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Abstract 

 This dissertation addresses the problem of when one can infer that a causal factor that has 

an effect in one population would have a similar effect in others. For example, if reducing class 

sizes increases educational outcomes in one neighborhood, would reducing them in another raise 

outcomes by a similar amount? This is known as the problem of extrapolation. This dissertation 

reviews the prior literature on extrapolation, explains how extrapolation relates to other forms of 

causal inference, and presents techniques for extrapolating more reliably. 

 To model extrapolation, I rely on recently developed causal modeling techniques, which 

use graphs to represent causal relations among variables. I build on the work of Judea Pearl and 

Elias Bareinboim, who provide graphical methods for determining when it is possible to 

extrapolate causal quantities across populations given assumptions about how those populations 

differ. I argue that their account explicates one type of extrapolation, but that there are 

extrapolative inferences that go beyond their account.  

 The central positive contribution of the dissertation is that it makes precise the sense in 

which knowing how a cause brings about its effect facilitates extrapolation. In cases where a 

cause influences its effect via multiple paths, newly developed “causal mediation techniques” 

enable one to precisely quantify the way that the cause influences its effect via each of the paths. 

These techniques aid extrapolation, since the causal quantities identified by these techniques are 

invariant across a range of ways that two populations may differ. Moreover, the conditions 

across which these quantities are invariant cannot be represented within Pearl and Bareinboim’s 

framework.  

 In discussing the problem of extrapolation, I touch on several central philosophical 

issues. First, characterizing the problem requires one to elucidate the relationship between causal 
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and statistical inference. Second, the causal mediation techniques I advocate shed light on recent 

debates about mechanistic explanation. Finally, the study of the conditions under which causal 

relationships generalize is essential for understanding the nature of causal relationships and their 

role in scientific theories.  
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Chapter 1: Introduction 

 A woman walks into a bar and orders a gin and tonic. She insists that the gin be poured 

first. The bartender looks perplexed. She explains that she has the unusual talent of discerning 

which ingredient was poured first – even after the drink has been mixed – and she wouldn’t even 

think of consuming a drink with the tonic water poured first. How can we test whether she in fact 

has this talent? R.A. Fisher (1935) provides a method for doing so. Being British, his own 

example involves tea and milk rather than gin and tonic, but the idea is the same. Make several 

drinks and randomly assign some of the drinks to be mixed one way and the others to be mixed 

in the opposite manner. If the woman is right more often than would be expected based on 

guessing, this provides reason to think that she can tell the difference. 

  Suppose, surprisingly, that one gives the woman 100 drinks – on different days, one 

would hope – and she is right about 95 of them. This would provide extremely good evidence 

that the order in which one pours the drinks causally influences the woman’s verdicts. While this 

experiment no doubt succeeds beyond the bartender-researcher’s wildest dreams, it by no means 

guarantees that the woman would have similar success in slightly modified contexts. The test 

results are consistent, for example, with the possibility that had the room been a few degrees 

warmer (on average), the woman would entirely lose her predictive powers.  

 More generally, establishing that a cause obtains in one context, person or population 

does not entail that there will be a similar causal effect in situations that differ from the one in 

which the causal claim was established. In the frivolous case of the tea lady, we might be more 

than satisfied living with this uncertainty, since any false predictions about the woman’s 

performance in another context will have minor consequences. In many real scenarios, the 

consequences of a false prediction are both tragic and expensive. If a cancer drug has benefits in 
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a human study population, will it have similar effects in the broader population of cancer 

patients? Alternatively, will a drug that works in rats also work in humans? To give a non-

medical example, will a policy that decreases poverty in one city also do so in other cities? All of 

these questions concern whether a cause found in one context will extrapolate to another context. 

This dissertation explores the degree to which one can address questions involving causal 

extrapolation using the currently (and increasingly) popular causal modeling frameworks 

developed by Pearl (2009), and Spirtes, Glymour and Scheines (2000). These frameworks use 

Directed Acyclic Graphs (DAGs) to represent the causal relations between random variables.  

 In approaching the problem of extrapolation, I will generally assume that there is a 

population regarding which we have knowledge of a causal relation or set of causal relations that 

are of interest. This is called the study population. To extrapolate is to make an inference about 

the nature of the corresponding causal relationships in a target population (or a set of target 

populations) regarding which one does not have the same degree of causal knowledge. A 

qualitative extrapolation is an inference regarding whether the causal relationship is present in 

the target population and also regarding its direction of influence – does the cause promote or 

inhibit its effect? A quantitative extrapolation is an inference regarding the magnitude of the 

effect in the target population. For example, the magnitude of the effect of having the flu on 

body temperature might be to raise it by 3°F. In contexts where the causal relationships among 

dichotomous variables are probabilistic, the magnitude of the effect is the degree to which the 

cause raises the probability of its effect.1  

 Causes do not typically act in isolation, but depend on the presence of various 

background factors for their activity. Striking a match causes it to light only if there is oxygen in 

                                                
1 I will remain neutral regarding whether the probabilities in causal models are metaphysical or epistemic. That is, 
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the room and the tip of the match is not wet. In more complicated scenarios, there can be an 

indefinite number of unknown background factors. Will implementing the Common Core 

curriculum lead to higher standardized test scores? Even if the curriculum is effective in some 

places, its success in others will depend on the presence of adequate educators, on students 

having adequate time to do homework, and on facts about the prior education of the students, and 

a variety of other factors that policymakers might not have the resources to measure, or might 

not even be aware of. What makes extrapolation difficult is that the background factors in the 

target population can differ from those in the study population and one has no way of knowing 

that one has measured all such factors. Worse, one has no way of knowing how the unmeasured 

factors influence the causal relationship of interest. Let’s refer to this as the problem of unknown 

unknowns (with apologies to Mr. Rumsfeld).  

 I can think of four general responses to this problem. The first is the minimal sufficient 

condition approach. According to this approach, one should try and find a set of background 

factors that are jointly sufficient for bringing about the effect and then evaluate whether these 

factors obtain in the target population. The second is the natural kinds approach. The idea behind 

this approach is that if we find that the effect of C on E is very sensitive to an indefinite number 

of background conditions, we should try and re-characterize the relationship with different 

variables C’ and E’ that are not similarly unreliable. The third is the inductive approach. On this 

approach, in cases where we cannot find a set of minimal sufficient conditions for a cause 

bringing about an effect, we should seek evidence that inductively supports the belief that the 

causal relationship will obtain in the target population. The fourth is the mediation approach. 

According to this approach, in order to determine whether the effect of C on E will generalize, 

we need to determine how the cause brings about its effect. This is called the mediation 
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approach, since a mediator is a variable that is causally intermediate between a cause and its 

effect (i.e C!Mediator!E). This is the approach that I primarily pursue in the dissertation. I 

further discuss the other three approaches and my reasons for focusing on mediation below.  

 The mediation approach could also be referred to as the mechanisms approach, which is 

the way that Daniel Steel characterizes his account of extrapolation. My reason for calling it the 

mediation approach is that there is currently a large philosophical literature on mechanisms and I 

do not want to be construed as adopting the assumptions that are common in this literature (see 

chapter 5). This literature explores the way that the behavior of a physical mechanism is 

explained by the contributions of its components and it is generally assumed that this explanation 

must appeal to something other than the causal relationships between the components of the 

mechanism. In contrast, the relationship between a cause, its effect, and a mediator is 

characterized entirely by the causal relationships among these variables. If there is more to being 

a mechanism component than having a property that is causally in-between the input and output 

of the mechanism, this additional element plays no role in my account.  

 It is not difficult to think of cases in which learning how a cause brings about its effect 

enables one to extrapolate across scenarios. Suppose that among ex-convicts, being employed 

promotes a lower rate of recidivism. Here are two plausible stories that could help explain this 

causal relationship. One, employed individuals have more funds and therefore are less tempted to 

engage in criminal activities that help them procure goods that they could not otherwise afford. 

Two, employed individuals have less free time, and therefore less time to spend on illegal 

activities. Both of these stories could be true, and there could be other explanations for the effect 

of employment on recidivism. If, implausibly, we were to learn that the effect of employment on 

recidivism were entirely mediated through increasing ex-convicts’ cash-in-pocket – that is, if 
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there are no variables on paths other than that of employment!cash-in-pocket!recidivism – this 

would have important policy implications for the conditions under which this effect generalizes. 

For example, the magnitude of the effect would presumably depend on how much newly 

employed ex-convicts are paid in a particular area. In areas where they only receive a meager 

salary, employing ex-convicts would be a less effective means of reducing recidivism.  

While it is clear that learning how a cause brings about its effect facilitates extrapolation, 

it is not clear how the mediation approach could resolve the problem of unknown unknowns. In 

the recidivism example, the problem is that the effect of employment on recidivism might 

depend on an indefinite number of factors of unknown influence. Here it is extremely plausible 

that we would never know the myriad of background factors that one would need to know to 

determine whether a particular individual will end up back in prison. Even once we are told that 

the effect of employment on recidivism in an individual is mediated by the amount of cash he 

has, these background factors can still make a difference for the effect of employment on cash-

in-pocket for that individual and in the effect of cash-in-pocket on whether he returns to prison. 

More generally, if we are uncertain how much the effect of X on Y varies across populations, it is 

unclear how measuring a mediator between X and Y reduces this uncertainty.  

 Part of the answer to this question is that in some cases, the relationship between X and M 

in the target population is more easily ascertainable than the effect of M on Y. In the present 

example, one could get a reasonably good estimate of the effect of employment on cash-in-

pocket by looking at salaries. Prior to measuring the mediator, one had no way to distinguish 

cross-population variation in the effect that results from salary differences and cross-population 

variation that results from differences in other background factors. Once one measures the 

mediator, one can isolate the cross-population variation that is due to variation in the effect of 
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employment on cash-in-pocket. In the simplest case, learning that the magnitude of the effect of 

the treatment on the mediator does not differ between the study and the target population will 

increase one’s confidence that the total effect of employment on recidivism will be similar across 

the populations. Of course, saying that discovering that the X!M relationship is invariant across 

populations should make you more confident that the X!M!Y relationship will be similar 

across the populations does not tell you how confident you should be. But this still counts as 

progress.  

 The primary limitation of the approach just sketched is that it relies on the assumption 

that the effect of employment on recidivism is entirely mediated by the amount of funds that the 

ex-convicts have. As I noted at the outset, however, there is another mediator that could also 

make a difference in this effect. Namely, being employed could reduce recidivism in part by 

reducing one’s free time. Moreover, there could be many other ways that employment affects 

recidivism. Many of them we might not know about or, even if we do, we won’t know how to 

measure them. Hopefully, being employed increases one’s self-esteem, which in some contexts 

would reduce one’s chance of committing crimes. Yet, it is difficult to measure latent 

psychological states and to do so in such a way that the variable one measures is the relevant 

one. There are many ways of measuring self-esteem, and one would have to measure the one that 

is influenced by employment and which influences recidivism.  

 It gets worse. Even if one could measure enough mediators such that there is one 

corresponding to every way that employment affects recidivism, the mediators can interact in 

producing their effects. For example, the effect of an increase in cash-in-pocket on recidivism 

might depend on the amount of free time one has. It could be that an increase in cash will reduce 

recidivism among employed people with little free time, but increase recidivism among 
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unemployed people who have a lot of free time. This is plausible if the crime in question is drug 

use. Increasing free time incentivizes drug use, while increasing cash-in-pocket makes it possible 

to obtain drugs. So in order to know about the effect of employment on recidivism going through 

a particular mediator, it appears that one needs to know about the activity of all of the other 

mediators. Yet, one might not know what these even are. In trying to make headway on the 

problem of unknown unknowns by measuring mediators, we appear to have run into a problem 

that is just as intractable.  

 Fortunately, this problem can be solved. Or at least that is what I intend to show in this 

dissertation. In order to solve it, we need to get a clearer picture of the relationship between the 

effect of C on E going through all mediators and path-specific effects going through particular 

mediators. Philosophers have long been aware that the total effect of C on E can differ from the 

path-specific effects going through particular mediators. Perhaps the most famous example of 

this is Hesslow’s (1976) thrombosis case. Birth control pills raise one’s risk of thrombosis by 

producing a certain chemical in the blood, but they lower one’s risk of thrombosis by decreasing 

one’s chance of getting pregnant, since pregnancy itself is a risk factor for thrombosis. 

Accordingly, birth control pills exert both positive and negative component effects on 

thrombosis. Whether the total effect is positive or negative depends on the relative strengths of 

the component effects.  

 Despite the great deal of attention that has been devoted to Hesslow’s example, to my 

knowledge no philosopher has produced a correct general account of what it means for a path-

specific effect to be positive or negative, much less explained how one could measure its 

magnitude. Yet, this question was answered in the causal modeling literature in 2001 in Pearl’s 
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article “Direct and Indirect Effects”. Consider the causal model for the recidivism example in 

figure 1.  

 

 

 

 

In the graph in figure 1, the path going from employment to cash-in-hand to recidivism is the 

indirect path; the other path is the direct path. The direct effect is the effect that employment 

would have on recidivism if there were no indirect path, and the indirect effect is the effect that 

employment would have on recidivism if there were no direct path. The effect going through all 

paths is the total effect. The definitions of direct and indirect effect are model relative, since the 

direct effect is the effect that is not due to any mediators that are included in the model. It is 

possible to measure the direct and indirect effects and to specify their contributions to the total 

effect using causal mediation techniques.  

 Here in the introduction I will say very little about how causal mediation techniques 

work. The crucial feature I would like to highlight here is that in order to identify the direct and 

indirect effects it is not necessary to measure a mediator along every path between employment 

and recidivism. The direct path corresponds to the effect of all mediators that are not on the 

indirect path.  What this means is that in identifying the indirect effect, one is able to determine 

how employment would influence recidivism via cash-in-hand even if all of the unknown paths 

corresponding to the direct one were disabled. This is the reason that measuring mediators 

enables one to make headway on the problem of unknown unknowns. Not only is it possible to 

Employment 

Cash-in-hand 

Recidivism 
Figure 1 
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evaluate the counterfactual contribution of particular paths in the absence of the others, but one 

can do so without specifying anything about the other paths.  

 The way that identifying the indirect effect in figure 1 facilitates extrapolation is 

analogous to the way that measuring the mediator cash-in-hand would facilitate extrapolation 

were there to be no direct path at all. By comparing the effect of employment on cash-in-hand in 

two populations, one isolates a potential source of cross-population variation. As noted above, 

even if the two populations do not differ at all in the effect of employment on the mediator, there 

is still no guarantee that the indirect effect will be similar in the target population, or even that it 

will probably be similar. What one can say is that any variation in the indirect effect across 

populations is due to variation in the effect of the mediator on recidivism. At first glance, this 

claim may seem trivial. Since the indirect path is the concatenation of the causal arrow from 

employment to cash-in-hand and the causal arrow from cash-in-hand to recidivism, and we are 

assuming that we know about the relationship in the target population corresponding to the first 

arrow, isn’t it obvious that all remaining variation corresponds to the second arrow? This only 

seems obvious, however, if one forgets that as in fact there is a direct path and that employment 

and cash-in-hand can interact in their effect on recidivism. To say that all cross-population 

variation in the indirect effect is due to the effect of cash-in-hand on recidivism is to exclude the 

possibility that it is due to the direct influence of employment on recidivism.  

 I have now briefly sketched the way that I will ultimately use causal mediation 

techniques as a means to facilitate cross-population inferences. It will take the rest of the 

dissertation to fill in the details. Before getting to causal mediation techniques, I will first review 

the prior literature on extrapolation. I will then introduce causal mediation techniques, argue that 
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the role they play in extrapolation is not just an application of previously existing methods for 

extrapolating using causal graphs, and then, finally, explain how they facilitate extrapolation.  

 In the remainder of this chapter, I discuss some philosophical issues that will arise 

repeatedly throughout the dissertation. I start by briefly considering the relationship between 

extrapolation, causal inference and statistical inference and present a difficulty with representing 

extrapolations using DAGs. I then say a bit more about my use of the term “populations” and 

about the relationship between populations and subpopulations. Next I explain why my 

presupposition that the study and target populations can be represented within a single DAG is a 

substantive assumption. I then discuss the approaches to extrapolation that I do not pursue in the 

dissertation and provide a sense of the challenges related to those approaches. I conclude with a 

brief synopsis of the following chapters.  

 
Extrapolation, Causal Inference and Statistical Inference 
 
While it is clear that there are situations in which researchers face the challenge of knowing 

about the magnitude of a causal relationship among one group of individuals and not knowing 

whether that relationship is similarly strong in another group, it turns out to be surprisingly 

difficult to characterize this problem within the DAG framework. In this section, I discuss the 

project of making causal inferences from probability distributions and explain why it is difficult 

to characterize extrapolation within the DAG framework. I provide a resolution to these 

difficulties in chapter 4. While I briefly introduce a few elements of the DAG framework in this 

section, I will provide a more thorough introduction to this framework later in the dissertation.  

 DAGs enable one to represent one’s knowledge of the causal relationships among a set of 

variables. A DAG is a graph in which the nodes are variables and the edges are arrows 

representing causal relationships among the variables. It is directed, since all of the edges are 
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represent asymmetric causal relationships, and acyclic: one cannot get from a variable back to 

itself via a set of directed edges. A DAG is associated with a joint probability distribution over 

the variables in the DAG.  

Using DAGs, it is possible to determine when a causal relationship between variables can 

be identified from the probability distribution. For a causal quantity to be identifiable is for its 

value to be uniquely determined from the probability distribution given the assumptions 

embedded in the DAG. For example, if C causes E, and there are no common causes of C and E 

in the DAG, then the effect of C on E is identifiable. It corresponds to the correlation coefficient 

for C and E. In contrast, if there is an unmeasured common cause of C and E, then the effect of C 

on E is not identifiable. The degree of correlation between these variables is not be a reliable 

guide to the magnitude of the effect, since it is biased by the presence of the common cause.  

Correlations – and other features of the probability distribution – are not observed, but 

rather inferred from finite samples. Using statistics, one can make inferences regarding when 

one’s sample is large enough that the relative frequencies of traits in the sample are a good guide 

to their relative frequencies in a hypothetical population from which one is sampling using an 

unbiased sampling process. In causal inference, it is common to assume that one knows the joint 

probability distribution for a population. In assuming that one has knowledge of the probability 

distribution for a population – rather than just knowledge of the relative frequencies of traits in 

the population – one bypasses all questions about how one infers the probability distribution 

from finite data. 

Causal inference from probability distributions is often contrasted with causal inference 

from experiments. In the present discussion, I do not intend to be making this contrast. Even in a 

well-executed experiment with perfect randomization, the experiment is only able to measure the 
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magnitude of the causal effect if one has a large enough sample to limit sampling variation by 

the desired amount. The purpose of randomly assigning some test subjects to take a drug and 

some to take a placebo is to render whether one receives the treatment or the placebo random 

with respect to an individual’s causally relevant properties. With a larger sample, the treatment 

and control groups will with increasing probability be ‘balanced’ with respect to all properties 

that might make a difference in the magnitude of the effect. With a smaller sample, there is a 

significant chance that even though the assignment is random, the two groups might differ in 

causally relevant properties. Whether the sample is large enough to effectively eliminate these 

differences is a statistical question. Causal inference from experiment resembles causal inference 

from probability distributions in that it abstracts away from statistical questions of how to 

determine whether one has an appropriately large sample. 

The causal effects that are identified using DAGs and probability distributions are 

typically average effects. For the effect of C on E to be identifiable, it is not necessary to 

measure every cause of E, but only every common cause of C and E. This is the case even 

though there can be causes of E that make a difference in the magnitude of the effect of C on E. 

These causes are what I referred to earlier as background factors. The reason that one does not 

need to measure these background factors is that they are allowed to vary randomly in the 

population. Even though individuals in the population with different combinations of background 

factors will have different effect magnitudes, the average effect will be the effect across the 

different individuals. 

 In the dissertation, I typically assume that one knows the DAGs for both the study and 

target populations and that one is able to establish causal directionality (e.g. that if there is a 

direct causal relationship between variables X and Y, X causes Y and Y does not cause X). In fact, 
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I will generally assume that the two populations are representable by the same DAG. The 

question of extrapolation is that of inferring the magnitude of the causal effect in the target 

population based on one’s knowledge of its magnitude in the study population. In order for two 

populations with the same DAG to differ in the magnitude of an effect, they must have different 

distributions of background factors. If the two populations had the same distributions of 

background factors, they would have the same causal effects with the same magnitudes, and the 

problem of extrapolation could not arise. 

 To understand extrapolation within the DAG framework, one must clarify what it is for 

two populations to have different distributions of background factors. Of course, if one knew 

what the background factors were, it would be trivial to specify how they differ across the 

populations. But one does not know what they are. In identifying an average effect from the 

probability distribution, one identifies the average effect across these unknown factors.   

Yet, it is non-trivial to specify which distribution of background factors one should average over 

in estimating the probability distribution for a particular sample.  

Consider, for example, a drug trial performed in Madison, Wisconsin to determine the 

effect of a drug on cholesterol. One could represent this effect in a DAG with the variables takes 

drug and cholesterol level. One would also presumably include variables (covariates) that one 

believes to make a difference in the effect of the drug on cholesterol, but here we will consider 

the simple two-variable model to keep things simple. Even if one includes some variables that 

make a difference for the effect, one will almost never be able to include all of them – there will 

still be some unmeasured background factors. In estimating the probability distribution for takes 

drug and cholesterol level in the sample, which distribution of background factors is one trying 

to average over? The distribution of factors in Madison? In Wisconsin? In the Midwest? Nothing 
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in the DAG itself differentiates among these options. Nevertheless, the claim that one knows the 

probability distribution for a population presupposes some answer to this question.  

By way of illustration, consider the proposal that one should average over the widest 

possible distribution of background factors. If we were to adopt such an idealized notion of a 

probability distribution, this would define the problem of extrapolation out of existence. Any 

DAG with the same set of variables would be defined relative to the same set of background 

factors, and would therefore have the same causal effects. For example, suppose that Wisconsin 

and Michigan differ in their consumption of aged cheddar and that the drug is more effective in 

reducing cholesterol in people who eat more aged cheddar. It intuitively seems like effect of the 

drug on cholesterol would differ between the two states. If, however, we represented this effect 

using a DAG containing just the variables for the drug and cholesterol, the average effect in this 

DAG would not correspond to the effect in Wisconsin or Michigan, but rather the effect given 

the average consumption of aged cheddar across the states. In order to make sense of the 

problem of extrapolation, the distribution for the variables in a DAG cannot average over the 

widest possible distribution of background factors, but rather, it must average over a more 

narrowly defined set.  

A more realistic proposal is that when one seeks to estimate the distribution for the 

variables in one’s sample, one has some rough idea of the broader population whose distribution 

one is trying to estimate. For example, one might take the sample in the study to be 

representative of people in Wisconsin, and remain agnostic regarding whether it is representative 

of a broader population including Michiganites. This proposal seems correct, though note that in 

specifying that one’s sample enables one to estimate the average effect across background 

factors in Wisconsin, but not across factors in the broader population, one is assuming that it is 
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possible to extrapolate from the members of one’s study to the Wisconsin population, but not to 

the broader population. If we assume that one’s probability distribution averages over the 

background factors for the Wisconsin population, it is clear why the distribution may fail to 

apply to Michigan – the distribution of background factors might be different in Michigan. Yet, 

if two populations are distinct only if they differ in their distributions of background factors, why 

doesn’t this rule out the possibility of extrapolating? 

Here my aim is simply to flag some of the difficulties of understanding the problem of 

extrapolation within the DAG framework. In Chapter 4, I will explain how one can use DAGs to 

distinguish between populations in such as way that the magnitudes of the effects in the 

populations may differ, without ruling out the possibility of extrapolation.  

 
Individuals and Inferences Between Populations and Subpopulations 

In the dissertation, I use the term “populations” in a broad sense such that anything that can be 

represented by a probability distribution counts as a population. For instance, one might talk of 

populations of events. If striking a match causes a match to light in a certain percentage of cases, 

we can talk about the population of match strikings. Once one characterizes a set of events in 

terms of variables with a joint probability distribution, it is straightforward to think of that set of 

events in terms of a representative population of instances of those event types. 

 In the broad sense that I use the term “population”, it also makes sense to discuss the 

population corresponding to an individual of a particular type. If one characterizes an individual 

by a set of properties, the probability distribution for those properties provides information about 

the correlations between the traits of that individual. In the same way that one cannot determine 

the probability of a coin’s landing heads based on a single flip, one cannot determine the 

probability distribution over the properties of an individual of a certain type based on the history 
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of a token individual of that type. For example, an individual characterized by a particular set of 

variable values might have a 30% chance of developing heart disease if she eats a lot of red 

meat. In an infinite population of individuals who share the same values for those variables, 30% 

of them who eat a lot of red meat will develop heart disease. The sense in which it makes sense 

to think of an individual as corresponding to a population is that the probability distributions for 

that individual can be spelled out in terms of the population that would result from randomly 

sampling from individuals of that type.   

Since DAGs represent the causal relationships among variables, and variables represent 

properties, the causal relationships I discuss are relationships between properties. These are 

sometimes referred to as “type-level” causal relationships. In saying that I will be considering 

type-level causal claims, I do not mean to commit myself to the view that type-level causal 

claims are fundamentally different from token causal claims. I intend for everything I say in what 

follows to be compatible with (but not to presuppose) the view that type-level causal claims are 

generalizations over so-called token causal claims (Hausman, 2005). I will not commit to a 

position in the debate regarding whether there is one or many concepts of cause. If there is a type 

of causal claim that is fundamentally distinct from and unrelated to the type-level causal relations 

represented by DAGs, the following discussion will not apply to such claims.  

 One can divide up a population corresponding to the probability distribution for variables 

V1,…,Vn into subpopulations by stratifying it based on the value of a variable Vn+1. For example, 

if one has identified the effect of smoking on cancer in a population of individuals, one can 

stratify that population based on age, to yield groups such as ‘smokers between the ages of 20 

and 30’. There is an important relationship between the causal relationships among the 

individuals in the population and individuals in its subpopulations. The magnitude of the effect 
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of C on E in a population is a weighted average of the effects in all subpopulations (Weinberger, 

2015). To illustrate, the effect of smoking across all age groups will be the average of the effect 

in each age group, weighted by the size of each group.  

 The fact that an effect in a population is an average across subpopulations has an 

implication for extrapolation. C cannot be a cause of E in a population, but not in any of its 

subpopulations. If there were no effect of C on E in any subpopulation, there would be no effect 

in the population as a whole. Of course, there could be great variance in the effect of C on E 

across populations. Just because C influences E in the population, it does not follow that C will 

similarly influence E – or influence E at all – in a particular subpopulation. Yet, the fact that C 

cannot cause E in a population without also causing E in at least some populations reveals that 

knowledge of the effect in a population is evidence that there will be a similar effect in a 

subpopulation. If one suspects that there is a large amount of variance in the effects among the 

subpopulations, one will count it as very weak evidence. Nevertheless, the mathematical 

relationship between effects in populations and in subpopulations ensures that learning about the 

effect in a population will provide some information about the effect in subpopulations.2  

 
Presuppositions of DAGs 

Throughout the dissertation, I will assume that both the study and target populations can be 

represented using acyclic graphs. This is a substantive assumption. Hausman, Stern, and 

Weinberger (2013) show that not every system of variables can be given a graphical causal 

representation see also Druzdzel and Dash, 2001, for a similar analysis). Several philosophers, 

including Hausman (1998), have claimed that the causal relationships between variables depend 

                                                
2 Note that the proposition that C causes E in some of a population’s subpopulations does not entail that C causes E 
in the population. It could be the case that C has a positive effect on E in some populations and a negative effect in 
others, and that there is no average effect. 
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on those variables being instantiated within a particular type of system. For example, the ideal 

gas law (PV=kT) does not by itself determine whether, e.g., temperature increases cause volume 

increases. However, relative to a system in which the gas is in a sealed container, temperature 

does cause volume. Hausman et al. present a mechanical device that allows one to switch from a 

system with one causal structure to a system with another. They argue that there is no DAG that 

accurately represents the whole system.   

 What Hausman et al.’s example reveals is that it is possible to have two systems with the 

same set of variables such that although each system can be represented with a DAG, there is no 

way to represent interventions that change one system into the other. If the study population has 

causal relations corresponding to one of the systems and the target population has a set of 

relations corresponding to the other, DAGs will not be useful for extrapolating across 

populations in such a case.  Further investigation is needed to determine the conditions under 

which two populations cannot be represented in a single DAG.  

 An even more basic point is that in order to represent two populations with N variables in 

a DAG with the same N variables, the variables must be the same in both populations. This 

requirement becomes problematic when one extrapolates across systems that are extremely 

different. One of the areas where extrapolation has been most discussed is with respect to animal 

models. When are rats a good model for the way that humans will respond to a certain type of 

treatment? Suppose one discovers that exercise is more effective in non-obese rats than in obese 

rats. Will this result apply to humans? The problem with this extrapolation is not merely that 

there might be background factors that vary between rats and humans. A more immediate 

problem is that of whether obesity counts as the same variable when measured in rats and in 
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humans. Unless it does, it is unclear how one can make a meaningful comparison between the 

populations.  

 Even before one considers extrapolations across populations, the limitations on what can 

count as a causal variable within a population are more stringent than one might at first suspect. 

For each variable within a causal model, it cannot be the case that there are different surgical 

interventions – that is interventions that influence other variables in the model only via 

influencing that variable – such that different ways of changing the values of that variable lead to 

different downstream effects. This requirement places constraints on what can count as a causal 

variable in a model. If a drug is more effective when administered intravenously than when it is 

administered orally, one could not have a variable corresponding to whether one receives the 

drug, since different ways of receiving the drug lead to different downstream effects. The 

correlate of this for extrapolation is that when considering the DAGs for two populations, one 

must ensure that the variables are defined relative to the same types of interventions. If both 

populations include a variable for receiving the drug, but only one receives it intravenously, the 

effects will differ across the populations. The reason for this is not that the populations differ in 

background factors, but that the effects being considered in the populations are different effects.  

 In this dissertation, I consider cases in which the causal relationships in populations differ 

as the result of differences in background factors. While it may seem trivial to say that an effect 

that differs across two populations must differ as a result of differences in background factors, 

many assumptions must be made before one can declare that an effect is in fact the same effect 

across both populations. Sadly, I have little to say here about when one is justified in adopting 

the presuppositions discussed in this section. The proposals in this dissertation will fail to apply 



 20 

to cases where two populations correspond to systems that are not representable using a single 

DAG or to systems with different variables.  

 
Other Approaches 

In the overview, I enumerated four approaches to extrapolation: the minimal sufficient 

conditions approach, the natural kinds approach, the inductive approach and the mediation 

approach. I have already sketched the mediation approach, which is the one that I will pursue in 

the dissertation. I did not begin this project with a commitment to the mediation approach. Here I 

will present some of the obstacles I ran into in trying to develop the other three. Perhaps 

someone else will be able to develop them more successfully.  

 The minimal sufficient condition approach seeks to find the factors necessary for a cause 

to bring about its effect. The primary limitation with this approach is that it is often not feasible 

to provide a complete set of factors that are sufficient for bringing about the effect. If this 

approach is to be at all useful, one must clarify how finding background factors facilitates 

extrapolation even when one does not have the complete set of factors. There are, in fact, some 

cases where it is useful to know about the contribution of a background factor even when there 

are other unknown factors. For example, if one knows that a particular factor is necessary for a 

cause bringing about its effect, then it follows that if that factor is absent, the cause will fail to 

bring about its effect no matter what other factors are present.  

 In chapter 2, I consider Cartwright and Hardie’s account of extrapolation. This account 

combines the minimal sufficient conditions approach and the natural kinds approach. While 

Cartwright and Hardie are able to show how finding a necessary cause enables one to avoid 

making a bad extrapolation, I argue that their approach is much less useful for determining when 

one can extrapolate. I do not see a way to develop the minimal sufficient condition approach so 
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that it does not have this limitation. The fundamental problem is the problem of the unknown 

unknowns. There are many possible background factors and outside of the special cases where a 

factor is known to be either necessary or sufficient for the cause to bring about its effect, one has 

no way of knowing what difference would result from cross-population variation in these factors.  

 The natural kinds and inductive approaches strike me as being more promising than the 

minimal sufficient condition approach, but developing either would itself require a book-length 

treatment. The natural kinds approach is motivated by the observation that the development of 

new scientific theories has often involved revisions in the set and number of properties that are 

believed to generate a phenomenon. Newton’s theory replaces celestial and terrestrial forces with 

a gravitational force that explains both motions of objects towards the Earth and of the planets 

around the Sun. Lavoisier explains oxidation as involving the addition of oxygen, rather than the 

removal of phlogiston. In the same way as characterizing a pill as “acetaminophen” rather than 

“Tylenol” allows one to get certain extrapolations for free – since the inference from the claim 

that Tylenol works to the claim that some other drug with acetaminophen works no longer counts 

as extrapolation – major revisions of scientific concepts lead to similar expansions of one’s 

ability to extrapolate. Physicists do not need to measure the gravitational constant every time 

they calculate a new trajectory. According to Newtonian mechanics, the force exerted by its 

object is always proportional to its mass.  

I will have little to say about how one determines which variables to use in one’s causal 

model. The types of causal models I will be using are clearly sensitive to the way that one 

specifies the variables in one’s model. For example, the identification of causal models with 

probability distributions depends on there being a correspondence between whether variables are 

causally related and whether they are correlated. Yet, whether two events are correlated is not 
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invariant across all ways of describing them. Flipping a coin is uncorrelated with its landing 

heads, unless one provides an extremely fine-grained description of how one flipped the coin. 

The question of how one’s causal model is sensitive to one’s choice of variables is conceptually 

prior to that of how one can determine whether the causal relations among the variables in one 

population also obtain among the variables in another. While there has been some preliminary 

work on the question of when one can aggregate variables in a causal model (Iwasaki and Simon, 

1994), most contemporary discussions of DAGs take the variable set as given. Since 

extrapolation is hard enough even given a variable set, I will take the variables in a model as 

given as well. Questions related to variable selection are difficult and largely unexplored. A 

better understanding of how models are sensitive to variable specification would greatly 

contribute to our understanding of extrapolation.  

There is one part of the dissertation that does make a contribution to the study of variable 

selection in causal models. Mediation models enable one to evaluate the relationship between the 

total effect going through all causal paths and component effects going through particular paths. 

In the recidivism example, it is possible to evaluate the effect of employment on recidivism that 

is mediated by cash-in-hand and compare it to the total effect of employment on recidivism 

going through all paths. The total effect can be given in a model with just two variables 

(employment and recidivism). The indirect effect through cash-in-hand is given in a model 

containing at least three variables. Thus, mediation techniques allow one to draw a connection 

between models with distinct numbers of variables.  
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Mediation techniques also enable one to distinguish between causally relevant and 

irrelevant properties of a treatment. Consider the question of whether a drug works through a 

chemical pathway or only as a placebo. Knowing that a drug is effective in bringing about an 

outcome is not enough to establish that it brought about the outcome as a result of its chemical 

composition. It could be that the drug worked primarily as a result of making the patient believe 

that they have been treated. Through mediation techniques, one can hold one’s belief about the 

drug fixed in order to determine whether the drug is effective through non-psychological 

pathways. Suppose that the effect is entirely due to the indirect path (figure 2). This would reveal 

that the drug works in virtue of its psychological properties, rather than in virtue of its chemical 

properties. This is a further way in which mediation techniques contribute to variable selection 

and the question of how to distinguish between different candidate properties.  

The inductive approach is closely related to the natural kinds approach. At least since 

Goodman, it has been widely accepted that whether one can infer that future F’s will be G’s 

based on the prior observation of F’s that are G’s depends on the nature of the predicates F and 

G. To use Goodman’s terminology, certain predicates are “projectable”, which means that 

observations of F that are G’s confirms the hypothesis that unobserved F’s are also G’s. So 

headway on either the natural kinds or the inductive approach would contribute to the other.  

The central challenge to developing an inductive approach to extrapolation is that it is 

unclear how causal inference relates to inductive/statistical inference. As already emphasized, it 

is standard in causal inference to assume that one knows the probability distribution for the 

variables in a population, and thus to bypass statistical questions regarding how one knows that 

two variables are correlated in general based on one’s finite sample. As I noted above, in cases of 
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extrapolation, it is conceptually difficult to disambiguate between the problem of not knowing 

the probability distribution for the study population and the problem of knowing the probability 

distribution of the study population, but not knowing if the probability distribution for the target 

population is different. We will return to this question at the end of chapter 4.  

 

Chapters Summary 

Now that I have introduced the topic, I will briefly present the organizational structure of the 

dissertation.  

 Chapters 2-4 review the prior literature on extrapolation. Chapter 2 examines Nancy 

Cartwright and Jeremy Hardie’s account of extrapolation in Evidence-Based Policy: A Practical 

Guide to Doing it Better. Their account is a combination of (what I have called) the minimal 

sufficient conditions and the natural kinds approaches. Chapter 3 evaluates Daniel Steel’s 

account in Across the Boundaries: Extrapolation in Biology and the Social Sciences. Steel refers 

to his approach as the “mechanisms approach”, which I refer to as the “mediation approach”. 

Chapter 4 considers Judea Pearl and Elias Bareinboim’s transportability approach to 

extrapolation, which is the most sophisticated approach to date. The transportability approach 

does not fall neatly into any of the four categories I have presented. It does enable one to make 

headway on the mediation approach and it presents an opportunity to revisit some important 

questions about the relationship between extrapolation, causal inference and probabilities. After 

chapter 4 there is a short section that takes stock of which questions have been answered in the 

prior literature and which remain open.  

 Chapters 5-7 develop the mediation/mechanisms approach to extrapolation. Chapter 5 

discusses the philosophical literature on mechanistic explanation. I dispute the claim that 
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mechanistic phenomena call for a non-causal form of explanation by showing that the features of 

mechanisms that allegedly elude causal explanation can be modeled using mediation techniques. 

Chapter 6 provides a more rigorous introduction to causal mediation techniques and considers 

one way in which they are useful for extrapolation. Namely, knowing the relative contributions 

of distinct causal paths enables one to measure the maximum effectiveness of a policy that seeks 

to disrupt one of the paths. Chapter 7 discusses the relationship between causal mediation 

techniques and transportability and argues that mediation techniques track a form of cross-

population invariance that cannot be represented within the transportability framework. It then 

advances further proposals for how mediation techniques facilitate extrapolation.  
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Chapter 2: Cartwright and Hardie on Extrapolation 
 

The first account of extrapolation I will consider is that of Nancy Cartwright and Jeremy 

Hardie in Evidence-Based Policy: A Practical Guide to Doing it Better. This book is primarily 

addressed to policymakers. Policymakers are increasingly privileging randomized control trials 

(RCTs) as the best evidence for causal claims. In an RCT a researcher randomly assigns subjects 

into treatment and control groups. If the randomization is successful, then the difference in 

outcomes between the two groups provides an unbiased estimate of the average causal effect of 

the treatment on the outcome for the population in the study. Yet, positive RCTs only show that 

a causal relation obtains in the study’s population. Cartwright and Hardie present assumptions 

that enable one to extrapolate to target populations. Their aim is to encourage policymakers to 

think about whether these assumptions are met in particular cases and to avoid extrapolating in 

cases where the assumptions fail.  

In the previous chapter, I identified four general approaches to extrapolation: minimal 

sufficient condition approaches, natural kinds approaches, inductive approaches and mediation 

approaches. We can see elements of all four approaches in Cartwright and Hardie’s account. 

