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Abstract

This thesis explores several theoretical questions pertaining to quantum computing. First

we examine several questions regarding multi-particle quantum random walk-based algo-

rithms for the graph isomorphism problem. We find that there exists a non-trivial difference

between continuous-time walks of one and two non-interacting particles as compared to non-

interacting walks of three or more particles, in that the latter are able to distinguish many

strongly regular graphs (SRGs), a class of graphs with many graph pairs that are difficult

to distinguish. We demonstrate analytically where this distinguishing power comes from,

and we show numerically that three-particle and four-particle non-interacting continuous-

time walks can distinguish many pairs of strongly regular graphs. We additionally show

that this distinguishing power, while it grows with particle number, is bounded, so that no

continuous-time non-interacting walk of fixed particle number can distinguish all strongly

regular graphs.

We then investigate the relationship between continuous-time and discrete-time walks, in

the context of the graph isomorphism problem. While it has been previously demonstrated

numerically that discrete-time walks of non-interacting particles can distinguish some SRGs,

we demonstrate where this distinguishing power comes from. We also show that while no

continuous-time non-interacting walk of fixed particle number can distinguish SRGs, it

remains a possibility that such a discrete-time walk could, leaving open the possibility of a

non-trivial difference between discrete-time and continuous-time walks.

The last piece of our work on graph isomorphism examines limitations on certain kinds

of continuous-time walk-based algorithms for distinguishing graphs. We show that a very

general class of continuous-time walk algorithms, with a broad class of allowable interac-

tions, cannot distinguish all graphs.

We next consider a previously-proposed quantum adiabatic algorithm for computing

the PageRank vector, a necessary step in one of Google’s search algorithms. It had been

previously believed that this algorithm might offer a non-trivial speedup in preparing the

PageRank vector. We demonstrate, however, that when this algorithm is tested on graphs
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that sufficiently resemble the graph of the World Wide Web, there is no appreciable speedup.

Lastly, we consider the problem of Hamiltonian determination. We show that in the high

temperature limit, the classical signal processing technique of compressed sensing may be

used to recover the Hamiltonian for a system of qubits, provided that the Hamiltonian does

not possess too many interactions, i.e., it is “sparse”. This new procedure allows for the

determination of the Hamiltonian with a number of measurements that can be significantly

smaller than required by standard techniques.
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Chapter 1

Introduction

While much progress has been made since Richard Feynman first put forth the idea of

a quantum computer in the 1980s, there are clear goals yet to be achieved. In terms of

implementation, no universal, full-scale quantum computer has yet been constructed. On

the algorithms side, while new quantum algorithms are being developed, the set of such

algorithms offering any speedup (and in particular, an exponential speedup) over classical

counterparts is relatively small. To these ends, this thesis examines, from a theoretical

perspective, issues concerning both advances in algorithms and advances in physical imple-

mentation.

From an algorithms perspective, there is a significant desire to develop quantum algo-

rithms that offer substantial speedup over their classical counterparts. To that end, we

explore quantum algorithms for two graph-theoretic problems. We examine quantum algo-

rithms for the graph isomorphism problem as well as for calculating the PageRank vector

(a quantity used in Google’s PageRank internet search algorithm).

From an experimental perspective, one necessary ingredient for full-scale quantum com-

puting is Hamiltonian determination. While traditional quantum algorithms are imple-

mented by manipulating time-dependent Hamiltonians (to effect the application of quan-

tum gates), there is often an architecture-dependent “permanent” Hamiltonian which is

always present and beyond the control of the experimentalist. Therefore, we propose and
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examine a new method of Hamiltonian determination which takes advantage of a new signal

processing technique known as compressed sensing.

1.1 Thesis outline

This thesis is organized in the following manner. The first part of the thesis explores

quantum algorithms for graph-theoretic problems. Chapters 2 through 5 cover this first

part. The second part of this thesis examines the problem of Hamiltonian determination;

this material is presented in Chapter 6.

Chapters 2 through 4 cover quantum algorithms for the graph isomorphism problem.

As described in further detail in these chapters, the graph isomorphism problem is the

problem of determining whether or not two graphs (that is, networks of vertices and edges)

are isomorphic, that is, if one graph can, by moving around its vertices (without breaking or

adding any edges), be transformed into the other graph. The graph isomorphism problem

is believed to reside in the complexity class NP-Intermediate [1]. As integer factoring is also

thought to be in NP-Intermediate, the graph isomorphism problem is thought be a good

candidate for a quantum speedup.

The graphs we examine are known as strongly regular graphs. The set of all strongly

regular graphs, or SRGs, is partitioned using certain graph properties into collections of

graphs known as families. SRGs in the same family have high degree of symmetry and are

thus difficult to distinguish classically. Therefore SRGs provide a good candidate dataset

for us to test our algorithms on.

In Chapter 2, we examine the power of continuous-time non-interacting multi-particle

quantum random walks in distinguishing SRGs. It has been shown that single-particle

[2] and non-interacting two-particle walks [3] cannot distinguish SRGs in the same family.

We demonstrate in Chapter 2 that this trend does not extend to three or more particles.

We first show analytically that non-interacting three-particle walks have the potential to

distinguish SRGs, and then proceed to show numerically that three-particle walks can

distinguish many (but not all) SRGs. We additionally show that this distinguishing power
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increases with the number of particles in the walk; four-particle walks can distinguish more

graphs than three-particle walks. However, we also prove that this distinguishing power is

bounded in some sense. We show, by a counting argument, that given a quantum walk with

any fixed number of non-interacting particles, there will exist SRGs that the walk cannot

distinguish. Therefore we conclude that no continuous-time quantum random walk of a

fixed number of non-interacting particles can distinguish all graphs.

In Chapter 3, we reexamine two-particle non-interacting walks, but extend our analysis

to include discrete-time walks as well as continuous-time walks. While continuous-time

walks of two non-interacting particles cannot distinguish same-family SRGs, it has been

shown that this result does not hold for discrete-time walks of two non-interacting particles

[4]; that is, discrete-time walks of two noninteracting particles can distinguish some (but not

all) same-family SRGs. The origin of this difference has heretofore been an open question;

in Chapter 3, we show analytically where this difference comes from. We also demonstrate

that the proof technique used to derive the above-mentioned limitations of continuous-time

walks of non-interacting particles cannot be extended to analogous discrete-time walks.

Therefore, it is possible that there exists a non-interacting discrete-time walk with a fixed

number of particles that can distinguish all strongly regular graphs.

In Chapter 4, we explore limitations of continuous-time interacting walks. It was demon-

strated numerically in Ref. [3] that two-particle continuous-time walks with hard-core in-

teractions could distinguish many SRGs. (Out of the more than 500 million pairs that

were tested, not one pair was not distinguished by the two-particle hard-core walk.) These

results indicated the possibility that such a walk might have universal distinguishing power,

and hence pave the way for a quantum algorithm for graph isomorphism. However, it was

subsequently shown in Ref. [5] that a walk with any number of hard-core particles could

not distinguish all graphs. We extend these results in Chapter 4 to include arbitrary in-

teraction schemes. We prove that walks with general interactions (when all vertices are

treated equally) cannot distinguish all graphs.

In Chapter 5, we turn to a different graph-theoretic problem. We consider the task
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of computing the principal eigenvector of the “Google matrix,” a computation necessary

to implement one of Google’s search algorithms. Classically, computing this eigenvector

requires a time which scales as O(n), where n is the number of webpages in the World

Wide Web. While in the strictest sense such a classical algorithm is “efficient”, as an

O(n) runtime is polynomial in input size, actually performing this computation is time-

intensive, owing to the large size of the web. Therefore any quantum algorithm offering a

speedup in computing the principal eigenvector would be of great interest. To that end,

Ref. [6] proposed an adiabatic quantum algorithm for computing this eigenvector. Their

initial result indicated that their algorithm might be able to prepare a quantum state that

encodes the principal eigenvector in a time of O(polylog n), offering an exponential speedup.

In Chapter 5 we demonstrate that this algorithm’s runtime depends on features of the web

that were not fully explored in Ref. [6]. We additionally show that for networks which

more closely resemble the World Wide Web in degree distribution, the proposed quantum

algorithm does not provide an exponential speedup.

The last part of this thesis, Chapter 6, deals with questions of quantum computing

implementation. In particular, we examine the problem of determining a “fixed” Hamilto-

nian for a system of qubits, that is, a Hamiltonian which is always present. We find that

when the number of interactions present in the Hamiltonian is significantly smaller than the

full dimension (i.e. the Hamiltonian is sparse), and the temperature of the system is high

enough, both the density matrix and the Hamiltonian itself may be reconstructed using

a signal processing technique known as compressed sensing. We show that this procedure

offers a speedup over traditional methods of quantum state tomography and Hamiltonian

determination.

1.2 Publication list

The work in this thesis is presented in five chapters. The contents of Chapters 2, 3, and

5 have appeared in three separate published works, respectively. The material of Chapter

4 has not been published, and the material of Chapter 6 is at present being prepared for
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publication. Additional details are as follows.

Chapter 2 is based on Ref. [7], titled Noninteracting multiparticle quantum random

walks applied to the graph isomorphism problem for strongly regular graphs, and published

in August 2012. This work was completed with John K. Gamble, Mark Wellons, Eric

Bach, Mark Friesen, Robert Joynt, and Susan Coppersmith. Support for this work was

provided in part by ARO, DOD (W911NF-09-1-0439), NSF (CCR-0635355), and the Na-

tional Science Foundation Graduate Research Fellowship under Grant No. (DGE-0718123).

Additional assistance was provided by Dong Zhou, Dan Bradley, Alessandro Fedrizzi, and

Paul Hinrichs, as well as the UW-Madison HEP, Condor and CHTC groups.

Chapter 3 is based on Ref. [8], titled Comparing algorithms for graph isomorphism using

discrete- and continuous-time quantum random walks, and published in July 2013. This

work was completed with John K. Gamble, Eric Bach, Mark Friesen, Robert Joynt, and

Susan Coppersmith. Support for this work was provided in part by ARO, DOD (W911NF-

09-1-0439), NSF (CCR-0635355). Additional assistance was provided by Jingbo Wang and

Adam Frees.

Chapter 4 is based on unpublished work. This work was performed in Spring and

Summer of 2012, and was completed with John K. Gamble, Eric Bach, Mark Friesen, Robert

Joynt, and Susan Coppersmith. Additional assistance was provided by Jamie Smith.

Chapter 5 is based on Ref. [9], titled Power law scaling for the adiabatic algorithm

for search engine ranking, and published in September of 2013. This work was completed

with Adam Frees, John King Gamble, Eric Bach, Mark Friesen, Robert Joynt, and Susan

Coppersmith. Support for this work was provided in part by ARO, DOD (W911NF-09-1-

0439), and NSF (CCR-0635355, DMR 0906951, PHY-PIF-1104660). Additional assistance

was provided by Silvano Garnerone, Daniel Lidar, and Dan Bradley, as well as the UW-

Madison HEP, Condor and CHTC groups.

Chapter 6 is based on unpublished work. This work was performed from Fall of 2013

through Spring of 2014, and was completed with Robert Joynt. Additional assistance was

provided by Susan Coppersmith, Eric Bach, Mark Friesen, John K. Gamble, Robin Blume-
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Kohout, Adam Frees, Daniel Crow, Amir Kalev, and Charles Baldwin.

Lastly, a note to the reader. Most chapters in this thesis are designed to be compre-

hensible independent of the other chapters. The two exceptions are Chapters 3 and 4; it

is recommended that the reader be familiar with the concepts of Chapter 2 before working

through either Chapter 3 or 4 (though Chapter 3 need not be read before Chapter 4).
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Chapter 2

Non-interacting multi-particle

quantum random walks applied to

the graph isomorphism problem

for strongly regular graphs

2.1 Introduction

There has long been interest in algorithms that use random walks to solve a variety of

mathematical and scientific problems [10, 11, 12, 13, 14]. Typically, the random walks in

question have been classical random walks (CRWs). However, there is increasing interest in

random walks with quantum walkers. In particular settings, these quantum random walks

(QRWs) have been shown to have computational advantages over CRWs [15, 16, 17]. Cer-

tain algorithms utilizing QRWs have been proven to have faster runtimes than their best

known classical counterparts [18, 19, 20, 21, 22, 23, 24].

Additionally, QRWs have been experimentally demonstrated in a variety of physical

settings, such as ion traps [25], atom traps [26], quantum optics [27, 28], and NMR systems

[29]. Recent works have experimentally realized QRWs with two walkers, demonstrating the
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potential for implementing QRWs with many walkers [30, 31, 32, 33]. Moreover, there are

proposed methods for physically implementing non-trivial walks [34], indicating that there

may be many QRW algorithms to be developed that would both be physically realizable

and computationally powerful.

Often the context for QRWs is one in which the walks occur on graphs. It has been

shown that QRWs are universal; any quantum algorithm can be mapped onto a QRW on

such a graph [35]. It is also the case that many interesting computational problems are

easily expressed in graph theoretic terms [3]. Thus there is considerable interest in further

exploring QRWs on graphs, with the hope that we may be able to use such a framework to

solve certain problems.

There are also interesting physical phenomena associated with many particles walking

on a graph. It is known that QRWs of non-interacting bosons on graphs can give rise to

effective statistical interactions [36, 37, 38]. It has even been shown that Bose-Einstein

condensation can occur at finite temperature in less than two dimensions if the bosons are

placed on a particular kind of graph [38]. Therefore, there is motivation in further exploring

the dynamics of multi-particle ensembles on graphs.

This chapter, along with Chapters 3 and 4, addresses the graph isomorphism problem,

which is, given two graphs, to determine if they are isomorphic; that is, if one can be

transformed into the other by a relabeling of vertices. This problem is of note for several

reasons. While many graph pairs may be distinguished by a classical algorithm which runs

in a time polynomial in the number of vertices of the graphs, there exist pairs which are

computationally difficult to distinguish. Currently, the best classical algorithm for general

graphs has a runtime of O(c
√
N logN ), where c is a constant and N is the number of vertices

in the two graphs [39]. Graph isomorphism (GI) is believed to be similar to factoring in

that both are thought to be NP-Intermediate problems [1]. Additionally, both problems

may be approached as hidden subgroup problems, though this approach has had limited

success for GI [40]. Due to these similarities, and the known quantum speedup available

for factoring [41], there is hope that there similarly exists a quantum speedup for GI.
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Strongly regular graphs (SRGs) are a particular class of graphs that are difficult to

distinguish classically [39]. (See Section 2.2 for a formal definition.) Shiau et al. showed

that the single-particle continuous-time QRW fails to distinguish pairs of SRGs with the

same family parameters [2]. Gamble et al. extended these results, proving that QRWs of

two non-interacting particles will always fail to distinguish pairs of non-isomorphic strongly

regular graphs with the same family parameters [3]. They also demonstrated numerically

the distinguishing power of the two-boson interacting QRW; it successfully distinguished all

tested pairs of SRGs [3]. Since the publication of Gamble et al., Smith proved that for any

fixed number of bosons p, there exist non-isomorphic graph pairs which the p-boson inter-

acting walk fails to distinguish [5]. These counterexample graphs are not strongly regular;

whether or not the two-boson interacting walk successfully distinguishes all non-isomorphic

strongly regular graphs is still an open question.

Investigations into discrete-time QRW algorithms for GI have also been made [42, 43, 4].

Berry and Wang numerically showed that a discrete-time non-interacting QRW of two par-

ticles could distinguish some SRGs, something its continuous-time counterpart cannot do.

However, this distinguishing power is not universal on SRGs, nor is an analytic explanation

of the distinguishing power given [4]. The discrete-time algorithm proposed by Emms et al.

successfully distinguished all tested SRGs [42], but it has been shown to not be universal

[5]; it is unknown if it is universal on SRGs. Additionally, for the same number of particles,

the discrete-time QRWs require Hilbert spaces larger than the ones required by continuous-

time QRWs [4]. In an effort to relate discrete-time and continuous-time QRWs, it has been

noted that the coin state of a discrete-time walk may be thought of as a relativistic parti-

cle’s internal degree of freedom; such a feature is absent from continuous-time QRWs [44].

The relationship between discrete-time and continuous-time quantum random walks in the

context of the graph isomorphism problem has been examined as well; we discuss certain

aspects of this relationship in Chapter 3. It remains an open question as to whether or

not discrete-time walks in general have fundamentally greater distinguishing power than

continuous-time walks, or if they are better candidates for a universal GI algorithm.
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This chapter extends the results of [3] to address continuous-time multi-particle non-

interacting quantum walks on SRGs, with a particular focus on understanding the role

of particle number in determining the distinguishing power of the walks. We have sev-

eral main results. We numerically demonstrate that three-particle non-interacting walks

have significant (but not universal) distinguishing power on hard-to-distinguish pairs of

SRGs. Additionally, we find that a four-fermion non-interacting walk has even greater (but

still not universal) distinguishing power on SRG pairs. We analytically explain where this

distinguishing power comes from, and how these multi-particle non-interacting walks are

fundamentally different from single-particle and two-particle non-interacting walks. This is

done by showing that a particular feature present in the smaller walks which limits their

distinguishing power is not present in walks of three or more non-interacting particles. Fur-

ther, we analytically show that, even though the distinguishing power of non-interacting

walks increases with particle number, there is no non-interacting walk with a fixed number

of particles that can, with our comparison algorithm, distinguish all strongly regular graphs.

This chapter is organized as follows. Section 2.2 covers the requisite background, in-

cluding graph theoretic definitions and concepts, a review of strongly regular graphs, and

a formal definition of the quantum random walk. In Section 2.3, we first demonstrate

analytically how two-particle non-interacting walks are fundamentally different from three-

particle non-interacting walks. We then present the numerical results for non-interacting

three-particle and four-particle walks on SRGs. In the final part of Section 2.3, we demon-

strate that a p-particle non-interacting QRW cannot distinguish all SRGs for any fixed p.

We discuss our conclusions in Section 2.4.

Appendix A discusses a fundamental difference between non-interacting walks of two

particles and non-interacting walks of more than two particles. Appendix B provides details

necessary to show that a non-interacting p-particle walk cannot distinguish all SRGs for a

fixed p. In Appendix C, we show that the number of unique evolution operator elements for

a p-particle non-interacting walk is super-exponential in p. Lastly, we explain in Appendix

D how we ensure numerical stability and determine numerical error in our simulations.
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2.2 Background

Basic Graph Definitions

Here we develop the background and definitions necessary to discuss multi-particle QRWs

on graphs. This chapter only considers simple, undirected graphs. A graph G = (V,E) is

a set of vertices V and edges E. The vertices are a set of labels, usually integers, and the

edges are a list of unordered pairs of vertices. If a pair of vertices appears in E, then the

vertices are connected by an edge; otherwise there is no edge between the vertices and they

are considered disconnected. The terms “adjacent”, “neighboring”, and “connected” may

be used interchangeably to refer to a vertex pair which shares an edge. It is convenient to

represent a graph by its adjacency matrix A, defined as:

Aij =





1 if vertices i and j are connected.

0 if vertices i and j are disconnected.

(2.1)

A graph of N vertices has an N × N adjacency matrix. For the undirected and simple

graphs considered here, A is symmetric, with zeros on the diagonal.

Two graphs are isomorphic if one graph is transformed into the other by a relabeling of

vertices. More formally, given two adjacency matrices A and B, the graphs represented by

A and B are isomorphic if and only if a permutation matrix P exists such that B = P−1AP.

Strongly Regular Graphs

This chapter addresses strongly regular graphs (SRGs), which we examine because they are

difficult to distinguish classically, and because of their simple algebraic properties [39, 45].

An SRG is characterized by four parameters, denoted (N, k, λ, µ). N is the number of

vertices in the graph, and each vertex is connected to k other vertices (the graph is k-

regular, or has degree k). Each pair of neighboring vertices shares λ common neighbors,

while each pair of non-adjacent vertices shares µ common neighbors. The set of SRGs

sharing the same set of four parameters is referred to as an SRG family ; correspondingly,

the four parameters are often called the family parameters. While some SRG families may
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have only one non-isomorphic member, there are many families of SRGs with multiple non-

isomorphic graphs. These are the families which are of interest to us.

The adjacency matrix of any SRG has at most three eigenvalues. As these eigenvalues

and their multiplicities are functions of the family parameters, the adjacency matrices of

SRGs in the same family are always cospectral [45]. This contributes to the difficulty of

distinguishing non-isomorphic SRGs.

The adjacency matrix of any SRG satisfies the particularly useful algebraic identity [45]:

A2 = (k − µ)1 + µJ + (λ− µ)A, (2.2)

where 1 is the identity and J is the matrix of all ones. Because J2 = NJ, JA = AJ = kA,

and 1 acts trivially on 1, J, and A, we see that {1,J,A} forms a commutative three-

dimensional algebra, so we conclude that for any positive integer n:

An = αn1 + βnJ + γnA, (2.3)

where αn, βn, and γn depend only on n and the family parameters.

