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ABSTRACT

Discrepancy is a measurement of how uniform a point distribution is. The lower the dis-

crepancy, the more uniform the distribution is. In the d-dimensional unit cube the notion

of low discrepancy is well studied, and low discrepancy sequences are well understood. In

recent years, this field has been enriched with sophisticated sequence construction tech-

niques using arithmetic curves over finite fields, known as the Niederreiter-Xing method.

However, the spherical discrepancy on the 2-dimensional unit sphere remains largely

unexplored. In fact, the definition of low spherical discrepancy is not even officially

established. Most “well-spaced” spherical sequences found in literature are obtained by

lifting well-spaced sequences form the unit square to the sphere via certain maps (for

example, the Lambert Transformation). In this thesis, we will investigate direct se-

quence construction algorithms on the sphere and the related spherical cap discrepancy.

The point distribution is done by a greedy algorithm and triangulating the unit sphere.

Counting the number of points inside an arbitrary spherical cap remains the challenge.
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Chapter 1

Introduction

1.1 Why Discrepancy

Given an integrable function f over the d-dimensional unit cube, the integral
∫
[0,1]d

fdx

can be estimated with a finite sum:

∫
[0,1]d

f(x)dx ≈ 1

N

N∑
i=1

xif(xi). (1.1)

There are many ways to choose the N points x1, x2, ..., xN . For example, one can sim-

ply choose them to be the points of some regular grid of [0, 1]d. In practice, Monte

Carlo Integration and Quasi-Monte Carlo Integration are commonly used techniques

for numerical integration. Monte Carlo Integration uses pseudorandom numbers while

Quasi-Monte Carlo Integration uses quasirandom numbers. Consequently, the error

bounds that Monte Carlo Integration yields are probabilistic while the error bounds
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Quasai-Monte Carlo Integration yields are deterministic. Certain sequences of quasir-

andom numbers are also called sub-random sequences or low-discrepancy sequences.

Discrepancy is a measure of distribution of a sequence of points. The lower the dis-

crepancy is the more uniformly distributed the points are.

Definition 1.1.1. [1] The discrepancy of an infinite sequence X in [0, 1]d is defined as

the following:

D(X(N)) = sup
B⊂[0,1]d

|#(X(N)
⋂
B)

N
−m(B)|, (1.2)

where B = Πd
i=1[ai, bi] for [ai, bi] ⊂ [0, 1], X(N) is the finite subsequence consisting of

the first N elements of X and m is Lebesgue measure.

The notion of Star Discrepancy D∗ is often used in place of discrepancy D. The

definition of Star Discrepancy is very similar.

Definition 1.1.2. [1] The star discrepancy of an infinite sequence X in [0, 1]d,

D∗(X(N)) = sup
B⊂[0,1]d

|#X(N)
⋂
B

N
−m(B)|, (1.3)

where the rectangles B are of the form Πd
i=1[0, ui] for ui ∈ [0, 1].

The following relation between D and D∗ is well-known and shows that they are

equivalent for many purposes.

Theorem 1.1.3. [1] D∗(X(N)) ≤ D(X(N)) ≤ 2dD∗(X(N)).

One of the reasons that discrepancy of a sequence is important is that it is directly

involved in computing the error bounds of estimation of integrals by finite sums. To
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extend the integral estimation 1.1 to multi-dimension, we need the notion of the variation

in the sense of Hardy and Krause.

Definition 1.1.4. ( [1] pp. 19)

For a function f on Īd and a subinterval J ⊂ Īd, let ∆(f ;J ) be an alternation sum of

the values of f at the vertices of J (i.e., the function values at adjacent vertices have

opposite signs). The variation of f on Īd in the sense of Vitali is defined by

V (d)((f)) = supP
∑
J⊂P

|∆(f ;J )|, (1.4)

where the supremum is extended over all partitions P of Īd into subintervals. The more

convenient formula

V (s)(f) =

∫ 1

0

...

∫ 1

0

| ∂df

∂u1...∂ud
|du1...dud (1.5)

holds whenever the indicated partial derivative is continuous on Īd. For i ≤ k ≤ d and

1 ≤ i1 < i2 < ... < ik ≤ d let V (k)(f ; i1, i2, ..., ik) be the variation in the sense of Vitali

of the restriction of f to the k-dimensional face {(u1, u2, ..., us) ∈ Īd|uj = 1 for j 6=

i1, i2, ..., ik}. Then

V (f) =
d∑

k=1

∑
1≤i1<i2<...<ik≤d

V (k)(f ; i1, i2, ..., ik) (1.6)

is called the variation of f on Īd in the sense of Hardy and Krause, and f is of bounded

variation in this sense if V (f) is finite.

Theorem 1.1.5. (The Koksma-Hlawka Inequality)( [1] pp.20)
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Let f be a function over [0, 1]d with bounded Hardy-Krause Variation V (f), then

| 1
N

N∑
i=1

f(xi)−
∫
[0,1]d

f(x)dx| ≤ V (f)D∗(x1, x2, ..., xN). (1.7)

The Koksma-Hlawka Inequality gives the best bound in the following sense:

Theorem 1.1.6. Given set of points {x1, x2, ...., xN} and ε > 0, there exists a function

f with V (f) = 1 such that

| 1
N

N∑
i=1

f(xi)−
∫
[0,1]d

f(x)dx| > D∗(x1, x2, ..., xN)− ε. (1.8)

Therefore, the accuracy of the estimation of the integral ultimately depends on the

discrepancy of the sequence. For the obvious reason we would like to have the dis-

crepancy of the sequence to be as low as possible. However, many believe that the

discrepancy of a sequence cannot be arbitrarily low, as we indicate next.

Conjecture ( [1] pp.32) It is widely believed that in the unit cube [0, 1]d any N-element

point set x1, x2, ..., xN satisfies

D∗(x1, x2, ..., xN) ≥ cd
(logN)d−1

N
(1.9)

for some constant cd that depends on the dimension d.

When d = 1, the conjecture in this case, say D∗(x1, x2, ..., xN) > 1
2N

, can be easily

verified. For d = 2, equation 1.9 was proven by Schmidt in 1972 [14]. For dimension

3 or higher, the conjecture still remains open with the best general bounds given by
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Roth [15]:

D∗(x1, x2, ..., xN) ≥ cd
(logN)(d−1)/2

N
. (1.10)

In 1935, the Dutch mathematician J. G. van der Corput created sequences over [0, 1]

by reversing base n representation of natural numbers. For example, the base 10 Van

der Corput sequence is {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.01, 0.11, 0.21, 0.31,

0.41, 0.51, 0.61, 0.71, 0.81, 0.91, 0.02, 0.12, 0.22, 0.32, ...}, and the base 2 Van der

Corput sequence is {0.1, 0.01, 0.11, 0.001, 0.101, 0.011, 0.111, 0.0001, 0.1001, 0.0101,

0.1101, 0.0011, 0.1011, 0.0111, 0.1111,...}. They are now known as the Van der Corput

sequences. Halton sequences, created during 1960s, generalize Van der Corput sequences.

They are produced using prime bases and are well distributed in lower dimensions. For

example, the Van der Corput sequence in base 2 is {1
2
,1
4
,3
4
,1
8
,3
8
,5
8
,7
8
, ...} and the Van der

Corput sequence in base 3 is {1
3
,2
3
,1
9
,2
9
,4
9
,5
9
,7
9
...}. Pairing them up, the first sequence being

the first coordinates while the second sequence being the second coordinates, we get a

Halton Sequence in [0, 1]2, {(1
2
, 1
3
),(1

4
, 2
3
), (3

4
, 1
9
), (1

8
, 4
9
), (3

8
, 5
9
) ...}. Both Van der Corput

sequences and Halton sequences are well-known quasirandom sequences. They all satisfy

a common inequality:

D∗(x1, x2, ..., xN) ≤ C
(logN)d

N
. (1.11)

This common inequality evolved into the the definition of low discrepancy sequences.

Definition 1.1.7. An infinite sequence X is of low discrepancy if for all N

D∗(x1, x2, ..., xN) ≤ C
(logN)d

N
. (1.12)
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Remark 1.1.8. A defined above, a low discrepancy sequence X is an infinite sequence.

The inequality 1.12 is satisfied by any finite truncation of X of length N .

1.2 Niederreiter-Xing Sequences

Other than the Van der Corput sequences and Halton sequences, Sobol’ Sequences and

Niederreiter-Xing sequences are more “contemporary” low discrepancy sequences in the

unit cube [0, 1]d. The Niederreiter-Xing method is the best known technique in appli-

cation to construct low discrepancy sequences. In order to discuss these methods, some

new notions need to be introduced.

Definition 1.2.1. ((t,m, d) Net) ( [1], page 48)

Let b ≥ 2 and 0 ≤ t ≤ m be integers. A point set Sbm ⊂ [0, 1]d of size bm is called a

(t,m,d)-net in base b if for all non-negative integers k1, k2, ..., kd the elementary interval

Πd
i=1[

ai
bki
, ai+1
bki

] of hypervolume bt−m contains exactly bt points from Sbm .

Definition 1.2.2. ((t, d) Sequence) ( [1], page 48)

Let b ≥ 2 be an integer. A sequence {x1, x2, x3, ...} ∈ [0, 1]d is called a (t, d)-sequence in

base b if for all integers 0 ≤ t ≤ m and k ≥ 0 the point set {xkbm , xkbm+1, xkbm+2, ..., xkbm+1−1}

is a (t, m, d)-net.

Sobol’ introduced the concepts of net and (t, d) sequences for base b = 2 [2]. The

formal definitions for general b were given by Niederreiter [3]. The current record holder

of the sequences of in [0, 1]d with “the lowest discrepancy” (with the constant C as
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small as possible) are constructed by Harald Niederreiter and Chaoping Xing using the

arithmetic of curves over finite fields, and are known as the Niederreiter-Xing sequences.

1.2.1 Discrepancy Bounds of (t,d) Sequences

By the definitions of the (t,m, d) nets and (t, d) sequences, the smaller t is the finer the

distribution. In fact, the star-discrepancy of (t, d) sequences are known.

Theorem 1.2.3. ( [1], Theorem 4.17) For any (t, d) sequence in base b,

D∗(X(N)) ≤ C(d, b)bt (logN)d

N
+ O(bt (logN)d−1

N
),

where the constant C(d, b) depends on the dimension d and base b only

C(d, b) =


1
d
( b−1
2 log b

)d, if d = 2, or b = 2 and d = 3, 4

1
d!

b−1
2bb/2c(

bb/2c
log b

)d, otherwise.

(1.1)

The details on how the inequality is obtained can be found in [1] Chapter 4. Clearly,

the magnitude of the star discrepancy of the first N elements of a (t, d) sequence is in

direct connection with the magnitudes of t and C(d, b). The smaller t and C(d, b) are

the lower the discrepancy is.

1.2.2 The Smallest Possible t

Van der Corput sequences are (0, 1) sequences for various base b. t = 0 implies the

strongest regularity. Before we proceed, the first natural question to ask is under what
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condition (0, d) sequences exist for base b.

Definition 1.2.4. (Mutually Orthogonal Squares) ([4])

Given an integer b ≥ 2, two b2-tuples e = (e(0), e(1), ..., e(b2−1)) and f = (f(0), f(1), ..., f(b2−

1)) with entries from the same set of cardinality b are called orthogonal if the b2 ordered

pairs (f(i) 6= e(i)) are all distinct i = 0, 1, ..., b2 − 1. The b2-tuples e1, e2, ..., es with

entries from the same set of cardinality b are called mutually orthogonal if ei and ej are

orthogonal for all 1 ≤ i < j ≤ s. The entries of a b2-tuple can be arranged a prescribed

manner in a square matrix with b rows and b columns. With such an identification of

b2-tuples with b × b matrices, we speak of orthogonal squares of order b and mutually

orthogonal squares of order b.

Definition 1.2.5. (Latin Square) A b × b matrix is called a latin square of order b if

each row and each column is a permutation of the same set of cardinality b.

Remark 1.2.6. M(b) denotes the maximal cardinality of a set of mutually orthogonal

latin squares of order b. For all b ≥ 2 M(b) ≤ b−1 ([5] pp.158, [6] pp.80). The existence

of b− 1 mutually orthogonal latin squares of order b is equivalent to the existence of a

finite projective plane of order b ([4], pp.209-210). When b is a prime power, M(b) = b−1

([7], Thm.9.83).

Theorem 1.2.7. ([1], pp.62)

A (0, d) sequence in base b only exists if d ≤M(b) + 1.
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Corollary 1.2.8. ([1], pp.62)

A (0,d) sequence in base b can only exist when d ≤ b.

1.2.3 Best Known C (d,b) by Niederreiter-Xing Method

With the smallest possible value tb(d), the only way to lower the discrepancy of a (tb(d), d)

sequence is to sharpen the constant coefficient C(d, b). When b happens to be a prime

power, there exists a a curve over the finite field Fb with genus t and d + 1 rational

places. Niederreiter and Xing developed a method of constructing (t, d)-sequence over

this finite field with the smallest known constant C(d, b). This method is known as the

Niederreiter-Xing method.

1.3 Discrepancies on Sn

Unlike the unit cube [0, 1]d, the subject of discrepancies of the unit sphere Sn is not as

well-studied and largely unknown. In fact, there are various notions of spherical discrep-

ancies. We will only discuss the discrepancies on S2 here. For the rest of the discussion

σ will denote the normalized surface measure on S2, i.e σ(S2) = 1.

Recall from the previous section, in [0, 1]d low discrepancy sequences are used in Quasi-

Monte Carlo Integration, and the Koksma-Hlawka Inequality gives the error bound in in-

tegral estimation. Analogously, what if we are to estimate an integral on the unit sphere

with a finite sum using a similar technique,
∫
S2 fdσ ≈ 1

N

∑N
i=1 f(xi)? Unfortunately,
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the answer is that there isn’t even a satisfactory analogous notion of “Hardy-Krasue

Variation” on S2. The closet version of “Spherical Koksma-Hlawka Inequality” we have

is the following:

Theorem 1.3.1. [18] Using the unit operator D = (−24∗)1/2(−4∗ + 1
4
)1/4 of order

3/2 (4∗ is the Beltrami Operator on S2) we have

| 1
N

N∑
i=1

f(xi)−
∫
S2

fdσ| ≤
√

6D(X(N),D)‖f‖3/2, (1.1)

where f is from the Sobolev Space H3/2(S2). D(X(N),D) is called the generalized dis-

crepancy associated with D and can be computed by

4πD({x1, x2, ..., xN},D) = 1− 1

N2

∑
k 6=l

log(1 + ‖xk − xl‖/2)2. (1.2)

1.3.1 Various Spherical Discrepancies on S2

Other than the generalized discrepancy associated with D introduced previously, the

L2 spherical cap discrepancies, which averages the local discrepancy for spherical caps

(defined in the next subsection), is defined as:

Definition 1.3.2. (L2 Discrepancy) [17] Let PN = {x1, ...., xN}. The L2 discrepancy

D2 of PN is defined as

D2(PN) = (

∫ 1

−1

∫
S2

|#(PN ∩ C(t)

N
)− σ(C(t))|2dσdt)1/2. (1.3)

C(t) is a cap on S2 of height t.
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The L2 spherical cap discrepancy has the close connection to the distance sums of

the N points.

Theorem 1.3.3. (Stolarsky Invariance) [16]

1

N2

∑
k 6=l

‖xl − xk‖+ 4(D2(x1, x2, ..., xN))2 =

∫
S2

∫
S2

‖x− z‖dσdσ =
4

3
, (1.4)

where D2 is the L2 discrepancy on S2.

The discrepancy we will focus on is introduced below, the spherical cap discrepancy.

1.3.2 Spherical Cap Discrepancy

Definition 1.3.4. (Spherical Cap Discrepancy) For −1 ≤ t ≤ 1, the spherical

cap centered at ω of height t is defined as Cω,t = {x ∈ S2|〈x, ω〉 ≤ t}.

ω

t

Figure 1.1: A spherical cap of height t centered at ω

Given a sequence X on S2, the spherical discrepancy of the subsequence X(N) is defined

as:

D(X(N)) = sup
ω∈S2

sup
t∈[−1,1]

|#(X(N) ∩ Cω,t)
N

− σ(Cω,t)|. (1.5)
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To date much about spherical cap discrepancy on S2 is unknown. J. Beck’s lower

and upper bounds are the record holder so far.

Theorem 1.3.5. (Beck, lower bound) [13] Given a set P of N points on S2, there

exists a spherical cap C with discrepancy

|#(P ∩ C)1−Nσ(C)| > c(2)N1/4, (1.6)

where c(2) is a constant.

Theorem 1.3.6. (Beck, upper bound) [13] For an arbitrary integer N ≥ 2, there

exists an N-element set {z1, z2, ..., zN} ⊂ S2 such that for any spherical cap C ⊂ S2,

|#({z1, ..., zN} ∩ C)−Nσ(C)| < c′(2)N1/4(logN)1/2, (1.7)

where c′(2) is a constant.

In other words, for any sequence of length N , PN ⊂ S2, the lower bound for the

spherical cap discrepancy

c(2)N−3/4 ≤ D(PN) (1.8)

is always satisfied. And for a fixed length N there exists some sequence PN such that

the upper bound

D(PN) ≤ c′(2)N−3/4 logN (1.9)

is satisfied.