Their primary account is a combination of a minimal sufficient conditions approach and a natural 

kinds approach. Additionally, by arguing that knowing how a cause brings about its effect 

facilitates extrapolation, they point to the need for a mediation approach. Finally, they provide an 

account of what counts as evidence for an extrapolation. I argue that this account fails, but it 

nevertheless constitutes an attempt to develop an inductive approach.  

The approach that Cartwright and Hardie develop most extensively is the minimal 

sufficient conditions approach. They instruct policymakers to consider whether the background 

factors that are necessary for a cause to bring about its effect are present in the target population. 
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While this approach is helpful for avoiding bad extrapolations in cases where a necessary 

condition for the effect is absent, the authors have less to say about when one can extrapolate. Of 

course, if one knew that all of the factors that constitute a minimal sufficient condition were 

present in the target population, one could extrapolate. But one does not generally have this 

knowledge, and the authors are silent regarding what one should do if one knows only some of 

the relevant factors.  

This chapter introduces one element of the DAG framework for causal modeling. 

Cartwright and Hardie represent causal relationships between a variable and its causes using 

what they call “causal principles”. These causal principles are identical to what I (and others) 

elsewhere refer to as structural equations. Within the DAG framework, the value of each 

variable is determined by structural equation representing that variable as a function of its direct 

causes in the graph (more on this in chapter 3). Cartwright and Hardie do not use DAGs, but my 

discussion of causal principles will elucidate some important features of structural equations. 

Notably, whether the causal relationship represented by a structural equation generalizes is 

sensitive to how one specifies the variables in the equation. 

 This chapter is organized as follows. Section 1 presents Cartwright and Hardie’s 

effectiveness argument, which is a deductive argument for the conclusion that a policy will work 

in the target population. I show that establishing the premises of this argument would require 

both minimal sufficient condition and natural kinds approaches. Section 2 argues that the authors 

develop only the first of these approaches and that their account only licenses extrapolations in a 

limited set of cases. Section 3 presents one way to develop their idea that knowing how a cause 

brings about its effect aids extrapolation. Section 4 criticizes the authors’ account of evidence. 

Section 5 concludes.  
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1. The Effectiveness Argument 

Cartwright and Hardie model extrapolative inferences as having the form of a deductive 

argument, which they call the effectiveness argument (45). The conclusion of the argument is 

that a particular factor that had a positive causal effect in the study population will have a 

positive causal effect in at least some members of the target population. This is a weak 

conclusion that is compatible with the policy having a net negative effect. Although it is not 

sufficient for establishing that a policy is effective in a population, it is necessary.  

The effectiveness argument contains three premises. Premise 1 is that a factor, X, has a 

positive effect on an outcome in one population. This is what an ideal RCT establishes.3 It is a 

mistake to infer from the first premise that X will have a similar effect in other populations; two 

additional premises are required.  Premise 2, which requires further elaboration, is that X can 

play a similar causal role in the intended population. Premise 3 states that the support factors 

necessary for X playing this role are present in the target population. Support factors for X are 

other factors required for X to have its effect.  

 Premises 2 and 3 block two ways that a causal claim can fail to generalize from one 

population to another. To illustrate, a study in Tamil Nadu established that educating mothers 

promoted healthier infants. Unfortunately, a similar intervention in Bangladesh failed to improve 

infant health. Why? The authors suggest that what explains the difference is that in Bangladesh 

mother-in-laws (rather than mothers) are in charge of distributing the food in the family. Premise 

                                                
3 Some have criticized RCTs on the grounds that we have no assurance that the populations will be even 
approximately balanced in studies with small samples (Worrall (2007); See Reiss (2013), chapter 11 for discussion). 
Cartwright and Hardie purposely put this issue to the side. They assume that RCT are valid for the test population 
and ask whether their results can be generalized to other populations.  
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2 does not obtain, since educating mothers plays a different causal role in Bangladesh than in 

Tamil Nadu. Educating mother-in-laws, in contrast, would play a similar causal role. 

 Even if educating mothers did play a similar causal role in Bangladesh, the intervention 

could fail if certain support factors were absent. Educating the mother might have no impact on 

infant health if the family lacks an adequate food supply. Causes do not typically work in a 

vacuum, but rather require other factors to bring about an effect. Borrowing J.L Mackie’s 

terminology, causes are INUS conditions. An INUS condition is an Insufficient but Necessary 

part of an Unnecessary but Sufficient condition for an effect. In other words, when X is an INUS 

condition for Y, Y obtains if and only if BX v Z is true, where BX is a minimal sufficient 

condition for Y, and Z is a disjunction of other minimal sufficient conditions for Y. Within this 

framework, one can easily see that B is a support factor for X, since only in conjunction with B 

does X bring about Y. The authors, like those concerned to identify causes, pick out one factor 

(X) as the cause, but there is no non-pragmatic distinction between causes and support factors. 

When X’s support factors are not present, premise 3 does not obtain and the policy may not have 

its intended effect.  

Although premises 2 and 3 in the effective argument are intuitively distinct, one must 

refer to what the authors call causal principles to make this distinction precise. Here is the causal 

principle for Tamil Nadu4: 

(TN) I = a1 + a2I0 + a3BmEm + a4Z 

The lowercase ‘a’s are coefficients and the uppercase letters are random variables - I refers to 

infant health, I0 is infant health at an earlier time, Em is education of the mother, Bm are the 

support factors for Em, and Z represents all other causes of I that do not interact with BmEm. The 

                                                
4 I have altered the notation of the causal principles in several ways to improve clarity. All of the coefficients are 
adjustable parameters, so a1 in one principle need not have the same value as a1 in another.   
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equation represents how the infant health would change if one were to intervene on one of the 

right-hand-side variables while holding the others constant.5 The difference between a failure of 

premise 3 and a failure of premise 2 is as follows. Premise 3 is false if the value of Bm differs in 

the two populations. Premise 2 is false if the variable Em does not appear in the causal principle 

for one of the populations. According to the authors, the educational intervention failed in 

Bangladesh because premise 2 was false. Bangladesh has the following causal principle:  

(BD) I = a1 + a2I0 + a3BmlEml + a4Z 

Where Eml refers to the education of the mother-in-law. Since (BD) does not contain a variable 

for Em, premise 2 does not obtain. But what determines whether Em appears in Bangladesh’s 

causal principle?   

 Another way to ask this question is to ask why there need to be two causal principles (one 

for each population). Consider the following combined causal principle, which applies to both 

populations:  

(C) I= a1 + a2I0 + a3BmEm + a4BmlEml + a5Z 

(C) contains both Em and Eml, so premise 2 is satisfied. Since the values of the support factors can 

differ between the populations, the effects of Em and Eml can differ as well (as, in fact, they do). If 

one represents Bangladesh using (BD), premise 2 does not obtain, but if one represents it as (C), 

it does. Absent some reason for choosing (BD) over (C), the truth of premise 2 will be 

objectionably language dependent. 

 One reason to prefer (BD) to (C) is that if one models the difference between the 

populations with (C), one misses the fact that the policy’s success depends not on which 

particular member of a family one educates, but rather on whether one educates the person with 

                                                
5 Chapter 3 further explains what it means to ‘intervene’ on a variable.   
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power over the family’s food distribution. At one point the authors suggest that for each 

population, the relevant causal principle should look as follows:  

(P) I = a1 + a2I0 + a3BpwEpw + a4Z 

The subscript pw means “person with the power”. I’d like to suggest that instead of considering 

(P) as an alternative to the distinct principles for each population ((TN) and (BP)), we should 

rather think of it as an alternative to (C). Like (C), (P) applies to both populations, but only (P) 

captures the common causal role played by the variables Em and Eml in (C).   

  Cartwright and Hardie talk as if one can determine whether premise 2 obtains by 

considering whether a factor appears in a population’s causal principle, but populations do not 

wear causal principles on their sleeves. A population can have one causal principle relative to 

one set of measured variables, and a different principle relative to another set. The insight behind 

premise 2 is that choosing one variable set over another can aid extrapolation. This insight has 

been neglected in the literature on causation. In order to make this point, however, one needs to 

separate the cases in which one compares two populations using a single model from those in 

which one compares two ways of modeling the same population. Premise 3 concerns the way 

that two populations could differ relative to a single way of specifying the variables. Premise 2 

concerns the question of whether the factor under consideration would be a variable in the 

optimal model.6  

 The insight that whether a causal relation generalizes depends on how one specifies the 

variables corresponds to what I referred to in chapter 1 as the natural kinds approach to 

extrapolation. In Tamil Nadu, the variables for the education of the person in power and the 

                                                
6 More must be said about how to choose among competing causal models. The question raised here regarding 
whether one should use two population-specific causal variables or a single causal variable for both is related to the 
question of why models with fewer adjustable parameters are preferable to those with more (Forster (2007), Forster 
and Sober (1994), Whewell (1840)).  
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variable for the mother’s education both refer to the education of the same individual. Yet, which 

variable one chooses makes a difference for whether the causal relationship generalizes to 

Bangladesh. To establish premise 2, one would need to provide an account of how to choose 

between alternate specifications of a variable.  

 While establishing premise 2 involves providing a natural kind approach, establishing 

premise 3 requires a minimal sufficient conditions approach. Premise 3 says that all of the 

support factors necessary for X bringing about its effect are present. The support factors for X are 

the factors that combine with X to form a minimal sufficient condition.  

 

3. How Useful is the Account?  

Cartwright and Hardie suggest that a policymaker should perform two searches – a horizontal 

search and a vertical search – prior to implementing a policy. These searches correspond to 

premises 3 and 2, respectively.7 In a horizontal search, one considers whether the support factors 

in the study population obtain in the target population as well. In a vertical search, one thinks 

about whether one has described the cause at the right level of description.  

 How useful are these searches for determining whether a policy will succeed?  

Cartwright and Hardie describe an intervention to improve reading scores by means of reducing 

class size that was successful in Tennessee, but failed in California. A horizontal search would 

have revealed that California was missing support factors that were present in Tennessee. 

Specifically, unlike Tennessee, California had a shortage of both teachers and classroom space. 

In cases like this, where one knows some of the necessary conditions for a policy to work, 

horizontal searches are clearly useful. In situations where both populations appear to have the 

                                                
7 The authors do not explicitly note the correspondence between premise 3 and a horizontal search and between 
premise 2 and a vertical search.  
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conditions strictly necessary for bringing about the effect, horizontal searches are less useful. 

Would it have been worth performing the intervention had California had enough teachers to 

implement it, but fewer teachers-per-student than in Tennessee? All else being equal, one would 

guess that this would reduce the efficacy of the intervention, but all else is never equal. Perhaps 

the teachers in California are better on average and this compensates for the negative effects of 

the higher student-to-teacher ratio. Alternatively, maybe good teachers can only do so much if 

the classes are too big. One rarely knows what all of the support factors are, and even if one did, 

this knowledge would be insufficient for determining how varying these factors changes the 

effect. For this reason, horizontal searches are better suited for ruling out policies in which 

support factors are absent than for justifying policies when they are present. 

 The limitation just described regarding horizontal searches corresponds to a more general 

limitation of minimal sufficient condition approaches. Such approaches are useful when one is 

either able to find a full set of factors constituting a minimal sufficient condition or one is able to 

find particular factors that are necessary for X to bring about its effect. They do not appear to be 

useful in other cases. If one only knows some of the support factors for X, and these factors are 

not sufficient, the minimal sufficient conditions approach provides no guidance.  

 We’ve already seen an example of a vertical search in the Tamil Nadu case. The principle 

“educate the person in power” extrapolates to Bangladesh; “educate the mother” does not. The 

level of abstraction at which we describe a causal factor is important. How can we translate this 

insight into practical advice? By abstracting away from the properties of a population we end up 

with claims that apply to a wider range of populations, but not all ways of abstracting work 

equally well. In the Tamil Nadu case, switching from “educate the mother” to the more general 

“educate the person in power” worked, but why should we abstract to this general principle. Why 
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not “educate the person who supervises the child” (supposing that mothers play this role in Tamil 

Nadu)? This principle is as abstract as the one they suggest and it yields different advice for 

applying the lessons from Tamil Nadu to Bangladesh. How can one know which principle to 

adopt just by looking at Tamil Nadu? Without some guidance regarding which ways of 

abstracting are preferable, vertical searches do not yield a verdict on whether a causal relation 

extrapolates to the target population. Cartwright and Hardie identify this need, but they do not 

provide guidance concerning how to satisfy it. 

 
4. Mechanisms and Mediation 

Horizontal and vertical searches enable a policymaker to use her background knowledge in 

considering whether a policy will work. The authors say little about how to determine if one has 

reliable background knowledge in the first place. Consider the case they discuss of a nurse who 

is able to quickly detect whether an infant has a certain disease (131-2). Since this disease is 

treatable only if it is detected early, the hospital would like to teach the nurse’s skill to other 

nurses. Through careful deliberation, the nurse discovered that she detects the disease through 

monitoring whether the infant changes color, shows heightened activity, and has reduced 

appetite. Assuming that the nurse is correct about how she makes her diagnoses, it will be 

possible to teach the other nurses how to make similar diagnoses by looking for these changes. In 

this case, the nurse was in fact correct, and the hospital was able to teach other nurses to make 

better predictions. Yet, even though the nurse’s judgment was reliable, there is little reason to 

think that people’s causal judgments are generally reliable, especially when one is implementing 

a complicated policy. This is why we need RCTs in the first place. It would therefore be 

unsatisfactory if extrapolation relied entirely on causal intuitions.  



 35 

 Fortunately, some of the assumptions that license an extrapolation are testable. Consider 

the following model for the hospital case (figure 1): 

 

 

  

 

This model represents the possible causal relations between the variables. It includes three 

measured variables on the path from the disease to the diagnosis. These measured variables are 

called mediators. The arrow going directly from the disease to the diagnosis represents all the 

causal paths between the treatment and the outcome that do not go through the measured 

mediators. Using causal mediation techniques, one can determine how much each path 

contributes to the total effect. Doing so requires more complicated experimental designs than 

standard RCTs (Imai et al. 2011). Initially, one might think that one could measure the influence 

on a path going through a mediator by randomizing the mediator. The reason this does not work 

is that when one randomizes the mediator, one severs the causal connection from the treatment to 

the mediator. Randomizing the mediator enables one to estimate the effect of the mediator on the 

outcome, but this is not the quantity one wants to estimate in causal mediation. The desired 

quantity is the causal contribution of the path going from the treatment to the mediator to the 

outcome, but randomization disrupts this path. Despite this complication that arises in measuring 

the relative contributions of the different paths, they are in principle measureable (Pearl 2012) 

and social scientists have developed preliminary experimental designs for measuring them (Imai 

Disease Nurse’s Diagnosis 

Activity 

Color 
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Figure 1 
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et al., 2013).  The nurse’s hypothesis about how she makes her predictions can be verified by 

measuring the contributions of the paths going through the mediators.   

 Causal mediation techniques aid in extrapolation, since testing a hypothesis about the 

way a cause operates in the study population often enables one to predict whether it will work in 

other populations. If the nurse’s predictions were largely based on infant color, then other people 

capable of detecting these color changes would probably make similarly good predictions.  

A central thesis of Evidence-Based Policy is that knowing how a cause works (which 

requires more than knowing the support factors and the causally relevant description) is essential 

to knowing whether it will generalize. This is the central idea behind what I called the mediation 

approach. The authors say little about how we can learn what we need to know. Causal 

mediation techniques help answer this question. In the later chapters of this dissertation, I will 

provide a more precise account of how mediation techniques facilitate extrapolation.  

 

5. Extrapolation and Induction 

The effectiveness argument contains a set of assumptions that, if true, would justify an 

extrapolation. In addition to presenting these assumptions, the authors also give an account of 

evidence for when an extrapolation is justified. According to this account (19), any evidence e 

for a premise in the effectiveness argument is also evidence for the conclusion of the argument. 

This account is untenable, since evidential relevance is not, in general, transitive; just because e 

is evidence for a premise that is evidence (relative to an argument) for a conclusion does not 

entail that e is evidence for that conclusion (Hesse, 1970). That a card is red is evidence that it is 

the queen of hearts, which entails that it is a queen. But that a card is red is not evidence that it is 
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a queen. Fortunately, none of their claims about extrapolation depends on this theory of 

evidence. 

 While the authors’ theory of evidence does not make a difference for their subsequent 

claims about extrapolation, their claim to be providing such a theory matters rhetorically. The 

authors want policymakers to abandon the view that RCTs count as the only evidence for causal 

claims. Their rhetorical strategy is to claim that they are not advocating for a weakening of the 

standards for establishing a causal claim, but rather seeking evidence that establishes a different 

type of claim (i.e. a claim about the effect in other populations). It is therefore significant that 

their account for what counts as evidence for an extrapolation fails.  

 The intransitivity of evidential relevance is one reason why it is difficult to develop an 

inductive approach to extrapolation. All of the accounts I evaluate in the dissertation are 

deductive; they provide conditions under which one’s assumptions entail some fact about the 

magnitude of the effect in the target population.  If evidential relevance were transitive, then one 

could easily transform these accounts into inductive accounts, since any evidence for the 

extrapolation-licensing assumptions discussed by these accounts would be evidence for 

extrapolation. The failure of the transitivity of evidential support blocks any simple way to use 

these accounts to make claims about evidence, confirmation, or induction.  

6. Conclusion 

Cartwright and Hardie provide a helpful starting point for the subsequent discussion. Through 

evaluating their account, I have motivated the four approaches to extrapolation I discussed in 

chapter 1 and noted some of the difficulties that arise in pursuing them. I will not further pursue 

the minimal sufficient conditions account, since I cannot see a way to avoid the limitations I 
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present here. In the rest of the dissertation, I develop a mediation approach. Cartwright and 

Hardie suggest that knowing how a cause brings about its effect facilitates extrapolation, but 

there remain many open questions regarding both how we learn that a cause brings about its 

effect and how such knowledge enables us to predict the magnitude of the effect in the target 

population. In the following chapter, I turn to Daniel Steel’s account, which provides the most 

extended philosophical discussion of these questions to date.  
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Chapter 3: Steel’s Mechanism’s Account 

In Across the Boundaries: Extrapolation in Biology and Social Science, Daniel Steel provides an 

account of how extrapolations can be justified in particular sciences. He provides a condition that 

licenses some extrapolations in biology, though he is less sanguine about the prospect of 

developing a similarly successful account for certain social sciences (his most developed 

examples come from anthropology). There are several features of his account that are similar to 

the one I will present. He relies on the causal modeling techniques developed by Pearl (2009), 

Spirtes, Glymour and Scheines (2000) (henceforth SGS) and Woodward (2003). He also 

emphasizes the importance of considering variables on a causal path from a treatment to an 

outcome, as I will when I consider causal mediation techniques. Given the similarity both in 

Steel’s project and his approach to dealing with extrapolation, an analysis of his account will 

reveal both which problems have been solved and which ones require further inquiry.  

 In several respects, Steel’s positive account of extrapolation anticipates the methods of 

Pearl and Bareinboim, which are the subject of the next chapter. Pearl and Bareinboim’s account 

is both more precise and more general than Steel’s. Nevertheless, Steel is unique in presenting 

not just an account of when one can extrapolate, but an extended discussion of the inferential 

challenges that are particular to extrapolation and of the types of approaches that are capable of 

addressing these challenges. He argues that any account of extrapolation must address a problem 

he calls ‘the extrapolator’s circle’. Addressing this problem involves showing how it is possible 

to know about a causal relationship in a target population without learning so much about that 

population as to render extrapolation from the study population unnecessary. He rejects solutions 

to this problem that rely on ‘simple induction’ – assuming that the effect in the target will be the 

same as that in the study population. Instead, he pursues a mechanisms-based approach to 
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extrapolation, on which learning how a cause brings about its effect helps one determine whether 

the causal relationship between these variables generalizes across populations. This idea is also 

at the center of my own approach, although I refer to it as a mediation approach.  

 In this chapter, I present three criticisms of Steel’s account. First, I argue that Steel’s 

approach to extrapolation is not substantially different from simple induction. Instead of 

providing methods for determining when one can assume that two populations are similar, his 

account only shows how to use presumed causal similarities between populations in order to 

extrapolate. Second, Steel does not explain how it is possible to extrapolate in cases where two 

populations differ causally, despite his claims to the contrary. He claims that one can extrapolate 

across populations provided that one extrapolates qualitative – as opposed to quantitative – 

causal claims, but the quantitative/qualitative distinction is irrelevant to the epistemic question of 

how one can extrapolate an effect across populations that differ in their background factors. 

Third, Steel’s main theorem for extrapolating positive causal relevance claims does not actually 

license extrapolations, and it is unrelated to the other elements of his account.  

 This chapter is organized as follows. Section 1 introduces the causal modeling techniques 

that Steel utilizes. Section 2 evaluates Steel’s solution to the “extrapolator’s circle”. Section 3 

criticizes Steel’s attempt to show how to extrapolate across causally heterogeneous populations 

by limiting extrapolation to qualitative causal claims. Section 4 critically evaluates Steel’s 

“mechanisms-based approach” to extrapolation. Section 5 concludes.  

  
1. Structural Causal Models and Interventionist Accounts of Causation 

Steel dubs his account the ‘mechanisms-based’ approach to extrapolation. Mechanisms are 

defined as “entities and activities organized such that they are productive of regular changes 

from start or set-up to finish or termination conditions” (Machamer, Darden, Craver, 2000, 3). 
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The mechanisms-based approach to extrapolation weds this notion of a mechanism to 

Woodward’s interventionist account of causation. This account – which builds on the work of 

Pearl (2009) and Spirtes, Glymour and Scheines (2000) – models the causal relations between 

variables using directed acyclic graphs (DAGs). Graphs consist of nodes and edges. In a DAG, 

the nodes are variables and the edges are arrows. The graph is directed, since the arrows 

represent asymmetric causal relationships. It is also acyclic: one cannot get from a variable back 

to itself via a connected set of arrows.  

In a DAG, there is an arrow (i.e a directed edge) between two variables iff it is possible to 

change the value of variable to which the arrow points through an ideal intervention on the 

variable before it (see below). The variable at the tail of an arrow is referred to as the parent of 

the variable coming after it. DAGs correspond to sets of structural equations in which each 

variable is a function of its parents (and, typically, an error term representing omitted causes of 

that variable). A DAG combined with a corresponding set of equations and the distributions of 

the variables to which no arrows are pointed determines the probability distribution for the 

variables in the graph. One can think of the DAG as representing the physical process that 

generates this probability distribution. Steel refers to such processes as causal structures. A 

central thesis in the book is that within the domain of biology, the causal structures that generate 

probability distributions just are biological mechanisms. I will say more about this thesis shortly.  

A virtue of Woodward’s interventionist account of causation is how easily it 

distinguishes between correlations that reflect direct causal influences of one variable on another 

and those that are merely the result of a common cause of the two variables. Consider the 

familiar example of a barometer. Here’s the DAG for the variables of atmospheric pressure (A), 

the barometer reading (B) and whether there is a storm (S): 
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The variables B and S are correlated due to having A as a common cause. Yet B is not a cause of 

S (or vice versa). For the interventionist, the fact that B does not cause S is reflected in the fact 

that one cannot influence the probability of there being a storm by intervening on the barometer 

reading. To intervene on B is change its value in such a way that it no longer depends on its prior 

causes. An intervention on B in this system can be represented as follows:  

 

 

 

 

 

In figure 2, I represents a mechanism through which one intervenes on the barometric reading. If 

one sets the barometer reading based on the outcome of a coin toss, the reading will now depend 

on a variable that is both probabilistically and causally independent of the atmospheric pressure 

and any other causes. Note that when you intervene on B, this “breaks” any arrows going into B, 

since the value of B is entirely determined by the intervention, leaving no room for other 

influences. B is not a direct cause of S since there is no possible intervention on B through which 

one can change the value of S. More generally, C is a direct cause of E in variable set V iff there 
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is at least one intervention on C that changes the value of E, while intervening to hold all other 

variables in V fixed.  

 We need to make the notion of an intervention more precise. Colloquially, to intervene on 

a variable is merely to change it, but in this loose sense it is not the case that there is no way to 

change S by changing B. If the way that one changes B is by changing A, doing so could also 

change S. The interventions that count for distinguishing causation from mere correlation are 

ideal interventions, which Steel, following Woodward, defines as follows:  

[Ideal Intervention]: I is an ideal intervention on X ∈ V if and only if it is a direct cause of X that satisfies 
these three conditions:  
(a) I eliminates other influences upon X but otherwise does not alter the causal relations among V. 
(b) I is a direct cause of no variable in V other than X.  
(c) I is exogenous. (Steel, 2008, 13-14) 

 
I is exogenous iff it is not an effect of any variable in V and does not share a common cause 

(either latent or measured) with any variable in V. In the barometer example, I fulfills (a) and (b) 

because it eliminates all of the arrows going into B without influencing any other variables and it 

is exogenous, since it has no (included)8 causes.  It should be clear that this definition of an ideal 

intervention could not be used to provide a non-reductive explication of “direct cause” that does 

not rely on causal concepts. Evaluating conditions (a) – (c) requires one to already have causal 

concepts. Nevertheless, interpreting the arrows in DAGs as direct causes in Woodward’s sense 

turns DAGs into powerful tools for modeling how a probability distribution will change as a 

result of interventions.   

                                                
8 DAGs need not include all causes of a variable – unmeasured causes are typically omitted from the graph – but in 
order for it to provide a reliable guide to the probabilistic independencies that obtain in a population one must 
include any variable that is a common cause of two variables in the DAG. The requirement that one include all 
common causes is known as causal sufficiency. Steel claims that his account does not require assuming causal 
sufficiency (13 fn. 1), but since he takes the DAGs he presents to have implications for which variables will be 
uncorrelated it appears that it does. Moreover, he assumes the causal Markov condition, which is known to fail for 
variable sets with omitted common causes. Assuming causal sufficiency, any node in a DAG that has no explicitly 
represented causes is exogenous.  
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 One can relate DAGs to probability distributions using the Causal Markov Condition 

(CMC). Let’s call any variable Y that is a downstream effect of X – that is, X is either a parent of 

Y, or a parent of a parent of Y etc. – a descendant of X. The CMC states that every variable in a 

DAG is uncorrelated with all of its non-descendants conditional on its parents. For example, 

consider two variables A and B that share a complete common cause C – that is, C is the only 

parent shared by A and B. If there is no direct causal relationship between A and B, then 

conditional on C, A and B will be uncorrelated. A useful consequence of the CMC is that if one 

has not conditioned on any variables, then any two variables that are correlated must be causally 

related either directly (one causes the other), indirectly along a path, or via a common cause. 

This is known as the Principle of the Common Cause, which was originally suggested by 

Reichenbach (1956).  Part of what the CMC captures is that causal chains are “memoryless”. To 

know the probability of a variable taking on a certain value, it is sufficient to know the values of 

its parents and learning about the values its “grandparents” (parents of parents) provides no 

further information.  

 The CMC specifies for a given DAG which variables must be uncorrelated, but does not 

entail anything about which variables will be correlated. It is common scientific practice, 

however, to infer from the fact that two variables are uncorrelated that they are not causally 

related. This inference presupposes that if two variables are causally related, then they will be 

correlated. In the causal modeling literature, this assumption is made precise in the form of the 

Causal Faithfulness Condition (CFC). CFC states that the only variables in a DAG that will be 

uncorrelated are those that the CMC entails will be uncorrelated. All other variables will be 

correlated. While the CMC entails that all correlated variables will be causally connected, the 

CFC entails that all causally connected variables will be correlated. The CFC is violated 
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whenever two causal paths between a cause and effect cancel out exactly, so it clearly is not 

universally true. It may nevertheless be justified as a defeasible rule of scientific inference.  

 CMC and CFC are common assumptions in the causal modeling literature. Together, they 

entail that two variables are probabilistically related iff they are causally related.9 Steel provides 

interesting defenses of these conditions, though I will not go into the details here. Note that CMC 

and CFC do not have anything specifically to do with extrapolation. They are standard 

assumptions made whenever one relates a probability distribution to a DAG.  

 Steel takes his account to rely on both the interventionist approach of causation and the 

recent literature on mechanistic explanation. He argues that in biology the causal structures that 

generate probability distributions are biological mechanisms. His argument does not involve 

showing that any particular biological mechanism can be causally modeled, but rather works by 

claiming that biological mechanisms have the types of properties that we expect to give rise to 

probability distributions that can be causally modeled. Here I will not examine the details of this 

argument, since as far as I can tell nothing in his account depends on the identification of causal 

structures with mechanisms. When Steel talks of particular mechanisms he is referring to 

particular causal paths between variables, where a causal path between two variables is a set of 

connected edges all pointing in the same direction. There can be multiple causal paths between 

two variables.  

Of course, by stipulating that mechanisms are causal paths we lose the ability to relate 

Steel’s account to the broader literature on mechanistic explanation. Later on in the dissertation 

                                                
9 Here I’ve avoided providing a more technical definition of what it is for two variables to be causally related in a 
graph. To do so requires further terminology. Two variables X and Y are adjacent in a graph iff X is a direct cause of 
Y or Y is a direct cause of X in the graph. A path from X to Y is a series of adjacent variable connected by edges 
going in any direction (when I want to indicate that all of the edges in a path go in the same direction, I will refer to 
it as a causal path). Y is a collider on the path X – Y – Z iff X!Y"Z. Roughly, two variables C and E are causally 
related iff they are connected by at least one path on which there is no unconditioned collider (i.e. no collider upon 
which one has not probabilistically conditioned). 
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(Chapter 5), I will come back to the question of whether this literature has anything to contribute 

to the problem of extrapolation. We don’t need to resolve this question here to evaluate Steel’s 

account.  

 
2. The Extrapolator’s Circle 

Steel argues that any account of extrapolation must be able to address what he refers to as the 

extrapolator’s circle: extrapolation requires the assumption that the study and target populations 

are similar, but to justify this similarity one must have knowledge of the target population. The 

concern is that this circle is vicious, since the knowledge of the target required for justifying the 

extrapolation is precisely what one wants to learn from the extrapolation. Steel rejects theories of 

extrapolation that are unable to break the circle as inadequate. For example, some scholars have 

suggested that the key to extrapolation is discovering the mechanism underlying a causal relation 

in the study population (e.g. Wimsatt, 1998). While Steel is obviously sympathetic to this 

suggestion, he is notes that simply appealing to mechanisms does nothing to break the 

extrapolator’s circle. To break the circle, one would need to explain how one could learn that the 

mechanism in the target population resembles that in the study population without learning so 

much about the target as to render extrapolation unnecessary.  

One way to break the circle is simple induction: assume that the magnitude of the causal 

relationship in the target population will be the same as that in the study population. Steel 

acknowledges that simple induction is sometimes useful, but argues that it is too limited to 

provide a general strategy for extrapolating. The problem with simple induction is that we 

typically extrapolate in cases where we expect there to be some differences between the model 

and the target, so simple induction will lead one to make a fallacious inference. For example, 

suppose that 15% of Americans cannot stand cilantro – if they eat any amount of it, they will feel 
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nauseous. In contrast, everyone born in Japan can eat cilantro without negative consequences. 

The argument against simple induction looks as follows. If we measure the effect of cilantro 

consumption on nausea among Americans, we will find that there is a causal effect. To apply 

simple induction would be to assume that there will be a similar effect among Japanese people, 

but this would lead to a false conclusion. We therefore should not rely upon simple induction.  

Steel’s dismissal of simple induction is overly hasty. Whether simple induction works 

depends on which effect one measures. Recent research has identified the gene that causes 

cilantro aversion. Suppose that there is only a single such gene and all and only people who have 

the gene hate cilantro. Instead of simply measuring the effect of cilantro on nausea in Americans, 

one might instead measure the effect in two groups of Americans: those with the gene and those 

without it. One might discover that in the former group consuming cilantro always causes nausea 

and in the latter group it never does. To apply simple induction to this case would be to assume 

that cilantro will cause nausea in all and only Japanese people who have the gene. Given the 

assumptions stated here this would be the correct result. Cilantro is not a cause of nausea in 

Japan, since people in Japan do not have the gene. 

 Of course, none of this saves simple induction in its unrestricted form. It is a bad policy 

to always assume that some arbitrarily specified causal effect generalizes to a target population. 

My point here is that even at this stage in the discussion, we can identify two distinct ways one 

might model extrapolation. For Steel, we have a fixed causal relationship C that by hypothesis 

may differ between two populations and the challenge is that of determining when it does. An 

alternative is to assume that there are some causal relationships that are the same across the 

populations. Accordingly, the problem is that of finding out which relationships these are. 
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Steel’s own response to the extrapolator’s circle relies on what he calls “comparative 

process tracing”. In comparative process tracing, one determines whether a causal relationship 

between C and E in the study population will obtain in the target population by comparing the 

mechanism in the target population to that in the study population. According to Steel, this 

method counts as a solution to the extrapolator’s circle, since one does not need to compare the 

mechanisms in their entirety, but rather only the parts of the mechanism that are likely to differ 

across the populations.  

Steel explains comparative process tracing by reference to a hypothetical mechanism 

with the following structure: 

 

 

 
 Figure 3 represents a causal path from C to E. Comparative process tracing is applicable when 

one has fully examined the entire mechanism from C to E in one population (usually a laboratory 

population, such as mice, which is referred to as the model) and one wants to make inferences 

about the corresponding mechanism in a target population where one has less information about 

that mechanism. There are two ways that comparative process tracing aids one in this inference. 

First, if one believes that there are parts of the mechanisms at which the model and the target are 

unlikely to differ causally, one does not need to examine those mechanisms in the target 

population. Second, sometimes it will be possible to make inferences about whether earlier 

stages of the mechanism differ based on whether later stages of the mechanism do. For example, 

suppose that one suspects that two populations differ in the causal relationship between Y and A, 

but is unable to investigate this relationship in the target population. Since a change in the effect 

C   X   A   Y   Z   B   E 

Figure 3 
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of Y on A would be reflected in a change in the value of Z in the populations, one can verify 

whether the effect of Y on A varies between the populations by looking at Z.  

Let’s start with the second proposal first. As Steel notes, in order for this to work, there 

cannot be any causal path from Y to Z not going through A. What Steel does not note is that this 

inference requires that the two populations not differ in background factors that make a 

difference in the effect of A on Z. If there were, then it could be the case that the populations 

differ in Z even though they do not differ in the effect of Y on A. The second proposal resembles 

the first in requiring knowledge regarding where the populations are likely to differ. More 

importantly, it requires assumptions that they do not differ.  

 At first glance, the first proposal that in order to extrapolate using comparative process 

tracing one must have a theory about the probability that two mechanisms will differ at particular 

points is not much of a step forward. Without a story regarding how we could learn about the 

likely differences between mechanisms, it merely pushes the relevant question back a step. This 

concern is somewhat allayed once one notices that in the biological sciences under consideration, 

scientists do typically have a lot of data concerning phenotypic differences among organisms. It 

is a virtue of Steel’s account that he provides real life biological examples in which comparative 

process tracing enabled extrapolation.10  

 Even granting that there is some empirical basis for making claims about where the 

relevant differences are between model and target mechanisms, Steel still owes us an account of 

how our empirical evidence supports such claims. The evidence obviously cannot be sufficient 

for establishing the relevant causal claims in the target population, since otherwise there would 

                                                
10 Julian Reiss (2010) raises some doubts regarding whether Steel’s examples of extrapolations in biology are 
historically accurate.  
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be no extrapolation problem. So why think that the evidence we have gathered from, say, 

toxicology, enables us to draw reliable conclusions about the target mechanism? Steel writes:  

Of course, it might be questioned whether the data presently available to toxicologists constitute a 
representative sample. However, that is a standard problem of statistical sampling rather than a difficulty 
specifically raised by extrapolation, such as the extrapolator’s circle. (90) 
 

As I argued in chapter 1, it is in general correct to separate causal inference problems from 

problems about statistical sampling. In using DAGs, one generally assumes that one knows 

which variables are correlated. To say that two variables are correlated is not just to say that they 

co-occur in one’s sample, but rather that they co-occur in the population of which one’s sample 

is representative. Thus, causal inference generally abstracts away from statistical questions of 

how one learns about correlations. Yet, in the context of extrapolation, the assumption that one’s 

data from the model organisms is sampled from the same distribution as the data one from which 

would collect from the target population is contentious. The worry that a causal relationship 

might differ between the populations presupposes that the model might not have the same 

probability distribution as the target.  

 The question of whether one can justify certain extrapolations using the types of 

sampling assumptions that statisticians invoke is a difficult one that I will return to in chapter 4. 

We are certainly not entitled to assume at the outset of the inquiry that one can do so. One might 

be inclined to conclude from this that Steel has not in fact broken the extrapolator’s circle.11 

Steel could reasonably respond that comparative process tracing does allow one to break the 

circle, since it allows one to carry over some of the information learned from the model 

                                                
11 See Howick et al. (2013, 285-6) for an argument that Steel does not break the circle. They argue that because one 
needs to examine data from both the model and target population in order to establish the points in the mechanism at 
which the populations might diverge, Steel requires one to have causal knowledge of the target even at points where 
the populations are assumed to be similar. While I am sympathetic to their argument, here I grant that Steel does 
break the circle in order to argue that if his solution succeeds, the problem of the extrapolator’s circle can be trivially 
solved. One could combine my argument here with that of Howick et al. to yield a disjunctive conclusion: either 
Steel does not break the circle, or the problem of the extrapolator’s circle can be trivially solved.   
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mechanism in investigating the target. The fact that we can only do so by assuming that the 

mechanisms are similar in certain respects does not undermine Steel’s claim to have broken the 

circle.  

The easier it is to solve the problem posed by the extrapolator’s circle, the less clear it is 

that the problem is an interesting one. Once one abstracts away from the biological details in 

Steel’s examples, his solution to the circle is that one can combine observations of a target 

population with assumptions about how it differs from the model to get a set of statements that 

deductively entail that a causal relation extrapolates. If, however, one can solve the circle by 

adopting premises that entail that the causal relation extrapolates, it becomes mysterious why it 

is useful to think about the circle as a central challenge for extrapolation. It is trivial that one 

does not need to look at the whole mechanism in the target population if one is allowed to 

assume that the unobserved parts of the mechanism do not differ from the corresponding parts in 

the model. To the degree that the extrapolator’s circle seems like a genuine epistemic problem, it 

is because one’s background information falls short of guaranteeing that a causal relevance 

relation obtains in the target population and it is unclear what would justify the needed 

ampliative inference. In fact Steel’s use of the phrase ‘simple induction’ suggests that 

extrapolations are ampliative inferences. Yet Steel’s approach appears to be deductive.  

 As we will see in the next chapter, Steel’s discussion of comparative process tracing 

contains an important insight. One significant way that causal models facilitate extrapolation is 

by encoding information about which causal quantities are invariant to changes in specific parts 

of the model. More specifically, cross-population variation in one variable in a model will 

correspond to changes in only some of the causal relationships in the population represented by 

that model. When a causal relationship is invariant to all suspected sources of cross-population 
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variation, that relationship can be extrapolated. Pearl and Bareinboim (2012) provide an account 

of how one can use the invariance properties of models in order to extrapolate. Their account is 

much more general than Steel’s, but it confirms Steel’s insight that we can extrapolate by 

incorporating background information about how populations differ.  

 Given Steel’s solution to the problem of extrapolation, his framing of the problem in 

terms of the extrapolator’s circle and simple induction is misleading. Steel rejects simple 

induction on the grounds that the causal relationship of interest may differ across populations. 

