Using a biotic index to evaluate water quality in streams. No. 132 1982

Hilsenhoff, William L.
Madison, Wisconsin: Wisconsin Department of Natural Resources, 1982

https://digital.library.wisc.edu/1711.dl/HCLDETM7D4AT282

http://rightsstatements.org/vocab/InC/1.0/

For information on re-use see:
http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.
USING A BIOTIC INDEX TO EVALUATE WATER QUALITY IN STREAMS

Technical Bulletin No. 132
DEPARTMENT OF NATURAL RESOURCES
Madison, Wisconsin
1982
USING A BIOTIC INDEX TO EVALUATE WATER QUALITY IN STREAMS

By
William L. Hilsenhoff

Technical Bulletin No. 132
DEPARTMENT OF NATURAL RESOURCES
Box 7921, Madison, WI 53707
1982

CONTENTS

2 INTRODUCTION

2 DEVELOPMENT OF THE BIOTIC INDEX

3 EVALUATION OF COLLECTION PROCEDURE
3 Time Required for Collecting, Sorting, and Identification
4 Laboratory Picking vs. Field Picking of Samples
6 Artificial Substrate Samplers as an Alternative Sampling Procedure
7 Reliability of Samples
8 Problems

9 RECOMMENDED SAMPLING PROCEDURE

9 IDENTIFICATION
9 Key to Nymphs of Perlindella
10 Key to Nymphs of Isoperla
10 Key to Nymphs of Baetis
11 Key to Nymphs of Cloeon
11 Key to Nymphs of Pseudocloeon
11 Key to Nymphs of Ephemerella
12 Key to Nymphs of Euryphrella
12 Key to Nymphs of Serratella
12 Key to Nymphs of Heptagenia
13 Key to Nymphs of Stenonema
13 Key to Nymphs of Argia
14 Key to Nymphs of Neurocordulia
14 Key to Larvae of Brachycentrus
14 Key to Larvae of Micrasema
14 Key to Larvae of Chimarra
14 Key to Larvae of Hydropsyche
16 Key to Larvae of Symphitopsycha
16 Key to Adults of Dubiraphia
17 Key to Adults of Optioservus
17 Key to Known Adults of Stenelmis
17 Key to Larvae of Eusimulium
18 Key to Larvae of Simulium

19 TOLERANCE VALUES

21 RECENT SYNONYMS

21 CALCULATION AND EVALUATION OF BIOTIC INDEX VALUES

23 LITERATURE CITED
INTRODUCTION

The biotic index I proposed in 1977 has been widely used in Wisconsin and elsewhere to evaluate the water quality of streams. It has proven to be a valuable tool, but it is not yet perfected and results obtained through its use must be evaluated with caution. In the past two years we have used the index to evaluate more than 1,000 streams in Wisconsin and have improved our understanding of its use. We have carried out studies to determine the efficiency and accuracy of the index, have evaluated alternative sampling techniques, and have made substantial changes in many of the tolerance values. In this bulletin I wish to report on recent improvements in the biotic index, point out problems that need to be considered when evaluating results, and provide keys for identification of species in certain important insect genera.

DEVELOPMENT OF THE BIOTIC INDEX

Since the primary effect of water pollution is on living organisms, assessment of water quality is principally a biological problem. Biological assessment of water quality has been discussed by Hynes (1960), Cairns and Dickson (1973), and many others, and aquatic macroinvertebrates have proven especially valuable for this purpose (Chandler 1970, Gaufin 1973, Roback 1974). To aid in the interpretation of data, indexes have been developed. Diversity indexes have received wide attention (Wilhm 1970, Zand 1976, Hughes 1978), but are not reliable in most situations (Cook 1976, Hilsenhoff 1977, Murphy 1978) and have not been used extensively by aquatic biologists as a tool for measuring water quality. Chandler (1970) proposed a "biotic score", and with modifications by Cook (1976) and others it has proven more reliable than diversity indexes for evaluating water quality (Murphy 1978).

In Europe and the USSR saprobic systems, which evaluate rates of organic decomposition, have been used extensively to monitor water quality, but their use has not been generally accepted in Great Britain and North America. Sladecek (1973) comprehensively reviewed the literature on saprobic systems and their use in measuring water quality. Most proposed saprobic systems involve extensive analysis at the species level of all organisms from bacteria to insects and fish, and while the results may be precise, such a great expenditure of time is probably not warranted when the only objective is evaluation of water quality.

After a two-year study of 53 Wisconsin streams, I proposed using a biotic index of arthropod populations as a rapid method for evaluating water quality (Hilsenhoff 1977). This index is similar to the saprobic index of Pantel and Buck (1955) and the biotic index of Chutter (1971), but uses only insects, amphipods, and isopods. Beck (1955), Howmiller and Scott (1977), and Winget and Mangum (1979) have also proposed biotic indexes that differ somewhat in their details. I use only insects, amphipods, and isopods in my index because they are generally abundant and easily collected from most streams, their fauna is diverse and not mobile, and most species have life cycles of one year or more.

For the purpose of calculating a biotic index, species are assigned pollution tolerance values of 0 to 5 on the basis of previous field studies (Hilsenhoff 1977)—a 0 value is assigned to species found only in unaltered streams of very high water quality, and a value of 5 is assigned to species known to occur in severely polluted or disturbed streams. Intermediate values are assigned to species that occur in streams with intermediate degrees of pollution or disturbance. When species cannot be identified, genera are assigned values instead. The biotic index is calculated from the formula

\[B.I. = \frac{\sum n_i a_i}{N} \]

where \(n_i \) is the number of individuals of each species (or genus), \(a_i \) is the tolerance value assigned to that species (or genus), and \(N \) is the total number of individuals in the sample.

The procedure initially recommended for collecting arthropods for evaluation of water quality with the biotic index (Hilsenhoff 1977) is as follows: "Use a D-frame aquatic net to sample riffles by disturbing the substrate above the net and allowing dislodged arthropods to be washed into the net by the current. If riffles are absent, rock or gravel runs or debris may be similarly sampled. Place a sample containing about 100 arthropods in a shallow white pan containing a little water. When collecting the samples it is important to not collect significantly more than 100 arthropods because in large samples, larger and more easily captured arthropods will be most readily removed from the pan, creating a biased sample. Using a curved forceps, remove and preserve in 70% ethanol arthropods still clinging to the net and those in the pan until 100 have been obtained. Do not collect arthropods less than 3 mm long, except adult Elmidae, because they are difficult to sample and identify. If 100 arthropods cannot be found in 30 minutes, those collected within that time period would constitute a sample."
Beginning in 1977 several studies were carried out to determine the efficiency and reliability of this procedure, the importance of species identification, and the relative merits of alternative sampling and sorting procedures. The results of these studies are reported below.

TIME REQUIRED FOR COLLECTING, SORTING, AND IDENTIFICATION

To learn exactly how long it takes to evaluate the water quality of a stream using the recommended procedure, and to determine if precision gained by species identifications warrants the additional expenditure of time, a study of 53 Wisconsin streams was initiated in 1977. These were the same 53 streams previously studied (Hilsenhoff 1977), and were selected because they encompassed a wide range of sizes, currents, substrates, water chemistries, and water quality.

Materials and Methods

Sampling was initiated May 20 and completed June 8, with streams farthest south being sampled first. A sample was collected from each stream according to procedures already described. Hemiptera and adults of Dytiscidae, Gyrinidae, Haliplidae, and Hydrophilidae were not collected because they do not rely on the stream for oxygen. If 100 arthropods were not obtained in the first sample, an additional sample was collected. If 100 arthropods were not collected in one-half hour, the number collected in that time period was used as the sample.

In the laboratory, samples from the 53 streams were divided at random into two groups. I sorted the arthropods in 26 samples into 1-dram vials, identified them to genus, and labeled the vials. The remaining 27 samples were similarly sorted and labeled by a student with no entomological training and only one week of experience in sorting such samples, but she did not attempt identification. I later identified these specimens to genus and corrected errors in sorting. Numbers in each genus were recorded and a biotic index was calculated for each stream using published values (Hilsenhoff 1977) and values for genera based on weighted averages of species values. I then identified to species insects in the genera listed in Table 1 and calculated a biotic index using tolerance values for these species. The time needed for each laboratory procedure was recorded, as was the time elapsed from arrival of the vehicle at each stream until its departure.

Except for the Arkansaw River and Wisconsin River #4, the 53 stream sites sampled in 1977 were sampled again in 1978 at the same time of the year, some in conjunction with another experiment which is reported below. Hydroscyche and some Symphitopsyche were identified to species in both the 1977 and 1978 samples, and species biotic index values were calculated for each year using new tolerance values published in this bulletin. Generic biotic index values were also calculated using weighted tolerance values as follows: *Baetis* 2, *Ephemerella* 1, *Eurylophella* 1, *Serratella* 1, *Heptagenia* 2, *Stenonema* 2, *Brachycentrus* 1, *Hydropsyche* 3, *Symphitopsyche* 2, *Chimarra* 2, *Dubiraphia* 3, *Optioservus* 2, *Steneimis* 3, *Eusimulium* 2, and *Simulium* 3.

Results and Discussion

The time required for me to collect a sample, sort it, identify the arthropods to genus, label the vials, and calculate a biotic index was only slightly more than one hour for each stream (Table 1). To calculate a biotic index based on species, only 21 minutes more were needed for identification and enumeration of species in selected genera (Table 1). Species were not identified in genera where all species had the same index value or where species keys did not exist. As species in certain important families such as Hydropsychidae and Caenidae become known, more time will be needed for species identification, and the sensitivity of the biotic index will be increased. It seems unlikely, however, that the total time needed to obtain a biotic index at the species level will increase appreciably since in 1977, when this study was carried out, only 30% of the arthropods could not be identified to species. Time required to make identifications will vary with experience, but anyone who has spent six months or more identifying aquatic insects should be able to identify most genera without consulting a key. Various keys and descriptions were used to make species identifications. When making species determinations it is ad-

<table>
<thead>
<tr>
<th>Task</th>
<th>Minutes/Number/Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection of Sample</td>
<td>21.4</td>
</tr>
<tr>
<td>Sorting and generic identification</td>
<td>32.4</td>
</tr>
<tr>
<td>Identification of Chironomidae</td>
<td>4.1</td>
</tr>
<tr>
<td>Enumeration of samples</td>
<td>4.6</td>
</tr>
<tr>
<td>Calculations</td>
<td>1.5</td>
</tr>
<tr>
<td>Totals for calculation of biotic index at generic level</td>
<td>64.0/100.5</td>
</tr>
<tr>
<td>Species identification 712 Baetis</td>
<td>7.6/13.4</td>
</tr>
<tr>
<td>Species identification 259 Ephemerella</td>
<td>2.6/4.9</td>
</tr>
<tr>
<td>Species identification 113 Heptagenia</td>
<td>2.8/5.3</td>
</tr>
<tr>
<td>and 170 Stenonema</td>
<td></td>
</tr>
<tr>
<td>Species identification 24 Chimarra</td>
<td>0.4/0.5</td>
</tr>
<tr>
<td>Species identification 65 Brachycentrus</td>
<td>0.9/1.2</td>
</tr>
<tr>
<td>Species identification 272 Steneimis</td>
<td>1.7/5.1</td>
</tr>
<tr>
<td>Species identification 36 Dubiraphia</td>
<td>0.9/3.5</td>
</tr>
<tr>
<td>and 151 Optioservus</td>
<td></td>
</tr>
<tr>
<td>Species identification 197 Simulium</td>
<td>1.4/3.8</td>
</tr>
<tr>
<td>and 4 Eusimulium</td>
<td></td>
</tr>
<tr>
<td>Enumeration of species</td>
<td>2.5/36.8</td>
</tr>
<tr>
<td>Totals for calculation of biotic index at species level</td>
<td>85.0</td>
</tr>
</tbody>
</table>
TABLE 2. Classification of streams by average of 1977 and 1978 biotic index values with generic biotic index values in parenthesis.

