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abstract

An understanding of how turbulence affects transport levels in magnetic confinement fusion
devices is essential in working towards the goal of sustainable fusion energy. The primary
focus of this thesis is to analyze the fundamentally multi-scale nature of the interaction
between large-scale magnetic fluctuations and small-scale microturbulence.

This interaction manifests on the Madison Symmetric Torus Reversed-Field Pinch (MST
RFP), in which large-scale tearing instabilities dominate standard discharges. When operating
in an improved-confinement regime called Pulsed Parallel Current Drive, tearing mode activity
is reduced, resulting in an increase in gradients towards the edge of the device that drive
microturbulence. Radially local flux-tube gyrokinetic simulations using the Gene code
show that an accurate characterization of microturbulence requires an inclusion of tearing
mode fluctuations. In the absence of tearing effects, the reversed-field pinch produces strong
zonal flows that completely quench turbulence and transport; there are multiple potential
contributors to this unique zonal-flow-dominated regime discussed in this work, including
the role of collisionality, Rosenbluth-Hinton residuals, and secondary instability. When
modeling tearing mode effects into the simulation through an ad-hoc, constant-in-time
perturbation, the zonal structures degrade and transport increases to values in much closer
agreement with experiment. This observation is described through the physical picture of
magnetic-flutter-induced zonal flow erosion, expressed previously via analytic theory.

These findings of the importance of interactions between tearing modes, zonal flows, and
microturbulence in the MST RFP motivated additional study to determine if this behavior
generalized to other fusion confinement configurations, or was merely an artifact of the RFP.
To this end, a dedicated run campaign was performed on the DIII-D tokamak to determine
how microturbulence varies with the application of a Resonant Magnetic Perturbation (RMP).
RMPs, which are typically used in ELM suppression, serve an analogous role to tearing modes
in the RFP as a source of large-scale magnetic fluctuations. Beam Emission Spectroscopy
observes density fluctuations at microturbulent frequencies that increased directly with RMP
amplitude, agreeing with expectations set by the RFP work. Gyrokinetic simulations find
comparable scaling with microturbulent density fluctuations, and identify a corresponding
zonal flow erosion with application of an RMP, further confirming the presence of a common
underlying physics mechanism governing these seemingly very different fusion plasmas.

To further study this underlying physics mechanism and work towards a more physically
accurate model of current-gradient-driven tearing fluctuations, the Gene code is modified
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by including in the governing equations an equilibrium current gradient. The tearing mode
driven by this current gradient is seen in benchmarks to agree very well with analytic theory.
A simple slab system unstable to tearing modes and slab ITG is studied gyrokinetically.
Nonlinear simulations of this system are characterized by distinct separation of scales, both
spatially and temporally, with ITG effects dominating in early times, and tearing mode
dynamics dominating later on. Signatures of zonal flow degradation due to tearing effects
and their subsequent effect on microturbulence are also present.

While the bulk of this thesis studies magnetic effects at large scales, electromagnetic
instabilities can also occur at micro-scales; one important example of this relevant to fusion
plasmas is the microtearing mode. While traditionally assumed to require finite collisionality
for instability, recent work has demonstrated that finite growth rate microtearing persists
even in the collisionless limit, and can be driven by magnetic curvature drifts. The final
portion of this thesis presents an analytic calculation examining how magnetic curvature
might modify microtearing growth rates.
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1 introduction

1.1 Plasma Physics: Working Towards An Energy
Solution

As technology continues to advance and becomes more and more integrated into everyday life,
humankind’s energy consumption needs will only continue to grow commensurately. As this
demand for energy increases, the finite nature of the current dominant source of energy, fossil
fuels, becomes more apparent. Current estimates based on 2017 production and consumption
rates predict oil and natural gas reserves to be depleted in 50 years time, and coal reserves
depleted in just over a century (BP Statistical Review of World Energy, 2018) . The issue of
the limited supply of fossil fuels needs addressing in the immediate future, rather than waiting
until the supply runs out. Additionally, the use of fossil fuels damages the environment in
soon-to-be permanent ways through the emission of greenhouse gases (Edenhofer et al., 2012),
thus presenting a danger to humankind. These reasons motivate the pursuit of an alternative
source of energy, one that is abundantly occurring in nature and does not present a danger
through its consumption. While there is an increased usage with alternative clean energy
sources such as wind, solar, and hydro, these run into issues of being unable to keep up with
energy demands and are dependent upon environmental variables such as sunlight or the
presence of significant winds.

Finding an energy source that is not subject to any of these described shortcomings is a
challenging yet vitally important task. Nuclear fusion, in which a small amount of matter
is converted into energy, presents itself as an attractive option that seems to check all of
these boxes. Naturally occurring in the core of our sun and all stars, nuclear fusion takes
place when nuclei have sufficiently large energy to overcome Coulomb repulsion and combine
to produce a larger nucleus. While in principle possible for any given nuclei in the right
conditions, this reaction results in a release of energy only for lighter nuclei. In the context
of fusion energy, the most attainable reaction is that of deutrium and tritium, which results
in an α particle and an energetic neutron, described below in Eq. (1.1). The 17.6 MeV of
energy arises from the slight difference in mass between the products and reactants, which is
converted to a large amount of energy as described by Einstein’s famous relation E = mc2.

2
1H +3

1 H→ 4
2He + 3.5 MeV︸ ︷︷ ︸

α particle

+ 1
0n + 14.1 MeV︸ ︷︷ ︸
energetic neutron

(1.1)
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Nuclear fusion very readily addresses many of the shortcomings present in other energy
sources. As a fuel source, deuterium is incredibly abundant, naturally occurring to one part
in ≈ 6500 in ocean water. Tritium is not naturally abundant, but can be bred from lithium.
With regards to environmental safety, nuclear fusion will have a significantly smaller carbon
footprint. While tritium is a radioactive material, its half-life is significantly shorter (≈
12 years) than any of the radioactive waste products involved in nuclear fission, fusion’s
nuclear energy competitor. This makes fusion a much safer and more sustainable option.
Achieving nuclear fusion is independent of environmental factors, so an ideal fusion reactor
could operate continuously and produce energy uninhibited by external conditions. Currently,
fusion technology is not yet anywhere near the stage of reactor-like energy production.
Reaching this point is a primary motivator behind the field of plasma physics.

In order for the reaction described in Eq. (1.1) to occur, the hydrogen nuclei must have
sufficiently large kinetic energy to overcome the electrostatic repulsion. This required energy
is significantly greater than the 13.6 eV binding energy of an electron in a hydrogen atom,
meaning that the electrons previously bound to the hydrogen nuclei are now decoupled. The
resultant substance is a fluid of positively charged ions and negatively charged electrons,
which characterizes the fourth state of matter referred to as plasma. In light of this, a pursuit
of nuclear fusion is intimately connected to an understanding of plasma physics.

Plasmas, as previously mentioned, consist of matter in which constituent atoms have
broken apart into ions and electrons. Beyond this, a specific defining attribute of plasmas is
that of collective behavior, meaning that the plasma system size and density are such that
individual particle effects are shielded out over a small scale, allowing collective effects to
dominate. This small scale can be more quantitatively described as the length over which
the potential generated by an individual charge is shielded to 1/e of it’s original value, and is
referred to as the Debye Length (commonly denoted as λD). To consider a plasma a collective
medium, it must have a characteristic size L much larger than the debye length, or L/λD � 1.
A similar way to state this condition of collective behavior dominating individual effects is to
require a density n of particles within a sphere with a debye-length radius such that nλ3

D � 1
(this ratio sometimes is referred to as the “plasma parameter”). Standard fusion plasma
experiments have a Debye length on the order of λD ∼ 10−4 meters, are themselves on the
order of L ∼ 1 meter in size, and have densities around n ∼ 10−19m−3, and as such fall well
within these defining limits1.

1Other limits, such as relativistic or quantum, are of relevance to some astrophysical plasma scenarios
but will not arise in this work
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1.2 Basic Principles of Magnetic Plasma Confinement

Fusion reactors will require working with matter in the plasma state, so designing reactors
capable of confining plasmas is of great importance. There are two primary approaches to
plasma confinement: 1) using intense lasers to apply large amounts of pressure on deuterium
pellets, which is referred to as inertial confinement, and 2) using magnetic fields to confine
charged particles to circular orbits around field lines, which is called magnetic confinement.
This theses focuses only on the latter, and this section will explore the basics of how plasmas
behave in magnetically confined systems.

Single Particle Motion

Magnetic fields exert a force on moving charged particles, given by qv×B (where boldface will
denote vector quantities throughout this text), which results in circular orbits perpendicular
to field lines (without having any effect on the motion parallel to the field). This gyration
occurs at a frequency of ωc = qjB/mj, called the cyclotron frequency, where qj and mj refer
to the charge and mass of the particle with species index j, and B is the magnetic field
strength. Because of this, charged particle motion in a strong magnetic guide field can be
broken into two parts: the fast gyromotion around the field line, and the remaining particle
motion that is independent of the former, which will be referred to as the guiding center
motion. In addition to streaming freely along magnetic field lines, the guiding center also
undergoes additional motion that can be caused by a number of different forces; these are
referred to as drifts and will be briefly discussed.

As a first, important example of guiding center drift motion, consider a charged particle
subject to both electric and magnetic fields. The equation of motion for such a particle is
given by:

dv
dt

= q

m
(E + v×B) (1.2)

Define orthogonal coordinates (x, y, z) such that ẑ aligns with the background magnetic field
line, ŷ follows the component of the electric field line perpendicular to the magnetic field,
and x̂ and ŷ are perpendicular to both the field line and one another such that x̂× ŷ = ẑ (a
common convention that will be used throughout this thesis). The motion of the particle
parallel to the magnetic field line will only be affected by an electric field component that
aligns with that motion, resulting in simple acceleration in the field line direction. The



4

equations describing motion perpendicular to the field line (in the x and y directions) then
appear as:

dvx
dt

= ωcvy
dvy
dt

= q

m
E − ωcvx. (1.3)

Upon solving, one finds

vx = v⊥sin(ωct+ θ) + E

B
vy = v⊥cos(ωc + θ), (1.4)

where v⊥ and θ are the magnitude of the gyration velocity and the gyrophase angle, respectively,
and depend upon initial conditions. In addition to the oscillatory behavior of the gyromotion,
there is another drifting motion of the guiding center caused by the electric field in the x
direction, referred to as the E×B drift, named so due to its vector equation definition:

vE×B ≡
E×B
B2 . (1.5)

This approach to calculating drifts generalizes to any force F perpendicular to the magnetic
field acting on a charged particle, by replacing E in the above equations with F/q. A few such
drifts include the ∇B drift, arising from variation in a particle’s gyro-radius as it samples
regions of different magnetic field strength over one gyro-orbit in a non-uniform magnetic
field:

v∇B = v2
⊥

2ωcB2 B×∇B, (1.6)

or the curvature drift, which is produced by centrifugal forces felt by guiding centers traveling
along curved magnetic field lines:

vc =
v2
‖

ωcB
B× b̂ · ∇b̂, (1.7)

where b̂ is the unit vector pointing along the magnetic field (a generalization of the aforemen-
tioned ẑ direction to curved field lines). One important distinction between the equation for
vE×B and the equations for the other drifts is the absence of the charge (which is present in
the other equations through the gyrofrequency). This means that E×B drifts occur in the
same direction for both ions and electrons in a plasma, and thus characterize bulk plasma
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Figure 1.1: A schematic drawing of a toroidal configuration with well-defined nested flux
surfaces. Bθ points in the poloidal direction (the short way around), Bφ points in the toroidal
direction (long way around), and the green line represents the complete helical magnetic field.
Taken from (Barton et al., 2015).

flows. Equipped with some basic concepts behind how particle motions behave in magnetic
confinement configurations, one can now consider the design of fusion devices.

Toroidal Fusion Device Configurations

Given that charged particles are confined to zeroth order in directions perpendicular to
magnetic field lines, a reasonable approach to designing a magnetic fusion reactor is to create
a straight-line cylindrical device that generates magnetic fields along its length. However,
particles heated to the kinetic energies required for fusion move with very high thermal
velocity (for example, a 1 keV hydrogen ion will travel at a speed of 438 km/s), and will
thus stream uninhibited along field lines out of the ends of the linear device on very fast
time scales, resulting in poor confinement. One can either design unrealistically long fusion
devices (∼ 500 km long to confine an ion for one second), or mitigate end losses by “closing”
field lines off and bending the device into a donut-like shape called a torus. The torus is
characterized by three directions: a radial direction (analogous to how one would define it
for a cylinder), a poloidal direction (the “short way” around), and a toroidal direction (the
“long way” around), denoted commonly by (ρ, θ, φ) respectively; see Figure 1.1 for a visual
representation.

While effectively addressing the issue of end losses through the creation of a torus, this
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configuration is not without its own inherent confinement issues. One prominent issue is
the existence of the previously-discussed magnetic drifts. In a device with purely toroidally
directed magnetic field, both curvature and grad-B drifts are present which result in vertical
motion of particles, by which a fraction of the previously-confined particles are lost. Ions and
electrons drift in opposite directions under these curvature and grad-B effects. This charge
separation produces a large electric field which in turn produces an E ×B drift that can lead
to substantial losses. These harmful drifts can be mitigated to a large extent by introducing
a poloidally-directed component to the field also shown in Fig. 1.1, so that the total magnetic
field winds helically around the torus. A measure of the pitch of this helical magnetic field
line is given by the safety factor, which is defined as

q ≡ rBφ

RBθ

, (1.8)

where r and R are major and minor radius, respectively, as depicted in Fig. 1.1, Bφ and Bθ

refer to toroidal and poloidal field strength, respectively, and the magnetic field is assumed
to lie in toroidal surfaces (refer back to Fig. 1.1). This quantity is of great importance for
assessing stability conditions in toroidal fusion devices, and is referenced in many places
throughout this thesis. For most toroidal configurations, such as the tokamak, Bφ � Bθ.
One prominent exception is in the reversed-field pinch (RFP), where Bθ & Bφ, resulting in a
significantly different safety factor and consequently different physics governing the plasma
state. Both the reversed-field pinch and the tokamak are studied in this work, and will be
discussed in Chapters 3 and 4, respectively.

The Issue of Confinement – Magnetic Equilibrium and Stability

Now equipped with a device configuration in which one can confine a plasma for fusion, it
is vital to find ways to describe what plasma confinement looks like functionally, and what
issues arise with confinement. This is by no means a comprehensive discussion of magnetically
confined equilibrium stability (of which there exists a large body of literature, see (Freidberg,
2014) for an in-depth review) but rather a brief survey of central topics to provide context
and a conceptual framework for the rest of the thesis.

In toroidal devices, a helical magnetic field configuration as discussed in the previous
section can result in the formation of nested flux surfaces. A flux surface corresponds to a
smooth two-dimensional surface mapped out by a magnetic field line B such that for a vector
n̂ normal to the surface, it holds that
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B · n̂ = 0. (1.9)

An example of well-defined nested flux surfaces is shown in Fig. 1.1; note that in general flux
surfaces need not have a circular cross section. A toroidal plasma consisting of well-defined
magnetic flux surfaces forms a good starting point from which to define an equilibrium.
One very effective way of describing fusion plasma equilibria is to use the equations of
MagnetoHydroDyanmics (MHD), which models plasmas as a continuous charged fluid that
interacts with and generates magnetic and electric fields. There are many distinct regimes for
MHD equations; for the sake of a conceptual sketch, only the simple ideal MHD equations
are shown here:

∂tρ+∇ · (ρv) = 0, (1.10)

ρ (∂tv + v · ∇v) = −∇p+ J×B, (1.11)

∂tp+ v · ∇p+ γp∇ · v = 0, (1.12)

∂tB −∇× (v×B) = 0. (1.13)

where ρ, v, p, and J refer to fluid density, velocity, pressure, and current density, respectively.
A representation of an equilibrium plasma state is arrived at by taking ∂t → 0 and v = 0,
one arrives at the condition of J×B = ~∇p, which upon comparison to equation (1.9) shows
that equilibrium flux surfaces are surfaces of constant plasma pressure.

To assess confinement properties, one can introduce a small perturbation to the equilibrium
equations and calculate how the plasma will respond. These perturbations generally propagate
as waves in the plasma, and either grow, decay, or stay the same with time evolution. A
perturbation that grows with time is called an instability; the characterization of plasma
instabilities is the subject of significant study in the context of of fusion plasmas and will come
up frequently throughout this work. In an equilibrium state, there is no appreciable loss of
particles or energy. However, a perfect equilibrium state is not achievable in experiment, and
fusion plasmas will always be subject to small perturbations that will result in instabilities,
which subsequently generate turbulence that drives particles and energy out of the confining
device, discussed more in depth in Section 1.3.
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Name Free Energy Source Spatial Scale
ITG Mode ∇Ti kyρi ∼ 0.1− 1
ETG Mode ∇Te kyρi > 1

TEM ∇Te, ∇n kyρi ∼ 0.1− 1
MTM ∇Te kyρi ∼ 0.1− 1

Table 1.1: Common drift-wave instabilities in fusion plasmas. The acronyms stand for Ion
Temperature Gradient, Electron Temperature Gradient, Trapped Electron Mode, and Mi-
crotearing Mode, respectively. ITG and TEM instabilities will feature prominently throughout
this work. MTMs, while always depending on ∇Te, can vary significantly with collisionality,
as explored in Chapter 6.

Drift Wave Instabilities

Before a discussion of turbulence in fusion devices and its effect on confinement, it is instructive
to briefly survey a class of instabilities called drift-wave instabilities that commonly arise
in fusion plasmas and will be referred to throughout the thesis. As mentioned previously,
instabilities are perturbations from equilibrium that grow under certain plasma conditions;
the energy for instabilities generally comes from gradients in certain quantities that exist as
part of the plasma equilibrium. One such class of instabilities is driven by pressure gradients
and referred to as drift-wave instabilities. Since a fusion reactor requires high temperatures
and densities in the core but tends towards room temperature at the wall, pressure gradients
are unavoidable and thus drift waves are also commonly referred to as universal instabilities.
See Table 1.1 for a list of common drift-wave instabilities.

Many of the common drift waves occur at ion-gyroradius scales, denoted by kyρi ∼ 0.1− 1
(where ρi ≡ vt/ωc is the ion gyroradius at a thermal velocity vt). ITG and TEM are two
prominent microinstabilites that occur at these scales in a large range of fusion devices,
including tokamaks (Ernst et al., 2004; Told et al., 2013), stellarators (Faber et al., 2015;
Helander et al., 2015; Watanabe et al., 2008), and RFPs (Carmody et al., 2013, 2015; Tangri
et al., 2011; Predebon and Sattin, 2013; Predebon and Xanthopoulos, 2015). Though these
instabilities are primarily localized to ion-scale dynamics, their effects need not be constrained
only to those spatial scales, as will be discussed later.
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1.3 Transport and Turbulence in Fusion Plasmas

Establishing an economical fusion reactor requires containing a plasma of a sufficient temper-
ature and density for long enough that the energy required to heat the plasma is exceeded by
the output from the nuclear fusion process. Beyond that, a desirable reactor will reach the
point of ignition, in which after an initial input of energy, the energy from the α particles
generated in the fusion reaction is sufficient to self-sustain the reaction. The required combi-
nation of density n, temperature T , and confinement time τ for plasma ignition is referred to
as the “fusion triple product” or the Lawson Criterion (Lawson, 1957), and is given by

nTτ ≥ 3× 1021 keV s/m3 (1.14)

for deuterium-tritium fusion. In light of this, the efforts of fusion plasma physics can be
loosely categorized into 1) achieving as large of a plasma pressure as possible (maximize n
and T ), and 2) confining the plasma for as long as possible (maximize τ). While both are
of great importance, this thesis focuses in on the second category, through the pursuit of a
deeper understanding of plasma transport.

Formally speaking, transport can refer to the bulk motion of particles or energy in any
arbitrary direction; however, this work will examine transport to specifically describe radial
motion, as that is most relevant for confinement. The earliest estimates of fusion transport
depicted particle loss as a random-walk process, in which the characteristic step size was
a gyroradius, ∆x = ρi, and the diffusive time scale was attributed to collisionality of the
plasma ∆τ−1

diff ∼ νc. As random-walk diffusivity scales as (characteristic step)2/(characteristic
time), this model predicted diffusivity (a measure of transport rates) to scale as ρ2νc ∝ B−2,
in which diffusive losses would decrease rapidly as magnetic field strength was increased. This
prediction bodes well for large confinement times, as very low diffusion could be achieved
at reasonable magnetic field strengths. However, observed transport scaling did not match
these expectations at all. Instead, it has been noted that a significant portion of transport in
fusion devices is attributable to what was called “anomalous transport”, (Liewer, 1985). This
deviation from classical diffusion that contributes so significantly to transport levels comes
from plasma turbulence.

Turbulence

A complete mathematical description (and the full understanding that accompanies it) of
turbulence is one of the most important remaining open questions in the field of classical
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physics. While there is not a universally agreed-upon definition, turbulence can loosely be
defined as the dynamic nonlinear behavior of a fluid that couples a wide range of distinct
spatial scales and distributes energy across those scales. In an attempt to elucidate this idea
of turbulence, consider a dynamical variable f(x, y, z, t) described by the following schematic
evolution equation:

∂tf(x, t) = Lf(x, t) + ∂xf(x, t)∂yf(x, t). (1.15)

The variable f could describe a variation in a plasma flow from the MHD equations, or a
perturbed plasma distribution function from kinetic theory (in which case it would also have
velocity-space dependence; see chapter 2 for more detail). This equation for the quantity f
has two terms on the right-hand side, one which is linear in f and another which is nonlinear.
The importance of this distinction becomes more evident when examining the equation in
Fourier space:

∂tf(k, t) = Lkf(k, t)︸ ︷︷ ︸
linear

+
∑
k′
Ck,k′f(k′, t)f(k− k′, t)︸ ︷︷ ︸

nonlinear

. (1.16)

Suppose the quantity f is initially small (as in the case of describing a small perturbation
from an equilibrium). In this case the second term in Eq. (1.16) can be neglected, and
what remains is a linear differential equation whose solution is just the exponential function,
noting that Lk can result in a frequency that is complex and thus solutions can grow or
decay in time. Importantly, in this state, the solution at a given spatial scale k depends only
on the dynamics of that spatial scale, i.e., there is no interaction of dynamics at different
scales. In the case of an exponentially growing solution, one is in a state of linear instability,
for example a drift-wave instability. Once f grows sufficiently large, the second term in
Eq. (1.16) is no longer negligible. At this point, the system changes into the nonlinear state,
and subsequently the dynamics at a given spatial scale k are, in general, dependent on every
other spatial scale k′ through the convolution. This state in which the dynamics at every
spatial scale is dependent upon the dynamics at every other spatial scale is generally referred
to as turbulence.

Because the linear instability is driven through some free energy (a density or temperature
gradient in the drift-wave case), as long as the free energy source persists, the linear term
will attempt to add energy at the scale k, while the nonlinear term will distribute energy
away from the spatial scale k and into other scales. When these two terms balance, one
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Figure 1.2: A time trace of the solution from the a computational gyrokinetics model, showing
distinct states of linear instability and saturated turbulence. The quasi-stationary state is
defined here from time = 15 to the end, and used to determine time-averaged transport
quantities.

arrives at a state where ∂tf ≈ 0 on time average; this is referred to as a quasi-stationary
state. This process is depicted in Fig. 1.2. This quasi-stationary state allows transport levels
to be quantified.

