

exist for relatively few lakes. In lieu of saturation state, freshwater ecologists use correlated 

surrogates like calcium and conductivity to predict habitat suitability.  We built classification 

trees predicting lake suitability for calcifying invasive species, and substitute surrogate variables 

for saturation state to test whether model accuracy suffers. Our results show that surrogates do an 

adequate job of representing saturation state in models. 
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 The outcome of colonizing and establishing in new sites is a landscape that is dotted with 

invasive species in some proportion of sites. We can define this proportion of sites that is 

invaded as the invasive species prevalence. Despite prevalence being a rudimentary and 

fundamental measure of the scale and impact of invasions, few studies have explicitly measured 

it for invasive species. Moreover, existing datasets of species occurrence may underrepresent 

certain habitats and species (Gardiner et al. 2012). Indeed, many invasive species datasets have 

poor taxonomic and spatial coverage (Crall et al. 2006). In Chapter 3, we test whether the 

prevalence of invasive species in lakes in Wisconsin is adequately represented by existing 

databases of invasive species occurrences. Although the Wisconsin Department of Natural 

Resources occurrence dataset contained more entries for most species than publicly accessible 

datasets, it was still under-representative of overall prevalence, which we calculated from a set of 

stratified surveys. Occurrence records indicate a statewide prevalence of 11.9%, but stratified 

surveys lead to a much higher estimate of prevalence of 39.0%. We saw similar differences for 

species-specific prevalences, although the disagreement was smallest for commonly-known 

species like zebra mussels and largest for less-known species like Chinese mystery snail. These 

results suggest that the prevalence of invasive species on our landscapes may be much higher 

than might be imagined, which stresses that the overall impacts of invasive species are quite 

substantial.  

 Predicting colonization and establishment is common in invasive species research, and 

can help management identify sites that should be considered in a management plan. However, 

not all invasions result in negative consequences, and the lakes that are vulnerable to impacts 

should be those that are the highest management priority. Unfortunately, defining and measuring 

impacts is complex (Jeschke et al. 2014), and models predicting impacts are rare and often 
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unsuccessful (Kulhanek et al. 2011).  Thus, quantitative estimates of impact are typically not 

considered in management decision-making. In Chapter 4, we explore the range of potential 

patterns in how impacts may distributed across sites that are invaded. To explore potential 

patterns, we simulate species’ abundance across a set of sites, and allow for different 

relationships between abundance and impact.  The resulting distributions of impact are highly 

variable – some most frequently exhibit high impacts, some commonly exhibit low impacts, 

while others are bimodal. Such different distributions may have very different implications for 

management, yet the lack of measurements and models of impact prevent these details from 

being incorporated into decisions.  This variability, created by changing simple assumptions 

about how often a species achieves high abundance and how abundance determines impact, 

highlights the need for further emphasis of impact and its determinants in future research and 

management of invasive species.  

   

  



7 
 

 
 

Literature Cited 

Callaway, R. M., and E. T. Aschehoug. 2000. Invasive plants versus their new and old 

neighbors: A mechanism for exotic invasion. Science 290:521–523. 

Callaway, R. M., and W. M. Ridenour. 2004. Novel weapons: invasive success and the evolution 

of increased competitive ability. Frontiers in Ecology and the Environment 2:436–443. 

Charles, H., and J. S. Dukes. 2007. Impacts of invasive species on ecosystem services. Pages 

217–237 in W. Nentwig, M. M. Caldwell, G. Heldmaier, R. B. Jackson, O. L. Lange, H. A. 

Mooney, E. D. Schulze, and U. Sommer, editors. Biological Invasions. Springer Berlin 

Heidelberg. 

Cox, J. G., and S. L. Lima. 2006. Naiveté and an aquatic–terrestrial dichotomy in the effects of 

introduced predators. Trends in Ecology & Evolution 21:674–680. 

Crall, A. W., L. A. Meyerson, T. J. Stohlgren, C. S. Jarnevich, G. J. Newman, and J. Graham. 

2006. Show me the numbers: what data currently exist for non-native species in the USA? 

Frontiers in Ecology and the Environment 4:414–418. 

Crooks, J. A. 2002. Characterizing ecosystem-level consequences of biological invasions: the 

role of ecosystem engineers. Oikos 97:153–166. 

Crutzen, P. J. 2006. The “Anthropocene.” Pages 13–18 in P. D. E. Ehlers and D. T. Krafft, 

editors. Earth System Science in the Anthropocene. Springer Berlin Heidelberg. 

DiStefano, R. J., M. E. Litvan, and P. T. Horner. 2009. The bait industry as a potential vector for 

alien crayfish introductions: Problem recognition by fisheries agencies and a Missouri 

evaluation. Fisheries 34:586–597. 

Drake, J., and D. Lodge. 2006. Allee effects, propagule pressure and the probability of 

establishment: Risk analysis for biological invasions. Biological Invasions 8:365–375. 

Gardiner, M. M., L. L. Allee, P. M. Brown, J. E. Losey, H. E. Roy, and R. R. Smyth. 2012. 

Lessons from lady beetles: accuracy of monitoring data from US and UK citizen-science 

programs. Frontiers in Ecology and the Environment 10:471–476. 

Green, A. J., and J. Figuerola. 2005. Recent advances in the study of long-distance dispersal of 

aquatic invertebrates via birds. Diversity and Distributions 11:149–156. 

Hatcher, M. J., J. T. A. Dick, and A. M. Dunn. 2012. Disease emergence and invasions. 

Functional Ecology 26:1275–1287. 

Havel, J. E., and J. B. Shurin. 2004. Mechanisms, effects, and scales of dispersal in freshwater 

zooplankton. Limnology and Oceanography:1229–1238. 

Horsch, E. J., and D. J. Lewis. 2009. The effects of aquatic invasive species on property values: 

evidence from a quasi-experiment. Land Economics 85:391–409. 



8 
 

 
 

Hulme, P. E. 2009. Trade, transport and trouble: managing invasive species pathways in an era 

of globalization. Journal of Applied Ecology 46:10–18. 

Jeschke, J. M., S. Bacher, T. M. Blackburn, J. T. A. Dick, F. Essl, T. Evans, M. Gaertner, P. E. 

Hulme, I. Kühn, A. Mrugała, J. Pergl, P. Pyšek, W. Rabitsch, A. Ricciardi, D. M. Richardson, A. 

Sendek, M. Vilà, M. Winter, and S. Kumschick. 2014. Defining the impact of non-native 

species. Conservation Biology 28:1188–1194. 

Jeschke, J. M., and D. L. Strayer. 2005. Invasion success of vertebrates in Europe and North 

America. Proceedings of the National Academy of Sciences of the United States of America 

102:7198. 

Johnson, L. E., A. Ricciardi, and J. T. Carlton. 2001. Overland dispersal of aquatic invasive 

species: a risk assessment of transient recreational boating. Ecological Applications 11:1789–

1799. 

Kulhanek, S. A., A. Ricciardi, and B. Leung. 2011. Is invasion history a useful tool for 

predicting the impacts of the world’s worst aquatic invasive species? Ecological Applications 

21:189–202. 

Leung, B., D. M. Lodge, D. Finnoff, J. F. Shogren, M. A. Lewis, and G. Lamberti. 2002. An 

ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. 

Proceedings of the Royal Society B: Biological Sciences 269:2407–2413. 

Litvak, M. K., and N. E. Mandrak. 1993. Ecology of freshwater baitfish use in Canada and the 

United States. Fisheries 18:6–13. 

Lugo, A. E., T. A. Carlo, and J. M. Wunderle. 2012. Natural mixing of species: novel plant–

animal communities on Caribbean Islands. Animal Conservation 15:233–241. 

Mack, R. N., and W. M. Lonsdale. 2002. Eradicating invasive plants: hard-won lessons for 

islands. Pages 164–172 in C. R. Veitch and M. N. Clout, editors. Turning the tide: the 

eradication of invasive species. IUCN SSC Invasive Species Specialist Group, IUCN, Gland, 

Switzerland and Cambridge, UK. 

Mercado-Silva, N., G. G. Sass, B. M. Roth, S. Gilbert, and M. J. V. Zanden. 2007. Impact of 

rainbow smelt (Osmerus mordax) invasion on walleye (Sander vitreus) recruitment in Wisconsin 

lakes. Canadian Journal of Fisheries and Aquatic Sciences 64:1543–1550. 

Moorhouse, T. P., and D. W. Macdonald. 2015. Are invasives worse in freshwater than terrestrial 

ecosystems? Wiley Interdisciplinary Reviews: Water 2:1–8. 

Olden, J. D. 2006. Biotic homogenization: a new research agenda for conservation 

biogeography. Journal of Biogeography 33:2027–2039. 

Olden, J. D., N. LeRoy Poff, M. R. Douglas, M. E. Douglas, and K. D. Fausch. 2004. Ecological 

and evolutionary consequences of biotic homogenization. Trends in Ecology & Evolution 19:18–

24. 



9 
 

 
 

Olden, J. D., and N. L. Poff. 2003. Toward a mechanistic understanding and prediction of biotic 

homogenization. The American Naturalist 162:442–460. 

Pejchar, L., and H. A. Mooney. 2009. Invasive species, ecosystem services and human well-

being. Trends in Ecology & Evolution 24:497–504. 

Peterson, G. D., T. D. Beard Jr, B. E. Beisner, E. M. Bennett, S. R. Carpenter, G. S. Cumming, 

C. L. Dent, and T. D. Havlicek. 2003. Assessing future ecosystem services: a case study of the 

Northern Highlands Lake District, Wisconsin. Conservation Ecology 7:1. 

Pimentel, D., R. Zuniga, and D. Morrison. 2005. Update on the environmental and economic 

costs associated with alien-invasive species in the United States. Ecological Economics 52:273–

288. 

Postel, S., and S. Carpenter. 1997. Freshwater ecosystem services. Pages 195–214 in G. Daily, 

editor. Nature’s services: societal dependence on natural ecosystems. Island Press. 

Provencher, B., D. J. Lewis, and K. Anderson. 2012. Disentangling preferences and expectations 

in stated preference analysis with respondent uncertainty: The case of invasive species 

prevention. Journal of Environmental Economics and Management 64:169–182. 

Radeloff, V. J. W. Williams, B. L. Bateman, K. D. Burke, S. K. Carter, E. S. Childress, K. J. 

Cromwell, C. Gratton, A. O. Hasley, B. M. Kraemer, A. W. Latzka, E. Marin-Spiotta, C. D. 

Meine, S. E. Munoz, T. M. Neeson, A. M. Pidgeon, A. R. Rissman, R. J. Rivera, L. M. 

Szymanski, and J. Usinowicz. In review. The rise of novelty in ecosystems. Ecological 

Applications.  

Ricciardi, A. 2007. Are modern biological invasions an unprecedented form of global change? 

Conservation Biology 21:329–336. 

Rothlisberger, J. D., W. L. Chadderton, J. McNulty, and D. M. Lodge. 2010. Aquatic invasive 

species transport via trailered boats: what is being moved, who is moving it, and what can be 

done. Fisheries 35:121–132. 

Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, 

L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. 

Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker, and D. H. Wall. 2000. Global 

biodiversity scenarios for the year 2100. Science 287:1770–1774. 

Sax, D. F., and S. D. Gaines. 2008. Species invasions and extinction: The future of native 

biodiversity on islands. Proceedings of the National Academy of Sciences 105:11490–11497. 

Simberloff, D. 2011. How common are invasion-induced ecosystem impacts? Biological 

Invasions 13:1255–1268. 

Steffen, W., P. J. Crutzen, and J. R. McNeill. 2007. The Anthropocene: Are humans now 

overwhelming the great forces of nature. AMBIO:  A Journal of the Human Environment 

36:614–621. 



10 
 

 
 

Thuiller, W., D. M. Richardson, P. Pyšek, G. F. Midgley, G. O. Hughes, and M. Rouget. 2005. 

Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. 

Global Change Biology 11:2234–2250. 

Traveset, A., R. Heleno, S. Chamorro, P. Vargas, C. K. McMullen, R. Castro-Urgal, M. Nogales, 

H. W. Herrera, and J. M. Olesen. 2013. Invaders of pollination networks in the Galápagos 

Islands: emergence of novel communities. Proceedings of the Royal Society of London B: 

Biological Sciences 280:20123040. 

Vander Zanden, M. J., and J. D. Olden. 2008. A management framework for preventing the 

secondary spread of aquatic invasive species. Canadian Journal of Fisheries and Aquatic 

Sciences 65:1512–1522. 

Vitousek, P. M., C. M. D’Antonio, L. L. Loope, and R. Westbrooks. 1996. Biological invasions 

as global environmental change. American Scientist 84:468–478. 

Vitousek, P. M., and L. R. Walker. 1989. Biological invasion by Myrica faya in Hawai’i: Plant 

demography, nitrogen fixation, ecosystem effects. Ecological Monographs 59:247–265. 

Williams, J. W., and S. T. Jackson. 2007. Novel climates, no-analog communities, and 

ecological surprises. Frontiers in Ecology and the Environment 5:475–482. 

Williamson, M., and A. Fitter. 1996. The varying success of invaders. Ecology 77:1661–1666. 

  



11 
 

 
 

CHAPTER 1 

 

ROADS AND RESIDENTIAL DEVELOPMENT AS DRIVERS OF AQUATIC 

INVASIVE SPECIES IN LAKES 

 

To be submitted for publication* with coauthors: Scott Van Egeren, Maureen Ferry, and M. Jake 

Vander Zanden 

*Target journal: Conservation Biology 

______________________________________________________________________________ 

 

Abstract: 

Invasive species are a major driver of adverse ecological change. The presence and number of 

invasive species has been found to be strongly associated with measures of human activity in 

many different types of habitats. For lake ecosystems, no studies have directly evaluated the 

association between aquatic invasive species and measures of human activity such as the degree 

of lakeshore residential development and distance to roads. Using field survey data for six 

invasive species in Wisconsin lakes, we tested if the presence and number of invasive species in 

lakes was related to lakeshore residential development and distance from roads. The number of 

invasive species present in environmentally suitable lakes, modeled using zero-inflated Poisson 

regressions, and the probability of occurrence of most individual invasive species, modeled using 

logistic regressions, were closely associated with the proximity to roads and residential 

development. In species-specific models, all species distributions were significantly associated 

with proximity to roads, whereas the two invasive aquatic plant species were also significantly 

related to residential development. No lakes classified as ‘remote’ contained even a single 

aquatic invasive species. Our findings reveal a strong association between aquatic invasive 

species and human activity, which has two key implications. First, it indicates that humans are 

the primary vector for aquatic invasive species dispersal, thus highlighting the continued need for 
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efforts to stop human-mediated spread of aquatic invasive species. Second, that protecting lakes 

from road and housing development offers the additional benefit of protection against aquatic 

invasive species.   

Introduction 

Invasive species are a key driver of ecological change (Pyšek & Richardson 2010) and 

global biodiversity loss (Sala et al. 2000). Their negative effects add up to nearly $120 billion in 

damages and losses per year in the United States (Pimentel et al. 2005).  These negative effects 

can best be mitigated by preventing new invasions, which relies on understanding how invasive 

species spread and establish. Invasive species spread and establishment can be strongly 

influenced by both anthropogenic and natural factors. There are two key processes that underlie 

and ultimately determine invasive species distributions. First, the habitat must be 

environmentally suitable in order to support a species (Peterson 2003). Suitability is determined 

by the habitat’s underlying natural conditions, but may also be influenced by human activities 

such as disturbance, which can promote invasions by some species (Hobbs & Huenneke 1996; 

Bunn & Arthington 2002; Marvier et al. 2004; Lake & Leishman 2004; Hansen & Clevenger 

2005; Buckley et al. 2007; Chytrý et al. 2008).  Second, an invasive species must be able to 

disperse to a given location (Lockwood et al. 2005). Humans are a dominant dispersal agent 

(Johnson et al. 2001; Hulme 2009), though once established in a region, invasive species can also 

disperse via natural processes, such as wind dispersal (Kowarik & Lippe 2011) or via waterways 

(Panov et al. 2009) to new sites. An understanding of the role of anthropogenic factors in 

determining the distribution of invasive species is vital to ongoing management efforts aimed at 

minimizing their spread and impacts (Gallardo & Aldridge 2013; Gallardo et al. 2015b). 
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For terrestrial systems, a large body of literature has evaluated links between invasive 

species and measures of human activity. For example, the presence, cover, and species richness 

of invasive plants are negatively related to distance from road (Harrison et al. 2002; Gelbard & 

Belnap 2003; Flory & Clay 2005; Kalwij et al. 2008; Christen & Matlack 2008). Roads can 

disturb natural habitats, or act as corridors for vehicle-dispersed invasive species, especially 

plants (Lippe & Kowarik 2007).  Consequently, roadless habitats sometimes provide a refuge 

from invasive plants (Gelbard & Harrison 2003). Similarly, there are positive relationships 

between the number of terrestrial invasive species and metrics of human development such as 

urbanization (Blair 1996; Riley et al. 2005; Lussier et al. 2006). 

