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Abstract

Multivariate discrete outcomes are common in a wide range of areas including insurance,

finance, and biology. When the interplay between outcomes is significant, quantifying de-

pendencies among interrelated variables is of great importance. Due to their ability to

accommodate dependence flexibly, copulas are being applied increasingly.

Yet the application of copulas on discrete data is still in its infancy; one of the biggest

barriers is the identifiability of copulas, calling into question model interpretations and pre-

dictions. In this dissertation, we study the issue of identifiability in a regression context.

As the marginal distributions vary with covariates, inclusion of continuous regressors pro-

vides a region of support for copula identifiability. We establish conditions under which the

copula regression model is identifiable for discrete outcomes.

In addition, since the properties of continuous outcomes do not carry over to discrete

outcomes, specification of a copula model has been a problem. We propose a nonparametric

estimator of copulas to identify the “hidden” dependence structure for discrete outcomes

and develop its asymptotic properties. The proposed nonparametric estimator can also

serve as a diagnostic tool for selecting a parametric form for copulas. Analysts can check

adequacy of fit by comparing the fitted parametric copula with the nonparametric estimator.

The comparison suggests improvements for the fitted model.

In the simulation study, we explore the performance of the proposed estimator under

different scenarios and provide guidance on when the choice of copulas is important. The

performance of the estimator improves as discreteness diminishes. A practical bandwidth

selector is also proposed.
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An empirical analysis examines a dataset from the Local Government Property Insur-

ance Fund (LGPIF) in the state of Wisconsin. The LGPIF offers different types of coverage

for local government properties. We apply the nonparametric estimator to model the de-

pendence between claim frequencies from different types of insurance coverage.
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Chapter 1

Introduction

Multivariate discrete outcomes are common in a wide scope of areas, including insurance,

psychometrics, and epidemiology. For instance, in property insurance, it is common that

a policy contains multiple coverage types, e.g. building and contents coverage and motor

vehicle coverage. Hence, insurers can observe claim frequencies, indicating whether or

not a claim has occurred or the number of claims, of multiple types from a policyholder.

When the interplay between outcomes has significant consequences, modeling dependencies

among interrelated variables is of great importance. In the foregoing example, quantifying

dependencies among risks is critical for understanding the uncertainty of the portfolio, and

thus is important for an insurer’s solvency and profitability.

1.1 Models for Multivariate Discrete Outcomes

There are many good approaches available for modeling multivariate discrete outcomes.

Generalized linear mixed models (McCulloch and Neuhaus 2001) have been extensively

applied to handle correlated discrete observations, though the models do not keep the

marginal distributions after integrating out random effects.

There are extensive literatures on multivariate binary outcomes. For d-dimensional

binary data, there are 2d possible combinations of outcomes. Hence, multinomial logistic
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regression models can be employed to fit the combinations. Nevertheless, the interpretation

of multinomial logistic regression models is not quite straightforward. Frees et al. (2013)

used dependence ratio and odds ratio methods, for which the likelihood is written as a

function of marginal parameters and odds ratio or dependence ratio. None of these models

appears to be uniformly preferable to the others.

The existing literature also contains a variety of models for multivariate counts. One

commonly used approach of introducing dependencies among counts is through common

additive errors, for instance, a multivariate Poisson model with a common covariance pa-

rameter (Johnson et al. 1997; Tsionas 2001). As an example, three-dimensional Poisson

outcomes (Y1, Y2, Y3) can be expressed by


Y1 = X1 +X0

Y2 = X2 +X0

Y3 = X3 +X0,

(1.1)

where Xj , j ∈ {0, 1, 2, 3} independently follows a Poisson distribution with a parameter λj ,

which can be related to covariates. Each pair shares a common variable X0 that induces

a common correlation, say λ0. Extending this idea, a more flexible way is a model with

full covariance (Karlis and Meligkotsidou 2005). Specifically, assume Xi ∼ Poisson(λi), i ∈

{1, 2, 3} and Xij ∼ Poisson(λij), i, j ∈ {1, 2, 3}, i < j, then


Y1 = X1 +X12 +X13

Y2 = X2 +X12 +X23

Y3 = X3 +X13 +X23.

(1.2)

Thus, Yi, i ∈ {1, 2, 3} follows a Poisson distribution marginally with parameter λi+λij+λik,

i, j, k ∈ {1, 2, 3}, i 6= j 6= k, and the covariance between Yi and Yj is λij . Multivariate nega-

tive binomial distributions built through a mixture distribution (Joe 1997) or a common ad-

ditive factor (Winkelmann 2000) and zero-inflated multivariate Poisson models (Bermúdez
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and Karlis 2011) can be applied in the presence of overdispersion. A limitation of the fore-

going models is that they allow only positive correlations. There are models that allow

negative correlations, such as multivariate Poisson-log-normal models (Aitchison and Ho

1989), the correlated latent effects approach (Chib and Winkelmann 2012), and the condi-

tional probability approach (Berkhout and Plug 2004). However, for some datasets, different

marginal models than the commonly used ones or combinations of different marginal models

might be necessary (Frees et al. 2016).

1.2 Applications of Copulas on Discrete Outcomes

This dissertation uses a probabilistic structure known as a copula, which is a multivariate

distribution function with uniform margins that has been used to study dependencies in

many areas including, but not limited to, insurance (Frees and Valdez 1998), finance (Li

1999), and survival analysis (Shih and Louis 1995); see Nelsen (2007) for an introduction.

Sklar’s Theorem (Sklar 1959) provides a theoretical foundation for copulas as useful tools to

connect margins and dependence. For any d dimensional variable (Y1, . . . , Yd) with marginal

distribution functions F1(·), . . . , Fd(·), there exists at least one copula C such that

F (·) = C(F1(·), . . . , Fd(·)), (1.3)

i.e., the joint distribution can be expressed in terms of margins and a copula. Sklar’s

theorem is unified over continuous, discrete, and mixture cases. For discrete outcomes

taking integer values, parametric copulas can be fit through maximum likelihood estimation

(MLE) straightforwardly using (1.3)

P (Y1 = y1, . . . , Yd = yd) =

1∑
l1=0

· · ·
1∑

ld=0

(−1)l1+···+ldC [F1(y1 − l1), . . . , Fd(yd − ld)] . (1.4)

There are numerous copula families which can accommodate different dependence structures

such as negative correlations, asymmetry, and tail dependence (Joe 1993; Nelsen 2003; Yang
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et al. 2011).

Although most applications focus on continuous variables, there is an increasing trend

in the application of copulas on discrete outcomes. For binary outcomes, the widely used

multivariate probit model (Brown 1998; Young et al. 2009) is indeed a special case of

copula regression models using probit margins and a Gaussian copula (Song 2007). For

more applications, Genest et al. (2013) studied multivariate logistic models using copulas.

They fit multivariate binary variables with meta-elliptical copulas which can be viewed as

extensions of Gaussian or t copulas and derived a test of pairwise independence for binary

outcomes. Nikoloulopoulos and Karlis (2008) used mixture of max-id copulas which have

both global parameters and pairwise parameters to fit multivariate binary data. They also

proposed a bootstrap model averaging method for calculating Kendall’s τ and indicated the

covariates do influence copula parameters.

There are also expanding applications in count data. Nikoloulopoulos and Karlis (2009)

applied partially symmetric copulas and mixture of max-id copulas on transaction market

basket data to model the purchase frequencies of different product categories. Partially

symmetric copulas are extensions of Archimedean copulas with d− 1 dependence parame-

ters and more flexible than Archimedean copulas. Kolev and Paiva (2009) applied a nested

Archimedean copula to model insurance usages of couples, and Shi and Valdez (2014) mod-

eled claim frequencies from different types of coverage using negative binomial margins and

copulas.

1.3 Issues of Copulas on Discrete Outcomes

Yet the application of copulas on discrete data is still in its infancy; one of the biggest bar-

riers is the identifiability of copulas. Sklar (Sklar 1959) showed the uniqueness of copulas is

only guaranteed at the range of marginal distribution functions, and thus the copula rep-

resentation may not be unique for discrete outcomes whose ranges of marginal distribution

functions are only a countable number of points.
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Genest and Nešlehová (2007) provided a thorough investigation on the non-identifiability

issue. Here we use the bivariate case for illustration. Consider a bivariate discrete variable

(Y1, Y2) with joint distribution function F and marginal distributions F1 and F2. The set of

copulas compatible with (Y1, Y2) denoted as CF , in the sense that (1.3) holds for any C ∈ CF ,

is generally quite large. Due to lack of uniqueness, modeling and interpreting dependence for

discrete outcomes using copulas is subject to caution. For example, independent variables

may relate to copulas other than the independence copula. To quantify how large CF could

be, Genest and Nešlehová (2007) showed for any two copulas in the set, their pointwise

distance can be bounded by the maximum marginal point mass (Proposition 6), which

indicates non-identifiability is more of a problem when Y1 or Y2 takes on a small number of

values, e.g. binary variables.

Another issue with copulas for discrete outcomes is that commonly used summary statis-

tics, such as concordance measures, can give misleading results. As an example, Kendall’s

τ , one of the most common concordance measures, is problematic for discrete outcomes

due to the fact that the definition of Kendall’s τ does not take the probability of ties into

account. As a result, Kendall’s τ depends on marginal distribution functions for discrete

outcomes. Denuit and Lambert (2005) derived the bounds of Kendall’s τ when changing

marginal parameters. It was noted that perfect monotone dependence does not necessar-

ily imply concordance measures to be 1. In addition, Kendall’s τ of the data based on

the probabilistic definitions does not always coincide with the ones of the related copulas

based on the analytical definition. As a result, it induces problem in inferences; moment

based estimation by inverting sample Kendall’s τ lead to a biased estimator of the copula

parameter. In general, MLE is more reliable for discrete outcomes.

The existing literature contains works solving the issues of copulas on discrete outcomes

from different aspects. Since ties can cause the rank-based estimation methods of copula

parameters to fail, Li et al. (2016) studied the estimation of copula parameters in presence

of ties in data. Naive approaches are to use average ranks or to break the ties at random.

Instead, they used the concept of interval censored data from survival analysis to calculate
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the pseudo likelihood. They used bootstrap to construct confidence intervals. Note that

parametric bootstrap methods do not work for data with ties as they do not generate ties

from fitted parametric copulas, so Li et al. (2016) adjusted it by inverting the empirical

distribution of the pseudo observations. They also pointed out that goodness-of-fit tests

with standard parametric bootstrap are vulnerable to ties in keeping their sizes.

For an alternative approach, Denuit and Lambert (2005) studied continuous extensions

(jittering) defined as

Y ∗j = Yj + (Vj − 1),

where V1 and V2 independently follow uniform distributions between (0, 1). They derived

the form of the unique copula of (Y ∗1 , Y
∗

2 ) and its Kendall’s τ using the distribution function

of (Y1, Y2). The generated (Y ∗1 , Y
∗

2 ) has some good properties. For example, the copula for

(Y ∗1 , Y
∗

2 ) belongs to CF , and Kendall’s τ is invariant through jittering, i.e., τ(Y1, Y2) =

τ(Y ∗1 , Y
∗

2 ). The concordance order is also preserved through jittering in the sense that for

another pair of discrete outcomes (X1, X2) with distribution function L,

L ≺c F ⇔ (X∗1 , X
∗
2 ) ≺c (Y ∗1 , Y

∗
2 ),

where L ≺c F is defined by that L(x1, x2) ≤ F (x1, x2) for all x1, x2.

Computational efficiency is another concern for applying copulas on discrete outcomes.

Since the likelihood (1.4) involves the computation of rectangle probabilities, the compu-

tation could be heavy with elliptical copulas and high dimensions. Numerical methods to

compute the multivariate integration for elliptical copulas have been discussed in the lit-

erature; see a review in Nikoloulopoulos (2013). Instead of computing high-dimensional

integration directly, composite likelihood estimation (Joe 2014) which is based on a pseudo

likelihood as weighted summations of marginal densities of lower dimensions leads to effi-

cient computation. Alternatively, Panagiotelis et al. (2012) adapted vine copulas to discrete

outcomes using bivariate copulas as building blocks to provide flexible models. The compu-

tation is of exponential order for the full copula models, while it is polynomial order using
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vine copulas. Hence it improves the computational efficiency significantly. They derived

the algorithm for computing the likelihood of vine copula.

1.4 Focus of The Thesis

Copulas are commonly applied in the regression settings in which outcomes are related to a

set of covariates (Song et al. 2009; Kolev and Paiva 2009). Copula regression can preserve

the solid body of work established for marginal models (e.g., McCullagh and Nelder 1989;

Agresti and Kateri 2011) and accommodate dependence structures flexibly. Each marginal

distribution can be specified to be conditioned on its covariates. It is customary to assume a

dependence structure that is constant over observations. We use this simplifying assumption

in this paper for the purposes of easy interpretation; see alternatives in Patton (2006),

Nikoloulopoulos and Karlis (2010), and Acar et al. (2011).

As emphasized in the prior section, the non-identifiability issue of copulas on discrete

outcomes has concerned analysts, calling into question model interpretations and predic-

tions. We study the issue of identifiability in a regression context. In the i.i.d. case, it is

impossible to identify a continuous copula function on the discrete support. The difficulty

vanishes if we assume that there exists at least one continuous component of regressors with

a nonzero coefficient. As the marginal distributions vary with covariates, inclusion of con-

tinuous regressors provides a region of support for copula identifiability. In this dissertation,

we provide sufficient conditions under which the copula regression model is identifiable for

discrete outcomes.

Given identifiability, how to correctly specify a copula model has remained a question.

When each Yj , j = 1, . . . , d is continuous, the probability integral transform Fj(Yj) is uni-

formly distributed, and the unique underlying copula is actually the joint distribution of

(F1(Y1), . . . , Fd(Yd)). Hence copula identification can be conducted using the probability

integral transforms, or the pseudo observations, by checking properties such as tail depen-

dence and asymmetry in scatter plots (Joe 2014) or through formal tests (Li and Genton
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2013). Section 1.4 of Joe (2014) gives an example of copula specification for continuous

outcomes. They computed empirical normal scores which is of the form Φ−1 [Fj(Yj)] and

compared the scatter plot with the elliptical contours of the bivariate normal density from

different copula families to identify the features of the underlying copula. For example,

sharper corners indicate tail dependence, and the difference between lower and upper semi-

correlation reflects asymmetry. The reason they used normal scores instead of uniform

margins is that it is better to assess tail dependence and asymmetry as the copula density

asymptotes to ∞ for at least one corner for many commonly used bivariate copula families.

Nonetheless, for a discrete outcome such as Y1, the distribution of F1(Y1) is generally

not uniform, and the related copulas do not coincide with the joint distribution function of

(F1(Y1), . . . , Fd(Yd)). Thus, the approaches of copula specification for continuous outcomes

cannot be applied directly to discrete outcomes.

Meanwhile, many informative diagnostic tools in continuous cases are also based on

probability integral transforms, for instance their empirical distributions (Deheuvels 1979)

and transformations (Rosenblatt 1952; Genest et al. 2009)). As a result of “ill” probability

integral transforms, there are few approaches available for diagnosis in discrete cases.The

classical way of comparing empirical and observed counts is infeasible when there are many

large observations and hard to present when the dimension is greater than 2. In practice,

overall goodness-of-fit statistics, such as AIC, BIC, and likelihood, are used to choose the

best model among candidates (Nikoloulopoulos and Karlis 2010; Shi and Valdez 2014).

Vuong’s test (Vuong 1989) can be applied to further compare if the models are statistically

significantly different. However, these methods are not diagnostic for adequacy of fit and do

not suggest improvements. In addition, AIC and BIC do not necessarily indicate goodness

of fit at tail.

To identify the “hidden” dependence structure under discreteness, in this paper, we

develop a nonparametric copula estimator. Most existing nonparametric copula estimators

(Deheuvels 1979; Chen and Huang 2007; Omelka et al. 2009) assume continuity of the

marginal distributions. Instead of applying the empirical estimator, we construct the esti-
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mator based on a local average approach. For practitioners who prefer to use parametric

copulas, the proposed nonparametric estimator can also serve as a diagnostic and specifi-

cation tool for selecting a parametric form of copulas. Adequacy of fit can be checked by

comparing the fitted parametric copula with the nonparametric estimator.

The rest of the thesis is organized as follows. In Chapter, 2 we propose our “perturbed”

probability integral transformation under discreteness. This chapter sets the tone and no-

tation for the rest of the dissertation. In Chapter 3, we present the proposed nonparametric

estimator and its asymptotic properties. Chapter 4 contains our simulation studies, and in

Chapter 5 we analyze the data from the Wisconsin Local Government Property Insurance

Fund.

As ongoing and future work, in Chapter 6, we extend the framework of copula iden-

tification to mixed type of data. For example, insurance claim outcomes usually follow a

mixed distribution of a point mass at zero with a positive distribution. Due to the discrete

component, copula identification remains a problem. We propose a nonparametric copula

estimator for mixed data. In Chapter 7, we discuss the usage of the proposed nonparamet-

ric estimator for goodness-of-fit test of marginal models as well as copulas. Discussion and

conclusions are also included in Chapter 7.
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Chapter 2

Univariate Perturbed Probability

Integral Transform

Under continuity, copula regression models can be fit through the following stages:

1. Fit marginal models.

2. Transform margins into uniform pseudo observations through probability integral

transformations.

3. Specify and estimate copula models using the pseudo observations.

That is, after margins have been fit, a key step is the probability integral transformation,

which serves two important functions. On the one hand, it provides a goodness-of-fit test

for marginal models. If the pseudo observations do not show uniform trend, it indicates

marginal models should be improved. On the other hand, it lays the foundation for copula

specification.

Unfortunately, the transformation for continuous outcomes which will be discussed in

Section 2.1 does not apply readily to discrete outcomes. In this chapter, we construct a

perturbed uniform transformation under our sampling scheme to approximate the process,

which lay the foundation for copula identification for Chapter 3. We can also use the
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perturbed transformation to build a goodness-of-fit test for marginal models, which will be

further discussed in Section 7.2.

2.1 Probability Integral Transform under Continuity

Without loss of generality, take the jth variable of interest Yj as an example. We suppress

subscript j in the current chapter for simplicity. Conditioning on X = x, Y follows a

distribution function F (y|x), where F depends on parameters β. Note β might contain

location, scale, and shape parameters. If Y is continuous, plugging (X,Y ) in F , the variable

F (Y |X) is known as the probability integral transform. For a fixed value s ∈ (0, 1),

P (F (Y |X) ≤ s) = s, (2.1)

i.e., F (Y |X) is uniformly distributed.

In practice, let (Xi, Yi), i = 1, . . . , n be an i.i.d sample of (X,Y ). With a fitted marginal

model F̂ , by plugging the data into the formula of the probability integral transform, we

can obtain a sequence of Cox-Snell residuals (Cox and Snell 1968) F̂ (Yi|Xi), i = 1, . . . , n.

For a fixed point s ∈ (0, 1), the empirical distribution of Cox-Snell residuals taking value at

s

Û(s; β̂) =
1

n

n∑
i=1

1(F̂ (Yi|Xi) ≤ s) (2.2)

should be close to s under correct model specification. Thus, it can be used as a diagnostic

tool for univariate model fitting; see applications in Shi and Frees (2011).

2.2 Perturbed Empirical Residual Distribution Function

However, when Y is a discrete variable, the Cox-Snell residuals are not uniformly dis-

tributed. Figure 2.1 portrays the Cox-Snell residuals of simulated examples. On the left

panel, the data were generated with a gamma regression model and the Cox-Snell resid-
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uals were calculated using the underlying model. As anticipated, the Cox-Snell residuals

appear to be uniform. In contrast, when the data were generated from a logistic regression

model, the Cox-Snell residuals are far apart from uniformity even with the knowledge of

the underlying model, as shown in the right panel of Figure 2.1.

Figure 2.1: Histogram of Cox-Snell residuals. Left panel: gamma regression. Right panel:
logistic regression.

Probability integral transformations invalidate under discreteness due to the fact that

(2.1) is not true for some values of s. To see where (2.1) does hold, we define the conditional

range of the marginal distribution function given X as a grid Λ(X) = {F (k|X) : k =

0, 1, . . .}. Note that the range of Y can be finite, e.g., binary distribution. Equation (2.1)

is true if s ∈ Λ(X).

To construct an alternative to Û(·;β) as in (2.2) under discreteness, ideally, if we could

find a subset of observations for which s ∈ Λ(X) holds, those observations can be plugged

in (2.2). We require X contains continuous components to achieve copula identifiability,

which will be discussed in Section 3.1. When X varies in regression, there might be a subset

of observations for which s ∈ Λ(X) holds approximately.

To formalize this idea, we condition on X and denote F (−1)(·|X) as the general inverse

function of F (·|X) such that F (−1)(s|X) = min{y : F (y|X) ≥ s} for s ∈ (0, 1). Denote

H+(s;X) = F (F (−1)(s|X)|X).
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It can be seen that H+(s;X) = min{η ∈ Λ(X) : η ≥ s}, i.e., H+(s;X) is the smallest point

on the grid Λ(X) that is larger than or equal to s. In the same way, we can define the

largest point on the grid Λ(X) that is smaller than or equal to s as

H−(s;X) = max{η ∈ Λ(X) : η ≤ s}.

To combine these two cases, define the grid point closest to s, or “perturbed” probability

integral transform,

H(s;X) =


H+(s;X) H+(s;X) +H−(s;X) ≤ 2s,

H−(s;X) Otherwise.