Transport

As mentioned in the beginning of this section, an important goal of magnetic confinement
fusion is achieving long confinement times; this is synonymous with minimizing the amount of
transport that occurs in the plasma. Fluctuations caused by turbulence contribute significantly
to plasma transport; quantifying turbulent transport in certain plasma regimes will be a
central focus of this thesis. Transport can be quantified with the following definitions for
particle and heat (radial) flux :

Γ ≡− 〈vrn〉 , (1.17)

Q ≡− n0〈vrT 〉 , (1.18)
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where Γ and Q are particle and heat flux, respectively, vr, n, T refer to turbulent fluctuations in
radial flow, density, and temperature, n0 is the equilibrium density, and the angle brackets refer
to ensemble averaging. The radial flow vr can be broken into two components: electrostatic
flow vES

r ∝ ∂yΦ and electromagnetic flow vEM
r ∝ ∂yA‖ ∝ Bx. The electrostatic component

is radial E × B flow driven by fluctuations in Φ, and the electromagnetic component is
due to parallel streaming of particles along radially perturbed magnetic field lines. Net
transport from these different parts of the radial flow define electrostatic vs. electromagnetic
flux, a convention used throughout this thesis. Using the above relation, the fluctuating
radial velocity in Eqs. (1.17) and (1.18) can be replaced by fluctuations in ∂yΦ and ∂tAy for
electrostatic and electromagnetic components. As an example, the electrostatic particle and
heat flux can be written (in Fourier space) as:

Γ =
∑
k

Γk =
∑
k

〈ikyΦn〉 (1.19)

Q =
∑
k

Qk =
∑
k

〈ikyΦT 〉 (1.20)

In this form, it is apparent that quantifying fluxes is equivalent to quantifying turbulent
fluctuations in electromagnetic fields, density, and temperature. The value for transport
in a given calculation is determined from the time-averaged fluxes over a quasi-stationary
state (refer back to Fig. 1.2). When the state has fully transitioned from the linear growth
phase into a sufficiently long quasi-stationary state, the turbulence is described as being
saturated. Determining the mechanisms by which turbulence saturates, as well as predicting
the transport levels of a saturated turbulent state, are essential to the study of transport.

The Significance of Multi-scale Interactions in Turbulence and Transport

As transport is produced by turbulent fluctuations, it is reasonable to expect that cross-scale
dynamics, which are fundamental to turbulence, play a significant role in setting transport
levels. In magnetically confined plasmas, ions and electrons differ in gyroradius by a factor
of
√
mi/me, and thus their corresponding spatial scales of dynamical relevance are separate

by a factor of 60, due to their difference in gyroradii. Historically, analytic and numerical
methods for studying plasma transport were limited in the range over which scales were
studied, describing ion transport by only looking at the dynamics of the plasma at ion scales
(kyρi ∼ 0.1− 1, where y corresponds to binormal direction), and electron transport much the
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same way. However, more recent work (Holland and Diamond, 2004; Maeyama et al., 2015;
Howard et al., 2016) has demonstrated that despite significant separation in spatial scales,
there are nontrivial physical effects present in the interaction between these disparate scales
that is necessary to include in models to accurately predict turbulence and transport levels.

In addition to the existence of disparate ion and electron scales, larger-than-ion-scale
dynamics can also be of great importance in fusion plasmas. Consequently, when considering
the relevance of multi-scale interactions for accurately modeling fusion plasma turbulence,
additional cross-scale interactions that take place between ion scales and larger scales char-
acteristic of MHD fluctuations should also be considered. Recent work (Williams et al.,
2017) has demonstrated the significance of the interactions between magnetic fluctuations
occurring at large scales, turbulent fluctuations at ion scales, and zonal flows, which are
electrostatic potential structures constrained to flux surfaces that play an essential role in
transport regulation, to be discussed more thoroughly in Chapter 2. The physics involved
in this interaction, how it affects turbulence and transport levels, and how it manifests in a
variety of different plasma configurations, is the underlying theme for the rest of this work.

1.4 Thesis Outline

The rest of the thesis will proceed as follows: Chapter 2 will provide a survey and discussion
of plasma physics topics of relevance to the rest of the thesis, including tearing modes, zonal
flows, and gyrokinetics. Chapter 3 presents gyrokinetic modeling results of the interaction
of magnetic fluctuations, microturbulence, and zonal flows as they manifest in the Madison
Symmetric Torus Reversed-Field Pinch through tearing modes and ∇n-TEM instability. In
Ch. 4, drift wave fluctuations in the DIII-D tokamak are modeled with gyrokinetic simulations
studied to better understand the underlying physics of the interactions of Resonant Magnetic
Perturbations and ITG microturbulence. A simplified slab system is examined in Ch. 5,
which is attained by the introduction of a current gradient into the gyrokinetics code Gene,
allowing for the self-consistent development of tearing modes from a plasma equilibrium, as
well as more completely capturing how tearing modes and microturbulence act on and react
to one another. Chapter 6 develops an analytic theory for a curvature-driven microtearing
mode in the collisionless limit as seen in gyrokinetic simulations. The contents of this thesis
are is then summarized in Ch. 7.
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2 background and theory concepts

Before investigating the interaction between large-scale magnetics and microturbulence in
later chapters, this chapter surveys a few important underlying concepts that drive the
discussion for the rest of the thesis. Within the context of multi-scale interactions, one
physics phenomenon is of central importance to this work: magnetic-flutter-induced zonal
flow erosion. To understand this phenomenon, it is instructive to first briefly review the
core concepts of zonal flows, their connection to microturbulence, and tearing modes. These
concepts are then combined to describe the aforementioned zonal flow erosion mechanism.
Additionally, the vast majority of the results presented in this thesis arise from computations
based on the gyrokinetics. As such, the chapter includes a summary of the gyrokinetic
framework and an overview of the Gene code.

2.1 Zonal Flows and Tearing Modes

Zonal Flows

Zonal flows1 are large-scale m = n = 0 (where m and n are poloidal and toroidal mode
numbers, respectively) structures in electrostatic potential Φ. These structure are constant
within flux surfaces, but the variation of Φ across different flux surfaces produces an electric
field, which in turn generates E × B flows in the plasma (hence the term zonal ‘flow’,
although commonly the term is used to refer to the potential). The uniform structure of the
electrostatic potential on a flux surface prohibits it from accessing free energy in equilibrium
gradients, as advection of gradients requires a finite radial E × B flow vE×B,x ∝ ∂yΦ
(∝ nΦ = 0). Consequently, zonal flows do not result from linear instability physics, but
are driven inherently via nonlinear dynamics. Linear instabilities (such as ITG) form from
perturbations on an equilibrium, and the nonlinearity produces an inverse cascade that sends
energy from these instabilities to large scales, fueling the zonal flow.

These flows can play a key role in the suppression of transport and the regulation of
turbulence, either via the shearing of turbulent eddies (Biglari et al., 1990; Burrell, 1997; Terry,
2000) or the catalyzation of energy transfer out of unstable modes and into stable modes(Hatch
et al., 2012; Makwana et al., 2014). For this reason, they are of central importance in
ongoing research both in theoretical and experimental fields (see (Nishizawa et al., 2019)

1This section is only a very brief summary, refer to (Galperin and Read, 2019) for an in-depth review.
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Figure 2.1: Example By0 configuration for a slab magnetic equilibrium configuration unstable
to tearing modes. The variation of By0 occurs within the region of x ∈ [−1, 1], called the
resistive layer; non-ideal effects allow for finite Bx perturbations throughout this region.

for an example). The extent to which zonal flows regulate instability and turbulence varies
significantly with the type of linear instability in question. Of the microinstabilities listed
in Table 1.1, it is known that zonal flows have a substantial role in the turbulent dynamics
of toroidal ITG (Dimits et al., 1996) and ∇n-TEM (Terry et al., 2002; Ernst et al., 2009).
In contrast, ∇T -TEM and ETG turbulence (Jenko et al., 2000) do not rely on zonal flows
for suppression. For instabilities that do depend on zonal flows for saturation, one would
naturally expect that any mechanism by which these zonal structures are degraded would
lead to an enhancement in turbulence.

Tearing Modes

Zonal flows can be eroded by the reconfiguration of magnetic field line topology arising from
toroidally nested, closed flux surfaces. This phenomenon plays a central role in much of this
thesis. Such reconfiguration of magnetic fields can be brought about by tearing modes, which
are large-scale instabilities that occur in a number of plasma configurations, both in fusion
devices (Hastie et al., 1977; Miller, 1989) and astrophysical contexts (Petschek, 1964; Walker
et al., 2018) . How these tearing modes occur and result in a change in magnetic topology is
briefly reviewed here; for more thorough discussions see (Furth et al., 1963; Biskamp, 2003).
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Consider a slab magnetic field configuration in which the equilibrium magnetic field line
component By0 changes orientation very rapidly over a small spatial region, see Fig. 2.1.
For ideal plasmas that have negligible resistivity, the magnetic field can be described using
Eq. (1.13). Consider a resonant, normal mode perturbation of the form exp[ikyy − iωt].
Resonant refers to a perturbation for which k · B = 0; in this case that occurs at x = 0
(referred to as the resonant surface). Inserting this perturbation into Eq. (1.13) gives the
relation ωBx = −kyBy0vx. This requires Bx to be zero at x = 0, where By0 = 0. However,
the addition of a resistive term into the MHD equations relaxes this requirement. When
including the resistive term (η/µ0)∇2B on the right-hand side of Eq. (1.13) and applying
normal mode analysis, one arrives at

ωBx = −kyBy0vx + iη

µ0

∂2Bx

∂x2 , (2.1)

assuming that∇2 ≈ ∂2
x. This equation shows that the presence of resistivity (or more generally

speaking, any non-ideal MHD effect) allows for finite Bx across the entire small spatial region
over which By0 varies; this subsequently allows for the connection of field lines across x = 0.
When far removed from x = 0, the variation of the field line with x is considerably weaker and
thus ∂2/∂x2 → 0, meaning that the region outside of the resistive layer can still be treated
as ideal. In a thin region around x = 0 (referred to as the resistive layer), the resistivity
becomes important. First posited in (Furth et al., 1963) as the ‘constant-ψ approximation’,
Bx is assumed continuous across this resistive layer. By (a perturbation amplitude, distinct
from By0), in contrast, has a discontinuity at x = 0 due to a surface current density over a
very narrow layer in x (as can be seen from integrating Ampére’s Law over the thin layer in
x). From the divergence-free condition on magnetic fields:

∇ ·B = ∂xBx + ikyBy = 0 , (2.2)

it is evident that the derivative of Bx also has a discontinuity across the current layer. This
discontinuity is an important quantity for characterizing tearing modes called the tearing
stability index, defined as

∆′ ≡ 1
Bx

(
∂Bx

∂x

∣∣∣∣∣
x=0+

− ∂Bx

∂x

∣∣∣∣∣
x=0−

)
. (2.3)

This quantity is completely determined by magnetic field geometry outside of the resistive
layer. For positive values of ∆′, the tearing mode is unstable (Furth et al., 1963). Equation
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Figure 2.2: Field lines produced from sample tearing configuration given by By = x, Bx = sin y.
The resultant island is characterized by the O-point at y = π and X-points at y = 0, 2π.

(2.1) can be solved to determine the instability growth rate γ, assuming that By0 ≈ B′yx

within the layer, with B′y constant. The details of the calculation can be found in (Goldston
and Rutherford, 1995), and are not directly relevant to the discussion here. Given the
normal mode description of Bx = |Bx|eγtsin (kyy) (choosing the phase such that the complex
exponential is precisely a sine wave for convenience) and the assumed form of By ≈ B′yx,
the shape of the field lines can be calculated by solving the standard equation for field lines
dx/dy = Bx/By. Fig. 2.2 shows a sample field configuration for the specified Bx and By.

From the figure, it is clear that the original topology of the magnetic field lines has been
disrupted by the Bx of the tearing instability, and a magnetic island has formed2. The island
can be characterized by the O-point, the y coordinate at which the island is at its widest,
and the X-point, which corresponds to y coordinate at which the island field lines terminate.
The outermost island field line that separates the island from the rest of the plasma is called
the separatrix. Magnetic islands are of particular relevance to fusion plasmas; one can picture
schematically that the x direction in the above figure corresponds to a radial coordinate in
a fusion device and the y coordinate to a poloidal one. Particles can stream very quickly
along field lines, or, referring to Fig. 2.2, particles move quickly along the direction the vector

2While tearing modes feature prominently through this thesis, islands can also be formed via external
magnetic fields, see Chapter 4.
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field points. For this reason, particles within islands can traverse the island very rapidly.
In certain cases, the traversing particle can be lost from the island (either via collisions or
other mechanisms), meaning that islands can greatly increase transport. Additionally, if
multiple islands exist in close radial proximity, they can overlap, which produces a significant
stochasticization of the magnetic field lines and loss of flux surfaces, which further increases
transport losses (Rechester and Rosenbluth, 1978). This capacity for radial wandering due to
islands plays a significant role in zonal flow erosion.

Magnetic-Flutter-Induced Zonal-Flow Erosion

Equipped with the concepts of zonal flows and tearing modes, one can now examine how
these two interact. This section is a brief summary of the detailed theory presented in (Terry
et al., 2013). Consider a zonal flow on a flux surface inside a toroidal confinement device,
after the point at which any transient oscillations in amplitude (such as GAMS, (Winsor
et al., 1968) for example) have decayed away. The electrostatic potential Φ, whose gradient
generates E × B flows, is constant on a well-defined flux surface. The introduction of a
resonant radial magnetic field (e.g. through a tearing mode) serves to break the well-defined
flux surface, as previously discussed. Particles3 following these field lines begin to wander
radially (referred to as magnetic flutter) off of their original flux surfaces, to the effect that
the electrostatic potential differences between flux surfaces (and subsequently the E × B
flow) are reduced. Analytic theory predicts the short-time behavior of this reduction in Φ via
the following equation from (Terry et al., 2013):

Φ(t) ≈ ΦR − S2
αt

2 , (2.4)

where ΦR is the residual value of the zonal flow at the point that the radial magnetic field is
introduced, and S2

α characterizes an electron source term. Note that the decrease in zonal
flow is not exponential in time but quadratic, which matches well with simulations (Pueschel
et al., 2013c,b).

This effect requires the loss of particles from one flux surface to another; for well-defined
islands (as depicted in Fig. 2.2), streaming particles will on average remain on their original
flux surface. Thus, this effect requires either 1) a stochasticization of the magnetic field
lines through island overlap, or 2) a decorrelation of the radial magnetic field line upon

3This phenomenological picture concerns only electrons, as they stream along field lines much faster than
ions for comparable temperatures
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which a particle travels (see (Pueschel et al., 2013b) for details). As will be demonstrated
throughout this thesis, this erosion of zonal flow activity due to large-scale radial magnetic
field fluctuations can play a significant role in determining transport at small scales, as zonal
flows are rendered less capable of suppressing microturbulence.

2.2 Gyrokinetic Theory

Results presented in this thesis come primarily from simulations performed within the
framework of gyrokinetics, the salient features of which are summarized in this section. There
is a large body of existing work that provides a much more in-depth discussion than what
will follow; cf. (Littlejohn, 1981; Hahm, 1988; Brizard and Hahm, 2007).

The Gyrokinetic Equations

There are two primary approaches to theoretical modeling in plasma physics. One path is to
model the plasma as a fluid, solving governing equations like those of MHD to determine
quantities like plasma flow and magnetic field as a function of spatial variables (discussed
briefly in Chapter 1). The other approach is kinetic in nature, in which one, for instance,
solves a Boltzmann-like equation for a distribution function F that depends on three spatial
variables and three velocity space variables. The latter approach provides information
about individual particle effects that are not accounted for in a fluid framework, but is also
much more expensive from the standpoint of computational resources. In the regime of
strong guide magnetic fields (common in fusion contexts), the kinetic approach becomes
especially expensive when attempting to resolve both the fast gyromotion timescales and the
slower turbulence and transport timescales. To mitigate this expense, the gyrophase velocity
coordinate can be removed via an averaging procedure; this approximation of kinetic theory
is called gyrokinetics

A brief sketch of the derivation of the gyrokinetic equation is presented here, see the above
references for more details. One begins with the governing equation for the full distribution
function Fj for species j:

∂tFj + v · ∇Fj + a · ∇vFj = C[Fj] , (2.5)

where v is particle velocity, a = (qj/mj) (E + v×B) is the acceleration due to electric
(E) and magnetic (B) fields, and C[Fj] is a collision operator. The accelerating fields are
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determined from Maxwell’s Equations (expressed here in cgs units, ignoring displacement
current):

∇ · E = 4πρ ∇ ·B = 0 (2.6)

∇×B = 4π
c

J ∇× E = −1
c

∂B
∂t

. (2.7)

The plasma charge density ρ and current density J can be evaluated via the zeroth and first
order moments of the distribution Fj, respectively, producing a closed system of equations.

The variables on which Eq. (2.5) depends correspond to the coordinates of a particle
trajectory (x, y, z, vx, vy, vz). As mentioned above, gyrokinetics averages over the gyrophase
velocity space variable. To do so, it is useful first to transform from particle coordinates into
guiding center coordinates, where the guiding center motion corresponds to the component
of particle motion independent of its gyration around a field line, as discussed in Chapter
1. Written explicitly, transforming from the particle trajectory coordinates x to the guiding
center coordinates X for species j occurs via:

xj = Xj + ρj , (2.8)

where ρj ≡ ρj cos θ x̂ + ρj sin θ ŷ is the gyroradius vector of species j at the gyrophase θ,
and the gyroradius of species j is given by ρj ≡ v⊥/|ωjc|. The guiding center is expressed
using field-aligned coordinates, such that the Z direction is parallel to the strong background
magnetic field, X is a flux-surface (radial-like) coordinate, and Y coordinate (sometimes
referred to as the binormal, but is not necessary orthogonal to Z) labels field lines on a flux
surface; for more details on field-aligned coordinate systems, see (D’Haeseleer et al., 1991).

For velocity space, the transformation (vx, vy, vz)→ (v‖, µ, θ) is made, where v‖ = vz is
the velocity along the magnetic field B0, µ = mj(v2

x + v2
y)/2B0 is the magnetic moment, and

θ is the gyrophase angle. It is this gyrophase dependence that can be removed by averaging
if the magnetic guide field is sufficiently strong that the gyrofrequency ωc is much larger than
frequencies of interest for turbulence ω, as is standard for fusion plasmas (e.g., a hydrogen
ion in a 1 Tesla magnetic field has ωc ≈ 100 MHz, while microturbulence frequencies of
interest in this work are on the order of ω ∼ 100 kHz). The process of gyroaveraging the
kinetic equation can employ varying approaches (refer to (Littlejohn, 1981) or (Frieman and
Chen, 1982) for details), and is not reproduced here. Taking the gyrokinetic equation for the
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gyrocenter distribution function Fj(X, v‖, µ), including particle drifts, from (Dannert, 2005):

∂tFj +
v‖b + B0

B∗0‖
(vE×B + v∇B0 + vc)


·
(
∇Fj + 1

mjv‖

(
qjĒ− µ∇

(
B0 + B̄‖

)))
= C̄[Fj] , (2.9)

where overbars represent gyroaveraged quantities, B∗0‖ = b · (∇× (A0 + (mjc)/(qj)v‖b)), with
b the unit vector along the magnetic field, and vE×B,v∇B0 , and vc correspond to E × B,
∇-B, and curvature drifts as defined in Chapter 1, respectively.

Equation (2.9), coupled with the gyroaveraged Maxwell’s Equations, provides a complete
gyrokinetic description. However, further simplifications and manipulations are performed
on this equation to arrive at the form that is used in this thesis. Importantly, the full
gyrokinetic distribution function Fj is not directly calculated. Instead, it is expanded as
Fj = F0j + fj, where F0j refers to an equilibrium Maxwellian distribution function and fj

is the perturbed distribution function. This expansion derives from the assumption that
fj/F0j ∼ ρref/Lref ≡ δ � 1 (referred to often as a “δf” approach). This form of Fj can be
inserted into Eq. (2.9), which can then be separated by orders in δ. The O(δ) equation is
expressed as follows:

∂tgj + B0

B∗0‖
(vE×B + v∇B0 + vc) ·

(
∇F0j −

µ

mjv‖

∂F0j

∂v‖
∇B0

)
+ v‖b · Γj

+ B0

B∗0‖
(vE×B + v∇B0 + vc) · Γj −

µ

mj

b · ∇B0
∂fj
∂v‖

= C̄[fj] , (2.10)

where the following definitions are applied:

gj = fj −
qj
mjc

∂F0j

∂v‖
Ā‖ (2.11)

Γj = ∇gj −
qj

mjv‖

∂F0j

∂v‖
∇χj + qj

mjc
Ā‖∇

∂F0j

∂v‖
(2.12)

χj = Φ̄− v‖
c
Ā‖ + µ

qj
B̄‖ . (2.13)
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It should be noted that Eq. (2.10) does contain one term that is O(δ2), the E×B nonlinearity.
The electric and magnetic fields have been expressed in terms of the electrostatic and
electromagnetic potentials, which are combined into the generalized potential χj. The
remaining tasks in bringing Eq. (2.10) to its final form involve: 1) inserting the explicit form
of the Maxwellian F0j , from which the equilibrium gradient drive terms arise, 2) expanding the
vector expressions, 3) suitably normalizing the equation, and 4) taking the Fourier transform.
The details of these steps are carried out in (Merz, 2008) but do not elucidate any additional
physics; as such, the final form of the gyrokinetic equation for gj as used in this thesis is
presented here:

∂tgj = −
(
ωn +

(
v2
‖ + µB0 −

3
2

)
ωTj

)
F0jikyχj︸ ︷︷ ︸

Linear Drive

+ βT0j

qjB2
0
v2
‖ωpΓjy︸ ︷︷ ︸

Pressure Effects

− vTj
JB0

v‖Γjz︸ ︷︷ ︸
Parallel Dynamics

−
T0j

(
2v2
‖ + µB0

)
qjB0

(KyΓjy +KxΓjx)︸ ︷︷ ︸
Curvature Effects

+ vTj
2JB0

µ∂zB0
∂fj
∂v‖︸ ︷︷ ︸

Particle Trapping

+
∑
k′⊥

(
k′xky − kxk′y

)
χ(k′⊥)g(k⊥ − k′⊥)

︸ ︷︷ ︸
E×B Nonlinearity

+ C̄[fj]︸ ︷︷ ︸
Collisions

. (2.14)

The quantities ωn,T j,p correspond to the normalized density, temperature, and pressure
gradients of species j, curvature terms Kx and Ky include details of the magnetic geometry,
J is the Jacobian that arises from expansion of the vector quantities, and β is the ratio of
electron kinetic pressure to magnetic pressure. The physical interpretation for each term
is provided in the underbraces. Of special note is the nonlinearity, which is a convolution
under Fourier transform and results in the coupling of distinct spatial scales and consequent
turbulent dynamics. To model linear instability, this term can be removed and the resulting
linear equation ∂tgj = Ljgj solved.

