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Abstract 

The rapid development of sensing and communication technologies has enabled an 

unprecedented opportunity for condition monitoring, making multiple data streams a 

commonplace to simultaneously monitor the health status of an operating unit. Such a big data 

environment poses essential challenges in determining (i) which data streams to use; and (ii) how 

to fuse/combine those multiple and relevant data streams for better failure diagnosis and 

prognostics as these multiple data streams are often correlated and each data stream may only 

contain partial information about the degraded unit. However, it is often hard to physically 

interpret the dependencies and relations between these data streams due to the complexity of the 

system. Given the massive amount of data have become available, nowadays many research 

companies are looking for effective tools to improve failure monitoring and predictive capabilities. 

As a consequence, my research focuses on developing effective data-driven methodologies to 

better monitor and infer the condition of an operating unit in real time. Such inference would be 

very useful for profitable managerial decision-making such as condition-based maintenance 

scheduling, work in progress distribution, shipment scheduling, and customer satisfaction.  

This thesis contributes to the field of System Informatics and Data Analytics (SIDA) by 

developing systematic data-driven methodologies for better condition monitoring and prognostic 

analysis in complex systems. These developed methodologies enable (i) real time modeling and 

characterization of the health status of a system, (ii) predicting future measurements, trends and 

behaviors of the system, and (iii) further diagnosing the reasons for degradation and failure of the 

system. This research combines advanced statistical methods, data analytics tools, engineering 

knowledge, and decision science and operations research. The research is highly applicable in 

many applications such as health care, manufacturing, after sales and services. 
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In the third Chapter of this thesis, we first investigate a fundamental question that is how to 

measure the signal quality of a degradation signal. If such a question can be addressed, then the 

data fusion approach can be simplified as a mission-specific task: to construct a composite health 

index with the goal of optimizing its signal quality. In particular, a new signal-to-noise ratio (SNR) 

metric that is tailored to the needs of degradation signals is proposed. Then, based on the new 

quality metric, we develop a data-level fusion model to construct a health index via fusion of 

multiple degradation-based sensor data. Our goal is that the developed health index provides a 

much better characterization of the health condition of the unit and thus leads to a better prediction 

of the remaining lifetime. A case study that involves the degradation dataset of aircraft gas turbine 

engines is conducted to numerically evaluate the performance of the developed health index 

regarding prognostics and further compare the result with existing literature. 

In the fourth Chapter of this thesis, we investigate one challenging question that is how to 

leverage the multiple degradation-based sensor data for better online degradation modeling and 

prognostic analysis during condition monitoring when there are multiple failure modes. In 

particular, we propose a data-level fusion methodology to construct a composite failure mode 

index, which is named as FM-INDEX via the fusion of multiple sensor information. Our goal is to 

utilize the FM-INDEX to better characterize the degradation status and failure mode of an 

operating unit in real time, thus leading to better degradation modeling and prognostic analysis. A 

case study that involves a degradation dataset of an aircraft gas turbine engine with two potential 

failure modes is implemented to numerically evaluate the performance of our proposed method 

and compare it with the existing literature. 

In the fifth Chapter of this thesis, we develop a convex quadratic formulation that combines the 

information from the degradation profiles of historical units and the in-situ sensory data from an 



xi 

 

operating unit to online estimate the failure threshold distribution of this particular unit in the field. 

With a more accurate estimation of the failure threshold of the operating unit in real time, then a 

better remaining useful life prediction is expected to be achieved. Simulation as well as a case 

study involving a degradation dataset of aircraft turbine engines were used to numerically evaluate 

and compare the performance of the proposed methodology with the existing literature in the 

context of failure threshold estimation and remaining useful life prediction. 

In the sixth Chapter of this thesis, we propose a Structural Degradation Modeling (SDM) 

framework for sparse datasets as a recommender system taking into consideration of (i) the 

available data from the unit of interest; (ii) the relationship between the recommenders; (iii) the 

accuracy of the leveraged recommenders; and (iv) the population characteristics. The developed 

framework is tested and validated by simulation studies as well as the ADNI dataset and the results 

showed that the SDM framework outperforms the benchmark methods for degradation modeling. 

In summary, this thesis contributes to data-driven predictive analytics for effective condition 

monitoring, diagnosis, and prognostics. The developed methods can be applied to various 

applications, which will lead to an improved maintenance scheduling, resource planning, work in 

progress allocation, and logistics.
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Chapter 1 

Introduction 

1.1 Motivation and Overview 

 

“Prognostics and Health Management is a system discipline focusing on 

detection, prediction, and management of the health and status of complex 

engineered systems.” – the first International Conference on PHM, 2008. 

 

Nowadays, engineering and service systems (e.g., machines, products, companies, hospitals, 

and medical treatments) are becoming more and more complex in general. Such complexity poses 

many interesting and challenging questions including but limited to predicting the remaining 

useful life, conducting fault diagnosis in real time, scheduling maintenance, and designing efficient 

production planning strategies. Those questions have attracted much attention recently as solving 

these questions may provide direct insights for better managerial decision-making (e.g., condition-

based maintenance, personalized medicine and treatment), leading to improved efficiency, quality 

and cost for the overall system. With the rapid development of sensing and communication 

technology, engineering and service systems are built with many embedded sensors to better 

understand the health status of the system. This availability of data-rich environments provides a 

unique and unprecedented opportunity to better monitor, diagnose and forecast the behavior of an 
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operating unit in real time. This thesis document aims to achieve this goal by developing advanced 

data fusion models and at the same time addressing the potential big data challenges resulted from 

such data-rich environments.  

1.2 Condition Monitoring 

Unexpected failures in systems often result in production downtime and delayed schedules, 

which may lead to severe economic losses, customer dissatisfaction, and safety issues. As a result, 

it is critically important to accurately measure the health status and prevent the unexpected failure 

of a unit (e.g., machine, tool, equipment) in real time. To achieve this goal, condition monitoring 

techniques have been widely used, which aim to fully understand and track the degradation status 

of a unit along its entire service lifecycle. The collected sensor measurements during condition 

monitoring are known as degradation signals, which characterize the degradation evolution of a 

unit. With such information available, we can then produce prognostic inferences [1], [2], such as 

remaining useful life (RUL) prediction. In this way, a condition-based maintenance strategy [3], 

[4] can be implemented, which will significantly improve production efficiency, reduce inventory 

and operational costs, and enhance customer loyalty.  

While the rapid development of sensing and communication technologies has enabled an 

unprecedented opportunity for condition monitoring, making multiple sensors a commonplace to 

simultaneously monitor the health status of an operating unit, such a big data environment also 

poses essential challenges in determining (i) which sensors to use; and (ii) how to fuse/combine 

those multiple and relevant sensor data for better degradation modeling and prognostics. The 

existing research, however, mainly focuses on analyzing single sensor signals for modeling the 



3 

 

 

 

degradation process and performing prognostic analysis. These approaches rely on the assumption 

that the single sensor is able to fully characterize the underlying physical transition of a degraded 

unit. Unfortunately, such a simplified assumption may not be valid in many real-world 

applications, thus often leading to inaccurate or unreliable prognostic results [5], [6]. 

1.3 Data Fusion 

Since multiple sensor data often contain correlated and partial information about the same unit, 

data fusion methodologies have been widely used to provide more accurate and robust inferences 

about degradation status and remaining lifetime of a unit. Generally speaking, data fusion methods 

can be fitted into two main categories [7], depending on which level the fusion technique is 

implemented: data-level fusion and decision-level fusion. An overview of multiple sensor data 

fusion approaches to condition monitoring, fault diagnosis, and prognostics can be found in [8]. 

Specifically, the data-level fusion combines multiple sensor data or extracted features into a one-

dimensional health index that can be further used for decision making (e.g., degradation modeling 

and prognostics), whereas the decision-level fusion involves the integration of prediction results 

from separate analysis of each individual sensor data [9]. While the decision-level fusion is 

straightforward to implement, it ignores the dependence of multiple sensor data and requires 

repeated computations based on each individual sensor data. Thus, such an approach often leads 

to biased results, and its application to big data is quite limited.  

Unlike the decision-level fusion, data-level fusion has shown promise as an effective solution 

and attracted more attention recently [10], [11]. However, one limitation of the existing data-level 

fusion methods for degradation modeling and prognostics is that they often assume there is only 
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one potential failure mode or ignore the effect of multiple failure modes on the degradation profile 

of a unit. Unfortunately, as shown in many real-world applications, different failure modes do have 

distinct influences on the service lifecycle path of a unit. Thus, an essential challenge here is how 

to accurately identify the failure mode and predict the remaining lifetime along the lifecycle of a 

unit in real time. To achieve this goal, several techniques, such as Hidden Markov Models [12], 

Artificial Intelligence [13], and Physical-based modeling approaches [14], have been developed in 

the literature to online diagnose the failure mode during condition monitoring; however, they 

mainly focus on analyzing a single sensor data. While some studies have considered the failure 

mode diagnosis based on multiple sensor data, they either employ a simple voting scheme that 

combines the results from separate analysis of each individual sensor data [15]–[17], or fail to 

address the specific needs of degradation modeling and prognostics during condition monitoring 

[18]–[24]. In particular, there are two fundamental requirements that need be satisfied: (i) the 

failure mode diagnosis needs to be conducted and updated continuously along the lifecycle of a 

unit, and (ii) the fault diagnostic result is desired to become more accurate as the unit approaches 

to the end of its life to ensure good maintenance planning and avoid unexpected failure. 

1.4 Remaining Useful Life and Degradation Modeling 

In the literature of prognostics, it is often assumed that a unit fails once its degradation signal 

hits a predefined failure threshold. As a result, to achieve an appropriate estimation on the RUL 

distribution, there are two essential requirements that must be satisfied: (i) an accurate estimation 

of the failure threshold; and (ii) a reliable degradation model that characterizes the degradation 
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profile of a unit, such that the status of the unit can be accurately predicted at future observation 

times.  

Many research efforts have been made focusing on requirement (ii)  [25]–[28]. For example, 

Lu and Meeker introduced the mixed-effects model to characterize both the common effect shared 

by the population and the unique stochastic nature of each degraded unit [25]. The model was 

further utilized by others (e.g., [29]) such that once the in-situ sensory data is collected from an 

operating unit, then we can leverage the Bayesian updating approaches to online calibrate the 

distribution of the random effects for this particular unit in real time. 

1.5 Failure Threshold Estimation 

While extensive work has been done in developing the degradation models, the current 

literature still falls short in studying the requirement (i), i.e., how to accurately estimate the failure 

threshold of a unit in real time. In most cases, such a fixed threshold is estimated based on the 

physical knowledge of the system/process. However, many recent studies have shown that using 

a fixed failure threshold is problematic [10], [11], [30], [31]. For instance, as explicitly discussed 

in Wang and Coit [31], “a probabilistic, rather than a deterministic threshold value is more 

appropriate.” To address this issue, Liu et al. [10] considered the statistics (mean and variance) of 

the last sensor observations (right before failure) of multiple historical units as an estimation of 

the failure threshold. While the existing data-driven approaches consider the uncertainty in the 

failure threshold, such estimators are derived based on the population information of historical 

units, which may not fully capture the unique characteristics of each unit. As shown in many 

applications [32], the last observations of units are quite different. This is mainly because the 
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degradation is inherently a stochastic process that is dependent on many unknown and variable 

factors. In addition, units may be vulnerable to multiple potential failure modes [33] and each 

failure mode results in a different failure threshold. In these cases, the offline estimation of the 

failure threshold distribution using population-wide characteristics [10] may not be able to fully 

capture the unique properties of individual units. On the other hand, while the existing literature 

has considered leveraging the in-situ sensory data to online update the degradation model, such an 

approach is not easily extendable to estimate the failure threshold. 

1.6 Thesis Layout 

The rest of this thesis document is structured as follows. In Chapter 2, we review and summarize 

the existing literature on degradation modeling, RUL estimations, failure threshold estimations 

and data fusion approaches in presence of multiple sensors for prognostic analysis. 

In Chapter 3, we propose a metric to quantify the degradation signal quality and then develop 

a data-level fusion model that combines multiple sensor signals to construct a composite health 

index by maximizing the proposed quality metric. A case study is introduced to evaluate the 

performance of the proposed method. 

In Chapter 4, we introduce a data-level fusion approach for degradation modeling and 

prognostic analysis in presence of multiple failure modes. A case study with multiple failure modes 

is conducted to evaluate the performance of the proposed approach. 

In Chapter 5, we introduce a data-driven approach to online estimate the failure threshold for 

an operating unit. The method first measures the similarity between the operating unit and the 

historical units, and then infers the failure threshold of the operating unit from the historical units 
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based on the derived similarity measure. A simulation study as well as a case study are introduced 

to evaluate the performance of the proposed method. 

In Chapter 6, we propose a Structural Degradation Modeling (SDM) framework for sparse 

datasets as a recommender system taking into consideration of (i) the available data from the unit 

of interest; (ii) the relationship between the recommenders; (iii) the accuracy of the leveraged 

recommenders; and (iv) the population characteristics. The developed framework is tested and 

validated by simulation studies as well as the ADNI dataset and the results showed that the SDM 

framework outperforms the benchmark methods for degradation modeling. 

In Chapter 7, a summary of the original contributions of this thesis are provided and potential 

follow-up works to the proposed methods in Chapter 3, 4, 5 and 6 are also discussed. 
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Chapter 2 

Literature Review 

Many research efforts have been devoted to condition monitoring, prognostics. and degradation 

modeling. The main objectives behind those efforts are to extend the equipment lifetime, reduce 

down time, keep throughput and due dates on track, and minimize maintenance costs. With the 

new developments in sensor technology and computation capabilities, there is a pressing need to 

develop advanced data-driven methodologies to better infer and predict the future about the status 

of an operating unit in real time. This section presents a review on some of the commonly used 

degradation modeling techniques, RUL estimation techniques, failure threshold estimation 

techniques, and data fusion techniques for and degradation modeling prognostic analysis in 

presence of multiple sensor data.  

 

Table 2.1. Scenario for units with partial degradation history 

Time Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 

𝑡1 𝑠1,1 𝑠2,1 𝑠3,1 𝑦4,1 𝑠5,1 

𝑡2 𝑠1,2 𝑠2,2 𝑠3,2 𝑦4,2 𝑠5,2 

𝑡3 N/A 𝑠2,3 𝑠3,3 N/A 𝑠5,3 

𝑡4 𝑠1,4 N/A 𝑠3,4 N/A 𝑠5,4 

𝑡5 𝑠1,5 𝑠2,5 𝑠3,5 N/A 𝑠5,5 

𝑡𝑘 N/A N/A N/A N/A 𝑠5,𝑘 

𝑡𝑒𝑛𝑑 𝑠1,𝑒𝑛𝑑 𝑠2,𝑒𝑛𝑑 N/A N/A 𝑠5,𝑒𝑛𝑑 

 

For better illustration, we show one challenging task for degradation modeling in Table 2.1. 

The table summarizes the degradation statuses of multiple units at different times, e.g., the 

degradation status of unit 𝑖 at time 𝑡𝑘 is denoted by 𝑠𝑖,𝑡𝑘. Here, we define 𝑡𝑒𝑛𝑑 to be the last time 
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point where there are degradation records about any of the units. One challenging task is to 

accurately estimate the missing values and to precisely extrapolate the degradation status for each 

unit. 

2.1 Degradation Modeling 

To achieve this goal, degradation modeling is one of the critical tasks. Many research efforts 

have been devoted to accurate degradation modeling. Specifically, in this thesis, we focus on three 

main streams of degradation models: Weiner process models, Mixed-effects models and Sparse 

modeling approaches. There exists many other approaches to degradation modeling as well, such 

as autoregressive models [34], [35], physics-based models [36], [37], and data-driven models 

(neural networks, support vector machines, etc.) [10], [29]; however, they will not be discussed 

into details in the following.  

2.1.1 Weiner Process Model 

In a wide set of applications, the degradation is accumulative; in other words, the more damage 

the system receives, the higher the rate of degradation is expected. A commonly used degradation 

model that captures this phenomenon is the Wiener process with positive drifts. For example, the 

Wiener process model was used by (i) Le Son et al. [38] to model the 2008 PHM conference data; 

(ii) Whitmore and Schenkelberg [39] to model the resistance increase in a self-regulating heating 

cable; and (iii) Hu et al. [40] to model an LED dataset.  A popular representation of the Wiener 

process in degradation analysis is: 

𝑦(𝑡) = 𝜈𝐺(𝑡) + 𝜎𝐵(𝐺(𝑡)) + 𝜀(𝑡),     (2.1) 
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where 𝜈  is the rate of degradation and often called drift parameter; 𝜎  represents the volatile 

parameter; 𝐵(. )  follows a Brownian motion; 𝐺(. )  is a parametric function that reflects the 

expected evolution in the degradation path; and 𝜀(𝑡) is the measurement error or noise and often 

assumed to follow a normal distribution with mean 0 and standard deviation 𝜎𝜀. 

Specifically, the main assumption in the Weiner process models is that it has independent and 

normally distributed increments such that: 

∆𝑦(𝑡) = 𝑦(𝑡 + ∆𝑡) − 𝑦(𝑡)~𝑁(𝜈𝐺(𝑡 + ∆𝑡) − 𝜈𝐺(𝑡), 𝜎2𝐺(𝑡 + ∆𝑡) − 𝜎2𝐺(𝑡) + 2𝜎𝜀
2). 

There exists other types of the Weiner processes tailored to degradation modeling [41]–[45], 

and these models also inspired the utilization of other stochastic processes such as the Gaussian 

Process and Inverse Gaussian Process [46]–[53]. 

2.1.2 Mixed-effects Model 

For degradation modeling, the mixed-effects model (MEM) is one of the most commonly used 

technique in the literature, which considers both the population and individual characteristics [10], 

[29], [54]–[56]. It was first introduced by Lu and Meeker [25] and can be written as the following:  

 𝑠𝑡 = 𝜂(𝝋, 𝝂, 𝑡) + 𝜖𝑡,  (2.2) 

where 𝜂(∙) is the parametric form of the degradation model; 𝑠𝑡 is the measurement for describing 

the underlying degradation status at time 𝑡 for the unit of interest; 𝝋 is a vector of fixed-effect 

parameters that represents common characteristics of the population; 𝝂 is a vector of random-

effect parameters that characterizes the unit-to-unit variability; and 𝜖𝑡  is an error term that 

represents the measurement noises. Depending on the parametric form of 𝜂(∙), this degradation 

model can be used to describe a variety of functional forms according to the evolution of the 



11 

 

 

 

degradation signal. Based on the MEM, extensive studies have been developed in the literature. 

For example, Gebraeel et al. (2005) proposed a Bayesian version of the MEM (BMEM) that first 

fitted a MEM given a set of historical units, and then utilized the Bayesian approaches for updating 

the random-effect parameters given the degradation observations of the unit of interest. This 

approach accounts for (i) the population characteristics via the MEM; and (ii) the individual 

characteristics via the Bayesian update. Without loss of generality, below we focus on the 𝑝th 

order polynomial degradation model as considered in Liu et al. (2013) for a demonstration: 

 𝑠𝑡 = ∑ (𝜈𝛼)𝑡𝛼𝑝
𝛼=0 + 𝜖𝑡 = 𝜞𝑡𝝂 + 𝜖𝑡,  (2.3) 

where 𝑝 is the order of the polynomial model; 𝝂 = [𝜈0, … , 𝜈𝑝]′ is the random-effect parameters 

and often assumed to follow a multivariate normal distribution, 𝝂~𝑁𝑝+1(𝒖
0, 𝜮0); 𝜖𝑡 is the random 

noise and follows 𝑁(0, 𝜎2); and 𝜞𝑡 = [1, 𝑡, … , 𝑡𝑝]. 

Then, the estimated measurement for the degradation status at time 𝑡 can be calculated as: 

 �̂�𝑡|𝒔. = 𝜞𝑡 ∗ (𝝂|𝒔.), (2.4) 

where 𝒔. = [𝑠𝑡(1), … , 𝑠𝑡(𝑛)]
′
 is the vector of the observed measurements for the unit of interest up 

to current time 𝑡(𝑛) ; and 𝝂|𝒔.  is the posterior of the random-effect parameters and follows 

𝑁𝑝+1(𝒖
1, 𝜮1), such that 𝒖1 = (

𝜳𝑇𝜳

𝜎2
+ (𝜮0)−1)

−1

(
𝜳𝑇𝒔.

𝜎2
+ (𝜮0)−1𝒖0),    𝜮1 = (

𝜳𝑇𝜳

𝜎2
+ (𝜮0)−1)

−1

, 

𝜳 ∈ 𝑅𝑛×(𝑝+1) =

[
 
 
 
 
1 … 𝑡(1)𝑝

… … …
1 … 𝑡(𝑘)𝑝

… … …
1 … 𝑡(𝑛)𝑝]

 
 
 
 

, and 𝑛 is the number of available observations up to current time 

𝑡(𝑛).  
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Accordingly, the prediction of the degradation status at time 𝑡  is just a realization of the 

distribution �̂�𝑡|𝒔.~𝑁(𝜞𝑡𝒖
1, 𝜞𝑡𝜮

1𝜞𝑡
𝑇). While the BMEM shows promising results in rich datasets, 

the Bayesian update procedure may not be effective for units of interest with a limited degradation 

history. This is because, for units with a limited number of observations, the updating procedure 

tends to focus more on the population characteristics which may not be effective for future 

predictions of the degradation status for these units. In addition to that, this method does not assist 

in fault diagnosis. In this thesis, (i) we integrate, in Chapter 4, this method with machine learning 

techniques to simultaneously conduct fault diagnosis and prognostics analysis, which is expected 

to provide better overall prognostics performance; and (ii) we introduce, in Chapter 6, a framework 

for degradation modeling in sparse datasets to better predict the degradation status of units with 

limited observations. 

2.1.3 Sparse Modeling Approaches 

Recently, there are a few approaches for degradation modeling that attempt to address the 

challenges of sparse data environments. For example, Lin et al. (2015) assumed that each 

individual degradation model can be written as a weighted combination of 𝐾 canonical models, 

where the weights and the 𝐾 canonical models are learned simultaneously by an iterative algorithm. 

However, there are several limitations of the proposed method. First, this iterative algorithm only 

leads to a stationary point, which may not be globally optimal. Second, how to choose the initial 

starting point to reach a solution near the optimal parameters is not discussed either, which makes 

the entire proposed approach difficult to be implemented in practice. Third, the approach cannot 

be easily employed for monitoring of the units of interest in real time due to the high computational 
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cost of the iterative algorithm involved in learning the weights as well as the 𝐾 canonical models. 

There also exists other approaches that utilize stochastic processes such as the Gaussian Process 

[47] and the Inverse Gaussian Process [46] to analyze the degradation processes with sparse data 

(e.g., large inter-arrival times between the degradation observations). In particular, Peng et al. 

(2017) proposed a Bayesian framework with Inverse Gaussian process models to analyze the 

degradation of heavy-duty machine tool’s spindle systems where the position accuracy is measured 

at intermittent discrete time points. Although such methods showed good performance to 

continuously characterize and interpolate the degradation status of a unit over the observed time 

domain, they are ineffective for extrapolation and predictive analytics as mentioned in [57] 

because they (i) mainly focus on modeling the relationship between the available observations 

within each individual unit; and (ii) fail to capture the functional form of the model, which is 

critical for extrapolation.  

2.2 Recommender System 

The idea of the recommender system stems from application such movie recommendations, 

advertisement recommendations, grocery recommendations for users to increase the customer 

satisfaction, quality and speed of delivery, and to increase the revenues of the implementer. 

Although the problem seems different from degradation modeling, they are similar in the way that 

the recommender systems need to estimate what the quality of an item for the user in recommender 

system is, while the degradation modeling needs to predict what the quality for the operating unit 

at time 𝑡 is. One main difference between the two setups, however, is that in degradation modeling, 

we often assume a monotonic trend but that is not necessary for recommender systems. Another 
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difference is that many recommender systems focus on discrete analysis because there usually 

exists a finite number of items, but degradation modeling focuses on continuous time analysis. 

Later, in this thesis, we try to utilize the collaborative capability of recommender systems to better 

model the degradation status of a unit in environments that contain huge amounts of units but 

limited information per unit.  

There exists different frameworks for the recommender systems, including Matrix Completion 

[58], Collaborative Filtering [59], Unit-oriented Neighborhood [60], etc. However, (i) most of 

those frameworks are oriented to address the relationship between the user and a finite set of 

discrete items, which cannot be leveraged for continuous time analysis. Also, (ii) the existing 

frameworks are often application specific and assume prior correlated characteristics between 

different items such as movies that belong to the same genre, and advertisements that belong to 

the category. In this thesis, we focus on the Unit-oriented Neighborhood and its extension for 

continuous time analysis. 

 
Fig. 2.1. The Conventional Recommender System Framework  
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Fig. 2.1 summarizes the conventional recommender system framework, which consists of 

learning the attitude of user 𝑗 for item 𝑦 from other recommenders who previously rated item 𝑦. 

For example, the authors in [60] implemented the recommender system to provide better movie 

recommendations to the users. The dashed box contains the following unknown values that are 

calculated upon request: (i) the estimated rating for item 𝑦 by user 𝑗; and (ii) the probability that 

recommender 𝑖 shares the same attitude as user 𝑗 which is denoted by 𝑃(𝑍𝑗 = 𝑅𝑖). 

Specifically, the attitude of user 𝑗 for item y, 𝑍𝑗,𝑦, can be estimated as the following: 

𝑍𝑗,𝑦 = ∑ 𝑃(𝑍𝑗 = 𝑅𝑖) ∗ 𝑅𝑖,𝑦
𝑚
𝑖=1 + 𝜖𝑗,𝑦,        (2.5) 

where 𝑅𝑖,𝑦 is the rating of recommender 𝑖 for item 𝑦; 𝜖𝑗,𝑦 represents the error term and it is usually 

assumed to follow 𝑁(0, 𝜎𝑗
2), where 𝜎𝑗

2 can be estimated based on the historical recommendations 

from user 𝑗; and 𝑚 is the number of available recommenders for item 𝑦.  

Different deterministic approaches have been proposed in the literature to estimate 𝑃(𝑍𝑗 = 𝑅𝑖) 

such as the constrained least squares estimator that models the user as a weighted average of the 

recommenders and aims to minimize ∑ (∑ 𝑃(𝑍𝑗 = 𝑅𝑖) ∗ 𝑅𝑖,𝑦
𝑚
𝑖=1 − 𝑍𝑗,𝑦)

2

𝑦∈𝒀
ℎ𝑖𝑠𝑡
𝑗  given that 𝑃(𝑍𝑗 =

𝑅𝑖) ≥ 0, ∑ 𝑃(𝑍𝑗 = 𝑅𝑖)
𝑚
𝑖=1 = 1, and 𝒀ℎ𝑖𝑠𝑡

𝑗
 is the list of items that were previously rated by user 𝑗. 

However, these approaches often require that all the suggested recommenders for item 𝑦 have 

rated enough common items in the past with respect to user 𝑗, in order to achieve an accurate 

estimation of 𝑃(𝑍𝑗 = 𝑅𝑖). Furthermore, as mentioned in the review by Adomavicius and Tuzhilin 

(2005), many approaches approximate 𝑃(𝑍𝑗 = 𝑅𝑖) based on the similarity between user 𝑗  and 

recommender 𝑖.   



16 

 

 

 

𝑃(𝑍𝑗 = 𝑅𝑖) ∝ 𝑠𝑖𝑚(𝑖, 𝑗),         (2.6) 

where 𝑠𝑖𝑚(𝑖, 𝑗) measures the similarity between user 𝑗 and recommender 𝑖. For more details about 

the similarity metric, refer to [61]. 

 

Fig. 2.2. The Extended Recommender System Framework 

 

The conventional recommender system framework requires that all the utilized recommenders 

should have rated item 𝑦  before; otherwise, these recommenders will not be informative for 

learning the attitude of user 𝑗 for item 𝑦. However, it is common in practice that only a few 

recommenders have previously rated an item 𝑦 (e.g., a new movie that has been recently released 

and not yet rated by many recommenders). In such a case, the estimated attitude for user 𝑗 for item 

𝑦 based on equation (2.1) is dependent on a limited number of recommenders, which may not be 

reliable. To address this issue, further extensions have been proposed in the literature as shown in 

Fig 2.2 [59]. The dashed box contains the following unknown values that are calculated upon 

request: (i) the probability measure 𝑃(𝑍𝑗 = 𝑅𝑖), (ii) estimated ratings from the recommenders, and 

(iii) the estimated rating for the user. Unlike the conventional approach that only focuses on the 
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actual ratings, the extended framework utilizes the estimated rating from the recommenders based 

on their historical preference. In other words, the attitude of user 𝑗 for item 𝑦, 𝑍𝑗,𝑦, is estimated as 

the following: 

𝑍𝑗,𝑦 = ∑ 𝑃(𝑍𝑗 = 𝑅𝑖) ∗ �̃�𝑖,𝑦
𝑚
𝑖=1 + 𝜖𝑗,𝑦.        (2.7) 

Here, �̃�𝑖,𝑦 is the estimated rating for recommender 𝑖 and it is assumed to follow the parametric 

form 𝜂(𝜷𝑖, 𝑦), where 𝜷𝑖 is estimated based on the recommenders’ historical preference. 

Although this approach tackles the challenge of missing values from each recommender (i.e., 

items that a recommender has never rated), it is very critical to accurately calculate 𝜷𝑖 to obtain a 

reliable estimate �̃�𝑖,𝑦. In addition to that, 𝑃(𝑍𝑗 = 𝑅𝑖) may not be accurately estimated, if there is 

only a limited rating history for user 𝑗. For many implementers of recommender systems, they do 

not focus on users with limited history. This is because those users already expect poor 

recommendations due to their limited history.  

2.3 Multi-output Gaussian Process (MOGP) 

Gaussian process is a particular kind of statistical model where observations occur in a 

continuous domain, e.g. time or space. In a Gaussian process, every point in some continuous input 

space is associated with a normally distributed random variable and the main task of the Gaussian 

process is to model the covariance between any two input points. Gaussian processes are mostly 

designed to analyze single outputs and their main advantages are: (i) they allow for flexible choice 

of the parametric nature of a signal; and (ii) they can be utilized for continuous time analysis. The 

MOGP further fosters the correlation between the different outputs to better predict a set of 

multiple outputs. Here, we focus on a recent method, the collaborative MOGP, introduced by 
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Ngyuen and Bonilla (2014). Specifically, the authors assumed all the outputs (e.g., the degradation 

signals from the units) share 𝑄 latent functions, where each latent function follows an independent 

Gaussian process (GP). They also assumed that each output function has a GP prior. Finally, they 

mixed the stochastic processes from the latent functions and the output functions to produce a 

high-quality MOGP. The authors also provided the MATLAB code with the necessary libraries 

that have been used to produce the results in their paper. We use the provided code as a comparison 

study in Chapter 6. For more details about the formulation of the collaborative MOGP, please refer 

to [62].  

While the MOGP shows reliable performance in rich datasets, they do have major limitations 

in presence of sparse datasets: 

i. Assuming the parametric forms of the output functions are not known, GPs are suitable for 

interpolation but not extrapolation [57] which also extends to MOGPs. For the scenario in 

Table 2.1, MOGPs may not be reliable to approximate the value of 𝑦 after the time point 

𝑡𝑒𝑛𝑑. Note that it is possible to assume some basis functions that the outputs converge to; 

however, this removes the non-parametric nature of the MOGP and diminishes one of its 

major advantages.  

ii. The wide majority of the existing MOGPs are based on maximizing the likelihood of the 

available output observations. Therefore, it is expected that units with a high number of 

observations to be well-fitted but units with limited observations may not be fitted 

accurately. For example in Table 2.1, unit 5 be fitted accurately because it is rich with 

observations; however, unit 4 may not be fitted properly because it has a limited set of 

observations. 
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iii. Similarly, time points with enough available observations may be fitted accurately, but 

time points with limited available observations may not be fitted accurately. For the 

scenario in Table 2.1, time points 𝑡1 and 𝑡2 are expected to be fitted accurately; however, 

predictions for time point 𝑡𝑘  may not be reliable due to (i) the limited available 

observations at that time point and (ii) the unknown parametric form of the degradation 

model. Note this limitation will be severe for predictions at a time point near 𝑡𝑒𝑛𝑑 because 

even the available observations may not help to interpolate and recover the missing values 

at such a time point. 

iv. As a consequence of the third limitation, if there are a small subset of shared time points 

between different units, then MOGPs may not be effective because the correlation between 

the units is expected to be miss-calculated. In the scenario in Table 2.1, this is equivalent 

to having many missing values in a row. In such scenarios, the designed MOGP may be 

ill-conditioned and it is expected to produce inaccurate predictions. 

Finally, MOGPs are computationally expensive which limits them from real time analysis in 

comparison to other parametric methods such as the mixed-effect models. 

2.4 Remaining Useful Life Distribution Estimation 

 In the literature of prognostics, it is often assumed that a unit fails once its degradation signal 

exceeds a predefined failure threshold [8], [10], [29]. Thus, a common approach is to first model 

the degradation signal by an appropriate degradation model, e.g., the mixed-effects model 

mentioned in Section 2.1.2. Then, we can estimate the future evolution of the degradation signal 

based on the fitted degradation model, and predict the time at which the projected degradation 
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signal exceeds the predefined failure threshold. In particular, the cumulative distribution function 

of the RUL, can be written as: 

𝑃(�̃�𝑗 ≤ 𝑡|𝒔𝑗,.) = 𝑃 (𝑠𝑗,𝑛𝑗+𝑡 ≥ 𝐷𝑗|𝝓, (𝜽𝑗|𝒔𝑗,.)),        (2.8) 

where �̃�𝑗  is the estimated RUL of unit 𝑗 ; 𝒔𝑗,. = [𝑠𝑗,1, 𝑠𝑗,1, … , 𝑠𝑗,𝑛𝑗
]
𝑇

 is the set of observed 

degradation statuses for unit 𝑗  up to the time point 𝑛𝑗 ; 𝑛𝑗  is the time of the last available 

observation of unit 𝑗; 𝑠𝑗,𝑛𝑗+𝑡 is the predicted degradation status at the time point 𝑛𝑗 + 𝑡 and it can 

be estimated using the mixed-effects model, stochastic processes or recommender systems; and 𝐷𝑗  

is the predefined failure threshold for unit 𝑗. 

