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Abstract 
 
Diffusion-weighted MRI (dMRI) represents a well-established field for the study of micro-

structure in tissue and other porous media. Yet, the pipeline from image acquisition to analysis 

and application of imaging markers is dynamic and components within it are ever evolving. The 

field continues to enthuse researchers to extend, refine, and create imaging instruments as well 

as data processing and analysis methods. It is in this spirit that this work set out to improve – or 

augment to – the dMRI pipeline in areas associated with modeling, analysis, and validation. 

 Biophysical models represent an important instrument for establishing links between the 

dMRI signal and biological properties of tissue microstructure. However, due to the number of 

parameters needed to faithfully describe the signal in terms of the complex tissue micro-

architecture, biophysical modeling methods need to rely on assumptions that are often 

oversimplifying. One component of this work conducted an empirical study of the model in 

Neurite Orientation Dispersion and Density Imaging (NODDI) regarding assumptions for the 

intra-cellular parallel intrinsic diffusivity. 

 Understanding individual variability of dMRI-based markers is an important task when 

studying conditions with high inter-subject heterogeneity such as traumatic brain injury and 

autism. A second component of this work focused on developing a framework based on the 

Mahalanobis Distance, as a multivariate approach for individualized evaluation of imaging-

based measures.  

 Validation of apparent diffusion coefficients (ADCs) estimated from dMRI measurements 

requires the use of test media with known diffusion coefficients as well as their temperature 

dependence. A third component of this work sought to develop a test object (phantom) 
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constructed from liquids whose diffusion constants at multiple temperatures were previously 

characterized. Models of the diffusion-temperature relationships where investigated for their 

potential use in estimating the temperature of the phantom from dMRI measurements. 
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Chapter 1 - Introduction 
 

1.1 Dissertation Overview  

This dissertation is composed with work from three main projects regarding the imaging 

modality known as diffusion-weighted MRI as well as a basic discussion of its history and 

theory. Though, apparently different from each other, the three projects are interconnected 

and have the common goal of improving or adding to specific aspects of the diffusion imaging 

framework. 

 The main objective of the first project, presented in Chapter 3, is to inspect the 

assumptions of an existing biophysical model, which aims to describe the diffusion MRI signal 

by assuming certain geometries about tissue microstructure. The second project, presented in 

Chapter 4, has as its main goal to develop a method for the simultaneous use of multiple 

diffusion imaging-based measures in carrying out single-subject analyses. And the third project, 

presented in Chapter 5, aimed to develop a test object for validation of diffusion coefficient 

measurements in isotropic materials that could also be used to estimate the temperature of the 

materials.  

 

1.2 Dissertation Outline 

Chapter 2 dives into historical and theoretical aspects of MRI and diffusion-weighted MRI. 

Many of the principles introduced there will be revisited throughout Chapters 3-5. The chapter 

begins with a discussion of Brownian motion and Einstein’s derivation of the diffusion equation 

that is fundamentally connected to diffusion imaging. What follows is a historical recount 
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accompanied by relevant theoretical inserts, which aims to connect relevant events starting 

from the development of nuclear magnetic resonance (NMR), passing through the discovery of 

molecular diffusion as a source of signal attenuation artifacts and then developed as a useful 

tool to estimate diffusion coefficients, and ending with the transition from NMR to MRI 

methods of imaging from projections, Fourier space imaging, and rapid imaging with echo-

planar imaging.  

 Next, the development of the diffusion tensor imaging (DTI) technique is discussed as a 

widely used approach for studying anisotropic diffusion behavior in biological tissue. DTI plays a 

central role in Chapter 5 as the source of scalar metric maps used in the study traumatic brain 

injury. Additionally, the framework presented in Chapter 5 makes use of a method known as 

tractography, which is also introduced in Chapter 2 as a way for utilizing directional information 

derived from DTI in tracing pathways that are used to represent white matter tracks in the 

human brain. Inherent limitations of the diffusion tensor model are highlighted, including the 

nonspecific nature of anisotropy measurements, awareness of non-prolate tensors in the brain, 

and the inability of the tensor model to resolve crossing fibers within a voxel. Chapter 2 

concludes with a brief look at several promising techniques that move beyond the Gaussian 

model of diffusion, such as diffusion kurtosis imaging and other multicompartment biophysical 

models, as well as technological advances that serve to enhance the current state of the field 

and continue to move it into new horizons. 

  

Chapter 3 dives into a biophysical multicompartment model technique known as neurite 

orientation dispersion and density imaging (NODDI), which is introduced in Chapter 2. 
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Advantages offered by NODDI over DTI are discussed along with how the technique 

experienced a rapid uptake by researchers in the field, using it in a wide array of applications 

that include investigations of normal brain development as well as pathological conditions. A 

discussion of the assumptions of the model is presented along with the limitations incurred by 

the technique as a result. One of the limitations of the model having to do with the intra-

cellular parallel diffusivity being fixed is reviewed and emphasized, and a framework for testing 

the strength of the assumption is described. This framework is centered on an empirical 

approach and includes fitting the model to data sets varying in imaging protocol as well as in 

sex and age of the participants. The analysis aims to expose the performance of the model fit 

under the original assumption for the varying characteristics of the data and to seek the 

optimal performance of the model fit when the assumption is relaxed. Results show that age 

group, imaging protocol, and tissue type, influence the model fit. Specifically, the model fitting 

performance can be optimized for the infant brain and gray matter if the assumption of fixed 

parallel diffusivity is relaxed to take values that are lower than the original fixed value.  

 

Chapter 4 describes a novel framework for studying single subject variability of white matter 

microstructure. The chapter reviews the reasons for desiring to develop a technique that is able 

to compare an individual to reference group for studying conditions with high inter-subject 

variability such as autism and traumatic brain injury. The project outlined in this chapter seeks 

to have a method that is spatially specific enough compared to traditional region of interest 

methods, but more forgiving in the number of multiple comparisons and image alignment 

requirements compared to voxel-based approaches. In the proposed approach, microstructure 
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between one individual and a reference group is compared using a composite measure from 

multiple DTI scalar metrics known as the Mahalnobis distance. The comparisons are conducted 

at discrete pieces along a white matter pathway represented by a tractogram. The way in which 

tractograms are generated is described. This includes the processing of diffusion weighted 

images with a method known as constrained spherical deconvolution, which is briefly discussed 

in chapter 2, and feeding the result into a deep learning-based tool for extracting specific white 

matter pathways. The discretization of a pathway into several pieces is also described as part of 

a method known as tractometry, which is used for generating profiles of different scalar metrics 

along the pathway. The chapter proceeds with the demonstration of the framework in the 

single subject comparison of 22 severe traumatic brain injury cases to a reference group of 49 

healthy age matched controls. The results show the methods ability to find abnormalities in 

several locations along several white matter pathways in the TBI cases. 

 The chapter describes how the data from the TBI patients was collected at different sites 

and with different scanner brands and models. It also contains a detailed analysis of a test 

object (or phantom) that was used in gathering scans from a subset of sites and comparing 

them to data for the same phantom collected at the control group site. The phantom contains 

vials whose diffusion coefficient values at zero degrees Celsius are known. The measured 

diffusion coefficients from the imaging data were matched across sites and correction 

relationships were derived for use in applying a correction to the human scans for those sites. 

The multivariate analysis for those specific subjects was replicated with the corrected diffusion 

values. The results show great correspondence between corrected and uncorrected values, 

indicating site effects were not problematic for this analysis.   
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The phantom work in Chapter 4 leads nicely into Chapter 5, which also focuses on a diffusion-

based phantom. The fundamental link between diffusion and temperature is introduced in 

Chapter 2, but an explicit relationship between temperature and diffusion is detailed in Chapter 

5. The need for a test object in checking for consistency of measurements in multi-center 

studies is emphasized by the work presented in Chapter 4. However, the requirement of 

scanning the phantom at zero degrees (or other known temperature) introduces unwanted 

effects related to the often tedious and involved preparation procedures. The work in Chapter 5 

is an exploration into an alternative approach. This consists of using the known diffusion-

temperature relationship between two materials to derive an equation that allows for 

estimating the temperature of the materials using the diffusion weighted images themselves. 

Further, the approach is independent of the diffusion weighting quantity known as b-value, 

which is a prescribed parameter for each scan and is susceptible to both system and human 

error. Five different materials, including water, are selected for developing the method and a 

temperature control and monitoring system is built for validation purposes.  

 The chapter outlines how this project faced challenges related to low viscosity of the 

materials being used and convection currents introduced by vibration of the scanner table. 

These vibrations are related to the strong diffusion gradients from the scan acquisitions. When 

the motion coincides with the direction of diffusion sensitization, the signal experiences 

attenuation that is not due to molecular diffusion. These artifacts proved difficult to correct and 

the fundamental issues that caused them could not be overcome. The chapter concludes with a 

description of measures implemented for addressing the vibration issues, which included 
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placing weights on the scanner table. Potential future actions to address the vibration issues 

are discussed. 

 

Finally, contributions and key findings from the work presented in chapters 3-5 are summarized 

in Chapter 6. In concluding the chapter, possible future developments and potential 

applications are discussed.  
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Chapter 2 - Background 
  
 Portions of this chapter have been submitted for publication in the 2nd Edition of the book 
“Functional Neuroradiology: Principles and Clinical Applications”, by Scott H. Faro (Editor), 
Feroze B. Mohamed (Editor), Meng Law (Editor), John T. Ulmer (Editor), 
as the chapter entitled Diffusion Tensor Magnetic Resonance Imaging – Physical Principles. Jose 
M. Guerrero, Thomas A. Gallagher, Andrew L. Alexander, and Aaron S. Field.  
 
 
2.1 Abstract  

One of the intentions for this chapter is to familiarize the reader with the background 

information that is relevant to the work presented in chapters 3, 4, and 5, and to provide some 

historical context to the field of diffusion MRI. First, the molecular hydrodynamics that give rise 

to the macroscopic diffusion phenomenon that is observable with the naked eye are 

introduced. The mathematical principles of the diffusion coefficient and statistics of molecular 

displacement are presented as the foundation for studying Gaussian diffusion. Then, the 

historical milestones that permit determination of apparent diffusion coefficients with nuclear 

magnetic resonance and magnetic resonance imaging are reviewed. The extension of the 

Gaussian model of diffusion to the multidirectional case in diffusion tensor imaging is discussed 

for imaging anisotropic features in microscopically porous materials. The procedure for filling a 

diffusion tensor matrix and extracting its eigenvalues and eigenvectors is explained and the role 

of these parameters in shaping a Gaussian “ellipsoid” into a visual representation of anisotropic 

diffusion is presented. Scalar metrics derived from the diffusion tensor eigenvalues, including 

fractional anisotropy (FA), are discussed, followed by an introduction to white matter fiber 

tracking (“tractography”). Inherent limitations of the tensor model are highlighted throughout 

the discussion, including the nonspecific nature of anisotropy measurements and the inability 
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of the tensor model to resolve crossing fibers within a voxel. Restricted diffusion imaging is 

discussed with multicompartment biophysical models as way to address the lack of specificity in 

DTI. Fiber orientation distribution mapping is presented as an alternative to resolve crossing 

fibers within a voxel. The chapter concludes with a brief look into other techniques that go 

beyond the Gaussian model for diffusion as well as promising emerging technological advances 

that continue to move the field forward.  

 
2.2 What is there to measure? – Random Walks 

While diffusion may seem an intuitive process on a macroscopic scale, the happenings at the 

microscopic scale are of great importance to the magnetic resonance specialist who wishes to 

image diffusion phenomena. Consider the familiar example of releasing a drop of water-soluble 

dye into the center of a glass of water. We expect the dye to “diffuse” outward from its origin in 

all directions, migrating from areas of higher concentration toward areas of lower 

concentration. Intuitively we know that the longer we observe the process, the more the dye 

will be distributed throughout the glass. This process appears to be quite predictable—almost 

orderly, from our macroscopic vantage point—but if we could zoom in and observe the 

behavior of a single molecule strolling about its molecular neighborhood, a fundamentally 

disorganized world would emerge, which begs the question: what exactly “powers” the process 

of diffusion? In 1827, botanist Robert Brown first described the curious jiggling motion of tiny 

pollen grains under a microscope (Figure 2.1). Puzzled as to whether it represented some sort 

of fundamental “life energy,” he sought and found similar Brownian motion in inorganic 

materials, suggesting that some physical phenomenon was at work [1]. 
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Figure 2.1 The 1828 published work cover in which Robert Brown described the curious motion in 
particles of pollen under a microscope. Adapted from [2]. 

It was later proposed by Albert Einstein (and others) that individual molecules were normally in 

a constant state of random motion and could achieve random displacements as a result of local 

thermodynamic conditions, namely heat. It is thermodynamically necessary for all systems to 

become more disorganized as time marches forward, which we know as the law of entropy. 

Accordingly, an organized group of molecules will tend to become more dispersed and 

disorganized the longer we observe them. Molecules at higher temperature tend to do this 

faster, undergoing more frequent random collisions and greater displacements. Einstein’s great 

contribution was to formally quantify this phenomenon, and in doing so, lent support to the 

existence of atoms (which was further validated by Perrin, earning him a Nobel prize in 1926). 

 Taking into consideration (temperature and viscosity-dependent) molecular displacement 

∆𝑟 and the observation time interval ∆𝑡, a diffusion coefficient for a group of molecules can be 

determined from the Einstein’s diffusion equation:   
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 𝐷	 =
< ∆𝑟" >
2𝑛	∆𝑡  Equation 2.1 

 

where < ∆𝑟" > is the mean-squared displacement, 𝑛 is the number of spatial dimensions, and 

𝐷 is the diffusion coefficient.  

 We can now imagine diffusion without boundaries, termed isotropic diffusion, in 3 

dimensions as an expanding sphere whose radius represents mean displacement, which is 

proportional to the square root of the diffusion coefficient 𝐷 and the observation time 

according to Einstein’s equation [3]:  

 < ∆𝑟 >	= 	√6𝐷∆𝑡 Equation 2.2 

 

How then does Brownian motion, sometimes referred to as the “random walk” of a molecule, 

often denoted B(t) with t = time, help explain the macroscopically very predictable 

phenomenon of diffusion? Attempts to distill a function describing a random walk prove to be 

challenging. If a molecule starts out at point B(0) at time = 0 and ends at point B(t) at time t, we 

would at least expect a continuous path through space, and if plotted as a function of time, we 

do indeed observe a continuous function for B(t). Upon close inspection, however, the 

haphazard, random displacements that comprise a molecule’s swagger render its position as a 

function of time completely non-differentiable (Figure 2.2), meaning essentially that the 

molecule’s path defies a mathematical description without resorting to probability theory.    
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Figure 2.2 Illustration for three different simulations of displacement as a function of steps. 10000 steps 
were allowed for a molecule subject to Brownian motion, each case being equally probable yet highly 
variable. These are stochastic functions continuous over time but not differentiable. Adapted from [2]. 

While nothing definite can be said about the future path of a single molecule, we can talk about 

expected displacement for a large group of molecules undergoing random motion by employing 

a so-called probability density function (PDF), the most well-known being a “normal” or 

Gaussian distribution. Probability theory and the PDF are the mathematical substrates for 

modeling molecular diffusion and play a central role in diffusion tensor MRI (DTI).   

 To better understand the role of probability in diffusion, we can construct a simple, albeit 

idealized experiment. Consider a group of water molecules centered at an origin, with each 

molecule given the independent possibility of stepping either forward or backward along the x-

axis for each of 𝑛 steps. If we allow 4 steps, we then have (2)# possible combinations of steps 

and thus 16 different possible paths. Since many of these paths will yield the same net 

displacement, and since some paths are more likely than others, a distribution of net 

displacements is expected. For instance, for a molecule undergoing some random combination 

of 3 steps forward (𝐹) and 1 step back (𝐵), there prove to be 4 different ways to achieve this 



 12 

(𝐹𝐹𝐹𝐵, 𝐹𝐹𝐵𝐹, 𝐹𝐵𝐹𝐹, 𝐵𝐹𝐹𝐹), all resulting in the same net displacement of 2 steps to the right 

of the origin. If we examine the distribution for all possible combinations of displacements after 

𝑛 = 4 steps, we perform the following calculations utilizing the formula: 

         

 
(𝑛)⋯𝑛!

(𝑘)⋯𝑘! (𝑛 − 𝑘)!			𝑝$(1 − 𝑝)%&$ Equation 2.3 

 

where	𝑛	 = 	𝑡𝑜𝑡𝑎𝑙	#	𝑠𝑡𝑒𝑝𝑠 (or Bernoulli trials), 𝑘 = 	𝑠𝑡𝑒𝑝𝑠	𝑡𝑎𝑘𝑒𝑛, 𝑝 = 𝑞 = 	0.5, (i.e. the 

probability of 𝑝 (step forward) 0.5 and 𝑞 (step backwards) 0.5). 

#!
(!(#&()!

= 1	𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, 
#!

+!(#&+)!
= 4	𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 

#!
"!(#&")!

= 6	𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 

 

#!
+!(#&+)!

= 4	𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠,   
#!

(!(#&()!
= 1	𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

 

If we choose to look at this graphically, we can plot the findings as featured in Figure 2.3(A).  

Water molecules that have achieved the greatest net displacement (4 steps to the right or 4 

steps to the left) are in the great minority, simply because the probability for such an 

occurrence is much lower, 1 out of 16. Alternatively, there are 4/16 ways to end up 2 steps to 

the right, 4/16 ways to end up 2 steps to the left, and 6/16 (37% of water molecules) ways to 

end up where they started (this is known as zero-displacement probability in the parlance of q-

space and diffusion spectrum imaging, to be discussed in a later section). In general, we can 

summarize our experiment by arbitrarily assigning the probability of 𝑝 (step forward) 0.5 and 𝑞 

(step backwards) 0.5. It necessarily follows that 𝑝 + 𝑞	 = 	1 since there is certainty that either 

of these events will take place. Further, we can attempt to model the distribution of results for 

𝑛 steps by (𝑝 + 𝑞)%, which may look familiar as the basis for the binomial distribution. With 𝑛 
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sufficiently large, the binomial distribution approximates a normal distribution (Figure 2.3(B)). 

Instead of only 4 steps as in our example, imagine that 𝑛 = 50 steps are allowed for a random 

walk. We would expand the binomial distribution (𝑝 + 𝑞),( and calculate the coefficients and 

resultant terms. To avoid a quite laborious process, we can use Equation 2.3. To keep things 

simple, let us investigate the probability that a molecule could get 50 steps away from the 

origin. In this case,  𝑛 = 𝑘 = 50 and 𝑝 = 𝑞 = 0.5. We have: 

,(!
,(!(()!

=	 (0.5),( 	× 	(1 − 	0.5)(		or (0.5)50 with coefficient 1. 

Since we have 2,(   total possibilities, the overall probability is 1 divided by 2,(, which is an 

exceedingly small value. If 𝑛 is taken sufficiently large, our discrete binomial distribution will 

approach a continuous, normal distribution (Figure 2.3) featuring a mean displacement that is 

also reflected in Einstein’s equation.   

 

 
Figure 2.3 Illustrations of expected and observed displacement distribution arising from a water 
molecule undergoing two different number of independently random steps (forward or backward). A) 4 
steps played out 100 times. B) 50 steps played out 10000 times.  As more steps are allowed more 
molecules (larger proportion) finish farther from the origin. The sum of all proportions is of course 
necessarily equal to 1. Adapted from [2]. 
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With all other factors remaining equal, we envision diffusion as a sphere with radius equal to 

the mean displacement, enlarging with the square root of time (Figure 2.4). 

 

 
Figure 2.4 3-D Probability density function (PDF). In 3-dimensional space, displacements due to diffusion 
can take place in any random direction. For a collection of points, the PDF has the appearance of a 
spherical cloud with higher concentration near the center. Using the root mean squared displacement as 
the spherical cloud radius, an isoprobability surface on the sphere is created.  The PDF is isotropic when 
no barriers are present. The spherical cloud will grow with increased diffusion coefficient or increased 
time. This model is only appropriate when no physical hindrances are present (isotropic diffusion). For 
physiologic diffusion, displacement occurs along and between white matter tracts and comes across all 
kinds of barriers (anisotropic diffusion), leading to modeling difficulties as will be seen.  Adapted from 
[2] and courtesy of Thomas Gallagher, Aaron Field, and Andrew Alexander. 

 
2.3 What to measure with? – NMR then MRI 
 
2.3.1 The Phenomenon of Nuclear Magnetic Resonance 

In a series of momentous events that would open the door to mapping of diffusion coefficient 

estimates by way of MRI, the first great scientific leap was the pioneering experiments on 

nuclear magnetic resonance (NMR) by Felix Bloch and Edward Purcell in the mid 1940s [4]–[6]. 

The crucial moment came with the realization that the proton’s nuclear spin could be coupled 

to and manipulated with external magnetic fields. In their experiments, a macroscopic 

magnetization could be achieved from the collective contributions of individual nuclei magnetic 
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moments in a water sample polarized by a constant magnetic field. That is, when placed in the 

strong magnetic field, initially randomly oriented moments would align with the field’s 

direction, some parallel some anti-parallel to the field. The excess number of parallel moments 

would give rise to a macroscopic magnetization (Figure 2.5). One remarkable observation was 

the precessing of the magnetization around the magnetic field with a frequency, 𝜔(, that was 

specific to the constant field, 𝐵(, and to the proton species (e.g. Hydrogen) by way of its 

gyromagnetic ratio, 𝛾. The specific frequency, 𝜔(, is known as the Larmor frequency and 𝜔( =

𝛾𝐵( as the Larmor equation. 

 

 
Figure 2.5. A) Illustration of Individual magnetic moments in a nuclear sample, polarized by constant 
magnetic field B". B) Total magnetic moment (magnetization) resulting from excess parallel spins, 
denoted by vector 𝐌𝟎 precessing about an axis parallel to the direction of B", with frequency ω". 

Bloch reported that, once polarized, the macroscopic magnetization could subsequently be 

subjected to a pulsating field, 𝐵+, applied at right angles to the strong polarizing field. As the 

Larmor frequency approached that of the pulsating field (resonance), the magnetization would 

process around the constant magnetic field at decreasing latitudes (Figure 2.6(A,B)). This could 

B!

A) B)

B!

"!($, &, ')
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be interpreted as two events simultaneously occurring to the magnetization due to the applied 

external fields: precession about the strong static field, 𝐵(, and nutation about the pulsating 

orthogonal field, 𝐵+. Bloch’s report also showed that while the magnitude of the magnetization 

was very small (~3	𝑥	10&-	𝑔𝑎𝑢𝑠𝑠) and difficult to detect on its own, its transverse component 

precessing about the constant field produced a detectable voltage signal in a receiving detector 

coil near the sample. It became customary to describe the precession phenomenon in a 

rotating coordinate system with angular frequency -𝜔(, such that moving into this frame of 

reference makes the total magnetization 𝑴𝟎 appear stationary (Figure 2.6(C)).  

 

 
Figure 2.6. A, B) Illustration of net magnetization experiencing the combined processes of precession 
around the direction of B" at decreasing latitudes from the xy-plane, and nutation by pulsating radio 
frequency field B$, as observed from the laboratory frame of reference. C) Observed from a frame of 
reference rotating at -ω", the net magnetization appears to only experience nutation by B$. After 
removal of the pulsating field, a component of the net magnetization precesses with ω" about the z-axis 
on the equatorial plane defined by the x and y axes.  

 The behavior of the magnetization in the presence of the external magnetic fields and with 

respect to time is elegantly described by the Bloch equations, named after the Swiss-born 

American physicist and his pursuit for characterizing spin-magnetic field interactions. 

 

B!

A) B) C)
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2.3.2 Transverse signal time evolution 

Regarding the Bloch equations, of particular interest to our discussion is the solution to the 

time differential equation that describes the time evolution of the component of the 

magnetization precessing at right angles to the constant magnetic field, 𝑀/. This is the 

component of magnetization that gives rise to a voltage signal in a detector coil placed next to 

the sample, 

 

 𝑀/ = 𝑀(𝑒&01!2	𝑒
&	 24"		 Equation 2.4 

 

Equation 2.4 predicts that, following the removal of the pulsating field, the magnetization will 

continue to precess with 𝜔(	but its amplitude will decrease (relax) with a rate determined by a 

time constant 𝑇2, defined as the time when transverse magnetization has lost 63% of its 

original amplitude 𝑀(. T2 is an intrinsic property of materials (as is T1, the time constant 

describing the recovery rate of the main polarized magnetization known as longitudinal 

magnetization).  

 Transverse relaxation is related to local proton-proton (spin-spin) interactions as a result of 

progressively increasing local magnetic field inhomogeneity. That is, the physical principles 

underlying decay caused by T2 have to do with how easily energy is transferred between spins 

and how that transfer impacts their local magnetic environment. For example, in tissue the 

many protons sequestered in molecules of fat have a more efficacious transfer of energy and 

thus signal loss is quicker than for protons in water, resulting in a longer T2 for water than for 
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fat. T2 also depends on temperature, since temperature directly influences the frequency of 

molecular interaction.  

 

 

2.3.2 Signal attenuation by Diffusion in NMR 

The next great scientific leap in this account occurred when it was realized that diffusing spins 

added another source of decay in the magnitude of the transverse signal. Shortly after the 

publication of the Bloch and Purcell seminal papers, Erwin Hann made the observation in his 

famous spin-echo experiments in 1950 (described in the next section) that the amplitude of the 

transverse magnetization signal (echo) would decrease due to the random thermal motion of 

spins in the presence of magnetic field inhomogeneities [7].  

 Individual magnetic moments experience flips (phase changes) as time passes and the 

number of neighboring molecule interactions increase. These phase differences accumulate 

over time (phase accumulation or dephasing) leading to T2 relaxation and are exacerbated by 

Brownian motion of the spins. Random-position-fluctuating spins will undergo rapid changes in 

the field they experience, hence, changes in phase.  

 Much in the same way as the random walk description in the first section of this chapter 

(Figure 2.2), paths (or phase changes) traced by discrete, random spin-jumps of individual 

molecules would be impossible to predict, but the accumulated phase distribution of a spin 

ensemble can be described using a probabilistic approach. This key observation, initially made 

by Hann, was subsequently exploited by Carr and Purcell in relating transverse signal 

attenuation to a distribution of phase accumulation due to random, discrete spin 
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displacements, and led them to one of the first published measurements of the self-diffusion 

coefficient of water by way of NMR [8]. 

 

According to Carr and Purcell, for a large number	𝑚 of 	spins diffusing in one dimension, in the 

presence of a background gradient field 𝐺, and in a homogenous sample, their phase 

distribution after 𝑁 steps approaches a Gaussian probability distribution centered around its 

mean value – safely assumed according to the central limit theorem. With the mean phase 

change being zero, the probability of finding the  𝑖25 spin with accumulated phase, 𝜙, is  

 

 𝑃(𝜙) =
𝑒
&	 6"
"7(6#)"8

Z2𝜋 < (𝜙0)" >
 Equation 2.5 

 

For a time 𝜏9 between each step, and step size 𝑑, the average squared accumulated phase for 

the 𝑖25 spin at time 𝑡	was approximated as  

 

 < (𝜙0)" >	=
1
3𝐺

"𝛾"𝑑"
	𝑡:

𝜏9
 Equation 2.6 

 

Averaging over the ensemble according to 𝑃(𝜙), the decay of the magnetization due to the 

collective random spin walk is given by  

 

𝑀(𝑒
&	7(6#)
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Noting from Einstein’s diffusion equation that 

  

𝑑"

2𝜏9
= 𝐷 

 

the attenuation of the transverse signal as a function of diffusion and T2 is given by  

 

 𝑀/ = 𝑀(𝑒&	01!2	𝑒
&	 24"		𝑒&	A

+
:<

"="	2$BC			 Equation 2.7 

 

It is common to write this as  

 

 𝑀/ = 𝑀(𝑒&01!2	𝑒
& 2
4"	𝑒&DB			 Equation 2.8 

 

where  

 

 𝑏 =
1
3𝐺

"𝛾"	𝑡: Equation 2.9 

 

is the quantity describing the amount of diffusion weighting commonly referred to as the b-

value.   

A formal addendum to the Bloch equations was made by Torrey in order to account for 

diffusion (and coherent flow) at the foundation level of the theory [9]. The formalism became 
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known as the Bloch-Torrey equations. At the time, interestingly, diffusion effects were seen as 

artifactual and detrimental to NMR signals (echoes). Carr and Purcell in their seminal 

publication come to device a mechanism for mitigating the effects of diffusion. Nonetheless, 

the ensuing decade saw a number of reports beginning to use NMR deliberately as a tool for 

estimating self-diffusion coefficients.  

 

2.3.3 The Pulsed Gradient Spin-Echo Experiment 

It is here, in the timeline towards MRI-based diffusion mapping, that next came the work of 

Stejskal and Tanner. Their contribution in the form of magnetic field pulse and gradient 

sequences for intentionally making diffusion be the dominant source of decay in the NMR signal 

and relating it to molecular displacement has transcended across the decades. Their diffusion 

preparation design is still the most widely used basic unit in diffusion-based imaging sequences 

today (Figure 2.8, Figure 2.12).   