Yet his solution to the extrapolator’s circle essentially relies on using simple induction for the 

parts of a mechanism that one believes to be invariant between the model and the target. At the 

points where the mechanisms do potentially diverge, one does need to look at the target 

mechanism. Steel’s approach does not allow one to bypass the assumption that many causal 

relationships are identical between the model and the target. What it does do is show one how to 

combine the assumption that some of the relationships are invariant with partial information 

about the target mechanism in order to extrapolate. As we will see in our discussion of Pearl and 

Bareinboim, this approach is extremely fecund.  

 

3. Extrapolating Positive Causal Relevance 

In the introduction, Steel presents two challenges that must be addressed by any account of 

extrapolation. The first is the extrapolator’s circle. The second is that of “how it can be possible 

to extrapolate from model to target even when some causally relevant differences are present” 

(4). I will refer to this as the heterogeneity problem. Steel is interested in this problem in part 

because of its relevance to animal models. Scientists interested in knowing whether a drug has a 

certain negative effect in humans will first test it out on organisms (often rats or mice) that are 
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assumed to be a good model for humans. No one would doubt that there are causally relevant 

differences between humans and rats that will influence how they respond to a particular drug. 

Yet, if scientists thought that the effect in rats did not provide evidence about the effect in 

humans, it would be pointless to experiment on rats. The challenge is to explain how it is 

possible for the results of experiments on rats to provide evidence for the effect in human 

populations despite the presence of causally relevant differences between rats and humans. 

 Comparative process tracing does not solve the heterogeneity problem, since in any case 

where one suspects that the model and the target differ one cannot extrapolate, but must inspect 

the target mechanism. Steel’s solution to the heterogeneity problem is that if one only 

extrapolates qualitative causal claims, one can successfully extrapolate even if the causal relation 

is not exactly the same in the model and the target. He concisely articulates this solution in the 

introduction:  

The central point is that the closeness of match required between model and target depends upon the 
specificity of the causal claim that one wishes to extrapolate. In particular, a total absence of causally 
relevant disanalogies is not required for extrapolating claims about positive and negative causal relevance. 
(8) 

 
In other words, while the problem of heterogeneity would undermine an attempt to extrapolate 

maximally specific quantitative claims about the magnitude of an effect, they do not similarly 

undermine less specific qualitative claims about the direction of the effect. In this section, I argue 

that this is not an adequate response to the problem.  

Outside of a short appendix, Steel only discusses the extrapolation of qualitative causal 

claims. Unlike quantitative causal claims like “Smoking increases one’s risk of cancer by 30%”, 

qualitative causal claims such as “smoking causes cancer” assert that a treatment is positively 

relevant, negatively relevant or neutral to an outcome. For a dichotomous variable such as 

“smokes/does not smoke” these three types of relevance are easily definable and they form 
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jointly exhaustive categories. For variables with more than two values, these categories are not 

well defined without making further stipulations; Smoking two packs a day is positively relevant 

to cancer relative to smoking one pack a day, but negatively relevant to cancer relative to 

smoking three packs a day (Hitchcock, 1993). Steel provides stipulations that allow one to 

extend these categories to non-dichotomous variables. The precise stipulations will not matter in 

what follows, but it is worth noting that the extended categories of relevance are not jointly 

exhaustive. To give just one example, a treatment that alters the distribution of an outcome 

without changing its expected value will be neither positively nor negatively relevant to the 

outcome, but it is not causally irrelevant.  

 Steel’s choice to focus on the extrapolation of qualitative claims is essential for his 

solution to the heterogeneity problem. The reason that it is possible to extrapolate in cases where 

two populations are causally different is that C can be positively relevant to E in several 

populations even if the magnitude of the effect differs across the populations. For example, one 

can extrapolate the claim that “pesticides cause cancer” from mice to humans even if the 

magnitude of the effect of pesticides on cancer differs between the two populations. Were Steel 

considering the question of when one can infer that the magnitude of a causal relationship is the 

same across populations, this solution to the heterogeneity problem would obviously not be 

available.  

 As I’ve already noted, one of Steel’s primary reason for considering the heterogeneity 

problem is that it arises in the context of animal models. In particular, he is concerned with 

responding to LaFollette and Shanks’ (1995) claim that if there is any causally relevant 

difference between the model and the target, one cannot extrapolate. His response is that 

although causal differences can lead to differences in the exact magnitude of an effect, the effects 
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in the populations could still be qualitatively the same, in that both could be positively or 

negatively relevant. While this response does show that LaFollette and Shanks’ position is too 

strong, it does little to address the problem of heterogeneity. The problem, as I understand it, is 

that of how one can learn anything about the target population in cases where there are causally 

relevant differences between them. Of course, if one had some knowledge about the factors that 

make a difference and about how much of a difference they make, one could easily use this 

knowledge to extrapolate. But the problem of extrapolation arises precisely because one does not 

have such knowledge.  

 In the next section, we will evaluate Steel’s proposal for how one can extrapolate claims 

of positive causal relevance across populations. What I want to emphasize here is that the fact 

that the claims he is extrapolating are qualitative as opposed to quantitative can play no 

epistemic role in the account. The fundamental problem is that the effects in the model and the 

target – at whatever grains they are defined – are potentially different and we need to give a 

reason to think that they are not so different as to render our knowledge of the model useless for 

thinking about the target.  

To illustrate this point, suppose that a cause raises the expected value of its effect by .3 in 

the study population and one characterizes it as being positively causally relevant to its effect. To 

know that the cause is also positively causally relevant in the target population, one needs some 

way of knowing that the magnitude of the effect is not more than .3 less than the effect in the 

study population. If one did not know at least this, one could not extrapolate positive causal 

relevance across the populations. What this shows is that even if one decides to only make 

qualitative causal claims, one can only extrapolate such claims if one has some knowledge of the 

magnitudes of the causal effects. One’s knowledge might be imprecise. But unless one is 
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tracking the magnitudes of the effects, one will not be able to extrapolate even qualitative claims. 

More generally, to solve the problem of heterogeneity, one needs to specify how a causal effect 

can be similar in two causally different populations. The fundamental question is not whether 

one characterizes them as being quantitatively or qualitatively similar, but how one can know 

that they are similar at all.  

 

4. The Mechanisms-Based Approach to Extrapolation 

Comparative process tracing involves comparing a mechanism found in one population to that 

mechanism in other populations. To extrapolate the claim that a certain substance causes cancer, 

it is not enough to show that it does or does not cause cancer via a particular mechanism, since 

there could be other mechanisms involved. To bridge this gap, Steel utilizes the formal apparatus 

underlying Woodward’s account of causation to develop a precise sufficient condition under 

which a qualitative causal claim can be extrapolated. The condition is the antecedent of the 

extrapolation theorem, which states that if a treatment is positively causally relevant to an 

outcome via all of the mechanisms and combinations of mechanisms from the treatment to the 

outcome that actually occur in a population, then the treatment will be positively relevant to the 

outcome just in case there are some members of that population for whom some of those 

mechanisms are not disrupted. For a mechanism to be disrupted is for there to be an intervention 

that destroys the causal connection between the starting point and the termination point of the 

mechanism. If there is no mechanism between two variables, then it is trivial that all mechanisms 

between them are disrupted.  

 The condition in the antecedent of the extrapolation theorem is stringent. It does not 

apply if there are any mechanisms that exert a negative influence unless those mechanisms 
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always co-occur with another mechanism such that the joint effect of the two mechanisms is 

positive. Moreover, the extrapolation theorem does not appear to have anything to do with 

extrapolation. It is a condition stating that if the distinct mechanisms within a population have a 

certain property, then the total effect will be positive within that same population. The only 

method given for comparing mechanisms across populations is comparative process tracing.  

 The sense in which the extrapolation theorem concerns extrapolation is that when one 

considers a population in which every subpopulation has some subset of undisrupted 

mechanisms between X and Y and the antecedent of the theorem obtains, one can extrapolate 

from the subpopulations to the population as a whole. Specifically, one can infer that as long as 

there is some subpopulation in which not all of the mechanisms are disrupted, X will be 

positively relevant to Y in the population as a whole. Even though this involves an inference 

from a claim about subpopulations to one about the whole population, to call this as an 

extrapolation is misleading. Since the effect of X on Y just is the effect going through all 

mechanisms, the assumption that all combinations of mechanisms lead to a positive effect 

guarantees that there is a positive effect in the population as a whole. The claim that the 

mechanisms in conjunction produce a positive effect is assumed rather than inferred from 

independent claims about subpopulations.  

 Steel devotes two sentences to explaining how the extrapolation theorem relates to the 

other parts of his account:  

Comparative process tracing…would be the basis for the claim that there is a mechanism from X to Y in P 
[the population considered by the extrapolation theorem]…Thus, the extrapolation theorem illustrates how 
the step from extrapolating a mechanism to extrapolating positive causal relevance can be made. (113-4) 
 

The idea here seems to be that one uses comparative process tracing to establish the existence of 

particular mechanisms in the population and then appeals to the extrapolation theorem to make 
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an inference about the combined behavior of the mechanisms.  The problem with this proposal is 

that one cannot use DAGs to represent particular mechanisms in isolation, as I will explain.  

Suppose that exercise reduces the risk of heart disease both by reducing body fat and by 

causing one to sleep better (figure 4): 

 

 

 

 

 

There are two distinct mechanisms here. If this were the correct DAG, one could not use the 

following DAG to represent the effect of exercise on heart disease via reducing body fat: 

 

 

 

According to this DAG, exercise is not a direct cause of heart disease. Figure 5 entails (by the 

Causal Markov Condition) the false conclusion that conditional on body fat, exercise and heart 

disease will be uncorrelated. To correct for this, one needs to substitute figure 4 or the following 

(figure 6):  
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The DAG in figure 6 would be an appropriate one to use if one were primarily concerned with 

the effect of exercising on heart disease through its reducing body fat. The effect of exercise on 

heart disease through any other mechanisms (in this case sleep quality) would be accounted for 

by the direct path from exercise to heart disease.  

In his discussion of comparative process tracing, Steel presents a DAG with a single 

causal path. This DAG entails that there is no path from the first node to the last one other than 

the one represented, so there is no need for a principle saying how to combine this path with 

others. If this DAG were false and there were other paths, then one would need to consider those 

paths in evaluating the contribution of the path he describes, since the activity of each path alone 

is not necessarily a reliable guide to the behavior of the combined paths.  

 The feature of DAGs just discussed rules out the following way of relating comparative 

process tracing to the extrapolation theorem. Suppose that one evaluates the extrapolation 

theorem with respect to a DAG in which there are three causal paths between variables X and Y. 

One cannot break this DAG into three DAGs – one for each path – and then use comparative 

process tracing to evaluate the contributions of the paths individually. If one represents one of 

the causal paths, one needs to indicate that there are others – even if one does not include any 

variables along the other paths, but simply has an arrow from X directly to Y.  

 It remains unclear to me how comparative process tracing is supposed to relate to the 

extrapolation theorem in Steel’s account. Here I will put this question to the side, since the 

extrapolation theorem does not appear to be useful for extrapolation, however they are related. 

An important point that emerges from the present discussion is that even if Steel can justify using 

comparative process tracing in the single-path case that he presents, he has not provided a way of 

relating the single-path case to more complicated cases in which there are multiple paths. The 
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problem is that variables along different causal paths interact, so there is no simple way to 

evaluate the contributions of individual paths in isolation. Later on in the dissertation (Chapters 5 

and 6), I explain how one can use causal mediation techniques to evaluate the contributions of 

individual paths in cases where there is interaction. In Chapter 7, section 5, I explain how one 

can use these techniques to generalize Steel’s treatment of the single-path case.    

 
5. Conclusion 

Steel’s account relates to the rest of the dissertation in two ways. First, as I have noted, Steel’s 

account anticipates Pearl and Bareinboim’s account in several respects (I will elaborate upon this 

point after presenting their account). Second, in the later chapters of the dissertation, I further 

develop the mechanistic approach with the help of causal mediation techniques.  

The discussion of Steel thus far has yielded few positive results. His account of 

comparative process tracing sheds some light on when one can extrapolate mechanisms across 

populations, but there remain important unanswered questions regarding how one learns about 

the points at which the mechanisms are likely to differ. His extrapolation theorem does not 

appear to license any genuine extrapolations. Nevertheless, the results of the dissertation will 

validate his general approach. In particular, in chapter 7 I defend the thesis that that in cases 

where all of the mediators between a cause and effect are on a single path, measuring the effects 

between some of the variables along that path facilitates extrapolation. This idea is very similar 

to the one that Steel defends in discussing comparative process tracing. Where my analysis goes 

beyond his is in providing a more rigorous account of the relationship between single-path and 

multi-path cases.  
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Chapter 4: Transportability 

Consider two possible causal explanations for why Canadians are more liberal than Americans. 

One, a higher percentage of Canadians live in cities than do Americans and city-dwellers tend to 

be more liberal. Two, Canadians are genetically predisposed towards liberalism, so both urban 

and rural Canadians are more likely to be liberal than their US counterparts. Both of these 

explanations are compatible with the observations that Canadians and city-dwellers are more 

liberal on average. If, however, the first one is correct, this has an important implication for 

extrapolating causal claims from Canada to America (or vice versa). The first explanation entails 

that if the US were to have the same distribution of people living in cities as Canada does, then it 

would be as liberal as Canada. Consequently, one could determine the percentage of liberals in 

Canada without actually measuring the effect of living in a city on Canadians’ political views by 

taking the data regarding the propensities of American city-dwellers and non-city-dwellers to be 

liberal and giving a weighted average based on the ratio of city-dwellers to non-city-dwellers in 

Canada.  

 The inference in the previous paragraph might seem trivial. It was only possible to 

extrapolate between the countries on the unrealistic assumption that they only differed in a single 

respect. Yet, there are ways the countries might have differed such that one would not have been 

able to extrapolate. For example, if the second explanation is correct, then even were the 

countries to have the same urban/rural distribution, one would have to estimate the effects of 

living in a city on one’s politics separately for each country. One could not assume that 

American urbanites are as likely to be liberal as Canadian urbanites, since the genetic difference 

produces a difference in the probability that members of these groups are liberal.  
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 The simple example just presented reveals that whether it is possible to extrapolate 

among populations depends on how they differ. When C causes E in two populations, it is 

possible to extrapolate when the populations differ in the unmeasured causes of C, but not 

necessarily when they differ in the unmeasured causes of E. In the case where the populations 

differ in unmeasured causes of C it is possible to extrapolate using an averaging process such as 

the one mentioned in the first paragraph. Such averaging processes are referred to as adjustment. 

If the first explanation is correct, one can derive the effect of living in a city on liberalism in 

Canada by taking the effect in the US and adjusting for the difference in urban-to-rural ratio.   

Judea Pearl and Elias Bareinboim (2012) consider a type of extrapolative inference in 

which one uses experimental and observational data from one population to make an inference 

about a causal quantity in a population for which one only has the probability distribution. When 

such an inference is possible, the causal quantity in the experimental population is transportable 

to the target population. By experimental data they mean the results of randomized control tests. 

When a causal quantity is transportable, it is possible to identify it in the target using an 

adjustment formula that indicates which probabilistic terms must be reweighted according to the 

probability distribution for the target. The authors develop a procedure for distinguishing 

between transportable and non-transportable quantities given one’s background knowledge of the 

differences between the populations.  

Here I provide a non-technical introduction to the transportability framework. In it, I 

present the authors’ method of representing population differences, consider paradigm cases of 

transportable and non-transportable quantities, and explain why transportability succeeds or fails 

in those cases. I do not explain how to derive adjustment formulas for transporting causal 

relationship. Readers interested in how to derive such formulas can refer to the technical 
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appendix. Here my aim is to explain the fundamentals of the account and make explicit which 

problems it addresses and which are left open.  

This chapter is organized as follows. Section 1 reviews directed acyclic graphs, 

introduces the concept of identifiability, and explains how the interpretation of a causal quantity 

in a DAG depends on which background factors are included in the DAG. Section 2 shows how 

to derive distributions for subpopulations by conditioning on particular variables in a DAG and 

describes how Pearl and Bareinboim distinguish among populations using selection diagrams. 

Section 3 explains how to use selection diagrams to distinguish between transportable and non-

transportable quantities. Section 4 shows how one can achieve transportability by measuring 

mediators. Section 5 explores the conceptual basis for transportability by asking why DAGs 

alone are insufficient for representing extrapolation. Section 6 argues that transportability is a 

special case of a more general problem of extrapolation, which I characterize. Section 7 

considers the relationship between extrapolation and induction. Section 8 revisits the problem 

from chapter 1 about how to characterize populations. Section 9 compares transportability to the 

accounts evaluated in chapters 2 and 3. Section 10 concludes.    

 
1. DAGs and Identifiability 

Correlation does not imply causation, but given a model for the causal relations among a set of 

variables one can measure the magnitudes of (some of) the causal relations between variables. 

The causal relations among a variable set can be represented using a directed acyclic graph 

(DAG). Consider the following graph for the relationship between one’s parents’ socioeconomic 

status (SES), education and whether one likes opera (figure 1): 
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According to this graph, one’s parents having a higher SES increases both the chance that one 

will be educated and that one will appreciate opera. Assuming the causal faithfulness condition, 

all three variables will be correlated, though there is no arrow between education and opera. This 

conveys that education is not a direct cause of liking opera (or vice versa)12; according to this 

causal model, if you take a person of a particular SES and give her more education, this will not 

increase the probability that she will like opera. Note that I have not provided any reasons for 

thinking that the graph in figure 1 is correct. Figure 1 is simply an example of how one can use 

DAGs to encode one’s causal beliefs about a set of variables. While I introduced DAGs in the 

previous chapter, here I will say more about how they relate to probability distributions and 

structural equations.  

 DAGs represent the way that a set of factors generates a probability distribution. Each 

variable in a DAG is a random variable, which means that it has at least two possible values and 

each value is assigned a probability. For example, the variable “likes opera” might have two 

possible values – yes or no – where the probability that a randomly selected person likes opera is 

20%. One might want to know not merely the probability that a randomly selected person likes 

opera, but whether a randomly selected person of low SES does. To answer this question, one 

                                                
12 In this graph, education is also not an indirect cause of liking opera. A necessary condition for X being a cause 
(either direct or indirect) of Y is that there is a series of unidirectional arrows from X to Y. X is a direct cause of Y 
just in case there is an intervention on X that changes the value of Y while keeping all other variables in the model 
fixed (Pearl, 2009; Woodward 2003). For more on interventions, see chapter 3.  

Parents’ SES 
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Children’s 
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Figure 1 
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must determine the probability of liking opera conditional on having low SES. Liking opera is 

correlated with SES just in case the unconditional probability of liking opera differs from its 

probability conditional on some value of SES. Unconditional and conditional probabilities are 

features of the probability distribution itself and can be measured independently of any DAG.  

As already noted, DAGs make assumptions that cannot be reduced to features of the 

probability distribution, since they convey not merely which variables are correlated, but which 

variables can be used as a means to alter the values (or probabilities) of other variables. The 

arrow between SES and education, for example, conveys not merely that these two variables are 

correlated, but that one can influence an individual’s level of education through an intervention 

on SES. As we saw in the previous chapter, an intervention sets a variable to a particular value in 

a manner that is independent of its prior causes. One can represent an intervention of this sort by 

deleting all arrows going into the variable upon which one intervenes. Some (Korb et al. 2004; 

Eberhardt and Scheines, 2008) advocate a broader notion of interventions on which some 

interventions do not set a variable to a particular value, but rather alter its probability 

distribution. Such interventions do not “break” all the arrows going into a variable, since the 

distribution of the variable stills depend on its non-intervention causes. The essential feature of 

arrow-breaking and non-arrow-breaking interventions alike is that they only influence a variable 

X through changing its causes and they only influence other variables in the model via changing 

X’s value or distribution.  

It should be clear by now that the definition of an intervention invokes causal concepts. 

Accounts that use interventionist concepts to explain causal relations are not trying to reduce 

causes to something non-causal (such as probabilities). Nevertheless, DAGs in which the arrows 

between variables encode information about how the probability distribution will change in 
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response to interventions are extremely useful for mapping out the relationship between 

probability distributions and causal hypotheses.  

 A key notion in what follows is identifiability. To say that the effect of SES on education 

in figure 1 is identifiable is to say that one can uniquely determine the (average) causal effect of 

SES on education based on the probability distribution. Identifiability is always relative to a 

DAG. One cannot determine whether, or how strongly, SES causes education from the 

probability distribution alone, but given the DAG in figure 1 plus the probability distribution one 

can measure the magnitude of this effect. Since all of the causal relations in figure 1 are 

identifiable it will help to present a DAG with non-identifiable quantities: 

 

 

 

 

 

In figure 2, education is a cause of liking opera. The two variables are also connected by a 

bidirected arc, which represents an unmeasured common cause of education and liking opera. In 

figure 2 the effect of education on liking opera is non-identifiable. The reason is that even if 

education and opera appreciation are correlated, one cannot determine from the probability 

distribution how much of the correlation is due to the direct causal connection and how much is 

due to the unmeasured common cause.  

 Whether a causal quantity is identifiable is a distinct question from whether it can be 

estimated from a finite data set. Identification concerns whether a quantity in a DAG is uniquely 

determined by the true probability distribution; estimation concerns inferring the relevant 
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Figure 2 



 67 

features of the distribution from one’s data. Most theoretical discussions of causal modeling – 

especially Pearl’s – stipulate that one already knows the probability distribution, allowing one to 

bypass the statistical issues related to estimation. This is a useful idealization, but it is always 

important to bear in mind that when we discuss probability distributions we are not talking about 

the relative frequencies of traits in a finite sample, but rather specifying what the frequencies 

would be in an infinite population. As a matter of practice, one approximates such a population 

by using a random sampling process and having a sample large enough to limit the amount by 

which the sample diverges from the true distribution by chance.  

 In looking at a DAG, one needs to pay attention not just to which arrows connect the 

variables, but also which arrows are missing. If a DAG does not contain an arrow between two 

variables, this means that there is no direct causal relation between them and if there is no 

bidirected arc between the variables, this means they do not share a common cause. It is often 

very difficult to rule out the possibility that two variables share a common cause. When two 

variables share an unmeasured common cause one can only measure the causal relation between 

them using a randomized control test. A randomized control test is a type of intervention in 

which one randomly assigns participants into a study and control groups. Since the assignment is 

random, whether a subject is in a control group no longer depends on the common cause and as a 

result one can measure the desired causal relation.13 Were one able to assume that the two 

variables in question do not share a common cause, one would be able to identify the causal 

relationship between them without an experiment. The trend among social scientists towards 

                                                
13 Randomization is not always successful. Even if the mechanism by which the researcher assigns subjects into 
treatment and control groups is random with respect to the variables in the model, in finite populations the causal 
features of the members of each group may diverge by chance. The discussion here is limited to idealized 
randomized control trials, in which randomization is successful.  
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only accepting causal claims that have been established by a randomized control test suggests 

that in general they do not feel justified in ruling out the possibility of a common cause.  

 There is a temptation to consider the separate causes of an effect in a DAG as each 

contributing additively to the total effect. This temptation should be resisted. Even the simple 

causal relation of a fire being caused by the striking of a match depends on background 

conditions such as the presence of oxygen and the dryness of the match. The DAG for this case 

may look as follows:  

 

 

 

 

 

The DAG in figure 3 conveys only that the lighting of the fire depends on three distinct factors, 

but does not specify whether each one contributes a fixed amount or whether they interact. When 

people claim that striking a match causes a fire they are taking for granted that there is oxygen 

and the match is dry. The factors that are taken for granted are referred to as conditions rather 

than causes, but this distinction is pragmatic. A condition is just a cause that one does not 

represent. When one does not explicitly represent the presence of oxygen or the dryness of the 

match in the DAG, the variation in the effect of striking the match on whether there is a fire is 

captured by an error term that represents the unmeasured causes of fire that vary within the 

population.14 Omitting these error terms will not inhibit one’s ability to estimate the effect of 

                                                
14 Here I assume that all background conditions may be represented as causal factors whose influence on the model 
may be captured in an error term. Hausman et al. 2014 provide a case in which the relations in a causal model only 
obtain when certain background conditions remain fixed. In such cases, one cannot think of such background 
conditions as naturally varying error terms.  
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striking a match on the lighting of a fire, provided that none of the omitted causes is a common 

cause of fire or of other variables in the DAG.  

 The fact that DAGs allow for interactions among causes of an effect has an implication 

for how one must interpret the arrows in a graph. Compare the DAG in figure 3 to one in which 

the only variables are the striking of a match and the lighting of a fire (figure 4).  

 

 

 

The effect of striking a match on lighting a fire is identifiable in both figure 3 and figure 4. 

Confusingly, although both DAGs contain an arrow between striking a match and lighting a fire 

these arrows represent different quantities. In figure 4, the arrow represents the average effect of 

striking the match on the lighting of a fire in a population of different lighting events. In figure 3, 

the separate causes interact with one another, so there is not a single quantity to estimate for the 

effect of striking on lighting. Instead, there is the effect of striking when there is oxygen and the 

match is dry, the effect of striking when there is oxygen and the match is wet and so on. In this 

DAG it does not make sense to consider the contribution of an arrow by itself.  

 The reader might be puzzled how both figures 3 and 4 could constitute adequate 

representations of the same process, given that figure 4 misses the variability in the effect of 

striking the match. Recall that the variables in DAGs implicitly have error terms that account for 

any unmeasured causes of that variable alone. So in figure 4, one could imagine an unmeasured 

variable that accounts for all other causes of fire, including oxygen and the dryness of the match. 

These background factors will vary among the members of the population. Although one never 

measures these factors, as long as one’s sampling process is representative and the sample is 
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sufficiently large, the variation of these factors in one’s sample will be the same as the variation 

of these factors in the population from which one is sampling. Among strikings of the match in 

one’s sample, the effect of the striking will vary as a result of variation in these factors. But 

assuming that the distribution of these factors is same as the distribution in the broader 

population, the average effect of striking the match on the lighting of the fire will be the same as 

it is in the general population. In other words, one’s estimate of the effect of striking the match 

will be unbiased, though there will a lot of variation in the magnitude of the effect that will not 

be accounted for in the model. In figure 3, one includes additional variables that account for 

more of the variation in the effect of striking a match. The effect variable in figure 3 would still 

have an error term accounting for any remaining variance, though this error term would be 

different from that in figure 4, since it would not capture the variation in the effect that results 

from the variation in the values of oxygen present and match dry.  

 It is of obvious importance for extrapolation that the magnitude of an effect can depend 

on unmeasured and varying background conditions. The reason why a causal effect measured in 

one population may not generalize to other populations is that the background conditions may 

vary across populations. When the relationship between C and E depends on a third variable Z, Z 

is known as an effect modifier (Vanderweele and Robins, 2007). Causes of E that interact with C 

are always effect modifiers.  

Each variable in a DAG is related to its direct causes via a structural equation. These 

equations indicate that each variable is a function of its direct causes. Crucially, the relationship 

between a variable and its causes may have any parametric form. This is why one should not 

assume that the causes of an effect make additive contributions. Such an assumption presupposes 

that there is no interaction term in the function relating the effect variable to its causes and thus 
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places a restriction on the parametric form of the function. Causal inference that does not make 

any assumptions about the parametric form of structural equations is called non-parametric 

causal inference. In principle, when a causal effect is identifiable, one can determine the 

functional relationship between an effect and its causes from the probability distribution alone; 

one does not need to make any parametric assumptions.  

The question of whether one should make parametric assumptions in interpreting a causal 

model is distinct from the question of whether one should make parametric assumptions in 

estimating a causal quantity from finite data. In practice, social scientists with limited data sets 

often do make parametric assumptions when it comes to estimating causal quantities. This is 

compatible with adopting a non-parametric approach to causal inference. Pearl’s approach to 

causal inference is non-parametric insofar as one does not need to make any parametric 

assumptions to determine whether a particular quantity Q is identifiable from the probability 

distribution. Whether one should use parametric or non-parametric methods for estimating Q 

from one’s data depends on the nature of one’s data set.   

 
2. Populations, Subpopulations and S-nodes 

A useful way to think about the difference between causal inference using DAGs and 

extrapolation is to note that while a DAG represents a probability distribution for a single 

population, extrapolative inferences are inferences across populations. This idea is basically 

correct, provided one notes a few caveats regarding the claim that DAGs represent single 

populations. First, since a DAG represents how a probability distribution would change as a 

result of interventions, it is not quite right to say that it only represents a single probability 
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distribution; it also represents the distributions that would result from interventions.15 Second, 

and more importantly, although a DAG represents a probability distribution for an entire 

population, one can learn information about subpopulations by conditioning on values of 

variables in the DAG. Let’s consider an example of how this works.  

 

 

 

 

 

 Suppose one wants to estimate the effect of recommendation quality on how one does on 

the academic job market. These variables share a common cause, since being in a particular 

graduate program influences both the quality of one’s recommendation and one’s chances of job 

market success. On the (unrealistic) assumption that there is only this one common cause of the 

two variables, one can calculate the average effect of recommendation quality on job market 

success by looking at the probability of success conditional on recommendation quality for each 

graduate program and then taking a weighted average of the conditional probabilities in different 

departments. For concreteness, suppose that there are only two programs, Oxford and Cambridge 

and that the probability of getting a job given that one has received a good Oxford 

recommendation is .8 and the corresponding probability at Cambridge is .6. If the probability 

that a student attends Cambridge is equal to the probability that she attends Oxford, then the 

probability that one will get a job given that they received a good letter is .7. To determine the 

causal effect of receiving a good recommendation one would have to compare this number to the 

                                                
15 See Sprites et al. 2000, p. 51, for a precise characterization of the relationship between the manipulated and 
unmanipulated graphs 

Recommendation 
Quality 

Job Market 
Success 

Graduate 
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probability of getting a job given that one does not receive a good letter.16 This could be 

calculated in the same manner. When one looked at just the Oxford students or just the 

Cambridge students one effectively conditioned on each of the values of the variable for graduate 

program. This shows that even though the DAG in figure 5 refers to the entire population of 

Cambridge and Oxford attendees, by conditioning on the graduate program variable one can 

learn information about an effect in subpopulations.17  

 The possibility of distinguishing between subpopulations by conditioning on variables in 

a DAG suggests a general strategy for representing extrapolative inferences. When extrapolating 

from one population to another, one can represent both populations within a single DAG and 

derive the probability distributions for individual populations by conditioning on the values of 

certain variables. This is the strategy that Pearl and Bareinboim utilize and to do so they 

introduce what they call selection diagrams.  

 

 

 

 

                                                
16 Pearl defines the causal effect of X on Y not as the difference in Y given two distinct interventions on X, but rather 
as the probability distribution of Y given a single intervention on X. Accordingly, the effect of receiving good letter 
on getting a job would just be the probability of receiving a job given that one is assigned a good letter via an 
intervention. In many cases, I find it more natural to define the causal effect as the difference in Y given two settings 
of X. This terminological issue will not make a difference in the present chapter.  
17 As an aside, the fact that one can use DAGs such as the one in figure 5 to identify the causal effects in 
subpopulations stratified based on a common cause is important for understanding the debate between advocates and 
critics of randomized control trials (RCTs). The advantage of RCTs, clearly, is that the researcher does not need to 
know all of the common causes between two variables in order to measure the causal effect. The advantage of 
observational studies in which one does not randomize is less obvious. What this example shows is that if one 
measures all the common causes, one thereby identifies not only the average effect in the whole population, but the 
average effect for each subpopulation stratified on the common cause variable. In other words, if the assumptions in 
an observational study is met and one can estimate all identifiable quantities, one learns more from it than one would 
have learned from just an RCT.  
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Consider the causal model in which living in a city (C) causes one to be liberal (L) and 

the only difference between Canada and the US is the urban-to-rural ratio. Here I assume that 

there are unmeasured common causes of living in a city and being liberal. S is called an S-node 

(for selection) indicating all and only the mechanisms by which the two populations differ. Here 

I use the term “mechanisms” loosely to indicate the way variables are assigned their values. 

There is no variable in the DAG for whether one lives in the US or Canada. The S-node conveys 

that the two populations differ in the mechanisms determining the value of C, but it is not 

necessary to know what these mechanisms are. Whether Pearl and Bareinboim’s procedure 

applies in a case depends on which variables have S-nodes pointing into them.  

The selection diagram in figure 6 corresponds to the first explanation I suggested in the 

introduction. There I noted that if the only difference between the two countries is in the urban-

to-rural ratio, then provided that one could measure the effect of living in a city on being liberal 

in one country, one could derive the probability distribution for the other country by simply 

adjusting the distribution of the C. Since there is a common cause of C and L, determining the 

effect of C on L in one of the countries would require a randomized control test. Once one did so, 

however, one could estimate the average effect in the other country without having to do another 

experiment. In Pearl and Bareinboim’s terminology, the relationship between C and L is 

transportable. In fact, whenever figure 6 is the correct selection diagram for a set of populations, 

the relationship between the cause and effect is transportable. Of course, not all relations are 

transportable. If, for example, there were an S-node pointing into L (Figure 7), there would be no 

way to determine the effect of C on L in any population on which one has not performed an 

experiment.  In short, the location of the S-nodes determines whether or not a relationship is 
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transportable and Pearl and Bareinboim provide a general procedure for determining which 

causal quantities in a selection diagram are.  

 

 

 

 

 

I introduced selection diagrams by noting that within a DAG, one can individuate 

populations by conditioning on different values of a variable. In selection diagrams, the 

“variable” one conditions upon is S. Given that one never measures S (and might not have any 

idea what it referent is), how can one “condition” upon it? To explain this, I need to go into a bit 

more detail about how Pearl and Bareinboim would deal with figure 6. We can evaluate the 

DAG for the population upon which one performs the experiment without considering the S-

node at all, since the S-node only marks the difference between the populations. To evaluate the 

target population, we think about how the probability distribution of the study population would 

change were one to condition on the S-node. Here is the crucial point. The only way that 

variation in the S-node influences the other variables in the model is through influencing the 

variation in C. Thus, if one estimates the probability of C in the target population, there is no 

added benefit to measuring whatever variables S-represents. The reason why we can evaluate the 

effects on conditioning on an unknown variable is that the consequences of conditioning are 

entirely reflected by changes in the probabilities of known variables.  

At this point it should be clear both how DAGs encode causal information about a 

population and how selection diagrams differ from DAGs. In the following section, I will say 

C L 
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more about transportability and explain which types of relationships are transportable. Before 

doing so, it is worth noting three features of Pearl and Bareinboim’s approach. First, they 

represent both the population from which one extrapolates and the target population in a single 

diagram. This contrasts with approaches that represent different populations using separate 

DAGs (Steel, 2008; Cartwright and Hardie, 2013). While both approaches are legitimate, Pearl 

and Bareinboim’s approach is better suited for explicitly representing the differences between 

populations. Second, the reader has probably noticed that I have not said anything about how one 

determines the respects in which populations differ. This is because Pearl and Bareinboim are 

concerned with whether extrapolation is possible given a set of assumptions, not with the 

question of how one justifies those assumptions. Third, although it is natural to focus on the 

presence of S-nodes, the strongest assumption encoded in a selection diagram is that variables 

without S-nodes share the same mechanisms across populations. Only in cases where there are at 

least some missing S-nodes is one able to identify causal quantities in the target that would not 

be identifiable without transportability methods.  

 
3. Transportable and Non-Transportable Relations  

A causal quantity is transportable from a study population to a target population just in case it is 

identifiable in the target population based on the probability distribution for both populations and 

experimental results from the study population. In figure 6, the effect of living in a city on 

political views was transportable from Canada to the US, since as long as one could do an 

experiment to determine the effect in Canada, one could then estimate the effect in the US using 

only facts about the probability distribution in the US – specifically, the distribution of those 

living in cities.  
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 As the effect of living in a city on liberalism is transportable in figure 6, but not in figure 

7, one might conclude that a causal relation is transportable when populations differ in the causal 

variable, but not when they differ in the effect variable. This would not be quite right, since there 

are cases in which it is possible to transport a relation even though populations differ in their 

mechanism for the effect variable. The simplest such case is presented in figure 8: 

 

 

 

 

In figure 8, there is no common cause of C and L, so the effect of C on L is identifiable in both 

populations from their probability distribution alone. As the relation in the target population can 

be identified from that population’s distribution alone, it clearly can be identified given the 

distributions for both populations and experimental data. In such a case, the relation is trivially 

transportable. Of course, issues of transportability only arise in practice when one cannot 

identify the effect in the target population from its probability distribution alone. Absent an 

experiment one would typically not be able to rule out a common cause of C and L and therefore 

not be able to identify the effect of C on L from the distribution. The relevant diagram would 

thus be figure 7 rather than figure 8. In general, if two variables X and Y share an unmeasured 

cause in two populations, then the relationship between the variables is transportable given 

differences in unmeasured causes of X, but not given differences in unmeasured causes of Y. 

 Now that we have two examples of transportable relations (figures 6 and 8), we can say 

something more general about why causal knowledge is ever transportable. Although there are 

many ways that two populations can differ, not all differences make a difference for causal 

C L 
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inference. In figure 6, variation in C does not make a difference, since the effect of C on L is 

invariant to variation in the causal mechanism(s) by which C is assigned a value. In figure 8, 

variation in unmeasured causes of L does change the effect of C on L. Fortunately it is possible 

to identify the effect of C on L in the new population without any knowledge of what these 

causes are, since the effect is identified by the probability of L given C in the new population. 

The fact that not every possible source of variation between populations renders one’s 

experimental results on one of them obsolete is especially important when one considers 

diagrams with more complicated structures.  

 

 

 

 

 

The diagram in figure 9 is more complicated than anything we have yet considered, but 

we can evaluate the transportability of the effect of X on Y using reasoning similar to that we 

applied to figures 6-8. First consider the effect of X on M. Since there is no common cause of X 

and M,18 this relationship is identifiable in both populations and is therefore trivially 

transportable. Now consider the effect of M on Y. As the two populations differ only in the 

mechanism for M, this is similar to the case in figure 6 and this relationship is transportable by 

adjustment. In this case, identifying these two effects allows one to identify the total effect. Note 

that the total effect consists of the direct path from X to Y in addition to those just discussed, but 

                                                
18 Those familiar with causal modeling will be aware that there are paths that could bias the effect of X on M other 
than a common cause of both. A more general version of this sentence would read “since X and M are d-separated 
along every path other than the one going from X to M, this relationship is identifiable in both populations and is 
therefore trivially transportable.”   

X  M  Y  

 S 

Figure 9 
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this path is the same across the populations. I hasten to add that it is not always the case that if 

you can identify all of the direct effects in a diagram, then one can identify all effects. In Pearl’s 

terminology, local identifiability does not entail global identifiability (2009, 94). In this case, 

however, knowing about the component effects does allow one to derive the total effect, for 

reasons I will not address here.  

In figures such as 9, the formula required for transporting a causal relation across 

populations using adjustment will be fairly complicated (see appendix for details). Without going 

into the details of such formulas, it is possible to give a simple necessary condition for 

transportability. In cases where the causal relationship between X and Y is not identifiable in the 

absence of an experiment, this relationship is transportable only if there is no S-node going into 

Y.  

 

 

4. Effect Modification and Causal Mediation 

Pearl and Bareinboim’s treatment of transportability demonstrates that given causal assumptions, 

it is sometimes possible to transfer the results of an experiment to a target population without 

having to do a new experiment. This addresses certain challenges to extrapolation. For example, 

the approach breaks Steel’s extrapolators circle, since when one transports a causal quantity, one 

need not do further experiments on the target population.  

Pearl and Bareinboim’s approach is limited to cases where the difference between 

populations is not represented by an S-node into the effect variable (except in cases where the 

effect is trivially transportable). Intriguingly, their paper does contain tools for dealing with such 

cases. To utilize these tools, one must consider transportability in a slightly different manner than 
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the way we have been up to now. So far we have been considering the following task: Given a 

model for a fixed set of variables, determine which causal quantities are transportable. I now 

want to ask a different question: given that a quantity in a model is not transportable, is there a 

model with additional variables in which it is transportable? Let’s consider a case in which there 

is.  

