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Abstract 

 The integrity assessment of an engineering structure or member often requires knowledge 

of the full-field individual components of stress, strain and/or displacement. Evaluating these can 

be difficult for finite structures, contact problems, or if the material properties, loading or 

boundary conditions are unknown. Theoretical stress analyses of finite perforated geometries are 

virtually impossible. Both analytical and numerical techniques necessitate knowing the boundary 

conditions, the latter often being unavailable in practice. Results show errors can occur as one 

approaches a purely boundary collocation approach. Combining experimental information with 

analytical and numerical tools enables one to solve aforementioned situations. For example, 

values of a single component of displacement are used here to determine full-field individual 

components of stress, strain and displacements in isotropic or orthotropic structures and without 

explicitly differentiating the measured displacements. Discretely located single-element strain 

gages are used to determine full-field individual components of stress, strain and displacement in 

a perforated finite tensile plate and a diametrally-loaded ring. Thermoelastic stress analysis is 

combined with an Airy’s stress function (in real polar coordinates) to stress analyze a mechanical 
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joint, a concentrated-loaded plate, and members containing an elliptical or multiple circular 

hole(s). The displacements and strains at the interface of a loaded bimetallic disk are determined.  
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Chapter 1 : Introduction 

1.1 Background 

This research employs several experimental techniques to determine full-field individual 

stress, strain or displacement components in engineering members. The variations in the stress 

experienced by the structural components due to the effects of the shape of one or more holes, 

pin-loaded holes and unknown loading/boundary conditions in isotropic or composite structure 

are investigated. The thesis provides quantitative experimental methodologies using optical 

techniques (digital image correlation, thermoelastic stress analysis) and strain gages to 

investigate structural integrity. 

The objective of this research was to use contemporary experimental methods, and 

analytical and numerical tools to analyze finite structural members. Quantitative experimental 

methods are enhanced and applied, and Finite Element Analysis (FEA) was used for validation. 

Determining the full-field individual stress, strain and displacement components employing DIC, 

strain gages or TSA is emphasized. A hybrid experimental-numerical-analytical approach is 

utilized whereby discretely measured information is processed with a stress function to evaluate 

the stresses, strains and displacements. Different approaches are developed to solve engineering 

problems such as a finite plate with a single (circular or non-circular) or multiple hole(s) whose 

stress fields interact, contact problems, simplifying the stress function for the finite members 

with complicated loading and strain interaction between dissimilar metals.  
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1.2 Novelty 

Traditional displacement–based methods (moiré, holography, speckle, digital image 

correlation) involve differentiating the measured information to obtain strains and stresses. 

However, differentiating measured data has its perils. The author is unaware of any previously 

reported research on evaluating the full-field individual stress, strain and displacement 

components from recording only a single component of displacement at discrete locations. This 

is demonstrated for isotropic materials in Chapter 2 using DIC measured displacement and for 

orthotropic materials in Chapter 9 using simulated displacement data. It is also notable that 

measuring a single component of displacement is advantageous particularly in composite 

structures. This ability is significant since obtaining both displacement components can be non-

trivial with moiré or speckle. Moreover, it is not uncommon in practice to find regions where one 

of the displacement components is very small or is unreliable. 

Conventional strain gages are used as point-wise measuring devices. They are the most 

widely used strain sensor in industry. Reference [1] utilizes three-elements to measure the full-

field stress in a bolted aluminum joint. Baek and Rowlands [9] used two-element rosettes to 

evaluate the strains throughout a perforated orthotropic tensile plate. On the other hand, Chapter 

3 employs only forty-five single-element strain gages for the full-field stress/strain analysis of a 

finite plate containing a circular hole. This experimental method is further simplified in Chapter 

4 where five strain gages are used for full-field strain, strain and displacement analysis of a 

diametrically-loaded ring. The successful ability to use only single-element gages greatly reduces 

the foot-print covered as well as minimizes the data acquisition equipment needed. Two- or 

three-element rosettes also pose the challenge in that the various individual gage elements of a 
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rosette occur at different geometric locations. This can be particularly concerning in regions of 

high strain gradients.  

Chapter 5 demonstrates the ability to determine the individual stress components 

experimentally in a finite tensile plate containing an elliptical hole using a series representation 

of an Airy stress function in terms of polar coordinates. Most theoretical stress analyses of 

multiple- or non-circular-perforated components involve a complex-variable stress function or 

are restricted to an infinite geometry. Employing real, rather than the commonly used complex, 

variables is easier for such problems, avoids inconveniences associated with conformal mapping 

and extends thermoelastic capability to stress analyze components containing non-circular 

discontinuities or multiple holes. This is the first known application of (real) polar coordinates to 

non-round cutouts. This is significant in that there is a simple general solution to the governing 

biharmonic equation in (real) polar coordinates but that seemingly is not so in elliptical or 

generalized orthogonal coordinates. 

One might question the significance of evaluating the stresses, strains or displacements in 

finite perforated plane stressed members or pinned connections experimentally in light of 

available theoretical and numerical approaches. Theoretical, analytical or numerical (FEM, FD) 

solutions can be challenging and they necessitate knowing reliably the boundary (loading) 

conditions, which are often unavailable in practice. Also, few purely analytical (theoretical) 

solutions are available, and those that are available typically assume an infinite geometry. The 

present method circumvents this difficulty as is demonstrated in Chapter 2 for unknown far-field 

load/displacement, Chapter 6 for bolted joints, Chapter 7 for a concentrated load at a near- edge 

hole, and Chapter 8 for an arbitrarily loaded incline plate with multiple holes. In this research, 
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the analysis considers any typical symmetry in the component and imposes (often analytically) 

the traction-free boundary conditions on the boundary of a cut-out. 

Finally, an experimental study is conducted in Appendix A* to determine the effect of 

interface strains between dissimilar materials, i.e., full-field strain and displacement fields are 

determined using DIC in a diametrically-loaded structure consisting of a ring of one material 

within which is a disk of a different material. 
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1.3 Experimental Techniques 

Digital Image Correlation (DIC) is a contemporary optical technique to measure full-field 

2D or 3D individual components of displacement. It employs tracking and image registration 

techniques for displacement measurements when the material deforms. Advantages of DIC 

include full-field, non-contacting, non-destructive, static/dynamic measurements. The DIC 

system employed here is that by Correlation Solutions, Columbia, SC 

A strain gage is a discrete device used to measure the strain of an object when deformed. 

When an object is loaded/deformed, the foil of a bonded strain gage is deformed, causing a 

change in electrical resistance. This change in resistance, usually measured using a Wheatstone 

bridge, is related to the strain by the manufacturer’s supplied gage factor. Most applications of 

strain gages are point-wise measurements. 

Thermoelastic Stress Analysis (TSA) is a contemporary full-field, non-contacting 

technique for determining stresses in engineering structures under their operating conditionings. 

Thermoelastic coupling is the temperature change caused by mechanical loading when 

compressed or expanded (i.e., experience a change in volume). These small temperature 

variations range from a few milli Kelvin (mK) to a tenth of a Kelvin in solids [2]. Under 

adiabatic and reversible conditions these temperature variations are proportional to the first stress 

invariant. For materials having a positive coefficient of thermal expansion, thermoelastic 

temperature variations are positive during compression and negative during expansion [2]. The 

adiabatic conditions are achieved by cyclically loading the structure such that heat diffusion 

effects are negligible. If the load causing the volumetric change is removed and the material 
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returns to its original temperature and shape, the process is reversible. Figure 1.1 represents the 

thermoelastic effect and identifies the governing relationship between the change in the spectral 

radiant photon emittance derived from Planck’s law and the temperature change under isotropic 

plane stress. At room temperature the peak photon emittance occurs at a wavelength of 12μm 

and photodetector is restricted to two discrete window of operations 3-5μm and 8-13μm [10]. 

The TSA system used is that by Stress Photonics, Madison, WI. The sampling rate of the camera 

exceeds 1000 frames/sec and the loading frequency range is 0.6 – 1000Hz.   

 
Fig. 1.1: Thermoelastic effect on the specimen [3]  
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1.4 Analytical Background 

Experimental information is combined with a series representation of Maxwell’s form of 

an Airy’s stress function to evaluate the individual stress, strain or displacement components. For 

isotropy, Airy’s stress formulation (based on equilibrium and compatibility equations) is the 

solution of 𝛻4𝜙=0, where 𝜙 is the Airy stress function [1, 3 - 6]. The assumptions associated 

with this stress function are that there are no body forces and is applicable to plane-stress or 

plane-strain situations. Derivatives of Airy’s stress function provide the individual stress 

components, and associated strain and displacement expressions are available based on elasticity. 

With orthotropic materials, the stress functions are usually in terms of complex variables. 

The specific form of the Airy’s stress function for a particular case can depend on 

conditions of symmetry, whether or not the coordinate origin is within the component, and 

single-valued stresses, strains and displacements. Previously, stress functions were derived based 

on the geometry and the loading conditions which made the stress function complicated, i.e., the 

individual components of stress involve many unknown coefficients and require knowing the 

geometry and applied loading. The stress function used here is simplified based on the geometry 

of the specimen and the experimental data accounts for the loading conditions. 

Numerical techniques are utilized to evaluate the coefficients of the Airy stress function 

from measured data, thereby providing the individual stress, strain or displacement components.  

 



8 
 

Chapter 2 : Determining Individual Components of 

Stress, Strain and Displacement at and in the 

Neighborhood of a Cutout from Measuring a Single 

Component of Displacement 

2.1 Introduction 

This chapter demonstrates the ability to determine the individual components of 

displacement, strain and stress by processing a single measured component of displacement with 

a series representation of the Airy stress function. The present case of a loaded plate containing a 

central circular hole uses simulated experimental input from FEM, and measured displacements 

from Digital Image Correlation (DIC). It is usually more convenient to measure a single 

component of displacement rather than measuring all components of displacement, stress or 

strain. Being able to evaluate both displacement components (and hence the three independent 

components of strain and/or stress) from one component of displacement field is particularly 

advantageous with methods such as moiré, holography and speckle. Even with DIC (Digital 

Image Correlation), one can encounter situations where one of the measured in-plane 

displacements is of inferior quality. A case is demonstrated here using the DIC, in which one 

component of displacement was reliable and the other component of displacement (much less 

reliable) was evaluated using the herein developed technique. The stresses and strains were then 

evaluated using this measured displacement data. 
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Unlike purely analytical or numerical (FEM or FD) methods, the present technique does 

not require knowing the far-field boundary conditions. Although the specimen (between the 

loading grips) of the present DIC analyzed case is too short to know the far-field boundary 

conditions accurately, one is able to numerically model the situation approximately. This 

specimen was chosen because the individual components of stress were available from a 

previous TSA analysis. 

A particular advantage of the present approach is its ability to evaluate all of the Airy 

coefficients from measuring only one component of displacement, and to reduce the number of 

these experimentally-determined coefficients by incorporating the traction-free conditions on the 

edge of the hole analytically. Fewer coefficients can reduce the amount of measured input data 

required and simplify the data processing (particularly the least square analysis). Using the 

stress, strain and displacement equations, the individual components of stress, strain and 

displacement are evaluated from recorded information of the single displacement component. 

Moreover, this is accomplished without explicitly differentiating the displacements spatially, 

which is typically necessary with traditional displacement measured techniques. Differentiating 

measured data can have its perils. It is also particularly challenging to obtain accurate 

experimental displacements or strains on the edge of geometric cutouts (often the locations of the 

greatest interest). This challenge is overcome here in that the stresses, strains and displacements 

at, and in the neighborhood of the hole, are obtained from measured displacement data away 

from the edge of the hole. 

As mentioned above, traditional displacement–based methods (moiré, holography, 

speckle, digital image correlation) typically involve differentiating the measured information to 
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obtain strains and stresses, and differentiating measured data can be unreliable. However this is 

not the issue here that it is in the traditional sense since the present approach uses measured 

displacement data to evaluate the Airy coefficients, and the later appear in the expressions for the 

stresses and strains. The expressions for the strains are analytical derivatives of the 

displacements. Moreover, the displacements are represented by a series, and the form of the 

series (based on the Airy stress function) has a mechanics foundation i.e., equilibrium and 

compatibility. 

It is usually easier to measure displacements with respect to a rectangular Cartesian rather 

than a polar coordinate system, and employing stresses, strains and displacements in terms of an 

Airy stress function can be advantageous. However, there are conveniences to utilizing an Airy 

stress function in terms of polar, rather than rectangular, coordinates, i.e., there is a general 

convenient expression for the Airy stress function in polar coordinates. Fortunately, one can 

relatively easily transform the components of stress, strain and displacement at a point in terms 

of polar coordinates to those with respect to rectangular Cartesian coordinates, and vice-versa.  

This chapter utilizes rectangular components of an experimentally measured 

displacement, but employs an Airy stress function in polar coordinates. All of the Airy 

coefficients, and hence the complete state (all components) of stress, strain and displacement on 

and in the neighborhood of the edge of a hole can be obtained from measuring only one 

component of displacement. The present ability is significant in that it is typically difficult to 

record reliable stress, strain or displacement data on the edge of a hole or notch, and yet such 

geometric cut–outs produce stress concentrations which can control a component’s mechanical 
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integrity. This motivates having an ability to evaluate such mechanical information on the edge 

of a hole or notch from recorded data away from the hole or notch. 

Although the coefficients of a relevant Airy stress function have been evaluated 

previously from measure temperature (Thermoelastic Stress Analysis, TSA), strain gage or 

photoelastic information [1, 3 - 5], this chapter emphasizes doing so from DIC–measured 

displacements in a single direction. Once the Airy coefficients have been evaluated, the in-plane 

individual components of displacement, strain and stress are available. 

The present displacement–based approach involving the Airy stress function is 

demonstrated here by application to a tensile component containing a single circular hole. This 

problem will be analyzed initially by employing FE-simulated displacement data in order to 

substantiate the viability, robustness, and numerical stability of the described numerical method. 

DIC measured displacement data will then be utilized to investigate the displacement, strain and 

stress distributions in the actual plate. The described concept of using an Airy stress function in 

polar coordinates and the measured displacement data can be extended to stress analyze more 

involved situations such as structures containing multiple holes, loaded holes (bolted joints) 

and/or more complicated shapes or loadings.  
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2.2 Relevant Equations 

A general Airy’s stress function in polar co-ordinates satisfying the biharmonic equation 


4 = 0, equilibrium and compatibility can be written as [1]: 
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(2.1) 

As seen from equation 2.1, the stress function,𝜙, contains numerous unknown Airy 

coefficients, ao , bo , co , do and so forth. This chapter involves evaluating these Airy coefficients 

experimentally using DIC or ESPI–measured displacements and some local boundary conditions. 

Previous literature demonstrates the ability to evaluate the Airy coefficients of equation 2.1 from 

recorded photoelastic, strain or temperature data [1, 3 - 5, 8, 12]. Although the displacements are 

measured here using DIC, one could also employ techniques such as moiré, ESPI or holography. 
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Fig. 2.1: Uniaxially-loaded plate 

Knowing , the individual components of stresses can be obtained by differentiating the 

stress function as shown in equations 2.2 through 2.4 [1, 3 - 8] 
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For isotropic materials, the displacements are then obtained by integrating equations 2.5 and 2.6, 

i.e., 

   

   r
  =    = 

1

 
 (     -      )                                                                                     (2.5) 

   

  
                                               (2.6) 

 Based on the previous equations, unknown Airy coefficients of equation 2.1 will appear 

in the equations for individual components of displacement (as well as the strain and stress). 

Hence, in order to determine the individual components of displacement, it is necessary to first 

evaluate these unknown Airy coefficients. The number of these (initially) unknown coefficients 

can often be reduced by considering factors such as any geometric and loading symmetry, and 

eliminating any terms that lead to multivalued displacements, strains or stresses. For a case such 

as that in figure 2.1, since the displacements, strains and stresses must be single-valued functions 

of θ and that there is no resultant force at the origin, coefficients d0, B0, C0, D0, B1, B1 and A0, A1, 

A1, b1, b1 are all zero [6]. Again, referring to figure 2.1, the plate is symmetrical about both 

vertical x-axis and horizontal y-axis. Symmetry about the x-axis means that stresses occurring at 

any angle, say when θ = +β would be the same as those at θ = -β. Thus,   (r, θ) =  (r, -θ). This 

indicates that  must be an even function of θ. Also there is symmetry about the x-axis, so all 

sine terms go to zero. For an, bn, cn, dn (for n ≥ 1) the value of n is then a positive even integer.  
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Based on comments of the previous paragraph, a relevant Airy stress function satisfying 

the biharmonic equation 
4 = 0, equilibrium and compatibility for the finite geometry 

associated with figure 2.1 can therefore be written as [1, 5, 6] 

𝜙                 
  ∑ {(   

     
       

      
      )      }

 

          
     (2.7)

 

 

The individual components of displacement are obtained by evaluating the stresses from 

equations 2.2 and 2.3, then integrating equations 2.5 and 2.6 (equation 2A.11 of Appendix A2): 
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where, g(θ   =  S1cos θ – S2sin θ. Also, (equations 2A.11 and 2A.20 of Appendix A2) 
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                (2.9) 

Radial coordinate r is measured from the center of the hole, angle  is measured counter-

clockwise from the horizontal x-axis (figure 2.1) and N is the terminating value of the summation 

series (N can be any positive even integer). S1 and S2 represent rigid body translations and R* 

represents a rigid body rotation [7, p.472]. Hence for a physical plate loaded in a testing 
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machine, S1, S2  and R* can be equated to zero. While coefficient a0 appears in the relevant Airy 

potential function, , of equation 2.7, it is absent in the expressions for the individual 

displacement components (equations 2.8 and 2.9). Coefficient a0 disappears in the differentiation 

of equations 2.2 and 2.3 and hence does not appear in the expression for the stresses, strains or 

displacements. 

The Airy coefficients present in the expressions of equations 2.8 and 2.9 can be evaluated 

from measured polar displacement data. However, experimentally it is often more convenient to 

measure rectangular component of displacement, u and v, rather than ur and uθ. Moreover, it is 

subsequently demonstrated that the expression for both u and v contains all of the relevant Airy 

coefficients. Hence one can evaluate both u and v (and all components of stress and strain) from 

measured data of either one of these two displacements (i.e., u or v). This can be advantageous in 

practice since it means one has to record only one of the displacement components 

experimentally. It can also happen that one can have the ample measurable and reliable 

displacement information in one coordinate direction but not in the orthogonal direction. The 

displacement data are from simulated displacements from Finite Element Analysis, Digital 

Image Correlation (DIC) and Electronic Speckle Pattern Interferometry (ESPI) experiment. Note 

that equations 2.8 and 2.9 do not have the same coefficients. Referring to equations 2.8 and 2.9,  

ur = f( bo , co, an , bn , cn , dn  for n = 2,4,6…)        (2.10) 

uθ = f(an , bn , cn , dn  for n = 2,4,6…)                                   (2.11) 

Comparing equations 2.10 and 2.11 shows that coefficients present in the expression for 

radial displacement (ur) are also present in the expression for the hoop component of 
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displacement (uθ). On the other hand, the radial component of displacement also contains 

coefficients bo, and co which are not present in the expression for the hoop displacement. It will 

be shown that if one transforms the polar components of displacement to rectangular 

displacement components, both of the latter will contain all of the Airy coefficients. Moreover, 

imposing the traction-free boundary conditions analytically on the boundary of the hole will 

result in reducing the number of coefficients in the present equations for the displacements.  

Imposing the traction–free boundary conditions analytically on the boundary of the hole 

in the plate of figure 2.1 (rθ = 0 and rr = 0 at r = R and for all values of θ) results in some 

independent Airy coefficients becoming dependent functions of other Airy independent 

coefficients, i.e.  

bo  f (co)             

an  f (bn, dn)                         (2.12) 

cn  f (bn, dn)  

A detailed derivation of the expressions of equations 2.12 is contained in Appendix A2.  

By replacing these dependent coefficients (bo, an, cn), of equation 2.12 by their corresponding 

independent coefficients (co, bn, dn), the displacement components of equations 2.8 and 2.9 can 

be rewritten as in equations 2.13 (from equation 2A.32) and 2.14 (from equation 2A.33). 

Similarly equations 2.15 through 2.19 correspond to the polar components of strain and stress 

after imposing traction-free conditions on the boundary of the hole. 
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where, g(θ)  =  S1cos θ – S2sin θ, and 
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Moreover from equations 2A.27a and 2A.29 
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and from equations 2A.25 through 2A.27 
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where R is the radius of the hole. When the physical plate is loaded in a testing machine, the 

rigid body motions S1, S2 and R* in equations 2.13 and 2.14 can be equated to zero [7, P.472]. 

