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Abstract 

Non-alcoholic fatty liver disease (NAFLD) is a common liver disorder hallmarked by 

abnormal deposition of fat, i.e.: hepatic steatosis. NAFLD can take the form of non-alcoholic 

steatohepatitis (NASH) or isolated steatosis. Both forms of NAFLD can cause chronic liver 

injuries which leads to the progression into liver fibrosis. At the same time, NAFLD is a known 

risk factor of type-II diabetes and premature cardiovascular diseases. Although liver fibrosis is less 

common than NAFLD, it has serious complications such as liver failure. Cirrhosis as a form of 

advanced fibrosis is a risk factor of hepatocellular carcinoma. 

Effective treatments are emerging for NAFLD and liver fibrosis. Lifestyle intervention has 

been demonstrated to reduce hepatic steatosis and inflammation. In the case of viral hepatitis, 

treatment for hepatitis C virus infection often leads to the reversal of liver fibrosis (even in patients 

with cirrhosis). The accurate evaluation of hepatic steatosis and fibrosis using non-invasive 

magnetic resonance imaging (MRI) methods are needed to improve the diagnosis and treatment 

monitoring of patients afflicted by these conditions. 

Chemical shift encoded (CSE)-MRI has been established as a quantitative imaging biomarker 

(QIB) for hepatic steatosis. In this dissertation, the effect of non-standardized spectral model of fat 

was evaluated such that meaningful comparisons can be made between results obtained at different 

research and clinical sites. A T1-corrected variable flip angle (VFA) CSE-MRI was also proposed 

and rigorously evaluated for fat quantification in the hope of improving the precision of CSE-MRI 

fat quantification. 

Quantitative diffusion MRI using an intra-voxel incoherent motion (IVIM) model and T2 

mapping have shown promise for the evaluation of liver fibrosis. However, some additional 
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development and validation is required for them to be recognized as QIBs. In this dissertation, a 

novel acetone-based diffusion phantom was proposed to provide a controlled environment for the 

development of quantitative diffusion MRI techniques. Further, to enable the quantification of T2 

from the water signal (parenchyma) and simultaneous quantification of R2*, a novel phase-based 

T2 mapping technique was developed with its feasibility in the liver demonstrated. 
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Chapter 1 : Introduction 

Non-alcoholic fatty liver disease (NAFLD) results from the excess accumulation of fat in the 

liver in the absence of alcohol abuse. NAFLD is one of the most common liver disorders and may 

progress into more serious liver injury. Emerging treatments for NAFLD are becoming available 

but rely early and non-invasive diagnosis and treatment monitoring. The current gold standard for 

diagnosis is biopsy, which is risky with dangerous complications and suffers from sampling errors. 

The non-invasive gold-standard of steatosis (fat accumulation) evaluation is MR spectroscopy 

(MRS). Only a single voxel can be evaluated by MRS in a single breath-hold while the steatosis 

could be heterogeneously distributed in the liver. Chemical shift encoded MRI (CSE-MRI) is a 

valid quantitative imaging biomarker (QIB) for NAFLD after the correction of confounding 

effects. Compared with MRS, CSE-MRI can estimate spatially resolved steatosis over the entire 

liver. 

In chapter 2, a more detailed review of NAFLD is given. Various biomarkers including MRI 

and non-MRI methods are compared. Although CSE-MRI is a valid QIB for evaluation of hepatic 

steatosis, there are remaining questions that must be answered to facilitate its widespread 

dissemination. 

In chapter 3, the pre-calibrated spectral model of fat is discussed. In CSE-MRI, the spectral 

distribution of fat is treated as known a priori from pre-calibration mainly by MR spectroscopy. 

Several different pre-calibrated spectral models of fat were adopted in various studies of CSE-MRI 

fat quantification. This disparity makes it difficult to make meaningful comparisons between 

results from different research sites. In this chapter, the impact of these pre-calibrated spectral 
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models of fat on the accuracy of CSE-MRI fat quantification was assessed in computer simulations 

and on a large in vivo dataset. 

In chapter 4, a T1-corrected CSE-MRI fat quantification technique was developed. Typically, 

multi-echo spoiled gradient echo (SGRE) signal was used in CSE-MRI fat quantification. A small 

flip angle is used to suppress T1-related bias. This use of small flip angles is an inefficient use of 

available longitudinal magnetization and leads to low SNR in the source images. Higher SNR can 

be attained if SGRE signal can be acquired with larger flip angles and the effect of T1 can be 

accounted for in the signal model. In this chapter, a CSE-MRI PDFF quantification technique using 

a large flip angle was developed and evaluated. 

Liver fibrosis is a condition known for the accumulation of extracellular matrix (ECM) 

proteins, and is a result of chronic liver injuries such as chronic viral hepatitis (hepatitis B and C), 

non-alcoholic steatohepatitis, alcohol abuse, auto-immune hepatitis, among others. Advanced 

fibrosis (cirrhosis) afflicts 0.27% of the U.S. population and may cause complications such as 

ascites and hepatic encephalitis. Cirrhosis is also an established risk factor for hepatocellular 

carcinoma (HCC). Liver fibrosis can be reversible, but requires accurate diagnosis and staging, as 

well as  removal or reversal of the underlying cause of liver injury.  

In chapter 2, a more detailed review of liver fibrosis is also provided. Methods of staging the 

liver fibrosis such as liver biopsy, ultrasound, CT, MR elastography (MRE), diffusion MRI with 

an intravoxel incoherent motion (IVIM) model, and T2 mapping are described. Diffusion MRI with 

IVIM and T2 mapping have shown great potential and require no extra hardware.  

In chapter 5, a phantom was designed for the development of quantitative diffusion MRI 

techniques. Estimates of the apparent diffusion coefficient (ADC) is an essential part of diffusion 

MRI with intravoxel incoherent motion (IVIM) model. However, the measurement of ADC 
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showed wide variability across studies and sites. These variabilities are likely a result of 

unaddressed confounding factors. The development of quantitative diffusion MRI could benefit 

from a phantom with reproducible ADC that can be tuned over the entire physiological range. 

Currently available phantoms for diffusion MRI do not fulfill this need. 

In chapter 6, a phase-based T2 mapping technique feasible for whole liver T2 mapping that is 

compatible with simultaneous CSE-MRI was developed. Quantitative T2 mapping is promising 

biomarker for the staging of liver fibrosis. Single-echo spin-echo and multi-echo spin-echo 

methods are too time consuming to assess an entire liver over a breath-hold, which is required for 

the suppression of respiratory motion. Steady-state T2 mapping techniques i.e. driven equilibrium 

single pulse observation of T1 and T2 (DESPOT2), double-echo steady-state (DESS), triple-echo 

steady-state (TESS) are faster. However, they are challenged by banding artifact (DESPOT2) and 

the presence of fat and iron (DESS&TESS). A feasible steady state T2 mapping technique that has 

the potential to be corrected for the effect of fat and iron may advance the development of T2 as a 

QIB for the staging of liver fibrosis. 

Finally, chapter 7 summarizes the contribution of this dissertation towards the development 

of QIB for diffuse liver disease. Future work expanding on the work presented is also discussed. 
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Chapter 2 : Background 

2.1 Diffuse Liver Disease 

Non-alcoholic Fatty Liver Disease (NAFLD) 

Non-alcoholic fatty liver disease (NAFLD) is a disorder where excess fat accumulates in the 

liver (steatosis) in the absence of alcohol abuse1. As a common chronic liver disease, it affects up 

to 30% of the adult U.S. population2. NAFLD is associated with a series of conditions: obesity, 

hyperlipidemia1, type-2 diabetes mellitus3, and metabolic syndrome with a specific hepatic insulin 

resistance that could also lead to diabetes4. These association suggested possible causes of the 

steatosis and provided clues to treatment designs of NAFLD. 

A subgroup of NAFLD known as non-alcoholic steatohepatitis (NASH) is distinguished from 

isolated steatosis by the presence of inflammation, hepatocyte injury and often fibrosis. Liver 

fibrosis is often diagnosed in patients with NASH5. Further, in combined results of studies 

clinically following patients with NASH, around 43% progressed to develop fibrosis, 8%-17% 

cirrhosis, and 3% terminal liver failure6. It is also well-established that NASH is a risk factor 

associated with hepatocellular carcinoma (HCC) in patients with and without cirrhosis7. Finally, 

even isolated steatosis could cause oxidative stress which activates hepatic stellate cells, and in 

time, leads to liver injury and fibrosis8. 

Treatments are available for patients diagnosed with NALFD to prevent progression into more 

serious liver injuries. Lifestyle interventions which promotes healthier diet, physical activities and 

exercise are an effective and established treatment of NAFLD9. A prospective study of 293 patients 

with histologically proven NASH who took on lifestyle changes recommended for treatment was 

conducted by Vilar-Gomez et al10. A dose-effective relationship was found between weight-loss 
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and steatosis improvement, NASH-resolution and fibrosis-regression evidenced by the changes in 

histological parameters. Steatosis improvements was defined as a reduction of at least 2 points in 

the NAFLD activity score (NAS), including at least 1-point in more than one category. NASH-

resolution was defined as the lack of hepatocellular ballooning, as a marker of liver injury. The 

fibrosis-regression was defined as a reduction of at least 1 point in the fibrosis score. 

 

 

Figure 2.1 The strong correlation between patient weight-loss and the effectiveness of NAFLD 

treatment indicated by NASH-resolution, fibrosis-regression and steatosis improvement.Image 

from Vilar-Gomez et al. J Hepatol (2017).  

 Inspired by strong correlation between NAFLD and insulin resistence11, pilot studies have 

shown that insulin sensitizing agents such as metformin12 and thiazolidinediones13 will reduce 

aminotransferase levels, reduce liver fat and improve liver histology14. However, randomized 

controlled studies are still required to validate these agents as effective treatment14. 

With the discovery of effective treatment, early diagnosis can help prevent the progression of 

NAFLD into life-threatening conditions while improving the overall health of NAFLD patients.  
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Liver Fibrosis 

The traditional view of hepatic fibrosis was the process of a collagen-rich tissue replacing 

damaged and collapsed parenchyma15. More recently, liver fibrosis has been modeled as a 

sophisticated wound healing process in response to chronic liver injury16. In this process, the 

accumulation of extracellular matrix (ECM) protein makes up fibrous scar and distorts the hepatic 

architecture. Cirrhosis develops when consequent nodules of regenerating hepatocytes appear16.  

The leading causes of liver fibrosis in industrialized countries are hepatitis C virus (HCV) 

infection, alcohol and non-alcohol fatty liver disease16. In a study conducted in France of 7554 

subjects17, the prevalence of liver fibrosis was estimated as 2.8%, and that of cirrhosis 0.3%. In 

the United State, the prevalence of liver cirrhosis18 was estimated to be 0.27%, or an estimated 

891,000 people. Once cirrhosis develops, the hepatocellular dysfunction and increased intrahepatic 

resistance to blood flow will cause hepatic insufficiency and portal hypertension, respectively. 

There are major clinical complications of cirrhosis, including ascites, renal failure, encephalopathy 

and variceal bleeding17. Further, cirrhosis, of any etiology, is an established cause of HCC. As the 

incidence of NAFLD continues to increase, the complications of cirrhosis are expected to increase 

commensurately.  

Contrary to previous popular belief, recent evidence showed feasibility of the reversal of 

fibrosis (including cirrhosis)19. It has been shown that removal of the underlying cause of liver 

injury is often effective treatment of liver fibrosis20–22,16. Further, various promising anti-fibrotic 

drugs are under development and validation16. As a result, the accurate diagnosis and staging has 

great promise to improve the diagnosis, prognosis and treatment monitoring of patients with liver 

fibrosis. 
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Liver Iron Overload 

A homeostasis of iron in the human body is usually maintained by a regulated dietary 

absorption of iron and a consistent process of the elimination of iron by a number of spontaneous 

mechanisms23. This homeostasis can be disrupted by increased absorption of iron due to hereditary 

hemochromatosis and thalassemia, as well as frequent blood transfusions24. The result of the 

disrupted homeostasis is iron overload (increased iron concentration).  

The work in this dissertation does not aim to address any difficulties in the diagnosis and 

evaluation of liver iron overload. However, the presence of iron depending on the cluster size, 

distribution and concentration greatly alters the signal behavior in MRI. As a result, the effect of 

iron is a factor that must be accounted for in many applications of MRI to diffuse liver diseases. 

Further, the increased presence of iron in tissue impacts the ability of CSE-MRI methods to 

quantify liver fat and must be accounted for in CSE-MRI signal models.  

2.2 Diagnosis of NAFLD 

Percutaneous liver biopsy is the current gold standard for diagnosing hepatic steatosis. It 

provides important histological information such as fat content, cellular injury and fibrosis25,26. 

Nevertheless, it suffers from sampling variability and significant risk of complication.  

Imaging modalities such as ultrasound and computed tomography (CT) are also sensitive to 

the liver fat content27. However, ultrasound struggles to provide sufficient repeatability and 

reproducibility28,29. Further, the fat content measured in CT is confounded by the effect of local 

concentrations of iron, copper, etc30, as well as the use of iodinated contrast. The non-invasive 

clinical standard method of diagnosing hepatic steatosis is MR spectroscopy (MRS)27. MRS 

measures proton density fat fraction (PDFF) as a quantification of steatosis. MRS acquisitions for 
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liver PDFF quantification can be performed rapidly (e.g.: single breath-hold). However, MRS is 

challenged by sampling variability since it measures only a single voxel. 

In contrast to MRS, chemical shift encoded (CSE) MRI enables rapid and accurate PDFF 

quantification with whole-liver 3D coverage in a single breath-hold. In recent years, MRI based 

techniques have been emerging as well validated biomarkers of hepatic steatosis. Extensive 

validation of confounder-corrected quantitative CSE-MRI has demonstrated equivalence of these 

methods to MRS31–36. 

2.3 Diagnosis and Staging of Liver Fibrosis 

The gold standard for the diagnosis and staging of fibrosis is liver biopsy. Liver fibrosis 

staging using standardized grading system such as METAVIR has shown good to excellent inter- 

and intra-observer reproducibility37. However, due to a high degree of sampling error, liver biopsy 

is extremely limited in its reproducibility and reliability. Further, biopsy is associated the risk and 

dangerous complications (0.13-6.4%)38.  

Among less invasive techniques. Serum bio-markers such as N-terminal propeptide of type 

III collagen are effective for detecting fibrosis of all stages, but are not effective for the staging of 

fibrosis16,39. Using ultrasound, fibrotic liver will produce a coarse echo pattern which can be used 

for diagnosis40. However, the specificity of ultrasound is limited in the presence of steatosis. 

Magnetic resonance elastography (MRE), encodes the periodical displacement into the signal 

phase, using a propagating mechanical wave induced by a passive transducer. Shear stiffness can 

be calculated from the wave function, e.g., with a local frequency estimation (LFE) inversion 

algorithm. The shear stiffness can detect liver fibrosis with high specificity and sensitivity. 
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However, the staging of fibrosis is less successful41,42. When elastography is performed using 

ultrasound (transient elastography), similar performance was observed41,43. 

Contrast agent Gadoxetic acid uptake is a measure of hepatic function which is impaired by 

the increase of fibrotic tissue. Liver fibrosis evaluation based on this premise using contrast 

enhanced MRI has been developed and evaluated44–47. Although contrast enhanced MRI was 

shown to be a promising tool for the staging of liver fibrosis, further technical development is 

required to reach the accuracy delivered by MRE based on the results in these studies. 

Diffusion weighted MRI (DWI) using an intravoxel incoherent motion (IVIM) model has been 

investigated for the staging of liver fibrosis. This was evidenced by a meta-study of 25 independent 

studies involving 1833 patients in total. The measured area under the curve (AUC) in summary 

receive operation curve (SROC) were 0.8554 (F0 vs F1-F4), 0.8770 (F0-F1 vs F2-F4), 0.8836 (F0-

F2 vs F3-F4), and 0.8596 (F0-F3 vs F4)48. However ADC measurements in the liver demonstrated 

poor reproducibility across combinations of b-values49. Another study came to the same conclusion 

using weighted mean difference (WMD) analysis50. However, the staging by DWI has been less 

reliable than MRE 44. DWI based fibrosis staging is challenged by confounding factors including 

steatosis. Should these confounding factors be addressed, the accuracy of fibrosis staging is likely 

to improve. 

Importantly, an apparent monotonic increase of T2 with the progression of liver fibrosis has 

been discovered in recent animal studies51,52. This strong correlation between T2 and the degree of 

fibrosis level measured using the Ishak classification system reflects the potential of T2 as a 

imaging biomarker for the staging of hepatic fibrosis53. However, obvious challenges from the 

effects of iron overload and hepatic inflammation will need to be addressed. 
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2.4 Quantitative Imaging Biomarkers  

MRI-based quantitative imaging biomarkers (QIBs) have tremendous potential in applications 

pertinent to diffuse liver disease. As described in previous sections, CSE-MRI measured proton 

density fat fraction (PDFF) has been used as a QIB for NAFLD. DWI (with IVIM) model produced 

parameters such as perfusion fraction (pf), and T2 have the potential to be QIBs used for assessing 

liver fibrosis.  

In order for MRI techniques to provide valid QIBs, they should be:  

• Accurate: Correlate with an accepted reference 

• Precise: Repeatability within subjects (low variability) 

• Reproducible: Low variability across sites and platforms 

The thesis of this dissertation is to address the challenges in the development and widespread 

dissemination of MRI based QIBs for diffuse liver diseases. 

2.5 PDFF Quantification using CSE-MRI 

CSE-MRI 

CSE-MRI was first used for the separation of water and fat signal. Due to the relative chemical 

shift between water and fat, each species signal would contain a relative phase that is a linear 

function of the echo time. The acquisition can be adjusted such that the relative phase shift between 

the two chemical species are 0 (in-phase) and π (opposed-phase). By adding and subtracting these 

two signals, SW (water) and SF (fat) can be derived54. However, without the knowledge of which 

chemical species is the major component in a voxel, it is ambiguous which of the SW and SF is the 
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summation and which is the subtraction. Both chemical species were assumed to present a single 

MR spectral peak. 

Robust and uniform separation was achieved after measuring and compensating for phase 

shifts caused by local magnetic field inhomogeneity55. To account for the B0 field inhomogeneity, 

a version of the following signal model was adopted to model signal acquired at three different 

echo times.  

S =  ei(γ∆B0∙TEn+ϕ0)(SW + SF ∙ ei2π∙f∙TEn)    [2.1] 

Where γ is the gyromagnetic ratio, ∆B0 is the local B0 field inhomogeneity, TEn is the echo time 

of the nth echo, and f is the relative chemical shift of fat to water. SW and SF denote the magnitude 

of water and fat signal respectively while ϕ0 denotes a common initial phase for all the signal. 

This update of the signal model introduces the formidable challenge of estimating local B0 

field inhomogeneity to the separation of chemical species. The large spatial variation in B0 field 

sometimes encountered in clinical exams will cause spectral alias, resulting in ambiguity in the 

solution56,57. Another source of ambiguity is the scenario where a single chemical species is 

dominant in a voxel. It could not be determined from the signal model whether the dominant signal 

is water or fat56. Further, iterative reconstruction such as non-linear least square fitting, the non-

convexity of the model sometimes causes the reconstruction to converge to a local minimum 

instead of the desired solution56. 

Various region growing-based58,59 and multiresolution60 methods were proposed to solve the 

ambiguities with varying degrees of success. Alternatively, Hernando et al. proposed a method 

where a combination of spatially regularized maximum likelihood formulation and a graph cut 

optimization algorithm resolved ambiguities and non-convexity of the signal model. Robust 

performance was achieved even in challenging cardiac cases56. 
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At this point, despite the successful and unambiguous separation of water and fat signal, 

important factors that influence the signals such as the coil sensitivity and R2* decay were ignored. 

This results in the qualitative nature of the produced water and fat signals. 

CSE-MRI PDFF as a QIB for Steatosis 

After further proposition and validation of more realistic signal models, proton density fat 

fraction (PDFF) was measured using CSE-MRI61. PDFF is defined as the ratio Sw /(Sw + SF) after 

correction for all confounding factors discussed in the following paragraphs contributing to the 

estimated signal intensity denoted as Sw and SF.  

The signals acquired at different echo times experience different amounts of R2* decay which 

is ignored by signal model in Eq.2.1. Without modeling the effect of R2* decay, a bias will arise 

in the estimate of PDFF62,63. In theory, water and fat signals experience R2* decay at different rates, 

and a dual R2* model (independent R2* for water and fat) gives more accurate estimation of PDFF 

in phantoms64. However, in vivo, a single R2* model results in more accurate PDFF estimates than 

a dual R2* model, at least in liver applications65. Consequently, single R2* signal models have 

been widely accepted. 

The complex structures of triglyceride molecules (fat) give rise to inhomogeneous chemical 

shift within the molecule. The fat signal was historically modeled as a single MR spectral peak 

with a chemical shift of 1.3ppm (methylene peak) while the chemical shift experienced by protons 

in these molecules range from 0.7 to 5.3ppm as measured by MR spectroscopy66. Generally, this 

mismatch between the model and the physical truth causes bias in the PDFF estimate36,67. 

Especially, the double bond peak (5.3ppm) being much closer to the water peak(4.7ppm) than the 

main fat peak(1.3ppm) will contribute to the estimated water signal instead of fat. This 
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confounding effect was successfully addressed by treating the fat 1H MR spectrum as known a 

priori measured using MR spectroscopy36,67.  

 

Figure 2.2 The MR spectrum of fat contains multiple peaks, some of which are closer to the water 

peak than the main fat peak(5). MR spectrum of Microlipid® fat-water emulsion phantom MR 

spectrum (left) and in vivo liver MR spectrum from a human subject with fatty liver (right). Image 

from Hamilton et al. NMR Biomed (2010). 

Eddy current induced by rapidly changing gradient fields creates a phase shift between signals 

acquired at different echo times. The bias from this phase shift in PDFF estimate can be removed 

by utilizing a mixed fitting scheme68. Further, the estimated signal intensities Sw and SF are random 

variables with skewed non-Gaussian distribution after taking the magnitudes of complex values. 

This asymmetry will propagate into the bias of PDFF estimate if not dealt with, especially in noisy 

voxels. A model where a common phase is assumed for the water and fat signal can successfully 

tackle this effect and produce accurate PDFF estimate69.  
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A number of studies have shown that PDFF measured using CSE-MRI (signal model shown 

in Eq.2.2) after correcting for the confounding effect of R2*, using a multi-peak spectral model of 

fat, etc. is a valid QIB for hepatic steatosis31–36,67,70.  

S(TEn;  SW, SF, ∆B0, R2
∗, ϕ0 ) = ei(γ∙∆B0∙TEn) ∙ e−R2

∗∙TEn ∙ eiϕ0( SW + SF ∙ ∑ apei2π∙fp∙TEnP
p=1 )    [2.2] 

Pre-calibration Spectral Model of Fat 

Pre-calibrated multi-peak models have been derived by MRS or dedicated CSE-MRI 

experiments with a large number of echo times. However, different models including a 9-peak 

model by Hamilton et al66. and a 6-peak model after merging some peaks with very similar 

resonance frequency66, a 7-peak model by Ren et al71., a 4-peak and a 5-peak model by Wokke et 

al72., and a 3-peak model by Yu et al67., have been derived and applied in different studies. The 

various models differ in the number of peaks, chemical shift between peaks and relative amplitudes 

of the peaks. Although techniques using different spectral models have been validated for accurate 

fat quantification or water fat separation, there is no consensus as to which spectral model should 

be used. 