The electric and magnetic fields are expressed in terms of gyroaveraged electrostatic and
electromagnetic potentials, which are evaluated from moments of the perturbed distribution
function given (in the limit of B‖ = 0) below:
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Φ =
∑
j n0jπqjB0

∫
J0(λj)gjdv‖dµ

k2
⊥λ

2
D +∑

j

q2
j

T0j
n0j(1− Γ0(bj))

(2.15)

A‖ =
∑
j
β
2 qjnj0vTjπB0

∫
v‖J0(λj)gjdv‖dµ

k2
⊥ +∑

j

βq2
j

mj
n0jπB0

∫
v2
‖J

2
0 (λj)F0jdv‖dµ

, (2.16)

where J(λj) is the Bessel function of argument λj = k⊥ρj that arises from gyroaveraging
sinuosoidally fluctuating fields, and Γ0(bj) = Ij(bj)e−bj where Ij is a modified Bessel function
of argument bj = v2

Tjk
2
⊥/2ω2

cj. For finite B‖, the potentials Φ and B‖ form a coupled system
of equations that can be solved at additional computational expense; A‖ remains decoupled
provided the spatial scales of interest obey k‖ � k⊥. Equations (2.14),(2.15), and (2.16) are
the governing equations used throughout this thesis.

The GENE Code

The subsequent chapters of this thesis solve these governing equations using the gyrokinetics
code Gene, originally published in (Jenko et al., 2000); for thorough documentation refer
to www.genecode.org. Gene is an Eulerian code that solves the gyrokinetic equation on a
5+1-dimensional (x,y,z,v‖,µ,t) space for the non-adiabatic part of the perturbed distribution
function gj defined in Eq. (2.11), where j can correspond to electron, majority ion, or impurity
ion species. The code can be operated either in the global (radially global or full-flux-surface)
or local limit; within this thesis all results are calculated in the local limit, referred to as
‘flux-tube’ calculations (Beer, 1995). As concepts that arise from utilizing this flux-tube limit
appear throughout this thesis, it shall be discussed briefly here.

For flux-tube simulations, the domain of calculation is limited to both a radially- and
binormally-localized (corresponding to x and y directions, respectively) slice of the full system
being simulated. Generally speaking, the extent of the domain in each direction is on the order
of 10s−100s of gyroradii. Periodicity is assumed for both the x and y directions, and thus a
physical interpretation of the radial extent of structures seen in flux-tube simulations only
applies to a small region near the field line around which the simulation domain is centered.
Within these localized radial simulation boxes, the flux-tube approximation assumes that
both equilibrium quantities and their gradients are constant over the x-extent of the domain.
Additionally, the assumption of radial periodicity requires the size of turbulent structures to
be smaller than the x-box length to avoid nonphysical self-connections. Provided sufficient



24

convergence checks in box sizes and resolutions are performed, the assumption of periodicity
allows for a reliable description of turbulence within a small radial domain in Fourier space.
As such, flux-tube Gene simulations are spectral in x and y, while evaluating the z dimension
in real space using finite-difference methods.

The z direction corresponds to the field-line-following (poloidal-like) angle, and for
axisymmetric (toroidally symmetric) simulations covers the extent of a single poloidal turn
[−π, π] (where z = 0 corresponds to outboard midplane, z = ±π to the inboard). This
coordinate is quasi-periodic for toroidal devices; generally speaking, field lines will not close
after a single poloidal transit. In other words, though the field line returns to the same
poloidal point after traversing from −π to π, it will not be at the same toroidal point; this is
a consequence of the helical structure of the fields. Enforcing quasi-periodicity in z produces
an additional constraint, referred to as the parallel boundary condition (Merz, 2008) for a
function F :

F (kx, ky, π) = (−1)nNF (kx,min(m+ nN), ky,−π) , (2.17)

wherem,n, andN are integers such that kx = mkx,min, ky = nky,min, andN = 2πŝky,min/kx,min,
with the normalized magnetic shear defined as ŝ = (r/q)(dq/dr). An important consequence
of Eq. (2.17) is the coupling of modes at different kx. Whereas linear simulations otherwise
do not allow any interactions between different Fourier modes, the presence of magnetic
shear serves to connect every (nN)-th kx mode at a given ky through this parallel boundary
condition. This must be taken into account when analyzing linear mode structures to ensure
that appropriate resolutions are used to capture these connections.

Concerning the use of appropriate resolutions for gyrokinetic simulations, convergence
checks are performed in all results presented in this thesis. For linear convergence checks,
resolutions in x, y, z, v‖, and µ are doubled independently until the calculated linear growth
rate varies by less than 5%. For nonlinear simulations, convergence is verified through the
examination of flux spectra, mode structures, and transport amplitudes. To be considered
converged, the peak in flux spectra should not occur at the smallest ky, and the tail of both
the kx and ky spectra should fall off to less than 10% of the peak flux value. For mode
structures, the time-averaged z-structure is examined to ensure that it is sufficiently smooth.
Moreover, the calculated amplitude of heat and particle fluxes must vary less than 20%
upon the doubling of kx,min/max and ky,min/max to be considered satisfactorily converged. The
resolutions quoted in all results hereafter arise from these convergence methods.

Gene has a variety of options by which collisions can be modeled, including (but not
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limited to) collisionless, Krook-like, and Lorentz (stationary ions) collisions. All collisional
simulations reported in this thesis utilize a full Landau-Boltzmann collision operator for both
electron and majority ion species. Time dependence in Gene can be evaluated in two primary
approaches: initial value and eigenvalue solutions. For linear simulations, instabilities can
be characterized either via time evolution of a seeded initial condition, or via inversion of
the linear matrix to calculate the eigenvalues (with certain additional packages (Hernandez
et al., 2005), fast iterative approaches can find maximal eigenvalues without matrix inversion).
While initial value simulations are the primary method utilized in this thesis, the eigenvalue
solver is employed at various times to describe relevant subdominant modes. Nonlinear
simulations require the initial value calculation approach.

2.3 Chapter Summary

Topics in plasma physics relevant to the core themes explored in the rest of the thesis were
discussed in this chapter. Zonal flows were introduced as an important mechanism for
microturbulence suppression and regulation. These flows can be reduced by the introduction
of radial magnetic field perturbations, which in fusion devices such as the RFP are often
produced by tearing modes or Resonant Magnetic Perturbations. It is by this magnetic-
flutter-induced reduction of zonal flows that large- scale magnetic fluctuations can affect
microturbulence, as will be demonstrated in later chapters. The gyrokinetic framework was
discussed, including the governing equations that are solved using the Gene code. With this
foundation, the following Chapters explore the interaction of tearing modes, microturbulence,
and zonal flows in a variety of plasma systems.
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3 transport, turbulence, and zonal flows in the
madison symmetric torus reversed-field pinch

Having established the motivation and needed theoretical groundwork, the core concept of
multi-scale interactions between magnetic fluctuations, microturbulence, and zonal flows
is examined in the Reversed-Field Pinch (RFP). As mentioned in Chapter 1, the RFP is
a toroidal fusion device characterized specifically by its unique magnetic geometry, which
differs from the tokamak by having a significantly smaller toroidal field Bφ. This smaller Bφ

results in Bθ ≥ Bφ for a large radial extent of the device, and a much lower safety factor q
(defined in Eq. (1.8)) and larger normalized magnetic shear compared to the tokamak. In the
core of the RFP, the safety factor is at its largest value, generally q ≈ 0.2, which means RFP
equilibria are subject to large-scale tearing modes (discussed in more detail in Chapter 2).
These tearing modes lead to substantial transport and result in very short confinement times
for standard RFP plasmas.

This deleterious effect of tearing modes on plasma confinement in the RFP can be
mitigated to a significant degree by operating in a regime with current profile control using
Pulsed Poloidal Current Drive (PPCD), originally demonstrated experimentally in (Sarff
et al., 1994). In this regime, poloidal currents are induced in the edge of the plasma, which
serve to flatten the current profile and consequently lower tearing mode drive. PPCD plasmas
thus exhibit much lower stochastic transport losses, as well as confinement times comparable
to tokamaks (Chapman et al., 2010). A result of this improved confinement is an increase in
core pressure values, and a resultant increase in temperature and density gradients towards
the edge. As seen experimentally in (Duff et al., 2018), these increased gradients can drive
microturbulence. Additionally, work detailed in (Nishizawa et al., 2019) demonstrates the
presence of zonal flows in PPCD plasma via direct experimental measurements, which can
play a role in instability saturation.

This chapter demonstrates a link between the microturbulence and zonal flows observed
in MST, centering around microturbulence and transport driven by the enhanced gradients
in PPCD, as well addressing the role that suppressed tearing modes have on the transport
via interactions with zonal flows. Per the mechanism described in Chapter 2, it is seen here
that zonal flows are degraded by radial magnetic perturbations introduced by tearing mode
fluctuations. Two different discharges are examined, one dominantly ∇n-TEM unstable and
the other ITG unstable. Specifically, this chapter discusses how the turbulence generated
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by each differs in response to zonal flow erosion. The behavior of these two discharges in
the complete absence of tearing mode fluctuations is also presented, revealing properties of
strong zonal flow formation in the RFP.

3.1 Microturbulent Fluctuations in MST

Prior gyrokinetic modeling of MST microinstability properties, detailed in (Carmody et al.,
2015), focused on two different PPCD discharges, with different values of the toroidal current
induced in the plasma. That work examined discharges with toroidal plasma currents of
200 and 500 kA, which exhibited dominant instabilities of ITG and density-gradient-driven
TEM, respectively. Recent work of (Duff et al., 2018) using an updated FIR system has
produced measurements for new 200 kA PPCD discharges of deuterium plasmas. The FIR
diagnostic was used to measure density fluctuations during PPCD discharges, shown in
Fig. 3.1. The measurements show that as the induced poloidal current grows in PPCD
(beginning at 10 ms), the large-scale tearing mode amplitudes decay until reaching some
small, quasi-stationary value around 18 ms. In the PPCD ‘flat top’, where tearing modes
are maximally (but not fully) suppressed, a steepening of the density gradient is observed,
accompanied by higher-frequency density fluctuations. This steepening of the density profile
occurs primarily outside the reversal surface (the flux surface where Bφ = 0 and thus q = 0,
r/a ≈ 0.7 for these discharges). Inside the reversal surface, the density profile remains
relatively flat. Consequently, the high-frequency density fluctuations are observed almost
entirely in this outer region.

Experimental scans show a strong dependence of these fluctuations on the density gradient,
with a critical gradient R0/Ln ≈ 18 (see Fig. 3.2), where R0 is the major radius on axis
(R = R0 + r cos θ, where θ is the poloidal angle), L−1

n ≡ −(1/n0)dn0/dr is the equilibrium
density gradient scale length, and n0 is the background electron density. The fluctuations are
observed to propagate in the electron diamagnetic direction in the perpendicular wavenumber
range k⊥ρs . 0.2. Measurements of carbon impurity density fluctuations in PPCD using
ion Doppler spectroscopy (IDS), performed in parallel with FIR, also observed fluctuations
in the 50 − 100 kHz frequency range outside the reversal surface (Nishizawa et al., 2016),
providing evidence that the fluctuations are due to TEM turbulence. These experimental
findings motivate the work discussed in the rest of this chapter.

To understand the underlying nature of these fluctuations, gyrokinetic simulations based
on the experimental profile data from the new 200 kA PPCD discharges discussed above are
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Figure 3.1: Time evolution of (a) density fluctuation spectra at r/a = 0.8 and (b) density
gradient as a function of radius. At the beginning of PPCD, tearing mode fluctuations
dominate the spectrum at low frequency, and are gradually reduced until the PPCD ‘flat top’
which occurs at t ≈ 18 ms. This decrease in tearing activity produces an increase in density
gradient as shown in (b), which drives microturbulence that produces the higher-frequency
fluctuations shown in (a). Taken from (Duff et al., 2018).

.

performed at four different radial locations in the range 0.55 < r/a < 0.85, focusing primarily
outside of the reversal surface (located at r/a ≈ 0.7) where the high-frequency density
fluctuations were observed. As mentioned previously, all simulation results presented are
local flux-tube calculations performed using the Gene code, with RFP-specific equilibrium
modifications implemented via the Adjusted Circular Model (ACM) in (Carmody et al., 2015).
The latter expands upon the standard Circular model of circular concentric flux surfaces
of (Lapillonne et al., 2009) to account for the magnetic field variation with minor radius
intrinsic to the RFP.

Nominal resolutions for these simulations were 16 grid points in the direction parallel to the
magnetic guide field (z), 32 parallel velocity (v‖) grid points, and 8 magnetic moment (µ) grid
points; linear simulations required 15 kx modes (where kx refers to the radial wavenumber).
Profiles used as input for the code were obtained from an MSTFit equilibrium reconstruction
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Figure 3.2: Density fluctuation power as a function of normalized density gradient for standard
and PPCD plasmas. The improved-confinement PPCD regime exhibits a critical gradient of
R/Ln ≈ 18. Taken from (Duff et al., 2018).

(Anderson et al., 2004). Specific input parameters used in this chapter for two distinct PPCD
discharges (labeled by their respective dominant linear instabilities, to be discussed) are
listed in Table 3.1. As discussed in (Carmody et al., 2015), radial locations near the reversal
surface are numerically more challenging, because the parameter ŝ ≡ (r/q)dq/dr, which
represents shear in a tokamak, diverges at the q = 0 surface. In the RFP, the magnetic shear
remains well-behaved throughout the plasma volume, and the physics of the simulations is
unaffected by the behavior of ŝ near q = 0. However, ŝ is used in Gene for the flux-tube
boundary conditions and as a metric for dq/dr. The microturbulent fluctuations detected
in the experiment were localized sufficiently far from the reversal surface to support the
assumption that exclusion of the region near the reversal surface in this chapter does not
significantly alter its relevance.

During PPCD, the equilibrium profiles are mostly flat inside the reversal surface, and thus
the plasma is stable to microinstability throughout almost the entire region. There is a strong
linear destabilization outside the reversal surface (r/a & 0.7). This radial localization of
instability matches the FIR measurements, which detected high-frequency density fluctuations
primarily outside the reversal surface. Such strong destabilization is attributed to the large
background density and temperature gradients which form in that region during PPCD.
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Instability r/a q ŝ β νc R0/LT R0/Ln

TEM 0.565 0.0528 −6.05 0.11 0.0029 9.67 4.79
0.748 −0.0690 8.16 0.028 0.0088 23.6 23.0
0.791 −0.103 6.18 0.014 0.013 28.9 28.5
0.836 −0.141 5.00 0.0053 0.020 37.1 34.2

ITG 0.807 −0.1103 5.08 0.0063 0.27 30.0 19.1

Table 3.1: Physical parameters taken from MSTFit equilibrium reconstructions of two distinct
200 kA PPCD discharges, one dominated by ∇n-TEM instability and the other by ITG
instability. For the TEM-dominated discharge, analyses were performed at four different
radial locations; only one radial location was studied in the ITG-dominated discharge. These
parameters are used as input for Gene simulations. νc ≡ R0/(4vT e)νei, R0/LT = R0/LT e =
R0/LT i and Ti0 = 0.4Te0.

Precise data on ion temperature profiles Ti0(r) is lacking for these discharges, so it is assumed
that Ti0 ≈ 0.4Te0 at all radii, and the normalized temperature gradients of both species
are the same; density gradients are equal for ions and electrons due to quasineutrality. A
consequence of these assumptions is that ηi = ηe = η, where ηj ≡ (dlnTj0/dr)/(dlnnj0/dr).
For this discharge, η ≈ 1.0 outside the reversal surface. A common empirical rule, developed
in (Rewoldt and Tang, 1990) from tokamak gyrokinetic simulations, which has also been
found to apply to the RFP (Carmody et al., 2015), states that η ≈ 1.3 defines a boundary
between ITG- and TEM-dominated regimes, with η . 1.3 being TEM-dominated.

As seen in Fig. 3.3, the dominant instability propagates, at toroidal wavenumbers 0.1 .

kyρs . 1, in the electron diamagnetic direction (denoted by negative frequencies). The
transition to positive frequencies at higher ky is a feature of the so-called ubiquitous TEM,
originally introduced in (Coppi and Pegoraro, 1977). Scans were performed separately
for density, ion temperature, and electron temperature gradient at kyρs = 0.5, where the
linear growth rate peaks. Each quantity was scanned over a range of values while all other
parameters were held fixed at their experimental values. As shown in Fig. 3.3, at experimental
parameters the linear growth rate varies most strongly with density gradient, agreeing with the
expectation of a density-gradient-driven trapped-electron mode. To provide further support
of this assessment, the linear analysis was repeated, separating the contributions of trapped
and passing particles. The cross phases are calculated separately for trapped and passing
particles from the linear eigenmodes, where the cross phase α is defined for two fluctuation
quantities A and B as 〈AB〉 = |A||B| sinα. As seen in Fig. 3.4, the phase difference between
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electrostatic potential and electron density fluctuations is ≈ +π/2, consistent with instability,
while the corresponding passing-electron fluctuations are primarily in phase.

As a point of comparison with the TEM characterization, linear analysis was performed
on another recent 200 kA PPCD discharge in which background temperature gradients are
≈ 50% larger than background density gradients. The increased temperature gradients result
in η ≈ 1.5, characteristic of an ITG-dominated regime. As expected, the dominant instability
in this case propagates in the ion diamagnetic direction at wavenumbers of kyρs ∼ 0.1− 1.
Figure 3.5 shows the instability being driven strongly by the ion temperature gradient, and
stabilized by both electron temperature gradient and density gradient. These qualities are
consistent with the ITG instability, as expected for η > 1.3. In what follows, the nonlinear
behavior of these two instabilities in the RFP are compared.

3.2 Gyrokinetic Turbulence in PPCD

Turbulence and transport in PPCD discharges are modeled using nonlinear flux-tube simu-
lations. The RFP has large magnetic shear, varying on the minor-radius scale, which can
result in significant nonlinear simulation costs, as modes with very different radial scales
(very different kx) become coupled through the flux-tube parallel boundary condition. The
highest-magnitude normalized shear value considered in the nonlinear simulations is ŝ = 6.18,
for which numerical convergence requires a total of 192 (positive and negative) kx Fourier
modes when resolving the ky spectrum with 12 modes. The perpendicular box has an extent of
16 ρs in the radial x direction, and 31.4 ρs in the y (toroidal-like) direction, which is sufficient
to encompass turbulent structures and prevent self-connection. The following discussion
focuses on results from nonlinear simulations at r/a = 0.8.

Nonlinear calculations based on the TEM-dominated discharge produce negligible trans-
port, with the electrostatic heat diffusivity of order χe ∼ 10−4 m2/s. This is a consequence
of very strong zonal flows seen in Fig. 3.6(a) that are generated nonlinearly, which greatly
reduce transport associated with the instability. The fact that this diffusivity is several
orders of magnitude smaller than in the experiment suggests that there is physics present
in the experiment that these simulations do not capture. Indeed, the simulations do not
take into account background current gradients, which drive tearing modes primarily in the
core of the RFP. Though reduced in PPCD, (Carmody et al., 2015) demonstrated that these
tearing fluctuations play an important role in setting microturbulent transport levels. To
self-consistently model the tearing mode effects, current gradients need to be included in
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Figure 3.3: Linear instability analysis for the low-η, 200 kA PPCD discharge. In (a), growth
rates are strongest in the ky ∼ 0.1 − 1 range. In (b), dominant frequencies show drifts
in the electron diamagnetic direction, with positive-frequency branches arising from the
ubiquitous TEM. In (c), gradient scans at kyρs = 0.5 and r/a = 0.7905 are shown, with
experimental values circled. The three solid-line curves correspond to variation of the density
gradient (triangles), ion temperature gradient (diamonds), and electron temperature gradient
(squares), with other gradients held fixed. The density-gradient drive is the strongest for
nominal parameters. Dashed lines correspond to a separate, ion-direction unstable mode
branch.
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Figure 3.4: Cross phases constructed from fluctuating quantities (Φ, n, T‖, and T⊥) for
passing electrons in (a) and trapped electrons in (b). The phase difference α ≈ +π/2 between
Φ and n corresponds to a ∇n-driven instability, and only arises from the trapped-particle
distribution.
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Figure 3.5: Gradient scans at kyρs = 0.5 and r/a = 0.807 for the η ≈ 1.5 PPCD discharge,
with experimental values circled. The three solid-line curves correspond to variation of the
density gradient (triangles), ion temperature gradient (diamonds), and electron temperature
gradient (squares), with the respective other gradients held fixed. Consistent with ITG
modes, the ion temperature gradient R/LT i strongly destabilizes the mode, while the electron
temperature and density gradients have a stabilizing effect. Dashed lines correspond to
a separate, electron-direction mode branch, which is stable at the default experimental
parameters.

a global simulation combining core and edge regions. In lieu of the challenging problem of
using global simulations to model these residual tearing fluctuations, an ad-hoc tearing-parity,
constant-in-time A‖ perturbation is implemented in the code. For details on the perturbation,
which has been modified from that used in (Carmody et al., 2015), see Appendix A.

The inclusion of this perturbation degrades the previously very strong zonal flows, visible
in the electrostatic potential contours in Fig. 3.6(b). As discussed in Chapter 2, the radial
magnetic field perturbation allows electron streaming along field lines to travel to different
flux surfaces, effectively shorting out the electrostatic potential differences and thus eroding
the zonal flows. The impact of this process can be described quantitatively by determining
the difference in linear and nonlinear critical gradients, as shown in Fig. 3.7. This upshift in
critical gradient when comparing the linear stability threshold with the nonlinear transport
threshold is referred to as the Dimits shift, from (Dimits et al., 2000). While the case without
tearing fluctuations experiences a factor of four upshift in critical density gradient, including
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Figure 3.6: Electrostatic potential contours Φ (in units of ρse/(R0Te0)) in TEM turbulence
for simulations with zero (a) and finite (b) residual magnetic tearing fluctuations. In the
absence of magnetic activity associated with tearing modes, TEM instability leads to very
strong zonal flow formation and the complete suppression of heat and particle transport.

the fluctuation removes the upshift almost entirely.
This zonal flow reduction results in increased transport. Setting the strength of the

perturbation extrapolated from magnetic field measurements taken at the wall, the calculated
heat diffusivity (χe ≈ 10 m2/s) comes to within 30% agreement with that expected from
experimental data1. It is important to note that transport, both here and throughout this
chapter, refers only to the electrostatic transport resulting from radial E ×B flows. There is
also magnetic flutter transport that increases with the tearing perturbation as one would
expect, which is observed in simulations to be of the same order as electromagnetic transport
for experimentally relevant parameters. The method by which the tearing fluctuations are
accounted for is not self-consistent, thus conclusions concerning the physics of electromagnetic
transport cannot be drawn from this chapter; as such, only transport through the electrostatic
channel is examined.

It is interesting to note that while both the ITG- and TEM-dominated discharges generate
1from private communication with James Duff
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2
en0Te0/R

2
0) vs. driving gradients.

Diamonds correspond to linear growth rates, triangles to heat fluxes without the tearing
perturbation imposed, and squares to heat fluxes with the imposed tearing perturbation.
Top: For TEM without magnetic perturbations modeling tearing mode effects, the linear
(blue diamonds) and nonlinear (magenta triangles) critical gradients differ by a factor of four.
With tearing (red squares), they nearly coincide. Bottom: even without tearing activity,
there is almost no difference between linear and nonlinear critical gradients in the ITG case.
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perturbation modeling tearing modes. TEM transport (red lines) is increased by orders of
magnitude, while time-averaged ITG transport (blue lines) exhibits only a small change,
despite imposing an identical tearing perturbation.

zonal flows, only in the TEM case is transport affected so severely. In the absence of tearing
fluctuations, the ITG-dominated simulation at experimental gradients still exhibits finite
transport, despite also establishing prominent zonal flows. Including the tearing perturbation
results in only a slight increase in fluxes for ITG, depicted in Fig. 3.8. It should be noted that
zonal flows are still eroded by the tearing perturbation in the ITG case, exhibiting a change
in zonal flow structure comparable to that seen in Fig. 3.6 for the TEM case. Additionally,
the Dimits shift in the ITG case is very small compared to the TEM case as well as standard
tokamak cases (e.g. order 50% that (Dimits et al., 2000) reports), even in the absence of
tearing fluctuations.