(2.3)

The distance between s and Λ(X) can be quantified by the difference between s and H(s;X).

For an observation that s is “close to” being on its grid in the sense that H(s;X) ≈ s, we

can build an approximation to (2.1)

P (F (Y |X) ≤ H(s;X)) = H(s;X) ≈ s,

where the first equation holds due to the fact that H(s;X) ∈ Λ(X) from its definition.

Now consider a sample (Yi, Xi), i = 1, . . . , n and a fixed value of s. As s is close to

the grid of some observations while not for others, we use a kernel function K(·) to assign

weights to observations depending on the normalized distance between s and H(s;Xi) using

the form K [(H(s;Xi)− s)/εn] with bandwidth εn.

The above observation motivates the definition of the perturbed empirical residual dis-

tribution function as an alternative to (2.2)

Û(s;β) =
n∑
i=1

Wni(s;Xi, β)1 [F (Yi|Xi) ≤ H(s;Xi)] , (2.4)



14

where

Wni(s;Xi, β) =
K [(H(s;Xi)− s)/εn]∑n
i=1K [(H(s;Xi)− s)/εn]

,

and K is a bounded and symmetric kernel. Intuitively, we put large weights on the ob-

servations for which s is closely on their grids, while putting small weights otherwise. The

term Û(s;β) should be close to s for s ∈ (0, 1) under true model, hence it can be used as a

diagnostic tool.

In practice, β is unknown; let β̂ be the corresponding estimator. By plugging β̂ in (2.4),

we may obtain Û(·; β̂).

As an example, when Y is a binary outcome, its marginal distribution grid only contains

two points. Denote the probability of 0 given X as F (0|X), and hence Λ(X) = {F (0|X), 1}.

As εn is small enough, only F (0|X) can possibly be in the small neighborhood of s. There-

fore, (2.4) becomes ∑n
i=1 1 [|F (0|Xi)− s| ≤ εn] 1(Yi = 0)∑n

i=1 1 [|F (0|Xi)− s| ≤ εn]
.

This statistic can be recognized as a Nadaraya-Watson estimator and so its asymptotic

properties, such as consistency and asymptotic normality, are well established.

In contrast, when Y has an infinite range, for instance Poisson variables, Û(s;β) is

a nonstandard estimator in the following aspects. First, for a fixed point s, H(s;X) is a

noncontinuous variable. To illustrate, we assume that Y follows the commonly used Poisson

generalized linear model (GLM) with the log link, i.e., Y |X ∼ Poisson (exp(X ′β)). Figure

2.2 shows H(s;X) as a function of µ = X ′β (red solid curves). In this example, for a fixed

k, F (k|X) is a monotone decreasing function of µ (dashed lines). From Figure 2.2, the

curve of H(s;X) is comprised of continuous pieces from the curves of F (k|X), k = 0, . . ..

To formalize, denote Mk as the jump point of H(s;X) on the curve of F (k|X), as in Figure

2.2, and M0 = −∞. For example, when µ < M1, F (0|X) is closer to s than F (1|X) and

H(s;X) = F (0|X) from the definition of H(s;X) that is the closest grid point to s. When

µ = M1, F (0|X) and F (1|X) are equidistant from s. While µ > M1, F (1|X) is closest to
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s and thus H(s;X) = F (1|X). To generalize, it can be seen that

H(s;X) = F (k|X) when Mk ≤ µ < Mk+1. (2.5)

Hence, the random variable H(s;X) is a continuous function of µ almost everywhere except

at a countable number of points where s is in the middle of two grid points. We will further

analyze the issue of discontinuity in Section 3.3. Because of these discontinuities, the proof

for asymptotic properties of the estimator is not trivial.

Figure 2.2: H(s;X) (solid red curve) as a function of µ = X ′β for Poisson GLM with the log
link. Dashed black curves: F (k|X) , from left to right k = 0, 1, 2, 3, 4, 5, 15, 16. The curve
of H(s;X) is comprised of pieces from the curves of F (k|X), k = 0, . . .. Blue horizontal
lines: s+ ε, s− ε.

Second, H(s;X) is a function of s. That is, when we check the estimator at different

points, we plug different variables into the kernel function, which also differs from the setting

of traditional nonparametric regression models. The dynamic scheme increases efficiency

especially when the data are less discrete. This point will be further addressed in the

multivariate context in Chapter 3.
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Chapter 3

Nonparametric Copula Estimator

In what follows, we focus on the bivariate case first for simplicity. The results can be natu-

rally extended to higher dimensions. Let Y = (Y1, Y2)′ be discrete response variables taking

integer values with corresponding covariates X = (X ′1, X
′
2)′. Each marginal distribution is

specified to be conditioned on its covariates, i.e., for j = 1, 2, conditioning on Xj = x, Yj

follows a distribution function Fj(y|x), where Fj depends on parameters βj .

We assume that C does not change with covariates for the purpose of identifiability

and easy interpretation, which will be further explained in Section 3.1. Hence, from Sklar’s

Theorem, there exists a copula C such that

F (·|x) = C (F1(·|x1), F2(·|x2)) . (3.1)

The goal is to identify C.

3.1 Identifiability

The first question concerns identifiability, i.e., whether C can be uniquely determined by the

population distribution of (X,Y). This issue has been addressed in Genest and Nešlehová

(2007) in the setting without regressors X. It was shown by Sklar that the copula is

only unique over Ran(F1)× Ran(F2), where Ran(Fj) denotes the range of Fj . The copula
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functions that equate C (F1(k1), F2(k2)) to F (k1, k2), for (k1, k2)′ taking the possible values

of Y, are compatible with the data, which only constrains the copula on a discrete number

of points. There are infinitely many such copulas that are observationally identical and

would be indistinguishable from one another even with the knowledge of the population

distribution of Y. As a most extreme example, for bivariate binary outcomes, we are only

able to identify the copula at the point (F1(0), F2(0)).

The non-identifiability issue of copulas on discrete outcomes has concerned analysts.

First, the qualified copulas have different properties such as Kendall’s τ and tail dependen-

cies, which results in difficulties of interpretation. Second, one may want to make predictions

outside the range of observations; identifiability is essential for extrapolation.

In the regression setting, in contrast, for a fixed integer kj , Fj(kj |xj) is a function of xj .

For example, for logistic regression models, Fj(0|xj) = 1/
[
1 + exp(x′jβj)

]
. Hence, inclusion

of continuous covariates widens the range of Fj(kj |xj) from a discrete number of points to

an interval. Together with the assumption that the copula does not change with covariates,

the copula function can be uniquely determined by the population at the region composed

of possible values of (F1(k1|x1), F2(k2|x2)).

3.2 Perturbed Empirical Copula Estimator

Given identifiability of the copula over a region, now we focus on how to correctly specify

the model. If Y1 and Y2 are continuously distributed, jointly, for a fixed point (s, t) ∈ (0, 1)2,

from (3.1),

P (F1(Y1|x1) ≤ s, F2(Y2|x2) ≤ t|x) = F
(
F

(−1)
1 (s|x1), F

(−1)
2 (t|x2)|x

)
= C(s, t),

and hence it can be seen that

P (F1(Y1|X1) ≤ s, F2(Y2|X2) ≤ t) = E [P (F1(Y1|X1) ≤ s, F2(Y2|X2) ≤ t|X)] = C(s, t).

(3.2)



18

That is, the copula related to Y is the joint distribution function of (F1(Y1|X1), F2(Y2|X2)).

Equation (3.2) is essential for copula identification and estimation under continuity.

In practice, let (Xi,Yi) , i = 1, . . . , n be an i.i.d sample of (X,Y). The empirical

distribution of the bivariate Cox-Snell residuals
(
F̂1(Yi1|Xi1), F̂2(Yi2|Xi2)

)
1

n

n∑
i=1

1
(
F̂1(Yi1|Xi1) ≤ s, F̂2(Yi2|Xi2) ≤ t

)
(3.3)

(Deheuvels 1979) or its kernel estimator (e.g., Scaillet and Fermanian 2002; Chen and Huang

2007) provides nonparametric estimation of C.

However, when Y1 and Y2 are discrete, similar to the univariate case, (3.2) does not

always hold, and thus the nonparametric copula estimators for continuous outcomes do not

readily apply. In Chapter 2, we introduced the perturbed empirical residual distribution

function. Since a copula is a multivariate distribution with uniform margins, it is natural

to extend the approach in Chapter 2 to copulas. To see where (3.2) does hold, we define the

conditional range of the distribution function given X as a two-dimensional grid Λ(X) =

{(F1(k1|X1), F2(k2|X2)) , k1 = 0, 1, . . . , k2 = 0, 1, . . .}. It can be seen that Λ(X) = Λ1(X1)×

Λ2(X2). Equation (3.2) is true if when (s, t) is on the grid Λ(X).

To formalize this idea, we denoteH(s, t; X) = (H1(s;X1), H2(t;X2)), where the marginal

perturbed probability integral transforms H1(·;X1), H2(·;X2) are defined in (2.3). It can

be seen that H(s, t; X) ∈ Λ(X) and is the closet grid point to (s, t). For an observation that

(s, t) is “close to” being on its grid in the sense that H1(s;X1) ≈ s,H2(t;X2) ≈ t, we can

build an approximation to (3.3) due to the fact

P (F1(Y1|X1) ≤ H2(s;X1), F2(Y2|X2) ≤ H2(t;X2)) = C (H2(s;X1), H2(t;X2)) ≈ C(s, t),

where the first equation holds since H(s, t; X) ∈ Λ(X) from its definition.

Motivated by the univariate case, we can estimate the copula using the subset for which

(s, t) is on the grid Λ(Xi) approximately, or equivalently, |H(s, t; Xi)− (s, t)| ≤ εn. If the
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copula is smooth enough, it is approximately constant over a small enough neighborhood.

Recall that β = (β1, β2) is the underlying marginal parameter. For simplicity, denote

Yi(β) = 1 [F1(Yi1|Xi1) ≤ H1(s;Xi1), Fi2(Yi2|Xi2) ≤ H2(t;Xi2)] . (3.4)

Hence, the copula estimator is

Ĉ(s, t;β) =

n∑
i=1

Wni(s, t; Xi, β)Yi(β), (3.5)

where

Wni(s, t; Xi, β) =
K((H1(s;Xi1)− s)/εn, (H2(t;Xi2)− t)/εn)∑n
i=1K((H1(s;Xi1)− s)/εn, (H2(t;Xi2)− t)/εn)

,

and K is a bounded and symmetric kernel.

In practice, β is unknown; let β̂ be the corresponding estimator. By plugging β̂ in (3.5),

we may obtain the copula estimator Ĉ(s, t; β̂). It will be shown in the following section that

the uncertainty in the coefficients is negligible under mild regularity conditions.

3.3 Asymptotic Behavior

In this section, we study the asymptotic properties of the copula estimator Ĉ(s, t; β̂) defined

in (3.5). We first analyze Ĉ(s, t;β), then plug in the estimator of β.

As mentioned in Chapter 2, marginally, for j = 1, 2, for a fixed k, Fj(k|Xj) is a monotone

decreasing function of a random location parameter µj = X ′jβj . Hence, it is random with

its own distribution function and, assuming continuity, a density. Let fFj(k|Xj) denote the

density of Fj(k|Xj), and fHj(s;Xj) is the density of Hj(s;Xj). The value of fHj(s;Xj) at s,

by transformation of random variables, is

fHj(s;Xj)(s) =

∞∑
k=0

fFj(k|Xj)(s).

Note the summation may be finite, for example, as with binary outcomes.
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We illustrated in Chapter 2 that Hj(s;Xj) is a noncontinuous function of µj (Figure

2.2). Here we demonstrate that its density fHj(s;Xj) is not continuous at s by showing

fHj(s;Xj)(s + ε) has a different form for ε 6= 0. Now, extend the notation in (2.5) with

subscripts referring to different margins, that is, Mk
j is the jump point of Hj(s;Xj) on the

curve of Fj(k|Xj). Given µj = Mk
j , denote the corresponding function value of Hj(s;Xj)

as νkj .

For a small k such as k ≤ 5 in Figure 2.2, |νkj − s| > ε, i.e., the jump point of Hj(s;Xj)

on the curve of Fj(k|Xj) is outside the ε neighborhood of s. Hence, fFj(k|Xj) contributes

to fHj(s;Xj) at s + ε when applying transformation of random variables. While for large k

such as k = 15, |νkj − s| < ε, and thus the density of Fj(15|Xj) does not contribute to the

density of fHj(s;Xj) at s+ ε. Therefore, in this example,

5∑
k=0

fFj(k|Xj)(s+ ε) ≤ fHj(s;Xj)(s+ ε) <
∞∑
k=0

fFj(k|Xj)(s+ ε). (3.6)

That is, the density fHj(s;Xj) is not continuous at s due to loss of fFj(k|Xj) curves contributing

to fHj(s;Xj) at s+ ε.

Now ε takes a small value εn which goes to 0 as n goes to infinity. The following lemma

guarantees the summation on the left of (3.6) can be up to a large number an(s) going to∞,

and fHj(s;Xj) can be approximated by
∑an(s)

k=0 fFj(k|Xj), which is continuous at s. Therefore,

the discontinuity of fHj(s;Xj) is negligible.

Lemma 3.3.1. There exists a sequence an(s) going to infinity such that for all k ≤ an(s),

|νkj − s| > εn, and thus fHj(s;Xj)(s+ εn) ≥
∑an(s)

k=0 fFj(k|Xj).

The proof of Lemma 3.3.1 can be found in Section 3.5.1. Since there are countable jump

points of H1(s;X1) and εn → 0, Lemma 3.3.1 can be satisfied by choosing right order of

an(s). Specifically, Lemma 3.3.1 is satisfied by choosing an(s) for Poisson GLMs to be 1/ε2n

and 1/εn for negative binomial distributions; see proofs in Section 3.5.1.

It is worth mentioning that if Yj has a finite support such as binary outcomes, when εn

is small enough, the jump points can be excluded from the εn neighbor of s, hence an(s)
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can be chosen as an arbitrarily large number.

Extending our notation, denote the joint density of (F1(k1|X1), F2(k2|X2)) as

fF1(k1|X1),F2(k2|X2), and fH(s,t;X) as the density of H(s, t; X). It can be seen

fH(s,t;X)(s, t) =
∞∑
k1=0

∞∑
k2=0

fF1(k1|X1),F2(k2|X2)(s, t). (3.7)

Assume we can interchange the derivatives and the limits, the partial derivatives of

fH(s,t;X)(s, t) are fH(s,t;X),1 = ∂fH(s,t;X)/∂s and fH(s,t;X),2 = ∂fH(s,t;X)/∂t. To show the

asymptotic properties of the copula estimator, the following regularity assumption guaran-

tees that fF1(k1|X1),F2(k2|X2) is sufficiently smooth.

Assumption 3.3.1. For fixed k1 and k2, fF1(k1|X1),F2(k2|X2) is twice continuously differen-

tiable. The density fH(s,t;X) and its derivatives are bounded.

A necessary condition for Assumption 3.3.1 is that there exists a continuous regressor

whose coefficient is not 0. Recall M
an(s)
1 denotes the jump point of H1(s;X1) on the curve of

F1(an(s)|X1) as in (2.5). The following assumption guarantees the discontinuity of fH(s,t;X)

is negligible.

Assumption 3.3.2. Let an(s) and bn(t) be sequences as in Lemma 3.3.1 for F1(k1|X1) and

F2(k2|X2), respectively, then ε−2
n P

(
µ1 > M

an(s)
1

)
→ 0 and ε−2

n P
(
µ2 > M

bn(t)
2

)
→ 0.

When Y1 and Y2 follow Poisson distributions with means λ1 = exp(µ1) and λ2 = exp(µ2),

Assumptions 3.3.1 and 3.3.2 are satisfied if Eλ1, Eλ2, and E
√
λ1λ2 are finite, and they hold

for negative binomial distributions if Eλ2
1, Eλ2

2, and Eλ1λ2 are finite. See Propositions

3.4.1 and 3.4.2 for verification. Therefore, if there are highly right-skewed covariates, log

transformation is suggested.

The copula is assumed to satisfy smoothness conditions, which guarantees the eligibility

of approximating the copula value at a point using its neighborhood.

Assumption 3.3.3. The copula C for Y1|X1 and Y2|X2 does not change with X. The

copula is twice continuously differentiable, and the corresponding partial derivatives are
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bounded.

The first part of Assumption 3.3.3 is called “simplifying assumption” in Haff et al. (2010)

and Joe (2014). Let V be a subset of (0, 1)2 such that for (s, t) ∈ V , fH(s,t;X)(s, t) > 0.

Denote C1, C2, C11, and C22 as first and second order partial derivatives of C. Let the

bandwidth εn satisfy that εn → 0 and nε2n → ∞ as n → ∞, and nε6n = O(1). Assume K

is a symmetric and compact supported kernel function. Denote R2(K) =
∫
K(u, v)2dudv,

κ2 =
∫
u2K(u, v)dudv.

Theorem 3.3.1 (Consistency). Under Assumptions 3.3.1, 3.3.2, and 3.3.3, for (s, t) ∈ V ,

Ĉ(s, t;β)→p C(s, t).

With further assuming C satisfies Lipschitz condition, we can have normality and cor-

responding order of Ĉ(s, t;β).

Assumption 3.3.4. C satisfies Lipschitz condition of order 2, i.e., there exists a constant

α1 such that for any (a, b), (s, t),

|C(s, t)− C(a, b)| ≤ α1 |(s, t)− (a, b)|2 .

Theorem 3.3.2 (Normality). Under Assumptions 3.3.1, 3.3.2, 3.3.3, and 3.3.4, for (s, t) ∈

V ,

√
nε2n

(
Ĉ(s, t;β)− C(s, t)− κ2ζ(s, t)ε2n

)
→d N

(
0,
R2(K)C(s, t)(1− C(s, t))

fH(s,t;X)(s, t)

)

where

ζ(s, t) =
C11(s, t)

2
+
C22(s, t)

2
+
C1(s, t)fH(s,t;X),1(s, t)

fH(s,t;X)(s, t)

+
C2(s, t)fH(s,t;X),2(s, t)

fH(s,t;X)(s, t)
.

(3.8)
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Therefore, the asymptotic mean squared error (AMSE), a commonly used measure of

the quality of an estimator, for Ĉ(·;β) at (s, t) is

AMSE
(
Ĉ(s, t;β)

)
= κ2

2ζ(s, t)2ε4n +
C(s, t)(1− C(s, t))R2(K)

nε2nfH(s,t;X)(s, t)
,

which converges to 0.

In principle, the copula can be identified using only the probability of (0, 0) due to

the fact F (0, 0|X1, X2) = C (F1(0|X1), F2(0|X2)). Assuming that the explanatory vari-

ables have sufficient range so that the probabilities of zeros span the interval (0, 1), the

corresponding estimator is of the form

Ĉ0(s, t;β) =

∑n
i=1K [(F1(0|Xi1)− s) /εn, (F2(0|Xi2)− t) /εn] 1(Yi1 = 0, Yi2 = 0)∑n

i=1K [(F1(0|Xi1)− s) /εn, (F2(0|Xi2)− t) /εn]
, (3.9)

which is an application of the Nadaraya-Watson estimator. From its established asymptotic

results (Hansen 2009), the variance of Ĉ0(s, t;β) is of the form

C(s, t) [1− C(s, t)]R2(K)

nε2nfF1(0|X1),F2(0|X2)(s, t)
.

Theorem 3.3.2 underscores the benefit of employing our nonstandard estimator. From the

form of fH(s,t;X)(s, t) in (3.7), we can see fH(s,t;X)(s, t) > fF1(0|X1),F2(0|X2)(s, t). Thus,

we have smaller variance by applying the proposed estimator. Intuitively, instead of

applying a variable (F1(0|X1), F2(0|X2)), we use many variables (F1(k1|X1), F2(k2|X2)),

k1 = 0, . . . , k2 = 0, . . . for copula estimation, which increases the efficiency. This point will

be illustrated through a simulation study in Chapter 4.

The following assumptions guarantee the asymptotics when we plug in estimates of the

marginal models into the copula estimator Ĉ(s, t; β̂). When the parameters are set to be θ,

we denote H(s, t; X, θ) as the corresponding perturbed probability integral transform.

Assumption 3.3.5 (Lipschitz condition). There exists a constant α2 such that for all i,
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for bounded θ and β, when |θ − β| is small enough,

|H(s, t; Xi, θ)−H(s, t; Xi)| ≤ α2 |θ − β|

almost surely.

Note that this assumption is satisfied when Y1 and Y2 follow Poisson GLMs with the

log link and bounded covariates; see Section 3.4.1.

Assumption 3.3.6. n1/2(β̂ − β) = Op(1). That is, for any ξ > 0 there exists γξ > 0 such

that for n big enough,

P (β̂ /∈ B(β, n−1/2γξ)) < ξ

where B(β, d) is a neighborhood of β with radius d.

Theorem 3.3.3. With Assumptions 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5, and 3.3.6, for (s, t) ∈

V

√
nε2n

(
Ĉ(s, t; β̂)− C(s, t)− κ2ζ(s, t)ε2n

)
→d N

(
0,
C(s, t)(1− C(s, t))R2(K)

fH(s,t;X)(s, t)

)
.

That is, the AMSE of the copula estimator Ĉ(s, t; β̂) is same as when the margins are

known.