Beck’s proofs of the upper and lower bounds are probabilistic and non-constructive.
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Various ways of constructing uniformly distributed spherical sequences can be found in

the literature. Many such sequences are obtained by mapping uniformly distributed se-

quences in R2 to S2. However, it hasn’t been verified that any of the existing sequences

achieves the above bounds by Beck. In fact, a commonly agreed notion of low spher-

ical discrepancy doesn’t even exist. The main goal of this paper is to investigate

efficient algorithms to distribute points on S2 and what would be proper definition for

“low spherical discrepancy”. Before we do that, some related background of spherical

geometry needs to be introduced.
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Chapter 2

Spherical Geometry

By constructing spherical sequences and measuring discrepancies using spherical caps,

we are entering a different geometric setting: the spherical geometry on S2. While

sharing lots analogous properties of the Euclidean geometry, spherical geometry has its

own uniqueness, which might at first seem counterintuitive to those who are used to

planar geometry. In Chapter 3, we will construct sequences directly on S2, mainly using

spherical triangulations. In Chapter 4, we will estimate the related distances of points

on S2 and, toward the end, the spherical cap discrepancy. All of these heavily rely on

familiarities with knowledge on spherical geometry. The main reference of this Chapter

is from the book “ Least Action Principle Of Crystal Formation Of Dense Packing

Type And Kepler’s Conjecture” by W.Y Hsiang. We will introduce the definitions and

theorems that are directly related to the discussion in upcoming chapters. Some facts

and results are indirectly related to further discussion but fundamental in this subject.
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We will introduce those too, for completeness.

2.1 Some Basic Background

The straight lines in spherical geometry are the great circles. The spherical distance

between two points A and B on S2 is the length in radius of the shorter arc of a great

circle passing them. Unlike in plane geometry, there might be more than one such shorter

arc. However, when A is not antipodal of B, the shorter arc segment passing A and B

is unambiguous, which we denote by
_
AB. The spherical angle at vertex A is denoted by

]A, in contrast to the Euclidean angle ∠A.

Notation 1. To distinguish from plane geometry, we need to introduce some new nota-

tions. For three distinct points A,B,C on the unit sphere there exists a unique spherical

triangle passing them with edges
_
AB,

_
BC and

_
AC. This spherical triangle is de-

noted by
_
4 ABC, whereas the plane triangle is denoted by 4ABC. Every spherical

triangle we consider in this paper has all of its edges less than π.

Remark 2.1.1. The Triangle Inequality still holds true but only for the great circle

segments that are less than π.
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C

A B

Figure 2.2: A good-looking spherical triangle
_
4 ABC

Despite of many significant differences, spherical triangles and plane triangles do

share some important similarities. For example, the Side-Side-Side Theorem, the Side-

Angle-Side Theorem, the Angle-Side-Angle Theorem, the Triangle Inequality etc, still

hold true in the spherical settings. According to the Angle-Angle-Angle Theorem ]A

]B and ]C uniquely determine the spherical triangle
_
4 ABC. However, one of the

most striking results that spherical geometry doesn’t share with planar geometry is that

the area of a spherical triangle can be expressed in terms of the sum of the angles in a

very short but exquisite way.

Theorem 2.1.2. (Area of Spherical Triangle)

]A+ ]B + ]C − π = area(
_
4 ABC) (2.1)

In contrast to the well-known fact that the sum of all angles of an Euclidean triangle

is always equal to π, this theorem immediately gives us:

Corollary 2.1.3. The sums of all the angles of a spherical triangle is always strictly
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greater than π. Each angle of an equilateral spherical triangle is strictly bigger than π/3.

Notation 2. When there’s no ambiguity, we may use
_
4 ABC in place of area(

_
4 ABC).

O will denote the origin, unless specified otherwise. a, b and c denote the arcs
_
BC,

_
AC

and
_
AB respectively.

For the rest of this section, we will introduce more notions, quantities and funda-

mental computational rules in spherical geometry.

Remark 2.1.4. The three vertices A, B, C of a spherical triangle
_
4 ABC lie both on S2

and in R3. The circumcircle of
_
4 ABC on S2 is also the circumcircle of the Euclidean

triangle 4ABC in R3. ]A is precisely the Euclidean angle between the plane passing

O,A,B and the plane passing O,A,C, and the three arcs a, b, c denoting
_
BC,

_
AC,

_
AB

are the angles between
−−→
OB and

−→
OC,

−→
OA and

−→
OC,

−→
OA and

−−→
OB respectively.

Lemma 2.1.5. Let D = det(
−→
OA,
−−→
OB,

−→
OC), the determinant of the 3 × 3 matrix with

columns
−→
OA,
−−→
OB,

−→
OC. Then

D = (1 + 2 cos a cos b cos c− cos2 a− cos2 b− cos2 c)1/2 (2.2)

One characterization of the relation between D, the volume of the parallelepiped

generated by
−→
OA,
−−→
OB,

−→
OC, and the area of the spherical triangle

_
4 ABC is the following

lemma.

Lemma 2.1.6. [9], pp.37, Lemma 2.1.1

Let D be defined as above. Set u = 1 + cos a + cos b + cos c. Then

tan
4
2

=
D

u
, (2.3)
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where the symbol 4 stands for the area of the spherical triangle.

Theorem 2.1.7. (Spherical Rules of Sines) ( [9] pp. 30)

sin a

sinA
=

sin b

sinB
=

sin c

sinC
=

sin a sin b sin c

D
. (2.4)

Theorem 2.1.8. (Spherical Rules of Cosines)( [9] pp. 31)

cos a = cos b cos c + sin b sin c cosA

cos b = cos a cos c + sin a sin c cosB

cos c = cos a cos b + sin a sin b cosC

When one of the angles is π/2, we have a special case of the cosine rule.

Corollary 2.1.9. (Traditional Spherical Pythagorean Theorem)

If ]C = π/2, then cos c = cos a cos b.

The cosine rule for ]C = π/2 leads us to a sequence of natural questions. Is

this Traditional Spherical Pythagorean Theorem the analogue of the famous Euclidean

Pythagorean Theorem in the spherical case? Is an spherical triangle with one its angle

equal to π/2 the analogue of a planar right triangle? What would be a proper definition

of spherical right triangle? And how about spherical acute triangles and spher-

ical obtuse triangles? It turns out that being a spherical right triangle isn’t as simple

as possessing a 90 degree angle.

Definition 2.1.10. (Traditional Spherical Right Triangle)
_
4 ABC is called a

traditional spherical right triangle when one of its angles is equal to π/2.
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Before we can proceed, we need to introduce the circumcircle and circumcenter of

_
4 ABC.

Definition 2.1.11. (Circumcircle and Circumdisk) The plane passing A,B,C intersects

S2 by a circle, the circumcircle of
_
4 ABC. There exists a unique point on S2 whose

distances to A,B,C are equal. This unique point is the circumcenter of
_
4 ABC. The

closure of the interior of the circumcircle is called the circumdisk.

Remark 2.1.12. The circumcircle of the spherical triangle
_
4 ABC and the circumcircle

of the planar triangle 4ABC coincide.

The circumcenter of
_
4 ABC can be inside, or outside, or on an edge of

_
4 ABC.

The position of the circumcenters directly linked to the sizes of the angles, and, further,

it divides all spherical triangles into three categories.

Theorem 2.1.13. [8], Theorem 2.

Let P be the circumcenter of
_
4 ABC. One of the three scenarios must occur:

(1). C and P is on the same side of
_
AB if

and only if ]A+ ]B > ]C. P

A

B

C
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(2). C and P is on the opposite sides of
_
AB

if and only if ]A+ ]B < ]C.

P

A

B

C

(3). C and P is on the edge
_
AB if and only

if ]A+ ]B = ]C. P

A

B

C

Definition 2.1.14. When ]A + ]B < ]C, we say
_
4 ABC is an obtuse spherical

triangle. When ]A+]B > ]C, ]B+]C > ]A and ]A+]C > ]B, we say
_
4 ABC

is a acute spherical triangle.

Corollary 2.1.15. Let P be the circumcenter of the spherical triangle
_
4 ABC.

(i) If
_
4 ABC is acute then P lies in the interior of

_
4 ABC.

(ii) If
_
4 ABC is obtuse and P and C lie on the opposite side of

_
AB, then P and A lie

the same side of
_
BC and P and B lie on the same side of

_
AC.

Proof. The great circles passing
_
AB,

_
AC and

_
BC divide the sphere into the following

region:

A spherical triangle with one of its angles equal to the sum of the other two is

particularly of interest.
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Definition 2.1.16. (Preferred Spherical Right Triangle)

If ]A + ]B = ]C, we say
_
4 ABC is a preferred spherical right triangle. Since

in this case one angle is the sum of the other two, a preferred spherical right triangle is

also called a spherical half-sum triangle.

Spherical half-sum triangles gain the name “preferred” for a reason. The definition

immediately gives the following corollaries.

Corollary 2.1.17. Let
_
4 ABC be a spherical half-sum triangles with circumcenter P

and ]A+ ]B = ]C, as the figure below suggested.

P
A B

C

The circumcenter of
_
4 ABC is the mid-point of the longest edge of the triangle, i.e the

one facing ]C, which is defined to be the hypotenuse of
_
4 ABC.

_
4 APC and

_
4 CPB

are isosceles spherical triangles.

In fact, a spherical triangle can never be both a spherical right-angle triangle and

spherical half-sum triangle.

Corollary 2.1.18. A spherical triangle with an angle equal to π/2 cannot be a right

spherical triangle.
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When ]A + ]B = ]C, clearly the area theorem gives ]C = 1
2
π + 1

2

_
4 ABC. The

Spherical half-sum triangles lead us to answer some previously asked questions. One of

such is the spherical analogue of the classic Pythagorean Theorem.

Theorem 2.1.19. (Preferred Spherical Pythagorean Theorem) [8], Theorem 3 In a

spherical half-angle triangle with hypotenuse
_
AB= c

sin2(
a

2
) + sin2(

b

2
) = sin2(

c

2
). (2.5)

Corollary 2.1.20. In a spherical half-angle triangle with hypotenuse
_
AB= c,

cos2(
a

2
) + cos2(

b

2
) = cos2(

c

2
). (2.6)

Notation 3. Now that we know the Spherical half-sum triangles are the very “right

spherical right triangle”. In the remaining discussion, by “spherical right triangle” or

even “right triangle”, we are only referring to the spherical half-sum triangles.

2.2 More on Spherical Geometry (I)

One of our upcoming topics is to generate points directly over the unit sphere. More

specifically, the points generated are going to be the circumcenters of certain spherical

triangles. As the number of points grows, the distribution gets exponentially more

complicated. When two spherical triangles, say
_
4 ABD and

_
4 BCD, share a common

edge,
_
BD the location of the circumcenters of

_
4 ABD and

_
4 BCD provides crucial
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information for our point generating algorithm. When A,B,C,D lie on the same circum

circle, we say they are co-circular.

Notation 4. When A and C are on different sides of edge
_
BD, we say

_
4 ABD and

_
4 BCD are adjacent or they are “neighbours”. The common edge they share,

_
BD, is

also the intersection of the circumdisks of
_
4 ABD and

_
4 BCD (or equivalently the

intersection of the two planes that the circumcircles of
_
4 ABD and

_
4 BCD lie in).

Theorem 2.2.1. [8], Theorem 5.

Assume A,B,C,D are co-circular. Then sin(]A− 1
2

_
4 ABD) = sin(]C − 1

2

_
4 BCD).

Further, one of the following two cases must occur.

(1) If A and C are on the same side of
_
BD, (]A− 1

2

_
4 ABD) = (]C − 1

2

_
4 BCD).

(2) Otherwise, (]A− 1
2

_
4 ABD) + (]C − 1

2

_
4 BCD) = π.

Corollary 2.2.2. [9] pp. 26

Let
_
4 ABC and

_
4 A′BC have the same orientation.

B C

A A′

Figure 2.3: A,A′ are on the same side of edge BC.

Then A,A′, B, C are co-circular if and only if

]ABC + ]ACB − ]BAC = ]A′BC + ]A′CB − ]BA′C. (2.1)
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Remark 2.2.3. That
_
4 ABC and

_
4 A′BC have the same orientation is equivalent to

that A and A′ are on the same side of edge
_
BC.

Corollary 2.2.4. Let
_
4 ABC and

_
4 A′BC have the same orientation. Then,

(i) A′ is outside the circumcircle of
_
4 ABC if and only if ]ABC +]ACB−]BAC <

]A′BC + ]A′CB − ]BA′C.

(ii) A′ is inside the circumcircle of
_
4 ABC if and only if ]ABC +]ACB −]BAC >

]A′BC + ]A′CB − ]BA′C.

Proof. The great circle passing A and the circumcenter of
_
4 ABC intersect with the

circumcircle of
_
4 A′BC. We may assume A′ is the intersection.

When A′ is outside the circumcircle of
_
4 ABC, A is inside the

_
4 A′BC. So,

]ABC < ]A′BC, and ]ACB < ]A′CB. (2.2)

B C

A

A′

A′

O

A

B

C

`

A0

Figure 2.4

]BAC is the angle between the plane passing {O,A,B} and the plane passing {O,A,C}.

The (Euclidean) straight line passing A and O intersect the plane of the plane triangle
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4 at point A0. Then

∠BA0C < ]BAC. (2.3)

Since A0 is in the interior of the plane triangle 4BA′C,

∠BA′C < ∠BA0C. (2.4)

Meanwhile, since ]BA′C is the angle between the plane passing {O,A′, B} and the

plane passing {O,A′, C},

∠BA′C > ]BA′C. (2.5)

So we have

]BA′C < ]BAC. (2.6)

Therefore, combining inequality 2.2 and inequality 2.6, we get

]ABC + ]ACB − ]BAC < ]A′BC + ]A′CB − ]BA′C. (2.7)

This proves the “if” direction of statement (i). The “if” direction of statement (ii)

follows by symmetry: interchanging the positions of A and A′.

The only if direction of (i) can be proven by contradiction. Assume ]ABC +]ACB −

]BAC < ]A′BC+]A′CB−]BA′C. First, since this is a strict inequality, by Corollary

2.2.2, A′ and A cannot be cocircular. If A′ is inside the circumcircle of
_
4 ABC, then the

if direction of (ii) would give ]ABC +]ACB−]BAC > ]A′BC +]A′CB−]BA′C,

a contradiction. The “only if direction” of (ii) following by symmetry of A and A′.



26

Definition 2.2.5. (Spherical Quadrilateral) [9] pp. 28

When the four edges
_
AB,

_
BC,

_
CD,

_
AD are non-crossing, the four points A,B,C,D form

a spherical quadrilateral, denoted by
_
� ABCD. The quadrilateral is called convex is

each of its inner angle is at most π.

A

B

C

D

Figure 2.5: A Spherical Quadrilateral

Corollary 2.2.6. [9] pp. 28 The four points of the spherical quadrilateral
_
� ABCD

are co-circular if and only if

]A+ ]C = ]ABC + ]ADC. (2.8)

Remark 2.2.7. For the purpose of our discussion, a spherical quadrilateral will always

be assumed to have all four vertices on the same hemisphere.

Corollary 2.2.8. For a spherical quadrilateral
_
� ABCD, if the four vertices are not

co-circular, one of the following must occur.

(i) C is outside the circumcircle of
_
4 ABD if and only if ]A+ ]C < ]B + ]D.

(ii) C is inside the circumcircle of
_
4 ABD if and only if ]A+ ]C > ]B + ]D.
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Proof. (i) Assume C is outside the circumcircle of
_
4 ABD. Denote the circumcenter

of
_
4 ABD by I. The great circle passing I and C will intersect the circumcircle of

_
4 ABD at C ′.

A

B

D

I

C
C ′

Figure 2.6

Since C ′ is cocircular with A,B,D, by Corollary 2.2.6, we know that

]BAD + ]BC ′D = ]ABC ′ + ]ADC ′. (2.9)

Now C and C ′ are on the same side of edge
_
BD, Corollary 2.2.4 applies. We have

]CDB + ]CBD − ]BCD > ]C ′DB + ]C ′BD − ]BC ′D. (2.10)

Subtract ]BAD − ]ABD − ]ADB on both sides of the inequality above, we get

]ABC+]ADC−]BAD−]BCD > ]ADC ′+]ABC ′−]BAD−]BC ′D = 0. (2.11)

Therefore,

]ABC + ]ADC − ]BAD − ]BCD > 0, (2.12)
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and equivalently,

]BAD + ]BCD < ]ABC + ]ADC. (2.13)

This proves the if direction of (i). (ii) The proof is done similar way. If C is inside the

circumcircle of
_
4 ABD, then the great circle passing the circumcenter of

_
4 ABD, I,

and C will intersect the circumcircle of
_
4 ABD.

A

B

D

I C C ′

Figure 2.7

By Corollary 2.2.6,

]BAD + ]BC ′D = ]ABC ′ + ]ADC ′. (2.14)

Since C and C ′ are on the same side of edge
_
BD and C ′ is inside the circumcircle of

_
4 C ′BD, by Corollary 2.2.4,

]CDB + ]CBD − ]BCD < ]C ′DB + ]C ′BD − ]BC ′D. (2.15)

Subtracting both sides of the above equation by ]BAD − ]ABD − ]ADB, we get

]ABC + ]ADC − ]BAD − ]BCD < 0. (2.16)

The only if directions of both (i) and (ii) follow easily.
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Theorem 2.2.9. (Lexell’s Theorem) [9] pp. 26-27

Let
_
4 ABC and

_
4 ÃBC be two spherical triangles with the same orientation of vertices

and the same area. Let B′ and C ′ are the antipodal points of B and C. Then A, Ã, B′

and C ′ are co-circular.

CB

A

B′C ′

Figure 2.8: Lexel-Circle with base
_
BC

Definition 2.2.10. (Lexell-circle) [9] pp. 27-28

Let B′ and C ′ be the antipodal points of B and C. The locus of a point A such that

_
4 ABC has constant oriented area is an open circular arc with end points B′ and C ′.

The circle passing A,B′, C ′ is called the Lexell-circle of A (with base
_
BC).

2.3 More on Spherical Geometry (II)

In this section, we will present and prove results that are specifically tailored to assist

some later discussion and proofs.

Definition 2.3.1. An isosceles spherical triangle is a spherical triangle with two equal

size, or equivalently a spherical triangle with two equal angles.
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Remark 2.3.2. In spherical geometry it is possible to for an isosceles triangle to have

the two equal angles bigger than π/2. Suppose in
_
4 ABC ]ACB = ]ABC. The

great circles passing A,B and A,C intersect at the antipodal point of A, denoted by

−A. In
_
4 ABC ]ACB = ]ABC ≤ π/2 if and only if in

_
4 (−A)BC ](−A)CB =

](−A)BC ≥ π/2. So, with the extra assumption that every edge in an triangle is less

than π/2 the two equal angles of an isosceles triangle will be less than π/2.