 

In 1965, Stejskal and Tanner unveiled their famous pulsed-gradient spin echo experiment for 

the direct measurement of diffusion with NMR [10]. Years earlier, Carr and Purcell had shown 

(based on initial observations by Hann) that dephasing effects due to inhomogeneities of the 

constant field could be reversed by application of a second oscillating field, following the pulse 

used to tip the longitudinal magnetization onto the transverse plane by 90 degrees. This field 

would be applied in a direction parallel to the transverse plane a short time after the first 

𝜋/2	pulse, flipping the direction of the angular dephasing magnetic moments by 180 degrees. 
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Some time TE after the reversal, the spins would come in phase briefly to form an echo (peak in 

the signal) and start dephasing again, see Figure 2.7. 

 

 
Figure 2.7. Illustration of spin-echo formation as observed from the rotating coordinate system. A) Net 
magnetization at equilibrium position at time t = 0. B) Application of an RF field B$orthogonal to B" 
leads to the magnetization vector rotation about B$. C) Application and removal of the 90° pulse leaves 
the net magnetization on the equatorial plane defined by the x and y axes precessing with ω". D) Non-
uniformities in the main magnetic field, B", lead to small differences in the individual moment Larmor 
frequencies, and fanning of the individual magnetic moments begins to occur as some moments get 
ahead and others fall behind in their precession. E) The RF field B$is applied a second time at time t =
τ	for a duration that is enough to rotate the magnetic moments by 180° such that at the end of the 
pulse they are still left to rotate about the z-axis on the equatorial plane. F) Following the 180° pulse, 
the individual moments continue to rotate with the same frequency they possessed before the pulse 
and retain their relative positions with one another. As a result, they begin to gather as time advances. 
G) At time t = 2τ a perfect regathering of the individual moments occurs and a maximum voltage is 
induced in the receive coil. This occurrence of maximum signal is referred to as ‘echo’. H) Fanning begins 
to occur again and the signal experiences decay.  

 
Stejskal and Tanner’s insight was to introduce a pair of large magnetic field gradients 

strategically placed in time such that they flanked the refocusing 180-degree pulse (Figure 2.8). 

! !
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The idea being that while the first pulse would purposely dephase all spins in the imaging 

volume, the second pulse would reverse this effect. For stationary spins, the effects of the 

second pulse cancel those of the first, i.e., phase coherence is reestablished during the second 

pulse and no diffusion-related signal loss results. However, moving spins that underwent a net 

displacement in the direction of the applied gradients would experience a slightly different 

magnetic environment during the second pulse because of their new position, and would 

accumulate phase shifts proportional to their displacement. This dephasing would result in 

exponential decay of MR signal proportional to both, the spin displacement as reflected by their 

diffusion coefficient, D, and the diffusion weighting, b-value. Equation 2.9 for the b-value can be 

modified to account for duration, d, and spacing of the diffusion gradients, D, to give 

 𝑏	 = 	 (g𝐺d)"	[D− (d/3)] Equation 2.10 

. 
 

 
Figure 2.8 Illustration of pulsed-gradient spin echo experiment for sensitization of NMR signal to 
molecular displacement due to thermal motion. A) sequence for measurement without diffusion 
weighting b=0. B) sequence for measurement with diffusion weighting specified by non-zero b-value.   

 

! !
"#ℎ% &'(": *+

∆
-- ..

./01'"2&

34
! !
"#ℎ% &'(": *+

5 %6 7"/% 2%2 − 7"/% 5
A) B)



 24 

Two measurements, then, conducted at two different b-values, permit the calculation of the 

diffusion coefficient of a material by way of NMR. Typically, one of the b-values is set to 0. Thus, 

from Equation 2.8 and in a frame of reference rotating with frequency -𝜔( so that the 

precession term 𝑒&01!2 cancels out, the signal 𝑆DE( at time 𝑡 = 𝑇𝐸 is 

 

𝑆DE( =	𝑆F	(𝑒()	(𝑒
&4G4" 	) 

 

 𝑆DE( =	𝑆F	(𝑒
&4G4" 	) Equation 2.11 

 

You will recognize that this is the equation for simple spin-spin T2 decay (Equation 2.4). For the 

second measurement with some non-zero diffusion weighting b1, we have:  

 

 𝑆D+ =	𝑆F	(𝑒–	D&B)	(𝑒
&4G4") Equation 2.12 

 

Simply dividing the diffusion weighted measurement by the b-zero measurement gives:  

 

 
𝑆D+
𝑆DE(

=	𝑒–	D&B Equation 2.13 

 

Here we see that all terms cancel except 𝑒–	D&B , which is a diffusion-weighted measurement 

(diffusion weighting given by b1) that is devoid of T2 effects. This is commonly known as the 
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“exponential” measurement (exponential image in MRI). Finding the diffusion coefficient is now 

a simple matter: 

 

 𝐷 = −
1
𝑏+
ln d

𝑆D+
𝑆DE(

e Equation 2.14 

 

 
2.3.4 From NMR to MRI 

The next important scientific feat in the path towards diffusion-weighted MRI came about in 

the 1970s when NMR crossed into the imaging realm. Chemist Paul Lauterbur published his 

groundbreaking manuscript titled “Image Formation by Induced Local Interactions: Examples 

Employing Nuclear Magnetic Resonance” in 1973 [11]. Lauterbur demonstrated that the spatial 

origin of NMR signals could be located by imposing a spatially varying magnetic field on a 

sample of precessing magnetic moments.   

 

When the only external field interacting with the spins in a sample is 𝐵( in the 𝑧 direction, all 

the spins precess with the same frequency 𝜔(. When excited with an additional external field 

𝐵+, tuned to the Larmor frequency, then left to precess, the spins do so with the same 

frequency 𝜔(. As they precess, the spins act as individual oscillators and become the sources of 

a radio frequency signal (at 𝜔() that can be recorded on a proximal detector coil. More 

importantly, the region of precessing spins represents a spatial distribution of magnetization 

with amplitude that can be described by a function 𝑚(𝑥, 𝑦, 𝑧). Lauterbur recognized that if it 
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were possible to measure the amplitude of magnetization at different spatial locations, a 

reconstruction of 𝑚(𝑥, 𝑦, 𝑧) could be produced. 

 It is not possible to excite and record the magnetization of each spatial location of the 

object. Instead, each point of the recorded signal comes from the entire sample at a specific 

point in time. As all spins precess with the same frequency, the individual signals all remain in 

phase, and the total time signal is a sum of constructive interreference at all time points. If the 

spins were to precess at different frequencies their individual signals would go in and out of 

phase creating a time interference pattern. That is, the total time signal would vary as 

individual signals add constructively and destructively at different points in time depending on 

their frequency. 

 From the Larmor equation, it is easy to see that imposing a field gradient that varies the 

field strength linearly with space would alter the frequency profile of the oscillating spins. For 

example, a gradient parallel to the 𝑥	𝑎𝑥𝑖𝑠, 𝐺, would give way to a spatially dependent 

frequency profile 𝜔(𝑥) = 	𝜔( + 𝛾𝐺𝑥. Therefore, a controlled linearly varying field introduces a 

controlled linear variation in frequency. Most importantly, if our object is a distribution defined 

in a 2-D space, 𝑚(𝑥, 𝑦), a linear gradient magnetic field along one dimension, say 𝑥, will define 

frequency bins parallel to the other direction (𝑦). The frequency of each bin being a function of 

their spatial location in 𝑥. The signal generated when the gradient 𝐺 is present after excitation, 

is composed from contributions of emitting oscillators over the range of frequencies defined by 

𝐺.  All of the spins within a frequency bin oscillate with the same frequency. Therefore, adding 

the individual magnetization amplitudes along a frequency bin, yields the amount of that 

frequency present in the recorded signal. Sums along bins (line integrals) spanning the width of 
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the distribution in the 𝑥 direction constitute a projection of the object in a direction parallel to 

the 𝑦 axis. 

 

Lauterbur demonstrated that a linear magnetic field gradient overlaid on a sample of excited 

spins produced a time signal whose Fourier transform yielded the frequency content in the 

signal. Each frequency component corresponding to the contributions of a spin-band at some 

𝑥	location. The frequency spectrum corresponded to the frequency per bin or the projection of 

the magnetization distribution in the direction of the applied gradient. A one-dimensional view, 

thus, could be formed since each 𝑥 coordinate was encoded as a temporal frequency in the 

signal. This gave rise to the method of imaging by projections (Figure 2.9), one of the two basic 

MR imaging methods; the other being Fourier encoding (described in the next section).  

 

For projection angle 0, projection of 𝑚(𝑥, 𝑦) along 𝑦 is given by the Fourier transform of the 

time signal 𝑠I(𝑡) when the gradient is applied in the 𝑥 direction. Projections at other angles can 

be obtained by applying gradients along different directions. It is important to note, that when 

rotating the direction of the gradient, the direction of the field remains in the 𝑧 direction. The 

filtered back projection method was well stablished by then in the reconstruction of x-ray 

computerized tomography (CT) images. Therefore, by acquiring a sufficient number of 

projections (views) via the excitation and reception of signals from different gradient directions, 

a reconstruction of 𝑚(𝑥, 𝑦) could be achieved through filtered back projection. 
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Figure 2.9. Historical figure of the method of imaging by projections. P. Lauterbur - “Image Formation by 
Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance”, 1973.  

 
Mathematically, ignoring the relaxation and diffusion terms in Equation 2.8, the signal from an 

oscillating spin at position (𝑥, 𝑦) can be written as  

 

𝑚(𝑥, 𝑦)𝑒&012 

 

which is a rotating vector of amplitude 𝑚(𝑥, 𝑦) and frequency 𝜔. If a gradient G in the 𝑥 

direction is present, the frequency 𝜔 is a function of the spatial coordinate 𝑥 as 𝜔(𝑥) = 	𝜔( +

𝛾𝐺𝑥. Integrating over the whole 𝑥𝑦-plane of excited spins the total recorded signal, 𝑠I(𝑡), can 

be expressed as  

 

 𝑠I(𝑡) = 	g g𝑚(𝑥, 𝑦)
J

𝑒&0(1!K=<L)2
L

𝑑𝑥𝑑𝑦 Equation 2.15 
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Again, if we assume a frame of reference that rotates with frequency -𝜔( so that the baseline 

precession frequency term 𝑒&01!2	cancels out, we can write the adjusted signal 𝑠(𝑡) as  

 

𝑠(𝑡) = 	 𝑒K01!2𝑠I(𝑡) 

 	

= 	g g𝑚(𝑥, 𝑦)
J

𝑒&0(=<L)2
L

𝑑𝑥𝑑𝑦 

 

We can then integrate the variable 𝑦 out by letting  

 

ℎ(𝑥) = g𝑚(𝑥, 𝑦)
J

𝑑𝑦 

 

which is the projection of 𝑚(𝑥, 𝑦) along 𝑦, so that 

 

𝑠(𝑡) = gℎ(𝑥)𝑒&0(=<L)2
L

𝑑𝑥 

 

Dividing and multiplying by a factor of 2𝜋 in the exponent, gives us 

 

 𝑠(𝑡) = gℎ(𝑥)𝑒&0"MA
=<
"M2C	L

L
𝑑𝑥 Equation 2.16 
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The integral on the right can be recognized as the Fourier transform of the projection ℎ(𝑥). 

Therefore, the inverse Fourier transform of the time signal 𝑠(𝑡) can be performed to recover 

the projection of 𝑚(𝑥, 𝑦) along 𝑦 as  

 

 ℎ(𝑥) = g𝑠(𝑡)𝑒0"MA
=<
"MLC	2

2
𝑑𝑡 Equation 2.17 

 

Although this result is specific for projection angle 𝜃 = 0, it can be generalized by defining 

gradients 𝑥 and 𝑦 in terms of the projection angle as  𝐺L = 𝐺𝑐𝑜𝑠𝜃  and 𝐺L = 𝐺𝑐𝑜𝑠𝜃. 

 

2.3.5 Fourier Space Imaging 

In the years after Lauterbur’s groundbreaking publication, works by Sir Peter Mansfield, Richard 

Ernst, and William Edelstein among others, laid the framework for a method that became 

known as Fourier imaging [12]–[14]. The premise of the method lies in the existence of a space 

in which the two-dimensional Fourier transform of the magnetization distribution resides. 

Obtaining sufficient measurements of the distribution in this space would allow to recover the 

spatial distribution by a simple inverse 2-D Fourier transform. The description below shows how 

the Fourier space is defined. 

 

It is clear from Equation 2.16, that the frequency amount that can be encoded in the time signal 

depends on the strength of 𝐺 and the time 𝑡 that 𝐺 is on. More explicitly, the extent which 

frequencies from thinner and thinner bins are visible in the Fourier-transformed projection 𝑠(𝑡) 
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is determined by how far the quantity k=<
"M
𝑡l moves from its baseline value of zero. It is possible 

for this quantity to take on negative values because the gradient G is with respect to the 

constant main field 𝐵(. In terms of frequencies, the spatially dependent frequencies are defined 

with respect to the central frequency 𝜔(, such that if at a certain 𝑥 coordinate the field is (𝐵( +

𝐺) then 𝜔(𝑥) = 	𝜔( + 𝛾𝐺𝑥. On the other hand, when at another 𝑥 coordinate the field is (𝐵( −

𝐺) then 𝜔(𝑥) = 	𝜔( − 𝛾𝐺𝑥. This peculiar characteristic permits for having a Fourier-

transformed-projection axis with negative values, an origin, and positive values.  

 Additionally, as gradients can be applied in arbitrary directions, it is possible to apply a 

gradient in the 𝑦 direction truly orthogonal to the gradient in the 𝑥 direction that we have been 

considering until now. Thus, two orthogonal gradients imposed on a plane of excited spins can 

be used to define a coordinate system on the sample in which spatial positions and frequencies 

are uniquely linked.  

 In fact, the projection reconstruction method implies the existence of such coordinate 

system. By applying a gradient oriented in a direction different from that of the 𝑥-axis, the 

resulting 1-D Fourier transform of the projection provides information along a radial slice of the 

2-D Fourier transform of the distribution 𝑚(𝑥, 𝑦) at the angle 𝜃. This is known as the central 

slice theorem. The radial slice is defined in a 2-D coordinate system where the horizontal axis is 

given by k=<(L)
"M

𝑡Ll and the vertical axis is given by k=<(J)
"M

𝑡Jl. 

 

The interference pattern (the recorded signal) resulting from the interaction of RF signals 

emitted from individual spins is the same whether it is observed as function of time or as 

function of phase. That is, moving through different phases of the signal is the same as moving 
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through different time points in the signal. One could turn on a gradient with constant strength 

𝐺 in the 𝑦 direction for a time 𝑡 and record the interference pattern over that time. 

Alternatively, one could vary the strength of the gradient 𝐺, play the gradient field for a 

predetermined time interval 𝑡J in order to achieve a certain phase, and generate points of the 

interference pattern as desired by simply varying the strength 𝐺. The former approach moves 

us in time, the latter one moves us in phase. 

 This effectively allows for constructing a coordinate system where the vertical axis is built 

one step at time as we vary the strength of 𝐺(𝑦) in k=<(J)
"M

𝑡Jl at each of 𝑁 steps, and the 

horizontal axis being set as typical by k=<(L)
"M

𝑡l, which is achieved by a constant gradient over 

time 𝑡.  

 For each step 𝑛 in the vertical direction, the amplitude distribution 𝑚(𝑥, 𝑦) is moved in 

phase as  

	

𝑚(𝑥, 𝑦)𝑒&0=<((,*)J2( = 𝑚(𝑥, 𝑦; 𝑛) 

 

At a given phase, once the required time interval 𝑡J has expired and 𝐺J is turned off, the 

amplitude distribution in this state is projected onto the horizontal axis by playing gradient 𝐺L 

over time 𝑡, thus, a time signal can be generated and recorded. 

 

The total signal in the rotating frame can be written as 
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 𝑠n𝑡; 𝑡Jo = 	g g𝑚(𝑥, 𝑦)
J

𝑒&0=<((,*)J2(𝑒&0=<,L2
L

𝑑𝑥𝑑𝑦 Equation 2.18 

 

For any give value of 𝐺J, the interval 𝑡J is set and 𝑡 is variable. As before, we can integrate the 

variable 𝑦 out by letting  

 

ℎ2((𝑥) = g𝑚(𝑥, 𝑦)
J

𝑒&0"M;
=<((,*)
"M 2(@	J𝑑𝑦 

 

which is nothing more than the projection of 𝑚(𝑥, 𝑦; 𝑛) along 𝑦. Then 

 

 𝑠n𝑡; 𝑡Jo = 	gℎ2((𝑥)𝑒
&0"MA=<,"M 2C	L

L
𝑑𝑥 Equation 2.19 

which tells us that at each step 𝑛 in the vertical axis, the recorded signal is the Fourier 

transform of the projection of the phase-moved amplitude distribution, 𝑚(𝑥, 𝑦; 𝑛).  

 When a sufficient number of projections is collected, a two-step inverse Fourier transform 

can be performed to recover 𝑚(𝑥, 𝑦). When the Fourier transform is performed in the 

horizontal direction, the time signals are transformed into projections, with each projection 

corresponding to a step in the vertical axis. A second Fourier transform on this vertical stack of 

projections, but performed along the vertical direction, yields back the distribution 𝑚(𝑥, 𝑦). See 

Figure 2.10. 
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Figure 2.10. Fourier imaging example. A) Object represented by distribution 𝑚(𝑥, 𝑦). B) For each n=30 
𝐺(&,()𝑡& configurations, a signal (or FID) of the resulting 𝑚(𝑥, 𝑦; 𝑛) is recorded. C) Fourier spectra of 

each of n=30 FIDs obtained by a Fourier transform of each FID along the 8*+!
,-
𝑡9	axis. This gives a 

projection of each of the 30 phase-moved 𝑚(𝑥, 𝑦; 𝑛). D) A second Fourier transform performed along 
the 8*+(#,%)

,-
𝑡&9	axis recovers the object 𝑚(𝑥, 𝑦). 

 
2.3.6 Rapid Imaging with EPI 

In the basic 2-D FT imaging sequence, a single line of Fourier space is read out after each 

excitation. The interval between readouts also known as repetition time, TR, is long. In the early 

days of MRI, the time in acquiring a single slice made of 𝑁J lines (TR ∙ 𝑁J) was on the order of 

several minutes. This imposed a great limitation in the ability to image dynamic processes (e.g. 

diffusion) in biological organisms, as well as in dealing with motion effects. 

A) Object B) Raw data

C) ProjectionsD) FT-1 along !"($)
2' !$
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 In the decade spanning years 1977 through 1987, Sir Peter Mansfield helped to establish a 

technique that became known as echo-planar imaging (EPI) [15]–[17]. This scheme did not 

require multiple excitations before a number of readouts could be recorded, reducing the time 

to acquire an entire slice from minutes to tens of milliseconds. 

 With echo-planar imaging, after a single RF excitation, the data necessary to reconstruct an 

image of reasonable quality can be collected using a train of echoes with a short step in the 

vertical Fourier space direction between each echo. Coverage of Fourier space is performed in a 

raster trajectory collecting multiple readout lines per excitation (Figure 2.11).  

 

 
Figure 2.11. Echoplanar gradient waveforms and Fourier-space trajectory. Time-varying gradient 
waveforms (left panel) that enable coverage of an entire Fourier space plane (right panel) after a single 
RF excitation.  

2.3.7 The last stretch: diffusion NRM to diffusion MRI 

The beginning of diffusion coefficient mapping with MRI was occurring in parallel with the rapid 

evolution experienced in the field in the decades of 1970 and 1980. Taylor and Bushell reported 

!!

!"

)#!(%
2' ("

)#!()
2' (!
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in 1985 the first MRI image weighted by molecular diffusion in a hen’s egg [18]. In 1986, Denis 

LeBihan reported the first brain MRI images weighted by diffusion of healthy human brains as 

well as brains with cancer tumors using a whole-body scanner. His report included some of the 

first brain maps of diffusion coefficients [19]. 

 But it was the advent of echo-planar imaging that fully opened the door to the beginning of 

diffusion mapping with MRI as we know it, because it provided a mechanism to cope with 

motion in living organisms. A typical diffusion-weighted MRI sequence today (Figure 2.12) 

consists of a pulsed gradient T2 spin echo acquisition with a single shot echo planar readout 

(SS-EPI).  

 
 

 
Figure 2.12 Diagram of a traditional diffusion-weighted EPI sequence. The 180-degree inversion pulse is 
sandwiched by two large diffusion encoding gradients. The quantity known as the b-value is composed 
by the strength, duration, and spacing of the diffusion encoding gradients. Alternating read-out 
gradients between phase-encoding blips rapidly fill Fourier space. Adapted from [2] and courtesy of 
Thomas Gallagher, Aaron Field, and Andrew Alexander. 
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The transition of the theory from diffusion NRM into diffusion MRI with the PGSE-SS-EPI 

sequence is a seamless affair. The measurements 𝑆D+  and 𝑆DE( in Equation 2.14 can be acquired 

as images. A map of diffusion coefficients (or apparent diffusion coefficients as described next) 

of the human brain can be achieved using Equation 2.14 as described in Figure 2.13.  

 

In the laboratory, the diffusion coefficient for pure water without any hindrances (isotropic 

diffusion) at 20°C is 2 x 10-3 mm2/s while at body temperature of 37°C it is 3 x 10-3 mm2/s. 

(Chapter 6 provides a more detailed description of the temperature dependence of 𝐷). In the 

brain, diffusion coefficients are variable and generally less than 3 x 10 -3 mm2/s [20]. This is a 

direct consequence of natural barriers, such as myelinated axons, which are most relevant to 

DTI (9-13). Other barriers become evident when water is partially “trapped” within or between 

cells, which may be swollen or more densely packed than normal, such as occurs in the setting 

of cytotoxic edema and hypercellular tumors, respectively. Moreover, any incoherent molecular 

motions (i.e., motion that appears to be random on a spatial scale corresponding to an imaging 

voxel), such as motion related to active transport or flow phenomena, may result in molecular 

displacements that manifest as “pseudodiffusion” on DWI. For these reasons, the term 

apparent diffusion coefficient (ADC) was introduced to distinguish the coefficient that we 

measure in tissue from Einstein’s “self” diffusion coefficient for free media. In parts of this work 

𝐷 will continue to be used for simplicity with the understanding that it is indeed only apparent.  
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Figure 2.13 Apparent diffusion coefficient map calculation. The initial b0 image cancels T2 effects by 
using it to divide the diffusion weighted image. The natural logarithm of the exponential image divided 
by the b0 image, multiplied by the inverse of the diffusion weighting b, gives the apparent diffusion 
coefficient, ADC. Adapted from [2] and courtesy of Thomas Gallagher, Aaron Field, and Andrew 
Alexander. 

This concludes what has been, by a long shot, a vastly under-sampled account of the rise of 

diffusion imaging with NMR and MRI in this section. The full account is not only rich in detail 

but comes with drama and failures and it is a fascinating one. In this brief account, important 

characters have been left out which include Callaghan who developed an elegant theory of MRI 

microscopy and Rabi who had first observed the MR phenomenon in a beam of particles in the 

1930s. Details that have been left out include those about the great innovations in engineering, 

physics, and computer science as well as other imaging feats such as slice selective excitation 

that were necessary for the field to evolve into the complexity that it possesses today. All which 
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allows the type of quality that is required for imaging properties of the insides of living 

organisms. Entire books have been dedicated to telling the story of MRI and diffusion MRI from 

the beginning to the present. This chapter section only aimed to present some of the relevant 

background for better understanding the work that was conducted and presented in the 

remaining chapters. 

 
2.4 ANISOTROPIC DIFFUSION  

In the early 1990s, it was reported that the value of the apparent diffusion coefficient depends 

on the direction of the applied diffusion encoding gradient [21], [22]. This suggested that the 

organization of the underlying tissues, namely white matter, influenced the observed diffusion 

profile in a manner that depends on the “perspective of the observer.” Among the many 

candidate sources of this diffusion anisotropy, including intracellular cytoskeletal elements, 

axonal membranes, myelin sheaths, and active transport mechanisms, it was determined that 

intact axonal cell membranes serve as the major basis for anisotropy in the central nervous 

system[23]–[26], which can be further influenced by the presence or absence of myelin. Myelin, 

however, does not appear to be the principal determinant of anisotropy [25]. 

 

In a DWI acquisition, the diffusion-encoding gradients can be applied in just one direction at a 

time (though a recent category of acquisition schemes allows for diffusion-encoding along 

multiple directions simultaneously, this is discussed at the end of this chapter), resulting in a 

single diffusion-weighted image of the brain along with an ADC map reflecting the magnitude of 

diffusion in the direction of the applied gradients. Suppose we obtain a diffusion-weighted 

image and associated ADC map of the brain with the diffusion-encoding gradients applied 
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roughly parallel to the 𝑥- (left-right) axis. These images will demonstrate relatively less diffusion 

in the posterior limbs of the internal capsules, where the corticospinal tracts course roughly 

perpendicular to the direction of the applied gradients. If we instead apply the diffusion-

encoding gradients along the 𝑧- (craniocaudal) axis, the optic radiations, corpus callosum, and 

other white matter tracts coursing in the axial plane, rather than the corticospinal tracts, will 

now appear to have relatively less diffusion. Considering that white matter tracts run in 

essentially all directions and that these directions are arbitrary with respect to the scanner 

geometry, acquiring a simple, unidirectional diffusion-weighted image would be a highly 

unpredictable affair and may yield an image that is difficult to interpret. This phenomenon, 

whereby normal physio-anatomical diffusion anisotropy interacts unpredictably with the image 

acquisition parameters, is the diffusion-imaging equivalent of the radiologist’s adage, “one view 

is no view.” In order to ameliorate these anisotropic effects, clinical DWI typically consists of 

three acquisitions, each with the diffusion gradients applied in a direction orthogonal to the 

other two. The mean of these images becomes the final diffusion-weighted image we view 

clinically. The respective apparent diffusion coefficients are also averaged to yield the final ADC 

map. (This averaged ADC is sometimes called the trace for reasons that will be explained in the 

following section.)  

 
2.5 DIFFUSION TENSOR IMAGING (DTI) 

2.5.1 Tensors 

Diffusion tensor MR imaging extrapolates on the same basic principles of conventional DWI, 

however the ultimate goal is rather different. As explained in the previous section, conventional 

DWI involves the averaging of three image sets obtained with mutually orthogonal diffusion-
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encoding directions, in order to rid the final image of physio-anatomical anisotropic effects. In 

contrast, diffusion tensor imaging (DTI) was designed to depict and quantify those effects, the 

ultimate goal being a more complete characterization of the 3-dimensional diffusion profile, 

voxel by voxel. This procedure was first described by Basser et al. [27].   

 

If challenged to arrange weights around a tire so that it would rotate smoothly around a central 

axis, you would not clump all of them closely together before giving it a spin. The tire would 

wobble incessantly, much like the way an uneven load in a washing machine may cause it to 

shimmy across the floor. Intuition tells us to arrange the points of mass symmetrically around a 

central axis to preserve smooth rotation. Each point of mass in a rotating system, depending on 

its radius from the center of rotation, has angular momentum and a moment of inertia, which 

contributes to the overall motion of the object in question. In three dimensions, we can 

summarize all of these contributions with a tensor.  

 Essentially, a tensor is an array or matrix of numbers used to describe a quantity that is too 

complex to be represented by a single number (a scalar) or even a list of numbers (a vector). 

Quantities whose values change according to direction in three-dimensional (3-D) space, such 

as mechanical stress or moment of inertia—or diffusion—are some common examples of 

tensor quantities.   

 For the inertia tensor, which is a square, 3x3 matrix, each entry corresponds to the 

moment of inertia in a different direction within the x, y, and z coordinate axes (entries Ixx, Ixy, 

Ixz, etc). If we gave the whole coordinate axis a random spin, depending on the distribution of 

mass, the preferred axis of rotation of the system may not agree with the one you have 
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provided, and the system may become unstable. In order to predict a smooth axis of rotation, 

we can perform a series of mathematical operations on a tensor that will provide us with its 

eigenvalues and eigenvectors. The prefix eigen is a German term indicating “self” or 

“characteristic” and in the mathematical context of “eigenvalue,” it refers to the “self-defining” 

or “characteristic” values of a tensor.  

 Even a seemingly chaotic system, once captured by a tensor, may have a hidden, 

underlying structure or central organization that may allow us to predict where it is headed or 

how it will behave. To identify this underlying structure, we find its eigenvalues (l1, l2, l3) and 

eigenvectors (e1, e2, e3). Eigenvectors have direction, with magnitude conferred by their 

corresponding eigenvalues. Matrix diagonalization is a mathematical process that removes the 

off-diagonal entries in a matrix, leaving the eigenvalues along the main diagonal. An 

eigenvector column matrix, E, and its matrix transpose, ET, flank the newly diagonalized matrix 

(Figure 2.14).  
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Figure 2.14 Example illustrating a simple linear transformation in 2-D space. The “stretch” 2 x 2 matrix is 
diagonalized to start with, leaving the eigenvalues (2 and 1) in plain sight along the main diagonal. E (the 
eigen vector matrix) and its transpose (ET) flak the “stretch” matrix. The dominant (principal) direction of 
the “streching” is indicated by the fact that e1 is twice the magnitude (larger eigenvalue l1) of e2. 
Adapted from [2] and courtesy of Thomas Gallagher, Aaron Field, and Andrew Alexander. 