Here are a few comments on the asymptotic results. First, the estimator behaves well

with large marginal means under which fH(s,t;X)(s, t) is large. For illustration in one dimen-

sion, we use Figure 2.2 as an example, and without loss of generality, we focus on the fixed

point s in the figure. When µ takes a small value, for instance -3, Hj(s;Xj) = Fj(0|Xj)

which is around 1 and not in a small neighborhood of s. While µ is larger, it is more

likely that Hj(s;Xj) is in a small neighborhood of s. That is, the density fHj(s;Xj)(s) is

large when µ is mostly distributed at large values. Intuitively, as µ gets large, the grid gets

dense and the variable is more similar to a continuous random variable. Extending to two

dimensions, when both margins have large means, the estimator performs well. We will

verify this point in Chapter 4 with simulated data.
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Second, when s is small, it requires large µ value for Fj(k|Xj) to be in a small neigh-

borhood of s. Since we constrain the tail probability of µ by Assumption 3.3.2, fHj(s;Xj)(s)

is small in this case by (3.7). In other words, we have more effective observations when we

estimate the copula at the right upper corner than the lower left corner.

Third, here we only provide the results for the bivariate case. The estimator can be

extended to higher dimensions naturally with smaller order of convergence
√
nεdn, where d

is the number of dimensions. An alternative is to build up the multivariate models through

bivariate blocks, known as vine copula structure (Bedford and Cooke 2002; Aas et al. 2009;

Panagiotelis et al. 2012).

3.4 Proofs

3.4.1 Verification of Assumptions for Poisson and Negative Binomial Dis-

tributions

Proposition 3.4.1. Assumptions 3.3.1 and 3.3.2 hold for Poisson GLMs with the log link

if Eλ1, Eλ2, and E
√
λ1λ2 <∞, where λj = exp(X ′jβj).

Proof. Let Y1 and Y2 follow Poisson GLMs. For a fixed k, the distribution function at k

given λj is

Fj(k|λ1) = g(λj ; k) = e−λj
k∑
i=0

1

i!
λij ,

which is a smooth monotonically decreasing function of λj , as illustrated in Figure 2.2.

Hence the derivative of g(λj ; k) with respect to λj exists and is of the form

g′(λj ; k) =
1

∂λj
∂g(λj ; k) = − 1

k!
λkj e
−λj ,

which is negative and consistent with the decreasing trend. Due to monotonicity, the

inverse function of g(λj ; k) with respect to λj exists and is denoted as g−1(s; k) = {λ :

F (k|λ) = s}. Let fλ be the density of λ. By the change of variables formula, the density of
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(F1(k1|λ1), F2(k2|λ2)) at a point (s, t) ∈ (0, 1)2 can be expressed as

fF1(k1|λ1),F2(k2|λ2)(s, t)

=fλ
(
g−1(s; k1), g−1(t; k2)

) 1

g′(g−1(s; k1); k1)

1

g′(g−1(t; k2); k2)
.

Thus, using (3.7), the density of H(s, t; X, β) at (s, t) is

fH(s,t;X,β)(s, t) =

∞∑
k1=0

∞∑
k2=0

fλ
(
g−1(s; k1), g−1(t; k2)

) 1

g′ (g−1(s; k1); k1) g′ (g−1(t; k2); k2)
.

(3.10)

We now show fH(s,t;X,β)(s, t) <∞ under our assumption.

By applying the mean-value forms of the remainder for Taylor series on the exponential

function, for any λ1,

eλ1 =

k1∑
i=0

1

i!
λi1 +

1

(k1 + 1)!
λk+1

1 eζ1 , (3.11)

where ζ1 is between 0 and λ1. Plugging λ1 = g−1(s; k1) into (3.11) yields

1− s =
1

(k1 + 1)!
g−1(s; k1)k1+1eζ1e−g

−1(s;k1).

Taking logarithm on both sides, we get

log [(k1 + 1)!] = (k1 + 1) log
[
g−1(s; k1)

]
+ ζ1 − g−1(s; k1)− log(1− s).

By Stirling’s approximation,

log [(k1 + 1)!] ≈ (k1 + 1) log(k1 + 1)− (k1 + 1) +O [log(k1 + 1)] .

By comparing the two equations above, we obtain that g−1(s; k1) is of same order as k1.

Similarly, g−1(t; k2) is of same rate as k2.
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In addition, by Stirling’s approximation, g′(λj ; kj) given λ1 = g−1(s; k1) is that

−e−g−1(s;k1)g−1(s; k1)k1
1

k1!
∼ − 1√

k1
.

To verify Assumption 3.3.1, by plugging g−1(s; kj) and g′(λj ; kj) into (3.10), we have

fH(s,t;X,β)(s, t) ∼
∞∑
k1=0

∞∑
k2=0

√
k1k2fλ(k1, k2)

which converges since E
√
λ1λ2 <∞.

Now we verify Assumption 3.3.2. We first check the orders of an(s) and bn(t). Note

that the probability of Y1 = k1 given λ1 = g−1(s; k1) is

pk1 = e−g
−1(s;k1)g−1(s; k1)k1

1

k1!
∼ 1√

k1
.

In order to find an(s) such that pk1 > εn for k1 ≤ an(s), we can choose an(s) and bn(t) to

be of order 1/ε2n. The probability

P
(
λ1 > M

an(s)
1

)
∼ P

(
λ1 > 1/ε2n

)
,

which is o(ε2n) since E(λ1) < ∞. Similarly, when E(λ2) < ∞, 1/ε2nP
(
µ2 > µ

bn(t)
2

)
→ 0.

Hence, Assumption 3.3.2 is satisfied.

Assumption 3.3.5 is satisfied for Poisson GLM with the log link function since the first

order partial derivatives of Fj(k;λj) with respect to λj is bounded by 1. With probability

one, when the distance between β and θ is small enough, Hj(s;Xj , βj) and Hj(s;Xj , θ) are

on Fj(k; exp(X ′jβj)) and Fj(k; exp(X ′jθj)) with the same k value.

Proposition 3.4.2. Assumptions 3.3.1 and 3.3.2 hold for negative binomial GLM with log

link if E(λ1
2), E(λ2

2), and E(λ1λ2) <∞.

Proof. Similar to the proof of Proposition 3.4.1, for a negative binomial distribution with

mean parameter λj and size parameter αj . The distribution function at a fixed integer k is
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that

F (k|λj , αj) = g(λj ; k, αj) =
k∑
i=0

(
i+ αj − 1

i

)
λijα

αj
j

(λj + αj)i+αj
. (3.12)

Denote the derivative of g(λj ; k, αj) with respect to λj as

g′(λj ; k, αj) =
∂g(λj ; k, αj)

∂λj
=

αj
λj + αj

k∑
i=0

((
i

λj
− 1

)(
i+ αj − 1

i

)(
λj

λj + αj

)i( αj
λj + αj

)αj)
.

Now we check the order of g−1(s; k1, αj). It is known that the Maclaurin series for

function g(z) = 1/(1 + z)β with the mean-value forms of remainder is that

1

(1− z)β+1
=

k∑
i=0

(
i+ β

i

)
zi +

(
k + β + 1

k + 1

)
zk+1 1

(1− ζ)β+k+2
, (3.13)

where ζ is between 0 and z. Now in (3.13), substituting z =
λj

λj+αj
and β = αj − 1, we have

1 =
k∑
i=0

(
i+ αj − 1

i

)(
λj

λj + αj

)i( αj
λj + αj

)αj
+

(
k + αj
k + 1

)(
λj

λj + αj

)k+1( αj
λj + αj

)αj 1

(1− ζ)αj+k+1
.

When λj = g−1(s; k, αj), we have

1− s =

(
k + αj
k + 1

)(
λj

λj + αj

)k+1( αj
λj + αj

)αj 1

(1− ζ)αj+k+1
. (3.14)

Applying Stirling’s approximation on

(
k + αj
k + 1

)
and taking logarithm, we can have

(k + αj) log(k + αj)− (k + 1) log(k + 1) + αj − 1 = log(1− s)− (k + 1) log(λj)− αj log(αj)

+ (k + αj + 1) log(λj + αj).

(3.15)
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Therefore, comparing the two sides of equation (3.15) yields that g−1(s; k, αj) is of order k.

When λj is of order k and k is large,
∑k

i=0

(
i
λj

(
i+ αj − 1

i

)(
λj

λj+αj

)i ( αj
λj+αj

)αj)
is bounded away from 1, hence

∑k
i=0

((
i
λj
− 1
)(i+ αj − 1

i

)(
λj

λj+αj

)i ( αj
λj+αj

)αj)
is

bounded above zero. Therefore, g′(λj ; k, αj) is of order 1/k.

Thus plugging right order of g′(λj ; k, αj) and g−1(s; k1, αj) into (3.10), we can get

fH(s,t;X,β)(s, t) =

∞∑
k1=0

∞∑
k2=0

fF1(k1|λ1),F2(k2|λ2)(s, t) ∼
∞∑
k1=0

∞∑
k2=0

fλ(k1, k2)k1k2,

which converges since Eλ1λ2 <∞.

Now we verify Assumption 3.3.2. We first choose the order of an(s). The point mass

function when λj = k is that

(
k + αj − 1

k

)
λkjα

αj
j

(λj + αj)k+αj
∼
√
k + αj − 1
√
k

(
1 +

αj − 1

k

)k
e−(αj−1)

(
k + αj − 1

k + αj

)αj−1

·(
1 +

αj
k

)k 1

k + αj

∼ 1

k + αj
.

Hence we can choose an(s) and bn(t) to be of order 1/εn. Then the probability

P
(
λ1 > M

an(s)
1

)
∼ P (λ1 > 1/εn) = P

(
λ2

1 > 1/ε2n
)

which is o(ε2n) since E(λ2
1) < ∞. Similarly, when E(λ2

2) < ∞, 1/ε2nP
(
µ2 > µ

bn(t)
2

)
→ 0.

Therefore, Assumption 3.3.2 is satisfied.

3.5 Proofs

3.5.1 Proof of Consistency

Here are some simplified notations in the proof: F1(k1) = F1(k1|X1), F2(k2) = F (k2|X2),

H(s, t) = H(s, t; X), H(s, t; θ) = H(s, t; X, θ), and Ĉ(s, t) = Ĉ(s, t;β), where β is the
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underlying parameter.

Proof of Lemma 3.3.1. Recall that εn → 0. For vk1 , k = 1, 2, . . . as in Section 3.3, taking

minimum for the first n elements, un = mink=1,...,n v
k
1 is a nonzero decreasing sequence.

Therefore, an appropriate order of an(s) can be chosen such that uan(s) > εn, i.e., vk1 > εn

for k ≤ an(s).

To show the asymptotic properties of Ĉ(s, t) defined in (3.5), we analyze it by pieces.

We first show the denominator is a consistent estimator of fH(s,t)(s, t). Then, we show the

consistency of the numerator.

Denote the denominator as

f̂H(s,t)(s, t) =
1

nε2n

n∑
i=1

K
[
εn
−1(Hi1(s)− s), εn−1(Hi2(t)− t)

]
.

Lemma 3.5.1 shows the consistency of the denominator.

Lemma 3.5.1. Under Assumptions 3.3.1 and 3.3.2,

f̂H(s,t)(s, t)→p fH(s,t)(s, t). (3.16)

Proof. Recall that K is a bounded on compact support. Without loss of generality, in the

proof we assume K(u, v) ≤ 1 with support |(u, v)| ≤ 1.

Let f̂H(s,t)(s, t) = 1
n

∑n
i=1 Tni, where Tni = 1/ε2nK

[
εn
−1(Hi1(s)− s), εn−1(Hi2(t)− t)

]
.

That is, f̂H(s,t)(s, t) is the summation of a triangular array. We demonstrate the consistency

of f̂H(s,t)(s, t) using the weak law of large numbers (WLLN) for triangular arrays. It is

sufficient to show

1

n

n∑
i=1

ETni → fH(s,t)(s, t), (3.17)

1

n
ET 2

ni → 0. (3.18)
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First, to show (3.17), we divide the range of µ1 and µ2 into four pieces, i.e.

ETni =E
[
Tni1

(
µ1 ≤Man(s)

1 , µ2 ≤M bn(t)
2

)]
+ E

[
Tni1

(
µ1 ≤Man(s)

1 , µ2 > M
bn(t)
2

)]
+ E

[
Tni1

(
µ1 > M

an(s)
1 , µ2 ≤M bn(t)

2

)]
+ E

[
Tni1

(
µ1 > M

an(s)
1 , µ2 > M

bn(t)
2

)]
:=T1 + T2 + T3 + T4.

(3.19)

We analyze the four pieces one by one.

Let fµ1,µ2 denote the joint density of (µ1, µ2). The first term of (3.19) equals

T1 =

an(s)∑
k1=0

bn(t)∑
k2=0

T1(k1, k2),

where

T1(k1, k2) =
1

ε2n

∫ M
k1+1
1

M
k1
1

∫ M
k2+1
2

M
k2
2

K
[
εn
−1(F1(k1)− s), εn−1(F2(k2)− t)

]
fµ1,µ2(µ1, µ2)dµ1dµ2.

(3.20)

Recall that K takes nonzero values only when

|(F1(k1)− s, F2(k2)− t)| ≤ εn. (3.21)

For k1 ≤ an(s), k2 ≤ bn(t), a necessary condition for (3.21) to hold is that Mk1
1 ≤ µ1 <

Mk1+1
1 ,Mk2

2 ≤ µ2 < Mk2+1
2 . Therefore, we can write the limits in (3.20) as (−∞,∞). That

is,

T1(k1, k2) =
1

ε2n

∫ ∞
−∞

∫ ∞
−∞

K
[
εn
−1(F1(k1)− s), εn−1(F2(k2)− t)

]
fµ1,µ2(µ1, µ2)dµ1dµ2

=
1

ε2n

∫
K

(
a− s
εn

,
b− t
εn

)
fF1(k1),F2(k2)(a, b)dadb

=

∫
K(u, v)fF1(k1),F2(k2)(s+ uεn, t+ vεn)dudv,
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where the last equation is derived by substitution. A Taylor series expansion up to first

order for fF1(k1),F2(k2) yields

fF1(k1),F2(k2)(s+ uεn, t+ vεn)

=fF1(k1),F2(k2)(s, t) + fF1(k1),F2(k2),1(s, t)uεn + fF1(k1),F2(k2),2(s, t)vεn+

1

2
fF1(k1),F2(k2),11(s, t)u2ε2n +

1

2
fF1(k1),F2(k2),22(s, t)v2ε2n + fF1(k1),F2(k2),12(s, t)uvε2n + o(ε2n).

Since K is symmetric,
∫
K(u, v)ududv = 0, and

∫
K(u, v)uvdudv = 0. Moreover,∫

K(u, v)dudv = 1. Denote fH(s,t),n(s, t) =
∑an(s)

k1=0

∑bn(t)
k2=0 fF1(k1),F2(k2)(s, t), then we have

T1 = fH(s,t),n(s, t) + o(εn),

where the residual term is o(εn) since
∑an(s)

k1=0

∑bn(t)
k2=0 fF1(k1),F2(k2),jj(s, t) <∞, j = 1, 2, where

fF1(k1),F2(k2),jj is the second order derivatives of fF1(k1),F2(k2) with respect to jth component,

by Assumption 3.3.1. As an(s) and bn(t) go to infinity with n,

T1 → fH(s,t)(s, t).

Then, we consider the second term T2. As |K(u, v)| ≤ 1,

T2 ≤
1

ε2n

∫ ∞
−∞

∫ ∞
M
bn(t)
2

fµ1,µ2(µ1, µ2)dµ1dµ2 =
1

ε2n
P
(
µ2 > M

bn(t)
2

)
. (3.22)

By Assumption 3.3.2, T2 → 0. Similar arguments can be used to show that

T3 ≤
1

ε2n
P
(
µ1 > M

an(s)
1

)
→ 0,

T4 ≤
1

ε2n
P
(
µ1 > M

an(s)
1 , µ2 > M

bn(s)
2

)
→ 0.

So (3.17) follows immediately.
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Finally, we show (3.18). Since K is bounded by 1,

T 2
ni ≤

1

ε2n
Tni.

As Tni is positive, combining with (3.17) and that nε2n →∞, we have

1

n
ET 2

ni ≤
1

nε2n
ETni → 0.

The lemma follows the WLLN for triangular arrays.

Proof of Theorem 3.3.1. Given Lemma 3.5.1, it is sufficient to show that the numerator

of (3.5) is a consistent estimator of fH(s,t)(s, t)C(s, t). Similar to the denominator, the

numerator of (3.5), denoted as

N̂(s, t) =
1

nε2n

n∑
i=1

K
[
εn
−1(Hi1(s)− s), εn−1(Hi2(t)− t)

]
Yi(β) (3.23)

is the summation of a triangular array, i.e.,

N̂(s, t) =
1

n

n∑
i=1

Vni,

where Vni = 1/ε2nK
[
εn
−1(Hi1(s)− s), εn−1(Hi2(t)− t)

]
Yi(β). It is sufficient to show

1

n

n∑
i=1

EVni → fH(s,t)(s, t)C(s, t), (3.24)

1

n
EV 2

ni → 0. (3.25)

We first show (3.24). Note that

E [Vni|Hi1(s), Hi2(t)] = K
[
εn
−1(Hi1(s)− s), εn−1(Hi2(t)− t)

]
C [Hi1(s), Hi2(t)] .
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Similar ideas used to show (3.17) lead to the approximation

E (Vni) ≈
an(s)∑
k1=0

bn(t)∑
k2=0

∫
K(u, v)fF1(k1),F2(k2)(s+ uεn, t+ vεn)C(s+ uεn, t+ vεn)dudv.

Taking the product of Taylor expansions of fF1(k1),F2(k2) and C at (s, t) yields

E (Vni) ≈
an(s)∑
k1=0

bn(t)∑
k2=0

C(s, t)fF1(k1),F2(k2)(s, t) + o(εn).

Note that some terms are eliminated due to the symmetry of K. When n approaches

infinity, (3.24) follows immediately. In addition, since K and Yi(β) are bounded by 1,

1

n
E
(
V 2
ni

)
≤ 1

nε2n
E (Vni)→ 0.

So (3.25) holds and the stated result follows WLLN for triangular arrays.

3.5.2 Proof of Theorem 3.3.2

Proof of Theorem 3.3.2. Given consistency of the denominator in Section 3.5.1, now we

are in a position to show the weak convergence of the numerator. We check the bias and

variance of the numerator and show they both converge to 0 at the appropriate rate.

Comparing Ĉ(s, t) and C(s, t) yields

Ĉ(s, t) = C(s, t) +
m̂1(s, t)

f̂H(s,t)(s, t)
+

m̂2(s, t)

f̂H(s,t)(s, t)
,

where

m̂1(s, t) =
1

nε2n

n∑
i=1

K
[
ε−1
n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)] ,

m̂2(s, t) =
1

nε2n

n∑
i=1

K
[
ε−1
n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
{Yi(β)− C [Hi1(s), Hi2(t)]} .
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Among them, m̂1(s, t) contributes to the bias while m̂2(s, t) contributes the variance of

Ĉ(s, t).

Variance. Since E (Yi(β)|µi1, µi2) = C [Hi1(s), Hi2(t)], one has E(m̂2(s, t)|µi1, µi2) = 0,

which leads to that E [m̂2(s, t)] = 0. Thus, we focus on the variance of m̂2(s, t). Note that

Var [m̂2(s, t)] =
1

nε4n
E
[
K
[
ε−1
n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
{Yi(β)− C [Hi1(s), Hi2(t)]}

]2
(3.26)

To compute the variance of m̂2(s, t), we condition on Hi(s, t)

E
(
{Yi(β)− C [Hi1(s), Hi2(t)]}2 |Hi1(s) = a,Hi2(t) = b

)
= C(a, b) [1− C(a, b)] := σ2(a, b).

Since K and σ are bounded, arguments analogous to those use to prove (3.17) lead to the

approximation

Var [m̂2(s, t)]

≈ 1

nε4n

an(s)∑
k1=0

bn(t)∑
k2=0

∫ M
k1+1
1

M
k1
1

∫ M
k2+1
2

M
k2
2

K
[
εn
−1(F1(k1)− s), εn−1(F2(k2)− t)

]2
σ2 [F1(k1), F2(k2)] ·

fµ1,µ2(µ1, µ2)dµ1dµ2 + o

(
1

nε2n

)

=
1

nε4n

an(s)∑
k1=0

bn(t)∑
k2=0

∫
K

(
a− s
εn

,
b− t
εn

)2

σ2(a, b)fF1(k1),F2(k2)(a, b)dadb+ o

(
1

nε2n

)

=
1

nε2n

an(s)∑
k1=0

bn(t)∑
k2=0

∫
K(u, v)2σ2(s+ uεn, t+ vεn)fF1(k1),F2(k2)(s+ uεn, t+ vεn)dudv + o

(
1

nε2n

)
.

As C and fF1(k1),F2(k2) are twice continuously differentiable over V , σ2fF1(k1),F2(k2)

carries over the differentiability as a function of them. Denote α21(s, t) =
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R2(K)σ2(s, t)fH(s,t),n(s, t). The Taylor series expansion of σ2fF1(k1),F2(k2) yields

Var [m̂2(s, t)] =
1

nε2n
α21(s, t) + o

(
1

nε2n

)
.