The stresses, strains and displacements (equations 2.13 through 2.19) now involve only the 

coefficients co, bn and dn.  This reduces the number of Airy coefficients that must be evaluated 
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experimentally by essentially 50% compared to imposing the traction-free conditions on the edge 

of the hole point–wise. This can be advantageous since it can reduce the amount of measured 

data needed, and simplifies the associated least–square computation. 

With respect to figure 2.2, equations 2.20 through 2.23 [7] relate the displacement 

components u and v with respect to the x and y direction in terms of ur and uθ with respect to the 

polar coordinates (r, θ), and vice-versa.
1
 

                            (2.20) 

                                         (2.21) 

                           (2.22) 

                             (2.23) 

Although equations 2.20 through 2.23 are emphasized here relative to the displacements 

near a circular hole, they are general in nature. As such if one represents ur and uθ in terms of the 

series (such as here from a stress function), u and v involve all of the unknown coefficients even 

if ur and uθ do not do so separately. The displacement expressions for each of the u and v 

Cartesian components will now have the same coefficients. Therefore, the displacement in any  

 

 

 

 

 
 

1
 Equations 2.22 and 2.23 obtained by solving equations 2.20 and 2.21 simultaneously 
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one or all directions can be evaluated from measuring any one displacement in the Cartesian 

coordinates, i.e., 

u = f(bo , co, an , bn , cn , dn  for n = 2,4,6…)                     (2.24) 

v= f(bo , co, an , bn , cn , dn  for n = 2,4,6…)                     (2.25)  

 

A detailed derivation of the expressions of equations 2.13 through 2.19 is contained in 

Appendix A2. By replacing ur and uθ of equations 2.20 and 2.21 by their corresponding 

equations, the displacement components in the Cartesian directions, u and v, are given in 

equations 2.26 (from equation 2A.36) and 2.27 (from equation 2A.38). 
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Fig. 2.2: Displacement components, u and v, with respect to rectangular Cartesian coordinates 

(x,y) and ur and uθ with respect to polar coordinates (r, θ) when point P moves to P* [7] 

 

 

 

   
 

 

[
 
 
 
 
 
 
 
 
 
 {

    

 
             }         

–∑
{
 

 
                                

                                    

 (
                                 

                             
)      

 

}
 

 

   

 

{
 
 

 
          

       
                 

                                  

 (
                                

                             
)      

 

}
 
 

 
 

  

 

       

]
 
 
 
 
 
 
 
 
 
 

     (2.26) 

θ 

 

θ 

 

P* 

u 

v 

ur uθ 

P 

θ 

 

x 

r 

y 

 



23 
 

and 

    
 

 

[
 
 
 
 
 
 
 
 
 
 
 {

    

 
             }         

–∑
{
 
 

 
 

                   (           )

                       (           ) 

 (
       (           )   (           )

                             
)      

 

}
 
 

 
 

   

 

{
 
 

 
         

       
     (           )

                      (           )

 (
        (           )   (           )

                             
)      

 

}
 
 

 
 

  

 

       

]
 
 
 
 
 
 
 
 
 
 
 

  (2.27)  

From equations 2.13 through 2.19, 2.26 and 2.27 one sees, in the absence of rigid body motion, 

ur = f( co,  bn ,  dn  for n = 2,4,6…)                     (2.28) 

uθ = f( bn , dn  for n = 2,4,6…)                                   (2.29) 

    = f( co,  bn ,  dn  for n = 2,4,6…)                     (2.30) 

    = f(co,  bn ,  dn  for n = 2,4,6…)                                  (2.31) 

    = f( co,  bn ,  dn  for n = 2,4,6…)                     (2.32) 

    = f(co,  bn ,  dn  for n = 2,4,6…)                                  (2.33) 

    = f(bn ,  dn  for n = 2,4,6…)                     (2.34) 

u = f( co, bn , dn  for n = 2,4,6…)                      (2.35) 

v = f( co, bn , dn  for n = 2,4,6…)                     (2.36) 
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Note that f( ) represent different functions which appear in the equations 2.12 through 

2.36. 

Once all of the Airy coefficients (co, bn, dn for n = 2,4,6…) are known (say from 

measured values of u or v), the individual components of displacement, stress and strain can be 

evaluated using equations 2.13 through 2.19, 2.26 and 2.27. Equation 2.35 or 2.36 suggests that 

one could record many values of the same component of displacement (displacement component 

with respect to any rectangular Cartesian direction) at many different locations throughout some 

region and from which evaluate all of the relevant Airy coefficients. Moreover, equations 2.35 

and 2.36 indicate that, assuming one uses the same number of coefficients of bn and dn in u and v 

then all the Airy coefficients are available from measured data of either u or v.  
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2.3 Simulated Experimental Input Data (FEA) 

2.3.1 Introduction 

The problem of figure 2.3 will be analyzed initially by employing FE-simulated 

displacement data in order to substantiate the viability, robustness, and numerical stability of the 

technique. This section will apply FE ANSYS simulated displacements, u or v, to evaluate the 

unknown Airy coefficients of equations 2.26 or 2.27 and then employ these determined 

coefficients to evaluate individual components of stress, strain and displacement using equations 

2.13 through 2.19, 2.26 and 2.27. The displacement evaluated stresses, strains and displacements 

will be compared subsequently with those predicted discretely by ANSYS to assess the validity 

of the described approach. Such numerical experiments employing simulated displacement test 

data from ANSYS help verify that there are no algebraic errors and substantiate that the system 

is numerically robust. 

Following are the details of the plate for the associated analyses and results: 

 Material of the plate: Aluminum 6061-T6 (Wiedenbeck, Inc., Madison, WI); Ultimate 

strength = 275 to 311 MPa (40 to 45 ksi) and Yield strength = 241 to 275 MPa (35 to 40 

ksi). 

 Far-Field stress (σo) = 1000 psi. 

 Diameter of the hole (d) = 25.4 mm (1”). 

 Thickness of the plate (t) = 6.35mm (0.25”). 

 Plate is symmetrical about the horizontal (x-axis) and vertical axis (y-axis). 

 Length of the plate (L) ≈ 406.4 mm (16”), figure 2.3. 

 Width of the plate (W) = 50.8 mm (2”), figure 2.3. 
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Fig. 2.3: Plate Geometry (actual plate loaded horizontally but shown here vertically so to locate 

its length in the long direction of the page) 
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The following considerations helped to motivate using this particular specimen (figure 

2.3) to illustrate the objective of this chapter: (i) The geometry contains a hole. Engineering 

components often contain holes or notches and these give rise to stress concentrations. (ii) It has 

two axis of symmetry. In addition to simplifying the stress function and reducing the number of 

Airy coefficients, this acknowledges that engineering components often possess mechanical and 

geometric symmetry. (iii) A feature of this present approach is its ability to evaluate all the Airy 

coefficients and to reduce the number of these experimentally-determined coefficients by 

incorporating the traction–free conditions on the edge of the hole analytically. 

The loaded aluminum plate of figure 2.3 was accurately modeled in ANSYS having 

geometric and loading symmetry about both the x and y-axes so as to obtain the displacement 

distributions in the plate. Figure 2.4 shows the finite element ANSYS model of the plate of 

figure 2.3. This FEA uses isoparametric elements (ANSYS element type: Plane-82), which have 

8 nodes per element. This element gives better results than does the Plane-42 element which has 

4 nodes per element. A very fine mesh was used near the hole to enhance accuracy. Symmetry 

about x-axis and y-axis were employed. Using the symmetry boundary condition enables one to 

increase the number of nodes i.e., a fine mesh in the region of the hole. It also simplifies the 

finite element calculation. The quarter model of figure 2.4 involves 727 elements and 2304 

nodes. 

Figures 2.3 and 2.4 show that the plate is symmetrical about both the x- and y-axes and 

there is an applied far-field stress of 6.90 MPa (1000 psi) in the y-direction. The origin of the 

coordinate system is located at the center of the hole, figure 2.3. 
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Fig. 2.4: Finite Element Model for the perforated plate of figure 2.3 

The ANSYS–simulated test data originate in the region near the hole, i.e., 0 ≤ r/d ≤ 0.9 

(where d = 25.4 mm (1”)), figures 2.5. The 651 source locations of the input values of the 

ANSYS displacements are indicated in figure 2.5-b. 



29 
 

                  
        (a)       (b) 

Fig. 2.5: (a) Selected data locations for displacement components determination. (b) Source 

locations of 651 individually used inputs for determining Airy coefficients when satisfying 

traction-free conditions analytically at the hole 

Figures 2.5 show the 651 source locations for the ANSYS-evaluated values of 

displacements. The selected ANSYS nodes for input values are located in a region adjacent to 

the hole as shown in figures 2.5. Using FE-generated vertical displacements at the 651 locations 

of figures 2.5, one can form the following linear matrix equation Ac = d of equations 2.37 and 

2.38. 
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(2.37) 

Airy coefficients of equation 2.37(a) or 2.37(b) can be evaluated using the u or v 

displacements, respectively, from FEA or measured experimental data. Using the now known 

Airy coefficients, the individual components of stress, strain and displacement are evaluated 

from the other expressions of equations 2.37. 

Equation 2.37(a) or (b) can be written in simplified form, 
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1 1[ ] { } { }m k k mA c d  
                                                      (2.38) 

where A is an m (number of input data values, i.e., m source locations = 651) by k (number of 

unknown Airy coefficients to be evaluated) matrix containing a set of 651 linear displacement 

equations, with k independent variables of figures 2.5, vector c contains k unknown Airy 

coefficients, and the d vector is composed of the 651 ANSYS-generated displacement values 

corresponding to the displacement equations in matrix A. There are more equations than the 

number of unknown, i.e., m > k. The least-squares process is therefore used to solve the over-

determined matrix expression Ac = d of equations 2.37.   

Either of two methods is commonly employed to solve such a matrix equation: the 

traditional linear least-squares method which involves taking matrix inverses, and the method of 

Singular Value Decomposition (SVD) which decomposes the original matrix into a set of 

matrices with special properties. The SVD approach, which was utilized here, has the advantage 

that it allows the condition number C of the matrix to be easily determined. With the value of C 

known, accuracy of the calculations can then be approximately determined by removing as many 

decimal places from the answer as are found in C. That is, if C = 1 x 10
9
, then nine digits of 

accuracy are lost in the calculation. Since the calculations in this thesis are all done in double 

precision format which generally gives an accuracy of about 12 digits, the above condition 

number would limit the accuracy of results to approximately three digits (12 – 9), which is a 

rough gauge of the accuracy. Figures 2.6 and 2.7 plot the condition number, c, and log(condition 

number) vs. the number of Airy coefficients, k from MATLAB. The condition number and log 

(condition number) plots are the same for both u and v displacements i.e., the condition number 

is based on the matrix A of equation 2.38. Either of these methods, traditional linear least-
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squares or SVD gives equivalent values for the coefficients {c}, and once these Airy coefficient 

(co, bn, dn) values are known, the individual components of stress, strain and displacement are 

available at any point from equations 2.13 through 2.19, 2.26 and 2.27. Equation 2.38 was 

solved using the ‘\’ matrix division operator and pseudo inverse ‘pinv’ operator in MATLAB 

(theoretically both computes the same least squares solution c). This operators uses the algorithm 

for least squares and calculates vector {c} by c = A\d or c = pinv*d.  

When, as is the case here, the analysis involves a series representation, the question arises 

as to how many coefficients, k, to retain in the series. Previous analysis have utilized information 

on the condition number, C, of the Airy matrix, [A] (discussed in previous paragraph), the root 

mean square (RMS) between the calculated, d
’
, and input, d, vectors of equation 2.31 or 

compared the reconstructed information to the experimental data [4, 5, 8]. The present RMS plot 

(figure 2.8, based on the displacement v) is sufficiently flat when k > 5 as to provide little 

guidance as to how many coefficients, k, to use. Since the displacements are small numbers, the 

scale of the RMS plot is small. Comparing the reconstructed displacement-images (figures 2.9 

and 2.10) after substituting the various number of ANSYS-evaluated Airy coefficients with those 

predicted directly by FEM (ANSYS), together with the information of figures 2.6 through 2.8, 

further supports using k = 5 as the number of coefficients. Such information indicate 5 

coefficients (i.e., k = 5) for u and v as the best choices for the current study and the matrix 

equation Ac = d. Thus, the terminating index value N = k - 1 = 4 is used here for the ANSYS 

numerical–experimental analysis. The matrix equation 2.38 becomes over-determined with m = 

651 > N = 4. Solving the over-determined linear matrix equation Ac = d of equation 2.38 by 

least-squares, evaluates all of the Airy coefficients existing in the stress, strain and displacement 
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expressions, equations 2.13 through 2.19, 2.26 and 2.27. Using the now known coefficients, one 

can obtain the strain, strain and displacement at any point in the region.  

 
Fig. 2.6: Plot of condition number, C, vs. number of coefficients, k, for m = 651 input values 

 
Fig. 2.7: Plot of Log10(C) vs. number of coefficients, k, for m = 651 input values 

 
Fig. 2.8: Plot of RMS vs. number of coefficients (for displacement v), k, for m = 651 input values 
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Contour plots such as those of figures 2.9 through 2.19 are often generated using the 

‘contourf ( )’ function in MATLAB. However, I found it preferable to write and use my own 

contour-plotting algorithm in MATLAB for preparing images such as figures 2.9 through 2.19. 

These contour plots are normalized with respect to the diameter of the hole (d = 25.4 mm = 1”). 

 
Fig. 2.9: Contour plots of u/d from FEA (left side) and reconstructed displacement u/d (right 

side) using m = 651 input numerically simulated measured u displacements, k = 5 coefficients 

throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole 

 
Fig. 2.10: Contour plot of v/d from FEA (left side) and reconstructed displacement v/d (right 

side) using m = 651 input numerically simulated measured v displacements, k = 5 coefficients 

throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole 
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Figures 2.9 and 2.10 show excellent agreement between the reconstructed displacements 

from images (for k = 5) generated by substituting the Airy Coefficients evaluated from ANSYS 

simulated displacements into equations 2.26 and 2.27 with those predicted directly by FEM 

(ANSYS), i.e., the simulated measured values.  

 By expressing displacements in terms of the Airy coefficients of an Airy Stress function, 

and satisfying local traction–free conditions analytically, this chapter develops and demonstrates 

the ability to evaluate the individual components of stress, strain or displacement on, and in the 

neighborhood of, the edge of a single hole from displacement information away from the hole. 

Notwithstanding such positions near the edge of the hole are often locations of high stress which 

can control structural integrity, it has been challenging by more traditional methods to obtain 

reliable displacement (strain, stress) information right on the edge of a hole or notch. 
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2.3.2 Determining Individual Components of Stresses, Strains and 

Displacements from Measuring either u or v Displacements using 

FEA–Evaluated Airy Coefficients 

As illustrated here, it is particularly interesting that individual components of 

displacement, strain and stress can be determined from discretely measured displacements in just 

either x(u) or y(v) direction. This can simplify measurement techniques. In some respects the 

present ability to obtain rectangular/polar components of displacement, strain and stress from 

one measured displacement is not unlike the ability to obtain the three components of stress 

TSA–wise from one measured quantity, temperatures [1, 3 - 5, 8]. 

Figures 2.12 through 2.19 illustrate the ability to evaluate the displacements, strains and 

stresses (using equations 2.13 through 2.19, 2.26 and 2.27) from measured Cartesian 

displacement v (in this case from the FEA), when evaluating all of the relevant Airy coefficients 

( co, bn, dn  for n = 4) in equation 2.27 or 2.37a. It is important to maintain the same number of 

coefficients of bn and dn in the equations for the stresses, strains and displacements. Once all of 

the Airy coefficients are known, the stress, strain and displacement components with respect to 

any rectangular Cartesian, or the polar coordinate system can be evaluated using equations 2.13 

through 2.19, 2.26 and 2.27.  

The k = 5 coefficients, i.e., co, bn, and  dn of equation 2.27 were evaluated using ANSYS-

predicted m = 651 input values of v displacements throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to 

hole of figure 2.5 and using least-square, equation 2.38. Then substitute these coefficients into 

equations 2.37 for evaluating the individual components of displacement, strain and stress. 

Contours plots of figures 2.11 through 2.19 were predicted directly by ANSYS (left side) and 
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using the now known Airy coefficients evaluated from the discretely measured v displacement 

(right side). This could be repeated using the measured input displacements u rather than v. 

Figures 2.12 through 2.19 show excellent agreement between the evaluated displacements, 

strains and stresses after substituting the Airy Coefficients evaluated from displacements v, 

respectively, with those predicted directly by FEM (ANSYS). These results demonstrate the 

ability to evaluate Cartesian/polar components of stress/strain/displacement from input (e.g., 

measured) information of only one component of displacement. The images of figures 2.11 

through 2.19 are for plate loading in the vertical y-direction. In the previous section, two sets of 

unknown Airy coefficients were evaluated using the FEM simulated u and v displacements. 

Figure 2.11 compares v displacement predicted directly by FEM and using the Airy coefficients 

evaluated from the u displacement. Similarly, figure 2.12 compares the u displacement predicted 

directly by FEM and using the Airy coefficients evaluated from the v displacement.  

The stress contour plots are normalized with respect to the far-field stress (σ0 = 6.90 

MPa). Strain contour plots are normalized with respect to far-field strain (ε0 = 100𝜇 ) and the 

displacement contour plots are normalized with respect to the diameter (d = 25.4 mm = 1”) of the 

hole. The normalizing strain, ε0 = 1*10
-4
 in/in is evaluated based on the stress-strain relationship 

i.e., ε0 = σ0/ . 
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Fig. 2.11: Contour plot of v/d throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and based on evaluated Airy coefficients (right side) for m = 651 input 

numerically simulated measured u displacements and k = 5 coefficients 

 
Fig. 2.12: Contour plot of u/d throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and based on evaluated Airy coefficients (right side) for m = 651 input 

numerically simulated measured v displacements and k = 5 coefficients 
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Fig. 2.13: Contour plot of ur/d throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and from evaluated Airy coefficients (right side) for m = 651 input numerically 

simulated measured v displacements and k = 5 coefficients 

 
Fig. 2.14: Contour plot of uθ/d throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and from evaluated Airy coefficients (right side) for m = 651 input numerically 

simulated measured v displacements and k = 4 coefficients 
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Fig. 2.15: Contour plot of εrr/ε0 throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and from evaluated Airy coefficients (right side) for m = 651 input numerically 

simulated measured v displacements and k = 5 coefficients 

 

 
Fig. 2.16: Contour plot of εθθ /ε0 throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and from evaluated Airy coefficients (right side) for m = 651 input numerically 

simulated measured v displacements and k = 5 coefficients 
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Fig. 2.17: Contour plot of σrr/σ0 throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and from evaluated Airy coefficients (right side) for m = 651 input numerically 

simulated measured v displacements and k = 5 coefficients 

 

 
Fig. 2.18: Contour plot of σθθ /σ0 throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and from evaluated Airy coefficients (right side) for m = 651 input numerically 

simulated measured v displacements and k = 5 coefficients 
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Fig. 2.19: Contour plot of σrθ/σ0 throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and from evaluated Airy coefficients (right side) for m = 651 input numerically 

simulated measured v displacements and k = 4 coefficients 
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2.4 Digital Image Correlation (DIC) 

2.4.1 Introduction 

Digital image correlation (DIC) is a computer-based image analysis technique that 

enables the non-contact measurement of displacements or strains of a surface having a speckle 

pattern [13]. The method tracks (records) the motion of the speckle pattern by comparing the 

gray scale value at a point (subset) in the deformed and un-deformed configuration. Therefore 

two sets of images are recorded: the first image normally being the case of zero applied load and 

the second image in the loaded condition. With a standard single camera setup, 2D (u and v) in-

plane full-field deformations can be monitored. Out-of-plane motions can also be recorded if one 

employs two cameras. The resolution achievable using DIC depends on a number of factors, 

including but not limited to camera resolution, lens optical quality, and marker (speckle) size and 

quality. 

The roughness of the surface of the aluminum specimen surface was initially prepared 

using 320 grid sand paper. Then the specimen was coated with RUST OLEUM (ULTRA 

COVER 2x coverage) Ultra-Flat white paint to reduce the surface’s reflectiveness. The speckle 

coating should be applied after the base coat has dried. If the undercoat is wet when applying the 

speckles, the paints will blend and blur. A speckle pattern was provided on the aluminum 

specimen using RUST OLEUM (ULTRA COVER 2x coverage) Ultra-Flat black paint. This was 

accomplished by simply using the spray feature of the commercial container containing the paint. 