 The impact on PDFF estimation from the choice of spectral model of fat is unknown, and this 

lack of standardization has potential impact on the reproducibility of CSE-MRI for quantifying fat. 

This work will validate the fat spectral models currently used in CSE-MRI based fat quantification. 

It will seek to establish how the choice of fat model will affect the accuracy and reproducibility of 

CSE fat quantification. 

T1-related Bias in CSE-MRI PDFF Quantification 

In human hepatocytes, the short T1 of fat can lead to overestimation of the fat signal relative 

to water signal in CSE techniques based on spoiled gradient echo (SGRE) acquisitions, if the 
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acquisition is T1-weighted. T1-independent methods mitigates this overestimation by applying a 

small flip angle in SGRE acquisitions to approach proton-density weighting31–33,35. Flip angles 

smaller than 5° are usually applied, which unfortunately results in reduced SNR. Thus, if larger 

flip angles can be used in CSE-MRI without causing T1-related bias, it is likely that better precision 

may be achieved, by reducing the variability of individual measurements. 

Instead of T1-independent methods, T1 can be measured from signals acquired at multiple 

flip angles, then used to correct T1 weighting in water and fat estimates. Based on DESPOT1 by 

Denoi et al73., Liu et al first proposed a dual flip angle method which combines a 3-point Dixon 

method and DESPOT1. This approach acquires multi-echo SGRE signal and estimates water and 

fat at two different flip angles respectively69. DESPOT1 was performed to produced T1-corrected 

water, fat signals as well as T1 of water and fat. Dual flip angle methods allow the choosing of 

larger flip angles and thus higher SNR in acquired signal without inducing T1-related bias in PDFF 

estimate. At the same time, the additional parameters to estimate (T1 of water and fat) offsets some 

of the SNR benefit of utilizing the magnetization more efficiently.  

In Liu’s method, R2* and B0 field inhomogeneity were estimated repeatedly at 2 different 

flip angles. This redundancy of parameters is likely to impair the noise performance. It is therefore 

expected that by applying the constraint that R2* and B0 field inhomogeneity remain unchanged 

between scans at each flip angle, less noisy unbiased estimate of PDFF may be achieved as well 

as estimates of R2* and T1. Based on this hypothesis, in this thesis we will propose a joint fit 

approach for T1 corrected fat quantification based on dual flip angle multi-echo SGRE acquisition. 
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2.6 Quantitative Diffusion MRI for the Staging of Fibrosis 

Quantitative Diffusion MRI 

The thermodynamics of homogeneous particles going through Brownian motion 

(diffusion) was theorized by Albert Einstein. An important conclusion74 is that unrestricted 

diffusion can be described by Eq.2.3.  

rrms = √2Dt                [2.3] 

Where rrms the root-mean-squared displacement is a function of diffusion time (t) and diffusion 

coefficient (distance squared per time with the unit mm2/s). 

Torrey first modeled the effect of diffusion on magnetization in nuclear magnetic 

resonance (NMR) by adding a diffusion term into the Bloch Equations75. Stejskal and Tanner, at 

the University of Wisconsin, later used a diffusion sensitizing gradient to measure the diffusion 

coefficient76 (D) described in the Einstein equation (Eq.2.4). The signal encoded using the 

diffusion sensitizing gradient were modeled based on Torrey’s work as: 

S = S0 e−bD             [2.4] 

where S is the signal measured with diffusion sensitizing gradient and S0 is the theoretical 

signal intensity if no diffusion sensitizing gradient was added. The parameter b commonly referred 

to as the “b-value”, defines the diffusion weighting, which changes with the shape, intensity, 

spacing and duration of the diffusion sensitizing gradient. The diffusion sensitizing gradient are 

sometimes referred to as diffusion encoding gradient as well as diffusion weighting gradient. 

For a diffusion sensitizing gradient with rectangular gradient lobes, the b-value can be 

calculated as follows74: 

b = γ2G2δ2(∆ − δ/3)      (2.5) 



17 

 

where γ is the gyro magnetic ratio, G is the gradient strength, ∆ and δ are the spacing and duration 

of diffusion sensitizing gradient lobes. 

Figure 2.3. Spin-echo based pulse sequence diagram for diffusion MRI. Image from Koh et al. 

AJR (2007). 

The signal model in Eq.2.4 is derived with the assumption of unrestricted homogeneous 

single component diffusion. With such an assumption, particle displacement after a fixed duration 

of Brownian motion follows a Gaussian distribution. As a result, such diffusion activity is also 

called Gaussian diffusion. Unfortunately, in the in vivo environment, unrestricted, homogenous, 

single component diffusion activity is not a realistic assumption. The term apparent diffusion 

coefficient (ADC) was therefore coined to describe the number measured using Eq.2.4 from more 

complicated diffusion activity. Therefore, we can rewrite Eq.2.4 as: 

S = S0 e−b∙ADC              [2.6] 

An IVIM (intravoxel incoherent motion) model was also proposed by Le Bihan et 

al77.,which better approximates the physiological reality in vivo including in the presence of liver 
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fibrosis. The signal was modeled to be a sum of perfusing and diffusing components. Three 

parameters are used to model this mix of perfusion and diffusion activity: perfusion-related 

diffusion (D*), perfusion fraction (pf) and pure molecular diffusion (D)77,78. Great potential was 

shown for the IVIM model to accurately evaluate the severity of liver fibrosis48,50. 

The pure molecular diffusion (D) is the parameter less associated with the development of 

fibrosis in the IVIM model. However, the accurate measurement of ADC as a QIB from diffusion 

MRI is critical in the measurement of perfusion-related diffusion (D*) and perfusion fraction (pf). 

This is due to the fact that IVIM signal model is equivalent to a compound of 2 components 

experiencing unrestricted diffusion described by Eq.2.6. 

Challenges in Quantitative Diffusion MRI 

Reported measures of diffusivity such as ADC from different studies have shown 

significant variability. For instance, reported ADC in healthy liver and liver lesions vary widely 

across studies49,79–84, with clinically relevant overlap in values : normal liver (0.69-1.83 ×10-

3mm2/s), metastases (0.94-1.50 ×10-3mm2/s), HCC (0.97-1.38 ×10-3mm2/s), hemangiomas (1.90-

2.95 ×10-3mm2/s), cysts (2.54-3.63 ×10-3mm2/s). This wide variability of ADC has precluded the 

standardization of diagnostic and treatment criteria and the adoption of these techniques for multi-

center clinical trials and widespread clinical use, because the overlap of ADC values precludes the 

use of ADC to differentiate lesion type.  

Bulk motion also introduces significant artifacts in DW-MRI and bias in measurement of 

diffusivity (ADC)85–92. These effects are particularly severe in the left liver lobe93. The presence 

of liver fat is extremely common and may affect liver diffusion measurements. Prior studies show 

contradictory results on the way presence of fat biases measured ADC94,95 . Hansmann et al. and 

Taviani et al. have also shown the potential confounding effect of liver fat on ADC96,97. Finally, in 
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vivo validation of the technical accuracy (i.e.: lack of systematic error) of quantitative diffusion 

MRI techniques is challenging, due to the lack of a direct reference standard. Rather, technical 

accuracy can be assessed using phantoms with highly controlled diffusion properties98–100. In vivo, 

validation of clinical accuracy (e.g.: correlation with treatment prognosis) can be employed as a 

surrogate for technical accuracy.  

Phantoms in Quantitative Diffusion MRI 

Development, validation and quality assurance of quantitative diffusion MRI can greatly 

benefit from highly controlled testing on diffusion MRI phantoms. Early phantoms used in 

diffusion-MRI were constructed using various pure substances. Compounds such as water101, 

ethanol and isopropanol102, corn oil103, acetone104, silicone oil105 and cyclohexane103 were 

proposed and tested. These phantoms are easy to construct, and provide simple diffusion behavior. 

However, some of these compounds possess multiple MR spectral peaks (ethanol), which may 

cause ghost images in diffusion weighted echo-planar imaging (DW-EPI). Very importantly, a 

very limited number of discrete ADC values can be achieved using these pure substances. 

Therefore, these early phantoms are generally not adequate for validation of diffusion MRI 

techniques.  

Instead of pure substance phantoms, several solution-based phantoms have been proposed 

in recent years. In these phantoms, a solvent provides MRI signal, and its diffusion behavior is 

modified (resulting in progressively lower ADC) by adding various concentrations of a solute. 

Two important examples of solution phantoms include designs based on solutions of water with 

sucrose100,106 or polyvinylpyrrolidone (PVP)98. It has been shown that dissolved sucrose or PVP 

reduces the measured ADC of water, enabling the design of phantoms with the desired ADC 

values98,100,106. Note that, in general, solutes such as sucrose and PVP dissolved in water generate 
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MR signals with multiple spectral peaks. Although preliminary studies have examined the 

Gaussian diffusion properties of sucrose phantoms98,100,106–108, comprehensive validation of these 

phantoms is still needed. For instance, it is unknown whether the signal from PVP or sucrose could 

confound ADC values measured with quantitative diffusion MRI techniques. Further, an ice-water 

bath is typically used to maintain a constant temperature99 while scanning phantoms with diffusion 

MRI. The use of water as a signal source results in limited range of ADCs at ice water temperature 

(ADC<1.1 ∙10-3 mm2∙s-1)109 which is well below the higher end of physiological values (2.6∙10-3 

mm2∙s-1)110. This limited ADC range is a fundamental limitation of phantoms based on water as a 

solvent. Although scanning at higher temperatures (eg: room temperature) is possible, and will 

lead to higher ADC values, the requirement of accurate temperature control makes the experiments 

complicated. For the purpose of reaching the entire physiological ADC range, in this work we 

propose, develop and validate a phantom based on the mixture of acetone and deuterium oxide. 

2.7 T2 Quantification for the Staging of Liver Fibrosis 

Lengthy exam times have been a challenge to commercially available single-echo spin-echo 

and multi-echo spin-echo T2 mapping techniques. This is due to the fact that long TR is required 

for reducing the T1 weighting in the signal. To avoid motion artifacts, respiratory motion in 

abdomen exams needs to be addressed. A common solution is to acquire the images in a breath-

hold. As a result, to the best of our knowledge, multi-slice multi-echo spin-echo is the only spin-

echo based T2 mapping method applicable in the abdomen52,111. This technique does not cover the 

entire liver in a single breath-hold. 

Steady-state based T2 mapping technique has vastly reduced the exam time required for T2 

mapping. Driven equilibrium single pulse observation of T1 and T2 (DESPOT2)112 is based on 2 
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separate SGRE acquisitions and a balanced-steady state free precession (b-SSFP) with varied T1 

and T2 weightings. This technique requires 3 separate steady-state acquisitions and may be 

confounded by banding artifact. Whole liver T2 mapping in a breath-hold is therefore not feasible.  

Double echo steady-state (DESS)113, and triple echo steady-state (TESS)114 methods encode 

varied T2 and T1 weighting into separate echoes acquired in a single steady-state acquisition. 

Although T2 can be calculated from a single steady-state acquisition, this method is not readily 

compatible with CSE-MRI due to the different compositions of signal echoes. When imaging 

livers with steatosis, the presence of fat and the difference between T2 of water and fat66 may have 

a confounding effect on the estimate of T2. Further, T2 is heavily influenced by the local iron 

concentration115, for T2 to provided dedicated information to the staging of fibrosis, it is critical to 

account for the contribution of iron. Both steatosis and iron concentration can be evaluated with 

CSE-MRI23,33. The inability to acquire TESS and DESS signal in a combined acquisition with 

CSE-MRI is a challenge in the T2-based staging of liver fibrosis. 

The steady-state methods introduced above exploit only the magnitude for the encoding of 

relaxation parameters. The signal phase was discarded as redundant information. In this work we 

propose a novel T2 mapping mechanism by encoding T2 information into the signal phase of 

steady-state signal acquired with RF phase increments116. The use of phase may reduce the number 

of acquisitions required in DESPOT2. The use of steady-state signal similar to an SGRE signal 

also makes the proposed technique compatible with CSE-MRI in the form of a multi-echo 

acquisition. The proposed technique may potentially enable the T2-based staging of liver fibrosis. 
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2.8 Significance 

CSE-MRI PDFF quantification is a proven QIB for hepatic steatosis. Accurate diagnosis and 

grading of NAFLD followed by treatment of lifestyle intervention can prevent the progression of 

NAFLD into more dangerous liver diseases and improve the quality of life. Further, CSE-MRI 

PDFF quantification due to its non-invasive nature and robustness to the heterogeneity of steatosis 

can be used to monitor treatment response either by lifestyle intervention or insulin sensitizing 

drugs.  

In this work, the evaluation of pre-calibrated fat NMR spectrum used in CSE-MRI will 

provide necessary information to the design of standardized CSE-MRI protocol for accurate 

assessment of hepatic steatosis. The development of T1-corrected CSE-MRI PDFF quantification 

technique may improve the SNR in the PDFF estimate and consequently the precision in the 

assessment of NAFLD. 

Recent studies have indicated the feasibility of reversing even advanced fibrosis by removing 

the cause e.g. HBV, HCV, NASH, and alcohol abuse. The staging of liver fibrosis can provide 

vital information to the design of treatment plan and the monitoring of treatment response.  

In this work, the development of a diffusion phantom with controlled temperature and a wide 

range of tunable ADC values may help address the confounding factors that caused the wide 

variability of ADC measurements by diffusion MRI. The improved diffusion MRI techniques may 

further improve the accuracy and precision of IVIM model used in the staging of hepatic fibrosis.  

Finally, the development of a phase-based T2 mapping technique potentially compatible with 

CSE-MRI may enable T2 mapping of the liver tissue. The T2 information combined with 

simultaneous derived PDFF and iron concentration could provide a promising alternative tool for 

the staging of liver fibrosis.  
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Chapter 3 : Sensitivity of Chemical Shift-Encoded Fat 

Quantification to Calibration of Fat MR Spectrum 

This work has been published in the Magnetic Resonance in Medicine.2015;75(2):845-854 under 

the title “Sensitivity of Chemical Shift-Encoded Fat Quantification to Calibration of Fat MR 

Spectrum” 

3.1 Abstract 

Purpose: To evaluate the impact of different fat spectral models on proton density fat-fraction 

(PDFF) quantification using chemical shift-encoded (CSE) MRI. 

Material and Methods: Both simulations and in vivo imaging were performed. In a simulation 

study, spectral models of fat were compared pairwise. Comparison using both magnitude fitting 

and mixed fitting was performed over a range of echo times and fat fractions. In vivo acquisitions 

from 41 patients were reconstructed using 7 published spectral models of fat. T2-corrected 

STEAM-MRS was used as reference. 

Results: Simulations demonstrate that imperfectly calibrated spectral models of fat result in biases 

that depend on echo times and fat fraction. Mixed fitting is more robust against this bias than 

magnitude fitting. Multi-peak spectral models showed much smaller differences among 

themselves than when compared to the single-peak spectral model. In vivo studies show all multi-

peak models agree better (for mixed fitting, slope ranged from 0.967-1.04 using linear regression) 

with reference standard than the single-peak model (for mixed fitting, slope=0.76). 
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Conclusion: It is essential to use a multi-peak fat model for accurate quantification of fat with 

CSE-MRI. Further, fat quantification techniques using multi-peak fat models are comparable and 

no specific choice of spectral model is shown to be superior to the rest.  

Keywords: fat quantification; spectral model of fat; proton density fat fraction; fat spectrum; non-

alcoholic fatty liver disease; magnetic resonance imaging 

3.2 Introduction 

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, 

affecting up to 30% of the adult U.S population2. NAFLD is a risk factor for diabetes and 

cardiovascular disease, and can progress into cryptogenic cirrhosis and hepatocellular 

carcinoma117,118. The diagnosis of NAFLD requires assessment of intracellular triglycerides in 

hepatocytes. Chemical shift-encoded (CSE) water fat imaging enables accurate quantification of 

proton density fat fraction (PDFF) over the entire liver. Compared with liver biopsy and single 

voxel MR spectroscopy (MRS)119, CSE-MRI provides non-invasive spatially resolved 

quantification of liver fat. 3D coverage of the entire liver can be acquired within a single breath-

hold27,31–33. Extensive validation of confounder-corrected quantitative CSE-MRI have 

demonstrated equivalence of these methods to MRS31–36. 

In CSE-MRI, multiple images are acquired with increasing echo time (TE). A water image 

(W) and a fat image (F) are calculated by fitting the acquired data at each voxel to a signal model 

based on the chemical shift between fat and water31,33. Fat fraction is then calculated as F/(W+F). 

To ensure that the calculation yields proton density fat-fraction (PDFF), a fundamental property 

of tissue that reflects the concentration of triglycerides61, several confounding factors must be 
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addressed. Such confounders include B0 inhomogeneity120, T1 bias62,69, T2* signal decay67,121–123, 

eddy currents68,124, noise bias69, and the spectral complexity of fat123,125.  

Compared with water, which has a single spectral peak, the complex structure of triglyceride 

molecules leads to complex and heterogeneous proton chemical shifts within the molecule. The 

different chemical shifts observed in a number of functional groups in fat molecules give rise to 

multiple peaks of fat signal in proton-based MRI. In early CSE-MRI techniques, a single-peak fat 

model (methylene peak) was generally assumed. However, this single-peak model accounts for 

only 70% of the total fat protons66. A recent study showed that the single-peak model results in a 

biased estimate of PDFF that can be corrected by using a multi-peak spectral model of fat125. In 

principle, the use of such a model requires independent estimation of the amplitude (and potentially 

other spectral parameters) of every fat peak. However, due to limited number of echo times 

typically acquired in CSE-MRI, it is not possible to individually resolve each fat peak. 

Consequently, CSE-MRI using a pre-calibrated multi-peak fat spectral model have been 

proposed62,67,125, where the relative amplitudes and chemical shift of fat peaks are known 

parameters. Therefore, compared with the single-peak model, no additional variables (degrees of 

freedom) are introduced into the estimation problem.  

Pre-calibrated multi-peak models have been derived by MR spectroscopy or using dedicated 

CSE-MRI experiments with a large number of echo times66,67,71. However, different models have 

been derived and applied in different studies. The various models differ in the number of peaks, 

chemical shift between peaks and relative amplitudes of the peaks. Although techniques using 

different spectral models have been validated for accurate fat quantification or water fat separation, 

there is no consensus as to which spectral model should be used. 
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The impact on PDFF estimation from the choice of spectral model of fat is unknown, and this 

lack of standardization has potential impact on the reproducibility of CSE-MRI for quantifying fat. 

The purpose of this study is to evaluate the sensitivity of PDFF mapping to the choice of multi-

peak fat model by simulation and in vivo liver fat quantification.  

3.3 Theory 

In chemical shift-encoded (CSE) MRI, the acquired signal in a voxel in the presence of water 

and fat can be generally described as: 

sn = ei(∆ω0∙TEn) ∙ ( Weiϕ0,we−R2w
∗∙TEn + Feiϕ0,F ∙ ∑ αpei2π∙fp∙tene−R2p

∗∙TEnP
p=1 )     [3.1] 

where sn is the signal acquired at the nth echo time TEn, ∆ω0, is the frequency offset due to local 

B0 off-resonance ϕ0,w, ϕ0,F are the initial phase of water and fat signal. The signal consists of one 

water peak and P fat peaks. W and F are the sum of all water signal and fat signal, respectively. 

The R2* decay rate of water is R2W*. The relative amplitude, relative frequency shift, and R2* 

decay rate of the pth fat peak are denoted as αp, fp and R2*p, respectively. In general, ϕ0,w, ϕ0,F , ∆ω0, 

R2W* , α1… αP, f1... fP, R2*1… R2*p are the unknown parameters to be estimated. 

In CSE-MRI, due to imaging time constraints, 6 echoes with maximum echo time of 

approximately 10-20ms (at 1.5T) are typically acquired, providing limited spectral resolution. To 

achieve robust water fat separation, the number of unknowns can be reduced by introducing 

assumptions to the general signal model in Eq.3.1. Two major and well-validated assumptions are 

commonly used 1) R2* of water and all fat peaks are all assumed to be equal31,65, 2) the relative 

amplitude and chemical shift of all fat peaks are assumed to be known a priori67,125 (i.e. pre-

calibrated fat spectrum). These assumptions lead to the following simplified signal model124: 

sn = ei(∆ω0∙TEn) ∙ ( Weiϕ0,w + Feiϕ0,F ∙ ∑ αpei2π∙fp∙tenP
p=1 )e−R2

∗∙TEn     [3.2] 
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where αp, fp are the known (ie: pre-calibrated) relative amplitude and frequency shift of the pth fat 

peak. In a typical CSE-MRI acquisition, signals from multiple echoes acquired are fit, on a voxel-

by-voxel basis, using the signal model in Eq.3.2 to estimate the six unknown parameters W, F, ϕ0,w 

and ϕ0,F , Δω0, and R2*. A PDFF map then can be calculated using separated water and fat images, 

including correction for noise bias effects69. This signal model has been successfully applied for 

PDFF quantification, and validated using MR spectroscopy-based fat quantification as a 

reference31,33. 

Further, eddy current effects can lead to undesired phase shifts between different echoes, 

introducing errors in CSE fat quantification. To address this challenge, fitting is often performed 

after taking magnitude of both sides of Eq.3.2, i.e.: “magnitude” fitting. When the phase in 

equation 2 is preserved, this is referred to as “complex” fitting. Magnitude fitting is relatively 

immune to eddy current related phase errors but suffers reduced noise performance compared with 

complex fitting126. Alternatively, a mixed fitting technique has been proposed where only the phase 

of the first echo is discarded in “single echo train” acquisitions. Mixed fitting results in good 

robustness to phase errors relative to complex fitting, and improved noise performance relative to 

magnitude fitting68. 

The specific choice of pre-calibrated multi-peak fat model differs considerably between 

studies and there is no consensus as to which is the best and most appropriate spectrum to use. In 

recent works, Hamilton et al, measured the human liver fat spectrum as a 6-peak and a 9-peak 

model using spectroscopy on a 3T GE system66. Ren et al, characterized the human subcutaneous 

and bone marrow fat spectrum using a 7-peak model, measured at 7T, using single-voxel 

stimulated echo acquisition mode (STEAM)-spectroscopy71. Wokke et al72, derived 4- and 5-peak 

fat models by merging peaks that are close together in the 6-peak model64. Yu et al67, applied a 



28 

 

self-calibrated fat quantification method which calibrated human liver fat spectrum as a 3-peak 

model.  

The differences in number of peaks, frequency shifts relative to water, and relative amplitudes 

are summarized in Table 1. Among these fat models, 6,7 and 9-peak models are most commonly 

used in CSE fat quantification. The 9-peak model has been adopted by Berglund et al127, 6-peak 

model has been adopted by Hernando et al123, Hines et al31, Meisamy et al33. The 7-peak model 

has been used by Jonker et al128. An additional 3-peak model and 5-peak model have also been 

reported by Yokoo et al32,34. 

