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Abstract

This thesis contains results of the author from [12], [13], [14], and [15]. In the first part of

the thesis, we will prove a characterization of restricted strong type (p, p) boundedness

of multiplier operators whose multiplier is a radial function on R3 supported compactly

away from the origin, in the range 1 < p < 13/12. This result complements a result of

Heo, Nazarov, and Seeger, who obtained a characterization of radial Fourier multiplier

operators bounded on Lp(Rd) in dimensions d > 4 for the range 1 < p < 2d−2
d+1

.

In the second part of the thesis, we introduce and define Bochner-Riesz multipliers

associated with convex planar domains. Such multipliers were first studied by Seeger

and Ziesler, and we discuss their results as background. We then discuss new results

addressing the question of sharpness of Seeger and Ziesler’s theorem. We introduce

the additive combinatorial notion of “additive energy” of the boundary of a convex do-

main which we will show gives a sufficient criteria for obtaining improved Lp bounds for

Bochner-Riesz multipliers.

In the third part of the thesis, we will introduce general Fourier multipliers associated

with convex planar domains and prove a criterion for Lp boundedness of the correspond-

ing multiplier operators. The methods used to obtain multiplier theorems in this section

will involve analysis of “half-wave” operators associated with convex domains.

In the fourth part of the thesis, we will discuss a related square function result and

obtain new multiplier theorems as a corollary, which we will interpolate with our re-

sults from the third part of the thesis to obtain our most general quasiradial multiplier

theorem.
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Chapter 1

Overview

Fourier multiplier operators are a basic object of study in harmonic analysis. These

are translation-invariant operators defined by multiplication on the Fourier side by a

bounded, measurable function which is referred to as the “symbol” or “multiplier” of

the transformation. More precisely, Given m ∈ L∞(Rd), we may define an operator Tm

acting on Schwartz functions f ∈ S(Rd) by

F [Tmf ](ξ) = m(ξ)f̂(ξ).

These may also be viewed as convolution operators, where the convolution kernel is the

distribution K = m̂.

One is typically interested in the mapping properties of multiplier operators between

various function spaces. The most basic question one may ask is for a given p whether

a multiplier operator extends to a continuous mapping on Lp(Rd). One may easily

show using Plancherel’s theorem that for any multiplier m ∈ L∞(Rd), Tm extends to a

bounded operator on L2(Rd). Moreover, for 1 < p < ∞, one may show using duality

that if Tm extends to a bounded operator on Lp(Rd), then it also extends to a bounded

operator on Lp
′
(Rd), where p′ denotes the Hölder conjugate of p. Thus one is typically

interested in the smallest (or largest) value of p for which Tm extends to a bounded

operator on Lp(Rd).

A very difficult open question in harmonic analysis is whether there exists some kind
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of reasonable characterization of all multipliers m ∈ L∞(Rd) for which Tm extends to

a bounded operator on Lp(Rd). That is, one may ask for a given p whether there is

some kind of straightforward and useful criterion for m that determines the Lp-mapping

properties of Tm. As already mentioned, if p = 2, Tm is always bounded on Lp since

m ∈ L∞. If p = 1, it is not difficult to show that Tm is bounded on Lp if and only if the

convolution kernel K = m̂ is a finite Borel measure. However, in the case p 6= 1, 2, it is

widely believed that no such criterion exists for general multipliers.

It was then rather surprising that Garrigós and Seeger were able to obtain in [23] a

very simple characterization of all radial multiplier operators acting on the space Lprad

of radial Lp functions. Their characterization was quite general, since the class of radial

Fourier multipliers is rather large and contains many well-studied examples, such as the

Bochner-Riesz multipliers, which we will discuss later. In particular, Garrigós and Seeger

showed that in the range 1 < p < 2d
d+1

for d > 2, if m is radial and compactly supported

away from the origin, then Tm is bounded on Lprad if and only if the kernel K = m̂ is in

Lp. This range of p is the largest possible range for which their result can hold, since

for p > 2d/(d + 1) there exist radial kernels in Lp that have Fourier transforms which

are compactly supported away from the origin, but are also unbounded.

In light of Garrigós and Seeger’s result, is then natural to ask whether this charac-

terization also applies to compactly supported radial multipliers on Lp rather than Lprad.

Heo, Nazarov, and Seeger answered this question in the affirmative, in a breakthrough

paper [28] that established that the condition K = m̂ ∈ Lp(Rd) is both necessary and

sufficient for Tm to be bounded on Lp(Rd) for m radial and supported compactly away

from the origin, in the smaller range 1 < p < 2d−2
d+1

, for d > 4. Heo, Nazarov, and

Seeger’s result for compactly supported radial multipliers may be rephrased as follows.
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For a fixed p, we have that for all radial m ∈ L∞(Rd) supported compactly away from

the origin, Tm is bounded on Lp(Rd) if and only if K = m̂ ∈ Lp(Rd), as long as d > 2+p
2−p .

Thus their characterization becomes better in higher dimensions. It remains a very dif-

ficult open question as to whether the characterization extends to dimensions d > 2 and

the best possible range 1 < p < 2d
d+1

.

Conjecture 1.0.1. Let 1 < p < 2d
d+1

. If m : Rd → R is radial and supported compactly

away from the origin, then Tm is bounded on Lp(Rd) if and only if K = m̂ is in Lp(Rd).

In Chapter 2, we will discuss a new result to apear in [15] that gives a character-

ization of restricted strong type (p, p) estimates for operators corresponding to radial

Fourier multipliers supported compactly away from the origin in three dimensions, in

the range 1 < p < 13/12. This complements Heo, Nazarov, and Seeger’s result. It is also

expected that this new result can be improved to a characterization of Lp boundedness

for radial multipliers in three dimensions.

In studying general radial Fourier multipliers, one makes absolutely no assumptions

about the smoothness of the multiplier. However, a great deal of information can typ-

ically be deduced from the regularity of a multiplier. As a general principle, there is

a positive relationship between the Lp-mapping properties of a multiplier operator and

the smoothness of its symbol. Regularity of a multiplier implies decay of the convolution

kernel K = m̂, which is one reason that one would expect better Lp-mapping properties.

It is natural to ask if one may quantify this relationship, and the Bochner-Riesz mul-

tipliers are a model case for studying this relationship in the case of radial multipliers.

They are radial multipliers defined as

mλ(ξ) = (1− |ξ|)λ+
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for λ > 0. Note that the regularity of mλ increases as λ increases, and that mλ converges

to the characteristic function of the ball pointwise as λ→ 0.

The Bochner-Riesz Conjecture, which is one of the most well-studied open problems

in harmonic analysis, is a conjecture regarding exactly how large λ needs to be in order

for Tmλ to be bounded on Lp(Rd) for a given p.

Conjecture 1.0.2. For λ > 0, Tmλ is bounded on Lp(Rd) if and only if λ > λ(p) =

max(d|1
p
− 1

2
| − 1

2
, 0).

Since 2d
d+1

is the critical index for the Bochner-Riesz multipliers in d dimensions, the

Bochner-Riesz conjecture would in fact follow immediately from the more difficult Con-

jecture 1.0.1. The Bochner-Riesz Conjecture is also closely connected with a number of

other important conjectures in harmonic analysis, including the celebrated Restriction,

Kakeya, and Local Smoothing Conjectures. For a hierarchy of implications between

these and other related conjectures, see [54]. The Bochner-Riesz conjecture was first

completely solved in dimension d = 2 by Fefferman in [22], and then later clarified by

Córdoba in [18]. The problem remains open in dimensions d > 3, although partial

progress has been made; for recent progress see for example [33] and [6].

As already mentioned, studying Lp-mapping properties of Bochner-Riesz multipliers

are a means of studying the general relationship between regularity of a radial multiplier

and its Lp mapping properties. Another way one may view Bochner-Riesz operators are

as multiplier operators whose symbol is a “smoothed-out” characteristic function. It

was proven by Fefferman that the “ball multiplier” operator Tm, where m is the charac-

teristic function of the unit ball, is unbounded on Lp(Rd) for every p 6= 2 when d > 2.

The Bochner-Riesz multipliers are essentially equivalent to smoothed out versions of the
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characteristic function of the ball, and thus the Lp-mapping properties of Bochner-Riesz

multipliers quantify the failure of the corresponding characteristic function multiplier

to be bounded on Lp, in that they provide a means to measure how much additional

regularity is required for Lp-boundedness.

One may also study a generalization of Bochner-Riesz multipliers where the char-

acteristic function of a more general set plays the role of the characteristic function of

the ball. Given Ω ⊂ R2 a bounded, open, convex set containing the origin, define the

associated Bochner-Riesz multipliers as

mλ(ξ) = (1− ρ(ξ))λ+,

where ρ denotes the Minkowski functional of Ω, i.e. the unique function which is iden-

tically 1 on ∂Ω and homogeneous of degree one. Of particular interest is when the

boundary of Ω is not smooth (in terms of regularity, the requirement that Ω be convex

only implies that the boundary is Lipschitz). The Bochner-Riesz multipliers were first

studied in this generality by Seeger and Ziesler in [48], who obtained a result depending

on a parameter κΩ similar to a notion of Minkowski dimension of the affine arclength

measure of ∂Ω. Interestingly, their result implies that Bochner-Riesz multipliers associ-

ated with domains with rough boundary may actually satisfy improved Lp bounds over

the classical radial Bochner-Riesz multipliers. In Chapter 3, we will discuss some new

results that have been posted in the preprint [13] addressing the sharpness of Seeger and

Ziesler’s result.

Some interesting special cases of Ω are those where ∂Ω has fractal-type structure.

For example, one may consider domains whose boundary is locally parametrized by a
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function γ : R→ R, defined by

γ(t) =

∫ t

0

g(s) ds+ C,

where C is an appropriate constant and g is a standard Cantor function, or more gen-

erally we may let g denote the distribution density of a fractal measure. In general, the

study of harmonic analysis on fractals is an area of harmonic analysis which has recently

attracted a great deal of attention, largely through the study of Fourier restriction phe-

nomena to fractal measures in R. For Fourier restriction to fractals, arithmetic structure

and additive combinatorial notions such as additive energy play an important role. In

Chapter 3, we introduce a notion of the “additive energy” of the boundary of a convex

domain, which we will see along with Seeger and Ziesler’s parameter κΩ also plays a role

in determining Lp-boundedness of generalized Bochner-Riesz multipliers.

Since the Bochner-Riesz multipliers serve as a model case for understanding the re-

lationship between regularity and Lp bounds for radial multipliers, one might try to

extend theorems involving Bochner-Riesz multipliers to multiplier theorems for general

radial multipliers. Indeed, proving certain estimates involving specific radial multipliers,

such as the Bochner-Riesz multipliers or the “half-wave” multipliers ei|ξ|, can lead to

general multiplier theorems for radial multipliers. This is accomplished by means of

using an appropriate “subordination formula.” In the case of Bochner-Riesz multipliers,

the formula to consider would be

m(|ξ|) =
(−1)bλc+1

Γ(λ+ 1)

∫ ∞
0

sλm(λ+1)(2)(1− |ξ|
s

)λ+ ds, (1.1)

which may be obtained by integration by parts. In the case of the half-wave multipliers,
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the formula to consider woud be

m(|ξ|) =
1

2π

∫
m̂(τ)eiτ |ξ| dτ, (1.2)

which is simply the Fourier inversion formula. It turns out that the latter formula is far

more “efficient”, and hence to obtain stronger general multiplier theorems it is better to

study the half-wave multipliers than the Bochner-Riesz multipliers.

The discussion in the previous paragraph generalizes to the case of “quasiradial”

multipliers where |ξ| can be replaced by a more general distance function ρ(ξ). In

Chapter 4, we will consider quasiradial multipliers where, as in the case of the generalized

Bochner-Riesz multipliers, ρ is the Minkowski functional of a convex domain in R2. In

view of the discussion in the previous paragraph, this will involve an analysis of the

generalized half-wave multipliers eiρ(ξ). By studying the half-wave multipliers, we will

prove a criterion for the Fourier transform of a quasiradial multiplier of the form m◦ρ to

be an L1 kernel, which implies that Tm◦ρ bounded on Lp for 1 < p <∞. In the special

case of domains with κΩ = 1/2, we will further refine this to an endpoint estimate which

will give us a criterion for Tm◦ρ to be bounded from H1 to L1. The results in this chapter

are published in [12].

One may also obtain multiplier theorems for radial multipliers through an alternate

route by proving Lp estimates for square functions associated with Bochner-Riesz means.

The Bochner-Riesz square function is defined as

Gλf(x) =

(∫ ∞
0

|Rλ
t f(x)|2 dt

t

)1/2

,

where

Rλ
t f(x) =

1

(2π)2

∫
|ξ|6t

(
1− |ξ|

t

)λ
f̂(ξ)ei〈ξ,x〉 dξ.
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To study the maximal Bochner-Riesz operators, Carbery proved in [8] a critical L4(R2)

estimate for the Bochner-Riesz square function in two dimensions. The later work of

Carbery, Gasper, and Trebels in [10] was to show by means of the subordination formula

(1.1) that Carbery’s L4(R2) estimate for the Bochner-Riesz square function implied a

sharp multiplier theorem for radial multipliers in R2 in the range 4/3 6 p 6 4.

By an argument similar to that of [10], we may obtain multiplier theorems for quasir-

adial multipliers in two dimensions by proving an L4(R2) estimate for a generalized

Bochner-Riesz square function, where |ξ| is replaced with a generalized distance func-

tion ρ(ξ), which is what we will do in Chapter 5. However, the class of distance functions

ρ that we will consider will be more general than those considered in Chapter 4. Namely,

we will consider ρ such that the level set {ξ : ρ(ξ) = 1} is the boundary of a convex

domain Ω containing the origin and such that ρ is homogeneous with respect to a non-

isotropic dilation group which is compatible in a certain sense with Ω. A nonisotropic

dilation group is a one-parameter family {tA : t > 0} where tA = exp(log(t)A) and A

is a 2× 2 matrix whose eigenvalues have positive real part. Nonisotropic dilations arise

naturally in many settings in harmonic analysis, and so quasiradial multipliers of the

form m ◦ ρ where ρ is homogeneous with respect to a nonisotropic dilation group are

a very natural generalization of radial Fourier multipliers to consider. In Chapter 4,

we interpolate this result with our previous multiplier theorem to obtain a more gen-

eral quasiradial multiplier theorem. The results in this chapter have been posted in the

preprint [14].
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Chapter 2

Radial Fourier Multipliers

2.1 Introduction and statement of results

In this chapter we study radial multiplier transformations whose symbol is compactly

supported away from the origin. These are operators Tm defined via the Fourier trans-

form by

F [Tmf ](ξ) = m(ξ)f̂(ξ),

where m : Rd → C is a bounded, measurable, radial function supported in a compact

subset of {ξ : 1/2 < |ξ| < 2}.

In the cases p 6= 1, 2, it is generally believed that is is impossible to give a reasonable

characterization of all multiplier operators which are bounded on Lp. However, for

radial Fourier multipliers, a characterization can be obtained for an appropriate range

of p. In [28], Heo, Nazarov, and Seeger prove a strikingly simple characterization of

radial multipliers that are bounded on Lp(Rd) in dimensions d > 4 for 1 < p < 2d−2
d+1

.

Theorem A. If m : Rd → C is radial and supported in a compact subset of {ξ : 1/2 <

|ξ| < 2}, the multiplier operator Tm is bounded on Lp(Rd) if and only if the kernel K = m̂

is in Lp(Rd), in the range 1 < p < 2d−2
d+1

.

The characterization in [28] was motivated by the earlier work [23] of Garrigós and
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Seeger, where the authors obtained a similar characterization of all convolution operators

with radial kernels acting on the space Lprad of radial Lp functions, in the larger range

1 < p < 2d
d+1

.

Theorem B. If m : Rd → C is radial and supported in a compact subset of {ξ : 1/2 <

|ξ| < 2}, the multiplier operator Tm is bounded on Lprad(Rd) if and only if the kernel

K = m̂ is in Lp(Rd), in the range 1 < p < 2d
d+1

.

This range 1 < p < 2d
d+1

is the optimal range for their result to hold, since for

p > 2d/(d + 1) one may construct radial kernels in Lp that have Fourier transforms

which are supported compactly away from the origin but which are also unbounded. By

the same reasoning, the range 1 < p < 2d
d+1

is also the largest possible range in which

one could hope for the characterization from Theorem A to hold.

The argument of [28] did not yield any results about radial Fourier multipliers in R3.

In this chapter, we will improve a key lemma of [28] in three dimensions to very nearly

obtain a characterization of compactly supported radial Fourier multipliers m bounded

on Lp(R3), in the range 1 < p < 13
12

.

Theorem 2.1.1. Let m be a radial Fourier multiplier in R3 supported in {1/2 < |ξ| < 2}

and let K = F−1[m]. Then for 1 < p < 13/12, if K ∈ Lp(R3), then the multiplier

operator Tm is restricted strong type (p, p), and moreover

‖K ∗ f‖Lp(R3) .p ‖K‖Lp(R3) ‖f‖Lp,1(R3) .

Remark 2.1.2. Our proof will also show that ‖K ∗ f‖Lp .p ‖K‖Lp,1 ‖f‖Lp, and we

expect that ‖K‖Lp,1 could be improved to ‖K‖Lp.

Our proof of Theorem 2.1.1 refines the arguments of [28] while simultaneously incor-

porating new geometric input. A key divergence of the proof of 2.1.1 from the arguments
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of [28] is the exploitation of the underlying “tensor product structure” inherent in the

problem, a notion which will become clearer later. This, combined with a geometric

argument involving sizes of multiple intersections of three-dimensional annuli, allows

one to take advantage of improved scalar product estimates which were noted but not

used in [28]. However, since we exploit the tensor product structure of the problem, we

are currently not able to deduce any local smoothing results for the wave equation as

corollaries, as was able to be done in [28].

2.2 Preliminaries and reductions

In this section we will collect some necessary preliminary results and reductions. Versions

of these results can be found in [28], but we reproduce them here for completeness. In

general, this section of the chapter will very closely follow [28], and for convenience we

choose to adopt similar notation.

Discretization and density decomposition of sets

The first step will be to discretize our problem, and in preparation for this we will first

need to introduce some notation. Let Y be a 1-separated set of points in R3 and let R

be a 1-separated set of radii > 1. Let E ⊂ Y ×R be a finite set that is also a product,

i.e. E = EY × ER where EY ⊂ Y and ER ⊂ R. (The assumption that E is a product was

not used in [28], but will be crucial for our argument.)

Let

u ∈ U = {2ν , ν = 0, 1, 2, . . .}
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be a collection of dyadic indices. For each k, let Bk denote the collection of all 4-

dimensional balls of radius 6 2k. For a ball B, let rad(B) denote the radius of B.

Following [28], define:

Rk := R∩ [2k, 2k+1),

Ek := E ∩ (Y ×Rk),

Êk(u) := {(y, r) ∈ Ek : ∃B ∈ Bk such that #(Ek ∩B) > u rad(B)},

Ek(u) = Êk(u) \
⋃
u′∈U
u′>u

Êk(u′).

We will refer to u as the density of the set Ek(u). Note that we have the decomposition

Ek =
⋃
u∈U

Ek(u).

Let σr denote the surface measure on rS2, the 2-sphere centered at the origin of radius

r. Now fix a smooth, radial function ψ0 which is supported in the ball centered at the

origin of radius 1/10 such that ψ̂0 vanishes to order 40 at the origin. Let ψ = ψ0 ∗ ψ0.

For y ∈ Y and r ∈ R, define

Fy,r = σr ∗ ψ(· − y).

For a given function c : Y ×R → C, further define

Gu,k :=
∑

(y,r)∈Ek(u)

c(y, r)Fy,r,

Gu :=
∑
k>0

Gu,k,

Gk :=
∑
u∈U

Gu,k.
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An interpolation lemma

As a preliminary tool, we will need the following dyadic interpolation lemma.

Lemma 2.2.1. Let 0 < p0 < p1 <∞. Let {Fj}j∈Z be a sequence of measurable functions

on a measure space {Ω, µ}, and let {sj} be a sequence of nonnegative numbers. Assume

that for all j, the inequality

‖Fj‖pνpν 6 2jpνMpνsj (2.1)

holds for ν = 0 and ν = 1. Then for all p ∈ (p0, p1), there is a constant C = C(p0, p1, p)

such that ∥∥∥∥∥∑
j

Fj

∥∥∥∥∥
p

p

6 CpMp
∑
j

2jpsj. (2.2)

The discretized Lp inequality

Our goal is to prove the following proposition, which we will see implies our main result

for compactly supported multipliers.

Proposition 2.2.2. Let E and Ek be as above (recall that E has product structure). Let

c : E → C be a function satisfying |c(y, r)| 6 1 for all (y, r) ∈ E. Then for 1 < p < 13/12,∥∥∥∥∥∥
∑

(y,r)∈E

c(y, r)Fy,r

∥∥∥∥∥∥
p

p

.p

∑
k

22k#Ek.

Using the dyadic interpolation lemma (Lemma 2.2.1), we obtain the following corol-

lary.

Corollary 2.2.3. Let E be any measurable set of finite measure, and χE its character-

istic function. Suppose that f is a measurable function satisfying |f | 6 χE. Then for
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1 < p < 13/12, we have∥∥∥∥∥∥
∑

(y,r)∈Y×R

γ(r)f(y)Fy,r

∥∥∥∥∥∥
p

.

( ∑
(y,r)∈Y×R

|γ(r)χE(y)|pr2

)1/p

. (2.3)

Also ∥∥∥∥∫
R3

∫ ∞
1

h(r)f(y)Fy,r dr dy

∥∥∥∥
p

.

(∫
R3

∫ ∞
1

|h(r)χE(y)|pr2 dr dy

)1/p

. (2.4)

Proof that Proposition 2.2.2 implies Corollary 2.2.3. For j ∈ Z, define the level sets

E j := {(y, r) ∈ Y ×R : 2j−1 < |γ(r)χE(y)| 6 2j}.

Notice that E j has product structure, so Proposition 2.2.2 implies that for 1 < p < 13/12,∥∥∥∥∥∥
∑

(y,r)∈Ej
γ(r)f(y)Fy,r

∥∥∥∥∥∥
p

p

.p 2jp
∑

(y,r)∈Ej
r2.

Now apply Lemma 2.2.1 with Fj =
∑

(y,r)∈Ej γ(r)f(y)Fy,r, M = 1, and sj =
∑

(y,r)∈Ej r
2

to obtain (2.3).

Now we prove (2.4). Let y = z + w for z ∈ Z3 and w ∈ Q0 := [0, 1)3 and r = n + τ

for n ∈ N and 0 6 τ < 1. By Minkowski’s inequality and (2.3),∥∥∥∥∫
R3

∫ ∞
1

h(r)f(y)Fy,r dr dy

∥∥∥∥
p

.p

∫ ∫
Q0×[0,1)

∥∥∥∥∥∑
z∈Z3

∞∑
n=1

h(n+ τ)f(z + w)Fz+w,n+τ

∥∥∥∥∥
p

dw dτ

.p

∫ ∫
Q0×[0,1)

(∑
z∈Z3

∞∑
n=1

|h(n+ τ)χE(z + w)|p(n+ τ)2

)1/p

dw dτ

.p

(∫
R3

∫ ∞
1

|h(r)χE(y)|pr2 dr dy

)1/p

,

where in the last step we have used Hölder’s inequality.
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Support size estimates vs. L2 inequalities

As in [28], we will show that the functions Gu,k either have relatively small support size

or satisfy relatively good L2 bounds. We begin with a support size bound from [28] that

improves as the density u increases.

Lemma C. For all u ∈ U , the Lebesgue measure of the support of Gu,k is . u−122k#Ek.

We will prove the following L2 inequality which is in some sense an improved version

of Lemma 3.6 from [28], although the hypotheses are different since it is crucial that we

assume that the underlying set E has product structure. This inequality improves as

the density u decreases. In [28], the analogous L2 inequality proved is

‖Gu‖2
2 . u

2
d−1 log(2 + u)

∑
k

2k(d−1)#Ek, (2.5)

and when d = 3 the term u
2
d−1 is equal to u. One may check that combining (2.5) with

Lemma C as in the proof of Lemma 2.2.5 below yields no result in three dimensions.

We use geometric methods to improve on (2.5) in three dimensions.

Lemma 2.2.4. Let E, Ek, and Gu be as above (recall that E has product structure).

Assume |c(y, r)| 6 1 for (y, r) ∈ Y ×R. Then for every ε > 0,

‖Gu‖2
2 .ε u

11
13

+ε
∑
k

22k#Ek.

Combining Lemma C and Lemma 2.2.4, we obtain the following Lp bound.

Lemma 2.2.5. For p 6 2, for every ε > 0,

‖Gu‖p .ε u
−(1/p−12/13−ε)(

∑
k

22k#Ek)1/p.
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Proof of Lemma 2.2.5 given Lemma C and Lemma 2.2.4. By Hölder’s inequality,

‖Gu‖p . (meas(supp(Gu)))
1/p−1/2 ‖Gu‖2

.ε u
−1/p+1/2u11/26+ε(

∑
k

22k#Ek)1/p

.ε u
12/13−1/p+ε(

∑
k

22k#Ek)1/p.

Summing over u ∈ U , we obtain Proposition 2.2.2. Thus to prove Proposition 2.2.2

it suffices to prove Lemma 2.2.4.

Compactly supported multipliers

Following [28], we now show how one may deduce Theorem 2.1.1 from Corollary 2.2.3.

Suppose that m : R3 → C is a bounded, measurable, radial function with compact

support inside {ξ : 1/2 < |ξ| < 2}. Then K = F−1[m] is radial, and so we may

write K(·) = κ(| · |) for some κ : R → C. Fix a radial Schwartz function η0 such

that η̂0(ξ) = 1 on supp(m) and such that η0 has Fourier support in {1/4 < |ξ| < 4}.

Set η = F−1[(ψ̂)−1η̂0]. We have K ∗ f = η ∗ ψ ∗ K ∗ f . Let K0 = Kχ{x: |x|61} and

write K = K0 + K∞. Since ‖K0‖1 . ‖K‖p, it suffices to show that the operator

f 7→ η ∗ ψ ∗K∞ ∗ f is restricted strong type (p, p) with operator norm .p ‖K‖p. Let E

be a measurable set of finite measure, and suppose that |f | 6 χE. We may write

ψ ∗K∞ ∗ f =

∫ ∞
1

∫
ψ ∗ σr(· − y)κ(r)f(y) dy dr.
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By Corollary 2.2.3, we have

‖η ∗ ψ ∗K∞ ∗ f‖p

.p ‖ψ ∗K∞ ∗ f‖p .p

(∫
|κ(r)|pr2 dr

)1/p(∫
|χE(y)|p dy

)1/p

,

which implies the result of Theorem 2.1.1.

2.3 Proof of the L2 inequality

We have shown in the Section 2.2 that to prove our main result Theorem 2.1.1 it remains

to prove Lemma 2.2.4, and this section is dedicated to the proof of that lemma. The proof

will rely on a geometric lemma about sizes of multiple intersections of three-dimensional

annuli, which is stated and proved in Section 2.4.

Estimates for scalar products

In order to obtain the desired L2 estimate, we need to examine pairwise interactions

of the form 〈Fy,r, Fy′,r′〉. By applying Plancherel’s Theorem and writing F̂y,r and F̂y′,r′

as expressions involving Bessel functions, the authors of [28] obtained the following

estimates for | 〈Fy,r, Fy′,r′〉 |.

Lemma 2.3.1. For any choice of r, r′ > 1 and y, y′ ∈ R3

| 〈Fy,r, Fy′,r′〉 | .
(rr′)

(1 + |y − y′|+ |r − r′|)
.

The proof of this lemma used only the decay and not the oscillation of the Bessel

functions. The authors of [28] noted that by also exploiting the oscillation of the Bessel
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functions one may obtain the following improved bounds, which are crucial for our

purposes. The following lemma was noted but not used in [28].

Lemma 2.3.2. For any choice of r, r′ > 1 and y, y′ ∈ R3 and any N > 0,

| 〈Fy,r, Fy′,r′〉 | 6 CN(rr′)(1 + |y − y′|+ |r − r′|)
∑
±,±

(1 + |r ± r′ ± |y − y′||)−N .

Another preliminary reduction

Recall that our goal is to estimate the L2 norm of Gu =
∑

k>0Gu,k. Let N(u) be a

sufficiently large number to be chosen later (it will be some harmless constant depending

on u that is essentially O(log(2+u))). As in [28], we split the sum in k as
∑

k6N(u) Gu,k+∑
k>N(u) Gu,k and apply Cauchy-Schwarz to obtain∥∥∥∥∥∑

k

Gu,k

∥∥∥∥∥
2

2

. N(u)

[∑
k

‖Gu,k‖2
2 +

∑
k>k′>N(u)

| 〈Gu,k′ , Gu,k〉 |
]
. (2.6)

We may thus separately estimate
∑

k ‖Gu,k‖2
2 and

∑
k>k′>N(u) | 〈Gu,k′ , Gu,k〉 |, which di-

vides the proof of the L2 estimate into two cases, the first being the case of “comparable

radii” and the second being the case of “incomparable radii.”

Comparable radii

We will first estimate
∑

k ‖Gu,k‖2
2. Our goal will be to prove the following lemma.

Lemma 2.3.3. For every ε > 0,

‖Gu,k‖2
2 .ε 22k(#Ek)u11/13+ε. (2.7)
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Fix k and u. As in [28], we first observe that for (y, r), (y′, r′) ∈ Ek(u), we have

〈Fy,r, Fy′,r′〉 = 0 unless |(y, r) − (y′, r′)| 6 2k+5. To estimate ‖Gu,k‖2
2 for a fixed k, we

would thus like to bound

∑
(y,r),(y′,r′)∈Ek(u)

2m6|(y,r)−(y′,r′)|62m+1

| 〈Fy,r, Fy′,r′〉 |

for all 0 6 m 6 k + 4.

Now fix m 6 k + 4. Let Qu,k,m be a collection of almost disjoint cubes Q ⊂ R4

of sidelength 2m+5 such that Ek(u) ⊂
⋃
Q∈Qu,k,m Q and so that every Q has nonempty

intersection with Ek(u). Let Q∗ denote the 25-dilate of Q and Q∗u,k,m the corresponding

collection of dilated cubes. Observe that

‖Gu,k‖2
2 .

∑
06m6k+4

( ∑
(y,r),(y′,r′)∈Ek(u)

2m6|(y,r)−(y′,r′)|62m+1

| 〈Fy,r, Fy′,r′〉 |+
∑

(y,r)∈Ek(u)

‖Fy,r‖2
2

)

.
∑

06m6k+4

( ∑
Q∈Qu,k,m

( ∑
(y,r),(y′,r′)∈(Ek(u)∩Q∗)
2m6|(y,r)−(y′,r′)|62m+1

| 〈Fy,r, Fy′,r′〉 |
)

+
∑

(y,r)∈Ek(u)

‖Fy,r‖2
2

)
. (2.8)

Now we introduce some terminology that will be useful. For a subset S ⊂ Y × R,

define its Y- and R-projections by

SY = {y ∈ Y : ∃ (y, r) ∈ S}

and

SR = {r ∈ R : ∃ (y, r) ∈ S}.

Also define the product-extension S× of S ⊂ Y × R to be the set SY × SR. We also

define some parameters associated with a fixed Q ∈ Qu,k,m. Let NR,Q be the cardinality
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of the R-projection of Ek ∩Q∗, i.e.

NR,Q := #((Ek ∩Q∗)R) = #{r : ∃(y, r) ∈ Ek ∩Q∗}.

Similarly define

NY,Q := #((Ek ∩Q∗)Y ) = #{y : ∃(y, r) ∈ Ek ∩Q∗}.

We also note the following important observation which we will use repeatedly. Using

the definition of the sets Ek(u) and the fact that Ek has product structure, one may see

that if Q ∈ Qu,k,m is such that (Ek(u) ∩Q∗) is nonempty, then

|NY,Q ·NR,Q| . |Ek ∩Q∗| . u2m. (2.9)

Now with (2.8) in mind, we will prove the following lemma.

Lemma 2.3.4. For each Q ∈ Qu,k,m, we have the estimates

∑
(y,r),(y′,r′)∈(Ek(u)∩Q∗)
2m6|(y,r)−(y′,r′)|62m+1

| 〈Fy,r, Fy′,r′〉 |

. NR,Q(#(Ek ∩Q∗))22(k−m/2)(m log(u)) max(u5/625m/6, u2m/2) (2.10)

and

∑
(y,r),(y′,r′)∈(Ek(u)∩Q∗)
2m6|(y,r)−(y′,r′)|62m+1

| 〈Fy,r, Fy′,r′〉 | . 22(k−m/2)(#(Ek ∩Q∗))u2m(NR,Q)−1. (2.11)

We will then choose the better estimate from Lemma 2.3.4 depending on NR,Q and

sum over all Q ∈ Qu,k,m and then over all m > ua where a is a number to be chosen

later. We will then use other methods to deal with the case m 6 ua, from which we will

then obtain Lemma 2.3.3.
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Proof of Lemma 2.3.4. We will first prove (2.10). By incurring a factor of N2
R,Q, to

estimate
∑

(y,r),(y′,r′)∈(Ek(u)∩Q∗)
2m6|(y,r)−(y′,r′)|62m+1

| 〈Fy,r, Fy′,r′〉 | it suffices to estimate for a fixed pair r1, r2

∑
(y,r1),(y′,r2)∈(Ek(u)×∩Q∗)
2m6|(y,r1)−(y′,r2)|62m+1

| 〈Fy,r, Fy′,r′〉 |,

i.e. to restrict (y, r) and (y′, r′) to lie in fixed rows of the product-extension of Ek(u)∩Q∗.

(Our estimates will not depend on the particular choice of r1 and r2.)

Now, referring to the estimate in Lemma 2.3.2, we see that for a fixed y, r1, r2 we

have that | 〈Fy,r1 , Fy′,r2〉 | decays rapidly as y′ moves away from the set {y′ : |y − y′| =

|r1 − r2| or |y − y′| = r1 + r2}, which is contained in a union of two annuli of thickness

2 and radii |r1 − r2| and r1 + r2 centered at y.

Let s > 0, fix t 6 2m+10, and define Kk(Q, s, t) to be the number of points y ∈

(Ek(u) ∩Q∗)Y such that there are > 2s many points y′ ∈ (Ek ∩Q∗)Y such that y′ lies in

the annulus of inner radius t and thickness 3 centered at y. That is, define

Kk(Q, s, t) := #{y ∈ (Ek(u) ∩Q∗)Y : there exists at least 2s many points

y′ ∈ (Ek ∩Q∗)Y such that ||y′ − y| − (t+ 1.5)| 6 1.5}.

In view of the observation in the previous paragraph, for a given s and a fixed number

t 6 2m+10, we would like to prove a bound on Kk(Q, s, t). Our bound will depend on

s and m but be independent of the choice of t 6 2m+10. For this reason, we define the

quantity

K∗k(Q, s) := max
06t62m+10

Kk(Q, s, t),

and we will see that K∗k(Q, s) satisfies the same bound we prove for Kk(Q, s, t). Our

bound for Kk(Q, s, t) will decay as 2s gets larger and closer to NY,Q; in other words,
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“most” of the points y in (Ek(u) ∩Q∗)Y cannot have a large proportion of other points

in (Ek ∩ Q∗)Y lie in the annulus of inner radius t and thickness 3 centered at y. If we

take t = |r1 − r2| or t = r1 + r2, we see that this implies that “most” of the Fy,r with

(y, r) ∈ (Ek(u) ∩ Q∗)Y × {r1} do not “interact badly” (where by badly we mean to the

worst possible extent allowed by Lemma 2.3.2, i.e. tangencies of annuli) with most of

the other Fy′,r′ where (y′, r′) ∈ (Ek ∩ Q∗)Y × {r2}. This will allow us to obtain (2.10),

which is a good estimate in the case that NR,Q is small.