In contrast with terrestrial systems, we have a remarkably weak understanding of the role 

of anthropogenic factors in determining the distributions of aquatic invasive species (AIS). Many 

AIS, including macrophytes, mollusks, crustaceans, macroinvertebrates, and plankton may 

undergo human-mediated dispersal as “hitchhikers” on recreational boats (Rothlisberger et al. 

2010). For instance, spread of zebra mussels (Dreissena polymorpha) among lakes is widely 

known to be caused by boaters, and is often modeled through boater pathways (Johnson & 

Carlton 1996; Bossenbroek et al. 2001, 2007; Leung et al. 2006). Additionally, some AIS may 

benefit from human-induced disturbance. However, our understanding of how these factors then 

influence AIS distributions at landscape scales is limited. Capelli & Magnuson (1983) note a 

positive relationship between invasive rusty crayfish (Orconectes rusticus) abundance and 

lakeshore residential development, though the study only included a single invasive species and 

did not include any undeveloped lakes. Johnson et al. (2008) report positive associations between 

the presence of several AIS and the number of boat launches for lakes, but did not differentiate 

the magnitude or types of human activities occurring on lakes that did not have public boat 
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launches. Such lakes may experience shoreline development and/or boater presence via private 

access or surface water connections to other lakes, or may be more remote and experience very 

little human activity. Our understanding of the link between the occurrence and number of AIS 

and anthropogenic variables is weak. This is surprising considering the fact that freshwater 

systems, and lakes specifically, are particularly vulnerable to the negative ecological effects of 

invasive species (Sala et al. 2000; Moorhouse & Macdonald 2015). When invaded, lakes tend to 

exhibit decreased abundance and diversity of native communities and altered ecosystem 

properties and processes (Gallardo et al. 2015a). In addition, some AIS including Eurasian 

watemilfoil (Myriophyllum spicatum) and zebra mussels cause drastic economic costs on the 

lakes they invade (Connelly et al. 2007; Horsch & Lewis 2009; Provencher et al. 2012).  

 The present study was designed specifically to evaluate the links between aquatic 

invasive species and two key variables reflective of human activity - distance to the nearest road 

and degree of lakeshore residential development. Our study includes a wide range of lake types, 

spanning from remote wilderness lakes to highly developed lakes. It also includes a suite of six 

different invasive species spanning a broad range of taxonomic groups. Understanding the links 

between human activity and the occurrence of aquatic invasive species has important 

implications for ongoing management efforts aimed at minimizing their spread and adverse 

impacts – preventing human-vectored spread to new lakes requires that we understand the 

natural and anthropogenic factors that put lakes at greatest risk of invasion.  

Methods 

Study region 
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 We evaluated the relationship between invasive species presence and human activity on 

inland lakes in Wisconsin, USA. Wisconsin is a lake-rich landscape with nearly 15,000 lakes, 

ponds, or reservoirs greater than 1 ha in area (2007 USGS National Hydrography Dataset). The 

northern portion of the state is largely forested, with relatively small year-round human 

populations and many lakes (Carpenter et al. 2007). The southern half of the state has fewer 

lakes and is human-dominated, with much of the land use being agricultural, urban, or suburban 

(Carpenter et al. 2007).  

Data collection 

Our dataset is comprised of field surveys conducted for this study along with two other 

recent field surveys aimed at mapping AIS presence/absence in Wisconsin lakes. Our surveys 

included a stratified random sample (stratified across boat launch presence or absence, high or 

low conductivity, and large or small lake area) of lakes in the Northern Highlands Lake District, 

a random sample of lakes with boat launches across Wisconsin, and a  survey of randomly 

selected lakes that were both far from roads and had no residential development. The remaining 

two field surveys, which were conducted prior to this study, were both regional efforts to 

document all invasive species present in lakes within smaller regions of the state (1-4 counties). 

We included their results with the results of our own surveys to maximize coverage of recent 

AIS survey data across the state. Additional information on all surveys is provided in the 

Supporting Information. 

All lakes in our dataset were surveyed for the presence or absence of the following AIS: 

Chinese mystery snail (CMS; Cipangopaludina chinensis), banded mystery snail (BMS; 

Viviparus georgianus), Eurasian watermilfoil (EWM; Myriophyllum spicatum), curly-leaf 

pondweed (CLP; Potamogeton crispus), rusty crayfish (RC; Orconectes rusticus), and zebra 
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mussel (ZM; Dreissena polymorpha).  These six species comprise 2,312 of 2,564 known AIS 

occurrences in Wisconsin (Wisconsin DNR, 2012). Attempts to detect RC were not carried out 

on many lakes, and several surveys at a small number of additional lakes excluded certain 

species, so these lakes were left out of the species-specific analyses. Because all six species are 

visually conspicuous and reside in shallow water during the summer when surveys were 

conducted, littoral zones were surveyed by visual assessment via snorkeling or canoeing, with 

some surveys incorporating more intensive sampling at specific sites. At boat launches, we 

surveyed via snorkeling for 30 minutes. At five sites selected to represent the littoral habitat 

variability (e.g., substrate type, shoreline morphometry, bathymetry) present in the lake, we 

conducted 10-min timed snorkels and deployed 6 crayfish traps (Gee-style minnow traps with 

widened openings) baited with beef liver (Capelli & Magnuson 1983) that were left overnight 

and inspected for RC the next morning. When low water clarity interfered with visual assessment 

of snails and mussels, we took 6 D-net samples each covering 0.5x0.5 m of substrate to inspect 

for AIS.  

 We evaluated the presence of these species with respect to three independent variables. 

We used lake conductivity as a measure of habitat suitability because it was measured for the 

majority of lakes in our dataset and because it correlates positively with other metrics of 

suitability for aquatic macrophytes (Hutchinson 1970), and mollusks, crustaceans and other 

species with calcium carbonate exoskeletons (Latzka et al. 2015).  We used geographic 

information systems (GIS) to calculate 2 metrics associated with human activity on each lake in 

our survey – distance to the nearest road and the degree of lakeshore development. We chose 

these variables because they could be calculated using GIS, and are closely related to human 

activity. For each lake, we calculated the linear distance from the nearest road, using lake 
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polygons in the USGS National Hydrography dataset (2007) and US Census TIGER shapefiles 

for roads (2010). To represent the degree of lakeshore development, we calculated the proportion 

of land surrounding each lake that was developed. We created a 100 m buffer around each lake, 

summed areas for all types of developed land use (including High, Medium, and Low Intensity, 

and Developed, Open Space categories) in the 2011 National Land Cover Dataset (30 m 

resolution) within the buffer, and divided by the buffer’s non-water area. We chose 100 m as a 

suitable distance for the buffer to characterize shoreline residential development, as wider 

buffers tend to include substantial amounts of non-lakefront residential development, while 

narrower buffers fail to include lakefront properties that are set back from the lake (Schnaiberg et 

al. 2002).  

Data analysis 

Predicting the number of invasive species  

 To model the numbers of AIS, we ran a zero-inflated Poisson (ZIP) regression. ZIP 

models are appropriate for response data represented by counts that include many zeroes (Zeileis 

et al. 2008). In such data, there is an elevated probability of the response having a value of zero – 

these observations are first fit by the zero-inflation model – a binomial model with a logit link.  

The second component models a count using a Poisson process with a log link, and predicts a 

response of 0, 1, 2, and so on. For aquatic invasive species in lakes, certain conditions – such as 

being far from roads or having no nearby development – may eliminate the potential for that lake 

to become invaded. If these conditions are not met, a lake still may or may not become invaded, 

and it may be invaded by more than one species. Independent variables in our models included 

distance to road, percent development, and conductivity. We also explored how our model 

changed when including and substituting the following covariates: lake area, lake order (i.e., 
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landscape position, which incorporates lake’s connectivity to other lakes and streams), and the 

presence of a public boat launch. We explored model predictions in two complementary ways. 

First, we made predictions across each anthropogenic variable independently, while holding the 

other constant at its minimum, median and 99th percentile values (chosen instead of maximum to 

allow for predictions across a larger, observed range of the other variable), using bootstrapped 

95% confidence intervals. Second, we plotted the prediction for each possible combination of 

distance to road and development, which allowed for closer inspection of different combinations 

of variables. All predictions were made for a hypothetical lake with a median level of 

conductivity (97.4 µS/cm), which is predicted to have suitable environmental conditions for all 

species (Latzka et al. 2015 and unpublished data). Analyses were performed using the pscl R 

package (Zeileis et al. 2008; Jackman 2015).  

Characterizing invasions among lake types 

 We compared rates of invasions among lakes classified as “remote,” “marginal human 

activity,” and “high human activity,” and tested whether the number of AIS differed among 

groups. Remote lakes had 0% development within the 100 m buffer, and were at least 100 m 

from the nearest road – thus, their shorelines consisted entirely of natural land covers. High 

human activity lakes were less than 100 m from the nearest road and at least 20% developed. 

Marginal human activity had one but not both of these characteristics – they were either less than 

100 m from a road with less than 20% development, or greater than 100 m from a road with any 

positive level of development. We verified these classifications with the degree of development 

and accessibility from field observations and aerial imagery – lakes classified as high activity 

always had high levels of development, marginal activity lakes had indications of human 

activity, but to a much lesser degree, and remote lakes showed no signs of human activity. 
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Because the sample size of remote lakes was small and the distribution of the number of AIS 

present was non-normal, we compared the number of AIS observed in lakes of each category 

using the non-parametric Kruskal-Wallis test and post-hoc pairwise comparisons using a 

Nemenyi test (Demšar 2006) (PMCMR R package - Pohlert 2015). 

Predicting probability of presence by species 

 We tested if individual aquatic invasive species were associated with lake attributes using 

logistic regression. These models predict the probability of a lake being invaded by a particular 

species based on distance to road, percent development, and conductivity. For each species, we 

fit single-predictor models to test relationships between species presence and each variable, 

independent of other attributes. In addition, we fit models using all possible subsets of the three 

predictors and selected the best model based on AIC. For single-predictor models and for each 

variable in the best multiple-predictor model, we report odds ratios, which are more easily 

interpretable than regression coefficients. We scaled the predictors so that these odds ratios can 

be interpreted as the change in the odds of a lake being invaded associated with either a 1% 

increase in development or a 10 m increase in a lake’s distance from a road.   

All analyses were performed in R version 3.1.2 (R Core Team 2014). 

Results 

 Our dataset included a total of 448 lakes, but we removed 11 lakes due to lack of 

conductivity data. Of the remaining 437 lakes, 116 had 0 AIS, 131 had 1 AIS, and 190 had 

multiple AIS (Fig. 1). The frequency distribution of values of distance from road was right-

skewed, whereby most lakes were within a few meters of the nearest road (Fig. 2). The 
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distribution of development values was also right-skewed, whereby most lakes had moderate-to-

low levels of development (Fig. 2).  

Predicting the number of invasive species  

 Distance from road and proportion developed were each significant predictors of the 

number of AIS in our two-component ZIP model. In the first component, which predicts the 

probability of having zero AIS – the zero-inflated model – conductivity and distance from road 

were significant predictors of AIS presence (p<0.001), where distance from road was positively 

associated with the probability of a having zero AIS, and conductivity was negatively associated. 

In the second component, the Poisson count model, all variables were significant.  The degree of 

shoreline development and conductivity were each significantly and positively related to the 

number of AIS (p<0.001), while distance from road was negatively related (p<0.01). Our ZIP 

model outperformed a standard Poisson regression (Vuong test, p<0.001), and the model 

including all three predictors had the lowest AIC (1155.8) compared to models including all 

possible subsets of variables (1167.0-1302.0).  Of the additional covariates tested, only lake area 

improved this model when substituted for distance from road (AIC=1148.7) or development 

(1153.2). Further, when all covariates were included in the same model (all variance inflation 

factors were less than 2), distance from road and development remain as significant predictors, 

indicating their importance in determining the presence and number of AIS in lakes.  Thus, we 

found that our original model, where the presence of AIS is a function of conductivity and 

distance from road, and the number of AIS is a function of conductivity, distance from road, and 

development, was sufficient for evaluating the effects of distance from road and development.  

We used our model to predict the number of AIS at minimum, median, and near-

maximum (99th percentile) values of each predictor (e.g., distance from road or development) 
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across the gradient of observed values for the other predictor (Fig. 3), while holding conductivity 

at its median level. At high values of distance from road (99th percentile – 384 m), in which lakes 

were all also relatively undeveloped, lakes were unlikely to be invaded by any species (Fig. 3a). 

At minimum (0 m) and median (12.5 m) values of distance from road, the predicted number of 

AIS increased from about 1 to 3 as the proportion of development increases from 0 to 1 (Fig. 

3b,c). At high levels of development (99th percentile – 74%), lakes were relatively near to roads, 

and were predicted to have 2-3 AIS (Fig. 3d). At median (15%) and minimum levels of 

development (0%), the predicted number of AIS decreased from about 1.5 at 0 m from a road to 

0 around 200 m from a road (Fig. 3e,f). The heatmap of predictions illustrates these results for all 

possible combinations of distance to road and development, demonstrating that lakes near roads 

with high development were predicted to have 2-3 AIS, lakes far from roads (> about 200 m) 

were predicted to have 0 AIS, and lakes near roads with low-to-moderate levels of development 

were predicted to have 1-2 AIS (Fig. 4).  

Characterizing invasions among lake types 

AIS were not detected in any remote lake. In contrast, moderate and high human activity 

lakes had significantly higher numbers of AIS (Kruskal-Wallis test, p<0.001), with medians of 1 

and 2 species, respectively (Fig. 5). Nemenyi pairwise comparisons indicated significant 

differences among all groups (p<0.01). 

Predicting probability of presence by species 

 In species-specific single predictor models, where the presence of each species was a 

function of each variable independently, significant relationships were found for each variable 

for all species, except development for CMS and distance from road for BMS and ZM (Table 1). 
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Odds ratios associated with a 1% increase in development ranged from 0.90 for CMS (although 

non-significant) to 1.06 for CLP, which was most strongly associated with development. Odds 

ratios associated with a 10 m increase in distance from road ranged from 0.57 for RC, which was 

most strongly associated with proximity to roads, to 0.97 for BMS. The best multiple-predictor 

models chosen by AIC included significant relationships with distance from road for all species, 

development for both macrophyte species (EWM and CLP), and conductivity for all species 

except RC (Table 1).  

Discussion 

 Our results demonstrate a clear statistical relationship between measures of human 

activity and residential development and the magnitude of species invasions in lakes. We found 

that remote lakes that are far from roads serve as refugia from invasive species.  For lakes that 

were near roads, lakes that were more developed had higher numbers of invasive species. The 

strong connection between human activity on lakes and invasive species provides insights into 

their vectors of spread, and supports prevention efforts that target human pathways of invasion. 

Such prevention efforts are important given the substantial ecological and economic impacts of 

invasions. 

Explanation of correlations between AIS and human activity  

These results can be explained primarily by AIS dispersal vectors. The lack of invasive 

species in remote lakes fits assumptions that the primary vectors for these species are human 

pathways such as recreational boating (Johnson et al. 2001). In addition, developed lakes tend to 

be larger and attract higher numbers of boaters (Reed-Andersen et al. 2000), and thus may 

receive higher propagule pressure, enabling the establishment of multiple species. Higher 
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numbers of AIS may also be driven by higher levels of habitat disturbance on developed lakes,  

Some invasive species tend to have traits, such as high growth rates and wide physiological 

tolerances, that allow them to cope well with anthropogenic disturbance (McMahon 2002; 

Marvier et al. 2004; Marchetti et al. 2004), so they may be particularly well-suited to inhabit 

developed lakes that undergo more anthropogenic disturbance than undeveloped lakes. 

The species-specific results lend insights into what types of lakes different species are 

able to invade. First, both human activity metrics were significantly related with the presence of 

most AIS species, verifying that AIS introductions are human-mediated. CMS, however, had a 

non-significant relationship with development, indicating that they may be better able to take 

advantage of infrequent human vectors, or nonhuman vectors altogether, which could be 

explained by their extreme resistance to desiccation (Havel 2011). BMS and ZM were not related 

to distance from road in univariate models, but these relationships were significant when 

conductivity was included as a predictor. Overall, the best logistic models for each species 

emphasize the importance of proximity to roads in determining AIS distributions, as it was 

significant in each of the best models. Invasive macrophytes may be additionally facilitated by 

particularly high levels of human activity associated with lakeshore development, as they were 

the only species with significant relationships with development after conductivity and distance 

from road were accounted for. Both EWM and CLP have relatively short desiccation times 

(Bruckerhoff et al. 2015), so they may be limited to lakes that receive more frequent boater 

traffic, which will likely be the more developed lakes. Alternatively, these species may be better 

adapted to establishing in lakes that experience littoral habitat disturbance associated with 

development (Christensen et al. 1996; Jennings et al. 2003).  

Alternative explanations 
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 While previous studies have noted correlations of some species presences with human 

factors, none have investigated the relationship between multiple metrics of human activity and 

the number of AIS present. This study used a large presence/absence dataset spanning gradients 

in both the lakes’ degree of residential development and distance to the nearest roads. To our 

knowledge, this represents the first study of aquatic invasive species to sample relatively 

inaccessible lakes that were far from roads.  