Peaks Frequency relative to water 

(ppm) 

Relative amplitude (%) Reference 

1 -3.4 100 n/a 

3 0.73, -2.49, -3.29 8, 17, 75 Yu (17) 

4 0.73, -2.49, -3.27, -3.68 8, 15, 72, 4 Wokke (26) 

5 0.73, -2.35, -2.54, -3.27, -3.68 8, 5, 10, 72, 4 Wokke (26) 

6 0.6, -0.5, -1.95, -2.6, -3.4, -3.8 4.7, 3.9, 0.6, 12, 70, 8.8 Hamilton (22) 

Hernando (18) 

Meisamy (6) Hines (7) 

7 0.61, -1.93, -2.45, -2.67, -3.11, 

-3.4, -3.8 

4.2, 1.5, 6.6, 9.6, 7.1, 

62.7, 8.3 

Ren (23), Jonker (28), 

Zhong (10) 

9 0.59, 0.49, -0.5, -1.95, -2.46, -

2.68, -3.1, -3.4, -3.8 

3.7, 1, 3.9, 0.6, 5.8, 6.2, 

5.8, 64.2, 8.8 

Hamilton (22), 

Berglund (27) 

Table 3.1 List of different multi-peak spectral models of fat used in this work. 

3.4 Methods 

Simulations 

As part of a computer simulation, each spectral model of fat was compared with all other 

models in a pairwise manner. Specifically, one model was used to generate a test signals (as the 

“true” fat model) at each TE, and the other spectral model (as the estimator fat model) was used to 

fit the test signals to estimate PDFF. All frequencies are based on 1.5T imaging. Each test signal 
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was generated using the signal model in Eq.3.2 for simulated voxels, which have fat fraction 

ranging from 1% to 40%, and a fixed R2* of 40s-1 (typical for 1.5T liver imaging129). Signals were 

generated with no noise added for 6 echo times, starting at 1.2ms, and spaced by 2.0ms. The initial 

phase of water and fat was assumed 0, and the initial field inhomogeneity was 2ppm. No eddy 

current induced phase was added to the first echo. Nevertheless, the phase of the first echo was 

discarded for both the magnitude and mixed fitting algorithms to better approximate the in vivo 

situation68,126.  

The PDFF was estimated by fitting the test signals to equation 2 using both magnitude and 

mixed fitting algorithms, using a different signal model as the estimator fat model. The estimated 

PDFF was then compared to the true PDFF using linear regression to determine the bias. This 

simulation was performed for all possible pairs of the fat models listed in Table 1. 

Next, the effect of the choice of echo times on the PDFF bias caused by multi-peak model 

mismatch was also evaluated using simulations. Each combination contains 6 echoes with initial 

echo time (TEmin) and echo spacing (ΔTE) both ranging from 0ms to 3ms. For this simulation, the 

fat fraction was 30%, R2* = 40s-1, field strength 1.5T. Signal was generated using 6-peak model 

as the “true” fat model and PDFF was estimated with 1, 3, 5, 7, 9-peak models. No noise was 

added to the test signals since we were evaluating the effects of bias in these simulations. Bias was 

calculated for each echo combination studied. 

In Vivo Liver Fat Quantification 

In vivo liver datasets from 41 patients were also analyzed. Data acquisition was performed on 

GE Signa HDxt 1.5T scanners, with either an 8-channel cardiac coil or an 8-channel torso coil. 

This dataset has been analyzed by previous studies31,33 for different purposes, but reprocessed 

specifically and uniquely for this study. 
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CSE data were obtained using an investigational version of a multi-echo spoiled gradient echo 

(SGRE) sequence. All images were acquired in axial plane and obtained during a single 21s breath-

hold, with the following imaging parameters: readout direction R/L, matrix size 256×128, 2D 

parallel imaging with an effective reduction factor of 2.2 slice thickness 10mm, 24 slices, flip angle 

5°, TR=13.7-14.9ms, BW=±125kHz, mono-polar readout (flyback gradients), 6 echoes, 

TEmin=1.2ms,ΔTE=2.0ms. PDFF maps using the multi-echo SGRE data were reconstructed twice 

using each fat model listed in Table 1, once using magnitude fitting and once using mixed fitting 

algorithms, respectively for a total of 14 reconstructions for each dataset. Due to eddy current 

induced phase, pure complex fitting was not performed since phase shifts on the first echo caused 

by eddy currents were known to create bias. T1 bias was minimized by using a low flip angle and 

by performing a retrospective T1 correction for any residual T1 related bias31,130 assuming a T1 of 

568ms for water and 343ms for fat131. 

A single voxel STEAM-MRS spectrum was also acquired in a single breath-hold in every 

subject to provide a reference standard for fat fraction121. MRS data were acquired in the right lobe 

of liver during a 21s breath-hold at 5 echo times (10, 20, 30, 40, 50 ms) enabling T2 correction. 

Typical voxel size was 20 × 20 × 25 mm3, TR=3500ms, 2048 readout points, 1 average, and 

spectral width = ±2.5 kHz. MRS-PDFF was estimated from STEAM data using AMARES fitting 

in jMRUI, with correction of T2 decay, and prior spectral knowledge132,133. 

For each patient, a region-of-interest (ROI) was co-localized with the STEAM voxel in the 

slice closest to the center of STEAM voxel. The PDFF was measured in a 20 x 20 mm2 voxel and 

the two adjacent slices to match the STEAM voxel closely. MRI-based PDFF was then calculated 

by averaging the PDFF values within the three ROI’s. This procedure was repeated for 
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reconstructions using each spectral model of fat and fitting algorithms. The same ROI’s were used 

for all reconstructions of the same patient to achieve perfectly co-registered MRI-PDFF values. 

For each patient, 14 generated MRI-based PDFF values were linearly regressed against 

STEAM PDFF. 95% confidence intervals and p-values were generated from applying a t-test to 

the estimate of slopes and intercepts to determine whether slopes are significantly different from 

1 and intercepts are significantly different from 0 (i.e.: pslope<0.05 or pintercept<0.05).  

3.5 Results 

 Simulations 

In pairwise comparisons, for each pair of spectral models of fat, estimated PDFF was linearly 

regressed against true PDFF with excellent correlation (r2 > 0.998) as expected. Thus, slopes close 

to 1 and intercepts close to 0 reflect equivalence between compared models. In Figure 3.1, A) C) 

show slopes in comparison of each pair of spectral models when magnitude fitting (A) and mixed 

fitting (C) were used as fitting algorithms. Each row shows the slope between a particular spectral 

model (“true” fat model) and every other model (estimator fat model) in each column. Between a 

single-peak model and any multi-peak model, great errors were observed between estimated fat 

fraction and true fat fraction (slope< 0.79 or slope>1.22, |intercept| up to 1.2% for mixed fitting, 

slope<0.82 or slope>1.15, |intercept| up to 1.5% for magnitude fitting). Between any two multi-

peak models, improved agreement was demonstrated: 0.94<slope<1.03, -0.5%<intercept<0.1% 

for mixed fitting, 0.89< slope<1.08, -0.4%<intercept<0.6% for magnitude fitting.  
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Figure 3.1 Multi-peak models demonstrate better agreement with each other than with the single 

peak spectral model of fat. Results are from simulations comparing, in a pairwise manner, different 

spectral models of fat. The color coding plots the slope (A, C) and intercept (B, D) from linear 

regression of estimated PDFF with true fat fraction, for magnitude fitting (A,B) and mixed fitting 

(C, D). 

Figure 3.2 presents simulation results for the absolute bias in estimated PDFF over a range of 

initial echo times and echo spacings. Horizontal and vertical axes show echo spacing and initial 

echo times, respectively. The top row was reconstructed using mixed fitting and the bottom row 

was reconstructed using magnitude fitting. A clear dependence of bias on echo combination is seen 

for both fitting algorithms. For magnitude fitting, there is a range of echo combinations (near 
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TEmin=1.25ms, ΔTE=2.3ms) that result in over 10% absolute bias regardless of the fat model used 

in estimation. For mixed fitting, the bias changes more gradually with echo times, and remains 

relatively low for lower initial echo times and echo spacings. 

 

Figure 3.2 In general, mixed fitting has lower bias than magnitude fitting and is less sensitive to 

the choice of spectral model of fat. Absolute biases from simulated PDFF estimate resulting from 

difference between “true” fat model (6-peak model) and estimator fat model (1-, 3-, 5-, 7-, 9-peak 

models) are presented for magnitude fitting (A, B, C, D, E) and for mixed fitting (F, G, H, I, J). 

The bias is shown to be a function of echo times. For certain echo time combinations, magnitude 

fitting can lead to large bias (>10%) even from small model differences, while mixed fitting had 

lower bias. particularly for 7-peak and 9-peak models 

In Vivo Liver Fat Quantification 

Figure 3.3 shows representative PDFF maps of a patient calculated using several spectral 

models of fat, for both mixed fitting and magnitude fitting algorithms. A clear PDFF offset can be 

observed between reconstructions using single-peak model and multi-peak models. Over all 

patients, linear regression showed strong correlation between STEAM PDFF and all MRI-based 

PDFF values (r2>0.962). Further, slopes and intercepts of these regressions were calculated and 
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are shown in Table 3.2, including the 95% confidence intervals and p-values generated from t-

tests. Multi-peak models with both fitting algorithms exhibit better agreement with the MRS as 

reflected by the values of slopes and intercepts. Only 1-peak (pslope=1.6 ∙10-15 in magnitude fitting 

pslope=3.2∙ 10-16 in mixed fitting) model and 7-peak (pslope =0.04 in magnitude fitting and mixed 

fitting) models were significantly different from the reference. Despite being significantly different 

from the reference, 7-peak model has much closer agreement with the reference than single–peak 

model (slope=1.046 compared with 0.76 for single-peak model).  

 

Figure 3.3 Single-peak model produced substantially different liver fat fraction using 6-, 7-, and 

9-peak spectral models of fat. PDFF maps from one patient reconstructed using mixed fitting (top 

row) and magnitude fitting (bottom row) for 4 different spectral models of fat. T2-corrected 

STEAM MRS-PDFF was 20.9% in this patient. The location of the steam voxel and Co-localized 

MRI-PDFF measurements are shown in the figure. 
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Table 3.2 All multi-peak fat models agree closely with the reference standard (MRS-PDFF), as 

evidenced by regression results. Results of the linear correlation of MRI-PDFF and MRS-PDFF 

are tabulated for the 7 spectral models and the two fitting methods. Coefficient of determination, 

slope and intercept of the linear regression are all listed, including 95th percentile confidence 

intervals. Overall, multi-peak models including 7-peak model demonstrate better correlation and 

agreement with MRS than single-peak model as reflected by the values of slope and intercept 

estimate. No significant difference (p=0.05) was observed for multi-peak models expect 7-peak 

model using both fitting methods. Further, mixed fitting demonstrates slightly stronger correlation 

and agreement than does magnitude fitting, although the differences are small. 

3.6 Discussion 

 In this study we have analyzed the sensitivity of MRI-based CSE fat quantification to the 

choice of spectral model of fat, using both computer simulations and in vivo data acquired in 

patients. Spectral models of fat from previously published studies were used in this analysis and it 

was demonstrated that all multi-peak models showed greater accuracy for quantifying fat than the 

single-peak model. In addition, mixed fitting showed better agreement between the spectral models 

 R2 Slope 
[95th CI] 

p-value 

(slope) 

Intercept (%)  
[95th CI] 

p-value 

(intercept) 

Magnitude Fitting 

1-peak 0.974 0.770 [0.726, 0.814] 3.755 ∙10-13 -0.406 [-0.891, 0.078] 0.098 

3-peak 0.962 0.952 [0.900,1.004] 0.068 -0.284 [-0.852, 0.284] 0.318 

4-peak 0.974 0.967 [0.916,1.019] 0.210 -0.295 [-0.868, 0.278] 0.304 

5-peak 0.974 0.967 [0.916, 1.019] 0.214 -0.293 [-0.866, 0.279] 0.307 

6-peak 0.978 1.035 [0.979, 1.091] 0.219 -0.282 [-0.907, 0.334] 0.357 

7-peak 0.977 1.060 [0.988, 1.109] 0.041 -0.287 [-0.912, 0.349] 0.372 

9-peak 0.970 1.050 [0.993, 1.107] 0.083 -0.287 [-0.914, 0.339] 0.360 

Mixed Fitting 

1-peak 0.978 0.760 [0.723, 0.797] 4.996∙10-15 -0.421 [-0.830, -0.012] 0.044 

3-peak 0.979 0.967 [0.920,1.013]  0.151 -0.317 [-0.829, 0.194] 0.217 

4-peak 0.979 0.975 [0.929,1.021] 0.281 -0.326 [-0.838, 0.185] 0.205 

5-peak 0.979 0.975 [0.929,1.022] 0.292 -0.324 [-0.835, 0.188] 0.209 

6-peak 0.982 1.008 [0.964, 1.053] 0.703 -0.373 [-0.864, 0.118] 0.133 

7-peak 0.983 1.047 [1.001, 1.092] 0.044 -0.313 [-0.813 0.188] 0.214 

9-peak 0.981 1.045 [0.997, 1.092] 0.063 -0.358 [-0.880 0.164] 0.174 
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than magnitude fitting. Overall, these data demonstrate that multi-peak spectral modeling of fat is 

essential for accurate estimation of PDFF. However, no compelling evidence has been found to 

support any specific multi-peak spectral model of fat over the rest.  

Among the discussed multi-peak spectral models of fat, the 7-peak model by Ren et al. was 

calibrated in subcutaneous fat while the others were all measured in liver. The results shown in 

this study indicate the 2 fat depots have similar fat spectral peaks. 3-peak (1.5T) and 7-peak (7T) 

models are also calibrated at different field strengths compared with other models (3T). The fact 

that these models are relatively interchangeable, suggests that MR spectroscopy is a reproducible 

tool for the measurement of fat spectrum in scanners at different field strength (1.5T - 7T).  

In all signal estimation problems, bias will be introduced when there is discrepancy between 

the underlying physics (e.g. true spectral model) and the signal model used in the estimation of the 

parameters of interest. In the case of PDFF estimation, the resulting bias will depend on factors 

such as the true PDFF and the choice of echo times and fitting method (eg: magnitude vs mixed 

fitting).  

The choice of echo times is an important component of CSE-MRI based fat quantification. It 

has been shown that the choice of echo times has a large impact on the noise performance of the 

technique120,134. Further, previous studies have shown that bias due to temperature-related effects 

(i.e.: model mismatch) is heavily influenced by the choice of echo times, and also the fitting 

method135. In this study, we have shown that bias created by discrepancies in the true spectral 

model and the estimator model will depend on the choice of echo times. Interestingly, the bias 

increased markedly with longer echo spacing. Bias can be limited by shortening initial echo time 

and echo time spacing. It was also important to note that mixed fitting was more robust to changes 

in echo time (ie: had less bias) than magnitude based fitting, which is consistent with the study by 
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Hernando et al135. This may explain the observation by Heba136 that using a shorter echo train 

length may improve the accuracy of PDFF quantification using magnitude based fitting. A 

discrepancy between the underlying physics and the spectral model used in CSE-MRI may explain 

why using fewer echoes appears to lead to less bias, as shown in that study.  

This study has several limitations. Small differences between a spectral model of fat used for 

PDFF estimation compared to actual spectra will reduce accuracy. However, we have 

demonstrated that the accuracy of PDFF quantification is relatively insensitive to different spectral 

models. Therefore, it is likely that errors introduced by small discrepancies in the spectral model 

relative to the true spectra are much smaller than the variability due to noise and other unrelated 

confounders. Large patient populations may be necessary to detect errors introduced by errors in 

the spectral model. Although, published data suggest relative uniformity in the triglyceride spectra 

across patients66, variability in the spectra between patients could also introduce additional 

variability in the estimated PDFF. A second limitation is that all in vivo data and simulations were 

acquired at 1.5T. However, quantitative CSE-MRI is increasingly frequently performed on 3T 

scanners. The difference between these two platforms may result in different optimal echo times, 

which impacts the relative importance of the spectral models. In addition, this study did not 

consider the presence of liver iron overload. The high R2* introduced by the presence of iron may 

affect the relative impact of different fat models. Furthermore, all in vivo data were acquired at the 

same echo time not allowing further in vivo validation of the echo time dependence of fat signal 

model related bias. Overall, however, we believe that the conclusions drawn by this study will, in 

all likelihood, extend to 3T and when R2* is higher, although further work would be needed to 

confirm this speculation.  
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In conclusion, multi-peak spectral modeling of fat is essential for accurate estimation of tissue 

fat concentration, as measured by the proton density fat-fraction. Although spectral modeling is 

necessary, no specific choice of spectral model was shown to be superior, so long as one of the 

multi-peak models discussed in this work is used. Echo time combinations, such as shorter echo 

times, and the use of mixed fitting may be useful to minimize the impact of any model 

imperfections.  
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Chapter 4 : T1-Corrected Quantitative Chemical Shift 

Encoded Magnetic Resonance Imaging 

This work has been submitted to the Magnetic Resonance in Medicine. under the title “T1-

Corrected Quantitative Chemical Shift Encoded Magnetic Resonance Imaging” 

4.1 Abstract 

Purpose: To develop and validate a T1-corrected chemical shift encoded MRI (CSE-MRI) method 

to improve noise performance and reduce bias for quantification of proton density fat-fraction 

(PDFF).  

Methods: A variable flip angle (VFA)-CSE-MRI method using joint-fit reconstruction was 

developed and implemented. In computer simulation and phantom experiments, sources of PDFF 

bias measured with VFA-CSE-MRI were investigated. The effect of tissue T1 on bias using low 

flip angle (LFA)-CSE-MRI was also evaluated. The noise performance of VFA-CSE-MRI was 

compared to LFA-CSE-MRI, for liver fat quantification. Finally, a prospective pilot study in 

patients undergoing gadoxetic acid-enhanced MRI of the liver to evaluate the ability of the 

proposed method to quantify liver PDFF before and after contrast.  

Results: VFA-CSE-MRI was accurate and insensitive to transmit B1 inhomogeneities in phantom 

experiments and computer simulations. With high flip angles, phase errors due to RF spoiling 

required modification of the signal model. For relaxation parameters commonly observed in liver, 

the joint-fit reconstruction improved the noise performance marginally, compared to LFA-CSE-

MRI, but eliminated T1-related bias. A total of 25 patients were successfully recruited and analyzed 

for the pilot study. Strong correlation and good agreement between PDFF measured with VFA-
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CSE-MRI and LFA-CSE-MRI (pre-contrast) was observed before (R2=0.97; slope=0.88, 0.81-

0.94 95%CI; intercept=1.34, -0.77-1.92 95%CI) and after (R2=0.93; slope=0.88, 0.78-0.98 95%CI; 

intercept=1.90, 1.01-2.79 95% CI) contrast.  

Conclusion: Joint-fit VFA-CSE-MRI is feasible for T1-corrected PDFF quantification in liver, is 

insensitive to B1 inhomogeneities, and can eliminate T1 bias, but with only marginal SNR 

advantage for T1 values observed in the liver.  

Keywords: Magnetic resonance imaging, chemical shift encoded imaging, proton density fat-

fraction, fat quantification, hepatic steatosis, liver fat, T1 correction, T1 bias 

4.2 Introduction 

Since 1984, there have been tremendous advances in chemical-shift encoded magnetic 

resonance imaging (CSE-MRI) for robust separation of water and fat signals137. More recently, 

quantitative CSE-MRI methods for fat quantification have been developed through improved 

signal modeling that accurately reflects the underlying physics of proton signals from water and 

fat. 

By accounting for confounding factors such as B0 field inhomogeneity, R2* signal decay62,67,70 

and multi-peak spectral modeling of fat62,67, the proton density of individual chemical species can 

be estimated accurately. The effects of B1 receive sensitivity are also eliminated through the use 

of the ratio of the fat signal to the total signal (water+fat) as the estimate of the local fat-fraction.  

The T1 of fat is typically shorter than that of water, leading to relative overestimation of fat-

fraction, if the acquisition is T1-weighted. The most common strategy to avoid T1-related bias is 

to minimize T1-weighting by reducing the flip angle69.   
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When all confounding factors have been addressed, including T1-related bias, the resulting 

fat-fraction estimate is equivalent to the proton density fat-fraction (PDFF). PDFF is the ratio of 

proton density of mobile fat protons to the total proton density of mobile water and mobile fat, and 

is a fundamental property of tissue that reflects tissue fat concentration61.  

T1-insensitive low flip angle (LFA)-CSE-MRI methods have become widely accepted for 

liver fat quantification138,139. Estimation of PDFF in organs such as pancreas140, muscle141 adrenal 

glands142 and even brown adipose tissue143,144, have shown important research and clinical 

applications.  

Unfortunately, the use of low flip angles is an inefficient use of longitudinal magnetization 

and limits the noise performance of CSE-MRI145,146. When the flip angle is sufficiently lower than 

the Ernst angle, the signal is approximately proportional to the flip angle, and any reduction in flip 

angle leads to a proportional reduction in signal amplitude. To address this limitation, Liu et al. 

first proposed the combined use of variable flip angle (VFA) methods with a three-point CSE-MRI 

method69. Other groups have also investigated related VFA strategies147,148. By acquiring two 

separate CSE-MRI acquisitions at different flip angles, T1-corrected water and fat signals can be 

estimated.  

In this work, we build on prior work by proposing to combine the VFA method with modern 

confounder-corrected CSE-MRI methods as an alternative to low flip angle CSE-MRI. 

Importantly, we note that a simple combination of the VFA approach with CSE-MRI leads to 

redundant estimation of R2* and B0 field inhomogeneity69. Both R2* and B0 inhomogeneity are 

independent of flip angle, and therefore joint estimation of R2* and B0 inhomogeneity along with 

T1-corrected water and fat signal estimation should be feasible. By reducing the number of degrees 

of freedom in the signal model, the overall signal to noise ratio (SNR) performance of this 
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estimation should also improve. Therefore, the overall purpose of this work is to develop and 

validate an SNR efficient T1-corrected CSE-MRI method for accurate quantification of PDFF. 

4.3 Theory  

Low Flip Angle T1-insensitive Quantitative CSE-MRI 

Quantitative CSE-MRI to estimate PDFF is typically acquired using a multi-echo spoiled 

gradient-echo (SGRE) acquisition. Signal models typically ignore T1-weighting, requiring the use 

of very low flip angles. In the following signal model, confounding factors including the spectral 

complexity of fat, B0 inhomogeneity and R2* decay, are accounted for: 

S𝐿𝐹𝐴(TEn;  SW, SF, ∆B0, R2
∗, ϕ0 ) = 

ei(γ∙∆B0∙TEn) ∙ e−R2
∗∙TEn ∙ eiϕ0( SW + SF ∙ ∑ apei2π∙fp∙TEnP

p=1 )     [4.1] 

where SLFA(TEn;SW,SF,∆B0,R2*,ϕ0) is the signal at the nth echo time TEn, ∆B0 is the field 

inhomogeneity, and ϕ0 is the common initial phase of water and fat. The signal consists of one 

water peak and P fat peaks. Both species are modeled to have the same R2*, a valid assumption in 

the liver65,149. The relative amplitude and relative frequency shift of the pth fat peak are denoted as 

a p, fp, respectively, and are known a priori66,67. SW, SF, ϕ0, ∆B0, and R2* are the unknown 

parameters to be estimated. PDFF is calculated as SF/(SW+SF). We note that Eq.4.1 can be 

rearranged to estimate PDFF directly149. 