Defining the quantum random walk

Now we discuss how we form a continuous-time non-interacting quantum random walk on a

graph. As in [3], we use the Hubbard model, where each site corresponds to a graph vertex.

A particle can move from one vertex to another if the two vertices are connected. Thus, for

a graph on N vertices with adjacency matrix A, our non-interacting Hamiltonian is given

by

H = −
N∑

i,j

Aijc
†
icj , (2.4)

where c†i and ci are the creation and annihilation operators, respectively, for a boson or (spin-

less) fermion at site i. For bosons, they satisfy the commutation relations [ci, c
†
j ] = δij and

[ci, cj ] = [c†i , c
†
j ] = 0. For fermions, they satisfy the anti-commutation relations {ci, c†j} = δij

and {ci, cj} = {c†i , c
†
j} = 0.

For walks of p bosons, we use basis states of the form |j1 . . . jp〉B, which is the appropri-

ately symmetrized basis state with bosons on vertices j1 through jp. These vertices need not
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be distinct, since vertices may be multiply occupied. Similarly, for walks of p fermions, we

use basis states of the form |j1 . . . jp〉F , which is the appropriately anti-symmetrized basis

state with fermions on vertices j1 through jp. These vertices must be distinct, because the

Pauli exclusion principle implies that no vertex can be occupied by multiple fermions. We

refer to these bases as the particles-on-vertices bases.

Following [3] and [5], it is straightforward to show that the elements of the p-boson or p-

fermion non-interacting Hamiltonian (Hp,B and Hp,F , respectively) are, in their respective

particles-on-vertices bases:

B〈i1 . . . ip|Hp,B|j1 . . . jp〉B = (2.5)

−B〈i1 . . . ip|A⊕p|j1 . . . jp〉B,

F 〈i1 . . . ip|Hp,F |j1 . . . jp〉F = (2.6)

F 〈i1 . . . ip|A⊕p|j1 . . . jp〉F ,

where

A⊕p = A⊗ 1⊗ 1 . . .⊗ 1︸ ︷︷ ︸
p

(2.7)

+ 1⊗A⊗ 1 . . .⊗ 1 + . . .+ 1⊗ 1⊗ 1 . . .⊗A.

The evolution operator is defined in the standard manner:

U(t) = e−itH, (2.8)

where ~ = 1 for convenience.

Comparison algorithm

Our method for comparing two graphs in an attempt to determine if they are isomorphic or

not is the same as the one used in [3]. Given two graphs with adjacency matrices A and B,

we compute in the particles-on-vertices basis UA(t) and UB(t), respectively, for the same

number and type of particle, as well as the same time t. The absolute value of each element
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of UA(t) and UB(t) are written to lists XA and XB, respectively. Both lists are sorted,

and we compute the distance between the lists, ∆:

∆ =
∑

ν

|XA[ν]−XB[ν]|. (2.9)

We say that A and B are distinguished by a particular walk if and only if that walk yields

∆ 6= 0; isomorphic graphs and non-isomorphic non-distinguished graphs both yield ∆ = 0

[3]. We note that we lose phase information by taking the absolute value of the elements,

but it makes our comparison procedure more tractable, and seems to do no harm, see [3].

Lastly, for all simulations presented in this chapter, t = 1.

2.3 Quantum random walks on strongly regular graphs

Comparing distinguishing power of two- and three-particle

non-interacting walks

In this subsection we show analytically that there is a fundamental difference between two-

particle non-interacting walks and three-particle non-interacting walks on strongly regular

graphs, because three-particle non-interacting walks are capable of distinguishing SRGs

from the same family, unlike two-particle non-interacting walks. To show this difference,

we recall the proof used by Gamble et al. to demonstrate the inadequacy of two-particle

walks [3].

The proof in Gamble et al. first shows that the value of every element in the two-particle

evolution operators (B〈ij|U2B(t)|kl〉B or F 〈ij|U2F (t)|kl〉F ) must be a function only of the

SRG family parameters and the time t. Then it is shown that the multiplicity of each

element value in the evolution operator is also a function of SRG family parameters. We

begin similarly here for the three-particle walk, and find that while the values of the elements

are all functions of the SRG family parameters, the multiplicities of the values are not.

We first address the element values. We refer to each element of each evolution operator

(computed in the particles-on-vertices basis) as a Green’s function, following the nomencla-

ture of Gamble et al. [3]. Because the three-particle walk in question is non-interacting, we
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know that the evolution operator for the walk factorizes into three single-particle evolution

operators:

B〈ijk|U3B|lmn〉B =B 〈ijk|U1P
⊗3|lmn〉B, (2.10)

F 〈ijk|U3F |lmn〉F =F 〈ijk|U1P
⊗3|lmn〉F , (2.11)

where U1P
⊗3 = U1P ⊗U1P ⊗U1P ; U1P is the evolution operator for the single-particle

walk, that is, U1P = eiAt and U1P = e−iAt.

Recalling Eq. (2.3), and expanding eiAt as a Taylor series in powers of At, we note that:

U1P = α1 + βJ + γA, (2.12)

where α, β, and γ are functions of the family parameters and the time t. Therefore, we

conclude that all possible values of the elements of U3B and U3F (the Green’s functions) are

determined by the family parameters. Thus, the set of all potential values for the Green’s

functions are the same for any two graphs in the same family. Any distinguishing power

of the walks must come from the existence of at least one Green’s function with different

multiplicities for non-isomorphic graphs in the same family.

Gamble et al., prove that the multiplicity of each Green’s function for two-particle

non-interacting walks is a function of the SRG family parameters. In Appendix A, we show

that there exist Green’s functions for the three-particle non-interacting walk on SRGs whose

multiplicities are not functions of the family parameters. This is because the multiplicity of

a Green’s function in a p-particle walk depends on how many shared neighbors a collection

of up to p vertices has. For p = 2, strong regularity uniquely determines the number of

shared neighbors: λ if the vertices are connected, and µ if they are not. However, for p ≥ 3,

the multiplicity is dependent on the number of shared neighbors among sets of p vertices.

Thus the multiplicity is not uniquely determined by strong regularity, so the multiplicity

for such a Green’s function need not be a function of the family parameters.

The definition of SRGs does not directly constrain the number of neighbors of a set of p

vertices with p ≥ 3. However, this difference from the two-particle case does not guarantee

that walks of three or more particles can distinguish non-isomorphic SRGs, only that they
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have the potential to do so. Our numerical investigations of the distinguishing power of

these walks are presented in Section 2.3.

Numerical results

Table 2.1: Numerical results for the three-particle non-interacting walks on twelve families
of SRGs. The first column lists the family parameters for the particular SRG family being
examined. The second column lists the number of graphs in the family that we compared.
This number is equal to the number of graphs in the family, with the exception of (49,18,7,6),
where we only examined a subset of the family. The third column gives the number of
comparisons made for each family, which is equal to the number of graphs in that family
that we examined choose 2. The fourth and fifth columns list the number of graph pairs
which the three-boson and three-fermion walks fail to distinguish, respectively. We see that
out of 70 712 graph comparisons, both the boson and fermion walks fail a total of 256 times,
corresponding to a success rate of greater than 99.6%

SRG Family (N , k, λ, µ) Number of Graphs Comparisons Boson Failures Fermion Failures

(16, 6, 2, 2) 2 1 0 0

(16, 9, 4, 6) 2 1 0 0

(25, 12, 5, 6) 15 105 0 0

(26, 10, 3, 4) 10 45 1 1

(28, 12, 6, 4) 4 6 0 0

(29, 14, 6, 7) 41 820 0 0

(35, 18, 9, 9) 227 25651 38 38

(36, 14, 4, 6) 180 16110 89 89

(40, 12, 2, 4) 28 378 8 8

(45, 12, 3, 3) 78 3003 7 7

(49, 18, 7, 6) 147 10731 21 21

(64, 18, 2, 6) 167 13861 92 92

Table 2.2: Numerical results for four-fermion non-interacting walks on 136 graph pairs that
are not distinguished by three-particle non-interacting walks. Of the 136 graph pairs tested,
only one pair is not successfully distinguished. We therefore see that increasing the number
of non-interacting particles beyond three continues to increase the distinguishing power of
the non-interacting QRWs.

Family (N , k, λ, µ) 3 Particle Failures 4 Fermion Failures

(26, 10, 3, 4) 1 0

(35, 18, 9, 9) 38 0

(36, 14, 4, 6) 89 1

(40, 12, 2, 4) 8 0

In this subsection, we present our numerical results for three-particle and four-fermion

walks on SRGs. To simulate a walk on a graph, we compute the appropriate Hamiltonian
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and exponentiate it to compute its corresponding evolution operator, following the algo-

rithm described in Section 2.2. Then, to compare pairs of non-isomorphic graphs from the

same family, we compute the list distance ∆, defined in Equation (2.9). We find our error on

∆ to be no greater than 10−6, so two non-isomorphic graphs are considered distinguished if

and only if ∆ > 10−6. Further details of numerical error analysis are provided in Appendix

D.

Because the Hamiltonians are very large, we must use a sparse matrix exponentiation

routine [46] to make exponentiation computationally tractable. (The largest evolution op-

erators we compute have a dimension of 91 390, and correspond to the four-fermion walks

on graphs of 40 vertices.) Additionally, in order to be able perform these exponentiations

sufficiently quickly, we parallelize the computations, utilizing the Open Science Grid and

the University of Wisconsin-Madison’s Center for High Throughput Computing Cluster.

Our numerical results for three-particle walks are presented in Table 2.1. For the 70 712

pairs of SRGs compared, the boson and fermion walks distinguish all but 256 pairs, corre-

sponding to a success rate of greater than 99.6%. Thus we see that both the three-boson

and three-fermion walks have significant (but not universal) distinguishing power on SRGs,

while the two-particle non-interacting walks fail on all pairs of non-isomorphic graphs in

the same family [3].

The bosonic and fermionic walks fail to distinguish the same pairs of non-isomorphic

graphs that we tested; we have found no graph pair that one kind of particle successfully

distinguishes while the other does not. Thus, despite having a state space of smaller dimen-

sion (due to Pauli exclusion), the three-fermion walk has the same distinguishing power as

the three-boson walk on all tested graph pairs. It remains an open question whether graph

pairs exist for which this is not true.

Having identified some graph pairs that three non-interacting particles fail to distin-

guish, we want to know if non-interacting walks exist that can distinguish these graphs.

However, it is computationally expensive (even with speedup provided by parallelization)

to simulate four-particle walks. We therefore simulated only fermion walks, and only on
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a subset of the three-particle counterexample graph pairs. Our results are summarized in

Table 2.2. We simulated four-fermion non-interacting walks on 136 counterexample pairs,

finding that all but one pair are distinguished.

Since increasing the number of non-interacting particles in the walk apparently increases

the distinguishing power, it is natural to ask “Does there exist a p such that the p-particle

non-interacting walk can distinguish all strongly regular graphs?” The next subsection shows

that the answer to this question is no.

Limitations of non-interacting walks

In this subsection, we show that pairs of non-isomorphic strongly regular graphs exist

that are not distinguished by any p-particle non-interacting quantum walk with fixed p in

conjunction with the comparison algorithm described by Equation (2.9). This is because

for a fixed p, there exists an N such that the number of strongly regular graphs with N

vertices is larger than the maximum number of graphs distinguishable by the p-particle

non-interacting walk.

To prove this claim, we define S(N), the number of strongly regular graphs in a par-

ticular family with N vertices, and Z(p,N), the number of distinct “graph fingerprints”

that the p-boson walk can generate for an SRG family whose graphs have N vertices. By

a “graph fingerprint,” we mean a sorted list of the absolute value of every element of an

evolution operator (Eq. (2.10)). We examine the boson walk here, because its state space

is strictly larger than the fermion walk of the same number of particles. Thus the p-boson

walk generates more fingerprints than the p-fermion walk (even though we have seen no

evidence yet that it distinguishes more graph pairs). Therefore, Z(p,N) bounds from above

the maximum number of SRGs with N vertices in a particular family that non-interacting

walks of either p fermions or bosons can distinguish.

We now define the ratio R(p,N):

R(p,N) =
S(N)

Z(p,N)
. (2.13)
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We will show that for any fixed p, R is greater than 1 for large enough N , thus demonstrating

that there exist more SRGs than the p-particle walk can distinguish.

It is shown in [47] that there is a mapping between Latin squares of size n and SRGs of

size n2 with family parameters (n2, 3(n− 1), n, 6). The results of [48, 47], imply that when

N is large enough, the number of non-isomorphic Latin square SRGs of size N is bounded

below by:

S(N) ≥ 1

6
(
√
N !)2

√
N−3N

−N
2 . (2.14)

As for Z(p,N), we show in Appendix B that for a fixed p, Z satisfies the inequality:

Z(p,N) < N2Xp(p+1), (2.15)

where Xp is the number of unique values a Green’s function for a p-boson walk can assume.

While it can be shown that Xp is super-exponential in p, it does not depend on N . This is

because the value of a Green’s function for a non-interacting p-particle QRW on an SRG is

determined by a configuration of up to 2p vertices in that SRG, as discussed in Section 2.3

and Appendix A.

To examine the behavior of R in the limit of large N , we use Stirling’s formula:

x! =
√

2πe−xxx+1/2(1 +O(x−1)). (2.16)

This allows us compute a lower-bound for R in the limit of large N :

lim
N→∞

R ≥ 1

6
(2π)

√
N−3

2 e−2N+3
√
NN

N
2 −
√
N−3

4−2Xp(p+1). (2.17)

Taking the logarithm of Eq. (2.17) yields:

lim
N→∞

logR(p,N) ≥ lim
N→∞

N

2
logN +O(N), (2.18)

which diverges as N → ∞. Therefore, for a fixed p, R approaches ∞ as N increases,

showing that no p-particle non-interacting walk can distinguish all SRGs.

One can let p grow slightly with N and achieve the same result. Indeed, we show in

Appendix C that

log2(Xp) = p2 +O(p log p). (2.19)
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Using this, we find our argument remains valid for p < C
√

log2N , for any C < 1.

We can contrast these results to those of Gamble et al.. They found that the hard-

core two-boson walk distinguished all graph pairs in a dataset of over 500 million pairs of

SRGs [3]. This distinguishing power was shown to arise from an underlying algebra that

is fundamentally different than that of the noninteracting two-boson or two-fermion walks.

As we see no obvious way to extend the proof presented in this section to include hard-

core walks, it is an open question as to whether or not the two-boson hard-core walk has

universal distinguishing power on SRGs. Even if does not, it is still possible that there

exists a fixed p > 2 such that the p-boson hard-core walk could distinguish all SRGs. If

this is the case, then this would be a marked difference between the non-interacting and

hard-core walks.

2.4 Discussion

We have shown how three-particle non-interacting quantum random walks are qualitatively

different from two-particle non-interacting quantum random walks; the latter will always

fail to distinguish non-isomorphic strongly regular graphs from the same family, whereas the

former successfully distinguish many (but not all) non-isomorphic pairs of strongly regular

graphs. We have analytically identified a fundamental difference between these two classes

of quantum walks. The three-particle walks have potential distinguishing power because

the shared connectivity of triples of vertices in SRGs is not governed by the SRG family

parameters. We have also demonstrated numerically that three-particle non-interacting

walks have significant, but not universal, distinguishing power on SRGs. We observe nu-

merically that bosonic and fermionic walks distinguish the same pairs of non-isomorphic

pairs of graphs. Increasing the number of non-interacting fermions to four further increases

distinguishing power. However, this distinguishing power is not limitless; we have shown

that for any fixed number of non-interacting particles, there exist non-isomorphic pairs of

SRGs that cannot be distinguished.

Lastly, we discuss the implications of these results in terms of the computational com-
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plexity of the graph isomorphism problem. Not only are there graph pairs on which the

three- and four-particle walks fail, but we know that for any fixed particle number, there

will be SRGs that such non-interacting walks cannot distinguish. It is still possible that,

given any non-isomorphic SRG pair of a fixed size N , there exists a p such that the p-

particle non-interacting walk will succeed in distinguishing the graphs. However, the lower

bound given at the end of Section 2.3 rules out the possibility of our algorithm providing a

classical polynomial-time solution to GI for SRGs.

2.5 Appendices

A. Computing multiplicities of values of matrix elements of the evolution

operator for strongly regular graphs

Here we discuss how to compute the multiplicities of values of elements of evolution op-

erators, or Green’s functions, for SRGs. We show in this appendix that the multiplicity

of a non-interacting three-particle Green’s function is in general not a function of SRG

family parameters. This result is used in Section 2.3 to demonstrate how two-particle and

three-particle non-interacting walks have different distinguishing powers for SRGs.

To compute the multiplicity of each value of the Green’s function in a non-interacting

three-particle walk, we first note that Eqs. (2.10) through (2.12) imply that the value of a

given Green’s function depends on the relationships between the vertices in the final state

(the bra; {i, j, k}) and the vertices in the initial state (the ket; {p, q, r}). For each pair of

indices (x, y), with x from the bra (x ∈ {i, j, k}), and y from the ket (y ∈ {p, q, r}), there

are three possible relations. The vertices can be connected (Axy = 1), the vertices can

be the same (δxy = 1), or the vertices can be different and disconnected (Axy = δxy = 0).

Therefore, we may think of each Green’s function as corresponding to a generalized subgraph

of the original graph. We say “generalized subgraph” because the Green’s function is

unaffected by internal connections within the initial or final state; we adopt the more

compact terminology of referring to these generalized subgraphs as “widgets.”
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To illustrate this point, let us consider the widget shown in Figure 2.1. The solid lines in

the widget indicate that the sites are connected in the graph, while the dashed lines indicate

that the value of the widget does not depend on whether or not those sites are connected.

Thus, two widgets are considered the same whether or not sites that are connected by

dashed lines are actually adjacent. To evaluate B〈ijk|U3B|pqr〉B for the widget shown in

Figure 2.1, we note that all six vertices ({i, j, k, l, p, q, r}) are distinct. We can then use

Eqs. (2.10) and (2.12) to find that B〈ijk|U3B|pqr〉B = 6(β + γ)3, where β and γ, defined

in (2.12), are functions of the SRG family parameters. The multiplicity of this particular

value for a particular graph is given by the number of times its corresponding widget occurs

in the graph.

To compute the multiplicity, M , of 6(β+γ)3 in U3B, we count the number of occurrences

of this widget in the graph. To do this, we perform the following combinatorial sum,

generalizing the procedure outlined in Appendix B of Gamble et al. [3].

M =
∑

i<j<k

∑

p<q<r

AipAiqAirAjpAjqAjrAkpAkqAkr (2.20)

=
1

36

∑

ijkpqr

AipAiqAirAjpAjqAjrAkpAkqAkr×

(1− δij)(1− δik)(1− δjk)(1− δpq)(1− δpr)(1− δqr).

The analogous sums considered in Gamble et al., which only examines two-particle walks,

can be decomposed into sums and traces over powers of the adjacency matrix. Such oper-

ations are given by contracting over two occurrences of the same index in the summand.

Conveniently, these quantities are expressible in terms of SRG family parameters. Things

are not so simple, however, for the three-particle walks. By inspection, we see that Eq. 2.20

contains contractions over three occurrences of the same index. Such contractions corre-

spond to neither matrix multiplication nor computing the trace, and cannot in general be

massaged into forms expressible in terms of SRG family parameters, as evidenced by the

fact that the three-particle walks have distinguishing power over many pairs of SRGs.