More precisely, we will prove

K∗k(Q, s) . max[u2mN
5/3
Y,Q2−2s, u2m/2NY,Q2−s]. (2.12)

Combining this with the trivial bound K∗k(Q, s) . NY,Q yields

K∗k(Q, s) . max[min(u2mN
5/3
Y,Q2−2s, NY,Q),min(u2m/2NY,Q2−s, NY,Q)]. (2.13)

Note that (2.12) gives decay in the number of points K∗k(Q, s) (i.e. K∗k(Q, s)� NY,Q) if

we have that

1. N
5/3
Y,Q2−2su2m � NY,Q, i.e. if 2s � N

1/3
Y,Qu

1/22m/2, and also

2. NY,Q2−su2m/2 � NY,Q, i.e. if 2s � u2m/2.
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Using Lemma 2.3.2, we may bound

∑
(y,r),(y′,r′)∈(Ek(u)∩Q∗)
2m6|(y,r)−(y′,r′)|62m+1

| 〈Fy,r, Fy′,r′〉 |

.
∑

r1,r2∈(Ek(u)∩Q∗)R

( ∑
y,y′∈(Ek(u)∩Q∗)Y

2m6|(y,r1)−(y′,r2)|62m+1

| 〈Fy,r1 , Fy′,r2〉 |
)

. 22(k−m/2)
∑

r1,r2∈(Ek(u)∩Q∗)R

( ∑
06a6m+10

( ∑
y∈(Ek(u)∩Q∗)Y

∑
y′∈(Ek(u)∩Q∗)Y :

min±,±(1+|r1±r2±|y−y′||)≈2a

2−aN
))

. 22(k−m/2)
∑

r1,r2∈(Ek(u)∩Q∗)R

( ∑
06a6m+10

2−aN
( ∑
s>0:2s62NY,Q

K∗k(Q, s)2s
))

. 22(k−m/2)N2
Q,R

∑
s>0:2s62NY,Q

K∗k(Q, s)2s. (2.14)

Assuming (2.13) holds, we have

∑
(y,r),(y′,r′)∈(Ek(u)∩Q∗)
2m6|(y,r)−(y′,r′)|62m+1

| 〈Fy,r, Fy′,r′〉 |

. N2
R,Q22(k−m/2)

∑
s>0:2s.NY,Q

max[min(u2mN
5/3
Y,Q2−s, NY,Q2s),

min(u2m/2NY,Q, NY,Q2s)]

. N2
R,Q22(k−m/2) max

{ ∑
s>0:2s.NY,Q

min(u2mN
5/3
Y,Q2−s, NY,Q2s);

∑
s>0:2s.NY,Q

min(u2m/2NY,Q, NY,Q2s)

}
(2.15)

Now, note that u2mN
5/3
Y,Q2−s > NY,Q2s if and only if 2s 6 u1/22m/2N

1/3
Y,Q. Thus choosing

the better estimate in the term min(u2mN
5/3
Y,Q2−s, NY,Q2s) depending on s yields that

∑
s>0:2s.NY,Q

min(u2mN
5/3
Y,Q2−s, NY,Q2s) . u1/22m/2N

4/3
Y,Q.
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Note that u2m/2NY,Q > NY,Q2s if and only if 2s 6 u2m/2. Thus choosing the better

estimate in the term min(u2m/2NY,Q, NY,Q2s) depending on s yields that

∑
s>0:2s.NY,Q

min(u2m/2NY,Q, NY,Q2s) . log(NY,Q)NY,Q u2m/2.

It follows that the left hand side of (2.15) is bounded by

N2
R,Q22(k−m/2)NY,Q log(NY,Q) max(N

1/3
Y,Qu

1/22m/2, u2m/2)

. N2
R,Q22(k−m/2)NY,Q(m log(u)) max(u5/625m/6, u2m/2)

. NR,Q(#(Ek ∩Q∗))22(k−m/2)(m log(u)) max(u5/625m/6, u2m/2), (2.16)

which proves (2.10). This will be a good estimate when NR,Q is small.

Thus to prove (2.10) it remains to prove (2.12). We will in fact prove (2.12) with

K∗k(Q, s) replaced by Kk(Q, s, t), uniformly in t 6 2m+10. Fix t 6 2m+10 and let j =

dlog2(t)e and cover (Ek(u) ∩ Q∗)Y by . 23(m−j) many 3-dimensional almost disjoint

balls of radius 2j+5; denote this collection of balls as B = {Bi}. For each i, we define a

collection of “special” points Ak,i(Q, s, t) to be the set of all points y ∈ (Ek(u)∩Q∗)Y ∩Bi

such that there are > 2s many points y′ ∈ (Ek ∩Q∗)Y such that y′ lies in the annulus of

radius t and thickness 3 centered at y. That is, we define

Ak,i(Q, s, t) := {y ∈ (Ek(u) ∩Q∗)Y ∩Bi : there exist at least 2s many points

y′ ∈ (Ek ∩Q∗)Y such that ||y′ − y| − (t+ 1.5)| 6 1.5}.

Let Kk,i(Q, s, t) denote the cardinality of Ak,i(Q, s, t). Now cover each Bi with . 23(j−l)

many almost disjoint 3-dimensional balls Bi,j of radius 2l for some l 6 j. Each such

ball contains at most u2l many points of Ak,i(Q, s, t), so for a fixed i there must be at

least & Kk,i(Q, s, t)(u2l)−1 many balls Bi,j that contain at least one point in Ak,i(Q, s, t).
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Thus there must be at least & Kk,i(Q, s, t)(u2l)−1 many such points in Bi ∩Ak,i(Q, s, t)

spaced apart by & 2l; call this set Dk,i(Q, s, t). But by Lemma 2.4.1, which we prove

later in Section 2.4 of the chapter, the size of three-fold intersections of annuli of radius

t ≈ 2j and thickness 3 spaced apart by ≈ 2l with centers lying a ball of radius 2j−5 is

bounded above by 23(j−l) provided that l > j/2 + 20.

It follows that if l > j/2 + 20, then for each of these ≈ Kk,i(Q, s, t)(u2l)−1 many

points p ∈ Dk,i(Q, s, t), there can be at most

. Kk,i(Q, s, t)
2(u2l)−223(j−l)

points lying inside the t-annulus centered at p that are simultaneously contained in at

least two other different t-annuli centered at points in Dk,i(Q, s, t). This implies that if

NY,Q,i denotes the cardinality of (Ek ∩Q∗)Y ∩B∗i where B∗i = 10Bi, then we have

NY,Q,i & Kk,i(Q, s, t)(u2l)−12s, (2.17)

which is essentially 2s times the number of points in Dk,i(Q, s, t), provided that 2s is

much bigger than the total number of points lying inside a t-annulus centered at p that

are simultaneously contained in at least two other different t-annuli centered at points

in Dk,i(Q, s, t), i.e. provided that

Kk,i(Q, s, t)
2(u2l)−223(j−l) � 2s (2.18)

and

l > j/2 + 20.

Solving for 2l in (2.18) yields

2l � Kk,i(Q, s, t)
2/523j/5u−2/52−s/5. (2.19)
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Thus choosing a minimal l such that

2l � max(Kk,i(Q, s, t)
2/523j/5u−2/52−s/5, 2j/2)

for a sufficiently large implied constant and substituting into (2.17) yields

Kk,i(Q, s, t) . max[u2mN
5/3
Y,Q,i2

−2s, u2m/2NY,Q,i2
−s], (2.20)

and summing over all i and using the almost-disjointness of the B∗i gives

Kk(Q, s, t) . max[u2mN
5/3
Y,Q2−2s, u2m/2NY,Q2−s]. (2.21)

Taking the maximum over all 0 6 t 6 2m+10 proves (2.12) and hence also (2.10).

It remains to prove (2.11), which will be a good estimate in the case that NR,Q is

large. For a fixed (y, r) ∈ Q∗ and a fixed y′ ∈ (Ek(u) ∩ Q∗)Y , there are at most two

values of r′ away from which 〈Fy,r, Fy′,r′〉 decays rapidly. Thus using Lemma 2.3.2 we

may estimate∑
(y,r),(y′,r′)∈(Ek(u)∩Q∗)
2m6|(y,r)−(y′,r′)|62m+1

| 〈Fy,r, Fy′,r′〉 |

.
∑

06a6m+10

( ∑
(y,r)∈(Ek(u)∩Q∗)

( ∑
y′∈(Ek(u)∩Q∗)Y

( ∑
r′∈(Ek(u)∩Q∗)R

2m6|(y,r)−(y′,r′)|62m+1

min±,±(1+|r±r′±|y−y′||)≈2a

2−Na22(k−m/2)

)))

. 22(k−m/2)(#(Ek(u) ∩Q∗))NY,Q . 22(k−m/2)(#(Ek(u) ∩Q∗))u2m(NQ,R)−1, (2.22)

and the proof of (2.11) is complete.

We will now use Lemma 2.3.4 to prove Lemma 2.3.3.

Proof of Lemma 2.3.3. Fix an a > 0 to be determined later. As in [28], we split Gu,k =∑
µGu,k,µ, where for each positive integer µ we set

Ik,µ = [2k + (µ− 1)ua, 2k + µua),
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Ek,µ(u) = Ek(u) ∩ (Y × Ik,µ),

Gu,k,µ =
∑

(y,r)∈Ek,µ(u)

c(y, r)Fy,r,

and

Gu,k,µ,r =
∑

y: (y,r)∈Ek,µ(u)

c(y, r)Fy,r.

We have

‖Gu,k‖2
2 .

∥∥∥∥∥∑
µ

Gu,k,µ

∥∥∥∥∥
2

2

.
∑
µ

‖Gu,k,µ‖2
2 +

∑
µ′>µ+10

| 〈Gu,k,µ′ , Gu,k,µ〉 |. (2.23)

By Cauchy-Schwarz,

‖Gu,k,µ‖2
2 . ua

∑
r∈Ik,µ∩R

‖Gu,k,µ,r‖2
2 .

Write

Gu,k,µ,r =

( ∑
y: (y,r)∈Ek,µ(u)

c(y, r)ψ0(· − y)

)
∗ (σr ∗ ψ0).

By the Fourier decay of σr and the order of vanishing of ψ0 at the origin, we have

∥∥∥σ̂rψ̂0

∥∥∥
∞

. r.

Since the square of the L2 norm of
∑

y: (y,r)∈Ek,µ(u) c(y, r)ψ0(·−y) is . #{y ∈ Y : (y, r) ∈

Ek,µ(u)}, we have

∑
µ

‖Gu,k,µ‖2
2 . ua

∑
µ

∑
r∈Ik,µ∩R

‖Gu,k,µ,r‖2
2 . ua22k#Ek. (2.24)
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By (2.23), it remains to estimate
∑

µ′>µ+10 | 〈Gu,k,µ′ , Gu,k,µ〉 |.

Fix ε > 0. We will use (2.10) when NR,Q 6 2mε min(u1/12+a/12, ua/4) and (2.11) when

NR,Q > 2mε min(u1/12+a/12, ua/4). We write

∑
(y,r),(y′,r′)∈Ek(u)
|(y,r)−(y′,r′)|>ua

| 〈Fy,r, Fy′,r′〉 |

.
∑

m: 2m>ua

( ∑
(y,r),(y′,r′)∈Ek(u)
|(y,r)−(y′,r′)|≈2m

( ∑
Q∈Qu,k,m

NR,Q62mε min(u1/12+a/12,u1/4)

| 〈Fy,r, Fy′,r′〉 |

+
∑

Q∈Qu,k,m
NR,Q>2mε min(u1/12+a/12,u1/4)

| 〈Fy,r, Fy′,r′〉 |
))

.

One sees that

∑
(y,r),(y′,r′)∈Ek(u)
|(y,r)−(y′,r′)|>ua

| 〈Fy,r, Fy′,r′〉 | . I + II, (2.25)

where using (2.10) when NR,Q 6 2mε min(u1/12+a/12, ua/4) and summing over all Q ∈

Qu,k,m and over all m such that 2m > ua we have

I := 22k(#Ek) log(u)

×
∑

m:2m>ua

uε max

{
2−m/6+ε min(u11/12+a/12, u5/6+a/4),

2−m/2+ε min(u13/12+a/12, u1+a/4)

}
. 22k(#Ek)uε max

{
u−a/6 min(u11/12+a/12, u5/6+a/4),

u−a/2 min(u13/12+a/12, u1+a/4)

}
, (2.26)

and using (2.11) when NR,Q > 2mε min(u1/12+a/12, ua/4) and summing over all Q and
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over all m such that 2m > ua we have

II := 22k(#Ek)uε
∑

m:2m>ua

2−mε max(u11/12−a/12, u1−a/4)

.ε 22k(#Ek)uε max(u11/12−a/12, u1−a/4). (2.27)

Combining (2.23), (2.24) and (2.25), we thus have the estimate

‖Gu,k‖2
2 .ε 22k(#Ek)

[
ua + uε max

{
u−a/6 min(u11/12+a/12, u5/6+a/4),

u−a/2 min(u13/12+a/12, u1+a/4)

}
+ uε max(u11/12−a/12, u1−a/4)

]
.

Choose a = 11/13 to obtain

‖Gu,k‖2
2 .ε 22k(#Ek)u11/13+ε

for every ε > 0, which is (2.7).

Incomparable radii

We now want to estimate
∑

k>k′>N(u) | 〈Gu,k′ , Gu,k〉 |. Our estimate will be much better

than in the comparable radii case. In view of (2.6), we will in fact prove the following.

Lemma 2.3.5. Let ε > 0. For the choice N(u) = 100ε−1 log2(2 + u), we have

∑
k>k′>N(u)

| 〈Gu,k′ , Gu,k〉 | .ε

∑
k

22k#Ek. (2.28)

Fix u and k. Similar to the case of comparable radii, the first step is to cover Ek(u) by

a collectionQu,k of almost-disjoint cubesQ of sidelength 2k+5. By the almost-disjointness

of the cubes, is enough to estimate | 〈Gu,k′ , Gu,k〉 | when we restrict our points in Ek(u)

and Ek′(u) to points in a fixed Q∗ and get an estimate in terms of #(Ek∩Q∗), after which
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we may sum in Q ∈ Qu,k. So fix such a cube Q, and let NR,Q,k denote the cardinality of

(Ek ∩Q∗)R and for a fixed k′, let NR,Q,k′ denote the cardinality of (Ek′ ∩Q∗)R. Similarly,

let NY,Q,k denote the cardinality of (Ek ∩Q∗)Y and for a fixed k′, let NY,Q,k′ denote the

cardinality of (Ek′ ∩Q∗)Y . Next, we prove a lemma that plays a role similar to Lemma

2.3.4 in the comparable radii case.

Lemma 2.3.6. For each Q ∈ Qu,k, we have the estimates

∑
(Y,R)∈Ek(u)∩Q∗

∑
(y,r)∈Ek′ (u)∩Q∗

| 〈FY,R, Fy,r〉 | . R2#(Ek ∩Q∗)u(NR,Q,k′)
−1 (2.29)

and

∑
(Y,R)∈Ek(u)∩Q∗

∑
(y,r)∈Ek′ (u)∩Q∗

| 〈FY,R, Fy,r〉 |

. NR,Q,k′(#(Ek ∩Q∗))2k(k log(u)) max(u5/625k/6, u2k/2). (2.30)

Proof of Lemma 2.3.6. We will first prove (2.29), which will be a good estimate in the

case that NR,Q,k′ is large. For each (Y,R) ∈ (Ek(u) ∩ Q∗) we need only consider y ∈

(Ek′(u) ∩ Q∗)Y lying in an annulus of width 2k
′+5 built upon the sphere of radius R

centered at Y in R3. Cover the intersection of this annulus with (Ek′(u) ∩ Q∗)Y by a

collection C of . R22−2k′ 3-dimensional cubes C of sidelength 2k
′+3 in R3 such that each

C ∩ (Ek′(u) ∩ Q∗)Y is nonempty. For each C ∈ C, let C̃ denote the 4-dimensional cube

C̃ = C × [2k
′ − 2k

′+2, 2k
′
+ 2k

′+2], and let C̃ denote the corresponding collection of cubes

C̃. Now note that C∩(Ek′(u)∩Q∗)Y nonempty implies that (C̃∩Ek′∩Q∗)R = (Ek′∩Q∗)R,

and also that #(C̃ ∩ Ek′) . u2k
′
, and hence by the product structure of C̃ ∩ Ek′ ∩Q∗,

#((C̃ ∩ Ek′ ∩Q∗)Y ) . #(C̃ ∩ Ek′)(#(C̃ ∩ Ek′ ∩Q∗)R)−1 . u2k
′
(NR,Q,k′)

−1. (2.31)
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Next, note that for a fixed Y ∈ (Ek ∩ Q∗)Y , a fixed R ∈ (Ek ∩ Q∗)R, and a fixed

y ∈ (Ek′ ∩Q∗)Y , Lemma 2.3.2 gives rapid decay for | 〈FY,R, Fy,r〉 | as r moves away from

two possible values of r′, that is, when r moves far away from r′ = R − |Y − y| and

r′ = |Y − y| − R. For these values of r′ we have | 〈FY,R, Fy,r′〉 | . 2k
′
. Using (2.31) and

our bound on the size of the collection C, we thus have

∑
(Y,R)∈Ek(u)∩Q∗

∑
(y,r)∈Ek′ (u)∩Q∗

| 〈FY,R, Fy,r〉 |

.
∑

(Y,R)∈Ek∩Q∗

(∑
C̃∈C̃

( ∑
(y,r)∈Ek′∩Q∗∩C̃

| 〈FY,R, Fy,r〉 |
))

.
∑

(Y,R)∈Ek∩Q∗

(∑
C̃∈C̃

( ∑
y∈(Ek′∩Q∗∩C̃)Y

( ∑
a∈Z,a>0( ∑

r∈(Ek′∩Q∗)R
max(|r′−r+|Y−y′||,|r′+r−|Y−y||)≈2a

2−aN2k
′
))))

. R2#(Ek ∩Q∗)(NR,Q,k′)
−1u,

which is (2.29).

Now we prove (2.30), which is the estimate that we will use in the case that NR,Q,k′

is small. This estimate is similar to (2.10), and the proof is very similar with only minor

modifications, but we give all the details anyways.

By incurring a factor of NR,Q,k ·NR,Q,k′ , to estimate

∑
(Y,R)∈Ek(u)∩Q∗

∑
(y,r)∈Ek′ (u)∩Q∗

| 〈FY,R, Fy,r〉 |,

it suffices to estimate for a fixed pair r1 ∈ (Ek ∩Q∗)R and r2 ∈ (Ek′ ∩Q∗)R

∑
(Y,r1)∈Ek∩Q∗

∑
(y,r2)∈Ek′∩Q∗

| 〈FY,r1 , Fy,r2〉 |.
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Similar to the proof of (2.10), for s > 0, let N ′Y,Q,k = 2s 6 NY,Q,k be a given dyadic

number. Fix t 6 2k+10, and define Kk,k′(Q, s, t) to be the number of points y ∈ (Ek(u)∩

Q∗)Y such that there are > N ′Y,Q,k = 2s many points y′ ∈ (Ek′ ∩Q∗)Y such that y′ lies in

the annulus of inner radius t and thickness 3 centered at y. That is, define

Kk,k′(Q, s, t) := #{y ∈ (Ek(u) ∩Q∗)Y : there exists at least 2s many points

y′ ∈ (Ek′ ∩Q∗)Y such that ||y′ − y| − (t+ 1.5)| 6 1.5}.

Also define

K∗k,k′(Q, s) := max
06t62k+10

Kk,k′(Q, s, t).

Note that the product structure of E implies that if both Ek ∩ Q∗ and Ek′ ∩ Q∗ are

nonempty, then their Y-projections are equal, and so (2.13) implies the bound

Kk,k′(Q, s, t) . max

{
min(u2kN

5/3
Y,Q,k2

−2s, NY,Q,k),min(u2k/2NY,Q,k2
−s, NY,Q,k)

}
.

(2.32)

Using Lemma 2.3.2, we may bound

∑
(Y,R)∈(Ek(u)∩Q∗)
(y,r)∈(Ek′ (u)∩Q∗)

| 〈FY,R, Fy,r〉 |

.
∑

r1∈(Ek(u)∩Q∗)R
r2∈(Ek′ (u)∩Q∗)R

( ∑
Y ∈(Ek(u)∩Q∗)Y
y∈(Ek′∩Q∗)Y

| 〈FY,r1 , Fy,r2〉 |
)

. 2k
∑

r1∈(Ek(u)∩Q∗)R
r2∈(Ek′ (u)∩Q∗)R

( ∑
06a6m+10

( ∑
Y ∈(Ek(u)∩Q∗)Y

∑
y∈(Ek′∩Q∗)Y :

min±,±(1+|r1±r2±|y−y′||)≈2a

2−aN
))

. 2k
∑

r1∈(Ek(u)∩Q∗)R
r2∈(Ek′ (u)∩Q∗)R

( ∑
06a6m+10

2−aN
( ∑
s>0:2s62NY,Q,k

K∗k,k′(Q, s)2
s

))

. 2kNR,Q,kNR,Q,k′

∑
s>0:2s62NY,Q,k

K∗k,k′(Q, s)2
s. (2.33)
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Applying (2.32), we have

∑
(Y,R)∈(Ek(u)∩Q∗)
(y,r)∈(Ek′ (u)∩Q∗)

| 〈FY,R, Fy,r〉 |

. NR,Q,kNR,Q,k′2
k

∑
s>0:2s.NY,Q,k

max

{
min(u2kN

5/3
Y,Q,k2

−s, NY,Q,k2
s),

min(u2k/2NY,Q,k, NY,Q,k2
s)

}
. (2.34)

Now, note that u2kN
5/3
Y,Q2−s > NY,Q2s if and only if 2s 6 u1/22k/2N

1/3
Y,Q. Also note that

u2k/2NY,Q,k > NY,Q,k2
s if and only if 2s 6 u2k/2. Thus choosing the better estimate in

the term min(u2mN
5/3
Y,Q2−s, NY,Q2s) depending on s and the better estimate in the term

min(u2k/2NY,Q,k, NY,Q,k2
s) yields that the left hand side of (5.20) is bounded by

NR,Q,kNR,Q,k′2
kNY,Q,k log(NY,Q,k) max(N

1/3
Y,Q,ku

1/22k/2, u2k/2). (2.35)

Using NY,Q,k . u2k, (2.35) is bounded by

NR,Q,kNR,Q,k′2
kNY,Q,k(k log(u)) max(u5/625k/6, u2k/2)

. NR,Q,k′(#(Ek ∩Q∗))2k(k log(u)) max(u5/625k/6, u2k/2),

which completes the proof of (2.30).

Proof of Lemma 2.3.5. Fix ε > 0, and set N(u) = 100ε−1 log2(2 + u). We apply (2.29)

when NR,Q,k′ > 2k
′ε and (2.30) when NR,Q,k′ 6 2k

′ε, and then we sum over N(u) < k′ < k

for k fixed to obtain

∑
N(u)<k′<k
k fixed

∑
(Y,R)∈Ek(u)∩Q∗

∑
(y,r)∈Ek′ (u)∩Q∗

| 〈FY,R, Fy′,r′〉 |

.ε R
2#(Ek ∩Q∗) max(1, log(u)u5/62−k/6+ε, log(u)u2−k/2+ε). (2.36)
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Next we sum over Q ∈ Qu,k and k > N(u) to obtain

∑
k

∑
Q∈Qu,k

∑
N(u)<k′<k
k fixed

∑
(Y,R)∈Ek(u)∩Q∗

∑
(y,r)∈Ek′ (u)∩Q∗

| 〈FY,R, Fy′,r′〉 |

.ε

∑
k

22k#Ek. (2.37)

We have thus shown that for the choice N(u) = 100ε−1 log2(2 + u), we have

∑
k>k′>N(u)

| 〈Gu,k′ , Gu,k〉 | .ε

∑
k

22k#Ek.

Putting it together

Combining (2.6), (2.7) and (2.28), we have that for every ε > 0,

‖Gu‖2
2 =

∥∥∥∥∥∑
k

Gu,k

∥∥∥∥∥
2

2

.ε log2(2 + u)
∑
k

22k(#Ek)u11/13+ε. (2.38)

This completes the proof of Lemma 2.2.4 and hence the proof of Proposition 2.2.2.

2.4 A geometric lemma

In this section we prove the geometric lemma used in the previous section.

Lemma 2.4.1. Fix integers j, l with l 6 j. Let 2j−1 6 t 6 2j+1. Then the size of the

intersection of three annuli in R3 of thickness 4 and inner radius t such that the distance

between the centers of any pair is at least 2l and no greater than 2j/10 is . 23(j−l),

provided that l > j/2 + 10.
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We will use the following basic lemma which gives an estimate on the size of in-

tersections of two-dimensional annuli. This is an immediate corollary of Lemma 3.1

in [57].

Lemma D. Let A1 and A2 be two annuli in R2 of thickness 1 built upon circles C1

and C2 of radius R, and let d denote the distance between the centers of C1 and C2. If

d 6 R/5, then A1 ∩ A2 is contained in the 10-neighborhood of two arcs of C1 of length

. R/d.

x1 x2

x3

x′3 `1,2

`1,3

y1,2 y1,3

y′1,3

Figure 1

The circles C1, C2, C3, and C ′3 in the plane P , from the proof of Lemma 2.4.1. The shaded-in circle is

C1, the thick circle is C2, the dashed circle is C3, and the remaining circle is C ′3.

Proof of Lemma 2.4.1. Let A1, A2, A3 denote the three annuli. Let `1,2 denote the line

through the centers of A1 and A2, and let `1,3 denote the line through the centers of A1

and A3. Let P be any plane containing both `1,2 and `1,3. Then A1 ∩ A2 is the three

dimensional solid formed by rotating the intersection of the two (circular) annuli A1∩P

and A2 ∩ P about the line `1,2. Similarly, A1 ∩A3 is the three dimensional solid formed

by rotating the intersection of the two (circular) annuli A1 ∩ P and A3 ∩ P about the
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line `1,3.

Now, by Lemma D, A1 ∩ A2 ∩ P is contained in the 10-neighborhood of two arcs

of length . 2j−l of the circle that A1 ∩ P is built upon. Rotating A1 ∩ A2 ∩ P about

the line `1,2 to get A1 ∩ A2, this implies that A1 ∩ A2 is the union of . 2j−l many

10-neighborhoods of circles of radius . 2j lying in planes normal to the line `1,2. The

same holds for A1 ∩ A3 with `1,2 replaced by `1,3. Suppose first that the angle between

`1,2 and `1,3 is > 2l−j−3, in radians. Then |A1 ∩ A2 ∩ A3| is bounded by . 22(j−l) times

the largest possible size of the intersection of two 10-neighborhoods of circular annuli,

where the first lies in a plane normal to `1,2 and the second lies in a plane normal to `1,3.

One computes that the largest possible size of such an intersection is . 2j−l.

It remains to consider the case when the angle between `1,2 and `1,3 is < 2l−j−3, in

radians. We now define the following coordinates associated to the lines `1,2 and `1,3.

Let x1, x2, x3 denote the centers of A1, A2, A3 respectively. For x ∈ R3, we define the

`1,2-coordinate

(x)1,2 =
〈x− x1, x2 − x1〉
|x2 − x1|

.

Similarly define the `1,3-coordinate

(x)1,3 =
〈x− x1, x3 − x1〉
|x3 − x1|

.

By interchanging the order of A1, A2, A3, we may assume without loss of generality that

(x3)1,2 > (x2)1,2 = 1. We will show that l > j/2 + 10 implies that A1 ∩ A2 and A2 ∩ A3

are actually disjoint. Observe that since the angle between `1,2 and `1,3 is < 2l−j−3,

we have that (x3 − x2)1,2 > 2l−1. Now, let x′3 be the closest point on the line `1,2

whose distance from x1 is the same as the distance from x1 to x3. Clearly, we also have
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(x′3−x2)1,2 > 2l−1. Let C3 be the circle in P with center at x3 and radius t and let C ′3 be

the circle in P with center at x′3 and radius t. Then if y′1,3 denotes either of the two points

in C1 ∩ C ′3 and y1,2 either of the two points in C1 ∩ C2, then (x′3 − x2)1,2 > 2l−1 implies

that (y′1,3−y1,2)1,2 > 2l−2. This is because with respect to the `1,2-coordinate, y′1,3 lies at

the midpoint of x1 and x′3 and y1,2 lies at the midpoint of x1 and x2. Note that C1 ∩C3

is the rotation within P of C1∩C ′3 by an angle of < 2l−j−3 where the rotation is based at

x1. This implies that if y1,3 is either of the two points in C1∩C3, then |y′1,3−y1,3| 6 2l−3.

It follows that (y1,3 − y1,2)1,2 > (y′1,3 − y1,2)1,2 − |y′1,3 − y1,3| > 2l−2 − 2l−3 = 2l−3.

But by Lemma D, A1 ∩ A2 is the rotation in R3 of a 10-neighborhood of an arc

of C1 of length . 2j−l that contains y1,2 about `1,2, and so A1 ∩ A2 lives in the slab

{z ∈ R3 : |(z − y1,2)1,2| 6 2j−l+4}. Similarly, A1 ∩ A3 is the rotation in R3 of a 10-

neighborhood of an arc of C1 of length . 2j−l that contains y1,3 about `1,3, and so

A1 ∩ A3 lives in the half-infinite slab {z ∈ R3 : (z − y1,3)1,2 > −2j−l+4}, and since

l > j/2 + 10 we have j − l + 4 6 l − 10. Since (y1,3 − y1,2)1,2 > 2l−3, it follows that

A1 ∩ A2 and A2 ∩ A3 are disjoint.
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Chapter 3

Bochner Riesz Means associated

with Rough Planar Domains

3.1 Introduction

The Bochner-Riesz operators Rλ are defined via the Fourier transform by

F [Rλf ](ξ) = (1− |ξ|)λ+f̂(ξ), λ > 0,

F [R0f ](ξ) = χB0(1)(ξ)f̂(ξ),

where χB0(1) denotes the characteristic function of the ball of radius 1 centered at the

origin. In two dimensions the Lp mapping properties of Rλ are completely known. As

first shown by Fefferman in [22] and later clarified by Córdoba in [18], if λ > 0 then

Rλ is bounded on Lp(R2) if and only if λ > max((|2
p
− 1| − 1

2
), 0). It was also shown

by Fefferman in [21] that R0 is bounded on Lp(R2) if and only if p = 2. One may also

consider the following generalization of the two-dimensional Bochner-Riesz operators.

Let Ω ⊂ R2 be a bounded, open convex set containing the origin, and let ρ be its

Minkowski functional, defined as

ρ(ξ) = inf{t > 0 : t−1ξ ∈ Ω}.



39

Define the generalized Bochner-Riesz operators Tλ associated to Ω by

F [Tλf ](ξ) = (1− ρ(ξ))λ+f̂(ξ), λ > 0,

F [T0f ](ξ) = χΩ(ξ)f̂(ξ),

where χΩ denotes the characteristic function of Ω. Note that in the special case that

Ω is the unit disk, Tλ is simply Rλ. We emphasize that no further regularity of ∂Ω is

assumed, and for general convex domains Ω the boundary ∂Ω need only be Lipschitz.

For domains with smooth boundary, the Lp mapping properties of Tλ were shown by

Sjölin in [50] to be identical to those of Rλ. However, for certain convex domains with

rough boundary the Lp mapping properties of Tλ may be improved. In [43], Podkorytov

showed that in the case that Ω is a polyhedron in Rd, Tλ is bounded on Lp for 1 6

p 6 ∞ and for all λ > 0. In [48], Seeger and Ziesler proved a sufficient criterion for Lp

boundedness of Bochner-Riesz multipliers associated to general convex domains in R2.

Their results depended on a parameter similar to the upper Minkowski dimension of ∂Ω,

defined by a family of “balls”, or caps, and we give a definition below. This parameter

may be thought of as measuring how “curved” the boundary of Ω is.

For any p ∈ ∂Ω, we say that a line ` is a supporting line for Ω at p if ` contains p

and Ω is contained in the half plane containing the origin with boundary `. Let T (Ω, p)

denote the set of supporting lines for Ω at p. Note that if ∂Ω is C1, then T (Ω, p) has

exactly one element, the tangent line to ∂Ω at p. For any p ∈ ∂Ω, ` ∈ T (Ω, p), and

δ > 0, define

B(p, `, δ) = {x ∈ ∂Ω : dist(x, `) < δ}. (3.1)
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Let

Bδ = {B(p, `, δ) : p ∈ ∂Ω, ` ∈ T (Ω, p)}, (3.2)

and let N(Ω, δ) be the minimum number of balls B ∈ Bδ needed to cover ∂Ω. Let

κΩ = lim sup
δ→0

logN(Ω, δ)

log δ−1
. (3.3)

It is easy to show using Cauchy-Schwarz that for any convex domain Ω, 0 6 κΩ 6 1
2
. If

∂Ω is smooth, then κΩ = 1/2. This can be seen by noting that there is a point where ∂Ω

has nonvanishing curvature, and near this point the contribution to N(Ω, δ) is ≈ δ−1/2.

We now state the main result from [48], due to Seeger and Ziesler.

Theorem A ( [48]). Suppose that 1 6 p 6 ∞, λ > 0 and λ > κΩ(4|1/p − 1/2| − 1).

Then Tλ is bounded on Lp(R2).

Note that as κΩ gets smaller, the range of p for which Tλ is bounded improves, so

for rough domains it is possible to do much better than the optimal result for domains

with smooth boundary. The authors of [48] also showed that for each κ ∈ (0, 1/2) there

is a convex domain Ω with κΩ = κ for which Theorem A is sharp.

Theorem B ( [48]). Let 0 < κ < 1/2. Then there exists a convex domain Ω with

C1, κ
(1−κ) boundary satisfying κΩ = κ so that for 1 6 p < 4/3 the operator Tλ associated

to Ω is bounded on Lp(R2) if and only if λ > κΩ(4/p− 3).

We will show that for every κ ∈ (0, 1/2) sufficiently small there exists a convex

domain Ω with κΩ = κ for which Theorem A is not sharp.

Theorem 3.1.1. Let m > 2 be an integer. Let κ ∈ (0, 1
4m−2

]. Then there exists a

convex domain Ω with κΩ = κ so that for 1 6 p 6 2m
2m−1

, Tλ is bounded on Lp(R2) if
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λ > κΩ(m+2
p
− m − 1), and for 4/3 6 p 6 4, Tλ is bounded on Lp(R2) if and only if

λ > 0.

Note that the case m = 2 above corresponds to Theorem A, and that if m > 3

Theorem 3.1.1 gives an improvement over Theorem A in the range 1 6 p < 2m
2m−1

(and

of course, in the dual range as well). Theorem 3.1.1 demonstrates that how “curved”

the boundary of a convex planar domain is, as measured by the parameter κΩ, does not

alone determine the Lp mapping properties of the associated Bochner-Riesz operators,

but rather there must be other properties of Ω that play a role. Theorem 3.1.1 also

shows that there exist domains with κΩ > 0 such that pcrit < 4/3.

In the proof of Theorem B, a crucial property of the domains constructed was that

their boundaries contained long arithmetic progressions at every scale, in the sense

that for every δ > 0 the boundary could be covered by essentially disjoint balls in

Bδ such that a large sequence of consecutive balls were essentially equally spaced in a

single coordinate direction. We now describe a simplified version of their construction,

removing the requirement that Ω has C
1,

κΩ
1−κΩ boundary in the statement of Theorem B,

as well as sharpness at the endpoint λ = κΩ(4
p
− 3). Choose a sequence of consecutive

intervals I1, I2, . . . in [0, 1] such that Ik has length 2−k(1/2−κΩ). For each k, let Ek be a

set of 2kκΩ essentially equally spaced points in Ik at a distance ≈ 2−k/2 apart. Now for

each k, let Ωk denote the convex polygon with vertices

{(−1, 1); (−1,−2); (0, 1)} ∪ {(x1, x
2
1 − 2) : x1 ∈

⋃
16j6k

Ej}.

Let Ω be the uniform limit of {Ωk} as k → ∞. Then one may show using similar

arguments to those presented in [48] in the proof of Theorem B that whenever 1 6 p <

4/3, Tλ is bounded on Lp(R2) only if λ > κΩ(4
p
− 3).
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The domains we construct to prove Theorem 3.1.1 will differ from those constructed

in [48] to prove Theorem B in in that they will exhibit “low n-additive energy” at

every scale for some n > 2. To produce such domains will require a particular kind of

“fast-branching” Cantor-type construction. We define the n-additive energy of ∂Ω as

follows.

Definition 3.1.2. Let n > 2 be an integer, and let Ω be a bounded, convex domain

in R2. Let Bδ = {B1, B2, . . . , BN(Ω,δ)} be a collection of balls in Bδ covering ∂Ω. Let

ΞBδ,n be the smallest integer such that ΞBδ,n = M2n
0 ·M1 and we may write Bδ as a

union of M0 subcollections Bδ,1 . . . ,Bδ,M0 such that for each 1 6 k 6 M0, no point of

R2 is contained in more than M1 of the sets Bi1 + · · · + Bin where Bij ∈ Bδ,k for all j.