2.5 Failure Threshold Estimation 

Most of the existing work simply assumes that the failure threshold distribution is known a 

priori, i.e., 𝐷𝑗  is a constant and deterministic value for all units. In most cases, such a threshold is 

estimated based on the physical knowledge of the system/process. When such knowledge is 

unavailable, a data-driven approach can be used to estimate the failure threshold [10], [31]. For 

example, Liu et al. [10] considered the statistics (mean and variance) of the last sensor observations 

(right before failure) from multiple historical units as an estimation of the failure threshold. In 

particular, in the absence of physical knowledge of the system/process, the mean and variance of 

the failure threshold can be calculated as the following: 

{

𝐸(𝐷𝑗) =
∑ 𝑠𝑖,𝑛𝑖

𝑚
𝑖=1

𝑛
                    

𝑣𝑎𝑟(𝐷𝑗) =
∑ (𝑠𝑖,𝑛𝑖

−𝐸(𝐷𝑗))
2

𝑚
𝑖=1

𝑛−1

,                                        (2.9) 
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where 𝑠𝑖,𝑛𝑖
 is the last observed degradation status just before failure in historical unit 𝑖; and 𝑚 is 

the number of available historical units. 

2.6 Data Fusion Approaches to Prognostics 

The techniques mentioned in Section 2.1 are suitable for modeling one degradation signal. 

However, in many applications, there are multiple embedded sensors in a unit. As a result, it is 

highly desired to develop effective data fusion models that can combine the multiple-sensor data 

to produce better inferences regarding the future status of a unit. Generally speaking, data fusion 

methods for prognostics can be classified into three categories [7], [24] depending on the level of 

implementation of the fusion model: data-level fusion [15]–[17], [63], feature-level fusion [64], 

and decision-level fusion [1], [65]. A review on multiple sensor data fusion approaches to 

condition monitoring, fault diagnosis, and prognostics can be found in [8]. As the feature 

development can be regarded as a transformation of the original sensor data, data-level and feature-

level fusion techniques essentially focus on the same scheme that develops a composite health 

index ℎ𝑖,𝑡 for each unit 𝑖 at each observation epoch 𝑡 via combining multiple sensor signals 𝒔𝑖,.,𝑡 =

[𝑠𝑖,1,𝑡 … , 𝑠𝑖,𝑠,𝑡] ∈ 𝑅1×𝑆, i.e., ℎ𝑖,𝑡 = 𝑓(𝒔𝑖,.,𝑡). Here, 𝑆 denotes the number of available sensors and 

𝑓(∙) is the fusion model. On the basis of the developed health index, a degradation model can then 

be built to describe the evolution of the degraded unit over time, and further be used to compute 

its remaining lifetime in real time. For example, using the technique mentioned in Section 2.1, the 

health index can be characterized as [25]: 

ℎ𝑖,𝑡 = 𝑓(𝒔𝑖,.,𝑡) = 𝜂(𝝓, 𝜽𝑖, 𝑡) + 𝜀𝑖,𝑡,                                        (2.10) 
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2.7 Data-level Fusion Models for Prognostics 

For the data-level fusion model development, one of such research efforts was done recently by 

Liu et al. [10]. The authors considered two unique properties that the developed health index 

should possess for successful prognostics:  

Property 1: Once an initial fault occurs, the trend of the health index should be monotonic. 

Property 2: Given the same environmental condition and failure mode, the variance in the failure 

threshold of the developed health index should be minimal.  

In other words, Property 1 tries to minimize the total amount of violation in the monotonicity 

of the developed health index: ∑ ∑ ∆𝑖,𝑡
𝑛𝑖−1
𝑡=1

𝑚
𝑖=1 , where ∆𝑖,𝑡= 𝑚𝑎𝑥(ℎ𝑖,𝑡 − ℎ𝑖,𝑡+1, 0) represents the 

violation in the monotonicity for unit 𝑖 at time 𝑡 if we assume the developed health index has an 

increasing trend and each unit starts to degrade at the initial observation. Here, 𝑛𝑖  is the total 

number of observations for unit 𝑖; and 𝑚 is the total number of units in the training stage. On the 

other hand, Property 2 tries to minimize the variance in the failure threshold of the developed 

health index:  ∑ (ℎ𝑖,𝑛𝑖
− ℎ̅.,𝑛𝑖

)
2𝑚

𝑖=1 (𝑚 − 1)⁄ , where ℎ𝑖,𝑛𝑖
 is the constructed health index of unit 𝑖 at 

time 𝑛𝑖 (i.e., the time right before the unit fails) and ℎ̅.,𝑛𝑖
= ∑ ℎ𝑖,𝑛𝑖

𝑚
𝑖=1 𝑚⁄  is the average of the last 

health index value before failure in all units. The authors further used a linear link function to 

construct the health index, i.e., ℎ𝑖,𝑡 = 𝒚𝑖,.,𝑡 ∙ 𝒘 and derived the optimal weight 𝒘∗ by minimizing 

both properties 1 and 2. Although such method provides a promising approach, there is no 

guarantee that the developed health index is suitable to the selected degradation model when 

performing prognostics. This is because this data-level fusion model separates the fusion procedure 

and the degradation modeling into two disjoint tasks.  
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To address this limitation, Liu and Huang [11] further proposed a data-level fusion model that 

considered both the degradation modeling and fusion procedure in a unified manner to improve 

prognostic performance. Specifically, the authors tried to minimize both the model fitting errors, 

∑ (𝒆𝑖,.)
′
𝒆𝑖,.

𝑚
𝑖=1 /𝑚  and the variance in the failure threshold of the developed health index: 

∑ (ℎ𝑖,𝑛𝑖
− ℎ̅.,𝑛𝑖

)
2𝑚

𝑖=1 (𝑚 − 1)⁄ . Here, 𝒆𝑖,. = [𝑒𝑖,1, … , 𝑒𝑖,𝑛𝑖
]
′
 represents the residual errors (i.e., 𝑒𝑖,𝑡 =

ℎ𝑖,𝑡 − 𝜂(𝝓, �̃�𝑖, 𝑡)) in the fitted degradation model for the constructed health index of unit 𝑖, and 

(𝒆𝑖,.)
′
𝒆𝑖,. is the residual sum of squares of unit 𝑖. In other words, the authors put forward another 

important property that the health index should possess for successful prognostics: 

Property 3: Given the selected degradation model, the model fitting errors for the developed health 

index should be minimal. 
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Chapter 3 

Optimize the Signal Quality of the Composite Health Index 

via Data Fusion for Degradation Modeling and Prognostic 

Analysis 

This Chapter develops a data-level fusion methodology to construct a composite health index 

by combining multiple degradation-based sensor data. As mentioned previously, one challenging 

question needs to be resolved first is to identify the desired properties of the degradation signal 

and then provide a quantitative metric for characterizing the signal quality of the degradation signal 

by combining these identified properties. In science and engineering, SNR is a commonly used 

quality measure that compares the level of a desired signal to the level of background noise. 

Specifically, the SNR is defined as 𝑆𝑁𝑅 = 𝑢/𝜎, where 𝑢 is the signal mean or expected value and 

𝜎 is the standard deviation of the noise. However, it is straightforward to see that this definition 

cannot be effectively used here as the degradation signal evolves across the entire lifecycle of the 

unit and exhibits a unique characteristic pattern. To address this issue, we aim to develop a new 

SNR metric tailored for the needs of degradation signals. We denote this new quality metric as 

𝑆𝑁𝑅𝑑, and based on this, we further propose a novel data fusion methodology that optimizes this 

metric 𝑆𝑁𝑅𝑑 when constructing the health index. 

3.1 Desired Properties and SNR of the Degradation Signal 

To begin with, we would like to first provide an illustrative example to show that the properties 

2 and 3 used in [11] are not sufficient to quantify the signal quality of a degradation signal. Fig. 
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3.1 shows the degradation signals of two different sensors, in which the model fitting errors (by 

using the same type of degradation model) and the variances in the failure threshold by using both 

sensors are the same. In addition, since both sensors are used to monitor the same unit, the two 

signals have the same number of observations as well. However, it clearly shows that the 

degradation signal from sensor 1 is more useful for prognostic application as it exhibits a clearer 

degradation trend (i.e., a larger slope of the data). Prognostics typically requires extrapolating the 

partially degraded sensor data to the failure threshold based on the selected degradation model. As 

the range information of the sensor 1 is much larger than sensor 2, sensor 1 shows a shorter period 

of observations within the variation zone of the failure threshold. In such a case, the predicted 

failure time by using sensor 1 will be within a smaller range, leading to a more accurate prognostic 

estimation than using sensor 2. In other words, the range information of the degradation signal, 

starting from the initial to the final observation that is across the entire lifecycle of a unit is also 

another important characteristic for measuring the quality of the degradation signal. 

 
Fig. 3.1.  An example of showing the range information of the degradation signal is also another important 

characteristic for successful prognostics. 
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Based on this observation, we define the SNR of a degradation signal to be the ratio of the range 

of the degradation signal during the entire course of the degradation process over the uncertainties 

occurred during the prognostic analysis. Such uncertainties have two folds: 1) the random errors 

introduced in the degradation model; and 2) the variation in the failure threshold. The first 

uncertainty arises when we use a selected degradation model to fit the degradation signal, while 

the second uncertainty stems from the stochastic nature of the degradation process such that 

different units fail at different time points. Mathematically, the SNR of a degradation signal, 𝑆𝑁𝑅𝑑 

is defined as: 

𝑆𝑁𝑅𝑑 =
𝑅2

𝜎2+𝑣
,                                      (3.1) 

where 𝑅 is the range information of the degradation signal, 𝜎2 is the variance of the model fitting 

errors, and 𝑣 is the variance of the failure threshold. Specifically, for the constructed health index, 

𝑅 can be estimated by ∑ (ℎ𝑖,𝑛𝑖
− ℎ𝑖,1)

𝑚
𝑖=1 /𝑚, 𝑣 can be estimated by ∑ (ℎ𝑖,𝑛𝑖

− ℎ̅.,𝑛𝑖
)
2𝑚

𝑖=1 (𝑚 − 1)⁄ , 

and 𝜎2  can be estimated by ∑ (𝒄𝑖,.𝒆𝑖,.)
′
𝒄𝑖,.𝒆𝑖,. 𝑚⁄𝑚

𝑖=1 . The detailed variable meanings can be 

referred to Section 3.3. Here, we consider 𝑅2 instead of 𝑅 in the numerator as the degradation 

signal may exhibit either an increasing or decreasing trend. Another advantage is that this 

definition of SNR is scale-invariant with respect to the measurement units and the scales of 

degradation signals. This new SNR formula for the degradation signal in (3.1) resembles the 

conventional definition of SNR, which also measures the strength (i.e., the range) of the 

degradation signal over the background noises (i.e., the two types of uncertainty involved in the 

degradation signal), but tailored to the specific needs of degradation signals. 
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If we compare the formulation in (3.1) with the efforts in Liu et al. [10], we can see that Property 

1 aims at maximizing the monotonicity in the degradation signal, which is similar to the 

maximization of the range of the degradation signal. However, monotonicity focuses on comparing 

the signal strength at each two consecutive observations, i.e., ℎ𝑖,𝑡 − ℎ𝑖,𝑡+1 , whereas the range 

focuses on maximizing the signal strength in the entire lifecycle of the unit, i.e., ℎ𝑖,𝑛𝑖
− ℎ𝑖,1. On 

the other hand, the approach in Liu and Huang [11] only focuses on minimizing the noise 

components (i.e., the denominator in (3.1)) of the degradation signal but ignores maximizing the 

signal strength. 

3.2 Selected Degradation Models 

Based on the new SNR definition in (2), our goal next is to develop a data fusion model that 

combines the information from multiple sensors to construct a health index with a maximal SNR 

measure. As the model fitting errors (i.e., 𝜎2 in (2)) are involved in the definition, we need to first 

specify the selected degradation model used in the fusion procedure. 

The degradation model in (2.1) is generic to provide different types of functional forms for 

modeling degradation signals. To highlight the main ideas of our proposed data fusion method, 

here we focus on a specific parametric degradation model with the 𝑝-th order polynomial form: 

𝐿𝑖,𝑗,𝑡 = ∑ 𝜃𝑖,𝑗
(𝑘)

𝑡𝑘𝑝
𝑘=0 + 𝜀𝑖,𝑗,𝑡,                                 (3.2) 

where 𝐿𝑖,𝑗,𝑡 is the sensor measurement for unit 𝑖, sensor 𝑗 and time 𝑡; 𝜞𝑖,𝑗 = [𝜃𝑖,𝑗
(0)

, … , 𝜃𝑖,𝑗
(𝑝)

]
′

 is the 

random-effect parameter and often assumed to follow a multivariate normal distribution, i.e., 

𝜞𝑖,𝑗~𝑁𝑝+1(𝒖𝑗
0, 𝜮𝑗

0); and 𝜀𝑖,𝑗,𝑡  is the random noise. Many degradation models discussed in the 
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existing literature belongs to the form in (3.2) after transformations, such as the simple random 

coefficient growth model [66], [67] and the exponential functional form model[10], [28], [56], 

[68]. For example, Liu et al. [10]considered an exponential degradation model:  

𝑥𝑖,𝑗,𝑡 = 𝜙𝑗 + 𝛼𝑖,𝑗𝑒
𝜃𝑖,𝑗

(1)
𝑡+𝜃𝑖,𝑗

(2)
𝑡2+𝜀𝑖,𝑗,𝑡−𝜎𝑗

2 2⁄
,              (3.3) 

where 𝜙𝑗  is the constant deterministic parameter for sensor 𝑗; 𝛼𝑖,𝑗 , 𝜃𝑖,𝑗
(1)

 and  𝜃𝑖,𝑗
(2)

 are random-

effect parameters; and 𝜀𝑖,𝑗,𝑡  follows 𝑁(0, 𝜎𝑗
2) . Since 𝐸 (𝑒𝜀𝑖,𝑗,𝑡−𝜎𝑗

2 2⁄ ) = 1 , 

𝐸(𝑥𝑖,𝑗,𝑡|𝛼𝑖,𝑗, 𝜃𝑖,𝑗
(1)

, 𝜃𝑖,𝑗
(2)

) = 𝜙𝑗 + 𝛼𝑖,𝑗𝑒
𝜃𝑖,𝑗

(1)
𝑡+𝜃𝑖,𝑗

(2)
𝑡2

. For convenience, the authors applied a log-

transformation and focused on modeling the logged signal: 

𝐿𝑖,𝑗,𝑡 = 𝑙𝑛(𝑥𝑖,𝑗,𝑡 − 𝜙𝑗) = 𝜃𝑖,𝑗
(0)

+ 𝜃𝑖,𝑗
(1)

𝑡 + 𝜃𝑖,𝑗
(2)

𝑡2 + 𝜀𝑖,𝑗,𝑡,            (3.4) 

where 𝜃𝑖,𝑗
(0)

= 𝑙𝑛𝛼𝑖,𝑗 − 𝜎𝑗
2 2⁄ . In addition, the authors assumed that the random-effect parameters 

𝜃𝑖,𝑗
(0)

, 𝜃𝑖,𝑗
(1)

 and 𝜃𝑖,𝑗
(2)

 are jointly distributed and follow a multivariate normal distribution: 𝜞𝑖,𝑗 =

[𝜃𝑖,𝑗
(0)

, 𝜃𝑖,𝑗
(1)

, 𝜃𝑖,𝑗
(2)

]
′

~𝑁3(𝒖𝑗
0, 𝜮𝑗

0). 

3.3 Data Fusion Model Based on the New SNR Definition 

Recall that 𝑠 represents the number of available sensors, 𝑚 is the total number of historical 

units in the training stage, 𝑛𝑖  is the number of available observations for unit 𝑖 , 𝑳𝑖,.,𝑡 =

[𝐿𝑖,1,𝑡 … , 𝐿𝑖,𝑠,𝑡] ∈ 𝑅1×𝑠 represents the multiple sensor data for unit 𝑖 and time 𝑡, and 𝑓(∙) is the link 

function to construct the health index from multiple sensor data, i.e., ℎ𝑖,𝑡 = 𝑓(𝑳𝑖,.,𝑡). Specifically, 

in this Chapter, we consider the linear link function as a demonstration of our main idea. 



29 

 

 

 

Consequently, 𝒉𝑖,. = 𝑳𝑖,.,. 𝒘 , where 𝒘 ∈ 𝑅𝑠×1  represents the vector of weight coefficients to 

combine the multiple sensor data, 𝑳𝑖,.,. = [𝑳𝑖,.,1; … ; 𝑳𝑖,.,𝑛𝑖
] ∈ 𝑅𝑛𝑖×𝑠 .  

Denote 𝒀𝟎 = [𝑳1,.,𝑛𝑖
− 𝑳1,.,1; … ; 𝑳𝑚,.,𝑛𝑖

− 𝑳𝑚,.,1] ∈ 𝑅𝑚×𝑠as the range information matrix that 

records the difference between the last and the initial observations with the rows representing each 

training unit and the columns representing each sensor. The numerator in (3.1) (i.e., 𝑅2) for the 

constructed health index can then be estimated by 
1

𝑚2 𝒘′𝒀𝟎
′𝟏𝟏′𝒀𝟎𝒘, where 𝟏 is the column vector 

with all elements equal to 1.  

Next, we consider the denominator part of SNR in (3.1). Denote 𝜳𝑖 ∈ 𝑅𝑛𝑖×(𝑝+1) =

[
 
 
 
 
1 … 1
… … …
1 … 𝑡𝑝

… … …
1 … 𝑛𝑖

𝑝
]
 
 
 
 

 as the design matrix, 𝜞𝑖 ∈ 𝑅(𝑝+1)×1  as the random-effect parameter of the 

degradation model for the health index of unit 𝑖, and 𝑒𝑖,𝑡 as the residual term for unit 𝑖 and time 𝑡 

when fitting the health index by using the polynomial degradation model in (3.2). In other words, 

𝑒𝑖,𝑡  can be expressed by 𝑒𝑖,𝑡 = ℎ𝑖,𝑡 − [1,… , 𝑡𝑝]𝜞𝑖 . Here, we consider a weighted least square 

regression model, and let 𝑐𝑖,𝑡  be the weight coefficient for the residual term 𝑒𝑖,𝑡  and 𝒄𝑖,. =

𝑑𝑖𝑎𝑔(𝑐𝑖,1, … , 𝑐𝑖,𝑛𝑖
) ∈ 𝑅𝑛𝑖×𝑛𝑖  be the weight coefficient matrix for the residual errors 𝒆𝑖,. =

[𝑒𝑖,1, … , 𝑒𝑖,𝑛𝑖
]
′
∈ 𝑅𝑛𝑖×1. Given the information from multiple sensor data 𝑳𝑖,.,., the random-effect 

parameter can be estimated by 𝜞𝑖 = (𝜳𝑖
′𝒄𝑖,.

2 𝜳𝑖)
−1

(𝜳𝑖
′𝒄𝑖,.

2 𝑳𝑖,.,.𝒘) using the weighted least square 

approach. As a result, the weighted residual terms for unit 𝑖 at different times can be expressed as 

𝒄𝑖,.𝒆𝑖,. = 𝒄𝑖,.𝑳𝑖,.,.𝒘 − 𝒄𝑖,.𝜳𝑖𝜞𝑖 = (𝑰 − 𝑯)𝒄𝑖,.𝑳𝑖,.,.𝒘 ∈ 𝑅𝑛𝑖×1 , in which 𝑯 =
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𝒄𝑖,.𝜳𝑖(𝜳𝑖
′𝒄𝑖,.

2 𝜳𝑖)
−1

𝜳𝑖
′𝒄𝑖,. ∈ 𝑅𝑛𝑖×𝑛𝑖 is known as the projection matrix. In other words, the model 

fitting uncertainty in the degradation model (i.e., 𝜎2  in (3.1)) can be estimated by 

∑ (𝒄𝑖,.𝒆𝑖,.)
′
𝒄𝑖,.𝒆𝑖,. 𝑚⁄ = ∑ 𝒘′𝑳𝑖,.,.

′ 𝒄𝑖,.(𝑰 − 𝑯)𝒄𝑖,.𝑳𝑖,.,.𝒘
𝑚
𝑖=1 /𝑚𝑚

𝑖=1 . On the other hand, since ℎ𝑖,𝑛𝑖
=

𝑳𝑖,.,𝑛𝑖
 𝒘 and ℎ̅.,𝑛𝑖

= ∑ ℎ𝑖,𝑛𝑖

𝑚
𝑖=1 𝑚⁄ , the variance in the failure threshold (i.e., 𝑣  in (3.1)) can be 

estimated by ∑ (ℎ𝑖,𝑛𝑖
− ℎ̅.,𝑛𝑖

)
2𝑚

𝑖=1 (𝑚 − 1)⁄ = 𝒘′𝑳.,.,𝑛𝑖

′ 𝑫𝑳.,.,𝑛𝑖
 𝒘 (see Appendix for details), where 

𝑳.,.,𝑛𝑖
∈ 𝑅𝑚×𝑠 is the matrix recording the last observations before failure with the rows representing 

each historical unit and the columns representing each sensor, and 𝑫 ∈ 𝑅𝑚×𝑚 =
𝑰−𝑶/𝑚

𝑚−1
 is a 

symmetric matrix, in which 𝑶 is a matrix of all ones and 𝑰 is an identity matrix. 

As a result, the SNR of the constructed health index in (3.1) can be mathematically expressed 

as follows:  

𝑆𝑁𝑅𝑑 =
𝒘′𝒀𝟎

′𝟏𝟏′𝒀𝟎𝒘 𝑚2⁄

𝒘′𝑳.,.,𝑛𝑖
′ 𝑫𝑳.,.,𝑛𝑖

 𝒘+∑ 𝒘′𝑳𝑖,.,.
′ 𝒄𝑖,.(𝑰−𝑯)𝒄𝑖,.𝑳𝑖,.,.𝒘

𝑚
𝑖=1 /𝑚

.            (3.5) 

It is straightforward to see that the function value of (3.5) does not depend on the scale of 𝒘. In 

other words, the SNR of the health index will remain constant (i.e., scale-invariant) for a solution 

𝒘 multiplied by any non-zero constant factor.  

Our goal here is to find the optimal 𝒘∗ that maximizes 𝑆𝑁𝑅𝑑 in (3.5). As what follows, we will 

show that the optimal solution can be obtained by the eigendecomposition approach. Let matrix 

𝑩 ∈ 𝑅𝑠×𝑠 = 𝑳.,.,𝑛𝑖

′ 𝑫𝑳.,.,𝑛𝑖
+ ∑ 𝑳𝑖,.,.

′ 𝒄𝑖,.(𝑰 − 𝑯)𝒄𝑖,.𝑳𝑖,.,.
𝑚
𝑖=1  and matrix 𝑨 ∈ 𝑅𝑠×𝑠 = 𝒀𝟎

′𝟏𝟏′𝒀𝟎 𝑚2⁄ . 

Then, the optimal solution 𝒘∗ is the eigenvector corresponding to the largest eigenvalue 𝜆𝑚𝑎𝑥 by 

solving the generalized eigenvalue problem 𝑨𝒘 = 𝜆𝑚𝑎𝑥𝑩𝒘  (see Appendix for details). Here, we 

can show that both 𝑩 and 𝑨 are symmetric positive semidefinite (P.S.D.) matrices (see Appendix 
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for details). In the case that all the eigenvalues of matrix 𝑩 are positive (i.e., 𝑩 is a positive definite 

matrix), its inverse matrix exists and thus 𝒘∗  is the eigenvector corresponding to the largest 

eigenvalue of 𝑩−1𝑨. Otherwise, we may introduce any small positive number 𝑟 to make all the 

eigenvalues of 𝑩 + 𝑟𝑰 positive [69]. In such a case, the matrix 𝑩 + 𝑟𝑰 becomes invertible and the 

optimal solution 𝒘∗ is the eigenvector corresponding to the largest eigenvalue of (𝑩 + 𝑟𝑰)−1𝑨. 

Here, it is worth mentioning that as long as the largest eigenvalue of 𝑩−1𝑨 is unique, we will 

achieve a unique solution 𝒘∗ with unit length. Due to the randomness in the multiple sensor data, 

the chance for the largest eigenvalue of 𝑩−1𝑨 being non-unique is extremely small and thus is 

ignored in the current Chapter.   

Recall that in (3.5), 𝑐𝑖,𝑡 is the weight coefficient corresponding to the residual term 𝑒𝑖,𝑡 in the 

fitted degradation model. Below we provide some guidelines in setting {𝑐𝑖,𝑡}. Since the accuracy 

of the remaining life prediction becomes increasingly sensitive to the model fitting result as the 

unit approaches to failure, Liu and Huang [11] proposed to assign {𝑐𝑖,𝑡} as an increasing series: 

𝑐𝑖,𝑡+1 ≥ 𝑐𝑖,𝑡 ≥ 0, 𝑖 = 1,… ,𝑚, 𝑡 = 1,… , 𝑛𝑖 − 1 . If we assume each training unit is equally 

important, the following constraints need to be satisfied as well: ∑ 𝑐𝑖,𝑡
𝑛𝑖
𝑡=1 = 1, 𝑖 = 1,… ,𝑚. Under 

these two assumptions, the authors further provided two options for setting the weight coefficients 

by assuming {𝑐𝑖,𝑡}  either follows (i) an arithmetic series (i.e., 2𝑐𝑖,𝑡 = 𝑐𝑖,𝑡+1 + 𝑐𝑖,𝑡−1 ) or (ii) a 

geometric series (i.e., 𝑐𝑖,𝑡
2 = 𝑐𝑖,𝑡+1𝑐𝑖,𝑡−1) depending on the emphasis placed on the model fitting:  

(i) For the arithmetic series: 

𝑐𝑖,𝑡 = 𝑐𝑖,1 + (𝑡 − 1)
2−2𝑐𝑖,1𝑛𝑖

(𝑛𝑖−1)𝑛𝑖
, 𝑡 = 1,… , 𝑛𝑖. 

(ii) For the geometric series: 
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𝑐𝑖,𝑡 = 𝑐𝑖,1 ⋅ 𝑞𝑡−1, 𝑡 = 1,… , 𝑛𝑖, 

where 𝑞 statisfies 𝑐𝑖,1𝑞
𝑛𝑖 − 𝑐𝑖,1 − 𝑞 + 1 = 0. 

3.4 Case Study 

In this Section, we will implement and evaluate our proposed (we call it SNR-based) data fusion 

model when the constructed health index is used for prognostics. Specially, we will consider three 

benchmark approaches that include using (1) each original individual sensor data, (2) the health 

index constructed based on the model in [10] (we call it non-parametric data fusion model), and 

(3) the health index constructed based on the in [11] (we call it semi-parametric data fusion model).  

 We focus on the degradation-based dataset of turbofan engines under a single failure mode and 

a single operation condition. The dataset is provided in [32] and consists of 100 training units (i.e., 

𝑚 = 100) that include a total of 20631 observations (i.e., ∑ 𝑛𝑖
𝑚
𝑖=1 = 20631), 100 testing units that 

include a total of 13096 observations, and a file that records the actual remaining lifetime of the 

100 testing units. Measurements of 21 sensors that include comprehensive information (e.g., 

temperature, pressure, speed) at different locations of the engine are collected after each 

observation epoch for each unit. The detailed descriptions of these 21 sensors are given in Table 

3.1. 

TABLE 3.1. DETAILED DESCRIPTION OF THE 21 SENSORS [27]. 

Symbol Description Units 

T2 Total temperature at fan inlet °R 

T24 Total temperature at LPC outlet °R 

T30 Total temperature at HPC outlet °R 

T50 Total temperature at LPT outlet °R 

P2 Pressure at fan inlet psia 

P15 Total pressure in bypass-duct psia 

P30 Total pressure at HPC outlet psia 
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Nf Physical fan speed rpm 

Nc Physical core speed rpm 

epr Engine pressure ratio (P50/P2) -- 

Ps30 Static pressure at HPC outlet psia 

phi Ratio of fuel flow to Ps30 pps/psi 

NRf Corrected fan speed rpm 

NRc Corrected core speed rpm 

BPR Bypass Ratio -- 

farB Burner fuel-air ratio -- 

htBleed Bleed Enthalpy -- 

Nf_dmd Demanded fan speed rpm 

PCNfR_dmd Demanded corrected fan speed rpm 

W31 HPT coolant bleed lbm/s 

W32 LPT coolant bleed lbm/s 

 

The dataset is generated by C-MAPSS, a model for simulating realistic large commercial 

turbofan engines [23], [27]. C-MAPSS has been widely used to characterize the degradation 

performance in engines due to wear and tear according to the usage pattern of the engines. 

However, this simulation model is not explicitly accessible to the users [27]. Thus, the underlying 

assumption here is that users need to rely on the available datasets from these 21 sensors, which 

include the historical degradation data of the 100 training units and the in-situ sensor 

measurements collected during the testing stage to infer the remaining lifetime of each testing unit 

and further compare the results with the actual ones. 

3.4.1 Data Preprocessing 

Before implementing our proposed SNR-based data fusion model, it is required to first 

determine which sensors to use. In order to achieve a fair comparison, here we use the exactly 

same amount of sensor information as mentioned in [10] and [11]. Specifically, the authors [10], 

[11] selected the sensors as an input to the data fusion model if their degradation signals exhibit 
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an increasing or decreasing trend. In other words, a sensor will be selected if its last observation is 

consistently larger (increasing trend) or smaller (decreasing trend) than the initial observation in 

all the training units. This is a meaningful criterion as the engine fails under a single failure mode 

and a single operation condition, and thus a reliable sensor signal should present a similar 

degradation trajectory in all the units. By using this criterion, 11 (i.e., 𝑠 = 11) out of 21 sensors 

are selected, which include T24, T50, P30, Nf, Ps30, phi, NRf, BPR, htBleed, W31 and W32. As 

these sensors measure different characteristics of the engine with distinct units of measurement 

(e.g., psia, rpm, lbm/s), we further standardize the dataset before the data fusion as mentioned in 

[10] and [11]. Moreover, an arithmetic series for {𝑐𝑖,𝑡} is used by assuming the weight coefficient 

𝑐𝑖,𝑡 is linearly increasing, which is consistent with the ones in [10] and [11]. 

3.4.2 SNR-Based Data Fusion Model 

Since, the authors [10], [11] considered the exponential degradation model in (3.3) and showed 

that it provided a good model fitting for the degradation dataset. Here, for a fair comparison, we 

consider the same degradation model. By using the proposed SNR-based data fusion model, the 

optimal weight 𝒘∗ that combines multiple sensor data to construct the health index is presented in 

Table 3.2. Note that in order to be consistent with [10] and [11], the optimal weight 𝒘∗ has been 

normalized from the obtained eigenvector in (3.5) such that the sum of the absolute values of all 

weight coefficients equals one. This normalization can be done as the equation (3.5) does not 

depend on the scale of 𝒘. In this way, the constructed health index is a weighted average of the 

selected sensor data, ℎ𝑖,𝑡 = 𝑳𝑖,.,𝑡 𝒘
∗, in which 𝑳𝑖,.,𝑡 is the sensor measurements collected from the 

selected 11 sensors for unit 𝑖 and time 𝑡. 
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Fig. 3.2 shows an example of the model fitting result by using the exponential model in (3.3) 

to each selected sensor data and the constructed health index for a training unit. It clearly shows 

that the developed health index by using the SNR-based data fusion model provides a better model 

fitting result than each original sensor data.  

TABLE 3.2. OPTIMAL WEIGHT 𝒘∗
 FOR THE SELECTED SENSOR DATA. 

Name T24 T50 P30 Nf Ps30 phi 

Value 0.0793 0.1263 -0.0911 0.0200 0.1664 -0.1298 

Name NRf BPR htBleed W31 W32  

Value 0.0346 0.0983 0.0815 -0.0871 -0.0856  
 

TABLE 3.3. SNR METRIC VALUES OF ALL SELECTED SENSORS AND THE HEALTH INDICES BASED ON 

DIFFERENT DATA FUSION MODELS. 

Name T24 T50 P30 Nf Ps30 phi NRf 

Value 9.912 25.985 18.580 10.147 32.835 23.154 11.225 

Name BPR htBleed W31 W32 HI-non HI-semi HI-SNR 

Value 13.392 10.165 14.581 12.878 108.840 141.142 143.379 

 

 
Fig. 3.2.  An illustration plot of the model fittings results in all selected sensor data and the 

constructed health index for a training unit. 
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Table 3.3 further calculates and compares the SNR metric defined in (3.1) for all the selected 

sensors, the constructed health indices based on the non-parametric data fusion model (HI-non), 

the semi-parametric data fusion model (HI-semi), and the proposed SNR-based data fusion model 

(HI-SNR). The result shows that the SNR-based data fusion model is able to construct a health 

index with a maximal SNR measure. In Section 3.4.4, we will further demonstrate that the 

constructed health index with a higher SNR measure will provide a more accurate remaining life 

prediction result. 