In an ITG simulation which removes contributions from zonal flows (zeroing out the
flux-surface-averaged electrostatic potential Φ at every time step), the increase in flux is of
the same order as that seen in the case in which tearing fluctuations reduce the zonal flow
(factor of 2 increase in flux when tearing perturbation is applied vs. factor of 3 increase when
zonal Φ contributions are removed). This suggests that in this ITG-dominated discharge,
zonal flows do not regulate transport nearly as much as they do in the TEM case (in which
both the tearing perturbation and the removal of zonal Φ result in orders of magnitude
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transport increase).
There is evidence that this behavior is rooted in the branch of unstable ITG mode favored

by the equilibrium and the corresponding type of mode coupling interaction that dominates
saturation. In the tokamak, ITG instability comes in two varieties, a so-called slab ITG
branch with a mode structure that is flute-like and governed by magnetic shear, and a toroidal
branch with a ballooning mode structure governed by magnetic curvature (Horton et al., 1981).
The choice of which branch is favored depends on the relative magnitudes of the parallel and
curvature drift frequencies. In the slab ITG branch, mode coupling between the unstable ITG
mode and a conjugate stable mode that dominates saturation is mediated by a marginally
stable eigenmode (Terry et al., 2009). In the toroidal branch, a balance of parallel flow with
shear, the poloidal variation, and radial wave propagation removes the marginal mode from
the linear eigenmode spectrum as described in (Horton et al., 1981). Mode coupling then
favors a saturation channel that uses the zonal flow, thereby introducing zonal-flow regulation
(Holland et al., 2003; Makwana et al., 2012, 2014). Gyrokinetic simulations of ITG turbulence
in a stellarator support this picture of mode coupling. Zonal flows have a significant impact on
saturation when the toroidal branch dominates. When the shear is strengthened only enough
to bring the parallel and curvature drift frequencies to comparable values, the zonal flow no
longer dominates saturation (Faber et al., 2018; Hegna et al., 2018). Instead, removing zonal
flows results in only a slight increase in saturation level for this stellarator case, much like the
situation described here for ITG turbulence in the RFP. Moreover, analysis of wavenumber
triplet interactions further confirms that non-zonal couplings become dominant in the regime
of comparable drifts.

The parameter that delineates the two branches of ITG instability is the ratio of scale
lengths of magnetic shear to magnetic curvature Ls/κ−1, where κ ≈ ∇⊥B/B in a low-β
plasma. For Ls/κ−1 < 0.5 the mode is slab-like, while in the opposite limit, it is a curvature
dominated mode.

For tokamaks, Ls is given by the formula Ls = Rq/ŝ, where ŝ = (r/q)dq/dr. In the RFP,
the comparable magnitudes of toroidal and poloidal fields invalidate the tokamak expression
for shear in the outer half of the plasma, and instead Ls = r/(Rdq/dr). It should also be
noted that the magnetic field curvature that dominates in most of the plasma volume of the
RFP is the poloidal-field curvature.

For the ITG-dominated discharge, the shear and curvature scale lengths were Ls = 0.21 m
and κ−1 = 0.47 m, making Ls/κ−1 = 0.45. This places the plasma at the cross-over between
the two ITG branches, and critically, from the arguments given above indicates that zonal
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flows do not play a dominant role in saturation.
These results are also consistent with an analysis of parallel mode structure as quantified

by csk‖/ω, where cs = (Te/mi)1/2 is a characteristic sound speed, k‖ is a parallel wavenumber
(normalized to R0) calculated from the width of the mode along the field, and ω is the linear
frequency of the mode. For ITG modes dominated by curvature, one expects localized mode
structures with large k‖, or csk‖/ω > 1, while for modes dominated by shear one expects a
more extended structure with csk‖/ω < 1. For the ITG instability discussed in this chapter,
csk‖/ω ≈ 0.3, while csk‖/ω ≈ 1.1 for the Cyclone Base Case parameters of (Dimits et al.,
2000), which represents a typical tokamak core plasma scenario.

3.3 Zonal Flow Characterization

To model the MST experiment, it is necessary for microturbulence models to incorporate
tearing perturbations. Because tearing mode suppression is a goal of current profile control
in the RFP, the behavior of zonal flows and turbulence observed in the absence of tearing
modes is a key subject of investigation. In particular, if the RFP could operate with full
tearing suppression, it would likely be able to sustain much steeper gradient profiles then
tokamaks, thus enhancing its performance, as predicted in (Terry et al., 2015). In light
of the preceding discussion, there are two properties of these RFP discharges that merit
investigation: (1) the ability (in the absence of tearing modes) to support very strong zonal
flows, and (2) the fact that zonal flows play very different roles in saturation for the ITG and
TEM discharges. The first point is addressed by examining the Rosenbluth-Hinton zonal-flow
residual for RFP geometries. The second point is addressed through examining collisional
effects and secondary instability drive.

Rosenbluth-Hinton Residual

One aspect of zonal flow behavior is the residual, described in (Rosenbluth and Hinton, 1998).
An impulsive electrostatic potential is applied to a flux surface and the plasma responds
through a shielding process in which the system arrives at a new constant amplitude Φres,
called the zonal flow residual (Sugama and Watanabe, 2006). Transient geodesic acoustic
modes (GAMs) are also observed in the evolution towards the residual. The amplitude of
this residual is
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Φres

Φ0
= 1

1 + 1.6q2/ε
1/2
t

, (3.1)

where Φ0 is the initial amplitude of the electrostatic potential, and εt ≡ r/R0. This equation
can be thought of as a measure of the ability of the plasma to maintain a zonal flow
amplitude set by an instantaneous perturbation. The associated physics has been characterized
extensively through numerical simulation (see (Sugama and Watanabe, 2006) for example).
To characterize the zonal flow residual behavior using gyrokinetics, a reduced system with only
three modes (corresponding to ky = 0, kx = −1, 0 or 1 indices) is modeled nonlinearly from a
GAM initial condition. These simulations include no information about pressure gradients or
collisions, but all the information about the equilibrium magnetic field geometry that is used
in the full nonlinear simulations. The initial GAM experiences Landau-damping, and what
amplitude remains in Φ is the aforementioned zonal flow residual. For the magnetic geometry
of the present discharges, Fig. 3.9 shows that the residual is measured to be considerably
larger than what is seen in the Cyclone Base Case (CBC), a standard tokamak parameter
set, and is still well predicted by Eq. (3.1). The RFP’s low toroidal magnetic field leads to
a safety factor q that is at least an order of magnitude smaller than that of the tokamak,
resulting in the significantly larger residual. This behavior had been noted previously by
(Predebon and Xanthopoulos, 2015) in the context of RFX-Mod RFP discharges.

In performing this calculation over a variety of q values, Fig. 3.10 shows that Eq. (3.1) it
applies to both tokamak and RFP regimes. Large residuals of the RFP are a contributor
to the strong zonal flows seen in the present simulations. It is important to note that the
large zonal flow residuals discussed here apply to plasmas with perfectly axisymmetric flux
surfaces; experimental reality is better described by including residual tearing fluctuations.
As discussed in (Terry et al., 2013) and in Sec. III, the presence of resonant magnetic
fluctuations, such as those arising in MST from residual tearing modes, serves to reduce zonal
flow amplitudes. For more details on the deleterious impact of electromagnetic effects on
zonal flow residuals, see (Pueschel et al., 2013b).

While large zonal flow residuals are consistent with the strong zonal flows seen for
simulations unaffected by tearing modes, they fail to distinguish between turbulence regimes
governed by different instabilities and thus provide no information concerning the difference
between zonal flow activity in TEM and ITG turbulence regimes. Such differences are
discussed in the following sections.
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Figure 3.9: Electrostatic potential Φ/Φ0 evolves toward the zonal flow residual (dashed lines),
in good agreement with Eq. (3.1) for both MST parameters (thin green line, right axis) and
CBC (thick blue line, left axis). The small q of the RFP results in a much larger residual
value. This calculation was performed at zonal flow wavenumbers of kxρs = 0.05 for the
CBC and kxρs = 0.3881 for MST; these wavenumbers correspond to the larger spatial scale
permitted by the radial box size.

Collisionality

In tokamaks, TEM turbulent amplitudes have been observed to vary with collisionality (Ernst
et al., 2006). In particular, higher electron-ion collisionality in a plasma will lead to an
increase in electron detrapping, reducing TEM growth rates. Increased collisionality also
erodes zonal flows. However, the zonal-flow erosion is less pronounced than the growth rate
reduction. Consequently, the balance of the growth rate to the zonal flow level is affected,
leading to proportionally stronger zonal-flow regulation as the fluctuations decrease. The
effect of collisionality on TEM and ITG modes in the RFP is shown in Fig. 3.11, in which
the electrostatic heat flux vs. driving gradient from nonlinear simulations is compared with
the linear growth rate vs. driving gradient in linear simulations. The observed trends are
similar to those in tokamaks for the TEM-dominated discharge. Figure 3.11(a) shows that
when the collisionality is raised from half its nominal experimental value to the experimental
value νc, the growth rate decreases by 50%. Note that νc ≡ (R0/4vT e)νei for the cases studied
here, where vT e is the electron thermal speed and νei is the electron-ion collision frequency in
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and εt = 0.2741.

units of Hz.
However, despite an increase in zonal flow damping, the Dimits shift increases (as made

evident in Fig. 3.11(a) by the increased critical gradient for Qes
e ), suggesting that the effect of

collisions on the zonal flow is weaker than their effect on the growth rate. This is confirmed
by examining how zonal flow residuals and linear growth rates are affected by collisionality.
For the TEM case, a factor of two increase in collisionality (from half the experimental value
to its full value) results in a 40% reduction of linear growth rates, but only a 30% increase in
the zonal flow decay rate, consistent with the results shown in Fig. 3.11. This indicates that
transport regulation of TEM turbulence is increased in a more collisional plasma.

In contrast, Fig. 3.11(b) shows that collisionality has little effect on either the ITG growth
rate or the heat flux. For this case, doubling collisionality causes the zonal flow decay rate
to increase by 25% and the linear growth rate to decrease by 10%. The lack of change in
ITG Dimits shift is consistent with previously discussed observations that zonal flows play a
less important role in turbulence saturation for the ITG discharge, with collisions working
analogously to the tearing fluctuation as a source of zonal flow degradation.

The specific MST data sets analyzed in this chapter have plasma densities comparable to
typical tokamak discharges, but lower temperatures (core Te0 ≈ 500− 600 eV), leading to
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a higher collisionality νc ∼ 10−1 − 10−2. For comparison, typical collisionalities in tokamak
gyrokinetic simulations in the region of interest (r/a ≈ 0.8) are at most νc ∼ 10−3, as
described in (Told et al., 2013). This high-collisionality regime of operation thus contributes
to the strong zonal-flow suppression of TEM turbulence observed in simulation by increasing
the Dimits shift, while having little effect on ITG turbulence.

Secondary Instability

Secondary instability analysis, defined in (Cowley et al., 1991) and (Rogers et al., 2000),
describes the process by which a linear instability (e.g. TEM or ITG) causes the excitation of
a secondary instability in the zonal wavenumber ky = 0 via nonlinear coupling. The secondary
instability growth rate is a measure of nonlinear zonal flow excitation rate. Specific details
on the procedure for secondary instability analysis are given in (Pueschel et al., 2013a). To
summarize, a streamer (kx = 0, finite ky) representing the typically fastest-growing linear
eigenmode is allowed to evolve through a linear calculation that includes a sideband (both kx
and ky finite, not connected to the streamer via the parallel flux tube boundary condition)
and a zonal flow, until the mode is converged. That state is then used as an initial condition
in a subsequent simulation where the linear drive term is set to zero to disable linear sideband
growth and the streamer is held fixed in time. The nonlinear interaction in the streamer-
sideband-zonal-flow triplet results in exponential growth of the secondary mode, here the
zonal flow. A secondary growth rate can then be calculated.

Parametric dependencies of the secondary growth rate are studied using scans over
magnetic shear ŝ and radial wavenumber kx, shown in Fig. 3.12. For experimentally relevant
parameters (denoted in the figure by circled points), the TEM secondary growth rate is
more than twice that of the ITG secondary mode. This underscores that in the TEM case,
zonal flow drive is too strong for turbulence to fully develop, while in the ITG case, the
slower timescale of zonal flow development allows for more turbulent activity to arise. While
Fig. 3.12(b) shows the TEM and ITG secondary growth rates peaking at the same radial
wavenumber, in nonlinear simulations, TEM turbulence preferentially generates zonal flows
at larger kx than ITG turbulence. Figure 3.13 further illustrates this preference in TEM
turbulence for smaller radial zonal structures, showing zonal flow spectra taken from nonlinear
simulations. Higher-kx zonal flows can result in a more effective regulation of turbulence,
either through increased eddy shearing (Terry, 2000) or a larger rate of nonlinear energy
transfer to damped modes (Makwana et al., 2012). The reason for the predilection for
higher-wavenumber zonal flows in TEM turbulence remains an open question for further
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Figure 3.11: Linear growth rates and heat fluxes over a range of driving gradients at nomi-
nal(diamonds and triangles, respectively) and half nominal (circles and squares, respectively)
νc. From this, one can measure the Dimits shift change with respect to collisionality for (a)
TEM and (b) ITG. Increasing collisionality results in an increase of the Dimits shift in TEM
but no significant change for ITG turbulence.
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study.

3.4 Chapter Summary

Microturbulence in the MST reversed-field pinch has been studied through gyrokinetic
simulations that model high-frequency fluctuations measured in improved-confinement PPCD
discharges. Linear simulations from two separate data sets were analyzed, and the dominant
instabilities were identified as density-gradient-driven TEM and ITG. Nonlinear simulations
with no external magnetic field model for tearing mode fluctuations produced turbulence in
both cases with very strong zonal flows, and transport levels were well below the experimentally
observed levels. An external, constant-in-time magnetic tearing perturbation was then imposed
in the simulations to model the effect of residual tearing modes in PPCD discharges. In both
the TEM and ITG cases, this degraded the zonal structures, although with a different result
in each case. For TEM, the transport was increased by orders of magnitude, reaching a value
on the order of that expected from experiment. However, the ITG transport was affected far
less, increasing only by approximately a factor of two. This is seen to be a consequence of
the ITG exhibiting slab-like character, a mode branch which depends less on zonal flows for
saturation. In the absence of the tearing fluctuation, it was observed that RFPs tend to form
very strong zonal flows as a consequence of their unique magnetic geometry. A comparison of
zonal flow formation in the TEM and ITG discharges through secondary instability analysis
and an examination of collisionality effects were consistent with the zonal flows playing a
more significant role in the ∇n-TEM discharge.
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ŝ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
ec

on
d
ar

y
G

ro
w

th
R

at
e

(a)

TEM

ITG

0.0 0.2 0.4 0.6 0.8 1.0
kxρs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
ec

on
d
ar

y
G

ro
w

th
R

at
e

(b)

TEM

ITG

Figure 3.12: Secondary growth rate vs. (a) background magnetic shear and (b) radial
wavenumber for the two discharges of interest. For default experimental parameters (circled
points), the zonal flow secondary growth rate in the TEM case (red squares) is more than
two times as large as in the ITG case (blue diamonds), in agreement with the observation of
stronger zonal structures for the TEM discharge.
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Figure 3.13: Zonal flow amplitude spectra from nonlinear simulations, time-averaged over the
quasi-stationary state. The zonal flows in the TEM case (thick red line) manifest at higher
radial wavenumber than those in the ITG case (thin blue line).
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4 resonant magnetic perturbations, zonal flows,
and microturbulence in the diii-d tokamak

The results of Chapter 3 motivated a search to determine if the interaction among zonal flows,
magnetic fluctuations, and microturbulence can occur in different fusion device contexts, using
observations from both experimental measurements and theoretical predictions. In order to
measure how turbulence and zonal flows vary with large-scale magnetic fluctuation activity, it
is desirable to have direct control over the amplitude of the large-scale magnetic fluctuations
in question. Precise control of tearing mode amplitudes is unfortunately untenable in the
reversed-field pinch. However, there exists another context in which both microturbulence
and large-scale magnetic fluctuations are present: resonant magnetic perturbations (RMPs)
in tokamaks.

RMPs are large-scale magnetic fluctuations imposed on the plasma equilibrium through
the use of currents driven in external coils. Importantly, they are used on tokamaks as a
means of mitigating Edge-Localized Modes or ELMs (Evans et al., 2006), which otherwise
release bursts of large amounts of energy that can damage divertors in fusion devices. While
this presents a significant benefit in the efforts towards sustained confinement in tokamaks,
there are still many aspects of RMP effects on plasma dynamics that are not fully understood.
It has been observed that when using RMPs to remove ELMs, high-frequency fluctuations
arise (McKee et al., 2013). As will be explored in this chapter, RMPs play a significant role
in governing turbulence and transport at small scales.

The concurrent presence of RMPs and microturbulence in tokamaks is analogous to the
tearing fluctuations and microturbulence discussed in Chapter 3, and provides an additional
avenue for exploring interactions among zonal flows, microturbulence, and large-scale magnetic
activity. For the purpose of investigating the physics in question via experimental means,
tokamak RMPs have a distinct advantage over tearing modes in RFPs in that the amplitude
can be set by user input to a desired level. Thus, measurements can be performed that map
specific magnetic fluctuation amplitudes to corresponding microturbulence levels and inform
computational studies.

This chapter will briefly summarize the results from an experimental campaign exploring
RMP-microturbulence interactions on the DIII-D tokamak, in which small-scale density
fluctuations are seen to scale directly with RMP amplitude. The rest of the chapter describes
the results of computational investigations of these discharges in order to better understand
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the connection between RMPs and microturbulence fluctuation levels. Simulations show
that the RMP does have a nontrivial effect on equilibrium temperature and density profiles,
affecting the relative levels of ITG and ∇T -TEM fluctuations, both of which are present
in numerically modeled discharges. While zonal flows are not directly measured in the
experiment, a significant effect is seen in the nonlinear simulations, which clearly show
signatures of RMP-induced zonal flow erosion and a resultant increase in density fluctuations
that agree qualitatively with BES measurements for a range of RMP values. Some apparent
discrepancies that contrast this physical picture are addressed.

4.1 Microturbulence in DIII-D L-Mode Plasmas

A run campaign on the DIII-D tokamak characterized the effect of RMPs on high-frequency
density fluctuations through the use of Beam Emission Spectroscopy (BES). While the
experimental results were not obtained by the author of this thesis, they are summarized here
to provide context for the discussion that follows.1 On DIII-D, RMPs can be applied using
either a set of six coils located outside the vessel (C-coils) or a set of twelve coils located
within the vessel (I-coils); for these studies the I-coils were used. The RMP coil current
was varied in steps over the course of an L-mode discharge (or “low-confinement” mode,
characterized by increased turbulent activity and poorer confinement properties than the H- or
”high-confinement” mode), while density fluctuation spectra were measured concurrently using
the BES probes. Scans were conducted to see how both RMP magnitude and parity affect
microturbulence levels for n = 1 and n = 3 RMPs. Note that here parity refers to being even
or odd with respect to the coil configurations, and does not translate directly into even or odd
mode parity with respect to the outboard midplane. The latter is a common characterization
of fluctuation structure. Resolving the largest spatial scales of n = 1 concurrently with
microturbulence adds additional expense, and the approximation k‖ � k⊥ breaks down at
this scale. As such, this chapter will focus only on results from the RMP amplitude scan for
the odd-parity n = 3 perturbation.

As seen in Fig. 4.1, the RMP was activated at a small (relative to ELM-suppression
RMPs) (Br/B0 ≈ 7.6×10−5) amplitude, and incrementally lowered, establishing four distinct
phases of the discharge. Figure 4.2 shows profiles of electron density and temperature over
different stages in the scan; the RMP does not result in any significant changes to the

1Special thanks to Takashi Nishizawa, Matt Kriete, Mark Nornberg, John Sarff, George McKee, and the
scientists at DIII-D for producing the experimental results.
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Figure 4.1: I-coil current as a function of time. The discharge is characterized by four distinct
stages of RMP amplitude, with equilibrium quantities determined separately from time
averages over each stage. Data courtesy of Matt Kriete.

radial profiles. This ramp-down scan in RMP amplitude was performed with the BES array
centered at two different radial positions, measuring fluctuations spanning a total radial
extent from ψn = 0.67 − 1, where ψn is the normalized poloidal flux coordinate such that
ψn = 1 corresponds to the last closed flux surface. Figure 4.4 shows BES measurements of
the time-averaged density fluctuation spectra at ψn = 0.88 (corresponding to the q = 10/3
rational surface, see Fig. 4.3) for each different phase of the RMP ramp-down. As the
I-coil current is decreased, a corresponding decrease is observed in the density fluctuation
levels in the 50− 100 kHz range, where one would expect ion-scale microturbulence. These
measurements are suggestive of the same multi-scale physics previously discussed, wherein
the RMP leads to zonal flow reduction which affects small-scale turbulence levels. Previous
efforts have measured properties of zonal flows in DIII-D (McKee et al., 2006), but such
measurements were not attempted during this campaign so it is not possible to directly
attribute the observations to changes in zonal flow amplitudes from experimental data alone.

To more thoroughly understand the experimentally observed effect, these discharges are
studied using the gyrokinetics code Gene. Linear simulations evaluate how much varying
the RMP amplitude affects equilibrium stability properties. Analysis is performed separately
for each phase of the ramp-down scan at the radial location of interest (ψn = 0.88), with
input parameters taken from experimental profile data generated via time-averaging of each
phase of the scan. The magnetic geometry was determined separately for each stage in
the RMP amplitude ramp down via TRACER-EFIT (Xanthopoulos et al., 2009), which
contains information about the equilibrium magnetic field configuration excluding RMP
effects. Resolutions used for the linear calculations include 31 kx modes, 16 z, 32 v‖, and
8 µ grid points. Relevant physical input parameters at each point of the RMP amplitude
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Figure 4.2: Radial profiles of electron density (top) and temperature (bottom) for different
points in time during the RMP amplitude scan. The RMP produces no significant variation
in radial profiles, though normalized gradients do vary nontrivially towards the edge of the
device. Courtesy of Mark Nornberg and DIII-D Frontier Science.
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Figure 4.3: q profile during the largest-RMP portion of the amplitude scan as a functio of
normalized poloidal flux. n = 3 island widths are increased with application of the RMP
through the radial extent of the device. This work focuses on the q = 10/3 island located at
ψn = 0.88. Generated using SURFmn, courtesy of Sam Nogami.

scan are given in Table 4.1. It is important to note that these simulations, and in all
that follow, use an artificially lowered value for normalized plasma pressure of β = 10−4,
approximately a factor of four lower than the average experimental β at this radial location.
At the nominal β, an anomalous linear instability appears at low wavenumbers and persists for
kyρs < 0.005, which corresponds to spatial scales exceeding the device size. This anomalous
mode, which when included drives high levels of electromagnetic turbulence that never
saturate, is likely attributable to the inaccuracies of the flux-tube prescription that arise at
very low ky. Specifically, the equations used in the Gene code assume negligible parallel
derivatives which affect Ampère’s Law, an assumption which does not hold at sufficiently
large scale and thus can lead to nonphysical electromagnetic behavior. Reducing β serves to
remove this large-scale instability without appreciable changes to the linear ion-scale physics
(see Fig. 4.5).