Let Ξδ,n = minBδ(ΞBδ,n), where the minimum is taken over all collections of balls in Bδ

covering ∂Ω with card(Bδ) = N(Ω, δ). We define the n-additive energy of ∂Ω to be

En(∂Ω) = lim sup
δ→0

log(Ξn,δ)

log(δ−1)
.

As a consequence of a lemma proven in [48], we have E2(∂Ω) = 0 for all convex

domains Ω. However, general convex domains fail to satisfy En(∂Ω) = 0 for some n > 2,

but the domains we construct will have this property.

To discuss a second important property that leads to improved Lp bounds for gen-

eralized Bochner-Riesz multipliers, we first need to associate a set of directions to Ω.

Given x ∈ ∂Ω, let θx, θ
′
x be the slopes of two supporting lines at x with maximum dif-

ference in angle (note there is a unique choice of two lines). We will allow slopes to be

infinite to include the possibility of vertical lines. Note that if we choose x so that ∂Ω

may be parametrized near x by (α, γ(α)), then θx and θ′x are simply the left and right
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derivatives of γ evaluated at x. Let

Θ = Θ(Ω) = {θx, θ′x : x ∈ ∂Ω} ⊂ R ∪ {∞}.

Define a sequence of Nikodym-type maximal operators {MΘ,δ} by

MΘ,δf(x) = sup
x∈R∈Rδ

1

|R|

∫
R

f(y) dy,

where Rδ denotes the set of all rectangles of eccentricity 6 δ−1 with long side having

slope in Θ. We will be interested in how ‖MΘ,δ‖Lp→Lp behaves as δ → 0. It was shown

by Bateman in [2] that if MΘ denotes the directional maximal operator corresponding

to Θ, then MΘ is unbounded on Lp for all p such that 1 6 p < ∞ unless Θ is a union

of finitely many lacunary sets of finite order, and it is easy to show that any domain Ω

with Θ(Ω) a union of finitely many lacunary sets of finite order satisfies κΩ = 0. Thus

for all domains with κΩ > 0 we must necessarily have that ‖MΘ,δ‖Lp→Lp →∞ as δ → 0.

Definition 3.1.3. We say that Θ is p-sparse if

‖MΘ,δ‖Lp→Lp = O(δ−ε)

for every ε > 0.

It follows immediately by a theorem of Córdoba (see [16]) regarding the L2 bounds

for the Nikodym maximal function in R2 that every Θ is p-sparse for 2 6 p <∞. We will

see that if Θ(Ω) is p-sparse for some p < 2, then Tλ satisfies improved Lp bounds over

those stated in Theorem A. However, it is unclear whether the domains we construct are

p-sparse for some p < 2; hence construction of domains with κΩ > 0 that are p-sparse

for some p < 2 remains an interesting open question.
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2−κΩ
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κΩ
2

κΩ

κΩ
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κΩ(
1−6κΩ
4κΩ+2

)

Figure 2

Here we sketch λ(p) as a function of 1
p for certain convex domains, where Tλ is bounded on Lp for all

λ > λ(p). In this diagram, it is assumed that κΩ 6 1
10 . The thin solid lines correspond to the domains

constructed in [48] in the proof of Theorem B; these domains exhibit long arithmetic progressions at

every scale. The thick solid lines correspond to the domains that we construct to prove Theorem 3.1.1

using a fast-branching Cantor-type construction; these lines as drawn are only valid if κΩ = 1
4m−2 for

m > 3 an integer. The dashed lines represent lower bounds for general convex domains. That is, for

any convex domain, Tλ is unbounded on Lp if ( 1
p , λ) lies below the dashed lines.

We now formulate a general theorem on Lp mapping properties of Bochner-Riesz

means in terms of the n-additive energy of ∂Ω and the Lq-mapping properties of MΘ,δ.

Theorem 3.1.4. Let Ω be a convex domain in R2 containing the origin and let Θ be its

associated set of directions. Let n > 2 be an integer. Suppose that En(∂Ω) = α for some
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integer 0 6 α 6 nκΩ and that

‖MΘ,δ‖L n
n−1 (R2)→L

n
n−1 (R2)

6 Cεδ
−β−ε

for some 0 6 β 6 κΩ(n−2
n

) and every ε > 0. Then for 1 6 p 6 2n
2n−1

, Tλ is bounded on

Lp for λ > κΩ(2n
p
− 2n+ 1) + (α/2n+ β/2)(2np−2n

p
).

Note that if n = 2 we recover Theorem A. One may check that if n > 2, α = 0 and

β = κΩ(n−2
n

) (i.e. β is obtained by interpolating Córdoba’s estimate ‖MΘ,δ‖L2→L2 =

O(δ−ε) with the trivial L1 estimate ‖MΘ,δ‖L1→L1 = O(δ−κΩ)), then Theorem 3.1.4 gives

improved bounds over those stated in Theorem A in the range 1 6 p 6 2n
2n−1

. Fix a

convex domain Ω, and define

pcrit := inf{p : Tλ bounded on Lp for all λ > 0}.

To achieve pcrit < 4/3 using Theorem 3.1.4 would require the construction of domains

that simultaneously satisfy both α = 0 and β = 0 for some n > 2.

Finally, in Section 3.5 we will prove the following lower bounds for Tλ for general

convex domains.

Theorem 3.1.5. Let 1 6 p 6 2. Let Ω ⊂ R2 be a convex domain containing the origin,

and let Tλ denote the generalized Bochner-Riesz operator with exponent λ associated to

Ω. Then Tλ is unbounded on Lp(R2) if λ < 1− κΩ

2
− 1

p
. In particular, pcrit > 2

2−κΩ
.

The proof will involve testing the operator on randomly defined functions, using

Khinchine’s inequality and Plancherel to estimate the L1 and L2 operator norms, re-

spectively, and then interpolating.

We now give an overview of the layout of this chapter. In Section 3.2 we give useful
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preliminaries about convex domains in R2 and state some background results from [48].

In Section 3.3, we construct the convex domains which we will later prove satisfy the

statement of Theorem 3.1.1, and prove some results about the n-additive energy of their

boundaries. In Section 3.4 we prove Theorem 3.1.4, which gives Lp bounds for Tλ as

a consequence of certain conditions on the n-additive energy of ∂Ω and range of q for

which Θ(Ω) is q-sparse. We also prove Theorem 3.1.1 as a consequence of Theorem 3.1.4.

In Section 3.5 we prove Theorem 3.1.5, which gives lower Lp bounds on Tλ for general

convex domains with a given value of κΩ. In Section 3.6 we discuss some open questions

which follow naturally from the results of this chapter.

Remark 3.1.6. All logarithms in this chapter will be assumed to be base 2, unless

otherwise noted.

3.2 Preliminaries on convex domains in R2

In this section we give some useful background about convex domains in R2. All results

in this section can be found in [48], but we include them here for the sake of completeness.

However, we will omit all proofs in this section, and the reader is encouraged to refer

to [48] for proofs.

Let Ω ⊂ R2 be a bounded, open convex set containing the origin. Assume that Ω

contains the ball of radius 4 centered at the origin. Since Ω is bounded, there is an

integer M > 0 such that

{ξ : |ξ| 6 4} ⊂ Ω ⊂ Ω ⊂ {ξ : |ξ| < 2M}. (3.4)
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The following lemma is straightforward and can be proved using only elementary facts

about convex functions.

Lemma C ( [48]). Suppose that Ω is a convex domain satisfying (3.4). Then ∂Ω∩ {x :

−1 6 x1 6 1, x2 < 0} can be parametrized by

t 7→ (t, γ(t)), − 1 6 t 6 1, (3.5)

where

1.

1 < γ(t) < 2M , − 1 6 t 6 1. (3.6)

2. γ is a convex function on [−1, 1], so that the left and right derivatives γ′L and γ′R

exist everywhere in (−1, 1) and

−2M−1 6 γ′R(t) 6 γ′L(t) 6 2M−1 (3.7)

for t ∈ [−1, 1]. The functions γ′L and γ′R are decreasing functions; γ′L and γ′R are

right continuous in [−1, 1].

3. Let ` be a supporting line through ξ ∈ ∂Ω and let n be an outward normal vector.

Then

| 〈ξ, n〉 | > 2−M |ξ|. (3.8)

Decomposition of ∂Ω

As another preliminary ingredient, we need the decomposition of ∂Ω ∩ {x : −1 6 x1 6

1, x2 < 0} introduced in [48]. This decomposition allows us to write ∂Ω as a disjoint
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union of pieces on which ∂Ω is sufficiently “flat”, where the number of pieces in the

decomposition is closely related to the covering numbers N(Ω, δ). We inductively define

a finite sequence of increasing numbers

A(δ) = {a0, . . . , aQ}

as follows. Let a0 = −1, and suppose a0, . . . , aj−1 are already defined. If

(t− aj−1)(γ′L(t)− γ′R(aj−1)) 6 δ for all t ∈ (aj−1, 1]) (3.9)

and aj−1 6 1 − 2−Mδ, then let aj = 1. If (3.9) holds and aj−1 > 1 − 2−Mδ, then let

aj = aj−1 + 2−Mδ. If (3.9) does not hold, define

aj = inf{t ∈ (aj−1, 1] : (t− aj−1)(γ′L(t)− γ′R(aj−1)) > δ}.

Now note that (3.9) must occur after a finite number of steps, since we have |γ′L|, |γ′R| 6

2M−1, which implies that |t−s||γ′L(t)−γ′R(s)| < δ if |t−s| < δ2−M . Therefore this process

must end at some finite stage j = Q, and so it gives a sequence a0 < a1 < · · · < aQ so

that for j = 0, . . . , Q− 1

(aj+1 − aj)(γ′L(aj+1)− γ′R(aj)) 6 δ, (3.10)

and for 0 6 j < Q− 1,

(t− aj)(γ′L(t)− γ′R(aj)) > δ if t > aj+1. (3.11)

For a given δ > 0, this gives a decomposition of

∂Ω ∩ {x : −1 6 x1 6 1, x2 < 0}
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into pieces ⊔
n=0,1,...,Q−1

{x ∈ ∂Ω : x1 ∈ [an, an+1]}.

The number Q in (3.10) and (3.11) is also denoted by Q(Ω, δ). Let Rθ denote rotation by

θ radians. The following lemma relates the numbers Q(RθΩ, δ) to the covering numbers

N(Ω, δ).

Lemma D ( [48]). There exists a positive constant CM so that the following statements

hold.

1. Q(Ω, δ) 6 CMδ
−1/2.

2. 0 6 κΩ 6 1/2.

3. For any θ,

Q(RθΩ, δ) 6 CMN(Ω, δ) log(2 + δ−1).

4. For ν = 1, . . . , 22M let θν = 2πν
22M . Then

C−1
M N(Ω, δ) 6

∑
ν

Q(RθνΩ, δ) 6 CMN(Ω, δ) log(2 + δ−1).

Finally, we state two results from [48] that we will need later in our proof of Theorem

3.1.1. The former is an L1 estimate for the kernels of generalized Bochner-Riesz multi-

pliers using a decomposition analogous to the standard decomposition of the (spherical)

Bochner-Riesz multipliers into annuli. The latter is an L1 kernel estimate corresponding

to a finer decomposition of the generalized Bochner-Riesz multipliers associated with the

decomposition of ∂Ω introduced above, as well as a pointwise majorization of a max-

imal function associated with this decomposition by a related Nikodym-type maximal

function.
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Proposition E ( [48]). Let Ω be a convex domain containing the origin. Let β be a C2

function supported on (−1/2, 1/2) so that

|βk(t)| 6 1, k = 0, . . . , 4.

Let

mδ,λ(ξ) = δλβ
(δ−1

2
(1− ρ(ξ))

)
.

Then there is some c > 0 such that for every δ > 0 sufficiently small,

∥∥∥F−1[mδ,λf̂ ]
∥∥∥
L1(R2)

. δλ log(δ−1)cN(Ω, δ) ‖f‖L1(R2) .

Proposition F ( [48]). Let Ω be a convex domain satisfying (3.4) and let b ∈ C∞0

be supported in the sector S = {ξ : |ξ1| 6 2−10M |ξ2|, ξ2 < 0}. Let α 7→ (α, γ(α))

be the parametrization of ∂Ω ∩ S as a graph, as in Lemma C. For any subinterval

I of [−1/2, 1/2] denote by I∗ the interval with the same center and with length 4
3
|I|.

For δ < 1/2 let Jδ be the set of open subintervals I of [−1, 1] with the property that

|I| > 2−5Mδ and

(t− s)(γ′L(t)− γ′R(s)) 6 25δ for s < t, s, t,∈ I∗. (3.12)

Let B be the set of C2 functions β supported on (−1/2, 1/2) so that

|β(k)(t)| 6 1, k = 0, . . . , 4.

Suppose I = (cI − |I|/2, cI + |I|/2) ∈ Jδ. Let

mβ1,β2,I(ξ) = b(ξ)β1(
δ−1

2
(1− ρ(ξ)))β2(|I|−1(ξ1 − cI)) (3.13)
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where β1, β2 ∈ B. Then for any β1, β2 ∈ B and I ∈ Jδ,

∥∥F−1[mβ1,β2,I ]
∥∥

1
. log(δ−1). (3.14)

Let

Mδf(x) = sup
β1,β2∈B

sup
I∈Jδ

∣∣|F−1[mβ1,β2,I ]| ∗ f(x)
∣∣

and let

M δf(x) = sup
x∈R∈Cδ

1

|R|

∫
R

|f(y)| dy,

where

Cδ = {R : R is a rectangle of dimensions δ × (aj+1 − aj)

with longer side of slope γ′L(aj), where aj, aj+1 ∈ A(δ)}.

Then

Mδf(x) . log(δ−1)M δf(x). (3.15)

3.3 Construction of Ω and some algebraic disjoint-

ness lemmas

We will now construct domains which we will show satisfy the statement of Theorem

3.1.1. The idea is to construct a convex domain Ω such that the kernels of the pieces

of the multiplier obtained by decomposing the multiplier as in Proposition F exhibit

a high degree of cancellation with each other. In [48], it was shown that for abitrary

convex domains that the supports of the convolution of pairs of pieces of the multiplier
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were more or less disjoint. This was used to prove the endpoint p = 4/3 estimate using

duality and an L4 argument similar to Córdoba’s treatment of the (spherical) Bochner-

Riesz means in R2 (see [18]). Here, we construct a domain so that the supports of the

m-fold convolution of m-tuples of pieces of the mutiplier are more or less disjoint, which

we will use to prove an L2m estimate in the same vein as in [18] and [48].

Before constructing Ω, we will need the following basic lemma.

Lemma 3.3.1. For any integer N > 10 and any integer m > 1, there exists a collection

I of N disjoint subintervals of [−1
2
, 1

2
] each of size N−(2m−1)

3m
so that

{I1 + I2 + · · ·+ Im}I1,...,Im∈I

is a pairwise disjoint collection.

Proof of Lemma 3.3.1. Let M be an integer strictly less than N . We will show that if

IM is a collection of M disjoint subintervals of [−1
2
, 1

2
] each of size N−(2m−1)

3m
satisfying the

algebraic disjointness condition of the lemma, then there is a collection IM+1 of M + 1

disjoint subintervals of [−1
2
, 1

2
] of size N−(2m−1)

3m
satisfying the same condition.

Indeed, suppose that such a collection IM exists. Suppose I1, . . . , Im ∈ IM . Then

given any collection ofm−1 intervals Im+1, . . . I2m−1 ∈ IM , there is an interval I(I1,...,I2m−1) ⊂

[−1
2
, 1

2
] of width no larger than 2N−(2m−1)

3
such that

(I1 + · · ·+ Im)− (Im+1 + · · ·+ I2m−1) ⊂ I(I1,...,I2m−1).

Now define

E =
⋃

(I1,...,I2m−1)∈(IM )2m−1

I(I1,...,I2m−1).
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Then since card((IM)2m−1) = M2m−1, we have |E| 6 2
3
· (M

N
)2m−1. Since M < N , we

have |[−1
2
, 1

2
] \E| > 1

3
. Since E is a union of no more than M2m−1 disjoint intervals, the

average gap length between consecutive disjoint intervals in E is at least 1
6
M−7 > 1

6
N−7.

Thus there exists an interval I of length N−(2m−1)

3m
such that I ⊂ [−1

2
, 1

2
] \ E. Now set

IM+1 = IM ∪ {I}. Then IM+1 is a collection of M + 1 disjoint subintervals of [−1
2
, 1

2
]

each of size N−(2m−1)

3m
satisfying the algebraic disjointness condition of the lemma. By

induction on M , the proof is complete.

Construction of Ω

We now proceed to construct the convex domain Ω which we will show satisfies the

statement of Theorem 3.1.1 with κΩ = 1
4m−2

. It will then be easy to explain how to

modify the construction to produce a domain which satisfies the statement of Theorem

3.1.1 with κΩ ∈ [0, 1
4m−2

).

For each integer k > 0, we inductively define a collection Ik of disjoint subintervals

of [−1
2
, 1

2
]. We set I0 = {[−1

2
, 1

2
]}. For each k > 0, we define Ik+1 to be a collection of

2k+4 · card(Ik) subintervals of intervals in Ik obtained by applying Lemma 3.3.1 with

N = 2k+4 to each interval of Ik. More precisely, if we let Ĩk be a collection of N disjoint

subintervals of [−1
2
, 1

2
] each of size N−(2m−1)

3m
given by Lemma 3.3.1 with N = 2k+4, then

for each I ∈ Ĩk, let Ĩk,I be the rescaling of Ĩk to I, that is, if the endpoints of I are a

and b with a < b, set Ĩk,I = a+ (b− a)Ĩk. Then set

Ik+1 =
⋃
I∈Ik

Ĩk,I .
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For each k, define Sk to be the set of endpoints of intervals in Ik, and define Ωk to be

the convex polygon with vertices at

{(x− 1

2
, x2 − 8) : x ∈ Sk} ∪ {(−8, 0); (−8, 8); (8, 0); (8, 8)}.

Let Ω be the convex domain so that ∂Ω is the uniform limit of {∂Ωk} as k →∞. Note

that Ω satisfies (3.4) with M = 10.

Lemma 3.3.2. Let Ω be constructed as described previously. For every δ > 0, there

exist integer constants C1(δ), C2(δ) with C1(δ) = O(δ−ε) and C2(δ) = O(δ−ε) for every

ε > 0 so that if Jδ denotes the collection of Q(Ω, δ) essentially disjoint intervals obtained

from the decomposition of [−1, 1] as described in Section 3.2, then we can write

Jδ =

C1(δ)⋃
l=1

Jδ,l

such that for each l, no point of R is contained in more than C2(δ) of the sets

{I1 + · · ·+ Im}I1,...,Im∈Jδ,l .

In particular, this implies that Em(∂Ω) = 0.

Proof of Lemma 3.3.2. Given δ > 0, let K(δ) be the largest integer such that each

interval in IK(δ) has size > δ1/2. For each integer k > 0, let I ′k denote the set of

essentially disjoint subintervals corresponding to the decomposition of [−1/2, 1/2] given

by the partition Sk of [−1/2, 1/2]. Then for every δ > 0, each element of Jδ intersects

no more than 10 elements of I ′K(δ), and each element of I ′K(δ) intersects no more than

10 elements of Jδ. Moreover, all but at most 10 elements of Jδ are covered by a union

of elements of I ′K(δ). It thus suffices to prove the lemma with Jδ replaced by I ′K(δ).

It is easy to compute that K(δ) . (log(δ−1))1/2 = O(δ−ε) for every ε > 0. We
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organize I ′K(δ) into K(δ) + 1 disjoint subcollections as follows. Set (I ′K(δ))0 = IK(δ). Set

(I ′K(δ))1 = I ′1 \ I1 and for 1 < k 6 K(δ)− 1 inductively define

(I ′K(δ))k+1 = I ′k \ (Ik ∪ (I ′K(δ))k).

Then

I ′K(δ) =

K(δ)⊔
k=0

(I ′K(δ))k.

It is also easy to see that for k > 1, every element of (I ′K(δ))k is a subset of an element of

Ik−1. In fact, we can think of (I ′K(δ))k for k > 0 as the “gaps” leftover after subdividing

Ik−1.

We now show that for any k > 0, no point of R is contained in more than (m!)k of the

sets {I1 + · · ·+ Im}I1,...,Im∈Ik . We prove this by induction on k. The base case is trivial.

Suppose that this is true for a given k. Fix x ∈ R, and suppose there are intervals

I1, . . . , Im ∈ Ik+1 such that x ∈ (I1 + · · ·+ Im). Then there are intervals Im+1, . . . , I2m ∈

Ik such that I1 ⊂ Im+1, I2 ⊂ Im+2, . . . , Im ⊂ I2m. Let us count how many m-tuples

(I ′1, . . . , I
′
m) there are satisfying x ∈ I ′1 +· · ·+I ′m and I ′1 ⊂ Im+1, I

′
2 ⊂ I ′m+1, . . . , Im ⊂ I ′2m.

After applying an appropriate translation and dilation, this is the same as the number

of ordered m-tuples of intervals whose sum contains a given point, where the intervals

are restricted to a collection that satisfy the properties stated in Lemma 3.3.1 for some

N . But for such a collection the number of ordered m-tuples is simply m!. By the

inductive hypothesis, the number of choices of intervals Im+1, . . . , I2m ∈ Ik is 6 (m!)k,

and therefore the number of choices of intervals I1, . . . , Im is 6 (m!)k+1.

The above argument shows that no point of R is contained in more than (m!)K(δ) of

the sets {I1 + · · · + Im}I1,...,Im∈(I′
K(δ)

)0
. Moreover, for every 0 6 k 6 K(δ) no point of
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R is contained in more than (m!)K(δ) of the sets {I1 + · · · + Im}I1,...,Im∈Ik . Fix k > 0,

and also fix x ∈ R. Given I1, . . . , Im ∈ Ik−1 with x ∈ (I1 + · · · + Im), there are

at most 2k+10 choices of intervals Im+1, . . . , I2m ∈ (I ′K(δ))k such that I1 ⊂ Im+1, I2 ⊂

Im+2, . . . , Im ⊂ I2m. It follows that x is contained in no more than 2K(δ)+10 · (m!)K(δ) of

the sets {I1 + · · ·+ Im}I1,...,Im∈(I′
K(δ)

)k .

As noted previously, K(δ) . (log(δ−1))1/2, so 2K(δ)+10 · (m!)K(δ) = O(δ−ε) for every

ε > 0. Thus we have proven the lemma with C1(δ) = K(δ) + 1 and C2(δ) = 2K(δ)+10 ·

24K(δ).

Lemma 3.3.3. Let Ω be constructed as described previously. Then κΩ = 1
4m−2

.

Proof of Lemma 3.3.3. Let K(δ) be defined as in the proof of Lemma 3.3.2. K(δ) is the

greatest integer such that

K(δ)∏
n=1

2−(2m−1)(n+4) > δ1/2.

It follows that

card(IK(δ)+1) =

K(δ)+1∏
n=1

2(n+4) > δ−1/(4m−2),

and hence

δ−1/(4m−2)2−K(δ)−4 6 card(IK(δ)) 6 δ−1/(4m−2).

As noted previously, 2−K(δ) = O(δ−ε) for every ε > 0, and hence by Lemma C,

κΩ = lim sup
δ→0

log(N(Ω, δ))

log(δ−1)
= lim sup

δ→0

Q(Ω, δ)

log(δ−1)

= lim sup
δ→0

card(Jδ)
log(δ−1)

= lim sup
δ→0

card(IK(δ))

log(δ−1)
=

1

4m− 2
.



57

Remark 3.3.4. Let κ ∈ [0, 1
4m−2

). We now describe how we may modify the construction

of Ω so that it still satisfies the hypotheses of Lemma 3.3.2, but κΩ = κ. Obviously, we

may replace Lemma 3.3.1 with the weaker statement that there exists N c (instead of

N) disjoint subintervals satisfying the hypotheses of Lemma 3.3.1 with 0 6 c < 1. If

we repeat the same construction of Ω described previously except applying this weaker

version of Lemma 3.3.1 instead, we will produce a domain Ω with κΩ = κ if we choose

c appropriately. Verification of the details is left to the reader.

3.4 Proof of Theorem 3.1.4

To prove Theorem 3.1.4 in the case that λ > 0, it only remains to prove the following

proposition.

Proposition 3.4.1. Let Ω be a convex domain in R2 containing the origin and let Θ

be its associated set of directions. Let n > 2 be an integer. Suppose that En(∂Ω) = α

for some integer 0 6 α 6 nκΩ and that ‖MΘ,δ‖L n
n−1 (R2)→L

n
n−1 (R2)

6 Cεδ
−β−ε for some

0 6 β 6 κΩ(n−2
n

) and every ε > 0. Then if mδ,λ is as in the statement of Proposition E,

there is a constant C(δ) = O(δ−ε) for every ε > 0 such that

∥∥∥F−1[mδ,λf̂ ]
∥∥∥
L

2n
2n−1 (R2)

. δλC(δ)δ−
α
2n
−β

2 ‖f‖
L

2n
2n−1 (R2)

. (3.16)

Interpolating Proposition 3.4.1 with Proposition E gives the result of Theorem 3.1.4

for λ > 0.

Proof of Proposition 3.4.1. By duality, to prove (3.16) it suffices to prove

∥∥∥F−1[mδ,λf̂ ]
∥∥∥
L2n(R2)

. δλC(δ)δ−
α
2n
−β

2 ‖f‖L2n(R2) . (3.17)
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Using an appropriate partition of unity and rotation invariance, it in fact suffices to

show that if b ∈ C∞0 is as in the statement of Proposition F, then∥∥∥F−1[b ·mδ,λf̂ ]
∥∥∥
L2n(R2)

. δλC(δ)δ−
α
2n
−β

2 ‖f‖L2n(R2) . (3.18)

Let Jδ denote the collection of Q(Ω, δ) essentially disjoint intervals obtained from the

decomposition of [−1, 1] as described in Section 3.2. For each I = (α0, α1) ∈ Jδ, set B(I)

to be a rectangle that has one side parallel to (1, γ′(α0)), contains supp(b ·mδ,λ) ∩ {x :

x1 ∈ I}, and such that its 1/2-dilate is contained in supp(b ·mδ,λ) ∩ {x : x1 ∈ I}. Since

En(∂Ω) = α, there are constants C1(δ) and C2(δ) such that C1(δ)2nC2(δ) = O(δ−α−ε)

for every ε > 0, and such that we may write Jδ =
⋃C(δ)
l=1 Jδ,l so that for each l, no point

of R2 is contained in more than C2(δ) of the sets

{B(I1) + · · ·+B(In)}Ij∈Jδ,l .

Now let Jδ be defined as in the statement of Proposition F, and let {βi} be a partition

of unity of [−1
4
, 1

4
] satisfying

1.
∑

i βi is supported in (−1
2
, 1

2
),

2. Every βi is of the form β(|I|−1(·−cI)) for some β ∈ B and for some interval I ∈ Jδ

with center cI ,

3. Each interval in Jδ intersects the support of at most (log(δ−1))2 of the βi’s,

4. If the support of βi intersects some I ∈ Jδ then the support of βi is contained in

10I, where the dilation is taken from the center of I.

Set mi(ξ) = βi(ξ1)b(ξ)mδ,λ(ξ), and define an operator Ti by

Tif(x) = δ−λF−1[mif̂ ](x).
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Set

I1 = {i : supp(βi) ∩ (∪Jδ,1) 6= ∅},

and for l = 2, . . . , C1(δ), set

Il = {i : supp(βi) ∩ (∪Jδ,l−1) = ∅ and supp(βi) ∩ (∪Jδ,l) 6= ∅}.

We write

∑
i

Tif(x) =

C1(δ)∑
l=1

∑
i∈Il

Tif(x).

We now proceed with an argument similar to the familiar one from [18]. Using the

triangle inequality, Hölder’s inequality and Plancherel, we have∥∥∥∥∥∑
i

Tif

∥∥∥∥∥
2n

2n

.

( C1(δ)∑
l=1

∥∥∥∥∥∑
i∈Il

Tif

∥∥∥∥∥
2n

)2n

. C1(δ)2n−1

C1(δ)∑
l=1

∥∥∥∥∥∑
i∈Il

Tif

∥∥∥∥∥
2n

2n

. C2n−1
1 (δ)

C1(δ)∑
l=1

∫
R2

∣∣∣∣∑
i∈Il

Tif(x)

∣∣∣∣2n dx
. C1(δ)2n−1

C1(δ)∑
l=1

∫ ∣∣∣∣ ∑
i1,...,in∈Il

Ti1f(x)Ti2f(x) · · ·Tinf(x)

∣∣∣∣2 dx
. C1(δ)2n−1

C1(δ)∑
l=1

∫ ∣∣∣∣ ∑
i1,...,in∈Il

T̂i1f ∗ T̂i2f ∗ · · · ∗ T̂inf(ξ)

∣∣∣∣2 dξ. (3.19)

Now note that no point of R2 is contained in more than C2(δ) of the sets{
supp(T̂i1f ∗ T̂i2f ∗ · · · ∗ T̂inf(ξ))

}
i1,...,in∈Il

.

Set C3(δ) = C1(δ)2n−1C2(δ)(log(δ−1))3. It follows that the right hand side of (3.19) is

bounded by a constant times

C3(δ)

C1(δ)∑
l=1

∫ ∑
i1,...,in∈Il

|T̂i1f ∗ T̂i2f ∗ · · · ∗ T̂inf(ξ)|2 dξ, (3.20)
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and by Plancherel, (3.20) is equal to

C3(δ)

C1(δ)∑
l=1

∫ ∑
i1,...,in∈Il

|Ti1f(x)Ti2f(x) · · ·Tinf(x)|2 dx

. C3(δ)

C1(δ)∑
l=1

∫ ∑
i1,...,in∈Il

|Ti1f(x)Ti2f(x) · · ·Tinf(x)|2 dx

. C3(δ)

C1(δ)∑
l=1

∫ (∑
i∈Il

|Tif(x)|2
)n

dx.

(3.21)

Let φ : [−2, 2] → R be a smooth function identically 1 on [−1, 1]. For each i, write

βi = β(|I|−1(· − cI)) for some β ∈ B and set ψi(ξ) = φ(|I|−1(ξ1 − cI)). Define a

multiplier operator Si by

Sif = F−1[ψif̂ ].

If Ki denotes the convolution kernel of the operator Ti, let T̃i be the operator with

convolution kernel |Ki|. By duality, the right hand side of (3.21) is bounded by

C3(δ)

C1(δ)∑
l=1

(
sup

‖w‖ n
n−1

61

∫ ∑
i∈Il

|Tif(x)|2w(x) dx

)n

. C3(δ)

C1(δ)∑
l=1

(
sup

‖w‖ n
n−1

61

∫ ∑
i∈Il

|Sif(x)|2(sup
i
|T̃iw(x)|) dx

)n

. C3(δ)

C1(δ)∑
l=1

∥∥∥∥∥
(∑

i∈Jl

|Sif(x)|2
)1/2

∥∥∥∥∥
2n

2n

sup
‖w‖ n

n−1
61

∥∥∥∥sup
i
|T̃iw|

∥∥∥∥n
n
n−1

. (3.22)

By (3.14) and the assumption
∥∥MΘ(Ω),δ

∥∥
L

n
n−1 (Rd)→L

n
n−1 (Rd)

= Oε(δ
−β−ε), we have∥∥∥∥sup

i
|T̃if |

∥∥∥∥
n
n−1

. C(δ)δ−β ‖f‖ n
n−1

(3.23)
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where C(δ) = O(δ−ε) for every ε > 0. Moreover, since the supports of the ψi are

. log(δ−1)-disjoint, by Rubio de Francia’s theorem on square functions for arbitrary

collections of intervals [45], we have∥∥∥∥∥
(∑

i∈Jl

|Sif(x)|2
)1/2

∥∥∥∥∥
2n

. log(δ−1) ‖f‖2n . (3.24)

Set C4(δ) = C(δ)2nC1(δ)C3(δ) log(δ−1)4nδ−βn. By (3.22), (3.23) and (3.24), we have∥∥∥∥∥∑
i

Tif

∥∥∥∥∥
2n

.ε δ
−ε(C4(δ))1/2n ‖f‖2n , (3.25)

and since C4(δ) .ε C1(δ)2nC2(δ)δ−βn−ε .ε δ
−α−βn−ε for every ε > 0, this proves (3.18)

and thus completes the proof of Proposition 3.4.1.

It only remains to prove Theorem 3.1.1 in the case that λ = 0. This will follow

fairly easily from Bateman’s characterization in [2] of all planar sets of directions which

admit Kakeya sets and Fefferman’s proof in [21] that the ball multiplier is unbounded

on Lp(R2) for p 6= 2.

Proof of Theorem 3.1.1 in the case that λ = 0. Let Θ denote the set of all directions

associated to Ω. We claim that if Θ is a union of finitely many lacunary sets of finite

order, then κΩ = 0. Indeed, suppose that Θ is a union of N1 lacunary sets of order N2.

Then it is easy to see that there is a subset of Θδ ⊂ Θ of cardinality 6 N1(log(δ−1))N2

such that every element of Θ is contained in a δ neighborhood of an element of Θδ. It

follows that N(Ω, δ) . N1(log(δ−1))N2 , and hence κΩ = 0.

We say that Θ admits Kakeya sets if for each postive integer N there is a collection

R(N)
Θ of rectangles with longest side parallel to a direction in Θ so that∣∣∣∣ ⋃

R∈R(N)
Θ

R

∣∣∣∣ 6 1

N

∣∣∣∣ ⋃
R∈R(N)

Θ

R̃

∣∣∣∣,
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where R̃ denotes the rectangle with the same center and width as R but with three times

the length. In [2], the following theorem was proved.

Theorem G (Bateman, [2]). Fix 1 < p <∞. The following are equivalent:

1. MΘ is bounded on Lp(R2);

2. Θ does not admit Kakeya sets;

3. there exist N1, N2 <∞ such that Θ is covered by N1 lacunary sets of order N2.

It follows from Theorem G that if κΩ > 0, then Θ admits Kakeya sets. We will

now show that if κΩ > 0, then T0 is unbounded on Lp for all p 6= 2. Assume that T0

is bounded on Lp for some p > 2. Let {vj} be a sequence of unit vectors parallel to

directions in Θ, and let Hj denote the half-plane {x ∈ R2 : x · vj > 0}. For each j,

define an operator Tj by

F [Tjf ](ξ) = χHj(ξ)f̂(ξ).

Then arguing as in [21], there is an absolute constant C (independent of the choice of

the sequence {vj}) such that∥∥∥∥∥(
∑
j

|Tjfj|2)1/2

∥∥∥∥∥
p

6 C

∥∥∥∥∥(
∑
j

|fj|2)1/2

∥∥∥∥∥
p

.

Since Θ admits Kakeya sets, for each υ > 0 we may choose a sequence of unit vectors

{vj} parallel to directions in Θ such that there is a collection of rectangles {Rj} with

the longest side of Rj parallel to vj and so that∣∣∣∣⋃
j

Rj| 6 υ

∣∣∣∣⋃
j

R̃j

∣∣∣∣.
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Let E :=
⋃
j Rj and let E ′ :=

⋃
j R̃j. Then arguing as in [22], we have∫

E

∑
j

|TjχRj(x)|2 dx &
∑
j

|E ∩ R̃j| & |E ′|,

but by Hölder’s inequality∫
E

∑
j

|TjχRj(x)|2 dx . |E|(p−2)/p(
∑
j

|Rj|)2/p . υ(p−2)/p|E ′|.

Letting υ → 0 gives a contradiction.

3.5 Lower bounds using Khinchine’s inequality

In this section, we will prove Theorem 3.1.5, which gives lower bounds on the range

of λ for which Tλ is bounded on Lp for general convex domains with a given value

of κΩ. To prove Theorem 3.1.5, we first show that boundedness of Tλ on Lp implies

(3.27), where T δλ is defined below. We then test T δλ on randomly defined functions and

apply Khinchine’s inequality to estimate the L1 norm of these functions. After applying

T δλ , the randomness of these test functions will effectively “disappear” due to the test

functions being essentially constant on a sequence of disjoint caps in Bδ. The L2 mapping

properties of T λ acting on these functions will be easy to quantify using Plancherel. The

last step is simply to interpolate between L1 and L2.