A pharmaceutical company is testing the effect of a drug on heart disease. They perform 

a randomized control trial and discover that it is somewhat effective at lowering heart disease on 

average. Yet, based on this trial, they cannot determine how well the drug will work in the 

population as a whole or even in particular members of the trial population. They suspect that 

there might be widespread variation in people’s responses to the drug. The correct selection 

diagram will therefore be the one in figure 10 and, unfortunately, the causal relationship from the 

drug trial is not transportable.  

 

 

  

  

 

 

Both Steel (2008) and Cartwright and Hardie (2013) note that that in thinking about 

whether a causal relation generalizes to other populations, it helps to consider how the cause 

brings about its effect. Using Pearl and Bareinboim’s framework, we can present one way to 

make this idea much more precise. Suppose that the drug reduces heart disease in part by 
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lowering cholesterol (C). Once we include C in the model, we might end up with figure 11 

instead of figure 10. In figure 11, the relationship between the drug and heart disease is 

transportable. Note that figure 11 makes the strong assumptions that all variation in the effect of 

the drug is due to variation in its influence on cholesterol and that there are no common causes of 

drug intake and cholesterol or of cholesterol and heart disease. Nevertheless, what figure 11 

reveals is that it is sometimes possible to transform a non-transportable relation into a 

transportable one by adding a variable.  

 In figure 11, C is a mediator. The drug example here reveals that measuring mediators 

can enable one to make extrapolative inferences. This might appear to support my claim that 

causal mediation techniques are relevant to extrapolation. However, one is able to extrapolate in 

this case without appealing to any of the concepts of causal mediation. It therefore remains to be 

seen whether mediation techniques contribute to extrapolation. However, we don’t need to wait 

for the answer to this question to declare this example to be a victory for the mediation approach 

to extrapolation. Not only does this example make it clear how measuring a mediator facilitates 

extrapolation, but it makes precise the conditions under which it is possible to do so and it 

enables one to make quantitative predictions about effect in the target population.  

 
6. Why One Cannot Extrapolate Using DAGs Alone  

A recurring question in this dissertation is: what is the difference between extrapolation and 

ordinary causal inference? I ask this question repeatedly, since I do not presume that there is a 

single problem of extrapolation, so different extrapolative inferences need to be considered 

individually. Pearl and Bareinboim allow us to model one such inference. We can therefore pose 

a more specific version of the question. Why does transportability require the use of selection 

diagrams, as opposed to just DAGs? To ask this question is to take a step back. It is already clear 
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(I hope) that selection diagrams are extremely useful. Yet asking why they are will shed some 

light on the conceptual contribution of S-nodes. Additionally, we will uncover some 

extrapolative inferences that go beyond the transportability framework.  

 Let’s consider how one would go about modeling extrapolation in a DAG without a 

selection diagram. Suppose that smoking (S) raises the probability of cancer (C) in all humans, 

but that there is a gene (G) that modifies the magnitude of the effect of smoking on cancer. The 

only way that the gene modifies this effect is by being present (G=g) or absent (G=a). Further 

suppose that aside from its role in modifying the effect of smoking on cancer, the gene has no 

other phenotypic effects. Since it is clear that the effect of smoking on cancer will differ between 

the population in which everyone has the gene and the one where no one does, this looks like a 

paradigmatic case of extrapolation. If your initial study only contains people without the gene 

and you predict that there will be a similar average effect of smoking on cancer in a population 

of people with the gene, you will be wrong. How can we model the flaw in this inference?  

Let’s take a step back for a moment to consider different ways you might try to model this 

case. Suppose you build a model in which you only observe the variables for smoking and cancer 

(and there are no confounders that you do not condition upon).  This model will allow you to 

correctly identify the average effect of smoking on cancer from the probability distribution. The 

identified quantity is the average effect of smoking across all values of G. This is akin to the 

match-striking case in which one just has variables for the striking and the lighting and the 

variation in background conditions is captured by the error term. Moreover, assuming that being 

in the sample does not cause one to have the gene and that having the gene makes no difference 

for whether one is sampled, the expected proportion of people with the gene in the sample will 

be equivalent to the proportion of people with the gene in the general population and also 
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equivalent to the expected proportion of people with the gene in any sample representative of 

that population. Of course, in finite samples there could be different frequencies of people with 

the gene, but causal models do not consider frequencies, but rather probabilities. The probability 

of having (or not having) the gene conditional on being in the sample will be the same as the 

probability of having it (or not) in the general population. In short, simply measuring the values 

of S and C will be sufficient for getting an unbiased estimate of the average effect of smoking on 

cancer in the whole population and in any representative subpopulation.19  

 There is nothing new in the claim that in the case I described you can get an unbiased 

estimate of the effect of smoking on cancer even if there are factors that lead to variance in the 

magnitude of this effect. Yet, the point is worth reflecting upon, since it shows that in cases 

where having the gene makes no systematic difference in whether someone ends up in the 

sample, there is no way to use a DAG with just the variables for smoking and cancer to represent 

the possibility that the sample happens by chance to have an unrepresentative distribution of 

people with the gene. Whatever sampling variance there is will be entirely missed by causal 

models, since in estimating the probability distribution for a population, one makes a prediction 

regarding the relative frequencies of the variables in an infinite population (which has no 

sampling variance). Clearly, the process of inferring probabilities from frequencies is not trivial, 

but standard treatments of causal modeling assume that it has somehow been accomplished. 

 In order to consider the case in which one has measured the effect of smoking on cancer 

only for people without the gene, one must include a variable for the gene (or an effect of the 

gene) in the model. Even though in both the model with G and the model without it there is an 

                                                
19 The reader may have noticed that it is analytic to say for some property X that the probability of X in the 
population is equivalent to the probability of X in some representative sample of that population. Given that the 
sample population is representative, any differences between it and the whole population must be due to sampling 
variance. Yet, in discussing probabilities we abstract away from sampling variance.  
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arrow between C and S, the two arrows measure different things in each model. Once you 

include G, the arrow no longer corresponds to the average effect of smoking on cancer in the 

population, but rather the effect of smoking on cancer for each value of G (figure 12).  

 

 

 

  

 

 

Once you include G in the DAG, it is theoretically possible to estimate both the effect of 

smoking on cancer in the population of people with the gene (the g-specific effect) and in the 

population of those without it (the a-specific effect). In this particular case it is hard to imagine a 

scenario in which one would measure the g-specific effect of smoking but not the a-specific 

effect. Once a scientist goes through the trouble of figuring out which people have the gene, why 

would she not measure the effect of smoking on cancer in both populations?  

 In the case considered, it does not appear likely that one would be forced to make any 

extrapolations. If, however, a scientist did have data on the effect of smoking on cancer only for 

people with the gene and she wanted to extrapolate to the population of people without it, how 

would we represent this scenario? Clearly, we need to include G in the model in order to have a 

way to represent the fact that the distribution of the gene in a sample of gene carriers is not 

representative of the general population. Yet, in including G, we do not want to indicate that we 

have information about the causal effect of S on C for people who do not have the gene. 

Fortunately, a case in which the scientist only has information about people with the gene can be 

S C 
S C 

G 
Figure 12 – Two possible DAGs for the effect of smoking (S) on cancer (C). Although there is 
Ian arrow from S to C in each DAG, the two arrows refer to different quantities depending on 
whether one includes a variable for the presence of a gene (G) that modifies the effect of 
smoking on cancer. In the DAG on the left, the arrow between S and C represents the average 
effect of smoking on cancer. In contrast, in order to estimate the effect of S on C in the DAG 
on the right, one must measure the effect for each value of G.  
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thought of as one in which the scientist has conditioned on the value of G=g. One typically 

conditions on a value of a variable in cases where one has information about the other values of 

that variable, though there is no reason not to think of cases in which one only has information 

about one value of the variable as one of conditioning as well. One could think of such cases as 

ones of accidental conditioning.  

 In the smoking case, I needed to contrive a scenario in which the scientist lost some data 

in order to get a case of accidental conditioning. Yet, such cases are more common that one 

might think. Imagine that a group of scientists have tested the effect of a drug among 

chimpanzees and want to know if it has a similar effect for humans. In this case it would be 

misleading to have a DAG with variables only for the drug and its effect, since it is clear that one 

has only measured the effect of the drug in chimpanzees. If one only included the two variables, 

one would get an unbiased estimate of an effect, but from the graph it would not be clear what 

quantity was being estimated. In order to make it clear both that we are dealing with a case in 

which the effect is species specific and where we have only looked at chimpanzees, we should 

use a DAG with a variable for species in which we have conditioned on the variable 

SPECIES=chimp. In the extrapolation problem in the example, the scientists are using the effect 

of the drug on the outcome when one conditions on SPECIES=chimp in order to predict the 

effect of the drug on the outcome when one conditions on SPECIES=human (Figure 13).  

 

 

 

  

 
Figure 13 – the species-specific effect of the treatment on the outcome. The box 
around the species variable denotes that one has conditioned upon it.  
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In short, given the assumption that one has the probability distribution for a set of 

variables and the assumption that a particular causal quantity is identifiable, DAGs in principle 

enable one to measure the average effect across all populations characterized by the variables in 

the distribution. To represent the possibility that two populations might differ in the specified 

average causal effects, we need to explicitly represent variables whose distributions differ across 

the populations.  

 This way of characterizing extrapolation suggests a general way of representing the 

problem. Consider the effect of X on Y given covariate set C. I include C to convey that it is 

possible to evaluate very fine-grained effects, but after this paragraph I will leave it implicit. 

Given two populations that potentially differ in the distribution of variable Z, such that the 

distribution of Z in the study population is DS(Z) and the distribution in the target is DT(Z), 

extrapolation concerns whether it is possible to infer the effect of X on Y given C and DT(Z) from 

the effect of X on Y given C and DS(Z).20 In the animal experimentation example, Z corresponds 

to the species variable and the problem of extrapolation is that of inferring the effect of the 

treatment in humans based on the effect in chimpanzees. We can represent this case in a graph, 

by placing the values of Z on the X-axis, as I do in figure 14. The different dashed lines indicate 

possible functions relating Z to average treatment effect, where the point corresponding to zs is 

the effect in the study population and the effect in the study population is the output of the true 

                                                
20 More precisely, extrapolation is the problem of inferring 𝑃∗ 𝑌 𝑑𝑜(𝑋),𝑪,𝑍 𝑃 𝑍!  from 
𝑃 𝑌 𝑑𝑜(𝑋),𝑪,𝑍 𝑃(𝑍)! , where 𝑃∗ denotes the distribution in the target and P in the study and the variables are 

discrete. If the variables are continuous, one can use integrals in the place of Riemann sum operators. Here I 
represent the full distribution of Y given its antecedents in each population, though one is often interested in the 
probability of Y given two specified values of X (e.g. [𝑃 𝑌 𝑑𝑜(𝑋 = 1),𝑪,𝑍 𝑃(𝑍)! − 𝑃 𝑌 𝑑𝑜(𝑋 = 0),𝑪,𝑍 𝑃(𝑍)] 
in each population.  
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function when Z=zt. I draw dashed lines solely as a means of visually representing possible 

inferences. I do not yet want to say anything about the conditions under which such inferences 

are possible.  

 

 

 

 

 

 

 

Here’s how the characterization of extrapolation just presented relates to transportability. 

The basis for the transportability framework is that one does not always need to know which 

variable Z is or how it differs across the populations in order to be able to extrapolate the effect 

of X on Y given C across populations. This might be because Z does not make a difference in the 

effect if X on Y, or it could be because any effect Z has is accounted for by the variation it leads 

to in some other variable that one does measure. Whether it is necessary to know what Z is 

depends on which variables in a DAG are most proximate to Z (or any variables that correspond 

to cross-population differences). Accordingly, one way to think about S-nodes is as denoting the 

set of variables upon which one has conditioned on in order to get the probability distribution for 

each of the populations, when one does not know which variables one has conditioned on. All 

one knows is that the variation in the S-node corresponds to variation in the function determining 

the value of a particular variable in the DAG.  

Average 
Treatment 
effect 

Z 

zt zs 

Figure 14 
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 Formally, transportability is a special case of the problem of extrapolation as I have 

characterized it. Extrapolation is the ability to infer the effect of X on Y given variation in the 

value of Z. Transportable causal relationships are those that can be extrapolated given any 

variable V that plays the same role as Z in terms of how it corresponds to variation between the 

populations. As a result, when a causal quantity is transportable, one does not need to know what 

Z is or how it varies between the populations. 

 I have now argued that transportability is a special case of a more generally characterized 

extrapolation problem. In the following section, I evaluate two types of extrapolations of non-

transportable causal quantities.  

 

6. Extrapolation Beyond Transportability  

Consider again the DAG in figure 13, in which the difference in the effect of some treatment on 

some outcome potentially differs across species. In this case (and any case with the same 

structure) the effect of the treatment on the outcome is not transportable, since one cannot know 

the effect in the human population without doing an additional experiment to break the bi-

directed arc.  An alternative way to present this inference is using a representation similar to that 

given in figure 14. Given a hypothesis about how the average treatment effect varies as a 

function of species, we would be able to infer the effect in humans from the effect in 

chimpanzees. Given the variables we have chosen, representing the inference in this way (figure 

15) is not at all helpful. The problem is that the position of each species on the x-axis is entirely 

arbitrary, so we do not have a basis for choosing between different functions.  
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 The problem becomes less hopeless if the variable in virtue of the populations differ is in 

some intuitive sense “well-behaved”. In this example, one might try to make the species variable 

well behaved by arranging species in terms of phylogenetic distance from humans. If species 

were ranked in terms of phylogenetic distance from humans we might have more confidence that 

a curve capturing the effect of treatment on outcome in a few species will extrapolate to humans 

(figure 16).21 Phylogenetic distance is not an infallible guide, but the hypothesis that more 

closely related organisms are more likely to respond to a drug similarly will be plausible for 

some effects. Here I will not attempt to give an account of what it means for a variable to be well 

behaved”. Addressing this question is a desideratum for any “natural kinds” approach to 

extrapolation”.  

 Even given well-behaved variables, there is a serious question regarding whether 

extrapolations such as that in figure 16 are ever justified. Figures 14 and 16 are very misleading, 

since they encourage the viewer to treat causal inference like a type of statistical inference even 

though the assumptions that ground statistical inference are not justified. The treatment effects in 

                                                
21 Steel (2008, 81) considers using phylogenetic distance as a basis for extrapolation in his discussion of simple 
induction. As far as I can tell, he believes that such inferences might be justified in cases where they shed light on 
which parts of a mechanism are likely to be similar between related organisms, but that inferences that infer causal 
similarity based on phylogenetic closeness alone rely upon simple induction and are therefore problematic.  
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different species are not like balls in urns that one can randomly sample. Moreover, species are 

distinguished by many factors other than phylogenetic distance and there is no a priori reason to 

think that these factors do not make all the difference. So we should be wary of using these 

figures to make any inferences. I use these figures here not to solve any questions, but rather to 

suggest one way that one might try to go beyond the scope of the transportability framework.  

 Approaches to extrapolation that seek to extrapolate based on hypotheses about the way 

that the effect of X on Y given C varies as a function of Z are by their nature parametric 

approaches to extrapolation. As we have seen, the transportability framework (and Pearl’s 

framework more generally) does not make any assumptions about the parametric form of the 

functional relationship between a variable and its causes. In order to make inferences about the 

effect of X on Y given Z, one would have to make parametric assumptions about the relationship 

between X and Y and how it varies with Z. Here I have suggested that determining whether such 

parametric assumptions are justified would require further exploration of issues related to 

induction and variable selection, though I do not pursue these issues here.  

 In chapter 7 of the dissertation, I will argue that there are legitimate extrapolative 

inferences that are both not transportable and that do not require parametric assumptions. As we 

saw in discussing transportability, the reason that it is possible to extrapolate without making 

parametric assumptions is that variation in a variable in one part of a causal model does not lead 

to variation in all parts of a model. In other words, certain parts of a model are invariant to 

changes in other parts of the model. In chapter 7, I will show that there are invariance properties 

in a model that are missed by selection diagrams and that these enable one to make cross-

populations inferences regarding certain non-transportable quantities.  
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7. Population-to-Subpopulation Inferences and Induction 

In addition to the two types of inferences that discussed in the previous section, there is one other 

type of extrapolation that goes beyond the transportability framework. Namely, knowing that one 

population is a subpopulation of another licenses certain inference even in cases where 

transportability fails.  

 

 

 

 

 

Suppose that one population is a subpopulation of another and that the two populations 

differ in the value of an unmeasured effect modifier (figure 17). For example, X might be general 

intelligence and Y might be one’s SAT score. The effect of X on Y would be the average effect of 

intelligence on one’s score in the population and the S-node may indicate sources of variation in 

one’s test-taking ability. An individual is characterized as a subpopulation with a set of 

(unknown) effect modifiers whose distribution may differ from that of the population as a whole. 

In Weinberger (2015), I prove that the effect in a population is a weighted average of the effects 

in its subpopulations. I take this to show that the effect in the population provides some – 

possibly weak – evidence for the effect in a subpopulation. Although the effect in a given 

subpopulation may diverge greatly from that of the population as a whole, it places constraints 

on what sets of effect magnitudes may obtain across all subpopulations. The effect in the 

population is therefore evidentially relevant to the effect in a particular subpopulation.  

X   Y 

Figure 17 
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 The fact that effects in populations are evidentially relevant to propositions about effects 

in subpopulations might suggest a more general strategy for developing an inductive approach to 

extrapolation. When extrapolating from population Ps to population Pt, one can represent the two 

populations as being subpopulations of some third population Psuper. Effect magnitudes in Ps 

provide evidence for effect magnitudes in Psuper, which in turn provide evidence for the effects in 

Pt. The flaw in this strategy is that evidential relevance is not, in general, transitive, as we saw in 

our discussion of Cartwright and Hardie’s theory of evidence. Just because facts about Ps provide 

evidence for facts about Psuper  and facts about Psuper provide evidence for facts about Pt, it does 

not follow that facts about Ps provide evidence for facts about Pt.    

 I have been talking about whether the effect in A is evidence for the effect in B, but most 

philosophers assume that it only makes sense to talk about evidence relative to a set of 

background assumptions. If one is willing to make assumptions about features of the distribution 

of the effect of X on Y in Ps, Pt , and Psuper, then there are straightforward evidential relations 

between the effects in the other two population. The rough idea is that the effect is .2 in Psuper and 

one learns that it is .1 in Ps, this raises the probability that the effect will be greater than .2 in Pt. 

To develop this strategy, one would have to say more about how one is justified in one’s beliefs 

about how the magnitudes of the effects are distributed across the populations. I am skeptical 

regarding whether it is possible to fill in these details. In non-parametric causal inference, facts 

about the strengths of causal relationships are not specified a priori, but are estimated from the 

probability distribution. In this case, however, one does not have frequency data for Psuper and 

even if one has frequency data for Pt, the effect might not be identifiable without experiment. 

 One might reject the demand for evidence regarding one’s beliefs about the magnitude of 

causal effects in different population. Griffiths and Tenenbaum (2009) have pioneered the use of 
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hierarchical Bayesian models for causal inference. Such models assign prior probabilities both to 

each model in one’s hypothesis space and to the parameterizations of those models. As is typical 

of Bayesian approaches, one’s priors do not require justification. The hierarchical Bayesian 

approach constitutes a step towards an inductive approach to extrapolation. The limitation of the 

hierarchical Bayesian approach is that since it requires one to assign probability distributions 

both to each possible causal model and to each parameterization of each model, it very quickly 

faces a combinatorial problem of there being more parameterizations than one could possibly 

evaluate. As a result, the approach is only practical given severe restrictions on the models and 

parameterizations that are considered. In the paper cited, for example, the authors both assume 

that one knows that causal ordering of the variables and that there is no effect heterogeneity. As a 

result, they bypass key steps in causal inference and avoid precisely the cases in which the 

question of extrapolation would arise.  

 

8. Populations Revisited 

In chapter 1, I raised a puzzle about how it is possible to understand populations in a way that 

allows the study and target populations to have differing causal effects. I will now explain how 

transportability resolves this puzzle. We can restate the puzzle as an inconsistent triad.  

1. Populations can be represented by DAGs with associated probability distributions, and 
these probability distributions average over all factors not included as variables in the 
distribution 
 

2. Two populations with the same causal structure differ in the magnitudes of their causal 
effects only if their background factors have different probability distributions.  

 
3. Two populations with the same causal structure can differ in their average causal effects.  

 
The first proposition relies on the assumption that in non-parametric causal inference, one does 

not consider populations that are homogenous with respect to all background factors, but rather, 
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the effects in populations are average effects across all background factors. The causal modeler 

provides the assumptions under which an average causal effect can be identified and then leaves 

it to the statistician to do the grunt work of estimating the values in the probabilistic expression 

that identifies the effect. The second proposition states that in order for two populations with the 

same structure to differ in their causal effects, they must differ in their background factors. 

Propositions 3 and 2 jointly entail that for two populations with different structures to differ in 

the magnitudes of their causal effects, they must have different distributions of background 

factors. But how is this compatible with the first assumption that causal models average over all 

background factors? If we discover that two populations with the same structure differ in their 

effect magnitudes, can’t we just blame the statistician for not doing his job?  

 I take it that we need to accept the third proposition in order not to define the problem of 

extrapolation out of existence and that we cannot blame the statistician every time extrapolation 

fails. The second proposition might seem like an appealing target, since it leaves it vague what it 

means for two populations to have the same causal structure. When I say that two populations 

have the same causal structure, I mean that they are representable by a single DAG. As I noted in 

chapter 1, this is a substantive assumption. Yet, I see no way to use DAGs for extrapolation 

without this assumption, and once one assumes that the variables in the population are 

instantiated in the same type of system, any difference between them must be due to differences 

in background factors. If the differences in effects were not due to variation in background 

factors, in what sense are they representable by the same graph?  

 To resolve the puzzle, we need to somehow reject the first assumption. More specifically, 

it needs to be the cases that not all populations with the same structure are defined relative to the 

same distribution of background conditions. It might seem obvious that they are not. A 
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psychologist testing the effect of illegal drug use on productivity might be interested in the effect 

among college students, or among people of a certain socioeconomic status, or among all 

Americans. She might assume, for example, that the distribution of background factors is 

different among college students than among other groups and then try to estimate the 

distribution for college students from her sample. The question remains, however, how it is 

possible to make the assumption that the study and target population have different distributions 

without ruling out the possibility of extrapolation. Once one grants that the populations differ in 

their background factors, how can one infer that they will not correspondingly differ in their 

effects? 

By now it should be clear how the transportability framework answers this question. 

Extrapolation is possible in the presence of varying background factors because not all variation 

in background factors leads to variation in an effect of interest. Additionally, even some factors 

that do lead to variation in the effect do so in a way that does not hinder one from identifying the 

effect in the target from its probability distribution. The key is that not all sources of variation 

influence all parts of the model and that by carefully specifying which parts of a model vary as a 

result of variation in background factors, one can determine which causal relationships will 

remain invariant across the populations.  

 
9. A Brief Comparison of the Accounts 

Pearl and Bareinboim’s account differs from both Cartwright and Hardie’s and Steel’s in 

allowing for the extrapolation of quantitative causal claims and in providing a general solution to 

the problem of when one can extrapolate. (While I’ve argued that there are inferences that go 

beyond the transportability framework, this in no way diminishes Pearl and Bareinboim’s 

achievement of providing a general framework for establishing transportability.) One sign of the 
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success of the account is that proponents of the alternative accounts have claimed it as a 

technical elaboration of their preferred account. In a recent chapter in an edited volume (Steel, 

2013, p. 194) suggests that Pearl and Bareinboim’s S-nodes are an alternative way of referring to 

what he called “disrupting factors” in his book.  Alexandre Marcellesi (2015, pp. (8) #), portrays 

Pearl and Bareinboim and Cartwright and Hardie as independently developing the same 

approach to extrapolation. Here I will briefly compare the transportability framework to the 

others and show how it goes beyond either Cartwright and Hardie or Steel have achieved. 

 It is not difficult to point to ways in which the transportability framework goes beyond 

Cartwright and Hardie’s. Carwright and Hardie appeal only to parametric structural equations 

and do not utilize the tools of  non-parametric causal inference. They never consider ways of 

deriving an effect in one population by adjustment. And, if my analysis in chapter 2 is correct, 

they never provide an example in which one’s assumptions actually license an extrapolation. 

Marcellesi’s treatment of the two accounts as if they were the same obscures these limitations of 

Cartwright and Hardie’s framework.  

 

 

 

 

 
 We can think of Cartwright and Hardie’s account as considering the selection diagram 

presented in figure 18. Z1 is what they would call a support factor for the effect of X on Y, and we 

can imagine there being other support factors Z2,…,Zn with additional S-nodes.  Their account 

says that if we know that the support factors in the study are also present in the target, then we 

can extrapolate. This would be akin to denying the presence of S-nodes into the different support 

X  Y 

Z1 

S 

Figure 18 
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factors (and into Y). Their account misses the fact that it is possible to extrapolate in the presence 

of S-nodes (see the appendix for the adjustment formula). Their account also does not generalize 

in any clear way to causal models more complicated than that in figure 18.  

 Steel anticipates some of the ideas in Pearl and Bareinboim’s framework. His approach 

uses DAGs and relies on the fact that whether a difference between populations hinders 

extrapolation depends on where in the model the difference is. While Steel’s account primarily 

concerns qualitative causal claims, in an appendix he gives an example of a quantitative 

extrapolation that works in the same way that adjustment formulas do.  

 Despite his anticipations of the transportability framework, this framework is not just a 

more precise and general way of developing his own. Consider, for example, his claim that S-

nodes are the same thing as what he refers to as “disrupting factors”: 

In Steel (2008 , pp. 58–62) [S-nodes] are called disrupting factors, while in Pearl and Bareinboim (2011 , p. 
6) they are called selection variables . I follow Pearl and Bareinboim’s terminology here, as the term 
“disruption” suggests factors that entirely block a causal relationship, while the differences between model 
and target could come in other forms. (2013, p. 194) 
 

S-nodes and disrupting factors do not, however, refer to the same thing. A factor Z is a disruption 

factor for X just in case Z is a cause of X such that for some values of Z, X no longer depends on 

its direct causes in a mechanism. It is part of the definition of a ‘disruption factor’ that it entirely 

blocks a causal relationship. The fact that a disrupting factor plays this role is essential for 

several of Steel’s proofs (e.g. his proof of the extrapolation theorem). Finally, while disruption 

factors are causes, S-nodes do not need to be. If some variable M is an effect modifier of the 

effect of X on Y and S is an effect of M, the effect of X on Y may differ conditional on different 

values of S.  

 If one views the accounts discussed in chapters 2 and 3 as attempts at producing the 

transportability framework, they come out looking impoverished by comparison. By considering 
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the differences among the accounts, we can appreciate some features of the first two accounts 

that are not found in Pearl and Bareinboim’s. The fact that Cartwright and Hardie’s account 

relies on equations with specified parametric forms could be construed as a virtue, since adopting 

parametric assumptions enables one to make inferences that are beyond the scope of non-

parametric causal inference. Additionally, they discuss variable-selection issues that are 

neglected in Pearl’s account. Steel’s account is different from the other two in that he provides 

the most detailed discussion of the nature of the problem of extrapolation. While I have raised 

concerns about this part of his account, it is a good starting point for further philosophical 

discussion of extrapolation.  

 
10. Conclusions  

 Pearl and Bareinboim’s present an account of extrapolation that is both precise and general. No 

matter how complicated a selection diagram is, their methods allow one to determine which 

quantities are transportable and how to identify the transportable quantities in the target 

population. In cases where the desired quantity is transportable, I have nothing to add to their 

account. In cases where a desired quantity is not transportable, we require an alternative 

approach. In what follows, I explore the possibility of using causal mediation techniques to 

extrapolate non-transportable causal quantities.  
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Technical Appendix for Chapter 4: Adjustment Formulas 

In my informal explication of Pearl and Bareinboim’s account, I did not explain how to derive 

adjustment formulas for transporting causal relationships across populations. Here I present a 

more precise explication of S-nodes and then give examples of how to derive adjustment 

formulas.  

 Let P(y|x) be the probability of y given x in the study population and let P*(y|x) be the 

probability of y given x in the target population. Given a selection diagram with S-nodes S1,S2, 

…, Sn, the causal relationship P(y|do(x), z) is related across the populations as follows:  

1 𝑃∗ 𝑦 𝑑𝑜 𝑥 , 𝑧 = 𝑃(𝑦|𝑑𝑜 𝑥 , 𝑠!∗,… , 𝑠!∗) 

In other words, the effect in the target population is the effect in the study population conditional 

on the values (or distribution) of the S-nodes in the target population.  

 Equation (1) is correct whether or not 𝑃 𝑦 𝑑𝑜 𝑥 , 𝑧  is transportable. This quantity is 

transportable if and only if it is possible to use the rules of probability and the selection diagram 

in order to transform 𝑃(𝑦|𝑑𝑜 𝑥 , 𝑠!∗,… , 𝑠!∗) into a probabilistic expression in which there is no 

term that contains both S and a do-operator. If it is possible to do so, then the resulting 

expression is the adjustment formula for transporting the effect to the target population.  
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(Figure 9 in Chapter 4) 



 100 

I will now provide the derivation of the adjustment formula for the effect of X on Y in the 

selection diagram in figure 9 from the last chapter. This selection diagram will be important for 

what follows in the dissertation, since it involves a mediator. The equation for the effect in the 

target population is 

2 𝑃∗ 𝑦 𝑑𝑜 𝑥 = 𝑃(𝑦|𝑑𝑜 𝑥 , 𝑠∗) 

It follows from the axioms of probability that the right hand side equals  

3 𝑃(𝑦|𝑑𝑜 𝑥 , 𝑠∗,𝑚)𝑃(
!

𝑚|𝑑𝑜 𝑥 , 𝑠∗) 

From the graph, it is clear that the causal influence of S on Y is only transmitted through M. M 

therefore screens off 𝑆∗ from Y, allowing us to simplify the first term like so:   

4 𝑃(𝑦|𝑑𝑜 𝑥 ,𝑚)𝑃(
!

𝑚|𝑑𝑜 𝑥 , 𝑠∗) 

The second term is the effect of X on M. Since this is unconfounded in the diagram, we can 

remove the do-operator.  

5 𝑃(𝑦|𝑑𝑜 𝑥 ,𝑚)𝑃(
!

𝑚 𝑥, 𝑠∗  

Which equals 

(6) 𝑃(𝑦|𝑑𝑜 𝑥 ,𝑚)𝑃∗(
!

𝑚|𝑥) 

Equation (6) contains no expressions with both s-nodes and do-operators, revealing that the 

effect of X on Y is transportable across populations. (6) is the adjustment formula for identifying 

the probability of Y given do(x) in the target population.  

 Pearl and Bareinboim provide procedures for using selection diagrams in order to 

determine whether a particular causal quantity is transportable. For further information, see Pearl 
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and Bareinboim (2013) and Bareinboim and Pearl (2012). The procedures in the latter paper are 

complete, which means that for any transportable relationship, it is possible to prove that it 

transportable using the inference rules provided. 

 

 

 

 

By way of comparison, it will be helpful to compare the adjustment formula derived for 

the selection diagram in figure 1 with that for another selection diagram. The diagram in figure 2 

contains a potential effect modifier, Z, for the relationship between X and Y. The derivation of 

the adjustment formula for the effect of X on Y in figure 2 is straightforward.  

7 𝑃∗ 𝑦 𝑑𝑜 𝑥 = 𝑃 𝑦 𝑑𝑜 𝑥 , 𝑠∗  

= 𝑃(𝑦|𝑑𝑜 𝑥 , 𝑠∗, 𝑧)𝑃(
!

𝑧 𝑑𝑜 𝑥 , 𝑠∗  

= 𝑃(𝑦|𝑑𝑜 𝑥 , 𝑧)𝑃(
!

𝑧 𝑠∗  

= 𝑃(𝑦|𝑑𝑜 𝑥 , 𝑧)𝑃∗(
!

𝑧) 

Since X and Z are uncorrelated according to the in diagram in figure 2, one can remove X from 

the antecedent of the second expression.  

 In comparing the two adjustment formulas, we see that when adjusting for a modifier Z, 

one can simply adjust for the probability of Z in the target population, but in adjusting for 

mediator M, one must adjust for the conditional probability of M given X in the target population. 

Later in the dissertation, I will seek to provide an account of the relative advantages of 

X  Y 

Z 
S 

Figure 2 



 102 

extrapolating based on mediators as opposed to modifiers. There is a clear sense in which 

extrapolating using modifiers is simpler. Since extrapolating using mediators requires one to 

know P(M|X) in the target population, one will not be able to use Pearl and Bareinboim’s 

framework to transport using mediators in cases where this quantity is not identifiable in the 

target population. On the other hand, figure 2 only allows for transportability because, by 

hypothesis, one has measured all of the modifiers that differ between the populations. In many 

scenarios it will be more plausible that one would have knowledge that two populations differ as 

a result of a difference in a mediator along a particular path than it would be to think that one has 

knowledge of all the background factors that may differ.    
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Conclusion to Chapters 2-4 

In chapters 2-4, I critically evaluated three accounts of extrapolation. Here I further 

clarify how these accounts relate to one another and which questions remain open. 

 
I. What Assumptions Should One Make While Extrapolating? 

Figure 1 is a selection diagram in which there is an S-node going into every variable and a 

bidirected arc between every pair of variables. The three accounts considered all agree that given 

these assumptions extrapolation is not possible. The accounts differ regarding which assumptions 

must be added in order to enable extrapolations.  

 

 

 

  

 

 

 For both Steel and Pearl and Bareinboim, one extrapolates by assuming that at least some 

of the variables in the diagram do not have S-nodes. This assumption is evident in Steel’s 

solution to the extrapolator’s circle, which is that one can avoid looking at the complete 

mechanism (i.e causal path) in the target population by assuming that there are parts of 

mechanism that do not differ between the study and target populations. Within Pearl and 

Bareinboim’s framework, one denotes this assumption by omitting an S-node from the variables 

in the mechanism that are presumed not to differ.  

To be clear, there are cases in which a causal quantity is transportable even though every 

variable has an S-node. For example, if there were no bidirected arcs, every causal relationship 

X   M  Y 
S1 S2 S3 

Figure 1 

  b  c 

 a 
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would be identifiable in the target population from the probability distribution alone and would 

therefore by trivially transportable. For quantities that are not trivially transportable, one needs to 

assume that at least some S-nodes are absent in order to achieve transportability.  

 Cartwright and Hardie’s approach does not invoke the assumption that certain S-nodes 

are missing. Rather, it makes assumptions about the source of variation that is captured by 

specific S-nodes. Consider their example of an educational program that succeeded in Tennessee, 

but failed in California. The problem was that California did not have enough teachers for the 

policy to succeed. In figure 1, the program being implemented is X, the success of the program is 

Y and one of the factors corresponding to the variation denoted by S3 is the number of available 

teachers. Given the plausible assumption that having enough teachers to implement the program 

is a necessary condition for it to succeed, it follows that one cannot extrapolate to populations in 

which this condition is not present.  

 

 

 

 

 

In figure 2, I give a selection diagram that explicitly includes a variable for the number of 

teachers. There is still an S-node (S4) going into Y, since not all cross-population variation in Y is 

due to the number of teachers. The assumption that having a certain number of teachers is 

necessary for the policy to succeed is a parametric assumption about the functional form of the 

relationships between X, Y and T. In contrast, the transportability framework does not rely on any 

parametric assumptions. The effect of X on Y is not transportable in either figure 1 or figure 2. 

 T 

X  Y 
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Given the parametric assumption that there are values of T for which X never has an effect on Y, 

one can infer additional information regarding the conditions under which extrapolation fails.  

As we saw, while Cartwright and Hardie provide conditions under which extrapolation 

fails, the account is much less useful for determining when an extrapolation will succeed. Recall 

the third premise of the effectiveness argument:  

The support factors necessary for x to play a positive causal role here [the target population] are present for 
at least some individuals here post-implementation. (Cartwright and Hardie, 2013 p. 45) 
  

This is a much stronger assumption than the claim that there are some values of T for which X 

never causes Y. To establish it, one would need to know about all the factors corresponding to S4 

that are responsible for cross-population variation in Y and also about which combinations of 

factors are sufficient for X being positively relevant to Y. Moreover, even given such knowledge, 

one could not establish that the magnitude of the effect of X on Y will be similarly large in the 

study and target populations.  

 Despite the limitations of Cartwright and Hardie’s approach, the difference between their 

approach and the Pearl/Bareinboim approach is noteworthy. The reason that extrapolation is ever 

possible in non-parametric causal inference is that given the assumption that certain mechanisms 

are invariant across the populations, one does not need to re-measure every part of the model in 

the target population. In cases where an effect does vary across populations and one cannot 

measure this effect in the target population – and where one cannot break it down into further 

parts that are themselves invariant across the populations or measurable in the target – the effect 

is not transportable. In principle, if one were justified in making parametric assumptions about 

how the effect varies across the populations, one would be able to make further inferences about 

when an effect generalizes. For example, one’s parametric assumptions might state that a certain 

background factor influences the effect of X on Y for some of its values, but not others.  
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The following is an open question about extrapolation:  

Open Question 1: Are there non-parametric extrapolation-licensing assumptions that are 
stronger than the assumption denoted by the presence of an S-node, but weaker than the 
assumption denoted by the absence of an S-node?  
 

The absence of an S-node is a very strong assumption. It indicates that there are no cross-

population differences in the factors responsible for the value of a particular variable. In contrast, 

the presence of an S-node indicates that for all we know, all of the unmeasured factors 

influencing a variable vary greatly across populations. Parametric assumptions about how a 

causal effect depends on unmeasured variables are stronger than the assumption that there is an 

S-node into the effect variable and weaker than the assumption that there is no S-node into the 

effect variable. It is an open question whether one can develop a version of transportability that 

incorporates non-parametric assumptions that are stronger than the assumption that there is no S-

node into a variable.  

 There are several reasons for seeking out specifically non-parametric assumptions.  

One is that parametric assumptions are often selected based on considerations of computational 

convenience rather than justified based on beliefs about the causal mechanisms captured by the 

equations. While there may be cases in which one has causal knowledge that does justify 

parametric assumptions – for example, one might have a theory that entails that two causes of an 

effect do not interact in producing the effect – one often does not have such knowledge. In such 

cases, making assumptions about the parametric form of the causal relationships in a model 

amounts to making a priori stipulations about the probability distribution for a population. 

Although non-parametric causal inference requires one to make assumptions about the 

relationship between a causal model and a probability distribution (the most common such 

assumption being the causal Markov condition), it does not require one to make any further 
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assumptions about the probabilistic relationships among variables in a distribution. If a causal 

relationship is identifiable, its magnitude is uniquely determined by the probability distribution.  

 The second reason for my interest in non-parametric assumptions relates to my goals in 

the dissertation. As I discuss in the following section, a central aim in the dissertation is to 

understand the relationship the transportability framework and causal mediation techniques. Both 

of these methods rely exclusively upon non-parametric assumptions. Since I want to understand 

the general relationship between these methods, I seek to establish the role the each plays in 

extrapolation when one does not supplement them with any parametric assumptions.  