Note that the term m̂2(s, t) is the summation of a triangular array. To establish the

asymptotic distribution of m̂2(s, t), we now verify that Lyapunov’s central limit theorem

holds. Denote

wni(s, t) =
1

nε2n
K
[
ε−1
n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
{Yi(β)− C [Hi1(s), Hi2(t)]} ,

then m̂2(s, t) =
∑n

i=1wni. It is sufficient to show

∑n
i=1 E |wni(s, t)|3

(
∑n

i=1 Var [wni(s, t)])
3/2
→ 0. (3.27)

Note that

Var [wni(s, t)] =
1

n2ε2n
α21(s, t) + o

(
1

n2ε2n

)
,

E |wni(s, t)|3 ≤
fH(s,t),n(s, t)

n3ε4n

∫
K(u, v)3dudv + o

(
1

n3ε4n

)
= O

(
1

n3ε4n

)
.

Hence, (3.27) follows immediately, and the Lyapunov condition is satisfied. Therefore,

√
nε2n

m̂2(s, t)√
α21(s, t)

→d N(0, 1).

Since fH(s,t),n(s, t)→ fH(s,t)(s, t),

√
nε2nm̂2(s, t)→d N

(
0, R2(K)C(s, t) [1− C(s, t)] fH(s,t)(s, t)

)
.
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By Slutsky’s theorem, substitution of f̂H(s,t)(s, t) by fH(s,t)(s, t) yields

√
nε2n

m̂2(s, t)

f̂H(s,t)(s, t)
→d N

(
0,
C(s, t) [1− C(s, t)]R2(K)

fH(s,t)(s, t)

)
. (3.28)

Bias. The mean of m̂1(s, t) is

E [m̂1(s, t)] =
1

ε2n
E
{
K
[
ε−1
n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)]

}
.

Since C satisfies Lipschitz condition as in Assumption 3.3.4, given

|(Hi1(s)− s,Hi2(t)− t)| < εn, under which K
[
ε−1
n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
is

nonzero,

|C [Hi1(s), Hi2(t)]− C(s, t)| ≤ α1ε
2
n.

Similar arguments used to show (3.17) lead to the approximation

E [m̂1(s, t)] ≈ 1

ε2n

an(s)∑
k1=0

bn(t)∑
k2=0

∫
K

(
a− s
εn

,
b− t
εn

)
[C(a, b)− C(s, t)] fF1(k1),F2(k2)(a, b)dadb+ o(ε2n)

=

an(s)∑
k1=0

bn(t)∑
k2=0

∫
K(u, v) [C(s+ uεn, t+ vεn)− C(s, t)] ·

fF1(k1),F2(k2)(s, t)(s+ uεn, t+ vεn)dudv + o(ε2n).

Taking the product of the Taylor series expansions for C up to second order and first order

for fF1(k1),F2(k2) at (s, t), one gets

E [m̂1(s, t)] =

an(s)∑
k1=0

bn(t)∑
k2=0

∫ {
K(u, v)ε2n

[
1

2
C11(s, t)fF1(k1),F2(k2)(s, t)u

2+

1

2
C22(s, t)fF1(k1),F2(k2)(s, t)v

2 + C1(s, t)fF1(k1),F2(k2),1(s, t)u2+

C2(s, t)fF1(k1),F2(k2),2(s, t)v2
]}

dudv + o(ε2n).
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Let fH(s,t),n,j(s, t), j = 1, 2 denote the partial derivatives of fH(s,t),n(s, t) and define

ζn(s, t) =
1

2
C11(s, t) +

1

2
C22(s, t) +

C1(s, t)fH(s,t),n,1(s, t)

fH(s,t),n(s, t)
+
C2(s, t)fH(s,t),n,2(s, t)

fH(s,t),n(s, t)
.

Recall the notation κ2 =
∫
u2K(u, v)du, hence we obtain

E [m̂1(s, t)] = κ2ζn(s, t)fH(s,t),n(s, t)ε2n + o(ε2n). (3.29)

We now compute the variance of m̂1(s, t)

Var [m̂1(s, t)]

=
1

nε4n
Var

{
K
[
ε−1
n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)]

}
=

1

nε4n

(
E
{
K
[
ε−1
n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)]

}2

−
{

E
(
K
[
ε−1
n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)]

)}2
)
.

(3.30)

The first term of (3.30) is

1

nε4n
E
{
K
[
ε−1
n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)]

}2

=
1

nε4n
E

an(s)∑
k1=0

bn(t)∑
k2=0

K

(
Fi1(k1)− s

εn
,
Fi2(k2)− t

εn

)
[C [Fi1(k1), Fi2(k2)]− C(s, t)]

2

+ o

(
1

n

)

=
1

nε2n

an(s)∑
k1=0

bn(t)∑
k2=0

∫
K(u, v)2 [C(s+ uεn, t+ vεn)− C(s, t)]2 fF1(k1),F2(k2)(s+ uεn, t+ vεn)dudv

+ o

(
1

n

)
,

where the residuals are obtained by similar techniques used to compute E [m̂1(s, t)]. By

Taylor expansions, we have [C(s+ uεn, t+ vεn)− C(s, t)]2 fF1(k1),F2(k2)(s + uεn, t + vεn) =

O(ε2n). Thus, the first term of (3.30) is of order O(1/n).
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Then, we check the second term of (3.30) . From Equation (3.29),

1

nε4n

{
E
(
K
[
ε−1
n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)]

)}2
= O

(
1

n

)
.

(3.31)

Therefore,

Var
(√

nε2nm̂1(s, t)
)

= O(ε2n)→ 0. (3.32)

Equations (3.29) and (3.32) entail that

√
nε2n

(
m̂1(s, t)− κ2ζn(s, t)fH(s,t),n(s, t)ε2n

)
→p 0.

Recall ζ(s, t) defined in (3.8), it can be easily seen that ζn(s, t)→ ζ(s, t). As an(s) and

bn(t) go to infinity, we have

√
nε2n

(
m̂1(s, t)− κ2ζ(s, t)fH(s,t)(s, t)ε

2
n

)
→p 0.

Together with (3.16), it follows

√
nε2n

(
m̂1(s, t)

f̂H(s,t)(s, t)
− κ2

fH(s,t)(s, t)

f̂H(s,t)(s, t)
ζ(s, t)ε2n

)
→p 0.

Recall nε6n = O(1), hence we also have

√
nε2n

(
κ2

fH(s,t)(s, t)

f̂H(s,t)(s, t)
ζ(s, t)ε2n − κ2ζ(s, t)ε2n

)
→p 0. (3.33)

Therefore,

√
nε2n

(
m̂1(s, t)

f̂H(s,t)(s, t)
− κ2ζ(s, t)ε2n

)
→p 0. (3.34)

Summing up (3.28) and (3.34) finishes the proof.
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Hence the AMSE of Ĉ(s, t) is (C(s, t) [1− C(s, t)]R2(K))/(nε2nfH(s,t)(s, t)) +

κ2
2ζ(s, t)2ε4n.

The above theorems guarantee the identifiability of underlying copula. With Assump-

tions 3.3.1, 3.3.2, 3.3.3, and 3.3.4, if there exists another copula C̃ compatible with data,

the pointwise difference between C and C̃ at (s, t) ∈ V is

∣∣∣C(s, t)− C̃(s, t)
∣∣∣2 ≤ E

∣∣∣Ĉ(s, t)− C(s, t)
∣∣∣2 + E

∣∣∣Ĉ(s, t)− C̃(s, t)
∣∣∣2 → 0.

Since C̃(s, t)−C(s, t) does not change with n, it has to be that C̃(s, t)−C(s, t) = 0 for any

(s, t) ∈ V . That is, the copula is identifiable at V .

3.5.3 Proof of Theorem 3.3.3

We now demonstrate the asymptotic properties of the copula estimator defined in (3.5)

when the marginal parameters are unknown and the estimates are plugged in. We first

analyze the numerator and denominator of the estimator separately in Lemmas 3.5.2 and

3.5.4. Finally, the distribution of the copula estimator follows as stated in Theorem 3.3.3.

For the following results Lemmas 3.5.2, 3.5.3, and 3.5.4, we prove them with uniform

kernel. The proof for other compacted supported kernels is a trivial extension from the

uniform kernel with Lipschitz conditions of the kernel function. Let An(s, t) denote the

neighborhood of (s, t) with radius εn.

Lemma 3.5.2 (Consistency of Denominator). Under Assumptions 3.3.1, 3.3.2, 3.3.5, and

3.3.6,

1

nε2n

n∑
i=1

{
1
(
Hi(s, t; β̂) ∈ An(s, t)

)
− 1 [Hi(s, t) ∈ An(s, t)]

}
→p 0. (3.35)
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Therefore,

1

nε2n

n∑
i=1

K
[
εn
−1(Hi1(s; β̂)− s), εn−1(Hi2(s; β̂)− t)

]
→p fH(s,t)(s, t). (3.36)

Proof. Different aspects of the method of proof can be found in Sukhatme (1958), Randles

(1984), and Frees (1995b). Denote

lni(s, t; θ) = 1 (Hi(s, t; θ) ∈ An(s, t))

and

Sn(θ; s, t) =
1

nε2n

n∑
i=1

[lni(s, t;β)− lni(s, t; θ)] .

For arbitrary ε > 0, for any ξ > 0, let γξ be the constant in Assumption 3.3.6. To show

(3.35), we calculate the probability

P
(∣∣∣Sn(β̂; s, t)

∣∣∣ > ε
)

= P
(∣∣∣Sn(β̂; s, t)

∣∣∣ > ε, β̂ ∈ B(β, n−1/2γξ)
)

+ P
(∣∣∣Sn(β̂; s, t)

∣∣∣ > ε, β̂ /∈ B(β, n−1/2γξ)
)

≤ P

(
sup

θ∈B(β,n−1/2γξ)

|Sn(θ; s, t)| > ε

)
+ P

(
β̂ /∈ B(β, n−1/2γξ)

)
:= M1 +M2.

By Assumption 3.3.6,

M2 < ξ/2.

We now check M1. Since |lni(s, t;β)− lni(s, t; θ)| ≤ 1, using a similar method as in Frees

(1995a), we can see there are two cases |lni(s, t;β)− lni(s, t; θ)| can be 1, i.e.,

|lni(s, t;β)− lni(s, t; θ)| ≤


1(|Hi(s, t; θ)− (s, t)| > εn, |Hi(s, t)− (s, t)| ≤ εn) := J1,

1(|Hi(s, t; θ)− (s, t)| ≤ εn, |Hi(s, t)− (s, t)| > εn) := J2.
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For the first case J1,

J1 ≤ 1(εn < |Hi(s, t; θ)− (s, t)|).

Further, subtracting |Hi(s, t)− (s, t)| from both sides yields

J1 ≤ 1 (εn − |Hi(s, t)− (s, t)| < |Hi(s, t; θ)− (s, t)| − |Hi(s, t)− (s, t)|) .

Similarly, for the second case J2

J2 ≤1 (εn ≥ |Hi(s, t; θ)− (s, t)|) .

So we have

J2 ≤ 1 (|Hi(s, t)− (s, t)| − εn ≤ |Hi(s, t)− (s, t)| − |Hi(s, t; θ)− (s, t)|) .

Since if J1 = 1, |Hi(s, t) − (s, t)| ≤ εn, and when J2 = 1, |Hi(s, t) − (s, t)| > εn, we can

summarize these two cases obtaining

|lni(s, t;β)− lni(s, t; θ)| ≤ 1 (||Hi(s, t)− (s, t)| − εn| ≤ ||Hi(s, t)− (s, t)| − |Hi(s, t; θ)− (s, t)||)

≤ 1 (||Hi(s, t)− (s, t)| − εn| ≤ α2 |β − θ|) ,

(3.37)

where the second inequality is due to Assumption 3.3.5.

Now we take supremum with respect to θ over B(β, n−1/2γξ), defining

ηn(s, t;Xi) = sup
θ∈B(β,n−1/2γξ)

|lni(s, t; θ)− lni(s, t;β)| .

From (3.37), there exists a constant α2 such that

ηn(s, t;Xi) ≤ 1
(
||Hi(s, t)− (s, t)| − εn| ≤ α2n

−1/2γξ

)
.
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By Assumption 3.3.1, the density of Hi(s, t) is bounded. Thus |Hi(s, t)− (s, t)| − εn which

is the linear transformation result from Hi(s, t) also has a bounded density. For all n, i,

and (s, t), there exists a constant α3 such that

Eηn(s, t;Xi) ≤ α3γ
2
ξn
−1. (3.38)

Note that supθ∈B(β,n−1/2γξ)
|Sn(θ; s, t)| ≤ 1/(nε2n)

∑n
i=1 ηn(s, t;Xi). Therefore,

M1 ≤ P

(
1

nε2n

n∑
i=1

ηn(s, t;Xi) > ε

)

≤ P

((
1

nε2n

n∑
i=1

[ηn(s, t;Xi)− Eηn(s, t;Xi)] +
1

nεn2

n∑
i=1

Eηn(s, t;Xi)

)
> ε

)

From (3.38),

1

nε2n

n∑
i=1

Eηn(s, t;Xi) ≤
α3γ

2
ξ

nε2n
→ 0.

Hence, when n gets large,

1

nε2n

n∑
i=1

Eηn(s, t;Xi) < ε/2.

By applying the Chebyshev’s inequality,

M1 ≤ P

(
1

nε2n

n∑
i=1

[ηn(s, t;Xi)− Eηn(s, t;Xi)] > ε/2

)

≤ 1

(ε/2)2
Var

(
1

nε2n

n∑
i=1

[ηn(s, t;Xi)− Eηn(s, t;Xi)]

)
.

Note that ηn(s, t;Xi)
2 = ηn(s, t;Xi). By applying (3.38) we have

M1 ≤
1

(ε/2)2

1

(nε2n)2

n∑
i=1

[
Eηn(s, t;Xi)

2 − [Eηn(s, t;Xi)]
2
]
≤ 1

(ε/2)2(nε2n)2
α3γ

2
ξ .

Therefore, when n is large enough M1 < ξ/2. Now (3.35) follows from the fact that for

arbitrary ε and ξ > 0,

P
(∣∣∣Sn(β̂; s, t)

∣∣∣ > ε
)
< ξ.
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Finally, note that (3.36) follows from (3.16) and (3.35), and the proof is finished.

Define

hni(s, t; θ) = 1 (Hi(s, t; θ) ∈ An(s, t))Yi(θ),

where Yi(θ) is defined in (3.4).

Lemma 3.5.3. Under Assumption 3.3.5, there exists a constant α4 such that for all n and

i,

E sup
θ∈B(β,d)

|hni(s, t; θ)− hni(s, t;β)| ≤ α4d
2.

Proof. We first note that

|hni(s, t; θ)− hni(s, t;β)| ≤ |lni(s, t;β)− lni(s, t; θ)|+ |Yi(θ)− Yi(β)| .

From (3.4),

Yi(θ) = 1
(
Yi1 ≤ F (−1)

1 (H1(s; θ1); θ1) , Yi2 ≤ F (−1)
2 (H2(t; θ2); θ2)

)
.

As in Figure 2.2, when θ approaches β with distance d small enough, there exists integer k

such that

Mk
1 ≤ X ′1β1 < Mk+1

1

Mk
1 ≤ X ′1θ1 < Mk

1 ,

with probability 1. Hence, almost surely,

F
(−1)
1 (H1(s;β1);β1) = F

(−1)
1 (H1(s; θ1); θ1) = k.

By a similar argument, with small d, F
(−1)
2 (H2(t;β2);β2) = F

(−1)
2 (H2(t; θ2); θ2). Hence,

Yi(θ) = Yi(β) almost surely when d is small enough. Thus |hni(s, t; θ)− hni(s, t;β)| ≤

|lni(s, t;β)− lni(s, t; θ)|. Recall (3.38) in the proof of Lemma 3.5.2, one obtains when d is
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small enough, there exists constant α4 such that for all n, i and (s, t),

E sup
θ∈B(β,d)

|hni(s, t; θ)− hni(s, t;β)| ≤ α4d
2,

as required.

Lemma 3.5.4. With Assumptions 3.3.5 and 3.3.6,

1√
nε2n

n∑
i=1

[
hni(s, t; β̂)− hni(s, t;β)

]
→p 0 (3.39)

Proof. Denote

Rni(θ; s, t) = hni(s, t; θ)− hni(s, t;β)

= 1 (Hi(s, t; θ) ∈ An(s, t))Yi(θ)− 1 (Hi(s, t) ∈ An(s, t))Yi(β),

and

Qn(θ; s, t) =
1√
nε2n

n∑
i=1

Rni(θ; s, t).

For any ε > 0, for any ξ > 0, let γξ be the constant in Assumption 3.3.6. To show (3.39),

we check the probability

P
(∣∣∣Qn(β̂; s, t)

∣∣∣ > ε
)

= P
(∣∣∣Qn(β̂; s, t)

∣∣∣ > ε, β̂ ∈ B(β, n−1/2γξ)
)

+ P
(∣∣∣Qn(β̂; s, t)

∣∣∣ > ε, β̂ /∈ B(β, n−1/2γξ)
)

≤ P

(
sup

θ∈B(β,n−1/2γξ)

|Qn(θ; s, t)| > ε

)
+ P

(
β̂ /∈ B(β, n−1/2γξ)

)
:= I1 + I2

By Assumption 3.3.6, I2 < ξ/2.
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Now define Lni(s, t) = supθ∈B(β,n−1/2γξ)
|Rni(θ; s, t)|. By Lemma 3.5.3,

ELni(s, t) ≤ E

(
sup

θ∈B(β,n−1/2γξ)

|hni(s, t; θ)− hni(s, t; θ)|

)

≤ α4(γξ/
√
n)2.

(3.40)

At the same time,

sup
θ∈B(β,n−1/2γξ)

|Qn(θ; s, t)| ≤ 1√
nε2n

n∑
i=1

Lni(s, t),

hence we have

P

(
sup

θ∈B(β,n−1/2γξ)

|Qn(θ; s, t)| > ε

)

≤P

(
1√
nε2n

n∑
i=1

Lni(s, t) > ε

)

≤P

(
1√
nε2n

n∑
i=1

[Lni(s, t)− ELni(s, t)] +
1√
nε2n

n∑
i=1

ELni(s, t) > ε

)
.

It follows (3.40) that

1√
nε2n

n∑
i=1

ELni(s, t) ≤ α4γ
2
ξ

1√
nε2n

.

Therefore, when n is large enough,

1√
nε2n

n∑
i=1

ELni(s, t) < ε/2.

Noting that

Var

(
1√
nε2n

n∑
i=1

[Lni(s, t)− ELni(s, t)]

)
=

1

nε2n

n∑
i=1

(
ELni(s, t)

2 − [ELni(s, t)]
2
)
.
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Since |Rni(θ; s, t)| ≤ 1, one obtains Lni(s, t)
2 ≤ Lni(s, t). From (3.40),

Var

(
1√
nε2n

n∑
i=1

[Lni(s, t)− ELni(s, t)]

)
≤ 1

nε2n
α4γ

2
ξ .

By Chebyshev’s inequality

P

(
1√
nε2n

n∑
i=1

[Lni(s, t)− ELni(s, t)] > ε/2

)

≤ 1

(ε/2)2
Var

(
1√
nε2n

n∑
i=1

[Lni(s, t)− ELni(s, t)]

)
→ 0.

The theorem now follows Qn(β̂; s, t)→p 0.

Proof of Theorem 3.3.3

Proof. Recall from Lemma 3.5.2, we have (nπε2n)
−1∑n

i=1 lni(s, t; β̂) is also a consistent esti-

mator of fH(s,t)(s, t). Following the proof of Theorem 3.3.2, replacing f̂H(s,t) by its approx-

imation (nπε2n)
−1∑n

i=1 lni(s, t; β̂) in (3.28) and (3.34), from Slutsky’s theorem, we have

√
nε2n

m̂2(s, t)

(nπε2n)−1∑n
i=1 lni(s, t; β̂)

→d N

(
0,

R2(K)

fH(s,t)(s, t)
C(s, t) [1− C(s, t)]

)
, (3.41)

and

√
nε2n

(
m̂1(s, t)

(nπε2n)−1∑n
i=1 lni(s, t; β̂)

−κ2ζ(s, t)ε2n
fH(s,t)(s, t)

(nπε2n)−1∑n
i=1 lni(s, t; β̂)

)
→p 0.

Using Lemma 3.5.2 together with the fact that nε6n = Op(1), we have

√
nε2n

(
κ2ζ(s, t)ε2n

fH(s,t)(s, t)

(nπε2n)−1∑n
i=1 lni(s, t; β̂)

− κ2ζ(s, t)ε2n

)
→p 0.

This leads to

√
nε2n

(
m̂1(s, t)

(nπε2n)−1∑n
i=1 lni(s, t; β̂)

− κ2ζ(s, t)ε2n

)
→p 0. (3.42)
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Summing up (3.41) and (3.42), we have

√
nε2n

(∑n
i=1 hni(s, t;β)∑n
i=1 lni(s, t; β̂)

− C(s, t)− κ2ζ(s, t)ε2n

)
→d N

(
0,
C(s, t) [1− C(s, t)]R2(K)

fH(s,t)(s, t)

)
.

(3.43)

It follows Lemmas 3.5.2 and 3.5.4 that

√
nε2n

(∑n
i=1 hni(s, t; β̂)∑n
i=1 lni(s, t; β̂)

−
∑n

i=1 hni(s, t;β)∑n
i=1 lni(s, t; β̂)

)
→p 0. (3.44)

Summing up (3.43) and (3.44) yields

√
nε2n

(
Ĉ(s, t; β̂)− C(s, t)− κ2ζ(s, t)ε2n

)
→d N

(
0,
C(s, t) [1− C(s, t)]R2(K)

fH(s,t)(s, t)

)
,

as required.
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Chapter 4

Simulation

In this section, we evaluate the overall ability of the estimator to identify a copula under

different scenarios. In addition, we investigate two practical issues using simulated data.