Proof of Theorem 3.1.5. Suppose that Tλ is bounded on Lp. Let φ ∈ C∞0 (R) be sup-

ported in [−2, 2] and identically 1 on [−1, 1]. Let

mδ(s) = φ(δ−1(1− s))

and let T δλ be the operator defined by

F [T δλf ](ξ) = mδ(ρ(ξ))f̂(ξ).
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We will use the well-known subordination formula

m(ρ) =
(−1)bλc+1

Γ(λ+ 1)

∫ ∞
0

sλm(λ+1)(s)(1− ρ

s
)λ+ ds, (3.26)

where

m̂(γ)(τ) = (−1)bγc(−iτ)γm̂(τ).

See [56] for a proof of (3.26). Together, (3.26) and the Lp-boundedness of Tλ imply that

∥∥T δλ∥∥Lp→Lp . δ−λ. (3.27)

Let Jδ denote the collection of Q(Ω, δ) . log(2+δ−1)N(Ω, δ) essentially disjoint intervals

obtained from the decomposition of [−1, 1] into intervals with endpoints in A(δ) =

{a0, . . . , aQ} as described in Section 3.2. By rotation invariance, we may assume without

loss of generality that Q(Ω, δ) & N(Ω, δ). For each 0 6 j 6 Q − 1, let cj =
aj+aj+1

2
.

Now observe that for δ sufficiently small there must be & N(Ω, δ) indices j such that

aj+1 − aj 6 N(Ω, δ)−1 log(δ−1). Thus by the pigeonhole principle there is an integer

r > blog(N(Ω, δ) log(δ−1)−1)c such that there are & N(Ω, δ)(log(δ−1))−1 indices j such

that 2−r−1 6 aj+1 − aj 6 2−r. Enumerate these indices as j1 < j2 < · · · < jQ′ .

Let χ0 ∈ C∞0 (R) with χ > 0, χ ≡ 1 on [−1, 1] and χ supported in [−2, 2]. Set

χ(ξ1, ξ2) = χ0(ξ1)χ0(ξ2). Then |F [χ](x)| . (1 + |x|)−2 and |F [χ](x)| > 1/2 for x ∈

B 1
100

(0). Let {εi} be i.i.d. random variables with P (εi = ±1) = 1
2

for every i. Let

ψδ(x) = F [
∑

i≡0 mod (blog(δ−1)c)

εiχ(2r(· − (cji , γ(cji)))](x).

By Plancherel,

‖ψδ‖2 .

(
N(Ω, δ)2−2r

)1/2

(3.28)
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and

∥∥T δλψδ∥∥2
&

(
N(Ω, δ)(log(δ−1))−12−rδ

)1/2

. (3.29)

By Khinchine’s inequality,

E[‖ψδ‖1] ≈ Q′
1
2 .

(
log(2 + δ−1)N(Ω, δ)

)1/2

. (3.30)

Interpolating (3.28) and (3.30) yields

‖ψδ‖p . log(δ−1)
2−p
2p N(Ω, δ)1/22−r(

2p−2
p

), 1 6 p 6 2. (3.31)

We now prove a lower bound for
∥∥T δλψδ∥∥1

uniformly in the realization of the random

variables {εi}. Using homogeneous coordinates, i.e. polar coordinates associated to Ω,

we write

T δλψδ(x) =
1

(2π)2

∑
i≡0 mod (blog(δ−1)c)

εi

∫ ∫
φ(δ−1(1− s))χ0(2r(sα− cji))

× s(αγ′(α)− γ(α))eis(x1α+x2γ(α)) dα ds.

Now note that for each i and for α in the support of χ0(2r(sα− cji)) we have

eis(x1α+x2γ(α)) =

exp

(
is(x1cji + x2γ(cji)) + is(α− cji)(x1 + x2γ

′(cji))

)
+O(δ|x|)

and

|αγ′(α)− γ(α)− cjiγ′(cji) + γ(cji)| = O(2−r).
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It follows that

T δλψδ(x) =
1

(2π)2

∑
i≡0 mod (blog(δ−1)c)

εi

∫ ∫
φ(δ−1(1− s))χ0(2r(sα− cji))

× s(cjiγ′(cji)− γ(cji))e
is(x1cji+x2γ(cji ))+is(α−cji )(x1+x2γ′(cji )) dα ds

+O(2−2rδ) +O(2−rδ2|x|).

Rearranging this, we have

T δλψδ(x) =
1

(2π)2

∑
i≡0 mod (blog(δ−1)c)

εi

∫
sφ(δ−1(1− s))

(∫
χ0(2r(sα− cji))

× (cjiγ
′(cji)− γ(cji))e

isα(x1+x2γ′(cji )) dα

)
× eis(x1cji+x2γ(cji )−cji (x1+x2γ′(cji ))) dα ds+O(2−2rδ) +O(2−rδ2|x|).

Set βi = cjiγ
′(cji)− γ(cji). Note that βi ≈ 1 for all i. We may rewrite this as

T δλψδ(x) =
∑

i≡0 mod (blog(δ−1)c)

εiβi2
−rχ̂0(−2−r(x1 + x2γ

′(cji)))

× δ · φ̂(δ(x1cji + x2γ(cji)))e
i(x1cji+x2γ(cji )) +O(2−2rδ) +O(2−rδ2|x|).

It follows that there is a constant C > 0 (independent of δ) such that for each i in the

sum,

|T δλψδ(x)| > 2−r−10δ

whenever

|x · (cji , γ(cji))| 6 Cδ−1, |x · (1, γ′(cji))| 6 C2r.

It follows that

∥∥T δλψδ∥∥1
& Q′ = log(δ−1)−1N(Ω, δ) (3.32)



67

for δ > 0 sufficiently small. Interpolating (3.29) and (3.32) gives that

∥∥T δλψδ∥∥p & (log(δ−1))βN(Ω, δ)
1
p (2−rδ)

p−1
p , 1 6 p 6 2 (3.33)

for some β ∈ R. Together (3.31) and (3.33) imply that

∥∥T δλ∥∥Lp→Lp & (log(δ−1))β
′
N(Ω, δ)

1
2 δ

p−1
p (3.34)

for some β′ ∈ R. By (3.27), it follows that λ > 1− κΩ

2
− 1

p
.

3.6 Concluding remarks

There are many further questions that arise naturally from the results of this chapter; we

now discuss a few of them. As previously mentioned, Theorem 3.1.1 demonstrates that

how “curved” the boundary of a convex planar domain is, as measured by the parameter

κΩ, does not alone determine the Lp mapping properties of the associated Bochner-Riesz

operators, but rather there must be other properties of Ω that play a role. We have seen

that domains that satisfy En(∂Ω) = 0 for some n > 2 can be shown to satisfy Lp mapping

properties better than those proved in [48]. It would be very interesting to construct

domains for which En(∂Ω) = 0 for some n > 2 as well as having an associated set of

directions which is q-sparse for q = n
n−1

; for such domains Theorem 3.1.4 would imply

that pcrit < 4/3. As a simpler preliminary question, it would be already very interesting

to construct non-lacunary sets of directions that are q-sparse for some q < 2.

Another question one might also is if for any κ ∈ (0, 1/2) (not just for κ suffi-

ciently small) we can construct domains for which pcrit < 4/3. At the very least, we

believe that the upper bound on κΩ in Theorem 3.1.1 could be significantly improved
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with more sophisticated algebraic disjointness constructions than the one used in the

proof of Lemma 3.3.1. In particular, the domains constructed to prove Theorem 3.1.1

only exploited algebraic disjointness in one dimension, and it is quite likely that a two-

dimensional approach will yield much better results. Finally, it would be interesting

if one could determine whether one may prove improved Lp bounds for other certain

specific examples of convex domains, such as those with associated directions lying in a

standard Cantor set.
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Chapter 4

Quasiradial Multiplier Thorems

4.1 Introduction

Let Ω ⊂ R2 be a bounded, open convex set such that 0 ∈ Ω, and let ρ be its Minkowski

functional, given by

ρ(ξ) = inf{t > 0| t−1ξ ∈ Ω}.

Since Ω is convex, ρ : R2 → R+ ∪ {0} is the unique function that is homogeneous of

degree one and identically 1 on ∂Ω. We are interested in multipliers of the form m ◦ ρ,

where m : R → C is a bounded, measurable function. We refer to this class of multi-

pliers as quasiradial multipliers. The class of quasiradial multipliers generalizes radial

multipliers on R2, which would correspond to the special case that Ω is the unit disc

and ρ(ξ) = |ξ|.

As a model case for quasiradial multipliers, one can study the generalized Bochner-

Riesz multipliers (1− ρ(ξ))λ+ for λ > 0. We define the generalized Bochner-Riesz opera-

tors Tλ for λ > 0 by

F [Tλf ](ξ) = (1− ρ(ξ))λ+f̂(ξ).

These operators were introduced in Chapter 3, and we now review some essential back-

ground information, most of which was already discussed in Chapter 3.
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When ∂Ω is smooth, the problem of Lp(R2) boundedness of the generalized Bochner-

Riesz operators is well understood. The problem was first completely solved in the special

case that Ω is the unit disk by Fefferman in [22] and later clarified by Córdoba in [18],

where it was proven that Tλ is bounded on Lp(R2) if and only if λ > λ0(p) := |2
p
−1|− 1

2
.

This result was then generalized to domains with smooth boundary by Sjölin in [50] and

Hörmander in [30].

However, for certain convex domains with rough boundary, the critical index λ0(p)

can be improved. In [43], Podkorytov considered Bochner-Riesz means associated to

polyhedra in Rd and showed that if ρ is the Minkowski functional of a polyhedron, then

F−1[(1 − ρ(·))λ+] ∈ L1 for λ > 0. In [48], Seeger and Ziesler considered Bochner-Riesz

means associated to general convex domains in R2. They obtained a result involving a

parameter similar to the Minkowski dimension of ∂Ω, defined by a family of “balls”, or

caps, and we state the definition below.

For any p ∈ ∂Ω, we say that a line `, is a supporting line for Ω at p if ` contains p

and Ω is contained in the half plane containing the origin with boundary `. Let T (Ω, p)

denote the set of supporting lines for Ω at p. Note that if ∂Ω is C1, then T (Ω, p) has

exactly one element, the tangent line to ∂Ω at p. For any p ∈ ∂Ω, ` ∈ T (Ω, p), and

δ > 0, define

B(p, `, δ) = {x ∈ ∂Ω : dist(x, `) < δ}. (4.1)

Let

Bδ = {B(p, `, δ) : p ∈ ∂Ω, ` ∈ T (Ω, p)}, (4.2)
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and let N(Ω, δ) be the minimum number of balls B ∈ Bδ needed to cover ∂Ω. Let

κΩ = lim sup
δ→0

logN(Ω, δ)

log δ−1
. (4.3)

The parameter κΩ defined in (4.3) is similar to the upper Minkowski dimension of

∂Ω. It is easy to show that for any convex domain Ω, 0 6 κΩ 6 1/2 (see [48] for details).

We now mention a few examples of convex domains with particular values of κΩ. Clearly,

if Ω is a polygon, then κΩ = 0. For domains with smooth boundary, κΩ = 1/2. This

can be seen by noting that there is a point where ∂Ω has nonvanishing curvature, and

near this point the contribution to N(Ω, δ) is ≈ δ−1/2. One may obtain domains with

intermediate values of κΩ by considering Lebesgue functions associated to Cantor sets

with appropriate ratios of dissection. For example, let g : [0, 1]→ [0, 1] be the Lebesgue

function associated to the standard middle-thirds Cantor set, commonly referred to as

the Cantor function. Define γ : [0, 1]→ [−1,−1/2] by

γ(t) =

∫ t

0

g(s) ds− 1.

Let Ω be the convex domain bounded by the graph of γ and the line segments connecting

consecutive vertices in the set

{(1,−1/2); (1, 1); (−1, 1); (−1,−1); (0,−1)}.

Then κΩ = log3(2)
(log3(2)+1)

. One may similarly obtain a convex domain Ω with κΩ = κ for

any κ ∈ (0, 1/2) by a similar construction using a Lebesgue function corresponding to a

Cantor set of an appropriate ratio of dissection.
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Ω

Figure 3

As an example, here Ω is a region bounded by two lines and a portion of a parabola. If we assume all

rectangles have shorter sidelength equal to δ, then N(Ω, δ) 6 8. Since a portion of ∂Ω is smooth with

nonvanishing curvature, we have κΩ = 1/2.

It was shown in [48] that Tλ is bounded on Lp(R2) if λ > κΩ(|4
p
− 2| − 1). In this

chapter we would like to consider more general multiplier transformations. The following

subordination formula from [56]

m(ρ(ξ)) =
(−1)bλc+1

Γ(λ+ 1)

∫ ∞
0

sλm(λ+1)(s)(1− ρ(ξ)

s
)λ+ ds (4.4)

combined with the result from [48] mentioned previously immediately gives that m◦ρ ∈

Mp(R2) if for some λ > κΩ(|4
p
− 2| − 1),∫ ∞

0

sλ|m(λ+1)(s)| ds <∞.

However, this is not satisfactory as can be seen by analyzing the “localized wave mul-

tiplier” eiρ(ξ). Sharp Lp estimates for this multiplier in the smooth case can be found

in [4], [36], [41] and [47]. For general convex domains in R2, we prove the theorem below.

First we make a few brief remarks regarding normalization of the domain Ω. Let Ω be

a bounded, open convex set containing the origin, as above. Then Ω contains some ball

centered at the origin and is also contained in some larger ball centered at the origin.
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Since all results in this chapter regarding Lp boundedness of multipliers will be dilation

invariant, we will assume without loss of generality that Ω contains the ball of radius 8

centered at the origin. Let M > 0 be an integer such that

{ξ : |ξ| 6 8} ⊂ Ω ⊂ Ω ⊂ {ξ : |ξ| < 2M}. (4.5)

We will prove

Theorem 4.1.1. Let Ω be a convex domain satisfying (4.5) and ρ its Minkowski func-

tional. Let a : R→ C be a smooth function supported outside

[−2−2M , 2−2M ] such that a is a symbol of order −κΩ−ε for some ε > 0, that is, for every

integer β > 0,

|Dβa(ξ)| .β (1 + |ξ|)−κΩ−ε−β.

Then

F−1[a(ρ(·))eiρ(·)] ∈ L1(R2),

where
∥∥F−1[a(ρ(·))eiρ(·)]

∥∥
L1(R2)

depends only on M , ε, and the quantitative estimates for

a as a symbol of order −κΩ − ε.

The Fourier inversion formula

m(ρ(ξ)) =
1

2π

∫
m̂(τ)eiτρ(ξ) dτ, (4.6)

which is a more efficient subordination formula than (4.4), gives the following corollary.

Corollary 4.1.2. Let Ω and ρ be as in the statement of Theorem 4.1.1. For ε > 0,

define

‖m‖B(κΩ,ε)
:=

∫
|m̂(τ)|(1 + |τ |)κΩ+ε dτ.
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If m is a bounded, measurable function supported in (1/2, 2), then

‖F [m ◦ ρ]‖L1(R2) .ε,M ‖m‖B(κΩ,ε)

for every ε > 0.

Proof that Theorem 4.1.1 implies Corollary 4.1.2. Sincem is supported in (1/2, 2), there

is a smooth cutoff χ : R2 → R supported compactly away from the origin such that

m(ρ(ξ)) =
1

(2π)2

∫
m̂(τ)χ(ξ)eiτρ(ξ) dτ.

We then have

∥∥F−1[m ◦ ρ]
∥∥
L1(R2)

6
1

(2π)2

∫
|m̂(τ)|

∥∥F−1[χ(·)eiτρ(·)]
∥∥
L1(R2)

dτ

=
1

(2π)2

∫
|m̂(τ)|

∥∥∥F−1[χ(
·
τ

)eiρ(·)]
∥∥∥
L1(R2)

dτ.

Now, for any i > 0 and for every ε > 0,

|Di
ξ[χ(

ξ

τ
)]| .i,ε,M (1 + |τ |)κΩ+ε(1 + |ξ|)−κΩ−ε−i,

and thus Theorem 4.1.1 implies that

∥∥∥F−1[χ(
·
τ

)eiρ(·)]
∥∥∥
L1(R2)

.ε,M (1 + |τ |)κΩ+ε.

It follows that

∥∥F−1[m ◦ ρ]
∥∥
L1(R2)

.ε,M

∫
|m̂(τ)|(1 + |τ |)κΩ+ε

for every ε > 0.

In the special case that κΩ = 1/2, we are able to obtain the following improvement

to Theorem 4.1.1.
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Theorem 4.1.3. Let Ω be a convex domain satisfying (4.5) with κΩ = 1/2 and ρ

its Minkowski functional. Let a : R2 → C be a smooth function supported outside

[−2−2M , 2−2M ] such that a is a symbol of order −1/2, that is, for every integer β > 0,

|Dβa(ξ)| .β (1 + |ξ|)−1/2−β.

Then the operator T defined on Schwartz functions f by

F [Tf ](ξ) = a(ρ(ξ))eiρ(ξ)F [f ](ξ)

extends to a bounded linear operator from the Hardy space H1(R2) to L1(R2), where the

operator norm depends only on M and the quantitative estimates for a as a symbol of

order −1/2.

Using (4.6) gives the following corollary.

Corollary 4.1.4. Let Ω and ρ be as in the statement of Theorem 4.1.3. Let m : R→ C

be a bounded, measurable function supported in (1/2, 2). Then for 1 < p < ∞, the

operator T defined on Schwartz functions f by

F [Tf ] = m(ρ(ξ))F [f ]

extends to a bounded operator on Lp(R2), and

‖T‖H1(R2)→L1(R2) .M ‖m‖B1/2,0
.

The proof that Theorem 4.1.3 implies Corollary 4.1.4 is similar to the proof that

Theorem 4.1.1 implies Corollary 4.1.2, and is left to the reader.

Finally, we would like to remark that while the proof of Theorem 4.1.1 draws heavily

on ideas from [48] and [47], the proof of Theorem 4.1.3 requires the introduction of new

techniques.
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Generalizations of Theorem 4.1.1

Theorem 4.1.1 applies only to multipliers supported compactly away from the origin.

Using Calderón-Zygmund theory, we may generalize the result of Theorem 4.1.1 to

multipliers with non-compact support.

Theorem 4.1.5. Fix a smooth function φ supported compactly away from the origin.

Let m be a measurable function on R with ‖m‖∞ 6 1. Let T be the operator defined on

Schwartz functions f by

F [Tf ](ξ) = m(ρ(ξ))F [f ](ξ).

Then for every ε > 0 and 1 < p <∞,

‖m ◦ ρ‖Mp .ε,p sup
t>0
‖φ(·)m(t·)‖BκΩ,ε

.

Theorem 4.1.5 follows immediately from Theorem 4.1.1 and the following result from

[46], which we state without proof.

Proposition A (Seeger, [46]). Suppose that supt>0 ‖φ(m(t·))‖Mp < ∞, for some p ∈

(1,∞). If for some ε > 0, supt>0 ‖φ(m(t·))‖Λε
< ∞, then m ∈ Mr, |1/r − 1/2| <

|1/p− 1/2|.

We will also see in Section 4.6 that L4(R2) estimates for a generalized Bochner-Riesz

square function leads to a multiplier theorem for quasiradial multipliers in the range

4/3 6 p 6 4. In Section 4.7, we interpolate this with the result of Theorem 4.1.5 to

obtain our final, most general version of Theorem 4.1.1.

Theorem 4.1.6. Fix a smooth function φ supported compactly away from the origin.

Let m be a measurable function on R with ‖m‖∞ 6 1. Let T be the operator defined on
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Schwartz functions f by

F [Tf ](ξ) = m(ρ(ξ))F [f ](ξ).

Let 0 6 θ 6 1. Then for every ε > 0 and 4
4−θ < p < 4

θ
,

‖m ◦ ρ‖Mp

.ε,p sup
t>0

(∫
|FR[φ(·)m(t·)](τ)|

2
2−θ (1 + |τ |)

2κΩ+θ(1−2κΩ)

2−θ +ε dτ

) 2−θ
2

.

Notation

We now introduce some notation that will be used throughout the rest of the chapter.

Given a function f : X → R and subsets A ( B ⊂ X, we will write A ≺ f ≺ B to

indicate that f is identically 1 on A and supported in B. Many of our estimates will have

constants that depend on the quantity M associated with Ω given in (4.5). For the sake

of convenience, we will often choose to supress this dependence in our notation. Thus

we will use the symbols . and ≈ to denote an inequality where the implied constant

possibly depends on M .

4.2 Preliminaries on convex domains in R2

In this section we state some useful facts about convex domains in R2. Most of these

can be found in [48] as well as in Chapter 3, but we include them here for the sake of

completeness and convenience. Let Ω ⊂ R2 be a bounded, open convex set containing

the origin and satisfying (4.5). The proof of the following lemma is straightforward and

uses only elementary facts about convex functions; for more details see [48].
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Lemma B (Seeger and Ziesler, [48]). ∂Ω ∩ {x : −1 6 x1 6 1, x2 6 0} can be

parametrized by

t 7→ (t, γ(t)), − 1 6 t 6 1, (4.7)

where

1.

1 < γ(t) < 2M , − 1 6 t 6 1. (4.8)

2. γ is a convex function on [−1, 1], so that the left and right derivatives γ′L and γ′R

exist everywhere in (−1, 1) and

−2M−1 6 γ′R(t) 6 γ′L(t) 6 2M−1 (4.9)

for t ∈ [−1, 1]. The functions γ′L and γ′R are decreasing functions; γ′L and γ′R are

right continuous in [−1, 1].

3. Let ` be a supporting line through ξ ∈ ∂Ω and let n be an outward normal vector.

Then

| 〈ξ, n〉 | > 2−M |ξ|. (4.10)

Decomposition of ∂Ω

As another preliminary ingredient, we need the decomposition of ∂Ω ∩ {x : −1 6 x1 6

1, x2 < 0} introduced in [48]. This decomposition allows us to write ∂Ω as a disjoint

union of pieces on which ∂Ω is sufficiently “flat”, where the number of pieces in the
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decomposition is closely related to the covering numbers N(Ω, δ). We inductively define

a finite sequence of increasing numbers

A(δ) = {a0, . . . , aQ}

as follows. Let a0 = −1, and suppose a0, . . . , aj−1 are already defined. If

(t− aj−1)(γ′L(t)− γ′R(aj−1)) 6 δ for all t ∈ (aj−1, 1]) (4.11)

and aj−1 6 1 − 2−Mδ, then let aj = 1. If (4.11) holds and aj−1 > 1 − 2−Mδ, then let

aj = aj−1 + 2−Mδ. If (4.11) does not hold, define

aj = inf{t ∈ (aj−1, 1] : (t− aj−1)(γ′L(t)− γ′R(aj−1)) > δ}.

Now note that (4.11) must occur after a finite number of steps, since we have |γ′L|, |γ′R| 6

2M−1, which implies that |t−s||γ′L(t)−γ′R(s)| < δ if |t−s| < δ2−M . Therefore this process

must end at some finite stage j = Q, and so it gives a sequence a0 < a1 < · · · < aQ so

that for j = 0, . . . , Q− 1

(aj+1 − aj)(γ′L(aj+1)− γ′R(aj)) 6 δ, (4.12)

and for 0 6 j < Q− 1,

(t− aj)(γ′L(t)− γ′R(aj)) > δ if t > aj+1. (4.13)

For a given δ > 0, this gives a decomposition of

∂Ω ∩ {x : −1 6 x1 6 1, x2 < 0}

into pieces

⊔
n=0,1,...,Q−1

{x ∈ ∂Ω : x1 ∈ [an, an+1]}.
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The number Q in (4.12) and (4.13) is also denoted by Q(Ω, δ). Let Rθ denote rotation by

θ radians. The following lemma relates the numbers Q(RθΩ, δ) to the covering numbers

N(Ω, δ).

Lemma C (Seeger and Ziesler, [48]). There exists a positive constant CM so that the

following statements hold.

1. Q(Ω, δ) 6 CMδ
−1/2.

2. 0 6 κΩ 6 1/2.

3. For any θ,

Q(RθΩ, δ) 6 CMN(Ω, δ) log(2 + δ−1).

4. For ν = 1, . . . , 22M let θν = 2πν
22M . Then

C−1
M N(Ω, δ) 6

∑
ν

Q(RθνΩ, δ) 6 CMN(Ω, δ) log(2 + δ−1).

We may think of A(δ) as a partition of [−1, 1] into intervals. For the purpose of

defining a partition of unity, we wish to refine this partition so that consecutive intervals

have comparable length, and we construct such a refinement in the proof of the lemma

below. Note the improvement to (4.15) in the special case that κΩ = 1/2; this will be

used later when we prove Theorem 4.1.3.

Lemma 4.2.1. Suppose that Ω is a convex domain satisfying (4.5). Let δ > 0, and let

A(δ) = {a0, a1, . . . aQ}
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be the decomposition of [−1, 1] constructed previously, where a0 = −1 and a1 = 1. There

exists a refinement

Ã(δ) = {b0, b1, . . . bQ̃} (4.14)

of A(δ) with b0 = −1 and bQ̃ = 1, and satisfying the following properties:

1.

card(Ã(2−k)) . k2N(Ω, 2−k). (4.15)

2. Set Ij = [bj, bj+1]. For every 1 6 j 6 Q̃,

(γ′(bj)− γ′(bj−1))|Ij−1| 6 2−k. (4.16)

3. For every 1 6 j 6 Q̃,

|Ij−1|/8 6 |Ij| 6 8|Ij−1|. (4.17)

4.

∑
j

δ|Ij|−1 . 1. (4.18)

In the special case that κΩ = 1/2, we also have

card(Ã(δ)) . δ−κΩ . (4.19)

Proof of Lemma 4.2.1. We construct Ã(δ) as follows. For each 0 6 j 6 Q− 1, let ãj be

the midpoint between aj and aj+1, and consider the set

A := {a0, ã0, a1, ã1, . . . , ãQ−1, aQ}.
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For x ∈ A, let x− := max{y ∈ A : y < x} and x+ := min{y ∈ A : y > x}. For

every x ∈ A, we define a set of points Bx as follows. If x satisfies x+ − x = x − x−,

set Bx = {x}. If x satisfies x+ − x > x − x−, then iteratively define Bx to be the set

of . log(1/δ) many points Bx = {y0, y1, . . . , yN} where y0 is the midpoint between x

and x+, and for every k > 0 set yk+1 to be the midpoint between yk and x, and stop at

the first stage N such that yN − x 6 x − x−. Similarly, if x satisfies x+ − x < x − x−,

then iteratively define Bx to be the set of . log(1/δ) many points Bx = {y0, y1, . . . , yN}

where y0 is the midpoint between x and x−, and for every k > 0 set yk+1 to be the

midpoint between yk and x, and stop at the first stage N such that x − yN 6 x+ − x.

Now let

Ã(δ) =
⋃
x∈A

Bx.

Clearly, Ã(δ) satisfies (4.16), since any refinement of A(δ) automatically satisfies (4.16).

It is also obvious that Ã(δ) satisfies (4.17). Since A(δ) satisfies (4.13), we have∑
j

2−k|Ij|−1 .
∑
j

2−k(aj+1 − aj)−1 .
∑
j

(γ′(aj+1)− γ′(aj)) . 1,

so Ã(δ) satisfies (4.18). By Lemma C, we have

card(Ã(2−k)) = Q̃+ 1 . k · card(A(2−k)) . k2N(Ω, 2−k). (4.20)

and so Ã(δ) satisfies (4.15).

In the case that κΩ = 1/2, we note that (4.13) implies that for any L > 0, the number

of intervals [aj, aj+1] such that (aj+1− aj) ≈ L is . min(Lδ−1, L−1). Thus for any r > 0

the number of pairs(
[aj, aj+1]; [aj+1, aj+2]

)
with

max

(
aj+2 − aj+1

aj+1 − aj
,
aj+1 − aj
aj+2 − aj+1

)
≈ r
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is . r−1δ−1/2. It follows that the number of points x ∈ A with

max

(
x+ − x
x− x−

,
x− x−

x+ − x

)
≈ r

is . r−1δ−1/2. For such points x we have card(Bx) . log(r), and so summing over all

dyadic r = 2k we have that

∑
k>0

k2−kδ−1/2 . δ−1/2,

and hence Ã(δ) satisfies (4.19).

Approximating Ω by convex domains with smooth boundary

It will be necessary to approximate Ω by a sequence of convex domains with smooth

boundaries. In [48], this was done by approximating Ω by a sequence of convex polygons

with sufficiently many vertices and smoothing out the boundary near the vertices. We

state the following lemma from [48] without proof.

Lemma D (Seeger and Ziesler, [48]). Let Ω ⊂ R2 be an open convex domain containing

the origin. There is a sequence of convex domains {Ωn} containing the origin, with

Minkowski functionals ρn(ξ) = inf{t > 0| ξ/t ∈ Ωn}, so that the following holds:

1. Ωn ⊂ Ωn+1 ⊂ Ω and
⋃
n Ωn = Ω.

2. ρn(ξ) > ρn+1(ξ) > ρ(ξ) and

ρn(ξ)− ρ(ξ)

ρ(ξ)
6 2−n−1;

in particular limn→∞ ρn(ξ) = ρ(ξ), with uniform convergence on compact sets.

3. Ωn has C∞ boundary.



84

4. If δ > 2−n+2 then

N(Ωn, 2δ) 6 N(Ω, δ).

Computing ∇ρ

Assuming that ρ ∈ C1(R2 \ {0}), we would like to compute ∇ρ(α, γ(α)) for α ∈ [−1, 1].

Since ∇ρ is homogeneous of degree 0, this will actually give us ∇ρ(ξ) for any ξ in a

sector of R2 \{0} bounded by rays passing through (−1, γ(−1)) and (1, γ(1)). Note that

∇ρ(α, γ(α)) · (1, γ′(α)) = 0, (4.21)

and thus ∇ρ(α, γ(α)) is parallel to (−γ′(α), 1). Differentiating the homogeneity relation

ρ(t(α, γ(α))) = tρ(α, γ(α))

with respect to t and setting t = 1 yields

(∇ρ(α, γ(α))) · (α, γ(α)) = 1. (4.22)

It follows that

|∇ρ(α, γ(α))| = |(−γ′(α), 1)|
| 〈(α, γ(α)); (−γ′(α), 1)〉 |

. (4.23)

Note that (4.5) implies that

| 〈(α, γ(α)); (−γ′(α), 1)〉 | > 2−4M . (4.24)

Together (4.21) and (4.23) imply that

∇ρ(α, γ(α)) =
(γ′(α),−1)

αγ′(α)− γ(α)
. (4.25)

Note that (4.5) and (4.25) implies that

|∇ρ(α, γ(α))| 6 25M . (4.26)
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4.3 L1 kernel estimates

The goal of this section is to prove Theorem 4.1.1. Let Ω, ρ and a be as in the statement

of Theorem 4.1.1. Motivated by [47], we would like to perform a dyadic decomposition

of the multiplier a(ρ(ξ))eiρ(ξ). Let {θk}k>0 be a smooth dyadic partition of unity of R,

so that θ0 is supported in [−2−3M , 2−3M ] and θk is supported in an annulus |ξ| ≈ 2k−3M

for k > 0. We write

K(x) := F−1[a(ρ(·))eiρ(·)](x) =
∑
k>0

Kk(x),

where

Kk(x) := F−1[a(ρ(·))eiρ(·)θk(ρ(·))](x). (4.27)

It is easy to see that Theorem 4.1.1 is a consequence of the following.

Proposition 4.3.1. Let Ω, ρ and a be as in the statement of Theorem 4.1.1. Define Kk

as in (4.27). Then for k > 0 and for every ε > 0,

‖Kk‖L1(R2) .ε 2−kε/2.

In order to obtain kernel estimates using techniques similar to those in [48], we want

to work with domains with smooth boundaries, rather than arbitrary convex domains

for which the boundary need only be Lipschitz. Thus we will use Lemma D to reduce

Proposition 4.3.1 to the following.

Proposition 4.3.2. Let Ω, ρ and a be as in the statement of Theorem 4.1.1. Fix an

integer k > 0. Let Ω̃ be a convex domain with smooth boundary such that

{ξ : |ξ| 6 4} ⊂ Ω̃ ⊂ Ω̃ ⊂ {ξ : |ξ| < 2M+1},
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and such that

N(Ω̃, 2−k) 6 N(Ω, 2−k−1). (4.28)

Let ρ̃ be the Minkowski functional of Ω̃. Define

K̃k(x) := F−1[a(ρ̃(·))eiρ̃(·)θk(ρ̃(·))](x).

Then for every ε > 0,

∥∥∥K̃k

∥∥∥
L1(R2)

.ε 2−kε/2.

Proof that Proposition 4.3.2 implies Proposition 4.3.1. Let {ρn} be a sequence of Minkowski

functionals approximating ρ as in Lemma D, and for each n set

Kk,n(x) := F [a(ρn(·))eiρn(·)θk(ρn(·))](x).

Since ρn → ρ uniformly on compact sets, Kk,n(x)→ Kk(x) pointwise almost everywhere,

and so Fatou’s lemma yields

‖Kk‖L1(R2) 6 lim inf
n→∞

‖Kk,n‖L1(R2) .ε 2−kε/2,

where in the second to last step we have applied Proposition 4.3.2.

Now that we have reduced Proposition 4.3.1 to Proposition 4.3.2 we may now work

with distance functions ρ̃ that are smooth away from the origin, and so we may express

the kernels in homogeneous coordinates (polar coordinates associated to Ω̃) and integrate

by parts. This is the general approach used in [48] to handle the generalized Bochner-

Riesz multipliers. We emphasize that we must take care to ensure that our estimates

ultimately depend only on the C1 norm of ∂Ω̃, which is bounded by 2M (and not,
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for instance, the C2 norm). That this is necessary can be seen in the statements of

Theorem 4.1.1, Proposition 4.3.1 and Proposition 4.3.2, where none of the constants

in the estimates to be proven depend on the C2 norm of ∂Ω̃. However, if we recall

the remarks made about notation in the introduction, each of the constants in these

estimates implicitly depend on M .

Proof of Proposition 4.3.2. We first note that after employing an appropriate angular

partition of unity and using rotational invariance it suffices to consider K̃k multiplied

by a smooth angular cutoff on the Fourier side. Thus in what follows we will instead let

K̃k(x) := F−1[a(ρ̃(·))eiρ̃(·)θk(ρ̃(·))χ(·)](x) (4.29)

where χ(ξ) = χ1( ξ1|ξ|)χ2(ρ̃(ξ)) for smooth functions χ1, χ2 : R→ R so that [−2−2M−1, 2−2M−1] ≺

χ1 ≺ [−2−2M , 2−2M ], and so that χ2 is identically 1 on the support of a and 0 in a suffi-

ciently small ball centered at the origin. Let γ be a parametrization of ∂Ω̃ ∩ {x : −1 6

x1 6 1, x2 6 0} as in Lemma B. We introduce homogeneous coordinates

(s, α) 7→ ξ(s, α) = (sα, sγ(α)). (4.30)

In this coordinate system, {(s, α) : s = 1} ⊂ {ξ : ρ(ξ) = 1}. The map (4.30) has

Jacobian

det

(
∂ξ

∂(s, α)

)
= s(αγ′(α)− γ(α)).

Note that there is a smooth function χ̃1 : R → R so that χ1( ξ1|ξ|) in homogeneous

coordinates is given by χ̃1(α). Using (4.30), we thus have

K̃k(x) =

∫
R2

eiρ̃(ξ)a(ρ̃(ξ))θk(ρ̃(ξ))χ(ξ)eix·ξ dξ

=

∫ ∞
0

∫
eis(αx1+γ(α)x2+1)a(s)θk(s)χ̃1(α)s(αγ′(α)− γ(α)) dα ds. (4.31)
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Kernel estimates far away from the singular set

Considering the phase ix·ξ+iρ̃(ξ) as a function of the variable ξ, we see that its gradient

vanishes on the singular set x ∈ {−∇ρ̃(ξ) : ξ ∈ R2}. Since |∇ρ̃| 6 25M as noted in

(4.26), we choose to separately estimate the L1 norm of K̃k away from a sufficiently large

ball (say, of radius 26M) centered at the origin. We would expect that after localization

on the Fourier side, the multiplier eiρ̃(ξ) acts like translation by ∇ρ̃(ξ0) for some ξ0, and

hence we might expect any pointwise kernel estimates we obtain off of the ball of radius

26M centered at the origin to be robust under perturbations by ∇ρ̃(ξ0). Thus we will

not further decompose the multiplier F [K̃k] when estimating the L1 norm of K̃k off of

this ball.