<table>
<thead>
<tr>
<th>Water Quality</th>
<th>Streams</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75 - Excellent water quality</td>
<td>0.85 (1.41) Mecan R. #1, 0.86 (1.41) Pine Cr., 0.87 (1.60) Whittlesey Cr., 1.11 (1.52) E. Cranberry R., 1.25 (1.58) Sidney Cr., 1.30 (1.36) Otter Cr.</td>
</tr>
<tr>
<td>1.76-2.25 - Very good water quality</td>
<td>1.78 (1.91) Chemical Cr., 1.81 (2.03) Mullet R., 1.88 (1.61) Eau Galle R. #1, 1.96 (1.96) Copper Cr.</td>
</tr>
<tr>
<td>2.26-2.75 - Good water quality</td>
<td>2.26 (2.18) Sugar Cr., 2.27 (2.20) Pine R. #2, 2.38 (1.98) Poplars R., 2.41 (2.33) Clam R., 2.42 (2.42) Wisconsin R. #4</td>
</tr>
<tr>
<td>2.76-3.50 - Fair water quality</td>
<td>2.87 (2.70) Narrows Cr., 2.88 (2.52) Sheboygan R.</td>
</tr>
<tr>
<td>3.51-4.25 - Poor water quality</td>
<td>4.04 (3.88) Wisconsin R. #2</td>
</tr>
<tr>
<td>4.26 - Very poor water quality</td>
<td>4.51 (4.48) Beaver Dam R.</td>
</tr>
<tr>
<td>4.51 (4.51) Badfish Cr.</td>
<td></td>
</tr>
</tbody>
</table>

vantageous to work with one genus at a time, identifying species from all streams being studied before making identifications in another genus. Collection of samples, the initial sorting and labeling of specimens, mounting of Chironomidae on slides, and calculation of index values can be done by persons without specialized training, allowing trained personnel to concentrate on identifications. In this study the untrained student was able to sort and label a sample in an average of 33.6 minutes. I was then able to correct sorting errors and make generic identifications in 11.3 minutes, compared to 32.4 minutes when I sorted and labeled in addition to making identifications.

Based on the average of 1977 and 1978 biotic index values, streams were arbitrarily placed into 6 water quality categories (Table 2). In the "excellent" category generic biotic index values averaged 0.21 higher than species values, with the greatest disparities being in streams with the lowest biotic indexes. In the "very good" category, generic biotic index values averaged less than 0.01 higher than species values, and in the "good" category they averaged 0.10 lower. Some of the greatest disparities occurred in the last three categories, where generic biotic index values averaged 0.30 lower than species values. These disparities were due mostly to numerous Symphitopusyne bifida group (tolerance value 3) and/or Simulium vittatum (tolerance value 4) in these streams and the use of generic tolerance values of 2 and 3 respectively. In the 104 samples collected, generic biotic index values differed from species values by 0.50 or more in 11% of the samples and by 0.25 or more in 31% of the samples. Using only generic identifications could result in the erroneous assessment of the water quality of a stream. When one considers the considerable time required to drive to and from collection sites, in addition to time itemized in Table 1, time needed to make necessary species identifications is small by comparison. I agree with Resh and Unzicker (1975) that species identifications should be made whenever possible. Generic identifications are adequate for calculating a biotic index only when all species in a genus have the same index value or when the objective of the study is to detect severe pollution.

LABORATORY PICKING VS. FIELD PICKING OF SAMPLES

To evaluate streams with the biotic index, it was originally recommended that 100 insects, amphipods, and isopods be picked from the sample in the field while they are still living. The main advantages of this procedure are that living arthropods are easier to see because of their movement, and if an inadequate sample is collected, an additional sample can be obtained without having to return to a stream that may be several miles away. The principal disadvantage of live picking is the introduction of a sampling bias, the assumption being that larger and slower moving arthropods will make up a disproportionate share of the sample. This problem can be alleviated if the original sample contains only slightly more than the 100 arthropods that are desired for a sample. However, in a recent study of more than 1,000 Wisconsin streams as well as in other studies, samples were preserved along with debris in the field and the 100 arthropods were picked from the sample in the laboratory. This was done to avoid bias, with the sample placed on a grid and arthropods removed according to a prescribed procedure until the desired sample size was obtained.
A study was carried out to determine how the two methods of picking affect biotic index values.

Materials and Methods

Six samples of 100 arthropods were collected from each of 5 Wisconsin streams in late June 1981 to determine if bias is present in the two sampling procedures and to estimate the efficiency of each procedure. The samples were alternately picked in the field or preserved in alcohol and returned to the laboratory for picking. Because of the scarcity of arthropods, 12 samples of 50 arthropods were collected from Armstrong Creek. The time required to remove arthropods from a sample in the laboratory, sort them into labeled vials, and identify them to genus was recorded so that it could be compared with the time needed to sort and identify field-picked samples in a previous experiment (Table 1). Biotic index values were calculated for all samples and compared with a t test. Numbers of individuals collected in each of the 17 most prevalent groups of arthropods were tabulated and compared to determine if a sorting bias existed.

Results and Discussion

Results show that a sampling bias does exist in several families of aquatic insects, and for this reason biotic index values calculated for a given stream can vary depending on the sorting method used. The 10 families in which bias was apparent are ranked in Table 3. Elmidae larvae, especially those of *Optioservus*, were much more abundant in laboratory-picked samples than in field-picked samples. These larvae are small, immobile, and cryptically colored, and thus difficult to find among debris in field-picked samples. Those picked in the field were mostly picked from the net. In the laboratory, after preservation in 70% ethanol and dilution with water in the sorting pan, the larvae became somewhat distended, exposing the pale intersegmental membrane. This made them conspicuous among the debris.

Glossosomatidae larvae were found in only two streams, and were much more abundant in laboratory-picked samples. Living larvae tend to remain in their cryptically colored sand cases and not move, which made them difficult to find in field-picked samples. When placed in ethanol, they vacated their cases and their abdomen turned white, making them conspicuous in laboratory-picked samples.

Brachyceritidae larvae, while also cryptically colored, actively moved about and were readily seen when field-picking material. When preserved in ethanol, they mostly retreated into their cases and were difficult to find among the debris.

Elmidae adults, unlike the larvae, were more abundant in field-picked samples. Many clung to the sample net after the debris had been emptied into the sorting pan, and about half of the adult elmids that were collected were picked from the net. In the field the adult beetles tended to crawl to the edges of the sorting pan and their movement made them easy to see. The cryptically colored adults were difficult to see among the debris in samples preserved for laboratory picking.

Living *Hexatoma*, *Antocha*, and *Diceranota* are cryptically colored and not very active, which made them difficult to find in field-picked samples. When preserved, they became light-colored and easy to find. The remainder of the biases appear to be much less significant. Perlidae, Hydropsychidae, Heptageniidae, and Athericidae are all active and of a relatively large size, making them easy to see and capture in field-picked samples. Because of their general cryptic coloration they were not so readily seen in laboratory-picked samples.

Chironomidae larvae, on the other hand, are usually small, and except for those that are red, are cryptically colored and rather difficult to find among the debris unless they become active and try to swim. After preservation in ethanol, most chironomid larvae became lighter in color and were somewhat easier to find among the debris.

There is no doubt that the picking of live samples in the field does produce bias and it is very likely that picking of preserved samples also produces a bias. The more important question is the effect of these biases on the biotic index. In the present test, only in the Mecan River was there a significant difference in biotic index values due to picking procedures (Table 4), but this difference would not have altered our evaluation of that stream (Table 7). Excessive numbers of *Optioservus* larvae in the laboratory-picked samples (149 vs. 6) and *Brachycerus* larvae in the field-picked samples (86 vs. 24) accounted for this difference. In Armstrong Creek, Milanchon Creek, and the Poplar River, the biotic index of field-picked samples was always slightly lower. The difference of 0.05 in Armstrong Creek is of no consequence; the biases balance out, but biases apparently do exist. This is especially interesting since in this stream each sample contained only 50 arthropods, and in both field- and laboratory-picked samples these were obtained only after a long and careful search. At the time of picking it was assumed that virtually every arthropod had been removed from each sample, yet there were 48 Glossosoma in the laboratory-picked samples and only 8 in those picked in the field. There were also 36 *Optioservus* larvae in laboratory-picked samples and only 4 in the field-picked samples. Sixty Hydropsychidae, 48 Atherix, and 13 Ephemereilidae were found in field-picked samples, while numbers in laboratory-picked samples were 31, 34, and 6 respectively. Although exhaustive picking tends to reduce biases, it certainly does not eliminate them. The results from this stream strongly suggest a bias in laboratory picking as well as in field picking.

TABLE 3. The degree of bias in laboratory and field-picked samples.