Despite this unique dataset and improvement upon previous studies in terms of the range 

of sites included, there are two noteworthy limitations.  First, because remote lakes were difficult 

to find and access, we obtained a sample size of only 11 lakes, although nonparametric tests and 

our ZIP model both indicated that the number of AIS present in these lakes was significantly 

lower than that in other lakes. Second, distance from roads and degree of development may 

correlate with other potentially important environmental variables. Indeed, environmental 

variables were slightly more important than anthropogenic variables (which were still 

significant) in predicting the distributions of many invasive species in northwest Europe 

(Gallardo et al. 2015b). Similarly, in Wisconsin, native species distributions in lakes tend to be 

more affected by environmental variables than dispersal-related variables (Magnuson et al. 

1998). Thus, it is possible that environmental variables that correlate with distance from road and 

development could lead to the general results we found. In general, Wisconsin lakes that have no 

development and are far from roads tend to be small. Small lakes tend to have a higher landscape 

position, and thus have fewer surface-water connections with rivers and other lakes and lower 

levels of dissolved calcium, and thus lower conductivity (Kratz et al. 1997; Riera et al. 2000).  

These covariates may also reduce the likelihood that AIS will be able to colonize and establish in 

remote, undeveloped lakes. To account for this, we sampled small, low calcium lakes across both 
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gradients of human activity. We also included conductivity, landscape position, and lake area in 

our models.  While conductivity was a key variable in explaining habitat suitability, both 

anthropogenic variables remained significant after including it in models. In contrast, landscape 

position did not improve models. Models did improve slightly when area was substituted for 

distance from road and development. However, lake area may correlate with invasion likelihood 

in two separate ways. First, area correlates with environmental conditions like dissolved calcium 

and conductivity, and thus may be an indirect indicator of habitat suitability. Second, area is a 

main driver of boat traffic to lakes (Reed-Andersen et al. 2000), and thus may correlate with 

propagule pressure. For these reasons, area can be a strong predictor of invasions, but its role in 

shaping species distributions is difficult to interpret.  Because covariates other than area did not 

perform as well as distance from road and development in our models, we are confident in our 

finding that AIS distributions in environmentally suitable Wisconsin lakes are largely determined 

by human activity.   

An alternative dispersal mechanism for AIS may be transportation by waterbirds. 

Observations of bird-mediated dispersal date back at least to Darwin’s Origin of Species, with 

many more recent observations for aquatic invertebrates, snails and plants (Green & Figuerola 

2005; van Leeuwen et al. 2012b, 2012a; García-Álvarez et al. 2015). However, evidence for such 

bird-mediated dispersal of AIS is largely anecdotal, and no studies have compared the relative 

magnitude of spread of AIS by waterfowl versus humans (Reynolds et al. 2015). Our results 

highlight a strong association between invasions and human activity on lakes, indicating an 

important role for human transport vectors. Waterbirds may still be a possible vector, as their 

dispersal patterns may be influenced by lake area and shoreline development (Traut & Hostetler 

2004). However, if bird-mediated invasions were as common as human-mediated invasions, we 
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would expect some invasions in remote lakes. Indeed, small, shallow lakes may have relatively 

high bird richness (Scheffer et al. 2006). Such lakes were entirely absent of AIS in our surveys. 

Even though bird-mediated spread is important in species dispersal across geologic time-scales 

and in shaping species’ evolutionary histories (Wesselingh et al. 1999), we believe it is unlikely 

that birds would transport AIS frequently enough to account for the rapid rates of spread 

associated with new invasions (Olden et al. 2006).  

Implications 

Our general finding that the number of AIS increases with development and decreases 

with distance from road is likely applicable to other regions.  Indeed, the distributions of selected 

terrestrial, freshwater, and marine invasive species in northwest Europe all correlate with 

anthropogenic variables including human population density and road proximity (Gallardo et al. 

2015b), However, the relative importance of human-aided dispersal vs. natural dispersal vs. 

underlying environmental conditions may vary depending on the landscape. Wisconsin lakes 

exhibit large gradients in distance from road and development, making it a useful region for 

studying these relationships. Regions without such variability – for instance, regions in which 

lakes are rare and uniformly developed, or wilderness regions where all lakes are relatively 

remote – may be better predicted by natural dispersal variables or environmental conditions. In 

addition, invasive species that are more closely associated with non-human pathways of dispersal 

would not have distributions that would be well-predicted by our models.  

The ecological and economic impacts of aquatic invasive species can be substantial. 

Ecological impacts include strong and consistent negative effects on native communities and 

changes in ecosystem functions (Gallardo et al. 2015a). For instance, many macrophytes, 

including Eurasian watermilfoil, can outcompete native plants by forming mats that shade out 



27 
 

 
 

other species (Madsen et al. 1991; Boylen et al. 1999; Stiers et al. 2011). Rusty crayfish tend to 

outcompete native crayfish (Olden et al. 2006) and reduce macrophyte communities, leading to 

food web shifts (Lodge et al. 1994; Mccarthy et al. 2006; Hansen et al. 2013). The impacts of 

invasive filter-feeders like zebra and quagga mussels can cause shifts in ecosystem properties 

and processes, including shifting energy flows from pelagic to benthic pathways with 

concomitant changes in phytoplankton, zooplankton, and macrophyte biomass (Strayer et al. 

1999; Zhu et al. 2006; Higgins & Vander Zanden 2010). Additionally, many AIS have 

substantial economic costs. For instance, Eurasian watermilfoil tends to decrease housing values 

by approximately 15% (Horsch & Lewis 2009; Provencher et al. 2012). Control costs for zebra 

mussels at power plants throughout North America were estimated at $267 million (Connelly et 

al. 2007).  

All of these risks, along with the relative irreversibility of invasions (Mack & Lonsdale 

2002), have made prevention and containment the cornerstone of most invasive species 

management plans (Leung et al. 2002; Lodge et al. 2006). Prevention efforts largely focus on 

reducing introductions by interrupting boater pathways via boat cleaning, draining, drying, and 

disinfecting (Rothlisberger et al. 2010).  This management approach relies on the idea that AIS 

introductions are primarily caused by human activities. If other dispersal vectors, including 

natural dispersal via surface waters or transportation by birds were major vectors for AIS, these 

prevention efforts may be undermined and not worthwhile. Our results point to the strong role 

played by human activity in invasions of lakes, and validate the belief that continued prevention 

of human-mediated introductions is worthwhile.  

 Our results clearly show an absence of invasive species in remote lakes, low levels of 

invasion in lakes that are near roads but have little development, and high numbers of invasive 
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species in highly developed lakes. These results suggest that protection of lakes from 

development may not only conserve terrestrial habitat in protected areas, but also protect lakes 

from the effects of invasions.  

Supporting information 

The description of field surveys that we compiled to construct the dataset used in this analysis 

(Appendix S1) is available online.  
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Table 1. Sampling results and odds ratio for each significant predictor in species-specific logistic 

regressions. Upper table corresponds to survey results and univariate logistic regressions and 

bottom table shows the best models selected by AIC using all variables 

 

Sampling results 

 Odds Ratio (95% 

CI) for univariate 

Development 

model 

(for 1% increase) 

 Odds Ratio (95% CI) 

for univariate 

Distance from Road 

model 

(for 10 m increase) 

 
Lakes 

present 

Lakes 

surveyed 

 

Chinese mystery snail 160 437  0.99  0.80***  

Banded mystery snail 139 436  1.03***  0.97 

Rusty crayfish 52 295  1.02*  0.57*** 

Zebra mussel 22 429  1.04***  0.83 

Eurasian watermilfoil 118 436  1.06***  0.90* 

Curly-leaf pondweed 138 434  1.06***  0.85** 

  Odds Ratio (95% CI) for best model out of all subsets 

  Conductivity  

(for 10 µs/cm increase) 

Development 

(for 1% increase) 

Distance from Road 

(for 10 m increase) 

Chinese mystery snail  0.97 (0.95 – 0.99)  0.79 (0.69 – 0.89) 

Banded mystery snail  1.06 (1.04 – 1.07)  0.96 (0.91 – 1.00) 

Rusty crayfish    0.57 (0.42 – 0.75) 

Zebra mussel  1.11 (1.08 – 1.16)  0.82 (0.59 – 0.99) 

Eurasian watermilfoil  1.06 (1.04 – 1.08) 1.04 (1.02 – 1.05) 0.92 (0.82 – 0.99) 

Curly-leaf pondweed  1.07 (1.05 – 1.09) 1.04 (1.03 – 1.06) 0.85 (0.75 – 0.95) 

*significant at α=0.01, **significant at α=0.001,***p<0.001 

  



36 
 

 
 

Figure Captions 

Fig. 1 Results of invasive species surveys across Wisconsin, USA. White dots indicate lakes that 

were not invaded by any species. The size of gray dots is proportional to the number of invasive 

species detected. Map inset indicates location of the study within the Laurentian Great Lakes 

region. 

Fig. 2 The distance to road and proportion developed of sampled lakes. Curves along the axes 

are kernel density plots for the corresponding variable. Hotter/Lighter colors represent higher 

densities of points. Boxes distinguish remote and high human activity lakes from marginal 

human activity lakes.  

Fig 3 Predicted number of aquatic invasive species based on zero-inflated Poisson regression. 

Panels show predictions based on percent development in a 100 m buffer (a-c) and minimum 

distance to road (d-f), while holding the other variable at 99% quantile, median, and minimum 

levels. Black lines show model prediction and gray polygons indicate a bootstrapped 95% CI for 

the prediction. Predictions are restricted to the space in which there are observations to fit the 

model. 

Fig 4 Heatmap showing the predicted number of aquatic invasive species from a zero-inflated 

Poisson regression. Predictions are truncated to the space in which there are observations to fit 

the model.  

Fig. 5 Violin plots showing the number of aquatic invasive species (AIS) at three levels of 

human activity. Categories match the cutoffs shown in Fig. 2. Groups are significantly different 

from each other (p<0.001). Black dots indicate the median, white rectangles indicate the 
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interquartile range, and whiskers indicate minima and maxima. Gray polygons are mirrored 

kernel density plots. Numbers indicate the number of lakes surveyed.  
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Figure 1 

 

 

Fig. 1 Results of invasive species surveys across Wisconsin, USA. White dots indicate lakes that 

were not invaded by any species. The size of gray dots is proportional to the number of invasive 

species detected. Map inset indicates location of the study within the Laurentian Great Lakes 

region. 
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Figure 2 

 

 

 

Fig. 2 The distance to road and proportion developed of sampled lakes. Curves along the axes 

are kernel density plots for the corresponding variable. Hotter/Lighter colors represent higher 

densities of points. Boxes distinguish remote and high human activity lakes from marginal 

human activity lakes.   
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Figure 3 

 

 

Fig 3 Predicted number of aquatic invasive species based on zero-inflated Poisson regression. 

Panels show predictions based on percent development in a 100 m buffer (a-c) and minimum 

distance to road (d-f), while holding the other variable at 99% quantile, median, and minimum 

levels. Black lines show model prediction and gray polygons indicate a bootstrapped 95% CI for 

the prediction. Predictions are restricted to the space in which there are observations to fit the 

model. 
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Figure 4 

 

Fig 4 Heatmap showing the predicted number of aquatic invasive species from a zero-inflated 

Poisson regression. Predictions are truncated to the space in which there are observations to fit 

the model.  
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Figure 5 

 

Fig. 5 Violin plots showing the number of aquatic invasive species (AIS) at three levels of 

human activity. Categories match the cutoffs shown in Fig. 2. Groups are significantly different 

from each other (p<0.001). Black dots indicate the median, white rectangles indicate the 

interquartile range, and whiskers indicate minima and maxima. Gray polygons are mirrored 

kernel density plots. Numbers indicate the number of lakes surveyed.  
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Appendix S1 – Description of invasive species surveys used in this analysis 

      We combined the results of two prior field surveys with surveys conducted for this 

study, with all sampling taking place between 2007 and 2012.  The authors led two separate 

surveys that were incorporated into this dataset. 

AWL and JVZ led a survey of 81 lakes in the Northern Highlands Lake District (Vilas 

and Oneida counties). Lake selection and survey methods are described in Latzka et al. 2015.   

MF and SVE led a statewide Early Detection survey for the Wisconsin DNR, aimed 

mostly at lakes with public access. Lakes were selected randomly, but made to vary 

geographically in proportion to the relative occurrence of lakes in different regions across the 

state.  Survey methods follow those in Latzka et al. 2015, although rusty crayfish were not 

sought in these surveys.  

The two prior surveys were each attempts to census aquatic invasions within smaller 

regions of the state across all lakes that were reasonably accessible. We chose to combine these 

data with our own surveys in order to maximize coverage of difficult-to-access, and potentially 

less-invaded lakes. Data were supplied by original collectors to the authors. 

The earlier of these studies was lead by Anna Mares, an employee of the Wisconsin 

DNR. The survey was conducted from 2007-09, and covered the counties of Barron, Chippewa, 

Dunn, Eau Claire, and Rusk counties, and was funded by WDNR Grant # AEPP-054-07, Xcel 

Energy Natural Resources Fund, and the Wisconsin. The survey covered 126 lakes, and covered 

all species listed in the Methods section. Most lakes had some form of public access (boat launch 

or pier).  Each lake was surveyed 3 times during a single season, for one season out of the 3 

years of the study, although data provided to the authors aggregated these results. Sampling 
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methods included a rake-sampling method for aquatic macrophytes, crayfish trapping for rusty 

crayfish, net tows for zebra mussel veligers, and visual surveys for invasive snails.  

The second provided dataset was from Paul Skawinski, from a consultant group 

contracted by the DNR. These surveys were conducted in 2009-2011 and covered lakes in 

Portage, Wood, Waushara, Waupaca, and Marathon counties. All species were sampled via 

visual detection during meandering kayak surveys through the littoral zone of each lake, 

although underwater cameras and rakes were sporadically used to supplement visual 

assessments. All six species covered in our analyses were sampled in these surveys.  
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______________________________________________________________________________ 

 

Abstract: 

Modeling of invasive species’ potential distributions is critical for preventing new 

invasions. Distribution models use environmental characteristics of observed distributions to 

determine the suite of conditions that allows invasion. Some variables are directly related to 

species’ biological needs, while others are surrogates that do not directly influence distributions. 

For aquatic invasive species (AIS) with calcified shells and exoskeletons, one common limiting 

factor is the chemical restriction on forming calcium carbonate (CaCO3), which is usually 

represented by conductivity or dissolved calcium. We predicted that conductivity and calcium 

would not serve as accurate surrogates for CaCO3 saturation state, which is more directly linked 

to calcification potential. To test this prediction, we fit classification trees to field surveys of 

northern Wisconsin lakes for three calcifying AIS – rusty crayfish (Orconectes rusticus), banded 

mystery snail (Viviparus georgianus), and Chinese mystery snail (Cipangopaludina chinensis). 

Along with lake area, variables associated with calcification were the best predictors of species 

distributions. Even though saturation state is the most biologically mechanistic variable, it did 

not improve model predictions or explain more variability in species presence than its surrogates. 

Overall, surrogates are sufficient for species distribution modeling in these lakes that exhibit a 

wide range of chemical states. 
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Introduction 

Invasive species are a main driver of biodiversity loss (Sala et al., 2000) and can cause 

changes in ecosystem function (Vitousek, 1990). These changes can disrupt the delivery of 

ecosystem services (Pejchar & Mooney, 2009) and result in significant economic costs (Pimentel 

et al., 2005). Freshwaters seem to be especially vulnerable to the impacts of invasive species 

(Sala et al., 2000). Identifying vulnerable sites prior to their invasion enables efficient prevention 

efforts, which are significantly cheaper than control efforts after an invasion has occurred (Leung 

et al., 2002). These predictions often involve estimating the habitat suitability of sites using data 

on their environmental characteristics (Vander Zanden & Olden, 2008), which may be directly or 

indirectly related to a species’ biological requirements (Austin, 2007).  

One factor that often limits the distributions of many aquatic taxa is the amount of 

available dissolved calcium and carbonate that are needed to form and maintain calcium 

carbonate (CaCO3) exoskeletons (e.g., Capelli & Magnuson, 1983; Ramcharan et al., 1992; 

Olden et al., 2006; Oliveira et al., 2010). Both calcium and bicarbonate are at least partially 

supplied from ambient water, although some organisms may internally store CaCO3 to be used 

when needed (Horne et al., 2009; Akiva-Tal et al., 2011; Marin et al., 2012). Low concentrations 

of dissolved calcium can impose limits on CaCO3 mineralization, so dissolved calcium and 

correlated parameters are used in biological models. However, these models ignore carbonate, 

which also controls rates of calcification (Langdon et al., 2000). In contrast, the CaCO3 

saturation state (often denoted by Ω, unitless) describes the potential for precipitation or 

dissolution (Doney et al., 2009). Saturation state is defined as the product of the concentrations 

of the reactants divided by a solubility product which depends on temperature, salinity, pressure, 

and the particular mineral phase of the compound (Ω = [𝐶𝑎2+][𝐶𝑂3
2−]/𝐾′𝑠𝑝), where values 
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above 1.0 indicate the potential for precipitation, and values below 1.0 indicate the potential for 

dissolution (Doney et al., 2009).  Saturation state is thus a biologically mechanistic variable that 

could be used in distribution models and forecasting. In ocean acidification research, CaCO3 

saturation states have been used to explain and predict declines of calcifying corals and other 

marine taxa (Hoegh-Guldberg et al., 2007; Doney et al., 2009). Although saturation states are 

equally applicable in freshwater, they have been rarely measured or used in distribution models.  

