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Abstract

The unconditional distribution of potential outcomes with continuous treatments and

the quantile structural function in a nonseparable triangular model can both be expressed

as a partial mean process with generated regressors. In Chapter 1, I propose a multi-step

nonparametric kernel-based estimator for this partial mean process. A uniform expansion

reveals the influence of estimating the generated regressors on the final estimator. In the

case of continuous treatment effects, an unconfoundedness assumption leads to regression on

the generalized propensity score (Hirano and Imbens, 2004), which serves as the generated

regressor in the partial mean process. Analogous to the binary treatment effect case, my

results suggest that the generalized propensity score reduces the dimension of nonparametric

regression in estimation, but does not improve first-order asymptotic efficiency. Nonsepara-

ble triangular models commonly include a conditional independence assumption that yields

a control function approach to deal with endogeneity (Imbens and Newey, 2009). In a pre-

liminary step, the control variable is estimated nonparametrically as a generated regressor.

My general partial mean process results can then be applied to provide the asymptotic dis-

tribution of the nonparametric estimator for the average and quantile structural functions.

By extending my results to Hadamard-differentiable functionals of the partial mean process,

I am able to provide the limit distribution for estimating common inequality measures and

various distributional features of the outcome variable, such as the Gini coefficient. Monte

Carlo results demonstrate the finite sample behavior of my estimator. In addition, a substan-

tive empirical application using data from a Colombian conditional cash transfer program



x

illustrates the usefulness of the current findings for the estimation of continuous treatment

effect models.

In the second chapter, I estimate the density-weighted Average Quantile Derivative

(AQD), defined as the expectation of the partial derivative of the conditional quantile func-

tion (CQF) weighted by the density function of the covariates. The proposed estimator

achieves root-n-consistency and asymptotic normality by a first-step nonparametric kernel

estimation for the unknown functions and a second-step sample analogue of a full- mean.

Therefore, the AQD summarizes the average marginal response of the covariates on the CQF

and can be viewed as a nonparametric quantile regression coefficient. Similar to the widely

studied average derivative in mean regression, the AQD identifies the coefficients up to scale

in semiparametric single-index and partial linear models. For the nonparametric nonsepa-

rable structural model, the derivative of the CQF identifies the structural derivative, under

the conditional independence assumption in Hoderlein and Mammen (2007).

In the third chapter, I allow for misspecification in the linear conditional quantile func-

tion (CQF) and calculate the semiparametric efficiency bound for the quantile regression

(QR) parameter, the best linear predictor for a response variable under the asymmetric

check loss function. As a result, the QR estimator developed by Koenker and Bassett (1978)

semiparametrically efficiently estimates a pseudo-true parameter that produces parsimonious

descriptive statistics for the CQF. The linear quantile projection model can be understood by

the orthogonality condition of the covariates and the distribution error (i.e., the deviation of

the true conditional distribution function, evaluated at the linearly approximated quantile,

from the true probability). A novel observation of this article is that the QR parameter is

the unique fixed point to the iterated minimization of the mean-squared distribution error,

inversely weighted by the conditional density function. My result suggests that the distribu-

tion errors are larger at points with higher conditional densities, while Angrist et al. (2006)

find that QR approximates the CQF more accurately at such points with more observations.

These approximation features and parallel properties with ordinary least squares reinforce

the scholarly understanding of QR.
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Chapter 1

Partial Mean Processes with Generated Regressors:

Continuous Treatment Effects and Nonseparable Mod-

els

1.1 Introduction

I study nonparametric estimation of continuous treatment effect models when the treat-

ments are randomly selected or assigned conditional on either observables or on unobserved

control functions. 1 Two key features of these models are non-separability in the unobserv-

ables and heterogeneity in treatment intensity effects. I focus on identification and estima-

tion of objects such as the unconditional distribution of potential outcomes and the quantile

structural function in nonseparable triangular models. Such objects can be expressed as

functionals of a partial mean process with generated regressors. I propose a fully nonpara-

metric multi-step estimator for this partial mean process and show how the estimation error

associated with the generated regressor affects the limit distribution of the estimator.

The proposed methods capture heterogeneous treatment intensity effects by estimating

an array of distributional structural features that can be applied to a variety of economic

questions. For example, when evaluating a social program, researchers might be interested

in how the length of exposure to the program affects the entire distribution of wages. I

extend my method to include inference on smooth functionals of the outcome distribution

process. In this example, a researcher could consider how inequality responds to the length

1Matzkin (2007), “A control function is a function of observable variables such that conditioning on its
value purges any statistical dependence that may exist between the observable and unobservable explanatory
variables in an original model.”



2

of exposure to an anti-poverty program by tracing out the Gini coefficient of the wage

distribution by time in the program. In demand analysis, the Engel curve can be analyzed

by the average or quantile structural functions in triangular simultaneous equations models

(Imbens and Newey (2009)). I can also consider the counterfactual effects of either a change

in the distribution of a set of covariates or a change in the relationship of the covariates with

the outcome, as in the counterfactual analysis for a discrete treatment or policy variable in

Chernozhukov et al. (2013).

Let Y (t) denote the potential outcome corresponding to the level of treatment intensity

t. The key causal object of interest in this paper is the unconditional2 distribution of the

potential outcome with continuous treatments. It is unconditional in the sense that other

covariates are being integrated out, while the potential outcome Y (t) framework provides

the flexibility to reveal local information by fixing relevant variables at a treatment level t.

The results here could be straightforwardly generalized to consider the conditional potential

outcome distribution where the conditioning set consists of exogenous observables or discrete

covariates. Alternatively, the object of interest is the distribution of the outcome for some

fixed values of the endogenous variables of interest in the triangular simultaneous equations

models in Imbens and Newey (2009). White and Chalak (2013) formally discuss the equiva-

lence of the treatment effect models of the potential outcome framework and the structural

triangular system.

The treatment variables are assumed to be exogenous conditional on observables or un-

observed control functions. Together with a common-support assumption, the distributional

causal effects are identified in terms of functionals of partial means of weighted conditional

cumulative distribution functions (cdf) of the observed outcome Y = Y (T ) given treatment

T and generated regressors Λ. The main contribution of this paper is a fully nonparametric

2The unconditional distribution of Y (t) is often known as the marginal distribution. I use “unconditional”
instead of “marginal” because I use the term “marginal effect” to refer to the impact of infinitesimal changes
in the continuous treatment.
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multi-step estimation procedure for a partial mean process with generated regressors,{
t→ θt(y|Λ,W ) ≡ E

[
E
[
1{Y≤y}

∣∣∣T = t,Λ = Λ(S)
]
·W (Sw)

]
: y ∈ Y

}
(1.1)

where generated regressors Λ(S) and a weight function W (Sw) are measurable functions

of sets of observables, S and Sw, and can be estimated in the first step. The observable

covariates sets S and Sw are not restricted to be a subset of one another. Depending on

the economic application, Sw and S usually overlap. The inner conditional expectation is

simply a conditional cdf, FY |TΛ(y|t,Λ), which is estimated nonparametrically in a second

step. The last step of estimation then averages out over the observables (S, Sw). Because

the continuous treatment variables T are fixed at level t, FY |TΛ(y|t,Λ) contains more argu-

ments than being averaged over in the third step. This partial mean structure implies that

the convergence rate is slower than root-n, as typically found in discrete treatment cases.

Newey (1994b) introduces the partial mean and its applications, such as consumer surplus

estimation and additive nonparametric models. This paper builds on and extends the partial

mean literature in two ways: First, the dependent variable is {1{Y≤y} : y ∈ Y} a process

indexed by the threshold y, making it possible to estimate the whole distribution of Y and

also the Hadamard-differentiable functionals of that distribution. Second, the regressors can

be unobserved and treated as generated regressors to be estimated parametrically or non-

parametrically in the first step. Next I consider the role played by the different individual

components that make up the object of interest in the expression (1.1).

Distribution Process. I obtain weak convergence of the partial sum of the weighted con-

ditional cdf process, allowing for regressors to be nonparametrically generated. The multi-

plier central limit theorem is valid for uniform inference, which enables functional hypotheses

tests for the whole distribution, such as tests for no effect or stochastic dominance.

By extending the results to the Hadamard-differentiable functionals of the partial mean

process, I am able to provide the limit distribution and uniform inference method for estimat-

ing common inequality measures and various distributional structural features; for example,

quantile functions, the Lorenz curves, and the Gini coefficients. (Bhattacharya (2007); Rothe
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(2010); Firpo and Pinto (2011); Donald et al. (2012); Chernozhukov et al. (2013). This class

of functionals also covers a wide class of regression functions with generated regressors,

which have been of interest in the econometrics and statistics literature. For example, the

unconditional mean E[Y (t)] is the average structural function or the dose-response function

(Blundell and Powell (2003) and Flores (2007)). The local average response or the marginal

mean treatment effect on the treated ∇tE
[
Y (t)

∣∣T = t̄
]∣∣
t=t̄

is the average effect for those cur-

rently choosing treatment level t̄ of an incremental increase in the treatment, holding their

other observables and unobservables fixed at baseline values (Altonji and Matzkin (2005)

and Florens et al. (2008)3). The unconditional quantile function F−1
Y (t)(τ) defines the quan-

tile structural function or the quantile dose-response function (Imbens and Newey (2009)).

The difference between two treatment levels is the unconditional quantile treatment effect.

I derive the weak convergence of estimating the entire quantile process in Section 1.6.1.2.

Generated Regressors Λ(S). I derive a uniform stochastic expansion of the multi-step

estimator characterizing the influence of estimating the generated regressors on the final

estimator. The explicit stochastic expansion serves as the cornerstone to establish weak

convergence for the estimated partial mean process with generated regressors of general

function forms. I study two important examples for generated regressors in detail. First,

a control variable can be included in the conditioning variables as in the triangular simul-

taneous equations models in Newey et al. (1999) and Imbens and Newey (2009). When

the control variable contributes to a full mean, I show the variation from estimating this

generated regressor converges at
√
n-rate and is first-order asymptotically ignorable. The

second example is the generalized propensity score (GPS), defined as the conditional density

function of treatment T given observables X. Under the unconfoundedness assumption, the

GPS is known to reduce dimensionality in the second-step regression (Hirano and Imbens

(2004)). I show that for estimating the overall distribution FY (t)(y), the GPS does not result

3Florens et al. (2008) impose a stochastic polynomial assumption on the heterogeneous effects and use
a control function approach to obtain identification, rather than assuming common support, as I do in this
paper.
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in an efficiency gain, over controlling directly for the whole set of the observables. Also, re-

gressing on the true or parametrically estimated GPS is less efficient than regressing on the

nonparametrically estimated GPS. These results parallel the binary treatment case: a recent

finding for the nonparametric regression on the propensity score in Hahn and Ridder (2013)

and the propensity-score-weighting estimators in Hahn (1998) and Hirano et al. (2003). See

Section 1.4.2.3 for details.

A uniform expansion of my multi-step kernel-based estimator reveals the influence of

estimating the generated regressors on the final estimator. The technical challenge is that the

estimated generated regressor plays two roles: the regressor for the second-step regression

and the argument being averaged over in the third-step partial mean. I use a stochastic

equicontinuity argument from empirical process theory, following the recent literature on

nonparametrically estimated generated regressors, for example, Mammen et al. (2012a),

Mammen et al. (2012b), Escanciano et al. (2012), Hahn and Ridder (2013), and Song (2008).

I contribute to this literature by deriving the influence of the estimation error of the generated

regressor on the partial-mean process, without artificially assuming that the contribution of

the first-step estimation error converges at a faster rate. I also find the trade-off between the

complexity and accuracy assumptions as in Mammen et al. (2012a) and Escanciano et al.

(2012): if the control function is smoother, i.e., it belongs to a less complex function space,

then estimation of the generated regressor needs to converge at a faster rate.

My work is most closely related to the work of Mammen et al. (2012a), which develops

a stochastic expansion based on a kernel estimation. Mammen et al. (2012a) focus on

conditional mean regression with generated regressors, while I further study the partial mean

of this conditional regression. Hahn and Ridder (2013) use Newey (1994a) path-derivative

method to derive the asymptotic variance of multi-step semiparametric estimators for a full

mean involving a generated regressor. Hahn and Ridder (2013) and Mammen et al. (2012b)

derive the influence function for estimating the binary treatment effect by regressing on an

estimated propensity score. For the continuous treatment case, I show the limit theory for

regressing on the estimated generalized propensity score. Escanciano et al. (2012) introduce a
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uniform expansion of a full mean of weighted kernel-based regression residuals. The authors’

stochastic expansion is uniform with respect to the weights, bandwidth for the kernel, and

generated regressors.

Weight W (Sw). The counterfactual distribution of Y (t) for those currently being treated

or choosing t̄, FY (t)|T (y|t̄), can be identified by (1.1) using the weightW (Λ) = fT |Λ(t̄|Λ)/fT (t̄),

where fT |Λ(t̄|Λ) is the conditional density of T given Λ evaluated at t̄. This is in the spirit

of Horvitz and Thompson (1952) and DiNardo et al. (1996) to reweight the observations

using the propensity score. The sampling variation resulting from estimating this weight

W (Sw) = fT |Sw(t̄|Sw)/fT (t̄) and using it to estimate the weighted partial mean process in

(1.1) is taken into account. 4

I can also study decomposition and policy analysis by estimating the treatment effect on

the treated under unconfoundedness. The statistical object θt
(
y
∣∣X,W (X) = fT |X(t̄|X)/fT (t̄)

)
= E

[
FY |TX(y|t,X)

∣∣T = t̄
]

can be interpreted as a counterfactual distribution of either a

change in the conditional distribution of the outcome given the characteristics or a postu-

lated distribution of the characteristics. For example, I could assess what wage distribution

would have prevailed if, conditional on the same observable characteristics X, individuals

who have been participating in an anti-poverty program for t̄ years had been paid according

to the wage schedule of those who have been participating for t years (fY |XT (y|X, t)). This

decomposition analysis might reveal discrimination or stigma based on the length of time in

the program. My work is an extension of the counterfactual analysis in Chernozhukov et al.

(2013), in which the treated group can be viewed as defined by a discrete treatment, such as

gender, races, or time periods. In this paper, the treatment or policy variable is considered

4The weight will include a fixed trimming function, where the density of the conditioning variables are
bounded away from zero, as in Newey (1994b). In principle, an estimated trimming function could be
incorporated into my framework and considered in the asymptotic results. I do not pursue this extension in
this paper. The fixed trimming choice allows me to focus on the technical issues associated with estimating
the generated regressor and the whole distribution processes. In fairness, the choice of fixed trimming
function can affect the interpretation of the estimands considered. The subpopulation is selected such that
the observables do not take extreme values.
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continuous, for example, teacher quality, subsidy, or cigarette consumption. Section 1.2.2

contains a more detailed discussion.

Treatment Intensity Effects. In contrast to the vast binary treatment effect literature

that captures only the effect of participating in a program, econometrics methods for treat-

ment intensity effects are less developed. Cattaneo (2010) studies the efficient estimation

of multi-valued treatment effects, in which identification and estimation are extended from

the binary case under the unconfoundedness assumption. To allow for selection on unob-

servables, the instrumental variable results in the binary case do not easily extend to the

endogenous multi-valued treatment case; see the review paper of Imbens and Wooldridge

(2009) for further discussion of this issue. In contrast, models of endogenous continuous

treatment can borrow a control function approach from triangular simultaneous equations

models to account for endogeneity. My estimator covers this case when the control variable

is estimated in a preliminary step.

There is a growing empirical literature analyzing continuous treatment effects. Hirano

and Imbens (2004) study the effect of unearned income, measured by the amount of a lottery

prize, on subsequent labor earnings. With regard to program evaluation, the duration of ex-

posure to the programs is often considered a continuous treatment. Behrman et al. (2004) use

a matching-typed estimator to evaluate a Bolivian preschool program. The semiparametric

estimation method developed by Hirano and Imbens (2004) has been used to analyze the

Cash Transfers programs (Progresa/Oportunidades) in Mexico (Ibarraran and Villa (2010))

and the South African Child Support Grant (Agüero et al. (2010)). Flores et al. (2012) and

Kluve et al. (2012) use this method to study job training programs. Although regressing on

the estimated GPS is common practice in empirical analyses, to the best of my knowledge,

this paper is the first presentation of a complete limit theory of nonparametric regression

on the estimated GPS. Flores (2007) derives the limit theory for nonparametric estimation

based on regression on the observables to estimate the dose-response function and the loca-

tion and size of its maximization. I extend the continuous treatment literature by moving
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beyond the mean to the whole distributions of the potential outcomes. In addition, I allow

selection on unobservables by importing the control variable approach from the literature on

triangular simultaneous equations models.

The rest of the paper is organized as follows: Section 2 introduces the setup and param-

eters of interest. Table 1.1 summarizes the identification results and asymptotic theory for

estimating the causal outcome distributions. Section 3 describes three-step nonparametric

kernel estimation for the weighted partial mean process with generated regressors (1.1). Sec-

tion 4 outlines the main asymptotic theorems when the weights are observed. A uniform

stochastic expansion characterizes the influence of estimating the generate regressor on the

multi-step estimator. I focus on two economic examples for the generated regressors: the

control variables in the simultaneous equations models in Newey et al. (1999) and Imbens

and Newey (2009) and the generalized propensity score in Hirano and Imbens (2004). Sec-

tion 1.5 presents the limit theory for estimating the weight function for the treated effect

on the treated. Section 1.6 presents the limit theories for treatment/policy effects using

the functional delta method for the Hadamard-differentiable policy functionals. I explicitly

carry out the limit theory for estimating the mean and quantile processes. The simulation

in Section 7 shows that the proposed estimators work in finite samples, comparing with the

parametric method in Hirano and Imbens (2004). The empirical example is part of a joint

project with Juan Villa in which we evaluate a Colombian conditional cash transfer program.

The proofs are in the Appendix.

Notations. ⊥ denotes independence. ‖ · ‖∞ is the sup-norm, i.e., ‖f‖∞ = supx∈X |f(x)|,

where X is the support of X. y1 ∧ y2 ≡ min{y1, y2}. a.s. is the shorthand of almost surely.

Let du denote the dimension of a vector u. (u)min denotes the smallest element and (u)max

denotes the biggest element of the vector u. Let α be the greatest integer strictly smaller

than α.



9

1.2 Distributional Features of Potential Outcomes

This section introduces the continuous treatment effect model and the causal objects of

interest. For completeness, I present results for the regression-type and propensity-score

weighting identifications of the distributions of the potential outcome for the whole pop-

ulation and the treated subpopulation (those who have chosen a certain treatment level).

Table 1.1 summarizes the identification findings based on the weighted partial mean process

with generated regressors in (1.1), specifically for the treatment effect model under uncon-

foundedness and the nonseparable simultaneous equations models in Newey et al. (1999) and

Imbens and Newey (2009).

1.2.1 Potential Outcome Framework

Let Y (t) denote the potential outcome corresponding to the level of treatment intensity

t. The continuous treatment vector T takes values on a compact set T ⊂ Rdt . The observed

outcome Y = Y (T ) is one of the potential outcomes {Y (t)}t∈T . The following identification

and estimation results are written to also include discrete treatments, which will be discussed

in the following sections. The treatment effect model is equivalent to a nonseparable outcome

with a general disturbance, where the outcome equation is Y = φ(T,X, ε). The structural

equation for the outcome is assumed not to change when a policy intervention determines

the treatment T . No functional form assumption is imposed on the general disturbances

ε, like monotonicity, dimensionality, or separability. Rank invariance is assumed, so that

the realizations of ε do not change when T is counterfactually manipulated. The observed

characteristics X could include endogenous pretreatment variables.

The stable unit treatment value assumption (Rubin, 1980) is inherently assumed: the

outcome for one unit is independent of potential treatment status of another unit given the

observed covariates. Social interaction, general equilibrium effects, and peer effects are not

considered.
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1.2.1.1 Treatment Effects and Treatment Effects on the Treated

The cumulative distribution function (cdf) of the potential outcome FY (t)(y) is the un-

conditional distribution of the outcome if, hypothetically, the entire population had been

assigned to the treatment level t. The cdf of Y (t) for those who have chosen their treatment

level t̄ is defined by FY (t)|T (y|t̄) = E
[
1{Y (t)≤y}

∣∣T = t̄
]
. I study the overall treatment effect

based on FY (t)(·) and the treatment effect on the treated by FY (t)|T (·|t̄), for t, t̄ ∈ T . Note the

causal outcome distributions are processes indexed by threshold value y ∈ Y , for some fixed

treatment levels of interest t, t̄ ∈ T . In the following Assumptions, Lemmas, and Theorems

throughout this paper, I will consider some fixed treatment levels belonging to T , without

repeating this statement.

In practice, an array of estimands are often of interest based on these causal outcome

distributions. I consider a general class of functionals Γ on FY (t)(·) and FY (t)|T (·|t̄). For

example, if interest centers on the quantile treatment effect (QTE), I let Γ be the quantile

operator and the QTE corresponding to a change from t to t̄ is Γ(FY (t̄))−Γ(FY (t)). Similarly,

the QTE on the treated t̄ is Γ(FY (t̄)|T (y|t)) − Γ(FY (t)|T (y|t)). If interest is on the mean

treatment effect, then let Γ be the mean operator. Other inequality measures are also

applicable, such as the coefficient of variation, the interquantile range, the Theil index, the

Gini coefficient, the Lorenz curve, as discussed in Rothe (2010), Firpo and Pinto (2011),

Chernozhukov et al. (2013) for a discrete treatment.

1.2.1.2 Identification

I use the conditional independence and common support assumptions to show that the

partial mean process with generated regressors (1.1) identifies the causal outcome distribu-

tions FY (t)(·) and FY (t)|T (·|t̄). Define the control functions Λ(S) to be a vector of measurable

functions of S, a subvector of observables (T,X,ZT ), where ZT is an excluded exogenous

instrumental vector for T .
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Assumption 1.1 (CIA). T and ε are independent conditional on Λ(S). Or for any t ∈ T ,

the potential outcome Y (t) is independent of the treatment T , given Λ(S).

I focus on the following types of conditioning variables Λ(S). Under unconfoundedness

or selection on observables X, Assumption 1.1 is satisfied by Λ(S) = X or Λ(S) = fT |X(t|X)

the generalized propensity score (GPS) in Hirano and Imbens (2004). When unconfound-

edness is violated, one approach to satisfying Assumption 1.1 is through control variables

as in the triangular simultaneous equations model. For example, Imbens and Newey (2009)

show the conditional distribution function of the endogenous variable given the instrumental

variables is a control variable V (T, Z) = FT |Z(T |Z), where Z ⊂ (X,ZT ). So in this case, the

conditioning variables are Λ(S) = (X ′, V ′(T, Z))′ and S = (X ′, T ′, Z ′)′.

The conditional distribution of the potential outcome Y (t) given Λ is identified by As-

sumption 1.1,

FY (t)|Λ(y|Λ) ≡ E[1{Y (t)≤y}|Λ] = E[1{Y (t)≤y}|T = t̄,Λ] = E[1{Y≤y}|T = t,Λ] ≡ FY |TΛ(y|t,Λ)

(1.2)

∀t̄ ∈ T . That is, conditional on the control function Λ, the distribution of the potential

wage for choosing treatment intensity t is invariant of the current treatment intensity t̄,

FY (t)|TΛ(y|t̄,Λ) = FY |TΛ(y|t,Λ).

The following common support assumption, also known as the overlapping, assumes that

there is a positive probability of observing the treatment levels in some interval of interest

with the same characteristics Λ.

Assumption 1.2 (Common Support). The support of Λ conditional on T = t equals the

support of Λ.

For discrete treatments, the common-support assumption implies the propensity score

Pr(T = t|Λ) cannot be exactly zero or one. Although I focus on continuous treatments, the

identification results generally cover discrete treatments.
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By Assumptions 1.1 and 1.2, and following equation (1.2), the partial mean process with

generated regressor in (1.1)

θt(y|Λ,W ) ≡ E
[
FY |TΛ(y|t,Λ) ·W (Λ)

]
identifies FY (t)(y) with W = 1 and identifies FY (t)|T (y|t̄) with W (Λ) = fT |Λ(t̄|Λ)/fT (t̄).

The identification for the overall cdf FY (t) has been shown in Theorem 3 in Imbens and

Newey (2009). The discrete treatment case is well-studied E[Y (0)|T = 1] = E
[
E[Y |T =

0,Λ] ·Pr(T = 1|Λ)/Pr(T = 1)
]
, where the conditional mean E[Y |T = 0,Λ] can be estimated

by nonparametric regression (Heckman et al. (1998); Hahn and Ridder (2013)). When the

kernel method is used with a fixed bandwidth, it is known as the matching estimator Abadie

and Imbens (2006).

The nonparametric estimation in this paper is based on this regression-type identification.

However, the estimation of W (Λ) is complicated when the regressor Λ is estimated. So I

propose another version of identification for FY (t)|T (y|t̄) in the following Lemma, where the

weight does not depend on the generated regressor.

Lemma 1.1. Suppose the control function to be Λ = (X ′, V ′)′, where the control variable

V = V (T, Z), a measurable function of (T ′, Z ′)′. Suppose Assumptions 1.1 and 1.2 hold.

Then the cdf of Y (t) for the treated t̄ is identified by FY (t)|T (y|t̄) = E
[
FY |TXV

(
y
∣∣t,X, V (t̄, Z)

)
·

W (X,Z)
]
, where the weight W (X,Z) = fT |XZ(t̄|X,Z)/fT (t̄).

Proof:

FY (t)|T (y|t̄) = E
[
FY (t)|TXV (y|t̄, X, V )

∣∣T = t̄
]

= E
[
FY |TXV (y|t,X, V )

∣∣T = t̄
]

= E
[
E
[
FY |TXV (y|t,X, V )

∣∣T = t̄, Z
]∣∣∣T = t̄

]
= E

[
FY |TXV (y|t,X, V (t̄, Z))

∣∣T = t̄
]

= E
[
FY |TXV

(
y
∣∣t,X, V (t̄, Z)

)fT |Z(t̄|X,Z)

fT (t̄)

]
.

The first and the third equalities are by the law of iterated expectations. The second equality

is by the CIA. The first expectation of the last line is taken by the conditional distribution

of (X,Z) given T = t̄. The last expectation is taken by the marginal distribution of (X,Z).

�
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The discussion above has covered an array of identified objects with causal interpretations

that can be included as special cases of a partial mean process with generated regressors in

(1.1). Below is a table of the objects considered in this work along with a roadmap for the

results on asymptotic properties of corresponding estimators.

Identification Asymptotics

Selection on Observables X

FY (t) θt
(
y
∣∣X,W = 1

)
= E

[
FY |TX(y|t,X)

]
Theorem 1.1

θt
(
y
∣∣V,W = 1

)
= E

[
FY |TV (y|t, V )

]
, GPS V = fT |X(t|X) Corollary 1.2

FY (t)|T (y|t̄) θt
(
y
∣∣X,W (X)

)
= E

[
FY |TX(y|t,X) ·W (X)

] ‡ Theorem 1.3-1

θt
(
y
∣∣V,W (X)

)
= E

[
FY |TV (y|t, V ) ·W (X)

] ‡ Theorem 1.3-2

Control Variable V = V (T,Z) †

FY (t) θt
(
y
∣∣(X,V ),W = 1

)
= E

[
FY |TXV (y|t,X, V )

]
Corollary 1.1

FY (t)|T (y|t̄) θt
(
y
∣∣(X,V = Vt̄),W (X,Z)

)
= E

[
FY |TXV (y|t,X, V (t̄, Z))W (X,Z)

] ‡ Theorem 1.3-3

Table 1.1 Summary of Results

† The control variables are constructed for V (T,Z) = T−E[T |Z] in Newey et al. (1999) and V (T,Z) =

FT |Z(T |Z) in Imbens and Newey (2009) in Section 1.4.2.2.

‡ W (Sw) = fT |Sw(t̄|Sw)
/
fT (t̄)

Remark (Propensity-Score Weighting)

I generalize identification by propensity-score weighting from the binary treatment effect

literature to the case of continuous treatments. Propensity-score weighting identification for

continuous treatment variables relies on the introduction of a kernel function Kh(T − t) ≡
1
hdt

Πdt
l=1k(Tl−tl

h
), where k is any conventional kernel. The identification argument will depend

on the smoothness in FY |TΛ(y|t,Λ) and fT |Λ(t|Λ) matching the order of the kernel k. Let r
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denote the order of the kernel k, and assume FY |TΛ(y|t,Λ) and fT |Λ(t|Λ) are rth-order con-

tinuously differentiable in t with uniformly bounded derivatives. By a calculation involving

a Taylor expansion of the kernel,

FY |TΛ(y|t,Λ) = lim
h→0

E[1{Y≤y}Kh(T − t)|Λ]

E[Kh(T − t)|Λ]
= lim

h→0

E[1{Y≤y}Kh(T − t)|Λ]

fT |Λ(t|Λ)
.

Together with (1.2) and the law of iterated expectations, the propensity-score weighting

identification is

E[FY |TΛ(y|t,Λ)W (Λ)] = lim
h→0

E
[1{Y≤y}Kh(T − t)
E[Kh(T − t)|Λ]

W (Λ)
]

= lim
h→0

E
[1{Y≤y}Kh(T − t)

fT |Λ(t|Λ)
W (Λ)

]
.

(1.3)

Flores et al. (2012) estimate the continuous treatment effect by (1.1) and (1.3) nonparamet-

rically with a parametric generalized propensity score without providing a limit theory. I do

not exploit estimation based on this propensity-score weighting identification. For a discrete

treatment, the kernel function degenerates to an indicator function, E
[

1{Y≤y}1{T=t}
P (T=t|Λ)

W (Λ)
]
.

Propensity-score weighting estimation for the discrete treatment is well-studied in the treat-

ment effect literature, e.g., Cattaneo (2010), Hirano et al. (2003), Firpo and Pinto (2011).

1.2.2 Counterfactual Effects and Treatment Effects on the Treated

In the conventional treatment effect literature, the treatment effect on the treatedE[Y (t)−

Y (t̄)|T = t̄] is the effect of hypothetically assigning a different treatment level t to the sub-

population whose current treatment is t̄. Assuming unconfoundedness, the treatment effects

on the treated can be interpreted as the counterfactual effects of a policy intervention by

shifting exogenously to a conditional distribution of another potential outcomes given the

covariates or a postulated distribution of the covariates. Chernozhukov et al. (2013) study

counterfactual effects for the multivalued policy intervention or a counterfactual change in

economic conditions. They divide the population into subpopulations by a multivalued vari-

able, e.g., gender, races, time periods. I consider the economic conditions or policy generated

from a continuous variable.
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Consider an example of program evaluation when the outcome of interest Y is the wage

and the continuous treatment T is the length of exposure to the program. Define the t̄-group

by those individuals who have been in the program for t̄ years, i.e., the sub-population of

T = t̄. The observed wage distribution of the t̄-group is

FY |T (y|t̄) =

∫
FY |XT (y|x, t̄) dFX|T (x|t̄).

Consider a wage schedule to be a map from characteristics X to a wage distribution function.

Then {x 7→ FY |XT (y|x, t̄) : y ∈ Y
}

can be seen as the observed wage schedule for the t̄-group

given characteristics X. FX|T (x|t̄) is the status-quo characteristics distribution for the t̄-

group. Following Chernozhukov et al. (2013) , the differences in wage distributions among

sub-populations with different length of exposure FY |T (y|t) − FY |T (y|t̄) can be decomposed

into a structure effect and a composition effect in the following sense,

FY |T (y|t)− FY |T (y|t̄)

= −
∫ (

FY |XT (y|x, t̄)− FY |XT (y|x, t)
)
dFX|T (x|t) (1.4)

+

∫
FY |XT (y|x, t̄) d

(
FX|T (x|t)− FX|T (x|t̄)

)
. (1.5)

The first term in (1.4)
∫
FY |XT (y|x, t̄) dFX|T (x|t) = θt̄

(
y
∣∣X,W (X) = fT |X(t̄|X)/fT (t̄)

)
is

the counterfactual wage distribution that would have prevailed for the t-group if they faced

the t̄-group’s wage schedule {x 7→ FY |XT (y|x, t̄) : y ∈ Y}. Therefore, (1.4) represents the

structure effect or the discrimination effect in Chernozhukov et al. (2013), arising due to

pay difference among these sub-populations with the same characteristics. This can be a

measure of discrimination based on the length of exposure to the program.

On the other hand, θt̄
(
y
∣∣X,W (X) = fT |X(t̄|X)/fT (t̄)

)
also in the first term in (1.5)

can be interpreted as the counterfactual wage distribution of the t̄-group if they had the

t-group’s characteristics distribution FX|T (x|t). So (1.5) is the composition effect, arising

due to differences in characteristics among these sub-populations. Taking teacher quality as

a continuous treatment, the decomposition effect might answer the question: if Teacher-t’s
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students had the same characteristics distribution as Teacher-t̄’s (FX|T (X|t̄)), how would the

wage distribution change for Teacher-t’s students?

These two counterfactual effects are well defined statistical parameters. Assuming uncon-

foundedness, this descriptive decomposition analysis has causal interpretation in the sense

that the structure effect in (1.4), which is the counterfactual effect of changing the condi-

tional distribution, is the treatment effect on the treated FY (t̄)|T (y|t) − FY (t)|T (y|t). And

the composition effect in (1.5), which is the counterfactual effect of changing the covariate

distribution, equals FY (t̄)|T (y|t)−FY (t̄)|T (y|t̄). Therefore, the estimation procedure and limit

theory in this paper apply to the decomposition analysis. Even when the unconfoundedness

assumption does not hold, the decomposition analysis is still valid.

1.3 Estimation

This section introduces a general procedure to estimate the process in (1.1) θt(y|Λ,W ) =

E
[
E
[
1{Y≤y}

∣∣∣T = t,Λ = Λ(S)
]
·W (Sw)

]
. I will discuss specific estimators for each economic

examples in the later sections. I find that the estimation approach outlined below has differ-

ent properties depending on the details of implementation corresponding to each estimand.

As a result, different asymptotic distribution results are proceeded for the different versions

of this general estimation approach described below. My estimator is straightforward and

involves three steps:

1. (Generated Regressors)

The generated regressor Λ(S) can be estimated parametrically or nonparametrically,

as long as its uniform convergence rate satisfies certain conditions, specified in the next

section. If Λ(S) is estimated as a nonparametric regression by a kernel method, let the

bandwidth be h1, the order of the kernel be r1, and the dimension of the regressors be

d1.

2. (Regression)
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The second step is the nonparametric regression of the indicator function 1{Y≤y} on

Λ̂(S) and evaluated at λ, i.e.,

F̂Y |T Λ̂(y|t, λ) =
1
n

∑n
j=1 1{Yj≤y}Kh(Tj − t)Kh(Λ̂(Svj)− λ)

1
n

∑n
j=1Kh(Tj − t)Kh(Λ̂(Svj)− λ)

≡ ĝY T Λ̂(y, t, λ)

f̂T Λ̂(t, λ)
.

The product kernel is defined as Kh(u) ≡ h−duΠdu
l=1k

(
ul
h

)
, where h = h2 is the band-

width assumed the same for all the elements of the vector u for simplicity, and k is the

r2-ordered kernel function satisfying the following Assumption 1.4. Let the dimension

of the regressors at this step be d2 = dt + dλ.

3. (Partial Sum)

The third step is the partial sum, fixing the treatment variable T at level t, i.e.,

θ̂t(y|Λ̂,W ) = 1
n

∑n
i=1 F̂Y |T Λ̂(y|t, Λ̂(Svi)) ·W (Swi).

• (Weight)

The weight is a measurable function of the observables Sw and can be estimated by

Ŵ (Swi), then θ̂t(y|Λ̂, Ŵ ) = 1
n

∑n
i=1 F̂Y |T Λ̂(y|t, Λ̂(Svi)) · Ŵ (Swi).

When the generated regressor Λ(S) is observed, the estimator is simplified to the second and

third steps as the partial mean in Newey (1994b). 5

In Sections 1.4 and 1.5, I will present results for estimators using the approach outlined

above. The following assumptions will be maintained on the data generating process and

the kernel used in the nonparametric regression step described above.

Assumption 1.3 (Smoothness). (i) The data {Yi, Ti, Xi, ZT i}, i = 1, ..., n, is i.i.d.

(ii) Λ(S) is a vector of measurable functions of S, a subverter of {T,X,ZT}. The support

of Λ(S), Λ, is a compact and convex subset of Rdλ. The support of T , T , is a compact

and convex subset of Rdt.

5Behrman et al. (2004) propose a similar estimator, called the generalized matching estimator for a
continuous treatment variable. They use a local linear estimator, without developing its asymptotic theory.
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(T,Λ) has a probability density function fTΛ(t, λ), which is bounded away from zero

and is ∆th-order continuously differentiable with respect to both t and v, with uniformly

bounded derivatives.

(iii) Suppose the support of Y , Y ≡ [yl, yu] ⊂ R, where yl, yu are bounded.

FY |TΛ(y|t, λ) is ∆th-order continuously differentiable with respect to both t and λ, with

uniformly bounded derivatives.

(iv) The unconditional distribution FY (y) is continuous.

FY |TΛ(y|t, λ)fTΛ(t, λ) is uniformly locally Lipschitz of order α, i.e., for 0 < α ≤ 1,

δα > 0 and M (α) <∞,

sup
y∈Y,‖(t,λ)−(t′,λ′)‖≤δα

∣∣∣FY |TΛ(y|t, λ)fTΛ(t, λ)− FY |TΛ(y|t′, λ′)fTΛ(t′, λ′)
∣∣∣

≤M (α)‖(t, λ)− (t′, λ′)‖α.

(iv) is from Haerdle et al. (1988) for uniform convergence in estimating a cdf. The

compact support assumption (iii) implies the moments of Y exist, which is stronger than

the moment conditions for the partial mean in Newey (1994b). This stronger assumption

is used for inference on the empirical process. The treatments T or covariates Λ could

contain discrete variables and the kernel is replaced by an indicator function, known as

the frequency method. For notational convenience, discrete covariates are not allowed for.

The smoothness Assumption 1.3 (ii) ensures that the treatment variables cannot have point

masses, i.e., Pr(T = t) = 0 for t ∈ T .

Assumption 1.4 (Kernel). The kernel function k(u) : R → R satisfies the following con-

ditions: (i)
∫
k(u)du = 1,

∫
ulk(u)du = 0 for 0 < l < r, and

∫
|urk(u)|du < ∞ for some

r ≥ 2; (ii) k is of bounded support such that for some L < ∞, k(u) = 0 for |u| > L; (iii)

k(u) is r-times continuously differentiable and the derivatives are uniformly continuous and

bounded; (iv) For an integer ∆k, the derivatives of the kernel up to order ∆k exist and are

Lipschitz.
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Assumption 1.4 (iv) ensures that the estimator takes values in a function space not too

complex for the stochastic equicontinuity argument.

Uniform convergence of the first- and second-step estimators over the range of integration

suffices for deriving the properties of the third-step estimator. However, it is known that ker-

nel estimation is biased at the boundary of the support. Following Newey (1994b), I include

a fixed trimming function in the third step (Partial Sum), i.e., 1
n

∑n
i=1 F̂Y |T Λ̂(y|t, Λ̂(Svi)) ·

W (Swi) ·π(Ti, Svi), where the fixed trimming function π chooses a compact, interior subsup-

port of (T,Λ) such that the estimator F̂Y |TΛ(y|t, λ) satisfies the uniform convergence rate in

Proposition 1. In this case, the supports T and Λ are not restricted to be bounded.6

When the first step (Generated Regressors) uses a nonparametric kernel estimation, I

adopt another trimming function to trim the boundary of S such that the estimator Λ̂(S)

satisfies the convergence rate uniformly over the interior of the support of S, S0 in Proposition

1. That is, in the second step (Regression),

F̂Y |T Λ̂(y|t, λ) =

∑n
j=1 1{Yj≤y}Kh(Tj − t)Kh(Λ̂(Svj)− λ) · 1{Svj∈S0}∑n

j=1Kh(Tj − t)Kh(Λ̂(Svj)− λ) · 1{Svj∈S0}

≡ 1

n†

n†∑
i=1

1{Y †i ≤y}
Kh(T

†
i − t)Kh(Λ̂

†
i − λ)

/
f̂ †
T Λ̂

(t, λ)

where n† ≡
∑n

j=1 1{Svj∈S0} and the subsample is selected and relabeled {(Y †i , S
†
vi) : S†vi ∈

S0, i = 1, 2, .., n†} ⊂
{

(Yj, Svj), j = 1, .., n
}

. Then Λ̂†i ≡ Λ̂(S†vi) and assume Λ† = Λ(S†v) sat-

isfies Assumption 1.3. Therefore, the trimmed estimator consistently estimates F †Y |TΛ(y|t, λ)

for the subpopulation whose observables S do not take extreme values. For the two exam-

ples I consider, the control variables in Section 1.4.2.2 and the generalized propensity score

6There are two alternative approaches in order to estimate for the whole support S. The first approach
assumes a compact support. A generalized kernel or boundary kernel might be used to attain the uniform
convergence over the whole compact support, as suggested in Rothe (2010) and Darolles et al. (2011). The
asymptotic theories and proofs derived in this paper are yet shown to be unchanged. The second approach
supposes the support to be unbounded or the density to be zero at the boundary of the support. A random
or data-driven trimming is needed for the denominator problem and uniform consistency over the whole
support. This approach will complicate the proofs. Escanciano et al. (2012) estimate a full mean with
generated regressor and random trimming.



20

in Section 1.4.2.3, F †Y |TΛ(y|t, λ) identifies the causal distribution F †Y (t)|Λ(y(t)|λ) for the sub-

population. Then the third step uses this subsample with the second trimming function π,

1
n†

∑n†

i=1 F̂Y |T Λ̂(y|t, Λ̂(S†vi)) ·W (S†wi) · π(T †i , S
†
vi).

In the following, I suppress the two fixed trimming functions for notational ease, without

loss of clarity. That is, I work on a compact subsupport where the density functions are

bounded away from zero, as in Assumption 1.3 (ii). And the uniform convergence results

in Proposition 1 hold over these compact integration ranges. But keep in mind that the

identified object is for a subgroup of the population, which might be determined by the

researcher’s specific interest.

The following Proposition is from Lemma B.3 in Newey (1994b) and Theorem 3.2 in

Haerdle et al. (1988).

Proposition 1. Suppose the bandwidth h → 0 and log n/(nhd) → 0, where the dimension

of the regressors is d = dt + dλ. Suppose Assumptions 1.4 and 1.3 hold. For the first four

results below, assume ∆ ≥ r and ∆k ≥ 0.

1. sup(y,λ,t)∈Y×Λ×T

∣∣∣ĝY TΛ(y, t, λ)− gY TΛ(y, t, λ)
∣∣∣ = Op

((
logn
nhd

)1/2
+ hr

)
2. sup(λ,t)∈Λ×T

∣∣∣f̂TΛ(t, λ)− fTΛ(t, λ)
∣∣∣ = Op

((
logn
nhd

)1/2
+ hr

)
3. sup(λ,t)∈Λ×T

∣∣∣f̂T |Λ(t|λ)− fT |Λ(t|λ)
∣∣∣ = Op

((
logn
nhd

)1/2
+ hr

)
4. sup(y,λ,t)∈Y×Λ×T

∣∣∣F̂Y |TΛ(y|t, λ)− FY |TΛ(y|t, λ)
∣∣∣ = Op

((
logn
nhd

)1/2
+ hr

)
5. Now assume ∆ ≥ r + q and ∆k ≥ q. Then

sup(y,λ,t)∈Y×Λ×T

∣∣∣∂q∂qt F̂Y |TΛ(y|t, λ)− ∂q

∂qt
FY |TΛ(y|t, λ)

∣∣∣ = Op

((
logn
nhd+2q

)1/2
+ hr

)
.

1.4 Estimation with Known Weight Function

This section focuses on estimation of the partial mean process with a known weight

function, i.e., for each individual i = 1, .., n, W (Swi) = Wi. The first subsection below

presents the limit theory for estimating the partial mean process when all the regressors are

observed. This is a nontrivial extension of the partial mean in Newey (1994b) to the entire
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distribution process. The second subsection considers estimation of the control functions

Λ(S) as generated regressors.

1.4.1 Observable Regressors

In this subsection, I estimate the partial mean process with observed regressors Λi and

observed weight Wi for i = 1, ..., n, by

θ̂t(y|Λ,W ) =
1

n

n∑
i=1

F̂Y |TΛ(y|t,Λi) ·W (Swi)

processes of y ∈ Y , for any t ∈ T . This is for the case to identify the causal distribution

of the potential outcome under unconfoundedness, where the Conditional Independence As-

sumption 1.1 is satisfied by Λ = X. The estimator is constructed by the second and third

steps in Section 2.3. I begin by stating conditions on the object of estimation that will be

used in showing the behavior of the estimator. To employ empirical process theory as part

of the estimator behavior argument, I need to restrict the smoothness and complexity of the

conditional cdf of outcomes. The smoothness class that I will use is defined next. In words,

the partial derivatives of these functions are uniformly bounded up to some specified orders.

Definition 1.1 (CαM(S), van der Vaart and Wellner (1996) (P. 154)). CαM(S) is defined on a

bounded set S in Rds as follows: For any vector q = (q1, ..., qd) of qd integers, let Dq denote

the differential operator Dq = ∂q.

∂s
q1
1 ...∂s

qd
d

. Denote q. =
∑d

l=1 ql. Let

‖g‖α = max
q.≤α

sup
s
|Dqg(s)|+ max

q.≤α
sup
s 6=s′

|Dqg(s)−Dqg(s′)|
‖s− s′‖α−α

where maxq.≤α denotes the maximum over (q1, ..., qd) such that q. ≤ α and the suprema are

taken over the interior of S. Then CαM(S) is the set of all continuous functions g : S ⊂ Rd 7→

R with ‖g‖α ≤M .

Assumption 1.5 (Complexity). (i) For any t ∈ T and for each fixed y ∈ Y, FY |TΛ(y|t, ·) ∈

CαM(Λ), where α = dλ/2 for even dλ and α = (dλ − 1)/2 for odd dλ.
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(ii) There exists an universal constant C satisfying a Hölder continuity condition: for any

y1, y2 ∈ Y, ∥∥FY |TΛ(y1|t, ·)− FY |TΛ(y2|t, ·)
∥∥
∞ ≤ C|y1 − y2|1/2.

Assumption 1.5 is for the stochastic equicontinuity argument in empirical process theory.

It implies {FY |TΛ(y|t,Λ) : y ∈ Y} is Donsker by Example 19.9 in van der Vaart (2000). The

smoothness condition (i) is implied by Assumption 1.3 (iii). Because the object of interest is

a process indexed by y, (ii) is required to specify the complexity of the function space in y.

By the assumptions on my estimators, Remark A.2 in Appendix shows that for any y ∈ Y ,

the estimator F̂Y |TΛ(y|t,Λ) satisfies Assumption 1.5 with probability approaching one, i.e.,

belongs to CαM(Λ) and satisfies the Hölder continuity condition with probability approaching

one.