Another thing we would like to emphasize is that similar to the semi-parametric data fusion 

model in [11], the proposed SNR-based data fusion model only requires solving for 𝑠 = 11 

variables, whereas the non-parametric data fusion model in [10] needs to solve for 𝑠 +

∑ (𝑛𝑖 − 1)𝑚
𝑖=1 = 20542 variables via a large quadratic programming. Thus, the computational cost 

of the proposed SNR-based data fusion model is much smaller than the non-parametric data fusion 

model in [10], but similar to the semi-parametric data fusion model in [11]. 

3.4.3 Robustness Study 

In the followings, we would like to further provide a robustness analysis for the derived optimal 

weight, 𝒘∗  by using the proposed SNR-based data fusion algorithm when there are different 

degrees of missing data. Specifically, we randomly hide different percentage of observations from 

the 100 training units and then implement our proposed SNR-based data fusion model based on 

the incomplete dataset. As the initial and last observations in all training units are needed to 

estimate the range information as well as the variance in the failure threshold, we require all initial 

and last observations are available when constructing the missing dataset. 
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Fig. 3.3.  Optimal weights derived at different degrees of missing data. 

 

Fig. 3.3 shows the changes in the optimal weight 𝒘∗ based on different degrees of missing data. 

For example, the label “10%” refers to the case that random (20631 − 200) ∗ 10% ≈ 2043 

observations are missing when learning the optimal weights. Recall that “20631” is the total 

number of observations in all 100 training units and “200 ” stands for the initial and last 

observations in these units. 

According to Fig. 3.3, it clearly shows that the SNR-based data fusion model is relatively robust 

especially when there is less than or equal to 20% of missing data. This result is similar to the one 

given in [11] which is based on minimizing only the model fitting errors and the variance in the 

failure threshold. This study shows the advantage of the SNR-based data fusion model over the 

non-parametric data fusion model in [10] that requires all observations must be available and 
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sampled at a regular interval, especially when the measurements are costly and some missing data 

are inevitable. 

3.4.4 Estimation of the RUL Distribution 

In this Section, we would like to further evaluate the performance of our constructed health 

index when it is used for real time prognostics. To answer this question, one standard approach is 

the one proposed by Gebraeel [56] who introduced a Bayesian updating approach by incorporating 

real time degradation signals for calculating the predicted remaining lifetime of each individual 

unit. Specifically, the algorithm starts from learning the prior joint distributions of the random-

effect parameter 𝜞𝑖,𝑗 by fitting the degradation signals of each historical unit with the selected 

degradation model (e.g., see Fig. 3.2). Next, the prior joint distribution of the random-effect 

parameter 𝜞𝑖,𝑗 is calibrated based on the in-situ sensor data collected from each new operating unit 

in the testing stage. Then, based on the updated degradation model, the RUL of this particular unit 

can be calculated. It has been shown that this Bayesian updating approach outperformed either a 

similar model based on [25] that did not incorporate the in-situ degradation information, or a model 

that was based entirely on calculating the conditional RUL without considering historical data. 

Consequently, this Chapter adopts this modeling framework as an illustration for remaining life 

prediction. 

As shown in Fig. 3.2, the degradation model in (3.3) can provide a good model fitting result. 

The authors [10] further assumed that the random-effect parameters 𝜃𝑖,𝑗
(0)

, 𝜃𝑖,𝑗
(1)

 and 𝜃𝑖,𝑗
(2)

 were 

jointly distributed and followed a multivariate normal distribution: 𝜞𝑖,𝑗 =

[𝜃𝑖,𝑗
(0)

, 𝜃𝑖,𝑗
(1)

, 𝜃𝑖,𝑗
(2)

]′~𝑁3(𝒖𝑗
0, 𝜮𝑗

0) . Here, we adopt the same approach in order to provide a fair 
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comparison. Let 𝑳𝑖,𝑗,. = [𝐿𝑖,𝑗,1, … , 𝐿𝑖,𝑗,𝑛𝑖
]
′
∈ 𝑅𝑛𝑖×1 be the sequence of the sensor measurements 

collected up to the current observation epoch 𝑛𝑖  for unit 𝑖  and sensor 𝑗 . Then, the posterior 

distribution of 𝜞𝑖,𝑗 still follows a multivariate normal distribution: 

𝜞𝑖,𝑗|𝑳𝑖,𝑗,.~𝑁3(𝒖𝑗
1, 𝜮𝑗

1),                                 (3.6) 

where 𝒖𝑗
1 = (

𝜳𝑖
′𝜳𝑖

𝜎𝑗
2 + (𝜮𝑗

0)−1)
−1

(
𝜳𝑖

′𝑳𝑖,𝑗,.

𝜎𝑗
2 + (𝜮𝑗

0)−1𝒖𝑗
0) , 𝜮𝑗

1 = (
𝜳𝑖

′𝜳𝑖

𝜎𝑗
2 + (𝜮𝑗

0)−1)
−1

 and 𝜳𝑖 ∈

𝑅𝑛𝑖×3 =

[
 
 
 
 
1 … 1
… … …
1 … 𝑡2

… … …
1 … 𝑛𝑖

2]
 
 
 
 

 (see Appendix for details). 

Based on the updated parameter 𝜞𝑖,𝑗|𝑳𝑖,𝑗(∙), below we derive the RUL, the distribution of the 

time at which the sensor signal crosses the failure threshold. Since different units may actually fail 

at different threshold values, we consider the failure threshold as also a random variable. Denote 

𝑙𝑗 as the failure threshold for sensor 𝑗 and �̃�𝑖,𝑗 as the estimated remaining lifetime of the new unit 

𝑖 based on the degradation signal of sensor 𝑗. Let 𝑢𝑗
𝑑  and 𝑣𝑗

𝑑 be the mean and the variance of the 

failure threshold 𝑙𝑗, whose values can be estimated by the sample mean and sample variance based 

on the last observations before failure in all historical units for sensor 𝑗 , respectively. 

Since  𝐿𝑖,𝑗,𝑛𝑖+𝑡 = 𝜃𝑖,𝑗
(0)

+ ⋯ + 𝜃𝑖,𝑗
(𝑝)

∗ (𝑛𝑖 + 𝑡)𝑝 + 𝜀𝑖,𝑗,𝑛𝑖+𝑡 , 𝐿𝑖,𝑗,𝑛𝑖+𝑡  is normally distributed with 

mean �̃�𝑖,𝑗,𝑛𝑖+𝑡 = [1,… , (𝑛𝑖 + 𝑡)𝑝]𝒖𝑗
1   and variance �̃�𝑖,𝑗,𝑛𝑖+𝑡

2 = [1, … , (𝑛𝑖 + 𝑡)𝑝]𝜮𝑗
1[1, … , (𝑛𝑖 +

𝑡)𝑝]′ + 𝜎𝑗
2. Thus, the conditional cumulative distribution function (cdf) of the estimated remaining 

lifetime �̃�𝑖,𝑗 given the collected in-situ sensor information 𝑳𝑖,𝑗,. can be calculated as: 
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𝐹�̃�𝑖,𝑗|𝑳𝑖,𝑗,.
(𝑡) = 𝑃(�̃�𝑖,𝑗 ≤ 𝑡|𝑳𝑖,𝑗,.) = 𝑃(𝐿𝑖,𝑗,𝑛𝑖+𝑡 ≥ 𝑙𝑗|𝑳𝑖,𝑗,.) = Φ(

𝑢𝑖,𝑗,𝑛𝑖+𝑡−𝑢𝑗
𝑑

√�̃�𝑖,𝑗,𝑛𝑖+𝑡
2 +𝑣𝑗

𝑑
) = Φ(𝑔(𝑡)).   (3.7) 

Here, Φ(∙) represents the cdf of the standard normal distribution. Given that �̃�𝑖,𝑗 ≥ 0, the truncated 

cdf for �̃�𝑖,𝑘 conditioning on �̃�𝑖,𝑘 ≥ 0 is: 

𝑃(�̃�𝑖,𝑗 ≤ 𝑡|𝑳𝑖,𝑗,., �̃�𝑖,𝑗 ≥ 0) =
𝑃(0 ≤ �̃�𝑖,𝑗 ≤ 𝑡|𝑳𝑖,𝑗,.)

𝑃(�̃�𝑖,𝑗 ≥ 0|𝑳𝑖,𝑗,.)
= 

Φ(𝑔(𝑡))−Φ(𝑔(0))

1−Φ(𝑔(0))
.   (3.8) 

Since the truncated cdf is skewed, we need to use the median as the point estimator for 

remaining life prediction. Numerically, this can be done by finding the time point 𝑡  when 

𝑃(�̃�𝑖,𝑗 ≤ 𝑡|𝑳𝑖,𝑗,., �̃�𝑖,𝑗 ≥ 0) = 0.5. 

Define the percentage error, 𝑒𝑟𝑟𝑖,𝑗 as the relative difference between the predicted and the actual 

failure time for unit 𝑖 and sensor 𝑗: 

𝑒𝑟𝑟𝑖,𝑗 =
(𝑛𝑖+�̃�𝑖,𝑗)−(𝑛𝑖+𝑇𝑖)

𝑛𝑖+𝑇𝑖
=

�̃�𝑖,𝑗−𝑇𝑖

𝑛𝑖+𝑇𝑖
,                     (3.9) 

where 𝑛𝑖 is the number of available observations of testing unit 𝑖 when it stops further usage at 

some point prior to failure; 𝑇𝑖 is the actual remaining lifetime for testing unit 𝑖; and �̃�𝑖,𝑗  is the 

estimated remaining lifetime for unit 𝑖 by using sensor 𝑗. Fig. 5 shows the comparison results by 

using the best single sensor signal from all 11 selected sensors, HI-non, HI-semi and HI-SNR at 

different levels of actual remaining lifetime. For example, the “all” label refers to the percentage 

errors based on all 100 testing units, while the “100” label refers to the percentage errors based on 

only the testing units with equal to or less than 100 actual remaining lifetime. 
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Fig. 3.4.  Comparison results of the absolute value of the mean percentage error by using the 

best single sensor signal, HI-non, HI-semi, and HI-SNR at different levels of the actual 

remaining lifetime. 

 

From Fig. 3.4, it shows that (i) the health index constructed by the SNR-based data fusion model 

provides the best prognostic result; and (ii) the remaining life prediction becomes more accurate 

by using any of the health indices constructed from the three data fusion models as the unit 

approaches the actual failure time. The first observation (i) stems from the model efforts in (6) that 

maximize the defined SNR metric to construct a health index with an optimized signal quality. In 

this particular case study, the SNR-based data fusion model shows a comparable result as the semi-

parametric data fusion model. This is probably because the range information of the selected 11 

sensor signals is similar to each other as shown in Fig. 3.2, and thus the proposed SNR-based data 

fusion model only provides a health index with a slightly better SNR value than the semi-

parametric model as shown in Table 3.3. Such a result further validates that the defined SNR metric 
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is reliable to be used for characterizing the signal quality of the degradation-based sensor data. 

However, in general cases, when the range information of different sensors is quite distinct to each 

other, the proposed SNR-based data fusion model is expected to show more advantages than the 

semi-parametric model. We have also evaluated the 95% confidence interval (CI) of the predicted 

remaining lifetime in all testing units and achieved a similar result as in Fig. 3.4 that the narrowest 

CIs are given by the HI-SNR and HI-semi, and then followed by HI-non. However, due to the page 

limit, the result of the CIs is omitted here.  

The second observation (ii) mainly results from two reasons. First, less actual remaining 

lifetime often indicates that more historical data have been acquired, and thus we are more 

confident about the updated degradation models. Meanwhile, as the actual remaining lifetime 

becomes smaller, predictions are only made for a shorter future time period, and thus less 

uncertainty is involved. Second, recall that we used an arithmetic series for {𝑐𝑖,𝑡} by assuming the 

weight coefficient 𝑐𝑖,𝑡 linearly increases with the residual term 𝑒𝑖,𝑡. Thus, more penalties are given 

to the model fitting errors at the observation epochs that are closer to the actual failure time. As a 

result, the remaining life predictions by using the data fusion methods become more accurate as 

the unit approaches to failure.  

 

TABLE 3.4. PERFORMANCE COMPARISONS BY USING THE EXISTING AND THE PROPOSED DATA 

FUSION MODELS (‘1’ FOR THE BEST AND ‘3’ FOR THE WORST). 

Method Non-parametric Semi-parametric SNR-based 

Prognostic Performance 3 2 1 

Scale Invariant No No Yes 

Resistant to missing data No Yes Yes 

Computational Cost 3 1 1 

Signal quality measure No No Yes 
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Table 3.4 further summarizes the performance comparisons by using the existing and the 

proposed data fusion models.  

3.5 Conclusions 

The contributions of the Chapter is twofold: (i) it fills the literature gap by identifying a 

quantitative measure, the signal-to-noise ratio (SNR) metric tailored to the needs of degradation 

signals; and (ii) it develops a systematic data-level fusion model that combines the degradation-

based signals from multiple sensors with the goal of maximizing the defined SNR metric. Such 

optimization efforts result in a composite health index that better characterizes the health condition 

of the degraded unit and thus leads to an improved remaining life prediction. The developed data 

fusion method was tested and validated by using the degradation dataset of aircraft gas turbine 

engines that were generated by C-MAPSS [32]. Our experimental studies showed that the 

developed health index outperformed each original sensor data and the health indices constructed 

through other existing data-level fusion methods. In addition, the robustness analysis showed that 

the proposed data fusion method can allow certain level of missing data without sacrificing too 

much on the accuracy of the derived optimal solutions. Furthermore, it is worth mentioning that 

the constructed health index can be regarded as an additional sensor data which can be integrated 

with other decision-level fusion models to further enhance prognostic performance. 

3.6 Appendix 

The variance in the failure threshold of the health index can be expressed as: 𝒘′𝑳.,.,𝑛𝑖

′ 𝑫𝑳.,.,𝑛𝑖
 𝒘. 

The proof has been given in [10] and here we provide the derivation again for convenience. Denote 
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𝟏  as the column vector with all ones, 𝑰  as the identity matrix and 𝑫 =
1

𝑚−1
∗ (𝑰 −

𝟏𝟏′

𝑚
) . The 

unbiased estimator of the variance in the failure threshold is: ∑ (ℎ𝑖,𝑛𝑖
− ℎ̅.,𝑛𝑖

)
2𝑚

𝑖=1 (𝑚 − 1)⁄ =

(𝑳.,.,𝑛𝑖
𝒘)

′
(𝑳.,.,𝑛𝑖

𝒘)−𝑚(
𝟏′𝑳.,.,𝑛𝑖

𝒘

𝑚
)

2

𝑚−1
=

𝒘′𝑳.,.,𝑛𝑖
′ 𝑳.,.,𝑛𝑖

𝒘−
𝒘′𝑳.,.,𝑛𝑖

′ 𝟏𝟏′𝑳.,.,𝑛𝑖
𝒘

𝑚

𝑚−1
= 𝒘′𝑳.,.,𝑛𝑖

′ (
𝑰−

𝟏𝟏′

𝑚

𝑚−1
)𝑳.,.,𝑛𝑖

𝒘 =

𝒘′𝑳.,.,𝑛𝑖

′ 𝑫𝑳.,.,𝑛𝑖
𝒘. 

Here, we prove the optimal solution 𝒘∗  that maximizes 𝑆𝑁𝑅𝑑  in (3.5) is the eigenvector 

corresponding to the largest eigenvalue 𝜆𝑚𝑎𝑥  by solving the generalized eigenvalue problem 

𝑨𝒘 = 𝜆𝑚𝑎𝑥𝑩𝒘. The optimization problem in (3.5) is equivalent to 

𝑚𝑎𝑥𝒘 𝒘′𝑨𝒘, s.t. 𝒘′𝑩𝒘 = 𝐾,                      (3.10) 

where 𝐾  is a constant number. Define the Lagrangian to be 𝐿 = 𝒘′𝑨𝒘 − 𝜆(𝒘′𝑩𝒘 − 𝐾) . By 

taking the derivative with respect to 𝒘, we obtain the solution:  

𝑨𝒘 = 𝜆𝑩𝒘.                                    (3.11) 

This is a generalized eigenvalue problem and 𝜆 is the eigenvalue. To show that the optimal 

value of (3.10) is achieved when 𝜆 equals to the largest eigenvalue, we multiple 𝒘′ on both sides 

of (3.11), 𝒘′𝑨𝒘 = 𝜆𝒘′𝑩𝒘 = 𝜆𝐾. Consequently, the optimal solution of (3.10) is the generalized 

eigenvector corresponding to the largest eigenvalue 𝜆𝑚𝑎𝑥 by solving the generalized eigenvalue 

problem 𝑨𝒘 = 𝜆𝑚𝑎𝑥𝑩𝒘. 

Here, we show that both 𝑩 and 𝑨 are symmetric positive semidefinite (P.S.D.) matrices. First, 

it is straightforward to see that  𝑫 =
𝑰−𝑶/𝑚

𝑚−1
 is a symmetric P.S.D matrix. Thus, according to the 

Cholesky decomposition, 𝑫 can be written as 𝑫 = 𝑮𝑮′, in which 𝑮 is a lower triangular matrix. 
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As a result, 𝑳.,.,𝑛𝑖

′ 𝑫𝑳.,.,𝑛𝑖
= (𝑮′𝑳.,.,𝑛𝑖

)
′
𝑮′𝑳.,.,𝑛𝑖

 is a P.S.D. matrix. Similarly, 𝑨 = 𝒀𝟎
′𝟏𝟏′𝒀𝟎 is also a 

P.S.D. matrix. Next, as 𝑯 is the projection matrix, ((𝑰 − 𝑯)𝒄𝑖,.𝑳𝑖,.,.)
′
(𝑰 − 𝑯)𝒄𝑖,.𝑳𝑖,.,. = 𝑳𝑖,.,.

′ 𝒄𝑖,.(𝑰 −

𝑯)𝒄𝑖,.𝑳𝑖,.,.  is also P.S.D. Since the sum of P.S.D. matrices is also P.S.D., 𝑩 = 𝑳.,.,𝑛𝑖

′ 𝑫𝑳.,.,𝑛𝑖
+

∑ 𝑳𝑖,.,.
′ 𝒄𝑖,.(𝑰 − 𝑯)𝒄𝑖,.𝑳𝑖,.,.

𝑚
𝑖=1  is a P.S.D. matrix. In addition, as 𝑩 = 𝑩′ and 𝑨 = 𝑨′, both matrices 𝑩 

and 𝑨 are symmetric and P.S.D. 

Here, we show that the posterior distribution of 𝜞𝑖,𝑗  still follows a multivariate normal 

distribution with mean 𝒖𝑗
1 = (

𝜳𝑖
′𝜳𝑖

𝜎𝑗
2 + (𝜮𝑗

0)
−1

)
−1

(
𝜳𝑖

′𝑳𝑖,𝑗,.

𝜎𝑗
2 + (𝜮𝑗

0)
−1

𝒖𝑗
0) and variance 𝜮𝑗

1 =

(
𝜳𝑖

′𝜳𝑖

𝜎𝑗
2 + (𝜮𝑗

0)−1)
−1

. The proof has been given in [10] and here we provide the derivation again 

for convenience.  

The probability density function of  𝜞𝑖,𝑗  can be expressed as 𝑃(𝜞𝑖,𝑗) =

1

(2𝜋)3/2|𝜮𝑗
0|1/2 𝑒−

1

2
(𝜞𝑖,𝑗−𝒖𝑗

0)′(𝜮𝑗
0)−1(𝜞𝑖,𝑗−𝒖𝑗

0)
.  Thus, 

𝑃(𝜞𝑖,𝑗|𝑳𝑖,𝑗,.) ∝ 𝑃(𝑳𝑖,𝑗,.|𝜞𝑖,𝑗)𝑃(𝜞𝑖,𝑗) ∝ 𝑒
−

1

2𝜎𝑗
2(𝑳𝑖,𝑗,.−𝜳𝑖𝜞𝑖,𝑗)

′
(𝑳𝑖,𝑗,.−𝜳𝑖𝜞𝑖,𝑗)

𝑒
−

1
2
(𝜞𝑖,𝑗−𝒖𝑗

0)
′
(𝜮𝑗

0)
−1

(𝜞𝑖,𝑗−𝒖𝑗
0)

∝ 𝑒
𝜞𝑖,𝑗

′ (
𝜳𝑖

′𝜳𝑖

𝜎𝑗
2 +(𝜮𝑗

0)
−1

)𝜞𝑖,𝑗−2(
𝑳𝑖,𝑗,.
′ 𝜳𝑖

𝜎𝑗
2 +(𝒖𝑗

0)
′
(𝜮𝑗

0)
−1

)𝜞𝑖,𝑗

.             

It is known that the Gaussian family is the conjugate prior for the Gaussian likelihood function, 

and thus the posterior distribution also follows a multivariate normal distribution. As a result, 

𝜞𝑖,𝑗|𝑳𝑖,𝑗,.~𝑁3(𝒖𝑗
1, 𝜮𝑗

1)and 𝑃(𝜞𝑖,𝑗|𝑳𝑖,𝑗,.) ∝ 𝑒−
1

2
(𝜞𝑖,𝑗−𝒖𝑗

1)′(𝜮𝑗
1)−1(𝜞𝑖,𝑗−𝒖𝑗

1)
. 
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Comparing the two equations for 𝑃(𝜞𝑖,𝑗|𝑳𝑖,𝑗,.), we get the results (𝜮𝑗
1)−1 = (

𝜳𝑖
′𝜳𝑖

𝜎𝑗
2 + (𝜮𝑗

0)
−1

) 

and (𝒖𝑗
1)′(𝜮𝑗

1)−1 = (
𝑳𝑖,𝑗,.
′ 𝜳𝑖

𝜎𝑗
2 + (𝒖𝑗

0)
′
(𝜮𝑗

0)
−1

). This finishes the proof that 𝜞𝑖,𝑗|𝑳𝑖,𝑗,.~𝑁3(𝒖𝑗
1, 𝜮𝑗

1), 

where 𝜮𝑗
1 = (

𝜳𝑖
′𝜳𝑖

𝜎𝑗
2 + (𝜮𝑗

0)
−1

)
−1

and 𝒖𝑗
1 = (

𝜳𝑖
′𝜳𝑖

𝜎𝑗
2 + (𝜮𝑗

0)
−1

)
−1

(
𝜳𝑖

′𝑳𝑖,𝑗,.

𝜎𝑗
2 + (𝜮𝑗

0)
−1

𝒖𝑗
0). 
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Chapter 4 

A Data-level Fusion Approach for Degradation Modeling 

and Prognostic Analysis Under Multiple Failure Modes 

4.1 Introduction 

As mentioned in Chapters 1 and 2, different failure modes may have distinct influences on the 

degradation path of a unit. To illustrate this point, Fig. 4.1 displays the degradation profiles of two 

 

 
Fig. 4.1. An example of the degradation profiles of two sensors for two units. The circle 

marks correspond to the sensor measurements of unit 1 that fails due to failure mode 1, 

whereas the cross marks correspond to the sensor measurements of unit 2 that fails due to 

failure mode -1. The lines represent a second order polynomial fit for the sensor 

measurements. 
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different sensors for two units that fail due to two different failure modes. It clearly shows that the 

sensor measurements tend to be highly correlated, and some sensors are more sensitive to certain 

types of failure modes (e.g., sensor 2) while others (e.g., sensor 1) are not. This example thus 

motivates us to consider data-level fusion approaches that take advantage of the multiple and 

dependent sensor information to better infer the failure mode of a unit along its service lifecycle. 

If such failure mode information is known, then it can be readily integrated with the existing data-

level fusion models for better degradation modeling and prognostics.  

To the best of our knowledge, the existing literature still lacks a generic data fusion approach 

that can be effectively used for degradation modeling and prognostics when the challenges of 

multiple sensor data and multiple failure modes simultaneously occur. Thus, this Chapter seeks to 

fill this literature gap by developing a data-level fusion methodology via the combination of 

multiple sensor data under multiple failure modes. Specifically, our proposed method will first 

construct a failure mode index, named FM-INDEX, which allows for the online estimation of the 

probability that a unit belongs to a certain failure mode. Once developed, the FM-INDEX can be 

integrated with existing data-level fusion approaches (e.g., Liu et al. (2015), Liu and Huang (2016)) 

to address the challenges of degradation modeling and prognostics when there are multiple failure 

modes. Fig. 4.2 shows a schematic diagram of the proposed data fusion approach. 

 The rest of the Chapter is structured as follows: Section 4.2 first introduces the Commercial 

Modular Aero-Propulsion System Simulation (C-MAPSS) that was developed by NASA [32]. 

Then, reviews a degradation dataset in [27], which was generated by C-MAPSS to simulate the 

degradation process of aircraft gas turbine engines. Section 4.3 proposes a data-level fusion 

method for failure mode diagnosis during condition monitoring, which is tailored to the needs of 
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degradation modeling and prognostics. Section 4.4 discusses the construction of a health-index. 

Section 4.5 shows the procedure of estimating the remaining useful life under multiple failure 

modes. Section 4.6 demonstrates the effectiveness of the proposed method in terms of its failure 

mode diagnosis, degradation modeling, and remaining life prediction based on the dataset 

introduced in Section 4.2. Section 4.7 draws a conclusion and discusses future research directions. 

 

Data-level 

fusion

Prognostic 

Analysis

Degradation 

Modeling

FM-INDEX

Failure Mode 

Diagnosis

Data 

preprocessing

 
Fig. 4.2. A flow chart of the proposed data-level fusion approach for degradation modeling and 

prognostics when there are multiple failure modes. 

 

4.2 Dataset Overview 

C-MAPSS is a tool for simulating realistic large commercial turbofan engines (Frederick et al. 

(2007)), which has been widely used in the literature of condition monitoring and degradation 

analysis (Ramasso and Saxena (2014)). Fig. 4.3 shows a schematic diagram of the aircraft gas 

turbine engine that is simulated by using C-MAPSS. 
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Fig. 4.3. Simplified Engine Diagram simulated by C-MAPSS (Saxena and Goebel et al. (2008)). 

 

This simulator generates and records 21 sensor signals of aircraft engines in their service 

lifecycles. The description of the 21 sensors is given in Table 4.1. Furthermore, each operating 

unit is subject to one of two potential failure modes: the failure is either due to the high pressure 

compressor (HPC) or the fan of the engine. Specifically, each engine starts with an unknown initial 

wear condition, and proceeds to degrade until failure. Due to the complexity of the engine system 

and the dynamics of the degradation process, the damage profile of an engine cannot be directly 

inferred based on the flight duration or physical models. Also, the simulation model for generating 

the dataset is not available to the users. Thus, the underlying assumption here is that users have to 

solely rely on the multiple sensor data collected from each engine to estimate the current health 

status and make predictions about the future behavior.  

 

TABLE 4.1. DETAILED SENSOR DESCRIPTIONS [27] 

Symbol Description Units 

T2 Total temperature at fan inlet °R 

T24 Total temperature at LPC outlet °R 

T30 Total temperature at HPC outlet °R 

T50 Total temperature at LPT outlet °R 

P2 Pressure at fan inlet psia 
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P15 Total pressure in bypass-duct psia 

P30 Total pressure at HPC outlet psia 

Nf Physical fan speed rpm 

Nc Physical core speed rpm 

epr Engine pressure ratio (P50/P2) -- 

Ps30 Static pressure at HPC outlet psia 

phi Ratio of fuel flow to Ps30 pps/psi 

NRf Corrected fan speed rpm 

NRc Corrected core speed rpm 

BPR Bypass Ratio -- 

farB Burner fuel-air ratio -- 

htBleed Bleed Enthalpy -- 

Nf_dmd Demanded fan speed rpm 

PCNfR_dmd Demanded corrected fan speed rpm 

W31 HPT coolant bleed lbm/s 

W32 LPT coolant bleed lbm/s 

 

The collected degradation dataset contains 100 training units. To obtain the failure mode for the 

training units, we leveraged another dataset (called “control group”) from the same source (Saxena 

and Goebel et al. (2008)), which contains units that are known to fail only due to the HPC failure. 

Specifically, we compare the trends (considered to be an increasing/decreasing trend if the initial 

observation is less/larger than the last observation before failure) of multiple sensor data (e.g., P30, 

phi, BPR, W31, W32) from these two datasets, and find that there are 44 training units from this 

dataset consistently showing different trend information compared to the control group. As a result, 

our preliminary analysis concluded that 56 training units failed due to the fault at the HPC (we 

denote this failure mode type with label “−1”), and the remaining 44 training units failed due to 

the fault at the fan (we denote this failure mode type with label “1”). The dataset also contains 

another 100 testing units with unknown failure modes. Each training unit runs until it fails, while 

each testing unit stops operation at some points before failure. There is also a file recording the 
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actual remaining lifetime of the 100 testing units. Thus, the key challenge here is how to accurately 

estimate the remaining lifetime of these testing units based on the available observations. A more 

detailed description of the dataset can be found in [27]. 

4.3 Data-level Fusion for Failure Mode Diagnosis 

This sub-section will develop a data-level fusion model for failure mode diagnosis by 

constructing a composite index, named as FM-INDEX, via the combination of multiple sensor 

data. 

4.3.1 Model Formulation 

Let 𝑳𝑖,.,𝑡 = [𝐿𝑖,1,𝑡, … , 𝐿𝑖,𝑠,𝑡] ∈ ℝ1×𝑠 be the vector of sensor measurements of 𝑠 sensors for unit 𝑖 

at time 𝑡 for 𝑡 = 1,⋯ , 𝑛𝑖. Here, ℝ is the set of real numbers, 𝐿𝑖,𝑗,𝑡 is the measurement of sensor 𝑗 

for unit 𝑖 at time 𝑡, and 𝑛𝑖 is the number of available observations for unit 𝑖. In addition, we denote 

𝑧𝑖 to be the true failure mode that training unit 𝑖 belongs to, 𝑚 to be the total number of training 

units, and 𝑉(𝑓(∙), 𝑧) to be the loss function that quantifies the deviation between the predicted 

label given the fusion model 𝑓(∙) and the ground truth label 𝑧. To achieve a failure mode diagnosis, 

one possible idea is to construct a fusion model 𝑓𝑡(𝑳𝑖,.,𝑡) that predicts the failure mode of unit 𝑖, 

such that the loss function 𝑉(𝑓𝑡(𝑳𝑖,.,𝑡), 𝑧𝑖) can be minimized over the entire training dataset:           

 obj = min𝑓𝑡

1

𝑚
∑ ∑ 𝑉(𝑓𝑡(𝑳𝑖,.,𝑡), 𝑧𝑖)

𝑛𝑖
𝑡=1

𝑚
𝑖=1 . (4.1) 

While this approach is intuitively sound, it produces a fusion model 𝑓𝑡(𝑳𝑖,.,𝑡) at each observation 

time 𝑡, which is difficult to implement for new testing units during condition monitoring. As a 

result, instead we propose the following optimization problem with one fusion model 𝑓(𝑳𝑖,.,𝑡) that 
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is independent of the observation time 𝑡:  

 obj = min𝑓
1

𝑚
∑ ∑ 𝑎𝑖,𝑡𝑉(𝑓(𝑳𝑖,.,𝑡), 𝑧𝑖)

𝑛𝑖
𝑡=1

𝑚
𝑖=1 + 𝜆𝑅(𝑓).  (4.2) 

Here, we define 𝑥𝑖,𝑡 = 𝑓(𝑳𝑖,.,𝑡) to be the FM-INDEX for unit 𝑖 at time 𝑡. Thus, an ideal case is that 

the constructed FM-INDEX, 𝑥𝑖,𝑡, can always retrieve the true failure mode label 𝑧𝑖, i.e., achieving 

the minimum value in the loss function 𝑉(𝑥𝑖,𝑡, 𝑧𝑖). 𝑅(𝑓) is a regularization function to prevent 

over-fitting; 𝜆 is the regularization parameter; and 𝑎𝑖,𝑡 is called the loss weight for unit 𝑖 at time 𝑡, 

which is a key parameter of our proposed data fusion model in (4.2). In the next sub-section, we 

show how to construct the loss weights {𝑎𝑖,𝑡}, such that the failure mode diagnosis can be tailored 

to the needs of degradation modeling and prognostics. One of the main advantages of the proposed 

approach is the flexibility in choosing the loss function. Furthermore, under certain parameters, 

the proposed method can be effectively transformed to several known and powerful classifiers 

such as the logistic regression [70] and the Support Vector Machine (SVM) [71]. More details 

about the loss function and 𝑅(𝑓) are discussed in Section 4.3.3. 

4.3.2 Setting the Loss Weights {𝑎𝑖,𝑡} 

Denote 𝑀𝑘  to be the set of training units that belong to failure mode 𝑘 . In particular, we 

consider the following three unique requirements when setting the loss weights {𝑎𝑖,𝑡}: 

(i)  Equal importance of the unit from the same failure mode; 

(ii) Equal importance for different failure modes; and 

(iii) More accurate failure mode diagnostic result as the unit approaches failure.  
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The requirement (i) means that for each unit that belongs to the same failure mode, their 

importance should be equally considered in the proposed data fusion model. Thus, the following 

constraint must be satisfied: 

 ∑ 𝑎𝑖,𝑡 = 𝑐𝑘, ∀𝑖 ∈ 𝑀𝑘
𝑛𝑖
𝑡=1 , ∀𝑘,  (4.3) 

where 𝑐𝑘 denotes a constant number whose value depends on failure mode 𝑘. 

In practice, as the number of units from different failure modes may not be the same, the 

requirement (ii) must be also satisfied to deal with this imbalanced classification problem: 

 ∑ ∑ 𝑎𝑖,𝑡
𝑛𝑖
𝑡=1𝑖∈𝑀𝑘

= |𝑀𝑘| ∗ 𝑐𝑘 = 𝑐, ∀𝑘,  (4.4) 

where 𝑐 denotes a constant value and |𝑀𝑘| is the cardinality of the set 𝑀𝑘  (i.e., the number of 

training units that fail under failure mode 𝑘). This constraint ensures equal contributions from each 

failure mode in constructing the FM-INDEX.  

