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abstract

Understanding and reasoning about the visual world based on human
instructions has long been a challenging problem. With the advancements
in deep learning and computer vision, machine learning models have
learned to tackle challenging vision problems like classification, detection,
segmentation, etc. However, the previous paradigm, which involved train-
ing supervised models on many sub-tasks and unifying them into a large
system, was not streamlined and offered limited steerability for real-world
applications. Addressing this issue, this thesis, this thesis introduces ad-
vancements in the realm of visual perception. It focuses on enhancing
the steerability of visual intelligence systems. This is achieved through a
series of innovative approaches that offer a promising path for building
customizable, large multimodal models that follow human intent at an
affordable cost.

The introductory chapters lay the foundation by highlighting the im-
portance of visual perception models in various applications and outlining
the limitations of early models in terms of steerability. The thesis then
presents main contributions: First, it introduces a method for enhancing
the customizability of vision-language models using retrieval. Second, it
explores to bring the steerability to visual intelligence systems with natural
language instructions. The second part is distributed into two chapters:
(1) instruction-following large multimodal models, (2) a systematic study
for unsolved problems in multimodal models and a cost-effective scaling
of multimodal models that marks as the first model from the academia to
surpass industry SoTA models like Google Gemini.
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1 introduction

Vision models, especially those empowered by deep learning [51, 50],
have profoundly transformed our ability to interpret and interact with the
visual world. These models have achieved remarkable success across a
range of applications, mastering tasks such as image classification, object
detection, and semantic segmentation, etc. Their capacity to analyze and
understand visual data has surpassed traditional methods, leading to
innovative applications in fields ranging from autonomous driving to
medical imaging.

Despite these advancements, the application of vision technologies in
real-world scenarios often faces significant challenges. One major limita-
tion is the inflexibility of these systems when faced with tasks that require
a broader understanding of context or user-specific needs. For instance,
while a model might excel in identifying objects within an image, it may
struggle to understand the narrative or emotional context that a human
might infer. This is largely because traditional vision systems are designed
as highly specialized tools, each fine-tuned for specific tasks without a
unified framework to handle diverse or unexpected scenarios that mimic
human visual understanding.

The integration of language with vision, i.e. vision-language models,
proposes a solution to these limitations. These models aim not just to
see but to interpret and generate visual content that aligns with complex
human instructions, providing a more intuitive interface for users. How-
ever, the current generation of vision-language models, while capable,
still often requires extensive customization and specialist knowledge to
adapt to new tasks or domains. This gap highlights a crucial need for
models that are not only powerful but also versatile and user-friendly,
enabling non-specialist users to leverage advanced vision capabilities in
their everyday applications without the need for deep technical expertise.
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The potential benefits of steerable vision-language systems are sub-
stantial, particularly when highlighting their responsiveness to natural
language instructions, their customizability, and their reduced depen-
dence on extensive human-labeled data. These attributes represent a
crucial advancement in our approach to developing and deploying ma-
chine learning models within visual domains, enabling a more intuitive
and flexible interaction between humans and AI systems:

Efficient Customization with Minimal Labeling Effort: Traditional
computer vision models often require vast amounts of labeled data to
achieve high performance, especially when customized to specialized
domains. This process is not only labor-intensive but also costly. With the
advent of large foundational models in vision-language tasks, the need for
extensive manual labeling is drastically reduced. These large models, pre-
trained on diverse datasets, possess a broad understanding of the world,
enabling them to adapt to new domains with minimal additional input. For
example, a retail company could fine-tune such a model to recognize and
categorize its unique product inventory using only a small set of example
images and descriptions. This capability significantly lowers the barrier
to deploying advanced vision systems across various industries, from
healthcare, where it could rapidly adapt to recognize rare medical imaging
findings, to wildlife conservation efforts where quick identification of
species from camera trap images is essential.

Unified Model Steerability through Natural Language Instructions:
One of the most transformative aspects of steerable vision-language mod-
els is their ability to operate under a unified framework that can be directed
using natural language instructions. This shift away from the traditional
model, where specialized knowledge and extensive coding were prereq-
uisites, democratizes access to advanced AI technologies. For instance,
educational technologists can use such models to create interactive learn-
ing aids where students explore historical or scientific concepts through
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dynamically generated visual content that responds to their queries. Simi-
larly, in the film and gaming industries, directors and game designers can
articulate complex scenes or environments that the model then visually
interprets, significantly speeding up the creative process and reducing
the dependency on large teams of animators or programmers. Moreover,
these advancements offer significant benefits for accessibility, particularly
for visually impaired individuals. For example, a vision-language system
can be steered via voice commands to describe physical environments or to
identify and articulate the contents of images and videos in real-time. This
capability could transform everyday interactions for visually impaired
users, providing them with a more independent and enriched experience
as they navigate both physical and digital spaces. This steerability not
only makes the technology more accessible but also enhances its flexibility,
allowing for rapid prototyping and iterative design in creative and techni-
cal fields alike, ultimately making powerful AI tools accessible and useful
across a broader range of applications and industries.

My PhD thesis focuses on the steerability and customizability of vision-
language models. Specifically, it contributes to the field by refining capabilities
such as efficient customization of large models with minimal human effort, and
pioneering a steerable, unified visual intelligence system through natural language
instructions. By focusing on these critical areas, my research has estab-
lished new standards for intuitive and versatile interactions across both
general and specialized uses of visual intelligence systems and multimodal
research.

Learning Customized Visual Models with Retrieval-Augmented
Knowledge: CLIP [112], through large-scale contrastive pretraining, en-
ables zero-shot adaptation for image classification. To better adapt CLIP
to the downstream, common approaches often involves finetuning on the
downstream data, which again requires human labeling. Chapter 2 of my
thesis introduces React [87], a framework that enhances and specializes
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the capabilities of vision-language models like CLIP with retrieval. By
strategically retrieves the most pertinent image-text pairs from a web-scale
database for the downstream, and the proposed locked-text gated-image
tuning for adaptation, React effectively and efficiently enhances its adapt-
ability to specialized tasks.

Steerable Vision Models via Natural Language Instructions: Despite
the great adaptation performance React brings about, creating a stream-
lined and steerable visual system still requires much effort and remains
under-explored. Chapter 3 introduces LLaVA [86], the pioneering effort
to build instruction-following large multimodal models. It introduces a
text-only data engine that facilitates the automatic synthesis of instruction-
following multimodal data, and presents the first open-source end-to-end
trained large multimodal model that efficiently combines a vision encoder
with an LLM for a steerable and robust visual and language understanding
model. LLaVA has also inspired a series of follow-up works of various
modalities and downstream domains.

Progressing further, Chapter 4 details the evolution of this framework
through LLaVA-1.5, which systematically investigates and refines the
design choices within the LLaVA architecture. LLaVA-1.5 advances the
state-of-the-art across 11 benchmarks through strategic modifications with
great efficiency. This chapter also addresses open problems in large multi-
modal models (LMMs), paving the way for broader adoption and deeper
exploration of large multimodal models in the research community.
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2 learning customized visual models with
retrieval-augmented knowledge

Image-text contrastive learning models such as CLIP have demonstrated
strong task transfer ability. The high generality and usability of these
visual models is achieved via a web-scale data collection process to en-
sure broad concept coverage, followed by expensive pre-training to feed
all the knowledge into model weights. Alternatively, we propose React,
REtrieval-Augmented CusTomization, a framework to acquire the rele-
vant web knowledge to build customized visual models for target domains.
We retrieve the most relevant image-text pairs (∼3% of CLIP pre-training
data) from the web-scale database as external knowledge and propose
to customize the model by only training new modularized blocks while
freezing all the original weights. The effectiveness of React is demon-
strated via extensive experiments on classification, retrieval, detection and
segmentation tasks, including zero, few, and full-shot settings. Particularly,
on the zero-shot classification task, compared with CLIP, it achieves up to
5.4% improvement on ImageNet and 3.7% on the Elevater benchmark (20
datasets).

2.1 Introduction

It has been a fundamental research problem in computer vision (CV) to
build a transferable visual system that can easily adapt to a wide range of
downstream tasks. With remarkable advances in deep learning, a de facto
solution to achieve this is to train deep neural networks on a large amount
of data to pursue the so-called generic visual representations. This dates
back to the standard supervised training on ImageNet [30], whose superb
representation power is further demonstrated in BiT [64]/ViT [32] by
scaling up the training to JFT300M [127]. Along the way, recent efforts have
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been applied to the popular image self-supervised learning [49, 19, 48]
to reduce the demand for labeled data. The third approach is image-text
contrastive learning trained on billion-scale web-crawled image-text pairs.
Such models, like CLIP [112] and ALIGN [58], are able to achieve great
performance on different downstream domains, without the need of any
human labels.

Excellent empirical performance has been achieved with the above
three pre-training methods, by following the well established two-stage pre-
training then adaptation pipeline: model pre-training from scratch on large
data, then model adaptation directly on downstream tasks. Specifically,
the pre-trained models are adapted to downstream tasks by considering
the available task-specific samples only: either evaluated in a zero-shot task
transfer manner, or updated using linear probing (LP) [112], finetuning
(FT) [75], or prompt tuning [173, 117]. Following this two-stage pipeline,
most research has reverted to the faith that building transferable visual
systems is equivalent to developing more generic visual models by feeding
all knowledge in the model pre-training stage. Therefore, the community
has been witnessing a trend in exploring scaling success of pre-training
model and data size with less care on the target domain, hoping that the
model can adapt to any downstream scenario.

In this chapter, we argue that the conventional two-stage pipeline above
is over-simplified and less efficient, in achieving the goal of building a
transferable visual system in real-world settings. Instead, we propose a
customization stage in between the pre-training and adaptation, where cus-
tomization is implemented by systematically leveraging retrieved external
knowledge. The inspiration comes from how humans are specialized in
society for better generalization: instead of trying to memorize all concepts,
humans are trained/prepared in a relevant subject to master a certain skill,
while maintaining the basic skills in pre-training.

To this end, we explore a systematic approach to acquire and learn
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Figure 2.1: React achieves the best zero-shot ImageNet performance
among public checkpoints (Top Left), achieves new SoTA on semi-
supervised ImageNet classification in the 1% labeled data setting (Top
Right), and consistently transfer better than CLIP on across a variety of
tasks, including ImageNet classification, zero/few/full-shot classification
on 20 datasets in ELEVATER benchmark, image-text retrieval, object de-
tection and segmentation (Bottom). Please see the detailed numbers and
settings in the experimental section. For the left figure, circle size indicates
model size.

with external knowledge sources from a large image-text corpus for model
customization. The process of collecting external image-text knowledge is



8

fully automatic without extra human annotation. The acquired knowledge
typically contains richer information about the concept: relevant images
that never appear in the downstream training and evaluation set, and richer
text descriptions about concept semantics. Such multi-modal knowledge
sources are generally available on the web, and further open-sourced like
LAION [119, 118]. They cover a variety of domains, making it possible to
develop customized visual models for task-level transfer. Similar retrieval-
augmented intuitions have been exploited in computer vision for class-
level transfer [91], but not yet for task-level transfer (similar to that of
CLIP). Our main findings/contributions can be summarized as follows.

We propose to explore the potential of the web-scale image-text corpus as ex-
ternal knowledge to significantly improve task-level transfer performance
on the target domain at an affordable cost. A simple and effective strategy
is proposed. To begin with, we build a large-scale multi-modal indexing
system to retrieve the relevant image-text pairs using CLIP features and
approximate nearest neighbor search. For a CV problem, the task instruc-
tion is often sufficiently specified with text such as class names, which
allows us to utilize them as queries to retrieve the relevant image-text pair
knowledge from the indexing system. No images from the CV problem are
needed. To efficiently build the customized visual model, we propose a
novel modularized learning strategy: only updating the additional train-
able weights on the retrieved knowledge, and freezing the original model
weights. Hence, the model masters the new skill without forgetting basic
skills.

The generality and effectiveness of the proposed customization strategy is
demonstrated on four CV problems. We instantiate it with CLIP, and develop
the customized visual models for image classification on ImageNet and 20
datasets in Elevater [75], image-text retrieval on COCO [83]/Flickr [110],
as well as object detection and semantic segmentation on COCO [83]. The
knowledge bases are considered as LAION [119] and larger web-crawled
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multi-modal data. The retrieval-augmented knowledge (∼3% image-text
pairs compared with the original training data) significantly improves
the model’s zero-shot performance without the need of accessing any
images on downstream tasks. See Figure 2.1 for highlighted results. For
example, our ViT-L/14 checkpoint achieves 78.5% zero-shot accuracy on
ImageNet [30], surpassing all public checkpoints from CLIP [112] and
OpenCLIP [55], including those with larger model size and trained on a
much larger LAION-2B [118]. The new customized models demonstrate
higher few/full-shot performance than the generic model counterparts.

Our retrieval system, codebase, and pre-trained models are publicly available.
To make this line of research more accessible, our retrieved subsets for both
Elevater and ImageNet will also be made available, with an easy-to-use
toolkit to download the subsets without storing the whole dataset locally.
It poses a feasible direction for leveraging the ever-increasing data from the
Internet for customized visual recognition, especially for the low-resource
regimes.

2.2 Related Work

Vision-Language Pretraining. Learning transferable visual representa-
tions from natural language supervision is an emerging research area.
The pioneering works of CLIP [112] and ALIGN [58] make use of con-
trastive learning to pretrain models on billion-scale web-crawled image-
text pairs. There are an increasing number of studies to improve their
generality from various modeling perspectives, including training objec-
tives [40, 31, 155, 102, 160, 39], scaling techniques [23, 155, 109], data
efficiency [80, 68], and leveraging multilingual correlations [57, 23]. In
academia, several works demonstrate techniques to improve the learned
semantic representations on datasets at a smaller scale (e.g. CC3M [122],
CC12M [15], YFCC15M [112, 131]), by exploring pretraining on a unified
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image-text-label space [144], token-level contrastive loss [149], and auxil-
iary within-modality contrastive loss [101, 82, 145, 153]. Complementary
to the above works, we build on top of existing pre-trained generic models,
and aim to improve the model’s performance by customizing them using
retrieved relevant image-text pairs.

Retrieval-Augmented Models. In natural language processing, several
works augment large language models with external data encoded with
structured language and relation representations [108, 46, 69, 89, 158, 11,
62]. Motivated by retrieval-augmented models in NLP, several recent
works leverage visual and / or textual knowledge to improve classifica-
tion [91], question answering [142, 97, 146, 20], image generation [10, 124,
21, 174], and multi-modal tasks simultaneously [150]. RAC [91] improves
long-tail classification by retrieving from a non-parametric memory con-
sisting of pre-encoded images and text. K-LITE [123] enhances the text
prompts with the retrieved external knowledge that is encoded in natural
language. This chapter leverages the paired knowledge of image-text and
aims to improve task transfer performance for core vision problems such
as classification, retrieval, detection and segmentation.