Assumption 1.6 (Bandwidth). The bandwidth h satisfies (i) h→ 0, (ii) nh2r+dt → 0, and

(iii) nh2d−dt/(log(n))2 →∞, as n→∞.

(ii) is under-smoothing the second-step regression by reducing the bias hr = o((nhdt)−1/2),

so that the limiting distribution is centered around zero. When choosing h ∼ n−η, Assump-

tion 1.6 implies 1
2r+dt

< η < 1
2d−dt . So r > dλ implies a higher-order kernel is needed when

the dimension of the regressors is large.

The following theorem presents the asymptotic linear representation and weak conver-

gence of my estimator.

Theorem 1.1 (Weak Convergence). Suppose Assumptions 1.2, 1.3, 1.4, 1.5, and 1.6 hold,

where ∆k ≥ α and ∆ ≥ α + r. Suppose the weight W is uniformly bounded. Suppose the

derivatives of E[W |Λ] up to order r exist and are uniformly bounded and continuous. Then

√
nhdt

(
θ̂t(·|Λ,W )− θt(·|Λ,W )

)
=

1√
n

n∑
i=1

ψtin(·|Λ,W ) + op(1)⇒ Gt(·|Λ,W )

where the influence function

ψtin(y|Λ,W ) ≡
√
hdt

Kh

(
Ti − t

)
fT |Λ(t|Λi)

·
(
1{Yi≤y} − FY |TΛ(y|t,Λi)

)
· E
[
W (Sw)

∣∣Λ = Λi

]
(1.6)
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7 and the empirical process converges weakly to a Gaussian process Gt(·|Λ,W ) with mean

zero and the covariance kernel

Cov
(
Gt(y1|Λ,W ),Gt(y2|Λ,W )

)
= lim

h→0
E
[
ψtin(y1|Λ,W )ψtin(y2|Λ,W )

]
= E

[(
FY |TΛ(y1 ∧ y2|t,Λ)− FY |TΛ(y1|t,Λ)FY |TΛ(y2|t,Λ)

)E[W |Λ]2

fT |Λ(t|Λ)

] ∫
K2(v)dv

for any y1, y2 ∈ Y.

For the unconfoundedness case where Λ = X and the weight is a function of the observable

regressors W = W (X), E[W |Λ] = W (X) in the influence function. When the generated

regressor is the generalized propensity score Λ = fT |X(t|X) and the weight function W (X) =

fT |X(t̄|X)/fT (t̄), the projection E[W |Λ] is not known in general.

Remark 1.1 (Bias). The bias of the estimator is made of smaller order by the bias-reducing

kernel
√
nhdthr = o(1). Consider one continuous treatment variable dt = 1 for simplicity.

The bias is dominated by the bias of the influence function, which is O(hr) ∂
r

∂tr
E
[
FY |TΛ(y|t,Λ)·

E[W |Λ]
]

by the standard kernel calculation in Appendix (A.11). For the finite-sample

estimation, the bias is larger at the points when the counterfactual distribution has more

curvature. The Monte-Carlo simulations in Section 2.5 reflect this point.

1.4.2 Generated Regressors

This section presents the asymptotic theory for nonparametric estimation of the par-

tial mean process with generated regressors Λ(S) = (X ′, V (T, Sv)
′)′ in (1.1), where S =

(X ′, T ′, S ′v)
′, V (T, Sv) is a vector of measurable functions of observables Sv ⊂ (X,ZT ) and

it could contain the treatment T or not. The control function V (T, Sv) is estimated in the

first step. Then

θt
(
y
∣∣(X, V ),W

)
= E

[
FY |TXV (y|t,X, V (T, Sv)) ·W (Sw)

]
θ̂t
(
y
∣∣(X, V̂ ),W

)
=

1

n

n∑
i=1

F̂Y |TXV̂
(
y|t,Xi, V̂ (Ti, Svi)

)
·W (Swi)

7The influence function is analogous to the influence function for the binary treatment literature, for
example, Firpo and Pinto (2011), where the kernel function degenerates to an indicator function 1{T=t}.
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processes of y ∈ Y , for any t ∈ T . I first present a uniform stochastic expansion of the

multi-step estimator, revealing the influence of estimating the generated regressors of general

function form V (T, Sv) on the final estimator. Then I apply this expansion to derive weak

convergence of the estimated partial mean process for two economic examples from Section

1.2: the control variable and the generalized propensity score in Sections 1.4.2.2 and 1.4.2.3,

respectively.

The estimator θ̂t
(
y
∣∣(X, V̂ ),W

)
is constructed by the general procedure in Section 2.3.

The following assumptions require the first-step estimator V̂ to converge fast enough and to

take values in a function space that is not too complex, with probability approaching one.

The key for the asymptotic theory is a stochastic equicontinuity argument from empirical

process theory, modified from Lemma 1 in Mammen et al. (2012a). The following high-level

assumptions are borrowed from Mammen et al. (2012a). Primitive sufficient conditions are

given in Section 1.4.2.1. The complexity of the function space is measured by the cardinality

of the covering sets or the packing number, which can be achieved by assuming smoothness

of the functions.

Assumption 1.7 (Accuracy). Let the second-step bandwidth h2j ∼ n−ηj for j = 1, ..., d2.

The j-th components V̂j and Vj of vectors V̂ and V , respectively, satisfy ‖V̂j − Vj‖∞ =

op(n
−δj), for some δj > ηj and for all j = 1, ..., dv.

Assumption 1.8 (Complexity). There exist sequences of sets of functions Mn such that

1. V ∈Mn =Mn,1 × ...×Mn,dv . Pr(V̂j ∈Mn,j)→ 1 as n→∞ for all j = 1, ..., dv.

2. For a constant CM > 0 and a function Vnj with ‖Vnj − Vj‖∞ = o(n−δj), the set

M̄n,j = Mj

⋂
{Vj : ‖Vnj − Vj‖∞ ≤ n−δj} can be covered by at most CM exp(υ−βjnξj)

balls with ‖ · ‖∞-radius υ for all υ ≤ n−δj , where 0 < βj < 2 and ξj ∈ R.
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The influence function of the oracle or infeasible estimator with the true regressor V is

(1.6) derived in Theorem 1.1,

ψtin
(
y
∣∣(X, V ),W

)
≡

√
hdt2 Kh

(
Ti − t

)
fT |XV (t|Xi, Vi)

(
1{Yi≤y} − FY |TXV (y|t,Xi, Vi)

)
E
[
W (Sw)

∣∣X = Xi, V = Vi
]
.

Given these assumptions, I can now state my main results:

Theorem 1.2 (Stochastic Expansion). Suppose the conditions in Theorem 1.1 hold. Suppose

Assumptions 1.7 and 1.8 hold. Then uniformly in y ∈ Y, (i) when the generated regressors

are not functions of the treatment T , V = V (Sv),√
nhdt2

(
θ̂t
(
y
∣∣(X, V̂ ),W

)
− θt

(
y
∣∣(X, V ),W

))
=

1√
n

n∑
i=1

ψtin
(
y
∣∣(X, V ),W

)
+

√
nhdt2 E

[(
V̂ (Sv)− V (Sv)

)′(
ARG

(
y,X, Sv, V (Sv)

)
+REG

(
y,X, Sv, V (Sv)

))]
+

√
nhdt2 Rn

where

ARG(y,X, Sv, V (Sv)) = ∇vFY |TXV (y|t,X, V (Sv)) · E
[
W (Sw)

∣∣X,Sv]
REG(y,X, Sv, V (Sv)) =

[
−∇vFY |TXV (y|t,X, V (Sv)) · E

[
W (Sw)

∣∣X, V = V (Sv)
]

+
(
FY |TXV (y|t,X, V (Sv))− FY |TXSv(y|t,X, Sv)

)
·
(
−∇vE

[
W (Sw)

∣∣X, V = V (Sv)
]

+
∇vfT |XV (t|X, V (Sv))

fT |XV (t|X, V (Sv))
· E
[
W (Sw)

∣∣X, V = V (Sv)
])]
·
fT |XSv(t|X,Sv)

fT |XV (t|X, V (Sv))

and Rn = Op

(
n−κ1 + n−κ2 + n−r2(η)min

)
, κ2 < min

{
1 − η+, 2(δ − η)min, (δ − η)min + 1

2
(1 −∑d2

j=1 ηj)
}

, 0 < (δ − η)min < κ1 <
1
2
(1−

∑d2

j=1 ηj) + (δ − η)min − 1
2
(δβ + ξ)max.



26

(ii) When the generated regressors are functions of the treatment T , V = V (T, Sv),√
nhdt2

(
θ̂t
(
y
∣∣(X, V̂ ),W

)
− θt

(
y
∣∣(X, V ),W

))
=

1√
n

n∑
i=1

ψtin
(
y
∣∣(X, V ),W

)
+

√
nhdt2 E

[(
V̂ (T, Sv)− V (T, Sv)

)′
ARG

(
y,X, (T, Sv), V (T, Sv)

)]
(1.7)

+

√
nhdt2 E

[(
V̂ (t, Sv)− V (t, Sv)

)′
REG

(
y,X, Sv, V (t, Sv)

)]
(1.8)

+

√
nhdt2 Rn.

The influence of estimating the generated regressor is characterized by

E
[(
V̂ (·)−V (·)

)′(
ARG+REG

)]
, where the first-step estimator for the generated regres-

sor V̂ (·) is taken as a fixed function and the expectation is taken over the underlying variables

{T,X, Sv}. The partial mean/full mean structure provides useful insight on the influence of

estimating the generated regressors, discussed in detail in the following Remark 1.2. ARG

is from estimating V as an argument. REG comes from estimating V for the regressors.

The term ∇vFY |TXV captures the magnitude of the influence of estimating V for its dual

roles, regressor and argument. That is, these terms are zero when the regression function

is flat in V . If I imposed the index assumption on V (·) such that FY |TXV = FY |TXSv , then

the influence of estimating the generated regressors is reduced to a similar structure as the

results derived in Escanciano et al. (2012) for a full mean. In the remaining terms Rn, n−κ2

controls the smaller-order terms from linearization. Stochastic equicontinuity contributes a

term of order n−κ1 to Rn.

When the generated regressors are functions of the treatment T , such as the control

variable in the triangular models in Imbens and Newey (2009), the treatment variable T is

fixed at t in the influence of estimating V as a regressor in (1.8). Intuitively, this is because

E[1{Y≤y}|T = t, V (T, Sv) = v] = E[1{Y≤y}|T = t, V (t, Sv) = v]. On the other hand, for

estimating the argument V (T, Sv), the expectation in the influence (1.7) averages over T ,

capturing variation of T in V . This is a distinct feature of the partial mean with estimated

generated regressors which contain the treatment variables.
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Since my stochastic expansion is for the final partial mean estimator instead of the

second-step regression function, I do not assume the Lipschitz condition on the regression

function with respect to the regressors as in Mammen et al. (2012a) and Escanciano et al.

(2012). That is, supv
∣∣E[Y |V1 = v] − E[Y |V2 = v]

∣∣ ≤ C‖V1 − V2‖∞ for V1, V2 ∈ V , some

constant C < ∞, which requires the regression function to be very smooth, as discussed in

Song (2012a).

Remark 1.2 (Full Mean/Partial Mean). Newey (1994b) introduces terminology for the

partial mean and full mean, which has the following structure: Letm(X1, X2) be a conditional

expectation or density.

• Full Mean EX1,X2 [m(X1, X2)]: All the conditioning variables or regressors (X1, X2)

are averaged out by the outer expectation, for example, average derivative in Powell

et al. (1989).

• Partial Mean EX1 [m(X1, X2 = x2)]: The outer expectation averages over a strict

subset of the conditioning variables or regressors X1 in the inner regression, while

X2 is fixed at value x2. When X2 contains continuous variables, the Partial Mean

is infinite-dimensional and hence estimated at a nonparametric convergence rate, for

example, Theorem 1.1.

Then important insight for the influence of estimating the generated regressor E
[(
V̂ (·) −

V (·)
)′
A(y, ·)

]
can be learned by the partial mean/full mean structure.

1. When the generated regressor is estimated parametrically or contributes as a full mean,

the estimation error converges at root-n rate, i.e., E
[(
V̂ (·)−V (·)

)′
A(y, ·)

]
= Op(n

−1/2).

So the estimation error of the generated regressors is first-order ignorable, for example,

the control variables in Section 1.4.2.2.

2. When the generated regressor is estimated nonparametrically and contributes as a par-

tial mean, then E
[(
V̂ (·)−V (·)

)′
A(y, ·)

]
= Op(n

−γ), where γ < 1/2. If the generated re-

gressor is estimated by a kernel method and E
[(
V̂ (·)−V (·)

)′
A(y, ·)

]
= Op((nh

dt
1 )−1/2),
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then choosing h2 = o(h1) could artificially make the estimation error of smaller or-

der. Theorem 1.2 characterizes the complete first-order influence of the estimation

error, instead of ignoring it by bandwidth choice. An example of this case is the GPS

V (X) = fT |X(t|X) in Section 1.4.2.3, where T is fixed at t.

1.4.2.1 Primitive Conditions

When the generated regressors are specified and estimated parametrically, δ = 1/2 and

Assumption 1.8 is satisfied by Example 19.7 in van der Vaart (2000) for a Donsker parametric

function. The following primitive conditions are sufficient for the complexity Assumption

1.8.

Assumption 1.9 (Complexity). For any j = 1, ..., dv,

1. Let Mn,j be the set of functions defined on some compact and convex sets S ⊂ Rds.

For any r ∈Mn,j, r/n
ξ∗j ∈ CαM(S), for some ξ∗j ≥ 0, α > ds/2, and M > 0.

2. Vj ∈ CαM(S)

3. ‖DαV̂j −DαVj‖∞ = op(n
ξ∗j )

Assumption 1.9-1 assumes Mn,j to be the set of functions whose partial derivatives up

to order α exists and are uniformly bounded by some multiple of nξ
∗
j . By Corollary 2.7.2

in van der Vaart and Wellner (1996), Assumption 1.9-1 implies Assumption 1.8-2 by letting

βj ≡ ds/α and ξj ≡ ξ∗j ds/α. Then the complexity of the function space is controlled by

the uniform bound ξ∗ and the differentiability α. Assumption 1.9-2 and -3 are sufficient for

Assumption 1.8-1, as discussed in Ichimura and Lee (2010). Escanciano et al. (2012) also

derive a similar primitive condition in their Appendix C.

The following assumption for the second-step bandwidth is sufficient for the conditions

in Theorem 1.2 and makes the remaining terms of smaller order, i.e.,
√
nhdt2 Rn = op(1).
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Assumption 1.10 (2nd-step Bandwidth). The bandwidth for the second-step regression

h2 ∼ n−η satisfies

1

2r2 + dt
< η < min

{ 1

2d2 − dt
,
δ(2− β)− ξ
d2 − dt + 2

,
1

d2

(1− δβ − ξ)
}

(1.9)

where the last term in the minimization is dropped if dt ≤ 2. When dt ≤ 4, assume δ > 1/4.

When dt > 4 and δ < 1/4, assume η > 1−4δ
dt−4

.

I assume the convergence rate of the first-step estimator δ > 1/4 in the following for

simplicity. To make the upper bounds in (1.9) positive, δ must satisfy

δ > max
{ ξ

2− β
,
1

4

}
. (1.10)

The smoothness parameters ξ and β satisfy 2− β − 2ξ > 0. The order of kernel r2 is chosen

accordingly such that (1.9) is a valid condition.

To see Assumption 1.10 is not restrictive, take an example where the first-step generated

regressor is the parametric estimated GPS in Section 1.4.2.3. Then δ = 1/2, dt = 1, and

d2 = 2. Assumption 1.10 implies 1
2r2+1

< η < 1
3

(
1 − β/2 − ξ

)
. A standard second-order

kernel (r2 = 2) satisfies this condition by choosing the smoothness parameters β and ξ.

Now consider the first step to be a nonparametric kernel regression estimation, where the

r1-order kernel satisfies Assumption 1.4 with the bandwidth h1 ∼ n−g → 0. Assumptions

1.9 and 1.11 provide primitive conditions for Assumptions 1.7 (Accuracy), 1.8 (Complexity),

and
√
nhdt2 Rn = op(1).

Assumption 1.11 (Bandwidths — NP 1st-step). The first-step bandwidth h1 ∼ n−g satisfies

1

2r1 + dt
< g < min

{ 1

2d1

,
1

d1

(
1− 2ξ

2− β

)
,

2ξ + β

d1β + 2ds

}
. (1.11)

The second-step bandwidth h2 ∼ n−h satisfies

1

2r2 + dt
< η < min

{ 1

2d2 − dt
,
1− β

2
(1− d1g)− ξ − d1g

d2 − dt + 2
,

1

d2

(
1− β

2
(1− d1g)− ξ

)}
(1.12)

where the last term is dropped for dt ≤ 2. The smoothness parameters β and ξ satisfy

2− β − 2ξ > 0.
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The first two terms in the upper bound of (1.11) are from (1.10). The third term in (1.11)

ensures the first-step estimator V̂ converging to Mn with probability approaching one, by

Assumption 1.9-3 and Proposition 1. Setting β = ds/α and ξ = ξ∗ds/α in Assumption 1.9,

this upper bound is smaller for smaller ξ∗ or larger α, i.e., if the function space is more

restrictive/less complex, the first-step of estimation needs to be more accurate to ensure V̂

belongs to Mn with probability approaching one. This is the additional cost of assuming a

smoother function space. The trade-off between the complexity and accuracy assumptions

is also discussed in Mammen et al. (2012a) and Escanciano et al. (2012).

It is feasible to choose the same bandwidth for the estimations in the first two steps.

Combining (1.11) and (1.12) yields

1

2 min{r1, r2}+ dt
< η = g < min

{ 1

2d2 − dt
,

1

2d1

,
1− ξ − β/2

d1(1− β/2) + d2 + 2− dt
,

2ξ + β

d1β + 2ds

}
.

(1.13)

1.4.2.2 Example I: Control Variables

To relax the unconfoundedness assumption to account for endogeneity, a well-known

approach is to include control variables in the covariates. I apply my estimator to the

triangular simultaneous equations models in Newey et al. (1999), Imbens and Newey (2009),

and Kasy (2013). In these examples, the influence of the estimation error of the control

variables is a full mean discussed in Remark 1.2 and hence is first-order ignorable.

Consider the nonseparable outcome equation Y = φ(T,X, ε), where the treatment vector

of interest T = (T1, T
′
2)′ contains a single endogenous variable T1 failing the unconfoundedness

assumption. The remaining treatment subverter T2 satisfies the selection on observables

assumption, i.e., T2 ⊥ ε|X. Assume a valid control variable V for T1 that satisfies the

Conditional Independence Assumption 1.1 in the sense that (T1, T
′
2)′ ⊥ ε|(X, V ). So the

second-step regression FY |TXV (y|t,Xi, V (Svi)) identifies FY (t)|XV (y|Xi, Vi).

Assume a nonseparable first stage equation for the treatment variable:

T1 = g(Z, e)
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where the function g is strictly monotonic in the second argument. The instrumental vector

Z is independent of (ε, e). The disturbance e is a continuously distributed scalar with cdf

strictly increasing on the support of e. In general, there can be endogenous observables

X1 ⊂ X = (X ′1, X
′
2)′ in the outcome equation φ, but are not in the first stage equation of T1.

And the exogenous X2 is a subvector of Z = (X ′2, Z
′
T )′, where ZT is the excluded exogenous

instrumental vector for T1. I consider two models for control variables:

1. Imbens and Newey (2009) construct a control variable by FT1|Z(T1|Z) in their Theorem

1. Because the generated regressor is a function of both T1 and Z, the stochastic

equicontinuity argument requires the cdf estimator to be smooth in both T1 and Z,

V̂ = V̂ (T1, Z) = F̂T1|Z(T1|Z) =
1
n

∑n
i=1Gh1(T1 − T1i)Kh1(Z − Zi)

1
n

∑n
i=1 Kh1(Z − Zi)

where Gh1(u) ≡
∫ u

Kh1(v)dv, Sv = (T1, Z
′)′, and ds = dz + 1. 8

2. Newey et al. (1999) specify a separable first stage equation,

T1 = g(Z) + e,where E[e|Z] = 0.

Then a valid control variable is the residual V = T1 − E[T1|Z] with the estimator

V̂ (Si) = T1i − Ê[T1|Zi]. 9 10

Corollary 1.1 (Control Variable). Assume the conditions in Theorem 1.2 and Assumptions

1.9 and 1.10 hold. Consider the cases when V̂ is a (i) parametric estimator; or (ii) a

8A different model proposed by Kasy (2013) assumes that the first stage equation g is strictly monotonic
in the scalar instrumental variable Z and allows multi-dimensional unobservables e. Kasy (2013) shows
that although the control variable V = FT1|Z(T1|Z) fails the Conditional Independence Assumption 1.1, the

control variable still identify FY (t)(y) by E
[
FY |TXV (y|t,X, V )

]
= θt(y|(X,V ),W = 1). However, FY (t)|T (y|t̄)

cannot be identified in this model.
9Because the first stage equation is additive, ds = dz in (1.11). So the condition is weaker than the

nonseparable first stage equation in Imbens and Newey (2009).
10As discussed in Section 2.3, the first trimming function in the second step (Regression) is based on

the compact subsupport of Z. The second trimming function in the third step (Parital Sum) is based on
the compact subsupport of (T,X, V ). So the subpopulation is selected so that their values of instrumental
variables, treatments, characteristics, and the unobservable in the first stage equation do not take extreme
values. Using the two fixed trimming functions, the identification argument is still valid by the fact that
Z† ⊥ ε† for the subpopulation.
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nonparametric kernel estimator with h1 satisfying Assumption 1.11. Then

√
nhdt

(
θ̂t
(
·
∣∣(X, V̂ ),W

)
− θt

(
·
∣∣(X, V ),W

))
=

1√
n

n∑
i=1

ψtin
(
·
∣∣(X, V ),W

)
+ op(1)⇒ Gt

(
·
∣∣(X, V ),W

)
.

Weak convergence follows Theorem 1.1 to a Gaussian process Gt

(
·
∣∣(X, V ),W

)
with mean

zero and covariance kernel

Cov
(
Gt

(
y1

∣∣(X, V ),W
)
,Gt

(
y2

∣∣(X, V ),W
))

= E

[(
FY |TXV (y1 ∧ y2|t,X, V (T, Sv))

− FY |TXV (y1|t,X, V (T, Sv))FY |TXV (y2|t,X, V (T, Sv))
)E[W (Sw)

∣∣X, V (T, Sv)
]2

fT |XV (t|X, V (T, Sv))

] ∫
K2(u)du

for any y1, y2 ∈ Y.

The influence from estimating the control variable is first-order asymptotic ignorable.

Mammen et al. (2012a) study the case V (S) = T1 − E[T1|Z] for the average structural

function E[Y (t)] in their Corollary 6 by using the U-statistic theory for the partial mean.

Because of the full mean structure, I do not assume h2 = o(h1) as Mammen et al. (2012a)

do to make smaller order of the estimation error from the second-step regression.

1.4.2.3 Example II: Treatment Effects - Generalized Propensity
Score

Under the unconfoundedness assumption, Hirano and Imbens (2004) show that regressing

on the generalized propensity score (GPS) fT |X(t|X) is sufficient for estimating continuous

treatment effects. The propensity score is often used for dimension-reduction to avoid the

need to match units on the values of all covariates. In practice, it is typically easier to

check the common support assumption by projection on the GPS than on the support of the

covariates X, as discussed in Flores et al. (2012)11 and in the empirical example in Section

1.7.2. Consider one continuous treatment variable dt = 1. Define V (t,X) = fT |X(t|X) and

11Flores et al. (2012) use the parametric first step for the GPS and local polynomial estimator for the
second-step regression. But they do not provide an asymptotic theory and bootstrap is used for the inference.



33

V (T,X) = fT |X(T |X). Theorem 3.1 in Hirano and Imbens (2004) implies ∀y ∈ Y ,

(i) E[1{Y (t)≤y}|V (t,X) = r] = E[1{Y≤y}|T = t, V (T,X) = r] = E[1{Y≤y}|T = t, V (t,X) = r]

(ii) E[1{Y (t)≤y}] = E
[
E[1{Y≤y}|T = t, V (T,X) = fT |X(t|X)]

]
= E

[
E[1{Y≤y}|T = t, V (t,X) = fT |X(t|X)]

]
(iii) E[1{Y (t)≤y}|T = t̄] = E

[
E
[
1{Y≤y}

∣∣T = t, V (t,X)
]fT |X(t̄|X)

fT (t̄)

]
12 (ii) implies that regressing on V (T,X) or V (t,X) both identify the causal objectE[1{Y (t)≤y}],

but motivate different estimators. I use V (t,X) = Λ for the 2nd-step regressors. 13 Then the

influence from estimating the GPS contributes to a partial mean in the first order expansion,

as discussed in Remark 1.2. 14

The following corollary first presents the limit property when the nonparametric esti-

mation of the GPS is not first-order ignorable. Second, when the GPS is estimated para-

metrically or nonparametrically with a faster convergence rate, the first-order asymptotic

property is the same as if the true GPS was observed.

Corollary 1.2 (Generalized Propensity Score). Suppose the conditions in Theorem 1.2 and

Assumptions 1.9 and 1.10 hold. For V (X) = fT |X(t|X), let ds ≡ dx, d1 = dx+1, and d2 = 2.

1. Consider V̂ (X) = f̂T |X(t|X) to be a nonparametric kernel estimator with order r1 =

r2 = r and h1 = h2 ∼ n−η such that (1.13) implies

1

2r + 1
< η < min

{ 1− ξ − β/2
(dx + 1)(1− β/2) + 3

,
1

2(dx + 1)
,

2ξ + β

(dx + 1)β + 2dx

}
.

12Hirano and Imbens (2004) do not show the identification for the cdf for the treated t̄, E[1{Y (t)≤y}|T = t̄]
in (iii). I derive (iii) by modifying the proof of Theorem 3.1 in Hirano and Imbens (2004).

13Hirano and Imbens (2004) estimate the GPS by a normal model in the first step, i.e., T |X ∼ N (X ′β, σ2).
Their second step is a linear regression on the estimated GPS (V̂ (T,X)), the treatment variable, and their

quadratic terms. The third step is a partial sum over V̂ (t,Xi) = f̂T |X(t|Xi) fixing the treatment value at t.
Most recent empirical research for a continuous treatment follows this semiparametric approach.

14As discussed in Section 2.3, the first trimming function in the second step (Regression) selects the interior
compact subsupport of X. The second trimming function in the third step (Partial Sum) selects the interior
compact subsupport of the treatments and the GPS. The identification argument is still valid by Theorem
1 in Hirano and Imbens (2004), making use of the facts that f†T |X(t|x) for the trimmed subpopulation is

proportional to fT |X(t|x) by a normalization constant. So the unconfoundedness assumption holds for the
subpopulation.
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Then (i) for the overall distribution FY (t)(y),

√
nh
(
θ̂t
(
·
∣∣V̂ ,W = 1

)
− FY (t)(·)

)
=

1√
n

n∑
i=1

ψtin(·|X,W = 1) + op(1)⇒ Gt(·|X,W ).

(ii) For W 6= 1,

√
nh
(
θ̂t
(
·
∣∣V̂ ,W)− θt( · ∣∣V,W))

=
1√
n

n∑
i=1

ψtin
(
· |X,W

)
+
√
hKh(Ti − t)∇vFY |TV (·|t, Vi)

(
Wi − E[W |Vi]

)
−
√
hKh(Ti − t)∇vE[W |Vi]

(
FY |TV (·|t, Vi)− FY |TX(·|t,Xi)

)
+ op(1)

2. Consider the cases V̂ (X) = f̂T |X(t|X) is (i) a parametric estimator; or (ii) a nonpara-

metric kernel estimator with h1 satisfying h2 = o(h1) and Assumption 1.11. Then

√
nh2

(
θ̂t
(
·
∣∣V̂ ,W)− θt( · ∣∣V,W)) =

1√
n

n∑
i=1

ψtin(·|V,W ) + op(1)⇒ Gt(·|V,W ).

Weak convergence to a Gaussian process follows as in Corollary 1.1.

The following Lemma 1.2 provides a formal and general result comparing expectations

of the conditional variances given the whole set of observables X and given the index V (X),

respectively. Because the whole set of observables X provides finer condoning variables than

its index V (X), Lemma 1.2 implies the estimator for the overall distribution FY(t)(y) based

on the regression on X is more efficient than the estimator using the true V (X); Heckman

et al. (1998) discuss the binary treatment case.

Lemma 1.2. Suppose A(V (X)) = A(X) is a function of V (X) and A(X) ≥ 0 a.s. Let B

be any measurable function of Y such that the following moments exist. Then

E
[
var
(
B(Y )

∣∣T = t,X
)
· A(X)

]
≤ E

[
var
(
B(Y )

∣∣T = t, V (X)
)
· A(X)

]
.

Equality holds if and only if E[B(Y )|T = t, V (X)] = E[B(Y )|T = t,X] a.s., when A(X) > 0

a.s.
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Remark 1.3. Corollary 1.2 implies the following efficiency results for estimating the overall

distribution FY (t)(y) using the GPS:

1. Regression on the nonparametrically estimated GPS is first-order asymptotically equiv-

alent to regressing on X. So there is no efficiency gain in using the GPS.

2. Corollary 1.2 and Lemma 1.2 show that the estimator based on the regression on

the true GPS (the oracle estimator) or the parametric estimated GPS is less efficient

than the estimator using the nonparametrically estimated GPS or the whole set of

covariates X. When there exists x such that FY |TV (y|t, V (x)) 6= FY |TX(y|t, x) with

positive probability, the inequality between the corresponding asymptotic variances is

strict.

For estimating discrete treatment effects, the convergence rate is parametric, and the

semiparametric efficient bound has been calculated in Hahn (1998), Hirano et al. (2003),

Firpo (2007), Chen et al. (2008), Cattaneo (2010), among others. For estimating continuous

treatment effects, there are two dimensions of the efficiency to consider: the nonparametric

convergence rate and the first-order asymptotic variance. In the second result of Corollary

1.2, the estimation error of the GPS converges faster by a parametric estimation or a larger

bandwidth. Remark 1.3 discusses the first result when the convergence rate from the error

of estimating the GPS is set the same as the first part of the influence function. The

key to these results is the property of the GPS V (X) = fT |X(t|X) = fT |V (t|V (X)) and

hence ∂vfT |V (t|v) = 1. And V̂ (X) is estimated nonparametrically using the same kernel and

bandwidth as the second-step regression. As a result, the influence from FY |TV is offset in the

first-order asymptotics. Parallel results for the mean effect of a binary treatment have been

shown in Hahn and Ridder (2013) for the nonparametric regression estimator proposed by

Heckman et al. (1998). Mammen et al. (2012b) provide an estimator for this average binary

treatment effect and its regularity conditions. They derive the same influence function as

Hahn and Ridder (2013).
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The second point in Remark 1.3 is parallel to the result in the propensity score weighting

estimator for discrete treatment effects in Hirano et al. (2003), Cattaneo (2010), and Graham

(2011). Hirano et al. (2003) interpret the efficiency loss of using the true propensity score (PS)

by the empirical likelihood estimation. Nonparametrically estimating the PS captures the

information content of a conditional moment restriction of the PS (E[T − V (X)|X] = 0) by

a sequence of unconditional moment restrictions. While a parametric estimate of the PS will

only satisfy a finite number of the moment conditions, using the true PS makes no use of any

information contained in the auxiliary moment. So the efficiency is improved in the same way

as adding moment restrictions in a GMM framework. Graham (2011) calculates the efficiency

bound incorporating the conditional moment of the PS as the auxiliary moment. Cattaneo

(2010) claims the nonparametrically estimated GPS could approximate the correction term

in the efficient influence function, which is missed in a GMM estimator using only the

identifying moment. Imai and van Dyk (2004) also discuss this result for subclassification

using the GPS by an application with randomized treatment assignment. The estimated GPS

accounts for the sample-specific relationship of the treatment and the covariates, which is

lost in the true GPS. The above discussion gives intuition to the finding that the information

of the GPS will not improve efficiency for estimating the overall FY (t)(y).

On the other hand, Corollary 1.2 1 (ii) implies estimating FY (t)|T (y|t̄) for the treated group

with the weight W (X) = fT |X(t̄|X)/fT (t̄) does not carry the above efficiency properties as

in the binary case. This is because E[W |V ] 6= W in general. And the regression estimator

for a binary treatment in Heckman et al. (1998) is calculated only for the treated subgroup

instead of using a weight.

My estimator is
√
nh-consistent due to the partial mean, so there is no curse of dimen-

sionality. When the dimension of regressors is larger, Assumption 1.11 requires smoother

distribution functions and higher-order kernels. Then it follows that the bandwidth con-

verges to zero slower, which results in a faster convergence rate (
√
nh). Therefore, the

advantage of using the GPS (over regressing on the whole set of covariates) is on dimension-

reduction at the second-step regression, but not on the convergence rate. The first-step GPS
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estimation has higher-dimensional regressors, so we could choose h2 = o(h1). It then allows

weaker assumption on the smoothness of FY |TV and a lower-order kernel at the cost of a

slower convergence rate. Note that the above results are for the first-order asymptotics. The

finite-sample performance is to be investigated. Song (2012b) also discusses this dimension-

reduction issue for the single-index nuisance parameters in the semiparametric models.

1.5 Estimation with Unknown Weight Function

The section considers estimating the partial mean process (1.1) when the weight function

W (Sw) ≡ fT |Sw(t̄|Sw)/fT (t̄) is unobserved and estimated. This weight function uncovers the

distribution of Y (t) for the treated t̄, FY (t)|T (y|t̄), which is identified by the partial mean

of weighted distribution process θt(y|Λ,W ) for different models summarized in Table 1.1.

The estimator θ̂t(y|Λ̂, Ŵ ) involving estimating the generated regressor Λ and the weight W

follows the procedure described in Section 2.3. I derive an additional term in the influence

function contributed by the estimation error of the weight function. Together with the

limit theorems in the previous section when the weight function is known, I obtain weak

convergence of the estimator θ̂t(y|Λ̂, Ŵ ) for each of the following objects:

1. (Observable Regressors)

θt
(
y
∣∣X,W) = E

[
FY |TX(y|t,X) · fT |X(t̄|X)/fT (t̄)

]
2. (Generalized Propensity Score)

θt
(
y
∣∣V,W) = E

[
FY |TV (y|t, V ) · fT |X(t̄|X)/fT (t̄)

]
,where V = fT |X(t|X)

3. (Control Variables)

θt
(
y
∣∣(X, V = Vt̄),W (X,Z)

)
= E

[
FY |TXV (y|t,X, V (T = t̄, Z)) · fT |X(t̄|X,Z)/fT (t̄)

]
To estimate FY (t)|T (y|t̄), the weight function is unobserved and needs to be estimated, except

in a randomized experiment. The first two objects are under the unconfoundedness assump-

tion. The third object allows selection on unobservables by Lemma 1.1 and the control
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variable V = V (T, Z) is constructed in the models of Imbens and Newey (2009) and Newey

et al. (1999) in Section 1.4.2.2.

The key to the following asymptotic theorem is stochastic equicontinuity in the weight

function. In Lemma A.7 in Appendix, I show that
√
nhdt 1

n

∑n
i=1 FY |TΛ(y|t,Λi)

(
Ŵ (Swi) −

W (Swi)
)

=
√
nhdtE

[
FY |TΛ(y|t,Λ)

(
Ŵ (Sw) − W (Sw)

)]
+ op(1), uniformly in y ∈ Y . The

estimation error of the parametric weight, such as a normal model, is of smaller order by
√
nhdt = o(

√
n). So the first-order asymptotic distribution of the estimator is the same as

if the weight was known. When the weight is estimated by a nonparametric kernel method,

the estimation error from the weight contributes to a partial mean by fixing T at t̄ and hence

is not first-order ignorable. The following theorem presents the limit theory. Let b denote

the bandwidth when the weight W (Sw) = fT |Sw(t̄|Sw)/fT (t̄) is estimated nonparametrically.

Denote the influence function for
√
nbdtE

[
FY |TΛ(y|t,Λ)

(
Ŵ (Sw)−W (Sw)

)]
by

ψt̄tin(y|Λ) ≡
√
bdtKb

(
Ti − t̄

)(
E
[
FY |TΛ(y|t,Λ(S))

∣∣Sw = Swi
]
− θ0(y|Λ,W )

)/
fT (t̄). (1.14)

Theorem 1.3 (Treatment Effects on the Treated). Assume fT |S(t̄|·) ∈ CαM(S). Suppose

Assumption 1.4 holds for the rw-order kernel in Ŵ (X). The bandwidth h = O(b), b → 0,

nhd2−dtbdw+dt/ log(n) → ∞, nb2dw+dt/(log n)2 → ∞, 15 and nb2rw+dt → 0, 16 where dw ≡

dim(Sw). When h = b, then

1. (Observable Regressors) Suppose the conditions for Theorem 1.1 hold.

√
nhdt

(
θ̂t
(
·
∣∣X, Ŵ (X)

)
− FY (t)|T (·|t̄)

)
=

1√
n

n∑
i=1

(
ψtin(·|X,W (X)) + ψt̄tin(·|X)

)
+ op(1)⇒ Gt|t̄(·)

15This is from the stochastic equicontinuity argument to make Ŵ ∈ CαM with probability approaching one
by Remark A.2 in Appendix.

16The bias-reducing kernel is used for Ŵ for simplicity.
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where the influence function ψtin(y|X,W ) is defined in (1.6) and the Gaussian process

Gt|t̄ is mean zero with covariance kernel Cov(Gt|t̄(y1),Gt|t̄(y2)) ≡∫
K2(v)dv

f 2
T (t̄)

E

[[
fT |X(t̄|X)

fT |X(t|X)

(
FY |TX(y1 ∧ y2|t,X)− FY |TX(y1|t,X)FY |TX(y2|t,X)

)
+
(
FY |TX(y1|t,X)− FY (t)|T (y1|t̄)

)(
FY |TX(y2|t,X)− FY (t)|T (y2|t̄)

)]
fT |X(t̄|X)

]
.

When the generated regressors are estimated, further assume nδh1−dt
2 bdw+dt/ log n→∞.

2. (Generalized Propensity Score) Suppose the conditions for Corollary 1.2 hold. V =

fT |X(t|X). Then uniformly in y ∈ Y,

√
nhdt

(
θ̂t
(
y
∣∣V̂ , Ŵ (X)

)
− FY (t)|T (y|t̄)

)
=

1√
n

n∑
i=1

(
ψGRti (y) + ψt̄tin(y|V )

)
+ op(1)

where ψGRti denotes the influence function derived in Corollary 1.2.

3. (Control Variables) Suppose the conditions for Corollary 1.1 hold. Then uniformly in

y ∈ Y,

√
nhdt

(
θ̂t
(
y
∣∣(X, V̂ = V̂t̄), Ŵ (X,Z)

)
− FY (t)|T (y|t̄)

)
=

1√
n

n∑
i=1

{
Kh

(
Ti − t

)(
1{Yi≤y} − FY |TXV (y|t,Xi, V (t̄, Zi))

) fT |XZ(t̄|Xi, Zi)

fT |XV (t|Xi, V (t̄, Zi))

+Kh

(
Ti − t̄

)(
FY |TXV (y|t,Xi, V (t̄, Zi))− FY (t)|T (y|t̄)

)}√hdt
fT (t̄)

+ op(1).

When h = o(b) or Ŵ (S) is parametric, the first-order asymptotic property is described

by Theorems in Section 1.4 as if the weight was observed. For estimating the distribution

for the treated with estimated control variables in Theorem 1.3-3, the generated regressor is

V = V (T, Z) and the argument summed out in the third step is V (T = t̄, Z) fixing T at t̄.

1.6 Inference for the Treatment Effects

Often the objects of ultimate interest are policy effects or inequality measures. Such

objects can be expressed as functionals of the potential outcome distributions identified by
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θt(y|Λ,W ) in Table 1.1 and estimated in previous sections. In this section, I provide the

distribution theory for a class of smooth functionals of the three step outcome distribution

estimator above. The key to this result is the functional delta method for Hadamard-

differentiable functionals (Theorem 20.8 in van der Vaart (2000)). I illustrate the results by

the mean and quantile operators.

Assumption 1.12. The functional Γ defined over the distribution functions of potential

outcomes is Hadamard differentiable. 17

These Hadamard-differentiable functionals can be highly nonlinear functionals of the cdf,

but admit a linear functional derivative. Weak convergence of the estimators will be implied

by the functional delta method in empirical process theory. Assumption 1.12 is a high-level

assumption that could impose restrictions or smoothness on the distribution functions of po-

tential outcomes. In particular, when Γ is the τ -quantile operator on θt(y) = θt(y|Λ,W ), Γ

is a generalized inverse θ−1
t : (0, 1)→ Y given by θ−1

t (τ) = inf{y : θt(y) ≥ τ}. Then Assump-

tion 1.12 means θt(y) is continuously differentiable at the τth-quantile, with the derivative

being strictly positive and bounded over a compact neighborhood. Additional assumptions

might be needed for different policy functionals. For instance, Bhattacharya (2007) gives

regularity conditions for Hadamard-differentiability of Lorenz and Gini functionals.

I consider each of the identification functions for the causal objects, FY (t)(·) and FY (t)|T (·|t̄),

listed in Table 1.1. The corresponding asymptotic theorem derived in previous sections pro-

vides the influence function and weak convergence: denoting as
√
nhdt

(
θ̂t−θt

)
= 1√

n

∑n
i=1 ψtin+

op(1) and converges weakly to a Gaussian process Gt.

Theorem 1.4 (Functional Delta Method). Assume the conditions in the asymptotic theorem

for θ̂t hold.

17Let Γ be a Hadamard-differentiable functional mapping from F to some normed space E, with derivative
Γ′f , a continuous linear map F 7→ E. For every hn → h and f ∈ F ,

lim
v→0

1

v

(
Γ(f + vhn)− Γ(f)

)
= Γ′f (h).
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Consider the parameter θ as an element of a parameter space Dθ ⊂ l∞(Y) with Dθ

containing the true value θt. Suppose a functional Γ(θ) mapping Dθ to l∞(W) is Hadamard

differentiable in θ at θt with derivative Γ′θ. Then∣∣∣√nhdt(Γ(θ̂t)(w)− Γ(θt)(w)
)
− 1√

n

n∑
i=1

Γ′θ(ψtin)(w)
∣∣∣ = op(1)

√
nhdt

(
Γ(θ̂t)(w)− Γ(θt)(w)

)
⇒ Γ′θ(Gt)(w) ≡ G(w)

where G is a Gaussian process indexed by w ∈ W in l∞(W), with mean zero and covariance

kernel defined by the limit of the second moment of Γ′θ(ψtin).

The following corollary gives the policy/inequality treatment effects of shifting the treat-

ment from t̄ to t, Γ
(
θt
)
− Γ

(
θt̄
)
. The estimations of the distributional features at different

treatment levels t and t̄, Γ
(
θt
)

and Γ
(
θt̄
)
, are asymptotically uncorrelated.

Corollary 1.3 (Causal Effects). Assume the conditions in Theorem 1.4. Then

√
nhdt

 θ̂t(·)− θt(·)

θ̂t̄(·)− θt̄(·)

 =
1√
n

n∑
i=1

 ψtin(·)

ψt̄i(·)

+ op(1)⇒ Gtt̄(·)

a Gaussian process with zero mean. The diagonal elements of the covariance matrix are the

covariance matrix of Gt and Gt̄. And the off-diagonal terms are zero. Theorem 1.4 implies

√
nhdt

(
Γ(θ̂t)− Γ(θ̂t̄)−

(
Γ(θt)− Γ(θt̄)

))
=

1√
n

n∑
i=1

(
Γ′θ(ψtin)− Γ′θ(ψt̄i)

)
+ op(1)⇒ GΓ

tt̄

a mean-zero Gaussian process with the covariance kernel Cov = limh→0E
[(

Γ′θ(ψtin)−Γ′θ(ψt̄i)
)2]

,

the summation of the covariance of Γ′θ(Gt) and the covariance of Γ′θ(Gt̄).

1.6.1 Examples: Mean and Quantile

1.6.1.1 Mean

The following corollary presents the asymptotic theory of estimating the means, E[Y (t)]

and E[Y (t)|T = t̄]. The first result applies to the overall mean of the potential outcome

E[Y (t)] that is the partial mean in Newey (1994b), the average structural function in Blundell
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and Powell (2003), and the dose response function in Flores (2007). My results allow to relax

the unconfoundedness assumption by estimating the control variables as in Section 1.4.2.2.

The mean for the cdf θt is Γ(θt) =
∫
Y udθt(u), which has the Hadamard derivative Γ′(θ) =∫

udθ(u). Then the estimator is
∫
y dθ̂t(y), i.e., replace the dependent variable 1{Y≤y} with

Y in the estimation procedure described in Section 2.3. Denote the mean operator on the

influence function (1.6) by

ψµtin(Λ,W ) ≡ Γ′(ψtin(·|Λ,W )) =

√
hdtKh

(
Ti − t

)
fT |Λ(t|Λi)

(
Yi − E[Y |T = t,Λ = Λi]

)
· E[W |Λi].

(1.15)

Denote the mean operator on the influence from estimating the weight (1.14) by

ψµt̄tin(Λ) ≡ Γ′
(
ψt̄tin(·|Λ)

)
=

√
hdtKh

(
Ti − t̄

)
fT (t̄)

(
E
[
E[Y |T = t,Λ = Λi]

∣∣Sw = Swi
]
− E[Y (t)|T = t̄]

)
.

(1.16)

Corollary 1.4 (Mean). Assume the conditions in Theorem 1.4.

• (Known Weight) Consider the case when Λ = X and W (S) = W are observable.

Theorem 1.1 implies

√
nhdt

( 1

n

n∑
i=1

Ê[Y |T = t,Xi]Wi − E
[
E[Y |T = t,X]W

])
=

1√
n

n∑
i=1

ψµtin(X,W ) + op(1)

d−→ N (0, Vµ), where Vµ = E
[
var
(
Y
∣∣T = t,X

)E[W (Sw)|X]2

fT |X(t|X)

]
·
∫
K2(u)du.