The symmetry of isosceles triangles gives the following proposition:

Proposition 2.3.3. Given two distinct points A and B on S2, the set of points on

S2 that are of equal distance to A and B is the great circle perpendicular to
_
AB at its

mid-point.

Proposition 2.3.4. (Larger Angle Face Larger Edge)

In
_
4 ABC, ]C ≥ ]A if and only if c ≥ a.

Proof. Since ]C ≥ ]A, there exists a point D on edge
_
AB such that ]A = ]ACD.

A B

C

D

Figure 2.9

The triangle
_
4 is isosceles,

_
AD=

_
CD. By triangle inequality

_
CD +

_
BD≥

_
BC. That is

_
AB=

_
AD +

_
BD≥

_
BC. c ≥ a.
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If ]C ≥ ]A, by Proposition 2.3.4 c ≥ a. In other words, ∠AOB ≥ ∠BOC. So, the

Euclidean segments AB ≥ BC. Consequently, in the planar triangle 4ABC, we have

∠C ≥ ∠A. This can be characterized as:

Corollary 2.3.5. (Bigger Spherical Angle Bigger Planar Angle)

]C ≥ ]A in
_
4 ABC if and only if in the corresponding planar triangle 4ABC ∠C ≥

∠A.

Notation 5. Let C be a circle on the unit sphere. A,B ∈ C. The great circle segment

_
AB divides the circle into two pieces, each piece we call an “arc” of the circle C.

A

B

G

Figure 2.10

We call the longer arc between A,B “the heavier arc” and the shorter arc between A,B

“the light arc”. The area bounded by
_
AB and the heavier arc is called “the heavier side”

of the circle, while the area bounded by
_
AB and the lighter arc is called “the light side”

of the circle. Equivalently, the heavier side is the side contains the circumcenter while

the lighter side doesn’t.
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Definition 2.3.6. (Central Angle of An Edge)

Using the same notation introduced above, the smaller ]AGB (i.e the one ≤ π) is called

the central angle of edge
_
AB.

Remark 2.3.7. If
_
AB happens to the intersection of two circles centered at G and I

respectively.

A

B

GI

Figure 2.11

The circle centered at I is bigger than the circle centered at G if and only if the central

angels satisfy ]AIB < ]AGB.
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Chapter 3

Constructing Spherical Sequences

3.1 The First 50 Points

In this section we will present a recursive method of constructing “optimal” spherical

sequences(the definition of optimal will be given later). In this method new points are

added to the existing finite sequences using some “greedy algorithms” such that the

newly added points have the “farthest distances” to the existing ones.

Definition 3.1.1. (The Spherical Distances) Given two points x1, x2 ∈ S2 let

arc(x1, x2) = 〈x1, x2〉 and dist(x1, x2) = cos −1(〈x1, x2〉), where 〈 · , · 〉 is the standard in-

ner product in R3. If X ⊂ S2 is a set of points, define arc(X, x1) = max{arc(x, x1)| x ∈

X} and dist(X, x1) = cos −1(arc(X, x1)). For two sets of points X, Y ⊂ S2 define

arc(X, Y ) = max{arc(x, y)| x ∈ X, y ∈ Y } and dist(X, Y ) = cos −1(arc(X, Y )). arc(X) =

max{arc(x, y)| x, y ∈ X, x 6= y} and dist(X) = cos −1(arc(X)).
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Remark 3.1.2. dist(x, y) is the length of the shorter great circle segments with ending

points x and y on the unit sphere. Using the notation from Chapter 2, dist(x, y) = | _xy |.

Notation 6. Let C(P, r) be the interior of the cap centered at P of spherical radius r.

C is the closure of cap C. rad(C) and cen(C) denote the spherical radius and the center

of the cap C respectively.

Notation 7. For x ∈ S2 we will denote the antipodal point of x by −x.

3.1.1 Method of The Largest Circumference

Given a sequence of N points SN = {P1, P2, ..., PN} on S2 where N ≥ 3 there is a unique

circle passing through every 3 distinct points Pi, Pj, Pk. Every such circle divides the

sphere into two disjoint caps. Let C1
i,j,k and C2

i,j,k denote the larger and smaller caps

respectively. Among all these caps there exists a largest cap Ci′,j′,k′ , by three points

Pi′ , Pj′ , Pk′ , whose interior doesn’t contain any point of SN .

Definition 3.1.3. The existence of Ci′,j′,k′ in the previous paragraph is rarely unique.

Let CN denote the set of such caps and DN denote the set of centers of caps in CN .

Elements in DN are called “deep holes” by analogy to Lattice Theory, meaning the points

farthest to the previous ones. Clearly CN and DN have the same number of elements.

We now start an explicit construction of one such sequence of 50 points using the

recursion described above. The initial step of this recursive method requires 3 points.

Start with the north pole P1 = (0, 0, 1); the furthest point from P1 is the South Pole
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P2 = (0, 0,−1). Any point on the equator has the furthest distance to P1 and P2. Choose

the third point to be (1, 0, 0).

The First 14 Points S14

C3 consists of two caps: C1
1,2,3 and C2

1,2,3 are two disjoint hemispheres centered at

(0, 1, 0) and (0,−1, 0). Choose the center of one of them to be P4 say (0, 1, 0), and

P5 = (0,−1, 0). Among all the caps generated by P1, P2, P3, P4 and P5, the hemi-

sphere centered at (−1, 0, 0) is the unique largest one containing no previous points.

C5 = {C((−1, 0, 0), π
2
)}. So, P6 = (−1, 0, 0).

Lemma 3.1.4. The deep holes of S6 D6 consists of 8 points: (± 1√
3
,± 1√

3
,± 1√

3
), i.e the

circumcenters of the 8 octants.

All the deep holes in D6 are fairly far apart, as the following lemma states more

precisely.

Lemma 3.1.5. All the caps in C6 has the same spherical radius r = arccos( 1√
3
). For

two distinct caps C(x, r), C(y, r), where x, y are deep holes D6 dist(x, y) > arccos( 1√
3
).

In other words, none of the caps in C6 contains the centers of others.

S14 is obtained by adding D6 to S6.

Remark: The choice of the first 14 points is unique up to ordering. However, this

is not the case as the recursion proceeds.



36

Introducing The Greedy Algorithm

By adding points only from the deep holes to the existing sequence, we get a new

sequence. We say the existing sequence extends to the new one, and call the new sequence

the extension of the existing one, e.g S6 extends to S14 and S14 is an extension of S6.

This recursive sequence extension is a greedy algorithm and we will call it “The Greedy

Algorithm of The Largest Circumference”. Clearly, this algorithm produces finitely many

extended sequences for each length n.

Definition 3.1.6. (Optimal Sequences)

Let f(n) = min{arc(S)|S ⊂ S2 is a set of points of length n constructed using The

Greedy Algorithm of The Largest Circumference} and g(n) = max{dist(S)|S ⊂ S2

is a set of points of length n constructed using The Greedy Algorithm of The Largest

Circumference}. A sequence Sn of length n is optimal if arc(Sn) = f(n) or, equivalently,

dist(Sn) = g(n).

We will give a table listing the approximated values of f(n) for n up to 50 after

introducing an optimal sequence of size 50.

The Next 12 Points

C14 and D14 are both of size 24. There exists a root α3,1 of 13x4 − 10x2 + 1 and

α3,3 =
√

1− (α3,1)
2 is a root of the polynomial 13x4 − 16x2 + 4 such that α3,1 ≈

0.806898221355073 and α3,3 ≈ 0.590690494568872.
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Notation 8. Here we start using double subscript for the coordinates of the points. The

first digit 3 in the double subscripts indicates this is the third set of deep holes, whereas

the first and second sets of deep holes are {Pi | i = 1, ..., 6} and {Pj | j = 7, 8, 9, ..., 14}

respectively.

Computation showsD14 = {(±α3,1 , ±α3,3 , 0), (0,±α3,1 ,±α3,3), (±α3,3 , 0,±α3,1), (±α3,1 , 0,±α3,3),

(0,±α3,3 ,±α3,1), (±α3,3 ,±α3,1 , 0)}. However, not all the 24 elements of D14 should be

added to form the new sequence. The reason is the following: clearly all the 24 points

from D14 lie on the “edges” between two adjacent octants, for example x = (α3,1 , α3,3 , 0)

and y = (α3,3 , α3,1 , 0) and dist(x, y) < dist(x, S14). A maximum of 12 elements can be

chosen to form the new sequence S26: {P15, ..., P26} = {(±α3,1 , 0,±α3,3), (0,±α3,3 ,±α3,1),

(±α3,3 ,±α3,1 , 0)}.

Definition 3.1.7. Denote the elements of the Abelian group Z2×Z2×Z2 by {(±1,±1,±1)}.

Let N ⊂ Z2 × Z2 × Z2 be the subgroup {(±1, 1,±1)} of order 4. N ∼= Z2 × Z2. S3 is

the permutation group of degree 3 and 〈(1 2 3)〉 ⊂ S3 is the subgroup of the 3 cycles.

The group (Z2 × Z2 × Z2) o S3 is known as the signed symmetric group Z2 o S3, or the

octahedral group, S2 o S3

We introduce the following group actions.

Notation 9. N acts on elements of D14 by coordinatewise multiplication. For instance,

if τ = (−1, 1,−1) then τ : (α3,3 , 0, α3,1)→ (−α3,3 , 0,−α3,1).

Notation 10. Let α3,2 = 0. S3 acts on the elements of D14 by permuting the second digit
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of the subscript. For instance, σ = (1 2 3) is the three cycle and σ : (−α3,1 , 0, α3,3) →

(−α3,3 , α3,1 , 0).

Lemma 3.1.8. The group G = N o S3 acts on D14 transitively.

Lemma 3.1.9. Let H = N o A3. H � G. H acts on the 12 chosen elements from D14

{(±α3,1 , 0,±α3,3), (±α3,3 ,±α3,1 , 0), (0,±α3,3 ,±α3,1)} transitively.

Proof. H is of index 2 and, hence, a normal subgroup of G. The transitivity of the two

sets can be proven by computing the orbits of (±α3,1 , 0,±α3,3) under G and H.

As we have commented before that the above choice of P15 to P26 isn’t unique even up

to re-ordering: one obvious substitution is take the other 12 elements in D14. However,

they are not too far away from being unique, as the following lemma states:

Lemma 3.1.10. There are two choices for the 15th to 26th points: our choice {P15, ..., P26}

above, and its complement in D14. The two choices are isometric.

Proof. Let Ω denote {P15, ..., P26}. Let its complement in D14 \Ω be denoted by Ω
C

. Ω

is the image of (α3,1 , 0, α3,3) under the index 2 normal subgroup H of G. Ω is mapped

to Ω
C

by any two cycle of S3. This proves the two options are isometric.

To show Ω and ΩC are the only two possible options, let Γ ⊂ D14 be a subset of 12

elements. |Ω ∩ Γ| = d for some d = 0, 1, ..., 12, and |ΩC | = 12− d. As a simple applica-

tion of the Pigeonhole Principle, Γ contains at least a pair of points x, y such that η(x) =
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(α3,1 , 0, α3,3) and η(y) = (α3,3 , 0, α3,1). Hence, dist(x, y) = dist(η(x), η(y)) ≤ dist(S26).

where the equality holds if and only if d = 0 or 12.

Remark 3.1.11. The two choices above for {P15, ..., P26} are the only ones leading to the

first 50 optimal points. We will later give an explicit example of optimal 51 points where

{P15, ..., P26} is chosen differently.

The Next 12 Points P27 To P38

C26 and D26 are both of size 24. Just like the case of D14, the 24 elements follow certain

patterns of symmetry and not all the 24 elements can be chosen to extend the sequence.

Notation 11. We will continue using the same group action, the 48 symmetries of the

group of signed permutation Z2 o S3, where Z2 acts on the sign of each coordinate and

S3 permutes the 3 coordinates.

Let λ4 be the root of the polynomial 12409t8−12268t6 +2286t4−124t2 +1 with λ4 ≈

0.874423504330819. Let α4,1 > α4,2 > α4,3 > 0 be such that arc((α4,1 , α4,2 , α4,3), S26) =

λ4. α4,1 happens to be equal to λ4. α4,2 is a root of the polynomial 12409x8− 10284x6 +

2798x4 − 252x2 + 1 and α4,3 is a root of the polynomial 12409x8 − 27084x6 + 19814x4 −

5100x2 + 169. Their approximated numerical values are α4,2 ≈ 0.443562574092605, and

α4,3 ≈ 0.196559858409978.

Lemma 3.1.12. The group Z2 o A3 acts on D26 transitively.
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Lemma 3.1.13. Let Ω be the image of (α4,1 , α4,2 , α4,3) under the action of group (Z2 ×

1 × Z2) o A3, which is an index 2 subset of Z2 o A3. |Ω| = 12. Furthermore, if Ωk ⊂ Ω

is of size k, arc(Ωk ∪ S26) = f(26 + k).

Adding all elements of Ω to S26, we get the extended sequence S38.

Remark 3.1.14. We choose Ω to be {Pi | i = 27, ..., 38}. A counting argument shows

that there are 46 choices for {Pi | i = 27, 28, ..., 38} that achieve f(38). They are not all

isometric to Ω. Each of the 46 configurations can lead to 50 optimal points, although

their further extensions beyond 50 points will be suboptimal.

The first 50 points S50

|D38| = 12. Given a “deep hole” x ∈ D38 denote arc(x, S38) by λ5, where λ5 is a root

of the polynomial 13637110513t16 − 16758767896t14 + 5707856588t12 − 821722248t10 +

59096342t8 − 2239848t6 + 43436t4 − 376t2 + 1 and λ5 ≈ 0.885967389267793. There

exists (α5,1 , α5,2 , α5,3) ∈ D38 such that α5,1 = λ5, α5,2 ≈ 0.372960097967509 and α5,3 ≈

0.275613044825668.

Lemma 3.1.15. Let Ω be the orbit of (α5,1 , α5,2 , α5,3) under the action by Z2 oA3. Let Γ

be the orbit of (α5,1 , α5,2 , α5,3) under the action of the index 2 subgroup (Z2×1×Z2)oA3.

Then D38 = Ω \ Γ.

Lemma 3.1.16. arc(D38 ∪ S38) = λ5.

By adding all 12 elements of D38 to S38 we extend S38 to S50. Let α > β > γ > 0 be
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Theorem 3.1.17. S50 is optimal. (See Definition 3.1.6 for optimal sequences)

Remark 3.1.18. The sequence S50 constructed above cannot be extended further to any

S51 without making dist(S51) < dist(S50). The following table lists some numerical data

of the spherical distance of subsequences of S50:

n ≥ 3 arc(Sn) = f(n)

3, ..., 6 0

7, ..., 14 1√
3
≈ 0.577350269189625

15, ..., 26 α3,1 ≈ 0.806898221355073

27, ..., 38 λ4 ≈ 0.874423504330819

39, ..., 50 λ5 ≈ 0.885967389267793

Table 3.1

3.1.2 Extension/Subsequence of Sequences

However, despite of the careful construction of choosing “the furthest points” each step,

an optimal sequence of length N may not be able to extend to a longer optimal sequence.

Lemma 3.1.19. There exists a sequence of 51 points K51 constructed using The Greedy

Algorithm of Largest Circumference such that arc(K51) < arc(S51) or equivalently

dist(K51) > dist(S51) where S51 is an extension S50.

From the lemma immediately follows
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Theorem 3.1.20. There doesn’t exist an infinite sequence whose finite truncations are

all optimal.

In the following proof of Lemma 10 K51 will be constructed using the same greedy

algorithm, i.e The Greedy Algorithm of The Largest Circumference. At each step we

choose the maximum number of points from the set of deep holes. However, unlike the

construction of S50 above, our choices for elements of K51 may not follow any group

pattern. As we will see, this causes the first 50 elements of K51 to be suboptimal.

Proof. Start with the same first 14 points as S50, i.e K14 consists of the 6 poles and the

circumcenters of the 8 octants.

The next 12 elements: Recall from the previous, the set of deep holes for K14 consists

of 24 elements. Let α and β be equal to α3,1 and α3,3 respectively. K26 is obtained by

adding the following 12 elements to K14:

{(0, β, α), (β, 0, α), (β, α, 0), (0,−β,−α), (−β, 0,−α), (−β,−α, 0),

(0,−β, α), (0, α,−β), (α,−β, 0), (−α, β, 0), (α, 0,−β), (−β, 0, α)}.

arc(K26) = f(26). K26 is optimal.

The next 11 elements: K26 has 24 deep holes. Let α > β > γ > 0 be equal to

α4,1 , α4,2 and α4,3 respectively. Unlike the case S26, only 11 deep holes of K26 can be

selected. Adding the following 11 elements to K26 we get an optimal sequence of
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length 37 K37:

{(β,−γ,−α), (−α,−γ, β), (−α,−γ,−β), (−γ,−α,−β),

(α, γ, β), (β,−α, γ), (γ, α, β), (α, β,−γ),

(−β, α, γ), (−γ, β,−α), (−γ,−α, β)}.

Remark : K37 cannot be extended to an optimal sequence of length 38.

The extension to K43: K37 has 8 deep holes. Let α > β > γ > 0 be equal to α5,1 , α5,2

and α5,3 respectively. The 8 deep holes of K37 are

{ (α,−γ, β), (−β, α,−γ), (−α, γ, β), (−α, γ,−β), (γ,−α,−β), (β,−α,−γ), (β, γ,−α),

(γ, β,−α) }.

Because (γ,−α,−β) is too close to (β,−α,−γ) and (β, γ,−α) is too close to (γ, β,−α),

only one from each pair can be chosen. Adding the 6 deep holes (other than (β,−α,−γ)

and (γ, β,−α)) to K37 we get K43.

