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ABSTRACT

The field of Computer Vision includes a highly varied collection of technologies for using

Artificial Intelligence to understand and process images. A common thread throughout

Computer Vision is mathematical optimization, frequently used as a tool to model and

solve these problems. A key advantage of optimization formulations is that a model of

any basic Computer Vision problem can be extended to include additional information and

requirements. Prior knowledge, side information, and application-specific restrictions can be

expressed within the objective or constraints. This provides a general way to formally pose

modifications to common vision algorithms. It is not entirely sufficient, however, to only

describe an optimization model that includes the desired side information. The wide array

of problems that can be formulated this way is accompanied by a similarly wide range of

computational difficulty. While the optimization problem for a standard Computer Vision

problem may be solved by a simple and efficient algorithm, with included side information

the extended problem can be fundamentally harder and require more complex solvers.

The focus of this dissertation is a set of vision applications in image segmentation, clus-

tering, and classification that include side information. For the extended problems, I describe

scalable and distributed algorithms that allow even the harder optimizations to be solved

efficiently. In the case of segmentation, the inference is extended to consider multiple images

related by the presence of a common foreground, with an interactive implementation that

can parallelize across the computational units of a Graphics Processing Unit (GPU). Then,

a distributed image clustering algorithm that can incorporate side constraints is presented.

The final problem that is considered is the use of side constraints in neural network training

to build image classifiers with reduced memory requirements. This dissertation shows that
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modeling Computer Vision problems as an optimization effectively provides a way both to

reason about the kinds application-specific extensions presented in these examples and to

make finding a solution fast and efficient.
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Chapter 1

Introduction

A broad range of problems in Computer Vision are posed as numerical optimizations of

an objective function that acts as a surrogate for a perceptual model of image interpretation

and understanding. In the ideal case, the decision variables at the maximum or minimum of

the optimization correspond to the inference that a human would draw from the image. For

example, in the “optical flow” problem, the goal is to identify the transformation between

a source and a target image that describes the perceptual correspondence between pixels in

each image [155]. In the stereo problem, the optimal choice of depths of individual objects

in the 3D scene will be those that could most likely produce the given pair of images of

the scene being captured [125]. The segmentation problem is often posed as an energy

minimization over the object or class labels, where labels for each pixel identify the extent

of the foreground and background regions. Within a popular class of modern approaches

that are often referred to as “Deep Learning,” the process of building a learned model

is to “train” it by optimizing its weights to fit so that its response on the training data

matches the desired human response. To summarize, the overwhelming majority of current

approaches in Computer Vision involve some form of minimization or maximization over

a set of optimization variables. Progress on the theoretical and implementation sides of

such algorithms and their deployment as mature software libraries has been a key driver of

progress in the Computer Vision field throughout most of the past two decades.

In practice, constructing an optimization model for a Computer Vision problem involves

a sequence of interrelated steps. First, the notion of what constitutes a good solution to the
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problem is described in terms of an objective function. For the unknown desired solution,

we want to infer from the image, or the set of images, the objective function that will deter-

mine what is the “best” choice of these unknown variables. The model must frequently also

include constraints on what is a valid solution. For example, often the unknown variables

must lie between 0 and 1 to facilitate interpretation as output for the target problem. The

optimization model is formed from the combination of this objective, the constraints, and

the variables that they act upon. This model can frequently be intractable or very hard to

optimize, but researchers usually seek formulations for which efficient and well-characterized

algorithms are known. Depending on whether our decision variables are discrete or continu-

ous, two major classes of methods can be applied, and correspond to discrete/combinatorial

and continuous optimization models, respectively. Within the discrete optimization field,

techniques commonly used in Computer Vision include graph cuts [20], dynamic program-

ming [52], submodular methods [94], branch and bound [144], and even greedy schemes

[15]. In continuous optimization, it is common to use gradient descent, including stochastic

gradient descent and conjugate and accelerated gradients, and Newton’s method. With con-

straints, techniques such as the simplex method, penalty and barrier methods, or primal-dual

methods are used. Many of these methods are either accessed natively through Computer

Vision libraries such as OpenCV [148] or VLFeat [186], or within vision-focused optimization

and training libraries such as Tensorflow [1], or they are implemented within optimization

toolboxes such as IPOPT, CPLEX, or CVX [62].

Historically, the core focus in Computer Vision has been on tasks that are defined to work

on a single image and make a single specific inference about that image. In other words,

the input corresponds to one image on which the inference produces one output or solution.

Part of this is because an image in isolation is the minimal possible input that one may

seek to “understand” using Computer Vision methods. The preference for this strategy can

also be attributed to the fact that many of the optimization models are difficult to optimize,

and until recently, the hardware could not cope with an image containing millions of pixels

and at least as many decision variables. However, the setting of one image in, and one
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decision out, does not match how images usually appear in the real world, and a person’s

understanding of the image in one context may be very different from their understanding

of that same image in another setting. For example, some of the semantic meaning of an

image in an album may only be apparent by looking at the full set. This is part of why

it has proven useful to include “side information” in vision tasks. Side information can be

defined as any secondary information that facilitates the target task but explicitly does not

appear in the image itself. Conceptually, this can be thought of as a prior, but often may

also involve information not available when building the initial model. This side information

can also take many different forms depending on the application of interest, including the

context or contexts in which the image appears; other similar images, tags, or annotations

about that image; or even active involvement of a user. More often than not, leveraging such

side information, while highly meaningful to the application, poses numerous challenges. In

particular, when a model is modified to take into account new types of information, it may no

longer be solvable by standard mature optimization solvers. Typically, “template” versions

of the optimization problem for a simpler formulation of the problem can treat the solver as

a black box with strong preexisting theoretical guarantees. However, the theory as well as

the expected empirical performance of the black box solver do not always generalize to the

augmented model, as will be demonstrated shortly with a concrete example. A central focus

of this dissertation is to study several different instantiations of this challenge in standard

Computer Vision settings and describe effective ways to perform the resulting optimizations.

We also want to include this side information in a scalable way. Improvements in sensor

technology have led to a rapid increase in the resolution of the images captured by typical

cameras. For inference that must ideally be based in a fine-grained way on the content of

full-resolution images, this requires working with much larger inputs to the underlying opti-

mization model. Further, people worldwide have taken up more and more prolific capturing

and sharing of photos, producing a deluge of image data that one would want to understand

and utilize. While the hardware that can be brought to bear on these larger problems has

also grown in its power, this has not been enough, by itself, to cope with the growth in the
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necessary computations. First, the growth in hardware has not been uniform. The most

rapid growth has been in hardware that executes large numbers of operations in parallel,

such as GPUs, or improved techniques for building clusters of commodity hardware. Näıve

implementations of the same algorithms that worked for smaller problems will not always

scale out of the box when simply run on a newer processor. Further, even to the extent that

both hardware and the size of the problems have scaled, users increasingly demand higher

accuracy on more complex vision problems, with less user intervention, and this requires

solving computationally harder problems. A central focus of this dissertation is producing

models, including those with side information, that better scale to big datasets and better

leverage the available computational resources and specialized architectures (e.g., GPUs)

that are dominating the landscape of Computer Vision research today.

1.1 Graph Cut Segmentation with Side Information

As a practical example of this modelling approach with “side information” and what it

involves, this section starts with the classical graph cut segmentation approach [19]. Recall

that the term “segmentation” describes a general class of vision problems that seek to assign

some semantically meaningful label to each pixel in an image. This group describes such

related problems as motion segmentation [63], semantic segmentation [49], and what we

consider in this example: figure/ground segmentation [19], [92], [128].

One of the most widely used models for segmentation is Markov Random Fields (MRFs)

[117]. An MRF is a probabilistic model defined over cliques of random variables. In seg-

mentation, each random variable is a segmentation label or class for a single pixel. In the

figure-ground segmentation problem, these are binary variables that take a value of 1 if the

pixel p belongs to the foreground and a value of 0 if the pixel p belongs to the background.

Each clique is over a set of variables, e.g., {p, q, r}, that are mutually dependent. For exam-

ple, two adjacent pixels p and q will share an edge (a clique of size two) with a probability

distribution modelling the expectation that two adjacent similar pixels both belong to the

foreground or both belong to the background. This is frequently called a “smoothness”
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prior, in that it is used in models that expect the labels to be piecewise-smooth. For a

binary figure-ground segmentation, this means that the foreground and background pixels

will tend to occur as part of contiguous regions. The model will also include unary compo-

nents for each variable that assign a probability, based on the appearance of just one pixel,

to whether that pixel belongs to the foreground as considered independently of any other

pixels.

To build an optimization problem, it is common to pose the MRF in the form of an

equivalent Gibbs energy function [22], where each term is a potential function on the labels

of one clique. The set of labels that minimize this Gibbs energy will also be the maximum

a posteriori (MAP) solution of the corresponding MRF, giving the most likely set of labels

under that probability distribution. The authors in [20] describe this energy function with

the formula:

E(f) =
∑
{p,q}∈N

Vp,q(fp, fq) +
∑
p∈P

Dp(fp). (1.1)

In this notation, each fp is the output label for pixel p, and N is a set of neighborhood

relations between pairs of pixels. Dp and Vp,q are clique potentials, as described above. Let

us use potentials constructed as follows. First, the pairwise potential can use the Potts

energy that penalizes, with a weight, each pair of similar pixels that are assigned different

labels:

Vp,q(fp, fq) =

Bp,q if fp 6= fq

0 otherwise

(1.2)

where Bp,q is some measure of the similarity between pixels p and q. This quantity can be

based on, for example, the intensity difference or distance between the RGB vectors, and it

will have a higher value for more similar pixels. The unary potentialsDp(fp) are defined based

on an appearance model of the foreground and background—for instance a Gaussian Mixture

Model (GMM) over the RGB values [169] for a target class—or learned from interactive seed

points. Specifically, parameterizing the color distribution of the foreground with a GMM
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model of K components, the probability of a pixel p having color xp is given by:

p(xp|fp = l) =
K∑
k=1

πlkN (xp|x̄k,Σk) (1.3)

for per-class component weights πlk. Take the mean and covariance x̄k,Σk of each compo-

nent’s normal distributions to be shared between classes. The energy can then have the

form:

Dp(fp) = log
∑
k

πlkp(k|xp). (1.4)

This problem, when posed over binary labels, can be solved using the Graph Cuts algo-

rithm [19]. This uses a classical “min-cut” or “max-flow” algorithm that solves the problem

of finding the set of edges in a graph that separate a source and sink node and have mini-

mum total weight. One can construct a specialized network such that pixels are nodes in the

graph, to which source and sink nodes that are connected to the pixel nodes are added. The

smoothness terms are encoded in the edges between the pixel nodes. The unary potentials

are further included as the weights between the pixel nodes and the source and sink nodes.

Pixels on the same side of the minimum cut as the source node are assigned to foreground

and the rest to background.

Extended sets of labels, including an integer number of ordered labels with an appropriate

smoothness function, can also be used in an MRF while still allowing for a guaranteed globally

optimal solution [83]. Each of these extensions makes the problem harder to solve as it grows

along these dimensions. The method in [83], for instance, uses a graph construction with a

number of nodes that grows with the product of the number of pixels and the number of

possible labels that can be assigned to them. It is applicable to MRFs, like those above,

that have only unary and pairwise cliques. Formulations based on the min-cut algorithm

can also exactly solve for the MAP of an MRF for figure-ground segmentation, as long as

every projection of the energy function onto two variables is regular as defined in [97].

In general, MRFs can also be solved by the belief propagation algorithm [147], [193], even

when none of the above conditions hold. Belief propagation is a message-passing algorithm

where, after initializing each node to zero, it incrementally updates each node from its
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neighbors’ messages with:

mt
p→q(fq) = min

fp
V (fp, fq) +Dp(fp) +

∑
mt−1
s→p(fp), (1.5)

as in [51]. These updates can be guaranteed to converge to an optimal solution in the case

that there are no loops in the message-passing. For MRFs that do produce loops, finding the

MAP solution is NP-hard, and in practical cases one can produce approximate solutions at

best. However, in the case that there is a loop, it has been shown empirically that “loopy”

belief propagation will produce good approximate solutions on tasks like denoising and stereo

[51], [133].

1.1.1 Examples of Incorporating Side Information

Example 1. The additional complexity that can arise when using side information is

demonstrated by the “cosegmentation” model in [156]. That work takes, as a starting point,

the MRF figure-ground segmentation described above. They take a problem where they

combine two images, each containing the same foreground object, as the input to a common

segmentation task for which they want to label the foreground object in both. The additional

prior knowledge that the foreground is present in both images, especially in cases where the

background is different, can significantly improve the quality of the output segmentation.

In the work in [156], the MRF segmentation model was extended to include a term that a

histogram over the foreground pixels be roughly consistent between the pair of images in

the cosegmentation input. This will, for instance, exclude background elements that are not

common between the images, because including them would increase the mismatch between

these histograms and make the labelling suboptimal. The original MRF segmentation on

each individual image can be solved by graph cuts, as described above. The histogram

consistency term, though, is a supermodular function of the input labels. Within an energy

minimization framework, the sum of the submodular MRF objective and the supermodular

histogram consistency term is NP-hard to solve exactly. Empirically, however, the authors

find that a trust region method that locally approximates the supermodular term with a

linear function tends to converge on good segmentations.
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Example 2. The work in [187] imposes an additional connectivity constraint on the seg-

mentation output. This constraint especially helps in producing good segmentations of

elongated or thin objects. The “shrinking bias” normally imposed by graph cut segmen-

tation, caused by the smoothness term penalizing long boundaries relative to small regions

of foreground, can undesirably cut out these regions. The formulation in [187] accepts as

an additional input some set of points in the image that both belong to the foreground

and belong to a single connected component in the pixel adjacency graph. The additional

constraint is that for a pair of these points, there should be a path on an adjacency graph

that connects these points and for which each pixel in the path is labeled as part of the

foreground. The authors of [187] show, however, that the result in [207] has as a corollary

that this constraint makes the segmentation problem NP-hard. Vicente et al. therefore pro-

pose a heuristic method called DijkstraGC as a solver for these constrained segmentations.

DijkstraGC finds multiple MRF segmentations as a subroutine within finding shortest paths

that lie in the resulting foregrounds.

Example 3. The authors of [107] present an MRF-based semantic segmentation technique

that incorporates additional prior terms on the co-occurrence of class labels. These terms

include some common-sense notions of what objects and classes of things are likely to appear

together in the same image. It is unsurprising to label one pixel as belonging to a cow and

an adjacent pixel as being grass; it is less common to see a television in the same scene. Very

unlikely juxtapositions of labels are more probably a segmentation error, so a labelling that is

consistent with other parts of the model but uses only labels that are likely to co-occur may

be preferable. Prior formulations [57], [149], [180] of co-occurrence required the instantiation

of a fully connected graph over the label variables. This was potentially very expensive, as

the number of edges in this graph grows quadratically with the number of pixels in the input

image. Ladicky et al. [107] instead define an energy function that is directly a function of

the set of labels that are present in the segmentation, regardless of which pixels or exactly

how many pixels take that label. This means it is not distinguishing between the case that
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one pixel has a particular label, or one hundred pixels do. Their resulting energy function is

posed as an integer program, which is then relaxed to a linear program that is solved with

a graph-cut-based move-making algorithm. Again, the model cannot be optimally solved in

polynomial time, and few theoretical guarantees are available.

Example 4. Toshev et al., in [179], develop a segmentation method that incorporates an

objective term based on the foreground object’s shape. Much like the previous examples, the

original baseline segmentation model, without this additional shape prior, is tractable. In

this case, the baseline segmentation can be computed with a quadratic programming problem

over the labels assigned to superpixels that are computed with NCuts [168]. Their shape

prior is modeled as a chordiogram, a descriptor of the expected 2D shape of the object. It is

constructed by taking a histogram over chord lengths, giving the distribution of distances over

pairs of points on the boundary of the segmented object. The resulting optimization, with

the chordiogram matching term, is an integer quadratic programming problem, which is NP-

hard to solve exactly. The authors present a Semi-definite Programming (SDP) relaxation

that can be solved with standard tools for this class of problems, with their empirical results

computed using SeDuMi [173].

1.2 Problems Studied in this Thesis

This dissertation studies, from the theoretical and implementation points of view, the

efficiency and algorithmic issues in incorporating and leveraging side information within

optimization methods for Computer Vision problems. The following sections describe the

problems that are discussed in the chapters of this thesis at a high level and highlight the

core contributions.

1.2.1 Random Walker Cosegmentation

The basic goal of cosegmentation is to segment a common salient foreground object from

two or more images, as shown in Figure 1.1. It uses the additional information that a set
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Figure 1.1: A representative application for cosegmentation. The same foreground, the

bear, appears in both images. The goal is to find the segmentations outlined in blue.

of images contain the same object, and that some properties of the object’s appearance are

shared between the instances. This is useful when one wants to analyze multiple images

and extract and understand their commonality. The information that multiple images share

in common can help improve the segmentation model. Within, for example, an interactive

cosegmentation, it’s possible that only a subset of images need labels at all, with the re-

mainder of the images being segmented using only the histogram prior. Here, consistency

between the labelled object regions is accomplished by imposing a global constraint that

penalizes variations between the object’s respective histograms or appearance models. The

idea has been adopted for obtaining concise measures of image similarity [156], discovering

common appearance patterns in image sets [113], medical imaging [75], and building 3D

models from community photo collections [5], [99]. However, most previous work provided

insights on cosegmentation only in the context of the traditional Markov Random Field

(MRF)-based segmentation objective [19]. Adding such a global constraint adds a fair bit

of overhead to some existing MRF methods. Consider the simple toy example in Figure

1.2, where the segmentation should identify the common blue circle in distinct backgrounds.

MRF approaches for cosegmentation with a global model require that an auxiliary node or

variable be introduced into the graph on which the network flow will be executed whenever
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Figure 1.2: Toy example for cosegmentation demonstrating a uniform foreground that we

would like to segment.

two pixels share the same bin in the histogram [75], [129]. While the segmentation of the

blue circles by itself is easy, the cost of introducing an auxiliary node for perceptually similar

pixels can grow very quickly – counting, for example, the foreground pixels for a 196× 196

image pair. As a result, these previous models are limited to feasibly cosegmenting only

those image pairs that have a relatively high entropy distribution: a distribution where each

bin is shared by only a few pixels.

Chapter 3 provides a solution to this problem. It describes a cosegmentation model

with the Random Walker segmentation at its core. The model reduces to a convex program

with box constraints. Based on this structure, I propose a specialized and efficient gra-

dient projection-based procedure that finds a global real-value optimum of the model and

preserves many advantages of Random Walker [61]. The model allows for a nonparametric

representation of the foregrounds—for example using distributions over texture words—but

one which permits any distribution of features without incurring additional computational

costs. This provides a substantial advantage over the existing nonparametric cosegmenta-

tion approaches, which are limited only to regions described by a high entropy model in

which object features must be spread evenly across bins. I also extend this model to a

scale-independent penalty. The treatment presents a novel optimization method for a class

of objectives based on quasiconvex functions. I later prove correctness and demonstrate it

for model-based image segmentation. These theoretical results are of independent interest.

Interestingly, our optimization consists of linear algebra operations (BLAS Level 1, 2) on
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sparse matrices, which has significant benefits. For example, the algorithm is easy to execute

on a GPU architecture, as I show using extensive experiments.

1.2.2 Parallel Spectral Clustering with Nonsmooth Side Informa-
tion

Clustering serves as an important exploratory tool for categorizing sets of images into

semantically meaningful concepts. To facilitate such inference tasks, the image is first ex-

pressed in terms of its response to a large set of specialized filters pertaining to texture,

distinct object categories, and appearance, among others. This information may be further

complemented by textual cues that co-occur with the images, image tags, or hyperlinks to the

image as “side information.” With these representations in hand, the goal is to leverage all

views simultaneously and derive a solution that best groups the given set of examples. Once

this is done image understanding can proceed cluster-by-cluster—using a cosegmentation

method, for instance.

One of the most general ways to extract clusters from this kind of highly complex data is

Spectral Clustering [25], due to its ability to find the structure of arbitrarily shaped clusters.

Despite its advantages, Spectral Clustering is expensive for larger datasets. The most com-

mon optimization is to sparsify [29] or subsample [55], [116] the matrix of similarities between

examples. Even with these optimizations, solving the Spectral Clustering problem for very

large datasets is expensive—mainly due to the need for an eigendecomposition of big matri-

ces. These issues clearly intensify when operating with multiple views of the data and when

incorporating side information such as tags. To address these limitations, there is significant

recent interest in making Spectral Clustering efficient in the large dataset setting—with user

interaction [30], “activization” schemes [100], and parallelized versions of the Lanczos solver

[29]. These solutions are highly effective for the standard Spectral Clustering objective and

several also come with nice guarantees. However, they are not necessarily straightforward

to adapt to run in a distributed manner over multiple threads. More importantly, incorpo-

rating weak or distant supervision, user interaction, and/or auxiliary domain-specific priors
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beyond must-link/cannot-link constraints is challenging. Such side information is ubiqui-

tous in most real-world datasets and seems like a desirable feature for a system deployed in

practice, producing the need to overcome these computational difficulties.

My primary goal in Chapter 4 is to develop stochastic and distributed optimization

methods for this class of problems. To effectively utilize the side information, I focus on

on Spectral Clustering for both single and multi-view data. The algorithms in that chapter

satisfy some key theoretical and practical criteria that make them applicable to very large

problems of this form. First, thanks to using a distributed stochastic descent method, the

clustering method can scale to very large datasets, on the order of 100 million examples. To

the extent the problem grows, or finding the optimal clustering becomes harder, the problem

can still complete in reasonable time, as a larger number of machines can be put to work on a

solution. It also shows provably good convergence behavior, using results that are presented

in that chapter. It finally offers the ability to incorporate high-level prior knowledge and

probability distributions—for example that the images share ‘tags’ or some element of user

interaction—as regularization terms or additional soft constraints.

1.2.3 Sparsity-Inducing Regularizers for Convolutional Neural Nets
(CNNs)

Over the last few years, high capacity models such as deep Convolutional Neural Networks

(CNNs) have been used to produce state-of-the-art results for a wide variety of fundamental

vision problems, including image classification and object detection. This success has been

in part attributed to the feasibility of training models with large number of parameters and

the availability of large training datasets. These techniques, however, require careful tuning

of the optimization and initialization hyperparameters to ensure that the training procedure

arrives at a reasonable model [102]. While the capacity of such deep models allows them

to learn sophisticated mappings, it also introduces the need for good regularization. The

first generation of useful deep models [102], [120], [175] showed a reasonable degree of gener-

alization, in part because of recent advances in regularization methods like DropOut [102].
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However, these and other approaches [103] proposed in the literature fail to address the issue

of high memory cost, which is particularly problematic in models that rely on multiple fully

connected layers. The high memory cost becomes especially important when deploying in

applications in computationally constrained architectures like mobile devices.

Satisfying these constraints requires models that come with a side constraint specifying

memory limits or other bounds on resources and model capacity. I propose as one promising

solution the use of sparsity-inducing regularizers for Convolution Neural Networks (CNNs).