Eigenvalues and eigenvectors represent the principal magnitudes and axes of a system, 

respectively. Essentially, by incrementally adjusting weights around a tire so that it rotates 

smoothly around its central axis, we are "removing” off-diagonal elements from the matrix 

governing the angular momentum of the tire (Figure 2.15).  

 

By themselves, a set of diffusion coefficients may not immediately suggest what is happening at 

the microstructural scale. It is here where balancing a tire and imaging white matter tracts in 

the brain overlap, since the same basic principles of tensor theory apply. Each voxel in the brain 
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can be envisioned as a small system of water molecules diffusing in directions that are 

referenced to the x, y, and z axes of the scanner bore. Examining this phenomenon with 

directionally specific diffusion gradients, we obtain a set of directionally specific diffusion 

coefficients that reflect the microstructural orientation of the underlying tissue. These diffusion 

coefficients can then be entered into a tensor, the 3 x 3 diffusion tensor matrix, D. Similar to a 

rotating body with an arbitrary distribution of mass for which we might wish to determine the 

“preferred” axis of rotation, a system of diffusing water molecules constrained by axonal 

membranes has a “preferred” direction that reflects the underlying organization of the tissues. 

Just as the “preferred” axis of a wobbling tire differs from that of the axle, the principal axis of 

diffusion in a voxel is generally arbitrary, and thus unpredictable with respect to the x, y, z 

coordinate system of the MRI scanner [28]. 

 

 
Figure 2.15 Similarities between DTI and the balancing of a tire. The distribution of mass in a rotating 
body such as a tire is summarized by the inertia tensor I. Generating the eigenvalues and eigenvectors of 
a matrix by diagonalization removes off-diagonal terms. A tire will wobble as it rotates about a fixed 
axle (principal Eigenvector e1) if the mass is unequally distributed. Weights can be added or rearranged 
in order to adjust the inertia tensor, essentially aligning the principal axis of rotation the fixed axle. 
Adapted from [2] and courtesy of Thomas Gallagher, Aaron Field, and Andrew Alexander. 
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Diagonalizing the diffusion tensor matrix reveals the eigenvalues and eigenvectors that relate 

the voxel-specific magnitudes and directions of the three-dimensional diffusion “profile” (i.e., 

the probability density function previously defined) to the scanner coordinate system (Figure 

2.16). The largest eigenvalue (denoted l1) and corresponding eigenvector e1 represent the 

principal magnitude and axis of diffusion for that voxel, respectively. The diffusion tensor matrix 

is symmetric about the main diagonal because diffusion in the “positive” and “negative” 

directions along a given axis is indistinguishable. Therefore, while 9 possible entries are 

available for the 3 x 3 matrix, some are redundant and only 6 values are ultimately necessary to 

model diffusion in 3 dimensions. For example, measuring D in the xày direction will result in 

the same D as that in the yàx direction, thus Dxy = Dyx, and similarly Dyz = Dzy and Dxz = Dzx.  

 

 
Figure 2.16 Estimating the principle axes of diffusion in a voxel. Estimations of the Eigenvalues and 
Eigenvectors of the diffusion tensor can be used to show the principle axes of diffusion in a voxel, which 
is influenced by underlying structural components (e.g. myelinated axons). Adapted from [2] and 
courtesy of Andrew Alexander. 

Assuming Gaussian diffusion, the eigenvalues and eigenvectors of the diffusion tensor define 

the shape and orientation of an ellipsoid (or sphere in the case of isotropic diffusion), our 3-D 

probability density function (Figure 2.17). We start with 
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 𝑥"

𝑎 	+
𝑦"

𝑏 	+
𝑧"

𝑐 	= 	1 Equation 2.20 

 

which is familiar as the equation for an ordinary ellipsoid with parameters a, b, and c 

representing the respective radii in three orthogonal directions. If we modify this relationship 

with diffusion coefficients from the Einstein diffusion equation (Equation 2.1), we have: 

 

 
𝑥"

Z𝐷L	6	∆𝑡
	+

𝑦"

Z𝐷J	6∆𝑡
		+

𝑧"

Z𝐷N6∆𝑡
	= 	1 Equation 2.21 

 

To define this relationship for each voxel in the brain, we substitute the corresponding 

eigenvalues of the diffusion tensor matrix (l1, l2, l3)  for Dx , Dy , and Dz : 

 

 
𝑥"

Z𝜆+	6	∆𝑡
	+

𝑦"

Z𝜆"	6∆𝑡
		+

𝑧"

Z𝜆:6∆𝑡
	= 	1 Equation 2.22 

 

This can be simplified as:  

 

𝑥"

Zl+
	+

𝑦"

Zl"
	+

𝑧"

Zl:
	= √	6∆𝑡 	= 	constant	for	a	given	∆𝑡 

 

As a check on the math, consider the case of isotropic (Gaussian) diffusion in three dimensions, 

which, as we have seen earlier, should produce a sphere of radius √𝐷6∆𝑡. Then we have D = l1 
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= l2 = l3 which, when inserted into the ellipsoid relationship, reduces to x2 + y2 + z2 = √𝐷6∆𝑡, as 

expected.  

 
 

 
Figure 2.17 Filling a diffusion tensor.  S= signal, D = diffusion coefficient, E = eigenvector matrix, ET = 
transpose of the eigenvector matrix, e = eigenvector, l = eigenvalue. Adapted from [2] and courtesy of 
Thomas Gallagher, Aaron Field, and Andrew Alexander. 

 
The orientation of the ellipsoid in three dimensions is dictated by the principal eigenvector e1. It 

has been shown that for a voxel containing a single, dominant population of linearly oriented 

axonal fiber bundles, e1 corresponds to the orientation of those bundles [27] (Figure 2.18).  
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Figure 2.18 Generating diffusion tensor ellipsoids. The diffusion tensor matrix is filled with diffusion 
coefficients and diagonalized to get Eigenvalues and Eigenvectors. If the probability density function 
(PDF) is assumed to be a Gaussian, the equation for an ellipsoid can be applied using the respective 
Eigenvalues as diameters along the principal axes. The ellipsoid is then oriented in the direction dictated 
by the principal eigenvector, e1, for each voxel in the brain. A simplified rendering of the brain 
illustrating the cingulum (blue and green ellipsoids), corpus callosum (red), fornix (green), and brainstem 
(blue) serves as a basic example of a directionally encoded ellipsoid map. Adapted from [2] and courtesy 
of Thomas Gallagher, Aaron Field, and Andrew Alexander. 

 

Recall that in three dimensions, whether for angular momentum or diffusion, a 3 x 3 tensor 

requires a minimum of 6 measurements to be fully specified (since the matrix is symmetric 

about the main diagonal, some entries are redundant by definition, as discussed previously). 

The diffusion tensor matrix D can thus be determined by a set of 6 diffusion coefficients, 

acquired through the application of diffusion-encoding gradients in 6 different directions. Our 
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equation for exponential signal decay can now be reintroduced after a vector treatment of its 

terms reflecting directional specificity [29]–[31]:  

 

 
𝑆0O
𝑆DEF

= 𝑒&∑ 	#-,,(,. ∑ D#/B#//-,,(,.  Equation 2.23 

 

 bij = (gGijd)2 [D-(d/3)] Equation 2.24 

 

 

Diffusion coefficients can then be obtained for Dxx, Dyy, Dzz, Dxy, Dxz, Dyz relative to the MR 

scanner x, y, z orthogonal frame of reference. The diffusion tensor can be filled accordingly and 

diagonalized to find its eigenvalues and eigenvectors. 

 

2.5.2 Common Artifacts 

As fast SS-EPI scans are typically utilized in DTI, the same artifacts and technical limitations that 

frequently plague these acquisitions should be sought out and recognized in the final DTI 

images. Susceptibility artifacts near the skull base and in areas of hemosiderin deposition, such 

as in the setting of a cavernoma, can distort the local magnetic field and fail to return reliable 

results in these areas. Rapidly changing gradients may introduce eddy currents and image 

distortions that can be reduced with the application of bipolar gradients [32], [33]. As will be 

discussed in a later section, in-plane parallel imaging techniques can help accelerate the echo 

train acquisition time and reduce several EPI distortions.  
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 Correction of patient motion is also critical for high quality DTI.  An important strategy for 

reducing the impact of motion is to shorten the total scan time. While the use of in-plane 

parallel imaging reduces the total number of phase encoding steps, the diffusion encoding time 

blocks remain unaffected. Thus, total scan time remains lengthy. A real impact in the reduction 

of total scan time is possible by the implementation of a method known as simultaneous multi-

slice acquisition [34], through the simultaneous excitation, diffusion contrast encoding, and 

readout of multiple slices with a single diffusion-encoding block. This will also be described in 

more detail in a later section.  

 Cardiac pulsation can also lead to motion artifacts in DW images.  Cardiac gating can 

significantly reduce these artifacts although it is not commonly performed. An optimum DTI 

acquisition would benefit from cardiac gating, as the gain in signal to noise appears to outweigh 

the extra scanning time and preparation [32], leading to overall increased confidence in the 

calculation of tensor components, principal eigenvector, and DTI metrics such as FA.  

 

2.5.3 Number of Diffusion-Encoding Directions 

In an idealized environment featuring perfectly Gaussian diffusion and no noise effects, 6 non-

colinear diffusion-encoding directions would be sufficient to accurately characterize the 

diffusion profile in three dimensions. In reality, image noise is a significant hurdle in DTI [35], 

and the actual diffusion profile is not truly Gaussian, such that the tensor model is merely an 

estimate that can be improved by increasing the number of directions sampled. When more 

than 6 directions are sampled, these measurements are essentially “averaged” (through 
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multiple linear least squares methods or nonlinear modeling) in order to reduce them to the 6 

required entries in the diffusion tensor matrix.  

 

 The optimal number of unique encoding directions for fitting the tensor model is generally 

regarded to be in the range of 20-30 and uniformly oriented around a sphere [32], [36], [37]. 

There does not appear to be a significant advantage to sampling greater than 30 directions for 

the tensor model (although more directions are required for more sophisticated modeling, 

discussed in a later section).  

 

2.5.4 Ratio of b=0 Images to Diffusion-Weighted Images 

Recall that a reference b=0 image without diffusion weighting is always required to solve the 

exponential equation for the diffusion coefficient. For conventional DWI, where just 3 diffusion-

weighted images are acquired and averaged, one reference image is sufficient. However, 

multiple b=0 images are often recommended for DTI acquisitions featuring higher numbers of 

encoding directions, because noise or other errors in the reference image will impact many 

more calculations in this setting. A “rule of thumb” states that 1 b0 image should be obtained 

for every 5 encoding directions [32].  

 

2.5.5 Signal to Noise Ratio 

Besides spatial accuracy, an important measure of image quality is the signal to noise ratio 

(SNR). Reliable estimation of the diffusion tensors depends on sufficient SNR, therefore, the 

factors that affect this metric should be considered before a diffusion imaging experiment is 
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performed. Main factors include the imaging hardware (main static magnetic field and receive 

coils), the voxel size, the sampling time, the number of averages, parallel imaging, and 

fluctuations in the signal due to relaxation effects and amount of diffusion weighting. 

 The starting magnitude of the longitudinal magnetization in the imaged sample is 

proportional to the strength of the main magnetic field. This means that the overall signal 

grows with larger magnetic fields. However, challenges related to using larger main magnetic 

fields such inhomogeneities in the radiofrequency field (used for the exciting the magnetization 

in the sample) will have an impact on SNR and must be considered as well. Other complications 

arising from use of higher main fields such as worsening of geometric distortion and increased 

power deposition from the radio frequency fields can potentially outweigh the SNR benefits. 

The signal also increases with the number of receive coils. However, the gains are differential in 

distance with more significant increments occurring near the coil. 

 The volume of a voxel is proportional to the number of water molecules that contribute to 

the magnitude of magnetization for that voxel. Larger voxels then translate to larger SNR. For 

perspective, decreasing the voxel size by one half results in an eight-fold SNR reduction. The 

sampling time, also known as the ‘dwell time’, is the time spent collecting a single point in 

Fourier space. Longer sampling time means an increment in SNR because the noise in the signal 

for a particular Fourier space point decreases with the square root of the dwell time. This is 

because the recorded signal point is really an average of the signal over a number of time units. 

However, larger sampling time also increases the readout time which worsens the distortions 

from main magnetic field inhomogeneities. The inverse of the sampling time is referred to as 

the bandwidth. 
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 Averaging across repeats of the same acquisition also decreases the noise as the square 

root of the number of averages, leading to improved SNR. For example, to recover the SNR 

penalty from halving the voxel size (eight-fold decrease) would require 64 repeats, provided 

other factors remain unchanged. In-plane or 2-D parallel imaging generally implies a decrease 

in SNR from collecting fewer lines of Fourier space. In SS-EPI-based diffusion imaging, however, 

acceleration also shortens the echo time, which reduces signal decay due to T2 relaxation. 

Spatial accuracy (i.e. less geometric distortion) is improved using 2-D accelerated acquisitions 

by shortening the time that it takes to cover a plane of Fourier space. 

 Other sources of signal decay will also affect the SNR. In general, all diffusion- weighted 

images will have some level of T2 signal decay. This can be reduced by using shorter echo times, 

but shorter echo times in turn need support from stronger diffusion gradients for achieving 

sufficient diffusion contrast. Recovery of the longitudinal signal before it is tipped back down 

also affects the overall magnitude of magnetization. This is affected by the T1 recovery rate, 

which in turn depends on the repetition time or TR. Of course, the signal magnitude is 

decreased with diffusion weighting. However, varying amounts of diffusion weighting will lead 

to different SNR levels. Higher b-values will induce larger decay in the signal and the overall SNR 

will be lower. 

 

2.6 RENDERING DTI DATA 

The eigenvalues of the diffusion tensor provide us not only with a mechanism to sculpt 

diffusion ellipsoids, but also serve as the raw materials for several useful scalar measures 



 54 

including trace, fractional anisotropy, and longitudinal and transverse diffusivity, as detailed in 

the sections that follow.  

2.7.1 Spherical, Oblate, Prolate Tensors and DTI “Data Mining” 

Depending on the relative magnitudes of the 3 eigenvalues, 3 dominant ellipsoid shapes can be 

produced. By convention, eigenvalues are numbered 1 (largest) through 3 (smallest). Isotropic 

diffusion implies that all 3 eigenvalues are equal l1 = l2 = l3 and the result is a spherical tensor. 

Diffusion primarily constrained to a plane may have two large diffusion coefficients and a 

smaller third (i.e. l1 = l2 >> l3). The result is a “disc-shaped” or oblate tensor. Similarly, if 

diffusion is primarily constrained along a single axis (l1 >> l2 = l3), this   results in a “cigar-

shaped” or prolate tensor (Figure 2.19).  

 

 
Figure 2.19 The three dominant shapes of diffusion tensor ellipsoids. Adapted from [2] and courtesy of 
Thomas Gallagher, Aaron Field, and Andrew Alexander. 

 
Westin et al. developed scalar indices to quantify the shape of the ellipsoid with regard to its 

sphericity Cs, linearity Cl (prolateness), and planarity Cp (oblateness) [38]: 

 𝐶9 	= 	
3l:

l+ 	+ 	l" 	+ 	l:
 Equation 2.25 
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 𝐶Q 	=
l+ −	l"

l+ 	+ 	l" 	+ 	l:
 Equation 2.26 

 

 𝐶R =
2(l" −	l:)

l+ 	+ 	l" 	+ 	l:
 Equation 2.27 

 

with 𝐶9 	+ 	𝐶Q 	+ 	𝐶R 	= 	1. An anisotropy index, 𝐶S  , can be obtained by taking 1 −	𝐶9  , which 

gives a numerical value indicating how different a tensor is from the spherical state.  

To aid in visualizing DTI data clinically, ellipsoids are often color-coded green, red, and blue for 

anterior-posterior, right-left, and superior-inferior, respectively, with intermediate color hues 

used for fiber tracts oriented in various directions between these axes (Figure 2.23) [39]. 

 

2.6.2 Trace  

Trace (Tr) is the sum of the diagonal elements in a square matrix, which also happens to equal 

the sum of its eigenvalues, an invariant property of a square matrix. Trace is an estimation of 

directionally averaged diffusivity in a voxel. Mean diffusivity is taken as the trace of the 

diffusion tensor divided by 3, or the average of its three eigenvalues (Tr/3). This value is 

equivalent to the averaged ADC for three orthogonal directions as acquired for conventional 

(non-tensor) diffusion weighted imaging.  

2.6.3 Fractional Anisotropy  

Relative anisotropy (RA) and fractional anisotropy (FA) are common scalar quantities derived 

from the three diffusion tensor eigenvalues [40]. These are essentially measures of the degree 
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to which the tensor ellipsoid shape deviates from spherical. They provide a quantitative answer 

to the question, “How different are the eigenvalues of the diffusion tensor from each other?” 

FA is the most widely used value and is defined such that it ranges from zero (isotropic) to one 

(maximum anisotropy). Regions of decreased FA in white matter imply decreased directional 

coherence, and have been studied as a proxy for microstructural changes otherwise occult on 

conventional MR imaging. Note that FA is mathematically non-specific because it does not 

equate to tensor shape (i.e., multiple tensor shapes, both prolate and oblate, can have the 

same FA). It should be emphasized that areas of reduced FA do not necessarily imply pathology, 

as crossing fibers within a voxel may result in low FA despite a highly intricate intersection of 

intact fibers. Further, in the setting of true pathology, reductions in FA should be considered 

pathologically nonspecific as part of the final common pathway of many different disorders 

(Figure 2.20). The derivation of FA and other scalar metrics are shown in Figure 2.22.  

 

 
Figure 2.20 Areas of reduced FA are pathologically nonspecific. Reduction in fractional anisotropy is 
common to several different pathologic states. Adapted from [2] and courtesy of Aaron Field. 
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2.6.4 Longitudinal and Transverse Diffusivity 

Longitudinal or axial diffusivity is typically assumed to be represented by the major (largest) 

eigenvalue, l1, while transverse or radial diffusivity is often estimated by taking the mean of 

the medium and minor eigenvalues, l2 and l3. It is important to remember, however, that 

these assumptions presume a prolate tensor; i.e., a single, dominant, unidirectional population 

of fiber bundles in a voxel. The meaning of “longitudinal” and “transverse” is an entirely 

different matter for non-prolate tensors. As shown in Figure 2.21, there are many voxels in the 

brain where the tensors are non-prolate.   

 

 
Figure 2.21 Prolate (left) and oblate (right) distributions in the brain. Quantitative DTI metrics such as 
longitudinal and transverse diffusivity are only appropriate in areas of the brain populated by prolate 
tensors implying strong direction coherence. This is clear in the axial image on the left, where the corpus 
callosum is very bright. Inherently non-prolate distributions in the brain do not afford a clearly dominant 
eigenvector/eigenvalue for which longitudinal and transverse diffusivity can have meaning. The image 
on the right emphasizes nonprolate distributions in the brain, demonstrating brighter areas now in the 
subcortical regions with darker appearance of the corpus callosum. Adapted from [2] and courtesy of 
Andrew Alexander. 
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Figure 2.22. Scalar indices derived from diffusion tensor eigenvalues. The  transverse diffusivity only is 
valid in voxes of the brain with prolate tensors. Adapted from [2] and courtesy of Thomas Gallagher, 
Aaron Field, and Andrew Alexander. 
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Figure 2.23 FA maps axial views, gray scale (left) and directionally encoded (right). In the gray-scale FA 
map voxel brightness correlates directly with fractional anisotropy (FA). In the directionally encoded 
color FA map the major eigenvector information is also contained in each voxel. The major white matter 
tracts can usually be resolved by their distinctive orientations which, by convention, are color coded 
green (anterior-posterior) red (right-left) and blue (superior-inferior). Changes in direction are assigned 
intermediate hues, evident in the splenium of the corpus callosum (arrows) as it extends from midline 
(red) arching posterolaterally (orange à yellow à green). Adapted from [2] and courtesy of Thomas 
Gallagher, Aaron Field, and Andrew Alexander. 

 
2.7 BASICS OF TRACTOGRAPHY 

Diffusion tensor tractography or “fiber tracking” attempts to map white matter tracts by 

constructing 3-D computer-graphical representations of them, based on the directional 

diffusion information available on a voxel-wise basis. There are two general methods available 

for tractography, deterministic and probabilistic.  

Deterministic methods are most commonly employed in clinical settings. In deterministic 

tractography, a region of interest (ROI) is selected, usually in an anatomic area traversed by a 

known white matter bundle to be targeted for tracking. A voxel or group of voxels in this ROI 
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serves as a seed point(s) to initiate the algorithm. Fiber representations are then “grown” from 

the seed points by iteratively taking a series of small, consecutive steps, the direction of each 

step determined by the local orientation of principal diffusion tensor eigenvectors, which are 

assumed to be tangent to the major white matter tract in question [41], [42]. 

 The raw materials for tractography remain the eigenvalues and eigenvectors of the 

diffusion tensor. We divide the brain into voxels and insert the principal eigenvector pertaining 

to each voxel at its center. In so doing, we have created a discrete vector field of the dominant 

white matter tracts in the brain. We say discrete because the principal eigenvectors are 

mapped to voxel centers. As pointed out by Mori et al. [41], if we imagine ourselves at the 

center of a seed voxel, we are surrounded by 26 voxels (8 comprising the walls in our two-

dimensional [2-D] axial plane, 9 for our roof, and 9 for our floor). Of these 26 possibilities, we 

would choose the voxel featuring a principal eigenvector that is most like our own and step in 

that direction. When drawn out in space, the tract would extend from the center of our voxel to 

the center of the next voxel, where we would inherit the same predicament of 26 choices. Of 

course, we know that the trajectories of white matter tracts need not conform to discrete 

voxels, and their true paths are not adequately represented by purely discrete methods. For 

example, it is quite reasonable to assume that a tract may only skim the corner of a neighboring 

voxel as it changes its trajectory. Further, the step-length (i.e., the distance the tract grows 

before the next step or change in trajectory) is not likely to remain constant for all steps.  

 To more accurately model the trajectory of white matter tracts, we envision the brain as a 

continuous vector field, able to intercept the margins and corners of a voxel as the tract 

propagates through space. We still make the assumption that the principal eigenvector within a 
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voxel is tangent to the curve drawn out by the major underlying white matter tract, however, 

rather than beginning at the center of the seed voxel, we start from multiple points within the 

seed voxel. One of the most widely used fiber tracking algorithm of this type is fiber assignment 

by continuous tracking (FACT) introduced by Mori et al. [41]. In this model, principal 

eigenvectors serve as intermittent “road signs” along a continuous trajectory that passes 

through contiguous voxels. Starting from different points within a seed-voxel, different tracts 

extend outward, always keeping parallel to the principal eigenvector, until they reach the edge 

of that voxel. Once at the edge, the growing tract assumes the trajectory of the neighboring 

voxel’s principal eigenvector. The key feature of the FACT algorithm is that the step-length is 

not equal for all steps.  If we begin from a very eccentric position in the seed voxel and head 

along a particular trajectory, we may very well reach the edge of the voxel (a new step) after a 

much shorter length than if we had started elsewhere in the same voxel. We may then 

encounter a completely different neighboring voxel at the next step. A collection of fibers is 

grown from the different origins in the same seed-voxel or voxels (Figure 2.24).  

 
Figure 2.24 Illustration of the FACT algorithm. In FACT a continuous vector field in the brain is assumed 
as well as the principal eigenvectors assigned to each voxel being tangent to the graphical trajectory 
representing the underlying white matter tract. Notice that the step lengths (white arrows) are not 
equal at each step (a “step” is defined as the growing tract encounters the edge of a voxel). Adapted 
from [2] and courtesy of Thomas Gallagher, Aaron Field, and Andrew Alexander. 
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To avoid non-anatomical trajectories, stopping criteria are used to constrain the algorithm. For 

example, only gradual changes in trajectory angle are allowed, while nonanatomical “hairpin” 

turns are prevented by disallowing trajectory angles exceeding some predetermined threshold, 

such as 45 degrees. Stopping criteria also typically include a threshold on anisotropy, because 

estimates of fiber orientation become less reliable as diffusion becomes more isotropic; for 

example, the algorithm might be terminated when FA falls below 0.2 [26], [29].  

 Stopping criteria can be made less stringent as needed to explore a larger array of potential 

tracts. Since a given ROI may be traversed by more than one discrete white matter fiber bundle, 

multiple ROIs may be chosen to parse a specific tract; this is accomplished by constructing 

many trajectories but retaining only those that traverse all selected ROI’s (typically two) [26] 

(Figure 2.25). Examples of various white matter pathways derived from fiber tracking are shown 

in Figure 2.26.  

 
Figure 2.25 Growing tracts can be modified by Boolean operators, the choice of which will restrict 
advancing fiber bundles along a particular trajectory. n Adapted from [2] and courtesy and Andrew 
Alexander. 
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Figure 2.26 Example white matter pathways derived from fiber tracking. Left-side bundles are color 
coded green (anterior-posterior) red (right-left) and blue (superior-inferior). Right-side bundles are 
colored in solid colors: R-STR: Superior thalamic radiation, right side. R-ATR: Anterior thalamic 
radiation, right side. R-SLF: Superior Longitudinal Fasciculus, right side. Components I, II, III R-IFO: 
Inferior Occipito-frontal Fasciculus, right side. R-ILF: Inferior Longitudinal Fasciculus, right side. R-UF: 
Uncinate Fasciculus, right side. 

The reliability and reproducibility of fiber tracking depend largely on the degree of uncertainty 

regarding the major eigenvector orientations. Critical factors contributing to greater 

uncertainty include underlying image noise as well as the presence of non-prolate tensors in 

the trajectory path, such as those resulting from intravoxel crossing fibers (which cannot be 

resolved by the tensor method) (Figure 2.27). It follows that higher reproducibility and more 

accurate results will come from higher-SNR image acquisitions and from mapping anatomically 

R-ATR
R-STR

R-IFO
R-ILF

R-UF

R-SLF-III
R-SLF-II
R-SLF-I
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“easier” white matter tracts, featuring intrinsically high FA, a preponderance of prolate tensors, 

and lacking major fiber crossings.  

 

 
Figure 2.27 Illustration of near-zero FA in areas of crossing fibers. Crossing fibers within a voxel cannot 
be resolved by DTI. This is an inherent limitation of the tensor method which affords only 3 dominant 
ellipsoid shapes and will “directionally average” crossing fibers into one of those shapes. locally 
diminished FA is evident at the margin of crossing fibers. This can be observed as black lines (blue 
arrows) at the interface of the corona radiata (CR) and superior longitudinal fasciculus (SLF). Other such 
black lines delineate the paired cingula (Cing) from the corpus callosum (CC). Adapted from [2] and 
courtesy of Aaron Field. 

In contrast to deterministic methods, probabilistic methods offer an explicit accounting of 
uncertainty in constructing fiber trajectories, something akin to a distribution of possible tracts 
to pursue when venturing forward from the edge of a voxel. In the end, the voxels in the brain 
are assigned a numeric percentage based on the number of pathways derived from the seed 
point that passes through the voxel in question. For example, a voxel assigned 1% indicates that 
only 1 out of 100 tracts initiated by the seed point includes the voxel in question. As 
distributions of potential tracts are created, probabilistic methods may be less dependent 
initially on the choice of seed point eigenvector, offering the possibility to initiate tracts from 
areas of lower FA. Probabilistic methods, however, are just as sensitive to propagation of error 
as deterministic methods despite relatively high reproducibility [26]. They remain maps of 
probability and should be interpreted as such. 
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2.8 Beyond DTI 

Diffusion tensor imaging is a fast and efficient means of generating clinically relevant images 

that can be obtained in just a few minutes. It does, however, suffer from certain inherent 

limitations. Most importantly, DTI assumes that the 3-D displacement profile due to diffusion in 

each voxel is “sculpted” by the local axonal architecture into a Gaussian ellipsoid fully described 

by three eigenvectors and their associated eigenvalues. It is unlikely that truly Gaussian 

diffusion occurs in tissues, however, prompting investigators to develop methods of accounting 

for deviations from Gaussian behavior and for exploiting the limits of Gaussian displacement by 

identifying more sophisticated, non-Gaussian PDFs.  

2.8.1 Diffusion Kurtosis 

The signature of non-Gaussianity can be appreciated from the natural logarithm of the signal 

with respect to b-value (Figure 2.28). At b-values less than 1000 s/mm2, the function exhibits a 

linear behavior characteristic of the mono-exponential model (Eq. 9). At higher b-values, the 

log-linear behavior transitions to one with more quadratic-like characteristics. At stronger b-

values the content of the signal is more representative of molecules displacing through more 

tortuous, shorter distances (i.e. the signal contribution from faster-diffusing molecules nearly 

completely dissipates for very strong diffusion weighting). Diffusion kurtosis imaging (DKI) [44] 

accounts for this departure from linearity at higher b-values by incorporating an additional 

quadratic term to the exponent of the mono-exponential model. 
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Figure 2.28 Illustration plots of DKI and DTI. Model fits to measured diffusion weighted data at multiple 
b values. 