<table>
<thead>
<tr>
<th>Family Group or Family</th>
<th>No. Arthropods</th>
<th>Bias**</th>
<th>Bias</th>
<th>Ratio</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lab* Field</td>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlidae</td>
<td>96 142</td>
<td>+46</td>
<td>+1.47</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Baetidae</td>
<td>173 176</td>
<td>+3</td>
<td>+1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemerelidae</td>
<td>65 65</td>
<td>0</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptageniidae</td>
<td>40 57</td>
<td>+17</td>
<td>+1.43</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>38 38</td>
<td>0</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>12 14</td>
<td>+2</td>
<td>+1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata</td>
<td>31 94</td>
<td>+63</td>
<td>+3.03</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Brachyceritidae</td>
<td>54 12</td>
<td>−42</td>
<td>−4.50</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Glossosomatidae</td>
<td>245 358</td>
<td>+113</td>
<td>+1.46</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Hydropsychidae</td>
<td>38 35</td>
<td>−3</td>
<td>−1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corydalidae</td>
<td>38 84</td>
<td>+46</td>
<td>+2.21</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Elmidae adults</td>
<td>264 36</td>
<td>−228</td>
<td>−7.33</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elmidae larvae</td>
<td>37 48</td>
<td>+11</td>
<td>+1.30</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Athericidae</td>
<td>93 73</td>
<td>−20</td>
<td>−1.27</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>46 54</td>
<td>+8</td>
<td>+1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simuliidae</td>
<td>51 28</td>
<td>−23</td>
<td>−1.82</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tipulidae</td>
<td>54 61</td>
<td>+7</td>
<td>+1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammaridae</td>
<td>200 202</td>
<td>+2</td>
<td>+1.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Bias ratio is ratio of largest number to smallest.
In the Poplar River there were significantly greater numbers of Perlidae, Heptageniidae, Hydropsychidae, and Chironomidae in field-picked samples while Baetidae and Asellus were significantly more prevalent in laboratory-picked samples. This resulted in an insignificantly lower value for field-picked samples. The lower average value for field-picked samples in Millancthon Creek was due to one sample that contained 41 Baetis vagans (tolerance value = 1). In Badfish Creek field-picked samples averaged slightly higher than laboratory-picked samples due almost entirely to one laboratory-picked sample that contained only 54 arthropods, and only 17 Asellus (tolerance value = 5). The Badfish Creek samples had large amounts of filamentous algae, and it was difficult to find and remove arthropods from this algae. In the field, Asellus and other arthropods tended to crawl out of the algae where they could be readily collected.

In the previous study, the time required to collect a sample, pick 100 arthropods in the field, and identify them to genus required an average of 54 minutes. In the four streams in this study where samples of 100 arthropods were collected, it took an average of 51 minutes to pick the arthropods in the laboratory and identify them to genus. It took an average of about 5 minutes to collect these samples, so there appears to be no significant time advantage for either method. The results of this study indicate that although differences in biotic index values may occur as a result of the method used to pick the sample, these differences are usually not significant and do not affect the evaluation of the stream. The reason for laboratory picking of samples was to reduce bias, but biases apparently result from laboratory picking as well as from field picking of samples. The advantages of laboratory picking are a possible reduction of biases and the use of laboratory time instead of valuable field time for picking. Advantages of field-picking include better condition of specimens, especially mayflies, a break in the tedium of picking samples (interspersed with sampling and driving), and the ability to return for an additional sample if the first is inadequate. Because of the fear of an inadequate sample being returned to the laboratory for picking, additional sampling time is often spent to assure that the sample is adequate. This results in more time being spent in the collecting and processing of laboratory-picked samples than field-picked samples. More Chironomidae are collected in samples picked in the laboratory, and because they have to be slide-mounted for identification, this adds to the time and expense of processing samples picked in the laboratory. If care is taken that samples contain no more than 200 arthropods and that the arthropods picked from the sample are representative of the sample, picking of the sample in the field appears to be the desirable procedure in terms of time spent and results achieved.

Materials and Methods

Three samplers were placed in each of 6 stream sites between 3 and 10 June 1980. All streams had been studied previously (Hilsenhoff 1972, 1977), and ranged from severely polluted to unpolluted. The Mecan River was the only stream without a rock or gravel riffle; it had a shifting sand bottom. One stream, the Newood River, was sampled at 2 sites about 2 miles apart, the downstream site having a greater gradient and faster current. On 4 to 6 August, and again from 29 October to 6 November, 3 net samples were collected at each site along with a sample from each sampler. The net samples were collected from a riffle according to standard procedures described earlier, with a maximum of 15 minutes being spent in the removal of arthropods from the net and pan. In the Mecan River, where no riffle was present, samples were collected from snags of debris. Sampler samples were collected as described by Hilsenhoff (1969) to minimize loss of arthropods due to disturbance, and they were picked in the field until 100 arthropods were collected or until 15 minutes had elapsed. Biotic index values were calculated for all samples and compared by analysis of variance.

Results and Discussion

In October there was no significant difference between net and sampler samples, but in August net samples in half of the streams produced significantly higher biotic index values than sampler samples (Table 5). In the Wisconsin River and Newood River this was due to disproportionately large numbers of hydropsychid caddisflies with a tolerance value of 3, Cheumatopsyche in the Wisconsin River and Symphitopsyche bifida group in the Newood River. In all streams there was only minimal colonization of samplers by Hydropsychidae during the early summer exposure period, but significant colonization in late summer and autumn. This was most likely due to oviposition periods, because large hydropsychid larvae do not drift and would be unlikely to colonize samplers. In the Pine River, the samplers were always poorly colonized, and disproportionately large numbers of Acroneuria lyctoria (tolerance value = 0) in the samplers in August led to a significantly lower biotic index value. In the Mecan River, where net samples were collected from snags of debris instead of riffles, biotic index values of net and sampler samples were very similar in both months. This suggests that sampler samples most closely approximate net samples from debris, which is logical since samplers are placed in the current and accumulate debris.

Table 4. Comparison of mean biotic index values for field-picked samples with those of laboratory-picked samples in five streams.

<table>
<thead>
<tr>
<th>Stream and County</th>
<th>Biotic Index Value</th>
<th>Degrees of Freedom</th>
<th>t</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong Creek, Forest</td>
<td>1.44</td>
<td>1.49</td>
<td>10</td>
<td>0.85</td>
</tr>
<tr>
<td>Badfish Creek, Rock</td>
<td>4.46</td>
<td>4.25</td>
<td>4</td>
<td>0.63</td>
</tr>
<tr>
<td>Mecan River, Waushara</td>
<td>1.03</td>
<td>1.59</td>
<td>4</td>
<td>6.51**</td>
</tr>
<tr>
<td>Millancthon Creek, Richland</td>
<td>1.90</td>
<td>2.02</td>
<td>4</td>
<td>1.69</td>
</tr>
<tr>
<td>Poplar River, Clark</td>
<td>2.56</td>
<td>2.70</td>
<td>4</td>
<td>1.40</td>
</tr>
</tbody>
</table>

** P < 0.01
TABLE 5. Comparison of biotic index values and average sample sizes of samples taken by net and artificial substrate samplers in 6 Wisconsin streams.

<table>
<thead>
<tr>
<th>County</th>
<th>Stream and Location</th>
<th>Mean Biotic Index</th>
<th>Location of Alternate Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Badfish Creek, Rock Co.</td>
<td>4.37 100 yd upstream</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>Eau Galle River, Dunn</td>
<td>2.91 100 yd downstream</td>
<td>3.29**</td>
<td></td>
</tr>
<tr>
<td>Mecan River, Marquette Co.</td>
<td>0.94 100 yd upstream</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Milanchton Creek, Richland</td>
<td>2.08 100 yd upstream</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>Newood River, Lincoln</td>
<td>2.15 2 miles downstream</td>
<td>1.63**</td>
<td></td>
</tr>
<tr>
<td>Onion River, Sheboygan</td>
<td>2.34 50 yd upstream</td>
<td>2.22</td>
<td></td>
</tr>
<tr>
<td>Otter Creek, Sauk</td>
<td>1.48 1/4 mile upstream</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>Sugar River, Dane</td>
<td>2.38 100 yd upstream</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>Trade River, Burnett</td>
<td>2.28 50 yd downstream</td>
<td>2.33</td>
<td></td>
</tr>
</tbody>
</table>

** P < 0.01
LSD.95 = 0.19 LSD.99 = 0.26 S.D. = 0.115

RELIABILITY OF SAMPLES

Previously I concluded that a sample of 100 arthropods was adequate for assessing water quality with the biotic index (Hilsenhoff 1977). In 1976 Kaesler and Herricks also concluded that a sample of 100 insects was sufficient when using diversity indexes to evaluate the water quality of streams, and that larger sample sizes were not warranted. To reaffirm the reliability of a sample size of 100, and to determine if sampling at an alternate site on the same stream would affect the biotic index, 9 streams were sampled late in the spring of 1978.

Materials and Methods

From 30 May to 13 June 1978, 6 samples of 100 arthropods were collected from riffle areas in each of 9 streams. One set of 3 samples was collected at the same site sampled previously (Hilsenhoff 1977), and the other set at a riffle some distance away. An analysis of variance was used to determine if there was a significant difference between sites within the same stream. In addition, a standard deviation was calculated from 105 pooled sums of squares obtained from this test and all field-picked riffle samples in previously reported tests.

Results and Discussion

In all of the streams, biotic index values of net samples, and usually also of sampler samples, were higher in August than in October. In most of the streams these differences were significant. This points to the urgent need to develop a reliable seasonal correction factor for the biotic index.

The pooled standard deviation (s) of sampler samples was more than twice as great as that of net samples in both of the months. This could be partly due to the smaller average sample size of sampler samples. It is more likely due to a tendency of aquatic insects to have a clumped distribution. The net samples were taken by disturbing an area of the bottom that was several times greater than that of a sampler and contained a variety of substrates as compared to the homogeneous substrate of the sampler.

In streams with shifting sand bottoms and no snags of debris, or in streams too deep to have riffles or runs that can be sampled with a net, artificial substrate samplers present a viable alternative sampling method. The samplers used in this study would not be satisfactory because they rest on the bottom and become buried in streams with shifting sand bottoms and cannot be retrieved from deep streams. A "Bar-B-Q basket" sampler (Mason et al. 1967) suspended from bridges would be large enough to obtain an adequate sample because it contains about 20 lb of rocks compared to the 8 lb in the samplers used in this study, but this sampler would not solve the problem of clumped distribution. A pooled sample from 4 or 5 small rock-in-basket samplers suspended from a bridge is a better alternative if the samplers can be concealed from the curious public for the 8-week period needed for colonization, and if they can be enclosed during retrieval to prevent the escape of arthropods.
riffles and oxygen to reaerate the stream at the sampling site 2 miles downstream, accounting for a much lower biotic index at that site. The phenomenon of occasionally elevated biotic index values resulting from depressed oxygen levels in wilderness streams that originate in swamps was noted previously by Joe Eilers (pers. comm.). It most frequently occurs after periods of heavy rain and flooding.

A highly significant difference in biotic index was also encountered in the Eau Galle River in Dunn County, and this was not expected. This sampling site on the Eau Galle River is about 100 yd below a hydroelectric dam, where there is significant aeration of the water as it passes through turbines or over a high spillway. Effects of decomposition of organic matter produced in the impoundment would be more prominent farther downstream, and would account for a significantly higher biotic index at the downstream site.

The standard deviation from pooled sums of squares in this and all other replicated experiments in which 100 arthropods were collected with a net and picked in the field, was 0.098. This means that 95% of biotic indexes calculated from a sample of 100 arthropods should be within 0.19 of the true index value, and 99% should be within 0.25.