These regularizers encourage fewer connections in the convolution and fully connected layers

to take non-zero values and in effect result in sparse connectivity between hidden units in

the deep network. In doing so, the regularizers not only restrict the model capacity but also

reduce the runtime memory cost involved in deploying the learned CNNs. Chapter 5 intro-

duces a set of sparsity-inducing regularization functions, including group-sparse constraints,

that are effective at reducing model complexity with no or minimal reduction in accuracy. It

also describes updates for these regularizations that are easily implemented within standard

existing stochastic-gradient-based deep network training algorithms. This thesis presents

empirical validation of the effect of sparsity on CNNs trained on the CIFAR, MNIST, and

ImageNet datasets that have, since their initial proposal, been extensively leveraged and

replicated by other research groups.

1.2.4 Outline

After introducing preliminary concepts, this thesis is divided into three parts. Chapter

3 presents the Random Walker Cosegmentation model that extends the Random Walker

segmentation to include foreground histogram consistency terms as an additional constraint.

Next, Chapter 4 describes a highly parallel method for Spectral Clustering that can also

incorporate harder must-link constraints and provides general results for including side in-

formation into the clustering. Chapter 5 is the final work presented, showing how the training

optimization of neural networks can include a sparsity penalty as a side constraint in order

to produce smaller and more efficient CNNs.
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Chapter 2

Preliminaries

In this chapter, I will briefly introduce preliminary concepts and background upon which

this thesis builds. The initial section will cover the basics of continuous optimization, the

core technology used throughout this thesis. Next, I’ll summarize the literature on stochastic

gradient descent (SGD), the type of optimization algorithm used in Chapters 4 and 5. In

Chapter 4 specifically, I combine concepts from SGD with optimization on manifolds, a body

of work introduced in this chapter in Section 2.3. Finally, to motivate some of the methods

in Chapters 3 and 5, I will briefly cover the techniques of sparse linear algebra, a key part

of how the implementations produced by the following work are made efficient.

2.1 Continuous Optimization Models and Solvers

To establish terminology, take the general form of a continuous minimization problem:

min
x∈Rd

f(x)

s.t. x ∈ S.
(2.1)

This denotes a problem where the goal is to find the right choice for a d-element vector of

decision variables x. This vector is chosen from the feasible set S ⊆ Rn. This feasible set

will be defined by a set of constraints on x. For example, if we take S to be the non-negative

orthant:

{x ∈ Rd : xi ≥ 0 for i = 1, ..., d}, (2.2)
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then each expression xi ≥ 0 is one of these constraints. Note that in the following text

the condition in (2.2) will be abbreviated as x ≥ 0, to mean that each element in the

vector-valued left-hand side satisfies this inequality.

The structure of the objective function and constraints of an optimization model deter-

mines what types of guarantees can be made and the types of solvers that can be applied.

Linear programming problems constitute one of the simplest classes, but they are still quite

powerful [53]. These are the problems that have a linear objective and linear constraints.

All such problems can be expressed as:

min
x∈Rd

cTx

s.t. Ax ≥ b.

(2.3)

A classical method for solving these problems is the simplex method [38].

To build more complex formulations, one of the key tools is the set of convex functions.

Given a real-valued function f : Rd → R, it is convex if Jensen’s inequality [18] holds:

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) (2.4)

for all choices x, y in the domain of the function, and all choices λ in the unit interval [0, 1].

One construction we can define on a real-valued function is its sublevel sets. The α-

sublevel set of f is defined as:

{x ∈ Rd : f(x) ≤ α}. (2.5)

All sublevel sets of a convex function f will be convex sets [18]. A set S ⊆ Rd is convex if

(1− λ)x + λy ∈ S (2.6)

for all choices of x,y ∈ S and λ ∈ [0, 1].

This thesis will consider in greater detail the class of convex problems that fall under

Quadratic Programming (QP) problems. These are minimization problems where the ob-

jective is a quadratic function of the decision variables, and the constraints on the decision
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Figure 2.1: Convexity can be a property of both real-valued functions and arbitrary sets.

A convex function (a) will satisfy Jensen’s inequality (2.4), and will lie below lines between

any two choices of (x, f(x)) as illustrated. A non-convex function (b) will not. For a convex

set S, lines between two points in S as constructed in (2.6) will be contained in the set as

illustrated in (c). This will not be the case for a non-convex set (d).

variables are all linear. Quadratic problems are closely related to linear programs, and can

be solved by extensions of some of the same methods [198]. These problems take the form:

min
x∈Rd

xTQx

s.t. Ax ≥ b.

(2.7)

A more general class of important optimization problems is those that are convex [18].

Given a problem of the form:

min
x∈Rd

f(x)

s.t. gi(x) ≤ 0 for i = 1, ...,m

(2.8)

it is convex if both the objective function f and all of the m inequality constraint functions

gi are convex.

Related to convexity are a number of weaker and stronger conditions. One of the more

general classes of functions for which we have algorithms that yield a guaranteed global

solution is the quasiconvex functions. These are defined as the functions for which the
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sublevel sets are convex. Note that this means, by the above discussion, that every convex

function is also a quasiconvex function, though the converse is not true. One can also define

quasiconvex functions in terms of an inequality analogous to that given for convex functions

in (2.4). For quasiconvex functions this condition is given instead by, as in [7], the inequality:

f((1− λ)x+ λx′) ≤ max{f(x), f(x′)}. (2.9)

More discussion appears in Chapter 3.

In the opposite direction, there are conditions that define subsets of the convex functions.

For instance, a function f is strongly convex if for any x we have the inequality (from [18]):

∇2f(x) � mI (2.10)

for some positive m and denoting the identity matrix with I. Specifically, this means the

minimum eigenvalue of the Hessian is at least m at all points in the function’s domain.

This excludes objective functions that can display phenomena that make fast convergence

arbitrarily difficult. For instance, given a very ill-conditioned Hessian, we may see very

shallow descent in some directions and very steep descent in others, making it difficult to

establish in general that good progress will be made in the direction of more shallow descent.

The class of convex problems, and especially strongly convex problems, is the most well-

characterized subset of optimization problems. There exists a wealth of algorithms and

solvers with theoretically proven global convergence guarantees [18], [140]. One of the most

basic is gradient descent, or more generally steepest descent. This provides guarantees

of a correct globally optimal solution in the case that we have an unconstrained problem

minx∈Rd f(x). In this procedure, one takes the step

x(k+1) ← x(k) − αk∇f(x(k)) (2.11)

for some step length αk.

The choice of step length at each iteration can dictate the speed of convergence. Some

computationally efficient schemes can be performed to find a step length that satisfies the
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Figure 2.2: Illustration of the gradient descent method. The dashed lines show the level sets

of some function. The gradients, shown as arrows, will be perpendicular to the level sets at

that iterate. This procedure would continue, typically for more iterations than shown here,

until some convergence condition was met.

Armijo and Wolfe conditions, as described in [140], and convergence results can be shown

for step lengths so chosen. Also theoretically interesting is exact line search, which chooses:

αk := arg min
α>0

f
(
x(k) − α∇f(x(k))

)
. (2.12)

This is frequently impractical to compute except for simpler functions. It can be shown [18],

though, that this yields linear convergence for a strongly convex f , meaning that

f(x(k))− f(x∗) ≤ ck
(
f(x(0))− f(x∗)

)
(2.13)

for a constant c that depends on f and x∗, the point to which the descent procedure converges.

One improvement on the search direction is to use the conjugate gradient. This combines

the gradients evaluated from multiple steps to select the direction of descent. Applied to

unconstrained minimization, one such conjugate gradient is given by the Fletcher-Reeves

method [54], [140], which will be used in Chapter 3. This chooses a descent direction p(k) at

each iteration with the procedure:

p(k+1) ← −∇f
(
x(k+1)

)
+
‖∇f

(
x(k+1)

)
‖2

‖∇f (x(k)) ‖2
p(k). (2.14)
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Notably, this method does not require significant additional computation beyond ordinary

gradient descent, still requiring one gradient evaluation per iteration. Under mild conditions,

it can be shown that the Fletcher-Reeves method will converge to a point with arbitrarily

small gradient [140].

One can get significantly faster convergence with Newton and Quasi-Newton methods.

These are second-order methods, as they use the Hessian matrix of second derivatives of the

function, or an approximation of the Hessian. The basic Newton’s method takes a step at

each iteration of:

x(k+1) ← x(k) − αk
[
∇2f

(
x(k)
)]−1∇f

(
x(k)
)

(2.15)

with step length αk chosen with a line search. Once one finds an iterate close enough to the

solution, Newton’s method displays quadratic convergence, meaning

f
(
x(k)
)
− f(x∗) ∈ O

((
1

2

)2k
)
. (2.16)

This is quite rapid convergence; it effectively means that the number of additional iterates

required “can be considered a constant for practical purposes, say five or six” [18].

One more concept used in many convex optimization algorithms is that of the active

set. This is the subset of the inequality constraints in an optimization problem of the form

in (2.8) that are true with equality. For any point in the feasible set, given by a choice of

decision variables x, the active set is defined by:

A(x) := {i : gi(x) = 0 for i in 1, ...,m.} (2.17)

Some types of problems have optimality conditions that can make finding a solution much

simpler, but are expressed in terms of the unknown active set. For instance, the solution

to a linear program can be specified entirely in terms of the choice of the vertex on which

the solution lies. For that vertex, any member point will be optimal. Indeed, the simplex

method can be considered as the simplest case of a class of optimization techniques called

“active set methods” [140]. Active set methods for constrained nonlinear optimization work

by alternately solving a problem that assumes a given choice of active set, called the “working
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set,” and updating this choice until it matches the active set at the solution. The active

set is also relevant for descent methods, as some may require that we modify the descent

direction in order to stay within the feasible set. Locally, whether the descent direction at x

points outside the feasible set can be determined by looking at the constraints in the active

set.

This discussion includes only one small subset of the optimization algorithms that have

been studied for convex problems. Trust region methods, sequential quadratic programming,

interior point methods, and a host of other techniques are relevant to such a discussion but

are not directly considered in the following work.

2.2 Stochastic Gradient Descent

One optimization algorithm that serves as the crucial building block to many scalable

solvers is stochastic gradient descent (SGD). Suppose we have an optimization problem:

min
θ∈Rd

f(θ) := f1(θ) + f2(θ) + ...+ fm(θ) (2.18)

defined by a collection of differentiable functions fi : Rd → R. In many practical applications

of optimization, the objection function can be expressed in this form [14].

Stochastic gradient descent works by subsampling the terms of this objective. In each

iteration, first pick some subset I ⊆ {1, ...,m}, where each index belongs to I with equal

probability. This can be achieved, for example, by sampling the desired number of indices

one at a time, independently and identically distributed, without replacement. Let fI(θ) =∑
i∈I f(θ). Then two important properties hold:

EI [fI(θ)] = f(θ) (2.19)

EI [∇fI(θ)] = ∇f(θ) (2.20)

meaning that both the objective value and the gradient of the subsampled objective at θ are,

in expectation over I, equal to the value and gradient of (2.18)’s original objective function

[17]. In the vanilla SGD algorithm, at each iteration t we take a gradient step computed on
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a set of sub-objectives specified by an It sampled at that iteration:

θt ← θt−1 − δt∇fIt(θt−1) (2.21)

given the iterate from the previous step θt−1 and some step length δt.

Some simple common choices for the step length δt, also called in ML contexts the

“learning rate,” are exponential or inverse decaying functions of the step t. Convergence

guarantees can be shown for the case that δt ∈ Θ(1/t) [14], [132], or more generally learning

rates that satisfy:
∞∑
t=1

δt =∞ and
∞∑
t=1

δ2
t <∞. (2.22)

It can be shown under these step length conditions that the objective converges to the true

minimum following

f(θt)− f(θ∗) ∈ O(1/t) (2.23)

for θ∗ the solution to which the SGD procedure will converge.

Other decaying learning rate schedules are also common in practice. Also common in

SGD-based “training” procedures are empirical methods to determine the learning rate, or

hyperparameters that determine the schedule. These will, for instance, optimize the schedule

to maximize the performance on a held-out tuning set that is not used for the SGD training

[170]. The learning rate can also be adjusted adaptively, based on the history of previous

iterations [206], as another empirical means to determine what this value should be.

Stochastic gradient descent is a practical choice when computing gradients of the full

objective is expensive or infeasible [14]. This can be the case when either each fi is expensive

to compute, or the number of terms of the objective is very large. In applications such

as primal SVM solvers [166], neural network training [154], and other Machine Learning

applications, the objective might be a sum over millions or billions of terms.

One especially important class of problems suitable for SGD is in supervised Machine

Learning [14]. Here, we are given a set of training examples (x1, y1), ..., (xn, yn), each con-

sisting of input features xi ∈ X paired with a ground-truth label yi ∈ Y . The designer of a

Machine Learning model will specify some function f(x, θ) that produces a predicted label
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in Y given the input features and a collection of unknown weights or parameters θ. One

must also select a loss function to compare the labels L : Y × Y → R. The value of L(y, y′)

will be low if the predicted label y and the true label y′ are identical or similar, and will be

high if the labels are very dissimilar. The “training” procedure will then be to choose a set

of parameters so that the predicted labels will tend to match the true set. In the absence of

regularization or side information, one can express the training as an optimization problem

of the form:

min
θ

n∑
i=1

L(f(xi, θ), y). (2.24)

This problem lends itself very well to stochastic gradient descent methods, and each iteration

will choose a subset of the input examples.

In addition to the computational benefits, stochastic gradient has some unique and de-

sirable convergence properties when applied to Machine Learning problems. Because SGD

acts on a random sampling, it will tend to converge on minima that are stable with respect

to this sampling. If a small perturbation of one data point [70] or a small perturbation of the

decision variables [93] were to significantly increase the objective in the neighborhood of a

local minimum, SGD is less likely to converge to that minimum than one that is more stable.

This can improve the generalization of an ML model that is trained on this objective, as its

output on new unseen data points will be based only on properties of the training set that

are robust to these perturbations. These “robust” properties are more likely in practice to

be based on the underlying true distribution than the training sample. Stochastic gradient

descent can also escape from saddle points [58] on non-convex objectives. Where ordinary

gradient descent may see slow progress in an area of flat gradients, even if there are descent

directions nearby, the random perturbations in the iterates of an SGD method will cause it

to search the neighborhood of the saddle point and find these descent directions.

An important extension to stochastic gradient descent is the use of accelerated gradients.

One of the most popular variants is SGD with a momentum term [174], [196]. This uses as a

descent direction a momentum vector vt ∈ Rd that accumulates the gradients over multiple

iterations, instead of subtracting the gradient of only fIt . Both this vector and the current
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choice of the decision variables are updated in each iteration, as in:

vt ← µvt−1 − δ∇fIt(θt) (2.25)

θt ← θt−1 + vt (2.26)

where µ ∈ (0, 1) is a momentum hyperparameter that is chosen empirically.

Other similar methods such as Nesterov’s Accelerated Gradient [135] and Adam [95] have

also been shown to yield good convergence in Machine Learning applications.

One extension to the SGD algorithm that can handle more complex problems is proximal

stochastic gradient descent [201]. This considers problems of the form

min
θ∈Rd

f(θ) + g(θ) (2.27)

where f is a smooth function from which one can sample stochastic gradients, and g is a

possibly non-smooth convex function equipped with a proximal operator [145]. The proximal

operator for g is the mapping:

proxg(θ) = arg min
θ′

(
g(θ) +

1

2
‖θ − θ′‖2

2

)
. (2.28)

A number of different functions have proximal operators that can be computed efficiently.

For instance, simple proximal operators can be derived for g being an `1- or `2-norm regu-

larization. Note also that when g is the indicator function of a closed convex set G:

g(θ) =

0 if θ ∈ G

∞ if θ /∈ G,
(2.29)

then the proximal operator for g is also the projection operation onto G. The basic proximal

gradient algorithm produced iterates according to [138]:

θ(k+1) ← proxg
(
θ(k) − αk∇f

(
θ(k)
))
. (2.30)

Further, the gradient in (2.30) can be replaced with a stochastic sample of the gradient, or an

accelerated version [138], and so forth to derive a class of proximal optimization algorithms.
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One extension of the stochastic gradient descent method, which will be a focus of Chapter

4, is distributed SGD. It is possible to reduce the time to compute a solution by tasking

multiple processors to compute and optimize each with different gradient samples. Zinkevich

et al. [109], [210] consider the typical case of SGD being used to minimize the empirical loss

of a Machine Learning problem. The training dataset is distributed among the workers, with

each machine being given a random subset of the examples. The workers can then compute

gradients and updates to the parameter choices, in some presented algorithms even running

full gradient optimizations. One of the main performance limitations that must be taken

into account is the time and communication cost required to synchronize and send parameter

updates between workers. The work in [139] showed that, for some problems, this may not

be necessary, and workers can update the decision variables in an arbitrary asynchronous

way.

Another optimization method, called coordinate descent or block coordinate descent, is

closely related to stochastic gradient descent. In block coordinate descent methods, instead

of sampling a subset of terms of the objective function, one selects a subset of the decision

variables at each iteration. To illustrate the method, I’ll describe the ordinary coordinate

descent method that uses “blocks” of a single coordinate; the more general case does a similar

procedure on multiple coordinates in a single step. Given a basic unconstrained minimization

problem minx∈Rd f(x), and a starting point x(0), the procedure is to repeatedly:

1. select some ik ∈ {1, ..., d}, and

2. update x(k) ← x(k−1) − δk ∂f
∂xik

(x(k−1))eik .

In the above notation, ∂f
∂xik

(x) is the partial derivative of f w.r.t. the ithk coordinate, and eik

is a basis vector with the ithk element equal to 1 and the remaining elements equal to 0.

The choice of blocks can be either chosen by some algorithmic strategy, such as choosing

a block that has a large gradient, or by randomly choosing blocks. There are a number of

ways of choosing the coordinates with strong convergence guarantees [118], [159]. Even a

randomized strategy can show very rapid convergence on some problems [152], [167].
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x(0)

x(1)x(2)

Figure 2.3: Illustration of the coordinate descent method on a function in R2. Each step

alternates between the two input dimensions.

Much like stochastic gradient descent, block coordinate descent is especially suited for op-

timization in distributed settings. Individual workers can each optimize on disjoint subsets of

the optimization variables, or even overlapping subsets [122], [139]. This significantly reduces

the amount of information that must be communicated between different optimization work-

ers. Since this communication cost is frequently the bottleneck on distributed computing,

block coordinate methods can scale to much larger instances of the optimization problems.

Block coordinate descent can further simplify the computation of the descent direction and

enjoys some of the same benefits of SGD in avoiding the computation of expensive objective

functions [136].

2.3 Optimization on Manifolds

A manifold is a space such that, for each element of the manifold, there exists a homeo-

morphism from the neighborhood around that point to a subset of the Euclidean space Rd

for some d. A manifoldM is differentiable if the mappings from Rd toM are differentiable

[44].
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At each point on a differentiable manifold, one can define a tangent space. For any

differentiable α : (−ε, ε)→M, one can define a tangent vector at p = α(0) to be the velocity

of α at 0. The set of all such vectors at p ∈ M is the tangent space TpM [44]. Further,

a Riemannian manifold is one where the tangent spaces of the manifold are equipped with

some inner product. This inner product acts on pairs of tangent vectors, and defines the

Riemannian metric on that manifold.

Geodesic curves are a common building block of optimization algorithms that act on

Riemannian manifolds. A curve on a manifold can be parameterized as a mapping from

some interval to the manifold γ : R ⊃ [a, b]→M. If the curve produced by γ is the shortest

curve between γ(a) and γ(b), as measured by the Riemannian metric on M, then it is a

geodesic. If, for any t0, t1 ∈ [a, b], the arc length of γ between γ(t0) and γ(t1) is equal to

t1 − t0, then γ has a constant speed of 1 [44].

Building on geodesic curves, one can further define the exponential map. Given p ∈ M

and v ∈ TpM, this is defined as:

expp(v) = γp,v(1), (2.31)

where γp,v is a unit-speed parameterization of a geodesic such that γ(0) = p and γ′(0) =

v. This geodesic is unique. Importantly for optimization, the exponential map allows us

to define a geodesic curve at a given point in a given direction, for instance the descent

direction of an objective function at the current solution [2]. The log map is then the

inverse of the exponential map. Given p, q ∈ M, logp(q) will be a vector in TpM such that

expp(logp(q)) = q. Basically, this gives the direction on the manifold at p that points toward

q, with magnitude equal to the geodesic distance between them.

Examples of manifolds commonly used in Computer Vision include the rotation groups

[176], the Grassmannian and Stiefel manifolds [47], and the positive semi-definite matrices

[69]. The manifolds on orthogonal and orthonormal matrices are of special interest [47].

The most basic definition among these is the orthogonal group. This consists of the set of

matrices

On =
{
X ∈ Rn×n | XTX = In

}
(2.32)
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M

p

v

expp(γv)

Figure 2.4: Illustration of a manifold M, a tangent vector v ∈ TpM, and the geodesic

generated by expp(γv) for γ ≥ 0.

where Id is the d × d identity matrix. On rectangular matrices, there is the related Stiefel

manifold

Vn,p =
{
X ∈ Rn×p | XTX = Ip

}
. (2.33)

Matrices in the Stiefel manifold will have columns that are n-vectors of unit length that are all

mutually orthogonal. This means that these columns are a basis of a p-dimensional subspace

of Rn. These subspaces themselves form the Grassmannian manifold Gn,p. This means the

Grassmannian manifold can be represented by the quotient group Vn,p/Op, reducing all bases

that can be mapped to each other by a p-dimensional rotation within the subspace to the

same element of the Grassmannian. The discussion on matrix manifolds is extended in

Chapter 4.

A manifold optimization is a problem of the form:

min
x∈M

f(x) (2.34)

where M is a Riemannian manifold. This is related to ordinary constrained optimization

on vector spaces. Take a manifold embedded in Rd, that is defined by equality constraints.

Given a definition of the form

M = {x ∈ Rd : g(x) = 0} (2.35)
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for some real-valued function g. Then the problem in (2.34) is equivalent to

min
x∈Rd

f(x)

s.t. g(x) = 0.

(2.36)

However, one can exploit the structure of M within the optimization to design algorithms

distinct from ordinary constrained optimization. These are, specifically, what fall into the

category of manifold optimization methods.

There are roughly two closely related categories of manifold optimization methods, which,

in this thesis, I will refer to as projected and feasible descent methods. These differ in whether

iterates or candidates are computed that lie in a space in which the manifold is embedded,

but do not lie in the manifold.

In a projected method, or more generally one using retractions [3], one considers a man-

ifold M embedded in some Euclidean space Rd ⊃ M, and takes the objective function f

to have domain Rd. Given an iterate x(k) ∈ M, we can produce a candidate for the next

iterate by moving along the gradient of f in the Rd. In order to produce a solution, we must

at some point then project back onto M.