Instead, distribution models for freshwater species have relied on more easily measurable 

and more widely available surrogates for CaCO3 saturation state.  However, the effects of 

surrogate usage in general are often not evaluated (Austin, 2007), so effects on model accuracy 

are unknown.  For CaCO3 saturation state, surrogate variables include dissolved calcium, 

conductivity, hardness, and alkalinity. These variables have been shown in cross-site studies and 

experiments to correlate with species distributions (Herbst et al., 2008; Free et al., 2009; Boets et 

al., 2013; Maceda-Veiga et al., 2013), mortality (Hammond et al., 2006), shell or carapace 

strength (Czarnołęski et al., 2006; Glass & Darby, 2009) and predation success (Lewis & 

Magnuson, 1999; Czarnołęski et al., 2006) for various calcifying taxa, so they may adequately 

substitute for saturation state. However, their correlation with saturation state is not perfect (Fig. 

1a,b; data from sampled lakes), and thus some of the variance in these responses may be better 

described by saturation state. One study that did explicitly use saturation state found that it was 

an important predictor of habitat suitability for the invasive golden mussel (Limnoperna fortunei) 

in Brazilian rivers, although saturation state was not important in large North American rivers 

where calcium and pH tended to be well above the golden mussel’s physiological threshold 

(Oliveira et al., 2010), but comparisons were not made to other calcification variables.  
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Two taxa that form CaCO3 structures are aquatic crustaceans and gastropods. In North 

American temperate lakes, three common invasive species in these groups are the rusty crayfish 

(RC; Orconectes rusticus, Girard 1852), the Chinese mystery snail (CMS; Cipangopaludina 

chinensis, Gray 1863, also called Bellamya chinensis, Smith, 2000) and the banded mystery snail 

(BMS; Viviparus georgianus, Lea 1834). Together, these are three of the most common aquatic 

invasive species in our study region in terms of number of lakes invaded (Latzka, unpublished 

data). The impacts of RC are broad and well-studied, and include competition with and 

extirpations of native crayfish (Olden et al., 2006), predation on benthic invertebrates, and 

ecosystem-level shifts caused by the consumption and destruction of macrophytes (Lodge et al., 

1994; Hansen et al., 2013). The snails (CMS and BMS) are potentially less harmful (Johnson et 

al., 2008; Solomon et al., 2009), but their impacts are not well studied, and they can sometimes 

reach very high abundances (i.e., >280 BMS/m2; Latzka, unpublished data).  

We hypothesized that the calcification of these species is linked closely to saturation 

states, causing distribution models based on saturation state to outperform those based on 

surrogates. Specifically, we expected predictions for lakes with near-threshold calcification 

conditions to be improved by saturation state (Fig. 1c,d). We tested this hypothesis using a 

survey of lakes that span a calcification gradient for the presence of these three invasive species. 

We constructed distribution models for each and analyzed the predictive abilities of three 

calcification variables: conductivity, dissolved calcium concentration, and CaCO3 saturation 

state.  

Materials and Methods 

Site description 
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The Northern Highlands Lake District (NHLD; 45°54'N, 89°38'W) in Wisconsin contains 

approximately 1500 lakes, to which AIS are perceived as a dominant threat (Beardmore et al., 

2015). AIS are spread primarily by recreational boaters (Rothlisberger et al., 2010). These lakes 

vary in landscape position, with many small bog lakes, seepage lakes, and large drainage lakes 

that vary in their relative groundwater input (Kratz et al., 1997). Thus, significant gradients of 

dissolved calcium and pH (and thus calcification potential) exist, potentially constraining the 

distributions of many invasive species in the region.  

Data collection 

 During the summers of 2010 and 2011, we sampled 81 NHLD lakes for BMS, CMS, and 

RC and for several water chemistry variables related to calcification. We selected sites that 

varied along a calcification gradient while controlling for other variables that influence 

invasibility, using a stratified random sample of lakes at least 1 ha in surface area. Lakes were 

first stratified by the presence or absence of a boat launch, then by high or low conductivity 

(since conductivity data were available prior to sampling; using a 3rd quartile cutoff), then by 

large or small (3rd quartile cutoff) surface area, resulting in eight unique strata. At least 10 lakes 

from each stratum were chosen for sampling.  

 At each site, the presence or absence of each species was determined using snorkel 

surveys and crayfish traps. We conducted timed snorkel surveys, with 30 minute snorkels at the 

primary boat launch or access point on each lake, and 10 minute snorkels at each of five sites 

that were selected to represent the littoral habitat variability (e.g., substrate type, bathymetry, 

shoreline morphometry) present in the lake. We searched for both crayfish and snails when 

snorkeling. Crayfish were collected in Gee-style minnow traps with widened openings baited 

with beef liver (Capelli & Magnuson, 1983). At each of the five sites, we placed two four-meter 
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transects perpendicular to shore beginning between 0.5 and 1m depth, with three minnow traps 

placed evenly along each transect. Traps were collected after one night, and all crayfish were 

identified. 

 We also measured several water chemistry variables related to calcification potential at 

each lake. We measured conductivity, temperature and pH using a Thermo Scientific Orion 5* 

Plus handheld meter between 1 and 2m depth in the center of each lake. To minimize the error 

associated with field measurements of pH, we stored the pH electrode in electrode storage 

solution between lakes, and conducted a three-point calibration at values of 4, 7 and 10 at least 

once every three days. Secchi depth was also measured at this location. For measures of 

dissolved inorganic and organic carbon (DIC/DOC) and dissolved calcium, we collected filtered 

water samples (through 0.70 µm polycarbonate filter) from 0.5 m below the surface. Thirty mL 

samples were stored in sealed glass containers with zero head space to estimate DIC/DOC 

concentrations and a second container with 50 mL of filtered sample was acidified with 0.5 mL 

ultrapure concentrated hydrochloric acid to estimate calcium concentrations. All samples were 

stored on ice while in the field, and subsequently refrigerated until laboratory analysis. 

DIC/DOC samples were analyzed with a Shimadzu TOC-V-csh Total Organic Carbon Analyzer 

and calcium samples with an inductively-coupled plasma optical emission spectrophotometer 

(North Temperate Lakes LTER Research Protocol: 

http://lter.limnology.wisc.edu/research/protocols). 

 For each lake, we calculated the carbonate concentration according to the equation 

[𝐶𝑂3] =
𝐶𝑡 ∗  𝐾𝑎1 ∗  𝐾𝑎2

𝐾𝑎1 ∗  𝐾𝑎2 +  𝐾𝑎1 ∗ [𝐻+] + [𝐻+]2
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from Butler (1991), based on our measurements of DIC (converted to a molar concentration Ct) 

and pH (converted to [H+]). We assumed temperatures of 25°C for values of Ka1 (4.47*10-7) and 

Ka2 (4.68*10-11). Calculated carbonate concentrations, measured calcium concentrations, and Ksp 

constants were then used to calculate saturation state (Ω = [𝐶𝑎2+][𝐶𝑂3
2−]/𝐾′𝑠𝑝). We chose the K 

sp constant by assuming a temperature of 25°C and the calcite mineral phase of CaCO3: 

Ksp=3.36*10-9. We used the calcite form because calcite is present in the crayfish cuticle (Roer & 

Dillaman, 1984) (unknown for CMS and BMS). However, using aragonite instead would not 

affect our conclusions.  

Data analysis 

We used Classification and Regression Tree (CART) analyses to model the 

presence/absence of these species among 79 sampled lakes (two omitted due to contamination of 

water samples). We investigated how each calcification variable affected the structure and 

performance of the best trees. CART analysis repeatedly splits a dataset into increasingly 

homogenous groups with respect to some response variable (De’ath & Fabricius, 2000). CART 

produces a sequence of binary questions (i.e., is the lake above or below a certain concentration 

of calcium?) about the data that can be visualized as a tree (De’ath & Fabricius, 2000). Data 

inputs are flexible, as CART works well with both continuous and categorical predictors, even if 

some are non-normal or collinear, as well as with linear and nonlinear relationships (Prasad et 

al., 2006). The optimal tree is produced by finding the sequence of splits that explains the most 

variation in the response variable while limiting the number of splits by how much variation each 

explains (De’ath & Fabricius, 2000). For this analysis, classification trees have the added 

advantage of being able to use a single variable at multiple levels in a tree. Since we sampled a 

broad range of lake types, we expected that conductivity and calcium would be as reliable as 
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saturation state at the tops of trees, where the broad range of calcification potential could be split 

into smaller groups. However, we also expected that groups of lakes with calcification conditions 

near biological thresholds, which would occur further down the tree, may be better predicted by 

saturation state (Fig. 1c,d). In line with this idea, we expected that calcium and conductivity 

would perform similarly to saturation state in predicting presence/absence at the tops of trees 

across broad ranges of the variables, but that saturation state would enable more accurate 

predictions further down the trees (Fig. 1c,d). CART depicts these complex relationships in 

simple trees, making detecting and understanding them easier than in analogous methods like 

logistic regression. 

We ran classification (presence/absence response) trees for each species. Independent 

variables were related to calcification (conductivity, calcium, and saturation state), boater access 

(public access presence, distance to road, distance to highway), and other lake characteristics 

(area, maximum depth, Secchi depth). We chose these variables because they account for the 

likelihood of initial introductions (boater access) and establishment (suitability associated with 

calcification and lake characteristics). Other than the highly correlated calcification variables, 

these variables are not collinear, with variance inflation factors all below 2.3. In each tree, we 

required a minimum of 5 lakes in each node to reduce spurious splits caused by low sample 

sizes. We created the initial trees to minimize misclassification rates and then pruned to prevent 

overfitting. We pruned to the final trees by running a 10-fold cross-validation, where 9/10 of the 

dataset was used to build a tree that made predictions for the remaining 1/10, and repeated for 

each fold. This cross-validation process allows estimation of the error associated with each 

potential split in the tree. Splits that have high error are then likely to be pruned back. We pruned 

trees to minimize the overall relative risk (defined as the sum of the relative error in the tree and 
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a cost associated with having too many variables) (Therneau et al., 2014). However, two trees 

remained overfit after this process, and two were over-pruned so that they had no splits and just 

one node, due to low species prevalence. In these cases, we re-pruned the full trees by requiring 

any additional split in the model to account for a decreased misclassification rate of at least 4 

(5%; for 3 trees), and 9 lakes (11%; 1 tree). For each species, we constructed trees with two 

different sets of independent variables. First, we constructed trees with one calcification variable 

each, and evaluated changes in tree structure and performance. Second, we constructed trees 

using all variables in order to determine which calcification variables were selected in the best 

overall trees. To evaluate tree performance, we calculated Cohen’s Kappa for each tree to 

measure the accuracy of the trees’ predictions (Landis & Koch, 1977; Fielding & Bell, 1997; 

Mouton et al., 2010), However, since tree complexity was not consistent among the variables 

used in each tree, Kappa’s could not be compared among trees to evaluate whether surrogates 

improved trees overall.  

Instead, we calculated each variable’s overall importance by including all variables into a 

single model for each species and evaluating their isolated effects on misclassification rates. At 

any split, we allowed the primary variable to be substituted out for another variable, and 

monitored the increase in misclassification rate. This substitution was done for each split in the 

tree with each variable. In this way, we quantified a variable’s importance as the sum of its 

effects on the tree’s total goodness of fit (number classified correctly) at all of the splits in which 

the variable was either used or substituted in for another variable (Breiman et al., 1984; Therneau 

et al., 2014). Importance values for a split are the increase in the number of lakes correctly 

predicted compared to predictions based on majority rule, where all lakes are given the majority 

response value. We use these importance values to evaluate how well each calcification variable 
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performed in the trees, using both pruned and unpruned trees. All analyses were performed in R 

version 2.15.2 (R Development Core Team, 2012) using the rpart package (Therneau et al., 

2014; R package version 4.1-8), which was shown to perform well for ecological predictions 

(Prasad et al., 2006).  

Results 

CMS were the most common of the three species – present in 39 of 79 lakes (49.4%) – 

followed by RC in 26 (32.9%) and BMS in 22 lakes (27.8%) (Fig. 2). Conductivity ranged from 

12.2 to 163.2 μS/cm (mean=71.9; median=73.3; sd=42.4) (Fig. 3a). Dissolved calcium ranged 

from 0.5 to 29.4 mg/L (mean=8.2; median=8.2; sd=6.0) (Fig. 3b). Calculated saturation states 

ranged from 2*10-6 to 15.33 (mean = 1.33, median = 0.19, sd=25) (Fig. 3c). Twenty-two of the 

79 sampled lakes had saturation states above 1.0 indicating potential for purely chemical 

precipitation of CaCO3. CMS were least limited by saturation state as they were present in lakes 

with saturation states as low as 0.0002, while both RC and BMS were limited to lakes with 

saturation state above 0.04.  

 The classification trees were able to describe much of the variation in each species’ 

distribution (Fig. 4). Minimum misclassification rates of the best pruned trees were 12/79 

(15.2%) for BMS, 18/79 (22.8%) for CMS, and 11/79 (13.9%) for RC. Pruning resulted in trees 

that were fairly simple, as no tree had more than four nodes, and five had just two nodes (single 

split). However, additional gains in predictive accuracy in more complex trees were not large 

enough to justify additional splits. Two trees – those for CMS based on calcium and saturation 

state – did have more accurate, complex structures using our initial pruning technique. However, 

the additional splits were likely unreliable. In their lower branches, the CMS tree based on 

calcium predicted lakes with moderate calcium levels (1.2-1.6 mg/L) to be more likely to contain 
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CMS than those with higher levels (1.6-5.3 mg/L). Similarly, the tree based on saturation state 

predicted lakes nearer to highways to be less likely to contain CMS. Since these results were 

likely cases of overfitting, we used additional pruning to produce more reliable trees, each of 

which has four nodes. Unlike trees for CMS, those for BMS tended to be over-pruned: two of the 

trees from the initial pruning process had just a single node (no splits). In these cases, the 

secondary pruning method selected trees with just one split to generate predictions. The trees 

selected as best overall when all calcification variables were included were the saturation state 

model for BMS (Fig. 4c) and conductivity models for CMS (Fig. 4d) and RC (Fig. 4g). None of 

these models contained more than one calcification predictor.  

 The structures of the trees reveal how each variable affects the species’ distribution. In 

each of the trees predicting BMS distributions (Fig. 4a-c), the first split was based on area, where 

lakes larger than 189 ha were predicted to contain BMS. For conductivity and calcium, area 

formed the only split (Kappa=0.55 for each). When saturation state was included in the tree 

(Kappa=0.64), it became an important variable to distinguish between BMS presence and 

absence in large lakes, where large lakes with saturation states below 3.8 were still predicted to 

be absent of BMS. However, saturation state’s inclusion only led to two additional accurate 

predictions (Fig 4a-c). For CMS (Fig. 4d-f), the first node in the trees was always the 

calcification variable. When conductivity was used, (Kappa=0.47), it formed the only split with a 

threshold of 67 µS/cm determining presence/absence. In those based on calcium (Kappa=0.54) 

and saturation state (Kappa=0.55), additional splits were made by maximum depth, the presence 

of public access, and distance to highway, where CMS presences tended to be associated with 

shallower, accessible lakes near highways, assuming they had sufficient calcification conditions. 

Like those of CMS, the trees for RC (Fig. 4g-i) also included calcification variables at their first 
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nodes. Again, conductivity (Kappa=0.68) formed the only split in its tree, where RC were 

predicted to be present in lakes above 102 µS/cm. Similarly, the saturation state tree for RC 

(Kappa=0.61) had only one split, where RC were predicted to be present in lakes with saturation 

state values above 0.27. In the tree based on calcium (Kappa=0.68), the calcium threshold was 

8.1 mg/L, but predictions for high calcium lakes also depended on maximum depth, where RC 

were associated with lakes deeper than 8.4 m.  

The predictive abilities of each variable are made apparent in our analysis of variable 

importance. Along with lake area, the calcification variables had the most predictive power, 

although less so for BMS (Fig. 5). Conductivity was the most important predictor for CMS and 

RC in pruned trees (Fig. 5b), although calcium was slightly better for CMS in unpruned trees 

(Fig. 5a). Area was the best predictor for BMS in both pruned and unpruned trees (Fig. 5). 

Saturation state was consistently important, but was never the best predictor (Fig 5). This general 

result was consistent in both unpruned (Fig. 5a) and pruned trees (Fig. 5b). 