The 44th element: K43 has two deep holes, h1 and h2. Let λ = arc(h1,K43) =

arc(h2,K43). λ ≈ 0.890617459428756 happens to be a root of 833902585633x16 −

940416185384x14 + 249532655932x12 − 23661702488x10 + 1015878310x8 − 21031832x6 +

208252x4−872x2+1. And h1 ≈ (-0.890617459428756, -0.451777166189461, 0.051941631380693)

and h2 ≈ (-0.890617459428756, -0.451777166189461, -0.051941631380693). Clearly they

are too close to be both chosen. Adding h1 extends K43 to K44.
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The 45th to the 51st points: K44 has 14 deep holes. The spherical distance between

a deep hole h and the existing 44 points arc(h,K44) ≈ 0.907689792617791 happens to

be a root (of multiplicity 1)of 241x8 − 380x6 + 182x4 − 28x2 + 1. A maximum of 7 of

them can be added to extend to K51, and arc(K51) = arc(h,K44).

Proof. (of Theorem) Clearly the first 50 points of K51 arc(K50) > f(50). However, any

extension of S50 by an deep hole S51 would have arc(S51) > arc(K51).

Extensions of K51

K51 cannot be extended further without changing the spherical distance of the resulting

sequence. It turns out K51 has 3 deep holes, all of which are far apart enough that all

three of them can be added to entend the sequence to K54. Even further, arc(K54) ≈

0.914193954804357 is a simple root of 25270910733829842817x16− 66588078845325380648x14+

70522196178243041020x12− 39067864879587856088x10+ 12307100102256438694x8− 2238864443006380184x6+

228027055279911100x4 −

11910514578998504x2+245664276089761.

Since K51 has better spherical distance than any extension of S50 but yet can’t be

extended while maintaining the same spherical distance, it is natural question to ask

whether there exists a longer sequence with the same sphercal distance. As experiments

show there exists a sequence of length 53 with spherical distance equal to arc(K51). This

completes our first 53 values for f :
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n ≥ 3 f(n)

3, ..., 6 0

7, ..., 14 ≈ 0.577350269189625

15, ..., 26 ≈ 0.806898221355073

27, ..., 38 ≈ 0.874423504330819

39, ..., 50 ≈ 0.885967389267793

51, 52, 53 ≈ 0.907689792617791

Table 3.2

3.1.3 Separation - The“Minimal” Distance

The Method of Largest Circumference doesn’t produce a unique sequence (unless the

sequence is of length 14). Also, a sequence of length N , SN , generated by this method

can be sub-optimal. However, such a sequence SN cannot be “improved” in the sense

that the distance between the Nth point with the previous SN−1 is maximized and is

the shortest distance between ay pair of points in SN .

Definition 3.1.21. (Separation of a Point Set) ( [9] pp. 66-67)

Let Σ be a finite point set on S2. The minimal distance between any pair of points in Σ

is called the separation of Σ, denoted by δ(Σ).

Definition 3.1.22. (ε-saturated) ( [9] pp. 66-67)

A finite point set Σ on S2 is called ε-saturated, if adding one more point to Σ will change
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the separation δ(Σ) from at least ε to more than ε, i.e δ(Σ) ≥ ε but δ(Σ ∪ {p}) < ε.

Theorem 3.1.23. (Minimal Distance) SN is a sequence of length N created using the

Method of The Largest Circumference. Let P be a deep hole of SN . Then dist(P, SN) =

dist(SN ∪ {P}). In other words, the separation of the sequence SN+1, δ(SN+1) =

dist(P, SN).

Proof. We will show the distance between SN and its next deep hole is the shortest dis-

tance between any pair of points in SN+1 by induction. The inital step is when N = 8.

The 9th point is the circumcenter of one of the 8 octants. The assertion clearly holds.

Let Pi denote the ith element of such a sequence. Assume dist(PN , SN−1) = δ(SN)

for N ≥ 9. SN+1 = SN ∪ {PN+1}, where PN+1 is a deep hole of SN . We will show

dist(PN+1, SN) ≤ dist(Pi, Pj) for any pair of points Pi, Pj ∈ SN+1.

Suppose PN+1 is the circumcenter of
_
4 ABC and PN is the circumcenter of

_
4 A′B′C ′,

where A,B,C,A′, B′, C ′ ∈ SN . dist(PN , SN−1) is equal to the circumradius of
_
4 A′B′C ′

and dist(PN+1, SN) is equal to the circumradius of
_
4 ABC.

Case 1: Suppose A,B,C ∈ SN−1. The all A,B,C,A′, B′, C ′ ∈ SN−1. In this case,

dist(PN+1, SN) = dist(PN+1, SN−1). By the defintion of a deep hole, the newly added

deep hole PN+1 must have circumraius no bigger than its previous deep hole PN . dist(PN+1, SN−1) ≤

dist(PN , SN−1). Hence, by the inductive hypothesis, dist(PN+1, SN) ≤ dist(Pi, Pj) for

all Pi, Pj ∈ SN .
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A

B

C

PN+1 A′

B′C ′

PN

Suppose triangles exist in SN−1. By

the definition of deep holes, the cir-

cumradius of
_
4 A′B′C ′ is no smaller

than the circumradius of
_
4 A′B′C ′.

Figure 3.12

Clearly, dist(PN+1, SN) ≤ dist(PN+1, Pj for all Pj ∈ SN . Therefore, dist(PN+1, SN) =

δ(SN+1).

Case 2: Not all the three points A,B,C are in SN−1. Or equivalently one of them is

PN . WLOG, assume C = PN . In this case, dist(PN+1, SN) = dist(PN+1, PN). It suffices

to show dist(PN , PN+1) ≤ dist(PN , SN−1), where dist(PN , SN−1) is the length of the

circumradius of
_
4 A′B′C ′.

A′
B′

C ′

PN

A

B

PN+1

PN is one of the three vertices of the

spherical triangle whose circumcenter

is PN+1.
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Figure 3.13

If dist(PN , PN+1) > dist(PN , SN−1), since PN+1 is a deep hole of SN , dist(PN+1, Pi) >

dist(PN , SN−1) for all Pi ∈ SN . This implies dist(PN+1, SN−1) > dist(PN , SN−1), which

is a contradictiong to that PN is a deep hole of SN−1. Therefore, dist(PN , PN+1) ≤

dist(PN , SN−1). dist(PN , PN+1) = δ(SN+1), completing the induction.

Corollary 3.1.24. (Non-increasing Separation) The separation of a sequence SN con-

struncted using the Method of Largest Circumference, δ(SN), is non-increasing as N

increses. And the separation decreases precisely when the sequence is δ(SN)-saturated.

3.1.4 S50 And K51 From Field Extension Viewpoint

In the construction of the sequences S50 and K51, the coordinates of each points and

different values of f(n) turn out to be algebraic numbers. The explanation is simple.

Suppose n poins are placed on S2 already, the (n + 1)th point is the circumcenter of

some spherical triangle with vertices A,B,C. Let A = (a1, a2, a3), B = (b1, b2, b3) and

c = (c1, c2, c3). Let the (n + 1)th point be denoted by P = (x, y, z). The x, y, x must

satisfy: 
a1 a2 a3

b1 b2 b3

c1 c2 c3




x

y

z

 =


r

r

r


x2 + y2 + z2 = 1
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Solving the system of four equations gives that x, y, z and r are all algebraic numbers

and lie inside a field extension of degree 2 of the existing number field.

Notation 12. The circumradius can be computed [9] pp. 35. Let u = 1 + cos a +

cos b + cos c and w = cos a cos b + cos b cos c + cos c cos a. D is the same as introduced

in Chapter 2. Let R denote the circumradius of the spherical triangle with edges a, b,

c.

Lemma 3.1.25. ( [9] pp.34)

sec2R =
1

D
(4(1 + w)− u2) (3.1)

Corollary 3.1.26. Let α = cos a, β = cos b and γ = cos c. Then,

cos2R =
1− α2 − β2 − γ2 − 2αβγ

4(αβ + βγ + γα + 1)− (1 + α + β + γ)2
. (3.2)

From the corollary it is also clear that the field extension concerned here is quadratic.

Corollary 3.1.27. The coordinates of all points of this sequence are constructible num-

bers.

3.2 The Orbit of The 8 Octants

Our idea of how to construct a well-spaced spherical sequence is clear: given a finite

sequence on S2 there exists a set of deep holes, of which we choose a maximal number

of elements to add to the given sequence, until the separation of the sequence starts to
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decrease, and then we look for the next set of deep holes. However, this is much easier

said than be done. Which elements of the set of deep holes are selected at any step

may change the next set of deep holes. The choice may result in better separation of

the sequence in the short term but not in the long run, or vice versa. One ambitious

conjecture one may wish to be true is that all sequences ΣN constructed using the greedy

algorithm of largest circumference have the same separation as N goes to ∞, and ulti-

mately, the same spherical cap discrepancy. Unfortunately very little is known in this

field. Conjectures like this are merely believable-sounding. As one of the first steps on

the road to more abstract and generalized conclusions on this subject, we would like to

construct one particular well-spaced spherical sequence in a definite and deterministic

fashion. Unlike the unit cube, the unit sphere S2 has fascinating properties of rotational

symmetry, which can be assisting as well as restricting.

3.2.1 An Orbit of The 8 Octants

The concept of orbits comes from group action. We will define a group G which acts on

O, the set of the 8 octants. G has a subgroup of index 2, which will act on two orbits

of O transitively. Each orbit consists of 4 octants, and any two adjacent octants are

in different orbits. O+ will denote the orbit containing the first octant while O− will

denote the orbit containing the octants adjacent to the first octant.
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(0,0,1)

(1,0,0) (0,1,0)

(0,-1,0) (-1,0,0)

(0,0,-1)

Figure 3.14: The shaded octants are of the same orbit O+.

Notation 13. We will use 3-tuples of the “ + ” and “− ” signs to denote each octant.

For example, (+ + +) = {(x, y, z)|x, y, z > 0}. Notice, the octants are open sets. In

other words, they do not contain their boundaries.

3.2.2 The Group Action

Using the new notation, O+ = {(+ + +), (+−−), (−+−), (−−+)} and O− = {(−−

−), (−+ +), (+−+), (+ +−)}. It is not hard to observe that each octant in O+ has an

odd number of “ + ” signs, and each octant in O− has an odd number of “− ” signs.

Definition 3.2.1. Let σ+ : O+ −→ O+ such that

σ+ : (+ + +) 7−→ (+−−), σ+ : (+−−) 7−→ (−+−),

σ+((−+−)) = (−−+), σ+ : (−−+) 7−→ (+ + +).

Corollary 3.2.2. 〈σ+〉 ∼= Z4 acts on O+ by the definition of the map.

We can define an analogous map and group action on O−:
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Definition 3.2.3. Let σ− : O− −→ O− such that

σ− : (−−−) 7−→ (−+ +), σ− : (−+ +) 7−→ (+−+),

σ− : (+−+) 7−→ (+ +−), σ− : (+ +−) 7−→ (−−−).

Corollary 3.2.4. 〈σ−〉 ∼= Z4 acts on O− by the definition of the map.

The actions of σ+ and σ− are almost identical except for the sets they are acting on.

It is natural to define the following:

Notation 14. Define − : O :−→ O such that − changes the signs of each octant to

the opposite, e.g −(+ + +) = (− − −). And let + : O :−→ O be the identity map.

{+,−} ∼= Z2.

Proposition 3.2.5. σ+ and σ− are conjugates by − ◦ σ+ ◦− = σ−.

Let σ = σ+ and define the group G = 〈σ,−〉. Clearly, G is nonabelian since σ doesn’t

commute with −.

Proposition 3.2.6. G is isomorphic to the dihedral group of order 8.

Proof. G is generated the same way as the dihedral group of order 8.

Proposition 3.2.7. The subgroup of G 〈σ〉 act transitively on O+ and O−.

In the next section, instead of considering the whole orbit of the 8 octants, we will

consider the two orbits O+ and O− separately.
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3.2.3 Distributing Points Using The Orbits

The elements of G from the previous section induce maps on points on S2. If (x0, y0, z0) ∈

S2 is a point in the first octant, define σ : (x0, y0, z0) 7−→ (x0,−y0,−z0). σ is now a

bijective map sending elements of the octant (+ + +) to points of the octant (+ − −).

Analogous maps by other elements of G can be defined similarly. In terms of distributing

points on S2, once a point (x0, y0, z0) in the octant (+ + +) is selected, we get 3 more

points, one of each on another octant from the orbit O+. And once we select a point

(x1, y1, z1) ∈ (−−−), the group action on O− will give us 3 more points, one from each

other octant of O−. 〈σ〉 is a normal subgroup of G, as the index of 〈σ〉 is 2, and the

quotient group is isomorphic to Z2.

Theorem 3.2.8. If we have a distribution of L points on the octant (+ + +), and a

distribution of J points on the octant (−++), mapping these points to the other octants

of each orbit of O+ and O−, we get a distribution of 12L + 12J points over the sphere

S2.

Proof. In the following picture, the shaded octants are in the same orbits O+, and the

rest is O−. On the boundaries of the octants, we can draw arrows as indicated in the

picture, so that each octant in O+ has its boundary oriented counterclockwise, and each

octant in O− has its boundary oriented clockwise.
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(0,0,1)

(1,0,0) (0,1,0)

(0,-1,0) (-1,0,0)

(0,0,-1)

Figure 3.15: The shaded octants are oriented counterclockwise; the unshaded ones

are oriented clockwise.

Suppose we are given a point in the octant (+ + +) (x, y, z). Unless (x, y, z) is the

center of the octant, we have (x, y, z), (z, x, y), and (y, z, x) are three distinct points in-

side (+ + +). Then we get 9 more distinct points {(x,−y,−z), (z,−x,−y), (y,−z,−x)},

{(−x, y,−z), (−z, x,−y), (−y, z,−x)} and {(−x,−y, z), (−z,−x, y), (−y,−z, x)} lying

inside (+−−), (−+−), and (−−+), the octants of O+, respectively. Following similar

fashion, if we have a point (u, v, w) from (−−−), which is not the center of the octant,

then (u, v, w), (w, u, v) and (v, w, u) are distinct, and we have 9 more distinct points

from the other 3 octants in O−.

The Theorem provides a shortcut to distribute points over S2: instead of distributing

points over the whole sphere, we can focus on a pair of adjacent octants, and the rest of

the distribution will follow by symmetry of the orbits.

Proposition 3.2.9. The orientation of the 8 octants given in the Theorem isn’t the only



55

way to orient the boundaries. Clearly, the reverse orientation would work too. These

two orientations are bijective, with the bijection being defined as reverse the direction of

each arrow in the picture, and there is no other way to orient the boundaries in such a

way that the two orbits O+ and O− have different orientations.

If (x, y, z) ∈ (+ + +) is not the center of the octant, the set of 12 distinct points

{(x, y, z), (z, x, y), (y, z, x)}∪{(x,−y,−z), (z,−x,−y), (y,−z,−x)}∪{(−x, y,−z), (−z, x,−y),

(−y, z,−x)} ∪ {(−x,−y, z), (−z,−x, y), (−y,−z, x)} form an equivalence class. If

(x, y, z) is the center of the octant (+ + +), i.e, x = y = z = 1/
√

3, then the 4

distinct points {(x, x, x), (x,−x,−x), (−x, x,−x), (−x,−x, x)} is an equivalence class.

A similar statement regarding equivalence relation for the point (u, v, w) ∈ (−−−) can

be said. We define the equivalence relation as follows:

Definition 3.2.10. Let T and R be two octants either both from O+ or both from O−.

Let (x1, x2, x3) ∈ T and (u1, u2, u3) ∈ R. (x1, x2, x3) ∼ (u1, u2, u3) if (|x1|, |x2|, |x3|) =

(|uσ(1)|, |uσ(2)|, |uσ(3)|).

Proposition 3.2.11. ∼ is an equivalence relation on O. An element in an equivalence

class will be denoted by “ (x, y, z) (mod) O+” or “ (x, y, z) (mod) O−”, depending on

which orbit the octant that (x, y, z) is in belongs to.

Remark 3.2.12. With the assist of the symmetry and the equivalence relation just de-

fined, to distribute points on S2, we need only consider the distribution over the two

adjacent octants (+ + +) and (+ − +). Although using the equivalence relation of



56

the octants doesn’t seem to make much difference at the early stage of our sequence

construction, as the number of points get large it does give some simplicity.

3.3 Memphis’ Triangulation

Given a finite set of points on S2 there exists a unique set of deep holes. However, as

we have seen in constructing well-spaced sperhical sequences, when applying the greedy

algorithm of largest circumference, it often happens that a pair of deep holes are so close

that not both of them can be added to form the new sequence. The flexibility of the

point choices poses great uncertainties to the algorithm and difficulties to computing

the spherical discrepancies. The particular configuration of the optimal first 50 points

S50 we presented demonstrates strong regularity in symmetry. We would like a definite

algorithm that tells us exactly which points of the set of the deep holes to choose. The

algorithm we describe in this section will agree with the greedy algorithm of the largest

circumference(this is not trivial to see and will be proven in the next chapter). In

particular, the first 50 points it generates agrees with S50. This particular algorithm we

are about to define will be called Memphis’ Tiangulation. Any sequence produced by

this algorithm will be called a Memphis’ Sequence.
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3.3.1 The Initial Step

The recursive method starts with the 6 poles on S2. Connecting the 6 poles, we get the

very familiar triangulation of S2: the 8 octants.

Figure 3.16: The 8 Octants Form a Triangulation of S2

All the edges in this triangulation have the same length π/2. We have obtained the first

6 points M6.

Remark 3.3.1. In describing the point distribution algorithm, we need to use lots of

pictures in demonstration. We will use the following “ bird view” of S2 from the “

North Pole”. The figure on the left is the north hemisphere. The figure on the right

is the south hemisphere viewed from the north pole as if the north hemisphere were

transparent. The two hemispheres share the same boundary, so the boundary circle of

the south hemisphere is drawn with a dashed line.

N S
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Figure 3.17: M6 on S2

Notation 15. In a triangulation of S2, any spherical triangle has 3 adjacent triangles.

We call adjacent spherical triangles neighbors. Two neighbor triangles form a spherical

quadrilateral.