However, the above statement does not give us analytic proof that there exist Green’s

functions whose multiplicities are not functions of the family parameters; up to this point,
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Figure 2.1: Sketch of a generalized subgraph, or “widget,” used to calculate the values and
degeneracy of a Green’s function for a three-particle quantum walk on an SRG. The vertices
on the right side correspond to the vertices the particles are on to begin with (the ket |pqr〉B
or |pqr〉F ), and the vertices on the left side correspond to the vertices the particles end up
on (the bra B〈ijk| or F 〈ijk|), after application of the evolution operator U . A solid line
between vertices x and y indicate that Axy = 1. A dashed line between x and y means that
the value of Axy does not affect the value of the Green’s function. Thus, for bosons, the
depicted widget corresponds to the Green’s function B〈ijk|U3B|pqr〉B when all six vertices
are distinct, and when Axy = 1 for all x ∈ {i, j, k} and y ∈ {p, q, r}. Eqs. (2.10) and (2.12)
show that the value of this Green’s function, or widget, is B〈ijk|U3B|pqr〉B = 6(β + γ)3.
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Figure 2.2: Empty widgets for two-particle and three-particle non-interacting walks. In
both widgets, all vertices are distinct and no vertex in the initial state is adjacent to any
vertex in the final state. The values of the widgets depend only on the family parameters for
both (a) and (b), while the degeneracies of these values depend only on family parameters
for two particles but not for three. The multiplicity of each widget’s respective Green’s
function for a particular SRG is equal to the number of times that widget appears in the
SRG. (a) The empty widget for two particles. The number of times this widget appears
in an SRG is a function of the SRG family parameters, as is the case for all two-particle
widgets [3]. (b) The empty widget for three particles. The number of times this widget
appears in an SRG is not a function solely of SRG family parameters. This is demonstrated
by the graphs in Figure 2.3. An analytic explanation for this phenomenon is given in the
text following Equation (2.21).
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(a) (b)

Figure 2.3: The two non-isomorphic graphs of the SRG family (16,6,2,2). The widget
of Figure 2.2(b) appears in the graph shown in (a) 608 times, whereas the same widget
appears in the graph shown in (b) 512 times. Thus we see that the same three-particle
widget can have different multiplicities in graphs of the same family, so the three-particle
non-interacting walk can distinguish at least some non-isomorphic graphs from the same
SRG family.

we are still relying on the numerical results as proof. Below, we analytically demonstrate

that there exist widgets whose multiplicities cannot be determined by family parameters. To

demonstrate this, we take a step back to the two-particle walk. Consider the widget shown in

Figure 2.2(a). We can determine this widget’s multiplicity for an arbitrary SRG with family

parameters (N, k, λ, µ) by performing the combinatorial sum analogous to Equation (2.20),

or equivalently, we can actually count the number of times we can fit this widget on the

SRG. To begin, we pick two sites in the graph to serve as sites i and j; these sites may

be adjacent or not, as indicated by the dashed line between them in the figure. Now we

must count, given our choice of i and j, how many sites we may pick as p and q. If i and j

are connected, there are
(
N−2k+λ

2

)
choices for p and q, whereas if i and j are disconnected,

there are
(
N−2−2k+µ

2

)
choices for p and q. There are Nk

2 choices for connected sites that can

serve as i and j, and
(
N
2

)
− Nk

2 disconnected sites. Thus, the number of four-vertex empty
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(a) (b)

Figure 2.4: Two copies of the Petersen graph, an SRG with parameters (10, 3, 0, 1). In
each graph, three mutually non-adjacent vertices are highlighted as red diamonds. In (a),
the three vertices share one common neighbor, marked as a green square. In (b), the three
vertices share no common neighbors. This demonstrates that the number of neighbors
common to a triple of vertices in a strongly regular graph is not strictly a function of the
SRG family parameters, thus showing why widget multiplicity is not strictly governed by
family parameters when p ≥ 3.

widgets occurring in a two-particle non-interacting walk is:

M2,empty =
Nk

2

(
N − 2k + λ

2

)
+ (2.21)

((
N

2

)
− Nk

2

)(
N − 2− 2k + µ

2

)
,

in agreement with the result in Gamble et al. for this particular widget [3]. Thus we see

that this widget’s multiplicity is, as expected, a function of the family parameters. Let’s see

what happens when we try this same approach for the corresponding widget in the three-

particle walks, shown in Figure 2.2(b). Again, we consider the multiplicity of the widget

in an arbitrary SRG by counting the number of times we can fit this widget on the graph.

Now we pick three sites to serve as i, j, and k. We want to count, given our choice of i, j,

and k, the number of sites that can serve as p, q, and r. To do this, we need to know how i,

j, and k are connected amongst themselves, just as we did in the previous example. There

are four possible non-isomorphic connectivities, as there can be between zero and three
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connections amongst these sites. In order to count the multiplicity of this widget, we must

consider for each of these four cases how many sites in the graph are mutually disconnected

from sites i, j, and k. In the previous example, we could answer the analogous question via

the family parameters, as illustrated above. However, this is because the family parameters

µ and λ tell us how many common neighbors pairs of vertices have. There are no family

parameters which encode this information for triples of vertices, as strong regularity does

not place absolute constraints on shared connectivities for triples of vertices.

We illustrate this point with an example in Figure 2.4. Two copies of the Petersen graph,

an SRG with family parameters (10, 3, 0, 1) are depicted. The first copy highlights three

mutually non-adjacent vertices; this particular triple of vertices has one common neighbor.

The second copy also highlights a triple of mutually non-adjacent vertices, but this triple

has no shared neighbors. Thus we have demonstrated by example that strong regularity

cannot in general uniquely determine the shared connectivity for triples of vertices.

Moreover, we can see that counting the multiplicity of the widget shown in Figure 2.2(b)

can be used to distinguish two non-isomorphic graphs from the same SRG family. Fig-

ure 2.3 shows the two non-isomorphic graphs in the SRG family (16,6,2,2). The widget in

Figure 2.2(b) appears 512 times in the first graph and 608 times in the second graph, thus

distinguishing them.

We conclude then that there exist three-particle widgets whose multiplicities cannot

be functions of family parameters. Thus, the three-particle non-interacting walks are not

forbidden from distinguishing non-isomorphic SRGs from the same family, unlike the two-

particle non-interacting walks.

B. Computing the number of SRG fingerprints

In Section 2.3, it is shown that quantum walks of p non-interacting particles cannot dis-

tinguish all non-isomorphic pairs of strongly regular graphs. This is done by showing that

Z(p,N), the number of graph fingerprints given by the p-boson walk on an SRG family

with N vertices, is less than the number of non-isomorphic strongly regular graphs with N
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vertices, in the limit of large N . This subsection presents the calculation of Z(p,N).

To calculate Z(p,N), we note that if there are Xp possible Green’s function values

for the p-boson walk, and Y elements of the evolution operator U , then computing the

number of unique fingerprints is equivalent to computing the number of ways one can put

Y indistinguishable balls in Xp labeled bins, so that [49]

Z(p,N) =

(
Xp + Y − 1

Xp − 1

)
. (2.22)

We recall that Xp is a function of p, but not of N . (We may think of Xp as the number

of uniquely-valued widgets that appear in the p-boson walk.) However, Y , the number

of elements in the evolution operator, will depend on both p and N , and we henceforth

write it as Yp,N . The dimension of the evolution operator is computed by determining how

many different ways p bosons can be put on N vertices, which this is the same problem as

computing the number of ways to put p indistinguishable balls into N labeled bins. The

number of elements in the evolution operator is just the square of its dimension, so we find

that:

Yp,N =

(
N + p− 1

p

)2

. (2.23)

Using Equations (2.22) and (2.23), we now compute an upper bound for Yp,N and Z. It

can be shown that
(
n+k−1
k−1

)
≤ nk when n ≥ 2 and k ≥ 1. Thus

Yp,N <

(
N + p

p

)2

≤ N2(p+1) (2.24)

and

Z(p,N) ≤ (Yp,N )Xp < N2Xp(p+1). (2.25)

Therefore, the maximum number of unique graphs the p-boson walk can distinguish is

bounded above by N2Xp(p+1). We use this result in Section 2.3 to show that there exist

SRGs that a particular p-particle walk cannot distinguish.

C. Bounding the number of widgets in the non-interacting p-particle walk

Here, we show that log2Xp ∼ p2, where Xp is the number of distinct widgets for the non-

interacting p-boson walk. First, Auluck proved there are eO(p2/3) widgets with no edges
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[50]. (He counted bipartitions of (p, q), which may be considered to be edgeless widgets

when p = q.) Since there are at most 2p
2

ways to add edges to one of these, we have the

upper bound Xp ≤ 2p
2+O(p2/3). To get a lower bound, it will suffice to consider the widgets

with 2p distinct indices. The edges in one of these can be specified by a p × p array of

bits, and the widgets isomorphic to it are obtained by permuting rows, permuting columns,

or transposing the matrix. Therefore, by Burnside’s counting lemma [51], the number of

isomorphism classes of widgets of this type is

1

|F |
∑

f∈F
[ # of arrays fixed by f ],

where the finite group F is the semidirect product of Sp × Sp by S2. (Sp and S2 are the

symmetric groups on p and 2 objects, respectively.) This is lower bounded by the term

coming from f = 1, which is 2p
2
/(2(p!)2)), and this is 2p

2+O(p log p) by Stirling’s formula.

From these two estimates the result of Equation (2.19) follows.
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Figure 2.5: The number of numerically distinguished elements in the evolution operator
U(t), defined in Equation (2.8) as a function of the bin size used in grouping the ele-
ments. This plot is for the non-interacting three-fermion walk on a graph in the SRG
family (16,6,2,2). We see that the actual number of unique elements is about 150, which
can be obtained by using a bin size in the range of 10−7 to 10−4.
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D. Error analysis for numerical computations

When comparing two graphs, we compute ∆, a measure of the distance between the lists

of matrix elements of the evolution operators for the two graphs, as defined in Eq. (2.9).

Computing ∆ requires comparing two lists of numbers that are each exponentially large

in particle number p. An evolution operator for a walk of p non-interacting fermions on a

graph with N vertices has
(
N
p

)2
elements, and the boson equivalent has

(
N+p−1

p

)2
elements.

For example, the evolution operator for the non-interacting four-fermion walk on a graph

of 35 vertices has over 2.7 billion elements.

The comparison of the lists can be made much more efficient by exploiting the fact

that the values in the list are highly degenerate. Instead of comparing the entries in a

list, we make histograms of element values and their multiplicities. We then compute

∆ by comparing these histograms. When constructing the histograms, it is important

to determine the correct bin size. Choosing too large a bin size results in falsely grouping

distinct elements together, while choosing too small a bin size results in falsely distinguishing

elements. By constructing a series of histograms with different bin sizes for the same

evolution operator, we are able to determine a range of bin sizes which are neither too large

nor too small. This is illustrated in Figure 2.5, which shows that for the non-interacting

three-fermion walk on a graph in (16, 6, 2, 2), an appropriate bin size is between 10−7 and

10−4.

Because we compute ∆ via numerical simulation, we expect there to be some numerical

noise floor. That is, for any two permutations of the same graph, we expect

∆ > 0. It is important to determine how big this quantity, which we denote ∆iso, will be.

We only consider two non-isomorphic graphs to be distinguished if they yield a ∆ which

satisfies ∆� ∆iso.

We numerically compute ∆iso using double precision arithmetic for a variety of random

permutations on our graphs, and we find a maximum ∆iso to be approximately 10−6. Thus,

only graph pairs which yield a ∆ > 10−6 are considered distinguished. We find ∆iso to be

relatively insensitive to graph size and particle number.
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In practice, we see a gap for ∆ between distinguished graph pairs and non-distinguished

graph pairs. For distinguished graphs, we find ∆ at least two orders of magnitude larger

than ∆iso (usually much larger); non-distinguished graph pairs have values of ∆ are ap-

proximately equal to ∆iso or are even smaller than it.
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Chapter 3

Comparing algorithms for graph

isomorphism using discrete- and

continuous-time quantum random

walks

3.1 Introduction

In the previous chapter we examined the use of continuous-time quantum random walks

(CTQRWs) to solve the graph isomorphism problem (GI). While the work in Chapter 2

is part of a series of investigations of using CTQRWs for GI [2, 3], others have looked to

utilize discrete-time quantum random walks (DTQRWs) for GI algorithms [52, 43]. While

these efforts have helped illuminate what kinds of QRW algorithms might be fruitful for

GI, an efficient QRW algorithm for GI has yet to be developed. Moreover, it is unknown if

DTQRWs or CTQRWs are better candidates for an efficient GI algorithm, or if both classes

of walks will ultimately be of equal utility.

This question is explored in a recent paper by Berry and Wang [4]. Their results in-

dicate that discrete-time quantum random walks may have greater ability to distinguish
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non-isomorphic strongly regular graphs (a class of graphs which are particularly difficult to

distinguish) than continuous-time quantum random walks. This is based on (1) the ability

of a specific discrete-time quantum random walk of two noninteracting particles to distin-

guish strongly regular graphs (SRGs) that are not distinguished by an algorithm based on

a continuous-time quantum random walk of two noninteracting particles [3], and (2) the

fact that the dimension of the state space of discrete-time walks on graphs is larger than

that of continuous-time walks.

In this chapter, we explain why the two-particle noninteracting walks of Berry and Wang

are able to distinguish non-isomorphic SRGs. To do this, we show analytically how even

single-particle DTQRWs are able to distinguish non-isomorphic SRGs. This demonstrates

how two-particle noninteracting DTQRWs can also distinguish SRGs. We then verify nu-

merically that this distinguishing power of single-particle DTQRWs exists.

Additionally, we explore the differences between the comparison algorithm used by Berry

and Wang [4] and the one used by Gamble et al. [3] (which is the same comparison algo-

rithm used in Chapter 2). Both comparison algorithms rely on the construction of sorted

lists of data, or “graph certificates”, which are used to compare graphs. To help relate

the graph certificates of [3] to those of [4], we introduce a third kind of certificate. This

type of certificate features aspects of the certificates of both [3] and [4]. Though all three

kinds of certificates are constructed similarly, we find that, when applied to single-particle

discrete-time quantum random walks, the graph certificates of [3] have non-trivially less

distinguishing power than the other two types of certificates. It remains an open question

as to whether or not the graph certificates of [4] have more distinguishing power than the

certificates introduced in this chapter. Thus we demonstrate the importance of using the

same kind of graph certificates when attempting to compare the distinguishing power of

DTQRWs and CTQRWs.

Lastly, we extend a result of Chapter 2, where we showed that there does not exist

a CTQRW with a fixed number of noninteracting particles that can distinguish all SRGs

when used in conjunction with the comparison algorithm of Gamble et al. In this chapter
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we show that this argument holds for DTQRWs as well; no DTQRW with a fixed number of

noninteracting particles can distinguish all SRGs when the comparison algorithm of Gamble

et al. is used. We also examine the comparison algorithm of Berry and Wang, as well as an

algorithm with similarities to both the algorithms of Berry and Wang as well as Gamble et

al. We find that no CTQRW of a fixed number of noninteracting particles can distinguish

all SRGs when used with these comparison algorithms. It remains an open question as to

whether or not this is true for DTQRWs of a fixed number of noninteracting particles.

This chapter is organized as follows: Section 3.2 provides the requisite background

regarding graph isomorphism, strongly regular graphs, and quantum random walks. Sec-

tion 3.3 describes in detail the graph comparison procedures of Gamble et al., and Berry

and Wang, as well as a procedure which is “in between” the two. In Section 3.4, we analyti-

cally show how the single-particle DTQRW has the potential to distinguish non-isomorphic

graphs when used with any of the three comparison algorithms we consider. Section 3.5

provides numerical results for single-particle DTQRWs; we find that all three comparison

algorithms numerically distinguish some, but not all, of the tested SRG pairs, and one

comparison procedure is not as strong as the other two. In Section 3.6, we show that a

DTQRW with a fixed number of noninteracting particles cannot distinguish all SRGs when

used with the comparison procedure of Gamble et al.; we show the same result holds when

the comparison algorithm of Berry and Wang is used with CTQRWs with a fixed number

of noninteracting particles. We are unable to extend this result for Berry and Wang’s com-

parison algorithm when used with a DTQRW of a fixed number of noninteracting particles,

indicating a potential difference between DTQRWs and CTQRWs. We discuss our results

in Section 3.7.

3.2 Background

The graph-theoretic background necessary to discuss quantum random walks on graphs is

provided in Section 2.2 of this thesis. The relevant definitions of graphs, adjacency matrices,

and strongly regular graphs are provided therein. We note one change in notation compared
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to Chapter 2. In keeping with previous work on quantum random walks, a graph’s degree

is denoted by k in Chapter 2; to be consistent with the notation of Berry and Wang [4],

here we denote a graph’s degree as d.

Discrete-time and continuous-time quantum random walks of

noninteracting particles

Here we discuss how to form quantum random walks on graphs. For the noninteracting

continuous-time model used in [3] and Chapter 2, a Hamiltonian is defined for a graph of

N vertices with adjacency matrix A:

H = −
N∑

i,j

Aijc
†
icj , (3.1)

where c†i and ci are the creation and annihilation operators, respectively, for a boson or

(spinless) fermion on site i. This Hamiltonian may be used with any number of particles

(either bosons or fermions). Matrix representations of this Hamiltonian for a fixed number

of particles are given by Eqs. (2.5) and (2.6). The evolution operator is then defined in the

standard fashion:

UC(t) = e−itH, (3.2)

where we have ~ = 1 for convenience. This is the same as Eq. (2.8), except that we have

added the subscript C to explicitly denote that this evolution operator is for a continuous-

time walk. In this chapter, discrete-time evolution operators will be denoted with a subscript

D.

For discrete-time walks, each particle has an auxiliary coin state, which “points” to

where the particle will next move. Thus the single-particle walk has basis states of the form

|ij〉, denoting the particle is on site i, and its coin is on site j, which by definition must be

adjacent to i.

The noninteracting walk considered by [4] is based on a single-particle Grover-coined

walk. We follow [52] and express the evolution operator in expanded form, allowing the

coin index to run over all vertices in the graph, but still requiring the particle be adjacent
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to its coin. Thus, for an N -vertex graph with adjacency matrix A, the single-particle

discrete-time evolution operator is given by

UD = SΛ(1⊗C)Λ. (3.3)

Λ|ij〉 = Aij |ij〉, ensuring that the coin is adjacent to the particle. S is the swap operator;

S|ij〉 = |ji〉. C is the coin operator. Here it is the Grover coin, which for a d-regular graph

is C = −1+ 2
dJ. This expanded form of UD has the same behavior as in [4]; we have only

introduced N2 −Nd rows of 0, so its dimension is now N2 ×N2 [52].

To advance the walk a discrete number of time steps t, UD is applied t times: UD(t) =

(UD)t. Additionally, the evolution operator for p noninteracting particles is just p tensor

copies of UD: UD,p = (UD)⊗p.

3.3 Comparison Algorithms

Now that we have defined evolution operators for continuous-time and discrete-time walks,

we explore how these operators can be used to compare graphs and test for isomorphism. All

methods of comparing graphs that we examine are based on, given an evolution operator,

generating a list of numbers sorted by size for each of the graphs, and comparing the

respective lists. We follow [4] and refer to these sorted lists as graph certificates.

There are multiple graph certificates that can be constructed from a given evolution

operator. In this section, we examine three classes of graph certificates. First, we give the

definition of the certificate which is used in Chapter 2 and by [3] for CTQRWs. We then

describe a certificate which is “between” the aforementioned certificate and the certificate

of [4]. Lastly, we define the certificate used by [4] for DTQRWs. All three certificates can

be applied to either continuous-time or discrete-time QRWs.

As the certificates are lists, we denote the three different certificate classes as L0, L1,

and L2, respectively. To indicate that a specific certificate corresponds to a discrete-time

walk, a superscript D is included; a superscript C denotes the certificate corresponds to a

continuous-time walk. Additionally, a second superscript is used to indicate that number
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of particles in the walk which generates the certificate. For example, LD,12 would refer to

the L2 graph certificate for a discrete-time walk of a single particle.

We call the graph certificate of [3] and Chapter 2 L0. It is defined as follows:

L0(A, t) = sort ({|U(t)mn| : ∀m,n ∈ {1, ...,dim U}}) . (3.4)

Thus, if the possible values the evolution operator elements can take on (up to different

phases) are different for the different graphs, then the graphs will be distinguished. Even

if the possible values each element can take on are the same for the different graphs, the

graphs will be distinguished if those values have different multiplicities in the two evolution

operators. While this algorithm has been used for CTQRWs, it can in principle be used for

DTQRWs as well. Additionally, we see from its definition that L0 is naturally defined for

a walk with any number of particles.

It was proven in [2] that LC,10 certificates could not be used to distinguish non-isomorphic

SRGs from the same family, while [3] extended this proof for CTQRWs of two noninteracting

particles. However, we showed in Chapter 2 that L0 for CTQRWs with three or more

noninteracting particles could distinguish many (but not all) pairs of non isomorphic SRGs

from the same family.

The next graph certificate is designed for DTQRWs, but can be used for CTQRWs. We

denote it L1, which for the single-particle DTQRW is defined as

LD,11 (A, t) = sort

({
N∑

j=1

|〈ij|UD,1(t)|kl〉|2 : ∀i, k, l ∈ {1 . . . N}
})

. (3.5)

Each element of LD,11 represents the total probability of a particle being on vertex i after

t steps, given an initial state |kl〉. A natural extension of this method for a two-particle

CTQRW is

LC,21 (A, t) = sort

({
N∑

j=1

|B〈ij|UC,2(t)|kl〉B|2 : ∀i, k ∈ {1 . . . N}, ∀l ∈ {1 . . . k}
})

, (3.6)

where |ij〉B denotes the bosonic (symmetrized) state in which there is a boson on site k and

a boson on site l. (This method may be used just as well with fermions, with the basis states
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appropriately anti-symmetrized.) The extension of L1 for more than two continuous-time

particles is given in Section 3.6.