When analyzing results using an initial value solver, the dominant instability varies
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Figure 4.4: Experimental measurements of density fluctuation spectra taken with Beam
Emission Spectroscopy at ψn = 0.88, averaged in time over each distinct phase of the I-coil
current scan. There is a increase in density fluctuations at microturbulent frequencies with
increasing RMP amplitude. Data courtesy of Matt Kriete.

I-coil Current 0 kA 0.5 kA 2.0 kA 3.6 kA
ωn 2.903 2.198 2.396 3.142
ωT i 3.663 4.066 3.155 3.343
ωT e 5.708 5.016 5.958 5.797
ŝ 2.376 2.335 2.284 2.258

νc[10−2] 1.143 1.234 1.086 1.076
Ti [keV] 0.393 0.370 0.385 0.406
Te [keV] 0.219 0.222 0.233 0.235
ρ∗[10−3] 1.29 1.27 1.31 1.29

Table 4.1: Physical parameters used for simulations performed at ψn = 0.88, the q = 10/3
flux surface. ωX ≡ (a/X)(dX/dr) represents normalized gradients, where X = (n, Ti, Te) for
density, ion temperature, and electron temperature, respectively. Bref = 2.1 T, Lref = 0.803
m for all I-coil current values.
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Figure 4.5: Variation in linear growth rate spectra with RMP amplitude at ψn = 0.88. Solid
lines represent ion-direction modes (corresponding to ITG instability), dashed lines represent
electron-direction modes (∇T -TEM). Simulations are compared at experimental β (top) and
artificially lowered β (bottom); the physical modes are almost entirely unaffected by changes
in β.
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significantly with RMP amplitude, jumping back and forth between modes with electron- and
ion-diamagnetic propagation directions. However, upon examining the stability of several
eigenvalues, one finds that across all of the RMP amplitudes there exist a ∇T -driven trapped-
electron mode (TEM) and an ion temperature gradient (ITG) mode with similar growth rates,
such that slight variations in equilibrium gradient drives shift which instability is dominant,
shown in Fig. 4.5. The variation in normalized gradients listed in Table 4.1 fall within error
bars comparable to those expected for DIII-D L-mode discharges at this radial location,
see Fig. 8 in (Holland, 2016). The ITG mode is localized to ion gyroradius scales as one
would expect, while the TEM continues to grow beyond kyρs ≈ 1, likely transitioning into an
Electron-Temperature-Gradient (ETG) mode. As the physics focus for this chapter concerns
fluctuations at ion-scales and larger, calculating the growth rates for the high-ky ETG is
not necessary; nonlinear convergence testing shows negligible contributions to transport
from electron scales. While both ITG and TEM linear instabilities persist across all RMP
amplitudes, the variations in growth rates suggest that the RMP has a nontrivial effect on
the equilibrium stability. It is, however, unlikely that the experimentally observed changes
in density fluctuations with RMP amplitude can be attributed to changes in linear growth
rates, as the linear changes vary non-monotonically with the RMP. This implies that the key
experimental observations must be attributed to nonlinear physics.

4.2 Interaction of RMP and Microturbulence

Nonlinear simulations are used to further explore what effect connects microturbulence and
RMP amplitudes. These simulations include two kinetic species (electrons and deuterium ions)
and resolve dynamics of both the large-scale RMP physics and the ion-scale microturbulence,
with a minimum kyρs = 0.015 (corresponding to n = 3) and 128 kyρs modes. Additional
resolutions include 192 kx modes, 16 z, 32 v‖, and 8 µ points. Resolving such a broad spectrum
of ky modes leads to significant numerical expense; the discussion that follows focuses on the
Icoil = 0.5 kA equilibrium, which shows the least high-ky ETG activity, reducing the number
of ky modes required for convergence. This equilibrium exhibits the strongest presence of
ITG among the four linear instability spectra, for which the toroidal branch is regulated
heavily by zonal flows, and thus serves at the best candidate for this investigation.

As previously mentioned, the magnetic geometry used for these calculations is generated
from experimental data, but the magnetic structure does not include the RMP (even for
the finite I-coil currents). Instead, magnetic fluctuations from the RMP are included using
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Figure 4.6: Electrostatic ion heat flux versus radial magnetic field strength, showing how
RMP amplitude affects turbulence levels; error bars are a result of time averaging the flux
over the quasi-stationary state. The non-monotonic behavior suggests the presence of physics
beyond just zonal flow erosion.

the same procedure as discussed in the previous chapter and in Appendix A. An important
distinction is that while in Chapter 3, the magnetic fluctuations were imposed at the lowest
ky values of the microturbulence, here the RMP is applied at the minimum kyρs = 0.015 and
is thus an order of magnitude removed in scale from the peak-growth-rate microinstabilities.

To establish a base scenario, a nonlinear simulation without the applied RMP is run and
allowed to reach a quasi-stationary turbulent state. The A‖ perturbation is then introduced
in a continuation of the simulation, and the system is allowed to reach a new quasi-stationary
state; this has been compared with simulations in which the perturbation was applied from
the beginning, which results in the same saturated transport values. After application of
the perturbation, Br at the imposed ky increases gradually due to the plasma response until
it saturates; values quoted for Br/B0 in the following discussion refer to that saturated
amplitude.

The variation in electrostatic heat flux with radial magnetic field amplitude is shown in
Fig. 4.6 for a range of resultant Br amplitudes. This figure contains two features that are
seemingly at odds with expectations: 1) the Br values are significantly (by approximately
an order of magnitude) larger than those used in the experiment, and 2) the electrostatic
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transport scales non-monotonically with Br. The first discrepancy is addressed via the
artificially low β which is a factor of four lower in the simulation than in the experiment. As
the resultant quoted Br amplitudes are a consequence of the externally imposed perturbation
combined with the plasma electromagnetic response, a lower β means that the Br produced
by plasma magnetic response is correspondingly reduced and thus a larger imposed Br is
needed. To examine the need for increased radial field strength more quantitatively, one
can calculate the magnetic diffusivity resulting from both experiment and simulation. This
calculation was performed as described in (Rechester and Rosenbluth, 1978) and (Nevins
et al., 2011), with the average field line wandering being calculated from a Poincaré plot of
200 radially-equidistantly seeded lines over 60 poloidal turns. The data for the experimental
magnetic diffusivity is determined from the equilibrium vacuum field at each different point
in the RMP amplitude scan2, while the simulation magnetic diffusivity is determined from
the saturated state, which includes the plasma magnetic response. This difference means that
the comparison is not direct, but still allows for a qualitative assessment and comparison
of diffusivities. The comparison of these experimental and computational magnetic field
diffusivities is presented in Fig. 4.7. As demonstrated in the figure, applying Br values
comparable to those used in the experiment would not produce any magnetic diffusion due
to the lowered value of β. As β cannot be increased in simulation due to the previously
discussed non-physical, large-scale mode that develops, Br serves as the tuning parameter to
increase plasma magnetic activity. Note that because of the small values for Br used in the
experiment, the order of magnitude increase places the Br used in simulation in the same
range as that normally used for ELM suppression (Evans et al., 2006), and thus are still
physically relevant.

Using these necessarily larger Br values, the non-monotonicity of flux scaling still needs to
be understood. Informed via the perspective of magnetic-flutter-induced zonal flow erosion,
one would reasonably expect the transport to increase monotonically with magnetic field
perturbation, or perhaps level off at some point at which the zonal flows are entirely removed.
A possible mechanism for the observed drop in transport over a range of Br values relies
on the concept of profile corrugations, from (Waltz et al., 2006). In flux-tube calculations,
pressure gradients are assumed constant. However, time-averaged fluctuations in a saturated
state, such as density or temperature perturbations, vary over the radial domain (but are
constant within flux surfaces, m = n = 0). These fluctuating profiles have their own gradients
(corrugations), which can serve as an additional drive on top of the equilibrium gradients to

2Credit to Dmitri Orlov
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Figure 4.7: Magnetic field diffusivity versus radial magnetic field strength. The order-
of-magnitude difference in Br/B0 between experiment and simulation needed to produce
comparable magnetic diffusivity is attributed to the lower β used for simulation purposes. At
the experimental β, the plasma accesses the regime for zonal-flow degrading magnetic flutter
much more readily.

enhance turbulence citepWaltz10,Pueschel13Secondary. As seen in Fig. 4.8, which shows an
example of a fluctuating temperature gradient, these enhancements to the turbulence are not
spread over the entire simulation domain but are instead radially localized. The scale length
to which this localization occurs is called a corrugation length; for example, in Fig. 4.8, this
length is approximately 25 ρs.

Corrugations vary above and below equilibrium values (typically in a sinusoidal fashion
for flux-tube simulations), so if a large enough radial region is sampled by a moving particle
along its trajectory then the modifications introduced by these corrugations can average out.
Generally, this occurs for radial regions & 1 corrugation length. When an RMP is applied at
a resonant surface, an island forms, allowing particles to move very rapidly radially by one
island width. Consider island structures overlaid on temperature corrugation contours, as
shown in Fig. 4.9. In this figure, a corrugation length corresponds to ≈ 30ρs. The edges of the
islands produced by the RMPs are less well-defined, which makes identifying a precise island
width challenging. For the purposes of this discussion, an island width refers to maximal
radial excursion of a given field line, which extends beyond the clean island-like flux surfaces
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Figure 4.8: Example of a temperature profile corrugation take from a nonlinear DIII-
D gyrokinetic simulation with an external Br/B0 = 3.25 × 10−4. Fluctuations in ion
temperature gradient versus radial position exhibit periodic behavior (expected for flux tubes)
and localization in the x direction. The dashed red line corresponds to equilibrium gradient,
demonstrating that fluctuating gradients can be on the same order as the background.

but more accurately corresponds to the physically relevant scale length. When this island
width is less than half a corrugation length, particles moving within that radial region will
feel an increased turbulent drive due to the corrugation. However, once the island width
exceeds approximately the half corrugation length, the average corrugation effect experienced
by a particle moving within the island actually begins to decrease, until it vanishes entirely
once the island width reaches a full corrugation length.

The non-monotonicity of the flux scaling with Br (or island width) can plausibly be
matched to this phenomenon. Figure 4.9 shows island structures overlaid on contours of
turbulent temperature fluctuations for the RMP values that correspond to the first peak (left)
and trough (right) in flux as shown in Fig. 4.6. Importantly, the corrugation length does
not vary with RMP amplitude, but rather corresponds to the scale length set by the lowest
finite kx that is coupled to the kx = 0 mode through the parallel boundary condition (see
Chapter 2). The RMP island width corresponding to the first peak in transport is equal to
approximately half the corrugation width, and thus the decrease in transport that comes with
larger island widths is consistent with the above physical picture. Additionally, the island
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Figure 4.9: Poincaré plots of RMP island structure overlaid on contours of the time-averaged
turbulent temperature gradient fluctuations for the RMP values corresponding to (left)
the first peak in transport and (right) the trough. For the left, the RMP island width is
approximately half a corrugation length, whereas on the right, the island width reaches a full
corrugation length.
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width corresponding to the trough in transport matches well with the full corrugation length.
Beyond this point, island self-overlap begins to occur which greatly enhances the already
present magnetic-flutter-induced zonal flow erosion, now much stronger than the effect of
corrugations. It should be noted that this corrugation effect is clearly a consequence of using
flux-tube simulations; one would not expect such behavior to be present in experimental
observations, where profiles cannot be held constant.

With a better understanding of these phenomena in hand, the effect of the RMP on
microturbulence levels is more directly examined. Fig. 4.10 plots density fluctuation spectra
taken from simulations, focusing specifically on RMP strengths that result in magnetic
diffusivity comparable to that seen in the experiment, see Fig. 4.7 for reference. In the
experiment, even in the absence of an RMP, there still exists a small island at ψn = 0.88. As
the existence of this island is suppressed by the artificially reduced β, the smallest imposed
Br/B0 value in Fig. 4.10 serves as a proxy for this island, and the curves in the figure can
be qualitatively matched to the curves of corresponding color in Fig. 4.4. Figure 4.10 shows
the turbulence to increase with increasing RMP amplitude for a range of microinstability
wavenumbers, qualitatively agreeing well with the BES measurements.

The density spectra exhibit interesting features outside of the microinstability wavenumber
range for which fluctuations increase with RMP. Below ky = 0.1, there are two peaks: one
corresponding to the RMP applied at ky = 0.015, and another peak at ky = 0.075. The latter
peak occurs at the largest scales for which ITG remains unstable (not shown in Fig. 4.5),
and is nonlinearly suppressed by the RMP. At the high-ky end of the spectrum, the increase
in fluctuations with RMP is not observed. This is potentially attributed to a transition
as seen in the linear instability spectrum from ITG to ∇T -TEM. It has been documented
previously (Dannert and Jenko, 2005) that the dependence of ∇T -TEM turbulence on zonal
flows is very weak. As such, one would not expect the fluctuations at wavenumbers for which
∇T -TEM dominates to change in response to zonal flow reduction, in contrast to fluctuations
at ITG-dominanted wavenumbers (which depend strongly on zonal flows). It remains then to
verify that the changes observed for the ITG-dominated wavenumber range correspond to
zonal flow erosion in what follows.

These simulation results showing a range of microinstability fluctuations that vary directly
with RMP amplitude, coupled with the BES observations, suggest strongly that RMPs have
a significant effect on microturbulence. However, it is important to study what specific
aspects of the RMP govern this effect, and whether or not it can be directly connected to the
previously discussed zonal flow erosion mechanism, or if the RMPs are increasing turbulence
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Figure 4.10: Density fluctuation amplitude vs. wavenumber. For a range of microinstability
wavenumbers, the spectral amplitudes increase commensurately with RMP strength, in
qualitative agreement with Fig. 4.4.

levels through a different process. The ky = 0 Fourier component of the electrostatic
potential (i.e., the zonal flow) is plotted versus time in Fig. 4.11. At t = 1730a/cs, when
the RMP is applied, there is a distinct drop in the zonal flow amplitude, and the zonal
flow establishes a saturated value lower than before applying the RMP. Combined with
the previous results of turbulence levels increasing with RMP strength, this points very
strongly to DIII-D exemplifying another regime in which this multi-scale interaction between
large-scale magnetics and zonal-flow-mediated microturbulence is significant.

Previous studies (Holod et al., 2017) examining the effect of RMPs on microturbulence in
DIII-D noted that there was no discernible effect, seemingly in stark contrast to the results
just presented. However, in that work, the RMP was applied in such a way that flux surfaces
were shifted, but the RMP did not produce a change in the magnetic topology, referred to
in that work as an ‘ideal MHD kink response’. To compare the results of that work to the
physics discussion of this chapter, the identical procedure detailed above for studying RMP
effects was performed, but changing the RMP structure such that it has odd parity in the
field-line-following coordinate z instead of even. This is not to be confused with the RMP
coil parity on the DIII-D experiment, for which the terms “odd” and “even” are used with
a separate meaning. Physically, this corresponds to perturbations that break flux surfaces
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Figure 4.11: Time trace of the ky = 0 electrostatic potential. At t = 1730, the RMP is turned
on, at which time the zonal flow amplitude drops and establishes a lower saturated value.
This is consistent with the physical picture of zonal flow reduction via magnetic flutter.

(even z parity, or tearing-like) versus those that simply shift the surface (odd z parity, or
kink-like). This was implemented by applying an A‖ ∝ ze−z

2 (in contrast to the A‖ ∝ e−z
2)

as a continuation to the simulation without an applied RMP. As demonstrated in Fig. 4.12,
this odd parity RMP has no appreciable effect on the density fluctuation spectra (aside
from a slight narrowing of the low-ky ITG peak), though the Br magnitude is comparable to
largest Br value in Fig. 4.10. As zonal flows follow flux surfaces, particles streaming along a
perturbation that shifts flux surfaces rather than breaking them would not traverse regions of
different electrostatic potential, so one does not expect the magnetic-flutter-induced “shorting
out” of zonal flows (discussed in Chapter 2) to occur here. In light of this, the results of
this chapter are not at odds with those presented in (Holod et al., 2017), but rather serve to
further confirm the role of magnetic flutter in reducing zonal flows.

4.3 Chapter Summary

This chapter presented a combined experimental and computational study of the inherently
multi-scale effect of RMPs on zonal flows and microturbulence levels in the DIII-D tokamak.
In order to draw connections to tearing modes and microturbulence on the RFP from
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RMP (crimson) of comparable Br amplitude to the tearing-parity studies. The addition of
the odd-parity RMP does not produce a significant difference in the density fluctuation.

Chapter 3, large-scale magnetic fluctuations were sourced via a tunable RMP amplitude.
Experimental measurements of density fluctuations using BES reveal a direct increase in
fluctuation signal at microturbulent frequencies with RMP amplitude, suggestive of this same
magnetic fluctuation-zonal flow-microturbulence interplay. Gyrokinetic simulations were used
to more thoroughly characterize the governing physics in this discharge. Non-monotonic
scaling of turbulence levels were observed, at odds with expectations set by the previous work
on MST; this apparent discrepancy was addressed and explained via profile corrugations.
In the simulations, density fluctuation spectra were seen to increase with increasing RMP
amplitude for a range of microinstability wavenumbers, in qualitative agreement with the
experiment. This increase in microturbulent activity is concurrent with a marked drop in
zonal flow levels, indicating the same sort of magnetic-flutter zonal flow erosion dynamics that
were observed for MST simulations are present in DIII-D. As an additional confirmation of
this, the structure of the RMP was also seen to play a significant role, such that flux-surface-
breaking is required for an observable effect on transport. While RMPs will continue to be a
vital part of tokamak confinement efforts through ELM suppression, the additional impacts
that RMPs have on plasma dynamics, such as in this chapter with increasing microturbulence
and transport, should be taken into consideration.
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5 multi-scale interactions of tearing modes and
microturbulence

The results discussed in Chapters 3 and 4 clearly demonstrate the importance of interactions
between ion-scale and MHD-scale dynamics, specifically as they manifest in some toroidal
fusion plasma configurations. As previously discussed, the large-scale magnetic fluctuation
effects were modeled via the inclusion of a constant-in-time A‖ perturbation implemented at
the largest spatial scale of the simulation domain. While this implementation is an accurate
reflection of how the RMP appears in DIII-D plasmas, this approach is somewhat limited in
describing all of the physics present in the tearing-mode-microturbulence interactions present
in the RFP. In Chapter 3, the simulation domain was limited to microturbulent scales, and
thus was not representing truly multi-scale interaction physics but rather modeling how
small scale magnetic fluctuations (that could in principle be driven by the large tearing
modes) alter the microturbulence. Additionally, tearing mode magnetic fluctuations in the
RFP are not driven by contant-in-time external sources, but are an unstable normal mode
drive by current gradients of the plasma equilibrium state. A physically realistic description
would thus account for current gradient-driven global instability within the model equations,
allowing not only the tearing fluctuations to modify properties of microturbulence, but
also for the microturbulence to modify the large-scale magnetic fluctuations. Experimental
measurements of power fluctuations in standard MST plasmas (Thuecks et al., 2017) points
to the coexistence of large-scale tearing modes and small-scale microturbulence. As evident
in Fig. 5.1, the partition of energy between kinetic and magnetic channels shows an existence
of high-frequency, non-Alfvénic modes, as Alfvénic modes distribute energy equally between
kinetic and magnetic channels. These high-frequency, kinetically-dominated modes are
concurrent with tearing modes at low frequencies.

A large body of theoretical work (Scott et al., 1985; Fitzpatrick, 1995; McDevitt and
Diamond, 2006) has included current gradients in models to study multi-scale interactions
between tearing modes/islands and microturbulence. As examples: (Hornsby et al., 2015)
observe using the gyrokinetic code GKW that islands can drive microinstabilities near the
separatrix, which in turn serve to stochasticize the island structure. (Ishizawa and Nakajima,
2007) observe that a turbulent state characterized by a balance between zonal flows and
microturbulence can be destabilized by the formation of tearing mode. However, within these
works there are not any discussions of the important magnetic-flutter-induced zonal flow
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Figure 5.1: Experimental measurement of energy partition in standard MST plasmas. At low
frequencies, tearing modes dominate the power spectrum. At high frequencies, a deviation
from energy equipartition suggests the presence of high-frequency microinstabilities present
concurrent with the tearing activity. Taken from (Thuecks et al., 2017).

erosion and its effect on transport levels. In the interest of studying that physics, as well
as working towards a description that more accurately models RFP dynamics, the Gene
equations are modified to include current gradient effects.

In this chapter, a modified gyrokinetic Vlasov equation is presented, and results thus
obtained are benchmarked against existing analytic theory; importantly, all work in this
chapter is based on a slab geometry and corresponds to the collisionless limit of tearing
fluctuations, in which effects other than resistivity are responsible for the non-ideal physics
associated with instability. The linear instability spectrum is then presented for the slab
geometry with both a current gradient and a temperature gradient. Along with the expected
tearing mode and a slab-ITG microinstability, an additional instability is observed in the
system and characterized here. Nonlinear simulations are performed, defined by distinct
separation in temporal and spatial dynamics between ITG and tearing modes, and by
modifications to both regimes when compared to single-scale simulations.
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5.1 Current Gradient Implementation

To model the effects of an equilibrium current gradient, the governing gyrokinetic equations
employed in the Gene code as discussed in Chapter 2 are modified. The modifications take
the following form:

Lj → Lj + ∂xG0j∂yχj − ∂xχ0∂ygj , (5.1)

where Lj is the unmodified linear gyrokinetic operator as defined in Chapter 2, G0j is a
modified shifted Maxwellian distribution function, and χ0 is equilibrium vector potential that
arises from the equilibrium current (see Appendix C). This approach is similar to the methods
used in (Pueschel et al., 2011), which uses gyrokinetics to study reconnection. However,
in that work the free energy for tearing modes is introduced via the initial condition (a
current sheet) that evolves via the nonlinearity. As that free energy source is applied only at
t = 0 and not sustained, any turbulence is inherently decaying. Additionally, that approach
requires nonlinear simulations, and thus is unable to characterize the full spectrum of linear
modes. Using the method described in this section results in a fixed source of free energy
throughout the duration of simulation to drive turbulence, and allows for linear calculations
of eigenmodes.

The quantities G0j and χ0 in Eq. 5.1 are defined as:

G0j ≡
mj

2πT0j
n0jexp

[
−

(mj/2)(v‖ − v‖,0(x))2 + µB0)
T0j

]
− qj
mjc

∂F0j

∂v‖
A‖,0 (5.2)

χ0 ≡ −
v‖
c
A‖,0 . (5.3)

Note that G0j is a modification of F0j much in the same way that gj is a modification of fj
(Eq. (2.11) in Chapter 2), and A‖,0 is calculated from Ampére’s law with current determined
from the the v‖ velocity space moment of the shifted Maxwellian distribution function. For
all results discussed in this chapter, the radial variation of the velocity shift is sinusoidal, with
v‖,0 = v0cos(kx,csx), where kx,cs is the wavenumber of the current sheet and the corresponding
By,0 that it produces (see Fig. 5.2). From this radial velocity dependence comes the current
gradient (the first new term in equation (5.1)), and necessarily a background current will
produce a background vector potential (the second new term in equation (5.1)). These
additions produce extra terms that are higher order in ρref/Lref as well, which are neglected
here to stay consistent with the orderings discussed in Chapter 2. While implemented in the
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Figure 5.2: Radial variation of the added equilibrium By,0, which allows for tearing-unstable
configurations. Note that the variation in By,0 (and thus the variation in the equilibrium
current) is sinusoidal within the box, unlike other equilibrium gradients, which are taken as
constant.

local flux-tube configuration, using this form means that the current gradient varies along
x within the simulation domain, unlike the other equilibrium gradients, which are constant
over the box length.