• (Unknown Weight - Treatment Effects on the Treated E[Y (t)|T = t̄])

1. (Selection on Observables) Consider the case when Λ = X.Theorem 1.3-1 implies

√
nhdt

( 1

n

n∑
i=1

Ê
[
Y
∣∣T = t,Xi

]
·
f̂T |X(t̄|Xi)

f̂T (t̄)
− E

[
Y (t)

∣∣T = t̄
])

=
1√
n

n∑
i=1

(
ψµtin(X,W ) + ψµt̄tin(X)

)
+ op(1)

d−→ N (0, Vµ + V t̄
µ)

where V t̄
µ = E

[(
E
[
Y
∣∣T = t,X

]
− E

[
Y (t)

∣∣T = t̄
])2

fT |X(t̄|X)
]
·
∫
K2(u)du

f2
T (t̄)

.
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2. (Generalized Propensity Score) Consider the case when Λ = fT |X(t|X) in Section

1.4.2.3. Theorem 1.3-2 implies

√
nhdt

( 1

n

n∑
i=1

Ê
[
Y
∣∣T = t, V̂ = V̂i

]
·
f̂T |X(t̄|Xi)

f̂T (t̄)
− E

[
Y (t)

∣∣T = t̄
])

=
1√
n

n∑
i=1

{
Γ′
(
ψGRtin

)
+ ψµt̄tin(V )

}
+ op(1)

where ψGRtin denotes the influence function derived in Corollary 1.2 and Γ′
(
ψGRtin

)
is calculated by (1.15).

3. (Control Variable) Consider the case when Λ = (X ′, V ′)′ and V = V (T, Z) in

Section 1.4.2.2. Theorem 1.3-3 implies

√
nhdt

( 1

n

n∑
i=1

Ê
[
Y
∣∣T = t,X = Xi, V̂ = V̂ (t̄, Zi)

]
·
f̂T |XZ(t̄|Xi, Zi)

f̂T (t̄)
− E

[
Y (t)

∣∣T = t̄
])

=
1√
n

n∑
i=1

{
Kh

(
Ti − t

)(
Yi − E

[
Y
∣∣T = t,X = Xi, V = V (t̄, Zi)

])fT |XZ(t̄|Xi, Zi)

fT |XZ(t|Xi, Zi)

+Kh

(
Ti − t̄

)(
E
[
Y
∣∣T = t,X = Xi, V = V (t̄, Zi)

]
− E

[
Y (t)

∣∣T = t̄
])}√hdt

fT (t̄)

+ op(1).

I can modify the first result for the known weight in Corollary 1.4 to the case with gen-

erated regressors. If we suppose the conditions of Corollary 1.1 hold where the generated

regressors V are control variables, then the influence function in the conclusion would be

ψµtin(X, V ) in place of ψµtin(X). Similarly, the asymptotic results with the generalized propen-

sity score in Corollary 1.2 are implied by replacing the corresponding influence functions for

the known weight in Corollary 1.4 with ψµtin(X) or ψµtin(V ).

1.6.1.2 Quantile Processes

The unconditional quantile function is inverted directly from the unconditional cdf. For

the quantile process {Qτ : τ ∈ (0, 1)} of the cdf θt, Qτ ≡ inf{y : θt(y) ≥ τ}. The following

corollary gives the asymptotic theory of estimating unconditional quantile function of Y (t)
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for the whole population and the treated group t̄, assuming unconfoundedness and using

control variables respectively, as listed in Table 1.1. I illustrate the results by two examples:

the quantile structural function in Imbens and Newey (2009) and the quantile treatment

effects on the treated assuming unconfoundedness.

Corollary 1.5 (Quantile Process). Assume the conditions in Theorem 1.4. Suppose
√
nhdt

(
θ̂t(·)− θt(·)

)
= 1√

n

∑n
i=1 ψtin(·) + op(1) ⇒ Gt(·). Assume θt is continuously differen-

tiable with strictly positive derivative ∂
∂y
θt(y)

∣∣∣
y=Qτ

≡ θ′t(Qτ ). Then the influence function for

estimating the quantile process is

ψQtin(τ) ≡ −ψtin
(
Qτ

)/
θ′t(Qτ ).

Therefore,

√
nhdt

(
Q̂· −Q·

)
=

1√
n

n∑
i=1

ψQtin(·) + op(1)⇒ −Gt

(
Q·
)/
θ′t(Q·) ≡ GQ

t (·)

where GQ
t is a Gaussian process indexed by τ ∈ [a, b] ⊂ (0, 1) in the metric space l∞([a, b]).

The Gaussian process GQ
t has zero mean and covariance kernel, for any τ1 < τ2 ∈ [a, b],

Cov
(
GQ
t (τ1),GQ

t (τ2)
)

= limh→0E
[
ψQtin(τ1)ψQtin(τ2)

]
.

Remark

1. (Quantile Structural Function in Imbens and Newey (2009))

Consider the τth-quantile function of Y (t), Qτ = Qτ (Y (t)) = F−1
Y (t)(τ). The condi-

tioning variables are Λ(S) = (X ′, V ′)′, where the control variables V is estimated in

Section 1.4.2.2. Corollaries 1.1 and 1.5 imply

√
nhdt

(
Q̂·(Y (t))−Q·(Y (t))

)
⇒ GQ

t (·)

a Gaussian process with mean zero and covariance

Cov(GQ
t (τ1),GQ

t (τ2)) ≡ E

[
1

fT |XV (t|X, V )

(
FY |TXV (Qτ1|t,X, V )

− FY |TXV (Qτ1 |t,X, V )FY |TXV (Qτ2 |t,X)
)] ∫

K2(v)dv

fY (t)(Qτ1) fY (t)(Qτ2)
.
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2. (Quantile Treatment Effects on the Treated)

Consider the τth-quantile function of Y (t) for the treated t̄, Qτ = Qτ (Y (t)|T = t̄) =

F−1
Y (t)|T (τ |t̄). Assuming unconfoundedness, consider the estimator with Λ = X and

Ŵ (X) = f̂T |X(t̄|X)/f̂T (t̄) as in Theorem 1.3-1. Then

√
nhdt

(
Q̂·(Y (t)|T = t̄)−Q·(Y (t)|T = t̄)

)
=

1

n

n∑
i=1

(
ψQtin(·|X,W ) + ψQt̄tin(·|X)

)
+ op(1)

converges weakly to a Gaussian process indexed by τ ∈ [a, b] with mean zero and

covariance matrix limh→0E
[(
ψQti (τ1|X,W ) + ψQt̄tin(τ1|X)

)(
ψQti (τ2|X,W ) + ψQt̄tin(τ2|X)

)]
for any τ1, τ2 ∈ [a, b]. By Theorem 1.3-1 and Corollary 1.5, the influence functions are

ψQtin(τ |X,W ) ≡
−
√
hdtKh

(
Ti − t

)
fT (t̄)fY (t)|T (Qτ |t̄)

fT |X(t̄|Xi)

fT |X(t|Xi)

(
1{Yi≤Qτ} − FY |TX(Qτ |t,Xi)

)
ψQt̄tin(τ |X) ≡

−
√
hdtKh

(
Ti − t̄

)
fT (t̄)fY (t)T (Qτ |t̄)

(
FY |TX(Qτ |t,Xi)− FY (t)|T (Qτ |t̄)

)
.

I do not state the limit theory for the estimators of regressing on the GPS and the con-

trol variables, which could be derived similarly, based on Theorem 1.3-2 andTheorem

1.3-3.

1.6.2 Inference

The pointwise influence function can be estimated by replacing unknown functions with

consistent estimators. Then the covariance matrix can be estimated by the sample variance of

the estimated influence functions. Alternatively, the covariance matrix can be estimated by

a plug-in method that is a sample analogue with consistently estimated unknown functions.

Besides pointwise inference, we might be interested in testing a hypothesis involving a

policy on the whole distribution: constant effect or stochastic dominance. I suggest using a

multiplier method to simulate the empirical processes defined in Theorem 1.1, Corollary 1.1,

and Corollary 1.2. The multiplier method has been used in Donald et al. (2012) to simulate

a conditional distribution process. It is easy to perform asymptotically valid inference on

distributional features defined by the Hadamard-differentiable functionals. Let {Ui}ni=1 be a
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sequence of i.i.d. random variables with mean zero and variance one, for example, N (0, 1),

independent of the data. The influence function ψt for the estimator θ̂t is estimated consis-

tently by some estimator ψ̂t. The following theorem shows that 1√
n

∑n
i=1 Uiψ̂tin(·) simulates

the asymptotic distribution of the estimator.

Theorem 1.5 (Multiplier CLT - Known Weight Function). Assume the conditions in Theo-

rem 1.1 or Corollary 1.1 or 1.2 which gives
√
nhdt

(
θ̂t(·)− θt(·)

)
= 1√

n

∑n
i=1 ψtin(·) + op(1)⇒

Gt(·). Then

GM
tin(·) ≡ 1√

n

n∑
i=1

Uiψ̂tin(·)⇒ Gt(·)

conditional on sample path with probability approaching 1. For the Hadamard-differentiable

functional Γ,

Γ′
(
GM
tin(·)

)
=

1√
n

n∑
i=1

UiΓ
′(ψ̂tin(·)

)
⇒ Γ′

(
Gt(·)

)
.

The multiplier CLT for estimating the unknown weight function should be modified

straightforward by estimating the additional influence function ψt̄tin consistently, although I

do not show the proof here.

1.7 Numerical Examples

1.7.1 Monte Carlo Simulation

The finite-sample performances of the proposed semi- and nonparametric estimators are

compared with the parametric estimator in Hirano and Imbens (2004). I consider two data

generating processes with varying degrees of nonlinearity. Perhaps not surprisingly when the

true function E[Y (t)] is more non-linear, my semi- and nonparametric estimators perform

relatively better, even in small sample (n = 100).

Four estimators are examined. The first three estimators regress on the estimated gen-

eralized propensity score (GPS). The fourth estimator regresses directly on covariates X.

For the 1st-step GPS estimators, I consider two methods, the parametric normal model, i.e.,
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T |X ∼ N (Xβ, σ2), and the nonparametric kernel method. The first estimator is proposed

by Hirano and Imbens (2004), who use a quadratic linear regression on T and the estimated

GPS for the 2nd-step. The second and third estimators use a nonparametric kernel method

for the 2nd-step regression. A detailed procedure to implement the proposed estimators can

be found in Section 3. These four estimators are summarized and labeled as follows:

1. HI (Hirano and Imbens, 2004): 1st-Normal GPS + 2nd-quadratic linear regression.

2. SP (semiparametric): 1st-Normal GPS + 2nd-kernel regression.

3. NP-GPS (nonparametric): 1st-kernel estimated GPS + 2nd-kernel regression.

4. NP-X (nonparametric): kernel regression on the covariates X.

I consider two data generating processes: (DGP2) is more non-linear than (DGP1).

Y = 3 sin(0.5T ) +X2T
2 + (1−X1)X2 + U (DGP1)

Y = 3 sin(2T ) +X2T
2 + (1−X1)X2 + U (DGP2)

where X1 and X2 are i.i.d. Unif(0, 1). The conditional distribution of U is N (0, X2
1 ). The

treatment variable is T = cos(2πX1) + Z + e, where Z and e are i.i.d. N (0, 1). So the GPS

is fT |X(t|X) = exp(−(t− cos(2πX1))2/4)/
√

4π.

The trimming function trims the 1% lower and upper empirical quantiles of each covariate

(X1, X2 and T ), ending up trimming around 5% of the observations. The bandwidth is

Cσn−η, where σ is the standard deviation of the variable and η = 0.12 satisfies the conditions

for the asymptotic theorems. The bandwidths are chosen by varying the constants C between

0.5 and 2 to minimize the RMSE. A fourth-order Epanechnikov kernel is used.

Figure 1.1 and Figure 1.2 are for (DGP1) for sample sizes 100 and 1000, respectively.

Figure 1.3 and Figure 1.4 are for the more nonlinear (DGP2). The left two panels are the true

function E[Y (t)] and the average estimations over 1000 replications. The differences show

the biases. For any finite sample, the estimator is biased with the order of O(hr) ∂
r

∂tr
E
[
Y (t)

]
for the rth-order kernel, as implied by Remark 1.1. The figures support that the proposed
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semi- and nonparametric estimators are more biased at the points when the functions have

more curvature. When the sample size increases (n = 1000), the bias is improved for my

semi- and nonparametric methods. But the bias for the parametric method HI remains,

especially for the nonlinear (DGP2).

The right panel in the figures are the RMSEs for the four estimators. The nonparamet-

ric methods have more variation in small samples, especially at the tails of the treatment

variable. For the nonlinear (DGP2), SP outperforms HI even in small sample size. The

proposed estimators work for a rather linear data generating process (DGP1) as well.

The estimation for the median of Y (t) are shown in Figure 1.5 using the semiparametric

estimator SP. This demonstrates that the semiparametric estimator work well for estimating

the distribution of Y (t).

1.7.1.1 Coverage Rate

I consider four methods of constructing the pointwise confidence intervals for E[Y (t)],

using the semiparametric estimator SP. The first is bootstrap and the second is the multiplier

method by Theorem 1.5. The third and fourth are the standard methods by estimating the

asymptotic variance using the plug-in sample analogue and Newey’s (1994a) Delta method.18

Then the 95% confidence interval is constructed by
[
θ̂ − α

√
V̂ ar/n, θ̂ + α

√
V̂ ar/n

]
, where

α is the 97.5% quantile from a standard normal distribution.

18Newey (1994b) proposes a “delta-method” variance for the partial-mean kernel estimators. The estimator
takes the form,

V̂ =
1

n

n∑
i=1

(
δ̂i −

1

n

n∑
j=1

δ̂j + φ̂i

)2

,

where δ̂i = 1
n

∑n
j=1

(
1{Yi≤y} − F̂Y |TX(y|t,Xj)

)
Kh(t − Ti)Kh(Xi − Xj)

Ŵ (Xj)

f̂TX(t,Xj)
and φ̂i =

F̂Y |TX(y|t,Xi)Ŵ (Xi) − 1
n

∑n
j=1 F̂Y |TX(y|t,Xj)Ŵ (Xj). Then asymptotic variance is estimated by

V̂ ar(G(y)) = hV̂ . Theorem 4.1 in Newey (1994b) shows hV̂ → V ar(G(y)) with the additional assump-
tion nh3d2−1

2 → ∞. The delta-method variance estimator takes into account of the small order terms to
achieve more accurate finite-sample approximation than the plug-in estimator. Newey (1994b) interprets δi
as the first-order effect of the ith observation in the nonparametric second-step regression F̂Y |TX(y|T,X) on
the final estimator. Alternatively, in my case, δi is estimating (A.5) in the Appendix, where the dominating

term is the influence function ψtin. The smaller-order φ̂i is from (A.4) for the Donsker property of the true
function, which converges at

√
n-rate.
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Figures 1.6 and 1.7 show that the proposed multiplier method and Newey’s Delta method

outperform the standard plug-in estimator. The proposed multiplier method works reason-

ably and no additional estimation is needed. So it can be an alternative to the bootstrap

which is more computationally intensive, especially for large datasets.

The coverage rates are lower at the points where the finite-sample biases are large. At

some points, the coverage rates are not improved as the sample size increases. Similar results

are also shown in Flores (2007) by the plug-in method. Constructing confidence intervals

with correct coverage rates for the nonparametric estimator is outside the scope of this paper.

1.7.2 Empirical illustration

The following empirical work on the program Families in Action in Colombia is based on

joint work with Juan Villa. I illustrate the application of my estimation procedure through

this ongoing project and present some preliminary results in this section. Colombia’s Families

in Action is a conditional cash transfer (CCT) program that gives money to poor families

conditional on school attendance and health check-ups of children under 18.19 CCT programs

were first introduced in Brazil and Mexico more than a decade ago. The main objective of

CCT programs is to increase the human capital formation of minors and to alleviate current

poverty. There is evidence of the effectiveness of CCT programs on a variety of dimensions.

We summarize some related literature in Section 1.7.2.1.

We use administrative data and household survey data that includes all beneficiaries since

the program started in 2001 in Colombia. By 2009, the program covered approximately 2.8

million households at a cost of around 0.27 percent of GDP. Using this dataset from Families

in Action and the continuous treatment estimator proposed in this paper, we contribute to

the literature on CCT programs by accounting for the heterogeneity of treatment effects

that may arise from variation in the duration of treatment. The treatment variable T is the

number of days of participation in the program, converted to years in what follows. The goal

19According to the program’s operational manual, a household becomes ineligible if: it does not comply
with the co-responsibilities of the program for two consecutive periods, it does not withdraw the money for
three consecutive periods, or all the children in the household turn 18 years old.
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of our analysis is to learn how the length of exposure to the program affects the distributions

of household income and education. Our analysis sheds light on foundational questions such

as “how long should a household participate in an anti-poverty program?” and “what should

be the exit criterion?”

We present the estimation results for household income and also discuss some estimation

issues, such as bandwidth choice, in Section 1.7.2.2. We find that the length of exposure (up

to 5.5 years) does not significantly affect the distribution of the household income. For those

currently staying in the program for t̄ years, where t̄ = 1.5, 3, 4.5 (the t̄-year treated groups),

we do not find a significant effect either. However, mean income for the one-year treated

group is higher than that for the five-year treated group. This suggests there is a difference

in the distributions of the characteristics among these treated groups. Since the five-year

treated group is mainly composed of those who enroll in 2005 and the one-year treated group

is mostly from the 2009-wave, this result might be interesting from policy perspective.

In Section 1.7.2.3, we study two educational outcomes, high-school completion rate and

years of education. We focus on ineligible children in a household who are 18 to 28 years old

and therefore not required to attend schools by the CCT program. They are exposed to this

program because there are eligible children in their households. The school enrollment of one

specific child might lead parents to reallocate child work away from the eligible children and to

the adult children in the household. We study the spillover effect of the length in the program

on the education outcomes of these ineligible children. We find that the displacement effect

on high-school completion is more severe for longer exposure up to 3 years. There are no

significant effects by extending the program from 3 years to 4.5 years. The high-school

completion rate decreases about 2.5% when program exposure is extended from 1.5 years

to 3 years. For years of education, we find 4.5-year exposure reduces interquantile range of

educational attainment for women, comparing with 1.5-year exposure.

The following estimation results are base on a random sample of 5% of the data. The

outcome variables are measured in 2010 for all observations. The pretreatment variables are

measured before an individual enters the program, so they are measured in different years for
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different individuals. These pretreatment variables include demographics, education, past

employment, household, and location characteristics. We assume the unconfoundedness

assumption holds based on this large set of observable characteristics. We do not have the

non-treated comparison group.

1.7.2.1 Literature Review

Baez and Camacho (2011) discuss short-term (within two years) evaluations of Colombia’s

Families in Action, which indicate that the program leads to higher consumption, higher

spending on nutritious food, more children sent to school, more time devoted to studying, and

infants growing taller while having fewer health issues. Most evaluations of CCT programs

focus on short-term impacts because of data availability. Baez and Camacho (2011) study the

long-term impacts of Colombia’s Families in Action on human capital. They find the program

helps children, particularly girls and beneficiaries in rural municipalities, accumulate more

years of education. For the well-known CCT program Progresa/Oportunidades in Mexico,

Behrman et al. (2011) find positive long-run (five to six years) impacts on schooling and

work. However, Rodrguez-Oreggia and Freije (2012) do not find significant long-term effects

(at most nine years) on labor outcomes, such as employment, wages, and inter-generational

occupational mobility.

Agüero et al. (2010) and Ibarraran and Villa (2010) take the length of exposure to the

program as a continuous treatment and use the generalized propensity score methodology

by Hirano and Imbens (2004). Agüero et al. (2010) note that continuous treatment es-

timation is important to study long-term impacts which cannot be reliably estimated by

simply projecting out short-term rates of impact. (Agüero et al., 2010) find positive impacts

of the South African Child Support Grant on the child nutritional outcome height-for-age.

Ibarraran and Villa (2010) find that the probability of employment for 14-year-old kids is

greatest if they participated at least three years in Mexico’s Oportunidades.

The model in Ferreira and Schady (Ferreira and Schady) predicts child-specific CCT

programs will unambiguously increase school enrollment among eligible children, because
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of the positive income, substitution, and displacement effects of the cash transfer. The

displacement effect comes from the reallocation of labor or child care duties away from

eligible children to their ineligible siblings. The net spillover effects of the CCT program

on the ineligible siblings depend on the magnitude of the positive income effect and the

negative displacement effect. Ferreira and Schady (Ferreira and Schady) find no evidence of

such spillovers in the CESSP Scholarship Program in Cambodia. Evaluating the Conditional

Subsidies for School Attendance in the city of Bogota in Colombia, Barrera-Osorio et al.

(2008) find negative spillovers of the program on the education of ineligible children. They

find evidence of lower school attendance and more labor market work for an ineligible child

living with an eligible sibling, compared to a child with a similarly sibling in an untreated

household. Behrman et al. (2011) also find increases in work for older girls in Mexico’s

Oportunidades. Baez and Camacho (2011) find no spillover effect on the probability of

graduating from high school in Colombia’s Families in Action. In contrast to the above

findings, which use a binary treatment methodology, we investigate the spillover effects of

the length of exposure to the program on high-school completion rates and education levels

in Section 1.7.2.3.

1.7.2.2 Household Income

We first study the potential average household income Y (t) with respect to the length

of exposure in the program t. We focus on the potential treatment values t smaller than 5.5

years, which is at the 87th percentile of the observed length of exposure T . Table 1.8 shows

the descriptive statistics. After selecting the common support20 and trimming the boundary

of the continuous covariates, we end up with 8,851 households (around 12% are dropped).

20We follow Flores et al. (2012) to select the sub-sample satisfying the common support assumption.
Consider a set of potential treatment levels to be estimated, T . For each potential treatment level t ∈ T ,
find the maximum and minimum of the GPS Vi ≡ f̂T |X(t|Xi) among the sample i = 1, ..., n. Denote the
maximum and minimum by Vmax and Vmin, respectively, for each t ∈ T . Then select the sub-sample by
{i : maxt∈T {Vmin} ≤ Vi ≤ mint∈T {Vmax}}.
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We consider two estimators, the SP estimator developed in this paper and the HI esti-

mator of Hirano and Imbens (2004), which are described above.21 The second-step kernel

estimation for SP uses the second-order Epanechnikov kernel satisfying Assumption 1.10.

Figure 1.8 presents the estimation of the mean of potential income (E[Y (t)]). The left panel

compares the SP estimator with HI poly-2 from Hirano and Imbens (2004). In the right

panel, we use a more flexible HI poly-6 with a sixth-degree polynomial in the second-step

regression.22 It shows HI poly-6 is closer to our semi-parametric estimation. This implies

the linear model using HI poly-2 might be misspecified and overly parsimonious.

Figure 1.9 shows our estimation is robust to different bandwidth choices of Cσn−0.3,

where C is some constant and σ is the standard deviation. Although a theoretical method

for choosing the bandwidth is outside of the scope of this paper, an eye-ball metric could

suggest a reasonable choice. The simulation and theory results above suggest a smaller

bandwidth leads to a smaller bias and larger variance. We choose the bandwidth 0.7 years

for the treatment variable throughout this estimation.

Figure 1.10 presents the mean potential income E[Y (t)|T = t̄] for those currently staying

in the program for t̄ years. The treatment effects on the treated have similar patterns as

the treatment effects for the whole population, i.e., E[Y (t)|T = t̄] does not significantly

change over t, for t̄ = 1, 3, 5. Now consider the counterfactual experiment of changing

the distribution of the characteristics as discussed in Section 6. The difference between

the mean 1-year potential income for the one-year and five-year treated group E[Y (1)|T =

1]−E[Y (1)|T = 5] ≈ 22, 000 (pesos) is the average income loss if the one-year treated group

had the same distribution of characteristics as the five-year group. On the other hand,

E[Y (5)|T = 1]−E[Y (5)|T = 5] ≈ 25, 000 (pesos) is the average income gain if the five-year

group had the same distribution of characteristics as the one-year group.

21In the first-step estimation, the generalized propensity score is modeled by a normal distribution. We’ve
tried a log-normal model, but the results are not much different. A balancing test as in Kluve et al. (2012)
for specifying the GPS will be performed in a separated paper.

22For an empirical application on evaluating a German job-training program, Kluve et al. (2012) use a
third-degree polynomial for a flexible specification.
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In addition to the mean effects, Figure 1.11 shows the distributions for the one-year and

five-year treated groups. In the left panel, FY (1)|T (y|5) − FY (1)|T (y|1) is the change in the

distribution of the one-year potential income if the one-year group had the same distribution

of observable characteristics as the five-year group. It suggests that the distribution of one-

year potential income for the one-year treated groups FY (1)|T (y|1) first-order stochastically

dominates that for the five-year treated group FY (1)|T (y|5), although a stochastic dominance

test is not yet performed. In the right panel, the distributions for the five-year potential

outcome Y (5) share a similar result.

As a caveat, we note that studying income as the potential outcome might suffer from

the reverse causality problem so that the unconfoundedness assumption might not hold. The

household might withdraw from the program, because their income is so low that they need

their children to drop out of school and work.

1.7.2.3 Education for Ineligible Children

To evaluate the high-school completion rate, we focus on the ineligible children who did

not finish high school before their households enrolled in the program. This group is 83.35%

(out of 7,675) in the population of the 18-28 year-old children for females and 82.94% (out

of 9,518) for males. Table 2 shows the descriptive statistics. The outcome variable is an

indicator for high school graduation, i.e., years of education larger than or equal to 11.

The estimation results in Table 1.4 imply that the high school completion rate for 1.5-year

exposure to the program is about 2.5% higher than that for 3-year exposure, for both female

and male. This suggests that the displacement effect is larger by extending the program

from 1.5 years to 3 years. However, there is no significant effect of increasing the length of

exposure from 3 years to 4.5 years. The completion rates for the treated groups share similar

patterns with the overall population.

Figure 1.13 presents the distribution of the potential education levels for all the ineligible

children including high-school graduates. The distribution of education for 1.5-year exposure

FY (1.5) appears to stochastically dominate the distribution of education for 3-year exposure
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FY (3), for males. However, we do not perform a test for stochastic dominance. These results

imply there is a negative spillover effect of extending the program from 1.5 years to 3 years.

For females, this negative spillover effect is only for the upper quantiles (larger than 80%). It

is interesting to observe that the displacement effect is alleviated by extending the program

from 3 years to 4.5 years. For females, the low end of the distribution is significantly lower

for the 4.5-year exposure, compared with the 1.5-year exposure. It suggests that the inter-

quantile difference for potential education level with 4.5-year exposure is smaller than that

with 1.5-year potential education (comparing FY (4.5) and FY (1.5)). This implies that longer

exposure to the program improves the inequality of education attainment for female ineligible

children. The mean of potential years of education does not vary significantly with the length

of exposure. The treated groups have similar patterns to the whole population, so the results

are omitted.

1.8 Conclusion

I derive a stochastic expansion showing how the presence of generated regressors affects

the limiting behavior of the three-step nonparametric estimator of a partial mean process

(1.1). I explicitly estimate the mean and quantile structural functions for the overall popula-

tion and the treated group. The uniform expansion and weak convergence theorems derived

in this paper are readily applied to many inequality measures, such as the Theil index and

coefficient of variation in Firpo and Pinto (2011). My results can also be extended to test

for stochastic dominance, such as the Kolmogorov-Smirnov-type test in Rothe (2010).

I adopt fixed trimming functions in the estimation procedure in order to focus on the

influence of estimating the generated regressors. For future work, random trimming functions

are desirable to estimate for the whole population, instead of the subpopulation chosen by

fixed trimming functions of the observables. Escanciano et al. (2012) introduce a stochastic

expansion, that is uniform in the weights, the generated regressors, and a random bandwidth,

for sample means of weighted semiparametric regression residuals. Their methods could be

modified and used in my setup.
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Another extension is to estimate the location and size of the optimal dose for the distri-

butional features of the potential outcome, defined by Hadamard-differentiable functionals

on the counterfactual distribution. A policy maker might be interested in the treatment level

that minimizes some inequality measure, for instance, the interquantile range. Flores (2007)

estimates the optimal dose of the mean dose response function and derives the limit theory.

Counterfactual Distributions. I derive the limit theory when the weight function is

estimated for the distribution function on the treated FY (t)|T (y|t̄) for those currently treated

or choosing the treatment level t̄. In Section 1.2.2, I discuss the interpretation of the treated

effect on the treated as the counterfactual effect of a policy intervention by either changing

the conditional distribution of outcome given characteristics or changing the characteristics

distribution. It is interesting to note that a more general usage of this weight function would

allow me to consider a wider variety of counterfactual objects than what was discuss in

Section 1.2.2. The counterfactual distribution of the potential outcome can be characterized

by the weight function, which is a ratio of the counterfactual density and the status-quo

density of the observable characteristics, fX∗/fX . More explicitly, define the counterfactual

cdf of the potential outcome Y (t) for the population whose characteristics are distributed as

the counterfactual distribution FX∗ by

F ∗Y (t)(y) ≡
∫
FY (t)|X∗(y|x) dFX∗(x) = E

[
FY (t)|X(y|x)

fX∗(x)

fX(x)

]
assuming FY (t)|X = FY (t)|X∗ . The policy effect of changing the distribution of the observables

from FX to FX∗ is F ∗Y (t) − FY (t).

The counterfactual density of the characteristics fX∗ can be deterministic by a policy

intervention or based on the treatment variable. Rothe (2010) and Chernozhukov et al. (2013)

discuss various choices for the counterfactual distribution FX∗ : a different subpopulation

corresponding to a different demographic group, geographic region or time period. Or X∗ =

π(X) is a deterministic function of X. Comparing with Rothe (2010) who studies the

unconditional effects by averaging over all the covariates including treatments, the causal
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effects by the potential outcome Y (t) reveal more local information with respect to a fixed

value of the endogenous treatment variables of interest.

By the conditional independence and common support assumptions, F ∗Y (t)(y) is identified

by E
[
FY |TXΛ(y|t,X,Λ) ·W (X)

]
, where W (X) = fX∗ (X)

fX(X)
. This regression is a partial mean

process with generated regressors, which is estimated by the procedure proposed in this paper

assuming the weight function is known. This re-weighting functions of relative densities is

seen in DiNardo et al. (1996) to estimate counterfactual densities.

Empirics. I illustrate the usefulness of my proposed estimator by evaluating a conditional

cash transfer program in Colombia, which is an ongoing project with Juan Villa. We analyze

how the distributions of income and education outcomes respond to the length of exposure

to the program, which is taken as a continuous treatment variable.

As richer and more detailed data is available, the proposed nonparametric estimator

could be useful to analyze the continuous treatment effects for various economic outcomes.

The proposed estimator is also applicable to nonseparable triangular models, as in Engel

curve analysis.
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Figure 1.1 (DGP1) n = 100. The left two panels show the average estimation over 1000
replications and the true E[Y (t)]. The difference indicates the bias. The right panel shows the

root-mean-square errors (RMSE).
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Figure 1.2 (DGP1) n = 1000. The left two panels show the average estimation over 1000
replications and the true E[Y (t)]. The right panel shows the root-mean-square errors (RMSE).
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Figure 1.3 (DGP2) n = 100. The left two panels show the average estimation over 1000
replications and the true E[Y (t)]. The difference indicates the bias. The right panel shows the

root-mean-square errors (RMSE).

−2 −1 0 1 2

−
2

0
2

4

E[Y(t)]

t

true
SP
HI

−2 −1 0 1 2

−
2

0
2

4

E[Y(t)]

t

true
NP−X
NP−GPS

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

RMSE (n=1000)

t

R
M

S
E

● NP−GPS
NP−X
SP
HI

Figure 1.4 (DGP2) n = 1000. The left two panels show the average estimation over 1000
replications and the true E[Y (t)]. The right panel shows the root-mean-square errors (RMSE).
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Figure 1.6 (DGP1) Coverage rates of the 95% confidence intervals for the mean E[Y (t)] by the
SP estimator
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Figure 1.7 (DGP2) Coverage rates of the 95% confidence intervals for the mean E[Y (t)] by the
SP estimator
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Figure 1.8 The mean potential household income with respect to years of exposure in the

program, E[Y (t)]. In the left panel, HI poly-2 uses second-order polynomial regression for the

second-step regression on the treatment and the generalized propensity score. In the right panel,

HI poly-6 uses sixth-order polynomial regression in the second step. The pointwise confidence

intervals are calculated by the multiplier method proposed in Section 5.1 for SP and bootstrap for

HI.
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Figure 1.9 Bandwidth robustness check for the SP estimator. The bandwidths for the treatment

variable, years in the program, are 0.42, 0.7, and 0.99 years for choosing the constants C = 3, 5, 7,

respectively. The hollow symbols represent the confidence intervals, calculated by the multiplier

method. The bandwidth 0.7 years is chosen to balance the bias and variance by an eyeball metric.
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Figure 1.10 The treatment on the treated E[Y (t)|T = t̄]: the mean potential income for those

currently being treated for t̄ years, where t̄ ∈ {1, 3, 5}.
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Figure 1.11 The left panel shows the distributions of the potential income of one-year exposure

for the one-year treated group FY (1)|T (y|1) (black solid line) and for the five-year treated group

FY (1)|T (y|5) (red dashed line), respectively. The right panel shows the distributions of the

potential income of five-year exposure for the one-year treated group FY (5)|T (y|1) (black solid

line) and for the five-year treated group FY (5)|T (y|5) (red dashed line), respectively.
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Figure 1.12 The distributions of potential education levels FY (t) for t = 1.5, 3, 4.5 years of
exposure for male ineligible (between 18 to 28 years old) children in a household. The confidence

intervals calculated by the multiplier method are added in the right panel. The bandwidth for
treatment is 0.66 years. After selecting for the common support and trimming the boundaries,

the estimation is based on 7,990 (16.6% dropped) observations.
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Figure 1.13 The distributions of potential education levels FY (t) for t = 1.5, 3, 4.5 years of
exposure for female ineligible (between 18 to 28 years old) children in a household. The

estimations are shown in the top left panel. The confidence intervals based on the multiplier
method are added in the other panels. The bottom panels display only two of the estimations for
clarity. The bandwidth for treatment is 0.76 years. After selecting for the common support and

trimming the boundaries, the estimation is based on 6,057 (21% dropped) observations.
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Chapter 2

Nonparametric Density-Weighted Average

Quantile Derivative

2.1 Introduction

The average quantile derivative (AQD) is the mean of the partial derivatives of the

conditional quantile function (CQF), where the function forms of the distributions and the

CQF are not specified and will be estimated nonparametrically. The proposed estimator is

shown to be
√
n-consistent and asymptotic normal. Therefore, the AQD offers sensible and

economical summary statistics for the marginal effect of the covariates on the CQF and can

be viewed as the nonparametric quantile regression (QR) coefficient.

The linear QR is introduced by the seminal work of Koenker and Bassett (1978), where

the CQF is specified to be linear in the covariates. However, it is known that the linear

CQF induces the quantile crossing problem which implies the linear model is implicitly mis-

specified. For example, Angrist et al. (2006) study the approximation property of the liner

QR under misspecification, and Chernozhukov et al. (2010) propose a method to rearrange

the original estimated non-monotone curve into a monotone curve. Then the AQD is of

interest to serve as a nonparametric summary statistic that is robust to misspecification

and conveys the information of the marginal effect of the covariates on the CQF. When

the economic theory implies some index structure or the researchers would like to spacify

some semiparametirc models, the AQD also identifies the parameter in the semiparametric

single-index and partial linear models (Chaudhuri et al. (1997), Khan (2001), Lee (2003),



71

Wu et al. (2010), Kong and Xia (2012)). In the growing econometrics literature of the non-

parametric nonseparable structural models, the derivative of the CQF can identify useful

features such as the structural derivative and continuous quantile treatment effect, for ex-

ample, Chesher (2003), Chernozhukov and Hansen (2005), Hoderlein and Mammen (2007),

Matzkin (2007). Therefore, the AQD carries a causal interpretation of the economic models

and can potentially be applied to welfare and policy analysis.

Let the τth CQF of the dependent variable Y given the q-dimensional continuous regressor

X be Qτ (Y |X) := inf{y : FY (y|X) ≥ τ}, where FY (y|X) is the conditional cumulative

distribution function (cdf) of Y given X and τ ∈ (0, 1). Assume Qτ (Y |X) is continuously

differentiable in X almost surely, and the density function of X, f(X), is sufficiently smooth.

I define the nonparametric QR parameter of interest to be the density-weighted average

quantile derivative (AQD):

β(τ) = E[∇Qτ (Y |X) · f(X)]

= Qτ (Y |X) · f 2(X)
∣∣∣
∂X
− 2E[Qτ (Y |X) · ∇f(X)] = −2E

[
Qτ (Y |X) · ∇f(X)

]
(2.1)

where the second equality follows by integration by parts. And the third equality is by

assuming limX→∂X Qτ (Y |X)f 2(X) = 0, where ∂X is the boundary of the support of X,

X . 1 I propose a two-step kernel based estimator: in the first step, the unknown functions

Qτ (Y |X) and ∇f(X) are estimated by a nonparametric kernel method; in the second step,

the expectation is replaced by its sample analogue with a stochastic trimming function for

the small density near the boundary. The estimation is direct without iterative optimization

algorithms for a nonsmooth objective function. I first provide a Bahadur-type linear repre-

sentation of the CQF estimator using the uniform convergence results of kernel estimation

in Hansen (2008). Then the limit theory is derived for the final estimator.

1This assumption excludes a compact support of X. A similar assumption has also been made for the
density-weighted average mean derivatives in Powell and Stoker (1996).
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The weighted average derivative for quantile regression has been defined by Chaudhuri

et al. (1997) as

βW (τ) ≡ E [∇Qτ (Y |X) ·W (X)] (2.2)

= −E
[
Qτ (Y |X) ·

(
∇W (X) +

∇f(X)

f(X)
W (X)

)]
(2.3)

where the known weighting function W (X) is sufficiently smooth with a compact support

within the interior of X . Chaudhuri et al. (1997) propose estimators for (2.2) and (2.3) using

local polynomial estimators for the unknown functions. Lee (2003) proposes an average

quantile regression based on (2.2) using a local polynomial estimator for the coefficient

in ∇Qτ (Y |X) in a partial linear model. Recently, Chernozhukov et al. (2011) develop a

nonparametric QR series framework and perform inference on the entire CQF and its linear

functional, covering the unweighted average quantile derivative in (2.2) defined on a compact

support. This paper studies a kernel-based estimator for (2.3) with two distinct features

from the previous work: (1) a stochastic trimming function is involved to estimate the AQD

defined on the whole support, which can be unbounded but has zero density at the boundary,

and (2) a density weight W (X) = f(X) is estimated nonparametrically. The two features

involve different technical issues described in the following.

The weighting function W (X) works as a trimming function to avoid “the denominator

problem” for nonparametrically estimating the CQF when f(X) is small near the boundary.

The weighting function W (X) in Chaudhuri et al. (1997) removes the tail region in the

support of X, so their βW (τ) is a different object from the AQD which is defined on the

whole support. On the other hand, a fixed trimming function will not affect consistently

estimating the coefficients in the semiparametric single index and partial linear models. Lee

(2003) concerns the optimal weight to estimate the partial linear coefficient efficiently and

his estimator involves a fixed trimming function.

To estimate the AQD defined on the whole support and to overcome the denominator

problem, I use a stochastic trimming function 1{f̂(Xi)>δn}, which is an indicator of the es-

timated density larger than a trimming bound δn. This positive sequence δn converges to
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zero at some specific rate as n → ∞ which restricts the tail of the covariate distribution

converging to zero slowly enough. Hardle and Stoker (1989), Lavergne and Vuong (1996),

among others, use the similar stochastic trimming; more detail will be discussed in the later

section.

I choose the density weight following the average mean derivative (AMD) introduced by

Powell et al. (1989), which has been widely studied in econometrics literature; for example,

Hardle and Stoker (1989), Powell and Stoker (1996), Cattaneo et al. (2010). For the mean

case, the law of iterated expectations simplifies the expression to −2E[Y∇f(X)], which does

not suffer from the denominator problem and avoids the trimming function, comparing with

the unweighted AMD in Hardle and Stoker (1989). Although the law of iterated expectation

does not apply to the quantile case, choosing the density weight has several advantages:

Comparing with the unweighted estimator, the density-weighted estimator requires weaker

assumption on the tail of the covariate distribution from the stochastic trimming function.

I will show in section 2.4 that the density of the covariates near the boundary is allowed to

converge to zero at a faster rate. Comparing with the estimator of (2.3) in Chaudhuri et al.

(1997), the estimated density weight allows weaker smooth assumptions on the unknown

functions. In addition, the density of the covariate is a natural data-dependent choice of

the weighting function. The population with higher covariate density could be of particular

empirical relevance and importance.

Chaudhuri et al. (1997) do not address the choice of the weighting function W (X), which

could restrict its empirical application in economics. My asymptotic theory shows that

replacing W (X) by an estimated f(X) does not give the same asymptotic covariance matrix

as Chaudhuri et al. (1997) derive for W (X) = f(X), i.e., when choosing the estimated f(X)

as the weighting function in practice, Chaudhuri et al. (1997) do not give correct statistical

inference. Although I will not approach the direction of alternative weighting functions, the

optimal weight in terms of efficiency is concerned in semiparametric models, for example,

the average mean derivative in the single index model in Newey and Stoker (1993) and the

partial linear quantile regression model in Lee (2003).
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The rest of the paper is organized as follows. In Section 2.2, I illustrate some appli-

cations of the AQD on econometrics models in the literature. In Section 2.3, the estima-

tor for the density-weighted AQD is constructed by a first-step nonparametric estimation

for the unknown functions which is then plugged into the sample-analogue in the second

step. In Section 2.4, I first show a uniform linear or Bahadur representation of the non-

parametric kernel-based CQF estimation. Using the U-statistics theory, the estimator for

the AQD is asymptotically linear and hence enjoys the parametric convergence rate, being
√
n−consistent and asymptotically normal. A consistent estimation for the asymptotic co-

variance matrix is suggested. In Section 2.5, I compare the proposed AQD estimator with

the AMD estimator in Powell et al. (1989), the linear QR estimator in Koenker and Bassett

(1978), and the OLS for the semiparametric partial linear and single index models. All

assumptions and proofs are in Appendix.

2.2 Econometrics examples

The sth component of average derivative β(τ) measures the marginal response of the

sth covariate on the τth conditional quantile of Y . In addition to the statistical interest of

quantile regression, the AQD can be motivated by econometric models. The AQD identifies

coefficients in semiparametric partial linear and single index models, which have been widely

studied in mean regression, because it achieves dimension-reduction and relaxes restrictive

parametric assumptions. The following examples also demonstrate how the AQD captures

informative features of general nonparametric structural models under the conditional inde-

pendence assumption.

Example 1 (Semiparametric partial linear model)

Y = X ′1β0 +φ(X2)+ε. The AQD identifies the coefficient β0 up to scale. Lee (2003) proposes

an efficient weighted average quantile regressor, which is similar to my average derivative

estimator.

Example 2 (Semiparametric single index model)
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Following Chaudhuri et al. (1997), I consider the nonseparable single-index model Y =

φ(X ′β0, ε), where ε is an unobserved stochastic term and φ is an unknown function strictly

increasing in the second argument. 2 Then Qτ (Y |X) = φ(X ′β0, Qτ (ε|X)) by the equivari-

ance property of quantiles. Assume quantile independence: Qτ (ε|X) = Qτ (ε) is constant

free from X, which allows heteroskedasticity from possible dependence between X and ε.

Then the AQD is β(τ) = β0 · E[φ1(X ′β0, Qτ (ε)) · f(X)], where φ1 is the partial derivative

of φ with respect to the first argument. That is, the density-weighted AQD β(τ) identifies

the index β0 up to scale. Further normalizing ε by Uniform[0, 1], the structural function is

identified as Qτ (Y |X) = φ(X ′β0, τ). So the structural function φ can be estimated in the

second step by a nonparametric quantile regression of Y on the one-dimensional index X ′β̂.

This specification includes many models as special cases:

Separable single-index model Y = φ(X ′β0)+ε. By quantile independence and normal-

ization Qτ (ε|X) = 0, Qτ (Y |X) = φ(X ′β0). Ichimura and Lee (2010) study an M-estimator

by estimating the link function using a local linear quantile regression in the first step. Wu

et al. (2010) and Kong and Xia (2012) propose an iterative algorithm and an adaptive es-

timation procedure. When the linear CQF is correctly specified, i.e., there exists β0 ∈ Rq

such that Qτ (Y |X) = X ′β0 almost surely, the average derivative β(τ) = β0 · E[f(X)].

Censored Tobit model In Powell (1986), Y = Y ∗1{Y ∗≥0} and the unobserved latent

variable Y ∗ = φ(X ′β0) + ε. Then Qτ (Y |X) = max{0, Qτ (Y
∗|X)}. β0 is identified up to scale

by the AQD under quantile independence, if Qτ (Y
∗|X) is positive with high probability.

Selection model Y = X ′1β1 + ε1, X1, and X2 are observed only if the unobserved

Z∗2 = X ′2β2 + ε2 > 0. By assuming homoskedasticity: (ε1, ε2) is independent of (X1, X2),

Qτ (Y |X1, X2, Z
∗
2 > 0) = X ′1β1 + Qτ (ε1|Z∗2 > 0). Then the AQD identifies the structural

parameter β1 and the selection parameter β2 up to scale, if X2 has no varaibles in common

with X1. If X ′1β1 and X ′2β2 are the same, then it is the truncated Tobit model, as discussed

2Khan (2001) develops a rank estimator if φ is monotonic in both the index and error.
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in Stoker (1986).

Example 3 (Nonseparable structural model with monotonicity)

As noted in the survey paper of Matzkin (2007), when the unobservable random terms

in an economic model have important interpretations such as tastes of consumers or pro-

ductivity shocks in production functions, it is common that these unobservable random

terms influence the dependent variables in an non-additive way. Consider the outcome

variable Y = φ(D,X,U), where the structural function is strictly increasing in the third

argument. Assume there is some external variable Z such that conditional quantile indepen-

dence Qτ (U |D,X,Z) = Qτ (U |X,Z) holds for the endogenous variable of interest D. Then

the CQF of Y given D,X,Z can identify the structural function φ up to a normalization on

Qτ (U |X,Z),

Qτ (Y |D,X,Z) = φ(D,X,Qτ (U |D,X,Z)) = φ(D,X,Qτ (U |X,Z)). (2.4)

Therefore the partial derivative of the CQF with respect to D, ∂DQτ (Y |D,X,Z), identifies

the structural derivative ∂Dφ(D,X,Qτ (U |X,Z)), which is the causal effect of D while leaving

the value of the unobserved variable U unchanged at Qτ (U |X,Z). Further assume quantile

independence and normalize (2.4) φ(D,X,Qτ (U)) = φ(D,X, τ), which is the τth quantile

treatment response defined in Chernozhukov and Hansen (2005).

The nonparametric estimation of the partial derivative of the CQF can be imprecise due

to the slow rate of convergence. The AQD summarizes the quantile treatment effects aver-

aging over (Z, D, X), weighted by their joint density, and its estimator is
√
n-consistent.

A similar argument for increasing the precision is made by Altonji and Matzkin (2005) who

nonparametrically estimate weighted averages of the local average response, instead of im-

posing parametric assumption. Ma and Koenker (2006) also use this “weighted average”

idea to estimate the weighted average quantile treatment effect for Chesher (2003)’s trian-

gular simultaneous equation model under parametric specification. So my AQD can be a

complement and different object of interest to the existing literature.