The first experiment explores our nonparametric estimator working as a diagnostic tool for

choosing a parametric copula. The second experiment concerns bandwidth selection.

4.1 Simulation Study Design

The simulations are conducted under scenarios with combinations of different levels of

dependence and discreteness in margins. We demonstrate explicit results for Poisson out-

comes. Although not reported here, we conducted the simulation with other marginal

models, and the conclusions are consistent.

Marginally, for j = 1, 2, the mean is based on the function E(Yj |Xj) = λj = exp(βj0 +

Xjβj1), where X1 ∼ N(0, 1), X2 ∼ N(0, 1), independently. As indicated in Nikoloulopoulos

(2013), it is more problematic to apply copulas when data are highly discrete with large

probability of ties. Hence, we consider three marginal scenarios to explore the influence of

the discreteness on the estimator. When λj is small, Yj takes on a small number of values

with high level of discreteness, while Yj behaves analogously to a continuous variable with

large λj . Parameters βj0, j = 1, 2 are allowed to vary to obtain different marginal mean
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levels:

• Small mean: β10 = −2, β11 = 2, β20 = −2, β21 = 1.5.

• Medium mean: β10 = 0, β11 = 2, β20 = 0, β21 = 1.5.

• Large mean: β10 = 5, β11 = 2, β20 = 5, β21 = 1.5.

Meanwhile, three levels of dependence are considered. To compare across different

copulas, we quantify dependence using Kendall’s τ as 0.07 for low dependence, 0.2 for

moderate dependence, and 0.6 for high dependence, respectively. We also conducted the

analysis on negative correlated data and found out it is the level instead of the sign of the

correlation that influences the results mostly. We use sample sizes n = 1000 and n = 5000.

The number of replications in each simulation is 500. The Epanechnikov kernel is used

throughout.

4.2 Finite-Sample Performance

We first assess the finite sample performance of our estimator under different scenarios.

Here we employ Gaussian copulas as the underlying dependence models. There are many

possibilities for the dependence models. Although their results are not reported here, we

can draw consistent conclusions. With simulated data, we first fit their marginal models

and then plug the estimates in the copula estimator (3.5).

Figure 4.1 displays the estimator under different scenarios with sample size n = 1000.

For clarification, the corresponding confidence intervals are given for every other copula

value. The leftmost plots correspond to the cases with small marginal means. We can see

both bias and variance are large under high discreteness level. Recall that in Figure 2.2,

when the means of the margins are small, for a fixed point s, the corresponding Hj(s;Xj , βj)

is distributed around 1. In this case, the number of effective observations with positive

weights in (3.5) is small. As a result, large bias and variance are expected. It also has a
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noticeable increase in bias towards the upper and right edges of the unit square, which was

studied theoretically in Fan and Gijbels (1992).

As the marginal means increase to the medium level, as displayed in the middle column

of Figure 4.1, it is clear that the accuracy of the estimator improves with smaller bias and

variance. When the marginal means increase to the large scenario (right column of Figure

4.1), the estimator appears to perform well with negligible bias and variance. Indeed,

as the grid points become dense, the estimator behaves similarly to the empirical copula

estimator (3.3) used for continuous outcomes with order of convergence
√
n; see Figure 4.3

for comparison.

By comparing across different levels of dependence corresponding to the rows in Figure

4.1, we can conclude the level of dependence is less influential on the performance of the

copula estimator than the discreteness. Figure 4.2 shows the results with sample size n =

5000. As anticipated, the bias and variance are smaller with larger sample size. This

phenomenon suggests the identification of copulas even when outcomes are highly discrete

is possible if the sample size is sufficiently large.

Figure 4.4 illustrates the performance of the estimator on a single sample under moderate

dependence. We display the curves for the samples with 10th, 50th, and 90th percentile

rank in terms of integrated squared error (ISE) among the 500 replications. The ISE is

considered to be a good criterion when one wants to measure how good an estimator is for

a given dataset and is defined as

ISE
(
Ĉ(s, t; β̂)

)
=

∫
s,t

(
Ĉ(s, t; β̂)− C(s, t)

)2
dsdt. (4.1)

That is, a good estimator is supposed to have a small ISE value. Hence, the curve corre-

sponding to 10% percentile sample is supposed to be closest to the true curve while the 90%

curve is farthest apart. Consistent with Figures 4.1 and 4.2, the estimator is inaccurate with

high level of discreteness. As marginal means increase, the estimator gets closer to the true

curve. We omit the plots under low and high dependence scenarios since the conclusions
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Figure 4.1: Contour plots of the nonparametric estimator under different scenarios with
sample size 1000. The average of the estimator over 500 replications is given by the solid
lines, while the dash-dot symbols give the corresponding 95% confidence interval for every
other copula value, and the dashed lines give the underlying copulas.
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Figure 4.2: Contour plots of the nonparametric estimator under different scenarios with
sample size 5000. The average of the estimator over 500 replications is given by the solid
lines, while the dash-dot symbols give the corresponding 95% confidence interval for every
other copula value, and the dashed lines give the underlying copulas.
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Figure 4.3: Comparison of the nonparametric estimator under large means with the empir-
ical copula estimator for continuous outcomes. The left column displays the average of the
empirical copula estimator (solid lines) with corresponding 95% confidence interval (blue
dotted lines). The right column corresponds to the proposed nonparametric estimator.
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are uniform.

Figure 4.4: Contour plots of the nonparametric estimator for representative samples corre-
sponding to the 10th, 50th, and 90th percentile rank in terms of the ISE

Correspondingly, the results under different scenarios are summarized numerically in

Table 4.1. We quantify the performance of the estimator using the ISE defined in (4.1) and

use numerical integration to compute the ISE values. As an example, when the sample size
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is n = 1000, over the 500 replications, the average ISE of the nonparametric estimator is

2.865× 10−3 with a standard deviation 2.081× 10−3. Consistent with Figure 4.1, the level

of discreteness plays an important role on the performance of the nonparametric estimator,

which is reflected in the ISE values. The nonparametric estimator performances better as

the marginal means and the sample size increase.

Table 4.1: ISE under different scenarios (multiplied by 1000)

n=1000 n=5000

Marginal Mean Dependence Average sd Average sd

Small Low 2.865 2.081 0.857 0.311
Moderate 3.061 2.233 0.878 0.334

High 3.547 2.652 0.018 0.009
Medium Low 0.331 0.118 0.107 0.030

Moderate 0.330 0.125 0.101 0.030
High 0.352 0.150 0.103 0.031

Large Low 0.088 0.040 0.018 0.009
Moderate 0.088 0.040 0.018 0.009

High 0.091 0.047 0.019 0.010

As discussed in Section 3.3, the copula can be identified using only the probability of

(0, 0) with Ĉ0(s, t;β) defined in (3.9). Figure 4.5 displays the results for copula identification

using zeros under the medium marginal mean level. Compared with the middle columns in

Figures 4.1 and 4.2, it is clear that the proposed nonstandard nonparametric estimator has

smaller bias and variance.

4.3 Copula Specification and Diagnosis

For those who prefer to use parametric copulas, the proposed nonparametric estimator can

serve as a specification and diagnostic tool for selecting a parametric copula. We now explore

the usage under different scenarios. For each of the simulations, given the generated data,

we first fit the marginal models. Then, we plug the marginal estimates in (3.5) to obtain

our nonparametric estimator. Meanwhile, different parametric copulas are fit through MLE.

Finally, we compare the parametric copulas with our nonparametric estimator.
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Figure 4.5: Contour plots of the nonparametric estimator using the probability of (0, 0).
The average of the estimator over 500 replications is given by the solid lines, while the
dash-dot symbols give the corresponding 95% confidence interval, and the dashed lines give
the underlying copulas.

To measure the distance between the fitted parametric copulas with the nonparametric

copula estimator, we use the L2-norm distance

d(Ĉ(·; β̂), C̃θ̂) =

∫
s,t

(Ĉ(s, t; β̂)− C̃θ̂(s, t))
2dsdt, (4.2)

where Ĉ(·; β̂) is the proposed nonparametric estimator, and C̃θ̂ is the parametric copula.

The parametric copulas with good fitting are supposed to be close to our nonparametric

estimator with small distances. Below, we generate the data using Gaussian (no tail de-

pendencies), Clayton (lower tail dependence), and Joe (upper tail dependence) copulas to

explore the impact of tail dependence.

Case 1. Gaussian copulas. We first analyze the generated data from Gaussian copulas,

the most commonly used copulas without tail dependence. We include a representative

graphical summary of the results under medium means in Figures 4.6 and 4.7. Due to

space limitations, the results of other scenarios are summarized numerically in Table 4.2.

Under low dependence, the dashed lines (corresponding to the fitted parametric copulas)

across plots in Figure 4.6 are hardly distinguishable due to the fact that they are all similar

to the independence copula. As a result, their distances with the nonparametric estimator
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are comparable. Therefore, the choice of parametric copulas is not essential when the

dependence is very weak.

In contrast, under high dependence as in Figure 4.7, we can exclude the Gumbel and

Joe copulas due to the large discrepancy with the nonparametric estimator in the center of

the graphs, and the Clayton copula is wide apart towards right upper corner. Recall that

Gaussian and Frank copulas do not have tail dependence. Gumbel and Joe copulas have

upper tail dependence, while a Clayton copula has lower tail dependence. Hence, when the

dependence is strong, we can rule out copulas with wrong types of tail dependencies, and

the graphical comparison with our nonparametric estimator suggests improvement. Due to

the similarity in the Gaussian and Frank copulas, the choice between these two copulas is

difficult and probably not that important. It is also noticeable that among copulas with

upper tail dependence, the Joe copula has more significant distance than the Gumbel copula

with the nonparametric estimator, which can be explained by the stronger tail dependence

of the Joe copula.

Figure 4.8 displays the graphical results under small marginal means and high depen-

dence. Due to large bias and variance in the nonparametric estimator, as demonstrated in

Section 4.2, all the copulas are inside the confidence intervals. Hence, the wrong models can-

not be rejected statistically, and it is hard to make conclusions about copula specification.

This is consistent with Section 5.7 in Joe (2014) in which Kullback-Leibler (K-L) divergence

is related to the closeness in the strength of tail dependence for positive correlated variables.

They concluded that K-L divergence gets smaller with more discretization since different

asymptotic rates in the joint tails do not affect rectangle probabilities in (1.4), thus a larger

K-L sample size is needed to distinguish two densities.

Table 4.2 summarizes the results numerically. As an example, when the sample size is

n = 1000, under small marginal means and low dependence, the average distance of the

fitted Gaussian copula with our nonparametric estimator is 2.865 × 10−3 with standard

deviation 2.081× 10−3 over the 500 replications, while the fitted Frank copula has average

distance 2.834×10−3 with deviance 2.095×10−3. Consistent with Figure 4.8, with high level
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Figure 4.6: Contour plots of the nonparametric estimator compared with several parametric
copulas under medium means and low dependence. The estimator is given by the solid lines,
and the dash-dot symbols give the corresponding confidence intervals. The fitted parametric
copulas are given by a dashed line. These plots are based on a sample size of 1000.
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Figure 4.7: Contour plots of the nonparametric estimator compared with several parametric
copulas under medium means and high dependence. The estimator is given by the solid
lines, and the dash-dot symbols give the corresponding confidence intervals. The fitted
parametric copulas are given by a dashed line. These plots are based on a sample size of
1000.
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Figure 4.8: Contour plots of the nonparametric estimator compared with several parametric
copulas under small means and high dependence. The estimator is given by the solid lines,
and the dash-dot symbols give the corresponding confidence intervals. The fitted parametric
copulas are given by a dashed line. These plots are based on a sample size of 5000.
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of discreteness, the distances between different parametric copulas with the nonparametric

estimator are high and comparable (first three rows of each block). Thus, it is difficult to

pick up a copula. When the marginal means are at medium and large levels, the strength

of dependence plays an important role in the model specification. Under low dependence,

we are unable to distinguish most of the copulas in terms of the distance, except the Joe

copula shows worse fitting at large mean level. With stronger dependence, we can rule out

the Gumbel, Joe, and Clayton copulas, especially under high dependence, where the true

model outperforms alternative models clearly. Again, the Gaussian and Frank copulas are

generally indistinguishable, except that the difference is more noticeable with large marginal

means and high dependence.

Case 2. Clayton copulas. To further explore the impact of tail dependence, we next

consider copulas with lower tail dependence. Table 4.3 portrays the results of the Clayton

copulas. As we concluded the choice of copulas is not essential under low dependence or

small marginal means, we omit the corresponding results here. In all the scenarios, the true

model has smallest distance with the nonparametric estimator. Meanwhile, we can rule out

the Gumbel and Joe copulas easily as they have opposite tail dependence structures of the

Clayton copulas. The Frank copulas are far apart when the dependence is high.

Case 3. Copulas with upper tail dependence. Now we use copulas with upper tail

dependence as underlying models. Here we employ two copulas to check if the copula with

same type of tail dependence always outperforms other copulas.

Table 4.4 exhibits surprising yet practical results when the data are generated using

Gumbel copulas. The true model has smallest distance. However, the Frank copulas are

closer to our nonparametric estimator than the Joe copulas, which is counterintuitive as

Joe and Gumbel copulas both have upper tail dependence. To assist with the interpretation

of the results, Figure 4.9 displays the contour plots of the fitted parametric copulas for a

dataset generated by a Gumbel copula with large means and high dependence. The fitted
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Joe copula has bigger tail dependence coefficient 0.75 than 0.69 of the Gumbel copula.

Thus, the curve of the Gumbel copula is between the Joe and the Frank copula in Figure

4.9. Moreover, the curve of the Gumbel copula is closer to the Frank copula than the Joe

copula. As a result, the Frank copula is preferable to the Joe copula.

Figure 4.9: Contour plots of fitted parametric copulas. The dataset was generated by
a Gumbel copula with large means and high dependence. The black solid lines give the
underlying Gumbel copula while the fitted Frank copula is given by blue dashed lines, and
the fitted Joe copula is given by red dotted lines.

For the other case, Table 4.5 shows the results when the Joe copula is the data generating

mechanism. As explained earlier, the Gumbel copula is between the Joe and Frank copulas.

Hence the Gumbel copula has smaller distance than the Frank copula.

To summarize, first, the selection of copula is more important with large marginal

means and high dependence. Second, overall, our nonparametric estimator is likely to

exclude copulas with wrong tail behaviors, especially those with opposite tail dependence

structures of the underlying model. However, sometimes copulas without tail dependence

might be preferred to the copulas with correct tail dependence type. In the situations where

it seems ambiguous between copulas, we suggest expanding the candidate pool.
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4.4 Selection of Bandwidth

An important choice to be made is the bandwidth, which provides a trade-off between bias

and variance of the estimator. In this section, we establish a data-driven selector for the

bandwidth. In this section, we establish a data-driven selector for the bandwidth.

To demonstrate sensitivity of the proposed estimator to different bandwidths under dif-

ferent scenarios, Figure 4.10 portrays the contour plots of the nonparametric estimator with

different bandwidths under different marginal mean levels. It appears that the bandwidth

plays a more important role in the small and medium marginal mean settings than in the

large mean cases where the estimator is not as sensitive to the selection of bandwidth.

Therefore, we do not emphasize bandwidth selection for large mean cases in this section.

Figure 4.10: Contour plots of the nonparametric estimator with different bandwidths at
moderate dependence. Sample size: 1000.

The benchmark bandwidth here is the minimizer of the ISE as defined in (4.1). However,
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in practice, C(s, t) is unknown. In this section, we propose a practical “plug-in” bandwidth

selection rule. The independence copula is a natural choice to plug in (4.1). Furthermore,

motivated by the idea of working covariance in generalized estimating equations (GEEs)

(Zeger and Liang 1986), we propose a procedure to replace C(s, t) by a “rule-of-thumb”

estimator: a Frank copula estimated by maximum likelihood. We apply a Frank copula as

the working copula for the following practical reasons. First, a Frank copula can capture

a wide range of dependence including positive and negative dependence. Second, Frank

copulas belong to the Archimedean family with a closed form of distribution functions and

benefits of easy computation. There is no absolute justification for this choice. If there

is prior information such as tail dependence, a more informative copula can be applied

in our procedure. We show numerically the proposed selector is satisfactory even with

misspecification in tail behavior.

The idea of “plug-in” has been widely applied for choosing smoothing parameters in

kernel density estimation (Chiu 1991) and nonparametric regression with an odd number

order of local polynomial (Ruppert et al. 1995), in which optimal smoothing parameters

are selected by minimizing an approximation to the mean integrated squared error or its

asymptotic form. Nonetheless, the asymptotic mean integrated mean squared error for the

proposed nonparametric estimator involves fH(s,t;X)(s, t) and its derivatives, as in Theorem

3.3.3. Since fH(s,t;X)(s, t) is not a typical density function, its approximation takes extra

efforts than plugging in a parametric density function. In addition, the estimation of the

derivatives of fH(s,t;X)(s, t) is challenging and has a smaller order of convergence. We also

avoid using cross-validation due to its computational burden. Because H(s, t; X) varies

with (s, t), the typical setting of generalized cross-validation, which is an approximation to

cross-validation and commonly applied for bandwidth selection in nonparametric regression,

is violated.

We conduct a simulation study to assess the proposed bandwidth selector by comparing

it with the benchmark selector minimizing the ISE values. We use numerical integration

to compute the ISE. In addition, we include the results using the independence copula as
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working copulas in our procedure. Tables 4.6, 4.7, and 4.8 report the numerical results. We

compare the selected bandwidths from different selectors and the resulted ISE values. We

do not concern the low dependence scenarios here, since the independence copula is close

to the truth in these cases and can be used as the working copula without doubt.

Table 4.6 shows the result with Gaussian copulas as the underlying dependence struc-

tures. For example, when the data are generated with small marginal means and a Gaussian

copula at moderate dependence level, the minimizer of the ISE value gives a bandwidth

90.653× 10−3 on average with standard deviation 12.440× 10−3. With the selected band-

widths, the ISE values of our nonparametric estimator are 2.703 × 10−3 on average with

standard deviation 1.202× 10−3. We see that the proposed procedure returns bandwidths

close to the results of the benchmark selector across different marginal means, dependence

levels, and sample sizes, while using the independence copula tends to undersmooth signif-

icantly, especially when there is high dependence. Intuitively, the discrepancy between the

underlying copula and independence is large under high dependence. Therefore, we sug-

gest not using the independence copula alternative for bandwidth selection when significant

dependence is detected.

While Gaussian and Frank copulas have same tail dependence properties, to evaluate the

proposed bandwidth selector when the underlying copula has different tail dependencies,

we conduct the simulation using Gumbel and Clayton copulas to generate the data. As

portrayed in Tables 4.7 and 4.8, it is not surprising that the proposed selector performs

not as good as when Gaussian copulas are the underlying models (Table 4.6). For Gumbel

copulas, the selector using a Frank copula gives larger bandwidths while for Clayton copulas

the bandwidths are smaller than the benchmark values. However, we think the selector

performs satisfactorily even with misspecification of tail dependence, which is reflected in

the ISE values of the resulted copulas.
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Chapter 5

Data Analysis

To illustrate the nonparametric estimator on real data, we use our model to investigate

the dependence of insurance claim frequencies across different business lines using a unique

dataset from the Local Government Property Insurance Fund (LGPIF) in the state of

Wisconsin.

The LGPIF was established to provide property insurance for local government entities

that include counties, cities, towns, villages, school districts, fire departments, and other

miscellaneous entities. The fund provides different types of coverage including government

buildings, vehicles, and equipments. For example, a county may need coverage for the

buildings (and their contents) that it owns as well as coverage for its automobiles and trucks.

The LGPIF operates similarly to a typical insurer, hence the data provide a good example

for multi-line insurance companies encountered in practice. More details about the project

may be found at the Local Government Property Insurance Fund project website https:

//sites.google.com/a/wisc.edu/local-government-property-insurance-fund/.

The data consist of six coverage groups: building and content (BC), contractor’s equip-

ment (IM), comprehensive new (PN), comprehensive old (PO), collision new (CN), and

collision old (CO) coverage. The data are longitudinal from year 2006 to 2011.

https://sites.google.com/a/wisc.edu/local-government-property-insurance-fund/
https://sites.google.com/a/wisc.edu/local-government-property-insurance-fund/


73

5.1 Collaborative Work

Using the LGPIF data, I have done a few collaborative projects summarized as follows.

5.1.1 Multivariate Frequency-Severity Regression Models in Insurance

In insurance and related industries including healthcare, it is common to have several out-

come measures that the analyst wishes to understand using explanatory variables. My

collaborative paper with Professor Frees and my fellow doctoral student Gee Lee (Frees

et al. 2016) synthesizes and extends the literature on multivariate frequency-severity re-

gression modeling. This paper contributes to this body of literature by focusing on the use

of a copula for modeling the dependence among these outcomes; a major advantage of this

tool is that it preserves the body of work established for marginal models.

The identification and estimation procedures has three components in a copula regression

model:

1. Fit the mean structure.

2. Fit the variance structure with a selected distribution.

3. Fit the dependence structure with a choice of copula.

Marginally, we fit frequency and loss amounts. Then copulas are used to model non-linear

associations. Dependence is fit at two levels. The first is between frequency and average

severity within each line. The second is among different lines.