Considering that the remaining life prediction becomes more critical as a unit approaches the 

end of its life, requirement (iii) must be satisfied as well. We impose this constraint by setting 

{𝑎𝑖,𝑡} as a non-decreasing series:  

 𝑎𝑖,𝑡+1 ≥ 𝑎𝑖,𝑡 , 𝑖 = 1,… ,𝑚,  𝑡 = 1, 2, … ,  𝑛𝑖 − 1. (4.5) 

In this way, more penalty will be given to the loss function as time increases to ensure a more 

accurate failure mode diagnostic result as the unit approaches the end of life. Specifically, if we 

assume 𝑎𝑖,𝑡 follows an arithmetic series (2𝑎𝑖,𝑡 = 𝑎𝑖,𝑡+1 + 𝑎𝑖,𝑡−1), then we can show that the values 

of the loss weights for training units that fail under failure mode 𝑘 satisfy the following equation: 

𝑎𝑖,𝑡 = 𝑎𝑖,1 + (𝑡 − 1)

2𝑚

|𝑀𝑘|
−2𝑎𝑖,1𝑛𝑖

(𝑛𝑖−1)𝑛𝑖
, 𝑡 = 1,… , 𝑛𝑖 , ∀𝑖 ∈ 𝑀𝑘. (4.6) 
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In the above equation, the constant term 𝑐𝑘 in (3) is set to be 
𝑚

|𝑀𝑘|
 and the constant term 𝑐 in (4.4) 

is set to be 𝑚. 

4.3.3 Hinge Loss Functions 

Many of the existing loss functions (e.g., square loss, logistic loss, hinge loss) can be used in 

(4.2) to identify the failure mode during condition monitoring [9]. Here, we choose to focus on the 

hinge loss function as a demonstration. Recall that in Section 4.2, our problem of interest has two 

potential failure modes, and thus we concentrate on the two failure mode scenarios. A discussion 

on the extensions to the multiple failure modes is given at the end of this sub-section. In addition, 

to highlight our main idea, we focus on the linear fusion model as an illustration, i.e., 𝑥𝑖,𝑡 =

𝑓(𝑳𝑖,.,𝑡) = 𝑳𝑖,.,𝑡𝒘 + 𝑏. Without loss of generality, such a linear model can be easily extended to 

nonlinear models by either the creation of nonlinear features or the use of kernel methods [72].  

Specifically, the hinge loss function can be expressed as: 

 𝑉(𝑥𝑖,𝑡, 𝑧𝑖) = 𝜉𝑖,𝑡 = max(0,1 − 𝑧𝑖𝑥𝑖,𝑡),  (4.7) 

where 𝜉𝑖,𝑡 is called the mis-classification error. Based on the hinge loss function, the failure mode 

of training unit 𝑖 is considered to be classified correctly at time 𝑡 (i.e., with zero loss, 𝜉𝑖,𝑡 = 0), if 

𝑧𝑖𝑥𝑖,𝑡 ≥ 1; otherwise, unit 𝑖 is considered to be misclassified at time 𝑡 with an error 𝜉𝑖,𝑡 = 1 −

𝑧𝑖𝑥𝑖,𝑡.  It is known that the models solely relying on the hinge loss function are subject to over-

fitting. To avoid this problem, a regularization function 𝑅(𝑓) = ‖𝑓‖2 = 𝒘𝑇𝒘 is usually integrated 

with the hinge loss function. It can be shown that with the regularized hinge loss function, the 

proposed data-level fusion model in (4.2) simplifies to the weighted SVM approach [71]: 
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obj = min𝒘,𝑏,𝜉𝑖,𝑡
𝐶 ∑ ∑ (𝑎𝑖,𝑡 ∗ 𝜉𝑖,𝑡)

𝑛𝑖
𝑡=1

𝑚
𝑖=1 + 0.5𝒘𝑇𝒘   

s.t.  𝑧𝑖𝑥𝑖,𝑡 ≥ 1 − 𝜉𝑖,𝑡, 𝜉𝑖,𝑡 ≥ 0,  𝑖 = 1, 2, … ,𝑚,  𝑡 = 1,  2,… , 𝑛𝑖 (4.8) 

                            

(See Appendix for details). 

Here, 𝐶 is a tuning parameter that controls the relative importance of minimizing the weighted 

misclassification errors ∑ ∑ (𝑎𝑖,𝑡 ∗ 𝜉𝑖,𝑡)
𝑛𝑖
𝑡=1

𝑚
𝑖=1  and the regularization term 𝒘𝑇𝒘. In practice, the 

value of 𝐶  can be chosen by cross validation; and the weighted SVM problem can be solved 

efficiently by many algorithms, such as the gradient descent methods [73].   

The two failure mode scenarios discussed above can also be extended to the multiple failure 

mode scenarios (see [74] for more details). For example, one possibility is to design multiple FM-

INDICES and apply techniques like One-vs.-rest or One-vs.-one strategy [75]. 

4.3.4 Failure Mode Probability Model 

Here, we discuss how to leverage the proposed FM-INDEX, 𝑥𝑖,𝑡, to estimate the probability of 

the failure mode. In the existing literature, it is a common practice to use the sigmoid function to 

transform the outputs of a classification model to a probability function. The technique is called 

Platt scaling which was proposed by John Platt [76] in the context of support vector machines, and 

currently this technique is available in a lot of computer software (e.g., MATLAB) and packages. 

Here, we adopt the sigmoid function 𝑔(𝑥𝑖,𝑡) =
1

1+𝑒
𝐴𝑥𝑖,𝑡+𝐵 in [76] to develop the failure mode (FM) 

probability model: 

 

𝑃(𝑍𝑖,𝑡 = 𝑘|𝑥𝑖,𝑡) = {

1

1+𝑒
𝐴𝑥𝑖,𝑡+𝐵  , 𝑓𝑜𝑟 𝑘 = 1

   
𝑒

𝐴𝑥𝑖,𝑡+𝐵

1+𝑒
𝐴𝑥𝑖,𝑡+𝐵  , 𝑓𝑜𝑟 𝑘 = −1

, (4.9) 
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where 𝑍𝑖,𝑡 denotes the predicted failure mode of unit 𝑖 at time 𝑡; 𝑘 is the failure mode label; and 

the parameters 𝐴  and 𝐵  can be estimated by the maximum likelihood estimation approach. 

Without loss of generality, this proposed FM probability model in (4.9) can be also extended to 

multiple failure modes (e.g., see [77]).  

4.3.5 Real Time Failure Mode Probability Estimation 

Previously, we developed an FM-INDEX and a probability estimation of the failure mode for a 

specific observation. Here, we show how to calculate the failure mode probability for a testing unit 

based on its available observations. In the reliability-based approach, survival models are often 

utilized to find the failure time and then competing risk analysis is performed to infer the failure 

mode probability [78]. However, this approach often focuses on estimating the Remaining Life 

Distribution (RLD) for the entire population instead of for each individual unit that is still operating 

in the field. While it is possible to online update the degradation model based on the in-situ sensor 

data and then project it up to the estimated failure threshold to obtain a failure time estimation for 

each failure model, the derived FM probability estimation depends on the selected failure time 

window. In fact, it is possible that the estimated failure times of two units from different failure 

modes exhibit similar results whereas the in-situ sensor data of these two units already present 

different characteristics. Therefore, in this Chapter, we rather choose a different path that predicts 

the FM probability of a unit in real time directly based on its in-situ multiple sensor measurements. 

Specifically, we first calculate the conditional probability 𝑃(𝑍𝑖,𝑡 = 𝑘|𝑥𝑖,𝑡) in (4.9) for unit 𝑖 at 

time 𝑡. Then, we integrate the probability estimations up to the current time 𝑛𝑖 as shown below:  
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 𝑃(𝑍𝑖 = 𝑘|𝑳𝑖,.,.) = 𝑃(𝑍𝑖 = 𝑘|𝒙𝑖,.) = ∑ 𝑐𝑖,𝑡
𝑛𝑖
𝑡=1 𝑃(𝑍𝑖,𝑡 = 𝑘|𝑥𝑖,𝑡).  (4.10) 

Here, 𝑐𝑖,𝑡 is the weight coefficient of the probability estimation 𝑃(𝑍𝑖,𝑡 = 𝑘|𝑥𝑖,𝑡) for unit 𝑖 at time 

𝑡. Similar to the loss weights {𝑎𝑖,𝑡} in Section 4.3.2, here we propose to also assign higher weights 

to the most recent observations: 

 𝑐𝑖,𝑡 ≥ 𝑐𝑖,𝑡−1 ≥ 0 , 𝑡 = 1,2, … , 𝑛𝑖 − 1. (4.11) 

In addition, according to the law of probability, the following constraint should be satisfied: 

 ∑ 𝑐𝑖,𝑡 = 1,
𝑛𝑖
𝑡=1 𝑡 = 1,2, … , 𝑛𝑖.  (4.12) 

Similar to (4.6), if we assume 𝑐𝑖,𝑡 follows an arithmetic series (2𝑐𝑖,𝑡 = 𝑐𝑖,𝑡+1 + 𝑐𝑖,𝑡−1), then we 

can determine the value of 𝑐𝑖,𝑡 using the following arithmetic series:  

 𝑐𝑖,𝑡 = 𝑐𝑖,1 + (𝑡 − 1)
2−2𝑐𝑖,1𝑛𝑖

(𝑛𝑖−1)𝑛𝑖
, 𝑡 = 1,… , 𝑛𝑖.  (4.13) 

Considering that the fault diagnostic result may not be reliable at the early stage of degradation, 

we can further apply the idea of moving window to the arithmetic series in (4.13). Then, the value 

of 𝑐𝑖,𝑡 is calculated by: 

 
𝑐𝑖,𝑡 = {

 𝑐𝑖,(𝑛𝑖−𝑟+1) + (𝑡 − 𝑛𝑖 + 𝑟 − 1)
2−2𝑟𝑐𝑖,(𝑛𝑖−𝑟+1)

(𝑟−1)𝑟
, 𝑡 = (𝑛𝑖 − 𝑟 + 1), … , 𝑛𝑖

0, 𝑡 = 1,… , (𝑛𝑖 − 𝑟)
,  (4.14) 

where 𝑟 is the moving window size. 

4.3.6 Flow Chart of the Data-level Fusion Model for Failure Mode Diagnosis 

Fig. 4.4 illustrates the flow chart of the proposed failure mode diagnostic approach. To 

summarize, we first construct a composite index, named FM-INDEX, which characterizes the 

failure mode of a unit based on multiple sensor data. Then, with the constructed FM-INDEX, the 
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FM probability model in (4.9) produces a probability estimation of the failure mode for each 

observation. Finally, we combine the probability estimations from the available observations of a 

unit to produce a single failure mode probability estimation for the unit as shown in (4.10). 
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FM Probability 
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Partially Degraded 

Testing Unit

FM Probability 

Estimation For 
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Setting Probability 
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Fig. 4.4 Flow chart of the proposed data-level fusion model for failure mode diagnosis. 

 

4.4 Health Index Construction under Multiple Failure Modes 

From the motivation example in Fig. 4.3, we can see that different sensors may contain partial 

and dependent information about the same unit. In such cases, data fusion methods are often used 

that take advantage of the sensor data dependencies to better characterize the condition of a unit. 

For example, Liu and Huang [11] proposed to construct a health index via the combination of 
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multiple sensor data when there is only one failure mode. They identified two important properties 

that the health index should possess to ensure successful degradation modeling and prognostics:  

Property 1: Given the same failure mode, the variance in the failure threshold of the developed 

health index should be minimal.  

Property 2: Given the same failure mode, the model fitting errors for the developed health index 

should be minimal. 

In particular, Liu and Huang [11] proposed a linear fusion model to construct a health index, 

ℎ𝑖,𝑡 = 𝑳𝑖,.,𝑡𝒘ℎ. Here, ℎ𝑖,𝑡 is the developed health index for unit 𝑖 at time 𝑡, and 𝒘ℎ is the fusion 

coefficients for combining the multiple sensor data 𝑳𝑖,.,𝑡 . By optimizing the two identified 

properties mentioned above, Liu and Huang [11] further showed that the optimal weight 𝒘ℎ can 

be efficiently solved via a quadratic programing. While such a data-level fusion model has 

demonstrated a significant improvement for degradation modeling and prognostics, it is limited by 

the single failure mode assumption. To address this issue, we propose to construct a conditional 

health index for each failure mode 𝑘 (i.e., ℎ𝑖,𝑡
(𝑘)

= 𝑳𝑖,.,𝑡𝒘ℎ
(𝑘)

), which can be further integrated with 

the developed failure mode diagnostic procedure. Specifically, 𝒘ℎ
(𝑘)

 can be derived by using the 

proposed method in Liu and Huang [11] based on only the training units that fail under failure 

mode 𝑘. Our goal is that the constructed health index can better characterize the degradation status 

of a unit than relying on any original sensor data, thus leading to an improved remaining life 

prediction. 

To model the evolution of the degradation process, one of the commonly used methods is the 

general mixed-effect degradation model proposed by Lu and Meeker [25]: 
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 ℎ𝑡 = 𝜂(𝝋, 𝜽, 𝑡) + 𝜀𝑡,  (4.15) 

where 𝜂(∙) is the parametric form of the degradation model; ℎ𝑡 is the health index that measures 

the underlying degradation status at time 𝑡; 𝝋 is a vector of fixed-effect parameters that represents 

common characteristics of the population; 𝜽  is a vector of random-effect parameters that 

characterizes the unit-to-unit variability; and 𝜀𝑡 is an error term that represents the measurement 

noises. Depending on the parametric form of 𝜂(∙), this degradation model can be used to describe 

different functional forms according to the evolution of the conditional health index. Without loss 

of generality, here we focus on the 𝑝th order polynomial degradation model as a demonstration: 

 ℎ𝑖,𝑡
(𝑘)

= ∑ 𝜃𝑖,𝛼
(𝑘)

𝑡𝛼𝑝
𝛼=0 + 𝜀𝑖,𝑡

(𝑘)
= 𝜞𝑡𝜽𝑖

(𝑘)
+ 𝜀𝑖,𝑡

(𝑘)
,  (4.16) 

where 𝑝 is the order of the polynomial model; ℎ𝑖,𝑡
(𝑘)

 is the constructed conditional health index for 

unit 𝑖 at time 𝑡 given failure mode 𝑘; 𝜽𝑖
(𝑘)

= [𝜃𝑖,0
(𝑘)

, … , 𝜃𝑖,𝑝
(𝑘)

]
′

is the random-effect parameters for 

unit 𝑖 given that it degrades due to failure mode 𝑘 and it is often assumed to follow a multivariate 

normal distribution, 𝜽𝑖
(𝑘)

~𝑁𝑝+1(𝒖𝑘
0 , 𝜮𝑘

0); 𝜀𝑖,𝑡
(𝑘)

 is the random noise and follows 𝑁(0, 𝜎𝑘
2); and 𝜞𝑡 =

[1, 𝑡, … , 𝑡𝑝]. There are two main reasons that we focus on the polynomial degradation model: First, 

many degradation models discussed in the existing literature can be transformed into (4.16), such 

as the exponential form models [10], [29], [79] and the random coefficient based models [66], [67]. 

Second, we implement the Bayesian approach that leverages the in-situ multiple sensor data of an 

operating unit to online update the parameters of the polynomial model. In this way, the updated 

model becomes more tailored to the unique degradation characteristics of each unit to ensure a 

good extrapolation performance for prognostics. 
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4.5 Estimation of the Remaining Useful Life Distribution 

In this section, we propose a prognostic method to predict the remaining lifetime of a partially 

degraded unit in real time when there are multiple failure modes. Specifically, this method 

integrates the Bayesian updating approach and the failure mode diagnostic procedure proposed in 

Section 4.3.  

For prognostic analysis, a common assumption is that a unit fails once its degradation signal 

crosses a predefined failure threshold. Consequently, a fundamental requirement here is to 

accurately predict the future evolution of the degradation signal for a unit up to the failure threshold. 

However, the central challenge is that the failure mode may affect the degradation path and thus 

the failure time of a unit. To address this issue, we propose to first offline estimate the values of 

𝒖𝑘
0 , 𝜮𝑘

0  and 𝜎𝑘
2 in (4.16) based on the training units that fail under each failure mode 𝑘. Then, based 

on the in-situ data 𝑳𝑖,.,. collected from unit 𝑖, we calculate the conditional health index 𝒉𝑖,.
(𝑘)

 and 

further calibrate the random-effect parameters 𝜽𝑖
(𝑘)

 by using the Bayesian updating approach 

proposed by Gebraeel [56], conditioning on that unit 𝑖  fails under failure mode 𝑍𝑖 = 𝑘 . 

Specifically, for 𝜽𝑖
(𝑘)

~𝑁𝑝+1(𝒖𝑘
0 , 𝜮𝑘

0), we can show that the conditional posterior distribution of 

𝜽𝑖
(𝑘)

 still follows a multivariate normal distribution given the constructed conditional health index 

up to the current observation time 𝑛𝑖, 𝒉𝑖,.
(𝑘)

= [ℎ𝑖,1
(𝑘)

, … , ℎ𝑖,𝑛𝑖

(𝑘)
]
′

∈ ℝ𝑛𝑖×1:  

 𝜽𝑖
(𝑘)

 |𝒉𝑖,.
(𝑘)

~𝑁𝑝+1(𝒖𝑘
1 , 𝜮𝑘

1),  (4.17) 
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where 𝒖𝑘
1 = (

𝜳𝑖
′𝜳𝑖

𝜎𝑘
2 + (𝜮𝑘

0)−1)
−1

(
𝜳𝑖

′𝒉𝑖,.
(𝑘)

𝜎𝑘
2 + (𝜮𝑘

0)−1𝒖𝑘
0),    𝜮𝑘

1 = (
𝜳𝑖

′𝜳𝑖

𝜎𝑘
2 + (𝜮𝑘

0)−1)
−1

, and 𝜳𝑖 ∈

𝑅𝑛𝑖×(𝑝+1) =

[
 
 
 
 
1 … 1
… … …
1 … 𝑡𝑝

… … …
1 … 𝑛𝑖

𝑝
]
 
 
 
 

  (See Appendix for details). 

Here, we consider the normal distribution for the random-effect parameters since it leads to a 

convenient and analytical solution when updating the random-effect parameters in real time. In 

fact, this normal assumption for the random-effect parameters has been widely adopted in the 

existing literature [11], [29], [30], [79]. On the other hand, it is also possible to utilize other 

distributions or even some simulation-based approaches to compute the posterior distribution and 

remaining lifetime. In such cases, our proposed ideas for estimating the failure mode can still be 

applied. Thus, to highlight our main ideas, in the remaining of the Chapter, we only focus on the 

normal distribution for the random-effect parameters.  

Based on the updated random-effect parameters 𝜽𝑖
(𝑘)

 |𝒉𝑖,.
(𝑘)

, we then derive the RLD. In 

particular, since ℎ̃𝑖,𝑛𝑖+𝑡
(𝑘)

= 𝜃𝑖,0
(𝑘)

+ ⋯+ 𝜃𝑖,𝑝
(𝑘)

∗ (𝑛𝑖 + 𝑡)𝑝 + 𝜀𝑖,𝑛𝑖+𝑡
(𝑘)

 follows a normal distribution 

with mean �̃�𝑖,𝑛𝑖+𝑡,𝑘 = [1,… , (𝑛𝑖 + 𝑡)𝑝]𝒖𝑘
1  and variance �̃�𝑖,𝑛𝑖+𝑡,𝑘

2 = [1,… , (𝑛𝑖 +

𝑡)𝑝]𝜮𝑘
1[1, … , (𝑛𝑖 + 𝑡)𝑝]′ + 𝜎𝑘

2, we can calculate the conditional cumulative distribution function 

(cdf) for the remaining lifetime �̃�𝑖 based on the conditional health index 𝒉𝑖,.
(𝑘)

 given that unit 𝑖 fails 

under failure mode 𝑍𝑖 = 𝑘: 

 𝑃(�̃�𝑖 ≤ 𝑡|𝑳𝑖,.,., 𝑍𝑖 = 𝑘) = 𝑃(�̃�𝑖 ≤ 𝑡|𝒉𝑖,.
(𝑘)

) (4.18) 
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= 𝑃 (ℎ̃𝑖,𝑛𝑖+𝑡
(𝑘)

≥ 𝐷ℎ
(𝑘)

|𝒉𝑖,.
(𝑘)

) = Φ(
𝑢𝑖,𝑛𝑖+𝑡,𝑘−𝑢ℎ,𝑘

𝑑

√�̃�𝑖,𝑛𝑖+𝑡,𝑘
2 +𝑣ℎ,𝑘

𝑑
),     

where Φ(∙) is the standard normal cdf; and 𝐷ℎ
(𝑘)

 is the failure threshold for the conditional health 

index under failure mode 𝑘  and it is assumed to follow a normal distribution with mean and 

variance 𝑢ℎ,𝑘
𝑑  and 𝑣ℎ,𝑘

𝑑 , respectively. Their values can be estimated by the sample mean and the 

sample variance based on the last observations of the training units that fail under failure mode 𝑘.  

In practice, the failure mode for a unit is often unknown a priori. Thus, we integrate (4.18) with 

the FM probability estimation 𝑃(𝑍𝑖 = 𝑘|𝑳𝑖,.,.) in Section 3.1.5 to predict the RLD 𝐹�̃�𝑖|𝑳𝑖,.,.
(𝑡) given 

the collected in-situ sensor data 𝑳𝑖,.,.: 

𝐹�̃�𝑖|𝑳𝑖,.,.
(𝑡) = 𝑃(�̃�𝑖 ≤ 𝑡|𝑳𝑖,.,.) = ∑ {𝑃(�̃�𝑖 ≤ 𝑡|𝑳𝑖,.,., 𝑍𝑖 = 𝑘) ∗ 𝑃(𝑍𝑖 = 𝑘|𝑳𝑖,.,.)}𝑘∈𝐾 =  

∑ {𝑃(ℎ̃𝑖,𝑛𝑖+𝑡
(𝑘)

≥ 𝐷ℎ
(𝑘)

|𝒉𝑖,.
(𝑘)

) ∗ 𝑃(𝑍𝑖 = 𝑘|𝒙𝑖,.)}𝑘∈𝐾 , (4.19) 

where the set 𝐾 includes all the potential failure modes. Since the remaining lifetime for a testing 

unit should be greater than 0, we further consider the truncated cdf conditioning on �̃�𝑖 ≥ 0: 

𝑃(�̃�𝑖 ≤ 𝑡|𝑳𝑖,.,., �̃�𝑖 ≥ 0) =
𝑃(0 ≤ �̃�𝑖 ≤ 𝑡|𝑳𝑖,.,.)

𝑃(�̃�𝑖 ≥ 0|𝑳𝑖,.,.)
=

∑ {𝑃(𝑍𝑖 = 𝑘|𝑳𝑖,.,.)∗(𝑃(�̃�𝑖 ≤ 𝑡|𝑳𝑖,.,., 𝑍𝑖 = 𝑘)−𝑃(�̃�𝑖 ≤ 0|𝑳𝑖,.,., 𝑍𝑖 = 𝑘))}𝑘∈𝐾

1−∑ {𝑃(𝑍𝑖 = 𝑘|𝑳𝑖,.,.)∗𝑃(�̃�𝑖 ≤ 0|𝑳𝑖,.,., 𝑍𝑖 = 𝑘)}𝑘∈𝐾

.(4.20) 

Here, because the truncated cdf in (4.20) is skewed, we can use the median as the point estimator 

for the remaining lifetime. Numerically, this is equivalent to finding the observation time 𝑡 such 

that 𝑃(�̃�𝑖 ≤ 𝑡|𝑳𝑖,.,., �̃�𝑖 ≥ 0) = 0.5. 
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4.6 Case Study 

In this section, we evaluate our proposed data-level fusion method for failure mode diagnosis 

and prognostic analysis based on the dataset introduced in Section 4.2. In particular, we consider 

the following two benchmark methods when evaluating the performance of our proposed method: 

1) the data-level fusion method in Liu and Huang [11] as introduced in Section 4.4 which ignores 

the effect of multiple failure modes; and 2) each original sensor data with the consideration of the 

effect of multiple failure modes. 

4.6.1 Data Preprocessing and Sensor Selection 

Before implementing the proposed data fusion model, it requires to first determine which 

sensors to use. To ensure a fair comparison with the existing literature, we adopt a similar sensor 

selection criterion as in Liu and Huang [11]. They chose to select a sensor if it shows a consistent 

increasing or decreasing degradation trend among all the training units that fail under the same 

failure mode. Accordingly, the following 14 sensors (i.e., 𝑠 = 14) from Table 4.1 are selected: 

T24, T30, T50, P30, Nf, Nc, Ps30, phi, NRf, NRc, BPR, htBleed, W31 and W32. Given that these 

sensors measure different characteristics of the engine with different measurement units (e.g., psia, 

rpm, lbm/s), we further take a log transformation and then standardize the dataset before the data 

fusion as in Liu and Huang [11]. 

4.6.2 Failure Mode Diagnosis 

In this sub-section, we will demonstrate how to construct the proposed FM-INDEX. In addition, 

we conduct a sensitivity analysis on the weights of the constructed FM-INDEX. Then, we evaluate 
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and compare the failure mode diagnostic accuracy by using the FM-INDEX and each selected 

sensor data. Finally, we illustrate how to estimate the probability of the failure mode for a testing 

unit in real time. 

4.6.3 Parameter Setup 

In this case study, we choose the value of the loss weight {𝑎𝑖,𝑡} by assuming it follows the 

arithmetic series in (4.6). In addition, we select the hinge loss function in (4.7) with the 

regularization function 𝑅(𝑓) = ‖𝑓‖2 = 𝒘𝑇𝒘. By solving the optimization problem in (4.8), the 

optimal weights 𝒘∗ and the intercept term 𝑏∗ for constructing the FM-INDEX are obtained and 

shown in Table 4.2.  

 

TABLE 4.2. THE OPTIMAL WEIGHTS AND THE INTERCEPT TERM FOR COMBINING THE SELECTED 

SENSOR DATA WHEN CONSTRUCTING THE FM-INDEX 

Name T24 T30 T50 P30 Nf Nc Ps30 phi 

Value -0.2757 -0.2347 -0.4254 2.3447 -1.7481 -1.5456 -0.7011 3.1123  

Name NRf NRc BPR htBleed W31 W32 intercept  

Value -1.6992 -1.8486 -2.213 -0.2213 0.4162 0.4461 -2.1222  

 

Recall that the two failure modes occur either at the HPC or at the fan. From Table 4.2, we can 

see that the sensors that directly monitor the HPC or the fan tend to exhibit higher weights, which 

is consistent with our intuition. For example, the sensors with the largest four weights are phi, P30, 

BPR, NRc. According to the description in Table 4.1, these sensors directly measure the 

characteristics of the HPC or the fan.  
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4.6.4 Sensitivity Study 

In this sub-section, we conduct a sensitivity analysis on the optimal weights 𝒘∗ of the FM-

INDEX. In particular, we consider the missing data scenario by randomly hiding certain 

percentage of the observations. Then, we solve the optimization problem in (4.8) to study the 

sensitivity of the derived optimal weights 𝒘∗ at different degrees of missing data. 

 
Fig. 4.5. The optimal weights learned at different degrees of missing data with one standard 

deviation bars. 

 
 

Fig. 4.5 shows the changes in the optimal weights 𝒘∗ based on different degrees of missing 

data with one standard deviation bars. For example, the label “30%” refers to the case where 30% 
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of the training data is randomly removed prior to learning the optimal weights. Here, the standard 

deviation bars are obtained by simulating 100 replications with the same percentage of missing 

data. From Fig. 4.5, we can see that the optimal weights for constructing the FM-INDEX are 

relatively stable at different degrees of missing data, especially when the missing data is less than 

or equal to 20%. This indicates that our proposed data-level fusion model allows for certain levels 

of missing data without great expense to the accuracy of the learned optimal weights. 

4.6.5 FM-INDEX Demonstration 

 
Fig. 4.6. An illustration of the degradation signals of each selected sensor data and the 

constructed FM-INDEX for the 100 training units. 
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Fig. 4.6 plots the degradation signals of each selected sensor data and the constructed FM-

INDEX for all 100 training units. In particular, the green and the red color shows the units that 

belong to failure mode 1 and −1, respectively. The overlapping areas, which are highlighted in 

black, represent the undistinguished regions of the two failure modes.  

From Fig. 4.6, we can see that the FM-INDEX better separates the units from these two failure 

modes than each selected sensor data. This is mainly due to the fact that the FM-INDEX leverages 

the dependent information from multiple sensor data, and thus it is more informative than the 

individual sensor data for failure mode diagnosis. In addition, the overlapping areas become much 

smaller (i.e., failure mode diagnostic result becomes more accurate) as the units approach the end 

of lives. This observation coincides with our model constraints, in which we consider a non-

decreasing series in the key parameter {𝑎𝑖,𝑡} when constructing the FM-INDEX.  

Furthermore, since the true failure modes of the training units are known, we can evaluate the 

accuracy of the FM probability estimation over the training units. Specifically, we define the 

absolute error in the FM probability estimation for training unit 𝑖 as: 

 𝑝𝑖
(𝑒𝑟𝑟)

= |1 − 𝑃(𝑍𝑖 = 𝑧𝑖  |𝑳𝑖,.,.)|. (4.21) 

 

The comparison results by using our proposed FM-INDEX and each selected sensor data are 

shown in Fig. 4.7, which provides the boxplots of the absolute errors in the FM probability 

estimation over the training units using a leave-one-out cross-validation technique. The result 

clearly shows that the FM-INDEX outperforms each individual sensor data for FM probability 

estimation. 
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Fig. 4.7. The boxplots of the absolute errors in the FM probability estimation over the training 

units by using a leave-one-out cross validation. 

 

 

4.6.6 Real Time Failure Mode Probability Estimation 

In this section, we illustrate the failure mode probability estimation for a unit as more data are 

collected in real time by using the proposed method in Section 4.3.5. In particular, the coefficients 

{𝑐𝑖,𝑡} are chosen by following the arithmetic series in (4.14) with a moving window size 𝑟 = 30. 

Fig. 8 shows the changes of the probability estimation 𝑃(𝑍𝑖 = −1|𝑳𝑖,.,,) for unit 𝑖 that is known to 

degrade due to failure mode −1. From Fig. 4.8, we can see that as more observations are collected, 
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the probability estimation of the failure mode improves and 𝑃(𝑍𝑖 = −1|𝑳𝑖,.,,)  approaches 1. 

Furthermore, since it is difficult to identify the failure modes at an early stage of degradation, the 

figure shows fluctuations in the probability estimation at the beginning. 

 
Fig. 4.8. An illustration of the probability estimation 𝑃(𝑍𝑖 = −1|𝑳𝑖,.,,) for a validation unit that 

fails under failure mode −1 as more data are collected in real time. 

 

4.6.7 Estimation of the RUL Distribution 

We estimate the remaining lifetime of the testing units by implementing the proposed method 

in Section 4.5. Recall that we assume the random-effect parameters follow a multivariate normal 

distribution. In this case study, we conducted the Henze-Zirkler test to check the normality 

assumption based on the training dataset for each failure mode. The result showed that for the 

constructed conditional health index under failure mode 1, we achieved a p-value of 0.49 and for 

the constructed conditional health index under failure mode 2, we achieved a p-value of 0.15. Thus, 
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this result further validates that it is satisfactory to adopt the normal distribution for the random-

effect parameters. 

To evaluate the prognostic performance under the proposed and benchmark methods, we 

consider the error metric in (4.22), 𝑒𝑟𝑟𝑖 , which is defined as the relative error between the 

estimated and the actual remaining lifetime of unit 𝑖.  

 𝑒𝑟𝑟𝑖 =
(𝑛𝑖+�̃�𝑖)−(𝑛𝑖+𝑇𝑖)

𝑛𝑖+𝑇𝑖
=

�̃�𝑖−𝑇𝑖

𝑛𝑖+𝑇𝑖
 , (4.22) 

where 𝑛𝑖 is the time index of the last observation for testing unit 𝑖 when it stops further usage prior 

to failure; 𝑇𝑖 is the actual remaining lifetime for unit 𝑖; and �̃�𝑖 is the estimated remaining lifetime 

for unit 𝑖. 

 
Fig. 4.9. Comparison results of the absolute value of the mean percentage error (%) for the 

proposed method and the other two benchmark methods. The bars correspond to one standard 

deviation in the mean percentage error. 
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Fig. 4.9 shows the comparison results of the absolute value of the mean percentage error (%) for 

the proposed method, the single HI and the best performing single sensor. In this example, the 

“100” label refers to the scenarios when only the testing units with actual remaining lifetime equal 

to or less than 100 are taken into consideration, etc. For the single sensors, we estimate the failure 

mode and remaining lifetime given only the data from the sensor of interest (i.e., ignoring the data 

from the other sensors). Based on the plots of the sensor data in Fig. 4.6, we can see that the 

degradation signals exhibit an exponential functional form. Thus, in the benchmark method, we 

consider the following degradation model for the log-transformed sensor measurement 𝐿𝑖,𝑗,𝑡 given 

the failure mode 𝑘: 

           𝐿𝑖,𝑗,𝑡 = 𝜃𝑖,𝑗,0
(𝑘)

+ 𝜃𝑖,𝑗,1
(𝑘)

𝑡 + 𝜃𝑖,𝑗,2
(𝑘)

𝑡2 + 𝜀𝑖,𝑗,𝑡
(𝑘)

,        (4.23) 

where 𝜀𝑖,𝑗,𝑡
(𝑘)

 is the error term and often assumed to follow the normal distribution, which can be 

tested based on the fitted degradation model. For the single HI, we adopt the method by Liu and 

Huang (2016) to estimate the remaining lifetime, which ignores the presence of the multiple failure 

modes. In addition, to achieve a fair comparison, the random failure threshold approach in (4.18) 

is considered for all the three methods.  