 
The DKI method estimates an apparent diffusion coefficient plus an additional parameter 

termed the apparent kurtosis. The latter directly quantifies how different from a Gaussian 

shape a given molecular displacement distribution is. Kurtosis is a well-characterized 

mathematical entity in the field of probability theory. It quantifies the peakedness of a 

distribution in comparison to a Gaussian form: positive kurtosis represents a distribution with a 

higher peak and heavier tails, negative kurtosis represents lower peak and faster decaying tails, 

and zero value kurtosis indicates Gaussian shape. Molecules diffuse faster at the beginning of 

an imaging experiment, but the process slows down as the molecules have more time to 

interact with surrounding structures. Larger values of kurtosis then are thought to reflect a 

more irregular landscape of the studied sample, one that is ‘quick’ at impeding the molecules to 

diffuse freely.  

 As with DTI, kurtosis can be characterized directionally with a 3 x 3 tensor. From this 

tensor, useful parameters can be computed, the most common of which are: the mean of the 
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kurtosis in all directions (mean kurtosis), the average kurtosis in directions perpendicular to the 

long axis of the diffusion ellipsoid (radial kurtosis), and kurtosis parallel to the long axis of the 

diffusion ellipsoid (axial kurtosis). In comparison to DTI, at least 15 different diffusion encoding 

directions need to be sampled to reconstruct the kurtosis tensor. Additionally, at least two non-

zero b-values are required with recommended settings of b~1000 s/mm2 for the first b-value 

and b~2000 s/mm2 for the second value [45]. DKI has been applied to study a wide range of 

conditions including gliomas [46]–[48], stroke [49]–[51], Alzheimer’s disease [52], [53], multiple 

sclerosis [54], [55], and traumatic brain injury [56]–[59]. 

 
2.8.2 Time Dependent Diffusion with Oscillating Gradients  

While DKI accounts for deviations in Gaussianity of the molecular displacement resulting from 

the interactions between molecules and surrounding hindrances, a technique known as 

temporal diffusion spectroscopy exploits such interactions for extracting more direct 

information about tissue microarchitecture. 

 

As outlined in Section 1 of this chapter, the mean-squared displacement ∆r in Einstein’s 

diffusion equation (Equation 2.1) depends on the observation time interval or diffusion time ∆t. 

In a uniform medium with no boundaries, diffusion is isotropic or unrestricted. In 

inhomogeneous media, barriers will hinder the diffusing molecules and the encountering of 

molecules with obstacles is proportional to the observation time. ADC estimates, thus, change 

with diffusion time as the imaging measurements go from free to restricted diffusion regimes. 

 For example, for molecules constrained entirely to move inside a spherical pore of radius a, 

diffusion estimates will appear almost unrestricted for ∆t<<r2 /2D and closer to the true value 
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D. For ∆t>>r2 /2D, however, all molecules will have had enough time to interact with the walls 

of the pore and are equally likely to be found anywhere inside it independent of their starting 

positions, yielding estimates of the diffusion coefficient that are less than the true D.  

 Obtaining measurements across a range of diffusion times opens the possibility to extract 

information pertaining to the geometry of the surrounding medium in which the molecules 

diffuse. Unfortunately, typical dMRI acquisitions that make use of PGSE sequences are limited 

to long diffusion times due mainly to hardware limitations of clinical scanners. In most cases, 

the limited strength of gradient coils implies the use of long diffusion times in order to achieve 

high enough b-values for a sufficiently diffusion weighted MRI signal.  

 Investigators have circumvented the need for strong gradients by modifying the shape of 

the rectangular pulses in a PGSE sequence like the one shown in Figure 2.12 to take on 

oscillatory forms (e.g. sinusoid) with a specific frequency [60], [61]. Different frequencies will 

result in different diffusion times, thus allowing to conduct imaging experiments at varying time 

scales. Estimates of unrestricted diffusion coefficients can then be obtained from very short 

diffusion times (high frequency of the oscillating gradients) using oscillating gradient sequences. 

Additionally, diffusion time dependency has been reported to provide micro-structural 

information about cell size [62], [63] and axonal diameter [64]. Diffusion time dependency 

measurements have also been conducted in healthy and pathological brain tissue of animal [65] 

and human brains [66], [67]. 
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2.8.3 Geometric Multi-Compartment Models 

Diffusion-weighted imaging models like DTI and DKI are based on diffusion distribution 

properties.  As a consequence, parameters from these models may not have a specific 

biophysical basis. To address the poor biological specificity of DTI and DKI metrics, several 

multi-compartment biophysical modeling techniques have been proposed in the last decade. 

 

The Composite Hindered and Restricted Model of Diffusion (CHARMED) [68] attempts to resolve 

both hindered (extra-axonal) and restricted (intra-axonal) diffusion with higher b-values. The 

underlying assumption in CHARMED is that extra-axonal and intra-axonal diffusion behave 

differently. In areas of crossing fibers, two “restricted” intra-axonal compartments are 

presumed and sought out with higher b-value diffusion-sensitizing gradients. Isoprobability 

surfaces similar to Gaussian ellipsoids can then be created for each voxel, which visually render 

this more complex model of diffusion. 

 

The Neurite Orientation Dispersion and Density Imaging (NODDI) [69] technique assumes a 

multi-compartment model for describing the diffusion MRI signal as originating from three 

microstructural environments. The model and other assumptions of the NODDI technique will 

be discussed in more detail in the next chapter. As with CHARMED, the NODDI model proposes 

an intra-axonal compartment, but with the difference that molecular displacement is 

completely restricted to occur in directions parallel to the long axis of cylindrical axons. A 

second compartment is extra-axonal, where diffusion is assumed anisotropic and modeled with 

a diffusion tensor. A third compartment is free water, assumed to have unrestricted, isotropic 
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diffusion, primarily from cerebrospinal fluid (CSF). The NODDI model describes the axons’ 

diffusion signal as a function of their density and orientation dispersion. This is done by 

estimating an intra-axonal volume fraction and a concentration parameter of the axons 

orientation distribution. The NODDI method is practical in terms of acquisition time and 

diffusion weighting. The optimal imaging protocol in [69] consists of two non-zero b-values with 

the lower b-value (~700-1000 s/mm2) applied along 15-30 directions and the second, higher b-

value (~2000-3000 s/mm2) applied along 30-60 directions. With a typical clinical scanner, this 

protocol can be achieved in under 10 minutes of total scan time. The clinical feasibility of the 

protocol has been reported in multiple studies [70]–[73]. The model parameter estimates have 

been widely used to investigate brain tissue microstructure as a function of early development, 

aging, cognitive function, and a variety of neurological disorders [74]–[79]. 

 

2.8.4 “Model-Free” Techniques 

As discussed in other sections, DTI fails to resolve crossing fibers as consequence of the limited 

tensor model itself. To better understand this, imagine a voxel featuring the intersection of 

three equally robust axonal fiber populations running parallel to the x, y, and z axes. A (perfect) 

conventional DTI acquisition (free of any noise effects) would correctly deliver the result of 

three equal eigenvalues, however, we are left with a perfect sphere with FA= 0. Despite the 

highly intricate arrangement of three orthogonally crossing fiber tracts in this voxel, DTI reports 

isotropic diffusion, a gross misrepresentation of the underlying structure. The same 

fundamental limitations will manifest in any voxel where white matter tracts cross and thus 

cannot be resolved as separate with the tensor method. This is evident, for example, when 
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attempting to follow pyramidal tracts cephalad from the brainstem toward the motor cortex; in 

the centrum semiovale, the pyramidal tracts intersect with the superior longitudinal fasciculus 

and tractography often terminates at this intersection. To overcome these limitations, several 

methods of high angular resolution diffusion encoding have been devised to better characterize 

the 3-dimensional diffusion profile within a voxel.  

 

High Angular Resolution Diffusion Imaging (HARDI) [80] is one such technique that utilizes the 

spherical variance of ADC values obtained at higher b-values (3,000 s/mm2) utilizing over 40 

encoding directions. When plotted as a function of the encoding direction angles, a complex 3-

D surface can be generated that more accurately represents the diffusion profile within a voxel. 

This procedure is capable of resolving crossing fibers using spherical harmonic decomposition 

(SHD) methods [81], [82]. 

 

Diffusion spectrum imaging (DSI) and q-Ball imaging (QBI) completely break from the 

constraints of model-based techniques. These methods attempt to more directly measure spin 

displacements in 3 dimensions. We will briefly review these techniques here. However, before 

we begin, we must introduce the concept of q-space and how it relates to essentially all 

diffusion-weighted imaging.  

 

Q-space is a three-dimensional space that maps diffusion signal information as a function of 

encoding gradient strength and direction. Each “point” in q-space represents a unique 

diffusion-weighted image encoded in a specific direction with a specific degree of diffusion 
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weighting. A q-vector extending from the origin locates points in q-space. The length 

(magnitude) of the q-vector is proportional to the applied diffusion weighting (i.e., the b-value). 

The direction of the q-vector indicates the direction of the applied diffusion encoding gradient 

[83]. Sampling of diffusion signal S in q-space should demonstrate mirror symmetry about the 

origin, reflecting that it is inherently an even function, that is S(qx, qy, qz) = S(-qx,- qy, -qz). A 

conventional diffusion-weighted trace image acquisition would be represented by three distinct 

points in q-space, equally distant from the origin, with q-vectors perpendicular to each other 

(three orthogonal directions, one b-value). A diffusion tensor acquisition would necessitate a 

minimum 6 points (six non-collinear directions, one b-value) in q-space.  

 

Diffusion spectrum imaging (DSI) is a model-free q-space imaging technique that brilliantly 

resolves areas of intricately crossing white matter architecture [84]–[86]. Rather than utilizing 

the tensor model to define only three principal axes for the diffusion profile, DSI seeks to more 

directly and more completely assess diffusion by measuring diffusion-related signal attenuation 

in as many as 500 or more directions with varying b-values, resulting in a very densely sampled 

q-space. The distribution of displacements, or probability density function, are estimated by 3-D 

Fourier transformation of the 3-D q-space signals.  This does not assume that the diffusion has 

any specific functional form including Gaussian diffusion, which is the basis for DTI.  The 

directional components of the probability density function are often represented and visualized 

by computing an orientation density function (ODF), which is estimated by summing the 

displacement distribution for each direction. Glyph representations of the ODFs are often 

volume rendered to visualize the peak directions (Figure 2.29).  This more complete and 
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accurate directional information is used to resolve crossing fibers for white matter 

tractography. When connected and grown as fibers, even complex intravoxel crossing white 

matter tracts can be resolved, such as within the optic chiasm (Figure 2.30). It should be noted 

that noise effects may significantly impact image quality in model-free techniques like DSI. As 

diffusion is essentially measured “directly;” a spurious peak in the displacement distribution can 

seriously alter the appearance of the ODF and translate into a non-anatomic correlate at the 

molecular level [26] (14). 

 

 
Figure 2.29 Fiber orientation distribution function (fODF) mapping. Glyph representation of the fODF in 
diffusion spectrum imaging (DSI). Dense sampling of diffusion signal in q-space can be translated into 
directionally specific displacement distributions, from which fODFs are created and rendered as a 3D 
glyph for each voxel. In contrast to the Gaussian model of diffusion in DTI, DSI makes no underlying 
assumptions about the functional form of diffusion. In this way, DSI attempts to directly characterize 
spin displacements for many different directions. Adapted from [2] and courtesy of Andrew Alexander. 
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Figure 2.30 DSI (right) and DTI (left) renderings of crossing fibers in the optic chiasm of the monkey 
brain. Adapted from Weeden et al. 2008. 

Different schemes of filling of q-space can also approximate the ODF (Figure 2.31). Q-ball 

imaging (QBI) [87], for instance, is another model-free technique. Utilizing a novel acquisition 

scheme, q-space is filled evenly over the surface of a sphere (the q-ball). The acquired data is 

subjected to a complex mathematical process called the Funk-Radon transform, similar to the 

Fourier transform, from which an ODF can be generated that very closely approximates the 

ODF of DSI [41], [84]. While fewer encoding directions (> 60 as opposed to >500) are necessary 

for q-ball imaging when compared to DSI, both techniques feature higher b-weighting than is 

typically used in DTI [83]. Both DSI and QBI are particularly relevant to advanced tractography 

and ongoing explorations of functional connectivity, where the ability to resolve crossing fibers 

will be essential.  
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Figure 2.31 Diagram depicting q-space imaging. Each point in q-space represents a unique diffusion 
weighted acquisition at a specific b-value and direction, given by a q-vector. Adapted from [2] and 
courtesy of Thomas Gallagher, Aaron Field, and Andrew Alexander. 

 
2.9 A WORD ON PARALLEL IMAGING 

Practical and successful implementation of the DWI techniques presented in this chapter is 

conditional on feasible acquisition times as well as the quality of the data in terms of SNR, 

spatial accuracy, angular and spatial resolution, and appropriate diffusion contrast. While SS-EPI 

is very fast at acquiring entire volumes compared to multi-shot (e.g. line by line) methods, 

readout times (the time lapsed before the next magnetization excitation) are much longer for 

SS-EPI. Long EPI readout times are behind the common artifacts that affect SS-EPI including 

distortion, ghosting and blurring. Even with rapid SS-EPI, the acquisition times can be quite long 
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for DWI studies with many directions and b-values.  Below a brief description is given of how 

advances in parallel imaging have been used to circumvent these limitations. 

 

2.9.1 In-plane Parallel Imaging 

Two-dimensional parallel imaging methods shorten acquisition times by collecting fewer data 

points over a single slice and rely on multi-channel coils and their sensitivity maps to mitigate 

artifacts associated with the under-sampling. Insufficient sampling of the signal violates a 

principle known as the Nyquist Criterion and leads to portions of the image being folded-over 

inside the field of view and overlap on each other when reconstructed. This type of artifact is 

known as aliasing and the amount of overlap is related to the sampling spatial frequency of the 

MRI signal. In absence of additional information to differentiate the intensities of the 

overlapping images, correction of aliasing artifacts is unattainable. When multi-channel coils 

are used to collect the signal, however, the differences in spatial sensitivity of each coil provide 

a unique piece of information at each voxel that can be used to de-alias (or unfold) and relocate 

each voxel to its appropriate position [88], [89].  

 By using in-plane parallel imaging, higher resolution images may be acquired in similar 

times to lower resolution SS-EPI without any acceleration. The Fourier space under-sampling 

and corresponding accelerated sampling rate is applied in the ‘phase encode’ direction, which 

reduces the distortions caused by inhomogeneities in the main magnetic field and reduces 

image blurring from T2*.  The faster readout may also reduce the echo time, TE, which will 

increase the SNR.  It should be noted that high acceleration rates lead to penalties in the SNR.  

Another limitation of this method is the difficulty to remove residual aliasing in areas where the 
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sensitivity profiles of the different coils are very similar. This is more severe in regions closer to 

the center of the sensitivity maps where sensitivity is lowest for all coils.  

 

2.9.2 Simultaneous Multi-Slice EPI 

A significant reduction in total acquisition time may be achieved by a higher-level variant of 

parallel imaging known as multi-band or simultaneous multi-slice imaging (SMS) [73]. With this 

method, signals from multiple slices are acquired simultaneously with a single shared contrast-

encoding block. The efficiency in data acquisition is proportional to the acceleration factor, 

which itself is equal to the number of slices simultaneously acquired. SMS requires that coils are 

distributed along the slice direction in order to allow for the use of coil sensitivities in 

separating the signals from the individual slices. The process for separating the overlapping 

slices is essentially similar to that used with in-plane acceleration. The technicalities of multi-

band imaging and its adaptation to EPI [34] are beyond the scope of this work, but it is worth 

emphasizing that multiband acquisition has had major implications in all of 2D MR imaging, 

particularly in techniques for which time consideration is essential such as in functional and 

diffusion MRI. 

 

The benefits of SMS imaging in diffusion are evidenced in results from the Human Connectome 

Project (HCP) [90]. For example, HCP HARDI scans were achieved at greater than 60% reduction 

in acquisition time by simultaneous encoding and collection of three slices at 1.5 mm isotropic 

resolution. Combined contributions from faster, stronger gradients to reduce diffusion 

encoding time, reduced number of phase encoding lines collected with parallel imaging, q-
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space compressed sensing, and simultaneous multi-slice, the Connectome scanner protocol was 

able to acquire high quality DSI data in under 5 minutes.  

 Though substantial improvements to the scanner hardware aided in achieving the 

enhanced acquisition times in the HCP, other studies have reaffirmed the time efficiency of 

SMS using clinical scanners with less advanced hardware designs [91], [92]. In general, SMS 

acquisitions will reduce scan times of DWI studies by factors of 2-2.5 relative to conventional 

single-slice DWI methods. SMS may be used to complement in-plane parallel acceleration. This 

will improve spatial accuracy by reducing geometric distortions. However, when used alone, 

SMS does not suffer from the SNR penalties associated with in-plane parallel imaging since no 

Fourier space lines are omitted.  

 

2.10. Beyond DTI and Biophysical Models: Multidimensional Diffusion MRI 

In the previous sections we have discussed that DTI and DKI offer very sensitive but non-specific 

parameters to alterations of the underlying structure. For example, changes in either cellular 

density or direction can lead to the same observed change in FA or MK. This makes the 

interpretation of the imaging parameters ambiguous in terms of the underlying tissue micro-

structure. In order to disentangle the effects of different features of the microstructure on the 

observed signal, researchers in the field have resorted to biophysical model techniques such as 

Neurite Orientation Dispersion and Density Imaging (NODDI) [69]. However, due to the number 

of parameters needed to faithfully describe the signal in terms of the complex tissue micro-

architecture, biophysical modeling methods need to rely on model assumptions that are often 
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oversimplifying. For example, in the next chapter we show that current assumptions of the 

NODDI model are suboptimal in specific age groups and tissue types [93].  

 Two of the current challenges in dMRI have to do with quantifying the intra-voxel 

heterogeneity of diffusion properties and disambiguating the biological interpretation of 

imaging parameters. The collective consensus in the field is that the ability to make progress on 

these two fronts depends on successfully devising ways to incorporate more information in the 

data. 

 To that end, a different category of methods that includes data acquisition with advanced 

gradient modulation schemes and data processing approaches, referred to as multidimensional 

diffusion MRI, offers the ability to quantify tissue micro-compartment properties and to also 

produce more interpretable parameters [94]–[98]. Generally, these methods consider two 

components of diffusional heterogeneity within a voxel. An anisotropic variance component 

that stems from differences in cell eccentricity and cell structures: microscopic anisotropy. And 

an isotropic variance component that is due to different isotropic diffusivities reflecting 

different cell sizes and densities as well as mixtures of tissues: isotropic heterogeneity.  

 The fundamental bid behind this type of approaches for disentangling sources of 

diffusional variance is to pack additional information in the data by augmenting one dimension 

to the measurement. This is done by encoding for diffusion along multiple directions before 

sampling the signal, then collecting data with multiple configurations of the diffusion encoding 

wave forms. By contrast, with the traditional method that underlies the basic data acquisition 

unit in DTI, DKI, and NODDI, images are read one diffusion-direction at a time. Diffusion 

encoding, then, goes from vector description in the conventional acquisition to a tensor 
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description in the multidimensional case. For this reason, multidimensional diffusion encoding 

is also known as b-tensor or tensor-valued encoding.  

 Initially, multidimensional diffusion encoding sequences were only feasible under specific 

hardware constraints and therefore limited to high performance systems. In recent years, 

however, there has been a great effort in the field for designing multidimensional diffusion 

encoding sequences that are more amenable to the specifications of clinical scanners.  

 

Diffusion encoding along two orthogonal directions in NMR experiments dates back to as far as 

the early 1990s [99]. More recently, a technique known as “isotropic diffusion weighting by magic 

angle spinning of the q-vector” was introduced to successfully map microscopic anisotropy 

unconfounded by orientation dispersion [95]. In the recent years, b-tensor encoding has emerged 

as the general category which isotropic diffusion weighting and single diffusion (or conventional 

encoding) are special cases of.  

 The gradient waveforms in the earlier implementations of b-tensor encoding were very 

demanding on the MRI system hardware, requiring high performance gradients and prolonged 

acquisition times. Fortunately, continued research has sought optimizations of the early 

waveforms that are more forgiving of lower performing hardware and permit for modest 

scanning times in clinical scanners. For example, a recent study demonstrated the feasibility of 

tensor-valued encoding sequences in 1.5 T scanners with gradients performing as low as 33 mT/m 

in amplitude [100]. Similarly, a study of intracranial tumors with multidimensional diffusion MRI 

reported scan times (<3 minutes) that are feasible in clinically relevant time domains [101].  
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 A number of methodologies have been reported for the analysis of data acquired with 

tensor-valued encoding sequences [95], [97], [102], [103]. One of the most common approaches 

is known as diffusional variance decomposition [95]. This assumes that the measured diffusional 

processes can be approximated by a distribution of microscopic diffusion tensors. The first step 

in this process is to parameterize the tensor distribution by a mean diffusivity and two 

components of microscopic variance (isotropic + anisotropic). The next step is to proceed to 

estimate the mean diffusivity as well as the effects of each variance component by using a 

combination of shapes of the b-tensor for diffusion encoding.  

 The shapes of the b-tensor vary from linear b-tensor on one end of the spectrum to spherical 

b-tensor on the other. The linear b-tensor is simply the conventional single diffusion encoding 

and the resulting signal accounts for the total intra-voxel variance (i.e. the sum of the isotropic 

and anisotropic components).  On the other extreme, with spherical tensor encoding, diffusion 

encoding occurs equally and simultaneously in three orthogonal directions. This makes the signal 

sensitive only to the isotropic component of the variance, effectively removing the effects of the 

anisotropic variance component [98].  

 Thus, the mean diffusivity and total variance can be estimated by modeling the linear 

tensor encoding signal for a sufficient number of b-values and diffusion directions [104]–[106]. 

The isotropic variance component can be measured by using spherical tensor encoding 

repeated for the same number of b-values as in the linear tensor encoding. Finally, the 

anisotropic variance component can be recovered by subtracting the isotropic from the total 

variance. This approach also allows for estimating microscopic FA and an orientation order 

parameter [97]. While macroscopic FA as estimated from DTI is affected by both the diffusion 
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anisotropy as well as directionality, microscopic FA has been shown to be more specific to the 

anisotropy in diffusion [96]. 

 

2.11 Conclusion 

In this chapter we have reviewed historical and theoretical context around MRI and diffusion 

MRI. The theoretical underpinnings of DTI were emphasized a great deal in this chapter as this 

is still the most popular form of diffusion imaging despite its well-known limitations. Other    

techniques including model-based and model-free approaches were described in this chapter 

and we will be coming across some of them in the next three chapters. Finally, exciting and 

promising technological and theoretical advances were reviewed, which will continue to move 

the field forward.  
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Chapter 3 - Investigating the assumption of fixed parallel intrinsic 
diffusivity in the neurite orientation dispersion and density imaging 
technique 
 
Portions of this chapter have been published in the journal of the Public Library of Science 
(PLoS) ONE in August 2019. (Guerrero, J. M., Adluru, N., Bendlin, B. B., Goldsmith, H. H., 
Schaefer, S. M., Davidson, R. J., ... & Alexander, A. L. (2019). Optimizing the intrinsic parallel 
diffusivity in NODDI: An extensive empirical evaluation. PloS one, 14(9).) 
 
 

3.1 Abstract 

NODDI is widely used in parameterizing microstructural brain properties. The model includes 

three signal compartments: intracellular, extracellular, and free water. The neurite 

compartment intrinsic parallel diffusivity 𝑑∥ is set to 1.7 µm2·ms−1, though the effects of this 

assumption have not been extensively explored. In this chapter, work is presented from 

investigations on the optimality of 𝑑∥=1.7 µm2·ms−1 under varying imaging protocol, age groups, 

sex, and tissue type in comparison to other biologically plausible values of	𝑑∥. Model residuals 

were used as the optimality criterion. The model residuals were evaluated as a function of 𝑑∥ 

over the range from 0.5 to 3.0 µm2·ms−1. This was done with respect to tissue type (i.e., white 

matter versus gray matter), sex, age (infancy to late adulthood), and diffusion-weighting 

protocol (maximum b-value). Variation in the estimated parameters with respect to 𝑑∥  was also 

explored. Results show 𝑑∥  =1.7 µm2·ms−1 is appropriate for adult brain white matter but it is 

suboptimal for gray matter with optimal values being significantly lower. 𝑑∥  =1.7 µm2·ms−1 

was also suboptimal in the infant brain for both white and gray matter with optimal values 

being significantly lower. Minor optimum 𝑑∥   differences were observed versus diffusion 
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protocol. No significant sex effects were observed. Additionally, changes in 𝑑∥  resulted in 

significant changes to the estimated NODDI parameters. 

 

3.2 Introduction 

As mentioned in the previous chapter, in diffusion weighted magnetic resonance imaging 

(dMRI), biophysical models are used for relating the dMRI signal to microstructural properties 

in white and gray matter [45], [68], [69], [107]–[110]. Neurite orientation dispersion and 

density imaging (NODDI) [69], separates the brain tissue microstructure landscape into three 

compartments: intracellular space or neurites (axons, dendrites), extracellular tissue matrix, 

and a free water compartment. In spite of its shortcomings, much like the case of other 

techniques such as diffusion tensor imaging (DTI), NODDI offers useful information and has 

been widely used in the investigation of brain tissue microstructure as a function of early 

development, cognitive function and aging as well as a number of neurological conditions [74]–

[79]. 

Biophysical modeling relies on simplifying assumptions about the tissue properties. Besides the 

separation of tissue into three compartments, the NODDI model is characterized by the 

following features or assumptions. Each compartment is represented by its own normalized 

signal and volume fraction. Water exchange between compartments is assumed negligible. 

Neurites are modeled as sticks (cylinders of zero radius) for capturing highly anisotropic 

architecture of neuronal tissue. Diffusion inside the neurites is described by a diffusivity parallel 

to the sticks, which is referred to as the intrinsic diffusivity, 𝑑∥, and zero diffusivity 

perpendicular to them. The orientation distribution function (ODF) of the sticks at each voxel is 
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modeled by an axially symmetric Watson distribution, W [111], which itself is characterized by a 

concentration parameter κ and mean orientation μ. Highly aligned sticks like those seen in 

white matter bundles are reflected by high κ values, while highly dispersed sticks like those 

seen in gray matter fibers are reflected by low κ. The extra-neurite compartment is directionally 

correlated with the neurite ODF and modeled as a Gaussian anisotropic compartment. 

The local parallel diffusivity of the extracellular space is set equal to the intra-neurite intrinsic 

diffusivity, 𝑑∥, whereas the perpendicular diffusivity 𝑑/  is related to the neurite water fraction, 

fic, and 𝑑∥  by the mean-field tortuosity model [112] as 𝑑/  = (1 − fic)	𝑑∥. The free-water 

compartment is modeled as having isotropic diffusion with free diffusivity diso = 3 μm2  ms−1 and 

volume fraction fiso. The intrinsic diffusivity 𝑑∥  for NODDI is assumed to be 1.7 μm2ms−1. This is 

selected to be a biologically reasonable value, which approximates the mean parallel diffusivity 

from DTI in a healthy coherent white matter region [107]. The parameters that are estimated 

from acquired data using non-linear gradient descent and heuristic initializations are the water 

fraction of the neurite compartment fic, the concentration (κ) and mean orientation (μ) of the 

Watson distribution. The signal S(b, g) from the unit diffusion gradient direction g for sticks 

oriented along unit vector n and b-matrix (bggt) is given by 

 

 𝑆(𝑏, 𝒈) = 	𝑆(		n(1 −	𝑓09F)(	𝑓0T 	𝐴0T + (1 − 𝑓0T)𝐴UT) + 𝑓09F	𝐴09Fo Equation 3.1 

 

where 
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𝐸[𝑥] = 	∮ 𝑥	𝑊(𝒏, 𝝁; 𝜅)\" 𝑑𝒏,  such that 	𝒈, 𝒏, 𝝁	 ∈ 𝑆".	

 

𝐴0T, 𝐴UT, and 𝐴09F, are the intra-cellular, extra-cellular, and free-water isotropic compartments 

signal contributions respectively (see Figure 3.1). W(n, μ; κ) is the Watson distribution with κ 

concentration and oriented along μ. S0 is the un-attenuated signal i.e. S(0, 1), and De(n) = 

fic𝑑∥nnt + (1 − fic) 𝑑∥I3 is the axially symmetric extra-cellular apparent diffusion tensor. 

 
 

 
Figure 3.1 Illustration of the different levels of the NODDI model.  

  
Recently, the model assumptions have become a topic of discussion in the field. The more 

relevant discussions have focused around the fixed parallel intrinsic diffusivity and equality 

between parallel intrinsic diffusivity of the extra- and intra-cellular compartment [113]. Of the 
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two, the equality assumption is the more difficult to assess, but has been explored in several 

reports. While no consensus has been reached, most reports suggest that the intra-cellular 

parallel intrinsic diffusivity is larger than the extra-cellular one [96], [114]–[116]. Yet, this may 

depend on tissue type [117] and most studies have focused on white matter. Also, some sustain 

that the differences may not be substantial and independent validation experiments are 

needed [113]. 

