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Abstract 
Hydrology and climate strongly influence the distribution and abundance of living organisms. 

Hydroclimate variability on annual and seasonal timescales, and the occurrence of hydroclimate 

extremes, structure many biological systems, particularly those closely related to water. The 

indirect impacts of hydroclimate variability on biological responses, while complicated, can have 

pronounced impacts on public health. Two such responses include water quality and water related 

disease. In many regions variability in water quality and water related disease presents a notable 

challenge to water managers and public health officials who must allocate limited resources to 

manage uncertain outcomes. To adequately address the consequences of uncertainty in water 

availability (quality and quantity) on ecosystem and public health, officials are increasing 

demanding novel methods to manage water, and downstream impacts, in vulnerable regions. This 

dissertation explores the application of hydroclimatic processes and satellite remote sensing for 

the development of comprehensive sub-seasonal to seasonal forecasts and satellite-based 

monitoring systems to improve management, resource allocation, and public health related to lake 

water quality and water related disease. Four chapters are presented: Chapter one explores the 

development and assessment of a sub-seasonal and seasonal cyanobacteria forecasting system 

conditioned on local, global, and within-lake predictors for Lake Mendota, a small eutrophic lake 

in Madison, Wisconsin. Chapter two identifies relevant hydroclimate predictors and develops 

season-ahead forecasts for peak season harmful algae metrics in 178 lakes across the Northeast 

and Midwest U.S., illustrating the potential for implementation of skillful seasonal water quality 

forecasts at scale. Chapter three investigates the potential for satellite-based monitoring of harmful 

algae indicators on Lake Mendota, and chapter four pivots to understand how hydroclimate 

variables influence water-related disease in the Amazon basin, and how season-ahead forecasts of 

disease can be used to inform public health interventions. 



  1  

 

Chapter 1. Introduction 

 
Hydroclimatic variability has a significant impact on the function and management of many natural 

and human systems. In particular, increases in the intensity and frequency of hydroclimatic 

extremes related to climate change are likely to inflate hydroclimate-driven risks to human and 

ecosystem health (IPCC, 2012; Stevenson et al., 2022). In the United States, 2021 produced 20 

individual billion-dollar weather and climate events including severe storms, tropical cyclones, 

wildfires, droughts, and floods (NCEI, 2022). Beyond the immediate risks associated with such 

extremes, downstream effects are shown to influence extreme behavior in variables such as water 

quality (Carpenter et al., 2015, 2018; Sinha et al., 2017; Towler et al., 2010), and water-related 

disease (Craig et al., 1999; Sena et al., 2015; Teklehaimanot et al., 2004). Thus, understanding 

hydroclimatic variability is critical for the successful management of a wide array of hydroclimate-

driven risk factors. Advanced notice of extreme conditions can be highly advantageous for 

allocating resources to mitigate harm. However, for variables such as water quality and water-

related disease, gaps exist in the understanding of hydroclimatic influence, application of 

hydroclimate variables for prediction, and evaluation of predictions coupled with decision-models 

to prescribe early actions. 

 

For many waterbodies, hydroclimatic variability plays an important role in determining water 

quality on inter- and intra-annual timescales, and may influence the suitability of conditions for 

algae growth (León-Muñoz et al., 2018; Scordo et al., 2022). Harmful algae has become a 

prominent water quality concern in recent years as anthropogenic disturbance of nitrogen and 



 
 

2 

phosphorus cycles has resulted in widespread eutrophication, leading to an increase in the 

prevalence of algae in many waterbodies (O’Neil et al., 2012; Paerl & Paul, 2012; V. H. Smith, 

2003). In particular, the proliferation of algae in surface freshwaters has negative consequences 

for ecosystem function (Huisman et al., 2018; Sunda et al., 2006), economic opportunity (Dodds 

et al., 2009), and human health due to the potential for toxin production in some species, including 

cyanobacteria (Carmichael, 2001; Carmichael & Boyer, 2016). A wide array of physical, chemical, 

and biological processes influence algae biomass, however, the environmental signals from 

hydrology and climate information are often more stable than within lake processes over long time 

scales, potentially providing managers with important information on water quality conditions at 

seasonal lead times. Considerable progress has been made in the development of season-ahead 

forecasts to address water quantity management (e.g., Chiew et al., 2003; Delorit et al., 2017; 

Baker et al., 2019; Giuliani et al., 2019), however significantly less focus has been devoted to the 

application of season-ahead forecasts for water quality management. Longer-lead (months) pre-

season predictions of expected algae conditions may allow lake managers to address a different 

set of actions (e.g. life-guard training, public awareness, etc.) and decisions, (e.g., testing and 

monitoring budgets and plans) than short term predictions. 

 

Seasonal forecasts are also applicable to other water-related public health threats, including the 

spread of water-related disease. In particular, the use of hydroclimatic predictors to develop 

malaria early warning systems has received significant focus (L. R. Beck et al., 1994; Craig et al., 

1999; Midekisa et al., 2012; Sena et al., 2015; Wimberly et al., 2022). Seasonal forecasts provide 

management information at a timescale that is effective for budgeting and allocation of resources, 

however, the use of malaria early warning systems to implement optimal early action thresholds 
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for disease reduction has received relatively less attention. Exploration of forecast based early 

action with regard to water-related disease may reduce morbidity, mortality, and reduce costs for 

relief organizations, and may help promote forecast uptake by management agencies. 

 

Combining seasonal forecasts with short term (day to weeks) monitoring strategies provides 

managers with a suite of tools that can be used to take actions at several timescales. Due to the 

cost-effectiveness and temporal consistency of satellite image data, remote sensing has become a 

powerful tool for water quality monitoring in particular (Yan et al., 2018). In remote sensing, 

chlorophyll-a and phycocyanin are often used as surrogates for cyanobacteria abundance, 

chlorophyll-a representing all phytoplankton and phycocyanin being characteristic of 

cyanobacteria (Dekker, 1993). Both chlorophyll-a and phycocyanin may be useful from a 

management perspective. Stumpf et al., (2016), found both chlorophyll-a and phycocyanin to be 

useful in retrieval of cyanobacterial toxins. Additionally, the ability to discriminate between 

cyanobacteria and other algae species during a bloom event may allow water managers to make 

informed decisions about closing beaches or communicating water quality information to the 

public. 

 

In this dissertation, I broadly address the theme of how hydroclimate and remotely sensed 

information can be integrated into decision-making tools to better anticipate and manage extreme 

biological outcomes in water resources systems. Development of novel tools to address biological 

outcomes occurring downstream of hydroclimate variability is an important piece of managing 

public and ecosystem health under increasing climate uncertainty. The specific objectives of this 

research theme are to: 
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1) Develop and assess targeted season-ahead forecasts of biological outcomes conditioned on 

hydroclimate variables for use in management of water quality and water-related disease. 

2) Explore the ability of satellite remote sensing to retrieve water quality metrics and 

differentiate between harmful algae indicators to improve monitoring capabilities. 

These objectives are evaluated by addressing the following set of questions: 

• Can hydroclimate information be used to skillfully predict harmful algae outcomes and 

beach closings at seasonal lead times in small inland lakes? (Chapter 2) 

• Are hydroclimate-based seasonal harmful algae forecasts transferable to other lakes at 

scale, and what lake characteristics are associated with skillful models (Chapter 3)? 

• Can satellite imagery and machine learning methods improve monitoring and 

discrimination of algae on a small inland lake (Chapter 4)? 

• Can hydroclimate information be used to skillfully predict dengue virus incidence, and if 

so, in what scenarios is hydroclimate information useful (Chapter 5)?  

 

Addressing these research questions also provides insight into relationships between global 

atmospheric and oceanic systems, local hydroclimatic conditions, and ecosystem function as they 

relate to biological outcomes of concern. Research objectives are largely pursued using two case 

studies: Lake Mendota, in Madison, WI, USA and four cities across Colombia including Cali, 

Medellin, Cucuta, and Leticia. These locations are both data rich and are the focus of active public 

health management efforts. I introduce these case studies and further motivation in the following 

two sections. 
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1.1 Study Background: Lake Mendota, WI 
Located in Madison, Wisconsin, Lake Mendota’s 596-square kilometer watershed is highly 

urbanized (21%) and agricultural (53%) (Betz & Genskow, 2012) (Figure 1). Municipal 

wastewater discharge fueled eutrophication in Lake Mendota from the 1940’s-1970’s, however, in 

recent years urban and agricultural development in the Mendota watershed has maintained the 

state of high productivity in the lake (R C Lathrop et al., 1998; Richard C Lathrop, 2007). In recent 

decades, cyanobacteria blooms have become a common summertime phenomenon (Brock, 1985; 

Lathrop and Carpenter, 1992, Lathrop et al., 1998). In Lake Mendota, cyanobacteria biomass is 

generally most apparent from June-August (Figure 2), with elevated levels typically observable in 

July and August.  

 
Figure 1-1. Lake Mendota and the Mendota watershed with select beaches, USGS gages and the 
North Temperate Lakes Long Term Ecological Research (NTL-LTER) data buoy indicated 
(Basemap: Carto, Watershed: WI DNR 2020, Lake: City of Madison 2019) 
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Figure 1-2. June, July, and August average cyanobacteria biomass at the LTER buoy in Lake 
Mendota (1995-2017). Aggregated from composite samples 0 – 8 meters of depth.  

Numerous large-scale climate phenomena influence climate conditions in the upper Midwestern 

US, however one of the most prominent teleconnection patterns affecting precipitation and 

temperature is the El Niño Southern Oscillation (ENSO) (Ropelewski & Halpert, 1987). ENSO’s 

influence globally is widely studied and generally understood, acting independently or interacting 

with other large-scale climate phenomena such as the Pacific Decadal Oscillation (Kahya & 

Dracup, 1993; Shabbar & Skinner, 2004). The state of these climate phenomena and the 

atmospheric-oceanic system is an important factor in local climate variability, and therefore 

regulate many processes important to cyanobacteria growth (Justić et al., 2005; M. Zhang et al., 

2012). 

 

Lake Mendota is an ideal candidate for the development and assessment of season-ahead forecasts 

and remote sensing methods for water quality monitoring. Mendota is often labeled as one of the 

most studied lakes in the world (Aoki, 1989; Brezonik & Lee, 1968; Konopka & Brock, 1978; 
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Lathrop, 2007) and is included in the National Science Foundation’s North Temperate Lakes - 

Long-Term Ecological Research (LTER) network and has a wealth of high-quality, long-term 

ecological data (Magnuson et al., 2022). Rich water quality datasets allow for robust evaluation of 

the connectedness between hydroclimatic processes and cyanobacteria growth, and the efficacy of 

satellite remote sensing for retrieval of harmful algae indicators.  

 

1.2 Study Background: Colombia 
Four cities in Colombia are chosen as study sites for the development of season-ahead dengue 

forecasts: Cali, Medellin, Cucuta, and Leticia (Figure 3). Dengue has spread significantly since its 

re-emergence in Latin America, with cases rising rapidly since the 1980’s (Lenharo, 2023).  

Colombia in particular is experiencing a resurgence of vector-borne diseases, and has been 

identified as an emerging disease hotspot (Jones et al., 2008). Colombia has recognized dengue 

virus as a significant public health threat since the 1950’s. The suspension of vector control 

campaigns targeting Aedes mosquitos in 1970 led to a resurgence of dengue infections that persists 

today (Gutierrez-Barbosa et al., 2020). The majority of cases come from the urban areas of 

Colombia, driven in part by high population density and water infrastructure that may act as 

breeding sites for Aedes aegypti (Villar et al., 2015). Dengue virus is considered hyperendemic in 

Colombia, due to the co-circulation of all four dengue virus serotypes.  
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Figure 1-3. Average monthly dengue virus incidence per 100,000 population (i.e., climatology, 
left) and study site locations (right). 

Significant portions of the country are favorable to transmission of vector-borne disease (Cabrera 

& Selvaraj, 2020) and variability in topography, hydrology, and climate across Colombia 

contributes to significant temporal and spatial variability in dengue transmission. A long-running 

dengue surveillance effort exists in Colombia, run by the National Public Health Surveillance 

System (SIVIGILA), under the National Institutes of Health of Colombia (INS). Case counts are 

reported by clinics and hospitals to insurance agencies and regional health authorities, which are 

then sent to INS for consolidation. These factors make the region a suitable study site for the 

investigation of hydroclimate-vector relationships and the development of dengue forecasts.  

Season – ahead forecasts aim to provide public health officials with information at longer lead 

times to aid in decision-making regarding activating public health interventions. While a dengue 

vaccine (Dengvaxia) is newly available in the region, traditional dengue prevention measures, 

including use of larvicide, insecticide, and personal mosquito bite prevention measures, remain a 

viable and cost-effective option to reduce dengue incidence (Claypool et al., 2021; Ocampo et 

al., 2014; Sepulveda & Vasilieva, 2016). These interventions may benefit from advanced notice 

of increased dengue risk at seasonal leads. 
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Chapter 2. Development of a seasonal to sub-seasonal cyanobacteria biomass 
forecast system for Lake Mendota, WI 

Part A. A Season-ahead Cyanobacteria and Beach Closing Forecast 
Adapted from: Beal, M. R. W., O’Reilly, B. E., Soley, C. K., Hietpas, K. R., & Block, P. J. (2022). 

Variability of summer cyanobacteria abundance: can season-ahead forecasts improve beach 

management? Lake and Reservoir Management, 1-16. DOI: 10.1080/10402381.2022.2084799 

2.A.1 Introduction 
Cyanobacteria represent some of the most ancient microorganisms on Earth, having appeared 

roughly 2.7 billion years ago (Schirrmeister et al., 2013). In recent decades, accelerated nutrient 

input and widespread land cover change have resulted in a rapid expansion of harmful 

cyanobacteria in our coastal waters and inland lakes (Taranu et al., 2015). Cyanobacteria are 

photosynthetic bacteria that thrive in eutrophic waterbodies characterized by large influxes of 

nutrients. Cyanobacteria can form mats known as harmful algal blooms (HABs) triggering concern 

from health officials and water managers given their widely identified negative ecological, 

aesthetic, and socioeconomic implications (Dodds et al., 2009; Huisman et al., 2018; Paerl, 2017). 

Importantly, common species of cyanobacteria (e.g. Microcystis) produce hepato- and 

neurotoxins, threatening waterbodies used for recreation and drinking water (Taranu et al., 2012; 

Timothy T Wynne & Stumpf, 2015). The negative impacts of HABs have received notable 

attention in larger waterbodies, such as Lake Erie. In 2014 Toledo, Ohio was forced to issue a ‘do 

not drink’ advisory due to dangerous concentrations of cyanobacteria produced toxins in the public 

water supply (Bullerjahn et al., 2016).  Widespread eutrophication, climate change, and an 

established relationship between algal biomass and nutrient input suggest that cyanobacteria pose 

a significant threat to small inland lakes, which have so far received less attention (Huisman et al., 

2018; Paerl & Huisman, 2008; V. H. Smith, 2003). 

https://doi.org/10.1080/10402381.2022.2084799
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Many meteorological, chemical, and biological variables influence cyanobacteria abundance, 

creating a complex, dynamic ecosystem (Hamilton et al., 2016; C A Stow et al., 1997). 

Additionally, each cyanobacteria community has its own unique characteristics, further 

complicating the understanding of how concurrent drivers collectively impact cyanobacteria 

population in a lake (P A Soranno et al., 1997; Taranu et al., 2012). For species commonly found 

in eutrophic dimictic lakes, key factors influencing overall abundance include temperature, water 

column stability, wind, nutrient availability, precipitation, atmospheric pressure, light 

transparency, and predatory grazing (Ostfeld et al., 2015; Paerl, 1988; P A Soranno et al., 1997; 

Taranu et al., 2012). Cyanobacteria abundance expresses notable intra-seasonal variability, 

typically peaking during the summer season, and inter-annual variability (Richard C Lathrop & 

Carpenter, 1992). Lake and beach managers, however, often have limited access to information 

indicating the expected intensity of cyanobacteria abundance ahead of the peak season for 

cyanobacteria productivity. Reactive management operations, in such cases, are used in 

determining recreational safety and beach closures. Advanced notice of increased cyanobacteria 

abundance may allow lake and beach managers to alter cyanotoxin testing routines, train and 

inform lifeguards to watch for dangerous algae conditions, and launch public awareness campaigns 

before the high-risk season. Seasonal forecasts are intended to work in concert with shorter-term 

forecasts (days to weeks), providing managers with information at several timescales. Providing 

decision-makers with information on cyanobacteria conditions ahead of the high-risk season aims 

to extend an existing system of forecasts to improve overall management of cyanobacteria. 
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In recent decades, season-ahead forecasts have become a focus of research in many fields, with 

significant effort put towards predicting average or extreme precipitation, discharge, and 

temperature to inform operations in agriculture and reservoir management (Hansen et al., 2011; 

Wood et al., 2005). Forecasts at this scale typically aim to provide information characterizing the 

upcoming season, not a prescription of when events will occur. Many important management 

decisions fall into the gap between short-term and long-term forecasts. The development of 

forecasting systems at monthly and seasonal timescales can strengthen disaster preparedness by 

informing long-term contingency plans and activating short-term early warning systems (Vitart et 

al., 2012). In contrast to water quantity, relatively little attention has been devoted to season-ahead 

prediction of water quality. 

 

Currently, several short-term cyanobacteria forecasts are available through entities such as the 

National Oceanic and Atmospheric Administration (NOAA) for the purpose of beach management 

(Kavanaugh et al., 2013). Forecasts are issued up to 5 days out, based on local meteorological 

conditions and high-resolution satellite imagery. A review of forecast and predictive models for 

cyanobacteria blooms found that most existing models operate on forecast horizons of less than 

one week, with very few extending beyond 30 days (Rousso et al., 2020). Existing season-ahead 

forecasts of cyanobacteria abundance have been developed with a focus on spring phosphorus 

loads (e.g., by NOAA Great Lakes Environmental Research Laboratory) primarily to determine 

necessary nutrient reductions for targeted local management plans (Obenour et al., 2014; C A Stow 

et al., 1997). Phosphorus is generally accepted as the limiting nutrient for cyanobacteria growth in 

freshwater systems and has received significant attention in seasonal forecasting due to the 

importance of phosphorus management in many watersheds (Downing et al., 2001; R C Lathrop 
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et al., 1998; David W Schindler, 1977; V. H. Smith, 2003). The abundance of cyanobacteria, 

however, is controlled by the dynamic state and reactions of many physical, chemical, and 

biological variables during both the prior and concurrent seasons creating a complex array of 

ecosystem processes (Ostfeld et al., 2015; B. Zhu et al., 2019). Phosphorus is widely accepted as 

a driver of cyanobacteria productivity, and strong correlations between phosphorus load and 

cyanobacteria biomass have been demonstrated (R C Lathrop et al., 1998; V. H. Smith, 1985; C A 

Stow et al., 1997).  Local hydroclimatic processes, such as extreme rain events and river discharge, 

may influence phosphorus loading during the spring (Carpenter et al., 2018). Spring and summer 

temperatures may also control cyanobacteria productivity through direct effects on photosynthetic 

capacity, influencing competition with other photosynthetic organisms (Taranu et al., 2012). 

Therefore, consideration of season-ahead, local and large-scale hydroclimatic drivers may have 

potential to improve the skill of season-ahead cyanobacteria forecasts. 

 
The application of season-ahead forecasts to beach management allows for the investigation of 

season-ahead, non-anthropogenic drivers of cyanobacteria abundance. Incorporation of 

hydroclimatic (e.g., non-manageable) variables may allow for skillful forecasts of cyanobacteria 

abundance at seasonal timescales. The focus of this chapter is to build and assess the skill of 

season-ahead cyanobacteria abundance forecasts conditioned on local and global scale 

hydroclimatic predictors, and the subsequent ability of seasonal forecasts to predict beach closings.  

2.A.1.2 Study Site 
 
With the University of Wisconsin-Madison on its southern shore, Lake Mendota in Madison, 

Wisconsin (Figure 1-1) is one of the most studied ecosystems on the planet (Stephen R Carpenter 

et al., 2006; Richard C Lathrop, 2007). The lake covers roughly 40 km2 and is the first of four 
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lakes in the Yahara River basin. The 596 km2 Mendota watershed is 21% urban and 53% 

agricultural (Betz & Genskow, 2012). Mendota has a long history of eutrophication dating back to 

the 1940s, although anecdotal evidence of cyanobacteria blooms can be found as early as the 1880s 

(Richard C Lathrop, 2007). From the 1940s until the 1970s, high nutrient concentrations were 

fueled by municipal wastewater discharge, however, Lake Mendota remains highly eutrophic to 

this day due to agricultural and urban development (R C Lathrop et al., 1998).  

 

Today, most nutrient conveyance is the result of manure application in the upper part of the Yahara 

watershed (Betz & Genskow, 2012). Nutrient concentrations have been the focus of multiple 

cyanobacteria prediction models on Lake Mendota. An existing prediction model, developed by 

Stow et al. (1997) applied spring center-of-lake phosphorus to predict summertime cyanobacteria 

biovolume, with some success. Additionally, Lake Mendota was included in a Bayesian network 

model developed to assess the influence of short-term (1-2 weeks) nutrient concentrations 

(nitrogen and phosphorus) and climatic variables (air temperature, sunlight, and wind speed) on 

the probability of cyanobacteria blooms (Rigosi et al., 2015). To build on these efforts, the forecast 

presented here investigates the influence of local and global hydrologic and climatic drivers of 

cyanobacteria biomass at a seasonal timescale and creates a tool for proactive lake and beach 

management. This forecast works in concert with a sub-seasonal forecasting model for July-

August cyanobacteria abundance, developed by Beal et al. (2021). Cyanobacteria prediction 

modeling at both the seasonal and sub-seasonal time scale allows for the consideration of both pre-

season (March-May) and within-season (June) drivers of productivity and provides lake managers 

with two opportunities to adjust management strategies before cyanobacteria abundances peak for 

the summer. As a cornerstone of the Madison community, millions of dollars have been invested 
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in water quality monitoring offering a uniquely rich data set. Mendota is therefore well-suited as 

a test case for the development, evaluation, and implementation of a season-ahead cyanobacteria 

forecasting system. Water quality data is available through the Northern Temperate Lakes – Long 

Term Ecologic Research (NTL-LTER) database (Magnuson et al., 2022), and beach-closing data 

is available by request from the Madison-Dane County Public Health department (PHMDC, 2020). 

Cyanobacteria abundance and associated beach closings typically peak across the June – August 

(JJA) summer season, with the greatest abundances typically occurring between July and August. 

The forecast developed here addresses average summertime (June-August) cyanobacteria biomass 

to inform lake and beach management decisions at the beginning of the peak season for 

cyanobacteria productivity (Figure 2A-1).   

 

Figure 2A-1. June-August (JJA) average cyanobacteria biomass for 1995-2018 measured at the 
NTL-LTER buoy in Lake Mendota (see Fig. 1 for location). Aggregated from composite samples 
0-8m of depth, taken at the deepest point in Lake Mendota. 
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2.A.2 Materials and Methods 
Forecasting models for July-August cyanobacteria biomass and beach closings are built and 

validated from 1995 to 2018 (24 years) and 2005 to 2020 (16 years) respectively. In the following 

Local scale and Global scale sections a literature review is conducted to identify potential pre-

season drivers of summertime cyanobacteria abundance. Predictors should be based on readily 

available preseason (March-May, MAM) observations to facilitate real-time predictions and must 

be significantly correlated (95% confidence level) with June-August (JJA) cyanobacteria biomass 

and beach closings. Model construction describes a principal component regression modelling 

approach, and metrics to quantify model skill are defined in Model Performance Metrics.  

 

Phytoplankton samples are taken in Lake Mendota using a tube sampler in the deep hole region of 

the lake. Samples are collected as a composite whole water sample from 0 – 8m of depth. 

Phytoplankton biovolume is measured by PhycoTech, inc. (Magnuson et al., 2022). To compute 

biomass, biovolume was initially calculated for each species by multiplying the average cell 

volume for the geometric solid by the cell density in the water sample and then converting mm3/mL 

of biovolume to mg/L of biomass. To describe seasonal beach closings, two separate metrics were 

developed: beach days closed (number of days a beach is closed during a single JJA season due to 

cyanobacteria, Figure 2A-2), and beach periods closed (number of periods a beach is closed during 

a single JJA season, defined as one or more consecutive days closed, Figure 2A-3). Together, these 

two metrics better define the distribution of beach closings across the season by detailing the total 

number of days closed and how those days are grouped throughout the season.  The suite of 

potential predictors includes persistent large-scale climate variables and local spring drivers of 

cyanobacteria. Similar predictors were assessed for the cyanobacteria biomass model and beach 

closing model, however, both models were not required to retain the same set of predictors. 
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Expanding the suite of predictors beyond springtime phosphorus allows for evaluation against a 

previous season-ahead prediction cyanobacteria prediction model on Lake Mendota developed by 

Stow et al. (1997). 

 

Figure 2A-2. June-August (JJA) beach days closed due to cyanobacteria abundance (data 
courtesy of Madison-Dane County Public Health) for 2005-2020. 
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Figure 2A-3. June-August (JJA) beach periods closed due to cyanobacteria abundance (data 
courtesy of Madison-Dane County Public Health) for 2005-2020. 

 

2.A.2.1 Local scale 
 
Prospective local-scale spring drivers include residual (legacy) and external phosphorus loadings 

and meteorological variables, such as temperature and precipitation. Phosphorus is recognized as 

the driving nutrient for primary production in many lake ecosystems (Bennett et al. 1999, Paerl 

2017), and the relationship between algal biomass and total phosphorus in the growing season is 

well established (V. H. Smith, 1982; Vollenweider, 1971). Specifically, existing prediction models 

for Lake Mendota have illustrated the predictive power of spring phosphorus concentrations on 

summer algae abundance (R C Lathrop et al., 1998; C A Stow et al., 1997). Spring phosphorus 

concentrations have also been used to predict algae abundance in other temperate waterbodies 

(Dillon & Rigler, 1974; Obenour et al., 2014; Stumpf et al., 2012; Stumpf, Johnson, et al., 2016) 
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Additionally, researchers have noted the influence of meteorological variables on cyanobacteria 

abundance, including springtime temperature and precipitation (Paerl & Huisman, 2008; 

Reichwaldt & Ghadouani, 2012; Craig A Stow et al., 2015). 