3.3.2 The First Few Recursive Steps

Let D6 denote the set of deep holes of M6. Add an element from D6 to M6, say the

center of the octant (+ + +),
_
4 ABC , denoted by X. Connecting X with the vertices

of
_
4 ABC, and with the vertices of the neighbours of

_
4 ABC, we have 6 more edges

in the figure.

N=B D

C

A
S

X

Figure 3.18: M7 with 3 pairs of intersecting edges, X is the circumcenter of
_
4 ABD

However, some edges are intersecting with each other and, hence, must be removed, as

there can be no intersecting edges in a triangulation. This raises the question: which

edges should be removed and which edges should stay? The algorithm of removing and

adding edges is often referred to “the flip algorithm”.
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3.3.3 Introducing The Flip Algorithm

We illustrate the algorithm with spherical quadrilateral
_
� ADBX, the two diagonals of

which,
_
BA and

_
XD, happen to intersect. One of the two cases must occur:

Definition 3.3.2. (The Flip Algorithm)

(I) If ]DBX + ]XAD ≥ ]BDA+ ]BXA, then remove
_
DX.

_
AB stays.

(II) Otherwise, i.e ]DBX +]XAD < ]BDA+]BXA, remove
_
AB. Edge

_
XD stays.

Remark 3.3.3. In the spherical quadrilateral
_
� ADBX, either ]BDA + ]BXA ≤

]DBX+]DAX or ]BDA+]BXA > ]DBX+]DAX. In the former case, according

to corollary 2.2.4, we have both that point B is inside the circumcircle of
_
4 ADX and

that point A is inside the circumcircle of
_
4 BXD. However, in this case, it follows

neither that X is inside the circumcirle of
_
4 ADB nor that D is inside the circumcircle

of
_
4 ABX, according to corollary 2.2.4.

Remark 3.3.4. ]DBX + ]XAD = ]BDA + ]BXA precisely when the four points

A,X,B,D are co-circular. In this case, removing either edge would be acceptable in the

sense that none of points is inside the circumcircle of the spherical triangle consisting of

the other three. However, in our algorithm, we make the “ pre-existing” edge
_
AB stay.

From M8 To M14

Once this procedure is done, we can add another element of D6 to M7, and connecting

the newly added point with the vertices of neighbours of the triangle it lies in, and
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removing crossing edges using the flip algorithm. Repeat the same process to obtain

MN , until the separation of MN+1 is decreasing. And we obtain M14.

N
S

Figure 3.19: M14, the dotted lines no longer exist.

Remark 3.3.5. The points of M14 are the same as S14 obtained in section 3.1. However,

we’d like to point out significance of the notation of MN is that, much more important

than being a point set or a sequence, it underlines a triangulation algorithm.

Remark 3.3.6. M14 is unique, but the way to get there from M6 isn’t.

3.3.4 M26

The set of 24 deep holes of all lie on the boundaries of the octants. From our memories

of S50 we know that not all these 24 points can be added. Although we will eventually

choose the same next 12 points, our choice will be made in a different perception. Recall

of the two ways to orient the 8 octant (refer to Figure 3.15):
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N S

Figure 3.20: Points chosen from D14 are alone the arrows of the orientation.

The 24 deep holes D14 all lie on the edges, along which the arrow are marked. Two deep

holes on each edge. We choose the next 12 points in the following way: on each edge,

the element in D14 closer to the end point, to which the arrow points, will be chosen.

Remark 3.3.7. Again, the 12 chosen elements of D14 are unique, but the order to add

them one by one is not.

N S

Figure 3.21: M26 .

3.3.5 M27 to M38 on Octants of O+

M26 has 24 deep holes. We will choose the 12 blues points as marked in the figure below,

in the (shaded) octants of O+. After adding in the 12 points one by one, we eventually



62

get the triangulation for the 38 points, M38. To avoid the complications of all the edges,

in the following figure, we are only presenting the 38 points in M38. Interested readers

may try recovering the triangulations.

N
S

Figure 3.22: the points of M38

3.3.6 M39 to M50 on Octants of O−

M38 has 12 deep holes. Again, to avoid complication of all the edges, on the 50 points

in M50 are presented below. The newly added deep holes are the blue points in the

unshaded octants of O−.

N
S

Figure 3.23: The 50 points of M50

The 50 points of M50 agree with S50.
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3.3.7 From MN to MN+1, and The Infinite Sequence M

Notation 16. (Size of A Spherical Triangle)

We define the size of a spherical triangle by its circumradius. For the rest of our dis-

cussion, a larger triangle means a triangle with larger circumradius. When a point is

contained inside the circumcircle of a triangle, we say that the triangle covers the point

or the point is covered by the triangle.

During the construction of M50, every step we know exactly where are deep holes

are from the previous section. However, as N becomes large, the locations of the deep

holes becomes a big unknown. For MN , we will choose the next point, the (N + 1)th

point to be the circumcenter of a largest triangle, and repeat the following procedure.

Definition 3.3.8. (Memphis’ Triangulation)

Suppose
_
4 A1A2A3 is a largest triangle in MN , whose circumcenter P we choose to be

the (N + 1)th point.

(i) If
_
4 A1A2A3 is acute, P is inside the interior of the triangle.
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A1

A2

A3

P
A(1,2)

A(1,3)

A(2,3)

(ii) If
_
4 A1A2A3 is right with hypotenuse

_
A1A2, then P is the mid-pint of

_
A1A2.

A1 A2

A3

P

A(1,3)
A(2, 3)

A4
A(1,4)

A(2,4)

Figure 3.24:
_
4 A1A2A3 right.

(iii) If
_
4 A1A2A3 is obtuse with largest angle ]A3, then P and A3 lie on different sides

of edge
_

A1A2.
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A1 A2

A3

A4

P

A(1,4)

A(1,3) A(2,3)

A(2,4)

Figure 3.25: P is the circumcenter of the obtuse
_
4 A1A2A3

For each edge
_
AiAj, i, j = 1, 2, 3, 4 and i 6= j,

_
4 PAiAj has a neighbor

_
4 AiAjA(i,j).

Remark 3.3.9. The subindex (i, j) is not an ordered pair. In particular, A(i,j) = A(j,i).

For each pair of neighbors
_
4 PAiAj and

_
4 AiAjA(i,j), perform the flip algorithm

(Definition 3.3.2). After performing the flip algorithm, if a new triangle (in fact a pair

of new triangles) with P as a vertex is (are) generated,

Ai

Aj

A(i,j)

P

A(i,(i,j))

A(j,(i,j))

If P is covered inside
_
4 PAiAj, after per-

forming the flip algorithm, edge
_

PA(i,j) is

added and
_
AiAj is removed. Two pairs of

neighbors are created:
_
4 PAiA(i,j) is adja-

cent to
_
4 AiA(i,j)Ai,(i,j) and

_
4 PAjA(i,j)

is adjacent to
_
4 AjA(i,j)Aj,(i,j). Repeat the

flip algorithm to the new neighbors.

then repeat the flip algorithm to the new triangle and its neighbor. Every time a new
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triangle
_
4 PA.A.. is generated, we will perform the flip algorithm to

_
4 PA.A.. and its

neighbor sharing the common edge
_
A.A.. until no edge needs to be flipped. Then we

obtain a triangulation of the N + 1, denoted by MN+1. This recursive triangulation

algorithm is called “Memphis’ Triangulation”.

Remark 3.3.10. As we will prove in the next chapter, the deep holes can always be chosen

to be the circumcenter of an non-obtuse triangle, i.e either acute or right. However, we

will still describe Memphis’ Triangulation for the case of obtuse triangles for the purpose

of completeness.

Definition 3.3.11. As N goes to ∞, we obtain an infinite extension of M50, denoted by

M . A sequence constructed using Memphis’ Triangulation will be called a Memphis’

Sequence.

3.3.8 Regularities of MN

Let MN be the finite truncation of M is length N. MN has very strong regularities.

These regularities will be proven in the next Chapter. We will state them below.

(I: Maximal Separation) None of the point in MN is contained inside the circumcir-

cle of any triangle in this triangulation.

( II: Non-obtuse Triangles) Every deep hole of a Memphis’ Sequence can be chosen

to be the circumcenter of an non-obtuse triangle.
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There are two types of edges in the algorithm of Memphis’ Triangulation: the first

type are those created by connecting the circumcenter of the chosen triangle with its

vertices; the second type are those created by connecting the circumcenter of the chosen

triangle with the vertex of its neighbour.

Notation 17. We will call edges of the first type radius edges, and the second type

cross edges.

(III: Shortest Edges) Suppose P is the circumcenter of a largest triangle of MN .

The distance between P and MN as a point set is shortest distance between any pair

of points in MN ∪ {P}. In particular, the last added in radius edges are the shortest

edges in the triangulation.
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Chapter 4

Delaunay-Memphis’ Triangulation

The main result we present in this chapter is that the triangulation constructed using

Memphis’ Algorithm is a Delaunay Triangulation.

4.1 Introduce Delaunay Triangulation

There are various versions of the definition of Delaunay triangulations. Many of them

use lengthy and complicated-looking notations. Some authors define Delaunay triangula-

tions are the duals of Voronoi diagrams. To assist our discussion of Memphis’ Algorithm

and spherical cap discrepancies, we will define a Delaunay triangulation as follows.

Definition 4.1.1. (Delaunay Triangulation) In the plane, a triangulation among

N points is called a Delaunay Triangulation if none of the points is contained inside

the circumcircle of any triangle. Analogously a spherical Delaunay triangulation among
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N points on S2 is a triangulation on the unit sphere such that none of these points

is contained inside the circumcircle of all the spherical triangles. When a circumcircle

doesn’t contain any point in its interior, we say the circumcircle is empty.

Remark 4.1.2. In our definition of a Delaunay triangulation, no point is contained in-

side the circumcircle of any triangle. By “inside” we strictly mean the interior of the

circumdisk.

Notation 18. In a Delaunay triangulation, more than 3 points may be co-circular.

Some sources consider such co-circular configurations a “degeneracy”, as they make the

Delaunay triangulations non-unique.

Notation 19. In the upcoming discussion, we will often use the word “Delaunay” as

an adjective for simplicity. For example, when two triangles share a common edge, if

neither of them contains the other inside the circumcircle, we say these two triangles are

Delaunay. When a triangle doesn’t contain a point P inside its circumcircle, we say the

triangle doesn’t cover P .

Theorem 4.1.3. [12] (Existence and Uniqueness of Delaunay Triangulation in R2)

Given N points in the plane, if no four points are cocircular with empty circumcircle,

there exists a unique Delaunay Triangulation.

Remark 4.1.4. In the Theorem above, we do need the non-degeneracy mentioned in

Notation 18 in order to get both existence and uniqueness.
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4.2 MN is a Delaunay Triangulation

In this section we will be proving there exists a Delaunay triangulation among the N

points of MN . In particular, MN is a Delaunay triangulation. But, before going through

all the efforts of proving this statement, the first question is why we care about whether

MN is Delauany at all. In Chapter 3, in order to generate a well-spaced sequence, every

new point, a deep hole, is in maximal distance to the previous ones. We named this

method the Method of Largest Circumference. To search for the next deep holes, there

are
(
N
3

)
triangles among the N points to compare. The complexity of this algorithm

grows fast as N gets big. Then we introduced Memphis’ Algorithm, which recursively

generates new points by triangulation. One obvious advantage of Memphis’ Algorithm

is that, instead of
(
N
3

)
eligible candidates, there are only 2N − 4 competing triangles.

However, at each step, the new point selected by Memphis’ is merely the the circumcenter

of a largest triangle (i.e a triangle existing in MN with the largest circumradius). What

if this new point is not a deep hole? In that case, these two algorithms would disagree.

Fortunately, such disagreement never happens, which is guaranteed by Delaunayness of

the triangulation: as long as MN is Delaunay, the circumcenter of the largest triangle is

a deep hole. Further, the deep holes must be the circumcenter of a non-obtuse triangles

in MN .

Theorem 4.2.1. (Memphis’ Non-obtuse Triangles) If MN is Delauany, a deep hole of

the N points can always be chosen to be the circumcenter of some non-obtuse triangle
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in this triangulation.

Proof. (Theorem 4.2.1) Before proving the non-obtuse shape of the triangle in which the

deep holes lies, we must first prove that the deep holes are circumcenters of triangles in

MN .

Suppose the circumcenter P of
_
4 ABC is a deep hole of the N points. No triangle in

MN can have larger circumradius than
_
4 ABC.

Remark 4.2.2. A,B,C are merely points MN .
_
4 ABC is not assumed to be an existing

triangle in MN .

If A and B are connected in MN , then there exists a point D on the same side of

_
AB as C. C cannot be inside the circumcircle of

_
4 ABD because MN is Delaunay.

A B

C

P

D

The dashed lines may not exist MN .
_
4 ABD

exists in the triangulation, which is by assump-

tion Delaunay. So, C cannot be inside the cir-

cumcircle of
_
4 ABD.

Figure 4.26

D cannot be inside the circumcircle of
_
4 ABC because P is a deep hole.
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A B

D

C

P

The dashed lines may not exist MN . However,

|
_
CP | would be shorter than |

_
PD |. This is a

contradiction to the definition of a deep hole.

Figure 4.27

Hence, A,B,C,D must be co-circular. When any two points of A,B,C are connected

in MN , the deep hole P is also the circumcenter of
_
4 ABD which exists in MN .

If no two points of A,B,C are connected in MN . Let
_
4 AB′C ′ be an existing triangle

in MN such that B and C lie on opposite sides of
_
AB′.

A B

C

B′

The great circle passing A and B′ cuts through

edge
_
BC. B′ is not inside the circumcircle of

_
4 ABC.

Figure 4.28

Since the circumcenter of
_
4 ABC is a deep hole, B′ is not inside the circumcircle of

_
4 ABC. Therefore, the circumcircle of

_
4 ABC and the circumcircle of

_
4 AB′C ′ must

have at least one intersection, A. B′ and A divide the circumcircle of
_
4 AB′C ′ into two

arcs. Not both of these arcs can be in the interior of the circumcircle of
_
4 ABC.
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A B

C

B′

The heavier arc of the circumcircle

of
_
4 AB′C ′ will contain either B

or C inside, or maybe both B and

C.

Figure 4.29

If one of the arcs of the circumcircle of
_
4 AB′C ′ between A and B′ is outside the

circumcircle of
_
4 ABC, then that arc contains either B or C inside, contradicting to

MN being Delaunay. So the only possibility left is that both arcs between A and B′

lie precisely on the circumcircle of
_
4 ABC. That is A,B,C,B′, C ′ are co-circular. The

deep hole P is also the circumcenter of
_
4 AB′C ′, an existing triangle of MN . We have

proven that the newly selected point by Memphis Algorithm is indeed a deep hole.

Now we are going to show the deep hole is the circumcenter of a non-obtuse trian-

gle, under the assumption MN is Delaunay.

Assume one of its deep holes is the circumcenter of some obtuse triangle
_
4 AC̃B with

]C̃ > ]A + ]B. Then
_
AB is the longest edge of

_
4 AC̃B. Let

_
4 ABC be its the

neighbour sharing
_
AB.
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A B

C̃

C

C

Figure 4.30:
_
4 AC̃B with neighbour

_
4 ABC.

By the definition of deep holes, the circumcircle of
_
4 AC̃B doesn’t cover any point of

MN in its interior. Hence, in the quadrilateral
_
� AC̃BC, we must have

]CAC̃ + ]CBC̃ ≥ ]ACB + ]AC̃B. (4.1)

Let P be the circumcenter of
_
4 ABC. Since

_
4 AC̃B is obtuse with largest angle ]C̃,

P and C are on the same side of
_
AB. Let Q be the circumcenter of

_
4 AC̃B. P and Q

must be on the same side of
_
AB. Otherwise, P and C̃ would be in the same side, which

would imply
_
4 ABC is obtuse with largest angle ]C and C would be contained in the

interior of the circumcircle of
_
4 AC̃B, a contradiction to equation (4.1).

Remark 4.2.3. We don’t know the shape of
_
4 ABC yet, whether it is acute, right, or

obtuse. However, by equation (4.1), if
_
4 ABC happens to be obtuse or right, then

]ACB cannot be its largest angle.

Connect P , Q with A and B. The locus of points (on S2) whose distances to A and

B are equal is the great circle passing the mid-point T of
_
AB and perpendicular to

_
AB.
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Since |AP | = |BP | and |AQ| = |BQ|, P and Q must lie on this great circle. P , Q and

T are on the same great circle.

Case 1: If P is outside
_
4 ABQ.

A B
T

P

Q

Applying the Cosine Law to the right-angle triangles
_
4 ATP and

_
4 ATQ, we have

0 = sin
_
AT sin

_
PT cosπ/2 = cos

_
AP − cos

_
AT cos

_
PT

0 = sin
_
AT sin

_
QT cosπ/2 = cos

_
AQ − cos

_
AT cos

_
QT

Since Q is inside
_
4 ABP ,

_
PT is an extension of

_
QT . In other words,

_
PT>

_
QT . Hence,

cos
_
AP − cos

_
AQ= cos

_
AT cos

_
PT − cos

_
AT cos

_
QT< 0. |

_
AP | > |

_
AQ |. This is a

contradiction to the assumption that the circumcenter of
_
4 AC̃B Q is a deep hole.

Case 2: P is inside
_
4 ABQ. In this case we do get

_
AQ is the longer edge than

_
AP .

A B
T

Q

P
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There are 3 possibilities in this case:
_
4 ABC is acute, right, or obtuse. In each of these

possibilities, we will obtain contradiction to the known relation 4.1.

Since P is inside
_
4 ABQ,

]QAP > 0 (4.2)

and , hence,

]QAC̃ = ]PAC̃ + ]QAP > ]PAC̃ (4.3)

Similarly, we have

]QBP > 0 (4.4)

and , hence,

]QBC̃ = ]PBC̃ + ]QBP > ]PBC̃. (4.5)

Subcase 1: If
_
4 ABC is acute, then P is inside the triangle

_
4 ABC.