I take the transportability framework to be the starting point for developing my own 

account. In any case where a quantity is transportable, it is possible to extrapolate. The question 

remains as to whether there are cases where one can extrapolate non-transportable effects. The 

transportability framework is sound and complete, so given the assumptions embedded in a 

selection diagram it enables one to find all transportable quantities. If there are types of 

extrapolative inference that involve non-transportable quantities, they must rely on assumptions 

other than those embedded in selection diagrams. In chapter 7, I present non-parametric 

assumptions that enable one to go beyond the transportability framework. 

 
 

II. Learning How Causes Bring About Their Effects 

Steel writes: 

The mechanisms approach rests on the intuition that knowing how a cause produces its effect provides a 
basis for extrapolation. (5) 
 

This dissertation follows Steel in attempting to unpack this intuition. In his extrapolation 

theorem, Steel gives a condition under which some cause raises the probability of its effect 

through each mechanism and combination of mechanisms. Given this condition, one can infer 
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that as long as not all of the mechanisms are disrupted, the cause will still raise the probability of 

its effect.  

 Here I will not reiterate my concerns about whether the extrapolation theorem is useful 

for extrapolation. There is nevertheless a feature of the theorem – and of Steel’s account more 

generally – that is worth highlighting. In considering particular mechanisms, Steel only discusses 

cases in which a mechanism is disrupted and cases in which it functions normally. But these are 

not the only possibilities. In addition to the ideal interventions that Steel (following Woodward) 

considers, which fully disrupt the relationship between the variable that one intervenes upon and 

its direct causes, there are also ‘soft’ interventions (Korb et al., 2004; Eberhardt and Scheines, 

2007) that alter this relationship without destroying it entirely. A full account of the relationship 

between individual mechanisms and the total effect going through all mechanisms should 

consider not just cases in which a mechanism is fully disrupted, but also cases in which it is 

modified by soft interventions. 

 

 

 

 

 

 
 

 Pearl and Bareinboim’s account provides a clear example in which learning how a cause 

brings about its effect facilitates extrapolation. In figure 3a, the effect of X on Y is not 

transportable. The effect is transportable in figure 3b. One can replace 3a with 3b given the 

assumptions that 1) M is a mediator between X and Y, 2) the variation indicated by S3 in 3a is 

  S1 

X  Y 
S3 

X   M  Y 
S1 S2 

Figure 3 

 a 

  
 
           

        a 

(a) (b) 



 109 

entirely due to S2 in 3b, and 3) bidirected arcs b and c from figure 1 are absent. Later on in the 

dissertation, I consider the question of whether extrapolation is possible when these assumptions 

are weakened. Since S2 corresponds to any arbitrary way that P(M|do(X)) might vary, the 

selection diagram in figure 3b allows one to transport the effect of X on Y across populations that 

differ as the result of soft interventions on M.  

Cartwright and Hardie provide compelling examples – such as the one with the nurse 

who can detect a disease – in which knowledge of how a cause brings about its effect helps one 

extrapolate. They are silent regarding how one gains such knowledge and I argued that in order 

to do so one needs to use causal mediation techniques. In a case such as the one depicted in 

figure 3b, these techniques enable one to measure the portion of the effect of X on Y that goes 

though M as well as the portion that does not. Advocates of these techniques – including Pearl 

and Bareinboim – have argued that they facilitate extrapolation, but there has been little explicit 

discussion of how they are supposed to do so. 

It might appear that the case in figure 3 validates the claim that mediation techniques aid 

extrapolation, since it is a clear example in which measuring a mediator enables one to 

extrapolate. Yet it is possible to show that the effect of X on Y in figure 3b is transportable 

without appealing to key mediation concepts such as direct and indirect effects. This brings us to 

our second open question.  

Open Question 2: Do causal mediation techniques facilitate extrapolation and, if so, 
what is their relationship to the transportability framework?  
 

This will be the central question considered in chapters 5-7.  

 
 
III. Extrapolation and Induction 
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It should be clear that the three approaches considered are all deductive approaches. They seek to 

find premises that guarantee that a causal relation can be generalized rather than considering the 

general question of when the presence of a causal relationship in one population counts as 

evidence that the relationship will be similar in another. This is somewhat strange. One would 

have thought that at least some extrapolative inferences involve induction.  

 

 

 

 

 

 

 In the previous chapter I proposed a way to represent inductive extrapolative inferences 

within the causal modeling framework. First, instead of using S-nodes, one must explicitly 

represent variables that may make a difference in the effect of X on Y. In figure 5a, Z is such a 

variable. Second, one must represent Z in the study population as if it has been conditioned upon. 

The reason for this is that in problems of extrapolation one cannot presuppose that the joint 

distribution for the study population is also the joint distribution for the target population. But a 

standard assumption in causal modeling is that for a given DAG one does know the joint 

distribution of the variables for all possible combinations of the variables.22 By conditioning on 

Z, one represents the situation in which one’s distribution is known to be correct only for certain 

values of Z. Extrapolation involves inferring the effect of X on Y for unobserved values of Z 

given observed ones (figure 5b). Figure 5b contains a solid line corresponding to simple way that 
                                                
22 In practice, this assumption (which is called ‘positivity’) means that one cannot do causal inference when not all 
combinations of variables actually appear in one’s sample.  

Z 

X  Y 

(a) 

Figure 5 
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one might infer the value of E(Y|do(x),z3) but the figure should not be taken as an endorsement 

of this inference.  

 

 

 

  

 

My analysis of extrapolation as the problem of inferring the effect of X on Y given Z for 

populations with unobserved values of Z makes precise the sense in which the problem of 

extrapolation has both deductive and inductive aspects. In figure 5b, the simple inference from 

the effect given z1 and z2 to the effect given z3 resembles a statistical inference. Yet, the only 

reason that one can treat variation in P(Y|do(x), Z) as variation in the causal effect of X on Y is 

that Z is a cause of Y that can make a difference in the effect of X on Y. One does not treat the 

effect magnitudes in different populations as balls that are being randomly sampled out of an urn. 

The effect magnitudes are hypothesized to vary as a result of some variable playing a specified 

causal role and one seeks to learn the function indicating how they vary. The deductive accounts 

considered in the previous chapters are correct that extrapolation is only possible given a set of 

causal assumptions about how the populations differ.  

 While I have suggested that there is a way to represent extrapolative inferences that have 

inductive aspects, I have not said much about what would justify such inferences. This remains 

an open question:  

Open Question 3: Are inductive extrapolative inferences ever warranted? If so, what 
assumptions license such inferences?  
 

Unfortunately, this question will still remain open at the end of the dissertation.  

X  Y 
S1 

Figure 6 
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IV. Where This is All Going 

Although Steel considers his approach to extrapolation to be a hybrid between structural causal 

models and contemporary philosophical accounts of mechanisms, his results do not require him 

to adopt any of the characteristic commitments of mechanistic accounts. Recent mechanistic 

accounts analyze the way that the components of a mechanism come together to bring about a 

phenomenon and presuppose that the relationship between a mechanism and its components calls 

for a non-causal form of explanation. Since I am similarly concerned with the means by which 

an effect comes about and my approach only invokes causal relations, in the following chapter I 

consider the objection that my account omits some important non-causal feature of mechanistic 

explanation that is important for extrapolation. I argue that the features of mechanisms that 

allegedly require non-causal forms of explanation can be adequately accounted for using causal 

mediation techniques.  

 After a somewhat informal introduction to mediation techniques in chapter 5, chapter 6 

provides a thorough formal introduction to them. Chapter 7 then addresses the question of how 

causal mediation techniques relate to transportability, thus answering Open Question 2. Chapter 

7 also answers the first open question. It turns out that direct and indirect effects can be 

extrapolated given certain non-parametric assumptions about how populations vary, and these 

assumptions cannot be represented in selection diagrams.  
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Chapter 5: Do Mechanisms Call for Non-Causal Explanation? 

Mechanisms are currently a hot topic in philosophy of science. An example of a mechanistic 

phenomenon is a neuron’s firing. Neuroscientists studying this phenomenon seek to explain it by 

describing the way that the components of a neuron are functionally organized to produce the 

firing. Proponents of theories of mechanisms (henceforth, “mechanists”) have argued that 

existing theories of explanation cannot account for what scientists are doing when they invoke a 

mechanism to explain a phenomenon. While mechanists often contrast their accounts with law-

based accounts of explanation, here I consider the relationship between mechanistic and causal 

explanations. Since the components of a mechanism are causally related to one another, 

mechanistic explanations are in part causal. But mechanists aim to provide a novel form of 

explanation that is distinct from causal explanation. This chapter raises doubts regarding the 

thesis that mechanisms call for a non-causal form of explanation.  

 Mechanists would likely be sympathetic to the mediation approach to extrapolation that I 

develop in the dissertation. Mechanists commonly claim that knowledge of a mechanism enables 

one to determine the conditions across which a particular phenomenon will continue (or fail) to 

be produced. The mediation approach provides a promising way of spelling out how knowledge 

of underlying mechanisms allows one to do this. Yet, the approach here is entirely grounded in 

facts about the causal relationships among variables. If mechanists were right that mechanistic 

explanations require one to appeal to some non-causal relationship, my account would be 

vulnerable to the criticism that it neglects this important relationship, which may be essential for 

understanding how mechanisms aid extrapolation. In this chapter, I justify my decision to 

provide an account of extrapolation that only appeals to causal relationships. Mechanists have 

failed to demonstrate that mechanistic phenomena require non-causal explanation and the cases 
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they use as a basis for believing that they do require such explanation are better understood using 

the causal mediation techniques that I sketch here and defend in subsequent chapters.  

 
1. Overview of the Argument 

Carl Craver’s account (2007) contains the best-developed attempt to identify and explicate the 

non-causal element in mechanistic explanations. According to Craver, while the relations among 

individual components are causal, the relationship between the components and the mechanism 

as a whole is constitutive. He argues that this constitutive relationship is an explanatory one; the 

behavior of a mechanism both explains and is explained by the behaviors of its components. 

Craver explicates this symmetric relationship as follows. It is possible both to change the 

behavior of the mechanism by manipulating its components and to change the behavior of the 

components by manipulating the mechanism as a whole. By “manipulations” Craver means the 

ideal experimental interventions that Woodward (2003) defines. In developing his account, 

Craver is guided by the “inter-level” experiments that neuroscientists use to determine whether 

an entity is a component in a mechanism. In top-down experiments one observes the behavior of 

the entity in an undisrupted mechanism. In bottom-up experiments one alters the behavior of the 

entity to see how doing so influences the behavior of the mechanism.  

Craver provides two arguments for the claim that the constitutive relationship is non-

causal. First, since components are spatiotemporal parts of a mechanism, the components cannot 

be causally related to the mechanism. Second, since causal relations are asymmetric and the 

explanatory relation between the mechanism and its components is symmetric, constitutive 

explanations must be distinct from causal explanations. I reject the first argument on the grounds 

that, contrary to appearances, the fact that components are parts of a mechanism plays no 

explanatory role in Craver’s account. I reject the second one on the grounds that the 
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manipulations in top-down and bottom-up experiments appear symmetric only because Craver 

does not properly specify the variable that is intervened upon in top-down experiments.  

Although Craver fails to show that mechanistic explanations are non-causal, the inter-

level experiments he discusses do suggest a possible limitation of causal explanation. In top-

down experiments, one learns how a mechanism behaves when it is undisrupted. Bottom-up 

experiments reveal the causal relations among components, but only at the cost of disrupting the 

mechanism. The fact that bottom-up experiments are insufficient for establishing whether an 

entity is a component may suggest that causal relations alone are unable to account for the 

behavior of the undisrupted mechanism, and that they must therefore be supplemented with a 

top-down explanatory relation. But this limitation on causal explanation is only apparent. Causal 

mediation techniques enable one to use sets of joint interventions to determine the relationship 

between contributions of variables acting in disrupted systems and the role that these variables 

play in functioning systems. Given multiple causal paths between a cause and effect, these 

techniques allow one to determine, for example, the probability that the cause would still be 

sufficient for the effect were one of the paths to be fully disrupted. These techniques appeal only 

to causal relations among variables and therefore block the proposed threat to the sufficiency of 

causal explanations.  

 The rest of the chapter is organized as follows. Section 2 provides a brief summary of the 

recent literature on mechanisms. Section 3 outlines Craver’s account of constitutive relevance 

and argues that the condition that a component must be a part of a mechanism is redundant. 

Section 4 argues that Craver’s mutual manipulability condition does not imply a symmetric 

explanatory relation. Section 5 introduces causal mediation techniques and shows how they 
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undermine a possible argument that inter-level experiments call for non-causal explanation. 

Section 6 considers the relevance of mediation techniques to explanation. Section 7 concludes. 

 
2. Mechanistic Accounts of Explanation  

In “Thinking about Mechanisms,” Machamer, Darden and Craver define mechanisms as:  

[E]ntities and activities organized such that they are productive of regular changes from start or set-up to 
finish or termination conditions. (2000, 3) 
 

An example of a mechanism is a neuron’s firing. When a neuron fires, it increases and then 

decreases in voltage. These voltage changes result from sodium and potassium ions moving 

across the cell membrane, thereby changing the proportions of sodium and potassium inside and 

outside the cell. To explain this process, one must identify the properties of the ion-channels – 

the entities that regulate the movement of ions across the membrane – and determine how they 

perform their functions (their “activities”). 

The entities that are organized to bring about the activity of a mechanism are its 

components, and one mechanism can be a component in a larger one. This suggests a 

hierarchical ordering of the world in which a whole mechanism counts as one level and its 

components are at a lower level. The concept of a mechanism level is distinct from other level-

concepts in the literature such as levels of size (macro/micro), levels of abstraction and levels of 

properties (first-order/second-order etc.). While it is controversial whether second-order 

properties can have causal powers other than those of their first-order realizers (Kim, 2000), 

mechanisms can have effects that do not reduce to those of their components.  

 Craver and Bechtel (2007) argue that the relationship between mechanism levels is non-

causal on the grounds that causes and effects must be spatially and temporally distinct. Since 

components and mechanisms stand in a part/whole relation, they cannot be causally related. The 

relationship between a mechanism and its components is constitutive rather than causal. There is 
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more to being a component of a mechanism than being a part of it. As Craver notes (2007, 4), a 

car’s hubcaps are a part of it, but they are not components of its mechanism.23 An account of 

constitutive relevance should specify how a part must contribute to the activity of a mechanism 

in order to count as a component.  

Craver (2007) seeks to provide a precise account of mechanistic explanations in 

neuroscience. He refers to the mechanism as S and its components as X1, X2…Xn. S’s activity is 

denoted by Ψ (“psi”) and the activities of X’s are denoted by ϕ1, ϕ2…ϕn (“phi-1” etc). A neuron 

firing is an S that Ψs. A sodium-ion gate opening is an X that ϕs. In figure 1, the relationships 

among the ϕing X’s are causal and the relationship between the ϕs and Ψ is constitutive. 

 

 

 
 It is important to distinguish between the analytic truth that components are parts of a 

mechanism and the substantive claim that there is an explanatory relationship between them. 

Rather than asserting merely that there is a part-whole relation between an entity and its 

components, Craver maintains that components explain – and are explained by – the behavior of 

the mechanism.  
                                                
23 Below I raise concerns about this example.  

Figure 1 (from Craver, 2007, p. 7)  
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3. Craver’s Account of Constitutive Explanation 

In this section, I outline Craver’s (2007) account of constitutive relevance and argue that the 

condition that a component must be a part of the mechanism does no explanatory work in the 

account. Before I do so, it will help to sketch some of the experiments that motivate the account.  

The following example comes from Craver (2002) and concerns the mechanism of spatial 

memory. The preliminary evidence that the hippocampus plays a role in spatial memory was that 

it activates in rats as they navigate a maze. These preliminary experiments are “top-down” – one 

intervenes on the rat’s activity by placing it in a maze without intervening on any of the neural 

components involved in its navigating the maze. By themselves, these experiments do not 

establish that the hippocampus contributes to spatial memory. It may be that the hippocampus is 

activated whenever the rat runs the maze, but that it in no way facilitates the rat’s navigation. To 

eliminate this possibility, one must intervene on the hippocampus to see if doing so affects the 

rat’s maze-navigating ability.  

Craver describes two types of experiments on the hippocampus: interference and 

stimulation. Interference experiments create lesions in the rat’s hippocampus, with the result that 

the rat’s ability to complete the maze is impaired. These experiments provide inconclusive 

evidence that the hippocampus contributes to spatial memory. It is possible that in creating the 

lesion, one impaired other parts of the brain and that these parts of the brain are responsible for 

spatial memory. Experiments in which one stimulates the hippocampus help eliminate this 

possibility. If administering an electric shock to the hippocampus alters the rat’s maze-running 

ability, this bolsters the hypothesis that the hippocampus is a component in the mechanism for 

spatial memory. Both interference and stimulation experiments are “bottom-up.” One intervenes 

on a potential component to see how doing so affects the rat’s maze-running ability.  
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 In developing his account of constitutive relevance, Craver pays careful attention to the 

details of top-down and bottom-up experiments, which he refers to as inter-level experiments. 

The methodology of these experiments is embodied in his mutual manipulability criterion, which 

says, roughly, that if it is possible to change a mechanism’s behavior by intervening on an entity 

and to change the behavior of that entity by intervening on the mechanism, then that entity is a 

component in the mechanism. I consider this criterion in the following section. In addition to the 

mutual manipulability criterion, Craver stipulates that in order for some entity x to be a 

component of mechanism S, x must be a part of S. I will refer to this as the part-hood criterion. 

The part-hood criterion appears to be redundant, since it is unclear how an entity could 

meet all other conditions for being a component of a mechanism, yet fail to be a part of it. One 

might think that in stipulating that components must be parts of the mechanism, Craver is 

requiring that they be spatially contiguous with the other components in the mechanism. He 

denies, however, that one can draw the boundaries of a mechanism using spatial criteria (Craver, 

141 ff.). In the absence of some such criterion, however, the requirement that an entity be a part 

of a mechanism does no work in determining what counts as a component.  

In fact, contra Craver, it does not make sense to distinguish between component and non-

component parts of a mechanism. Consider his go-to example for illustrating this distinction: 

The hubcaps, mud-flaps, and the windshield are all parts of the automobile, but they are not part of the 
mechanism that makes it run. (140) 
 

Upon inspection, this example does not show that it is possible for an entity to be part of a 

mechanism without being a component. What it shows is that it is possible for an entity to be a 

part of a machine without being a component in any of its mechanisms. Accordingly, a hubcap is 
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a part of a car, but is not a part of the mechanism for acceleration.24 An entity can be part of a 

machine without being a component in any mechanism, since it might not contribute to the 

functioning of the machine. If, however, an entity is a part of a mechanism, then it is a 

component in that mechanism.  

Craver repeatedly distinguishes between causal and constitutive explanations on the 

grounds that components are parts of a mechanism and there cannot be a causal relation between 

entities are not spatially distinct. If the part-whole relation played a role in explaining 

mechanistic phenomena, it would follow that such phenomena cannot be given an exclusively 

causal explanation. In Craver’s account, however, the requirement that a component be a part of 

the mechanism is redundant, so he cannot use it to motivate the need for a non-causal form of 

explanation. 

 
4. Inter-level Experiments and Mutual Manipulability  

Since the part-hood criterion is redundant, Craver’s account of constitutive relevance rises or 

falls with the mutual manipulability criterion. This criterion attempts to formally represent the 

interventions in inter-level experiments. In order to model these interventions Craver (2007) 

relies on Woodward’s (2003) concept of an ideal intervention. 

We already encountered Woodward’s account in our discussion of Steel in chapter 3, but 

here is a brief review. Woodward (2003) presents an account of causation on which there is a 

causal relationship between X and Y just in case it is possible to change the value of Y by 

changing the value of X in some “appropriate” way. Woodward defines the concept of an ideal 

intervention in order to clarify which changes to X are appropriate for evaluating whether X 

                                                
24 One could argue that hubcaps are components in one of the car’s mechanisms, namely the mechanism for 
keeping the end of the axle clean. This ambiguity in what counts as part of a car’s mechanism presents a further 
reason for analyzing mechanisms rather than machines.  
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causes Y. To see that not all ways of changing X are appropriate, imagine that X is being drowsy 

and Y is having a headache. Suppose that I give you a pill that is a common cause of your being 

drowsy and of having a headache. Clearly, such an intervention would not show that there is a 

causal relationship between being drowsy and having a headache. To evaluate whether there is, I 

would have to find a way to make you drowsy without also influencing whether you have a 

headache (except, perhaps, via making you drowsy). More generally, an ideal intervention on X 

with respect to Y sets the value of X in such a way that any effect of the intervention on Y is 

transmitted through X.   

 An important feature of Woodward’s account is that ideal interventions on X are surgical. 

That is, the only variable they directly influence is X. If an intervention is ideal, then the value of 

X is determined entirely by the intervention and all other changes to the model result from this 

intervention. Many actual interventions do not determine the value of a variable, but alter its 

probability distribution. Such interventions are “soft” interventions (Korb et al., 2004; Eberhardt 

et al., 2007). Unlike Woodward’s “hard” interventions, soft interventions do not break all of the 

arrows going into a variable. As far as I can tell, one can always model a soft intervention on X 

as a hard intervention on a cause of X (though doing so might require adding variables to the 

model). Both hard and soft interventions are surgical and it is therefore straightforward to expand 

Woodward’s account to allow for soft interventions.  

According to Woodward, X is causally relevant to Y if there are some interventions on X 

that change Y. It is not required that every intervention on X changes Y. Craver accepts 

Woodward’s account of causal relevance, but proposes an alternative account for constitutive 

relevance. According to Craver, x is constitutively relevant to S if (1) x is a part of S and (2) x’s 

ϕ-ing and S’s Ψ-ing meet the following conditions:  

(CR1) When φ is set to the value φ1 in an ideal intervention, then ψ takes on the value f(φ1). (155) 



 122 

(CR2): if ψ is set to the value ψ1 in an ideal intervention, then φ takes on the value f(ψ1). (159)  
 

f(ϕ1) and f(Ψ1) are, of course, different functions. CR1 and CR2 are what I have been calling the 

mutual manipulability criterion. CR1 corresponds to bottom-up experiments and CR2 

corresponds to top-down experiments. Regarding spatial memory, CR1 says that if the 

hippocampus is a component in spatial memory, then intervening on the hippocampus will 

influence the rat's maze-navigating ability. CR2 says that intervening on spatial memory will 

alter the activity of the hippocampus. According to Craver, neither principle individually is 

necessary or sufficient for ϕ being a component of Ψ. They are jointly sufficient. Where only 

one condition is met Craver offers no general guidelines, but says that we need to look at the 

details of the case (159).  

 The major problem with CR1 and CR2 is that Ψ does not refer to the same variable in 

each.25 It is clear enough what an intervention on Ψ is. An intervention on Ψ sets the mechanism 

in motion. For example, placing the rat in the maze. One can think of an intervention on Ψ as an 

intervention on an input into Ψ (or a cause of the earliest ϕ in the mechanism). Since Ψ refers to 

the activity of the mechanism, one might be inclined to think of an intervention on Ψ as an 

intervention on the whole mechanism, but this is just to speak loosely. In order for a top-down 

experiment to do its job, one must not intervene on any intermediate components of the 

mechanism. Intervening on components of the mechanism would prevent the researcher from 

seeing how the mechanism behaves when it is undisrupted – that is, when one does not intervene 

upon its components.  

 While CR2 refers to an intervention on Ψ, CR1 refers to the value of Ψ. In the spatial 

memory example, the value of Ψ presumably denotes either whether the rat completes the maze 

                                                
25 Several philosophers have also noted that the meaning of Ψ is ambiguous (Fagan (2012); Menzies (forthcoming); 
Franklin-Hall (unpublished)).   
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or how far through the maze the rat gets. This is a different variable from the one that is 

intervened upon. Recall that an ideal intervention determines the value of a variable. An 

intervention that triggers a process does not determine whether the process runs to completion. 

Whether the process runs to completion depends not just on the triggering intervention, but also 

on the proper functioning of the mechanism’s intermediate components. The variable denoting 

whether the mechanism runs successfully cannot be the same as the variable upon which one 

intervenes, since the latter variable does not determine the value of the former variable. Nor 

would it help to go beyond Craver’s treatment and consider “soft” interventions that only set the 

probability of a variable. A soft intervention that triggers the mechanism will not determine the 

probability that it will run to completion, since this probability depends on whether there are 

interventions on the mechanism’s components. 

 We can denote the variable that one intervenes upon as Ψinput and the variable 

corresponding to the success of the intervention as Ψoutput. CR1, properly understood, says that 

intervening on ϕ alters the value of Ψoutput. If an entity is a component, then intervening on it 

influences whether the mechanism runs to completion. CR2, properly understood, says that 

intervening on Ψinput alters the components of the mechanism. If one does not distinguish 

between Ψinput and Ψoutput, it appears that one can both change Ψ by intervening on ϕ and change 

ϕ by intervening on Ψ. Given Woodward’s account of causation, CR1 and CR2 entail that Ψinput 

is a cause of ϕ(26) and ϕ is a cause of Ψoutput, but each of these relations is asymmetric. Craver’s 

mutual manipulability criterion only appears to explicate a symmetric explanatory relation.  

 One might object that Ψ can’t be decomposed into Ψinput and Ψoutput, since Craver’s 

account requires that x’s ϕ-ing be a part of S’s Ψ-ing. In other words, components must be parts 

                                                
26 Or at least of those φ that are distinct from Ψinput. 
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of the mechanism, but a mechanism’s components are not a part of its input or output conditions. 

But it is irrelevant whether components of Ψ are parts of Ψinput. Interventions on “Ψ” are 

interventions on inputs into the mechanism, not on the operation of the mechanism. If Ψ denotes 

the whole mechanism, then CR1 and CR2 consider variables other than Ψ.  

Craver faces a dilemma. If Ψ denotes the whole mechanism, it is not a variable that one 

can intervene upon, and he has failed to clarify the sense in which it is possible to change a 

mechanism’s components by intervening on the whole. If Ψ denotes a variable upon which one 

can intervene, then Craver’s allegedly symmetric non-causal relationship dissolves into two 

asymmetric causal ones. Either way, he has failed to provide an account of the symmetric 

relation that allegedly distinguishes mechanistic explanations from purely causal ones.  

Bert Leuridan (2012) similarly argues that Craver’s allegedly non-causal explanatory 

relation is in fact a causal one. His conclusion, however, is not that there is no symmetric 

explanatory relation, but that the symmetric explanatory relation that Craver describes is in fact 

causal (he is thinking of cases of bidirectional causation). I am drawing a stronger conclusion. In 

my view Craver fails to explicate any symmetric relation and any non-causal relation.   

 The purpose of a top-down experiment is to learn how a mechanism functions when it is 

undisrupted. Doing so requires an intervention. A scientist needs to have control over when the 

rat enters the maze in order for her to conclude that the correlation between the rat’s running the 

maze and the observed activity in the hippocampus is not due to a common cause. But this is not 

enough. In addition to an ideal intervention on the input of the mechanism, top-down 

experiments require that the scientist not perform any further intervention that would prevent the 

mechanism from running to completion. In contrast, in bottom-up experiments one intervenes on 

a component in order to make the mechanism behave abnormally. This way of understanding 
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inter-level experiments is compatible with much of what Craver says when speaking informally. 

It also helps explain why one would appeal to a symmetric explanatory relation. If experiments 

that disrupt the behavior of candidate components cannot account for the behavior of the 

undisrupted mechanism, this suggests that a purely bottom-up explanatory approach will not 

succeed. In the following section I explain why this line of reasoning fails. The relationship 

between a functioning whole and the behavior of its parts can be analyzed using models that only 

invoke causal relations.  

 
5. Causal Mediation Techniques 

An ideal intervention on a component disrupts any previously existing relationship between the 

component and its causes. The results of such an intervention might not correspond to the effects 

that the manipulated component would have had in an undisrupted mechanism. This is why 

bottom-up experiments cannot by themselves reveal the behavior of a mechanism. At first 

glance, this points to a limitation of causal explanation – at least if we follow Woodward in 

explicating causal claims in terms of ideal interventions. If causal relations are explicated using 

ideal interventions and ideal interventions are unable to uncover the behavior of a mechanism, 

then mechanistic phenomena appear to require some non-causal form of explanation.  

 Melinda Bonnie Fagan (2012), a proponent of non-causal theories of mechanistic 

explanation, presents an argument similar to the one I just suggested. She faults Craver’s account 

for being too causal. Although he denies that the constitutive relation is causal, he nevertheless 

explicates it in terms of interventions. Yet the interventionist account allegedly fails to explicate 

the following feature of mechanisms:  

[T]he behavior of isolated components is not a good guide to their behavior together, and their behavior in 
one context is not a good guide to their behavior in others. (462) 
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 Fagan proposes an alternative account, on which mechanistic explanations work in part by 

specifying the properties in virtue of which two interacting components bring about an effect. 

For my purposes here, the details of her account are less important than its motivation, which is 

her belief that interventionist frameworks are unable to account for the contributions of 

components to the whole. 

 Contrary to appearances, one can use ideal interventions to model the relationship 

between the behavior of components in isolation and their behavior in an undisrupted system. 

One can do so using Judea Pearl’s (2001, 2012) causal mediation techniques. These techniques 

provide conceptual resources for measuring the contributions of distinct causal paths between 

two variables. Pearl’s treatment of mediation differs from earlier attempts (e.g. Barron and 

Kenny 1986) in that it allows one to model systems in which causes do not contribute additively 

to their effects. His techniques enable one to consider causal relations not in isolation, but in 

terms of to their contribution to a broader system. Causal mediation techniques rely on the DAG 

framework developed by Spirtes, Glymour and Scheines (2000) and Pearl (2009), which I 

introduced in chapters 2-4.  

Given the importance of interaction in mediation techniques, I would like to remind the 

reader that the presence of two causal arrows from variables X and Y into an effect Z does not 

denote that the effects of X and Y on Z are additive and separable. The value of Z is a function of 

its direct causes, and this function can have any form, including one in which the effect of either 

cause on Z depends on the value of the other cause. In such a case X and Y interact. The distinct 

arrows do not indicate the independence of the causal contributions of X and Y to Z, but rather 

the possibility of separately intervening on X and Y.  



 127 

 We are now ready to discuss causal mediation techniques. Consider the following 

example.  You tell me to wake up at 7 a.m. tomorrow, and this causes me to set an alarm. My 

setting an alarm is a cause of my waking up at 7. Furthermore, suppose that your command 

makes me stressed and that my being stressed makes it more likely that my alarm will wake me 

up when it goes off. If I don’t set an alarm I will not wake up at 7, regardless of whether I am 

stressed. Given that I do set the alarm, my being stressed makes it more likely that I will wake up 

at 7. We can model this case using variables corresponding to your command, my setting an 

alarm and whether I wake up (figure 2). Although there is presumably some physical mechanism 

that explains how your command causes me to wake up by making me stressed, there is no 

variable in the model corresponding to any part of this mechanism. (It would, of course, be 

possible to formulate a more complicated model that contains a stress variable.) 

 

 

 

 
 

In our example, the command and wake up variables are referred to as the treatment and 

outcome, respectively. Alarm is the mediator. Here I will only consider one-mediator models. 

The effect of the treatment on the outcome going through all paths is the total effect. The effect 

of the treatment on the outcome not going through any specified mediator is the direct effect; the 

effect of the treatment on the outcome going through the mediator alone is the indirect effect. 

These concepts will require further clarification. Direct and indirect effects are model-relative. 

As the direct effect is the effect of the treatment on the outcome not going through any specified 

mediator, models with different mediators will have different direct effects.  

 Alarm 

  Command Wake Up 

Figure 2 
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 In our example, your command increases the probability of my waking up via a path not 

going through the mediator. Nevertheless, this path only makes a difference when I set my alarm. 

When I do not set my alarm, my being stressed has no influence on whether I wake up. Whether 

your command directly influences my waking up therefore depends on the value of the mediator. 

If one did not already know the correct causal structure for this case, it is unclear how one could 

figure out whether there is an arrow from command to wake up using interventions. An 

intervention in which you tell me to wake up and I do wake up is compatible with there being 

only one path from command to alarm to wake up. If you then intervene by disabling my alarm, I 

won’t wake up. This would suggest that there is no direct path. In this example, your “top-down” 

and “bottom-up” experiments do not suffice to find a causal relation that, by stipulation, exists. 

 In our example, causal mediation techniques enable us to answer the following questions: 

1) If there were no path going through the mediator, what is the probability that your 
command would be sufficient for my waking up?  
 

2) If there were no path going through the mediator, what is the probability that your 
command would be necessary for my waking up?  

 
3) If there were only the path going through the mediator, what is the probability that 

your command would be sufficient for my waking up? 
 

4) If there were only the path going through the mediator, what is the probability that 
your command would be necessary for my waking up? 

 
It is important to distinguish between 1 and 2. In this example, the direct path is never sufficient 

for my waking up, but in some cases it is necessary. Since my being stressed raises the 

probability that I wake up, over a sufficiently large number of trials there will be cases where I 

would not have awakened in the absence of the stress. If one knows the total effect of your 

command on my waking up, one can derive the answers to 3 and 4 from the answers to 1 and 2. 

For example, suppose that the answer to 1 is that the direct path is never sufficient and that the 
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total effect of command is to raise the probability of wake up by 80%.  The answer to 4 is that the 

indirect path is necessary for my waking up in 80% of all cases, since in 80% of all cases it is the 

case that I wake up and that I would not have woken up if your command did not cause me to set 

an alarm.  By dividing this by the total effect (80/80) we get the result that in 100% of the cases 

where your command caused me to wake up, the indirect path was necessary for this to occur. 

Note that the sufficiency of one path is inversely related to the necessity of the other. The claim 

that the indirect path was necessary in 100% of the cases where your command caused me to 

wake up entails that the direct path was sufficient in 0% of these cases.   

 The first accomplishment of causal mediation techniques is to distinguish between the 

counterfactuals just considered and to map the logical relations among them. The direct effect 

(DE) indicates whether the direct path is sufficient for bringing about an outcome; the indirect 

effect (IE) indicates whether the indirect path is sufficient. As I will further explain in chapter 6, 

the portion of the total effect (TE) for which the direct effect is sufficient is given by DE/TE and 

the portion for which IE is sufficient is given by IE/TE. The portion of the total effect for which 

the direct effect is necessary is given by 1 – IE/TE, and the portion for which the indirect effect 

is necessary is given by 1 – DE/TE. In non-additive systems, the total effect is not the sum of the 

direct and indirect effects, but rather is divided between a portion for which one path is sufficient 

and a portion for which the other is necessary.  

For reasons that I cannot address until I introduce the appropriate notation in chapter 6, 

the total effect is equivalent to the direct effect of introducing the treatment minus the indirect 

effect of removing the treatment. While the total effect does not decompose into the sum of DE 

and IE, it is possible to decompose it into the contributions of the paths.  
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I still need to present the interventions corresponding to DE and IE, but a few points 

should be clear already. First, causal mediation techniques do not work by analyzing the 

contribution of each causal arrow in isolation and then combining them to yield the total effect. 

The direct and indirect effects are defined to give them a clear-cut relation to the total effect. 

Second, in evaluating the contribution of a path to the total effect, it is important to distinguish 

between the questions of whether it is necessary and whether it is sufficient. Your command is 

directly relevant to my waking up, even though the direct path is never sufficient for my waking 

up, but only (in some cases) necessary.  

 It might seem trivial to measure the direct effect. Simply intervene on the treatment while 

simultaneously intervening on the mediator to disrupt the indirect path. This approach is not 

adequate, since in systems with interaction, the direct effect of the treatment on the outcome may 

depend on the value of the mediator. There will therefore be as many direct effects as there are 

values of the mediator. In our example, there are only two values of alarm (on, off), so we now 

need to move to a more complicated case to make this problem more salient.  

Imagine that scientists develop a drug to reduce cholesterol. The drug has the intended 

effect, but unfortunately it also increases blood pressure. Worse, the scientists suspect that the 

drug is more effective at reducing cholesterol in people with higher blood pressure. They 

consider developing an auxiliary drug that blocks the effect of the cholesterol drug on blood 

pressure. Such a drug would only be worthwhile, however, if the cholesterol drug could still 

sufficiently reduce cholesterol without increasing blood pressure. In other words, the auxiliary 

drug is only worthwhile if the cholesterol drug has a non-negligible direct effect (figure 3).    
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Suppose that members of the drug trial would all have high blood pressure if they take 

the drug and medium blood pressure if they do not. Were the scientists to set everyone’s blood 

pressure to low while intervening to give trial members the cholesterol drug, this would tell them 

the direct effect of the drug on cholesterol for low-blood-pressure individuals. This, however, is 

not the quantity of interest. It is not the direct effect for the participants in the original study. The 

direct effect for these individuals corresponds to the effect that the drug would have on their 

cholesterol were they to have the blood pressure that they would have had were they not to 

receive the treatment. Two interventions are required to measure this. First, one must assign 

some participants to take the drug. Second, one must intervene on each individual’s blood 

pressure and set it to the value it would have had were they to not take the drug. In this example, 

one would set each individual’s blood pressure to medium. The quantity calculated in this 

manner is called the natural direct effect.  

 The concept of the natural direct effect provides the solution to a problem that might 

otherwise appear insoluble. The scientists in this case desire to know about the contribution of 

the direct path in the case where the indirect path is not disrupted. Yet the only way to isolate the 

direct effect is to disrupt the indirect path by intervening on the mediator. Pearl’s (2001) solution 

is to break the indirect path by intervening on the mediator, but to use an intervention that 

Figure 3 – in (a), the arrow represents the total effect of the drug on cholesterol. In (b), the 
arrow between drug and cholesterol indicates that drug influences cholesterol through a path 
not going through blood pressure. 

 
Drug 

 

Cholesterol 

(a) 

 
Drug Cholesterol 

Blood 
Pressure 

(b) 
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mimics the behavior of the mediator in the case where the path is not broken and the individuals 

do not receive the treatment. By setting the mediator as a function of the treatment, one makes 

the mediator behave as if it were still causally dependent on the treatment. By setting the 

mediator to the value that it would have had in the case where one did not receive the treatment, 

one renders the indirect path inactive.  

 Why do all the work necessary to measure the natural direct effect? Only the natural 

direct effect identifies the contribution of the direct path in the system that one is studying. If one 

were to intervene on the mediator to set it some arbitrary value, one would destroy the indirect 

path, but there would be no interesting relationship between the effect of the treatment on the 

outcome in the resulting system and the role played by the direct path in the original undisrupted 

system. The natural direct effect provides the answer to the following question: Given that the 

treatment causes the outcome to take a certain value when none of the paths are disrupted, what 

is the probability that the treatment would still be sufficient for the outcome were the indirect 

path to be disrupted? It is only through joint interventions of the sort required for measuring the 

natural direct effect that one can make the relationship between the contributions of paths in a 

disrupted system and the effect of the treatment on the outcome in an undisrupted system precise.  

  The definition for the indirect effect is more complicated than that for the natural direct 

effect. It is straightforward to see that in order to measure the direct effect one has to intervene 

on the mediator. For the indirect effect, there is no measured variable on the direct path upon 

which one can intervene. This obstacle may be surmounted as follows. To measure the indirect 

effect, one must perform two joint interventions on the treatment and the mediator:  

1. a) Assign each participant to not take the drug 
b) Set each participant’s blood pressure to the value it would have had had she taken 
the drug 
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2. a) Assign each participant to not take the drug 
b) Set each participant’s blood pressure to the value it would have had had she not 
taken the drug 
 

The indirect effect is given by the difference in cholesterol levels resulting from joint 

interventions 1 and 2. By intervening on the indirect path and changing the mediator in the way 

that it would have changed had one intervened on the treatment, one simulates the effect of the 

treatment on the mediator. In this respect, the path behaves as if it were not broken. Nevertheless, 

by assigning everyone to the control group, one eliminates the contribution of the direct path. 