The longitudinal magnetization at thermal equilibrium (MW, MF) is equivalent to the proton 

density of water and fat. However, SW and SF do not directly reflect the true proton densities. SW 

and SF are better modeled as MW and MF modulated by a T1- weighting term:  

SW(TR, α; T1W) = MW  
(1−e−TR/T1W )sin (α)

(1−e−TR/T1W cos(α))
     [4.2a] 
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and 

SF(TR, α; T1F) = MF  
(1−e−TR/T1F)sin (α)

(1−e−TR/T1F cos(α))
     [4.2b] 

where α denotes the flip angle, and T1W and T1F are T1 of water and fat, respectively. As α 

approaches 0, SW and SF approach MW∙sin(α) and MF∙sin(α) respectively and the T1-weighting 

diminishes. Hence, with a low flip angle, estimates of PDFF, i.e.: SF/(SW+SF), approach T1-

independence69.  

 The primary drawback of reducing the flip angle below the Ernst angle to minimize T1-related 

bias, is the inefficient use of available longitudinal magnetization and reduced SNR performance.  

2-Step Variable Flip Angle (VFA) T1-corrected Quantitative CSE-MRI 

The T1-corrected VFA-CSE method proposed by Liu et al69. obtains two acquisitions at 

different flip angles, and avoids T1-related bias by correcting for differences in T1 between water 

and fat. This approach is an extension of VFA T1 mapping techniques112 (also known as DESPOT1) 

using SGRE images acquired at two or more flip angles. In Liu’s approach, two sets of multi-echo 

SGRE data are acquired each with a different flip angle, yielding a set of T1-weighted signals 

denoted SW(TR,αm;T1W) and SF(TR,αm;T1F). MW and MF are then estimated by applying DESPOT1 

to SW(TR,αm;T1W) and SF(TR,αm;T1F) separately. Thus, estimates of PDFF are corrected for T1-

related bias. It has been shown that this approach can avoid T1 bias while maintaining the noise 

performance of PDFF estimator69. This method will be referred to as the 2-step VFA-CSE-MRI. 

Joint-fit VFA Reconstruction for T1-corrected CSE-MRI 

When using the 2-step VFA-CSE-MRI approach, SW,SF,∆B0,R2*, and ϕ0 are all estimated 

separately for each flip angle. However, B0 inhomogeneity and R2* are independent of flip angle, 
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TR and T1. Estimating these parameters separately for each flip angle introduces two unnecessary 

degrees of freedom into the signal model, which may degrade the noise performance.  

If these degrees of freedom are removed, the noise performance of parameter estimation is 

expected to improve. In this work, we propose a joint-fit reconstruction combined with a VFA 

strategy using the single signal model shown below: 

SVFA(TEn, αm, TR; MW, MF, ∆B0, R2
∗, ϕ0, T1W , T1F) = e−R2

∗∙TEn ∙ ei(γ∙∆B0∙TEn) ∙

eiϕ0( MW
(1−e−TR/T1W) sin(αm)

(1−e−TR/T1W cos(αm))
+ MF

(1−e−TR/T1F) sin(αm)

(1−e−TR/T1F cos(αm))
∑ apei2π∙fp∙TEnP

p=1 )         [4.3] 

where signals are acquired at echo times TEn (n=1,…, N) with flip angles αm (m=1,2). For each 

voxel, a total of 2N complex signals are fit using non-linear least squares fitting to estimate 7 

parameters: MW, MF, ∆B0, R2*, ϕ0, T1W and T1F. PDFF is then calculated using MW and MF 

estimates. Alternatively, we note that Eq.4.3 can be rearranged to estimate PDFF directly149. 

Assumptions about the Phase of Water and Fat with Radiofrequency (RF) Spoiling  

It is often assumed that the SGRE signal is perfectly spoiled, i.e.: signal amplitude for each 

chemical species conforms to Eq.4.2 and signal phase is constant across chemical species and 

acquisition parameters. This is a valid assumption when RF spoiling is performed using a well-

chosen phase increment116 (e.g. 117°). The applied RF pulse in this simulation was a hard pulse (Dirac 

delta function) exciting all isochromats simultaneously and instantaneously, ignoring the effects of T1 and 

T2 relaxation during the RF pulse. The repetition time (TR) used in the simulation was 7.2ms.  However, 

the effect of RF spoiling on SGRE signal phase, has not been thoroughly evaluated.  

For this reason, a Bloch-equation computer simulation was performed to evaluate the phase 

of water and fat signals acquired using SGRE with RF spoiling. In a simulated voxel, 1000 

isochromats periodically experienced a repeating sequence of an RF pulse, longitudinal and 
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transverse relaxation, and 2π dephasing across the ensemble of isochromats at the end of each TR, 

to simulate an unbalanced frequency encoding gradient. The phases of the RF pulses and signal 

acquisition reference frame are determined by pseudo-random RF phase algorithm116 using a phase 

increment of 117°. Relaxation properties chosen were those observed in liver at 1.5T131,150: 

T2W=35ms,T2F=62ms,T1W=586ms, and T1F=343ms.  

 

Figure 4.1 RF spoiling used with SGRE results in near perfect spoiling with of the signal 

magnitude, but leaves a strong flip angle dependent transverse signal phase. Steady state transverse 

signal amplitude and phase were calculated using Bloch-equation simulations. 

As shown in Figure 4.1, the Bloch-equation simulation demonstrated a flip angle dependent 

phase difference between water and fat. For this reason, any previous VFA models that require the 

use of complex data, may be inaccurate due to the assumption of equal constant phase for all 
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chemical species. Thus, Eq.4.3 must be modified to account for independent constant phase terms 

on the water and fat signals, i.e.: 

S′
VFA(TEn, αm, TR; ϕ𝑊.𝑚, ϕ𝐹.𝑚, MW, MF, ∆B0, R2

∗, T1W , T1F) 

= 

SVFA(TEn, αm, TR; ϕ𝑊.𝑚MW, ϕ𝐹.𝑚MF, ∆B0, R2
∗, ϕ0 = 0, T1W , T1F)      [4.4] 

which is a modified formulation in Eq.4.3 for the VFA-CSE-MRI signal, where the common 

phase term (ϕ0) is replaced with independent phase terms for water and fat, with ϕW,m and ϕF,m 

(m=1,2). By modulating MW and MF with eiϕW,m and eiϕF,m, the flip angle dependent phase shift 

resulting from RF spoiling is accounted for.  

4.4 Methods 

Overview 

Computer simulations, phantom experiments and in vivo clinical experiments were 

performed. First, the Cramér-Rao lower bound (CRLB) was calculated to identify flip angle pairs 

that optimizes SNR performance of PDFF estimates using VFA-CSE-MRI. Next, computer 

simulation and phantom experiments were conducted to examine possible sources of PDFF bias 

with VFA-CSE-MRI. Potential sources include transmit B1 inhomogeneity, and differences in the 

constant phase of chemical species at different flip angles. The T1-related bias of LFA-CSE-MRI 

was also simulated based on variation of T1W due to biological variability or pathology, based on 

reports from the literature.  

Further, the SNR performance of VFA-CSE-MRI and LFA-CSE-MRI were compared using 

CRLB prediction and Monte-Carlo simulations. The accuracy of VFA-CSE-MRI was then 

compared to LFA-CSE-MRI in phantoms with varying T1 and PDFF. Finally, the in vivo accuracy 
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of VFA-CSE-MRI was compared with LFA-CSE-MRI, in a prospective clinical study before and 

after administration of gadoxetic acid as contrast agent.  

All computer simulations were conducted using Matlab (Mathworks Natick, MA). The non-

linear least squares fitting used in parameter estimation in LFA-CSE-MRI was obtained from the 

ISMRM Fat-Water Toolbox151 (http://ismrm.org/workshops/FatWater12/data.htm). For non-

linear least squares fitting used with VFA-CSE-MRI, the levmar suite in Matlab was implemented 

(Foundation for Research and Technology-Hellas Heraklion, Crete, Greece). Constraints on the 

estimated T1 (0ms<T1w<2000ms, 40ms<T1F<600ms) were imposed to maintain robust 

performance when encountering PDFF values near 0% or 100%. 

Tissue and Acquisition Parameters in Computer Simulation 

For computer simulations performed in this work, typical T1, T2, and R2* values of liver at 

1.5T were used65,66,131: R2*=40s-1, T2W=35ms, T2F=62ms, T1W=586ms, T1F=343ms.  

When synthesizing CSE-MRI signal in simulations described below, T2 and T1 were used in 

a Bloch equation simulation to calculate the initial phase of water and fat signal. These initial 

phases were filled into Eq.4 along with R2*, T1W and T1F to synthesize the CSE-MRI signal. 

Phantom Construction 

A 7x4 grid of fat phantom vials was constructed with varying amounts of fat, and CuSO4 to 

vary T1W. Each vial was 98mm long, 28mm in diameter, and 40mL in nominal volume. Within 

each vial, a gel was constructed with agar (2%w/v), mixed with peanut oil and surfactant sodium 

dodecyl sulfate152, with 7 volume fat-fractions varying between 0% and 60%. The agar gel was 

doped with four different concentrations of CuSO4 (0.5mM, 1.0mM, 2.0mM, 4.0mM) to modify 

T1W for each fat-fraction. The T1W of the phantoms were measured using the VFA-CSE-MRI 

http://ismrm.org/workshops/FatWater12/data.htm
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protocol described below for phantom acquisitions, and found to range from 863-986ms (0.5mM), 

756-844ms (1mM), 399-445ms (2mM), and 249-283ms (4mM). 

Flip Angle Optimization 

The choice of flip angle pairs will impact the SNR performance of VFA methods66. To 

determine the optimal flip angle, the CRLB for estimation of PDFF from Eq.4.4 was formulated, 

as described by Scharf et al153. In this formulation, identical independently distributed Gaussian 

noise was assumed in real and imaginary channels with standard deviation of (MW+MF)/400×√2.  

The variance of PDFF estimated using VFA-CSE-MRI with joint estimation and 2-step 

reconstruction was calculated using liver tissue parameters at 1.5T (above). Other acquisition 

parameters are identical to those used in in vivo liver CSE-MRI and phantom experiments 

described below.  

Phantom Data Acquisition 

A multi-echo 3D SGRE pulse sequence was modified to acquire two SGRE signals with two 

different flip angles in a single sequential acquisition. Phantom experiments were conducted on a 

1.5T clinical MRI system (Optima MR450w, GE Healthcare, Waukesha, WI).  

For VFA-CSE-MRI, multi-echo, multi-flip angle SGRE data were acquired using the 

following acquisition parameters: TE0=0.98ms,ΔTE=1.57ms,N=4 with unipolar flyback readout 

acquisition, TR=7.19ms, BW=50kHz, slice=10mm, matrix=100x100, field of view 

(FOV)=40×34cm2, for true spatial resolution=4×4×10mm3. Two flip angles (5°,20°) were 

acquired with four signal averages. This pair of flip angles optimizes SNR as predicted by the 

CRLB (below). 
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For LFA-CSE-MRI, SGRE data were acquired using the same sequence with a flip angle of 

5°. Eight signal averages were obtained to match the VFA-CSE-MRI acquisition time. We note 

that a flip angle of 3-5° is commonly used for liver fat quantification with CSE-MRI31,33,139. 

One additional LFA-CSE-MRI SGRE dataset was acquired with flip angle=1° and same 

acquisition parameters described above, to provide reference PDFF measurements with minimal 

T1-related bias. 

Sensitivity of VFA-CSE-MRI to Inaccurate Transmit B1 

For VFA-CSE-MRI, flip angles are treated as known parameters. In reality, due to imperfect 

calibration and inhomogeneities in the transmit B1 amplitude, actual flip angles may deviate from 

the nominal values, and VFA T1 estimation is known to be sensitive to B1 errors112. However, for 

our application, we are interested primarily in estimation of PDFF, and it is unknown how B1 

transmit errors will impact PDFF estimates using VFA-CSE-MRI. As both T1W and T1F are 

affected by the same flip angle error, it was hypothesized that the ratio of fat and water signals 

may compensate for proportional errors in the flip angles69.  

Using acquisition and tissue parameters listed above for the phantom experiment, a computer 

simulation was performed to assess bias due to transmit B1 errors. A true PDFF of 20% were 

assumed. Noise free simulated signals were generated using the VFA signal model (Eq.4.4). PDFF 

was estimated using the same signal model, but with (5°,20°) scaled by factors of 0.7 through 1.3 

to simulate transmit B1 errors of -30% to 30%. 

Further, in a phantom experiment, VFA-CSE-MRI PDFF maps were reconstructed using 

Eq.4.4, with flip angles purposely scaled by factors of 0.7 to 1.3 to create effective transmit B1 

errors. LFA-CSE-MRI PDFF maps were also reconstructed from 1° SGRE (with 8 averages) data 

using the signal model in Eq.4.1, to provide reference PDFF values.  
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Reconstructed PDFF maps from the phantom were analyzed using circular regions of interest 

(ROIs) with an area of approximately 2cm2 placed in the center slice of the 3D volume in each 

phantom vial. ROIs were co-registered between VFA- and LFA-CSE-MRI PDFF maps.  

Bias in LFA-CSE-MRI Resulting from T1W Variation 

The use of low flip angles is known to reduce, but not entirely eliminate bias in PDFF 

estimates. If the T1W and T1F are known, it is also possible to perform a simple T1-correction based 

on Eq.4.2a, Eq.4.2b using T1W and T1F values found in literature31,130. However, it is well known 

that inter-subject variation of T1W exists in the liver154 and pathology such as iron-overload and 

fibrosis are well known to alter T1W
155,156. T1W values from 380ms to 800ms have been 

reported155,156. Further, the dramatic changes in T1W after the administration of contrast will also 

impact PDFF estimates by LFA strategies157–159. 

To examine the residual bias in LFA-CSE-MRI over a wide range of T1 values, a computer 

simulation was performed. Noiseless SGRE signals were generated using Eq.4.4 with T1W =380, 

586, 680 and 830ms to predict the effects of T1W variation on PDFF estimation with LFA-CSE-

MRI, using LFA acquisition parameters experiment described below for the in vivo liver study. 

Flip angles of 1° ,2° ,3° ,4° , and 5° were used in the simulation. Bias with and without simple T1-

correction was calculated for PDFF generated using the LFA signal model (Eq.4.1). Simple T1-

correction assumed T1W=586ms and T1F=343ms. True PDFF was assumed to be 30% for this 

simulation. 

Noise Performance of VFA-CSE-MRI and LFA-CSE-MRI 

CRLB analysis and Monte-Carlo computer simulations were performed to compare the noise 

performance between three methods: 1) T1-corrected VFA-CSE-MRI using the proposed joint-fit 
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reconstruction, 2) T1-corrected VFA-CSE-MRI using 2-step reconstruction, and 3) T1-insensitive 

LFA-CSE-MRI (flip angle=2°,3°). The Monte-Carlo simulations were conducted to confirm the 

CRLB analysis. Noise was assumed to be identical independently Gaussian distributed with 

standard deviation of (MW+MF)/400 in real and imaginary components of the signals. The standard 

deviation was multiplied by √2 for T1-corrected VFA-CSE-MRI to normalize SNR for acquisition 

time. Acquisition parameters are the same as the ensuing in vivo liver experiments, and liver 

relaxation parameters were those at 1.5T (above). 

Assumed Constant Phase for VFA-CSE-MRI Signal Model 

To evaluate assumptions regarding the constant phase of water and fat signals in Eq.4.3 and 

Eq.4.4, computer simulations and phantom experiments were conducted.  

Bloch-equation simulations were performed, as described above with liver tissue parameters 

at 1.5T and phantom experiment acquisition parameters. Generated signals were fit to Eq.4.3 and 

Eq.4.4. Bias in PDFF estimates produced with the two models were compared.  

For the phantom experiment, acquired VFA-CSE-MRI data were reconstructed with the signal 

models in Eq.4.3 and Eq.4.4, separately. LFA-CSE-MRI (flip angle=1°) data provided a low T1-

bias reference. 

Phantom Validation of Accuracy of VFA-CSE-MRI 

To validate the accuracy of T1-corrected VFA-CSE-MRI in phantoms, PDFF values 

calculated using VFA-CSE-MRI (flip angle=5°,20°), LFA-CSE-MRI (flip angle=5°) were 

compared to PDFF measured using LFA-CSE-MRI (flip angle=1°) as the reference. The PDFF 

values for each method were obtained from co-registered circular ROIs (2cm2) on center-slice 

PDFF maps.  
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In addition, PDFF values containing T1-bias resulting from the high flip angle (20°) portion 

of the VFA acquisition were calculated and plotted in the same figure. These values were denoted 

as high flip angle (HFA).  

In Vivo Validation of Joint-fit VFA-CSE-MRI to Quantify Hepatic PDFF 

 A prospective pilot study was performed in patients undergoing gadoxetic acid-enhanced 

abdominal MRI or MR cholangiopancreatography (MRCP), for a variety of routine clinical 

indications. Add-on LFA- and VFA-CSE-MRI acquisitions were performed before and 

approximately 20 minutes after the administration of 0.05mmol/kg of gadoxetic acid (standard 

clinical dose at our institution) to examine the effects of major changes in T1 on the accuracy of 

fat quantification with LFA- and VFA-CSE-MRI. All in vivo imaging was performed after 

obtaining IRB approval and informed written consent.  

All in vivo imaging was performed on 1.5T clinical MRI systems (Optima MR450w/Signa 

Artist, GE Healthcare, Waukesha, WI) using 32 elements of 48-channel phased-array torso coil. 

The same 3D multi-echo SGRE pulse sequence used for phantoms was used to acquire SGRE 

images at two different flip angles over the entire liver, within a single 20 second breath-hold. 

Other acquisition parameters included TE0=0.98ms, ΔTE=1.57ms, N=4 with unipolar flyback 

acquisition, TR=7.19ms, BW=50kHz, flip angles=(5°,20°), FOV=40×34cm2, matrix=100×100, 

slice=10mm, and 24 slices, for true spatial resolution of 4x4x10mm3. These parameters with the 

exception of the number of signal averages are the same as those used in the phantom experiment. 

k-space corner cutting was performed to shorten breath-hold time160. 

For LFA-CSE-MRI, the identical acquisition was performed but with two signal averages and 

flip angle set to 3°. A 3° angle was chosen rather than the typical 5°, because of the short TR used 

for this acquisition31,33.  
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PDFF maps (pre- and post-contrast) were estimated using the joint-fit VFA-CSE-MRI method 

using the signal model with independent phase (Eq.4.4). Similarly, PDFF maps (pre- and post-

contrast) were estimated using the LFA-CSE-MRI method by fitting source images to Eq.4.1 with 

non-linear least squares fitting. For pre-contrast LFA-CSE-MRI, simple T1 correction was 

performed as described above assuming known values for the T1 of water and fat31,130 in the liver 

at 1.5T131 (T1W=586ms,T1F =343ms). To demonstrate T1-related bias that arises from a large flip 

angle, PDFF maps were reconstructed from the 20° component of the VFA-CSE-MRI data using 

the T1-uncorrected signal model (Eq.4.1). These maps are denoted as HFA. 

To analyze all resulting PDFF maps, one ROI was placed in each of the 9 Couinaud segments 

of the liver, using a standard paradigm described by Campo et al161. For each acquisition, the 9 

PDFF values were averaged, resulting in 6 PDFF estimates per patient (LFA pre- and post-contrast, 

VFA pre- and post-contrast, HFA pre- and post-contrast). In addition, R2* and T1W, as byproducts 

of LFA-CSE-MRI (R2*) and VFA-CSE-MRI (R2* and T1W) were measured from the same ROIs.  

Comparisons of the PDFF values were made using linear regression, to calculate the slope, 

intercept, and Pearson correlation coefficient, all with 95% confidence intervals. LFA-CSE-MRI 

pre-contrast PDFF measurements were used as the reference standard. 

4.5 Results 

Flip Angle Optimization 

Based on the CRLB analysis, the flip angle pair that maximizes PDFF estimator SNR for 

joint-fit VFA-CSE-MRI is 6° and 31-33°, for liver imaging at 1.5T (Figure 4.2A). High flip angles, 

such as 33° may be limited by specific absorption rate (SAR) heating limitations and can amplify 

flow and motion artifacts. Fortunately, a broad maximum in the optimization demonstrates that a 
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wide range of optimal of flip angles can be used. As shown in Figure 4.2B there is marginal 

difference between the optimum SNR for upper flip angle limit of 33° (SNR = 5.6) and 20° (SNR 

= 5.4). For this reason, a flip angle pair of 5° and 20° was chosen for both phantom and in vivo 

VFA-CSE-MRI. 

 

Figure 4.2 CRLB analysis can be used to identify optimal flip angle pairs that optimize the SNR 

performance of the proposed VFA-CSE-MRI method. In these plots SNR is defined as 

20/(standard deviation of PDFF estimator). A) Predicted SNR with respect to all flip angle pairs. 

B) Optimal SNR with flip angle pairs under the constraint of an upper limit. The broad maximum, 

allows flip angle #1 to be reduced from 33° to 20°with marginal SNR penalty. 

Sensitivity of VFA-CSE-MRI to Inaccurate Transmit B1 
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Figure 4.3 PDFF estimation using VFA-CSE-MRI is insensitive to transmit B1 inhomogeneities 

in simulations. In this simulation negligible error in the estimated PDFF was observed. Absolute 

PDFF error as predicted by simulation in liver fat quantification at 1.5T (A, B) is shown. Note that 

these simulations assume that the percent error in transmitted B1 is the same for both flip angles. 

Figure 4.3 plots the error in PDFF estimation using VFA-CSE-MRI resulting from inaccurate 

transmit B1. As shown in Figure 4.3B, errors in PDFF estimation are essentially zero, over a wide 

range of B1 errors. 

Similar results were observed in the phantom experiment, despite a wide range of T1W values, 

and a wide range of B1 transmit errors (Figure 4.4). The PDFF estimates using different nominal 

flip angles were all within 1.4% absolute PDFF values.  
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Figure 4.4 PDFF estimation using VFA-CSE-MRI is insensitive to transmit B1 inhomogeneities 

in phantom experiments. Plots show PDFF measured using joint-fit VFA-CSE-MRI in phantoms 

in the presence of B1 error. Phantoms were constructed in groups with varying PDFF and T1W 

values controlled by doping agent CuSO4. PDFF measurement with LFA-CSE-MRI (flip 

angle=1°) was used as the reference.  

Bias in LFA-CSE-MRI from T1W Variation 

As demonstrated in Figure 4.5, bias in PDFF exceeding 1% (absolute) can occur when T1-

correction is not used, with T1W above 680ms, flip angle of 3° and true PDFF of 30%. By applying 

a simple T1-correction assuming T1W=586ms and T1F=343ms, bias in PDFF estimate can be limited 

to less than 1% for all T1W values between 380ms and 830ms. However, if a bias less than 0.5% 

(absolute) is needed, a flip angle less than 2° would be necessary, negatively impacting SNR 

performance.  