A previous test in which field-picked samples were compared with laboratory-picked samples provided the only set of samples with replicates of 50 arthropods instead of 100. There were 6 replicates of 50 in the samples from Armstrong Creek, and the data from these replicates were combined in all possible combinations to produce sample sizes of 100, 150, and 200. Biotic index values were calculated for all sample sizes. In the field-picked samples the standard deviation was compared for all sample sizes and it was 0.071 for replicates of 50, and 0.035, 0.031 and 0.026 for replicates of 100, 150, and 200 respectively. This indicates that a sample size of 50 arthropods is only half as reliable as the standard sample of 100, and reaffirms that the additional time needed to collect and process larger samples is probably not justified because sample sizes of 150 or 200 did not significantly increase the reliability of the sample.

PROBLEMS

The biotic index has been shown to be a rapid, sensitive, and reliable method for evaluating the water quality of streams, but there are problems involved with its use and they must be considered when interpreting results. Solutions to some of the problems are forthcoming, while others may not be realized for several years. Three of the problems I consider major, and will discuss them first.

Need for Keys to Species. In several genera of aquatic insects, especially in the Ephemeroptera, Trichoptera, and Dip tera, it is not yet possible to identify larval stages beyond genus. In genera where all species have the same tolerance value, this is of no consequence, but in genera where tolerance values of the species differ, it is important to be able to recognize each species. In the mayfly genus Caenis and the caddisfly genera Cheumatopsyche and Symphitopsyche we have several species that cannot be separated, and it is obvious from our experience in collecting these genera that tolerance values of the various species range from 1 to 4 within each genus. Presently all unidentifiable species in these genera have been assigned a value of 3, which tends to raise calculated biotic index values of clean streams and lower calculated biotic index values of polluted streams. Since all of these genera frequently occur as a dominant segment of a stream’s fauna, the problem is serious. In the genus Symphitopsyche, it is only species in the bilda group that cannot be identified, and Patricia Scheffer, a graduate student at the University of Toronto, plans to publish keys to species within a year. Cheumatopsyche larvae on the other hand seem to present a more serious challenge to taxonomists. Several efforts have been made to develop larval keys, but no one has succeeded and nobody is presently working on this problem. A study of Caenis mayfly larvae was initiated recently by Arwin Provonsha at Purdue University, but it may be several years before a species key can be developed. Taxonomic problems exist in many other genera, but only on the rare occasions when these genera are a dominant segment of the fauna may these problems significantly affect calculated biotic index values.

Correction Factors for Current and Temperature. It has been shown in laboratory studies (Lloyd Lueschow, DNR, pers. comm.) that increased current and lowered water temperature enhance an arthropod’s ability to withstand decreased dissolved oxygen levels. At lower water temperatures the metabolism of arthropods is slowed and their need for oxygen is decreased, thus they can tolerate lower levels of dissolved oxygen. Similarly, as current is increased, more water passes over the respiratory organs of arthropods, exposing them to more dissolved oxygen, and this enables them to survive at lower levels of dissolved oxygen. Correction factors for maximum water temperature and maximum current at the sampling site need to be developed to better relate biotic index values to minimum oxygen levels and water quality. The critical time for both parameters is usually midsummer.

Seasonal correction factors. After sampling 53 streams 4 times during a year, a seasonal correction factor was suggested (Hilsenhoff 1977), but it needs refinement. In the study in which the use of samplers was tested (Table 5), biotic index values obtained by net samples were always higher for August than October, and in two-thirds of the streams the differences were statistically significant. The average difference of 0.59 is of such a magnitude that it would seriously jeopardize interpretation of results if seasonal differences in biotic index values were not taken into consideration. Seasonal variations in the biotic index are probably mostly a function of water temperature, which affects emergence, egg hatching, diapause, and other parts of the life cycle of aquatic insects. In summer, when dissolved oxygen levels tend to be lowest, resistant species and resistant life stages tend to predominate. Life cycles are related to seasonal temperature patterns, which do not always proceed on the same schedule every year, and thus seasonal correction factors must be tied to phenological events rather than to the calendar. Since streams have wide daily temperature fluctuations, the water temperature of large monomictic lakes appears to be the best phenological event upon which to base a seasonal correction factor.

Assignment of tolerance values. Tolerance values were initially assigned to each species empirically, and adjustments were made when studies of groups of streams suggested they were necessary. An insect species with an assigned tolerance value of 0 that is found frequently in streams in which all other species have a value above 2 obviously has an erroneous value, and 99% should be within 0.25. maximum water temperature and maximum current at the sampling site need to be developed to better relate biotic index values to minimum oxygen levels and water quality. The critical time for both parameters is usually midsummer.

Other considerations. Several other factors may affect the biotic index, and although these effects presently appear to be minor, future research may prove otherwise. Adjustments or correction factors may be needed when evaluating laboratory-picked samples, samples collected with artificial substrates, or samples collected from snags of debris instead of from a riffle. Corrections may also be needed for various substrates that make up the riffle, stream size, shaded vs. open streams, stream depth, and perhaps other factors not yet considered.
RECOMMENDED SAMPLING PROCEDURE

1. With a D-frame aquatic net, sample a site where flow is most rapid and the substrate is composed of gravel or small stones. This is best accomplished by placing the net against the substrate and disturbing the substrate immediately upstream from the net.

2. Sample until you have collected somewhat in excess of 100 arthropods, but be careful not to collect more than 200 because large numbers will tend to bias the sample when sorting.

3. Place the contents of the net in a shallow pan with a small amount of water.

4. Remove arthropods clinging to the net. Do not bias the sample by collecting more than 20 arthropods from the net.

5. Remove arthropods from the pan with a curved forceps until you have collected 100, including those removed from the net. Strive for variety; do not pick certain types of arthropods to the exclusion of others. Do not collect Hemiptera or Coleoptera, except Gyrinidae larvae and Dryopoidea. Do not collect individuals less than 3 mm long, except Hydroptilidae larvae and Elmidae adults.

6. Preserve all arthropods in 70% alcohol for identification to genus or species in the laboratory.

7. If an area of gravel or small stones cannot be found for collection of the sample, sample debris in the fastest current. Leaves, grasses and other debris clinging to branches or snags are very good sources of arthropods.

8. If the original sample does not contain 100 arthropods, collect a second sample, but do not spend more than 30 minutes collecting and picking samples. A complete absence of arthropods in a stream that contains good habitat is an indication of severe pollution.

9. Streams with no perceptible current cannot be evaluated with the biotic index at this time. Streams that cannot be sampled because of their depth or lack of suitable substrate can be sampled with artificial substrate samplers. Suspend rock-in-basket samplers from bridges or overhanging tree branches, and leave them in the stream at least 8 weeks. They should be hidden from the curious public, and before removing them they must be enclosed to prevent the escape of arthropods.

Alternative Procedure for Steps 3-5

Alternative Step 3 - Place the contents of the net in a pint jar and cover with 80% alcohol as a preservative. Include all arthropods clinging to the net.

Alternative Step 4 - In the laboratory place the contents of the jar in a large pan marked with a grid, and spread the contents evenly over the bottom of the pan.

Alternative Step 5 - Systematically remove arthropods from the grid, section by section, removing all arthropods from a section before removing any from the next. Remove and preserve 100 arthropods. Do not collect Hemiptera or Coleoptera, except Gyrinidae larvae and Dryopoidea. Do not collect individuals less than 3 mm long, except Hydroptilidae larvae and Elmidae adults.

IDENTIFICATION

Insect genera can be identified by using the keys in Aquatic Insects of Wisconsin (Hilsenhoff 1981), and references to the most recent species keys will also be found in that publication. However, since many of the species keys are not readily available, those that are needed for biotic index calculations have been modified for Wisconsin and are reproduced here. Amphipods may be identified by using Holsinger (1972), and isopods by using Williams (1972).

KEY TO NYMPHS OF PERLINELLA

1 Anterior ocellus absent or indicated by a slight depression; anal gills small; entire insect a uniform light brown .. ephyre
Anterior ocellus present, although inconspicuous in small nymphs; anal gills long; head and thorax indistinctly patterned................................. drymo
KEY TO NYMPHS OF *ISOPERLÁ*

1 Second tooth of lacinia absent (Fig. 1-A) *nana*
2 Second tooth of lacinia present 2
3 Truncate distal end of lacinia covered with a dense brush of setae (Fig. 1-B); abdominal markings, if present, longitudinal and never transverse *lata*
4 Lacinia variable, but without a dense brush of setae distally 3
5 Lacinia with a tuft of setae below second tooth (Figs. 1-C,D) 4
6 Lacinia with setae scattered below second tooth, none clustered in a tuft (Figs. 1-E,F) 6
7 First tooth of lacinia as long as outer edge of ovate basal portion of lacinia (Fig. 1-C); no paired dark spots on abdominal or thoracic terga 8
8 First tooth of lacinia much shorter than outer edge of elongate basal portion (Fig. 1-D); paired dark spots on either abdominal or thoracic terga 5
9 Eight dark spots on each abdominal tergum; thoracic terga mottled with light and dark areas; dark bar on anterior portion of frontoclypeus enclosing a light area just anterior to median ocellus *frisoni*
10 Abdominal terga transversely banded or pale anteriorly and dark posteriorly, especially on posterior terga (telescoping of segments may give false appearance of banding); rarely dark nymphs are evenly colored, but dark pigment extends ventrally well down onto posterior margin of 9th sternum 11
11 Abdomen with longitudinal stripes, light spots, or evenly colored; if evenly colored, dark pigment does not extend onto 9th sternum 7
12 Distal end of lacinia truncate with several strong setae (Fig. 1-E) *marlynia*
13 Eight dark spots on each abdominal tergum; thoracic terga mottled with light and dark areas; dark bar on anterior portion of frontoclypeus *frisoni*
14 Distal end of lacinia not at all truncate, with only a few strong setae on margin (Fig. 1-F) *signata*
15 Light area anterior to median ocellus, if present, rounded or W-shaped; no dark bands on femur and tibia near their articulation *slossonai*
16 Distinct W-shaped pale area anterior to median ocellus, extending almost to antennae, and often posteriorly to lateral ocelli and compound eyes; abdominal terga each with eight white spots or solidly colored *clio*
17 Pale area near median ocellus rounded, indistinct, or absent, but never distinctly W-shaped; abdominal terga with longitudinal stripes, except on very immature nymphs 19
18 Pale mark immediately anterior to median ocellus indistinct or lacking; numerous conspicuous freckle-like spots on abdomen, especially on posterior sterna; dark longitudinal abdominal stripes with very narrow pale borders *dicala*
19 Distinct pale mark immediately anterior to median ocellus; conspicuous freckle-like spots absent; longitudinal stripes, if present, with wide pale borders 11
20 Wingpads with dark, conspicuous setae; veins in wingpads colored similarly to background; dark spots on abdominal terga lacking or inconspicuous *transmarina*
21 Wingpads with pale inconspicuous setae; pale veins visible in dark-colored areas of wingpads; 8 dark spots on each abdominal tergum *bilineata*