Feasible descent, by contrast, does not require the choice or construction of a space in

which to embed the manifold [195]. Instead, one constructs a descent curve. Given an

objective function on the manifold f : M → R, this is some curve α on the manifold such

that α(0) = x(k) and (f ◦ α)′(0) < 0. One can then decrease the objective by moving along

the descent curve for some distance, and this can be repeated until a solution is found.

Manifold optimization problems are well-studied in Computer Vision and Machine Learn-

ing, with software toolboxes such as Manopt [16] and Pymanopt [96] available and targeting

these use cases. Eynard et al. [50] optimize a joint diagonalization problem over the Stiefel

manifold to do face pose alignment and image clustering. Manifold optimization can also be

applied to the PCA problem, to produce regularized reduced-dimensionality representations

of examples [65], [184]. Ring and Wirth [153] demonstrate a segmentation method in the

style of curve evolution, but instead with optimization on a manifold over shapes.
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2.4 Sparse Matrices

One of the best ways to make optimization implementations more efficient is to leverage

sparsity. A vector or matrix is sparse if a large portion of its elements are zero. Many common

linear algebra operations can be performed on sparse arguments with computational cost

proportional not with the size of the vector or matrix, but rather with the count of nonzeros.

In cases where a large amount of redundant work is being done, an easy way to model the

problem so that this work is skipped is to use sparse operations.

As a simple example, consider the dot product between two vectors in Rd:

Require: u, v ∈ Rd

p← 0

for i = 1, ..., d do

p← p+ uivi

end for

return p.

All elements of each vector will typically be stored consecutively in memory. Computing

and accumulating the products of each element will be O(d) operations.

Suppose instead that u and v are sparse. Take nnz(u) to be the number of non-zero

elements in u, and the same for v. One efficient way to store the vector u is to have two

arrays: an array IU of the indices of these non-zero elements in ascending order, and an

array of the non-zero elements themselves. The dot product of these sparse vectors could be

computed instead with:

Require: u, v ∈ Rd and IU, IV ⊆ {1, ..., d}

p← 0

j ← 1

for i = 1, ..., nnz(u) do

while IUi > IVj do

j ← j + 1
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Dense: 0 7.1 0 0 3 3 0 0 0 -1.7 0 0

Indices: 1 4 5 9 Values: 7.1 3 3 -1.7

Figure 2.5: A sparse vector can be stored as a dense array, including zero entries, as shown

in the top array. Alternately, one can store the non-zero indices and values separately, as in

the lower two arrays.

if j > nnz(v) then

return p

end if

end while

if IUi = IVj then

p← p+ uIUi
vIVj

end if

end for

return p.

This will instead require O(max(nnz(u), nnz(v))) operations. Typically, a vector u ∈ Rd will

be considered “sparse” only when nnz(u)� d, so this can represent significant computational

savings.

Work on sparse linear algebra typically deals with sparse matrices. One of the most pop-

ular storage formats is with Compressed Sparse Row (CSR) matrices. These store the rows

of the matrix in a form similar to the sparse vector format described above and illustrated in

Figure 2.5. Typically, the column indices and elements of the nonzero elements are all stored

consecutively. The indices and elements for row i are then stored in a contiguous range, and

an additional pointer array gives the position of this range, for each row i, in the overall

order. CSR matrices are especially good for common operations such as matrix-vector mul-

tiplication. However, there are also a number of other formats. Important general-purpose
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formats include Compressed Sparse Column (CSC) and Coordinate (COO). There are also

special data structures supported by common codes that can represent special structures of

sparse matrices, such as banded or block diagonal matrices, or general block-sparse matrices.

For details see [158] or further discussion in Chapter 5.

Modelling the performance of linear algebra operations by counting the number of oper-

ations, as in the example above, is incomplete. When the main constraint on performance

is the number of floating-point operations that can be computed per second, this will tend

to be an accurate way to compare the speed of different algorithms or implementations.

However, on modern SIMD processors and GPUs, the “floating-point throughput” is high

enough to no longer be the main factor in sparse computations. Instead, memory access and

the bandwidth for the processing units to access the input and output data are the primary

considerations [9]. These tend to be easy to optimize for in the case of dense matrices, where

most operations access elements consecutively or in a regular pattern. For sparse operations,

memory access may be to arbitrary locations as determined by the nonzero indices. This

means that ordinary CSR can lead to suboptimal performance, but linear algebra compu-

tations can still be made efficient through the use of special storage formats [9] and in the

design of the algorithms operating on them [8].
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Chapter 3

Cosegmentation with Random Walker

Images frequently occur within groups in a variety of contexts. On the Web, images

may be compiled into albums as for example in social media, or appear embedded into

a document. When the same object appears in multiple images, this can be leveraged

by Computer Vision inference to extract more information about that object by analyzing

the images as a group rather than as a collection of isolated images. This is especially

interesting for the segmentation task. Segmentation, a pixel-by-pixel label of the object or

object instance to which that pixel belongs, is very difficult to do accurately on single images.

It is possible to get better results in the context of a set of related images.

Cosegmentation seeks to segment a set of images that contain a common foreground

object, or multiple such objects, and uses a shared model of this object across the entire image

set to improve the accuracy of the segmentation. The following chapter presents work in

which I demonstrate an optimization procedure for cosegmentation based on Random Walker

Segmentation. The special structure of one form of this model leads to a highly parallelizable

algorithm for finding the segmentations across the entire image set. This is further extended

to a scale-free model for which one can efficiently get solutions of theoretically guaranteed

quality despite the non-convexity of the resulting problem.
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3.1 Related Work

3.1.1 Markov Random Fields

A classical formulation of the segmentation problem uses Markov Random Fields (MRFs)

[19]. These are a class of probabilistic models that express the likelihood of possible pixel

labellings over the image. The main tool provided by MRFs is the encoding of conditional

dependence and independence between the probability distributions of each pixel’s label, for

instance the expectation that adjacent pixels are more likely to share the same label while

distant pixels may be independent. Different models of object appearance and shape can

then be included in the individual energy functions in the MRF.

I more specifically formulate object segmentation as an optimization that is equivalent to

finding the most likely labelling under the MRF. Let Ω be the set of pixels in the image, or

some other representation of the spatial domain of the image, and let L be the set of labels.

The goal is a labelling x : V → L that minimizes some measure of segmentation cost, or a

segmentation “energy” function EMRF. One can construct some graph (V , E) of the MRF

dependencies where each pixel label has a vertex in the graph and E is a set of edges between

pixels that are close enough to have dependent label distributions.

Then, the optimization problem is:

min
X∈L|Ω|

EMRF =
∑
i∈V

pi(xi) +
∑

(i,j)∈E

wijδ(xi, xj), (3.1)

where pi is a per-pixel label prior, wij is the pairwise similarity, and δ(·, ·) is a label similarity

such as the Potts function [19].

3.1.2 Markov Random Fields for Cosegmentation

The initial model for cosegmentation in [156] provided means for including global con-

straints to enforce consistency among the two foreground histograms in addition to the MRF

segmentation terms for each image. The objective function incorporating these ideas was

expressed as

Ecoseg = EMRF
image 1 + EMRF

image 2 + λEglobal(h1, h2), (3.2)
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where Eglobal(·, ·) was assumed to penalize the `1 variation between each h1 and h2 (the two

foreground histograms obtained post segmentation).

Histograms, and similar properties, of the foreground object provide a flexible and simple

way to express the appearance of the object and include the similarity of its appearance be-

tween the images within the cosegmentation model. Given an appropriate choice of features

on which to compute the histogram, the design of which is described in more detail below,

this can be reasonably robust to changes in illumination, viewpoint, and deformation of the

object. The histogram of only the foreground object, importantly, can also be expressed as a

linear function of the segmentation labels. This is the key reason they are useful for building

models that are useful within a fast cosegmentation optimization.

The appearance model for the histogram was assumed to be generative (i.e., Gaussian),

and a novel scheme called trust region graph cuts was presented for optimizing the result-

ing form of (3.2). Subsequently, [129] argued in favor of using an `2
2-distance for Eglobal(·, ·),

whereas [75] developed a reward-based model. A scale-free method is presented in [130, 131],

which biases the segmentation towards histograms belonging to a low-rank subspace. Re-

cently, [188] compared several existing MRF-based models, and presented a new posterior-

maximizing scheme that was solved using dual decomposition. One reason for these varied

strategies for the problem is that when a histogram difference term is added to the segmen-

tation, the resultant objective is no longer submodular (therefore, not easy to optimize).

Therefore, the focus has been on improved approximate algorithms for different choices of

Eglobal.

3.1.3 Random Walker Segmentation

An expanded family of interactive segmentation formulations includes Random Walker

segmentation [61]. Given a set of constrained seed points that have a manual or externally

provided label, one can imagine placing a “walker” at one such seed. From there, the

walker moves to an adjacent pixel with probability based on its similarity with the pixel

at the walker’s current position. This is then repeated for multiple hops. As the number
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Four-connected Eight-connected

Figure 3.1: Illustration of neighborhoods of different connectivity, used to construct the

graphs for MRF and Random Walker Segmentation. In the full graph, the highlighted

neighborhoods will be repeated, centered on each grid vertex.

of iterations approaches infinity, the probability that the walker is at any given pixel will

approach a steady-state distribution over the pixels. The probability for each pixel can then

be used as a segmentation potential, and one will expect to see higher probabilities associated

with pixels near and similar to a foreground seed, and lower probabilities for the opposite.

It can be shown that this steady-state probability is the solution to a combinatorial

Dirichlet problem [61]. This can be found by solving a linear system constructed from a

graph Laplacian. In equivalent optimization terms, as this problem is posed below, this

linear system finds the point with zero gradient for a quadratic optimization objective.

Both Random Walker and MRF segmentation are included in a general family of seg-

mentation optimization formulations called Power Watersheds [36]. This shows that the

distinction between MRF and Random Walker segmentations is fundamentally a choice be-

tween the type of norm, the `1 and `2 norms respectively, used to penalize difference between

labels between adjacent pixels and with their unary priors.

3.2 Random Walker for Cosegmentation

I begin by rewriting the Random Walker algorithm for a single image as a quadratic

minimization problem. As is common, I assume a 4-connected neighborhood over the image,

weighted according to a Gaussian function of normalized Euclidean distances between pixel

intensities, wij = exp (−β‖pi − pj‖). Let L be the Laplacian matrix of this graph. A graph
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Laplacian is an n× n matrix over a graph of n vertices, and can be constructed as:

Lij = D − A =



∑
ik∈E wij if i = j

−wij if ij ∈ E

0 otherwise.

(3.3)

The Laplacian is diagonally dominant, and so L � 0, I can derive the convex quadratic

program:

min
x

xTLx

subject to x(s) = S,

(3.4)

where x(s) are the label values for certain seed pixels, and S is the known value of those seeds

(i.e., foreground or background). Each component of the solution x∗ will then be a pixel’s

probability of being assigned to the foreground. To output a {0, 1} segmentation, one may

threshold x∗ at 1
2
, to obtain a hard x ∈ {0, 1}n segmentation that matches the solution from

[61].

3.2.1 Pre-processing

Cosegmentation methods [75] use a pre-processing procedure to determine inter- (and

intra-) image pixel similarity. This is generated by tessellating the RGB color space (i.e.,

pixel distribution) into clusters or by using SIFT—or color pattern models, edge profiles,

textures, etc.—based correspondence methods, see [37]. One can derive a matrix Hi for each

image i, constructed as:

Hkj
i =

1 if pixel j (of image i) is in histogram bin k

0 otherwise.

(3.5)

Pixels are assigned to the same bin if they are similar. With an appropriate H, the global

term Eglobal from (3.2) requires that at the level of individual histogram bins k, the algorithm

assigns approximately the same number of pixels to each foreground region (the objective

incurs a penalty proportional to this difference). This ensures that the appearance models

of the two foregrounds based on the features of interest are similar.
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Figure 3.2: Construction of the histogram assignment matrix. This is a linear operator that

maps a segmentation labelling to a histogram of the foreground object.

3.2.2 Cosegmentation for Two or More Images

Let L1, · · · , Lm be the Laplacian matrices of graphs constructed using each of the images,

and H1, · · · , Hm be the histogram assignment matrices as above, with the property that

Hkj
i = Hkj′

i′ = 1 for pixels j and j′ if and only if j and j′ are similar. Given a segmentation

for n pixels, x ∈ {0, 1}n, one may use the H matrix to write the histogram of only the

foreground pixels as h = Hx. Now, I seek to segment two or more images simultaneously,

under the constraint that their histograms match. For this purpose, consider the optimization

model

min
xi,hi,h̄

∑
i

xTi Lixi + λ‖hi − h̄‖2
2

s.t. xi ∈ [0, 1]ni

x
(si)
i = Si i = 1...m.

Hixi = hi

(3.6)

The second term in the objective above corresponds to Eglobal(h1, h2) in (3.2), and the

last constraint sets up the foreground histograms hi. They are defined using Hi. Bin k in H1

corresponds to bin k in H2, · · · , Hm, which makes a direct comparison between histograms

possible. The objective compares the histograms to a common global histogram h̄ that at

the optimum will be the centroid of the hi’s.
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This model additionally extends to multiple labels by adding additional columns to the

optimization variables identically to the original Random Walker [61]. The resulting problem

can be easily decomposed into separate segmentations for each object class.

Theorem 3.1. For λ ≥ 0, the Random Walker Cosegmentation in (3.6) is a convex opti-

mization problem.

Proof. Each Laplacian matrix Li is diagonally dominant by construction, and therefore pos-

itive semidefinite. For any positive semidefinite matrix Li, the quadratic form

xTi Lixi (3.7)

will be a convex function of xi.

The squared L2 norm is a convex function, and the difference hi − h̄ is a linear function.

The composition of these ‖hi − h̄‖2
2 is convex, and so is the product with a non-negative λ.

With each term in the objective being a convex function of the decision variables, the sum

will be, as well.

Further, the feasible region is the intersection of bound constraints and linear equalities.

Each individual constraint will define half-space or subspace respectively, and since these are

convex sets, the feasible region defined by their intersection will be, as well.

Combined, we therefore have that (3.6) has a convex objective function and a convex set

as a feasible region.

3.2.3 Deriving an Equivalent Box-QP

The model in (3.6) can already be solved using widely available convex programming

methods, and provides the desired solution to the cosegmentation problem using the Random

Walker segmentation function. Next, I will derive an equivalent model that will allow the

design of specialized solvers. This model will have a structure that allows the lowest-level

steps of the optimization to be done independently on each decision variable coordinate,

providing an opportunity for fine-grained parallelism.
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Consider the left-hand side of the equality constraint on each hi substituted into the

objective function. Further, let us choose bounds to limit x to the unit box as well as

suitably enforce the seed constraints. This process gives a quadratic problem of the form

min
x1,x2,...,xm,h̄


x1

...

xm

h̄



T 
L1 + λHT

1 H1 −λH1

. . .
...

Lm + λHT
mHm −λHm

−λHT
1 . . . −λHT

m λmI




x1

...

xm

h̄

 (3.8)

s.t. li ≤ xi ≤ ui xi is of size [0, 1]ni i = 1, 2,

where the 2-tuple (li, ui) is (1, 1) for foreground seeds, (0, 0) for background seeds, and (0, 1)

otherwise. The objective here is a quadratic function over a vector that is the concatenation

of all the pixels in all of the input images, along with the common model histogram h̄.

It can be verified that (3.8) is equivalent to (3.6). The difference is that it is now expressed

as a bound-constrained quadratic problem, or Box-QP, due to the box constraints [24]. Like

(3.6), the model in (3.8) also permits general purpose convex programming methods. This

can be somewhat inefficient to pose as a quadratic problem in many otherwise suitable

optimization methods, though, as the blocks are very large and possibly very dense matrices.

A method that requires explicitly constructing the objective matrix in (3.8) can rapidly

become impractical due to memory constraints as image dimensions or the number of images

grows. However, one can design means to exploit its special structure since the model is a

quadratic problem with very simple constraints.

3.3 Optimization

This section describes our strategy for solving (3.8) to optimality in a highly efficient

manner. I use a projected gradient-based method that would additionally form the key

component if one were to use any variation, e.g. augmented Langrangian, as stated explicitly

in [140].
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3.3.1 Identifying a Sparse Structure:

Expressing our model as a purely bound-constrained problem as in (3.8) requires the

formation of the HT
i Hi products, which are dense n × n matrices. Consequently, our opti-

mization method must be careful not to explicitly form these matrices. Fortunately, one can

observe that explicit calculation of these matrices may be avoided by gradient projection

methods, in which it is only necessary to be able to calculate matrix-vector products. Here,

this product can be distributed over the sparse components as

(L+HT
1 H1)x1 = Lx1 +HT

1 (H1x1). (3.9)

With this modification, one can solve this Box-QP in (3.8) by adapting the Gradient Pro-

jection/Conjugate Gradient (GPCG) algorithm of [127]. I describe this strategy next.

3.3.2 Gradient Projection/Conjugate Gradient Method (GPCG)

GPCG solves quadratic problems with a rectilinear feasible region, one that can be defined

as:

Ω = {x : l ≤ x ≤ u} ⊆ Rn. (3.10)

The algorithm alternates between two main “phases:” Gradient Projection (GP) and Con-

jugate Gradient (CG). These correspond to alternately estimating the active set at the

minimum and finding the minimum while keeping the active set fixed.

The gradient projection phase searches along a projected gradient. Given an objective

function O : Rn → R, one can take a gradient at any point in Ω, but the gradient at a point

on the boundary x ∈ Ω̄ may point in a direction such that

x− ε∇O(x) /∈ Ω (3.11)

for any positive choice of ε. To take a descent direction that points within the feasible region,

one instead uses a projected gradient ∇ΩO(x) that has been modified so the corresponding

search direction d = −∇ΩO does not point outside the feasible region Ω. It then uses a
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Projected Gradient

Conjugate Gradient

A(x(k)) = A
(
x(k−1)

)
∇ΩO(x)i 6= 0 for i ∈ A(x(k))

Figure 3.3: Phases in the Gradient Projection/Conjugate Gradient (GPCG) algorithm of

[127].

projected line search to arrive at a step length α and update x ← P (x + αd), where P

describes the projection function to Ω.

The phase decisions in GPCG are made based on the active set: those bound constraints

that hold with equality:

A(x) := {i : xi = li or xi = ui}. (3.12)

GPCG switches to the conjugate gradient phase if the active set remains unchanged between

subsequent iterations on x.

GPCG searches within a given face of the feasible region of our model using the conjugate

gradient phase. Given the active set, GPCG calculates a search direction conjugate to the

previous direction (under the projection onto the free variables). This method of generating

a search direction is the same as applying ordinary conjugate gradient descent to a restriction

of the QP to the current minimal face. In the following, note that this face of the feasible

polytope will correspond to a given choice of the active set. If the projected gradient points

out of the current face, then it switches back to the gradient projection (GP) phase. Note

that the “phase switch” condition will never be satisfied for the face that contains the global

minimum for our model. Thus, when the gradient projection phase has found the correct

active set, conjugate gradient iterations suffice to explore the final face.
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Projected Line Search. The projected line search in the gradient phases modifies the

active set by an arbitrary number of elements, thereby lending GPCG its key advantage

that it may converge on the correct active set in far fewer iterations than the number of

constraints. Given a starting point x and search direction d, the line search finds α > 0 that

produces a sufficient decrease under the Armijo rule of the function φ(α) = O (P [x+ αd]).

This can be thought of as a “line search” along a 1-manifold that bends to stay within Ω

(thus, not a ray). Rather than directly finding all the piecewise quadratic segments of φ(α),

one can efficiently produce a sufficient decrease using an estimate of φ by sampling one point

at a time (as in [127]). It can be verified that all operations above can be expressed as Level

1 and 2 BLAS operations. This allows a highly parallel implementation, described next.

GPU Implementation. Graphical Processing Units (GPUs) have gained attention from

across the scientific computing community for their ability to efficiently address parallel

problems [112]. These architectures operate by running multiple instances of a piece of

code simultaneously, operating on different parts of a dataset. While this approach is not

well-suited to all algorithms, Level 1 and 2 BLAS operations used in our algorithm are

known to fit well with this architecture and can therefore exhibit a significant speedup. The

linear algebra operations comprising our GPCG algorithm for cosegmentation may be easily

parallelized using high-level languages such as CUDA. In fact, the CUSPARSE toolkit (used

here), supports Level 2 and 3 BLAS operations on sparse matrices, as well. Further, the

control flow of our procedure relies only on the results of accumulations, so the standard

bottleneck of transferring data between main and GPU memory is not a major factor, and

entry-level hardware is sufficient.

3.4 Scale-Free Cosegmentation

A limitation of early cosegmentation methods is their sensitivity to the scale of the target

object, since histogram-based priors are dependent on scale. For example, if an otherwise

identical object appears in the second image such that it occupies twice as many pixels as in
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Figure 3.4: Segmentation using the model of Section 3.4 on a set of images with differences

in scale.

the first image, then h2 = 2h1. Consequently, ||h2 − h1|| > 0, meaning that the larger scale

is penalized. I show here how this formulation may be made scale-invariant. Formally, our

goal is a cosegmentation term E that satisfies

E(shi, h̄) = E(hi, h̄) ∀s ∈ R+. (3.13)

This property may be satisfied by a normalization step,

E(hi, h̄) =

∥∥∥∥ hi
‖hi‖

− h̄

‖h̄‖

∥∥∥∥2

= 2− 2
hTi h̄

‖hi‖‖h̄‖
. (3.14)

For any given choice of λ, the optimal choice of hi and h̄ that minimizes the cosegmentation

objective with (3.14) can also be found by solving an optimization, possibly with a different

choice of λ, that substitutes it with:

− hTi h̄

‖hi‖‖h̄‖
= − cos(∠hih̄). (3.15)

This substitution in (3.6) leads to the objective function:∑
i

xTi Lxi − λ
hTi h̄

‖hi‖‖h̄‖
. (3.16)

This function is not easy to minimize, as the histogram term is non-convex in hi and h̄.

However, in the Random Walker setting, one can optimize this function when the model

histogram h̄ is a fixed unit vector, eliminating the ‖h̄‖ factor. The resulting problem is re-

lated to model-based segmentation, imposing a known histogram distribution in segmenting



45

images. For image i it solves the problem

min
xi

xTi Lixi − λ
h̄THxi
‖Hxi‖

s.t. li ≤ xi ≤ ui,

(3.17)

where I name g(x) = h̄THxi
‖Hxi‖ .

In order to proceed with the minimization of our scale-invariant energy, I must first

establish some properties of g. The scale-free energy histogram on x, given by g(x), is

quasiconvex, defined as follows:

Definition 3.2 ([7]). Define a function f to be quasiconvex if its sublevel sets are convex

subsets of the domain. Equivalently, for any x, x′ in the domain of f and λ ∈ [0, 1],

f((1− λ)x+ λx′) ≤ max{f(x), f(x′)}. (3.18)

Call (3.18) the “Jensen’s Inequality for Quasiconvexity.”

Additionally, g(x) is Lipschitz-smooth when ‖Hx‖ > 0, shown below in Theorem 3.5.