 

Figure 4.5 Any degree of T1-weighting leads to bias in PDFF estimation if the T1 of water and fat 

are different (A). Simple correction (eg. assuming T1W = 586ms and T1F = 343ms), also leaves 

considerable bias if the true T1 values are different than assumed values (B). These simulations 

demonstrate the utility of T1-corrected methods such as the proposed VFA-CSE-MRI method. 
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Noise Performance of VFA-CSE-MRI and LFA-CSE-MRI 

As shown in Figure 4.6, joint-fit VFA-CSE-MRI produced PDFF estimates with slightly 

higher SNR compared with the 2-step method. Notably, both VFA-CSE-MRI methods have lower 

SNR than the 3o flip angle LFA-CSE-MRI method. We also note that the SNR using LFA method 

is heavily influenced by flip angle. When a flip angle of 2° is used (e.g. to further reduce T1-related 

bias), the noise performance of the LFA method drops below that of VFA-CSE-MRI. 

 

Figure 4.6 Noise performance of PDFF estimation using CRLB analysis (solid line) and Monte 

Carlo simulations (data points), demonstrate that for parameters commonly encountered in the 

liver that LFA-CSE-MRI methods have the highest SNR performance, although this performance 

is highly dependent on the flip angle. At very low flip angles (eg. 2°), conventional LFA-CSE-

MRI has lower SNR performance. Interestingly, the proposed joint-fit VFA-CSE-MRI shows only 

slightly improved performance compared to the 2-step VFA method. This is likely due to the need 

for estimating independent constant phase on the water and fat signals, for the joint-fitting, due to 

the residual species dependent phase from RF spoiling. Note that SNR is defined as 20/(estimator 

standard deviation) for each method. The input SNR in these analyses was normalized for 

acquisition time.  
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Assumption Regarding Phase in VFA-CSE-MRI Signal Model 

When a common phase was assumed in signal model (Eq.4.3) for both computer simulations 

and phantom experiments, bias was observed in PDFF estimates made using VFA-CSE-MRI. As 

shown in Figure 4.7, PDFF estimates made using the modified signal model (Eq.4.4) eliminated 

all bias in simulations and reduced bias in phantom experiments substantially.  

 

Figure 4.7 Modeling for different constant phase values between water and fat resulting from RF 

spoiling is needed to address the resulting bias in PDFF if this confounder is not considered. This 

bias can be eliminated in simulations (A) and greatly reduced in phantoms (B). The phantom used 

for these measurements was that doped with 1mM CuSO4. 

Phantom Validation of Accuracy of VFA-CSE-MRI 

As shown in Figure 4.8, PDFF estimated using the VFA-CSE-MRI method agreed very 

closely with the reference PDFF measurements, for all CuSO4
 concentrations. When a 5o or 20o 

flip angle was used, PDFF was overestimated. As expected, this bias was highest at lower 

concentrations of CuSO4, when the differences in T1 between water and fat are the greatest.  
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Figure 4.8 The proposed VFA-CSE-MRI method eliminates T1-related bias, as shown in phantom 

experiments. The degree of bias is highly dependent on the difference in T1 between water and fat. 

High flip angle CSE-MRI acquisitions demonstrate large bias, while even low flip angle 

acquisitions demonstrate measurable bias.  

Liver in Vivo Validation of VFA-PDFF Accuracy 

27 patients were recruited for this pilot study. Data from two patients were rejected due to 

excessive motion artifact from poor breath-holding. Of the remaining twenty-five data sets there 

were a total of 9:16 men:women with an average age of 48.5 years (range=21-75 years) referred 

for a wide variety of indications for gadoxetic acid-enhanced MRI or MRCP. Clinical indications 

included: indeterminate liver lesions seen on other imaging modalities (8), primary sclerosing 
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cholangitis (4), hepatic adenomatosis (4), focal nodular hyperplasia (2), suspected metastatic 

disease with known malignancy (3), follow-up of known hepatic metastatic disease (1), known 

cholangiocarcinoma (1), hepatocellular carcinoma surveillance (1), and abdominal pain not 

otherwise specified (1). Example PDFF, R2* and T1W maps from one patient with elevated liver 

fat before and after contrast are shown in Figure 4.9.  

 

Figure 4.9 Example PDFF, R2* and T1W maps from a subject with elevated liver PDFF, acquired 

before and after the administration of gadoxetic acid, visually demonstrating the effects of contrast 

on estimated PDFF, R2* and T1W values. In this figure, the PDFF map and ROI value shown for 

LFA-CSE-MRI pre-contrast was not corrected with any T1 assumption. 

Comparisons of PDFF estimates between LFA-, HFA- and VFA-CSE-MRI, before and after 

contrast are shown in Figure 4.10. When comparing PDFF measured using VFA-CSE-MRI with 

PDFF measured with LFA-CSE-MRI (pre-contrast), VFA method showed strong correlation and 

near agreement with LFA-CSE-MRI (pre-contrast) both before (R2=0.97, m=0.88[0.81 0.94], 

b=1.34%[0.77 1.92]) and after (R2=0.93, m=0.88[0.78 0.98], b=1.90%[1.01 2.79]) contrast 

administration. An apparent slope less than one and intercept greater than zero was noted, due to 

a small disagreement between LFA- and VFA-CSE-MRI PDFF results at low PDFF values. When 

the regression was repeated excluding PDFF<5%, the result improved before (R2=0.98, 
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m=0.95[0.87 1.03], b=0.35%[-0.55 1.24]), and after (R2=0.94, m=0.95[0.82 1.09], b=0.87%[-0.65 

2.39]) contrast, respectively.  

 

Figure 4.10 Summary results from the pilot clinical study demonstrate strong correlation good 

agreement between VFA-PDFF and LFA-PDFF before and after contrast, whereas the high flip 

angle acquisition leads to strong positive T1-related bias before contrast and strong negative T1-

related bias after contrast. Also shown are R2* and T1W before and after gadoxetic acid. A small 

increase in R2* is noted and also a strong decrease in T1W observed, due to the presence of 

gadolinium. Note one outlier with high T1W (pre,*) is in a patient with biopsy proven NASH, and 

a second outlier (post,**) was from a patient with known cholangiocarcinoma and liver failure 

related to biliary obstruction. 

The correlation and agreement between VFA-CSE-MRI before and after contrast was very 

strong (R2=0.93, m=0.94 [0.84 1.05], b=-0.12% [-1.14 0.89]) indicating that the VFA-CSE-MRI 

approach corrected PDFF over a very wide variation of T1W. Similarly, the LFA-CSE-MRI 

produced accurate PDFF estimates even after contrast administration (R2=0.97, m =1.00 [0.93 

1.07], b=0.05% [-0.53 0.64]).  
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However, if a high flip angle is used without T1-correction, the PDFF measurement 

demonstrates considerable bias both before (R2=0.96, m=1.82 [1.67 1.98], b=1.68% [0.36 3.01]) 

and after (R2=0.85, m=0.74 [0.61 0.87], b=1.34% [0.21 2.47]) contrast. Interestingly, the bias with 

HFA-CSE-MRI acquisition reverses to a negative bias after the administration of contrast, because 

the T1W is less than T1F, in the presence of gadolinium.  

Example R2* and T1W images are also shown in Figure 4.9. The effect of contrast on R2* and 

T1W is clearly evident. Further, the measured values of T1W and R2* are shown in Figure 4.10. An 

outlying pre-contrast T1W measurement (945ms,*) is noted. The elevated T1W value is consistent 

with biopsy proven non-alcoholic steatohepatitis (NASH) in this patient. Further, an outlying post-

contrast (450ms,**) was observed in a patient with known cholangiocarcinoma and liver failure 

related to biliary obstruction, leading to reduced hepatic uptake of gadoxetic acid.  

 

4.6 Discussion 

In this study, a T1-corrected fat quantification technique was developed and rigorously 

evaluated. In the presence of differences between T1W and T1F, T1-corrected VFA-CSE-MRI with 

optimized flip angle pairs and joint-fit reconstruction proved to be unaffected by large T1W 

variations. Importantly, this strategy was shown to be robust to large transmit B1 inhomogeneities, 

and also over a wide range of T1 differences between water and fat. 

This work demonstrates that the proposed VFA method with joint-fit reconstruction is feasible 

for T1-corrected PDFF quantification. The accuracy of the proposed method was validated through 

simulations and phantom experiments, and evaluated in an in vivo clinical study at 1.5T. Further, 

the SNR performance of this approach is most advantageous when there are large differences 
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between the T1W and T1F. Importantly, we found that the VFA approach for typical liver tissue 

relaxation parameters did not confer a large SNR benefit  compared with LFA-CSE-MRI, although 

provided T1-corrected estimates of PDFF, even with widely varying differences between T1W and 

T1F. Further, in applications where large T1w variation exist and very low flip angle acquisitions 

(e.g. 2°) were required in LFA-CSE-MRI, the VFA-CSE-MRI had superior noise performance 

over LFA-CSE-MRI with very low flip angle acquisitions that can be used to minimize T1-related 

bias. A small relative bias between LFA- and VFA-CSE-MRI methods was observed at low PDFF 

values in vivo. While the source of this bias is uncertain, we speculate it may be a result of unstable 

T1F estimates when the fat signal was low. Further investigation will be required into this 

observation.  

Importantly, this work also identified an important new source of bias for complex-based 

CSE-MRI methods that utilize the acquired signal at high flip angles, like the method proposed in 

this work. Specifically, unanticipated relative phase shifts between water and fat signals and at 

different flip angles related to RF spoiling were identified. Such phase shifts have not been 

previously described in this context. With joint-fitting of complex VFA signals, however, 

introduction of new degrees of freedom in the signal model (independent phase shift for each 

chemical species at each flip angle) was necessary.  

In contrast to widely used LFA-CSE-MRI, the proposed VFA method extends the possible 

choices of flip angles by including T1-weighting in the signal model, enabling the acquisition of 

high SNR source images. However, the need for independent estimation of T1W and T1F introduces 

additional degrees of freedom. These additional parameters, in addition to a phase shift related to 

RF spoiling that has been newly identified in this manuscript, offset the advantages of the high 

SNR source images. Compared with the 2-step VFA method developed by Liu et al69. and Tamada 
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et al148., the use of joint-fitting slightly improved the SNR by eliminating the redundant estimation 

of field inhomogeneity and R2
*. Karampinos et al147 also investigated the joint estimation of R2* 

and B0 field inhomogeneity in VFA-CSE-MRI based on IDEAL reconstruction. In comparison, 

this work applied joint estimation and VFA T1-correction to modern confounder-corrected CSE-

MRI using non-linear least squares reconstruction. Further, the phase difference in spoiled gradient 

echo signal at different flip angles, which was unaccounted for by Karampinos et al, was corrected 

in this work. 

It is well established that LFA-CSE-MRI fat quantification is highly accurate in the 

liver31,33,139. As also shown in this work a LFA-CSE-MRI with a 3° flip angle has similar SNR to 

VFA-CSE-MRI in the liver at 1.5T. However, due to variation in T1W caused by biological 

variability, pathology or the presence of contrast agents, the bias in PDFF using LFA-CSE-MRI 

may be high for some applications. By comparison, PDFF estimated using VFA-CSE-MRI is 

unaffected over a wide range of T1W values.  

The main advantages of LFA-CSE-MRI are its simplicity and low T1-related bias, particularly 

at low PDFF values. At the same time, LFA-CSE-MRI can be performed with a shorter minimum 

acquisition time.  Further, VFA-CSE-MRI requires the use of a more complex reconstruction 

algorithm, although such algorithms are fully automated and inapparent to the user. A major 

advantage of VFA-CSE-MRI is removal of T1-related bias, over a wide range of T1 values, 

particularly at higher fat-fraction values. 

One limitation of this study is that the proposed joint-fit VFA-CSE-MRI was only evaluated 

at 1.5T, whereas CSE-MRI is routinely performed at both 1.5T and 3.0T32,34,139,162,163. Further 

evaluation at 3.0T will be needed for comprehensive evaluation of this strategy. We speculate that 

the wider separation between T1W and T1F at 3.0T field strength may improve the SNR performance 
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of VFA-CSE-MRI relative to LFA-CSE-MRI. With increasing differences between T1W and T1F 

at 3T, the LFA-CSE-MRI approach must use smaller flip angles to avoid T1-related bias, 

degrading its SNR performance. Further studies will be needed to evaluate VFA-CSE-MRI at 3.0T. 

Another limitation of the VFA strategy is that it doubles acquisition time. In this study, breath-

hold acquisitions over the entire liver were feasible, although with reduced spatial resolution. The 

use of 2D parallel imaging may be a useful way to alleviate acquisition time limitations.  

We also note that the in vivo accuracy of VFA-CSE-MRI at low fat-fractions demonstrated 

some bias, unlike in phantoms where VFA-CSE-MRI was accurate across all PDFF values. This 

bias may be related to lower SNR in vivo, leading to instability and bias from T1F-corrected 

estimates of the fat signal at low fat concentrations. This is a recognized limitation of VFA-CSE-

MRI strategies69, and can be mitigated in part through the use of physically plausible lower and 

upper bound constraints on the estimated T1F. Although we employed the use of such constraints 

in our estimation strategy, further optimization and the use of more advanced approaches, such as 

PDFF-dependent constraints may address this bias, and should be considered in future work. 

Further, we note that the VFA-CSE-MRI approach, like conventional LFA-CSE-MRI also 

provided estimates of R2*. As this patient population did not include any patients with iron 

overload, rigorous evaluation of the performance of VFA-CSE-MRI to quantify R2* was not 

performed, and this was also beyond the scope and purpose of this work.  

Finally, the VFA-CSE-MRI method also provided estimates of the T1 of water and fat. The 

T1F was not analyzed, as these values are noisy when fat is present in low concentration, such as 

that observed in the liver. T1W was measured before and after the administration of gadoxetic acid, 

and found to be very similar to values reported in the liver both before131 and after contrast158. 

Rigorous evaluation of T1W estimation in phantoms and in vivo using a reference standard was not 
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performed, as this was also beyond the scope and purpose of this work. We also note that like 

conventional DESPOT1, T1 estimates made using the proposed VFA-CSE-MRI may be 

confounded by transmit B1 inhomogeneities. However, no obvious spatial variation resulting from 

B1 inhomogeneities was observed, likely due to the use of 1.5T where B1 inhomogeneities tend to 

be small. 

In conclusion, joint-fit VFA-CSE-MRI is a feasible technique for T1-corrected fat 

quantification particularly for applications where there are large differences between T1W and T1F. 

For measurement of PDFF, this approach is independent of B1 transmit inhomogeneities and 

provides fully T1-corrected estimates of PDFF. Further evaluation of this strategy in clinical 

studies, including at 3.0T, may be warranted to determine its clinical utility and performance as an 

accurate and precise biomarker of liver fat quantification. 
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Chapter 5 : An Acetone Based Phantom for Quantitative 

Diffusion Magnetic Resonance Imaging 

This work has been published in the Journal of Magnetic Resonance Imaging.2015;75(2):845-

854) under the title “An Acetone Based Phantom for Quantitative Diffusion Magnetic Resonance 

Imaging” 

5.1 Abstract 

Purpose: The purpose of this study was to propose and evaluate an acetone-D2O phantom which 

has extended range of ADC for quantitative diffusion MRI, as well as to compare its properties to 

previously described water-based phantoms. 

Materials and Methods: The proposed acetone-D2O, and previously described sucrose water 

solution and PVP water solution phantoms were constructed in a number of concentrations 

between 0% and 50%. At 1.5T field strength, diffusion-weighted MR spectroscopy (DW-MRS) 

based on a point resolved spectroscopy (PRESS) acquisition, non-diffusion-weighted stimulated 

echo acquisition mode (STEAM)-MRS and diffusion-weighted echo-planar imaging (DW-EPI) 

were used to evaluate each phantom. The MR spectra, diffusion-weighted signal decay pattern, 

tunability of ADC, and ADC range of each phantom were all evaluated.  

Results: When placed in an ice-water bath, all phantoms provided desirable signal properties, 

including single-peak signal with Gaussian diffusion and tunable ADC. At 0oC, however, water-
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based phantoms had ADC limited to less than 1.1∙10-3 mm2∙s-1 (0.2-1.1∙10-3 mm2∙s-1) while the 

proposed acetone-based phantom had ADC values spanning a wider range (0.6-3.5 ∙10-3 mm2∙s-1). 

Conclusion: The proposed acetone-D2O phantom provided desirable signal properties over a wide 

range of ADC with temperature controlled using an ice-water bath.  

Keywords: quantitative diffusion MRI, phantom, polyvinylpyrrolidone (PVP), acetone, D2O, 

apparent diffusion coefficient (ADC)  

 

5.2 Introduction 

Quantitative diffusion MRI has been the subject of intensive research developments that seek 

to improve data acquisition as well as diffusion signal modeling and reconstruction77,164–168. There 

is an emerging body of evidence demonstrating the potential of quantitative diffusion MRI 

techniques for diagnosis, staging and treatment monitoring of cancer in multiple 

organs81,82,169,79,170–176. Unfortunately, widespread dissemination and application of quantitative 

diffusion MRI has been limited. Large variations in measured diffusion parameters have been 

observed between studies and research sites in both pathological and normal tissues49,79–84. The 

potential sources of these variations include physiological variations such as motion and the 

presence of fat97. Other sources of variability include hardware imperfections such as image 

distortions caused by susceptibility177 and eddy currents178, as well as b-value error99 from 

imperfect gradient amplitude calibration179. In order to characterize the effect of these technical 

confounding factors, it is highly desirable to develop a phantom that provides accurately known 

reference apparent diffusion coefficient (ADC) values that are unconfounded by the presence of 

physiological motion, the presence of fat, or diffusion modeling mismatches. 
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Early phantoms180 for diffusion MRI were constructed using different pure substances, 

including water, acetone and various oils102–105. These phantoms are easy to construct and 

reproducible, but provide a very limited number of ADC values. Alternatively, solution phantoms 

have been proposed. In these phantoms, water serves as the solvent and provides the MRI signal. 

Its diffusion behavior is tuned by dissolving a solute that reduces the ADC of water in a 

concentration dependent manner. Two important examples of solution phantoms include designs 

based on sucrose105,106 and polyvinylpyrrolidone (PVP)98,107, each dissolved in water. A major 

challenge with these phantoms is that solutes such as sucrose and PVP generate MR signal with 

multiple spectral peaks181,182. Although preliminary studies have examined the properties of these 

phantoms98,100,106–108, comprehensive validation is still required to rule out possible confounding 

effects from the solute signal on the measured ADC. 

An essential component of any diffusion phantom is temperature control because the diffusion 

of liquids such as water is highly dependent on temperature109. For this reason, the use of ice-water 

baths has become a well-accepted means to maintain the temperature of a diffusion phantom99 at 

a highly reproducible temperature (0°C). Unfortunately, water has limited ADC (ADC<1.1 ∙10-3 

mm2∙s-1)109 at 0°C, while ADC in tissue may be up to 2.6 ∙10-3 mm2∙s-1 at body temperature110. 

Although scanning water-based phantoms at higher temperatures (e.g., 37.5°C) is possible183, 

accurate control at such temperature is very challenging compared with temperature control at 0°C. 

In this work, we propose a diffusion phantom design using acetone as the signal source. 

Compared to water, acetone has very high ADC (e.g., ADC>3.0 ∙10-3 mm2∙s-1 at 0°C)184. Further, 

it has been shown that in a mixture of water and acetone, the diffusion coefficient of acetone can 

be lowered due to hydrogen bonding between water and acetone185,186. Unfortunately, acetone-
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water mixtures produce MR signals from both acetone and water (i.e., two spectral peaks with 

different diffusion properties), which will confound quantitative diffusion MRI measures. To avoid 

water signals, we propose to substitute water with deuterium oxide (D2O) as the solute. In the 

proposed phantom, D2O alters the ADC of acetone the same way as H2O without producing any 

MR-visible signal. Because of high ADC of acetone at 0°C, the proposed phantom may reach the 

entire physiological ADC range (0.6 ∙10-3 mm2∙s-1 -2.6 ∙10-3 mm2∙s-1) under ice-water bath 

temperature control.  

Therefore, the purpose of this study was to propose and evaluate an acetone-D2O phantom for 

quantitative diffusion MRI, as well as to compare its properties to previously described water-

based phantoms. 

5.3 Methods 

Phantom Construction 

Previously proposed water-based solution phantoms, as well as the acetone-based phantom 

design proposed in this work were constructed without any doping agents, as follows:  

Sucrose phantom: a sucrose phantom was constructed using an agar gel matrix following the 

recipe described by Lavdas et al100. In the five vials constructed, the concentrations of sucrose 

(Sigma-Aldrich, St. Louis, MO) were 0%, 10%, 20%, 30%, 40% weight/volume (w/v), dissolved 

in deionized water. 

PVP phantom: six vials were built with PVP (Sigma-Aldrich, St. Louis, MO) at concentrations 

of 0%, 10%, 20%, 30%, 40%, 50% w/v, dissolved in deionized water. Similar to the work by 

Pierpaoli et al98., other components included sodium chloride which modifies the phantom’s 
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dielectric properties (9g/L) and sodium benzoate as a preservative (3mM). These ingredients were 

added to conform to the recipe. 

Acetone-D2O phantom: the proposed acetone-D2O phantom was built by mixing pure acetone 

and D2O (Sigma-Aldrich, St. Louis, MO) with the following concentrations of D2O: 0%, 5%, 10%, 

20%, 40% v/v, mixed in acetone. Additionally, an acetone-H2O phantom was built with the same 

concentrations of H2O for comparison.  

All phantoms were stored in glass vials (Sigma-Aldrich, St. Louis, MO) 9.5 cm in height and 

2.75 cm in diameter. 

Study of Phantom Properties of Interest 

Imaging and spectroscopic data were acquired to examine the following properties of each 

diffusion phantom:  

1) Single-peak MR spectrum. Phantoms with multiple MR spectral peaks will result in severe 

chemical shift artifacts187 in single shot echo-planar imaging (EPI)-based diffusion MRI, therefore 

a single-peak MR spectrum is highly desirable. Single-voxel multi-echo stimulated echo 

acquisition mode (STEAM)-MRS and diffusion-weighted (DW)-MRS96 were performed to study 

the MR spectrum of phantoms as well as the diffusion of each chemical species. 

2) Reproducible diffusion behavior. Due to the sensitivity of diffusion to changes in 

temperature, temperature control is required for reproducible diffusion behavior. An ice-water bath 

was used in order to attain reproducible diffusion behavior in DW-MRS and DW-EPI experiments. 

Temperature was monitored using a fiber optic thermometer as described below.  