Figure 2.20 is the image of the specimen with the speckle pattern. 
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While conducting the 2D DIC experiment, a single camera was pointed straight onto the 

specimen. The room had enough light and therefore no extra lights were used to illuminate the 

specimen. The longest available lens were selected that allowed the camera to view the specimen 

normal to its line of sight and still image the entire area of interest of the specimen plate. Once 

the camera (appropriate lens, etc.) were set-up, Vic-Snap software (Correlation Solutions, Inc.) 

was employed to preview the image. 

 
Fig. 2.20: Image of the tested specimen with the speckle pattern 

A few operational details are included here for information purposes. Once the camera 

had been positioned, the next step was to set focus. This was done by opening the aperture of the 

lens all the way to the lowest F-number which greatly reduces the depth of field. This will 

exaggerates any out-of-focus areas. The aperture was then returned to the appropriate setting. 

Use the focus control on the lens to achieve a sharp focus on the entire specimen. It will usually 

be necessary to zoom in on the image to check fine focus; slight defocus will not be visible with 

the image zoomed out to fit on screen. 

Vic-Snap software was used to record the images of the specimen (figure 2.20) in its 

loaded and unloaded conditions. Vic-2D (Correlation Solutions, Inc.) was employed for 
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evaluating the displacements or strains using the images from Vic-Snap and to post-process the 

results.  

Before recording the displacements, a calibration was done to obtain the results in 

physical units rather than in pixels. In this case there was no need to use the separate calibration 

specimen to get the displacement data. Rather the calibration was done by selecting the known 

distance on the image and entering it into the system. The recorded data were analyzed and 

exported to an Excel
®
 spreadsheet which was subsequently imported into MATLAB for further 

analysis. 
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2.4.2 Specimen Details 

Figure 2.21 is the image of the tested specimen and figure 2.22 is the geometric 

representation of figure 2.21. The problem of figure 2.22 is analyzed here using the DIC 

experimental data. Figure 2.22 shows the plate geometry, dimension, loading and orientation and 

location of the co-ordinate axes. 

Following are the details of the plate for the associated analyses and results: 

 Material of the plate: Aluminum 6061-T6 (Wiedenbeck, Inc., Madison, WI); Ultimate 

strength = 275 to 311 MPa (40 to 45 ksi) and Yield strength = 241 to 275 MPa (35 to 40 

ksi). 

 Diameter of the hole (d) = 25.4 mm (1”). 

 Thickness of the plate (t) = 6.35mm (0.25”). 

 Plate is symmetrical about the horizontal (x-axis) and vertical axis (y-axis). 

 Length of the plate (L) ≈ 203.2 mm (8”), figure 2.22. 

 Width of the plate (W) = 50.8 mm (2”), figure 2.22.  

 Two strains gages was mounted on the curved edge of the hole (y = 0 i.e., location A and 

A’ of figure 2.22).  

 Two strain gages was mounted at a distance x = ±1.11 R along the line y = 0, figure 2.21. 

 
Fig. 2.21: Specimen with the strain gages 
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Fig. 2.22: DIC Plate Geometry and Loading – Unclamped specimen length = 93.98 mm (3.7”) 

The following considerations helped to motivate using this particular specimen (figure 

2.22) to illustrate the objective of this chapter: (i) Prior TSA results were available for this 

geometry and loading conditions [4]. (ii) The geometry contains a hole. Engineering components 
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often contain holes or notches and these give rise to stress concentrations. (iii) A confident FEA 

cannot be executed. (iv) The component has two axis of symmetry. (v) The present approach 

does not require knowledge of the loading details, distant geometry or boundary conditions. (vi) 

A feature of this present approach is its ability to evaluate all the Airy coefficients and to reduce 

the number of these experimentally-determined coefficients by incorporating the traction–free 

conditions on the edge of the hole analytically. 

The plate was clamped between the cross heads of the MTS hydraulic testing machine 

(20 Kips capacity having hydraulic grips capable up to 18.5 Kips, Rm. B321, EH) with the help 

of hydraulic grips, figures 2.23 and 2.24. Figure 2.24 shows the physical set up and DIC 

recording. Of the two camera’s shown in figure 2.24, only one was used to record (normal to the 

flat front surface of the specimen) 2D images. The top cross head of the loading machine was 

fixed and the bottom cross head moved vertically according to the applied hydraulic pressure. A 

static load of 5337.86 N (1200 lbs) was applied to the specimen. Figure 2.25 shows an actual v-

displacement image as recorded and displayed by the Vic-2D software. The unsymmetrical type 

(from top to bottom) data of figure 2.25 was converted to the symmetrical data using MATLAB 

i.e., equivalent to both top and bottom ends moving. This is done by scaling the data such that 

the y-displacement is zero along the line y = 0 (figure 2.22), i.e., horizontal through the center of 

the hole of figure 2.25. Since the geometry and loading were symmetrical about both x- and y-

axes, the data were averaged about x- and y-axes. 

The u-displacements are relatively small and their DIC-evaluated values are not as 

reliable as the v-displacements. Although not appreciated a priori, this turned out to be an 

example where one of the two displacement fields was not highly reliable but by using the 
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technique based on the Airy’s stress function, one could obtain the displacement in the other 

directions. Moreover without differentiating the displacements, one can evaluate the full-field 

individual stress and strain components. 

 
Fig. 2.23: Specimen loaded in hydraulic grips 
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Fig. 2.24: Specimen loading and DIC recording 

 
Fig. 2.25: Actual recorded v-displacement data from Vic-2D 
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2.4.3 Data Processing and Number of Coefficients 

Figure 2.26 shows the source locations of the 861 DIC recorded input v-displacements 

which were used to evaluate the unknown Airy coefficients. To assist in determining an 

appropriate number of Airy coefficients, k, RMS and condition number plots were prepared. The 

RMS value represents the discrepancy between the experimental and calculated displacements 

evaluated from the known Airy coefficients. The condition number, C, or log10C of the Airy 

matrix indicate the accuracy associated with solving the linear equation Ax = b. 

 
Fig. 2.26: DIC source locations for m = 861 input values 

Figure 2.27 is the plot of RMS against the number of coefficients, k. Figures 2.28 and 

2.29 are the plot of condition number and log10C of Airy matrix against the number of 

coefficients, k. From figures 2.27 through 2.29, k = 5 is a reasonable choice. 
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Fig. 2.27: Plot of ‘RMS’ values of (d’- d) vs. number of coefficients, k, for m = 861 input values 

 
Fig. 2.28: Plot of condition number, C, vs. number of coefficients, k, for m = 861 input values 

 
Fig. 2.29: Plot of log10(C) vs. number of coefficients, k, for m = 861 input values 

Figures 2.30 are the normalized (displacements normalized in terms of hole diameter, d = 

25.4 mm = 1”) contour plots of the DIC measured v/d (right) and reconstructed v/d (left) 

displacements based on the DIC evaluated Airy coefficients. These contour plots are plotted on 
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the same scale which is indicated on the far right of the figure. The good agreement between the 

experimental and reconstructed v/d displacement further validates the previously suggested the 

use of k = 5 coefficients. 

   
Fig. 2.30: MATLAB processed experimentally determined v/d (right) and reconstructed v/d 

displacements based on the DIC evaluated Airy coefficients for k = 5 coefficients and m = 861 

input values (left) 
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2.4.4 Finite Element Analysis 

The DIC results are compared with those from an approximated finite element analysis 

(FEA). Since the plate is short (unclamped specimen length = 93.98 mm = 3.7” for a free aspect 

ratio (length to width) of only 1.85), the far-field stress in not a known uniform P/A i.e., the far-

field boundary/loading conditions are not well known. An exact FE modal therefore cannot be 

made. An approximate finite element modal was prepared based on the TSA results for the same 

sample from reference [4, 5]. Since the vertical end loads applied by the MTS hydraulic-grips, 

and recognizing the loading system did not have any universal provisions, the top and bottom 

ends of the 9.4 cm length of the specimen between loading grips were subjected numerically to a 

constant deformation across the 50.8 mm width of the specimen, figures 2.22 and 2.23. Based on 

this assumption (approximation) the top and bottom ends of the specimen were deformed 

numerically iteratively until the ANSYS predicted measure stress on the edge of the hole became 

essentially equal to that from TSA [4, 5]. 

Isoparametric elements (ANSYS element type: Plane-82) having 8 nodes per element 

were employed. Since the plate is symmetric about both x- and y-axes, a quarter modal was 

prepared, figure 2.31. After iteration a far-field y-displacement of 0.655e-3” (0.01664 mm) was 

applied. The corner node at the loaded end of the plate was also constrained to be zero in x-

direction. The mesh covering the quarter plate utilizes a total of 849 elements and 2672 nodes. 

Figure 2.32 is the plot of stress σyy from ANSYS and it is noted that the far-field stress is not 

constant. 
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Fig. 2.31: Finite element model for the plate with circular hole 

 
Fig. 2.32: ANSYS predicted vertical stress σyy (psi) between loading grips of DIC analyzed plate 

of figure 2.22 
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2.4.5 Determining Individual Components of Displacement, Strain, and 

Stress from Measured v Displacements using Experimentally-DIC 

Evaluated Airy Coefficients 

After determining all the unknown Airy coefficients from the DIC measured v – 

displacements, one can evaluate the individual components of displacement, strain and stress. 

Figure 2.33 shows contour plots of the normalized v/d displacement predicted by FEA and from 

the now known Airy coefficients. Substituting these known Airy coefficients into equations 2.13 

through 2.19, 2.26 and 2.27 provides the full-field individual components of stress, strain and 

displacement. Figure 2.34 plots the normalized u/d displacements from FEA and using evaluated 

Airy coefficients from DIC measured v displacements. This is an example of where the measured 

u displacements is not highly reliable but is derived from measured v displacements i.e., it 

simplifies that only one component of the displacement is measured and processed. 

Figures 2.35 through 2.41 are the normalized polar components of displacements, polar 

components of strain and normalized polar components of stress from FEA and known Airy 

coefficients from measured v displacements. Figures 2.33 through 2.41 shows excellent 

agreement between FEA predicted and DIC evaluated displacements, strains and stresses. 

The normalizing stress, σnet = 16.54 MPa (2400 psi) is based on the applied tensile load, F 

= 5337.86 N (1200 lbs), divided by the net area (i.e. away from the region of the hole), figure 

2.22. The displacement contour plots are normalized with respect to the diameter (d = 25.4 mm = 

1”) of the hole. 
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Fig. 2.33: Contour plot of v/d throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and based on Airy coefficients evaluated from DIC-measured v displacements 

(right side) for m = 861 input and k = 5 coefficients 

 
Fig. 2.34: Contour plot of u/d throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and based on Airy coefficients evaluated from DIC-measured v displacements 

(right side) for m = 861 input and k = 5 coefficients 
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Fig. 2.35: Contour plot of ur/d throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and based on Airy coefficients evaluated from DIC-measured v displacements 

(right side) for m = 861 input and k = 5 coefficients 

 
Fig. 2.36: Contour plot of uθ/d throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and based on Airy coefficients evaluated from DIC-measured v displacements 

(right side) for m = 861 input and k = 4 coefficients 
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Fig. 2.37: Contour plot of εrr (micro strain) throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole 

predicted by FEA (left side) and based on Airy coefficients evaluated from DIC-measured v 

displacements (right side) for m = 861 input and k = 5 coefficients 

 
Fig. 2.38: Contour plot of εθθ (micro strain) throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole 

predicted by FEA (left side) and based on Airy coefficients evaluated from DIC-measured v 

displacements (right side) for m = 861 input and k = 5 coefficients 
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Fig. 2.39: Contour plot of σrr/σnet throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and based on Airy coefficients evaluated from DIC-measured v displacements 

(right side) for m = 861 input and k = 5 coefficients 

 
Fig. 2.40: Contour plot of σθθ /σnet throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and based on Airy coefficients evaluated from DIC-measured v displacements 

(right side) for m = 861 input and k = 5 coefficients 

 
Fig. 2.41: Contour plot of σrθ/σnet throughout 0.5 ≤ r/d ≤ 0.9 region adjacent to hole predicted by 

FEA (left side) and based on Airy coefficients evaluated from DIC-measured v displacements 

(right side) for m = 861 input and k = 5 coefficients 
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2.4.6 Experimental Validation 

The DIC-based results are compared with those from TSA and strain gages. Figure 2.42 

plots the tangential stress on the boundary of the hole from DIC and FEA against angle ϕ
o
 (= 90 

– angle θ of figures 2.1 and 2.22). Figure 2.43 plots the tangential stress on the boundary of the 

hole from ANSYS and TSA [4, 5]. The angle ϕ
o
 of figure 2.42 corresponds to angle θ of figure 

2.43. There is an excellent agreement between the TSA determined and present DIC evaluated 

tangential stress on the boundary of the hole. 

Four single-element Micro-Measurements strain gages (EA-13-060LZ-120) were 

mounted along the line AB, each having gage resistance of 120Ω and a gage factor of 2.055 ± 

0.5%. Two gages were mounted on the curved boundary of the hole and the other two gages next 

to the boundary at a distance x = 0.555” along the line AB, figure 2.21. 

Figure 2.44 plots εyy along line AB of figure 2.22 from ANSYS, strain gages and 

evaluated Airy coefficients (k = 5 coefficients) from m = 861 input DIC measured v 

displacements. Particularly the good agreement between the current DIC results and those from 

TSA and the strain gages provided strong confidence in the presently developed ability to obtain 

reliable stresses from only a single measured component of displacement. 
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Fig. 2.42: Plot of σθθ/σnet vs. Angle ϕ

o
 (= 90 - θ

o
) along boundary of the hole from ANSYS and 

evaluated Airy coefficients (k = 5 coefficients) from m = 861 input DIC measured v 

displacements 

 
Fig. 2.43: Plot of σθθ/σnet around the boundary of the hole from TSA-determined and ANSYS [4, 

5] 
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Fig. 2.44: Plot of εyy along AB of figure 2.22 form ANSYS, evaluated Airy coefficients (k = 5 

coefficients) from m = 861 input DIC measured v displacements and Strain gage 
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2.4.7 General Comments 

The present 2-D DIC analysis was conducted using commercial hardware and software 

from Correlation Solutions, Inc. The system’s software VicSnap and Vic-2D records, processes 

and displays the captured displacement data as displacements and strains. Rather than employ the 

VicSnap provided strains, I utilized MATLAB to import only the DIC- recorded v (vertical) 

displacements and processed these data accordingly to the Airy stress function scheme developed 

in section 2.1 of this chapter. The excellent agreement between the results from DIC, strain gages 

and TSA demonstrates the reliability with which one can evaluate the individual components of 

displacement, strain and stress from a single measured component of displacement. 
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2.5 Summary, Discussion and Conclusions 

Unidirectionally measured displacements is combined with an Airy stress function to 

determine the individual components of stress on and in the neighborhood of a centrally-circular 

geometric discontinuity in a tensile strip without knowing the loading, far-field geometry or 

boundary conditions. This technique is demonstrated using the simulated experimental data from 

FEM and experimental data from DIC i.e., full-field individual components of displacement, 

strain and stress were evaluated using the unidirectionally measured displacements. This 

technique is further validated using the known results from TSA and strain gages. 

The most advantageous feature of the present approach is to evaluate all the unknown 

Airy coefficients from single component of measured displacements, full-field strain/stress 

determination without physically differentiating the measured displacement data i.e., having 

rigorous mechanics basis and to reduce these experimentally-determined coefficients by 

approximately half by analytically imposing the traction-free conditions on the boundary of the 

hole. The present approach provides accurate displacements/strains/stresses on the boundary of 

the hole without the knowledge of any measured data on and near the boundary of the hole. This 

is important because instances such as failure criteria and fatigue-life predictions are based on 

individual components of stress or the maximum stress which lies on the boundary of the hole. 

Irrespective of number of simulated or experimental measured input data, k = 5 was found to be 

an appropriate number of Airy coefficient to be used.  

Future consideration should consider application of the present concept to more 

generally-shaped geometric discontinuities, more complicated members, and the feasibility of 
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employing the displacement component u and v as represented directly in rectangular coordinates 

[14] rather than those from any Airy stress function. Although demonstrated here for a 

symmetrical uniaxially-loaded central circular finite perforated plate, the present approach could 

be extended to more irregular-shaped discontinuities, as well as fairly arbitrary external 

geometry and loading.  
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Chapter 3 : Full-Field Determining Stress and Strain 

Components in the Vicinity of a Cutout from 

Discretely Measured Strains Only in One Direction 

3.1 Introduction 

Chapter 2 illustrates how to determine the individual components of strain and stress 

from one component of displacement. This chapter develops the ability to evaluate full-field the 

three independent components of stress in an engineering member from only one component of 

discretly measured strains. The classical problem of stress analysis of a finite tensile plate 

containing a central circular hole is employed as an illustrative example, figure 3.1. A hybrid 

experimental-numerical-analytical approach is utilized, i.e., combine the experimental data 

(strain gage results) with least-squares and an Airy stress function to evaluate the individual 

components of strain and stress. An advantage of this technique is that by evaluating the 

unidirectional strain at a common direction at few discrete locations, all of the individual 

components of strain and stress are available (full-field). Moreover, the measured data need not 

be differentiated (as is usually necessary with other full-field techniques like moiré, holography, 

digital image analysis, speckle), it is not necessary to cycle the specimen (as required with TSA) 

or somehow calibrate the system (such as with TSA and photoelasticity), and single element 

strain gages are less expensive, involve less wiring and have a smaller foot-print than do 2- or 3-

element rosettes. The present ability to obtain all three components of strain from single-element 

gages rather than multiple-element gages reduces the number of electronic channels needed and 
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hence simplifies the data acquisition requirements. Two- and three-element rosettes also pose the 

challenges that not all elements of the rosette are at the same location. The question therefore 

arises at what common position does one assume the three strain occurs. The current concept is 

invented and developed by the author. The results obtained here are compared with those from 

F A and other strain gages. 

Figure 3.1 shows the plate geometry, dimension, and orientation and location of the co-

ordinate axes. The plate is symmetrical about x- and y-axes with respect to geometry and 

loading.  
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Fig. 3.1: Schematic geometry of a finite plate with a hole 

r 



70 
 

3.2 Relevant Stress Function (Airy’s Stress Function) 

A relevant Airy stress function, 𝜙, satisfying the biharmonic equation 4 = 0, 

equilibrium and compatibility for the finite geometry associated with figure 3.1 can be written as 

(equation 2.7) [4, 6]  

𝜙                 
  ∑ {(   

     
       

      
      )      }

 

          
     (3.1) 

Imposing the traction-free condition on the boundary of circular hole (rθ = 0 and rr = 0 

at r = R (= 10.03 mm = 0.395”), and for all values of θ) and evaluating the individual 

components of stress and strain (detailed derivations are presented in Appendices A2 and A3.2) 
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where r is the radius measured from the center of a hole, angle  is measured counter-clockwise 

from the horizontal x-axis (figure 3.1), c0, bn, and dn are Airy coefficients,   is the elastic 

modulus, υ is the Poisson’s ratio, and N is the terminating index value of the summation series (N 

is an even positive integer greater than 1). 

Comparing equations 3.2 through 3.10 shows that coefficients present in all the 

expressions are the same except coefficient c0 does not occur in the expression of polar shear 

stress (equation 3.4). Therefore, while evaluating the polar shear stress (σrθ) the magnitude of 

coefficient c0 is not needed. 
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3.3 Specimen Details and Loading 

The specimen has unidirectional strain gages mounted as shown in figures 3.2 through 

3.8. With reference to section 3.2, only single-element strain gages in the y-direction are used 

such that     is measured at numerous discrete locations and the Airy coefficients are determined 

from equation 3.10 and these measured values of    . These strain gages are connected to the 

strain gage conditioner (figure 3.8) for evaluating the unidirectional strains. Strain gages were 

mounted throughout the four quadrants (coordinate origin being at the center of the hole) and on 

the front and back of the plate. Since the plate is symmetrical about both the x- and y-axes, care 

was taken while locating the gages such that every strain gage has different coordinate when 

shifted to the first quadrant. Most of the individual gages are too large to actually mount them all 

in a single quadrant (one common face) of the plate. 

Following are the details of the plate tested for the succeeding analyses and results: 

Material of the plate: Aluminum 6061-T6 (Wiedenbeck, Inc., Madison, WI);  lastic Modulus   

= 68.95 GPa (10 x 10
6
 psi), Poisson’s ratio υ = 0.33, Ultimate strength = 275 to 311 MPa (40 to 

45 ksi) and Yield strength = 241 to 275 MPa (35 to 40 ksi). 

 Applied Range (F) = 4448.22 N (1000lb). 