 With respect to the fixed diffusivity assumption, Kaden et al., [118] proposed a framework 

for relaxing the fixed constraints. The study reported that microscopic parallel diffusivities 

varied across the brain, and that white matter values where considerably larger than that 

assumed by NODDI. It is important to note, however, that the ability to “estimate intrinsic 

diffusivity” in [118] comes at a cost, which is the reduction to two-compartment model. In this 

sense, then, the model in that report is not fully comparable to the model in NODDI, since the 

former gives up on estimating the CSF volume fraction. Others [119], [120] have also relaxed 

the fixed diffusivity constraint and made it a free parameter. However, this resulted in 

unwanted effects on the other parameters in the form of unstable and degenerate estimates. 

Originally, it was considered unlikely that variation in 𝑑∥  across regions and subjects was 

significant enough to remove trends in the estimated parameters [107]. Additionally, the fixing 

of 𝑑∥  is necessary for stability in the parameter estimates and for speeding up convergence of 

the fitting procedure. Plus, the value that was chosen was the value that minimized the fitting 

errors for voxels in the midsagittal plane of the corpus callosum [107]. 

 Taking into consideration the non-consensus on the equality assumption and the still 

widespread use of the technique, here we choose to build on earlier work [121] which 
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investigated the assumption of fixed diffusivity. This consisted of looking at optimal values of 

the parallel intrinsic diffusivity according to the model residuals. Results suggested that the 

default value was reasonable in white matter, but it was sub-optimal in gray matter. While 

recent publications have found our method useful [122], [123], this earlier work only 

considered a single axial slice from three age matched participants and dMRI data acquired 

with the same imaging protocol. For this reason, we propose a more extensive investigation 

that considers a diverse array of data in terms of age populations, imaging protocols, and is 

conducted across the full brain. 

 We elected to conduct this analysis only for the case of the original NODDI technique [69] 

and not for its variants [124], [125], or its tumor-specific version VERDICT [126] as the vast 

majority of applications have implemented the original version. 

 

3.3 Materials and methods 

3.3.1 Data 

Datasets acquired with multiple b-value sequences (suitable for implementing the NODDI 

technique [69]) were readily available for use in this work from a number of existing 

neuroimaging studies. These include imaging data from individuals with a broad range of ages 

and acquired with imaging protocols that vary in regard to number and magnitude of b values 

as well as number of diffusion encoding directions. dMRI sets include infants, adolescents, 

young adults, adults, and aging adults. All dMRI sets were collected on a 3T MR750 Discovery 

scanner (General Electric, Waukesha, WI). A brief description of each study is provided below 
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and details are summarized in Table 3-1. All procedures for the included studies were approved 

by the University of Wisconsin—Madison Institutional Review Board. 

 
 
Table 3-1 Relevant characteristics of studies from which data were used for this work. 
Study Sex Age b-values [ms μm−2] Directions 
Neonates 50 males 54 females 1 month 0.35, 0.8, 1.5 63 
Teen-I 24 males 168 females 11-15 years 0.32, 0.8, 2.5 62 
Teen-II 51 males 79 females 14-20 years 0.5, 0.8, 2.0 57 
Midlife-I 57 males 89 females 25-65 years 0.5, 0.8, 2.0 57 
AD-risk 18 males 53 females 47-76 years 0.3, 1.2, 2.7, 4.8, 7.5 105 
 
 
Neonates study (Neonates). Participants are from a study of neonatal white matter 

microstructure. Diffusion scans contain 6 non-diffusion weighted volumes and diffusion 

encoded along 63 directions. Other imaging parameters include: TR/TE = 8400/94ms, 2mm 

isotropic resolution. 

Teen study (Teen-I). Participants in this cohort were drawn from a study of emotion in 

adolescents. Diffusion scans contain 6 non-diffusion weighted volumes and diffusion encoded 

along 62 non-collinear directions. Other imaging parameters include: TR/TE = 8400/94 ms and 2 

mm isotropic resolution. 

Twin teen study (Teen-II). Participants are from a cohort of 130 adolescent twins. Diffusion 

scans contain 6 non-diffusion weighted volumes and diffusion encoded along 57 directions. 

Other parameters include 2.0 mm isotropic resolution and TR/TE = 8000/66.2 ms. 

Midlife meditation study (Midlife-I). Participants in this cohort were drawn from a study of 

emotion regulation, asthma, and sleep part of the National Center for Complementary and 

Alternative Medicine (NCCAM). Diffusion scans contain 6 non-diffusion weighted volumes and 
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diffusion encoded along 57 directions. Other parameters include 2.0 mm isotropic resolution 

and TR/TE = 8000/66.2 ms. 

Preclinical Alzheimer’s disease risk study (AD-Risk). Participants were cognitively unimpaired 

individuals with and without increased risk for Alzheimer’s disease recruited from the 

Wisconsin Registry for Alzheimer’s Prevention and Wisconsin Alzheimer’s Disease Research 

Center. Diffusion scans contain 7 non-diffusion weighted volumes and diffusion encoded along 

105 non-collinear directions. Other imaging parameters include: TR/TE = 6500/102 ms, sagittal 

slices 3mm thick, and in-plane resolution of 2.5 mm × 2.5 mm. 

 

3.3.2 Intrinsic diffusivity optimization 

Optimality of 𝑑∥  = 1.7 μm2ms−1 was considered by minimizing the model residuals as in [107]. 

Other biologically plausible values were considered for comparison in the interval [0.5, 3.0] 

μm2ms−1 in increments of 0.1 μm2ms−1. For each of the 26 values, the model was fitted to the 

measured dMRI signal voxel by voxel using the Matlab (The MathWorks, Inc., Natick, MA) 

NODDI toolbox (http://nitrc.org/projects/noddi_toolbox). Predictions of the signal were then 

calculated at each voxel from the estimated parameters. With the measured and predicted 

signals for each 𝑑∥  setting, the root mean squared (RMS) residual was computed at each voxel. 

A linear search across the 26 different points was then performed for locating the value of 𝑑∥  

corresponding to the lowest RMS residual value per voxel. This was done in order to generate a 

brain map of optimum 𝑑∥  and for looking at the optimality of 𝑑∥  = 1.7 μm2ms−1 across brain 

regions. 
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3.3.3 Tissue type segmentations 

White matter (WM) and gray matter (GM) masks were obtained for each individual in order to 

probe the influence of tissue type on the fitting residuals. This was conducted by running FSL’s 

[127] FAST tool [128] with mean diffusivity (MD) and fractional anisotropy (FA) maps as input 

channels. FA and MD maps were obtained from tensor fits using a weighted least squares 

method. For the AD-risk study, the shells with b values of 4.8 and 7.5 msμm−2 were excluded in 

the tensor fitting. 

 

3.3.4 Subgroups for Studying Influences of Age, Sex, and Protocol 

The availability of data from the various studies allowed for selection of several subgroups that 

were organized according to age, sex, and protocol. With the data sets organized this way, the 

residual analysis was performed for the following three cases: 

Groups for age analysis. Subgroups of 16 participants (roughly half male and half female) were 

selected from three studies as follows: One group of 16 subjects age approximately one month 

from the Neonates study. One group of 16 subjects ages between 10 and 19 from the Teen-II 

study. Six groups, 16 subjects each, extracted from the Midlife-I study, for the six age categories 

of: 20-29, 30-39, 40-49, 50-59, and 60-65 years. Note that, except for the neonates, these data 

sets have matching protocols so that the main difference per category was age. In order to help 

disambiguate protocol from age influences, two additional scans were obtained for one adult: 

one with the infant protocol and one with the adult protocol. 
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Groups for sex analysis. From the Teen-I study, two subgroups one of 30 females and one of 30 

males were selected. The two groups were matched by age (13 years old), so that the main 

difference between the groups was sex. 

Groups for protocol analysis. Two groups of 16 subjects (roughly half females and half males) 

with ages ranging from 50-59 years were selected, one from the Midlife-I study and one from 

the AD-risk study. In this case, the assumed main difference between the groups was the 

acquisition protocol. 

 

3.4 Results 

The results are organized as follows. (1) We first show how variation in 𝑑∥  translates to 

variability in the estimated parameters. (2) Then, the model RMS residuals, with respect to 𝑑∥  

are shown to differ between tissue types. (3) This is followed by the presentation of voxel-wise 

optimized 𝑑∥  maps and the ways in which the optimality of 𝑑∥  = 1.7 μm2ms−1 is influenced by 

age, sex, protocol and tissue type. 

 

3.4.1 Estimated model parameters and 𝑑∥ 

Upon completion of the various model fits, the dependence of the estimated model parameters 

to variations in 𝑑∥  was explored. For all model parameter maps, mean values were calculated 

over WM and GM regions. Figure 3.2 shows these values plotted with respect to 𝑑∥. This 

analysis reveals a dependence on 𝑑∥  for all three parameters irrespective of the study as well as 

variation in the comparison of parameters among the studies. For example, for gray matter 

values of 𝑑∥  that are lower than the assumed value would weaken variation of the neurite 
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density across the teen and adult subjects. On the other hand, lower values of 𝑑∥  in gray matter 

would enhance differences in the ODF concentration parameter across all studies. 

 

 
Figure 3.2 NODDI parameter trajectories with respect to 𝑑∥. For each parameter (Intra-cellular 
compartment volume fraction, fic, isotropic compartment volume fraction, fiso, orientation concentration 
parameter, κ), the analysis is broken by white matter (WM) and gray matter (GM) regions. Each point on 
the curves represents the mean parameter over WM or GM at the specific 𝑑∥  value. The default 
operating point is marked by the blue dashed vertical line. 

3.4.2 Model residuals with respect to 𝑑∥ 

The values of 𝑑∥  that result in the closest agreement between the measured and predicted 

signals as dictated by the RMS residuals were explored next. For each of the resulting 26 RMS 

residual maps, mean values across WM and GM were calculated. These are plotted with 

respect to 𝑑∥  in Figure 3.3. These plots reveal that 𝑑∥  values in GM that achieve minimum RMS 

residuals deviate from the default setting (1.7 μm2 ms−1) for all studies. For WM, the lowest 

values in the RMS residual curves occur in the neighborhood of the default setting. Notably, 
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most WM curves, with the exception of the Neonate study, exhibit broad ranges of lowest 

values as compared to the majority of GM curves. The better-defined minima in WM for the 

infants could be related to a maximum b value that better matches the characteristics of the 

young brain tissue (i.e. longer T2, higher water content) such that diffusion weighting in the 

signal is more adequate. This is in line with the AD-risk study, which used a max b-value of 7.5 

msμm−2 and the WM RMS residual curves are noticeably more convex. The remaining studies 

have maximum b values that are likely on the low end of the optimal range for capturing effects 

of more restrictive intra-neurite environment, which could help explain the shallower curves in 

WM. 

 
Figure 3.3 . Model residuals with respect to 𝑑∥. Average root-mean-square (RMS) residual with respect 
to 𝑑∥   for all subjects in each study. Each of the small size dots represents the mean RMS residual over 
white matter (A) or gray matter (B) at the specific 𝑑∥   value. The large size dots represent the median 
value over all the subjects in the study at the specific 𝑑∥   value. The default operating point is marked by 
the blue dashed vertical line. 
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3.4.3 Optimized 𝑑∥  maps  

Optimum intrinsic diffusivity whole brain maps were created by selecting at each voxel the 

value that corresponded to the smallest RMS residual. Resulting optimal 𝑑∥  maps were median 

filtered using a box kernel (size 3x3x3 in voxels). The filtering helps to enhance the underlying 

structure in the distribution of values between white and gray matter. The pattern is spatially 

consistent before filtering, but it is more difficult to appreciate due to the shallowness of the 

residual curves for white matter for some of the studies (i.e. Teen-I, Teen-II, Midlife-I). Figure 

3.4 shows optimum 𝑑∥  maps for one subject selected randomly from each of the six studies. 

These maps reveal moderate to substantial contrast between WM and GM regions. The non-

uniformly distributed 𝑑∥  in these maps suggests that 𝑑∥  = 1.7 μm2ms−1 may not be appropriate 

for all brain regions and all populations. 

 
 

 
Figure 3.4 Optimum 𝑑∥  maps. (C) Axial view of optimum 𝑑∥  map for one subject selected from each of 
the studies. 
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3.4.4 Optimized 𝑑∥   and age  

Optimal 𝑑∥   maps were computed for the cohort organized by age group. These maps were 

further masked into WM and GM regions and average optimal 𝑑∥   values were obtained for 

each region. Figure 3.5(A) shows the distributions of average optimal 𝑑∥   values according to age 

group. These plots show distinct distributions between WM and GM average optimal 𝑑∥   for all 

age groups greater than 10 years. The majority of WM optimal 𝑑∥   values are distributed around 

the default operating point (1.7 μm2ms−1), while all GM optimal 𝑑∥   values are reduced by at 

least 0.4 μm2ms−1. These trends are fairly consistent for all distributions corresponding to ages 

10 years and above. For the group of less than 1 year (i.e. infants) there is a greater degree of 

closeness between the WM and GM distributions of average optimal 𝑑∥   in comparison to the 

rest of the age groups. In this case, optimal 𝑑∥   values fall approximately between 1.4 and 1.5 

μm2ms−1 for WM and 1.2 and 1.3 μm2ms−1 for GM. For each age group, a pairwise t-test was 

conducted in order to assess statistical significance of the tissue-wise difference in average 

optimal 𝑑∥. The testing showed that for all groups the optimum 𝑑∥   for GM and WM were 

significantly different (p < 0.01). A multiple group test revealed that average optimal 𝑑∥   is 

significantly different between the infant and the rest of the older age groups in both WM and 

GM, while no significant differences were found between any of the other groups. The mean 

optimum 𝑑∥   values for the two additional scans on one adult, Figure 3.5(B), are in agreement 

with those values from same age group for both the infant and adult protocols, pointing to the 

fact that the observed trends are more a result of differences in age rather than in protocol. 
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Figure 3.5 Optimized 𝑑∥   as function of age group and tissue type. (A) Mean value of optimal 𝑑∥   as 
function of age group and tissue type. The scanning protocol for the <1 year group is slightly different 
than that of the rest of the groups (Table 1). The numbers from scanning one adult with the two 
protocols are shown in B. The dashed horizontal line marks the default 𝑑∥   value. 

 
3.4.5 Optimized 𝑑∥   and sex  

Optimal 𝑑∥   maps were also computed for the cohort organized according to sex. Average 

optimal 𝑑∥   values were obtained across WM and GM regions. The distributions of average 

optimal 𝑑∥   values according to sex category revealed significantly different values between WM 

and GM with ranges that are consistent with the same age group (10-19 years) from the age-

dependence analysis. Yet, no significant effects of sex were observed, a result that is 

compatible with the age-dependent analysis, which also showed no obvious split in optimal 𝑑∥   

between the male and female participants. 
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3.4.6 Optimized 𝑑∥   and acquisition protocol  

Finally, optimal 𝑑∥   maps were also computed for the cohort of subjects with data acquired 

under differing imaging protocols. Based on the observation that the age dependence analysis 

revealed no obvious age effects for ages 10 and above, data from the Teen-I study was also 

included in this cohort despite the unmatched age. This resulted in 3 protocol categories. Figure 

3.6 shows the distribution of WM and GM average optimal 𝑑∥   values according to imaging 

protocol. 

 The data sets from the groups with the highest b value protocol show optimal 𝑑∥   values 

that are lower than 𝑑∥   = 1.7 μm2ms−1. In GM, this analysis reveals a seemingly decaying trend in 

optimal 𝑑∥   distributions with respect to maximum b value. Pair-wise t-tests revealed all 

distributions in GM are significantly shifted down compared to WM distributions, consistent 

with the observed trend in the previous age and sex comparisons. 

 

 



 99 

 

Figure 3.6 Optimized 𝑑∥   as function of imaging protocol. Mean value of optimal 𝑑∥   as function of 
imaging protocol and tissue type. The dashed horizontal line marks the default 𝑑∥   value. 

 
3.5 Discussion 

In this work we studied the implications of diverse multi-shell dMRI data on the optimality of 

the NODDI parallel intrinsic diffusivity 𝑑∥    = 1.7 μm2ms−1. The results suggest model 

assumptions for 𝑑∥    may be suboptimal for specific ages (i.e., infants) and also in gray matter. 

Although not examined, the optimality of 𝑑∥    = 1.7 μm2ms−1 may also vary with pathology. We 

also observed that suboptimal 𝑑∥    leads to biases in the estimated NODDI parameters. Of 

particular interest would be a drop of neurite density in gray matter, a result that is consistent 

with findings in a recent study [117]. 

 For gray matter, the optimal 𝑑∥    is significantly lower than 1.7 μm2ms−1. In white matter of 

the adult brain, values of the optimal 𝑑∥    hover around the default 𝑑∥    = 1.7 μm2ms−1 and just 

below the range [1.9, 2.2] μm2ms−1 of intra-axonal diffusivities in white matter reported 
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elsewhere [129], though, further analysis (see below) suggested high FA regions in the adult 

brain contained average optimal 𝑑∥    that falls in this range. It is important to note, however, 

that the ranges of residual minima in white matter were broad and shallow. 

 Further, a finer grain analysis indicates that protocol and age also have an impact on the 

optimality of 𝑑∥    = 1.7 μm2ms−1, both in white and gray matter. The age-dependence analysis 

revealed that the newborn brain optimum 𝑑∥    in white and gray matter are closer in value 

compared to those in the adult brains. Both WM and GM values of optimum 𝑑∥    are different, 

however, from that used in recent studies [120], [130] that have implemented NODDI in the 

infant brain. The value in these studies was set to 2.0 μm2ms−1, likely because average DTI axial 

diffusivity in high FA regions (see below) of newborns is close to this number. Interestingly, at 

this setting, and using the 1.7 μm2ms−1 for the adult brain, nearly any difference between the 

infants ODF concentration parameter and that of the older age brains would be removed in 

gray matter. Using the optimal setting for 𝑑∥  , would result in appreciable differences in ODF 

concentration parameter between the adults and the infants. On the other hand, using the 

optimal settings for 𝑑∥  , would weaken the differences in intra-cellular volume fraction between 

the infant and the older subjects. 

 This analysis also showed that in the adult brain optimum intrinsic diffusivity values do not 

vary appreciably with age. However, optimum 𝑑∥  values in GM are much lower than those in 

WM and different from the default 𝑑∥  = 1.7 μm2ms−1. With regards to imaging protocol, high b 

value and more diffusion weighted volumes appeared to yield less noisy and more stable 

optimal intrinsic diffusivity and NODDI parameter estimates. 
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 In hindsight, the sub-optimality of the assumed 𝑑∥  = 1.7 μm2ms−1 in gray matter is not 

surprising since this value was originally estimated in the adult corpus callosum [107]. Also, 

suboptimality of the current state of the model in gray matter might be related to the idea that 

the impermeable ‘stick’ representation of neurites is only adequate for myelinated axons but 

not for dendrites or non-myelinated axons, as others have suggested [131]. In general, 

however, the variation of optimal intrinsic diffusivity across tissue types is in agreement with 

findings of axial diffusivity variation across the brain reported in [117]. 

 Studies have reported decreasing DTI axial diffusivity with age [132]–[134]. Thus, the trend 

of increasing optimum 𝑑∥  with age in WM seen in Figure 3.5(A) prompted further investigation. 

For comparison, averages of DTI axial diffusivity over WM and GM were computed for all 

subjects in all age groups (Figure 3.7).  
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Figure 3.7 NODDI and DTI. Comparison of age trajectories between NODDI optimum parallel intrinsic 
diffusivity and DTI axial diffusivity in global white matter (A), global gray matter (B), and high FA white 
matter (C). The dashed horizontal line marks the NODDI default 𝑑∥  = 1.7 μm2ms−1 value. 

 

The resulting axial diffusivity age trajectories are in agreement with previous studies [132]–

[134]. However, while these numbers pertain to the whole of white matter, regional 

differences in developmental trajectories of DTI quantities in the neonate brain have been 

observed [135]. In the infants, a further look into high FA (>0.5) regions, which reduce to 

portions of the corpus callosum and the internal capsule, revealed that average optimal 𝑑∥  in 

these regions is comparable to that seen in the adult global WM. These regions in the infant are 

thought to be myelinated by one month after birth and to have higher fiber coherence than 

other white matter areas [135]. The lower FA regions (not shown) in the infant brain, which 
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presumably reflect less or not-yet myelinated axons and or lower fiber coherence, exhibit 

values of average optimal 𝑑∥  that are similar to those of whole WM. For the older age groups, 

the axial diffusivity distributions in gray matter mimic those of the optimal 𝑑∥. For the infants, 

this is true for both the WM and GM distributions. Also, the optimal 𝑑∥  distribution separation 

between WM and GM is less for the infants than for the rest of the older age groups. Based on 

all this, it could be speculated that the neonatal gray matter neurites and white matter neurites 

are more similar than they are in the adults. Therefore, the model fit for less coherent, 

nonmyelinated fibers in neonatal white matter would be more similar to the fit in the neonatal 

gray matter than to the fit in the adult whole WM, as it is illustrated in Figure 3.5(A). 

 

 

3.6 Limitations 

3.6.1 Assumed equal intra- and extra-cellular 𝑑∥ 

As mentioned in the introduction, another important assumption of the model is that of equal 

𝑑∥  in the intra- and extra-cellular compartments. Thus, one of the great limitations of this work 

is that it was carried out while maintaining this and other assumptions of the model. 

 In order to glimpse at the appropriateness of this assumption as it pertains to this work, a 

similar model residual optimization was done for the case where the extra- to intra-cellular 

parallel diffusivity ratio took on values different than 1. In this case, the model was adjusted so 

that the extra-cellular diffusivity was expressed as a fraction of the intra-cellular diffusivity 

value. The ratios ranged from 0.1 to 1.3 in 0.1 increments. In this case the number of fits 

increases dramatically for each subject (26x13 = 338), as do the memory and time 
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requirements. Therefore, the analysis was restricted to two subjects, one infant and one adult, 

and for a single axial slice. Additionally, in order to circumvent the long fitting times using the 

Matlab tool box, for this part of the analysis the AMICO NODDI toolbox [136] was used instead. 

Model RMS residuals were calculated for each of the 26 intra-cellular 𝑑∥  values in [0.5 μm2ms−1, 

3.0 μm2ms−1] and each of the 13 extra- to intra-cellular 𝑑∥  ratio values in [0.1,1.3]. Average RMS 

residuals over WM and GM were plotted with respect to both, the intra-cellular 𝑑∥  and the ratio 

of extra- to intra-cellular 𝑑∥. These results are shown by the contour plots in Figure 3.8. Both in 

white and in gray matter, the regions of minimum residual values extend over several values in 

the two dimensions of the graphs. These poorly defined minima point to a multiplicity of 

solutions when constraints on the model diffusivities are not imposed. Similar results have been 

presented by other reports [117], [119], which show that unconstrained multicompartment 

biophysical models lead to issues in parameter estimation. Particularly, the shape of the lowest 

residual regions in these contour plots is evocative the pipe-like structures for the fitting cost 

function landscapes of non-constrained multi-compartment models reported in [117] and 

[119]. 
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Figure 3.8 Model residuals and non-equal diffusivities. Fit errors (RMS residuals) of NODDI model with 
respect to both variation in intra-cellular 𝑑∥  and variation in the ratio of extra- to intra-cellular 𝑑∥. (A) 
Infant subject average fit errors over white matter. (B) Infant subject average fit errors over gray matter. 
(C) Adult subject average fit errors over white matter. (D) Adult subject average fit errors over gray 
matter. 

 
3.6.2 SNR effects on model residuals 

We recognize that this evaluation is mainly based on model fitting residuals. However, smaller 

residuals do not always mean that the model can probe microstructure more accurately, but 

rather they are just a goodness of fit measurement. When the SNR is low, smaller residuals 

could mean the model fits the noise better but does not reveal accurate tissue characteristics. 

To address this issue, we implement image denoising as part of the data pre-processing, which 
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should help to reduce noise bias issues and we can more safely rely on the residuals. 

Additionally, the SNR data from the studies shown in Figure 3.9 exceed the rule of thumb 

threshold SNR value for white matter of 20. The SNR is considerably greater in GM, which is 

where we see small residuals at lower intrinsic diffusivity. Even more, for the infant data the 

SNR is higher overall and that is also the group that had small residuals at lower intrinsic 

diffusivity. This gives us more confidence that the small residuals at lower values do not come 

from fitting noise rather than signal.  

  
 

 
Figure 3.9 Mean SNR by study and tissue type.  

3.6.3 Generalizability 

Finally, great effort was made in order to make this as an exhaustive analysis as possible in 

terms of the diversity of the data that was used. Yet, we acknowledge it is not fully 
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generalizable to the wider scope of neuroimaging biophysical modeling diffusion research, for 

which it should consider, among others, conditions of pathology and ex-vivo experiments. 

Nonetheless, we believe that these results are highly informative considering the broad range 

of ages and imaging protocols investigated. Finally, this analysis was performed for Watson-

NODDI only, not for other flavors of the technique which include Bingham-NODDI [124]or 

NODDIx [125], or its tumor specific version VERDICT [126]. 

 

3.7 Conclusion 

In this work, dependence of the estimated NODDI parameters on the parallel intrinsic diffusivity 

𝑑∥  was observed. Optimum 𝑑∥  in white matter of the adult brain is similar to the currently used 

value 𝑑∥  = 1.7 μm2ms−1 but significantly lower in gray matter. Optimal 𝑑∥  is also lower than the 

default value for the newborn brain in white and gray matter. Effects of imaging protocol on 

the optimum 𝑑∥  were also observed. Finally, it is important to consider that, despite its 

limitations, recent analysis suggests that NODDI metrics provide information that is congruent 

with histologically equivalent metrics [137]. 
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Chapter 4 - A framework for single-subject multivariate analyses of 
white matter tissue microstructure along specific white matter pathways 
 
4.1 Abstract 

Imaging-based quantitative measures from diffusion-weighted MRI (dMRI) offer the ability to 

non-invasively study the human brain. Group-level comparisons of such measures represent an 

important approach to study abnormal conditions. These types of analyses are especially useful 

when the regions of abnormality coincide across subjects. When this is not true, however, 

approaches for individualized analyses are necessary. Examples of conditions exhibiting 

heterogeneity between subjects are traumatic brain injury (TBI) and autism. This work presents 

a framework for single-subject multidimensional analysis based on the Mahalanobis Distance. 

This is conducted along specific white matter pathways represented by fiber-tracking-derived 

streamline bundles. The method is demonstrated with a study of DTI scalar metrics obtained 

from severe TBI patients and healthy control subjects. 

 

4.2 Introduction 

Diffusion tensor imaging represents an important neuroimaging instrument for investigating 

white matter microstructural alterations in ASD [138] and TBI studies [139]. Changes in white 

matter are commonly assessed on fractional anisotropy or mean diffusivity perturbations 

relative to a control group or baseline values, or in relationship to non-imaging-based measures 

(e.g. behavioral). While investigations of ASD and TBI have revealed group differences across 

brains of individuals with and without the conditions, discordance in replication of results 

across studies has also become apparent [140], [141]. Replication disparities in the findings can 
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be attributed to factors such as variability of the samples in the studies or differences in the 

techniques for analysis. It is likely that these are also linked to both, the not-well-understood 

underlying neurobiological complexity and the assumption that pathology is expressed 

consistently across individuals. The latter is particularly true for TBI, where there clearly exists 

high inter-subject heterogeneity in region of injury (see Figure 4.1).  

 
 

 
Figure 4.1 Traumatic brain injury cases (T1 weighted axial slices). This example portrays the high spatial 
heterogeneity of lesions across patients.   

Individual DTI differences in a group of TBI patients may be smoothed out by the inherent 

averaging effect of group analyses and be characterized as normal variation. Initial region of 

injury and varying degrees of severity in clinical TBI means that no two cases are alike, making it 

challenging to build a statistically significant group difference in a region of interest (ROI) or in 

individual voxels. Thus, methods that can capture patterns of individual deviations should prove 

extremely useful in identifying and understanding the neurobiological implications in these and 

other multifaceted brain conditions.  

 To that end, in a recent study Dean et al. (2017) [140] conducted comparisons of single 

autistic individuals to a typically developing group. Individuals were compared to the group, 

both, by a univariate approach using the Z-score and by a multivariate approach using the 
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Mahalanobis distance [142]. The study reported that relative to univariate comparisons, 

improvements in discrimination between autistic and typically developing individuals were 

achieved by simultaneous consideration of DTI parameters averages in multiple brain ROIs with 

the Mahalanobis distance. Similarly, Shaker et al, (2017) [143] applied a multidimensional-

based TBI analysis where a distribution of a single DTI parameter in multiple ROIs of a reference 

healthy group was modeled to account for inter-region interactions. Deviation of patients from 

the healthy group was also characterized individually by estimating the Mahalanobis distance 

between the patient’s multiple ROI measures to the group model. The analysis reported the 

multivariate approach to have a superior ability to correctly classify subjects as patients or 

controls compared univariate alternatives. 

 These two studies are examples of analyses focused on DTI measures extracted as averages 

from specific ROIs. An inherent disadvantage of the ROI approach is the loss of spatial 

specificity within the delineated region. One way to overcome this is to conduct a voxel-by-

voxel survey of the brain. Voxel-based approaches (VBA) [144] offer the ability to study the 

entire brain while making it possible to preserve the scope of subject-to-subject variation in the 

spatial distribution of pathology, a feature which gets masked out by ROI based approaches. 

Additionally, with VBA no prior knowledge or assumptions about the location of pathology is 

necessary.  