Adaptation of Vision-Language models. CLIP demonstrates impres-
sive zero-shot and linear probing performance on different downstream
domains. Several works explore improving the domain adaptation perfor-
mance on CLIP models. Elevater [75] leverages the text encoder outputs
to initialize the task-specific linear head to improve the linear probe and
finetuning performance of CLIP. Inspired by prompting techniques in NLP,
recent works [173, 117] make use of learnable prompts that are trained on
a few samples on downstream tasks. Similar to these works, this chapter
aims to improve CLIP’s performance on downstream tasks, while making
use of relevant image-text pairs data to improve the model’s performance,
without access to the downstream images. Furthermore, when down-
stream samples are available, they are complimentary to our method.
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2.3 Retrieval-Augmented Customization

Preliminaries

Computer vision models have achieved strong transfer performance, when
learning with large-scale image data only [49], image-label data [64]
and/or image-caption data [112, 144, 159]. Without loss of generality, we
follow [144] and define a unified triplet-wise format (x, t,y) for image-text-
label data, where x ∈ X is an image, t ∈ T is its language description, and
y ∈ Y is a label indicating the index of the unique language description in
the dataset. In a general form, the language description is a text sequence
t = [t1, · · · , tL]. It ranges from simple category names representing visual
concepts when L is small, to more free-form and semantic-rich sentences
such as captions when L is relatively large.

A typical transfer learning pipeline follows the procedure of pre-training
then adaptation: (i) With large-scale pre-training, an image encoder foun-
dation model fθ parameterized by θ is first trained to represent image x

as a visual feature vector ṽ ∈ RP×1: ṽ = fθ(x). For recent language-image
models [112], a dual-encoder architecture is often employed, where an
additional text encoder fϕ(t) parameterized by ϕ represents the sentence
ũ ∈ RP×1 : ũ = fϕ(t). (ii) Given a downstream task, model adaptation
is typically performed using the available task-specific information, or
task instruction I. For example, the task-level transfer of a language-image
model is described as:

• Zero-shot. In a customized setting, the simplest task definition can be
provided as a set of category names for visual recognition, leading
to the task instruction I0 = {t}. No training image x is available, not
to mention the corresponding label y.

• Few/Full-shot. The users may spend annotation cost to curate N

image-label pairs as the training instances, making the task instruc-
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Figure 2.2: Illustration of the proposed React framework.

tion more specific, IF = {(xn, tn,yn)}
N
n=1, which allows updating the

image encoder model fθ for better adaptation performance.

In this chapter, we assume there exists a web-scale image-text corpus as
the external knowledge source S = {(xm, tm)}Mm=1, whereM is the database
size, e.g. 400M for LAION [119]. One may use the task instruction I as a
query to seek additional relevant knowledge to build a more transferable
visual system. Given the downstream task instruction I and an external
knowledge source S, our goal is to learn customized visual-semantic rep-
resentations, which are readily transferable to the downstream task of
interest, whose training and evaluation images are not observed during
the customization process. To this end, we propose React. We illustrate
the high-level idea in Figure 2.2, and describe the process as follows.
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Multi-modal External Knowledge

Knowledge Base Construction. We explore web-scale image-text data
as the multi-modal knowledge base S in this chapter. Ideally, one may
consider the entire web as the knowledge base, and use Google or Bing
search to retrieve the relevant knowledge. We consider two large static
datasets with image-text pairs. To control the experiment complexity and
ensure reproducibility, we use LAION-400M [119], a publicly available
database with 400M pairs, for most of the experiments. To further study
the scaling influence of the retrieval base, we conduct comparisons on
Web-800M, a privately collected web database with 800M pairs.

To facilitate an efficient knowledge acquisition process, we use pre-
trained contrastive models (e.g. CLIP) as the feature extractor, and build
a cross-modal retrieval system using FAISS [60]. We use its Hierarchical
Navigable Small World (HNSW) approximate k-NN lookup [95] to bal-
ance performance and efficiency. After the retrieval system is built on the
designated retrieval pool, it can be efficiently used for retrieving relevant
image-text pairs for various downstream domains.

Image 
Encoder

Text 
Encoder

Image 
Encoder

Text 
Encoder

(c) Locked-Text Tuning

Text 
Encoder

Image 
Encoder

(b) Locked-Image Tuning

Text 
Encoder
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gate

gate

Figure 2.3: Illustrative comparisons across different model tuning methods.
(a) and (b) are existing baseline tuning methods. For model customization
in a target domain, we found that (c) and (d) work better. One layer of the
proposed modularized image encoder in locked-text gated-image tuning
is illustrated in right side.

Retrieval-Augmented Task Instruction. To facilitate the same interface for
various customized visual tasks in the wild, it is desirable to have the same
uniform task instruction schema. In NLP, all task instructions can follow
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the same uniform schema, composed of task definition and positive/negative
examples [100, 139]. Here, the task definition defines a given task in natural
language, completely specifying how an input is expected to be mapped
to an output text. We note a coherence connection between this NLP task
schema and the customized zero/few/full-shot CV settings in Section 2.3.
Following a similar schema, the minimum requirement to specify a visual
task is the task definition I0, where category names illustrate the target
visual concepts in natural language. Though adding human-annotated
examples is a natural way to clarify the task and yield the complete schema
IF, extra cost is introduced.

It is of high interest to clarify the task using relevant examples, without
human curating cost. Therefore, we propose to augment the task instruc-
tion with the retrieved examples from the external multi-modal knowledge
base S. For each concept t ∈ I0 in a given task, we first represent it in
natural language q = gprompt(t) using the language prompt as in [112],
through inserting the concept into a set of task-specific templates P. The
task definition is expanded in its natural language form:

Q = {q | q = gprompt(t), ∀t ∈ I0,prompt ∈ P}. (2.1)

Next, we perform our knowledge retrieval process to acquire the rel-
evant image-text pair s = gretrieve(q) from the source S. Two types of
retrieval processes are considered to acquire the top-K pairs:

• Text-to-Text (T2T) retrieval allows us to retrieve more relevant ex-
amples as they have a better match with our target concept. The
T2T-retrieved set for I0 is:

ST2T = {(x, t) ∈ S : argmax
t∈T,|T|=K

fϕ(t)⊤fϕ(q),∀q ∈ Q} (2.2)

• Text-to-image (T2I) retrieval allows us to have more diversity in the
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text descriptions in our retrieved examples. The T2I-retrieved set for
I0 is:

ST2I= {(x, t) ∈ S : argmax
x∈X,|X|=K

fθ(x)
⊤fϕ(q),∀q ∈ Q} (2.3)

Both ST2T and ST2I are retrieved examples to augment the task defini-
tion I0, without accessing the images in the training or validation set of
the task. Compared to IF, they are “free” external knowledge to clarify the
task and can be used to build a more transferable system.

Model Customization

After retrieving the relevant multi-modal examples, one may employ
the naive customization solution by fine-tuning the full-model initialized
from pre-trained weights, as in Figure 2.3(a). Alternatively, we propose an
affordable solution to endow pre-trained models with a new capability to
leverage this external knowledge. The pre-trained generic visual models
have gained strong transfer abilities and access to a large amount of internal
knowledge stored in the model weights. We freeze the weights of these
models so that their initial capacity remains unchanged. To bridge these
pretrained models harmoniously to the customized domain, we consider
locked-text gated-image tuning with the following two techniques, illustrated
in Figure 2.3(d).

Modularized Image Encoder. In order to provide sufficient expressivity
to the model and make it able to adapt well on retrieved knowledge, we
insert gated self-attention dense blocks in between the original layers of
the image encoder, and train the new blocks from scratch. Those blocks are
made of a self-attention layer, that attends the early layer inputs, followed
by an extra dense feed-forward layer. Please see a visual illustration of this
gated block in the rightmost of Figure 2.3(d). We denote the parameters of
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all new modules as θ ′. This design is inspired by the gated cross-attention-
dense blocks in Flamingo [3] and frozen multi-modal model [133]. The
difference is that the trainable module is introduced in Flamingo to enable
cross-modal conditioning, while we adapt it for model growing in new
customized domains.

Frozen Text Encoder. The text encoder in language-image contrast models
represents the task semantic space. To maintain it, we propose locked-
text tuning, which freezes the text model weights so that the generic task
encoding knowledge remains locked; see Figure 2.3(c). This is in contrast
with locked-image tuning (LiT) [160] in Figure 2.3(b), where the image
encoder is frozen and the text encoder is fine-tuned, which teaches a text
model to read out good representations from a pre-trained image model
for new tasks.

We extract the normalized feature vectors in a hyper-sphere using ui =
f{θ,θ ′}(xi)

∥f{θ,θ ′}(xi)∥ and vj =
fϕ(tj)

∥fϕ(tj)∥ . To customize the model wrt task definition
I0, we update θ ′ using a bidirectional learning objective between images
and language on the retrieved knowledge pool ST2Tand/or ST2I:

min
{θ ′}

LC = Li2t + Lt2i, with B ∼ ST2Tor ST2I (2.4)

Li2t=−
∑
i∈B

1
|P(i)|

∑
k∈P(i)

log
exp(τu⊤

i vk)∑
j∈B exp(τu⊤

i vj)
and (2.5)

Lt2i=−
∑
j∈B

1
|Q(j)|

∑
k∈Q(j)

log
exp(τu⊤

k vj)∑
i∈B exp(τu⊤

i vj)
(2.6)

where τ is a temperature hyper-parameter controlling the strength of
penalties on hard negative samples, and P(i) = {k|k ∈ B, v⊤

k vi ⩾ γ},
Q(j) = {k|k ∈ B, v⊤

k vj ⩾ γ}. We set γ = 0.9 for classification tasks to force
image-text pairs sharing the similar text to be positive. Note (2.4) is a
general form; it reduces to UniCL [144] when γ = 1.0; it further reduces to
the training objective of CLIP [112] when there is a one-to-one mapping
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between an image and its paired caption in a batch, i.e. P(i) = {i} and
Q(j) = {j}.

In our empirical study we find that locked pre-trained image and text
encoders with trainable gated modules in image encoder work best. Once
the customized visual models are trained with the retrieved knowledge, we
transfer it to the downstream domain for zero/few/full-shot evaluation.

2.4 Experiments

In this section, we conduct experiments to answer three research questions:
(1) What are the unique advantages of retrieval-augmented image-text
knowledge for task transfer? (2) How does our design choice of locked-text
gated-image tuning compare to existing methods for model customiza-
tion? (3) Is customization still beneficial in settings where the training
data in downstream tasks are observed, i.e., in few-shot or full-shot set-
tings? (4) Does customization scales well to dense prediction tasks like
detection/segmentation?

We evaluate our models on four CV problems: image classification,
image-text retrieval, object detection, and semantic segmentation. We
first consider ImageNet [30] for zero-shot task transfer. We then further
evaluate our model on Elevater [75], which is an open-set image classifi-
cation benchmark that contains 20 datasets. We also conduct experiments
on image-text retrieval with MSCOCO [83] and Flickr [154] dataset. Fi-
nally, we evaluate on object detection and semantic segmentation with
MSCOCO [83] dataset.

One of the most intriguing benefits of React is that it does not need ac-
cess to any images from the downstream task. Therefore, we first evaluate
on task-level zero-shot transfer, which requires no images in the target to
be observed [112, 123, 75]. This setting is different from traditional class-
level zero-shot [143], where both the category and images in evaluation
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Figure 2.4: Zero-shot comparison on Elevater ICinW 20 datasets. React
(B32) improves over the base checkpoints on most datasets.

should not be observed in training. We argue that ImageNet concepts have
been observed in CLIP (Sec. 2.2 of [112]) and other web-scale trained mod-
els [80], as WordNet synsets and common words in English Wikipedia are
explicitly added in the query list when searching for (image, text) pairs in
their training data construction process.

Image Classification

Zero-Shot on ImageNet-1K

As shown in Table 2.1, by customizing the generic model CLIP/OpenCLIP
on 10M retrieved image-text pairs from LAION-400M, React achieves a
significant and consistent gain (up to 5.4%) on zero-shot image classifica-
tion on ImageNet-1K, with different backbones and original pretraining
datasets. There are three interesting findings.

F1: React can benefit from model’s own pre-training data. Compared to
OpenCLIP [55] (ViT-B/32) trained on LAION-400M, by training on 10M
relevant pairs from the same LAION-400M dataset, React improves over
OpenCLIP by 3.5%. Note that the model purely uses the image-text pairs
that it has seen during its pre-training, and does not see any extra data.
This shows that React can more adequately adapt to the target domain
during the model customization stage, suggesting a favorable property
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that no new data is required for customization.
F2: React efficiently explores new image-text sources, even for large models.

We customize CLIP [112] ViT-L/14 on 10M retrieved relevant image-text
pairs, and the model achieves a 2.8% improvement to 78.1%. This surpasses
the checkpoint with a much larger ViT-H/14 backbone and trained on a
much larger LAION-2B dataset. This suggests that React is a more sample-
efficient approach to improve the model performance on the domain-of-
interest.

F3: Scaling up the retrieval pool increases performance. We perform React
in a privately collected dataset with over 800M pairs, and train a cus-
tomized model on 6M retrieved pairs. The performance is increased to
78.5%, yielding 0.9% gain compared with 6M pairs retrieved from LAION-
400M. This suggests that React scales well with the larger retrieval pool.
It showcases React as a cost-efficient approach to leveraging the ever-
increasing web image-text corpus.

Zero-, Few-, and Full-Shot on Elevater

As a proxy for performing vision tasks for many customized scenarios in
the wild, we consider the image classification in the wild (ICinW) benchmark
in Elevater [75]. It consists of 20 datasets from a diverse selection of
domains and covers a wide range of concepts, totaling 1151 classes.

We perform multi-modal knowledge retrieval for 20 datasets together –
the retrieved samples are around 10M image-text pairs in total, on which
one single customized visual model is trained. After the process, we
feed the customized model to different downstream tasks separately. For
each downstream dataset, we use the official Elevater toolkit to obtain
the train/val/test splits, and perform zero-shot, few-shot, and full-shot
evaluation.