Frequency. Since there are inflated numbers of 0 s and 1 s in LGPIF data, a “zero-

one-inflated” model was introduced. As an extension of the zero-inflated method, a zero-

one-inflated model employs two generating processes. The first process is governed by a

multinomial distribution that generates structural zeros and ones. The second process is

governed by a Poisson or negative binomial distribution that generates counts, some of

which may be zero or one.
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Denote the latent variable in the first process as Ii, i = 1, . . . , n, which follows a

multinomial distribution with possible values 0, 1, and 2 with corresponding probabilities

π0,i, π1,i, π2,i = 1− π0,i − π1,i. Here, Ni is frequency and

Ni ∼


0 Ii = 0

1 Ii = 1

Pi Ii = 2,

where Pi may be a Poisson or negative binomial distribution. With this, the probability

mass function of Ni is

fN,i(n) = π0,iI{n=0} + π1,iI{n=1} + π2,iPi(n).

A logit specification is used to parameterize the probabilities for the latent variable Ii.

Denote the covariates associated with Ii as zi. Using level 2 as a reference, the specification

is

log
πj,i
π2,i

= z′iγj , j = 0, 1.

Correspondingly,

πj,i =
exp(z′iγj)

1 + exp(z′iγj) + exp(z′iγj)
, j = 0, 1.

π2,i = 1− π0,i − π1,i

MLE is used to fit the parameters.

Severity. We used a distribution family known as the “generalized beta of the second

kind”, or GB2, for short, to analyze the average severity of claims. A random variable with

a GB2 distribution can be written as

eµ
(
G1

G2

)σ
= C1e

µF σ = eµ(
Z

1− Z
)σ,
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where the constant C1 = (α1/α2)σ, G1 and G2 are independent gamma random variables

with scale parameter 1 and shape parameters α1 and α2, respectively. Further, the random

variable F has an F-distribution with degrees of freedom 2α1 and 2α2, and the random

variable Z has a beta distribution with parameters α1 and α2. Thus, the GB2 family has

four parameters (α1, α2, µ, and σ), where µ is the location parameter. The GB2 is a flexible

distribution that accommodates positive or negative skewness, as well as heavy tails.

For incorporating covariates, it is straightforward to show that the regression function

is of the form

E (y|x) = C2 exp (µ (x)) = C2 exp
(
x′β
)
,

where the constant C2 can be calculated with other (non-location)

model parameters. Under the most commonly used way of

parametrization for GB2, where µ is associated with covariates,

if −α1 < σ < α2,

C2 =
B(α1 + σ, α2 − σ)

B(α1, α2)

where B(α1, α2) = Γ(α1)Γ(α2)/Γ(α1 + α2). Thus, one can interpret the regression coeffi-

cients in terms of a proportional change. That is, ∂ [ln E(y)] /∂xk = βk.

Frequency Severity Dependency Models. We emphasize that the average severity

may depend on frequency, even when the classical assumption that the claim frequency is

independent of claim severity holds. To see how the copula approach works, let S̄ represent

average severity of claims and N denote frequency. Using a copula, we can express the

likelihood as

fS̄,N (s, n) =


fS̄,N (s, n|N > 0)P (N > 0) for n > 0

P (N = 0) for n = s = 0
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Denote

C1(u, v) =
∂

∂u
C(u, v) = P (V ≤ v|U = u).

With this,

fS̄,N (s, n|N > 0) =
∂

∂s
P (S̄ ≤ s,N ≤ n|N > 0)

=
∂

∂s
C(FS̄(s), FN (n|N > 0))

= fS̄(s)C1(FS̄(s), FN (n|N > 0)).

This yields the following expression for the likelihood

fS̄,N (s, n) =


fS̄(s)P (N > 0)(C1(FS̄(s), FN (n|N > 0))

−C1(FS̄(s), FN (n− 1|N > 0))) for s > 0, n ≥ 1

P (N = 0) for s = 0, N = 0.

For this dataset, we found significantly strong negative association between frequency

and average severity for the building and contents (BC) line.

Dependence between Different Lines. The second level of dependence lies between

different lines. We fit the dependence model for frequencies, severities, and aggregate loss

with Tweedie margins. A Gaussian copula was applied and the composite likelihood method

is used for computation. We saw strong correlations among lines.

Model Validation. After identification and estimation, we also compared a number

of alternative models based on the training and on the test samples.

For the training sample, we used a statistic due to Vuong (Vuong 1989) to do the “in-

sample” comparisons. For this statistic, one calculates the contribution to the logarithmic

likelihood for two models, say, l
(1)
i and l

(2)
i . One prefers Model (1) compared to Model

(2) if the average difference, D̄ = m−1
∑m

i=1Di, is positive, where Di = l
(1)
i − l

(2)
i and m

is the size of the validation sample. To assess the significance of this difference, one can

apply approximate normality with approximate standard errors given as SDD/
√
m where
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SD2
D = (m − 1)−1

∑m
i=1(Di − D̄)2. The Gaussian copula was preferred in our frequency-

severity model.

Comparison among models using test data, or “out-of-sample” comparisons are also

important in insurance because many of these models are used for predictive purposes such

as setting rates for new customers. We considered the nonparametric Spearman correlation

between model predictions and the held-out claims as well as the Gini index to measure the

satisfaction of the fund manager with each score. The zero-one-inflated negative binomial

model and the long-tail distribution (GB2) marginals bring much improvement.

5.1.2 Pair Copula Constructions for Insurance Experience Rating

Dependence could be introduced through observations over time and contribute to predictive

analytics. In non-life insurance, insurers model longitudinal insurance claims and infer the

predictive distribution given previous loss experience, a process known as experience rating,

to adjust the premiums for insurance. Experience rating is challenging when the distribution

of claims is complicated in the way that it has a point mass zero associated with no claims

and a long tail distribution of severity given occurrence of claims. In collaborative work with

Professor Shi (Shi and Yang 2017), we introduced a mixed vine pair copula construction

framework for modeling semicontinuous longitudinal claims. The quantity of interest is the

entity-level cost of claims from building and contents insurance of the LGPIF. In addition,

the fund further breaks down the total cost of claims by the cause of losses, known as peril

in property insurance. In this application, we examine the total cost as well as the cost by

peril.

First, we used a two-component mixture model to accommodate the marginal distribu-

tions. Specifically, each outcome is assumed as being generated from a degenerate distribu-

tion at zero with certain probability and being generated from a skewed and heavy tailed

distribution defined on (0,+∞) otherwise. Separating the frequency and severity allows for

different sets of predictors as well as different effects of the same predictor on each compo-

nent. For the claim frequency, we considered a logit specification due to the straightforward



78

interpretability of model parameters, while for the claim severity, we employed the GB2

distribution to model skewed and heavy-tailed data.

After carefully examining the marginal distributions, we introduced the vine pair copula

constructions for mixed data to model the temporal dependence. A vine is a graphical

model for dependent random variables and was applied on continuous ((Aas et al. 2009)

and discrete outcomes (Panagiotelis et al. 2012). To model the longitudinal data, we focus

on a specific vine - D-vine, which is a natural choice for temporal order. An example of a

D-vine on five repeated observations is exhibited in Figure 5.1.

321 4 5
12 23 34 45

2312 34 45
13|2 24|3 35|4

13|2 24|3 35|4
14|23 25|34

14|23 25|34
15|234

Figure 5.1: A 5-dimensional D-vine

The key feature of the D-vine is that the nodes of each tree only connect to adjacent

nodes. The edges of the entire vine indicate the bivariate building blocks that contribute to

the pair copula constructions. For data of T years, the joint distribution of Y = (Y1, . . . , YT )

can be expressed based on D-vine as

fY(y1, . . . , yT ) =
T∏
t=1

fYt(yt)
T∏
t=2

t−1∏
s=1

f̃s,t|(s+1):(t−1)(ys, yt|ys+1, . . . , yt−1), (5.1)

where

f̃s,t|(s+1):(t−1)(zs, zt|zs+1, . . . , zt−1) =
fs,t|(s+1):(t−1)(zs, zt|zs+1, . . . , zt−1)

fs|(s+1):(t−1)(zs|zs+1, . . . , zt−1)ft|(s+1):(t−1)(zt|zs+1, . . . , zt−1)
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is ratio of the bivariate distribution to the product of marginals given the conditioning set,

and can be viewed as the (conditional) “dependence ratio” with a ratio of one indicating

conditional independence. The generic conditional quantities in (5.1) for mixed outcomes

were derived as follows:

fZ|V (z|v) = fZ|Vh,V \h(z|vh,v\h)

=



CZ,Vh;V \h

(
FZ|V \h(0|v\h), FVh|V \h(0|v\h)

)
FVh|V \h(0|v\h)

z = 0, vh = 0

fZ|V \h(z|v\h)c1,Z,Vh;V\h

(
FZ|V \h(z|v\h), FVh|V \h(0|v\h)

)
FVh|V \h(0|v\h)

z > 0, vh = 0

c2,Z,Vh;V\h

(
FZ|V \h(0|v\h), FVh|V \h(vh|v\h)

)
z = 0, vh > 0

fZ|V \h(z|v\h)cZ,Vh;V \h

(
FZ|V \h(z|v\h), FVh|V \h(vh|v\h)

)
z > 0, vh > 0

(5.2)

and

FZ|V (z|v) = FZ|Vh,V \h(z|vh,v\h)

=



CZ,Vh;V \h

(
FZ|V \h(0|v\h), FVh|V \h(0|v\h)

)
FVh|V \h(0|v\h)

z = 0, vh = 0

CZ,Vh;V \h

(
FZ|V \h(z|v\h), FVh|V \h(0|v\h)

)
FVh|V \h(0|v\h)

z > 0, vh = 0

c2,Z,Vh;V\h

(
FZ|V \h(0|v\h), FVh|V \h(vh|v\h)

)
z = 0, vh > 0

c2,Z,Vh;V\h

(
FZ|V \h(z|v\h), FVh|V \h(vh|v\h)

)
z > 0, vh > 0

=


CZ,Vh;V \h

(
FZ|V \h(z|v\h), FVh|V \h(0|v\h)

)
FVh|V \h(0|v\h)

vh = 0

c2,Z,Vh;V\h

(
FZ|V \h(z|v\h), FVh|V \h(vh|v\h)

)
vh > 0,

(5.3)

where CZ,Vh;V\h(u1, u2) and cZ,Vh;V\h(u1, u2) are the bivariate copula and density func-

tion associated with conditional distributions FZ|V\h and FVh|V\h , respectively. And

ck,Z,Vh;V\h(u1, u2) = ∂CZ,Vh;V\h(u1, u2)/∂uk, for k = 1, 2.
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Due to the parametric nature of the proposed model, we employ likelihood-based meth-

ods for estimation. We explored a sequential method that estimates and selects the bivariate

copulas on a tree-by-tree basis. We start with the first tree, estimating the parameters and

selecting the appropriate copulas from a given set of candidates. Fixing the parameters

in the first tree, we then estimate the dependence parameters in the second tree for the

candidate copulas and select the optimal. We continue estimating parameters and selecting

copulas for the next tree of a higher order while holding the parameters fixed in all previous

trees. We use a heuristic procedure based on a commonly used model selection method AIC

to select the copula. The sequential approach reduces the number of models to compare

extensively and thus helps to fast select an appropriate model for applied studies. The

benefit could be substantial in the case of big data or high dimensional dependence.

The mixed D-vine provides a nature structure to derive the predictive distribution,

not just a point prediction, of future claim cost. For i-th policyholder, denoting Yi =

(Yi1, · · · , YiT )′, the conditional distribution of Yi,T+1 given Yi is shown as:

fYi,T+1|Yi = fi,T+1(y)

T∏
t=2

f̃i,t,T+1|(t+1):T (yit, y|yi,t+1, · · · , yi,T ).

The derivation of the predictive distribution relies on the conditional independence assump-

tion between Yi1 and Yi,T+1 given Yi2, · · · , Yi,T .

The proposed model captures the insurance data structure flexibly and enjoys the benefit

of straightforward computation of predictive distribution. The data analysis emphasized

the benefits of the mixed vine approach in both fitting the observations in the training

sample and predicting the observations in the hold-out sample.

We are now working on another project which aims at experience rating using multi-

variate longitudinal claim data. For example, to predict future claim of auto insurance, we

not only use claim history of auto insurance, but also incorporate the history information

of homeowner insurance into our model.
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5.2 Data Summary

In current project, we focus on joint modeling of building and contents (BC) and motor

vehicle (MV) insurance of the LGPIF. Table 5.1 shows the total number of policies for each

coverage type in the dataset for years 2006 − 2010. Jointly, there are 2170 policies with

both coverages.

Table 5.1: Empirical number of observations

Total 0 1 2 3 4 5 >5
BC 5660 3, 976 997 333 136 76 31 111
MV 2175 1, 511 314 116 53 36 21 124
Joint 2170

Potential rating variables, covariates, are displayed in Table 5.2. Here coverage and

deductible are continuous covariates which is essential for copula identification.

Table 5.2: Description and summary statistics of covariates

Variable Description Mean
TypeCity =1 if entity type is city 0.140
TypeCounty =1 if entity type is county 0.058
TypeSchool =1 if entity type is school 0.282
TypeTown =1 if entity type is town 0.173
TypeVillage =1 if entity type is village 0.237
TypeMisc =1 if entity type is other 0.110
NoClaimCreditBC =1 if no building and content claims

in prior year given BC coverage 0.328
NoClaimCreditMV =1 if no motor vehicle claims

in prior year given MV coverage 0.054
lnCoverageBC Coverage of BC line in logarithmic 2.119

millions of dollars given BC coverage (2.000)
lnCoverageMV Coverage of MV line in logarithmic -0.798

millions of dollars given MV coverage (1.626)
lnDeductBC BC deductible level in logarithmic 7.155

millions of dollars given BC coverage (1.174)

Preliminary dependence measures for discrete claim frequencies can be obtained using

simple correlation statistics such as polychoric correlations, which are the correlations of

the latent normal variables, and Kendall’s τ . Table 5.3 shows the correlations among the

frequencies of the two coverages. Note that these dependence measures in Table 5.3 are
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calculated before controlling for the effects of explanatory variables. The results in Table 5.3

should be taken with caution due to the following reasons. First, the polychoric correlation

is negative, different from Kendall’s τ and Spearman’s ρ. The polychoric correlation is

calculated based on likelihood. In our data, we have some large observations, and those

observations are removed for numerical stability due to their almost 0 likelihood. Thus, the

estimator is biased. Those large observations are essential for tail dependence, which is key

to insurers’ solvency. Second, as discussed in Chapter 1, the definitions of Kendall’s τ and

Spearman’s ρ do not take the probability of ties into account. As a result, the correlation

quantities are problematic for discrete outcomes. Third, the large values of the dependencies

may be due to correlations in the covariates. We will further quantify the correlations using

likelihood-based estimation after controlling the effects of covariates in Section 5.4.

Table 5.3: Correlation among frequencies of claims

Polychoric correlation Kendall’s τ Spearman’s ρ

−0.226 0.361 0.402

5.3 Marginal Models

We first analyze marginal models. From Table 5.1, it can be seen that the BC line contains

a large number of zeros and a significant amount of ones. This motivates the usage of

zero-one-inflated Poisson models described in Section 5.1.1. The distribution function can

be expressed as

Fj(k|Xj , βj) =


πj0 + (1− πj0 − πj1) exp(−λj) k = 0,

πj0 + πj1 + (1− πj0 − πj1)
∑k

i=0 λ
i
j exp(−λj) 1

i! k > 0.

We fit both margins with four models: Poisson, negative binomial (NB), zero-inflated

Poisson (zeroinflPoisson), and zero-one-inflated Poisson (zeroonePoisson) models. Note here

for each margin, the univariate analysis is performed on the subset of the observations for
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which the corresponding coverage amounts shown in Table 5.1 are positive. Thus, the

sample size is 5,660 for BC and 2175 for MV.

To choose marginal models, as in Frees et al. (2016), the empirical and observed counts

are compared. Table 5.4 shows the expected count for each frequency value under different

models and the empirical values from the data for BC line. A Poisson distribution underesti-

mates the zero proportions while zero-inflated and negative binomial models underestimate

the proportion of 1 s. The zero-one inflated models do provide the best fits for simultane-

ously estimating the probability of zero and one. Chi-square goodness of fit statistics can

be used to compare different models. Table 5.5 shows the result. It is calculated depending

on Table 5.4. The zero-one-inflated Poisson model outperforms the other methods.

Table 5.4: Comparison between empirical values and expected values for BC line

empical zeroinflPoisson zeroonePoisson Poisson NB

0 3, 976 4, 038.125 3, 975.388 3, 709.985 4, 075.368
1 997 754.384 1, 024.226 1, 012.267 809.077
2 333 355.925 276.086 417.334 313.359
3 136 187.897 146.964 202.288 155.741
4 76 106.780 82.053 106.874 88.866
5 31 63.841 48.427 60.160 55.484
6 19 39.850 30.213 36.540 36.919
7 19 26.082 19.851 24.261 25.765
8 16 18.025 13.670 17.440 18.663
9 5 13.165 9.808 13.222 13.932
10 7 10.087 7.269 10.305 10.664
11 2 8.007 5.505 8.124 8.336
12 4 6.505 4.219 6.427 6.636
13 5 5.357 3.248 5.086 5.367
14 5 4.441 2.502 4.024 4.401
15 2 3.690 1.925 3.182 3.653
16 4 3.062 1.479 2.519 3.066
17 3 2.530 1.134 1.999 2.598
18 1 2.077 0.867 1.597 2.221
≥ 19 19 10.168 5.167 16.366 19.876

0 proportion 0.702 0.713 0.702 0.655 0.720
1 proportion 0.176 0.133 0.181 0.179 0.143

Similarly, Table 5.6 shows the expected count for each frequency value under different

models and the empirical values from the data of MV line. Table 5.7 shows the goodness-

of-fit tests result. It was calculated using the results in Table 5.6. The negative binomial
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Table 5.5: Goodness-of-fit statistics for BC line

zeroinflPoisson zeroonePoisson Poisson NB

154.573 77.056 105.201 88.086

model is selected, based on the test results.

Table 5.6: Comparison between empirical values and expected values for MV line

empical zeroinflPoisson zeroonePoisson Poisson NB

0 1, 511 1, 500.242 1, 501.967 1, 428.612 1, 505.872
1 314 274.685 304.915 341.613 313.934
2 116 116.722 99.257 118.070 114.897
3 53 64.507 59.515 64.434 60.342
4 36 45.843 41.992 47.616 38.704
5 21 37.612 33.736 39.559 27.622
6 22 32.141 28.799 33.402 20.898
7 11 27.075 24.741 27.547 16.352
8 13 21.977 20.771 21.873 13.060
9 15 17.052 16.817 16.649 10.573
10 9 12.621 13.066 12.143 8.639
11 12 8.917 9.728 8.499 7.108
12 9 6.025 6.947 5.721 5.879
13 7 3.901 4.764 3.712 4.884
14 6 2.426 3.143 2.325 4.071
15 5 1.451 1.998 1.407 3.405
16 1 0.837 1.225 0.824 2.854
17 3 0.465 0.726 0.467 2.399
18 3 0.250 0.416 0.256 2.020
≥ 19 8 0.252 0.479 0.271 10.489

0 proportion 0.695 0.690 0.691 0.657 0.693
1 proportion 0.144 0.126 0.140 0.157 0.144

Table 5.7: Goodness-of-fit statistics for MV line

zeroinflPoisson zeroonePoisson Poisson NB

336.013 173.789 324.082 16.400

The coefficients for the selected models, zero-one-inflated Poisson for BC line and nega-

tive binomial for MV line, are in Table 5.8. We address that it is the benefit of employing

copula regression models that the marginal models can be freely specified.
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Table 5.8: Marginal coefficients
BC (0-1 inflated Poisson) MV (Negative Binomial)

Variable Name Coef. s.e. Coef. s.e.
Count (Intercept) -1.540 0.125 -0.929 0.109

lnCoverage 0.751 0.023 0.708 0.036
lnDeduct -0.020 0.017
NoClaimCredit -0.395 0.131 -0.370 0.146
TypeCity -0.143 0.079 0.231 0.149
TypeCounty -0.250 0.087 1.518 0.132
TypeMisc -0.195 0.179 -0.352 0.301
TypeSchool -1.157 0.085 0.651 0.131
TypeTown 0.186 0.175 -1.085 0.244
size 1.427

Zero (Intercept) -4.755 0.448
lnCoverage -0.580 0.078
lnDeduct 0.879 0.062
NoClaimCredit 0.536 0.280

One (Intercept) -5.533 0.639
lnCoverage -0.047 0.094
lnDeduct 0.577 0.084
NoClaimCredit 0.300 0.353

5.4 Copula Identification

Given well-fitting marginal models, now we are in a position to conduct the dependence

analysis. We focus on the 2170 policies with both BC and MV coverages. The nonparametric

estimator is fit with bandwidth selected by the process explored in Section 4.4. The fitted

nonparametric copulas are displayed in Figure 5.2 as the solid curves.

To address the practical issue of parametric copula selection, we compare the nonpara-

metric estimator with different commonly used parametric copulas fit through MLE. Table

5.9 includes the parameters of different copulas. When the parameters are transformed to

Kendall’s τ , it is not surprising that the dependence is weaker than the raw dependence from

Table 5.3 that was computed before introducing covariates. Figure 5.2 shows the graphical

comparisons between different parametric copulas with the nonparametric estimator. As

in Section 4.3, it is difficult to distinguish among different copulas when the dependence is

weak. From Figure 5.2, we are only able to conclude that the Clayton copula does not fit

well.