To test these modifications, benchmarking against an existing fluid model (Porcelli, 1991)
was performed. As shown in Fig. 5.3, the modified linear operator in the Gene code agrees
with existing analytic theory very well. For this benchmark, kx,cs = 0.2, v0 = 0.5cs, β = 0.3,
and mi/me = 25; the scan over density gradient was performed at ky = 0.01.

5.2 Instabilities of the New Linear Operator

Before running nonlinear simulations with the new current gradient, it is important to
understand all of the linear instabilities present in the system that might contribute to the
turbulent state. In order to investigate fundamental physics properties, the system studied for
this chapter is a slab magnetic geometry. The inhomogeneities within the plasma consist only
of a current gradient (to drive the tearing mode) and an ion temperature gradient (to drive
slab-ITG microinstability). Relevant simulation parameters include: β = 0.03, v0/cs = 0.75,
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of linear growth rates versus wavenumber; the analytic theory is plotted for the limits ky → 0
and ky → kx,cs. The code agrees very well with the theory in these limits. (b) Linear growth
rate versus normalized density gradient; gyrokinetic simulations also match analytic theory
very well in predicting diamagnetic stabilization of the tearing mode instability.
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kx,cs = 0.125, ωT i = 10, and mi/me = 100 (reduced mass ratio used for more affordable
computing costs).

As a prominent motivator behind this effort is to examine multi-scale interactions between
tearing modes and microinstabilities, these parameters are chosen such that there is a distinct
separation of spatial scales between the linear tearing mode activity and the ion-temperature-
gradient mode activity. Shown in Fig. 5.4, using these parameters results in an instability
spectrum across different scales, as desired. The black symbols correspond to simulations in
which a single free-energy source is included and thus a single instability is present over a
localized range of ky. The circles at low kyρs correspond to purely growing tearing modes
driven by a current gradient and temperature gradient; the squares at higher kyρs are a
slab-ITG mode that is driven by an ion temperature gradient with no current gradient. The
blue crosses and cyan triangles correspond to tearing modes and slab-ITG modes, respectively,
for simulations in which both current gradient and ion temperature gradient are present. As
expected, diamagnetic stabilization of the tearing modes is caused by the addition of the
temperature gradient (evident by the slightly lower growth rates of the blue crosses compared
to the black circles). In the higher-wavenumber end of the spectrum, a number of different kz
branches of the slab-ITG mode are excited in the case with the current gradient. The multiple
peaks in the linear spectrum correspond to these different branches for which higher kz modes
appear at higher ky, see Fig. 5.5. This is in contrast to the slab-ITG spectrum without the
current gradient, in which a single kz harmonic is dominant across all wavenumbers and the
resultant spectrum varies smoothly. This difference is attributed to the small amount of
magnetic shear introduced by the small By,0 produced by the current, as kz ∝ ŝky.

Hybrid Drift-Tearing Mode

Along with the tearing and slab-ITG modes present at distinct spatial scales, the modified
linear operator produces an additional instability that manifests at intermediate length scales
and requires a finite gradient in both the current and ion temperature to exist. This mode is
robust to convergence checks (including mass ratio in addition to the standard resolution
checks) and thus not a numerical artifact. The instability has features that make it distinct
from either the tearing mode or the slab-ITG mode, which are explored in this section; it
will be hereafter referred to as the hybrid drift-tearing mode, not to be confused with the
standard drift-tearing mode.

In examining linear instability from initial-value calculations, a smooth transition occurs
in the dominant growth rates from the normal tearing instability to hybrid drift-tearing mode
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Figure 5.4: Linear growth rate versus wavenumber, comparing the instability spectrum in the
case where there is only a current gradient (black circles), only an ion temperature gradient
(black squares), and both current and temperature gradient (blue crosses and cyan triangles).
Tearing modes and slab-ITG modes are present at separate scales. Tearing modes at low ky
are slightly stabilized by the temperature gradient, and the shear introduced by the current
excites various kz branches of the slab-ITG mode.

at ky = 0.06, refer to Fig. 5.6 (the tearing mode growth rates for ky ≥ 0.06 were obtained
using the Gene eigenvalue solver). Two key features differentiate this mode from the tearing
mode at those low wavenumbers: 1) the instability continues to grow rather than decay as
ky approaches kx,cs, and 2) while the growth rate varies smoothly in transition from tearing
mode into the hybrid drift-tearing mode, there is a marked increase in the real frequency
over the transition. The current layer developed from the shifted-Maxwellian equilibrium
appears to play an important role in the radial structure of this instability, similar to the
tearing mode. Also, like the tearing mode, the hybrid drift-tearing mode is two-dimensional,
not exhibiting any features in the z direction or showing any difference between 2D and
3D simulations. In that way, it differs importantly from the slab-ITG mode. The hybrid
drift-tearing mode persists well into the microinstability wavenumber range, at which point
there coexist a number of different modes, both the hybrid drift-tearing mode, which has two
flavors as described below, and various kz branches of the slab-ITG. While all of these modes
are unstable they are subdominant to the slab-ITG and not plotted in Fig. 5.6 to maintain
clarity.



72

3 2 1 0 1 2 3
z/Lref

1.0

0.5

0.0

0.5

1.0

Φ
(A

rb
.

U
n
it
s)

ky = 0. 4

ky = 0. 6

ky = 1. 6

ky = 2. 3

Figure 5.5: Electrostatic potential mode structure for the different kz branches of the slab
ITG mode present in the linear instability spectrum. As ky increases, higher kz harmonics
take over as the most dominant instabilities, contrasting the case without a current gradient
in which there is one dominant kz branch across the whole spectrum.

The hybrid drift-tearing mode exists in two flavors of distinct x-parity, depending on
whether the mode wavenumber ky is greater or less than kx,cs. For ky < kx,cs, the mode
structure is tearing parity (where A‖ is even, Φ is odd) in the x direction much like the tearing
mode, whereas the parity switches to ballooning (A‖ and Φ switch parity) for ky > kx,cs. As
evident in Fig. 5.7, both parity versions of this mode exhibit the same parametric dependencies.
This, combined with the fact that growth rate and frequencies vary smoothly across the
ky = kx,cs boundary, suggests that the two different parities are branches of the same mode.
The extent to which those modes contribute to the turbulent state compared to the tearing
and slab ITG modes will be discussed in the next section.

5.3 Turbulence in the Tearing-Slab-ITG System

Nonlinear simulations of this slab system with both ion temperature and current gradient are
performed to analyze the how cross-scale interactions modify the turbulence when the magnetic
fluctuations are driven self-consistently from the plasma equilibrium. These simulations use
the same parameters as discussed in the previous section, with ky,min = 0.025 and 128 ky
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Figure 5.6: A more complete picture of the instability spectrum from Fig. 5.4 with a linear
operator that contains both a current and temperature gradient, showing the presence of the
hybrid drift-tearing mode arising at intermediate spatial scales. This instability continues
into ion scales, at which there are a number of unstable modes. Only the most unstable
slab-ITG is shown here in that wavenumber range.

modes utilized to resolve both tearing-mode and slab-ITG scales. Figure 5.8 depicts the
time evolution of the electrostatic and electromagnetic components of the heat flux, from
which direct consequences of the multi-scale turbulence are observed. The simulation exhibits
three distinct states of “quasi-stationary” turbulence, defined here via the time intervals of
t = 35− 50, t = 75− 115, and t = 215− 270.

For the first interval, the transport is almost entirely electrostatic. In the second interval,
the system is still primarily electrostatic, but there is a marked increase in electromagnetic
activity. An examination of the zonal flow time trace in these first two intervals, shown as a
dashed black line in the subfigure, reveals significant physics in response to this increased
electromagnetic nature. During the first interval, the initial saturation of the turbulence
occurs, during which zonal flows are growing further. However, as the turbulence increases
and establishes a new, increased level in the second interval, the zonal flow then drops
significantly, contrasting the previous interval in which it was driven. This drop coincides
with more electromagnetic activity, which rises in the transition from the first to the second
interval. This rise, occurring from t ≈ 40− 60, happens at a growth rate of approximately
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Figure 5.7: Growth rate dependence of the hybrid drift-tearing mode on ion temperature
gradient, equilibrium velocity (current), and plasma pressure for both parities of the mode.
The mode has the same dependencies on these parameters both in the tearing- and ballooning-
parity flavors.

twice the maximum linear growth rate of the tearing mode. The phenomenon matches closely
what one would expect from magnetic-flutter-induced zonal-flow decay, marking another
system in which this effect comes into play. In contrast to other systems, however, the zonal
flow reduction is not followed by increased transport levels. This is likely attributable to the
driving instability for electrostatic turbulence in this system being slab-ITG. As discussed in
Chapter 3, slab-ITG is less reliant upon zonal flows for saturation, which suggests that one
could expect a similar lack in sensitivity to zonal flows from the slab-ITG in this interval.
Beyond the second interval, the tearing instability begins to dominate the system and turns
over around t ≈ 215.

Figure 5.8 effectively shows a separation of temporal dynamics, in which early times
have faster electrostatic modes dominating and later times have slower electromagnetic
mode effects. In order to characterize the separation of spatial dynamics as well, heat flux
spectra are calculated from time averages over each interval, see Fig. 5.9. Electrostatic and
electromagnetic components of the ion heat flux spectra are plotted for each interval. For
the first interval, the flux is localized to the spatial scales at which the slab-ITG is unstable.
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Figure 5.8: Time trace of the ion heat flux (green for electrostatic, blue for electromagnetic)
for the slab system unstable to ITG and tearing modes (as well as the hybrid drift-tearing
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dominated, and the final phase is primarily electromagnetic. Zonal flow decay commensurate
with increasing electromagnetic activity can be observed during the electrostatic turbulence
(dashed black line), consistent with the previously-discussed magnetic-flutter-induced zonal
flow erosion seen in earlier chapters.
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While the additional hybrid drift-tearing mode is unstable at these wavenumbers as well, the
fact that the spectrum drops off rapidly below the slab-ITG wavenumbers where the hybrid
drift-tearing mode is still unstable suggests that the ITG mode is the dominant contributor
to the turbulence during this phase. Transitioning to the second interval, the spectral peak
shifts to lower wavenumbers and becomes wider; this suggests that the hybrid drift-tearing
mode contributes more significantly to this intermediate interval.

For the third interval, the electromagnetic flux has become dominant, and the peak has
shifted down to the tearing-unstable wavenumbers, specifically to where the tearing growth
rate peaks. This state of electromagnetic turbulence is reminiscent of Fig. 5.1 from (Thuecks
et al., 2017), in which experimental observations of fluctuation power spectra on the MST are
dominated by magnetic energy at low frequencies and kinetic energy at higher frequencies.
Contrasting this with the expectations of a pure MHD equipartition suggested the presence
of microturbulence in the MST, even in standard operation without the increased gradients
of PPCD. This lack of energy equipartition has also been noted in astrophysical plasmas
(Boldyrev et al., 2011). One can see in these simulations that indeed a combined tearing- and
micro-unstable system will produce such spectra. This multi-scale manifestation can also be
observed in the transport cross phase α, which is defined for two fluctuating quantities A
and B from the relation:

〈AB〉 = |A||B| sinα , (5.4)

and serves as a measure for how much fluctuations at a given wavenumber can contribute to
transport for a given turbulence amplitude. For electrostatic heat transport (cf. Eq. (1.20)),
A = Φ and B = T ; for electromagnetic flux A = q‖ and B = A‖. It is evident from
Eq. (5.4) that maximal contributions to outward transport occur at α = π/2, and maximal
contributions to inward transport (or pinch) at α = −π/2 (phases of α = 0 or π means no
contribution to transport). Cross phases for each time interval are shown in Fig. 5.10. For
the first two periods, the cross phase for electrostatic transport resides near π/2, while for
the electromagnetic transport it is close to π. Additionally, both transport channels exhibit a
peak in phase at microturbulent wavenumbers, which shifts downward for the second interval;
this is consistent with the flux spectra. For the electromagnetic interval, the 〈q‖,iA‖〉 cross
phase has shifted closer towards π/2 and down into the tearing instability range.

It is of interest to examine how this simulation containing both tearing and slab-ITG at
distinct spatial scales compares to single-scale simulations of ITG microturbulence or tearing
mode turbulence that resolve only their respective scales. Studying first how the slab-ITG
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turbulence is modified by multi-scale effects, a nonlinear simulation without an equilibrium
current gradient including only ion scales (ky,min = 0.1, 48 ky modes) but the same ion
temperature gradient is performed. Figure 5.11 shows the time trace of electrostatic ion heat
flux for both the full multi-scale system with both tearing and ITG instability resolved at
different scales and for a system that is only ITG unstable. The time window is chosen to
compare the ITG-only case with the first interval of the multi-scale simulations in which the
turbulence is localized primarily to the slab-ITG scales (as was discussed with Fig. 5.9). The
ITG-only case reaches a saturated turbulence level within this time window, and does not
vary from this quasistationary state at later times.

As evident from both Fig. 5.4 and comparing the linear growth phases of Fig. 5.11, the
instability growth rates are larger for the system with only an ion temperature gradient. It is
often assumed that flux levels scale directly with peak linear growth rate; one might predict
for this reason that the transport levels for the ITG-only system would be larger than the
electrostatic transport in the multi-scale system. However, this is clearly not the case, for
even the lowest transport level of the multi-scale system significantly exceeds that of the ITG
system. While this difference in transport level cannot be directly attributed to zonal flow
reduction (which does not happen until the second interval of the multi-scale simulation, and
as discussed likely does not directly affect slab-ITG saturation), this demonstrates that there
are cross-scale dynamical effects that drive the transport higher than expectations set by
linear or quasilinear physics. It should be noted that the zonal flow reduction observed in
the multi-scale simulation does not occur in the single-scale slab ITG turbulence, consistent
with the necessity of electromagnetic activity for zonal flow erosion.

In addition to studying how tearing effects modify the ITG-only turbulence, the reverse
is also studied. To model turbulence and transport for a tearing-unstable system, both
current and temperature gradients are retained (unlike the ITG-only case which did not
include the current gradient). Heat fluxes in Gene are calculated utilizing averages in the x
direction, and as such the periodic current gradient produces zero transport upon x-average;
for this reason the standard constant temperature gradient is also included. As previously
mentioned, the tearing instability is entirely two-dimensional and is virtually unaffected
by the addition of the z dimension in simulations. This contrasts with the slab-ITG, an
inherently three-dimensional instability. Thus, 2D simulations are used to ensure complete
modeling of all the tearing mode physics, while conveniently removing the ITG part despite
the presence of ωT i. The hybrid drift-tearing mode discussed also persists in two dimensions;
quantifying to what extent it contributes to the turbulent state is an important question to
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Figure 5.11: Comparison of electrostatic flux time traces for the multi-scale system (green) and
the ITG-only system (orange). Despite larger linear growth rates in the latter, the saturated
transport level is lower, suggesting the importance of cross-scale effects that allows turbulence
to saturate at higher amplitudes, beyond those set linear or quasilinear expectations.

be addressed in future work. It is sufficient for the discussion here of comparisons to the
combined tearing-slab-ITG system simulation that slab-ITG instability is not present.

These simulations again use the same physical parameters for the gradients, mass ratio,
kx,cs, and β, and have ky,min = 0.01 with 48 ky modes. A time trace of the electromagnetic heat
transport is shown in Fig. 5.12. Similar to the result of comparison of ITG-only transport with
the multi-scale case, there is here a modification of transport levels between the single-scale,
2D tearing simulation (which reaches a saturation Qem

i ≈ 170 shortly beyond the time window
in Fig. 5.12) and the multi-scale. As both the tearing instability and the hybrid drift tearing
mode gain no additional physics from 3D effects, this increase in transport level evident in
the multi-scale is attributed to the presence of slab-ITG. Just as in the previous comparison,
using growth rates alone to estimate relative differences in transport levels would not provide
the correct scalings, further reinforcing the shortcomings of quasilinear concepts to inform
transport physics when interactions between distinct scales are present.

The slab-ITG mode also appears to have a significant effect on the island structure.
Figure 5.13 compares Poincaré plots between the two simulations, both taken from regimes
of saturated electromagnetic turbulence. For the 2D simulation in which slab-ITG is not
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Figure 5.12: Comparison of electromagnetic flux time traces for the multi-scale system (blue)
and the 2D tearing system (magenta). Similar to Fig. 5.11, linear growth rates are slightly
higher for the single-scale simulation for t < 120, but cross-scale effects again result in
transport larger than what quasilinear estimates would predict.

present, there are well-defined, distinct island structures with a ky wavenumber corresponding
approximately to the peak in linear growth rate and heat flux spectrum. However, the
introduction of microinstability significantly stochastizes the magnetic field structure, resulting
in a loss of coherent island region. A similar effect is seen in (Hornsby et al., 2015), in
which increased gradients around island separatrices drive microinstabilities that produce field
stochastization. It is possible that a similar phenomenon is occurring here; however, as evident
from Fig. 5.13, the stochastization is not localized to the island boundary, but rather the
entire magnetic field structure has become somehwat stochastic due to the microturbulence.
This more stochastic structure can contribute to the larger electromagnetic transport seen in
Fig. 5.12, as particles can traverse radial distances very rapidly along these wandering field
lines.

It is worth mentioning the role that the hybrid drift-tearing mode might play in these
analyses. An issue to address concerning the 2D tearing simulations with an ion temperature
gradient regards how to distinguish between effects of slab-ITG from the hybrid drift-tearing
mode, which does persist linearly out to ion-scale wavenumbers. In order to most effectively
address this, one would ideally calculate the complete eigenspectrum for the linear operator
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Figure 5.13: A comparison of magnetic island structure for (left) the single-scale, 2D tearing
system and (right) the multi-scale, tearing+slab-ITG system. The tearing-only system
exhibits separate well-defined island structure at the ky approximately around where the
linear growth rate and flux spectra peak. The multi-scale system exhibits a loss of coherent
island structure, suggesting that the microturbulence serves to enhance magnetic stochasticity.
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that has both a current and a temperature gradient and then use projections, as defined
in (Pueschel et al., 2016; Fraser et al., 2018), to determine how much each different mode
contributes to the overall saturated turbulent state. However, the rank of the discretized
linear operator is so large for this system that a full calculation of all the eigenmodes is not
tractable at this time. The results presented here do reflect the importance of the effect
that high-ky modes have on small-ky tearing turbulence. Thus, in the interest of multi-scale
physics investigations, whether the contributing high-ky mode is slab-ITG or the hybrid
drift-tearing mode (or likely, both) is of secondary importance.

5.4 Chapter Summary

In this chapter, multi-scale interactions between magnetic fluctuations and microturbulence
were investigated through a slab system stripped of the geometric complexities that can arise
in toroidal fusion configurations. The tearing modes were sourced via a new equilibrium
current gradient drive term in the Gene code. Tearing mode instability at large scales and
slab-ITG instability at small scales were found in a slab system with both an equilibrium ion
temperature and current gradient. The combined gradients also produced a new mode which
was characterized here. A nonlinear, multi-scale simulation exhibited dynamics at distinct
spatial and temporal scales, with electrostatic ITG turbulence dominating early times and
electromagnetic tearing turbulence dominating later in the simulation. Zonal flow decay as
a response to electromagnetic effects was again seen for this system. However, zonal flows
play a less important role in slab-ITG saturation, and so a corresponding increase in the
electrostatic turbulence was not observed. Comparisons of this multi-scale simulation with
single scale simulations at both large tearing scales and small ITG scales revealed significant
effects of cross-scale interactions and the inability of simple linear or quasilinear estimates to
inform multi-scale physics accurately.
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6 magnetic-drift-driven collisionless microtearing

The primary focus of this thesis is the study of how interactions between large-scale magnetic
activity and small-scale microturbulence affect turbulence and transport levels. This focus
originates out of an interest in understanding specifically the dynamics governing RFP
plasmas, as discussed thoroughly in chapter 3. In this chapter another physics phenomenon
that is of particular relevance to the RFP configuration is explored: collisionless microtearing
modes driven by magnetic drifts.

The microtearing instability is another drift-wave instability known to exist in various
toroidal configurations, including the tokamak (Doerk et al., 2011; Hatch et al., 2016) and
the RFP (Carmody et al., 2013; Predebon et al., 2010). It shares features with other
microinstabilities discussed throughout this thesis, such as being driven by pressure gradients
(specifically ∇Te) and manifesting primarily at ion scales ky ∼ 0.1 − 1. It also differs
significantly from these instabilities in that while TEM and ITG modes are electrostatic in
nature, microtearing is an electromagnetic mode, meaning that it requires A‖ fluctuations
and can result in significant magnetic activity. Much like the macroscopic tearing mode,
microtearing instability implies the existence of a current sheet layer, and is characterized by
a ∆′ parameter analogous to that used in standard tearing mode theory:

∆′ ≡ 1
A‖

∂A‖
∂x

∣∣∣∣∣
d

−d
, (6.1)

where d is half the width of the perturbed current sheet in the x direction; note that this is
distinct from the full width of the equilibrium current layer a � d. Integrating Ampère’s
Law over this current sheet layer, ∆′ can be expressed in term of the parallel current density:

∂2A‖
∂x2 = −4π

c
J‖ (6.2)

1
A‖

∂A‖
∂x

∣∣∣∣∣
d

−d
≡ ∆′ = −4π

c

1
A‖

∫ d

−d
J‖dx . (6.3)

Equation (6.3) will be the basis for calculating the microtearing dispersion relation in this
chapter. While ∆′ has the same form as in the standard tearing mode, they differ importantly
in free energy source. While the standard tearing mode draws energy from the relaxation
of magnetic profiles, which restricts these modes to large spatial scales (Applegate et al.,
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2007), the microtearing mode relies upon the free energy in the electron temperature gradient
(and is correspondingly not restricted to small wavenumbers). Traditionally, microtearing
theory predicted that collisions in conjunction with temperature gradients were necessary for
instability (Hazeltine et al., 1975). The basic mechanism is as follows: Consider electrons
streaming along a magnetic field line. Upon introducing a radial field perturbation (and
an associated J‖ perturbation), electrons streaming along this radially perturbed line will
sample regions of different collisionality due to the temperature gradient; regions of higher
temperature will have lower collisionality, and lower temperature higher collisionality. This
difference in collisionality results in a cumulative frictional force that drives additional current
J‖ along the field line, enhancing the original perturbation and thus producing instability.