The final graph certificate we examine is a variant of this method, and is the one utilized

by [4]. This certificate, denoted L2, is defined for the single-particle DTQRW as follows:

LD,12 (A, T ) = sort

({
T∑

t=1

N∑

j=1

|〈ij|UD,1(t)|kl〉|2 : ∀i, k, l ∈ {1 . . . N}
})

. (3.7)

This method sums up the probabilities of a particle being at a particular site at different

times, given the same initial state. For the two-boson CTQRW, this certificate has the

form:

LC,22 (A, T ) = sort

({
T∑

t=1

N∑

j=1

|B〈ij|UC,2(t)|kl〉B|2 : ∀i, k ∈ {1 . . . N},∀l ∈ {1 . . . k}
})

.

(3.8)

As with L1, L2 can be extended to any number of discrete-time or continuous-time walkers.

For a two-particle DTQRW, the size of LD,22 can be quite large, with as many as N4d2

non-zero elements. In [4] the initial states are limited to what Berry and Wang call “bosonic

edge states”. Given two adjacent vertices k and l, a bosonic edge state, denoted by Berry

and Wang as |β+〉, is defined as

|β+〉 =
1√
2

(|kllk〉+ |lkkl〉). (3.9)

Therefore, their graph certificates (which we denote L̃2
D,2

) have at most N3d
2 nonzero

elements, as a d-regular graph with N vertices contains Nd
2 edges. The certificate is defined

as

L̃2
D,2

(A, T ) =

sort

({
T∑

t=1

N∑

j1,j2=1

|〈i1j1i2j2|UD,2(t) 1√
2
(|kllk〉+ |lkkl〉)|2

: ∀i1, i2,∈ {1 . . . N},∀(k, l) ∈ E
})

, (3.10)

where E is the edge set of A. The physical interpretation of the certificate L̃2
D,2

is identical

to that of L2
D,2 except that each initial state is delocalized across an edge in the graph [4].
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3.4 Analytic demonstration of the distinguishing power of

DTQRWS on SRGS

Berry and Wang demonstrated numerically that the noninteracting two-particle DTQRW

with the L̃2 certificate method could distinguish many SRGs. In this section, we show

analytically why this is possible. To do so, we first analytically explore the distinguishing

power available to single-particle walks using only the L0 and L1 graph certificates.

In general, if a particular kind of certificate will always fail to distinguish two non-

isomorphic SRGs, it is because all elements of a certificate, as well as their multiplicities,

are functions of SRG family parameters. This is how we show, or fail to show, the limitations

of each certificate considered in this section.

Single-particle DTQRW with L0 graph certificate

Here we show analytically that even single-particle DTQRWs have the potential to distin-

guish SRGs, using only the L0 graph certificate. To begin our analysis, we compute an

arbitrary element of UD,1 for t = 1:

〈ij|UD,1|kl〉 = AijAklδjk

(
−δil +

2

d

)
. (3.11)

The particle on site k with its coin pointing to site l can move to site i with its coin pointing

to site j if and only if Aij = Akl = δjk = 1. (Aij = Akl = 1 is required because both the

bra and ket must be legal states; a state must always have its coin point to a site that

is adjacent to the location of the particle.) The amplitude of this transition is equal to 2
d

if i = l, and −1 + 2
d otherwise. We see that the particle’s movement for this single time

step is highly restricted, and that all possible evolution operator element values are strictly

functions of the family parameters.

Now that we have computed the possible non-zero values for 〈ij|U |kl〉, we compute the

multiplicities of these values. If the multiplicities of one value are different for two SRGs in

the same SRG family, then the LD,10 certificates will distinguish the graphs.
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To compute the multiplicities, we follow a procedure developed in [3] and further ex-

plored in Chapter 2. We denote by M(x) the multiplicity of the value x in the evolution

operator, and we recall that the family parameters for an SRG are denoted (N, d, λ, µ). We

find:

M

(
2

d

)
=

N∑

ijkl

AijAklδjk(1− δil), (3.12)

M

(
−1 +

2

d

)
=

N∑

ijkl

AijAklδjkδil. (3.13)

Each of these summands is a product of four terms, each of which corresponds to an

identity or adjacency relationship that appears in 〈ij|UD,1|kl〉. 1− δil appears in the first

summand, because δil is “turned off” (equals 0) when 〈ij|UD,1|kl〉 = 2
d ; δil appears in the

second summand because δil is “turned on” (equals 1) when 〈ij|UD,1|kl〉 = −1 + 2
d .

The sums given in Eqs. (3.12) and (3.13) can be computed straightforwardly because all

the index contractions here are reducible to matrix multiplication and traces. Additionally,

we use the SRG identity of Eq. (2.2), and find

M

(
2

d

)
= Nµ(N − d− 1) +Nλd, (3.14)

M

(
−1 +

2

d

)
= Nd. (3.15)

We see that these multiplicities are functions of the family parameters, so the walk has no

distinguishing power when t = 1.

Next, we consider later times. 〈ij|Ut
D,1|kl〉 for t = 2 and t = 3 are straightforward

to calculate; both the values and degeneracies for these cases are reducible to sums over

products of adjacency matrices and traces of adjacency matrices, and therefore can be

written as functions of the SRG family parameters. Therefore, U2
D,1 and U3

D,1 cannot

distinguish non-isomorphic SRGs of the same family when used to generate L0 certificates.

At t = 4, all six possible adjacency relations appear (Aij , Akl, Ajk, Aik, Ajl and Ail):
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〈ij|U4|kl〉 = AijAkl(4d
−2(Ail −Ajk) + 2d−1× (3.16)

(2δik −Ailδik −Ajkδik + δjl −Ailδjl) + δikδjl−

8d−3((d− µ)(δik + δjl) + (λ− µ)(Aik +Ajl)+

2µ) + 16d−4(δjk(d− µ)(λ− µ)+

Ajk(d+ (λ− µ)2 − µ) + (d+ λ− µ)µ)).

When all four vertices are connected to each other, 〈ij|U4
D,1|kl〉 = −16λ

d3 +16(d+(λ−µ)2−µ+(d+λ−µ)µ)
d4 .

As no other configuration of vertices yields this value for 〈ij|U4
D,1|kl〉, this value appears

in the operator U4
D,1 M times, where M satisfies

M =
N∑

ijkl

AijAklAikAilAjkAjl. (3.17)

Computing the sum in Eq. (3.17) requires contracting over four indices, each of which

occurs three times. Such a sum cannot be reduced to be in terms of matrix multiplication

and traces. We showed in Chapter 2, in the context of continuous-time noninteracting walks

of three particles, that these kinds of sums are functions of the number of shared neighbors

belonging to triples of vertices in the graph in question. This number is, in general, different

for different triples of vertices in the same SRG, and therefore not a function of the SRG

family parameters. Therefore, U4
D,1 has the potential to distinguish non-isomorphic SRGs

when used with the L0 method. In Section 3.5, we numerically show that this method does

indeed distinguish some (but not all) non-isomorphic SRGs.

In contrast, in Refs. [2, 3] it is proved that single-particle and noninteracting two-particle

CTQRWs with the L0 graph certificate method cannot distinguish any non-isomorphic SRG

pair from the same family. Several key differences between DTQRWs and CTQRWs become

apparent. First, an element of the single-particle continuous-time walk evolution operator

is indexed by up to 2 vertices (as the particle is on 1 vertex in an initial state, 1 vertex

in the final state, and the sets of final and initial vertices need not overlap). However, an

element of the corresponding single-particle discrete-time walk evolution operator is indexed



41

by up to 4 vertices, because each particle corresponds to a vertex, as does each particle’s

coin. Additionally, in the continuous-time walk, the value of an evolution operator element

does not depend on whether or not two vertices which are both in the final or initial state

are adjacent. Therefore, such adjacency relations are not considered when performing the

appropriate multiplicity sum. However, because a particle must always be adjacent to

its coin, the adjacency relation between a particle and its coin is always included in the

discrete-time sum used to compute element multiplicity. The presence of these additional

adjacency relations gives the single-particle DTQRW with the L0 comparison protocol the

potential to distinguish non-isomorphic SRGs.

Single-particle DTQRW with L1 graph certificate

Here we show that the L1 method, when used with the single-particle DTQRW, also has the

potential to distinguish non-isomorphic SRGs from the same family. To start, we compute

an element of
∑N

j=1 |〈ij|UD,1|kl〉|2 for t = 1.

N∑

j=1

|〈ij|UD,1|kl〉|2 = AikAkl
(
δil
(
1− 4

d

)
+ 4

d2

)
(3.18)

Possible non-zero values for
∑N

j=1 |〈ij|UD,1|kl〉|2 are 4
d2 and 1 − 4

d + 4
d2 , which are both

functions of the family parameters. We may compute their multiplicities, and find that

they are also functions of the family parameters. Thus, LD,11 (t = 1) graph certificates

cannot distinguish non-isomorphic SRGs from the same family.

Similarly, it may be shown that at t = 2 for the single-particle DTQRW, all elements

of L1 are functions of the family parameters, as well as their multiplicities. Therefore,

LD,11 (t = 2) certificates also cannot distinguish non-isomorphic SRGs from the same family.

However, at t = 3, the values of the elements of L1 for the single-particle DTQRW at

t = 3 are not functions of the family parameters. The Appendix provides the value of

∑N
j=1 |〈ij|UD,1(3)|kl〉|2, which has the form:

N∑

j=1

|〈ij|UD,1(3)|kl〉|2 = g(i, k, l) + h(i, k, l)

N∑

j=1

AijAjlAjk, (3.19)



42

where g(i, k, l) and h(i, k, l) are functions of the family parameters. However,
∑N

j=1AijAjlAjk

is not a function strictly of family parameters, for the same reason that Eq. (3.17) is not.

Thus we do not even need to examine the multiplicities of different values of
∑N

j=1 |〈ij|UD,1(3)|kl〉|2,

as this sum takes on values that are not functions of the SRG family parameters. There-

fore, the single-particle L1 method at t = 3 can potentially distinguish non-isomorphic

SRGs from the same family. In Section 3.5, we numerically show that this method can

distinguish some non-isomorphic graph pairs from the same SRG family.

However, this is not true for two-particle noninteracting CTQRWs. Using the meth-

ods of [3] and Chapter 2, it can be shown that, when the appropriately symmetrized or

anti-symmetrized states are used with the continuous-time evolution operator, all possible

values and corresponding multiplicities of
∑N

j=1 |〈ij|UC,2(t)|kl〉|2 are functions of the family

parameters and the time t. Thus, we see that the single-particle DTQRW L1 method is

strictly stronger than the two-particle noninteracting CTQRW L1 method for distinguishing

SRGs.

Single-particle DTQRW with L2 graph certificate

Now we examine LD,12 (T ) analytically for varying values of T . Recall that elements of

LD,12 (T ) are sums of elements from LD,11 (t) with t running from 1 to T . By inspection of

Eqs. (3.5) and (3.7), we see that for a final time of T = 1, L2 is the same as L1(t = 1), and

will have no distinguishing power. Similarly, for T = 2, each element of L2 will be a sum of

a term from L1(t = 1) and L1(t = 2). As the value and multiplicity of each of those terms is

strictly a function of SRG family parameters, the corresponding values and multiplicities of

each element of L2(T = 2) will be a function of SRG family parameters. Thus LD,12 (T = 2)

certificates cannot distinguish non-isomorphic SRGs from the same family.

However, we know that LD,11 (t = 3) certificates have the potential to distinguish SRGs.

Thus, LD,12 (T = 3) certificates also have the potential to distinguish SRGs from the same

family, as the elements of a LD,12 (T = 3) certificate are sums of terms which include elements

of a LD,11 (t = 3) certificate, which we have shown to not be functions of family parameters.
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Two-particle noninteracting CTQRWs with the L2 method may be similarly analyzed.

Because the L1 method fails to distinguish SRGs with noninteracting two-particle CTQRWs

for all values of t, these walks with the L2 method will also be unable to distinguish SRGs.

Thus we analytically see that for all three comparison methods contemplated, the single-

particle DTQRW has the potential to distinguish non-isomorphic SRGs from the same

family, while two-particle noninteracting CTQRWs cannot.

3.5 Numerical Results

Number of Undistinguished Pairs

SRG Family Number Comparisons LD,10 LD,10 LD,11 LD,11 LD,12 LD,12 LD,12

(N ,d,λ,µ) of Graphs (t=4) (t=2N) (t=3) (t=4) (T=3) (T=4) (T=2N)

(16,6,2,2) 2 1 1 1 1 1 1 1 1

(25,12,5,6) 15 105 11 11 0 0 0 0 0

(26,10,3,4) 10 45 3 3 1 1 1 1 1

Table 3.1: Numerical results for graph isomorphism testing using single-particle DTQRWs
with varying comparison algorithms with various times. The different graph certificates
(LD,10 , LD,11 , and LD,12 ) are defined in Eqs. (3.4), (3.5), and (3.7). We note that all three
algorithms have significant, but not universal, distinguishing power on SRGs. Additionally,
this distinguishing power saturates at the minimum time at which each algorithm can
potentially distinguish SRGs. Lastly, we see that LD,11 and LD,12 are more powerful than

LD,10 , but LD,12 is possibly no more powerful than LD,11 .

We now test the three comparison methods with the single-particle DTQRW on three

families of SRGs. For the DTQRWs, all three algorithms are tested at the minimum time

they can potentially distinguish SRGs (t = 4 for LD,10 , t = 3 for LD,11 , and T = 3 for LD,12 ).

We additionally test LD,10 at t = 2N , LD,11 at t = 4, and LD,12 at T = 4 and T = 2N .

(T = 2N is the total time used by Berry and Wang for their tests [4].) Our results are

given in Table 3.1.

Each algorithm distinguishes some, but not all, non-isomorphic SRGs from the same

family. Also, no single-particle DTQRW algorithm that we test is able to distinguish the

pair of SRGs in (16, 6, 2, 2), which is in contrast to the results of Berry and Wang, who suc-

cessfully distinguished these graphs using the two-particle DTQRW with L̃2
D,2

certificates.

Additionally, the various algorithms we test have significant distinguishing power on the
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other two SRG families we examine. We note that the distinguishing power for each algo-

rithm saturates at the minimum time required to allow for potentially distinguishing SRGs.

This could be because SRGs are distance-regular with diameter 2, so allowing the particles

to walk for longer does not actually result in capturing more of the graph structure.

The distinguishing power seems to saturate with LD,11 (t = 3), for higher times, either

with LD,11 or LD,12 , no further distinguishing power is obtained. For (25, 12, 5, 6), LD,11 (t = 3)

distinguishes all possible graph pairs. For (26, 10, 3, 4), there is one graph pair that cannot

be distinguished by LD,11 (t = 3), LD,11 (t = 4), or LD,12 with any time we test. Therefore,

it is possible that LD,12 offers no more distinguishing power than LD,11 . More generally,

it is possible that LD,p2 yields no more distinguishing power than LD,p1 . Additionally, it is

possible that there exists a certain time (and perhaps relatively small time) beyond which no

additional distinguishing power is obtained. As the complexity of computing LD,p1 and LD,p2

increase with the number time steps used, it could useful to know if there is no additional

information to be gained by increasing the number of time steps.

3.6 Asymptotic limits for DTQRWS and CTQRWS

We have shown how, by all three comparison algorithms considered, the single-particle

DTQRW has more distinguishing power on SRGs than noninteracting two-particle CTQRWs

(which cannot distinguish any non-isomorphic pair of SRGs from the same family). How-

ever, as the distinguishing power of the single-particle DTQRW is not universal on SRGs,

we can contemplate how to increase this distinguishing power. One obvious method is to

add additional particles to the walk. Indeed, with a two-particle noninteracting DTQRW,

Berry and Wang distinguished SRG pairs that are not distinguished by LD,12 certificates for

T = 3, 4 and 2N [4]. Thus it is interesting to characterize the asymptotic distinguishing

power of many-body QRWs. In this section, we show that no CTQRW of a fixed number

of noninteracting particles can distinguish all SRGs when used with either L0, L1, or L2

certificates. We also show this result holds for DTQRWs of any fixed number of noninter-

acting particles when used to generate L0 certificates; we are unable to extend this result
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for such walks with L1 and L2 certificates.

Asymptotic behavior for L0

It was demonstrated in Chapter 2 that increasing the number of noninteracting particles

in a CTQRW could significantly increase distinguishing power of the walk when used with

the L0 method. However, it was also shown there that no CTQRW with a fixed number

of noninteracting particles could distinguish all SRGs. This was done by showing that,

as graph size increases, the number of unique SRGs with the same family parameters is

super-exponentially large in graph size [47, 48], while for a fixed particle number p, the

number of unique graphs that the p-particle CTQRW can distinguish with the L0 method

is polynomial in graph size.

We show here that this limitation of L0 certificates applies to DTQRWs as well. Let

us consider the p-particle noninteracting DTQRW, and let us denote by Xp the maximum

number of unique values that 〈i1, ji . . . ip, jp|Ut
D,p|k1, l1 . . . kp, lp〉 can take on. Xp is not a

function of the size of the graph; the value of a DTQRW evolution operator element for an

SRG is determined only by the configuration of up to 4p vertices in that SRG. (For further

details, see Chapter 2, Appendix C.)

Additionally, the number of elements in UD,p is N4p, where N is the number of vertices

in the graph. Thus, for an SRG family with graphs of N vertices, the L0 method generates

certificates of length N4p, where each element in the certificate can take on a maximum

number of Xp different values. Thus, given an SRG family with graph size N , the max-

imum number of unique L0 graph certificates the noninteracting p-particle DTQRW can

generate is equivalent to the number of ways one can put N4p indistinguishable balls into

Xp distinguishable bins, or
(Xp+N4p−1

Xp−1

)
[49].

As Xp is constant in N , this quantity is polynomial in N . Thus, just like noninter-

acting CTQRWs with fixed particle number, DTQRWs with fixed particle number cannot

distinguish all SRGs with the L0 graph certificate method. Thus, the L0 method for nonin-

teracting p-particle walks cannot yield a universal GI algorithm for SRGs, whether or not
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the walks are continuous-time or discrete-time.

Asymptotic behavior for L1 and L2

For discrete-time walks, the L1 graph certificate does not necessarily have the same lim-

itations as L0. This is because the values of the elements of discrete-time L1 certificates

are not functions of SRG family parameters, as demonstrated by Eq. (3.19). Given a fixed

number of discrete-time walkers, the number of unique values that the sum

∑N
j1...jp=1 |〈i1j1 . . . ipjp|Ut

D,p|k1l1 . . . kplp〉|2 can take on is not a function only of particle

number. In principle, this quantity may be a function of the graph size, in which case the

number of unique L1 graph certificates for a fixed particle number and SRG family may

be super-exponential in graph size. Thus, the number of unique SRGs in a family with

graph size N is not guaranteed to be larger than the number of unique discrete-time L1

graph certificates that can be generated for walks of p noninteracting particles on graphs

of N vertices. Thus, the proof of the limitations of the L0 method fails to translate to the

L1 method for DTQRWs. Whether there exists such a limitation is therefore still an open

question.

Because DTQRW L2 graph certificates are also affected by sums of the form shown

in Eq. (3.19), we conclude that, for DTQRWs, the proof of the limitations of L0 cannot

be applied to L2, just as it cannot be applied to L1. Therefore, for DTQRWs with L0

and L1 graph certificates, it is possible that there exists a fixed p such that the p-particle

noninteracting walk can distinguish all SRGs.

We will now show that, using the same method of proof from the previous subsection,

no CTQRW of a fixed number of noninteracting particles can distinguish all SRGs, when

used in conjunction either the L1 or L2 graph certificates. We will only examine bosonic

walks; the results for fermionic walks can be proved in the same manner.

We begin by stating the definition of L1 for p-boson CTQRWs. There are multiple ways

in which we can extend L1 for more than two particles in a CTQRW, as we can choose the

number of particles in the final state whose probability distribution we wish to measure.
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For simplicity, here we sum over one particle. However, our proof holds if we sum over more

than one particle as well.

We examine the certificate LC,p1 (t):

LC,p1 (t) = sort{
N∑

i1

|B〈i1 . . . ip|UC,p(t)|j1 . . . jp〉B|2 :

1 ≤ i2 ≤ i3 . . . ≤ ip ≤ N, 1 ≤ j1 ≤ j2 . . . ≤ jp ≤ N}. (3.20)

It has been shown [3] that for SRGs, elements of the noninteracting p-boson CTQRW

evolution operator have the following simple form:

B〈i1 . . . ip|UC,p(t)|j1 . . . jp〉B =

B〈i1 . . . ip|(α1 + βJ + γA)⊗p|j1 . . . jp〉B (3.21)

where α, β, and γ are all functions of the family parameters and the time t. (The fermionic

walks have the same form, except the states are anti-symmetrized, and α, β, and γ are

replaced by their respective complex conjugates.)