 Diameter of the hole (d) = 20.07 mm (0.79”). 

 Thickness of the plate (t) = 6.35 mm (0.25”). 

 Total length of the plate (L) ≈ 279.4 mm (11”). 

 Total width of the plate (W) = 50.8 mm (2”). 

 Plate of figure 3.1 is symmetrical about both x- and y-axes.  
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 Far-field stress (at F = 1000lb), σ0 = 2000 psi (13.79 MPa). 

Strain gage details: 

The strain gages were mounted near the region of circular hole, table 3.1 and figures 3.2 

through 3.5. Fifty seven (table 3.1) strain gages were applied so that no two gages are mirrored 

about either the horizontal or vertical axis centered at the hole, ensuring that unique strains can 

be recorded. Twelve out of the fifty seven gages malfunctioned leaving 45 strain inputs. 

 Gage application necessitates considerable care to ensure that accurate data are obtained. 

The first step in this process is to sand the surface of the aluminum to remove any scratches or 

voids. This is done by first sanding the area of interest with 120 grid sandpaper and then 

progressively moving to a finer grid with 400 being the last used in the process. After final 

sanding, the area is inspected once again to ensure no scratches or voids remain. 

 Any contaminants such as fine particles from the sanding process or fingerprints must be 

removed using an acid/base solution. First an acid solution M-Prep Conditioner A (by Vishay) is 

dropped on the area and wet sanded with 400 grid sandpaper is done. Then a few drops of the 

base solution M-Prep Neutralizer A (by Vishay) are applied to the same area and wet sanded with 

a new piece of 400 grid sandpaper. After this the area is wiped clean using Surpass tissue paper 

and to ensure no new contaminants are brought to the area, the motion of wiping begins from the 

area of interest outward. After the area has been wiped dry, a Cotton-Tipped Applicator is rubbed 

on the area and the area is inspected for any residue. If no visible residue can be seen, the area is 

ready for application of the strain gage. 
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 Relative to gage application, a gage is first removed from the supplier’s (Vishay, 

Micromeasurements) transparent envelope in which it is contained and a piece of PCT - 2M gage 

installation scotch tape is applied over the gage. The tape is then peeled back at a shallow angle 

so not to damage the gage. The gage is then positioned over the previously provided layout lines 

on the specimen with the triangle alignment marks of the gage aligned with the desired direction 

of strain to be measured. The tape is again peeled back at an acute angle to the specimen surface 

until the gage is free of the specimen surface. Next M-Bond Catalyst-C (by Vishay) is applied to 

the bonding side of the gage surface and allowed to dry fully. When fully dried, one to two drops 

of M-Bond 200 adhesive (by Vishay) is applied to the specimen surface and the bonding side of 

the gage is then pressed on to the specimen area with slight pressure from the thumb maintain the 

pressure for a minimum of one minute. At this point the gage is fully bonded to the surface so the 

tape can be removed. The tape should be peeled back slowly and directly over itself. Finally 

check the edges of the gage carefully with a tooth pick to ensure that the entire gage is bonded to 

the surface. 

 Table 3.1 lists all gages applied to the specimen along with their resistance, gage factor, 

designation (Vishay, Micromeasurements) and locations. All locations were measured to the 

center position on the gage using a 32 divisions per inch triangular engineer’s scale. The x- and 

y-coordinates in the table 3.1 is based on the origin which is chosen to be the bottom right corner 

of the aluminum bar on the front face, figure 3.2 and bottom left corner of the aluminum bar on 

the back face, figure 3.3. The highlighted gages of table 3.1 malfunctioned and are not used. 

Gage identification numbers of table 3.1 are indicated on the respective terminal tabs in figures 

3.2 and 3.3. Gage 57 of figure 3.3 is on the boundary of the hole. 
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Table 3.1: Gage numbers and descriptions 

Gage Number Gage Factor  Resistance (Ω) Gage Designation x (in) y (in) 

1 2.070 ± 0.5% 120.1 EA-13-125-AD-120 0.094 5.406 

2 2.070 ± 0.5% 120.0 EA-13-125-AD-120 0.266 5.406 

3 2.070 ± 0.5% 120.0 EA-13-125-AD-120 0.438 5.406 

4 2.070 ± 0.5% 120.1 EA-13-125-AD-120 1.422 5.125 

5 2.070 ± 0.5% 119.8 EA-13-125-AD-120 1.594 5.125 

6 2.070 ± 0.5% 119.9 EA-13-125-AD-120 1.781 5.125 

7 2.060 ± 0.5% 119.8  0.063 5.813 

8 2.060 ± 0.5% 119.9  0.219 5.813 

9 2.060 ± 0.5% 119.8  0.406 5.813 

10 2.060 ± 0.5% 119.9  1.469 5.5 

11 2.060 ± 0.5% 120.0  1.625 5.5 

12 2.060 ± 0.5% 119.9  1.781 5.5 

13 2.130 ± 0.5% 119.7 EA-13-125-AD-120 1.844 5.328 

14 2.130 ± 0.5% 119.9 EA-13-125-AD-120 1.672 5.328 

15 2.130 ± 0.5% 119.8 EA-13-125-AD-120 1.469 5.328 

16 2.130 ± 0.5% 119.7 EA-13-125-AD-120 0.5 5.719 

17 2.130 ± 0.5% 120.0 EA-13-125-AD-120 0.313 5.719 

18 2.130 ± 0.5% 119.8 EA-13-125-AD-120 0.125 5.719 

19 2.04 ± 1.0% 119.0 EA-06-031MF-120 0.969 6.234 

20 2.04 ± 1.0% 120.1 EA-06-031MF-120 1.047 6.234 

21 2.04 ± 1.0% 119.5 EA-06-031MF-120 1.125 6.234 

22 2.04 ± 1.0% 119.6 EA-06-031MF-120 1.219 6.234 

23 2.04 ± 1.0% 119.5 EA-06-031MF-120 1.297 6.234 

24 2.04 ± 1.0% 104.2 EA-06-031MF-120 1.375 6.234 

25 2.04 ± 1.0% 119.5 EA-06-031MF-120 1.469 6.234 

26 2.04 ± 1.0% NA EA-06-031MF-120 1.547 6.234 

27 2.04 ± 1.0% 119.3 EA-06-031MF-120 1.625 6.234 

28 2.04 ± 1.0% 119.5 EA-06-031MF-120 1.703 6.234 

29 2.04 ± 1.0% 118.2 EA-06-031MF-120 0.391 4.938 

30 2.04 ± 1.0% NA EA-06-031MF-120 0.469 4.938 

31 2.04 ± 1.0% 119.6 EA-06-031MF-120 0.547 4.938 

32 2.04 ± 1.0% NA EA-06-031MF-120 0.641 4.938 

33 2.04 ± 1.0% 120.3 EA-06-031MF-120 0.719 4.938 

34 2.04 ± 1.0% 120.1 EA-06-031MF-120 0.813 4.938 

35 2.04 ± 1.0% 120.0 EA-06-031MF-120 0.891 4.938 

36 2.04 ± 1.0% 92.6 EA-06-031MF-120 0.953 4.938 

Gage Number Gage Factor (%) Resistance (Ω) Gage Designation x (in) y (in) 

37 2.04 ± 1.0% 119.3 EA-06-031MF-120 1.031 4.938 

38 2.04 ± 1.0% 119.8 EA-06-031MF-120 1.125 4.938 

39 2.06 ± 0.5% 119.9 EA-13-125AD-120 0.828 6.125 
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40 2.06 ± 0.5% 119.8 EA-13-125AD-120 1 6.125 

41 2.06 ± 0.5% 119.8 EA-13-125AD-120 1.188 6.125 

42 2.130 ± 0.5% 120.1 EA-13-125AD-120 1.531 6.156 

43 2.130 ± 0.5% 120.1 EA-13-125AD-120 1.688 6.156 

44 2.130 ± 0.5% 119.9 EA-13-125AD-120 1.844 6.156 

45 2.130 ± 0.5% 120.0 EA-13-125AD-120 1.516 5.031 

46 2.130 ± 0.5% 120.1 EA-13-125AD-120 1.688 5.031 

47 2.130 ± 0.5% 120.1 EA-13-125AD-120 0.781 4.656 

48 2.130 ± 0.5% 120.1 EA-13-125AD-120 0.938 4.656 

49 2.130 ± 0.5% 120.2 EA-13-125AD-120 1.125 4.656 

50 2.060 ± 0.5% 120.0  0.063 6.438 

51 2.060 ± 0.5% 119.8  0.25 6.438 

52 2.060 ± 0.5% 119.9  0.422 6.438 

53 2.060 ± 0.5% 119.7  0.578 6.438 

54 2.060 ± 0.5% 120.0  0.094 4.328 

55 2.060 ± 0.5% 120.2  0.266 4.328 

56 2.060 ± 0.5% 120.1  0.438 4.328 

57 2.130 ± 0.5% 120.3 EA-13-032VW-120 0.605 5.5 

*Red highlighting for gages that measured a significant resistance difference from the expected. 

**Yellow highlighting represents slight deviations from the actual gage resistance. 

The plate of figure 3.1 was clamped in the loading frame between the cross heads of the 

Instron screw driven testing machine (Rm. B325  ngineering Hall) to employing the screws as 

seen in figure 3.6. The plate was aligned between the top and the bottom grips to ensure 

symmetric loading. Figures 3.6 through 3.8 show the experimental test setup which includes the 

16-channel strain gage conditioner, the Instron Model 1000 universal testing machine, and the 

loaded specimen. The Instron testing machine has a load transducer with a maximum capacity of 

1000 lbs (4448.22 N) and the grips used are a screw-action 2” (50.8 mm) with serrated faces 

(figure 3.6). A 16-channel, strain-gage conditioner box (figure 3.8) was used to process the 45 

separate channels of strain gage data. There are 45 active strain gages but the strain gage 

conditioner box has only 16 channels. This necessitated monitoring the 45 gage-recorded strains 
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in three separate steps under the same loading condition. Gages were scanned and recorded at 

several discrete increasing and decreasing load levels. 

 
Fig. 3.2: Strain gage numbers corresponding to Table 3.1 (front face) 
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Fig. 3.3: Strain gage numbers corresponding to Table 3.1 (back face) 
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Fig. 3.4: Front view of the Specimen with the gages 

 
Fig. 3.5: Rear view of the Specimen with the gages 
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Fig. 3.6: Strain-gage locations on the Specimen 
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Fig.3.7: Specimen Loaded in the Instron Machine 

 

 
Fig. 3.8: Strain-gages connected to the Strain-gage Conditioner 
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3.4 Data Processing and Number of Coefficients 

The objective of this research was to evaluate the individual components of stress and 

strain on the edge and in the vicinity of hole from the measure unidirectional strains (
yy ) of 

table 3.1 and figures 3.2 through 3.8. As mentioned previously, in that the plate is symmetrical 

about both x- and y-axes, all the strain gage locations are shifted to the first quadrant as shown in 

figures 3.9 (also see actual gage coordinates in Table 3.1). In figure 3.9-A the dimensions are in 

inches and in figure 3.9-B the dimensions are normalized with respect to the radius of the hole. 

The various individual unidirectional strain gages are mounted in the y-direction with respect to 

the coordinate orientation of figure 3.1. Therefore equation 3.10 is written in matrix form 

(equation 3.11) and the unknown Airy coefficients of equations 3.10 and 3.11 are evaluated from 

the measured 
yy  strains by solving this matrix equation using linear least squares.  mploying 

the now known Airy coefficients (c0, bn, and dn), the individual components of strain and stress 

are available from equations 3.2 through 3.9 throughout at least the region containing the gages.  

Re-writing equation 3.10, 
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or, in simplified form, 

1 1[ ] { } { }m k k mA c d  
                                                       (3.12) 

where matrix A is an m (number of input data values, i.e., m source locations, figures 3.9 = 45) 

by k (number of unknown Airy Coefficients) matrix containing a set of 45 linear strain equations, 

with k independent variables. Vector c contains the k unknown Airy coefficients, and the vector d 

is composed of the 45 measured strain gage readings corresponding to the strain equations in 

matrix A. Since there are more equations than the number of unknown, i.e., m > k, the linear 

least-squares process is utilized to solve the over-determined matrix expression Ac = d of 

equations (3.11) and (3.12). Equation 3.12 can be solved using the MATLAB backslash operator 

(‘\’) or pseudo inverse ‘pinv’ operator.  ither of these operators uses the algorithm for least 

squares and calculates vector by c = A\d or c = pinv*d. 
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Fig. 3.9-A: Source locations of 45 strain-gages (in inches) relative to the x- and y-coordinate of 

figure 3.1  
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Fig. 3.9-B: Normalized strain-gage coordinate locations, m = 45 input values. 

Equations 3.2 through 3.10 involve a summation over n, where n goes through positive 

even integers from 2 to N, and the total number of coefficients is given by k = N+1. To evaluate 
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used. Since the strains     are evaluated at 45 locations, virtually no change is seen when 
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zero, figure 3.10. The condition number, C, of matrix A measures the sensitivity of the solution 

of the system of linear expressions of equation 3.12. It also indicates the accuracy of the results 

from the matrix inversion and the linear equation solution. The condition number can be 

evaluated in MATLAB using cond(A). Figure 3.11 is a plot of the condition number, C, against 

the number of coefficients, k, whereas figure 3.12 is a plot of log (condition number) versus the 

number of coefficients. These condition number results indicate k > 7 number of coefficients is 

sufficient for generating the solutions with adequate reliability. Moreover, information of figures 

3.10 and 3.11 show little change for 7 ≤ k ≤ 13. The results plotted in section 3.6 utilize k = 7 

coefficients, the terminating index N = 6 and Appendix 3.1 utilizes k = 13 coefficients, the 

terminating index N = 6. 

 
Fig. 3.10: Plot of RMS vs. number of coefficients, k, for m = 45 input values 

 
Fig. 3.11: Plot of condition number, C, vs. number of coefficients, k, for m = 45 input values 
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Fig. 3.12: Plot of Log10(C) vs. number of coefficients, k, for m = 45 input values 
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3.5 Finite Element Analysis 

The results based on the recorded     strains are compared with those predicted by Finite 

 lement Analysis (F A). The aluminum plate described in sections 3.1 and 3.3 was modeled 

using ANSYS. Since the plate is symmetric about both x- and y-axes, a quarter model is 

analyzed. Isoparametric elements (ANSYS element type: Plane-82) having 8 nodes per element 

were employed. A very fine mesh was used in the neighborhood of the holes to enhance accuracy 

as shown in figure 3.13. The mesh covering the one quarter of the plate utilizes a total of 6,700 

elements and 20,473 nodes. The mesh was refined until the ANSYS results did not vary more 

than 0.1% on the periphery of hole. A far field stress of 13.79 MPa =2000 psi (corresponding to 

the 1000 pound applied physically to the plate) was applied at the ends of the numerical model. 

 
Fig. 3.13: Finite element model for the plate with central circular hole, figure 3.1. 
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3.6 Results 

After evaluating all the unknown Airy coefficients (c0, bn and dn, for n = 6) from equation 

3.11 and the measured strain gage readings, the individual components of stress and strain were 

obtained from equations 3.2 through 3.10. These strain gage results are compared with those 

from finite element analysis (ANSYS) and some discrete strain gages. Tangential strain, εθθ, 

radial strain, εrr, longitudinal strain, εyy, and lateral strain, εxx, are normalized with respect to the 

far field strain, ε0 = 200 𝜇  (based on the applied load and gross area as detailed in next 

paragraph), and are plotted for k = 7 (N = 6) at various radii around and away from the boundary 

of the hole and along the line AB of figure 3.1 in figures 3.14 through 3.27. Tangential stress, σθθ, 

radial stress, σrr, shear stress, σrθ, vertical stress, σyy, and horizontal stress, σxx, are normalized 

with respect to the far field stress, σ0, and are plotted at various radii around and away from the 

boundary of the hole and along the line AB of figure 3.1 in figures 3.28 through 3.39. The strain 

gage results agree very well with the finite element prediction. The discrepancies in figure 3.35 

near the edge of the plate might be due to the computational error in F M but are small by 

comparison to the other stress values. 

The normalizing stress, σ0 = 13.79 MPa (2000 psi) is based on the applied tensile load, F, 

divided by the gross area (i.e. away from the region of the hole), figure 3.1. The normalizing 

strain, ε0 = 2*10
-4
 in/in is evaluated based on the stress-strain relationship i.e., ε0 = σ0/ . 

Applied load range (F) = 4448.2 N (1000lb) 

Gross-Sectional Area (A) = Width (W) x Thickness (t) 

      = 50.8 x 6.35 = 322.58 mm
2
 (0.5 in

2
) 
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 Angle θ of figures 3.14 through 3.22, 3.24 through 3.26, 3.28 through 3.30, 3.32 through 

3.34, and 3.36 through 3.38, is measured counter-clockwise from the positive horizontal x-axis 

and r is measured here from the center of the hole of figure 3.1. The actual in-plane dimensions 

associated with figures 3.23, 3.27, 3.31, 3.35, and 3.39 are plotted normalized with respect to the 

radius, R = 10.08 mm = 0.395” of the hole. The ratios of values of εrr/ε0 and εθθ/ε0 from figures 

3.14 and 3.17 agree with the value of υ = 0.33 for Aluminum, as it should. As expected, figures 

3.17 and 3.36 are identical. 

 
Fig. 3.14: Plot of εrr/ε0 along boundary of the hole from strain-gage evaluated Airy coefficients 

for k = 7 coefficients (m = 45 strain-gage input values) and ANSYS 

 
Fig. 3.15: Plot of εrr/ε0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. 3.16: Plot of εrr/ε0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.17: Plot of εθθ/ε0 along boundary of the hole from strain-gage evaluated Airy coefficients 

for k = 7 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.18: Plot of εθθ/ε0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. 3.19: Plot of εθθ/ε0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.20: Plot of εxx/ε0 along boundary of the hole from strain-gage evaluated Airy coefficients 

for k = 7 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.21: Plot of εxx/ε0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. 3.22: Plot of εxx/ε0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.23: Plot of εxx/ε0 along AB of figure 3.1 from strain-gage evaluated Airy coefficients for k 

= 7 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.24: Plot of εyy/ε0 along boundary of the hole from strain-gage evaluated Airy coefficients 

for k = 7 coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. 3.25: Plot of εyy/ε0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.26: Plot of εyy/ε0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.27: Plot of εyy/ε0 along AB of figure 3.1 from strain-gages (reconstructed using the 

evaluated Airy coefficients and discrete gages) for k = 7 coefficients (m = 45 strain-gage input 

values) and ANSYS 
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Fig. 3.28: Plot of σrr/σ0 along boundary of the hole from strain-gage evaluated Airy coefficients 

for k = 7 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.29: Plot of σrr/σ0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.30: Plot of σrr/σ0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. 3.31: Plot of σxx/σ0 (= σrr/σ0) along AB of figure 3.1 from strain-gage evaluated Airy 

coefficients for k = 7 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.32: Plot of σrθ/σ0 along boundary of the hole from strain-gage evaluated Airy coefficients 

for k = 7 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.33: Plot of σrθ/σ0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. 3.34: Plot of σrθ/σ0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.35: Plot of σrθ/σ0 along AB of figure 3.1 from strain-gage evaluated Airy coefficients for k 

= 7 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.36: Plot of σθθ/σ0 along boundary of the hole from strain-gage evaluated Airy coefficients 

for k = 7 coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. 3.37: Plot of σθθ/σ0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.38: Plot of σθθ/σ0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 7 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. 3.39: Plot of σyy/σ0 (= σθθ/σ0) along AB of figure 3.1 from strain-gage evaluated Airy 

coefficients for k = 7 coefficients (m = 45 strain-gage input values) and ANSYS 
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3.7 Validation of Results 

The results of figures 3.14 through 3.39 are based on 45 measured strains associated with 

the 45 gage locations of figure 3.9. In this section, the number of input values is reduced from 45 

to 41, i.e., the four recorded strains along line AB were not used as an input for evaluating the 

unknown Airy coefficients. Using these 41 input values and k = 7 or 13 (Appendix A3.1), the 

normalized strains (εyy/ε0) are evaluated along line AB. Table 3.2 shows the excellent agreement 

between the discretely measured strains at the four gages and those strains from the evaluated 

Airy coefficients (based on 41 input strains). These results further validate the reliability of this 

technique. Strains/stresses i.e., σxx and εxx evaluated in other direction do not agree that well for k 

= 7 and m = 41, but they are small by comparison. I did not check the strains/stresses in other 

directions for k = 13. 

Table 3.2: Normalized strains, εyy/ε0 at discretely measured positions along line AB 

and those evaluated using the known Airy coefficients (m = 41). 