We report the average scores in Table 2.2. It achieves 3.8% improve-
ment in the zero-shot setting, even when we do not perform a separate
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fθ Pretrain Data Retrieved Data Method ImageNet-1K
Dataset Size Zero-Shot

B/32

WIT-400M – – CLIP 63.2
L-400M 10M React 68.6 (+5.4)

LAION-400M – – OpenCLIP 62.9
L-400M 10M React 66.4 (+3.5)

L/14
WIT-400M

– – CLIP 75.3
L-400M 6M React 77.6 (+2.3)
L-400M 10M React 78.1 (+2.8)
W-800M† 6M React 78.5 (+3.2)

LAION-400M – – OpenCLIP 72.8
LAION-2B – – OpenCLIP 75.3

H/14 LAION-2B – – OpenCLIP 78.0

G/14 LAION-2B – – OpenCLIP 80.1
L-2B 12M React 81.0 (+0.9)

Table 2.1: Comparison of zero-shot task transfer with public checkpoints
from CLIP [112] and OpenCLIP [55]. LAION [119, 118] is abbreviated
as “L” in the table. Web-800M†: a privately collected web database with
800M image-text pairs. By continue pretraining on only ∼10M retrieved
data, React outperforms all public CLIP/OpenCLIP checkpoints.

customization for different datasets. This demonstrates the robustness of
our customization process. Further, we see the consistent improvement
in few-shot and full-shot settings, including both linear probe (LP) and
fine-tuning (FT). This result is encouraging, as it demonstrates that when
we have access to some or all data from the downstream task, the proposed
model customization stage remains beneficial. Therefore, we advocate model
customization process in both data-limited and data-rich settings.

Breakdown Analysis. Next, we ask why does the retrieved image-text
knowledge improve the zero-shot task transfer performance on a broad
range of datasets? We compare the breakdown performance on all 20



21

Few-shot Full-shot
Method Zero-Shot LP FT LP FT
CLIP 56.8 65.4 63.3 78.4 80.4
React 60.6 68.9 68.4 80.4 81.8

Gains (+3.8) (+3.5) (+5.1) (+2.0) (+1.4)

Table 2.2: The average scores of image classification performance on 20
datasets in Elevater. React consistently outperforms CLIP in both data-
limited and data-rich regimes.

datasets in Figure 2.4 for the zero-shot settings. Out of 20 datasets, the
retrieval-augmented knowledge shows superior/comparable/inferior per-
formance to the baseline on 15/1/4 datasets for CLIP and 14/0/6 datasets
for OpenCLIP, respectively. Most of the improved and failure datasets are
consistent for both checkpoints. For the top two datasets that gains the
most, i.e. StanfordCars and FGVC Aircraft, relevant image-text knowledge
is retrieved from the web-crawled data LAION-400M to describe the con-
cepts; see Fig. 2.5a. Interestingly, this observation is complementary to
K-LITE [123], which failed on these two datasets, because no knowledge
was extracted from Wiktionary for them, as it often requires domain-
specific knowledge and even visual knowledge to best define a car brand
(e.g. BMW X6 SUV or Audi R8) or an aircraft model type (e.g. DC-10 or
A321).

Limitations. As shown in Fig. 2.4, React struggles on the PatchCamelyon
dataset, a cancer cell recognition benchmark. We visualize the retrieved
samples and the samples from the original training set in Fig. 2.5b. The
retrieved images are either instruction photos and from another sensing
method, which exhibits a different visual distribution from PatchCamelyon.
This suggests the importance of ensuring the retrieval quality for the
domain-of-interest.
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BMW X6 SUV 2012

Audi R8 Coupe 2012

DC-10

A321

Audi R8 At Moscow International Exhibition Motorshow 2008

Picture of 2012 BMW X6

DC-10 makes last passenger flight...

B-6007 - Airbus A320-214 - China Eastern Airlines

(a) Success examples. The two datasets with largest improvement in Fig. 2.4:
Stanford-Cars [65] and FGVC-Aircraft [94]. There is a high concept converage
for these datasets in LAION, resulting in a relevant and diverse retrieved set.

❑ Task Samples ❑ Retrieved Image-Text Pairs

lymph node lymph … tumor… Microscopic enlargement of a mast cell

(b) Failure case. The dataset with the largest degradation in Fig. 2.4: PatchCame-
lyon [135]. LAION-400M has a low concept coverage on this domain, and the
retrieved samples are in a different distribution from the target set.

Figure 2.5: Success and failure cases in Elevater benchmark. We show
class name and the caption of the first retrieved image-text pairs, others
are similar and omitted due to limited space.

Image-Text Retrieval

To demonstrate the generality of React, we consider Flickr30K [154] and
MSCOCO [83] image-text retrieval tasks, in both zero-shot and full-shot
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settings. We use the standard image-text contrastive objective [112]. For
image-text retrieval task, following [112, 58], we use the CLIP-L/14 with
336x336 input resolution in both zero-shot, customization, and fine-tuning
stage. We use the captions from MSCOCO as queries to retrieve 6M image-
text pairs and perform customization. Note that none of the caption queries
are used in the model training stage.

As shown in Table 2.3, React improves the generic CLIP counterparts
on both zero-shot and full-shot retrieval for Flickr30K and MSCOCO
datasets. The gain on zero-shot task transfer is large. On Flickr30K, it
achieves 3.4%/10.0% recall improvement for I2T and T2I retrieval, respec-
tively. Afer fine-tuning on full training data, React still improves over the
baseline slightly. It provides another piece of evidence for React in data-
rich settings. Furthermore, we conduct the same customization procedure
of React on a large checkpoint Bletchley [134] with 864M parameters, and
observe consistent gains over both datasets. It demonstrates that React
scales well with model size on retrieval tasks.

Dense Prediction Tasks

Although React is optimized with the image-level contrastive loss during
the customization stage, we find it beneficial for dense prediction tasks
as well. We showcase its application to dense prediction tasks on object
detection and semantic segmentation.

Object Detection. For object detection, we choose the state-of-the-art
RegionCLIP [170] as our framework. We conduct experiments in two
settings: zero-shot inference and open-vocabulary object detection (OVD)
on MSCOCO dataset. We perform the model customization following the
same setting as Sec. 2.4. Following RegionCLIP, we conduct experiments on
ResNet50 backbone. The results are shown in Table 2.4. React consistently
improves over CLIP checkpoint under all settings.
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Method
Flickr30K MSCOCO

Img → Text Text → Img Img → Text Text → Img
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

Ze
ro

-S
ho

t

ImgBert [111] 70.7 90.2 54.3 79.6 44.0 71.2 32.3 59.0
ALIGN [58] 88.6 98.7 75.7 93.8 58.6 83.0 45.6 69.8
CLIP [112] 88.0 98.7 68.7 90.6 58.4 81.5 37.8 62.4
CLIP† 87.0 98.3 66.5 88.0 59.2 80.7 37.8 62.4
React 90.4 99.1 76.5 93.7 63.3 85.1 47.5 72.0

Bletchley† 90.8 98.2 78.0 94.0 66.7 85.6 48.9 72.7
React 92.1 98.7 79.2 94.7 67.7 85.9 50.5 74.4

Fi
ne

-tu
ne

d GPO [17] 88.7 98.9 76.1 94.5 68.1 90.2 52.7 80.2
ALIGN [58] 95.3 99.8 84.9 97.4 77.0 93.5 59.9 83.3
CLIP† 96.4 99.8 86.5 97.9 78.3 93.8 60.9 83.8
React 96.6 99.9 86.8 98.0 78.7 94.0 61.1 84.1

Table 2.3: Image-text retrieval results on Flickr30K [110] and
MSCOCO [83] datasets. CLIP†, Bletchley†: our evaluation.

Pretrain Backbone Region MSCOCO AP50
Method Proposals Novel Base All

Ze
ro

-S
ho

t CLIP ResNet-50 GT 58.6 58.2 58.3
React ResNet-50 GT 58.9 (+0.3) 59.4 (+1.2) 59.3 (+1.0)

CLIP ResNet-50 RPN 29.7 24.0 25.5
React ResNet-50 RPN 31.6 (+1.9) 25.4 (+1.4) 27.0 (+1.5)

O
V

D CLIP ResNet-50 – 14.2 52.8 42.7
React ResNet-50 – 20.6 (+6.4) 55.1 (+2.3) 46.1 (+3.4)

Table 2.4: Zero-shot and open-vocabulary object detection results on MS-
COCO [83] dataset using RegionCLIP [170] pipeline.

For zero-shot inference, when ground-truth region proposal is used,
React improves over CLIP by +1.0 on overall AP50; when the pretrained
RPN is used, React demonstrates +1.5/+1.4/+1.9 AP50 improvements on
novel, base, and all classes, respectively.

For OVD, we can see that with the React, the detector yields improved



25

performance on base with +2.3 AP50, and importantly, it significantly
improves novel categories with +6.4 AP50. This suggests that the injected
knowledge during the model customization stage improves the learned
fine-grained visual feature that is beneficial to both seen and unseen cate-
gories for object detection, when the downstream coarse-grained data is
available. This is favored, because (1) the weakly-supervised data such as
the coarse-grained image-text pairs requires much less human annotation
cost than fine-grained bounding box annotation, (2) the paired data in
React is free, as it is retrieved from the web, where COCO image-text pairs
are not used in customized training.

Semantic Segmentation. For semantic segmentation, we choose the state-
of-the-art MaskCLIP [171] as the framework. It investigates three evalua-
tion settings for segmentation. First, it makes use of the pretrained CLIP
checkpoint to discover the alignment between grid visual features and the
text prompt features, so as to perform zero-shot semantic segmentation.
Second, to further improve the performance, MaskCLIP [171] proposes
two techniques for refining its zero-shot predictions: key smoothing and
prompt denoising. Lastly, when the training images are available, without
the need to access the training labels, it further proposes MaskCLIP+ [171]
to perform full-shot finetuning on the target training set using pseudo-
labels. Following MaskCLIP [171], we use ViT-B/16 checkpoints, and use
their official code base to train and evaluate models. We report results in
Table 2.5.

On all of the three settings, React demonstrates improvements over
the MaskCLIP. Notably, when refinement techniques are used, React with
locked-text tuning demonstrates a significant 3.6% gain in mIoU. Surpris-
ingly, without seeing the downstream COCO images, the zero-shot evalu-
ation of React (18.2) even slightly outperforms MaskCLIP+ (18.1), which
is finetuned on the downstream training COCO images with self-training.

Summary. These results are encouraging, as it shows that the customized
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mIoU
Method zero-shot w/ refine w/ finetune
MaskCLIP [171] 12.5 14.6 18.1
React (Locked-Text) 14.4 (+1.9) 18.2 (+3.6) 20.7 (+2.6)
React (Locked-Text Gated-Image) 14.5 (+2.0) 16.3 (+1.7) 19.2 (+1.1)

Table 2.5: Zero-shot and annotation-free semantic segmentation results on
COCO Stuff [83] using MaskCLIP [171] (ViT-B/16).

knowledge from React transfers well to dense prediction tasks like detec-
tion and segmentation.

Ablation Studies

We ablate React on ImageNet with CLIP ViT-B/32 checkpoint, with 10M
retrieved image-text pairs from LAION-400M. See more ablations in sup-
plementary.

Tuning strategy. We ablate the design choices in the model customization
stage: (1) direct tuning the pre-trained weights vs. training gated blocks
from scratch; (2) updating visual vs. text encoder. We report results in
Table 2.6. First, a frozen text encoder consistently outperforms a frozen
visual encoder. We conjecture the phenomenon is due to that the retrieved
texts have a much more limited space, comparing to text space in the
original pre-training set (e.g. LAION-400M), as the concepts are limited
to the query classes from the target domain. Therefore, fine-tuning the
text encoder may tend to collapse the pre-trained semantic space.

We advocate two tuning methods for model customization. Locked-
text gated-image tuning has a strong adaptation power, and is efficient in
the model customization stage, with fewer trainable parameters. Locked-
text tuning is also an effective way of customizing the models to down-
stream tasks, without the need of adding extra parameters. By default, we
use gated blocks for its superior performance and efficiency.
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IN1K COCO R@1
Method Visual Text #Train Acc. T2I I2T

D
ire

ct

CLIP [112] ✗ ✗ – 63.2 48.8 29.9
Locked-Image [160] ✗ ✓ 63.4M 63.7 50.5 34.2

Locked-Text ✓ ✗ 88.1M 66.9 51.1 36.1
Full-model ✓ ✓ 151.3M 64.3 54.3 37.9

G
at

ed ✗ ✓ 18.9M 63.0 49.5 33.5
Locked-Text Gated-Image ✓ ✗ 42.5M 68.6 53.4 38.1

✓ ✓ 89.8M 68.7 54.3 39.9

Table 2.6: Ablation: tuning strategy. For our model customization purpose,
we advocate locked-text (gated-image) tuning methods in gray rows. ✓:
trainable, ✗: locked.

Retrieval size. We observe that training with a small retrieval size is more
likely to overfit. We find that a larger retrieval size generally yields better
performance, and saturates at around 6-10M image-text pairs.

Retrieval Size 0 1M 3M 6M 10M
ImageNet-1K Accuracy 63.2 64.8 66.9 68.6 68.6

2.5 Conclusion

We presented React, a plug-and-play framework for leveraging large-
scale image-text corpus as external knowledge to efficiently customize
models on downstream tasks. Extensive experiments demonstrate its
generality and effectiveness in image classification, image-text retrieval,
object detection, and semantic segmentation, on more than 20 different
downstream datasets. We highly advocate the model customization stage
for building more transferable visual system for different downstream
tasks.
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3 visual instruction tuning (llava)

Despite the great adaptation performance React [87] brings about, cre-
ating a streamlined and steerable visual system still requires much effort
and remains under-explored. On the other hand, natural language is a
versatile media to allow human to steer and control the deep models on a
variety of tasks. Instruction tuning large language models (LLMs) using
machine-generated instruction-following data has been shown to improve
zero-shot capabilities on new tasks, but the idea is less explored in the
multimodal field. We present the first attempt to use language-only GPT-4
to generate multimodal language-image instruction-following data. By
instruction tuning on such generated data, we introduce LLaVA: Large
Language and Vision Assistant, an end-to-end trained large multimodal
model that connects a vision encoder and an LLM for general-purpose
visual and language understanding. To facilitate future research on visual
instruction following, we construct two evaluation benchmarks with di-
verse and challenging application-oriented tasks. Our experiments show
that LLaVA demonstrates impressive multimodal chat abilities, sometimes
exhibiting the behaviors of multimodal GPT-4 on unseen images/instruc-
tions, and yields a 85.1% relative score compared with GPT-4 on a synthetic
multimodal instruction-following dataset. When fine-tuned on Science
QA, the synergy of LLaVA and GPT-4 achieves a new state-of-the-art accu-
racy of 92.53%. We make GPT-4 generated visual instruction tuning data,
our model, and code publicly available.