The next section exploits these properties of g to solve the segmentation problem using

this penalty. Classical global optimization schemes rely on the convexity of the problem,

and proofs of the correctness of their solution and bounds on convergence tend to rely on

this property. For problems that are not convex, a looser condition than convexity, called

quasiconvexity, can also be used to show guarantees that appropriate optimization algorithms

will yield a global optimum. In order to justify the use of one such algorithm, I first present

the detailed proof of the quasiconvexity of the scale-free problem.

Define the function in terms of the image foreground histograms as:

ĝh̄ = − h̄
Th

‖h‖
(3.19)

Then we have the result:

Theorem 3.3. ĝh̄ as defined in (3.19) is quasiconvex.
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Proof. Consider any h1, h2 w.l.o.g. chosen to satisfy

ĝh̄(h2) ≤ ĝh̄(h1),

h̄Th2

‖h2‖
≥ h̄Th1

‖h1‖
,

multiply by (1− λ)‖h1‖‖h2‖ ≥ 0

(1− λ)h̄Th2‖h1‖ ≥ (1− λ)h̄Th1‖h2‖,

add λh̄Th1‖h1‖,

λh̄Th1‖h1‖+ (1− λ)h̄Th2‖h1‖ ≥ λh̄Th1‖h1‖+ (1− λ)h̄Th1‖h2‖(
λh̄Th1 + (1− λ)h̄Th2

)
‖h1‖ ≥ h̄Th1 (λ‖h1‖+ (1− λ)‖h2‖)

taking any λ ∈ [0, 1].

Since all these vectors are in the nonnegative orthant, h̄Th1, h̄
Th2 ≥ 0, and −ĝh̄(h2) ≥

−ĝh̄(h1), this inequality is equivalent to:

λh̄Th1 + (1− λ)h̄Th2

λ‖h1‖+ (1− λ)‖h2‖
≥ h̄Th1

‖h1‖
(3.20)

Using this expression with the triangle inequality to show Jensen’s inequality for quasicon-

vexity (3.18) gives

ĝh̄(λh1 + (1− λ)h2) = −λh̄
Th1 + (1− λ)h̄Th2

‖λh1 + (1− λ)h2‖

≤ −λh̄
Th1 + (1− λ)h̄Th2

λ‖h1‖+ (1− λ)‖h2‖
.

Using (3.20),

≤ − h̄
Th1

‖h1‖

= ĝh̄(h1) = max {ĝh̄(h1), ĝh̄(h2)} .

The final step derives from the w.l.o.g. choice made at the beginning of this proof.
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Corollary 3.4. The scale-free energy on x, gh̄(x) = ĝh̄(Hx) is quasiconvex for histogram

assignment matrix H.

Proof. This G represents the outer composition of E with an affine function. This operation

preserves quasiconvexity [18].

Theorem 3.5. gh̄(x) is Lipschitz-smooth when ‖Hx‖ > 0.

Proof. Let ·̂ = ·
‖·‖ . Assume w.l.o.g. ‖h1‖ ≥ ‖h2‖. Then:

‖h1 − h2‖ ≥
∥∥∥∥‖h2‖
‖h1‖

h1 − h2

∥∥∥∥
= ‖h2‖ × ‖ĥ1 − ĥ2‖

1

‖h2‖
‖h1 − h2‖ ≥ ‖ĥ1 − ĥ2‖.

(3.21)

Thus, for any function f which is L-smooth,

‖f(ĥ1)− f(ĥ2)‖ ≤ L‖ĥ1 − ĥ2‖

≤ L

‖h2‖
‖h1 − h2‖.

(3.22)

Further, if we lower-bound ‖h1‖ ≥ ‖h2‖ ≥ C > 0, then f (̂·) is L
C

-smooth.

In our case, gh̄(h) is an affine function of ĥ, and any affine function will be Lipschitz.

3.4.1 Optimizing the Scale-Free Model

For the following, I consider the setting of minimizing h = f + g, such that f is convex,

g is quasiconvex and both are bounded below. Note that under these conditions, h is not

necessarily quasiconvex and may have multiple local minima. Nonetheless, our method

proposed below can optimize our segmentation objective with f(x) = xTLx and g being

used as defined above. Let x∗f = argminx f(x) and define x∗g and x∗h similarly.

Define

P (α) =

argmin
x∈X

f(x)

s.t. g(x) ≤ α

 (3.23)
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If x is any solution to P (g(x∗h)), then h(x) = h(x∗h). Also, P (α) has no solutions for α < g(x∗g),

and x is a solution to P (g(x∗f )) if and only if x is a solution ∀α > g(x∗f ). Consequently, we

have the result:

Lemma 3.6. There exists some α in a bounded interval such that the solution to the sub-

problem P (α) from (3.23) provides a solution to the overall scale-free problem in (3.17).

This definition reduces the optimization problem to finding the α that minimizes h◦P (α).

I claim that h ◦ P is one-sided Lipschitz:

Definition 3.7 ([56]). A function f : [a, b] → R is one-sided Lipschitz if for any x1, x2 ∈

[a, b]

(x1 − x2)(f(x1)− f(x2)) ≤ m(x1 − x2)2 (3.24)

for some m.

Intuitively, in the case that f is continuously differentiable, the Lipschitz condition

bounds |f ′(x)| while this condition only guarantees an upper bound on f ′(x). This is il-

lustrated in Figure 3.5.

Lemma 3.8. Let ◦ denote the composition operator: (g ◦ P )(α) = g(P (α)). I claim:

(g ◦ P )(α) = α for any α ∈
[
g(x∗g), g(x∗f )

]
. (3.25)

Proof. Let x = P (α). x satisfies the KKT conditions for the P (α) problem and either:

Case 1) x is the unconstrained minimum of f (i.e. 0 ∈ ∂f(x)), or

Case 2) x lies on the boundary of the feasible region (so the g(x) ≤ α constraint is active

and −∂f(x) ∩ ∂g(x) 6= ∅).1

1Here ∂f denotes the subdifferential of f .
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x

f(x)

x

f(x)

(a) (b)

Figure 3.5: Given a pair (x, f(x)) for an L-Lipschitz function f , the Lipschitz condition

guarantees that the function will always lie between two lines of slope L and −L through this

point and in the shaded region shown in (a). The one-sided Lipschitz condition in Definition

3.7 only bounds the rate of increase, and the function must lie in the shaded region shown

in (b).

As previously used above, case 1 will only be true for α ≥ g(x∗f ), with equality in the range

I consider here. In case 2, we have the theorem simply from the fact that the constraint is

active.

Lemma 3.9. f ◦ P is monotonically non-increasing.

Proof. Take any α1 < α2. Let x1 = P (α1) and x2 = P (α2). Since g(x1) = α1 < α2, we know

x1 is feasible for the P (α2) problem. Thus, since x2 is a minimizer for the P (α2) problem,

f(x1) ≥ f(x2).

Theorem 3.10. h ◦ P is one-sided Lipschitz.

Proof. Take any α1, α2 ∈
[
g(x∗g), g(x∗f )

]
.

Since f ◦ P is monotonically non-increasing,

(α1 − α2) ((f ◦ P )(α1)− (f ◦ P )(α2)) < 0.

Let m ≥ 1, and because (α1 − α2)2 ≥ 0,

(α1 − α2) ((f ◦ P )(α1)− (f ◦ P )(α2)) ≤ (m− 1)(α1 − α2)2

(α1 − α2) ((f ◦ P )(α1)− (f ◦ P )(α2) + (α1 − α2)) ≤ m(α1 − α2)2.



50

Using Lemma 3.8,

(α1 − α2) ((h ◦ P )(α1)− (h ◦ P )(α2)) ≤ m(α1 − α2)2

so that h is one-sided Lipschitz with constant m.

As a result, by simply sampling h(P (α)) densely enough, one can get an estimate of this

function to arbitrary precision over the entire interval α ∈
[
g(x∗g), g(x∗f )

]
. If one selects a

global minimum of this estimated function, this can derive a point with objective arbitrarily

close to the true minimum of h. The bounds are given from the following theorem:

Theorem 3.11. Take an increasing sequence α1, ..., αn from the domain of h ◦P with α1 =

g(x∗g) and αn = g(x∗f ). Let τ be the maximum gap αi+1 − αi. Denote the minimum sample

by α∗, chosen such that (h ◦ P )(α∗) ≤ (h ◦ P )(αi) for all i. Then the function h has lower

bound:

h(x) ≥ (h ◦ P )(α∗)− τ ∀x. (3.26)

I start the proof of this theorem with the following lemma:

Lemma 3.12. For any interval [α1, α2] ⊆
[
g(x∗g), g(x∗f )

]
and any α ∈ [α1, α2],

(h ◦ P )(α) ≥ (h ◦ P )(α2)− (α2 − α)

≥ (h ◦ P )(α2)− (α2 − α1).
(3.27)

Proof. Take m = 1 in Lemma 3.12, applied to this particular α, α2:

(α− α2) ((h ◦ P )(α)− (h ◦ P )(α2)) ≤ (α− α2)2

by interval construction α− α2 ≤ 0, so

(h ◦ P )(α)− (h ◦ P )(α2) ≥ (α− α2)

(h ◦ P )(α) ≥ (h ◦ P )(α2)− (α2 − α).
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x

Figure 3.6: Illustration of the lower bound used in Lemma 3.12. If we only have the sampled

points shown, we can nonetheless guarantee that a function which is one-sided Lipschitz will

lie above the dashed lines.

Proof. Proof of Theorem 3.11

Since the minimum of h is guaranteed to lie in the co-domain of P ,

(h ◦ P )(α) ≥ (h ◦ P )(α∗)− τ ∀α. (3.28)

Consider any α. By our choice of α1, ..., αn, there is an αi, αi+1 such that α ∈ [αi, αi+1].

By Lemma 3.12,

(h ◦ P )(α) ≥ (h ◦ P )(αi)− (αi+1 − αi)

by the construction of α∗,

≥ (h ◦ P )(α∗)− (αi+1 − αi),

and since τ ≥ αi+1 − αi

≥ (h ◦ P )(α∗)− τ.

In the scale-free cosegmentation setting, f is convex and g is quasiconvex. The resulting

P problem can therefore be solved efficiently using ordinary methods. One can calculate x∗f

as the solution to the ordinary random-walker segmentation, and x∗g is the projection of h̄

onto the feasible set under seed constraints.
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3.5 Histogram Construction

In this section I discuss the fact that a wide variety of different preprocessing steps can

take advantage of the same core method to produce a cosegmentation result.

At the heart of cosegmentation is some notion of similarity between pixels. The key

property of cosegmentation over independent cosegmentation is that the foregrounds should

contain similar distributions of pixels. In the group of cosegmentation methods we consider

here, I rely on histograms, in which similar pixels are placed in the same histogram bin and

dissimilar pixels are placed in different histogram bins. This is done through a histogram

assignment matrix H, as described in Section 3.2.1.

In order to apply a cosegmentation method to a pair of images, we must first construct

this matrix as in (3.5). One aspect of the problem is to assign a bin to some subset (or

all) of the pixels between the two images. This needs to be done in such a way that similar

foregrounds have similar histograms, so that the distance between the histograms matches

a common-sense idea of when two foregrounds are similar. This includes some invariance to

lighting, rotation, etc.

The bin assignment problem can be divided into two steps:

1. Assign local descriptors [126] to each pixel independently.

2. Find sets of “similar” pixels.

See Table 3.1 for a summary of the ways we might consider performing each of these steps

in a typical case.

3.5.1 Texture-Based Histograms

I empirically found that high-quality dense histograms were most consistently produced

with the middle options in Table 3.1. I apply the bank of texture filters shown in Figure

3.7. The responses at each pixel can then be clustered using nonparametric methods such

as mean-shift or the greedy clustering of [60] with modified stopping conditions.
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Image Features Correspondences

Color Axis-aligned binning

Winn Filters [197] Clustering (k-means, spectral, ...)

SIFT, DAISY, etc High-confidence matches

Table 3.1: Table of options for each step of cosegmentation.

Figure 3.7: Winn filters from [197] used in our histogram generation. The first three blur

filters are applied to each channel of the Lab colorspace, with the rest applied only to the

lightness channel.
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(a) (b)

Figure 3.8: Clustering (a) and matching (b) results generated using VLFeat [186].

The authors of [197] further present a method of training a texture dictionary from an

incompletely labeled dataset. They present an agglomerative clustering algorithm based on

maximizing a probability

P̃ (ĉ|{Hn}) =
P ({Hn}|ĉ)

P ({Hn}|ĉ) + P ({Hn}|csame)
(3.29)

for histograms Hn and training labels ĉ. This clustering can be leveraged in texture-based

cosegmentation algorithms, producing a binning method optimized to handle differentiating

between object classes in the training data.

SIFT-based. A popular class of descriptors are those based on gradient binning, includ-

ing SIFT, GLOH, etc. The high dimension of these descriptors makes it relatively difficult

to find high-quality dense matches between the feature vectors of different pixels. In this

setting, which does not allow, for instance, assuming a homography, the matching was found

to either be sparse or overly specific. Representative matching and clustering results are

shown in Figure 3.8, which are reasonable but did not lead to better segmentation results.



55

3.5.2 Histograms from Optical Flow

The flexibility of our method with respect to histogram construction allows the use of

application-specific preprocessing steps. There is a natural parallel between cosegmentation

and the task of segmenting video. When the images are temporally related, we have a

relationship between foreground pixels determined by the movement shown in the video. This

is a well-studied problem in Computer Vision, allowing us a class of optical flow methods.

We can find corresponding pixels using optical flow, placing pixels i and i′ in the same

bin if the position of i maps to i′ in the next image. Applying this scheme to the frames of

a video sequence suggests the model

min
x∈X

∑
i

xTi Lixi + λ
∑
i

‖Hixi −H ′i+1xi+1‖2
2 (3.30)

where the second sum compares subsequent frames of an image sequence.

3.5.3 Advantages of Low-Entropy Histograms

Finally, I provide some additional information on the core advantage of our formulation

for cosegmentation.

I found while tuning the histogram construction that using low-entropy histograms allows

for more accurate matching between images. Intuitively, take the example from Figure 3.4,

where a high-entropy histogram may try to differentiate between different patches of fur

on a brown bear. This cannot be done in a consistent manner across realistic images, so

erroneous matches are introduced. By contrast, our histogram matching technique better

describes the the true texture description of the bear’s fur as a combinations of very few

homogeneous textures. I verify this experimentally in Figure 3.9, which plots the statistical

distance between the histograms of the true foregrounds. This is computed for a sample of

images from the dataset.
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Figure 3.9: Comparing the entropy of the constructed histogram (x axis), with a symmetric

KL-divergence between the true foreground histograms (y axis), as we vary the number of

clusters. Each line shows one image pair. We consistently see higher-entropy histograms

producing greater divergence for the target segmentation.
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3.6 Experiments

Summary. My experimental evaluations included comparisons of my implementation (on

a Nvidia Geforce 470) to another cosegmentation method [75] and the Random Walker

algorithm [61] (run independently on both images). I also performed experiments using

the methods in [88] and [129], but due to the problem of solving the linear system for

a large L and incorporating foreground/background seeds respectively, results could not

be obtained for the entire dataset described below. To assess relative advantages of the

specialized GPCG procedure, I also compared it with a stand-alone implementation of (3.6)

linked with a commercial QP solver (using multiple cores). This thesis provides a qualitative

and quantitative overview of the performance w.r.t. state of the art. Additional experiments

demonstrate the efficacy of the multiple-image and scale-free segmentation models.

Datasets. In order to leverage all available test data, I aggregated all images provided by the

authors in iCoseg [5], Momi-coseg [32], and Pseudoflow-coseg [75], and further supplemented

them with a few additional images from the web and [182]. In order to compare with

algorithms that only handle image pairs, I selected a dataset with 50 pairs of images (100

images total). For the > 2 image case, I used the iCoseg dataset from [5]. Since a number

of image sets from [5] share only semantically similar foreground objects and are unsuitable

for cosegmentation with common appearance models, i selected 88 subsets comprising 389

of the 643 iCoseg images (also observed in [189]).

Winn Filters. I constructed histograms using the 17-filter bank proposed in [197] as fea-

tures. Pixels across both images were assigned to bins by clustering these responses, using

nonparametric methods to estimate the number of clusters k. The first step produces local

contextual descriptors of each image pixel. The clustering step finds those pixels which

are similar under the given descriptor—e.g., similar color and texture will be in the same

bin. I also incorporated SIFT-based features, but given that the above histograms already

provided good results, this additional module was not utilized further. In Fig. 3.17 I per-

form correspondences based on optical flow in order to segment frames of a video sequence.
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Other correspondence determination methods can be used, and no change to our algorithm

is needed.

Low Entropy Histograms. When the number of bins is high—the constructed histogram

is flat—it is more likely that a non-trivial number of “matches” will be erroneous—especially

because in cosegmentation, the two images may have distinct backgrounds without a shared

baseline. In my experiments I found that as the entropy increases, so does the JS divergence

measure between the histograms for the true segmentations. Low entropy histograms, how-

ever, relate to smaller divergences, which impose the global cosegmentation constraint more

tightly.

Running Time Complexity. I now discuss what is the strongest advantage of this frame-

work. I show an example in Fig. 3.10 of the running time of the proposed model relative

to [75], as a function of decreasing entropy (number of bins). The plot suggests that for a

realistic range, our implementation has a negligible computation time relative to [75] and

the CPLEX-based option—in fact, our curve almost coincides with the x-axis (and even this

cost was dominated primarily by the overhead from problem setup done on the CPU). For

the most expensive data point shown in Fig. 3.10, the model from [75] generated 107 aux-

iliary nodes (about 12 GB of memory). Due to the utility of low entropy histograms, these

experiments show a salient benefit of our framework and its immunity to the “coarseness” of

the appearance model. Over all 128×128 images, the wall-clock running time of our CUDA-

based model was 10.609±5.230 seconds (a significant improvement over both [75], [88]). The

time for a CPLEX-driven method (utilizing four cores in parallel) was 17.982±5.07 seconds,

but this increases sharply with greater problem size.

Running Time on Artificial Images. To supplement the analysis on natural images,

next consider an additional experiment to measure the effect of running time on image size.

An artificial image shown in Fig. 3.11 was used in order to allow for isolation of specific

variables and mitigate variability (in optimization time) as a function of the specific problem

instance (image also used for running time experiments). The purpose was to quantify the
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Figure 3.10: Variation in run-time with histogram granularity relative to a CPLEX-based

implementation and [75].
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Figure 3.11: Artificial image used in computation time experiments (left) and corresponding

color histogram bins (right). Seed points were placed as shown in both foreground and

background. To create a cosegmentation problem, the same image was used twice.

advantage offered by the specialized optimization procedure for cosegmentation, compared

to the use of an industry-strength QP solver.

Running Time Relative to Image Size. With an increase in the image size, the

running time of the model is expected to increase because of two reasons. First, the number

of pixels to segment determines the size of the input problem and the dimensionality of the

decision variables in the optimization. Second, if the histogram is generated the same way

across different sizes, the number of pixels in each histogram bin also increases. An analysis

of this behavior is presented in Figure 3.12. The image shown in Fig. 3.11 was generated

for various sizes, with the number of pixels along each side plotted along the x axis in Fig.

3.12. Our specialized GPU-based cosegmentation library and an implementation based on

the CPLEX solver were used for Random Walker Cosegmentation. In this result, we see

only marginal increase in the overall running time of our model (the curve stays close to the

x-axis); on the other hand, the running time of the CPLEX-based implementation increases

quickly as we increase the size of the images. Notice how this difference is substantially mag-

nified for larger images. The reason is that our algorithm distributes each individual BLAS
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operation over the GPU’s computational units; as a result, higher-dimensional operations

take better advantage of the parallelization in the model presented in this chapter. This

method is thus especially suited for large images where computation time is a consideration.

Performance w.r.t. Pair Methods. I evaluated the quality of segmentations (0/1 loss)

on the 50 image pairs described above, relative to Pseudoflow-coseg [75], LP [129] (only

partial), and discriminative clustering [88]. As in [61], a few seeds were placed to specify

foreground and background regions, and were given to all methods. Representative samples

on the images from [5] using the method in [75], [88] are shown in Fig. 3.13. Averaged over

the pair dataset, the segmentation accuracy of our method was 93.6 ± 2.9%, whereas the

gross values for the algorithms from [75] and [88] were 89.1% and 84.1% respectively.

Performance on Two or More Images. Across the iCoseg dataset, we achieved an ac-

curacy of 93.7% with seeds provided by five different users. The algorithm of [88] achieves

an accuracy of 82.2% across the dataset (excluding some for which the implementation pro-

vided by the authors did not complete). Representative image sets and accuracy comparisons

appear in Table 3.2 and Figure 3.15.

We note that these results must be interpreted with the caveat that different methods

respond differently to seed locations and the level of discrimination offered by the underlying

appearance model. Since most cosegmentation models, including this work, share the same

basic construction at their core (i.e., image segmentation with an appearance model con-

straint), variations in performance are in part due to the input histograms. The purpose of

our experiments here is to show that at the very least, one can expect similar (if not better)

qualitative results with our model, but with more flexibility and significant computational

advantages.

Comparisons to Independent Random Walker Runs. In Fig. 3.16, I present quali-

tative results from our algorithm and from independent runs of Random Walker (both with

up to two seeds per image). A trend was evident on all images – the probabilities from

independent runs of Random Walker on the two images were diffuse and provide poorer

boundary localization. This is due to the lack of global knowledge of the segmentation in



62

50 100 150 200 250 300
Image Size (pixels to a side)

0

50

100

150

200

Ru
nn

in
g 

Ti
m

e 
(s

)
CPLEX-based implementation
RW-Coseg

Figure 3.12: Variation in computation time with image size. For each point, the input

images were rescales to a different resolution, and the cosegmentation was computed by each

of the compared methods.

1 2 3 4 5 6 7 8

Figure 3.13: Comparison results on example images (columns 1,2) of the the Pseud-

oflow based method of [75] (columns 3,4) and the discriminative clustering approach of

[88] (columns 5,6), with segmentation from RW-based cosegmentation (columns 7,8).
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Figure 3.14: Seeded image cosegmentation on iCoseg image sets.

the other image. Random Walker-based cosegmentation is able to leverage this information,

and provides better contrast and crisp boundaries for thresholding (a performance boost of

up to 10%).

3.6.1 Effect of λ Parameter

The images in Fig. 3.18 demonstrate the role of the histogram consistency bias λ. For

a very small λ, the segmentation probabilities are diffuse (compared to the independent

Random Walker results); as the influence of the bias grows, the consistency between the

histograms makes the partitions more pronounced.

3.7 Summary

The preceding chapter presented a new framework for the cosegmentation problem based

on the Random Walker segmentation approach. While almost all previous cosegmentation

methods viewed the problem in the MRF (graph-cuts) setting, our algorithm translates

many of the advantages of Random Walker to the task of simultaneously segmenting com-

mon foregrounds from related images. Significantly, our formulation completely eliminates
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Set name (subset) Our Method [88]

Airshow (8/21) 99.7% 80.5%

Alaskan bear (5/18) 92.2% 76.6%

Christ (6/14) 95.6% 97.3%

Ferrari (4/10) 96.4% 59.4%

Goose (13/31) 97.3% 97.5%

Helicopter (9/11) 96.9% 98.1%

Kendo (10/31) 91.4% 93.4%

Lobster Kite (4/11) 97.0% 88.5%

Monk (4/17) 83.3% 87.1%

Soccer (5/36) 93.9% 79.9%

Speed Skater (9/13) 80.8% 77.3%

Liberty (11/41) 93.2% 86.1%

Table 3.2: Segmentation accuracy for some iCoseg image sets. Subsets were chosen which

have similar appearance under a histogram model.