Example 4 (Nonseparable structural model without monotonicity)
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For a more general nonseparable structural model, Y = φ(X, ε), Hoderlein and Mammen

(2007) identify the local average structural derivative:

E
[
∂X1φ(X, ε)

∣∣X = x, Y = Qτ (Y |X = x)
]

= ∂X1Qτ (Y |X = x)

by conditional independence assumption that ε and X1 conditionally independent given

(X2, ..., Xq) which can be correlation with ε. In words, the derivative of the CQF identifies

the average marginal effects over all individual with the same observable covariates x and

responses Y = Qτ (Y |X = x). No major assumption on the dimensionality of ε and the

structure of φ is imposed. Hoderlein and Mammen (2009) show that the average derivative

in mean regression

E
[
∇E[Y |X] · f(X)

]
=

∫ 1

0

β(τ)dτ (2.5)

3 which is the average of the AQD over all the quantiles τ ∈ (0, 1). Therefore, the AQD re-

veals more local and richer information at each quantile τ than average mean derivative does.

2.3 Estimator

The data consists of n observations Zi = (yi, X
′
i)
′, i = 1, ..., n, which is an i.i.d. random

sample from a distribution that is absolutely continuous with respect to a σ-finite measure

ν, with Random-Nikodym density F (y,X). The average derivative estimator is the sam-

ple analog of β(τ) in (2.1) where the unknown functions are replaced by nonparametric

estimation:

β̂(τ) = − 2

n

n∑
i=1

Q̂τ (Y |Xi)∇f̂(Xi)1{Xi∈Ŝ} (2.6)

3 ∫
X
E
[
∇φ(X, ε)

∣∣∣X = x
]
f2(x)dx =

∫
X

∫ 1

0

E
[
∇φ(X, ε)

∣∣∣X = x, Y = Qτ (Y |X = x)
]
dτf2(x)dx

=

∫
X

∫ 1

0

∇Qτ (Y |X = x)dτf2(x)dx
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for τ ∈ T ≡ [ε, 1 − ε] for some ε > 0. Although any nonparametric estimation for the

unknown functions might work, I use Nadaraya-Watson kernel estimator for its mathematical

and practical tractability. The CQF is estimated by inverting the estimated conditional

distribution function (cdf) by a smooth Nadaraya-Watson estimator:

F̂Y (y|Xi) =

1
|H|(n−1)

∑
j 6=iK(H−1(Xj −Xi))G(

y−Yj
h0

)
1

|H|(n−1)

∑
j 6=iK(H−1(Xj −Xi))

(2.7)

where the νth-order kernel K has the bandwidth matrix H, the q× q identity matrix multi-

plied by h = hn, a positive sequence of n. The indicator function 1{Yj≤y} for the dependent

variable is smoothed by a cumulative kernel G(z) =
∫ u

g(t)dt with a second-order kernel g

and a bandwidth sequence h0. Solving the inverse function for the CQF by the smooth kernel

G could improve the computation time, comparing with solving optimization algorithms for

the nonsmooth indicator function or the check function by the local polynomial estimator

in Chaudhuri et al. (1997) and Lee (2003). 4 The leave-one-out method is standard for the

preliminary plug-in nonparametric estimator and is convenient for the U-statistics theory.

Since the higher-order or bias-reducing kernel is used, the cdf estimator is not strictly

increasing in y, Chernozhukov et al. (2010) propose the rearrangement method to get a

monotonized version of the estimate F̃Y (y|Xi) which preserves the same asymptotics as

F̂Y (y|Xi). Then the CQF can be estimated by Q̂τ (Y |Xi) := infy{F̃Y (y|Xi) ≥ τ}.

To avoid the denominator problem of f̂(X) in estimating FY (y|X) for Qτ (Y |X), I follow

Hardle and Stoker (1989) and Lavergne and Vuong (1996) to estimate β(τ) in (2.1) by

a trimmed estimated density weight, f̂(X)1{f̂(X)≥δ}. Define the compact set S = Sn ≡

{X : f(X) ≥ δ} and Ŝ = Ŝn ≡ {X : f̂(X) ≥ δ}, where δ = δn is a trimming bound

such that δ → 0 as n → ∞. 5 I use the uniform convergence results of kernel estimation

in Hansen (2008) where the uniformity is over values of x in expanding sets of the form

4Lee (2003) estimates the index coefficient or the derivative of the CQF at each point by a local polynomial
estimation in the first step. In the second step, the estimated coefficient is averaged out by a weighting
function and a fixed trimming function.

5The sample analogue in (2.6) should be divided by ns =
∑n
i=1 1{Xi∈Ŝ} instead of n in practice. Since

they are equivalent asymptotically, I use n for notational ease.
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{x : ‖x‖ ≤ cn} = S with δn = inf‖x‖≤cn f(X) and sequences cn either bounded or diverging

slowly to infinity.

The leave-one-out kernel estimator for the density function of X at Xi is

f̂(Xi) =
1

|H1|(n− 1)

∑
j 6=i

K(H−1
1 (Xj −Xi)) (2.8)

where the kernel is of order ν1. Here, H1 and ν1 can be generally different from H and ν

used in the CQF estimation (2.7). Therefore, the sth component of ∇f̂(Xi) is

∂Xs f̂(Xi) ≡
∂f̂(Xi)

∂Xsi

=
1

|H1|(n− 1)

∑
j 6=i

1

h1

k′
(Xsi −Xsj

h1

)
Πt6=sk

(Xti −Xtj

h1

)
where Xsi is the sth component of Xi.

The AQD can only be calculated for the continuous covariates. When the covari-

ates contain discrete components X = (X(c), X(d)), the same estimation works for each

point in a finite set of the realized values of X(d). That is, if X
(d)
i = X

(d)
s , f̂(Xi) =

1
|H1|(ns−1)

∑
j 6=iK(H−1

1 (X
(c)
j − X

(c)
i ))1{X(d)

j =X
(d)
s }

where ns =
∑n

j=1 1{X(d)
j =X

(d)
s }

. The CQF is

then estimated by F̂Y (y|Xi) =
∑

j 6=iK(H−1(Xj−Xi))G(
y−yj
h0

)1{X(d)
j =X

(d)
s }

/∑
j 6=iK(H−1(Xj−

Xi))1{X(d)
j =X

(d)
s }

. For example, I can calculate the AQD for women and men separately.

2.3.1 Scaled AQD

Following Powell et al. (1989), a more interpretable rescaled coefficient might be defined

as β∗ ≡ β/E[f(X)] so that the density weight is normalized W ∗(X) = f(X)/E[f(X)] so

that EW ∗(X) = 1. The scaling parameter α ≡ E[f(X)] can be similarly estimated by

α̂ ≡ n−1
∑n

i=1 f̂(Xi), where f̂(Xi) is estimated by (2.8). Then the scaled AQD estimator is

β̂∗(τ) =
β̂(τ)

α̂
=
[
− 2

n

n∑
i=1

Q̂τ (Y |Xi)∇f̂(Xi)1{Xi∈Ŝ}

]/[ 1

n

n∑
i=1

f̂(Xi)
]
. (2.9)

2.4 Asymptotic Properties

I first state my main results. The compact set S defined by the true density function

f(X) is S ≡ {X : f(X) ≥ δ}. Limits are taken as n → ∞ unless otherwise noted. I
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consider any τ ∈ T , so I drop τ for notational ease, i.e., the scaled AQD is β∗ = β/α. I first

derive a Bahadur-type uniform linear representation for the nonparametrically estimated

CQF, Q̂τ (Y |X). I make use the uniform convergence results of kernel estimation in Hansen

(2008). Chaudhuri et al. (1997), Bhattacharya and Gangopadhyay (1990) and Dabrowska

(1992) derive the Bahadur representation for different nonparametrically estimation of the

CQF. The following Bahadur representation of the kernel estimated CQF could be of separate

interest.

Proposition 2 (Bahadur representation). Suppose Assumptions A.FX, A.FY, and A.K

hold. Let the smoothness parameters pX , pY ≥ ν. Choose the bandwidths h, h0, the trimming

parameter δ, and the order of the kernel ν to satisfy δ−2(nh0h
q)−1/2 → 0, (nhq)1/2(h2

0+hν)→

0, and the positive sequences h, h0, δ → 0. For any τ ∈ T and X ∈ S,

Q̂τ (Y |X)−Qτ (Y |X) =
1

(n− 1)|H|

∑n
j=1K

(
H−1(Xj −X)

)
·
(
τ −G

(Qτ (Y |X)−Yj
h0

))
f(X)fY (Qτ (Y |X)|X)

+Rn(X)

(2.10)

= Op

(1

δ

( log n

nhq

)1/2)
.

The remaining term Rn(X) satisfies supX∈S |Rn(Xi)| = Op

(
logn

δ2nhq
√
h0

)
.

Following Hardle and Stoker (1989), the asymptotic theorem will be first derived for

β̃ = − 2
n

∑n
i=1 Q̂i∇f̂i1{f(X)≥δ}, trimmed based on the true density. Then I will show

√
n(β̃ −

β̂) = op(1). The trimming method needs the assumption on the tail behavior, E[||Qτ (Y |X) ·

∇f(X)||1{X:f(X)<δ}] = o(n−1/2). The similar tail assumption has been made in Lavergne and

Vuong (1996) and Khan and Tamer (2010) for the denominator problem.
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Following the idea of the proof in Powell et al. (1989) and Chaudhuri et al. (1997), β̃ can

be decomposed as

− 2

n

n∑
i=1

Q̂τ (Xi)∇f̂i1Xi = − 2

n

n∑
i=1

(Q̂i −Qi)∇fi1Xi︸ ︷︷ ︸
(I)

− 2

n

n∑
i=1

Qi∇f̂i1Xi︸ ︷︷ ︸
(II)

− 2

n

n∑
i=1

(
Q̂i −Qi

)(
∇f̂i −∇fi

)
1Xi︸ ︷︷ ︸

(III)

,

where 1Xi ≡ 1{Xi∈S} = 1{f(Xi)≥δ}. The asymptotic properties for (I) and (II) can be de-

rived by the U-statistics theory. The third term (III) will be made smaller order term by

appropriately choosing h, h0, h1, ν, and ν1.

The following is the main theorem for β̂ and the scaled β̂∗.

Theorem 2.1. Suppose all Assumptions in Appendix hold and the smoothness parameters

pQ ≥ ν, pX ≥ max{ν, ν1}, and pY ≥ ν. Then

1. β̂ is asymptotically linear

√
n(β̂ − β) =

1√
n

n∑
i=1

[
2∇f(Xi)

fY (Qτ (Y |Xi)|Xi)

(
1{Yi≤Qτ (Y |Xi)} − τ

)
+ 2f(Xi)∇Qτ (Y |Xi)− 2E[f(X)∇Qτ (Y |X)]

]
+ op(1)

≡ 1√
n

n∑
i=1

rβ(Zi) + op(1)
d−→ N (0,Σ),

where Σ = var
(
rβ(Zi)

)
= 4τ(1−τ)E

[
∇f(X)∇f(X)′

f2
Y (Qτ (Y |X)|X)

]
+4var

(
f(X)∇Qτ (Y |X)

)
. Denote

Qi ≡ Qτ (Y |Xi). The bias E[β̂ − β] =

− 2E
[
Qi
hν

ν!
κν

q∑
k=1

∂νk∇f(Xi)
]

+ 2E
[ ∇f(Xi)

f(Xi)fY (Qi|Xi)

{h2
0

2
κG2f

′
Y (Qi|Xi)f(Xi)

+ hνκν

ν∑
l=1

1

l!(ν − l)!

q∑
k=1

∂lkFY (Qi|Xi) · ∂ν−lk f(Xi)
}]

+ o(hν + h2
0) = O(hν + h2

0).

2. The scaling parameter, α = E[f(X)], is estimated by α̂−α = 1
n

∑n
i=1 rα(Zi)+op(n

−1/2),

where the influence function rα(Zi) = 2
(
f(Xi)− E[f(X)]

)
.
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3. For the scaled AQD, β∗ = β/α,

√
n
(
β̂∗ − β∗

)
d−→ N (0, V ∗),

where V ∗ = V/α2 and V = var
(
rβ(Zi)− rα(Zi)β

∗
)

.

Consequently, an asymptotically pivotal test statistic, a confidence interval or the cor-

responding hypothesis test can be constructed by a studentized version of β̂ using Slusky’s

theorem:
√
nV̂ ∗−1/2(β̂∗ − β∗)

d→ N (0, Iq) with a consistent covariance matrix estimator

V̂ ∗
p→ V ∗ in the next section. A hypothesis test of the quantile treatment effect can be

carried out by testing the null hypothesis the coefficient for the treatment variable β∗1 = 0.

The influence function rβ(Zi) = 2(rIi + rIIi)− β. The first part of the influence function

rIi = rI(Zi) = ∇f(Xi)
fY (Qi|Xi)

(
1{yi≤Qi}− τ

)
comes from the estimation error of the unknown CQF

with the known f(X). The second part rIIi = rII(Zi) = f(Xi)∇Qi − E
[
∇(Qif(Xi))

]
comes

from estimating the density weight. For the case when W (X) = f(X) is a known function,

Chaudhuri et al. (1997) show that
√
n(β̂W −β)→ N (0,Σ1), where Σ1 = var(2rIi + rIIi−β).

Comparing with my result when the density function is known W (Xi) = f(Xi), the estima-

tion to the unknown density f(Xi) contributes an extra 1
n

∑n
i=1 f(Xi)∇Qi − E[f(Xi)∇Qi]

in the influence function. Therefore, when applying the AQD in practice by choosing

W (X) = f̂(X), the estimation error is not first-order ignorable.

For the choice of the bandwidths, trimming parameter, and order of kernels, I illustrate

by the following sufficient condition. Let h ∝ n−a, h1 ∝ n−c, h0 ∝ n−d, and δ ∝ n−b, for

some constants, a, b, c, d > 0. Choose ν > 4q
3

, a ∈ ( 1
2ν
, 3

8q
), ν1 > q+2

2−2aq
, c ∈ ( 1

2ν1
, 1−aq
q+2

),

d ∈ (1
4
, 1− 2aq), and b < min{1

4
(1− 2aq − d), 1

2
(1− aq − c(q + 2))}. Choosing ν1 >

4
5
(q + 2)

is sufficient. The conditions on the smoothness parameters is weaker than the estimator for

the known weighted AQD in (2.3) in Chaudhuri et al. (1997), by 3+ 3
2
q > max{4q

3
, 4

5
(q+2)}.

The curse of dimensionality from nonparametric estimation goes to the order of bias-reducing

kernel ν and ν1. Hence, the distributions of Y and X (e.g., Qτ (Y |X) and f(X)) need to

be increasingly smooth as q increases. To achieve asymptotic linearity, a large bandwidth

is needed. To make the bias vanish at rate
√
N , I need small bandwidths and higher-order
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kernels. It is undersmooth comparing with nonparametric estimations of the curves (e.g.,

nonparametric density and cdf estimations). That is, the bandwidth needs to be shrunk

more rapidly to zero than the typical bandwidth for curve estimation, which is common in

the literature. Take an example for the dimension of X, q = 4. I can choose a sixth-order

biweight kernel, the positive sequences of the bandwidths h ∝ n−0.09, h1 ∝ n−0.1, h0 ∝ n−0.26,

and the trimming parameter δ ∝ n−0.004.

2.4.1 Asymptotic Covariance Matrix

The covariance matrix Σ could be consistently estimated as the sample variance of uni-

formly consistent estimators of the influence function rβ(Zi) ≡ rβi. And the influence func-

tion can be estimated by any uniformly consistent estimators of f(Xi),∇f(Xi), fY (Qi|Xi), Qi,

and ∇Qi, under some regularity conditions. So I estimate the influence function of (I), rIi ,

by replacing the unknown functions with the uniformly consistent estimators. For rIIi, I

follow Hardle and Stoker (1989) using the projection structure in its U-statistic. Therefore,

the estimator for Σ can be constructed as

Σ̂ = n−1

n∑
i=1

r̂βir̂
′
βi1{f̂(Xi)≥δ} − r̄r̄

′

where

r̄ = n−1

n∑
i=1

r̂βi1{f̂(Xi)≥δ}

r̂βi = 2(r̂Ii + r̂IIi)− β̂

r̂Ii =
∇f̂(Xi)

f̂Y (Q̂i|Xi)

(
1{yi≤Q̂i} − τ

)
r̂IIi =

−1

n− 1

∑
j 6=i

1

hq+1
∇K

(
H−1(Xi −Xj)

)(
Q̂i1̂Xi − Q̂j1̂Xj

)
.

Theorem 2.2. Under the Assumptions, Σ̂ is a consistent estimator of Σ.

The influence function of β̂∗ ≡ β̂/α̂ can be estimated by

r̂∗i ≡
(

2r̂Ii + 2r̂IIi − 2β̂ − 2
(
f̂(Xi)− α̂

)
β̂∗
) 1

α̂
.
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Then the asymptotic covariance matrix of the scaled AQD estimator, V/α2, can be estimated

by V̂ ∗ ≡ n−1
∑n

i=1 r̂
∗
i r̂
∗′
i 1{f̂(Xi)≥δ} − r̄

∗r̄∗
′
, where r̄∗ = n−1

∑n
i=1 r̂

∗
i 1{f̂(Xi)≥δ}.

2.5 Monte Carlo Simulations

I compare the finite-sample performance of the AQD estimator with the average mean

derivative (AMD) in Powell et al. (1989), the conventional Koenker and Bassett (1978) linear

quantile regression (denoted by KB), and the OLS. I consider two semiparametric model:

partial linear and single index models. The data generating processes are modified from the

experiments in Lee (2003).

1. Partial linear model with homoscedasticity (PL-homo):

Y = X1 +X2 + 30 exp(−X2
1 )/
√

2π + ε

2. Partial linear model with heteroscedasticity (PL-hetero):

Y = X1 +X2 + 30 exp(−X2
1 )/
√

2π + 2 exp((X1 +X2)/4)ε

3. Single index model with homoscedasticity (SI-homo):

Y = 20 + 10 sin(X ′β/2) +X ′β/2 + ε, where X ′β = 5X1 +X2.

4. Single index model with heteroscedasticity (SI-hetero):

Y = 20 + 10 sin(X ′β/2) +X ′β/2 + 2 exp(X ′β/12)ε, where X ′β = 5X1 +X2.

I consider two error distributions: ε ∼ N (0, 1) and ε ∼ t(2) for the fat-tailed distribution.

I use fourth-order Epanechnikov kernel. The bandwidths are hx = Cσxn
−0.15 and hy =

Cσyn
−0.3, where the powers satisfy Assumption A.B, the constant C = 3.12 from Silverman

rule-of-thumb, and σ is the inter-quantile range robust to fat-tailed design Silverman (1986).

There are 1,000 replications in each experiment. For the normal error in partial linear

model in Figure 2.1, the nonparametric estimators, AMD and AQD, outperform the linear

estimators, OLS and KB. Both AMD and AQD identify the coefficient for X2 for this partial

linear model. AMD is more efficient than AQD, which could be explained by (2.5) that AMD
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integrates more information. For the fat-tailed error in Figure 2.2, the quantile regressions

(AQD and KB) outperform the mean regressions (AMD and OLS).

The rule-of-thumb constant 3.12 is close to minimize the MSE. The optimal bandwidth

for the AQD is smaller than that of the AMD. This is because AQD involves additional

nonparametric estimation of the CQF, the nonparametric estimator is more undersmooth.

When the optimal bandwidth is chosen, the nonparametric estimators performs well in finite

sample. The similar results can be observed for the single-index models in Figures 2.3 and

2.4. AQD outperforms the linear KB.

2.6 Discussion and Outlook

Efficiency In Newey (1990), “In models where the parameter is an explicit function of

the distribution and the distribution is unrestricted, there is only one influence function for a

regular asymptotically linear estimator.” That is, the influence function of any asymptotically

linear and regular estimator for the density-weighted AQD is unique and hence efficient.

It follows that my estimator for the density-weighted AQD reaches the efficiency bound.

Other nonparametric estimations for the first-step unknown functions, such as series or local

polynomial, will give the same asymptotic distribution. More explicitly, Newey and Stoker

(1993) calculate the efficiency bounds for the weighted average derivative for general loss

functions, including conditional mean and quantiles, where the weighting function is a known

function. By proceeding as in the proof for Theorem 3.1 in Newey and Stoker (1993), I can

calculate the efficiency bounds for the density-weighted average quantile/mean derivatives

where the density weight is to be estimated. It confirms that the estimators proposed in this

paper and by Powell et al. (1989) are semiparametrically efficient, as implied by the result

in Newey (1990).

The choice of the weighting functions may affect the efficiency of estimating the index

parameter in semiparametric models, such as single index models in Newey and Stoker (1993)

and partial linear models in Lee (2003). For the partial linear model Y = X ′1β0 + φ(X2) +

ε, Lee (2003) derives the optimal weight so that his weighted average quantile regression
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Figure 2.1 (Partial linear - N(0, 1)) The true parameter is 1, the coefficient of X2.
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Figure 2.2 (Partial linear - t(2)) The true parameter is 1, the coefficient of X2.
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Figure 2.3 (Single Index - N(0, 1))
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reaches the semiparametric efficiency bound for β0. Newey and Stoker (1993) derive the

optimal weight for the weighted average mean derivative in the single index model, when

X has an ellipitically symmetric distribution. Then the declining weight implicit in the

density weighted estimator would tend to have high efficiency when the X distribution has

thinner tails than normal. This may motivate the density weight used for the mean case

in Powell et al. (1989). Since AMD integrates more information than AQD as in (2.5), the

AMD estimator might be more efficient than the AQD estimator in semiparametric models.

However, Newey and Stoker (1993) note that the AQD estimator may be more efficient than

the AMD estimator if the distribution of Y is fat-tailed. The Monte-Carlo experiment in

Section 2.5 illustrates this point.

Bandwidth Choice The criterion of choosing bandwidths and trimming bound for

small sample is to be investigated. As discussed in Lavergne and Vuong (1996), the optimal

bandwidths need not have this form C · n−a for some positive constant C, a. The optimal

bandwidths can be chosen by minimizing the mean-square error of β as in Powell and Stoker

(1996). However, for the AQD, the additional influence function from the estimation of the

CQF in (I) complicates the problem.

Robust Inference As the dimension of the covariates increases, a higher-order kernel

is needed. It is known that the finite-sample performance of the average mean derivative

might deteriorate, e.g., Cattaneo et al. (2010). The classical first-order, asymptotically linear

large sample theory, which ignores the remainder terms, may not capture the finite-sample

behavior of β̂∗. My variance estimation for the density-weighted AQD shares the same spirit

of Powell et al. (1989), which is lack of robustness with respect to the bandwidth noted by

CCJ (2010). Alternative inference method is to be investigated. A higher-order asympotic

expansion for the AQD might be needed.

Studentized Estimator The density-weighted AQD is defined on all the support of

X and I require f(X) goes to zero on the boundary of the support of X. To make my
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estimator converge at
√
n-rate by the U-statistics theory and stochastic trimming, I need

the second moment (at least) E[||Qτ (Y |X) · ∇f(X)||2] to be finite. In Khan and Tamer

(2010), they study the case when the second moment is not finite and the convergence rate

of the estimator β̂ is not regular (
√
n). They studentize the estimator as

√
nΣ̂−1/2(β̂ − β),

where Σ̂ is an estimator for the asymptotic variance Σ if conditions were such that the

asymptotic variance were finite. They show that this studentized estimator converges to

a standard normal distribution, regardless of the rate of convergence of the un-studentized

estimator. Their idea might be applicable to my density-weighted AQD.
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Chapter 3

Interpretation and Semiparametric Efficiency in Quan-

tile Regression under Misspecification

3.1 Introduction

This article revisits the approximation properties of the linear quantile regression under

misspecification (Angrist et al. (2006); Kim and White (2003); Hahn (1997)). I study the

quantile regression parameter, which is the best linear predictor of the outcome under the

asymmetric check loss function without assuming that the true conditional quantile function

is linear. I calculate the semiparametric efficiency bound of this parameter. The quantile

regression estimator, introduced by Koenker and Bassett (1978), offers parsimonious sum-

mary statistics for the conditional quantile function and is computationally tractable. Since

the development of the estimator, researchers have frequently used quantile regression, in

conjunction with ordinary least squares regression, to analyze how the outcome variable

responds to the explanatory variables. For example, to model wage structure in labor eco-

nomics, Angrist et al. (2006) study returns to education at different points in the wage

distribution and changes in inequality over time. A thorough review of recent development

in quantile regression can be found in Koenker (2005).

The topic of interest is the conditional cumulative distribution function (cdf) of a contin-

uous response variable Y given the regressor vector X, denoted as FY (y|X). A convenient

alternative for the conditional cdf is the τth conditional quantile function (CQF) of Y given
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X, defined as Qτ (Y |X) := inf{y : FY (y|X) ≥ τ}. Assuming integrability, the CQF mini-

mizes the check loss function

Qτ (Y |X) ∈ arg min
q(X)∈Q

E
[
ρτ (Y − q(X))

]
for any quantile index τ ∈ (0, 1), where Q is the set of measurable functions of X, ρτ (u) =

u(τ −1{u≤0}) is known as the check function, and 1{·} is the indicator function. Therefore, a

natural and simple summary statistic for the CQF is the quantile regression (QR) parameter

β(τ), which solves the population minimization problem

β(τ) := arg min
β∈Rd

E
[
ρτ (Y −X ′β)

]
(3.1)

assuming integrability and uniqueness of the solution and d is the dimension of X. The QR

estimator introduced by Koenker and Bassett (1978) is the sample analogue

β̂(τ) ∈ arg min
β∈Rd

1

n

n∑
i=1

ρτ (Yi −X ′iβ) (3.2)

for the random sample (Yi, X
′
i, i ≤ n) on the random variables (Y,X ′)′. By the equivalent

first-order condition, this estimator β̂(τ) is also the generalized method of moments (GMM)

estimator based on the unconditional moment restriction (Powell, 1984, 1986):

E[(τ − 1{Y≤X′β(τ)})X] = 0. (3.3)

In this article I study how the QR parameter defined in (3.1) or (3.3) approximates the CQF

and calculates its semiparametric efficiency bound.

If the CQF is modeled to be linear in the covariatesQτ (Y |X) = X ′β(τ) or FY (X ′β(τ)|X) =

τ , the coefficient β(τ) satisfies the conditional moment restriction

E[τ − 1{Y≤X′β(τ)}|X] = 0 (3.4)

almost surely. In the theoretical and applied econometrics literature, this linear QR model is

often assumed to be correctly specified. Nevertheless, a well-known crossing problem arises:

the CQF for different quantiles may cross at some values of X, except when β(τ) is the same
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for all τ . A logical monotone requirement is violated for Qτ (Y |X) or its estimator to be

weakly increasing in the probability index τ given X. The crossing problem for estimation

could be treated by rearranging the estimator (for example, see Chernozhukov et al. (2010)

and the references therein). 1 However, the crossing problem remains for the population

CQF, suggesting that the linear QR model is inherently misspecified. That is, there is no

β(τ) ∈ Rd satisfying the conditional moment (3.4) almost surely. Therefore, the parameter

of interest in this article is the QR parameter β(τ) defined by (3.1) or (3.3) without the

linear CQF assumption in (3.4). We can view β(τ) as the pseudo-true value of the linear

QR model under misspecification.

While β(.5) is the least absolute derivations estimation, the QR parameter β(τ) for other

quantiles is the best linear predictor for a response variable under the asymmetric loss func-

tion ρτ (·) in (3.1). Angrist et al. (2006) (henceforth ACF) note that the prediction under the

asymmetric check loss function is often not the object of interest in empirical work, with the

exception of the forecasting literature, for example, Komunjer (2005). For the mean regres-

sion counterpart, ordinary least squares (OLS) consistently estimates the linear conditional

expectation and minimizes mean-squared error loss for fitting the conditional expectation un-

der misspecification. The attractive features of OLS, robustness and interpretability, under

misspecification, motivate the investigation of parallel properties in QR.

The equivalent first-order condition can be understood as the orthogonality condition of

the covariates X and the distribution error, FY (X ′β(τ)|X) − τ , in the projection model. I

show that the QR parameter β(τ) minimizes the mean-squared distribution error inversely

weighted by the conditional density function at the best linear approximation X ′β(τ). ACF

(2006) find that QR is the best linear approximation of the CQF, using a weighted mean-

squared error loss function and a weight primarily determined by the conditional density

fY (Qτ (Y |X)|X). ACF’s study as well as my own results suggest that QR approximates the

CQF more accurately at points with more observations, but the corresponding conditional

1Chernozhukov et al. (2010) rearrange an estimator Q̂τ (Y |X) to be monotonic. The original estima-
tor can be computationally tractable. The rearranged monotonic estimated conditional cdf is F̂Y (y|X) =∫ 1

0
1{Q̂τ (Y |X)≤y}dτ . The rearranged quantile estimation is Q̂∗τ (Y |X) = inf{y : F̂Y (y|X) ≥ τ}.
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cdf evaluated at the approximated point FY (X ′β(τ)|X) is more distant from the targeted

probability τ . This trade-off is controlled by the conditional density, which is distinct from

OLS approximating the conditional mean, because the distribution and quantile functions

are generally nonlinear operators. This observation is novel and increases the understanding

of how the QR summarizes the outcome distribution. A numerical example in Figure 3.1 in

Section 4 illustrates this finding.

For the misspecified linear regression model, Chamberlain (1987) proves the semipara-

metric efficiency of the OLS estimator based on differentiable moment restrictions, which

provides additional justification for the widespread use of OLS. However, Chamberlain’s

results cannot be applied to semiparametric efficiency for QR, due to the lack of moment

function differentiability in (3.3) and (3.4). Although Ai and Chen (2012)’s general results for

sequential moment restrictions containing unknown functions could cover the quantile regres-

sion setting, I calculate the efficiency bound accommodating regularity conditions specifically

for the QR parameter β(τ) using the method outlined in Severini and Tripathi (2001). It

follows that the misspecification-robust asymptotic variance of the QR estimator β̂(τ) in

(3.2) attains this bound, which means no regular 2 estimator for (3.3) has smaller asymp-

totic variance than β̂(τ). This result might be expected for an M-estimator, but, to my

knowledge, the QR application has not been demonstrated and discussed rigorously in any

publication. Further, I calculate the efficiency bounds for jointly estimating QR parameters

at finite number of quantiles for both misspecified (3.3) and correctly specified (3.4) models.

Employing the widely used method outlined in Newey (1990), Newey and Powell (1990) find

the semiparametric efficiency bound for β(τ) of the correctly specified linear CQF in (3.4).

Note that the efficiency bounds for (3.3) do not imply the bounds for (3.4); nor does the

converse hold.

In Section 2, I discuss the interpretation of misspecified QR model in terms of approx-

imating the conditional cdf and the CQF. The theorems for the semiparametric efficiency

bounds are in Section 3. In Section 4, I discuss the parallel properties of QR and OLS. The

2See Newey (1990) for the definition of regular estimators.
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article is concluded by a review of some existing efficient estimators for correctly specified

(3.4) and misspecified (3.3) linear QR models.

3.2 Interpreting QR Under Misspecification

Y is a continuous response variable and X is a d × 1 regressor vector. The quantile-

specific residual is defined as the distance between the response variable and the CQF,

ετ := Y − Qτ (Y |X) with the conditional density fετ (e|X) at ετ = e or fY (y|X) at Y =

y = e + Qτ (Y |X) for any τ ∈ (0, 1). This is a semiparametric problem in the sense that

the distribution functions of ετ and X as well as the CQF are unspecified and unrestricted

other than by the following assumptions which are standard in QR models. Throughout this

article, I assume the regularity conditions borrowed from Theorem 3 in ACF (2006):

(R1) (Yi, Xi, i ≤ n) are independent and identically distributed on the probability space

(Ω,F , P ) for each n;

(R2) the conditional density fY (y|X = x) exists, and is bounded and uniformly continuous

in y, uniformly in x over the support of X;

(R3) J(τ) := E
[
fY (X ′β(τ)|X)XX ′

]
is positive definite for all τ ∈ (0, 1), where β(τ) is

uniquely defined in (3.1);

(R4) E‖X‖2+ε <∞ for some ε > 0.

The identification of the pseudo-true parameter β(τ) is assumed in (R3). If X contains

a constant component and the unique solution to (3.1) exists, then the intercept in β(τ)

is identified. This is different from the case of the correctly specified model (3.4), where

the intercept in β(τ) is not identified. The bounded conditional density function of the

continuous response variable Y given X in (R2) is needed for the existence of the CQF

for any τ ∈ (0, 1). The uniform continuity guarantees the existence and differentiability

of the distribution function, i.e., dFY (y|X)/dy = fY (y|X) and FY (y|X) =
∫ y
−∞ fY (u|X)du
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with probability one. (R4) is used for the asymptotic normality of
√
n(β̂(τ) − β(τ)). The

covariates X are allowed to contain discrete components.

The parameter of interest β(τ) is equivalent to solving

E
[
X
(
FY
(
X ′β(τ)

∣∣X)− τ)] = 0 (3.5)

by applying the law of iterated expectations on equation (3.3). Equation (3.5) states that X

is orthogonal to the distribution error FY
(
X ′β(τ)

∣∣X)− τ . The following theorem interprets

QR through a weighed mean-squared error loss function on the distribution error.

Theorem 3.1. Assume the regularity conditions (R1)-(R4). Further assume fY (X ′β(τ)|X)

to be bounded away from zero such that the objective function in (3.6) is finite ∀β ∈ Rd,

where β(τ) is the parameter of interest uniquely defined by (3.1). Then β̄(τ) = β(τ) solves

the equation

β̄(τ) = arg min
β∈Rd

E
[(
fY (X ′β̄(τ)|X)

)−1(
FY (X ′β|X)− τ

)2]
. (3.6)

Furthermore, if E
[(
fY (X ′β|X) + (FY (X ′β|X)− τ)f ′Y (X ′β|X)/fY (X ′β|X)

)
XX ′

]
is positive

definite at β = β(τ), then β̄(τ) = β(τ) is unique to this problem (3.6).

Proof of Theorem 3.1 The objective function in (3.6) is finite by the assumptions. Any

fixed point β = β̄(τ) would solve the first-order condition, E
[
X
(
FY
(
X ′β

∣∣X) − τ
)]

= 0.

By (3.3), β(τ) solves (3.6). When the second-order condition holds, i.e., E
[(
fY (X ′β|X) +

(FY (X ′β|X)− τ)f ′Y (X ′β|X)/fY (X ′β|X)
)
XX ′

]
is positive definite at β = β(τ), β(τ) solves

(3.6) uniquely. �

Theorem 3.1 states that the parameter β(τ) is the unique fixed point to an iterated

minimum distance approximation, with a weight of a function of X only. The mean-squared

loss makes it clear how the linear function matches the conditional cdf to the targeted

probability of interest. The loss function puts more weight on points where the conditional

density fY (X ′β(τ)|X) is small. As a result, the distribution error is smaller at points with

smaller conditional density.
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ACF (2006) interpret QR as the minimizer of the weighted mean-squared error loss

function for specification error, defined as the deviation between the approximation point

X ′β(τ) and the true CQF Qτ (Y |X):

β(τ) = arg min
β∈Rd

E
[
w̄τ (X, β(τ)) ·

(
X ′β −Qτ (Y |X)

)2]
(3.7)

where the importance weight

w̄τ (X, β(τ)) =
1

2

∫ 1

0

fετ

(
u
(
X ′β(τ)−Qτ (Y |X)

)∣∣∣X)du.
The importance weights w̄τ (X, β(τ)) are the averages of the response variable over a line

connecting the approximation point X ′β(τ) and the true CQF Qτ (Y |X). ACF (2006)

note that the regressors contribute disproportionately to the QR estimate and the pri-

mary determinant of the importance weight is the conditional density. Moreover, I ob-

serve that the first-order condition from ACF’s result (3.7) is E
[
w̄τ (X, β(τ)) ·X

(
X ′β(τ)−

Qτ (Y |X)
)]

= 0, which is a weighted orthogonal condition of the specification error. A

Taylor expansion provides intuition to connect the distribution error and the specification

error: [fY (X ′β|X)]−1
(
FY (X ′β|X)− τ

)2 ≈ fY (X ′β|X)
(
Qτ (Y |X)−X ′β

)2
. This observation

implies the specification error is smaller at points where the conditional density fY (X ′β|X)

is larger. On the other hand, the distribution error is larger at points with larger fY (X ′β|X).

Comparing with the OLS where the mean operator is linear, the distribution function and

its inverse operator, the quantile function, are generally nonlinear. The distribution error

can be interpreted as the distance after a nonlinear transformation by the conditional cdf,

FY (X ′β(τ)|X) − FY (Qτ (Y |X)|X). A Taylor expansion linearizes the distribution function

to the specification error multiplied by the conditional density function. The conditional

density plays a crucial role on weighting the distribution error and the specification error.

The above discussion provides additional insights to how the QR parameter approximates

the CQF and fits the conditional cdf to the targeted probability.
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3.3 The Semiparametric Efficiency Bounds

3.3.1 QR under Misspecification

I calculate the semiparametric efficiency bound for the unconditional moment restriction

(3.3) by Severini and Tripathi (2001)’s approach.

Theorem 3.2. Assume the regularity conditions (R1)-(R4). The semiparametric efficiency

bound for estimating the population QR parameter β(τ), that minimizes the expected weighted

mean-squared approximation error (3.7) or equivalently (3.1), is J(τ)−1Γ(τ, τ)J(τ)−1, where

J(τ) is defined in (R3) and

Γ(τi, τj) := E
[
(τi − 1{Y <X′β(τi)})(τj − 1{Y <X′β(τj)})XX

′
]

for any τi, τj ∈ T := a closed subset of [ε, 1− ε] for ε > 0.

In general, the semiparametrically efficient joint asymptotic covariance of the estimators

for (β′(τ1), β′(τ2), ..., β′(τm)′ is J(τi)
−1Γ(τi, τj)J(τj)

−1, for any τi, τj ∈ T , i, j = 1, 2, ...,m,

for a finite integer m ≥ 1.

Proof of Theorem A.3 See Appendix. �

My proof accommodates the regularity assumptions for quantile regression and modifies Sec-

tion 9 of Severini and Tripathi (2001). For example, the covariateX can contain discrete com-

ponents, by constructing two tangent spaces for the conditional density of Y given X and the

marginal density of X, respectively. In the efficiency bound, J(τ) := E
[
fY (X ′β(τ)|X)XX ′

]
is obtained by assuming the exchangeability of integration and differentiation for the nons-

mooth check function. 3

The method in Severini and Tripathi (2001) has been used in the monotone binary

model in Magnac and Maurin (2007), Lewbel (1998) latent variable models in Jacho-Chávez

(2009), for example. I work in the Hilbert space of tangent vectors of the square-root density

3Severini and Tripathi (2001) construct the tangent space for the continuous and bounded joint density
f(X,Y ) in their Secton 9. And they define J on the derivative of the moment restriction.
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functions and using the Riesz-Fréchet representation theorem. Another equivalent approach

by Newey (1990) works in a Hilbert space of random variables and uses the projection on

the linear space spanned by the scores from the one-dimensional subproblems to find the

efficient influence function. The efficiency bound is then the second moment of the efficient

influence function, J(τ)−1X(τ − 1{Y≤X′β}). Newey’s efficient influence function is the score

function evaluated at the unique representers by the Riesz-Fréchet theorem used in Severini

and Tripathi (2001); a more detailed comparison of these two approaches is discussed in

Severini and Tripathi (2001).

ACF (2006) show that the QR process β̂(·) is asymptotically mean-zero Gaussian with

the covariance function J(τ1)−1Γ(τ1, τ2)J(τ2)−1 for any τ1, τ2 ∈ T which is the semipara-

metric efficiency bound in Theorem A.3. This asymptotic covariance under misspecification

for a single quantile, J(τ)−1Γ(τ, τ)J(τ)−1, has been presented in Hahn (1997) and Kim and

White (2003). Hahn (1997) further shows the QR estimator is well approximated by the

bootstrap distribution even when the linear quantile restriction is misspecified. An alter-

native estimator for the misspecification-robust asymptotic covariance matrix of β̂(τ) is the

nonparametric kernel method in ACF (2006).

3.3.2 QR for Correct Linear Specification

Assuming the model is correctly specified, i.e., Qτ (Y |X) = X ′β(τ) almost surely, the

asymptotic covariance for the QR process β̂(·) derived by ACF (2006) is simplified to

J(τ1)−1Γ0(τ1, τ2)J(τ2)−1, where Γ0(τ1, τ2) := [min(τ1, τ2) − τ1τ2] · E[XX ′] for any τ1, τ2 ∈

(0, 1). The asymptotic covariance J(τ)−1Γ0(τ, τ)J(τ)−1 for a single quantile τ , first derived

by Powell (1986), is widely used for inference in most empirical studies which implicitly

assume correct specification.

The semiparametric efficiency bound for the correctly specified quantile regression (3.4)

is τ(1−τ)
{
E
[
XX ′f 2

ετ (0|X)
]}−1

, where fY (X ′β(τ)|X) = fετ (0|X) a.s. and E
[
XX ′f 2

ετ (0|X)
]

is assumed to be finite and nonsingular. This is first calculated by Newey and Powell (1990)

by the method developed in Newey (1990). If, in addition, the conditional density function
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of Y given X is independent of X, i.e., fετ (·|X) = fετ (·), the “homoskedastic” condition in

QR, and fετ (0) > 0, the semiparametric efficiency bound becomes τ(1−τ)
f2
ετ

(0)

(
E[XX ′]

)−1

. This

asymptotic covariance is attained by β̂(τ) first shown in Koenker and Bassett (1978), who

assume a homoskedastic, correctly specified linear quantile regression model. This has an

interesting resemblance to the fact that the OLS estimator is semiparametrically efficient in

a homoskedastic regression model, i.e., e = Y −X ′β, E[e|X] = 0, and E[e2|X] = E[e2].

I further show, in general, the semiparametrically efficient joint asymptotic covariance of

the estimators for (β′(τ1), ..., β′(τm))′ is

[min(τi, τj)− τiτj]
{
E
[
XX ′fετi (0|X)fετj (0|X)

]}−1

(3.8)

for any τi, τj ∈ T , i, j = 1, 2, ...,m, for any finite integer m ≥ 1. The regularity conditions

imposed, (R1), (R2), and (R4), are weaker than the assumptions in Newey and Powell

(1990); for example, they assume f(ε,X) is absolutely continuous in ε which implies uniform

continuity in (R2). See Appendix B for the detailed proof for (3.8).

3.4 Discussion and Conclusion

Misspecification is a generic phenomenon; especially in quantile regression (QR), the

true conditional quantile function (CQF) might be nonlinear, or different functions of the

covariates at different quantiles. Table 3.1 summarizes the parallel properties of QR and

OLS. Under misspecification, the pseudo-true OLS coefficient can be interpreted as the best

linear predictor of the conditional mean function, E[Y |X], in the sense that the coefficient

minimizes the mean-squared error of the linear approximation to the conditional mean.

With respect to the QR counterpart, I present the inverse-density-weighted mean-squared

error loss function based on the distribution error FY (X ′β|X) − τ . The equivalent first-

order condition for QR is analogous to the unconditional moment for OLS, which is the

orthogonality condition for the covariates and error, the deviation of the approximation from

the true conditional mean. The approximation properties of OLS have been well studied

(see, for example, White (1980)). My results imply that Koenker and Bassett (1978)’s
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QR estimator β̂(τ) is semiparametrically efficient for misspecified linear projection models

and “homoskedastic” correctly specified linear quantile regression models. Alternatively,

the smoothed empirical likelihood estimator using the unconditional moment restriction

in Whang (2006) has the same asymptotic distribution as Koenker and Bassett (1978)’s

estimator and hence attains the efficiency bound.

Under correct specification (i.e., the linear quantile regression model) Koenker and Bas-

sett’s estimator consistently estimates the true β(τ), although it is not semiparametrically

efficient given heteroskedasticity. Researchers have proposed many efficient estimators for

the correctly specified linear quantile regression parameter, for example, the one-step score

estimator in Newey and Powell (1990), the smoothed conditional empirical likelihood esti-

mator in Otsu (2008), and the sieve minimum distance (SMD) estimator in Chen and Pouzo

(2009). However, for all these estimators, the pseudo-true values under misspecification are

different and their interpretations have not been thoroughly studied. So the semiparamet-

ric efficiency bounds of these pseudo-true values are also different. For example, the SMD

estimator converges to a pseudo-true value βSMD that minimizes E
[(
FY (X ′β|X) − τ

)2]
.

The first-order condition is E
[
X
(
FY (X ′βSMD|X) − τ

)
· fY (X ′βSMD|X)

]
= 0, which is the

unconditional moment used in Newey and Powell (1990) for the semiparametrically efficient

GMM estimator under correct specification. The conditional density weight is similar to the

generalized least squares (GLS) in the mean regression in that it uses a weight function of

the conditional variance to construct an efficient estimator.

It is interesting to note that the pseudo-true value of the SMD estimator minimizes

E
[(
FY (X ′β|X) − τ

)2] ≈ E
[
f 2
Y (Qτ (Y |X)|X)

(
X ′β − Qτ (Y |X)

)2]
. The distribution error is

weighted evenly over the support of X for βSMD, in contrast to the QR parameter, which

is weighted more at points with smaller conditional density in Theorem 3.1. Therefore, the

SMD estimator might have more desirable and reasonable approximation properties than

QR. Nevertheless, the SMD estimator is computationally more demanding than the Koenker

and Bassett (1978) (KB) estimator. A numerical example in Figure 3.1 illustrates how KB

and SMD estimators approximate the CQF and the conditional cdf. The red solid line is
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for the QR parameter βKB, defined in (3.1) and estimated by Konenker and Bassett (KB)

(1978). The blue dashed line is the approximation by the SMD estimator βSMD minimizing

E[(FY (X ′β|X) − τ)2]. The left panel shows the linear approximations X ′βKB, X ′βSMD,

and the true CQF. The right panel shows the corresponding conditional cdfs FY (X ′βKB|X)

and FY (X ′βSMD|X). For smaller x where the conditional density is larger, the specification

error of SMD is smaller than that of KB in the left panel. For the distribution error in

the right panel, SMD weights more evenly over the support of X, while KB has smaller

distribution error at larger x with smaller density. This numerical example is constructed by

e|X = x ∼ Uniform[0, x], X ∼ Uniform[1, 2], and Y = cos(2X) + e. So fY (y|X) = 1/X,

FY (y|X) = (y − cos(2X))/X, and Qτ (Y |X) = τX + cos(2X). Set τ = 0.5 for the median.

The approximations are X ′βKB = −0.324 + 0.161X and X ′βSMD = −0.204 + 0.078X.