Normalized Strains evaluated using Airy’s stress function 

x/R Individual strain gages # of coefficients, k = 7 # of coefficients, k = 13 

1.0 3.70 3.61 3.69 

1.19 2.42 2.42 2.41 

1.58 1.55 1.55 1.54 

1.98 1.26 1.26 1.25 
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3.8 Summary, Discussion and Conclusions 

This chapter demonstrates the ability to determine the independent components of strain 

and stress at and throughout the neighborhood of a cutout in a plane-stress engineering member 

from discretely measured uniaxial strains having a common direction. The strains were recorded 

with commercial single-element foil strain gages and an Airy stress function was employed to 

process these measured strains. All strain gages were aligned in the direction of loading (i.e., 

recorded εyy strains), but one could conceivably utilize discretely measured values of εxx, εyy, εrr or 

εθθ. However at least for uniaxially-loaded members, it might be advantageous to use measured 

strain in the direction of specimen loading as they will tend to be relatively large. Reference [9] 

involves 2- and 3-element strain gages rosettes, but the present approach necessitates only single-

element gages. 

Advantages of the present approach include the use of single-element commercial strain 

gages (they are less expensive, consume a smaller footprint, involve less wiring and fewer 

channels of strain conditioning equipment than do 2- or 3-element rosettes, and they circumvent 

the challenge that strains from the different elements of a rosette do not occur at a common 

point); strain and stress contours are available from the discretely measured data; and unlike 

photomechanical approaches (e.g., moiré, holography, speckle or digital image correlation), no 

differentiating of the measured values is involved. Available information suggests relatively large 

gages (compared with the size of the discontinuity) can be used throughout much of the 

structure. Reliable results (at least compared with those from discrete strain gages and F M) are 

obtained from 41 to 45 measured uniaxial strains and seven Airy coefficients, although results 

are included for up to 13 coefficients in Appendix A3.1. Interestingly, the present ratio of the 
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amount of input data, m, to the number of Airy coefficients, k, i.e., 3.5 (45/13) ≤ m/k ≤ 6.5 (45/7), 

is less than that m/k ≥ 10 which has been recommended for Thermoelastic Stress Analysis (TSA) 

[8]. Notwithstanding the aforementioned comments, strains and stresses by the present hybrid 

concept differ little whether one uses 7 or 13 Airy coefficients. 

Future consideration might be given to assessing the consequences of the further reducing 

the number of measured input strain, the influence of the relative source locations of the 

measured input strain and to extending the present concept to orthotropic materials and more 

complicated components such as bolted joints. 
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Chapter 4 : Full-Field Stress Analysis of a 

Diametrically Loaded Ring using Five Stain Gages 

4.1 Introduction 

In this chapter an experimental-numerical hybrid technique is used to stress analyze a 

diametrically-loaded annular ring. This is achieved by combining the measured strains in the 

tangential direction with an Airy’s stress function. Five tangential strain gages are mounted along 

the line AB of figures 4.1 and 4.2 (the inner most gage being on the transverse curved surface of 

the inside radius). An additional strain gages is mounted in the radial direction at the common 

radius (r/R = 1.75) each of lines CD and EF. Lines AB, CD and EF are fixed to and rotate with 

the ring. Strains from the gages along AB are used as input data and those along CD and EF are 

for validation. Since the ring geometry is axisymmetric, the amount of input data is increased by 

rotating the annular disk at ten degree intervals; i.e., recording the strains at every interval from 

each of the seven strain gages for the same applied load.  

The annular disk is a common structural component, often commercially used in 

applications such as load cells, and in rock/concrete cutting and earth excavation cutters. The 

theoretical solution for a diametrically-loaded ring is available only for the case where the ratio 

of outer to inner diameter is two [25] although stress concentration factors have been determined 

photoelastically for other ratios of the radii [26]. Seratia, Alehosseina and Williams recently 

extended the theoretical analyses of loaded ring and disk to a wide range of loading conditions 
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[27]. Advantages of the present technique include: (i) able to evaluate all of the unknown Airy 

coefficients (i.e., determine the full-field individual stress/strain/displacement components) using 

only five strain gages while reducing the number of these experimentally-determined coefficients 

by incorporating the traction–free conditions analytically on the inner edge of the hole; (ii) easier 

to wire seven strain gages rather than forty-five strain gages as in Chapter 3; (iii) single element 

strain gages were used here which are less expensive and involve a smaller foot print compared 

to 2- or 3-element rosettes; (iv) while a theoretical solution is available only for ratio of outer to 

inner diameter of two, the current approach benefits from the possible increase/decrease in the 

ratio of outer to inner diameters; (v) numerical solutions like finite elements are not trivial due to 

the point loads at the top and bottom edges; (vi) not have to physically differentiate the measure 

data; (vii) no additional calibrating specimen is needed (such as would be with TSA); and (viii) 

do not require knowing the loading or external boundary conditions, i.e., one could perhaps use a 

more general stress function and then extend this technique to a non-circular outside edge.  

This chapter emphasizes determining the stresses, strains and displacements throughout 

the diametrally-loaded ring by processing measured strains from just five strain gages with a 

stress function, and the relevance to load cells. However, a significant ‘by-product’ is the 

demonstrated difficulties which can occur if trying to fully stress analyze structures using 

essentially only boundary conditions, i.e., a purely boundary collocation technique. 
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4.2 Physical Set-up 

Figure 4.1 is the geometric representation of the actual instrumented ring of figure 4.2. 

The x-y coordinate system of figure 4.1 is fixed in space and the ring is rotated. Lines AB, CD 

and EF rotate with the ring. The coordinate origin is at the center of the hole and the angle θ is 

measured counter-clock wise from the fixed positive horizontal x-axis. The results of the 

experimental-numerical hybrid (based on five measured strains) method obtained here are 

compared with those from an approximate finite element analysis, strain gages and a theoretical 

solution from Timoshenko and Goodier [25].  

  
Fig. 4.1: Schematic of diametrically-loaded annular disk 
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Fig. 4.2: Diametrically-loaded annular disk 

All the strain gages that were mounted on the specimen of figure 4.2 are Micro-

Measurements strain gages (CEA-13-032UW-120) having a gage resistance of 120Ω and a gage 

factor of 2.13 ± 1%. When measuring from the center of the hole, the gages along the line AB 

are at a distance of r/R = 1, 1.075, 1.32, 1.54 and 1.8. The top and the bottom gages along the 

lines CD and EF of figure 4.2 are at r/R = 1.75.  

Following are the details of the ring tested for the associated analyses and results:  

 Material of the plate: Aluminum 6061-T6 (Wiedenbeck, Inc., Madison, WI); Ultimate 

strength = 275 to 311 MPa (40 to 45 ksi) and Yield strength = 241 to 275 MPa (35 to 40 

ksi).  

 Static load (F) = 6672.33 N (1500 lbs.). 

 Inner diameter of the disk (d1) = 50.97 mm = 2.003”, figures 4.1 and 4.2. 
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 Outer diameter of the disk (d2) = 99.87 mm = 3.932” (i.e., d2/d1 = 1.96), figures 4.1 and 

4.2.  

 Thickness of the disk (t) = 19.05 mm = 0.75”.  

 A tangential strain gage was mounted on the inner curved edge at point A in figure 4.1.  

 Four additional tangential strain gages were mounted along line AB, figures 4.1 and 4.2.  

 One radial strain gage was along each of lines CD and EF at r/R = 1.75, figures 4.1 and 

4.2. 
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4.3 Relevant Stress Function (Airy’s Stress Function) 

The relevant stress function and associated individual components of stress, strain and 

displacement equations are the same as those of Chapter 2 and 3. The ring geometry and loading 

is symmetrical about both the stationary x- and y-axes and traction-free boundary conditions are 

analytically imposed on the inner radius of the ring; i.e., at r = R = 25.43 mm = 1.0015”, and for 

all values of θ. The stress function and individual stress, strain and displacement components are 

from Chapters 2 and 3, i.e., 
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where r is the radius measured from the center of a hole, angle  is measured counter-clockwise 

from the horizontal fixed x-axis (figure 4.1), c0, bn, and dn are Airy coefficients,   is the elastic 

modulus, υ is the Poisson’s ratio, and N is the terminating index value of the summation series (N 

is an even positive integer greater than 1). The x- and y-axes are fixed in space and the disk (with 

its lines AB, CD and  F) is rotated at equal intervals of ten degrees. 
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4.4 Experimental Details 

The specimen instrumented with unidirectional strain gages was diametrically-loaded in 

the Sintech screw-driven testing machine (Rm. 1313 Engineering Hall), figure 4.3. A total of 

seven single-element strain gages are mounted on the specimen. Only the five strain gages in the 

tangential direction (εθθ) along line AB are used to provide input for evaluating the unknown 

Airy coefficients. The output of the other two gages (along lines CD and EF) in the radial 

direction (εrr) was used to validate the results of the hybrid (stress function) technique. These 

strain gages along lines CD and EF are at the common radius (r/R = 1.75), figure 4.3. The output 

of the seven strain gages was processed using a 16-channel strain gage conditioner. The present 

use of only seven strain gages significantly simplifies the measurement compared to mounting, 

wiring and measuring the forty-five strain gage readings by the approach of Chapter 3. The 

number of input values is increased here from five to forty-eight by rotating the disk by ten 

degree angle intervals each time and applying the same load. Strains from the two outermost 

gages were not used when line AB (hence these hoop gages) are underneath the applied load 

(i.e., any strain gage where θ = ±90
o
 and r/R > 1.4) due to the high load effect of the concentrated 

load. To help in correctly rotating the ring by ten degrees increment, radii lines are marked at 

every ten degrees, figure 4.4. Figure 4.5 is the test setup. 
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Fig. 4.3: Front face of the strain-gaged ring in the screw-driven testing machine 

 
Fig. 4.4: Back face of the strain-gaged ring in the testing machine 
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Fig. 4.5: Test setup 
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4.5 Data Processing 

An objective here is to evaluate full-field individual stress, strain and displacement 

components in the ring. Since the diametrically-loaded ring is symmetrical about both x- and y-

axes, only the first quadrant is analyzed. Moreover the ring (with its lines AB, CD and EF) was 

rotated by ten degree intervals and the strains were recorded at every rotation. As mentioned 

previously, the output of the two outermost hoop gages along line AB (r/R > 1.4) was not 

considered when the gages were underneath the applied load (θ = ±90
o
). Using the measured 

forty-eight tangential strains from the five transverse strain gages and analytically imposed 

traction-free boundary conditions on the inner edge of the ring, the unknown Airy coefficients 

were evaluated using linear least-squares. Figure 4.6 shows the source locations of the input data 

values generated when the line AB and its five strain gages have been rotated through the 10 

degree intervals.  

The expression for tangential strain,  , (equation 3.8) is written in matrix form as 
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or, in simplified form, 

1 1[ ] { } { }m k k mA c d  
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where matrix A is an m (number of input tangential strains = 48) by k (number of unknown Airy 

coefficients), vector c contains the k unknown Airy coefficients, and the vector d is composed of 

the 48 measured tangential strains corresponding to the strain equations in matrix A. Since 

equation 4.8 involves n (= N+1) unknown coefficients starting from N = 2, there are more 

equations than the number of unknowns, i.e., m > k. Therefore linear least-squares is utilized in 

MATLAB to solve the over-determined matrix expression Ac = d.  ither ‘\’ or ‘pinv’ operator in 

MATLAB can be used for least squares and therefore the vector c is calculated by c = A\d or c = 

pinv*d. 

 
Fig. 4.6: Data points generated upon rotating the five strain gages by 10 degree intervals 

 

The number of unknown Airy coefficients to use was evaluated using the condition 

number of matrix [A] and the RMS. The RMS measures the error between the measured and 
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evaluated strains. Figures 4.7 and 4.8 are plots of the condition number, C, and log10(condition 

number) of the Airy matrix [A] vs. the number of coefficients, k, for the m = 48 inputs. The 

condition number measures the sensitivity of matrix [A] in equation 4.2. Figure 4.9 is the plot of 

the RMS vs. the number of coefficients, k for m = 48 inputs. From these plots of the condition 

number, RMS and ignoring coefficients a0, an and cn since they do not appear in the expressions 

for the stresses, strains and displacements of equations 4.2 through 4.14, k = 5 was selected as an 

appropriate number of coefficients to use here. 

 
Fig. 4.7: Plot of condition number, C vs. number of coefficients, k for m = 48 measured strains 

 
Fig. 4.8: Plot of log10(C) vs. number of coefficients, k for m = 48 measured strains 
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Fig. 4.9: Plot of RMS vs. number of coefficients, k for m = 48 measured strains 
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4.6 Finite Element Analysis 

Individual hybrid (strain gages output processed by the Airy stress function) determined 

components of stress, strain and displacement are to be compared full-field against the FEM 

predictions. Isoparametric elements (Plane-82) having 8 nodes per element were employed. A 

very fine mesh (mapped mesh) was used throughout the entire quarter ring as shown in figure 

4.10. The mapped mesh used here involves only quadrilateral elements. A total of 10,000 

elements and 30,401 nodes are used to mesh one quarter of the disk. Since the diametrically-

loaded annular disk is symmetrical about the x-and y-axes, a quarter model with symmetrical 

boundary conditions (along x-and y-axes) is analyzed. Because only a quarter model of the entire 

geometry is modeled, a point load of 750 lb. was applied at the outer vertical edge of the FEM 

model. 

 
Fig. 4.10: Finite element model for diametrically-loaded annular disk 
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4.7 Results 

After evaluating the unknown Airy coefficients from the five measured tangential strains 

along line AB, the hybrid (based on processing the output of the five strain gages with an Airy’s 

stress function) individual stress, strain and displacement components were determined. 

Normalized vertical strain, εyy, and horizontal strain, εxx, are evaluated using the present hybrid 

technique, ANSYS and the two discrete strain gages located along lines CD and  F in figures 4.2 

and 4.3; and are plotted along the horizontal x-axis and vertical y-axis of figure 4.1 in figures 

4.11 through 4.13. Tangential stress, σθθ, is normalized by the net stress σnet and is plotted on the 

boundary of the hole from strain gage evaluated Airy coefficients (i.e., hybrid quantities) and 

ANSYS in figure 4.14. These individual components of stress and strain (and the subsequent 

displacement) are evaluated using k = 5 coefficients and m = 48 measured tangential strains. 

There is excellent agreement between the hybrid evaluated stresses or strains, ANSYS and 

discrete strain gage results. However, at the outer edge of the ring underneath the concentrated 

load, the ANSYS results in figures 4.11 and 4.12 are excessively high due to the singularity 

caused by point load. 

The normalizing stress, σnet = 1500/((3.932-2.003)*0.75) = 1036.8 psi (= 7.15 MPa) is 

based on the applied load, F = 6672.33 N (1500 lbs), divided by the net cross-sectional area (i.e., 

at the region of the hole), figure 4.1. The normalizing strain, εnet = 1036.8*10
-6
 is evaluated on 

the stress-strain relationship i.e., εnet = σnet/  (E = 68.95 GPa = 10 x 10
6
 psi). The displacement 

contour plots of figures 4.15 through 4.18 are normalized with respect to the inner radius of the 

ring (R = 25.4 mm = 1.0015”). 
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There is considerable discrepancy between the current hybrid and F M predicted strains 

for y/R ≥ 1.45 in figures 4.11 and 4.12. Recognizing that neither of these analyzes accounts for 

the theoretical singularity which occurs under the applied load, P, probably neither of the results 

is valid for y/R ≥ 1.45. 

 
Fig. 4.11: Plot of εyy/εnet along vertical axis of figure 4.1 from hybrid method (strain-gage 

evaluated Airy coefficients) and ANSYS 

 
Fig. 4.12: Plot of εxx/εnet along vertical axis of figure 4.1 from hybrid method (strain-gage 

evaluated Airy coefficients) and ANSYS 
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Fig. 4.13: Plot of εyy/εnet along horizontal axis of figure 4.1 from hybrid method (strain-gage 

evaluated Airy coefficients) and ANSYS 

 
Fig. 4.14: Plot of σθθ/σ0 along boundary of the hole from hybrid method (strain-gage evaluated 

Airy coefficients) and ANSYS 

 

Figures 4.15 through 4.23 are the normalized full-field contour plots of individual stress, 

strain and displacement components from the hybrid method (strain-gage evaluated Airy 

coefficients) and ANSYS. There is excellent agreement between the hybrid (strain gage and Airy 

stress function) evaluated stresses, strains and displacements and FEM predictions except under 

the applied load, P. The invalid FEA predictions and strain gage-hybrid analyses in the region at 

the top concentrated load are again apparent in figures 4.19, 4.21 and 4.23. 
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Fig. 4.15: Contours of u/R from FEA (left side) and hybrid method (strain-gage evaluated Airy 

coefficients) (right side) 

 
Fig. 4.16: Contours of v/R from FEA (left side) and hybrid method (strain-gage evaluated Airy 

coefficients) (right side) 
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Fig. 4.17: Contours of ur/R from FEA (left side) and hybrid method (strain-gage evaluated Airy 

coefficients) (right side) 

 
Fig. 4.18: Contours of uθ/R from FEA (left side) and hybrid method (strain-gage evaluated Airy 

coefficients) (right side) 
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Fig. 4.19: Contours of εrr/εnet from FEA (left side) and hybrid method (strain-gage evaluated Airy 

coefficients) (right side) 

 

 
Fig. 4.20: Contours of εθθ/εnet from FEA (left side) and hybrid method (strain-gage evaluated 

Airy coefficients) (right side) 
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Fig. 4.21: Contours of σrr/σnet from FEA (left side) and hybrid method (strain-gage evaluated 

Airy coefficients) (right side) 

 

 
Fig. 4.22: Contours of σθθ/σnet from FEA (left side) and hybrid method (strain-gage evaluated 

Airy coefficients) (right side) 

 



127 
 

 
Fig. 4.23: Contours of σrθ/σnet from FEA (left side) and hybrid method (strain-gage evaluated 

Airy coefficients) (right side) 
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4.8 Validation 

The present hybrid results are further validated using the two additional strain gages 

which are mounted in the radial direction along lines CD and EF of the ring at r/R = 1.75, figures 

4.1 through 4.3. As the ring was rotated at ten degree intervals, the strains of these two gages are 

recorded and averaged at each interval of θ. However, the strains from those two gages are 

neglected when CD and EF are aligned with the loading because of the high local load influence. 

Figure 4.24 is the plot of radial strain at r/R = 1.75 from the hybrid method (strain-gage 

evaluated Airy coefficients), ANSYS and the two discrete strain gages along lines CD and EF in 

figures 4.1 through 4.3. The output of these two radial strain gages was not used as input for 

evaluating the unknown Airy coefficients, only for validating the hybrid results. The invalid FEA 

prediction in figure 4.24 as one approaches θ = 90
o
 due to the nearby singularity associated with 

concentrated load is again apparent. 

 
Fig. 4.24: Plot of εrr/εnet along r/R = 1.75 from hybrid method (strain-gage evaluated Airy 

coefficients) and ANSYS 
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two [25]. In this chapter the ratio of outer radius to inner radius equals 1.96 which is 

approximately two. Figures 4.25 and 4.26 are plots of the normalized tangential stress based on 

the present hybrid method of strain-gaged evaluated Airy coefficients and Timoshenko [25] 

along the vertical y and horizontal x axes. In figures 4.25 and 4.26, P equals load per unit 

thickness and b = R0 is the outer radius. Except as one approaches the concentrated load there is 

good agreement between the strain gage evaluated coefficients, FEA, discrete strain gage and 

theory (figures 4.24 through 4.26). 

 
Fig. 4.25: Plot of σθθ/(2P/πb) along vertical axis of figure 4.1 from hybrid method (strain-gage 

evaluated Airy coefficients) and Timoshenko [25] 
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Fig. 4.26: Plot of σθθ/(2P/πb) along horizontal axis of figure 4.1 from hybrid method (strain-gage 

evaluated Airy coefficients) and Timoshenko [25] 
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4.9 Summary, Discussion and Conclusions 

In this chapter the experimental hybrid technique was sufficiently simplified so that the 

full-field individual stress, strain and displacement components can be determined throughout a 

diametrically-loaded ring from the output of only five single-element strain gages. Airy’s stress 

function is employed to process the measured strains. By rotating the annular disk at ten degree 

intervals, the input strain data were increased from five to forty eight and for these input 

measured strains, k = 5 was found to be an appropriate number of Airy coefficients to use. The 

measured strains are evaluated in the tangential direction, but one could conceivably mount the 

strain gages in the radial or longitudinal direction. 