 

Numerous studies have demonstrated that phosphorus and nitrogen are major limiting nutrients for 

algal growth in inland lake ecosystems (Carey et al., 2012; Edmondson & Lehman, 1981; Paerl, 

2017), thus springtime phosphorus and nitrogen loads were evaluated as potential predictors of 

summertime cyanobacteria abundance. Precipitation and discharge during the spring season are 

thought to impact cyanobacteria abundance through the conveyance of nutrients from the 

watershed. Large precipitation events can flush high concentrations of nutrients into lakes, 

spurring algae growth (Stephen R Carpenter et al., 2018; Schueler, 1987). Higher intensity storms 

increase discharge, which tend to transfer higher concentrations of nutrients than lower intensity 

storms and their associated flows (Reichwaldt & Ghadouani, 2012).The intensity and frequency 

of springtime precipitation events affect the discharge loading concentration, distribution, and 

residence time of phosphorus within a lake, and further influence the overall availability of 

nutrients to cyanobacteria in the summer season (Paerl & Otten, 2016; Reichwaldt & Ghadouani, 

2012; Craig A Stow et al., 2015). Therefore, total precipitation, extreme precipitation events (>40 

mm/day) and discharge from March-May were considered as potential predictors of summertime 

cyanobacteria abundance. While total precipitation and number of extreme events are similar 

predictors, they represent distinct hydrologic phenomena. Total precipitation may better represent 

moisture conditions in the watershed compared to extreme precipitation which may lead to large 

runoff and nutrient loading events. Precipitation data are taken from the Midwest Regional Climate 
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Center and phosphorus and discharge data are taken from the United States Geological Survey 

(USGS gages 05427718 and 05427850) (Survey, 2021a, 2021b; Wuertz et al., 2018). 

2.A.2.2 Global scale 
Large-scale atmospheric-oceanic climate variables may influence local cyanobacteria abundance 

through atmospheric teleconnections, which influence meteorological conditions over the 

watershed from year-to-year. Global sea-surface temperatures (SST) and sea level pressures (SLP) 

are representative of these teleconnections and are well-established as drivers of precipitation and 

temperature on seasonal timescales by altering atmospheric flow (Markowski & North, 2003; 

Trenberth & Caron, 2000). Therefore, regions of SSTs and SLPs are examined as potential 

predictors. The El Niño Southern Oscillation (ENSO), an anomalous warming or cooling of SST 

in the equatorial Pacific Ocean, is perhaps the most well-known and studied oceanic-atmospheric 

climate phenomena with global impacts (Ropelewski & Halpert, 1986, 1987; Sarachik & Cane, 

2010). In the upper Midwest ENSO is associated with warmer and drier winters during El Nino 

phases (Center, 2016; Impacts, 2011; Legler et al., 1999; S. R. Smith et al., 1999), contributing to 

lower antecedent soil moisture conditions. Although the summertime influence of ENSO in the 

Midwest is less pronounced, early summer months have been characterized as cooler and wetter 

than normal in El Nino years establishing conditions for higher runoff and nutrient transport 

potential. Both global and ENSO-related SST predictors were therefore considered as predictors 

and were identified using gridded correlation maps. SST data is retrieved from the NCEP/NCAR 

reanalysis (NCEP, 1994). In addition to selecting regions that meet the 95% statistical significance 

level requirement, distinct teleconnections between oceanic-atmospheric regions and the upper 

Midwest U.S. must also exist. SSTs are particularly advantageous from a prediction perspective 
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as they fluctuate slowly over time, often allowing anomalies to persist across seasons. Similarly, 

sea level pressure is also evaluated globally. 

2.A.2.3 Model Construction 
A principal component analysis (PCA) and regression modeling approach was selected to predict 

cyanobacteria abundance and beach closings.  PCA decomposes a space-time random field – all 

potential season-ahead predictors in this case – and produces a set of orthogonal time patterns that 

include the dominant signals, or principal components (PCs), stemming from the original set of 

predictors (Block et al., 2009; Von Storch & Zwiers, 2002). Additionally, PCA efficiently accounts 

for multi-collinearity that may be present in the predictors, a common problem in linear regression.  

Typically, the first few PCs explain the majority of variance in the data.  Kaiser’s Rule was 

adopted, which specifies retaining all PCs with eigenvalues greater than one (Kaiser, 1960). The 

retained PCs are then applied as predictors in a multiple linear regression model to predict JJA 

average cyanobacteria biomass and beach closings (independently).  Leave-one-out cross-

validation was applied for a hindcast assessment across 1995-2017 to evaluate model skill. This 

PCA leave-one-out cross-validation model takes the general form of Equation 1, where αi is a 

fitted value, 𝑃𝐶𝑗! represents the j-th principal component calculated with the i-th year dropped, 

and βji is the fitted coefficient for the j-th principal component, and 𝑌%! represents the predicted 

value for the i-th year.  To account for uncertainty, random deviates from the standard deviation 

of the prediction error are added to the model (median) prediction (Helsel & Hirsch, 1992).  

(1)   𝑌%! = 𝛼! + 𝛽1!𝑃𝐶1! 	+ 𝛽2!𝑃𝐶2! …+ 𝛽𝑗!𝑃𝐶𝑗! 
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2.A.2.4 Model Performance Measures 
To assess model performance, model results were compared with observations of cyanobacteria 

biomass and beach closings using three performance measures: Heidke Skill Score (HSS), Ranked 

Probability Skill Score (RPSS), and a Hit-Miss Matrix. Pearson and Spearman correlation 

coefficients, Forecast Bias, and False Alarm Ratio (FAR) were also calculated for the 

cyanobacteria biomass forecast.  Forecast bias is the ratio of how often a specific category is 

forecasted to how often the specific category is observed with a value equal to one indicating an 

unbiased forecast and values greater than and less than one indicating over-forecasting and under-

forecasting, respectively (Dee & Da Silva, 1998). FAR is a simple ratio of the number of non-

occurrence forecasts of a specific category and the total number of times the specific category is 

forecasted. Values for this metric range from 0 to 1, where 0 indicates a perfect score (Schaefer, 

1990). 

 

Both HSS (Equation 1) and RPSS (Equation 2) report the model’s ability to predict categorical 

outputs (e.g. high vs. low) compared to a reference forecast, typically based on observed data 

(climatology). For hydro-climate prediction, a three-category division is often adopted, with the 

reference forecast based on equal probability of categories (33% each) (Alexander et al., 2019; 

Block et al., 2009; Lala et al., 2020). Here, the reference forecast is split into three categories of 

equal probability (33% each), representing below normal (0 - 2.18 mg/L), near normal (2.18 - 4.07 

mg/L), and above normal (4.07+ mg/L) cyanobacteria conditions, denoted as [B N A].  For beach 

days closed and beach periods closed, a two-category division with normal (x(i)≤ mean(closed)) 

and above normal (x(i)> mean(closed)) was adopted and denoted as [N A], where x represents the 

observed number of beach days closed in the i-th year. The observational probabilities of each 

category are not equal in this case and are unique to each beach location. 
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The HSS takes the general form of Equation 2, which describes forecast skill in terms of i, j= [B 

N A].  The joint distribution of forecasts and observations is described by P(Fi, Oj) while the 

marginal distributions of forecasts and observations are described by P(Fi) and P(Oj), respectively 

(Wilks 2011).  HSS values range from -∞ to 1, where 0 represents no improvement over the 

reference forecast (climatology) and 1 represents a perfect forecast. 

(2)   HSS= 
∑ #(%!,'")		*	! ∑ #(%!)#('!)!

+	–	∑ #(%!)#('!)!
  

The RPSS measures forecast skill by accounting for the magnitude of error in the forecast, 

differentiating from HSS (Wilks 2011). For example, in the case of a [B N A] category forecast, 

if the above normal category is observed, RPSS would penalize a forecast that predicts below 

normal conditions more than a forecast that predicts near normal conditions.  First, the ranked 

probability score (RPS) is calculated according to Equation 3: 

(3)   𝑅𝑃𝑆= +
-#$%*+

∑ (𝑃𝑐𝑢𝑚𝑓𝑐𝑡!#$% − 𝑃𝑐𝑢𝑚𝑜𝑏𝑠!#$%
-#$%
!#$% ). 

where ncat is the number of forecast categories and icat is the category number. Pcumfcticat and 

Pcumobsicat are the cumulative probability vectors of the forecast and observation, respectively, for 

the specific category of interest. RPSS then compares the RPS of the forecast, RPSfct, to the RPS 

of climatology, RPSclim, using Equation 4: 

(4)   RPSS=1 − /#0&#%
/#0#'!(

 

As with HSS, RPSS values range from -∞ to 1, where 0 represents no skill and 1 represents a 

perfect forecast. 
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2.A.3 Results 

2.A.3.1 Cyanobacteria Biomass Model 
As previously detailed, both local and global scale variables are considered as potential predictors 

for JJA average cyanobacteria biomass. Local scale predictor variables meeting the established 

criteria include March - May phosphorus loadings and discharge from the Yahara River at the 

mouth of Lake Mendota, total April precipitation, and precipitation events exceeding 40 mm per 

day from the Madison-Dane County regional airport (Table 2A-1).  

Table 2A-1. Pearson and Spearman correlation coefficients between June-August (JJA) average 
cyanobacteria biomass and March-May (MAM) potential predictor variables (1995-1996, 1998-
2017); asterisks indicate statistical significance at the 95% level (1 = 1995-2002 interpolated 
from upstream USGS station 05427718 2 = 1995-2008 interpolated from upstream USGS station 
05427718)   

Cyanobacteria Biomass Predictors Pearson Spearman 

MAM Precipitation Events > 40mm per day (MRCC) 0.58* 0.56* 

April Total Precipitation (MRCC) 0.46* 0.44* 

MAM Avg. Discharge (USGS Station 05427850)1 0.42* 0.39 

MAM Avg. SST in Equatorial Pacific (NOAA) -0.44* -0.45* 

MAM Avg. External Phosphorus Load (USGS Station 
05427850)2 

0.38 0.48* 

 

SST in the equatorial Pacific Ocean correlate strongly with Mendota’s summertime (JJA) 

cyanobacteria biomass (Figure 2A-4), a region typically associated with ENSO. Xiao et al. (2019) 

found evidence for synchronization between phytoplankton dynamics and ENSO in northern 

Wisconsin lakes, suggesting that ENSO has some influence on local climatic conditions. Although 

other oceanic regions of statistically significant correlation between SST and summertime 

cyanobacteria abundance exist (Figure 2A-4), teleconnections between these regions and the upper 
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Midwest are not overly apparent, therefore the selection of SST is restricted to the equatorial 

Pacific Ocean. 

 

Figure 2A-4. Correlation map of March-May (MAM) average SSTs and July-August (JJA) 
average cyanobacteria biomass; MAM average SSTs in the red box (190W-120W, 0-20S) are 
selected as a potential predictor. 

 
Although phosphorus load meets the inclusion criteria for model development (correlation at the 

95% confidence level), higher forecast skill is achieved without including phosphorus in the final 

suite of predictors. Thus, the final suite of season-ahead (March-May) predictors includes average 

discharge, the number of extreme precipitation events, total April precipitation, and average SST 

in the equatorial Pacific Ocean.  According to Kaiser’s Rule, only the first PC, explaining 

approximately 45% of the variance, is retained for inclusion in the prediction model. A cross-

validated hindcast produces a Pearson correlation coefficient of 0.62 between median model 
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outputs and observed cyanobacteria biomass, indicating moderate predictive skill (Figure 2A-5). 

This marks an improvement on previous Lake Mendota models. For example, the model developed 

by Stow et al. (1997) using spring center-of-lake phosphorous as a predictor of summertime 

cyanobacteria – with the addition of data from 1995 - 2017– has a cross validated Pearson 

correlation coefficient of 0.46.   

 

Figure 2A-5. Time-series of June-August (JJA) average cyanobacteria biomass observations 
(red line) and predictions (boxes); categories separated by solid black lines. Composite 
phytoplankton samples 0-8m of depth (Magnuson et al., 2022). 

 

The RPSS and HSS values based on categories of equal probability are 0.60 and 0.38, respectively, 

indicating improvement over climatology, and model ability to generally shift toward the 

appropriate category. The Hit-Miss matrix (Table 2A-2) based on the [B N A] categorical divisions 

demonstrates high agreement, however, there is a slight propensity toward predicting near normal 

conditions when above and below normal conditions are observed. Additionally, the Hit-Miss 

matrix (Table 2A-2), FAR and Forecast Bias (Table 2A-3) all suggest that the model is slightly 
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biased towards the near normal category. The model’s ability to skillfully predict the above normal 

category – when cyanobacteria is most abundant and managers most concerned – is highly 

advantageous, however, the cyanobacteria peaks in 2008 and 2017 are clearly under predicted. 

Both underpredictions may be related to the distribution of precipitation throughout the spring. 

While both 2008 and 2017 had high overall precipitation, many days did not actually surpass the 

40mm per day threshold and were thus not counted. Additionally, cyanobacteria biomass is 

substantially over predicted in 2009 and 2013 even though the model average prediction is still in 

the appropriate category. Both years saw a relatively high number of extreme precipitation events 

and increased streamflow. Furthermore, a limitation of the hydro-climatic forecasting approach 

for water quality variables is the difficulty in capturing food web dynamics, which play a 

significant role in structuring cyanobacteria communities in Lake Mendota (Kasprzak & Lathrop, 

1997; Walsh et al., 2017). Shifts in food web dynamics may have an influence on summertime 

cyanobacteria abundance that is not captured in the model. 

 

Table 2A-2 Hit-Miss Matrix for categorical June-August (JJA) average cyanobacteria biomass 
prediction and observations. (B = Below Normal, N = Normal, A = Above Normal). 

  Forecast 
  B N A 

O
bs

er
ve

d  B 5 3 0 
N 2 4 2 

A 0 3  5 
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Table 2A-3. Forecast bias and false alarm ratios for categorical JJA average cyanobacteria 
biomass predictions. (B = Below Normal, N = Normal, A = Above Normal). 

Category Forecast Bias False Alarm Ratio 
(FAR) 

B 0.88 0.29 
N 1.25 0.6 
A 0.88 0.29 

 

2.A.3.2 Beach Closings 
 
Categorical forecast models for beach days closed and periods closed are developed for three 

beaches located along the eastern side of Lake Mendota (Fig. 1).  Selected season-ahead predictors 

mirror those included in the cyanobacteria biomass model, including average discharge, P loading, 

the number of extreme precipitation events, and Pacific Ocean SST, however,  positive correlations 

between number of days or periods closed and average discharge and extreme precipitation events 

were the only significant correlations at any of the beaches (Table 2A-4). As with the cyanobacteria 

biomass model, only the first PC is retained for inclusion in each of the beach prediction models. 

Cross-validated hindcast model results for days and periods closed at each beach indicate moderate 

to strong model skill and an improvement over climatology in most metrics (Table 2A-5, Table 

2A-6 for James Madison only).   
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Table 2A-4 Pearson correlation coefficients between June-August (JJA) beach days/periods 
closed and March-May (MAM) potential predictor variables; asterisks indicate statistical 
significance at the 95% confidence level. 

Beach Closing Predictors Characteristic 
Predicted 

J.M. Tenney Warner 

MAM Precipitation Events > 40mm per day (MRCC) 

Days Closed 

0.75* 0.70* 0.69* 
April Precipitation (MRCC) 0.21 0.41 0.37 

MAM Avg. Discharge (USGS Station 05427850) 0.65* 0.47 0.3 

MAM Avg. SST in Equatorial Pacific (NOAA) -0.42 -0.43 -0.46 

MAM Avg. External Phosphorus Load (USGS Station 
05427850) 

0.39 0.32 0.39 

MAM Precipitation Events > 40mm per day (MRCC) 

Periods Closed 

0.69* 0.87* 0.81* 

April Precipitation (MRCC) 0.29 0.42 0.26 

MAM Avg. Discharge (USGS Station 05427850) 0.37 0.44 0.57* 

MAM Avg. SST in Equatorial Pacific (NOAA) -0.42 -0.45 -0.36 

MAM Avg. External Phosphorus Load (USGS Station 
05427850) 

0.16 0.39 0.36 

 

Table 2A-5 Ranked Probability Skill Scores (RPSS), Heidke Skill Scores (HSS), and Pearson 
correlations for beach days and periods closed prediction models for three Lake Mendota 
beaches. 

 Beach Days Closed  Beach Periods Closed 

Beach Median 
RPSS 

HSS Pearson 
Correlation 

 Median 
RPSS 

HSS Pearson 
Correlation 

James Madison  0.81 0.49 0.65  0.25 0.35 0.36 
Tenney  0.08 0.13 0.58  0.38 0.35 0.64 
Warner -0.01 0.21 0.31  0.69 0.49 0.66 
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Table 2A-6 Hit Miss Matrix for categorical beach days closed predictions and observations at 
James Madison beach. (N = Normal, A = Above Normal). 

  Forecast 

  N A 

O
bs

er
ve

d  N 6 3 

A 3 4 

 

Beach days closed tends to be more skillful than beach periods closed, however, performance 

metrics are highly sensitive to the short hindcast period and strongly influenced by data in single 

years.  This limited number of data points is especially problematic for prediction in extreme years 

(e.g., 2013, Figure 2A-6).  In the case of James Madison beach, predictors co-vary closely with 

the number of beach days closed except for 2013-2014 (Figure 2A-7). The days closed forecast 

results mirror the cyanobacteria abundance prediction in 2013, in that both were over predicted, 

potentially resulting from changes in the food web not captured by the model. The model also over 

predicts 2014, likely due to the elevated phosphorus levels, however this may not have 

materialized in beach closures due to abnormally low discharge. Additionally, 2015 and 2017 

above average cyanobacteria abundance did not directly translate into above average beach 

closures. There are several factors that may be at play in this disconnect. Wind conditions, for 

example, have been shown to influence horizontal movement of surface algae (Jiancai Deng et al., 

2016), which may cause blooms to concentrate away from beaches allowing them to stay open. In 

looking at specific years, there is expected variability due to the complex dynamics of this 

lacustrine ecosystem.  
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Figure 2A-6. Bar chart representing probabilistic predictions of beach days closed at James 
Madison beach. Normal category includes two or fewer days closed; above normal refers to 
more than two days closed per summer. The observed category is illustrated with a white star. 
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Figure 2A-7. Time-series of normalized predictors and beach days closed for James Madison 
beach. 

2.A.4 Discussion 
The development and evaluation of prospective season-ahead prediction models for cyanobacteria 

biomass and beach closures, based on local and global scale predictors, are presented. The model 

is developed as part of a sub seasonal to seasonal cyanobacteria forecasting system for Lake 

Mendota. Previous season-ahead prediction models have utilized phosphorus as the primary 

predictor variable, given its influence on cyanobacteria abundance and ability to be managed. 

Here, alternative predictors are also evaluated to better understand their potential contribution to 

prediction skill and ability to represent signals of phosphorus conveyance and distribution.  In 

addition, models contingent solely on phosphorus data collection are subject to continuous 

sampling and processing lag times – often well beyond one season – which may serve as a major 

lake management disincentive. The modeling framework proposed here alleviates such 

dependence, demonstrating strong prediction skill. The proposed framework incorporates a larger 

suite of predictor variables than utilized in previous forecasts, however, the modeling approach 
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remains straightforward – a clear strength for future applications. It should be noted that Lake 

Mendota has a wealth of high-quality, long-term data, which is uncommon among similar small 

inland lakes. Development of season-ahead forecasts for algae may benefit management practices 

in other lakes. While it is unlikely that nutrient loading and within-lake predictors will be as well 

characterized for other lakes, the hydroclimatic drivers evaluated here (e.g., precipitation, extreme 

precipitation events, air temperature, and sea surface temperatures) are widely available across the 

U.S. and may be used for forecasting applications in other lakes. 

 

Although model performance exhibits predictive skill for cyanobacteria biomass, beach days 

closed, and beach periods closed, there are several noteworthy challenges. The statistical forecast 

models developed here are limited by the short time series available, with some inconsistencies in 

the ability to predict extremes. This may be addressed through calibrated physically based lake 

process models run in a predictive mode, potentially capturing complex dynamics across 

biological, chemical, and environmental processes, however, preliminary exploration has 

indicated poor to marginal skill for Lake Mendota. Another remaining challenge is when one 

category is predicted with high probability (confidence), yet observations fall in a different 

category (e.g., 2013, Figure 2-7).  This is different than moderate probability of being in the 

unobserved category and may be a challenge to resource managers. Related, the thresholds 

between categories utilized here are subjective, however selection does impact model 

performance.  Individual managers are likely to have their own preferred thresholds, warranting 

further evaluation into model performance for specific choices.  
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As discussed previously, both temperature and phosphorus load are well-established as drivers of 

cyanobacteria productivity, however, neither variable added predictive power at the seasonal scale. 

The Stow et al. (1997) prediction model uses April within-lake phosphorus concentrations to 

predict July-September cyanobacteria abundance with notable skill. Additionally, in the 

complementary sub-seasonal forecasting model for cyanobacteria abundance, June external 

phosphorus loads were highly correlated with July-August cyanobacteria abundance (Beal et al., 

2021). It is possible that the temporal difference between the phosphorus predictor and 

summertime cyanobacteria biomass is responsible for this difference in skill. Internal phosphorus 

loading is also a significant source of phosphorus for Lake Mendota during in the summer and is 

not accounted for in this set of predictors (P A Soranno et al., 1997). 

 

Spring air temperatures have been shown to influence water temperature and summertime bloom 

onset (M. Zhang et al., 2016), prompting the inclusion of spring air temperature as a potential 

predictor of summertime cyanobacteria biomass. Air temperature may have direct and indirect 

impacts on cyanobacteria abundance (Taranu et al., 2012). High temperatures (above 25C) during 

the growing season generally promote cyanobacteria growth over phytoplankton taxa such as 

diatoms and green algae (Paerl & Huisman, 2008). Higher air temperatures may indirectly favor 

cyanobacteria given that increased temperatures promote stratification strength, allowing 

cyanobacteria to outcompete other algal groups by using specialized gas vacuoles to adjust their 

position in the water column (Joehnk et al., 2008; Paerl & Huisman, 2008) . Additionally, water 

temperatures have been shown to control summertime cyanobacteria productivity in Lake Mendota 

(Konopka & Brock, 1978), however, none of the temperature-based predictors investigated 

correlate at a statistically significant level with biomass. There may be several explanations for 
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this: researchers have noted that higher temperatures have a direct effect on the timing and 

proportional dominance of cyanobacteria, but not the amount of annual biomass (J Alex Elliott, 

2012; Wagner & Adrian, 2009). While a causal relationship has been demonstrated between spring 

air temperatures and summertime cyanobacteria abundance in subtropical regions (Jianming Deng 

et al., 2014; Paerl & Huisman, 2008; M. Zhang et al., 2016), that same relationship has not been 

shown to exist in the northern temperate climate of the study site. This could be due to the temporal 

mismatch of seasonal abundance with spring temperatures. While high spring temperatures may 

encourage cyanobacteria dominance this does not necessarily imply long term abundance 

(Anneville et al., 2015; Persaud et al., 2015; M. Zhang et al., 2016). Additionally, temperature 

fluctuations occurring in the spring are accompanied by a variety of additional environmental 

changes, complicating the direct cyanobacteria response to temperature (Konopka & Brock, 1978). 

The simplicity of the temperature-based predictors proposed may not be capable of fully capturing 

the summer cyanobacteria biomass response to temperature nuances occurring throughout the 

season. Clearly, the predictor variables considered in this study may impact individual 

cyanobacteria communities differently, however, average cyanobacteria biomass across all 

communities is specifically addressed here as current management practices do not consider the 

presence of individual communities. Still, there is clear merit in the consideration of individual 

cyanobacteria communities that pose a greater toxicity risk, specifically those that have the 

potential to produce toxins, for future prediction efforts.  

 

For this analysis, predictions are issued at the end of the spring season (beginning of June). This 

advance notice of summertime cyanobacteria conditions provides lake and beach managers with 

information necessary for making proactive management decisions ahead of the peak season for 
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cyanobacteria productivity. These decisions may include changing the frequency of water quality 

testing, altering training and scheduling for lifeguards, tailoring public engagement strategies, and 

preparing emergency resources for recreators. Working with the sub-seasonal forecast developed 

by Beal et al. (2021), pre- and within- (summer) season predictions are issued for cyanobacteria 

abundance, allowing decision makers to adapt and optimize management strategies across the peak 

season for cyanobacteria productivity. The model developed here is a key component of this 

forecasting system, providing information on expected cyanobacteria abundances before 

recreational use of Lake Mendota begins to increase and toxin production becomes a potential 

public health threat. Linking seasonal and sub-seasonal cyanobacteria forecasts informs decisions 

at multiple timescales, allowing for an optimized approach to cyanobacteria management. 

Effectively implementing this forecasting system requires improved understanding of manager 

needs, key decisions dates, and available actions, all themes of ongoing research to facilitate how 

forecasts can better be integrated into lake and beach management. 
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Part B. A Sub-seasonal Cyanobacteria Biomass Forecast 
Adapted from: Beal, M. R. W., O'Reilly, B., Hietpas, K. R., & Block, P. (2021). Development of a 

sub-seasonal cyanobacteria prediction model by leveraging local and global scale 

predictors. Harmful Algae, 108, 102100. DOI: 10.1016/j.hal.2021.102100 

2.B.1 Introduction 
Recently, the potential for developing sub-seasonal (i.e. within-season) forecasts for application 

to water management has garnered attention (Vitart et al., 2012; Vitart & Robertson, 2018) with 

the intention that such forecasts could bridge the gap between seasonal and short-term time scales 

(Shentsis & Ben-Zvi, 1999; Vitart, 2014). A season-ahead forecast for June-August cyanobacteria 

biomass and beach closings is developed in the first part of this chapter (Beal et al., 2022).  In 

conversations with lake and public health mangers, there is an expressed desire to understand how 

cyanobacteria abundance may be changing throughout the summer season, and if a prediction 

update is possible. A sub-seasonal forecast of cyanobacteria biomass may indicate if expected 

cyanobacteria conditions are shifting within the season, providing managers with an opportunity 

to change the frequency of water quality monitoring, public engagement strategies, and prepare 

emergency resources for recreators and drinking water facilities before the potential for 

cyanobacteria productivity peaks. Part B of this chapter presents a study that investigates relevant 

pre- and within-season local and global scale drivers of inter-annual variability in summertime 

cyanobacteria biomass and showcases the development and verification of a sub-seasonal 

forecasting framework for cyanobacteria conditions. Finally, this study explores how a sub-

seasonal forecast may be effectively paired with the full season-ahead forecast for holistic lake 

management. 