A B

C̃

C

P

Q

Figure 4.31: The position of C to Q is unknown
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By inequalities 4.3, ]PAC̃ < ]QAC̃. Therefore,

]CAC̃ = ]CAP + ]PAC̃ < ]CAP + ]QAC̃. (4.6)

Similarly, by inequality 4.5,

]CBC̃ = ]CBP + ]PBC̃ < ]CBP + ]QBC̃. (4.7)

On the other hand, the isosceles triangle
_
4 CPB and

_
4 CAP give

]ACB = ]CAP + ]CBP, (4.8)

and the isosceles triangle
_
4 QAC̃ and

_
4 QC̃B give

]AC̃B = ]QAC̃ + ]QBC̃. (4.9)

So, combining all these inequality relations we have:

]ACB + ]AC̃B = ]CAP + ]CBP + ]AC̃B, by equality (4.8) (4.10)

= ]CAP + ]CBP + ]QAC̃ + ]QBC̃, by equality (4.9) (4.11)

> ]CAC̃ + ]CBP + ]QBC̃, by inequality (4.6) (4.12)

> ]CAC̃ + ]CBC̃, by inequality (4.7). (4.13)

Clearly, (4.13) is the opposite of what inequality (4.1) states. This is a contradiction.

Subcase 2:
_
4 ABC is a right triangle. (4.1) determines that ]C cannot be the largest

angle. So, WLOG, we assume

]CAB + ]ACB = ]ABC. (4.14)

Then the circumcenter P is the mid-point of the edge
_
AC.
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A B

C̃

C

P

Q

Figure 4.32: ]PAC = 0 and ]PAC̃ = ]CAC̃

In the isosceles triangles
_
4 BCP ,

]ACB = ]PBC. (4.15)

This gives us:

]ACB + ]AC̃B = ]PBC + ]AC̃B (4.16)

= ]PBC + ]QAC̃ + ]QBC̃ (4.17)

> ]PBC + ]PAC̃ + ]PBC̃, by inequalities (4.3) and (4.5) (4.18)

= ]CBC̃ + ]CAC̃. (4.19)

This strict inequality contradicts the inequality (4.1).

Subcase 3:
_
4 ABC is obtuse. And WLOG, we assume ]ABC > ]ACB + ]CAB.
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A B

C̃

P

Q

C

Figure 4.33: P and B are on the opposite sides of edge
_
AC.

]ACB = ]PBC − ]PAC. (4.20)

Hence,

]ACB + ]AC̃B = ]PBC − ]PAC + ]QAC̃ + ]QBC̃. (4.21)

However,

]QAC̃ − ]PAC > ]PAC̃ − ]PAC, by (4.3) (4.22)

= ]CAC̃. (4.23)

Applying this to (4.21), we get

]ACB + ]AC̃B > ]PBC + ]QBC̃ + ]CAC̃ (4.24)

> ]PBC + ]PBC̃ + ]CAC̃, by inequality (4.5) (4.25)

> ]CBC̃ + ]CAC̃, (4.26)

which is a contradiction to (4.1). Now we have completed checking all the three subcase

in case 2.
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So far we have ruled out the case that P is outside
_
4 ABQ and the case that P is inside

_
4 ABQ. The only left possibility is that P and Q coincide.

Case 3: If P = Q, A,B,C, C̃ are co-circular. If
_
4 ABC happens to be non-obtuse, then

we are done.
_
4 ABC is the the non-obtuse triangle whose circumcenter is a deep hole

we choose. If
_
4 ABC is obtuse, then, again by equation 4.1 ]C cannot be its largest

angle. WLOG, we assume ]ABC is its largest angle. Then
_
AC will be its longest edge.

The circumcenter P and B lie on different sides of
_
AC.

A

B

C̃

C
P = Q

Figure 4.34: All dashed lines are of equal length, since A,B,C, C̃ are co-circular.

Then |
_
AC | > |

_
AB |. So

_
4 ABC is another obtuse triangle and its circimcenter is a

deep hole. Then the same analysis we have been doing on the obtuse triangle
_
4 AC̃B

can be applied to the new obtuse triangle
_
4 ABC and its neighbour sharing its edge

_
AC. Each time we apply the same argument, the process either terminates when the

deep hole happens to be the circumcenter of an non-obtuse triangle or we end up with

another obtuse triangle. This process cannot repeat forever, as we only have finitely

many triangles.
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A B

C

P

A B

P

C

Figure 4.35: The chosen deep hole P is the circumcenter of
_
4 ABC

Since MN has only finitely many deep holes, there are finitely many obtuse triangles

to start the search with, and each time the chosen deep hole will end up being the

circumcenter of some non-obtuse triangle. The proof is completed.

Remark 4.2.4. In the statement of Theorem 4.2.1, the description is that the deep hole

“...can be chosen as ...”, not “...can only be chosen as...”. According to the theorem,

when a deep hole happens to be the circumcenter of an obtuse triangle, this obtuse

triangle must be co-circular with some non-obtuse triangle.

By “a non-obtuse triangle” we mean either an acute triangle or a right triangle.

When a deep hole of MN happens to be the circumcenter of a right triangle, Theorem

4.2.1 gives us a neat corollary.

Corollary 4.2.5. If P happens to be the circumcenter of the right triangle
_
4 PiPjPk,

say P is the mid-point of the hypotenuse
_
PiPj, then the adjacent triangle

_
4 PiPjPl must

be a right triangle too, with hypotenuse
_
PiPj. The four points Pi, Pj, Pk, Pl are co-circular

with circumcenter P .
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Pl Pj

PkPi

P

Figure 4.36

Remark 4.2.6. The proof of Corollary 4.2.5 uses very similar argument in the proof

of Theorem 4.2.1. The proof provided below is divided into three similar cases: when

_
4 PiPjPl is acute, obtuse, or right.

Proof. (Corollary 4.2.5) Since the deep hole P is the circumcenter of the right triangle

_
4 PiPjPk with hypotenuse

_
PiPj, we know that

_
4 PiPjPk is one of the largest triangles

(recall that the size of a triangle is measured by its circumradius). We will prove the

assertion by contradiction, assuming the triangle
_
4 PiPjPl is not a triangle with hy-

potenuse
_
PiPj.

Case 1:
_
4 PiPjPl is acute.
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Pi Pj

Pk

P

Pl

I

I is the circumcenter of the acute triangle

_
4 PiPjPl. In the grey triangle ]IPPi =

π/2.
_
PiI is longer than

_
PPi.

Figure 4.37: Case 1:
_
4 PiPjPl is acute

Then following the same argument as in the proof of statement (I), we get the acute

triangle as bigger circumradius than its neighbour right triangle. This is a contradiction

as we know
_
4 PiPkPj is the largest.

Case 2:
_
4 PiPjPl is obtuse.

First, the longest edge of the obtuse triangle
_
4 PiPjPl cannot be

_
PiPj. Otherwise,

]PiPlPj would be the largest angle in
_
4 PiPjPl with relation:

]PiPlPj > ]PlPjPi + ]PlPiPj. (4.27)

In the right triangle
_
4 PiPjPk, we have

]PiPkPj = ]PkPiPj + ]PkPjPi. (4.28)

Consequently,

]PiPlPj + ]PiPkPj > ]PlPjPi + ]PlPiPj + ]PkPiPj + ]PkPjPi, (4.29)

which indicates that Pl is inside the circumcircle of
_
4 PiPjPk, a contradiction.
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Pi Pj

Pk

P

Pl

As a result of
_
PiPj being the longest edge in

_
4

PiPjPl we would reach the contradiction that Pl is

contained inside the circumcircle of
_
4 PiPjPk.

Figure 4.38: Case 2:
_
PiPj cannot be the longest edge of

_
4 PiPjPl

However, if
_
PiPj is not the longest edge, WLOG assume

_
PlPj is the longest edge. We

run into a similar situation as in case 1. The circumcenter of
_
4 PiPlPj will be on the

same side as Pl of the great circle passing Pi, Pj. Denote this circumcircle by I

Pi Pj

Pk

P

Pl

I

I is the circumcenter of the obtuse

triangle
_
4 PiPjPl. In the grey trian-

gle ]IPPi = π/2.
_
PiI is longer than

_
PPi.

Figure 4.39: Case 2:
_
4 PiPjPl is obtuse with longest edge

_
PlPj

As explained in the figure above, the circumradius of the
_
4 PiPjPl will turn out to be

longer than the circumradius of
_
4 PiPjPk, a contradiction.

Case 3:
_
4 PiPjPl is right but its hypotenuse is not

_
PiPj . Assume WLOG that

_
PiPl is
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the hypotenuse of the right triangle
_
4 PiPjPl. Then

|
_
PiPl | > |

_
PiPk |. (4.30)

We know that the circumradius of
_
4 PiPjPl is 1

2
|
_
PiPl | and the circumradius of

_
4

PiPjPk is 1
2
|
_
PiPj |. This leads to the conclusion that

_
4 PiPjPl is bigger than

_
4 PiPjPk,

a contradiction.

We need one more lemma before proving MN is Delaunay.

Lemma 4.2.7.
_
4 ABC,

_
4 ABB′ and

_
4 ACC ′ are adjacent as indicated in the fol-

lowing figure.

B

C

A

B′

C ′

Figure 4.40

If
_
4 ABC and

_
4 ABB′ are Delaunay, and

_
4 ABC and

_
4 ACC ′ are Delaunay, then

C ′ is not contained inside the circumdisc of
_
4 ABB′ and B′ is not contained inside the

circumdisc of
_
4 ACC ′.

Proof. To show that C ′ is not contained inside the circumdisc of
_
4 ABB′, draw an
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auxiliary line (i.e great arc segment) between C ′ and B, it suffices to show that
_
4 ABB′

and
_
4 ABC ′ are Delaunay.

B

C

A

B′

C ′

Figure 4.41

Since
_
4 ABC and

_
4 ABB′ are Delaunay,

]B′ + ]ACB ≤ ]B′BC + ]B′AC, (4.31)

which is equivalent to

]B′ ≤ ]B′BC + ]B′AC − ]ACB. (4.32)

Since
_
4 ABC and

_
4 ACC ′ are Delaunay, C ′ is not inside the circumdisc of

_
4 ABC.

So,

]BAC + ]ABC − ]ACB ≤ ]C ′AB + ]C ′BA− ]AC ′B, (4.33)

which is equivalent to

]AC ′B ≤ ]BAC ′ + ]ABC ′ − ]BAC − ]ABC + ]ACB. (4.34)

Adding inequality 4.32 and inequality 4.34, we get

]B′ + ]AC ′B ≤ ]BAC ′ + ]ABC ′ − ]BAC − ]ABC + ]B′BC + ]B′AC. (4.35)
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Regrouping the right-hand side inequality 4.35, we have

]BAC ′ + ]B′AC − ]BAC = ]B′AC ′, (4.36)

and

]B′BC + ]ABC ′ − ]ABC = ]B′BC ′. (4.37)

Therefore, equality 4.35 becomes

]B′ + ]AC ′B ≤ ]B′AC ′ + ]B′BC ′. (4.38)

That is
_
4 AB′B and

_
4 AC ′B are Delaunay, and C ′ is not contained inside the circum-

disc of
_
4 AB′B. It follows by symmetry that B′ is not contained inside the circum-

disc.

The rest of this section is devoted to the proof of the main theorem.

Theorem 4.2.8. (Delaunay Memphis Triangulation)

MN is a Delaunay triangulation.

Proof. The proof is by induction. As the initial step, M8, the 8 octant, is clearly De-

launay. In fact, we have more than sufficient for our initial steps, MN , N = 8, 9, ..., 14,

are all Delaunay triangulations.

Assume MN is a Delauany triangulation. Denote the N points of MN by P1, P2, ..., PN ,
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and for simplicity we will denote the (N + 1)th point PN+1 by P to avoid over-typing

subindices. We will show that there exists a Delaunay triangulation for MN ∪{P}, and

this triangulation agrees with MN+1.

By Theorem 4.2.1, we know P is either the circumcenter of an acute triangle or a

right triangle
_
4 PiPjPk. By Corollary 4.2.5,

_
4 PiPjPk happens to be right, its adjacent

triangle
_
4 PiPjPl is right too and co-circular with

_
4 PiPjPk. Connecting the circum-

center P with Pi, Pj, Pk (and Pl resp.) with 3 (or 4 resp.) auxiliary lines (by lines we

mean great circle segments). Extend the auxiliary lines to the −P (the antipodal point

of P ), these auxiliary lines divide the sphere in to 3 (or 4 resp.) regions with disjoint

interior.

Pi Pj

Pk

P

Figure 4.42: P is the circumcenter of the acute triangle
_
4 PiPjPk

Pi Pj

Pk Pl

P
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Figure 4.43: P is the circumcenter of the right triangle
_
4 PiPjPk

The number of the regions, either 3 or 4, is not important, as we will consider each

region separately. WLOG we will only consider the region bounded by the auxiliary

lines passing P, Pi and P, Pj between P and −P .

P

Pi Pk

Pm

Figure 4.44

Let
_
4 PiPmPj be the adjacent triangle of

_
4 PPiPj.

Lemma 4.2.9. If Pm is not in the interior of the region between P and −P bounded by

the two auxiliary lines, then
_
4 PiPmPj and

_
4 PPiPj are Delaunay.

Proof. (Lemma 4.2.9)

Case 1: Pm lies on one of the auxiliary line
_
PPi (or resp.

_
PPj followed by symmetry).

Pi

Pm
Pk

P

Figure 4.45
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In this case, the point Pm lies on the extension of
_
PPm. Only the points on the arc

_
PPm

can be inside the circumcircle of
_
4 PPiPj. Thus, Pm must be outside the circumcircle

of
_
4 PPiPj.

Case 2: Pm lies on the other side of line
_
PPi (or resp.

_
PPj followed by symmetry).

Pi

Pm
Pk

P

P ′m

Figure 4.46

Since Pm and Pk are on different sides of the auxiliary line
_
PPi, the dotted auxiliary

line must intersect the circumcircle of
_
4 PmPkPi at some point denoted by P ′m. By the

previous case, P ′m must lie outside the circumcircle of
_
4 PPiPk. In other words,

]P ′m + ]P < ]PPiP
′
m + ]PPkP

′
m. (4.39)

Since Pm and P ′m are co-circular on the circumcircle of
_
4 PiPmPj, we know

]Pm − ]P ′m = ]PmPiPk + ]PiPkPm − ]P ′mPiPk − ]P ′mPkPi. (4.40)

Adding inequality 4.39 and equation 4.40, we get

]P + ]Pm < ]PmPiP + ]PmPkP. (4.41)

Therefore,
_
4 PiPmPj and

_
4 PPiPj are Delaunay.
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If the adjacent triangle
_
4 PiPmPj is Delaunay with

_
4 PiPjP then we are done by

Lemma (4.2.7). If not, then we draw another auxiliary line between P and −P passing

Pm.

P

Pi Pk

Pm

Figure 4.47

This splits the current region into two subregions.
_
4 PiPmPk have two neighbours,

one sharing the common edge
_

PkPm whiling the other sharing the common edge
_

PiPm.

Denote these two triangles by
_
4 PiPm1Pm and

_
4 PkPm2Pm, as indicated in the figure

below. For exactly same reasoning as in Lemma 4.2.9 either Pm1 and Pm2 are in the

interior of the subregions (one point inside each subregion)or the corresponding triangle

(or triangles)
_
4 PiPm1Pm or/and

_
4 PiPm2Pm will not cover P inside their circumcir-

cle(s). Then we repeat the same process to the neighbours adjacent to
_
4 PiPm1Pm and

_
4 PkPm2Pm. We will call this process “stacking”.

P

Pi Pk

Pm

Pm1

Pm2

If
_
4 PiPm1Pm doesn’t cover P , the

process terminates and no auxiliary

line passing Pm1
. If

_
4 PiPm2

Pm

covers P , then we draw an auxiliary

line passing Pm2
between P and −P .
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Figure 4.48

The stacking cannot be repeated forever because, first, there are finitely many triangles

in MN , and if a point is ”far away” enough then its triangle cannot cover P .

Lemma 4.2.10. Let r denote the circumradius of
_
4 PiPjPk. Given a point Q in MN ,

if the distance between Q and P is no less than 2r, then Q is not covered inside the

circumdisc of
_
4 PiPjPk.

Proof. Any two points inside the circumcircle of
_
4 PiPjPk have distance less than 2r.

The lemma follows trivially.

So we will eventually end up with the diagram like the following shape, which we will

refer to as a leaf diagram. For the purpose of clarity, the points in the leaf are

re-indexed P, Pi, Pn1 , ..., Px, Pj.

P

Pi Pk

Pn1 Pn2 Pnx−1
Pnx

Figure 4.49: A leaf diagram

Following immediately from Lemma 4.2.9 we have the following:
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Corollary 4.2.11. If Pn1 is the (first) point on the boundary of the leaf connected to Pi,

then the angle ]PPiPn1 is strictly less than π. Similarly we have ]PPkPnx is strictly

less than π, if Pnx is the (first) point on the boundary of the leaf connected to Pk.

Remark 4.2.12. By the way the leaf diagram is constructed, there exists a one-one cor-

respondence between each point of Pi, Pn1 , ..., Pnx , Pk and each auxiliary line.

Notation 20. We will denote the leaf diagram by L including the structure of the tri-

angulation. Every triangle in L contains P inside its circumcircle.

Lemma 4.2.13. (Boundary of L ) All P, Pi, Pn1 , Pn2 , ..., Pnx , Pk lie on the boundary of

L .

Proof. (Lemma 4.2.13) Clearly P, Pi, Pk are on the boundary of L . Assume a point say

Pw ∈ {Pn1 , Pn2 , ..., Pnx} is in the interior of L . There are last least 3 triangles in L

sharing Pw as the common vertex.