Figure 3.15: Interactive segmentation results using the multi-image model across five images

from the “Kendo” set of iCoseg. As the number of images increases, less user input is

required, as seen by the lack of such for the middle image.
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a requirement in some cosegmentation methods that the overall image histogram to be ap-

proximately flat. Our model extends nicely to the multi-image setting using a penalty with

statistical justification. A further extension allows model-based segmentation which is inde-

pendent of the relative scales of the model and target foregrounds. The discussion included

the optimization specific properties of Random Walker cosegmentation, gave a state of the

art GPU based library, and showed quantitative and qualitative performance of the method.

The full set of segmentation results and code are available at http://pages.cs.wisc.

edu/~mcollins/pubs/cvpr2012.html.
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Figure 3.16: Columns (1–2): Input images; columns (3–4): segmentation potentials from in-

dependent Random Walker runs on the two images; columns (5–6): segmentation potentials

from Random Walker-based cosegmentation. Note that the object boundaries have become

significantly more pronounced because of the histogram constraint.

Figure 3.17: Segmentation using correspondences from optical flow on video sequence from

[182], shows outline of segmented foreground in red, with foreground and background indi-

cations. Our algorithm achieves 99.3% accuracy.
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Figure 3.18: Effect of varying λ parameter on an example image for λ = 10−8 in Column

2, and λ = 10−6 in Column 3. A segmentation potential biased towards matching the

histograms makes the partitions more pronounced.
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Chapter 4

Spectral Clustering of Large Datasets

To perform inference on sets of related images, a common first step is to simply find

groups of images that share a relevant relationship. Clustering serves as an important ex-

ploratory tool for categorizing sets of images into semantically meaningful concepts. Spectral

objectives, which are the focus of this chapter, analyze the spectrum of a matrix derived from

the pairwise similarities of nodes, and are especially useful when the cluster distributions

correspond to more complex manifolds. In addition to the Spectral Clustering objective, this

work includes ways to extend the clustering to include richer types of information about the

target dataset. For instance, in clustering a set of images, we may consider different image

features in each view including SIFT [123], GIST [142], color histograms, local binary pat-

terns [141], deep-learning-based descriptors [45], and others from the vast body of literature

on useful image descriptors. Further, we want to be able to identify useful clusters in the

massive-scale datasets that are increasingly being used in the Computer Vision community.

Accordingly, we need a procedure that can handle more powerful clustering models while

being scalable and computationally efficient, and utilize additional knowledge as regularizers

when possible.

This chapter describes a multi-view Spectral Clustering method and optimization algo-

rithms over the Stiefel manifold to efficiently solve very large-scale problem instances. In

this setting, we have multiple “views” of a dataset that each give us a weighted graph over

its elements. Each view is expected to provide us with distinct information about the rela-

tionships between images in the set. Since any one feature will give us only very incomplete
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information on the content of an image, we expect the combination of multiple features de-

rived from distinct properties of the image will provide a more complete picture. I therefore

seek a Spectral Clustering solution that takes into account all of the views to produce a

consistent labelling of the image set. This is further extended to consider priors using side

information, such as text tags, which may be treated differently from the views derived from

image features.

The two main components to building an ML model for more complex tasks are to lever-

age more training data and to use a more expressive model. These are mutually dependent,

as an overly simple model will under-fit a large dataset, and a complex model will over-fit a

small one. Training big models on big datasets, though, also requires greater computation

time. The most scalable way to bring more resources to bear on a training problem is to

distribute the optimization across an arbitrary number of CPU cores—this is essential if the

system is expected to work efficiently on massive datasets. The parallelization extends from

considering different views on separate computational units, down to distributing individual

example images across cores. This work further shows provably fast convergence, extend-

ing theorems concerning stochastic gradient descent to this parallel framework to show a

convergence rate that improves as we add cores.

4.1 Related Work

Multi-view clustering is a problem of combining multiple graphs or measures of similarity

within a single clustering problem. It combines these views, operating directly on the graph

of similarities, to produce the best clustering result, rather than working with the examples

directly. This can be viewed as an ensemble [172] construction, where by combining multiple

types of clustering with uncorrelated errors, one can achieve a clustering that is “greater

than the sum of its parts.” Under a good set of independent views, errors made in any one

view would be canceled out by better similarity measures in other views. It can also be

viewed as a similarity or metric learning problem [10], [90].
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Multi-view Spectral Clustering was proposed in [105]. The authors describe a pair of

models in which matrices U , which describe the clustering, are maintained for each view,

and a Spectral Clustering objective is combined with terms that enforce consistency between

the views. They minimize this combined objective using an alternating minization scheme.

Spectral Clustering refers to a class of methods that use the eigenvectors of a matrix over

the examples to assign them to clusters. A simple clustering can be done as:

1. Construct the weighted similarity or affinity graph.

2. Compute its graph Lapalacian L as in (3.3).

3. Find the p smallest-magnitude eigenvectors v1,v2, ...,vk of L.

4. Treating V as a matrix with columns vi, take the rows as y1,y2, ...,yn, so (yi)j = (vj)i.

5. Run k-means clustering with the points y.

6. Map the resulting cluster labels back to the input points, so example xi is assigned the

same labels as yi.

The role of the spectral algorithm here is non-obvious, as the final clustering is done by a

classical k-means algorithm. Importantly, though, the result of k-means clustering applied to

the y’s is very different than if one directly applied k-means to the original input examples.

The spectral operations serve to find separations between the clusters that are possibly highly

non-linear, and map the points to a space where complex manifolds of similar examples are

instead close by a simple Euclidean metric and are all mutually similar. See Figure 1 of [137]

for a key illustrating example and more discussion.

One additional observation made by the authors in [137] is that the partition that comes

from Spectral Clustering corresponds to the “mixing” in a random walk on the distance

graph. A natural cluster of mutually close points will see the random walker moving within

that cluster with high probability, while crossing between clusters with lower probability.

This distribution over the examples also corresponds to the spectrum of this distance matrix.



71

Note that there are two closely related approaches to Spectral Clustering. As in [137],

one can compute a matrix of distances between examples, where more similar examples have

lesser distance values. The principal eigenvectors of this matrix are then what is used in the

clustering. It is also common to use a Laplacian matrix of a similarity graph [192]. Here,

very similar examples will have a high similarity value, but the corresponding entries in the

Laplacian matrix will be more negative. The clustering is then done with the eigenvectors

corresponding to the smallest magnitude eigenvectors. In this chapter, I consider only the

second method based on the similarity graph Laplacian.

An important justification of Spectral Clustering is that it is a relaxation of the ratio cut

problem [66]. This is an objective that produces “balanced” clusterings, with clusters that

are roughly the same size with no extremely large or trivially small clusters. Variations in the

construction of the matrix can yield relaxations of other balanced clustering objectives such

as normalized cuts [168], [192]. It has been shown empirically by multiple authors [42], [66],

[168] that the relaxation given by Spectral Clustering tends to produce balanced clusters.

The method proposed below belongs to a class of methods covering optimization on the

Stiefel manifold [47]. Parallel optimization on the Grassmannian and Stiefel manifolds has

been considered in the context of GROUSE [4] and is not novel to this work specifically.

In particular, [4] considers rank-one updates of the orthogonal solution matrix V on incom-

plete portions of the data. However, the important difference is that those schemes include

computation linear in the number of rows in the matrix V , which for our case spans the full

dataset and is impractical. Our procedure instead looks at only a subset of the rows of V ,

and therefore has per-iteration cost that is independent of n.

4.2 Multi-View Spectral Clustering Model

Take a clustering problem defined over a set of examples X = {x1, · · · ,xn} to be grouped

into p clusters. Spectral Clustering is a graph clustering method, in that the clustering

algorithm operates on a graph of similarities or distances between the examples. Classically,

Spectral Clustering achieves this task by finding the (p + 1) minimum eigenvectors of a
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Laplacian matrix L ∈ Rn×n of this graph [192]. One such construction uses the same

Laplacian matrix (3.3) used in Chapter 3 for the cosegmentation problem.

Given this matrix, the eigenvectors are typically found via iterative methods such as

Lanczos and its variations [114]. The Lanczos algorithm operates on the Laplacian matrix

only with matrix-vector or matrix-matrix products. This is especially appropriate for clus-

tering on sparsely connected graphs, as these produce a sparse L. Products including L can

then be computed with codes that incur a computational cost that scales with the number

of nonzero entries, rather than the n2 total entries. This means Spectral Clustering can scale

to much larger numbers of examples.

As an optimization, Spectral Clustering may be viewed as a minimization of the trace

over orthonormal n× p matrices V :

min
V ∈Rn×p

tr(V TLV )

s.t. V TV = I.

(4.1)

The orthonormality constraint V TV = I means that the columns of V are all of unit norm,

and are orthogonal. A V satisfying this constraint is an element of the Stiefel manifold, and

its columns define the basis of some subspace. At the optimum, this will be the same subspace

that is spanned by the eigenvectors of the p least eigenvalues of L. A hard clustering can

then be derived from these V , through, for example, some näıve clustering or quantization.

In this chapter, I also consider the “multi-view” generalization of the Spectral Clustering

problem [105]. Each view can correspond to a different set of features, or a different similarity

measure, over the same set of examples. Assume we are given l views of a dataset. The

problem is to look for a common V that balances the solution over all the views. This

translates to the following model:

min
V ∈Rn×p

h(V ) :=
∑
u

tr(V TL(u)V )

s.t. V TV = I.

(4.2)
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4.2.1 Incorporating Group Priors

Separate from the multiple views expressed with the graph Laplacians, there is typically

a great deal of side information available suggesting (with varying degrees of confidence) that

certain subsets of examples are likely to belong to the same class. These can be included in

the model with “must-link” constraints instead of an additional similarity function, with the

distinction that the model will ensure that this constraint is satisfied in any optimal solution.

While must-link constraints may be tedious to deploy via user supervision for a large set

of examples, instead, one may for instance impose this prior indirectly. For example, if a

set of images shares five or more tags and the data source is reputable, it yields valuable

group-level advice to regularize (4.2) and complement the information extracted from the

image.

Assume that we have group-prior information about examples where a group is defined

as C = {v1, v2, · · · , v|C|} where each vj is a row of V corresponding to an example. We seek

to include a must-link constraint between all members of C. To encode similarity in how

their respective representations in V behave, one can use a group concentration term, which

measures the distance of each example (in the group) to the group’s center:

gC(V ) = µ

√√√√ 1

|C|

|C|∑
t=1

d(vt, v̄)2, (4.3)

where v̄ is the geometric center of all points in the set, and d(·, ·) is a suitable distance

function. This regularization essentially measures intra-group distances, and we obtain a

multi-view Spectral Clustering problem with a group prior:

min
V

f(V ) := h(V ) + g(V )

s.t. V TV = I,

(4.4)

where g(V ) =
∑
∀C gC(V ) is a convex real-valued function. My subsequent analysis of this

problem also allows for non-smooth g, and group norms such as `2,1 and others may be used

based on specific needs. I denote the overall objective by f(V ).
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Image Tags

license plate, wheel, car, light, car right, tail light, wheel rim,

window, door, back window

person walking, text, sign

speaker, screen frontal, keyboard, telephone, mouse,

mousepad, mug, cup, desk, pinboard, armchair crop, moni-

tor crop, papers, notes, plush toy

Figure 4.1: Tagged images from the LabelMe dataset [142]. User-provided tags are a

common feature in photo sharing applications.
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4.3 Stochastic Gradient Descent Procedure

In order to execute an optimization algorithm on multiple parallel processors, the work

must be divided up between each processor. The problem is ideally split up so that each

component can be worked on mostly independently, with minimal redundant work and lim-

ited communication between threads. The scheme presented below seeks to distribute the

problem in such a way that at any given step, each processor only needs to consider a subset

of the examples. This is done using the method of stochastic gradient descent [39], specifi-

cally a variant known as stochastic block-coordinate descent [199]. It is easy to see that the

objective for h(V ) can be expressed as

∑
u

∑
ij

L
(u)
ij 〈Vi·, Vj·〉 =

∑
u

∑
i∼j

wij‖Vi· − Vj·‖2
2 (4.5)

where the inner sum is over non-zero entries of the Laplacian matrix for the uth view in the

first instance and edges of the corresponding graph with weights wij in the second expression.

Each term of the sum can be considered a sub-function of the objective, and so we can

descend along the gradient of a randomly selected subset of the terms. Depending on the

sampling strategy, we want the resulting descent direction, in expectation, to be equivalent

to an ordinary gradient descent on the full objective. Later, this will provide convergence

guarantees.

So that a single worker at a single iteration has some independent sample of the objective,

we can sample the edges that give us a subset of the terms in (4.5). This subset of edges

corresponds to a subset of the nonzeros in the graph Laplacian L. At iteration t, we can

call a matrix with only these nonzeros L̂t. Under an appropriate sampling scheme, it will

satisfy E(L̂t) = L. The stochastic gradient descent algorithm can then be applied to the

entire objective of (4.4), resulting in the update:

Vt+1 = PΩ(Vt − γt(L̂tVt + ∂g(Vt))), (4.6)
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Algorithm 1 Comparison on projection (discussed in Section 3.3) and projection-free mani-

fold (see Section 4.3.1) algorithms for solving optimization problems over the Stiefel manifold

Sn,p. When done in parallel, multiple processors may perform independent iterations on dif-

ferent choices of L̂t and K.

Require: f : Rn×p → R, V0 ∈ Sn,p
for t = 1, ..., T do

Pick some u

Sample L̂t from L(u)’s (see Section 4.4.1)

Get subgradient d ∈ 2L̂tVt + ∂g(Vt)

Pick step size γt

Take step in Rn×p: V ′t+1 ← Vt − γtd

Project onto feasible set:

Vt+1 ← PSn,p(V ′t+1)

end for

Require: f : Sn,p → R, V0 ∈ Sn,p
for t = 1, ..., T do

Select K ⊆ {1, ... , n}

Take descent curve Y (τ) in Sn,p s.t.

Y (0) = Vt
d(f◦Y )
dτ

∣∣∣
τ=0
≤ 0

(Y (τ))ij = (Vt)ij ∀τ, i /∈ K

Pick step size τt

Vt+1 ← Y (τt)

end for
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where Ω := {V : V TV = I} and γt denotes step size. Because the operation

Vt → Vt − γt(L̂tVt + ∂g(Vt)) (4.7)

does not preserve the orthonormality constraint, in order to iterate towards a feasible solution

we re-project back onto the Stiefel manifold at each step. Define PΩ as a projection onto

the feasible set, to be described in more detail in the following.

4.3.1 Preserving Feasibility w.r.t. Orthogonality

Ideally, we want to be able to split up the problem into subsets of examples, while

producing iterates that satisfy the constraints V TV = I. Say we have a subset K of the

indices, corresponding to rows of V (the submatrix corresponding to these rows is denoted

by VK·). We are given a feasible iterate V , and seek to compute the next iterate W such

that it is also an orthogonal matrix.

Lemma 4.1. Given an orthonormal matrix V , and a subset of the rows of V indexed by K,

then if

W T
K·WK· = V T

K·VK· (4.8)

and WK̄· = VK̄·, then W is also an orthonormal matrix.

Proof. V being an orthonormal matrix means

[
V TV

]
ij

=
n∑
k=1

VkiVkj =

1 if i = j

0 if i 6= j.

(4.9)

So if we take the same sum for an element of W TW , one can split the terms of the sum by

their membership in the row set K:

[
W TW

]
ij

=
n∑
k=1

WkiWkj =
∑
k∈K

WkiWkj +
∑
k/∈K

WkiWkj (4.10)

Thanks to (4.8), the left sum is equal to
∑

k∈K VkiVkj. The right sum is also equal to the

same sum over V , as these elements are unchanged from V to W .
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Taking this equality over all elements, W TW = V TV = I, meaning W is an orthonormal

matrix.

Lemma 4.2. Submatrices WK· that satisfy (4.8) can be parameterized by a rotation of the

linearly independent columns of VK·.

Proof. W.l.o.g., assume VK· is of the form [VKI , VKIR], where VKI is a maximal subset of

linearly independent columns of VK·. Let P = VKI
TVKI be the matrix of inner products of

these columns. We know by construction that P � 0. If U is any orthogonal matrix of the

same dimension as VKI , we can construct

W (U) =

UP 1/2 UP 1/2R

VK̄,I VK̄,Ī

 (4.11)

assuming w.l.o.g. above that K selects the first |K| rows of the matrix. This is constructed

such that those rows of V in the complement of K (denoted by K̄) are unchanged in W .

Further,

W (U)TK·W (U)K· =
[
UP 1/2 UP 1/2R

]T [
UP 1/2 UP 1/2R

]
=

 P 1/2UTUP 1/2 P 1/2UTUP 1/2R

RTP 1/2UTUP 1/2 RTP 1/2UTUP 1/2R


=

 P PR

RTP RTPR


=

 V T
KIVKI V T

KI(VKIR)

(VKIR)TVKI (VKIR)T (VKIR)

 = V T
K·VK·

so the sufficient constraints in (4.8) are preserved.

The above construction successfully reduces the problem from finding a feasible iterate

W to modifying a subset of the rows by multiplying them with an appropriately constructed

rotation matrix U . We find this U by moving along a geodesic in the Stiefel manifold. The

starting point is given as U0 = VKIP
−1/2, for which W (U0) = V . This U (and consequently
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each one after it) is then used to compute the next iterate, obtained by moving along the

Stiefel manifold in a descent direction for the subproblem on U given by minUTU=I f(W (U)).

Given the objective in (4.2), the derivative for one Laplacian L at V w.r.t. only VK· is

2LKKVK·+ 2LKK̄VK̄·, where LKK is the submatrix of L where both the rows and columns are

in K. The gradient of h ◦W w.r.t. U will then be the sum over each L of

2
(
LK·V·I + (LKKVKIR + LKK̄VK̄Ī)R

T
)
P 1/2.

A similar term is used for the gradient of g that may be derived from ∂
∂U
g(W (U)).

The above transformation from updating V to finding an orthogonal matrix U is general

and applies to methods such as [47], [195] that optimize within the Stiefel manifold by

searching along geodesics or curves generated from the Cayley transformation.

4.4 Convergence

Generally, it is difficult to assess the convergence rate for non-convex optimization. How-

ever, in this case, we can show that under some mild conditions, the local convergence rate

is O(1/
√
T ), where T is the number of iterations. Note that the convergence rate analysis is

not only useful as a performance measure but helps provide the optimal sampling strategy

for our optimization method and also shows how the framework will behave with the addi-

tion of more cores, when available. To our knowledge, this is the first result of this kind for

Spectral Clustering with regularization. Let ∆t = L̂t−L where L̂t is the sampled Laplacian

at the tth iteration. We first define:

σ2 := max
V TV=I,t

E(‖∆tV ‖2
F ); M := max

V TV=I
‖LV ‖F ; N := max

V TV=I
‖∂g(V )‖F .

Notice that M and N are constants decided by L and g respectively, while σ2 directly depends

on the sampling strategy. For notational convenience, we define a function Υ as follows:

Υ(M,N, σ2, T ) :=

√
(M +N)2 + σ2

T
. (4.12)

Our convergence result states:
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Theorem 4.3. Let V ∗ be a convergent point of the sequence {Vt} generated from (4.6) that

is in a small ball with radius δ, and denote f(V ∗) as f ∗. Let φ be a positive value. If there

exists a constant δ > 0 such that PΩ

(
Vt − γt(L̂tVt + ∂g(Vt))

)
is a non-expansive projection,

we have:

i) If the step size is chosen as γt = φδ√
((M+N)2+σ2)T

and V̄T = (
∑T

t=1 γt)
−1
∑T

t=1 γtVt, then

E
(
f(V̄T )

)
− f ∗ ≤ (φ+ φ−1) δ

2
Υ.

ii) If the step size is chosen as γt = θt
f(Vt)−f∗

(M+N)2+σ2 , then E(f(ṼT )) − f ∗ ≤ δ√
θmin

Υ where

ṼT = 1
T

∑T
t=1 Vt, θt ∈ (0, 2) and θmin = mint 1− (θt − 1)2.

Proof. Consider the expansion of ‖Vt+1 − V ∗‖2
F :

‖Vt+1 − V ∗‖2
F = ‖PΩ(Vt − γt((L+ ∆t)Vt + ∂g(Vt))− PΩ(V ∗)‖2

F

from the local non-expansive projection property,

≤ ‖Vt − γt((L+ ∆t)Vt + ∂g(Vt))− V ∗‖2
F

≤ ‖Vt − V ∗‖2 + γ2
t ‖(L+ ∆t)Vt + ∂g(Vt)‖2

F︸ ︷︷ ︸
T1

− 2γt 〈(L+ ∆t)Vt + ∂g(Vt), Vt − V ∗〉︸ ︷︷ ︸
T2

.

(4.13)

Take the conditional expectation of T1 and T2 in terms of ∆t given Vt:

E(T1) = ‖LVt + ∂g(Vt)‖2
F + E(‖∆tVt‖2

F ) + 2E〈LVt + ∂g(Vt),∆tVt〉

= E(‖LVt + ∂g(Vt)‖2
F ) + E(‖∆tVt‖2

F )

≤ (M +N)2 + σ2

(4.14)

E(T2) = E〈LVt + ∂g(Vt), Vt − V ∗〉 ≥ E(f(Vt))− f ∗. (4.15)

Take the expectation of both sides of (4.13) in terms of all random variables, together

with (4.14) and (4.15), we have

2γt(E(f(Vt))− f ∗) ≤ E‖Vt − V ∗‖2
F − E(‖Vt+1 − V ∗‖2

F ) + γ2
t ((M +N)2 + σ2), (4.16)
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which implies that

2
T∑
t=1

γt(E(f(Vt))− f ∗) ≤ E‖V1 − V ∗‖2
F + ((M +N)2 + σ2)

T∑
t=1

γ2
t

≤ δ2 + ((M +N)2 + σ2)
T∑
t=1

γ2
t .

Also note that

T∑
t=1

γt =
φδ
√
T√

(M +N)2 + σ2

T∑
t=1

γ2
t =

(φδ)2

(M +N)2 + σ2
,

and ∑T
t=1 γtE(f(vt))∑T

t=1 γt
=

E
∑T

t=1 γtf(vt)∑T
t=1 γt

≤ Ef(V̄t) (from the convexity of f(Vt)).