 An implementation of the voxel-wise framework for single subject characterization of TBI 

patients based on univariate Z-scores was presented by Kim et al., 2013 [145]. The study 

reported the ability to detect unique spatial patterns attributable to TBI at the subject level. As 

demonstrated by Dean et al. (2017) in their autism study, the classification power of the VBA 
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framework in Kim et al., 2013 would likely benefit from incorporation of additional DTI 

parameters through a multidimensional-based analysis.  

 This was the motivation for a novel method we have previously introduced for voxel-wise 

implementation of the Mahalanobis distance using DTI parameters to compare an individual to 

a reference sample (Guerrero et al., 2018). This simulation study demonstrated the ability to 

capture individual variability in DTI parameters at the voxel level. We have extended this 

framework to study ASD (results not shown) but have found that it is extremely susceptible to 

inter-subject image misalignment and the multiple-comparisons problem is a massive one as 

with most VBA methods. A recent application of the VBA Mahalanobis distance method in the 

study of epilepsy reported similar limitations [146].  

 This report presents continuing work, which set out to develop a novel computational and 

statistical framework for testing whether an individual is different from a reference group in a 

multidimensional space defined by the diffusion tensor Eigenvalues. The method uses the 

Mahalanobis distance as the multivariate metric in testing for abnormality. The testing is 

performed at individual segments along specific white matter tracts. This reduces the number 

of tests by orders of magnitude compared to VBA but retains better spatial specificity than the 

averaging-over-ROI approach. Additionally, this method is more forgiving of spatial image 

misalignment than the VBA approach.  

 The approach is based on the concept of tractometry [147]. The procedure involves the 

mapping of DTI parameters along specific white matter pathways, slicing the pathway into 

several segments guided by a centroid streamline, and extracting average parameter values 

from each segment to create a vector of segment-averages, which is typically referred to as a 
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tract profile. We demonstrate the method with individual comparisons of 22 severe pediatric 

TBI patients against a group of 49 age-matched healthy control subjects. 

4.3 Methods 
 
4.3.1 Tractometry 

As mentioned in the previous section, the framework rests on the concept of tractometry. The 

steps of tractometry include: 1) tract extraction, 2) projection of a quantitative parameter onto 

tractogram streamlines, 3) slicing of the tractogram into segments, and 4) profiling the 

segment-average parameter along the pathway defined by the tractogram. The ways in which 

these steps were achieved for this work are described next. These steps are summarized in 

Figure 4.2 using the tractogram for the inferior longitudinal fasciculus as an example.  

 

 
Figure 4.2 Components of the tractometry procedure. The steps of tractometry include: tract 
extraction, projection of a quantitative parameter onto tractogram streamlines, slicing of the 
tractogram into segments, and profiling the segment-average parameter along the pathway defined 
by the tractogram.  

FA

FA Projected onto ILF Tractogram ILF Representative Core Streamline

ILF Sliced

Contiguous Slices

Figure 1
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4.3.2 Tract Extraction 

Tract extraction, the grouping of streamlines into bundles for representing specific white 

matter tracts, is one of the main requirements in this approach. In this specific implementation, 

tract extraction is achieved by employing TractSeg [148], a recently published convolutional 

neural network–based method for automated white matter tract extraction. The pipeline, 

however, is modular in the sense that this way of tract extraction can be substituted without 

major adverse effects to the framework workflow.  

 In implementing TractSeg, tract extraction can be achieved by simply passing the raw 

diffusion series with corresponding files for diffusion weighting (𝑏-values) and diffusion 

gradient directions to the command-line tool. The program will internally estimate fiber 

orientation distribution function (fODF) maps using constrained spherical deconvolution, distill 

the peaks of the fODF lobes at each voxel (the orientation of the dominant fiber populations) 

[81], [149] and use these to perform deterministic or probabilistic fiber tracking (See section 2.7 

BASICS OF TRACTOGRAPHY). Alternatively, one can generate the peaks separately and pass 

those onto the program.  

 The algorithm was trained using high quality Human Connectome Project (HCP) data from 

healthy participants as well as with peaks generated from lower quality (e.g. under sampled to 

lower angular resolution with single b-values) HCP data from healthy participants. Additionally, 

the method generalized well to a variety of data including low resolution (spatial and angular), 

single-shell low b-value (e.g. b=1000), and data from epilepsy patients with enlarged ventricles. 

Based on these results shown in the published report [148], we deemed the method to be 

appropriate for this work.  
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4.3.3 Quantitative imaging-based features 

The other important ingredient in this approach is a number (at least two) of parameters or 

features extracted from the data that will be the basis for comparing an individual to a 

reference group. In this work, we use parameters derived from diffusion tensor imaging (see 

section 2.6 RENDERING DTI DATA). However, the method can accommodate other measures 

that are available at the voxel level.  

 

4.3.4 Parameter tract profiles 

Given a streamlines-bundle and an accompanying parameter map we can proceed to generate 

profiles of the parameter along the bundle (Figure 4.2). First, the voxel parameter values are 

projected onto the spatial coordinates that define the streamlines making up the bundle 

(streamlines are essentially sets of points with coordinates in the 3D space defined by the 

original diffusion images). Next, a core representative streamline, or centroid, is estimated for 

the bundle. This is done by applying the QuickBundles clustering framework [150] using the 

‘AveragePointwiseEuclideanMetric’ metric as implemented in the DIPY opensource library of 

tools (https://dipy.org) [151] in Python. Briefly, all streamlines in the bundle are first resampled 

to have the same number of segments. For each streamline, the points defining the segments 

must be equidistant. Then, the algorithm searches for a representative streamline that 

minimizes the average pointwise Euclidean distance between it and all other streamlines in the 

bundle. Then, the core streamline itself is sliced into several segments defined by equidistant 

points (N=20 in this case). What follows is to assign every point of each streamline to its closest 
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centroid point, effectively extending the segments defined on the centroid across the thickness 

of the pathway. Each segment definition is then used to compute the average of the parameter 

values within the segment. Voxel parameter values are weighted by the geodesic distance to 

the closest centroid point and the number of streamlines that pass through the voxel so that 

rogue streamlines far from the centroid have less of an impact on the average value. The result 

is a vector of segment-mean-parameter values, or a parameter tract profile. Because the distal 

portions of the sliced pathway (i.e. 1st and 20th segments in this case) generally are expected to 

exhibit more variability across subjects [147], these are clipped off and the analysis is 

conducted only for the central portion of the bundle (18 segments) defined by these endpoints.  

 

4.3.5 Tract Profile alignment 

Typically, tractometry studies running group comparisons of tract profiles have not considered 

inter-subject tractometry alignment in their analyses. It is assumed that artificially matching of 

the endpoints of the tracts and dividing them into the same number of segments will result in 

anatomical correspondence of the segments across subjects. However, recent publications 

[152], [153] have shown that variability observed across healthy subjects is reduced after 

alignment of the tract profiles. In the method presented by St-Jean et al., 2019, [151] pairs of 

one-dimensional parameter profiles are aligned by maximizing their cross-correlation function. 

On the other hand, the method in Benou et al., 2019, [152] performs curve-matching between 

the mean trajectories of bundles where the trajectories represent a combined measure of tract 

geometry and a model parameter (e.g. FA). An optimal set of coordinates for aligning two 

trajectories is estimated by the Fast Marching Method (FMM) for curve alignment [154]. 
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While these two methods have been shown useful in reducing variability across parameter 

profiles, they can produce different optimal alignments depending on the type of parameter 

that is used during the curve-matching optimization. For the current proposed work, it is 

necessary that the alignment be independent of parameter, since multiple parameters will be 

evaluated at once on the same slice of the tract. This becomes more important as more 

features are considered for the computation of the Mahalanobis distance. 

 For this reason, we propose to use an alignment method that is based on co-registering the 

fODF maps previous to the tract extraction. In order to achieve this, we 1) create a study 

specific fODF template; 2) then align each subject fODF to the template via rigid, affine, and 

non-linear deformations; 3) perform tract extraction of each subject in the template space;  4) 

apply each subject-to-template transformation to their corresponding scalar maps; 5) finally 

obtain tract profiles in the template space for each subject.  

 

The pipeline bridging the steps from raw data to parameter profiling along a specific white 

matter pathway, is illustrated by the flowchart in Figure 4.3 
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Figure 4.3 Data processing pipeline. Raw data is preprocessed with an assortment of artifact correction 
procedures. Fiber orientation distribution functions (FODs) are generated from constrained spherical 
deconvolution between the diffusion signal and the control group average single fiber response 
function. fODF maps from the control group are used to build an fODF template. All fODF maps including 
control and other subjects are co-registered to the template. Coregistered fODF maps are used to obtain 
peaks, or dominant fiber population directions, at each voxel. The peaks maps are fed to TractSeg which 
conducts a track specific probabilistic tractography. Combined with a parameter map, such as FA, an 
individual tractogram is used to create a profile of the parameter along the tract.  
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4.3.6 Mahalanobis Distance 

For a multivariate normal random vector 𝑿 = (𝑥+, 𝑥", 𝑥:, … , 𝑥R) of dimension 𝑝 (also referred 

to as the feature vector) the multivariate normal probability density function is given by  

 

 𝑝(𝑿) = 	 +
("M)4/"]|𝚺|

𝑒&
&
"(𝑿&𝝁)

6𝚺7&(𝑿&𝝁)           Equation 4.1 

 

where 𝝁 is the mean vector of the distribution, 𝚺 is the distribution covariance matrix, and 𝑇 

denotes vector transpose. Equation 4.1 assumes the population mean vector and covariance 

matrix are known, which is typically not the case. Nonetheless, estimates can be calculated 

from measurements of the random vector from a population sample,	𝑿𝒔, where 𝑠 designates a 

specific sample. A requirement is that the measurements are made from a single class, 𝑐. 

Assuming this is true, estimates of the mean vector and the covariance matrix can be obtained, 

respectively, as 

 

     𝝁�𝒄 =	
+
d8
∑ 𝑿9,T
d8
%E+                                                                                              

and 

     𝚺�𝒄 =	
+

d8&+
∑ (𝑿9,T − 𝝁)(𝑿9,T − 𝝁)4
d8
%E+                                                              

 

where ^ represents an estimated value and 𝑁T  is the number of measurements from class  𝑐. As 

𝑁T  tends to infinity the estimated mean vector and covariance matrix approach the true mean 

vector and covariance matrix. As a general rule of thumb, reliable estimations of the inverse 
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covariance matrix require at least 10 samples per dimension of the feature vector. After 

substituting the estimates, Equation 4.1 becomes 

 

 𝑝(𝑿) = 	
1

(2𝜋)R/"Z|𝚺�|
𝑒&

+
"(𝑿&𝝁g)

1𝚺h7&(𝑿&𝝁g) Equation 4.2 

 

The squared Mahalanobis distance, (𝑀𝑎𝐷)" is equal to twice the absolute value of the 

exponent in Equation 4.1 

 

 (𝑀𝑎𝐷)" = (𝑿 − 𝝁)2𝚺&+(𝑿 − 𝝁) Equation 4.3 

 

(𝑀𝑎𝐷)" encodes information about the separation of a measurement from the population 

mean relative to the spread of the distribution about the mean. The larger (𝑀𝑎𝐷)" is, the less 

likely it is for an observation of the feature vector to occur subject to the population 

distribution density function. For this reason, the Mahalanobis distance has often been used as 

a measure of class dissimilarity and a tool for anomaly detection in multivariate data. Similar to 

Equation 4.3, an estimate for (𝑀𝑎𝐷)" can be obtained from a population sample by using 

estimates of the mean vector and covariance matrix  

 

 (𝑀𝑎𝐷)" = (𝑿 − 𝝁�)2𝚺�&+(𝑿 − 𝝁�) Equation 4.4 
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Once a number of parameters have been profiled along a tract for a reference group according 

to step 9 in Figure 4.3, the segment-wise Mahalanobis Distance between a single subject and 

the group at each discrete piece of the tract can be estimated from Equation 4.4 as  

 

 𝑀𝑎𝐷 = Z(𝑿 − 𝝁�)2𝚺�&+(𝑿 − 𝝁�)   Equation 4.5 

 

4.3.7 Abnormality Classification 

In deciding what value qualifies as abnormal 𝑀𝑎𝐷 we follow a set of three steps. First, select a 

level of significance 𝛼 to control for the false discovery rate (FDR). Then, consider corrections 

for multiple comparisons and reference sample size. Finally, arrive at a critical value of 

Mahalanobis distance.  

 The distribution of (𝑀𝑎𝐷)" can be approximated by the Chi-squared distribution, and, 

when dealing with small sample sizes, better approximated by the 𝐹 distribution [155]. This 

allows us to achieve the steps outlined for defining abnormal 𝑀𝑎𝐷 based on Wilk’s criterion 

[155], [156] as  

 

 𝑀𝑎𝐷TI02 = �
𝑛𝑝(𝑛 − 2)𝐹R,%&R&+;j
(𝑛 − 1)(𝑛 − 𝑝 − 1)  Equation 4.6 
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This takes in an 𝐹 statistic at a Bonferroni corrected 𝛼	and	degrees of freedom determined by 

reference sample size 𝑛 and size of feature vector 𝑝, corrects for 𝑛 and 𝑝 and returns the 

critical value for the Mahalanobis distance,  𝑀𝑎𝐷TI02.  

 

4.4 Implementation in Severe Traumatic Brain Injury Study  

Traumatic brain injury in children is a significant cause of long-term disability and impairment.  

There is a critical need to better understand the relationships between brain networks as 

measured by MRI and clinical and behavioral outcomes.  This analysis applies the along-the-

tract-Mahalanobis-distance framework to evaluate how white matter microstructure is affected 

in a cohort of children ages 9-18 years who sustained severe traumatic brain injuries. More 

specifically, based on DTI data collected 1-2 years post injury, this work explores how white 

matter microstructure as reflected by the multivariate DTI analysis is affected in the following 

domains: 

 

Default Mode Network (DMN): DMN connects nodes within prefrontal cortex, lateral inferior 

parietal lobes, medial temporal lobes, and posterior cingulate cortex (PCC). The main tract 

connecting prefrontal structures and PCC is the cingulum. Dense interconnectivity between 

frontal and posterior DMN nodes is important for efficiently directing attention and switching 

between internally directed and task oriented cognitive processes [157].  TBI-induced 

alterations in the DMN may cause impairments in executive function like decreased ability to 

self-monitor engagement in goal directed tasks, and may correlate with measures of task 

initiation, behavioral monitoring, and planning. 
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Hippocampal Memory Network (HMN): HMN has connections between the hippocampus, 

parahippocampus, and cortical hub nodes within other brain networks like pCC (DMN), and 

amygdala (Fronto-Limbic). Injury to hippocampus or its major input/output pathways causes 

impairments in memory encoding and retrieval. Memory and learning are frequently affected 

functions in children with TBI [158].  

 

Fronto Limbic Network (FLN): FLN encompasses connections between amygdala and prefrontal 

cortex, playing a critical role in emotion regulation. The uncinate fasciculus pathway represents 

the major structural connections between the amygdala and prefrontal cortex. Disruptions in 

connectivity of this pathway have been observed to relate to anxiety [159] and depression 

[154]. Studies of microstructure with DTI have observed changes in amygdala MD and uncinate 

FA in children with TBI, compared to healthy controls, which were associated to anxiety and 

emotion regulation [160], [161].  

 

Global-Network-Dysfunction: Impairments in multiple functional domains have been observed 

in children with TBI [162]. Severe or widespread brain injuries are expected to impact multiple 

networks resulting in impairments to global function. The corpus callosum tracts play an 

important role in global connectivity, thus injury to areas in this white matter structure has 

been viewed as a marker for global network disruption [163]. 
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4.4.1 Participants  

Subjects older than 9 years old and enrolled in the Approaches and Decisions in Pediatric TBI 

(ADAPT) trial were recruited for inclusion in this study. The ADAPT trial enrolled 1000 children 

with severe TBI defined as a post-resuscitation Glasgow Coma Scale (GCS) of 8 or less [164]. A 

typically developing control cohort without history of TBI or neuropsychiatric diagnoses was 

recruited for imaging and neurocognitive testing at the University of Wisconsin. The TBI group 

consisted of 22 subjects (10 males, 12 females) between the ages of 11.6 and 18.9 years (Mean 

15.7 ± 2.1 years) at the time of MRI scanning, recruited from 13 sites (Table 3-1). The control 

group consisted of 49 subjects (24 males, 25 females) between the ages of 9.0 and 18.0 years 

(mean 13.45 ± 2.8) at the time of MRI scanning. The study was approved by the institutional 

review board at the University of Wisconsin (UW) and all participating sites. Informed consent 

was obtained from the subject or legal guardian when appropriate. 

 

4.4.2 Imaging  

Brain imaging was performed for each participant using 3T MRI standardized neuroimaging 

protocols across 13 sites (Table 2). T1-weighted (T1w), T2-weighted (T2w), T2-weighted FLAIR, 

T2*-weighted, diffusion tensor, and resting state functional images were obtained for each 

subject. Manufacturer-specific protocols were emulated after protocols1 used in the multi-site 

Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study.  Prior to subject 

enrollment, each site was provided with the scanner-specific protocol to be implemented on 

their system. A scanning procedure manual was developed for the study and disseminated to 

 
1 https://tracktbi.ucsf.edu/sites/tracktbi.ucsf.edu/files/TRACK-TBI_MRI_Manual_16December2014%5B2%5D.pdf 
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all participating sites. Prior to human data collection, sites were required to collect phantom 

data using the protocol, which was sent to UW to verify protocol compliance. Once the site 

imaging protocol was approved, sites then enrolled adolescent TBI participants for scanning. 

Imaging was performed 12-25.5 months post injury with a mean interval between injury and 

MRI scanning of 20 ± 4.44 months. 

 
Table 4-1 TBI patients sorted by Site, scanner Vendor, and scanner Model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The images used for this analysis were the DTI and structural T1w and T2w scans. 

 

T1w structural imaging was performed using a 3D inversion-recovery prepared sequence with a 

rapid gradient echo readout (i.e., MP-RAGE on Siemens and Philips; BRAVO on GE). The 

protocol prescription was 3D sagittal images with a 256x256 matrix over a 256 𝑚𝑚 field of view 

Site Patient Vendor Model 
I A GE MR750 
I B GE MR750 
II C GE MR750 
III D Philips Ingenia 
IV E Philips Ingenia 
IV F Philips Ingenia 
V G Philips Achieva 
V H Philips Achieva 
V I Philips Achieva 
VI J Siemens Skyra 
VII K Siemens Skyra 
VIII L Siemens Trio 
IX M Siemens Trio 
X N Siemens Trio 
X O Siemens Trio 
X P Siemens Trio 
X Q Siemens Trio 
XI R Siemens Prisma 
XI S Siemens Prisma 
XII T Siemens Prisma 
XII U Siemens Prisma 
XIII V Siemens Prisma 
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and 192 slices that were 1 𝑚𝑚 thick (1 𝑚𝑚 isotropic resolution), frequency encoding in 

Superior/Inferior direction, in-plane parallel imaging with an acceleration factor of 2. On GE 

scanners, the inversion time, TI, was set to 450 𝑚𝑠, and Siemens & Philips scanners the TI was 

900 𝑚𝑠. 

 T2w structural imaging was performed using a 3D fast spin-echo sequence (i.e., SPACE on 

Siemens; VISTA on Philips; CUBE on GE). The protocol prescription was 3D sagittal images with 2 

averages, a 256x256 matrix over a 256 𝑚𝑚 field of view and 192 slices that were 1 𝑚𝑚 thick (1 

mm isotropic resolution), frequency encoding in Superior/Inferior direction, in-plane parallel 

imaging with an acceleration factor of 2, and variable flip angle.  

 Diffusion tensor imaging was performed with a single-shot spin-echo echo-planar imaging 

pulse sequence. The protocol prescription was 2D sagittal images, a 96x96 matrix, 240 𝑚𝑚 

FOV, 64 slices, 2.5 𝑚𝑚 isotropic resolution, phase encoding in Anterior/Posterior direction, 

parallel acquisition with a geometric reduction factor of 2. Diffusion settings included diffusion 

encoding along 64 non-collinear directions with 𝑏-value of 1300 𝑠/𝑚𝑚", 8 volumes with no 

diffusion weighting (𝑏=0).  TR/TE was 8500/minimum 𝑚𝑠 for GE and Phillips, 9000/82 𝑚𝑠 for 

Siemens. 

 

4.4.3 Multi-site phantom scans 

In order to explore systematic effects related to site on the estimated tensor Eigenvalues, we 

collected phantom scans from 6 of the 13 sites (sites I, II, III, IX, XI, XIII). These included at least 

one scan from each scanner vendor (GE, Phillips, Siemens). The phantom was scanned twice at 
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sites II and IX. Additionally, the phantom was scanned weekly over the course of five weeks at 

the site where the control group scans were collected (UW-Madison, Site I).  

 The imaging protocols included DTI, T1w, and T2w with the same prescriptions as those 

used for the human scans. The scanned phantom was the quantitative isotropic phantom (High 

Precision Devices, Inc, Boulder, CO) developed by the National Institute of Standards and 

Technology (NIST) and the Radiological Society of North America (RSNA)’s Quantitative Imaging 

Biomarker Alliance (QIBA). The phantom contains 13 vials, two for each of 5 concentrations 

(10%, 20%, 30%, 40%, 50%) of polyvinylpyrrolidone (PVP) in an aqueous solution for modulating 

the isotropic diffusivity of water protons, plus three vials with no PVP (i.e. 0% concentration) 

[165]. One of the 0% PVP vials is at the center of the housing and one at each of two concentric 

rings as shown in Figure 4.4(A). The phantom is scanned at close to 0°𝐶. This is achieved by 

placing it in an ice-water bath for a minimum of 2.5 hours. Temperature recordings from each 

site of the phantom before and after scanning were recorded. Preparation instructions were 

developed at UW-Madison and distributed to the other sites. A copy of the phantom 

preparation procedure sent to the sites is presented in 4.8 - Appendix A: Ice Water Diffusion 

Phantom Instructions of this chapter.  
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Figure 4.4 NIST PVP diffusion phantom. A) Varying PVP concentration vials. B) b0 image with regions of 
interest (ROI) represented as binary masks placed within the different concentration regions for 
analysis. Note there are two vials per concentration, each placed in one of two concentric circles. Except 
for the 0%, which has 3 vials, one in the center and one in each of the circles. 

 
4.4.4 Data Processing 

Structural T1w images were processed using FreeSurfer (The General Hospital Corporation, 

Boston, MA, USA) [145], [166]. In this process, surfaces separating tissue types (boundaries) are 

estimated for each subject. These separation surfaces are used to perform within subject multi-

modal image spatial alignment. In this case, T2w and 𝑏=0 diffusion volume (b0) are rigidly 

aligned to the T1w by maximizing the intensity gradient across tissue boundaries. This known as 

boundary-based registration (BBR). 

 

Diffusion weighted images were manually assessed for motion artifacts, and individual volumes 

were dropped if severe signal dropout artifacts were seen. Distortion, translation and rotation 

from bulk head motion and eddy currents were accounted for by co-registering DWIs using an 

affine registration tool [167] from the FMRIB software library 

(FSL; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Less severe motion related dropout artifacts were 

A) B)

Outer Circle Vials

Inner Circle Vials

Center Vial
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also corrected by this tool, by a method in which intensities of slices contiguous to the affected 

voxels are used to model the intensity variations. Gradient directions were additionally 

corrected for rotations [168].  

 

Next, EPI-related geometric distortions were corrected using an image registration-based 

approach. First, the inverse of the BBR transformations from the b0-to-T1w alignment are 

applied to the T1 and T2w-to-T1w volumes, so that these are rigidly brought into the b0 space. 

Then, the mean over the diffusion weighted volumes (meanDWI) is non-linearly co-registered 

to the rigidly transformed T1w. At the same time, the mean b0 (mean across 8 b0 volumes) and 

meanDWI are non-linearly co-registered to the rigidly transformed T2w. The alignment 

optimization is conducted simultaneously for all three contrasts. The non-linear deformations 

are constrained to occur only in the anterior-posterior direction. During the image acquisition 

this is prescribed as the phase encoding direction and the direction in which the most severe 

distortions occur. Finally, the resulting transformations are applied to all the volumes in the 

diffusion scan series. These operations were implemented in FreeSurfer [145], [166] and ANTs 

(http://stnava.github.io/ANTs/) [169] . See Figure 4.5. 
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Figure 4.5 EPI distortion correction example. A) Two axial slices (rows) illustrate b0 images before and 
after correction compared to distortion-free structural T2-weighted image (middle column). B) Same as 
(A) but with sagittal slices and with rows/columns transposed. 

 
 Diffusion tensors were estimated for each voxel using the robust estimation of tensors by 

outlier rejection (RESTORE) algorithm as part of the diffusion imaging in python (DIPY) open 

source software package [151]. Eigenvalue maps (λ1, λ2, λ3) were generated from the voxel-wise 

estimates of the diffusion tensor Figure 4.6(A). 

 

 Three groups of white matter tracts were selected for this analysis, Figure 4.6 (B,C,D). 

These are the uncinate bundles (left and right), the cingulum bundles (left and right), and the 

corpus callosum parcellated into seven subsections (rostrum, genu, rostral body, anterior 

midbody, posterior midbody, isthmus, splenium), see Figure 4.7. These pathways form part of 

networks that are known to be implicated in the clinical and behavioral outcome following TBI. 

Specifically, the cingulum forms important connections of the DMN and HMN, the uncinate is 

b0 uncorrected T2-Weighted b0 corrected
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an important pathway in the FLN, and the corpus callosum represent connections across 

multiple networks.  

 

 The tracts were extracted for all subjects using TractSeg. TractSeg was used for the tract 

extraction only after separately estimating fODF maps and peak maps using the MRtrix libraries 

(https://www.mrtrix.org) [170]. White matter and response functions for all control subjects 

were estimated using the multi-shell multi-tissue ‘dhollander’ algorithm. These were averaged 

across subjects to estimate a mean white matter response function. This averaged white matter 

response function was then utilized for estimating the fiber orientation distributions by 

constrained spherical deconvolution for both control and TBI scans.  

 

 A population specific fODF template was created using the control group fODF maps. Each 

individual fODF map (control and TBI) was then aligned to the template via rigid, affine, and 

non-linear diffeomorphic transformations using MRtrix [170]. Once in template space, fODF 

peak maps were generated for each individual and passed onto TractSeg for tract extraction. 

For comparison, tract extraction was also performed in native space.   

 

 All reconstructed tracts were inspected visually for defects. From this visual analysis, it was 

found that TBI subjects S and D with lesions affecting large portions of the left hemisphere did 

not have any streamlines for the left uncinate bundles. Patient S also had failed reconstructions 

for CC_1, CC_3, CC_4. Additionally, Patient D had failed reconstruction of CC_4.  
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Figure 4.6 Parameters for the Mahalanobis distance calculation and tracts in which the analysis was 
conducted. A) Example Eigenvalue maps of the diffusion tensor. Example tract segmentations color 
coded by direction B) Corpus callosum, C) uncinate, D) cingulum.  
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Figure 4.7 Example view (viewed from the inferior side of the brain) of solid color tract segmentations 
used in the analysis.  

 
Each tract was sliced into 20 discrete segments.  We note that while each tract is sliced into 20 

segments, the end segments are excluded from the analysis as more variability is observed in 

the end sections. Thus, the Mahalanobis distance was estimated at 18 segments for the 

majority of the examined bundles, except the cingulum bundles. As shown in Figure 4.8, there 

are very large differences between the lengths and paths of some streamlines that define this 

bundle. While most streamlines start at the prefrontal cortex and run dorsally along the corpus 

callosum, some will curve slightly laterally, then inferiorly and anterior towards the 

hippocampus. However, some will curve up towards the superior occipital cortex. This causes 
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the centroid streamline to terminate prematurely. As a result, slices towards the most anterior 

part of the tract include both, portions of the hippocampal limb and the main dorsal body of 

the cingulum. In the interest of simplicity, we decided to exclude these pieces of the tract from 

the analysis and limit the analysis to the first 13 segments starting from the prefrontal cortex 

end of bundle.  

 

 
Figure 4.8 Example of the slicing of the cingulum for tractometry. This depicts the two dominant groups 
of streamlines that result in the guiding core streamline terminating early. The segments within the blue 
frame are excluded from the analysis.  

 
 Profiles of the principal diffusivities (Eigenvalues: (λ1, λ2, λ3)) of the diffusion tensors were 

generated for all subjects. We decided to use the Eigenvalues as features for the Mahalanobis 

distance estimation, since, by definition, these parameters are orthogonal to each other. The 

Excluded Segments

Dorsal Fibers

Temporal Fibers

Figure 5Figure 5
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parameter profiling was carried out in template space after applying the set of transforms from 

the fODF map alignment to the parameter maps, which themselves were estimated in native 

space, as were the fODF maps. Instead of using the tract extractions from the template itself, 

we decided to use the tracts extracted from the fODF maps of each individual to sample their 

own diffusivity maps. This means that even in the presence of some level of misalignment 

between the template and the individual maps, we will be more faithfully sampling the right 

regions at the subject level.  

 

 Given the parameter tract profiles, the Mahalanobis distance between each of 22 TBI 

patients and the reference control group of 49 subjects was estimated at each segment. 