Clearly, this physical picture would not produce instability in the absence of collisions.
However, it has more recently been observed that for certain regimes, microtearing growth
rates persist even in the limit of zero collisionality (Doerk et al., 2012; Predebon and Sattin,
2013; Swamy et al., 2014). There thus must be an additional physical mechanism by which
the parallel current that produces microtearing is being reinforced. Several works have
explored a variety of alternative driving mechanisms (Gladd et al., 1980; Cowley et al., 1986;
Connor et al., 1990; Catto and Rosenbluth, 1981), but most still found microtearing to be
stable without collisions. (Finn and Drake, 1984) established instability of a mode whose
behavior matches the microtearing mode, driven unstable by magnetic curvature drifts. The
gyrokinetic simulation results shown in (Predebon and Sattin, 2013) show that collisionless
microtearing does indeed depend on magnetic curvature. Microtearing of this flavor would
be significant for the RFP configuration, where the comparable Bθ and Bφ produce more
magnetic field variation along the minor radius than seen in the tokamak, where it varies over
the major radius, with correspondingly (order aspect ratio) larger curvature and ∇B drifts.

In what follows, a dispersion relation is derived describing how curvature and grad-B
drifts modify linear microtearing instability. While this calculation is based on a drift-kinetic
formulation, the observation of curvature-driven effects from a fluid model in (Finn and Drake,
1984) suggests that the kinetic nature of magnetic drifts in microtearing is less important and
thus motivates an expansion in the magnetic drift resonance. The mathematical techniques
used in this calculation are benchmarked against a well-established analytic theory for
collisioness microtearing in the absence of magnetic drifts. The calculation indicates that
the fluid expansion does not contribute to the instability, suggesting that the collisionless
magnetic-drift-driven microtearing mode is inherently kinetic in nature.



85

6.1 Inclusion of Magnetic Drifts

The work in this chapter builds on prior work begun in (Carmody, 2014). To avoid redundancy,
certain aspects of the calculation covered in the previous work will not be explicitly detailed
but simply summarized. New aspects of the calculation will be explored in more detail. The
non-adiabatic component of the perturbed drift-kinetic distribution function for electrons
can be expressed as

ge = −eFM

Te

ω − ω̄∗T
ω − k‖v‖ − ω̄D

(
Φ− v‖A‖

c

)
, (6.4)

where e and Te refer to the elementary charge and temperature, the equilibrium Maxwellian
distribution function is given by FM = π−3/2n0v

−3
T e exp[−(v2

‖ + v2
⊥)/v2

T e], v2
T e = 2Te/me, ω is

the mode frequency, k‖ is the wavenumber parallel to the magnetic field, Φ is the electrostatic
potential, A‖ is the electromagnetic potential, and c is the speed of light. The driving
gradients are found in ω̄∗T ≡ ωn + ωT

(
v2
‖/v

2
T e + v2

⊥/v
2
T e − 3

2

)
, and, importantly, the grad-B

and curvature drifts are accounted for in ω̄D, defined below:

ω̄D ≡ vD · k = (vc + v∇B) · k =
[
v2
⊥

2ωcB
b×∇B +

v2
‖

ωcB
b×∇B

]
· k (6.5)

=
[
v2
⊥ + 2v2

‖

2ωcB
b×∇B

]
· k ≡ ωD

(
v2
‖/vT e + v2

⊥/2vT e
)

. (6.6)

A schematic process for deriving the dispersion relation is as follows: use the distribution
function (see Eq. (6.4)) to calculate particle and current densities from velocity space moments,
insert those quantities into the quasineutrality condition and Ampère’s Law to get a closed set
of equations, and solve for ω. The additional term ω̄D in the denominator introduced by the
magnetic drifts makes the velocity space integrals analytically intractable, as it is a function
of both v2

⊥ and v2
‖. The curvature-driven mode of (Finn and Drake, 1984) is derived from a

fluid model, suggesting the possibility that magnetic-drift-related resonances are unimportant
to this mode. The calculations in that work were not collisionless, so it is possible a different
mode is being described in that fluid-like approach, but for the sake of analytic tractability,
this assumption of negligible magnetic-drift resonance will be utilized here. This requires
that ω̄D � ω − k‖v‖ from which one can expand:
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1
ω − k‖v‖ − ω̄D

= 1
ω − k‖v‖

 1
1− ω̄D

ω−k‖v‖

 ≈ 1
ω − k‖v‖

(
1 + ω̄D

ω − k‖v‖
+ · · ·

)
. (6.7)

Using this expansion, the distribution function can be written as

ge ≈ −
eFM

Te

(
Φ− v‖A‖

c

) ω − ω̄∗T
ω − k‖v‖

+ ω̄D (ω − ω̄∗T )(
ω − k‖v‖

)2

 ≡ ge,0 + ge,ωD
. (6.8)

6.2 Magnetic-Drift-Free Microtearing Dispersion

The density and current density obtained from the zeroth-order (in ωD) distribution function
ge,0 correspond to the zero-magnetic-drift limit of the microtearing mode, described thoroughly
in (Drake and Lee, 1977). To explicitly describe the mathematical techniques and processes
used in this chapter and verify the accuracy of the approach, the collisionless dispersion
relation from that work is rederived here using ge,0. The calculation follows the schematic
process outlined in the previous section, in which first the parallel current density is calculated
from the distribution function:

J‖,e = qe

∫
v‖ged

3v , (6.9)

J‖,0 = −e
∫
v‖

[
−eFM

Te

ω − ω̄∗T
ω − k‖v‖

(
Φ− v‖A‖

c

)]
d3v . (6.10)

The Maxwellian distribution is inserted, introducing the notation v = v‖/vTe and u = v⊥/vTe

and evaluating the angular velocity dependence (for which the entire expression is constant):

J‖,0 = −e
∫ ∞

0

∫ ∞
−∞

2πv⊥v‖
[
−eπ

−3/2n0v
−3
Te e

−(v2+u2)

Te

ω − ω̄∗T
ω − k‖v‖

(
Φ− v‖A‖

c

)]
dv‖dv⊥ . (6.11)

The definition of ω̄∗T ≡ ω∗n + ω∗T (v2 + u2 − 3
2) is written out, and the denominator expressed

in terms of a newly defined variable s ≡ ω/k‖vTe:

J‖,0 = 2n0e
2

k‖Teπ1/2

∫ ∞
0

∫ ∞
−∞

uve−v
2
e−u

2 ω − ω∗n − ω∗T (v2 + u2 − 3
2)

s− v

(
Φ− v‖A‖

c

)
dvdu . (6.12)
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As there are no resonances in v⊥, evaluating the u integrals amount to taking moments of a
Gaussian distribution:

J‖,0 = 1
2

2n0e
2

k‖Teπ1/2

∫ ∞
−∞

ve−v
2 ω − ω∗n − ω∗T (v2 − 1

2)
s− v

(
Φ− vTevA‖

c

)
dv . (6.13)

Collecting terms by their order in v, the integral can be expressed as a sum of derivatives of
the plasma dispersion function, detailed in Appendix B.

J‖,0 = 1
2

2n0e
2

k‖Teπ1/2

 ∫ ∞
−∞

ve−v
2 (ω − ω∗n + 1

2ω
∗
T )− ω∗Tv2

s− v
Φdv

−
∫ ∞
−∞

v2e−v
2
(

(ω − ω∗n + 1
2ω
∗
T )− ω∗Tv2

s− v

)
vTeA‖
c

dv

 , (6.14)

J‖,0 = n0e
2

k‖Te

(ω − ω∗n + 1
2ω
∗
T

)(1
2Z
′(s)

)
− ω∗T

(1
4Z
′(s)− s

4Z
′′(s)

)
Φ

−
(
ω − ω∗n + 1

2ω
∗
T

)(
s

2Z
′(s)

)
vTeA‖
c
− ω∗T

(1
4sZ

′(s)− 1
4s

2Z ′′(s)
)
vTeA‖
c

 . (6.15)

After some algebraic manipulations, as well as using the definition of the electron plasma
frequency n0e

2/Te = 2ω2
pe/4πv2

T e the resultant expression is

J‖,0 =
2ω2

pe

4πv2
T ek

2
‖

(1
2(ω − ω∗n)Z ′(s) + ω∗T

s

4Z
′′(s)

)(
k‖Φ−

ωA‖
c

)
, (6.16)

which is the same as the current density derived in (Drake and Lee, 1977). For the most
general form of a dispersion relation, one requires expressions for both Φ and A‖ to close the
set of equations. However, following (Drake and Lee, 1977) and in the interest of analytic
tractability, the assumption is made that Φ→ 0 for this calculation. Additionally gyrokinetic
studies of microtearing have found it to persist in the absence of electrostatic potential
fluctuations (Predebon and Sattin, 2013). In this case, only Ampère’s Law is needed to close
the system and solve for ω. Inserting Eq. (6.16) into Eq. (6.3) and setting Φ = 0:

∆′0 = 4π
c

1
A‖

∫ d

−d

2ω2
pe

4πv2
T ek

2
‖

(1
2(ω − ω∗n)Z ′(s) + ω∗T

s

4Z
′′(s)

)
ωA‖
c
dx . (6.17)
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Before proceeding, one must account for the implicit x-dependencies present in Eq. (6.17).
It is assumed that A‖ is approximately constant over the perturbed current sheet layer,
originally posited in (Furth et al., 1963). Also, this calculation utilizes the slab approximation,
in which k‖ = kyx/Ls, where Ls is the magnetic shear scale length. A consequence of this
expression is that the argument s of the plasma dispersion function also depends on x, such
that s = (ωLs/kyvT e)(1/x), and dx = −(ωLs/kyvT e)(1/s2)ds. Applying these definitions and
simplifying:

∆′0 = −
ω2

pe

c2
Ls
kyvT e

∫ (
(ω − ω∗n)Z ′(s) + ω∗T

s

2Z
′′(s)

)
ds . (6.18)

Careful consideration must be taken regarding the bounds of integration on s, a point at which
the calculation presented here differs significantly from the previous attempt by (Carmody,
2014). In x-space, it is assumed that the current density peaks significantly within the
perturbed layer and then drops off quickly, such that the integration bounds can be extended
from (−d, d) to (−∞,∞) to a good approximation (a common practice for this type of
calculation, cf. Eq. (31) of (Baalrud et al., 2018). When converting the integral to s, a
discontinuity arises at x = 0, and so the integral must be split up into two parts: one covering
from (0−,−∞) (as x approaches zero from negative values) and (∞, 0+). The second term in
the integral of Eq. (6.18) can be integrated by parts, noting that Z ′(s) ∝ 1/s2 as s→∞, so
that the boundary term evaluates to zero:

∆′0 = −
ω2

pe

c2
Ls
kyvT e

[∫ −∞
0−

+
∫ 0+

∞

] (
ω − ω∗n −

1
2ω
∗
T

)
Z ′(s)ds , (6.19)

∆′0 = −
ω2

pe

c2
Ls
kyvT e

(
ω − ω∗n −

1
2ω
∗
T

)
(Z(0+)− Z(0−)) . (6.20)

Evaluating the discontinuity of the plasma dispersion function as the argument passes
through zero requires additional work and tools from complex analysis, as s is inherently
complex and Z(s) is defined for Im(s) > 0 but requires analytic continuation for Im(s) < 0.
Consider evaluation of the integral used to define the plasma dispersion function,

Z(s) ≡ π−1/2
∫ ∞
−∞

e−v
2

v − s
dv , (6.21)

in the limit that both parts of the complex variable s = ε+ iδ → 0 from two separate routes,
one in which ε, δ > 0 (to determine Z(0+)) and one with ε, δ < 0 (to determine Z(0−)). The



89

Im v

Re v

Figure 6.1: Contours of integration extending v into the complex plane, used for (top) Equation
(6.22), in which s = ε+ iδ → 0+ and (bottom) Equation (6.23) in which s = −ε− iδ → 0−.

integral can be evaluated along these paths using techniques of contour integration, with the
contours given in Fig. 6.2. Using the residue theorem, integration over the two contours is as
follows:

π−1/2
∫

Real line

e−v
2

v − s+
dv + I+ = 2πiπ−1/2e−s

2
+ , (6.22)

π−1/2
∫

Real line

e−v
2

v − s−
dv + 2πiπ−1/2e−s

2
− + I− = 2πiπ−1/2e−s

2
− . (6.23)

s± refers to ε+ iδ and −ε− iδ, respectively. The part of the integral along the real line is
simply Z(s±), and I± corresponds to the integral over the curve in the upper half of the plane.
As both integrals are taken in the same direction, the function is analytic in the upper half
plane, and the contour in the upper half plane is identical, I+ = I−. Subtracting Eq. (6.23)
from Eq. (6.22) in the limit that s+, s− → 0, one finds

Z(0+)− Z(0−) = 2π1/2i . (6.24)

This relation has great utility in the following calculation including magnetic drift effects.
Inserting it into Eq. (6.20) and rearranging terms (including defining k0 = ωpe/c), one arrives
at the expression found in (Drake and Lee, 1977):
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ω = ω∗n + 1
2ω
∗
T + i

∆′0kyvTe
2k2

0Lsπ
1/2 . (6.25)

Importantly, for high wavenumbers where one can expect microtearing, ∆′0 < 0, and thus
this mode is stable in the collisionless limit. The following section will explore how magnetic
drifts act to modify the governing equations for instability.

6.3 Magnetic-Drift-Dependent Dispersion Relation

Having confirmed that the mathematical techniques used in this approach reproduce existing
results, these methods are now used to calculate the dispersion relation caused by the inclusion
of magnetic drifts that were not accounted for in (Drake and Lee, 1977). Writing out the
integral for the current density to first order in the magnetic drift expansion:

J‖,ωD
= −e

∫
d3vv‖

(
−eFM

Te

ω̄D(ω − ω̄∗T )
(ω − k‖v‖)2

(
Φ− v‖A‖

c

))
, (6.26)

where ω̄D and ω̄∗T are both functions of v and u as defined in the previous sections. An
identical mathematical procedure to the previous section can be used to the point of u
integration (simply integrating higher-order moments of the Gaussian). As in the comparison
with (Drake and Lee, 1977), Φ = 0 will be assumed in this calculation. After u integration
and gathering terms by order in v, one has

J‖,ωD
= − ωDn0e

2

π1/2T0ek2
‖

1
vT e

∫ ∞
−∞

dve−v
2 v2(ω − ω∗n) + 1

2(ω − ω∗n − 1
2ω
∗
T )− ω∗Tv4

(s− v)2 v2vTeA‖
c

. (6.27)

As before, this integral is evaluated using derivatives of the plasma dispersion function. Due
to higher powers of v in the integral, there will be higher-order derivatives of Z(s):

J‖,ωD
= −ωDn0e

2

T0eω2
s2v2

Te

vTe

vTeA‖
c

(ω − ω∗n)
( 1

16Z
(5) + 3

4Z
(3) + 3

4Z
(1)
)

+ 1
2(ω − ω∗n −

1
2ω
∗
T )
(1

4Z
(3) + 1

2Z
(1)
)
− ω∗T

( 1
64Z

(7) + 15
32Z

(5) + 45
16Z

(3) + 15
8 Z

(1)
) .
(6.28)
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Z(n) corresponds to the n-th derivative of Z, and the argument of the plasma dispersion
function has been suppressed. This equation is then inserted into Ampere’s Law, using
the same change of variables from x to s and using the same modified limits of integration.
Omitting algebraic manipulations for the sake of brevity, one arrives at the following equation:

∆′ωD
= −

2ω2
pe

c2
ωLs
kyvTe

ωD
ω2

(∫ −∞
0−

+
∫ 0+

∞

)
ds

(ω − ω∗n)( 1
16Z

(5) + 3
4Z

(3) + 3
4Z

(1))

+ 1
2

(
ω − ω∗n −

1
2ω
∗
T

)(1
4Z

(3) + 1
2Z

(1)
)
− ω∗T

( 1
64Z

(7) + 15
32Z

(5) + 45
16Z

(3) + 15
8 Z

(1)
) .
(6.29)

∆ωD
is the tearing parameter evaluated from the O(ωD) current density. Bearing in mind

that Z(n)(s) → 0 as s → ∞, the integration of this equation is straightforward. Like in
Eq. (6.20), the resultant equation will be expressed as the discontinuity in the plasma
dispersion function (and its derivatives). To clean up the expression, the following notation
will be used: Z(n)

± (0) ≡ Z(n)(0+)− Z(n)(0−); this gives

∆′ωD
= −

2ω2
pe

c2
ωLs
kyvTe

ωD
ω2

 (ω − ω∗n)
( 1

16Z
(4)
± (0) + 3

4Z
(2)
± (0) + 3

4Z±(0)
)

+ 1
2

(
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1
2ω
∗
T

)(1
4Z

(2)
± (0) + 1

2Z±(0)
)
− ω∗T

( 1
64Z

(6)
± (0) + 15

32Z
(4)
± (0)

+ 45
16Z

(2)
± (0) + 15

8 Z±(0)
) . (6.30)

Iterating on the property of plasma dispersion functions that Z ′(s) = −2(1 + sZ(s)), one can
relate the differences in higher order derivatives at s = 0 to the difference of the function itself
at s = 0 (see Appendix B), the value of which is known from Eq. 6.24 as 2iπ1/2. Inserting
those relations, one finds:
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)) = 0 . (6.31)

Equation (6.31) shows that in the Φ = 0 limit, there is no contribution to instability from
first-order magnetic drift effects. (Carmody, 2014) found this to be true as well, using a
different approach to the calculation. However, gyrokinetic simulations described in (Predebon
and Sattin, 2013) observed collisionless microtearing instability, even in the Φ = 0 regime,
but only if magnetic drift effects are present. This motivates expanding to higher order in
the magnetic drift parameter ωD, examining now O(ω2

D) effects for Φ = 0:

J
(2)
‖,ωD

= e
∫
d3vv‖

(
−eFM

Te

ω̄2
D(ω − ω̄∗T )

(ω − k‖v‖)3
v‖A‖
c

)
. (6.32)

The procedure is identical to calculations in the previous two orders: the u integral is
evaluated as moments of a Gaussian distribution, and the v integrals (now with (v − s)−3 in
the denominator) can again be expressed as higher-order derivatives of the plasma dispersion
function as detailed in Appendix B. As before, the higher-order derivatives can be expressed
in terms of the original Z(s) function and integrated over the unstable current sheet layer.
The details of the calculation are largely the same, so they are mostly omitted. However, one
point in the calculation will be pertinent in the discussion that follows. Carrying out the
calculation through the v and u integrations and writing out Ampère’s Law in terms of s:

∆′ = 4π
c2
Ls
ky

e2n0ω
2
D

Te

vTe
ω2

∫
ds s

1
2

(
ω − ω∗n −

3
2ω
∗
T

)(1
8Z

(4) + 1
4Z

(2)
)

+ (ω − ω∗n − ω∗T )
( 1

32Z
(6) + 3

8Z
(4) + 3

8Z
(2)
)

+
(
ω − ω∗n −

1
2ω
∗
T

)( 1
128Z

(8) + 15
64Z

(6)

+ 45
32Z

(4) + 15
16Z

(2)
)
− ω∗T

( 1
512Z

(10) + 28
256Z

(8) + 210
128Z

(6) + 420
64 Z

(4) + 105
32 Z

(2)
) .
(6.33)
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This integration differs slightly from the previous cases in that there is an additional s term
in the integral, a consequence of the additional power of ω/k‖ introduced in the denominator.
This extra s can be dealt with via integration by parts. As all derivatives of the Z function
go to zero at infinity faster than s grows and are defined at s = 0, the boundary term (sZ(n))
that arises evaluates to zero, and integration by parts is simply a matter of lowering the order
of each derivative of the Z function in the above expression. Carrying through the rest of the
calculation as before, one finds at the end of the calculation that to O(ω2

D) there is still no
contribution to ∆′. While a proof that ∆′ is unaffected to all orders in ωD for the Φ = 0 limit
is beyond the scope of this chapter, the following argues that it is a plausible conclusion.

Consider the n-th term in the ωD expansion; the corresponding current density after v⊥
(or u) integration can be expressed as

J
(n)
‖,ωD
∝
∫
dv‖v

2
‖e
−v2
‖
ω̄nD (ω − ω̄∗T )

(ω − k‖v‖)n+1 ∝
∫
dv‖v

2
‖e
−v2
‖

(
s

ω

)n+1 ω̄nD (ω − ω̄∗T )
(s− v)n+1 . (6.34)

Both ω̄D and ω̄∗T contain only even powers of v, so for any n, the numerator will always have
only even powers of v. As is apparent in the integrals listed in Appendix B, integrals with
even powers of v in the numerator result in odd derivatives of the Z function when n is odd,
and even derivatives of Z when n is even. When the current density is evaluated, one arrives
at the following for Ampère’s Law:

∆′ ∝


∫
ds sn−1 ∑

i even
Z(i)(s), for even n∫

ds sn−1 ∑
i odd

Z(i)(s), for odd n
, (6.35)

where an s−2 factor has been included to account for the change of variables from x to s.
For the cases in which n is even, the factor s will be raised to an odd power, meaning after
using the integration-by-parts approach used to handle Eq. (6.33), the expression will have
only odd derivatives of the Z function. Similarly, when n is odd, s will be raised to an even
power, meaning after integration by parts, the expression will have only odd derivatives of
Z. Thus, from this argument it can be concluded that Ampère’s Law will contain only odd
derivatives of the Z function, regardless of order in the ωD expansion. The calculation up to
this point suggests that odd derivatives of Z exhibit a symmetry with respect to the current
layer such that integrating over the layer always evaluates to zero. While this is not a proof,
it is reasonable to speculate that this trend would continue to any order of odd Z derivatives.
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If this property indeed holds true to any order, while ultimately producing a null result
for the dispersion relation, it does provide information about the collisionless microtearing
mode that has been observed in gyrokinetic simulations to depend on magnetic drift effects
in the Φ = 0 limit. Because this calculation has shown that neglecting the magnetic drift
resonance results in no additional contribution to instability, the instability must be inherently
kinetic in nature. Additionally, as an inherently kinetic instability, it is distinct from the
mode described in (Finn and Drake, 1984) which exists within a fluid limit. It is possible
that a more sophisticated closure, such as one described in (Hammett and Perkins, 1990),
which successfully reproduces certain kinetic effects like Landau damping, may allow for an
analytic description of this instability. Additionally, explorations into the behavior of this
mode considering Φ 6= 0 case using a kinetic treatment may elucidate additional properties of
the magnetic drift effect on microtearing. Both of these ideas are beyond the scope of this
thesis but merit further investigation.

6.4 Chapter Summary

This chapter presented an analytic theory that set out to describe the role that magnetic
drifts play in collisionless microtearing instabilities. A neglect of the magnetic drift resonance,
motivated by the success of a fluid theory in describing a mode with similar features including
curvature drift dependencies, was employed for analytic tractability. The mathematical
techniques used in this chapter were borrowed from a well-established analytic theory for
collisionless tearing modes,used here in the Φ = 0 regime to calculate a dispersion relation
to multiple orders in an expansion in which ωD � ω − k‖v‖. It was found definitively that
magnetic drifts contribute no additional instability drive to at least second order in ωD,
and a plausibility argument is made that this finding may extend to any order in ωD. This
suggests that the collisionless, magnetic-drift-drive microtearing that has been observed in
gyrokinetics is distinct from the mode present in previous fluid models, requiring a more
accurate description of the magnetic drift resonance to capture the relevant physics.
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7 conclusion

This thesis has explored the interaction between magnetic fluctuations and microturbulence,
with a special emphasis on the role of zonal flows. Of central importance to this interaction
is the physical phenomenon of zonal flow decay induced by the radial movement of particles
streaming along perturbed field lines (a result of large-scale magnetic fluctuations). This
eroded zonal flow then is less effective at quenching turbulence and transport at ion mi-
croturbulent scales, and thus resolving both large-scale magnetic activity and small-scale
microturbulence is critical to accurately predicting transport levels. This inherently multi-
scale physics is seen across different toroidal confinement devices, including tearing modes in
the Madison Symmetric Torus Reversed-Field Pinch and Resonant Magnetic Perturbations
in the DIII-D tokamak. The effect extends to even more fundamental plasma regimes than
toroidal fusion devices, manifesting in a simple slab system that is unstable to both tearing
instabilities and microinstability. Additionally, specific linear instability properties of a
magnetic instability that occurs at micro-unstable (∼ ion gyroradius) scales were examined.
Key results from this thesis are summarized below, followed by a discussion on potential
areas for future research.