Using this method, one can identify the sufficiency of the indirect path without any disruption to 

the direct one.  

 The definition of the indirect effect is perhaps the most significant success of causal 

mediation techniques. Moreover, it is difficult to see how one could develop an adequate account 

of mechanistic explanation without appealing to indirect effects. Craver’s discussion of inter-

level experiments clarifies how one can establish that the rat’s entering the maze activates the 

hippocampus, which in turn leads to the rat’s successfully completing it. The existence of this 

causal path containing the hippocampus leaves open many important questions about the role of 

the hippocampus in spatial memory. For example, are there distinct causal paths that influence 

spatial memory? If so, to what degree does the rat’s maze-navigating ability depend on the 

hippocampus, rather than on these other paths? Only by measuring the indirect effect can one 

determine the degree to which the hippocampus contributes to spatial memory independent of 

factors on other causal paths, if there are any. I can afford to be non-committal about whether 

there are other paths, since my point here generalizes beyond this particular case. As we will see 

in the following chapter, in identifying the indirect effect, one can determine the contribution of 
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the indirect path without having knowledge of unmeasured variables on paths not going through 

the mediator, or even knowing whether there are such variables or paths. 

 At long last, we can see why the insufficiency of bottom-up experiments for uncovering 

the behavior of a mechanism in no way reveals that mechanisms call for non-causal explanation. 

To start, we can now precisely identify why singular ideal interventions on components are 

inadequate for evaluating their role in a functioning mechanism. The ability of a mechanism to 

bring about a phenomenon may depend on causal paths not going through the component. 

Moreover, the effect of the component on the outcome may be sensitive to the activity of these 

causal paths. Consequently, one cannot evaluate the contribution of a component by intervening 

on it unless one also intervenes to make the other paths behave in whatever ways are necessary 

to answer the relevant counterfactual question.  

Our discussion of causal mediation techniques reveals that questions about the 

“contribution” of a component are ambiguous between questions about its necessity and its 

sufficiency. Answering these questions requires joint interventions that set the treatment and 

mediator to specific values. Craver would refer to interventions on the treatment as top-down 

experiments and to interventions on the mediator as bottom-up experiments. But the necessity of 

using joint interventions to determine the contribution of a component is a result of interactions 

among variables and in no way points towards the existence of a non-causal form of explanation. 

 While it was important to specify how one can use ideal interventions to identify direct 

and indirect effects, the crucial point for our purposes is to understand what these effects are. The 

direct and indirect effects indicate the contribution of one path in the case where the other path 

behaves as it “naturally” would in the absence of an intervention on the treatment. Finding these 

contributions presents the challenge that in order to isolate a path one must disrupt the other path, 
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but in complex systems the contributions of the paths are not independent. This challenge may 

seem insurmountable, and I suggested that this appearance motivates the belief that causal 

explanation is limited to the relations among components in isolation and not applicable to their 

contributions to the whole. Causal mediation techniques surmount this apparent barrier. If 

mechanisms elude causal explanation, it is not because causal inference is limited to the 

synthesis of effects measured in isolation. Just as mechanists insist that we should decompose a 

mechanism into its component parts, causal modelers can extol the virtues of decomposing a 

total effect into direct and indirect effects.  

 The relationship between the total effect and the direct and indirect effects is not causal. 

Does this show that mediation techniques rely on a non-causal form of explanation? Of course 

not. The fact that the direct effect is not a cause of the total effect is irrelevant to the question of 

whether the contribution of the direct path to the outcome is causal. Clearly, it is. Similarly, we 

can grant to the mechanists that there is a non-causal relationship between the behaviors of 

components and the behavior of the mechanism without granting that there is a non-causal form 

of explanation.  

 
6. Mediation and Explanation 

Throughout the mechanist literature, one finds the idea that the phenomena produced by 

mechanistic systems are too complex to be explained solely by the “lower-level” behaviors of 

their parts (e.g. Bechtel and Richardson, 1993; Machamer et al. 2000). By examining Craver’s 

account, I have made this idea precise. The “lower-level” refers to the causal relations among 

components. The feature of complex systems that these allegedly cannot explain is the 

undisrupted behavior of the mechanism. I have answered this challenge to the sufficiency of 

causal explanation by appealing to causal mediation techniques. In this section I briefly consider 
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the usefulness of these techniques for developing an account of explanation that addresses the 

questions with which the mechanists have been concerned. 

It is easy to see why measuring mediators contributes to one’s understanding of a 

phenomenon. According to Woodward (2003, 191), successful explanations are able to answer 

“w-questions” of the form: What if things had been different? Mediation techniques allow one to 

answer a wider range of w-questions than one would be able to answer given only knowledge of 

the total effect. Woodward is not idiosyncratic in judging explanations by their ability to answer 

counterfactual questions. Glennan echoes a common mechanist claim when he writes:  

Understanding the nature, structure, and functional organization of the parts that make up that mechanism 
will allow one to determine the range of counterfactual circumstances under which the dependency 
between X and Y would be maintained—roughly those circumstances in which the mechanism will not 
break down. (2012, 288) 
 

 Mediation techniques enable one to do more than determine when a dependency between X and 

Y will break down. They allow one to quantify the ways that the magnitude of the dependency is 

sensitive to the activity of particular paths.27  

 Mediators often correspond to the entities that scientists call components. In fact, on the 

interpretation of Craver’s mutual manipulability criterion as saying that if ϕ is causally between 

the input and output of the mechanism, then it is a component, all mediators are mechanism 

components.28 If so, then mediation techniques have a role to play in mechanistic explanation. 

This is not to say that mediators explain in virtue of being (properties of) components. The 

burden of proof remains on the mechanists to show that the mechanism-component relation has 

any explanatory significance.  

Mechanists might disparage explanations that reduce physical mechanisms to DAGs as 

being anemic. Scrapings and pushings and dryings and carryings are uniformly replaced with 
                                                
27 Gebharter (2014) offers an account of multi-level mechanisms that allows for quantitative predictions, but he 
does show how to quantify the contributions of paths.    
28 Menzies (forthcoming) similarly argues that components are mediators. 
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arrows and variables. To develop this into an objection, mechanists would have to say more 

about what it is that DAGs allegedly omit. DAGs are able to represent the counterfactual 

dependence of variables on other variables and of a total effect on direct and indirect effects. If 

there are physical features of a system on which the mechanism does not counterfactually 

depend, in what sense are they explanatory? And what, precisely, do they explain? 

One apparent limitation of DAGs is that they do not represent the spatiotemporal 

organization of a mechanism. Mechanists have yet to produce a compelling account of 

“spatiotemporal explanation”. Craver’s account is opaque regarding what explanatory role 

spatiotemporal organization is supposed to play independent of the mutual manipulability 

criterion. Fagan invokes spatiotemporal organization to explain the interdependent behaviors of 

components. But this interdependence can be adequately explained using mediation techniques.  

 As textbooks are replete with diagrams detailing the components of mechanisms, it may 

seem obvious that the tracing of a mechanism’s components plays an integral part in explaining 

phenomena in the higher-level sciences. Causal mediation techniques suggest a way of 

understanding the role of mechanisms in science without needing to address the question of what 

counts as a component. I have not proven that mediation techniques are adequate for explaining 

all mechanistic phenomena, but I have, I hope, refuted the main argument to the contrary.  

 
7. Conclusion 

Scientists often pejoratively refer to “black-box explanations”. These explanations describe a 

phenomenon at too coarse-grained a level and therefore fail to explain it. What makes such 

explanations so bad? For mechanists, the problem is that they omit the physical entities and 

activities that are responsible for the phenomenon. To open the black box, one must examine the 
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relationship between the mechanism producing the phenomenon and its parts. Since this 

relationship is not causal, a new form of explanation is required. 

Causal mediation techniques suggest a different answer for why black-box explanations 

are deficient. Black-box explanations are uninformative regarding the counterfactual conditions 

under which a functional relationship will break down or be modified. Mediation techniques 

shed light on why one can better explain a phenomenon by uncovering mechanism components. 

One can therefore grant that scientists studying mechanisms are engaging in a task of great 

explanatory importance without granting that whether something counts as a component matters 

for explanation.  

The question of specifying the conditions under which a mechanism breaks down and 

when it doesn’t is a question about extrapolation. If one knows that a mechanism breaks down 

under a particular set of circumstances, one knows that the causal relationship between that 

mechanism’s input and output does not generalize to those circumstances. In the following 

chapter, I provide a more thorough introduction to causal mediation techniques and explain how 

and when they license inferences about the robustness of a causal relationship across 

interventions on particular causal paths. I then further explore the relationship between 

mediation, extrapolation and transportability in chapter 7.  
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Chapter 6: Causal Mediation Techniques 

 In my discussion of mechanistic explanations in chapter 5, I informally introduced causal 

mediation techniques. In chapter 7, I will evaluate the usefulness of mediation techniques for 

extrapolation. To do so, I need to provide a more extensive introduction to the details of 

mediation techniques. That is the aim of this chapter.  

 I present four ways of expressing the definitions of the direct and indirect effects in 

mediation models. First, one can give general definitions using Rubin’s (1974) potential 

outcomes. Second, in contexts where there are no confounding variables, one can define direct 

and indirect effects using conditional probabilities. Third, in contexts with possible confounding, 

one can express the effects using the conditional probabilities and do-operators. As we will see, 

this way of expressing direct and indirect effects is problematic. Fourth, in models with their 

structural equations specified, it is possible to express direct and indirect effects in terms of the 

structural parameters in the equations.  

 After presenting an overview of mediation techniques, I elucidate one way that they 

facilitate extrapolation. A clear sense in which mediation techniques relate to extrapolation is 

that the direct effect is what the total effect would be in a population where the indirect path is 

entirely disrupted, and the indirect effect is what the total effect would be in a population where 

the direct effect is entirely disrupted. I explore the possibility of using mediation techniques to 

extrapolate not only to cases where one of the paths is fully disrupted, but also to cases where the 

paths are only partially disrupted. I show that given parametric assumptions, it is possible to find 

the highest reduction potential of a policy that seeks to disrupt the indirect path. By “highest 

reduction potential” I mean the maximum reduction in the total effect that could result from any 

version of the policy that is at least partially successful in disrupting the indirect path. The idea 
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that mediation techniques enable one to find the highest reduction potential of policies that seek 

to disrupt particular paths is an elaboration on a point made by Pearl (2012a). I clarify the 

parametric conditions under which mediation techniques identify the highest reduction potential. 

I also argue that one can only specify such conditions when considering policies that disrupt the 

indirect path. There is no way to use parametric models to non-trivially specify the possible 

degrees of success of a policy that seeks to disrupt the direct path.  

 The formatting of this chapter differs from others in that each section is divided into 

subsections. Section 1 introduces the potential outcomes notation (1.1), defines natural and 

controlled direct effects (1.2), defines the indirect effect (1.3), and then compares these 

definitions to definitions relying on probabilistic expressions and do-operators (1.4). Section 2 

differentiates between different versions of direct and indirect effects (2.1) and shows how to 

decompose the total effect into direct and indirect effects (2.2). Section 3 reviews the distinction 

between parametric and non-parametric causal inference (3.1), gives parametric definitions of 

the direct, indirect effect and total effects in a model assuming additivity (3.2), and then provides 

the corresponding definitions for a model allowing for interaction (3.3). Section 4 presents the 

parametric conditions under which mediation techniques enable one to identify the highest 

reduction potential for a policy. Section 5 concludes.  

 
1. Defining Direct and Indirect Effects 

1.1. Potential Outcomes 

Within Pearl’s causal modeling framework, the standard way to represent causal effects is in 

terms of interventions. The effect of X on Y is given by the probabilistic expression P(Y|do(X)), 

where do(X=x) indicates that X is set to x by an arrow-breaking intervention. For reasons that 

will become clear, expressions consisting of probabilistic expressions and do-operators are ill 
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suited for representing direct and indirect effects. The standard definitions for path specific-

effect are given in terms of potential outcomes, which I will now introduce.  

 The potential outcomes notation was developed by Donald Rubin (1974). Potential 

outcomes are counterfactuals concerning how an individual would respond to a treatment. The 

potential outcome of receiving treatment X=x on outcome Y=y for individual i is denoted as 

follows: 

1   𝑌!! = 𝑦 

(1) is a deterministic counterfactual saying that if i receives treatment level x, her outcome with 

respect to Y will be y. For example, if X=x is taking Excedrin and Y=y is not having a headache, 

(1) says that were i to take Excedrin she would not have a headache. One can also consider the 

probability that taking Excedrin will cure a headache for a randomly selected individual in non-

homogeneous population:  

2   𝑃(𝑌! = 𝑦) 

In most cases we will be considering potential outcomes in non-homogeneous populations and I 

will therefore usually omit superscripts referring to individuals. Proponents of the potential 

outcomes framework emphasize the deterministic nature of the counterfactuals, but in practice 

one can typically identify only the average outcome for a treatment.   

 The potential outcome in (2) is equivalent to Pearl’s P(Y=y|do(x)). The difference 

between Pearl’s approach and Rubin’s is largely notational. In Pearl’s framework, one represents 

one’s causal knowledge using a DAG and then derives facts about potential outcomes from a 

DAG. One derives the potential outcome of x on y by breaking all of the arrows into X and 

setting its value to x. In Rubin’s framework, one does not use graphs. Rubin takes 𝑌!! = 𝑦 to be 

an undefined primitive specifying how an individual would respond to treatment level X=x. He 
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then provides additional assumptions that, when met, allow one to derive causal effects from 

potential outcomes. For example, the total effect on Y of changing the value of treatment X from 

x to x’ is defined as follows.  

3   𝑇𝐸!,!!(𝑌) = 𝑌!! − 𝑌! 

In (3), Yx indicates the value of y given x, so the total effect is the difference in the value of the 

outcome given two distinct values of the treatment. The assumptions under which one can infer 

the average TEx,x’ for a population are roughly those that are met by an experimental population 

in which individuals have been randomly assigned x or x’. Rubin’s particular assumptions do not 

matter for our purposes here. Pearl proves that his and Rubin’s frameworks are interchangeable.  

 We have already seen that identifying direct and indirect effects requires one to intervene 

on both the treatment and the mediator. Here is the potential outcome expression for the result of 

the joint intervention on the variables X and M:  

4   𝑌!,! = 𝑦 

Additionally, it is also possible to nest potential outcomes. That is, the treatment variable in a 

potential outcome expression can itself be given as a potential outcome, as follows:  

5   𝑌!" = 𝑦 

(5) states that when one sets the value of M to the value that it would have been had X been x, the 

outcome is Y=y. The expression 𝑌!" does not specify a value M=m to which M is set, but rather 

allows the value of M to depend on the value of X.  

While one can nest potential outcome expressions, one cannot nest do-expressions. The 

expression P(Y|do(M=m|do(X=x)) is not a well formed formula. To see this, it helps to compare 

this expression to two expressions that are well formed. P(Y|do(M=m)) denotes the probability 

of Y if one sets the value of M to m so that M no longer depends on its prior causes. 
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P(M=m|do(X=x)) denotes the probability that M would naturally take on the value of m when 

one does not intervene upon it, but one does intervene upon X. The expression 

P(Y|do(M=m|do(X=x)) is nonsensical, since it denotes the impossible case in which one both 

sets M to a particular value and to lets its value be determined by X. The reader may recall from 

chapter 5 that identifying the direct and indirect effects requires one to set the mediator in such a 

way that it behaves as if it were still responding to the treatment. In §1.4 we will address the 

question of whether such interventions can be represented with do-operators. Since one can nest 

potential outcomes, it is straightforward to use them to denote interventions that set the mediator 

to a value as a function of the treatment, as we will see presently.  

 
1.2. Natural and Controlled Direct Effects 

We can now use the potential outcomes notation in order to give precise definitions of the direct 

and indirect effects. In giving the definitions, I will continue to use the cholesterol drug example 

from the previous chapter. In the example, the treatment, X, is a drug that reduces cholesterol, the 

mediator, M, is blood pressure, and the outcome, Y, is cholesterol level. X=0 is taking a placebo 

and X=1 is taking the drug. We don’t need to specify the possible values of the other variables 

(they could be dichotomous or not, discrete or continuous etc.). 

  The direct effect of the treatment on the outcome is the effect that is not due to the path 

going through the mediator. When one intervenes on the mediator to set it to the same value for 

every member of a population, one can identify the controlled direct effect for that population:  

6 𝐶𝐷𝐸 𝑚 !,!(𝑌) = 𝑌!,! − 𝑌!,! 

The controlled direct effect is the difference in outcome between the treatment and control cases 

when one holds the mediator fixed at M=m. The subscripts 0 and 1 on the left-hand-side denote 

the control and treatment values of X. The order of the subscripts matters: had I written 
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𝐶𝐷𝐸 𝑚 !,! 𝑌 , this would correspond to 𝑌!,! − 𝑌!,!which equals negative 𝐶𝐷𝐸 𝑚 !,!(𝑌). An 

example of a controlled direct effect would be the effect of the drug on cholesterol when one sets 

everyone’s blood pressure to low. Since the drug can interact with blood pressure in changing 

one’s cholesterol level, there are as many controlled direct effects as there are values of M and 

they could all have different values.   

 Hitchcock (2001b) distinguishes between total effects and component effects. He defines 

the component effect of X on Y as the effect of X on Y while holding all other variables 

(including the mediator) fixed. He does not specify to which value one should set the mediator, 

so his definition for direct effect coincides with that of the controlled direct effect. As I just 

noted, however, there are many controlled direct effects, so without specifying a particular value 

of the mediator one cannot say anything definite about the direct effect – not even whether it is 

positive or negative. Worse, if one sets the mediator to the value that it naturally would take on 

given the treatment (i.e M1), one will not identity a component effect at all, since the controlled 

direct effect for that value of M will equal the total effect.  

 The natural direct effect is the effect that the treatment would have on the outcome were 

the mediator to take on the value that it naturally would were one not to receive the treatment:  

7 𝑁𝐷𝐸!,!(𝑌) = 𝑌!,!(!) − 𝑌!,!(!) 

There are two related senses in which the natural direct effect is natural. First, one sets the 

mediator as a function of the treatment, since it takes on the value it would have had in the 

control scenario (X=0). Second, one sets the mediator to the value that it would have had in the 

control scenario for every individual. If the individuals of the population differ in the value of 

M0, the NDE for the population is a weighted average of the NDE across all individuals. In this 
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sense, although NDE is calculated by an intervention on the mediator, it is not a population-level 

intervention, since it does not set every individual’s mediator to the same value.  

One cares about the natural direct effect because one wants to know about what the 

direct path is contributing in the population that one is studying. Suppose that the value of M0 is 

less than that of M1 and one set the mediator to a value that is less than that of M0. In the drug 

case, this would involve setting blood pressure to low when no one in the population has low 

blood pressure in either the treatment or control scenarios. Learning that taking the pill lowers 

the average cholesterol in the population when everyone has low blood pressure does not tell one 

that there is a direct effect in the population when the pill is taken under ordinary circumstances. 

What one wants to know is whether the pill would have lowered cholesterol in the members of 

the population if they took the pill and it did not raise their blood pressure. To evaluate this, one 

cannot set their blood pressure to just any level; one must set it to the level that it would have had 

were they not to take the drug, but rather the placebo.  

Note that NDE0,1 does not equal negative NDE1,0. I’ll have more to say about this later. 

Here I’ll just highlight that in evaluating NDE0,1 one holds the mediator fixed to M0 and in 

evaluating –NDE1,0 one holds the mediator fixed to M1. In the following, I will only be referring 

to the natural direct effect, so from here on I will usually refer to NDE as the direct effect. I will 

refer to NDE0,1 as the sufficient direct effect and –NDE1,0 as the necessary direct effect, for 

reasons I will make clear in §2.1. Whenever I refer to the ‘direct effect’ without further 

clarification, I mean the sufficient natural direct effect.  

 
1.3 Indirect Effects 

In a model with a direct and indirect path, there is no included variable that one can intervene 

upon in order to disable the direct path and evaluate the indirect effect. For this reason, in the 
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first edition of Causality (2000) Pearl argued that it is not possible to provide a meaningful 

interpretation of the indirect effect. Apparently undaunted by the impossibility of the task, Pearl 

(2001) provided a definition of the indirect effect.   

 To define the indirect effect one must find a way to make the mediator behave as if it 

were responding to a change in the treatment variable without actually changing the value of the 

treatment value. The first step to doing this is already present in the definition of the natural 

direct effect. In finding the natural direct effect, one does not intervene on the mediator in such 

as way as to fully sever its connection with the treatment. Rather, by setting it as a function of 

the control value of the treatment one makes it behave as if it were still responding to the 

treatment. The second insight necessary for defining the indirect effect is that one can make the 

mediator behave as if it were responding to a change in the value of the treatment. By comparing 

the mediator at both M0 and M1, we can see how the mediator would respond to a change in the 

treatment variable without actually changing the value of the treatment variable. 

 Within the potential outcomes framework, the indirect effect is given by the following 

equation:  

8   𝐼𝐸!,!(𝑦) = 𝑌!,!(!)−  𝑌!,!(!) 

By comparing the values of the outcome for both M1 and M0, one simulates the behavior of the 

mediator in response to the treatment. Since in both terms the value of the treatment is 0, any 

difference between the terms is not a result of a change in the value of the treatment.  

 As with the direct effect, IE0,1 does not equal negative IE1,0. While IE0,1 holds X at 0, IE1,0 

holds X at 1. I will refer to IE0,1 as the sufficient indirect effect and to –IE1,0 as the necessary 

indirect effect and I will be referring to the former whenever I don't explicitly say otherwise. 

Note the minus sign in front of the necessary indirect effect. The minus sign is there to correct 
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for the fact that when one switches from IE0,1 to IE1,0 one switches the order in which one 

subtracts one potential outcome from another. That is, as a result of the negative sign, the 

necessary indirect effect corresponds to Y1,M(1) – Y1,M(0)  rather than Y1,M(0)  – Y1,M(1). This allows 

for a more straightforward comparison between the necessary and sufficient indirect effects, 

since both are derived by subtracting the term with M0 from the M1.The important difference 

between the sufficient and necessary direct effects is that they are evaluated relative to different 

values of X. 

Tellingly, there is no controlled version of the indirect effect. Since there is no variable 

that one can fix for all members of the population in order to derive IE, one can only evaluate it 

by making the mediator vary as it naturally would in response to the treatment.  

 Direct effects can only be defined relative to a model. The direct effect of X on Y is the 

effect not going through any mediator that is included in the model. Indirect effects are also 

model relative in the trivial sense that to specify an indirect effect, one must specify a mediator. 

Yet they differ from direct effects in that one can define them without reference to any other 

paths.29 Of course, if one knows about the mediators along other paths, one can identify the 

indirect effect of interest by intervening to set those mediators to their “natural” values. But one 

does not have to do so. Holding the treatment fixed at X=0 ensures that any of these unmeasured 

variables will take on their “natural” values automatically.  

I will postpone discussing the relevance of mediation to extrapolation until the next 

chapter, but the fact that one can define the indirect effect independently of the behavior of the 

other paths is clearly important. A central difficulty for addressing extrapolation is that the effect 

of one variable on another can depend on an indefinite number of background factors and even if 

                                                
29 In the case where there is only one path and that path has a mediator, the “indirect” effect equals the total effect. 
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one tries to isolate some of those factors, there could be others that vary across populations in 

ways that alter the magnitude of the effect. This is what I called “the problem of the unknown 

unknowns”. When one identifies the indirect effect, one is able to learn something about the 

behavior of an indefinite number of unmeasured mediators along other paths. Namely, one is 

able to determine what would occur if none of them responded to the change in the treatment.  

 
1.4 Potential Outcomes, Conditional Probabilities and do-Expressions 

I will now explain why the definitions of NDE and IE are more easily expressed using potential 

outcomes notation than they are using conditional probabilities with do-operators, despite the 

fact that the two notations are inter-translatable. To do so, I will show how both NDE and IE can 

be represented using conditional probabilities in a population with no confounding and then 

reveal the difficulties with adding do-operators to these expressions in cases with confounding.  

 In populations where there is no confounding and the error terms are therefore 

independent (as follows from the Causal Markov Condition), we can replace expressions of the 

form P(Y|do(X)) with the simpler P(Y|X). The expression for NDE is as follows:  

9 𝑁𝐷𝐸!,! =    𝐸 𝑌 𝑋 = 1,𝑀 = 𝑚 − 𝐸 𝑌 𝑋 = 0,𝑀 = 𝑚 𝑃(𝑀 = 𝑚|𝑋 = 0)
!

 

In reading this expression, it helps to momentarily ignore the term in brackets in order to 

highlight the way that the function 𝑃(𝑀 = 𝑚|𝑋 = 0)!  enables one to provide an average 

effect over different values of the mediator. Not every member of the population has the same 

value of the mediator when X equals 0. 𝑃(𝑀 = 𝑚|𝑋 = 0) gives the distribution of the values of 

the mediator given that X=0. The assumption of no confounding guarantees that this distribution 

corresponds to the distribution of the mediator if one were to intervene to set the treatment for 

each individual to 0. We see that the function 𝑃(𝑀 = 𝑚|𝑋 = 0)!  takes the term in 
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brackets and reweights it according to the distribution of the mediator in the case where X=0. 

Now let’s look at the term in brackets. This term denotes the difference in the expected value of 

the outcome given the treatment value and its expected value given the control value for a 

particular value of the mediator. This is the expression that captures the intervention on the 

treatment that changes it from X=0 to X=1. This effect is different for different individuals in the 

population based on their value for the mediator. To calculate the average direct effect in the 

population, one finds the effect of changing the treatment from 0 to 1 for each value of the 

mediator, and then uses the weighting function to determine what the distribution of the mediator 

would be in a population where everyone received the control version of the treatment. 

Averaging in this manner yields the natural direct effect (𝑌!,!(!) − 𝑌!,!(!)).  

 One cannot in general assume that there is no confounding. One might try and generalize 

the definition of NDE to scenarios where there is possible confounding by adding do-operators 

as follows:  

10 𝑁𝐷𝐸!,! =   
𝐸 𝑌 𝑑𝑜(𝑋 = 1),𝑑𝑜(𝑀 = 𝑚 )− 𝐸 𝑌 𝑑𝑜 𝑋 = 0 ,𝑑𝑜 𝑀 = 𝑚             

𝑃(𝑀 = 𝑚|𝑑𝑜 𝑋 = 0 )
!

 

The use of the do-operator in (10) is highly non-standard. The do-operator usually corresponds to 

an ideal experimental intervention in which one sets a variable to a particular value for every 

member of a population. Here one sets the value of the mediator to different values for different 

members of the populations in such a way that the percentage of individuals who receive a 

certain value of M is proportional to P(M=m|do(X=0)). Moreover, for (10) to provide an estimate 

of the average NDE in the population, one needs to assign values of the mediator in such a way 

that whether an individual i is assigned a particular value of the mediator is uncorrelated with 

how she would react to the mediator assignment (i.e her distribution for 𝑃(𝑌!,!! = 𝑦)). So 

although NDE can be expressed in do-notation, it is not clear whether it corresponds to a well-
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defined intervention. To identify the NDE, it might be more promising to attempt to deconfound 

the X-M relationship (by conditioning on common causes), rather than physically intervening on 

M.  

  In a population with no confounding, the probabilistic expression for IE is as follows: 

11 𝐼𝐸!,!(𝑌) =    𝐸 𝑌 𝑋 = 0,𝑀 = 𝑚   [𝑃 𝑀 = 𝑚 𝑋 = 1 − 𝑃(𝑀 = 𝑚|𝑋 = 0)]
!

 

The first term is expected value of the outcome for the control value of the treatment and 

different values of the mediator. The weighting of the mediator is given by the second term, 

which, for each value of the mediator, is the difference in its value given the treatment and 

control values of the treatment variable. Note that the variable X plays two distinct roles in the 

definition. In evaluating the expected value of the outcome, one holds the treatment fixed at the 

control value. In calculating the weighting for the value of the mediator, one varies the mediator 

to mimic the way it would vary were the treatment to change. This corresponds to the two roles 

of the treatment in the corresponding potential outcome expression  𝐼𝐸!,!(𝑌) = 𝑌!,!(!)−  𝑌!,!(!). 

 The natural way to generalize (11) to cases with confounding is as follows. First, 

distribute the first term in the expression over the two terms in the brackets: 

12 𝐼𝐸!,! 𝑌 =   

𝐸 𝑌 𝑋 = 0,𝑀 = 𝑚 𝑃 𝑀 = 𝑚 𝑋 = 1 − 𝐸 𝑌 𝑋 = 0,𝑀 = 𝑚 𝑃(𝑀 = 𝑚|𝑋 = 0)
!

 

Then add do-operators as follows:  

13 𝐼𝐸!,!(𝑌) =   
𝐸 𝑌 𝑑𝑜(𝑋 = 0),𝑑𝑜(𝑀 = 𝑚) 𝑃 𝑀 = 𝑚 𝑑𝑜(𝑋 = 1) −
𝐸 𝑌 𝑑𝑜 𝑋 = 0 ,𝑑𝑜 𝑀 = 𝑚 𝑃(𝑀 = 𝑚|𝑑𝑜(𝑋 = 0))

!

 

Yielding what I believe to be the most ugly equation in the dissertation.  
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 The problems with (13) are not merely aesthetic. There does not appear to be any way to 

identify the indirect effect using an experiment. This is clearest if we consider some individual i. 

To know the indirect effect for i, we need to know the following four things:  

A) i's value of the mediator for X=0 (M0) 

B) i's value of the mediator for X=1 (M1) 

C) i's value for the outcome in the case where she has the value of the mediator she 
would have if X=0 (Y0,M(0)) 

D)  i's value for the outcome in the case where she has the value of the mediator she 
would have if X=1, but she did not receive the treatment (Y0,M(1)) 
 

It is a familiar problem in causal inference that to measure the magnitude of an effect, one must 

know how a subject would respond to both the control and the treatment; but every individual 

receives only X=0 or X=1. The standard solution is to randomize, so that the behavior of 

individuals in the control condition corresponds to that of how those who took the treatment 

would have responded had they been in the control condition. This solution does not work in the 

case of mediation. To find the values of both C and D, one would have to randomize the 

mediator. But randomizing the mediator would break the arrow between the treatment and the 

mediator and thus make it impossible to identify both A and B by randomizing the treatment.  

The upshot of the present discussion is that although it is possible to express direct and 

indirect effects using do-operators, doing so does not grant one the characteristic benefits of 

using do-expressions. While such expressions generally provide a guide to how to identify a 

causal relationship using controlled experiments, the do-expressions for NDE and IE do not.  

 Although the details of this section have been fairly technical, the explanation for why 

do-expressions are ill suited for discussing direct and indirect effects is simple. To find the direct 

or indirect effects, one must intervene on the mediator. Interventions on the mediator break its 

connection with the treatment. Yet, one must set the mediator so that it behaves as if it were 
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responding to the treatment. In the absence of confounding, the response of the mediator to the 

treatment corresponds to P(M|X). While Pearl’s notation can easily evaluate P(M|X) and also 

expressions containing do(M), the evaluation of one expression in a population is incompatible 

with the evaluation of the other. 

 

2. The Interpretation of Direct and Indirect Effects 

2.1 Necessary and Sufficient Effects 

The total effect TEx,x’(Y) always equals –TEx’,x(Y) . If moving from x to x’ increases Y by a 

certain amount, then moving from x’ to x decreases Y by that same amount. With the total effect, 

the order of the subscripts affects whether TE is positive, but nothing else. In contrast, for NDE 

and IE, changing the order or the subscripts changes the quantity that one is evaluating. When 

evaluating TEx,x’,  NDEx,x’ is the sufficient direct effect, –NDEx’,x is the necessary direct effect, 

IEx,x’ is the sufficient indirect effect, and –IEx’,x is the necessary indirect effect. These ways of 

labeling the effects are mine, though the interpretation I am about to provide for these effects is 

standard.  

 In thinking about the interpretations of path-specific effects, it helps to bear the following 

identity in mind: 

14 𝑌!,! ! = 𝑌!  

In other words, the result of setting the treatment to X=x and the mediator to the value it takes 

when X=x is the same as just setting the treatment to X=x and not intervening on the mediator. 

Given this identity, we can rewrite the sufficient and necessary direct effects as follows: 

15 𝑁𝐷𝐸!,!(𝑌) = 𝑌!,!(!) − 𝑌! 

16 − 𝑁𝐷𝐸!,! 𝑌 = 𝑌! − 𝑌!,!(!) 
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These expressions make salient the counterfactuals that each quantity represents. The second 

term in (15) is the value the outcome variable would have in the control condition. The first term 

in (15) indicates the value the outcome variable would have were one to take the treatment while 

rendering the mediator unable to respond to this change in the treatment. The difference between 

these terms is the increase in the value (or expected value) of the outcome that would result from 

taking the treatment rather than the control were there to be no indirect path. It is the benefit (or 

harm) of the direct path as compared to the scenario where there is no treatment.  

 While the second term in (15) refers to the outcome when one does not receive the 

treatment, the first term in (16) refers to the outcome when one does. The second term then 

subtracts the value of the outcome when there is no treatment, but the mediator acts as if there 

were one. It is the harm (or benefit) of lacking the direct path as opposed to having the treatment 

act through both paths.  

 In a deterministic system where Y has only two values, 1 and 0, corresponding to whether 

the outcome does or does not occur, the sufficient direct effect will be 1 just in case the outcome 

would not occur in the absence of the treatment and would occur in the presence of the treatment 

even if there were no indirect path. We would then say that the direct path is sufficient for the 

outcome. The necessary direct effect is 1 just in case the outcome would occur given the 

treatment, but would not occur if the direct were path not active. We would then say that the 

direct path is necessary for the outcome. 

In mixed populations, the sufficient and necessary direct effects will indicate changes in 

the expected value of the outcome and may have values between 0 and 1. The sufficient direct 

effect is then the increase over E(Y0) in the expected value of the outcome that would occur if 
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there were a direct effect. The necessary direct effect is the amount by which the expected value 

of the outcome in the case where there were no direct effect would be less than E(Y1).  

When the outcome variable is non-dichotomous, one cannot claim that an effect is 

necessary or sufficient for the effect without further specification. In order to say that the pill was 

either necessary or sufficient for reducing cholesterol, one needs to specify a level of cholesterol 

such that the pill is considered to be successful when it brings cholesterol below that level. It 

only makes sense to talk about the treatment being necessary or sufficient for an outcome once 

one has specified the level of the outcome variable for which it is necessary or sufficient.  

 We can explicate the sufficient and necessary indirect effects in a similar manner. Using 

the equivalence in (16) we get the following definitions:  

17   𝐼𝐸!,! = 𝑌!,!(!)−  𝑌! 

18   −𝐼𝐸!,! = 𝑌! − 𝑌!,!(!) 

The sufficient direct effect is the effect of the treatment acting only through indirect path as 

compared to the scenario in which it acts through neither of them. The necessary direct effect is 

the effect of the treatment not acting through the indirect path, as compared to its acting through 

both. These are different, because they are evaluated relative to different values of the treatment.  

 

2.2 Decomposing the Total Effect Into DE and IE  

The total effect decomposes into direct and indirect effects in one of two ways: 

19 𝑇𝐸!,! = 𝑁𝐷𝐸!,! − 𝐼𝐸!,! 

20   𝑇𝐸!,! = 𝐼𝐸!,! − 𝑁𝐷𝐸!,! 
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Note that in each equation, the subscripts for the direct effect and the indirect effect are reversed. 

The proofs of (19) and (20) trivially follow from definitions 15-18. For example, we can 

explicate the right hand side of (19) with using (15) and (18): 

21 𝑁𝐷𝐸!,! − 𝐼𝐸!,! =   𝑌!,! ! − 𝑌! + 𝑌! − 𝑌!,! ! = 

𝑌! − 𝑌! =   𝑇𝐸!,!   

It may appear strange that to get the total effect one must subtract one path-specific effect from 

another, but this is just an artifact of the negative sign in the necessary direct and indirect effect. 

Using my definitions, the total effect decomposes into either the sum of sufficient direct effect 

and the necessary indirect effect, or the sum of the sufficient indirect effect and the necessary 

direct effect.30  

 It is important that the total effect is not the sum of the sufficient direct effect and the 

sufficient indirect effect. The reason for this is that when the contributions of the paths are non-

additive, the total effect is not the effect of two independent contributions. To dramatize the 

point, if there are two paths that are individually sufficient, then both the sufficient direct effect 

and the necessary direct effect would be one and the total effect would also be one. One can 

think of decompositions (19) and (20) as follows. Suppose that the total effect is that X raises the 

expected value of Y by .8 and the direct effect is .5. Since the direct path cannot account for the 

total effect in the absence of the indirect path, the indirect path is needed to get the total effect. 

The necessary direct effect picks up slack, so to speak, for the failure of the sufficient direct 

effect to bring about the total effect by itself.  

 The sum of the sufficient direct and indirect effects does equal the total effect when the 

contributions of the paths are additive. When the paths are additive, the direct effect of the 

                                                
30 I am grateful to Malcolm Forster for pointing out that there was a way to represent the total effect as a sum. 
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treatment on the outcome does not depend on the value of the treatment, so NDE0,1 = –NDE1,0. 

Plugging this equivalence into (19) yields TE0,1 = IE0,1 + DE0,1. The additivity of the direct and 

indirect effects in models without interaction is a special case and should not be assumed in 

general.  

 In section 2.1, I explicated direct and indirect effects in terms of whether they were 

necessary or sufficient for the outcome to take on a certain value. Another way to explicate direct 

and indirect effects is in terms of how the magnitude of path-specific effects compares to the 

total effect. Pearl (2012) distinguishes between the portion of an effect that is explained by a path 

and the portion of an effect that is owed to a path. By dividing the direct effect by the total effect, 

one gets the portion of the total effect that is explained by the direct effect. That is, it is the 

portion of the total effect for which the direct path is sufficient. The rest of the total effect is 

owed to the indirect path. 1 – DE/TE gives the portion that is owed to the indirect effect. 1 – 

DE/TE is equivalent to the necessary indirect effect divided by the total effect, as can be seen by 

dividing all the terms in (19) by TE0,1. 

 Correspondingly, IE/TE gives the portion of the effect for which the indirect path is 

sufficient and 1 – IE/TE is the portion for which the direct path is necessary. 1 – IE/TE is equal 

to the necessary direct effect divided by the total effect.  

 
3. Parametric Versions of DE and IE 

3.1 Parametric and non-Parametric Inference 

The definitions that I have provided so far for path-specific effects are entirely non-parametric. 

Most crucially, they allow for any degree of interaction between the treatment and the mediator. 

In this section, I consider the properties of direct and indirect effects in models with particular 

parametric forms. Although these are only special cases of the more general definitions just 
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provided, they will be helpful for getting a more concrete picture of what the different effects 

represent. Moreover, in section 4 I argue that one of Pearl’s suggestions for how mediation 

techniques facilitate extrapolation only works given certain parametric assumptions.  

 The two types of models I will consider are linear models and models that contain an 

interaction term, but are otherwise linear. Although causal models may have an indefinite 

number of functional forms, the difference between models with and without interaction is more 

important for understanding mediation than whether, for example, a relationship is linear or 

quadratic.  