 

https://doi.org/10.1016/j.hal.2021.102100
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Seasonal forecasts have been produced for summertime cyanobacteria biomass on Lake Mendota 

since 2015 (Soley, 2016). The modeling approach for this forecast is presented earlier in this 

chapter. The model is used to generate probabilistic forecasts of average cyanobacteria biomass 

for June-August (released on June 1). As discussed in the introduction, the highest cyanobacteria 

biomass concentrations, however, have historically occurred in July and August, further 

motivating the potential utility of a sub-seasonal forecast by updating later in the season.  

 

2.B.2 Methods 

2.B.2.1 Drivers of Variability in Cyanobacteria Biomass    
In Lake Mendota, cyanobacteria biomass is generally most apparent from June-August (Figure 2), 

with elevated levels typically observable in July and August.  The existing seasonal prediction 

model issues a June-August average cyanobacteria biomass forecast at the beginning of June, 

whereas the sub-seasonal July-August prediction model proposed here focuses on the peak months, 

taking advantage of June observations, and issues a forecast of average July-August cyanobacteria 

biomass at the beginning of July.  

 

Numerous drivers and factors at local to global scales influence inter-annual cyanobacteria 

productivity.  From a forecasting perspective, ideal predictors include pre-season (e.g. April-June), 

observable hydroclimatic and landscape variables that effect the state of the lake system into July-

August. Potential predictors are identified based on previous literature regarding cyanobacteria 

dynamics and/or correlation analysis.  Predictors that correlate with July-August average 

cyanobacteria biomass at the 95% confidence level (P<0.05) are considered statistically significant 

and added to the suite of potential predictors. 
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As discussed previously, phosphorus is a well-established driver of cyanobacteria biomass.  Strong 

correlations between phosphorus in contributing waters and cyanobacteria biomass has been 

demonstrated repeatedly (Downing et al., 2001; Håkanson et al., 2007; R C Lathrop et al., 1998; 

V. H. Smith, 1985; C A Stow et al., 1997). Phosphorus loading (pounds per day) data for the Lake 

Mendota case study are extracted from USGS station 05427718 located on the Yahara River at 

Windsor, WI for the month of June. Relatedly, local scale hydroclimatic variables influencing 

transport of phosphorus across the landscape prior to July are also important drivers of external 

phosphorous loading. These include extreme precipitation events, discharge, soil moisture, and 

suspended sediments (Carpenter et al., 2018; Michalak, 2016; Motew et al., 2017). Precipitation 

events can wash high concentrations of nutrients off the landscape and into surface waters, 

contributing to eutrophication (Sinha et al., 2017). Agricultural watersheds similar to the Lake 

Mendota watershed are particularly vulnerable to phosphorus loading driven by precipitation 

events (Stephen R Carpenter et al., 2018; Garnache et al., 2016). Most of the phosphorus loading 

in the Mendota watershed occurs in a relatively small number of large loading events (Stephen R 

Carpenter et al., 2015). Similarly, soil moisture conditions regulate infiltration versus direct runoff 

into rivers or lakes. Intense loading events occurring in June, represented by phosphorus load, 

discharge, and suspended sediments, have the potential to alter phosphorus availability for 

cyanobacteria later in the summer (Richard C Lathrop & Carpenter, 2014). Precipitation data was 

obtained from the Midwest Regional Climate Center for March-May (Wuertz et al., 2018). Soil 

moisture data in the Mendota watershed comes from the North American Land Data Assimilation 

System (NLDAS) for June (Mocko, 2013). Both discharge and suspended sediment loads are from 

USGS station 05427718 for the month of June (Survey, 2021a). 
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Variables related to in-situ productivity, including nitrate + nitrite and total unfiltered phosphorus 

are also considered. While phosphorus has historically been considered the primary limiting 

nutrient for phytoplankton in freshwater, there is evidence that inorganic nitrogen can control 

growth and toxicity of cyanobacteria as well (Gobler et al., 2016). These data are available in the 

LTER database for June (Magnuson et al., 2023a). To further assess the state of lake productivity 

in June, a Floating Algae Index (FAI) was generated using remotely sensed images in June from 

Landsat 5 (1995-1999) and MODIS (2000-2017) satellites (ORNL DAAC 2020; USGS 2020), 

using methods outlined by Hu (2009). The FAI has been used for mapping floating algae, including 

cyanobacteria, in lacustrine and coastal environments (Hu, 2009; Oyama et al., 2015). The effects 

of nutrient loading on algal biomass are well established, therefore, an estimation of algal biomass 

in June may indicate the general state of productivity in the lake and serve as a predictor of 

cyanobacteria productivity later in the summer (Vollenweider, 1971).  

 

As discussed previously, elevated air temperature is thought to favor dominance of cyanobacteria 

through direct effects on photosynthetic capacity and indirect effects on competition. June air 

temperature and the number of events exceeding the 99th percentile of air temperatures for the 

climate reference period (1981-2010) are included in the suite of potential predictors (Anneville 

et al., 2015; Gallina et al., 2011). Daily temperature data from NOAA’s Global Historical 

Climatology Network was accessed through the Midwest Regional Climate Center (Menne et al., 

2012). Mean pre-season water temperature, accessed through the NTL-LTER data repository, is 

also evaluated as a potential predictor (Magnuson et al., 2023b; Robertson, 2016). 
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Variable grazing rates by Daphnia spp. may also influence cyanobacteria biomass. In Lake 

Mendota, Richard C Lathrop et al. (1999) found that summer water clarity is significantly greater 

in years dominated by D. pulicaria compared to D. mendotae. This difference in clarity has been 

attributed to the ability of the larger-bodied D. pulicaria to significantly reduce summertime algal 

biomass, including cyanobacteria (Epp, 1996; Kasprzak & Lathrop, 1997; Sarnelle, 2007). 

Furthermore, there is evidence to suggest that summertime Daphnia biomasses are greater in Lake 

Mendota when D. pulicaria dominate in the spring months (Lathrop et al., 1999). Thus, April-May 

D. pulicaria biomass, measured at the LTER buoy, is included as a potential predictor of July-

August cyanobacteria biomass (Magnuson et al., 2019).  

 

Sea surface temperature (SST) and sea level pressure (SLP) anomalies have been well-documented 

to influence precipitation and temperature on monthly to seasonal timescales by altering 

atmospheric flow conditions (Barnston, 1994; Farquhar, 2010; Giannini et al., 2000; Markowski 

& North, 2003) (Barnston, 1994; Giannini and Kushnir, 2000; Markowski and North, 2003), and 

are thus also considered as potential predictors.  Locations of SST and SLP influencing climate 

conditions in the Lake Mendota watershed are further developed below. May-June SST and SLP 

anomalies are from NOAA’s ERSST v3b and HadSLP2r datasets, respectively, and were accessed 

through the IRI Data Library (Allan & Ansell, 2006; T. M. Smith et al., 2008). 

 

2.B.2.2 Prediction Modeling Approach 
Like the season-ahead model, a principal component analysis and regression approach are selected 

to build the July-August cyanobacteria prediction model. Again, principal components that 

explained more than 10% of the variance in the data are retained. Principal component regression 
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models are fit based on the retained PCs across 1995-2017.  These models also take the form of 

equation 1A, described in chapter 2, part A. Given the large number of candidate predictors for 

the sub-seasonal model, the generalized cross-validation (GCV) score is used to select the best 

subset from the suite of predictors and is given as,  

(5) GCV =  ∑
et
2

N
N
t=1

"1-mN#
2          

where N is the number of time steps (1995-2017), m is the number of PCs (predictors) retained in 

each candidate model, and et is the residual (difference between observed and model estimated 

values) at each time step, t (July-August each year). The GCV penalizes overfitting and is a good 

estimate of predictive risk (Craven and Wahba 1978). Using this method, the best set of predictors 

can be identified by evaluating several predictor combinations (candidate models) and selecting 

the combination that results in the minimum GCV score (Regonda et al., 2006). Statistical models 

were developed using R version 1.3.1056. 

 

In an effort to appropriately represent teleconnection patterns between global climate phenomenon 

and local-scale processes that drive cyanobacteria biomass, a Nino Index Phase Analysis  (Giuliani 

et al., 2019a; Zimmerman et al., 2016) is adopted. This method draws on the state of the 

atmospheric-oceanic system in months prior to the season of interest to divide a timeseries into 

different “mean states”.  This allows for possible asymmetric relationships between “mean states” 

to be captured and modeled (Lee et al., 2018). Given that ENSO expresses moderate influence 

over climate conditions in the upper Midwestern U.S., the Multivariate ENSO Index (MEI) – 

consisting of SLP and SST information in the Pacific Ocean – is used to classify historical years 

into phases of ENSO; here two phases are adopted: positive and negative, based on MEI values 
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averaged over May – June. Global and local-scale predictors may subsequently be evaluated for 

each “mean state” of the atmospheric-oceanic system represented by each phase. For the historical 

cyanobacteria biomass record on Lake Mendota, seven years fall into the positive phase and 16 

into the negative phase.  For the years falling within each phase, regions of SST and SLP anomalies 

that correlated significantly with July-August cyanobacteria are selected following Zimmerman et 

al. (2016). Principal components of these SST and SLP regions are included as potential sub-

seasonal predictors. Each of the specified predictors are evaluated independently for the positive 

and negative phase, as correlation with cyanobacteria biomass in one phase does not necessitate 

inclusion as a predictor in both phase models. Thus the important processes contributing to 

cyanobacteria growth in each phase of ENSO are identified, potentially leading to enhanced 

biomass forecasts. The Nino Index Phase Analysis was performed in Python 2.7.16 and Spyder 

3.3.6 using code developed by Giuliani et al. (2019b) 

 

To evaluate historical performance, a hindcast is undertaken, such that a year of information is 

dropped (drop one cross-validation), the PCs are constructed, coefficients 𝛼 and 𝛽 are fit based on 

the remaining years of data, and Yt for the dropped year is calculated.  This is repeated to create a 

deterministic forecast of biomass for all years.  The optimal number of PCs for each model, based 

on the GCV, was held constant for the cross-validation in all years. 

 

Ensemble predictions for each year in the hindcast are based on errors, defined as the difference 

between predicted and observed cyanobacteria biomass in the leave-one-out cross-validated 

approach.  Errors are fit to a normal distribution, with mean zero, using a maximum likelihood 

estimation. For each hindcast year, 100 random draws from the distribution are added to the 
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deterministic biomass forecast to form the ensemble (Alexander et al., 2019; Delorit et al., 2017; 

Helsel & Hirsch, 1992; M. Zhang et al., 2016).  

 

2.B.2.3 Model Performance Metrics 
To assess model performance, observations are compared with model forecasts using five skill 

scores: correlation coefficients, Root Mean Square Error (RMSE), Heidke skill score (HSS), 

ranked probability skill score (RPSS), and a hit-miss matrix (Heidke, 1926; Epstein, 1969). As 

described earlier, HSS and RPSS are categorical performance metrics and can be interpreted as a 

percentage improvement over a reference forecast. Here, the reference forecast is split into three 

categories of equal probability (33% each), representing below normal (0 - 2.91 mg/L), near 

normal (2.91 - 4.56 mg/L), and above normal (4.56+ mg/L) cyanobacteria conditions. For the 

forecast model developed here, if there is no predictive information, the model defaults to equal 

odds categorical prediction, as in the reference forecast.  However, for most years, the distribution 

of expected conditions shifts and results in unequal likelihoods of each category. Thus, the forecast 

developed here outperforms the reference forecast when it assigns a greater probability (more than 

33%) to the category that is ultimately observed. 

 

2.B.3 Results  

2.B.3.1 Phase Model Performance 
A unique set of cyanobacteria predictors are retained for the MEI positive and negative phase 

models (Table 2B-1), validating the utility of separate models to describe this asymmetric 

relationship. Regions of May-June SST anomalies are identified following Zimmerman et al. 

(2016) for both the positive and negative phases (Figure 2B-1). In the negative phase (La Niña-
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like) model, significantly correlating regions of May-June SST anomalies are located in the 

equatorial Pacific Ocean. In the positive phase (El Niño-like) model, significantly correlating 

regions of May-June SST anomalies are located in the mid and northern Atlantic Ocean. 

 

 

Figure 2B-1. Regions of statistically significant (95th-percentile) Pearson correlation 
coefficients between July-August cyanobacteria biomass and May-June SST anomalies for 
negative and positive ENSO phases. The black dot represents the study site. Colors represent the 
degree of correlation. 

 



 
 

45 

The final set of predictors for the negative (La Niña-like) phase includes June discharge, June 

phosphorus load, June total unfiltered phosphorus measured at the LTER buoy, the floating algae 

index for June, and May-June average SST anomalies in parts of the Pacific Ocean.  These first 

four variables represent local-scale processes, and SSTs represent global scale processes, 

explaining cyanobacteria variability. The first three principal components are retained for the 

negative phase model and explain approximately 65%, 13%, and 10% of the variance, respectively.  

 

The final set of predictors for the positive (El Niño-like) phase only includes May-June SST 

anomalies in the Atlantic Ocean and the floating algae index. The first principal component of the 

positive phase model explains approximately 92% of the variance in the data and is the only PC 

retained for the model. Variables commonly associated with cyanobacteria productivity (e.g. 

phosphorus, discharge, extreme precipitation events) are not statistically significant during the 

positive phase (Table 2B-1). 
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Table 2B-1. Pearson and Spearman correlation coefficients between July-August average 
cyanobacteria biomass with ENSO phase indicated. Bold values indicate the set of significantly 
correlated predictors selected with the GCV for each phase model. * indicate significantly 
correlated variables. 

Predictor Months ENSO Phase Pearson Spearman Source 
Discharge (USGS Station 05427718) June 

Positive 

-0.09 -0.04 USGS 
Phosphorus Load (USGS Station 05427718) June 0.11 -0.13 USGS 
Suspended Sediment Load (USGS Station 05427718) June 0.22 -0.11 USGS 
Soil Moisture (Grid: 43.313 -89.313) June 0.15 0.25 NLDAS 
Nitrate + Nitrite (Buoy) June -0.41 -0.21 LTER 
Total Unfiltered Phosphorus (Buoy) June 0.21 0.04 LTER 
Sea Surface Temperature (PC1) May-June -0.87* -0.96* IRI Data Library 
Sea Level Pressure (PC1) May-June -0.88* -0.96* IRI Data Library 
Extreme Events (>25mm) March-May 0.25 0.25 MRCC 
Air Temperature June -0.11 -0.54 MRCC 
Extreme Air Temperature Events March-June -0.002 -0.23 MRCC 
Floating Algae Index June 0.93* 0.89* MODIS/Landsat 
D. Pulicaria Biomass June  -0.89* -0.89* LTER 
Water Temperature April-June  0.64 0.57 LTER 
Pre-season Cyanobacteria Biomass June  0.52 0.02 LTER 
Discharge (USGS Station 05427718) June 

Negative 

0.83* 0.63* USGS 
Phosphorus Load (USGS Station 05427718) June 0.82* 0.57* USGS 
Suspended Sediment Load (USGS Station 05427718) June 0.78* 0.55* USGS 
Soil Moisture (Grid: 43.313 -89.313) June 0.43 0.43 NLDAS 
Nitrate + Nitrite (Buoy) June 0.63* 0.66* LTER 
Total Unfiltered Phosphorus (Buoy) June 0.62* 0.61* LTER 
Sea Surface Temperature (PC1) May-June -0.74* -0.57* IRI Data Library 
Sea Level Pressure (PC1) May-June -0.63 -0.41 IRI Data Library 
Extreme Events (>25mm) March-May 0.72* 0.75* MRCC 
Air Temperature June -0.05 -0.003 MRCC 
Extreme Air Temperature Events March-June 0.09 -0.02 MRCC 
Floating Algae Index June 0.71* 0.70* MODIS/Landsat 
D. Pulicaria Biomass June  -0.15 -0.03 LTER 
Water Temperature April-June  0.58 0.39 LTER 
Pre-season Cyanobacteria Biomass June  0.18 0.60 LTER 

 

2.B.3.2 Combined Model Performance 
A hindcast assessment combining the positive and negative phase models results in Pearson and 

Spearman correlation coefficients of 0.90 and 0.83 respectively, an RMSE of 1.22, an HSS of 0.41, 

and a median RPSS of 0.72, indicating a clear improvement over climatology (Figure 4). The 

model illustrates particular skill in predicting below normal and above normal conditions but 

performs poorly in the near normal category (Table 2B-2). The model’s ability to correctly predict 

above normal July-August cyanobacteria biomass (6 out of the 8 years) is particularly 

advantageous from a management perspective. Additionally, the two-phase model demonstrates 
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substantial improvement over a traditional model that does not discriminate between ENSO phases 

(Figure 2B-3; the “one-phase” model results in Pearson and Spearman correlation coefficients of 

0.81 and 0.70, respectively, an RMSE of 1.53, an HSS of 0.35, and a median RPSS of 0.56.)  

 

Table 2B-2 Cyanobacteria biomass forecast results: observed cyanobacteria biomass category 
vs. the forecasted category in a given year. Values represent the number of historical years that 
fall into each category based on a hindcast. 

 Observed 
  Below 

Normal 
Near 
Normal 

Above 
Normal 

Forecast 

Below 
Normal 7 5 2 

Near 
Normal 1 1 0 

Above 
Normal 0 1 6 

 

 

Figure 2B-2. July-August average cyanobacteria biomass predictions for positive (blue) and 
negative (red) phases of ENSO (box plots) and observed data (solid black line.) Thresholds 
between below, near, and above normal categories are denoted by horizontal black lines. 
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Figure 2B-3. July-August average cyanobacteria biomass observations compared to hindcast 
predictions using “one-phase” and “two-phase” (NIPA) models. A 1:1 line (perfect forecast) is 
represented by the dashed gray line. 

2.B.3.3 Seasonal and Sub-seasonal Model Comparison 
A comparison between the full (June-Aug) and sub-seasonal (July-Aug) model outputs is 

warranted to understand agreement between models and potential gains from issuing an updated 

forecast. A probability density plot of the sub-seasonal hindcast appears to more accurately reflect 

observed conditions than the seasonal hindcast and illustrates the sub-seasonal model’s increased 

accuracy in the tails, with less emphasis on the near normal category (Figure 2B-4). To assess the 

degree of difference between the predicted probability distributions and the observed distribution, 

two, two-sample Komolgorov-Smirnov test are performed. The Komolgorov-Smirnov test statistic 

(D) quantifies the distance between two empirical distribution functions. A smaller test statistic is 

found between the sub-seasonal and observed distributions (D=0.22) compared to the seasonal and 
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observed distributions (D=0.30). Neither the predicted sub-seasonal or seasonal distribution was 

significantly different from the observed July-August biomass distribution at the 95% confidence 

level (P=0.66 and P=0.23, respectively). From a categorical perspective, normalized seasonal and 

sub-seasonal hindcasts correctly predict 56.5% and 60.8% of observed July-August biomass 

respectively (Table 2B-3). Both hindcasts perform well in the below normal category and poorly 

in predicting near normal conditions. Most notably, the sub-seasonal prediction model for above 

normal cyanobacteria biomass is an improvement over the seasonal forecast model. Specifically, 

the sub-seasonal forecast correctly predicts above normal conditions for three years in which the 

seasonal forecast does not (Table 2B-4). The sub-seasonal forecast incorrectly updated an above 

normal seasonal prediction in only one year (2011). Increased accuracy in prediction of above 

normal cyanobacteria conditions by the sub-seasonal forecast is encouraging, as these conditions 

present the greatest threat to public health.  

 

Table 2B-3 Observations and number of correct normalized categorical predictions of July-
August cyanobacteria biomass from 1995-2017. 

Category 
Years 
observed Correct Seasonal Forecasts (%) 

Correct Sub-seasonal 
Forecasts (%) 

Above 
Normal 8 3 (37.5) 5 (62.5) 
Near Normal 7 2 (28.6) 2 (28.6) 
Below 
Normal 8 8 (100) 7 (87.5) 
All 23 13 (56.5) 14 (60.8) 
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Table 2B-4 Years in which the sub-seasonal forecast corrected an incorrect seasonal forecast 
(Corrections) and years in which the sub-seasonal forecast miscorrected an accurate seasonal 
forecast (Miscorrections). “Corrections” always imply an incorrect seasonal forecast. 
“Miscorrections” imply a correct seasonal forecast. Cases in which both forecasts are correct or 
incorrect are not represented. 

Category Corrections Miscorrections 
Above 
Normal 3 1 
Near Normal 2 2 
Below 
Normal 0 1 

 

 

 

Figure 2B-4. PDFs of average cyanobacteria biomass observations (July-August), seasonal 
prediction (June-August), and sub-seasonal prediction (July-August across 1995-2017), 
represented by red, green, and blue areas, respectively. Additional colors represent areas in 
which the PDFs overlap. Dashed vertical lines indicate thresholds between below, near, and 
above normal seasonal (June-August) categories. Solid lines indicate sub-seasonal (July-August) 
category thresholds. 

 

2.B.4 Discussion 
In addition to practical applications, prediction plays an important role in demonstrating ecological 

understanding (Houlahan et al., 2017). The development and assessment of the positive and 
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negative phase forecasting models provides some insight into the relative importance of local and 

global scale variables on a seasonal timeframe.  

 

At the local scale, the predictive power of several variables are noteworthy. The floating algae 

index, a remotely sensed indicator of pre-season lake productivity, is the only local-scale predictor 

significant in both phase models. Pre-season cyanobacteria biomass, however, was not a 

significant predictor of July-August biomass in either phase. This suggests that general algae 

productivity in the early summer may be more indicative of favorable conditions for July-August 

cyanobacteria than early summer cyanobacteria biomass itself. Additionally, despite the 

established importance of temperature in cyanobacteria productivity, neither of the air 

temperature-based predictors are significantly correlated with July-August cyanobacteria biomass 

in either phase. Pre-season water temperatures resulted in higher correlation coefficients than air 

temperature predictors, but relationships were not strong enough to be included in either phase. 

Konopka and Brock (1978) purport that the relationship between lake temperature and 

cyanobacteria growth in Mendota is complicated by other concurrent environmental changes. 

Ultimately, the temperature-based predictors included here may be too simplistic to fully capture 

the relationships between air and water temperature and cyanobacteria growth.   

 

At a global scale, regions of relevant sea surface temperatures identified by the NIPA process 

suggest differences in the influence of large-scale climate phenomena on local hydroclimatic 

processes in the Midwest during the positive and negative phases of ENSO. In the negative phase 

(La Niña-like) model, significantly correlating regions of May-June SST anomalies are located in 

the equatorial Pacific Ocean, a region commonly associated with ENSO (Figure 3). A relationship 
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has been previously established between springtime La Nina conditions and a strong Great Plains 

low level jet (GPLLJ), which acts as a conduit for moisture from the tropical Atlantic to the 

continental U.S. (Munoz and Enfield, 2011; Krishnamurthy et al., 2015). Increased springtime 

moisture during the MEI negative phase may explain why variables associated with precipitation 

(e.g. phosphorus load, discharge, extreme events, suspended sediments) are significantly 

correlated with July-August cyanobacteria biomass in the negative phase, but not in the positive 

phase (Table 2B-1). 

 

In the positive phase (El Niño-like) model, significantly correlating regions of May-June SST 

anomalies are located in the mid and northern Atlantic Ocean (Figure 2B-1). The GPLLJ draws 

moisture from the tropical Atlantic via the Caribbean low-level jet, however, Krishnamurthy et al. 

(2015) suggest that El Nino conditions are not typically associated with a strong GPLLJ in boreal 

spring (April-June). This may explain why regions of significantly correlating SST (and SLP) 

anomalies are focused in the Atlantic, and why they are absent from the equatorial Pacific Ocean. 

On average, total June precipitation is lower during the positive phase compared to the negative 

phase (Figure 2B-6). Furthermore, drought periods in the Yahara watershed have been shown to 

decrease July-August discharge, phosphorus loads, and total phosphorus within the lake (Lathrop 

and Carpenter, 2014). A weaker GPLLJ in the positive phase may explain lower June precipitation 

and the lack of significant correlations between precipitation-driven variables and cyanobacteria 

biomass in these years. 
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Figure 2B-5. Violin plot of total June precipitation for positive and negative ENSO phases 
(1995-2017.) Mean precipitation is 153.8 and 100.7 millimeters for each phase, respectively. 
Precipitation data recorded at the Dane County Regional Airport was obtained from the Midwest 
Regional Climate Center for March-May (Wuertz et al., 2020). 

 
ENSO signals may also explain asymmetries in predictor relationships at the lake scale. D. 

pulicaria biomass is not selected by the model for the final suite of predictors but is significantly 

correlated with cyanobacteria biomass in the positive phase. Plankton community dynamics in 

Lake Mendota are complex, however, there is some evidence that the effects of D. pulicaria 

grazing on phytoplankton are more pronounced when phosphorus concentrations are low (Vanni 

et al., 1990). It is possible then, that the influence of D. pulicaria grazing on July-August 

cyanobacteria biomass is more pronounced in the positive phase due to differences in phosphorus 

conveyance between the phases of ENSO.  

 

In comparison to a model conditioned on all available years of cyanobacteria biomass data, the 

split phase model approach significantly improves predictions of July-August cyanobacteria 

biomass, most notably for above normal cyanobacteria conditions (Figure 5). Additionally, the 



 
 

54 

subseasonal forecast developed here shows an improvement in forecast skill for July-August 

cyanobacteria biomass over the full season (June-August) forecast developed by Soley et al. (2016) 

(Table 2B-4, Figure 2B-4). This suggests that a sub-seasonal cyanobacteria forecast (released on 

July 1st) can provide lake and beach managers with a meaningful update to the full season forecast 

(released on June 1st), with greater accuracy regarding the peak months for cyanobacteria 

productivity in Lake Mendota. 