KEY TO NYMPHS OF *BAETIS*

1 Nymph with only two caudal filaments *amplus*
2 Nymph with three caudal filaments, the middle one often shorter 2
3 Caudal filaments uniformly colored, without bands 3
4 Caudal filaments with light or dark bands at middle or apex 4
5 Abdominal terga brown, often with a pale median stripe; abdominal terga 10 and sometimes 5 may be pale *brunneicolor*
6 Abdominal terga without a pale median stripe; terga 5, 9 and sometimes 10 are usually paler than other terga *vagans*
7 Caudal filaments with dark crossbands at or near middle 5
8 Caudal filaments without dark crossbands at or near middle 11
9 Tibia with a wide dark band at middle; gills on abdominal segment 7 lanceolate (Figs. 2-A, B) 6
10 Tibia unbanded or banded only at apex; gills on abdominal segment 7 rounded 7
11 Gills on segment 7 sharply pointed at apex, very narrow (Fig. 2-A) *pygmaeus*
12 Gills on segment 7 elongate, but not sharply pointed (Fig. 2-B) *macdunnoughi*
13 Abdominal terga uniformly dark, each with an interior and posterior median white dash forming an interrupted or continuous pale median line on abdomen (Fig. 2-C) *frondalis*
14 Abdomen usually with some pale terga, if uniformly dark, without a pale interrupted median line on abdomen 8

KEY TO NYMPHS OF CLOEON

1. All gills single, without a recurved dorsal flap **alamance**
 At least basal pairs of gills with a recurved dorsal flap (all other species)

2. Cerci alternately banded light and dark; terga tan with central white dash and usually also submedian white dots on anterior **parvulum**
 Cerci unbanded or banded at middle; terga marked otherwise 2

3. Cerci unbanded ... 3
 Cerci banded at middle and usually also at tip 4

4. Short, chunky species with broad thorax; abdominal terga 4 and 8-10 paler than other terga **cincigulatum**
 Abdominal tergum 5 and sometimes 9 much darker than other terga; other terga pale, with 1 and 6-9 sometimes darker Species A
 Abdominal tergum 5 not darker than other terga .. 5

5. Abdominal terga similarly colored and usually with a median longitudinal pale stripe; terga usually with 2 pairs of submedian dark spots; abdominal sterna often with a black median spot; gills well tracheated... **punctiventris**
 Abdominal terga without a pale median stripe; black spots never present in middle of abdominal sterna, but basal brown or purple spots may be present .. 6

6. Male with abdominal terga 3, 4 and 8-10 pale; female uniformly tan with a pair of submedian white spots and a pale central spot on each middle abdominal tergum **dubium**
 Abdominal terga 1-2 and 6-7 dark with a pair of posterior submedian white spots; other terga pale with two pairs of submedian dark spots ... **myrsum**

KEY TO NYMPHS OF PSEUDOCLOEON

1. Cerci alternately banded light and dark; terga tan with central white dash and usually also submedian white dots on anterior **parvulum**
 Cerci unbanded or banded at middle; terga marked otherwise 2

2. Cerci unbanded ... 3
 Cerci banded at middle and usually also at tip 4

3. Short, chunky species with broad thorax; abdominal terga 4 and 8-10 paler than other terga **cincigulatum**
 Abdominal tergum 5 and sometimes 9 much darker than other terga; other terga pale, with 1 and 6-9 sometimes darker Species A
 Abdominal tergum 5 not darker than other terga .. 5

4. Abdominal terga similarly colored and usually with a median longitudinal pale stripe; terga usually with 2 pairs of submedian dark spots; abdominal sterna often with a black median spot; gills well tracheated... **punctiventris**
 Abdominal terga without a pale median stripe; black spots never present in middle of abdominal sterna, but basal brown or purple spots may be present .. 6

5. Male with abdominal terga 3, 4 and 8-10 pale; female uniformly tan with a pair of submedian white spots and a pale central spot on each middle abdominal tergum **dubium**
 Abdominal terga 1-2 and 6-7 dark with a pair of posterior submedian white spots; other terga pale with two pairs of submedian dark spots ... **myrsum**

KEY TO NYMPHS OF EPHEMERELLA

1. Middle abdominal terga each with a pair of prominent upward projecting spines (Figs. 3-A,B) .. 2
 Middle abdominal terga without such spines, at most a very small pair of posterior projecting spines (Fig. 3-C).............................. 3

2. Spines long, sharp, and found on segments 1-8 (Fig. 3-A); a pale stripe on abdomen between spines. **needhami**
 Spines moderately long, sharp, and found on segments 2-9 (Fig. 3-B); abdomen without a longitudinal pale stripe **subvaria**

3. Middle abdominal terga with paired tubercles that often result in a small spine or rearward projection on posterior margin of each tergum 4
 Middle abdominal terga without paired tubercles; posterior margin of each tergum straight or evenly curved .. 7

4. Tibiae and tarsi without dark bands; tail filaments without dark bands ... **catawba**
 Tibiae and tarsi with dark bands; tail filaments with or without dark bands ... 5

5. Middle abdominal terga each with a pair of small tubercles from which a tiny spine projects rearward (Fig. 3-C); caudal filaments with dark bands near middle and at apex ... **invaria or rotunda** (Spines more prominent in **rotunda**, extremely small in **invaria**)

FIGURE 2. Baetis. Seventh abdominal gill of: A - B. pygmaeus; B - B. maccunnoughi. Abdominal terga 4, 5, and 6 of: C - B. frondalis; D - B. intercalaris; E - B. flavistriga; F - B. propinquus; G - B. longipalpus.

Middle abdominal terga each with a pair of distinct tubercles covered with spicules, but without rearward projecting spines (Figs. 3-D,E); bands on caudal filaments variable 6

5 (4) Tubercles very prominent with long spicules (Fig. 3-D); caudal filaments with dark bands near middle and at apex............................. *aurivilli*

Tubercles prominent with short spicules (Fig. 3-E); caudal filaments with dark bands mostly in basal half or absent.......................... Species A

7 (3) Caudal filaments without dark bands, rarely with pale bands near middle.................. *excrucians*

Caudal filaments with dark bands.................. *dorothea*

KEY TO NYMPHS OF *EURYLOPHELLA*

1 Posterolateral projections barely discernible on abdominal segment 2 and poorly developed on segment 3 (Fig. 4-A); occipital tubercles minute or absent in both sexes............................... 2

Posterolateral projections poorly developed on abdominal segment 2 and very well developed on segment 3 (Fig. 4-B,C)................................. 3

2 (1) Paired tubercles on abdominal terga long and thin; tubercles moderately developed on terga 8-9 (Fig. 4-D) *minimella*

Paired tubercles on abdominal terga short and thick; tubercles poorly developed or absent on terga 8-9 (Fig. 4-E) *bicolor*

3 (1) Inner margin of posterolateral projections on segment 9 distinctly incurved (Fig. 4-F); paired tubercles on abdominal terga 8-9 well developed ... *funeralis*

Inner margin of posterolateral projection on segment 9 not incurved (Fig. 4-E); if slightly incurved, paired tubercles on abdominal terga 8-9 poorly developed.......................... 4

4 (3) Paired tubercles on abdominal terga 1-3 long and blunt, distinctly curved downward apically; occipital tubercles well developed in females, not as well developed in males.......................... *temporalis*

Paired tubercles on abdominal terga 1-3 short, blunt or sharp; occipital tubercles moderately developed in females, less so in males.......................... 5

KEY TO NYMPHS OF *SERRATELLA*

1 Abdominal terga without paired, submedian tubercles; maxillary palpi absent *deficiens*

Abdominal terga with paired, submedian tubercles; maxillary palpi present................................. 2

2 (1) Head, thorax, and legs with long hairs; abdominal terga with tubercles on segments 3 to 8 .. *sordida*

Head, thorax, and legs without long hairs; abdominal terga with tubercles on segments 2 to 8... *frisoni*

KEY TO NYMPHS OF *HEPTAGENIA*

1 Seventh pair of gills biramous, containing plate and tuft elements; claws not pectinate......................... 2

Seventh pair of gills uniramous, only plate element present; claws pectinate................................. 4

2 (1) Venter of abdomen with dark marking on posterior edge of ninth sternum only *flavescens*

Dark markings present on lateral margins of ninth sternum and usually present on anterior sternum... 3

3 (2) Abdominal terga 4 and 8 with a pair of pale submedian streaks (Fig. 5-A) *diabasia*

Abdominal terga 4 and 8 with a pale median spot (Fig. 5-B) ... *pulla*
FIGURE 5. Heptagenia. Abdominal terga 4 to 10 of:
A - H. diabasia; B - H. pulla.

4 (1) Base of caudal filaments unicolorous, white or
nearly so.. lucidipennis
Base of caudal filaments distinctly darkened at
articulations...hebe

KEY TO NYMPHS OF STENONEMA

1 Posterior abdominal sternae each with a pair of
rounded spots, which are most prominent posteriorly
(Fig. 6-A); gills on abdominal segments 1-6
rounded... femoratum
Abdominal sternae marked otherwise, or unmarked;
gills on abdominal segments 1-6 truncate2

2 (1) Abdominal sternae 3-8 with dark transverse bands
(Figs. 6-B,C) ..3
Abdominal sternae marked otherwise or unmarked
4

3 (2) Dark bands at posterior edge of abdominal sternae
(Fig. 6-B) ... vicarium
Dark bands at anterior edge of abdominal sternae
(Fig. 6-C) ... mediopunctatum

4 (2) Abdominal sternum 8 with median brown spot;
sternum 9 with a U-shaped mark (Fig. 6-D)
............................... modestum
Abdominal sternum without markings or with pale
markings laterally ..5

5 (4) Abdominal terga 7, 8, and 9 with a median pale V-
shaped mark (Fig. 6-E) integrum
Pale marks on abdominal terga 7, 8, and 9 not
forming a V (Figs. 6-F,G) ..6

6 (5) Abdominal terga mostly dark, with various pale
markings; terga 8 and 9 often light in center and
terga 5-7 often with paired submedian pale spots
(Fig. 6-F) ... terminatum
Abdominal tergum 7 distinctly lighter than terga 6
and 8 (Fig. 6-G) ..7

7 (6) Abdominal tergum 9 dark; mature nymphs with a
pale transverse band at base of dark wingpads
(Fig. 6-H) ... exiguum
Abdominal tergum 9 paler than terga 8 and 10;
nymphs never with a pale transverse band at
base of wingpads ... pulchellum

FIGURE 6. Stenonema. Abdominal sternae 4 to 9 of:
A - S. femoratum; B - S. vicarium; C - S. medi-
opunctatum; D - S. modestum. Abdominal terga 4
to 10 of: E - S. integrum; F - S. terminatum; G - S.
pulchellum. H - Head and thoracic terga of S.
exiguum.