Additionally, in a leave-one-out fashion, each of the controls was compared to the rest of the 

group by removing it before estimating the mean vector and covariance matrix. Data 

structuring and estimation of the Mahalanobis distance (including means and inverse 

covariance matrices) was conducted with in-house developed scripts in MATLAB computer 

language (https://www.mathworks.com/products/matlab.html). For a desired significance level 

of 0.05, 𝑝=3, 22 TBI patients, 49 controls, 9 tracts with 18 segments per tract, 2 tracts with 13 

segments per tract, Bonferroni corrected 𝛼 equals 3.7𝑥10&- and Equation 4.6 gives a critical 

value of 6.38.  

4.5 Results  

4.5.1 Phantom scanning results 

Images from the phantom scans were processed the same as the human scans up to the tensor 

fitting. Mean Eigenvalues (λ1, λ2, λ3) were extracted from the ROIs defined in Figure 4.4(A). The 
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results from the weekly phantom scans at Site I are plotted in Figure 4.9 and for multi-site 

phantom scans in Figure 4.10. These are compared with ADC accepted values from NIST 

(accepted at 98.5 % confidence).  Visually, the variability in Eigenvalues across sites does not 

appear to be much higher than the variability across time in Site I. Additionally, the Eigenvalues 

are similar to each other for all PVP concentration values as is expected in isotropic media. The 

values are close to the accepted values for the most part, except for the lowest of diffusion 

coefficients (or 50% PVP concentration). At this low of diffusion coefficient noise in the 

measurement will have a larger impact on the estimated value. Also, this is a much lower 

diffusion coefficient value than what is typically seen in brain.   

 

 

 
Figure 4.9 Weekly phantom scan results from Site I. The tensor Eigenvalues (𝜆$, 𝜆,, 𝜆/) in isotropic media 
are expected to be equal (i.e. equal diffusivities in all directions). The dashed lines represent the 
accepted diffusivity value.  

 

!! !" !#
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Figure 4.10 Multi-site phantom scan results. The tensor Eigenvalues (𝜆$, 𝜆,, 𝜆/) in isotropic media are 
expected to be equal (i.e. equal diffusivities in all directions). The dashed lines represent the accepted 
diffusivity value.  

 

Additionally, the coefficient of variation was calculated for the tensor Eigenvalues across 

weekly scans for Site I, and across site scans. These are shown in Table 4-2. These results again 

show that variability across sites is not much higher than across time in Site I, for the most part. 

For the 50% PVP concentration, CoVs are highest, both for the Site I scans and across sites.  
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Table 4-2 Coefficient of variation analysis results for both, multi-site and Site-I weekly phantom scans.   
Site I Weekly Scans CoV [%] Multi-Site Scans CoV [%] 

Eigenvalue (𝜆) PVP Conc. Center Vial Inner Circle Vials Outer Circle Vials Center Vial Inner Circle Vials Outer Circle Vials 
𝜆! 

       
 

0% 0.52 0.47 0.92 0.64 0.38 0.84  
10% 

 
0.52 0.96 

 
0.61 1.76  

20% 
 

1.12 1.01 
 

1.26 1.16  
30% 

 
0.90 1.01 

 
1.79 2.02  

40% 
 

0.90 1.39 
 

3.41 4.47  
50% 

 
6.17 5.32 

 
8.16 8.82 

𝜆" 
       

 
0% 0.49 0.40 0.93 0.44 0.29 0.98  

10% 
 

0.59 0.82 
 

0.39 1.42  
20% 

 
1.53 1.11 

 
1.00 0.77  

30% 
 

1.00 0.81 
 

1.06 1.16  
40% 

 
0.93 1.25 

 
2.59 3.42  

50% 
 

6.20 5.70 
 

7.14 8.27 
𝜆# 

       
 

0% 0.46 0.36 0.66 0.49 0.48 1.15  
10% 

 
0.95 0.88 

 
0.61 1.39  

20% 
 

1.89 1.09 
 

1.28 0.68  
30% 

 
1.12 0.80 

 
1.64 2.44  

40% 
 

0.95 1.20 
 

3.10 3.28  
50% 

 
7.28 6.33 

 
7.57 10.61 

 
 

 

Additionally, the mean ROI Eigenvalues from Sites II, III, IX, XI, and XIII were explicitly compared 

to those from the control group, Site I. These results are shown in Figure 4.11. A linear 

regression was performed between the corresponding concentration values at Site I and each 

of the other 5 sites. For all comparisons, the slope and intercept are close to 1 and 0 

respectively, pointing to good agreement in the measurements. Nonetheless, the resulting 

relationships were used to harmonize the Eigenvalues from the human scans at each of the 5 

sites and Site I. The 𝑀𝑎𝐷 analysis was replicated with the harmonized values for those patients. 

This is shown in Figure 4.19. The results show good agreement between 𝑀𝑎𝐷 with and without 

correction.  
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Figure 4.11 Linear regressions between measurements of diffusion coefficient for the 5 PVP 
concentrations between Site I and each of the other 5 sites in which the phantom was scanned. In all 
instances the slope an intercept are very close to 1 and 0, respectively. Nonetheless, the regression 
relationships are used to harmonize the human scans between each of the 5 sites and Site I.  

 
4.5.2 Tract alignment results 

To illustrate the broad stroke effects of fODF alignment, core streamlines before and after 

alignment are shown in Figure 4.12 for the isthmus of the corpus callosum and the left uncinate 

bundle. It is evident from visual inspection that the centroids of the bundle are brought to good 

spatial agreement after the fODF alignment 

 
 

A) !! inner vials outer vials B) !" inner vials outer vials C) !# inner vials outer vials
! in $$!/&
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Figure 4.12 Core streamlines before (left) and after (right) fODF map alignment. Visualization of the core 
streamlines for all the subjects in both the TBI and control groups shows the improvement in spatial 
correspondence after aligning the individual fODF maps to the fODF template before tracking in the left 
uncinate and isthmus of the corpus callosum.  

 
 

Since the length of the core streamline is the main driver for spatial correspondence of tract 

discrete pieces across subjects, it is relevant to compare the lengths before and after alignment. 

Figure 4.13 shows the distribution of core streamline lengths before and after alignment for all 

of the pathways analyzed in this work. This figure shows a reduction in variability of tract 

lengths for all tracts. Having more similar lengths implies that slicing the tracts into the same 

number of slices will result in better positional matching of the individual slices across subjects. 

 

UF_left

CC_6
(Isthmus)

Core streamline before and after registration
Controls
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Figure 4.13 Core streamline length distributions. Boxplots of core streamline length by tract across all 
subjects, before and after co-registration of the individual fODF maps to the fODF template. Overall, all 
tracts show a reduction in variability after alignment to the template.  

  

 Coefficient of variation (CoV) for each Eigenvalue at each segment across all 49 control 

subjects was estimated in order to explore the effects of fODF alignment on variability in the 

control group. These results, which are shown in Figure 4.14, suggest that variability in 

Eigenvalues across healthy subjects is reduced in all tracts after alignment. 
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Figure 4.14 Eigenvalue (𝜆) coefficient of variation (CoV) across control subjects before and after 
alignment to fODF template. For each tract, the Eigenvalue CoV over the control group is computed at 
each discrete segment of the tract. The box plots represent the CoV distribution across the 18 discrete 
segments of the tract (13 for the cingulum). For all three Eigenvalues, a tendency in the median CoV 
toward lower values can be appreciated after alignment.  

 
 
4.5.3 Mahalanobis distance along the tract 

Visualization of the results can be done in three different ways. First, overall results for the TBI 

patients are shown in Table 4-3. Patients are given a check mark for a tract if that tract is found 

to have at least one segment that exceeds the critical Mahalanobis distance value for 

abnormality. Because there is not enough number of subjects per site, statistical analyses of 
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site effects are not possible. Yet, displaying the results like they are in Table 4-3 is helpful in 

revealing any obvious site (or scanner brand) effects. 

 
Table 4-3 TBI patients multivariate analysis findings. If at least one discrete segment along the tract 
exceeded the critical 𝑀𝑎𝐷 value of 6.38, the patient was given a check mark (✓) for that tract, otherwise 
the cell is left blank. A dagger mark (†) represents a tract that could not be reconstructed for that 
patient, typically due to a large lesion in that region. The patients with the asterisk mark (*) were 
scanned at UW-Madison (Site I).   

 
 

For both TBI patients scanned in the same site as the controls (Site I), abnormal Mahalanobis 

distance values were found in two of the studied tracts (CC_4, CC_5) for Patient A and in 6 

tracts for Patient B (CC_1, CC_3, CC_5, CC_6, CC_7, and UF_right). Out of the 22 patients, 17 

were found to have abnormal Mahalanobis distance in at least one of the studied tracts.  

 Patient C was found to have abnormal Mahalanobis distance values in all of the studied 

tracts. The data for this patient was collected with a GE MR-750 scanner, the same model as the 

scanner used to collect the control group scans, but at Site II. Two phantom scans collected at 

this site did not reveal any obvious systematic differences in Eigenvalues from the other sites. 

Site Vendor Patient
CORPUS CALLOSUM CINGULUM UNCINATE # of Tracts with 

Abnormalities per SubjectCC_1 CC_2 CC_3 CC_4 CC_5 CC_6 CC_7 CG_left CG_right UF_left UF_right
I GE A* ✓ ✓ 2
I GE B* ✓ ✓ ✓ ✓ ✓ ✓ 6
II GE C ✓ ✓ ✓ † ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10
III Philips D ✓ ✓ ✓ ✓ ✓ ✓ ✓ † 7
IV Philips E ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
IV Philips F ✓ 1
V Philips G 0
V Philips H 0
V Philips I ✓ ✓ ✓ ✓ ✓ ✓ 6
VI Siemens J ✓ 1
VII Siemens K ✓ ✓ ✓ ✓ 4
VIII Siemens L ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9
IX Siemens M ✓ ✓ ✓ 3
X Siemens N ✓ ✓ 2
X Siemens O 0
X Siemens P ✓ ✓ 2
X Siemens Q ✓ ✓ 2
XI Siemens R ✓ 1
XI Siemens S † ✓ † † ✓ ✓ ✓ ✓ ✓ † ✓ 7
XII Siemens T ✓ ✓ ✓ ✓ ✓ 5
XII Siemens U ✓ 1
XIII Siemens V ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9

# of  Patients 
with Abnormalities per 

Tract
11 8 8 5 10 10 9 7 5 3 9
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Additionally, this subject presents extremely large lesions, so that the likelihood that the 

observed anomalies are the result of site or scanner effects is low.   

 Patient L had abnormal values in all of the sections of the corpus callosum. This patient also 

had abnormal Mahalanobis distance values in the left cingulum and in the right-side uncinate 

for a total of 9 tracts with observed abnormalities. The data for this subject was collected with a 

Siemens Trio at Site VIII. No phantom scans were collected for this site. 

 Patient V had a total of 9 tracts with observed abnormalities, same as Patient L. In this 

case, they were found in both sides of the cingulum and uncinate and in 5 sections of the 

corpus callosum. The data for this subject was collected at Site XIII with a Siemens Prisma 

scanner. A phantom scan was also collected at this site and the analysis showed no obvious 

signs of systematic differences from the other sites in mean diffusivity values.  

 The next subject with the most tracts with observed anomalies was Subject E. These were 

found in 6 of the seven sections of the corpus callosum and in the left cingulum. The scan for 

this patient was collected at Site A with a Phillips Ingenia scanner. A phantom scan at this site 

did not reveal any obvious differences that could be attributed to site specific effects.  

 The tract for which the largest number of subjects were found to have anomalies was the 

rostrum of the corpus callosum. 

 

 

 

Some subjects have more than one significantly large Mahalanobis-distance-valued segment, 

this can be better observed in the plots of Mahalanobis distance profiles for each tract as that 
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shown in Figure 4.15-Figure 4.18. The profiles of tracts with abnormalities are highlighted in 

subject-specific colors, those who do not have abnormalities are represented by dots (red: 

control; black: TBI) in the shaded region. The shaded region represents the region of normalcy, 

where the upper bound is set by the critical 𝑀𝑎𝐷 value of 6.38. Subject-specific coloring of 

profiles with abnormality facilitates the traceability of the profiles. 

 Profiles of the Mahalanobis distance along the uncinate bundles are shown in Figure 4.15. 

For comparison the profiles for controls and TBI patients are plotted separately. The 

distribution of the Mahalanobis distance values at each segment of the control group are all 

below the critical value of 6.38 for both the left and right uncinate bundles. On the other hand, 

9 TBI subjects exhibit abnormal values at one or various pieces along the right uncinate. Three 

of these patients (C, I, V) show abnormal 𝑀𝑎𝐷 values in both left and right uncinate bundles. 
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Figure 4.15 Plots of 𝑀𝑎𝐷	profiles for the uncinate bundles. The profiles of tracts with abnormalities are 
highlighted in subject-specific colors, those who do not present abnormalities are represented by dots 
(red: control; black: TBI) in the shaded region. The shaded region represents the region of normalcy, 
where the upper bound is set by the critical 𝑀𝑎𝐷 value of 6.38. Subject-specific coloring of profiles with 
abnormality facilitates the traceability of the profiles. 

 
The resulting Mahalanobis distance profiles for the cingulum bundles are shown in Figure 4.16. 

Similar to the uncinate tracts, all of the values for the control subjects for all of the tract pieces 

fell below the critical value for abnormality. As mentioned previously, the cingulum tracts are 

truncated after the 13th segment in order to exclude pieces that include both, hippocampal and 

dorsal streamlines. For the right-side cingulum, results show 4 TBI subjects with abnormal 

Mahalanobis distance. For the left-side cingulum, 6 TBI subjects had segments where the 
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Mahalanobis distance exceeded the critical value of 6.38. For the right-side cingulum 5 TBI 

patients had abnormal 𝑀𝑎𝐷. Four of these patients (C, P, S, V) had abnormalities in both sides. 

 

 
Figure 4.16 Plots of 𝑀𝑎𝐷	profiles for the cingulum bundles. The profiles of tracts with abnormalities are 
highlighted in subject-specific colors, those who do not present abnormalities are represented by dots 
(red: control; black: TBI) in the shaded region. The shaded region represents the region of normalcy, 
where the upper bound is set by the critical 𝑀𝑎𝐷 value of 6.38. Subject-specific coloring of profiles with 
abnormality facilitates the traceability of the profiles. 

The results for the 7 sections of the corpus callosum are summarized in Figures Figure 4.17 and 

Figure 4.18. In contrast to the findings in the cingulum and uncinate bundles, out of the whole 

control group, there were two cases of higher than the critical value Mahalanobis distance. 

These were single segment occurrences in two different participants, one in segment #15 of the 
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genu and one in segment #14 of the posterior midbody. The plots for these are shown in Figure 

4.17(B) and Figure 4.18(B). In contrast, the number of TBI subjects that had abnormal values at 

one or more segments along these tracts was 8 for the genu and 10 for the posterior midbody. 

 
Figure 4.17 Plots of 𝑀𝑎𝐷	profiles for the rostrum (CC_1), genu (CC_2), rostral body (CC_3), and anterior 
midbody (CC_4).  
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Figure 4.18 Plots of 𝑀𝑎𝐷	profiles for the posterior midbody (CC_5), isthmus (CC_6), and splenium 
(CC_7). 

 
The profiles in Figures Figure 4.15-Figure 4.18 were replicated for the TBI patients whose scans 

where obtained at sites that also had the PVP phantom scans. The replication profiles were 

generated using the Eigenvalues after harmonization to Site I with the relationships derived 

from the linear regression analysis in Figure 4.11. These results are shown in Figure 4.19. These 

results show that the Mahalanobis distance with and without correction are in good 

agreement. 
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Figure 4.19 Mahalanobis distance analysis results with and without phantom-based corrections. Profiles 
of Mahalanobis distance along the tract (for all nine pathways) for patients scanned at sites that also 
participated in the diffusion PVP phantom scanning. The profiles obtained with the uncorrected 
Eigenvalues are represented by the bold solid lines. The profiles obtained with the corrected Eigenvalues 
using the regression line relationships in Figure 4.11 are represented by the thin solid lines. The profiles 
for the differences (Uncorrected minus Corrected) are displayed by the dashed lines. Note the 
difference profiles are all around zero.  
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The profiles shown in Figures Figure 4.15-Figure 4.18 are helpful in comparing multiple subjects 

at once. However, they do not provide a clear sense of anatomical location of abnormality as 

represented by 𝑀𝑎𝐷. This achieved by color-coding the actual tract with the Mahalanobis 

distance on a specific subject. This is illustrated in Figure 4.20 for TBI Patient L, whose 𝑀𝑎𝐷 

profile is also shown on the right panel in the same figure.  

 
 

 
Figure 4.20 Left uncinate bundle for TBI patient L color coded by Mahalanobis distance profile shown on 
the right. 

 
 
4.6 Discussion 

This work describes a new computational and statistical framework for multidimensional 

analysis of neuroimaging quantitative measures at discrete segments of specific white matter 

pathways, which are derived from fiber tracking. Its application to individualized analysis of 

severe traumatic brain injury in children was demonstrated using the Mahalanobis distance 

computed from the three Eigenvalues of the diffusion tensor along the cingulum, uncinate, and 

parcellated corpus callosum tractograms. One at a time, 22 TBI subjects where compared to a 
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normative sample of 49 controls. A definition for abnormality was constructed off of Wilk’s 

criterion, which accounts for normative sample size, number of features used in the 

Mahalanobis distance, and number of multiple comparisons.  

 The analyses showed a clear departure from the normative data in several TBI subjects at 

one or multiple locations along the analyzed bundles. Each of the controls subjects was also 

compared to the remaining 48 subjects in the normative group in a leave-one-out fashion. With 

only two segments identified as abnormal out of the entire analysis in the control group, the 

method demonstrated good specificity. 

 The presented framework is more spatially specific than averaging-over-ROI methods [140] 

and substantially reduces the number of multiple comparisons compared to voxel-wise 

approaches [146], [171]. While it is possible to complete the multidimensional analysis without 

inter-subject co-registration of the data, this work showed that variability in the normative 

group can be improved by alignment of the fODF maps before tract extraction (e.g. by better 

matching the lengths of the centroid lines used to guide the slicing of the bundles into smaller 

segments). This allowed to still conduct the analysis using each subject’s tract extraction as 

opposed to using the template tract definitions, which can help to alleviate some effects of 

misalignment.  

 

The data from the TBI patients was collected at different sites and with different scanner 

brands and models. The work presented in this chapter also shows a detailed analysis of a 

diffusion-based phantom that was used in gathering scans from a subset of sites and comparing 

them to data for the same phantom collected at the control group site. The phantom contains 
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vials with known diffusion coefficient values at zero degrees Celsius. Diffusion coefficients from 

each of the sites were matched to those in the control group site, and relationships were 

derived for use in correcting the human scans for those sites. The multivariate analysis for 

those specific subjects was replicated with the corrected diffusion values. The results show 

great correspondence between corrected and uncorrected values, indicating site effects were 

not problematic for this analysis.   

 

Key contributions of this framework are the profiling of a multivariate metric of microstructure 

along a specific tract, the implementation of Wilk’s test as definition for abnormality that 

accounts for normative sample size and dimensions considered, and the reduction of variability 

due to gross length mismatch between pathways across subjects by aligning their fODF maps.  

 

4.7 Limitations and future work 

The number of slices into which a pathway is discretized was selected off the literature [150]. 

However, the effects of this number were not analyzed. Because the number of chunks was 

kept constant regardless of the pathway under analysis, shorter bundles (e.g. uncinate) have 

smaller chunks than longer bundles (e.g. cingulum) do. This leads to better spatial specificity of 

detected differences in the shorter bundles. However, the requirements for better inter-subject 

alignment become stricter, since smaller chunks are less forgiving of some level of error in the 

image registration. Future work will consider tailoring the number of discrete slices to the 

length of the analyzed pathway and will evaluate effects of slice size.   
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The selection of a critical 𝑀𝑎𝐷 value for abnormality accounts for reference sample size. 

Nonetheless, the method’s performance could be improved by better estimates of the 

covariance matrix, which in turn could be achieved by increasing the size of the normative 

group. In the particular application of the method presented in this work, age effects in the DTI 

Eigenvalues are expected but were not accounted for. This will have a direct impact in the 

characteristics of the normative group distribution. Future work will investigate ways to 

account for age and provide adjusted Eigenvalues for computing 𝑀𝑎𝐷.  

 Also particular to the TBI study, while the results from the phantom analysis were 

encouraging in that the multivariate analysis with and without correction was in agreement for 

the pertinent patients, the survey of sites with phantom scans needs to be more exhaustive for 

fully ruling out systematic effects related to site.  

 

Although the emphasis of this work was in developing a single-subject analysis framework, 

other avenues for exploration have been identified along the way. For example, it would be 

informative to consider flagged abnormalities with 𝑀𝑎𝐷 against lesion load. Also, 𝑀𝑎𝐷 could 

be utilized as multivariate imaging-based measure in group-level analyses. For instance, 

ongoing work has identified associations between 𝑀𝑎𝐷 and behavioral measures that were 

significant by group in the TBI study for chunks in two sub-tracts of the corpus callosum (Figure 

4.21).  
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Figure 4.21 Linear regression analysis shows significant associations between 𝑀𝑎𝐷	and a measure for IQ 
in segments of CC_5 (posterior mid-body) and CC_6 (isthmus) in the TBI group. These associations were 
significantly different from those in the control group. The slope values in the plots are adjusted for age.    

 
Finally, the nature of the injuries in the severe TBI study almost guarantees that differences will 

be found when compared with the healthy group. However, it is envisioned and expected that 

this multivariate framework will prove useful in detecting abnormalities that are more subtle in 

conditions such as in autism or Alzheimer’s disease. Additionally, incorporating other 

microstructure metrics derived from non-diffusion data such as relaxometry parameters (e.g. 

R1) or even other modalities such as PET, could prove useful in contributing potentially new 

information to the composite measure and improve its discriminating power.  
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4.8 - Appendix A: Ice Water Diffusion Phantom Instructions 
 
I. INTRODUCTION  
This phantom was developed to characterize MRI scanner performance when measuring the 
apparent diffusion coefficient (ADC). Its main components are 30 mL vials of the polymer 
polyvinylpyrrolidone (PVP) in aqueous solution. These vials have different concentrations of 
PVP; increasing concentrations of the polymer result in decreased ADC values. PVP is nontoxic 
and the phantom contains no toxic materials.  
In order to achieve reproducible ADC measurements, it is necessary to control the temperature 
of the phantom. An ice water bath serves to maintain temperature at 0 °C. In the following 
sections, we will outline the phantom's various parts, as well as describe the proper procedures 
for phantom preparation and imaging.  
 
II. PHANTOM COMPONENTS  
The phantom consists of five main parts, exclusive of the PVP vials. These pieces are labeled A-C 
in the Figure 1. When assembled the phantom is 194 mm in diameter. The phantom has been 
shipped fully assembled, but dry. In order to fill it with ice water, one has to remove the fill port 
caps (A), easily done by removing the six M6 socket-head screws holding the caps in place. 
Located in the center of each fill port cap is a secondary fill port sealed with one PEEK M8 pan 
head screw. This secondary fill port is used to add cold water to remove any remaining air 
bubbles after reassembly. Do not disassemble the phantom by separating the two 
hemispheres (B).  
 
The vial plate (C) holds 30 mL HDPE vials filled with aqueous solutions of PVP at 0, 10, 20, 30, 40 
and 50% w/w, as seen in Figure 2. These vials have been arranged such that when viewed from 
the top, PVP concentration decreases when moving counterclockwise in both the inner and 
outer ring of vials. The center vial holds deionized water, and will sit at iso-center when the 
phantom is properly positioned. The vials' caps have been sealed with a small amount of clear 
silicone. There are also three 5 mL polypropylene vials that extend above and below the 30 mL 
vials to serve as MR fiducial markers when examining images. The two arcs located at the top of 
the vial plate are a means of thermal contact between the top and bottom halves of the 
phantom.  
 
O-rings are used in order to seal the various mating surfaces of the phantoms. Included in a kit 
are an extra PEEK screw and O-ring should they be needed. Also, included with the phantom 
are a NIST-traceable temperature probe (not MRI safe), a non-magnetic token to tighten the 
pan head screw in the fill port, an adjustable torque wrench (not MRI safe), a level, and a plastic 
syringe for adding cold water through the secondary fill port when removing any remaining air 
bubbles after reassembly. 
 
III. PHANTOM PREPARATION  
Diffusion is a thermally-driven process: as temperature increases, the apparent diffusion 
coefficients of the phantom solutions will also increase. While this increase is small for the most 



 156 

viscous solution of PVP (50 %), the increase is on the order of 2-3 % per degree Celsius for DI 
water. It is therefore critical that temperature be consistent when scanning the phantom, a goal 
best achieved by the use of ice water. Please use the following procedure to equilibrate the 
phantom at 0°C, and maintain temperature during the scan.  
 
The phantom requires at least 2 hours to equilibrate to 0 °C. Make sure to allow enough time 
to prepare the phantom in anticipation of the scan. Ideally the initial preparations (steps 1-3) 
should be started at least 2.5 hours before the scan.  
1. Prepare an ice water bath in the provided cooler. Begin by obtaining enough two 7 pound 
bags of cubed iced and two gallons of cool water. Empty the ice into cooler. Add 1.5 gallons of 
cool water enough to just make the ice float. See Figure 3.  
2. Remove the bottom and top fill port caps. Fill both hemispheres with ice. It may help to 
slightly crush the ice, but not too finely crushed. 
3. Without replacing the fill port caps, submerge the phantom in the cooler ice water bath. 
Then place the fill port caps in the cooler as well. Close the cooler cap tight and leave it in place 
for at least 2 hours. See Figure 4. 
 
4. 30 minutes before imaging, remove the phantom from the ice water bath and drain out all 
the water from both hemispheres into the cooler. Pack the bottom hemisphere with as much 
ice as possible. It may help to slightly crush the ice, but not too finely crushed it may cause 
unavoidable air pockets in the imaging plane that will generate susceptibility induced artifacts. 
 
Close the bottom fill port using the Adjustable Torque Wrench. Make sure the large O-ring is 
fully inside the groove before you place the cap. Take care to not overtighten the PEEK screws, 
as you may shear off the head of the screw. The maximum recommended torque is 9 in lbs. 
The wrench has been previously adjusted to the appropriate torque setting. However, if for any 
reason the wrench has to be readjusted, the 9 lbs value can be set following the instructions 
described in Figure 5. 
 
5. Fill the top hemisphere with ice but do not replace the cap yet. When the top half of the 
phantom is as full of ice as is possible, add ice water from the cooler to the phantom via the top 
of the upper hemisphere. There should be more ice than water to ensure a proper ice water 
bath at 0 °C. The ice should not float; instead, water should fill the interstitial spaces formed 
by the ice. See Figure 6. 
 
6. Replace the top fill port cap. In order to eliminate residual air bubbles in the phantom, one 
may add water to the phantom via the secondary fill ports. These ports are the M8 pan head 
screws located in the handle of the top and bottom fill port caps (Figure 7). Use ice water from 
the cooler to top off the phantom via the secondary fill ports. A plastic syringe is provided for 
topping off the last few milliliters.  
 
7.Before closing off the phantom's secondary fill ports, check the temperature of the phantom 
using the provided thermocouple probe. The temperature displayed by the probe should read 0 
+-0.5 °C. Check on of the two halves of the phantom and record this value.  
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8. If more than 10 minutes remain before the scan is started, place the phantom back into the 
ice water bath in the cooler and leave it there until 5 minutes before imaging. Right before the 
scan, remove phantom from water bath and dry it off with paper or cloth towel. 
 
 
IV. Coil selection and positioning 
When loading the phantom into the magnet, it is important that the center vial be aligned with 
magnet iso-center. Use padding to achieve the proper height and secure phantom in place. 
Ensure that it is as leveled as possible.  
Ideally use same coil as was used to acquire the participant scans, but if not, a larger coil is fine, 
ideally a multichannel coil.  If using a quadrature coil, parallel imaging will need to be turned 
off. 
 
1. Position phantom as shown in Figure 8. Particularly, make sure the serial# sticker is facing 
toward the table (i.e. if you are looking at the bore of the scanner, the serial# sticker is directly 
facing you). 
 
2. Once the field of view has be set to properly cover the phantom as is shown in Figure 9, 
collect the T1 weighted, T2 weighted, and DTI scans from the previously approved list of 
protocols (i.e. the same protocols used in scanning the TBI participants).  
Contact us if you have questions or need any assistance with the protocol. 
  
 
V. FIGURES 

 
Figure 1. Main phantom shell components. From left to right: bottom fill port, bottom 
hemisphere, vial plate, top hemisphere, and top fill port. All pieces are polycarbonate material.  
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Figure 2. Vial plate. 30 mL vials of aqueous solutions of PVP are arranged in inner and outer 
circles to allow for testing the spatial dependence of ADC measurements due to gradient non-
linearities. The three smaller 5 mL are the fiducial markers. 
 

 
Figure 3. Cooler with ice only (left). Ice water bath (right). 
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Figure 4. Phantom submerged in the ice water bath (left), Make sure the phantom is fully 
submerged. (Right) Hemisphere port caps placed in the cooler with the submerged phantom. 
 