The present approach overcomes the experimental challenges such as having to mount, 

wire and calibrate/measure the strains at as many locations as in Chapter 3, thereby reducing the 

number of channels of strain-gage conditioner needed while providing full-field stress, strain or 

displacement contours from a single component of strain recorded at few discrete locations. The 

approach also circumvents the need of a photoelastic model or birefringent coating or spray 

painting, or applying a speckle pattern or grids/rulings as required with photoelastic stress 

analysis (PSA), thermoelastic stress analysis (TSA), digital image correlation (DIC) or moiré. 

Reliable results are available throughout the ring by processing the hoop component of 

strain with an Airy’s stress function. The hybrid (strain gages plus Airy stress function) results 

agree with those from discrete strain gages, FEM and theory. The present analysis was conducted 

for a ratio of outer- to -inner diameter of very close to two. This enabled checking the present 
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hybrid results with theory. However, an advantage of the present approach is it is applicable for 

any ratio of outer-to-inner diameter. 

This problem could conceptually be solved numerically by only boundary correlation. 

Having satisfied the traction-free boundary conditions analytically everywhere on the inside of 

the diametrically-loaded ring (r = R), one could evaluate all of the Airy coefficients of equations 

4.2 through 4.14 by imposing            at numerous discrete locations on the outer 

boundary of the ring (r = Ro) but away from the applied load without involving any of the 

presently recorded strains. However, doing so would not account for variations in the loads 

applied along the diameter (e.g., whether any transverse shear/friction accompanies normal 

loads). Moreover, if one employs too little measured strain data compared with the number of 

locations at which one impose            on the outside boundary, the results can be 

unreliable, Appendix A4. On the other hand, results of Appendix A4 show that for          

  analytically on the edge of the hole but only 13 measured input strains provide reliable results 

throughout the ring except again under the concentrated load. 

This research has potential application to load cells (for example weighing trucks on 

highways). Figure 4.26 is a possible design of a load cell in which a strain-gaged annular disk is 

loaded using rollers. The rollers would rotate on shafts connected to the rectangular sections, 

figure 4.26. These rollers would rotate the ring while the strains are recorded. The gage at 

location A (figure 4.1) could form (via telemetry or slip rings) one leg of a Wheatstone bridge. 
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Fig. 4.26: Schematic of possible design for a load cell in compression 

Relative to using this concept as a load cell, by monitoring the strains of the gage at 

points A on the ring, figure 4.1, and locating this gage in a Wheatstone bridge, the strain at 

position A,   , associated with this gage would correlate with the output voltage of the bridge, 

Eo, according to [35 and 104] 
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circuit containing a variable resistor to aid in initially balancing the bridge. The magnitude of 

strain    could be calibrated in terms of applied load, P, as a function of ring rotation, angle θ, so 

as to correlate Eo in terms of the load (perhaps as a graph) for any angle θ. 

Another potential load-cell design but which can be used either in compression or tension 

could use rollers at both the inner and outer edges of the ring. For compressive loading the rollers 

at the outer radius would contact the ring and one could impose the traction-free boundary 

condition analytically on the inner boundary. For tensile loading, the rollers at the inner radius 

would contact the ring and one would impose the traction-free boundary condition analytically 

on the outer boundary. Rather than using a strain gage at location A of figure 4.1, one could now 

employ a gage which is bonded slightly beyond the inner ring radius (perhaps that at r/R = 1.075 

in figure 4.2) to avoid its being contacted by the inside roller. Load-cell concepts such as 

proposed here would enjoy the advantage that the ring is not always loaded at the same position, 

therefore providing increased (fatigue performance) life.  

Under axisymmetric condition, apart from the specific design of load cell, this technique 

can be applied to multiple point loads or pressure loading at inner or outer boundaries.  
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Chapter 5 : Thermoelastic Stress Analysis of a Finite-

Plate containing an Elliptical Hole 

5.1 Introduction 

Holes of various shapes are frequently employed in engineering structures. Such 

geometric discontinuities produce stress concentrations that are often the source of mechanical or 

structural failures. As such, this chapter demonstrates the ability to determine thermoelastically 

(TSA) the individual components of stress in a finite-width tensile plate containing an elliptical 

hole. This study of elliptical-shaped holes extends the ability of TSA to evaluate stress 

distributions in components containing other than circular-shaped cutouts. An earlier TSA 

approach to stress analyzing a member containing an elliptical-shape hole used complex 

variables and mapping techniques [15, 19]. However, the current use of a series representation of 

an Airy stress function in terms of polar coordinates offers the advantages and convenience of 

real variables. In addition to being simpler mathematically the present real-variable approach 

enables determining the stresses around the total hole boundary at once. This is unlike the 

mapping technique which necessitates applying the technique incrementally around the hole.  

The author is unaware of prior utilization of polar coordinates to experimentally evaluate 

the stresses associated holes or notches which are other than round. This is significant since 

while a general solution is available to the biharmonic equation, the relevant differential 

equation, in polar coordinates, such is not so in rectangular or elliptical coordinates [6]. However 
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as detailed in Appendix A5, the stresses in polar coordinates can be readily converted to those in 

elliptical or rectangular coordinates are needed. Indeed, elliptical coordinates are employed to 

satisfy the traction-free conditions on the edge of the hole. The coefficients of the Airy’s stress 

function are evaluated here from the thermoelastically measured isopachic stress supplemented 

with known boundary conditions at and away from the hole so as to determine the individual 

components of stresses in the elliptically-perforated plate. Having the stress components 

available in polar coordinates away from the edge of the hole would be convenient for example 

of there were neighboring holes or notches such that the stresses associated with the individual 

geometric discontinuities interacted with each other (see Chapter 8). For an isotropic material, 

and adiabatic reversible conditions exhibited by cyclic loading, the stress-induced temperature 

change in a structure is proportional to the sum of changes in the normal stresses. These TSA-

determined stresses are available on and in the neighborhood of the edge of the hole without 

knowing the distant geometry or boundary conditions. Unlike displacement-based experimental 

techniques (e.g., moiré, speckle, digital image correlation), the method does not necessitate 

differentiating the measured information. The present analysis involves a central traction-free 

elliptical hole and symmetry about the horizontal and vertical axes. The concept is applicable to 

more general shaped holes or notches in unsymmetrical situations or under more loading 

conditions. The current approach is applicable to cases of multiple elliptical holes, notches or 

combination thereof. Also, and unlike stress analyses based on isochromatic data which 

necessitates non-linear least squares, TSA involves only linear least-squares. As demonstrated 

here, the technique is very effective for finite components. This is important because very few 

theoretical solutions are available for finite geometries and strictly numerical (finite element or 

finite difference) methods necessitate knowing the external loading and geometry. The reliability 
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of the present TSA-evaluated results is substantiated by comparison with those from finite 

element analysis and commercial strain gages. The integrated TSA-evaluated stresses also satisfy 

force equilibrium. While applied here to thermoelasticity, many of the present concepts could be 

useful with other areas of experimental mechanics. 

The major contribution of this chapter is the development and demonstration of the 

ability to thermoelastically stress analyze finite components containing a non-circular geometric 

discontinuity using a stress function in real (polar) coordinates. 
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5.2 General Comments 

Thermoelastic stress analysis (TSA) is a modern experimental technique for determining 

the stress distribution in engineering components. TSA is usually performed under adiabatic and 

reversible conditions and which is achieved by cyclically loading the structure. The cyclic 

loading produces an in-phase temperature variation which, for isotropic materials, is proportional 

to the change in the sum of the principal stresses (i.e., isopachic stress). Thermoelastic stress 

analysis uses a scanning infra-red (IR) radiometer system to record the local temperature 

fluctuations and relates these changes to the associated isopachic stress. TSA is a full-field, non-

contacting, nondestructive, technique which enables the stress analysis of actual structures in 

their operating environment with sensitivity equal to that of strain gages. Moreover, the 

measured TSA data is digitalized in matrix form which vastly reduces the time needed for 

analyzing the experimental information. The present hybrid concept of combining an Airy stress 

function (which is derived from stress equilibrium and strain compatibility), local boundary 

conditions, and measured TSA data in the neighborhood of the geometric-discontinuity of 

interest is advantageous. The present TSA approach is particularly suitable for stress analyzing 

finite structures, whose distant geometry or loading is not well known, something which is 

difficult to do theoretically or numerically. An over-determined least-squares routine was 

implemented to evaluate the unknown Airy coefficients and hence determine the complete state 

of stress. Although measured TSA information on and near and edge is typically unreliable, the 

current method also provides stresses at the boundary of the elliptical hole. Challenges of TSA 

have been that measured data can be noisy, the recorded isopachic stress S* must be separated 

into individual stresses, calibration is required, recorded temperatures at and near the edge are 
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usually not reliable and the component typically must be cyclically loaded. Past and present 

advances developed at University of Wisconsin-Madison can overcome many of these features
1
. 

Under proportional plane-stress isotropy, the measured TSA temperature signal, S*, is 

related to the stresses by  

       

      [                  (       )          ]                 (5.1) 

where S is sometimes called the first stress invariant, the trace of the stress tensor or the 

isopachic stress value, K is the isotropic thermoelastic coefficient, and              

     (       )     (       ) are the sum of the stresses in the principal directions, in polar 

coordinates, in Cartesian coordinates or in elliptical coordinates, respectively, figure 5.1. The 

presented technique does not need any prior filtering of the recorded data. 

 Elliptical holes often occur in finite engineering components but such situations are 

difficult to stress analyze, particularly for finite components whose far-field boundary conditions 

are not well known. The recorded Thermoelastic Stress Analysis data (isopachic stress or ‘sum’ 

of the principal stresses) are separated in this chapter into individual components of stress in a 

uniaxially loaded, elliptically-perforated, finite aluminum plate which is symmetrical about both  

 

 

 

1
This includes TSA under random loading, non-adiabatic behavior and stress separation [4, 6, 8, 

10, 15 through 19]. 
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Fig. 5.1: Coordinate Representations 

the axes (figure 5.2). Measured TSA data are combined with the Airy`s stress function (in real 

variables, polar coordinates r and θ) to evaluate individual components of stress. A particularly 

advantageous feature of the present approach is its ability to evaluate all of the Airy (real, not 

complex) coefficients (and hence the independent components of stress on and beyond the edge 

of the hole) from measured temperatures and the local traction-free conditions. In this particular 

case, the coordinate origin is at the center of the hole which makes the plate symmetric about 

both x- and y-axes, thereby simplifying the stress function and hence the number of Airy 

coefficients. The traction-free conditions on the boundary of the elliptical hole are imposed here 

discretely. The measured TSA data are unreliable at and very near the boundary of the hole. 

However, accurate edge information is needed when determining boundary stresses or stress  
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concentration factors. The concept of synergizing the Airy’s stress function with the measured 

temperature information provides the individual components of stress ‘full-field’, including on 

the edge of the hole. This ability to stress analyze members containing non-circular (including 

elliptical) holes is significant. Relatively little information associated with elliptical holes in 

finite plates is available. However, the ability to do is convenient in that a general series solution 

of   𝜙   , the governing equation, is available in polar coordinates. 

The appropriate number of Airy coefficients to retain in the stress function is determined 

here in at least two ways. The source locations of the measured input temperature data can be 

important. Since the plate of figure 5.2, is symmetrical about both horizontal and vertical axes, 

the raw recorded TSA data are averaged throughout the four quadrants so as to eliminate any 

possible non-symmetry. 

The three independent components of stress can then be determined by combining a 

series representation of the Airy stress function with measured TSA data. Moreover, unlike 

evaluating stress from isochromatic data, TSA analysis requires only linear (rather than non-

linear) least-squares. This circumvents the time consuming and challenging iterative process of 

non-linear least-squares. Unlike displacement-based methods such as moiré, holography, speckle 

and digital image correlation, TSA requires neither differentiating the measured information nor 

knowledge of the constitutive material properties. No surface preparation is required other than 

applying a Krylon Ultra-Flat black paint which provides an enhanced and uniform emissivity. 

Many photomechanical techniques tend to be highly labor-intensive and time-consuming. On the 

other hand, recent commercial hardware and software developments enable TSA results to be 

available within minutes. 



143 
 

In addition to demonstrating the practical ability of TSA to handle non-circular geometric 

discontinuities using polar coordinates, the following considerations helped to motivate this 

particular geometry (figure 5.2): (i) It has two axes of symmetry which simplifies the stress 

function and thereby reduces the number of Airy coefficients [1, 4, 6, 8]. (ii) Ability to work 

with real variables since earlier approaches used a stress functions in terms of complex variables 

and mapping techniques [15, 19]. (iii) In the present case of the MTS hydraulic grip loading, the 

far-field loading conditions are well known. It is therefore possible to conduct a confident finite 

element analysis of this loaded plate against which to compare experimental results.  

Relatively little information is available on finite members containing elliptical holes and 

even less on elliptical notches, [20 – 26, 28, 29]. Most of what is available treats infinite 

geometries, involves numerical analyses for specific cases, or employs a complex stress function 

and perhaps mapping techniques. Unlike the present approach, strictly numerical or theoretical 

methods necessitate knowing reliably the far-field geometry and loading conditions. The present 

availability of the independent stress components away from the edge of the hole in polar 

coordinates is convenient if there were neighboring geometric discontinuities whose separate 

stresses interact with each other (Chapter 7). Reference [15] is the only known thermoelastic 

stress analysis to an elliptical hole, and that solution uses a complex variable stress function and 

mapping. 
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The following includes details of the plate tested: 

 Material of the plate: Aluminum 6061-T6 (Wiedenbeck, Inc., Madison, WI); Ultimate 

strength = 275 to 311 MPa (40 to 45 ksi) and yield strength = 241 to 275 MPa (35 to 40 

ksi). 

 Cyclic Load = 3558.57 N (800lb) ± 2224.11 N (500lb) at 10Hz, unless indicated 

otherwise. 

 Loading Range (F) = 4448.2 N (1000lb), unless indicated otherwise.  

 Major Diameter of the elliptical hole (2a) = 38.10 mm (1.5”), figure 5.2. 

 Minor Diameter of the elliptical hole (2b) = 19.05 mm (0.75”), figure 5.2. 

 Thickness of the plate (t) = 6.35mm (0.25”). 

 Plate is symmetrical about the both the horizontal and vertical axes (x- and y-axes). 

 Length of the plate (L) ≈ 279.4 mm (11”), figure 5.2. 

 Width of the plate (W) = 76.2 mm (3”), figure 5.2. 

 A strip gage consisting of eight strain gages was mounted along line AB extending 

horizontally from the edge from the major diameter of figure 5.2. 

 Two individual strain gages were mounted, one on the front and one on the back, to 

ensure proper specimen alignment by minimizing any out-of-plane bending. 
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5.3 Airy Function and Stresses 

For thermoelastically stress analyzing the elliptically-perforated vertically-loaded finite 

plate of figure 5.2, one can utilize the Airy’s stress function in polar coordinates, including 

assuming symmetry about both x- and y-axes. In addition to the measured temperature data some 

traction-free conditions are imposed discretely on the boundary of the elliptical hole. The Airy 

stress function satisfies stress equilibrium and the associated strains of the compatibility 

condition give the biharmonic equation 
4 = 0 (where 

2
 is the Laplacian operator and 

2

2

22

2
2 11
















rrrr
) of equation 5.2 [1, 4, 6, 8]. However, while a general solution to 

4 = 0 is 

not readily available in either rectangular or elliptical coordinates, it is (equation 5.2) in polar 

coordinates. Appendix A5 contains the necessary equations to relate the geometry and stresses in 

terms of radial, rectangular or elliptical coordinates. 
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In the absence of body forces, a classical plane-stress elasto-static stress analysis involves 

solving the biharmonic equation, 
4 = 0, (to obtain equation 5.2) and differentiating the 

obtained stress function, , to evaluate the stresses subjected to boundary conditions. Therefore 

(provided one knows the values of the Airy coefficients of equation 5.2), individual components 
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of stresses can be evaluated by differentiating the stress function of equation 5.2 as shown in 

equations 5.3 through 5.5: 
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The above differentiations of equation 5.2 involve the same unknown coefficients as in 

the Airy’s stress function. Determination of individual stresses therefore necessitates somehow 

evaluating these unknown coefficients. As indicated shortly, the number of these unknown 

coefficients (typically referred to as Airy coefficients) in equation 5.2 can often be reduced 

significantly by considering factors such as any geometric and loading symmetry conditions. 

Since the displacements, strains and stresses for figure 5.2 cannot be multi-valued 

functions of θ, the coordinate origin is not in the component (but within the cavity) and there is 

no resultant force at the origin, coefficients d0, B0, C0, D0, B1, B1 and A1, A1, b1, b1 are all zero 

[6, 10, 17, 18]. The plate of figure 5.2 is symmetrical about both the vertical y-axis and 

horizontal x-axes. In addition to A0 = 0, symmetry about x-axis means that stresses occurring at 

any angle, say when θ = +β would be the same as those at θ = -β. Thus, (r, θ) =  (r, -θ). This 

indicates that  must be an even function of θ. Symmetry about the y-axis, means that all sine 

terms of equation 5.2 go to zero. For, an, bn, cn, dn (for n ≥ 1) the value of n is a positive even 
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integer. Therefore, for the present case of figure 5.2, the Airy stress function of equation 5.2, 

reduces to: 

𝜙                 
  ∑ {(   

     
       

      
      )      }

 

          

 

                                      (5.6) 

Upon differentiating equation 5.6 according to equations 5.3 through 5.5, the individual 

polar components of stress can be written as follows: 

    
  

  
      ∑ [

                                   

                                          ]

 

       

          

                (5.7)

 

 

    
   

  
     ∑ [

                                    

                                          ]

 

       

          

                (5.8) 

    ∑ [
                                 

                                      ]

 

       

        

       

(5.9) 

Quantity r is the radial coordinate measured from the center of the cavity and angle θ is 

measured counterclockwise from the horizontal x-axis, figure 5.2. N is the terminating index 

value of the series (since in practice one can only handle a finite number of terms) and it can be 

any positive even integer. 

Rectangular component of stresses are also needed for the analyzing the stresses in 

Cartesian coordinates. The stresses of equations 5.7 through 5.9 are therefore converted from 
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polar to rectangular coordinates by means of the standard transformation expression of equation 

5.10, [8]. 













































































r

rr

xy

yy

xx

22

22

22

sincoscos.sincos.sin

cos.sin2cossin

cos.sin2sincos

                 (5.10) 

 From equations 5.7 through 5.10, the rectangular component of stresses become as 

shown in equations 5A.100, 5A.110 and 5A.120, and identified here as equations 5.11 through 

5.13. 
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Stresses acting in the polar co-ordinate system can be transformed to those in the 

elliptical co-ordinates using the following transformation matrix equation: 

{

   

   

   

}    [
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}      (5.14) 

where        , figure 5.1. 

 From equations 5.7 through 5.9 in terms of polar coordinates, the elliptical components 

of stress of equations 5A.51, 5A.61 and 5A.71 of Appendix A5 are identified here as equations 

5.15 through 5.17. 
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Adding stresses in polar coordinates (equations 5.7 and 5.8) or in Cartesian coordinates 

(equations 5.11 and 5.12) or in elliptical coordinates (equations 5.15 and 5.16) gives the following 

equation for isopachic stress. 

 

S =         =        =                         (5.18) 
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        (5.19) 

 

A detailed derivation of the expressions of equations 5.7 through 5.19 is contained in 

equations 5A.36 through 5A.123 of Appendix A5.  While coefficient a0 appears in the Airy 

potential function  of equation 5.6, it is absent in the expressions for the individual stress 

components (equations 5.7 through 5.19) as a result of differentiation. All of the coefficients 

present in this expression of equation 5.19 for isopachic stress can be evaluated experimentally 

from measured temperatures, that is by recording the TSA signal, S*, which is proportional to the 

sum of the radial and tangential stresses (equation 5.1). However, referring to equation 5.19,  

 

S = f( co , bn , dn  for n = 2, 4, 6.…N)          (5.20) 

and from equations 5.7 through  5.17, 

rr = f(bo , co , an , bn , cn , dn  for n = 2, 4, 6.…N)         (5.21) 

θθ = f(bo , co , an , bn , cn , dn  for n = 2, 4, 6.…N)        (5.22) 

rθ = f(an , bn , cn , dn  for n = 2, 4, 6.…N)         (5.23) 

xx = f(bo , co , an , bn , cn , dn  for n = 2, 4, 6.…N)        (5.24) 
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yy = f(bo , co , an , bn , cn , dn  for n = 2, 4, 6.…N)        (5.25) 

xy = f(bo , an , bn , cn , dn  for n = 2, 4, 6.…N)        (5.26) 

    = f(bo , co , an , bn , cn , dn  for n = 2, 4, 6.…N)        (5.27) 

   = f(bo , co , an , bn , cn , dn  for n = 2, 4, 6.…N)        (5.28) 

   = f(bo , an , bn , cn , dn  for n = 2, 4, 6.…N)        (5.29) 

If all coefficients which appear in the individual components of stress (equations 5.21 

through 5.29) also exist in the equation for isopachic stress (equation 5.20), then the individual 

components of in-plane stress in the plate of figure 5.2 could be evaluated from only measured 

TSA data. Comparing equations 5.20 through 5.31 shows that coefficients present in the 

expression for isopachic stress are also present in the expressions for individual stresses. 