Discussion 

Classification trees for BMS, CMS, and RC all performed well in predicting species 

occurrence, with all Kappa’s falling between 0.47 and 0.68, where models with Kappa’s below 

0.4 are considered poor, between 0.4 and 0.75 are good, and above 0.75 are excellent (Landis & 

Koch, 1977). Although each species exhibited distributions that were described in part by 

calcification variables, our expectation that saturation state would improve classification trees 

was not supported. Instead, the best overall trees identified by misclassification rate and Kappa 

used saturation state only for BMS and instead used conductivity for CMS and RC (Fig. 3). In 

trees where all calcification variables were included, our results analyzing variable importance 

demonstrated that conductivity and calcium were at least as good as saturation state at predicting 
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species occurrence (Fig. 5). Due to the heterogeneity in landscape position in our study region 

that drives heterogeneity in calcification conditions (Kratz et al., 1997), the importance of 

calcification variables in the models is not surprising. In a different region where habitat 

suitability is more limited by other variables, such as dissolved oxygen or temperature, these 

would likely be more important in classification trees. We also found the same general outcome 

using multiple logistic regressions (results not shown), but CART allowed for easy visual 

evaluation of our expectation that predictions for lakes with near-threshold conditions would 

improve when saturation state was a used as a variable (Fig. 1).  

We predicted that saturation state would improve the accuracy of distribution models for 

lakes with near-threshold conditions, since extremely high or low values of calcification would 

be adequately represented by surrogates (Fig. 1c,d). Calcification values formed the first node of 

classification trees for CMS and RC but not for BMS, which was better predicted by lake area. 

However, nodes further down the trees were rarely used to describe near-threshold calcification 

conditions (Fig. 4). The one exception was for BMS, whose classification tree had area as the 

initial node with a threshold of 189 ha. Lakes below that threshold were then predicted by 

saturation state, where lakes below 3.8 were typically absent of BMS. However, this tree only 

predicted two more lakes correctly than those based on area alone. For CMS and RC, 

calcification variables were only used at the first nodes, indicating that their distributions were 

best described by the wide calcification gradient alone, and that using saturation state to make 

predictions for lakes with near-threshold conditions did not improve models.  

Our results may have been influenced by our snapshots of lake conditions, which may 

have disregarded the much more variable environment that the organisms actually experience. 

We made all of our measurements during midday in the summer. However, seasonal changes in 
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temperature and metabolism-driven diel changes in pH likely cause changes in saturation state 

that are independent of changes in conductivity and dissolved calcium. Additionally, changes in 

precipitation and relative groundwater contribution to these lakes could cause all variables to 

vary by changing the delivery of weathering-derived bicarbonate, calcium and other solutes 

(Webster et al., 2000). These dynamics cause carbonate and pH to vary at multiple scales – diel, 

seasonal, annual, and decadal – simultaneously (Hanson et al., 2006). Thus, saturation state 

likely follows similar complex dynamics, and may not be adequately represented by a one-time 

measurement. Populations may be linked more closely to seasonal minima/maxima or average 

conditions than to snapshots. Furthermore, this one-time measurement is unlikely to be perfectly 

accurate if there was error in our estimates of pH or DIC, both of which are included in the 

calculation of saturation state. These sources of variability and uncertainty in our estimate of 

saturation state may partially explain why species occurrences were often better predicted by 

conductivity or calcium, but nonetheless do not change our conclusion that these surrogates 

adequately replace our estimates of saturation state in distribution models. 

In addition to influencing species distributions, the calcification conditions of a lake 

influence organismal and population-level processes. Crawling speed and aerial respiration of 

snails decrease when the potential for calcification is low, while cutaneous respiration increases 

(Dalesman & Lukowiak, 2010). Shell strength of snails and mussels is compromised at low 

levels (Czarnołęski et al., 2006; Glass & Darby, 2009). High shell strength deters predation from 

fish and crayfish (Lewis & Magnuson, 1999; Czarnołęski et al., 2006), so poor calcification 

conditions may also enable higher predation rates or altered antipredator behaviors, which was 

shown for RC at low calcium conditions (Edwards et al. 2013). These organismal and 

population-level responses to low calcification potential are likely to be more sensitive to minute 
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differences in saturation state than species distributions, which are controlled by the integration 

of variable abiotic and biotic conditions and, for introduced species, the propagule pressure or 

colonization potential. We did not test for organismal or population-level effects, but may have 

been more likely to see different responses to our calcification variables than we did using 

species distributions.  

Although saturation state was not the best predictor, it was selected in classification trees 

that achieved low misclassification rates and high Kappa’s. While thresholds of conductivity and 

dissolved calcium are often determined experimentally (i.e., what is the lowest calcium level in 

which a species can survive?) or through distribution models (i.e., at what level of calcium is 

there a significant change in the probability a species will be present?), thresholds for saturation 

state are unknown for most freshwater species. Our results allow us to infer distribution-based 

thresholds, but not the true biological thresholds. Since other collinear variables may limit a 

species’ presence at any one location, the true suitability threshold may not be revealed in a 

species distribution. In classification trees, saturation state formed thresholds at values of 3.8 for 

BMS (after accounting for lake area), 0.00015 for CMS, and 0.27 for RC (Fig 4). These values 

are likely higher than their physiological thresholds because lakes with low saturation state that 

may be suitable are also smaller and less likely to receive propagules. Similarly, invasion of the 

golden mussel in Brazilian rivers is considered low-risk only where saturation state is below 

0.0001 (Oliveira et al., 2010). To calculate saturation states, we used Ksp’s for the calcite mineral 

phase, whereas saturation states for aragonite under the same conditions are lower. These results 

may indicate that the actual suitability thresholds for each species may be below 1.0, indicating 

that they may maintain CaCO3 exoskeletons even when chemical conditions may favor 
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dissolution. Indeed, all three species did occur in lakes with saturation states below 1.0 (minima 

of 0.00015 for CMS, and 0.04 for BMS and RC).  

Suitability thresholds of saturation state below 1.0 for calcifying organisms are not 

unprecedented. Corals are able to up-regulate pH, which effectively increases saturation state at 

the site of calcification (McCulloch et al., 2012). Crayfish may be able to construct hard 

carapaces by forming gastroliths – extracellular calcium carbonate storage deposits – that store 

amorphous calcium carbonate in which the calcium is readily available prior to molting (Akiva-

Tal et al., 2011). Additionally, the enzyme carbonic anhydrase has been demonstrated to be 

important in CaCO3 formation in many taxa including mollusks, crustaceans, birds, and others 

(Common, 1941; Costlow Jr., 1959; Freeman, 1960; Giraud, 1981; Henry & Kormanik, 1985). 

Carbonic anhydrase increases the supply of bicarbonate and carbonate ions (Horne et al., 2002; 

Maren, 2006) and mobilizes CaCO3 reserves during calcification (Istin & Girard, 1970; Henry & 

Kormanik, 1985), allowing for mineralization even when ambient carbonate supplies are low 

(Horne et al., 2002). However, maintenance and construction of CaCO3 in sub-optimal 

conditions may be energetically costly, so populations may persist but be impacted in other 

ways, as discussed above. By focusing on species presence and absence, our study ignored other 

potential impacts of low saturation states on individuals and populations. Future research could 

test whether populations are affected by measuring exoskeleton strength or structure, mortality 

due to predation, and behavioral traits like crawling speed across a range of saturation states.  

A core objective of this work was to determine whether biologically mechanistic 

variables can improve species distribution models that traditionally use surrogate variables. 

Surrogates may often be used in models because they are more easily measurable and thus 

available for a higher number of sites than mechanistic variables. Data on many environmental 
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variables at broad spatial scales are becoming increasingly easy to access (via remote sensing for 

instance). Data availability for a higher number of sites and over longer time periods enables 

models with better spatial and temporal coverage, but these may come at the cost of accuracy at 

specific sites or times if surrogate variables are used. In our study, surrogate measures of the 

potential for calcification were at least as powerful in distribution models as the mechanistic 

variable they replaced. In fact, conductivity may the best variable related to calcification to use 

in distribution models across lakes with a broad range of calcification potential because it is the 

most easily-measured. However, comparing across narrower ranges of calcification potential or 

using alternative responses such as species abundance may lead to different conclusions about 

the effectiveness of surrogates. Similarly, not all mechanistic variables may be as reliably 

replaced by surrogates, so their use in distribution models ought to be continually evaluated.  
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Figure Legends: 

Fig. 1 a,b) Scatterplots of surrogates (conductivity (a) and calcium (b)) and saturation state, with 

values plotted on the log scale and raw values shown on the axes. Solid lines indicate the 

regression lines (conductivity: p<0.001 , R2= 0.72; calcium: p<0.001 , R2=0.78), dashed lines 

indicate a hypothetical threshold at a saturation state of 1.0 (log of sat. state = 0), and the 

brackets indicate the range in values surrogates may take at that threshold. c,d) Hypothetical 

classification trees demonstrate a potential consequence of this variation in the surrogate around 

the biological threshold. In c) the tree based on conductivity alone incorrectly predicts 10 of 80 

lakes, whereas in d) saturation state allows these lakes to be predicted correctly, even if the 

surrogate or another variable forms the first node of the tree. Each split in the tree lists the 

variable and its associated threshold, which determines which branch to follow for a given lake. 

The resulting nodes, their presence/absence predictions, and the number of lakes misclassified 

out of the total in that node are noted in the boxes 

Fig. 2 Maps of surveyed lakes and the presence (black points) or absence (white points) of a) 

banded mystery snail, b) Chinese mystery snail, and c) rusty crayfish in Vilas and Oneida 

counties of Wisconsin, USA. Inset indicates the surveyed counties in dark gray within the 

Laurentian Great Lakes region, USA 

Fig. 3 Boxplots of calcification variables and others used in classification trees. The first row 

displays those variables that are related to calcification potential: a) conductivity, b) dissolved 

calcium, c) saturation state, and d) pH, which is kept out of the classification trees because it is 

used in calculating saturation state. The second row shows other potentially important variables 

including: e) lake area, f) distance to highway, g) distance to nearest road, h) maximum depth, 
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and i) Secchi depth. Boxplots display minimum, 1st quartile, median, 3rd quartile, and maximum 

non-outlier observations 

Fig. 4 Classification trees for each species (by row; a-c) banded mystery snail, d-f) Chinese 

mystery snail, g-i) rusty crayfish) and for each calcification variable that was used (by column – 

conductivity: a, d, g; calcium: b, e, h; saturation state: c, f, h). Shaded boxes indicate trees that 

were selected as the best overall trees when all calcification variables were included in model 

fitting, as well as for the corresponding calcification variable on its own. Tree structure follows 

that shown and described in figure 1 and units of measure are shown in figure 3. 

Fig. 5 Calculated importance for each variable used in each (a) unpruned and (b) pruned 

classification trees, the latter of which are displayed in figure 4. A variable’s importance is the 

sum of the decrease in error (number misclassified) by using the variable either as a primary 

node, or as a substitute for the primary splitting variable. Values of variable importance can be 

thought of as the number of lakes correctly predicted by the model due specifically to that 

variable, where the improvement at a split is measured against assigning all lakes the majority 

response value 

 

  



68 
 

 
 

Figure 1 

  

Fig. 1 a,b) Scatterplots of surrogates (conductivity (a) and calcium (b)) and saturation state, with 

values plotted on the log scale and raw values shown on the axes. Solid lines indicate the 

regression lines (conductivity: p<0.001 , R2= 0.72; calcium: p<0.001 , R2=0.78), dashed lines 

indicate a hypothetical threshold at a saturation state of 1.0 (log of sat. state = 0), and the 

brackets indicate the range in values surrogates may take at that threshold. c,d) Hypothetical 

classification trees demonstrate a potential consequence of this variation in the surrogate around 

the biological threshold. In c) the tree based on conductivity alone incorrectly predicts 10 of 80 

lakes, whereas in d) saturation state allows these lakes to be predicted correctly, even if the 

surrogate or another variable forms the first node of the tree. Each split in the tree lists the 

variable and its associated threshold, which determines which branch to follow for a given lake. 

The resulting nodes, their presence/absence predictions, and the number of lakes misclassified 

out of the total in that node are noted in the boxes  
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Figure 2 

 

 

Fig. 2 Maps of surveyed lakes and the presence (black points) or absence (white points) of a) 

banded mystery snail, b) Chinese mystery snail, and c) rusty crayfish in Vilas and Oneida 

counties of Wisconsin, USA. Inset indicates the surveyed counties in dark gray within the 

Laurentian Great Lakes region, USA 
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Figure 3 

 

 

Fig. 3 Boxplots of calcification variables and others used in classification trees. The first row 

displays those variables that are related to calcification potential: a) conductivity, b) dissolved 

calcium, c) saturation state, and d) pH, which is kept out of the classification trees because it is 

used in calculating saturation state. The second row shows other potentially important variables 

including: e) lake area, f) distance to highway, g) distance to nearest road, h) maximum depth, 

and i) Secchi depth. Boxplots display minimum, 1st quartile, median, 3rd quartile, and maximum 

non-outlier observation 
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Figure 4 

 

Fig. 4 Classification trees for each species (by row; a-c) banded mystery snail, d-f) Chinese 

mystery snail, g-i) rusty crayfish) and for each calcification variable that was used (by column – 

conductivity: a, d, g; calcium: b, e, h; saturation state: c, f, h). Shaded boxes indicate trees that 

were selected as the best overall trees when all calcification variables were included in model 

fitting, as well as for the corresponding calcification variable on its own. Tree structure follows 

that shown and described in figure 1 and units of measure are shown in figure 3. 
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Figure 5 

 

 

Fig. 5 Calculated importance for each variable used in each (a) unpruned and (b) pruned 

classification trees, the latter of which are displayed in figure 4. A variable’s importance is the 

sum of the decrease in error (number misclassified) by using the variable either as a primary 

node, or as a substitute for the primary splitting variable. Values of variable importance can be 

thought of as the number of lakes correctly predicted by the model due specifically to that 

variable, where the improvement at a split is measured against assigning all lakes the majority 

response value 
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CHAPTER 4 

 

HOW INVADED ARE WE? OCCURRENCE RECORDS UNDER-REPRESENT 

PREVALENCE OF INVASIONS 

 

To be submitted for publication* with coauthors: Scott Van Egeran, Jake Vander Zanden  

*Target journal: Frontiers in Ecology and the Environment 

______________________________________________________________________________ 

 

Abstract: 

Invasive species are a leading driver of global change. Despite much research aimed at 

understanding their ecology and impacts, we have rarely assessed a fundamental feature of 

invasive species across landscapes: their prevalence. Invasive species prevalence may be 

important in making management decisions and assessing the scale of impacts. Moreover, we 

traditionally rely on invasive species occurrence datasets to inform management and predictive 

models, but these datasets may be vulnerable to data gaps, and are rarely compared to systematic 

surveys. In this study, we contrast existing species occurrence records with several estimates of 

AIS prevalence.  We determine the prevalence of six invasive species (Chinese mystery snail 

[Bellamya chinensis], banded mystery snail [Viviparus georgianus], Eurasian watermilfoil 

[Myriophyllum spicatum], curly-leaf pondweed [Potamogeton crispus], rusty crayfish 

[Orconectes rusticus], and zebra mussel [Dreissena polymorpha]) from a stratified sample of 

458 lakes in Wisconsin by scaling lake-specific rates of invasion up to the statewide scale.  We 

found that prevalence, defined as the proportion of lakes invaded out of the total number of lakes 

in the state, is 39.0%, yet occurrence records document invasive species in 11.0%.  This degree 

of underrepresentation was present across all species and lake types assessed, but strongest for 

small, inaccessible lakes and lesser-known species, suggesting that invasive species datasets may 

have data gaps similar to those in citizen science. Such data gaps may cause poor model 
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performance in distribution models, sub-optimal management decisions, and low estimates of 

overall invasive species impacts. Moreover, the difference between records and reality may be 

more extreme in states with less funding for invasive species management.  

Introduction  

Invasive species have frequent and sometimes high impacts on organisms, populations, 

communities, ecosystems, and human economies (Pyšek and Richardson 2010; Kumschick et al. 

2015; Gallardo et al. 2015). Globally, invasions homogenize the global biota and contribute to 

the development of novel communities and ecosystems (Olden 2006; Qian and Ricklefs 2006; 

Ricciardi 2007). Because many of these effects are undesired, the cumulative economic costs 

exceed $120 billion annually in the US alone (Pimentel et al. 2005). While aggregate impacts are 

undoubtedly substantial, quantitative estimates are likely not well-constrained, because we have 

rarely tried to answer a key question: how common are invasive species on our landscapes? 

Fundamentally, how can we have a good understanding of a species’ impacts, and thus make 

informed decisions on allocating management resources, without a good understanding of how 

common invasive species are across landscapes?   

We can define prevalence simply as the proportion of sites invaded within a range or 

other geographic region of interest. In addition to being a fundamental aspect of our 

understanding of invasive species, an accurate picture of the scale of invasion may benefit 

management effectiveness, which relies on accurate predictions of spread (Vander Zanden and 

Olden 2008).  If species distribution data are incomplete and prevalence is therefore 

underestimated, we do not have accurate information about source of spread, which may lead to 

poor model predictions and ineffective prevention efforts. Additionally, invasive species 

prevalence may affect management strategies. For instance, when a species is undergoing 
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secondary spread, if it is present in a majority of sites, a defensive approach where sites without 

the invasive should be protected, but if the species is rare, an offensive approach where 

propagules from the few invaded sites are turned away at the source is optimal, all else being 

equal (Potapov et al. 2007; Drury and Rothlisberger 2008).   