Based on Fig. 4.9, we can see that: (i) our proposed approach outperformed the other two 

benchmark methods; (ii) in general, the predictions get more accurate as the unit approaches failure 

in our proposed approach; and (iii) the best single sensor (Ps30) outperforms the single HI 

constructed by the model in Liu and Huang [11]. The observation (i) mainly results from two 

reasons. First, our proposed data fusion method takes the advantage of the multiple, dependent 
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sensor data, and thus it leads to a better remaining life prediction. Second, our proposed approach 

considers the distinct influence of different failure modes on the lifecycle path of a unit. Regarding 

the observation (ii), one possible reason is that less actual remaining lifetime typically indicates 

that more observational data have been collected, and thus we are more confident about the failure 

mode diagnosis and degradation modeling as the unit approaches the end of its life. In addition, 

we choose both the loss weights {𝑎𝑖,𝑡} and the coefficients {𝑐𝑖,𝑡} to be linearly increasing with 

time, and thus more weight is given to the observations that are closer to failure. However, because 

only partial degradation signals are provided for the testing units, different sets of testing units are 

used here to evaluate the prediction error at different levels of actual remaining lifetime; therefore, 

there is no guarantee to have a monotonically decreasing trend in Fig. 4.9. Finally, the main reason 

behind the observation (iii) is that the single HI does not consider the presence of two failure modes 

by assuming all units come from the same failure mode, and thus it leads to a poor prediction 

performance. This result further demonstrates the importance of our proposed method for online 

estimation of the failure mode when predicting the RLD. 

4.7 Conclusions 

With the rapid development of condition monitoring and sensor techniques, multiple sensors 

have been widely used to simultaneously monitor the degradation status of a unit. In such a big 

data environment, (i) each sensor may only contain partial and dependent information about the 

health status of a unit; and (ii) sensors may exhibit distinct characteristic patterns in different units 

if these units belong to different failure modes.  

The main contribution of this Chapter is to address the challenges of degradation modeling and 
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prognostics in big data environments in presence of multiple sensor data and multiple failure 

modes. In particular, we construct an FM-INDEX that effectively and accurately diagnoses the 

failure mode for a unit during condition monitoring, which is tailored to the needs of degradation 

modeling and prognostic analysis. Next, we extend the existing degradation model and data-level 

fusion techniques to multiple failure mode scenarios by conditioning on knowing each failure 

mode, and further integrate with our proposed failure mode diagnostic approach to produce a final 

remaining life prediction. The developed methodology was tested and validated by using multiple 

sensor signals from aircraft gas turbine engines that contain two potential failure modes [27]. Our 

case study showed that: (i) the developed FM-INDEX better distinguishes the units from the two 

failure modes than each original sensor data; (ii) the failure mode diagnostic result becomes more 

accurate as a unit approaches failure; and (iii) the remaining life prediction by using the proposed 

method outperforms the related benchmarks.  

There are several important topics for future research: First, it is worth exploring the 

performance of the developed FM-INDEX by using non-linear fusion functions (e.g., via kernel 

methods). Second, in this Chapter we derive the FM-INDEX based on historical records offline 

via a frequentist approach. For future research, it is worth investigating how to online update the 

FM-INDEX via a Bayesian approach. 

4.8 Appendix 

Here, we show that our proposed data fusion model min𝒘,𝑏
1

𝑚
∑ ∑ 𝑎𝑖,𝑡𝑉(𝑓(𝑳𝑖,.,𝑡), 𝑧𝑖,𝑡) +

𝑛𝑖
𝑡=1

𝑚
𝑖=1

𝜆𝑅(𝑓) with the hinge loss function 𝑉(𝑥𝑖,𝑡, 𝑧𝑖,𝑡) = max(0,1 − 𝑧𝑖,𝑡𝑥𝑖,𝑡), where 𝑥𝑖,𝑡 = 𝑓(𝑳𝑖,.,𝑡 ) =

𝑳𝑖,.,𝑡𝒘 + 𝑏  and 𝑅(𝑓) = ‖𝑓‖2 = 𝒘𝑇𝒘  is equivalent to the weighted SVM approach: 
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min𝒘,𝑏,𝜉𝑖,𝑡
𝐶 ∑ ∑ (𝑎𝑖,𝑡 ∗ 𝜉𝑖,𝑡)

𝑛𝑖
𝑡=1

𝑚
𝑖=1 + 0.5𝒘𝑇𝒘 , s.t. 𝑧𝑖,𝑡𝑥𝑖,𝑡 ≥ 1 − 𝜉𝑖,𝑡  and 𝜉𝑖,𝑡 ≥ 0,  ∀𝑖 =

1, 2, … ,𝑚,  𝑡 = 1,  2,… , 𝑛𝑖. 

Let 𝜉𝑖,𝑡 = 𝑉(𝑥𝑖,𝑡, 𝑧𝑖,𝑡) = max(0,1 − 𝑧𝑖,𝑡𝑥𝑖,𝑡) . Then, 𝜉𝑖,𝑡 ≥ 0  and 𝜉𝑖,𝑡 ≥ 1 − 𝑧𝑖,𝑡𝑥𝑖,𝑡 . 

Consequently, min𝒘,𝑏max(0,1 − 𝑧𝑖,𝑡𝑥𝑖,𝑡) + 𝜆𝒘𝑇𝒘 is equivalent to min
𝒘,𝑏,𝜉𝑖,𝑡

𝜉𝑖,𝑡 + 𝜆𝒘𝑇𝒘, subject to 

that  𝜉𝑖,𝑡 ≥ 0 and 𝜉𝑖,𝑡 ≥ 1 − 𝑧𝑖,𝑡𝑥𝑖,𝑡. 

In this way,  min𝒘,𝑏
1

𝑚
∑ ∑ (𝑎𝑖,𝑡 ∗ max(0,1 − 𝑧𝑖,𝑡𝑥𝑖,𝑡)) + 𝜆𝒘𝑇𝒘

𝑛𝑖
𝑡=1

𝑚
𝑖=1  is equivalent to 

min𝒘,𝑏,𝜉𝑖,𝑡

1

𝑚
∑ ∑ (𝑎𝑖,𝑡 ∗ 𝜉𝑖,𝑡) + 𝜆𝒘𝑇𝒘

𝑛𝑖
𝑡=1

𝑚
𝑖=1 , s.t. 𝑧𝑖,𝑡𝑥𝑖,𝑡 ≥ 1 − 𝜉𝑖,𝑡  and 𝜉𝑖,𝑡 ≥ 0 , ∀𝑖 =

1, 2, … ,𝑚,  𝑡 = 1,  2,… , 𝑛𝑖. Finally, by scaling the objective function with a factor of 1/(2𝜆) and 

setting 𝐶 = 1/(2𝑚𝜆) , we can rewrite the objective function as min𝒘,𝑏,𝜉𝑖,𝑡
𝐶 ∑ ∑ (𝑎𝑖,𝑡 ∗

𝑛𝑖
𝑡=1

𝑚
𝑖=1

𝜉𝑖,𝑡) + 0.5𝒘𝑇𝒘. 

 

Here, we show that given the failure mode 𝑍𝑖 = 𝑘, the posterior distribution of 𝜽𝑖,𝑗
(𝑘)

 still follows 

a multivariate normal distribution with mean 𝒖𝑗,𝑘
1 = (

𝜳𝑖
′𝜳𝑖

𝜎𝑗,𝑘
2 + (𝜮𝑗,𝑘

0 )−1)
−1

(
𝜳𝑖

′𝑳𝑖,𝑗,.
(𝑘)

𝜎𝑗,𝑘
2 + (𝜮𝑗,𝑘

0 )−1𝒖𝑗,𝑘
0 ) 

and variance 𝜮𝑗,𝑘
1 = (

𝜳𝑖
′𝜳𝑖

𝜎𝑗,𝑘
2 + (𝜮𝑗,𝑘

0 )−1)
−1

.  

Given the failure mode 𝑍𝑖 = 𝑘, the probability density function of 𝜽𝑖,𝑗
(𝑘)

 can be expressed as 

𝑃(𝜽𝑖,𝑗
(𝑘)

) ∝ 𝑒
−

1

2
(𝜽𝑖,𝑗

(𝑘)
−𝒖𝑗,𝑘

0 )′(𝜮𝑗,𝑘
0 )−1(𝜽𝑖,𝑗

(𝑘)
−𝒖𝑗,𝑘

0 )
.  Thus, 

𝑃(𝜽𝑖,𝑗
(𝑘)

|𝑳𝑖,𝑗,.
(𝑘)

) ∝ 𝑃(𝑳𝑖,𝑗,.
(𝑘)

|𝜽𝑖,𝑗
(𝑘)

)𝑃(𝜽𝑖,𝑗
(𝑘)

) ∝
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𝑒
−

1

2𝜎𝑗,𝑘
2 (𝑳𝑖,𝑗,.

(𝑘)
−𝜳𝑖𝜽𝑖,𝑗

(𝑘)
)
′
(𝑳𝑖,𝑗,.

(𝑘)
−𝜳𝑖𝜽𝑖,𝑗

(𝑘)
)−

1

2
(𝜽𝑖,𝑗

(𝑘)
−𝒖𝑗,𝑘

0 )
′
(𝜮𝑗,𝑘

0 )
−1

(𝜽𝑖,𝑗
(𝑘)

−𝒖𝑗,𝑘
0 )

∝

𝑒
𝜽𝑖,𝑗

(𝑘)′
(

𝜳𝑖
′𝜳𝑖

𝜎𝑗,𝑘
2 +(𝜮𝑗,𝑘

0 )−1)𝜽𝑖,𝑗
(𝑘)

−2(
𝑳
𝑖,𝑗,.
(𝑘)

𝜳𝑖

𝜎𝑗,𝑘
2 +(𝒖𝑗,𝑘

0 )
′
(𝜮𝑗,𝑘

0 )
−1

)𝜽𝑖,𝑗
(𝑘)

.  

It is known that the Gaussian family is the conjugate prior for the Gaussian likelihood function, 

and thus the posterior also follows a multivariate normal distribution. As a result, 

𝜽𝑖,𝑗
(𝑘)

|𝑳𝑖,𝑗,.
(𝑘)

~𝑁𝑝+1(𝒖𝑗,𝑘
1 , 𝜮𝑗,𝑘

1 ) and 𝑃(𝜽𝑖,𝑗
(𝑘)

|𝑳𝑖,𝑗,.
(𝑘)

) ∝ 𝑒
−

1

2
(𝜽𝑖,𝑗

(𝑘)
−𝒖𝑗,𝑘

1 )
′
(𝜮𝑗,𝑘

1 )
−1

(𝜽𝑖,𝑗
(𝑘)

−𝒖𝑗,𝑘
1 )

. 

Comparing the above two equations for 𝑃(𝜽𝑖,𝑗
(𝑘)

|𝑳𝑖,𝑗,.
(𝑘)

) , we obtain the results (𝜮𝑗,𝑘
1 )−1 =

(
𝜳𝑖

′𝜳𝑖

𝜎𝑗,𝑘
2 + (𝜮𝑗,𝑘

0 )−1) and (𝒖𝑗,𝑘
1 )

′
(𝜮𝑗,𝑘

1 )
−1

= (
𝑳𝑖,𝑗,.
(𝑘)

𝜳𝑖

𝜎𝑗,𝑘
2 + (𝒖𝑗,𝑘

0 )
′
(𝜮𝑗,𝑘

0 )
−1

). This finishes the proof that  

𝜽𝑖,𝑗
(𝑘)

|𝑳𝑖,𝑗,.
(𝑘)

~𝑁𝑝+1(𝒖𝑗,𝑘
1 , 𝜮𝑗,𝑘

1 ) , where 𝒖𝑗,𝑘
1 = (

𝜳𝑖
′𝜳𝑖

𝜎𝑗,𝑘
2 + (𝜮𝑗,𝑘

0 )−1)
−1

(
𝜳𝑖

′𝑳𝑖,𝑗,.
(𝑘)

𝜎𝑗,𝑘
2 + (𝜮𝑗,𝑘

0 )−1𝒖𝑗,𝑘
0 )  and 

𝜮𝑗,𝑘
1 = (

𝜳𝑖
′𝜳𝑖

𝜎𝑗,𝑘
2 + (𝜮𝑗,𝑘

0 )−1)
−1

. 
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Chapter 5 

Sensory-based Failure Threshold Estimation for 

Remaining Useful Life Prediction 

5.1 Introduction 

As mentioned in Chapter 1, to achieve an appropriate estimation on the RUL distribution, there 

are two essential requirements that must be satisfied: (i) an accurate estimation of the failure 

threshold 𝐷𝑗; and (ii) a reliable degradation model that characterizes the degradation profile of a 

unit, such that the degradation status for operating unit 𝑗, 𝐿𝑗,𝑛𝑗+𝑡, can be accurately predicted at the 

future observation time 𝑛𝑗 + 𝑡.  

To the best of our knowledge, the existing literature still lacks a reliable approach that can 

effectively estimate the RUL distribution of a unit when the failure threshold is not known a priori. 

This Chapter seeks to fill this literature gap by developing a convex quadratic formulation that 

combines the historical population information and the condition monitoring data of an operating 

unit to online estimate its failure threshold. In other words, unlike many of the existing reliability 

studies that treat the failure threshold as a fixed value, this Chapter considers a random failure 

threshold for different units. In fact, this random failure threshold assumption has been also 

considered in the literature (e.g., [10], [11], [30], [31], [79], [80]). With the proposed efforts, we 

expect to attain more reliable and accurate RUL prediction. 

5.2 Problem Formulation 

To begin with, we assume that the degradation signals of a group of historical units during 
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lifecycle (run to failure) have been collected. These units can be used to build the mixed-effects 

degradation model in (2.5). Specifically, the degradation model of historical unit 𝑖 is written as: 

𝑠𝑖,𝑡 = 𝜂(𝝋𝑖, 𝑡) + 𝜖𝑖,𝑡,             (5.1) 

where 𝑠𝑖,𝑡 is the sensor measurement of historical unit 𝑖 at time 𝑡; 𝜂 is the functional form of the 

degradation model; 𝝋𝑖 ∈ 𝑅𝑝x1 is the random effects of historical unit 𝑖; and 𝜖𝑖,𝑡  represents the 

random noise. 

Without loss of generality, we further assume that under the same degradation conditions (e.g., 

failure mode, environmental condition), the degradation profiles (the fitted degradation model and 

the failure threshold) of units are expected to be the same, subject to some random variation. Under 

this assumption, our method will online estimate the failure threshold of an operating unit 𝑗 by 

calculating the weight coefficient, 𝑤𝑖𝑗 , that measures the relative similarity between the 

degradation profiles of operating unit 𝑗 and historical unit 𝑖 compared to the other historical units. 

Please note that if such a weight coefficient 𝑤𝑖𝑗 is available, then we can reconstruct a degradation 

model for operating unit 𝑗 via a weighted average of the fitted degradation models of the historical 

units: 

𝐸(�̃�𝑗,𝑡|𝑳𝑗,.) = ∑ (𝑤𝑖𝑗𝜂(�̂�𝑖, 𝑡))
𝑚
𝑖=1 ,                   (5.2) 

where ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 = 1, and 𝑤𝑖𝑗 ≥ 0 for 𝑖 = 1,2, … ,𝑚; �̃�𝑗,𝑡 is the reconstructed signal for operating 

unit 𝑗 at time 𝑡 by using the proposed weight coefficient 𝑤𝑖𝑗; 𝑳𝑗,. = [𝐿𝑗,1, … , 𝐿𝑗,𝑛𝑗
]
𝑇

 is the available 

in-situ sensory data for unit 𝑗; �̂�𝑖  is the estimated parameters of historical unit 𝑖; and 𝑚 is the 

number of historical units.  

On the other hand, recall that the existing literature has also developed a powerful Bayesian 
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approach (e.g., Gebraeel et al.  [29]) that can online calibrate the degradation model of an operating 

unit. Specifically, here we denote the updated degradation model via the Bayesian approach for 

operating unit 𝑗 as: 

𝐸(�̂�𝑗,𝑡|𝑳𝑗,.) = 𝜂(𝐸(𝜽𝑗
(1)

), 𝑡),                                (5.3) 

where 𝜽𝑗
(1)

∈ 𝑅𝑝x1 is the updated random effects of operating unit 𝑗; and �̂�𝑗,𝑡 is the reconstructed 

signal for operating unit 𝑗 at time 𝑡 by using the Bayesian approach.  

Our innovative idea is to find the weight coefficient, 𝑤𝑖𝑗, such that the Bayesian updated model 

in (6) can be approximated by the reconstructed model in (5.2). In this way, we can achieve an 

accurate estimation of the failure threshold distribution by effectively leveraging the information 

of historical units. Specifically, the 𝑘𝑡ℎ moment of the failure threshold for operating unit 𝑗, 𝐷𝑗 , 

can be estimated by the weighted sample moments: 

𝐸[𝐷𝑗
𝑘] = ∑ (𝑤𝑖𝑗𝑠𝑖,𝑛𝑖

𝑘 )𝑚
𝑖=1 .                      (5.4) 

where ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 = 1, and 𝑤𝑖𝑗 ≥ 0 for 𝑖 = 1,2, … ,𝑚; 𝑠𝑖,𝑛𝑖

 is the last sensor measurement before 

failure of historical unit 𝑖. As a result, the key challenge is to estimate the 𝑤𝑖𝑗 accurately.  

If we consider the sum of squared errors to characterize the goodness-of-fit between the 

reconstructed model in (5.2) and the Bayesian updated degradation in (5.3), then the following 

optimization formulation can be used to estimate 𝑤𝑖𝑗 given 𝑳𝑗,.: 

min
𝑤𝑖𝑗

∑ (𝐸[�̂�𝑗,𝑡] − 𝐸[�̃�𝑗,𝑡])
2𝑛𝑗

𝑡=1   𝑎  

                                           s.t.  ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 = 1 

𝑤𝑖𝑗 ≥ 0, for 𝑖 = 1,2, … ,𝑚,                    (5.5)  
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where 𝑛𝑗  is the number of available observations from operating unit 𝑗; and ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 = 1 means 

that the reconstructed degradation model is a weighted sum of the degradation models of the 

historical units. 

Theorem 1: If 𝜂(𝜽𝑗 , 𝑡) = 𝑿𝑡𝜽𝑗 = ∑ 𝑋𝑡,𝑘
𝑝
𝑘=1 𝜃𝑗,𝑘 , where 𝑿𝑡  contains time-dependent covariates, 

and 𝐸[𝜽𝑗
(1)

] lies in the convex hull of the set {�̂�1, … , �̂�𝑚}, then there exists at least one set of 

{𝑤1𝑗, … , 𝑤𝑚𝑗}  such that 𝐸[�̃�𝑗,𝑡] = 𝐸[�̂�𝑗,𝑡] 𝑓𝑜𝑟 ∀𝑡 , in which ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 = 1  and 𝑤𝑖𝑗 ≥ 0  (see 

Appendix for proof). 

Theorem 2: If 𝜂(𝜽𝑗 , 𝑡) = 𝑿𝑡𝜽𝑗 = ∑ 𝑋𝑡,𝑘
𝑝
𝑘=1 𝜃𝑗,𝑘 , where 𝑿𝑡  contains time-dependent covariates, 

and 𝐸[𝜽𝑗
(1)

] lies in the convex hull of the set {�̂�1, … , �̂�𝑚}, the optimal solution from formulation 

(8) guarantees that 𝐸[�̃�𝑗,𝑡] = 𝐸[�̂�𝑗,𝑡] 𝑓𝑜𝑟 𝑡 = 1,2, … , 𝑛𝑗 (see Appendix for proof). 

Theorem 1 indicates that if the convex combination of the random effects of the historical units 

spans the parameter space of the degradation models, then it is always possible to reconstruct the 

Bayesian updated model by using the fitted degradation models of historical units. Theorem 2 then 

shows that such a reconstruction can be achieved by solving the optimization problem in (8). Please 

note that with more historical units available, it is more likely that a convex combination of the 

degradation models of historical units will span the entire parameter space of the possible 

degradation models.   

Fig. 5.1 shows an example satisfying the conditions of Theorems 1 and 2. There are three 

historical units present in Fig. 5.1, in which the Bayesian updated degradation model of an 

operating unit by (5.3) is shown in the blue circle, and the reconstructed model for the operating 

unit by solving formulation (5.5) is shown in the red cross. From Fig. 5.1, we can see that the 
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Bayesian updated degradation model is successfully reconstructed via the convex combination of 

the degradation models of historical units, which is an expected consequence of Theorem 2.  

  

 
Fig. 5.1. An illustration of reconstructing the degradation model of an operating unit by the 

convex combination of the degradation models from the historical units 

 
While Theorems 1 and 2 lay a theoretical foundation for the proposed method, direct 

implementation of the model in (5.5) may lead to over-fitting problems, especially when the 

number of available observations 𝑛𝑗  is small for operating unit 𝑗  (i.e., in the initial stage of 

condition monitoring). To address this issue, we further introduce the following regularization 

function in (5.6):  
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𝑅(𝑤1𝑗, … , 𝑤𝑚𝑗) = ∑ (𝑤𝑖𝑗{𝐸[�̂�𝑗,𝑛𝑖
] − 𝑠𝑖,𝑛𝑖

}
2
)𝑚

𝑖=1 ,        (5.6) 

where 𝐸[�̂�𝑗,𝑛𝑖
]  is the expected sensor measurement of operating unit 𝑗  at the failure time of 

historical unit 𝑖, and it can be calculated by projecting the Bayesian updated degradation model in 

(6) up to time 𝑛𝑖 ; and 𝑠𝑖,𝑛𝑖
 is the sensor measurement when historical unit 𝑖  fails. We can 

understand the proposed regularization function in the following way. Recall that we estimate the 

expected failure threshold of operating unit 𝑗 based on the weighted average of the last sensor 

measurements of historical units in (5.4), where the weight coefficient 𝑤𝑖𝑗 controls the relative 

importance of historical unit 𝑖 for estimating the failure threshold of operating unit 𝑗. As a result, 

if the projected sensor measurement of operating unit 𝑗 at time 𝑛𝑖 is noticeably different from the 

sensor measurement of historical unit 𝑖  at time 𝑛𝑖 , then historical unit 𝑖  is less informative to 

estimate the failure threshold of operating unit 𝑗. Therefore, a larger penalty should be given to 

historical unit 𝑖 as shown in this regularization function. 

By combining formulation (8) and the regularization function in (9), then our proposed model 

becomes: 

min
𝑤𝑖𝑗

∑
(𝐸[�̂�𝑗,𝑡]−𝐸[�̃�𝑗,𝑡])

2

𝑛𝑗

𝑛𝑗

𝑡=1 + 𝜆 𝑅(𝑤1𝑗, … , 𝑤𝑚𝑗)  

                     s.t.  ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 = 1       

𝑤𝑖𝑗 ≥ 0, for 𝑖 = 1,2, … ,𝑚,                       (5.7) 

where 𝜆  is the regularization parameter and can be obtained via the K-Fold cross validation 

method. Here, formulation (5.7) considers minimizing both the mean squared error over the 

observed time domain for operating unit 𝑗, and the differences between the projected degradation 
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signal for operating unit 𝑗 and the sensor measurements of historical units at their corresponding 

failure times.  

We can further simplify the formulation in (5.7) to the following convex quadratic program:  

min
𝒘𝑗

𝒘𝑗
𝑇𝑩𝑇𝑩𝒘𝑗 + (𝜆𝑛𝑗𝒄

𝑇 − 2𝒂𝑇𝑩)𝒘𝑗 

                                                      s.t.  𝒐𝑇𝒘𝑗 = 1        

𝒘𝑗 ≥ 𝟎,                                      (5.8) 

where 𝒘𝑗 = [𝑤1𝑗, … , 𝑤𝑚𝑗]
𝑇

∈ 𝑅𝑚x1 ; 𝒄𝑗 = [{𝐸[�̂�𝑗,𝑛1
] − 𝑠1,𝑛1

}
2

⋯ {𝐸[�̂�𝑗,𝑛𝑚
] − 𝑠𝑚,𝑛𝑚

}
2
]
𝑇

∈

𝑅𝑚x1 ; 𝑩𝑗 = [

𝜂(�̂�1, 1) … 𝜂(�̂�𝑚, 1)
⋮ ⋱ ⋮

𝜂(�̂�1, 𝑛𝑗) … 𝜂(�̂�𝑚, 𝑛𝑗)
] ∈ 𝑅𝑛𝑗x𝑚 ; 𝒐 ∈ 𝑅𝑚x1  is a vector of all ones; and 𝒂𝑗 =

[𝐸[�̂�𝑗,1] … 𝐸[�̂�𝑗,𝑛𝑗
]]

𝑇
∈ 𝑅𝑛𝑗x1 (see Appendix for details). 

The formulation in (5.8) can be solved efficiently by many existing numeric solvers [73], which 

ensures that our proposed method can be effectively used during condition monitoring. Recall that 

once the optimal solution 𝒘𝑗 is obtained, we can then estimate the failure threshold for operating 

unit 𝑗  by using (5.4). In the next sub-section, we will investigate how to derive the RUL 

distribution of an operating unit during condition monitoring based on the proposed model in (5.8). 

5.3 Estimation of the RUL distribution 

Recall that our proposed model relies on comparing the Bayesian updated degradation model 

for the operating unit and the fitted degradation models of the historical units. Without loss of 

generality, below we focus on the polynomial functional form of the degradation model when 

deriving the RUL of the operating unit during condition monitoring. In fact, many degradation 
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models discussed in the existing literature can be transformed into the polynomial form [10], [67], 

such as the exponential form models [56], and random coefficient growth models [66]. In 

particular, the 𝑝𝑡ℎ order polynomial degradation model can be expressed as: 

𝐿𝑗,𝑡 = 𝑿𝑡𝜽𝑗 + 𝜖𝑗,𝑡 = ∑ 𝜃𝑗,𝛼𝑡𝑘𝑝
𝑘=0 + 𝜖𝑗,𝑡,             (5.9) 

where 𝑝 is the order of the polynomial model and can be determined based on different criteria 

like the Akaike information criterion and the Bayesian information criterion [21]; 𝜽𝑗  is the vector 

of random effects for the degradation model of operating unit 𝑗 and it is assumed to follow a 

multivariate normal distribution 𝑁𝑝+1(𝒖𝑗 , 𝜮𝑗 ); 𝜖𝑗,𝑡 is the random noise and assumed to follow 

𝑁(0, 𝜎𝑗
2) ; and 𝑿𝑡 = [1, 𝑡, … , 𝑡𝑝] . Here, the prior distribution of the random effects can be 

estimated by fitting the degradation profiles of historical units: 

𝜽𝑗
(0)

~ 𝑁𝑝+1(𝒖𝑗
0, 𝜮𝑗

0),                                 (5.10) 

where 𝒖𝑗
0 and 𝚺𝑗

0 are the prior mean and variance of the random effects, respectively. Then, we 

can calculate the posterior distribution, 𝜽𝑗
(1)

 by leveraging the in-situ sensory data 𝑳𝑗,. collected 

from operating unit 𝑗. For example, if we follow the Bayesian updating approach introduced in 

Gebraeel et al. [29], then the updated random effects 𝜽𝑗
(1)

 will still follow the normal distribution: 

𝜽𝑗
(1)

= 𝜽𝑗|𝑳𝑗,.~𝑁𝑝+1(𝒖𝑗
1, 𝜮𝑗

1),             (5.11) 

where 𝒖𝑗
1 = (

𝜳𝑗
𝑇𝜳𝑗

𝜎𝑗
2 + (𝜮𝑗

0)−1)
−1

(
𝜳𝑗

𝑇𝑳𝑗,.

𝜎𝑗
2 + (𝜮𝑗

0)−1𝒖𝑗
0),   

 𝜮𝑗
1 = (

𝜳𝑗
𝑇𝜳𝑗

𝜎𝑗
2 + (𝜮𝑗

0)−1)
−1

, and 𝜳𝑗 ∈ 𝑅𝑛𝑗×(𝑝+1) =

[
 
 
 
 
1 … 1
… … …
1 … 𝑡𝑝

… … …
1 … 𝑛𝑗

𝑝
]
 
 
 
 

.  
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Here, our use of the normal distribution for the random effects is primarily to take advantage of 

the convenient and closed-form solution provided for the posterior distribution when updating the 

random effects in real time. In fact, this normal assumption for the random effects has been widely 

adopted in the existing literature [2], [9-12], [17]. Please note that it is also possible to utilize other 

distributions or even some simulation-based approaches to compute the posterior distribution and 

RUL. In such cases, our proposed method for estimating the failure threshold is still applicable. 

Thus, to highlight our main ideas, for the remainder of the Chapter we only focus on the normal 

distribution for the random effects.  

Consequently, the degradation signal of operating unit 𝑗 at time 𝑡 given 𝜽𝑗
(1)

 will follow: 

𝐿𝑗,𝑡|𝜽𝑗
(1)

~𝑁(𝑿𝑡𝒖𝑗
1, 𝑿𝑡𝜮𝑗

1𝑿𝑡
𝑇 + 𝜎𝑗

2).                    (5.12) 

Recall that the mean 𝑢𝑗
𝑑 and variance 𝑣𝑗

𝑑 of the failure threshold 𝐷𝑗  for operating unit 𝑗 can be 

estimated by 𝑢𝑗
𝑑 = ∑ (𝑤𝑖𝑗𝑠𝑖,𝑛𝑖

)𝑚
𝑖=1  and 𝑣𝑗

𝑑 = ∑ (𝑤𝑖𝑗𝑠𝑖,𝑛𝑖

2 )𝑚
𝑖=1 − (∑ (𝑤𝑖𝑗𝑠𝑖,𝑛𝑖

)𝑚
𝑖=1 )

2
 using (7). If we 

assume the failure threshold 𝐷𝑗  follows a normal distribution as well, i.e., 𝐷𝑗~𝑁(𝑢𝑗
𝑑 , 𝑣𝑗

𝑑), then the 

cumulative distribution function (CDF) of the RUL �̃�𝑗 for operating unit 𝑗 based on the available 

in-situ sensory data 𝑳𝑗,. can be calculated as: 

 

𝑃(�̃�𝑗 ≤ 𝑡|𝑳𝑗,.) = 𝑃 (𝐿𝑗,𝑛𝑗+𝑡 ≥ 𝐷𝑗|𝑳𝑗,.)   

= Φ(
𝑿𝑛𝑗+𝑡𝒖𝑗

1−𝑢𝑗
𝑑

√𝑿𝑛𝑗+𝑡𝜮𝑗
1𝑿𝑛𝑗+𝑡

𝑇 +𝜎𝑗
2+𝑣𝑗

𝑑
) = Φ(𝑔(𝑡)).  (5.13) 

Here, Φ(∙) is the CDF of the standard normal distribution. 
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Given that the RUL for operating unit 𝑗  should be greater than 0, we further consider the 

truncated CDF conditioning on �̃�𝑗 ≥ 0: 

𝑃(�̃�𝑗 ≤ 𝑡|�̃�𝑗 ≥ 0, 𝑳𝑗,.) =
𝑃(0 ≤ �̃�𝑗 ≤ 𝑡|𝑳𝑗,.)

𝑃(�̃�𝑗 ≥ 0|𝑳𝑗,.)
 =

Φ(𝑔(𝑡))−Φ(𝑔(0))

1−Φ(𝑔(0))
 .         (5.14) 

As the truncated CDF in (5.14) is skewed, we can use the median as the point estimator for the 

RUL prediction. Numerically, this is equivalent to finding the observation time 𝑡  such that 

𝑃(�̃�𝑗 ≤ 𝑡|�̃�𝑗 ≥ 0, 𝑳𝑗,.) = 0.5. 

5.4 Flow Chart Summary 

Fig. 5.2 illustrates the flow chart of the proposed methodology. The solid boxes and lines 

correspond to offline analyses. The dashed boxes and lines correspond to online analyses as the 

new condition monitoring data from an operating unit are observed. From the offline analysis, we 

extract the information regarding the last sensor measurement (𝑠𝑖,𝑛𝑖
) and the degradation models 

of the historical units. Specifically, we estimate the failure threshold of historical unit 𝑖 by its last 

sensor measurement before failure (𝑠𝑖,𝑛𝑖
). We also fit a parametric model for the degradation signal 

of each historical unit as shown in (5.1) for a generic functional form and in (5.9) for the 

polynomial functional forms. At the end of the offline analysis, we obtain a prior distribution of 

the parameters in the degradation model based on the historical units. Particularly, in this Chapter, 

we focus on the normal distribution in (5.10) with a mean and a variance calculated as the sample 

mean and the sample variance of the parameters from the historical units. Then, during condition 

monitoring, we first update the degradation model for a new operating unit via the Bayesian 

approach (i.e., find the posterior distribution of the parameters) based on the in-situ sensor 
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measurements for that unit as shown in (5.11). Using this updated degradation model, we then 

estimate the failure threshold of this operating unit by solving (5.8). Finally, the updated 

degradation model and the estimated failure threshold are utilized to infer the RUL of this 

operating unit by (5.13) and (5.14). 