However, the individual components of stress also contain the Airy coefficients bo, an and cn 

(equations 5.21 through 5.29) which are absent in the isopachic stress, equation 5.19. Therefore 

the separate stress components cannot be determined from only thermoelastic data through the 

expression for the isopachic stress (equation 5.19). But imposing the traction-free conditions i.e., 

zero normal and shear stress around the boundary of the elliptical hole, together with measured 

temperature information (and equation 5.1) does enable all of the Airy coefficients of equations 

5.21 through 5.29 to be evaluated.  

Imposing the traction-free boundary conditions discretely on the boundary of the 

elliptical hole (           at r = R (where R of equation 5.30 maps the boundary of the 

elliptical hole for a = 19.05mm (0.75”) and b = 9.525mm (0.357”))) and for all values of θ), 

together with measured TSA data, evaluates all the unknown Airy coefficients. 
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Referring to figures 5.1 and 5.2 and Appendix A5,  

        
   

 

         
 
     

        (5.30) 

where a = 38.1 mm, b = 19.05 mm and   is the polar angle in first quadrant. 

From equations 5.15 and 5.17 and figure 5.1, one obtains on the edge of the hole, 
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Gathering equations 5.19, 5.31 and 5.32 together gives: 
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(5.33) 
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Thus, by incorporating the boundary conditions around the central hole discretely, all the 

unknown Airy coefficients bo , co , an , bn , cn , dn  for n = 2, 4, 6.…N can be evaluated from the 

measured TSA data. Recognizing it is advantageous to employ more side conditions 

(temperature data plus discrete local traction-free boundary conditions) than unknown, an 

effective way to evaluate the large number of unknowns from the over-determined system of 

equations is to utilize least-squares method. An over-determined system has more equations (i.e., 

collect more values of S) than unknowns. Doing so enables one to obtain the individual 

components of stress from the thermoelastically measured S (= S*/K). Moreover, equilibrium and 

compatibility are automatically satisfied within experimental error and the consequences of 

truncating the series expressions of equation 5.2 at some finite number of terms. 

The traction-free conditions on the edge of the elliptical hole are imposed discretely 

rather than analytically because the terms inside and outside the summation in the equations for 

the normal and shear stresses at the boundary of the elliptical hole are dependent, i.e., equations 

5.15 and 5.17, and cannot be separated when equating the expressions for these stresses to zero. 

Not being able (as can sometimes be done, [4, 8]) to reduce the number of coefficients here by 

imposing the traction-free conditions on the edge of the hole analytically means one cannot 
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match the coefficients in the expressions for the individual stresses are as in the isopachic stress, 

equation 5.19. However, imposing            at r = R (where R maps the boundary of the 

elliptical hole having a = 19.05 mm (0.75”) and b = 9.525 mm (0.357”)) on the boundary of the 

elliptical hole point-wise/discretely enables the Airy matrix expression Ac = d of equations 5.33 

and 5.34 to also include the additional normal and shear stress expressions of equations 5.31 and 

5.32, thereby containing the coefficients that are absent in the isopachic stress of equation 5.19.  

Reducing the number of coefficients by incorporating the local traction-free conditions 

analytically/continuously, as opposed to piece-wise/discretely, can be advantageous. However, 

reference [8] shows that although imposing the traction-free conditions on the edge of a hole 

discretely rather than analytically means more coefficients must now be evaluated which causes 

the least-squares process to involve more equations, imposing traction-free condition discretely 

or analytically gives the some results. This concept to reduce the number of thermoelastic 

coefficients by imposing local conditions analytically in believed to be new with reference [10].  

Fewer independent Airy coefficients can simplify the least-square calculation and means less 

measured input information might be needed for their determination.  

Measured TSA data can be noisy so it is advantageous to use more measured input values 

of S plus known boundary conditions than unknowns and to determine the Airy coefficients by 

least squares using the commercial MATLAB software as discussed in section 5.4.  

Detailed derivations of all of the previous the equations are contained in Appendix A5.   
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5.4 Experimental Details 

5.4.1 Specimen Details and Preparation 

 

Figure 5.2 shows the aluminum specimen (alloy 6061-T6), its geometry, dimensions, and 

orientation and location of the co-ordinate axes. Explanations for studying this geometry and 

loading are discussed previously in section 5.2, General Comments. Following are the details of 

the plate tested for the succeeding analyses and results: 

 Material of the plate: Aluminum 6061-T6 (Wiedenbeck, Inc., Madison, WI); Ultimate 

strength = 275 to 311 MPa (40 to 45 ksi) and Yield strength = 241 to 275 MPa (35 to 40 

ksi). 

 Unless stated otherwise, the plate was subjected to a cyclically varying sinusoidal load 

with a mean value of 3558.57 N (800lb), maximum value of 5782.68 N (1300lb) and a 

minimum value of 1334.46 N (300lb) at a frequency of 10Hz. 

 3558.57 N (800lb) ± 2224.11 N (500lb) at 10Hz, unless state otherwise. 

 Loading Range (F) = 4448.22 N (1000lb), unless state otherwise. 

 Major Diameter of the Elliptical hole (2a) = 38.10 mm (1.5”), figure 5.2. 

 Minor Diameter of the Elliptical hole (2b) = 19.05 mm (0.75”), figure 5.2. 

 Thickness of the plate (t) = 6.35mm (0.25”). 

 Length of the plate (L) ≈ 279.4 mm (11”), figure 5.2. 

 Width of the plate (W) = 76.2 mm (3”), figure 5.2. 

 Plate of figure 5.2 is symmetrical about both axes (x- and y-axes). 
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The aluminum plate was sprayed with Krylon Ultra-Flat black paint to provide an enhanced and 

uniform emissivity (figure 5.3). However, before applying the black paint, the plate was polished 

with a 400 grit sand paper so as to have an ideal surface finish for the black paint to adhere to 

(figure 5.4). This slightly-roughened surface also provided a desirable surface finish on which to 

bond the strain gages. Since one wishes to be able to record reliable temperatures as close as 

possible to the edge of the holes, care was taken when sanding the faces of the specimen not to 

round-off the edge of the hole.  

 
Fig. 5.3: Aluminum plate coated with Krylon Ultra-Flat black paint 

 
Fig. 5.4: Aluminum plate surface preparation (front side of the plate before spraying) 
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5.4.2 Specimen Loading 

TSA is based on the fact that materials experience a temperature change when 

compressed or expanded. Figures 5.5 through 5.8 show the specimen loading and TSA recording 

equipment employed. The aluminum plate was mounted in the loading frame of the hydraulic 

testing machine figures 5.6 through 5.8, and subjected to a cyclic loading varying sinusoidally 

from 3558.57 N (800lb) to 5782.68 N (1300lb) at a rate of 10Hz. The oscilloscope of figure 5.5 

was employed to accurately monitor the applied load and frequency. The loading was applied 

using an MTS machine (20Kips capacity having hydraulic grips capable up to 18.5 Kips, Rm. 

B321, EH) that can operate in either load or displacement control with any of four ranges (10%, 

20%, 50% and 100% measure of capacity), figure 5.8. For the current analysis, the 50% range 

was utilized in load control which allows for a maximum load of 44482.2 N (50% of 20,000lb = 

10,000lb). The hydraulic grips apply a uniform clamping pressure (which can be adjusted as per 

the material) over both ends of the specimen, figures 5.6 and 5.7. The corresponding load-

induced temperature effect was recorded by a TSA Delta Therm model DT1410 camera (sensor 

array of 256 horizontal x 256 vertical pixels), figures 5.6 and 5.8. 

The test plate was aligned between the top and the bottom grips as illustrated in figure 

5.7. When clamping the specimen between the hydraulically operated grips, particular care was 

taken that the plate is symmetrically loaded about vertical y-axis. This was done by measuring 

the distance from the end of the grips to the plate edge (on either side, figure 5.7). Any possible 

out-of-plane plate bending was minimized by monitoring the strains obtained from the strain 

gages mounted on the front and the back faces of the plate. Details about strain gage mounting, 

location and type of gages used are included in section 5.8. 
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Fig. 5.5: Oscilloscope for accurate measurement of cyclic loads 
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Fig. 5.6: Specimen in loading frame with Delta Therm DT1410 infrared camera 

 
Fig. 5.7: Specimen loaded in hydraulic grips 
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5.4.3 TSA Recording 

TSA temperature data were recorded by a DeltaTherm model DT1410 staring-array 

infrared system (Stress Photonics Inc., Madison, WI, USA) which is cooled with liquid-nitrogen, 

figure 5.6. The DeltaTherm model DT1410 has a sensor array with a spatial resolution of 256 

horizontal x 256 vertical pixels. The prepared specimen was loaded in the MTS machine, the 

TSA camera focused on the specimen and the thermoelastically-recorded signal, S*, was 

recorded by the data acquisition system which is equipped with the Delta Vision software as seen 

in figure 5.8. TSA images were captured and averaged over two-minute durations. The TSA 

images (such as that of figure 5.9) were then exported to Excel
®
, converting each pixel into a 

data point i.e., giving a 256 x 256 matrix which provides the ability to carry out further analysis. 

The Delta Vision software gives a pixel size of approximately 0.272mm (0.01”) covering the 

specimen. This Delta Vision pixel size differs from the actual size a pixel covers on the 

specimen. The actual pixel size on the specimen was evaluated from the dimensions of the plate 

i.e., the major and minor diameters of the elliptical hole, and the width of the plate. The actual 

pixel size here at the plate was found to be 0.48 mm (0.0189”). Figure 5.9 shows an actual TSA 

image from the Delta Vision software which contains (256x256 = 65,536) data values, of which 

approximately 40,000 pixels cover the plate. Since TSA data are typically unreliable on and near 

an edge, no recorded temperatures were used within at least two data (pixel) positions (~ 0.96 

mm or 0.038) of the boundary of the elliptical hole.  

The specimen of figures 5.2 through 5.4, 5.6, 5.7 and 5.8 was loaded in a MTS machine 

(RM B321 Engineering Hall, UW Madison) which has cyclic capability. The applied sinusoidal 

load was accurately monitored with the oscilloscope seen in figure 5.5. Load control was 
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employed with the maximum load capacity of 44482.2 N (10,000 lbs). This means 10 volts = 

10,000 lbs (or 1 volt = 1,000 lbs). Figure 5.10 is the image from the oscilloscope which can be 

obtained using a floppy drive (usually done) or by connecting the oscilloscope to a Local Area 

Network (LAN) connection and receiving the oscilloscope image through the following link: 

http://scope2.ep.wisc.edu/ while performing the TSA experiment. The oscilloscope of figure 5.5, 

contains grid markings which permit one to measure both voltage on the vertical axis (associated 

with load) and time on the horizontal axis of the waveform. The frequency at which the 

specimen is being cycled can also be determined by measuring the waveform period and taking 

it’s reciprocal. In the case of figure 5.10 the mean load signal is 803 mV which corresponds to 

803 lbs (since 1V = 1,000lb), peak to peak load applied to the specimen is 1.04 volts (~1040 lbs) 

at a frequency of ~10Hz, and the maximum load on the specimen is the 1.30 V (1,300 lbs). 
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Fig. 5.8: Test Setup 

 
Fig. 5.9: TSA image, S*, for a load range of 4448.22 N (1000lb) 
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Fig. 5.10: Oscilloscope image while performing TSA 

The oscilloscope used to monitor accurately the specimen cyclic loading rate and 

specified load range is visible between the TSA camera and the MTS control box in figure 5.8. 

The Delta Therm camera (Stress Photonics Inc., Madison, WI, USA), which records the 

temperature variations in the perforated plate, is aligned to be exactly perpendicular to the 

surface of the plate. This was done with the aid of two spirit levelers which are mounted at the 

base of the TSA camera (figures 5.6 and 5.8). 

Figure 5.9 shows an actual TSA image as recorded and displayed by the Delta Vision 

software which provides data acquisition and interpretation tools. Note that the TSA image 

(figure 5.9) captures only about 120.6 mm (4.75) of the total specimen length, figure 5.2. This 

image of figure 5.9 was averaged and recorded over a period of two minutes.  
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5.4.4 TSA Calibration 

TSA Calibration simply means to determine the thermoelastic constant, K, as defined by 

equation 5.1. The coefficient, K is often evaluated in a component whose complete state of stress 

is known, usually at a location far from any stress concentration and/or where there is a uniform 

1-D state of stress. Since the plate geometry of figure 5.2 does not contain any region possessing 

a known or uniform 1-D state of stress, figure 5.9, an indirect approach was utilized to calibrate 

the experimental data. The thermoelastic calibration was achieved here from a tensile specimen 

of the same material and “identical” (thickness, etc.) coating of flat black paint and tested using 

the same TSA recording characteristics. This can be accomplished by spraying both the test and 

calibration specimens simultaneous, or by subsequently machining a tensile specimen from the 

actual component. A separate uniaxial tensile calibration specimen was used here, figure 5.11. It 

is best to calibrate the TSA data on the same day as the component environmental effects 

(temperature and humidity). Other calibration approaches could utilize strain gages to determine 

the isopachic stress at a location. If strain gages are used, one should employ symmetrical 

positions (gages at one and record S* at the other), or record S* on one face of the component 

and the gages on the back face. This is to ensure the strain gages do not influence the local stress 

field and hence the TSA signal. As discussed in section 5.2, under plane stress, the temperature 

effects relating the stresses for an isotropic material are governed by the following equation: 

       

     [                  (       )   (       )]           (5.1) 

where S* is the recorded TSA signal, K  is the thermo-mechanical coefficient (determined 

experimentally), and S  is the change in isopachic stress or the sum of the normal stresses. 
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The only difference between this calibration specimen and the perforated test component 

is the former does not have any holes or any such irregularity and is symmetrical about both of 

its x and y axes (figure 5.11). The stress distribution is consequently uniform and known (only 

uniaxial tension). The calibration specimen used is of the same material as the actual test 

specimen (Aluminum 6061-T6), 279.4 mm (11”) long, 25.4 mm (1”) wide and 6.35 mm (0.25”) 

thick. Thus, knowing the recorded thermoelastic signal, S* (which was scanned along horizontal 

lines at different levels/height of the strip and then averaged), applied load and the cross 

sectional area of the specimen, the thermomechanical coefficient K was determined from 

S*/uniform stress, giving K = 265.42 U/MPa (1.83 U/psi). The holes at the ends (within the 

grips) of the calibration specimen of figure 5.11 are irrelevant to the present situation. 

 



166 
 

 
Fig. 5.11: Calibration specimen 
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Figure 5.12 shows the experimental setup while calibrating the specimen. The calibration 

specimen contained a total of four strain gages, two on the front and two on the back (one 

longitudinal and one transverse on each side), to monitor the strains. Particular care was taken to 

ensure proper specimen alignment during testing by monitoring the strains on the front and back 

surfaces of the calibration specimen. 

 
Fig. 5.12: Experimental setup for the calibration specimen 
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5.5 Data Processing 

Thermoelastic stress analysis assumes adiabatic and reversible conditions to obtain 

isopachic stress information from measure temperatures. The measured TSA data, along with 

satisfying the traction-free conditions (        ) on the edge of the hole, enables evaluating 

all of the unknown Airy coefficients. Commercial TSA systems are able to provide vast amounts 

of measured temperature information expeditiously, something which can be tedious for 

alternative experimental approaches such as strain gages. The actual recorded TSA image (figure 

5.9) contains approximately 40,000 data values of S* associated with the stresses in the plate 

(i.e., 40,000 data values cover the plate). Since an objective of this research is to evaluate 

individual components of stress in the vicinity of the hole, the analysis emphasizes utilizing 

measured thermal data S* which originate in the neighborhood of the hole (figure 5.9). That the 

test plate is symmetrical about the both the x and y axes (figure 5.2) permits averaging the TSA 

data throughout the four quadrants
2
. However, recognizing the typical unreliability of TSA data 

near an edge (figure 5.9), it is convenient to omit using measured data at least two data positions 

(~ 0.96 mm or 0.0378) away from the boundary of the elliptical hole.  

 

 

 

2
The Delta Therm system displays the recorded experimental data, S*, in the form of a matrix 

containing 256 horizontal rows and 256 vertical columns such that each entry/cell represents the 

respective measured TSA value, S*. Corresponding entries/cells are symmetrical about the both 

the x and y-axes when the origin is at the center of the elliptical hole. The recorded temperature 

information was therefore added from all the four quadrants and divided by four to provide 

average TSA data throughout a quadrant. 
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The m = 1703 measured TSA values of S* utilized and the h = 146 traction-free 

conditions on the boundary of the hole (i.e. for a total of m+h = 1849 input values or side 

conditions) were combined to evaluate the k unknown Airy coefficients. The matrix equations 

5.33 and 5.34 can be written as 

      1)(1)( xhmkxxkhm dcA                                         (5.35) 

where matrix [A] includes the m Airy isopachic equations in polar coordinates, r and , such that 

one horizontal expression of the [A] matrix of equation 5.34 exists for each measured input data 

value of S (= S*/K) associated with figure 5.9 (but temperature data averaged about both the 

axes). Matrix [A] also contains h/2 = 73 expressions for each of            imposed at the 

boundary of the elliptical hole. Vector {c} of equation 5.35 contains the k unknown Airy 

coefficients (i.e., bo , co , an , bn , cn , dn  for n = 2, 4,…N). The stress vector {d} of equation 5.35 

therefore contains the traction-free normal and shear stresses at the boundary of the elliptical 

hole as well as measured values of S within the plate near the hole.  

Not unlike most test information, recognizing that the actual measured data often 

incorporates some noise/scatter, it is beneficial to employ significantly more equations (i.e., more 

side conditions) than the number of unknown coefficients, k, i.e., (m+h) > k. The linear least-

squares method is a convenient way to solve the over-determined matrix equation Ac = d of 

equations 5.34 and 5.35. Equation 5.35 was solved using the ‘\’ matrix division operator and 

pseudo inverse ‘pinv’ operator in MATLAB. This operators employs the algorithm for least 

squares and calculates vector {c} by c = A\d or c = pinv*d or c = {[A]
T
[A]}

-1
[a]

T
{d}. 
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5.6 Analysis 

5.6.1 Measured TSA Input Data and the Number of Airy Coefficients 

As discussed in the previous section, a total of 1,849 input values were used to evaluate 

the unknown Airy coefficients for analyzing the elliptically perforated finite-plate of figure 5.2. 

Of these, 1,703 are measured TSA values originating at source locations which are averaged in 

all the four quadrants as shown in figure 5.13, and 146 are the traction-free conditions     

      imposed discretely at 73 locations along the quarter boundary of the elliptical hole, 

figure 5.2. 

 

Fig. 5.13: TSA source locations (m = 1,703) for 1,849 input values (m+h = 1,849). 

Referring to figures 5.9 and 5.13, the distance between the adjacent TSA centers is 

written in the form of pixels i.e., the number of pixels lying between the centers of the adjacent 

source locations. However, when operating with the Delta Vision software for data 

interpretation, each pixel position of figures 5.9 and 5.13 is represented in the form of a 

x 

y 
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cell/entry of a huge matrix consisting of rows and columns. Each cell/entry of the matrix stores 

the respective value of the recorded TSA data S*, as described in sections 5.4.3 and 5.5.  

TSA-recorded information within at least two pixel locations (~ 0.96 mm or 0.038) of an 

edge is usually unreliable. The utilized TSA measured data of figure 5.13 are all at least two 

pixels away from the elliptical boundary. The subsequent analysis will demonstrate that the 

described approach is able to evaluate stresses reliably at the edge of the elliptical hole without 

using any input measured temperatures on, or very near, the edge. Having the 1,703 measured 

isopachic stresses S (= S*/K) plus the discretely imposed traction-free condition on the boundary 

of the hole, one is able to set up the matrix equation Ac = d of equation 5.35. Matrix [A] contains 

m+h = 1,849 side conditions (isopachic expressions along with traction-free conditions) having k 

unknown Airy coefficients for the m = 1,703 TSA recorded values at the locations of figure 5.13 

and h = 146 imposed traction-free condition. Vector {c} contains k Airy coefficients and vector 

{d} is composed of the m = 1,703 TSA values of S at locations in figure 5.13 and the 146 

discretely imposed traction-free condition (at h/2 = 73 locations) associated with the m+h = 

1,849 equations forming the matrix [A]. 