It follows that ∑T
t=1 γt(E(f(Vt))− f ∗)∑T

t=1 γt
≤ δ2 + ((M +N)2 + σ2)

∑T
t=1 γ

2
t

2
∑T

t=1 γt

⇒ E(f(V̄t)− f ∗) ≤
δ2 + ((M +N)2 + σ2)

∑T
t=1 γ

2
t

2
∑T

t=1 γt

=
δ2 + ((M +N)2 + σ2) (φδ)2

(M+N)2+σ2

2 φδ
√
T√

(M+N)2+σ2

= (φ+ φ−1)
δ
√

(M +N)2 + σ2

2
√
T

,

proving the first claim. Next we prove the second claim. From (4.13), (4.14), and (4.15), we

have

E(‖Vt+1 − V ∗‖2
F ) ≤ ‖Vt − V ∗‖2

F + γ2
t ((M +N)2 + σ2)− 2γt(f(Vt)− f ∗)

≤ ‖Vt − V ∗‖2
F −

(f(Vt)− f ∗)2

(M +N)2 + σ2
+ ((M +N)2 + σ2)

(
γt −

f(Vt)− f ∗

(M +N)2 + σ2

)2

≤ ‖Vt − V ∗‖2
F −

(1− (1− θt)2)(f(Vt)− f ∗)2

(M +N)2 + σ2

≤ ‖Vt − V ∗‖2
F −

θmin(f(Vt)− f ∗)2

(M +N)2 + σ2
.
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It follows that

θmin
(M +N)2 + σ2

E(f(Vt)− f ∗)2 ≤ E(‖Vt − V ∗‖2
F )− E(‖Vt+1 − V ∗‖2

F ). (4.17)

Taking t = 0, 1, · · · , T − 1 in (4.17) respectively and summarizing all of them, we obtain

θmin
(M +N)2 + σ2

T∑
t=1

E(f(Vt)− f ∗)2 ≤ E(‖V1 − V ∗‖2
F ) ≤ δ2

⇒ T−1

T∑
t=1

E(f(Vt)− f ∗)2 ≤ δ2((M +N)2 + σ2)

Tθmin
.

Taking these together, it show that

T−1

T∑
t=1

E(f(Vt)− f ∗)2 ≥ T−1

T∑
t=1

(E(f(Vt))− f ∗)2

≥ (T−1

T∑
t=1

E(f(Vt))− f ∗)2 ≥ (E(f(ṼT ))− f ∗)2.

The last inequality uses Jensen’s inequality—that is, Ef(x) ≥ f(E(x)) holds for any convex

function. We prove the second claim.

From Theorem 4.3, it is clear that independent of how the step size is chosen, the local

convergence rate is essentially bounded by Υ ∈ O(1/
√
T ). Next, we further investigate the

behavior of σ2, and introduce sampling strategies based on nodes and edges.

Similar convergence can also be achieved by the partial stochastic gradient projection

method, that is,

Vt+1 = PΩ(Vt − γt∂[t]f(Vt)) (4.18)

where ∂f(Vt) := LVt + ∂g(Vt) is the subgradient of f(V ) at Vt and ∂[t]f(V ) is a vector with

the same size as ∂f(V ) taking the same values on the set [t] and setting the rest as 0.

4.4.1 Sampling

To meet the theoretical requirements for convergence of stochastic gradient descent, the

randomly generated L̂t should satisfy E(L̂t) = L. To keep the notations and the presentation
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simple, I write the results and sampling strategy in the context of a single Laplacian. The

following discusses a sampling strategy that only uniformly samples the nonzero elements in

L. Note that nonzero elements in L correspond to edges in the graph. Define L̄ij ∈ Rn×n

to be an extended matrix with Lij at the ijth element and zeros at the rest. Generate the

stochastic gradient at the current iteration as L̂t = ‖L‖0
|E|
∑

ij∈E L̄ij where E is the set of

randomly selected edges.

In order to simplify the following discussion, I assume that the sampling strategy chooses

a fixed number of edges at each iteration. These assumptions imply that every nonzero

element (edge) in L has equal probability to be chosen.

Let λi(∆
T∆) denote the ith largest eigenvalue of ∆T∆. From the definition of σ2, we

have

σ2 = E
(

max
V TV=I

‖∆V ‖2
F

)
= E

(
p∑
i=1

λi(∆
T∆)

)
≤ E

(
‖∆‖2

F

)
=
∑
ij∈E

E
(
∆2
ij

)
(4.19)

One can easily verify that E(∆2
ij) =

(
‖L‖0
|E| − 1

)
L2
ij. Thus, from (4.19) we have σ2 ≤(

‖L‖0
|E| − 1

)
‖L‖2

F . When the cardinality of L is large, ‖L‖0 � |E|. In other words, σ2

dominates the convergence rate. When
√
‖L‖0
|E| is large, the bound is dominated by

O

(√
‖L‖0

T |E|
‖L‖F

)
= O((T |E|)−1/2). (4.20)

Note that the size of E is proportional to the number of optimization workers. It means that

the convergence can be sped up linearly by increasing the number of threads on different

cores or computers—exactly the behavior one hopes to achieve in the ideal situation. In

addition, this linear speedup property is also achieved by the partial stochastic gradient

projection method.

This edge sampling strategy can be easily extended to the setting where multiple sepa-

rable views live in a distributed environment. The basic change here is that one needs to

sample edges across all views, satisfying the condition E(L̂t) =
∑

u L
(u). This condition is

true for a sampling strategy that first chooses a single u with probability proportional to the
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number of edges in L(u) from which edges are sampled identically to the single-view case.

Similar linear speedup properties can be obtained; the result above carries through with

essentially mechanical changes. Besides sampling edges, one may sample nodes in the graph

to generate the stochastic gradient.

Denote [t] as a subset of coordinates of V ∈ Rn×p, which is randomly selected at iteration

t. To make our following discussion simpler, we assume that the size of [t] is a constant and

denote the ratio R := np
|[t]| . Consider the following update for Vt+1:

Vt+1 = PΩ(Vt − γt∂[t]f(Vt)) (4.21)

We can show a similar convergence property to Theorem 4.3 for this setting:

Theorem 4.4. Let V ∗ be a convergent point of the sequence {Vt} generated from (4.21)

which is in a small ball with radius δ, and denote f(V ∗) as f ∗. Let φ be a positive value.

Let Ῡ := (M+N)R√
T

. If there exists a constant δ > 0 such that PΩ

(
Vt − γt∂[t]f(Vt))

)
is a

non-expansive projection, we have:

i) If the step size is chosen as γt = φδ

(M+N)
√
T

and V̄T = (
∑T

t=1 γt)
−1
∑T

t=1 γtVt, then

E
(
f(V̄T )

)
− f ∗ ≤ (φ+ φ−1) δ

2
Ῡ.

ii) If the step size is chosen as γt = θt
f(Vt)−f∗
R(M+N)2 , then E(f(ṼT ))− f ∗ ≤ δ√

θmin
Ῡ where

ṼT = 1
T

∑T
t=1 Vt, θt ∈ (0, 2) and θmin = mint 1− (θt − 1)2.

This theorem basically shows the convergence rate for (4.21) is O(1/
√
T ), which is the

same as the full projection. The speedup property is also similar: both convergence rates

are proportional to R. R is basically the inverse of the block size of [t]. Hence, when the

block size increases x times, the required iterations to achieve the given accuracy decrease x

times.

Proof. Consider the expansion of ‖Vt+1 − V ∗‖2
F :

‖Vt+1 − V ∗‖2
F = ‖PΩ(Vt − γt∂̂[t]f(Vt))− PΩ(V ∗)‖2

F

≤ ‖Vt − γt∂̂[t]f(Vt)− V ∗‖2
F (from the local non-expansive projection property)

≤ ‖Vt − V ∗‖2 + γ2
t ‖∂̂[t]f(Vt)‖2

F︸ ︷︷ ︸
T3

−2γt 〈∂̂[t]f(Vt), Vt − V ∗〉︸ ︷︷ ︸
T4

.

(4.22)
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Take the conditional expectation of T1 and T2 in terms of ∆t given Vt:

E(T3) = E(‖∂[t]f(Vt)‖2
F ) ≤ E‖∂f(Vt)‖2

F = E‖LVt + ∂g(Vt)‖2
F ≤ (M +N)2 (4.23)

E(T4) = E〈∂[t]f(Vt), Vt − V ∗〉 =
1

R
E〈∂f(Vt), Vt − V ∗〉 ≥

1

R
(E(f(Vt))− f ∗). (4.24)

Take the expectation on both sides of (4.22) in terms of all random variables, and we have

2γt(
1

R
(Ef(Vt)− f ∗)) ≤ E‖Vt − V ∗‖2 − E‖Vt+1 − V ∗‖2

F + γ2
t (M +N)2.

The rest of the proof can follow the proof of Theorem 4.3 by simply treating “ 1
R

(Ef(Vt)−f ∗)”

as “Ef(Vt)− f ∗” in (4.16).

Projection vs. Manifold Optimization. In order to realize the full benefits of parallelizing

the optimization across multiple threads, we use the manifold optimization method of Section

4.3.1. This does not satisfy the conditions of a non-expansive projection PΩ in Theorem 4.3.

Rather, it has the properties of a block coordinate descent method and does not leave the

feasible region at any time.

4.5 Generalized Orthogonality Constraints

A more general version of the model in (4.2), with applications in medical imaging, uses

a more inclusive type of orthogonality constraints. In this, we consider a feasible set of

matrices V that are orthogonal with respect to a positive definite matrix A. For example,

one can solve a generalized eigenvalue problem CV = AVD with the minimization

min
V ∈Rn×p

〈V,CV 〉

s.t. V TAV = Ip×p.

(4.25)

This operation constitutes the key computational phase of the Heat Kernel Smoothing pro-

cedure used in [163] to smooth signals over anatomical surfaces in 3D medical images.

The application of the above procedure to this problem allows a natural regularization

in this domain. When smoothing over a surface, we can analyze the signal in the spherical
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harmonics domain [163]. We expect to find a more consistent smoothed signal if it is sparse on

the spherical harmonic basis, especially if it primarily lies on the lower-frequency harmonics.

Consequently, we may consider the regularizer

g(V ) =
∑
l

λl‖ΓlV ‖1 (4.26)

where Γl is the change of basis for V onto the spherical harmonics of degree l, and λl are

constant multipliers increasing with l.

4.5.1 Optimization

The procedure used for ordinary orthogonality constraints may be extended to the gen-

eralized form V TAV = I with some modification. Consider a submatrix VK· consisting of

rows of V . The constraints on VK· will be of the form

V T
K·AKKVK· + V T

K̄·AK̄KVK· + V T
K·A

T
K̄KVK̄· = P1 (4.27)

for some constant matrix P1. Any change to VK· that preserves this constraint will produce

a V which is also feasible. If we assume that AKK is full-rank, we find that this is equivalent

to (
VK· + A−1

KKA
T
K̄KVK̄·

)T
AKK

(
VK· + A−1

KKA
T
K̄KVK̄·

)
= P (4.28)

where the r.h.s. P = P1 + V T
K̄·AK̄KA

−1
KKAKK̄VK̄· is still constant w.r.t. VK·.

In the following, we require that AKK � 0, which will be true for all K if A � 0. In this

case P will be full-rank if and only if the matrix N = VK· + A−1
KKA

T
K̄KVK̄· is full-rank. We

thus further decompose the constraints by considering a full-rank submatrix. Let I be a

maximal set of linearly independent columns of N ; we can w.l.o.g. define a matrix R such

that N = [N·I , N·IR]. The constraints in (4.28) can then be reduced to constraints only on

the linearly independent columns,

(
VKI + A−1

KKA
T
K̄KVK̄I

)T
AKK

(
VKI + A−1

KKA
T
K̄KVK̄I

)
= PII . (4.29)
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Given a feasible matrix V , we can define a mapping W by

W (U)KI = U − A−1
KKA

T
K̄KVK̄I

W (U)KĪ = UR− A−1
KKA

T
K̄KVK̄Ī

W (U)·K̄ = V·K̄.

(4.30)

For any matrix U such that

UTAKKU = PII , (4.31)

the matrix given by W will be feasible if and only if V is: W (U)TAW (U) = V TAV . Specif-

ically, for the starting point U0 = N·I we have that UT
0 AKKU0 = I and W (U0) = V .

In each iteration, we seek to decrease the objective f by our choice of U . The previous

section has reduced the large n× p Stiefel manifold problem to a smaller |K| × |I| problem

subject to constraints of the same form. Since the allowable U lies on a Stiefel manifold, this

can be solved by manifold optimization methods such as [195] as in the previous case with

simple orthogonality constraints.

4.5.2 Multi-threaded Constraint Maintenance

A key advantage of decomposing the problem into subsets K of the rows of V is that

we may run multiple parallel threads, each optimizing on a different choice of K. However,

unlike in the case of ordinary orthogonality constraints, we expect some interaction between

different rows of V . This is solved by requiring that if one thread is modifying rows K and

another is simultaneously optimizing on rows K′, then AKK′ = 0. Equivalently, we require

that there is no edge in the graph of nonzeros of A between these two sets of vertices.

4.6 Experiments

The following describes a number of experiments to evaluate this method on several

aspects: (a) performance w.r.t. to a variety of datasets with special emphasis on scalability

as a function of size, (b) comparison with state of the art method [105] when appropriate,

and (c) performance when incorporating high-level priors into the model. Though the focus
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was to show that the method is applicable for multi-view Spectral Clustering (with convex

regularization) for larger computer vision datasets, for which few alternatives are available,

I also performed some experiments on Machine Learning datasets as a sanity check, that

matched reported results. The vision datasets cover Caltech101, Caltech256, LabelMe, and

TinyImages. For experiments with very large datasets, I also used simulated datasets with

hundreds of millions of examples. As a performance comparison measure, the following

section reports on Normalized Mutual Information (NMI).

4.6.1 Multi-view ML Datasets

UCI digits: The first dataset is the handwritten digits (0-9) data from the UCI repository.

The dataset consists of 2 000 examples, with six sets of features for each image from which I

construct six views. These results are summarized in Table 4.1. Since my method depends on

initialization, the experiments were repeated 10 times (different initializations) and I report

on the best NMI value obtained and standard deviations. The authors of [105] provide an

initialization in their code using eigenvectors of individual views.

Reuters Multilingual: In addition, I consider multi-view Spectral Clustering on a natural

language dataset. We subsample the dataset in a manner consistent with [105]. Since the

features for this dataset are sparse and high-dimensional, I first use Latent Semantic Analysis

(LSA) [76] to reduce the dimensionality.

4.6.2 Multi-view Vision Datasets

Caltech101: I evaluated the method on Caltech101, a popular benchmark for object cat-

egorization with 102 categories of images (101 distinct objects and background), and 30

images per category. To generate the views, I use the UCSD-MKL dataset—a collection of

kernels derived from various visual features (up to 25) for Caltech101 data. I used only the

training class kernels in an unsupervised setting. Kernels for five random splits, with each

split containing information regarding 1515 images (15 images for each of the 101 categories)

is provided. I report also results randomly selecting subsets of the views. In each case, I
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Figure 4.2: Comparing clustering results on the Caltech101 dataset, showing the NMI values

for different choices of views for the Spectral Clustering model in this chapter.

Digits Reuters

Ours 0.798(0.03) 0.312(0.01)

[105] Pairwise 0.659 0.305

[105] Centroid 0.669 0.308

Best 1-view 0.641 0.288

Table 4.1: Comparison of clustering results on UCI Digits and Reuters, with mean (and

s.d.) normalized mutual information (NMI).
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report our summaries as well as [105] by averaging across all five splits. The results in Figure

4.2 suggest that the method compares well to [105].

Caltech256: A similar but bigger dataset is Caltech256, which contains 256 object

classes and more than 30 000 images across all classes. I restrict my evaluations to three main

features for each image—V1-like [165], SURF [6] and Region Covariance (RegCov) [183]—

for generating views for this data. The Spectral Hashing method in [104] was then adapted

to construct the graph for the Laplacians. Note that here I cannot perform comparisons

with [105], since their method requires a dense kernel construction. Because of the nature of

this dataset, the V1-like view alone yields a NMI of 0.267, amd SURF gives 0.207, whereas

RegCov performs poorly at 0.088. Contrary to the results from other datasets above, here,

the multi-view performance at 0.181 is close to but worse than the best view. With two

views, SURF and V1-like, multi-view NMI is 0.22. There are two primary reasons. First,

the views do not seem to be uncorrelated, and the best view, V1-like, seems to dominate

the others. Since there are only a few feature types, we cannot expect an improvement over

the single best view. Despite these issues, the evaluations suggest that solving multi-view

Spectral Clustering for these sizes is feasible, if the features are assumed to be provided.

ImageNet: We can construct a dataset with similar properties to the above following

a similar procedure in [116]. I use ILSVRC 2013 [41], an updated version of the challenge

set that is the basis of the dataset in [116]. ImageNet categories consist of WordNet noun

synsets, which precisely define the object in the image. From ILSVRC 2013 [41] I select 100

categories at random, with a total of 127 885 images selected. I use four views derived from

Decaf [45], GIST [142], TinyImage [178], and SIFT [123] features. Each view considered

separately produces NMIs of 0.198, 0.181, 0.181, and 0.184 respectively. The multi-view

objective combining all four produces a labeling with an NMI of 0.203.
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4.6.3 Jumbo-sized Datasets

I summarize my main experiments on very large datasets here. Note that there are

significant implementation issues (e.g., memory management, data structures, queries) in

successfully running a system on tens of millions of examples.

TinyImages: TinyImages [178] is a set of nearly 80 million 32 × 32 color images collected

from internet searches. The dataset is distributed along with GIST features computed on

each image, which were used as the basis of our clustering. Nearest neighbors were computed

using [104], from which a weighted graph with 320 million edges was constructed. The

dataset includes a keyword associated with each image; for 24 690 images the dataset authors

evaluated the accuracy of this keyword, out of which 5660 images depicted the associated

keyword. This keyword is the only form of label provided with the TinyImage dataset; no

ground truth is available.

I split the entire TinyImages dataset into two clusters using Spectral Clustering with the

manifold optimization method. With 34 CPU cores, the optimization averaged one iteration

every 0.015 seconds. To qualitatively evaluate the clustering at a local scale, we look at

how individual keywords are split between the clusters. While most keywords are split by

this clustering, some keywords corresponding to more homogeneous sets of images are well

separated into one cluster or the other. In Figure 4.3, I show a subset of the keywords

sampled from both well-clustered and poorly clustered images.

ImageNet: One can also test a clustering task on the full ILSVRC2013 dataset. This full

dataset has 1000 categories and 1 281 165 images. Since our optimization procedure considers

a high-n low-p regime, I find a two-way split as in the TinyImages. The (non-normalized)

MI of the two-way labelling versus the ground truth is 0.229.

Mixture model: To assess the scalability of my optimization scheme, independent of issues

related to generating a diverse set of feature descriptors and side information on a large

vision dataset, I performed experiments to evaluate if the method can reliably process a

Gaussian Mixture Model. I ran the model on mixtures comprising of 106 and 108 examples

distributed concurrently across (up to 36) heterogeneous CPU cores. For |K| = 1024, this
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Figure 4.3: Results of my method applied to the TinyImages dataset, looking at how

five selected keywords (top to bottom: antler moth, cassareep, true vocal cord,

john, and machinery) are split by the clustering. To the left of the divide is a sampling of

images for which Spectral Clustering produces a “dominant” label for this keyword, and the

rightmost columns are given the “wrong” label. Green and red boxes mark these groups for

the three keywords shown for which the clustering achieved a good separation. The keywords

in the yellow box do not have an informative cluster.
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setup computed iterations at a rate of one iteration every 0.016 seconds and 0.034 seconds

respectively. Within 50 000 iterations, the 106 case reaches an objective value of 0.054 with

an NMI of 0.769 against the true label. The true label for each point is taken to be the

choice of which Gaussian distribution from which that point it sampled. On the 108 case,

an NMI of 0.683 was seen with the objective reduced to 2.685.

4.6.4 Model Characteristics

Varying |K| and Number of Iterations: The size of K, the number of examples cho-

sen in sampling in each iteration, is a key parameter in my approach. To show how this

choice impacts the performance of the model, I use five kernels chosen from the Caltech101

experiments as our views. The kernels and the initialization are kept fixed in different runs,

whereas |K| and the number of iterations are varied from 100 to 1000, and the objective is

shown in Figure 4.5. The objective is progressively lower for increasing values of |K|, and

the iterations converge sooner with increasing values, as it approaches the full gradient. The

rate of change in the objective as a function of iterations is similar for |K| ≥ 300, which

suggests that a relatively small value should suffice.

Comparison of Projection and Manifold Optimization Techniques: I compare the

manifold optimization of Section 4.3.1 and the method using projection on synthetic data.

These use a single normalized Laplacian of a random graph over n = 105 points in four

clusters. All three methods are applied to solve (4.2). As we can see from Figure 4.4,

ordinary gradient descent converges in the fewest iterations due to using the entire matrix

and O(n2) computations in each iteration. The manifold optimization method converges

faster than projection in part because of heuristics used in selecting the step size. Further,

the convergence rate increases when the sample size is increased. The Lanczos method (i.e.,

MATLAB’s eigs) fails due to excessive memory requirements (> 32GB).
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Figure 4.4: Plot showing the convergence rate of ordinary gradient descent with projection

onto the Stiefel manifold, stochastic gradient descent with projection, and stochastic gradient

descent using manifold optimization.
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Figure 4.5: Plot showing the variation in objective with increasing iterations and different

values of |K| from 100 to 1000. The objective value is drawn against iterations, demonstrating

that quicker convergence is achieved with larger samples at the expense of increasing per-

iteration cost.
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Chapter 5

Memory-bounded CNNs

5.1 Introduction

Over the last few years, high capacity models such as deep Convolutional Neural Net-

works (CNNs) have been used to produce state-of-the-art results for a wide variety of vision

problems including image classification [73], object detection [78], and segmentation [119].

This success has been in part attributed to the feasibility of training models with a large

number of parameters and the availability of large training datasets [41], [121]. Training

can scale this way due to greater computational power and refinements in the optimization

algorithms used [14].

The need for techniques that can enable larger models is why the wave of recent work in

CNNs was preceded by key improvements in the methods and software used to train Deep

Learning models. These improvements made it possible to optimize objective functions

defined over millions of parameters [40], [174]. These techniques, however, require careful

tuning of the optimization and initialization hyperparameters to ensure that the training

procedure arrives at a reasonable model [102]. In addition, simply performing the compu-

tations required for so many parameters has required leveraging high-performance parallel

architectures such as GPUs [86], [102], or distributed clusters [40].

While the capacity of such deep models allows them to learn sophisticated mappings, it

also introduces the need for good regularization techniques. Furthermore, they suffer from

high memory cost at deployment time due to large model sizes. The earliest big deep models

used regularization techniques like weight decay and DropOut [102]. However, these and



97

other approaches [103] proposed in the literature do not address the issue of high memory

cost, which is particularly problematic in models that rely on multiple fully connected layers.