There are surprisingly few studies that have explicitly calculated invasive species 

prevalence, potentially due to insufficient data. Data on invasive species distributions and 

occurrences are compiled and housed in several publicly accessible databases, including MISIN 

(Midwest Invasive Species Information Network), GISIN (Global Invasive Species Information 

Network), USGS BISON (Biodiversity Information Serving Our Nation; not specific to invasive 

species), and EDDMapS (Early Detection and Distribution Mapping System). The goal guiding 

these databases is to include every known occurrence of each invasive species to inform rapid 

response efforts to new invasions. However, in order to accurately estimate prevalence, datasets 

must capture the variability present within a study area. Few invasive species occurrence datasets 

meet this standard. Of 252 datasets on invasive species presence or distributions, only 19% were 

deemed to have high quality spatial coverage (Crall et al. 2006). Even if a dataset does have full 

spatial coverage, the environmental heterogeneity within the study area may not be fully 

covered. Moreover, these data are often opportunistically collected or originate from a range of 

sources, including citizens, and are thus may be limited in their applicability, as other citizen 

science datasets sometimes demonstrate biased spatial and taxonomic coverage (Gardiner et al. 

2012). Comparisons of such datasets to more complete data collected systematically are rare (but 

see (Szabo et al. 2012). Nonetheless, these datasets often form the empirical foundation on 

which many management decisions rest.  
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In contrast to potentially under-representative and/or biased species occurrence datasets, 

systematic sampling across various habitat or environmental strata can provide reliable 

prevalence estimates. For instance, information on the lionfish invasion traditionally comes from 

diver-based surveys, creating a depth-based bias, and data from stratified surveys revealed 

lionfish occurrence at depths beyond those reached by recreational divers, and thus, higher 

estimates of prevalence (Switzer et al. 2015). More generally, systematic or stratified sampling 

can be effective for informing species distribution models (Hirzel and Guisan 2002) and making 

inferences across an entire study region (Bunce et al. 1983; Rew et al. 2006).  

Here, we use field surveys on a stratified sample of lakes to test whether existing records 

accurately represent the prevalence of several aquatic invasive species (AIS) in Wisconsin lakes. 

We compare prevalence estimates to the results of stratified surveys, using species that are 

thought to be relatively common or impactful in the state and which we predict to be well-

documented in existing species occurrence records.  Species include zebra mussels and Eurasian 

watermilfoil, which are often viewed as the AIS poster-children in the state, Chinese mystery 

snails and banded mystery snails, which are morphologically unique and visually conspicuous, 

and rusty crayfish and curly-leaf pondweed, which are moderately conspicuous and moderately 

well-known.  Thus, we expect any differences in prevalence estimates to be conservative.  

Methods 

Data collection 

Wisconsin, USA is a lake-rich landscape with 14,364 lakes, ponds, or reservoirs greater 

than 1 ha in area (WDNR/USGS Hydrography Layer 2005).  To assess invasion of these lakes, 

we combined the results of four separate field surveys conducted between 2007 and 2012.  Two 
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regional (3-5 counties) field surveys sampled nearly all accessible lakes in the regions.  Another 

regional survey in the Northern Highlands Lake District led by the authors used a stratified 

random sample of lakes from the region, which included isolated lakes (greater than 115 meters 

from the nearest road with less than 20% development in a 100m buffer).  A survey led by the 

Wisconsin Department of Natural Resources selected lakes using a random selection or lakes 

with boat launches.  After all surveys were completed, lakes were combined into one dataset and 

stratified according to the presence of a boat launch, high or low conductivity, and large or small 

surface area, plus isolated lakes. This stratification resulted in 9 lake types ranging from highly 

accessible and environmentally suitable to those with near-zero human activity during the open 

water season.   

We surveyed all lakes for the presence or absence of several common AIS. Species 

surveyed included Chinese mystery snail (CMS; Bellamya chinensis), banded mystery snail 

(BMS; Viviparus georgianus), Eurasian watermilfoil (EWM; Myriophyllum spicatum), curly-leaf 

pondweed (CLP; Potamogeton crispus), rusty crayfish (RC; Orconectes rusticus), and zebra 

mussel (ZM; Dreissena polymorpha) (Figure 2 D-I, respectively).  These species numerically 

dominate invasions in the state, making up 2,312 of 2,564 known AIS populations 

(http://dnr.wi.gov/lakes/invasives/, March, 2012).  One survey did not target RC, and several 

sampling events at a small number of additional lakes excluded certain species, so these lakes 

were left out of the species-specific analyses.  Since these species are visually conspicuous in 

shallow water, littoral zones were surveyed by snorkeling or canoeing.  In the two regional 

surveys, the entire littoral zone was surveyed.  In the statewide and NHLD surveys, boat 

launches and 5 sites among different shoreline habitats were snorkeled.  When low water clarity 
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interfered with visibility, 6 D-net samples of the benthos (~0.25m^2 each) were examined at 

each site.   

Invasive species records 

We compared the results of our field surveys to previously documented invasions. We 

retrieved datasets (as of November, 2013) from four different public invasive species databases, 

including MISIN (Midwest Invasive Species Information Network), GISIN (Global Invasive 

Species Information Network), USGS BISON (Biodiversity Information Serving Our Nation; not 

specific to invasive species), and EDDMapS (Early Detection and Distribution Mapping 

System). All data consisted of documented invasions by each species with associated geographic 

coordinates, which we spatially merge with a map of Wisconsin lakes. We considered any 

occurrence inside of or within 100 m of a lake to be an invasion in that lake. This process 

generated the list of lakes that were invaded by each species according to each dataset. In 

addition to these datasets, we retrieved data from the Wisconsin Department of Natural 

Resources, who aggregates invasive species occurrence records for informing management 

efforts.  These records document all confirmed occurrences of invasive species in the state’s 

waterbodies.  Data can come from many sources, but encompass results of field surveys 

conducted by the DNR, local groups, and researchers, standardized sampling by a network of 

over 1000 volunteers, and voluntary citizen reports (http://dnr.wi.gov/lakes/invasives/).   

For each database of invasive species records, we compared the number of lakes invaded 

by each species across all lakes in the state. We also compared the number of lakes invaded by 

each species in our field surveys to the number invaded for the same set of lakes in each 

occurrence dataset.  

http://dnr.wi.gov/lakes/invasives/
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Invasive species prevalence 

By scaling up the survey results from our stratified random sample of lakes, we estimated 

the proportions of lakes invaded across the state, for each lake type and for each species.  We 

calculated the proportion of each lake type invaded and the associated 95% Wilson score 

confidence interval.  To estimate the total proportion of Wisconsin lakes invaded, we summed 

the products of the proportion of each lake type invaded and the number of lakes in that type 

across the state (among 8004 lakes with data needed for classification).  We generated a 95% 

confidence interval for the overall proportion invaded by propagating the standard error 

components of each Wilson score confidence interval (square root of sum of squared standard 

errors).   

We then used these estimates of prevalence to make more detailed comparisons with 

occurrence records. We chose to focus these comparisons on the WDNR records, because they 

are used directly in management decisions. We compared our prevalence estimate among the 

8,004 classifiable lakes in Wisconsin to the proportion of those lakes identified as being invaded 

in WDNR records. We made the same comparison for each specific species. Additionally, we 

calculated the proportion of each lake type known to be invaded, based on WDNR records, and 

multiplied by the number of lakes in that lake type across the state.  

Results  

Survey results 

Of 458 lakes surveyed, 338 had at least one invasive species (Figure 1a). CMS were the 

most commonly found species (35.6% of lakes), followed by BMS (31.9%), CLP (31.2%), 

EWM (26.2%), and RC (12.4%), with ZM being the most rare (5.2%) (Table 1).  
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Occurrence records 

Occurrence records demonstrated generally similar invasion statistics (Table 1). MISIN 

and GISIN, in particular, report very similar numbers, only differing by a maximum of four lakes 

across the state. BISON, on the other hand, contained very few occurrences of CMS, EWM, and 

CLP, and the highest number of occurrences of RC among non-DNR records. EDDMapS 

prioritizes invasive plants in its datasets, and resultingly had zero occurrences for CMS, BMS, 

RC, or ZM, but the numbers for EWM and CLP were comparable to those from MISIN and 

GISIN. The numbers of lakes invaded in WDNR records were higher than those from public 

databases for each species, except ZM. WDNR records indicate EWM as the most common AIS 

in the state, as it is present in 470 lakes, followed by CLP in 338 lakes, CMS in 291 lakes, RC in 

244 lakes, BMS in 172 lakes, and ZM in 90 lakes.  

Among sampled lakes, the patterns among the four public databases remained the same 

as above, and WDNR records had the highest number of occurrences for each species, including 

ZM. However, none of the records databases, including the WDNR dataset, contained nearly as 

many occurrences as documented in field surveys. Compared to the surveys, the WDNR dataset 

included only 68 of 163 occurrences of CMS, 78 of 146 occurrences of BMS, 83 of 143 

occurrences of CLP, 46 of 57 occurrences of RC, 104 of 120 occurrences of EWM, and 20 of 24 

occurrences of ZM.  

Invasive species prevalence across Wisconsin and among lake types: Surveys vs. records 

In our field surveys, lakes with public access were more invaded than those with only 

private access (Figure 1b).  Isolated lakes were entirely uninvaded (Figure 1b). Within access 

classes, high conductivity and large surface area were associated with higher invasion rates 
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(Figure 1b).  Similarly, when comparing only among lakes of similar size and conductivity, the 

presence of boat launches was also associated with higher invasion rates (Figure 1b). These 

patterns largely held true for single species patterns. However, relative to other species, 

especially EWM and ZM, CMS were notably present at higher rates in less accessible lakes 

(Figure 2).   

Although 338 surveyed lakes had at least one non-native species, only 227 were indicated 

as invaded in WDNR records (Figure 1a).  For all lake classes (except the isolated lakes) and 

species, invasion rates were underrepresented by WDNR records. The differences between 

prevalence estimates for surveys and records was largest for small, less accessible lakes and for 

CMS, BMS, and CLP than large lakes with boat launches and EWM, RC, and ZM (Figures 

1b;2).  

We can also compare estimates of statewide invasive species prevalence between WDNR 

records and surveys. In WDNR records, 955 of the 8,004 classifiable lakes in Wisconsin are 

listed as invaded, so we would estimate 11.9% of lakes in Wisconsin to be invaded (11.9%).  

From our stratified sample of lakes in Wisconsin, where we multiply the rate of invasion in each 

lake type by the number of lakes of that type across Wisconsin, and sum across lake types, we 

estimate actual invasive species prevalence to be 39.0% (95% CI bounds: 36.4-49.2%).  The 

field surveys, therefore, increase our estimate of invasive species prevalence by a factor of 3.28. 

In the same comparison, the prevalence of each species increased by factors of 1.10 (ZM), 1.3 

(EWM), 1.7 (RC), 3.2 (CLP), 7.6 (BMS), and 5.1 (CMS), for final prevalence estimates of 

1.16%, 7.83%, 6.17%, 13.29%, 15.87%, and 18.47%, respectively.   

Discussion 
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These results show that invasive species are much more prevalent than may be inferred 

from existing databases of occurrence records. Occurrence records managed by the Wisconsin 

DNR were slightly higher quality than publicly accessible databases (MISIN, GISIN, BISON, 

EDDMapS), but still failed to document many invasive species found in a stratified sample of 

Wisconsin lakes. We estimate prevalence of invasive species in Wisconsin lakes at 39%, 

whereas just 11.9% of the same lakes were previously listed as invaded. Although the records 

consistently under-represented the prevalence of invasions, the degree of under-representation 

varied among species and lake types. These results highlight the considerable scale at which 

invasions occur across our landscapes. Due to the substantial negative impacts of invasive 

species, our results also suggest that the landscape-wide impacts of invasions may be even more 

severe than we would infer from invasive species occurrence records.  

Differences among species and lake types in the degree of mismatch between records and 

surveys are intuitive given standard data sources. Invasive species occurrence records, like much 

biodiversity data, accumulates occurrences from various data sources, including from the public 

and citizen scientists. Such datasets may be biased towards more easily accessible areas and 

toward charismatic or targeted rare species. For instance, citizen scientists studying lady beetles 

tended to misidentify common species as rare species (Gardiner et al. 2012). Additionally, plant 

observations are more frequently near roads than in a random distribution (Kadmon et al. 2004), 

and occurrences of passerine birds in sub-Saharan Africa are clustered around cities, roads, and 

rivers (Reddy and Dávalos 2003). Although these examples are not for invasive species datasets, 

the same patterns apply. Because the data are not collected systematically, they may be clustered 

in more easily accessible areas. We found that invasive species records were most reliable on 

large, easily accessible lakes. The difference in prevalence estimates between records and 
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surveys increased as lakes got smaller and less accessible. There are fewer boaters on such lakes 

(Reed-Andersen et al. 2000), which reduces the probability that any invasive species will be 

detected and reported. Additionally, we found that occurrence records were most reliable for 

Eurasian watermilfoil and zebra mussels, which are the poster-children for AIS awareness in 

Wisconsin. Thus, they may be more readily identified and reported than lesser-known species 

like Chinese and banded mystery snails, which despite being the most common species in our 

surveys, demonstrated the largest differences between records and surveys, with prevalence 

estimates 5.1 and 7.6 times those that would be made from the records. These results suggest that 

public awareness of invasive species issues may in fact improve data quality. In addition to being 

the poster-children in invasive species outreach, zebra mussels and Eurasian watermilfoil likely 

have much higher impacts than these snails (Horsch and Lewis 2009; Solomon et al. 2009; 

Higgins and Vander Zanden 2010). Thus, records may be more reliable for highly impactful 

species.  

Invasive species occurrence records, despite the limitations shown here, are becoming an 

increasingly common source of knowledge for invasion biology and management. There are 

many different databases in addition to those analyzed in this study, including Invasive Plant 

Atlases, the Weed Information Management System, the National Biological Information 

Infrastructure Invasive Species Information node, the Global Organism Detection and Mapping 

system, and the National Institute for Invasive Species Science database. These databases have 

been set up by agencies and universities, with several groups cooperating and sharing data 

through the Inter-American Biodiversity Information Network’s Invasive Information Network 

(Simpson et al. 2009). As is the case in Wisconsin, environmental agencies may also keep their 

own dataset. GPS tools, websites, and cell phone apps have been data submission for some of 
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these databases very simple for citizen contributions (Rice 2007; Graham et al. 2007). Thus, it is 

likely that these datasets will continue to grow and be widely utilized by researchers and 

managers. However, our results highlight that despite the high numbers of occurrences reached 

in some of these databases, they still may vastly under-represent local invasive species 

distributions and be treated with caution.  

Perhaps the most common use of these data in research is to fit and validate invasive 

species distribution models. Such models predict the spread of invasive species to new areas, and 

thus inform prioritization efforts for prevention (Peterson and Vieglas 2001; Guisan and Thuiller 

2005). However, datasets with incomplete environmental coverage – as we have demonstrated is 

the case for Wisconsin invasive species data with respect to small, inaccessible lakes – can 

strongly influence predicted responses and reduces the applicability of models to other areas and 

into the future (Thuiller et al. 2004). Thus, the poor quality of these datasets may worsen model 

predictions when used inappropriately. However, invasive species occurrence data are still a 

valuable contribution and should not be ignored. Our results show that simple, stratified surveys 

can reveal data gaps. Such surveys can also be used to fill data gaps and be used in conjunction 

with invasive species records to produce more reliable distribution models (Jarnevich et al. 2006; 

Szabo et al. 2012). Thus, we encourage cautious use of widely available species occurrence data 

in invasive species distribution modeling and, in particular, suggest carefully evaluating data for 

any data gaps that may arise with opportunistic sampling.  

Estimating invasive species prevalence is rare, but it is a basic and crucial component in 

understanding invasions across landscapes. For instance, it can affect whether management 

should prioritize offensive or defensive management (i.e., containment vs. prevention) (Potapov 

et al. 2007; Drury and Rothlisberger 2008). Our results show that prevalence estimates can vary 



85 
 

 
 

by factors ranging from 1.1 to 7.6, with the overall prevalence of AIS being 3.3 times higher than 

indicated in species occurrence records. These degrees of under-representation by occurrence 

records may cause managers to opt for offensive management, thinking that the species is/are 

only present at a small number of sites, but, depending on the costs of each strategy, it may 

actually be optimal to use the opposite strategy. 

Likewise, prevalence can be used as an indicator of the scale of invasions, and can thus 

be used to evaluate costs and inform risk assessments. In order to accurately assess the costs of 

invasions, whether ecological impacts or an economic valuation of costs, we must have an idea 

of how many or what proportion of sites are invaded. In formalizations of a species’ impact, 

prevalence is usually not directly accounted for.  Parker et al. (1999) presented a useful 

framework for calculating species impact, wherein impact is the product of the species’ invaded 

range area, its per capita impacts and its average abundance.  Although prevalence is not include 

in this model or comparable models (Thomsen et al. 2011) directly, it is embedded within the 

abundance term, where a species’ average abundance across its range is a function of the 

proportion of sites it has invaded within the range (i.e., prevalence). In impact assessments that 

involve summing across habitats or sites (Thiele et al. 2010; Barney et al. 2013; Latzka et al. in 

revision), an accurate picture of the prevalence of the invasive species is crucial. 