KEY TO NYMPHS OF ARGIA

1 Caudal lamellae with a marginal fringe of stiff
bristles mixed with fine long hairs toward apex
.. violacea
Caudal lamellae without stiff marginal setae or with
only a few near base2

2 (1) Caudal lamellae broadly rounded distally, with a
minute filament at tip, uniformly dark except
along the apical margin, which is paler (Fig. 7-
A); lateral seta 1 moesta
Caudal lamellae with acute or subacute apices
(Figs. 7-B,C); lateral setae 1-43
Head pale with darker muscle scars; mesonotum with a row of several setae at SA-1 2

2 (1) Case of sand grains; head with distinct, dark, rounded muscle scars on back of head, most nearly as large as eye; one or two pairs of pale spots usually on anterior of frontoclypeus (Fig. 9-A) rusticum

KEY TO NYMPHS OF NEUROCORDULIA

1 Pyramidal horn on front of head moesta
No distinct horn on front of head 2

2 (1) Lateral spines on abdominal segment 9 greatly surpass tips of paraprocts; dorsal hooks blunt and erect obsoleta
Lateral spine on abdominal segment 9 barely reaching tips of paraprocts; dorsal hooks blunt and low, slanting to the rear yamaskanensis

KEY TO LARVAE OF BRACHYCENTRUS

1 Head entirely dark 2
Head with distinct light markings (Figs. 8-A,B) 3

2 (1) First abdominal sternum with 4 setae; metacoxal lobe surrounded by more than 30 setae occidentalis
First abdominal sternum with 2 setae; metacoxal lobe surrounded by about 11 setae americanus

KEY TO LARVAE OF CHIMARRA

1 Apex of frons with a pair of large, rounded lobes (Fig. 10-A) obscura
Apex of frons with smaller lobes, the left lobe not rounded 2

2 (1) Basal notch of right mandible very deep, with basal and apical side of notch subequal in length (Fig. 10-E); apex of frons with a small, rounded right lobe (Fig. 10-B) socia
Basal notch of right mandible with apical side much shorter than basal side (Figs. 10-F,G); right lobe on apex of frons larger (Figs. 10-C,D) 3

3 (2) Basal notch of right mandible shallow and forming a right angle (Fig. 10-F); apex of frons usually with a broad notch to the left of the right lobe (Fig. 10-C) aterrima
Basal notch of right mandible acute and deep (Fig. 10-G); apex of frons usually with an indistinct or narrow notch to the left of the right lobe (Fig. 10-D) tertia

KEY TO LARVAE OF HYDROPSYCHE

1 Frontoclypeus with 2 large upturned teeth on anterior margin (Figs. 11-A,B) 2
Frontoclypeus without 2 large upturned teeth on anterior margin 3

2 (1) Posterior of head yellow with only a very narrow dark line on stem of epicranial suture (Fig. 11-A); frontoclypeus with a V-shaped pale mark orris
Posterior of head with a broad dark mark along stem of epicranial suture (Fig. 11-B); frontoclypeus with 2 large anterolateral pale spots bidens
3 (1) Anterior edge of frontoclypeus produced (Fig. 11-C); head pattern as in Fig. 11-C............ phalerata
Anterior edge of frontoclypeus straight or broadly rounded; head pattern otherwise......................... 4

4 (3) Large spine-like setae, similar to those on sclerotized area of abdominal sternum 9, on venter of anal legs......................... 5
Large spine-like setae absent from venter of anal legs... 9

5 (4) Frontoclypeus mostly dark, with at most small pale spots (Figs. 11-D,E) ... 6
Frontoclypeus with large pale areas anteriorly (Figs. 11-F,G) ... 8

6 (5) Frontoclypeus brown with 2 pairs of distinct pale spots (Fig. 11-D); numerous dark, bristle-like setae on posterior of frontoclypeus........... valanis
Frontoclypeus mottled brown with indistinct pale spots (Fig. 11-E) or light brown without spots; pale, spine-like setae on frontoclypeus.............. 7

7 (6) Frontoclypeus mottled brown with indistinct pale spots (Fig. 11-E); postero lateral and ventral areas of head pale, with rows of muscle scars behind eyes; pronotum with distinct dark areas at base of pale spinelike setae and with large pale muscle scars laterally scalaris
Frontoclypeus not mottled with indistinct pale spots; entire head light brown without distinct muscle scars, but with a patch of darker setae between eye and occiput; pronotum light brown without lateral muscle scars and insertions of pale spine-like setae only slightly darker than background............................. probably placoda

8 (5) Head with a brown patch on stem of epicranial suture; dark areas of frontoclypeus contiguous (Fig. 11-F); spine-like setae on anal legs same size as those on 9th abdominal sternum aerata

FIGURE 10. Chimarra. Apex of frons of: A - C. obscura; B - C. socia; C - C. aterrima; D - C. feria.
Dorsal view of right mandible of: E - C. socia; F - C. aterrima; G - C. feria.

FIGURE 11. Hydropsyche. Dorsal view of head of:
K - H. leonardi; L - H. simulans; M - H. armale.
Back of head entirely pale; dark area of frontoclypeus separated by pale areas (Fig. 11-G); spine-like setae on anal legs much smaller and weaker than those on 9th abdominal sternum

9 (4) Frontoclypeus with a distinct elevated mound at extreme posterior; entire head usually dark brown except for a pale area around each eye, but occasionally, especially in early instars, larvae have pale spots on frontoclypeus betteni

Fronitoclypeus without an elevated mound; head with distinct pale markings in addition to those around eyes.. 10

10 (9) Appressed thin setae sparse on all abdominal segments; scale hairs thin and club-shaped; top and sides of head a mottled reddish-brown with numerous pale muscle scars posteriorly and 2 or 4 indistinct pale spots on anterior of frontoclypeus (Fig. 11-H) cuanis

Appressed thin setae abundant on all abdominal segments; scale hairs broad, except in dicantha; head not marked as above................................. 11

11 (10) Head mostly dark brown with 4 distinct pale spots and often a less distinct posterior spot on frontoclypeus (Fig. 11-I); many dark bristle-like setae on posterior of frontoclypeus.......................... dicantha

Head not brown with 4 distinct pale spots on frontoclypeus; dark bristle-like setae absent from posterior of frontoclypeus, except in leonardi.... 12

12 (11) Top and sides of head dark brown with pale areas around eyes and at occiput that are usually connected to form a "duckling-shaped" mark (Fig. 11-J); often with a pair of small pale spots on frontoclypeus and inconspicuous muscle scars near back of head (Fig. 11-K) 13

Top and sides of head mottled reddish brown with conspicuous yellow muscle scars at back of head and behind eyes; pale areas may be present on frontoclypeus.. 14

13 (12) Frontoclypeus with dark bristle-like setae posteriorly; venter of head without quadrate yellow spots .. leonardi

Fronitoclypeus without dark bristle-like setae; venter of head with 2 quadrate yellow spots along gular suture .. hageni

14 (12) Scale hairs as abundant as thin appressed hairs on dorsum of middle abdominal segments; head with extensive posteralateral pale areas; frontoclypeus with 2 large anterolateral pale areas, that may be obscure (Fig. 11-L) simulans

Scale hairs sparse on abdominal segments 1-4, more numerous on segments 7-8; head a mottled reddish brown without extensive posteralateral pale areas; frontoclypeus with at most 2 pairs of small pale spots (Fig. 11-M) arinale

KEY TO LARVAE OF SYMPHITOPSISYCHE

1 Frontoclypeus with several light spots forming a checkerboard pattern, the spots sometimes coalescing to form extensive light areas bifida group

Light spots on frontoclypeus less than 4 or lacking .. 2

2 (1) Frontoclypeus with a central yellow spot, and occasionally with spots anterior and/or posterior to the central spot; in dark-headed individuals, there is a pale spot on the gular suture ... slossonae

3 (2) Head usually dark brown with a "W"-shaped dark marking ventrally, the arms of the "W" wide and not reaching anterior of head (Fig. 12-A); prominent seta at anterolateral margin of pronotum very long, about 4 times as long as adjacent setae riola

Head usually pale red-brown with dark mark on gular suture separated from lateral dark marks (Fig. 12-B); prominent seta at anterolateral margin of pronotum short, only about twice as long as adjacent setae sparna

KEY TO ADULTS OF DUBIRAPHIA

1 Large, length of elytra 2.1-2.4 mm........... bivittata

Smaller, length of elytra 1.9 mm or less........ 2

2 (1) Elytra usually with four pale marks; if marks fuse to form two stripes, the stripes cover only the 3rd interval at basal third; elytra 1.6-1.9 mm long quadrinotata

Elytra with two pale stripes; if stripes are broken into four spots, elytra are less than 1.5 mm long... 3

3 (2) Elytra less than 1.5 mm long; stripes narrow and sometimes obscure at basal third, conspicuously widened near middle to include 3rd to 6th intervals, and usually contrasting sharply with dark background minima

Elytra usually 1.6 mm long or longer; stripes nearly constant in width, only slightly wider near middle, and usually not contrasting sharply with dark background vittata

KEY TO ADULTS OF OPTIOSERVUS

1 Small, less than 2.2 mm long; yellow stripes on each elytron and a third stripe along elytral suture trivittatus

Large, more than 2.7 mm long; yellow stripes on each elytron, but without a stripe along elytral suture ... fastiditus

KEY TO KNOWN ADULTS OF STENELMIS

1 Last tarsal segment distinctly longer than the four preceding combined, the last segment suddenly
widened beyond the middle (Fig. 13-A); legs elongate ... 6
Last tarsal segment never distinctly longer than preceding segments combined, the last segment not suddenly widened beyond middle (Fig. 13-B); legs normal ... 2

2 (1) Orange stripe entirely on inside of elevated sixth interval; third interval sharply elevated at base
Orange stripe extending outside elevated sixth interval and covering basolateral corner of elytra .. 3

3 (2) Lower margin of last tarsal segment with a conspicuous angular process (Fig. 13-C); usually more than 3.2 mm long 4
Lower margin of last tarsal segment without a conspicuous angular process (Fig. 13-D); usually less than 3.2 mm long 5

FIGURE 13. Sthenelmis. Last tarsal segment (ventral) and tarsus (lateral) of: A - S. decorata; F - S. cremata. Last tarsal segment (ventral) of: C - S. sandersoni; D - S. bicarinata. Aedeagus of: E - S. decorata; F - S. vittipennis.