Therefore, B〈i1 . . . ip|UC,p(t)|j1 . . . jp〉B is a function of family parameters, t, and the

binary relationships Axy and δxy for x ∈ {i1 . . . ip} and y ∈ {j1 . . . jp}. Moreover, this

quantity is a sum of terms where each term is a product of up to p binary relationships and

various powers of α, β, γ. Each term does not contain any more than one instance of any

one of the 2p indices.

Hence |B〈i1 . . . ip|UC,p(t)|j1 . . . jp〉B|2 contains no term which includes more than two

instances of the same index. Thus,
∑N

i1
|B〈i1 . . . ip|UC,p(t)|j1 . . . jp〉B|2 is only a function

of family parameters and the binary relationships Axy and δxy for x ∈ {i2 . . . ip} and y ∈

{j1 . . . jp}. For this quantity to not be a function of family parameters, the index i1 would

have to appear three times in a single term in |B〈i1 . . . ip|UC,p(t)|j1 . . . jp〉B|2, as explained

in Chapter 2.

The value of each unique element in LC,p1 (t) is determined by relationships between the

2p − 1 indices {i2 . . . ip, j1 . . . jp}. Following Appendix B in Chapter 2, it can be shown
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that the number of unique elements LC,p1 (t) can contain is bounded above by 2p
2+O(p log p).

Additionally, the length of LC,p1 (t) is
(
N+p−1

p

)(
N+p−2
p−1

)
. Following the same argument from

the end of the previous subsection and from Section 3 of Chapter 2, the number of unique

graph certificates this process can generate for a fixed particle number p is polynomial in

graph size N . Thus a CTQRW used with the L1 method and a fixed number of noninter-

acting particles cannot be universal for SRGs, as there will exist more SRGs than unique

LC,p1 (t) certificates.

This analysis extends to LC,p2 (T ). The possible values elements of LC,p2 (T ) will in general

be different from the possible values of LC,p1 (t). However, the number of possible values

elements of LC,p2 (T ) can take on will still be bounded above by 2p
2+O(p log p). Additionally,

the lengths of the LC,p2 (T ) and LC,p1 (t) certificates are the same. Thus the number of SRGs

of size N in a single family that LC,p2 (T ) certificates can distinguish will be polynomial in

N . We conclude that computing LC,p2 (T ) certificates for a fixed number p of noninteracting

particles cannot distinguish all SRGs.

3.7 Summary

We have shown how single-particle discrete-time quantum random walks can distinguish

many non-isomorphic strongly regular graphs. These results are proven with techniques

used to analyze the distinguishing power of noninteracting continuous-time quantum ran-

dom walks [2, 3]. These results regarding single-particle DTQRWs in turn explain the

results of Berry and Wang [4], who numerically found that two-particle discrete-time walks

could distinguish many strongly regular graphs.

Additionally, we have examined a proposal of [4], that DTQRWs have more distinguish-

ing power than CTQRWs. To evaluate this proposal, we have found that it is important

to consider not just the kind of QRW in question, but the method in which the graph

certificate is constructed. We have considered three related graph certificate construction

methods, which we have dubbed L0, L1, and L2.

We have found that single-particle DTQRWs used with the L0 method can distinguish
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many SRGs, in contrast to single-particle and noninteracting two-particle CTQRWs, which,

when used with the L0 method, cannot distinguish any SRGs from the same family, as

proven in [2, 3]. However, we have also extended the results of Chapter 2, where we showed

that there does not exist a fixed particle number p such that a noninteracting p-particle

CTQRW with the L0 can distinguish all SRGs. Here we have shown this limitation to hold

true for noninteracting p-particle DTQRWs as well.

Lastly, we have shown that this limitation holds for CTQRWs when the L1 and L2

certificate methods are considered. There does not exist a fixed number p such that a non-

interacting p-particle CTQRW with either L1 or L2 certificates can distinguish all SRGs.

However, it remains an open question as to whether or not these limitations of L1 and

L2 apply to DTQRWs. Thus it is possible that there exists a noninteracting p-particle

DTQRW such that L1 or L2 certificates can distinguish all SRGs. This would demonstrate

a nontrivial difference in distinguishing power between continuous-time and discrete-time

noninteracting walks.

3.8 Appendix

Eq. (3.19) in Section 3.4 demonstrates that LD,11 certificates can distinguish non-isomorphic

SRGs of the same family. To show that Eq. (3.19) is of the correct form and cannot be a

function of family parameters, we provide here the value of
∑N

j=1 |〈ij|UD,1(3)|kl〉|2:

N∑

j=1

|〈ij|UD,1(3)|kl〉|2 = (3.22)

N∑

j=1

AijAkl((Aik +Ajl)×

(−16
d4 (Aik +Ajl)− 16

d3 δil + 8
d2 δilδjk − 64

d5A
2
jk

)
+

δil
(

4
d2 − 4

dδjk + 32
d4A

2
jk + δjk

(
1− 16

d3A
2
jk

))
+ 64

d5

(
A2
jk

)2
)

We recall the SRG identity of Eq. (2.2), and see that

A2
jk = (d − µ)δjk + µ + (λ − µ)Ajk. Thus by inspection of Eq. (3.22), we see that



50

∑N
j=1 |〈ij|U(3)|kl〉|2 contains a term proportional to Akl

∑N
j=1AijAjlAjk, corroborating

Eq. (3.19). Therefore, no element of LD,11 can be a function only of SRG family parameters,

as explained in Section 3.4.
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Chapter 4

Limitations of Quantum Random

Walks for Graph Isomorphism

4.1 Introduction

The previous two chapters examined algorithms for the graph isomorphism problem which

were based on multi-particle quantum random walks of non-interacting particles. In this

chapter, we turn towards examining GI algorithms based on walks of interacting particles.

Note that here, unlike the last chapter, we restrict ourselves to considering only continuous-

time quantum random walks. Additionally, we only consider the L0 comparison method.1

Gamble et al. [3] proved analytically that two-particle non-interacting walks could not

distinguish non-isomorphic same-family strongly regular graphs. However, they also showed

that walks of two interacting particles (in particular, walks of two hard-core bosons) could

distinguish at least some same-family SRGs. As such interacting walks lacked the relatively

simple algebraic structure of non-interacting walks, the demonstration of an interacting

walk’s ability to distinguish SRGs relied on numerical evidence alone. Simulating such

walks, Gamble et al. distinguished over 500 million pairs of SRGs. As every tested pair was

1See Eq. (3.7) for formal definition of L0. Additionally, although we do not consider L1 or L2 methods
(Eqs. (3.9) and (3.11), respectively) in this chapter, we currently have no evidence that the L1 or L2

methods yield any greater distinguishing power for continuous-time walks.
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in fact distinguished by the two-boson hard-core walk, these findings raised two interesting

questions:

1. Could the two-boson hard-core walk distinguish all pairs of non-isomorphic SRGs?

2. Could the two-boson hard-core walk distinguish all pairs of non-isomorphic graphs?

As of this writing, the first question is still open. However, the second question has been

answered with a firm, if disappointing, “no”.

Shortly after the publication of Gamble et al., Jamie Smith proved that indeed no

quantum walk of any number of hard-core particles could distinguish arbitrary graphs

[5]. This proof relied heavily on the usage of what are called cellular algebras, as will be

explained in the next section.

This chapter extends the work of Jamie Smith, as we demonstrate that not only will

hard-core walks not distinguish all graph pairs, but even very general kinds of interacting

walks will fail to distinguish all graphs. The chapter is organized as follows: We first provide

basic definitions, including those of the cellular algebra and its relevant properties. Next

we provide a framework for how our proofs will proceed. We then examine a series of

walks where the nature of the interactions are restricted to be two-body interactions. We

demonstrate that the most general walks with only two-body interactions cannot distinguish

all graphs. Then we examine walks where the interactions are not restricted to be two-body.

After working through smaller examples, we conclude with the most general case, namely

a walk with both an arbitrary numbers of particles and an arbitrary number of bodies

in the interaction, provided that the interactions only depend on “local” graph properties

(that is, the Hamiltonian does not have any global graph properties programmed into it).2

This demonstrates that no locally-interacting walk with any number of particles can, in

conjunction with the comparison algorithm L0, distinguish all graphs.

2If this restriction were not present, we could “cheat” in the sense that we could preprocess a graph’s
adjacency matrix in order to encode a global property (such as the isomorphism class) of the graph into the
Hamiltonian. This would make distinguishing graphs trivial, but the preprocessing cost would be exponential
(as one would have to classically determine a graph’s isomorphism class).
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4.2 Cellular algebras

Basic definitions

The main results of Jamie Smith’s work, as well as this chapter, rely heavily on structures

known as cellular algebras. Therefore, we will begin with its definition. Consider a finite

set V and a set of |V | × |V | matrices R = {R1, . . . , Rs} such that each matrix in R is a

0-1 matrix and R partitions V × V . We call each matrix in R a binary relation as for any

Ri ∈ R, each ordered pair (j, k) ∈ V × V is either “in” Ri (〈j|Ri|k〉 = 1) or it is “not in”

Ri (〈j|Ri|k〉 = 0).

We say that the pair W = (V,R) is a cellular algebra if the following hold:

1. There exists a subset R0 of R such that
∑

Ri∈R0

Ri = I, where I is the |V |×|V | identity

matrix.

2. Ri ∈ R if and only if RTi ∈ R.

3. For all Ri, Rj ∈ R, RiRj =
s∑

k=1

ckijRk.

The numbers ckij are referred to as the intersection numbers or the structure constants

of W . Given the definition of a cellular algebra, there are two additional corollaries that

we now state:

1.
∑

Ri∈R
Ri = J , where J is the |V | × |V | matrix of all ones.

2. For each M ∈W , M =

s∑

i=1

βiRi, where each βi depends on M .

The first corollary is equivalent to the statement that R partitions V × V . The second

corollary arises because W is an algebra, and R forms its basis.

Next, we define the set R∗, which is the set of all sums of elements of R. As R∗

permits sums, but not arbitrary linear combinations, of elements of R, R∗ is also a set of

0-1 matrices. Additionally, we see that by definition, R∗ ⊂W .
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Lastly, we may consider a graph G with adjacency matrix A. [A] denotes the cellular

algebra which contains A and whose set of binary relations is as small as possible [5]. More

generally, [M1, . . . ,Mn] denotes the cellular algebra of smallest basis size which contains the

set of matrices {M1, . . . ,Mn}. Additionally, as the binary relations of [A] partition V × V

into at least sets of vertices, edges, and non-edges, if [A] = (V,R), then A ∈ R∗ [53].

p-extensions

We now consider tensor products of cellular algebras. If W = (V,R), then its p-fold tensor

product is W⊗p = (V p,R⊗p) [54]. Throughout the literature, W⊗p is often referred to as

W p.

We additionally consider the “diagonal identity” operator I∆p, so-called because it acts

as the identity on the diagonal of V p. It is formally defined as

I∆p =

|V |∑

i=1

|i〉⊗p〈i|⊗p. (4.1)

(Equivalently, I∆p acts as the identity on all vectors associated with elements of V p (p-

tuples) that are of the form (i, i, . . . , i, i).)

With I∆p and W⊗p now defined, we may now define the p-extension of W , denoted Ŵ p:

Ŵ p := [W⊗p, I∆p]. (4.2)

Weak isomorphisms

Now we introduce the notion of a weak isomorphism. We say that two cellular algebras

W = (V,R) and W ′ = (V ′,R′) are weakly isomorphic if there exists a bijection ϕ : W →W ′

such that when the domain is restricted to R, ϕ : R → R′ [5], that is, ϕ is also a bijection

between R and R′. (For compactness of notation, the element of R′ that ϕ maps Ri to is

denoted as Rϕ(i), i.e., ϕ(Ri) = Rϕ(i).)

If these conditions hold, we call ϕ a weak isomorphism. Additionally, we note that a

weak isomorphism ϕ acts as a similarity transformation; for all M ∈W , ϕ(M) = ϕ−1Mϕ.
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We can extend the notion of weak isomorphism to p-extensions of cellular algebras.

Consider two cellular algebras W and W ′. Suppose there exists a weak isomorphism ϕ̂ :

Ŵ p → Ŵ ′p. We then say that a weak isomorphism ϕ which maps W to W ′ is a p-equivalence

if the following two constraints on ϕ̂ hold:

1. For all Mi in W , ϕ̂(M1 ⊗ . . .⊗Mp) = ϕ(M1)⊗ . . .⊗ ϕ(Mp).

2. ϕ̂(I∆p) = I∆′p . (I∆′p acts as the identity on the diagonal of V ′p.)

Recalling the tensor product identities (A⊗B)(C⊗D) = (AC)⊗(BD) and (A⊗B)−1 =

A−1 ⊗B−1, we see that the first constraint implies that ϕ̂ = ϕ⊗p.

Now, consider two adjacency matrices A and A′ with cellular algebras W = [A] and

W ′ = [A′], respectively. If there exists a weak isomorphism ϕ which maps W to W ′ such

that ϕ(A) = A′, and ϕ is a p-equivalence between W and W ′, then we say that A and A′

are p-equivalent graphs. It is known result that for all positive integers p, there exist non-

isomorphic p-equivalent graphs [54]. Therefore, to show that a proposed graph isomorphism

algorithm is not universal, it suffices to show that it cannot distinguish non-isomorphic p-

equivalent graphs for some p, as such graph pairs are known to exist.

Cylindric relations

The last definition we introduce, before getting to our proofs, is that of the cylindric relation.

Consider a cellular algebra W = (V,R), a positive integer p, and a multi-set S := {Sij : 1 ≤

i, j ≤ p} ⊂ R∗. (That is, each Sij ∈ R∗, and each Sij need not be distinct, so |S| ≤ p2.)

We can then define a cylindric relation on S, denoted CylS . CylS : C|V | → C|V |, and has

the following element-wise definition:

〈x1, . . . , xp|CylS |y1, . . . , yp〉 =

p∏

i,j=1

〈xi|Sij |yj〉 (4.3)

A cylindric relation may be thought of as an extension to the previously-mentioned binary

relations. CylS “relates” {x1, . . . , xp} to {y1, . . . , yp} if and only if Sij(xi, yj) = 1 for all i

and j [53]. Additionally, it can be shown [55] that:

CylS ∈ Ŵ p. (4.4)
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Lastly, let us consider a p-extension ϕ̂. It has been proven [55] that

ϕ̂(CylS) = Cylϕ(S) (4.5)

where ϕ(S) = {ϕ(Sij) : 1 ≤ i, j ≤ p}.

With all the above definitions and properties in mind, we are ready to begin discussing

our proofs.

4.3 Proof outline

Each proof provided follows the same procedure. Consider any particular interaction scheme

for any particular walk (e.g. three-particle walk with nearest neighbor interactions).

Any given interaction scheme on a graph A has associated interaction Hamiltonian H.

To demonstrate that that particular interaction scheme cannot distinguish all graphs, To

show that a given kind of walk cannot distinguish all graphs, it is sufficient that there exist

a pair of non-isomorphic graphs A and A′ which reside in cellular algebras W = (V,R) and

W ′ = (V ′,R′), respectively, for which the following hold:

1. There exists a weak isomorphism ϕ : W →W ′ such that ϕ(A) = A′.

2. H ∈ Ŵ p and H ′ ∈ Ŵ ′p, where H and H ′ denote the interaction Hamiltonians for A

and A′, respectively.

3. ϕ has a p-extension ϕ̂ such that ϕ̂(H) = H ′.

It was proved in [5] that if the above conditions hold, our comparison technique (computing

the list-distance between the norm-sorted lists of evolution operators) could not distinguish

all graphs, as non-isomorphic p-equivalent graphs would not be distinguished. (Given the

results of [54], it is known that there exist non-isomorphic p-equivalent graphs for all positive

integers p.)

For a walk with p particles, we will consider adjacency matrices A and A′ which corre-

spond to two non-isomorphic graph which are p-equivalent. Therefore, the first requirement
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has been satisfied, as we know there exists a ϕ such that ϕ(A) = A′. We must then show

that, for the interaction in question, each graph’s Hamiltonian resides its cellular algebra’s

p-extension, and that ϕ̂ maps the “unprimed” Hamiltonian to the “primed” one.

We now are ready to present our proofs.

4.4 2-body interaction proofs

In this section, we consider a variety of interaction schemes with varying numbers of parti-

cles, but all interactions considered are 2-body interactions.

2 particles; nearest neighbors

In this subsection, we show that the two-particle walk with a nearest-neighbor interaction

fails to distinguish all graphs. We begin with the definition of H2
1 , which is given in terms

of a graph with adjacency matrix A:

〈x1x2|H2
1 |y1y2〉 = V1δx1y1δx2y2Ax1x2 , (4.6)

where V1 is the strength of the nearest-neighbor interaction. (Throughout this chapter,

we will denote the strength of an interaction of length d by Vd.) We consider two non-

isomorphic graphs 2-equivalent graphs with adjacency matrices A and A′ that reside in

cellular algebras W = (V,R) and W ′ = (V ′,R′), respectively.

To show that H2
1 resides in Ŵ p, we express H2

1 in terms of a cylindric relation:

H2
1 = V1CylS , (4.7)

where

S = {Sij : 1 ≤ i, j ≤ 2}, (4.8)

Sij =





I i = j

A i < j

J otherwise

. (4.9)
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We check our new definition for H2
1 and find

〈x1x2|H2
1 |y1y2〉 = V1

2∏

i,j=1

Si,j(xi, yj) = V1S1,1(x1, y1)S1,2(x1, y2)S2,1(x2, y1)S2,2(x2, y2) =

V1δx1y1Ax1y2Jx2y1δx2y2 = V1δx1y1δx2y2Ax1x2 ,

(4.10)

which confirms that (4.7) is a valid definition for H2
1 , and that H2

1 ∈ Ŵ p.

Now we must see how ϕ̂ acts on H2
1 :

ϕ̂(H2
1 ) = V1Cylϕ(S) (4.11)

We know that ϕ(S) = {ϕ(Sij) : 1 ≤ i, j ≤ 2} = {ϕ(Sij) : 1 ≤ i, j ≤ 2}. We know

ϕ(A) = A′, ϕ(I) = I, and ϕ(J) = J , thus:

ϕ(Sij) =





I i = j

A′ i < j

J otherwise

. (4.12)

By inspection, we conclude:

〈x1x2|ϕ̂(H2
1 )|y1y2〉 = V1δx1y1δx2y2A

′
x1x2

= 〈x1x2|H2
1
′|y1y2〉, (4.13)

or more simply, ϕ̂(H2
1 ) = H2

1
′
. Thus, we have shown that 2-equivalent graphs will not be

distinguished by the two-particle nearest-neighbor interaction.

p particles, nearest neighbors

Now we show that p-particle walk with an interaction between nearest neighbors cannot

distinguish all graphs. Hp
1 is defined on a graph with adjacency matrix A as follows:

〈x1, . . . , xp|Hp
1 |y1, . . . , yp〉 = V1δx1,y1δx2,y2 . . . δxp,yp(Ax1,x2 +Ax1,x3 + . . .+Axp−1,xp). (4.14)

We note that Equation (4.14) has p δ’s, along with a sum of
(
p
2

)
elements of A.
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To show Hp
1 ∈ Ŵ p, we will first define a set α such that each element αi ∈ α is a label

for one of the
(
p
2

)
possible pairs of particles in {x1, . . . , xp}. α is defined as follows:

α1 = (1, 2)

α2 = (1, 3)

...

αp = (1, p− 1)

αp+1 = (2, 3)

...

α(p2)
= (p− 1, p) (4.15)

We now define a cylindric relation CylSl :

Sl = {Sli,j : 1 ≤ i, j ≤ p}, (4.16)

where we define Sli,j as

Slij =





I i = j

A (i, j) = αl

J otherwise

. (4.17)

We may now define Hp
1 in terms of the cylindric relations CylSl :

Hp
1 = V1

(p2)∑

l=1

CylSl . (4.18)

Inspection of Equations (4.15) through (4.18) confirms that our definition of Hp
1 in terms

of cylindric relations indeed reproduces (4.14). Thus we conclude that Hp
1 ∈ Ŵ p.

Now we examine the action of ϕ̂ on Hp
1 :

ϕ̂(Hp
1 ) = V1

(p2)∑

l=1

Cylϕ(Sl). (4.19)
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Cylϕ(Sl) = {ϕ(Slij) : 1 ≤ i, j ≤ p}, so we examine ϕ(Slij):

ϕ(Slij) =





I i = j

A (i, j) = αl

J otherwise

(4.20)

Therefore, we conclude that ϕ̂(Hp
1 ) = Hp

1
′
, so the p-particle walk with a nearest-neighbor

interaction cannot distinguish non-isomorphic p-equivalent graphs.