This discussion leads to open-ended questions: What is an appropriate linear approxi-

mation or a meaningful summary statistic for the nonlinear CQF? How should economists

measure the marginal effect of the covariates on the CQF? An approach that circumvents

this problem is measuring the average marginal response of the covariates on the CQF di-

rectly. The average quantile derivative, defined as E[W (X)∇Qτ (Y |X)] where W (X) is a

weight function, offers such a succinct summary statistic (Chaudhuri et al. (1997)). Lee

(2011) shows that the nonparametric estimator for the density-weighted average quantile

derivative enjoys
√
n-consistency, asymptotic normality, and semiparametric efficiency.
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OLS QR

Linear Projection Model

objective minimized E[(Y −X ′β)2] E[ρτ (Y −X ′β)]

(interpretation) E[(E[Y |X]−X ′β)2] E[w̄τ · (Qτ (Y |X)−X ′β)2]

E[fY (X ′β(τ)|X)−1 · (FY (X ′β|X)− τ)2]

unconditional moment E[X(Y −X ′β)] = 0 E[X(1{Y≤X′β(τ)} − τ)] = 0

(interpretation) E[X(E[Y |X]−X ′β)] = 0 E[X(FY (X ′β(τ)|X)− τ)] = 0

E
[
w̄τ ·X

(
X ′β(τ)−Qτ (Y |X)

)]
= 0

efficient estimators arg minβ∈Rd
1
n

∑n
i=1(Yi −X ′iβ)2 arg minβ∈Rd

1
n

∑n
i=1 ρτ (Yi −X ′iβ)

= (
∑n

i=1XiX
′
i)
−1(
∑n

i=1XiYi) (Koenker & Bassett, Whang)

asymptotic covariance Q−1ΩQ−1 * J−1ΓJ−1

efficiency bounds Chamberlain (1987) Theorem A.3

Linear Regression Model

conditional moment E[Y |X] = X ′β Qτ (Y |X) = X ′β(τ) or FY (X ′β(τ)|X) = τ

efficiency bounds Chamberlain (1987) † Newey & Powell (1990)

Homoskedastic Linear Regression Model

condition var[Y |X] = σ2 fετ (0|X) = fετ (0)

efficient estimators OLS Koenker & Bassett

Table 3.1 Summary Properties of OLS and QR

* Q = E[XX ′] and Ω = E[XX ′e2] where e = Y −X ′β.

† Feasible GLS estimator is semiparametrically efficient, for example.
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Appendix A: Supplmentary Appendix to Chapter 1

The Appendix is organized as follows. Section A.1 collects the lemmas of stochastic

equicontinuity, whose proofs are collected in Section A.6. Section A.2 is the proof of Theorem

1.1, the weak convergence of the partial mean process. Section A.3 is the proof of Theorem

1.2 for generated regressors. Section A.4 is the proof of Theorem 1.3 for estimating the

weight. Section A.5 collects the proofs for the inference for the policy effect in Section 1.6.

Let (Z1, Z1, ..., Zn) be an i.i.d. sequence of random variables taking values in (Z,B) with

distribution P. For some measurable function φ : Z → R, define Gnφ =
√
n(Pn − P )φ for

the empirical process at φ. Define ōp(an) as op(an) uniformly in y ∈ Y . Let fT |Λ(t|λ) be the

density with respect to a σ-finite measure µΛ(·) of T conditional on Λ = λ and evaluated

at t ∈ T . Let ‖ · ‖2 be the L2(P ) norm, i.e., ‖f‖2
2,P =

∫
f 2dP . When P is clear from the

context, the subscript P is omitted. Let C denote a generic constant.

A.1 Stochastic Equicontinuity

The section collects results for stochastic equicontinuity. The first two lemmas use the

bracketing CLT in Theorem 2.7.1 in van der Vaart and Wellner (1996). Lemma A.2 is for

estimating the weight. Proposition 3 is for generated regressors in the second-step regression,

which serves as an intermediate step for Theorem 1.2. Lemmas A.3 and A.4 are modified

from Lemma 1 in Mammen et al. (2012a) using chaining arguments. The conditions for the

following lemmas are specified for a general function space M. The following Remark A.1

shows that CαM(S) will satisfy the conditions, so I assume the functions of interest belong to

this space.

Remark A.1. Assume M to be CαM(S) and α > d/2 is sufficient for the bracketing num-

ber assumption in the following lemmas for stochastic equicontinuity. By Theorem 2.7.1 of

van der Vaart and Wellner (1996), there exists a constant C depending only on M,α, diam(S), d

such that logN(ε, CαM , ‖ · ‖∞) ≤ Cε−d/α < Cε−2 for a bounded convex S.
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Ichimura and Lee (2010) discuss some sufficient conditions for the condition P (V̂ ∈

M) → 1 in their footnote 11: Suppose a function of interest V ∈ M. The qth derivative

of its estimator V̂ converges in probability uniformly to the qth derivative of V for any q

such that q. ≤ α. Escanciano et al. (2012) also provide similar primitive conditions in their

Appendix C.

Lemma A.1 (Stochastic Equicontinuity I). Consider any fixed t ∈ T . Define F to be a

class of uniformly bounded functions f : Y × T ×Λ 7→ R such that there exists an universal

constant CL satisfying a Hölder continuity condition:

‖f(y1, t, ·)− f(y2, t, ·)‖∞ ≤ CL|y1 − y2|1/2, (A.1)

for any f ∈ F . For each fixed ȳ ∈ Y, the subclass {f(ȳ, t, ·) ∈ F} is M, where the class M

is a class of functions such that logN(ε,M, ‖ · ‖∞) ≤ Cε−ν for some ν < 2.

Suppose for any y ∈ Y, FY |TΛ(y|t, ·) ∈ F and F̂Y |TΛ(y|t, ·) ∈ F with probability approach-

ing one. Suppose the weight function W (Sw) is uniformly bounded. Then

sup
y∈Y

∣∣∣∣ 1√
n

n∑
i=1

(
F̂Y |TΛ(y|t,Λi)− FY |TΛ(y|t,Λi)

)
W (Swi)

−
√
nE
[(
F̂Y |TΛ(y|t,Λ)− FY |TΛ(y|t,Λ)

)
W (Sw)

]∣∣∣∣ = op(1).

Remark A.2. The stochastic equicontinuity argument is similarly used in the proof of The-

orem 2.1 in Escanciano et al. (2012), using the bracketing CLT. The difference here is

that the process is not indexed by the regressor. I modify Lemma B.2 in ? to specify the

complexity of the function space where FY |TΛ(y|t, ·) belongs. Lemma 1 in Rothe (2010)

shares the same spirit, but the “with probability approaching one” statement is needed for

F̂Y |TΛ(y|t, ·) ∈ CαM(Λ) for any y ∈ Y.

The followings are comments on the conditions:
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1. The condition that P
(
∀y ∈ Y , F̂Y |TΛ(y|t, ·) ∈ M = CαM(Λ)

)
→ 1 can be checked by

Remark A.1. Assumption 1.5 assumes V = FY |TΛ(y|t,Λ) ∈ CαM(Λ). By Proposition 1,∥∥∥DqF̂Y |TΛ(y|t, ·)−DqFY |TΛ(y|t, ·)
∥∥∥
∞

= Op

(√ log n

nhd2+2q
+ hr

)
for q. ≤ α. The uniform convergence is made in Assumptions 1.5 and 1.6.

2. In addition to P (∀y ∈ Y , F̂Y |TΛ(y|t, ·) ∈ M) → 1, it remains to show P (∀y ∈

Y , F̂Y |TΛ(y|t, ·) ∈ F) → 1. That is, the Hölder continuity needs to be satisfied with

probability approaching one. I check the following sufficient high-level assumption mod-

ifying Assumption 3.4 in ?: For any ε > 0 and δ > 0, there exists n0 such that for all

n ≥ n0, for any y1, y2 ∈ Y,

Pr

{∥∥∥F̂Y |TΛ(y1|t, ·)− F̂Y |TΛ(y2|t, ·)−
(
FY |TΛ(y1|t, ·)− FY |TΛ(y2|t, ·)

)∥∥∥
∞

≤ δ|y1 − y2|1/2
}
≥ 1− ε. (A.2)

(A.2) and the Hölder continuity of FY |TΛ imply ‖F̂Y |TΛ(y1|t, ·) − F̂Y |TΛ(y2|t, ·)‖∞ ≤

CL|y1 − y2|1/2, with probability approaching one. (A.2) is satisfied by Chebyshev’s

inequality and the mean-square-errors of my kernel estimator for the regressor

E[1{y2<Y≤y1}|T = t,Λ], assuming y1 > y2.

Because of the nonsmooth estimator F̂Y |TΛ(y|t,Λ), the function space F is allowed to

be less smooth in y by assuming a Hölder continuity (A.1). Alternatively, as discussed

in ?, a smoothed cdf estimator is needed for a stronger Lipschitz continuity assumption.

Lemma A.2 (Stochastic Equicontinuity II). The class M is a class of uniformly bounded

functions such that logN(ε,M, ‖ · ‖∞) ≤ Cε−ν for some ν < 2. Suppose W ∈ M, ‖Ŵ −

W‖∞ = op(1), and P (Ŵ ∈M)→ 1.

The function A(y, S) is uniformly bounded and satisfies a Hölder continuity: ‖A(y1, ·)−

A(y2, ·)‖∞ ≤ CA|y1 − y2|γ, for some constant CA, positive γ, and any y1, y2 ∈ Y.

Then

sup
y∈Y

∣∣∣∣ 1√
n

n∑
i=1

A(y, Si)
(
Ŵ (Swi)−W (Swi)

)
−
√
nE
[
A(y, S)

(
Ŵ (Sw)−W (Sw)

)]∣∣∣∣ = op(1).
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Proposition 3 (Stochastic Equicontinuity). Suppose Assumptions 1.3, 1.4, 1.6, 1.7, and

1.8 hold.

sup
y∈Y,t,∈T ,v∈V

∣∣∣∣F̂Y |T V̂ (y|t, v)− F̂Y |TV (y|t, v)− 1

fTV (t, v)
E
[
fT |Sv(t|Sv)

(
FY |TSv(y|t, Sv)

− FY |TV (y|t, v)
)(
Kh(V̂ (t, Sv)− v)−Kh(V (t, Sv)− v)

)]∣∣∣∣ = Op(Rn)

where the remaining term Rn = Op

(
n−κ1 + n−κ2 + n−r2(η)min

)
. κ2 < min{1 − η+, 2(δ −

η)min, (δ−η)min+ 1
2
(1−η+)} and 0 < (δ−η)min < κ1 <

1
2
(1−η+)+(δ−η)min− 1

2
(δβ+ξ)max,

where (ab)min = min1≤j≤d2(ajbj), (ab)max = max1≤j≤d2(ajbj) for any vectors a, b. Denote

η+ ≡
∑d2

j=1 ηj < 1.

Lemma A.3 (Lemma 1, Mammen et al. (2012a)). Suppose the conditions of Proposition 3

hold. Then

sup
t∈T ,v∈V,y∈Y,V1,V2∈M̄n

∣∣∣∣ 1n
n∑
j=1

1{Yj≤y}Kh(Tj − t)
(
Kh(V1(Tj, Svj)− v)−Kh(V2(Tj, Svj)− v)

)
−E
[
1{Y≤y}Kh(T − t)

(
Kh(V1(T, Sv)− v)−Kh(V2(T, Sv)− v)

)]∣∣∣∣ = Op(n
−κ1).

and

sup
t∈T ,v∈V,V1,V2∈M̄n

∣∣∣∣ 1n
n∑
j=1

Kh(Tj − t)
(
Kh(V1(Tj, Svj)− v)−Kh(V2(Tj, Svj)− v)

)
−E
[
Kh(T − t)

(
Kh(V1(T, Sv)− v)−Kh(V2(T, Sv)− v)

)]∣∣∣∣ = Op(n
−κ1).

Lemma A.4. Suppose the conditions of Proposition 3 hold. Then for any t ∈ T ,

sup
y∈Y,V1,V2∈M̄n

sup
S∈S

∣∣∣∣ 1n
n∑
i=1

A(y, t,Wi, Vi;Sv)
(
Kh(V1(t, Sv)− Vi)−Kh(V2(t, Sv)− Vi)

)
−EWV

[
A(y, t,W, V ;Sv)

(
Kh(V1(t, Sv)− V )−Kh(V2(t, Sv)− V )

)]∣∣∣∣ = Op(n
−κ1)
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where

A(y, t,Wi, Vi;Sv) ≡
Wi fT |Sv(t|Sv)
fTV (t, Vi)

(
FY |TSv(y|t, Sv)− FY |TV (y|t, Vi)

)
.

Lemma A.5. Suppose the conditions of Proposition 3 hold. Then for any t ∈ T ,

sup
y∈Y

∣∣∣∣ 1n
n∑
i=1

(
V̂ (Ti, Svi)− V (Ti, Svi)

)′
∇vFY |TV (y|t, V (Ti, Svi)) ·Wi

− E
[(
V̂ (T, Sv)− V (T, Sv)

)′
∇vFY |TV (y|t, V (T, Sv)) · E[W |T, Sv]

]∣∣∣∣ = Op(n
−κ10),

where κ10 <
1
2

+ (δ)min − 1
2
(δβ + ξ)max.

A.2 Proof of Theorem 1.1

The proof follows the decomposition and linearization in Theorem 1 in Rothe (2010).

The main difference is that the influence function is not standard Donsker and contains the

kernel and bandwidth. And the stochastic equicontinuity argument is modified.

√
nhdt(θ̂t(y|Λ,W )− θt(y|Λ,W )

)
=
√
nhdt

( 1

n

n∑
i=1

F̂Y |TΛ(y|t,Λi)Wi − EFY |TΛ(y|t,Λ)W
)

=
√
hdt Gn

[
F̂Y |TΛ(y|t,Λi)Wi − FY |TΛ(y|t,Λi)Wi

]
(A.3)

+
√
hdt Gn

[
FY |TΛ(y|t,Λi)Wi

]
(A.4)

+
√
nhdt E

[
F̂Y |TΛ(y|t,Λ)W − FY |TΛ(y|t,Λ)W

]
. (A.5)

The first term (A.3) is ōp(
√
hdt) by the stochastic equicontinuity result in Lemma A.1. The

second term (A.4) is Ōp(
√
hdt) = ōp(1), by the Donsker property of F ≡ {FY |TΛ(y|t,Λ(S))

W (Sw) : (S, Sw) 7→ R, y ∈ Y}, for any t ∈ T . The asymptotic distribution is dominated by

the third term (A.5). I derive the functional central limit theorem for (A.5) in the following

section.
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A.2.1 (A.5)

Denote E[W |Λ = λ] = WΛ(λ).

E
[
F̂Y |TΛ(y|t,Λ)W − FY |TΛ(y|t,Λ)W

]
=

∫
1

n

n∑
i=1

(
1{Yi≤y} − FY |TΛ(y|t,Λi)

)
Kh(t− Ti)Kh(λ− Λi)

WΛ(λ)

f̂TΛ(t, λ)
dFΛ(λ) (A.6)

+

∫
1

n

n∑
i=1

(
FY |TΛ(y|t,Λi)− FY |TΛ(y|t, λ)

)
Kh(t− Ti)Kh(λ− Λi)

WΛ(λ)

f̂TΛ(t, λ)
dFΛ(λ).

(A.7)

For the first term (A.6),∫
1

n

n∑
i=1

(
1{Yi≤y} − FY |TΛ(y|t,Λi)

)
Kh(t− Ti)Kh(λ− Λi)

WΛ(λ)

f̂TΛ(t, λ)
dFΛ(λ)

=

∫
1

n

n∑
i=1

(
1{Yi≤y} − FY |TΛ(y|t,Λi)

)
Kh(t− Ti)Kh(λ− Λi)

WΛ(λ)

fTΛ(t, λ)
dFΛ(λ) (A.8)

−
∫

1

n

n∑
i=1

(
1{Yi≤y} − FY |TΛ(y|t,Λi)

)(
f̂tλ − ftλ

)
Kh(t− Ti)Kh(λ− Λi)

WΛ(λ)

f 2
tλ

dFΛ(λ)

(A.9)

+Op(‖f̂TΛ − fTΛ‖2
∞)

uniformly in y, t, where ftλ ≡ fTΛ(t, λ). Because |1{Yi≤y}−FY |TΛ(y|t,Λi)| ≤ 1 and integration

takes over a compact set, the last term is made op((nh
dt)−1/2) by Assumption 1.6 (iii). I will

show (A.8) contributes the main influence function ψtin(y). (A.9) will be of smaller order by

the U-process theory. (A.7)= op((nh
dt)−1/2) by similar arguments.

Define u(λ) = WΛ(λ)fΛ(λ)
fTΛ(t,λ)

. Using the standard technique in the kernel literature, i.e.,

change of variables, Taylor expansion, and the dominated convergence theorem,∫
Kh(λ− Λi)

WΛ(λ)

fTΛ(t, λ)
dFΛ(λ) =

∫
K(v) u(Λi + vh)dv = u(Λi) +Op(h

r).
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Then (A.8) becomes

1

n

n∑
i=1

(
1{Yi≤y} − FY |TΛ(y|t,Λi)

)
Kh(Ti − t)

( WΛ(Λi)

fT |Λ(t|Λi)
+Op(h

r)
)

=
1

n

n∑
i=1

(
1{Yi≤y} − FY |TΛ(y|t,Λi)

)
Kh(Ti − t)

WΛ(Λi)

fT |Λ(t|Λi)
+ op

(
(nhdt)−1/2

)
, (A.10)

by Assumption 1.6 (ii).

Lemma A.6 (Functional Central Limit Theorem). The process 1√
n

∑n
i=1 ψtin(·) weakly con-

verges to a Gaussian process Gt(·) as defined in Theorem 1.1, where{
ψtin(y) ≡

(
1{Yi≤y} − FY |TΛ(y|t,Λi)

)
· 1√

hdt
K
(Ti − t

h

) WΛ(Λi)

fT |Λ(t|Λi)
: y ∈ Y

}
.

The proof is in Section A.2.1.2. The bias is dominated by the bias of the influence

function. For dt = 1,

1√
h
Eψtin(y) = E

[(
1{Y≤y} − FY |TΛ(y|t,Λ)

)
· 1

h
K
(T − t

h

) WΛ(Λ)

fT |Λ(t|Λ)

]
= E

[(
FY |TΛ(y|T,Λ)− FY |TΛ(y|t,Λ)

)
· 1

h
K
(T − t

h

) WΛ(Λ)

fT |Λ(t|Λ)

]
= E

[(
∂rt

(
FY |TΛ(y|t,Λ) · fT |Λ(t|Λ)

)
− FY |TΛ(y|t,Λ) · ∂rt fT |Λ(t|Λ)

)
hr

r!

∫
urK(u)du

WΛ(Λ)

fT |Λ(t|Λ)

]
= ChrE

[
∂rtFY |TΛ(y|t,Λ) ·WΛ(Λ)

]
= Chr

∂r

∂tr
E

[
FY |TΛ(y|t,Λ) ·WΛ(Λ)

]
, (A.11)

where the rth-order derivative with respect to t is ∂rt ≡ ∂r

∂tr
.

I now show (A.9) is op((nh
dt)−1/2),

1

n

n∑
i=1

(
1{Yi≤y} − FY |TΛ(y|t,Λi)

)
Kh(t− Ti)

×
∫
Kh(λ− Λi)

WΛ(λ)

f 2
TΛ(t, λ)

( 1

n

n∑
j=1

Kh(Λj − λ)Kh(Tj − t)− fTΛ(t, λ)
)
dFΛ(λ)

≡ A21 − A22.
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Define here u(λ) = fΛ(λ)WΛ(λ)

f2
TΛ(t,λ)

.∫
Kh(λ− Λi)

WΛ(λ)

f 2
TΛ(t, λ)

Kh(Λj − λ)dFΛ(λ) =

∫
K(v) Kh(Λj − Λi − hv) u(Λi + hv)dv

= u(Λi)K̄h(Λi − Λj) +

∫
u′(Λ̄i)vK(v)K

(Λj − Λi

h
− v
)
dv,

where Λ̄i is between Λi and Λi+hv. Since the kernel is of bounded support, the second term

is op(h). The convolution kernel is defined as

K̄h(Λi − Λj) ≡
1

hdλ
K̄
(Λi − Λj

h

)
=

1

hdλ

∫
K(v)K

(
v − Λi − Λj

h

)
dv (A.12)

=
1

h2dλ

∫
K
(Λi − λ

h

)
K
(Λj − λ

h

)
dλ. (A.13)

For A22, ∫
Kh(λ− Λi)

WΛ(λ)

fTΛ(t, λ)
fΛ(λ)dλ = fTΛ(t,Λ)i)u(Λi) +Op(h

r).

Therefore, (A.9) becomes

1

n2

n∑
i=1

n∑
j=1

(
1{Yi≤y} − Fy|tΛi

)
u(Λi)Kh(Ti − t) ·

(
K̄h(Λi − Λj)Kh(Tj − t)− fTΛ(t,Λ)i)

)
+ōp((nh

dt)−1/2).

For the projection of the U-process, define

f̄TΛ(t,Λi) ≡ E
(
K̄h(Λi − Λj) ·Kh(Tj − t)

∣∣∣Zi)
=

∫ ∫
1

hdt
K
(T − t

h

)
· 1

h2dλ

∫
K
(Λi − v

h

)
K
(Λ− v

h

)
dv · fTΛ(T,Λ)dΛdT

=

∫
1

hdλ
K
(Λi − v

h

)∫ ∫
K(r)K(s) fTΛ(t+ rh, v + sh)drds dv

=

∫
K(w)fTΛ(t,Λi + wh)dw +Op(h

r) = fTΛ(t,Λ)i) +Op(h
r).

Define H(Zi, Zj; y, h) ≡(
1{Yi≤y} − FY |TΛ(y|t,Λi)

)
u(Λi)Kh(Ti − t) ·

(
K̄h(Λi − Λj) ·Kh(Tj − t)− f̄TΛ(t,Λi)

)
.
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Then (A.9) becomes

1

n2

∑
i

∑
j 6=i

H(Zi, Zj; y, h) +
1

n2

∑
i

H(Zi, Zi; y, h) + ōp((nh
dt)−1/2). (A.14)

The second term in (A.14) is op(1/
√
nhdt) uniformly in y, because its second part is 1

n
(A.10)

and its first part is smaller than 1
n2

∑
i u(Λi)K

2
h(Ti − t) 1

hdt

∫
K2(v)dv = op((nh

dt)−1/2). The

first term in (A.14) is a degenerate second order U-process. By Corollary 4 (ii) in Sherman

(1994),

sup
y∈Y

∣∣∣ 1

n2

∑
i

∑
j 6=i

√
hdλ+2dtH(Zi, Zj; y, h)

∣∣∣ = Op

( 1

n

)
.

Therefore,

sup
y∈Y

∣∣∣ 1

n2

∑
i

∑
j 6=i

H(Zi, Zj; y, h)
∣∣∣ = Op

( 1

n
√
hdλ+2dt

)
= op

( 1√
nhdt

)
,

which is implied by Assumption 1.6.

By similar reasoning, (A.7) can be shown to be op((nh
dt)−1/2) uniformly in y.

A.2.1.1 Applying Corollary 4 in Sherman (1994)

The class of P -degenerate functions

H ≡ {
√
hdλ+2dtH(Zi, Zj; y, h) : y ∈ Y}

has an envelope F (Λi,Λj) = (hdλ+2dt)−1/2 u(Λi)K(Ti− t) · K̄(Λi−Λj) ·K(Tj − t). Let H be

a real-valued functions on S2 = S ⊗ S. And P 2 = P ⊗ P denotes the product measure. We

then show H is Euclidean for this envelope F satisfying EF 2 = P 2F 2 <∞.

First, {1{Yi≤y} : y ∈ Y} and {FY |TΛ(y|t,Λi) : y ∈ Y} are manageable by the fact that

they are monotone increasing in y (p.221 in Kosorok (2008)). And F (Λi,Λj) is a R-valued

function on the underlying probability space. By applying Lemma E1 in Andrews and Shi

(2011), H is Euclidean.

We then check EF 2 <∞. First, we calculate

1

hdt

∫
K2
(T − t

h

)
fT |Λ(T |Λ)dT =

∫
K2(u)du · fT |Λ(t|Λ) +O(h).
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W.L.O.G., we could work on the case dλ = 1 for expositional simplicity. The extension

to dλ > 1 is straightforward.∫
1

h
fT |Λ(t|Λ)f(Λ)

∫
K(v)K

(
v − Λi − Λ

h

)
dv ·

∫
K(u)K

(
u− Λi − Λ

h

)
du dΛ

=

∫ ∫ ∫
fT |Λ(t|(s− v)h+ Λi)f((s− v)h+ Λi) ·K(s)K(u+ s− v)ds K(v)dv K(u)du

= fT |Λ(t|Λi)f(Λi)

∫ ∫ ∫
K(s)K(u+ s− v)K(v)K(u)dsdudv +O(h)

by change of variables s ≡ v − (Λi − Λ)/h. Therefore, EF 2 =(∫
K2(u)du

)2
∫
f 2
T |Λ(t|Λ)f 2(Λ)u2(Λ)dΛ

∫ ∫ ∫
K(s)K(u+ s− v)K(v)K(u)dsdudv <∞.

A.2.1.2 Proof of Lemma A.6 (FCLT)

Note this proof is for the influence function and robust to the nonparametric estimator.

For all ω ∈ Ω, the triangular array fni(ω, y, t) ≡ 1√
n
ψtin(y) =

(
1{Yi(ω)≤y}−FY |TΛ(y|t,Λi(ω))

)
·

1√
nhdt

K
(
Ti(ω)−t

h

)
WΛ(Λ(ω))

fT |Λ(t|Λi(ω))
are independent within rows. Define the n×1 vector fn(ω, y, t) ≡(

fn1(ω, y, t), ..., fnn(ω, y, t)
)′

and the random set Fnω,t ≡
{
fn(ω, y, t) : y ∈ Y

}
. I skip the

subscript t for notational ease without loss of clarity.

(i) The triangular array processes {fni(ω, y)} are manageable with respect to the en-

velopes Fni(ω) ≡ 1√
nhdt

K
(
Ti(ω)−t

h

)
WΛ(Λ(ω)

fT |Λ(t|Λi(ω))
.

First, {1{Yi≤y} : y ∈ Y , i = 1, ..., n} and {FY |TΛ(y|t,Λi) : y ∈ Y , i = 1, ..., n} are man-

ageable by the fact that they are monotone increasing in y (p.221 in Kosorok (2008). And

Fn(ω) ≡ (Fn1, ..., Fnn)T is a Rn-valued function on the underlying probability space. Then

(i) is proved by applying Lemma E1 in Andrews and Shi (2011).

Before I proceed to check the next conditions, it will be convenient to calculate the

following expectations. Define V (y, T,Λ) ≡
(
FY |TΛ(y|T,Λ)− FY |TΛ(y|t,Λ)

)
· fT |Λ(T |Λ). By

assumption, ∂r

∂T r
V (y, T,Λ) is bounded uniformly over y, T,Λ, and fT |Λ is uniformly bounded
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away from zero. Then

Efni(y) =
1√
n
Eψtin(y)

=

√
hdt

n
E

[∫
K(u)

(
FY |TΛ(y|t+ uh,Λ)− FY |TΛ(y|t,Λ)

)
· fT |Λ(t+ uh|Λ)du

WΛ(Λ)

fT |Λ(t|Λ)

]
=

√
hdt

n

hr

r!
·
∫
K(u)urdu · E

[
∂r

∂T r
V (y, T,Λ)

∣∣∣
T=t
· WΛ(Λ)

fT |Λ(t|Λ)

]
= O

(
hr
√
hdt

n

)
uniformly in y.

For any t, s ∈ T ,

E
[
fni(y1, t)fni(y2, s)

]
=

1

n
E
[
ψtin(y1)ψsin(y2)

]
=

1

n
E

[(
1{Y≤y1} − FY |TΛ(y1|t,Λ)

)(
1{Y≤y2} − FY |TΛ(y2|s,Λ)

) 1

hdt
K
(T − t

h

)
K
(T − s

h

)W 2
Λ(Λ)

ft|Λfs|Λ

]
=

1

n
E

[(
Fy1|TΛ − Fy1|tΛFy2|TΛ − Fy1|TΛFy2|sΛ + Fy1|tΛFy2|sΛ

) 1

hdt
K
(T − t

h

)
K
(T − s

h

)W 2
Λ(Λ)

ft|Λfs|Λ

]
=

1

n
E

[ ∫ (
FY |TΛ(y1|t+ uh,Λ)− FY |TΛ(y1|t,Λ)FY |TΛ(y2|t+ uh,Λ)

− FY |TΛ(y1|t+ uh,Λ)FY |TΛ(y2|s,Λ)

+ FY |TΛ(y1|t,Λ)FY |TΛ(y2|s,Λ)
)
K(u)K

(
u+

t− s
h

)
ft+uh,Λdu

W 2
Λ(Λ)

ft|Λfs|Λ

]
=

1

n
E

[(
FY |TΛ(y1|t,Λ)− FY |TΛ(y1|t,Λ)FY |TΛ(y2|t,Λ)

) W 2
Λ(Λ)

fT |Λ(s|Λ)
+O(h)

]
K̄
(s− t

h

)
(A.15)

uniformly in y1 ≤ y2 ∈ Y . The convolution kernel K̄ is defined in (A.13). When s = t,

K̄(0) = 1
h

∫
K2
(
s−x
h

)
dx =

∫
K2(u)du. When s 6= t, K̄

(
s−t
h

)
= o(h) because K is of bounded

support.

(ii) Define Zn(y) =
∑n

i=1

(
fni(y)− Efni(y)

)
. Let y1 ≤ y2 ∈ Y . The covariance kernel of

the limiting Gaussian process is

lim
h→0

PZn(y1)Zn(y2) = lim
h→0

E
[(
ψtin(y1)− Eψtin(y1)

)(
ψtin(y2)− Eψtin(y2)

)]
= lim

h→0
E
[
ψtin(y1)ψtin(y2)

]
− E

[
ψtin(y1)

]
E
[
ψtin(y2)

]
= lim

h→0
E
[
ψtin(y1)ψtin(y2)

]
≡ H(y1, y2) (A.16)

= E

[(
FY |TΛ(y1|t,Λ)− FY |TΛ(y1|t,Λ)FY |TΛ(y2|t,Λ)

) W 2
Λ(Λ)

fT |Λ(t|Λ)

] ∫
K2(v)dv,
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using (A.15).

(iii) Using (A.15),

n∑
i=1

PF 2
ni = E

[
W 2

Λ(Λ)

fT |Λ(t|Λ)
+O(h)

] ∫
K2(v)dv.

(iv) For any ε > 0,
∑n

i=1 PF
2
ni 1

{
Fni > ε

}
→ 0 holds. Because K is bounded, fT |Λ is

bounded away from zero, and
√
nhdt → ∞, 1

{
1√
nhdt

K
(
Ti(ω)−t

h

)
WΛ(Λi(ω))
fT |Λ(t|Λi(ω))

> ε
}

= 0 for n

large enough.

(v) Denote FY |T,Λ(y|t,Λ) ≡ Fy|t,Λ.

P
∣∣∣fni(y1)− fni(y2)

∣∣∣2 = E
∣∣∣ 1√
nhdt

K
(T − t

h

) WΛ(Λ)

fT |Λ(t|Λ)
·
(
1{y1<Y≤y2} + Fy1|t,Λ − Fy2|t,Λ

)∣∣∣2
= E

[
1

nhdt
K2
(T − t

h

) W 2
Λ(Λ)

f 2
T |Λ(t|Λ)

·
(
1{y1<Y≤y2} + Fy1|t,Λ − Fy2|t,Λ

)2
]

= E

[
1

nhdt
K2
(T − t

h

) W 2
Λ(Λ)

f 2
T |Λ(t|Λ)

·
(
1{y1<Y≤y2}

(
1 + 2Fy1|t,Λ − 2Fy2|t,Λ

)
− 2Fy1|t,ΛFy2|t,Λ

+ F 2
y1|t,Λ + F 2

y2|t,Λ

)]
=

1

n

∫
K2(u)du · E

[
W 2

Λ(Λ)

fT |Λ(t|Λ)
·
(
Fy2|t,Λ − Fy1|t,Λ −

(
Fy2|t,Λ − Fy1|t,Λ

)2
)]

+O
(hdt
n

)
uniform in y1, y2. The uniformity comes from the assumption that the first order partial

derivative ∂tFy|tΛ is uniformly bounded over their arguments, so that the expectations exist.

Therefore, ρn(y1, y2)→ ρ(y1, y2)

≡
{∫

K2(u)du · E
[
W 2

Λ(Λ)

fT |Λ(t|Λ)
·
(
Fy2|t,Λ − Fy1|t,Λ −

(
Fy2|t,Λ − Fy1|t,Λ

)2
)]}1/2

,

uniformly in y1, y2.

A.3 Generated Regressors

Let N(ε,V , ‖ · ‖) denote the covering number with respect to the semimetric ‖ · ‖ and

N[·](ε,V , ‖ · ‖) be the bracketing number. I drop the subscript in Sv and denote it by S for

notational ease.
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A.3.1 Proof of Theorem 1.2

A.3.1.1 Functional directional derivative - estimated evaluated
points

The first part uses functional directional derivative to decompose the variation from

estimating the evaluated points, following the proof of Corollary 6 in Mammen et al. (2012a)

for the nonparametric generated control variables for simultaneous equation models.

The true functions f̄ = (f̄1, f̄2) =
(
E
[
1{Y≤y}

∣∣T = t, V
]
, V (S)

)
. Denote f2 = f2(S),

f1 = f1(t, V ), and θ0 = E
[
E
(
1{Y≤y}

∣∣T = t, V (S)
)
W (S)

]
. For any two functions of X, f1(X)

and f2(X), denote [f1 + f2](X) ≡ f1(X) + f2(X). Denote f
(v)
1 ≡ ∇vf1(t, v).

Define the functional Sn(f) ≡ 1
n

∑n
i=1 f1

(
t, f2(Si)

)
Wi−θ0. For the estimator f̂ = (f̂1, f̂2),

I study the asymptotics of Sn(f̂). The directional derivative

Ṡn(f̄)[f − f̄ ] = lim
s→0

1

s

(
Sn
(
f̄ + s(f − f̄)

)
− Sn(f̄)

)
= lim

s→0

1

s

1

n

n∑
i=1

{[
f̄1 + s(f1 − f̄1)

](
t,
[
f̄2 + s(f2 − f̄2)

](
Si
))
Wi − f̄1

(
t, f̄2(Si)

)
Wi

− f̄1

(
t,
[
f̄2 + s(f2 − f̄2)

]
(Si)

)
Wi + f̄1

(
t,
[
f̄2 + s(f2 − f̄2)

]
(Si)

)
Wi

}
=

1

n

n∑
i=1

[
f1 − f̄1

](
t, f̄2(Si)

)
Wi +

1

n

n∑
i=1

f̄
(v)
1

(
t, f̄2(Si)

)
·
[
f2 − f̄2

]
(Si)Wi

=
1

n

n∑
i=1

[
F̂Y |T V̂ (y|t, V (Si))− FY |TV (y|t, V (Si))

]
Wi

+
1

n

n∑
i=1

∇vFY |TV (y|t, V (Si))
′[V̂ (Si)− V (Si)

]
Wi

≡ T1,n(f) + T2,n(f).

T1,n is for the nonparametric regression and generated regressors. T2,n is from the estimated

evaluated points in the regression. By Lemma A.5,

√
nhdtT2,n =

√
nhdtE

[
∇vFY |TV (y|t, V (T, S))′

(
V̂ (T, S)− V (T, S)

)
E[W |T, S]

]
+ op(1).

(A.17)
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Therefore, for any f1 = f1,A + f2,B, the smaller order terms are

Sn(f)− Sn(f̄)− Ṡn(f̄)[f − f̄ ] =
1

n

n∑
i=1

[
f

(v)
1,A − f̄

(v)
1

](
t, f̄2(Si)

)
·
(
f2(Si)− f̄2(Si)

)
Wi

+Op(‖f1,B‖∞) +Op

(
||f2 − f̄2||2∞

)
≡ so1.

By Proposition 1,
∥∥F̂ (v)

Y |TV − F
(v)
Y |TV

∥∥
∞ = Op

(
(log n/[nhd2+2])−1/2

)
. Proposition 3 implies

f1 − f̄1 = f1,A − f̄1 + f1,B = F̂Y |T V̂ − F̂Y |TV + F̂Y |TV − FY |TV

=
1

fTV (t, v)
E
[
ft|S
(
Fy|t,S − Fy|t,V

)(
Kh(V̂ − v)−Kh(V − v)

)]
+ F̂Y |TV − FY |TV +Op(Rn).

(A.18)

Let f1,B = Op(Rn) and the first terms are f1,A − f̄1. Therefore,∥∥f (v)
1,A − f̄

(v)
1

∥∥
∞ = O(h−2)

∥∥V̂ − V ∥∥∞ +Op

(
(log n/[nhd2+2])−1/2

)
.

∣∣so1∣∣ ≤ Op

(∥∥f (v)
1,A − f̄

(v)
1

∥∥
∞ ·
∥∥V̂ − V ∥∥∞)+Op(Rn) +Op

(∥∥V̂ − V ∥∥2

∞

)
= Op

( 1

h2
‖V̂ − V ‖2

∞ +
log n√
nhd2+2

‖V̂ − V ‖∞ +Rn

)
= Op

(
Rn

)
= op((nh

dt)−1/2)

by the bandwidth assumption.

A.3.1.2 Nonparametric regression with generated regressors

Proof of Proposition 3

The following proof can allow for additional known regressors X, which is ignored for nota-

tional ease. Linearize the regression estimator for any generated regressor V1 ∈ V ,

F̂Y |TV1i
≡ F̂Y |TV1(y|t, vi) =

1
n

∑n
j=1 1{Yj≤y}Kh(Tj − t)Kh(V1(Tj, Sj)− vi)

1
n

∑n
j=1Kh(Tj − t)Kh(V1(Tj, Sj)− vi)

≡ ĝ1i

f̂1i

=
ĝ1i

fi
+
FY |TV (y|t, vi)

fi

(
fi − f̂1i

)
+

1

fi

(
fi − f̂1i

)(
F̂Y |TV1i

− FY |TVi
)

where fi ≡ fTV (t, vi) and FY |TVi ≡ FY |TV (y|t, vi) with the true regressor V (T, S). The first

two terms will dominate the first-order asymptotics of F̂Y |TV1i
− F̂Y |TV2i

and the third term

is controlled to be a smaller-order term so2.
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By Lemma A.3, uniformly in y ∈ Y ,

ĝ1i − ĝ2i

fi
=

1

fi
E
[
FY |TS(y|T, S)Kh(T − t)

(
Kh(V1(T, S)− vi)−Kh(V2(T, S)− vi)

)]
+Op(n

−κ1)

=
1

fi
E
[
FY |TS(y|t, S)fT |S(t|S)

(
Kh(V1(t, S)− vi)−Kh(V2(t, S)− vi)

)]
+Op(n

−κ1) +Op(h
r2
2 )

= Op

(‖V1 − V2‖∞
h

)
+Op(n

−κ1) +Op(h
r2
2 ).

FY |TV (y|t, vi)
fi

(
f̂2i − f̂1i

)
=
FY |TV (y|t, vi)

fi
E
[
Kh(T − t)

(
Kh(V2(T, S)− vi)−Kh(V1(T, S)− vi)

)]
+Op(n

−κ1) +Op(h
r2
2 )

=
FY |TV (y|t, vi)

fi
E
[
fT |S(t|S)

(
Kh(V2(t, S)− vi)−Kh(V1(t, S)− vi)

)]
+Op(n

−κ1) +Op(h
r2
2 )

= Op

(‖V1 − V2‖∞
h

)
+Op(n

−κ1) +Op(h
r2
2 ). (A.19)

Note that E
[
1{Y≤y}Kh(T − t)Kh(V1(T, S)− vi)

]
= FY |TV1(y|t, vi)fTV1(t, vi) +O(hr2). If the

Lipschitz condition was assumed on the regression function with respect to the generated

regressor as Assumption 4 in Mammen et al. (2012a), then the above terms are dominated

by Op(‖V1−V2‖∞) (assuming κ1 > δ), instead of Op

(
‖V1−V2‖∞/h

)
(assuming κ1 > δ− η).

Let V2 = V . The smaller term is

∣∣so2∣∣ ≤ ∣∣∣ 1

fi

(
fi − f̂1i

)(
F̂Y |TV1i

− FY |TVi
)∣∣∣+

∣∣∣ 1

fi

(
fi − f̂2i

)(
F̂Y |TV2i

− FY |TVi
)∣∣∣

= Op

(∣∣∣ 1

fi

(
fi − f̂i + f̂i − f̂1i

)(
F̂Y |TV1i

− F̂Y |TVi + F̂Y |TVi − FY |TVi
)∣∣∣)

= Op

(( log n√
nhd2

+
‖V1 − V ‖∞

h

)2
)

= Op(n
−κ2).

by (A.19), Proposition 1, and using a bias-reducing kernel. �
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For the partial sum, by Proposition 3 and Lemma A.4, uniformly in y ∈ Y ,

√
nhdt

1

n

n∑
i=1

Wi

(
F̂Y |T V̂ (y|t, vi)− F̂Y |TV (y|t, vi)

)
=
√
nhdt

1

n

n∑
i=1

Wi

fTV (t, vi)
ES

[
fT |S(t|S)

(
FY |TS(y|t, S)− FY |TV (y|t, vi)

)
(
Kh(V1(t, S)− vi)−Kh(V2(t, S)− vi)

)]
+ op(1)

=
√
nhdt

1

n

n∑
i=1

ES

[
A(y, t,Wi, Vi;S)

(
Kh(V1(t, S)− Vi)−Kh(V2(t, S)− Vi)

)]
+ op(1)

=
√
nhdtEWV

[
ES

[
A(y, t,W, V ;S)

(
Kh(V1(t, S)− V )−Kh(V2(t, S)− V )

)]]
+ op(1)

(A.20)

where EWV denotes the expectation over the joint density of (W,V ), and define

A(y, t,Wi, Vi;S) ≡
WifT |S(t|S)

fTV (t, Vi)

(
FY |TS(y|t, S)− FY |TV (y|t, Vi)

)
.

The stochastic equicontinuity (A.20) is

sup
y∈Y,V1,V2∈M̄n

√
nhdt

∣∣∣∣ 1n
n∑
i=1

ES

[
A(y, t,Wi, Vi;S)

(
Kh(V1(t, S)− Vi)−Kh(V2(t, S)− Vi)

)]
−EWV

[
ES

[
A(y, t,W, V ;S)

(
Kh(V1(t, S)− V )−Kh(V2(t, S)− V )

)]]∣∣∣∣ = op(1)

which is implied by Lemma A.4 through

sup
y∈Y,V1,V2∈M̄n

ES

[√
nhdt

∣∣∣∣ 1n
n∑
i=1

A(y, t,Wi, Vi;S)
(
Kh(V1(t, S)− Vi)−Kh(V2(t, S)− Vi)

)
−EWV

[
A(y, t,W, V ;S)

(
Kh(V1(t, S)− V )−Kh(V2(t, S)− V )

)]∣∣∣∣] = op(1).
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Define WV (v) = E[W (S)|V = v]. Then in (A.20),

EWV

[
ES

[
A(y, t,W, V ;S)

(
Kh(V1(t, S)− V )−Kh(V2(t, S)− V )

)]]
= EWV

[
W

fTV (t, V )
ES

[
fT |S(t|S)

(
FY |TS(y|t, S)− FY |TV (y|t, V )

)
(
Kh(V1(t, S)− V )−Kh(V2(t, S)− V )

)]]
= ES

[
EV

[ WV (V )

fTV (t, V )

(
FY |TS(y|t, S)− FY |TV (y|t, V )

)
fT |S(t|S)

(
Kh(V1(t, S)− V )−Kh(V2(t, S)− V )

)]]
= ES

[ ∫
WV (v)

fTV (t, v)

(
FY |TS(y|t, S)− FY |TV (y|t, v)

)(
Kh(V1(t, S)− v)

−Kh(V2(t, S)− v)
)
fV (v)dv fT |S(t|S)

]
= ES

[(
WV (V1(t, S))

fT |V (t|V1(t, S))

(
FY |TS(y|t, S)− FY |TV (y|t, V1(S))

)
− WV (V2(S))

fT |V (t|V2(t, S))

(
FY |TS(y|t, S)− FY |TV (y|t, V2(t, S))

))
fT |S(t|S)

]
+Op(h

r2
2 )

= ES

[(
FY |TS(y|t, S)

(
− WV (V2(t, S))

fT |V (t|V2(t, S))
∇vfT |V (t|V2(t, S)) +∇vWV (V2(t, S))

)
−WV (V2(t, S))∇vFY |TV (y|t, V2(t, S)) +WV (V2(S))FY |TV (y|t, V2(t, S))

∇vfT |V (t|V2(t, S))

fT |V (t|V2(t, S))

− FY |TV (y|t, V2(t, S))∇vWV (V2(t, S))

)′(
V1(t, S)− V2(t, S)

) fT |S(t|S)

fT |V (t|V2(t, S))

]
+O

(
‖V1 − V2‖2

∞
)

+Op(h
r2
2 ).

Together with T2,n in (A.17), the result is derived.
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A.3.2 Proof of Corollary 1.1 and 1.2

Take V (S) = FT |Z(T |Z) for example. By the same linearization in (A.6), the dominating

term is

1

n

n∑
i=1

E
[
A(y, T, Z)

(
1{Ti≤T} − FT |Z(T |Z)

)
Kb(Zi − Z)

1

fZ(Z)

]
=

1

n

n∑
i=1

E
[
A(y, T, Zi)

(
1{Ti≤T} − FT |Z(T |Zi)

)fZ|T (Zi|T )

fZ(Zi)

]
+Op(h

r1
1 ).

If the generated regressor V is the GPS fT |X(t|X), then S = X. Then the regression

FY |TV has two regressors. For all x ∈ X , fT |V (t|V (x)) = fT |X(t|x) by Hirano and Imbens

(2004). The third term of the influence function (??) is zero. Take derivative with respect

to the argument xl, l ∈ {1, 2, ..., dx}, ∂xlfT |X(t|x) = ∂vfT |V (t|V (x)) · ∂xlV (x) by chain rule.

Since ∂xlV (x) = ∂xlfT |X(t|x), ∂vfT |V (t|V (x)) = 1. So for the second term (??), A(y,X) =

∇vFY |TV (y|t, V )
(
W−E[W |V ]

)
+
(
FY |TV (y|t, V (X))−FY |TX(y|t,X)

)
·
(
E[W |V ]

/
fT |X(t|X)−

∇vE[W |V ]
)

. Follow the same steps in the proof of Theorem 1.1 to derive the influence

function for

√
nh1E

[
A(y,X) ·

(
f̂T |X(t|X)− fT |X(t|X)

)]
,

Linearize

f̂TX(t,X)

f̂X(X)
− fT |X(t|X) =

1

n

n∑
i=1

[
Kh1(Ti − t)− fT |X(t|X)

]
Kh1(Xi −X)/f̂X(X)

=
1

n

n∑
i=1

[
Kh1(Ti − t)− fT |X(t|Xi)

]
Kh1(Xi −X)/f̂X(X)

+
1

n

n∑
i=1

[
fT |X(t|Xi)− fT |X(t|X)

]
Kh1(Xi −X)/f̂X(X).
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Focus on the first term and the second will be s.o.