 
Figure 5. OPERATING THE ADJUSTABLE TORQUE WRENCH  
To adjust the torque wrench, pull down on the adjustment collar and twist the collar to the 
desired torque setting by aligning the white arrow to the center line, and the collar edge to the 
line just below the torque setting (in this case 9.0). When desired setting is obtained, release 
the adjustment collar. To change out the bit, pull up on the green/black locking sleeve to 
release the bit. Then pull down on the green/black locking sleeve to lock the bit in place.  
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Figure 6. Phantom after filling both hemisphere with ice and water. Bottom hemisphere port 
cap has been replaced but not top. Note the temperature probe. Make sure that the O-rings are 
well positioned in the groove before the port cap is placed.  

 
Figure 7. Assembled phantom. The top secondary fill port is closed by the pan head screw in the 
middle of the handle of the top fill port cap.  
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Figure 8. Positioning of the phantom in the head coil. The serial# sticker is emphasized by the 
arrows. 
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Figure 9. Images of the ice water phantom. 1st row: T1 weighted; 2nd row: T2 weighted; 3rd row: 
b=0 image of the DTI scan. 
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Chapter 5 - A diffusion-based phantom for b-value independent 
temperature estimation  
 
5.1 Abstract 

This chapter outlines plans for a diffusion-based phantom. First, the fundamental link between 

diffusion and temperature introduced in Chapter 2 is expanded. An explicit relationship 

between temperature and diffusion is detailed. The need for a test object in checking for 

consistency of measurements in multi-center studies is emphasized by the work presented in 

Chapter 4. However, the requirement of scanning the phantom at zero degrees (or other 

known temperature) introduces unwanted effects related to the often tedious and involved 

preparation procedures. The work in this chapter is an exploration into an alternative approach. 

This consists of using the known diffusion-temperature relationship between two materials to 

derive an equation that allows for estimating the temperature of the materials using the 

diffusion weighted images themselves. Further, the approach is independent of the diffusion 

weighting quantity known as b-value, which is a prescribed parameter for each scan and is 

susceptible to both systematic and human errors. Five different materials, including water, are 

selected for developing the method and a temperature control and monitoring system is built 

for validation purposes. The chapter outlines how this project faced challenges related to low 

viscosity of the materials being used and convection currents introduced by vibration of the 

scanner table. These vibrations are related to the strong diffusion gradients from the scan 

acquisitions. When the motion coincides with the direction of diffusion sensitization, the signal 

experiences attenuation that is not due to molecular diffusion. These artifacts proved difficult 

to correct and the fundamental issues that caused them could not be overcome. The chapter 
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concludes with a description of measures implemented for addressing the vibration issues, 

which included placing weights on the scanner table in order to help dampen vibrations. 

Potential future actions to address the vibration issues are discussed. 

 

5.2 Introduction 

In the previous chapter, phantom measurements from five other sites were compared to those 

obtained from the same phantom at the control group site.  The diffusivity measurements from 

the phantom’s 5 different concentrations were plotted and compared between Site I and each 

of the other sites. A linear relationship from these measurements was estimated between each 

of the 5 sites and the control group site. This relationship was used to harmonize the diffusivity 

values of the different vials between the control site and each of the other 5 sites. 

 

Another possible way for harmonizing phantom diffusivity measurements, and perhaps a more 

fundamental one, would be to adjust the prescribed b-values from a given site in order for the 

diffusivity measures from other sites to match those at the control group site. Recall that the 

factors contributing to the b-value are gradient strength, and timing settings for the width and 

separation of the diffusion gradients. Errors in these settings can lead to deviations in the actual 

b-value from the prescribed one. Such errors can be due to user or hardware-related factors. 

 

Also, as we learned in Chapter 2, diffusion is a thermally driven process. Thus, as temperature 

increases, the apparent diffusion coefficients of the phantom solutions will also increase. While 

this increase is expected to be small for the most viscous solution of PVP (50%) in the scanned 
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phantom, the phantom manufacturer states the increase is on the order of 2-3 % per degree 

Celsius for the 0% PVP vial. In order to achieve reproducible ADC measurements, temperature 

must be accounted for. One alternative is to control the temperature of the phantom. For this 

phantom, an ice water bath serves to maintain temperature at 0 °C. 

 While this way of controlling for the temperature is effective, the procedures for preparing 

and scanning the phantom are quite involved and cumbersome as can be seen in “Section 4.8 - 

Appendix A: Ice Water Diffusion Phantom Instructions” of the previous chapter, which details 

the instructions sent to the sites for preparing the diffusion PVP phantom. Even when these 

were simplified from the instructions provided by the manufacturer in order to reduce the risk 

for errors, at least one of the five sites had to re-scan the phantom due failure in proper 

following all the preparation steps. 

 Repeated scans incur costs and time, but if not caught, errors in phantom scans could 

result in mischaracterization of measurement deviations as systematic. 

 

An alternative approach to controlling the temperature, is to know the temperature of the 

phantom and know how the diffusion coefficient varies as a function of temperature. In this 

chapter, work is presented that set out to develop a diffusion phantom using a number of 

materials with known temperature-diffusion relationships. The project plan included 

investigating the possibility of using diffusion weighted images between two materials in 

thermal equilibrium for estimating the temperature of the materials. Additionally, the same 

images could be used to estimate the diffusion coefficients of the materials and confirm that 
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those corresponded to the estimated temperature from the known temperature-diffusion 

relationships.  

 

5.3 Methods 

5.3.1 Diffusion vs Temperature  

Recall from Chapter 2, the apparent diffusion coefficient (𝐷) can be mapped from the diffusion 

attenuated MRI signal obtained with a standard Stejskal-Tanner pulsed gradient spin echo 

(PGSE) sequence by the following expression  

 

 𝑆 = 𝑆(𝑒
&="<"Bk";l&k:@						 Equation 5.1 

 

where 𝑆( corresponds to the signal with no diffusion, 𝛾 is the gyromagnetic ratio, 𝐺 is the 

diffusion gradient amplitude, 𝛿 is the duration of the diffusion gradient pulses, and Δ is the 

separation between the starting point of the diffusion pulses.  

The amount of diffusion weighting or b-value is given by 

 

 𝑏	 = 	 (g𝐺d)"	[D− (d/3)] Equation 5.2 

 

Thus, the diffusion coefficient 𝐷 can be obtained from Equation 5.1 as  

 

 𝐷 = −
1
𝑏 ln d

𝑆
𝑆(
e Equation 5.3 
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Mobility of molecules is dependent on temperature, and therefore the magnitude of diffusion 

is sensitive to the temperature of a material. A couple of decades ago, a model for self-diffusion 

versus temperature based on the Arrhenius activation law [172] was reported by Tofts et al., 

(2000) [173] as 

 

 				ln 𝐷 = ln𝐷( − 𝐵 d	
1
𝑇 −

1
𝑇(
	e + 𝐶 d	

1
𝑇 −

1
𝑇(
	e
"

	 Equation 5.4 

 

where 𝐵 equals 𝐸m/𝑘, the activation energy for translational diffusion of the molecules (𝐸m) 

divided by Boltzmann’s constant (1.38	10&":	𝐽	𝐾&+), and 𝐶 is a quadratic term that accounts 

for small deviations from Arrhenius behavior. 𝐷( is the diffusion coefficient at a reference 

temperature 𝑇( (set to 22	oC).  

 

Tofts et al., (2000), determine the 𝐵 and 𝐶 parameters by fitting this model to diffusion 

coefficients derived from NMR measurements at 4.7 T (see Table 5-1), for 15 different liquids in 

a range of temperatures from 15 to 35 oC. Diffusion coefficients for all materials were also 

obtained from measurements with a clinical Stejskal-Tanner PGSE sequence at 1.5 T and shown 

to correspond with those predicted by the model in Equation 5.4 to within 2.1 %. The model 

estimates for 𝐵 and 𝐶 along with other information for all the materials in the study are 

provided in Table 5-1. 
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Table 5-1  Measurements of diffusion coefficient at 15-30 using a 4.7 T spectrometer. Each value is the 
average of 3 or 4 measurements at the same temperature. Proton density, T1 and T2 at 1.5 T (modified 
from Tofts et al., 2000).    

Diffusion Coefficient [𝜇𝑚9/𝑚𝑠] V TC T1 T2 B C 
 

 
15 oC 20 oC 25 oC 30 oC (cp) %/ oC ms at 1.5 T K 106 K2 PD 

cyclohexane 1.214 1.338 1.482 1.652 0.89 2 2328 1329 1764 1.35 1 
cycloheptane 0.803 0.891 1.003 1.139 1.37 2.4 2156 1598 2048 2.38 1.05 
cyclooctane 0.432 0.495 0.568 0.653 1.96 2.7 1608 1234 2382 0.88 1.08 
n-octane 1.988 2.141 2.354 2.633 0.51 1.9 1932 193 1615 3.35 1 
n-nonane 1.525 1.627 1.77 1.961 0.67 1.7 1748 140 1442 3.27 1.01 
n-decane 1.165 1.263 1.391 1.559 0.84 1.9 1526 145 1658 2.98 1.02 
n-undecane 0.931 1.009 1.113 1.248 1.1 1.9 1331 204 1681 3.13 1.03 
n-dodecane 0.708 0.783 0.876 0.996 1.38 2.2 1160 163 1937 2.55 1.03 
n-tridecane 0.565 0.634 0.712 0.805 1.72 2.3 999 173 2019 1.05 1.04 
n-tetradecane 0.443 0.491 0.554 0.637 2.13 2.4 869 198 2056 3.44 1.04 
n-pentadecane 0.357 0.403 0.462 0.535 2.54 2.7 751 178 2323 2.69 1.05 
n-hexadecane * 0.341 0.387 0.446 3.03 2.5 669 201 2173 3.26 1.05 
ethanol 0.85 0.969 1.09 1.218 1.07 2.4 2141 20 2061 -0.91 0.93 
n-propanol 0.455 0.537 0.626 0.72 1.95 3.1 1405 31 2692 -1.19 0.97 
n-butanol 0.336 0.393 0.461 0.542 2.54 3.2 1149 68 2742 1.13 0.99 

V: viscocity, at 25 oC,  1 centipose (cp) =1 millipascal second. PD: proton density relative to water. * Solid at 15 oC.. 
At 30, only 2 measurements were taken; these agreed to within 0.1%. TC: Temperature coefficient (fractional 
increase in the diffusion coefficient per degree). 
 
Using the fitted 𝐵 and 𝐶 parameters and Equation 5.4, it is possible to plot 𝐷 as a function of 

temperature as shown in Figure 5.1 for all the materials in Table 5-1.  

 

 
Figure 5.1 Plots of relationship between diffusion coefficient and temperature for the various liquids in 
Tofts et al 2000.  

Apparent diffusion coefficient as a function of temperature
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Arguably at this point, one could simply estimate the diffusion coefficient of a given material 

from diffusion weighted images, and from this known relationship calculate the temperature of 

the material. However, a problematic scenario could arise when scanning the phantom in two 

different scanners and errors in the prescribed b-value occur.  

 

Recall that diffusion is a function of the b-value. Consider two scans of the same phantom in 

two scanners with the same imaging protocol. Assume that, due to systematic or user error, the 

prescribed b-value from scanner 1 differs from the actual b-value. In estimating the diffusion 

coefficient from the images, it is the prescribed b-value that is used. Therefore, the estimated 

diffusion coefficient from scanner 1 would be erroneous. Using this diffusion coefficient value 

to estimate the temperature of the material from the known model, would also result in the 

incorrect temperature estimate.  

This means that when comparing the diffusion coefficients between the two sites, one must 

first consider the estimated temperature and then asses from the model whether the 

estimated coefficients are in accordance with that temperature. 

 

It is, therefore, necessary to estimate the temperature of the material with a method that is 

immune to errors in b-value. Of course, one could use a temperature probing device, but this 

adds a level of complication, cost, and one is not always available.  

 

It can be demonstrated that the ratio between the diffusion weighted images of two different 

materials, contained within the same housing, and at thermal equilibrium could be used to 
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estimate the temperature of the phantom, independent of the diffusion weighting (i.e. b-

value). 

 

Let the materials be labeled material 1 and material 2. The difference between the natural 

logarithm of the diffusion coefficients of the two materials using Equation 5.4 leads to 
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which is a quadratic equation with solution 
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Solving for 𝑇 gives  
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where the quantity B&
B"

 can be expressed in terms of Equation 5.3 as 
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Assuming uniform b-value in the region occupied by the two materials, the quantity k− +
D
l 

cancels out. This allows for estimating the temperature simply from the non-diffusion and 

diffusion weighted images (i.e. 𝑆DE(, 𝑆D) of the two materials independent of b-value.  

 

5.3.2 Materials  

We selected 4 of the liquids investigated in Tofts, et al. (2000): n-tridecane, n-undecane, n-

decane, n-octane. These cover a range of diffusivities at room temperature that are typically 

observed in brain tissue. The liquids were purchased from Sigma Aldrich (MilliPore Sigma, St. 

Louis, MO, USA). All were high purity and required no further preparation other than transfer to 

individual clear glass 30 mL vials for imaging. The vials with the materials were placed in a 

container with openings at various locations for water to flow through the container and 

between/around the vials Figure 5.3(B), which itself would be placed inside a backwater PVC 

valve as is described next.  
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Figure 5.2 Sensitivity of Temperature to ratio of diffusion coefficients between water and each of the 
chosen liquids for the analysis. 

5.3.3 Temperature control and monitoring set-up 

A temperature control system was constructed with the purpose of scanning the materials 

under controlled temperature settings (Figure 5.3). This included circulating water through a 

closed circuit constructed from high temperature hose and a PVC back-water valve. The back-

water valve was chosen as the housing where the perforated container with the vials would be 

placed for scanning. Water was circulated at high speed through the circuit using a 0.5 hp 

submersible pump submerged in a reservoir of water. The reservoir and the pump would be 

placed in the scanner control room. The temperature of the water in the reservoir was 

controlled by a submersible temperature controlled cooking device. The temperature of the 

water in the reservoir and in the back-water valve was monitored with an MR-safe fiberoptic 

temperature probe (Figure 5.3(B)(D)(E)).  
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Figure 5.3 Temperature control system and monitoring. A) Backwater PVC valve used for housing the 
vials in the head coil for scanning, connected at two ends to high temperature hose for circulating water 
from and back to a reservoir in the control room. B) Vials with liquids in perforated plastic container 
placed inside the backwater valve; yellow fibers are the MR safe temperature probe leads for 
monitoring the temperature inside the housing. C) Sum pump used to circulate water through the 
backwater valve housing. D) and E) Digital reading system for temperature probe.  

 

5.3.4 Imaging protocol 

The imaging protocol was set equal to the one used in collecting human scans for the TBI study 

outlined in the previous chapter. Diffusion tensor imaging was performed with a single-shot 

spin-echo echo-planar imaging pulse sequence. The protocol prescription was 2D sagittal 

images, a 96x96 matrix, 240 𝑚𝑚 FOV, 64 slices, 2.5 𝑚𝑚 isotropic resolution, phase encoding in 

Anterior/Posterior direction, parallel acquisition with a geometric reduction factor of 2. 

Diffusion settings included diffusion encoding along 64 non-collinear directions with 𝑏-value of 

1300 𝑠/𝑚𝑚", 8 volumes with no diffusion weighting (𝑏=0).  TR/TE was 8500/minimum 𝑚𝑠. 

A) B) C)

D) E)
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5.4 Results 

Before scanning the vials in the back-water valve with the temperature control system, a pilot 

scan of 4 vials with the selected liquids placed in a water bath was conducted in order to assess 

the amount of signal detected by the scanner. This was done with the liquids in the water bath 

at room temperature.  

 

During this scan, it was discovered that the resonant frequency band was wide and instead of a 

single center frequency peak there appeared to exist multiple peaks. Thus, the scanner was 

having trouble tuning to the frequency of water protons in the water bath and other prominent 

frequency peaks from the protons in the liquids, which were discovered to be closer to that of 

fat protons. This phenomenon was attributed to the hydrocarbons present in the materials, 

which are categorized as n-alkanes. As a result, scanning the liquid vials in the water bath 

produced no usable images. This issue was resolved by placing the vials in a jar of coconut oil 

(Figure 5.4).  
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Figure 5.4 Example b0 images from scanning the vials in water A) and in coconut oil B). 
 

 
Once usable images were produced with the vials in the coconut oil, another pilot scan was run. 

Analysis of this scan revealed a more serious problem, which proved difficult to resolve. Figure 

5.5(A) shows the diffusion coefficients estimated for each the 64 diffusion weighted volumes, 

averaged over a region placed close to the center of each vial. The observed variability of the 

diffusion coefficients is likely due to convection currents generated from the very strong 

diffusion gradients that result in table vibrations.  

 

A) Vials in Water B) Vials in Coconut Oil
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Figure 5.5 Diffusion coefficients from the scanned liquids (A) and the PVP phantom (B) as a function of 
diffusion gradient direction.  

 
The visually discernable correspondence in the shape of the variability profiles with respect to 

diffusion encoding gradient direction is consistent with the hypothesis that the variability is 

related to vibrations linked to the diffusion gradients. This suspicion is also conveyed by the 

dark and bright regions observed within a single vial diffusion weighted images at different 

diffusion encoding directions observed in Figure 5.6.  

 It would be expected that vibration-related convection currents would find it more difficult 

to take form in more viscous materials. This is supported by the evident decrease in variability 

for the more viscous material n-tridecane compared to the less viscous liquid n-octane in Figure 

5.5(A). For comparison, the vials in the PVP phantom are gelled solutions and it would be 
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expected that convection currents due to gradient induced vibrations could not form in these 

vials. This is confirmed by a striking consistency of ADC as a function of diffusion encoding 

direction for vials in the PVP phantom (Figure 5.5(B)).  

 
 
 

 
Figure 5.6 Example b0 and diffusion-weighted images for 5 directions of the diffusion gradients. Note 
the shading in the vials for the diffusion-weighted images due convection currents generated by 
vibrations in the table from the strong diffusion gradients. Ideally the brightness in the images would be 
homogeneous throughout each vial and consistent between diffusion directions since these are 
isotropic media.  

 
Another scan with the phantom placed in an ice-water bath overnight shows the variability in 

ADC surprisingly increases compared to the scan conducted at room temperature (Figure 5.7). 

A signal-to-noise ratio (SNR) analysis using the non-diffusion data shows no drop in SNR for the 
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ice-water-bath run. On the contrary, the variance for the ice-water scan appears to decrease, 

which is consistent with a reduction in thermal noise due to a temperature drop.  

 A change in consistency could help explain the increase in variability observed when 

cooling the oil-phantom. At room temperature, the coconut oil surrounding the vials has a gel-

like consistency. After several ours in an ice-water bath, the oil hardens and feels more like the 

solid wax in a candle. The gel-like state of the coconut oil at room temperature may help in 

dissipating, to some degree, the vibrations before they arrive to the vials suspended within it. 

On the other hand, because waves travel faster in solids, the solidified cold coconut oil is more 

efficient at transferring the vibrational energy to the liquids within the vials.  

 

 
Figure 5.7 Diffusion coefficients from the scanned liquids at room temperature (A) and after being 
placed in an ice-water bath overnight (B) as a function of diffusion gradient direction. 
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Despite the presence of vibrational artifacts, it was possible to use the minimum ADC from each 

scan to test the proposed method, albeit with limited confidence. This yielded mixed results. In 

some cases, the estimated temperature came close to that measured with the MR-safe 

temperature probe. In most cases, however, the temperature estimates fluctuate considerably 

consistent with variability of the ADC estimates. 

 

5.5 Discussion 

This work proposes a method for using known diffusion-temperature relationships between a 

pair of materials at thermal equilibrium in estimating their temperature from diffusion 

weighted images independent of b-value. The expectation being that by knowing their 

temperature at the time of the scan, the diffusion-temperature models for the materials could 

be used in checking for consistency of diffusion estimates across different scans.  

 While significant progress was made in the theory behind the proposed method and in 

manufacturing of the phantom as well as in the temperature control system, difficulties related 

to artifacts in the diffusion weighted images caused by vibrational motion from the strong 

diffusion gradients prevented a successful development of the framework. 

 

In order to help gain more insight into the problem, two experiments were implemented in 

attempts to reduce vibration in the liquids. One of the experiments involved placing a 70-pound 

sand box on the scanner table in order to dampen bulk table vibrations. The other experiment 

consisted of placing cotton balls in water vials in order to introduce some structure that could 

help disrupt vibration-related convection currents.  
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Three scans were acquired: one without the sand box, one with the sand box in the scanner-

bore proximal to the head coil, and one with the sand box outside the scanner bore placed at 

the most distal end of the table.  

 These were done using DI water only vials, since the liquids tested earlier are corrosive to 

plastics and would likely dissolve cotton. Two vials were filled with water, one vial contained 

water plus lightly packed cotton balls, and a fourth vial contained water plus tightly packed 

cotton balls. The vials were prepared the night before scanning in order for the cotton to 

absorb as much water as possible.  

 

The results from these scans are shown in Figure 5.8. Surprisingly, the variability 𝐷  with respect 

to diffusion gradients appears to increase for the scans with the sandbox. The variability also 

appears to be higher for the scan with the box placed inside. One plausible explanation for this 

may be that the weight is only changing the mode of vibration of the table but not its 

amplitude. Thus, a more uniform distribution of weight on the table may be necessary.  

 On the other hand, the lightly packed cotton does seem to have positive impact in reducing 

variability of the ADC with respect to the diffusion encoding direction. However, a reduction in 

the ADC magnitude of water in this vial is also evident. Thus, this type of solution would not be 

ideal for use with the proposed liquids.  

 The variability in the vial with the tightly packed cotton is higher. This is likely linked to the 

presence of air pockets within the vial as a result of the compression of the cotton pushing 

water out, which creates signal voids. Additionally, the tightly packed cotton fibers introduce a 
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more anisotropic environment for the diffusing water molecules. Thus, diffusion would be 

higher along certain directions compared to others.   

 

 
Figure 5.8 Diffusion coefficients of water as a function of direction of the diffusion gradients. Two vials 
were simply filled with DI water, one vial was filled with water and lightly packed cotton balls, and one 
vial filled with water and tightly packed cotton balls. Left plot shows results from scan with no additional 
weight on the scanner table. Middle plot shows results from scan with sand box on table next to head 
coil. Right plot shows results from scan with sand box place at feet of scanner table.  

 
Although the hurdles were considerable, the analyses and the lessons learned up to this point 

provide insightful rationale for future work in this project. For example, in getting to the root 

cause of the problem it would be worth de-rating the diffusion gradients to generate smoother 
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switching of currents in the coils for creating less vibration of the table. Additionally, other 

materials (e.g. high viscosity, gels) can be explored. For example, Wagner et al. (2017) [174] 

have published a similar analysis as that in Tofts et al. (2000) but for varying concentrations of 

PVP. This could potentially be used with the HPD PVP phantom in hand. Though, it is unclear 

how well matched the PVP powder that used in the manufacturing of the HPD PVP phantom is 

to that used in Wagner et al. (2017), in terms of characteristics such as molecular weight. It is 

worth noting that using high purity liquids like the ones discussed in Tofts et. al (2000) is very 

appealing due to ease of use in not having to do any additional processing to them after 

purchase. 
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Chapter 6 - Concluding Remarks 
 
6.1 Contributions, future work, and lessons learned 

This work has outlined specific projects that augment to the field of diffusion MRI regarding 

topics of biophysical modeling, single-subject tissue microstructure analyses, and diffusion 

coefficient validation.  

 

At this stage in the field, and really for much of its existence, there is no question that the 

diffusion-weighted MRI signal conveys information about a material’s microstructure. In 

complex media such as brain tissue, many physiological factors intermingle in the process of 

molecular water self-diffusion. The question of what the signal means in this case is a difficult 

one to answer, to say the least. In answering the question, biophysical models remain a 

powerful tool in the arsenal that the researcher has. But extracting useful information from 

biophysical models is contingent on the strength of the assumptions made, which are often a 

fundamental necessity for creating a working framework that is able to converge to a set of 

biologically sound parameter estimates. 

 The rapid uptake of NODDI by researchers can be related to its ability in providing 

parameters that made biological sense and addressed some of the well-known shortcomings of 

DTI. All this with a model that is simple enough to require an imaging protocol that can be 

performed in minutes on a clinical scanner. Yet, questions about weaknesses in the model 

assumptions began to surface in the years that followed. However, no formal inquiries were 

conducted regarding the assumption of fixed parallel diffusivity. The work presented in Chapter 

3 represents to my knowledge the most extensive and formal investigation of this assumption. 
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The key findings provide a sound reference for trusting the model performance in adult white 

matter with the original intrinsic diffusivity setting, while providing evidence that in gray matter 

and in the infant brain this value should be adjusted for optimal performance. Potential future 

work will consider a similar analysis that includes data with known pathology, ex-vivo samples, 

small animal, and non-human primates.   

 

The group-level approach for analysis of diffusion-based neuroimaging measures is most 

effective when considering microstructure changes expected to be spatially consistent across 

subjects. In conditions such as traumatic brain injury, a single-subject approach is better suited 

to identify changes whose location in the brain varies from subject to subject. The individual-

level analyses framework presented in Chapter 4 offers the ability to focus on a specific region 

(a streamlines bundle) when it is expected a priori that changes are located in that region. Yet, 

it goes one step further by allowing to locate the spatial distribution of changes within (along) 

the tract. Conversely, if no specific bundle needs to be inspected, the analysis can be performed 

on any number of white matter regions simultaneously. All this, while still allowing to conduct a 

number of tests that is orders of magnitude less than that in a voxel-wise comparison. 

 While using profiles of metrics along a tract is a technique developed an used by others in 

comparing groups to one another, the work presented here explicitly set out to use the existing 

tractometry scaffold and develop a multivariate technique for single-subject analysis complete 

with a statistical definition of abnormality and image co-registration. These, I believe, are the 

key contributions of this work.  
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Finally, the development of a diffusion-based phantom fell short of fruition, unfortunately. 

Nonetheless, substantial progress was made, and I am confident that the method will work if 

mechanical vibration associated with the diffusion gradients can be reduced. Two possible 

solutions will be pursued. One that deals with the root cause of vibration, which are the strong 

diffusion gradients, and one which deals with preventing vibration-related motion in the 

materials even when vibration in the table is present. 

 Artifacts related to diffusion gradient-induced vibrations have been explored elsewhere 

[175]. Recommendations for helping to reduce vibrations include adjusting imaging parameters 

such as the magnitude of the b-value and modifying the gradient wave forms. Eddy current 

compensation gradients alongside the use high b-values (>1000 s/mm2) were observed to 

worsen mechanical vibrations in the scanner table. Dependence on specific directions (e.g. z-

direction along the magnet’s bore) were also seen. Therefore, a careful imaging protocol design 

that takes these three factors into account will be explored. For example, one acquisition 

scheme could include lower b-value (500 to 800 s/mm2) without eddy current compensation 

gradients and correct for eddy current related artifacts in the postprocessing of the data. 

Strategies that specifically target shapes of the diffusion gradient currents such as those used in 

vibration-related acoustic noise reduction EPI sequences [176], [177] will also be explored. 

 The n-alkanes are non-soluble in water. From previous discussions with other researchers 

in our program, water trapped in an agar-based gel exhibits diffusion coefficients measured 

with dMRI that are similar as those of free water. Therefore, an emulsion of the n-alkanes with 

water, which has been achieved elsewhere [178], [179], but suspended in an agar-based gel 



 186 

could be made in order to prevent the vibration related convection currents that lead to the 

observed artifacts.  

 Another solution would be to mechanically de-couple the phantoms from the scanner. This 

could be achieved by designing an MR-safe frame (e.g. made of wood or PVC pipe) attached to 

the floor and that can support the phantom in the head-coil inside the scanner board.  

 Finally, I believe the method still represents a potentially novel approach to estimate the 

phantom temperature from the diffusion weighted images that is also independent of b-value.  

 

While much of the work presented here is in-line with what was contained in the original 

proposal, some departures did occur and unexpected roadblocks were found. One of the most 

valuable lessons from this process, was learning to recognize when to pivot from one idea that 

initially seemed promising into a related but better suited one. A good example is the multi-

variate analysis method. This method was inspired by previous work in our lab [140] that 

conducted a multivariate analysis using the Mahalanobis distance, which was computed using 

DTI scalar metrics averaged over several white matter regions. In an attempt to get better 

spatial specificity, the original proposal for the work described in Chapter 4 consisted of a voxel-

wise multivariate comparison. Work done over several months exposed two important 

limitations well-chronicled of the voxel-wise approach: stringent requirements for inter-subject 

image alignment and an exceedingly large number of multiple comparisons. Extensive work was 

done for improving co-registration of the data, evaluating the performance of a number of 

algorithms. However, I was not satisfied with the alignment results.  
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 Then I came across a publication in 2018 [180] that made use of tractometry and carried 

out a principal component analysis to identify the minimum number of variables that would 

suffice to explain variability in multidimensional data. I recognized that the basic tractometry 

framework in that publication could be used to carry out the multivariate analysis that we had 

originally proposed. Of course, we later improved it by adding an inter-subject data alignment 

step, but the method is still more forgiving to small alignment errors than the originally 

proposed voxel-wise approach. And as mentioned earlier, the number of statistical tests is also 

dramatically reduced.  
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