P
Pw

Pw1

Pw2

Pw3

Pw4

Figure 4.50: Auxiliary line passing P, Pw passes two triangles sharing P

The auxiliary line, initiated from P , passing Pw, ending at −P , passes two of triangles

sharing Pw as a common vertex (by “passing” the triangles, we mean that the auxiliary

line either passes the interior of the triangle or overlap with an edge). This auxiliary
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line is divided into two arcs by Pw,
_
PPw and

_
Pw(−P ). We denote the two triangles the

auxiliary line passes by
_
4 PwPw1Pw2 and

_
4 PwPw3Pw4 , and further assume

_
PPw passes

_
4 PwPw3Pw4 while

_
Pw(−P ) passes

_
4 PwPw1Pw2 .

Meanwhile, we know that P lies inside both the circumcircle of
_
4 PwPw1Pw2 and the

circumcircle of
_
4 PwPw3Pw4 .

P

Pw

−P

P lies in the intersection of the

interiors of the circumcircles of

_
4 PwPw1

Pw2
and

_
4 PwPw3

Pw4
.

Figure 4.51

So,the great circle segment
_
PPw lies inside their intersection. Therefore, the great

circle segment
_

Pw(−P ) must be outside both circumcircles, and hence doesn’t pass

_
4 PwPw1Pw2 . We have reached a contradiction. Therefore, Pw must be a boundary

point of the leaf diagram L .

Now we show the most important property of the leaf diagram:

Lemma 4.2.14. (Main Property of L ) No four points of P, Pi, Pn1 , Pn2 ..., Pnx , Pj can

be cocircular with an empty circumcircle.

Proof. (Lemma 4.2.14) By contradiction, assume there exist 4 points cocircular.

Case 1: P is one of the 4 points, say the 4 points are P, Pk1 , Pk2 , Pk3 . By the construc-

tion of the leaf diagram, there exist 3 auxiliary lines initiated from P passing through
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Pk1 , Pk2 , Pk3 individually. Pk2 will be denoting the point in between the two auxiliary

lines passing Pk1 and Pk3 . In other words, Pk2 lies on one of the two arcs between Pk1

and Pk3 .

P Pk2

Pk3

Pk1

Figure 4.52

Since there is an auxiliary line passing Pk2 there exists a triangle
_
4 Pk2PyPz in L such

that
_
4 Pk2PyPz contains P inside its circumcircle.

Remark 4.2.15. Although Pk1 , Pk2 , Pk3 , Py, Pz are all points in L with auxiliary lines

passing them,
_
4 Pk2PyPz exists in MN while

_
4 Pk1Pk2Pk3 may not. They are distinct

triangles since one of them contains P inside its circumcircle and the other is co-circular

with P . Hence, {Py, Pz} 6= {Pk1 , Pk3}. We may assume Pk1 6= Py and Pk1 6= Pz.

PzPk2

Py

P

Figure 4.53: The circumcircle of
_
4 Pk2PyPz contains P inside

Then the circumcircle passing P, Pk1 , Pk2 , Pk3 will intersect with the circumcircle of
_
4

Pk2PyPz at either 1 or 2 points.



96

PzPk2

Py

P

When Pk2 is the only intersection of

the two circles, the circumcircle of

_
4 Pk1

Pk2
Pk3 is completely contained

inside the circumcircle of
_
4 Pk2PyPz.

Figure 4.54

Clearly, as indicated in figure 4.54, when the two circumcircle have only one intersection,

i.e Pk2 Pk1 , Pk3 would be contained inside the circumcircle of
_
4 Pk2PyPz. This is a

contradiction to MN being Delaunay.

When the circumcircle of
_
4 Pk2PyPz and the circumcircle of

_
4 Pk1Pk2Pk3 intersect at

two points, one of the intersections is Pk2 . Denote the other intersection by Q (Q could

be one of Py and Pz).

PzPk2

Py

P

Q
The dashed circle is the circumcircle of

_
4

Pk1Pk2Pk3 . Q may coincide with Pz or Py. One

arc between P and Q lies inside the circumcircle of

_
4 PyPzPk2

.

Figure 4.55

Q and Pk2 divide the circumcircle into two arcs. One of those arcs must lie inside the

circumcircle of
_
4 PyPzPk2 . The arc inside the circumcircle of

_
4 PyPzPk2 must have
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either Pk1 or Pk3 on it. This is a contradiction to MN being Delaunay.

Case 2: P is not one of the 4 points. We will label the 4 points with the following

positioning: Pk2 , Pk3 lie in the interior of the area bounded between by the auxiliary

lines passing Pk1 and Pk4 ; Pk2 lies in the interior of the area bounded by the auxiliary

lines passing Pk1 and Pk3 .

Remark 4.2.16. Later we will obtain a contradiction with the way the 4 points are

positioned on the circle. An equivalent way of describe the labeling of the 4 points is:

Pk1 and Pk4 divide the circle into two arcs, Pk2 and Pk3 lie on the same one (of the two);

Pk3 further divides this arc into two sub-arcs, one with end points Pk1Pk3 while the other

with end points Pk3Pk4 ; Pk2 lies on the former sub-arc end points Pk1Pk3 .

Pk1 Pk2

Pk3Pk4

P

The auxiliary line passing P, Pk2
as

Pk3
cuts through the circumcircle of

the 4 points. Pk3 and Pk4 are on the

opposite side of Pk1
.

Figure 4.56

Remark 4.2.17. P is outside the circumcircle and Pki for i = 1, 2, 3, 4 are co-circular,

the auxiliary line passing P, Pk2 has no empty intersection with the interior of the cir-

cumcircle (of Pk1Pk2Pk3Pk4). So, this auxiliary divides this circle into two arcs with Pk2
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being an end point. By the way the 4 points are positioned, Pk1 lies on the different arc

as Pk3 and Pk4.

Let
_
4 Pk2PyPz be the triangle in L that contains P inside. The circumcircle of

_
4 Pk2PyPz cannot coincide with the circle passing the 4 points Pkii = 1, 2, 3, 4. Then

{Py, Pz} 6⊂ {Pk1 , Pk3 , Pk4}. Pk2 is one intersection of the circumcircle of

{Pk1 , Pk2 , Pk3 , Pk4} and the circumcircle of
_
4 Pk2PyPz.

If Pk2 were the only intersection of these two circles, then the circle passing Pk1 , Pk2 , Pk3 , Pk4

would be contained entirely inside the circumcircle of
_
4 Pk2PyPz, contradicting to MN

is a Delaunay Triangulation.

So we are left with the possibility that these two circumcircles have two intersections,

one of which is Pk2 . Using the same notation as in case 1, let’s denote the other inter-

section by Q. Q and Pk2 divide the circumcircle of Pk1Pk2Pk3Pp4 into two arcs, one of

them lies entirely inside the circumcircle of
_
4 Pk2PyPz. Denote this arc by

_
0 .

Q

Pk2

P

Interior of the circumcircle of
_

Pk2
PyPz is colored

grey. The circle passing Pki
, i = 1, 2, 3, 4 is dashed.

P lies in the in the interior of the grey circle and

the exterior of the dashed circle.

Figure 4.57
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The great circle segment
_
P Pk2 lies inside the circumcircle of

_
4 Pk2PyPz.

_
PPk2 intersect

with
_
0 . By remark 4.2.17, either Pk1 or both Pk3 and Pk4 lie on arc

_
0 . Hence, either

Pk1 or both Pk3 and Pk4 lie in the interior of the circumcircle of
_
4 Pk2PyPz. This is a

contradiction to that MN is Delaunay.

Notation 21. (The Stereographic Projection)

The particular Stereographic Projection settings we use have P as the North Pole, with

the plane tangent to the sphere at the South Pole −P .

Let Q,Qi, Qn1 , ..., Qk denote the image of P, Pi, Pn1 , ...Pk on the plane under the map

Stereographic Projection. Because no four points of P, Pi, Pn1 , ..., Pnx , Pk can be cocir-

cular with empty circumcircle, no four points of Q,Qi, Qn1 , ..., Qk can be co-circular

with empty interior. By Theorem 4.1.3 there exists a unique Delaunay Triangulation

among Q,Qi, Qn1 , ..., Qk. Project the triangulation back to the sphere, we get a De-

launay Triangulation of P, Pi, Pn1 , Pn2 ...Pk. Let’s denote this Delaunay Triangulation

T .

Remark 4.2.18. The ultimate goal here is to create a Delaunay Triangulation for MN ∪

{P}. The boundary of T might be different than the boundary of its leaf diagram L .

For example, it is not hard to imagine that the convexity of the boundaries could be very

different, like the following figures imply.
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P

Pi PjPi

Figure 4.58: The boundaries of L before the Stereographic Projection

P

Pi PjPi

Figure 4.59: The boundaries of T after the Stereographic Projection

Now we know that after projecting the planar Delaunay Triangulation back to the

sphere, the boundary of the leaf might change.

Notation 22. If some edge e lies on the boundary of T but not on the boundary of L ,

we say e is “unwanted”.

Notation 23. If an unwanted edge e lies in a triangle of T whose other two edges (other

than e) are both on the boundary of L , we say the unwanted edge e is “removable”.

To create an Delaunay Triangulation among the points with L , we need to show all the

unwanted (boundary) edges are removable. Denote the boundary of the leaf as by the
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ordered tuple (P, Pi, Pn1 , ...Pnx , Pk).

Remark 4.2.19. The boundary tuple (P, Pi, Pn1 , ...Pnx , Pk) can be viewed as connected

“loop” or “path”. An equivalent way of saying all the unwanted (boundary) edges are

removable is that the same “path” (P, Pi, Pn1 , ...Pnx , Pk) still exists in T .

Remark 4.2.20. As we mentioned before, ]PiPPk, ]PPiPn1 , ]PPkPnx are all less than

π. Part of the leaf looks like the following:

P

Pi

Pn1

Pk

Pnx

Angles in between the two dotted auxiliary lines

are of unknown shapes, i.e they may or may not be

convex. All that we know for sure is that ]PiPPk,

]PPiPn1 , ]PPkPnx are all less than π

Figure 4.60

In the process of mapping L to the plane by Stereographic Projection and then

obtaining the planar unique Delaunay Triangulation with the image points, we have the

following key observation:

Remark 4.2.21. (A Key Observation) The planar image of ]PiPPk, ]PPiPn1 , ]PPkPnx

under our Stereographic Projection (with P being the North Pole, defined in Notation

21), ]QiQQk, ]QQiQn1 , ]QQkQnx , are still less than π. The auxiliary lines passing

_
PPi and

_
PPk, under the projection, become the infinite planar rays QQi and QQk ini-

tiated from Q. The planar Delaunay Triangulation are occurring in between the two

infinite rays QQi and QQk.
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Q

Qk

Qi

The planar Delaunay Triangulation is

bounded in between by these two rays.

Figure 4.61

The point we are trying to make is that the planar path (Qi, Q,Qk) lies on the boundary of

the planar Delaunay Triangulation. After projecting the planar Delaunay Triangulation

back to the sphere and obtaining T , the path (Pi, P, Pk) remains the same.

Now we need to focus on the path on the boundary (Pi, Pn1 , ..., Pnx , Pk) and proving

it exists as a path in T .

Notation 24. We will call each of the following paths (Pi, Pn1), (Pn1 , Pn2), ..., (Pnx , Pk)

a segment of the path (Pi, Pn1 , ..., Pnx , Pk).

The only way that (Pi, Pn1 , ..., Pnx , Pk) fails to appear the same in T as in L is that

one of its segment (Pa, Pb) for a, b ∈ {i, n1, n2, .., nx, k}, is removed. Assume
_
4 PaPa1Pa2

is a new triangle formed (i.e didn’t exist in L ) in T and
_

Pa1Pa2 crosses (or, in other

words, replaces)
_
PaPb. Further assume

_
4 PaPbPc was a triangle in L .



103

Pa

Pa1

Pa2

Pb

Pc

Figure 4.62: Formation of new edges in T

Recall no 4 four points can be co-circular and T is Delaunay. Pb must lie outside the

circumcircle of
_
4 PaPa1Pa2 . The circumcircle of

_
4 PaPbPc intersect with the circumcir-

cle of
_
4 PaPa1Pa2 at one or two intersections (one of the intersections is Pa). If there

is only one intersection, then the circumcircle of
_
4 PaPa1Pa2 is contained inside the

circumcircle of
_
4 PaPbPc. If there are two intersections, then one of the arcs between

Pa and Pb lies outside the circumcircle of
_
4 PaPa1Pa2 . One of the points Pa1 , Pa2 , say

Pa2 , must lie on the same side of
_
PaPb as that arc. Then Pa2 is contained inside the

circumcircle of
_
4 PaPbPc, which is a contradiction. We have proven that none of the

segment of path (Pi, Pn1 , ..., Pnx , Pk) changes in T . As a consequence, all the unwanted

edges are removable.

Remark 4.2.22. One important consequence of the analysis above is that if two points in

L are not connected but become connected in T , then either they form an unwanted

edge, which can be removed, or one of these two points must be P . These proves the

following corollary.
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Corollary 4.2.23. (Memphis’ Triangulation) All Pi, Pn1 , ..., Pnx , Pk are connected to P

in T .

Notation 25. Removing all the unwanted edges from T , let us denote the resulting

triangulation T1. T1 has the same boundary as L . They are different triangulation of

the same set of points. Recall from the very beginning of this proof, we started with 3

( or 4) regions, depending on whether the deep hole P is the circumcenter of an acute

triangle ( or right triangle resp.). Each region will give us a leaf diagram, and each region

will have a Delaunay Triangulation (having the same boundary as its leaf diagram). We

denote them by T1,T2,T3 ( and T4 resp.).

Remark 4.2.24. Each of T1,T2,T3 (and T4 resp.) is a Delaunay Triangulation. To finish

the proof, we need to “paste” them together.

Given two adjacent triangulations of T1,T2,T3 (and T4 resp.), say T1 and T4, they

share a common edge
_
PPi.

Lemma 4.2.25. Using the same notation as above, if
_
4 PPiPn′1 is the triangle in T4

that is adjacent to
_
4 PPiPn1. They are Delaunay.

P

Pi

Pn1
Pn′1

Figure 4.63
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Proof. (Lemma 4.2.25) It suffices to show that Pn′1 is outside the circumcircle of
_
4

PPiPn1 . Since Pn1 and Pn′1 are not inside the circumcircle of
_
4 PiPjPi, |

_
PPn′1 | ≥ |

_
PPi |

and |
_

PPn1 | ≥ |
_
PPi |. So, in each of

_
4 PPiPn1 and

_
4 PPiPn′1 , either

_
PPi is not the

longest edge or the triangle is isosceles where the two larger edges have length |
_
PPi |.

Therefore, in either case, the circumcenters of the two triangles
_
4 PPiPn1 and

_
4 PPiPn′1

are on different sides of edge
_
PPi: Pn1 and the circumcenter of

_
4 PPiPn1 are on the

same side, and Pn′1 and the circumcenter of
_
4 PPiPn′1 are on the other side.

Remark 4.2.26. In particular, neither the circumcenter of
_
4 PPiPn1 nor the circumcenter

of
_
4 PPiPn′1 can be (the midpoint) on the edge of

_
PPi.

Pn1 lies on the heavier arc between P and Pi of the circumcircle of
_
4 PPiPn1 while

Pn′1 lies on the heavier arc between P and Pi of the circumcircle of
_
4 PPiPn′1 . The

(interior of the) lighter arc of
_
4 PPiPn1 between P and Pi is contained inside the area

bounded by
_
PPi and the heavier arc of

_
4 PPiPn′1 between P and Pi. Therefore, Pn′1 is

outside the circumcircle of
_
4 PPiPn1 .

Remark 4.2.27. By Lemma 4.2.25, in combination with Lemma 4.2.7, no point in T4

(other than P ) is contained inside the circumcircle of any triangle of T1, and vice versa.

Therefore, ∪iTi is Delaunay.

Remark 4.2.28. By Corollary 4.2.23 all the points in this union are connected to P . This

configuration agrees with the one constructed with Memphis’ Algorithm.

The last step of the proof relies on the following result, which states that no triangle
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outside the leaves can contain P inside its circumcircle.

Lemma 4.2.29. If
_
4 Pw1Pw2Pw3 is a triangle in MN and at least one of {Pw1 , Pw2 , Pw3}

is not in ∪iLi, then P is not inside the circumcircle of
_
4 Pw1Pw2Pw3.

(The proof of Lemma 4.2.29 is provided after the proof of the theorem.)

So, all the triangles of MN outside of the leaves ∪iLi together with ∪iTi form a Delaunay

triangulation of the N+1 points MN ∪ P , denoted by MN+1. This completes the the

proof.

We provide the following proof to Lemma 4.2.29.

Proof. (Lemma 4.2.29)

Since
_
4 Pw1Pw2Pw3 , none of the edges

_
Pw1Pw2 ,

_

Pw2Pw3 ,
_

Pw1Pw3 lies in ∪Li or ∪Ti. In

particular, none of the three edges lies on the boundary of ∪Li or ∪Ti. Locally the

three great circles overlapping with edges
_

Pw1Pw2 ,

_

Pw2Pw3 ,
_

Pw1Pw3 divide the sphere into

disjoint regions:

Pw1 Pw2

Pw3

The interior of circumcircle of
_
4

Pw1Pw2Pw3 has empty intersection

with the grey areas.

Figure 4.64
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If P lies in one of the 3 shaded regions, then we are done. Suppose P is in one of the

3 unshaded regions, say the region sharing the side
_

Pw2Pw3 . Let
_
4 P0Pw2Pw3 be the

neighbour of
_

Pw2Pw3 sharing the common edge
_

Pw2Pw3 . Then P0 and P is on the same

side of the great circle passing Pw2 , Pw3 .

Pw1 Pw2

Pw3

P

P0

P and P0 are on the same side of

the great circle passing Pw2
, Pw3

.

P is outside the circumcircle of

_
4 P0Pw2

Pw3
.

Figure 4.65

Since
_

Pw2Pw3 is not an edge in ∪iLi or ∪iTi, we know that
_
4 P0Pw2Pw3 is not a triangle

in ∪iLi or ∪iTi. Therefore, P is not inside the circumcircle of
_
4 P0Pw2Pw3 . By Lemma

4.2.7, P is not inside the circumcircle of
_
4 Pw1Pw2Pw3 either, completing the proof.