2 particles; d-range interactions

Here we show that the two-particle walk with an interaction for each path of length d

between the two particles cannot distinguish all graph pairs. The interaction in question

has the following form:

〈x1x2|H2
d |y1y2〉 = Vdδx1y1δx2y2A

d
x1x2

(4.21)

Our previous approach will not work without some modification. That is, we cannot simply

define H2
d in terms of a cylindric relation similar to the one defined in Equation (4.9), where

the only change is that Sij = Ad when i < j. This is because Ad /∈ R∗, which we know

because every element of R∗ is a 0-1 matrix, and Ad is not in general a 0− 1 matrix.

However, not all is lost. We recall the second corollary of our cellular algebra definition,

and note for any matrix A ∈W

A2 =
s∑

i,j=1

βiβjRiRj . (4.22)

We additionally recall the third cellular algebra axiom, and we discover

A2 =
s∑

i,j,k=1

βiβjc
k
ijRk. (4.23)

We may generalize this result to express Ad as a linear combination of binary relations:

Ad =

s∑

i1...id=1

βi1 . . . βidRi1 . . . Rid =

s∑

i1...id,j1=1

βi1 . . . βidc
j1
i1i2

Rj1Ri3 . . . Rid =

s∑

i1...id,j1...jd−1=1

βi1 . . . βidc
j1
i1i2

cj2j1i3c
j3
j2i4

. . . c
jd−1

jd−2id
Rjd−1

. (4.24)
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To simplify notation, we use the vectors i and j to denote the sets of indices {i1 . . . id}

and {j1 . . . jd−1}. Furthermore, we introduce a coefficient with 2d − 1 indices equal to the

coefficient of Rjd−1
. We denote this quantity Zij, simplifying Equation (4.24):

Ad =
s∑

i,j=1

ZijRjd−1
. (4.25)

Now we may express Equation (4.21) in terms of linear combinations of cylindric relations:

H2
d = Vd

s∑

i,j=1

ZijCylTjd−1
, (4.26)

where CylTjd−1
= {Sjd−1

m,n : 1 ≤ m,n ≤ 2} and

S
jd−1
m,n =





I m = n

Rjd−1
m < n

J otherwise

. (4.27)

We explicitly confirm this correctly yields H2
d :

〈x1x2|H2
d |y1y2〉 = Vd

s∑

i,j=1

Zij

2∏

m,n=1

S
jd−1
m,n (xm, yn) =

Vd

s∑

i,j=1

ZijS
jd−1

1,1 (x1, y1)S
jd−1

1,2 (x1, y2)S
jd−1

2,1 (x2, y1)S
jd−1

2,2 (x2, y2) =

Vd

s∑

i,j=1

Zijδx1y1Rjd−1
(x1, y2) · 1 · δx2y2 = Vdδx1y1δx2y2

s∑

i,j=1

ZijRjd−1
(x1, y2). (4.28)

Along with Equation (4.25), this confirms that Equation (4.26) provides the correct defini-

tion of H2
d . By extension, we also see that because H2

d is a linear combination of cylindric

relations, H2
d ∈ Ŵ 2.

Now we must show that ϕ̂(H2
d) = H2

d
′
. We note that

ϕ̂(H2
d) = Vd

s∑

i,j=1

ZijCylϕ(Tjd−1
). (4.29)
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The elements of ϕ(Tjd−1
) are ϕ(S

jd−1
m,n ), which are defined as

ϕ(S
jd−1
m,n ) =





I m = n

Rϕ(jd−1) m < n

J otherwise

. (4.30)

Therefore, if we can show that Zij = Zϕ(i)ϕ(j), we will have shown that ϕ(H2
d) = H2

d
′
. This

is equivalent to proving:

ckij = c
ϕ(k)
ϕ(i)ϕ(j) (4.31)

and

βi = βϕ(i) (4.32)

for all {i, j, k} ∈ {1 . . . s}.

To prove Equation (4.31), we consider the action of ϕ on RiRj :

ϕ(RiRj) = ϕ

(
s∑

k=1

ckijRk

)
=

s∑

k=1

ckijϕ(Rk) =
s∑

k=1

ckijRϕ(k). (4.33)

However, we also know that

ϕ(RiRj) = ϕ(Ri)ϕ(Rj) = Rϕ(i)Rϕ(j) =

s∑

k=1

c
ϕ(k)
ϕ(i)ϕ(j)Rϕ(k). (4.34)

Therefore, as each Ri is a 0-1 matrix, and every element of R∗ is also a 0-1 matrix, ckij =

c
ϕ(k)
ϕ(i)ϕ(j). We similarly prove Equation (4.32) by considering the action of ϕ on A:

ϕ(A) = ϕ

(
s∑

i=1

βiRi

)
=

s∑

i=1

βiRϕ(i). (4.35)

It is also true that

ϕ(A) = A′ =
k∑

i=1

βϕ(i)Rϕ(i). (4.36)

By the same reasoning as above, we see that βi = βϕ(i).

Thus, we have shown that ϕ(H2
d) = H2

d
′
, so the two-particle walk with interactions of

arbitrary range cannot distinguish p-equivalent graphs.
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p particles; d-range interactions

Now we prove our most general result for walks with two-body interactions, that a walk

with an arbitrary number of particles and arbitrary interaction range cannot distinguish all

graphs. We begin with the definition of Hp
d :

〈x1 . . . xp|Hp
d |y1 . . . yp〉 = Vdδx1y1δx2y2 . . . δxpyp(A

d
x1x2

+Adx1x3
+ . . .+Adxp−1xp). (4.37)

Drawing on our previous proofs, we will now construct Hp
d as a linear combination

of cylindric relations. We introduce the cylindric relation CylTjd−1,l
, whose elements are

S
jd−1,l
m,n , defined as:

S
jd−1,l
m,n =





I m = n

Rjd−1
(m,n) = αl

J otherwise.

(4.38)

Now we are ready to express Hp
d as a linear combination of cylindric relations:

Hd
p = Vd

s∑

i,j=1

(p2)∑

l=1

ZijCylTjd−1,l
. (4.39)

By inspection, we can see that Equation (4.39) correctly reproduces Equation (4.37).

Thus, we see that Hp
d ∈ Ŵ p.

Next, we check the action of ϕ̂ on Hp
d :

ϕ̂(Hp
d ) = Vd

s∑

i,j=1

(p2)∑

l=1

ZijCylϕ(Tjd−1,l
). (4.40)

The elements of ϕ(Tjd−1,l) are given by

ϕ(S
jd−1,l
m,n ) =





I m = n

Rϕ(jd−1) (m,n) = αl

J otherwise.

(4.41)

As we already know that Zϕ(i)ϕ(j) = Zij, we see that ϕ̂(Hp
d ) = Hp

d
′
. Therefore, any quantum

random walk with an arbitrary number of particles cannot distinguish non-isomorphic p-

equivalent graphs, and therefore cannot be a universal graph isomorphism algorithm.
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Fermions and bosons

Thus far, all of our proofs have relied on using distinguishable particle bases. How-

ever, we know that the actual systems of interest will contain indistinguishable parti-

cles. Here we show that our results for distinguishable particles hold for indistinguish-

able particles as well (both bosons and fermions). To show this, it is sufficient to show

that 〈x1 . . . xp|Hp
d |y1 . . . yp〉 = B〈x1 . . . xp|Hp

d |y1 . . . yp〉B, where the B subscript denotes the

state is bosonic and symmetrized accordingly.

We note that Hp
d is diagonal, so it 〈x1 . . . xp|Hp

d |y1 . . . yp〉 6= 0 only when the ordered

p-tuples (x1, . . . xp) and (y1 . . . yp) are equal. Thus, we only need to show

〈x1 . . . xp|Hp
d |x1 . . . xp〉 = B〈x1 . . . xp|Hp

d |x1 . . . xp〉B. (4.42)

We additionally note that Hp
d is symmetric under particle interchange, which is to say

〈xπ(1) . . . xπ(p)|Hp
d |xπ(1) . . . xπ(p)〉 = 〈x1 . . . xp|Hp

d |x1 . . . xp〉, (4.43)

for any permutation π ∈ Sp, where Sp is the symmetric group on p objects.

From the definition of symmetrization, we find

B〈x1 . . . xp|Hp
d |x1 . . . xp〉B =

n1! . . . np!

p!

∑

π∈S̃p

〈xπ(1) . . . xπ(p)|Hp
d |xπ(1) . . . xπ(p)〉, (4.44)

where ni denotes the multiplicity of the ith state, and S̃p denotes the subset of Sp that

generates unique permutations of {x1 . . . xp}. We know that |S̃p| = p!
n1!...np! , and the value

of each element in the above sum is identical, due to Equation (4.43). Therefore, we conclude

B〈x1 . . . xp|Hp
d |x1 . . . xp〉B =

n1! . . . np!

p!

p!

n1! . . . np!
〈x1 . . . xp|Hp

d |x1 . . . xp〉 = 〈x1 . . . xp|Hp
d |x1 . . . xp〉,

(4.45)

thus proving Equation (4.42).

The proof for fermions is identical, with the further restriction that ni = 1 for all i, due

to the Pauli Exclusion Principle. Therefore, we have shown that our results are general for

p-fermion and p-boson interactions.
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4.5 Multi-body interactions

Now that we have shown that no two-body interaction scheme can distinguish all graphs,

we will consider more general multi-body interactions. We will ultimately provide a proof

that no p-body interaction scheme can distinguish p-equivalent graphs, but we will begin

with more restrictive cases as examples.

Triangle-interaction

Here we consider a three-body “triangle interaction”- an interaction energy is associated

with three particles all adjacent to each other. We consider the case where p = 3. We do

not explicitly consider the case where p ≥ 3, as the results in the next subsection include

such cases.

An element of the Hamiltonian for this particular interaction is

〈x1x2x3|H3
∆|y1y2y3〉 = V∆δx1y1δx2y2δx3y3Ax1x2Ax1x3Ax2,x3 , (4.46)

where V∆ is the strength of the triangle interaction. Now we introduce the cylindric relation

CylT∆
, where T∆ = {Sij : 1 ≤ i, j ≤ 3} and

Sij =





I i = j

A i < j

J otherwise

. (4.47)

Then we may define our Hamiltonian as

H3
∆ = V∆CylT∆

. (4.48)

By this definition, we find any element of H3
∆ to be:

〈x1x2x3|H3
∆|y1y2y3〉 = V∆

3∏

i,j=1

Sij(xi, yj) = V∆δx1y1δx2y2δx3y3Ax1x2Ax1x3 , (4.49)

confirming that Equation (4.48) provides the correct definition of H3
∆. Now we examine

the action of ϕ̂ on H3
∆:

ϕ̂(H3
∆) = V∆Cylϕ(T∆), (4.50)
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where the elements of Cylϕ(T∆) are ϕ(Sij):

ϕ(Sij) =





I i = j

A′ i < j

J otherwise

. (4.51)

Thus, we see that ϕ̂(H3
∆) = H3

∆
′
, completing the proof.

Arbitrary hard-core + nearest-neighbor q-body interaction; q-particle

walk

We now consider a q-particle walk with a q-body interaction scheme in which an interaction

is present if the q particle arrangement matches a specified configuration of
(
q
2

)
pairs of

particles, where the relationship between each pair of particles is chosen from the set C =

{I, A, J − I −A, J − I, J −A, J}3. An arbitrary interaction of this form corresponds to an

array of matrices which we denote θ:

θ =




I θ1,2 · · · · · · θ1,q

J I θ2,3 · · · θ2,q

...
. . .

...

J I θq−1,q

J · · · · · · J I




(4.52)

Each element of θ is an element of the set C, and we see that θij = I if i = j, and θij = J if

i < j. Then an element of a q-particle walk whose Hamiltonian implements this interaction

is:

〈x1 . . . xq|Hq
θ |y1 . . . yp〉 = Vθ

∑

π∈S̃θq

q∏

i,j=1

θπ(i),π(j)(xi, yj) (4.53)

S̃θq is the subset of the symmetric group on q objects whose elements each produce a unique

labeled configuration of q particles.4 We must sum over all relevant particle permutations
3These relationships correspond, respectively, to the particles being on the same vertex, adjacent vertices,

different and non-adjacent vertices, different vertices, non-adjacent (but possibly same) vertices, or any two
vertices.

4For example, if we consider a three-body interaction which triggers when particles 1 and 2 are adjacent,
and particle 3 is non-adjacent to both 1 and 2, then this interaction must also trigger when particles 2 and
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to ensure that our Hamiltonian is symmetric under particle interchange. It should be noted

that in general determining the elements of S̃θq is non-trivial. However, for our proof to be

successful, we do not need to be able to construct the Hamiltonian efficiently. We simply

need to show that the Hamiltonians for two q-equivalent graphs are related by of the q-

equivalence’s q-extension.

We now introduce the cylindric relation CylTπθ , where T πθ = {Sθ,πi,j : 1 ≤ i, j ≤ q}, and

Sθ,πi,j = θπ(i),π(j). (4.54)

We then define the Hamiltonian in terms of this cylindric relation as

Hq
θ = Vθ

∑

π∈S̃θq

CylTπθ . (4.55)

By inspection, we see that this reproduces Equation (4.53). To see that ϕ̂(Hq
θ ) = Hq

θ
′
, we

note that

ϕ̂(Hq
θ ) = Vθ

∑

π∈S̃θq

Cylϕ(Tπθ ), (4.56)

and that the elements of ϕ(T πθ ) are

ϕ(Sθ,πi,j ) = ϕ(θπ(i),π(j)) = θ′π(i),π(j). (4.57)

We know that Equation (4.57) holds because for each θi,j ∈ C, there is a corresponding

θ′i,j ∈ C ′, where C ′ = {I, A′, J − I −A′, J − I, J −A′, J}. Thus, ϕ̂(Hq
θ ) = Hq

θ
′
, so q-particle

walks with arbitrary nearest-neighbor and hard-core q-body interactions cannot distinguish

q-equivalent graphs.

3 are adjacent and 1 is not, and also when particles 1 and 3 are adjacent and 2 is not. The symmetric
group on three objects has six elements, but we only need to consider three of those six permutations in this
example case.

Additionally, we note that two permutations πα and πβ are equivalent, that is, they do not produce unique
configurations of q particles from the configuration θ, if and only if for all i, j ∈ [q], (π†αθπα)ij = (π†βθπβ)ij

or (π†αθπα)ij = (π†βθπβ)ji. We allow for the second case because each element of the lower triangle of θ is
defined to be J , but permutations of θ need not preserve this property.
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Arbitrary hard-core + nearest-neighbor q-body interaction; p-particle

walk

We now consider the case where as before, except that the interaction being considered is

only a q-body interaction, while there are p (p > q) particles in the walk. To show that

walks of this kind cannot distinguish p-equivalent graphs, we consider a q-body interaction

expressed as an array θ, taking the form presented in Equation (4.52). We can then write

down a p-body interaction scheme, denoted Θ, which incorporates the q-body interaction

scheme θ, but does not add any additional interactions:

Θi,j =





θi,j i, j ≤ q

I i = j

J otherwise

(4.58)

We now retrace the steps of the previous subsection identically, except that particle indices

run from 1 to p, and all permutations considered are in a subset of Sp instead of Sq.

Thus, the argument from the previous subsection generalizes, so we may state that any

p-particle walk with an arbitrary hard-core and nearest-neighbor q-body interaction cannot

distinguish p-equivalent graphs.

Arbitrary p-body interactions

Lastly, we address the most general case- a p-particle walk with arbitrary p-body inter-

actions.5 As before, we can express any p-body interaction as a product of
(
p
2

)
two-body

interactions. However, now each two-body interaction θij may represent a longer-range

interaction. If we consider a graph’s cellular algebra [A] = (V,R), then the most general

class of “local” interactions which is invariant under vertex permutation is one in which

5In the previous section, we showed that q-body interactions in a p-particle walk may be expressed as
p-body interactions. The same is true here, so the most general walk is a p-particle walk with a p-body
interaction.
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each θij ∈ [A].6 Therefore, we may state that for any 2-body interaction θij :

θij =

|R|∑

m=1

βijmRm, (4.59)

where each Rm is an element of R and βijm is its the corresponding coefficient. We can

express the array of 2-body interactions in terms of Equation (4.59):

θ =




I θ1,2 · · · · · · θ1,p

J I θ2,3 · · · θ2,p

...
. . .

...

J I θp−1,p

J · · · · · · J I




=




I
∑

m1

β1,2
m1
Rm1 · · · · · ·

∑

mp−1

β1,p
mp−1

Rmp−1

J I
∑

mp

β2,3
mpRmp · · ·

∑

m2p−3

β2,p
m2p−3

Rm2p−3

...
. . .

...

J I
∑

m(p2)

βp−1,p
m(p2)

Rm(p2)

J · · · · · · J I




(4.60)

We introduce the following notation to simplify further discussion: m := (m1, . . . ,m(p2)
),

and Γm := β1,2
m1 · . . . · βp−1,p

mp . Then, with appropriate symmetrization taken into account,

we find that an element of the Hamiltonian is

〈x1 . . . xp|Hp
θ |y1 . . . yp〉 = Vθδx1y1 . . . δxpyp

∑

m

∑

π∈S̃θp

ΓmRm1(xπ(1), xπ(2))·. . .·Rm(p2)
(xπ(p−1), xπ(p))

(4.61)

We introduce the following cylindric relation CylTm,π , where Tm,π = {Sm,π
i,j : 1 ≤ i, j ≤ p},

and

Sm,π
i,j =





I i = j

Rm1 (π(i), π(j)) = (1, 2)

...

Rm(q2)
(π(i), π(j)) = (q − 1, q)

J otherwise

. (4.62)

6By “local” we do not mean “adjacent”; rather, we mean an interaction which does not need to know
about any global properties of the graph. Equivalently, each two-body interaction only knows, at most, about
the number of paths of a fixed length between two vertices. This can be formally achieved by requiring each
θij to be a two-body interaction which is a polynomial in linear combinations of I, J , and A. This restriction
is required for reasons outlined in the second footnote of the chapter.
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Then we may define our Hamiltonian as

Hp
θ =

∑

m

∑

π∈S̃pθ

ΓmCylTm,π . (4.63)

This reproduces Equation (4.61), so we see that this Hamiltonian can be expressed in terms

of cylindric relations. Lastly, we check the action of ϕ̂ on Hp
θ :

ϕ̂(Hp
θ ) =

∑

m

∑

π∈S̃pθ

ΓmCylϕ̂(Tm,π). (4.64)

By definition, Cylϕ̂(Tm,π) = {ϕ(Sm,π
i,j ) : 1 ≤ i, j ≤ p}, and we find that

ϕ(Sm,π
i,j ) =





I i = j

Rm1
′ (π(i), π(j)) = (1, 2)

...

Rm(q2)
′ (π(i), π(j)) = (q − 1, q)

J otherwise

. (4.65)

Because Γm
′ = Γϕ(m) = Γm (by the same reasoning that Zij = Zϕ(i)ϕ(j), as shown in

Subsection 4.4), we see that ϕ̂(Hp
θ ) = Hp

θ
′
. Thus we have completed our final proof, and

have demonstrated that any arbitrary p-particle walk with a p-body local interaction cannot

distinguish p-equivalent graphs, when used with the L0 comparison method.
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Chapter 5

Power law scaling for the adiabatic

algorithm for search engine ranking

5.1 Introduction

Quantum algorithms, which run on quantum computers, are known to be able to outper-

form classical algorithms for certain computational problems [41, 56]. Thus, finding a new

algorithm that exhibits a quantum speedup, in particular an exponential speedup, is of

great interest [57]. An extremely important problem in computer science is calculating

ranking for search engine results. PageRank, first proposed by Brin and Page [58] underlies

the success of the Google search engine [59]. In this algorithm, websites are represented as

nodes on a network graph, connected by directed edges that represent links. The matrix of

network connections is constructed, and the PageRank vector is its principal eigenvector.

Currently, computing the PageRank vector requires a time O(n), where n is the number of

websites in the network considered (e.g. the World Wide Web) [6]. Obtaining a quantum

algorithm for PageRank that runs exponentially faster than the classical algorithm would

be of great interest.