Underrepresenting prevalence by a factor of 3.3 in such models would lead to estimates of 

impact that would be 3.3 times less than the species’ actual impact. Thus, we emphasize the 

importance of estimating and reporting invasive species prevalence to better inform our general 

understanding of invasive species impacts.    

In addition to coordinating a network of over 1,000 volunteers to collect invasive species 

data on lakes, Wisconsin spent over US$12 million on aquatic invasive species management and 
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research in 2009 and 2010 (Rosaen et al. 2012). In contrast, the other Great Lakes states spent 

between $92,732 (Ohio) and $7.8 million (Minnesota) (Rosaen et al. 2012). Such expenditures 

and data collection efforts could indicate that invasive species records for Wisconsin would be 

reliable. However, even with these expenditures, invasive species prevalence in records is 

underrepresented by a factor of 3.3. Given the lesser spending in other states, data gaps are likely 

to be much larger. Thus, we expect that our finding that invasive species records underrepresent 

the prevalence of invasive species is not unique, and compared to other regions, may actually be 

the best-case scenario.  

In this study, we surveyed a stratified sample of lakes and found invasive species 

prevalence to be approximately 39%, which was 3.3 times higher than indicated in the best of 

several invasive species records databases. This surprising mismatch stresses that are knowledge 

of even well-studied invasive species is incomplete, and that our estimates of their impacts are 

poorly constrained, because we do not have reliable data to infer the basic prevalence of invasive 

species. With poor distribution data and under-representative picture of prevalence, management 

efforts may be undermined by poor distribution model performance. In areas with less spending 

and poorer data on invasive species, mismatches between occurrences records and reality may be 

even greater.  
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Table 1. Number of lakes invaded by each species according to various invasive species 

occurrence databases, Wisconsin DNR records, and survey results for all lakes in Wisconsin and 

surveyed lakes 

 Number of documented invasions for all lakes in Wisconsin (n=14,364):  

 Database:  

Species BISON GISIN MISIN EddMAPS WDNR (verified and vouchered)  

BMS 164 171 171  172  

CMS 0 229 229  291  

EWM 6 517 513 500 470  

CLP 5 365 362 358 338  

RC 164 129 129  244  

ZM 110 111 112  90  

 Number of documented invasions for surveyed lakes (n=458): 

 Database: 

Species BISON GISIN MISIN EddMAPS WDNR (verified and vouchered) Surveys 

BMS 61 63 63  78 146 

CMS 0 55 55  68 163 

EWM 0 106 106 103 104 120 

CLP 0 102 102 102 83 143 

RC 61 27 27  46 57 

ZM 17 18 18  20 24 
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Figure Legends 

 

Fig. 1  Statewide comparison of Wisconsin Department of Natural Resources invasive species 

occurrence records and our survey results. Blue dots and bars are lakes that were not invaded 

according to surveys or records, yellow dots and bars are lakes that were already known to be 

invaded based on records, and red dots and bars are lakes where new invasions were found. (a) A 

map of sampled lakes. (b) The proportion of lakes invaded in each lake type category.  

Fig. 2 Survey and occurrence records comparisons broken down by species and lake type. Colors 

match those in Fig. 1. 
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Figure 1. 

 

Fig. 1  Statewide comparison of Wisconsin Department of Natural Resources invasive species 

occurrence records and our survey results. Blue dots and bars are lakes that were not invaded 

according to surveys or records, yellow dots and bars are lakes that were already known to be 

invaded based on records, and red dots and bars are lakes where new invasions were found. (a) A 

map of sampled lakes. (b) The proportion of lakes invaded in each lake type category.  
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Figure 2. 

 

Fig. 2 Survey and occurrence records comparisons broken down by species and lake type. Colors 

match those in Fig. 1. 
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CHAPTER 4 

 

SPATIAL HETEROGENEITY IN INVASIVE SPECIES IMPACTS AT THE 

LANDSCAPE SCALE  

 

This chapter has been submitted for publication, and is currently in revision at Ecosphere, with 

coauthors: Gretchen J. A. Hansen, Matthew Kornis, and M. Jake Vander Zanden.  

______________________________________________________________________________ 

 

Abstract: 

Invasive species have substantial impacts across the globe. While management efforts 

should aim to minimize undesirable impacts, we have a poor understanding of how impacts of a 

given invasive species vary spatially. Here, we develop a framework for considering 

heterogeneity of invasive species impacts that allows us to explore the range of possible spatial 

patterns of impact. This framework incorporates two factors – how invasive species abundance 

varies among sites (i.e., abundance distributions) and how invasive species impact varies as a 

function of abundance (i.e., abundance-impact curves). Combining these two factors allows for 

the creation of probability distributions that represent how invasive species impacts may vary 

spatially among sites. We simulate how different combinations of invasive species abundance 

distributions and abundance-impact curves produce different patterns of invasive species impact. 

These simulations illustrate a remarkably wide range of invasive species spatial impact patterns – 

probability distributions of impact were left-skewed, right-skewed, bimodal, and normal. Total 

landscape-level impacts, estimated by summing site-level impacts, were similarly variable 

depending on the distribution of site-level impacts. To demonstrate the real-world application of 

this framework, we generated impact distributions for two problematic invasive species – zebra 

mussel and Eurasian watermilfoil – across lakes in Wisconsin, USA, where invaded lakes are 
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documented and abundance distributions and abundance-impact curves can be inferred from the 

literature. Impact distributions of these species tended to be right-skewed (i.e., the majority of 

sites had low impacts). Total impacts depended strongly on the type of abundance-impact curve. 

Our results indicate that invasive species abundance and abundance-impact curves ultimately 

affect how invasive species impacts are distributed across the landscape, which has important 

implications for invasive species management.   

Introduction 

Invasive species are among the leading drivers of global change (Sala et al. 2000), 

causing substantial ecological (Ricciardi et al. 2013) and economic impacts (Pimentel et al. 

2005).  Minimizing the undesirable impacts of invasions is a major goal of environmental 

agencies (Byers et al. 2002), but achieving this goal is non-trivial given the problem’s scope and 

continued growth.  The large number of invasive species to consider, vast landscapes with many 

invaded or vulnerable sites, heterogeneity of impacts among sites, and the suite of management 

options (prevention, containment, control, eradication) all contribute to the complexity of 

invasive species management (Byers et al. 2002).   

Funding for invasive species management pales in comparison to the scale and 

complexity of the problem (Simberloff et al. 2005) and thus, understanding patterns of impact is 

necessary to use resources cost-effectively. Resource management is often confronted with this 

inequality between a problem’s magnitude and available management resources, necessitating 

action plans that achieve the largest benefit per unit cost. Global biodiversity conservation, for 

instance, maps biodiversity hotspots to help maximize species protection given limited funding 

for land acquisition (Myers et al. 2000, Brooks et al. 2006, Game et al. 2013).  An analogous 

approach for invasive species management may be to identify and target sites on the landscape 
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where impact is likely to be highest in order to maximize the impact reduction per dollar spent 

(Epanchin-Niell and Hastings 2010). Unfortunately, current understanding of the spatial patterns 

of invasive species impacts is inadequate to inform this sort of prioritization. Although several 

impact assessment frameworks have been developed to estimate and compare species’ total 

impacts (Parker et al. 1999, Thomsen et al. 2011 and citations therein), few have incorporated 

spatial heterogeneity of impacts among sites (but see Thiele et al. 2010, Barney et al. 2013).  

Heterogeneity of invasive species impacts among sites encompasses two critical 

components: spatial heterogeneity in invasive species abundance, which is a universal driver of 

impact (Thomsen et al. 2011), and the relationship between a species’ abundance and its impact 

(Fig. 1).  Neither of these components is well-described empirically for the majority of invasive 

species. Variation in invasive species abundance across the landscape may take many possible 

forms (Fig. 1A). Native species generally occur at low abundance at most sites where they occur 

(Brown 1984), and a number of aquatic invasive species (AIS) follow similar patterns, producing 

right-skewed frequency distributions of abundance (hereafter “abundance distribution”) (Hansen 

et al. 2013). In contrast, invasive species are sometimes characterized by their tendency to 

dominate a community, as demonstrated empirically for some monotype-forming wetland plants 

(Zedler and Kercher 2004, Frieswyk et al. 2007) and anecdotally for some terrestrial plants such 

as kudzu, producing left-skewed abundance distributions. Furthermore, understanding spatial 

variability in impacts requires knowledge of the relationship between abundance and impact 

(hereafter “abundance-impact curve). Although this relationship is likely to be positive in most 

cases (but see Kornis et al. 2014), the shape of this curve may take different forms for different 

species (Fig. 1B; Yokomizo et al. 2009). However, abundance-impact curves have not been 
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quantified for most invasive species (Kulhanek et al. 2011), hindering estimates of impact from 

abundance data.   

Here, we combine a range of possible abundance distributions with various abundance-

impact curves to generate species’ probability distributions of site-level impacts (hereafter 

“impact distributions” (Fig. 1). Our objective is to gauge the extent of possible invasive species 

impact distributions, and how those patterns are influenced by abundance-impact curves and 

patterns in abundance. We also explore how these impact distributions may influence an invasive 

species’ cumulative impacts. We then apply our framework for generating impact distributions to 

two aquatic invasive species in Wisconsin in an empirically-informed management scenario that 

highlights which possibilities may be realistic, and how a manager could use currently available 

information to generate impact distributions.  

Methods 

Invasive species impacts on a heterogeneous landscape – a conceptual framework 

 In order to characterize heterogeneity in impacts across invaded landscapes, we first need 

to break the landscape into components of interest – lakes, habitat patches, pixels, etc. – which 

we refer to generally as sites (s=1… n). A subset of these sites (< sn), determined by 

environmental characteristics matching species’ ecological requirements and dispersal abilities, 

are inhabited by an invasive species.  Across these inhabited sites, the species’ abundance (as) 

will vary, and how it varies will differ among species. We can use probability distributions of 

abundance to characterize this variation (P(as)) (Fig. 1A), which may be theoretical or empirical 

if average or snapshot estimates of site-level abundance are available. Next, we need to describe 

the relationship between impact and abundance. Impacts at a site are likely to be positively 
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related to species abundance, but the shape of this relationship will vary among species and 

among types of impact (Fig. 1B). We can thus use various abundance-impact curves to calculate 

a site-level impact (Is) for any value of abundance drawn from an abundance distribution: Is = 

𝑓𝐴𝐼(𝑎𝑠) (Fig. 1). For an invaded landscape, we can then sum all site-level impacts to determine 

the species’ landscape-level impact: IT =∑ (𝐼𝑠) 𝑛
𝑠=1 =∑ (𝑓𝐴𝐼(𝑎𝑠))𝑛

𝑠=1 , where IT is analogous to 

impact estimates in previous formalizations (e.g., Parker et al 1999). 

Simulating site-level and landscape-level impacts 

Using the above conceptual framework, we used abundance distributions and abundance-

impact curves to calculate a range of potential impact distributions (Fig. 1). We used four 

hypothetical probability distributions to represent a broad range of species abundance patterns 

(Fig. 1A).  In all distributions, abundance was expressed on a standardized scale ranging from 0 

to 1. We used three Beta distributions with varying shape parameters α and β to represent 

centered (α=3, β=3), right-skewed (α=0.8, β=3), and left-skewed (α=3, β=0.8) distributions.  We 

also used a uniform distribution (ranging from 0-1) to represent equal probability of invasive 

species occurring at any abundance.  

We modeled the possible relationships between species’ abundance and impact using the 

four curves described by Yokomizo et al. (2009). These curves include a low abundance 

threshold where high impacts occur at all but the lowest abundances (“Low threshold”, Type 1), 

a sigmoidal curve where impacts start low then increase rapidly at moderate abundance and 

asymptote at high abundance (“Sigmoidal”, Type 2), a linear response (“Linear”, Type 3), and a 

high abundance threshold in which high impacts only occur at high abundances (“High 

threshold”, Type 4) (Fig. 1B).  We standardized abundance values to range from 0 to 1 and 

scaled impact on a percentage scale (i.e., 0=no impact, 100=maximum possible impact). Since 



100 
 

 
 

the asymptotic curves never reach their maximum potential impact, we assumed that abundances 

greater than 0.9 produced the maximum impact (results were not sensitive to variations in this 

threshold).   

To quantify the distributions of site-level impacts, we randomly drew 1,000 values from 

each of the four abundance distributions (Fig. 1A) to represent site-level abundances across an 

invaded range. For each value, we determined its associated impact using each of the four 

abundance-impact curves (Fig. 1B; described in Yokomizo et al. 2009 and Appendix 1), 

resulting in 16 unique combinations of abundance distributions and abundance-impact curves. 

We recognize that a single species may have multiple impacts, and that each impact may follow 

a different abundance-impact curve. For the purposes of this simulation, impact can be 

considered any measurable impact or an index that integrates multiple types of impact.  

We calculated landscape-level total impacts by summing all site-level impacts.  We 

recognize that assuming additivity may not always be appropriate – in some cases, managers 

may be particularly concerned with highly impacted sites, so that one site with maximum impact 

is judged to be worse than 10 sites with 10% of maximum impact. In other cases, managers may 

be concerned with the number of invasions, so that the 10 invaded sites with low impact are 

worse than one site with high impact.  In this analysis, we kept the number of sites constant at 

1,000 in order to isolate the effects of abundance distributions and abundance-impact curves on 

total impacts, but changes in the number of sites invaded would cause proportional changes in 

total impacts.      

Results 

Simulated impacts were highly variable among sites (Fig. 2).  For most scenarios, the 

frequency distributions of site-level impacts were highly skewed: six with left skew and three 
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with right, although some of these also display bimodality.  When site-level abundances were 

left-skewed (row 2 in Fig. 2), three of the four scenarios produced left-skewed impact 

distributions.  The exception, which paired a left-skewed abundance distribution with a high-

abundance impact threshold, produced a slightly left-skewed bimodal impact distribution. When 

the abundance distribution was right-skewed (row 3 in Fig. 2), three of the four scenarios 

produced right-skewed impact distributions.  The exception, which paired a right-skewed 

abundance distribution with a low-abundance impact threshold, produced a slightly left-skewed 

bimodal impact distribution.  Impact distributions created by low- and high-abundance impact 

thresholds (columns 1 and 4 in Fig. 2) were similar to those created by left-skewed and right-

skewed abundance distributions, respectively.   

Landscape-level impacts were sensitive to both the abundance distribution and the 

abundance-impact curve (Fig. 3).  Values ranged from 1,884 to 99,500, where a value of 100,000 

would indicate that a species achieved its maximum possible impact of 100 at each of the 1,000 

sites in the landscape. When abundance distributions were left-skewed, landscape-level impacts 

were always high, with three of four species exhibiting  impacts greater than 85% of the 

maximum (i.e., >85,000) and all with impacts above 60% of the maximum.  In contrast, when 

abundance distributions were right-skewed, three of the four scenarios had landscape-level 

impacts below 25% of the maximum observed total impact, and all had total impacts below 65% 

of the maximum.  Similarly, abundance-impact curves that produced high impacts at low 

abundances tended to produce high landscape-level impacts, while those that only exhibit 

impacts at high abundances were less impactful.    

Discussion 

Impact distributions 
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 Our results highlight how abundance distributions and abundance-impact relationships of 

invasive species affect patterns of heterogeneity in impacts across sites. The shapes of impact 

distributions were variable, where some scenarios produced a high relative probability of high 

site-level impacts, others a high probability of low impacts, and others normal, bimodal, or 

uniform distributions of impacts across sites (Fig. 2).  In some cases, knowledge of just one of 

the attributes – the abundance distribution or abundance-impact curve – was enough to 

approximate the shape of potential impact distributions, making predicting the pattern of 

heterogeneity possible even with limited information. Invasive species with left-skewed 

abundance distributions or low-abundance impact thresholds will almost always exhibit left-

skewed impact distributions. In these cases, targeted management that prioritizes some sites over 

others may be inefficient, because all sites have similarly high impacts.  In contrast, species with 

right-skewed abundance distributions or high-abundance impact thresholds almost always 

exhibit right-skewed impact distributions, where high impact sites are relatively rare.  In these 

cases, prioritized approaches to management could be promising, because reducing or 

eliminating impacts at a small number of highly impacted sites may significantly reduce total 

impacts.  

Landscape-level impacts 

  Landscape-level impacts were sensitive to both the abundance distribution and the 

abundance-impact curve of the species, where species with left-skewed abundance distributions 

and low threshold abundance-impact curves exhibited the highest total impacts (Fig. 3).  Species 

with these attributes could have total impacts much higher than those with right-skewed 

abundance distributions or high threshold abundance impact-curves, respectively (assuming 

equal number of occupied sites).  Note that such a comparison assumes that the maximum site-
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level impacts of species are equal. As with the impact distributions, knowledge of just one 

attribute – the abundance distribution or abundance-impact curve – can greatly improve 

predictions of total impacts.  For example, invasive species with left-skewed abundance 

distributions or low-abundance impact thresholds will almost always achieve relatively high total 

impacts, all else being equal.  