3.1 Introduction

Humans interact with the world through many channels such as vision
and language, as each individual channel has a unique advantage in repre-
senting and communicating certain concepts, and thus facilitates a better
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understanding of the world. One of the core aspirations in artificial intelli-
gence is to develop a general-purpose assistant that can effectively follow
multi-modal vision-and-language instructions, aligned with human intent
to complete various real-world tasks in the wild [5, 75, 74].

To this end, the community has witnessed an emergent interest in de-
veloping language-augmented foundation vision models [75, 38], with
strong capabilities in open-world visual understanding such as classifi-
cation [112, 55, 159, 144, 109], detection [78, 169, 88], segmentation [73,
176, 161] and captioning [136, 77], as well as visual generation and edit-
ing [114, 115, 156, 37, 116, 82]. We refer readers to the Computer Vision in
the Wild reading list for a more up-to-date literature compilation [28]. In
this line of work, each task is solved independently by one single large
vision model, with the task instruction implicitly considered in the model
design. Further, language is only utilized to describe the image content.
While this allows language to play an important role in mapping visual
signals to language semantics—a common channel for human communi-
cation, it leads to models that usually have a fixed interface with limited
interactivity and adaptability to the user’s instructions.

Large language models (LLM), on the other hand, have shown that
language can play a wider role: a universal interface for a general-purpose
assistant, where various task instructions can be explicitly represented
in language and guide the end-to-end trained neural assistant to switch
to the task of interest to solve it. For example, the recent success of Chat-
GPT [103] and GPT-4 [104] have demonstrated the power of aligned LLMs
in following human instructions, and have stimulated tremendous inter-
est in developing open-source LLMs. Among them, LLaMA [132] is an
open-source LLM that matches the performance of GPT-3. Alpaca [130],
Vicuna [25], GPT-4-LLM [107] utilize various machine-generated high-
quality instruction-following samples to improve the LLM’s alignment abil-
ity, reporting impressive performance compared with proprietary LLMs.
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Importantly, this line of work is text-only.
In this chapter, we present visual instruction-tuning, the first attempt

to extend instruction-tuning to the language-image multimodal space,
to pave the way towards building a general-purpose visual assistant. In
particular, this chapter makes the following contributions:

• Multimodal instruction-following data. One key challenge is the lack
of vision-language instruction-following data. We present a data
reformation perspective and pipeline to convert image-text pairs into
an appropriate instruction-following format, using ChatGPT/GPT-4.

• Large multimodal models. We develop a large multimodal model
(LMM), by connecting the open-set visual encoder of CLIP [112]
with the language decoder Vicuna [25], and fine-tuning end-to-end
on our generated instructional vision-language data. Our empirical
study validates the effectiveness of using generated data for LMM
instruction-tuning, and suggests practical tips for building a general-
purpose instruction-following visual agent. When ensembled with
GPT-4, our approach achieves SoTA on the Science QA [92] multi-
modal reasoning dataset.

• Multimodal instruction-following benchmark. We present LLaVA-Bench
with two challenging benchmarks, with a diverse selection of paired
images, instructions and detailed annotations.

• Open-source. We release the following assets to the public: the gen-
erated multimodal instruction data, the codebase, the model check-
points, and a visual chat demo.

3.2 Related Work

Multimodal Instruction-following Agents. In computer vision, exist-
ing works that build instruction-following agents can be broadly catego-
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rized into two classes: (i) End-to-end trained models, which are sepa-
rately explored for each specific research topic. For example, the vision-
language navigation task [4, 47] and Habitat [129] require the embodied
AI agent to follow natural language instructions and take a sequence
of actions to complete goals in visual environments. In the image edit-
ing domain, given an input image and a written instruction that tells
the agent what to do, InstructPix2Pix [12] edits images by following the
human instructions. (ii) A system that coordinates various models via
LangChain [1] / LLMs [103], such as Visual ChatGPT [141], X-GPT [176],
MM-REACT [148], VisProg [44], and ViperGPT [128]. While sharing the
same goal in building instruction-following agents, we focus on develop-
ing an end-to-end trained language-vision multimodal model for multiple
tasks.

Instruction Tuning. In the natural language processing (NLP) com-
munity, to enable LLMs such as GPT-3 [13], T5 [113], PaLM [26], and
OPT [164] to follow natural language instructions and complete real-
world tasks, researchers have explored methods for LLM instruction-
tuning [106, 139, 138], leading to instruction-tuned counterparts such
as InstructGPT [106]/ChatGPT [103], FLAN-T5 [27], FLAN-PaLM [27],
and OPT-IML [56], respectively. It turns out that this simple approach
can effectively improve the zero- and few-shot generalization abilities of
LLMs. It is thus natural to borrow the idea from NLP to computer vi-
sion. More broadly, the teacher-student distillation ideas with foundation
models have been studied in other topics such as image classification [34].
Flamingo [3] can be viewed as the GPT-3 moment in the multimodal
domain, due to its strong performance on zero-shot task transfer and
in-context-learning. Other LMMs trained on image-text pairs include
BLIP-2 [77], FROMAGe [63], and KOSMOS-1 [52]. PaLM-E [33] is an
LMM for embodied AI. Based on the recent “best” open-source LLM
LLaMA, OpenFlamingo [6] and LLaMA-Adapter [162] are open-source
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efforts that enable LLaMA to use image inputs, paving the way to build
open-source multimodal LLMs. While these models present promising
task transfer generalization performance, they are not explicitly tuned with
vision-language instruction data, and their performance in multimodal
tasks usually falls short compared to language-only tasks. In this chapter,
we aim to fill this gap and study its effectiveness. Finally, note that visual
instruction tuning is different from visual prompt tuning [59]: the former
aims to improve the model’s instruction-following abilities, while the latter
aims to improve the parameter-efficiency in model adaptation.

3.3 GPT-assisted Visual Instruction Data
Generation

The community has witnessed a surge in the amount of public multimodal
data such as image-text pairs, ranging from CC [15] to LAION [118].
However, when it comes to multimodal instruction-following data, the
available amount is limited, partially because the process for creating
such data is time-consuming and less well-defined when human crowd-
scouring is considered. Inspired by the success of recent GPT models in
text-annotation tasks [41], we propose to leverage ChatGPT/GPT-4 for
multimodal instruction-following data collection, based on the widely
existing image-pair data.

For an image Xv and its associated caption Xc, it is natural to create
a set of questions Xq with the intent to instruct the assistant to describe
the image content. We prompt GPT-4 to curate such a list of questions.
Therefore, a simple way to expand an image-text pair to its instruction-
following version is Human : Xq Xv<STOP> Assistant : Xc<STOP>. Though
cheap to construct, this simple expanded version lacks diversity and in-
depth reasoning in both the instructions and responses.

To mitigate this issue, we leverage language-only GPT-4 or ChatGPT
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Context type 1: Captions
A group of people standing outside of a black vehicle with various luggage.
Luggage surrounds a vehicle in an underground parking area
People try to fit all of their luggage in an SUV.
The sport utility vehicle is parked in the public garage, being packed for a trip
Some people with luggage near a van that is transporting it.
Context type 2: Boxes
person: [0.681, 0.242, 0.774, 0.694], backpack: [0.384, 0.696, 0.485, 0.914], suit-
case: ...<omitted>

Response type 1: conversation
Question: What type of vehicle is featured in the image?
Answer: The image features a black sport utility vehicle (SUV) ...<omitted>
Response type 2: detailed description
The image is an underground parking area with a black sport utility vehicle
(SUV) parked. There are three people in the scene, with one person standing
closer to the left side of the vehicle, another person in the middle, and the third
person on the right side. They are all working together to pack their luggage
into the SUV for a trip. ...<omitted>
Response type 3: complex reasoning
Question: What challenges do these people face?
Answer: In the image, a group of people is standing outside a black SUV in
a parking area, surrounded by various pieces of luggage, including suitcases
and backpacks. They are facing the challenge of fitting all their luggage into
the black SUV. There are multiple suitcases and backpacks to be packed, which
suggests that the group has a significant amount of belongings ...<omitted>

Table 3.1: One example to illustrate the instruction-following data. The
top block shows the contexts such as captions and boxes used to prompt
GPT, and the bottom block shows the three types of responses. Note that
the visual image is not used to prompt GPT, we only show it here as a
reference.

as the strong teacher (both accept only text as input), to create instruction-
following data involving visual content. Specifically, in order to encode
an image into its visual features to prompt a text-only GPT, we use two
types of symbolic representations: (i) Captions typically describe the visual
scene from various perspectives; (ii) Bounding boxes usually localize the
objects in the scene, and each box encodes the object concept and its spatial
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location. One example is shown in the top block of Table 3.1.
This symbolic representation allows us to encode the image as an LLM-

recognizable sequence. We use COCO images [83] and generate three
types of instruction-following data. One example per type is shown in
the bottom block of Table 3.1. For each type, we first manually design a
few examples. They are the only human annotations we have during data
collection, and are used as seed examples in in-context-learning to query
GPT-4.

• Conversation. We design a conversation between the assistant and a
person asking questions about this photo. The answers are in a tone
as if the assistant is seeing the image and answering the question.
A diverse set of questions are asked about the visual content of the
image, including the object types, counting the objects, object actions,
object locations, relative positions between objects. Only questions
that have definite answers are considered.

• Detailed description. To include a rich and comprehensive description
for an image, we create a list of questions with such an intent. We
prompt GPT-4 then curate the list. For each image, we randomly sam-
ple one question from the list to ask GPT-4 to generate the detailed
description.

• Complex reasoning. The above two types focus on the visual content
itself, based on which we further create in-depth reasoning questions.
The answers typically require a step-by-step reasoning process by
following rigorous logic.

We collect 158K unique language-image instruction-following samples
in total, including 58K in conversations, 23K in detailed description, and
77k in complex reasoning, respectively. We ablated the use of ChatGPT
and GPT-4 in our early experiments, and found that GPT-4 consistently
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provides higher quality instruction-following data, such as spatial reason-
ing.

3.4 Visual Instruction Tuning

Architecture

The primary goal is to effectively leverage the capabilities of both the pre-
trained LLM and visual model. The network archtecture is illustrated in
Figure 3.1. We choose Vicuna [25] as our LLM fϕ(·) parameterized by
ϕ, as it has the best instruction following capabilities in language tasks
among publicly available checkpoints [130, 25, 107].

Vision Encoder
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Figure 3.1: LLaVA network architecture.

For an input image Xv, we consider the pre-trained CLIP visual encoder
ViT-L/14 [112], which provides the visual feature Zv = g(Xv). The grid
features before and after the last Transformer layer are considered in
our experiments. We consider a simple linear layer to connect image
features into the word embedding space. Specifically, we apply a trainable
projection matrix W to convert Zv into language embedding tokens Hv,
which have the same dimensionality as the word embedding space in the
language model:

Hv = W · Zv, with Zv = g(Xv) (3.1)
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Thus, we have a sequence of visual tokens Hv. Note that our simple
projection scheme is lightweight, which allows us to iterate data centric
experiments quickly. More sophisticated schemes to connect the image
and language representations can also be considered, such as gated cross-
attention in Flamingo [3] and Q-former in BLIP-2 [77]. We leave exploring
possibly more effective and sophisticated architecture designs for LLaVA
as future work.

Training

For each image Xv, we generate multi-turn conversation data
(X1

q, X1
a, · · · , XT

q , XT
a ), where T is the total number of turns. We organize

them as a sequence, by treating all answers as the assistant’s response, and
the instruction Xt

instruct at the t-th turn as:

Xt
instruct =

{
Randomly choose [X1

q, Xv] or [Xv, X1
q], the first turn t = 1

Xt
q, the remaining turns t > 1

(3.2)

This leads to the unified format for the multimodal instruction-following
sequence illustrated in Table 3.2. We perform instruction-tuning of the
LLM on the prediction tokens, using its original auto-regressive training
objective.

Specifically, for a sequence of length L, we compute the probability of
the target answers Xa by:

p(Xa|Xv, Xinstruct) =

L∏
i=1

pθ(xi|Xv, Xinstruct,<i, Xa,<i), (3.3)

where θ is the trainable parameters, Xinstruct,<i and Xa,<i are the instruc-
tion and answer tokens in all turns before the current prediction token
xi, respectively. Please see Table 3.2 for an illustration of the prediction
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Xsystem-message <STOP>
Human : X1

instruct <STOP> Assistant: X1
a <STOP>

Human : X2
instruct <STOP> Assistant: X2

a <STOP> · · ·

Table 3.2: The input sequence used to train the model. Only two conver-
sation turns are illustrated here; in practice, the number of turns varies
based on the instruction-following data. In our current implementation,
we follow Vicuna-v0 [25] to set the system message Xsystem-message and we
set <STOP> = ###. The model is trained to predict the assistant answers
and where to stop, and thus only green sequence/tokens are used to
compute the loss in the auto-regressive model.

tokens. For the conditionals in (3.3), we explicitly add Xv to emphasize the
fact that the image is grounded for all answers, and we omit Xsystem-message

and all previous <STOP> for better readability. For LLaVA model training,
we consider a two-stage instruction-tuning procedure.

Stage 1: Pre-training for Feature Alignment. To strike a balance between
concept coverage and training efficiency, we filter CC3M to 595K image-
text pairs. These pairs are converted to the instruction-following data
using the naive expansion method describe in Section 3.3. Each sample
can be treated as a single-turn conversation. To construct the input Xinstruct

in (3.2), for an image Xv, a question Xq is randomly sampled, which is a
language instruction to request the assistant to describe the image briefly.
The ground-truth prediction answer Xa is the original caption. In training,
we keep both the visual encoder and LLM weights frozen, and maximize
the likelihood of (3.3) with trainable parameters θ = W (the projection
matrix) only. In this way, the image features Hv can be aligned with the pre-
trained LLM word embedding. This stage can be understood as training a
compatible visual tokenizer for the frozen LLM.

Stage 2: Fine-tuning End-to-End. We always keep the visual encoder
weights frozen, and continue to update both the pre-trained weights of
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the projection layer and LLM in LLaVA; i.e., the trainable parameters are
θ = {W,ϕ} in (3.3). We consider two specific use case scenarios:

• Multimodal Chatbot. We develop a Chatbot by fine-tuning on the 158K
language-image instruction-following data in Section 3.3. Among
the three types of responses, conversation is multi-turn while the
other two are single-turn. They are uniformly sampled in training.

• Science QA. We study our method on the ScienceQA benchmark [92],
the first large-scale multimodal science question dataset that anno-
tates the answers with detailed lectures and explanations. Each
question is provided a context in the form of natural language or
an image. The assistant provides the reasoning process in natural
language and selects the answer among multiple choices. For train-
ing in (3.2), we organize the data as a single turn conversation, the
question & context as Xinstruct, and reasoning & answer as Xa.