7.1 Tearing Modes and Microturbulence in the RFP

The initial investigations discussed in this thesis involved gyrokinetic simulations of the
Madison Symmetric Torus Reversed-Field Pinch while working closely with experimentalists
to identify linear instabilities and characterize turbulence in improved-confinement MST
discharges. It was noted that in these improved-confinement PPCD discharges, a reduction of
tearing mode activity resulted in increased density gradients towards the edge of the device,
driving high-frequency fluctuations. Simulations identified these fluctuations as ∇n-driven
Trapped-Electron Modes. Nonlinear simulations of these discharges exhibit unprecedentedly
strong zonal flows that entirely suppress turbulence and transport; importantly, these simula-
tions did not provide any mechanism to account for radial magnetic field fluctuations brought
about by residual tearing mode fluctuations. When accounting for these tearing modes via an
externally imposed radial magnetic field fluctuation, the simulations produced much larger
transport levels attributed to the zonal flow being weakened by magnetic flutter. Similar
analysis was performed for a separate PPCD discharge which was unstable to ITG instead of
∇n-TEM. This discharge differed significantly in that without tearing fluctuations, the trans-
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port was still finite despite the presence of significant zonal structures, and additionally the
inclusion of radial tearing fluctuations did little to affect transport levels. In the tearing-free
limit, it was found that the very-low-q geometry of the RFP has a large Rosenbluth-Hinton
residual, which corresponds to a minimal reduction of zonal flow amplitude via neoclassical
shielding effects. ITG- and TEM-dominated discharges differ in two key aspects, collisionality
and secondary instability growth rates. Collisionality serves to damp TEM significantly (more
so than the concurrent collisional zonal flow damping) while having little effect on ITG, and
secondary growth rates as a proxy for zonal flow growth calculated in the simulations were
higher for the TEM than for the ITG discharge. These combined effects serve to explain the
discrepancy in the tearing-free regime. It was also found that the ITG present was a more
slab-like branch of the instability, which depends far less on zonal flows for saturation than
its toroidal counterpart, so while tearing fluctuations degrade zonal flows in both cases, the
effect on transport was much smaller for the ITG-dominated discharge. However, it is still
evident that for microturbulence which depends upon zonal flows for turbulent saturation,
inclusion of magnetic fluctuations generated from larger-scale dynamics are essential for a
complete physical picture.

7.2 RMPs and Microturbulence in the Tokamak
L-Mode

The finding that this magnetic fluctuation-zonal-flow-microturbulence interaction plays such
a significant role in MST transport levels motivated additional work to determine if this
phenomenon is unique to the RFP, or if it extends to other toroidal fusion devices. To this end,
a joint experimental-theoretical effort studied the effect of Resonant Magnetic Perturbations
on microturbulence levels in the DIII-D tokamak. Beam Emission Spectroscopy probes on
the DIII-D tokamak measured a direct increase in density fluctuations at microturbulent
frequencies with the application of an n = 3 RMP during an L-mode discharge. Gyrokinetic
simulations were performed to connect the observed behavior with the previously discussed
zonal flow decay mechanism. Both ∇T -TEM and ITG instabilities were present in the
discharge, contributing to the turbulence. Nonlinear simulations modeled the RMP using an
externally imposed A‖ perturbation identical in structure to that used in the MST studies
to model tearing fluctuations. Much like in the experiment, density fluctuations increased
commensurately with RMP amplitude. However, key differences arise when comparing
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the Br amplitude required to achieve this increase between experiment and simulations.
At experimental values of β, the flux-tube simulations produced an electromagnetic mode
at very large spatial scales that is not present in the experiment, which made nonlinear
convergence unattainable. To mitigate this mode, β was reduced by a factor of four; a
consequence of this was that a much larger Br was needed in simulation to produce magnetic
diffusivity comparable to the experiment (which used Br values much smaller than typical
ELM-supression values). Additionally, the turbulence levels scaled non-monotonically over a
certain region of RMP amplitudes, which was attributed to the effect of turbulent temperature
and density corrugations as the RMP island widths approach corrugation scale lengths. Across
all RMP amplitudes, there were signatures of decreasing zonal flow, connecting the observed
changes in turbulence to magnetic flutter decay. Additionally, this effect only occurred for
RMPs that exhibit flux-surface-breaking parity, in agreement with prior work that observed
flux-surface-preserving RMPs to have little effect on turbulence.

7.3 Multi-scale Interactions in a Slab Plasma System

Having established in Chapters 3 and 4 the importance of magnetic fluctuation-zonal-flow-
microturbulence interactions for setting transport levels across different types of magnetic
fluctuations and toroidal fusion devices, effort was turned towards examining a plasma slab
system. Magnetic activity in this system was introduced via a modification of the linear
gyrokinetic operator to allow for radially periodic equilibrium plasma current gradients,
which can drive collisionless tearing modes. The slab system with both current and ion
temperature gradients was unstable to tearing modes at low wavenumbers, slab-ITG modes
at high wavenumbers, and a new mode distinct from either of the others modes that spanned
both scales and was characterized at length via structure and parametric dependencies.
Nonlinear simulations of this system portrayed a separation of dynamics at both temporal
and spatial scales, with small-scale electrostatic turbulence dominating in the early phases of
the simulation and large-scale electromagnetic turbulence dominating later on. Comparing to
single-scale simulations of an only slab-ITG-unstable system and a tearing-unstable system
separately, the saturated turbulence level of the system with both instabilities together was
considerably higher, despite linear growth rates being lower than either of the single-scale
cases. This demonstrated a modification of turbulence that can be attributed to nonlinear,
cross-scale physics. Additionally, a decay in zonal flow concurrent with an increase in
electromagnetic activity during the dominantly electrostatic turbulent phase was observed,
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providing an additional regime in which magnetic-flutter-induced zonal-flow decay occurs. In
the electromagnetic regime, there were signatures of both tearing activity and microturbulence
present in flux spectra, qualitatively similar to experimental measurements made in standard
operation MST plasmas, which suggested underlying physics similarities between the reduced
system studied here and the RFP.

7.4 Curvature Drift Effects on Collisionless
Microtearing Instability

An analytic calculation was performed to describe microtearing modes in the collisionless
limit, which are potentially of great importance to the RFP configuration. Though previous
analytical work required collisions for instability, more recent computational models observed
the destabilization of collisionless microtearing via curvature drift. An analytic calculation
starting from the drift-kinetic equation, assuming a fluid expansion in the curvature drift
resonance, was performed to derive a modification to the linear dispersion relation by
curvature drifts. This work suggested that in the Φ = 0 limit, the enhancement of collisionless
microtearing due to magnetic drifts observed in gyrokinetic simulations is a dominantly
kinetic effect, as a fluid expansion of the magnetic drift resonance contributed no additional
terms to instability to at least second order in the expansion. These findings distinguished this
mode from the curvature-drift-driven branch of microtearing that occurs in a semicollisional
regime, which can be described using the Braginskii equations.

7.5 Areas for Future Research

Further Computational Explorations of RMPs on DIII-D

This thesis reported on initial efforts regarding gyrokinetic investigations of RMP-micro-
turbulence interaction in DIII-D plasmas, but there is still interesting physics that remains
to be explored. One open question regards the anomalous mode that appears at very low ky

and is destabilized by β; whether this is an artifact of the flux-tube approximation that can
be removed with global (either full-flux-surface or full-volumne) simulations or something
more remains to be determined. If converged simulations can be achieved at experimental
β, then more quantitatively accurate comparisons can be made between experimental and
numerically applied RMPs.
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An additional physics question concerns the role that plasma rotation plays on the effect
discussed in this work. It is known that plasma rotation shields RMPs and prevents them from
penetrating into the plasma as effectively (Fitzpatrick, 1993), and that the DIII-D L-mode
tokamak has non-negligible rotation. It is likely that this rotation would have an effect on the
RMP-induced zonal flow decay and subsequently the turbulence levels; investigating exactly
how this manifests is an open challenge.

Advancing Understanding of Gyrokinetic Systems with Equilibrium Current
Gradient

Part of this work involved introducing the capability for equilibrium current gradients into
the Gene linear gyrokinetic operator, which allowed for investigations into a system with
both an ion temperature gradient and a current gradient. This opens the door to many
different physics investigations. Acquiring a more complete understanding of the hybrid drift-
tearing mode that is formed beyond just a characterization of its parametric dependencies,
as well as finding a way to more definitively describe how much it actually contributes to the
turbulence, is an important task. This capability lends itself well to applications not only
to toroidal plasma devices (specifically the RFP with its large current gradients), but also
to astrophysical plasmas, such as using gyrokinetics to model reconnection in the presence
of pressure gradients. Given the low collisionality of astrophysical plasmas, this capability
may in fact be better suited to such studies. One possible matter of interest is to examine if
tearing modes can nonlinearly excite small-scale linear instabilities that are otherwise linearly
stable through nonlinear cascade processes. Additionally, a more long-term project would
be adapting this current gradient implementation to toroidal geometries and radially global
simulation regimes in order to acquire a more physically accurate depiction of how core
tearing modes and edge microturbulence interact in a Reversed-Field Pinch.

The Role of Stable Eigenmodes in Tearing Mode Turbulence

Another application of the current gradient capability now available in Gene is to use
the eigenmode solver to characterize eigenmodes in tearing-unstable systems. Specifically,
this would allow a study into the effect that stable eigenmodes have on tearing mode
turbulence. There has been extensive work showing the importance of stable modes in
turbulence saturation for a variety of systems and instabilities (Baver et al., 2002; Hatch
et al., 2012; Terry et al., 2006; Makwana et al., 2011; Whelan et al., 2018). Recent work
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Figure 7.1: Eigenspectrum at ky = 0.05 for a system with only a current gradient. There exist
a large number of marginally stable modes along the y-axis (corresponding to zero growth
rate), an unstable mode at zero frequency, and then a conjugate stable mode with damping
rate that is equal in magnitude to the unstable mode growth rate. This eigenspectrum is
very similar to that of a Kelvin-Helmholtz unstable system, in which the unstable/conjugate
stable mode pair alone are able to account for a significant portion of the turbulent dynamics.

studying stable modes in shear-flow-unstable systems has shown that aspects of a turbulent,
Kelvin-Helmholtz-unstable system can be well described using a truncated mode expansion
that includes only the unstable mode and its conjugate stable mode (Fraser et al., 2018).
As the equations that describe Kelvin-Helmholtz and collisionless tearing instabilities are
similar upon the exchange of flow velocity and magnetic field, it is reasonable to expect
similar physics may be present in for a tearing-unstable system. Preliminary investigations
looking at the eigenmodes of a system with only a current gradient show a spectrum very
similar to that seen in the Kelvin Helmholtz work, with a single unstable mode and conjugate
stable mode, in addition to a band of marginal modes (see Fig. 7.1). As tearing modes can
be found both in fusion plasmas and astrophysical systems, being able to explain aspects of
their physics using truncated models is of great value.
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a tearing perturbation implementation

In Chapters 3 and 4, the Gene code is modified to include radial magnetic field fluctuations
beyond those self-consistently generated by plasma dynamics. This is done here by including
a constant-in-time resonant A‖ perturbation. The details of the implementation, adapted
from (Carmody et al., 2015), are discussed in what follows. Beginning with Ampere’s Law,

k2
⊥A

sc
‖ = j‖ = β

2
∑
j

qjn0jvTjπB0

∫
v‖J0(λj)fj(k)dv‖dµ , (A.1)

where fj = gj − (qjvTjv‖Fj0/Tj0)A‖ is the distribution function of species j, while β is the
ratio of plasma pressure to magnetic field pressure, qe is electron charge, B0 is the background
magnetic field, v‖ is the velocity parallel to the magnetic field, µ is the magnetic moment,
J0 is the zeroth-order Bessel function, and λj ≡ (

√
2B0µ/mj)k⊥/Ωj. To include the tearing

perturbation, one may add an external perturbation Aext
‖ to the self-consistent Asc

‖ , such
that A‖ → Asc

‖ (kx, ky, z, t) + Aext
‖ (0, ky,min, z). Plugging this perturbed distribution function

fj = gj + qj

mjc

∂F0j

∂v‖
(Asc
‖ + Aext

‖ ) into Eq. (A.1), one obtains

k2
⊥A

sc
‖ = β

2 qen0evTeπB0

∫
v‖J0(λ)(g − qev‖vTeF0/T0e(Asc

‖ + Aext
‖ ))dv‖dµ (A.2)

Solving for Asc
‖ :

k2
⊥A

sc
‖ = β

2 qen0evTeπB0

∫ [
v‖J0(λ)g − v‖J0(λ)qev‖vTeF0/T0eA

sc
‖

+ v‖J0(λ)qev‖vTeF0/T0eA
ext
‖

]
dv‖dµ (A.3)

Asc
‖ =

β
2 qen0evTeπB0

∫
v‖J0(λ)gdv‖dµ

k2
⊥ + β

2 qen0evTeπB0
∫
v‖J

2
0 (λ)qev‖vTeF0/T0edv‖dµ

−
β
2 qen0evTeπB0

∫
v‖J

2
0 (λ)qev‖vTeF0/T0edv‖dµ

k2
⊥ + β

2 qen0evTeπB0
∫
v‖J

2
0 (λ)qev‖vTeF0/T0edv‖dµ

Aext
‖ (A.4)

Writing Atot
‖ = Asc

‖ + Aext
‖ ,
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Atot
‖ =

β
2 qen0evTeπB0

∫
v‖J0(λ)gdv‖dµ

k2
⊥ + β

2 qen0evTeπB0
∫
v‖J2

0 (λ)qev‖vTeF0/T0edv‖dµ

−
β
2 qen0evTeπB0

∫
v‖J

2
0 (λ)qev‖vTeF0/T0edv‖dµ

k2
⊥ + β

2 qen0evTeπB0
∫
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0 (λ)qev‖vTeF0/T0edv‖dµ
Aext
‖ + Aext

‖ (A.5)

Atot
‖ =

∑
j
β
2 qjn0jvTjπB0

∫
v‖J0(λj)gdv‖dµ

k2
⊥ +∑

j
β
mj
q2
jn0jπB0

∫
v2
‖J

2
0 (λj)F0dv‖dµ

+
k2
⊥A

ext
‖

k2
⊥ +∑

j
β
mj
q2
jn0jπB0

∫
v2
‖J

2
0 (λj)F0dv‖dµ

(A.6)
The first term on the right-hand-side of Eq. (A.6) represents the standard picture of

A‖ evolution without any perturbation, taken from Ampere’s law; the second term is the
contribution of an externally imposed perturbation. Note that Ref. Carmody et al. (2015)
neglected the prefactor on the second term in Eq. (A.6). The functional form of the
tearing-parity perturbation is implemented as a Gaussian in the z direction (parallel to the
background magnetic field), Aext

‖ = A0e
−z2 . In chapter 3, the RMP was applied at the largest

y scale permitted by the simulation domain. This scale was still in the microturbulence
range, not reflecting the larger spatial scales of MST tearing modes. For DIII-D RMPs in
chapter 4, physically realistic scale separation between the RMP and the microturbulence was
utilized in simulation. The value chosen for the amplitude of the perturbation in the MST
simulations is informed from experimental measurements: high-n Bφ and Bθ fluctuations are
measured outside the reversal surface, and Br is determined relative to these via the tearing
eigenfunction solver RESTER (Sovinec, 1995).
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b details of the plasma dispersion function

This appendix lists properties of the plasma dispersion function that are used to calculate
integrals over parallel velocity in Chapter 6. Beginning with the definition of Z(s), higher
order v moments can be calculated via integration by parts and the following property:
Z ′(s) = −2(1 + sZ(s))

π−1/2
∫ ∞
−∞

e−v
2

(v − s)dv = Z(s) (B.1)

π−1/2
∫ ∞
−∞

e−v
2

(v − s)2dv = Z(1)(s) (B.2)

π−1/2
∫ ∞
−∞

ve−v
2

(v − s)2dv = −1
2Z

(2)(s) (B.3)

π−1/2
∫ ∞
−∞

v2e−v
2

(v − s)2dv = 1
4Z

(3) + 1
2Z

(1) (B.4)

π−1/2
∫ ∞
−∞

v3e−v
2

(v − s)2dv = −1
8Z

(4) − 3
4Z

(2) (B.5)

π−1/2
∫ ∞
−∞

v4e−v
2

(v − s)2dv = 1
16Z

(5) + 3
4Z

(3) + 3
4Z

(1) (B.6)

π−1/2
∫ ∞
−∞

v5e−v
2

(v − s)2dv = − 1
32Z

(6) − 5
8Z

(4) − 15
8 Z

(2) (B.7)

π−1/2
∫ ∞
−∞

v6e−v
2

(v − s)2dv = 1
64Z

(7) + 15
32Z

(5) + 45
16Z

(3) + 15
8 Z

(1) (B.8)

π−1/2
∫ ∞
−∞

v7e−v
2

(v − s)2dv = − 1
128Z

(8) − 21
64Z

(6) − 105
32 Z

(4) − 105
16 Z

(2) (B.9)

π−1/2
∫ ∞
−∞

v8e−v
2

(v − s)2dv = 1
256Z

(9) + 28
128Z

(7) + 210
64 Z

(5) + 420
32 Z

(3) + 105
16 Z

(1) (B.10)

In performing the O(ω2
D) calculation, it is necessary to evaluate integrals with (v − s)3 in
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the denominator. This is simply done by taking s derivatives of the above equations and
including an additional factor of 1

2 .
For part of the calculation, it is useful to represent varying orders of derivatives of the

plasma dispersion function at s = 0 as multiples of the plasma dispersion function at s = 0.
This can be done by using the relation Z ′(s) = −2 (1 + sZ), which upon iteration gives:

Z(n) = −2
(
(n− 1)Z(n−2) + sZ(n−1)

)
, n ≥ 2 . (B.11)

From this, any higher-order derivative can be expressed in terms of the function and its
first derivative. The following relations are used in the derivation of magnetic-drift-driven
microtearing instability.

Z(8)(0) = −1680Z(0) (B.12)

Z(6)(0) = −120Z(0) (B.13)

Z(5)(0) = 32Z ′(0) (B.14)

Z(4)(0) = 12Z(0) (B.15)

Z(3)(0) = −4Z ′(0) (B.16)

Z(2)(0) = −2Z(0) (B.17)

Z(1)(0) = −2 (B.18)
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c inclusion of a current gradient drive in gene

In Eq. (5.1) of Chapter 5, the linear operator used in the gyrokinetic code Gene is modified
to include a current gradient drive in the local flux-tube limit. This appendix briefly sketches
how the terms in that equation were derived. Beginning with Eq. 2.14, and simply by
assuming no pressure gradients, curvature, z-dimensional effects, or collisions:

∂gj
∂t

+ ~vE×B · ~∇F0j + ~vE×B · ~Γj = 0 , (C.1)

where ~Γj = ~∇gj − qj

mjv‖

∂F0j

∂v‖
~∇χj + qj

mjc
Ā1‖~∇∂F0j

∂v‖
. Assume now that the equilibrium is a shifted

Maxwellian:

F0j =
(

mj

2πT0j

)
n0jexp

[
−
mj/2(v‖ − v0j(x))2 + µB0

T0j

]
(C.2)

Inserting this into Eq. (C.1), one arrives at

∂gj
∂t

+ ~vE×B ·
mj

T0j
(v‖ − v0j)F0j ~∇v0j + ~vE×B · ~Γj = 0. (C.3)

The E × B velocity can be expressed as ~vE×B = c
B0
~b0 × ~∇χ. Following the treatment of

vector expressions as detailed in Chapter 2 of (Merz, 2008), Eq. (C.3) can be expanded in
the following way:

~vE×B · ~∇v0j = c

B0

(
~b0 × ~∇χ

)
· ~∇v0j = ∂yχ∂xv0j (C.4)

~vE×B · ~Γj = c

B0

(
~b0 × ~∇χ

)
· ~Γj = ∂xχΓjy − ∂yχΓjx , (C.5)

where the prefactor Jb3 c
B0
γ1 that arises from the vector expressions has been omitted, as it

in the end is removed by normalization. The original governing assumptions stated that χ
has no equilibrium component, however the inclusion of a radially-dependent equilibrium
flow results in a correspondingly altered potential, such that χ→ χ0(x) + χ(x, y). This new
potential is then inserted into Eq. (C.3) and simplified:

∂gj
∂t

= ∂yχ∂xv0j
mj

T0j
(v‖ − v0j)F0j − (∂x(χ0 + χ)Γjy − ∂yχΓjx) , (C.6)
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∂gj
∂t

= ∂yχ∂xv0j
mj

T0j
(v‖ − v0j)F0j − ∂xχ0Γjy − (∂xχΓjy − ∂yχΓjx) , (C.7)

∂gj
∂t

= ∂yχ∂xv0j
mj

T0j
(v‖ − v0j)F0j − ∂xχ0

(
∂ygj −

qj
mjv‖

∂F0j

∂v‖
∂yχj + qj

mjc
Ā1‖∂y

∂F0j

∂v‖

)
− (∂xχΓjy − ∂yχΓjx) , (C.8)

∂gj
∂t

= ∂yχ∂xv0j
mj

T0j
(v‖−v0j)F0j−∂xχ0∂ygj+∂xχ0

qj
mjv‖

∂F0j

∂v‖
∂yχj−(∂xχΓjy−∂yχΓjx) , (C.9)

where in Eq. (C.8) the definition for Γjy was inserted into the second term on the RHS, and
the y-derivative of the equilibrium Maxwellian evaluates to zero. Rearranging terms, one
arrives at

∂gj
∂t

= ∂yχj

(
∂xv0j

mj

T0j
(v‖ − v0j)F0j + ∂xχ0

qj
mjv‖

∂F0j

∂v‖

)
− ∂xχ0∂ygj − (∂xχΓjy − ∂yχΓjx) .

(C.10)
‘Undoing’ the derivative of the equilibrium distribution function on the RHS, and rec-

ognizing from the definition of χ that χ = −(v‖/c)A‖,0 (as there is no equilibrium Φ), the
equation can be written as

∂gj
∂t

= ∂yχj

(
∂xF0j − ∂xA‖,0

qj
mjc

∂F0j

∂v‖

)
− ∂xχ0∂ygj − (∂xχΓjy − ∂yχΓjx) . (C.11)

From the definition of gj given in Eq. (2.11), one can see the parenthesis in the first term on
the RHS is simply the x-derivative of that term. Extracting an x derivative from the second
term in the parenthesis will produce an additional term, but it is O(δ2) and neglected here.
The resultant equation is

∂gj
∂t

= ∂yχj∂xG0j − ∂xχ0∂ygj − (∂xχΓjy − ∂yχΓjx) , (C.12)

which exhibits the new term of Eq. (5.1) plus the E ×B nonlinearity.
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