Abundance distributions and abundance-impact curves 

Despite their importance in determining landscape-level impacts and the heterogeneity 

therein, abundance distributions have rarely been quantified for invasive species.  Hansen et al. 

(2013) reported right-skewed abundance distributions for several high-impact aquatic invasive 

species from a wide range of taxonomic groups and geographic locations. However, invasive 

species may not always follow right-skewed abundance distributions.  Invasive terrestrial plants 

seem to have great potential for centered, uniform or left-skewed distributions, which may align 

with anecdotal evidence of invasive species “dominance”.  For example, several invasive plants 

are known for forming monotypes where the invader has high abundance with few co-occurring 

species (Frieswyk et al. 2007). Zedler and Kercher (2004) examined 21 commonly occurring 

invasive wetland plants, and note that 15 of these species (71%) form monotypes in invaded 

regions.  Monotype-forming invaders may be best described by left-skewed distributions - when 

present, these species are usually found at high abundance.  While these examples indicate that 

left-skewed abundance distributions may be possible for invasive species, future work should 

focus on quantifying abundance distributions for a broad range of taxa.  Existing site-level 

abundance data may be available in public databases, enabling quantification of abundance-

impact curves for other taxa.   
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Similar to abundance distributions, abundance-impact curves are not yet described for 

even the most harmful invasive species (Kulhanek et al. 2011), despite their substantial effect on 

landscape-level impacts and their heterogeneity. Nonetheless, there are empirical examples 

supporting the abundance-impact relationships used here (initially proposed by Yokomizo et al. 

2009).  Linear responses frequently occur in nature for processes such as litter decomposition 

(Elgersma and Ehrenfeld 2011) and filter feeding or grazing (Holling 1965).  For example, filter-

feeding by zebra mussels (Dreissena polymorpha) reduces phytoplankton biomass, which in turn 

has a linear effect on zooplankton biomass (Higgins and Vander Zanden 2010). Elgersma and 

Ehrenfeld (2011) documented a high-abundance threshold response of the ratio of soil bacteria to 

fungi across abundances of invasive Japanese barberry (Berberis thunbergii).  High-abundance 

thresholds may be common for impacts that are met with a certain amount of resistance at low 

abundance, such as the decline/extirpation of native species that would otherwise be impacted by 

predation or competition at high invasive species abundance. Low-abundance impact thresholds 

may occur for invasive species that function as ecosystem engineers (Crooks 2002) or keystone 

species, which have effects disproportionate to their density (Paine 1969, Power et al. 1996). 

Sigmoidal response curves are the least supported by examples from the literature.  However, 

invasive species often serve as prey in invaded ecosystems (Kitchell et al. 2000, King et al. 

2006).  Predators of invasive species may switch from native prey following invasion if the 

invasive species’ density is sufficient for detection and learning by predators.  Such 

predator/prey relationships are best modeled by a sigmoidal curve (or Type-III functional 

response) (Holling 1965).  It should be noted that these four abundance-impact curves are not 

exhaustive of all possible relationships – thresholds may occur anywhere along the abundance 

axis, for instance.  Additionally, fundamentally different curves may occur for some species. For 
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example, experimental evidence suggests that the negative effects of an invasive fish, round 

goby (Neogobius melanostomus), on the growth rates of native competitors peaks at moderate 

densities (Kornis et al. 2014).  At high densities, increased intra-specific interactions among 

round gobies appeared to result in diminished impacts on native species (Kornis et al. 2014).  

Such alternative abundance-impact curves would potentially lead to different impact 

distributions, but could easily be incorporated into our conceptual framework.  

Empirically informed management scenarios 

Our framework has direct management applications for evaluating the spatial 

heterogeneity of invasive species impacts, especially if abundance distributions and abundance-

impact relationships are known or can be reasonably estimated. To demonstrate, we used our 

framework to compare site- and species-specific impacts of two problematic invasive species in 

Wisconsin lakes: Eurasian watermilfoil (Myriophyllum spicatum; hereafter “milfoil”) and zebra 

mussels (Dreissena polymorpha; hereafter “mussels”). We used invasive species occurrence 

records from the Wisconsin Department of Natural Resources (July 2012), estimated invasive 

species abundance from a large number of lakes (data in Hansen et al. 2013), and approximated 

invasive species abundance-impact relationships based on the literature and our general 

knowledge of how these species affect lakes. For each invaded lake in the occurrence records, 

we randomly drew a value from the abundance distribution (sampled with replacement) and 

applied the appropriate abundance-impact curve to estimate impact. This process generate a 

frequency distribution of impacts for invaded lakes, which were summed to estimate total 

landscape-level impact. We repeated this randomization process 1,000 times to simulate 

variability in the impact distribution and total impact estimates.   
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Zebra mussels – Occurrence records list zebra mussels in 177 Wisconsin lakes (WDNR 2012). 

Globally, zebra mussels have right-skewed abundance distributions in invaded sites (Hansen et 

al. 2013) (Fig. 4A). How abundance affects impact is likely to depend on the response variable 

of interest. Zebra mussel impacts on native mussels asymptote at relatively low zebra mussel 

abundance (Ricciardi 2003), which aligns with their status as a keystone species (Karatayev et al. 

2002) (Fig. 4B). In contrast, Ricciardi (2003) also found native gammarid density to be linearly 

related with zebra mussel abundance (Fig. 4C). The modeled frequency distributions for each of 

these impacts were right skewed (Fig. 4B,C), although skewness was greater for impacts on 

gammarids. Summed landscape-level impacts on native mussels were nearly 4 times higher than 

those associated with gammarids (Fig. 4D). 

Eurasian watermilfoil - Occurrence records list milfoil in 527 lakes (WDNR 2012). Although the 

distribution of milfoil abundance is also right-skewed, it exhibited a thicker tail than zebra 

mussels (Fig. 5A). Furthermore, milfoil abundance is likely to have different relationships with 

impact than mussels, but may still have different forms for different impacts.  Milfoil’s impacts 

on boaters may be linear (Fig. 5B), since rates of propeller entanglement are likely to be directly 

related to abundance, while milfoil’s impacts on adjacent property values are more severe at high 

abundance (Zhang and Boyle 2010) (Fig. 5C). The modeled frequency distributions of impacts 

were right-skewed (Fig. 5B,C), with greater skewness when the linear abundance-impact curve 

associated with boat propeller entanglement was used.  Summed landscape-level impacts were 6 

times higher for linear abundance-impact curves than high-threshold curves, which may incur 

only small impacts at low to moderate abundance levels (Fig. 5D).  

Comparing milfoil and mussels - Even though there is high variability in the types of impact 

distributions that are theoretically possible, these results indicate that right-skewed impacts may 
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be most realistic. Each species had one impact distribution that was thick-tailed and another that 

was thin-tailed. For zebra mussels, the thick tail was can be attributed to the low threshold in the 

abundance-impact curve. For milfoil, the thick tail occurred with a linear abundance-impact 

curve, so the relatively high frequency of high impacts was caused by the thick tail in milfoil’s 

abundance distribution.  Without an objective weighting scheme to compare impacts of milfoil 

and mussels, we cannot say which generates higher landscape-level impacts.  However, 

practitioners and stakeholders tasked with prioritizing invasive species management objectives 

may be reasonably expected to make such valuations.  For example, if we determined that the 

maximum impacts of each species are the same, milfoil’s landscape-level impacts would be 

higher, given their presence in nearly five times as many lakes and by the thick tail in their 

abundance distribution. On the other hand, if we determined that the impacts of mussels increase 

rapidly at low abundance and those of milfoil only increase at high abundance, then landscape-

level impacts of mussels would actually be greater, despite their presence in many fewer lakes. 

Finally, if we judged the maximum impacts of mussels to be higher than those of milfoil, thus 

requiring a differential weighting scheme, then mussel impacts may easily outweigh milfoil 

impacts.  

Management implications – single species on a landscape 

Our results demonstrate the possibility for different patterns in an invasive species’ 

impacts among sites on a landscape. Recognizing the potential for spatial heterogeneity in 

impacts allows for management approaches that extend beyond simple consideration of invasive 

species presence/absence. Prioritization of sites for protection from invasion or eradication, for 

instance, may provide an improved design only when the impact distributions are right-skewed, 

as was the case for milfoil and mussels.  More generally, the number of sites that ought to be 
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managed intensively to have the greatest reduction in an invasive species’ overall impact is 

inversely related to the degree of right-skewedness in the impact distribution.  If highly impacted 

sites are common (left-skewed) or if almost all sites are moderately impacted (unimodal or 

uniform), focusing on a small number of sites may only cause a small reduction in the total 

impact of an invasive species.  In these cases, it may be relatively more beneficial to invest in 

more pervasive management techniques, such as education and outreach to organize a 

widespread volunteer network to participate in control and reduce further spread.   

Management implications – multiple species 

Assessments of species’ total impacts exist, and were emphasized in inaugural issue of 

Biological Invasions, in which Parker et al. (1999)  postulated that a species’ total impact is the 

product of its range size, average abundance, and per capita effect.  Several additional models 

have been adapted to incorporate various characteristics such as species and habitat attributes 

(for a review of these studies, see Thomsen et al. 2011).  However, these approaches to assessing 

landscape-level impacts have rarely also considered the site-level impacts, hindering 

prioritization efforts.  

Characterizing heterogeneity in impacts allowed us to estimate landscape-level impacts 

by summing across sites. Previous comparisons of species’ impacts have either been qualitative 

or binary in nature or have not directly addressed site-to-site heterogeneity for a given species.  

For example, Kolar and Lodge (2002) identified five potential problematic invaders from a list of 

66 fish species that could invade the US Great Lakes from the Ponto-Caspian region. Our results 

highlight the fact that impacts of these high-risk species are likely to be spatially heterogeneous.  

The pattern of heterogeneity, which we illustrate with impact distributions, depends on the 

shapes of the species’ abundance distributions and abundance-impact curves, and can affect 
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estimates of their total, landscape-wide impacts.  This spatial texture underlying invasive species 

impacts is not widely acknowledged or understood – only recently have impact assessments 

begun to incorporate spatial heterogeneity  (Thiele et al. 2010, Barney et al. 2013).  

Our framework allows for simultaneous characterization of impact heterogeneity and 

estimation of landscape-level impacts. This information can then inform resource allocation to 

reduce impacts of a single species and enable rankings of species’ total impacts. With presently 

available data and literature, managers may be able to make more informed decisions.  However, 

our results show that the potential patterns of heterogeneity in impacts are diverse. Without 

quantifying abundance distributions and abundance-impact curves for more invasive species, our 

knowledge of the heterogeneity in invasive species impacts and ability to inform management is 

limited.  
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Figure Legends 

Fig. 1.  The process and inputs we used to simulate probability distributions of the site-level 

invasive species impacts across a landscape. All abundance values are standardized on a 0-1 

scale. A) Potential frequency distributions of a species’ site-level abundance, where each site is 

characterized by a single value for the species’ abundance. Centered and skewed distributions are 

beta distributions, and the uniform distribution represents an equal probability of occurrence for 

any value of abundance. B) The four types of relationships between abundance and impact (i.e. 

abundance-impact curves) used in our simulations (modified from Yokomizo et al. 2009). Impact 

is standardized on a 0-100 scale.  To generate distributions of impact, we randomly draw an 

abundance value (α) from an abundance distribution and plug it into an abundance-impact curve 

to calculate impact for that site (I1 or I2 depending on curve used, although any curve could be 

used), as shown in gray. For each unique combination of these abundance distributions and 

abundance-impact curves, we repeated the process 1,000 times to calculate impact for 1,000 sites 

and sum all values of I to calculate total landscape-level impacts.  

Fig. 2. Probability distributions of impacts for each combination of abundance distribution 

(rows) and abundance-impact curve (columns), which correspond to those shown in Fig. 1, 

simulated by randomly drawing 1,000 values from each abundance distribution and calculating 

impact using each abundance-impact curve. Impacts are standardized so that 0=no impact and 

100=maximum possible impact.  

Fig. 3. Landscape-level (summed) impacts for each combination of abundance distribution (by 

shape and line type) and abundance-impact curve (on x-axis), which correspond to those shown 

in Fig. 1. Units for impacts are the same as Figs. 1 and 2, such that maximum impacts at a site 
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equal 100, and thus, maximum possible landscape-level impacts across 1,000 sites sum to 

100,000.  

Fig. 4.  A) Histogram of site-level densities for zebra mussels (from Hansen et al. 2013). B, C) 

Abundance values are sampled with replacement for all invaded lakes in Wisconsin (n=177) and 

combined with a low threshold abundance-impact curve (B inset) and a linear abundance-impact 

curve (C inset) to calculate 2 potential distributions of zebra mussel impacts. D) Boxplots of 

landscape-level summed impacts across all lakes, where each box displays the quartiles of 1,000 

impact estimates from repeated resampling of abundance data.  

Fig 5 A) Histogram of site-level frequency of occurrence for Eurasian watermilfoil (from Hansen 

et al. 2013). B, C) Abundance values are sampled with replacement for all invaded lakes in 

Wisconsin (n=527) and combined with a linear abundance-impact curve (B inset) and a high 

threshold abundance-impact curve (C inset) to calculate 2 potential distributions of Eurasian 

watermilfoil impacts. D) Boxplots of landscape-level summed impacts across all lakes, where 

each box displays the quartiles of 1,000 impact estimates from repeated resampling of abundance 

data.  
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Fig. 1.  The process and inputs we used to simulate probability distributions of the site-level 

invasive species impacts across a landscape. All abundance values are standardized on a 0-1 

scale. A) Potential frequency distributions of a species’ site-level abundance, where each site is 

characterized by a single value for the species’ abundance. Centered and skewed distributions are 

beta distributions, and the uniform distribution represents an equal probability of occurrence for 

any value of abundance. B) The four types of relationships between abundance and impact (i.e. 

abundance-impact curves) used in our simulations (modified from Yokomizo et al. 2009). Impact 

is standardized on a 0-100 scale.  To generate distributions of impact, we randomly draw an 

abundance value (α) from an abundance distribution and plug it into an abundance-impact curve 

to calculate impact for that site (I1 or I2 depending on curve used, although any curve could be 

used), as shown in gray. For each unique combination of these abundance distributions and 

abundance-impact curves, we repeated the process 1,000 times to calculate impact for 1,000 sites 

and sum all values of I to calculate total landscape-level impacts.  
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Figure 2 

   

Fig. 2. Probability distributions of impacts for each combination of abundance distribution 

(rows) and abundance-impact curve (columns), which correspond to those shown in Fig. 1, 

simulated by randomly drawing 1,000 values from each abundance distribution and calculating 

impact using each abundance-impact curve. Impacts are standardized so that 0=no impact and 

100=maximum possible impact.  
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Figure 3 

  

Fig. 3. Landscape-level (summed) impacts for each combination of abundance distribution (by 

shape and line type) and abundance-impact curve (on x-axis), which correspond to those shown 

in Fig. 1. Units for impacts are the same as Figs. 1 and 2, such that maximum impacts at a site 

equal 100, and thus, maximum possible landscape-level impacts across 1,000 sites sum to 

100,000.  
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Figure 4 

  

Fig. 4.  A) Histogram of site-level densities for zebra mussels (from Hansen et al. 2013). B, C) 

Abundance values are sampled with replacement for all invaded lakes in Wisconsin (n=177) and 

combined with a low threshold abundance-impact curve (B inset) and a linear abundance-impact 

curve (C inset) to calculate 2 potential distributions of zebra mussel impacts. D) Boxplots of 

landscape-level summed impacts across all lakes, where each box displays the quartiles of 1,000 

impact estimates from repeated resampling of abundance data.  
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 Figure 5 

 

 

Fig 5 A) Histogram of site-level frequency of occurrence for Eurasian watermilfoil (from Hansen 

et al. 2013). B, C) Abundance values are sampled with replacement for all invaded lakes in 

Wisconsin (n=527) and combined with a linear abundance-impact curve (B inset) and a high 

threshold abundance-impact curve (C inset) to calculate 2 potential distributions of Eurasian 

watermilfoil impacts. D) Boxplots of landscape-level summed impacts across all lakes, where 

each box displays the quartiles of 1,000 impact estimates from repeated resampling of abundance 

data. 
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Appendix 1 

The abundance-impact curves used in this analysis follow those from Yokomizo et al. 2009 take 

the form: 

  Is = 𝑓𝐴𝐼(𝛼𝑠) 

where, 

 𝑓𝐴𝐼 =  {
𝑀 ∗ 𝐶 ∗ 1/(1 +  𝑒^((−𝛼𝑠/(𝑌 − 𝑢))/𝑏) ) − 𝐵

𝑀
  

 𝐵 = 1/(1 + 𝑒^(𝑢/𝑏)) 

 𝐶 = (1 + 𝑒^((1 − 𝑢)/𝑏))/(1 − 𝐵 ∗ (1 + 𝑒^((1 − 𝑢)/𝑏)) . 

We used the following parameters to create the four abundance-impact curves: 

Parameter 

Low-abundance 

threshold 

Sigmoidal 

 Linear 

High-abundance 

threshold 

𝑢 0 0.5 1 1 

𝑏 0.1 0.1 1 0.1 

𝑌 0.9 0.9 0.9 0.9 

𝑀 100 100 100 100 

 

 

 