 

Despite the sub-seasonal model’s ability to improve forecasts of above normal cyanobacteria 

conditions overall, the model incorrectly updated a seasonal forecast of above normal 

cyanobacteria biomass to near normal in 2011 (Table 2B-4). Increased cyanobacteria abundance 

in 2011 may have resulted from high concentrations of dissolved inorganic nitrogen throughout 

the summer. June-August average concentrations of total nitrogen in 2011 were the highest in the 

available timeseries at 1391 µg/L,  notably higher than the long-term summertime average of 1156 

µg/L. Nutrients concentrations are averaged across the water column, which is sampled to 25m in 

meter increments (Magnuson et al., 2023a). Beversdorf et al. (2013) suggest that an abnormally 

high ratio of dissolved inorganic nitrogen to dissolved reactive phosphorus in 2011 allowed the 

early summer cyanobacteria species Aphanizomenon to persist into July and August, coexisting 

with Mycrocysits, a species typical of later summer months. It is possible that cyanobacteria 

biomass in 2011 was driven primarily by nitrogen availability, a predictor not selected for the 

negative phase model by the GCV. Neglecting to distinguish between cyanobacteria species may 

limit the model’s ability to capture the influence of community dynamics on overall cyanobacteria 

abundance throughout the summer.  
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While linear models are unable to entirely capture non-linear drivers of atmospheric and 

limnological processes, the NIPA approach highlights the diverse response of local and global 

predictor variables important to cyanobacteria productivity given the mean state of the 

atmospheric-oceanic system. Differences in the predictive power of phosphorus load and related 

variables (e.g. discharge, extreme events, suspended sediments) between MEI phases are 

particularly notable considering the large body of work establishing phosphorus load as a major 

driver of cyanobacteria productivity in Lake Mendota. The number of years in each phase is 

relatively small from a statistical perspective, however, compared to most inland lakes, the 

cyanobacteria biomass record for Lake Mendota is considered long. Nonetheless, continued 

collection of water quality data is warranted for the refinement of these models.  

2.B.5 Conclusions 
In this chapter skillful sub-seasonal cyanobacteria biomass prediction models are developed and 

compared with full-season prediction models to understand potential prediction gains and inform 

lake and beach management. The inter-annual variability of biomass results from a complex array 

of physical, chemical, and biological variables, many of which are significantly impacted by local 

climate, yet modulated broadly by large-scale climate phenomena through atmospheric 

teleconnections such as ENSO. In this chapter, spring and early summer variables are evaluated to 

determine their ability to represent within-season drivers of July-August cyanobacteria biomass.  

 

In comparison to a traditional model conditioned on all years in the historical record, a two-phase 

approach is adopted – categorizing years as falling into either a positive or negative phase 

according to the pre-season MEI value.  This modeling approach significantly improves 

predictions of July-August cyanobacteria biomass – particularly for above normal July-August 
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conditions – and highlights the relative importance of unique local and global cyanobacteria 

biomass drivers in each phase. Notably, variables closely related to spring and summer phosphorus 

load are included in the negative phase model however are not significantly correlated with 

cyanobacteria biomass in the positive phase. This distinct behavior difference may be mediated by 

atmospheric teleconnections between ENSO and the Great Plains Low-Level Jet, which acts as a 

conduit for moisture transport from the mid-Atlantic to the Midwest. While inferences in how 

precipitation and thus variability in lake processes is modulated by ENSO specifically and large-

scale climate generally are provided here, additional investigation is still warranted (Justić et al., 

2005; Morse & Wollheim, 2014). Additional lines of inquiry could include development of 

coupled seasonal and sub-seasonal forecast systems for other water quality indicators, use of 

remote sensing methods to enhance observational records and predictability, and further 

integration of forecasts with lake and beach management alternatives. 
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Chapter 3. Large scale seasonal forecasting of peak season algae metrics in the 
Midwest and Northeast U.S. 

Adapted from: Beal, M.R.W., Wilkinson, G. M., & Block, P. J. (2023). Large scale seasonal 

forecasting of peak season algae metrics in the Midwest and Northeast US. Water Research, 229, 

119402. DOI: 10.1016/j.watres.2022.119402 

3.1 Introduction 
Rapid proliferation of algae in surface freshwaters has negative consequences for ecosystem 

function (Huisman et al., 2018; Sunda et al., 2006), economic opportunity (Dodds et al., 2009), 

and human health due to the potential for toxin production in some species (Carmichael, 2001; 

Carmichael & Boyer, 2016). In recent decades, anthropogenic disturbance of nitrogen and 

https://doi.org/10.1016/j.watres.2022.119402
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phosphorus cycles has resulted in widespread eutrophication, leading to an increase in the 

prevalence of harmful algae (O’Neil et al., 2012; Paerl & Paul, 2012; V. H. Smith, 2003). For 

many waterbodies, hydroclimatic variability plays an important role in determining water quality 

on inter- and intra-annual timescales, and may influence the suitability of conditions for algae 

growth (León-Muñoz et al., 2018; Scordo et al., 2022). Nutrient runoff, in particular, is sensitive 

to variability in the hydrologic cycle, which has been projected to intensify with climate change 

(Glavan et al., 2015; Me et al., 2018). Anthropogenic stressors favoring the dominance of harmful 

algae, combined with notable variability in algae biomass, presents a substantial challenge for 

water resource managers. In the U.S., harmful algae in large waterbodies such as Lake Erie has 

received significant research and media attention (Dalton, 2021; International Joint Commission, 

2014; Patel & Parshina-Kottas, 2017; Reutter et al., 2011; Wines, 2014), however, despite similar 

concerns, strategies for managing harmful algae in small inland waterbodies across the U.S. have 

received less attention (Brooks et al., 2016). 

  

In the northern hemisphere, algae biomass tends to peak in the late summer and early fall (July-

October) as a result of a complex array of pre-season and within-season physical, chemical, and 

biological processes. In the Midwest and Northeast U.S., this season is characterized by warm 

temperatures and increased sunlight, allowing for increased photosynthesis and algae productivity 

(Singh & Singh, 2015). In many instances, significant intra- and inter-annual variability in peak 

season algae biomass is evident, driven partially by local hydrology and temperature that are in 

turn modulated by large scale climate phenomena through atmospheric teleconnections (Beal et 

al., 2021). Predictions of how these algae conditions vary may benefit lake managers by allowing 

them to take early actions to reduce or mitigate harm caused by intense algae growth. Short-term 
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(days to weeks) predictions of chlorophyll-a (a proxy for algal biomass) are typically issued 

within-season and focus on expected bloom formation or toxin production, allowing managers to 

take rapid actions to address odor and taste issues, transition to alternative water sources, post 

warning signs at beaches, etc. (Zhang et al., 2013; Chen et al., 2015; Qian et al., 2021; Wynne et 

al., 2013). In contrast, longer-lead (months) pre-season predictions of expected algae conditions 

may allow lake managers to address a different set of actions (e.g. life-guard training, public 

awareness, etc.) and decisions, (e.g., testing and monitoring budgets and plans).  Together, these 

predictions can provide decision makers with multi-scale information to inform appropriate actions 

at various lead times. However, season-ahead predictions for water quality have received relatively 

little attention.  

 

Longer-lead predictions of oceanic chlorophyll-a and inland nutrient loading have been developed 

with some success (e.g. Cho et al., 2016; Park et al., 2019; Rousseaux et al., 2021), but little 

attention has been devoted to inland lakes. Long-lead predictions of algae that do exist typically 

focus on singular metrics (often mean biomass) to characterize the potential loss of ecosystem 

services due to algae accumulation, however, further characterization may be warranted. For 

example, Wilkinson et al., (2022) define three metrics to characterize algae conditions, including: 

magnitude (mean seasonal chlorophyll), severity (peak seasonal chlorophyll), and duration (length 

of time chlorophyll is above a threshold concentration). In addition to information provided by 

mean biomass, this approach provides lake managers with information that specifically addresses 

two key management concerns related to algae: the potential for severe consequences of algae 

blooms such as fish kills and toxin production, and length of time a lake may be unfit for recreation.  

Long-lead predictions also often rely predominantly on nutrient loads as predictors (R C Lathrop 
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et al., 1998; C A Stow et al., 1997; Stumpf, Johnson, et al., 2016), however consideration of 

relevant hydroclimatic predictors has the potential to enhance prediction performance and expand 

the availability of water quality predictions to many small inland lakes (Beal et al., 2021). There 

is a large and long body of evidence illustrating the impacts of external nutrient loading on 

phytoplankton growth in lakes (J. A. Elliott et al., 2006; Kane et al., 2014; Reynolds, 1984; D W 

Schindler, 1978; Vollenweider, 1971). Phosphorus and nitrogen are widely considered the most 

important nutrients for phytoplankton growth in freshwater (D W Schindler, 1971; David W 

Schindler, 1977). Transportation of phosphorus and nitrogen into a lake from the surrounding 

watershed is an important driver of algae abundance in many systems. Nutrient transport is 

influenced by global and local hydroclimatic variables, and thus also represent important processes 

in determining algae abundance. Increased precipitation has been linked to increased fluxes of 

nitrogen and phosphorus (Sinha et al., 2017), particularly in extreme precipitation events (Stephen 

R Carpenter et al., 2015, 2018; Haygarth & Jarvis, 1997; Royer et al., 2006). Soil moisture 

conditions may also influence nutrient loading by regulating runoff potential (Kleinman et al., 

2006; R. Liu et al., 2014).  Finally, water temperature has also been shown to control 

phytoplankton biomass and growth rate (J. A. Elliott et al., 2006; Eppley, 1972; Konopka & Brock, 

1978; X. Liu et al., 2019; Robarts & Zohary, 1987; Trombetta et al., 2021), and is closely linked 

to local air temperature (Shuter et al., 1983; Woolway et al., 2020; S. Zhu et al., 2020). March-

June water temperature data are not readily available for all study lakes and are therefore not 

included in the final set of potential predictors. 

  

In addition to management applications, season-ahead forecasts at scale provide a unique 

opportunity to understand ecological relationships between hydroclimatic variables and water 
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quality (Houlahan et al., 2017). In particular, the relevance of global scale processes in determining 

algae biomass in inland lakes is not well studied. Several studies have identified teleconnections 

between large-scale climate phenomena and phytoplankton dynamics in inland lakes (Arhonditsis 

et al., 2004; da Rosa Wieliczko et al., 2021; Xiao et al., 2019), however, few studies exist that 

investigate the application of global climate patterns to chlorophyll-a prediction in inland lakes. 

Beal et al. (2021), developed a sub-seasonal (2-month lead) forecast of cyanobacteria biomass in 

Lake Mendota, Wisconsin (WI), conditioned on local hydroclimatic variables and teleconnections 

with global climate patterns. A large-scale analysis of season-ahead predictors of algae biomass is 

well suited to improve the understanding of dominant climate signals related to chlorophyll-a.  

   

Using chlorophyll-a time series from 178 lakes in the Northeast and Midwest U.S. we evaluated if 

global and local hydroclimatic processes can be used to predict algal magnitude, severity, and 

duration in each lake using a statistical modeling and forecast validation (hindcast) approach.  

 

Specifically, we address the following questions:  

1) Do local and global (sea surface temperature, SST) hydroclimatic variables correlate with 

chlorophyll metrics in a given lake? 

2) Are skillful predictions based on these variables possible for algal magnitude, duration, and 

severity? 

3) Can variability in forecast model performance be explained by static, lake-specific 

characteristics? 
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This modeling approach may provide insight into the role of local and global hydroclimatic 

variability in the development of peak season algal biomass, evaluate the ability of hydroclimatic 

variables to provide actionable information to lake managers at a seasonal timescale, and indicate 

which characteristics of small inland lakes make them ideal candidates for seasonal forecast 

development. 

 

3.2 Materials and Methods 

3.2.1 Lake Characterization and Selection 
Chlorophyll-a measurements, sampled at the surface of the lake and analyzed following project-

specific protocols for each lake, were obtained from LAGOS-NE (Patricia A. Soranno et al., 2017). 

The measurements range from 1982 to 2013 in the database, but several chlorophyll timeseries 

were extended through 2020 by collating additional measurements from the reporting agency or 

program referenced in LAGOS-NE for each lake. LAGOS-NE aggregates data from lakes located 

throughout the Midwest and Northeast U.S. In this region, chlorophyll-a tends to reach peak 

concentrations between July and October (JASO) (Figure 3-1). The data from this period were 

used to calculate three chlorophyll metrics: magnitude, severity, and duration (see explanation 

below) for each lake year. To adequately characterize July-October chlorophyll-a metrics, 

sufficiently long observational records and frequent within-season sampling are needed. 

Therefore, lakes for this analysis needed at least 15 years of July-October chlorophyll-a 

measurements and a minimum sampling frequency of once every 14 days, following the selection 

methods of Wilkinson et al. (2022). Based on these requirements, 178 lakes were identified from 

10 states in the Midwest (Michigan, Wisconsin, Minnesota, Ohio, and Missouri; 64 lakes) and 

Northeast (New York, Vermont, Rhode Island, Pennsylvania, and Maine; 114 lakes) U.S. The 
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chlorophyll data were log-transformed for analysis to create a Gaussian-like distribution. Selected 

lakes had an average depth of 15.8 meters (min=1.2 m, max=198.4 m) and an average area of 

1297.9 hectares (min=1.4 ha, max=113,496.5 ha). 

 

Figure 3-1. Candidate lakes for model development in the Northeast and Midwest U.S. (a), 
including mean JASO chlorophyll-a (µg/L) concentrations (b) and mean monthly chlorophyll-a 
values (c). Points in (b) and (c) represent values for each lake. 

3.2.2 Chlorophyll Metrics  
To characterize (and eventually predict) algal conditions in each lake year during  the July-October 

season, three metrics were used: magnitude, severity, and duration of chlorophyll-a, as defined by 

Wilkinson et al. (2022). Magnitude is the mean chlorophyll-a concentration in each lake year, and 

duration is the portion of the season during which chlorophyll-a concentrations exceed a threshold 

concentration for recreational value based on Angradi et al. (2018). Here, the severity metric has 

been altered from Wilkinson et al. (2022) and is defined as a function of magnitude. Seasons in 
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which magnitude exceeds the 95th percentile of all historical chlorophyll concentrations (rather 

than year specific concentrations) are categorized as severe. On an inter-annual timescale, 

magnitude characterizes the average conditions during the peak season and the corresponding 

impacts on ecosystem services. Severity reflects the probability of extreme algae biomass 

(magnitude) that is most likely to result in severe consequences like toxin production and fish kills. 

Finally, duration is the persistence of high algal biomass associated with a loss of recreational 

value during the summer, peak season. The threshold concentrations used here are developed for 

two ecoregions (“Mountains” and “Plains”) and vary in each region based on recreational user’s 

expectations for water quality. Because these are large regions, lakes that fall below or above the 

chlorophyll-a threshold in nearly all sampling events are removed from analysis to avoid 

artificially inflating overall forecast skill.  Together, these metrics may provide an enhanced 

understanding of algae conditions during the peak season of algal production, with prospects for 

more refined actionable information. Compared to a singular forecast of mean chlorophyll 

(magnitude), a forecast that additionally provides advanced warning of protracted water quality 

impairment (duration) and the potential for severe consequences of algae growth (severity) allows 

for more nuanced decision making around budgeting, testing, and communicating water quality 

expectations with the public. The extent to which these three metrics are correlated with local and 

global climate variables and predictable across a diverse set of lakes is the focus of this work.  

 

3.2.3 Predictor variable selection 
To address whether local and global hydroclimatic variables are correlated with chlorophyll 

metrics in a given lake, we evaluate to what extent pre-season (March through June) observations 

of local and global hydroclimate variables are correlated with magnitude and duration for each 
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lake. Correlations for severity were not evaluated independently in this analysis as the severity 

metric is a function of magnitude. In addition to identifying common local and global 

hydroclimatic variables correlated with chlorophyll metrics, this analysis was used to identify 

variables that would be used in the development of each lake-specific forecasting model, and the 

validation of each model in a hindcasting analysis. The hindcasting analysis uses the lake-specific 

forecasting model to predict each year in the chlorophyll metric timeseries without predictor 

information from the year of interest, simulating a forecast for model validation. Specifically, we 

included March-June  variables from readily available, gridded datasets that were connected to 

physical processes that may affect magnitude and duration including (Table 3-1): total 

precipitation (mm), mean air temperature (°C), mean volumetric soil moisture (m-3/m-3), the sum 

of daily precipitation events exceeding 20 (40) mm for Midwest (Northeast) watersheds, and 

global sea surface temperature (SST) anomalies (°C). Methods for evaluating SST anomalies as 

predictors are described below. Additionally, we evaluated if pre-season chlorophyll-a, which 

reflects in-situ processes and the nutrient availability at the start of the season, is correlated with 

peak-season chlorophyll metrics. Excluding extreme events, all metrics were averaged over the 

March-June season.  

  

As discussed previously, local hydrology regulates nutrient transport into lakes from the 

surrounding watershed, which may ultimately influence algae abundance. The influence of local 

hydrology-based candidate predictors (precipitation, extreme events, and soil moisture) may vary 

based on land use and topography within a lake’s watershed. Therefore, local hydrology predictors 

were evaluated using a correlation analysis at each grid within each lake’s HUC12 watershed. 

HUC12 watershed polygons (Watershed Boundary Dataset, 2021) were subset to only include 
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areas higher in elevation than the corresponding lake (Figure 3-A.1) using gridded elevation data 

for each watershed from the elevatr package for the R statistical programming language (Hollister 

et al., 2021).  The timeseries of candidate predictor variables from each grid intersecting the 

watershed polygon was used in the correlation analysis as was an average of all intersecting grids. 

The grid with the strongest, statistically significant correlation was retained for the subsequent 

hindcasting analysis. High precipitation events may have a more significant influence on overall 

nutrient loading than total precipitation (Stephen R Carpenter et al., 2015), however, precipitation 

events that lead to large loading events may vary by region due to land use topography, and nutrient 

availability. Therefore, separate thresholds were chosen for extreme precipitation events in 

Midwest (20 mm) and Northeast (40 mm) watersheds based on a sensitivity analysis of significant 

correlations between high precipitation events and peak-season chlorophyll-a magnitude 

conducted for each region.  

 

 

Table 3-1 Variables used in correlation analysis with peak season chlorophyll-a metrics, 
including data source and resolution. 

Predictors (March-June) Source Resolution 

Total precipitation (mm) PRISM 4km 
Mean air temperature (°C) PRISM  4km 

Mean volumetric soil moisture (m-3/m-3) Copernicus Climate Change Service 0.25° 

Precipitation events exceeding 20 (40) mm 
in Midwest (Northeast) watersheds 

PRISM 4km 

Sea surface temperature anomalies (°C) NOAA ERSST 2° 

Pre-season Chlorophyll-a (µg/L) LAGOS In-situ 

 

On a global scale, pre-season sea surface temperatures can influence in-season precipitation and 

temperature over the U.S. through modulation of atmospheric flow and thus indirectly influence 
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peak-season chlorophyll metrics (Barnston, 1994; Giannini et al., 2000; Markowski & North, 

2003). SSTs evolve slowly, with persistent (months to years) anomalies, and thus can serve well 

as predictors at seasonal timescales (Barnett, 1981). To identify oceanic regions with strong 

teleconnections to the Northeast and Midwest U.S., global pre-season sea surface temperature 

(SST) anomaly grids were correlated with each lake’s magnitude timeseries (Figure A.2). Not 

surprisingly, correlation patterns, and thus oceanic regions of influence, vary between the Midwest 

and Northeast U.S. (Ropelewski and Halpert, 1987; CPC, 1997; Enfield et al., 2001; Tootle et al., 

2005), therefore identification of teleconnections is performed separately for the Midwest and 

Northeast. The number of significant correlations with chlorophyll-a timeseries were tallied for 

each SST grid and mapped to identify oceanic regions in which SST grids were associated with 

algae abundance in the Northeast and Midwest. SST grids that were significantly correlated with 

a large fraction of lakes (>10 for Midwest, >20 for Northeast) were applied to a principal 

component analysis (PCA) to extract the dominant modes of variability in SST data and reduce 

the dimensionality of candidate SST predictors. Given the large number of SST grids, there is a 

high likelihood of generating spurious correlations. Performing PCA extracts the dominant climate 

signals and minimizes the effect of spuriously correlated grids. Principal components (PCs) that 

explained more than 5% of the variance in SST anomaly data were retained as candidate predictors. 

  

The time series of variables in Table 1 were used in a correlation analysis with chlorophyll 

magnitude and duration for each lake to identify predictor variables for forecast model 

development and the subsequent hindcasting analysis (Figure 3-2). For each lake, all variables that 

were significantly correlated with the chlorophyll metric (p<0.05) were retained for the forecasting 

model. Out of the 178 lakes evaluated, 135 lakes (50 Midwest; 85 Northeast) had at least one 
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significant predictor variable for magnitude and 82 lakes (30 Midwest; 52 Northeast) for duration. 

Severity is a function of magnitude and therefore retained the same set of predictors. 

 

 

Figure 3-2. The distribution of Pearson correlations between candidate predictors and algae 
metrics for all lakes. 

 

3.2.4 Forecast model development 
 Two forecasting models were developed for each lake, one focused on magnitude (including 

severity) and a separate model for duration (proportion of sampling events above the impairment 

threshold). The array of processes and feedbacks influencing algae growth and abundance are 

notoriously complex (Glibert & Burkholder, 2006; Ho et al., 2019; Roelke & Buyukates, 2001), 

motivating a statistical modeling approach over a process based/physical model approach. For 
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lakes with only one significant predictor from the correlation analysis, a simple linear regression 

between that variable and the chlorophyll metric was constructed for the model to be used in the 

hindcast analysis. For lakes with multiple significant predictors, a principal component analysis 

and regression approach was used to build the forecasting model. PCA effectively deals with any 

multi-collinearity present between predictors and therefore does not artificially inflate predictive 

skill. Here, principal components were retained for the forecast model if they explained more than 

10% of the variance. This modeling approach assumes relationships between candidate predictors 

and peak season algae metrics on a seasonal timescale to be linear, however, given that many 

drivers of algae growth on short timescales (days to weeks) are considered nonlinear processes, 

model residuals were evaluated for evidence of nonlinear relationships. Autocorrelation was also 

investigated in each of the candidate predictors and algae metrics. Except for SST pc1, which 

likely captures baseline increases in the temperature of the Pacific Ocean, less than 10% of 

timeseries for each variable had more than two statistically significant autocorrelations (lag 1-10). 

Additionally, random forest regression, a nonlinear, nonparametric modeling approach, was tested 

to determine if there were notable changes in model skill due to potential nonlinearities or 

autocorrelation. Statistical models were developed using R version 4.2.1. 

  

A leave one out cross-validation approach was used to evaluate model performance for each lake 

and chlorophyll metric (hindcasting). In short, for each lake the observed value from one year of 

the chlorophyll metrics was removed from the timeseries and the forecasting models (above) were 

used to predict the missing value. This process was done iteratively for all years in the timeseries 

for all lakes individually and both magnitude (including severity) and duration. A prediction 

ensemble was created for each peak-season chlorophyll metric in a lake year based on model errors 
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(difference between observed and predicted chlorophyll-a) across the hindcast at that lake. 

Ensemble members are generated from a normal distribution of errors with mean zero, based on 

maximum likelihood estimation. For each time-step, 100 random draws from the distribution are 

added to the magnitude and duration predictions to form the ensemble prediction (Alexander et 

al., 2019; Helsel & Hirsch, 1992). 

 

3.2.5 Performance Measures 
To assess model performance, four measures were adopted: correlation coefficient (R2), root mean 

square error (RMSE), ranked probability skill score (RPSS), and Heidke skill score (HSS) 

(Epstein, 1969; Heidke, 1926). HSS and RPSS are measures of categorical skill, interpreted as a 

percent improvement over a reference forecast. A standard forecast for hydro-climate prediction 

is an equal-odds (climatological) distribution of historical observations. Here, the distribution of 

historical observations of chlorophyll-a metrics for each lake are split into four categories 

representing below normal, near normal, above normal, and severe algae conditions. If no 

predictive information is present, a probabilistic prediction of JASO chlorophyll-a would default 

to climatology (33% chance of below normal, 33% chance of near normal conditions, 28% chance 

of above normal, and 5% chance of severe conditions). Similarly, observations of duration are split 

into two categories based on mean duration to represent expected below and above normal 

conditions. Forecast models developed for magnitude and duration generate probabilistic 

predictions of each category that are compared against climatology (equal odds). This allows for 

a direct comparison between the forecast models developed here and a benchmark climatology 

model to understand the prospects for enhanced predictive skill. In general, prediction models 

outperform climatology when the predicted probability of the observed category is greater than the 
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climatological probability (e.g. 50% for two categories, 33% for three categories). HSS is defined 

in previous chapters. HSS values range from -∞ to 1, where negative values represent a forecast 

that performs worse than climatology, 0 represents no skill, and 1 represents a perfect prediction 

model. The RPSS, defined previously, is a categorical skill score that increasingly penalizes an 

ensemble forecast for assigning greater probability to categories farther from the observed 

category. RPSS values range from -∞ to 1, where 0 represents no skill and 1 represents a perfect 

forecast. RPSS values are calculated for each year and the median value is reported. 

  

Finally, we evaluated if variability in hindcast model performance (forecasting skill) among lakes 

was related to static characteristics of the ecosystems. We compared forecasting skill among 

categories of trophic state, lake area, land cover, and geographic region among lakes. The trophic 

state index (TSI) is calculated based on chlorophyll-a and is categorized as oligotrophic (TSI<40), 

mesotrophic (40£TSI<50), eutrophic (50£TSI<70), and hypereutrophic (TSI>70) (Eq. 5) (Carlson, 

1977). 

(6)    TSI(CHL) 	= 	9.81	ln(CHL) 	+ 	30.6 

 

 

3.3 Results 

3.3.5 Leading Algae Characteristic Predictors 
The three most frequently retained predictors include pre-season chlorophyll-a, PC1 from SSTs, 

and extreme events for magnitude models. The most frequently retained predictors for duration 

models include pre-season chlorophyll-a, and PC1 and PC2 based on SSTs. PCs derived from 

SSTs typically represent dominant large-scale climate signals, potential physical processes are 
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explored further in the discussion. Magnitude and duration metrics are uncorrelated in most lakes 

(only 11are significantly correlated at the 95% confidence level), suggesting unique seasonal 

drivers for each metric in most lakes. Compared to magnitude models, duration models have a 

more even distribution of retained predictors (Figure 3-3). In magnitude models pre-season 

chlorophyll-a meets the selection criteria in 63% of models, SST PC1 in 42% of models, and 

extreme events in 16%. In duration models, SST PC2 is selected in 38% of models, SST PC1 in 

33%, and pre-season chlorophyll-a in 20%. In both magnitude and duration models, all three 

predictors are unlikely to appear in the same model, suggesting variable influence of these 

processes by lake. In magnitude models, all three of the most frequently retained predictors are 

included in 7% of lakes. In contrast, one of the three predictors in included in 87% of magnitude 

models. In duration models, all three of the most frequently retained predictors are included for 

only two lakes (2.5%), while one of the three predictors is included in 71% of duration models. 
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Figure 3-3. The percent of lakes for which each predictor is statistically significantly correlated 
with magnitude (top) and duration (bottom); 178 lakes evaluated. 