3) Isotropic Gaussian diffusion. Validation in the setting of Gaussian diffusion is a first and 

necessary step in the validation of all diffusion MRI techniques. Isotropic Gaussian diffusion is 

generally expected when diffusion is unhindered by any spatial restrictions (e.g., cell boundaries). 
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However, in solutions where hydrogen bonding exists, a distribution of diffusion rates may arise 

(i.e., spins involved in hydrogen bonds may diffuse at a different rate compared to spins that are 

not involved in hydrogen bonds)188. Given the presence of hydrogen bonding in the solution 

phantoms analyzed in this study, it is unknown whether this effect could lead to non-Gaussian 

diffusion behavior. To examine whether the assumption of Gaussian diffusion holds, DW-EPI was 

performed. The presence of mono-exponential signal decay with increasing b-values was tested as 

a surrogate of Gaussian diffusion behavior (When spins undergo Gaussian diffusion, signal 

acquired with increasing diffusion encoding, i.e., b-values, will experience a true mono-

exponential decay) as follows. In this study, to validate mono-exponential diffusion decay, one 

ADC of each phantom was measured from DW-EPI images with two small b-values, while another 

from two large b-values respectively. Should two ADC measurements agree, this would support 

the presence of Gaussian diffusion. Additionally, DW-EPI data were acquired with multiple 

diffusion gradient durations. The agreement between ADC calculated using these different 

diffusion gradient durations was evaluated for additional validation of Gaussian diffusion. 

Although we expected the phantom to exhibit isotropic diffusion, all acquisitions were repeated 

with X, Y, Z diffusion directions, to test the reproducibility of ADC measurements with respect to 

diffusion direction.  

4) Tunable ADC values. ADC measured from DW-EPI data was also used to test the feasibility 

of tuning ADC values and investigate the range of ADC tuning capacity of the solute. To determine 

the feasibility of ADC tuning by changing concentration of the solute (sucrose, PVP and D2O, 

respectively) in the phantoms, ADC measured in multiple vials with increasing solute 

concentrations (as described above) were compared for each type of phantom. 
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5) Wide range of ADC. The attainable ADC values should cover the entire clinically relevant 

range (0.6 ∙10-3 - 2.6 ∙10-3 mm2∙s-1)110. The range of ADC values measured from DW-MRS and 

DW-EPI data of each phantom was evaluated.  

 

The temperature control setup (ice-water bath), acquisition parameters and data processing 

for imaging and spectroscopic experiments are described in detail in the ensuing paragraphs. 

Ice-water Bath 

MR experiments were conducted in an ice-water bath for all phantoms. Additionally, the same 

experiments were repeated at room temperature for the sucrose and PVP phantoms in order to 

extend their ADC range. 

The ice-water bath was conducted in a plastic container of dimensions 20cm×14cm×10cm. A 

layer consisting of 125ml of ice was formed in the bottom of the container, with approximately 

250ml of cold water mixed with the ice, in order to immerse the vials completely. Vials with high 

concentrations of MnCl2 (approximately 10 mM), and therefore with no visible MR signal, 

were used to hold the vials of interest in place. Two separate fiber optic thermometer probes 

were securely placed within the ice-water bath (between the phantom vials), and the average of 

their measurements was used to monitor temperature changes during the scan. 

Signal arising from the ice-water bath was eliminated by adding manganese chloride (2mM) 

to shorten the T2 to less than 5ms189. This was necessary because a significant chemical shift can 

cause overlap between acetone and surrounding water in diffusion weighted-echo planar imaging 

(DW-EPI).  
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Data Acquisition 

MRS and MRI data were acquired to examine the properties of each diffusion phantom. All 

experiments were conducted in a clinical 1.5T MRI system (HDxt, GE Healthcare, Waukesha, WI) 

magnet using a standard 8-channel cardiac phased array coil.  

DW-MRS: DW-MRS based on a point resolved spectroscopy (PRESS) acquisition96 was 

performed in each vial within each phantom, using b-values 0, 100, 250, 500, 750, 1000, 1500 

s/mm2, including flow compensation for diffusion encoding gradient. Other parameters include 

voxel size= 13mm×13mm×28mm, TE=146ms, TR= 2000ms, NEX=8, diffusion gradients applied 

in the S/I direction.   

Multi-TE STEAM: To sample the MR spectrum without heavy T2 or diffusion weighting, 

STEAM-MRS150 was acquired with multiple short echo times. STEAM-MRS parameters included 

multiple TEs=8.6, 13.6, 18.6, 23.6, 28.6ms, voxel size=13mm× 13mm× 27.8mm, TR= 2000ms, 

mixing time (TM)=5ms. Multi-TE STEAM was acquired once in each vial within each phantom. 

DW-EPI: DW-EPI was performed on all the phantoms using a dual spin-echo single-shot EPI 

sequence. Acquisition parameters included TR=6000ms, TE=100ms, FOV=34cm×17cm, matrix 

size=128×64, slice thickness=6 mm, number of slices=4, slice in axial plane, no parallel imaging 

acceleration. b=0, 100, 300, 500, 750, 1000, 1250s/mm2 (the same as those used for DW-MRS). 

The diffusion gradient duration was 25.3ms and diffusion time was 31.3ms. For the purpose of 

validating reproducibility of ADC against the changes in diffusion gradient duration, DW-EPI 

acquisitions with b = 0, 100, 300, 500 were performed with diffusion gradient durations of 18.6ms, 

25.3ms and 31.1ms and diffusion times of 24.6ms, 31.3ms and 37.1ms, respectively. Separate 

acquisitions were also performed using the same b-value combinations, but with diffusion 

gradients applied in the X, Y, and Z directions, respectively. 
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Data Processing and Analysis 

DW-MRS: At each b-value, solute and solvent signal in each phantom were estimated 

individually when both signals could be detected with sufficient amplitude (i.e., when the 

amplitude of the smaller signal peak was no less than 10% of the larger peak). This was performed 

for the purpose of measuring individual ADC of each chemical species. Signal estimation was 

performed by fitting the spectrum to a linear combination of Lorentzian spectral shapes190. 

Individual ADC values were measured for the solvent and the solute signal separately by fitting 

their signal decay over b-values to a mono-exponential curve. When the solute signal was too weak 

or absent, only the solvent ADC was measured. 

Multi-TE STEAM: Single-voxel spectroscopy data using a multi-TE STEAM pulse sequence 

were displayed to visualize the presence of MR spectral peaks from all chemical species in each 

phantom. 

DW-EPI: A circular region-of-interest (ROI) of size 0.85cm2 located on the central slice was 

used to measure the average signal acquired at each b-value for sucrose (40%), PVP (50%), 

acetone-D2O (40%) phantoms. Two separate ADC values were measured by fitting the ROI signals 

from two small b-values (b=0, 500 s/mm2) and two large b-values (b=750, 1250 s/mm2), 

respectively, to a mono-exponential decay signal model. The two ADC measurements were 

compared. Using two b-values is not the optimal way to estimate ADC accurately, but here two 

combinations of b-values were used to confirm mono-exponential signal decay (i.e., Gaussian 

diffusion).  

In order to optimally estimate ADC from each vial, using each diffusion acquisition protocol 

(diffusion direction, diffusion gradient duration and diffusion time), DW-EPI based ADC 

measurements were also performed from all b-values (using mono-exponential least-squares 
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fitting) on a voxel by voxel basis. A single ADC value was calculated for each vial in each 

acquisition protocol by averaging ADC values inside a ROI of size 0.85cm2 on the central slice. 

The feasibility of ADC tuning and the range of ADC were determined using ADC values 

obtained from DW-EPI data acquired with all b-values and diffusion gradient duration of 25.3ms, 

diffusion time of 31.3ms. 

The DW-EPI based ADC measurements in sucrose (40%), PVP (50%) and acetone-D2O(40%) 

phantoms were compared across different diffusion gradient durations as well as diffusion 

direction for additional validation for Gaussian diffusion. 

Relaxometry of the Acetone-D2O Phantom 

In order to assess the relaxation properties of the proposed acetone-D2O phantom, T1 and T2 

were measured for each vial. To measure the T1 of the acetone-D2O phantom in ice-water bath, 

2D fast spin echo-inversion recovery (FSE-IR) was performed in the axial plane. Acquisition 

parameters included inversion times (TI) of 400, 800, 1200, 1600, 2200, 3000ms, TE=400ms (a 

long TE was used in order to avoid signals from the surrounding doped ice-water bath), 

FOV=24cm×24cm, slice thickness=10mm, TR=10,000ms. A T1 map was calculated by fitting 

inversion recovery signal model to the signals191 on a pixel-by-pixel basis. For each vial, a single 

T1 was measured by the by averaging T1 measurements in a circular ROI of 73.8cm2 chosen in the 

center of each vial. 

To measure T2 of the acetone signal in the acetone-D2O phantom at 0oC, 2D spin echo (SE) 

was performed in the axial plane. Acquisition parameters included TE=14, 500, 1250, 2000ms, 

FOV=24mm × 24mm, slice thickness=10mm, TR=7000ms. For each voxel, a mono-exponential 

signal model was fit on a pixel-by-pixel basis to estimate T2 maps. For each vial, individual T2 

estimates were averaged over a circular ROI of 73.8cm2. 
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The Effect of Manganese Chloride on Temperature of ice-water Bath 

Adding a doping agent (MnCl2) to the ice-water bath may lead to undesired deviation of 

temperature from 0oC. To study this potential effect, a container of ice-water was doped with 

several MnCl2 concentrations (0mM, 0.5mM, 1mM, 1.5mM, 2mM). For each concentration, 80 

ml of ice-water as well as the corresponding weight of MnCl2 were mixed in a beaker roughly 7cm 

in height and 5cm in diameter. The temperature of the resulting ice-water bath was measured using 

a fiber optical thermometer at the ice-water interface, and this measurement was repeated 10 times.  

Statistical Analysis 

Linear regression of the measured temperature and known concentration of MnCl2 was 

performed to characterize ice-water temperature with respect to MnCl2 concentrations used in this 

experiment.  

5.4 Results 

Study of Phantom Properties of Interest 

1) Single-peak MR spectrum: Representative DW-MRS and STEAM-MRS spectra of the sucrose 

phantom (40% sucrose) at 0oC and at room temperature are shown in Figure 5.1. The STEAM-

MRS spectra, acquired with short echo times (TE between 8.6ms-28.6ms), show both water and 

sucrose signal at both temperatures. At 0oC, sucrose signal was not observed in the DW-MRS 

spectrum, which was acquired at long echo time (TE=146ms). At room temperature, two sucrose 

peaks were observed in DW-MRS, one on each side of the main water peak. These peaks 

demonstrated slower decay than the water peak with increasing b-values, due to the slower 
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diffusion of sucrose compared with water, i.e., the diffusion signal from this phantom has multiple 

components, each with different ADC values.  

 

Figure 5.1 Using DW-MRS, sucrose signal was observed in a sucrose phantom at room 

temperature but not at 0°C. Shown are DW spectra (TE=146ms) as well as short-TE non-DW 

STEAM spectra of a sucrose phantom (40% sucrose in water solution), both in an ice-water bath 

(0°C) and at room temperature. At room temperature, sucrose signal was found in STEAM-MRS 

and DW-MRS. In DW-MRS the high signal is likely due to long sucrose T2. This high sucrose 

signal complicates the use of room temperature sucrose phantoms for quantitative diffusion MRI. 

However, no apparent sucrose signal was observed at 0°C in DW-MRS despite the sucrose peak 

shown in STEAM-MRS, hence this phantom may be considered single-peak in ice-water bath 

when a long echo time is utilized. 
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Representative DW-MRS and STEAM-MRS spectra of the PVP phantom (50% PVP) at 0oC 

and at room temperature are shown in Figure 5.2. Using STEAM-MRS, at room temperature two 

PVP peaks were observed between 2 and 4 ppm182. for the TE=8.6ms acquisition. These peaks 

decay very quickly with increasing TE (i.e., PVP has short T2), and demonstrate near complete 

decay at TE=28.6ms. A single signal peak was observed in the spectra of 50% PVP phantom using 

DW-MRS at both temperatures.  

 

Figure 5.2 PVP phantom shows single peak spectrum in ice-water bath and at room temperature. 

The plots show DW-MRS (TE=146ms) and STEAM-MRS with no diffusion weighting acquired 

in the PVP phantom (50% PVP) in an ice-water bath and at room temperature. Nearly single peak 

spectra were observed in both DW-MRS and STEAM-MRS at both temperatures. After zooming 

in on STEAM-MRS at room temperature, a fast decaying PVP signal was found at 2-3ppm. This 

suggests the single-peak spectrum results from the low intensity and rapid decay of the PVP signal 

at either ice-water or room temperature. 
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In the acetone-H2O (20% H2O) phantom, both acetone and H2O generate a single MR spectral 

peak separated by approximately 2ppm (Figure 5.3). However, in the acetone-D2O (20% D2O) 

phantom, only a single spectral peak was observed, due to lack of MR signal from deuterium. The 

acetone signal decayed at a similar rate (ADC of acetone was measured as 1.21 ∙10-3 mm2∙s-1 in 

acetone-D2O, 1.43 ∙10-3 mm2∙s-1 in acetone-H2O using DW-MRS), demonstrating that D2O and 

H2O have similar impact on the diffusion of acetone molecules. Note in Figure 5.3 that the H2O 

signal in acetone-H2O creates a ghost image on DW-EPI images, which overlaps with the acetone 

signal.  

 

Figure 5.3 Acetone signal showed similar diffusion decay in acetone-D2O and acetone-H2O 

phantom of the same concentration (20% H2O or D2O, respectively). The plots show DW-MRS 

(TE=146ms) and STEAM-MRS of acetone-D2O and acetone-H2O phantoms in an ice-water bath. 

Importantly, H2O gives rise to a large peak, whereas D2O produces no NMR signal. Acetone-D2O 

and acetone-H2O phantoms provide similar acetone diffusion signal behavior. However, H2O 

produces signal which appears as a ghost in the DW-EPI images, whereas D2O produces no MR 

signals.  

2) Reproducible diffusion behavior: Temperature was measured between 0.4 oC and 1.75 oC during 

the scans in ice-water bath.  
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3) Isotropic Gaussian diffusion: The logarithms of signal decay curves measured by DW-EPI of 

sucrose (40%), PVP (50%), acetone-D2O (40%) phantoms in ice-water bath and sucrose, PVP 

phantoms at room temperature are shown in Figure 5.4. Deviations from a straight line indicate 

non-Gaussian diffusion behavior. Among the sucrose, PVP and acetone-D2O phantoms, only the 

sucrose phantom at room temperature demonstrated substantial deviation (r2 = 0.986) from mono-

exponential decay (r2 > 0.997 in other cases). The presence of sucrose signal at room temperature 

results in clear non-mono-exponential signal decay.  

 

Figure 5.4 PVP phantom and acetone-D2O phantom showed mono-exponential diffusion signal 

decay. Color coded lines show the logarithm of relative signal intensity at each b-value for PVP 

phantom (50%), sucrose phantom (40%), acetone-D2O phantom (40%). Sucrose phantom’s 

diffusion decay pattern deviates from a mono-exponential model, especially at room temperature 

(see arrow). Signals were averaged in an ROI (0.85cm2) inside each vial on DW-EPI images. 

Further the ADC values measured for each phantom using b=0, 500s/mm2 and b=750, 

1250s/mm2 respectively in DW-EPI are listed in Table 5.1. Sucrose, PVP, and acetone-D2O, with 

the exception of the sucrose phantom at room temperature (ΔADC = 0.28∙10-3mm2∙s-1), showed 
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differences smaller than 0.07∙10-3mm2∙s-1 between the ADC values measured using the two sets of 

b-values (i.e., demonstrating mono-exponential diffusion signal decay). 

Phantom ADCa/(10-3mm2∙s-1) 

Measured using 

b=0,500∙ mm-2∙s1 

ADC/(10-3mm2∙s-1) 

Measured using 

b=750,1250∙ mm-2∙s1 

 (ADCb=0,500-ADCb=750,1250)/ 

ADCb=750,1250×100% 

 

PVPb (Room 

Temperature) 

50% PVP 

0.43 0.47 -8.5 

 

 

PVP (0 °C) 

50% PVP 

0.20 0.23 -10.7 

 

Sucrose (Room 

Temperature) 

40% Sucrose 

0.68 0.4 42 

 

 

Sucrose (0 °C) 

40% Sucrose 

0.42 0.36 16.5 

 

Acetone-D2O 

40% D2O (0 °C) 

0.54 0.56 -4.5 

 
a: Apparent diffusion coefficient 

b: Polyvinylpyrrolidone 

Table 5.1 ADC measured in PVP and acetone-D2O phantoms, were robust to estimation using 

different groups of b-values. Specifically, ADC was estimated using a subset of small b-values 

(0,500∙ mm-2∙s1) and a subset of large b-values (750,1250∙ mm-2∙s1). The difference between these 

two ADC values in the sucrose phantom indicates signals with multi-exponential decay from 

multiple signal sources. 

ADC values measured using different diffusion gradient durations (Table 5.2) were within a 

0.12∙10-3mm2∙s-1 range from each other for all phantoms, and within 0.03 ∙10-3mm2∙s-1 range for 

acetone-D2O and PVP phantoms. The fact that ADC measurements were independent of diffusion 

gradient duration (and therefore diffusion time) is consistent with Gaussian diffusion behavior.  

DW-EPI based ADC measured with all diffusion direction was compared for 40% sucrose 

phantom, 50% PVP phantom and 40% acetone-D2O phantom. The measurements were within a 
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0.10∙10-3mm2∙s-1 range from each other for sucrose phantom, and within a 0.04∙10-3 mm2∙s-1 range 

for PVP and acetone-D2O phantoms. 

Phantom Solute 

concentration 

% 

ADCa(diffusion 

gradient duration 

=18.6ms) 

 

ADC(diffusion 

gradient duration 

=25.3ms) 

 

ADC(diffusion 

gradient duration 

=31.1ms) 

Sucrose 

(room temperature) 

40% 0.61 0.65 0.53 

Sucrose(0 °C) 40% 0.37 0.44 0.35 

PVPb 

(room temperature) 

50% 0.46 0.45 0.43 

PVP 

(0 °C) 

50% 0.23 0.23 0.23 

Acetone-D2O 40% 0.55 0.55 0.56 
a: Apparent diffusion coefficient 

b: Polyvinylpyrrolidone 

Table 5.2 ADC (10-3mm2∙s-1) measured from acetone-D2O phantom, with different diffusion 

gradient durations (different diffusion times). No monotonic changes in ADC were observed in 

sucrose phantom with increasing diffusion time. Closely agreeing ADC (ΔADC≤0.03∙10-3 mm2∙s-

1) was measured using different diffusion gradient duration and diffusion time for PVP and 

acetone-D2O phantoms. 

4) Tunable ADC values and 5) Wide range of ADC: The ADC measurements from DW-MRS and 

DW-EPI utilizing all b-values from all phantoms are summarized in Figure 5.5. In all phantoms, 

the ADC of the solvent is tunable by modifying the solute concentration. In the water-based 

phantoms (sucrose and PVP), the range of achievable ADC is limited to less than approximately 

1.1∙10-3 mm2∙s-1 at ice-water temperature. In contrast, substantially higher ADC (3.4∙10-3 mm2∙s-1) 

is achievable in the proposed acetone-D2O phantom. 
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Figure 5.5 The proposed acetone-D2O phantom covers the entire physiological ADC range at ice-

water temperature. In all phantoms, the ADC of the solvent is modulated by the solute 

concentration. ADC measurements from DW-EPI and DW-MRS are shown for PVP and sucrose 

phantoms at both room temperature and 0°C, and for acetone-D2O and acetone-H2O phantoms at 

0°C. Two ADC values were measured by DW-MRS for the solvent and solute signals when the 

solute signal intensity was high enough. Sucrose and PVP phantoms were limited to low ADC 

values, particularly when scanned at 0°C, whereas the proposed acetone-D2O phantom attained a 

wide range of ADC at 0°C, covering the entire physiological ADC range. In sucrose phantoms at 

room temperature, although solvent ADC was modulated by solute, the ADC measured by DW-

EPI is confounded by the presence of solute signal. 
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DW-MRS measures two very different ADC for sucrose (0.13∙10-3 mm2∙s-1 with 40% sucrose) 

and water (0.72∙10-3 mm2∙s-1 with 40% sucrose) in the sucrose phantom at room temperature. The 

concentration of sucrose as a solute successfully modulated the ADC of H2O signal measured by 

DW-MRS at this temperature. However, the ADC measured using DW-EPI (0.40∙10-3 mm2∙s-1 with 

40% sucrose) falls between that of sucrose and water measured using DW-MRS, demonstrating 

explicitly the confounding effect of the solute signal from sucrose, which leads to multi-

exponential diffusion decay behavior in DW-EPI.  

In the cases without detectable solute signal, ADC measured by DW-MRS and DW-EPI had 

differences smaller than 0.13∙10-3 mm2∙s-1. 

T1 and T2 of Acetone-D2O Phantom 

 The T1 of acetone was measured using FSE-IR images as 2.41s, 2.59s, 2.60s, 2.65s, 2.61s for 

acetone-D2O phantom with D2O concentrations of 0%, 5%, 10%, 20%, 40%, respectively. In the 

same phantom, the T2 of acetone was measured using 2D SE images as 2.30s, 2.42s, 2.42s, 2.53s, 

2.39s for D2O concentrations of 0%, 5%, 10%, 20%, 40%, respectively.  

The Effect of Manganese Chloride on Temperature of Ice-water Bath  

The temperature measurements obtained in pure ice-water, as well as in doped ice-water with 

different MnCl2 concentrations are shown in Figure 5.6. The linear regression slope between 

MnCl2 concentration and temperature was -0.036 with confidence interval (95%) of [-0.08, 0.00]. 
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Figure 5.6 No significant linear relationship was observed between MnCl2 concentration and 

temperature at ice-water interface(P=0.08). Temperature measured at ice-water interface in ice-

water doped with MnCl2 with various concentrations. Linear regression was performed with 

regressand being temperature and regressor being the concentration of MnCl2. A t-test was used 

to determine whether a linear dependence between temperature and the concentration of MnCl2. 

5.5 Discussion 

In this study, we have proposed and evaluated a new phantom based on a solution of D2O 

dissolved in acetone, and compared its characteristics to previously described phantoms based on 

water-based solutions of PVP and sucrose, respectively. The proposed acetone-D2O diffusion 

phantom overcomes the limited ADC range of water-based phantoms at 0oC. A physiological 

range of ADC was achieved using acetone as a signal source (solvent) and D2O as an MR invisible 

solute that can be used to modulate the ADC of acetone. In addition to the expanded ADC range, 

the proposed phantom also has a single-peak MR spectrum, isotropic Gaussian diffusion, and 

easily tunable ADC. As a result, the proposed design effectively provides a wide range of ADC 
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while minimizing the influence of factors such as temperature, chemical shift artifacts in EPI as 

well as model mismatch caused by multiple signal sources. Therefore, the proposed phantom may 

prove useful in the development and quality assurance of quantitative diffusion MRI techniques. 

Our observations of mono-exponential signal decay with increasing b-value and ADC 

measurements independent of diffusion time support our hypothesis that hydrogen bonding 

between the solvent and the solute maintains Gaussian diffusion in the acetone-H2O phantom, 

acetone-D2O phantom as well as sucrose and PVP phantoms. The non-mono-exponential decay 

observed in sucrose phantom at room temperature can be explained by the confounding effect of 

sucrose signal contributing to multi-exponential signal decay. 