3.5 Experiments

We assess the performance of LLaVA in instruction-following and visual
reasoning capabilities with two primary experimental settings: multi-
modal chatbot and the ScienceQA dataset, respectively. We train all mod-
els with 8× A100s, following Vicuna’s hyperparameters [25]. We pre-train
our model on the filtered CC-595K subset for 1 epoch with a learning rate
of 2e-3 and a batch size of 128, and fine-tune on the proposed LLaVA-
Instruct-158K dataset for 3 epochs, with a learning rate of 2e-5 and a batch
size of 32.

Multimodal Chatbot

We developed a chatbot demo to show the image understanding and
conversation abilities of LLaVA, and to study how well LLaVA is able to
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Visual input example, Extreme Ironing:

Src: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg

User What is unusual about this image?
LLaVA The unusual aspect of this image is a man ironing clothes on the back

of a minivan or van. This is not a typical place to perform this activity,
as one would usually iron clothes in a more stationary and safe
location, such as a home, using a regular ironing board. The scene
depicted in the image is peculiar as it involves a makeshift ironing
setup on a vehicle, which can be both unsafe and unconventional.
Additionally, it is not clear how the man is able to maintain balance
and stability while ironing clothes in such an unstable environment.
[Start a new conversation, and clear the history]

User What’s happening in the scene?
LLaVA The image depicts a man standing on top of a yellow SUV in a busy

city street. He is holding a portable ladder, seemingly ironing clothes
while standing on the vehicle. Around the scene, there are other
cars, a traffic light, and a fire hydrant. Additionally, there are two
other people in the vicinity, one close to the man on the car and
another further away. The man on the ladder appears to be attracting
attention due to his unconventional choice of ironing his clothes on
top of a moving car. The city street around him is bustling with
activity, adding to the unique nature of the scene.

User What is unusual about this image?
GPT-4 [104] The unusual thing about this image is that a man is ironing clothes

on an ironing board attached to the roof of a moving taxi.
User What is unusual about this image?
BLIP-2 a man is sitting on the back of a yellow cab
User What is unusual about this image?
OpenFlamingo The man is drying his clothes on the hood of his car.

Table 3.3: Example prompt from GPT-4 paper [104] to compare visual
reasoning and chat capabilities. Compared to BLIP-2 [77] and Open-
Flamingo [6], LLaVA accurately follows the user’s instructions, instead
of simply describing the scene. LLaVA offers a more comprehensive
response than GPT-4. Even when merely asked to describe the image,
LLaVA identifies atypical aspects of the image.

https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg
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digest visual inputs and exhibit instruction-following capabilities. We first
use the examples in the original GPT-4 paper [104], shown in Table 3.3,
that require in-depth image understanding. For comparisons, we quote
the prompt and response of the multimodal GPT-4 from their paper, and
query BLIP-2 and OpenFlamingo model checkpoints to get their response.

Surprisingly, although LLaVA is trained with a small multimodal
instruction-following dataset (∼80K unique images), it demonstrates quite
similar reasoning results with multimodal GPT-4 on these examples. Note
that while these images are out-of-domain for LLaVA, LLaVA is still able
to understand the scenes and follow the question instruction to provide
a reasonable response. In contrast, BLIP-2 and OpenFlamingo focus on
describing the image, instead of following the user instruction to answer
in an appropriate manner.

Quantitative Evaluation. To gain a systematic understanding of the per-
formance of LLaVA, we propose a quantitative metric to measure the
model’s instruction-following capability on multimodal data. Inspired by
[25], we leverage GPT-4 to measure the quality of generated responses.
Specifically, we create triplets consisting of image, ground-truth textual
descriptions, and question. The candidate models (e.g. LLaVA) predict the
answers based on the question and the image. To provide an approximate
theoretical upper bound, we create a reference prediction based on the ques-
tion and the ground-truth textual descriptions, using the text-only GPT-4.
After obtaining the responses from both models, we feed the question,
visual information (in the format of textual descriptions), and the gener-
ated responses from both assistants, to the judge (i.e. text-only GPT-4). It
evaluates the helpfulness, relevance, accuracy, and level of detail of the
responses from the assistants, and gives an overall score on a scale of 1 to
10, where a higher score indicates better overall performance. It is also
asked to provide a comprehensive explanation for the evaluation, for us to
better understand the models. We report relative scores w.r.t. the text-only
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Conversation Detail description Complex reasoning All

Full data 83.1 75.3 96.5 85.1
Detail + Complex 81.5 (-1.6) 73.3 (-2.0) 90.8 (-5.7) 81.9 (-3.2)

Conv + 5% Detail + 10% Complex 81.0 (-2.1) 68.4 (-7.1) 91.5 (-5.0) 80.5 (-4.4)

Conversation 76.5 (-6.6) 59.8 (-16.2) 84.9 (-12.4) 73.8 (-11.3)

No Instruction Tuning 22.0 (-61.1) 24.0 (-51.3) 18.5 (-78.0) 21.5 (-63.6)

Table 3.4: Ablation on LLaVA-Bench (COCO) with different training data.
We report relative scores w.r.t. a text-only GPT-4 model that uses ground
truth image captions and bounding boxes as visual input. We prompt
GPT-4 with the answers from our model outputs and the answers by GPT-4
(text-only), and let it compare between both responses and give a rating
with an explanation.

Conversation Detail description Complex reasoning All
OpenFlamingo [6] 19.3 ± 0.5 19.0 ± 0.5 19.1 ± 0.7 19.1 ± 0.4
BLIP-2 [77] 54.6 ± 1.4 29.1 ± 1.2 32.9 ± 0.7 38.1 ± 1.0
LLaVA 57.3 ± 1.9 52.5 ± 6.3 81.7 ± 1.8 67.3 ± 2.0
LLaVA† 58.8 ± 0.6 49.2 ± 0.8 81.4 ± 0.3 66.7 ± 0.3

Table 3.5: Instruction-following capability comparison using relative scores
on LLaVA-Bench (In-the-Wild). The results are reported in the format
of mean ± std. For the first three rows, we report three inference runs.
LLaVA performs significantly better than others. † For a given set of
LLaVA decoding sequences, we evaluate by querying GPT-4 three times;
GPT-4 gives a consistent evaluation.

GPT-4 model that uses the textural ground truth description as visual
input. We create two benchmarks to evaluate the model’s performance.

LLaVA-Bench (COCO). We randomly select 30 images from COCO-Val-
2014, and for each image, we generate three types of questions (conversa-
tion, detailed description, complex reasoning) using the proposed data
generation pipeline in Sec. 3.3, totaling 90 questions. This benchmark
studies the model’s alignment behavior and capabilities with consistent
visual inputs. We vary the training datasets to study the effectiveness
of different types of instruction-following data, and show the results in
Table 4.4. First, with instruction tuning, the model’s ability of following
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user instructions improves significantly by over 50 points. Second, adding
a small amount of detailed description and complex reasoning questions
contributes to a considerable improvement of the model’s overall capabil-
ity by 7 points. Furthermore, it also improves the model’s performance
on conversational questions, suggesting that improvements in reasoning
capabilities complement conversational abilities. Finally, we show that
having all three types of data yields the best performance at 85.1%.

LLaVA-Bench (In-the-Wild). To evaluate the model’s capability in more
challenging tasks and generalizability to novel domains, we collect a di-
verse set of 24 images with 60 questions in total, including indoor and
outdoor scenes, memes, paintings, sketches, etc., and associate each image
with a highly-detailed and manually-curated description and a proper
selection of questions. We compare LLaVA, BLIP, and OpenFlamingo in Ta-
ble 3.5. Thanks to visual instruction tuning, LLaVA achieves significantly
better performance compared with BLIP-2 (+29%) and OpenFlamingo
(+48%). Compared to the text-only GPT-4 that has access to ground-truth
labels, LLaVA achieves an impressive 81.7% performance on complex
reasoning questions, with an overall score of 67.3%.

Limitations. This LLaVA-Bench (In-the-Wild) is designed to be challeng-
ing and to reveal a model’s weaknesses. We provide two examples with
associated captions and questions in Table 3.6. For the ramen example
(left), to correctly answer the name of the restaurant, it requires the model
to have a large knowledge coverage and multilingual understanding capa-
bility; to correctly describe the side dishes, the model may need to retrieve
relevant multimodal information from Internet. For the fridge example
(right), perceiving the correct brand of the yogurt requires the model to
process high resolution images and possess extensive knowledge coverage.
We also observed an interesting failure of LLaVA, as it responds with
yes when asked if strawberry-flavored yogurt is present, even though the
fridge contains only yogurt and strawberries. This indicates that, at times,
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Challenging examples from LLaVA-Bench (In-the-Wild):

ICHIRAN Ramen [source] Filled fridge [source]
Annotation A close-up photo of a meal at

ICHIRAN. The chashu ramen
bowl with a spoon is placed
in the center. The ramen
is seasoned with chili sauce,
chopped scallions, and served
with two pieces of chashu.
Chopsticks are placed to the
right of the bowl, still in their
paper wrap, not yet opened.
The ramen is also served with
nori on the left. On top,
from left to right, the follow-
ing sides are served: a bowl
of orange spice (possibly gar-
lic sauce), a plate of smoke-
flavored stewed pork with
chopped scallions, and a cup
of matcha green tea.

An open refrigerator filled with a vari-
ety of food items. In the left part of
the compartment, towards the front,
there is a plastic box of strawberries
with a small bag of baby carrots on top.
Towards the back, there is a stack of
sauce containers. In the middle part
of the compartment, towards the front,
there is a green plastic box, and there
is an unidentified plastic bag placed on
it. Towards the back, there is a carton
of milk. In the right part of the com-
partment, towards the front, there is a
box of blueberries with three yogurts
stacked on top. The large bottle of yo-
gurt is Fage non-fat yogurt, and one of
the smaller cups is Fage blueberry yo-
gurt. The brand and flavor of the other
smaller cup are unknown. Towards the
back, there is a container with an un-
known content.

Question 1 What’s the name of the restau-
rant?

What is the brand of the blueberry-
flavored yogurt?

Question 2 Describe this photo in detail. Is there strawberry-flavored yogurt in
the fridge?

Table 3.6: Challenging examples from LLaVA-Bench (In-the-Wild), we
provide extremely-detailed annotation for each image for an accurate
evaluation. Some questions require the model to extract details from high
resolution image and to have a broad knowledge coverage.

https://media-cdn.tripadvisor.com/media/photo-p/12/67/49/e2/photo7jpg.jpg
https://static01.nyt.com/images/2020/01/23/smarter-living/23help/00wc-fridge-superJumbo.jpg?quality=75&auto=webp
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LLaVA perceives the image as a “bag of patches”, failing to grasp the
complex semantics within the image. We hope LLaVA serves as a solid
baseline on the benchmarks, on which our findings can inspire future
work in developing more capable LMMs.

ScienceQA

ScienceQA [92] contains 21k multimodal multiple choice questions with
rich domain diversity across 3 subjects, 26 topics, 127 categories, and 379
skills. The benchmark dataset is split into training, validation, and test
splits with 12726, 4241, and 4241 examples, respectively. We consider two
representative methods, including GPT-3.5 model (text-davinci-002)
with and without chain-of-thought (CoT), LLaMA-Adapter [162], as well
as multimodal chain-of-thought (MM-CoT) [166], which is the current
SoTA method on this dataset. For more baseline numbers, please see [92].

The results are reported in Table 3.7. For LLaVA, we use the visual
features before the last layer, ask the model to first predict reasons and
then the answer, and train it for 12 epochs. It yields 90.92% accuracy,
which is quite close to the SoTA 91.68%. To explore the limit of LLMs, we
also prompt GPT-4 using 2-shot in-context-learning and achieve 82.69%
accuracy, which is a 7.52% absolute gain compared with 75.17% from
GPT-3.5. For a substantial number of questions, we note that GPT-4 fails
simply because it reports that there is insufficient context such as images or
plots. We consider two schemes to combine the outcomes from our model
and GPT-4. (i) A GPT-4 complement. Whenever GPT-4 fails to provide
answers, we use the prediction from our method. This schemes yields
90.97% accuracy, which is almost the same as applying our method alone.
(ii) GPT-4 as the judge. Whenever GPT-4 and LLaVA produce different
answers, we prompt GPT-4 again, asking it to provide its own final answer
based on the question and two outcomes. The spirit is similar with CoT,
but with the external knowledge from the other model. Surprisingly, this
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Method Subject Context Modality Grade AverageNAT SOC LAN TXT IMG NO G1-6 G7-12
Representative & SoTA methods with numbers reported in the literature

Human [92] 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40
GPT-3.5 [92] 74.64 69.74 76.00 74.44 67.28 77.42 76.80 68.89 73.97
GPT-3.5 w/ CoT [92] 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.17
LLaMA-Adapter [162] 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05 85.19
MM-CoTBase [166] 87.52 77.17 85.82 87.88 82.90 86.83 84.65 85.37 84.91
MM-CoTLarge [166] 95.91 82.00 90.82 95.26 88.80 92.89 92.44 90.31 91.68

Results with our own experiment runs
GPT-4† 84.06 73.45 87.36 81.87 70.75 90.73 84.69 79.10 82.69
LLaVA 90.36 95.95 88.00 89.49 88.00 90.66 90.93 90.90 90.92
LLaVA+GPT-4† (complement) 90.36 95.50 88.55 89.05 87.80 91.08 92.22 88.73 90.97
LLaVA+GPT-4† (judge) 91.56 96.74 91.09 90.62 88.99 93.52 92.73 92.16 92.53

Table 3.7: Accuracy (%) on Science QA dataset. Question categories: NAT
= natural science, SOC = social science, LAN = language science, TXT
= text context, IMG = image context, NO = no context, G1-6 = grades
1-6, G7-12 = grades 7-12. †Text-only GPT-4, our eval. Our novel model
ensembling with the text-only GPT-4 consistently improves the model’s
performance under all categories, setting the new SoTA performance.

scheme is able to provide consistent improvement over all question classes,
and achieves a new SoTA accuracy of 92.53%. Interestingly, the text-only
GPT-4, which cannot process images, improves the overall performance
of the model on questions that have an image as context. This is because
some of these questions do not actually require the image context for a
correct answer. The GPT-4 judge can identify such cases and correct some
of the errors that LLaVA makes. To the best of our knowledge, this is
the first time that GPT-4 is used for model ensembling. We hope this
finding can encourage future research to explore more effective methods
to leverage LLMs for model ensembling.