Throughout the rest of this chapter, φ0 : R→ R will be a smooth function satisfying

[−1/2, 1/2] ≺ φ ≺ [−1, 1]. We set c = c(Ω, ε) = 1
2

max(κΩ, ε). We will show that∫
|K̃k(x)(1− φ0(2−6M |x|))| dx . 2−kc. (4.32)

To do this we will first prove∫
|K̃k(x)(φ0(2−3k−6M |x|)− φ0(2−6M |x|))| dx . 2−kc (4.33)

and then prove ∫
|K̃k(x)(1− φ0(2−3k−6M |x|))| dx . 2−k. (4.34)

Let η : R→ R be a smooth function satisfying [−2−3M−1, 2−3M−1] ≺ η ≺ [−2−3M , 2−3M ].

We decompose

K̃k(x)(φ0(2−3k−6M |x|)− φ0(2−6M |x|)) = K̃k,1(x) + K̃k,2(x),
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where

K̃k,1(x) = (φ0(2−3k−6M |x|)− φ0(2−6M |x|))

×
∫ ∞

0

∫
eis(αx1+γ(α)x2+1)a(s)η

(
x1 + x2γ

′(α)

|x|

)
× θk(s)χ̃1(α)s(αγ′(α)− γ(α)) dα ds (4.35)

and

K̃k,2(x) = (φ0(2−3k−6M |x|)− φ0(2−6M |x|))

×
∫ ∞

0

∫
eis(αx1+γ(α)x2+1)a(s)

(
1− η

(
x1 + x2γ

′(α)

|x|

))
× θk(s)χ̃1(α)s(αγ′(α)− γ(α)) dα ds. (4.36)

ξ1

ξ2

∇ρ(α, γ(α))

u2

u1

(α, γ(α))

(0, 0)

Ω̃

Figure 4

The coordinate system from (4.37).
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Note that the coordinate system given by the change of coordinates

(x1, x2) 7→ (u1, u2) := (x1 + x2γ
′(α), 1 + αx1 + γ(α)x2), (4.37)

has Jacobian with absolute value |αγ′(α)− γ(α)| ≈M 1. It is also helpful to note that

x1 + x2γ
′(α) = [(x1, x2)−∇ρ(α, γ(α))] · (1, γ′(α))

and

1 + αx1 + γ(α)x2 = [(x1, x2)−∇ρ(α, γ(α))] · (α, γ(α)),

and hence our coordinate system is centered at∇ρ(α, γ(α)) with one coordinate direction

parallel to (α, γ(α)) and the other coordinate direction parallel to the tangent vector to

∂Ω at (α, γ(α)); see Figure 4. Thus by our choice of the angular cutoff χ and our choice

of η, it follows that on the support of

(φ0(2−3k−6M |x|)− φ0(2−6M |x|))η
(
x1 + x2γ

′(α)

|x|

)
we have |x| ≈ |1 + αx1 + γ(α)x2|. Similarly, on the support of

(φ0(2−3k−6M |x|)− φ0(2−6M |x|))
(

1− η
(
x1 + x2γ

′(α)

|x|

))
we have |x| ≈ |x1 + x2γ

′(α)|.

Integrating (4.35) by parts three times with respect to s and using the above obser-

vations yields

∫
|K̃k,1(x)| dx . 2−k(κΩ+ε)

∫ ∫
χ̃1(α)

22k

(1 + 2k|1 + αx1 + γ(α)x2|)3
dα dx

. 2−k(κΩ+ε)

∫
22k

(1 + 2k|x|)3
dx . 2−kc. (4.38)
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Integrating by parts (4.36) once with respect to α, we have

∫
|K̃k,2(x)| dx = (φ0(2−3k−6M |x|)− φ0(2−6M |x|))

×
∫ ∞

0

∫
∂αgk(x, α)eis(αx1+γ(α)x2+1)a(s)θk(s) ds dα, (4.39)

where

gk(x, α) =
χ̃1(α)(αγ′(α)− γ(α))(1− η(x1+x2γ′(α)

|x| ))

x1 + x2γ′(α)
.

Integrating by parts (4.39) twice with respect to s, we have

|K̃k,2(x)| . 2−k(κΩ+ε)(φ0(2−3k−6M |x|)− φ0(2−6M |x|))

×
∫
|∂αgk(x, α)| 2k

(1 + 2k|αx1 + γ(α)x2 + 1|)2
dα.

Note that on the support of gk(x, α),

|∂αgk(x, α)| . |γ′′(α)|+ 1

|x1 + x2γ′(α)|
. (4.40)

We apply the change of coordinates (4.37). Using (4.40), this yields

∫
|K̃k,2(x)| dx

. 2−k(κΩ+ε)

∫ (∫
B

23k+10M (0)\B1(0)

1

|u1|
2k

(1 + 2k|u2|)2
du

)
× (|γ′′(α)|+ 1)χ̃1(α)dα

. 2−k(κΩ+ε)

∫
B

23k+10M (0)\B1(0)

1

|u1|
2k

(1 + 2k|u2|)2
du . k2−k(κΩ+ε) . 2−kc,

which together with (4.38) proves (4.33).

Now we prove (4.34). We will need the following lemma from [48], which we state

without proof.
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Lemma E (Seeger and Ziesler, [48]). Let h be an absolutely continuous function on

[0,∞) and suppose that limt→∞ h(t) = 0. Suppose that s 7→ sh′(s) defines an L1 function

on [0,∞) and let

F (τ) =

∫ ∞
0

h′(s)eisτ ds.

Suppose that µ > 0 and that

|F (τ)|+ |F ′(τ)| 6 B(1 + |τ |)−µ.

Let B(0, R) be the ball with radius R and center 0, and define Al = B(0, 2l) \B(0, 2l−1),

for l > 0, and A0 = B(0, 1). Then∫
Al
|F−1[h ◦ ρ](x)| dx .M B[2−l(µ−1) + l2−l].

We will apply the lemma with h(s) = eisa(s)θ(2−ks). Then for every N > 0,

|F (τ)|+ |F ′(τ)| 6 2k(2−κΩ−ε)(1 + |τ |)−N ,

and so we conclude that ∫
Al
F−1[h ◦ ρ](x)| dx . l2k(2−κΩ−ε)−l.

Summing over l > 10k, we obtain (4.34) and therefore (4.32).

Remark 4.3.3. We note that our proof of (4.32) is also valid when ε = 0 and κΩ > 0,

which implies c = κΩ/2. We will use this later when we prove an H1 → L1 endpoint

estimate.
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Kernel estimates near the singular set

It remains to estimate ∫
|K̃k(x)φ0(2−6M |x|)| dx.

Here we will further decompose the mutiplier F [K̃k] using the decomposition of ∂Ω̃

from Section 4.2. Let A(2−k) be the increasing sequence of numbers associated to ∂Ω̃ as

defined in Section 4.2 with δ = 2−k, and let Ã(2−k) be the refinement of A(2−k) as given

by Lemma 4.2.1 and let {Ij} be the corresponding partition of [−1, 1] into subintervals.

We emphasize that although our collection of intervals {Ij} is indexed only by j, it

implicitly depends on k as well. Now for each such interval Ij, let I∗j be its 25/24-dilate

(dilated from the center of Ij), and let {βIj} be a smooth partition of unity subordinate

to {I∗j } such that for each i > 0,

DiβIj(x) . |Ij|−i.

The constant 25/24 is chosen so that {I∗j } is an almost-disjoint collection. We decompose

K̃k =
∑
j

K̃k,j,

where

K̃k,j(x) =

∫ ∞
0

∫
I∗j

eis(αx1+γ(α)x2+1)βIj(α)θk(s)a(s)s(αγ′(α)− γ(α)) dα ds,

that is, K̃k,j is like K̃k with βIj(α) inserted into the integral. We may think of this

decomposition on the Fourier side as a decomposition of the multiplier F [K̃k] into smooth

functions adapted to sectors bounded by rays originating at the origin and passing

through points (α, γ(α)) where α ∈ Ã(2−k). To estimate
∫
|K̃k,j(x)φ0(2−6M |x|)| dx, we
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will further decompose

K̃k,j(x) · φ0(2−6M |x|) =
∑
n>0

K̃k,j,n(x),

where we define K̃k,j,n as follows. Recall that φ0 is a smooth function such that

[−1/2, 1/2] ≺ φ0 ≺ [−1, 1], and let

Φk,j,0(x, α) = φ0(|Ij|2k(x1 + x2γ
′(α))) (4.41)

and for n > 0 let

Φk,j,n(x, α) = φ0(|Ij|2k−n(x1 + x2γ
′(α)))− φ0(|Ij|2k−n+1(x1 + x2γ

′(α))). (4.42)

Set

K̃k,j,0(x) := φ0(2−6M |x|)
∫ ∞

0

∫
I∗j

eis(αx1+γ(α)x2+1)βIj(α)

Φk,j,0(x, α)θk(s)a(s)s(αγ′(α)− γ(α)) dα ds

and for n > 0 set

K̃k,j,n(x) := φ0(2−6M |x|)
∫ ∞

0

∫
I∗j

eis(αx1+γ(α)x2+1)βIj(α)

Φk,j,n(x, α)θk(s)a(s)s(αγ′(α)− γ(α)) dα ds,

that is, K̃k,j,n is like K̃k,j with Φk,j,n(x, α) inserted into the integral.

To estimate
∫
|K̃k,j,0(x)| dx, we integrate by parts in s twice to obtain

∫
|K̃k,j,0(x)| dx . 2k(1−κΩ−ε)

∫
I∗j

∫
|x1+x2γ′(α)|6|Ij |−12−k

2k

× (1 + 2k|αx1 + γ(α)x2 + 1|)−2 dx dα.
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Applying the change of coordinates (4.37) yields

∫
|K̃k,j,0(x)| dx . 2k(1−κΩ−ε)

×
∫
I∗j

∫
|u1|6|Ij |−12−k

2k(1 + 2k|u2|)−2 du1 du2 dα

. 2−k(κΩ+ε).

By (4.15) and (4.28), we may sum in j to obtain

∑
j

∫
|K̃k,j,0(x)| dx . 2−kε/2. (4.43)

Now we estimate
∫
|Kk,j,n(x)| dx for n > 0. Observe that K̃k,j,n(x) is identically zero

when n > k, so we only need consider the case n < k. We integrate by parts once with

respect to α and then twice with respect to s. Integrating by parts with respect to α

yields

K̃k,j,n(x) = φ0(2−6M |x|)
∫ ∞

0

∫
I∗j

∂αgk,j,n(x, α)eis(αx1+γ(α)x2+1)

a(s)θ(2−ks) ds dα,

where

gk,j,n(x, α) =
Φk,j,n(x, α)βIj(α)(γ(α)− αγ′(α))

x1 + x2γ′(α)
.

Integrating by parts twice with respect to s yields

|K̃k,j,n(x)| . 2k(−κΩ−ε)φ0(2−6M |x|)
∫
I∗j

|∂αgk,j,n(x, α)|

× 2k

(1 + 2k|αx1 + γ(α)x2 + 1)|)2
dα.
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Observe that on the support of K̃k,j,n(x), |x| . 1, so

|∂αgk,j,n(x, α)| . |γ
′′(α)|(|Ij|2k−n|x|+ 1) + |Ij|−1

|x1 + x2γ′(α)|

.
|γ′′(α)|(|Ij|2k−n + 1) + |Ij|−1

|x1 + x2γ′(α)|
.

Thus applying the change of coordinates (4.37), we have

∫
|K̃k,j,n(x)| dx . 2k(−κΩ−ε)

∫
I∗j

(|γ′′(α)|(|Ij|2k−n + 1) + |Ij|−1)

×
∫
|u1|≈2n−k|Ij |−1

1

|u1|
2k

(1 + 2k|u2|)2
du dα

. 2k(−κΩ−ε)
∫
I∗j

(|γ′′(α)|(|Ij|2k−n + 1) + |Ij|−1) dα.

By (4.16), if we let b∗j and b∗j+1 denote the endpoints of I∗j , then we have∫
I∗j

|γ′′(α)||Ij| dα . (γ′(b∗j+1)− γ′(b∗j))|Ij| . 2−k,

and thus ∫
|K̃k,j,n(x)| dx . 2k(−κΩ−ε).

Summing in j and n, using (4.15) and (4.28) and recalling that we only need sum over

n < k, we obtain

∑
j

∑
n>0

∫
|K̃k,j,n(x)| dx . k2−kε . 2−kε/2. (4.44)

Combining this with our previous estimates (4.43) and (4.32), we have∫
|K̃k(x)| dx .ε 2−kε/2,

as desired, completing the proof of Proposition 4.3.2 and hence Theorem 4.1.1.
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4.4 The H1 → L1 endpoint estimate: preliminaries

and estimate on the exceptional set

In this section, we begin the proof of Theorem 4.1.3. Throughout this section κΩ = 1/2.

We note that we will often continue to write κΩ instead of subsituting 1/2 simply to

indicate how certain quantities in our estimates arise. As in the proof of Theorem 4.1.1,

the first step is to reduce Theorem 4.1.3 to a statement about convex domains with

smooth boundary.

Reduction to the case of smooth boundary

We invoke Lemma D to show that it suffices to prove Theorem 4.1.3 in the special case

that ∂Ω is C∞. For any cube Q ⊂ R2, recall that an atom associated to aQ is a bounded,

measurable function supported in Q such that

‖aQ‖∞ 6 |Q|−1,∫
Q

aQ(x) dx = 0.

Let φ > 0 be a Schwartz function with compactly supported Fourier transform such that

‖φ‖L1 = 1, and for each m > 0 let φm(x) = 22mφ(2mx). Then there is N = N(M) > 0

sufficiently large so that

‖T (aQ)‖L1 = lim
m→∞

‖φm ∗ (T (aQ))‖L1 = lim
m→∞

∥∥∥∥∥φm ∗ (
2mN∑
k=0

Kk ∗ aQ
)∥∥∥∥∥

L1

,

where Kk(x) = F−1[a(ρ(·))eiρ(·)θk(ρ(·))](x). Let {ρn} be a sequence of Minkowski func-

tionals approximating ρ as in Lemma D, and letKk,n(x) = F−1[a(ρn(·))eiρn(·)θk(ρn(·))](x).

Now, assuming that Theorem 4.1.3 holds in the special case that ∂Ω is smooth, for each
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m we have∥∥∥∥∥φm ∗ (
2mN∑
k=0

Kk ∗ aQ
)∥∥∥∥∥

L1

. lim inf
n→∞

∥∥∥∥∥φm ∗ (
2mN∑
k=0

Kk,n ∗ aQ
)∥∥∥∥∥

L1

. lim inf
n→∞

∥∥∥∥∥
∞∑
k=0

Kk,n ∗ aQ

∥∥∥∥∥
L1

. 1,

where in the first step above we have used the fact that ρn → ρ uniformly on compact

sets. Thus we have shown it suffices to prove Theorem 4.1.3 in the special case that ∂Ω

is C∞.

Reduction to the case of cubes with small sidelength

We assume ∂Ω is C∞. We need to prove that for any atom aQ,

‖T (aQ)‖L1(R2) 6 C, (4.45)

where C is a constant independent of the choice of Q or aQ.

First suppose Q has sidelength > 1. Let K(x) = F−1[a(ρ(·))eiρ(·)](x). Recall that

φ0 is a smooth function such that [−1/2, 1/2] ≺ φ0 ≺ [−1, 1]. Let φ(x) = φ0(2−6M |x|).

Then (Kφ) ∗ aQ is supported in 26M+1Q, where the dilation is taken from the center of

Q. Since K̂ ∈ L∞, ‖(Kφ) ∗ aQ‖2 . ‖aQ‖2. By Cauchy-Schwarz,

‖(Kφ) ∗ aQ‖L1 . |Q|1/2 ‖(Kφ) ∗ aQ‖L2 . |Q|1/2 ‖aQ‖L2 . 1. (4.46)

As stated in Remark 4.3.3, we have already shown in Section 4.3 that

‖(K(1− φ)) ∗ aQ‖L1 . 1,

which proves (4.45) if the sidelength of Q is > 1.

Thus we have reduced Theorem 4.1.3 to the following proposition.
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Proposition 4.4.1. Let Ω be a convex domain with smooth boundary satisfying (4.5),

and let ρ be its Minkowski functional. Let a and T be as in the statement of Theorem

4.1.3. Then for every cube Q of sidelength 6 1 and for every atom aQ associated to Q,

we have

‖T (aQ)‖L1(R2) 6 C,

where the constant C depends only on M and the quantitative estimates for a as a symbol

of order −1/2.

We now make the same observation made at the beginning of the proof of Proposition

4.3.2 and note that it is enough to prove Proposition 4.4.1 with the kernel K of the

operator T redefined as

K(x) := F−1[a(ρ(·))eiρ(·)θk(ρ(·))χ(·)](x), (4.47)

where χ is the same smooth angular cutoff as in (4.29). Thus in what follows we will

take (4.47) to be our definition of K.

Estimate on the exceptional set

In what follows we assume that Q is a cube of sidelength 2−l for some l > 0, and aQ an

atom associated to Q. To prove Proposition 4.4.1, we will define an exceptional set of

sufficiently small measure off of which T (aQ) decays. Let Σρ be the smooth closed curve

given by

Σρ := {ξ : ξ = −∇ρ(ξ′) for some ξ′ ∈ R2}.

Since ∇ρ is homogeneous of degree 0, this indeed corresponds to a smooth closed curve.

As noted previously, the gradient of the phase ix · ξ + iρ(ξ) vanishes on the singular set
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Σρ. We would like to associate to Q an exceptional set NQ. A natural choice for NQ

might be

{x ∈ R2| |x− Σρ| 6 C2−l}

for some choice of constant C. However, for technical reasons we will choose NQ to be

a slightly larger set. Let {Ij} be the partition of [−1, 1] into subintervals corresponding

to the subset A(2−l) of [−1, 1], as given by Lemma 4.2.1. We emphasize that although

the collection of intervals {Ij} is indexed only by j, it implicitly depends on l as well.

(Recall that Q has sidelength 2−l.) For each j, choose some αj ∈ Ij. Define

Eαj := {x : |αjx1 + γ(αj)x2 + 1| 6 2−l+15M ,

|x1 + x2γ
′(αj)| 6 2−l+15M |Ij|−1},

and define

NQ :=
⋃
j

Eαj .

Then by (4.18),

|NQ| .
∑
j

2−2l|Ij|−1 . 2−l.

We follow [47] to estimate T (aQ) on NQ. By the Hardy-Littlewood-Sobolev inequality,

∥∥(I −∆)−1/4aQ
∥∥

2
. ‖aQ‖4/3 .

Since a is a symbol of order −1/2 and ρ is homogeneous of degree one, the operator

T (I −∆)−1/4 is bounded on L2, and so after using Hölder’s inequality twice we have

‖T (aQ)‖L1(NQ) . 2−l/2 ‖T (aQ)‖2 . 2−l/2
∥∥(I −∆)−1/4aQ

∥∥
2

. 2−l/2 ‖aQ‖4/3 . 1.
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Thus to prove Proposition 4.4.1, It remains to show

‖T (aQ)‖L1(R2\NQ) . 1. (4.48)

As noted in Remark 4.3.3, we have already shown that∫
|K(x)(1− φ0(2−6M |x|))| dx . 1.

Thus if we let S denote the operator with kernel K(x)(φ0(2−6M |x|), (4.48) reduces to

proving

‖S(aQ)‖L1(R2\NQ) . 1. (4.49)

We now proceed to decompose S as a sum of operators, some of which map aQ to a

function supported inside the exceptional set NQ; these operators will not contribute to

the left hand side of (4.49). Let Sk denote the operator with kernel Kk(x)φ0(2−6M |x|),

where

Kk(x) = F−1[a(ρ(·))eiρ(·)θk(ρ(·))χ(·)](x).

As before, we let {Ij} be the collection of intervals corresponding to the partition of

[−1, 1] given by Ã(2−l), as defined in Section 4.2.

For each j, define

Φl,j,0(x, α) = φ0(|Ij|2l(x1 + x2γ
′(α))).

For each j, k and for each n > 0, define

Φk,j,n(x, α) = φ0(|Ij|2k−n(x1 + x2γ
′(α)))− φ0(|Ij|2k−n+1(x1 + x2γ

′(α))).
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For each k, j, n > 0, we consider the operators Sl,k,j,n, S̃l,k,j and S ′l,k,j with kernels Ll,k,j,n,

L̃l,k,j and L′l,k,j, respectively, given by

Ll,k,j,n := φ0(2−6M |x|)
∫ ∫

eis(αx1+γ(α)x2+1)βIj(α)

× Φk,j,n(x, α)θk(s)a(s)s(αγ′(α)− γ(α))χ(α) dα ds, (4.50)

L̃l,k,j := φ0(2−6M |x|)
∫ ∫

eis(αx1+γ(α)x2+1)βIj(α)

× Φl,j,0(x, α)(1− φ0(2l(αx1 + γ(α)x2 + 1)))

× θk(s)a(s)s(αγ′(α)− γ(α))χ(α) dα ds (4.51)

and

L′l,k,j := φ0(2−6M |x|)
∫ ∫

eis(αx1+γ(α)x2+1)βIj(α)

× Φl,j,0(x, α)φ0(2l(αx1 + γ(α)x2 + 1))

× θk(s)a(s)s(αγ′(α)− γ(α))χ(α) dα ds. (4.52)

Note that Ll,k,j,n(x) is like Kk(x)φ0(2−6M |x|) with

βIj(α) · Φk,j,n(x, α)

inserted into the integral, L̃l,k,j(x) is like Kk(x)φ0(2−6M |x|) with

βIj(α) · Φl,j,0 · (1− φ0(2l(αx1 + γ(α)x2 + 1)))

inserted into the integral, and L′l,k,j(x) is like Kk(x)φ0(2−6M |x|) with

βIj(α) · Φl,j,0 · φ0(2l(αx1 + γ(α)x2 + 1))
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inserted into the integral. These kernels are most easily visualized using the coordinate

system of (4.37); see Figure 5.

ξ1

ξ2

(bj , γ(bj))

(bj+1, γ(bj+1))

(α, γ(α))

(0, 0)

Ω x1

x2

∇ρ(α, γ(α))
u2

u1

Figure 5

The domain Ω is depicted on the left, where for a fixed j a point (α, γ(α)) is chosen so that α ∈

Ij . On the right, up to dilation by a constant, the shaded parallelogram represents the support of

Φl,j,0(x, α) · φ0(2l(αx1 + γ(α)x2 + 1)), and up to dilation by a constant the region between the two

dashed lines represents the support of Φl,j,0(x, α) · (1 − φ0(2l(αx1 + γ(α)x2 + 1)). The region outside

the two dashed lines represents the support of
∑
n:n>k−l Φk,j,n(x, α). Note that the long side of the

shaded parallelogram is orthogonal to u2, and the dashed lines are orthogonal to u1. The short side of

the parallelogram has length ≈ 2−l, and the long side has length ≈ 2−l|Ij |−1.

We can write

S =
∑
k: k<l

Sk +
∑
k: k>l

∑
n:n>k−l

∑
j

Sl,k,j,n +
∑
k: k>l

∑
j

(S̃l,k,j + S ′l,k,j). (4.53)

If we fix some k > l and freeze all sums in k in (4.53), then we may interpret (4.53) as

follows. The term
∑

n:n>k−l
∑

j Sl,k,j,n may be thought of as the portion of the kernel of

Sk supported away in the u1-direction from the exceptional set NQ, with the distance

from NQ increasing as n increases. The term
∑

j S̃l,k,j may be thought of as the portion
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of the kernel of Sk supported away in the u2-direction from NQ. We will see that the

kernel of the term
∑

j S
′
l,k,j is supported in NQ. We prove the following lemma.

Lemma 4.4.2. The support of

∑
k: k>l

∑
j

S ′l,k,jaQ

is contained in NQ.

Proof of Lemma 4.4.2. Since aQ is supported in a cube of sidelength 2−l, it suffices to

show that the kernel of
∑

k: k>l

∑
j S
′
l,k,j is supported in

ÑQ :=
⋃
j

Ẽαj .

where

Ẽαj := {x : |αjx1 + γ(αj)x2 + 1| 6 2−l+14M ,

|x1 + x2γ
′(αj)| 6 2−l+14M |Ij|−1}.

Observe that if we set

cα = γ′(α)(αγ′(α)− γ(α))−1

and

dα = −(αγ′(α)− γ(α))−1,

then

αx1 + γ(α)x2 + 1 = (α, γ(α)) · (x1 + cα, x2 + dα),
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and moreover

(cα, dα) · (1, γ′(α)) = 0.

In fact, (4.25) states that (cα, dα) = ∇ρ(α, γ(α)). Now, for any α, α′ ∈ I∗j , (4.22) implies

that we have

(α, γ(α)) · (cα′ − cα, dα′ − dα) = (cα′ , dα′) · (α, γ(α))− 1

=
(γ′(α′),−1) · (α, γ(α))

(γ′(α′),−1) · (α′, γ(α′))
− 1. (4.54)

By (4.12), we have that

|(γ′(α′),−1) · (α′ − α, γ(α′)− γ(α))| 6 2−l+4. (4.55)

Indeed, (4.55) is equivalent to the statement that (α, γ(α)) is contained in a rectangle

of width 6 2−l+4 containing (α′, γ(α′)) with short side parallel to the normal to ∂Ω at

(α′, γ(α′)). That is, (α, γ(α)) and (α′, γ(α′)) are contained in a single “Minkowski cap”

of width δ 6 2−l+4.

As mentioned in (4.24), |(γ′(α′),−1) · (α′, γ(α′))| > 2−4M , and so it follows from

(4.54) and (4.55) that

|(α, γ(α)) · (cα′ − cα, dα′ − dα)| 6 (γ′(α′),−1) · (α′ − α, γ(α′)− γ(α))

(γ′(α′),−1) · (α′, γ(α′))

6 2−l+5M . (4.56)

We also note that for any α, α′ ∈ I∗j ,

|(cα′ − cα, dα′ − dα)| 6 210M max(|γ′(α)− γ′(α′)|, |γ(α)− γ(α′)|)

6 210M max(2−l|Ij|−1, 2−l) 6 2−l+10M |Ij|−1, (4.57)
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where in the second step we have used (4.12). It follows from (4.56) and (4.57) that for

any α, α′ ∈ I∗j ,

supp

(
φ0(|Ij|2l(x1 + x2γ

′(α′)))φ0(2l(α′x1 + γ(α′)x2 + 1))

)
⊂ {x : (x+ (cα, dα)) · (1, γ′(α′)) 6 2−l+12M |Ij|−1,

(x+ (cα, dα)) · (α′, γ(α′)) 6 2−l+12M}. (4.58)

Next, we note that (4.5) implies that for any α, α′ ∈ I∗j , the angle between (α, γ(α)) and

(α′, γ(α′)) is 6 |Ij|, and this combined with (4.58) implies that for any α, α′ ∈ I∗j ,

supp

(
φ0(|Ij|2l(x1 + x2γ

′(α′)))φ0(2l(α′x1 + γ(α′)x2 + 1))

)
⊂ Ẽα := {x : |αx1 + γ(α)x2 + 1| 6 2−l+14M , |x1 + x2γ

′(α)| 6 2−l+14M |Ij|−1}, (4.59)

and taking α = αj completes the proof.

We have thus reduced Proposition 4.4.1, and hence also Theorem 4.1.3, to the fol-

lowing proposition.

Proposition 4.4.3. Let S̃l,k,j, Sl,k,j,n and Sk be as defined previously. Then∥∥∥∥∥( ∑
k:k>l

∑
j

(S̃l,k,j +
∑

n:n>k−l

Sl,k,j,n)
)
(aQ)

∥∥∥∥∥
L1(R2)

. 1 (4.60)

and ∥∥∥∥∥∑
k:k<l

Sk(aQ)

∥∥∥∥∥
L1(R2)

. 1. (4.61)
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4.5 The H1 → L1 endpoint estimate: estimate off the

exceptional set

As in the previous section, throughout this section κΩ = 1/2. We again note that we

will often continue to write κΩ instead of subsituting 1/2 simply to indicate how certain

quantities in our estimates arise. We have shown that to prove that the operator S maps

aQ into L1, we may ignore the term
∑

k:k>l

∑
j S
′
l,k,j in (4.53). All other terms in (4.53)

map aQ to a function that is supported off the exceptional set. In summary, we have

shown that Theorem 4.1.3 reduces to proving Proposition 4.4.3, and so this section will

be devoted to proving Proposition 4.4.3.

The case k > l

To prove (4.60), we will first prove the following lemma.

Lemma 4.5.1. Let L̃l,k,j be as defined previously. Then∑
k>l

∑
j

∫
|L̃l,k,j(x)| dx . 1. (4.62)

Proof of Lemma 4.5.1. Integrating by parts (4.51) three times with respect to s yields∫
|L̃l,k,j(x)| dx .

2k(1−κΩ)

∫
Ij
∗

∫
|x1+x2γ′(α)|6|Ij |−12−l

|αx1+γ(α)x2+1|&2−l

2k

(1 + 2k|αx1 + γ(α)x2 + 1|)3
dx dα.

Applying the change of coordinates (4.37) yields∫
|L̃l,k,j(x)| dx . 2k(1−κΩ)

∫
I∗j

∫
|u1|6|Ij |−12−l

|u2|&2−l

2k

(1 + 2k|u2|)3
du1 du2 dα

. 2l−k2−kκΩ .
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By (4.19), there are . 2l/2 intervals Ij, so we may sum in j and then in k to obtain

(4.62).

To prove (4.60), it remains to prove

Lemma 4.5.2. Let Sl,k,j,n be as defined previously. Then∥∥∥∥∥( ∑
k:k>l

∑
j

∑
n:n>k−l

Sl,k,j,n(aQ)

∥∥∥∥∥
L1(R2)

. 1. (4.63)

Recall our treatment of the kernels Kk,j,n in Section 4.3. In order to achieve suffi-

cient decay in n for
∫
|Kk,j,n(x)| dx to prove an endpoint estimate, we would have had to

integrate by parts twice in the α variable. However, doing so would make our estimates

for
∫
|Kk,j,n(x)| dx ultimately depend on the C2 norm of the graph of ∂Ω. Thus in our

analysis of the kernels of the operators Sl,k,j,n, we will instead opt to approximate ∂Ω by

a smooth curve whose curvature is essentially constant on “Minkowski caps” of width

2−k, allowing us to perform the necessary integration by parts.

Recall that {Ij} = {[bj, bj+1]} is the partition of [−1, 1] into subintervals with end-

points in Ã(2−l), where Ã(2−l) is the refinement of A(2−l) given by Lemma 4.2.1. Fix

k > l, and let {Jm} = {[cm, cm+1]} be the partition of [−1, 1] into subintervals with

endpoints in A(2−k). We will prove the following approximation lemma.

Lemma 4.5.3. Fix integers l, k > 0 with k > l, and define {Ij} and {Jm} as above.

Then there exists a smooth function γk : [−1, 1]→ R such that for every x ∈ A(2−k),

γk(x) = γ(x), (4.64)

γ′k(x) = γ′(x), (4.65)
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and for every α ∈ Jm,

|γ′′k(α)| . (γ′(cm+1)− γ′(cm))|Jm|−1 . 2−k|Jm|−2, (4.66)

and ∫
Jm

|γ′′′k (α)| dα . 2−k|Jm|−2. (4.67)

Moreover, for every j, ∫
I∗j

|Ij||γ′′k(α)| dα . 2−l (4.68)

and for any α ∈ I∗j ,

|γ′k(α)− γ′(α)| . 2−l|Ij|−1. (4.69)

Remark 4.5.4. Note that (4.65) and (4.66) imply that for every α ∈ Jm,

|γ(α)− γk(α)| .
∫
Jm

|γ′(α)− γ′k(α)| dα

.
∫
Jm

∫ α

cm

(|γ′′(t)|+ |γ′′k(t)|) dt dα . (γ′(cm+1)− γ′(cm))|Jm| . 2−k, (4.70)

and

|γ′(α)− γ′k(α)| .
∫
Jm

(|γ′′(α)|+ |γ′′k(α)|) dα

. γ′(cm+1)− γ′(cm) . 2−k|Jm|−1. (4.71)

Proof of Lemma 4.5.3. The idea of the construction is to first define γk near each point

x ∈ A(2−k) so that its graph is a line segment with slope γ′(x), to connect these line

segments with curves of constant curvature, and then to smooth things out using an

appropriate mollifier. We now proceed to give the details.
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We first define γk in a neighborhood of each x ∈ A(2−k). For each such x, let Jm(x)

be the element of {Jm} whose right endpoint is x. Let Ox be the interval [x− |Jm(x)|
100

, x+

|Jm(x)+1|
100

]. Define a function γk,x on Ox so that {(α, γk,x(α)) : α ∈ Ox} is the graph of a

line segment satisfying γk,x(x) = γ(x) and γ′k,x(x) = γ′(x). Let x+ be the successor of

x in x ∈ A(2−k). We now extend γk,x to Õx := [x− |Jm(x)|
100

, x+ − |Jm(x)+1|
100

] by connecting

the points(
x+
|Jm(x)+1|

100
, γ(x+

|Jm(x)+1|
100

)

)
;

(
x+ −

|Jm(x)+1|
100

, γ(x+ −
|Jm(x)+1|

100
)

)
(4.72)

by the unique curve of constant curvature that has slope γ′(x) at the point(
x+
|Jm(x)+1|

100
, γk,x(x+

|Jm(x)+1|
100

)

)
.

Note that for α between the two points (4.72),

|γ′′k,x(α)| . (γ′(cm+1)− γ′(cm))|Jm|−1 . 2−k|Jm(x)+1|−2. (4.73)

Now define a piecewise smooth curve γ̃k : [−1, 1]→ R by γ̃k|Õx = γk,x.

For each x ∈ A(2−k), let Ux = [x +
|Jm(x)+1|

200
, x+ − |Jm(x)+1|

200
]. Let ψx be a smooth

positive bump function supported in[
−
|Jm(x)+1|

800
,
|Jm(x)+1|

800

]
with

∫
ψx = 1 and satisfying

Dβψx .β |Jm(x)+1|−β−1, β > 0 an integer. (4.74)

Define a smooth curve γk : [−1, 1]→ R by γk|Ux = γ̃k ∗ ψx and γk|(⋃x Ux)c = γ̃k.

By construction, γk satisfies (4.64) and (4.65). On (
⋃
x Ux)

c, γ′′k is identically 0.

Let γ̃′′k denote the a.e. defined pointwise second derivative of γ̃k. Let γ̃′k,L and γ̃′k,R
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denote the (everywhere defined) left and right derivatives of γ̃k, respectively. Then for

α ∈ Ux ⊂ Jm(x)+1,

|γ′′k(α)| . |(γ̃′′k ∗ ψx)(α)|+ |γ̃′k,R(x+ −
|Jm(x)+1|

100
)− γ̃′k,L(x+ −

|Jm(x)+1|
100

)| ‖ψx‖∞

. sup
α∈Ux
|γ̃′′k(α)|+ (γ′(cm+1)− γ′(cm))|Jm|−1

. (γ′(cm+1)− γ′(cm))|Jm|−1 . 2−k|Jm(x)+1|−2, (4.75)

where in the second to last inequality we have used (4.73). Thus γk satisfies (4.66). By

(4.73) and (4.74), we also have∫
Jm(x)+1

|γ′′′k (α)| dα .
∫
Ux

|(γ̃′′k ∗ ψ′x)(α)| dα

+ |γ̃′k,R(x+ −
|Jm(x)+1|

100
)− γ̃′k,L(x+ −

|Jm(x)+1|
100

)| ‖ψ′x‖∞ |Jm(x)+1|

.
∫
Jm(x)+1

2−k|Jm(x)+1|−3 dα + 2−k|Jm(x)+1|−2 . 2−k|Jm(x)+1|−2,

and so γk satisfies (4.67).

Now we show that γk satisfies (4.68). Note that (4.66) implies that for each m,∫
Jm

|γ′′k(α)| dα . γ′(cm+1)− γ′(cm). (4.76)

Given Ij = [bj, bj+1], choose m,m′ to the the greatest and least integers, respectively, so

that I∗j ⊂ [cm, cm′ ]. Let b∗j and b∗j+1 denote the left and right endpoints of I∗j , respectively.