4 (3) Apical abdominal emargination equal to width of last tarsal segment; tibiae yellowish only at base
Apical emargination very inconspicuous and much less than width of last tarsal segment; tibiae and apices of femora yellow 5

5 (3) Basal tubercle of pronotum elongate and carinate
Basal tubercle just perceptibly elongate and never carinate ... 6

6 (1) Antennae or palpi, or both, dark brown or black ... 7
Antennae and palpi yellowish .. 8

7 (6) Length 2.7 mm or longer................. quadrimaculatum
Length less than 2.7 mm .. musgravei

8 (6) Length less than 3.0 mm; aedeagus lacks a lateral process (Fig. 13-E) .. 6
Length more than 3.0 mm; aedeagus with a prominent lateral process (Fig. 13-F) .. 7

KEY TO LARVAE OF EUSIMULIUM

1 Throat cleft square or nearly so (Fig. 14-A) 2

2 (1) Dorsal head spots on a pale background 3

Dorsal head spots on a dark background
... euryadminiculum

3 (2) Median tooth of mentum equal to or shorter than longest lateral tooth; anterolateral head spots distinctly separated; anal gill with compound lobes
Median tooth of mentum longer than lateral teeth; anal gill with 3 simple lobes; anterolateral head spots almost touching each other aurium

4 (1) Pigmented area anteroventral to eye large 5
Pigmented area anteroventral to eye very small or absent ... 6

5 (4) Dorsal background pigment of head extended forward beyond bases of antennae as a dark, median stripe; throat cleft extending one-third distance to mental plate (Fig. 14-B) croxtoni
Dorsal background pigment of head extended forward only to anterior head spot; throat cleft extending only one-fourth distance to mental plate (Fig. 14-C) latipes

6 (4) Throat cleft large, rounded, bulbous (Fig. 14-D); small species maturing in summer gouldingi
Throat cleft small, widest at base (Fig. 14-E); large species maturing in early spring pugetense

KEY TO LARVAE OF SIMULIUM

1 Throat cleft a small quadrangular emargination, extending only about one-fourth distance to apex of mental plate; anal gills with 3 simple lobes
... vittatum
Throat cleft rounded or apically pointed, extending at least half way to apex of mental plate; anal gills with compound lobes 2

2 (1) Spots on head capsule light on a darker background ... 3
Spots on head capsule dark or obscure 5

FIGURE 14. Eusimulium. Ventral view of head of:
A - E. aurium; B - E. croxtoni; C - E. latipes; D - E. gouldingi; E - E. pugetense.
3 (2) Infuscation around head spots narrow, not extending beyond inner edge of anterolateral spots; large, mature larvae 8-10 mm long

Infuscation around head spots extending beyond inner edge of anterolateral spots; mature larvae 6-7 mm long

3 (2) decorum

Infuscation around head spots extending beyond inner edge of anterolateral spots; large, mature larvae 8-10 mm long

Infuscation around head spots extending beyond inner edge of anterolateral spots; mature larvae 6-7 mm long

4 (3) Lateral plate of proleg lightly sclerotized, barely visible; anterolateral head spots not enclosed by dark area

Lateral plate of proleg heavily sclerotized, conspicuous; anterolateral head spots enclosed by dark area

4 (3) verecundum

5 (2) Throat cleft bulbous and extending about half way to apex of mental plate (Fig. 15-A)

Throat cleft parallel-sided or elongate, not distinctly bulbous (Figs. 15-B,C)

5 (2) venustum

6 (5) Pupal histoblast of mature larva with 10 filaments

Pupal histoblast of mature larva with 12 filaments

6 (5) jenningsi

7 (5) Large median tooth of mentum extending far beyond lateral teeth; throat cleft short, parallel-sided basally, and pointed anteriorly (Fig. 15-B); mature larvae 10-11 mm

Large median tooth of mentum not much longer than large lateral teeth; throat cleft variable; length of mature larvae less than 9 mm

7 (5) pictipes

8 (7) Throat cleft very long and slightly bulbous, extending almost to mental plate (Fig. 15-C)

Throat cleft not as above, pointed anteriorly (Figs. 15-D,E)

8 (7) rugglesi

9 (8) Throat cleft with a distinct, narrow, apical extension extending almost to base of mentum (Fig. 15-D)

Throat cleft pointed anteriorly, but without a distinct apical extension (Fig. 15-E); head spots often obscure

9 (8) corbis
tuberosum

FIGURE 15. Simulium. Ventral view of head of: A - S. jenningsi; B - S. pictipes; C - S. rugglesi; D - S. corbis; E - S. tuberosum.
PLECOPTERA

<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
<th>Wisconsin Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caddisflies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocaenia</td>
<td>*</td>
<td>*allocaenia 1, all Paracapnia 1</td>
</tr>
<tr>
<td>Chloroperlidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hesperoperla</td>
<td>brevis 0, all Alloperla 0</td>
<td></td>
</tr>
<tr>
<td>Leuctridae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuctra</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nemouridae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphinemura</td>
<td>0, all Nemoura 0, all Prostola</td>
<td></td>
</tr>
<tr>
<td>Shipsa</td>
<td>0, all Soyedina 0</td>
<td></td>
</tr>
<tr>
<td>Perlidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocapnia</td>
<td>1, all Allocapnia 1</td>
<td></td>
</tr>
<tr>
<td>Neoperla</td>
<td>clymene 1, Paragraneta media 1, Perlesta placida 2, Perlinella drymo 1, Perlinella ephrye 0, Phasganophora capitata 0</td>
<td></td>
</tr>
<tr>
<td>Isogenoides</td>
<td>0, all Isogenoides 0, Isoperla bilinea 0, I. clio 0, I. cotta 0, I. dicala 0, I. frisoni 0, I. lata 0, I. marlynia 0, I. nana 2, I. richardsoni 2, I. signata 1, I. slossonae 0, I. transmarina 0</td>
<td></td>
</tr>
<tr>
<td>Pteronarcyidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pteronarcys</td>
<td>spp. 1**</td>
<td></td>
</tr>
<tr>
<td>Taeniopygidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oemopteryx</td>
<td>glacialis 0, Strophopteryx fasciata 1, Taeniopyteryx spp. 1</td>
<td></td>
</tr>
</tbody>
</table>

EPHEMEROPTERA

<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
<th>Wisconsin Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baetidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis</td>
<td>brunneicolor 2, B. frondalis 2, B. flavis-</td>
<td></td>
</tr>
<tr>
<td>triga 2, B. intercalaris 3, B. longipalpus 3, B. macdun-</td>
<td>nough 2, B. propinquus 2, B. pygmaeus 2, B. vagans 1,</td>
<td></td>
</tr>
<tr>
<td>Callibaetis</td>
<td>spp. 3, Centroptilum</td>
<td></td>
</tr>
<tr>
<td>spp. 3</td>
<td>1, Cloeon ala-</td>
<td></td>
</tr>
<tr>
<td>medes</td>
<td>0, Heterocloeon curiosum 1,</td>
<td></td>
</tr>
<tr>
<td>Pseudocloeon</td>
<td>carolina 1, P. dubium 2, P. parvulum 2,</td>
<td></td>
</tr>
<tr>
<td>Pseudocloeon</td>
<td>punctiventris 2</td>
<td></td>
</tr>
<tr>
<td>Baetiscidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis</td>
<td>steel 2, C. intercalaris 3, C. longipalpus 3,</td>
<td></td>
</tr>
<tr>
<td>C. macdun-</td>
<td>nough 2, C. propinquus 2, C. pygmaeus 2, C. vagans 1,</td>
<td></td>
</tr>
<tr>
<td>Callibaetis</td>
<td>spp. 3, Centroptilum</td>
<td></td>
</tr>
<tr>
<td>spp. 3</td>
<td>1, Cloeon ala-</td>
<td></td>
</tr>
<tr>
<td>medes</td>
<td>0, Heterocloeon curiosum 1,</td>
<td></td>
</tr>
<tr>
<td>Pseudocloeon</td>
<td>carolina 1, P. dubium 2, P. parvulum 2,</td>
<td></td>
</tr>
<tr>
<td>Pseudocloeon</td>
<td>punctiventris 2</td>
<td></td>
</tr>
</tbody>
</table>

ODONATA

<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
<th>Wisconsin Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeshnidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeshna</td>
<td>3, all Aeshna 3, Anax junius 3, Basiaeschna</td>
<td></td>
</tr>
<tr>
<td>janata 2, Boyeria winosa 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calopterygidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calopteryx</td>
<td>2, Hetaerina americana 2</td>
<td></td>
</tr>
<tr>
<td>Coenagrionidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphiagrion</td>
<td>saucium 3, Argia apicalis 3,</td>
<td></td>
</tr>
<tr>
<td>A. moesta 2, A. tibialis 2, Chromagrion conditum 3,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. tibialis 2, Chromagrion resolutum 3, all Enallagma 3,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischnura</td>
<td>verticalis 4</td>
<td></td>
</tr>
<tr>
<td>Cordulegastridae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cordulegaster</td>
<td>maculatum 1</td>
<td></td>
</tr>
<tr>
<td>Corduliidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epitheca</td>
<td>2, Neurocordulia molest 2, N. ob-</td>
<td></td>
</tr>
<tr>
<td>Gomphidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomphurus</td>
<td>1, all Gomphus 2, Hagenius</td>
<td></td>
</tr>
<tr>
<td>Gomphurus</td>
<td>1, all Gomphus 2, Hagenius</td>
<td></td>
</tr>
<tr>
<td>Helicopsyche:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicopsyche</td>
<td>borealis 2</td>
<td></td>
</tr>
<tr>
<td>Hydropsyche:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheumatopsyche</td>
<td>spp. 3, Diplodicta</td>
<td></td>
</tr>
<tr>
<td>Diplodicta</td>
<td>modesta 0, Hydrobryigea</td>
<td></td>
</tr>
<tr>
<td>Hydrobryigea</td>
<td>aurivillii 0, E. dorothea 0, E. ex-</td>
<td></td>
</tr>
<tr>
<td>E. aurivillii</td>
<td>cruci 1, E. invaria 1, E. needhami 1, E. subvaria 1,</td>
<td></td>
</tr>
<tr>
<td>E. invaria</td>
<td>1, Euryphyllela bicolor 1, E. fun-</td>
<td></td>
</tr>
<tr>
<td>E. aurivillii</td>
<td>eral 0, E. lutulenta 3, E. temporalis 4, Serratella</td>
<td></td>
</tr>
<tr>
<td>E. aurivillii</td>
<td>deficiens 1, S. sordida 0</td>
<td></td>
</tr>
<tr>
<td>Ephermeridae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemera</td>
<td>simulans 1, all Hexagenia 3</td>
<td></td>
</tr>
<tr>
<td>Ephemera</td>
<td>simulans 1, all Hexagenia 3</td>
<td></td>
</tr>
<tr>
<td>Heptageniidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthronymphia</td>
<td>bipunctata 2, Epeorus vetrea 0,</td>
<td></td>
</tr>
<tr>
<td>Arthronymphia</td>
<td>diabasia 3, H. hebe 1, H. lucidipennis 1, H.</td>
<td></td>
</tr>
<tr>
<td>Arthronymphia</td>
<td>pulla 0, all Rhithrogena 0, Stenacron</td>
<td></td>
</tr>
<tr>
<td>Arthronymphia</td>
<td>intercalatum 3, Stenonema</td>
<td></td>
</tr>
<tr>
<td>Arthronymphia</td>
<td>exiguum 3, S. femoratum 3, S. integrum 1,</td>
<td></td>
</tr>
<tr>
<td>Arthronymphia</td>
<td>mediopunctatum 2, S. modestum 0, S.</td>
<td></td>
</tr>
<tr>
<td>Arthronymphia</td>
<td>pulchellum 1, S. terminatum 2, S. vicarium 1</td>
<td></td>
</tr>
<tr>
<td>Leptophlebiidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choroterpes</td>
<td>basalis 1, Habropelobides</td>
<td></td>
</tr>
<tr>
<td>Choroterpes</td>
<td>americana 2, Leptopliebia</td>
<td></td>
</tr>
<tr>
<td>Choroterpes</td>
<td>spp. 2, Paraleptophlebia</td>
<td></td>
</tr>
<tr>
<td>Choroterpes</td>
<td>spp. 2, Paraleptophlebia</td>
<td></td>
</tr>
<tr>
<td>Polymitarcidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephoron</td>
<td>leukon 1</td>
<td></td>
</tr>
<tr>
<td>Ephoron</td>
<td>leukon 1</td>
<td></td>
</tr>
<tr>
<td>Potamanthidiae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potamanthus</td>
<td>2, all Potamanthus 2</td>
<td></td>
</tr>
<tr>
<td>Metrotopidiae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siphloropecton</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Oligoneuriidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isonychia</td>
<td>spp. 2</td>
<td></td>
</tr>
<tr>
<td>Isonychia</td>
<td>spp. 2</td>
<td></td>
</tr>
<tr>
<td>Siphlonuridae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ameletus</td>
<td>spp. 0, Siphlonurus</td>
<td></td>
</tr>
<tr>
<td>Ameletus</td>
<td>spp. 0, Siphlonurus</td>
<td></td>
</tr>
<tr>
<td>Tricorythidae:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricorythodes</td>
<td>spp. 2</td>
<td></td>
</tr>
</tbody>
</table>