We further summarize the discrepancies numerically using the distance defined in (4.2)
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Figure 5.2: Plot of Ĉ(s, t; β̂) (solid) and confidence intervals (dotted) compared with para-
metric copulas contours (dashed)

Table 5.9: Parameters from different parametric copulas

Estimate s.e. Kendall’s τ

Gumbel 1.040 0.015 0.038
Joe 1.042 0.018 0.024

T(df=4) 0.072 0.038 0.046
Frank 0.718 0.221 0.079

Gaussian 0.125 0.033 0.079
Clayton 0.223 0.075 0.100
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in Table 5.10. The Frank, Gaussian, and Clayton copulas can be excluded due to their

large discrepancies. The performance of the t, Gumbel, and Joe copulas seem similar,

which suggests that there is upper tail dependence in this dataset. To take the uncertainty

into account, we do bootstrap with the number of replication as 500 to obtain the standard

errors of the distances. Since the standard errors are comparable, given the smallest mean

distance in Table 5.10, the Joe copula seems to best describe the dependence.

Table 5.10: Distances d(Ĉ(·; β̂), C̃θ̂) of different parametric copulas with the nonparametric
estimator(multiplied by 1000)

Gumbel Joe t Frank Gaussian Clayton

Estimate 0.633 0.635 0.646 0.711 0.701 0.885
s.e. 0.240 0.251 0.240 0.239 0.237 0.265

Since the distances of parametric copulas with our nonparametric estimator may not

be normally distributed, standard errors may not be informative enough to quantify the

uncertainty. Figure 5.3 displays the distribution of the distances of different copula families

constructed from bootstrap samples. The Joe, Gumbel, and t copulas appear better than

the rest in the sense that their distances are mostly distributed around small values.
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Figure 5.3: Density plot of distances (multiplied by 1000) from different parametric copulas
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Chapter 6

Copula Identification for Mixed

(Tweedie) Outcomes

In this chapter, we extend the framework of copula identification to mixed type of variables,

i.e., random variables with both discrete and continuous components. Due to the discrete

component, copula identification has been a problem.

Following the flow of the main body of the dissertation, we organize this chapter as

following. Section 6.1 lays out the problem. Section 6.2 summarizes the commonly used

marginal models and proposes the perturbed empirical residual distribution function for

mixed data as foundation for copula identification. In Section 6.3, we present the nonpara-

metric estimator of copulas. Section 6.4 includes a simulation study to explore the behavior

of the estimator under different scenarios. This project is ongoing; future work includes

more thorough simulations, data analysis, and theoretical proofs.

6.1 Introduction

In insurance applications, many claim data come in a multivariate fashion. For example,

commercial insurance companies might provide their policyholders both motor vehicle cov-

erage and building and contents coverage, and it is natural for insurers to track claims by
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coverage types. When an insurer has a collection of multivariate risks, understanding the

dependencies is essential for estimating the distribution of the portfolio, which is important

to firm solvency and profitability.

It is not an easy task to model multivariate outcomes when their marginal distributions

are complicated. It is common that insurance claim outcomes follow a mixed distribution

of a point mass at zero with a positive distribution, for which zero corresponds to no claims

and the positive distribution describes the amount of claims given occurrence. Hence, the

multivariate normal distribution can not capture the mixed feature of claim data. Mean-

while, various characteristics of the policyholders are typically supplied to the insurer. As an

example, in motor vehicle insurance, rating variables include the age and sex of the driver,

type and age of the vehicle, and so forth. These variables are important for ratemaking.

Marginally, to accommodate the special feature of claim data and make use of covariates

meanwhile, two types of models are prominently applied. The first method is Tweedie GLMs

(Ohlsson and Johansson 2006). The latter is the frequency-severity approach (Frees et al.

2013), for which the frequency of claim and the severity given occurrence are modeled

separately.

To capture the dependence structure, one natural way is compound Poisson linear mixed

models, for which outcomes are correlated through random effects (McCulloch and Neuhaus

2001). Though, the generalized linear mixed model is computationally demanding (Zhang

2013). In addition, the model does not maintain the intuitive Tweedie marginal distributions

after integrating the random effects.

In recent years, copulas have been widely used to study dependencies in many areas

including, but not limited to, insurance (Frees and Valdez (1998)), finance (Li 1999) and

survival analysis (Shih and Louis 1995); see Nelsen (2007) for an introduction. As a useful

tool to separate the investigation of margins and dependence structure, a copula model

preserves the body of work established for marginal models. There are few applications of

copulas on mixed type of data in the literature. Frees et al. (2016) studied dependence of

frequency and severity parts separately, in which each part is fit with a separate copula.
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Thus, methodologies of copulas on continuous and discrete outcomes in the literature can

be readily applied; see a thorough summarization in Joe (2014).

We focus on the parsimonious models for which a single copula is built on the aggre-

gate loss from different types of insurance coverages for its easy interpretation. Shi (2016)

modeled claims from different types of coverage in automobile insurance using copula-based

multivariate Tweedie models. Shi and Yang (2017) modeled temporal dependence of claims

by building vine copulas (Aas et al. 2009; Panagiotelis et al. 2012) while fit the margins

with two-part models.

Yet, there are issues when applying copulas on mixed type data. It has been addressed

in the literature that copula identifiability is an issue for the discrete outcomes (Genest and

Nešlehová 2007). Sklar showed the uniqueness of copulas is only guaranteed at the range

of marginal distribution functions. In the i.i.d. case, denote the probability of zero as p0,

then the range of distribution function for mixed type of data is {0} ∪ [p0, 1]. From Sklar’s

theorem, the copula is not unique in the range (0, p0). Hence the identifiability remains

a problem for mixed type of data due to the discrete component at zero. When we do

regression as under our sampling scheme, p0 changes with the covariates. If we further

assume the copula does not change with the covariates, the range for copula identifiability

widens to {0} ∪ [pb, 1], where pb is the lower bound of the support of p0. Hence, when p0

distributes at wide range, identifiability is less of a concern.

In addition, how to correctly specify a copula model has remained a question for mixed

type of data. Copula identification begins after marginal models have been fit. Under

continuity, we use the “Cox-Snell” residuals (Cox and Snell 1968) from marginal models to

check for association. We can create scatter plots of the residuals (pp and tail dependence

plots) (Joe 2014) or through formal tests (Li and Genton 2013) to look for dependence

structures and identify a parametric copula.

However, the Cox-Snell residuals are not uniformly distributed for mixed type data.

Hence the joint distribution of multivariate Cox-Snell residuals is not as informative. In

practice, overall goodness-of-fit statistics, such as AIC, BIC, and likelihood, are used to
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choose the best model among candidates (Shi and Yang 2017). Vuong’s test (Vuong 1989)

can be applied to further compare if the models are statistically significantly different. How-

ever, these methods are not diagnostic for adequacy of fit and do not suggest improvements.

To identify the dependence structure for mixed type of data, in this dissertation, we

develop a nonparametric copula estimator. Instead of building the estimator on uniformly

distributed residuals, we construct the estimator based on a subset of the observations. For

practitioners who prefer to use parametric copulas, the proposed nonparametric estimator

can also serve as a diagnostic and specification tool for selecting a parametric form of

copulas. Adequacy of fit can be checked by comparing the fitted parametric copula with

the nonparametric estimator.

6.2 Univariate

6.2.1 Marginal Models

The Tweedie distribution is defined as a Poisson sum of gamma random variables. Specif-

ically, suppose that N has a Poisson distribution with mean λ, representing the frequency

of claims. Let Zj be an i.i.d. sequence, independent of N , with each Zj having a gamma

distribution with shape parameter α and rate parameter γ, representing the amount of a

claim. Then, Y = Z1 + . . .+ ZN is a Poisson sum of gammas.

To understand the mixture aspect of the Tweedie distribution, first note that it is

straightforward to compute the probability of zero as Pr(Y = 0) = Pr(N = 0) = e−λ. The

distribution function can be computed using conditional expectations,

Pr(Y ≤ y) = e−λ +

∞∑
n=1

Pr(N = n) Pr(Y ≤ y), y ≥ 0.

Because the sum of i.i.d. gammas is a gamma, Z1 + . . .+Zn has a gamma distribution with
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parameters nα and γ. For y > 0, the density of the Tweedie distribution is

fY (y) =
∞∑
n=1

e−λ
λn

n!

βnα

Γ(nα)
ynα−1e−yβ.

We address that the density function is not analytically tractable, hence numerical proce-

dures are required for fitting Tweedie distribution.

From this, straightforward calculations show that the Tweedie distribution is a member

of the linear exponential family. Now, define a new set of parameters µ, φ, P through the

relations

λ =
µ2−P

φ(2− P )
, α =

2− P
P − 1

and
1

β
= φ(P − 1)µP−1.

Easy calculations show that

E Y = µ and Var Y = φµP ,

where 1 < P < 2. The Tweedie distribution can also be viewed as a choice that is interme-

diate between the Poisson and the gamma distributions.

To perform regression, one can relate the mean with covariates through a link function,

ηµ(µi) = x′iβ.

In the basic form of the Tweedie regression model, the scale (or dispersion) parameter φ is

constant. However, if one begins with the frequency-severity structure, calculations show

that φ depends on the risk characteristics (cf., Frees et al. 2014). Because of this and the

varying dispersion (heteroscedasticity) displayed by many datasets, researchers have devised

ways of accommodating and/or estimating this structure. The most common way is the

so-called “double GLM” procedure proposed in Smyth (1989) that models the dispersion

as a known function of a linear combination of covariates (as for the mean, hence the name

“double GLM”), i.e.,

gφ(φi) = z′iη.
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Though, the inherent tail property of Tweedie GLMs may not be enough to accommo-

date the long-tail and right skewed feature in some applications, especially in commercial

insurance. For example, Frees et al. (2016) demonstrated the Tweedie GLM provides poor

fitting for claim of building and contents insurance of the LGPIF, from both in-sample and

out-of-sample validation.

Alternatively, frequency-severity models, or two-part models provide a flexible way to

fit claim data. Specifically, the frequency part, indicating whether or not a claim has

occurred or the number of claims, and severity part, indicating the amount of a claim given

occurrence, are modeled separately. In Frees et al. (2016), the frequency of building and

contents claims is modeled by a zero-one-inflated Poisson model while the severity part

follows a GB2 distribution. The zero-one-inflated Poisson model captures the feature that

not only a large point mass zero, but also significant proportion of ones are observed for

the frequency of building and contents claims. The GB2 distribution can fit heavy tail

distributions well. In addition, instead of assuming independence between frequency and

severity, the dependence between frequency and severity can be further modeled (Czado

et al. 2012; Krämer et al. 2013). Though one needs to do variable selection for frequency

and severity part separately and more parameters need to be fit for the two-part model. In

contrast, Tweedie GLMs are more parsimonious.

6.2.2 Perturbed Probability Integral Transformation

Given a marginal model, as mentioned in Chapter 2, the following step in copula regression is

to transform the data into uniform pseudo observations. For a variable Y , if Y is continuous,

then F (Y ) is known as the probability integral transform, and is uniformly distributed as

in (2.1). Note here F might depend on covariates X. Let (Xi, Yi), i = 1, . . . , n be an i.i.d

sample of (X,Y ). With fitted marginal model F̂ , by plugging the data into the formula of

the probability integral transform, we get a sequence of Cox-Snell residuals (Cox and Snell

1968) F̂i(Yi), i = 1, . . . , n, which should present uniform trend under the true model.

However, the Cox-Snell residuals are not uniformly distributed for mixed type data when
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there are many zeros. Figure 6.1 displays the Cox-Snell residuals of a simulated Tweedie

example, which do not present uniform trend under the true model due to the zero point

mass. Therefore, we build an alternative of the Cox-Snell residuals for mixed data.

Figure 6.1: Histogram of Cox-Snell residuals of mixed data

To analyze the behavior of probability integral transforms for mixed outcomes, we use a

generalized notation for the distribution function, which applies to both the Tweedie GLMs

and the two-part models. Denote p0 as zero probability and g as density for positive part.

Hence the density of Y is

f(y) =


p0 y = 0

g(y) y > 0.

The distribution function is

F (y) =


p0 y = 0

p0 + (1− p0)G(y) y > 0.
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For a fixed point s ∈ (0, 1), the distribution function of the variable F (Y ) is that

P (F (Y ) ≤ s) =


0 p0 > s

P (Y = 0) + P
(

0 < Y ≤ G−1
(
s−p0
1−p0

))
p0 ≤ s

=


0 p0 > s

= p0 + (1− p0)G
(
G−1

(
s−p0
1−p0

))
= s p0 ≤ s

(6.1)

That is, the probability integral transforms are not uniform when p0 > s.

Now we construct an alternative to the empirical distribution of probability integral

transformations Û(·) as in (2.2). We first consider this problem treating model F as known

and will replace it by its estimator later. Suppose we have the data (Xi, Yi), i = 1, . . . , n

independently identically distributed as (X,Y ) and a fixed point s. From (6.1), instead of

plugging all the observations into (2.2), we only focus on a subset of the observations for

which p0i ≤ s. Hence, the perturbed empirical residual distribution function for mixed data

is

Û(s) =

∑n
i=1 1(Fi(Yi) ≤ s, p0i ≤ s)∑n

i=1 1(p0i ≤ s)
,

recall Fi is related to covariates.

We can further smooth the estimator. Instead of using indicator for p0i ≤ s, we can

adapt the smoothed empirical distribution, i.e. K((s− p0i)/εn), where K is a distribution

function of a kernel function such as Epanechnikov distribution

K(u) =


0 u < −1

1
4(2 + 3u− u3) |u| ≤ 1

1 u > 1.

Note that when s < p0i ≤ s + εn, P (Fi(Yi) ≤ s) = 0, though P (Yi = 0) = p0i ≈ s. Hence
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we adjust for these observations. Denote

Ỹi =


1(Fi(Yi) ≤ s) s ≥ p0i

1(Yi = 0) s < p0i.

Thus, the smoothed perturbed empirical residual distribution function is

Û(s) =
n∑
i=1

Wni(s)Ỹi, (6.2)

where

Wni(s) =
K((s− p0i)/εn)∑n
i=1K((s− p0i)/εn)

.

The term Û(s) should be close to s for s ∈ (0, 1) under true model.

6.3 Copula Estimation

Extend our notations to two dimensions, now we have bivariate outcomes (Y1, Y2) with

corresponding covariates (X1, X2), marginal distribution functions F1 and F2, and marginal

zero probabilities p10, p20.

6.3.1 Parametric Copula Estimation

In practice, the copula can be estimated through MLE with selected copula parametric

family. To illustrate the general principles, consider the bivariate case. Suppressing the i

index and covariate notation, the joint distribution is

f(y1, y2) =



C(p10, p20) y1 = 0, y2 = 0

f(y1)C1(F1(y1), p20) y1 > 0, y2 = 0

f(y2)C2(p10, F2(y2)) y1 = 0, y2 > 0

f(y1)f(y2)c(F1(y1), F2(y2)) y1 > 0, y2 > 0
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where Cj denotes the partial derivative of the copula with respect to jth component.

6.3.2 Copula Estimation

Under continuity, there is an unique copula related to (Y1, Y2), which is the joint distribution

function of the marginal probability integral transforms, as in (3.2).

For mixed outcomes, as an extension to (6.1), we can see that only when s ≥ p1, t ≥ pi2,

P (F1(Y1) ≤ s, F (Y2) ≤ t) = F (F−1
1 (s), F−2

2 (t)) = C(s, t). Hence when we have a sample,

to build copula estimator, we focus on the subset of the observations for which s ≥ pi10, t ≥

pi20, and the intuitive copula estimator is

Ĉ(s, t) =

∑n
i=1 1(F1(Yi1) ≤ s, F2(Yi2) ≤ t, pi10 ≤ s, pi20 ≤ t)∑n

i=1 1(pi10 ≤ s, pi20 ≤ t)
. (6.3)

Similar to the univariate case, we can further smooth the estimator. Define

Ỹi =



1(F1(Yi1) ≤ s, F2(Yi2) pi10 ≤ s, pi20 ≤ t

1(Yi1 = 0, F (Yi2|x, β) ≤ t) pi10 > s, pi20 ≤ t

1(F (Yi1|x, β) ≤ s, Yi2 = 0) pi10 ≤ s, pi20 > t

1(Yi1 = 0, Yi2 = 0) pi10 > s, pi20 > t.

Then the smoothed copula estimator is

Ĉ(s, t) =
n∑
i=1

Wni(s;xi, β)Ỹi, (6.4)

where

Wni(s;xi, β) =
K((s− pi1)/εn)K((t− pi2)/εn)∑n
i=1K((s− pi1)/εn)K((t− pi2)/εn)

,

and K is a distribution function on a bounded support.
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6.4 Simulation

In this study, we consider 5000 policyholders, each has insurance coverage in two lines of

business, whose expected claims are are based on the function

E(Yj |Xj) = exp(βj0 +Xjβj1),

where each Xj is generated from a standard normal distribution independently. Since the

distribution of marginal zero probabilities plays an essential role for copula identification,

here we do three scenarios on the range of zero probabilities by controlling the value of βj0.

Throughout the scenarios, we assume the dispersion parameter Φ = 10 and P = 1.6.

• Many zeros. β10 = 0, β11 = 2, β20 = 0, β21 = 1.5. Average p10 = 0.754, p20 = 0.779.

• Moderate zeros. β10 = 2, β11 = 2, β20 = 2, β21 = 1.5. Average p10 = 0.546, p20 =

0.574.

• Few zeros. β10 = 4, β11 = 2, β20 = 4, β21 = 1.5. Average p10 = 0.281, p20 = 0.293.

Figure 6.2 displays the histogram of zero probabilities and corresponding contour plots

of the copula estimator. The top row corresponds to the many zeros scenarios. From the

histogram, p10 and p20 are mostly greater than 0.7, as a result, we could identify the copula

at the range [0.7, 1] × [0.7, 1] but not other area. Similarly, when most p10 and p20 are

greater than 0.4, we are able to identify the copula at [0.4, 1] × [0.4, 1]. In the case when

the zero probabilities are small, the copula can be identified.
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Figure 6.2: Histogram of p0 and corresponding contour plots of the copula estimator. Top
row: many zeros. Middle row: moderate zeros. Bottom row: few zeros.
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Chapter 7

Concluding Remarks and Ongoing

Work

7.1 Conclusions

In this dissertation, we considered modeling multivariate discrete outcomes with copulas.

We explored the dependence modeling in the practical regression settings. Our main con-

tribution is the proposal of a nonparametric copula estimator to specify the dependence

structure under discreteness when the premises of methodologies under continuity are vio-

lated. We also showed its asymptotic properties. Using a simulation study, we concluded

that first, the estimator behaves better with small bias and variance when the marginal

means are large, which is consistent with the theoretical results. Second, when used as

a diagnostic tool, the nonparametric estimator can exclude false models easily when the

dependence is high and the discreteness level is low. The data analysis suggested in the

LGPIF dataset, there is upper tail dependence between the frequencies from building and

contents coverage and motor vehicle coverage.

We acknowledge that many potential improvements can be made for our study. First, the

estimator can be further refined. In this dissertation, we applied the local average approach.

Local polynomial estimators can be explored to reduce bias on boundary. In addition, the
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bandwidth selector we proposed chooses a global bandwidth. Since for our estimator, we

have more observations at the right upper corner than the lower left corner, the variable

bandwidth in Fan and Gijbels (1995) might be applied. Second, recall that in Chapters 4

and 5, we used the proposed nonparametric copula estimator as the foundation for goodness-

of-fit tests of parametric copulas. We computed the distance of different parametric copulas

with our nonparametric estimator d(Ĉ(·); β̂, C̃θ̂) in (4.2) and chose the model with smallest

distance. We will formalize its usage by deriving the asymptotic properties of the distance

using techniques for empirical processes. These are areas for our future work.

Below, I describe related ongoing research projects. Firstly, as mentioned in Chapter 2,

the univariate proposed perturbed empirical residual distribution function can be used as

a tool for goodness-of-fit test for marginal models. We formalize the idea in Section 7.2.

Finally, in Section 7.3, we propose an alternative way of doing diagnosis for copula models

using a transformation proposed by Ruschendorf (Rüschendorf 2009).

7.2 Univariate Model Diagnosis

Due to the wide application of univariate regression models on discrete outcomes, model

specification and diagnosis have been extensively studied. In practice, information criteria

such as AIC and BIC can be applied to choose the best model among candidates. Vuong’s

tests described in Section 5.1.1 provides an alternative way of statistically differentiating two

parametric models which could be non-nested. Though, information criteria and Vuong’s

tests do not provide diagnosis for adequacy of fitting. As a result, the preferred model can

not be adopted with full confidence.

As discussed in Section 2.2, the perturbed empirical residual distribution function de-

fined for discrete outcomes Û(·; β̂) as in (2.4), which is an approximation to the empirical

distribution function of Cox-Snell residuals under continuity, should be close to the identity

function under correct model specification. Thus, it can be used to check goodness-of-fit
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for marginal models on discrete outcomes when there are continuous covariates.