If b∗j − cm 6 |Ij|/100, then by (4.17) we have bj−1 6 cm, so by (4.76) we have∫
I∗j

|γ′′k(α)| dα . γ′(cm′)− γ′(cm) . γ′(cm′)− γ′(bj−1).

Otherwise, b∗j − cm > |Ij|/100, and so (4.16) implies that

γ′(b∗j)− γ′(cm) . 2−k|Ij|−1
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and hence ∫
I∗j

|γ′′k(α)| dα . γ′(cm′)− γ′(cm) . γ′(cm′)− γ′(bj∗) + 2−k|Ij|−1.

In either case, we have∫
I∗j

|γ′′k(α)| dα . γ′(cm′)− γ′(bj−1) + 2−k|Ij|−1.

Arguing similarly with cm′ and b∗j+1 in place of cm and b∗j , we may obtain∫
I∗j

|γ′′k(α)| dα . γ′(bj+1)− γ′(bj−1) + 2−k|Ij|−1.

By (4.16) and (4.17), γ′(bj+1)− γ′(bj−1) . 2−l|Ij|−1, and since k > l it follows that∫
I∗j

|Ij||γ′′k(α)| dα . 2−l.

Thus γk satisfies (4.68).

Finally, we show that γk satisfies (4.69). Suppose we are given some j and some

α ∈ I∗j . If there exists m such that cm ∈ I∗j , then by (4.64) and (4.68),

|γ′k(α)− γ′(α)| .
∫
I∗j

(|γ′′k(α)|+ |γ′′(α)|) dα . 2−l|Ij|−1.

Otherwise, choose m so that the distance of cm from I∗j is minimal. Without loss of

generality, suppose cm < b∗j . Then cm+1 − cm & |Ij|, so by (4.66) and (4.68),

|γ′k(α)− γ′(α)| .
∫

[cm,cm+1]∪I∗j
(|γ′′k(α)|+ |γ′′(α)|) dα

. 2−k|Ij|−1 + 2−l|Ij|−1 . 2−l|Ij|−1,

and hence γk satisfies (4.69).



113

The error estimate

Define

Bl,k,j,n(x) = φ0(2−6M |x|)
∫ ∞

0

∫
I∗j

eis(αx1+γk(α)x2+1)

βIj(α)Φk,j,n(x, α)θk(s)a(s)s(αγ′k(α)− γk(α)) dα ds.

Note that Bl,k,j,n is like Ll,k,j,n with every occurrence of γ in the integral replaced by γk.

We will prove

Lemma 4.5.5. If k > l and n > k − l, then

‖Ll,k,j,n −Bl,k,j,n‖L1(R2) . 2−kκΩ(2n−k|Ij|−1). (4.77)

Remark 4.5.6. We now state a consequence of Lemma (4.5.5). By (4.19), there are

. 2lκΩ intervals Ij. Moreover, the presence of φ0(2−6M |x|) implies that all terms with

2n−k|Ij|−1 � 1 are identically 0, so (5.17) implies that∑
k:k>l,
j,

n:n>k−l

‖Ll,k,j,n −Bl,k,j,n‖L1(R2) . 1. (4.78)

Then (4.78) implies that it suffices to prove (4.63) with Sl,k,j,n replaced by the operator

with kernel Bl,k,j,n.

Proof of Lemma 4.5.5. The first step is to write

Ll,k,j,n(x)−Bl,k,j,n(x) = H1(x) +H2(x),

where

H1(x) = φ0(2−6M |x|)
∫ ∞

0

∫
I∗j

eis(αx1+γ(α)x2+1)(1− eis(γk(α)x2−γ(α)x2))

βIj(α)Φk,j,n(x, α)θk(s)a(s)s(αγ′(α)− γ(α)) dα ds
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and

H2(x) = φ0(2−6M |x|)
∫ ∞

0

∫
I∗j

eis(αx1+γk(α)x2+1)βIj(α)Φk,j,n(x, α)

θk(s)a(s)s(α(γ′(α)− γ′k(α))− (γ(α)− γk(α))) dα ds.

Note that the only places where the kernels Bl,k,j,n and Ll,k,j,n differ are in the complex

exponential factor and the Jacobian factor in their integral representations. Here the

term H1 represents the difference in the complex exponential factor and the term H2

represents the difference in the Jacobian factor. The estimation of
∫
|H1(x)| dx and∫

|H2(x)| dx will share some similarities with the estimation of
∫
|Kk,j,n(x)| dx from

Section 3.

Estimation of
∫
|H1(x)| dx

We observe that (4.70) implies that for s, x, α in the support of φ0(2−6M |x|)θk(s)βIj(α)

and for every integer N > 0,

|∂Ns ∂α(1− eis(γk(α)x2−γ(α)x2))| .N 2−kN2k|γ′k(α)− γ′(α)||x|, (4.79)

|∂Ns ∂2
α(1− eis(γk(α)x2−γ(α)x2))| .N

2−kN |x|
(

22k|γ′k(α)− γ′(α)|2 + 2k(|γ′′k(α)|+ |γ′′(α)|)
)

(4.80)

and

|∂Ns (1− eis(γk(α)x2−γ(α)x2))| .N 2−kN |x|. (4.81)
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Integrating by parts H1 once in α yields

H1(x) = φ0(2−6M |x|)
∫ ∞

0

∫
I∗j

eis(αx1+γ(α)x2+1)

∂αgl,k,j,n(x, s, α)θk(s)a(s) ds

where

gl,k,j,n(x, s, α) =
(1− eis(γk(α)x2−γ(α)x2))βIj(α)Φk,j,n(x, α)(αγ′(α)− γ(α))

x1 + x2γ′(α)
.

Now if ∂α hits the term (1− eis(γk(α)x2−γ(α)x2)), then we may integrate by parts again in

α, since no higher derivatives of γ or γk will appear. Thus we will further decompose

H1(x) = H1,1(x) +H1,2(x),

where

H1,1(x) = φ0(2−6M |x|)
∫ ∞

0

∫
I∗j

eis(αx1+γ(α)x2+1)hl,k,j,n,1(x, s, α)θk(s)a(s) ds

H1,2(x) = φ0(2−6M |x|)
∫ ∞

0

∫
I∗j

eis(αx1+γ(α)x2+1)hl,k,j,n,2(x, s, α)θk(s)a(s) ds,

and

hl,k,j,n,1(x, s, α) =

(1− eis(γk(α)x2−γ(α)x2))∂α[
βIj(α)Φk,j,n(x, α)(αγ′(α)− γ(α))

x1 + x2γ′(α)
],

hl,k,j,n,2(x, s, α) =

∂α

[
∂α[1− eis(γk(α)x2−γ(α)x2)]βIj(α)Φk,j,n(x, α)(αγ′(α)− γ(α))

s(x1 + x2γ′(α))2

]
.

Here we may think of H1,1 as representing the case when ∂α does not hit the term

(1 − eis(γk(α)x2−γ(α)x2)) when we integrate H1 by parts with respect to α, and H1,2 may

be thought of as representing the case when ∂α does hit (1− eis(γk(α)x2−γ(α)x2)).
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Estimation of
∫
|H1,1(x)| dx

Observe that (4.81) with N = 0 implies that

|hl,k,j,n,1(x, s, α)| . |γ
′′(α)|(|Ij|2k−n|x|+ 1) + |Ij|−1

|x1 + x2γ′(α)|
|x|.

Thus integrating by parts in s three times and using (4.81) and the change of coordinates

(4.37) yields∫
|H1,1(x)| dx . 2−kκΩ

∫
I∗j

(|γ′′(α)|(|Ij|2k−n + 1) + |Ij|−1)

×
∫
|u1|≈2n−k|Ij |−1

1

|u1|
2k

(1 + 2k|u2|)3
|u| du dα

. 2−kκΩ2n−k|Ij|−1

∫
I∗j

(|γ′′(α)|(|Ij|2k−n + 1) + |Ij|−1) dα.

By (4.16) and (4.17), we have ∫
I∗j

|γ′′(α)||Ij| dα . 2−l,

and so when n > k − l,∫
|H1,1(x)| dx . 2−kκΩ2n−k|Ij|−1(2k−l−n + 1) . 2−kκΩ2n−k|Ij|−1. (4.82)

Estimation of
∫
|H1,2(x)| dx

Note that (4.79) and (4.80) with N = 0 implies that

|hl,k,j,n,2(x, s, α)| .

|γ′′(α)|(|Ij|2k−n|x|+ 1) + |Ij|−1

|x1 + x2γ′(α)|
|x|
(

2k−n|Ij||γ′k(α)− γ′(α)|
)

+
|x|

|x1 + x2γ′(α)|

(
22k−n|Ij||γ′k(α)− γ′(α)|2

)
+

|x|
|x1 + x2γ′(α)|

2k−n|Ij|(|γ′′k(α)|+ |γ′′(α)|). (4.83)
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Using (4.79), (4.81), (4.83) and the change of coordinates (4.37), we have

∫
|H1,2(x)| dx .(

2−kκΩ

∫
I∗j

2k−n|Ij||γ′k(α)− γ′(α)|
(
|γ′′(α)|(|Ij|2k−n + 1) + |Ij|−1

)
×
∫
|u1|≈2n−k|Ij |−1

1

|u1|
2k

(1 + 2k|u2|)3
|u| du dα

)
+

(
2−kκΩ

∫
I∗j

22k−n|Ij||γ′k(α)− γ′(α)|2

×
∫
|u1|≈2n−k|Ij |−1

1

|u1|
2k

(1 + 2k|u2|)3
|u| du dα

)
+

(
2−kκΩ

∫
I∗j

2k−n|Ij|(|γ′′k(α)|+ |γ′′(α)|)

×
∫
|u1|≈2n−k|Ij |−1

1

|u1|
2k

(1 + 2k|u2|)3
|u| du dα

)
,

and hence proceeding as in the estimation of
∫
|H1,1(x)| dx we have

∫
|H1,2(x)| dx .(
2−kκΩ2n−k|Ij|−1

∫
I∗j

2k−n|Ij||γ′k(α)− γ′(α)||γ′′(α)|
(
(|Ij|2k−n + 1) + |Ij|−1

)
dα

)
+

(
2−kκΩ2n−k|Ij|−1

∫
I∗j

22k−n|Ij||γ′k(α)− γ′(α)|2 dα
)

+

(
2−kκΩ2n−k|Ij|−1

∫
I∗j

2k−n|Ij|(|γ′′k(α)|+ |γ′′(α)|) dα
)
.

Note that since {Ij} satisfies (4.16) and (4.17), we have∫
I∗j

|Ij||γ′′(α)| dα . 2−l.

As stated in (4.68), we also have∫
I∗j

|Ij||γ′′k(α)| dα . 2−l.
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Thus we have∫
|H1,2(x)| dx .(
2−kκΩ2n−k|Ij|−1

∫
I∗j

2k−n|Ij||γ′k(α)− γ′(α)||
(
|γ′′(α)|(|Ij|2k−n + 1) + |Ij|−1

)
dα

)
+

(
2−kκΩ2n−k|Ij|−1

∫
I∗j

22k−n|Ij||γ′k(α)− γ′(α)|2 dα
)

+ 2−kκΩ2n−k|Ij|−12−n+(k−l).

Now we bound the integrals over I∗j by a sum of integrals over all the Jm such that

Jm ∩ I∗j 6= ∅ and use (4.71). We have∫
|H1,2(x)| dx .

2−kκΩ2n−k|Ij|−1
∑

m: Jm∩I∗j 6=∅

(∫
Jm

(2−n
|Ij|
|Jm|

(|γ′′(α)|(|Ij|2k−n + 1) + |Ij|−1) dα

+

∫
Jm

2−n
|Ij|
|Jm|2

dα

)
+ 2−kκΩ2n−k|Ij|−12−n+(k−l).

Using (4.16) gives∫
Jm

(
|γ′′(α)|(|Ij|2k−n + 1) + |Ij|−1

)
dα . 2−n

|Ij|
|Jm|

+
|Jm|
|Ij|

.

Therefore∫
|H1,2(x)| dx .

2−kκΩ2n−k|Ij|−1
∑

m: Jm∩I∗j 6=∅

(
2−2n |Ij|2

|Jm|2
+ 2−n + 2−n

|Ij|
|Jm|

)

+ 2−kκΩ2n−k|Ij|−12−n+(k−l). (4.84)

We now proceed to bound (4.84). We will first show that for any j,

card({m : Jm ∩ I∗j 6= ∅}) . 1 + card({m : Jm ⊂ I∗j }) . 2(k−l)/2. (4.85)
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By Cauchy-Schwarz, (4.13) and (4.12),

card({m : Jm ⊂ I∗j }) 6
∑

{m: Jm⊂I∗j }

2k/2(cm+1 − cm)1/2(γ′(cm+1)− γ′(cm))1/2

6 2k/2
( ∑
{m: Jm⊂I∗j }

cm+1 − cm
)1/2( ∑

{m: Jm⊂I∗j }

γ′(cm+1)− γ′(cm)

)1/2

6 2k/2(bj+1 − bj)1/2(γ′(bj+1)− γ′(bj))1/2 6 2(k−l)/2,

which proves (4.85). Using (4.85), we have∑
m: Jm∩I∗j 6=∅,|Jm|>

|Ij |
100

(
2−2n |Ij|2

|Jm|2
+ 2−n + 2−n

|Ij|
|Jm|

)
. 1 (4.86)

and ∑
m: Jm∩I∗j 6=∅

2−n . 1. (4.87)

If Jm ∩ I∗j 6= ∅ and |Jm| < |Ij |
100

, then Jm ⊂ Ij−1 ∪ Ij ∪ Ij+1. We will write ∆Ij(γ
′) in place

of γ′(bj+2)− γ′(bj−1). Similarly define ∆Jm(γ′) = γ′(cm+1)− γ′(cm). By (4.16), we have

|Ij| . 2−l(∆Ij(γ
′))−1.

By (4.12) and (4.13), we also have

|Jm| ≈ 2−k(∆Jm(γ′))−1.

We thus have

∑
m: Jm∩I∗j 6=∅, |Jm|<|Ij |/100

(
2−2n |Ij|2

|Jm|2
+ 2−n

|Ij|
|Jm|

)

.
∑

m: Jm∩I∗j 6=∅, |Jm|<|Ij |/100

(
2−2n22(k−l)

(
∆Jm(γ′)

∆Ij(γ
′)

)2

+ 2−n
(

∆Jm(γ′

∆Ij(γ
′)

))

. 2−n+k−l . 1. (4.88)
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Together, (4.84), (4.86), (4.87) and (4.88) imply that when n > k − l we have∫
|H1,2(x)| dx . 2−kκΩ2n−k|Ij|−1. (4.89)

Together (4.82) and (4.89) imply that∫
|H1(x)| dx . 2−kκΩ2n−k|Ij|−1, (4.90)

completing the estimation of
∫
|H1(x)| dx.

Estimation of
∫
|H2(x)| dx

Integrating by parts H2 once in α and twice in s yields∫
|H2(x)| dx . 2−kκΩ

∫
φ0(2−6M |x|)

∫
I∗j

|∂αgl,k,j,n(x, α)|

× 2k

(1 + 2k|αx1 + γ(α)x2 + 1)|)2
dα dx,

where

gl,k,j,n(x, α) =
Φk,j,n(x, α)βIj(α)[α(γ′(α)− γ′k(α))− (γ(α)− γk(α))]

x1 + x2γ′(α)
.

By (4.69) and (4.70), for α in the support of βIj(α) we have

|α(γ′(α)− γ′k(α))− (γ(α)− γk(α))| . 2−l|Ij|−1. (4.91)

It is easy to see that (4.91) implies∣∣∣∣∂α[α(γ′(α)− γ′k(α))− (γ(α)− γk(α))

]∣∣∣∣ . 2−l|Ij|−1 + |γ′′(α)|+ |γ′′k(α)|. (4.92)

By (4.91) and (4.92), for x in the support of H2 we have

|∂αgl,k,j,n(x, α)| . 2−l|Ij|−1 (|γ′′(α)|+ |γ′′k(α)|)(|Ij|2k + 1) + |Ij|−1

|x1 + x2γ′(α)|
,
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and so applying the change of coordinates (4.37) and estimating the integral using (4.16)

and (4.17) as we did above in the estimation of
∫
|H1(x)| dx, we obtain for k > l and

n > k − l, ∫
|H2(x)| dx . 2−kκΩ2−l|Ij|−1 . 2−kκΩ2n−k|Ij|−1. (4.93)

Together (4.90) and (4.93) imply that (5.17) holds whenever n > k − l, completing the

proof of the lemma.

Estimation of the main term

We have thus shown that to prove Lemma (4.5.2), it suffices to prove

Lemma 4.5.7. Let Bl,k,j,n be as defined previously. Then∥∥∥∥∥( ∑
k:k>l

∑
j

∑
n:n>k−l

Bl,k,j,n(aQ)

∥∥∥∥∥
L1(R2)

. 1. (4.94)

Proof of Lemma 4.5.7. We have

Bl,k,j,n(x) = φ0(2−6M |x|)
∫ ∞

0

∫
I∗j

eis(αx1+γk(α)x2+1)

× βIj(α)Φk,j,n(x, α)θk(s)a(s)s(αγ′k(α)− γk(α)) dα ds.

We integrate by parts twice in α to obtain

Bl,k,j,n(x) = φ0(2−6M |x|)
∫ ∞

0

∫
I∗j

eis(αx1+γk(α)x2+1)gl,k,j,n(x, α)

× s−1θk(s)a(s) dα ds.

where

gl,k,j,n(x, α) = ∂α[
1

x1 + x2γ′k(α)
∂α[

βIj(α)Φk,j,n(x, α)(αγ′k(α)− γk(α))

x1 + x2γ′k(α)
]].
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Integrating by parts twice in s yields

∫
|Bl,k,j,n(x)| dx . 2−k(κΩ+1)

∫
φ0(2−6M |x|)

∫
I∗j

|gl,k,j,n(x, α)|

× 2k

(1 + 2k|αx1 + γk(α)x2 + 1|)2
dα dx.

Observe that for x in the support of φ0(2−6M |x|),

|gl,k,j,n(x, α)| . 2k−n|Ij||γ′′′k (α)|+ 22(k−n)|Ij|2|γ′′k(α)|2 + |Ij|−2

|x1 + x2γ′k(α)|2
.

Thus using the change of coordinates

(x1, x2) 7→ (u1, u2) := (x1 + x2γ
′
k(α), 1 + αx1 + γk(α)x2),

we have

∫
|Bl,k,j,n(x)| dx . 2−k(κΩ+1)

∫
I∗j

(2k−n|Ij||γ′′′k (α)|

+ 22(k−n)|Ij|2|γ′′k(α)|2 + |Ij|−2)

∫
|u1|≈2n−k|Ij |−1

1

|u1|2
2k

(1 + 2k|u2|)2
du dα

. 2−k(κΩ+1)2−n+k|Ij|
∫
I∗j

(2k−n|Ij||γ′′′k (α)|+ 22(k−n)|Ij|2|γ′′k(α)|2 + |Ij|−2) dα.

Since

2−k(κΩ+1)2−n+k|Ij|
∫
|Ij |∗
|Ij|−2 dα . 2−kκΩ2−n,

we have

∫
|Bl,k,j,n(x)| dx .

(
2−k(κΩ+1)2−n+k|Ij|

∫
I∗j

(2k−n|Ij||γ′′′k (α)|

+ 22(k−n)|Ij|2|γ′′k(α)|2 )dα

)
+ 2−kκΩ2−n.
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Now for each m, choose j(m) so that I∗j(m)∩Jm 6= ∅ and Ij(m) has maximal length. Then

using (4.19), we have

∑
j

∫
|Bl,k,j,n(x)| dx . 2−n + 2−n2−kκΩ

∑
j

∫
I∗j

2k−n|Ij|2|γ′′′k (α)| dα

+ 2−n2−kκΩ

∑
j

∫
I∗j

22(k−n)|Ij|3|γ′′k(α)|2 dα

. 2−n + 2−n2−kκΩ

∑
m

2−n
|Ij(m)|2

|Jm|2

∫
Jm

2k|Jm|2|γ′′′k (α)| dα

+ 2−n2−kκΩ

∑
m

2−2n |Ij(m)|3

|Jm|3

∫
Jm

22k|Jm|3|γ′′k(α)|2 dα.

Using (4.66) and (4.67), we have

∑
j

∫
|Bl,k,j,n(x)| dx . 2−n + 2−n2−kκΩ

∑
m

(2−n
|Ij(m)|2

|Jm|2
+ 2−2n |Ij(m)|3

|Jm|3
),

and hence using that n > k − l,

∑
j

∫
|Bl,k,j,n(x)| dx .

2−n + 22(k−l−n)2−kκΩ

∑
m

(2−2(k−l) |Ij(m)|2

|Jm|2
+ 2−3(k−l) |Ij(m)|3

|Jm|3
).

Since there are at most . 2lκΩ intervals Jm such that for some j, Jm ∩ I∗j 6= ∅ and

|Jm| > |Ij|/100, we have

22(k−l−n)2−kκΩ

∑
m: |Jm|>|Ij(m)|/100

(2−2(k−l) |Ij(m)|2

|Jm|2
+ 2−3(k−l) |Ij(m)|3

|Jm|3
)

. 2(l−k)κΩ2−n. (4.95)

Note that if |Jm| < |Ij|/100, then Jm ⊂ Ij(m)−1 ∪ Ij(m) ∪ Ij(m)+1. We will write ∆Ij(γ
′
k)

in place of |γ′k(bj+2) − γ′k(bj−1)|. Similarly define ∆Jm(γ′k) = |γ′k(cm+1) − γ′k(cm)|. By
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(4.16), (4.17) and (4.69), for every j we have

|Ij| . 2−l(∆Ij(γ
′
k))
−1.

Moreover, (4.12) and (4.13) also imply that for every m

|Jm| ≈ 2−k(∆Jm(γ′k))
−1.

It follows that

|Ij(m)|
|Jm|

. 2k−l
∆Jm(γ′k)

∆Ij(m)
(γ′k)

,

and hence

22(k−l−n)2−kκΩ

∑
m: |Jm|<|Ij(m)|/100

(2−2(k−l) |Ij(m)|2

|Jm|2
+ 2−3(k−l) |Ij(m)|3

|Jm|3
)

. 22(k−l−n)2−kκΩ

∑
m: |Jm|<|Ij(m)|/100

∆Jm(γ′k)

∆Ij(m)
(γ′k)

. 2(l−k)κΩ22(k−l−n). (4.96)

Together (4.95) and (4.96) imply that

∑
j

∫
|Bl,k,j,n(x)| dx . 2−n + 2(l−k)κΩ2(k−l−n). (4.97)

Summing over n > k − l and k > l yields (4.63).

The case k < l

To prove Proposition 4.4.3, it remains to prove the following lemma.

Lemma 4.5.8. Let Sk be defined as previously. Then∥∥∥∥∥∑
k: k<l

Sk(aQ)

∥∥∥∥∥
L1(R2)

. 1.
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Proof of Lemma 4.5.8. We will need to exploit the cancellation of the atom. Since∫
aQ = 0, we only need prove that for k < l,

sup
y,y′∈Q

∫
R2

|Kk(x− y)−Kk(x− y′)| dx . 2k−l. (4.98)

Now,

sup
y,y′∈Q

∫
R2

|Kk(x− y)−Kk(x− y′)| dx .
∫

sup
y,y′∈Q

|Kk(x− y)−Kk(x− y′)| dx

. 2−l
∫

sup
y∈Q
|∇Kk(x− y)| dx,

so to prove (4.98) it suffices to show that∫
sup
y∈Q
|∇Kk(x− y)| dx . 2k. (4.99)

Since k < l and since (∇Kk)(x) = (Kk(·) ∗ 23kφ(2k·))(x) for some Schwartz function φ,

it is easy to see that ∫
sup
y∈Q
|∇Kk(x− y)| dx . 2k

∫
|Kk(x)| dx.

But by the proof of (4.60) in the case that k = l and the estimation of the term Kk,j,0

from Section 4.3, we have ∫
|Kk(x)| dx . 1,

which implies (4.99) and finishes the proof.

4.6 Estimates for a generalized Bochner-Riesz square

function

In [10], Carbery, Gasper and Trebels showed that one may use the sharp L4 estimates

for the two-dimensional Bochner-Riesz square function, first obtained by Carbery in [8],
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to prove multiplier theorems for radial Fourier multipliers in R2. We are thus motivated

to consider the generalized Bochner-Riesz square function

Gαf(x) =

(∫ ∞
0

∣∣∣∣ ∂∂tRα
t f(x)

∣∣∣∣2 t dt)1/2

.

In the same vein as in [10], L4 estimates for Gα yield a multiplier theorem for quasiradial

multipliers in the range 4/3 6 p 6 4, which we will then interpolate with Theorem 4.1.5.

In [14], the following L4 estimate for Gα is obtained, which will also be discussed in

Chapter 5.

Proposition 4.6.1. For α > −1/2,

‖Gαf‖4 .M ‖f‖4 .

Following [10], one may then obtain the following corollary.

Corollary 4.6.2. If α > 1/2, then for 4/3 6 p 6 4,

‖m ◦ ρ‖Mp(R2) . sup
t>0

(∫
|FR[φ(·)m(t·)](τ)|2|τ |2α dτ

)1/2

.

4.7 An interpolation argument

We now prove Theorem 4.1.6 by interpolating Corollary 4.6.2 and Theorem 4.1.5.

Proof of Theorem 4.1.6. Let S̃(R) denote the space of Schwartz functions on R with

support in the annulus {x : 1/2 < |x| < 2}. For s > 0 and 1 6 r 6 2 define norms ‖·‖sr

by

‖f‖sr =

(∫
|f̂(τ)|r(1 + |τ |)rs dτ

)1/r

,
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and let Lsr denote the space of all measurable functions f with ‖f‖sr < ∞. Let L̃sr(R)

denote the closure of S̃(R) in Lsr(R). For each integer N > 0, let C0,N denote the space

of sequences with support in [−N,N ], and let `∞N denote the closure of C0,N in `∞. For

N ∈ N, define a bilinear operator TN where TN : S(R2)× C0,N(S̃(R))→ S(R2) by

F [TN(f, {mk}Nk=−N)(·)](ξ) =
N∑

k=−N

mk(2
−kρ(ξ))f̂(ξ).

Then Theorem 4.1.5 implies that for s > κΩ and for every N and 1 < p <∞, TN extends

to a bounded bilinear operator from Lp(R2)× `∞N (L̃s1(R)) to Lp(R2) with operator norm

‖TN‖Lp(R2)×`∞N (L̃s1(R))→Lp(R2) = Cp,s (4.100)

for some constant Cp > 0 depending only on p and s and not on N . Corollary 4.6.2

implies that for every α > 1/2 and for every N , TN extends to a bounded bilinear

operator from L4/3(R2)× `∞N (L̃α2 (R)) to L4/3(R2) with operator norm

‖TN‖L4/3(R2)×`∞N (L̃α2 (R))→L4/3(R2) = C ′α (4.101)

for some constant C ′α > 0 depending only on α and not on N . Applying bilinear

real interpolation methods (see for example [5]) to (4.100) and (4.101), we obtain for

0 6 θ 6 1,

‖TN‖Lq0 (R2)×`∞N (L̃
s0(ε)
q1

(R))→Lq0 (R2)
.ε,p,θ 1, (4.102)

where

1

q0

=
1− θ
p

+
θ

4/3
,

1

q1

= 1− θ

2
, s0(ε) = (1− θ)κΩ +

θ

2
+ ε. (4.103)

Define a bilinear operator T : S(R2)× `∞(L̃0
1(R))→ L2(R2) by

F [T (f, {mk}∞k=−∞)(·)](ξ) =
∞∑

k=−∞

mk(2
−kρ(ξ))f̂(ξ).
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Using (4.102) and letting N →∞, we obtain

‖T‖
Lq0 (R2)×`∞(L̃

s0(ε)
q1

(R))→Lq0 (R2)
.ε,p,θ 1,

for q0, q1, s0(ε) as in (4.103). Set s(κΩ, θ) = (1− θ)κΩ + θ
2
. Since 1 < p <∞, we have

‖T‖
Lq0 (R2)×`∞(L̃

s(κΩ,θ)+ε
2

2−θ
(R))→Lq0 (R2)

.ε,q0,θ 1, (4.104)

for any 4
4−θ < q0 <

4
θ
. It is straightforward to see that (4.104) implies the result.



129

Chapter 5

A Generalized Bochner-Riesz

Square Function

5.1 Introduction

As discussed in Chapter 1, the characterization of Fourier multiplier operators that are

bounded on Lp when p 6= 1, 2 is a difficult open problem that has a long and rich

history in harmonic analysis. A particular special case that has been especially studied

is the class of radial Fourier multipliers, for which the Bochner-Riesz multipliers are

prototypical examples. In [10], Carbery, Gasper and Trebels proved sufficient conditions

for a radial function on R2 to be a Fourier multiplier on Lp(R2). Their theorem can be

stated as follows.

Theorem A ( [10]). Let m : (0,∞) → C be bounded and measurable. Then for 4/3 6

p 6 4 and α > 1/2,

‖m(| · |)‖Mp(R2) . sup
t>0

(∫
|FR[φ(·)m(t·)](τ)|2|τ |2α dτ

)1/2

.

Theorem A is sharp, as can be verified by comparing with the known sharp Lp bounds

for Bochner-Riesz multipliers in R2 (see [22]). Theorem A was obtained as a consequence

of a critical L4 estimate for the Bochner-Riesz square function in R2, proved by Carbery
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in [8].

In this chapter, we extend the result of Theorem A to a class of quasiradial multipli-

ers of the form m◦ρ, where ρ belongs to a class of rough distance functions homogeneous

with respect to a nonisotropic dilation group. Here we may view ρ(ξ) as generalizing the

function |ξ|, which corresponds to the special case of radial multipliers. Our considera-

tion of such a class of distance functions is in part motivated by the work of Seeger and

Ziesler in [48], where the authors consider Bochner-Riesz means of the form (1− ρ(ξ))λ+

where ρ is the Minkowski functional of a bounded convex domain in R2 containing the

origin. However, the class of distance functions we work with is more general than what

is considered in [48], since it also includes distance functions ρ that have nonisotropic

homogeneity.

As motivated by [48], let Ω ⊂ R2 be a bounded, open convex set containing the

origin. Since the results in this chapter are dilation invariant, we will assume that Ω

contains the ball of radius 8 centered at the origin. Let M > 0 be the smallest positive

integer such that

{ξ : |ξ| 6 8} ⊂ Ω ⊂ Ω ⊂ {ξ : |ξ| < 2M}. (5.1)

This quantity M associated to such a convex domain Ω is an important parameter on

which our results will depend. One may note that it determines the Lipschitz norm of

parametrizations of ∂Ω.

We now introduce the notion of a nonisotropic dilation group. Let A be a 2 × 2

matrix with eigenvalues λ1, λ2 (not necessarily distinct) such that Re(λ1),Re(λ2) > 0.

A nonisotropic dilation group associated to A is a one-parameter family {tA : t > 0},

where tA = exp(log(t)A). We say that a pair (Ω, A) is compatible if it satisfies the
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following:

1. For any ξ ∈ R2 \ {0} the orbit {tAξ : t > 0} intersects ∂Ω exactly once,

2. If Θ(Ω, A) denotes the infimum of all angles between the tangent vector to an orbit

{tAξ : t > 0} at ξ and a supporting line at ξ for any ξ ∈ ∂Ω, then Θ(Ω, A) > 0.

We associate to a compatible pair (Ω, A) a norm function ρ ∈ C(R2), defined by setting

ρ(0) = 0 and setting ρ(ξ) to be the unique t such that t−Aξ ∈ ∂Ω if ξ 6= 0. If ∂Ω is

smooth, then ρ ∈ C∞(R2 \ {0}). To see this, apply the implicit function theorem to

F (x, t) = dist(tAx, ∂Ω). Moreover, we also have ‖ρ‖C0,1(K) .K,M,Re(λ1),Re(λ2),Θ(Ω,A) 1 for

any compact K ⊂ R2 \ {0}.

Note that in the special case that A is the identity, (Ω, A) is a compatible pair for

any bounded, open convex set Ω satisfying (5.1), and we have Θ(Ω, A) &M 1. It was

noted in [53] that for every A there exists a compatible pair (Ω, A) obtained by taking

Ω to be the region bounded by {ξ ∈ R2 : 〈Bξ, ξ〉 = 1}, where B is the positive definite

symmetric matrix given by

B =

∫ ∞
0

exp(−tA∗) exp(−tA) dt.

See [53] for more details. In this particular case ∂Ω is smooth; however as already noted

in this chapter we consider general convex domains, with special emphasis on the case

when ∂Ω is rough.

Notation

Throughout the rest of the chapter, in every situation where it is clear that we have

fixed a compatible pair (Ω, A), we will write ., & and ≈ to denote inequalities where
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the implied constant possibly depends on M , Re(λ1), Re(λ2), and Θ(Ω, A). We will also

assume that all explicit constants that appear possibly depend on M , Re(λ1), Re(λ2),

and Θ(Ω, A).

Given a compatible pair (Ω, A), define the Bochner-Riesz means Rλ
t f associated

with (Ω, A) for Schwartz functions f ∈ S(R2) by

Rλ
t f(x) =

1

(2π)2

∫
|ξ|6t

(
1− ρ(ξ)

t

)λ
f̂(ξ)ei〈ξ,x〉 dξ.

Define the Bochner-Riesz square function Gλf associated with (Ω, A) for Schwartz func-

tions f ∈ S(R2) by

Gλf(x) =

(∫ ∞
0

∣∣Rλ
t f(x)

∣∣2 dt
t

)1/2

.

Our main result is the following critical L4 estimate for the Bochner-Riesz square func-

tion.

Theorem 5.1.1. Let (Ω, A) be a compatible pair, and let Gλf denote the Bochner-Riesz

square function associated to (Ω, A). For λ > −1/2,

∥∥Gλf
∥∥
L4(R2)

. ‖f‖L4(R)2

for f ∈ S(R2).

Following [10], we obtain the subsequent corollary, which is an extension of the result

of Theorem A to quasiradial multipliers of the form m ◦ ρ.

Corollary 5.1.2. Let (Ω, A) be a compatible pair with associated norm function ρ. Let

m : R → C be measurable function with ‖m‖L∞(R) 6 1. Then for 4/3 6 p 6 4 and
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α > 1/2,

‖m ◦ ρ‖Mp(R2) . sup
t>0

(∫
|FR[φ(·)m(t·)](τ)|2|τ |2α dτ

)1/2

.

To prove Theorem 5.1.1, we will first decompose the multiplier (1 − ρ(ξ))λ+ in a

standard fashion into smooth functions supported on “annuli” of thickness comparable

to the distance from ∂Ω (for example, see [18], [8]). Theorem 5.1.1 then reduces to

proving the following proposition.

Proposition 5.1.3. Let (Ω, A) be a compatible pair. Fix a Schwartz function Φ : R→ R

supported in [−1, 1] with |Φ| 6 1. There is a constant C > 0 such that for every ε > 0

and every 0 < δ < C,∥∥∥∥∥
(∫ ∞

0

|ψt ∗ f(x)|2 dt
t

)1/2
∥∥∥∥∥

4

.ε δ
1/2−ε ‖f‖4 ,

where

ψt(x) = F(φ(
ρ(·)
t

))(x), φ(ξ) = Φ(
ξ − 1

δ
).

The overall structure of the proof of Proposition 5.1.3 will follow [8] and [48], and will

draw heavily on the techniques therein. However, the presence of nonisotropic dilations

and the roughness of ∂Ω introduces new difficulties to the proof since the underlying

geometry becomes more complicated, requiring more intricate decompositions on the

Fourier side as well as a more sophisticated use of Littlewood-Paley inequalities.
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5.2 Preliminaries on convex domains in R2

Elementary facts about convex functions in R2

We note for later use the following lemma, which can be found in [48], and is also

included in Chapters 3 and 4 but which we restate here for convenience. The proof is

straightforward and we omit it here, and the reader is encouraged to refer to [48] for a

proof.

Lemma 5.2.1 ( [48]). ∂Ω ∩ {x : −1 6 x1 6 1} can be parametrized by

t 7→ (t, γ(t)), − 1 6 t 6 1, (5.2)

where

1.