Preseason SST grids that are statistically significantly correlated with chlorophyll-a timeseries 

from at least 20 (10) lakes are retained for the Northeast (Midwest) region (Figure 3-4). SST 

regions retained for both Midwest and Northeast lakes indicate teleconnection signals from the 

northern Atlantic and the equatorial pacific. For Midwestern lakes, more grids are retained in the 

mid and northern Atlantic compared to the Pacific. Comparatively, the strongest signals for 

northeastern lakes are split more evenly between the upper Atlantic and the equatorial pacific.  
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Figure 3-4. Number of preseason SST grids that are statistically significantly correlated with 
chlorophyll-a timeseries (left column) from lakes in the Northeast (top row) and Midwest 
(bottom row).  Grids retained (right column) have at least 20 (10) significantly correlated lakes 
for the Northeast (Midwest). 

While local hydroclimatic predictors are present in a significant proportion of magnitude and 

duration models, in most instances they are retained with SSTs or pre-season chlorophyll-a, 

particularly in magnitude models. Some combination of local hydroclimatic predictors 

(precipitation, extreme events, soil moisture, and air temperature) are retained in 27% of 

magnitude prediction models, while just 9% of magnitude models utilize only local hydroclimatic 

predictors (i.e., without SST PCs or preseason chlorophyll-a). Compared to magnitude models, a 

larger proportion of duration models are built solely with local hydroclimatic variables. 

Hydroclimatic predictors are retained in 38% duration models, and 22% of models are built 

exclusively with hydroclimatic predictors (Figure 3-A.3). Finally, 86% of lakes have 1 or 2 

significant predictors while the maximum number of predictors retained for a lake is 5 (Figure 3-

A.4). 
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3.3.6 Model Performance 
For magnitude prediction models, simple linear regression (single predictor) is applied to 53% of 

lakes, whereas principal component regression (PCR, principal component analysis with multiple 

linear repression) is applied to 47% of lakes. A cross-validated hindcast assessment for all lakes 

results in a mean R2 value of 0.28 (0-0.85) and a mean RMSE of 0.47 (0.29-1.21). For categorical 

performance, the mean HSS and RPSS values are 0.17 and 0.10, respectively. Additionally, 87% 

(70%) of lake models have HSS (RPSS) values greater than zero, indicating an improvement of 

prediction skill over climatology for most lakes. Further, these models predict above normal and 

below normal algae abundance moderately well (Figure 3-5), with RPSS values of 0.39 and 0.30 

respectively. Severe events prove difficult to predict; approximately 51% of magnitude models 

accurately predict an above normal or severe year when an elevated algae event is observed (i.e., 

not below or near normal) for more than half of observed elevated algae events (Figure 3-6). 
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Figure 3-5. The proportion of each prediction category for each observed category (all lakes). 
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Figure 3-6. Lake models that correctly predict more (less) than half of elevated magnitude (top) 
and duration (bottom) events, illustrated as open (closed) circles. 

For duration prediction models, simple linear regression is applied to 78% of lakes and PCR to 

22% of lakes. Mean R2 and RMSE are 0.23 (0-0.65) and 0.34 (0.16-0.42), respectively; mean HSS 

and RPSS scores are 0.39 and 0.42, respectively, and 96% (94%) of models improve over 

climatology based on HSS (RPSS). In a hindcast assessment, durations of above normal are 

correctly predicted for more than half the available timeseries in 87% of lakes (Figure 6). 

Additionally, considering all models, 67% of above normal durations are accurately predicted 

(Figure 3-5), a stark improvement over climatology for most lakes. 
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Average model skill is similar between regions is similar, however, Northeast lake forecast models 

outperform Midwest lake models where differences in average skill scores occur (Figure 3-7). This 

may be expected given that the primary difference in predictor selection between models in the 

Northeast and Midwest is selection of relevant SST grids. Relevant Northeast SST regions are 

more coherent than regions for the Midwest, which may represent a stronger influence on lake 

processes. The minimal differences may also point to consistency in the predictive power of local 

and within-lake variables between the Northeast and Midwest. 

 

 

Figure 3-7. Average model skill scores for duration and magnitude models by region. 

To evaluate the presence of nonlinear relationships, residuals between predicted and observed 

chlorophyll metrics were investigated for each lake. Residuals generally appeared random, 

suggesting that the relationships between the pre-season drivers and peak season chlorophyll 

metrics investigated for this analysis can be approximated as linear. Hindcasts were also generated 
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using random forest regression to test for an increase in predictive skill, which may indicate the 

presence on nonlinear relationships. Random forests models were created with the same predictors 

selected for PCR, each with 500 trees. Cross validated hindcast results are similar or slightly worse 

than PCR for both Magnitude (Mean: R2 = 0.25, RMSE = 0.48, HSS = 0.12, RPSS = 0.04) and 

Duration (Mean: R2 = 0.23, RMSE = 0.34, HSS = 0.34, RPSS = 0.39), suggesting that PCR is a 

suitable approach. 

3.4 Discussion 

3.4.1 Regional Characteristics 
Predictions of peak season algae growth at scale provide insights into relevant global and local-

scale processes setting the conditions for peak season algae biomass. Pre-season SSTs and 

chlorophyll-a observations provide the most predictive power for both magnitude and duration 

metrics, reflecting the importance of these scales. However, while SSTs and chlorophyll-a are 

selected most frequently as predictors for both magnitude and duration, the importance of each 

predictor is mixed by region (Figure 8). Given that SST-atmosphere teleconnections typically have 

regional influence, spatial variability in performance of SST predictors may be the result of 

localized pre-season processes superseding the influence of large-scale climatic processes in peak 

season algae biomass. For example, food web dynamics are well established as having significant 

influence on aquatic primary productivity (S R Carpenter et al., 1987; Lampert et al., 1986; Vanni 

& Temte, 1990). In this study, however, the representation of food web dynamics is limited to pre-

season algae abundance. While this variable is shown to be a powerful predictor of peak season 

productivity in many lakes, the effect of pre-season predatory control on algae communities is 

unrepresented. This may limit the skill of prediction models for lakes in which zooplankton grazing 

plays a significant role in determining algae populations in the summer and early fall. This 
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limitation may be responsible for differences in average model performance. For example, 

magnitude and duration models in which pre-season chlorophyll-a is an important predictor, and 

SSTs are not, perform worse on average than the inverse (Table 2).  Lakes retaining only pre-

season chlorophyll-a may be more dependent on within-lake processes, many of which are not 

represented in these models. This may explain the less robust predictive signal from pre-season 

chlorophyll-a in these lakes, compared to lakes more heavily influenced by SST-atmosphere 

teleconnections. 

 

Figure 3-8. Lakes in which chlorophyll-a, SSTs, both, or neither are selected for magnitude 
predictions. 
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Table 3-2 Average skill scores for magnitude and duration models in which pre-season 
chlorophyll-a and/or SSTs are utilized as predictors. 

Variable High/Severe Correct    RPSS HSS R2 RMSE Predictand 
Both 0.58 0.22 0.20 0.43 0.49 

Magnitude MAMJ chlorophyll-a 0.47 0.03 0.15 0.24 0.50 
SSTs 0.51 0.08 0.16 0.24 0.40 
Other 0.44 0.08 0.14 0.17 0.43 
Both 0.65 0.55 0.40 0.31 0.33 

Duration 
MAMJ chlorophyll-a 0.56 0.12 0.10 0.18 0.36 
SSTs 0.70 0.43 0.41 0.21 0.34 
Other 0.67 0.22 0.27 0.11 0.33 

 

As discussed previously, relevant SST anomaly grids are identified for the Northeast and Midwest 

separately. The PCs of selected SST anomaly grids represent the dominant climate signals 

affecting the selected lakes across the Northeast and Midwest U.S. and may therefore be associated 

with large-scale climate phenomena that have well-established teleconnections with climate 

conditions across North America. Two dominant climate phenomena with variable impacts on 

local hydroclimatic conditions across the Northeast and Midwest include the North Atlantic 

Oscillation (NAO) and the El Niño Southern Oscillation (ENSO) (Ropelewski & Halpert, 1987; 

Visbeck et al., 2001). In the Northeast, two of the three SST PCs used as potential predictors are 

significantly correlated with both the NAO index and multivariate ENSO index (MEI). In the 

Midwest, two PCs are significantly correlated with the MEI and all three are significantly 

correlated with the NAO index. This suggests that interannual variability in local climate, and in 

lakes, across the Northeast and Midwest is associated with both ENSO and NAO-like climate 

signals (Figure A.5).  

 

Compared to pre-season chlorophyll and SSTs, other variables considered here provide only 

modest skill in predicting algae characteristics for most lakes. Despite the perceived importance 
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of local land and hydrologic variables modulating inflow and lake processes, few were retained as 

predictors; however, land use and other watershed characteristics may be important in determining 

the relevance of these predictors. Local hydrology might be expected to play a larger role in 

promoting algae growth in agricultural watersheds, given the effect of runoff on nutrient loading 

(Castillo et al., 2000; Mander et al., 2000). This is reflected in predictor selection for model 

construction, for example, magnitude models in watersheds with greater than 25% agricultural 

land are nearly twice as likely to retain a local hydrologic predictor compared to models in 

watersheds with less agricultural land (18.4% vs. 36%). March-June air temperatures are also 

retained in relatively few forecasting models overall but are notably included in more duration 

models than any of the local hydrologic predictors. As discussed previously, the importance of 

temperature in determining algae growth is well established, however, the air temperature 

predictor included here may be too simplistic to capture the relationship across all lakes. 

Significant variability in prediction skill exists among lakes with little evidence of spatial patterns. 

On average, skill scores are higher in the Northeast compared to the Midwest, however, variability 

within both regions is significant. The frequency of predictor retention and the average magnitude 

of significant correlations between predictor variables and algae magnitude are similar by region 

particularly for the most frequently selected predictors, including SSTs, pre-season chlorophyll-a, 

and extreme events (within 0.05). SST PC1 and extreme events in the Northeast have slightly 

higher correlations with algae magnitude than in the Midwest, which may help explain slightly 

higher model skill scores in the Northeast. The magnitude of correlation between predictor 

variables and algae duration is also similar, however, SST PC2 is retained much more often in 

Northeast models compared to Midwest models (25% of lakes vs 5% of lakes). Given that SST 

PC2 is correlated with the NAO, this might indicate a greater influence of the NAO on duration 



 
 

83 

in the Northeast and help explain the slightly higher skill scores of duration models in the 

Northeast.  

 

Similarly, distributions of skill scores across trophic state and lake area are variable (Figure 9).  

On average, magnitude models appear to accurately predict increased algae abundances more 

frequently in larger lakes and in mesotrophic and oligotrophic lakes. Duration models have 

approximately equal distributions of skill across lake area and trophic state. While the differences 

in magnitude model skill based on lake area and TSI category are notable, they were found to be 

statistically insignificant in an analysis of variance (ANOVA; lake area P =0.24, TSI P = 0.36), 

therefore it may be difficult to draw definitive conclusions from these results. There are a few 

potential explanations for the variability in magnitude model performance. In an analysis of lake 

size and primary productivity in the Canadian Shield lakes, Fee et al., (1994) found that larger 

lakes more efficiently convert external nutrient loads into phytoplankton biomass due to more 

frequent resuspension of sediments, and receive a higher proportion of nutrient loads from runoff 

rather than direct precipitation. The focus in this analysis on hydroclimatic predictors of nutrient 

runoff is therefore consistent with increased predictive skill in larger lakes. Notably, air 

temperature did not stand out as an important predictor of algae abundance at a season-ahead lead 

time. As discussed previously, temperature is well-established as an important variable in algae 

growth. In some cases warm temperatures have been shown to hold greater influence over 

phytoplankton growth (Salmaso et al., 2012), and cyanobacteria growth in eutrophic lakes (Rigosi 

et al., 2014). The air temperature predictor used here may be too simplistic to capture peak season 

water temperatures, which may disproportionately contribute to lower model performance in 

eutrophic lakes. Rusak et al., (2018), found a positive relationship between variability of 
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chlorophyll-a and trophic status in 18 globally distributed lakes, which may also reduce 

predictability (Cottingham et al., 2000). This may explain the moderate reduction in average skill 

in magnitude models for eutrophic lakes compared to lakes of a lower trophic status. 

 

 

Figure 3-9. Violin plots of the proportion of above normal or severe events correctly predicted 
for each algae metric, compared to lake area (ha) and Trophic State Index (TSI). 

 

Variability in prediction skill can also exist between similar or proximal lakes. Mariaville lake and 

Duansespurg reservoir are two eutrophic waterbodies located in eastern New York, approximately 

five miles apart. Mariaville lake has one of the best performing magnitude prediction models 

among the lakes considered and accurately predicts above normal and severe chlorophyll-a 

conditions for each of the five years in which they are observed. Comparatively, Duansespurg 

reservoir only correctly predicts two out of six observed events (Figure 3-10). In 1999, for 
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example, the Mariaville lake model accurately predicts a large probability of above normal 

conditions (observed state) and is even able to differentiate between above normal and severe. 

Comparatively, for the same year, the Duansepurg model only predicts a 1% chance of below 

normal conditions (observed state), and both models predict an approximately 80% chance of 

above normal or severe conditions in 1999 (77% Mariaville, 85% Duanespurg). The Mariaville 

lake model includes SSTs (PC1) and pre-season chlorophyll-a as predictors, whereas the 

Duansespurg model includes only SSTs (PC2). The performance of the Duanespurg model 

compared to the Mariaville model again suggests that while global processes are important in 

setting conditions for peak season algae biomass, and both explain significant variability in the 

magnitude timeseries of both lakes, within-lake processes that may determine interannual 

variability of peak season algae abundance are not entirely captured by the hydroclimatic 

predictors investigated here, or by pre-season algae abundance. The variability in forecast skill and 

predictive power of hydroclimatic variables among study lakes highlights the importance of 

catchment- and lake-specific processes and characteristics in determining the effects of external 

climate forcing on peak-season algae abundance. Catchment soil types, land use, and location, as 

well as lake area, depth, and management may all influence the susceptibility of lake systems to 

climate variables (Moss, 2012), and may alter predictive skill. 
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Figure 3-10. Probabilities of magnitude prediction categories for Mariaville Lake and 
Duanespurg reservoir, New York. Diamonds indicate the observed category. 

 

While forecasting models developed on the selected pre-season predictors cannot entirely capture 

the nuances of peak season algae biomass, it is notable that relatively simplistic statistical models 

based on global sea surface temperatures and pre-season chlorophyll-a show significant skill in 
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many of the selected lakes. For these lakes, season-ahead prediction of algae metrics may provide 

actionable information to lake managers and public health officials based on easily accessible 

gridded datasets and basic water quality monitoring.  

3.5 Conclusions 
In this chapter, season ahead predictions for July-October algae magnitude and duration are 

developed for 135 lakes identified across the Northeast and Midwest U.S. to inform lake 

management decisions prior to peak algae biomass. Prediction models are conditioned on local 

and global scale pre-season (March-June), readily available, gridded hydroclimatic variables and 

pre-season chlorophyll-a. Global SST and pre-season chlorophyll-a are the most common sources 

of predictive power across lake models. SST grids selected for prediction model development are 

concentrated in the northern Atlantic and equatorial Pacific, with characteristics of both ENSO 

and NAO.  

 

Forecasting models outperform climatology in 87% (70%) of magnitude models and in 96% (94%) 

of duration models based on HSS (RPSS). Additionally, skillful prediction of elevated algae 

metrics, based on magnitude and duration, is evident in more than half of the included lakes.  As 

cultural eutrophication fuels an expansion of harmful algae in lakes across the U.S., prediction 

tools to inform water quality management, particularly those conditioned on easily accessible data, 

may incentive preparedness actions and lake management decisions toward protecting public 

health and informing recreational activities. 
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Chapter 4. A Machine Learning and Remote Sensing-based Model for Algae 
Pigment and Dissolved Oxygen Retrieval on a Small Inland Lake 

Adapted from: Beal, M. R., Özdoğan, M., & Block, P. J. (2024). A machine learning and remote 

sensing-based model for algae pigment and dissolved oxygen retrieval on a small inland lake. 

Water Resources Research, 60(3), e2023WR035744. DOI: 10.1029/2023WR035744 

4.1 Introduction 
In recent decades, many waterbodies have experienced an increase in eutrophication and the 

prevalence of harmful algae, resulting from widespread disturbance of phosphorus and nitrogen 

cycles, tied to large scale land cover and climate change (O’Neil et al., 2012; Paerl & Huisman, 

2008; Paerl & Paul, 2012). Excessive algae growth can lead to negative consequences for 

ecosystem function (Huisman et al., 2018), economic opportunity (Dodds et al., 2009), and human 

and animal health (Carmichael & Boyer, 2016), due to the capability for toxin production in certain 

species. Cyanobacteria (blue-green algae) are a species of photosynthetic microorganisms of 

particular concern in freshwater systems (Paerl et al., 2001), that are capable of producing a range 

of toxins (Carmichael, 1994, 2001). Rapid growth of cyanobacteria may result in cyanobacterial 

harmful algal blooms (cHABs). Given the threats posed by cHABs, water managers urgently need 

novel techniques to monitor and manage cyanobacteria in freshwater systems.  

 

Due to the cost-effectiveness and regular availability of satellite image data, remote sensing has 

become a powerful tool for water quality monitoring (Yan et al., 2018). In remote sensing, 

chlorophyll-a and phycocyanin are often used as surrogates for cyanobacteria abundance, 

chlorophyll-a representing all phytoplankton and phycocyanin being characteristic of 

cyanobacteria (Dekker, 1993). Both chlorophyll-a and phycocyanin may be useful from a 

management perspective. Stumpf et al (2016), found both chlorophyll-a and phycocyanin to be 

https://doi.org/10.1029/2023wr035744
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useful in statistical modeling for retrieval of cyanobacterial toxins. Additionally, the ability to 

discriminate between cyanobacteria and other algae species during a bloom event may allow water 

managers to make informed decisions about closing beaches or communicating water quality 

information to the public. Satellite-based estimates of algae indicators may also supplement more 

costly in-situ sampling efforts. 

 

In addition to algal pigments, there is potential for retrieval of non-optical water quality variables 

via satellite imagery. Dissolved oxygen (DO) is an important indicator of water quality and can be 

strongly tied to phytoplankton dynamics in lakes (Qin et al., 2013). Phytoplankton increase DO 

concentrations through photosynthesis and consume DO during cellular respiration and 

decomposition. Sufficient DO concentrations are required to support many aquatic organisms, and 

abnormally low concentrations can result in distress or death of fish (Magee et al., 2019; Swingle, 

1968). While direct relationships between water reflectance and DO have shown low potential for 

DO monitoring (Gholizadeh et al., 2016), relationships between DO and other remotely-sensed 

water quality parameters have shown some promise (Kim et al., 2020). If in situ algae metrics are 

statistically related to DO, and can be adequately acquired from remotely sensed imagery, indirect 

estimates of DO concentrations may be possible. Such DO pseudo-observations may provide 

additional information in identifying algae growth (high DO) and deoxygenated areas that may 

suggest a risk to aquatic life.  

 

Phycocyanin and chlorophyll-a have similar spectral signatures, which makes differentiation 

difficult from a remote sensing perspective. Phycocyanin absorbs strongly at 620 nm, while 

chlorophyll-a absorbs between 665-681 nm (Stumpf, Davis, et al., 2016). Satellite imagery from 
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several missions have been used to identify algae blooms in recent decades. Landsat, MODIS 

(Moderate Resolution Imaging Spectroradiometer), and MERIS (Medium Resolution Imaging 

Spectrometer) were found by Shi et al (2019) to be the most widely used products for monitoring 

cHABs. The Landsat series’ long temporal record (~30 years) and fine spatial resolution (30m) 

provides a large and detailed imagery dataset frequently used for algae bloom monitoring (Boucher 

et al., 2018; Cao et al., 2020; Han & Jordan, 2005; Vincent et al., 2004). Similarly, the MODIS 

instrument, launched in 1999, has been used widely for water quality monitoring and identification 

of HABs (Becker et al., 2009; Binding et al., 2012). MODIS has a spatial resolution ranging 

between 250m and 1km, but a short revisit time (~one day) providing frequent observations useful 

for bloom monitoring. The MERIS instrument had a 10-year lifespan from 2002 – 2012. MERIS 

data has a 300m resolution and provides the best spectral resolution for monitoring inland water 

when compared to Landsat and MODIS (Shi et al., 2019). Unlike Landsat and MODIS, MERIS 

has bands located in spectral regions specific to both chlorophyll-a and phycocyanin making it 

well suited for detailed HAB characterization (Qi et al., 2014; Simis et al., 2005, 2007).  

 

While several remotely sensed products exist for monitoring harmful algae, this work focuses on 

estimation of harmful algae metrics using Sentinel-2 and Sentinel-3 imagery. The Ocean and Land 

Color Instrument (OLCI) onboard the Sentinel-3 satellite is well suited for phycocyanin and 

chlorophyll-a retrieval, having sensors for bands located at 620 nm and between 665-681 nm, and 

a near daily revisit time. Additionally, the OLCI was developed as a direct successor to the MERIS 

instrument, potentially allowing for methods developed on OLCI data to be applied to historical 

MERIS imagery.  The Multi Spectral Instrument (MSI) onboard the Sentinel-2 satellite does not 

have the spectral resolution or revisit time (~8 days for Sentinel-2) of Sentinel-3 but has a fine 
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spatial resolution for land and water bands ranging from 10-20 m compared to the 300 m spatial 

resolution of OLCI. This high spatial resolution may be beneficial for developing cHAB 

monitoring tools on small inland waterbodies. Sentinel-2's MSI data has also been shown to be 

compatible with Landsat 8’s OLI, potentially allowing for application of Sentinel-2 based water 

quality retrieval methods to a larger imagery dataset (Pahlevan et al., 2019). 

 

In recent years, machine learning techniques have been successful in retrieving water quality 

parameters from satellite imagery (Silveira Kupssinskü et al., 2020; Su et al., 2021). Given the 

potential benefits of Sentinel-3’s OLCI and Sentinel-2’s MSI for water quality monitoring, the aim 

of this work is twofold: (1) to evaluate the ability of each instrument to retrieve chlorophyll-a, 

phycocyanin, and the phycocyanin: chlorophyll-a ratio (Pc:Chla below) from a small inland lake 

using machine learning methods, and (2) to develop a novel machine-learning based approach for 

indirect satellite-based estimations of dissolved oxygen conditioned on algae pigment 

concentrations. 

4.2 Materials and Methods 

4.2.1 Study Site and Water Quality Sampling 
Despite its chronic water quality problems, little work has been done to test the efficacy of 

remotely sensed water quality monitoring methods on Lake Mendota. The workflow for 

development of remote sensing models has four main steps (1) in-situ sampling of water quality 

parameters during satellite overpasses, (2) downloading and processing relevant Sentinel-2 and 

Sentinel-3 imagery, (3) developing and validating machine learning models for estimation of algal 

pigments, and (4) development and validation of a machine learning model for indirect estimations 

of dissolved oxygen (Figure 4-1).  
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Figure 4-1. Flowchart describing remote sensing and machine learning workflow. 

To accurately represent spatial heterogeneity in Lake Mendota’s water quality, phycocyanin and 

chlorophyll-a measurements were taken at 35 locations across Mendota using a YSI EXO II Sonde 

(Figure 4-2). To capture spatial variability in water quality and surface reflectance, points are 

sampled at random locations within 35 grid boxes (Figure 4-2).  Point locations are randomized 

within each grid box before each sampling effort. This approach captures an array of sampling 
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locations but can still characterize regions of the lake (grids) over time. At each point the sonde 

was used to collect data in surface waters for two minutes. The sonde was allowed to calibrate for 

the first minute, and the final data used in analysis is averaged over the second minute at each 

point. Phycocyanin and chlorophyll-a measurements were recorded in Relative Fluorescence Units 

and converted to micrograms per liter (µg/L) using a linear transformation provided by the sonde. 

The Pc:Chla ratio is calculated at each sampling point by dividing the two quantities. DO values 

were also collected with the sonde and reported in mg/L. Sampling efforts were conducted 

approximately once per week during the summer (typically June-August) from 2019 – 2022. 

Starting in 2021, water quality samples were also taken at the site of the UW-Madison NTL-LTER 

water quality monitoring buoy. Sampling efforts coincided with satellite overpasses from Sentinel-

2 and Sentinel-3. Over four summers, 34 sampling trips were conducted generating 671 data points 

in total (Figure 4-3).  
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Figure 4-2. Lake Mendota sampling campaign on 2021-09-25 coinciding with a Sentinel-2 
overpass. The Sentinel-2 image is pictured in real color at 60m2 resolution. Red dots represent 
sample locations. 
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Figure 4-3. In situ chlorophyll-a, phycocyanin, Pc:Chla, and dissolved oxygen observations 
from sampling trips over the summers of 2019-2022. 

4.2.2 Satellite Data 
Sentinel-2 MSI and Sentinel-3 OLCI data are both made available by Copernicus (Copernicus, 

2022). Sentinel-2 and Sentinel-3 top-of-atmosphere (TOA) full resolution radiance images are 

obtained directly from the Copernicus Open Access Hub and processed with ACOLITE, an image 

processor developed for atmospheric correction and processing of satellite images for coastal and 

inland water applications (Vanhellemont & Ruddick, 2018, 2021), to provide surface reflectance 

values (Table 4-1). Sentinel-2 images are resampled to 60m.  
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Table 4-1. Atmospheric correction results. 