Ablations. We ablate several design choices on ScienceQA in Table 3.8.
(i) Visual features. We tried using the last layer feature from CLIP vision
encoder, which yields 89.96% and is 0.96% lower than the feature before
the last layer. We hypothesize that this is because CLIP’s last layer features
may focus more on global and abstract image properties compared to the
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Visual features Before Last
Best variant 90.92 89.96 (-0.96)

Predict answer first - 89.77 (-1.15)

Training from scratch 85.81 (-5.11) -
7B model size 89.84 (-1.08) -

Table 3.8: Design choice ablations (%). The difference with the best variant
is reported in red text.

layer before it, which can focus more on localized properties that are useful
for understanding specific image details. (ii) Chain-of-thought. To decide
the order between the answer and reasoning process in the model predic-
tion, we run both variants and observe that answer-first reports the best
number 89.77% accuracy in 12 epochs, while reasoning-first can quickly
reach 89.77% accuracy in 6 epochs, but no further improvement with more
training. Training the model for 24 epochs does not improve the perfor-
mance. We conclude that CoT-like reasoning-first strategy can largely
improve convergence, but contributes relatively little to the final perfor-
mance. (iii) Pre-training. We skip pre-training and directly train on Science
QA from scratch – performance drops to 85.81% accuracy. The 5.11% ab-
solute degradation indicates the importance of our pre-training stage, in
aligning multimodal features while preserving the vast pre-trained knowl-
edge. (iv) Model size. We keep all configurations the same as our best 13B
model, and train a 7B model. This yields 89.84% accuracy, which is 1.08%
lower than 90.92%, demonstrating the importance of model scale.

3.6 Conclusion

This chapter demonstrated the effectiveness of visual instruction tuning.
We presented an automatic pipeline to create language-image instruction-
following data, based on which we train LLaVA, a multimodal model
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to follow human intent to complete visual tasks. It achieves the new
SoTA accuracy when fine-tuned on ScienceQA, and excellent visual chat
capabilities when fine-tuned on multimodal chat data. Besides, we present
the first benchmark to study multimodal instruction-following capability.
This chapter is an initial step in visual instruction tuning, and mainly
focuses on real-life tasks. For more quantitative results of LLaVA on
academic benchmarks, please refer to the improved baselines with visual
instruction tuning [85]. We hope our work can inspire future research on
building more capable multimodal models.
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4 improved baselines with visual instruction
tuning

Instruction-following large multimodal models (LMM) like LLaVA have
shown encouraging progress with visual instruction tuning. In this chap-
ter, we present the first systematic study to investigate the design choices of
LMMs in a controlled setting under the LLaVA framework. We show that
the fully-connected vision-language connector in LLaVA is surprisingly
powerful and data-efficient. With simple modifications to LLaVA, namely,
using CLIP-ViT-L-336px with an MLP projection and adding academic-
task-oriented VQA data with response formatting prompts, we establish
stronger baselines that achieve state-of-the-art across 11 benchmarks. Our
final 13B checkpoint uses merely 1.2M publicly available data, and fin-
ishes full training in ∼1 day on a single 8-A100 node. Furthermore, we
present some early exploration of open problems in LMMs, including
scaling to higher resolution inputs, compositional capabilities, and model
hallucination, etc. We hope this makes state-of-the-art LMM research
more accessible. Code and model are publicly available.

4.1 Introduction

Large multimodal models (LMMs) have become increasingly popular
in the research community, as they are the key building blocks towards
general-purpose assistants [74, 105, 3]. Recent studies on LMMs are con-
verging on a central concept known as visual instruction tuning [86]. The
results are promising, e.g. LLaVA [86] and MiniGPT-4 [175] demonstrate
impressive results on natural instruction-following and visual reason-
ing capabilities. To better understand the capability of LMMs, multiple
benchmarks [90, 157, 72, 81, 36] have been proposed. Recent works fur-
ther demonstrate improved performance by scaling up the pretraining
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Figure 4.1: LLaVA-1.5 achieves SoTA on a broad range of 11 tasks (Top),
with high training sample efficiency (Left) and simple modifications to
LLaVA (Right): an MLP connector and including academic-task-oriented
data with response formatting prompts.
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data [29, 7, 152], instruction-following data [167, 71, 29, 42], visual en-
coders [7], or language models [93], respectively. The LLaVA architecture
is also leveraged in different downstream tasks and domains, including
region-level [18, 163] and pixel-level [67, 137] understanding, biomedical
assistants [76], image generation [9], adversarial studies [14, 168].

However, despite many benchmarks and developments, it still remains
unclear what the best recipe is to train LMMs towards the goal of general-
purpose assistants. For example, LLaVA [86] excels in conversational-style
visual reasoning and even outperforms later approaches like Instruct-
BLIP [29] on such benchmarks [157], while InstructBLIP excels in tra-
ditional VQA benchmarks that demands single-word or short answers.
Given the significant differences in the model architecture and training
data between them, the root cause of the disparity in their capabilities
remains elusive, despite conjectures [157, 90]: the amount of training data,
the usage of resamplers like Qformer [77], etc. To this end, we present
the first systematic study to investigate the design choices of LMMs in a
controlled setting. Our study originates from LLaVA and builds a road
map by carefully making effective contributions from the perspectives of
the input, model, and data.

First, we unveil that the fully-connected vision-language connector
in LLaVA is surprisingly powerful and data-efficient, and we establish
stronger and more feasible baselines built upon the LLaVA framework.
We report that two simple improvements, namely, an MLP cross-modal
connector and incorporating academic task related data such as VQA,
are orthogonal to the framework of LLaVA, and when used with LLaVA,
lead to better multimodal understanding capabilities. In contrast to In-
structBLIP [29] or Qwen-VL [7], which trains specially designed visual
resamplers on hundreds of millions or even billions of image-text paired
data, LLaVA uses one of the simplest architecture design for LMMs and
requires only training a simple fully-connected projection layer on merely
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600K image-text pairs. Our final model can finish training in ∼1 day on a
single 8-A100 machine and achieves state-of-the-art results on a wide range
of benchmarks. Moreover, unlike Qwen-VL [7] that includes in-house
data in training, LLaVA utilizes only publicly available data.

Next, we delve into an early exploration of other open problems of large
multimodal models. Our findings include: (1) Scaling to high-resolution
image inputs. We show that LLaVA’s architecture is versatile in scaling
to higher resolutions by simply dividing images into grids and maintains
its data efficiency; with the increased resolution, it improves the model’s
detailed perception capabilities and reduces hallucination. (2) Compo-
sitional capabilities. We find that large multimodal models are capable
of generalizing to compositional capabilities. For example, training on
long-form language reasoning together with shorter visual reasoning can
improve the model’s writing capability for multimodal questions. (3)
Data efficiency. We show that randomly downsampling LLaVA’s training
data mixture by up to 75% does not significantly decrease the model’s per-
formance, suggesting that the possibility of a more sophisticated dataset
compression strategy can further improve LLaVA’s already efficient train-
ing pipeline. (4) Data scaling. We provide empirical evidence for the
scaling of data granularity in conjunction with the model’s capability
is crucial for an improved capability without introducing artifacts like
hallucination.

In sum, we perform a systematic study on the training of large multi-
modal models, and introduce a simple yet effective approach to balance
the multitask learning and effective scaling for large multimodal models.
Our improved baselines, LLaVA-1.5, uses only public data, achieves the
state-of-the-art on a broad range of 11 tasks, and is significantly more
data-efficient than previous approaches. By rethinking the conventional
approaches and exploring the open problems in visual instruction tuning,
we pave the way for more robust and capable systems for LMMs. We hope
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these improved and easily-reproducible baselines will provide a reference
for future research in open-source LMMs.

4.2 Related Work

Instruction-following large multimodal models (LMMs). Common ar-
chitectures include a pre-trained visual backbone to encode visual features,
a pre-trained large language model (LLM) to comprehend the user instruc-
tions and produce responses, and a vision-language cross-modal connector
to align the vision encoder outputs to the language models. As shown
in Fig. 4.1, LLaVA [86] is perhaps the simplest architecture for LMMs.
Optionally, visual resamplers (e.g. Qformer [77]) are used to reduce the
number of visual patches [175, 29, 7]. Training an instruction-following
LMM usually follows a two-stage protocol. First, the vision-language
alignment pretraining stage leverages image-text pairs to align the visual
features with the language model’s word embedding space. Earlier works
utilize relatively few image-text pairs (e.g. ∼600K [86] or ∼6M [175]), while
some recent works pretrain the vision-language connector for a specific
language model on a large amount of image-text pairs (e.g. 129M [29]
and 1.4B [7]), to maximize the LMM’s performance. Second, the visual
instruction tuning stage tunes the model on visual instructions [86], to
enable the model to follow users’ diverse requests on instructions that
involve the visual contents. Dealing with higher resolution with grids in
LMM are studied in con-current works [70, 2, 151].

Multimodal instruction-following data. In NLP, studies show that the
quality of instruction-following data largely affects the capability of the
resulting instruction-following models [172]. For visual instruction tun-
ing, LLaVA [86] is the pioneer to leverage text-only GPT-4 to expand the
existing COCO [84] bounding box and caption dataset to a multimodal
instruction-following dataset that contains three types of instruction-
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following data: conversational-style QA, detailed description, and complex
reasoning. LLaVA’s pipeline has been employed to expand to textual under-
standing [165], million-scales [167], and region-level conversations [18].
InstructBLIP [29] incorporates academic-task-oriented VQA datasets to
further enhance the model’s visual capabilities. Conversely, [16] identifies
that such naive data merging can result in models that tend to overfit to
VQA datasets and thus are unable to participate in natural conversations.
The authors further propose to leverage the LLaVA pipeline to convert
VQA datasets to a conversational style. While this proves effective for
training, it introduces added complexities in data scaling. However, in
NLP, the FLAN family [140, 27] shows that adding a large number of
academic language tasks for instruction tuning can effectively improve
the generalization ability. In light of this, we consider investigating the
root cause of the inability to balance between natural conversations and
academic tasks in multimodal models.

4.3 Approach

Preliminaries

As the seminal work of visual instruction tuning, LLaVA [86] showcases
commendable proficiency in visual reasoning capabilities, surpassing even
more recent models on diverse benchmarks [157, 8] for real-life visual
instruction-following tasks. LLaVA uses a single linear layer to project the
visual features to language space, and optimizes the whole LLM for visual
instruction tuning. However, LLaVA falls short on academic benchmarks
that typically require short-form answers (e.g. single-word), and tends to
answer yes for yes/no questions due to the lack of such data in the training
distribution.

On the other hand, InstructBLIP [29] is the pioneer to incorporate
academic-task-oriented datasets like VQA-v2 [43] along with LLaVA-
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Instruct [86], and demonstrates improved performance on VQA bench-
marks. It pretrains Qformer [77] on 129M image-text pairs and only
finetunes the instruction-aware Qformer for visual instruction tuning.
However, recent studies [16, 157] show that it does not perform as well
as LLaVA on engaging in real-life visual conversation tasks. More specif-
ically, as shown in Table 4.1a, it can overfit to VQA training sets with
short-answers, even on requests that require detailed responses.

Response Format Prompting

We find that the inability [16] to balance between short- and long-form
VQA for approaches like InstructBLIP [29], which leverages instruction
following data that includes both natural responses and short-answers,
is mainly due to the following reasons. First, ambiguous prompts on the
response format. For example, Q: {Question} A: {Answer}. Such prompts
do not clearly indicate the desired output format, and can overfit an LLM
behaviorally to short-form answers even for natural visual conversations.
Second, not finetuning the LLM. The first issue is worsened by Instruct-
BLIP only finetuning the Qformer for instruction-tuning. It requires the
Qformer’s visual output tokens to control the length of the LLM’s output
to be either long-form or short-form, as in prefix tuning [79], but Qformer
may lack the capability of properly doing so, due to its limited capacity
compared with LLMs like LLaMA.

Thus, to enable LLaVA to better handle short-form answers while
addressing the issues of InstructBLIP, we propose to use a single response
formatting prompt that clearly indicates the output format. It is appended
at the end of VQA questions when promoting short answers: Answer the
question using a single word or phrase. We find that when the LLM is finetuned
with such prompts, LLaVA is able to properly adjust the output format
according to the user’s instructions (see Table 4.1b), and does not require
additional processing of the VQA answers using ChatGPT [16], which
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Visual input example, Multitask Balancing Problem:

User Is this unusual? Please explain in detail.
InstructBLIP yes

(a) Example of InstructBLIP [29] (Vicuna-13B) having difficulty balancing be-
tween short- and long-form answers.

Visual input example, Different Format Prompts:
Normal prompt What is the color of the shirt that the man is wearing?
Response The man is wearing a yellow shirt.
Ambiguous prompt Q: What is the color of the shirt that the man is wear-

ing? A:
Response The man is wearing a yellow shirt.
Formatting prompt What is the color of the shirt that the man is wearing?

Answer the question using a single word or phrase.
Response Yellow.

(b) Comparison of how different prompts regularize the output format. The
results are obtained zero-shot directly after LLaVA undergoes the first-stage
vision-language alignment pretraining, without the second-stage visual instruc-
tion tuning.

Table 4.1: Visual input example to illustrate the challenge of (a) multitask
balancing and (b) different format prompts. The same image input is
used.

further enables scaling to various data sources. As shown in Table 4.2, by
merely including VQAv2 [43] in training, LLaVA’s performance on MME
significantly improves (1323.8 vs 809.6) and outperforms InstructBLIP by
111 points.
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split encode flatten

LLM

resize encode flatten

Figure 4.2: LLaVA-1.5-HD. Scaling LLaVA-1.5 to higher resolutions by
splitting the image into grids and encoding them independently. This
allows the model to scale to any resolution, without performing positional
embedding interpolation for ViTs. We additionally concatenate the feature
of a downsampled image to provide the LLM with a global context.

Method LLM Res. GQA MME MM-Vet
InstructBLIP 14B 224 49.5 1212.8 25.6

Only using a subset of InstructBLIP training data
0 LLaVA 7B 224 – 809.6 25.5
1 +VQA-v2 7B 224 47.0 1197.0 27.7
2 +Format prompt 7B 224 46.8 1323.8 26.3
3 +MLP VL connector 7B 224 47.3 1355.2 27.8
4 +OKVQA/OCR 7B 224 50.0 1377.6 29.6

Additional scaling
5 +Region-level VQA 7B 224 50.3 1426.5 30.8
6 +Scale up resolution 7B 336 51.4 1450 30.3
7 +GQA 7B 336 62.0∗ 1469.2 30.7
8 +ShareGPT 7B 336 62.0∗ 1510.7 31.1
9 +Scale up LLM 13B 336 63.3∗ 1531.3 36.1

Table 4.2: Scaling results on ■ data, ■ model, and ■ resolution. We choose
to conduct experiments on GQA [53], MME [36], and MM-Vet [157] to
examine the representative capabilities of VQA with short answers, VQA
with output formatting, and natural visual conversations, respectively.
∗Training images of GQA were observed during training.
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Scaling the Data and Model

MLP vision-language connector. Inspired by the improved performance
in self-supervised learning by changing from a linear projection to an
MLP [19, 24], we find that improving the vision-language connector’s rep-
resentation power with a two-layer MLP can improve LLaVA’s multimodal
capabilities, compared with the original linear projection.