 

Degradation Signals of Historical UnitsDegradation Signals of Historical Units

Degradation ModelsDegradation Models Failure ThresholdsFailure Thresholds

Degradation Signal of An Operating UnitDegradation Signal of An Operating Unit

Failure Threshold 

Estimation

Failure Threshold 

Estimation
Updated Degradation 

Model

Updated Degradation 

Model

Prior Distribution

Remaining Useful LifeRemaining Useful Life
Bayesian 

Approach

 
Fig. 5.2. A flow chart that illustrates the flow of the proposed methodology. 

5.5 Simulation Studies 

In this section, we investigate the performance of the proposed methodology and compare it with 

the existing literature in which the failure threshold distribution is estimated based on the 

population-wide characteristics. In fact, the existing data-driven approach for estimating the failure 
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threshold [10] can be regarded as a special case of our proposed method with equal weight 

coefficient 𝑤𝑖𝑗 = 1/𝑚, for 𝑖 = 1,2, … ,𝑚, i.e., treating each historical unit with equal importance. 

On the contrary, our proposed method will derive the optimal weight coefficient 𝑤𝑖𝑗 , for 𝑖 =

1,2, … ,𝑚 by solving (5.8) when estimating the failure threshold of operating unit 𝑗.  

5.5.1 Simulation Setup  

To challenge our developed algorithm, in this simulation study, we consider the scenario where 

units degrade and fail according to one of the three possible failure modes, which all follow the 

following quadratic degradation model: 

𝐿𝑖,𝑡 = 𝜃0 + 𝜃1𝑡 + 𝜃2𝑡
2 + 𝜖𝑖,𝑡.               (5.15) 

 

TABLE 5.1. THE PARAMETERS OF THE DEGRADATION MODELS FOR THESE THREE FAILURE MODES 

Failure mode 𝜽𝑖
(0)

 𝜖𝑖,𝑡 𝐷𝑖 

1 𝑁([
0

0.025
0.004

] , [
0.5 0 0
0 10−4 0
0 0 10−6

]) 𝑁(0, 9) 𝑁(110, 9) 

2 𝑁([
30

−0.002
−0.005

] , [
1 0 0
0 10−4 0
0 0 10−6

]) 𝑁(0,9) 𝑁(−150, 9) 

3 𝑁([
−100
0.004
0.008

] , [
0.5 0 0
0 10−4 0
0 0 10−6

]) 𝑁(0, 9) 𝑁(110, 9) 

 

In addition, we assume that units within the same failure mode (i) share the same expected failure 

threshold subject to some variations; and (ii) their random effects come from the same distribution. 

The detailed simulation setup is summarized in Table 5.1. In this simulation study, we further 
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assume that the failure modes of the training units and the operating unit are unknown, which is 

often the case in real applications. As we will show below, our proposed method has an advantage 

that it can automatically infer the failure threshold and the RUL of the operating unit even without 

knowledge of the failure mode of the training units.  

  

 
Fig. 5.3. The degradation signals of training units. Red, green, and blue corresponds to 

different failure modes. 

 

We randomly generated 100 training units and 50 testing units from each of the three possible 

failure modes summarized in Table 5.1. Each training unit runs to failure, whereas for testing unit, 

we evaluate the performance of RUL prediction with various amounts of available observations 

(20, 40, 60, 80, 100 and 120 observations) before failure. The generated degradation signals for 

the training and testing units are shown in Fig. 5.3 and Fig. 5.4, respectively.  
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Fig. 5.4. The degradation signals of testing units up to 120 observations 

 

In this Chapter, we consider the following two evaluation metrics: 

(i) The average prediction error of the failure threshold (𝐹𝑇𝑒) as defined in (5.16).  

(ii) The average prediction error of the RUL (𝑅𝐿𝑒) as defined in (5.17).  

Metric (i) measures the average prediction error between the estimated failure threshold and the 

true failure threshold for the testing units: 

𝐹𝑇𝑒(%) =
100

𝑁
∗ ∑

|𝐸[𝐷𝑗]−𝐷𝑗
𝑇𝑟𝑢𝑒|

𝐷𝑗
𝑇𝑟𝑢𝑒

𝑁
𝑗=1 ,               (5.16) 

where 𝑁 is the number of testing units; 𝐸[𝐷𝑗] is the estimated failure threshold for testing unit 𝑗 

using (5.4); and 𝐷𝑗
𝑇𝑟𝑢𝑒 is the true failure threshold for testing unit 𝑗.  
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Metric (ii) measures the average prediction error of the RUL: 

𝑅𝐿𝑒 (%) =
100

𝑁
∗ ∑ |

(𝑇𝑗+𝑛𝑗)−(�̃�𝑗+𝑛𝑗)

𝑇𝑗+𝑛𝑗
|𝑁

𝑗=1 =
100

𝑁
∗ ∑ |

𝑇𝑗−�̃�𝑗

𝑇𝑗+𝑛𝑗
|𝑁

𝑗=1 ,         (5.17) 

where 𝑇𝑗  is the true RUL for testing unit 𝑗; �̃�𝑗  is the estimated RUL for testing unit 𝑗; 𝑛𝑗  is the 

number of available observations for testing unit 𝑗; and 𝑇𝑗 + 𝑛𝑗  is the total lifetime for testing unit 

𝑗. 

5.5.2 Estimation of the Weight Coefficient, Failure Threshold and RUL 

For the estimation of the weight coefficient, failure threshold, and RUL, we assume that the 

simulation setup in Section 5.5.1 is not given. Then, we follow the procedure shown in Section 

5.4. First, we estimate the failure threshold of training unit 𝑖 by its last observation (𝑠𝑖,𝑛𝑖
), and we 

construct a 2nd order polynomial model for each training unit 𝑖 and denote its parameters by 𝝋𝑖 =

[𝜑𝑖,0, 𝜑𝑖,1, 𝜑𝑖,2]
𝑇
. Next, we assume that the parameters of testing unit 𝑗 follow a normal distribution 

𝜽𝑗
(0)

~ 𝑁𝑝+1(𝒖𝑗
0, 𝜮𝑗

0), where 𝒖𝑗
0 and 𝜮𝑗

0 are estimated by the sample mean and the sample variance 

of the parameters 𝝋𝑖 of training units, respectively. We then find the posterior distribution 𝜽𝑗
(1)

 

based on the in-situ observations 𝑳𝑗,. from testing unit 𝑗 as shown in (5.11). Consequently, we solve 

(11) to calculate the weight coefficient 𝑤𝑖𝑗. In this way, we estimate the failure threshold of testing 

unit 𝑗  with mean 𝑢𝑗
𝑑 = ∑ (𝑤𝑖𝑗𝑠𝑖,𝑛𝑖

)𝑚
𝑖=1  and variance 𝑣𝑗

𝑑 = ∑ (𝑤𝑖𝑗𝑠𝑖,𝑛𝑖

2 )𝑚
𝑖=1 − (∑ (𝑤𝑖𝑗𝑠𝑖,𝑛𝑖

)𝑚
𝑖=1 )

2
. 

Finally, the RUL is estimated by (5.14).  

Fig. 5.5 shows the average prediction error of the failure threshold as a function of the number 

of available observations in the testing units. In addition, one standard deviation bars of the average 
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errors are shown in the plot as well. Here, we denote the existing approach for the RUL estimation 

as the “benchmark method” which estimates the failure threshold distribution based on population-

wide characteristics. Recall that the existing method can be regarded as a special case of our 

proposed failure threshold estimation approach by taking equal weight coefficient 𝑤𝑖𝑗 = 1/𝑚. 

 

 
Fig. 5.5. The average prediction error (%) of the failure threshold as a function of the number 

of available observations in the testing units. 

 

From Fig. 5.5, we can see that the benchmark method consistently has poor performance and 

does not improve with the increase of observations available, as the failure threshold is estimated 

based on the population-wide characteristics from training units. On the contrary, the failure 

threshold is accurately estimated by our proposed method with an error of approximately <2% 
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when there are 40 or more observations collected in the testing units. Specifically, the results show 

that our proposed methodology can estimate the failure threshold accurately even at a considerably 

early stage of the degradation. We also observe that there tends to be a large prediction error when 

there are only 20 observations. This is most likely because the Bayesian updated model in (6) may 

not fully capture the unique degradation characteristics of each testing unit from the few available 

observations. However, as more data are observed during condition monitoring, Fig. 5.5 clearly 

shows that the estimation accuracy of the failure threshold is significantly improved using our 

proposed method. 

 

Fig. 5.6. The average prediction error (%) of the RUL as a function of the number of available 

observations in the testing units. 
 

Moreover, Fig. 5.6 shows the average prediction error of the RUL and the corresponding one 

standard deviation bars as a function of the number of available observations in the testing units. 
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By comparing Fig. 5.5 and Fig. 5.6, we can see that the prediction accuracy is highly dependent 

on the failure threshold accuracy. Specifically, as the estimation accuracy of the failure threshold 

for the operating unit improves, the RUL prediction using our proposed method also improves and 

clearly outperforms the benchmark approach. Moreover, from the one standard deviation bar, we 

can see that the proposed method has a lower variance in the average prediction error than the 

benchmark approach as well.  

To further evaluate the accuracy of the derived weight coefficient 𝑤𝑖𝑗, we propose to consider 

the following metric: 

𝑝𝑗
(𝑘)

= ∑ 𝑤𝑖𝑗𝑖∈𝐹𝑀𝑘
,            (5.18)  

where 𝐹𝑀𝑘 represents the set of training units that fail under failure mode 𝑘. Generally speaking, 

if operating unit 𝑗 degrades under failure mode 𝑘, then it is expected that the degradation profile 

of operating unit 𝑗 should be relatively more similar to those of the training units that fail under 

failure mode 𝑘 . In other words, we expect to see 𝑝𝑗
(𝑘)

 close to 1. In this sense, 𝑝𝑗
(𝑘)

 can be 

considered as a probability estimation that unit 𝑗 fails under failure mode 𝑘. 

The results are summarized in Figs. 5.7, 5.8 and 5.9. In those Figures, for better illustration, we 

sort the unit # such that the first 50 units (i.e., unit #1 to #50) degrade under failure mode 1, the 

next 50 units degrade under failure mode 2, and the last 50 units degrade under failure mode 3.  

Clearly, we can see that the probability estimation of the failure mode in (5.18) provides very 

accurate results when the available number of observations is greater than or equal to 40 (i.e., 

approximately about 25% of the lifecycle of units). One possible reason is due to the high accuracy 

in the failure threshold estimation after 40 observations as shown in Fig. 5.5. This observation 
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further shows an additional advantage of our proposed method that it also provides a real time 

estimation about the failure mode of an operating unit (when the failure modes of training units, 

i.e., 𝐹𝑀𝑘, are assumed to be known). Note that if the failure modes of the training units are known, 

it is possible to add additional structural constraints that force the pairwise product between any 

two training units under different failure modes to be zero or close to zero. This will be of high 

value for units with limited number of observations. We discuss a similar approach for structural 

degradation modeling in Chapter 6.  

 

 

 
Fig. 5.7. The estimated probability that an operating unit fails under failure mode 1 given that 

its true failure mode is 1. 
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Fig. 5.8. The estimated probability that an operating unit fails under failure mode 2 given that 

its true failure mode is 2. 

 

 
Fig. 5.9. The estimated probability that an operating unit fails under failure mode 3 given that 

its true failure mode is 3. 
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5.6 Case Study 

In this section, we further evaluate our proposed method for prognostic analysis based on a 

degradation dataset for aircraft engines. The dataset is generated from commercial modular aero-

propulsion system simulator (C-MAPSS), which is discussed in Section 4.2. In particular, the 

dataset contains 𝑚 = 100 training units with a total of  ∑ 𝑛𝑖
𝑚
𝑖=1 = 33560 observations. Units are 

subject to two potential failure modes: (i) a fault at the high-pressure compressor (HPC), or (ii) a 

fault at the fan. In addition, the dataset also includes 100 testing units that contain a total of 21350 

observations with unknown failure modes. Unlike the training units, we do not have the full sensor 

signals until failure for the testing units. Instead, the dataset contains only partial sensor signals 

for the testing units to some points before failure. The actual RUL for the testing units is stored in 

a separate file. In this way, we are able to numerically evaluate the performance of our proposed 

method and compare with the existing benchmark. For each unit, there are 21 sensors that measure 

different characteristics of the engine performance [32]. The descriptions of the 21 sensors are 

given in Table 5.2. 

5.6.1 Degradation Modeling 

Based on the preliminary analysis [10], the degradation signals exhibit an exponential functional 

form. Thus, we consider the following exponential degradation model: 

𝑦𝑖,𝑗,𝑡 = 𝛾𝑗 + 𝑒𝜃𝑖,𝑗,0+𝜃𝑖,𝑗,1𝑡+𝜃𝑖,𝑗,2𝑡2+𝜀𝑖,𝑗,𝑡,       (5.19) 

where 𝑦𝑖,𝑗,𝑡 is the sensor measurement for unit 𝑖, sensor 𝑗 at time 𝑡; 𝜃𝑖,𝑗,0, 𝜃𝑖,𝑗,1, and 𝜃𝑖,𝑗,2 are the 

random effects for unit 𝑖, sensor 𝑗; 𝛾𝑗  is the fixed-effect parameter for sensor 𝑗; and 𝜀𝑖,𝑗,𝑡 is the 

random noise. Similar to Gebraeel [56] and Liu et al. [10], we use a log-transformation to the 
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original data and focus on modeling the logged signals: 

𝐿𝑖,𝑗,𝑡 = ln(𝑦𝑖,𝑗,𝑡 − 𝛾𝑗) = 𝜃𝑖,𝑗,0 + 𝜃𝑖,𝑗,1𝑡 + 𝜃𝑖,𝑗,2𝑡
2 + 𝜀𝑖,𝑗,𝑡.    (5.20) 

 

TABLE 5.2. DETAILED SENSOR DESCRIPTIONS [27]. 

Symbol Description Units 

T2 Total temperature at fan inlet °R 

T24 Total temperature at LPC outlet °R 

T30 Total temperature at HPC outlet °R 

T50 Total temperature at LPT outlet °R 

P2 Pressure at fan inlet Psia 

P15 Total pressure in bypass-duct Psia 

P30 Total pressure at HPC outlet psia 

Nf Physical fan speed rpm 

Nc Physical core speed rpm 

epr Engine pressure ratio (P50/P2) -- 

Ps30 Static pressure at HPC outlet psia 

phi Ratio of fuel flow to Ps30 pps/psi 

NRf Corrected fan speed rpm 

NRc Corrected core speed rpm 

BPR Bypass Ratio -- 

farB Burner fuel-air ratio -- 

htBleed Bleed Enthalpy -- 

Nf_dmd Demanded fan speed rpm 

PCNfR_dmd Demanded corrected fan speed rpm 

W31 HPT coolant bleed lbm/s 

W32 LPT coolant bleed lbm/s 

 

5.6.2 Estimation of the RUL distribution 

To numerically evaluate the performance of our proposed methodology for prognostic analysis, 

we follow a similar procedure as described in Section 5.5.3 and then compute the RUL of the 

testing units by implementing the proposed method in Section 5.4. Please note that here we have 

conducted the Henze-Zirckler’s test based on the training dataset for each failure mode and the 
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results show that it is satisfactory to use the normal distribution as the prior for the random effects 

as described in (5.10).  

 

TABLE 5.3. THE PERFORMANCE MEASURE OF 𝑅𝐿𝑒  BY USING THE PROPOSED AND THE BENCHMARK 

METHODOLOGIES. 

Sensor Our proposed 

method 

Benchmark 

method 

Improvement 

(%) 

T24 21.30% 26.73% +20.32% 

T50 22.06% 27.25% +19.06% 

P30 43.21% 44.91% +3.79% 

Nf 24.04% 38.39% +37.37% 

Ps30 20.80% 23.40% +11.11% 

phi 45.01% 46.52% +3.26% 

NRf 24.66% 36.62% +32.67% 

BPR 31.55% 34.04% +7.30% 

htBleed 21.78% 29.37% +25.83% 

W31 33.25% 39.26% +15.31% 

W32 32.17% 34.78% +7.50% 

Average 29.08% 34.66% +16.68% 

 

 

Given the actual RUL of the testing units, we then calculate the average prediction error of the 

RUL, 𝑅𝐿𝑒 as defined in (5.17), by using the sensor signals from all of the 100 testing units. The 

results are summarized in Table 5.3. In particular, here we consider 11 sensors, which are selected 

in [10] and shown to be highly related to the degradation mechanism. 

From Table 5.3, it can be seen that our proposed method improves the RUL prediction for all 

selected sensors when compared to the benchmark method. Please note that because the failure 

modes of training units are not available in the dataset, to achieve a fair comparison, here we 

employ the same benchmark approach used in the simulation study. 

To further understand and evaluate the performance of the proposed and benchmark methods 

regarding RUL prediction, we calculate the average percentage error (defined in (5.17)) at different 



101 

 

 

 

levels of actual RUL for the testing units. The results for the proposed and the benchmark 

methodologies are shown in Figs. 5.10 and 5.11, respectively. Specifically, “100” refers to the 

average prediction error for the testing units that have 100 or less actual RUL. The maximum 

actual RUL among all the 100 testing units is 145. Thus, “145” refers to the average prediction 

error based on all the testing units. Note that we are only given partial signals for the testing units; 

therefore, different sets of testing units are used here to evaluate the RUL prediction at different 

levels of the actual RUL. 

 

 

Fig. 5.10. Average prediction error at different levels of actual RUL  
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Based on Fig. 5.10, we can see that in general the RUL predictions become more accurate as the 

unit approaches failure. One possible reason is that less actual RUL typically means that more 

sensory data have been collected, and thus we are more confident about the updated Bayesian 

degradation model as well as the estimated failure threshold for the operating unit.  

Fig. 5.11 further shows the average percentage errors for the proposed and the benchmark 

methodologies by using the best and the worst performing sensors according to the results in Table 

5.3. From Fig. 5.11, we clearly see that the proposed method outperforms the benchmark method 

in both sensors. This case study further demonstrates the effectiveness of our proposed method for 

RUL prediction.  

 

Fig. 5.11. Comparison of the average prediction error between the proposed and benchmark 

methodologies by using the best performing sensor (Ps30) and the worst performing sensor (phi) 
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5.7 Conclusions 

Existing literature has been focused on developing advanced degradation modeling techniques 

to improve prognostics during condition monitoring. While beneficial, these methods often assume 

that the failure threshold is either already known a priori or simply estimated based on the 

population information. Such an assumption limits the accuracy and applicability of the prognostic 

analysis in many applications. 

This Chapter aims to address this issue by real time estimating the failure threshold of an 

operating unit during condition monitoring when the failure threshold is not known a priori. In 

particular, we developed a convex quadratic formulation that fuses the degradation models of 

historical units along with the in-situ sensory data of an operating unit to online estimate its failure 

threshold. Such information can be effectively integrated with the existing degradation modeling 

techniques for better prognostic analysis. As demonstrated in the simulation studies, the proposed 

method provided an accurate estimation of the failure threshold, even at an early stage of the 

degradation. With the improved estimation of the failure threshold, a more accurate prediction of 

the RUL can be achieved. These findings were further reaffirmed in a case study that involves a 

degradation dataset of aircraft turbofan engines. These results not only show the effectiveness of 

our proposed methodology, but also shed light on the importance of online estimating the failure 

threshold for an operating unit, which has been previously ignored in the existing literature. 

Given the importance of the topic, we believe this study will stimulate follow-up research in 

the near future. For example, it would be of interest to also consider a Bayesian framework for 

updating the failure threshold, as compared to the frequentist approach proposed in this Chapter. 
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Also, there is high potential for future studies to utilize the proposed approach for better diagnostic 

inferences, maintenance scheduling [3], work in progress regulations [81], etc. 

5.8 Appendix 

 

Proof for Theorem 1: 

If 𝜂(𝜽𝑗 , 𝑡) = 𝑿𝑡𝜽𝑗 , then 𝐸[�̂�𝑗,𝑡] = 𝐸[𝜂(𝜽𝑗 , 𝑡)] = 𝐸[𝑿𝑡𝜽𝑗] = 𝑿𝑡𝐸[𝜽𝑗] = 𝜂(𝐸[𝜽𝑗], 𝑡).  If 𝐸[𝜽𝑗] 

lies in the convex hull of the set {𝝋1, … , 𝝋𝑚}, then 𝐸[𝜽𝑗] = ∑ (𝑤𝑖𝑗𝝋𝑖)
𝑚
𝑖=1  such that ∑ 𝑤𝑖𝑗

𝑚
𝑖=1 = 1  

and  𝑤𝑖𝑗 ≥ 0, for 𝑖 = 1,2, … ,𝑚 . Also, 𝐸[�̂�𝑗,𝑡] = 𝜂(𝐸[𝜽𝑗], 𝑡) = 𝜂(∑ (𝑤𝑖𝑗𝝋𝑖)
𝑚
𝑖=1 , 𝑡) =

𝑿𝑡 ∑ (𝑤𝑖𝑗𝝋𝑖)
𝑚
𝑖=1 = ∑ (𝑤𝑖𝑗𝑿𝑡𝝋𝑖)

𝑚
𝑖=1 = ∑ (𝑤𝑖𝑗𝜂(𝝋𝑖, 𝑡))

𝑚
𝑖=1 = ∑ (𝑤𝑖𝑗𝜂(𝝋𝑖, 𝑡))

𝑚
𝑖=1 = 𝐸[�̃�𝑗,𝑡] . This 

finished the proof that there exists at least one set of {𝑤1𝑗, … , 𝑤𝑚𝑗}  such that 𝐸[�̃�𝑗,𝑡] =

𝐸[�̂�𝑗,𝑡] 𝑓𝑜𝑟 ∀𝑡, in which ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 = 1  and  𝑤𝑖𝑗 ≥ 0. 

 

Proof for Theorem 2: 

From Theorem 1, we assume that there is one set of {𝑤1𝑗, … , 𝑤𝑚𝑗}, in which ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 = 1  and  

𝑤𝑖𝑗 ≥ 0, for 𝑖 = 1,2, … ,𝑚 such that 𝐸[�̃�𝑗,𝑡] = 𝐸[�̂�𝑗,𝑡] ∀𝑡 = 1,2, … , 𝑛𝑗 . 

Now, we show that the solution of formulation (5.5) guarantees that 𝐸[�̃�𝑗,𝑡] = 𝐸[�̂�𝑗,𝑡]. First, it is 

straightforward to see that ∑ (𝐸[�̂�𝑗,𝑡] − 𝐸[�̃�𝑗,𝑡])
2𝑛𝑗

𝑡=1 = 0  is true if and only if 𝐸[�̃�𝑗,𝑡] =

𝐸[�̂�𝑗,𝑡] ∀𝑡 = 1,2, … , 𝑛𝑗 .  

Accordingly, there exists at least one set {𝑤𝑖𝑗} such that ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 = 1  and  𝑤𝑖𝑗 ≥ 0, for 𝑖 =
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1,2, … ,𝑚, where ∑ (𝐸[�̂�𝑗,𝑡] − 𝐸[�̃�𝑗,𝑡])
2𝑛𝑗

𝑡=1 = 0. As a result of min
𝑤𝑖𝑗

∑ (𝐸[�̂�𝑗,𝑡] − 𝐸[�̃�𝑗,𝑡])
2𝑛𝑗

𝑡=1 ≥ 0, 

then the optimal solution from formulation (5.5) is achieved at ∑ (𝐸[�̂�𝑗,𝑡] − 𝐸[�̃�𝑗,𝑡])
2𝑛𝑗

𝑡=1 = 0.  

Therefore, if 𝜂(𝜽𝑗 , 𝑡) = 𝑿𝑡𝜽𝑗 and 𝐸[𝜽𝑗] lies in the convex hull of the set {𝝋1, … , 𝝋𝑚}, then the 

solution of formulation (8) guarantees that 𝐸[�̃�𝑗,𝑡] = 𝐸[�̂�𝑗,𝑡] ∀𝑡 = 1,2, … , 𝑛𝑗. 

 

Proof (5.8) is equivalent to (5.7) and that the formulation is convex: 

First, the constraint  ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 = 1  can be written as a vector multiplication [1 … 1] ∗

[

𝑤1𝑗

⋮
𝑤𝑚𝑗

] = 𝒐𝑇𝒘𝑗 = 1  and 𝑤𝑖𝑗 ≥ 0, for 𝑖 = 1,2, … ,𝑚  can be written as [

𝑤1𝑗

⋮
𝑤𝑚𝑗

] ≥ [
0
⋮
0
] . Thus, the 

constraints in formulation (5.8) are equivalent to the constraints in formulation (5.7). On one hand, 

the first piece of the objective function in formulation (5.7) can be expressed as: 

∑
(𝐸[𝐿𝑗,𝑡]−𝐸[�̃�𝑗,𝑡])

2

𝑛𝑗

𝑛𝑗

𝑡=1 = ∑

(𝐸[𝐿𝑗,𝑡]−[𝜂(𝝋1,t) … 𝜂(𝝋𝑚,t)][

𝑤1𝑗

⋮
𝑤𝑚𝑗

])

2

𝑛𝑗
=

𝑛𝑗

𝑡=1

(𝒂− 𝑩𝒘𝑗)
𝑇
(𝒂− 𝑩𝒘𝑗)

𝑛𝑗
=

𝒂𝑻𝒂−2𝒂𝑇𝑩𝒘𝑗+𝒘𝑗
𝑇𝑩𝑇𝑩𝒘𝑗

𝑛𝑗
, where 𝑩 = [

𝜂(𝝋1, 1) … 𝜂(𝝋𝑚, 1)
⋮ ⋱ ⋮

𝜂(𝝋1, 𝑛𝑗) … 𝜂(𝝋𝑚, 𝑛𝑗)
] ∈ 𝑅𝑛𝑗x𝑚  and 𝒂 =

[𝐸[𝐿𝑗,1] … 𝐸[𝐿𝑗,𝑛𝑗
]]

𝑇
∈ 𝑅𝑛𝑗x1. On the other hand, the second piece of the objective function 

in formulation (5.7) can be expressed as: 𝜆 𝑅(𝒘𝑗) = 𝜆𝒄𝑇𝒘𝑗 , in which  𝒄 =

[{𝐸[𝐿𝑗,𝑛1
] − 𝑠1,𝑛1

}
2

⋯ {𝐸[𝐿𝑗,n𝑚
] − 𝑠𝑚,𝑛𝑚

}
2
]
𝑇

∈ 𝑅𝑚x1 , then min
𝑤𝑖𝑗

∑
(𝐸[𝐿𝑗,𝑡]−𝐸[�̃�𝑗,𝑡])

2

𝑛𝑗

𝑛𝑗

𝑡=1 +

𝜆 𝑅(𝒘𝑗)  can be re-written as: min
𝒘𝑗

𝒂𝑇𝒂−2𝒂𝑇𝑩𝒘𝑗+𝒘𝑗
𝑇𝑩𝑇𝑩𝒘𝑗

𝑛𝑗
+ 𝜆𝒄𝑇𝒘𝑗 . Thus, after rescaling the 
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objective function by a factor 𝑛𝑗  and removing the constant term, the objective function can be 

thus rewritten into the quadratic optimization formulation in (5.8): min
𝒘𝑗

𝒘𝑗
𝑇𝑩𝑇𝑩𝒘𝑗 + (𝜆𝑛𝑗𝒄

𝑇 −

2𝒂𝑇𝑩)𝒘𝑗, subject to 𝒐𝑇𝒘𝑗 = 1 and 𝒘𝑗 ≥ 𝟎. 

Given that 𝑩𝑇𝑩 is a positive semi-definite matrix because 𝒙𝑇𝑩𝑇𝑩𝒙 = (𝑩𝒙)𝑇𝑩𝒙 = ‖𝑩𝒙‖2
2 ≥

0 ∀𝑥 ∈ 𝑅𝑚x1. Therefore, we can conclude that (5.8) is a convex quadratic optimization problem. 
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Chapter 6 

Structural Degradation Modeling Framework for Sparse 

Datasets with an application on Alzheimer’s Disease 

Unlike most of the existing literature focus on degradation modeling and prognostics with rich 

data environments, in this Chapter, we tackle the problem of having a sparse data environment. 

Specifically, here the sparse data environment refers to the case when there are many units while 

the information from most of the available units are limited.  

6.1 Introduction 

Accurate modeling and prediction of the future degradation evolution has been a critically 

important task in many applications. For example, in manufacturing equipment, an unexpected 

failure may lead to significant economic losses, production downtime, customer dissatisfaction, 

and safety issues. Also in health-care applications, an unexpected disease onset may lead to severe 

medical complexities, ineffective treatment planning, and long-term side effects. Therefore, it is 

crucial to accurately monitor the health status of a unit (e.g., system, equipment, patient) and 

understand its degradation process. To achieve this goal, condition-based techniques have been 

rapidly developed, which aim to fully understand the degradation mechanism of each individual 

unit so that optimal intervention decisions can be made [82]–[86]. For example, in health-care 

applications, appropriate implementation of the condition-based techniques can significantly 

improve early disease diagnosis, treatment effect monitoring and evaluation, and reduce medical 

and economic costs [87], [88]. Similarly, in manufacturing applications, effectively employing the 
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condition-based strategy can extend the life of a unit, deliver quantum leaps in productivity, lower 

the total cost of ownership, enhance equipment safety, and improve operator experience [8], [89]–

[91].  

Fortunately, the accessibility and development of information technologies (e.g., clouds) have 

facilitated the collection and storage of information from a massive number of units nowadays, 

which provides a great opportunity to better understand the degradation processes. For example, 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) has been collecting longitudinal 

measurements of biomarkers from hundreds of participating patients. While the data environment 

is rich in the number of studied patients, the available observations from each patient are often 

quite limited. The “sparse data environments” can be resulted from several reasons such as (i) data 

loss during transmission; (ii) high cost or limited feasibility of acquiring the biomarkers; and (iii) 

the patient being a new participant in the study. Unfortunately, most of the existing literature on 

degradation modeling is not specifically designed for such sparse datasets (Lu and Meeker, 1993; 

Gebraeel et al., 2005; Peng et al., 2012; Zhou et al., 2012; Chen and Tsui, 2013; K. Liu et al., 

2015; Kosasih et al., 2014; Moghaddass and Zuo, 2014).  

Specifically, the existing literature on data-driven degradation modeling can be classified into 

two main categories. The first category directly constructs an individual-level degradation model 

for a unit using only the available data from that unit such as the least squares model [92] and the 

maximum likelihood estimation model [94]. These methods often require a large amount of 

historical data to maintain a certain level of model accuracy. Another category focuses on the 

population characteristics across a set of units and then leverages the available data from the unit 

of interest to construct an individual-level degradation model [10], [25], [29]. For example, a 
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mixed-effects model that describes an entire population was introduced by Lu and Meeker (1993). 

Then, Gebraeel et al. (2005) extended the model by leveraging the available data of an individual 

unit of interest via Bayesian approaches to produce an individual-level degradation model for that 

unit. In general, direct implementation of the above-mentioned techniques to the sparse datasets 

may lead to several issues, including: (i) the high sensitivity of the estimated parameters of the 

degradation model to the given data; (ii) the lack of interpretability of the degradation model; and 

(iii) the poor prediction accuracy of the degradation model. In Chapter 2, we discussed in depth 

the conventional approaches for degradation modeling as well as some recent studies that are 

related to dealing with the challenges of sparse data environments. 

To the best of our knowledge, the existing literature still lacks a reliable degradation modeling 

approach that is suitable for the units with a limited number of observations. This Chapter seeks 

to fill this gap and tackle the unique challenges in sparse data environments by developing a 

structural degradation modeling (SDM) framework. Our approach is inspired by the recommender 

system, which recommends an item to a user based on (i) other recommenders who rated that item 

before and (ii) the historical ratings of the user. In particular, first we define each available unit 

with historical observations as a recommender and the unit of interest as the user; and then we 

model the degradation status of each interested unit as a combination of the recommenders by 

taking into account of (i) the available data from the unit of interest; (ii) the population 

characteristics; (iii) the relationships between the recommenders; and (iv) the precision of the 

recommenders. Essentially, our proposed method integrates two important ideas: (i) leveraging the 

available data from the interested unit to improve the modeling fitting of the individual unit over 

the observed time domain; and (ii) considering the relationship between the available units to 
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extract proper and accurate population characteristics to address the challenge of limited 

observations. 

The rest of the Chapter is structured as follows. Sections 6.2, 6.3 and 6.4 propose a degradation 

modeling approach as a recommender system for sparse datasets. Section 6.5 demonstrates the 

effectiveness of the proposed method regarding degradation modeling based on simulation studies. 

Section 6.6 demonstrates the proposed method for degradation modeling and prognostics based on 

the ADNI dataset. Section 6.7 draws a conclusion and discusses future research directions. 

6.2 Model Formulation 

To adopt the recommender system, we assume all the available units with historical 

observations excluding the unit of interest as recommenders. Then our main idea is to construct 

the degradation model of unit 𝑗 of interest as a combination of the expected values from the 

recommenders by the following:  

𝑠𝑗,𝑡 = ∑ (𝑤𝑖𝑗𝐸[𝑠𝑖,𝑡|𝒔𝑖,⋅])
𝑚
𝑖=1 + 𝑏𝑗 + 𝜖𝑗,𝑡.                                     (6.1) 

Here, ∑ (𝑤𝑖𝑗𝐸[𝑠𝑖,𝑡|𝒔𝑖,⋅])
𝑚
𝑖=1 + 𝑏𝑗 is the predicted degradation status for unit 𝑗 at time 𝑡; 𝒔𝑖,. is the 

vector of available observations for recommender 𝑖; 𝑚 is the number of available recommenders; 

𝑤𝑖𝑗 is the weight of recommender 𝑖 in construction of the model of unit 𝑗 and it also quantifies the 

similarity between the degradation profiles for unit 𝑗 and recommender 𝑖; 𝑏𝑗 is a bias term; and 𝜖𝑗,𝑡 

quantifies the measurement errors and is assumed to follow a normal distribution 𝑁(0, 𝜎𝑗
2). 