Recently, Garnerone, Zanardi, and Lidar (GZL) proposed an adiabatic quantum algo-

rithm [60] to prepare the PageRank vector for a given network [6]. Remarkably, GZL present
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evidence that this algorithm can prepare the PageRank vector in time O [polylog(n)], ex-

ponentially faster than classical algorithms for certain networks. This runtime is due to the

apparent logarithmic scaling of the gap between the two smallest eigenvalues of the Hamil-

tonian used in the algorithm (the energy gap). This scaling emerged on graphs constructed

using adapted versions of two established methods of network construction: the preferential

attachment model [61] and the copying model [62]. Both of these models yield graphs that

are similar to the connectivity of the World Wide Web in that they are sparse (the total

number of edges scales at most proportionally to the number of nodes) and scale-free (the

probability of finding a node with a specified in- or out-degree scales as a power law in

those degrees). These features lead to networks that exhibit large-scale structure similar

to that of the internet, such as being small-world [63] and loosely hierarchical [64]. GZL

studied sets of networks that exhibited both logarithmic scaling and polynomial scaling of

the gap in the system size. However, they did not demonstrate that the networks with the

favorable logarithmic gap scaling are scale-free over the region studied numerically.

Here, we study the scaling of the GZL algorithm for graphs with degree distributions

consistent with the internet. A realistic network model of the World Wide Web must

be scale-free in both the in- and the out-degree [65, 66]. We consider a broad variety of

scale-free networks constructed by different methods. Choosing three well-known models

for constructing random, scale-free networks, we control for both the mean degree and the

exponent of the power-law governing the degree distribution. We find that graphs with the

same degree distribution can have different energy gap and run-time behaviors. Finally, we

focus on degree distributions described by power laws consistent with those measured for the

Web, both for the in-degree and the out-degree. We find that the relevant energy gap scales

as a power of the system size, rather than logarithmically. These results demonstrate that

for Web-like graphs, the GZL adiabatic algorithm does not yield an exponential quantum

speedup for preparing the PageRank vector compared to current classical algorithms.
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5.2 Network growth models

We generate samples of graphs with prescribed degree distributions using three different

network growth models. GZL [6] use modified versions of two network construction algo-

rithms: the preferential attachment model [61] and the copying model [62]. In addition

to these two models, here we include also the more complex α-preferential attachment

model described by Bollobás et al. [65, 67]. All three models grow random networks using

probabilistic rules at discrete construction steps, which are detailed in Fig. 5.1.

All three of these models produce sparse, scale-free directed networks, in which the

probability of the in-degree (the number of incoming edges) and out-degree (the number of

outgoing edges) of node i being equal to k are each proportional to a power law:

P (din(i) = k) ∼ k−γin (5.1)

P (dout(i) = k) ∼ k−γout , (5.2)

where din(i) and dout(i) are the in- and out-degrees of node i, respectively, and the exponents

γin and γout are typically between 2 and 4 [61]. The GZL versions [6] of the preferential

attachment and copying models [61, 68] produce networks that are scale-free in the limit

of large graph size. However, due to the addition procedure described below, the networks

are not necessarily scale-free for the sizes of graphs studied numerically here and in Ref.

[6]. To achieve networks that are scale-free in the out-degree, GZL suggest to construct

two networks, X and Y , independently. X and Y are each generated as in Fig. 5.1, except

that for Y the direction of the edges added is reversed. The networks can then be added

together, and the weights and loops discarded [6, 69]. The resulting composite network is

scale-free in both in-degree and out-degree, provided X and Y have the same number of

edges per node. (See Section 5.5 for details.) In contrast to Ref. [6], the graphs studied here

are all constrained in this way. However, the graphs exhibiting logarithmic scaling in [6] are

not so constrained [69], and so they do not exhibit truly scale-free degree distributions over

the numerically studied region. On the other hand, the α-preferential attachment model

(considered here but not in [6]) constructs a network which is scale-free in both in- and
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Figure 5.1: Illustrations of the three network generation models used. (a): GZL [6] pref-
erential attachment, (b): GZL copying, and (c): α-preferential attachment [65, 67]. In all
three models, a network is constructed by adding vertices and edges sequentially. (a): At
each time step a new vertex i is added with m outgoing edges. The probability that one
of these edges connects to a node j is proportional to the total degree of j. (b): At each
time step there are two possible actions. With probability (1 − p), the new vertex points
to all of the same vertices as the “star vertex,” which is a pre-existing vertex chosen uni-
formly at random at each time step. With probability p, m outgoing edges are added to
the new vertex, each pointing to vertices chosen uniformly at random. (c): There are three
possible actions at each time step. With probability p1, a new vertex is added with a single
outgoing edge, pointing to a node j with probability proportional to the in-degree of j plus
a parameter α. With probability p2, a new vertex is added with a single incoming edge,
pointing from a node j with probability proportional to the out-degree of j plus α. With
probability (1− p1 − p2), no vertex, only an edge, is added. Its ending and starting points
are determined as in cases 1 and 2, respectively. In all panels, the newly-added edges are
indicated by dashed lines.
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out-degrees without requiring an additional combination step. As with the GZL prefer-

ential attachment model, all weights and loops are removed from the final α-preferential

attachment network.

The exponents γin (Eq. 5.1) and γout (Eq. 5.2) of the degree distribution are model-

dependent. In the GZL preferential attachment model the number of edges added at each

construction step controls the sparsity, and it is always the case that γin = γout = 3

[61]. Both the GZL copying model and α-preferential attachment allow for independently

tunable exponents and mean degree. (See Section 5.5 for details.) This flexibility enables us

to create three ensembles of model networks that have nearly identical degree distributions

for γin = γout = 3. Further, the last two models can be set with the exponents estimated

for the World Wide Web [62, 65], namely γin = 2.1 and γout = 2.72 [66].

5.3 Algorithm description

The Google matrix is constructed by taking as input an unweighted, simple network with

n nodes [58], and representing it as an adjacency matrix A, where A(i, j) = 1 if a directed

edge points from node i to node j, and 0 otherwise. From this, one defines the matrix P :

P (i, j) =





1/dout(i) if A(i, j) = 1 (5.3a)

1/n if ∀j, A(i, j) = 0 (5.3b)

0 otherwise (5.3c)

The matrix P is stochastic because
∑

j P (i, j) = 1 for all i. P can be thought of as a

random walk (i.e. a web-surfer), where the walker follows the network with equal likelihood

of traversing all allowed links. If the walker ever reaches a dangling node (a node with

dout = 0), Eq. 5.3b implies that it can randomly hop to any vertex with equal probability.

To prevent the walker from becoming trapped in an isolated portion of the network (a sink),

the probability (1−αg) of moving to a node uniformly at random (including the possibility

of staying still) is included, where 0 < αg < 1; Google uses αg = 0.85, which we also use

here [6]. The Google matrix G is defined as the transpose of this resulting transition matrix:
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G = αgP
T + (1− αg)J, (5.4)

where J is the matrix of all ones. The PageRank vector ~p is the unique eigenvector as-

sociated with the largest eigenvalue of G, which is 1. The runtime of the best classical

algorithm, which calculates the PageRank vector via power iteration, is O(n) [58, 6].

To formulate an adiabatic quantum algorithm, GZL construct the Hamiltonian h(G):

h(G) = (1−G)† (1−G) , (5.5)

which is Hermitian, even though G is not. (1 is the identity matrix.) The ground state of

this Hamiltonian is the normalized PageRank vector. The adiabatic algorithm is completely

defined by the interpolation Hamiltonian H(s) = sh(G)+(1−s)h(Gc), where s ∈ [0, 1], and

Gc is the Google matrix for the complfete network (including loops), whose ground state is

a uniform superposition. The adiabatic theorem guarantees that if we initialize our system

in the ground state of h(Gc) and change s from 0 to 1 sufficiently slowly, the system remains

in the ground state [60]. Since the PageRank vector is the ground state of H(1) = h(G),

the PageRank vector is obtained when s = 1. The required slowness is also determined by

the adiabatic theorem: as long as s(t) is a smooth function of the time t with 0 ≤ t ≤ T ,

the runtime T ∼ δ−b, where b is O(1) and δ is the energy gap between the ground and

first excited state of H(s), minimized over s [60]. Thus, an exponential speedup over the

classical case is possible if δ−1 is O[log(n)], since then T is O [polylog(n)].

5.4 Numerical results

To study the scaling of the minimum energy gap δ with the network size n, we compute δ for

the GZL Hamiltonian H(s), averaging the results over many network realizations (typically

1000). Specifically, we calculate the minimum value of δ over s ∈ [0, 1] using the Nelder-

Mead method [70], where each objective function call calculates directly the eigenvalue

spectrum of H(s). We find that for most, but not all, network choices the minimum gap

occurs when s = 1. Since H(s) is a dense matrix, this process is computationally intensive.
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Figure 5.2: Comparison of the scaling of the inverse energy gap δ−1 for the GZL [6] pref-
erential attachment model (triangles, horizontal hatching), GZL copying model (diamonds,
upward-sloping hatching), and α-preferential attachment model [65] (circles, downward-
sloping hatching), shown on (a): Semilog and (b): Log-Log scales, demonstrating that δ−1

is not proportional to log (n) for these models. Results are averaged over 1000 random
instances for n < 8192, and over 500 random instances at n = 8192. The fitting lines
showed in (a) are 72.2 · ln(n) − 363 for the copying model and 10.1 · ln(n) − 48.8 for the
α-preferential attachment model. In (b), the fits shown are 8.0 · n0.4 for the copying model
and 1.7 · n0.4 for the α-preferential attachment model. If we fit the data instead to a power
of a logarithm (not shown), we obtain 0.56 · ln2.9(n) for the copying model and 0.18 · ln2.5(n)
for the α-preferential attachment model. (c): Histogram of the inverse energy gaps for
the data shown in panels (a)-(b) at n = 8192. (d): Histogram showing the distribution
of number of vertices with in-degree din = 8 for n = 8192. (e)-(f): Degree-distributions
of the three models, demonstrating scale-free behavior and indicating that γin = γout = 3.
Adaptive binning was used, as described in Section 5.5. In all cases, both the mean in- and
out-degree of each graph are 2 edges per node. These results demonstrate that δ−1 differs
significantly for the different graph construction methods, while the degree distributions
are very similar.
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Figure 5.3: Inverse energy gap scaling for GZL [6] copying model (diamonds), and α-
preferential attachment model [65] (circles) of WWW-like networks, shown on (a): Semilog
and (b): Log-Log scales. Results are averaged over 1000 random instances for n < 8192,
and over 500 random instances at n = 8192. In (a), the line fit shown is 730 · ln(n)− 5300,
while in (b) the line fit is 0.2 · n0.97. If we fit the data to a power of a logarithm (not
shown), for the copying model we obtain 3×10−5 ·ln8.0(n). Because of the large power of the
logarithm required for the polylogarithmic fit, the power-law dependence on n appears more
natural and plausible. (c)-(d): Degree-distributions of the two models, histogrammed using
adaptive binning (see Section 5.5.), indicating that γin = 2.1 and γout = 2.72, corresponding
to the estimates for the degree distribution of the World Wide Web [66]. In all cases, the
mean in- and out-degree of each network were each 2 edges per node.

We use the University of Wisconsin-Madison Center for High Throughput Computing and

Open Science Grid to perform the simulations.

To assess whether the inverse energy gap δ−1 scales logarithmically or as a power-

law in n, we plot in Fig. 5.2 δ−1 versus the network size on both log-linear and log-log

scales, with data for the GZL preferential attachment, GZL copying, and α-preferential

attachment models. The model parameters are tuned (see Section 5.5) so that all three
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have γin = γout = 3 and have an average of 2 in- and 2 out-edges per node. Despite having

nearly identical degree distributions (shown in Figs. 5.2(e) and 5.2(f)), the scaling of δ−1

depends significantly on the method used to construct the graphs when viewed in Fig. 5.2(a).

In Fig. 5.2(c), we show the distribution corresponding to the final data points in Fig. 5.2(a),

where we see that the distributions are well-separated and hence the construction models

give different values of δ−1. By contrast, the degree distributions are difficult to distinguish,

as shown in Fig. 5.2(d). Finally, we conclude that for all three models, the data are more

consistent with δ−1 scaling as a power law or a high-order polylogarithm, rather than a

logarithm, as consistent with the data presented by GZL in the supplemental information

of Ref. [6].

We next perform a similar analysis for degree distributions more closely related to

the network of primary interest, the World Wide Web, for which a realistic set of degree

parameters is given by γin = 2.1 and γout = 2.72 [66]. As mentioned above, the preferential

attachment model cannot be tuned to obtain degree parameters other than 3. However,

the other two network models can be adjusted to match these values [62, 65]. More details

on this are discussed in Section 5.5. As before, we set the mean degree to be 2 in- and 2

out-edges per node.

Fig. 5.3 presents the results of these simulations, clearly indicating that δ−1 scales at

least as a power of n. In particular, we note that the prefactor of the logarithmic fit is

over 700 and the power of the logarithm in the polylogarithmic fit is 8, while the power

law fit exponent is close to one. The results do not change substantially when the mean

degree is varied and the degree distributions exponents are fixed. These data indicate that

for graphs with degree distributions similar to those measured for the World Wide Web,

the GZL adiabatic algorithm for PageRank vector preparation is unlikely to provide an

exponential speedup over the classical case.
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5.5 Discussion

We have investigated the recently proposed adiabatic quantum algorithm for preparing the

PageRank vector using an adiabatic quantum algorithm [6]. We find that the eigenvalue

gap that determines the algorithm runtime depends on the method of construction of the

network, even when the feature believed to be critical for large-scale network structure, the

degree distribution, is held fixed. The exponent governing the variation of the gap with

graph size does not vary significantly with the method of construction only if power-law

scaling of the gap with size is assumed. For networks that are scale-free in their in- and

out-degree distributions, and particularly when the degree distributions similar to those

measured for the World Wide Web, our numerical results indicate strongly that the GZL

adiabatic algorithm for PageRank vector preparation does not offer an exponential speedup

over current classical algorithms.

5.6 Appendices

A. Parameters of Web Graph Models

In implementing the models used in chapter 5, the relationship between the parameters

of the network generation algorithms and the generated networks themselves is not always

obvious, so in the following section we explain it in detail.

B. GZL Preferential Attachment

The method of graph construction in the GZL Preferential Attachment Model [6] consists

of two phases, each with its own parameter. First, a graph X (with adjacency matrix AX)

is created by adding a new vertex at each time step, where each vertex is created with

mX out-going edges. Next, a second graph Y (with adjacency matrix AY ) is created in

the same fashion, only with each new vertex having mY in-coming edges. AX and AY are

then added together, with loops and weights discarded, forming the adjacency matrix of

the desired network. mX and mY are the two parameters to consider in this algorithm.
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In order for a graph to be scale-free, Pr(din = k) and Pr(dout = k), the probabilities

that the in-degree din and the out-degree dout of a random node have the value k, must

satisfy

Pr(din = k) ∼ k−γin , (5.6)

Pr(dout = k) ∼ k−γout ,

where γin and γout are positive real numbers, and it is understood that Pr(din = k) = 0

when k < mX and Pr(dout = k) = 0 when k < mY . To compute γin and γout, one starts

from the undirected version from Ref. [71]. This result is then combined with a constant

offset, since each vertex of X has mx outgoing edges and each vertex of Y has mY incoming

edges. The resulting composite probability distributions follow

Pr(din = k) ∼ (k +mX −mY )−3, (5.7)

Pr(dout = k) ∼ (k −mX +mY )−3.

Thus, for sufficiently large k, these distributions are scale-free. However, for a large range of

intermediate k, we expect substantial deviation from the power law dependence of Eq. (5.6).

According to GZL [69], the parameters used to generate Fig. 2 in their paper [6], which

provides the main evidence for logarithmic scaling of the gap, follow mY � mX . In Fig. 5.4,

we show the degree distributions for such a network, where we set mX = 1 and mY = 15.

There, we see that the degree distributions are well-described by Eq. (5.7), and that the

addition process does indeed distort the degree distributions. By requiring mX = mY , as

we have done in this paper (and GZL did for a portion of their supplemental material [6]),

γin = γout = 3 for all k, meaning that the in-degrees and out-degrees both follow the desired

power law behavior.

The asymptotic (large number of nodes) value of average edges per node for the com-

posite graph is also determined by the parameters mX and mY . Because mX is the number

of out-going edges per vertex in graph X, it is also the average number of edges per vertex

in X. The same logic holds for mY and graph Y . Thus, when constructing the composite

graph, the asymptotic average edges per node would be simply mX +mY . Although loops
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Figure 5.4: Degree distributions for the GZL preferential attachment model with mX =
1 and mY = 15, taken at graph size n = 8196 and averaged over approximately 1000
random graph realizations. Both the in-degree (blue circles) and out-degree (red squares)
distributions are shown. For reference, the in-degree distribution for mX = 1 and mY = 1
(duplicated from Fig. 5.2 of the main text is shown (black diamonds). The dashed line
is the expected power law scaling of d−3, which is applicable for large d. As predicted
by Eq. (5.7), shown as fitting curves, the mX = 1 and mY = 15 distributions exhibit
non-scale-free behavior over a wide region of d.

are then eliminated from the composite graph, the expected number of loops is much less

than n in the large-n case, so this has little effect on the average edges per node. To produce

a graph with γin = γout = 3 and average in- and out-edges per node of 2 (as in Fig. 2 of

the main text), we use this model with mX = mY = 1.

C. GZL Copying Model

The parameters of the GZL Copying Model [6] are similar to the GZL Preferential Attach-

ment, as they both involve the adding of two graphs to form a composite graph. We again

have the parameters mX and mY , which again indicate the number of out-going edges per

node in one component graph and the number of in-coming edges per node in the other.
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This model has two new parameters, pX and pY , which are the probabilities of a new

node connecting to nodes chosen uniformly at random at a given time step during the

construction of X and Y , respectively. We follow Ref. [68] and add a constant offset (just

as in the preferential attachment case). Doing so, we again obtain the result that the graphs

are scale-free only for mX = mY . Assuming this constraint, the composite graph follows

γin =
2− pX
1− pX

, (5.8)

γout =
2− pY
1− pY

. (5.9)

For the data in Fig. 2 of the main text, we used the parameters pX = pY = 0.5 and

mX = mY = 1. In Fig. 3 of the main text, we used pX = 1/11 and pY = 35/86 and

mX = mY = 1.

D. α-Preferential Attachment

Just as in the GZL Copying Model, there are multiple possible actions at each time step

in the α-Preferential Attachment Model [65], and each of these steps has an associated

probability. p1 is the probability of adding a new vertex with a single out-going edge, p2 is

the probability of adding a new vertex with a single in-coming edge, and 1− p1 − p2 is the

probability of an edge being added to the existing network without the addition of a new

vertex. α, the third parameter, measures how far the generated network deviates from the

GZL preferential attachment model.

As laid out in Ref. [65], the relationship between these 3 parameters and the exponents

is

γin =
2 + (p1 + p2)α− p2

1− p2
, (5.10)

γout =
2 + (p1 + p2)α− p1

1− p1
. (5.11)

The connection between these parameters and the average number of directed edges per

node in the graph is clear when one considers that the probability that a new node will be

added at a given time step is p1 + p2, and a new edge is added at each step.
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Using these constraints, we can find appropriate values for the parameters for both Fig.

2 and Fig. 3 of the main text. In Fig. 2, we used p1 = p2 = 0.25, and α = 1, and in Fig.

3, we used p1 = 0.415, p2 = 0.0851, and α = 0.0128. These choices in parameters keep γin

and γout fixed at our desired values, while simultaneously keeping the graph at an average

of 2 in- and 2 out-edges per node.

E. Initial Conditions

For each of these models, it is necessary to specify an initial graph to seed the network

growth. In our simulations we used a complete graph (including loops) with m+ 1 vertices,

where m is the number of edges added per vertex (in the α-Preferential Attachment Model,

we used m = 1).

F. Adaptive Binning

In the plots of the degree distributions (Figs. 2(e)-(f), Figs. 3(c)-(d), and Fig. 5.4), numerical

noise caused by few high-degree vertices leads to data which are difficult to interpret. In

order to combat this, we use adaptive binning, which functions as follows. First, some

sampling threshold st is set, which we take to be 200 in our analysis. If a given data point,

corresponding to a degree, contains at least st samples, then it is included. If the data point

instead has fewer than st samples, it is combined with nearby points until the aggregated

samples total at least st. The weighted average degree and probability are then recorded.
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Chapter 6

Compressed sensing for

Hamiltonian reconstruction

6.1 Introduction

In quantum physics, the standard method for understanding a large system has long been to

make an approximate model Hamiltonian that captures the essential physics of the material

in question. More recently, this situation is often turned on its head - a quantum system

of n qubits is constructed and we need to find its Hamiltonian from experimental data.