Satellite Band Top of Atmosphere ACOLITE 
Mean Standard Deviation Mean Standard Deviation 

Sentinel 2 

B1 0.43 0.28 0.018 0.011 
B2 0.41 0.29 0.024 0.011 
B3 0.38 0.27 0.044 0.021 
B4 0.38 0.31 0.020 0.014 
B5 0.39 0.31 0.024 0.016 
B6 0.39 0.31 0.017 0.015 
B7 0.40 0.32 0.018 0.015 
B8 0.40 0.33 0.015 0.014 
B8A 0.21 0.31 0.014 0.016 
B11 0.21 0.08 0.005 0.015 
B12 0.18 0.20 0.007 0.013 

Sentinel 3 

Oa01_radiance -1.0E+07 1.1E+07 0.05 0.04 
Oa02_radiance 1.95 1.20 0.01 0.00 
Oa03_radiance 1.89 1.24 0.04 0.04 
Oa04_radiance 1.80 1.30 0.04 0.04 
Oa05_radiance 1.51 1.17 0.04 0.03 
Oa06_radiance 1.69 1.35 0.05 0.03 
Oa07_radiance 1.05 0.89 0.07 0.03 
Oa08_radiance 0.96 0.86 0.04 0.03 
Oa09_radiance 1.01 0.93 0.03 0.03 
Oa10_radiance -5.8E+06 5.9E+06 0.03 0.03 
Oa11_radiance 0.69 0.63 0.01 0.01 
Oa12_radiance 0.69 0.64 0.03 0.03 
Oa13_radiance 0.49 0.54 0.04 0.03 
Oa14_radiance 0.37 0.40 0.04 0.04 
Oa15_radiance 0.35 0.35 0.04 0.04 
Oa16_radiance 0.44 0.41 0.04 0.04 
Oa17_radiance 0.39 0.36 0.03 0.04 
Oa18_radiance 0.38 0.36 0.03 0.04 
Oa19_radiance 0.30 0.29 0.02 0.02 
Oa21_radiance 0.13 0.14 0.03 0.04 

 

4.2.3 Machine Learning Approach 
A machine learning regression approach is adopted to model chlorophyll-a, phycocyanin, 

phycocyanin/chlorophyll-a. Models are developed separately for Sentinel-2 and Sentinel-3 
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images. Multiple machine learning architectures have shown promise in the retrieval of algae 

metrics and categorization of algal blooms using remotely sensed data (Hill et al., 2020). In this 

study, a random forest (RF) regression model and an artificial neural network (ANN) are trained 

on Sentinel-2 MSI and Sentinel-3 OLCI data. The random forest model is implemented using the 

sklearn package in python; the artificial neural network model leverages the Keras package. 

 

Random forests are created with a collection of tree-structured classifiers, generated by a random 

selection of training data, that collectively “vote” on an outcome (Breiman, 2001). RFs are often 

implemented as a regression in which the outcomes of individual trees are averaged to generate a 

continuous value result. This approach has become a commonly used regression and classification 

tool in remote sensing due its explanatory power, ability to select and rank the importance of input 

variables, and minimal tuning requirements (Belgiu & Drăguţ, 2016). 

 

Artificial Neural Networks are constructed using a collection of neurons and edges with associated 

weights. The weights are adjusted as the ANN processes training data, learning the relationship 

between inputs and outputs. These models have been used effectively to model the complex 

relationships between image reflectance and water quality parameters, but often require 

computationally expensive parameter tuning to achieve skillful results (Chebud et al., 2012). 

ANNs developed here use the rectified linear unit activation function and adam, a stochastic 

gradient descent optimization method. ANNs are tuned to determine a satisfactory number of 

epochs, batch size, and weight initializer using the scikit-learn package (Pedregosa et al., 2011). 

Uniform and normal initializers are tested.  
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To increase the effectiveness of machine learning models and identify the most important spectral 

features associated with phycocyanin and chlorophyll-a, several band combinations are included 

in the suite of model inputs (explanatory variables), in addition to each of the OLCI and MSI bands 

(Table 4-2). Many of these algorithms are taken from Beck et al. (2017), who generalize a number 

of satellite-specific chlorophyll-a and phycocyanin detection algorithms for use across a range of 

satellites, including Sentinel-2 and Sentinel-3. Algorithms modified by Beck et al. (2017) are 

credited to the original authors. To assess the importance of different bands and band algorithms, 

the Boruta variable selection approach is applied during the building of RF models (Kursa et al., 

2010). Boruta variable selection randomly shuffles each feature and tests original input variable 

against randomized ones in an iterative process. Features that are less relevant than random 

variables are removed from the set of inputs. Features are selected separately in each fold; the final 

model uses the features that are chosen in every fold-specific selection process. For consistency, 

the input variables selected for the RF are also used in the development of ANN models.  

 

It should be noted that Sentinel-2 cannot sense the 620 nm phycocyanin absorption feature 

commonly used in phycocyanin retrieval, however, several studies have found success in using 

Sentinel-2 based chlorophyll-a proxy algorithms for indirect phycocyanin estimation (Beck et al., 

2017; Pérez-González et al., 2021; Sòria-Perpinyà et al., 2020). Therefore, a combination of proxy 

algorithms, machine learning techniques, and feature selection methods is used to develop and 

assess models for phycocyanin and chlorophyll-a retrieval based on Sentinel-2 imagery. 

 

In order to assess each satellite’s ability to retrieve DO concentrations, a non-optical water quality 

variable, RF and ANN models are constructed to assess any relationships between DO and each 
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of the in situ algae indicators: chlorophyll-a, phycocyanin, and Pc:Chla. The models’ ability to 

indirectly estimate DO are then assessed using remotely sensed pseudo-observations of 

chlorophyll-a, phycocyanin, and Pc:Chla. Model errors are evaluated spatially for both satellites.  

Table 4-2 Band combinations included as input variables for phycocyanin, chlorophyll-a, and 
Pc:Chla by satellite. Rrs indicates Remote sensing reflectance. 

Satellite Reference Algorithm 
Sentinel-2  Amin et al. (2009) Rrs(705)-Rrs(665) 
MSI Amin et al. (2009) Rrs(705)/Rrs(665)  

Beck et al. (2017) Rrs(740)-Rrs(665)  
Beck et al. (2017) Rrs(740)/Rrs(665)  
Beck et al. (2017) Rrs(740)-Rrs(705)  
Beck et al. (2017) Rrs(740)/Rrs(705)  
Beck et al. (2017) Rrs(740)-Rrs(665)/Rrs(740)+Rrs(665)  
Beck et al. (2017) Rrs(740)-Rrs(705)/Rrs(740)+Rrs(705)  
Gitelson et al. (2003) (1/Rrs(705)) – (1/Rrs(665)) – Rrs(740)  
Hu (2009) Floating Algae Index 

 Beck et al. (2016) Rrs(560)-[Rrs(665)+(Rrs(490)-Rrs(665))] 
 Mishra and Mishra (2012) [Rrs(709)-Rrs(665)]/[Rrs(708)+Rrs(665)] 
 Gons et al. (2002)† Rm(aw(709) + bb) − aw(665) − bbp}/a∗(665) 
  Moses et al. (2012) [113.36 * {[Rrs(665)^-1-Rrs(709)^-1]*Rrs(753)}+16.45]^1.124 
Sentinel-3  Alawadi et al. (2010) Rrs(865)-Rrs(665)/Rrs(443)+Rrs(510) 
OLCI Amin et al. (2009) Rrs(681)-Rrs(620)  

Amin et al. (2009) Rrs(681)-Rrs(665)/Rrs(681)+Rrs(665)  
Beck et al. (2016) Rrs(560)-[Rrs(665)+Rrs(443)-Rrs(665)]  
Beck et al. (2017) Rrs(620)-[Rrs(709+(Rrs(560)-Rrs(709))]  
Beck et al. (2017) Rrs(709)-Rrs(620)  
Gower et al. (2004) [Rrs(560)-Rrs(681)]-[Rrs(754)-Rrs(681)]  
Gitelson et al. (2003) (1/Rrs(620)) – (1/Rrs(560)) – Rrs(709)  
Kneubuhler et al. (2007) [Rrs(443)-Rrs(665)]/Rrs(510)  
Mishra et al. (2009) Rrs(709)/Rrs(681)  
Beck et al. (2017) Rrs(709)-Rrs(620)/Rrs(709)+Rrs(620)  
Mishra and Mishra (2014) (1/Rrs(709)) – (1/Rrs(665)) * Rrs(709)  
Simis et al. (2005) Rrs(709)/Rrs(620)  
Schalles and Yacobi (2000) Rrs(665)/Rrs(620)  
Stumpf et al. (2016) [Rrs(665)-Rrs(620)]+[Rrs(620)-Rrs(681)*0.74]  
Wynne et al. (2008) -1*Rrs(681)-Rrs(620)-[Rrs(709)-Rrs(620)]  
Mishra and Mishra (2012) [Rrs(709)-Rrs(665)]/[Rrs(708)+Rrs(665)]  
Gons et al. (2002)† Rm(aw(709) + bb) − aw(665) − bbp}/a∗(665) 

  Moses et al. (2012) [113.36 * {[Rrs(665)^-1-Rrs(709)^-1]*Rrs(753)}+16.45]^1.124 
† The algorithm from Gons et al. (2002) is semi-analytical, parameters are derived by Acolite during processing. 
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4.3 Results  

4.3.1 Sentinel-2 MSI 
Sentinel-2 overpasses coincided with 10 sampling dates between 2019 and 2022. After processing 

images and masking clouds, this leaves 206 points of in situ data for comparison with Sentinel-2 

MSI reflectance data (Figure 4-4). On several sampling days there are two Sentinel-2 images over 

Lake Mendota. These additional images were removed during model construction to minimize 

artificial inflation of model skill, however inclusion resulted in insignificant differences.  

  

 

Figure 4-4. In situ chlorophyll-a and phycocyanin data on Sentinel-2 overpass days. 

RF and ANN regressions are built using a 5-fold cross-validation approach; in iterative fashion, 

the model is constructed on 80% of the available data and evaluated on the remaining 20% of data 

and repeated five times. Variable selection is applied in each fold when constructing the RF model. 

Variables retained for each Sentinel-2 model are listed in Table 4-3. The chlorophyll-a model 

retains two bands and three algorithms. Rrs(443) targets chlorophyll-a absorption maximum. 

Rrs(560) is one of the reflectance peaks for chlorophyll-a. The two subtraction algorithms make 

use of the chlorophyll-a absorption peak (Rrr(665)), and Rrs(705) and Rrs(740), two near infrared 

bands often used for identifying vegetation. The final algorithm is developed by Beck et al. (2016) 
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to target chlorophyll-a concentrations by evaluating differences between spectral signatures of 

clear water (Rrs(490)), chlorophyll-a absorption, and chlorophyll-a reflection (Rrs(560)). The 

phycocyanin model includes similar input variables to the chlorophyll-a model, with the exception 

of Rrs(740)-Rrs(705), and adds an algorithm created by Gitelson et al. (2003) that was originally 

developed to estimate leaf chlorophyll-a concentrations, and was later adapted to water quality 

applications by Beck et al. (2016). The Pc:chla model retains variables found in the chlorophyll-a 

and phycocyanin models, but adds an algorithm focusing on the differences between Rrs(740) and 

Rrs(705).   

Table 4-3 Bands and algorithms retained for Sentinel-2 models. 

Model Variables selected 
Chlorophyll-a Rrs(443) 

Rrs(560) 
Rrs(740)-Rrs(705) 
Rrs(740)-Rrs(665)  
Rrs(560)-[Rrs(665)+(Rrs(490)-Rrs(665))] 

Phycocyanin Rrs(443) 
Rrs(560) 
Rrs(705) 
Rrs(740)-Rrs(665) 
Rrs(740)-Rrs(705) 
Rrs(705)-Rrs(665) 
Rrs(560)-[Rrs(665)+(Rrs(490)-Rrs(665))] 
(1/Rrs(705)) – (1/Rrs(665)) – Rrs(740) 

Pc:Chla Rrs(560) 
Rrs(705) 
Rrs(740)-Rrs(665) 
Rrs(740)/Rrs(665) 
Rrs(560)-[Rrs(665)+(Rrs(490)-Rrs(665))] 
Rrs(740)-Rrs(705)/Rrs(740)+Rrs(705) 
(1/Rrs(705)) – (1/Rrs(665)) – Rrs(740) 
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All models are notably skillful (Figure 4-5, Table 4-4). Phycocyanin and Pc:Chla models perform 

better than models for chlorophyll-a. RF models outperform ANN models across all variables by 

fold averaged coefficient of determination (R2). Fold averaged mean absolute error (MAE) is 

slightly lower for the chlorophyll-a ANN compared to the RF. While the chlorophyll-a models 

have similar performance scores, the ANN model appears to better capture the higher chlorophyll-

a values, which may be desirable from a monitoring perspective. Phycocyanin models generally 

perform well across the range of observed values. Both chlorophyll-a and phycocyanin models 

appear to have some trouble capturing zero values but can separate low and high concentrations 

overall. The Pc:Chla model appears to perform best at low ratio values (0-1), which may suggest 

the model is better at identifying high chlorophyll-a concentrations. Strong performance in lower 

Pc:Chla values likely contributes to the overall high skill. The model is also accurate for several 

high Pc:Chla ratios, suggesting some ability to differentiate between blue-green and green blooms. 
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Figure 4-5. Observed vs. modeled phycocyanin, chlorophyll-a, and phycocyanin/chlorophyll-a 
for RF and ANN models with Sentinel-2 MSI data. The red line represents a 1:1 slope. 
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Table 4-4 Sentinel-2 fold averaged coefficient of determination (R2) and mean absolute error for 
RF and ANN models. 

Algae Metric 
Random Forest Artificial Neural Network 

R2 MAE (µg/L) R2 MAE (µg/L) 

Chlorophyll-a 0.47 0.81 0.44 0.78 

Phycocyanin 0.69 0.21 0.58 0.24 

Phycocyanin/Chlorophyll-a 0.70 0.14 0.42 0.18 
 

4.3.2 Sentinel-3 OLCI 
Sentinel-3 overpasses coincided with 11 sampling dates. After processing images and masking 

clouds, 161 points of in situ data were available for comparison with OLCI reflectance data (Figure 

4-6). RF and ANN models for Sentinel-3 data apply the same 5-fold cross validation approach and 

boruta variable selection process as the Sentinel-2 models. Variables selected for each Sentinel-3 

model are listed in Table 4-5. 

 

 
Figure 4-6. In situ chlorophyll-a and phycocyanin data on Sentinel-3 overpass days. 

The Sentinel-3 chlorophyll-a model retains three variables in all 5 folds including two bands and 

one algorithm. Rrs(560) is the reflectance peak for chlorophyll-a. The algorithms retained were 

developed by Beck et al. (2016, 2017) to target chlorophyll-a and phycocyanin concentrations 
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respectively. The chlorophyll-a algorithm estimates concentrations using the difference between 

the chlorophyll-a reflectance peak and the two absorption maxima: (Rrs(665) and Rrs(443)). The 

phycocyanin algorithm uses the difference between the phycocyanin absorption maximum 

(Rrs(620)) and chlorophyll-a reflectance. The Sentinel-3 phycocyanin model retains two bands 

and one algorithm. Rrs(412) is often used to measure turbidity, while Rrs(443) targets a 

chlorophyll-a absorption maximum. The algorithm retained is developed by Alawadi (2010) to 

target floating algae in ocean environments. The phycocyanin model does not retain the Rrs(620) 

band which targets spectral features of phycocyanin. The absence of a relationship between 

Rrs(620) and phycocyanin concentrations may speak to the relatively poor performance of the 

Sentinel-3 phycocyanin model, discussed below. The Sentinel-3 Pc:Chla model retains three 

algorithms. The Pc:Chla model leverages algorithms from both the chlorophyll-a and phycocyanin 

models, and an additional algorithm focusing on the difference between the phycocyanin 

absorption peak and the chlorophyll-a fluorescence baseline (Rrs(709)).  

Table 4-5 Bands and algorithms retained for Sentinel-3 models. 

Model Variables selected 
Chlorophyll-a Rrs(560) 

Rrs(560)-[Rrs(665)+Rrs(443)-Rrs(665)] 
Rrs(620)-[Rrs(709)+Rrs(560)-Rrs(709)] 

Phycocyanin Rrs(412) 
Rrs(443) 
Rrs(865)-Rrs(665)/Rrs(443)+Rrs(508) 

Pc:Chla Rrs(865)-Rrs(665)/Rrs(443)+Rrs(508) 
Rrs(620)-(Rrs(709)+Rrs(560)-Rrs(709) 
Rrs(709)-Rrs(620) 

 

 
Sentinel-3 models demonstrate mixed skill. Generally, Sentinel-3 models have lower fold averaged 

R2 scores than Sentinel-2 models but return similar mean absolute error values (Table 4-6). 
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Chlorophyll-a R2 values are superior to phycocyanin and Pc:Chla. RF models perform slightly 

better than the ANN models and appear to capture higher chlorophyll-a values well (Figure 4-7). 

The Sentinel-3 chlorophyll-a model is comparable to the Sentinel-2 model, albeit with a lower 

mean R2 but also lower mean absolute errors. The phycocyanin model has the worst performance 

of the Sentinel-3 models. Both the RF and ANN appear to struggle with extremely low and high 

concentrations; however, the ANN does demonstrate some improvement over the RF for 

concentrations above 1 µg/L. The Pc:Chla model shows skill similar to the chlorophyll-a model. 

Like Sentinel-2, model results for low Pc:Chla ratios appear strong, with much greater scatter in 

high values. 
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Figure 4-7. Observed vs. modeled phycocyanin and chlorophyll-a, and 
phycocyanin/chlorophyll-a for RF and ANN models with Sentinel-3 OLCI data. The red line 
represents a 1:1 slope. 
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Table 4-6 Sentinel-3 fold averaged coefficient of determination (R2) and mean absolute error for 
RF and ANN models. 

Algae Metric 
Random Forest Artificial Neural Network 

R2 MAE (µg/L) R2 MAE (µg/L) 

Chlorophyll-a 0.42 0.72 0.41 0.74 

Phycocyanin 0.09 0.22 0.22 0.20 

Phycocyanin/Chlorophyll-a 0.41 0.18 0.31 0.23 
 

4.3.3 Dissolved Oxygen 
DO is modeled using the same 5-fold cross validation process and both RF and ANN model 

structures. Models are trained on all available in-situ data (671 points), including chlorophyll-a, 

phycocyanin, and Pc:Chla. Both in-situ models have notable skill. The ANN reports a fold 

averaged R2 of 0.49 and a MAE of 0.97 mg/L. The RF model performs slightly better with a fold 

averaged R2 of 0.53 and a MAE of 0.91 mg/L. Using the same model structure, but substituting in 

Sentinel-2 data (206 points), the RF (R2: 0.68, MAE: 1.04 mg/L Figure 8) significantly 

outperforms the ANN (R2: 0.36, MAE: 1.37 mg/L). To assess the transferability of the DO model, 

chlorophyll-a, phycocyanin, and Pc:Chla data at the Lake Mendota buoy are used to construct a 

similar DO model (Magnuson et al., 2023). Averaged hourly data between 6am - 6pm from 2019 

to present was retained (N=10,675). 6am-6pm is chosen to best compare with spatial sampling 

data. Using 5-fold cross validation, the buoy ANN model results in a fold averaged R2 of 0.53 and 

a MAE of 1.28 mg/L; the RF model results in a fold averaged R2 of 0.50 and a MAE of 1.24 mg/L. 

None of the Mendota Buoy data was used in the construction of remote sensing models. 
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Figure 4-8. RF model results for dissolved oxygen based on in situ data (left) and applied to 
remotely sensed data (right). 

By comparison, skill is notably lower with Sentinel-3 data for both the RF (R2: 0.36, MAE: 1.37 

mg/L; Figure 4-8) and ANN, which shows no skill (R2: -1.4, MAE: 2.42 mg/L). The weaker 

performance of Sentinel-3 imagery in retrieving harmful algae indicators is evident in the 

performance of the DO model, which struggles to capture high DO concentrations. 

4.3.4 Spatial Heterogeneity 
To better understand the spatial performance of each satellite-based model, the mean absolute error 

is calculated using all available observed and modeled data pairs. While modeling of water quality 

parameters is performed at the pixel scale of each satellite, data from error estimates are aggregated 

to the scale of the 35 sampling grid boxes for comparison. For each water quality parameter, the 

best performing model type (ANN or RF) for each satellite is used. Variability is evident across 

the lake and between parameters (Figure 4-9).  



 
 

110 

 

Figure 4-9. Mean absolute error between in-situ and Sentinel-2 (top) and Sentinel-3 (bottom) 
modeled water quality parameters. 

Overall, the magnitude of errors in phycocyanin are similar between Sentinel-2 and Sentinel-3. 

Both satellites generally capture phycocyanin well across the lake, with ~90% of points falling 

below an MAE of 0.3 µg/L and a maximum MAE of 0.5 µg/L. For Sentinel-2, errors are highest 

along the northwestern shoreline of Mendota. For Sentinel-3, high MAE values are evident along 

the southern shoreline and the northwestern portion of the lake.  Sentinel-3 chlorophyll-a spatial 

MAE values are generally lower than for Sentinel-2; the latter has MAE values at 2.69 µg/L near 

the Yahara inlet at the northern end of the lake. Comparatively, Sentinel-3 reports its highest MAE 

along the northwestern shore of the lake at 1.62 µg/L. 90% of MAE values for both satellites fall 

below ~1.3 µg/L. Errors in chlorophyll-a appear to have little spatial coherence, however, both 

satellites generate relatively large errors in the northernmost grid near the Yahara inlet. Differences 

between satellite performance for Pc:Chl retrieval are more apparent. Overall, Pc:Chl MAE is 

slightly larger for Sentinel-3 with a cluster of high error locations in the center of the lake, the 

western bay, and the northeastern shore, ranging from 0.35 – 0.40 µgL-1/µgL-1. The highest Pc:Chla 

errors from Sentinel-2 are located near the southern shoreline of the lake, ranging from 0.29 – 0.34 

µgL-1/µgL-1. Similarly, the skill of DO model results varies between the two satellites. Sentinel-3 
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DO errors are clustered on the eastern shoreline of the lake, with the five highest MAE values 

ranging from 2.2 to 3.2 mg/L. Sentinel-2 DO errors appear highest in northern lake Mendota near 

the Yahara River inlet. Sentinel-2 MAE is significantly lower, with the five highest MAE values 

ranging from 1.5 – 2.1 mg/L. 

4.4 Discussion 

4.4.1 Model Performance 
For most water quality parameters, RF models outperform ANN models using either Sentinel-3 

OLCI or Sentinel-2 MSI data; the only exception is for phycocyanin using Sentinel-3. The 

consistent underperformance of the ANN models may be attributable to several causes. ANNs 

require significant amounts of training data and extensive tuning to be effective. In remote sensing 

applications, Maxwell et al. (2018) find that ANNs typically have high sensitivity to both training 

data size and parameter sets, particularly when compared to RFs. The dataset used to train Sentinel-

2 and Sentinel-3 models may be too small for an ANN to adequately learn relationships between 

band reflectance and the water quality variables evaluated here. This may also make ANN models 

prone to overfitting. ANN performance may conceivably improve with further parameter tuning 

and access to more data, however, the simplicity and strong performance of RF models suggests 

that it is better suited to phycocyanin and chlorophyll-a retrieval, at least for Lake Mendota. 

Furthermore, the interpretability of RF models provides important insight into how different water 

quality variables are identified from each satellite. Given the relatively limited water quality data 

in this single system, we recommend the use of RF for estimation of water quality variables. The 

additional complexity offered by an ANN approach does not appear to be justified. 
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Robust spatial performance is an important attribute for remotely sensed water quality models. As 

discussed previously, notable variability in absolute terms and errors exists across the lake for all 

metrics. For phycocyanin and chlorophyll-a, both satellites struggle near the inlet of the Yahara 

River and along the northwestern shoreline; the Yahara inlet has the highest average chlorophyll-

a value across the lake. Similarly, high phycocyanin values occur near the inlet and in the western 

bay of the lake. High productivity combined with inflow of sediments and dissolved organic matter 

likely make distinguishing chlorophyll-a difficult in this part of the lake, as separating spectral 

signals of chlorophyll-a and phycocyanin is notoriously difficult (Gholizadeh et al., 2016). Spatial 

distribution of Pc:Chla errors is notably different between the two satellites. Errors for Sentinel-3 

are clustered in the center of the lake and include two locations with the highest average Pc:Chla 

values across the lake. This is not surprising given Sentinel-3’s limited ability to retrieve high 

Pc:Chla values. Errors in model results for Pc:Chla are notably lower for Sentinel-2 than Sentinel-

3, and higher errors appear clustered around the southern portion of the lake. This might suggest 

interference from shoreline or shallow water reflectance. DO errors also vary between satellites. 

Sentinel-2 errors are highest near the Yahara River inlet while Sentinel-3 errors are highest in the 

northeastern portion of the lake. Because the DO model is conditioned on algae indicators, one 

possible explanation for the high error rate is an abundance of submersed aquatic vegetation in 

both regions, which may influence DO concentrations in the absence of algae.  

4.4.2 Satellite Suitability 
Sentinel-2 and Sentinel-3 offer different advantages for water quality monitoring. Sentinel-3’s 

short return period allows for continuous, near real-time monitoring of lake conditions, while the 

spatial resolution offered by Sentinel-2 is a powerful tool for monitoring the spatial distribution of 

harmful algae on small lakes. In this analysis, Sentinel-2 is found to be better equipped for algae 
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indicator retrieval in Lake Mendota compared to Sentinel-3. Despite the higher overpass frequency 

of Sentinel-3, and the presence of the 620nm band specific to phycocyanin detection, models 

conditioned on Sentinel-2 imagery outperformed Sentinel-3 models for all variables. There are 

several potential reasons for the difference in capability: the fine spatial resolution of Sentinel-2 

may offer a better estimate of reflectance values where in situ data were collected, particularly if 

algae conditions are variable across the lake. Additionally, as discussed previously, machine 

learning models are sensitive to the size of training datasets. The number of points available for 

training models based on Sentinel-2 imagery (206 points) exceeds the number of points available 

for Sentinel-3 (161 points). 

 

Variable selection implemented during RF model construction provides insights into the 

algorithms and bands selected for water quality retrieval. Chlorophyll-a models showed several 

similarities in variable selection between the two satellites. Both models include bands located at 

560nm and 665nm. Additionally, bands located at 705nm and 709nm are retained by the Sentinel-

2 and Sentinel-3 models, respectively. All these bands and associated algorithms have been used 

consistently in chlorophyll-a retrieval among various satellite missions. The development of 

several popular algorithms focus on this spectral region, including the Maximum Chlorophyll 

Index (Gower et al., 2005), the Normalized Difference Chlorophyll Index (Mishra & Mishra, 

2012), and many two band algorithms (Gilerson et al., 2010), among others. Furthermore, 

chlorophyll-a retrieval algorithms based in this red-NIR region have been shown to perform well 

in productive waters as they are less sensitive to absorption by colored dissolved organic matter 

(CDOM) when compared with algorithms focused in blue-green wavelengths (Gilerson et al., 

2010). Given Lake Mendota’s hypereutrophic status, the retention of bands established as 
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important in chlorophyll-a estimation in productive waters is encouraging. Additionally, both 

models retain a band in the 400-500nm range. Bands in this range have been previously used to 

develop blue-green ratios for chlorophyll-a estimation (O’Reilly et al., 1998), but are prone to 

spectral interference from CDOM. Notable differences between Sentinel-2 and Sentinel-3 models 

include the retention of Rrs(740) in the Sentinel-2 model and Rrs(620)-[Rrs(709)+Rrs(560)-

Rrs(709)] for the Sentinel-3 model. Bands in the near infrared range (Rrs(740)) have been used in 

chlorophyll-a retrieval models for turbid waters to further distinguish spectral signals of 

chlorophyll-a and CDOM (Pahlevan et al., 2020). The algorithm retained for the Sentinel-3 model 

focuses on the 620nm band, which is often used to separate phycocyanin concentrations from 

chlorophyll-a. Chlorophyll-a and phycocyanin are spectrally similar, however, inclusion of this 

algorithm in the chlorophyll-a model may indicate a limited ability of Sentinel-3 to separate the 

two variables in this case. 