In the above equation, 𝑤𝑖𝑗 is a key parameter because it quantifies the similarity between the 

degradation profiles for unit 𝑗 and recommender 𝑖. Once 𝑤𝑖𝑗 is accurately estimated, we will then 

be able to leverage the degradation profiles of the recommenders to accurately predict the future 
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degradation status for the unit of interest. It may be intuitive to calculate 𝑤𝑖𝑗  via the existing 

methods such as (i) maximizing the likelihood, or (ii) minimizing the sum of squared errors over 

the observed time domain (i.e., least squares approach). However, such approaches do not provide 

any guarantee that 𝑤𝑖𝑗  quantifies the similarity between the degradation profiles for unit 𝑗 and 

recommender 𝑖 and therefore the interpretability is limited. In addition, for a unit 𝑗 with limited 

observations, there is high uncertainty involved in the estimation of 𝑤𝑖𝑗 as it is only based on the 

limited observations from unit 𝑗. 

 

 
Fig. 6.1. Illustration of the challenges for modeling the AD. Blue squares represent the mild 

(early-stage), green stars represent the moderate (middle-stage), black diamonds represent the 

severe (late-stage), and the red circles show the observed biomarker (MMSE) measurements of a 

patient 

 

In the following, we will first provide an example to illustrate the challenges for modeling the 

AD with limited observations. Specifically, Figure 6.1 shows in red circles the Mini-Mental Score 
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Examination (MMSE) measurements for an interested Alzheimer’s Disease (AD) patient, in blue 

squares a recommender for the MMSE of a typical mild (early-stage) AD patient, in green stars a 

recommender for the MMSE of a typical moderate (middle-stage) AD patient, and in black 

diamonds a recommender for the MMSE of a typical severe (late-stage) AD patient. Our goal is to 

estimate the degradation model of the patient of interest using equation (6.1). With the maximum 

likelihood estimator, the model parameters learned for this example are [

𝑏
𝑤1

𝑤2 
𝑤3

] = [

1.2
0.86
−1.0
0.89

], which 

minimizes the sum of squared errors. However, this model is limited in interpretation, which 

cannot provide any insights on the level of sickness. To be specific, the results indicate that the 

degenerative process of the patient of interest is almost equally close to the degradation processes 

of the severe patient as well as the mild patient (𝑤1 = 0.86 and 𝑤3 = 0.89). In other words, this 

model indicates that the patient should follow the path of a moderate patient. Contradictorily, the 

results also show that the patient’s degradation model is far from that of the moderate patient (𝑤2 =

−1 ). Furthermore, to understand the sensitivity of the model to newly observed data, we 

intentionally hide the last observation and derive the model parameters again: [

𝑏
𝑤1

𝑤2 
𝑤3

] = [

−73
2.8
1.9
0.95

]. It 

can be seen that there is a huge difference in the estimated parameters after hiding the last 

observation, which indicates that the estimated parameters are highly sensitive to newly observed 

data and the derived degradation model is not reliable for extrapolation.  
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6.3 Structural Degradation Modeling (SDM) Framework 

 
Fig. 6.2. Structural Degradation Modeling (SDM) Framework 

 

To address the challenges in sparse datasets, we propose to model the degradation status of the 

unit of interest based on the recommender system framework by taking into account of the 

precision of the recommenders and the relationship between the recommenders as shown in the 

solid box in Figure 6.2. Similar to the conventional recommender system, our proposed approach 

allows preselecting recommenders and adding artificial recommenders based on domain 

knowledge. It is important to note that such a preselection process is critical to decrease the 

computational efforts for dealing with big data. However, unlike the conventional recommender 

system, our proposed approach models the degradation profile of each recommender 𝑖  as 

𝑁(𝜂(𝜽𝑖, 𝑡), 𝜎𝑖
2) such that 𝜂(𝜽𝑖 , 𝑡) is monotonically increasing or decreasing for 𝑡 ≥ 0 based on the 

domain knowledge of degradation process. Mathematically, (i) 𝜽𝑖  is the solution of  

min
𝜽𝑖

∑ {𝜂(𝜽𝑖, 𝑡𝑖(𝑟)) − 𝑠𝑖,𝑡𝑖(𝑟)}
2𝑛𝑖

𝑟=1  such that 
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{
𝑑𝜂(𝜽𝑖, 𝑡)/𝑑𝑡 ≥ 0, ∀𝑡 ≥ 0 if montonically increasing

𝑑𝜂(𝜽𝑖, 𝑡)/𝑑𝑡 ≤ 0, ∀𝑡 ≥ 0 if monotonically decreasing
; and (ii) 𝜎𝑖

2 =
∑ {𝜂(𝜽𝑖,𝑡𝑖(𝑟))−𝑠𝑖,𝑡𝑖(𝑟)}

2𝑛𝑖
𝑟=1

degrees of freedom
. 

For example, if we consider the quadratic model for each recommender that can be written as  

𝑠𝑖,𝑡 = 𝜃𝑖,0 + 𝜃𝑖.1𝑡 + 𝜃𝑖,2𝑡
2 + 𝜖𝑡  and given that the degradation trends are monotonically 

decreasing, then (i) 𝜽𝑖 is the solution of  min
𝜽𝑖

∑ {𝜂(𝜽𝑖 , 𝑡𝑖(𝑟)) − 𝑠𝑖,𝑡𝑖(𝑟)}
2𝑛𝑖

𝑟=1  such that 𝜃𝑖,1 ≤ 0 and 

𝜃𝑖,2 ≤ 0; and (ii) 𝜎𝑖
2 =

∑ {𝜂(𝜽𝑖,𝑡𝑖(𝑟))−𝑠𝑖,𝑡𝑖(𝑟)}
2𝑛𝑖

𝑟=1

𝑛𝑖−3
. 

Without loss of generality, we assume that a set of recommenders {1, … ,𝑚}  have been 

preselected. Then, we propose the following SDM formulation to estimate the parameters 𝑤𝑖𝑗 and 

𝑏𝑗 in equation (6.1):  

min
𝑤𝑖𝑗,𝑏𝑗

∑ {𝐸 [𝑠𝑗,𝑡𝑗(𝑟)] − 𝑠𝑗,𝑡𝑗(𝑟)}
2𝑛𝑗

𝑟=1 + ℎ(𝑛𝑗){∑ ∑ (𝑤𝑖𝑗𝑑𝑖𝑘𝑤𝑘𝑗)
𝑚
𝑘=1

𝑚
𝑖=1 + ∑ 𝑤𝑖𝑗𝜎𝑖𝜎𝑖𝑤𝑖𝑗

𝑚
𝑖=1 }  

s.t.     ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 = 1, 

                          𝑤𝑖𝑗 ≥ 0, 𝑖 = 1,2, … ,𝑚,         

              𝑧𝑖𝑘(𝑤𝑖𝑗 − 𝑤𝑘𝑗) = 0, 𝑖 = 1,2, … ,𝑚 and 𝑘 = 1,2, … ,𝑚,    

              𝑧𝑖𝑘 = {
1 𝑃(𝑠𝑖,𝑡|𝒔𝑖, . = 𝑦) = 𝑃(𝑠𝑘,𝑡|𝒔𝑘, . = 𝑦) ∀𝑦 ∈ 𝑅 

0 otherwise
,       (6.2) 

Here, 𝐸[𝑠𝑗,𝑡] = ∑ (𝑤𝑖𝑗𝐸[𝑠𝑖,𝑡|𝒔𝑖,⋅])
𝑚
𝑖=1 + 𝑏𝑗 is the predicted degradation status for unit 𝑗 at time 𝑡, 

where 𝑠𝑖,𝑡|𝒔𝑖,. is the random variable that represents the degradation status of recommender 𝑖 given 

its historical degradation information and it is assumed to follow a normal distribution 

𝑁(𝜂(𝜽𝑖, 𝑡), 𝜎𝑖
2); 𝑧𝑖𝑘  is an indicator variable to check if recommenders 𝑖  and 𝑘  share the same 

degradation model; 𝑛𝑗  is the number of available observations for unit 𝑗; ℎ(𝑛𝑗) is a parameter that 
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depends on 𝑛𝑗; 𝑡𝑗(𝑟) is the time that the 𝑟th observation is obtained for unit 𝑗; and 𝑑𝑘𝑖 = 𝑑𝑖𝑘 =

√𝑑𝑖𝑘 ∗ √𝑑𝑘𝑖 ≥ 0 is the dissimilarity between recommender 𝑖 and recommender 𝑘. Thus, in the 

objective function, 𝑤𝑖𝑗𝑑𝑖𝑘𝑤𝑘𝑗 = 𝑤𝑖𝑗√𝑑𝑖𝑘 ∗ √𝑑𝑘𝑖𝑤𝑘𝑗  is the weighted dissimilarity between 

recommenders 𝑖 and 𝑘, which depends on the estimated weights 𝑤𝑖𝑗 and 𝑤𝑘𝑗.  

Unlike the existing methods in degradation modeling, the SDM framework takes into 

consideration of all of the following: 

(i) The precision of the recommenders via the term ∑ 𝑤𝑖𝑗𝜎𝑖𝜎𝑖𝑤𝑖𝑗
𝑚
𝑖=1 ; 

(ii) The relationship between the recommenders via the term ∑ ∑ (𝑤𝑖𝑗𝑑𝑖𝑘𝑤𝑘𝑗)
𝑚
𝑘=1

𝑚
𝑖=1 ; 

(iii) The population characteristics via modeling the unit of interest 𝑗 as a combination of the 

recommenders and by the definition of the weight 𝑤𝑖𝑗 that it quantifies the similarity between the 

degradation profiles for unit 𝑗 and recommender 𝑖. 

(iv) The individual characteristics via minimizing the sum of squared errors ∑ {𝐸 [𝑠𝑗,𝑡𝑗(𝑟)] −
𝑛𝑗

𝑟=1

𝑠𝑗,𝑡𝑗(𝑟)}
2

. 

Below we provide detailed discussions for each term considered above. For (i), when predicting 

the degradation status of unit 𝑗, it is preferred to rely more on precise recommenders with low 

variance. In other words, if 𝜎𝑖
2 of recommender 𝑖 is relatively higher with respect to that of other 

recommenders, then we prefer to assign a lower value for 𝑤𝑖𝑗 . Therefore, we add the term 

∑ 𝑤𝑖𝑗𝜎𝑖𝜎𝑖𝑤𝑖𝑗
𝑚
𝑖=1  to force to choose more precise recommenders.  

For (ii), the similarity measure is a commonly used technique for clustering and classification 

such as DBSCAN [96], k-NN [97], k-means [98], [99], ratio-cut [100]. Here, in addition to 



116 

 

 

 

constructing an accurate model based on the available observations from the unit of interest, we 

also try to set 𝑤𝑖𝑗 ≥ 0 for recommenders that are highly similar (i.e., recommenders that belong 

to the same cluster). Note that the weighted dissimilarity is important for controlling the stability 

in the constructed degradation model. Considering two non-similar recommenders 𝑖 and 𝑘 (i.e., 

𝑑𝑖𝑘  is large), a large value in 𝑤𝑖𝑗𝑑𝑖𝑘𝑤𝑘𝑗  means that large weights 𝑤𝑖𝑗  and 𝑤𝑘𝑗  are assigned to 

construct the degradation model for unit 𝑗, which thus leads to an uninterpretable and unstable 

model similar to the case in the motivation example in Figure 6.1 (𝑤1 and 𝑤3 are very large and 

close to each other). To avoid this issue, we propose to minimize the overall pairwise weighted 

dissimilarity between the recommenders, ∑ ∑ (𝑤𝑖𝑗𝑑𝑖𝑘𝑤𝑘𝑗)
𝑚
𝑘=1

𝑚
𝑖=1 , to enhance the stability and 

interpretation of the constructed degradation model. Ideally, we prefer 𝑤𝑖𝑗𝑑𝑖𝑘𝑤𝑘𝑗 → 0  when 

recommenders 𝑖 and 𝑘 do not share similar degradation characteristics (i.e., 𝑑𝑖𝑘 is large). This is 

equivalent to mitigating the contribution of recommender 𝑖 (i.e., 𝑤𝑖𝑗 → 0), or recommender 𝑘 (i.e., 

𝑤𝑘𝑗 → 0), or both recommenders (i.e., 𝑤𝑖𝑗 → 0 and 𝑤𝑘𝑗 → 0). Regarding the dissimilarity metric 

𝑑𝑖𝑖, it is commonly set to 0 because there is no dissimilarity between the recommender and itself. 

However, in this Chapter, we propose a modification of  𝑑𝑖𝑖 = ∑ 𝑑𝑖𝑘
𝑚
𝑘=1
𝑘≠𝑖

. The rationale is that if 

recommender 𝑖 was mistakenly chosen, then it adds up to the uncertainty of the constructed model. 

This uncertainty would be quantitatively high if recommender 𝑖  is totally off from the true 

degradation model, which is estimated as a combination of the remaining recommenders’ models. 

Accordingly, if recommender 𝑖 is highly non-similar from the remaining recommenders, then it is 

risky to include recommender 𝑖 in the constructed model. Therefore, we propose setting 𝑑𝑖𝑖  =
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∑ 𝑑𝑖𝑘
𝑚
𝑘=1
𝑘≠𝑖

 which is the sum of dissimilarities between recommender 𝑖  and the remaining 

recommenders. For conducting the dissimilarity measure, extensive studies have been done in the 

literature [101]. Without loss of generality, in the Chapter, we consider the square of the 

Mahalanobis distance, 𝑑𝑘𝑖 = (𝜽𝑖 − 𝜽𝑘)𝑇𝚺𝜽
−1(𝜽𝑖 − 𝜽𝑘)  for 𝑖 ≠ 𝑘  to measure the dissimilarity 

between recommenders 𝑖 and 𝑘. Here, 𝚺𝜽 is the covariance matrix of 𝜽 and it can be estimated by 

the sample covariance matrix from the parameters of the recommenders. 

On the other hand, for (iv), ∑ (𝐸 [𝑠𝑗,𝑡𝑗(𝑟)] − 𝑠𝑗,𝑡𝑗(𝑟))
2𝑛𝑗

𝑟=1  is the sums of squared errors over the 

observed time domain, which is used to ensure the constructed model accurately characterizes the 

degradation evolution of interested unit 𝑗. In the objective function, the weighted dissimilarity 

∑ ∑ (𝑤𝑖𝑗𝑑𝑖𝑘𝑤𝑘𝑗)
𝑚
𝑘=1

𝑚
𝑖=1 + ∑ 𝑤𝑖𝑗𝜎𝑖𝜎𝑖𝑤𝑖𝑗

𝑚
𝑖=1  is more focused on the population characteristics, 

whereas the sum of squared errors ∑ (𝐸 [𝑠𝑗,𝑡𝑗(𝑟)] − 𝑠𝑗,𝑡𝑗(𝑟))
2𝑛𝑗

𝑟=1  is more focused on the individual 

characteristics of the unit of interest. ℎ(𝑛𝑗) balances this trade-off. In this Chapter, we propose to 

consider ℎ(𝑛𝑗) as a decreasing positive function with respect to 𝑛𝑗 . This is because when there are 

more observations available from unit 𝑗, we will be more confident to rely on the individual 

observations to characterize the unit of interest. Specifically, as an illustration, we set ℎ(𝑛𝑗) =

𝜆/𝑛𝑗 , where 𝜆 is a tuning parameter and we will discuss how to estimate 𝜆 in details in Section 

6.4. 

Finally, by the definition of 𝑤𝑖𝑗 that it quantifies the similarity between the degradation profiles 

for unit 𝑗 and recommender 𝑖, the following constraints should be satisfied: (i) 𝑤𝑖𝑗 ≥ 0 for 𝑖 =

1, … , 𝑚; and (ii) weights from equivalent recommenders should be equal, which mathematically 
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can be written as 𝑧𝑖𝑘(𝑤𝑖𝑗 − 𝑤𝑘𝑗) = 0 such that 𝑧𝑖𝑘 = 1 if recommenders 𝑖 and 𝑘 are identical; 

otherwise, 𝑧𝑖𝑘 = 0 . Since we are only given a finite set of recommenders, we focus on the 

normalized similarity measure by forcing ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 = 1.  

With all the above efforts, we expect the proposed model to be more interpretable and robust 

to over-fitting. As an illustration, we apply the proposed framework to the example in Figure 6.1. 

The results show that the optimal solution is [

𝑏
𝑤1

𝑤2 
𝑤3

] = [

0.97
0.09
0.77
0.14

] before hiding the last observation; 

and [

𝑏
𝑤1

𝑤2 
𝑤3

] = [

0.88
0.10
0.78
0.12

] after hiding the last observation. From these results, we can see that the 

proposed method has a nice interpretation that the patient is more likely to have a moderate AD 

status. In addition, the weights do not vary much compared to the least squares approach before 

and after hiding the last observation. In Sections 6.5 and 6.6, we will further thoroughly study our 

proposed method under different scenarios. 

For simplicity, we can rewrite formulation (6.2) to the following: 

min 
𝒘𝑗

𝒘𝑗
𝑇𝜳𝑇𝜳𝒘𝑗 − 2𝒔𝑗,.

𝑇𝜳𝒘𝑗 + 𝒔𝑗,.
𝑇𝒔𝑗,. + ℎ(𝑛𝑗)𝒘𝑗

𝑇𝑫∗𝒘𝑗 

    s.t.        𝒐𝑇𝒘𝑗 = 1 

𝑨𝒘𝑗 ≥ 𝟎,                              (6.3) 

where 𝒔𝑗,. = [𝑠𝑗,𝑡𝑗(1), 𝑠𝑗,𝑡𝑗(2), … , 𝑠𝑗,𝑡𝑗(𝑛𝑗)
]
𝑇

is the vector of available observations for operating unit 

𝑗 ;  𝒘𝑗 = [𝑏𝑗, 𝑤1𝑗, … . , 𝑤𝑚𝑗]
𝑇

∈ 𝑅(𝑚+1)×1  is a vector that contains both the bias term and the 
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weights; 𝜳 = [

1 𝜂 (𝜽1, 𝑡𝑗(1)) … 𝜂 (𝜽𝑚, 𝑡𝑗(1))

⋮ ⋮ ⋱ ⋮

1 𝜂 (𝜽1, 𝑡𝑗(𝑛𝑗)) … 𝜂 (𝜽𝑚, 𝑡𝑗(𝑛𝑗))

] ∈ 𝑅𝑛𝑗×(𝑚+1)  is the design matrix; 𝒐 =

[0, 1, … ,1]𝑇 ∈ 𝑅(𝑚+1)×1 is a vector containing all ones except for the first entry to be 0; and 𝑨 =

𝑑𝑖𝑎𝑔(𝒐)  is a diagonal matrix with a diagonal vector 𝒐 ; and 𝑫∗ =

[

0 0 … 0
0 𝑑11 + 𝜎1

2 … 𝑑1𝑚

⋮ ⋮ ⋱ ⋮
0 𝑑𝑚1 … 𝑑𝑚𝑚 + 𝜎𝑚

2

] ∈ 𝑅(m+1)×(m+1)  is the augmented dissimilarity matrix with 

𝑑𝑖𝑖 = ∑ 𝑑𝑖𝑘
𝑚
𝑘=1
𝑘≠𝑖

 and 𝑑𝑘𝑖 = 𝑑𝑖𝑘 ≥ 0 . The constraints 𝑧𝑖𝑘(𝑤𝑖𝑗 − 𝑤𝑘𝑗) = 0, 𝑖 = 1,2, … ,𝑚  and 𝑘 =

1,2, … ,𝑚  as well as  𝑧𝑖𝑘 = {
1 if recommenders i and k are identical 
0 otherwise

 are removed by the 

results of Lemma 6.1. 

In Lemma 6.1, we further prove that any two equivalent recommenders will have the same 

weights. This Lemma (i) allows removing the last two constraints in formulation (6.2) and 

maintaining the definition of 𝑤𝑖𝑗; and (ii) helps reducing the number of unknown variables by 

substituting 𝑤𝑘∗𝑗 with 𝑤𝑖∗𝑗 if 𝜃𝑖∗ = 𝜃𝑘∗  and 𝜎𝑖∗
2 = 𝜎𝑘∗

2 .  

Lemma 6.1:  If recommenders 𝑖∗  and 𝑘∗  are identical (i.e., 𝜃𝑖∗ = 𝜃𝑘∗  and 𝜎𝑖∗
2 = 𝜎𝑘∗

2 ), then the 

resulting weights 𝑤𝑖∗𝑗 and 𝑤𝑘∗𝑗 from the SDM formulation (6.3) are also identical (see Appendix 

for details). 

In Lemma 6.2, we prove that the proposed SDM formulation (6.3) is convex. Therefore, the 

formulation can be efficiently solved at a low computational cost by many existing solvers [73].  

Lemma 6.2: The SDM formulation (6.3) is convex (see Appendix for details). 
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6.4 Evaluation of the Tuning Parameter 

Given a dataset 𝔇, we randomly partition the dataset into a validation dataset 𝔇𝑣 and a training 

dataset 𝔇𝑡. Then, we follow Algorithm 1 below to estimate the tuning parameter 𝜆, which aims to 

minimize the validation error. For demonstration purposes, we define the validation error by the 

2nd norm of the difference between the predicted and true degradation measurements of the 

validation dataset 𝑒 = ‖𝔇𝑣 − �̂�𝑣‖2
= √∑ (𝐸 [𝑠𝑗,𝑡𝑗(𝑟)] − 𝑠𝑗,𝑡𝑗(𝑟))

2𝑛𝑗
𝑣

𝑟=1 , where 𝑛𝑗
𝑣 is the number of 

validation observations from unit 𝑗. The algorithm is iterative and terminates either after exceeding 

a predefined maximum number of iterations or when the difference in the validation accuracy 

between two consecutive iterations is below a certain threshold 𝑒𝑟𝑟 (i.e., |𝑒 − 𝑒𝑜| < 𝑒𝑟𝑟). At each 

iteration, 𝜆 gets updated (by 𝛼 ∗ 𝜆, where 𝛼 is the step size parameter) if a better performance is 

achieved; otherwise, we shrink the step size by a factor greater than 1 (e.g., 𝛼 = 𝛼/1.5). In the 

simulation and case studies, we only utilize Algorithm 1 once to calculate the tuning parameter 𝜆; 

however, it is possible to run the algorithm at different initial values of 𝜆 for a better estimation of 

the tuning parameter.  

 

ALGORITHM 1: ESTIMATION OF THE TUNING PARAMETER 

1. Define the max allowable iterations 𝑖𝑚𝑎𝑥, the initial value of 𝜆, a large initial value of 

validation error 𝑒𝑜 = 1000, the minimally allowable difference in the validation error 𝑒𝑟𝑟 

between two consecutive iterations for termination, and an initial step size 𝛼 = 2. 

2. For 𝑖𝑡𝑒𝑟 =  1 𝑎𝑛𝑑 𝑖𝑡𝑒𝑟 < 𝑖𝑚𝑎𝑥 (LOOP 1) 

3.      𝜆 = 𝛼 ∗ 𝜆 

4.      For 𝑖 =  1 𝑎𝑛𝑑 𝑖 < 𝑚: Loop over all the units (LOOP 2) 

5.           Calculate 𝒘𝑗 via the SDM framework given the training dataset 𝔇𝑡 



121 

 

 

 

6.           Calculate the validation error 𝑒 = ‖𝔇𝑣 − �̂�𝑣‖2
  

7.           IF |𝑒 − 𝑒𝑜| < 𝑒𝑟𝑟 

8.                Stop and return 𝜆 

9.           END IF 

10.           IF 𝑒𝑜 > 𝑒                 (then update 𝑒𝑜) 

11.                𝑒𝑜 = 𝑒 

12.           ELSE                       (there is no improvement because the step size 𝛼 is large) 

13.                𝜆 = 𝜆/𝛼              (do not update 𝜆) 

14.                𝛼 = 𝛼/1.5          (shrink the step size to reach a local minimum) 

15.           END IF 

16.      END LOOP 2 

17. END LOOP 1 

 

6.5 Simulation Studies 

In this section, we investigate the performance of the proposed SDM via simulation studies and 

compare them to the following benchmark methods: 1) Recommender system Model (RM), 2) 

Bayesian Mixed-Effects Model (BMEM), 3) Least Squares Model (LSM), 4) collaborative multi-

output Gaussian process with no basis functions for the outputs (MOGP), and 5) collaborative 

multi-output Gaussian process with quadratic basis functions for the outputs (MOGP-Q). For the 

RM, we estimate 𝑤𝑖𝑗 by its restricted maximum likelihood estimator subject to ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 = 1 and 

𝑤𝑖𝑗 ≥ 0 for 𝑖 =  1, 2, . . , 𝑚. In our simulation studies, we focus on the AD application and simulate 

the MMSE measurements for AD patients. The MMSE ranges between 0 (worst condition) and 30 

(best condition) and it is expected to decrease with time for all patients. In total 100 patients were 

simulated over a period of 36 months with measurements taken monthly. The MMSE measurement 
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for each simulated patient is assumed to follow a 2nd order polynomial model [102], [103]: 

𝑀𝑖,𝑡 = 𝜃𝑖,0 + 𝜃𝑖.1𝑡 + 𝜃𝑖,2𝑡
2 + 𝜖𝑖,𝑡,         (6.4) 

where 𝑀𝑖,𝑡 is the simulated MMSE measurement for patient 𝑖 at time 𝑡; 𝜽𝑖 = [𝜃𝑖,0, 𝜃𝑖,1, 𝜃𝑖,2]
𝑇 are 

the parameters for patient 𝑖  and assumed to follow the normal distribution 𝑁3(𝒖, 𝜮) with 𝒖 =

[23; −0.05;−0.005]𝑇 and 𝜮 = [
10 −10−4 −10−5

−10−4 10−4 10−5

−10−5 10−5 10−5

]; 𝜖𝑖,𝑡 represents the random noise in 

the MMSE measurements and is assumed to follow a normal distribution 𝑁(0, 𝜎𝑖
2); and 𝑡 is the 

time in months. Figure 6.3 shows the underlying degradation models for AD patients over 36 

months. 

 
Figure 6.3. The underlying degradation models for AD patients over 36 months 

 

In our simulation studies, 9 different scenarios are considered with two varying factors: (i) the 

variance of the random noise 𝜎𝑖
2 with values 1, 9 and 16; and (ii) the percentage of missing data 

(sparsity level) by randomly hiding 20%, 50% and 80% of the observations from the full dataset. 

For each scenario, we (i) calculate the tuning parameter based on Section 6.4; and (ii) evaluate the 

metrics in equations (6.5) and (6.6) below. 
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(i) For each simulated patient 𝑗, we define the mean square error (MSE) of the hidden observations 

as the following: 

𝑀𝑆𝐸(𝑗) =
1

𝑛𝑗
ℎ ∑ (𝑀𝑗,𝑡 − �̂�𝑗,𝑡)

2𝑛𝑗
ℎ

𝑡=1 ,                                       (6.5) 

where 𝑛𝑗
ℎ is the number of hidden measurements for patient 𝑗 ; and �̂�𝑗,𝑡 is the estimated 

measurement for patient 𝑗 at time 𝑡  (i.e.,  �̂�𝑗,𝑡 = 𝜃𝑗,0 + 𝜃𝑗,1𝑡 + 𝜃𝑗,2𝑡
2 via the LSM and BMEM 

approaches, and �̂�𝑗,𝑡 = ∑ 𝑤𝑖𝑗�̂�𝑖,𝑡
𝑚
𝑖=1 + 𝑏𝑗 using the SDM and RM frameworks).  

(ii) Since the true parametric simulation model is known, we can also calculate the mean square 

error (pMSE) of the parameters for patient 𝑗 as the following: 

𝑝𝑀𝑆𝐸(𝑗) =
(𝜽𝑗−�̂�𝑗)

𝑇
(𝜽𝑗−�̂�𝑗)

𝑝+1
,                                 (6.6) 

where 𝑝 is the order of the polynomial degradation model and it is equal to 2 in our simulation 

study; and 𝜽�̂� = [𝜃𝑗,0, 𝜃𝑗,1, 𝜃𝑗,2]
𝑇
 is the estimated set of degradation parameters for patient 𝑗 based 

on the available observations (i.e., excluding the hidden observations). Note that even if a 

constructed model fits the available observations of a unit accurately but fails to estimate the true 

degradation model, it is expected that the future predictions from the constructed model will still 

be inaccurate. Therefore, here, we utilize pMSE to measure the long-term prediction performance 

of the constructed model, such that a lower error in the model parameters is expected to produce 

better predictions in the future. On the contrary, the MSE metric in equation (6.5) characterizes 

the prediction performance within the observation window.  
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Table 6.1 summarizes the performance comparisons regarding MSE, which are based on the 

hidden observations. For a better visual illustration, Figure 6.4 shows the sample mean of the MSE 

for the scenarios with a noise variance equals to 9.  

Table 6.1. The sample mean (𝜇𝑀𝑆𝐸) and sample standard deviation (𝜎𝑀𝑆𝐸) of the MSE under 

different simulated scenarios with the best performing model in bold  

Noise 

Variance 

Missing 

Data (%) 

SDM 

[𝜇𝑀𝑆𝐸 , 𝜎𝑀𝑆𝐸] 
RM 

[𝜇𝑀𝑆𝐸 , 𝜎𝑀𝑆𝐸] 
BMEM 

[𝜇𝑀𝑆𝐸 , 𝜎𝑀𝑆𝐸] 
LSM 

[𝜇𝑀𝑆𝐸 , 𝜎𝑀𝑆𝐸] 
MOGP 

[𝜇𝑀𝑆𝐸 , 𝜎𝑀𝑆𝐸] 
MOGP-Q 

[𝜇𝑀𝑆𝐸 , 𝜎𝑀𝑆𝐸] 

1 20 [0.25, 0.15] [0.25, 0.15] [0.25, 0.15] [0.26, 0.16] [0.73, 0.81] [0.25, 0.15] 

1 50 [1.13, 0.60] [1.13, 0.58] [1.12, 0.56] [1.19, 0.63] [3.09, 3.52] [1.13, 0.58] 

1 80 [7.38, 10.0] [9.67, 22.1] [7.96, 10.9] [22.5, 83.7] [21.3, 25.0] [9.74, 22.4] 

9 20 [2.24, 1.51] [2.26, 1.51] [2.27, 1.52] [2.35, 1.53] [2.73, 2.08] [2.28, 1.51] 

9 50 [9.83, 4.16] [10.1, 4.42] [10.1, 4.22] [11.0, 5.02] [11.3, 5.68] [10.2, 4.44] 

9 80 [48.5, 30.0] [54.9, 45.6] [55.7, 32.4] [107, 201] [57.8, 34.3] [55.0, 46.6] 

16 20 [3.96, 2.67] [4.01, 2.68] [4.03, 2.71] [4.16, 2.72] [4.44, 3.19] [4.04, 2.68] 

16 50 [17.3, 7.17] [17.9, 7.80] [17.8, 7.37] [19.5, 8.96] [18.6, 8.21] [18.0, 7.83] 

16 80 [84.1, 48.8] [95.1, 73.7] [96.1, 53.6] [166, 245] [91.5, 48.8] [95.4, 75.8] 

 

 
Figure 6.4. Sample mean of the MSE when the noise variance equals to 9 

 

From Table 6.1, we can see that the SDM shows a relatively better performance compared to 

the benchmark methods at high percentages of missing data. This is an expected consequence 

because (i) the constructed models from the LSM and BMEM become unstable and highly 

sensitive to the variance of the available data; and (ii) the existing MOGPs may falsely characterize 



125 

 

 

 

the correlation between the units due to the limited available data. However, the SDM framework 

(i) focus on precise recommenders to achieve a less sensitive degradation model; and (ii) considers 

the relationships between the recommenders, which stabilizes the constructed degradation model. 

As a conclusion from the MSE metric results, the proposed SDM framework is expected to have 

a better performance than the benchmark methods for sparse datasets and/or in presence of high 

variance noise. Note that noisy datasets (i.e., high variance datasets) share similar challenges with 

sparse datasets such as potential over-fitting and lack of interpretability. This is because noisy 

datasets require more observations than a non-noisy dataset to achieve a comparable model fitting 

performance.  

Figure 6.4 provides a better illustration which clearly shows that the SDM outperforms the 

benchmark methods at high percentages of missing data. Note that the MSE metric is based on the 

error in the randomly hidden observations, therefore it measures the interpolation performance of 

the methods because those hidden observations are scattered and not concentrated in a specific 

time window. To better understand the predictive performance for the long run, we further evaluate 

the results of the pMSE metric, which are present in Table 6.2. Here, we do not show the results 

from the MOGPs because they are based on data and do not give estimates for the parametric 

model. For a better visual illustration, Figure 6.5 shows the sample mean value of the pMSE for 

the scenarios with a noise variance equals to 9. 

From Table 6.2, we can see that (i) the proposed SDM framework outperforms the benchmark 

methods in all of the scenarios; and (ii) the benchmark methods perform poorly at high percentages 

of missing data. The first observation is expected because the SDM framework considers the 

relationship between the recommenders, which ensures the stableness of the constructed 
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degradation model even at high levels of missing data. The second observation stems from the 

facts that (i) the RM and LSM tend to over-fit the limited observations, which thus leads to a good 

performance over the observed time domain but not for future predictions; and (ii) in presence of 

limited observations, the BMEM tends to focus more on the population characteristics that may 

not accurately realize the unique characteristics of the interested unit. As a conclusion, this 

simulation study clearly shows the advantage of our proposed method for sparse data environments 

where there exists many units that have limited number of available observations. 