4.3 Some Remarks

4.3.1 Non-uniqueness of MN

Now we know MN is Delaunay. An immediate question to ask is whether this Delaunay

triangulation is unique. The answer is also immediate: the degeneracy mentioned in

Notation 18 can cause the triangulation to be non-unique. But can we get a conditional
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uniqueness if we “modulo the degeneracies”? Our goal is to investigate spherical cap

discrepancies. How unique the Delaunay triangulation MN is not of interest: it is not

providing useful information for either of the sequence construction or the computation

of the spherical discrepancy. However, we will discuss the degeneracy of MN in more

detail at the beginning of the next chapter.

4.3.2 Shortest Edges and Longest Edges of MN

By Theorem 4.2.1 and Theorem 4.2.8, every point of MN is a deep hole of the previous

points. Following from Theorem 3.1.23 stated and proved in the previous chapter, we

get the third regularity property stated at the last section of Chapter 3.

Corollary 4.3.1. (Shortest Edges of MN)

The radius edges of the last added point are shortest edges in MN . The length of these

radius edges is, δ(MN), the separation of MN as a point set.

By Corollary 3.1.24, we have:

Corollary 4.3.2. The length of the shortest edges of MN is non-increasing as N grows.

It decreases precisely when the N points are δ(MN)-saturated.

It is natural to ask is whether we can make similar statements about the longest edge(s)

of MN . However, we don’t have nearly as much information about the longest edge(s):

we don’t know how many of them there are; we don’t know how there are generated,

i.e whether they are cross edges or radius edges of some previous deep holes; it seems
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natural to guess that the length of the longest edge(s) ought be be non-increasing as N

increases, but we don’t have enough evidence suggesting this either. The most we can

say is the following remark on an upper bound of the longest edges.

Remark 4.3.3. Let γN denote the length of the shortest edges while ΓN denote the length

of the longest edge(s). The circumcircle of the triangle, who has an edge achieving length

ΓN , has radius at most 2γN . Then we obtain a trivial bound that ΓN ≤ 2γN . Hence, as

γN is non-increasing as N grows, we know this upper bound is a non-increasing function

of N also.
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Chapter 5

Spherical Cap Discrepancy

The previous two chapters introduced a recursive algorithm to produce well-separated

points on S2. Every newly generated point is a deep hole of the previous points. The

sequence comes with a triangulation with strong regularity: the triangulation is Delau-

nay.

5.1 Degeneracy of MN

Suppose
_
4 A1A2A3 is a triangle in MN . If more than 3 points are co-circular on the

circumcircle of this triangle, we have a degeneracy by Notation 18, in which case there are

more than one triangulation among the co-circular points. However, MN is Delaunay.

So, intuitively, there shouldn’t be too many points sharing the circumcircle.

Lemma 5.1.1. (Maximal Cocirculation)
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Suppose
_
4 A1A2A3 is a triangle in MN . There are at most two other points on the

circumcircle of
_
4 A1A2A3.

Proof. By contradiction. Assume there are 6 points co-circular. Denote these 6 points

by Ai, i = 1, 2, ..., 6. WLOG we may assume that the relative positions of the 6 points

on the circle are A1, A2, ..., A6 counterclockwise. Let Q be the common circumcenter.

Q is not a point in MN . And it may not be a deep hole of MN . |
_
AiQ | is not longer

than the shortest length between any pair of points in MN . Each edge of the spherical

hexagon
_
7 A1A2A3A4A5A6 is no shorter than the shortest edge(s) of MN . Hence, none

of the edges of
_
7 A1A2A3A4A5A6 is shorter than the circumradius of this hexagon.

A1

A2

A3

Q

A5

A4A6

Q is merely a circumcenter of some triangle

in MN . The circumradius of
_
4 A1A2A3 is

less than or equal to the length of the short-

est edge(s) of MN . One of the 6 central

angles must be less than or equal to π/3.

Figure 5.66

By the Pigeonhole Principle, at least one of the central angles of the 6 edges
_

AiAi+1, i =

1, 2, .., 5 and
_

A1A6 must be no bigger than π/3. Again, WLOG, we may assume the

central angle ]A1QA2 ≤ π/3. In the isosceles triangle
_
4 A1QA2,

_
A1A2 is the longest
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edge. Hence,

]QA1A2 = ]QA2A1 ≤ ]A1QA2 ≤ π/3. (5.1)

Consequently, area(
_
4 A1QA2) ≤ 3 · π/3− π = 0. This is impossible.

5.2 Estimating δ(MN), The Separation of MN

5.2.1 An Upper Bound

By inductively choosing every point as far from the previous as possible, our goal is to

make the points as well separated as we can. However, by the following theorem, no

matter how well separated the points are placed, there always exists some point that is

“close” to the rest. More precisely, we have the following upper bound on the separation

of MN .

Theorem 5.2.1. [11] From n > 2 points on S2 there can always be found two with

spherical distance no bigger than

arccos
cot2 ω − 1

2
, ω =

n

n− 2

π

6
. (5.1)

Rewriting ω = 1
2

nπ
3n−6 and applying the double angle formula, the above theorem can

also be stated as:

Corollary 5.2.2. (An Upper Bound for δ(MN))

δ(MN) ≤ arccos
cos πN

3N−6

1− cos πN
3N−6

. (5.2)
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5.2.2 Memphis’ Lower Bound

Memphis’ Triangulation is an example of the Euler Triangulation. The Euler Charac-

teristic formula applies.

V - E + F = 2,

where we follow the convention that V, E and F stand for the numbers of vertices, edges

and faces respectively. Recalling how Memphis’ Algorithm runs: every time a new point

is added to the existing sequence, the triangulation gains 3 more faces and 2 more edges,

which is consistent with the Euler Characteristic.

Remark 5.2.3. It is not hard to see that the number of triangles in MN is 2N − 4. So

the average area of a triangle in MN is 1
2N−4 .

Notation 26. Denote a triangle in MN with the largest area by
_
4 Tmax. Recall in

Chapter 3 we define the size of a triangle by its circumradius, i.e a larger triangle means

a triangle with longer circumradius. So,
_
4 Tmax may or may not be a largest triangle.

The circumcenter of
_
4 Tmax may or may not be a deep hole. Let

_
4 Ω denote a largest

triangle in MN , whose circumcenter is a deep hole.

Using the notations introduced in Chapter 2, let a, b, c be the edges of a spherical

triangle, with circumradius R,

w = cos a cos b + cos a cos c + cos b cos c;

u = 1 + cos a + cos b + cos c;

D2 = 1 + 2 cos a cos b cos c− cos2 a− cos2 b− cos2 c.
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The formula to compute B in Lemma 3.1.25,

sec2R =
1

D
(4(1 + w)− u2), (5.3)

which can be rewritten as

tan2R =
2(1− cos a)(1− cos b)(1− cos c)

D2
. (5.4)

Let x = cos a, y = cos b and z = cos c. Fix edge a. Let edges b, c vary while keeping

the circumradius R constant.

b

a

c

The circumcircle and edge a remain the

same. As edge b and edge c vary, the point

facing a slides on the circumcircle.

Figure 5.67

As R and x = cos a remain constant, equation 5.4 gives:

tan2R

2(1− x)
=

(1− z)(1− y)

1 + 2xyz − x2 − y2 − z2
= constant. (5.5)

Therefore, after differentiating both sides with respect to variable z, we get

0 =
d

dz

(1− z)(1− y)

1 + 2xyz − x2 − y2 − z2
. (5.6)

0 =
FzG− FGz

G2
, (5.7)

where

F (y, z) = (1− y)(1− z) and G(y, z) = 1 + 2xyz − x2 − y2 − z2. (5.8)
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So, we have

FzG = FGz. (5.9)

Computing the partial derivatives of F and G with respect to Z,

Fz = (z − 1)
dy

dz
+ (y − 1). (5.10)

Gz = (2xz − y)
dy

dz
+ (2xy − 2z). (5.11)

FzG = (1 + 2xyz − x2 − y2 − z2)(z − 1)
dy

dz
+ (1 + 2xyz − x2 − y2 − z2)(y − 1). (5.12)

GzF = (1− y)(1− z)(2xz − 2y)
dy

dz
+ (1− y)(1− z)(2xy − 2z). (5.13)

By equating FzG = FGz (equation 5.9), we get

y = z or y + z = x+ 1. (5.14)

Remark 5.2.4. We have reached the conclusion that, while edge a and R remain the

same, edge b increases if and only if edge c decreases.

Let
_
4 ABC be the triangle with edge a,b,c, a =

_
BC, b =

_
AC and c =

_
AB. Let A′ be

a point on the circumcircle of
_
4 ABC such that A and A′ are on the same side of

_
BC

and
_
A′B and

_
AC are of the same length. We will refer to A′ as the symmetric image of

A on the circumcircle of
_
4 ABC.
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A′

B C

A
A′ is the symmetric image of A on the same

circle. The shorter arc between A and A′ on

Lexell’s Circle lies inside the circumcircle of

_
4 ABC. The dotted triangle has the largest

area, while the other three have the same

area.

Figure 5.68

The Lexell Circle (see Definition 2.2.10) of
_
4 ABC with base

_
BC intersect with the

circumcircle of
_
4 ABC at two points A and A′. When

_
4 ABC is isosceles with

|
_
AB | = |

_
AC | A and A′ coincide. The shorter arc of Lexell circle between A and A′

lies inside the circumcircle of
_
4 ABC. We have obtained the following result:

Corollary 5.2.5. Fixing
_
BC and the circumradius and letting A vary, the area of

_
4

ABC occurs precisely when
_
4 ABC is isosceles with |

_
AB | = |

_
AC |.

Definition 5.2.6. Using the same settings, we call this isosceles triangle the Lexell’s

triangle with base
_
BC for the fixed circumradius.

Lemma 5.2.7. With fixed circumradius the regular triangles have the largest area.

Proof. (Lemma 5.2.7) Let
_
4 E1E2E3 be an arbitrary spherical triangle with fixed cir-

cumradius R. Let e1, e2, e3 denote the edges facing points E1, E2, E3 respectively. If

_
4 E1E2E3 not regular, then it has a longest edge and a shortest edge. Say e3 is longest,
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and e1 is the shortest. Fix edge e2. We get the Lexell’s triangle with base e2. Let’s de-

note this isosceles Lexell’s triangle by
_
4 E1,1E2,1E3,1 and denote edge

_
E1,1E2,1,

_
E2,1E3,1,

_
E1,1E3,1 by e3,1, e1,1, e2,1 respectively. By Corollary 5.2.5,

_
4 E1,1E2,1E3,1 has bigger area

than
_
4 E1E2E3.

E1

E2

E3

E2,1

The dashed triangle is the Lexell’s triangle

with base e2. Two vertices and one edge

remain unchanged E1,1 = E1, E3,1 = E3,

and e2 = e2,1.

Figure 5.69

Remark 5.2.8. e2 = e2,1. E2 6= E2,1 but E1 = E1,1 and E3,1 = E3. The second subindex

indicate the number of step we are at.

If
_
4 E1,1E2,1E3,1 is a regular triangle, then we are done. Otherwise,

_
4 E1,1E2,1E3,1

must have a shortest edge and a longest edge. Then we will repeat the above procedure

and get an isosceles triangle of bigger area denoted by
_
4 E1,2E2,2E3,2. If

_
4 E1,2E2,2E3,2

happens to be regular, then we are done; otherwise, repeat to get
_
4 E1,3E2,3E3,3.

Remark 5.2.9. The recursive procedure described above terminates at step m if
_
4

E1,mE2,mE3,m happens to be regular. However, it may never terminate. By remark

5.2.4, every step of the transformation to the next Lexell’s triangle of larger area, the
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longest edge of the triangle will decrease, and the shortest edge of the triangle will in-

crease. The reader may apply a rigourous “ε-δ” argument to show this but it is evident

to see: as m goes to∞ the area of
_
4 E1,mE2,mE3,m infinitesimally increases to the area

of a regular triangle of the same circumradius.

Therefore, with the same circumradius, a regular triangle has the largest area.

Let
_
4 Rmax be a regular triangle with the same circumcircle of

_
4 Tmax. The area

of
_
4 Rmax cannot be less than the average 1

2N−4 . Since
_
4 Tmax and

_
4 Rmax are of the

same size,
_
4 Ω >

_
4 Rmax. This proves the following result:

Corollary 5.2.10. The circumradius of the largest triangle in MN is bigger than or

equal to a regular triangle of size 1
3(2N−4) .

The circumradius of a regular triangle with area 1
3(2N−4) can be computed. In Figure

5.70 is a regular triangle with area 1
2N−4 . G is the circumcenter and I is the mid-point

of an edge.
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R1 R2

R3

I

G

2`

`

θ

θ

r

I is the middle point of edge
_

R1R2.
_
R3I is perpen-

dicular to
_

R1R2. In the Traditional Right triangle

_
4 R1GI, ]GIR1 = π/2, ]R1GI = π/3 and

]GR1I = 1
6(2N−4) + π/6.

Figure 5.70

Since

area(
_
4 R1R2R3) = 3]R3R1R2 − π =

1

2N − 4
, (5.15)

]R3R1R2 = 2]GR1I =
1

3(2N − 4)
+ π/3. (5.16)

]GR1I =
1

6(2N − 4)
+ π/6. (5.17)

_
4 R1GI is a Traditional Right triangle with ]GIR1 = π/2. For computation simplicity,

let θ = 1
6(2N−4) + π/6 and |

_
R1R2 | = 2` and r = |R1G| (as indicated in Figure 5.70).

In triangle
_
4 R1IR3, the Spherical Rules of Sines (Theorem 2.4),

sin(2`)

sin(π/2)
=

sin `

sin θ
, (5.18)

which simplifies to

cos ` =
1

2
(sin θ)−1. (5.19)
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In triangle
_
4 R1IG, applying the Spherical Rules of Sines (Theorem 2.4) gives:

sin r

sin(π/2)
=

sin `

sin(π/3)
, (5.20)

which can be rewritten as

1− cos2 r =
4

3
(1− cos2 `). (5.21)

Plugging equation 5.19 into equation 5.21, we eventually get

cos2 r =
1

3

1

sin2 θ
− 1

3
=

1

3
cot2 θ (5.22)

or

cos r =

√
3

3
cot θ. (5.23)

So we know that the distance between MN and its next deep hole, i.e the separation of

MN+1 δ(MN+1), is bigger than r.

Corollary 5.2.11. (Memphie’s Lower Bound of δ(MN))

δ(MN+1) ≥ arccos(

√
3

3
cot(

π

6
+

1

12N − 24
)) , (5.24)

or equivalently

δ(MN) ≥ arccos(

√
3

3
cot(

π

6
+

1

12N − 36
)) . (5.25)

Remark 5.2.12. The convergence rate of the lower bounds is about 0.62
√
N for large N .

5.3 Spherical Cap Discrepancy of M

Counting is one of the hardest topics in mathematics. Now given a well-spaced spherical

sequence of length N and an arbitrary spherical cap or hight t,, we would like to estimate
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how many points of the sequence is inside the cap. In this particular case, the sequence

of length N we are looking at is the finite truncation of the infinite sequence M . With

the upper and lower bounds for δ(MN) obtained in the previous section, we know that

if the height of a spherical cap is between

√
3

3
cot(

π

6
+

1

12N − 36
) (5.1)

and

1

2
cot2(

Nπ

6N − 12
)− 1

2
(5.2)

then, for sure, this cap contains a point of MN . However, if height of this cap happens

to be taller than
√

3

3
cot(

π

6
+

1

12N − 24
), (5.3)

then it is possible that it contains no point in MN . We have the following bounds.

Corollary 5.3.1. The spherical cap discrepancy of MN is bounded below by

1

2
−
√

3

6
cot(

π

6
+

1

12N − 24
). (5.4)

5.3.1 Some Thoughts on Further Investigation

As the number of points grows to ∞, the area of each triangle will be getting very

small. Meanwhile, the lengths of edges of all the triangles should eventually be “evened

out”. We will end our journey of spherical cap discrepancy with some ideas on how this

investigation can be carried further.



122

Using the same notation 17 introduced in Chapter 3 Memphis’ Triangulation, there are

two types of edges: cross edge and radius edge.

Conjecture 1. (Memphis’ Edge Conjecture)

The radio of the number of cross edge versus the number of radius edges goes to 1/2 as

the number of points goes to infinity.

Every point in the triangulation is connected to other points by edges.

Conjecture 2. (Memphis’ Angle Conjecture)

As the number of points grows to ∞, the number of edges connected to “most” points is

equal to 6.

Conjecture 3. (Memphis’ Area Conjecture)

For “most” triangles in T ∈MN limN→∞ area(T )(2N − 4) = 1.

Of course, we need to make the description of these conjectures more precise. What does

“most points” or “most triangles” even mean? Making the statements more accurate will

be part of the next journey. As most of this field is still largely unexplored, there is lots

of room left for creative inventions of new tools and new techniques. More adventures

are awaiting for Memphis.
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[5] J. Dénes and A. D. Keedwell, Latin Squares and Their Applications, Academic

Press, New York, 1974

[6] H. J. Ryser, Combinatorial Mathematics, Mathematical Association of America,

Washington, DC, 1963.

[7] R. Lidl, H. Niederreiter, Finite Fields, Addision Wesley, Reading, MA, 1983.



124

[8] The Right Right Triangle on the Sphere, William Dickinson and Mohammad

Salmassi, The College Mathematics Journal, Vol. 39, No. 1 (Jan., 2008), pp. 24-33

[9] Least Action Principle Of Crystal Formation Of Dense Packing Type And Kepler’s

Conjecture (2001).

[10] Least Action Principle Of Crystal Formation Of Dense Packing Type And Kepler’s

Conjecture (2001), pp. 66-67.

[11] On the Densest Packing of Spherical Caps, L.Fejes Toth, The American Mathemat-

ical Monthly, Vol. 56, No. 5 (May, 1949), pp. 330-331.
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(1934), issue 6, pages 793–800

[13] Irregularities of Distribution (1987), Jośeph Beck, Cambridge University Press
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