 

Phycocyanin models show more differences in variable selection compared to chlorophyll-a 

models. Variable selection for Sentinel-2 resulted in several more bands and algorithms (8) than 

Sentinel-3 (3) and there are few similarities between the selected variables. Both models retain the 

band located at 443nm and include Rrs(665) in at least one algorithm. As discussed above, both 

bands are often used in chlorophyll-a retrieval. In addition to Rrs(443), the Sentinel-3 model 

retains Rrs(412) and the Surface Algal Bloom Index developed by Alawadi (2010) to detect 

surface blooms in ocean environments. Notably, the 620nm band is not retained in the Sentinel-3 

model, despite its established use for phycocyanin concentration monitoring. The Sentinel-3 

phycocyanin model also shows relatively poor performance overall. Simis et al. (2005), found that 

use of the 620nm band to estimate phycocyanin resulted in high errors when the phytoplankton 
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community was not dominated by cyanobacteria. It is possible that the relatively low 

concentrations of phycocyanin found in this study are difficult to capture using the 620nm band. 

Additionally, the datasets used here may be too small for machine learning models to capture 

statistical relationships between phycocyanin and Sentinel-3 reflectance. The relatively large 300m 

spatial resolution of Sentinel-3 imagery may also contribute to the underwhelming model 

performance for retrieval of all water quality variables. While Sentinel-2 does not have the 620nm 

band necessary to estimate phycocyanin concentrations directly, recent studies have successfully 

used Sentinel-2 imagery to indirectly estimate phycocyanin (R. Beck et al., 2017; Pérez-González 

et al., 2021; Sòria-Perpinyà et al., 2020, 2021). The Sentinel-2 models for phycocyanin and 

chlorophyll-a select several of the same variables, yet the selection of several different algorithms 

for the phycocyanin model suggests a distinct statistical relationship between band reflectance and 

phycocyanin compared to chlorophyll-a. Additionally, the selection of bands differencing 

Rrs(705) and Rrs(665) may support the algorithms developed by Wynne et al. (2008) to separate 

cyanobacterial blooms from other algal blooms based on spectral curve shape in Lake Erie.  

 

The two satellite-based Pc:Chla models largely select different input variables. Only Rrs(560) is 

selected by both, and neither select many bands and algorithms included in the phycocyanin and 

chlorophyll-a models. While Pc:Chla variable selection differs between satellites, Pc:Chla models 

choose similar input variables to the chlorophyll and phycocyanin models for that satellite. All but 

one of the Sentinel-2 Pc:Chla model input variables is present in either the phycocyanin model or 

the chlorophyll-a model. While three of those variables are retained by all of the Sentinel-2 models, 

the Pc:Chla model also selects variables unique to the chlorophyll-a and phycocyanin models. This 

may suggest that the model is able to select variables that help distinguish between chlorophyll 
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and phycocyanin dominated waters. The Sentinel-3 Pc:Chla model only retains three algorithms: 

one is unique to the chlorophyll-a model, one is unique to the phycocyanin model, and one unique 

to the Pc:Chla model. While the Pc:Chla models are developed independently of the chlorophyll-

a and phycocyanin models, the skill of the Pc:Chla model appears to be reflected in the skill of the 

other algae indictor models. The Sentinel-2 Pc:Chla model generally performs well, in line with 

the relatively high R2 scores for other algae indictors. The Sentinel-3 Pc:Chla model has a 

comparable R2 to chlorophyll-a, and appears to perform particularly well at low phycocyanin to 

chlorophyll-a ratios (Figure 4-7). As Pc:Chla increases, errors generally increase. Given the poor 

performance of Sentinel-3 phycocyanin models, higher errors in phycocyanin dominated waters 

are not unexpected. While each satellite has limitations, this analysis shows that machine learning 

models have some ability to retrieve Pc:Chl using Sentinel-2 and Sentinel-3 imagery. Given that 

both green algae and cyanobacteria contain some quantity of chlorophyll-a and phycocyanin, 

satellite-based monitoring of this ratio, in addition to raw chlorophyll-a and phycocyanin values, 

may provide useful insights to lake managers regarding the characterization (green or 

cyanobacteria dominated) of algae blooms.  

 

The DO model is developed independent of satellite imagery and similarly applied to algae 

indicators from each satellite. Differences in DO model skill between the two satellites generally 

follow the skill of algae models. An analysis of feature importance during cross-validation of the 

DO model shows that Pc:Chla contributes most to skill, with feature importance (measured by 

decrease in R2) ranging between 0.5-0.9 (mean 0.67) across folds. Feature importance for both 

phycocyanin and chlorophyll-a range between 0.15-0.30 with average importance of 0.23 and 0.22 

respectively. Given the particular importance of Pc:Chla in DO modeling, it is unsurprising that 
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model results based on Sentinel-2 perform significantly better than Sentinel-3. The fold-averaged 

R2 of DO for each satellite fall close to the skill of the respective Pc:Chla models, which may also 

indicate the importance of Pc:Chla model skill in the accuracy of subsequent DO model results. 

Recent efforts to monitor DO using Sentinel-2 imagery have often used spectral information to 

model DO directly (Batur & Maktav, 2018; E. A. L. Salas et al., 2022; Tian et al., 2023); research 

investigating modeling DO with Sentinel-3 imagery appears limited. While these existing DO 

models show skill locally, they are often difficult to generalize (Sagan et al., 2020). Comparatively, 

the model presented here is based on in-situ data and appears robust across sensors. As discussed 

previously, significant work exists characterizing algae conditions using algal pigments and 

remote sensing methods exists; therefore, given the variety of in-situ data and remotely sensed 

water quality models that have been made available in recent years, the DO model presented here 

has the potential to be applied broadly to inland waters. 

4.5 Conclusions 
In this study, Sentinel-2 MSI and Sentinel-3 OLCI imagery are used to develop machine learning 

models for the retrieval of chlorophyll-a, phycocyanin, Pc:Chla, in a small inland lake. A novel 

machine learning and remote sensing-based approach was also developed for the retrieval of 

dissolved oxygen concentrations. Machine learning models developed for both satellites showed 

significant capability. RF outperforms ANN in retrieval of all metrics for both satellites with the 

exception of modeled phycocyanin based on Sentinel-3. Overall, we find RF to be a more suitable 

approach for algae pigment retrieval given limited data and the ability for RF to evaluate the 

importance of predictors. When compared with in situ data, best model results of algae metrics 

based on Sentinel-2 (Sentinel-3) imagery achieved R2 scores of 0.47 (0.42) for chlorophyll-a, 0.69 

(0.22) for phycocyanin, and 0.70 (0.41) for Pc:Chla. In situ algae metric data were used to build a 
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RF model that indirectly estimates DO concentrations from satellite imagery, achieving an R2 of 

0.69 (0.36) when applied to Sentinel-2 (Sentinel-3) imagery. This method allows for the estimation 

of dissolved oxygen using algae pigment variables frequently collected for water quality 

monitoring in lakes. Additionally, the DO model can increase the information extracted from 

remotely sensed lake water quality products. 

 

The ability of Sentinel-2 and Sentinel-3 imagery to model several harmful algae indicators on a 

small inland lake is encouraging from a management perspective. Spatial indication of the 

presence of harmful algae may be a helpful tool for the identification of blooms and to inform 

decision making regarding water quality testing routines, beach closings, and issuing warnings to 

the public. Despite lower skill for the Sentinel-3 model, the use of both satellites to retrieve 

chlorophyll-a, phycocyanin, Pc:Chla, and DO provides an opportunity to monitor water quality at 

fine spatial and temporal resolutions. Together, the use of Sentinel-2 and Sentinel-3 imagery for 

water quality monitoring has the potential to effectively track the development of cHABs and 

inform management strategies for Lake Mendota.  
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Chapter 5: Hydroclimatic Forecasting to Inform Anticipatory Action for 
Dengue Virus in Colombia 

 

5.1 Introduction 
Water – related disease is a significant contributor to morbidity and mortality, globally (Hunter, 

2003). Climate and hydrology play a critical role in the emergence of vectors and pathogens. In 

many places, environmental constraints on vector and pathogen development result in notable 

inter- and intra- annual variability in vector-borne disease burden (Yuan et al., 2020). Climate 

and hydrology have complex and often contrasting effects on vector and pathogen biology. 

Increases in temperature may increase vector activity and pathogen development, but excessively 

high temperatures may have the opposite effect, and responses are often species and location 

specific (Whiting et al., 2001). The effects of precipitation are subject to even more complexity. 

Precipitation may increase habitat availability through ponding but may eliminate vectors in 

extreme precipitation events. Reduced streamflow during low precipitation periods may also 

provide calm waters for breeding sites (Whiting et al., 2001). Yet dry conditions may result in 

more outdoor household-level water storage, creating new breeding sites (Lowe et al., 2021). 

Given the array of contrasting hydroclimate impacts on vectors and pathogens, establishing 

robust relationships between hydroclimate variables and case counts remains challenging. 

Exploring key environmental drivers of vector and pathogen development allows for 

identification of conditions associated with high disease burden, which may be leveraged for the 

development of early warning systems. 
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Skillful prediction of vector borne disease incidence may improve public health preparedness, 

particularly on longer timescales. Recently, increasing focus has been placed on the prediction of 

hydroclimate conditions at timescales between short-range weather predictions and long-range 

seasonal outlooks. This subseasonal-to-seasonal (S2S) scale has been identified as a key 

timeframe for decision-making in many sectors (White et al., 2017). Public health may benefit 

from S2S forecasts that can inform decisions requiring longer lead times such as allocating 

funding, acquisition and preparation of medical supplies, or implementation of vector control 

strategies (Brunet et al., 2010). Exploration of forecast based early action regarding vector-borne 

disease may reduce morbidity, mortality, and reduce costs for government agencies and relief 

organizations, and may help promote forecast uptake by management agencies.  

 

Among vector-borne diseases, dengue stands out as a global public health threat (Guzman et al., 

2010). Dengue has spread significantly since its re-emergence in Latin America, with cases 

rising rapidly since the 1980’s (Lenharo, 2023). Dengue virus (DENV) is spread to humans 

through the bite of infected Aedes mosquitoes and is considered a largely urban disease. 

Epidemics may become more frequent as the population of Latin America doubles by 2050 and 

urbanization enhances opportunities for transmission. Despite the presence of a national 

integrated vector control strategy, dengue transmission has not decreased in Colombia. All four 

DENV serotypes are actively circulating in many parts of the country and there has been a 

significant increase in the number of severe DENV cases since re-emergence (Gutierrez-Barbosa 

et al., 2020; Ocampo et al., 2014). Infection with one serotype generally provides long-term 

immunity, however, secondary exposure to others serotypes has been associated with increased 

risk of severe disease (Katzelnick et al., 2020).  
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Like other vector-borne diseases, incidence of DENV has been linked to climate, including local 

scale metrological variables that can modulate vector habitat, survival, and pathogen replication 

(Duarte et al., 2019; Me et al., 2018; Villegas et al., 2020). While the influence of local 

hydrology and climate on vector-borne disease is well documented, these variables can have 

interacting and contrasting effects on DENV transmission that are difficult to capture, 

particularly on S2S timescales. Colombia is experiencing a resurgence of vector-borne diseases, 

and has been identified as an emerging disease hotspot (Jones et al., 2008). Colombia also 

frequently experiences hydrologic extremes, often driven by large climate cycles, like the El 

Nino Southern Oscillation (ENSO) (Germán Poveda et al., 2011; Waylen & Poveda, 2002). 

Significant portions of the country are favorable to transmission of vector-borne disease (Cabrera 

& Selvaraj, 2020), making the region a suitable study site for the investigation of hydroclimate-

vector relationships. Spatial variability in hydroclimate variables across Colombia is significant 

and differences in climate and land cover across Colombia may have impacts on hydroclimate-

disease relationships.  

 

This work focuses on the development of tailored statistical forecasting models for DENV at 1-, 

3- and 6- month lead times for four cities across Colombia (Cali, Cucuta, Medellin, and Leticia). 

While several climate-based S2S warning systems have been developed for facets of DENV 

transmission (Muñoz et al., 2020; Tompkins et al., 2019), relatively little work has been done in 

Colombia. Further, in addition to public health applications, model development provides an 

opportunity to better understand relationships between hydroclimatic variables DENV and to 

assess the added value of climate information in S2S DENV forecasts. Using DENV case data 
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from Colombia’s National Public Health Surveillance System (SIVIGILA), run by the National 

Institutes of Health of Colombia (INS), for four cities (Cali, Cucuta, Medellin, and Leticia), S2S 

forecasting models are developed using local scale, and global scale hydroclimate variables. 

Model outputs are compared to a climatological null model and an autoregressive model at each 

lead time. 

 

Specific research questions include: 

1) Which local and global hydroclimate variables correlate with DENV case load at 0-, 1-, 3-, 

and 6- month lead times? 

2) For which lead times do hydroclimate variables provide superior prediction skill compared 

with climatological and autocorrelation models? 

3) Under which DENV conditions (high, low case load) do climate variables contribute most to 

prediction skill? 

 

This modeling approach aims to better understand the dominant hydroclimatic drivers of DENV 

in Colombia at concurrent to seasonal lead times and leverage those relationships to develop 

forecast systems for season-ahead public health decision making. Forecast development provides 

an opportunity to investigate the role of climate information in DENV early warning systems at 

different S2S scales and may provide insight into the conditions under which climate-based early 

warning systems are valuable for DENV preparedness. 
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5.2 Methods 

5.2.1 Study Site 
Colombia has identified DENV as a significant public health threat since the 1950’s. The 

suspension of vector control campaigns targeting Aedes mosquitos in 1970 led to a resurgence of 

dengue infections that persists today (Gutierrez-Barbosa et al., 2020). The majority of cases 

come from the urban areas of Colombia, driven in part by high population density and water 

infrastructure that may act as breeding sites for Aedes aegypti (Villar et al., 2015). DENV is 

considered hyperendemic in Colombia, due to the co-circulation of all four DENV serotypes. 

Several prevention measures are available to address and prevent dengue outbreaks. A dengue 

vaccine, Dengvaxia, is currently available. The vaccine is recommended only for people with 

confirmed previous dengue infection (WHO, 2019). Other effective prevention measures include 

the use of larvicide, insecticide (e.g., spraying, treated nets), and personal preventative measures 

to avoid mosquito bites (Ocampo et al., 2014; Sepulveda & Vasilieva, 2016). Despite the 

availability of Dengvaxia, recent work suggests that traditional vector prevention strategies in 

Colombia remain a viable and cost-effective option (Claypool et al., 2021). Development of tools 

to inform the activation of common vector control strategies in Colombia may therefore be 

useful for public health managers. 

 

DENV case data is accessed from Colombia’s National Public Health Surveillance System 

(SIVIGILA), run by the National Institutes of Health of Colombia (INS), for four cities including 

Cali, Cucuta, Medellin, and Leticia. Case counts are reported by clinics and hospitals to 

insurance agencies and regional health authorities, which are then sent to INS for consolidation. 

Dengue cases are defined by SIVIGILA as all people with acute febrile illness (< 7 days) with 

two or more of the following manifestations: headache, retro-orbital pain, myalgia, arthralgia, or 
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rash (Rico-Mendoza et al., 2019). Case count data are available through 2021 in all cities. Data 

begin in 2006 in Cali and Cucuta, 2008 in Leticia, and 2009 in Medellin. Population data is 

available for each city through 2020, allowing for an annual estimate of DENV incidence (Figure 

5-1). 

 

 

Figure 5-1. Average monthly DENV incidence per 100,000 population (i.e., climatology, left) 
and study site locations (right). Figure repeated from chapter 1. 

Each city shows interannual variability in case load, however, DENV case seasonality is notably 

different among cities. Further, while each city exhibits seasons in which potential for increased 

DENV transmission appears higher, some years have relatively low DENV transmission across 

all months. Given the lack of a defined transmission season across cities, models are developed 

separately for each city and month, following a defined modeling structure.  

5.2.2 Predictor Selection 
Predictors are evaluated in a correlation analysis at 0-, 1-, 3-, and 6- month lead times. 

Correlations are calculated separately for each city and each month of the year (i.e., Cali January 

DENV incidence is correlated with Cali January Temperature for the years available). Candidate 

predictors are chosen based on a literature review. Climate and hydrologic variables are 
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considered at local and global scales. Correlations are evaluated at concurrent (0-month lead) 

timescales to assess whether forecasts of hydroclimate variables from the North American Multi-

Model Ensemble (NMME) may be useful in predictions of DENV incidence. Seven variables are 

evaluated based on their theoretical relationship to DENV incidence (Table 5-1). 

 

Table 5-1 Variables used in correlation analysis with monthly DENV incidence at 0-, 1-, 3- and 
6- month lead times. 

Potential Predictors (monthly) Source Resolution 

Total Precipitation [mm] IDEAM Gauged 

Relative Humidity (mean, max, min) [%] IDEAM Gauged 

Temperature (mean, max, min) [°C] IDEAM Gauged 

Streamflow (Leticia only) [m3/s] DHIME – IDEAM Gauged 

ENSO Regions (1+2, 3, 3.4, 4) [°C] NOAA ERSST v5 2° 

Global Sea Surface Temperature [°C] NOAA ERSST v5 2° 

Global Geopotential Height (200 mb) [gpm] NCEP-NCAR 2° 

 

As discussed above, temperature and precipitation have been widely shown to influence 

pathogen and vector development, and dengue transmission at lead times from weeks to months 

(Johansson et al., 2009). Additionally, hydroclimatic extremes are strongly influenced by large-

scale climate phenomena at S2S scales. Such phenomena often develop slowly and may provide 

prospects for predicting the likelihood of hydroclimatic extremes and DENV outbreaks from 

weeks to months in advance.  
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Phenomena such as ENSO often modulate local climate conditions (e.g., temperature, humidity, 

and precipitation) through atmospheric teleconnections (Barnston, 1994; Giannini et al., 2000; 

Markowski & North, 2003). Additionally, Leticia is located on the banks of the Amazon River, 

thus streamflow is also considered as a candidate predictor, given the potential for the river to 

create vector habitat under certain flow conditions. The effects of ENSO on the climate and 

hydrology of Colombia are well-established and influential (Germán Poveda et al., 2011). The 

climatic influence of ENSO has previously been linked directly to the incidence of vector-borne 

disease in Colombia (Germain Poveda et al., 2000). Given this established connection, indices 

for ENSO regions 1+2, 3, 3.4, and 4 are evaluated as candidate predictors of DENV incidence. 

These one-dimensional (i.e., gauged data and climate indices) predictors are evaluated in a 

simple correlation analysis with DENV incidence at each of the relevant lead times (Figure 5-2). 
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Figure 5-2. Correlation analysis results for one dimensional candidate predictor variables 

A significant potential source of error when correlating gauged local scale predictors and DENV 

incidence is the unknown size of the case reporting area. Case data from SIVIGILA is collected 

through passive surveillance at healthcare facilities. This creates a potential mismatch between 

the scale of local hydroclimate data measured at a point, and the reporting region for DENV 

cases which could be significantly larger. To combat this source of uncertainty, a sensitivity 

analysis is performed in which correlations between DENV incidence and gridded temperature, 

and precipitation (Funk et al., 2015) data are assessed within the municipal district surrounding 

each city.  
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Colombia’s climate and hydrology are also influenced by a variety of low level jets with origins 

in the Caribbean and coastal tropical pacific (H. D. Salas et al., 2020). To capture the variable 

sources of large-scale hydroclimate influence, statistically derived regions of global sea surface 

temperature (SST) data are evaluated as potential predictors. Similarly, regions of geopotential 

height are known to play a significant role in atmospheric circulation patterns and may influence 

the distribution of weather across South America. One such feature is the Bolivian high, an 

upper-level anticyclone that manifests as a region of high pressure. The Bolivian high is thought 

to have significant impacts on temperature and precipitation across South America (Lenters & 

Cook, 1997). Therefore, statistically derived regions of 200 mb geopotential height are used as 

candidate predictors.  

 

Regions of relevant global predictors are identified in a Monte Carlo analysis to ensure a higher 

level of confidence in the statistical relationship between climate variables and DENV incidence. 

Correlations between DENV incidence and each climate variables are calculated globally. The 

number of significant correlations is then compared to 1000 trials in which the target variable is 

randomly shuffled (following Zimmerman et al., 2016). This process helps to ensure that 

spurious correlations are removed, ultimately providing a more robust selection of global climate 

predictors. This selection process is performed for each city in each month. If any regions are 

selected, a principal component analysis is performed on the climate variable of interest in those 

regions. Principal components that explain more than 10% of the variance in DENV case counts 

in regions of interest are then evaluated as candidate predictors. 
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5.2.2 Modeling Approach 
Model hindcasts for DENV are developed in selected cities for 1-, 3-, and 6- month lead times. 

Given the variability in seasonality of DENV incidence across cities, models are developed 

separately for each month. For example, to forecast January DENV incidence in Cali, a model is 

developed with data from 1-, 3- and 6- months prior. Following this structure models are 

developed for each month. This approach allows for evaluation of model skill, and the statistical 

power of climate information, in each month.  

 

A random forest regression model is chosen to model DENV incidence and is implemented using 

the scikit-learn package in python (Pedregosa et al., 2011). Random forests are a non-parametric 

ensemble learning method based on the construction of many decision trees, each collectively 

voting on an outcome (Breiman, 2001). Random forests are well-suited to the task of modeling 

DENV incidence given the non-normal distribution of the data. Additionally, random forests are 

more robust to overfitting compared to deep learning methods. This is a particularly important 

feature given the limited DENV incidence time series. Random forests also have the benefit of 

computing variable importance (marginal decrease in model performance when each variable is 

excluded) during the modeling process. This allows for a direct evaluation of climate variable 

importance among cities, lead times, and months. A leave one out cross validation (LOOCV) 

hindcast approach is adopted to evaluate model performance. For each city and month specific 

model, one year of the timeseries is dropped, the model is constructed, and the missing value is 

predicted. This approach is conducted iteratively until all years have been predicted, allowing for 

an estimation of model skill. Uncertainty in model outputs is estimated using the forestci 

package, which implements a monte-carlo based estimation of variance for random forest 

regression (Wager et al., 2014).  
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An autoregressive null model is constructed to compare against each random forest model. 

Autoregression is commonly used for disease transmission forecasting (Baharom et al., 2022). 

An autoregressive model is constructed for 1-, 3-, and 6- month lead times for each month in 

each city using linear regression. A null model of DENV incidence is also evaluated against 

random forest and autoregression models, defined as the long term (using all available data) 

average incidence for each month in each city (Figure 1). This historical average is what might 

be predicted in an environment where no other information is available about the system.  

5.2.3 Model Evaluation 
Models are evaluated deterministically and categorically. The coefficient of determination (R2) is 

used to evaluate deterministic model performance. Accuracy, sensitivity, and specificity are 

evaluated to determine categorical performance. 

 

Dengue incidence categories are defined using the endemic channel. The endemic channel is a 

tool to estimate the central tendency, along with upper and lower limits of epidemiological data 

first described by Bortman (1999). The endemic channel calculation used here is adapted from 

the R package epiCo, a software package developed specifically for evaluation of vector borne 

disease in Colombia (Umaña et al., 2024). An endemic channel is calculated for each city at a 

monthly interval. The central tendency is calculated for each month by taking the geometric 

mean of historical case data for each month. The lower and upper limit are then calculated using 

the geometric standard deviation, representing a 95% confidence interval. Epidemic years are 

commonly removed from the calculation of the endemic channel to provide a better estimate of 

‘normal’ disease conditions. Here, monthly case counts are omitted from the calculation if they 
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are greater than the 90th percentile of observed cases in each city. The deterministic model results 

are binned into the four categories represented by the endemic channel: Below Safety, Above 

Safety, Warning, and Epidemic. These categories are then used to evaluate accuracy, sensitivity, 

and specificity of each model at 1-, 3- and 6- month lead times. 

 

Variable importance is also assessed for each model. Variable importance is calculated as the 

mean decrease impurity, calculated for each feature as the total decrease in node impurity 

weighted by the probability of reaching that node, averaged over all trees. Variable importance is 

assessed for each model. For comparison, variable importance is then grouped into categories 

based on variable type and source to better understand the influence of different processes (Table 

5-2). 

Table 5-2 Predictor categories for variable importance assessment. 

Source Category Type Category Predictor 

Autocorrelation Autocorrelation DENV Incidence 

Lagged Hydrology Total Precipitation [mm] 

Lagged Hydrology Relative Humidity (mean, max, min) [%] 

Lagged Hydrology Streamflow (Leticia only) [m3/s] 

Lagged Temperature Temperature (mean, max, min) [°C] 

Lagged Global Climate ENSO Regions (1+2, 3, 3.4, 4) [°C] 

Lagged Global Climate Global Sea Surface Temperature [°C] 

Lagged Global Climate Global Geopotential Height (200 mb) [gpm] 

NMME Temperature GFDL SPEAR Total Precipitation [mm] 

NMME Temperature GFDL SPEAR Temperature (max, min) [mm] 

NMME Global Climate GFDL SPEAR ENSO Regions (1+2, 3, 3.4, 4) [°C] 
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The LOOCV process creates a model structure corresponding to each month of DENV incidence 

data. Variable importance is calculated for each model realization in the LOOCV process. 

Variable importance can then be compared among lead times, cities, months, and endemic 

channel categories to answer questions regarding the role of climate information in predicting 

DENV incidence under a wide variety of conditions. 

5.3 Results 

5.3.1 Leading Predictors 
Predictor relevance is evaluated two ways: by the number of times a predictor is retained for a 

model (expressed as a percent), and the mean decrease in impurity (variable importance) 

calculated for a predictor when it is included in the random forest model structure. 