Academic task oriented data. We further include additional academic-
task-oriented VQA datasets for VQA, OCR, and region-level perception,
to enhance the model’s capabilities in various ways, as shown in Ta-
ble 4.2. We first include four additional datasets that are used in Instruct-
BLIP: open-knowledge VQA (OKVQA [98], A-OKVQA [120]) and OCR
(OCRVQA [99], TextCaps [125]). A-OKVQA is converted to multiple
choice questions and a specific response formatting prompt is used: An-
swer with the option’s letter from the given choices directly. With only a subset
of the datasets InstructBLIP uses, LLaVA already surpasses it on all three
tasks in Table 4.2, suggesting LLaVA’s effective design. Furthermore, we
find further adding region-level VQA datasets (Visual Genome [66], Ref-
COCO [61, 96]) improves the model’s capability of localizing fine-grained
visual details.

Additional scaling. We further scale up the input image resolution to
3362 to allow the LLM to clearly “see” the details of images, by swapping
the vision encoder to CLIP-ViT-L-336px (the highest resolution available
for CLIP). In addition, we add the GQA dataset as an additional visual
knowledge source. We also incorporate ShareGPT [121] data and scale
up the LLM to 13B as in [7, 93, 18]. Results on MM-Vet shows the most
significant improvement when scaling the LLM to 13B, suggesting the
importance of the base LLM’s capability for visual conversations.

LLaVA-1.5. We denote this final model with all the modifications as
LLaVA-1.5 (the last two rows in Table 4.2), which achieves an impressive
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Method LLM Image Sample Size VQAv2 GQA VisWiz SciQA- TextVQA
Size Pretrain Finetune [43] [53] [45] IMG [92] [126]

BLIP-2 [77] Vicuna-13B 2242 129M - 65.0 41 19.6 61 42.5
InstructBLIP [29] Vicuna-7B 2242 129M 1.2M – 49.2 34.5 60.5 50.1
InstructBLIP [29] Vicuna-13B 2242 129M 1.2M – 49.5 33.4 63.1 50.7
Shikra [18] Vicuna-13B 2242 600K 5.5M 77.4∗ – – – –
IDEFICS-9B [54] LLaMA-7B 2242 353M 1M 50.9 38.4 35.5 – 25.9
IDEFICS-80B [54] LLaMA-65B 2242 353M 1M 60.0 45.2 36.0 – 30.9
Qwen-VL [7] Qwen-7B 4482 1.4B† 50M† 78.8∗ 59.3∗ 35.2 67.1 63.8∗

Qwen-VL-Chat [7] Qwen-7B 4482 1.4B∗ 50M† 78.2∗ 57.5∗ 38.9 68.2 61.5∗

LLaVA-1.5 Vicuna-7B 3362 558K 665K 78.5∗ 62.0∗ 50.0 66.8 58.2
LLaVA-1.5 Vicuna-13B 3362 558K 665K 80.0∗ 63.3∗ 53.6 71.6 61.3
LLaVA-1.5-HD Vicuna-13B 4482 558K 665K 81.8∗ 64.7∗ 57.5 71.0 62.5
Specialist SOTA: PaLI-X-55B [22] 86.1∗ 72.1∗ 70.9∗ – 71.4∗

Table 4.3: Comparison with SoTA methods on academic-task-oriented
datasets. LLaVA-1.5 achieves the best performance on 4/5 benchmarks,
and ranks the second on the other. ∗The training images/annotations of
the datasets are observed during training. †Includes in-house data that is
not publicly accessible.

performance that significantly outperforms the original LLaVA [86].

Computational cost. For LLaVA-1.5, we use the same pretraining dataset,
and keep the training iterations and batch size roughly the same for instruc-
tion tuning as LLaVA [86]. Due to the increased image input resolution
to 3362, the training of LLaVA-1.5 is ∼2× as long as LLaVA: ∼6 hours of
pretraining and ∼20 hours of visual instruction tuning, using 8× A100s.

Scaling to Higher Resolutions

In Sec. 4.3, we observe the advantage that scaling up the input image
resolution improves the model’s capabilities. However, the image resolu-
tion of the existing open source CLIP vision encoders is limited to 3362,
preventing the support of higher resolution images by simply replacing
the vision encoder as we did in Sec. 4.3. In this section, we present an early
exploration of scaling the LMM to higher resolutions, while maintaining
the data efficiency of LLaVA-1.5.

When using ViT [32] as the vision encoder, to scale up the resolution,
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Method POPE [81] MME MMBench [90] SEED-Bench [72] LLaVA- MM-Vet
rand pop adv [36] en cn all img vid Wild [86] [157]

BLIP2-14B [77] 89.6 85.5 80.9 1293.8 – – 46.4 49.7 36.7 38.1 22.4
InstructBLIP-8B [29] – – – – 36 23.7 53.4 58.8 38.1 60.9 26.2
InstructBLIP-14B [29] 87.7 77 72 1212.8 – – – – – 58.2 25.6
Shikra-13B [18] – – – – 58.8 – – – – – –
IDEFICS-9B [54] – – – – 48.2 25.2 – 44.5 – – –
IDEFICS-80B [54] – – – – 54.5 38.1 – 53.2 – – –
Qwen-VL [7] – – – – 38.2 7.4 56.3 62.3 39.1 – –
Qwen-VL-Chat [7] – – – 1487.5 60.6 56.7 58.2 65.4 37.8 – –
LLaVA-7B [86] 76.3 72.2 70.1 809.6 38.7 36.4 33.5 37.0 23.8 62.8 25.5
LLaVA-1.5-7B 87.3 86.1 84.2 1510.7 64.3 58.3 58.6 66.1 37.3 65.4 31.1
LLaVA-1.5-13B 87.1 86.2 84.5 1531.3 67.7 63.6 61.6 68.2 42.7 72.5 36.1
LLaVA-1.5-13B-HD 87.5 86.4 85.0 1500.1 68.8 61.9 62.6 70.1 41.3 72.0 39.4

Table 4.4: Comparison with SoTA methods on benchmarks for
instruction-following LMMs. LLaVA-1.5 achieves the best overall perfor-
mance.

previous approaches mostly choose to perform positional embedding inter-
polation [7, 77] and adapt the ViT backbone to the new resolution during
finetuning. However, this usually requires the model to be finetuned on a
large-scale image-text paired dataset [7, 77], and limits the resolution of
the image to a fixed size that the LMM can accept during inference.

Instead, as shown in Fig. 4.2, we overcome this by dividing the image
into smaller image patches of the resolution that the vision encoder is
originally trained for, and encode them independently. After obtaining the
feature maps of individual patches, we then combine them into a single
large feature map of the target resolution, and feed that into the LLM. To
provide the LLM with the global context and to reduce the artifact of the
split-encode-merge operation, we additionally concatenate the feature of
a downsampled image to the merged feature map. This allows us to scale
the input to any arbitrary resolution and maintain the data efficiency of
LLaVA-1.5. We call this resulting model LLaVA-1.5-HD.
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4.4 Empirical Evaluation

Benchmarks

We evaluate LLaVA-1.5 on a collection of both academic-task-oriented
benchmarks and recent benchmarks specifically proposed for instruction-
following LMMs, totalling 12 benchmarks. For academic-task-oriented
benchmarks, VQA-v2 [43] and GQA [53] evaluate model’s visual percep-
tion capabilities on open-ended short answers. VizWiz [45] contains 8,000
images to evaluate model’s zero-shot generalization on visual questions
asked by visually impaired people. Following InstructBLIP [29], the image
subset of ScienceQA [92] with multiple choice are used to evaluate the
zero-shot generalization on scientific question answering. TextVQA [126]
contains text-rich visual question answering.

For recent benchmarks proposed for instruction-following LMMs,
POPE [81] evaluates model’s degree of hallucination on three sampled sub-
sets of COCO [84]: random, common, and adversarial and we report the
F1 score on all three splits. Other benchmarks evaluate the model’s capabil-
ities on a wide range of domains and applications, with different response
formats. MME-Perception [36] evaluates model’s visual perception with
yes/no questions. MMBench [90] evaluates model’s answer robustness
with all-round shuffling on multiple choice answers. MMBench-CN [90] is
the Chinese-translated version of MMBench. SEED-Bench [72] evaluates
model’s performance on both images and videos with multiple choice,
and we sample the frame in the middle to evaluate the accuracy on videos.
LLaVA-Bench-in-the-Wild [86] and MM-Vet [157] evaluate model’s capa-
bilities in engaging in visual conversations on a diverse range of tasks, and
evaluates the correctness and the helpfulness of the response with GPT-4
evaluation.
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Visual input example, Tricky Question:

User If there are factual errors in the questions, point it out; if
not, proceed to answering the question.
What’s happening in the desert?

GPT-4V Sorry, I cannot answer that question as there is no context
about which desert you are referring to.

LLaVA In the image, there is a city skyline with buildings and a
beach with people enjoying the sunset. The scene is set in
a desert, which is unusual for a beach setting.

LLaVA-1.5 There are no deserts in the image. The image features a
beach with palm trees, a city skyline, and a large body of
water.

Table 4.5: LLaVA-1.5 can detect and answer tricky questions when
prompted to verify the question.

Results

We show that LLaVA-1.5 achieves the best overall performance on 12
benchmarks, despite using magnitudes smaller pretraining and instruction
tuning data compared with other methods [29, 7]. LLaVA-1.5 significantly
outperforms LLaVA on all benchmarks for instruction-following LMMs.
Note that it is challenging to evalute the original LLaVA on academic
datasets like VQA-v2 [43] that demand open-ended short answers.

When we continue to scale up the image resolution to 4482 with LLaVA-
1.5-HD, it further improves the overall performance on all benchmarks,
especially on tasks that require perception of details in the images (e.g.
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OCR in MM-Vet, detailed description in LLaVA-Bench-in-the-Wild [86]).
Moreover, we find that adding the global context effectively recovers the
model from the split-and-merge artifacts and guides the model to more
easily locate the relevant regions from the high-resolution features.

It is encouraging that LLaVA-1.5 achieves the best performance with the
simplest architecture, academic compute and public datasets, and yields a fully-
reproducible and affordable baseline for future research. The results also sug-
gest that visual instruction tuning plays an important role in improv-
ing an LMM’s capabilities, and raises questions upon the common be-
lief that LMMs require significant amount of vision-language alignment
pretraining [29, 77, 7], despite that the vision encoders (e.g. CLIP [112],
OpenCLIP [55], EVA-CLIP [35], etc.) are already pretrained on web-scale
image-text paired data. LLaVA-1.5 (even the 7B model) outperforms 80B
IDEFICS [54], a Flamingo-like LMM with billions of trainable parameters
for cross-modal connection. This also makes us rethink the benefits of the
vision samplers and the necessity of the additional large-scale pretraining,
in terms of multimodal instruction-following capabilities.

Global context. For higher resolution, we pad and resize the image to a
single image of 2242, and concatenate it with the high resolution features
to provide a global context. Ablation on a 7B model shows that the global
context effectively boosts performance on all three validation benchmarks.

Emerging Properties

Format instruction generalization. Although LLaVA-1.5 is only trained
with a limited number of format instructions, it generalizes to others.
First, VizWiz [45] requires the model to output “Unanswerable” when the
provided content is insufficient to answer the question, and our response
format prompt effectively instructs the model to do so (11.1% → 67.8% on
unanswerable questions). We additionally present qualitative examples
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Visual input example, Constrained JSON Output:

User Please read the text in this image and return the information
in the following JSON format (note xxx is placeholder, if the
information is not available in the image, put "N/A" instead).
{"class": xxx, "DLN": xxx, "DOB": xxx, "Name": xxx, "Address": xxx,
"EXP": xxx, "ISS": xxx, "SEX": xxx, "HGT": xxx, "WGT": xxx, "EYES":
xxx, "HAIR": xxx, "DONOR": xxx}

GPT-4V {"class": "C", "DLN": "1234568", "DOB": "08/31/1977", "Name": "Ima
Cardholder", "Address": "2570 24th Street, Anytown, CA 95818",
"EXP": "08/31/2014", "ISS": "08/31/2011", "SEX": "F", "HGT": "5-05",
"WGT": "125 lbs", "EYES": "BRN", "HAIR": "BRN", "DONOR": "VET-
ERAN"}

LLaVA {"class": "Driver License", "DLN": "CA123 456 789", "DOB":
"01/01/1990", "Name": "Amy", "Address": "Anytown, CA", "EXP":
"08/31/2023", "ISS": "Veteran", "SEX": “F", "HGT": "5’5", "WGT": "130",
"EYES": "Brown", "HAIR": "Brown", "DONOR": "Unknown"}

LLaVA-1.5 {"class": "C", "DLN": "1132456789", "DOB": "08/23/1971", "Name":
"Ima Cardholder", "Address": "Anytown, State, Zip", "EXP":
"08/23/2014", "ISS": "California", "SEX": "F", "HGT": "5’5", "WGT":
"123", "EYES": "Brown", "HAIR": "Brown", "DONOR": "N/A"}

Table 4.6: LLaVA-1.5 can extract information from the image and answer
following the required format, despite a few errors compared with GPT-
4V. GPT-4V results are obtained from [147].



64

GQA MME MM-Vet
high-res patch only 62.9 1425.8 31.9

+global context 63.8 (+0.9) 1497.5 (+71) 35.1 (+3.2)

on instructing LLaVA-1.5 to verify tricky questions (Fig. 4.5), respond in a
constrained JSON format (Fig. 4.6).

Multilingual multimodal capability. Though LLaVA-1.5 is not finetuned
for multilingual multimodal instruction following at all (all visual instruc-
tions including VQA are in English), we find that it is capable of following
multilingual instructions. This is partly due to the multilingual language
instructions in ShareGPT [121]. Although ShareGPT does not contain
images in its instructions, the model learns from this dataset the behavior
of adaptively responding with the language that corresponds to the user’s
request. We empirically show that this behavior is transferred to visual
conversations. We also quantitatively evaluate the model’s generaliza-
tion capability to Chinese on MMBench-CN [90], where the questions
of MMBench are converted to Chinese. Notably, LLaVA-1.5 outperforms
Qwen-VL-Chat by +7.3% (63.6% vs 56.7%), despite Qwen being finetuned
on Chinese multimodal instructions while LLaVA-1.5 is not.