At 0°C, sucrose and PVP phantoms showed a single-peak spectrum, Gaussian diffusion, and 

easily tunable ADC. However, at 0°C the span of ADC values was limited to equal or less than the 

ADC of pure water109 at 0°C, ~1.1∙10-3 mm2∙s-1. One way to extend ADC range of water-based 

phantom is to image them at higher temperatures. At room temperature, the ADC range of the 

water-based sucrose and PVP phantoms was higher than at ice-water temperature. However, at 

room temperature, signal from sucrose was observed. This leads to multi-exponential diffusion 

signal decay, which confounds DW-EPI of sucrose phantoms at room temperature. In contrast, no 

significant signal from PVP was observed at echo times used for DW-EPI and DW-MRS, even at 

room temperature. Although at shorter echo times, PVP signal was observed at room temperature, 

the rapid decay indicates very short T2 of PVP compared with water. This likely led to the lack of 

PVP signal in DW-EPI and DW-MRS that are typically acquired at much longer echo times. For 

this reason, the PVP phantom demonstrated mono-exponential signal decay with increasing b-

values, in good agreement with previous studies98,107. Nevertheless, the main limitation for water-

based phantoms at higher temperatures is the need for temperature control more sophisticated than 
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ice-water bath, in order to attain reproducible ADC measurements183. This requirement introduces 

significant complexity into the phantom setup, and may limit the widespread applicability of 

water-based phantoms at higher temperatures. Therefore, the proposed acetone-D2O phantom may 

provide an effective approach to obtain a wide ADC range with simple ice-water temperature 

control. 

This study had several limitations. First, the use of acetone poses some challenges. It is often 

desirable to tune the T1 and T2 of phantoms, in order to better mimic tissue properties and to 

optimize SNR. Certain salts such as copper sulfate and nickel chloride are commonly used to 

shorten the T1 and T2 of water. However, neither of these are soluble in acetone. Alternative agents 

that alter the relaxivity of acetone may address this limitation, and further investigation is needed 

to optimize the relaxation parameters of acetone. Another limitation of the proposed acetone-D2O 

phantom is the need to eliminate the signal from the surrounding ice-water bath. In this study, 

MnCl2 was added to the ice-water bath for this purpose. Importantly, this process does not result 

in substantial changes in the ice-water temperature.  

Further, the potential for proton and deuteron exchange between D2O and acetone may limit 

the shelf-life of the proposed phantom by generating unwanted water signal. In preliminary results, 

an H2O peak appears at the fourth month after the phantom construction if stored at room-

temperature. However, when acetone-D2O was stored in a freezer, no H2O peak was detected a 

year after the construction of the phantom. However, systematic evaluation of the shelf life of the 

proposed acetone-D2O phantom needs to be performed in future studies.  

To demonstrate the utility of the proposed phantom for the validation of diffusion MRI 

techniques, multi-center studies must also be performed107. Reproducibility across sites, field 

strengths and platforms is critical for the establishment of quantitative diffusion MRI techniques 
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as quantitative imaging biomarkers. Diffusion MRI phantoms used in multi-site reproducibility 

studies need to show reproducible diffusion behavior over time and across sites. 

In conclusion, this study has proposed and characterized the performance of an acetone-D2O 

diffusion phantom. This phantom provides single-peak MR spectrum, Gaussian diffusion behavior 

and a wide range of tunable ADC, covering the entire physiological range of ADC values at 0oC. 

This phantom may have utility for the technical development of new diffusion MRI methods and 

for protocol harmonization and quality assurance in multi-center studies using quantitative 

diffusion MRI.  
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Chapter 6 : Phase-based T2 Mapping with Gradient Echo 

Imaging 

This work has been submitted to the Magnetic Resonance in Medicine. under the title “Phase-

based T2 Mapping with Gradient Echo Imaging” 

6.1 Abstract 

Purpose: Transverse relaxation time (T2) mapping with MRI has a plethora of clinical and 

research applications. Current T2 mapping techniques are based primarily on spin-echo (SE) 

relaxometry strategies that rely on the signal magnitude, and often suffer from lengthy acquisition 

times. In this work we propose a phase-based T2 mapping technique where T2 information is 

encoded into the signal phase of rapid gradient echo (GRE) acquisitions.  

Theory: Bloch equation simulations demonstrate that the phase of GRE acquisitions obtained with 

a very small inter-repetition RF phase increment has a strong monotonic dependence on T2, 

resulting from coherent transverse magnetization. This T2-dependent phase behavior forms the 

basis of the proposed T2 mapping technique. To isolate T2-dependent phase from background 

phase, at least two datasets with different RF phase increments are acquired. The proposed method 

can also be combined with chemical shift encoded MRI to separate water and fat signals.  

Methods: The feasibility of the proposed technique was validated in a phantom experiment. In 

vivo feasibility was demonstrated in the brain, knee, abdomen and pelvis. Comparisons were made 

with SE-based T2 mapping, spectroscopy and T2 values from the literature. 

Results: The proposed method produced accurate T2 maps compared with SE-based T2 mapping 

in the phantom. Good qualitative agreement was observed in vivo between the proposed method 
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and the reference. T2 measured in various anatomies agreed well with values reported in the 

literature. 

Conclusion: A phase-based T2 mapping technique was developed and its feasibility demonstrated 

in phantoms and in vivo. 

Keywords: magnetic resonance imaging, T2 mapping, relaxometry, phase, gradient echo, RF 

spoiling, quantitative imaging biomarker 

 

6.2 Introduction 

The transverse relaxation time (T2) is associated with important microscopic tissue properties 

such as the concentration and cluster-size of paramagnetic particles and the mobility of hydrogen 

atoms. Importantly, T2 is well known to characterize a plethora of important disease processes 

such as iron deposition, fibrosis, edema, malignancy, and inflammation, among others. As a result, 

quantitative T2 mapping with MRI has many applications, including assessment of neuro-

degenerative diseases and characterization of malignant lesions192, detection of myocardial 

edema193, detection of chronic rejection after heart transplant194,195, detection of early cartilage 

degeneration196, quantification of liver iron overload197 and even identification of myofascial 

trigger points198. 

Spin-echo (SE) based methods are commonly used to map T2. By varying the echo time and 

fitting the signals to a mono-exponential decay model (multi-exponential if a multi-component 

model is appropriate199,200), T2 can be estimated. Unfortunately, lengthy exams are needed due to 

the long repetition time (TR) to minimize T1 weighting. Acquisition times can be reduced by 
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acquiring multiple echoes (multi-echo SE) in a single TR201,202, although the use of multi-echo 

methods may lead to different measurement of T2
202.  

Magnetization prepared T2 contrast (“T2-prep”) is a method used to encode T2 relaxation into 

the longitudinal magnetization203. This technique is advantageous for imaging blood vessels and 

the heart13, and relies on modulation of the longitudinal magnetization prior to a readout 

acquisition. Although faster than SE-based acquisitions, T2-prep-based T2 quantification also 

suffers from relatively long acquisition times204,205.  

Steady-state short TR methods based on spoiled gradient echo (SGRE), balanced-steady state 

free precession (bSSFP)112, and gradient-refocused acquisition in the steady-state (GRASS)113,114 

are time efficient compared to spin-echo (SE) T2 mapping techniques. For example, two SGRE 

acquisitions with varying flip angle combined with bSSFP contain the necessary information for 

joint T1 and T2 estimation112. Due to the use of short TR acquisitions, these methods can deliver 

simultaneous T1 and T2 quantification of spatially resolved 3D volumes within clinically 

acceptable acquisition times112. 

To further reduce acquisition time for T2 mapping, Welsch et al. proposed a multi-echo GRE 

acquisition known as double echo steady-state (DESS)113. This approach can also be extended for 

joint estimation of T1 and T2 using the triple echo steady-state (TESS) method proposed by Heule 

el al114.. In these methods, T2 information is encoded into the relative magnitude between echoes. 

In vivo feasibility of these methods has been demonstrated201,206. A variation of the DESS T2 

mapping technique developed by Staroswiecki et al207.,  has also demonstrated potential for 

accurate in vivo T2 mapping. Although only a single gradient echo (GRE) acquisition is required, 

these methods rely on water specific RF pulses for fat suppression, which may be unreliable in the 
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setting of B0 inhomogeneities114. Differential T2* weighting in the various echoes can also 

confound T2 estimates. 

We note that none of the above methods exploit signal phase to encode T2 relaxation. In this 

work, we propose a major modification of an RF phase scheme first proposed by Zur et al208 to 

achieve robust spoiling of transverse magnetization for GRE acquisitions. As we propose below, 

the use of very small RF phase increments, rather than large RF phase increments needed for RF 

spoiling, can create T2-dependent changes in both the phase and magnitude of the GRE signal. In 

this work we propose a novel quantitative T2-mapping technique that encodes T2 information into 

the phase of the GRE signal by manipulating the RF phase increment. 

6.3 Theory 

Complete spoiling of transverse magnetization is generally assumed when using spoiled 

gradient echo (SGRE) acquisitions. RF spoiling is a well-known approach used for spoiling 

transverse magnetization116. As first proposed by Zur et al208., RF spoiling methods use a pseudo-

random sequence of phase increments of the RF excitation. The phase sequence is defined by the 

difference between the nth and the (n+1)th RF excitation, i.e.: ΦRF(n) = ΦRF(n-1) + Φ0 + n·ΔΦ (n=0, 

….). If the RF phase increment (ΔΦ) is chosen carefully, transverse magnetization accumulates in 

an incoherent manner and is effectively spoiled.  

The choice of RF phase increment is important for effective RF spoiling. Specific choices of 

RF phase increment (e.g. 117°) lead to excellent RF spoiling and the signal closely approximates 

the ideal SGRE signal magnitude116. Other choices of RF phase increment may lead to less 

effective RF spoiling116. Importantly, we note that the phase of gradient echo signals in the context 

of RF spoiling has not been well described. 
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In this study, we investigate the effects of the RF phase increment on the phase of the complex-

valued gradient echo signal. Figure 6.1 plots the results of a Bloch equation simulation showing 

both the signal magnitude (η) and phase (θ) of the gradient echo signal, using the RF phase 

increment method proposed by Zur et al208.. In this computer simulation, an ensemble of 1000 

spins periodically experienced a sequence consisting of an RF pulse, T1 and T2 relaxation, and at 

the end of each repetition, a 2π phase dispersion across the isochromats due to an unbalanced 

readout gradient. Note that the acquisition reference frame matches the excitation phase.  

 

Figure 6.1 GRE signal magnitude (A) and phase (B) over the full range of RF phase increments 

(ΔΦ), according to the method of Zur et al208. By varying the RF phase increment, large variations 

in the magnitude and phase of the GRE signal are observed. Signal shown in this plot was 

generated using a Bloch equation simulation assuming T1=583ms and T2=55ms to simulate normal 

liver tissue21 at 1.5T, with TR=10ms and flip angle=20°.  

Figure 6.2 focuses on a narrow range of small RF phase increments, also with varying T1, T2 

and flip angle. As can be seen in Figure 6.2, significant variations in the signal phase occur with 

changes in T2 and flip angle, and to a much lesser extent with T1. The largest signal phase was 

observed with small RF phase increments between 1° to 4°. Various combinations of T2 (25ms, 
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55ms, 115ms), T1 (500ms, 900ms, 1400ms) and flip angle (5°, 10°, 15°) are used in the simulation 

assuming a TR of 10ms and simulated TE of 0ms to ignore the effects of T2* decay, for simplicity.  

 

Figure 6.2 GRE signal phase is heavily influenced by T2 (A), but only minimally by T1 (B) for 

very small RF phase increments (ΔΦ), forming the basis for the proposed T2 mapping method. The 

phase of the GRE signal over the low range of RF phase increments were generated using Bloch 

equation simulations with physiological T1 and T2 values and TR=10ms. The dotted lines are the 

case where transverse magnetization is spoiled perfectly. 

The effects of T2, T1 and flip angle are also plotted in Figure 6.3, demonstrating not only a 

strong dependence of the signal phase on T2 and flip angle, but also a relatively weak dependence 

on T1. We can express the steady-state gradient echo signal acquired with an RF phase increment 

as:  

 

S(ΔΦ, α, TR; M0, T1, T2) = M0 ∙ η(ΔΦ, α, TR; T1, T2) ∙ ei[θ(ΔΦ,α,TR; T1,T2)+θ′]      [5.1] 

 

where η(ΔΦ,α,TR; T1, T2) is the signal magnitude relative to M0, θ(ΔΦ, α,TR; T1, T2) is the 

signal phase immediately after excitation and is dependent on T2, T1, flip angle (α) and θ′, which 

is the local background phase caused by complex coil sensitivity, eddy currents, magnetic field 

inhomogeneities, etc. 
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To the best of our knowledge, simple analytical forms of η(ΔΦ,α,TR;T1, T2) and θ(ΔΦ, 

α,TR;T1,T2) have not been derived. In this work, calculation of these two functions is based on the 

use of a lookup table. Lookup tables are constructed from Bloch equation simulations based on 

wide ranges of possible T1 and T2 values, and the known acquisition parameters used in the 

experiment: ΔΦ, α, TR. All lookup tables used in this work are constructed using the same Bloch 

equation simulation described above. 

 

Figure 6.3 GRE signal phase (A) increases monotonically with increasing T2 for small RF phase 

increments (ΔΦ), e.g. 1-4°. Using a small RF phase increment (e.g. 2°), the signal phase is sensitive 

to T2 over a wide range of T2 values, a property that is favorable for encoding T2 information. Note 

also that the signal phase is relatively insensitive to varying T1 (B) and flip angle (for midrange 

flip angles such as 18°) for phase increments of 1° and 2°. The phase and magnitude of the GRE 

signal over the low range of RF phase increments were generated using Bloch equation simulations 

with physiological T1 and T2 values and TR=10ms. 

Figure 6.3 depicts in greater detail the dependence of the signal phase with respect to T2, T1 

and flip angle over a few small RF phase increments. A pronounced monotonic increase in the 

observed phase with T2 is noted over a wide range of physiological T2 values131 with RF phase 

increments between 1° and 4°. For an RF phase increment of 2°, the signal phase is consistently 

sensitive to T2 over a wide range of T2 values (Figure 6.3A). Unlike the strong dependence on T2, 

the signal phase changes minimally over a wide range of T1 values between 1000ms and 2000ms 
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(Figure 6.3B). Given these observations, a small RF phase increment such as 2° will encode the 

tissue T2 into the signal phase. 

In actual MRI acquisitions the received signal phase contains an additional background phase 

term, i.e.: θ′(Eq. 5.1). Estimates of the signal phase resulting from T2 of the tissue must be isolated 

from the background phase. In this work we propose the following method to isolate θ from θ′, 

and subsequently estimate tissue T2.  

Proposed Phase-based T2 Mapping 

In principle, two identical acquisitions with equal and opposite RF phase increments will 

generate equal but opposite phase responses (Figure 6.2), i.e.: θ(ΔΦ, α,TR ;T1, T2) = - θ(-ΔΦ, 

α,TR ;T1, T2). Using two such acquisitions, θ can be isolated from M0, η and θ′ in Eq.5.1 by taking 

the phase difference of two gradient echo signals acquired with opposite RF phase increments, and 

with all other acquisition parameters identical, i.e.:  

 

θ̂(ΔΦ, α, TR; T1, T2 ) = (∠S(ΔΦ, α, TR; T1, T2) −  ∠S(−ΔΦ, α, TR; T1, T2))/2    [5.2] 

 

Using a well-chosen RF phase increment (e.g. ΔΦ=2 °) and a relatively large flip angle (e.g. 

α=18 °), the estimated signal phase can be used to estimate T2. Based on the model presented above, 

it is expected that only a small error might occur in the T2 estimate related to T1 and unanticipated 

errors in flip angle (Figure 6.3B,C). Note that the same figure shows a maximum signal phase of 

50°, which will result in a phase difference of 100° between two signals. This phase difference is 

well below 2π, suggesting that even with higher T2 values, there should be no risk of phase wrap 

in the proposed method. 
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In this work, we propose to estimate T2 from θ̂ through the use of a lookup table generated 

from a Bloch equation simulation that uses the known TR and flip angle of the acquisition. We 

note that the phase is weakly dependent on T1, and therefore T1 values measured using other 

methods or values reported in the literature for the anatomy of interest can be used to generate the 

lookup table. 

Synthetic T2-weighted Images 

In addition to the phase maps used to generate the T2 map, magnitude images are also acquired. 

By multiplying these magnitude images with the inferred T2 decay from the phase-based T2 map, 

synthetic T2-weighted images can be generated. The synthesis of the signal in each voxel can be 

expressed as: 

S𝑠𝑦𝑛 = |S| × e−TEV/T2̂                       [5.3] 

where Ssyn is the synthesized T2-weighted signal, TEv is the virtual echo time, S denotes the 

signal acquired with one (or a combination) of the images acquired at the two phase increments. 

T2̂ denotes the estimated phase-based T2 value. 

6.4 Methods 

Phantom Experiments 

The accuracy of the proposed method was evaluated using a phantom constructed with 

varying concentrations of agarose and NiCl2 to modulate the T2 and T1 relatively independently209. 

The T1 was varied such that the confounding effect of T1 variation in the proposed method can be 

demonstrated. A 4×4 grid of cylindrical vial agarose gel phantom was constructed for this 

experiment. Each vial is approximately 3cm in diameter and 4.8cm in height. Each column was 
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constructed with a varying concentration of agarose (0.5%, 1%, 2%, 4%) to modulate T2. Each row 

is doped with a varying concentration of NiCl2 (0mM, 0.5mM, 1mM, 2mM) to modulate T1. 

All phantom experiments were performed on a clinical 3.0T MRI system (Signa Premier, GE 

Healthcare, Waukesha, WI) using a high channel density posterior and anterior receive array coil 

with up to 90 independent coil elements (Air coil, GE Healthcare, Waukesha, WI). Single-echo 

SE-based T2 mapping was performed to provide a reference standard. Echo times of 11ms, 50ms, 

100ms, 150ms were acquired with TR of 6000ms. Other acquisition parameters include: axial 

acquisition; field of view (FOV)=18cm×18cm; matrix=128×128; slices=1; slice thickness=15mm; 

receiver bandwidth=±83.33kHz. Signals were fit to a mono-exponential decay signal model offline 

in Matlab (MathWorks, Natick, MA) to estimate T2 on a voxel by voxel basis. A circular ROI was 

drawn in each vial. The T2 measurements were averaged in each ROI for comparison with the 

proposed method. 

T1 maps of the phantoms were generated using inversion recovered fast spin-echo (FSE-IR) 

MRI. Acquisition parameters were as follows: inversion time=50ms, 500ms, 1000ms, 1500ms, 

2500ms, 3500ms, 4000ms; TR=15000ms; FOV=18cm×18cm; matrix=256×256; slices=1; slice 

thickness=15mm; receiver bandwidth=±25kHz. T1 estimation was performed on a voxel by voxel 

basis using the standard inversion recovery signal model210. 

GRE images for phase-based T2 map were acquired using an axial acquisition; TR=5.0ms; 

FOV=18cm×18cm×24cm; matrix=128×128×24; receiver bandwidth=±50.1kHz; number of signal 

averages=4. Two complex GRE datasets with ΔΦ1=2° and -2°, each with 18° flip angle were 

acquired for the proposed method. The sum of squares image was used as a virtual body coil image. 

The complex sensitivity map was generated using the source images with one RF phase schedule 

(the first echo if multiple echoes are acquired) and used to combine complex channel images for 
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both sets of images with difference RF phase schedule, and all acquired echoes. This process was 

used to generate complex coil combined images.  T2 maps were reconstructed as described in the 

theory section. For the reconstruction of phase-based T2 maps, a T1 of 1850ms was assumed (mid-

point of the range of the T1 measured in the phantom, as reported in the Results section).  

 For each reconstruction by the proposed method, T2 measurements were averaged in a 

circular ROI in each vial, on the center slice. Linear regression was used to compare the T2 

measurements obtained using the proposed phase-based method and SE-based T2 mapping. 

In Vivo Experiments 

The proposed methods were also evaluated in healthy volunteers to demonstrate in vivo 

feasibility. All human imaging was performed after obtaining approval from our institutional 

review board (IRB) and informed written consent. All in vivo experiments were performed on 

3.0T clinical MRI systems (abdomen, pelvis, brain experiments on Signa Premier; knee 

experiments on Discovery MR 750w, GE Healthcare, Waukesha, WI). Various phased array 

receive coils appropriate for the specific anatomy were used including: 8-channel head coil (brain), 

8-channel knee coil (knee) and high channel density posterior and anterior receive array coils with 

up to 90 independent coil elements (Air coil, GE Healthcare, Waukesha, WI) for the abdomen and 

pelvis.  

For the proposed method, the choice of RF phase increment and flip angle are as follows: ΔΦ 

= 2° and -2°, each with an 18° flip angle.  

In the knee volunteer experiments, a total of 6 knees were scanned in 4 volunteers (4 males, 

ages 28-35). The acquisition parameters of the proposed method are as follows: 3D acquisition; 

sagittal plane; FOV=14cm×14cm×9.6cm; TR=5.9ms; matrix=256×256×32; 

bandwidth=±90.91kHz; signal averages=3; acquisition time=4:48 minutes. Due to the difficulty 
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of limiting motion over long acquisition times, a commercial multi-echo SE T2 mapping was used 

as reference instead of single-echo SE. Acquisition parameters include: sagittal plane; 

FOV=14cm×14cm; slice thickness=2.7mm; gap=0.3mm; slices=28; TR=1.0s; acquisition 

matrix=256×256; echo times=8.6ms, 14.8ms, 22.2ms, 29.5ms, 36.9ms, 44.3ms, 51.7ms, 59.1ms; 

bandwidth=±31.25kHz; signal averages=1; exam time=12:56 minutes. The acquisition volumes of 

the two methods were precisely colocalized. 

Phase-based T2 maps were reconstructed as described in the theory section. T1 of 1198ms was 

assumed (midpoint between the T1 of the medial femoral cartilage and patella). The reference T2 

map from multi-echo SE images were calculated by fitting the signal to a single-exponential decay 

model to minimize least square error on a voxel by voxel basis. To compare the proposed method 

and the reference, T2 measurements were averaged inside ROIs drawn directly on the T2 maps in 

the following regions described by Fang Liu et, al211: medial femoral central (MFC) condyle, 

medial femoral posterior (MFP) condyle, medial tibial plateau (MTP), patella-deep (PAT-D), 

patella-superficial (PAT-S), lateral femoral central (LFC) condyle, lateral femoral posterior (LFP) 

condyle, lateral tibial plateau (LTP), as well as T2 measurements from the gastrocnemius muscle 

(MUS). For each individual region, box-whisker plots were created to demonstrate the distribution 

of T2 measurements by the two compared methods. A Student’s t-test was performed for paired 

samples. For measurements across all the regions, the Pearson coefficient was computed. 

A brain study was performed on one volunteer (male, age 30). The acquisition parameters of 

the proposed method were as follows: 3D acquisition; axial plane; FOV=24cm×24cm×12.8cm; 

TR=5.6ms; acquisition matrix=256×256×32; bandwidth=±90.91kHz; signal averages=3; exam 

time=4:30 minutes. Single-echo SE T2 mapping was used as reference for T2 measurements, 

acquisition parameters include: axial plane; FOV=24cm×24cm; slice thickness=3.6mm; slice 
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spacing=0.4mm; number of slices=22; TR=6s; acquisition matrix=256×256; echo times=11ms, 

70ms; bandwidth=±31.25kHz; signal averages=1; acquisition time=24:00 minutes. The 

acquisition volumes of the two methods were precisely colocalized.  