"All Allocapnia" indicates all known Wisconsin species have a value of 1.

"Pteronarcy spp. 1" indicates that species cannot be identified and the genus has been assigned a value of 1.

Tolerance Values

**EPHEMEROPTERA **

**TRICHOPTERA **

**ODONATA **

**PLECOPTERA **

BIOLOGY NOTES

MEGALOPTERA

Corydalidae: all Chauliodes 2, Corydalis cornutus 2, Nigronia serricornis 1
Sialidae: Sialis spp. 2

LEPIDOPTERA

Pyralidae: Neocataclysta spp. 1, Nymphula spp. 1, Paraponyx spp. 1, Paragyractis spp. 2

COLEOPTERA

Drynidae: all Helichus 2
Elmidae: Ancyronyx variegata 2, Dubiraphia bivittata 2, D. minima 3, D. quadrinotata 3, D. vittata 3, Dubiraphia larvae 3, Macronychus giabratus 2, Microcylolepus pusillus 1, Optioservus fastidius 2, O. trivittatus 1, Optioservus larvae 2, Stenelmis bicornata 2, S. crenata 3, S. decorata 2, S. musgravei 3, S. sandersoni 2, S. vittipennis 2, Stenelmis larvae 3

gyrinidae: Dineutus larvae 2, Gyrinus larvae 2 (Do not count adults)
Psephenidae: Ectopria spp. 2, Psephenus herricki 2
(Do not include adults or larvae of Dytiscidae, Halipilidae or Hydrophilidae)

DIPTERA

Athericidae: Atherix variegata 2
Blepharoceridae: Blepharocera spp. 0
Ceratopogonidae: Atrichopogon spp. 1, Bezzia spp. 3, Cuilicoides spp. 4, Monohoelia spp. 3, Palpomyia spp. 3, Probezzia spp. 3

craneboridae: all Chaoborus 4

Dolichopodidae: all genera 2
Empididae: all genera 3
Empydiidae: all genera 3
Psychodidae: Pericoma spp. 5, Psychoda spp. 5
Ptychopteridae: Ptychoptera spp. 3
Simuliidae: Cnephia dacotensis 1, Ectenmia taeniatri Entrus 1, Eusimulium aurium 2, E. croxtoni 1, E. euryadiminum 1, E. johannseni 1, E. latipes 2, al Prosimulium 1, Simulium corbis 0, S. jenningsi 2, S. luggeri 1, S. tuberosum 2, S. venustum 3, S. verecundum 3, S. vitatum 4, Stegopterina mutata 2
Syridae: Chrysogaster spp. 5, Eristalis spp. 5, Helophilus spp. 5
Tabanidae: Chrysops spp. 3, Tabanus spp. 3
Tipulidae: Antocha spp. 2, Dicranota spp. 2, Erioptera spp. 3, Heilus spp. 3, Hesperoconopa spp. 1, Hexatoma spp. 3, Limonia spp. 2, Limnophila spp. 2, Pedicia spp. 2, Piliara spp. 3, Pseudolimnophila spp. 1, Tipula spp. 2
(Do not include Culicidae, Dixidae, or Stratiomyidae)

AMPHIPODA

Gammaridae: Crangonyx gracilis 4, Gammarus pseudolimneus 2
Talitridae: Hyallela azteca 4

ISOPODA

Asellidae: Asellus intermedius 5
TABLE 7. Evaluation of water quality using biotic index values of samples collected between October and May.

<table>
<thead>
<tr>
<th>Biotic Index</th>
<th>Water Quality</th>
<th>Degree of Organic Pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 - 1.75</td>
<td>Excellent</td>
<td>No organic pollution</td>
</tr>
<tr>
<td>1.76 - 2.25</td>
<td>Very good</td>
<td>Possible slight organic pollution</td>
</tr>
<tr>
<td>2.26 - 2.75</td>
<td>Good</td>
<td>Some organic pollution</td>
</tr>
<tr>
<td>2.76 - 3.50</td>
<td>Fair</td>
<td>Significant organic pollution</td>
</tr>
<tr>
<td>3.51 - 4.25</td>
<td>Poor</td>
<td>Very significant organic pollution</td>
</tr>
<tr>
<td>4.26 - 5.00</td>
<td>Very Poor</td>
<td>Severe organic pollution</td>
</tr>
</tbody>
</table>

The occurrence of several Caenis spp., Cheumatopsyche spp., and Symphitopsyche bifida group, all of which have a tolerance value of 3, will produce abnormally high biotic index values for very clean streams. Calculation of a second biotic index after excluding these three genera is recommended, and if it is below 2.00 it should be used to evaluate the stream.

After all the necessary identifications have been completed, the number of arthropods in each species (or genus) is multiplied by the tolerance value for the species (or genus), and the sum of these products is divided by the number of arthropods in the entire sample to obtain the biotic index for the stream:

\[
B.I. = \frac{\sum n_i n_a}{N}
\]

Samples obtained between October and May give the most reliable values and can be evaluated according to Table 7. Accurate correction factors for values obtained from summer samples have not yet been worked out, but the results in Table 5 suggest that subtracting 0.6 from biotic index values obtained in July and August is not unreasonable. A smaller correction factor will be needed for June and September samples.
LITERATURE CITED

<table>
<thead>
<tr>
<th>DATE DUE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE HISTORICAL SOCIETY OF WISCONSIN</td>
<td></td>
</tr>
<tr>
<td>816 State Street</td>
<td>Madison, Wisconsin 53706</td>
</tr>
<tr>
<td>JAN 23 1987</td>
<td></td>
</tr>
<tr>
<td>JAN 8 1987</td>
<td></td>
</tr>
<tr>
<td>MAY 1 1988</td>
<td></td>
</tr>
<tr>
<td>MAR 20 1990</td>
<td></td>
</tr>
<tr>
<td>DEC 22 1998</td>
<td></td>
</tr>
<tr>
<td>MAY 21 1999</td>
<td></td>
</tr>
<tr>
<td>REC'D MAY 21 1999</td>
<td></td>
</tr>
</tbody>
</table>

DEMCO 38-297
ACKNOWLEDGMENTS

Research supported by the College of Agricultural and Life Sciences, University of Wisconsin, Madison, and by the Wisconsin Department of Natural Resources in cooperation with the U.S. Environmental Protection Agency.

About the Author

Dr. Hilsenhoff is Professor of Entomology, University of Wisconsin, Madison.

Production Credits:

Ruth L. Hine, Editor
Jane Ruhland and Lori Goodspeed, Copy Editors
Richard G. Burton, Layout Artist
Susan Steinhoff, Word Processor
No. 96 Northern pike production in managed spawning and rearing marshes. (1977) Don M. Fago

No. 98 Effects of hydraulic dredging on the ecology of native trout populations in Wisconsin spring ponds. (1977) Robert F. Carline and Oscar M. Brynildson

No. 101 Impact upon local property taxes of acquisitions within the St. Croix River State Forest in Burnett and Polk counties. (1977) Monroe H. Rosner

No. 103 A 15-year study of the harvest, exploitation, and mortality of fishes in Murphy Flowage, Wisconsin. (1978) Howard E. Snow

No. 104 Changes in population density, growth, and harvest of northern pike in Escanaba Lake after implementation of a 22-inch size limit. (1978) James J. Kempinger and Robert F. Carline

No. 105 Population dynamics, predator-prey relationships and management of the red fox in Wisconsin. (1978) Charles M. Pils and Mark A. Martin

No. 110 The influence of chemical reclamation on a small brown trout stream in southwestern Wisconsin. (1978) Eddie L. Avery

No. 112 Control and management of cattails in southeastern Wisconsin wetlands. (1979) John D. Beule

No. 113 Movement and behavior of the muskellunge determined by radio-telemetry. (1979) Michael P. Dombeck

No. 115 Removal of woody streambank vegetation to improve trout habitat. (1979) Robert L. Hunt

No. 120 Forest opening construction and impacts in northern Wisconsin. (1981) Keith R. McCaffery, James E. Ashbrenner, and John C. Moulton

No. 126 Artificial nesting structures for the double-crested cormorant. (1981) Thomas I. Meier

No. 129 Status and management of black bears in Wisconsin. (1982) Bruce E. Kohn

No. 131 Hypothetical effects of fishing regulations in Murphy Flowage, Wisconsin. (1982) Howard E. Snow