1

n

n∑
i=1

[
Kh1(Ti − t)− fT |X(t|Xi)

]
Kh1(Xi −X)/f̂X(X)

=
1

n

n∑
i=1

[
Kh1(Ti − t)− fT |X(t|Xi)

]
Kh1(Xi −X)/fX(X)

+
1

n

n∑
i=1

[
Kh1(Ti − t)− fT |X(t|Xi)

]
Kh1(Xi −X)

( 1

f̂X(X)
− 1

fX(X)

)
where the first term will dominate the influence function and the second term is of smaller

order by the U-statistic theory.
√
nh1‖f̂X − fX‖2 → 0.

√
nh1E

[
A(y,X) · 1

n

n∑
i=1

(
Kh1(Ti − t)− fT |X(t|Xi)

)
Kh1(Xi −X)/fX(X)

]
=
√
nh1

1

n

n∑
i=1

(
Kh1(Ti − t)− fT |X(t|Xi)

)
A(y,Xi) +

√
nh1O(h1

r1).

Assume nh1
2r1+1 → 0.

Therefore, if h2 = O(h1),

√
nh2

1

n

n∑
i=1

(
F̂Y |T V̂ (y|t, V̂ (Xi))W (Xi)− E[FY |TV (y|t, V (X))W (X)]

)
=

1√
n

n∑
i=1

ψGPStin (y)

+

√
h2

h1

1√
n

n∑
i=1

(
FY |TV (y|t, V (Xi))− FY |TX(y|t,Xi)

)
· W (Xi)

fT |V (t|V (Xi))

1√
h1

K
(Ti − t

h1

)
+ op(1).

If h1 = h2, then its influence function is reduced to

1√
n

n∑
i=1

(
1{Yi≤y} − FY |TX(y|t,Xi)

)
· W (Xi)

fT |X(t|Xi)

1√
h2

K
(Ti − t

h2

)
=

1√
n

n∑
i=1

ψtin(y).

A.3.2.1 Proof of Lemma 1.2

First note that E
[
var
(
B(Y )

∣∣T = t,X
)
· A(X)

]
= E

[
var
(
B(Y )

∣∣T = t,X
)
· A(X) ·

fT (t)
fT |X(t|X)

∣∣∣T = t
]
. And fT (t)

fT |X(t|X)
is a function of V (X) = fT |X(t|X). So we could abuse the

notation of A(X) and prove E
[
var
(
B(Y )

∣∣T = t, V (X)
)
· A(X)

∣∣∣T = t
]
≥ E

[
var
(
B(Y )

∣∣T =

t,X
)
· A(X)

∣∣∣T = t
]
.
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By the law of iterated expectations,

E
[
var
(
B(Y )

∣∣T = t, V (X)
)
· A(X)

∣∣∣T = t
]

= E
[
E
[(
B(Y )− E[B(Y )|T = t, V (X)]

)2∣∣T = t,X
]
· A(X)

∣∣∣T = t
]
.

I could skip conditioning on T = t for notational ease and observe that

E
[(
B(Y )− E[B(Y )|V (X)]

)2∣∣X]− E[(B(Y )− E[B(Y )|X]
)2∣∣X]

= E[B2(Y )|X]− 2E[B(Y )|X] · E[B(Y )|V (X)] +
(
E[B(Y )|V (X)]

)2

− E[B2(Y )|X] +
(
E[B(Y )|X]

)2

=
(
E[B(Y )|V (X)]− E[B(Y )|X]

)2

≥ 0.

The result is implied.

A.4 Estimation of the weights

Assume the weight function does not depend on the generated regressor V .

Lemma A.7. Assume (i)
∥∥Ŵ −W∥∥∞ = Op(n

−ζ), where ζ > (d2−dt)η/2; (ii) W ∈ CαM(S);

(iii)
∥∥DqŴ −DqW

∥∥
∞ = op(1), q ≤ α.

1. (Observable Regressors) Suppose all the regressors X are observable. Assume the con-

ditions in Theorem 1.1. Then

sup
y∈Y

∣∣∣∣√nhdt( 1

n

n∑
i=1

F̂Y |TX(y|t,Xi)Ŵ (Si)− E
[
FY |TX(y|t,X)W (S)

])
− 1√

n

n∑
i=1

ψXtin(y|X,W )−
√
nhdtE

[
FY |TX(y|t,X)

(
Ŵ (S)−W (S)

)]∣∣∣∣ = op(1).

2. (Generated Regressors) Suppose some regressors V are unobservable and estimated

as generated regressors. Assume the conditions in Theorem 1.2, where the influence

function for the case of the known weight is denoted as ψGRtin (y). Let ζ > (1− dtη)/2−
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(δ − η). Then

sup
y∈Y

∣∣∣∣√nhdt( 1

n

n∑
i=1

F̂Y |TXV̂ (y|t,Xi, V̂i)Ŵ (Si)− E
[
FY |TXV (y|t,X, V )W (S)

])
− 1√

n

n∑
i=1

ψGRtin (y)−
√
nhdtE

[
FY |TXV (y|t,X, V )

(
Ŵ (S)−W (S)

)]∣∣∣∣ = op(1).

Condition (i) controls the remaining terms to be of smaller order. Condition (iii) ensures

Ŵ ∈ CαM with probability approaching one.

A.4.1 Proof of Lemma A.7

Denote Fi ≡ FY |TX(y|t,Xi) and Wi ≡ W (Xi).
√
nhdt 1

n

∑n
i=1

(
F̂iŴi − E(FiWi)

)
=

√
nhdt 1

n

∑n
i=1

(
F̂iŴi− F̂iWi

)
+
√
nhdt 1

n

∑n
i=1

(
F̂i Wi−E(FiWi)

)
, where the second term is

known from Theorem 1.1. The first term
√
nhdt 1

n

∑n
i=1

(
F̂iŴi − F̂iWi

)
=

√
nhdt

1

n

n∑
i=1

Fi

(
Ŵi −Wi

)
︸ ︷︷ ︸

(I)

+
√
nhdt

1

n

n∑
i=1

(
F̂i − Fi

)(
Ŵi −Wi

)
︸ ︷︷ ︸

(II)

.

The first part uses the stochastic equicontinuity result in Lemma A.2

(I) =
√
nhdt

1

n

n∑
i=1

Fi

(
Ŵi −Wi

)
=
√
nhdtE

[
Fi

(
Ŵi −Wi

)]
+ ōp(1). (A.21)

The second part is made of smaller order,

(II) =
√
nhdt

1

n

n∑
i=1

(
F̂i − Fi

)(
Ŵi −Wi

)
=
√
nhdtE

(
F̂i − Fi

)(
Ŵi −Wi

)
+ ōp(1). (A.22)

By Cauchy-Schwarz inequality,
(

1
n

∑n
i=1

[
(F̂i − Fi)(Ŵi − Wi)

])2

≤ 1
n

∑n
i=1

(
F̂i − Fi

)2 ·
1
n

∑n
i=1

(
Ŵi −Wi

)2
= Op

(
(log n)2/(nhd2)

)
Op(n

−2ζ) = op((nh
dt)−1).

When the generated regressors are estimated F̂i = F̂Y |T V̂ (y|t, V̂i), use the results and

proofs in Proposition 3 and Theorem 1.2. By , F̂i − Fi = F̂Y |T V̂ (y|t, V̂i) − FY |TV (y|t, Vi) =

F̂Y |T V̂ (y|t, V̂i)−F̂Y |TV (y|t, V̂i)+F̂Y |TV (y|t, V̂i)−FY |TV (y|t, V̂i)+FY |TV (y|t, V̂i)−FY |TV (y|t, Vi).

So
∣∣∣ 1
n

∑n
i=1(F̂i − Fi)(Ŵi − Wi)

∣∣∣ ≤ ∣∣∣ 1
n

∑n
i=1

(
F̂Y |T V̂ (y|t, V̂i) − F̂Y |TV (y|t, V̂i)

)
(Ŵi − Wi)

∣∣∣ +
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∣∣∣ 1
n

∑n
i=1

(
F̂Y |TV (y|t, V̂i)−FY |TV (y|t, V̂i)

)
(Ŵi−Wi)

∣∣∣+∣∣∣ 1
n

∑n
i=1

(
FY |TV (y|t, V̂i)−FY |TV (y|t, Vi)

)
(Ŵi −Wi)

∣∣∣. The second term is the same as the case when the regressors are observable.

The third term is of smaller order than the first term. For the first term, by (A.18),‖F̂Y |T V̂ −

FY |TV ‖ = Op

(
‖V̂−V ‖

h
+
√

logn
nhd2

+Rn

)
. Assumption (vi) makes ‖V̂−V ‖

2

h2 · n−2ζ = o((nhdt)−1).

A.4.2 Proof of Theorem 1.3

I exchange t and t̄ in the proof. I also skip the subscript for Sw for notational simplicity.

By Lemma A.7, the influence from estimating the weight estimation is dominated by

√
nbdtE

[
Fy|t̄Λ

(
Ŵ (S)−W (S)

)]
=
√
nbdtE

[
Fy|t̄Λ(f̂t|S − ft|S)

][ 1

ft
+
( 1

f̂t
− 1

ft

)]
(A.23)

+
√
nbdtE

[
Fy|t̄Λft|S

]( 1

f̂t
− 1

ft

)
. (A.24)

Consider (A.23) first,

f̂t|S − ft|S =
f̂tS

f̂S
− ftS
fS

=
f̂tS − ftS

fS
+
ft|S
fS

(fS − f̂S) +
1

fS
(fS − f̂S)(f̂t|S − ft|S).

The contribution of the third term is made to be of smaller order:
√
nbdt Op

(
‖fS−f̂S‖∞‖f̂t|S−

ft|S‖∞
)

= Op

(√
nbdt logn√

nbdw
logn√
nbdw+dt

)
= op(1) by assuming nb2dw/(log n)2 → ∞. The second

term contributes to a full-mean,

−
√
nbdtE

[
FY |t̄Λ

ft|S
fS

(
f̂S − fS

)]
= −
√
nbdt

∫
E[Fy|t̄,Λ|S]

( 1

n

n∑
i=1

Kb(Si − S)− fS(S)
)
ft|SdS

= −
√
nbdt

( 1

n

n∑
i=1

E[Fy|t̄,Λ|Si]ft|Si + Ōp(b
r)− E

[
E[Fy|t̄,Λ|S]ft|S

])
= Ōp(

√
b) = ōp(1),

by the Donsker property of FY |TΛ(y|t̄,Λ).

The first term is

√
nbdtE

[
E[Fy|t̄Λ|S]

( 1

fS
(f̂tS − ftS)

)]
=

∫
E[Fy|t̄,Λ|S] ·

√
nbdt

( 1

n

n∑
i=1

Kb(Ti − t)Kb(Si − S)− ftS
)
dS

=
√
nbdt

( 1

n

∑
i

Kb(Ti − t)
(
E[Fy|t̄,Λ|Si] + Ōp(b

r)
)
− θt̄ft

)
=

1√
n

∑
i

(
ψtt̄1i(y)− Eψtt̄1i(y)

)
ft + Ōp(

√
nbdt+2r)
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where ψtt̄1i(y) =
√
bdtKb

(
Ti − t

)
E
[
FY |TΛ(y|t̄,Λ)

∣∣S = Si
]
/fT (t) and Eψtt̄1i(y) =

√
bdtθt̄ +

Ō(br+dt/2). Therefore, (A.23) is

√
nbdtE

[
Fy|t̄Λ(f̂t|S − ft|S)

][ 1

ft
+
( 1

f̂t
− 1

ft

)]
=

1√
n

∑
i

ψtt̄1i(y)

+Ōp(
√
nbdt+2r) + Ōp(‖f̂t − ft‖∞).

(A.24) is

−
√
nbdtE

[
Fy|t̄Λ

ft|S
f 2
t

](
f̂t − ft

)
+
√
nbdt Ōp

(
‖f̂t − ft‖2

∞
)

= −
√
nbdt

(
f̂t − ft

)
· θt̄/fT (t) + ōp(1) = − 1√

n

n∑
i=1

(
ψtt̄2i − Eψtt̄2i

)
+Op(

√
nbdt+2r),

where ψtt̄2i =
√
bdtKb

(
Ti − t

)
θt̄/fT (t) and Eψtt̄2i =

√
bdtθt̄ + Ō(br+dt/2) = Ō(br).

Therefore,

√
nbdt

1

n

n∑
i=1

Fi

(
Ŵi −Wi

)
=

1√
n

∑
i

(
ψtt̄1i(y)− ψtt̄2i(y)

)
+ ōp(1).

A.4.2.1 FCLT

The weak convergence is proved by checking the conditions for FCLT in Pollard (1990)

in the following subsection. I first show the weak convergence of

√
nbdt

1

n

n∑
i=1

FY |TΛ(·|t̄,Λi)
(
Ŵ (Λi)−W (Λi)

)
=

1√
n

n∑
i=1

ψtt̄i(·) + ōp(1)⇒ Gw(·).

(i) {E[FY |TΛ(y|t̄,Λ)|Sw]} and {FY (t̄)|T (y|t)} are monotone increasing in y, so {ψtt̄/n} are

manageable with envelopes Fni =
√
bdt√
n
Kb

(
Ti − t

)
1
ft

.

E[ψtt̄i] =
√
bdtE

[ ∫
Kb

(
T − t

)
fT |Sw(T |Sw)dT

1

ft

(
E[FY |TΛ(y|t̄,Λ)|Sw]− FY (t̄)|T (y|t)

)]
=
√
bdtE

[
fT |Sw(t|Sw)

1

ft

(
E[FY |TΛ(y|t̄,Λ)|Sw]− FY (t̄)|T (y|t)

)]
+Op(b

r+dt/2).
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E[ψtt̄i(y1)ψtt̄i(y2)]

= E
[bdtK2

b

(
T − t

)
f2
t

(
E[FY |TΛ(y1|t̄,Λ)|Sw]− FY (t̄)|T (y1|t)

)(
E[FY |TΛ(y2|t̄,Λ)|Sw]− FY (t̄)|T (y2|t)

)]
=

∫
K2(v)dvE

[ft|Sw
f2
t

(
E[FY |TΛ(y1|t̄,Λ)|Sw]− FY (t̄)|T (y1|t)

)(
E[FY |TΛ(y2|t̄,Λ)|Sw]

− FY (t̄)|T (y2|t)
)]

+Op(b)

uniformly in y1 and y2.

(ii) Define Zn(y) =
∑n

i=1

(
fni(y)− Efni(y)

)
. Let y1 ≤ y2 ∈ Y . The covariance kernel of

the limiting Gaussian process is

lim
b→0

PZn(y1)Zn(y2) = lim
b→0

E
[
ψtt̄i(y1)ψtt̄i(y2)

]
− E

[
ψtt̄i(y1)

]
E
[
ψtt̄i(y2)

]
= lim

b→0
E
[
ψtt̄i(y1)ψtt̄i(y2)

]
≡ Ht(y1, y2)

=

∫
K2(v)dvE

[ft|Sw
f2
t

(
E[FY |TΛ(y1|t̄,Λ)|Sw]− FY (t̄)|T (y1|t)

)(
E[FY |TΛ(y2|t̄,Λ)|Sw]− FY (t̄)|T (y2|t)

)]
.

(iii)

n∑
i=1

PF 2
ni =

1

ft

∫
K2(v)dv.

(iv) For any ε > 0,
∑n

i=1 PF
2
ni 1

{
Fni > ε

}
→ 0 holds. Because K is bounded, fT is

bounded away from zero, and
√
nbdt →∞, 1

{√
bdt√
n
Kb

(
T − t

)
1
ft
> ε
}

= 0 for n large enough.

(v) Denote FY |T,Λ(y|t,Λ) ≡ Fy|t,Λ. P
∣∣∣fni(y1)− fni(y2)

∣∣∣2 =

1

n

∫
K2(v)dv

1

f 2
t

E
[
ft|Λ

(
E[FY |TΛ(y1|t̄,Λ)|Sw]− FY (t̄)|T (y1|t)

− E[FY |TΛ(y2|t̄,Λ)|Sw]] + FY (t̄)|T (y2|t)
)2]

+Op(b/n)

uniform in y1, y2. Therefore, uniformly in y1, y2, ρn(y1, y2)→ ρ(y1, y2) ≡{∫
K2(v)dv

1

f 2
t

E
[
ft|Λ

(
E[FY |TΛ(y1|t̄,Λ)|Sw]− FY (t̄)|T (y1|t)

− E[FY |TΛ(y2|t̄,Λ)|Sw] + FY (t̄)|T (y2|t)
)2]}1/2

.
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Next, I consider the weak convergence of 1√
n

∑n
i=1

(
ψt̄i(·) + ψtt̄i(·)

)
. E[ψt̄i(y1)ψtt̄i(y2)] =

E
[(

1{Y≤y1} − Fy1|t̄Λ
)
bdtKb

(
T − t̄

)
Kb

(
T − t

) ft|Λ
ft̄|Λf

2
t

(
E[Fy2|t̄Λ|Sw]− FY (t̄)|T (y2|t)

)]
where ∫ (

Fy1|TΛ(y|t̄+ vb)− Fy1|t̄Λ
)
K(v)K

( t̄− t
b

+ v
)
· fT |Λ(t̄+ vb|Λ)dv = Ōp(b).

So E[ψt̄i(y1)ψtt̄i(y2)] = ō(1). Then for ψt̄|t ≡ ψt̄ + ψtt̄, E[ψt̄|t(y1)ψt̄|t(y2)] = E[ψt̄(y1)ψt̄(y2)] +

E[ψtt̄(y1)ψtt̄(y2)] + ō(1).

(ii)

lim
h→0

PZn(y1)Zn(y2) = lim
h→0

E
[
ψt̄|t(y1)ψt̄|t(y2)

]
− E

[
ψt̄|t(y1)

]
E
[
ψt̄|t(y2)

]
= lim

h→0
E[ψt̄(y1)ψt̄(y2)] + E[ψtt̄(y1)ψtt̄(y2)] = H(y1, y2) +H t(y1, y2).

(iii) E[(Fni + F t
ni)

2] = E[F 2
ni] + E[F t

ni
2
] + 2E[FniF

t
ni].

E[FniF
t
ni] =

1

n
E
[
bdtKb

(
T − t̄

)
Kb

(
T − t

) ft|Λ
ft̄|Λf

2
t

]
=

1

n
E
[(
K̄
(t− t̄

b

)
ft̄|Λ +O(b)

) ft|Λ
ft̄|Λf

2
t

]
=

1

n
K̄
(t− t̄

b

) 1

ft
+O(b/n),

where the convolution kernel is defined in (A.13). So
∑n

i=1 PF
2
ni converges.

(iv)
∑n

i=1 P (Fni + F t
ni)

21
{
Fni + F t

ni) > ε
}
→ 0 by the same argument as (A.25).

(v)

P
[
fni(y1) + f tni(y1)− fni(y2)− f tni(y2)

]2

= P
[
fni(y1)− fni(y2)

]2

+ P
[
f tni(y1)− f tni(y2)

]2

+ 2P
[
fni(y1)− fni(y2)

][
f tni(y1)− f tni(y2)

]
,

where the last term is ō(1). The uniform convergence of the first two terms are shown in the

previous proofs.
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A.5 Inference for the Treatment Effects

A.5.1 Proof for Theorem 1.4

By the functional delta method (e.g., Theorem 3.9.4 in van der Vaart and Wellner (1996))

and the linearity of the Hadamard derivative, the weak convergence to a Gaussian process

is implied.

A.5.2 Proof of Corollary 1.3

Using the results in (A.15), for the diagonal term t 6= s, E
[
ψtin(y1)ψsi(y2)

]
= 0 as h→ 0.

A.5.3 Mean

Note that
∫
Y yd1{Y≤y} = Y using integration by parts. Therefore, Γ′

(
1{Y≤y}−FY |TX(y|t,X)

)
= Y − E(Y |t,X). Vu = limh→0E[ψ2

i ].

A.5.4 Quantile processes

The Hadamard derivative is shown in Example 3.9.24 in van der Vaart and Wellner

(1996).

A.5.5 Multiplier Method: Proof of Theorem 1.5

Decompose

1√
n

n∑
i=1

Uiψ̂tin(y) =
1√
n

n∑
i=1

Uiψtin(y) +
1√
n

n∑
i=1

Ui
(
ψ̂tin(y)− ψtin(y)

)
First, I use the functional CLT, Theorem 10.6 in Pollard (1990) to show 1√

n

∑n
i=1 Uiψtin(·)

⇒ Gt(·). Then I show the rest terms are ōp(1).

Following the notation defined in the proof of Lemma A.6, define funi(y) = Uifni(y) =

Ui
1√
n
ψtin(y) which has the envelope F u

ni = UiFni = Ui

√
hdt
n
Kh

(
Ti− t

)
WΛ(Λi)/ft|Λi . Then (i)

holds. Efuni(y) = 0 and Zun(y) =
∑n

i=1 f
u
ni(y).
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(ii) Let y1 ≤ y2.

P (Zun(y1)Zun(y2)) = E
[ n∑
i=1

funi(y1)funi(y2)
]

=
1

n

n∑
i=1

ψtin(y1)ψtin(y2) · EU2
i

=
1

n

n∑
i=1

hdtK2
h

(
Ti − t

)(
1{Yi≤y1} − Fy1|tΛi

)(
1{Yi≤y2} − Fy2|tΛi

)
W 2

Λ(Λi)/f
2
t|Λi

p→ H(y1, y2)

defined in (A.16), by the weak law of large number.

(iii)

n∑
i=1

PF u
ni

2 =
n∑
i=1

hdt

n
K2
h

(
Ti − t

)
WΛ(Λi)

2/f 2
t|Λi →

∫
K2(u)du · E[WΛ(Λ)2f−1

t|Λ ].

(iv) B ≡ inf{Λi,Ti} ft|Λi/
(
WΛ(Λi)

2hdtKh

(
Ti − t

))
exists, because fT |Λ is bounded away

from zero, the weight and the kernel are uniformly bounded. For any ε > 0,
∑n

i=1 PF
u
ni

2 1
{
Fni >

ε
}

=

hdt

n

n∑
i=1

K2
h

(
Ti − t

)WΛ(Λi)
2

f 2
t|Λi

· E
[
U2
i 1
{
Ui >

√
nεft|Λi√

hdtKh

(
Ti − t

)
WΛ(Λi)

}]
≤ hdt

n

n∑
i=1

K2
h

(
Ti − t

)WΛ(Λi)
2

f 2
t|Λi

· E
[
U2
i 1
{
Ui >

√
nhdtεB

}]
→
∫
K2(u)du · E

[
WΛ(Λi)

2f−1
t|Λ
]
· 0 = 0 (A.25)

because
√
nhdt →∞.
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(v) Denote FY |TΛ(y|t,Λi) = Fy and 1{Yi≤y} = 1y. Then for any y1 ≤ y2, ρun(y1, y2)2

=
n∑
i=1

E
(
funi(y1)− funi(y2)

)2

=
1

n

n∑
i=1

(
ψ2
tin(y1) + ψ2

tin(y2)− 2ψtin(y1)ψtin(y2)
)

=
1

n

n∑
i=1

hdtK2
h

(
Ti − t

)
WΛ(Λi)

2
[
1y1 − 21y1Fy1 + F 2

y1
+ 1y2 − 21y2Fy2 + F 2

y2
(A.26)

− 21y1 + 21y1Fy2 + 21y2Fy1 − 2Fy1Fy2

]/
f 2
t|Λi (A.27)

=
1

n

n∑
i=1

hdtK2
h

(
Ti − t

)
WΛ(Λi)

2
[
1y1

(
− 1− 2Fy1 + 2Fy2

)
+ 1y2

(
1− 2Fy2 + 2Fy1

)
+
(
Fy1 − Fy2

)2
]/

f 2
t|Λi

→
∫
K2(u)du · E

[WΛ(Λi)
2

ft|Λ

(
Fy1(−1− 2Fy1 + 2Fy2) + Fy2(1− 2Fy2 + 2Fy1) + (Fy1 − Fy2)2

)]
=

∫
K2(u)du · E

[WΛ(Λ)2

ft|Λ
(Fy2 − Fy1)(1− Fy2 + Fy1)

]
≡ ρu(y1, y2)2.

It remains to show that for all deterministic sequences {y1n} and {y2n} such that ρu(y1n, y2n)

→ 0, ρun(y1n, y2n)→ 0. Using the same argument in Lemma (A.6) FCLT,
√
nhdt

{
1
n

∑n
i=1 ψ

2
tin(y1)−∫

K2(u)du · E
[
WΛ(Λ)2

ft|Λ

(
Fy1 − F 2

y1

)]}
converges to a Gaussian process of y1. So the first part

1
n

∑n
i=1

[
ψ2
tin(y1) + ψ2

tin(y2)
]

(A.26) in ρun(y1, y2) converges uniformly in y1, y2.

For the second part − 2
n

∑n
i=1 ψtin(y1)ψtin(y2) (A.27) indexed by both y1 and y2, I fo-

cus on one of the terms, defining An(y1, y2) ≡ 1
n

∑n
i=1 h

dtK2
h

(
Ti − t

)
WΛ(Λ)2(Λi)1y1Fy2/f

2
t|Λi

and A(y1, y2) ≡
∫
K2(u)du · E

[
WΛ(Λ)2

ft|Λ
Fy1Fy2

]
. It suffices to show that for all deterministic

sequences {y1n} and {y2n} such that A(y1n, y2n)→ 0, An(y1n, y2n)→ 0.

By assumption, WΛ(Λ)2(Λ)/ft|Λ < δ < ∞. A(y1n, y2n) → 0 means that for any ε > 0,

there exists an integer N0 such that for n > N0,

A(y1n, y2n) ≤
∫
K2(u)du · δ · E

[
FY |TΛ(y1n|t,Λ)FY |TΛ(y2n|t,Λ)

]
≤ C · E

[
FY |TΛ(min{y1n, y2n}|t,Λ)

]
< ε, (A.28)

defining C =
∫
K2(u)du · δ for notational ease. Actually, min{y1n, y2n} can be either y1n or

y2n. It’s not required both the deterministic sequence to converge.
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Since FY |TΛ is increasing in y, there exists y0 such that C · E[FY |TΛ(y0|t,Λ)] = ε. Then

for any y < y0, C · E[FY |TΛ(y|t,Λ)] ≤ ε. Then (A.28) implies either y1n < y0 or y1n < y0 or

both for n > N0.

First, note that 1
n

∑n
i=1 h

dtK2
h

(
Ti − t

)
1{Yi≤y0}

/
ft|Λi →

∫
K2(u)duE

[
Fy0|tΛ

]
, i.e., for any

ε1 > 0, there exists an integer N1 such that∣∣∣ 1
n

n∑
i=1

hdtK2
h

(Ti − t
h

)
1{Yi≤y0}

/
ft|Λi −

∫
K2(u)duE

[
Fy0|tΛ

]∣∣∣ < ε1,

for n > N1. For the case y1n < y0, for n > max{N1, N0},

An(y1n, y2n) ≤ δ
1

n

n∑
i=1

hdtK2
h

(
Ti − t

)
1y1nFy2n

/
ft|Λi ≤ δ

1

n

n∑
i=1

hdtK2
h

(
Ti − t

)
1{Yi≤y0}

/
ft|Λi

≤ δ

∫
K2(u)duE

[
Fy0|tΛ

]
+ δε1 = ε+ δε1.

For the other case y2n < y0, use the similar argument by 1
n

∑n
i=1 h

dtK2
h

(
Ti − t

)
Fy0

/
ft|Λi →∫

K2(u)duE
[
Fy0|tΛ

]
. Then it’s shown An(y1n, y2n)→ 0. The same argument applies to other

terms in (A.27).

Therefore, by the FCLT in Pollard (1990), 1√
n

∑n
i=1 Uiψtin(·)⇒ Gt(·).

Next, I need to show

1√
n

n∑
i=1

Ui

(
ψ̂tin(y)− ψtin(y)

)
≡ 1√

n

n∑
i=1

Ui
√
hdtKh

(
Ti − t

)(
ϕ̂tin(y)− ϕtin(y)

)
= ōp(1)

where ϕtin(y) =
(
1{Yi≤y} − FY |TΛ(y|t,Λi)

)
E[W (Sw)|Λ = Λi]/fT |Λ(t|Λi) and a consistent

estimator ϕ̂tin(y) =
(
1{Yi≤y} − F̂Y |TΛ(y|t,Λi)

)
Ê[W (Sw)|Λ = Λi]/f̂T |Λ(t|Λi). I show this

empirical process converges to Gaussian processes with zero covariance kernel, by checking

the conditions of FCLT in Pollard (1990).

(i) Given the sample, F̂y|tΛi is monotone increasing in y by construction, so
{
fni(y) ≡

Ui

√
hdt
n
Kh

(
Ti − t

)
·
(
ϕ̂tin(y)− ϕtin(y)

)}
are manageable.

Efni(y) = 0. Ef 2
ni(y) = hdt

n
K2
h

(
Ti − t

)
·
(
ϕ̂tin(y) − ϕtin(y)

)2
. Zn(y) =

∑n
i=1 fni(y). As-

suming fT |Λ(t|Λ) and W (Sw) are uniformly bounded away from zero and above, respectively,

define the envelope Fni = Ui

√
hdt
n
Kh

(
Ti − t

)
C.
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(ii)

∣∣PZn(y1)Zn(y2)
∣∣ =

∣∣P n∑
i=1

fni(y1)fni(y2)
∣∣

≤
n∑
i=1

hdt

n
K2
h

(
Ti − t

)∣∣∣ϕ̂tin(y1)− ϕtin(y1)
∣∣∣∣∣∣ϕ̂tin(y2)− ϕtin(y2)

∣∣∣
≤

n∑
i=1

hdt

n
K2
h

(
Ti − t

)
·
∥∥∥ϕ̂tin − ϕtin∥∥∥2

∞
= Op(1) · op(1) = op(1).

(iii)
n∑
i=1

PF 2
ni =

n∑
i=1

hdt

n
K2
h

(
Ti − t

)
C2 →

∫
K2(u)du · fT (t)C2.

(iv)
∑n

i=1 PF
2
ni1
{
Ui

√
hdt
n
Kh

(
Ti − t

)
C > ε

}
→ 0 by the same argument as (A.25).

(v)

0 ≤
n∑
i=1

E
[
fni(y1)− fni(y2)

]2

=
1

n

n∑
i=1

hdtK2
h

(
Ti − t

)(
ϕ̂tin(y1)− ϕtin(y1)−

(
ϕ̂tin(y2)− ϕtin(y2)

))2

≤ 1

n

n∑
i=1

hdtK2
h

(
Ti − t

)∥∥∥ϕ̂tin(y1)− ϕtin(y1)−
(
ϕ̂tin(y2)− ϕtin(y2)

)∥∥∥2

∞
→ 0.

A.6 Proofs of Lemmas for Stochastic Equicontinuity

In this section, I drop the subscript of Sv and denote it by S for notational simplicity.

A.6.1 Proof of Lemma A.1

Define Zni(υ) ≡ 1√
n
f(y, t,Λi)W (Xi), indexed by υ ≡ (y, f) ∈ Υ ≡ Y×F . The bracketing

CLT will imply
∑n

i=1

(
Zni(υ)−EZni(υ)

)
is asymptotic stochastic equicontinuous in υ with

respect to the pseudo-metric ρ(υ1, υ2) = max{|y1 − y2|, ‖f1 − f2‖∞}. The conditions for the

bracketing CLT from Theorem 2.11.9 in van der Vaart and Wellner (1996) are checked in

the following:
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(i) Since the functions are assumed to be uniformly bounded above and below, 1{‖Zni‖Υ>η} =

0 for n large enough. So for any η > 0,
∑n

i=1E
[
‖Zni‖Υ1{‖Zni‖Υ>η}

]
= op(1).

(ii) It is straightforward to modify Lemma B.2 in ? to replace their Lipschitz continuity

with Hölder continuity,

N(ε
1/2
1 CL + ε2,F , ‖ · ‖∞) ≤ N

(
ε1,Y , | · |

)
× sup

y∈Y
N
(
ε2,M, ‖ · ‖∞

)
.

Since Y is a compact set, the result remains.

N(ε,F , ‖ · ‖∞) ≤ N
((
ε/(2CL)

)2
,Y , | · |

)
× sup

y∈Y
N
(
ε/2,M, ‖ · ‖∞

)
.

N[ ](ε,Υ, L2) ≤ N
( ε

2C
,Y , | · |

)
×N

( ε

2C
,F , ‖ · ‖∞

)
.

Therefore,
∫ δn

0

√
logN[ ](ε,Γ, L2)dε→ 0, ∀δn → 0.

(iii)

n∑
i=1

E
(
Zni(υ1)− Zni(υ2)

)2
= E

(
f1(y1, t,Λ)W (X)− f2(y2, t,Λ)W (X)

)2

= E
[(
f1(y1, t,Λ)− f2(y1, t,Λ) + f2(y1, t,Λ)− f2(y2, t,Λ)

)2

W 2(X)
]

= o(1)

for any ρ(υ1, υ2) = o(1), by the Hölder continuity assumption.

A.6.2 Proof of Lemma A.2

Define Zni(υ) ≡ 1√
n
A(y, Si)W (Swi), indexed by υ ≡ (y,W ) ∈ Υ ≡ Y ×M. The bracket-

ing CLT will imply
∑n

i=1

(
Zni(υ) − EZni(υ)

)
is asymptotic stochastic equicontinuous in υ

with respect to the pseudo-metric ρ(υ1, υ2) = max{|y1 − y2|, ‖W1 −W2‖∞}. The conditions

for the bracketing CLT from Theorem 2.11.9 in van der Vaart and Wellner (1996) are checked

in the following:

(i) Since the functions are assumed to be uniformly bounded above and below, 1{‖Zni‖Υ>η} =

0 for n large enough. So for any η > 0,
∑n

i=1E
[
‖Zni‖Υ1{‖Zni‖Υ>η}

]
= op(1).

(ii)

N[·](ε,Υ, L2) ≤ N
( ε

2C
,Y , | · |

)
×N

( ε

2C
,M, ‖ · ‖∞

)
.
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(iii)

n∑
i=1

E
(
Zni(υ1)− Zni(υ2)

)2
= E

(
A(y1, S)W1(Sw)− A(y2, S)W2(Sw)

)2

= E
(
A(y1, S)

(
W1(Sw)−W2(Sw)

)
+
(
A(y1, S)− A(y2, S)

)
W2(Sw)

)2

= o(1)

for any ρ(υ1, υ2) = o(1), by the Hölder continuity.

A.6.3 Proof of Lemma A.3

The proof modifies the proof of Lemma 1 in Mammen et al. (2012a) and is presented for

completeness. The difference is I replace the residual in MRS with 1{Yi≤y} and the expansion

is uniform in y.

When κ1 ≤ (δ − η)min, the results hold from a direct bound. Consider the case κ1 >

(δ − η)min. Define ∆i(y, V1, V2) ≡ 1{Yi≤y}Kh(Ti − t)
(
Kh(V1(Ti, Si) − v) − Kh(V2(Ti, Si) −

v)
)
− E

[
1{Y≤y}Kh(T − t)

(
Kh(V1(T, S) − v) − Kh(V2(T, S) − v)

)]
. First note that (i)

| 1
n

∑n
i=1 ∆i(y, V1, V2)| ≤ C maxj ‖V1j − V2j‖/hj. (ii) E∆i(y, V1, V2)2 ≤ Cnη+

(
maxj ‖V1j −

V2j‖/hj
)2

. (iii) |∆i(y, V1, V2)| ≤ Cnη+ maxj ‖V1j − V2j‖/hj.

For s ≥ 0, let M̄∗
s,n,j be a set of functions chosen such that for each Vj ∈ M̄n,j, there

exists V ∗j ∈ M̄∗
s,n,j such that ‖Vj−V ∗j ‖∞ ≤ 2−sn−δj . Define M̄∗

s,n = M̄∗
s,n,1× ...×M̄∗

s,n,d. For

V1, V2 ∈ M̄n, choose V s
1 , V

s
2 ∈ M̄∗

s,n such that ‖V s
1,j −V1,j‖∞ ≤ 2−sn−δj and ‖V s

2,j −V2,j‖∞ ≤

C2−sn−δj for all j and s ≥ 0. The functions in M̄∗
s,n,j are the midpoints of a (2−sn−δj)-

covering of M̄n,j. So the cardinality #M̄∗
s,n,j is at most C · exp

((
2−sn−δj

)−βjnξj).

Consider the chain ∆i(y, V1, V2) = ∆i(y, V
0

1 , V
0

2 )−
∑Gn

s=1 ∆i(y, V
s−1

1 , V s
1 )

+
∑Gn

s=1 ∆i(y, V
s−1

2 , V s
2 )−∆i(y, V

Gn
1 , V1)+∆i(y, V

Gn
2 , V2), where Gn is chosen to be the small-

est integer that satisfies Gn > (1 + cG)(κ1− (δ− η)min) log n/ log 2 for a constant cG > 0. So

that for l = 1, 2, by (i), uniformly in y ∈ Y ,

T1 ≡ |
1

n

n∑
i=1

∆i(y, V
Gn
l , Vl)| ≤ C2−Gnn−(δ−η)min ≤ Cn−κ1 .
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For any a > cG, define the constant ca = (
∑∞

s=1 2−as)−1.

Pr
(

sup
V1∈M̄n,y∈Y

∣∣ 1
n

n∑
i=1

Gn∑
s=1

∆i(y, V
s−1

1 , V s
1 )
∣∣ > n−κ1

)
≤ Pr

( Gn∑
s=1

sup
V1∈M̄n,y∈Y

∣∣∣ 1
n

n∑
i=1

∆i(y, V
s−1

1 , V s
1 )
∣∣∣ > Gn∑

s=1

ca2
−asn−κ1

)
≤

Gn∑
s=1

Pr
(

sup
V1∈M̄n,y∈Y

∣∣∣ 1
n

n∑
i=1

∆i(y, V
s−1

1 , V s
1 )
∣∣∣ > ca2

−asn−κ1

)
=

Gn∑
s=1

Pr
(

max
V s−1

1 ∈M̄∗s−1,n,V
s
1 ∈M̄∗s,n

sup
y∈Y

∣∣∣ 1
n

n∑
i=1

∆i(y, V
s−1

1 , V s
1 )
∣∣∣ > ca2

−asn−κ1

)
≤

Gn∑
s=1

∑
M̄∗s,n

∑
M̄∗s−1,n

Pr
(

sup
y∈Y

∣∣∣ 1
n

n∑
i=1

∆i(y, V
s−1

1 , V s
1 )
∣∣∣ > ca2

−asn−κ1

)
(A.29)

≤
Gn∑
s=1

#M̄∗
s−1,n#M̄∗

s,nPr
( 1

n

n∑
i=1

∆i(y
s
sup, V

∗,s
1 , V ∗∗,s1 ) > ca2

−asn−κ1

)
(A.30)

+
Gn∑
s=1

#M̄∗
s−1,n#M̄∗

s,nPr
( 1

n

n∑
i=1

∆i(y
s
inf , Ṽ

∗,s
1 , Ṽ ∗∗,s1 ) < −ca2−asn−κ1

)
≡ T2 + T3, (A.31)

In (A.30), denoting ca2
−asn−κ1 ≡ C,

Pr
(

sup
y∈Y

∣∣∣ 1
n

n∑
i=1

∆i(y, V
s−1

1 , V s
1 )
∣∣∣ > C

)
≤ Pr

(
sup
y∈Y

1

n

n∑
i=1

∆i(y, V
s−1

1 , V s
1 ) > C

)
+ Pr

(
inf
y∈Y

1

n

n∑
i=1

∆i(y, V
s−1

1 , V s
1 ) < −C

)
= Pr

( 1

n

n∑
i=1

∆i(y
s
sup, V

s−1
1 , V s

1 ) > C
)

+ Pr
( 1

n

n∑
i=1

∆i(y
s
inf , V

s−1
1 , V s

1 ) < −C
)
.

Because Y is compact and 1
n

∑n
i=1 ∆i is a piecewise constant function that jumps at observed

values of Y only, there exists some yssup and ysinf such that supy∈Y
1
n

∑n
i=1 ∆i(y, V

s−1
1 , V s

1 ) =

1
n

∑n
i=1 ∆i(y

s
sup, V

s−1
1 , V s

1 ) and infy∈Y
1
n

∑n
i=1 ∆i(y, V

s−1
1 , V s

1 ) = 1
n

∑n
i=1 ∆i(y

s
inf , V

s−1
1 , V s

1 ).
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In (A.29) and (A.31), the functions V ∗,s1 , Ṽ ∗,s1 ∈ M̄∗
s−1,n and V ∗∗,s1 , Ṽ ∗∗,s1 ∈ M̄∗

s,n are

chosen such that

Pr
( 1

n

n∑
i=1

∆i(y
s
sup, V

∗,s
1 , V ∗∗,s1 ) > ca2

−asn−κ1

)
= max

V s−1
1 ,V s1

Pr
( 1

n

n∑
i=1

∆i(y
s
sup, V

s−1
1 , V s

1 ) > ca2
−asn−κ1

)
Pr
( 1

n

n∑
i=1

∆i(y
s
inf , Ṽ

∗,s
1 , Ṽ ∗∗,s1 ) < −ca2−asn−κ1

)
= max

V s−1
1 ,V s1

Pr
( 1

n

n∑
i=1

∆i(y
s
inf , V

s−1
1 , V s

1 ) < −ca2−asn−κ1

)
.

The following shows T2 and T3 ≤ exp(−cnc), tending to zero at an exponential rate. By

Markov inequality, T2 ≤

C

Gn∑
s=1

Πj exp
(
(2−sn−δj )−βjnξj

)
(1 + 2−βj )E

[
exp

(
γn,s

1

n

n∑
i=1

∆i(y
s
sup, V

∗,s
1 , V ∗∗,s1 )− γn,sca2−asn−κ1

)]
≤ C

Gn∑
s=1

exp
(∑

j

2sβjnδjβj+ξj − γn,sca2−asn−κ1
)
Πn
i=1E

[
exp

(
γn,s

1

n
∆i(y

s
sup, V

∗,s
1 , V ∗∗,s1 )

)]
,

where γn,s = cγ2
(2−a)sn−κ1+1−η++2(δ−η)min with a constant cγ > 0 small enough. For the last

term, use the equality Eex ≤ 1 + |x|Ex2 ≤ 1 + CEx2 ≤ exp(cEx2) by Ex = 0 and |x| ≤ C

for some C > 0.

E
[

exp
(
γn,s

1

n
∆i(y

s
sup, V

∗,s
1 , V ∗∗,s1 )

)]
≤ exp

(
Cγ2

n,sn
−2nη+−2(δ−η)min2−2s

)
,

by (ii). To show |x| ≤ C, by (iii),

∣∣γn,s 1

n
∆i(y

s
sup, V

∗,s
1 , V ∗∗,s1 )

∣∣ ≤ Cγn,s
1

n
nη+−(δ−η)min2−s

≤ Cn(δ−η)min−κ12−as+s ≤ Cn(cG−a)(κ1−(δ−η)min) ≤ C.

When a < 1, Cn(δ−η)min−κ12−as+s ≤ Cn(δ−η)min−κ12Gn(1−a). The above inequality holds by

the chosen Gn, When a ≥ 1, the above inequality holds for n large enough. Therefore,

T2 ≤ C

Gn∑
s=1

exp
(∑

j

2sβjnδjβj+ξj − γn,sca2−asn−κ1 + Cγ2
n,sn

−1+η+−2(δ−η)min2−2s
)

= C

Gn∑
s=1

exp
(∑

j

2sβjnδjβj+ξj − c22(1−a)sn1−2κ1−η++2(δ−η)min
)
≤ C

Gn∑
s=1

exp(−csnc) ≤ exp(−cnc).
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γn,s is chosen so that the last two terms in the first line is of the same order. And choose

a and cγ to be small enough, so that the sum of the last two terms is negative. Then κ1 is

chosen so that the second term in the second line dominates. Similarly, T3 ≤ exp(−cnc).

Because M̄∗
0,n can always be chosen such that it contains only a single element and (i),

T4 = Pr( sup
V1,V2∈M̄n,y∈Y

∣∣ 1
n

n∑
i=1

∆i(y, V
0

1 , V
0

2 )
∣∣ > n−κ1) ≤ exp(−cnc).

Therefore,

sup
v∈V,t∈T

Pr
(

sup
V1,V2∈M̄n,y∈Y

∣∣∣ 1
n

n∑
i=1

1{Yi≤y}Kh(Ti − t)
(
Kh(V1(Ti, Si)− v)−Kh(V2(Ti, Si)− v)

)
−E
[
1{Y≤y}Kh(T − t)

(
Kh(V1(T, S)− v)−Kh(V2(T, S)− v)

)]∣∣∣ ≥ Cn−κ1

)
≤ exp(−cnc)

For the uniformity in (t, v) ∈ T ×V , for Ct > 0, choose a grid Tn×Vn with O(nCt) points,

such that for each (t, v) ∈ T × V , there exists a grid point (t∗, v∗) = (t∗(t), v∗(v)) ∈ Tn × Vn
such that ‖t− t∗‖ ≤ n−cCt and ‖v − v∗‖ ≤ n−cCt . Choosing Ct large enough implies

sup
v∈V,t∈T ,y∈Y,V ∈M̄n

∣∣∣∣ 1n
n∑
i=1

1{Yi≤y}

(
Kh(Ti − t)Kh(V (Ti, Si)− v)−Kh(Ti − t∗)Kh(V (Ti, Si)− v∗)

)
−E
[
1{Y≤y}

(
Kh(T − t)Kh(V (T, S)− v)−Kh(T − t∗)Kh(V (T, S)− v∗)

)]∣∣∣∣ ≤ CncCt/h ≤ n−κ1

for large enough n with probability tending to one. Using the triangle inequality, the state-

ment in this lemma is proved.