1 < γ(t) < 2M , − 1 6 t 6 1. (5.3)

2. γ is a convex function on [−1, 1], so that the left and right derivatives γ′L and γ′R

exist everywhere in (−1, 1) and

−2M−1 6 γ′R(t) 6 γ′L(t) 6 2M−1 (5.4)

for t ∈ [−1, 1]. The functions γ′L and γ′R are decreasing functions; γ′L and γ′R are

right continuous in [−1, 1].

3. Let ` be a supporting line through ξ ∈ ∂Ω and let n be an outward normal vector.

Then

| 〈ξ, n〉 | > 2−M |ξ|. (5.5)
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Reduction to the case when ∂Ω is smooth.

Motivated by [48], Lemma 2.2, we will show that it suffices to prove Proposition 5.1.3

with the implied constant depending only on M (and not, for instance, the C2 norm of

local parametrizations of ∂Ω) in the special case that ∂Ω is smooth. The first step is to

approximate Ω by a sequence of convex domains with smooth boundaries satisfying the

same quantitative estimates as Ω.

Lemma 5.2.2. Let (Ω, A) be a compatible pair. There is a sequence of convex domains

{Ωn} satisfying the following:

1. ∂Ωn is C∞,

2. For n sufficiently large, (Ωn, A) is a compatible pair and Θ(Ωn, A) > Θ(Ω, A)/2,

3. For each n we have

{ξ : |ξ| 6 4} ⊂ Ωn ⊂ Ωn ⊂ {ξ : |ξ| < 2M+1},

4. limn→∞ ρn(ξ) = ρ(ξ) with uniform convergence on compact sets.

Proof. We adopt the same approach as in [48], namely, approximating Ω by convex

polygons and smoothing out the vertices. For each n, let Pn be the polygon with

vertices {v1, . . . , vn}, where vi is the unique point on ∂Ω making an angle of 2πi/n

with the ξ2-axis. Then Pn is convex and Pn ⊂ Ω. Choose intervals In = [xn,0, xn,1] ⊂

Ĩn = (x̃n,0, x̃n,1) ⊂ R centered at 0 such that ∂Pn ∩ {(ξ1, ξ2) : ξ1 ∈ In, ξ2 > 0} can be

parametrized as {(α, γ̃n(α)) : α ∈ In}, and also so that {(α, γ̃n(α) : α ∈ Ĩn} does not

contain any vertices of Pn except v1.
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Now let η ∈ C∞0 (R) be an even nonnegative function supported in (−1/2, 1/2) so

that
∫
η(t) dt = 1. Let Cn = 100 max{(xn,0 − x̃n,0)−1, (x̃n,1 − xn,1)−1}, and set

γn(α) =

∫
Cn η(Cnt)γ̃n(α− t) dt, α ∈ In.

By the choice of Cn, we have that {(α, γn(α)) : α ∈ In} coincides with Pn near the

endpoints of In. We may thus obtain a smooth convex curve ∂Ωn by replacing ∂Pn near

v1 with {(α, γn(α)) : α ∈ In}, and then repeating the same procedure near the other

vertices v2, . . . , vn after performing appropriate rotations.

It is clear that {Ωn} satisfies (1), (3), and (4), so it remains to show (2). Let ε0 > 0

be sufficiently small so that for any ξ ∈ ∂Ω and s1, s2 ∈ [1− ε0, 1 + ε0], the difference in

slope between the tangent lines to the orbit {tAξ : t > 0} at sA1 ξ and the tangent line

at sA2 ξ is less than Θ(Ω, A)/10. Now choose 0 < ε1 < ε0 sufficiently small so that

{tAξ : t > 0, t /∈ [1− ε0, 1 + ε0], ξ ∈ ∂Ω}

∩ {tAξ : t ∈ [1− ε1, 1 + ε1], ξ ∈ ∂Ω} = ∅. (5.6)

Next, choose N > 0 sufficiently large so that whenever n > N , the following holds:

1. ∂Ωn ⊂ {ξ : 1− ε1 6 ρ(ξ) 6 1 + ε1},

2. The difference in slope between the tangent line at any point x ∈ ∂Ωn and some

supporting line of ∂Ω at the vertex of Pn nearest to x is less than Θ(Ω, A)/10,

3. For any ξ ∈ ∂Ωn, the difference in slope between the tangent vector to the orbit

{tAξ : t > 0} at ξ and the tangent vector to the orbit {tAvi} at vi, where vi is the

vertex of Pn nearest to ξ, is less than Θ(Ω, A)/10.



137

To see that we may choose N so that (1) and (3) are satisfied is fairly obvious, and to see

that we may choose N so that (2) holds requires only a straightforward application of (2)

from Lemma 5.2.1. It is easy to see that (2) and (3) imply that Θ(Ωn, A) > Θ(Ω, A)/2.

(1) and (5.6) imply that {tAξ : t > 0, t /∈ [1 − ε0, 1 + ε0], ξ ∈ ∂Ω} does not intersect

∂Ωn. Given ξ ∈ ∂Ω, let t(ξ) > 0 be the smallest value of t such that t−Aξ ∈ ∂Ωn. Then

t(ξ) ∈ [1−ε0, 1+ε0]. But by the choice of ε0, any tangent line to {tAξ : t ∈ [1−ε0, 1+ε0]}

makes an angle of at least Θ(Ω, A)/4 with the tangent line to ∂Ωn at t−Aξ, and by

convexity of ∂Ωn there can be no t > t(ξ) such that t−Aξ ∈ ∂Ωn. Thus (Ωn, A) is a

compatible pair for n > N .

Lemma 5.2.3. Suppose that Proposition 5.1.3 holds in the special case when ∂Ω is

smooth, with a constant depending only on M , ε, Re(λ1),Re(λ2), and Θ(Ω, A). Then

Proposition 5.1.3 holds in the full stated generality.

Proof of Lemma 5.2.3. Let {Ωn} be a sequence of convex domains approximating Ω as

in Lemma 5.2.2, and suppose the statement of Proposition 5.1.3 holds in the special

case of convex domains with smooth boundaries, with a constant depending only on the

quantities listed in Lemma 5.2.3. Fix a Schwartz function f ∈ S(R2). Then for every

ε > 0 and every 0 < δ < C, for n sufficiently large we have∥∥∥∥∥
(∫ ∞

0

|ψn,t ∗ f(x)|2 dt
t

)1/2
∥∥∥∥∥

4

6 Cε,M,Re(λ1),Re(λ2),Θ(Ω,A)δ
1/2−ε ‖f‖4 ,

where

ψn,t(x) = F(φ(
ρn(·)
t

))(x), φ(ξ) = Φ(
ξ − 1

δ
).
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Since φ(ρn(·)
t

) → φ(ρ(·)
t

) uniformly as n → ∞, we have that ψn,t ∗ f(x) → ψt ∗ f(x)

pointwise as n→∞. By Fatou’s lemma applied twice,∥∥∥∥∥
(∫ ∞

0

|ψt ∗ f(x)|2 dt
t

)1/2
∥∥∥∥∥

4

6 lim inf
n

∥∥∥∥∥
(∫ ∞

0

|ψn,t ∗ f(x)|2 dt
t

)1/2
∥∥∥∥∥

4

6 Cε,M,Re(λ1),Re(λ2),Θ(Ω,A)δ
1/2−ε ‖f‖4 ,

as desired.

5.3 An L2 maximal function estimate

In [16], Córdoba proved L2 bounds for the Nikodym maximal function in R2. These

bounds were an important ingredient in [8] to prove Proposition 5.1.3 for the special

case of the classical (radial) Bochner-Riesz means. To prove Proposition 5.1.3 in the full

stated generality, we need a nonisotropic version of Córdoba’s result. To this end, we

will closely follow [16] to prove the following proposition.

Proposition 5.3.1. Let N, λ > 0 be real numbers, and let C be the collection of all

rectangles in R2 with dimensions λ and Nλ. Let

Ck = {(2k)AR : R ∈ C, k ∈ Z}.

Define a maximal operator Mλ,N by

Mλ,Nf(x) = sup
x∈R∈

⋃
k Ck

1

|R|

∫
R

|f(y)| dy.

Then there is a constant β(Re(λ1),Re(λ2)) > 0 such that for every Schwartz function

f ∈ S(R2),

‖Mλ,Nf‖2 .Re(λ1),Re(λ2) log(N)β(Re(λ1),Re(λ2)) ‖f‖2 .
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Proof. In what follows, for any rectangle R and any integer k, we will let ((2k)AR)∗ :=

(2k)A(R∗). Here R∗ denotes the double dilate of R, where the dilation is taken from the

center of R. Similarly, if R denotes any collection of nonisotropic dilates of rectangles,

then R∗ := {R∗ : R ∈ R}.

For each k ∈ Z, define a maximal operator Mλ,N,k on Schwartz functions f ∈ S(R2)

by

Mλ,N,kf(x) = sup
x∈R∈Ck

1

|R|

∫
R

|f(y)| dy. (5.7)

It follows from rescaling the corresponding result from [16] that for every f ∈ S(R2),

‖Mλ,N,kf‖2 . log(3N)1/2 ‖f‖2 . (5.8)

Now we combine the estimates for the Mk to prove an L2 estimate for M . For each (i, k)

where 1 6 i 6 N and k ∈ Z, define a maximal operator T i,k by

T i,kf(x) = sup
(2−k)Ax∈R∈Ri

1

|(2k)AR|

∫
(2k)AR

|f(y)| dy

where Ri denotes the collection of all rectangles with direction πiN−1 and dimensions

λ × Nλ. Fix a Schwartz function f ∈ S(R2), and apply a standard covering lemma to

obtain for each (i, k) a sequence of rectangles {Ri,k
n } ⊂ Ri pairwise disjoint such that

Ei,k
α = {x : T i,kf(x) > α} ⊂

⋃
n

((2k)A(Ri,k
n )∗),

1

|(2k)ARi,k
n |

∫
(2k)ARi,kn

|f(y)| dy > α.

Then

Eα = {x : Mλ,Nf(x) > 4α} ⊂
⋃
i,k

Ei,k
α .
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Let

H =
⋃
i,k,n

(2k)ARi,k
n .

Let H′ be a subcollection of H such that

1. There are no R,R′ ∈ H′ such that R′ ⊂ R∗.

2. If R ∈ H \ H′, then there is R′ ∈ H′ such that R ⊂ (R′)∗.

(To see that such a subcollection exists, we simply enumerate the rectangles in H as

R1, R2, . . ., and at step i we add Ri to H′ if Ri is not contained in R∗j for any j < i such

that Rj ∈ H′, and in this case if Rj ⊂ R∗i for any j < i such that Rj ∈ H′, we remove

Rj from H′.) Then

Eα ⊂
⋃
R∈H′

R∗∗. (5.9)

Let Hk = H′ ∩ Ck. Fix an integer a > 0 such that B(0, 2) ⊂ (2a)AB(0, 1), where B(0, r)

denotes the (Euclidean) ball of radius r centered at the origin. Let n0 = max{k : Hk 6=

∅}. For every j > 0, let

∆j =
⋃

n0−(j+1)(logN)a

<k6n0−j(logN)a

Hk.

For each j let Aj =
⋃
R∈∆j

R. Then the family of sets {Aj} is “almost disjoint”, i.e.

Aj1 ∩ Aj2 = ∅ if |j1 − j2| > 2. To see this, suppose that R ∈ ∆j1 and R′ ∈ ∆j2 with

j1 < j2 − 2 and R ∩R′ 6= ∅. Choose k such that R ∈ Ck. Then (2−k)AR ⊂ B(x,Nλ) for

some x ∈ (2−k)AR′. But ((2−k)AR′)∗ ⊃ B(x,Nλ), and so R ⊂ R′∗, a contradiction.

Now, by (5.9) we have

Eα ⊂
⋃
j

A∗∗j . (5.10)
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Let fj = f · χAj . Define a maximal function Sj for g ∈ S(R2) by

Sjg(x) = sup
x∈R∈

⋃
n0+2−(j+1)(logN)a

<k6n0+2−j(logN)a
Ck

1

|R|

∫
R

g(y) dy.

It follows from (5.8) that Sj is bounded on L2(R2) with operator norm . (logN)a+1/2.

Now if x ∈ A∗∗j , then there is R ∈ ∆j such that x ∈ R∗∗. Then,

Sjfj(x) >
1

|R∗∗|

∫
R∗∗
|fj(y)| dy >

1

16

1

|R|

∫
R

|fj(y)| dy >
1

16
α.

Thus A∗∗j ⊂ {x : Sjfj(x) > 1
16
α}, and so

|A∗∗j | . (logN)2a+1‖fj‖
2
2

α2
.

It follows that

|Eα| 6
∑
j

|A∗∗j | . (logN)2a+1 1

α2

∑
j

‖fj‖2
2 . (logN)2a+1‖f‖

2
2

α2
. (5.11)

To obtain a strong type L2 estimate for Mλ,N from (5.11), we will need to first prove a

weak (1, 1) estimate forMλ,N and interpolate. By comparison with the Hardy-Littlewood

maximal function and rescaling, we have for every k,

|{x : Mλ,N,k(f)(x) > α}| . N
‖f‖1

α
. (5.12)

We now repeat the above argument, using (5.12) in place of (5.8) and obtain the weak

(1, 1) estimate

|{x : Mλ,Nf(x) > 4α} . N
‖f‖1

α
. (5.13)

The result now follows by interpolation of (5.13), (5.11) and the trivial L∞ estimate for

Mλ,N .
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5.4 A decomposition of R2

In this section, we will introduce a decomposition of R2 that plays a similar role as

the decomposition of R2 provided in [8]. The decomposition from [8] can be viewed

more or less as a decomposition of the annulus |ξ − 1| 6 δ into δ-thickened caps that

can be approximated by δ1/2 × δ rectangles, and dilated at different scales to cover the

plane in an almost-disjoint fashion. Here we employ a different decomposition of the set

|ρ(ξ)− 1| 6 δ into rectangles of width δ and length essentially between δ and 1, so that

on each rectangle, ∂Ω may be viewed as sufficiently “flat” at scale δ. This decomposition

was introduced by [48] to prove Lp bounds for Bochner-Riesz multipliers associated to

convex domains. We then dilate these rectangles nonisotropically at different scales to

cover the plane in an almost-disjoint fashion.

Decomposition of ∂Ω

Before we describe the decomposition of R2, we first need to introduce a decomposition

of ∂Ω from [48]. This decomposition allows us to write ∂Ω as a disjoint union of pieces

on which ∂Ω is sufficiently “flat”. Here, the pieces in the decomposition will play the

role that the δ1/2-caps play in the radial case.

We inductively define a finite sequence of increasing numbers

A(δ) = {a0, . . . , aQ}

as follows. Let a0 = −1, and suppose a0, . . . , al−1 are already defined. If

(t− al−1)(γ′L(t)− γ′R(al−1)) 6 δ for all t ∈ (al−1, 1]) (5.14)
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and al−1 6 1 − 2−Mδ, then let al = 1. If (5.14) holds and al−1 > 1 − 2−Mδ, then let

al = al−1 + 2−Mδ. If (5.14) does not hold, define

al = inf{t ∈ (al−1, 1] : (t− al−1)(γ′L(t)− γ′R(al−1)) > δ}.

Now note that (5.14) must occur after a finite number of steps, since we have |γ′L|, |γ′R| 6

2M−1, which implies that |t−s||γ′L(t)−γ′R(s)| < δ if |t−s| < δ2−M . Therefore this process

must end at some finite stage l = Q, and so it gives a sequence a0 < a1 < · · · < aQ so

that for l = 0, . . . , Q− 1

(al+1 − al)(γ′L(al+1)− γ′R(al)) 6 δ, (5.15)

and for 0 6 j < Q− 1,

(t− al)(γ′L(t)− γ′R(al)) > δ if t > al+1. (5.16)

For a given δ > 0, this gives a decomposition of

∂Ω ∩ {x : −1 6 x1 6 1, x2 < 0}

into pieces

⊔
l=0,1,...,Q−1

{x ∈ ∂Ω : x1 ∈ [al, al+1]}.

Now let {i0, i1, . . . , aQ′} be a refinement of {a0, a1, . . . , aQ} corresponding to a partition

of [−1, 1] into intervals {Ij} with Ij = [ij, bj+1] such that each interval [al, al+1] is a union

of . log(δ−1) of the intervals Ij, and so that |Ij|/2 6 |bj+1| 6 2|Ij|. We then have a

decomposition

∂Ω ∩ {x : −1 6 x1 6 1, x2 < 0} =
⊔

j=0,1,...,Q′

{x ∈ ∂Ω : x1 ∈ Ij},

where Q′ . log(δ−1)Q.
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Decomposition of R2

With the previous decomposition of ∂Ω in mind, we proceed to give a decomposition of

R2. To begin, we define a nonisotropic sector to be a region bounded by the origin and

two orbits {tAξ : t > 0} and {tAξ′ : t > 0} for any ξ, ξ′ ∈ R2 \ {0}. Observe there is an

integer NM > 0 such that

1. We can write R2 =
⋃NM
i=0 Si, where each Si is a nonisotropic sector and the Si are

essentially disjoint.

2. For every i, there is a rotation Ri such that Ri(∂Ω∩Si) ⊂ {x : −1/2 6 x1 6 1/2},

Ri(∂Ω ∩ Sj) ∩ {x : −1/2 < x1 < 1/2} = ∅ for i 6= j, and R0 is the identity map.

For each i, define S̃i to be the nonisotropic sector bounded by the orbits {tAξi : t > 0}

and {tAξ′i : t > 0} where ξ = (ξ1, ξ2) is the unique point in Ri∂Ω with ξ1 = −1 and ξ2 >

0, and ξ′ = (ξ′1, ξ
′
2) is the unique point in Ri∂Ω with ξ1 = 1 and ξ2 > 0. Clearly, Si ⊂ S̃i.

Let {(α, γi(α)) : α ∈ [−1, 1]} be a parametrization of Ri(∂Ω ∩ S̃i). For 0 6 i 6 NM , let

Ri denote the region of R2 bounded by the level sets {x : ρ(x) = 1/2} and {x : ρ(x) = 2}

and the nonisotropic sector S̃i. Similarly, let R′i denote the region of R2 bounded by

the level sets {x : ρ(x) = 1/4} and {x : ρ(x) = 4} and the nonisotropic sector S̃i. Fix

δ > 0. Let Ri,δ denote the region bounded by the level sets {x : ρ(x) = 1 − 2δ} and

{x : ρ(x) = 1 + 2δ} and S̃i. Note that
⋃NM
i=0 Ri,δ contains the support of F [ψ1], where

ψ1 is as in Proposition 5.1.3.

Recall the previous decomposition of [−1, 1] into intervals {Ij}. Let Bi,j,0,0 denote

the region bounded by Ri,δ and the orbits {tAR−1
i (ij,

γi(ij)) : t > 0} and {tAR−1
i (bj+1, γi(bj+1)) : t > 0}, so that Ri,δ =

⋃
j Bi,j,0,0. For each
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integer m, let Bi,j,m,0 = (1+2δ
1−2δ

)mABi,j,0,0. Now let Nδ, N
′
δ be integers such that

Ri ⊂
⋃

j,Nδ6m6N ′δ

Bi,j,m,0 ⊂ R′i.

We are now ready to state our decomposition of R2. For each integer n, let Bi,j,m,n =

(22n)A(Bi,j,m,0). Then

Si ⊂
⋃

j,Nδ6m6N ′δ,n∈Z

Bi,j,m,n,

R2 =
⋃

06i6NM ,j,Nδ6m6N ′δ,n∈Z

Bi,j,m,n,

and there is an integer N ′M depending only on M such that every point of R2 lies in at

most N ′M many elements of the collection {Bi,j,m,n}.

Some important properties of the decomposition.

We now prove some essential geometric facts regarding our decomposition; these may be

viewed as analogs of Proposition 3 parts (i) − (iii) from [8]. The following proposition

is a key fact regarding the almost disjointness of algebraic sums of the pieces in our

decomposition.

Proposition 5.4.1. For a constant C(M,Re(λ1),Re(λ2)) > 0 depending only on M and

the eigenvalues of A, let

T0 = {ξ : 1/4 6 ρ(ξ) 6 4, |ξ1| 6 C(M,Re(λ1),Re(λ2))},

T1 =
⋃
k∈Z

(24k)A(T0).
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For 0 < t <∞, let

At = {B ∈ {Bi,j,m,n} : ∃ξ ∈ B with ρ(ξ) = 1/t

and ξ ∈ T1}.

Fix positive real numbers u and t satisfying 1/2 < u/t < 2 with u ∈
⋃
k∈Z[24k−1, 24k+1],

and let Bu,t denote the collection of all sets of the form {A + B}A∈At,B∈Au. Then if

C(M,Re(λ1),Re(λ2)) is chosen sufficiently small, there exists a constant C ′(M,Re(λ1),Re(λ2)) >

0 (depending only on M and the eigenvalues of A and independent of δ and the choice

of u and t) such that every point of R2 is contained in at most

C ′(M,Re(λ1),Re(λ2))(log(δ−1))2

elements of Bu,t.

Proof. Without loss of generality, assume that u = 1. For any v ∈ A ∈ At and w ∈ B ∈

Au, let σ+(v, w) denote the minimum nonnegative difference in slope between supporting

lines to the convex curve

Σv := {ξ : ρ(ξ) = ρ(v), ξ ∈ T1}

at v and supporting lines to the convex curve

Σw := {ξ : ρ(ξ) = ρ(w), ξ ∈ T1}

at w, and σ+(v, w) := +∞ if no nonnegative difference exists. Let σ−(v, w) denote

the maximum nonpositive difference in slope between supporting lines to Σv at v and

supporting lines to Σw at w, and σ−(v, w) := −∞ if no nonpositive difference ex-

ists. Note that for every (v, w) at least one of σ+(v, w) and σ−(v, w) is finite, and
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if C(M,Re(λ1),Re(λ2)) is sufficiently small, then the slope of any supporting line is

between −22M and 22M . Given x ∈ Bu,t, we have one of three cases:

1. There is v ∈ A ∈ At and w ∈ B ∈ Au with v + w = x and σ+(v, w) finite, but

σ−(v, w) is infinite for every pair (v′, w′) with v ∈ A′ ∈ At, w ∈ B′ ∈ Au, and

v′ + w′ = x,

2. There is v ∈ A ∈ At and w ∈ B ∈ Au with v + w = x and σ−(v, w) finite, but

σ+(v, w) is infinite for every pair (v′, w′) with v ∈ A′ ∈ At, w ∈ B′ ∈ Au, and

v′ + w′ = x,

3. There is v ∈ A ∈ At and w ∈ B ∈ Au with v + w = x and σ+(v, w) finite, and

there is v′ ∈ A′ ∈ At and w′ ∈ B′ ∈ Au with v′ + w′ = x and σ−(v, w) finite.

Let us assume we have case 1. Given x ∈ R2, choose v = (v1, v2) ∈ A ∈ At and

w = (w1, w2) ∈ B ∈ Au with v + w = x minimizing σ+(v, w). Now suppose there is

ṽ = (ṽ1, ṽ2) ∈ Ã ∈ At and w̃ = (w̃1, w̃2) ∈ B̃ ∈ Bt such that ṽ + w̃ = x. Since Σv and

Σw are convex, we have

ṽ1 6 v1 + C ′′(M,Re(λ1),Re(λ2))δ,

w̃1 > w1 − C ′′(M,Re(λ1),Re(λ2))δ,

where C ′′(M,Re(λ1),Re(λ2)) > 0 is a constant that depends only on M and the eigen-

values of A. Thus

v1 − ṽ1 = w̃1 − w1 > −C ′′(M,Re(λ1),Re(λ2))δ. (5.17)

Choose indices i0, j0,m0, n0 and i′0, j
′
0,m

′
0, n

′
0 such that Bi0,j0,m0,n0 3 v and Bi′0,j

′
0,m
′
0,n
′
0
3

w. (There are .M,Re(λ1),Re(λ2) possible choices of indices.) Also choose indices i1, j1,m1
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and i′1, j
′
1,m

′
1 such thatBi1,j1,m1,n1 3 ṽ andBi′1,j

′
1,m
′
1,n
′
1
3 w̃. Note that we must necessarily

have m1 = m0 and m′1 = m′0, and also that −10 6 n1, n
′
1 6 10. We next observe that

for some sufficiently large constant C ′′′(M,Re(λ1),Re(λ2)) we must have

j0 − C ′′′(M,Re(λ1),Re(λ2)) log(δ−1)2 6 j1

6 j0 + C ′′′(M,Re(λ1),Re(λ2)) log(δ−1)2,

j′0 − C ′′′(M,Re(λ1),Re(λ2)) log(δ−1)2 6 j′1

6 j′0 + C ′′′(M,Re(λ1),Re(λ2)) log(δ−1)2,

since otherwise (5.16) and (5.17) would imply that ṽ2+w̃2 < v2+w2−C ′′′′(M,Re(λ1),Re(λ2))δ.

This completes the proof for case 1, since we have shown that for some constant

C(M,Re(λ1),Re(λ2)) sufficiently large there are fewer than C(M,Re(λ1),Re(λ2)) log(δ−1)2

possible choices of indices i1, j1,m1, n1 and i′1, j
′
1,m

′
1, n

′
1 such that Bi1,j1,m1,n1 3 ṽ and

Bi′1,j
′
1,m
′
1,n
′
1
3 w̃. The proof for case 2 is similar.

Now let us assume we have case 3. Suppose there is ṽ = (ṽ1, ṽ2) ∈ Ã ∈ At and

w̃ = (w̃1, w̃2) ∈ B̃ ∈ Bt such that ṽ + w̃ = x. Then if σ+(ṽ, w̃) is finite, then there is a

constant C ′(M,Re(λ1),Re(λ2)) > 0 such that

ṽ1 6 v1 + C ′(M,Re(λ1),Re(λ2))δ, w̃1 > w1 − C ′(bjM,Re(λ1),Re(λ2))δ,

and if σ−(ṽ, w̃) is finite, then

ṽ1 6 v1 + C ′(M,Re(λ1),Re(λ2))δ, w̃1 > w1 − C ′(M,Re(λ1),Re(λ2))δ.

In either case, the previous argument shows there is a constant C = C(M,

Re(λ1),Re(λ2)) > 0 such that there are fewer than C log(δ−1)2 possible choices of indices
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i1, j1,m1, n1 and i′1, j
′
1,m

′
1, n

′
1 such that Bi1,j1,m1,n1

3 ṽ and Bi′1,j
′
1,m
′
1,n
′
1
3 w̃.

Proposition 5.4.2. Let N(M,Re(λ1),Re(λ2)) be a positive integer and let δ > 0, and fix

positive real numbers u and t satisfying δN(M,Re(λ1),Re(λ2))t > u. Then if N(M,Re(λ1),Re(λ2))

is sufficiently large, there exists a constant C(M,Re(λ1),Re(λ2)) > 0 (independent

of δ and the choice of u and t) such that no point of R2 is contained in more than

C(M,Re(λ1),Re(λ2)) of the sets {A + Bρ(0, 2/t)}A∈Au, where Bρ(0, r) = {x ∈ R2 :

ρ(x) 6 r}.

Proof. Without loss of generality, suppose that u = 1. Fix A ∈ Au, and let x ∈ A and

let y ∈ Bρ(0, 2/t). Choose N(M,Re(λ1),Re(λ2)) large enough to make Bρ(0, 2/t) ⊂

B(0, δ2), where B(0, δ2) denotes the (Euclidean) ball of radius δ2 centered at the origin.

Assume δ < C ′(M,Re(λ1),Re(λ2),Θ(Ω, A)), where C ′(M,Re(λ1),Re(λ2),Θ(Ω, A)) > 0

is chosen sufficiently small so that the minimum angle between the tangent line to ξ ∈ ∂Ω

and any tangent line to the curve {tAξ : 1− 10δ 6 t 6 1 + 10δ} is at least δ1/2. Now for

any ξ ∈ ∂Ω, 1− 10δ 6 t 6 1 + 10δ, we have∣∣∣∣ ddt(tAξ)
∣∣∣∣ = |t−1AtAξ| &M,Re(λ1),Re(λ2) 1,

and it follows that if C ′(M,Re(λ1),Re(λ2),Θ(Ω, A)) is sufficiently small, the (Euclidean)

distance between tAξ and the tangent line to ∂Ω at ξ is at least 10δ2. Since Ω is convex,

we conclude that the distance between ∂Ω and (1 + δ)A∂Ω is at least 10δ2. Similarly,

the distance between ∂Ω and (1− δ)A∂Ω is at least 10δ2. It follows there is an absolute

constant C such that for any given ξ ∈ R2, there are fewer than C possible values of

m (and clearly also fewer than C possible values of n) such that Bi,j,m,n + B(0, δ2) 3 ξ
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for some Bi,j,m,n ∈ A1. It remains to obtain an upper bound for the number of possible

values of j. But it is clear that dist(Bi,j,m,n, Bi,j′,m,n) > δ/10 for |j − j′| > 2, and this

finishes the proof.

Proposition 5.4.3. There exists an absolute constant C > 0 such that for each fixed

quadruple (i, j,m, n), the logarithmic measure of {t : Bi,j,m,n ∩ suppF [ψt] 6= ∅} is less

than or equal to Cδ.

Proof. Immediate.

5.5 Kernel estimates and another L2 maximal func-

tion estimate

We note that in both [18] and [8], it was important that regarding the decomposition of

the multiplier φ(δ−1(1−|ξ|) where φ was a smooth bump function into pieces supported

on δ1/2 × δ rectangles, each piece of the multiplier had L1 norm essentially 1. This was

also true of the decomposition of |ρ(ξ) − 1| 6 δ introduced in [48]. In this section we

prove that after the introduction of nonisotropic dilations, the same holds true.

The argument presented in [8] also used L2 bounds for maximal functions given by

the supremum of convolutions by smooth bumps supported on finitely many essentially

disjoint pieces of the decomposition of R2 given in [8]. Since these smooth bumps could

be dominated by Schwartz functions adapted to rectangles, such a maximal function

could be dominated by a Nikodym maximal function. Here, as well as in [48], we do

not have domination of the functions in our partition of unity by Schwartz functions
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adapted to rectangles, and the proof of L1 kernel estimates is more delicate. As in [48],

this also implies that the associated maximal function that we use is not simply a

nonisotropic Nikodym maximal function. However, we will show that the L2 bounds

for the nonisotropic Nikodym maximal function proved earlier imply L2 bounds for the

maximal function that we are interested in, with a similar constant.

A partition of unity associated to the decomposition of R2

First, we need to define a partition of unity of R2, and as mentioned above one goal of

this section is to show that each function in our partition of unity has bounded L1 norm.

Recall the decomposition

R2 =
⋃

i,j,m,n

Bi,j,m,n.

We now introduce a partition of unity {σi,j,m,n} such that

1. σi,j,m,n ∈ C∞(R2) for every (i, j,m, n),

2.
∑

i,j,m,n σi,j,m,n(x) = 1 for every x ∈ R2,

3. There is a constant CM such that for every (i0, j0,m0, n0), σi0,j0,m0,n0 is supported

in
⋃
|j|,|m|6CM Bi0,j0+j,m0+m,n0 .

Let φ ∈ C∞([−1, 1]) be nonnegative and identically 1 on [−1/2, 1/2], and for n ∈ Z set

φn(·) = φ(2−n−1·)− φ(2−n·). For each m, let ψm ∈ C∞(1− (2m+ 10)δ, 1 + (2m+ 10)δ)

such that
∑

m ψm is identically 1 on the support of φ0, and for every k, Dkψm .k δ
−k.

For each i, let Si be the isotropic sector bounded by |ξ| = 2, |ξ| = 2M+2, and the

rays through the origin and the points ξ and ξ′, where ξ = (ξ1, ξ2) is the unique point
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in Ri∂Ω with ξ1 = −1/4 and ξ2 > 0, and ξ′ = (ξ′1, ξ
′
2) is the unique point in Ri∂Ω with

ξ1 = 1/4 and ξ2 > 0. Let S̃i be the isotropic sector bounded by |ξ| = 1, |ξ| = 2M+3,

and the rays through the origin and the points ξ and ξ′, where ξ = (ξ1, ξ2) is the unique

point in Ri∂Ω with ξ1 = −3/4 and ξ2 > 0, and ξ′ = (ξ′1, ξ
′
2) is the unique point in Ri∂Ω

with ξ1 = 3/4 and ξ2 > 0. For each i, let Ψi be a smooth function supported in S̃i and

identically 1 on Si, such that DkΨi .M,k 1 for all k and
∑

i Ψi is identically 1 on the

region bounded by |ξ| = 2 and |ξ| = 2M+2.

Fix i, and for each j, let `j−1, `j, and `j+1 be the lines through (bj−1, γi

(bj−1)), (ij, γi(ij)), and (bj+1, γi(bj+1)), respectively, with slopes orthogonal to the tan-

gent vectors (1, γ′i(bj−1), (1, γ′i(ij)), and (1, γ′i(bj+1)), respectively. Let ej be a unit vec-

tor orthogonal to `j. Let α be a C∞(R) function such that 0 6 α 6 1, α(x) = 1 for

x ∈ [−1, 1] and α(x) = 0 for x /∈ [−101
100
, 101

100
], and set αj(ξ) = α(|Ij|−1(ξ− (ij, γi(ij))) ·ej).

We are now ready to define the functions σi,j,m,n. Let

σi,j,m,0(ξ) = φ0(ρ(ξ))Ψi((
1− 2δ

1 + 2δ
)mAξ)ψm(ρ(ξ))

× αj(Ri(
1− 2δ

1 + 2δ
)mAξ)(1− αj+1(Ri(

1− 2δ

1 + 2δ
)mAξ)), (5.18)

and

σi,j,m,n(ξ) = σi,j,m,0((2−n)Aξ). (5.19)

For every i and every m, we have

∑
j

αj(Ri(
1− 2δ

1 + 2δ
)mAξ)(1− αj+1(Ri(

1− 2δ

1 + 2δ
)mAξ))

is identically 1 on the support of

φ0(ρ(ξ))Ψi((
1− 2δ

1 + 2δ
)mAξ)ψm(ρ(ξ)),
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and since ∑
i

∑
m

φ0(ρ(ξ))Ψi((
1− 2δ

1 + 2δ
)mAξ)ψm(ρ(ξ))

=
∑
m

φ0(ρ(ξ))ψm(ρ(ξ)) = φ0(ρ(ξ)),

it follows that for every ξ ∈ R2, ∑
i,j,m,n

σi,j,m,n(ξ) = 1.

Introduction of a maximal function associated with the partition

of unity

Let

Ki,j,m,n(x) = F [σi,j,m,n(·)](x).

We define a maximal function M on f ∈ S(R2) by

Mf(x) = sup
i,j,m,n

sup
2n−106t62n+10

|ψt ∗Ki,j,m,n ∗ f(x)|.

We will prove the following L2 bounds for M .

Proposition 5.5.1. Let ε > 0. There is a constant C = C(M,Re(λ1),Re(λ2),

Θ(Ω, A)) such that if 0 < δ < C, then for f ∈ S(R2),∥∥Mf
∥∥
L2(R2)

.ε,M,Re(λ1),Re(λ2),Θ(Ω,A) δ
−ε ‖f‖L2(R2) .

Proof. The proof will follow [48]. First note that without loss of generality we may drop

the “sup” in the i index in the definition of M and assume i = 0, and so in what follows

we drop all i-indices. Set l = dlog(δ−1)e. We decompose M = M1 +M2, where

M1f(x) = sup
j,m,n

sup
2n−106t62n+10

|ψt ∗ (Kj,m,n · χ|tA·|>210M·l) ∗ f(x)|,
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M2f(x) = sup
j,m,n

sup
2n−106t62n+10

|ψt ∗ (Kj,m,n · χ|tA·|<210M·l) ∗ f(x)|.

We will first prove Proposition 5.5.1 withM replaced byM1. Let σj(ξ) = F−1[Kj,0,0(·)](ξ).

Note that

σj(ξ) = φ0(ρ(ξ))ψ0(ρ(ξ))mj(ξ), (5.20)

where

mj(ξ) = Ψ0(ξ)φ0(2−2Mξ)αj(ξ)(1− αj(ξ − 2M+10|Ij|(1, γ′0(ij))))

(1− αj+1(ξ))(αj+1(ξ + 2M+10|Ij|(1, γ′0(bj+1)))). (5.21)

Now let β ∈ C∞ be supported in [−1, 1], and let hl(s) = β(2l(1 − s)). Note that

(5.20) says that σj is of the form hl(ρ(·))mj(·). We claim that to prove Proposition 5.5.1

with M1 in place of M , it in fact suffices to prove Proposition 5.5.1 with Mf replaced

by

sup
t∈(0,∞)

|(χ|tA·|>25M·l · F−1[hl(tρ(·))]) ∗ f(x)|.