To do quantum information processing of any kind, accurate control of the Hamiltonian

is always a prerequisite. One needs to be able to apply external control that involves

the engineering of a time-dependent Hamiltonian, but it is usually also the case that there

are “always-on” terms, generally time-independent or nearly so, in the Hamiltonian that

need to be determined at a precise quantitative level. This is a particularly pressing issue

for a quantum memory, or in systems that are specifically constructed in order to simulate

many-body Hamiltonians . For electron spin qubits in semiconductor quantum dots [72], for

example, the single-qubit energy-level splittings are subject to unknown random hyperfine

fields, and there are two-qubit interactions due to the dipole-dipole interactions. We will

also investigate the challenging case of multi-qubit interactions. In this chapter we propose



86

an efficient way to determine these “always-on” terms.

For n = 1 and n = 2, considerable work has been done, since these cases are relevant to

the performance of gates [73, 74, 75]. Process tomography is the usual tool for problems

with n > 2, but standard methods [76, 77] require a number of measurements that scales

exponentially with n. Other methods that pertain particularly to spin systems require only

a small number of measurements, but they appear to involve full simulation of the system,

a task that again scales exponentially [78, 79, 80, 81]. Several authors have investigated

the use of techniques from compressed sensing [82] which would give an efficient solution

to this problem when the process matrix χ is s−sparse (has only s nonzero elements) in

some basis [83, 84]. The number of measurements needed to determine χ is then O (sn) .

However, this scheme requires prior knowledge of the basis in which χ is sparse. Thus it

is useful for verifying quantum gates, but cannot be used to determine entirely unknown

processes (or Hamiltonians), which is the case we are considering.

As pointed out in Ref. [85], it makes sense to take advantage of the fact that, to a

very good approximation, almost all qubit Hamiltonians H have only one- and two-qubit

interactions, so that the number of parameters to be determined scales only as n2. These

authors suggest a sequence of randomly chosen measurements on randomly prepared states.

If the time interval t between preparation and measurement is short enough: ||H|| t << 1,

then the density matrix is simply related to H. Here ||H|| is the operator norm (largest

eigenvalue) of H. Compressed-sensing techniques can then come into play and the number

of measurements required to determine H is O(n3). However, ||H|| grows with the size of

the system, which limits the usefulness of this scheme.

6.2 Method

Here we propose a different approach for the experimental determination of H. The most

general Hamiltonian for an array of N qubits is:
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H = −η
4n−1∑

a=1

Jaλa (6.1)

where a is an N -digit base-4 number a = a1a2...aN and the λa are tensor products of Pauli

matrices: λa = σa1 ⊗ σa2 ⊗ ... ⊗ σaN . σ1,2,3 = σx,y,z and σ0 is the identity matrix. For

notational convenience we have defined the energy scale η and set it by the condition that

the dimensionless variables Ja satisfy |Ja| ≤ 1. We will assume that only s of the 4n − 1

possible Ja are zero and s << 1. The system is placed in a bath and comes to thermal

equilibrium. The density matrix is ρ = exp (−βH) /Q, where Q is the partition function:

Q = Tr exp (−βH) and β = 1/kBT . If T = 0, ρ reduces to ρ = |0〉 〈0| where |0〉 is the ground

state so that the density matrix has rank 1. We will work in the opposite limit: ηβ << 1.

ρ ∼ I − βH + β2H2/2 + .... and in this limit we may truncate the expansion. In general

there are a macroscopic number of energy eigenstates that enter ρ and ρ represents a high

rank state. It is important to note that the application of compressed sensing proposed

here is opposite to others in the literature that primarily focus on the determination of

states of low rank [86, 87]. In fact the density matrix is technically of full rank at any

finite temperature and the naive (but inefficient) procedure to determine the Ja would be to

measure the observables λa. For ηβ << 1 this gives ηJa = −2−n Tr (λaH) ≈ β−1 Tr (λaρ) .

However, most of the diagonal matrix elements are exponentially small, and we will use this

fact to reduce the number of measurements that need to be made.

The measurement and processing protocol is as follows. After the system reaches equilib-

rium, its state is given by ρ = 2−nI+2−n
∑4n−1

a=1 vaλa, where ~v is the equilibrium polarization

vector of the system. We then subject the system to a random unitary transformation U so

that the new state of the system is ρ′ = UρU−1. The procedure for generating random U ’s

that are efficiently implementable with a small gate set is a modification of one proposed

for quantum data hiding by DiVincenzo, Leung, and Terhal [88], using work by Harrow

and Low on random quantum circuits [89]. The U ’s are not selected uniformly from the

Haar distribution but they appear to provide usable compression matrices. (Details for

generating each U are provided in Appendix A.)
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The new polarization vector ~v′ is linearly related to the previous one: v′a =
∑4n−1

b=1 Cabvb

with Cab = 2−n Tr
(
λaUλbU

−1
)
. C is an orthogonal matrix and ~v is a long but ap-

proximately sparse vector, the “signal vector”. We now measure M of the observables λ

obtaining the results {yk}Mk=1 with the yk satisfying −1 ≤ yk ≤ 1. We will discuss the

magnitude of M and the choice of the λ’s below. ~y is our “measurement vector”, a subset

of the elements of ~v. We now have

yk =
∑

b

C
(M)
kb vb, (6.2)

where C(M) consists of M rows of C, the choice of rows corresponding to the measurements

taken. C(M) is an M × (4n − 1) matrix, the “compression matrix”. The next step is

to estimate the polarization vector by minimizing the L1 norm of all possible polarization

vectors that are consistent with the measurement results:

~vest = arg min
~w
||~w||1 , subject to

∑

b

C
(M)
kb wb = yk. (6.3)

The L1 norm of a vector ~w is defined as ||~w||1 =
d∑
i=1
|wi| . This is a convex optimization

problem that can be solved efficiently. For our purposes it is important to note that this

compressed sensing protocol is stable with respect deviations from exact sparsity in the

signal vector, so that, as we shall see below, the protocol works at moderate temperatures.

Also, it can be shown that If C(M) is formed by choosing rows at random from C, then

C(M) satisfies a certain restricted isometry condition which guarantees that that if M > A

n ln3 s we can recover ~v with high probability, Here A is a constant. [90].

Once a good estimate of the polarization vector is available, we can estimate the Hamil-

tonian:

Hest = β−1(2−nTr (ln ρest) I − ln ρest). (6.4)

6.3 Results

We now turn to numerical studies of the protocol for 3, 4 and 5 qubits, for which a takes on

N = 63, N = 255, and N = 1023 values, respectively. We input a random Hamiltonian,
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compute the equilibrium density matrix ρ, and perform M measurements, i.e., characterize

ρ by the numbers Tr(λiρ) , i = 1, 2, ...,M. (This is our definition of a measurement.) While

measurements are chosen at random, they are ordered by weight, that is all measurements

of weight one (i.e., single-qubit measurements) are performed before all measurements of

weight two (i.e., two-qubit measurements), and so on. (See Appendix B for further expla-

nation.)

The simplest case is the determination of the Ja when we are given that only s of them

are nonzero. We do not have firm guarantees of success at finite temperature, since the

density matrix is not s-sparse. So the first task is to determine how high the temperature

needs to be to ensure success. The temperature is quantified by the dimensionless ratio ηβ.

Success is measured by the distance of Hest, the Hamiltonian estimated from Eq. 6.4, from

the actual Hamiltonian H, the metric chosen as the one corresponding to the Frobenius

norm: if (||Hest −H||F )/η < threshold, the procedure is judged to have succeeded.

Fig. 1 shows the quality of the reconstruction of H as a function of the parameters

M/N , which is the number of measurements divided by the signal length, and the sparsity

ratio s/N. There are 3 qubits and each pixel in the plots is the result of 100 trials. Note

first that the lower right corner is a region where the number of nonzero entries in Ja is

greater than the number of measurements: reconstruction is impossible there. As we move

away from the diagonal, the success probability increases. As is generally observed in cases

where compressed sensing works, the boundary between success and failure (Tanner-Donoho

phase transition) is sharp. High temperature is favorable for reconstruction, but even at

quite moderate temperatures there is a very substantial region of parameter space where

the determination of H succeeds. The red region in both panels is where H is successfully

reconstructed, due to the density matrix is approximately sparse in that region.

These computations show that compressed sensing can work in principle, and gives

strong evidence that the number of measurements needed is proportional to n, the number

of qubits, rather than N, the number of possible couplings, when the Hamiltonian is sparse.

However, equipped with the knowledge that H is sparse, quantum state tomography can
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(a) (b)

Figure 6.1: Quality of Hamiltonian determination for random couplings as a function of
temperature. In (a) and (b) the inverse dimensionless temperature is given by ηβ = 10−4

and ηβ = 10−1 respectively. Red indicates a high success rate, green indicates failure, and
a negative success rate (blue) means that reconstruction is impossible. Each pixel is an
average of 100 trials.

also be carried out with a reduced number of meaurements. We next examine the question

of how much advantage is actually gained in practice over the straightforward method of

standard tomography, stopping when H has been determined. Fig. 2 gives this comparison

for n = 3 [Fig. 2(a)], n = 4 [Fig. 2(b)], and n = 5 [Fig. 2(c)], with small values of s, and

for a moderate temperature of ηβ = 10−1. The number of trials per data point is 100.

The sampled M ’s have a spacing of 1 for n = 3 and n = 4, starting at a value of M = 2;

due to computational constraints, every tenth value of M is used for n = 5, starting at

a value of M = 11. The median value of the normalized quality (||Hest −H||F )/ ||H||F
of the estimate is plotted as a function of M, so that low values correspond to accurate

estimates. When the curve drops off sharply, the “phase transition” from failure to success

has occurred. Thus for example, in Fig. 2(a), the compressed sensing (CS) protocol for

n = 3 and s = 1 succeeds at M = 5. It is seen that compressed sensing gives a large saving

in the number of measurements for all cases considered, ranging (roughly) from a factor of

4 to 7 for n = 3, from 6 to 12 for n = 4, and from 12 to as high as 50 for n = 5. This is

good evidence that the advantage of the compressed sensing protocol increases with n, as

we would expect from the scaling arguments above.

In most cases of actual physical interest, we not only have some knowledge of the
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sparsity of H, we also have some knowledge of where the nonzeros lie. For example, for

spin qubits, 1- and 2-body interactions are likely to be much greater in magnitude than

3- and higher-body interactions. We then find s = O
(
n2
)
. Locality may also reduce

the sparsity; for sufficiently short-range interactions s = O (n). This is a very different

situation than we have considered so far, where the nonzero Ja were taken at random. Of

course exponential speedups in M are now out of the question. The question is whether

we can still get speedups that may be useful in real situations - even constant speedups can

be important. So we perform the same numerical experiment as in Fig. 2, but now the

nonzero Ja are restricted to those corresponding to λa that are 1- and 2-qubit operators,i.e.,

a has at most 2 nonzero digits. The results are shown in Fig. 3. The number of trials

and all other parameters are the same as in Fig. 2. In the “no CS” (standard tomography)

protocol, measurements of 1- and 2-body operators are made first, which now improves the

performance of the “no CS” procedure, but not enough to overcome the advantage of the

CS protocol.1

The ratio of the number of measurements required is about a factor of 2 to 4 for n = 3,

about a factor of 3 to 6 for n = 4, and about a factor of 6 to 8 for n = 5. Thus the speedup

is less when the knowledge of the locations of the nonzeros is increased, but it is still quite

substantial. More importantly, it appears that the speedup still increases with the number

of qubits.

6.4 Conclusion

Previous improvements in efficiency of quantum state tomography have shown the usefulness

of compressed sensing techniques by focusing on the reconstruction of states of low rank.

This work, by contrast, uses this technique to reconstruct states of high rank. This is not

1The actual “no CS” protocol for reconstructing ρ is as follows. For an estimate of ρ in which M Pauli
measurements are allowed, the M expectation values are input as the appropriate vi’s; the remaining vi’s are
set to zero. While this estimation procedure could theoretically produce a non-physical ρest with negative
eigenvalues, in practice this is not a concern as any state we are estimating has a polarization vector with a
small L2 norm , while a non-physical density matrix with one or more negative eigenvalues has a polarization
vector with a large L2 norm.
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of great interest, for example, for validation of gate quality, but it can be used to determine

the parameters in a many-body Hamiltonian.

Compressed sensing is only of value for systems in which measurements are expensive

but signal processing and computational post-processing is cheap. This is true in all ap-

plications, even in the classical context, but the tradeoffs are vary from case to case. In

our protocol, it is assumed that gate operations are cheap but measurements are expensive

or destructive. Otherwise, straightforward tomography will be better. The competition

between the two is greatly affected by how much advance knowledge we have about the

system. It is when we do not have a very good idea in advance about the shape of the

Hamiltonian that our method is useful.

6.5 Appendices

A. Generation of U

To choose a random unitary map that is efficiently implementable with a small gate set,

we use the following procedure, inspired by a technique for quantum data hiding proposed

by DiVincenzo, Leung, and Terhal [88], along with work by Harrow and Low on random

quantum circuits [89].

For an n-qubit system, we consider the following set G of quantum gates

G = {Hp, Pq, P
†
r , Rs

(
π
8

)
, CNOTtu}, (6.5)

where H is the Hadamard gate, P is the phase gate, R
(
π
8

)
is the π

8 gate, and CNOT is

the controlled-not gate. The subscripts label the qubit (or qubits) that each gate is acting

on, that is, G contains all single-qubit copies of {H,P, P †, R
(
π
8

)
} and all two-qubit copies

of CNOT .

To form the unitary map U , we simply select (with replacement) n8 elements of G

uniformly at random. Letting gi denote the ith selection from G, we define U to be given

by



93

U =
n8∏

i=1

gi. (6.6)

Note that this gives us a random unitary operation on n qubits which, while not selected

uniformly from the Haar distribution, is sufficiently random as to successfully generate a

compression matrix which can be used for compressed sensing. Additionally, we note that

it is an open question as to whether or not a smaller set of gates and/or a shorter gate

sequence could yield equally successful results.

B. Weight-ordering of measurements

It may be of some benefit to the experimentalist for whom lower weight measurements

are easier to perform to be able to prioritize low-weight measurements over high-weight

measurements.

Therefore, we show here that the order the measurements are chosen in should not af-

fect the accuracy of the Hamiltonian or the density matrix reconstructions, allowing for the

measurements to be chosen according to weight. (That is to say, all single-qubit measure-

ments may performed before any two-qubit measurement, which in turn may precede all

three-qubit measurements, and so on.) This ordering by weight is justified in the following

manner.

We note that if the kth Pauli measured is λk, then the kth element of our measurement

vector ~y is given as

yk = Tr
(
λkU

†ρU
)
, (6.7)

where ρ is the initial density matrix and U is the random unitary map. However, due to

the cyclic property of the trace, we may re-express Eq. (6.7) as

yk = Tr
((
UλkU

†
)
ρ
)
. (6.8)

That is, we may consider our kth measurement to correspond to measuring the expectation

value a Pauli subjected to a random unitary transformation with respect to the fixed and

original density matrix. Therefore, as U effectively randomizes each λk, choosing them in
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order of their weights should not affect the reconstruction algorithm. (Indeed, we have

performed numerical tests which demonstrate this.)
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Figure 6.2: Quality of Hamiltonian determination for random couplings as a function
of number of qubits. (a), (b), and (c) give the quality of Hamiltonian determination for
n = 3, 4 and 5 qubits, respectively, as a function of the number of measurements made,
with compressed sensing (CS) and without (no CS). In each case, the CS protocol gives a
substantial speedup. The speedup increases as the number of qubits increases. Each data
point is the median value of 100 trials.
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Figure 6.3: Quality of Hamiltonian determination for 1- and 2-qubit couplings as a function
of number of qubits. (a), (b), and (c) give the quality of Hamiltonian determination for
n = 3, 4, and 5 qubits, respectively, as a function of the number of measurements made,
with compressed sensing (CS) and without (no CS). In each case, the CS protocol gives
a substantial speedup, though not quite as big as for random couplings. The speedup
increases as the number of qubits increases. Each data point is the median value of 100
trials.
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Chapter 7

Conclusion

Over the course of this thesis, we have covered several different topics and presented several

new and interesting results. We have demonstrated new insights regarding quantum ran-

dom walk-based algorithms for graph isomorphism. In particular, we’ve shown numerically

and analytically why continuous-time walks of three or more non-interacting particles are

fundamentally different from such walks of one or two particles. We’ve additionally shown

that even though such walks of three or more particles can distinguish many strongly reg-

ular graphs, no such walk of a fixed number of particles can distinguish all strongly regular

graphs. Furthermore, we have explicitly shown where fundamental differences between

discrete-time and continuous-time walks of non-interacting particles arise from, in terms of

ability to distinguish strongly regular graphs. Our graph isomorphism work is rounded out

by new results that demonstrate that a broad class of continuous-time interacting quan-

tum random walk algorithms cannot be suitable as general graph isomorphism algorithm

candidates.

We have also looked at the previously-proposed adiabatic quantum algorithm, dubbed

GZL [6], for determining the PageRank vector as part of one of Google’s search algorithms.

While there had been hope that the GZL algorithm could offer a significant speedup, we

have demonstrated this not to be the case. Specifically, we have shown that while different

methods of generating random graphs can each yield graphs whose degree distributions
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follow a power law, the eigenvalue gap scaling (and hence the algorithm’s runtime) vary

dramatically as a function of graph generation method. When graphs which resemble the

graph of World Wide Web are considered, we have shown that the GZL algorithm does not

offer an exponential speedup.

We have concluded this work with an exploration of how to optimize the determination

of a qubit Hamiltonian. We have shown that, in the high-temperature limit, compressed

sensing can be used to deduce a Hamiltonian, provided that the Hamiltonian contain a

relatively small number of interactions. Thus we have demonstrated how, in certain cir-

cumstances, Hamiltonian determination may be achieved with fewer measurements than

are demanded by techniques which employ full quantum state tomography.

While we detail all of the above advances in this thesis, it is only natural that there still

remain both many open questions to be answered and future work to be done.

For graph isomorphism algorithms, our work immediately points to several potential

avenues of further research. While we know that continuous-time walks of two hard-core

particles cannot distinguish all graphs, it is still possible that they distinguish all strongly

regular graphs. Failing that, it is still possible that there exists a continuous-time walk

of a fixed number of interacting particles (with hard-core interactions or more general

ones) which can distinguish all strongly regular graphs. Such an algorithm would be of

significant interest, as it would be a polynomial time quantum algorithm for distinguishing

SRGs, giving an exponential speedup over the best current classical algorithms.

Similar comments could be made regarding discrete-time walks. While we’ve shown

that no fixed-number non-interacting continuous-time walk can distinguish all SRGs, we

have been unable to extend this analysis for analogous discrete-time walks. This is to say

nothing of further investigating the distinguishing power of interacting discrete-time walks;

while Berry and Wang performed numerical investigations of such walks [4], there remains

much analytic work to be done to fully understand the power of these walks.

Finally, with regards to graph isomorphism, further work may performed in developing

new comparison algorithms. Our comparison algorithms have been restricted in that they
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both require computing evolution operators in their entirety, and they are restricted in only

allowing for “local” interactions to appear in the Hamiltonian. This then leaves open two

possible areas of research. First, it is possible that there exist better algorithms which

use efficiently computable observables as their graph certificates. Second, it is possible

that “non-local” interactions, that is, those which take advantage of global properties of

the graph, could be used to generate walks which could distinguish all graphs. (Such

global properties would still have to be efficiently computable, lest we cheat by considering

interactions that program the isomorphism class of the graph into the Hamiltonian.)

As for a quantum algorithm for calculating the PageRank vector, there remains much in

terms of research potential. While we have shown that the algorithm proposed by Garnerone

et al. does not offer an exponential speedup, this by no means proves that one does not

exist. It is entirely possible that a different quantum algorithm, adiabatic or otherwise, will

provide such a speedup. Indeed, such an algorithm could even potentially be very similar

to the GZL algorithm, with small, but important, differences. Whether or not any of these

conjectures turns out to be true remains to be seen.

Lastly, turning to Hamiltonian determination and compressed sensing, it is clear that

there exists more work to do. Further robustness testing of our procedure can be performed,

examining, in particular, sensitivity to noisy measurements. Additional optimization may

be pursued as well; while we currently require, for a system of n qubits, n8 gate operations

to form our random unitary map, is possible that we can significantly improve upon the

length of this gate sequence, making matters easier for the experimentalist. Finally, and

perhaps most importantly, while we have demonstrated through numerical simulation that

determining a sparse Hamiltonian is possible via compressed sensing at high temperature,

this scheme has yet to be experimentally implemented. There exist several different archi-

tectures (such as silicon-based spin qubits) that appear to be well-suited for experimentally

testing our procedure; it is our hope that in the near future such experimental tests are

performed. Ultimately, as is the case with much of theoretical physics, the utility of this

work will largely rest upon its ability to impact experimental work. In this particular case,
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the hope is that this will work will, either directly or indirectly, assist in the creation and

manipulation of working quantum computers.
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