For example, one of the largest released models, the 19-layer VGG network, has 548MB of

weights stored in the caffemodel format. Even the more recent 152-layer ResNet [73],

which makes some model architecture decisions to be less wasteful in parameter count, still

has a weight file of 231MB. The high memory cost becomes especially important when de-

ploying in application in computationally constrained architectures like mobile devices [31],

[77]. Accordingly, factorization [84], quantization [59], and other architecture and imple-

mentation changes are applied to reduce the parameter count and the cost of storing these

parameters.

To address this problem, this chapter describes the use of sparsity-inducing regularizers

for CNNs. These regularizers encourage that fewer connections in the convolution and fully

connected layers take non-zero values and in effect result in sparse connectivity between

hidden units in the deep network. In doing so, the regularizers not only restrict the model

capacity but also reduce the runtime memory cost involved in deploying the learned CNNs.

This is extended to group-sparse penalties that further reduce the overhead of sparse storage

of the weights, while yielding roughly the same trade-off of memory cost vs training and test

accuracy as unstructured sparsity.

This chapter will additionally show the performance of these regularizers as applied to

networks trained on the MNIST, CIFAR, and ImageNet datasets. The results show that one

can generate models that reduce the memory consumption at test time by a factor of three

or more with minimal loss in accuracy. I then show how this can be used to improve the

accuracy of vision classifiers using ensembles of deep networks without incurring the greater

memory costs that would ordinarily result from having to store multiple models. Using

sparsity regularization in this way significantly improves upon more typical ways researchers

seek to limit model complexity, for example by changing the network topology by removing

units or neurons. Finally, I show how the regularized training objectives can be efficiently

optimized using stochastic gradient descent.
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(a) (b)

Figure 5.1: Illustration of the sparsity/pruning strategy to reduce the weight storage cost

of a CNN. In the case of a densely connected neural network, as in (a), each node in the

top layer connects to one at the bottom. Weights must be learned and stored for each

connection. In a sparse network, as in (b), weights must only be stored for the connections

that are present.

To summarize, this chapter will show a set of sparsity-inducing regularization functions,

including group-sparse constraints, that I demonstrate are effective at reducing model com-

plexity with no or minimal reduction in accuracy. Updates for these regularizations that are

easily implemented within standard existing stochastic-gradient-based deep network train-

ing algorithms. This chapter concludes with empirical validation of the effect of sparsity on

CNNs on CIFAR, MNIST, and ImageNet datasets.

5.1.1 Related Work

Regularization of Neural Networks. Weight decay was one of the first techniques for

regularization of neural networks and was shown to significantly improve the generalization

of neural networks by Krogh and Hertz [103]. It continues to be a key component of the

training for state-of-the-art Deep Learning methods [102]. Weight decay works by reducing

the magnitude of the weight vector of the network. It yields a simple additional term to

the weight updates at each iteration of the learning procedure, assigning to each individual

weight as wi ← wi − λwi. The update term used is the gradient of the squared `2-norm of

the weights.
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An interesting observation is that the training procedure for a linear perceptron with

weight decay is equivalent to learning a linear SVM using stochastic gradient descent [166],

where the weight decay is serving as the update to maximize the margin. Taking the typical

SVM optimization over a collection of examples (x1, y1), ..., (xN , yN) ∈ Rd × {−1, 1}, it

optimizes a linear separator (w, b):

min
w,b

C‖w‖2 +
1

N

n∑
i=1

(1− yi(〈w,xi〉 − b))+ . (5.1)

It can be shown (see [11]) that the smallest gap between two examples that will not be

penalized by the loss term, twice the “margin,” is 2
‖w‖ . Hence the regularization C‖w‖2

serves to maximize this margin. Optimizing (5.1) by stochastic gradient descent, one can see

that the gradient of this regularization is a scalar multiple of w itself, and subtracting this

gradient will take the form w ← w − λw, precisely the update that is applied to a neural

net in weight decay.

While not seen in CNNs or Computer Vision application, building sparse networks was

considered for more classical neural networks. These were grouped into “pruning” methods

[151], and include both regularization penalties and techniques for determining the impor-

tance of a given weight to the network’s accuracy.

Hinton et al. [74] proposed a regularization technique known as dropout, which now forms

a basis for many state-of-the-art deep neural network models [102], [120], [175]. During

training, some portion of the units in the network is “dropped:” their output is fixed to

zero and their weights are not updated during back-propagation. In each SGD iteration,

a different random subset of the units is selected to be dropped. The outputs of these

units are then multiplied by the dropout factor at test time. This is done in part as a

computationally cheaper approximation to training an ensemble of sparse networks. The

sparse networks implicitly created by dropout are simplified in a different way than the

parameter regularization considered here. Dropout eliminates entire units or neurons, while

I instead seek to reduce the number of parameters of those units. It also does so in a way

such that the same number of weights still need to be stored for inference at test time, since
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this sparsification is only applied during training. Rather than having a smaller number of

complex units, this work tries to train models that have a constant number of simpler units.

Comparison to Model Compression. A further method of constructing simpler models

is the technique of model compression [23]. Model compression relies on the availability of

large amounts of unlabeled data, using it to build smaller and computationally cheaper mod-

els by teaching the compressed model from the output of a larger and more parameter-heavy

model that has been trained to fit the target task. This data is labelled using the original

network and then used to train a smaller network. The idea behind this strategy is to make

sure that the smaller network does not have to worry about regularization. Furthermore,

unlike the method in this chapter where sparsity is enforced explicitly through the use of an

`0 or `1 norm on a large number of hidden units, the model compression scheme simply trains

a network with fewer hidden units. The method presented in the following chapter does,

though, target a similar setting, in which plenty of computational resources are available at

training time; however I wish to use these to train a model that is suitable for deployment

in a more constrained environment.

Note that some recent works [43], [84], [209] have considered the same task but have

adopted a different approach. They build networks with a set of low rank filters in each

layer. These are built after training a network without this constraint, where the simpler

network is selected to approximate the original full-rank network. Another approach to

reducing the memory cost of the network parameters is to reduce the numerical precision of

each parameter value. This can also be done during training, optimizing directly over the

reduced-precision weights [64].

Sparse Autoencoders. Extensive work has also been done on training deep models that

learn sparse representations of the data, while the learned parameters are themselves non-

sparse. In an early work, Olshausen and Field [143] used a basic neural network structure

inspired by the V1 layer of the visual cortex to learn sparse representations of a set of

images. More recent work has used the term sparse autoencoder to describe this type of
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structure, and in Deep Learning, autoencoders have been used to initialize multi-layer net-

works as a method of layer-wise pre-training [190]. Indeed, much recent work on designing

novel architectures for Deep Learning for vision application seeks to reduce or sparsify the

parameter set. Convolutional layers themselves, in addition to enforcing an assumption of

translation invariance, are meant in part to simply reduce the number of parameters [111].

A convolution can be represented by a fully connected layer, though it is unlikely to learn

this mapping with a finite amount of training data and computation time. Some prior work

has investigated automatically determining CNN structure, though instead by searching the

space of layers and their sizes that may be used in place of simpler higher-parameter-count

choices [170].

5.2 Convolutional Neural Nets

Convolutional Neural Nets are a variety of Deep Learning methods in which convolutions

form the early layers. These have become the standard technique for performing Deep

Learning for Computer Vision problems, as they explicitly deal with vision-based primitives.

In the first of these layers, learned filters are convolved with the input image. The output of

each of these kernels, composed with a nonlinear mapping, is then convolved with another

set of filters in the next layer, and this is repeated for each subsequent convolution layer.

CNNs are frequently augmented with final “fully connected” layers that are more similar

to classical neural networks, to provide a mapping from the features learned by the convo-

lutional layers to the output labels. In most state-of-the-art networks, the fully connected

layers are responsible for the majority of the parameter count of the network, though some

recent work has considered models consisting entirely of convolutional layers [120] or has

converted the fully connected layers into a convolution [164]. However, the state of the art,

as the start of this work [72], does train with fully connected layers at the end of the network.
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5.2.1 Optimization Perspective on CNN Training

The standard methods for training Deep Learning models may be expressed as stochastic

gradient descent on a given loss function between the output prediction and training labels.

The training procedure, given a set of inputs x1,x2, ...,xn and the corresponding ground truth

labels y1, y2, ..., yn, determines the choice of learned parameters W for all layers. Consider

the network itself as a function f of the input data and W . The overall optimization problem

on these weights may then be posed as follows:

min
W

(
O(W ) :=

1

n

n∑
i=1

L(yi, f(xi,W )) + λr(W )

)
. (5.2)

Here, L is a loss function between the true labels yi and the predictions of the network

f(xi,W ) on the ith training example. Taking the sum over the training data gives the

empirical risk. The function r is the regularization term, with a weighting hyperparameter

λ, which seeks to reduce the hypothesis space. For ordinary weight decay, this will be a

squared `2 norm: r(W ) = ‖W‖2
2.

The objective in (5.2), along with its gradients, is very expensive to compute for practical

problems. The state of the art in Computer Vision considers very large networks with up

to 1001 layers [73] and 60 million parameters [102]. Further, these models are trained on

large datasets such as ImageNet, with the 2012-2014 classification challenge set having 1.2

million training images. The optimization of this objective is made far more computationally

tractable by using stochastic gradient descent [14] or stochastic variants of adaptive and

accelerated gradient methods [174].

5.3 Regularization Updates

I propose, as the central contribution of this chapter, to encourage sparsity in the networks

by applying simple updates to the set of weights in each layer during training. First, though,

consider the regularization functions themselves. Regularization often uses a norm function

on the parameters of the model. Define the `p vector norms as ‖x‖p = (
∑

i |xi|p)
1/p. This
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Figure 5.2: Convolution filters learned on the CIFAR-10 classification task. The non-sparse

kernels on the left come from a baseline model using classical weight decay as regularization.

Incorporating a sparsity-inducing `1 shrinkage during training yields the sparse filters on the

middle right and 20 all-zero filters not shown. The pixel-wise nonzero pattern of the sparse

filters is shown on the far right.

definition is typically extended to `0 and `∞ norms by taking limits on p. Of special interest

to sparsity regularization is the `0 “norm,” the count of the number of nonzeros of x.

5.3.1 `1 Regularization and the Shrinkage Operator

The most common classical technique for learning sparse models in Machine Learning is

`1 regularization [177]. The `1 norm of a vector is the tightest convex relaxation of the `0

norm. It has been shown for some classes of Machine Learning models that regularization

terms consisting of an `1 norm can provide a provably tight approximation, or even an exact

solution, to a corresponding `0 regularization that directly penalizes or constrains the number

of nonzero parameters of the model [46].

One can optimize an `1 regularization term by updating the weights along a subgradient

of the `1 norm. A negative multiple of a subgradient gives a descent direction, and updating

the weights a sufficiently small distance along this ray will reduce the regularization term. Its

sum with the gradient of the loss terms in (5.2) gives a subgradient of the whole objective.

Since the `1 norm is differentiable almost everywhere, and therefore the subdifferential is
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a singleton set, it is not even usually necessary in practice in CNN training to choose a

particular subgradient. For comparison, the ReLU operator [124], one of the most commonly

used components in current deep neural networks (DNNs), tends to be implemented in most

codes by simply taking a fixed choice of gradient at the nondifferentiable point. Therefore,

the choice of subgradient I consider below is simply the sign operator, applied element-wise

to the vector of weights. It can be seen that sign(W ) ∈ ∂r(W ) for r(W ) = ‖W‖1. The

resulting update is therefore, for some δ > 0, the element-wise operator:

Wi ← Wi − δsign(Wi). (5.3)

This `1 update is currently implemented in Caffe [86] as a type of weight decay that can be

applied to the whole network.

This update has the shortcoming that, while it will produce a large number of weights

that are very near zero, it will almost never output weights that are exactly zero. Since

later layers can still receive and learn to magnify input based on the resulting small nonzero

weights, and earlier layers will receive back-propagated gradients along these weights, these

near-zero parameters cannot be ignored. When seeking to construct a sparse model, the

natural technique is to try to threshold away these very small weights that an optimal `1

solution will have set to zero. Finding a good threshold for this heuristic requires some

attention to the schedule of learning weights and the level of regularization relative to the

gradients near the end of training.

A regularization step with better empirical and theoretical properties is the shrinkage

operator [177]:

Wi ← (|Wi| − δ)+sign(Wi). (5.4)

Here the notation x+ refers to the positive component of a scalar x. The shrinkage operator

is among the oldest techniques for sparsity-inducing regularization. A key property for deep

network training is that this operator will not allow weights to change sign and “overshoot”

zero in an update. The operator will output zero weights rather than small weights oscillating

in sign at each iteration. For a suitable choice of δ, it eliminates the need to consider
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thresholding. Neighboring layers will get zero input/back-propagation along that connection,

so they can learn on the zero weight.

This shrinkage update is an example of a proximal mapping, also called a “proximal

operator,” and alternating this with descent steps along the gradient of the loss would yield

a proximal gradient method. These methods generalize and extend the LASSO, and have

been applied to group sparsity regularizations [200]. Proximal mappings are also effective

when using approximate or stochastic gradients; Schmidt et al. [160] provide convergence

guarantees in the case of a convex problem.

5.3.2 Projection to `0 Balls

While `1 regularization is known to induce or encourage sparsity in common Machine

Learning models, the direct way to construct sparse models is to consider the `0 norm. This,

importantly, deals directly with the count of the number of nonzeros. That count determines

the memory cost when using sparse formats, regardless of the magnitude or value of the non-

zero elements.

A simple regularization operator can be used to train models under `0 norm constraints.

This update, in every n iterations, will set to zero all but the t largest-magnitude elements

of the parameter vector. This imposes the hard constraint that ‖W‖0 ≤ t for some integer

t. This operator can be seen as a projection onto an `0 ball, namely:

P0(W, t) =

arg min
W ′

‖W −W ′‖2
2

s.t. ‖W ′‖0 ≤ t

 . (5.5)

This “projection” matches the operator of hard thresholding all but the t least-magnitude

elements, as the quantity the projection seeks to minimize in (5.5) is the total squared

magnitude of the elements that are zero in the optimal W ′ but not in W . In compressed

sensing and M-estimators, this procedure is called “Iterative Hard Thresholding” [12], [85].

This `0-regularization update can be seen as an instance of “projected gradient” meth-

ods frequently used in convex optimization, and the extension to group sparsity below is

derived similarly. A theoretical analysis of projected gradient algorithms can be gleaned
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Figure 5.3: Illustration of the “`0 projection” done by hard thresholding. The projection

operator is defined in (5.5). This suggests an analogy between iterative hard thresholding

and projected stochastic gradient descent (SGD).

from the more general analysis on proximal operators. Projection onto a convex set P is the

proximal operator for an extended-value function that maps P to 0 and its complement to

∞. Therefore, projection onto a convex feasible set can be seen as a special case of proxi-

mal stochastic gradient methods. See [150] for discussion specifically on projection within

stochastic gradient methods.

5.3.3 Group Sparsity

The increased complexity of sparse computation can lead to a number of computational

drawbacks. Computing the layer responses in an implementation that stores the parameters

in a sparse storage format will suffer from poor memory locality and be less easily paralleliz-

able. Typically, sparse computations will be limited by memory bandwidth [9]. Improved

computational performance can be achieved by performing computation on blocks of pa-

rameters that correspond to operations on entries in the response map that are adjacent in

memory or can be executed in parallel. This is referred to in [82] as “blocking,” cited in

[9] as achieving greater performance even in GPU-parallelized sparse matrix computations.

One can also see that given the same number of total nonzeros, a block-sparse representation

will require less overhead for sparse storage, as one only need store the indices of the nonzero

blocks alongside the weights rather than the indices of each individual nonzero weight.
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(a) (b)

Figure 5.4: A matrix with nonzero pattern given by the shaded entries in (a) has scattered

sparsity. The matrix in (b) shows group sparsity. Group sparsity can better leverage SIMD

hardware for both efficient and memory-bound computation.

In a CNN setting, rather than simply filling in the zeros within a block, the network can be

allowed to use all the weights in the blocks, learning nonzero values for the whole block. This

can be done by creating the blocks of nonzeros using a group sparse regularization [205] with

groups corresponding to computationally efficient blocks. “Groups” here uses terminology

from group-sparse regularization, and is distinct from the grouping of convolutional layers

done to achieve cross-GPU parallelization in Krizhevsky et al. [102].

Let W = [wfcij] ∈ RF×C×K1×K2 be the 4D tensor of weights in a convolutional layer of the

network. This parameterizes a set of K1×K2 convolutions, over C input channels producing

F output channels. A good accuracy vs. sparsity trade-off can be achieved by grouping over

the spatial dimensions. This is achieved by imposing, during training, a constraint on the

number of groups that contain a nonzero:(
F∑
f=1

C∑
c=1

I[wfcij 6= 0 for any i = 1, ..., K1 and j = 1, ..., K2]

)
≤ t. (5.6)

The corresponding update can also be derived as a projection onto the set of weights feasible

w.r.t. to this constraint. By the same reasoning as the iterative hard thresholding update,

here the update will set to zero all entries in W except those in the t groups with greatest

`2 norm.
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5.4 Implementation

I implemented the regularization updates presented above as a modification to Caffe [86].

The `1 update matches the one already present, though that implementation was extended

to allow mixing different types of regularization. For example, in Figure 5.6, one can retain

ordinary weight decay for all but select portions of the model in order to analyze the effect of

sparsity on those particular parts. The experiments below use the baseline networks provided

with that distribution, LeNet [111] and CIFAR-10 Quick [170], as a target for regularization.

For larger-scale experiments, this chapter demonstrates the usefulness of these regular-

izers on a network developed for the ImageNet classification challenge [102]. This network

has five convolutional layers and three fully connected layers, with a total of 60 million pa-

rameters. Upon the publication of [102], it was one of the largest neural networks described

in the literature. Due to the much larger scale of both the dataset and the network, we

perform experiments using a computationally cheaper “fine-tuning” procedure in which we

use an existing non-sparse network as the initialization for sparsity-regularized training. The

starting point for this training was a Caffe-based [86] duplication of the “AlexNet” network.

The network was progressively sparsified in stages over 200 000 iterations, taking approxi-

mately one week on a GeForce GTX TITAN. Thresholding/`0 projection was done every 100

iterations. The number of nonzeros remaining after the thresholding was manually reduced

in steps, tightening the sparsity constraint each time the `0-constrained training converged

on a network with comparable accuracy to the original dense weights.

Optimization with the `0-norm projection was seen to be fairly robust, and it posed little

additional difficulty to find settings for which the `0-regularized training would converge.

I did not observe any case where a network with baseline regularization was successfully

trained but an `0-regularized variant of the model failed to find a model reasonably close

the optimum w.r.t. the training loss. The high test accuracies for very sparse models seen

in this work’s other experiments also suggest that the optimization was successful in finding

a reasonable fit to the training data in those cases.
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5.4.1 Layer-wise Distribution of Sparsity

It was observed on standard experimental networks that each layer of the network per-

forms very differently when varying the level of sparsity-inducing regularization. Figure 5.6

shows that significant decreases in accuracy are seen when sparsifying the first convolutional

layer at nonzero ratios for which the fully connected layers are still able to describe the target

concept. A key quantity to analyze, as is done on the right plot of Figure 5.5, is this nonzero

ratio defined as the ratio between the number of nonzero weights in a layer and the total

number of parameters. The distribution of sparsity between different layers is the hyperpa-

rameter with the greatest effect on the performance of sparse deep models. The procedure

below allows us to automatically determine sparsity hyperparameters incorporating some of

the intuitions given by the layer-specific results in Figure 5.6.

The choice of which layers to sparsify was made by doing a greedy search, progressively

reducing the number of nonzeros while maximizing the accuracy on a validation set. The

procedure is to repeat the following two steps:

1. For each layer, reduce the number of nonzeros by 20%, and train a network.

2. Take the network from the previous step that produces the best validation accuracy,

and use this network as the start of the next iteration.

For a baseline CIFAR-10 network this procedure yielded nonzero distributions skewed

towards sparsifying the later layers of the network. The level of sparsity, and the number of

nonzero parameters, chosen by this procedure for each layer of the best candidate networks

is shown in Figure 5.5. From the normalized plot on the right of Figure 5.5, it is clear

that the tightest sparsity constraints were imposed on the final convolution layer and the

fully connected layers, while the first two convolution layers were relatively untouched. In

terms of the number of parameters set to zero, the greatest reduction in weights was in the

final convolution and first fully connected layers. These networks significantly outperformed

baselines that imposed sparsity constraints uniformly across all layers.
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Figure 5.5: These plots show the distribution of nonzero parameters determined by a greedy

procedure seeking to maximize the accuracy of sparse networks for CIFAR-10. Each stack

of boxes corresponds to a single network and is centered on the accuracy for that network.

The plot on the left directly counts the number of nonzeros in the layer. The plot on the

right shows the same networks, but normalizes the heights such that each layer’s box would

be the same height for a dense network. “Conv1-3” are the convolution layers, while “fc1-2”

are the fully connected layers.
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Figure 5.6: Sparsity vs. accuracy when sparsity regularizations are imposed only on specific

layers of the MNIST and CIFAR-10 baseline networks. As baselines, the plots also show

the results of both thresholding the weights learned under `2-regularization and reducing the

number of hidden units in the first fully connected layer.
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5.5 Experiments

The experiments below use MNIST [111], CIFAR-10 [101], and ImageNet [41] as bench-

marks and show the effect of sparsity on widely-distributed baseline CNNs for these datasets.

MNIST is a set of handwritten digits, with 60 000 training examples and 10 000 test

examples. Each image is 28×28 with a single channel. MNIST is among the most commonly

used datasets in Machine Learning, Computer Vision, and deep networks.

CIFAR-10 is a subset of the “80 million tiny images” dataset [178] where ground truth

class labels have been provided. There are 10 classes, with 5 000 training images and 1 000

test images per class. Each image is RGB, with 32× 32 pixels. Other than subtracting the

mean of the training set, this implementation did not consider whitening or data augmen-

tation, obtaining higher error rates but allowing comparison against an easily reproducible

baseline with standard codes.

The AlexNet fine-tuning experiments used the ILSVRC 2012 training set. Simple data

augmentations using random crops and mirroring were used in the training phase, along with

subtracting the mean image from the training set.

5.5.1 Accuracy and Regularization Updates

MNIST and CIFAR-10. A key empirical result of this work is that sparse models achieve

surprisingly high accuracies even as the number of nonzero parameters gets quite small.

Figure 5.6 shows limited experiments where particular layers of two baseline MNIST and

CIFAR-10 models are sparsified with various penalties. It also shows, as baselines, schemes

that either apply a threshold to `2-regularized models, or vary the network structure to

directly reduce the number of parameters.

Note that, while the `0 projection is the regularization that imposes sparsity most directly,

the `1-based regularizations perform comparably well for a “middle” range of regularization

strength. This is as would be expected, based on the literature for sparsity-inducing reg-

ularization for shallow models. The `0 projection tends to outperform the `1 subgradient

and shrinkage updates as the number of nonzeros begins to approach within an order of
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Figure 5.7: Exploring the trade-off between accuracy and model size achieved by our method

for different problems. In the first row, each point plotted is a candidate network considered

by the greedy search in Section 5.4.1. The x axis shows the memory required to store the

weights of that network, using the best choice among common sparse storage formats. Below

is listed the same for a network trained on ILSVRC 2012, as described in Section 5.4.