 
3.2 TE, DE and IE in Additive Models 

A nice example of a mediation model in which the direct and indirect paths make additive 

contributions comes from consumer choice theory.31 Consider an agent Renée who spends all her 

money on coffee and cigarettes. For a given level of income, Renée buys a bundle of coffee and 

cigarettes that maximizes her utility. Renée is willing to substitute coffee for cigarettes, and the 

more coffee she has, the fewer cigarettes are needed in order to compensate for the loss of a cup 

of coffee (and vice versa). This is represented by the fact that she has a convex indifference 

curve (see figure 1a). Every bundle on an indifference curve is equally desirable to Renée. In the 

figure, the line from the y-axis to the x-axis is a budget constraint that is determined by her 

income and the prices of coffee and cigarettes. Renée maximizes utility when she buys the 

package of goods corresponding to the point where the budget constraint is tangent to the 

indifference curve (‘A’ in the figure).32  

 
                                                
31 I am grateful to Arik Roginsky for suggesting a possible connection between mediation techniques and consumer 
choice theory.  
32 A well-known exception to the claim that the budget constraint is tangent to the indifference curve is cases where 
there is a “corner solution” – i.e. cases where an agent is unwilling to trade good X for any amount of good Y.    
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The price effect for cigarettes is the change in the quantity of cigarettes consumed due to 

a change in the price of cigarettes. The price effect can be decomposed into two additive effects, 

the substitution effect and the income effect. Suppose the price of cigarettes increases. The 

substitution effect is the effect of the price change on quantity that results from the fact that 

cigarettes are now less desirable to Renée relative to coffee. Even if the price change did not 

reduce Renée’s total buying power (so that she could remain on the same indifference curve), she 

would still buy a package of goods that had fewer cigarettes and more coffee (fig. 1(b)). But the 

price change does reduce her buying power, since prices have risen and her income has not. This 

is represented by orthogonally shifting the budget constraint closer to the origin (fig 1(c)). She 

cannot buy a bundle of goods on the same indifference curve, but must buy a bundle of goods on 

an indifference curve that is tangent to the shifted budget constraint. The income effect is the 

Figure 1 – Not Drawn to Scale 
 

(a) The preferred bundle of goods corresponds to the point ‘A’ at which the budget constraint meets the 
indifference curve.  
 
(b) The substitution effect (a – b) is the effect that results from the shift in the relative desirability of the 
goods while remaining on the same indifference curve.  
 
(c) The income effect (b – c) is the effect of a decrease in buying power while keeping preferences 
fixed. It orthogonally shifts the budget constraint towards the origin.  
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effect of the price change on the quantity of cigarettes consumed that is due to Renée’s decreased 

buying power. Alternatively, it is the decrease in cigarette consumption that is not due to the shift 

in the relative desirability of the two goods. In figure 1, the substitution effect shifts the quantity 

of cigarettes consumed from c to b and the income effect shifts it from b to a. The total effect is 

given by a – c.  

 

 

 

 

 
The relationship between the price, substitution and income effects is easily represented 

using a causal mediation model. Figure 2 is a model with three variables: the price of cigarettes, 

the relative desirability of cigarettes and the quantity of cigarettes consumed. We will continue to 

denote the treatment as X, the mediator as M, and the outcome as Y. We will ignore the 

parameters for a moment.  

Relative to the model, the total effect corresponds to the price effect, the direct effect 

corresponds to the income effect, and the indirect effect corresponds to the substitution effect. 

The direct effect corresponds to the income effect, since the income effect is the effect the price 

change would have on the quantity consumed were the value that Renée places on cigarettes 

relative to other goods not to change. The indirect effect corresponds to the substitution effect, 

since it is the effect the price change would have on the quantity consumed were Renée’s relative 

preferences to change while her buying power remained the same. The total effect is the price 

effect.  
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 Let’s suppose that the structural equations for the model in figure 2 are linear, as 

follows:33 

(22) x = a0 + 𝝐x  

(23) m = b0 + ßx + 𝝐m 

     (24) y = c0 + αx + 𝜸m +  𝝐y 

There is no reason to suppose that the equations are in fact linear, but the discussion here will 

easily generalize to any additive model. In additive models, the decomposition of the total effect 

into the direct and indirect effects is simple, since it is just the sum of the other two effects. 

Additionally, and relatedly, in additive models there is no need to distinguish between necessary 

and sufficient effects. The way that these ideas are related is that the total effect is always the 

sum of the sufficient direct effect and the necessary indirect effect (eq. (19) above). It follows 

that the sufficient direct effect and the sufficient indirect effect make additive contributions to the 

total effect if and only if the sufficient direct (indirect) effect equals the necessary direct 

(indirect) effect. 

 In linear models, the parametric versions of the total, direct, and indirect effects are as 

follows: 

            25 𝑇𝐸!,! 𝑌 =   −𝑇𝐸!,! 𝑌 = 𝛼 + 𝛽𝛾 

26 𝐷𝐸!,! 𝑌 =   −𝐷𝐸!,! 𝑌 = 𝛼 

27 𝐼𝐸!,! 𝑌 = −𝐼𝐸!,! 𝑌 = 𝛽𝛾 

The reason that the sufficient and necessary direct effects are not generally equivalent is that they 

are evaluated relative to different values of the mediator. In models without interaction, however, 

the activity of the direct path does not depend on the value of the mediator. According to 

                                                
33 Note that in equation (22) a0 and 𝝐x cannot be independently estimated unless one makes an assumption about the 
distribution of the error term.  
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standard economic theory, the magnitude of the income effect does not depend on an 

individual’s relative preferences for goods. So the income effect of moving from price X=x to 

price X=x’ has the same absolute value as the income effect of moving from X=x’ to X=x.  

 The additivity of the decomposition of the price effect into the income and substitution 

effects is a consequence of two standard assumptions. First, the budget constraint for an agent is 

treated as exogenous, and thus does not depend on the values of other variables in the model. 

Second, one assumes that the shape of the indifference curve is independent of the budget 

constraint. For non-economists, it is not difficult to imagine cases in which the second 

assumption fails. It would fail, for example, if when Renée has less buying power, she is more 

reluctant to trade cigarettes for coffee. In such a case, the sufficient indirect effect (the 

substitution effect) would not equal the necessary indirect effect (which has no name in 

economics). Suppose that the total effect of a decrease in the price of cigarettes from $9 to $8 a 

pack is to change her consumption from 6 cigarettes a week to 10. The sufficient indirect effect 

of the price decrease is the increase in cigarettes (over the 6) that would result from the price 

decrease were there to be no income effect. The necessary indirect effect of decreasing the price 

is the amount by which the quantity would fall short (of 10) were there to be only the income 

effect.34 Yet, 10-cigarette Renée feels richer than 6-cigarette Renée. So the answer to the 

question of how many fewer cigarettes 10-cigarette Renée would smoke in the absence of the 

substitution effect need not correspond to the number of cigarettes that 6-cigarette Renée would 

add in the presence of the substitution effect.  

                                                
34 This claim might initially seem counterintuitive. If the indirect effect effectively holds the values along the direct 
path corresponding to the income effect fixed, then shouldn’t there no be an income effect whether one is evaluating 
the sufficient or the necessary direct effects? While it is true that in evaluating the sufficient and necessary direct 
effects one holds the treatment fixed, in evaluating the necessary direct effect, one holds the treatment fixed to its 
post-price-increase value. The sense in which the necessary indirect effect assumes that there is an income effect is 
that it evaluates the policy relative to a scenario in which it has already influenced the value of the treatment.  
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From the perspective of mediation, the most important consequence of the assumption 

that the substitution and income effects make additive contributions is that if one only knows one 

of them and the price effect, one can calculate the other. For example, the income effect is 

calculated by subtracting the substitution effect from the price effect. We have already seen that 

this is not true in general. If the component effects did not make additive contributions, then 

subtracting the substitution effect from the price effect would not yield the income effect (i.e. the 

sufficient direct effect), but rather the necessary direct effect.  

 

3.3 TE, DE and IE in Linear Models with Interaction 

As we consider a more complex parametric form, it will help to switch to a simpler example. A 

university discovers that when students meet with their professors before submitting a paper, 

they get a better grade on the paper. In other words, the total effect of meeting with the professor 

(as opposed to not doing so) on one’s grade is positive. Does this reveal that professors are 

helping their students write better papers? Not necessarily. Suppose that when a student meets 

with a professor, this leads the professor to grade his paper more charitably and that this fully 

accounts for why students who meet with the professor get better grades. If so, then although the 

policy would raise student grades, it would not do so by making students write better papers. 
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We can represent this case using a mediation model in which the treatment is meeting 

with the professor, the mediator is paper quality (independent of the grade) and the outcome is 

the grade (figure 3). The structural equations corresponding to figure 3 are as follows.  

(28) x = a0 + 𝝐x 

(29) m = b0 + ßx + 𝝐m 

    (30) y = c0 + αx + 𝜸m + 𝛿mx+ 𝝐y  

The structural equations are similar to those in the linear case, with an added interaction term, 

𝛿mx, corresponding to the interaction between the treatment and the mediator. 

 The sufficient direct effect (𝑌!,!(!) − 𝑌!,!(!)) is the effect that meeting with the professor 

and writing a paper of the same quality one would have written without the meeting. The 

parametric version of the sufficient direct effect is as follows: 

31   𝐷𝐸!,! =   𝛼 + 𝑏!𝛿 

It is unsurprising that the direct effect depends on 𝛼. The second term requires some explanation. 

Since the direct effect is the effect of meeting in the case where one would have written a paper 

of non-meeting quality, and the values of the treatment and the mediator interact in causing the 

outcome, the value of DE0,1 depends on the non-meeting quality of the paper. For example, 

suppose that the worse a paper is, the more room there is for the grade to benefit from the 

teachers disposition. The teacher grades a group of freshmen papers and a group of sophomore 

papers. In the absence of the meeting, the freshman would have written worse papers. Since the 

direct effect is the effect of meeting on the grade given the non-meeting-quality paper and the 

teacher grades worse papers more charitably, the direct effect will be greater for the freshmen.  

 It is easy to see why the direct effect depends on the value of b0 by considering its 

potential outcomes representation, 𝑌!,!(!) − 𝑌!,!(!). The coefficient b0 corresponds to M0. The 
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dependence of the direct effect on b0 is a consequence of the fact that it depends on M0. The 

dependence of the direct effect on M0 reveals a subtlety regarding the sense in which the direct 

effect is independent of the behavior or the path going through the mediator. The direct effect is 

independent of the behavior of the indirect path in that it does not depend on the way that the 

variables along the path change in response to the treatment. That is, it does not depend on the 

values of ß and 𝜸. It nevertheless depends on the mediator in the sense that it is sensitive to the 

value that the mediator would have in the absence of the treatment. This sensitivity is captured 

by the interaction term 𝛿, which is multiplied by b0.  

 The parametric version of the necessary direct effect is as follows:  

32   −  𝐷𝐸!,! = 𝛼 + (𝑏! + 𝛽)𝛿 

The key difference between the sufficient and necessary direct effects is that they are evaluated 

relative to different values of the mediator. The necessary direct effect is evaluated relative to 

M1, which in this example equals (𝑏! + 𝛽). If we distribute the interaction term, we see that the 

difference between (31) and (32) is given by the term 𝛽𝛿.  

 In plain English, the difference between the sufficient and necessary direct effects is that 

in the former we are asking how much one would gain by the professor’s charitability and in the 

latter we are asking how much one would lose if one were to not have it. When we ask how 

much one would gain we compare it to the case where one writes the non-meeting-quality paper 

and meets with the professor. When we ask how much one would lose, we compare it to the case 

in which one wrote the meeting-quality paper, but didn't get the advantage of the professor’s 

charitability. These are different, because the two effects are being compared relative to papers 

of different quality and the quality of the paper interacts with the direct effect of the meeting on 

the grade. The difference in the quality of the papers is given by ß and the interaction of the 
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direct effect with paper quality is 𝛿, so the difference between the necessary and the sufficient 

direct effect is the product of these coefficients.  

 Here’s a story according to which the sufficient direct effect would be higher than the 

necessary direct effect. Imagine that when a paper is very good, the teacher will give it an A 

whether or not the student meets with her, but if the paper is average, the she will give it a B with 

the meeting and a B- without. Further suppose that the student would write a very good paper 

with the meeting and an average paper without. Then there will be no necessary direct effect, 

since from the perspective of the student who met and wrote the very good paper, there would 

have been no harm from losing the professor’s charitability. Had the professor forgotten about 

having met, this student would have been as well off. There would, however, be a sufficient 

direct effect. A student considering whether to meet would be well advised to meet even if the 

meeting doesn’t benefit the paper. If the student meets and then writes a non-meeting quality 

paper, he still benefits.  

 The indirect effect is the effect of meeting with the professor and only benefiting insofar 

as the meeting improves the paper quality (i.e the professor grades the paper as if she had never 

met with the student). The indirect effect would be of interest to a student who is considering 

meeting with a tutor who is just as good an improving the paper as the professor. The lower the 

indirect effect, the more incentive there is to meet with the professor over the tutor. 

The parametric version of the sufficient indirect effect in this case is straightforward: 

33   𝐼𝐸!,! =   𝛽𝛾 

The indirect effect is just the change in the mediator resulting from the treatment multiplied by 

the change in the outcome resulting from the change in the mediator. The necessary direct effect 

is as follows:  
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(34)  −𝐼𝐸!,! =   𝛽𝛾 + 𝛽𝛿 

The reason for the difference between (33) and (34) is that these effects are evaluated relative to 

two values of the treatment and the treatment interacts with the mediator. So changes in the value 

of the mediator corresponding to ß will have different effects proportional to the interaction term 

𝛿. 

The reason that –IE1,0, but not IE0,1, depends on 𝛿 is parallel to the reason that –NDE1,0, 

but not NDE0,1 depends on ß. Just as with the two types of direct effects correspond to two 

values of the mediator, the two types of indirect effects correspond to two versions of the 

treatment. In both cases, the difference between the sufficient and necessary versions is the result 

of treatment mediator interaction, and is given by ß𝛿. 

 A comparison of the parametric versions of the direct and indirect effects to the total 

effect is illuminating. 

35   𝑇𝐸!,! =   𝛼 + (𝑏! + 𝛽)𝛿 + 𝛽𝛾 

 Since b0 is just the value of the mediator when X=0 and we haven’t said anything about the 

values of the mediator, we can stipulate that the mediator is defined in such a way that b0=0. 

Given this assumption, the total effect is: 

36 𝑇𝐸!,! =   𝛼 + 𝛽𝛿 + 𝛽𝛾 

The first and third terms are the same as they are in the total effect for the additive model ((25)) 

and in the case where b0=0, they correspond to the direct and indirect effects, respectively. The 

middle term corresponds to the degree of interaction and what is responsible for the non-

equivalence of the necessary and sufficient versions of the direct and indirect effects. The middle 

term is the reason that the total effect cannot be neatly divided up into path specific effects. The 

reason that it is nevertheless possible to define DE0,1(Y) and IE0,1(Y) is that when one is 
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evaluating the effect of either the treatment or the mediator and one holds the other fixed, one 

does not need to take the magnitude of the interaction term into account. Counterfactually, the 

treatment and mediator always interact – the effect of one always depends on the value of the 

other. Yet, when evaluating a case in which one of them is held fixed, the degree of interaction 

𝛿  does not matter, since the value of the fixed variable doesn’t vary.  

 

4. Mediation and Extrapolation 

4.1 DE and IE as guides to Highest Reduction Potential 

The next chapter is devoted to the question of how the quantities measured using mediation 

techniques are useful for extrapolation. Here I will begin by discussing the most obvious sense in 

which direct and indirect effects are relevant to extrapolation. Learning about direct effects 

enables one to extrapolate to scenarios in which the indirect path is disabled, and learning about 

indirect effects enables on to extrapolate to scenarios in which the direct path is disabled. The 

very definitions of direct and indirect effects entail facts about the relationship between 

populations with different causal structures (i.e those in which paths are and are not disabled). 

This type of extrapolation is of limited usefulness. First, given that measuring direct and indirect 

effects typically involves intervening on variables in a population, it is not clear that one is ever 

able to extrapolate from the total effect to the path-specific effects or vice versa. If discovering a 

path-specific effect involves transforming that population into one in which there is only the 

path-specific effect and then measuring it, then which unknown causal quantities remain to be 

inferred? It is true that there are cases in which one can identify DE and IE without intervention 

– i.e. cases with limited or on confounding – but in such cases one will presumably be able to 

identify these effects in the target population without experiment, so extrapolation appears to be 
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unnecessary. Second, there is a sense in which such effects only allow extrapolations across two 

states of the same population. Third, even where we are only concerned with the relationship 

between the total effect and the path-specific effects in a population, we will want to know not 

merely what happens when a path is fully disrupted, but also when its behavior is altered.  

 Pearl’s (2012a) discussion of mediation contains an answer to the third concern. His 

proposal is that if one knows what would happen were the direct (or indirect) path entirely 

eliminated, this would also have implications for what would happen were the influence of the 

path merely attenuated. He briefly notes that mediation techniques enable one to identify (what I 

will refer to as) the Highest Reduction Potential (HRP) of certain policies. For example, if 

consuming a large amount of carbohydrates causes weight gain directly by increasing the amount 

of calories that the body does not use and indirectly by making one less likely to exercise, 

mediation techniques allow one to find the upper bound on how successful a policy encouraging 

people to exercise could be at reducing the effect of carbohydrates on weight. The proposal here 

is that the HRP of the policy corresponds to the necessary indirect effect, which corresponds to 

the decrease in the total effect that would result from disabling the indirect path (but not the 

direct one). While policies encouraging exercise might not fully offset the reduction in exercise 

that results from carb consumption, the benefit that would result in the case where it fully offset 

this reduction informs us of how successful the policy would be if it were to be maximally 

effective.  

 Here is the passage in which Pearl links mediation to extrapolation: 

Scientifically, mediation tells us “how nature works” and, practically, it enables us to predict behavior 
under a rich variety of conditions and interventions. For example, an investigator interested in preventing Y 
may wish to assess the extent to which Y could be prevented by changing an intermediate variable, Z, 
standing between X and Y, or modifying some intermediate process between X and Z. (Pearl 2012, p. #)  
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Later on, in the context of discussing linear models with interaction, he shows how to identify 

the “highest prevention potential” for policies seeking to reduce the influence of a path.  

 The phrase “highest prevention potential” is apt in situations where one wants to reduce 

the probability of the effect. Here I will use the more general term “highest reduction potential” 

(HRP) to encompass both cases in which one wants to prevent an effect and cases in which one 

desires the effect, but seeks to cut corners to reduce expense. Pearl gives a corner-cutting 

example when he discusses a hypothetical drug company that considers replacing a drug that 

works in part by producing a catalyzing enzyme with a drug that does not produce the enzyme 

and wants to evaluate the effectiveness of the replacement drug. Even the term HRP is too 

narrow, since in cases where the contribution of a path is negative, disrupting it will increase the 

effect. In this section I will focus on cases in which DE and IE are positive, though the results of 

this section easily generalize. The purpose of this section is to make the point that necessary 

direct and necessary indirect effects only correspond to HRPs given parametric assumptions.  

 The causal quantity that plausibly corresponds to the HRP of a policy that seeks to 

disrupt the indirect path is the necessary indirect effect. This is the decrease in the total effect 

that would result from rendering the indirect path inactive (as compared to the case in which both 

paths are active). Since the policy aims to block the influence of the indirect path, if the policy is 

fully successful, then the decrease in the magnitude of the total effect will equal the magnitude of 

the necessary indirect effect. To say that the necessary indirect effect corresponds to the highest 

reduction potential, one must add that in cases where the policy is not fully successful in 

blocking the indirect path, the total effect will not decrease by the same amount. The claim that 

the necessary indirect effect corresponds to the HRP becomes especially plausible when one 

recalls that the total effect is equal to the sufficient direct effect plus the necessary indirect effect. 
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Suppose that the sufficient direct effect of a treatment is to raise the expected value of a 

dichotomous outcome by .6 and the total effect of the treatment is 1. Intuitively, the most that a 

policy to block the indirect path could do would be to reduce the total effect by .4.  

 To make this more concrete, let’s return to the grading example. The treatment is whether 

a student meets with the professor, the mediator is the quality of the paper he writes and the 

outcome is the grade she gives the paper. The indirect effect is the effect of the meeting on the 

grade for which the improvement in paper quality is sufficient. The direct effect is the portion of 

the total effect for which the professor’s increase in charitability as a result of the meeting is 

sufficient.  

Suppose our paper-writing student is considering an action that will reduce the 

effectiveness of his meeting with the professor on the quality of his paper. For example, perhaps 

he is being initiated into a fraternity and as part of the process he is required to consume three 

shots of vodka right after meeting with any professor. Doing so would reduce the student’s recall 

of the meeting and make him less able to benefit from the professor’s advice. Taking the shots 

will reduce the contribution of the indirect path without necessarily eliminating it. Since the 

indirect path will still plausibly have some influence, the direct effect will not identify the 

effectiveness of the meeting for the student. If we assume, however, that the scenario in which 

his grade improves least is the one where his paper quality does not improve at all based on the 

meeting, then the direct effect identifies the effectiveness of the meeting on the grade in the 

worst-case scenario. The HRP of the action is then given by the necessary indirect effect. If X=0 

indicates not meeting and X=1 indicates meeting, HRPvodka = TE0,1 – DE0,1 =  –IE1,0.  

While the necessary indirect effect plausibly corresponds to the HRP of actions that block 

the indirect path, similar reasoning yields that the necessary direct effect corresponds to the HRP 



 171 

of a policy that blocks the direct path. Suppose the professor is considering a policy in which the 

students write their ID numbers rather than their names on their papers. Although she might still 

be able to identify some of the students based on their writing styles, such a policy would make 

her less likely to know the identity of the paper writer and would therefore decrease the average 

bump that students who meet with her get as a result of her increased charitability. If the policy 

were to entirely eliminate the charitability bump, the effectiveness of meeting with the professor 

would be the indirect effect and the decrease in student grades would correspond to the necessary 

direct effect. Under the assumption that student grades are reduced the most in the case where 

there is no direct effect HRPpolicy=TE0,1 – IE0,1 = –DE1,0. 

One assumption that one must make in order for the necessary effects to correspond to 

the HRPs of the different types of policies has to do with the type of policy or actions that one 

considers. Suppose that the student’s drinking vodka after meeting with the professor would not 

merely hinder him from benefiting from the meeting via writing a better paper, but would 

actually make him write a worse paper than he would have written in the absence of the meeting. 

If so, then the highest reduction potential of drinking vodka could be even greater than the 

necessary indirect effect, since this only measures the amount he would lose if he wrote a paper 

as bad as the one he would have written without the meeting, but his paper could be even worse. 

So in considering policies that disrupt indirect effect, we need to be thinking of policies that 

might make the mediator unreceptive to the change in the treatment, not those that lower (raise) 

the value of the mediator below (above) the value it would have had in the control scenario. 

Similarly, in thinking about policies that disrupt the direct path, we need to be thinking about 

policies that at worse (or at best) disrupt the transmission of the effect through the direct path. It 
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is plausible that the professor’s anonymity policy would at best reduce the direct effect to 0, and 

that it would not render the direct effect negative.  

It is clear when Pearl talks about the necessary effects as having the highest reduction 

potential, he is only thinking of policies that block the transmission of the paths, rather than 

reversing the direction of their effects. While it is important to make explicit that the HRP 

proposal only applies to certain types of policies, this is a clarification of the proposal rather than 

one of its limitations.  

Here’s an example in which the HRP of drinking vodka would not correspond to the 

necessary indirect effect. Imagine that the paper the student would write in the case where he 

drinks vodka after meeting is slightly better than the one he would have written had he not met 

with the professor, but not as good as the one he would have written had he not taken the shots. 

Further imagine that the slightly better paper would receive a worse grade. Perhaps the 

improvement in writing makes it more salient to the professor exactly how confused the student 

is. If so, then the vodka-drinking student would lose more points in the case where the meeting is 

slightly effective at improving the paper than he would in the case where it has no influence on 

the paper quality. That is, it is better for the student for there to be no indirect effect than it would 

be for there to be a small indirect effect. It follows that the HRP for drinking is not given by the 

necessary indirect effect. Rather, the HRP of drinking is the decrease in the grade in the case 

where the meeting leads to a slight improvement in the paper. 

If it is the case that some decreases in the value of the mediator increase the value of the 

outcome and others decrease it, one cannot assume that the necessary indirect effect corresponds 

to the HRP of policies that disrupt the indirect path. In the example just given, some 

improvements in paper quality lead to a higher grade and some do not. Consequently, it is 
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possible for the vodka-drinking policy to not have its full effect of obliterating the student’s 

memory of the meeting, but lead to more of a decrease in the student’s grade than what would 

have resulted from the policy’s having its full effect.  

 In short, the HRPs for path-disrupting policies do not always equal the necessary direct or 

necessary indirect effects. Given common parametric assumptions, however, they will be equal. 

For example, suppose that the model for this case contains linear parameters plus an interaction 

term, as I suggested above. Here they are again for reference:  

(37) x = a0 + 𝝐x 
(38) m = b0 + ßx + 𝝐m 

    (39) y = c0 + αx + 𝜸m + 𝛿mx+ 𝝐y  

The necessary indirect effect is ß(𝜸+𝛿).  (𝜸+𝛿)  is a constant. Suppose for a moment that both ß 

and (𝜸+𝛿)  are positive. Policies that seek to disrupt the indirect path by intervening on the 

mediator will change the value of ß. A maximally effective policy will make ß equal zero. The 

reduction in the total effect due to that policy is ß(𝜸+𝛿)  – 0(𝜸+𝛿)  =  ß(𝜸+𝛿). A non-maximally 

effective policy will change the value of ß to some lower positive value ß’. The reduction in 

effect due to such a policy will be ß(𝜸+𝛿)  –  ß’(𝜸+𝛿), which is less than ß(𝜸+𝛿). So given the 

assumptions, the necessary indirect effect corresponds to the HRP of a policy that disrupts the 

indirect path.  

 If one of ß or (𝜸+𝛿) is negative, then disrupting the indirect path will increase the total 

effect rather than decreasing it. In such cases, ß(𝜸+𝛿) corresponds to the highest potential for 

increase rather than the HRP. For example, if ß is positive and (𝜸+𝛿) is negative, then ß(𝜸+𝛿) 

will be negative. A policy that reduces ß(𝜸+𝛿) to 0 will increase the total effect by ß(𝜸+𝛿). 

Using reasoning similar to that given in the last paragraph, the increase that results from 
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successfully setting ß to 0 will be higher than the increase from any policy that changes ß to 

some value ß’ that is between 0 and ß.  

 Here’s a set of equations for which the necessary indirect effect does not correspond to 

the HRP of a policy that disrupts the indirect path. Suppose that the possible values for paper 

quality are M={0,1,2,3} that the paper is graded out of 10 and that the equations for the mediator 

and the outcome are as follows (the treatment exogenously set to X=0 or X=1): 

40   𝑚 = 3𝑥  

41   𝑦 = 𝑥 + 𝑚 − 1 ! + 5 

M0=0 and M1=3. In evaluating the natural indirect effect, one holds the treatment at X=1. In 

calculating it, Equation (41) can therefore be simplified to 𝑦 = 𝑚 − 1 ! + 6. The necessary 

indirect effect is calculated like so:  

42 − 𝐼𝐸!,! = 𝑌!,! ! − 𝑌!,! ! = 3− 1 ! + 6 − 0− 1 ! + 6 = 10− 7 = 3 

If the student were to lose the full indirect benefit of meeting with the professor, this would hurt 

his grade by 30%. Now imagine that the student’s drinking reduces the benefit of meeting on the 

quality of his paper so that the meeting improves his paper quality by 1 point as opposed to 3. 

Then his paper grade would be 1− 1 ! + 6 = 6. The student’s action reduces his grade by 

40%, instead of 30%, so the necessary indirect effect does not correspond to the HRP in this 

case.  

 Thus far I’ve primarily discussed policies that seek to disrupt the indirect path. What 

about policies that seek to disrupt the direct path? It is straightforward to check that in the 

parametric model presented the HRP of such a policy is the necessary direct effect. The 

necessary direct effect is 𝛼 + (𝑏! + 𝛽)𝛿. Policies aiming to disrupt the direct path will influence 

neither the value of the mediator nor the way that the value of the treatment interacts with the 
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value of the mediator, so in this case such policies will only influence 𝛼. Clearly, the policy will 

reduce the effect by the most when it sets 𝛼 to 0. 

 Does the correspondence between the necessary direct effect and policies that disrupt the 

direct path depend on parametric assumptions? The answer to this question is somewhat 

complicated. When we considered policies that disrupt the indirect path, it was easy to treat the 

success of the policy as corresponding to how much it is able to move the value of ß towards 0. 

That is, the necessary indirect effect identifies the HRP of a policy that seeks to disrupt the 

indirect path just in case it reduces the total effect by more than any policy that reduces the value 

of ß without getting it all the way down to 0. When we ask the corresponding question about the 

necessary direct effect, how do we characterize the cases in which the policy is not fully 

successful at disrupting the direct path? To say that the necessary direct effect gives the highest 

reduction potential of policies that try to disrupt the direct path we need to specify what the 

reduction potential is in cases where the policy is less successful. Without measuring a mediator 

along the direct path, I see no way to specify this in a way that is both non-arbitrary and non-

trivial. Consider, for example, the simplest case where the necessary direct effect is given by 

some positive parameter 𝜅. It is trivial that among policies that do not render 𝜅’s value negative, 

the policy with the HRP will set it to 0. Moreover, even if one were to give some model with a 

more complicated necessary direct effect, it is not clear how one could say anything more 

informative than that the case in which the policy has the HRP is the one in which the equation 

corresponding to the necessary direct effect has its minimal value.  

Presumably, it is in principle possible to replace the direct path with a set of indirect 

paths going through mediators that were not included in the model. If one designed a policy that 

disrupts the direct path by influencing one of these variables, the scenario would be entirely 
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parallel to the one in which one seeks to disrupt the indirect path. It might therefore seem trivial 

to show that the equivalence of the necessary direct effect and the HRP of policies that disrupt 

the direct path depends on the same parametric assumptions upon which the equivalence of the 

necessary indirect effect and the HRP of policies that disrupt the indirect path depends. But in 

order to talk about parameters, we need to be talking about particular models. That fact that it is 

possible to distinguish between the levels of success for policies disrupting a path in a model 

containing mediators along every path does mean that one can do so in a model with a direct path 

that, by definition, contains no mediators.  

The problem with determining whether the magnitude of the necessary direct effect has 

the highest reduction potential of any policy that seeks to reduce the direct path is that the set of 

policies being compared is insufficiently specified. I would like to suggest, however, that there is 

a way to think about the necessary direct effect such that the claim that it corresponds to the HRP 

of policies that disrupt the indirect path is intuitively plausible, if not precise. In considering 

whether there is a direct effect, whether of the necessary or sufficient variety, one is asking 

whether the outcome responds to the treatment in a way that does not depend on the mediator. 

For example, the way that I suggested one might evaluate the case in which the direct path is 

disabled was by making the teacher entirely unaware of the identity of the students. Given the 

story I told about the direct effect corresponding to the teacher’s charitability, it makes sense that 

if the teacher were totally unaware of which student wrote which paper, the direct effect would 

disappear. A rough way to think about the claim that the necessary direct effect gives the HRP is 

that it has a higher reduction potential than any policy that diminishes the receptivity of the 

outcome to the treatment without eliminating it. This cannot be spelled out parametrically, but it 
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does provide us with grounds for evaluating whether the necessary direct effect corresponds to 

the HRP in a particular case.  

In short, mediation techniques do enable one to discover the HRP of certain policies, but 

only given certain parametric assumptions. It is straightforward to provide the parametric 

assumption under which the necessary indirect effect corresponds to the HRP of a policy that 

disrupts the indirect path. It does not appear possible to provide parametric conditions under 

which the necessary direct effect gives the HRP of a policy that seeks to disrupt the direct path, 

though I have presented a way that we can try to evaluate the claim that the direct effect does 

correspond of the HRP of such policies in particular cases.  

 

5. Conclusion 

In this chapter, I have provided a technical introduction to causal mediation techniques by 

providing different ways of representing direct and indirect effects and mapping the relationships 

among the representations. In the next chapter, I will be primarily concerned with the non-

parametric definitions given in terms of potential outcomes, but it will be useful at times to move 

between the different representations for the sake of illustration. I will also continue to highlight 

cases in which one can license extrapolations by making parametric assumptions. My reason for 

emphasizing non-parametric causal inference is not because I believe that parametric 

assumptions are never legitimate, but rather because I seek to determine whether it is possible to 

say something general about the relationship between mediation and extrapolation without 

relying on such assumptions.  

 Now that I have provided an overview of both mediation techniques and the 

transportability framework, I can now turn to questions regarding how they relate to one another. 
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Do mediation techniques have a role to play in enabling extrapolative inferences? How does this 

role relate to the transportability framework? These questions are the focus of chapter 7.    

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 179 

Chapter 7: Mediation, Transportability and Extrapolation 

 I began the dissertation with an informal characterization of the problem of extrapolation, 

which I referred to as the problem of the unknown unknowns. The problem is that a causal effect 

may diverge across populations as a result of variation in an indefinite number of unknown 

background factors. Given that in most contexts one will never be able to know about all of these 

background factors, how is extrapolation ever justified? The discussion of transportability in 

chapter 4 suggests a two-part answer to this question. First, the probability distribution for a 

population is defined relative to a set of background factors, such that the effects in the 

population are average effects across those factors. Through non-parametric causal inference we 

can identify these average effects without knowing what these background factors are. Second, 

when two populations diverge in their probability distribution, it is nevertheless sometimes 

possible to transport some of one’s knowledge of the study population to the target population, 

provided that one has some knowledge of the points at which the populations differ. The reason 

for this is that variation in one part of a model does not lead to variation in other parts of a 

model, so learning that two populations differ in certain respects does not undermine one’s 

ability to transfer some of one’s knowledge from one population to another. While 

transportability is a type of extrapolation and general non-parametric causal inference is not, both 

of these methods enable one to gain causal knowledge without knowing all of the causally 

relevant background factors. 

 Not only does the transportability framework enable one to make cross population 

inferences, but it also helps explain why learning how a cause brings about its effect helps one 

extrapolate. As we saw in chapter 4, there are cases in where measuring a mediator transforms a 

non-transportable quantity into a transportable one. As I show in section 2, in such cases the 
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transportability framework enables one to infer the total, direct and indirect effects in the target 

population. This might make it seem like mediation techniques have nothing to contribute to 

extrapolation over and above transportability techniques. The aim of this chapter is to show that 

this is not the case. Mediation techniques both expand the scope of non-parametric identification 

and license cross-population inferences involving non-transportable quantities. In order to show 

how mediation techniques license such inferences, one must introduce a way of individuating 

populations that is more fine-grained than S-nodes.  

 I describe three ways that mediation techniques contribute to extrapolation. First, there 

are cases in which one can extrapolate direct and indirect effects even where the total effect in 

not transportable. Second, mediation techniques enable us to develop Steel’s proposal that when 

there is just one chain between a cause and its effect, learning about links in the chain is helpful 

for extrapolating. Steel used comparative process tracing as a means for extrapolating in the case 

where there is just a single path between a cause and its effect. He was unable to generalize his 

account to cases in which there are multiple paths. I argue that by identifying the indirect effect, 

one is in certain respects able to treat the indirect path as if it were the only path, and that this 

enables one to use comparative process tracing for extrapolating the indirect effect. Third, I 

argue that the indirect effect is the average effect across both unmeasured background factors 

and unmeasured mediators along the direct path. While this feature of mediation techniques 

arguably is more relevant to standard non-parametric causal inference than to extrapolation 

proper, it does have implications for extrapolating path-specific effects from populations to 

subpopulations.  

 This chapter is organized as follows. Section 1 briefly reviews selection diagrams. 

Section 2 shows how in contexts with limited confounding, the problem of identifying the direct 
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and indirect effects can be represented as a special case of transportability. Section 3 argues that 

the conditions across which the natural direct effect is invariant cannot be represented in a 

selection diagram and introduces new notation for representing these conditions. Section 4 

considers the more difficult question of the invariance conditions of the indirect effect. Section 5 

shows how one can use mediation techniques to generalize Steel’s insights about extrapolation in 

the single-path case. Section 6 shows that the indirect effect in a population is the average of the 

effects in all subpopulations. Section 7 offers a speculative proposal for determining the 

robustness of the indirect effect across populations by comparing its magnitude to that of the 

total effect. Section 8 concludes.  

 
1. Review of Selection Diagrams 

Pearl and Bareinboim represent the difference between populations using selection diagrams 

(e.g. figure 1). Selection diagrams contain S-nodes indicating cross-population variation in the 

structural equation that determines the value of a variable. The absence of an S-node into some 

variables implies that there is no variation among populations in the frequency of the causal 

factors responsible for that variable. A causal quantity is transportable just in case one can 

identify it in the target population based on experiments on the first population and the 

probability distribution for the second. Two simple cases of transportable quantities are given in 

figures 1a and 1b. In 1a, the variation due to the S-node makes no difference for the effect of X 

on Y, so the quantity is directly transportable. In 1b, the relationship between X and Y is 

unconfounded and can therefore be identified in both populations without experiment. It is 

trivially transportable. 
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The simplest example of a non-transportable quantity is given in 1c. The S-node indicates 

that the relevant populations differ in the distribution of unknown causes of Y, but the effect of X 

on Y is not identifiable in non-experimental populations (due to confounding). Fortunately, in 

cases where 1c may be replaced with 1d, the effect of X on Y is transportable. 1c may be replaced 

with 1d just in case M is a mediator between X and Y and the differences between the populations 

captured by the S-node in 1c are entirely due to differences in the mediator due to the S-node in 

1d. The adjustment formula identifying the effect in the target population is given by the 

following equation.35  

1 𝑃∗ 𝑌 𝑑𝑜 𝑥 = 𝑃 𝑌 𝑑𝑜 𝑥 ,𝑚 𝑃∗(𝑚|𝑥)
!

 

The probabilities without asterisks are those from the study population. Those with asterisks are 

from the target population. “do(x)” indicates that in estimating the conditional probability given 

in the first term, one must consider the probability distribution that results from intervening on 

                                                
35 See appendix to chapter 4. 
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X=x. Note that there is no term on the right hand side with both an asterisk and a do-operator. 

This reveals that equation (1) is identifiable without any experiments on the target population 

and that the quantity is therefore transportable.  

 Figure 1d is a mediation model. The fact that it is sometimes possible to replace a non-

transportable quantity with a transportable one by measuring a mediator bodes well for the thesis 

that mediation techniques facilitate extrapolation. What remains to be seen is whether direct and 

indirect effects have anything to do with extrapolation. After all, it is possible to demonstrate that 

the effect of X on Y in figure 1d is transportable without appeal to the terminology drawn from 

the mediation literature. What do mediation techniques contribute to extrapolation that we could 

not get using transportability methods?  

 
2. Mediation and Transportability in Contexts with Limited Confounding 

Any attempt to relate direct and indirect effects to transportability faces a preliminary notational 

problem. Transportability concerns whether an expression with do-operators can be identified in 

the target population without doing experiments on that population. We have seen, however, that 

the general definitions for direct and indirect effects in the mediation literature cannot be 

adequately given using formulas with do-operators (Chapter 6, §1.4). So it is not possible to 

write out the general expressions for DE and IE and use the rules of the transportability 

framework to prove that they are or are not transportable relative to a selection diagram. 

Nevertheless, one can sometimes determine that DE and IE are identifiable in the target 

population without experiment. In such cases, we can speak loosely and refer to DE and IE as 

being transportable. 
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  A simple example of a case in which DE and IE are “transportable” is the selection 

diagram in figure 1(d). Equation (1) is valid for all values of X, so the total effect of X on Y 

(𝑌! − 𝑌!) is transportable. We can represent the direct effect in the target population as follows:  

2     𝐷𝐸!,!∗ =   𝑌!,!!∗
∗ − 𝑌!,!!∗    

∗  

Note that there are asterisks next to every potential outcome, including those relating the 

mediator to the treatment. Since there is no selection node into Y, the relationship between the 

outcome and its direct causes will not vary between the populations and we can replace (2) with 

(3).  