This will follow immediately from the observation that 2M+10|Ij|−1 << 210M ·l and that

for any annulus Ak, ∫
Ak
F−1[hl(ρ(·))](x) dx . 1, (5.22)

which will be proven later.

We now prove pointwise estimates for F−1[hl(ρ(·))](x), which we write as an integral

over ∂Ω as follows:

(2π)2F−1[hl(ρ(·))](x) =

∫
Ω

hl(ρ(ξ))ei〈x,ξ〉 dξ = −
∫

Ω

ei〈x,ξ〉
∫ ∞
ρ(ξ)

h′l(s) ds dξ
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= −
∫ ∞

0

h′l(s)

∫
ρ(ξ)6s

ei〈x,ξ〉 dξ ds = −
∫ ∞

0

h′l(s)

∫
ρ(ξ)61

ei〈x,sAξ〉| det sA| dξ dx

=

∫ ∞
0

i|sA∗x|−2h′l(s)

∫
∂Ω

ei〈sA
∗
x,ξ〉 〈sA∗x, n(ξ)

〉
dσ(ξ)| det sA| ds.

In the above computation, we used the divergence theorem applied to the vector field

ξ 7→ (i|sA∗x|2)−1sA
∗
xei〈sA

∗
x,ξ〉. For each i, let ζi ∈ C∞(R) be supported in [−4/5, 4/5]

and identically 1 on [−1/3, 1/3] such that
∑

i ζi((Ri

(1/ρ(ξ))Aξ)1) ≡ 1. It suffices to estimate∫ ∞
0

i|sA∗x|−2h′l(s)

∫
∂Ω

ei〈sA
∗
x,ξ〉

〈
sA
∗
x, n(ξ)

〉
ζ0((ξ)1)dσ(ξ)| det sA| ds. (5.23)

We introduce homogeneous coordinates

(s, α) 7→ ξ(s, α) = sA(α, γ0(α)). (5.24)

The Jacobian of the map (5.24) is

〈
sA(1, γ′0(α)), s−1AsA(α, γ0(α))

〉
.

Using homogeneous coordinates, (5.23) can be written as

i

∫
ζ0(α)

∫ ∞
0

|sA∗x|−2h′l(s)e
i〈x,sA(α,γ0(α))〉

×
〈
x, sA(−γ′0(α), 1)(1 + (γ′0(α))2)−1/2

〉
×
〈
sA(1, γ′0(α)), s−1AsA(α, γ0(α))

〉
| det sA| ds dα. (5.25)

Let η : R→ R be a smooth function supported in [−ε, ε], where

ε = Θ(Ω, A) ·min(|λ1|, |λ2|)/(100 · 2M+2). (5.26)
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Then (5.25) can be written as K̃1(x) + K̃2(x), where

K̃1(x) = i

∫
ζ0(α)

∫ ∞
0

|sA∗x|−2h′l(s)e
i〈x,sA(α,γ0(α))〉

× η
(〈x,A(α, γ0(α))〉

|x|
) 〈
x, sA(−γ′0(α), 1)(1 + (γ′0(α))2)−1/2

〉
×
〈
sA(1, γ′0(α)), s−1AsA(α, γ0(α))

〉
| det sA| ds dα,

K̃2(x) = i

∫
ζ0(α)

∫ ∞
0

|sA∗x|−2h′l(s)e
i〈x,sA(α,γ0(α))〉

×
(
1− η

(〈x,A(α, γ0(α))〉
|x|

)) 〈
x, sA(−γ′0(α), 1)(1 + (γ′0(α))2)−1/2

〉
×
〈
sA(1, γ′0(α)), s−1AsA(α, γ0(α))

〉
| det sA| ds dα.

To estimate K̃2(x), we integrate by parts with respect to s twice. This yields

K̃2(x) = i

∫
ζ0(α)

(
1− η

(〈x,A(α, γ0(α))〉
|x|

))
∫ ∞

0

g2(x, s, α)ei〈x,sA(α,γ0(α))〉 ds dα,

where

g2(x, s, α) =
d

ds

(〈
x, s−1AsA(α, γ0(α))

〉−1 d

ds

(〈
x, s−1AsA(α, γ0(α))

〉−1

× |sA∗x|−2h′l(s)
〈
x, sA(−γ′0(α), 1)(1 + (γ′0(α))2)−1/2

〉
×
〈
sA(1, γ′0(α)), s−1AsA(α, γ0(α))

〉
| det sA|

))
.

Note that if 0 < δ < C for a sufficiently small constant C > 0, then for s in

the support of hl(s) and for x in the the support of 1 − η
( 〈x,A(α,γ0(α))〉

|x|

)
, we have〈

x, s−1sAA(α, γ0(α))
〉
> |x| · ε/2. Thus

|g2(x, s, α)| . |x|−3|h′′l (s)|.
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This implies that

|K̃2(x)| . |x|−3

∫
ζ0(α)

∫
|h′′l (s)| ds dα . 2l|x|−3. (5.27)

To estimate K̃1(x), we integrate by parts with respect to α once and then with respect

to s twice, which yields

K̃1(x) =

∫ ∞
0

∫
g1(x, s, α)ei〈x,sA(α,γ0(α))〉 dα ds,

where

g1(x, s, α) = − d

ds

(〈
x, s−1AsA(α, γ0(α))

〉−1 d

ds

(〈
x, s−1AsA(α, γ0(α))

〉−1

× d

dα

(〈
x, sA(1, γ′0(α))

〉−1
ζ0(α)η

(〈x,A(α, γ0(α))〉
|x|

)
× i
〈
x, sA(−γ′0(α), 1)(1 + (γ′0(α))2)−1/2

〉
×
〈
sA(1, γ′0(α)), s−1AsA(α, γ0(α))

〉
|sA∗x|−2h′l(s)| det sA|

)))
.

By the choice of ε, we have that for s in the support of hl(s) and for x in the the

support of η
( 〈x,A(α,γ0(α))〉

|x|

)
, if θ denotes the angle between x and A(α, γ0(α)), then

cos(θ) 6 Ω(Θ, A)/100. Since A(α, γ0(α)) is tangent to the orbit {sA(α, γ0(α)) : s > 0}

at (α, γ0(α)), if 0 < δ < C for a sufficiently small constant C, we have

|
〈
x, sA(1, γ′0(α))

〉
|−1 > (Θ(Ω, A)/2M+2) · |x|.

It follows that

|g1(x, s, α)| . |x|−2|
〈
x, s−1AsA(α, γ0(α))

〉
|−2|h′′l (s)|ζ0(α)(1 + |γ′′(α)|),

and hence

|K̃1(x)| .
∫ ∫

|x|−2|1 + |
〈
x, s−1AsA(α, γ0(α))

〉
||−2

× |h′′l (s)|ζ0(α)|(1 + |γ′′(α)|) dα ds. (5.28)
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It follows from (5.27) that ∫
Ak
|K̃2(x)| . 2l−k, (5.29)

and it follows from (5.28) that ∫
Ak
|K̃1(x)| . 2l−k, (5.30)

and (5.29) and (5.30) imply (5.22).

Now, (5.27) implies that for 0 < δ < C we have that |K̃2 · χ|tA·|>25M·l | is bounded

above by a radial, decreasing function with L1 norm . 1. It follows that there is a

sequence {an} with an > 0 and
∑∞

n=0 an . 1 such that for 0 < δ < C,∥∥∥∥∥ sup
t∈(0,∞)

|(χ|tA·|>25M·l · det(tA)K̃2(tA·)) ∗ f(x)|

∥∥∥∥∥
L2(R2)

.

∥∥∥∥∥
∞∑
n=0

anM2−n,1f

∥∥∥∥∥ . δ−ε ‖f‖L2(R2) , (5.31)

where we have applied Proposition 5.3.1.

We now prove a similar estimate for K̃2. Observe that (5.28) implies that if 0 < δ <

C,

sup
t∈(0,∞)

|(χ|tA·|>25M·l · det(tA)K̃1(tA·)) ∗ f(x)| .∫ ∫ ∞∑
n=0

2−n/4M2n/4,2n/4f(x)|h′′l (x)|ξ0(α)|(1 + |γ′′(α)| dα ds,

and hence by Proposition 5.3.1,∥∥∥∥∥ sup
t∈(0,∞)

|(χ|tA·|>25M·l · det(tA)K̃1(tA·)) ∗ f(x)|

∥∥∥∥∥
L2(R2)

. δ−ε ‖f‖L2(R2) . (5.32)
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Together (5.31) and (5.32) prove the result with M replaced by M1.

It remains to prove the result with M replaced by M2. Observe that

σj(ξ) = φ0(2−2M)αj(ξ)(1− αj(ξ − 2M+10|Ij|(1, γ′0(ij))))

× (1− αj+1(ξ))(αj+1(ξ + 2M+10|Ij|(1, γ′0(bj+1)))) · m̃j(ξ),

where

m̃j(ξ) = Ψ0(ξ)ψ0(ρ(ξ))νj(((1/ρ(ξ))Aξ)1),

for some C∞ function νj supported in an interval I∗j of width 10|Ij| satisfying

|Diνj| . |Ij|−i

for every integer i > 0. The kernel of the multiplier m̃j can be easily written as an

integral in homogeneous coordinates. If we can prove that for every annulus Ak with

k > 0, ∫
Ak
|F−1[m̃j(·)](x)| dx . l, (5.33)

then it would follow that the desired result reduces to proving the result of the propo-

sition with Mf(x) replaced by

sup
t∈(0,∞)

|(χ|tA·|6220M·l · F−1[m̃j(t
−A·)]) ∗ f(x)|. (5.34)

We now proceed to prove (5.33). As before, let η be smooth and supported in [−ε, ε],

where ε is given by (5.26). Also, as before let φ ∈ C∞([−1, 1]) be nonnegative and

identically 1 on [−1/2, 1/2], and for n ∈ Z set φn(·) = φ(2−n−1·)− φ(2−n·). Define

Φ0(x, s, α) = φ0(|Ij|
〈
x, sA(1, γ′0(α))

〉
)η
(〈x, sA(1, γ′0(α))

〉
|x|

)
) (5.35)
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Φn(x, s, α) = (φ0(2−n−1|Ij|
〈
x, sA(1, γ′0(α))

〉
)

− φ0(2−n|Ij|
〈
x, sA(1, γ′0(α))

〉
))η
(〈x, sA(1, γ′0(α))

〉
|x|

)
. (5.36)

We decompose the kernel as

F−1[m̃j(·)](x) =
1

(2π)2
[K̃j(x) +

∑
n>0

Kj,n(x)], (5.37)

where

Kj,n(x) =

∫
νj(α)

∫
hl(s)Φn(x, s, α)ei〈x,sA(α,γ0(α))〉

×
〈
sA(1, γ′0(α)), s−1AsA(α, γ0(α))

〉
ds dα

and

K̃j(x) =

∫
νj(α)

(
1− η

(〈x, sA(1, γ′0(α))
〉

|x|
)) ∫

hl(s)e
i〈x,sA(α,γ0(α))〉

×
〈
sA(1, γ′0(α)), s−1AsA(α, γ0(α))

〉
ds dα.

Note that the sum in (5.37) has only . log(1 + |Ij||x|) terms, since Kj,n(x) = 0 if

2n−10|Ij|−1 > ε|x|. In particular if x ∈ Ak ∩ sup(Kj,n) then 2n << 2k|Ij|.

For Kj,0, we simply estimate
∫
R2 |Kj,0(x)| dx. For a given (α, s), we introduce coor-

dinates

(u1, u2) 7→ ξ(u1, u2) = u1s
A(1, γ′0(α)) + u2s

−1AsA(1, γ′0(α)). (5.38)

The Jacobian of the map (5.38) is ≈ 1. Integrating by parts three times in s yields

|Kj,0(x)| .∫
s: |s−1|≈2−l

∫
α∈I∗j

〈x,sA(1,γ′0(α))〉6(2|Ij |)−1

(1 + 2−l|
〈
x, s−1AsA(α, γ0(α)

〉
|)−3 ds dα, (5.39)
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and thus using the change of coordinates (5.38)∫
R2

|Kj,0(x)| dx . ∫
I∗j

∫ ∫
|u1|6(2|Ij |)−1

2−l(1 + 2−l|u2|)−3 du1 du2 dα . 1. (5.40)

For n > 0, we integrate by parts with respect to α once and then with respect to s twice,

which yields

Kj,n(x) =

∫ ∫
hl(s)gn(x, s, α)ei〈x,sA(α,γ0(α))〉 dα ds,

where

gn(x, s, α) = − d

ds

(
1

〈x, s−1AsA(α, γ0(α))〉
d

ds

(
1

〈x, s−1AsA(α, γ0(α))〉
d

dα

(
1

〈x, sA(1, γ′0(α))〉
νj(α)Φn(x, s, α)

〈
sA(1, γ′0(α)), s−1AsA(α, γ0(α))

〉)
.

On the support of hl(s) we have

|gn(x, s, α)| . (1 + |x|2−n|Ij|)|γ′′0 (α)|+ |Ij|−1

2−2l| 〈x, s−1AsA(1, γ′0(α))〉 |2| 〈x, sA(1, γ′0(α))〉 |
,

and so

|Kj,n(x)| .
∫
s: |s−1|≈2−l

∫
α∈I∗j

|〈x,sA(1,γ′0(α))〉|
≈2n|Ij |−1

(1 + |x|2−n|Ij|)|γ′′0 (α)|+ |Ij|−1

| 〈x, sA(1, γ′0(α)〉 |
1

(1 + 2−l| 〈x, s−1AsA(1, γ′0(α))〉 |)2
dα ds. (5.41)

Using the change of coordinates (5.38), it follows that∫
Ak
|Kj,n(x)| dx .

∫
s: |s−1|≈2−l

2l
∫
α∈I∗j

((1 + 2k−n|Ij|)|γ′′0 (α)|+ |Ij|−1)

×
∫
u1≈2n|Ij |−1

|u|≈2k

|u1|−1 2−l

(1 + 2−l|u1|)2
du dα

.
∫
I∗j

(|γ′′0 (α)|+ 2k−n|Ij||γ′′0 (α)|+ |Ij|−1) dα.
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By (5.15) we have
∫
I∗j
|Ij||γ′′0 (α)| dα 6 2−l, and so∫
Ak
|Kj,n(x)| dx . min{2k−l, 2l−k}(2k−l−n + 1).

Since Kj,n is identically 0 on Ak if n > k, summing in n and also using (5.40) yields

∑
n>0

∫
Ak
|Kj,n(x)| dx . k2−|k−l|. (5.42)

Now we estimate K̃j. Integrating by parts once in α and then once in s yields

|K̃j(x)| .
∫
s: |s−1|≈2−l

∫
I∗j

(|Ij|−1 + |γ′′0 (α)|)
|x|(1 + 2−l| 〈x, s−1AsA(α, γ0(α)〉 |)

dα ds, (5.43)

and so using the change of coordinates (5.38) we get∫
Ak
|K̃j(x)| dx . 1. (5.44)

Combining (5.42) and (5.44) gives (5.33). We now proceed to examine

sup
t∈(0,∞)

|(χ|tA·|6220M·l · F−1[m̃j(t
−A·)]) ∗ f(x)|.

By (5.39), for 0 < δ < C we have

sup
t∈(0,∞)

|(χ|tA·|6220M·l ·Kj,0(tA·)) ∗ f(x)| .

∫
s: |s−1|≈2−l

2l
∫
α∈|Ij |∗

|Ij|−1

CM ·l∑
n=0

M|Ij |−1,2l+n/3|Ij |f(x) dα ds,

and hence by Proposition 5.3.1,∥∥∥∥∥ sup
t∈(0,∞)

|(χ|tA·|6220M·l ·Kj,0(tA·)) ∗ f(x)|

∥∥∥∥∥
L2(R2)

.ε δ
−ε ‖f‖L2(R2) . (5.45)

Similarly examining (5.41) and (5.43) leads to∥∥∥∥∥ sup
t∈(0,∞)

|(χ|tA·|6220M·l ·Kj,n(tA·)) ∗ f(x)|

∥∥∥∥∥
L2(R2)

.ε δ
−ε ‖f‖L2(R2) (5.46)
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for n > 0 and∥∥∥∥∥ sup
t∈(0,∞)

|(χ|tA·|6220M·l · K̃j(t
A·)) ∗ f(x)|

∥∥∥∥∥
L2(R2)

.ε δ
−ε ‖f‖L2(R2) . (5.47)

Combining (5.45), (5.46) and (5.47) proves the result with Mf(x) replaced by (5.34),

and the proof of the proposition is complete.

Finally, we note that the proof of Proposition 5.5.1 implies the following L1 kernel

estimate.

Proposition 5.5.2. There exists a constant C = C(M,Re(λ1),Re(λ2),Θ(Ω, A)) such

that for 0 < δ < C, for every ε > 0 and for every quadruple (i, j,m, n),∥∥∥∥sup
t≈2n
|ψt ∗Ki,j,m,n|

∥∥∥∥
L1(R2)

.ε,M,Re(λ1),Re(λ2),Θ(Ω,A) 1.

The above estimate without the supremum follows immediately from the proof of

Proposition 5.5.1. We then simply note that all L1 kernel estimates in the proof of

Proposition 5.5.1 follow from pointwise estimates, which still hold uniformly in t when

the kernel is convolved with ψt.

5.6 Littlewood-Paley Inequalities

The goal of this section is to prove the following proposition, which is an analog of Propo-

sition 4 from [8]. As noted in the introduction, the presence of nonisotropic dilations

requires a more complicated application of square function estimates than those used

in [8], where Proposition 4 is proved by iteratively applying square function estimates

with respect to Fourier projections to parallel strips in R2.



164

Proposition 5.6.1. Let ε > 0. There is C = C(M,Re(λ1),Re(λ2),Θ(Ω, A), ε)

> 0 such that if 0 < δ < C, then the following holds. Let {σi,j,m,n} be the partition of

unity constructed in section 5.5 for the given value of δ. There are smooth functions

{φi,j,m,n} such that φi,j,m,n is identically 1 on the support of σi,j,m,n and so that if we

define P̃i,j,m,n to be the convolution operator whose multiplier is φi,j,m,n, then∥∥∥∥∥
( ∑
i,j,m,n

|P̃i,j,m,nf |2
)1/2

∥∥∥∥∥
4

.ε δ
−ε ‖f‖4 . (5.48)

To prove Proposition 5.6.1, we will need the following lemma, which was originally

due to Carleson. A proof can be found in [34] (Lemma 4.4). We state the lemma in full

generality, although we will only need the special case d = 2.

Lemma 5.6.2. Let A be an invertible linear transformation on Rd and At its transpose.

Suppose that {mk}k∈N are bounded, measurable functions on Rd with disjoint supports.

Let w be a bounded, measurable function on Rd. Then for s > 0 and f ∈ S(Rd),∫ ∑
k

|F−1[mk(A
t·)f̂ ](x)|2w(x) dx

6 C sup
k
‖mk‖2

L2
s(Rd)

∫ ∫
det(A−1)

(1 + |A−1y|s)2
|f(x− y)|2 dy w(x) dx.

We state an immediate corollary of this lemma, which we will apply repeatedly in

the proof of Proposition 5.6.1.

Corollary 5.6.3. Suppose that {mk}k∈Z are disjoint translates of a smooth compactly

supported function adapted to the unit cube in R2, with the distance between the supports

of the mk at least O(1). Let Rθ be the matrix of rotation by θ degrees, and for n ∈ Z

put An,θ = ((2n)ARθ( λ 0
0 λN ))t. Then for any n, θ and for any s > 0,∫ ∑

k

|F−1[mk(A
t
n,θ·)f̂ ](x)|2w(x) dx 6 C

∫
|f(x)|2Mλ,Nw(x) dx,
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where Mλ,N :=
∑∞

i=0 2−iM2iλ,N .

Proof of Proposition 5.6.1. Without loss of generality, we may restrict the sum in (5.48)

to i = 0, and so in what follows we will assume i = 0 and drop the i-index. Also, in what

follows we will say a collection R of subsets of R2 is almost disjoint if there is a constant

C = C(M,Re(λ1),Re(λ2),Θ(Ω, A)) > 0 such that every point of R2 is contained in at

most C elements of R.

The main difficulty here introduced by nonisotropic dilations is that unlike the

isotropic case, the orbits {tAξ : t > 0} need not be straight lines, and thus for fixed

j the supports of the σj,m,0 may only be approximated by rectangles with axes whose

directions change as m varies. To deal with this difficulty, we group the supports of the

σj,m,0 into nested subcollections each of which can be approximated by rectangles with

long axes in a single direction, and iteratively apply Corollary 5.6.3.

Note that since |δ| . |Ij| . 1, there are . log(1/δ) dyadic intervals [2a, 2a+1]

with a 6 0 and a ∈ Z such that 2a 6 |Ij| 6 2a+1 for some j, and so if we let

Ja = {j : |Ij| ∈ [2a, 2a+1]}, we may restrict the sum in j in (5.48) to Ja for a single

fixed value of a, as long as all our estimates are uniform in a. By incurring a factor of

δ−ε, we may assume that 2a 6 δ−ε.

Having fixed a, we are now ready to construct for each fixed j our nested subcollec-

tions of indices m. The idea is that for a fixed j and a fixed m, the support of σj,m,0

is essentially a 2a × δ rectangle, and the support of σj,m′,0 for m′ for |m′ −m| . 2−a is

contained in a 2a× δ rectangle whose direction differs by at most . 2−aδ. Thus the sup-

ports of the functions {σj,m′,0}|m−m′|.2−a are contained in almost disjoint parallel strips

of width ≈ δ. For such a collection of rectangles, Corollary 5.6.3 may be applied. The

union of such rectangles is essentially a 2a×2−aδ rectangle. We now iterate this process,
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grouping together successive 2a × 2−aδ rectangles whose direction does not change too

much to obtain a rectangle of smaller eccentricity. We continue this process until we

obtain a 2a × 2a square, and then we may apply Corollary 5.6.3.

The nested subcollection of indices m will be constructed “backwards” with respect

to the process described in the previous paragraph. The number of stages required by

the process is N , where N is the least integer such that 2aN 6 δ. For each 1 6 k 6 N , we

will define a collection of indices m denoted by Mi1,...,ik , so that Mi1,...,ik+1
⊂Mi1,...,ik and

so that Mi1,...,iN contains at most one element. For each (i1, . . . , ik) ∈ Zk, inductively

define

Mi1 = {m : i1b2aδ−1c 6 m < (i1 + 1)b2aδ−1c},

Mi1,...,ik = Mi1,...,ik−1
∩ {m :

∑
16l6k

ilb2alδ−1c 6 m

6
∑

16l6k

ilb2alδ−1c+ b2akδ−1c}.

Then for every N -tuple (i1, . . . , iN), Mi1,...,iN contains at most one element.

Now let C = C(M,Re(λ1),Re(λ2),Θ(Ω, A) > 0 be sufficiently large. There is a

collection {Qj,i1} of almost-disjoint cubes of sidelength C2a such that if m ∈ Mi1,...,iN

then the support of σj,m,0 is contained in Qj,i1 . Since supρ(ξ)68 |∇ρ(ξ)| . 1, there is a

constant C > 0 such that for every j, i1 we may cover Qj,i1 with almost disjoint parallel

rectangles Rj,i1,i2 of width C22a and length 1 so that for every i2,

⋃
m∈Mi1,i2

supp(σj,m,0) ⊂
⋃
r

(Rj,i1,i2 ∩Qj,i1).

Repeating this process, for every 2 6 k 6 N and every k-tuple (i1, . . . , ik−1) we obtain

almost disjoint parallel rectangles Rj,i1,...,ik of width C2ka and length 1 so that for every
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ik,

⋃
m∈Mi1,...,ik

supp(σj,m,0) ⊂ (Rj,i1,...,ik ∩ . . . ∩Rj,i1,i2 ∩Qj,i1).

As noted previously, in the case k = N ,
⋃
m∈Mi1,...,ik

supp(σj,m,0) contains at most one

element.

Let φ : R2 → [0, 1] be a smooth function that is identically 1 on the unit cube

centered at the origin and supported in its double dilate. If R is any nonisotropic dilate

of a rectangle, let LR be the affine transformation taking R to the unit cube centered at

the origin. It follows that if m ∈Mi1,...,iN , then

supp(σj,m,0) ⊂ {x : φ(LQj,i1x)
N∏
l=2

φ(LRj,i1,...,ilx) = 1},

and so

supp(σj,m,n) ⊂ {x : φ(LQj,i1 (2−n)Ax)
N∏
l=2

φ(LRj,i1,...,il (2
−n)Ax) = 1}.

Now for each j, i1 let ψQj,i1 be a smooth function supported in 4Qj,i1 and identically 1

on Qj,i1 , so that for each j,

ψQj,i1 (x) = 1, x ∈
⋃

m∈Mi1

supp(σj,m,0).

For each (j,m, n), let (i1, . . . , iN) be the unique N -tuple such that m ∈Mi1,...,iN , and let

φj,m,n = ψQj,i1,r((2
−n)Ax)

N∏
l=2

φ(LRj,i1,...,il ,r(2
−n)Ax)

Let P̃j,m,n denote the convolution operator with multiplier φj,m,n. Let φ : R → [0, 1]

be a smooth function supported in (1/4, 4) that is identically 1 on [1/2, 2], and let Pn

denote the convolution operator with multiplier φ(2−nρ(·)). Given an N -tuple of indices
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(i1, . . . , iN), let m(i1, . . . , iN) denote the unique value of m such that m ∈Mi1,...,iN , and

let m(i1, . . . , iN) be undefined otherwise. Let Sj,i1 denote the convolution operator with

multiplier

ψQj,i1,r((2
−n)A·).

For 2 6 k 6 N , let Sj,i1,...,ik,n denote the convolution operator with multiplier

ψQj,i1 ((2−n)ALj,i1,r·)φ(LRj,i1,...,ik (2−n)A·).

Then since each index m is contained in at most one N -tuple (i1, . . . , iN), it follows that

∫ ∑
j,m,n

|P̃j,m,nf(x)|2w(x) dx =∫ ∑
n

∑
j

∑
(i1,...,iN )

|Sj,i1,...,iN (. . . (Sj,i1(Pnf(x))|2w(x) dx.
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Repeatedly applying Corollary 5.6.3, we have

∫ ∑
j,m,n

|P̃j,m,nf(x)|2w(x) dx

.ε

∫ ∑
n

∑
j

∑
i1,...,iN−1

|Sj,i1,...,iN−1
(· · · (Sj,i1(Pnf(x))) · · · )|2

×M1,(2NaδNε)−1w(x) dx

.ε

∫ ∑
n

∑
j

∑
i1

|Sj,i1,(Pnf(x))|2M1,(22aδ2ε)−1(· · ·

(M1,(2NaδNε)−1w(x)) · · · ) dx

.ε

∫ ∑
n

|Pnf(x)|2M2−aδ−ε,1(M1,(22aδ2ε)−1(· · ·

(M1,(2NaδNε)−1w(x)) · · · )) dx

.ε δ
−ε

∥∥∥∥∥
(∑

n

|Pnf |2
)1/2

∥∥∥∥∥
2

4

×
∥∥M2−aδ0ε,1(M1,(22aδε)−1(· · · (M1,(2NaδNε)−1w) · · · ))

∥∥
2
. (5.49)

By Proposition 5.3.1, we have

∥∥M2−aδ0ε,1(M1,(22aδε)−1(· · · (M1,(2NaδNε)−1w) · · · ))
∥∥

2

.ε δ
−ε ‖w‖2 . (5.50)

Since the operator f 7→
(∑

n |Pnf |2
)1/2

corresponds to a vector-valued singular integral

on the space of homogeneous type given by nonisotropic balls and Lebesgue measure with

all associated constants . 1, we have∥∥∥∥∥
(∑

n

|Pnf |2
)1/2

∥∥∥∥∥
4

. ‖f‖4 . (5.51)
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Combining (5.49), (5.50) and (5.51), we have∫ ∑
j,m,n

|P̃j,m,nf(x)|2w(x) dx .ε δ
−ε ‖f‖2

4 ‖w‖2 , (5.52)

and the result follows by duality.

5.7 Proof of the main theorem

In this section, we combine the ingredients developed in previous sections to prove

Proposition 5.1.3. The argument will closely follow [8]. As noted previously, we only

need prove Proposition 5.1.3 in the case that Ω has smooth boundary, with a constant

depending only on M,Re(λ1),Re(λ2),Θ(Ω, A), ε.

Proof of Propostion 5.1.3. Let Sf(x) =
( ∫∞

0
|ψt ∗ f(x)|2 dt

t

)1/2
. Let S be the non-

isotropic sector bounded by the orbits {tAξ : t > 0} and {tAξ′ : t > 0}, where ξ = (ξ1, ξ2)

is the unique point in ∂Ω with ξ1 = −1/8 and ξ2 > 0 and ξ′ = (ξ′1, ξ
′
2) is the unique point

in ∂Ω with ξ1 = 1/8 and ξ2 > 0. Assume without loss of generality that f̂ is supported

in S. By incurring a factor of log(1/δN(M,Re(λ1),Re(λ2))) we may restrict the domain of

integration in t to the set

E =
⋃

n≡0 mod
log(1/δN(M,Re(λ1),Re(λ2)))

(2n, 2n+1],

where N(M,Re(λ1),Re(λ2)) is as in Proposition 5.4.2. Now, if u, t ∈ E with u < t, then

either u, t are contained in the same dyadic interval and u/t > 1/2, or u, t are contained
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in distinct dyadic intervals, and u/t < 1/δN(M,Re(λ1),Re(λ2)). Using Plancherel, we have

‖Sf‖4
4 =

∫ ∣∣∣∣ ∫ ∞
0

|ψt ∗ f(x)|2dt
t

∣∣∣∣2 dx =∫ ∫ ∞
0

∫ ∞
0

|ψt ∗ f(x)|2|ψu ∗ f(x)|2dt
t

du

u
dx =∫ ∞

0

∫ ∞
0

∫
|(φ(

ρ(·)
t

)f̂(·)) ∗ (φ(
ρ(·)
u

)f̂(·))(ξ)|2 dξ dt
t

du

u
.

Restricting the integration in t and u to E, we have∫
E

∫
E

∫
|(φ(

ρ(·)
t

)f̂(·)) ∗ (φ(
ρ(·)
u

)f̂(·))(ξ)|2 dξ dt
t

du

u
.(∫ ∫

1/2<t/u<2

+

∫ ∫
u/t<δ−N(M,Re(λ1),Re(λ2))

)∫
|(φ(

ρ(·)
t

)f̂(·))

∗ (φ(
ρ(·)
u

)f̂(·))(ξ)|2 dξ.

Using Propositions 5.4.1 and 5.4.2, for every ε > 0 we can essentially bound this by

δ−ε
(∫ ∞

0

∫ ∞
0

∫ ∑
j,m,n
j′,m′,n′

|(σ0,j,m,n(·)φ(
ρ(·)
t

)f̂(·))

∗ (σ0,j′,m′,n′(·)φ(
ρ(·)
u

)f̂(·))(ξ)|2 dξ dt
t

du

u

+

∫ ∞
0

∫ ∞
0

∫ ∑
j′,m′,n′

|(φ(
ρ(·)
t

)f̂(·)) ∗ (σ0,j′,m′,n′(·)φ(
ρ(·)
u

)f̂(·))(ξ)|2 dξ dt
t

du

u

)
.

Let

Tf(x) =

(∫ ∞
0

∑
j,m,n

|F [σ0,j,m,n(·)φ(
ρ(·)
t

)f̂(·)](x)|2dt
t

)1/2

.

Then the above implies that

‖Sf‖4
4 .ε δ

−ε(‖Tf‖4
4 + ‖Sf‖2

4 ‖Tf‖
2
4),

which implies

‖Sf‖4 .ε δ
−ε ‖Tf‖4 . (5.53)
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Using Proposition 5.4.3, we have

‖Tf‖4 =

(∫ ∣∣∣∣ ∫ ∞
0

∑
j,m,n

|F [σ0,j,m,n(·)φ(
ρ(·)
t

)f̂(·)](x)|2dt
t

∣∣∣∣2 dx)x1/4

=

(∫ ∣∣∣∣ ∑
j,m,n

∫ ∞
0

|((ψt ∗K0,j,m,n) ∗ (P̃0,j,m,nf))(x)|2dt
t

∣∣∣∣2 dx)1/4

. δ1/2

(∫ ∣∣∣∣ ∑
j,m,n

sup
t≈2n
|(ψt ∗K0,j,m,n) ∗ (P̃0,j,m,nf)(x)|2

∣∣∣∣2 dx)1/4

= δ1/2

∥∥∥∥∥
(∑
j,m,n

sup
t≈2n
|(ψt ∗K0,j,m,n) ∗ (P̃0,j,m,nf)(x)|2

)1/2
∥∥∥∥∥

4

.

Now let ω ∈ S(R2) with ‖ω‖L2(R2) = 1. We have

∫ ∑
j,m,n

sup
t≈2n
|ψt ∗K0,j,m,n ∗ P̃0,j,m,nf(x)|2ω(x) dx

.
∫ ∑

j,m,n

∥∥∥∥sup
t≈2n
|ψt ∗K0,j,m,n|

∥∥∥∥
1

|P̃0,j,m,nf(x)|2| sup
t≈2n
|ψt ∗K0,j,m,n ∗ w(x)|| dx

.ε δ
−ε
∫ ∑

j,m,n

|P̃0,j,m,nf(x)|2Mω(x) dx

.ε

∥∥∥∥∥
(∑
j,m,n

|P̃0,j,m,nf(x)|2
)1/2

∥∥∥∥∥
2

4

∥∥Mw
∥∥

2
.ε δ

−ε ‖f‖2
4 ,

where in the second inequality we have used Proposition 5.5.2 and in the last inequality

we have used Propositions 5.5.1 and 5.6.1. Using (5.53) and taking the supremum over

all such weights ω, we have

‖Sf‖4 .ε δ
−ε ‖Tf‖4 .ε δ

1/2−ε ‖f‖4 .

Proof that Proposition 5.1.3 implies Theorem 5.1.1. Let C be as in the statement of

Proposition 5.1.3. We will now decompose the Bochner-Riesz multipliers in a standard
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fashion. Let φ0 : R→ R be a smooth function identically 1 on [−1, 1] and supported in

[−2, 2] so that φ0(| · |) is a radial, decreasing function on R2. It is easy to see that we

can find smooth functions φ1 : R→ R and φ2 : R→ R satisfying the following:

1. For each k > 0,

|Dkφ1(x)| .k 1,

|Dkφ2(x)| .k 1,

2. There is a constant C ′ > 0 such that φ1 is supported in [C ′, 1],

3. We can write

(1− ρ(ξ))λ = φ0(22M |ξ|) + (φ0(2−2M |ξ|)− φ0(22M |ξ|))φ1(ρ(ξ))

+
∞∑

k=dlog(C)e

2−kλφ2(2k(1− ρ(ξ))).

By the triangle inequality,

∥∥Gλf
∥∥

4
.

∥∥∥∥∥
(∫ ∞

0

∣∣∣∣F−1[φ0(22M t−1| · |)] ∗ f(x)

∣∣∣∣2 dtt
)1/2

∥∥∥∥∥
4

+

∥∥∥∥∥
(∫ ∞

0

∣∣∣∣F−1[(φ0(2−2M t−1| · |)− φ0(22M t−1| · |))φ1(t−1ρ(·))] ∗ f(x)

∣∣∣∣2 dtt
)1/2

∥∥∥∥∥
4

+
∞∑
k=1

2−kλ

∥∥∥∥∥
(∫ ∞

0

∣∣∣∣F−1[φ1(2k(1− t−1ρ(·)))] ∗ f(x)

∣∣∣∣2 dtt
)1/2

∥∥∥∥∥
4

.

The first term is clearly . ‖f‖4. By Proposition 5.1.3, the third term is also . ‖f‖4 if

λ > −1/2. By vector-valued singular integrals, the second term is bounded by∥∥∥∥∥
(∫ ∞

0

∣∣∣∣F−1[φ1(t−1ρ(·))] ∗ f(x)

∣∣∣∣2 dtt
)1/2

∥∥∥∥∥
4

,

and it is straightforward to adapt the proof of Proposition 5.1.3 to show that this is

. ‖f‖4.
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