 

The three most commonly retained predictors across all cities, months, and lead times, with an 

importance score greater than zero are autocorrelation, the first principal component of sea 

surface temperatures, and lagged Nino regions (3 and 3.4) (Table 5-3). The similarity in the most 

commonly used predictors indicates the outsized importance of both autocorrelation and large-

scale climate features in prediction of DENV incidence. Notably, the percent inclusion and 

average importance vary for these predictors among lead times. At lead times of 1-month, 

autocorrelation dominates. One month lagged DENV incidence is included as a predictor in 

100% of models and on average accounts for 56% of the mean decrease in impurity (variable 

importance). While SST PC1 and Nino 3 SSTs (one month lag) are the next most important 

variables, they appear in only 35% and 23% of models, and have an average importance of less 

than 10%. As expected, the influence of autocorrelation declines in the 3- and 6- month lead 

times, included in only 69% and 27% of models, respectively. While the percent inclusion of sea 
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surface temperature and Nino predictors remains relatively similar at 3- and 6- month leads, 

average variable importance increases notably for both, as importance of autocorrelation 

declines. This generally indicates a shift in predictive power from autoregressive features to large 

scale climate features as lead time increases.  

 

By type, the most prevalent predictors largely reflect the patterns indicated by the top individual 

predictors. At 1-month lead time, 100% of models include autoregressive features and 70.8% 

include global climate, followed by temperature predictors and hydrology predictors. At the 3-

month lead time percent inclusion of autoregressive and global climate predictors in models is 

the same. At the 6-month lead time, inclusion of global climate predictors leads autoregressive 

predictors 67% to 27%. Temperature and hydrology predictors are ranked third and fourth, 

respectively, at all lead times. 

 

Table 5-3 Three most retained predictors for each lead time, across all cities and months with 
importance scores greater than zero. 

Lead Time Predictor Inclusion (N=48) Average Importance 

1-month Autocorrelation 100% 56% 
 

Sea Surface Temperature PC1 35.4% 8.4% 
 

Nino 3.4 (1-mo lag) 22.9% 2.6% 

3-month Autocorrelation 68.8% 38.1% 
 

Sea Surface Temperature PC1 37.5% 15.1% 
 

Nino 3 (3-mo lag) 25% 2.6% 

6-month Sea Surface Temperature PC1 35.4% 30.1% 
 

Autocorrelation 27.1% 19.7% 
 

Nino 3.4 (6-mo lag) 21% 7.8% 
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Predictor inclusion patterns are generally similar to overall results when broken down by city, 

with some notable exceptions. In all cities, autoregressive features decline in percent inclusion 

and global climate features tend to increase with lead times. Local temperature and hydrologic 

predictors are generally included in fewer models. Models in Leticia use hydrologic predictors 

more frequently than other cities. This is largely driven by the inclusion of Amazon streamflow 

as a predictor in Leticia, which is retained for several months of the year at 1- and 3- month time 

lags.  

 

Higher relative inclusion of temperature predictors is seen in Cali and Medellin models, 

compared to Leticia and Cucuta. These differences are largest at the 1- and 3- month lead times. 

This difference is driven by the inclusion of NMME forecasts of maximum and minimum 

temperature in these cities. DENV incidence in Cali and Medellin is strongly correlated with 

temperature metrics at concurrent lead times during the beginning of the year. These 

relationships are weaker in Leticia and Cucuta. The absence of temperature indices at the 6- 

month lead might indicate a decrease in NMME temperature forecast skill at longer lead times. 

 

 

 

Figure 5-3. Percent inclusion of predictor types by city and lead time. 
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5.3.2 Model Performance 
At the 1-month lead time, 48 (N=48) city and month -specific models have at least one 

significantly correlating predictor with which to construct a random forest model. At 3-month 

and 6-month leads, 47 and 38 models are constructed, respectively. Months without a 

significantly correlating predictor default to climatology (the long-term average of DENV cases, 

specific to each city and month). Model skill is evaluated in a point-by-point comparison 

(deterministic) and a categorical comparison (categorically).  

 

R2 values are calculated for each city and month specific model and are compared to an 

autoregressive model with a climatological null as the baseline. The climatological null model 

always has an R2 of zero. In some cases, autoregressive models are particularly poor resulting in 

negative R2 values. In these cases, comparing random forest performance against autoregressive 

models can inflate the gain in skill seen by the random forest. Therefore, the R2 values for the 

null models range from zero to one. 

 

At the 1-month lead only 6 (12.5%) models make improvements over autoregressive models and 

climatology (Figure 4). 25 (52%) models improve over null models at the 3-month lead time and 

20 (42%) models improve over null models at the 6-month lead.  For random forest models that 

showed improvement over null comparisons, the average increase in R2 of random forest models 

over autoregressive models and climatological models (whichever R2 is higher) is 0.2 at the 1-

month lead, 0.24 at the 3-month lead, and 0.32 at the 6-month lead.  
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Figure 5-4. Improvements in random forest R2 (coefficient of determination) over autoregressive 
and climatological null models. 

On average, improvements in forecast skill are greatest at the 6-month lead. These 

improvements, however, are concentrated in Cucuta, where 10 of the 12 month-specific models 

outperform autoregressive and climatological null models. Improvements are present in other 

cities but are more sporadic across the year. While gains at the 3-month lead are more modest, 

performance over the null models appears more consistent, particularly at the beginning and end 

of the year. This might indicate the presence of a more reliable climatic influence on DENV 

transmission conditions at the 3-month lead across cities.  

 

Forecast accuracy, sensitivity, and specificity are also calculated for each city, lead time, and 

category derived from the endemic channel. Accuracy represents the proportion of predicted 

categories that match observed categories. Sensitivity (true positive rate) measures how often a 

category is correctly predicted, conditioned on the total number of times that category was 

observed (e.g., number of epidemic months predicted relative to the total number of epidemic 

months observed). A forecast with perfect sensitivity will always capture the occurrence of the 
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category of interest (minimizes false negatives). Specificity (true negative rate) measures how 

often a category is correctly discarded conditioned on the total number of times that category 

was not observed (e.g., number of non-epidemic months predicted relative to the total number of 

non-epidemic months). A forecast with perfect specificity will never predict the category of 

interest when it is not observed (minimizes false positives). Each metric is measured from 0 to 1. 

 

For random forest models, all categorical metrics tend to decline from short to long lead times. 

Accuracy and sensitivity of forecasts are largely stable among categories and lead times. 

Accuracy ranges from 0.69 to 0.85, and specificity ranges from 0.72 to 0.88 across all categories 

and lead times. Accuracy and specificity of the epidemic category experience the largest declines 

from 1- to 6-month leads, compared to other categories. This suggests that the epidemic category 

is particularly susceptible to false positives at longer lead times, or overpredictions of DENV 

incidence. Sensitivity has the greatest variability among categorical metrics, ranging from 0.17 to 

0.79. On average, sensitivity is lowest in the above safety and warning categories. This implies 

that models are often predicting different categories when the observed category is between the 

two extremes (below safety, epidemic). Sensitivity is highest for the epidemic category, which is 

encouraging given that public health officials are likely most concerned with accurate predictions 

of high transmission scenarios.  

 

Compared to predictions made by the autoregressive null model, the inclusion of climate 

information in the random forest model appears to make some improvements.  On average, 

random forest shows slight improvement in sensitivity (0.02), accuracy (0.04) and specificity 

(0.02) over the autoregressive model. Nearly all increases in categorical skill come from the 3- 
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and 6- month lead times. The greatest improvements in accuracy and specificity are seen in in 3- 

and 6- month leads of the epidemic category (Figure 5-5). Sensitivity shows the most 

improvement at the 3- and 6- month leads of the below safety category. This may imply that the 

addition of climate information improves detection of months in which transmission will be low, 

compared to models based solely on previous case data. The number of false predictions for 

epidemic months is also reduced, leading to improved specificity. This is largely driven by a 

decrease in the number of observed below safety events predicted to be epidemic events. It is also 

important to note that the inclusion of climate information sometimes results in a decrease in 

categorical skill compared to a simple autoregressive model. Declines are likely related to the 

choice of random forest for model construction, compared to linear regression for the 

autoregressive models. 

 

 

Figure 5-5. Difference between random forest and autoregressive model forecast sensitivity, 
accuracy, and specificity. 

5.3.3 Variable Importance 
To evaluate the transmission conditions under which climate information is most useful for 

DENV incidence prediction, feature variable importance is assessed for all random forest models 

(Figure 5-6). Feature importance is compared across a gradient of transmission conditions. To 

compare low transmission conditions to high transmission conditions, the boundary indicating 
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the start of the epidemic category in each month and city is ranked from lowest (1) to highest 

(48). This provides a proxy for average transmission conditions in each month and city. Feature 

importance is compared average across these ranks.  

 

 

Figure 5-6. Average feature importance for predictor categories (see Table 2), binned by 
incidence rank. Low values correspond to low average DENV incidence and vice versa. 

Autoregressive features are found to increase in importance from low transmission scenarios to 

high transmission scenarios. Conversely, nearly all categories of hydroclimate predictors 

decrease in importance from low to high transmission scenarios. This suggests that hydroclimate 

predictors are more effective in environments where DENV incidence tends to be lower based on 

long-term averages and autoregressive predictors perform better when DENV incidence is 

expected to be higher. This finding is also reflected by the months and locations in which 

random forest models outperform null models. Skillful city and month specific random forest 

models (based on R2) have a median incidence rank of 19. Models that were outperformed by 

autoregressive and climatological null models have a median incidence rank of 26. Categorical 

performance of random forest models also indicates that climate information improves skill for 
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prediction of low DENV incidence, given the increases in sensitivity for the below safety 

category and increases in specificity for epidemic categories, particularly at longer leads. 

 

5.4 Discussion 

5.4.1 Lead Time Characteristics 
Development of climate-based forecasts for DENV incidence at multiple lead times provides 

insight into the potential for skillful prediction of DENV conditions and the predictors driving 

skill at varying forecast leads. Of the city and month specific random forest models that improve 

upon null models, a sizeable majority are at 3- and 6- month lead times. This suggests limited 

ability of climate variables to improve upon the predictive signal of autoregressive features at the 

1-month lead. For the six random forest models that did outperform null models at the one-

month lead, all still had high degrees of autocorrelation (>0.8). The two models with the largest 

improvement at the 1-month lead were in December and January at Leticia. These models both 

had high degrees of autocorrelation, but slightly less than average at the 1-month lead. 

Additionally, each model had at least one highly correlating climate-based predictor. This may 

suggest that climate variables must have a strong relationship with DENV incidence at the one-

month lead to improve on autoregressive models.  

 

Given the strong performance of autoregressive models at the 1-month lead, climate-based S2S 

DENV forecasting efforts may be better suited to longer lead times. At 3- and 6- month lead 

several autoregressive models perform worse than climatology. In these scenarios, climate-based 

models are particularly well positioned to make meaningful improvements in season-ahead 

DENV prediction. At the 3- and 6-month leads, autoregressive models perform worse than the 
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climatological null in 27 instances. In these instances, random forest models conditioned entirely 

on climate variables show notable skill in DENV prediction, with average R2 of 0.33 (0.03 – 

0.72) and 0.32 (0.07 – 0.69). In Cucuta, skillful autoregressive models are found in three months. 

Skillful climate models are constructed for ten months out of the year, improving on null model 

R2 by a margin of 0.4, on average. This analysis shows that longer seasonal lead times, in 

locations with low autocorrelation among cases have the potential to benefit significantly from 

the development of climate based DENV forecasting models. 

 

Forecast development at multiple lead times also provides a unique opportunity to assess the 

performance of predictors at different time scales. As expected, the performance of 

autoregressive predictors tends to decline as lead times increase. Global climate predictors, 

including ENSO regions, regions of global SST, and regions of geopotential height, show the 

largest increases in importance and retention as lead times increase. These increases are driven 

largely by lagged regions of global SSTs. Nino indices also contribute to this increase, both 

through the inclusion of lagged Nino indices and GFDL SPEAR forecast outputs. This is 

particularly pronounced at the 6-month lead time when importance of autoregressive features is 

significantly lower. The memory of sea surface temperature predictors is also expected to be 

longer than many local climate variables, which may contribute to their increased importance at 

longer lead times. 

 

Statistically derived regions of SSTs tend to have higher average variable importance than Nino 

indices. One possible reason for this is that statistically derived regions already capture much of 

the ENSO signal. For example, at the 6-month lead time in Medellin many of the selected SST 
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regions fall within one of the defined Nino regions (Figure 5-7). This is reflected in correlations 

with Nino indices, where January – April DENV incidence is highly correlated with Nino indices 

at a 6-month lag (July-October) (Figure 5-2). In addition to the ESNO signal, statistically derived 

SSTs may capture additional regions of global teleconnection. This may increase the number of 

months in which SSTs have a measurable relationship with DENV incidence, increasing variable 

importance. 

 

 

Figure 5-7. Correlations between SSTs and Medellin DENV incidence 6 months ahead. 

Correlations are indicated by contour lines. Regions selected as candidate predictors are filled. 

Like Nino indices, temperature (min, mean, and max) variables show strong correlation with 

DENV incidence, but tend to appear in models less frequently as lead time increases. This may 

be partially driven by decreasing skill in GFDL SPEAR temperature forecasts at longer lead 

times, compared to forecasts of Nino indices (sea surface temperatures). Hydrologic predictors 

are also included in fewer models as lead times increase, and importance is low overall.  
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5.4.2 Dengue Conditions 
In addition to assessment of lead time performance, development of DENV forecasts may benefit 

from a better understanding of the conditions under which climate-based forecasts perform best. 

Categorical performance indicates that the addition of climate information tends to improve 

accurate forecasts of low DENV incidence categories. Comparing categorical results between 

random forest and autoregressive models reveals large increases in the number of below safety 

events that are correctly predicted at the 3- and 6- month leads, with an 84% and 100% (6-month 

autoregressive has no accurate below safety predictions) increase at each lead, respectively. 

These gains appear to come from better discrimination of extremely high and low dengue 

conditions at the 3- and 6- month lead times (Figure 5-5). This is most apparent in the number of 

below safety months categorized as epidemic by each of the models. At the 3- month and 6-

month leads, these mis-categorizations decline by 42% and 43%. This points to a weakness of 

autoregressive models in capturing low DENV transmission years.  

 

An analysis of variable importance reinforces these results. When comparing average DENV 

conditions (as incidence rank) to variable importance, it becomes clear that climate variables are 

more important in the cities and months in which DENV incidence is typically low, and 

autoregressive features are more important when DENV incidence is high (Figure 5-6). This also 

suggests that climate-based models perform best in scenarios where average DENV incidence is 

low. To verify this finding, incidence rank is compared to the percent of categorical predictions 

corrected by the random forest model over the autoregressive model. Using the same groupings 

for incidence rank discussed above, at the 3- and 6- month lead, improvements in categorical 
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forecast performance are concentrated in the cities and months with low average DENV 

caseload, largely driven by better performance in the below safety category. For both leads, some 

notable improvements are also seen in both the cities and months with highest average DENV 

case load, driven by a reduction in the number of below safety events categorized as epidemic 

events. Further, strong performance of autoregressive features in months and locations typically 

experiencing high dengue conditions may be the result of better data availability regarding 

dengue outbreaks. Increases in dengue incidence in previous months have well-established and 

robust relationships with the occurrence of dengue outbreaks in these scenarios. Comparatively, 

scenarios experiencing more infrequent outbreaks must rely more heavily on climate conditions 

to indicate the suitability of dengue transmission. 

 

Together, the results of this modeling effort suggest that integration of climate information into 

DENV forecasts is particularly effective for accurate prediction of low DENV incidence at 3- 

and 6- month lead times. This feature is seen most frequently in the cities and months that often 

experience low incidence; however, some benefit is also seen in locations with high average 

DENV incidence, due to correction of extreme categorical misses. This may be related to 

relatively poor autocorrelation in DENV incidence at the 3- and 6- month lead times. While 

some improvements are seen in prediction of epidemic conditions, they are more modest.  

5.5 Conclusions 
In this chapter, tailored statistical forecasting models for DENV incidence are developed at 1-, 3- 

and 6- month lead times for each month in four cities across Colombia (Cali, Cucuta, Medellin, 

and Leticia) to inform public health decision making at seasonal lead times. Forecasting models 

are constructed using a random forest structure and are conditioned on autoregressive and 



 
 

145 

hydroclimatic variables. A purely autoregressive model is compared as a null. Hydroclimate 

variables include global scale features such as sea surface temperatures and geopotential height, 

as well as local scale temperature, precipitation, and relative humidity. Development of forecasts 

provides an opportunity to evaluate the relative contribution of hydroclimate variables to DENV 

predictions, lead times at which climate-based forecasts perform best, and the conditions under 

which DENV forecasts perform best. 

 

At the 1-month lead, autocorrelation is the dominant source of predictive skill, included in 100% 

of models, and is rarely outperformed by climate variables. Autoregressive features are included 

in fewer models at the 3-month and 6-month leads. At these longer lead times, global regions of 

sea surface temperature and Nino indices are most predictive of DENV incidence, followed by 

temperature. These predictors indicate the importance of temperature range in the development 

of mosquitos, pathogens, and contact with people. 

 

Given the increased importance of hydroclimate predictors at the 3- and 6-month lead times, 

forecasts are found to outperform autoregressive null models more frequently at these lead times. 

25 (52%) models improve over null models at the 3-month lead time and 20 (42%) models 

improve over null models at the 6-month lead.  The magnitude of improvement is greatest in city 

and month specific models where autoregressive features have no predictive skill. Categorical 

accuracy ranges from 0.69 to 0.85, and specificity ranges from 0.72 to 0.88 across all categories 

and lead times. Sensitivity has the greatest variability among categorical metrics, ranging from 

0.17 to 0.79. Improvements in categorical metrics over the null model are concentrated in the 

below safety and epidemic categories, driven by reduction in mis-categorizations of below safety 
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as epidemic. Given these results, climate-based models appear to be most effective at 3- and 6- 

month leads, in scenarios where average DENV incidence is low and autocorrelation shows little 

predictive skill. 

 

Development of climate based DENV incidence forecasts appear to have potential to better 

inform public health interventions, particularly at longer seasonal lead times. Careful 

consideration of the strengths of such forecasts under different climatic and public health 

scenarios may help target dengue forecast development to improve public health preparedness 

and response. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 
 

147 

 

 

Chapter 6. Summary and Conclusions 

 
Hydroclimatic variability exerts significant influence over the function of natural and human 

systems. In addition to the immediate risks associated with hazards, biological outcomes of 

concern are often influenced by hydroclimate variability and extremes. Two prominent water-

related outcomes of concern are harmful algae and dengue virus. Understanding the relationships 

between hydroclimate variability and these biological outcomes can aid in the development of 

novel tools to improve disaster preparedness and inform water resources management. This 

dissertation explores the relationship between hydroclimate variability, water quality, and water 

related disease, and aims to advance the development of hydroclimate and satellite-based tools to 

improve water resources management and public health decision-making related to these 

biological outcomes. Specifically, seasonal forecasts for harmful algae are developed and 

translated to lakes across the U.S., a satellite-based harmful algae and dissolved oxygen monitoring 

tool is built for a small inland lake, and seasonal forecasts of dengue virus incidence are created 

and evaluated at multiple lead times and in several cities across Colombia. While this work is 

pursued through case studies, results illustrate the efficacy of hydroclimate-based season ahead 

forecasts for biological applications and provide insight into the relationships between climate, 

hydrology, and biological outcomes that may be widely applicable. 
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6.1 Objective one: Develop and assess targeted season-ahead forecasts of biological 
outcomes conditioned on hydroclimate variables for use in management of water quality 
and water-related disease. 
Chapters 2 and 3 address the research questions Can hydroclimate information be used to skillfully 

predict harmful algae outcomes and beach closings at seasonal lead times in small inland lakes? 

(Chapter 2) and are hydroclimate-based seasonal harmful algae forecasts transferable to other 

lakes at scale, and what lake characteristics are associated with skillful models (Chapter 3)? A 

statistically-developed lake-specific cyanobacteria and beach closing forecast model in Lake 

Mendota demonstrates significant skill in prediction of peak season (June-August) cyanobacteria 

biomass at 2- and 3- month lead times. Integration of global and local hydroclimate information 

make significant contributions to model performance in Lake Mendota, particularly for conditons 

of high cyanobacteria abundance. Extreme precipitation events and seasonal streamflow are shown 

to be important at local scales. Additionally, teleconnections between large-scale climate 

phenomena and local hydroclimate conditions are shown to influence cyanobacteria abundance on 

seasonal timescales. These results highlight differences in the relative importance of unique drivers 

of cyanobacteria biomass in different mean states of the atmospheric/oceanic system. 

Extrapolation of this modeling framework to lakes across the northeast and Midwest U.S. reveals 

that integration of climate information into season-ahead forecasts of harmful algae results in 

skillful prediction of algae abundance and persistence across peak seasons for the majority of study 

lakes. Further, this modeling effort affirms the previous finding that extreme precipitation events 

and global sea surface temperature teleconnections play a role in shaping algae productivity in a 

wide variety of lakes. Pre-season algae abundance is also found to be a strong predictor of peak 

season algae conditions. Finally, this large-scale modeling effort suggests that static lake 

characteristics play a role in forecast skill. 
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Chapter 5 applies the tools developed across earlier chapters to forecasting dengue virus in 

Colombia. Specifically, chapter 5 addresses the research question can hydroclimate information 

be used to skillfully predict dengue virus incidence, and if so, in what scenarios is hydroclimate 

information useful (Chapter 5)? The integration of climate information into seasonal forecasts of 

dengue virus is promising. Dengue virus expresses unique seasonality across the four study sites 

in Colombia, thus tailored forecasting models are developed for each city and month. 

Autoregressive models, the common default approach, provide a baseline for comparison of 

forecast skill; these models perform very well at one month lead times but fail to provide 

meaningful information at longer leads when the importance of climate information in dengue 

forecasts increases. Most notable is the importance of large-scale climate phenomena, including 

the El Nino Southern Oscillation, in contributing to forecast skill. These global climate indices 

partially modulate temperature across Colombia, which in turn constraints the development of 

vectors and pathogens. The persistence and memory of certain global climate features allows  

dengue virus forecasts at long lead times, up to 6 months or more. Forecast skill is also linked to 

the average dengue case load in each city and month. Climate-based forecasts are particularly adept 

at categorically separating between extremely low and high dengue incidence. Careful 

consideration of local conditions and the strengths of climate-based forecasts may help target 

forecast development to provide public health information at longer leads. 

 

While the applications and study sites of chapters 2, 3, and 5 vary, the common modeling 

framework allows key themes to emerge: 
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1) Water-related biological outcomes can be modulated by hydroclimate conditions at 

seasonal timescales, leading to forecast development and potentially informing water 

resources management. 

2) The state of the atmospheric/oceanic system influences local-scale drivers and water-

related biological outcomes. 

3) Physical characteristics of water systems often control the variability in biological 

outcomes explained by hydrology and climate. 

Future related research could explore optimal thresholds to trigger actions for public health 

interventions related to harmful algae and dengue virus. While forecasts are skillful, the actions 

taken based on forecasted conditions are still loosely defined in both case studies. Future work 

with decision-makers in Madison, Wisconsin, and Colombia can help operationalize these 

products.  

 

Additionally, questions remain regarding the occurrence of hydroclimate extremes and their 

relationships to both harmful algae and dengue virus at seasonal timescales. Future work aimed at 

better understanding the links between global climate, local extremes, and biological outcomes at 

seasonal timescales will serve to improve forecast skill and may provide insights into the co-

occurrence of biological and climate-based disasters. 

 

6.2 Objective two: Explore the ability of satellite remote sensing to retrieve water quality 
metrics and differentiate between harmful algae indicators to improve monitoring 
capabilities. 
Chapter 4 addresses the research question can satellite imagery and machine learning methods 

improve monitoring and discrimination of algae on a small inland lake (Chapter 4)? This chapter 
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focuses primarily on monitoring strategies for water quality outcomes at weekly lead times as 

opposed to seasonal timescales. Satellite based monitoring tools provide a valuable supplement to 

in-situ water quality sampling and allows for spatial representation of harmful algae and other 

water quality dynamics. The wide array of harmful algae monitoring algorithms for Sentinel-2 and 

Sentinel-3 satellite missions are used in a machine learning structure to retrieve indicators of green 

algae, cyanobacteria, and dissolved oxygen. Machine learning models demonstrate skill in 

retrieval of algae indicators for both satellites. Despite the finer spectral resolution of Sentinel-3 

imagery, the model conditioned on Sentinel-2 imagery outperformed the Sentinel-3 model for all 

variables. The fine spatial resolution of Sentinel-2 may offer a better estimate of reflectance values 

where in situ data were collected compared to Sentinel-3, particularly if algae conditions are 

variable across the lake. Indirect, satellite-based estimates of dissolved oxygen are modeled using 

machine learning methods, with algae pigments as predictors. Spatially, model errors appear to be 

higher when algae pigment and dissolved oxygen variability is higher. Further research could 

explore the drivers of spatial variability in model error, and how they may be addressed. 

Additionally, the use of satellite-based algae monitoring has the potential to inform decision-

making regarding water quality testing and beach closings on Lake Mendota. Further work on 

testing and operationalizing this tool for Lake Mendota is warranted. 

 

6.3 Final words 
The use of hydroclimate and satellite information for monitoring and forecasting biological 

outcomes in water systems shows promise for improving water resource management. Often, 

water quality and water-related disease are viewed as a step removed from hydrologic and climate 

systems. Connecting global and local climate to ecosystem dynamics improves our understanding 
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of the relationship between hydroclimate extremes and biological outcomes of concern and can 

foster the development of tools to better prepare for public health emergencies at seasonal leads. 

Combining forecasts with satellite monitoring effectively addresses biological water resource 

management challenges at multiple temporal and spatial scales. Further exploration is necessary 

to appropriately tailor applications of these research outcomes for water resources decision-making 

and public health risk reduction. A future defined by climate uncertainty warrants continued 

research at the intersections of climate, hydrology, ecosystems, and water resources management. 
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Appendix 

 
Figure 3-A.1 An example of the grid selection process for hydrologic predictors. The white 
polygon represents the HUC12 watershed, the red dot represents the lake, and the gray represents 
areas of the watershed with elevation exceeding the lake surface. 
 

 
Figure 3-A.2 Sea surface temperature grid selection process; example from the Northeast region. 
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Figure 3-A.3 Lakes for which at least one hydroclimatic predictor is statistically significantly 
correlated with magnitude, duration, or both. Other lakes are shown in gray. 

 

 
Figure 3-A.4 The number of predictors retained for each magnitude and duration lake model. 
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Figure 3-A.5 Correlation between selected SST principal components and NAO and MEI 
indices for the Northeast and Midwest U.S. 
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