A.6.4 Proof of Lemma A.4

The proof is implied by the proof of Lemma A.3, where ∆i(V1, V2) ≡ A(y, t,Wi, Vi;S)(
Kh(V1(t, S)−Vi)−Kh(V2(t, S)−Vi)

)
−EWV

[
A(y, t,W, V ;S)

(
Kh(V1(t, S)−V )−Kh(V2(t, S)−

V )
)]

. Note that the following still holds the same as the proof of Lemma A.3:

(i) | 1
n

∑n
i=1 ∆i(V1, V2)| ≤ C maxj ‖V1j − V2j‖/hj. (ii) E∆i(V1, V2)2 ≤ Cnη+

(
maxj ‖V1j −

V2j‖/hj
)2

. (iii) |∆i(V1, V2)| ≤ Cnη+ maxj ‖V1j − V2j‖/hj. Therefore, it follows that

sup
T∈T ,S∈S,y∈Y

Pr
(

sup
V1,V2∈M̄n

∣∣∣ 1
n

n∑
i=1

A(y, t,Wi, Vi;S)
(
Kh(V1(t, S)− Vi)−Kh(V2(t, S)− Vi)

)
−EWV

[
A(y, t,W, V ;S)

(
Kh(V1(t, S)− V )−Kh(V2(t, S)− V )

)]∣∣∣ ≥ Cn−κ1

)
≤ exp(−cnc).
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For uniformity in S ∈ S, for C > 0, choose a grid Sn with O(nC) points, such that for

each S ∈ S, there exists a grid point S∗ ∈ Sn such that ‖S − S∗‖ ≤ n−cC .

sup
S,y,V

∣∣∣ 1
n

n∑
i=1

A(y, t,Wi, Vi;S)Kh(V (t, S)− Vi)− A(y, t,Wi, Vi;S
∗)Kh(V (t, S∗)− Vi)

∣∣∣
≤ sup

S,y,V

∣∣∣ 1
n

n∑
i=1

A(y, t,Wi, Vi;S
∗)
(
Kh(V (t, S)− Vi)−Kh(V (t, S∗)− Vi)

)∣∣∣ (A.32)

+ sup
S,y,V

∣∣∣ 1
n

n∑
i=1

(
A(y, t,Wi, Vi;S)− A(y, t,Wi, Vi;S

∗)
)
Kh(V (t, S∗)− Vi)

∣∣∣ (A.33)

+ sup
S,y,V

∣∣∣ 1
n

n∑
i=1

(
A(y, t,Wi, Vi;S)− A(y, t,Wi, Vi;S

∗)
)(
Kh(V (t, S)− Vi)−Kh(V (t, S∗)− Vi)

)∣∣∣.
(A.32) ≤ n−κ1 for large enough n if Cs is chosen large enough. (A.33) ≤ n−κ1 for large

enough n by the smoothness of A.

A.6.5 Proof of Lemma A.5

The proof is implied by the proof of Lemma A.3, where

∆i(V1, V2) ≡ A(y, Ti, Si,Wi)
(
V̂ (Ti, Si)−V (Ti, Si)

)
−ESW

[
A(y, T, S,W )

(
V̂ (Ti, S)−V (Ti, S)

)]
and A(y, Ti, Si,Wi) = ∇vFY |TV (y|t, V (Ti, Si))Wi. Note that the following still holds the same

as the proof of Lemma A.3: (i) | 1
n

∑n
i=1 ∆i(V1, V2)| ≤ C maxj ‖V1j−V2j‖. (ii) E∆i(V1, V2)2 ≤

C maxj ‖V1j − V2j‖2. (iii) |∆i(V1, V2)| ≤ C maxj ‖V1j − V2j‖. That is, the proof is essentially

the same for the case ηj = 0.
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Appendix B: Supplmentary Appendix to Chapter 2

For notational ease, I define the following: Qi ≡ Q(Xi) ≡ Qτ (Y |Xi), Gij = G
(Qτ (Y |Xi)−yj

h0

)
,

Kij = K
(
H−1(Xi −Xj)

)
, fi = f(Xi). And κν =

∫
K(Z)ZνdZ and κG2 =

∫
G′(z)z2dz. For

the Gaussian kernel G = Φ, κG2 = 1. R(K) =
∫
K2(Z)dZ is the roughness of kernel K.

∂k denotes the partial derivative with respect to the kth component of X. s.o. represents

smaller order terms. w.p.a.1 means with probability approaching one. For a q × 1 vector a,

‖a′a‖ = ‖a‖2. For a m × n matrix A, I use Frobenius norm: ||A|| = trace(A′A)1/2. Define

the operator Γ to a function g : V → R where V is an open and convex subset of Rq:

Γg(X +HZ) ≡ Γg(X̄) = h

q∑
k=1

∂kg(X)Zk +
h2

2

q∑
k1=1

q∑
k2=1

[
∂k1∂k2g(X)

]
Zk1Zk2 + . . .

+
hν−1

(ν − 1)!

q∑
k1=1

· · ·
q∑

kν−1=1

[
∂k1 · · · ∂kν−1g(X)

]
Zk1 · · ·Zkν−1 (B.1)

+
hν

ν!

q∑
k1=1

· · ·
q∑

kν=1

[
∂k1 · · · ∂kνg(X̄)

]
Zk1 · · ·Zkν , (B.2)

where Zk is the kth component of the vector Z and X̄ is on the line segment of X and

X +HZ. Hence, Taylor’s theorem expands g(X +HZ) = g(X) + Γg(X +HZ) for small H.

A.FX The marginal density of X is denoted as f with convex (possibly unbounded) support

X ⊆ Rq whose interior is nonempty, i.e., f(X) > 0 for all X ∈ X0, the interior of

X . f(X) = 0 for all X on the boundary of X . supX∈X f(X) is bounded above. The

q × 1 vector ∇f(X) with its sth component ∂Xsf(X), is pX times differentiable, and

its pXth-order derivative ∂Xk1
. . . ∂XkpX

∇f(X) for k1, . . . , kpX ∈ {1, ..., q} is uniformly

continuous in X, for all X ∈ X0.

A.FY The conditional density function of Y given X is bounded away from zero on a convex

and compact support, Y ≡ [y, ȳ] ⊂ R, i.e., fY (y|X) > b1 > 0, ∀y ∈ Y and ∀X ∈ X0,

the interior of X .
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The conditional density function of Y , fY (y|X), is differentiable with respect to X,

and its pY th-order derivatives ∂k1 ...∂kpY f
′
Y (y|X) for k1, ..., kpY ∈ {1, ..., q} are uniformly

continuous in X, for all X ∈ X0 and for all y ∈ Y .

FY (y|X) is twice differentiable with respect to y, and its second order derivative

f ′Y (y|X) is uniformly continuous in y, ∀X ∈ X0 and ∀y ∈ Y .

fY (y|X) and f ′Y (y|X) are bounded above almost surely.

A.Q For τ ∈ T , limX→∂XQτ (Y |X)f 2(X) = 0, where ∂X is the boundary of the support of

X.

The q×1 vector∇Qτ (Y |X) with its sth component ∂XsQ(X), is pQ times differentiable

with respect to X, and its pQth order derivative ∂Xk1
. . . ∂XkpQ

∇Q(X) for k1, . . . , kpQ ∈

{1, ..., q} is uniformly continuous in X, for all X ∈ X̄ , where X̄ differs from X0 by a

set of measure zero.

A.M The following moments exist: For uniform convergence: E|Y |s for some s > 2.

For trimming, E||Qi∇fi||2, E||∇fi||2 and EQ2
i . For r1,n: E

[
|| ∇fi
fifY (Qi|Xi) ||

2
]
.

For the projection of U-statistic in Lemma B.2: E
[∣∣∣∣∣∣ ∇fi

fifY (Qi|Xi)

∣∣∣∣∣∣2[fi(1 + fY (Qi|Xi) +

f ′Y (Qi|Xi)
)

+
∑q

k=1 ∂kfi
∑q

k=1 ∂k

(
FY (Qi|Xi) + fY (Qi|Xi) + f ′Y (Qi|Xi)

)]]
and E

[∣∣∣∣∣∣ ∇fi
fifY (Qi|Xi)

∣∣∣∣∣∣2fi[∑q
k=1 ∂kFY (Qi|Xi) + f ′Y (Qi|Xi) +

∑q
k=1 ∂kf

′
Y (Qi|Xi)

][
fY (Qi|Xi)

∑q
k=1 ∂kQi + f ′Y (Qi|Xi) + f ′′Y (Qi|Xi)

∑q
k=1 ∂kQi

]]
.

For t1n: E
[∣∣∣∣∣∣ ∇fi

fifY (Qi|Xi)

∣∣∣∣∣∣2∣∣∣fif ′Y (Qi|Xi) +
∑ν

l=1
1

l!(ν−l)!
∑q

k=1 ∂
l
kFY (Qi|Xi) · ∂ν−lk fi

+
∑ν

l=0
1

l!(ν−l)!
∑q

k=1 ∂
l
kf
′
Y (Qi|Xi) · ∂ν−lk fi

∣∣∣2].
For t2n: E

[
∇fi∇f ′i
fY (Qi|Xi)

(
1 +

∑q
k=1 ∂kQi +

∑q
k=1 ∂

ν
kQi

)]
.

For Lemma C.1: E
[(∑q

k=1 ∂kQi

)2(
fi +

∑q
k=1 ∂kfi

)]
;

for (II): var(Qi∇fi), var(Qi

∑q
k=1 ∂

ν
k∇fi),

A.T Define Bn ≡ {X : f(X) < δ}, where the trimming parameter δ satisfies Assumption

A.B.
∫
Bn
||Qi∇fi||fidXi = o(n−1/2).
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A.L Denote ∇f(X)
fY (Q(X)|X)

≡ A(X) for notational ease. Lipschitz conditions: for some m(X),

‖∇f(X + V )−∇f(X)‖ < m(X)‖V ‖

‖∇(f ·Q)(X + V )−∇(f ·Q)(X)‖ < m(X)‖V ‖

‖A(X + V )− A(X)‖ < m(X)‖V ‖

with the existence of the moments: E
[
(1 + |Q(Xi)|)2m(Xi)

2
]
, E
[
m(X)‖A(X)‖

]
, and

E
[
‖A(X)‖m(X)

[
f ′Y (Qi|Xi)

2+
∑q

k=1 ∂kQi

(
fY (Qi|Xi)+f

′′
Y (Qi|Xi)

)∑q
k=1 ∂k

(
FY (Qi|Xi)+

f ′Y (Qi|Xi)
)]]

.

A.K For the q × 1 vector Z, define the product kernel K(Z) ≡ k(Z1)k(Z2) · · · k(Zq), where

Zs denotes the sth component of Z = (Z1, ..., Zs, ..., Zq)
′. The kernel is bounded and

integrable: |k(x)| ≤ K̄ <∞ and
∫
R
|k(z)|dz ≤ µ <∞.

The symmetric kernel k with convex bounded support has order of ν, i.e., κj =∫
k(z)zjdz = 0 for j < ν and κν ∈ (0,∞).

∫
k(z)2z2dz < ∞ and

∫
k(z)2z4dz < ∞.

For some Λ1 <∞, for all z, z′ ∈ Rq, |k(z)− k(z′)| ≤ Λ1‖z − z′‖.

A.G Let G(z) =
∫ z
−∞ g(t)dt, where the second order kernel g with bandwidth h0 is every-

where positive on a convex support. g(u) is differentiable. For some Λ1 < ∞ and

L <∞, | ∂
∂u
g(u)| ≤ Λ1, for some m > 4, | ∂

∂u
g(u)| ≤ Λ1‖u‖−m, for ‖u‖ > L. Therefore,

for any z < 0, G(z/h0) = o(h2
0). 1

A.B Let ν, ν1, and the positive sequences h, h1, h0 satisfy δ−2h−q(nh0)−1/2 → 0, δ−2h−q(nhq+2
1 )−1

→ 0,
√
n(h2

0 + hν + hν1
1 ) → 0. An alternative sufficient condision is that h ∝ n−a,

h1 ∝ n−c, h0 ∝ n−d, and δ ∝ n−b, for some constants, a, b, c, d > 0. Choose ν > 4q
3

,

a ∈ ( 1
2ν
, 3

8q
), ν1 >

q+2
2−2aq

, c ∈ ( 1
2ν1
, 1−aq
q+2

), d ∈ (1
4
, 1 − 2aq), and b < min{1

4
(1 − 2aq −

d), 1
2
(1− aq − c(q + 2))}.

Assumption A.FX implies the covariate X to be continuous. Assumption A.FY implies

FY (y|X) is continuous and strictly increasing in y, so the conditional quantile function

1I put stronger assumption for m > 4, instead of m > 1, such that for any z < 0, G(z/h0) = o(h2
0),

limz→∞g(z)z2 = 0, and g(z/h2
0)/h2

0 = o(h0) used in Lemma B.4.
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Qτ (Y |X) = F−1
Y (τ |X), the inverse function, is uniquely defined almost surely. Assumption

A.Q implies Qτ (Y |X) is smooth in X such that ∇Qτ (Y |X) exists almost surely and β(τ) in

equation (2.1) is well defined. The νth-order differentiability of these functions will be used

in deriving asymptotic bias for the kernel estimation. The support of X cannot be compact.

Assumption A.T restricts how fast the unknown functions approach zero which is the same as

the stochastic trimming in other content; e.g.,Hardle and Stoker (1989), Lavergne and Vuong

(1996). So that the bias induced by the trimming vanishes faster than the parametric rate.

Following Powell et al. (1989), the Lipschitz conditions in Assumption A.L impose standard

bounded moment and dominance conditions. Assumption A.K restricts the kernel to have

bounded support which is used for asymptotic trimming. The kernel has truncated support

and is Lipschitz as in Assumption 3 in Hansen (2008). The covariates Z can be normalized so

that the bandwidths equal to the same h for all components of Z. Assumption A.G restricts

the tail behavior of the kernel g which has unbounded convex support. The commonly used

Gaussian kernel g = φ satisfies this assumption.

B.1 Uniform Convergence of Kernel Estimation

I show the bias of f̂(x) and ∇f̂(x) in the following Lemmas, where the same technical

proof is used repeatedly. The kernel estimation f̂(x) is defined in (2.8).

Lemma B.1. Suppose Assumptions A.FX, and A.K hold. Let pX ≥ ν. Then E
[
f̂(x)

]
=

f(x) + hν

ν!

∑q
k=1 ∂

ν
kf(x)κν + o(hν) and E

[
∇f̂(x)

]
= ∇f(x) + hν

ν!
κν
∑q

k=1 ∂
ν
k∇f(Xi) + o(hν).

Proof.

E[f̂(x)] =

∫
X

1

|H|
K(H−1(Xj − x))f(Xj)dXj =

∫
Z
K(Z)f(x+HZ)dZ

=

∫
Z
K(Z)

[
f(X) + Γf(x+HZ)

]
dZ

= f(X) +

∫
Z
K(Z)

[hν
ν!

q∑
k=1

∂νkf(x)Zν
k

]
dZ (B.3)

+

∫
Z
K(Z)

[hν
ν!

q∑
k1=1

...

q∑
kν=1

∂k1 ...∂kν

(
f(x̄)− f(x)

)
Zk1 ...Zkν

]
dZ, (B.4)



146

where the second equality is by change of variable Z = H−1(Xj − x) and the third equality

is by Taylor’s theorem. Since ∂k1 · · · ∂kνf(x̄) is uniformly continuous and x̄→ x as h→ 0, it

converges to ∂k1 · · · ∂kνf(x) as h → 0. I can apply dominated convergence theorem (DCT)

to the last term containing x̄ in Γf(x + HZ). That is, the last term in equation (B.4) is

o(hν). Also, by Assumption A.K, κj =
∫
k(z)zjdz = 0 for j < ν implies the forth equality.

Let’s focus on the sth component of ∇f̂(x),

E[∂sf̂(x)] =

∫
X

1

nh(q+1)

n∑
i=1

k′
(xs −Xjs

h

)
Πt6=sk

(xt −Xjt

h

)
f(Xj)dXj

=

∫
X

1

hq
k
(xs −Xjs

h

)
Πt6=sk

(xt −Xjt

h

)
∂sf(Xj)dXj =

∫
Z
K(Z)∂sf(x+HZ)dZ

=

∫
Z
K(Z)

(
∂sf(x) + Γ

[
∂sf(x+HZ)

])
dZ = ∂sf(x) +

hν

ν!

q∑
k=1

∂νk∂sf(x)κν + o(hν),

The second equality is integration by parts of the element Xjs. �

Lemma B.2. Suppose Assumptions A.FX, A.FY, and A.K hold. Let pX , pY ≥ ν. S = {X :

f(X) ≥ δ} is a compact subset of X .

sup
X∈S,y∈Y

|f̂Y (y|X)− fY (y|X)| = Op

(1

δ

(( log n

nh0hq
)1/2

+ h2
0 + hν

))
and

sup
X∈S,y∈R

|F̂Y (y|X)− FY (y|X)| = Op

(1

δ

(( log n

nhq
)1/2

+ h2
0 + hν

))
.

Proof of Lemma B.2. I modify the uniform convergence results for kernel estimation in

Hansen (2008). Following the proof of Theorem 8 in Hansen (2008), F̂Y (y|X) ≡ ĝ(y,X)/f̂(X) =

ĝ(y,X)/f(X)

f̂(X)/f(X)
for X ∈ S, where ĝ(y,X) ≡ 1

nhq

∑n
i=1K(H−1(Xi −X))G(y−yi

h0
). Since G(y−yi

h0
) is

bounded between 0 and 1 for all y ∈ R, Hansen’s proof of Theorem 2 gives supy∈R supX∈S |ĝ(y,X)

−Eĝ(y,X)| = Op

((
logn
nhq

)1/2)
. By the law of iterated expectations, for any y ∈ R andX ∈ S,

Eĝ(y,X) =
1

hq
E
[
K(H−1(Xi −X))E

(
G(
y − yi
h0

)
∣∣∣Xi

)]
=

1

hq
E
[
K(H−1(Xi −X))F (y|Xi) +

h2
0

2
κG2f

′(y|Xi) + o(h2
0)
]

= F (y|X)f(X) +O(hν + h2
0).



147

Thus, supX∈S,y∈R |ĝ(y,X)− g(y,X)| = Op

((
logn
nhq

)1/2
+ h2

0 + hν
)
≡ Op(a

†), where g(y,X) =

F (y|X)f(X). Theorem 6 in Hansen (2008) gives

sup
X∈S
|f̂(X)− f(X)| = Op(

( log n

nhq
)1/2

+ hν) ≡ Op(a
∗). (B.5)

Therefore, uniformly in y ∈ R and X ∈ S, F̂ (y|X) = ĝ(y,X)/f(X)

f̂(X)/f(X)
= F (y|X)+Op(a†δ−1)

1+Op(a∗δ−1)
=

F (y|X) +Op(a
†δ−1).

Similarly for the conditional pdf, f̂(y|X) ≡ ĝ(y,X)

f̂(X)
, where ĝ(y,X) ≡ 1

nh0hq

∑n
i=1K(H−1(Xi−

X))g(y−yi
h0

), supX∈S,y∈Y

∣∣∣ĝ(y,X)− Eĝ(y,X)
∣∣∣ = Op

((
logn
nhqh0

)1/2
)

and bias(ĝ(y,X)) = O(hν +

h2
0). �

B.1.1 Proof of Proposition 2

Lemma B.3 (Uniform convergence rate). Suppose Assumptions A.FX, A.FY, and A.K hold.

Let pX , pY ≥ ν. S = {X : f(X) ≥ δ} is a compact subset of X . Choose the order of the

kernel ν, the bandwidths h, h0, and the trimming parameter δ such that δ, h, h0 → 0 as n→ 0

and (nhq)1/2(h2
0 + hν) = o(1). Then supX∈S |Q̂τ (Y |X)−Qτ (Y |X)| = Op

(
1
b1δ

(
logn
nhq

)1/2)
, for

τ ∈ T ≡ [ε, 1− ε] for some ε > 0.

Proof. Denote Q = Qτ (Y |X). By Taylor’s theorem, for any X ∈ S, F (Q̂|X) = F (Q|X) +

f(Q̄|X)(Q̂−Q), where Q̄ is on the line segment between Q and Q̂. Therefore,

|Q̂−Q| =
∣∣∣F (Q̂|X)− τ

f(Q̄|X)

∣∣∣ ≤ 1

b1

sup
y∈Y
|F (y|X)− F̂ (y|X)| w.p.a.1.

The inequality comes from (1) F̂ (Q̂|X) = τ = F (Q|X) by construction; (2) It can be shown

that Q̂ = Q̂τ (Y |X) ∈ Y0 for n large enough, ∀X ∈ S, τ ∈ T with high probability, 2 and

hence Q̄ ∈ Y0. And f(y|X) ≥ b1 > 0 w.p.a.1, ∀y ∈ Y , ∀X ∈ X0 by Assumption A.FY. Then

sup
X∈S
|Q̂−Q| ≤ 1

b1

sup
X∈S

sup
y∈Y
|F (y|X)− F̂ (y|X)| = Op

( 1

b1δ

( log n

nhq

)1/2)
.

2Choose ε > 0 such that ε < min{τ, 1 − τ}. By the weak uniform convergence of F̂Y (y|X) in (??): i.e.,
|F̂Y (ȳ|X) − FY (ȳ|X)| < ε w.p.a.1 for any X ∈ S. Note that FY (ȳ|X) = 1 by definition. Since F̂Y (y|X) is
strictly increasing in y by construction, F̂Y (Q̂|X) = τ < 1− ε < F̂Y (ȳ|X) implies Q̂ < ȳ for n large enough
with high probability. Similarly, I can conclude that Q̂ ∈ Y0 w.p.a.1.
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�

Since F̂Y (y|X) defined in (2.7) is smooth in y, expand F̂Y (Q̂|X) around Q by Taylor’s

theorem: F̂Y (Q̂|X) = F̂Y (Q|X) + f̂Y (Q̄|X)(Q̂−Q), where Q̄ is on the line segment between

Q and Q̂. Define

τ − F̂Y (Q|X) = τ −
1

(n−1)|H|
∑n

j=1 KjGj

1
(n−1)|H|

∑n
j=1 Kj

≡ A
1

f(X)
+ A

( 1

f̂(X)
− 1

f(X)

)
,

where A ≡ 1
(n−1)|H|

∑n
j=1Kj(τ −Gj). So

Q̂−Q =
τ − F̂Y (Q|X)

fY (Q|X)
+ (τ − F̂Y (Q|X))

( 1

f̂Y (Q̄|X)
− 1

fY (Q|X)

)
=

A

f(X)f(Q|X)
+

A

f(Q|X)

( 1

f̂(X)
− 1

f(X)

)
︸ ︷︷ ︸

≡B

+A
1

f(X)

( 1

f̂(Q̄|X)
− 1

f(Q|X)

)
︸ ︷︷ ︸

≡C

+f(X)ABC.

(B.6)

By assuming (nhq)1/2(hν + h2
0) = o(1), (B.5) and Lemma B.2, for any ε > 0, there is a

constant cf such that with high probability, for n large enough, |f̂(X) − f(X)|1{f(X)≥δ} ≤

cf (n
1−εhq)−1/2 ≡ c1n and |f̂Y (y|X) − fY (y|X)|1{f(X)≥δ} ≤ cfδ

−1(n1−εh0h
q)−1/2 ≡ c2n. So

for f(X) ≥ δ, f(X) − c1n ≤ f̂(X) ≤ f(X) + c1n which implies f̂(X) ≥ δ − c1n. Similarly,

f̂Y (y|X) ≥ b1 − c2n for fY (y|X) ≥ b1 and f(X) ≥ δ. So with high probability

sup
X∈S
|B| = sup

X∈S

1

f(X)f̂(X)
|f(X)− f̂(X)| ≤ 1

δ(δ − c1n)
sup
X∈S
|f(X)− f̂(X)|.

By δ2
√
nhq →∞, supXi∈S |B| = Op

(
1

δ(δ−c1n)

(
logn
nhq

)1/2)
= op(1).

For C, first,

sup
X∈S
|f(Q̄|X)− f̂(Q̄|X)| ≤ sup

X∈S,y∈Y
|f(y|X)− f̂(y|X)| = Op

(1

δ

( log n

nh0hq

)1/2)
by Q̄ ∈ Y0 w.p.a.1. Second, use Taylor’s theorem with Q̃ on the line segment between Q̄

and Q,

sup
X∈S
|f(Q|X)− f(Q̄|X)| = sup

X∈S
|f ′(Q̃|X)(Q̄−Q)| ≤ b2 sup

X∈S
|Q̂−Q| = Op

( b2

b1δ

( log n

nhq

)1/2)
,
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by f ′(y|X) ≤ b2 <∞, ∀y ∈ Y , ∀X ∈ X0 in Assumption A.FY and Lemma A.3. By triangle

inequality,

sup
Xi∈S
|C| = sup

X∈S

∣∣∣ 1

f̂(Q̄|X)
− 1

f(Q|X)

∣∣∣ 1

fi

≤ 1

b1(b1 − c2n)δ

(
sup
Xi∈S
|f(Q̄|X)− f̂(Q̄|X)|+ sup

X∈S
|f(Q|X)− f(Q̄|X)|

)
By Lemma B.2 and δ−2(nh0h

q)−1/2 = o(1), supXi∈S |C| = Op

(
1

b1(b1−c2n)
1
δ2

(
logn
nh0hq

)1/2)
=

op(1). Therefore, (B.6) implies Q̂−Q = Ai
f(X)f(Q|X)

+Rn(X), where the remaining term 3

sup
X∈S
|Rn(X)| = sup

X∈S

∣∣∣AC∣∣∣+ s.o. = Op

(( log n

nhq

)1/2 1

δ2

( log n

nh0hq

)1/2)
= Op

( 1

δ2

( log n

nhq
√
h0

))
.

B.2 Proof of Theorem 2.1

B.2.1 Sketch of the proof of the influence functions

Following Hardle and Stoker (1989), the asymptotic theorem will be first derived for

β̃ = − 2
n

∑n
i=1 Q̂i∇f̂i1{f(X)≥δ}, trimmed based on the true density. Then I will show that

√
n(β̃ − β̂) = op(1).

Following the idea of the proof in Powell et al. (1989) and Chaudhuri et al. (1997), β̃ can

be decomposed as − 2
n

∑n
i=1 Q̂τ (Xi)∇f̂i1Xi =

− 2

n

n∑
i=1

(Q̂i −Qi)∇fi1Xi︸ ︷︷ ︸
(I)

− 2

n

n∑
i=1

Qi∇f̂i1Xi︸ ︷︷ ︸
(II)

− 2

n

n∑
i=1

(
Q̂i −Qi

)(
∇f̂i −∇fi

)
1Xi︸ ︷︷ ︸

(III)

,

where 1Xi ≡ 1{Xi∈S} = 1{f(Xi)≥δ}. The asymptotic properties for (I) and (II) can be derived

by the U-statistics theory. The third term (III) will be made smaller order term by choosing

h, h0, h1, ν, and ν1.

3By the proof in Appendix A.1, Ai = τ
(
f̂(Xi) − f(Xi)

)
−
(
ĝ(Q,X) − τf(X)

)
. So supX∈S |A| =

Op

((
logn
nhq

)1/2)
.
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By the uniform linear representation in equation (2.10), the first term (I) becomes

− 2

n

n∑
i=1

(Q̂i −Qi)∇fi1Xi = − 2

n

1

(n− 1)|H|

n∑
i=1

∇fi
fifY (Qi|Xi)

∑
j 6=i

Kij(τ −Gij)1Xi︸ ︷︷ ︸
≡Un

− 2

n

n∑
i=1

∇fi1Xi ·Rn(Xi) + s.o.

where the second term Op

(
1
n

∑n
i=1 |∇fi|1Xi · |Rn(Xi)|

)
= Op

(
supXi∈S |Rn(Xi)|

)
. The second-

order U-statistic Un can be rewritten as

Un ≡
1(
n
2

) n∑
i=1

∑
j 6=i

∇fi
fifY (Qi|Xi)|H|

Kij(Gij − τ)1Xi︸ ︷︷ ︸
≡ηnij

=
1(
n
2

) ∑
1≤i<j≤n

(ηnij + ηnji) ≡
1(
n
2

) ∑
1≤i<j≤n

ξnij,

(B.7)

where ξnij ≡ ηnij + ηnji is symmetric in i and j by construction. Note that ηnij varies with

n through h, h0, and δ.

The Hoeffding projection of Un is Ûn = θn + 2
n

∑n
i=1[rn(Zi) − θn], where Zi ≡ (Yi, X

′
i)
′,

rn(Zi) = E[ξnij|Zi] = E[ηnij|Zi] + E[ηnji|Zi] and θn = E[rn(Zi)] = E[ξnij] = 2E[ηnij] =

E[Un]. Define r1n(Zi) = E[ηnij|i] and r2n(Zi) = E[ηnji|i]. I abuse these generic notations for

analysing the U-statistics for (II) and (III).

I show the asymptotic equivalence of Un and its projection Ûn in Lemma B.5 by Lemma

3.1 in PSS: if E[||ξnij||2] = o(n), then
√
n(Un − Ûn) = op(1). Then

√
n((I)− θn) =

√
n(Un − θn) + op(1) =

√
n(Ûn − θn) + op(1) =

2√
n

n∑
i=1

(rn(Zi)− θn) + op(1)

=
2√
n

n∑
i=1

(r(Zi)− E[r(Zi)]) + op(1), (B.8)

where the first equality is controlled by
√
nRn(Xi) = op(1). The forth equality is the hard

part described in the following. I am going to find r(Zi) independent of n such that rn(Zi) =

r(Zi) + tn(Zi) and 2√
n

∑n
i=1(rn(Zi)− E[rn(Zi)]) = 2√

n

∑n
i=1(r(Zi)− E[r(Zi)]) + op(1). That

is, I will show Tn := 2√
n

∑n
i=1(tn(Zi) − E[tn(Zi)]) = op(1) by showing E[T 2

n ] converging to

zero.
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Theorem B.1. Let the bandwidths, h, h0, and the order of the kernel ν satisfy Assumption

A.B. Then (I) = − 2
n

∑n
i=1(Q̂i−Qi)∇fi1Xi = 2

n

∑n
i=1 rI(Zi) + op(n

−1/2), where the influence

function is

2 rI(Zi) ≡
2∇fi

fY (Qi|Xi)

(
1{yi≤Qi} − τ

)
. (B.9)

The bias is made op(n
−1/2) where

θn = −2E[(Q̂i −Qi)∇fi1Xi ]

= 2E
[ ∇fi
fifY (Qi|Xi)

{h2
0

2
κG2f

′
Y (Qi|Xi)fi + hνκν

ν∑
l=1

1

l!(ν − l)!

q∑
k=1

∂lkFY (Qi|Xi) · ∂ν−lk f(Xi)
}

+ hνh2
0RI(Xi)

]
+ o(hν + h2

0) (B.10)

= O(h2
0 + hν),

where ∂0
kf(X) = f(X) and RI(Xi) ≡ κG2

2
κν
∑ν

l=0
1

l!(ν−l)!
∑q

k=1 ∂
l
kf
′
Y (Qi|Xi) · ∂ν−lk f(Xi) by

Lemma B.4.

As noted by PSS, the influence function does not depend on the kernel, but the bias does.

Note that the second term (II) is similar to the average derivate in mean regression in

PSS, where Qi in (II) is replaced by yi. So following PSS, I have the following expression for

(II):

− 2

n

n∑
i=1

Qi∇f̂i1Xi = − 2

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

Qi1Xi∇Kij
1

hq+1
(B.11)

=
1(
n
2

) n−1∑
i=1

∑
j>i

−1

hq+1
∇Kij(Qi1Xi −Qj1Xj)︸ ︷︷ ︸

≡ξnij

. (B.12)

The second equality is because of the symmetric kernel, k′(−u) = −k′(u), i.e., ∇Kij =

−∇Kji. So ξnij is symmetric in i and j.

Theorem B.2. Let the bandwidth, h1, and the order of the kernel ν1 satisfy Assumption

A.B. Then as n → ∞, (II) = − 2
n

∑n
i=1Qi∇f̂i1Xi = 2

n

∑n
i=1 rII(Zi) + op(n

−1/2), where the



152

influence function for (II) is

2 rII(Zi) = 2fi∇Qi − 2E
[
∇(Qifi)

]
. (B.13)

The bias E
[
− 2

n

∑n
i=1Qi∇f̂i1Xi

]
+ 2E[Qi∇fi] =

−2E
[
Qi
hν1

1

ν1!
κν1

q∑
k=1

∂ν1
k ∇fi

]
+ o(hν1

1 + δ) = Op(h
ν1
1 ) (B.14)

is made op(n
−1/2).

Finally, the third term (III) is

sup
Xi∈S

∣∣∣− 2

n

n∑
i=1

(
Q̂i −Qi

)(
∇f̂i −∇fi

)∣∣∣ = Op

([1

δ

( log n

nhq

)1/2]( log n

nhq+2
1

)1/2)
(B.15)

by the uniform convergence result in Theorem 6 in Hansen (2008). The third term (III) will

be made op(n
−1/2) by choosing h, h0, h1, δ, ν, and ν1 according to Assumption A.B such that

√
n(III) = Op(δ

−1(nhqhq+2
1 )−1/2)→ 0.

Combining the results in Theorem B.1, B.2, and equation (B.15), I have the influence

function for β̃. In Appendix, I show
√
n(β̃ − β̂) = op(1). Therefore, I derive the influence

function for β̂:

β̂ − β =
−2

n

n∑
i=1

Q̂τ (Xi)∇f̂(Xi)1{f̂(Xi)≥δ} + 2E[Qi∇fi]

=
2

n

n∑
i=1

∇fi
fY (Qi|Xi)

(
1{yi≤Qi} − τ

)
+

2

n

n∑
i=1

fi∇Qi − 2E[fi∇Qi] + op(n
−1/2)

=
1

n

n∑
i=1

rβ(Zi)− β + op(n
−1/2),

where the influence function rβ(Zi) ≡ 2
(
rI(Zi) + rII(Zi)

)
. By Linderberg-Levy central limit

theorem, I derive the first part of Theorem 2.1. From (B.10) and (B.14), the bias E[β̂−β] =

2E
[ ∇fi
fifY (Qi|Xi)

{h2
0

2
κG2f

′
Y (Qi|Xi)fi + hνκν

ν∑
l=1

1

l!(ν − l)!

q∑
k=1

∂lkFY (Qi|Xi) · ∂ν−lk f(Xi)
}]

− 2E
[
Qi
hν1

ν1!
κν1

q∑
k=1

∂ν1
k ∇fi

]
+ o(hν + h2

0 + hν1
1 + δ) = O(hν + h2

0 + hν1
1 ).
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B.2.2 Proof of Theorem B.1

I first apply Taylor’s theorem to expand Qj ≡ Qτ (Y |Xj) around Xi, which will be used

in the following proofs. Change variables: Xj = Xi +HZ for Xi, Xj ∈ X0.

Qj ≡ Qτ (Y |Xj) = Qτ (Y |Xi +HZ) = Qi + h

q∑
k=1

∂kQ̄iZk (B.16)

= Qi + ΓQj (B.17)

where X̄i is on the line segment between Xi and Xi+HZ and Q̄i = Qτ (Y |X̄i) is well-defined

since X is convex. Equation (B.16) is the Taylor’s theorem to the first order, and equation

(B.17) is to the νth order as defined in equation (B.2). Therefore, for any Xi,

1

|H|

∫
KijQjdXj =

∫
K(Z)Q(Xi +HZ)dZ

=

∫
K(Z)(Qi + ΓQj)dZ = Qi +

hν

ν!

q∑
k=1

∂νkQ(Xi)κν + o(hν),

by the dominated convergence theorem (DCT) and the uniform continuity of ∂k1 ...∂kνQ(X)

for k1, ..., kν ∈ {1, ..., q} by Assumption A.Q and pQ ≥ ν.

Lemma B.4.

r1n(Zi) = E[ηnij|i] =
∇fi1Xi

fifY (Qi|Xi)
E

[
1

|H|
Kij(Gij − τ)

∣∣∣i]
=

∇fi1Xi
fifY (Qi|Xi)

{h2
0

2
κG2f

′
Y (Qi|Xi)fi + hνκν

ν∑
l=1

1

l!(ν − l)!

q∑
k=1

∂lkFY (Qi|Xi) · ∂ν−lk f(Xi)
}

+ hνh2
0RI(Xi) + o(hν + h2

0),

where ∂0
kf(X) = f(X) for notational simplicity, and RI(Xi) ≡ κG2

2
κν
∑ν

l=0
1

l!(ν−l)!∑q
k=1 ∂

l
kf
′
Y (Qi|Xi) · ∂ν−lk f(Xi). Therefore, I have θn = 2E[E[ηnij|i]] =

2E

[
∇fi

fifY (Qi|Xi)

{h2
0

2
κG2f

′
Y (Qi|Xi)fi

+ hνκν

ν∑
l=1

1

l!(ν − l)!

q∑
k=1

∂lkFY (Qi|Xi) · ∂ν−lk f(Xi)
}

+ hνh2
0RI(Xi)

]
+ o(hν + h2

0).
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Proof. By the law of iterated expectations,

E

[
1

|H|
Kij(Gij − τ)

∣∣∣i] =

∫
X

1

|H|
Kij

[∫
Y

(
G
(Qi − yj

h0

)
− τ
)
fY (yj|Xj)dyj

]
f(Xj)dXj.

The conditional expectation of Yj given Xj is

E
[
Gij − τ

∣∣Xi, Xj

]
=

∫
Y

(
G
(Qi − yj

h0

)
− τ
)
fY (yj|Xj)dyj

=
(
G
(Qi − yj

h0

)
− τ
)
FY (yj|Xj)

∣∣∣
Y

+

∫
Y

1

h0

G′
(Qi − yj

h0

)
FY (yj|Xj)dyj

= G
(Qi − ȳ

h0

)
− τ +

∫
Z
G′(z)FY (Qi − h0z|Xj)dz

= G
(Qi − ȳ

h0

)
− τ +

∫ ∞
−∞

G′(z)
(
FY (Qi|Xj)− h0zfY (Qi|Xj) +

h2
0

2
z2f ′Y (Q̄i|Xj)

)
dz

−
∫ ∞
−∞

(1− 1{z∈Z})G
′(z)
(
FY (Qi|Xj)− h0zfY (Qi|Xj) +

h2
0

2
z2f ′Y (Q̄i|Xj)

)
dz (B.18)

= −τ + FY (Qi|Xj) +
h2

0

2
f ′Y (Qi|Xj)κG2 + o(h2

0), (B.19)

where the compact support of Y is Y ≡ [y, ȳ] given Xj, the second equality is by in-

tegration by parts, the third equality is by change of variables
Qi−yj
h0

= z with support

Z ≡
[
Qi−ȳ
h0

,
Qi−y
h0

]
. Since G′ is chosen as a second-order kernel, the forth equality is the

second-order expansion around Qi by Taylor’s theorem, where Q̄i is on the line segment be-

tween Qi and Qi − h0z. The first part of (B.19) comes from similar argument of dominated

convergence theorem as in Lemma B.1. Using Assumption A.G, the first term of (B.18) is

−FY (Qi|Xj)
[
1−G

(
Qi−y
h0

)
+G

(
Qi−ȳ
h0

)]
= o(h2

0), and the second term is o(h2
0) by integration

by parts. The third term of (B.18) is o(h2
0) by the uniform continuity of f ′Y (y|X) in y and

dominated convergence theorem.
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Again, by change of variables: Z = H−1(Xj −Xi), Xj = Xi +HZ.

E

[
1

|H|
Kij(Gij − τ)

∣∣∣i] =

∫
X

1

|H|
Kij

[
−τ + FY (Qi|Xj) +

h2
0

2
f ′Y (Qi|Xj)κG2 + o(h2

0)

]
f(Xj)dXj

=

∫
Z
K(Z)

[
−τ + FY (Qi|Xi +HZ) +

h2
0

2
f ′Y (Qi|Xi +HZ)κG2 + o(h2

0)

]
f(Xi +HZ)dZ

=

∫
Z
K(Z)

[
− τ + FY (Qi|Xi) + ΓFY (Qi|X̄i) +

h2
0

2
κG2

(
f ′Y (Qi|Xi)

+ Γf ′Y (Qi|X̄i)
)

+ o(h2
0)
][
f(Xi) + Γf(X̄i)

]
dZ

=

∫
K(Z)

[
ΓFY (Qi|X̄i)fi + ΓFY (Qi|X̄i) · Γf(X̄i) +

h2
0

2
κG2f

′
Y (Qi|Xi) · Γf(X̄i)

+
h2

0

2
κG2Γf ′Y (Qi|X̄i)fi +

h2
0

2
κG2Γf ′Y (Qi|X̄i) · Γf(X̄i)

]
dZ +

h2
0

2
κG2f

′
Y (Qi|Xi)fi + o(h2

0)

=
h2

0

2
κG2f

′
Y (Qi|Xi)fi +

hν

ν!
κν

q∑
k=1

∂νkFY (Qi|Xi)fi +

∫
K(Z)ΓFY (Qi|X̄i) · Γf(X̄i)dZ

+
h2

0

2
κG2f

′
Y (Qi|Xi) ·

hν

ν!
κν

q∑
k=1

∂νkfi +
h2

0

2
κG2fi ·

hν

ν!
κν

q∑
k=1

∂νkf
′
Y (Qi|Xi)

+
h2

0

2
κG2

∫
K(Z)Γf ′Y (Qi|X̄i) · Γf(X̄i)dZ + o(hν + h2

0)

=
h2

0

2
κG2f

′
Y (Qi|Xi)fi +

hν

ν!
κν

q∑
k=1

∂νkFY (Qi|Xi)fi

+ hνκν

ν−1∑
l=1

1

l!(ν − l)!

q∑
k=1

∂lkFY (Qi|Xi) · ∂ν−lk f(Xi) + hνh2
0RI(Xi) + o(h2

0 + hν),

where X̄i is on the line segment between Xi and Xi+HZ, using again DCT and the uniform

continuity of ∂k1 ...∂kνf(X) and ∂k1 ...∂kνf
′
Y (y|X) for k1, ..., kν ∈ {1, ..., q} in X.

Since 1{Xi /∈S} = o(1) by δ → 0 and the moments exist by Assumption A.M, using DCT:

E

[
∇fi

fifY (Qi|Xi)

{h2
0

2
κG2f

′
Y (Qi|Xi)fi + hνκν

ν∑
l=1

1

l!(ν − l)!

q∑
k=1

∂lkFY (Qi|Xi) · ∂ν−lk f(Xi)

+ hνh2
0RI(Xi)

}
1{Xi /∈S}

]
= o(hν + h2

0).

�

Lemma B.5. h is chosen so that (nhq)−1 = o(1) as n→∞ so that E[||ξnij||2] = o(n). Then

by Lemma 3.1 in PSS,
√
n(Un − Ûn) = op(1).
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Proof. E[||ξnij||2] = E[||ηnij + ηnji||2] = 2E[η′nijηnij] + 2E[η′nijηnji]. For the first term,

E[η′nijηnij|Zi] =
1Xi∇f ′i∇fi
f 2
i f

2
Y (Qi|Xi)

E

[
1

|H|2
K2
ijE
[(
Gij − τ

)2∣∣∣Zi, Xj

]∣∣∣∣Zi]
by the law of iterated expectations. Using integration by parts, change of variable (yj =

Qi − h0z and Z ≡
[
Qi−ȳ
h0

,
Qi−y
h0

]
), and Taylor’s theorem, I first calculate

E
[(
Gij − τ

)2∣∣∣Zi, Xj

]
=
[
G
(Qi − yj

h0

)
− τ
]2

FY (yj|xj)
∣∣∣
Y

+

∫
Y

2
[
G
(Qi − yj

h0

)
− τ
]
g
(Qi − yj

h0

) 1

h0

FY (yj|Xj)dyj

= τ 2 + 2

∫
Z

[
G(z)− τ

]
g(z)FY (Qi − h0z|Xj)dz + o(h2

0)

= τ 2 + 2
{
FY (Qi|Xj)

∫ ∞
−∞

1{z∈Z}
[
G(z)− 1

2
+

1

2
− τ
]
g(z)dz

+

∫ ∞
−∞

1{z∈Z}
[
G(z)− τ

]
g(z)

(
− h0zfY (Qi|Xj) +

h2
0z

2

2
f ′Y (Q̄i|Xj)

)
dz
}

+ o(h2
0)

= τ 2 + (1− 2τ)FY (Qi|Xj)− 2h0fY (Qi|Xj)

∫ ∞
−∞

1{z∈Z}
[
G(z)− 1

2

]
g(z)zdz

+ h2
0

∫ ∞
−∞

1{z∈Z}
[
G(z)− 1

2
+

1

2
− τ
]
g(z)z2dzf ′Y (Qi|Xj) + o(h2

0) (B.20)

= τ 2 + (1− 2τ)FY (Qi|Xj) + C · h0 · fY (Qi|Xj) + C · h2
0 · f ′Y (Qi|Xj) + o(h2

0),

where C denotes a generic constant. This is because (G(z) − 1/2)g(z) is an odd function

for an symmetric kernel g. Again by Lemma B.1, Q̄i is “between” Qi and Qi − h0z. In

equation (B.20), (1/2 − τ)
∫
ztg(z)dz is a finite constant for the Gaussian kernel g = φ.

Then
∫∞
−∞ z

tg(z)[G(z)−1/2]dz is zero for even t, since ztg(z)[G(z)−1/2] is an odd function.

When t is odd,
∫∞
−∞ z

tg(z)[G(z)− 1/2]dz = 2
∫∞

0
ztg(z)[G(z)− 1/2]dz ≤

∫∞
0
ztφ(z)dz <∞.
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Also, 1{z/∈Z} = o(1), then use DCT.

E
[ 1

|H|2
K2
ijE
[(
Gij − τ

)2∣∣∣Zi, Xj

]∣∣∣Zi]
= E

[ 1

|H|2
K2
ij

(
τ 2 + (1− 2τ)FY (Qi|Xj) + C · h0 · fY (Qi|Xj) + C · h2

0 · f ′Y (Qi|Xj) + o(h2
0)
)∣∣∣Zi]

=
1

|H|

∫
Z
K(Z)2

[
τ 2 + (1− 2τ)

(
τ + h

q∑
k=1

∂kFY (Qi|X̄i)Zk

)
+ C · h0 ·

(
fY (Qi|Xi) + h

q∑
k=1

∂kfY (Qi|X̄i)Zk

)
+ C · h2

0 ·
(
f ′Y (Qi|Xi) + h

q∑
k=1

∂kf
′
Y (Qi|X̄i)Zk

)
+ o(h2

0)
][
fi + h

q∑
k=1

∂kf(X̄i)Zk

]
dZ,

where X̄i is on the line segment between Xi and Xj = Xi + HZ, by Taylor’s theorem

to the first order. The trimming and change of variables won’t affect the results, since

K has bounded support. Therefore, E[η′nijηnij] = O( 1
|H|) = O( 1

hq
), given

∫
k(z)2zdz = 0,∫

k(z)2z2dz <∞, and Assumption A.M.

For the second term, by the law of iterated expectations and the independence of Yi and

Yj,

E[η′nijηnji] = E

[
∇f ′i1Xi

fifY (Qi|Xi)|H|
∇fXj1Xj

fXjfY (Qj|Xj)|H|
K2
ijE
[
(Gij − τ)(Gji − τ)

∣∣Xi, Xj

]]
= E

[
∇f ′i1Xi

fifY (Qi|Xi)|H|

∫
X

∇fXj1Xj
fY (Qj|Xj)|H|

K2
ijE
[
(Gij − τ)

∣∣Xi, Xj

]
E
[
(Gji − τ)

∣∣Xi, Xj

]
dXj

]
.