114

magnitude of the dense model. This can be explained as the result of the `1-based updates’

effect on the magnitude of the regularized weights, in contrast to the `0 projection that does

not at all modify the largest-magnitude weights. This distinction becomes more important

as we have more smaller-magnitude weights in less sparse models. It is also less visible in

MNIST as all models quickly reached a “ceiling” accuracy. In the other direction, the hard

thresholding/`0 update seems to produce models of moderate accuracy at higher levels of

sparsity. In this range, for higher regularization strength, the `1 updates also frequently

fail to produce very sparse models at all, due to a discontinuity in the regularization path

between the sparser models shown in 5.6 and models that are all zero.

Figure 5.8 also shows the comparison between this `0 update and its group sparse variant

described in Section 5.3.3. Notably, this grouping achieves the same trade-off in accuracy vs.

sparsity as the ungrouped method despite restricting the network to a particular sparsity

pattern. This also shows that the ordinary thresholding update without grouping produces

a network that is not necessarily sparse with respect to the number of nonzero groups; even

very sparse lower-accuracy networks still have nonzeros in most of the blocks.

Most of these experiments primarily use the `0 projection because it requires far less

intensive hyperparameter tuning. The different sparsity levels seen for the `1 norms are only

seen in a very narrow range of values for the regularization multiplier. Outside this range one

will get either dense models or models that are completely zero. By contrast, good models

are produced for nearly any choice of the number of nonzeros imposed by an `0 constraint.

ImageNet. Therefore, the experiments with AlexNet, as applied to ImageNet, focus on

the case of applying the `0-projection regularization, and only on the fully connected layers,

as these are together responsible for 96% of the total number of weights in the network.

The top-one and top-five validation accuracies of the original networks, the Caffe dupli-

cation, and our sparse version of the Caffe duplication are shown in the table in Figure 5.7.

Note that the Caffe duplication achieves slightly lower validation accuracies than the original
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Figure 5.8: Comparing group sparsity and an ordinary `0 constraint on the third convolution

layer of CIFAR-10 Quick. The top figure plots the accuracy against the total number of

nonzero weights. Each point is a network trained with different constraints. The bottom

figure plots the accuracy for the same networks against the number of nonzero weight blocks.
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networks trained by Krizhevsky et al. Initially, only the final fully connected layer was spar-

sified and reduced to 400 000 nonzero weights out of 4 096 000 in the original dense network

(plus 1 000 per-neuron biases). This is ten times smaller than the original parameter set of

this layer in the dense network. In the second stage, the other two fully connected layers

were also regularized to produce a network with 3 million parameters in each of these two

layers (for 6 million total). This is from a total of 54.5 million weights in these two layers of

the original dense network. Overall, the sparse network had all but 14% of the weights of the

network set to zero. To compare, I also directly thresholded the network without additional

training to have the same number of nonzeros in each layer. This yielded a network that

achieves only 38.92% top-one validation accuracy and 63.44% top-five validation accuracy.

The accuracies reported here are done without test time oversampling or any similar test

time data augmentation methods.

5.5.2 Ensembles

The above results suggest that the very high parameter counts in Deep Learning models

include a number of redundant weights. Much of the computational resources and model

complexity incurred by these very large models is spent to yield relatively little benefit in

terms of test time accuracy. Given a fixed budget of some computational resource such as

memory, this is much better spent on more effective ways to increase accuracy. A good

method for improving test time accuracy is building ensembles that combine the output of

multiple models.

To test this, I constructed ensembles using bagging [21], where each member of the

ensemble is trained on a random resampling of the training data. Table 5.1 shows the

resulting accuracy as we grow the ensemble under a parameter budget. Each ensemble was

constructed to maintain a set of nonzero weights that does not grow in size even when

considering greater numbers of predictors in the ensemble. This can be done by sparsifying

the individual elements of the ensemble with the regularizations presented above. This

targets a setting such as a mobile device with limited memory, for which building ensembles
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Nets Nonzeros/Net Total Test Accuracy

1 145 578 145 578 75.85% ± 0.559%

2 71 770 (49.3%) 143 540 77.40% ± 0.192%

3 46 023 (31.6%) 138 069 77.18% ± 0.215%

4 36 333 (25.0%) 145 332 75.96% ± 0.116%

5 28 249 (19.4%) 141 245 74.60% ± 0.155%

Table 5.1: Building ensembles of sparse models under a parameter budget. The 1-model case

was trained on the original dataset as a baseline, all others on bagged resampling. Accuracies

given are means with standard deviations across multiple trials with different models and

bagged datasets in each trial.
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Figure 5.9: Training and test accuracy for dense and sparsity-regularized CNNs when

varying the size of the training set by randomly subsampling CIFAR-10 as in Section 5.5.3.

with the full model is prohibitively expensive, which can be true quite quickly for CNNs.

Using this as a proxy for model capacity and power, this experiment further allows trade-

offs in how to build predictors, and where model capacity should be spent to get the best

performance at deployment. To train an ensemble with n members, this procedure repeats

the following steps n times:

1. Re-sample the training data, with replacement, to get another training set of the same

size.

2. Take a layer-wise distribution of nonzeros given by the method in Section 5.4.1 that

has ≤ 1/n total nonzeros.

3. Train a model on the re-sampled data, with each layer having an `0 constraint to

enforce this distribution.

At test time, the above experiments ran each CNN as normal over the test dataset. To

produce an end prediction from the whole ensemble, I average the output layers and predict

the class corresponding to the largest average output.
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The results show a significant increase in accuracy for smaller ensembles. As the size of

the ensemble grows and the models become sparser, however, this yields diminishing returns,

as the individual models can no longer sufficiently approximate the target task.

5.5.3 Reduced Training Data

A key property of regularization is its ability to improve the generalizability of a learned

model. If there is insufficient training data to properly estimate the true underlying dis-

tribution, the minimizer of the empirical risk will be different from the best model for the

expected risk under the true distribution. The model will then “over-fit” the training data

rather than correctly learning the target concept.

The experiment with result shown in Figure 5.9 tested this assertion using models trained

with sparse regularization and with `2 weight decay. I randomly subsampled the CIFAR-10

training dataset to produce a series of smaller datasets with increasingly insufficient training

data. Two results can be seen from this experiment that match what Machine Learning

theory predicts. First, the differences between simpler and more complex models become

narrower with less training data, on the left-hand side of the plots. Indeed, the simpler

models begin to outperform the more parameter-heavy dense models in some cases when

little training data is available. Secondly, in all models, as more training data becomes

available we see that the training accuracy decreases while the test accuracy on unseen data

increases. The change in accuracy on both sets is much less pronounced on simpler models.

5.6 Memory Usage

To describe what the sparsity levels mean in concrete computation terms, consider three

storage formats, each of which allows for fast computation with sparse networks. When

calculating the memory usage of sparse networks, assume the optimal choice among the

following formats:

1. Dense: One can ignore any sparsity present in the network and store it as with the

original dense weights. For very sparse networks, a great deal of storage will be filled
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with the number zero, but for networks with few zero weights, this will still be cheaper

due to the additional overhead for required sparse data structures.

2. Bit-mask: One can also use a simple bit-mask with a number of bits equal to the

number of total parameters. If and only if the bit corresponding to a parameter is

one, then there the value of that parameter is nonzero. The nonzero parameters are

then stored in a flat array. Additional indices into the flat array, depending on how

computation is done with these weights, can allow this format to still be used directly

in CNNs at runtime.

3. Indexed: Finally, one can use a scheme where only the nonzero parameters are stored,

each one as a pair consisting of an index into the original weight array alongside the

weight value. This is the traditional way to handle sparse vectors.

In some types of layers, more specific sparse formats such as Compressed Sparse Row (CSR)

matrices [158] may also be suitable for computation. These will have a memory cost approx-

imately equal to the “indexed” case.

The previous memory estimates assumed that the weights are stored as single-precision

(32-bit/4-byte) floating-point values. The overhead introduced by the sparse data structures

is relatively smaller for double-precision (64-bit/8-bytes) floating-point values. Additional

formats, such as half-precision floats or fixed-point weights are not supported by standard

hardware or CNN codes, but are increasingly seeing support in specialized mobile frame-

works.

Using these formats, we plot in Figure 5.7 the memory required to store the weights of

sparsified forms of the baseline test networks. Each point is a candidate network considered

by a greedy search over the per-layer distribution of nonzeros. In the table in the same

figure, we give the memory used for the “indexed” format on a sparse CNN for ImageNet.
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5.7 Computation Time

As described earlier in this chapter, sparse computations can be slower than the corre-

sponding dense computation. In highly optimized CNN implementations such as Caffe [86]

and cuda-convnet [102], parallel hardware can be used to execute the large blocks of arith-

metic in parallel. When the parameters of a convolution or inner product are sparse, however,

the corresponding operations may be on elements of the layer’s input or output responses

that are no longer adjacent or regularly spaced in memory. As a result, the performance is

instead bounded by random-access I/O rather than the number of floating-point operations

required. With the additional overhead of sparse matrices, the result can be slower even if

fewer operations are required.

Fortunately, the basic operations most commonly used in vision networks can still be

made efficient for deployment on modern hardware, even when doing sparse computation.

With the right implementation choices, the innermost loop of the computation in operations

such as convolution will still be dense vector computations on responses adjacent in memory.

This was demonstrated on a modified implementation of Caffe, that natively stores layer

parameters as sparse coordinate list (COO) or compressed sparse row (CSR) tensors or

matrices. The experimental implementation also does computations directly using these

sparse parameters.
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The core computation in Caffe’s convolution implementation is a matrix-matrix multi-

plication between the convolution filters and a matrix constructed from the input image

or response map. Denote this operation with B ← WA. A is the input response map,

where each row is a channel of the input with some spatial offset. The matrix W contains

the learned convolution filter bank, where each row is one filter in the bank, vectorized

over the spatial and channel dimensions of the filter. Finally, B is the output response

map. At test time, we take W to be a sparse matrix and compute the multiplication

as:

B ← 0

for i, j such that Wij is nonzero do

Bi· ← Bi· +WijAj·

end for.

The inner computation here multiplies the jth row of A by the scalar element Wij, and adds

the result to the ith row of B.

Since A and B are still dense matrices, this is a dense vector operation (axpy in BLAS),

and can be done efficiently in parallel, e.g. exploiting optimizations such as SIMD instruc-

tions. Therefore, even when using sparse weights in the network at test time, the innermost

computation is done using dense linear algebra operations. The loss of parallelizability due

to the sparsity of W incurs much less cost than a näıve implementation of sparse convolution.

Ultimately, though, the relative computation time between sparse and dense networks

will depend on details of the network such as the sizes of the response maps at each layer,

the size of the filter banks, and the number of images in a batch at test time. It will also

vary significantly between architectures, as CPUs, GPUs, and lower-power processors will

have differences in memory models and efficiency of vector processing. The results in this

section were produced using CPU Caffe on an Intel Xeon E5520 at 2.27 GHz.

Figure 5.10 shows the computation time for a baseline CIFAR network used in the mem-

ory experiments. The experiment shown in that figure takes a number of networks trained

with varying regularization parameters to achieve varying levels of sparsity. For very sparse



123

0.55 0.65 0.75
Accuracy

300

500

700

Fo
rw

ar
d 

Co
m

pu
ta

tio
n 

Ti
m

e 
(m

se
c)

CIFAR-10 Quick with sparse computation on CPU
Dense
Group-sparse
Sparse

Figure 5.10: Showing the trade-off in computation time vs accuracy for CNNs trained with

differing sparsity regularization. Each green or red marker is a network trained with differing

sparsity constraints, while in blue is the accuracy and computation time for the baseline

network trained without sparsity constraints and using ordinary dense computations.
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networks, the results show a decrease in accuracy while requiring less computation time.

Performing sparse computation on networks that are mostly dense, while achieving greater

accuracy, proves to be slower than performing dense matrix multiplication after filling the

parameter matrix with zeros. With a CPU implementation, roughly comparable perfor-

mance can be achieved between the sparse and dense implementations. It is important to

note, however, that the networks that perform most similarly to the dense network in this

comparison are more memory efficient.

5.8 Summary

This chapter presents a scheme for pruning the weights of a deep neural network during

training so that it uses significantly less memory during inference. The chapter presents and

compares several different types of regularization and updates, including a hard-thresholding

scheme that provides definite guarantees on the number of nonzeros in the resulting network.

Using a group-wise sparsity pattern, additional overhead due to memory access patterns is

reduced, allowing for networks that are compressed essentially for free.

These updates are also demonstrated as part of two meta-training schemes that use sparse

neural networks as a building block. First, a greedy parameter search finds the optimal

distribution of nonzero parameters layer by layer, providing a principled way to do a sort

of architecture search over how connections are distributed throughout the neural network.

Secondly, a scheme for building ensembles of sparse neural networks is shown to give better

generalization and higher test time accuracy for a given choice of memory usage.

Since the appearance of [33], `0-based iterative thresholding for neural networks has been

extended and improved upon by multiple other authors [68], [87]. Other related sparsity

regularizations and constraints have also shown similar benefits [87], [203]. Han et al. showed

that the use of sparsity in conjunction with other neural network compression techniques [67]

yields yet greater reductions in deploy-time parameter storage costs; they show compression

rates of 30 − 50× with even smaller or no reduction in the resulting network’s accuracy.

Compressing and reducing the computational costs of neural networks has received special
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attention from the Deep Learning community in the past three years. As these models grow

yet deeper and training datasets grow larger, attention to the practicalities of deploying and

running them is a necessary part of making Deep Learning useful.
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Chapter 6

Conclusion

The process of extending a Computer Vision model to include side information and ad-

ditional constraints is key to making these models useful. While a central body of image

understanding research focuses on the most general problems, such as image classification,

object detection, and semantic segmentation, applying the resulting work to specialized tasks

frequently requires taking the special structure of that task into account in the core model.

Real-world deployments of Artificial Intelligence will inevitably make use of additional avail-

able signals including tags, context, and user interaction. In Vision, systems leveraging the

full set of signals will advance significantly beyond what can be deduced from single images

in isolation.

Chapter 3 presented a model for the cosegmentation problem. It included an efficient,

GPU-parallelizable algorithm for the core optimization problem. Further, I proved theo-

retical optimality guarantees for a quasiconvex problem that used a histogram prior that

was invariant to the scale of the foreground object. The original work in [35] used then-

common features and Vision building blocks that were constructed by hand such as pixel

color distances, textons, and SIFT. There are a number of clear possible extensions to this

cosegmentation model and optimization scheme. Both employing more complex recent fea-

ture constructions and considering a more general class of related segmentation models could

yield new advantages and superior accuracy.
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One of more fundamental limitations to this model is that the histogram assignment

matrix, defined in (3.5), is assumed to be a linear operator in much of the later discus-

sion. Work such as [27] shows that it can be strongly advantageous, in identifying an object

against its background, to use more complex and non-linear global models of an object’s

appearance. Significantly similar algorithms could also be used, though, to optimize a coseg-

mentation model that uses a more general class of object appearance descriptors. In this

setting one would replace the product Hx with some nonlinear mapping H(x) that maps

the segmentation potentials to a descriptor vector. The normalized histogram

Hx

‖Hx‖
(6.1)

discussed in Section 3.4 indeed is also a nonlinear mapping that serves this function. More

complex descriptors, derived for instance from Deep Learning [208], have the potential to

produce much more accurate segmentation results with much less user interaction.

An arbitrary descriptor function would likely lead to a non-quasiconvex model, but a

number of ways to incorporate complex segmentation priors have empirically been shown

to produce good results [26], [157]. Since the Box-QP optimization described in Section 3.3

works only with derivatives of the objective, it could apply to any differentiable variant of

the problem in (3.6), and it would take the form:

min
xi,h̄

∑
i

xTi Lixi + λ‖H(xi)− h̄‖2
2

s.t. xi ∈ [0, 1]ni

x
(s)
i = m

(s)
i i = 1...m.

(6.2)

This will not yield a convex optimization problem if the choice of descriptor function H is not

itself convex. It is reasonable to expect this would converge on a reasonable segmentation,

though, if given the right choice of parameters for a box-constrained optimization. For

instance, a loss of optimality guarantees could be mitigated with an appropriate initialization,

such as independent segmentations of each image.

Additionally, in the intervening time since the work done in [34], solutions to the related

instance segmentation problem have advanced significantly. An instance segmentation solver
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can label the pixels in an image belonging to an object, or a set of objects, using only the

knowledge about that object class learned from a labelled training set. The recent Mask-

RCNN [71], for instance, shows an ability to segment objects belong to one of 80 classes

[121] with an Average Precision (AP), averaged over thresholds on the intersection over

union (IoU) ratio of the instance segmentations, of 37.1. This result does require a large

training set with detailed segmentation labels, in their case more than 400 000 captions on

over 80 000 images. This dataset is time-consuming and expensive to build, but after this

it requires zero additional input at test time. The conjunction of this sort of segmentation

with cosegmentation, though, could provide a balance between the two, as a smaller training

set may be needed for new objects if at test time additional seeds are given as a hint.

Cosegmentation also suggests a model that would significantly reduce the effort required

to build the training set for this kind of instance segmentation model. Using detailed ground-

truth segmentations to find the learned descriptor h, given a hypothetical powerful enough

feature construction to encompass the variation in a label class, the cosegmentation model

will eventually become sufficient alone to select out a reasonable segmentation. Even given

the histogram features used in this thesis, seen as in Figure 3.15, a powerful enough ap-

pearance model can be learned to segment instances of the same object in different poses.

Taken to the fullest extent, this points towards cosegmentation, with the sort of general and

fast optimization technique presented in Chapter 3, being a component of a few-shot [181]

procedure for learning segmentation models.

Chapter 4 described a scalable stochastic optimization approach for multi-view Spectral

Clustering with a convex regularizer. A useful feature of this approach is that at any given

step, the gradient is computed only for a subset of the examples—the direct consequence

being that, with an increase in the number of examples, the optimization can still make

progress without having to compute the full gradient at each step. That chapter provided a

detailed analysis of the clustering optimization’s convergence properties, which sheds light

on how adding a large number of processors in a distributed environment will affect its per-

formance. Finally, the chapter discussed how high-level priors can be easily leveraged within
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this framework. The highly scalable implementation provided by this work is particularly

useful in applications where one would want to effectively leverage such meta knowledge

within inference, which remains difficult in alternatives based on Nyström extension. My

empirical evaluations on several ML, vision, and synthetic datasets suggest that the model

is scalable and efficient, and matches the performance of other existing multi-view Spectral

Clustering models.

Machine Learning, as applied to the combination of images and text, has recently become

one of the most popular topics in Computer Vision research. One of the more exciting fields

is the prediction of relevant human-readable captions for an image [191], [202]. Starting with

the initial publication of a large dataset suitable for training more complex models [121],

the state of the art has advanced from an “M1 score,” defined as the portion of generated

captions that are evaluated as better than a human caption on the test set, of 0.166 [91]

to 0.273 [191]. These captions, however, are much more focused and involved than the

short tags and contextual text that frequently accompany images in the wild. Models that

work with both text and images as input for other tasks have also shown promising results

including using simple tags or highly unstructured text [171]. Tasks such as 3D semantic

parsing [98], object detection [204], and zero-shot classification [48] can leverage text as an

additional view to improve image and video understanding.

The work in [34] used one of the earliest useful feature embeddings from Deep Learning

[45] to build one of the clustering views. Advances in this field in Computer Vision have, in

the intervening time, produced models that are vastly superior to those available in 2014. In

addition, CNNs have been applied to the full range of possible inferences one can make from

an image, giving a vast array of specialized models that could each yield a feature to serve as

a “view” within the multi-view clustering framework. Models have also been trained, using a

triplet loss, to directly learn measures of distance and similarity on appropriately constructed

training sets [106], [161]. These learned distance measures give a manifold embedding for a

target task, meaning they are a type of distance that would be especially suited to spectral

clustering.
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Generalizing the procedure described in Chapter 4 also leads to a class of algorithms that

optimize non-smooth objectives when the feasible set is a manifold. As long as the manifold

allows for the kind of decomposition presented in this thesis, it is suitable for coordinate

descent methods. The generalization [80], [81], as applied to eigenvalue problems, can be

used to investigate population differences in brain connectivity data. Given the popularity

of manifold optimization for tasks such as cosegmentation [88], matrix completion [185],

and face recognition [79], allowing these techniques to scale to large problems is important.

Techniques such as stochastic gradient descent [13] and coordinate descent, as adapted to

these problems, provide one way to make their solvers fully scalable.

Building Deep Learning models that can be run in resource-constrained environments,

as considered in Chapter 5, has been a major focus of Machine Learning research in the past

few years. Work has appeared on ways to reduce the computation time [84], reduce the size

of parameters [28], and model architectures built specifically for mobile computing [77]. This

has been complemented by the construction of computing hardware designed specifically to

execute neural networks efficiently [89].

Some of the most efficient networks have been built by combining many different tech-

niques that all reduce the size and cost of inference. The work by Han et al. in [67] uses three

methods for reducing the necessary storage for parameters. These include reducing the vast

majority of the weights to zero using an iterative hard thresholding scheme, and perform-

ing inference with the resulting weights by representing them as a Compressed Sparse Row

(CSR) matrix. They further reduce the storage needed for the nonzero weights by quantizing

and compressing them. They first reduce the number of distinct weights that appear in the

network, as done in [59], by performing k-means clustering, replacing each weight with the

centroid of the resulting cluster to which it is assigned. Finally, they use Huffman coding to

reduce the total bits necessary to represent these quantized weights.

Work specifically on sparse neural networks has also expanded upon the ways to make the

networks more efficient. The work in [110] also enforces group sparsity, but where the groups

are over weights in the same spatial position. This eliminates the need to even use sparse
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matrices to perform the convolution, with the resulting loss of memory locality, and instead

reduces the elements necessary to construct the convolution as a matrix multiplication.

The work in [115] uses grouped sparsity, with groups given by the convolutional filters. The

connection between sparsifying the network and learning network architectures has also been

explored [194], where a sparsification of a larger network serves as the solution for searching

the space of smaller networks.

Reduced CNNs have been shown to be effective on the full range of Vision tasks, extending

the initial results on efficiency beyond classification. Results have been shown for object

detection [78], semantic segmentation [146], and on recurrent models [134]. Work on efficient

neural nets has also expanded beyond convolutional models and Computer Vision tasks,

including machine translation [162] and audio understanding [108].

All of these problem domains show rapid development of new ways to incorporate side

information and modify the underlying Machine Learning models. This type of work leads

to a unique class of design choices in the optimization formulations that drive most of the

work in the literature. Each extension to the models poses challenges in how to make the

optimization efficient, and in how to ensure a good solution is found. The work in this thesis

shows a number of key tools that can be used to produce efficient, distributed, and robust

Computer Vision and Machine Learning methods.
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Conference on Computer Vision (ECCV), Zürich, Switzerland, 2014. Springer, pp.
740–755.
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Curran Associates, Inc., pp. 1574–1582.
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