Phase-based T2 maps were reconstructed as described in the theory section. T1 of 915ms was 

assumed (midpoint between the T1 of white matter and the putamen at the age of 20)212. The 

reference T2 map was reconstructed using least square error fitting to a single-exponential model. 

Synthetic T2-weighted images were also generated with virtual TE values of 70ms and 100ms as 

described in the theory section. 

For imaging in the abdomen and pelvis, separation of water and fat signals was performed by 

combining the proposed method with a multi-echo 3D GRE chemical shift encoded (CSE) 

acquisition. Abdomen (male, age 54) and pelvis (male, age 47) experiments were conducted on 

one volunteer. The acquisition parameters in the abdomen included: axial plane; 

FOV=40cm×32cm×26cm; TR=6.5ms; acquisition matrix=100×80×26; 5 echoes with echo 

times=0.9ms, 2.0ms, 3.0ms, 4.0ms, 5.1ms; bandwidth=±100kHz; signal averages=1; exam 

time=20 seconds in a single breath-hold. In the pelvis, the same acquisition parameters were used 

with the following exceptions: slice thickness=8mm; slices=32, TR=6.4ms; 

bandwidth=±90.91kHz; exam time of 25 seconds in a breath-hold.  

For the image reconstruction, the proposed method was combined with CSE-MRI. Using 

complex fitting with single R2* least-squares fitting reconstruction123 from the ISMRM Fat-Water 

Toolbox151(http://ismrm.org/workshops/FatWater12/data.htm), water and fat signals were 

separated. The magnitudes and phases of each chemical species were then used to reconstruct 

individual T2 maps for each chemical species. 

http://ismrm.org/workshops/FatWater12/data.htm
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Single voxel multi-TE stimulated echo acquisition mode (STEAM)-MR spectroscopy150 

(MRS) was acquired in the liver and the spleen to provide reference values for phase-based T2 

measurements. STEAM-MRS data was acquired with the following parameters: TR=3500ms; 

TE=10ms, 15ms, 20ms, 25ms, 30ms; number of points=2048; spectral width=5000Hz; 5ms 

mixing time. The voxel size was 15mm×15mm×20mm in the liver and 15mm×15mm×10mm in 

the spleen. Signal magnitude as well as T2 of water and fat signal was estimated jointly using non-

linear least square fitting213.  

Simulation experiment to evaluate the sensitivity of phase to motion: 

Although no apparent effect of motion was observed in vivo (below), it is well known that 

GRE acquisitions with unbalanced gradients and no RF spoiling (i.e. unspoiled GRE) can be 

sensitive to motion214,215. In the presence of unbalanced gradients, moving spins will accrue a 

different phase during each TR. This phase accrual may impact the T2-dependent phase of the 

method proposed in the current work, potentially confounding T2 measurements.  

For the proposed method, phase accrual resulting from the unbalanced readout gradient is a 

linear function of the voxel location. Assuming that the phase dispersion from the unbalanced 

gradient is 2π across the voxel in the readout direction, the additional phase accrual from the 

overall voxel can be written as: n×TR×Vx×2π/X, for a voxel moving from the image isocenter, 

where Vx is the velocity of the voxel in the readout direction and X is the voxel dimension in the 

readout direction. This effect potentially confounds quantification of the phase shift used to encode 

T2.  

To assess the magnitude of velocity effects on T2 quantification, we performed a Bloch 

equation simulation experiment where the effects of the first order motion (velocity) in the readout 
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direction were modeled. This simulation was performed using a modification of the simulation 

described in the Theory section. In addition to a 2π phase dispersion, a velocity dependent common 

phase was added to all isochromats in a voxel at the end of each repetition. This simulation 

experiment was conducted with velocity values ranging from -1mm/s to 1mm/s, with a 2mm voxel 

dimension. Other parameters used in the simulation included: flip angle = 18°, TR = 5ms, ΔΦ=±2°, 

T2=50ms, and T1=1000ms.  Signal phase attributed to T2 was estimated from the phase difference 

between the two signals (i.e. with ΔΦ=±2°) divided by 2, and compared with a T2 lookup table for 

T2 estimation, using the proposed method described in the Theory section. The lookup table was 

generated using Bloch equation simulation without motion and the same acquisition parameters 

over a wide range of tissue relaxation parameters. 

6.5 Results  

Phantom experiments: 

In the phantom experiment the T1 of the phantom vials were estimated by FSE-IR to be 873ms, 

932ms, 829ms, 925ms corresponding to agar concentrations of 0.5%, 1%, 2%, 4%, respectively, 

in phantoms with 2mM NiCl2; 1390ms, 1315ms, 1279ms, 1332ms in phantoms with 1mM NiCl2; 

1725ms, 1698ms, 2053ms, 1792ms in phantoms with 0.5mM NiCl2; 2848ms, 2902ms, 2788ms, 

2888ms in phantoms with 0mM NiCl2. The proposed method (which did not correct for T1 effect 

in the signal phase) demonstrated close agreement with reference T2 estimates (Figure 6.4) 

(slope=1.03±0.07, intercept=-3.24±5.67). For vials of vastly different T1 measurements (2mM 

NiCl2 and 0.5mM NiCl2), the T2 measurements show slightly higher deviation from the reference 

at high T2 values. 
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In vivo experiments: 

In the knee imaging experiments, the proposed method produced high quality T2 maps in all 

knees (Figure 6.5), including high apparent SNR and excellent depiction of anatomical detail. In 

areas where water signal is dominant (cartilage and muscle), similar T2 values were observed 

between the proposed method and the multi-echo SE T2 map used as a reference.  

 

Figure 6.4 T2 maps generated using the proposed method provided accurate T2 measurements 

agreeing closely with spin-echo T2 mapping. Phantom T2 maps generated using single-echo SE 

MRI and the center slice of the phase-based T2 mapping are shown. The agreement between the 

phase-based T2 map and single-echo SE MRI was evidenced by linear regression between T2 

values averaged in ROIs drawn in the center of the vials, with a slope and intercept statistically 

equal to one and zero, respectively. 
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Figure 6.5 T2 map generated with the phase-based T2 mapping showed excellent image quality in 

all six knees. Similar intensities can be observed in regions with dominant water signal such as 

cartilage and the muscle. An example of T2 maps generated using multi-echo SE MRI and the 

proposed method are shown. 

In Figure 6.6, the box-whisker plot and scatter plot showed strong correlation between the 

phase-based T2 and the reference T2 measurements (Pearson correlation coefficient = 0.86), with 

slope=0.78±0.12 and intercept=3.24±4.84. Quantitative T2 values measured using the proposed 

method were very similar to the multi-echo SE based T2 measurements, although many of these 

measurements showed statistical differences.  

 

Figure 6.6 The box and whisker plot and scatter plot showed strong correlation between the phase-

based T2 and the multi-echo SE T2 with a high Pearson correlation coefficient (0.86). 

Measurements made in 10 different regions on each of six different knees. The regions measured 
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were medial femoral central condyle (MFC), medial femoral posterior condyle (MFP), medial 

tibial plateau (MTP), patella-deep (PAT-D), patella-superficial (PAT-S), lateral femoral central 

condyle (LFC), lateral femoral posterior (LFP), lateral tibial plateau (LTP), gastrocnemius muscle 

(MUS). 

Similarly, high quality T2 maps were generated by the proposed method in the brain (Figure 

5.7). However, some discrepancies in T2 values were observed between the two methods, 

especially in the grey matter. Average T2 values in regions of interest (ROIs) were 39ms (phase-

based) and 53ms (SE) in the genu of corpus callosum; 40ms (phase-based) and 61ms (SE) in the 

splenium of corpus callosum; 47ms (phase-based) and 59ms (SE) in the white matter; 35ms 

(phase-based) and 40ms (SE) in the globus pallidus of basal ganglia; 45ms (phase-based) and 

54ms(SE) in the putamen of basal ganglia. 
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Figure 6.7 High quality T2 maps were generated in the brain using the proposed phase-based 

method. The phase-based T2 appeared lower than the reference T2 map especially in the grey 

matter. The magnitude image used in the proposed method is also shown. Synthesized T2-weighted 

images (virtual TE=70ms, TE=100ms) showed overall similar appearance although with less grey-

white matter contrast than T2-weighted SE at the same TE (70ms). 

Synthetic T2-weighted images generated from the phase-based T2 map and the simultaneously 

acquired magnitude images are also shown with two different virtual echo times (70ms, 100ms). 

Compared with a T2-weighted SE image with TE of 70ms, the synthesized T2-weighted image 

with virtual TE of 70ms showed overall similar appearance, although with slightly reduced 

apparent gray-white matter contrast.. 

In the abdomen and pelvis, 3D spatially resolved T2 maps generated from separated water 

signal were successfully reconstructed after water-fat separation (Figure 6.8). Close agreement 

between T2 value of the water signal estimated by the proposed method and MRS was observed, 

with estimates of 20ms and 22ms respectively, using a co-localized voxel. Similarly, in the spleen, 

the proposed method measured a T2 value of 38ms compared to 34ms with MRS.  
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Figure 6.8 The proposed phase-based 3D T2 mapping combined with CSE-MRI water-fat 

separation is feasible over the entire abdomen or the pelvis within a single breath-hold. Water and 

fat images were calculated from multi-echo gradient echo images with varied RF phase 

increments. A phase-based T2 map for water signal was also generated from the water phase of 

different RF phase increments. Simultaneous R2* and B0 field maps were also generated, but not 

included for brevity. 

Finally, in the peripheral zone of the prostate, phase-based T2 measurements (72ms) were 

comparable to values reported in literature (74±9ms in the prostate)131.  

Simulation experiment to study the sensitivity of signal phase to motion: 

As shown in Figure 9, the signal phase in the proposed method was sensitive to motion. For 

example, a velocity of 1mm/s lead to a 3.6° change in the signal phase, relative to no motion. 

Accordingly, the apparent T2 estimation was reduced from 50ms to 42ms.  

 

Figure 6.9 Sensitivity of the proposed method to motion. Signal phase generated using Bloch-

equation simulation modeling constant velocity leads to small errors in the apparent T2-dependent 

phase and subsequent underestimation of T2. 
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6.6 Discussion 

We have proposed and successfully demonstrated preliminary feasibility of a phase-based T2 

mapping technique based on GRE imaging. The theory and technique for encoding T2 information 

into the signal phase of a gradient echo acquisition were developed. We demonstrated that using a 

small RF phase increment in gradient echo acquisitions, a signal phase that increases 

monotonically with the transverse relaxation time can be generated. This behavior forms the basis 

of the proposed method for encoding information into the GRE signal phase. The feasibility of the 

proposed method was successfully demonstrated in phantoms and in vivo experiments, including 

in combination with chemical shift encoded water-fat separation. Further, the proposed approach 

can be used to generate high quality synthetic T2 weighted images that can be acquired in relatively 

short acquisition times.  

 Compared with traditional SE-based T2 mapping and T2-prep-based methods, the proposed 

method reduces acquisition time and would potentially render quantitative T2 mapping feasible for 

many clinical applications, including those that require short breath-holds. Compared with 

DESPOT2, the proposed method requires fewer GRE source images for parametric mapping and 

consequently shorter acquisition time. Further, the proposed method is also immune to signal voids 

caused by banding artifacts seen with bSSFP methods. Compared with the TESS T2 mapping 

technique, T2-weighting and T2*-weighting in the signals of the proposed method are naturally 

separated, because the T2 information is contained in the signal phase, which is not affected by 

T2* effects. Compared with the TESS T2 mapping technique, T2 weighting and T2* weighting in 

the signals of the proposed method are naturally separated. The proposed technique is also 

compatible with CSE-MRI, which is useful in many extra-cranial imaging applications, 
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particularly in the abdomen and pelvis. This feature would enable simultaneous generation of T2 

maps for both water and fat signals as well as the R2* and B0 field map. 

In this work, the proposed GRE-based method was able to shorten the minimum acquisition 

time compared to spin-echo-based T2-mapping methods. Among the steady-state methods, 

DESPOT2 requires at least three of more acquisitions. The proposed phase-based T2 mapping 

technique requires two acquisitions, while DESS and TESS require only one. The number of 

acquisitions required would normally determine the minimum acquisition time needed to create a 

T2 map of a certain resolution and FOV. However, it is worth noting that the relative advantage of 

DESS and TESS in this comparison is offset by their generally longer TR (14ms, 20ms, 26ms, 

21ms) 113,114,206,207 compared to DESPOT2 (e.g. 3.6ms) 112  and the phase-based T2 mapping (e.g. 

5.9ms, 5.6ms and 6.5ms in this work). Further, depending on the application, multiple signal 

averages are often acquired, when there is sufficient acquisition time (e.g. in the knee and in the 

brain). In such applications, the SNR efficiency is a more important measure of acquisition speed. 

Rigorous evaluation of the SNR performance of the proposed method is beyond the scope of this 

work but will be an important component of future investigations. 

Small discrepancies between the T2 measured with the proposed method and SE-based 

methods was observed, particularly in the brain. While the reasons for these discrepancies are 

unclear, possible reasons include multi-component T2 effects, magnetization transfer, B1 

inhomogeneities, motion, or combinations of these factors. Further work will be needed to 

determine the cause of these discrepancies. 

Previous studies have demonstrated that motion can lead to change in the signal magnitude in 

steady-state acquisitions using unbalanced gradient echo acquisitions and pseudo-random RF 

phase spoiling. In this work, we have performed preliminary Bloch equation simulations modeling 
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constant linear motion, demonstrating that small changes in the signal phase may result from 

motion, leading to underestimation of T2. Although no definite effects of motion on artifacts or T2 

estimation accuracy were observed in the experimental studies, some underestimation of T2, 

relative to references standard measurements was observed in cartilage and in the brain. It is 

uncertain whether this apparent underestimation in T2 was related to motion or not. Future rigorous 

evaluation of the potential effects of motion on T2 estimation is warranted, especially for 

applications where tissue motion may be an important factor, eg. heart, flowing blood. 

There are several limitations of this work. First, although the feasibility of this method has 

been successfully demonstrated, considerable technical optimization and substantial further 

clinical validation is needed. Further studies will be needed to evaluate the technical accuracy and 

noise performance of the proposed method, as well as to optimize acquisition parameters. In 

addition, the precise impact of B1 inhomogeneities, variation in T1 of the tissues, magnetization 

transfer effects216 and multi-exponential relaxation211 requires further evaluation. These effects 

may explain the apparent discrepancies between the T2 measurements in the brain between the 

proposed phase-based method and conventional SE-based T2 mapping.  

Another major limitation of the proposed method is that the T2 mapping algorithm requires 

knowledge or assumption of the T1 of tissue to map the signal phase into a T2 value. Although the 

signal phase is relatively independent of T1 for long T1 values, this is not the case for shorter T1 

values. Thus, the overall accuracy of this method is unknown for T2 quantification, especially in 

tissues with short T1 values.  

Further, the proposed method can be used to generate synthetic T2-weighted images. However, 

due to the relatively large flip angle in the proposed method, the source magnitude images are T1-

weighted. For this reason, the T2-weighted images synthesized from the phased-based T2 maps and 



113 
 

 

simultaneously acquired magnitude images will be T1-weighted as well, similar to short tau 

inversion recovery (STIR) based methods.  

In addition, the proposed method currently requires the use of 3D acquisitions, due to the need 

for a uniform flip angle across the tissue of interest. Extension to 2D imaging should be feasible 

but will require more complex lookup table construction that accounts for acquisition slice profiles.  

 In conclusion, we have presented and successfully demonstrated the feasibility of a novel 

phase-based T2 mapping method based on gradient echo imaging. This approach has the potential 

for rapid, 3D mapping of T2 in tissue. Further technical development, optimization and clinical 

validation are needed.  
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Chapter 7 : Summary and Future Works 

7.1 Summary 

In this work, together with members of the Liver Imaging Research Program, I have made 

several contributions to the improvement and development of MRI based non-invasive imaging 

biomarkers for the assessment of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis. 

The comparison between pre-calibrated fat spectral models in computer simulations and in 

vivo confirmed the necessity of using a multi-peak spectral model of fat in chemical shift encoded 

(CSE)-MRI. The close similarity in performance in fat quantification using most of the multi-peak 

models and even the slight outlying performance by 7-peak model provided insight to guide the 

standardization of CSE-MRI based fat quantification for the assessment of NAFLD. 

The computer simulation in chapter 4 along with emerging studies evidencing the wide 

variation of indigenous parenchymal T1 suggest a need for a T1-corrected CSE-MRI fat 

quantification technique. A T1-corrected variable flip angle (VFA)-CSE-MRI fat quantification 

was developed and rigorously evaluated using computer simulations, phantom and in vivo 

experiments. Although a potential bias was suspected in this proposed technique in cases of low 

proton density fat fraction (PDFF), this technique has the potential to accurately assess NAFLD in 

cases of non-typical parenchymal T1. 

A diffusion phantom that provides reproducible unrestricted Gaussian diffusion with tunable 

apparent diffusion coefficient (ADC) values spanning the entire physiological ADC range was 

developed and validated. This phantom has the potential to fulfill the need of a controlled 

environment for the development of quantitative diffusion MRI corrected for potential 
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confounding factors. Such diffusion MRI techniques may further improve the accuracy of the 

staging of fibrosis. 

Finally, a novel phase-based T2 mapping technique feasible for mapping the entire liver in a 

single breath-hold compatible with simultaneous CSE-MRI was developed. The T2 measured of 

only water signal (corrected for the effect of steatosis) in conjunction with the iron concentration 

derived from R2* may help advance T2 as an imaging biomarker for the staging of liver fibrosis 

in particular, and tissue characterization in general. 

7.2 Future Works 

Improving the Accuracy of T1-corrected VFA-CSE-MRI Fat Quantification 

In chapter 4 of this dissertation, despite the accurate fat quantification by the proposed T1-

corrected VFA-CSE-MRI, a small bias was identified with the in vivo PDFF measurements. This 

may have resulted from the erratic T1F estimate when the fat signal is below noise level, or from a 

mechanism similar to the noise related bias in low flip angle (LFA)-CSE-MRI as the assumption 

of common phase between water and fat is no longer valid. A dedicated phantom study or 

simulation experiment with varying imposed constraint on the T1F estimates and varying level of 

SNR may provide meaningful insight into the source of this bias. A patient study with a larger 

sample size would also be needed to confirm the phantom and simulation results and give way to 

a more accurate VFA-CSE-MRI technique with improved reconstruction. 

Liver T1-mapping 

T1 estimates of individual chemical species are the useful byproducts produced by the T1-

corrected fat quantification technique developed in chapter 4. Although these T1 values are 
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produced with a signal model assuming known flip angles, i.e., uncorrected for B1 inhomogeneity, 

outlying T1W (parenchymal T1) values were found in patients with confirmed non-alcoholic 

steatohepatitis (NASH) and cholangiocarcinoma. It is possible that T1W measured using this 

technique at 1.5T has diagnostic value even without B1 inhomogeneity correction.  If this approach 

is feasible, high SNR may be preserved in the T1 estimate by avoiding additional degrees of 

freedom in the signal model. 

To investigate the feasibility of detection of hepatic inflammation and abnormal uptake of 

liver specific contrast agents using the T1W estimated by the proposed T1-corrected fat 

quantification technique at 1.5T, the accuracy of T1 estimates need to be evaluated in the phantom. 

The same doped agar-peanut oil phantom described in chapter 4 can be used. A reference T1W can 

be obtained by applying B1-correction based on a separate Bloch-Siegert shift acquisition217. A 

more reliable reference can be obtained using Inversion recovered fast spin echo (FSE) T1 mapping 

for agar phantom without fat.  

Due to the lack of gold standard of liver parenchymal T1 measurement, the effect of B1 

inhomogeneity in vivo can only be evaluated indirectly by measuring the spatial and inter-subject 

variation of transmit B1. This information can be then used to evaluate the bias caused by B1 

inhomogeneity a computer simulation.  

At higher field strengths (e.g. 3T or more), due to the shorter wave length of RF excitation 

pulse, transmit B1 amplitude is generally more spatially inhomogeneous. B1-correction is likely 

necessary for these applications. A combination of CSE-MRI with the variable flip angle-actual 

flip218 (VAFI) angle imaging may provide the B1-corrected T1W mapping. A separate B1 calibration 

scan with motion registration is another potential solution to the problem. 
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Acetone-H2O Phantom 

The acetone-D2O phantom developed in chapter 5 has a limited shelf-life. Although cold-

storage can extend the shelf-life, a phantom unaffected by the molecular exchange of hydrogen 

between D2O and acetone will be advantageous. Some preliminary results219 presented at the 24th 

annual meeting of the international society for the magnetic resonance in medicine showed the 

feasibility of replacing acetone-D2O mixture with an acetone-H2O mixture doped with manganese 

chloride. More rigorous evaluation of this acetone-H2O phantom may validate it for its application 

in the development of quantitative diffusion MRI. Further, restricted diffusion may be introduced 

into this phantom using 3D-printed polyethylene structure. 

T2-based Staging of Liver Fibrosis 

The potential of T2-based staging of liver fibrosis has only been shown in mouse models so 

far. A clinical study where the T2 and histological analysis of liver fibrosis are compared, similar 

to those performed comparing intravoxel incoherent motion (IVIM), magnetic resonance 

elastography (MRE) and liver biopsy, has yet to be conducted. In the design of this study, the 

phase-based T2 mapping technique, multi-echo spin-echo T2 mapping, and liver biopsy can be 

performed in parallel with canonical CSE-MRI to provide a reference for steatosis and iron 

concentration. In addition to the association between T2 and the severity of fibrosis, the 

confounding effect of steatosis and iron can be at the same statistically analyzed.  

Quantification of Liver Iron Concentration 

The reciprocal of T2 (R2) was a widely accepted MRI biomarker for liver iron overload before 

the emergence of R2*
23.  The main limitation of using R2 is the lengthy exam time required by 

multi-echo spine-echo (SE) acquisitions23. The phase-based T2 mapping technique developed in 
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chapter 6 has overcome this difficulty and could be used for the spatially resolved quantification 

of liver iron concentration over the entire liver. Prospective clinical studies are required to calibrate 

the measured R2 compared with iron concentration measured with a reliable reference. 

Importantly, in addition to R2 and R2* as mentioned in chapter 6, this phase-based T2 mapping 

technique due to its compatibility with CSE-MRI, is capable of producing simultaneous B0 field-

map, which can be used to estimate a spatially resolved quantitative susceptibility map (QSM). 

This feature is likely to enable a simultaneous voxel by voxel quantification of three different iron 

related parameters, i.e.: R2, R2* and susceptibility. 

As a result of the different mechanisms of relaxation, R2 and R2* have shown differential 

sensitivity to the quantities of hemosiderin and ferritin as two different proteins used to store 

excessive iron, which are the most common forms of iron deposition in the liver24. QSM is, in 

theory, a measure of all iron including that found in hemosiderin, ferritin, transferrin (another 

protein used for the transferring of iron), and labile iron. The simultaneous quantification of all 

three parameters is likely to give a more complete characterization the iron tissue content. Further 

technical development is required to develop confounder corrected and accurate technique used 

for R2, R2* and susceptibility quantification. Comparisons between the these simultaneously 

obtained parameters and histology is required to calibrate more specific assessments of different 

forms of iron deposition. 
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