Since there is K2
ij instead of Kij in E[η′nijηnji], it suffices to expand up to the first order. By

equation (B.19) in the proof of Lemma B.4,

E
[
Gij − τ

∣∣Xi, Xj

]
= −τ + FY (Qi|Xj) +

h2
0

2
f ′Y (Qi|Xj)κG2 + o(h2

0)

= h

q∑
k=1

∂kFY (Qi|X̄i)Zk +
h2

0

2
κG2f

′
Y (Qi|Xi) +

h2
0

2
κG2h

q∑
k=1

∂kf
′
Y (Qi|X̄i)Zk + o(h2

0),
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where Xj = Xi +HZ and X̄i is on the line segment between Xi and Xi +HZ. Similarly,

E
[
Gji − τ

∣∣Xj , Xi

]
= −τ + FY (Qj |Xi) +

h2
0

2
f ′Y (Qj |Xi)κG2 + o(h2

0)

= −τ + FY (Qi|Xi) + fY (Q̃i|Xi)(Qj −Qi) +
h2

0

2
f ′Y (Qi|Xi)κG2 +

h2
0

2
κG2f

′′
Y (Q̃i|Xi)(Qj −Qi) + o(h2

0)

= fY (Q̃i|Xi)h

q∑
k=1

∂kQ̄iZk +
h2

0

2
f ′Y (Qi|Xi)κG2 +

h2
0

2
κG2f

′′
Y (Q̃i|Xi)h

q∑
k=1

∂kQ̄iZk + o(h2
0),

where Q̃i is between Qj and Qi, the last equality is by equation (B.16), and Q̄i = Qτ (Y |X̄i)

with X̄i on the line segment of Xi and Xi +HZ. So

E[η′nijηnji] = E

[
∇f ′i1Xi

fifY (Qi|Xi)|H|

∫
S

∇fXj
fY (Qj |Xj)|H|

K2
ijE
[
Gij − τ

∣∣Xi, Xj

]
E
[
Gji − τ

∣∣Xi, Xj

]
dXj

]
= E

[ ∇f ′i1Xi
fifY (Qi|Xi)|H|

(∫
Z

( ∇fi
fY (Qi|Xi)

)
K(Z)2

(
h

q∑
k=1

∂kFY (Qi|X̄i)Zk +
h2

0

2
κG2f

′
Y (Qi|Xi) +

h2
0

2
κG2h

q∑
k=1

∂kf
′
Y (Qi|X̄i)Zk + o(h2

0)
)

(
hfY (Q̃i|Xi)

q∑
k=1

∂kQ̄iZk +
h2

0

2
f ′Y (Qi|Xi)κG2 +

h2
0

2
κG2f

′′
Y (Q̃i|Xi)h

q∑
k=1

∂kQ̄iZk + o(h2
0)
)
dZ +Rem

)]
(B.21)

= o
( 1

|H|

)
.

For the remaining term Rem, the Lipschitz condition in Assumption A.L gives

‖Rem‖ ≤
∫ ∥∥∥ ∇f(·)

fY (Q(·)|·)
(Xi +HZ)− ∇f(·)

fY (Q(·)|·)
(Xi)

∥∥∥K(Z)2|(...)(...)|dZ

≤ h m(X)

∫
‖Z‖K(Z)2|(...)(...)|dZ.

By the Schwartz Inequality for vectors: E|b′c| ≤ E(‖b‖ · ‖c‖) and the moment assumption in

A.L, the Rem term is of smaller order in (B.21). So the second term E[η′nijηnji] is of smaller

order than the first term E[η′nijηnij]. Therefore, h will be chosen so that O( 1
nhq

) = o(1). �

From Lemma B.4, r1n(Zi) = O(h2
0+hν). So I guess r1(Zi) = 0 and verify 2√

n

∑n
i=1(r1n(Zi)−

Er1n(Zi)) → 0 which is implied by E[||r1n||2] → 0. By Lemma B.4, ||r1n|| ≤
∣∣∣∣∣∣ ∇fi
fifY (Qi|Xi)

∣∣∣∣∣∣ ·∣∣∣E[ 1
|H|Kij(Gij − τ)

∣∣i]∣∣∣. The bounded moments are assumed in Assumption A.M, so I have

the desired results.
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By definition,

r2n(Zi) = E[ηnji|Zi] =

∫
S

∇fXj
fY (Qj|Xj)

1

|H|
Kji

[
G
(Qj − yi

h0

)
− τ
]
dXj.

From this expression, I might guess r2(Zi) = ∇fi
fY (Qi|Xi)

[
1{yi≤Qi} − τ

]
. So E[r2(Zi)] = 0 and

t2n(Zi) = r2n(Zi) − r2(Zi). To verify the guess, I need to show Tn ≡ 2√
n

∑n
i=1[t2n(Zi) −

Et2n(Zi)]
p→ 0 by showing E[||t2nt′2n||] = E[||t2n(Zi)||2] = o(1).

t2n(Zi) = r2n(Zi)− r2(Zi)

=

∫
S

∇fXj
fY (Qj |Xj)

1

|H|
Kji

[
G
(Qj − yi

h0

)
− τ
]
dXj −

∇fi
fY (Qi|Xi)

[
1{yi≤Qi} − τ

]
=

∫ [ ∇f(·)
fY (Q(·)|·)

(Xi +HZ)
(
G
(Q(Xi +HZ)− yi

h0

)
− τ
)
− ∇fi
fY (Qi|Xi)

(
1{yi≤Qi} − τ

)]
K(Z)dZ

(B.22)

−
∫

(1− 1Xj )
∇f(·)

fY (Q(·)|·)
(Xi +HZ)K(Z)

[
G
(Q(Xi +HZ)− yi

h0

)
− τ
]
dZ. (B.23)

(B.23) is exactly zero for small enough h, since K(Z) has bounded support. Denote

∇f(Z)
fY (Q(Z)|Z)

≡ A(Z) for notational ease. The first part of t2n(Zi), (B.22), is∫ [
A(Xi +HZ)

(
G
(Q(Xi +HZ)− yi

h0

)
− τ
)
− A(Xi)

(
G
(Q(Xi +HZ)− yi

h0

)
− τ
)

+ A(Xi)
(
G
(Q(Xi +HZ)− yi

h0

)
− τ
)
− A(Xi)

(
1{yi≤Qi} − τ

)]
K(Z)dZ

=

∫ (
A(Xi +HZ)− A(Xi)

)(
G
(Q(Xi +HZ)− yi

h0

)
− τ
)
K(Z)dZ (B.24)

+

∫
A(Xi)

(
G
(Q(Xi +HZ)− yi

h0

)
− 1{yi≤Qi}

)
K(Z)dZ. (B.25)

By Assumption A.L, ||(B.24)|| ≤ 2h m(X)
∫
||Z||·|K(Z)|dZ. So the second moment of (B.24)

is bounded by 4h2E[m(X)2]
( ∫
||Z|| · |K(Z)|dZ

)2
= O(h2) = o(1). The second moment of

(B.25) is

E
[
A(Xi)A(Xi)

′
∫ ∫ (

G
(Q(Xi +HZ)− yi

h0

)
− 1{yi≤Qi}

)
(B.26)(

G
(Q(Xi +HV )− yi

h0

)
− 1{yi≤Qi}

)
K(Z)K(V )dZdV

]
. (B.27)
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By the law of iterated expectations, I first calculate its conditional expectation of yi:∫ (
G
(Q(Xi +HZ)− yi

h0

)
− 1{yi≤Qi}

)(
G
(Q(Xi +HV )− yi

h0

)
− 1{yi≤Qi}

)
fY (yi|Xi)dyi

=

∫
G
(QZ − yi

h0

)
G
(QV − yi

h0

)
fY (yi|Xi)dyi −

∫
1{yi≤Qi}G

(QV − yi
h0

)
fY (yi|Xi)dyi

−
∫

1{yi≤Qi}G
(QZ − yi

h0

)
fY (yi|Xi)dyi + τ, (B.28)

where QZ = Q(Xi +HZ) and QV = Q(Xi +HV ) for notational ease. The second and third

terms can be computed∫ Qi

y
G
(QV − y

h0

)
f(y|Xi)dy = G

(QV − y
h0

)
FY (y|Xi)

∣∣∣Qi
y

+

∫ Qi

y

1

h0
g
(QV − y

h0

)
F (y|Xi)dy

= G
(QV −Qi

h0

)
τ +

∫ (Qi−QV )/h0

(y−QV )/h0

g(t)
(
FY (QV |Xi) + h0tfY (Q̄V |Xi)

)
dt

= G
(QV −Qi

h0

)
τ + FY (QV |Xi)

[
G
(Qi −QV

h0

)
−G

(y −QV
h0

)]
+ h0

∫ (Qi−QV )/h0

(y−QV )/h0

g(t)tfY (Q̄V |Xi)dt

= τ + (QV −Qi)fY (Q̃V |Xi)G
(Qi −QV

h0

)
+ h0

∫ (Qi−QV )/h0

(y−QV )/h0

g(t)tfY (Q̄V |Xi)dt+ o(h2
0),

where Q̄V is betweenQV andQV +h0t. The last equality is because FY (QV |X) = FY (Q(X)+

ΓQV |X) = τ+ΓQV fY (Q̃V |X), where Q̃V is between Q(X) and Q(X+HV ). By Assumption

A.G, G
(
y−QV
h0

)
= o(h2

0).

Therefore, the second term of (B.28) contributes in (B.27) by∫ [ ∫
1{yi≤Qi}G

(QV − yi
h0

)
fY (yi|Xi)dyi

]
K(V )dV

= τ +

∫ [
(QV −Qi)fY (Q̃V |Xi)G

(Qi −QV

h0

)
+ h0

∫ (Qi−QV )/h0

(y−QV )/h0

g(t)tfY (Q̄V |Xi)dt
]
K(V )dV + o(h2

0)

= τ + h C · fY (Q(Xi)|Xi)

q∑
k=1

∂kQ(Xi) + C · h0fY (Q(Xi)|Xi) + s.o.

where C denotes a generic constant and the s.o. is by the DCT.
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The first term of (B.28)∫
G
(QZ − yi

h0

)
G
(QV − yi

h0

)
fY (yi|Xi)dyi

= G
(QZ − yi

h0

)
G
(QV − yi

h0

)
FY (yi|Xi)

∣∣∣ȳ
y
−
∫

∂

∂yi

[
G
(QZ − yi

h0

)
G
(QV − yi

h0

)]
FY (yi|Xi)dyi.

(B.29)

The first term of (B.29) is o(h4
0) by Assumption A.G. Let ∆ ≡ QV −QZ . The second term

of (B.29) is∫ (QV−y)/h0

(QV−ȳ)/h0

G(t)
[
g
(∆

h0
− t
)
FY (QV − h0t|X)

]
dt+

∫ (QZ−y)/h0

(QZ−ȳ)/h0

G(t)
[
g
(∆

h0
+ t
)
FY (QZ − h0t|X)

]
dt.

Observe that integration by parts gives∫ ∞
−∞

g
(∆

h0

+ t
)
G(t)dt = G

(∆

h0

+ t
)
G(t)

∣∣∣∞
−∞
−
∫ ∞
−∞

G
(∆

h0

+ t
)
g(t)dt

= 1−
∫ ∞
−∞

G(t)g
(
t− ∆

h0

)
dt.

Thus,
∫∞
−∞G(t)

[
g
(
t + ∆

h0

)
+ g
(
t− ∆

h0

)]
dt = 1. So

∫∞
−∞G(t)g

(
t + ∆

h0

)
dt ∈ [0, 1]. Note that

fY (y|Xi) is bounded and
∫∞
−∞

[
g
(

∆
h0

+ t
)

+ g
(
− ∆

h0
+ t
)]
G(t)tdt <∞. 4 FY (QV − h0t|X) =

FY (Q(X) + ΓQV − h0t|X) = τ + (ΓQV − h0t)fY (Q̄V |X), where Q̄V is between Q(X) and

Q(X) + ΓQV − h0t controlled by h and h0. Therefore, the first term of (B.28) contributes in

the second moment of (B.25) by∫ ∫ [ ∫
G
(QZ − yi

h0

)
G
(QV − yi

h0

)
fY (yi|Xi)dyi

]
K(Z)K(V )dZdV

= τ +

∫ [ ∫
G(t)g(∆/h0 − t)(ΓQV − h0t)fY (Q̄V |X)dt

]
K(V )dV

+

∫ [ ∫
G(t)g(∆/h0 + t)(ΓQZ − h0t)fY (Q̄Z |X)dt

]
K(Z)dZ

= τ + C · hνfY (Q(Xi)|Xi)

q∑
k=1

∂νkQ(Xi) + C · h0fY (Q(Xi)|Xi) + s.o.,

where C denotes a generic constant and the s.o. is by the DCT.

4Observe that
[
g
(

∆
h0

+ t
)

+ g
(
− ∆

h0
+ t
)](

G(t)− 1/2
)
t is an even function and

∣∣G(t)− 1/2
∣∣ < 1/2. Use

the fact that 2
∫∞

0

[
g
(

∆
h0

+ t
)

+ g
(
− ∆

h0
+ t
)]
tdt <∞.
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Since E[A(X)A(X)′fY (Q(X)|X)] is assumed to exist, the second moment of (B.25) is

O(hν + h0) = o(1).

E‖(B.22)‖2 ≤ E‖(B.24)‖2 + E‖(B.25)‖2 + 2E
(
‖(B.24)‖ · ‖(B.25)‖

)
. The last term is

bounded by 4h
∫
‖Z‖ · |K(Z)|dZE[m(X)‖A(X)‖] = O(h) = o(1) . Therefore, the second

moment of t2n is o(1).

B.2.3 Proof of Theorem B.2

In this section, h and ν should be h1 and ν1 for estimating ∇f . I omit the subscript 1

for notational ease.

Lemma B.6. h is chosen so that (nhq)−1 = o(1) as n→∞, then E[‖ξnij‖2] = o(n).

Proof. First note that by change of variable Xj = Xi +HZ,

Qi1Xi −Qj1Xj =
(
Qi −Q(Xi +HZ)1{Xi+HZ∈S}

)
1Xi

=
(
− h

q∑
k=1

∂kQ(X̄i)Zk +Q(Xi +HZ)1{Xi+HZ/∈S}

)
1Xi ,

by (B.16). So

E[‖ξnij‖2] =

∫ ∫
1

h2q+2
‖∇Kij‖2(Qi1Xi −Qj1Xj )2f(Xi)f(Xj)dXidXj

=
1

hq+2

∫ ∫
‖∇K(Z)‖2

(
− h

q∑
k=1

∂kQ(X̄i)Zk +Q(Xi +HZ)1{Xi+HZ/∈S}

)2

f(Xi +HZ)dZ f(Xi)1XidXi

=
1

hq

∫ ∫
‖∇K(Z)‖2

( q∑
k=1

∂kQ(X̄i)Zk

)2(
f(Xi) + h

q∑
k=1

∂kf(X̄i)Zk

)
dZf(Xi)1XidXi = O(h−q)

where X̄i is on the line segment of Xi and Xj = Xi + HZ by equation (B.16). The third

equality is because the integration over Q(Xi + HZ)1{Xi+HZ/∈S} is zero for small enough h

by the bounded-support K(Z). � Note that h converges faster than that

in PSS where h−(q+2) = o(n). This is because here I do not have the randomness from Y in

(II). Then by Lemma 3.1 in PSS,
√
n[(II)− E(II)] =

√
n 2
n

∑n
i=1[rn(Zi)− θn] + op(1), where
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θn = E[rn(Zi)] = Eξnij = E(II) and

rn(Zi) = E[ξnij |Zi] =

∫
X

−1

hq+1
∇Kijf(Xj)dXjQi1Xi +

∫
X

1

hq+1
∇KijQjf(Xj)1XjdXj

= −Qi1Xi
(−1

hq
Kijf(Xj)

∣∣∣
X

+
1

hq

∫
X
Kij∇f(Xj)dXj

)
+

1

hq

(
−Kijf(Xj)Qj

∣∣∣
S

+

∫
S
Kij∇(fjQj)dXj

)
= −Qi1Xi

∫
K(Z)∇f(Xi +HZ)dZ +

∫
K(Z)∇(fQ)(Xi +HZ)1{Xi+HZ∈S}dZ.

The third equality is by integration by parts and the forth equality is change of variable:

Xj = Xi + HZ. Then I can guess r(Zi) = −Qi∇fi + ∇(Qifi) = fi∇Qi whose mean

E[r(Zi)] = E[fi∇Qi].

To verify the guess, I need to show that Tn ≡ 2√
n

∑n
i=1[tn(Zi)− Etn(Zi)]

p→ 0 where

tn(Zi) = rn(Zi)− r(Zi)

=

∫
K(Z)

[
−Qi∇f(Xi +HZ) +Qi∇f(Xi) +∇(fQ)(Xi +HZ)−∇(fQ)(Xi)

]
dZ

(B.30)

− 1

hq+1

∫
∇Kijfj

[
−Qi(1− 1Xi) +Qj(1− 1{Xi+HZ∈S})

]
dXj (B.31)

By Assumption A.L,

‖(B.30)‖ ≤ h(1 + |Qi|)|m(Xi)|
∫
|K(Z)| · ‖Z‖dZ. (B.32)

Therefore, the second moment of (B.30) is bounded above by h2E
(
(1 + |Q(Xi)|)2|m(Xi)|2

)
[
∫
|K(Z)| · ‖Z‖dZ]2 = O(h2) = o(1). The first term in (B.31) is Qi(1−1Xi)

∫
K(Z)∇f(Xi +

HZ)dZ = Qi(1−1Xi)
(
∇f(Xi)+C ·hν ·

∑q
k=1 ∂

ν
k∇fi)

)
with some constant C and by DCT. So

the second moment vanishes by δ → 0 and the existence of the second moments. The second

term in (B.31) is 1
hq
KijfjQj(1− 1Xj)|X −

∫
K(Z)∇(fQ)(Xi +HZ)(1− 1Z)dZ = 0 for small

enough H, because kernel K has bounded support. Then E[tn(Zi)tn(Zi)
′] → 0. Therefore,

√
n[(II)−E(II)] =

√
n 2
n

∑n
i=1[rn(Zi)−E(II)]+op(1) =

√
n 2
n

∑n
i=1[r(Zi)−E(r(Zi))]+op(1) =

√
n 2
n

∑n
i=1[fi∇Qi − E(fi∇Qi)] + op(1).
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The bias

E
[
− 2

n

n∑
i=1

Qi∇f̂i1Xi
]

+ 2E[Qi∇fi] = −2E
[
Qi∇f̂i1Xi

]
+ 2E

[
Qi∇fi1Xi

]
+ 2E

[
Qi∇fi(1− 1Xi)

]
= −2E

[
QiE(∇f̂i −∇fi|Xi)1Xi

]
+ o(δ)

= −2E
[
Qi
hν

ν!
κν

q∑
k=1

∂νk∇f(Xi)
]

+ 2E
[
Qi
hν

ν!
κν

q∑
k=1

∂νk∇f(Xi)(1− 1Xi)
]

+ o(hν + δ) = O(hν),

by Lemma B.1. Therefore,

√
n
[
− 2

n

n∑
i=1

Qi∇f̂i1Xi + 2E[Qi∇fi] +O(hν)
]

=
2√
n

n∑
i=1

[
fi∇Qi − E(fi∇Qi)

]
+ op(1),

by choosing h and ν such that
√
nhν → 0.

B.2.4 Scaled AQD

The scaled AQD β(τ)∗ = β(τ)/α, where the scaling parameter α ≡ E[f(X)] can be

estimated by α̂ = n−1
∑n

i=1 f̂(Xi). Observe that α̂ can be rearranged as an U-statistic. So

I follow the similar steps in previous proofs to derive the influence function for α̂. Define

ξnij ≡ 1
|H1|K(H−1(Xi − Xj)), which is symmetric in i and j. Then it can be shown that

E[||ξnij||2] = o(n) if (nhq)−1 = o(1). By Lemma B.1, rn(Zi) = E[ξnij|Zi] = r(Zi) + tn(Zi),

where r(Zi) = f(Xi) and tn(Zi) = o(1). Therefore, I derive the second part of Theorem 2.1

α̂−α = 1
n

∑n
i=1 rα(Zi) + op(n

−1/2), where the influence function rα(Zi) = 2[f(Xi)−Ef(X)].

5

My interest is

√
n
(
β̂∗ − β∗

)
=

√
n

α̂α

(
β̂α− βα̂

)
=

√
n

α̂α

(
(β̂ − β)α− β(α̂− α)

)
=

√
n

α̂

1

n

n∑
i=1

(
rβ(Zi)− rα(Zi)

β

α

)
+ op(1) ≡ An

α̂
+ op(1).

5This result has been shown in Powell and Stoker (1996).
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The numerator is

An ≡
√
n

1

n

n∑
i=1

(
rβ(Zi)− rα(Zi)β

∗
)
−→ N (0, V ),

where V is the covariance matrix of the influence function rβ(Zi)− rα(Zi)β
∗. Therefore, by

Slutsky’s theorem, I have the third part of Theorem 2.1.

B.2.5 Choice of nonparametric tuning parameters

Let the positive sequences h ∝ n−a, h1 ∝ n−c, h0 ∝ n−d, and δ ∝ n−b, for some constants,

a, b, c, d > 0. Choose a, b, c, d, ν, and ν1 such that
√
nRn = Op

((
δ2n1/2hq

√
h0

)−1)
= o(1),

for the bias:
√
n(h2

0 + hν) = o(1),
√
nhν1

1 = o(1),
√
n(III) = δ−1(nhqhq+2

1 )−1/2 = o(1),

for the U -statistics: (nhq)−1 = o(1), (nhq1)−1 = o(1), and for the bias-reducing kernel:

(nhq)1/2(hν + h2
0) = o(1), (nhq+2

1 )1/2hν1
1 , as n→∞.

Let’s start with

bias(
√
n(I)) = O

(√
n(h2

0 + hν)
)

= o(1)⇐⇒ d >
1

4
, a >

1

2ν
, (B.33)

bias(
√
n(II)) = O

(√
nhν1

1

)
= o(1)⇐⇒ c >

1

2ν1

, (B.34)

√
nRn = o(1)⇐⇒ b <

1

4
(1− 2aq − d), (B.35)

√
n(III) = δ−1(nhqhq+2

1 )−1/2 = o(1)⇐⇒ b <
1

2
(1− aq − c(q + 2)). (B.36)

The upper bounds for b must be positive in (B.35) and (B.36), so

d < 1− 2aq, (B.37)

c <
1− aq
q + 2

. (B.38)

The upper bound must be larger than the lower bound, so for c, (B.34) and (B.38) give

ν1 >
q+2

2−2aq
. For d, (B.33) and (B.37) give a < 3

8q
. Then, for a, together with (B.33), ν > 4q

3
.

For the U -statistics, (nhq)−1 = o(1) and (nhq1)−1 = o(1) are implied by (B.36). The

condition for Proposition 2 are implied by controlling the bias in (B.35) and (B.37), and the

remaining term in the Bahadur representation of Q̂τ (Y |X).
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Therefore, choose ν > 4q
3

, a ∈ ( 1
2ν
, 3

8q
), ν1 >

q+2
2−2aq

, c ∈ ( 1
2ν1
, 1−aq
q+2

), d ∈ (1
4
, 1 − 2aq), and

b < min{1
4
(1− 2aq − d), 1

2
(1− aq − c(q + 2))}. Choosing ν1 >

4
5
(q + 2) is sufficient.

B.2.6 Trimming

Following Lavergne and Vuong (1996), choose cn such that cn/δ = o(1) and c−1
n sup| f̂(X)−

f(X)|1{f(X)≥δ} = op(1), which exists in view of (B.5). Since cn/δ = o(1), I can work with

the bound δ + cn, instead of δ.

√
n(β̃ − β̂) =

−2√
n

n∑
i=1

Q̂i∇f̂i
(
1{f(Xi)≥δ+cn} − 1{f̂(Xi)≥δ}

)
=
−2√
n

n∑
i=1

Q̂i∇f̂i
(
1{f(Xi)≥δ+cn,f̂(Xi)<δ} − 1{f(Xi)<δ+cn,f̂(Xi)≥δ}

)
.

For any i ∈ {1, 2, ..., n}, the event
{
f(Xi) ≥ δ + cn, f̂(Xi) < δ

}
⊆
{
|f̂(Xi) − f(Xi)| >

cn, f(Xi) ≥ δ + cn

}
⊆
{

supi|f̂(Xi)− f(Xi)|1{f(Xi)≥δ} > cn

}
has asymptotic probability zero. Hence,

supi1{f(Xi)≥δ+cn,f̂(Xi)<δ} = 0 with probability approaching one. So I need to consider the

second term only. Define Ii ≡ 1{f(Xi)<δ+cn,f̂(Xi)≥δ}, for notational ease.

1√
n

n∑
i=1

Q̂i∇f̂iIi = n−1/2

n∑
i=1

(Q̂i −Qi)∇fiIi + n−1/2

n∑
i=1

Qi(∇f̂i −∇fi)Ii

+ n−1/2

n∑
i=1

(Q̂i −Qi)(∇f̂i −∇fi)Ii + n−1/2

n∑
i=1

Qi∇fiIi. (B.39)

For the last term in (B.39),
∣∣∣∣∣∣n−1/2

∑n
i=1 Qi∇fiIi

∣∣∣∣∣∣ ≤ n−1/2
∑n

i=1

∣∣∣∣∣∣Qi∇fi
∣∣∣∣∣∣1{fi<δ+cn}. There-

fore,

E
∣∣∣∣∣∣n−1/2

n∑
i=1

Qi∇fiIi
∣∣∣∣∣∣2 ≤ n−1E

[
n∑
i=1

∣∣∣∣∣∣Qi∇fi
∣∣∣∣∣∣1{fi<δ+cn}

]2

= E

[∣∣∣∣∣∣Qi∇fi
∣∣∣∣∣∣21{fi<δ+cn}]+ (n− 1)

(
E
[∣∣∣∣∣∣Qi∇fi

∣∣∣∣∣∣1{fi<δ+cn}])2

= o(1),

where the first term is o(1) by Lebesgue dominated convergence theorem with E||Qi∇fi||2 ≤

∞ and δ + cn → 0. In the second term,
∫
Bcn
||Qi∇fi||fidXi = o(n−1/2) by Assumption A.T.

So the last term in (B.39) vanishes in probability as n→∞.
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Observe that {f(X) < δ+ cn, f̂(X) ≥ δ} implies {|f̂(X)− f(X)| < cn, f̂(X) ≥ δ} which

implies {f(X) ≥ δ − cn}. So the first term of (B.39)

||n−1/2

n∑
i=1

∇fi(Q̂i −Qi)Ii|| ≤ n−1/2

n∑
i=1

||∇fi(Q̂i −Qi)||Ii

≤ sup
{∣∣∣Q̂i −Qi

∣∣∣1{f(Xi)≥δ−cn}

}
· n−1/2

n∑
i=1

||∇fi||Ii

= Op(δ
−1(nhq)−1/2) ·Op(1) = op(1),

where n−1/2
∑n

i=1 ||∇fi||Ii = Op(1) by the central limit theorem by E||∇fi||2 < ∞, and the

uniform convergence of Q̂i is implied by Assumption A.B. Similarly, the rest terms of (B.39)

vanish in probability.

B.3 Proof of Theorem 2.2

For rIIi, I follow Hardle and Stoker (1989) using the projection structure in its U-statistic.

By (B.8), ri is the limit of rn(Zi) = E[ξnij|Zi]. So ri can be estimated directly by its

sample analogue of rn(Zi), r̂i ≡ (n − 1)−1
∑

j 6=i ξ̂nij, where ξ̂nij is obtained by a first-step

nonparametric estimation of the unknown functions in ξnij (B.12).

By a similar argument for the trimming, it suffices to show consistency of n−1
∑
r̂ir̂
′
i1Xi

for E(rr′) and n−1
∑
r̂i1Xi for E(r). First, I need to show sup|r̂i − ri|1Xi = op(1). By the

triangle inequality,

sup |r̂i − ri|1Xi ≤ sup |r̂Ii − rIi|1Xi + sup |r̂IIi − rIIi|1Xi

≤ sup |r̂Ii − rIi|1Xi + sup
∣∣∣ 1

n− 1

∑
j 6=i

(ξ̂nij − ξnij)
∣∣∣1Xi

+ sup
∣∣∣ 1

n− 1

∑
j 6=i

ξnij − E[ξnij|Zi]
∣∣∣1Xi + sup

∣∣∣rIIni − rIIi∣∣∣1Xi ,
where rIIni = E[ξnij|Zi] and ξnij for (II) is defined in (B.12). The first and the second terms

are op(1) by the uniform convergence of the nonparametric estimation in Appendix A.1.

The third term is op(1) by the law of large number. The last term is op(1) by the proof of

Theorem B.2.
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Since sup |r̂i − ri|1Xi = op(1), the variance of ri exists, and Pr(f(X) ≤ δ) = o(1),

n−1

n∑
i=1

r̂ir̂
′
i1Xi − E[rir

′
i] = n−1

n∑
i=1

(r̂i − ri)(r̂i − ri)′1Xi + n−1

n∑
i=1

ri(r̂i − ri)′1Xi

+ n−1

n∑
i=1

(r̂i − ri)r̂′i1Xi − n−1

n∑
i=1

r̂ir̂
′
i(1− 1Xi) + n−1

n∑
i=1

rir
′
i − E[rir

′
i] = op(1).
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Appendix C: Proofs of Theorems in Chapter 3

C.1 Proof of Theorem A.3

I implement the main results in Severini and Tripathi (2001). I start with the definitions

and construct the Hilbert space. The unknown probability density or mass function of the

random vector (Y,X ′)′ ∈ Ω = SY × SX with respect to the measure P , the products of the

Lebesgue measure µY and µX , 1 is written as f(Y,X) = f(Y |X)f(X) := ψ2
0(Y |X)φ2

0(X).

The functionals ψ0 and φ0 belong to the following sets defined by the regularity conditions:

ΨY :=
{
ψ ∈ SY × SX → R,ψ2(Y |X) ≥ 0, bounded and uniformly continuous in y,

uniformly in x over the support of X,

∫
SY

ψ2(y|X)dy = 1
}
,

Φ :=
{
φ ∈ L2(SX ;µX), φ2(X) ≥ 0,

∫
SX

φ2(x)µX(dx) = 1,∫
SX

‖x‖2+εφ2(x)µX(dx) <∞, for some ε > 0
}
.

Let A := ΨY × Φ.

Definition A vector ξ̇ = (ψ̇, φ̇) is said to be tangent to A at ξ0 if it is the slope of ξt :=

(ψt, φt) at t = 0, i.e., limt→0‖t−1(ξt − ξ0)− ξ̇‖ = 0.

Definition The tangent space to A at the true value ξ0, denoted as lin T (A, ξ0), is the

smallest linear space which is closed under the L2-norm and contains all ξ̇ ∈ L2(Ω;µY ×µX)

tangent to A at ξ0.

Severini and Tripathi (2001) show that the tangent space lin T (A, ξ0) is the product of

lin T (ΨY , ψ0) and lin T (Φ, φ0), where

lin T (ΨY , ψ0) :=
{
ψ̇ ∈ L2(Ω;µY ×X),

∫
SY

ψ̇(y|X)ψ0(y|X)µY (dy) = 0a.s.
}

lin T (Φ, φ0) :=
{
φ̇ ∈ L2(SX ;µX),

∫
SX

φ̇(x)φ0(x)µX(dx) = 0
}
.

1µX may not be a Lebesgue measure since I allow discrete components in the covariates X.
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The pseudo-true model is the unconditional moment restriction E0

[
(τ−1{Y≤X′β0})X

]
= 0

in (3.3). Here E0 is the expectation with respect to the true density functions ξ0 = (ψ0, φ0)

and β0 denotes the pseudo-true β(τ) for notational simplicity. The objective is to estimate

the efficiency bound for estimating β0. Equivalently, I can instead look at the efficiency bound

for estimating the functional η(ψ0, φ0) := c′β0 for any arbitrary vector c ∈ Rd. Severini and

Tripathi (2001) parameterize ξ0 = (ψ0, φ0) ∈ A and β0 as a one-dimensional subproblem. For

some t0 > 0, let t 7→ (ξt, βt) be a curve from [0, t0] into A×Rd which passes through (ξ0, β0)

at t = 0. That is, estimating η(ξt) = c′βt = t at the true parameter t = 0 is equivalent to

estimating t = 0. The likelihood of estimating t using a single observation (Y,X ′)′ is given

by ψ2
t (Y |X)φ2

t (X), so the score function for estimating t = 0 is

S0(Y,X) :=
d

dt
log
[
ψ2
t (Y |X)φ2

t (X)
]
1{ψt(Y |X)>0}1{φt(X)>0}

∣∣
t=0

= 2
ψ̇(Y |X)

ψ0(Y |X)
1{ψ0(Y |X)>0} + 2

φ̇(X)

φ0(X)
1{φ0(X)>0}.

Then the Fisher information at t = 0 can be written as

iF = E[S0(Y,X)S ′0(Y,X)] =

∫
SX

∫
SY

S0(y, x)S ′0(y, x)ψ2
0(y|x)φ2

0(x)µY (dy)µX(dx)

= 4EX

[ ∫
SY

ψ̇(y|X)ψ̇′(y|X)1{ψ0(y|X)>0}µY (dy)
]

+ 4

∫
SX

φ̇(x)φ̇′(x)1{φ0(x)>0}µX(dx)

:=< (ψ̇, φ̇), (ψ̇, φ̇) >F ,

where the third equality is because ξ̇0 = (ψ̇0, φ̇0) ∈ lin T (A, ξ0), and EX denotes integrals

with respect to the distribution of X. Therefore, the Fisher information inner product

< ·, · >F and the corresponding norm ‖ · ‖F are defined as

< ξ̇1, ξ̇2 >F := 4EX

[ ∫
SY

ψ̇1(y|X)ψ̇′2(y|X)1{ψ0(y|X)>0}µY (dy)
]

+ 4

∫
SX

φ̇1(x)φ̇′2(x)1{φ0(x)>0}µX(dx)

‖ξ̇1‖2F = ‖(ψ̇1, φ̇1)‖2F :=< (ψ̇1, φ̇1), (ψ̇1, φ̇1) >F

for any ξ̇1.ξ̇2 ∈ lin T (A, ξ0) which is a closed subset of L2(Ω;P ). Hence I have constructed

the Hilbert space (lin T (A, ξ0), < ·, · >F ).

Now I are ready to derive the efficiency bounds. It is known that the information in-

equality holds for all regular estimators, i.e., the asymptotic covariance of the estimator
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≥ 1/iF = ‖ξ̇0‖−2
F . The semiparametric bound can be interpreted as the supremum of the

asymptotic covariance over the parametric submodels. Severini and Tripathi (2001) shows

that the lower bound is

l.b. = sup
{ξ̇∈(lin T (A,ξ0):ξ̇ 6=0,∇η(ξ̇)=1}

‖ξ̇‖−2
F = sup

{ξ̇∈(lin T (A,ξ0):‖ξ̇‖F=1}
|∇η(ξ̇)|2

= ‖∇η‖2
∗ = ‖ξ∗‖2

F . (C.1)

The third equality is the norm of linear functional ∇η, the pathwise derivative of η (Lu-

enberger, 1969, p.105). The forth equality is from the Riesz-Fréchet theorem: there exists

a unique ξ∗ ∈ lin T (A, ξ0) for the continuous linear functional ∇η on the Hilbert space

(lin T (A, ξ0), < ·, · >F ) such that ∇η(ξ̇) = < ξ∗, ξ̇ >F for all ξ̇ ∈ lin T (A, ξ0), i.e.,

∇η(ψ̇, φ̇) = c′β̇ =< (ψ∗, φ∗), (ψ̇, φ̇) >F

= 4EX

[ ∫
SY

ψ∗ψ̇′1{ψ0(y|X)>0}µY (dy)
]

+ 4

∫
SX

φ∗φ̇′1{φ0(x)>0}µX(dx). (C.2)

So to find the lower bound by (C.1), I need to find ξ∗ which is known as the representer of

the continuous linear functionals ∇η.

The submodel (ψt, φt, βt) should also satisfy the unconditional moment restriction,

Et[(1{Y≤X′βt}− τ)X] = 0. For any τ1, τ2 ∈ (0, 1), βt := (β′t(τ1), β′t(τ2))′ := (β′1t, β
′
2t)
′. I simul-

taneously estimate β0 = (β′10, β
′
20)′, a 2d-dimensional vector, so the unconditional moment

restriction is ∫
SX

∫
SY

 (
1{y≤x′β1t} − τ1

)
x(

1{y≤x′β2t} − τ2

)
x

ψ2
t (y|x)φ2

t (x)µY (dy)µX(dx) = 0.
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Taking the derivative with respect to t evaluated at t = 0, 2

0 =

∫
SX

 xx′fY (x′β10|x)β̇1

xx′fY (x′β20|x)β̇2

φ2
0(x)µX(dx)

+ 2

∫
SX

∫
SY

 x1{y≤x′β10}

x1{y≤x′β20}

ψ0(y|x)ψ̇′(y|x)µY (dy)φ2
0(x)µX(dx)

+ 2

∫
SX

 x
(
FY (x′β10|x)− τ1

)
x
(
FY (x′β20|x)− τ2

)
φ0(x)φ̇′(x)µX(dx).

where the second term is because ψ̇ ∈ lin T (ΨY , ψ0) implies
∫
SY
ψ0ψ̇µY (dy) = 0. Note that∫

SX
xx′fY (x′β0|x)

φ2
0(x)µX(dx) = E0[XX ′fY (X ′β0|X)] = J(τ) which is assumed to be positive definite by

(R3), so J(τ)−1 exists. Define

D :=

 J(τ1) 0

0 J(τ2)

 ,

so D−1 exists. Then β̇1

β̇2

 = −2D−1
[ ∫

SX

∫
SY

 x1{y≤x′β10}

x1{y≤x′β20}

ψ0(y|x)ψ̇′(y|x)1{ψ0(y|x)>0}µY (dy)φ2
0(x)µX(dx)

+2

∫
SX

 x
(
FY (x′β10|x)− τ1

)
x
(
FY (x′β20|x)− τ2

)
φ0(x)φ̇′(x)1{φ0(x)>0}µX(dx)

]
.

(C.3)

I confirm that ∇η(ξ̇) = c′β̇ is a continuous linear functional on lin T (A, ξ0), so η is indeed

pathwise differentiable. From (C.2) and (C.3), I can find the representer for ∇η as

φ∗(x) = −1

2
c′D−1

 (
FY (x′β10|x)− τ1

)
x(

FY (x′β20|x)− τ2

)
x

φ0(x),

2The interchange of differentiation and integration is alloId, assumed throughout Severini and Tripathi
(2001), by the smoothness of ξt(Y,X) in t ∈ [0, t0] by the construction of regular parametric submodels; see
Newey (1990) for details.
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and

ψ∗(y|x) = −1

2
c′D−1

 (
1{y≤x′β10} − FY (x′β10|x)

)
x(

1{y≤x′β20} − FY (x′β20|x)
)
x

ψ0(y|x)

because ψ̇ ∈ lin T (ΨY , ψ0). It can be easily checked that (ψ∗, φ∗) ∈ lin T (A, ξ0). For

notational ease, denote 1i := 1{y≤x′βi0} and Fi := FY (x′βi0|x), i = 1, 2. Then the lower

bound for regular
√
n-consistent estimators of c′β0 is

‖(ψ∗, φ∗)‖2
F

=c′D−1

{∫
SX

 (
F1 − τ1

)2
xx′

(
F1 − τ1)(F2 − τ2

)
xx′(

F1 − τ1)(F2 − τ2

)
xx′

(
F2 − τ2

)2
xx′

φ2
0(x)1{φ0(x)>0}µX(dx)

+ E

 E
[(

11 − F1

)2|X
]
XX ′ E

[(
11 − F1

)(
12 − F2

)
|X
]
XX ′

E
[(

11 − F1

)(
12 − F2

)
|X
]
XX ′ E

[(
12 − F2

)2|X
]
XX ′

}D−1c

=cD−1

 Γ(τ1, τ1) Γ(τ1, τ2)

Γ(τ1, τ2) Γ(τ2, τ2)

D−1c,

where

Γ(τ1, τ2) := E
[
E
[
(F1 − τ1)(F2 − τ2) + (11 − F1)(12 − F2)|X

]
XX ′

]
= E

[
E
[
τ1τ2 − τ1F2 − τ2F1 + 1112|X

]
XX ′

]
= E

[
E
[(
τ1 − 1{y≤X′β10}

)(
τ2 − 1{y≤X′β20}

)
|X
]
XX ′

]
= E

[(
τ1 − 1{y≤X′β10}

)(
τ2 − 1{y≤X′β20}

)
XX ′

]
by the law of iterated expectations, and so Γ(τ, τ) = E

[(
τ − 1{y≤X′β0}

)2
XX ′

]
.

So the lower bound for estimating β(τ) is J(τ)−1Γ(τ, τ)J(τ)−1. The asymptotic covari-

ance of the estimators for β(τ1) and β(τ2) cannot be smaller than J(τ1)−1Γ(τ1, τ2)J(τ2)−1.

Consider the efficiency bound for estimating one single quantile β(τ) by Newey’s (1990)

approach. Severini and Triphathi (2001) claim that Newey’s efficient influence function

for c′β(τ) is 2ψ∗/ψ0 + 2φ∗/φ0 = c′J(τ)−1X(τ − FY (X ′β|X)) + c′J(τ)−1X(FY (X ′β|X) −

1{Y≤X′β}) = c′J(τ)−1X(τ − 1{Y≤X′β}). Then the efficient influence function for β0 is
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(E[SS ′])−1S, where the efficient score S = J(τ)Γ(τ, τ)−1X(τ − 1{Y≤X′β}). Newey shows the

semiparametric bound is (E[SS ′])−1. �

C.2 Proof of the Semiparametric Efficiency Bound for the Correct
Linear Specified QR (3.4)

Under correct specification, FY (X ′β0|X) = τ . The random vectors (Y,X) satisfy the con-

ditional moment restrictionE
[
1{Y≤X′β0}−τ |X

]
= 0, i.e.,

∫
SY

(
1{y≤X′β0}−τ

)
ψ2

0(y|X)µY (dy) =

0, where the joint distribution of (Y,X) is ψ2
0(Y |X)φ2

0(X). The Hilbert space (lin T (A, ξ0), <

·, · >F ) andA = (ΨY ,Φ) are defined in the proof of Theorem A.3. Consider any τ1.τ2 ∈ (0, 1),

βt := (β′t(τ1), β′t(τ2))′ := (β′1t, β
′
2t)
′. The parameterized submodel (ψt, φt, βt) also have to sat-

isfy the moment condition∫
SY

 (
1{y≤X′β1t} − τ1

)(
1{y≤X′β2t} − τ2

)
ψ2

t (y|X)µY (dy) = 0,

Taking the derivative with respect to t evaluated at t = 0, I have fY (X ′β1|X)X ′β̇1

fY (X ′β2|X)X ′β̇2

+ 2

∫
SY

 (
1{y≤X′β10} − τ1

)(
1{y≤X′β20} − τ2

)
ψ0(y|X)ψ̇′(y|X)dy = 0, (C.4)

where fY (y|X) = ψ2
0(y|X). Define

D(X) :=

 fY (X ′β1|X)X ′ 0

0 fY (X ′β2|X)X ′

 .

Note that (C.4) has overidentifying moment restriction that cannot uniquely solve β̇. To

locally identify β̇, Severini and Tripathi (2001) give the sufficient condition by W (X) which

is some nonsingular (w.p.1) 2× 2 matrix such that E[D(X)′W (X)D(X)] is nonsingular. By

assumption, E[XX ′f 2
Y (X ′β(τ)|X)] = E[XX ′f 2

ετ (0|X)] exists and is nonsingular, so the same

holds for E[D′(X)D(X)]. Hence, I can choose W (X) = 1, identity matrix. Multiply (C.4)

by D′(X):

D′(X)D(X)

 β̇1

β̇2

+D′(X)2

∫
SY

 (
1{y≤X′β10} − τ1

)(
1{y≤X′β20} − τ2

)
ψ0(y|X)ψ̇′(y|X)dy = 0.
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Take expectations on both sides with respect to X and solve for β̇: (β′1, β
′
2)′=

−2
(
E[D′(X)D(X)]

)−1

E
[
D′(X)2

∫
SY

 (
1{y≤X′β10} − τ1

)(
1{y≤X′β20} − τ2

)
ψ0(y|X)ψ̇′(y|X)1{ψ0(y|X)>0}dy

]
.

Then for any arbitrary c ∈ R2d, the representer for ∇η((ψ̇, φ̇)) = c′β̇ is

ψ∗(y|X) = −1

2
c′
(
E[D′(X)D(X)]

)−1

D′(X)

 (
1{y≤X′β10} − τ1

)(
1{y≤X′β20} − τ2

)
ψ0(y|X)

∈ lin T (ΨY , ψ0) by the conditional moment restriction. And φ∗ = 0 since φ0 is just ancillary

in this conditional moment case. Define A :=
(
E
[
D′(X)D(X)

])−1

and 1i := 1{Y≤X′βi0} for

i = 1, 2 for notational ease. Without loss of generality, assume τ1 < τ2. So the lower bound

is ‖(ψ∗, φ∗)‖2
F =

c′E

AD′(X)

 E
[(
11 − τ1

)2∣∣∣X] E
[(
11 − τ1

)(
12 − τ2

)∣∣∣X]
E
[(
11 − τ1

)(
12 − τ2

)∣∣∣X] E
[(
12 − τ2

)2∣∣∣X]
D(X)A

 c
= c′AE

D′(X)

 τ1(1− τ1) τ1(1− τ2)

τ1(1− τ2) τ2(1− τ2)

D(X)

Ac
= c′

 τ1(1− τ1)
{
E
[
XX ′f2

ετ1
(0|X)

]}−1
τ1(1− τ2)

{
E
[
XX ′fετ1 (0|X)fετ2 (0|X)

]}−1

τ1(1− τ2)
{
E
[
XX ′fετ1 (0|X)fετ2 (0|X)

]}−1
τ2(1− τ2)

{
E
[
XX ′f2

ετ2
(0|X)

]}−1

 c

since fY (X ′β|X) = fετ (0|X) for correct specification.

Consider the efficiency bound for estimating one single quantile β(τ) by Newey’s (1990)

approach. Severini and Triphathi (2001) claim that Newey’s efficient influence function for

c′β(τ) is 2ψ∗/ψ0 = c′
(
E
[
f 2
ετ (0|X)XX ′

])−1
fετ (0|X)X(τ −1{Y≤X′β}). Then the efficient influ-

ence function for β0 is (E[SS ′])−1S, where the efficient score S = (τ − τ 2)−1fετ (0|X)X(τ −

1{Y≤X′β}). Newey shows the semiparametric bound is (E[SS ′])−1. �
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