Alternatively, there is substantial literature on appropriate residuals for checking

goodness-of-fit (Cook and Weisberg 1982; McCullagh and Nelder 1989). The aim was to

construct residuals that are approximately normally distributed under true models, hence

the discrepancy suggests the inadequacy of fitting. The two most commonly used ones are

Pearson and deviance residuals. Pearson residuals generalize the idea of residuals in linear

models, and are of the form

rP (yi; θ) = {yi − Eθ(yi)} /SDθ(yi),

where θ is the parameter, and Eθ(y) and SDθ(y) are the expected value and variance when

the model parameter is θ, respectively. Deviance residuals are based on the contribution

of each point to the likelihood and are the signed difference between the likelihood of the

fitted model and the saturated model for which the number of parameters is same as the

number of observations, i.e.,

rD(yi; θ) = sgn(yi − Eθ(yi))
{

2
[
l(yi; θ̃)− l (yi; θ)

]}1/2
,

where l(yi; θ) denotes the likelihood taking value at yi when the parameter is set to be θ,

and θ̃ is the parameter of the saturated model.

Through a simulation study, we explore model diagnosis using our perturbed empirical

residual distribution function as well as Pearson and deviance residuals. Two aspects will

be considered: the proximity to normality (or identity for the proposed method) under true

models and the discrepancy with null pattern under misspecified models.

7.2.1 Simulation Study

In this study, we consider sample size n = 1000. Here we study three commonly used

GLMs: Poisson with log link, negative binomial with log link and logistic regression for

binary outcomes. The location parameter µ = X ′β = β0 + X1β1, where X1 ∼ N(0, 1).
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As discussed by Pierce and Schafer (1986), many residuals for GLM require large expected

value to achieve normal approximation, which was referred as m-asymptotics. This is in line

with the fact that the level of discreteness plays an important role for copula identification

as in Chapter 3. Therefore, here we do simulation on three levels of discreteness for Poisson

and negative binomial models:

• Small mean: β0 = −2, β1 = 2

• Medium mean: β0 = 0, β1 = 2

• Large mean: β0 = 5, β1 = 2

The dispersion parameter for negative binomial is set to be 0.7.

For each of the experiment, we generate the data, fit the model, and calculate the

residuals or perturbed residuals Û(·; β̂). Then we summarize the results graphically by

providing the curve of Û(·; β̂) and the QQ-plots of the other two types of residuals. Recall

that given correct model specification, the residuals are expected to be normally distributed,

and Û(·; β̂) is expected to be the identity function. Thus, the null pattern is along the

diagonal.

Closeness to Null Patterns under Correct Model Specifications. Figure 7.1 summarizes

the result for Poisson outcomes graphically. Here we generate the data using Poisson GLM,

fit the correct model, and then calculate the residuals. The upper row corresponds to the

small mean scenario. As anticipated, deviance and Pearson residuals are far apart from

normality due to small m, while the proposed perturbed empirical residual distribution

function is close to the identity function. That is, our method provides more reliable

conclusion for cases with high level of discreteness. When we move to the middle row

corresponding to the medium mean level, our method keeps the pattern along the diagonal,

and the deviance residuals are getting closer to be normally distributed, while the Pearson

residuals still have large discrepancy with normality. As the mean increases to large case

(lower row of Figure 7.1), all three methods appear close to the null pattern.
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We also checked the results of the negative binomial regression model under different

mean levels, which is not reported here. In general, the conclusion is consistent with Figure

7.1 that deviance and Pearson residuals are more vulnerable to high level of discreteness in

the data.

Figure 7.1: Diagnostic plots for Poisson outcomes. The three rows correspond to small,
medium, and large mean levels.

Figure 7.2 shows the results for binary outcomes. Here we only present the result when

β0 = 0 since binary outcomes are highly discrete for all the settings. We can see that all



106

three methods have large discrepancy. As mentioned in McCullagh and Nelder (1989), the

residual plots for binary outcomes are not as informative. Hence diagnosis for binary models

is not our concern here.

Figure 7.2: Diagnostic plots for binary outcomes.

Discrepancy under Misspecification. As concluded in the previous section, the proposed

method is closer to null pattern under true model compared with the residual based meth-

ods. Now we explore the other side of the problem, the power of the methods for detecting

misspecification.

For discrete outcomes, one of the most common problems is overdispersion. In the

following example, we simulate the data with the negative binomial model and compare

the residuals from the true model and a Poisson model, and thus inadequacy of fitting is

expected from Poisson model.

Figure 7.3 summarizes the results from the proposed method and the residual-based

methods under small mean scenario graphically. The first row shows the results of true

model and the second row shows those when the overdispersion issue is not taken care

of. We can see that the deviance and Pearson residuals are less informative, since they

present comparably large discrepancy whether the model is correctly specified or not. In

contrast, from the behavior of the perturbed empirical residual distribution function, we

see significantly larger discrepancy when the models are misspecified. Thus, the better

model can be picked up. It is noticeable that the curve of Û(·; β̂) seem unstable at lower
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left corner, compared with Figure 7.1. This is due to small sample size at lower tail part,

which was further explained in Section 3.3. When constructing formal goodness-of-fit tests,

we can diminish the influence of this part by downweighting the corresponding area. As

the mean increases to the medium and large levels, whose results are not reported here,

deviance residuals become more informative, while Pearson residuals still show comparable

discrepancies when the model is correctly or incorrectly specified. Though these simulations

are not extensive enough. Simulations with different sample sizes and more replications will

be our future work.

Figure 7.3: Diagnostic plots for negative binomial outcomes under small mean scenario.
The two rows correspond to the true model and the misspecified model.

Note that in order to use the proposed method, at least one continuous covariate is

necessary. We also address that the tool only provides an informal check on goodness-of-fit.

The discrepancy could be due to different causes, for instance wrong choice of link function,

wrong choice of covariates, and presence of outliers. If the goodness-of-fit tests suggest
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that the model does not fit well overall, the issues can be further checked through specific

tests or detecting the influences of individual observations (Cook and Weisberg 1982 and

McCullagh and Nelder 1989).

7.2.2 Empirical Study

Recall in Chapter 5, we fit frequencies from building and contents coverage and motor vehicle

coverage of the LGPIF with four models: Poisson, negative binomial (NB), zero-inflated

Poisson, and zero-one-inflated Poisson models. To choose marginal models, in Chapter 5, we

compared empirical and observed counts for each model and used Chi-square goodness-of-fit

statistics to compare different models.

Now we do a goodness-of-fit test on each model using the perturbed empirical distri-

bution function as a diagnostic tool. Given the fitted parameters from each model, we

compute Û(·; β̂) using (2.4). Recall that Û(·; β̂) should be close to the identity function

under correct model specification.

Figure 7.4 shows the curve of Û(·; β̂) for different marginal regression models for BC

line. We can see that Poisson and zero-inflated Poisson models fit the data poorly. In

contrast, both negative binomial and zero-one-inflated Poisson models give satisfactory

results. This is further confirmed by numerical summary in Table 7.1, which display the

L2-norm distances between Û(·; β̂) with the 45 degree line

d
(
Û(·; β̂), I(·)

)
=

∫
s

(
Û(s; β̂)− s

)2
ds,

where I is the identity function. We adopt the zero-one-inflated Poisson model here due to

its smallest distance, which is consistent with the result depending on goodness-of-fit test

statistics in Table 5.5.

For MV line, as in Figure 7.5, the negative binomial model outperforms other models

clearly in the sense that the black curve is close to the red dashed line, which is further con-

firmed numerically in Table 7.1 and consistent with Table 5.7. Here we focus on illustration;
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the theoretical properties of the distance will be derived as our future work.

Figure 7.4: Plot of Û(·; β̂) (solid line) for marginal models for BC line

Table 7.1: Distance d
(
Û(·; β̂), I(·)

)
from different marginal models (multiplied by 100)

Poisson Negative Binomial Zero-Inflated Poisson Zero-One-Inflated Poisson

BC 4.799 0.060 0.462 0.057
MV 1.731 0.023 0.685 0.370

7.3 Goodness-of-Fit for Copulas

After choosing and fitting a copula, goodness-of fit tests are necessary for checking how

well the copula fits the observations. In this section, we focus on goodness-of-fit tests for

copulas on discrete and mixed outcomes. The chapter is structured as follows. In Section
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Figure 7.5: Plot of Û(·; β̂) (solid line) for marginal models for MV line
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7.3.1, we provide a literature review on existing methodologies for continuous and discrete

outcomes. In Section 7.3.2 we propose our approach.

7.3.1 Literature

Continuous.

Many goodness-of-fit tests in continuous cases are based on Cox-Snell residuals discussed

in Chapter 2. Some formal procedures are summarized in Genest et al. (2009). They

mentioned there are other kinds of goodness-of-fit tests for specific copula families but they

focused on the “blanket tests” applicable to all copula structures. Using the fact that

the empirical distribution function of the Cox-Snell residuals is a consistent estimator of

the underlying copula (Deheuvels 1979), hypothesis testing for an assumed copula can be

conducted. For example, Cramer-von Mises and Kolmogorov-Smirnov tests can be applied

to compare the empirical distribution function of copulas and the fitted parametric copulas.

The Cox-Snell residuals can also be transformed into univariate variables through

Kendall’s transformation (Genest et al. 2009) which is defined by U → C(U1, . . . , Ud).

With the knowledge of C, the distribution function of the Kendall’s transform can be de-

rived. Hence, Cramer-von Mises and Kolmogorov-Smirnov tests can be built to compare the

empirical distribution of the Kendall’s transforms and their analytical distribution function.

Alternatively, Rosenblatt’s transformation through conditioning (Rosenblatt 1952) pro-

vides another way of doing model diagnosis. To expand the idea, when multivariate continu-

ous variables (Y1, . . . , Yd) follows a distribution F (y1, . . . , yd), independent uniform random

variables can be generated by conditioning

e1 = F1(Y1)

e2 = F2|1(Y2|Y1)

· · ·

ed = Fd|1,...,d−1(Yd|Y1, . . . , Yd).

(7.1)
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Note that the conditional distribution function can be calculated using the marginal models

and the copula. The statistic

χ =
d∑
j=1

{Φ−1(ej)}2

is supposed to follow a chi-square distribution under the correct model. Hence, Anderson-

Darling tests can be applied. Genest et al. (2009) proposed using Cramer–von Mises tests

which are based on the empirical distribution function of (e1, . . . , ed) directly.

Overall, their conclusion is that the tests based on Cramer-Von Mises statistics seem

better. The Cramer-Von Mises test for empirical distribution and the Cramer-Von Mises

test for Rosenblatt’s transforms are overall good, although the best depends on the true

model and sample size. They also mentioned the order of conditioning in Rosenblatt’s

transformation requires further research.

Alternatively, Joe (2014) summarized the following methods of goodness-of-fit tests for

continuous outcomes:

• Comparison between correlation matrix of normal scores (introduced in Chapter 1)

from data and the one from the fitted model. Formula (5.12) in Section 5.8.2 in Joe

(2014) gives a goodness-of-fit test statistic.

• Compare empirical versus model-based measures of association such as Kendall’s τ

and Spearman’s ρ.

• Empirical lower and upper semi-correlations of normal scores can be calculated to

check the fitting at tail part. An upper tail probability in Section 7.4 in the book can

also be used to check goodness-of-fit at upper tail part.

Discrete. For discrete outcomes, goodness-of-fit tests can be done by comparing observed

and model-based expected frequencies. Here is the step:

• Collapse the categories of response to avoid zero or small counts

• For each dimension, compare Ej and Oj for univariate goodness-of-fit test, where Ej

is the empirical count and Oj is the expected count.
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• For pairs, get a two-way table and compare Ojk and Ejk

The corners of tables from the model-based versus observed bivariate frequencies could

be inspected for possible patterns such as over/under-estimation. For example, in Section

7.5 of Joe (2014), in Table 7.12, they find possible lower tail dependence since there is

discrepancy among empirical and observed counts at the lower left corner of the table.

Nonetheless, the approach of comparing empirical and observed counts is infeasible when

there are many large observations, and hard to present when the dimension is greater than

2. In practice, the best model can be selected among candidates by using AIC, BIC, or

likelihood. However, these methods are not diagnostic for adequacy of fit and do not suggest

improvements. In addition, AIC and BIC do not necessarily indicate goodness of fit at tail.

7.3.2 Proposed Approach

Due to the fact that empirical estimator of Cox-Snell residuals is not a valid estimator of

the copula under discreteness, the formal tests summarized in Genest et al. (2009) do not

readily apply to discrete outcomes. In this section, as an alternative to the tests based on

Rosenblatt’s transformation, we propose a way of goodness-of-fit tests using Ruschendorf’s

transformation (Rüschendorf 2009).

For discrete outcomes, Ruschendorf’s transformation uses continuous extensions to ob-

tain uniform variables. That is, to replace the terms in (7.1) by

ek = F̃k|1,...,k−1(Yk, Vk|Yj , j ≤ k − 1) =Fk|1,...k−1(Yk − 1|Yj , j ≤ k − 1)

+ VkPk|1,...k−1(Yk|Yj , j ≤ k − 1),

where V1, . . . , Vd follow uniform distribution independently, and Pk|1,...k−1(·|Yj , j ≤ k − 1)

is the conditional probability. We address that while Ruschendorf’s transformation was

proposed for discrete outcomes, we can extend it to mixed cases, which could refer the joint

distributions of discrete and continuous variables, as well as joint distributions of hybrid

variables, i.e., random variables with both discrete and continuous components. Note that
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Pk|1,...k−1(·|Yj , j ≤ k−1) = 0 if Yk is continuous. Hence, we keep the transformation in (7.1)

for continuous outcomes. The variables e1, . . . , ed should be uniform if the distribution is

specified correctly, which will be checked in Section 7.3.4.

To illustrate, we use the bivariate case as an example. We create two variables,

e1 = F1(Y1 − 1) + V1P1(Y1),

e2 = F2|1(Y2 − 1|Y1) + V2P2|1(Y2|Y1).

(7.2)

The variables e1 and e2 should be independently uniformly distributed under correct model

specification. If Y1 is discrete, or for the hybrid outcomes Y takes values from the discrete

components,

F2|1(y2|Y1 = y1) =
C(F1(y1), F2(y2))− C(F1(y1 − 1), F2(y2))

P1(y1)
.

If Y1 is continuous, or for the hybrid outcomes Y1 > 0, the conditional distribution is

F (y2|Y1 = y1) = C1(F1(y1), F2(y2)),

where C1 is partial derivative of copula function.

It can be seen that Ruschendorf’s transformation is an extension of Rosenblatt’s trans-

formation. Therefore, we adapt the corresponding goodness-of-fit tests in Genest et al.

(2009) to discrete and mixed cases by applying the fact of independence among (e1, . . . , ed)

under correct models.

In bivariate case, let (ei1, ei2), i = 1, . . . , n be a sample of (e1, e2), we apply the proba-

bilistic Kendall’s transform

Hi =
1

n
#{j : ej1 ≤ ei1, ej2 ≤ ei2}, (7.3)

which should follow distribution function G(w) = w − wlog(w) when e1 and e2 are inde-

pendent uniform variables. Kolmogorov-Smirnov and Cramer-von Mises tests can be used



115

to test the distribution of H. The empirical quantile of Hi, i = 1, . . . , n against theoreti-

cal quantiles of G(w), named as K-plot in Genest and Boies (2012) can be used to check

the model specification. Note that we can also directly apply Kolmogorov-Smirnov and

Cramer-von Mises tests on empirical distribution of e instead of its Kendall’s transform.

The comparison between these two approaches is part of our future work.

7.3.3 Simulation

Throughout an simulation, we demonstrate the usage of the proposed approach of goodness-

of-fit tests on copulas for discrete and mixed outcomes.

We generate the data using a Gaussian copula with parameter 0.5. Marginally, we have

the following scenarios

• Discrete (small mean):

Y1 ∼ Poisson(exp(β10+β11X11+β12X12)), where X11 ∼ N(0, 1), X12 ∼ Bernoulli(0.4),

β1 = (−1,−1,−2)

Y2 ∼ Poisson(exp(β20+β21X21+β22X22)), where X21 ∼ N(0, 1), X22 ∼ Bernoulli(0.7),

β2 = (−1, 1,−1)

• Discrete (large mean):

Y1 ∼ Poisson(exp(β10+β11X11+β12X12)), where X11 ∼ N(0, 1), X12 ∼ Bernoulli(0.4),

β1 = (5,−1,−2)

Y2 ∼ Poisson(exp(β20+β21X21+β22X22)), where X21 ∼ N(0, 1), X22 ∼ Bernoulli(0.7),

β2 = (4, 1,−1)

Figure 7.6 displays the mean levels of discrete outcomes.

• Continuous:

Y1 ∼ Gamma(exp(β10 + β11X11 + β12X12)), where X11 ∼ N(0, 1), X12 ∼

Bernoulli(0.4), β1 = (−1,−1,−2), dispersion=3.
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Y2 ∼ Gamma(exp(β20 + β21X21 + β22X22)), where X21 ∼ N(0, 1), X22 ∼

Bernoulli(0.7), β2 = (−1, 1,−1), dispersion=2.

• Mixture, which is referred as combination of one continuous and one discrete variable:

Y1 ∼ Gamma(exp(β10 + β11X11 + β12X12)), where X11 ∼ N(0, 1), X12 ∼

Bernoulli(0.4), β1 = (−1,−1,−2), dispersion=3.

Y2 ∼ Poisson(exp(β20+β21X21+β22X22)), where X21 ∼ N(0, 1), X22 ∼ Bernoulli(0.7),

β2 = (−1, 1,−1).

• Tweedie:

Y1 ∼ Tweedie(exp(β10 + β11X11 + β12X12)), where X11 ∼ N(0, 1), X12 ∼

Bernoulli(0.4), β1 = (−1,−1,−2), dispersion=10, p = 1.6.

Y2 ∼ Tweedie(exp(β20 + β21X21 + β22X22)), where X21 ∼ N(0, 1), X22 ∼

Bernoulli(0.7), β2 = (−1, 1,−1), dispersion=5, p = 1.4.

We do the simulation with 500 replications and 1000 as sample size. For each of the

replications, we fit different copulas: Gaussian, Frank, and Clayton copulas. Then we

compute (ei1, ei2) using (7.2) and obtain the Kendall’s transforms using (7.3). We then

conduct the Kolmogorov-Smirnov test for the distribution of the Kendall’s transforms. For

comparison, we also include the case in which the copula parameter is under/overestimated

as 0.2 and 0.8. Table 7.2 shows average p-values of the 500 replications. For each copula,

the first column shows p-value for Y1 and Y2|Y1, and the second column shows the one for

Y2 and Y1|Y2.

The conclusion is that first, we can make correct conclusion for continuous outcomes to

reject wrong models, except that it is hard to exclude the Frank copula due to its similarity

to the Gaussian copula. Second, for discrete outcomes, especially when the mean is small

and the data are distributed on a few points, it is hard to distinguish among different

copulas as all the models are not rejected. When the mean gets larger, we are able to reject

copulas when the tail dependence structure are different, for example, Clayton copulas have
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Figure 7.6: Mean of one replication for discrete outcomes. Upper: small mean. Lower:
large mean.
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lower tail dependence while Gaussian copulas do not have tail dependence. Even for large

mean case, it is hard to distinguish between Gaussian and Frank copulas, which happens

for all the scenarios. This is consistent with our conclusions in Section 4.3. Joe also made

comments that “it is typical for multivariate discrete data that copula models with similar

dependence structure provide approximately the same level of fit because the effects of the

tail behavior of the copulas is attenuated” (Page 327 in Joe 2014). Third, we cannot make

conclusion for Tweedie outcomes in our simulations. This is due to the influence of large

proportion of zero. In our setting, we have 80% zeros on average. We expect it becomes

easier to pick up the correct copula when we have less zeros. Finally, it is noticeable that

the order of conditioning plays an important role for the mixture case.

7.3.4 Check of Independence

Below, we check the independence of the Rosenblatt’s and Ruschendorf’s transforms.

Continuous.

P (e1 ≤ u1, e2 ≤ u2) =

∫ ∞
−∞

P (F2|1(Y2|Y1 = x) ≤ u2, F1(Y1) ≤ u1|Y1 = x)f1(x)dx

=

∫ F−1
1 (u1)

−∞
P (F2|1(Y2|Y1 = x) ≤ u2)f1(x)dx

=

∫ u1

0
u2dx = u1u2

where the third equation is due to and F2|1(Y2|Y1 = x) follows a uniform distribution.

Hence, e1 and e2 independently follow uniform distribution.

Discrete.

P (e1 ≤ u1, e2 ≤ u2) =

∫ 1

0

∫ ∞
−∞

P (F̃2|1(Y2, V2|Y1 = x) ≤ u2, F̃1(Y1) ≤ u1|Y1 = x, V1 = v1)f1(x)dxdv1

(7.4)

Since F̃1(x|V1 = v1) = F1(x− 1) + v1P1(x) is a monotone increasing function in x. We can
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take inverse with respect to x conditioning on v1, denote as F̃−1
1 (u1|v1). Therefore,

P (e1 ≤ u1, e2 ≤ u2) =

∫ 1

0

∫ F̃−1
1 (u1|v1)

−∞
P (F̃2|1(Y2, V2|Y1 = x, V1 = v1) ≤ u2|Y1 = x, V1 = v1)f1(x)dxdv1

= u2

∫ 1

0

∫ F̃−1
1 (u1|v1)

−∞
f1(x)dxdv1 = u1u2

Mixture. Assume Y1 is discrete while Y2 is continuous.

P (e1 ≤ u1, e2 ≤ u2) =

∫ 1

0

∫ F̃−1
1 (u1|v1)

−∞
P (F2|1(Y2|Y1 = x, V1 = v1) ≤ u2|Y1 = x, V1 = v1)f1(x)dxdv1

= u2

∫ 1

0

∫ F̃−1
1 (u1|v1)

−∞
f1(x)dxdv1 = u1u2
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