Ablation on LLM Choices

In NLP, findings [132] suggest that the capability of the base LLM can affect
its instruction-tuned successors. In this section, we explore two families
of LLMs and study their contribution to the final model’s multimodal
capability: LLaMA-based (Vicuna-v1.1, Vicuna-v1.3) and LLaMA-2-based
(Vicuna-v1.5, LLaMA-2-Chat). Vicuna-v1.3 and Vicuna-v1.5 use the same
∼150K ShareGPT [121] data (2× that used in v1.1). Unlike Vicuna series
that is only trained with supervised instruction finetuning (SFT), LLaMA-
2-Chat is further optimized with reinforcement-learning from human-
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Figure 4.3: Ablation on LLM choices. Data points represent the relative
performance of the best performing variant for each dataset.

feedback (RLHF). We visualize the relative performance of these variants
in Fig. 4.3.

First, we find that Vicuna-v1.5 achieves the best overall performance,
and LLaMA-2-based models generally perform better than LLaMA-1-
based, suggesting the importance of the base language model. This is
further evidenced by the results on MMBench-CN [90]: despite Vicuna-
v1.3 and v1.5 using the same ShareGPT data for instruction tuning, the
performance in generalization to Chinese of Vicuna-v1.3 is significantly
worse than v1.5.

Second, language instruction-tuning matters on specific capabilities
that are required by each dataset. For example, although LLaMA-2-Chat
and Vicuna-v1.5 achieves almost the same performance on MMBench,
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Figure 4.4: Ablation on data efficiency. Data points represent the relative
performance of the best performing variant for each dataset.

the generalization to MMBench-CN [90] of LLaMA-2-Chat is worse than
Vicuna-v1.5, which is partly due to that the most SFT/RLHF data of
LLaMA-2-Chat is in English and does not contain as many multilingual
data as in ShareGPT. Furthermore, TextVQA requires both the model’s
capability of identifying the text characters in the images, and also pro-
cessing the noisy outputs from the OCR engine; such noise may be more
commonly observed in the ShareGPT data, which is collected in-the-wild
from daily usage of ChatGPT.
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4.5 Open Problems in LMMs

Given the successful scaling of LLaVA-1.5, we conduct additional studies
on open problems in LMMs using the model design and data mixture of
LLaVA-1.5.

Data Efficiency

Despite the data efficiency of LLaVA-1.5 when compared with approaches
like InstructBLIP [29], the training of LLaVA-1.5 still doubles when com-
pared with LLaVA. In this section, we conduct experiments for further
improving the data efficiency by randomly sub-sampling the training data
mixture of LLaVA-1.5, with a sampling ratio ranging from 0.1 to 0.5. We
visualize the relative performance of different sampling variants in Fig. 4.4.

First, the full data mixture provides the best knowledge coverage, and
allows the model to achieve the best overall performance. To our surprise,
with only 50% of the samples, the model still maintains more than 98% of
the full dataset performance. This suggests that there is room for further
improvements in data efficiency.

Second, when downsampling the dataset to 50%, the model’s perfor-
mance on MMBench, ScienceQA, and POPE does not decrease at all, and it
even slightly improves on MMBench. Similarly, the model’s performance
remains steady when further downscaling the data from 50% to 30%.
These results show promise of having the less-is-more [172] benefit for
multimodal models as well.

Rethinking Hallucination in LMMs

Hallucination is an important issue to tackle for LLMs and LMMs. Often
in LMMs, we attribute the model’s hallucination to the errors or halluci-
nations in the training dataset. For example, the detailed descriptions in
LLaVA-Instruct [86] may contain a small amount of hallucinated content,
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and it is believed that training on such data may have caused the model to
hallucinate when asked to “describe the image in detail”. However, we
find that such hallucination is significantly reduced, when we scale the
model’s inputs to higher resolutions like 4482.

This finding is interesting as it suggests that the LMMs may be robust to
a few such errors in the training data. However, when the input resolution
is not sufficient for the model to discern all details in the training data,
and the amount of data that is at that granularity beyond the model’s
capability becomes large enough, the model learns to hallucinate. This
further suggests that there needs to be a balance between improving the
data annotation with more details and the model’s capability to properly
process the information at such granularities. We hope this finding pro-
vides a reference for future work in terms of dealing with hallucination
and the scaling of the models and data.

Compositional Capabilities

We demonstrate interesting compositional capabilities in LLaVA-1.5: the
model trained on a set of tasks independently generalizes to tasks that
require a combination of these capabilities without explicit joint training.
We note some of the findings below.

First, we observe an improved language capability in visual conver-
sations after including the ShareGPT [121] data, including the multi-
modal multilingual capability as discussed in Sec. 4.4. Moreover, the
model is more capable at providing longer and more detailed responses
in visual conversations. Second, the additional visual knowledge from
the academic-task-oriented datasets, improves the visual groundness of
LLaVA-1.5’s responses in visual conversations, as evidenced quantitatively
by the improved results on MM-Vet [157] and LLaVA-Wild [86] in Table
4.4.

However, there is still difficulty in achieving ideal performance for
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some tasks that require a certain combination of capabilities. For example,
being able to correctly answer the attribute of a certain object in VQA, does
not guarantee an accurate depiction of that object attribute in a detailed
description of the whole image. Furthermore, the capability of engaing
in conversations with certain foreign languages (e.g. Korean) still falls
behind.

These findings suggest that the compositional capabilities of LMMs can
be leveraged to improve the model’s performance without significantly
increasing the data by exhaustively including all task combinations. Yet, it
can be further investigated, and a deeper understanding of the mechanism
behind the compositional capabilities of LMMs can further improve the
capability and the data efficiency of LLaVA-1.5.

4.6 Conclusion

In this chapter, we take a step towards demystifying the design of large
multimodal models, and propose a simple, effective, and data-efficient
baseline, LLaVA-1.5, for large multimodal models. In addition, we explore
the open problems in visual instruction tuning, scale LMMs to higher res-
olutions, and present some intriguing findings in terms of model halluci-
nation and compositional capabilities for LMMs. We hope these improved
and easily-reproducible baselines as well as the new findings will provide
a reference for future research in open-source LMM.

Limitations. Despite the promising results demonstrated by LLaVA-1.5,
several limitations must be acknowledged. First, LLaVA-1.5 utilizes full
image patches, potentially prolonging each training iteration. While visual
resamplers [77, 29, 7] reduce the number of visual patches in LLMs, they
currently cannot achieve convergence as efficiently as LLaVA with a compa-
rable amount of training data, probably due to more trainable parameters
in the resamplers. The development of a sample-efficient visual resam-
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pler could pave the way for future scaling-up of instruction-following
multimodal models. Second, LLaVA-1.5 is not yet capable of processing
multiple images due to the lack of such instruction-following data, and the
limit of the context length. Third, although LLaVA-1.5 exhibits proficiency
in following complex instructions, its problem-solving capabilities can
still be limited in certain domains, which could be improved with a more
capable language model and with high-quality, targeted visual instruc-
tion tuning data. Finally, despite its significantly reduced propensity for
hallucination, LLaVA-1.5 is not exempt from producing hallucinations
and occasionally disseminating misinformation, and should be used with
caution in critical applications (e.g. medical).

4.7 LLaVA-NeXT: Improved reasoning, OCR,
and world knowledge

With a simple and efficient design, LLaVA-1.5 [85] achieves great perfor-
mance on a benchmark suite of 12 datasets. It has since served as the
foundation of many comprehensive studies of data, model, and capabil-
ities of large multimodal models (LMM), and has enabled various new
applications. However, there still exists a gap between open models from
academia and proprietary models like GPT-4V and Google Gemini Pro.
In this section, we conduct additional scaling based on LLaVA-1.5, and we
present LLaVA-NeXT, with improved reasoning, OCR, and world knowl-
edge. LLaVA-NeXT even exceeds Gemini Pro on several benchmarks.

Compared with LLaVA-1.5, LLaVA-NeXT has several improvements:

• Increasing the input image resolution to 4× more pixels. This allows
it to grasp more visual details. It supports three aspect ratios, up to
672 × 672, 336 × 1344, 1344 × 336 resolution.
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• Better visual reasoning and OCR capability with an improved visual
instruction tuning data mixture.

• Better visual conversation for more scenarios, covering different
applications. Better world knowledge and logical reasoning.

• Efficient deployment and inference with SGLang.

Along with performance improvements, LLaVA-NeXT maintains the
minimalist design and data efficiency of LLaVA-1.5. It re-uses the pre-
trained connector of LLaVA-1.5, and still uses less than 1M visual instruc-
tion tuning samples. The largest 34B variant finishes training in ∼1 day
with 32 A100s.

Dynamic High Resolution. We design our model at high resolution
with an aim to preserve its data efficiency. When provided with high-
resolution images and representations that preserve these details, the
model’s capacity to perceive intricate details in an image is significantly
improved. It reduces the model hallucination that conjectures the imag-
ined visual content when confronted with low-resolution images. Our
‘AnyRes’ technique is designed to accommodate images of various high res-
olutions. We employ a grid configuration of {2× 2, 1× {2, 3, 4}, {2, 3, 4}× 1},
balancing performance efficiency with operational costs.

High-quality User Instruct Data. Our definition of high-quality visual
instruction-following data hinges on two principal criteria: First, the diver-
sity of task instructions, ensuring adequately represent a broad spectrum
of user intents that are likely to be encountered in real-world scenarios,
particularly during the model’s deployment phase. Second, the superior-
ity of responses is critical, with the objective of soliciting favorable user
feedback. To achieve this, we consider two data sources: (1) Existing
GPT-V data. LAION-GPT-V and ShareGPT-4V. (2) To further facilitate
better visual conversation for more scenarios, we collect a small 15K visual
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instruction tuning dataset covering different applications. The instruc-
tions and images come from LLaVA demo, which are real-world users
requests. We carefully filter samples that may have privacy concerns or
are potentially harmful, and generate the response with GPT-4V.

Multimodal Document/Chart Data. (1) We remove TextCaps from
our training data as we realize that TextCaps uses the same set of training
images as TextVQA. This allows us to better understand the zero-shot OCR
capability of our model when evaluating TextVQA during development.
To maintain and further improve our model’s OCR capability, we replace
TextCaps with DocVQA and SynDog-EN. (2) Motivated by Qwen-VL-
7B-Chat, we further add ChartQA, DVQA, and AI2D for better chart and
diagram understanding.

Scaling LLM backbone. In addition to Vicuna-1.5 (7B and 13B), we
consider more LLMs, including Mistral-7B and Nous-Hermes-2-Yi-34B.
These LLMs possess nice properties, flexible commercial use terms, strong
bilingual support and larger language model capacity. It allows LLaVA to
support a wider spectrum of users and more scenarios in the community.
The LLaVA recipe works well with various LLMs, and scales up smoothly
with the LLM up to 34B.

Results

Data Model MMMU Math MMB MMB MMVet LLaVA SEED
PT IT val Vista ENG CN Wild IMG

N/A N/A GPT-4V 56.8 49.9 75.8 73.9 67.6 - 71.6
N/A N/A Gemini Ultra 59.4 53 - - - - -
N/A N/A Gemini Pro 47.9 45.2 73.6 74.3 64.3 - 70.7
1.4B 50M Qwen-VL-Plus 45.2 43.3 - - 55.7 - 65.7
1.5B 5.12M CogVLM-30B 32.1 - - - 56.8 - -

125M ∼1M Yi-VL-34B 45.9 - - - - - -
558K 665K LLaVA-1.5-13B 36.4 27.6 67.8 63.3 36.3 72.5 68.2
558K 760K LLaVA-NeXT-13B 36.2 35.3 70 64.4 48.4 87.3 71.9
558K 760K LLaVA-NeXT-34B 51.1 46.5 79.3 79 57.4 89.6 75.9
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5 conclusion and discussion

In this thesis, we have explored the advancement of computer vision
models, focusing on their steerability and customizability with vision
language models. By introducing innovative methods and frameworks,
this work has significantly pushed the boundaries of how these models
understand and convey their understandings of the visual world, making
them accessible and flexible for a wide range of tasks.

The contributions of this thesis to the field of vision-language mod-
els are manifold. We began with the development of React, a method
that efficiently leverages the web-scale data with retrieval to customize
vision models with minimal human labeling effort, effectively enables the
adaptability of vision foundation models like CLIP to specialized tasks.

While being customizable, React models is not fully steerable without
the access to the model weights. To further improve the steerability of
vision-language models and advance the capability of vision-language
models to follow natural language instructions, we introduced the LLaVA-
series. These models represent pioneering efforts in building large mul-
timodal systems that can be steered directly through user instructions.
LLaVA utilized machine-generated multimodal data for instruction tuning,
proving that large multimodal models can achieve impressive levels of un-
derstanding and response accuracy. LLaVA-1.5 and LLaVA-NeXT further
refined these capabilities, optimizing design choices and demonstrating
state-of-the-art performance with remarkable efficiency and scalability.

Each chapter of this thesis not only presented distinct approaches
aimed at enhancing the interactivity and functionality of vision-language
systems but also set new standards for intuitive and practical applications
in the field. From educational technologies to assistive devices for the
visually impaired, the models developed in this research offer significant
improvements in user interaction, opening up new possibilities for how vi-
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sual content is generated and manipulated in response to natural language
inputs.

Future Directions

Looking ahead, the work presented in this thesis opens up several av-
enues for future research. One promising area is the further development
of models that can seamlessly integrate even more diverse multimodal
inputs, such as audio and tactile feedback, to create even more robust
and immersive interaction systems. Additionally, enhancing the models’
ability to understand and generate not just static images but dynamic
visual content such as video in response to complex instructions poses a
significant challenge that future research could address.

Another critical area involves improving the models’ understanding
of nuanced human language and its context, which could lead to more
sophisticated and subtle interactions between AI systems and their users.
This could involve deepening the models’ grasp of cultural, emotional,
and situational contexts, significantly enhancing the relevance and per-
sonalization of their responses.

Finally, as these models become more capable and widely used, it will
be essential to consider and address ethical concerns related to privacy,
bias, and the use of AI in sensitive applications. Ensuring that these
powerful tools are used responsibly and beneficially should be a priority
for the community moving forward.

In conclusion, this thesis has laid a robust foundation for the next
generation of vision-language models, significantly advancing their capa-
bilities and applications. The path forward is rich with opportunities for
further innovation and impactful research, promising to revolutionize the
ways we interact with and leverage AI in our daily lives and professional
environments.
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