3     𝐷𝐸!,!∗ =   𝑌!,!!∗ − 𝑌!,!!∗     

Equation (3) reveals that any difference between the direct effects across the populations is a 

result of a difference in the value of M0. Since there is no treatment mediator confounding in the 

selection diagram, 𝑀!
∗ is identified by P*(M|X=0). As the direct effect in the target population 

only differs from the direct effect in the study population by a term that is identifiable in the 

target population (M0), it is possible to identify the direct effect in the target population without 

experiment. Moreover, since one can identify the value of the mediator for any value of the 

treatment, one can also identify the indirect effect (𝑌!,!!∗ − 𝑌!,!!∗    ). 

Interestingly, given the selection diagram in figure 1(d) one can treat the derivation of the 

direct and indirect effects within a single population as a special case of transportability. 

Consider again the probabilistic expression for the natural direct effect in a population with no 

confounding ((9) in chapter 6): 

4 𝑁𝐷𝐸!,! =    𝐸 𝑌 𝑋 = 1,𝑀 = 𝑚 − 𝐸 𝑌 𝑋 = 0,𝑀 = 𝑚 𝑃(𝑀 = 𝑚|𝑋 = 0)
!
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This equation takes the difference in the value of the outcome given each value of the treatment 

and weights it according to the different values the mediator takes on when X=0. This weighting 

enables one to determine the effect of X on Y when the mediator has the distribution it would 

have given X=0, rather than the distribution that it has in the actual population. The weighting 

term in (4) plays exactly the same role as the weighting term 𝑃∗(𝑚|𝑥) in (1). Equation (4) 

considers the difference between two values of the treatment variable, rather than the whole 

distribution of P(Y|do(X),M), but otherwise (4) is just a special case of (1).  

 While (4) is the equation for a population with no confounding, in 1(d) there is treatment-

outcome confounding. This is easily corrected for by replacing (4) with the following.  

5 𝑁𝐷𝐸!,! =    𝐸 𝑌 𝑋 = 1,𝑀 = 𝑚 − 𝐸 𝑌 𝑋 = 0,𝑀 = 𝑚 𝑃(𝑀 = 𝑚|𝑑𝑜(𝑋 = 0))
!

 

Equation (5) makes precise the sense in which in figure 1(d), the derivation of the direct effect is 

a special case of the transportability of the total effect across populations. One transports the total 

effect to a population in which the indirect path is blocked.  

The derivation of the indirect effect is similarly a special case of transportability.  

6 𝐼𝐸!,! =   
𝐸 𝑌 𝑋 = 0,𝑀 = 𝑚 𝑃 𝑀 = 𝑚 𝑑𝑜(𝑋 = 1) −
𝐸 𝑌 𝑋 = 0,𝑀 = 𝑚 𝑃(𝑀 = 𝑚|𝑑𝑜 𝑋 = 0 )

!

 

The equation is more complicated, but it is fundamentally the same in that it requires one to 

reweight the mediator (twice) in order to find the magnitude of the total effect in a population 

where the direct effect is blocked.  

 This discussion reveals that given the selection diagram in 1(d), mediation techniques 

have nothing to contribute to extrapolation over and above transportability methods. It is possible 

to transport the total, direct and indirect effects across populations. It is impressive that this is 
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possible, but the fact that the transported quantities are the direct and indirect effects plays no 

role in enabling one to extrapolate.  

 One should not read too much in to the fact that the derivations of the direct and indirect 

effects are special cases of transportability in cases with limited confounding. Recall that it is 

straightforward to provide probabilistic expressions for the direct and indirect effects in cases 

with no confounding and that difficulties only arise in contexts where one needs to add do-

operators to avoid confounding. Although there is treatment-outcome confounding in 1(d), there 

is no X-M or M-Y confounding, and it is these types of confounding that make it difficult to 

identify the direct and indirect effects. The transportability of direct and indirect effects across 

the populations represented in selection diagram 1(d) tells us more about the relative ease of 

identifying direct and indirect effects in cases of limited confounding than about an important 

conceptual relationship between mediation and transportability.  

 
3. Invariance Properties of the Direct Effect  

In section 2, we considered a selection diagram in which the total effect (as well as DE and IE) 

was transportable. Here we will consider a case in which the total effect is not transportable, and 

consider the conditions under which the direct effect can be inferred across populations. This 

case is given in the selection diagram figure 2. The only difference between figure 2 and figure 

1(d) is the addition of a bidirected arc between the treatment and the mediator. This bidirected 

arc makes it impossible to identify 𝑀!
∗ without intervening on X. One needs to know this quantity 

in order to identify the total, direct and indirect effects in the target population. Therefore, the 

total effect is not transportable, and, speaking loosely, neither are the direct nor indirect effects.  
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While none of the effects are transportable, it is possible to specify ways that populations might 

differ in their value of the mediator without differing in their direct effect. To illustrate this, let’s 

return to one of the parametric examples from the last chapter. Figure 3, gives the DAG for the 

effect of meeting with the professor on one’s grade, with a mediator corresponding to the quality 

of the paper. The Greek letters indicate the parameters for the study population. The selection 

diagram in figure 2 gives the difference between the study population and various study 

populations. The structural equations are: 

(7) x = a0 + 𝝐x 
(8) m = b0 + ßx + 𝝐m 

(9) y = c0 + αx + 𝜸m + 𝛿mx+ 𝝐y  

The natural direct effect in this case is the effect that meeting with the professor would have on 

one’s grade if one were to write a paper of the same quality as the paper one would have written 

without the meeting.  

Let’s now consider two ways that a target population might differ from the study 

population. First, suppose that in the target population, the paper that the students would have 

written without meeting is of a different quality than that of the non-meeting paper for the 

students in the study population. This might occur if the study population consists of freshmen 

and the target population consists of sophomores. This difference is reflected in a different value 

of b0, which is the value of the mediator when X=0. Second, suppose that the two populations are 
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identical in their value for b0, but differ in how much their paper would improve based on the 

meeting. This might occur if one of the groups is more obedient to authority and therefore more 

wiling to take the professor’s comments seriously. The difference between these populations 

would be reflected by a difference in the value of ß.  

 The direct effect is invariant across populations that differ in the second way, but not 

invariant across populations that differ in the first way. That is, the direct effect is invariant to 

differences in ß, but sensitive to differences in b0. This is clear from the parametric version of the 

direct effect ((31) in chapter 6):  

10   𝐷𝐸!,! =   𝛼 + 𝑏!𝛿 

The significance of this for extrapolation is that if one knows that two populations have a 

common value of b0, the direct effect will be the same across the populations even if the 

distribution of the mediator differs as a result of a difference the value of ß. We can refer to a 

difference in b0 as a baseline difference in the value of the mediator and a difference in ß as a 

structural difference in the treatment-mediator relationship.36 

 The invariance of the direct effect to structural differences in the treatment-mediator 

relationship is not limited to models with the parametric form just considered. We can specify 

the baseline value of the mediator non-parametrically as M0 and the structural differences in the 

X-M relationship correspond to the quantity M1–M0. That the direct effect is sensitive to the 

former, but not the latter, is evident from its non-parametric definition ((7) in chapter 6): 

11 𝑁𝐷𝐸!,!(𝑌) = 𝑌!,!(!) − 𝑌!,!(!) 

                                                
36 This distinction resembles Morgan and Winship’s (2007, pp. 46-48) distinction between baseline bias and 
differential treatment bias, which Xie et al.’s (2012) refer to as Type-I and Type-II bias, respectively. Here I am not 
referring to estimation and therefore not explicitly concerned with bias, but the distinctions are similar insofar as 
they both differentiate between baseline differences and structural differences. See Pearl (forthcoming) for further 
discussion.  
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Since M0 appears in the definition and M interacts with x, the direct effect depends on M0. Since 

M1 does not appear in the definition, the direct effect does not depend on the difference between 

M1 and M0.  

 It is significant that the invariance conditions for the direct effect cannot be represented in 

a selection diagram. In a selection diagram, an S-node into M indicates that the factors 

determining the value of M can differ among populations in any arbitrary way. Direct effects are 

not invariant to arbitrary changes to the value of the mediator, but only to changes in the 

structural relationship between the treatment and the mediator. While transportability concerns 

the invariance of causal quantities to changes in variables, mediation techniques identify 

quantities that are invariant to changes in parameters. Or, more precisely, the effects identified 

by mediation are invariant to cross-population variation in the structural relationships that are 

represented by parameters.  

 In order to graphically represent the invariance conditions of the direct effect, we need to 

introduce a new notational device. Specifically, we need a way to specify that two populations 

do not differ in the baseline value of the mediator. This can be done with D-nodes (figure 4). D-

nodes indicate that two populations do not differ in the distribution for a particular variable when 

all exogenous variables in the model are set to their default value. In figure 4, the only 

exogenous variable is X and the diagram indicates that the default value of X is 0. There is 

nothing in the model that privileges X=0; the default value of the exogenous variables must be 

supplied independently.  

   

 

 

     M 

  X 
      

      Y 
 S 

Figure 4 

D (X=0) 



 190 

 The direct effect is invariant across populations represented by the selection diagram in 

figure 4. The S-node alone corresponds to changes in the value of the mediator that may or may 

not lead to changes in the direct effect. The D-node indicates that the populations are similar in 

their value (or distribution) for M0, thereby eliminating the ways that the mediator could vary that 

would make a difference for the direct effect.  

Here I only consider cases in which there is a D-node into the mediator and a single 

exogenous variable, but there is a straightforward generalization to other variables in models 

with many exogenous variables. Given a model with exogenous variables X1,…,Xn and default 

values x1,…,xn, a D-node into variable Y indicates that the potential outcome Yx(1),…,x(n)=y (or the 

probabilistic distribution P(Yx(1),…,x(n)=y)) is invariant across the populations represented by a 

selection diagram.  

The idea of specifying the default states of a variable in a model is inspired by Menzies 

(2007). Menzies, among others (Hall, 2007; Halpern, 2008; Halpern and Hitchcock, 2012), has 

argued that claims about actual causation – e.g. the claim that X happened and Y happened and X 

caused Y – must be relativized to default states of a system. Here I take no stand on how to 

explicate claims about actual causation. The concept of the default state of a variable is 

nevertheless useful for understanding direct effects. The direct effect is the portion of the total 

effect that is invariant to changes in the mediator that result from changes in the treatment. If we 

stipulate that in evaluating TE0,1(Y) we treat X=0 as the default state, it becomes easier to 

distinguish between populations that differ in the way the mediator changes in response to the 

treatment and populations that differ in other ways with respect to the mediator. Given this 

stipulation, the direct effect is invariant across all changes to the mediator that preserve its 

default state.  
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One might worry that talk of default states introduces an arbitrary element into the 

discussion (cf. Blanchard and Schaffer, Forthcoming). Since there is nothing in the model that 

privileges certain states as being the default state, it appears that the default state must be 

specified based on non-causal considerations. While I am in general sympathetic to this concern 

about default states, it does not undermine my appeal to them here. What matters for 

extrapolation is not the particular value that one selects as the default, but rather that the 

populations do not differ with respect to whatever that value is.  

 D-nodes differ from S-nodes in that while the presence of an S-node indicates the 

presence of cross-population variation, D-nodes indicate the absence of a specific form of cross-

population variation. D-nodes are only useful when combined with S-nodes. For variables in 

which there are no S-nodes, one can place D-nodes corresponding to any possible default value 

of the exogenous variables without changing the content of the selection diagram. D-nodes limit 

the ways that a variable with an S-node may differ across populations.  

 The most important similarity between S-nodes and D-nodes is that both allow one to 

represent cross-population differences without making parametric assumptions. While the default 

value of a variable given particular settings of exogenous variables depends on the structural 

relationships among the variables, one can insert D-nodes into a selection diagram without 

making any claims about the parametric form of the structural equations. This reveals that it is 

possible to provide a non-parametric specification of population differences that is more fine-

grained than the specification that could be provided with S-nodes alone. For our purposes, the 

crucial point is that D-nodes enable us to specify the invariance conditions for the direct effect.  

 More research needs to be done in order to determine the conditions under which the 

assumption that the mediator shares a common default across two populations is justified. Cases 
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in which there is both an S-node and a D-node into the mediator are those in which populations 

are similar in how they act in the absence of the treatment, but potentially vary in how they 

respond its presence. For example, if one is evaluating the total effect of influenza on death and 

the measured mediator is temperature, it is plausible that the average temperature in two 

populations among people without the flu is around 98.6°F, but that the populations differ in how 

much getting the flu increases body temperature. In such a case, the default value of the 

influenza variable would be that one does not have the flu and there would be a D-node into the 

variable for body temperature.  

 One way that knowledge of the systems studied by the mechanists discussed in chapter 5 

might be relevant to extrapolation is that mechanisms often seem to have well-specified default 

states. For example, the default state of a neuron is to not fire in the absence of being triggered 

by the firing of another neuron. Suppose that most neurons are equally unlikely to fire in the 

absence of being triggered, but that there is widespread variation in whether neurons will fire 

when they are triggered. This variation might be due to the fact that there are different ways that 

neurons can malfunction and thus cease to fire in response to being triggered. If neurons tend to 

be relatively causally homogenous in their default states, but differ how they respond to a causal 

factor, then the representational framework developed here would be helpful for modeling their 

behavior. To the extent that it is common for mechanisms to have well-specified default states 

such that populations are relatively homogenous in how they behave when in the default state, 

mechanistic knowledge will be helpful in extrapolating direct effects.  

 
4. Invariance Properties of Indirect Effects 

Let’s now turn to the question of what role indirect effects play in extrapolation. In this section I 

explore the possibility of giving indirect effects an analogous treatment to our treatment of direct 
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effects in the previous section. That is, just as the direct effect is invariant across certain 

population differences that cannot be represented within a selection diagram (without D-nodes), 

the indirect effect is also invariant across population differences not captured by selection 

diagrams.  

 While in evaluating the invariance conditions for the direct effect, the obvious proposal 

was that it is invariant across cross-population changes in the mediator, in thinking about the 

indirect effect no similarly appealing proposal jumps to mind. The indirect effect will certainly 

not be invariant to variation in the structural relationship between the treatment and the mediator. 

And if the populations vary in the equations determining the value of the outcome variable, this 

will potentially change both the direct and indirect effects. It follows that the indirect effect is 

neither invariant across populations whose differences are represented by an S-node into M, nor 

across populations with an S-node into Y. I can think of two other proposals. The first is that the 

indirect effect is invariant to variation in the default value of the mediator. The second is that the 

indirect effect is invariant to variation in unmeasured mediators along paths that are captured by 

the direct effect. I will consider these in turn.  

 In the linear model with interaction that we have been considering, the indirect effect is 

invariant to variation in the baseline value of the mediator. The parametric equation for the 

indirect effect is simply 𝛽𝛾, which does not contain b0. There are two reasons to think that this 

invariance might hold more generally. First, the only way that the value of b0 makes a difference 

in the total effect is in combination with the interaction term (𝑇𝐸!,!(𝑌) =   𝛼 + 𝒃𝟎𝜹+ 𝛽𝛿 + 𝛽𝛾). 

In evaluating the indirect effect, the value of the treatment is held fixed, so the magnitude of the 

interaction term should not matter. Second, we saw that the influence of b0 on the outcome is 

already incorporated into the direct effect (𝐷𝐸!,!(𝑌) =   𝛼 + 𝑏!𝛿).  
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 These considerations suggest a more general proposal. While the direct effect is invariant 

to variation in M1 – M0, but not to variation in M0, the indirect effect is invariant to variation in 

M0, but not to variation in M1 – M0. If this proposal were correct, then any cross-population in 

the distribution of the mediator could be decomposed into two distinct parts: the part that 

influences the direct effect and the part that influences the indirect effect. This would facilitate 

extrapolation, because in cases where there was an S-node and no D-node into the mediator, and 

in which the total effect was non-transportable, one could infer that at least one of the direct and 

indirect effect will vary across the populations by less than the total effect. The direct effect 

would vary less than the total effect in cases where at least part of the cross-population variation 

in the total effect is due to variation in M1 – M0. The indirect effect would vary by less than the 

total effect in cases where at least part of the cross-population variation is due to variation in M0.   

Concretely, in our grading example the indirect effect is invariant to variation in b0, since 

the impact of the student’s meeting with the professor that results from writing a better paper 

(rather than from her charitability) does not depend on the quality of the paper that he would 

have written in the absence of the meeting. Meeting with the professor improves the paper by a 

certain amount above its baseline value, and the increase in the quality of the paper leads to a 

corresponding increase in the grade. This invariance property follows from the parametric 

assumptions that I made, but it is not difficult to see how it could fail to obtain. It is plausible that 

not all increases in the quality of paper will correspond to similarly large increases in the grade. 

When a paper is really problematic, a small improvement in quality will lead to a larger increase 

in the grade than it would if the paper were much better. Consequently, the indirect effect will be 

sensitive not just to the amount by which the paper improves in quality as a result of the meeting, 

but also to how good the paper would have been without the meeting.  
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While it is not in general true that the indirect effect is invariant to the baseline value of 

the mediator, it is invariant given the assumption that equal changes in the value of the mediator 

correspond to equal changes in the value of the outcome (given a fixed value of the treatment). 

This assumption is resembles the parametric assumption that we considered in discussing the 

conditions under which mediation techniques allow one to discover the highest reduction 

potential (HRP) for a policy (Chapter 6, §4.1).  There we saw that the necessary indirect effect 

(negative IE1,0(Y)) corresponds to the HRP of a policy that seeks to disrupt the indirect path only 

if it is not the case that some increases in the value of the mediator lead to increases in the value 

of the outcome and others lead to decreases. The assumption that all increases in the value of the 

mediator lead to identical changes in the value of the outcome is a much stronger assumption 

than the assumption that it is not the case that some changes in the mediator are positively 

relevant to the outcome and others are negatively relevant.  

Given the stronger parametric assumption that increases in the mediator lead to similar 

increases in the outcome regardless of the initial value of the mediator, we can infer a lot about 

how populations might differ as a result of variation in the mediator. First, as we saw in the last 

chapter, we can infer that the highest reduction potential of a policy that seeks to disrupt the 

indirect path is given by the necessary indirect effect. Second, we can infer that at least one of 

the sufficient direct and the sufficient indirect effect will vary less than that of the total effect.  

Moreover, since variation in either the direct or indirect effect entails variation in the total 

effect, the path specific effects cannot vary more than the total effect. If one measures just the 

direct or just the indirect effect, one cannot be sure that it will vary less than the total effect. It 

could be that all the variation in the total effect could be due to that effect that you measured. 

There is also no guarantee that the measured effect does not vary greatly across populations. 
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What one does know is that if one infers that a direct or indirect effect will be similar across 

populations, one’s inference will be at least as reliable – and possibly more reliable – than a 

similar inference regarding the total effect.  

Now that we have considered and refined the proposal that the indirect effect is invariant 

to changes in the baseline value of the mediator, let’s turn to the second proposal, which is that 

the indirect effect is invariant to changes in the value of unmeasured mediators along paths 

whose influence is captured by the direct path. The idea here is that just as the direct effect is in 

some respects invariant to what happens to mediators along the indirect path, the indirect effect 

is in some respects invariant to what happens along the direct path. Of course, there are no 

measured variables along the direct path, so there is no variable into which we can place an S-

node or D-node in order to represent the proposed invariance conditions for the indirect effect. 

However, there are, presumably, unmeasured mediators along paths not going through the 

measured mediator, so we can consider the invariance of the indirect effect to variation in these 

unmeasured mediators.  

Before proceeding, it will help to introduce some new terminology. Let’s refer to 

unmeasured mediators along paths not going through the measured mediator as effect 

transmitters. If one were to include an effect transmitter in the model, it would become a 

mediator along a path whose influence had formerly been captured by the direct path. The reason 

for not simply calling effect transmitters “mediators” is that whether something is a mediator is 

relative to a model and in models with a direct path there are, of course, no measured mediators 

along the direct path. The reason for not calling them “unmeasured mediators along the direct 

path” is that this might misleadingly suggest that there is some mediator such that were one to 

measure it, the direct path would be transformed into a single indirect path. But this might not be 
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the case. Adding an effect transmitter to a model will not always eliminate the direct path, but 

will often lead to a model in which there is still a direct path in addition to the added indirect 

path. The term “effect transmitters” is meant to convey that the denoted variables are the means 

by which the treatment influences the outcome via the direct effect. 

In considering the way that the indirect effect is sensitive to cross-population variation in 

effect transmitters, we can use reasoning analogous to that used in finding the invariance 

properties of direct effects to cross-population variation in measured mediators. Effect 

transmitters can vary across populations in terms of their default values or in terms of how they 

respond to the change in the treatment (or both). The indirect effect is invariant to variation in the 

way that the effect transmitters respond to the treatment, provided that it is not accompanied by 

variation in their value given an intervention that sets X to 0. Moreover, this is true not just for a 

particular effect transmitter, but for the variation of any effect transmitter.  

 There is something strange about presenting the invariance conditions of the indirect 

effect in terms of hypothetical mediators that contribute to the direct path. As we saw in chapter 

6, a distinctive feature of the indirect effect is that it is possible to identify it without having any 

knowledge of unmeasured mediators along other paths, or even knowing whether there are such 

paths. To try and extrapolate indirect effects by making stipulations about what happens along 

the direct path seems like a step backwards. In the next section I pursue a different approach. 

Instead of specifying ways that the indirect effect is invariant across cross-population variation in 

effect transmitters, I consider how the fact that one does not need to know about these effect 

transmitters in order to identify the indirect effect is relevant to extrapolation.  
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5. Extrapolation of Single Paths and the Indirect Effect  

It will help to momentarily take a step back to consider the question of why we thought that 

mediation methods might be relevant to extrapolation in the first place. Steel was able to tell a 

plausible story about how measuring links in a causal chain facilitates extrapolate in cases where 

there is only a single path between a cause and its effect. By examining particular links in the 

chain across the populations, one can make a more reliable prediction about whether the total 

effect will extrapolate. He refers to this as comparative process tracing. While there are some 

ambiguities regarding how comparative process tracing is supposed to work – for example, it is 

unclear what basis one has for one’s background knowledge about which parts of a mechanism 

are likely to differ across populations – he seems to be correct in maintaining that one can make 

better predictions about the mechanism in the target by examining parts of it in the study 

population, even if one’s knowledge does not guarantee that the effect will generalize to the 

target. Yet Steel was unable to tell a compelling story about how the single-path case relates to 

the cases where there is more than one path between the treatment and the outcome. I will now 

use causal mediation techniques to fill in the necessary details.  

 

 

  
 

 

Let’s begin by considering the single path case. Figure 5 depicts the effect of taking a 

particular pill on thrombosis and assumes that it is mediated exclusively via a blood chemical. 

The effect of the pill on the blood chemical is transportable, but the effect of the chemical on 

Pill 
Blood 

Chemical Thrombosis 

Figure 5 

 S2 
 S1 
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thrombosis is not, due to the bi-directed arc. Consequently, the total effect of the pill on 

thrombosis is not transportable.   

While the effect of the pill on thrombosis is not transportable in figure 5, there is a clear 

sense in which measuring the mediator facilitates extrapolation. If one only measured variables 

corresponding to the pill and thrombosis, there would be two possible sources of variation in the 

total effect: those corresponding to S1 and those corresponding to S2. In the selection diagram in 

figure 5, the effect of the treatment on the mediator is transportable. So one can divide up the 

cross-population variation into a part that one can measure and a part that one cannot. Since one 

does not know how much the populations differ in the effect of the mediator on the outcome, one 

cannot determine what the total effect will be in the target population. Nevertheless, by 

measuring the cross-population variation due to the effect of the treatment on the mediator, one 

can account for one possible source of cross-population variation.   

 As a special case, suppose that one considers the probability distributions for each 

population to determine the effect of taking the pill on the presence of the chemical in the blood 

in each, and one discovers that they are the same. This should increase one’s confidence that the 

total effects will be similar in the populations. It may still turn out to be the case the populations 

differ in the way that the blood chemical influences thrombosis. But by establishing that one part 

of the causal chain does not vary between the populations, one eliminates one source of possible 

variation.  

 In cases where the total effect is not transportable, the advantage of measuring a mediator 

along a single path will be comparative: one reduces one’s uncertainty regarding how much the 

populations vary. How much it reduces one’s uncertainty depends on one’s prior beliefs about 

how much the total effect varies across the populations and how much the relationship between 
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the treatment and the mediator varies. Additionally, in cases where one can examine the physical 

system in which the variables are instantiated, the physical location of the mediator in relation to 

the treatment and the outcome may serve as a proxy for how likely a causal relationship is to 

vary across populations. The greater the distance between the two variables, the more points 

there are at which the causal relationship may be interrupted. The farther the mediator is from the 

treatment, the more that learning that the treatment-mediator relationship does not vary across 

populations will reduce one’s uncertainty that the total effect of the treatment on the outcome 

will differ across populations.  

Here I have simplified matters by considering a path with three variables, but one could 

make similar claims about paths with multiple mediators. One can think of the path as a causal 

chain in which disrupting a particular link will disrupt the total effect. Evaluating particular links 

enables one to check for possible points of disruption.  

 
 
 
 
 
 
 
 

 

There is more to be said about how measuring more mediators along a single path 

facilitates extrapolation, but I now want to turn to the question of how the single-path case 

relates to the multi-path case. Let’s suppose that the selection diagram in figure 5 is false and that 

there are paths from the pill to thrombosis not going through the blood chemical (figure 6). In a 

twist on Hesslow’s (1974) well-known case, let’s imagine that this pill turns out to prevent 

pregnancies and that pregnant women are more likely to develop thrombosis, though the 
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scientists studying the pill may not know about its usefulness as a contraceptive. In other words, 

pregnancy is an effect transmitter. So there is at least one way that the pill reduces one’s chance 

of thrombosis via the direct path, though there could be others (figure 7). Moreover, since we are 

making no parametric assumptions, the effect of the pill on thrombosis on the indirect path may 

be sensitive to whether one has taken the pill and whether one gets pregnant, and also to any 

other unmeasured mediator that is not on the path going through the blood chemical. These 

variables could influence the indirect effect via interacting with blood chemical in causing 

thrombosis.  

 

 

 

 

 

 

I will now consider the way that variation in pregnancy leads to variation in the effect of 

the pill on thrombosis via the blood chemical (the indirect effect in figure 6), though what I say 

will generalize to cases in which there is cross-population variation in other effect transmitters. 

The values of the treatment variable X are X=0 for not taking the pill and X=1 for taking the drug 

and we will treat X=0 as the default state of the variable. Two women have the same default 

value for pregnancy iff they have an equal probability of getting pregnant if they do not take the 

pill. A common case in which two women would differ in their default value for pregnancy is 

when one is more sexually active than the other. In addition to differing in their default values, 
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  Pregnancy 

Figure 7 – Pregnancy is a hypothesized variable along a path not going through the mediator. The dashed 
lines indicate that the causal relations among variables on paths not going through the measured mediator 
are unknown.  
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two women can differ in how effective the pill would be in lowering their probability of getting 

pregnant. These two ways that individuals can differ in the effect of the pill on pregnancy 

correspond to four types of women. Table 1 presents an individual of each type, for reference. 

 
 Pregnancy Risk 

if No Pill 
Decrease in Pregnancy 
Risk Due to Pill 

Andrea High High 
Betty Low High 
Carla High Low 
Danielle Low Low 

Table 1 
 
 Let’s temporarily assume that the differences among the women in table 1 are the only 

ways that the women differ. That is, all variation between the women is due to differences in 

their effect transmitters. As I noted in the previous section, the indirect effect is invariant to 

changes in effect transmitters that preserve their default values. Accordingly, the indirect effect 

would be the same in Andrea and Carla and the same in Betty and Danielle. The differences in 

the ways that the women would react to the treatment – i.e. the differences in the right-hand 

column – do not make a difference in the indirect effect, since the indirect effect is evaluated by 

holding the treatment fixed at its default value.  

 So far I have emphasized the way in which the indirect effect is invariant across 

populations in which the default values of effect transmitters are constant. Here I want to 

emphasize the contrapositive of the claim that if the default values of effect transmitters don’t 

vary, then the indirect effect does not vary either. Namely: if the indirect effect does vary across 

populations, this variation is due to variation in the default values of effect transmitters. Here it is 

crucial to keep in mind that I am temporarily assuming that all variation across the populations is 

due to variation in effect transmitters. In the thrombosis example, the only way that cross-

population variation in pregnancy can influence the indirect effect is if it is variation in the 
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pregnancy status of the women in the default case where they do not take the pill. Moreover, this 

is true not just of pregnancy, but of any effect transmitter.  

Let’s now consider the way that the indirect effect changes as a result of cross-population 

variation in effect transmitters. As I have argued, the only type of variation in these variables that 

makes a difference for the indirect effect is variation in their default values. The only way that 

the default values of effect transmitters make a difference for the indirect effect is that these 

variables interact with the measured mediator. When one evaluates the indirect effect, the 

treatment is held fixed at its default value, and all effect transmitters also remain at their default 

values. The effect transmitters influence the indirect path not because they change their values 

(or distributions) in response to the treatment, but because the effect of the measured mediator on 

the outcome may depend on their fixed values (or distributions). To the degree that cross-

population differences in the default values of effect transmitters make a difference in the 

indirect effect, it is by influencing the structural relationship between the mediator and the 

outcome. Accordingly, in the thrombosis case, all cross-population differences in effect 

transmitters influence the indirect effect only by influencing the magnitude of the causal 

relationship between blood chemical and thrombosis.  

When one considers the way that the indirect effect varies as a result of cross-population 

differences in effect transmitters, one notices that it is not different from the way that the total 

effect varies across populations as a result of cross-population differences in background factors 

in the case where there is only a single path. That is, although cross-population differences in 

effect transmitters can make a difference in the indirect effect, the way that they do so is not 

different from the way that run-of-the-mill effect modifiers may make a difference for any effect. 

Just as variation in background factors influencing an effect variable can make a difference in the 
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relationship between that effect variable and its direct causes, variation in effect transmitters 

influencing the outcome can make a difference in the relationship between the outcome and the 

measured mediator. The fact that effect transmitters are effects of the treatment is irrelevant for 

considering their influence on the magnitude of the indirect effect.  

In identifying the indirect effect within a population, one learns about how the treatment 

would influence the outcome if there were no direct path. The question we have been considering 

in this section is whether the way that the indirect effect varies across populations depends on the 

way that factors contributing to the direct path (i.e. effect transmitters) vary across populations. 

Since the indirect effect depends on the default values of the effect transmitters, the way that it 

varies across populations does depend on cross-population difference in what happens along the 

direct path. Yet, the indirect effect does not vary as a result of cross-population differences in the 

way that effect transmitters respond to the treatment. For this reason, we can treat cross-

population differences in the values (or distributions) of effect transmitters as being no different 

than cross-population differences in effect modifiers.  

Let’s now return to the question with which we began. Assuming that one can use Steel’s 

methods to extrapolate in the single-path case, is it possible to generalize these methods to the 

case with multiple-paths? The answer is yes. The way that the indirect effect varies across 

populations is no different from the way that the total effect varies across populations in the 

single-path case. Thus, to the degree that is possible to use comparative process tracing to 

extrapolate the total effect, it will also be possible to use it to extrapolate the indirect effect.  

 

 

 

C   X   A   Y   Z   B   E 

Figure 8 
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 The DAG in figure 8 is almost identical to the DAG that Steel uses to describe 

comparative process tracing. The one difference is that it contains a direct path from C to E. To 

identify the indirect effect in this DAG, one only needs to intervene on one of the mediators 

between C and E. For example, the indirect effect IEc,c’(E) is identified by both EcA(c’) – EcA(c) and 

EcZ(c’) – EcZ(c). While the indirect effect can vary across population as a result of variation in 

effect transmitters, all such variation will only influence the structural relationship between B 

and E. Depending on which relationships in the models are confounded, one may or may not be 

able to extrapolate the indirect effect in such a case. Once one identifies the indirect effect, the 

question of whether it generalizes to a target population is not fundamentally different from the 

question of whether the effect generalizes in the single-path case that Steel gives. In both cases, 

one is considering an effect corresponding to a causal chain and trying to improve the reliability 

of one’s extrapolation by comparing the study population and target population at various links 

in the chain.  

 
6. Non-Parametric Inference and Average Component Effects 

Given what I have said in this chapter about how direct and indirect effects depend on the default 

values of variables along other paths, it is straightforward to show that direct and indirect effects 

in a population are averages of the direct and indirect effects across subpopulations. In a sense, 

this result is more relevant to explaining the role of mediation techniques in general non-

parametric causal inference than it is specifically to extrapolation. Yet the fact that a particular 

type of effect in a population is an average over the corresponding effect in subpopulations does 

have an implication for extrapolation. With regards to the total effect, the fact that the total effect 

in a population is the average effect across subpopulations entails that there cannot be a causal 
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effect in a population, but not in any of its subpopulations (Weinberger, 2015). Learning that 

path-specific effects are average effects over subpopulations would similarly enable one to make 

similar inferences about direct and indirect effects.  

 It is not difficult to see that the natural direct effect in a population is an average of the 

direct effect across subpopulations. For simplicity, let’s consider cases in which there is an S-

node into the mediator, but not into the outcome variable.37 We saw above that the only way that 

an S-node into the mediator influences the direct effect is by influencing the value of M0 – that 

is, the value it would take on given the default value of the treatment. The natural direct effect 

(DE0,1) is defined as the effect of changing the treatment from X=0 to X=1 while holding M to 

the value of M0 for every member of the population. So it is definitional that the direct effect is 

the average effect across different values of M0 in the population. If one stratifies the population 

based on different values of M0, the natural direct effect will be the average over the direct 

effects in the subpopulations.  

 It is not part of the definition of the indirect effect that it is an average effect across the 

value of some particular variable or potential outcome. Yet, it is like the direct effect in 

identifying the degree to which one path is invariant to changes in the other path that do not 

change the default values of variables along that path. As we have seen, the indirect effect is 

invariant across all changes in effect transmitters that do not change their default values. 

Moreover, since the only way that cross-population differences in effect transmitters changes the 

indirect effect is by changing the default value, if we were to stratify a populations based on their 

default values for their effect transmitters, the indirect effect in the whole population would be an 

average of the indirect effects in each of the resulting subpopulations, weighted by the size of 

                                                
37 If there are factors influencing the outcome, it is straightforward to show that the total effect of the treatment on 
the outcome is the average effect across such factors. 
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each subpopulation. Of course, since we do not know what the effect transmitters are, we would 

not be able to stratify the population in this way. But we don't have to. Since one holds the 

treatment to its default value, the effect transmitters also take on their default values 

automatically, and the indirect effect is the average over the different combinations values for the 

effect transmitters. In the same way that, in general, non-parametric causal models allow one to 

(in principle) measure average causal effects without knowing which background factors one is 

averaging over, mediation techniques allow one to identify the average indirect effect without 

knowing which effect transmitters one is averaging over.  

 The fact that the indirect effect in a population is the average effect of the indirect effect 

across subpopulations implies that it is not possible for there to be an indirect effect in a 

population, but not in any of its subpopulations. While this does not entail that the indirect effect 

in a subpopulation will be similar to that in the population, it does mean that the indirect effect in 

the population is evidentially relevant to the effect in subpopulations. Whether it is strongly or 

weakly relevant depends on one’s background beliefs about how much the indirect effect varies 

across subpopulations.  

 
7. A Robustness Test?  

In this final section before the conclusion, I speculatively propose one way that the indirect effect 

might play an important role in an inductive account of extrapolation. As I’ve noted in several 

places, one of the problems with developing an inductive account of extrapolation is that it is 

hard to see how one might think about the magnitudes of a causal relationship in different 

populations as being sampled from a distribution. If anything, one expects an effect to vary 

across populations as a result of the local distribution of background factors. Yet, suppose that 

one tries a policy in several heterogeneous places and finds that it works similarly in each. For 
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example, the economist Guido Imbens (2010) mentions three studies that found an effect of 

smaller class size on educational outcomes. One was in Tennessee, one was in Israel, and one 

was in Connecticut. He argues that these studies intuitively provide evidence for the claim that 

reducing class sizes will be beneficial in California. The intuition here is clear. While we do not 

know about the various background factors that influence the magnitude of the effect in the 

distinct populations, the fact that the policy had similar outcomes in three very different locations 

suggests that it is robust across changes.38 

 Since I do not know how to provide an inductive account of extrapolation, I am unsure of 

how to think about robustness tests in a rigorous manner. Yet, I would like to suppose for a 

moment that inferences like Imbens’ are sometimes legitimate in order to see how mediation 

techniques might be helpful for making such inferences. There appear to be two ways one could 

test how robust a causal effect is across changes in background conditions. One can test for 

variation in the effect across populations that differ in known factors and one can test for 

variation of the effect across populations that differ in unknown factors. An example of the first 

type of test would be a test of whether the effect of reduced class size on educational outcomes 

varies across populations with varying degrees of parental income. An example of the second is 

Imbens’ comparison of the three studies. He does not seek to identify particular factors in virtue 

of which the effects in the various study populations might potentially differ. The strength of his 

conclusion is derived from the fact that the effect is similar across populations that differ in a 

variety of factors, both known and unknown. The advantage of the first type of test is that 

potentially enables one to gain knowledge about how an effect is sensitive to changes in 

                                                
38 Here I ignore difficulties with determining whether the same policy was implemented in all three places.  
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specified effect modifiers. The advantage of the second type of test is that it enables one to test 

the robustness of the effect to unknown sources of variation.  

 Here’s how mediation techniques are relevant to this discussion. Suppose that one 

discovers that the total effect of smaller class sizes on educational outcomes is large and that the 

indirect effect of class size on outcomes via increasing student satisfaction with the class is also 

large (though maybe not as large as the total effect). This provides a robustness test for the 

indirect effect. By comparing the total effect to the indirect effect, one is able to evaluate the 

contribution of the indirect path relative to two sets of values of the effect transmitters. The 

indirect effect is evaluated relative to the default values of the effect transmitters. The total effect 

tells one about the behavior of the indirect path when the effect transmitters respond to the 

treatment. It may seem strange to talk about the total effect as telling one something about the 

indirect path. Yet the total effect tells one how the indirect path would act in conjunction with the 

activity of the direct one. Since the indirect effect and the total effect tell one about the 

contribution of the indirect path relative to different sets of values for the effect transmitters, 

learning that they have similar values tells one that the indirect effect is relatively invariant 

across changes in the values of effect transmitters.  

   
8. Conclusion 

 In this chapter, I argued for several important claims about the role of causal mediation 

techniques in extrapolation. First, I explained why the cross-population invariance conditions of 

the direct and indirect effects cannot be expressed within the transportability framework. S-nodes 

are not sufficiently fine-grained to distinguish between cross-population sources of variation that 

do and do not change the default values of variables. Second, I argued that the way that the 

indirect effect varies across populations in response to differences in effect transmitters 
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resembles the way that total effects vary in response to differences in background conditions. 

This enables one to extend Steel’s approach for extrapolating single-paths to cases in which there 

are multiple paths. Third, I showed that the direct and indirect effects in a population are the 

average of the direct and indirect effect in subpopulations. Finally, I suggested that by comparing 

the indirect effect and the total effect, one could determine how robust the contribution of the 

indirect path is to variation in effect transmitters.  
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