 

Table 6.2. The sample mean (𝜇𝑝𝑀𝑆𝐸) and sample standard deviation (𝜎𝑝𝑀𝑆𝐸) of the pMSE under 

different simulated scenarios with the best performing model in bold 

Noise 

Variance 

Missing Data 

(%) 

SDM 

[𝜇𝑝𝑀𝑆𝐸 , 𝜎𝑝𝑀𝑆𝐸] 
RM 

[𝜇𝑝𝑀𝑆𝐸 , 𝜎𝑝𝑀𝑆𝐸] 
BMEM 

[𝜇𝑝𝑀𝑆𝐸 , 𝜎𝑝𝑀𝑆𝐸] 
LSM 

[𝜇𝑝𝑀𝑆𝐸 , 𝜎𝑝𝑀𝑆𝐸] 

1 20 [0.030, 0.038] [0.061, 0.070] [0.043, 0.050] [0.097, 0.11] 

1 50 [0.055, 0.078] [0.10, 0.14] [0.089, 0.11] [0.21, 0.31] 

1 80 [0.17, 0.24] [0.28, 0.49] [0.56, 2.86] [5.59, 35.4] 

9 20 [0.28, 0.37] [0.45, 0.64] [0.35, 0.42] [0.83, 1.02] 

9 50 [0.38, 0.47] [0.72, 1.03] [0.63, 0.76] [1.53, 2.29] 

9 80 [0.81, 1.06] [1.59, 2.33] [3.49, 5.35] [20.9, 119] 

16 20 [0.44, 0.57] [0.74, 1.08] [0.59, 0.71] [1.48, 1.82] 

16 50 [0.56, 0.70] [1.19, 1.64] [1.07, 1.27] [2.73, 4.07] 

16 80 [1.31, 1.69] [2.59, 3.66] [6.13, 9.33] [37.2, 212] 
 

 

  
Figure 6.5. Sample mean of the pMSE when the noise variance equals to 9 
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6.6 Case Study 

This section further investigates the performance of the proposed SDM framework based on 

the ADNI dataset [104]. We only consider the RM, BMEM, and LSM as the three benchmark 

methods and we exclude the MOGPS. This is because there are little shared observational time 

points between the patients, which results in ill-conditioned MOGPS as mentioned in the literature 

review. The dataset contains longitudinal measurements of examinations and biomarkers, and 

personal information for the participating patients. Here, we focus on the MMSE because it has 

been commonly used to predict the AD status of a patient in practice. Furthermore, we only 

consider the subset of participating patients that have 4 or more MMSE measurements. This 

requirement is needed to ensure the construction of valid models via the LSM and BMEM 

approaches. For a better visualization, Figure 6.6 shows the MMSE degradation curves for a subset 

of the patients. We can observe that different patients may have a different number of available 

observations and the observations are collected at different time points. In addition, the dataset of 

MMSE measurements is sparse in nature because (i) MMSE measurement is recorded semi-

annually for each patient; (ii) patients may join the program at different AD stages; and (iii) some 

patients may skip the semi-annual visit to the clinic at some time points. Thus the given MMSE 

dataset presents the real challenge in practice and also provides a good example to test the efficacy 

of the proposed structural model for sparse datasets. 

In this case study, we model the MMSE measurements as a 2nd order polynomial model [102], 

[103]: 

𝑀𝑖,𝑡 = 𝜃𝑖,0 + 𝜃𝑖.1𝑡 + 𝜃𝑖,2𝑡
2 + 𝜖𝑖,𝑡,        (6.7) 

where 𝑀𝑖,𝑡 is the observed MMSE measurement for patient 𝑖 at time 𝑡 under the proposed model; and 𝜽𝑖  =
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[𝜃𝑖,0, 𝜃𝑖,1, 𝜃𝑖,2]
𝑇 are the parameters of the degradation model for patient 𝑖. Here, to measure the prognostic 

performance of the degradation models, we conduct a leave one patient out cross-validation. For each 

validating patient, we hide the last two observations and calculate the root of the squared difference (𝑟𝑆𝐷) 

between the predicted and true measurements for each of the hidden observations. Mathematically, 𝑟𝑆𝐷 is 

defined as: 

𝑟𝑆𝐷(𝑖, 𝑡) = √(𝑀𝑖,𝑡 − �̂�𝑖,𝑡)
2
,      (6.8) 

where �̂�𝑖,𝑡 = 𝜃𝑖,0 + 𝜃𝑖.1𝑡 + 𝜃𝑖,2𝑡
2 is the estimated MMSE measurement for patient 𝑖 at time 𝑡. 

 
 

Fig. 6.6. The true and predicted MMSE measurements from a subset of patients 
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6.6.1 Prognostic Performance 

To better visualize and compare the prognostic performance of the proposed SDM framework 

and the benchmark methods, Figure 6.6 shows the prediction results of the MMSE for some 

patients, and Figures 6.7 and 6.8 show the boxplots of the root of the squared difference, 𝑟𝑆𝐷, of 

the two hidden measurements for all the considered participating patients. Similar to the simulation 

study, we applied the proposed algorithm in Section 6.4 and found  𝜆 = 4.16. 

 
Fig. 6.7. The boxplot for the rSD of the first hidden measurement 

 

From Figures 6.6, 6.7 and 6.8, we can see that (i) the SDM framework results in lower means 

and lower variances for the rSD of both hidden measurements compared to the benchmark 

methods; and (ii) the SDM method shows more stable results and smaller increases in the errors 

from the first hidden measurement to the second hidden measurement than the benchmark 

methods. The first observation stems from the fact the SDM framework takes into consideration 
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of (i) the relationship between the recommenders and (ii) the precision of the recommenders. The 

second observation shows the importance of considering (i) the relationship between the user and 

the recommenders and (ii) the pairwise relationships between the recommenders to construct an 

accurate degradation model that shows consistently satisfactory prognostic performance. In 

summary, this case study further validates our conclusion that for sparse datasets, the proposed 

SDM framework performs better than the benchmark methods. 

    
Fig. 6.8. The boxplot for the rSD of the second hidden measurement 

6.6.2 Tuning Parameter 

In this subsection, we conduct a sensitivity analysis for the tuning parameter 𝜆 in the SDM 

framework. Recall that in the case-study of Section 6.6.1, we applied the proposed algorithm in 

Section 6.4 and found  𝜆 = 4.16. To better understand the sensitivity of the proposed method on 
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the tuning parameter, we repeated the prognostic analysis for different values of 𝜆 and the results 

are summarized in Figures 6.9 and 6.10. 

 
        Fig. 6.9. The rSD of the first hidden observation at different values of the tuning parameter 𝜆 

 

 

 
Fig. 6.10. The rSD of the second hidden observation at different values of the tuning parameter 𝜆 
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From Figures 6.9 and 6.10, we can see that for this case study (i) the rSD is smooth and convex 

with respect to 𝜆; and (ii) the value of 𝜆 evaluated by the algorithm in Section 6.4 is very close to 

the optimal value of 𝜆 that minimizes the rSD of the hidden measurements. The first observation 

suggests that for this case study reaching a local minimum is sufficient to find the optimal value 

of 𝜆. The second observation shows the efficacy of the algorithm proposed in Section 6.4. 

6.7 Conclusions  

Predicting and modeling the progression of degradation is important and critical to a wide set 

of applications and industries. The development of information technologies (e.g., clouds) have 

facilitated the collection and storage of information from a massive number of operating units. 

While the number of recorded units can be large, many units often have limited available 

observations due to different reasons such as data loss during transmission, and high cost or limited 

feasibility of data acquisition. Direct implementation of the existing degradation modeling 

approaches in such sparse data environments may lead to (i) a low model accuracy for prediction; 

(ii) a high uncertainty of the model parameters; and (iii) a lack of interpretability of the model.  

This Chapter aims to fill the literature gap by developing an SDM framework that addresses the 

unique challenges of the sparse data environments. Specifically, the degradation model of each 

individual unit is structured as a combination of a set of recommenders by taking into consideration 

of (i) the available data from the unit of interest; (ii) the relationship between the recommenders; 

(iii) the precision of the recommenders based on past performance; and (iv) the population 

characteristics. The developed framework is tested and validated by simulation studies as well as 
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the ADNI dataset and the results show that the SDM framework outperforms the benchmark 

methods for degradation modeling. 

There are several important topics for future research: First, it is important to further explore 

non-parametric approaches beyond the discussed MOGPs to model the degradation status of the 

recommenders because, for some applications, it is complicated to learn the true parametric 

functional form of the degradation profile. Second, in this Chapter, we consider ℎ(𝑛𝑗) = 𝜆/𝑛𝑗 for 

demonstration. In future studies, it would be interesting to investigate more on the choice of ℎ(𝑛𝑗). 

6.8 Appendix 

Proof for Lemma 6.11 that formulation (6.3), min 
𝒘𝑗

𝒘𝑗
𝑇𝜳𝑇𝜳𝒘𝑗 − 2𝒔𝑗,.

𝑇𝜳𝒘𝑗 + 𝒔𝑗,.
𝑇𝒔𝑗,. +

ℎ(𝑛𝑗)𝒘𝑗
𝑇𝑫∗𝒘𝑗 subject to 𝒐𝑇𝒘𝑗 = 1 and 𝑨𝒘𝑗 ≥ 𝟎, is convex.  

Since ℎ(𝑛𝑗) ≥ 0 by definition, then it is sufficient to prove that 𝜳𝑇𝜳 and 𝑫∗ are positive semi-

definite (PSD) matrices. First, 𝜳𝑇𝜳  is PSD because for any non-zero vector 𝒘𝑗 , we have 

𝒘𝑗
𝑇𝜳𝑇𝜳𝒘𝑗 = ‖𝜳𝒘𝑗‖2

2
≥ 0. Second, we proof that 𝑫∗ is PSD by showing that 𝒘𝑗

𝑇𝑫∗𝒘𝑗 ≥ 0 for 

any 𝒘𝑗. 

The dissimilarity matrix can be written as  𝒘𝑗
𝑇𝑫∗𝒘𝑗 = (∑ ∑ 𝑤𝑖𝑗𝑑𝑖𝑘𝑤𝑘𝑗

𝑚
𝑘=1

𝑚
𝑖=1 ) =

∑ 𝑤𝑖𝑗
2𝑚

𝑖=1 𝜎𝑖
2 + ∑ 𝑤𝑖𝑗

2𝑚
𝑖=1 𝑑𝑖𝑖 + ∑ ∑ 𝑤𝑖𝑗𝑑𝑖𝑘𝑤𝑘𝑗

𝑚
𝑘=1
𝑘≠𝑖

𝑚
𝑖=1 . Recall that 𝑑𝑖𝑖 = ∑ 𝑑𝑖𝑘

𝑚
𝑘=1
𝑘≠𝑖

, then 𝒘𝑗
𝑇𝑫∗𝒘𝑗 =

∑ 𝑤𝑖𝑗
2𝑚

𝑖=1 𝜎𝑖
2 + ∑ 𝑤𝑖𝑗

2𝑚
𝑖=1 ∑ 𝑑𝑖𝑘

𝑚
𝑘=1
𝑘≠𝑖

+ ∑ ∑ 𝑤𝑖𝑗𝑑𝑖𝑘𝑤𝑘𝑗
𝑚
𝑘=1
𝑘≠𝑖

𝑚
𝑖=1 . The second part of 𝒘𝑗

𝑇𝑫∗𝒘𝑗  can be 

written as: ∑ 𝑤𝑖𝑗
2𝑚

𝑖=1 ∑ 𝑑𝑖𝑘
𝑚
𝑘=1
𝑘≠𝑖

= 𝑤1𝑗
2 (𝑑12 + 𝑑13 + ⋯+ 𝑑1𝑚) + 𝑤2𝑗

2 (𝑑21 + 𝑑23 + ⋯+ 𝑑2𝑚) +

𝑤3𝑗
2 (𝑑31 + 𝑑32 + ⋯+ 𝑑3𝑚) + ⋯+ 𝑤𝑚𝑗

2 (𝑑𝑚1 + 𝑑𝑚2 + ⋯+ 𝑑𝑚(𝑚−1)) = (𝑤1𝑗
2 + 𝑤2𝑗

2 )𝑑12 +
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(𝑤1𝑗
2 + 𝑤3𝑗

2 )𝑑13 + (𝑤2𝑗
2 + 𝑤3𝑗

2 )𝑑23 + ⋯+ (𝑤(𝑚−1)𝑗
2 + 𝑤𝑚𝑗

2 )𝑑(𝑚−1)𝑚 = ∑ ∑ (𝑤𝑖𝑗
2 +𝑚

𝑘=𝑖+1
𝑚
𝑖=1

𝑤𝑘𝑗
2 )𝑑𝑖𝑘 . Similarly, the third part of 𝒘𝑗

𝑇𝑫∗𝒘𝑗  can be written as: ∑ ∑ 𝑤𝑖𝑗𝑑𝑖𝑘𝑤𝑘𝑗
𝑚
𝑘=1
𝑘≠𝑖

𝑚
𝑖=1 =

∑ ∑ 2𝑑𝑖𝑘
𝑚
𝑘=𝑖+1 𝑤𝑖𝑗𝑤𝑘𝑗

𝑚
𝑖=1  because 𝑑𝑖𝑘 = 𝑑𝑘𝑖 . Then, for any 𝒘𝑗 , 𝒘𝑗

𝑇𝑫∗𝒘𝑗 = ∑ 𝑤𝑖𝑗
2𝑚

𝑖=1 𝜎𝑖
2 +

∑ ∑ (𝑤𝑖𝑗
2 + 𝑤𝑘𝑗

2 + 2𝑤𝑖𝑗𝑤𝑘𝑗)𝑑𝑖𝑘
𝑚
𝑘=𝑖+1

𝑚
𝑖=1 = ∑ 𝑤𝑖𝑗

2𝑚
𝑖=1 𝜎𝑖

2 + ∑ ∑ (𝑤𝑖𝑗 + 𝑤𝑘𝑗)
2
𝑑𝑖𝑘

𝑚
𝑘=𝑖+1

𝑚
𝑖=1 ≥ 0 

because 𝑑𝑖𝑘 ≥ 0. This concludes our proof that the SDM formulation is convex. 

 

Proof for Lemma 6.2 that if ∃𝑖∗, 𝑘∗  such that 𝜽𝑖∗ = 𝜽𝑘∗  and 𝜎𝑖∗
2 = 𝜎𝑘∗

2 , then the solution of 

formulation (6.3) guarantees 𝑤𝑖∗𝑗 = 𝑤𝑘∗𝑗 . First, we split the objective function of the SDM 

formulation (6.3) into two pieces 𝑞(𝑤𝑖𝑗) = 𝒘𝑗
𝑇𝜳𝑇𝜳𝒘𝑗 − 2𝒔𝑗,.

𝑇𝜳𝒘𝑗 + 𝒔𝑗,.
𝑇𝒔𝑗,. =

∑ (∑ (𝑤𝑖𝑗𝜂 (𝜽𝑖 , 𝑡𝑗(𝑟)))
𝑚
𝑖=1 + 𝑏𝑗 − 𝑠𝑗,𝑡𝑗(𝑟))

2
𝑛𝑗

𝑟=1  and 𝑓(𝑤𝑖𝑗) = 𝒘𝑗
𝑇𝑫∗𝒘𝑗 . Next, we isolate the 

indices 𝑖∗  and 𝑘∗  in 𝑞(𝑤𝑖𝑗)  and 𝑓(𝑤𝑖𝑗) . This is equivalent to writing 𝑞(𝑤𝑖𝑗) =

∑ ((∑ 𝑤𝑖𝑗𝜂 (𝜽𝑖 , 𝑡𝑗(𝑟))
𝑚

𝑖=1
𝑖≠𝑖∗,𝑘∗

) + 𝑤𝑖∗𝑗𝜂 (𝜽𝑖∗ , 𝑡𝑗(𝑟)) + 𝑤𝑘∗𝑗𝜂 (𝜽𝑘∗ , 𝑡𝑗(𝑟)) + 𝑏𝑗 − 𝑠𝑗,𝑡𝑗(𝑟))

2

𝑛𝑗

𝑟=1 ; 

and 𝑓(𝑤𝑖𝑗) = ∑ 𝑤𝑖𝑗
2𝑚

𝑖=1 𝜎𝑖
2 + ∑ ∑ (𝑤𝑖𝑗 + 𝑤𝑘𝑗)

2
𝑑𝑖𝑘

𝑚
𝑘=𝑖+1

𝑚
𝑖=1 = ∑ 𝑤𝑖𝑗

2𝜎𝑖
2𝑚

𝑖=1
𝑖≠𝑖∗,𝑘∗

+ 𝑤𝑖∗𝑗
2 𝜎𝑖∗

2 +

𝑤𝑘∗𝑗
2 𝜎𝑘∗

2 + ∑ ∑ (𝑤𝑖𝑗 + 𝑤𝑘𝑗)
2
𝑑𝑖𝑘

𝑚
𝑘=𝑖+1
𝑘≠𝑖∗,𝑘∗

𝑚
𝑖=1

𝑖≠𝑖∗,𝑘∗
+ ∑ (𝑤𝑖𝑗 + 𝑤𝑖∗𝑗)

2
𝑑𝑖∗𝑖

𝑚
𝑖=1
𝑖≠𝑘∗

+ ∑ (𝑤𝑖𝑗 +𝑚
𝑖=1
𝑖≠𝑖∗

𝑤𝑘∗𝑗)
2
𝑑𝑘∗𝑖 + (𝑤𝑖∗𝑗 + 𝑤𝑘∗𝑗)

2
𝑑𝑖∗𝑘∗ = 𝑔(𝑤𝑖𝑗) + 𝑤𝑖∗𝑗

2 𝜎𝑖∗
2 + 𝑤𝑘∗𝑗

2 𝜎𝑘∗
2 + ∑ (𝑤𝑖𝑗 + 𝑤𝑖∗𝑗)

2
𝑑𝑖∗𝑖

𝑚
𝑖=1 +

∑ (𝑤𝑖𝑗 + 𝑤𝑘∗𝑗)
2
𝑑𝑘∗𝑖

𝑚
𝑖=1 − (𝑤𝑖∗𝑗 + 𝑤𝑘∗𝑗)

2
𝑑𝑖∗𝑘∗ , where 𝑔(𝑤𝑖𝑗) = ∑ 𝑤𝑖𝑗

2𝜎𝑖
2𝑚

𝑖=1
𝑖≠𝑖∗,𝑘∗

+

∑ ∑ (𝑤𝑖𝑗 + 𝑤𝑘𝑗)
2
𝑑𝑖𝑘

𝑚
𝑘=𝑖+1
𝑘≠𝑖∗,𝑘∗

𝑚
𝑖=1

𝑖≠𝑖∗,𝑘∗
 is introduced to simplify the proof and it is independent of 𝑤𝑖∗𝑗 
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and 𝑤𝑘∗𝑗. 

Given that 𝜽𝑖∗ = 𝜽𝑘∗ then 𝑑𝑖𝑖∗ = 𝑑𝑖𝑘∗  and 𝑑𝑖∗𝑘∗ = 0 , then 𝑞(𝑤𝑖𝑗) =

∑ ((∑ 𝑤𝑖𝑗𝜂 (𝜽𝑖 , 𝑡𝑗(𝑟))
𝑚

𝑖=1
𝑖≠𝑖∗,𝑘∗

) + (𝑤𝑖∗𝑗 + 𝑤𝑘∗𝑗)𝜂 (𝜽𝑖∗ , 𝑡𝑗(𝑟)) + 𝑏0𝑗 − 𝑠𝑗,𝑡𝑗(𝑟))

2

𝑛𝑗

𝑟=1 ; and 

𝑓(𝑤𝑖𝑗) = 𝑔(𝑤𝑖𝑗) + 𝑤𝑖∗𝑗
2 𝜎𝑖∗

2 + 𝑤𝑘∗𝑗
2 𝜎𝑘∗

2 + ∑ [(𝑤𝑖𝑗 + 𝑤𝑖∗𝑗)
2
+ (𝑤𝑖𝑗 + 𝑤𝑘∗𝑗)

2
] 𝑑𝑖𝑘∗

𝑚
𝑖=1 = 𝑔(𝑤𝑖𝑗) +

𝑤𝑖∗𝑗
2 𝜎𝑖∗

2 + 𝑤𝑘∗𝑗
2 𝜎𝑘∗

2 + ∑ (𝑤𝑖𝑗
2 + 2𝑤𝑖𝑗𝑤𝑖∗𝑗 + 𝑤𝑖∗𝑗

2 + 𝑤𝑖𝑗
2 + 2𝑤𝑖𝑗𝑤𝑘∗𝑗 + 𝑤𝑘∗𝑗

2 )𝑑𝑖𝑘∗
𝑚
𝑖=1 . Also, given 

that 𝜎𝑖∗
2 = 𝜎𝑘∗

2 , then 𝑓(𝑤𝑖𝑗) = 𝑔(𝑤𝑖𝑗) + (𝑤𝑖∗𝑗
2 + 𝑤𝑘∗𝑗

2 )𝜎𝑘∗
2 + ∑ (𝑤𝑖𝑗

2 + 2𝑤𝑖𝑗𝑤𝑖∗𝑗 + 𝑤𝑖∗𝑗
2 +𝑚

𝑖=1

𝑤𝑖𝑗
2 + 2𝑤𝑖𝑗𝑤𝑘∗𝑗 + 𝑤𝑘∗𝑗

2 )𝑑𝑖𝑘∗ 

Now, we proof that for any feasible solution �̃�𝑖𝑗, there exists another feasible solution �̂�𝑖𝑗 =

{
�̃�𝑖𝑗 𝑖 ≠ 𝑖∗, 𝑘∗

�̃�𝑖∗𝑗+�̃�𝑘∗𝑗

2
𝑖 = 𝑖∗, 𝑘∗

 such that  ℎ(𝑛𝑗)𝑓(�̂�𝑖𝑗) + 𝑞(�̂�𝑖𝑗) ≤ ℎ(𝑛𝑗)𝑓(�̃�𝑖𝑗) + 𝑞(�̃�𝑖𝑗) . Note that 

𝑔(�̂�𝑖𝑗) = 𝑔(�̃�𝑖𝑗)  because 𝑔(𝑤𝑖𝑗)  is independent of 𝑤𝑖∗𝑗  and 𝑤𝑘∗𝑗 . Also, 𝑞(�̂�𝑖𝑗) = 𝑞(�̃�𝑖𝑗) 

because �̃�𝑖∗𝑗 + �̃�𝑘∗𝑗 = �̂�𝑖∗𝑗 + �̂�𝑘∗𝑗 . Therefore, ℎ(𝑛𝑗)𝑓(�̃�𝑖𝑗) + 𝑞(�̃�𝑖𝑗) − ℎ(𝑛𝑗)𝑓(�̂�𝑖𝑗) −

𝑞(�̂�𝑖𝑗) = ℎ(𝑛𝑗)(�̃�𝑖∗𝑗
2 + �̃�𝑘∗𝑗

2 − �̂�𝑖∗𝑗
2 − �̂�𝑘∗𝑗

2 )𝜎𝑘∗
2 + ∑ (2�̃�𝑖𝑗�̃�𝑖∗𝑗 + �̃�𝑖∗𝑗

2 + 2�̃�𝑖𝑗�̃�𝑘∗𝑗 + �̃�𝑘∗𝑗
2 −𝑚

𝑖=1

2�̂�𝑖𝑗�̂�𝑖∗𝑗 − �̂�𝑖∗𝑗
2 − 2�̂�𝑖𝑗�̂�𝑘∗𝑗 − �̂�𝑘∗𝑗

2 )𝑑𝑖𝑘∗ . Here,  2�̃�𝑖𝑗�̃�𝑖∗𝑗 + 2�̃�𝑖𝑗�̃�𝑘∗𝑗 = 2�̃�𝑖𝑗(�̃�𝑖∗𝑗 + �̃�𝑘∗𝑗) =

2�̂�𝑖𝑗(�̂�𝑖∗𝑗 + �̂�𝑘∗𝑗)  because �̂�𝑖∗𝑗 = �̂�𝑘∗𝑗 =
�̃�𝑖∗𝑗+�̃�𝑘∗𝑗

2
; and �̃�𝑖∗𝑗

2 + �̃�𝑘∗𝑗
2 − �̂�𝑖∗𝑗

2 − �̂�𝑘∗𝑗
2 = �̃�𝑖∗𝑗

2 +

�̃�𝑘∗𝑗
2 − (

�̃�𝑖∗𝑗+�̃�𝑘∗𝑗

2
)
2

− (
�̃�𝑖∗𝑗+�̃�𝑘∗𝑗

2
)
2

= �̃�𝑖∗𝑗
2 + �̃�𝑘∗𝑗

2 −
�̃�𝑖∗𝑗

2

2
−

�̃�𝑘∗𝑗
2

2
− �̃�𝑖∗𝑗�̃�𝑘∗𝑗 = (

�̃�𝑖∗𝑗−�̃�𝑘∗𝑗

2
)
2

. 

Then, 𝑓(�̃�𝑖𝑗) − 𝑓(�̂�𝑖𝑗) = (�̃�𝑖∗𝑗
2 + �̃�𝑘∗𝑗

2 − �̂�𝑖∗𝑗
2 − �̂�𝑘∗𝑗

2 )𝜎𝑘∗
2 + ∑ (�̃�𝑖∗𝑗

2 + �̃�𝑘∗𝑗
2 − �̂�𝑖∗𝑗

2 −𝑚
𝑖=1

�̂�𝑘∗𝑗
2 )𝑑𝑖𝑘∗ = (

�̃�𝑖∗𝑗−�̃�𝑘∗𝑗

2
)
2

𝜎𝑘∗
2 + ∑ (

�̃�𝑖∗𝑗−�̃�𝑘∗𝑗

2
)
2

𝑑𝑖𝑘∗
𝑚
𝑖=1 = (

�̃�𝑖∗𝑗−�̃�𝑘∗𝑗

2
)
2

∗ (𝜎𝑘∗
2 + ∑ 𝑑𝑖𝑘∗

𝑚
𝑖=1 ) > 0  if 
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�̃�𝑖∗𝑗 ≠ �̃�𝑘∗𝑗  because 𝑑𝑖𝑘∗ > 0  for 𝜽𝑖 ≠ 𝜽𝑘∗ . Accordingly, if 𝜽𝑖∗ = 𝜽𝑘∗  and 𝜎𝑖∗
2 = 𝜎𝑘∗

2  then to 

minimize ℎ(𝑛𝑗)𝑓(𝑤𝑖𝑗) + 𝑞(𝑤𝑖𝑗), it is necessary to have 𝑤𝑖∗𝑗 = 𝑤𝑘∗𝑗.  

To finalize the proof, we show that �̂�𝑖𝑗 is feasible by showing that it satisfies ∑ �̂�𝑖𝑗
𝑚
𝑖=1 = 1 and 

�̂�𝑖𝑗 ≥ 0, 𝑖 = 1,2, … ,𝑚 . Since �̃�𝑖𝑗  is a feasible solution, then ∑ �̃�𝑖𝑗
𝑚
𝑖=1 = 1  and �̃�𝑖𝑗 ≥ 0, 𝑖 =

1,2, … ,𝑚 . Therefore, �̂�𝑖𝑗 = {
�̃�𝑖𝑗 ≥ 0 𝑖 ≠ 𝑖∗, 𝑘∗

�̃�𝑖∗𝑗+�̃�𝑘∗𝑗

2
≥ 0 𝑖 = 𝑖∗, 𝑘∗

 and ∑ �̂�𝑖𝑗
𝑚
𝑖=1 = ∑ �̃�𝑖𝑗

𝑚
𝑖=1 = 1 . Thus, if 

𝜽𝑖∗ = 𝜽𝑘∗  and 𝜎𝑖∗
2 = 𝜎𝑘∗

2  then the solution of the SDM formulation will satisfy 𝑤𝑖∗𝑗 = 𝑤𝑘∗𝑗.  
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Chapter 7 

Summary and Future Work 

7.1 Summary of Original Contributions 

This thesis contributes to the area of System Informatics and Data Analytics with a focus on 

predictive analytics to achieve better decision-making and preventive analysis. Specifically, this 

thesis investigates new methods for prognostic analysis, fault diagnosis and degradation modeling 

in both rich and sparse data environments. Accurate predicting and modeling of the degradation 

process is important and critical to a wide set of applications and industries. For example, in the 

manufacturing industry, poor predictions for the degradation status usually leads to unexpected 

failures, which causes significant economic losses, production downtime, customer dissatisfaction, 

and safety issues. Likewise, in health-care applications, an unexpected disease onset may lead to 

severe medical complexities, ineffective treatment planning, and long-term side effects. The major 

contributions of this thesis are: 

 A data-level fusion methodology for better prognostic analysis and degradation 

modeling based on a proposed signal quality metric tailored to the degradation process. 

This work (i) fills the literature gap by identifying a quantitative measure, the signal-to-

noise ratio (SNR) metric tailored to the needs of degradation signals; and (ii) develops 

a systematic data-level fusion model that combines the degradation-based signals from 

multiple sensors with the goal of maximizing the defined SNR metric. Such 

optimization efforts result in a composite health index that better characterizes the health 



138 

 

 

 

condition of the degraded unit and thus leads to an improved remaining life prediction. 

The developed data fusion method was tested and validated by using the degradation 

dataset of aircraft gas turbine engines that were generated by C-MAPSS [32]. Our 

experimental studies showed that the developed health index outperformed each 

original sensor data and the health indices constructed through other existing data-level 

fusion methods. 

 A data-level fusion methodology for better fault diagnosis, prognostic analysis and 

degradation modeling when there exists multiple failure modes. This work addresses 

the challenges of degradation modeling and prognostics in presence of multiple sensor 

data and multiple failure modes. The developed methodology was tested and validated 

by using multiple sensor signals from aircraft gas turbine engines that contain two 

potential failure modes [27]. The case study showed that: (i) the developed FM-INDEX 

better distinguishes the units from the two failure modes than each original sensor data; 

(ii) the failure mode diagnostic result becomes more accurate as a unit approaches 

failure; and (iii) the remaining life prediction by using the proposed method outperforms 

the related benchmarks. 

 A sensory-based failure threshold estimation for accurate Remaining Useful Life 

predictions. This work aims to real time estimate the failure threshold of an operating 

unit during condition monitoring when the failure threshold is not known a priori. In 

particular, we developed a convex quadratic formulation that fuses the degradation 

models of historical units along with the in-situ sensory data of an operating unit to 

online estimate its failure threshold. With the improved estimation of the failure 
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threshold, a more accurate prediction of the RUL can be achieved. These findings were 

further reaffirmed in a case study that involves a degradation dataset of aircraft turbofan 

engines. These results not only showed the effectiveness of our proposed methodology 

but also shed light on the importance of online estimating the failure threshold for an 

operating unit, which has been previously ignored in the existing literature. 

 A Structural Degradation Modeling (SDM) framework for sparse data environments. 

This work fills the literature gap by developing a SDM framework that addresses the 

unique challenges of the sparse data environments. Specifically, the degradation model 

of each individual unit is structured as a combination of a set of recommenders by taking 

into account of (i) the available data from the unit of interest; (ii) the relationship 

between the leveraged recommenders; (iii) the precision of the leveraged 

recommenders; and (iv) the population characteristics. The developed framework was 

tested and validated by simulation studies as well as the ADNI dataset and the results 

showed that the SDM framework outperforms the benchmark methods for degradation 

modeling. 

7.2 Future Research 

System Informatics and Data Analytics is a wide multi-disciplinary research topic and the 

works presented in this thesis can be utilized and extended to different areas such as condition-

based maintenance, risk assessment, quality control, production planning, work adjustment, and 

prognostics. Here are some examples for future research: 
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 Degradation Modeling and Prognostic Analysis for Systems with Complex Degradation 

Mechanisms: 

 In this thesis and also most of the existing literature on degradation modeling, a 

parametric model with a known functional form is utilized to model the degradation 

signal of an in-field unit. However, for some applications with complex degradation 

profiles, the parametric models may not be known or available. Therefore, there is 

still need for further investigation of non-parametric approaches to degradation 

modeling that are tailored for predictive analytics and prognostic analysis. 

 For some applications such as healthcare and manufacturing applications, the 

degradation mechanisms show sudden shifts. In manufacturing applications, such 

shifts are usually due to a failure in one component of the entire system. For such 

applications and scenarios, it is interesting to investigate and develop change point 

detection algorithms tailored to the needs of predictive analytics. 

 Decision-making policies based on Degradation Modeling and Prognostic Analysis: 

 In this thesis, we focus on developing methodologies for better prognostic 

performance. It is interesting to see those methodologies applied for condition-based 

maintenance. In particular, there are huge opportunities for developing new policies 

for maintenance scheduling based on Remaining Useful Life of an in-field unit in 

real time.  

 Another interesting area for investigation is online quality control policies based on 

real time degradation modeling. Currently, many companies and industries focus on 

an offline quality control approaches to meet the requirements. However, with the 
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availability of real time degradation modeling, it is interesting to investigate more 

on how to integrate those two research areas for a better overall performance.  

 Effective utilization of the machines is a key to success in manufacturing companies. 

Many companies tend to distribute the workload based on policies that aim to 

maximize the utilization of its machines and minimize the throughput time [81], 

[105], [106]. While those companies achieve high utilization for their machines in 

normal conditions, sudden failures in the machines may lead to a huge delay in 

processing orders and difficulty in meeting the demands. Therefore, it is of interest 

to investigate more on workload distribution policies based on the expected 

condition of the utilized machines in the future. Such policies will help meet the 

demands and avoid unexpected changes in the workflow of the entire company.  
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