It is important to determine an appropriate number of Airy coefficients, k, to be used for 

m+h = 1,849 input side values. Equations 5.6 through 5.19 involve a summation over n where n 

goes through positive even integers from 2 to N. Evaluating the appropriate number of Airy 

coefficient is important because too few Airy coefficients can produce inaccurate results, while 

too many Airy coefficients can cause the Airy matrix, [A] of equation 5.35 to become unstable or 

even singular due to computer round-off errors. The amount of measured input data needed 

could depend on the number of coefficients, k, i.e., an increase in the number of coefficients can 
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necessitate more experimental values of S*. A prevalent method of assessing an appropriate 

number of coefficients to use employs the condition number, C, of the matrix [A], as an indicator 

of potential matrix singularity. Since matrix [A] (equation 5.35) in this analysis contains many 

zero terms due to absence of coefficients bo, an, and cn in the equation for the isopachic stress S 

(i.e., equations 5.19 and 5.20), it will be shown that this is not a viable way in this situation to 

evaluate the number of coefficients to retains
3
. The alternative techniques employed here to 

evaluate an appropriate number of coefficients in the analyses are based on the RMS (Root Mean 

Square) method and reconstructed images of S.  

Figures 5.14 and 5.15 demonstrate that for a fixed number of input values, the matrix 

instability grows exponentially with increasing number of Airy coefficients. That is because the 

number of zero-terms in the matrix [A] (equation 5.34) is increasing i.e., as the value of 

summation N in equation 5.19 increases, the number of zeros in matrix equation 5.34 increases. 

This tends to increase the instability of the [A] matrix exponentially. This precludes using the 

condition number from providing a value for the number of Airy coefficients to retain. However, 

the RMS (Root Mean Square) method is effective for determining an appropriate number of Airy 

coefficients. It is desired that RMS value be small. After evaluating (experimentally for a selected  

 

 

 

3
The many zeros in matrix [A] are associated with imposing            discretely on the 

edge of the hole. This satiation does not occur when imposing the traction-free condition on the 

edge of the hole analytically. 
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Fig. 5.14: Plot of condition number, C, vs number of coefficients, k, for m+h = 1,849 input 

values (m = 1,703 TSA values) 

 
Fig. 5.15: Plot of Log10(C) vs number of coefficients, k, for m+h = 1,849 input values (m = 

1,703 TSA values) 
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number of coefficients) all the unknown Airy coefficients vector c = A\d or c = pinv*d 

(MATLAB notation), these coefficients are now substituted into the original matrix equation 

give Ac = d, where in general the vector {d} is typically not exactly the same as the input data, 

{d}. The RMS value represents the discrepancy between the calculated isopachic data {d′} and 

thermoelastically measured (plus imposing traction-free conditions at the edge of the hole) {d}, 

and which will vary for each matrix having a different number of coefficients. The RMS (root 

mean square) method involves minimizing the difference of the vector elements of (d′ – d), 

where RMS values are defined by 
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Fig. 5.16: Plot of ‘RMS’ values of (d’-d) vs number of coefficients, k, for m+h = 1,849 input 

values (m = 1,703 TSA values) 

Figure 5.16 illustrates that the RMS values are reasonably consistent for 26 ≤ k ≤ 42. It is 

desirable to use the smallest number of coefficients that gives sufficient accuracy. Since adding 

more coefficients than necessary could necessitate more measured input data, the RMS values 

decrease little beyond k = 26, and k > 26 would involve more extend the least-squares 

calculation and increase computation time, the RMS results indicate k = 26 would be realistic. 

Subsequent reconstructed S images support using k = 26. 

Normalized contour plots of the reconstructed S/σo (= (S*/K)/σo) (determined using the 

now evaluated Airy coefficients and equation 5.19) were also prepared for various number of 

coefficients and compared with the measured experimental information, figures 5.17 through 

5.20. The normalized images of figure 5.17 of the response in the neighborhood of the elliptical 

hole were obtained using MATLAB by importing the matrix of recorded temperature data into 



176 
 

MATLAB. Figures 5.16 through 5.19 (also prepared utilizing MATLAB) support the selection 

of k = 26 as an appropriate number of coefficients to use. The normalized contour plot of figure 

5.19 was obtained based on the TSA-determined values of the 26 Airy coefficients and equation 

5.19. All the values of such plots of S and S/σ0 (height matrices in the Contourf function with 

corresponding x- and y-coordinates) have been normalized with respect to the far field stress of 

σo = 9.19 MPa (1333.33 psi), where σo is based on the load of 4448.2 N (1000 lbs) over the gross 

area 0.00635 m (0.25”) times 0.0762 m (3”). Figures 5.17, 5.19 and 5.20 utilize the same color 

scale (color bar) and figures 5.18, 5.19 and 5.20 utilize the same colors scheme (i.e., have 

different color bar but utilize the same colors) but different color scale. While comparing the 

images of figures 5.17 through 5.19 further supports the present use of k = 26, the unreliability 

of the recorded TSA information on and near the edge of the hole (particularly as θ and α of 

figure 5.1 approach zero) is apparent in images of figures 5.17 and 5.18. Equations 5.6 through 

5.18 involve a summation over n, where n goes through positive even integers from 2 to N, and 

the total number of coefficients is given by k = 2N + 2. Thus, for k = 26 coefficients, the 

terminating index N = 12. 
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Fig. 5.17: MATLAB processed Experimental TSA input data S/σ0 

 
 

 
Fig. 5.18: MATLAB processed Experimental TSA input data S/σ0 

 

 
Fig. 5.19: Reconstructed S/σ0 for m+h = 1,849, m = 1,703 and k = 26 
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       (a)        (b) 

 
(c) 

Fig. 5.20: Reconstructed S/σ0 for m+h = 1,849, m = 1,703 and k = 18, 22 and 30 for (a), (b) and 

(c), respectively 

Using least-squares with m+h = 1,849 equations to evaluate the 26 Airy coefficients 

enables reliable results to be obtained even if some scatter is present in the measured input TSA 

data (isopachic stress, S values) after having been averaged throughout the four quadrants of the 

plate. Least-squares minimizes the cumulative error of the system according to the matrix 

algebra and provides some smoothing, such that no additional filtering of TSA-measured data S* 

is needed prior to evaluating the coefficients and hence the stresses. The thesis previously 

mentioned the unreliability of recorded TSA data on and near edges. Comparing figures 5.17 and 

5.19 demonstrates such lack of reliability, particularly at the high tensile stressed regions at the 

right end of the hole of these images. It is worth nothing from figures 5.17 through 5.20, that 

while TSA input on and very near the edge of the hole was not used because of stated 

unreliability, the present hybrid technique provides reliable edge stresses when reconstructed 

using the now known Airy coefficients. This current approach of combining measured 
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temperatures with an Airy stress function (in real variables), and also imposing traction-free 

conditions           on the edge of a hole in forming the reconstructed images of figures 

5.19 and 5.20, demonstrates the ability to overcome this inherent challenge of unreliable edge 

data while avoiding having to use stress function in complex form [15, 16]. 

Figures 5.17 through 5.20 are plotted in MATLAB using ‘contourf ( )’ function. This 

MATLAB function requires four input arguments in the form of matrices, i.e. a 2-D form of the 

matrix to be plotted (also called the height in MATLAB), two vectors which contain the limits of 

the x and y co-ordinates to be plotted (i.e. the region of the plate to be mapped for contours) and 

a vector which contains the intervals at which contours are to be generated. This fourth argument 

can be optional and depends upon the user. If using the original contour function, the color 

scheme selected in MATLAB for a contour plot is done automatically by MATLAB. In the case 

of figures 5.17 through 5.20, S/σo is the height matrix, {x} and {y} are two vectors which contain 

the corresponding ‘x’ and ’y’ co-ordinates associated with each value of the isopachic stress, S*. 

However, I modified the default scheme and wrote my own code in MATLAB for preparing 

contour plots. This scheme maps all the contour data points and has a user-controlled color 

scheme. The motivation behind writing my own code includes the following: (i) One has three 

column matrices corresponding to x, y and S/σo but the ‘contourf ( )’ function routine requires the 

S/σo to be a two-dimensional matrix, and the respective x and y matrices information to be of the 

same dimensions (two-dimensional matrix corresponding to each value of S/σo), which 

eliminates the mapping of S/σo with corresponding x and y, (ii) The user can employ a fine mesh 

(grid) along the x and y axes to obtain fine continuous contours, (iii) It gives me the ability to 
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adjust the color scheme such that (unlike MATLAB’s default program) the range covered by 

individual contours is now operator controlled. 
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5.6.2 Finite Element Analysis  

The TSA results are compared with those predicted from finite element analysis (FEA). 

The aluminum (E = 68.95 GPa = 10 x 10
6
 psi and Poisson’s ratio ν = 0.33) plate described in 

section 5.2 was modeled using ANSYS. Isoparametric elements (ANSYS element type: Plane-

82) which have 8 nodes per element i.e., four corner nodes and four mid nodes per element, were 

employed. A very fine mesh was used in the neighborhood of the elliptical hole to ensure 

enhance accuracy as shown in figure 5.21. The coordinate values are given at all the eight nodes 

per element but the stresses are obtained only at the corner nodes i.e., four nodes per element. 

Therefore after refining the mesh near the elliptical hole, only the corner nodes for every element 

are selected manually. The mesh covering the entire one quarter of the plate of figure 5.2 utilizes 

5175 elements and 15,750 nodes. The mesh had been refined until the ANSYS results did not 

vary more than 0.2% on the periphery of the hole. A far field stress of 9.19 MPa (1333.33 psi) 

was applied at the ends as shown in figure 5.21. 
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Fig. 5.21: Finite element model for analyzing the finite plate having an elliptical hole 

Figure 5.21 shows the finite element model of the elliptically-perforated plate having the 

coordinate origin at the center of the hole. Plate geometry and loading are symmetrical about 

both the x- and y-axes. As shown in figure 5.21, the plate is subjected to an applied far-field 

stress of 9.19 MPa (1333.33 psi), based on a load of 1000 pound and plate width and thickness of 

3 and 0.25, respectively. 
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5.6.3 Results 

After evaluating all the unknown Airy coefficients (bo , co , an , bn , cn , dn  for n = 2, 4, 

6.…N = 12) from the measured data, S*, at the source locations shown in figure 5.13 along with 

the h = 146 traction-free conditions on the boundary of the elliptical hole of figure 5.2, the 

individual components of stress were obtained from equations 5.7 through 5.32. Finite element 

results from the commercial ANSYS software are compared with those from TSA. Normalized 

contour plots are illustrated, stresses in elliptical coordinates (               ) are plotted 

around the boundary of the elliptical hole, those in polar coordinates (σθθ, σrr and σrθ) were 

evaluated and normalized with respect to the far field stress, σo, and are plotted on the edge of the 

hole and along ellipses (based on various major and minor axes combinations) away from the 

hole, and the normalized Cartesian components of stress σθθ = σyy and σrr = σxx, are plotted along 

line AB of figure 5.2. The normalizing stress, σ0 = 9.19 MPa (1333.33 psi) is based on the 

applied tensile load, F, divided by the gross area (i.e. away from the region of the hole), figure 

5.2.  

Applied load range (F) = 4448.2 N (1000lb) 

Cross-Sectional Area (A) = Width (W) x Thickness (t) 

      = 76.2 x 6.35 = 483.87 mm
2
 (0.75 in

2
) 

 𝑜   
   8  

 83 87
 9  9 𝑀𝑃    333 33 𝑝    

Figures 5.22 through 5.24 contain contour plots of the normalized Cartesian components 

of stress using the TSA (and imposed traction-free stresses on the edge of the hole) evaluated 

coefficients and from ANSYS. In each of these individual cases the experimental and ANSYS 
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results utilizes the same color scheme. The x and y axes of figures 5.22 through 5.24 are 

normalized by a = 19.05 mm = 0.75 (half of the major axis of the elliptical hole), figure 5.2. 

 

 
(a)      (b) 

Fig. 5.22: Contour plot of σxx/σ0 from TSA (a) and ANSYS (b) 

 

 
(a)     (b) 

Fig. 5.23: Contour plot of σyy/σ0 from TSA (a) and ANSYS (b) 

 

 
(a)     (b) 

Fig. 5.24: Contour plot of σxy/σ0 from TSA (a) and ANSYS (b) 
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Angle θ of figures 5.25 through 5.34 is measured counter-clockwise from the positive x-

axis, and the radial coordinate, r, is measured here from the center of the elliptical hole (x = y = 

0) of figure 5.2 (also see figure 5.1 and 5A.3 of Appendix A5). The actual in-plane dimensions 

associated with figures 5.35 and 5.36 are plotted normalized with respect to the radius a = 19.05 

mm = 0.75”. Note that for 0 ≤ θ < 90o
, σθθ and     differ slightly from each other on the edge of 

the hole, figures 5.25 and 5.26. Stress σθθ =     at θ = 0 since θ = α at θ = 0. However, θ and α are 

measured from different origins and hence their magnitudes are not identical when θ = 90
o
, 

figure 5.1. The agreement between the TSA-based and ANSYS predicted results of figures 5.22 

through 5.32, 5.35 and 5.36 is very good. Although           were imposed only discretely 

on the edge of the hole, figures 5.33 and 5.34 illustrate this prevails for all 0 ≤ θ ≤ 90
o
. 

The TSA-evaluated tensile stress concentration factor of 6.14 from image figure 5.25 

compares with 6.24 from reference [26]. 
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Fig. 5.25: Plot of hoop stress    /σ0 on the boundary of the hole (2a= 38.10 mm (1.5”), 2b = 

19.05 mm (0.75”)) from ANSYS and TSA (m+h = 1,849 input values, k = 26 coefficients and m 

= 1,703 TSA values) 

 

 
Fig. 5.26: Plot of σθθ/σ0 on the boundary of the hole (2a= 38.10 mm (1.5”), 2b = 19.05 mm 

(0.75”)) from ANSYS and TSA (m+h = 1,849 input values k = 26 coefficients and m = 1,703 

TSA values) 
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Fig. 5.27: Plot of σθθ/σ0 along elliptical curve defined by 2a= 40.64 mm (1.6”) and 2b = 20.32 

mm (0.8”) from ANSYS and TSA (m+h = 1,849 input values, k = 26 coefficients and m = 1,703 

TSA values) 

 

 
Fig. 5.28: Plot of σrr/σ0 along elliptical curve defined by 2a= 40.64 mm (1.6”) and 2b = 20.32 mm 

(0.8”) from ANSYS and TSA (m+h = 1,849 input values, k = 26 coefficients and m = 1,703 

TSA values) 



188 
 

 
Fig. 5.29: Plot of σrθ/σ0 along elliptical curve defined by 2a= 40.64 mm (1.6”) and 2b = 20.32 

mm (0.8”) from ANSYS and TSA (m+h = 1,849 input values, k = 26 coefficients and m = 1,703 

TSA values) 

 

 
Fig. 5.30: Plot of σθθ/σ0 along elliptical curve defined by 2a= 45.72 mm (1.8”) and 2b = 22.86 

mm (0.9”) from ANSYS and TSA (m+h = 1,849 input values, k = 26 coefficients and m = 1,703 

TSA values) 
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Fig. 5.31: Plot of σθθ/σ0 along elliptical curve defined by 2a= 50.8 mm (2”) and 2b = 25.4 mm 

(1”) from ANSYS and TSA (m+h = 1,849 input values, k = 26 coefficients and m = 1,703 TSA 

values) 

 

 
Fig. 5.32: Plot of σθθ/σ0 along elliptical curve defined by 2a= 60.96 mm (2.4”) and 2b = 30.48 

mm (1.2”) from ANSYS and TSA (m+h = 1,849 input values, k = 26 coefficients and m = 1,703 

TSA values) 
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Fig. 5.33: Plot of normal stress    /σ0 on the boundary of the hole (2a= 38.10 mm (1.5”) and 2b = 

19.05 mm (0.75”)) from ANSYS and TSA (m+h = 1,849 input values, k = 26 coefficients and m 

= 1,703 TSA values) 

 

 
Fig. 5.34: Plot of shear stress    /σ0 on the boundary of the hole (2a= 38.10 mm (1.5”) and 2b = 

19.05 mm (0.75”)) from ANSYS and TSA (m+h = 1,849 input values, k = 26 coefficients and m 

= 1,703 TSA values) 
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Fig. 5.35: Plot of σxx/σ0 along AB (figure 5.2) from ANSYS and TSA (m+h = 1,849 input values, 

k = 26 coefficients and m = 1,703 TSA values) 

 

 
Fig. 5.36: Plot of σyy/σ0 along AB (figure 5.2) from ANSYS and TSA (m+h = 1,849 input values, 

k = 26 coefficients and m = 1,703 TSA values) 
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5.7 Strain Gage Analysis: 

Commercial strain gages were implemented with which to also check TSA results. 

Electrical resistance strain gages are probably the most widely used experimental technique 

available. Strain gages are fairly inexpensive, have good sensitivity, a wide range of associated 

instrumentation is available, they can be utilized to monitor steady or transient phenomena, 

determine residual stresses, measure non-linear strain/stress response and are applicable for 

impact situations. However, the method requires some surface preparation and gage mounting, it 

can be arduous for a large number of gage locations, does not (by itself) provide full-field data 

and gage locations can be critical. Strain gages measure the average strain over the gage length 

and might not capture the largest value. This can be of concern in highly localized stress 

concentration regions having sharp strain gradients, implying the need to use small gages in such 

locations. 

The present gages were mounted using standard strain gage procedures suggested by 

Vishay Micro-Measurements. The recommended conditioners and neutralizers were used on the 

aluminum before mounting the gages. M-Bond 200 adhesive (marketed by Vishay Micro-

Measurements) was utilized in conjunction with a catalyst (200 Catalyst-C, recommended for 

use with M-Bond adhesive) for better adhesion, quicker drying rate and superior long-time 

stability. A protective air drying polyurethane coating, M-Coat, was applied over the gages (and 

their wiring) after the adhesive had dried. This was done to prevent any electrical shorting due to 

the subsequently applied Krylon Ultra-Flat black paint. Since most of the strain gages are self-

temperature compensating, and gages were mounted and the testing conducted at room 

temperature, no dummy temperature compensating gages were employed. 
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To monitor and minimize any possible out-of-plane bending during loading, two single-

element Micro-Measurements strain gages (EA-13-250BG-120), each having gage resistance of 

120Ω each and gage factor of 2.09 ± 0.5%, were mounted on the specimen (one gage on each 

face), figures 5.37 through 5.39. A portion of a Micro-Measurements strain strip gage (EA-06-

031PJ-120) consisting of eight strain gages (measure longitudinal εyy) on a common backing, 

with a gage factor of 2.04 ± 1% and a gage resistance of 120.0 ± 0.5% Ω, was mounted along 

line AB of figure 5.2, see figures 5.38, 5.40, 5.41 and 5.42
4
. These eight gages came from an 

original 10-gage strip gage. Individual elements of the strip-gage have a common space between 

centers of 2.03 mm (0.08 inch). The strip-gage was placed symmetrically along lone AB (of 

figure 5.2) of the x-axis with the respective gage elements in the orthogonal (specimen loading) 

direction. Figures 5.43 and 5.44 are photographs of the more distant individual gages mounted 

on the front and back of the perforated plate. The calibration specimen described in section 5.4.4 

also contained four Micro-Measurements strain gages (EA-13-125-AD-120), two on the front 

and two on the back, to monitor any possible misalignment and minimize out-of-plane bending 

when loaded (figure 5.45). Figure 5.46 is an overview of the test set-up including the strain 

gages, associated wiring and instrumentation. Figures 5.46 and 5.47 show the employed 16-

channel variable but controllable excitation, strain gage conditioner. 

 

 

 

4
Such commercial strip gages typically include 10 individual gage elements. However, the 

distance along line AB of figure 5.2 was sufficient for only eight gages (figure 5.38) so two 

individual gages were removed (cut) from the original strip. 
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Fig. 5.37: Specimen FRONT with mounted strain gages (coated with M-coat) and then sprayed 

with Krylon Ultra-Flat black paint 

 

 
Fig. 5.38: Specimen FRONT with mounted strain gages 

 

 
Fig. 5.39: Specimen BACK with mounted strain gages 
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Fig. 5.40: Strip gage adjacent to elliptical hole along line AB of figure 5.2 (also seen in figure 

5.38) 

 
Fig. 5.41: Strip gage mounted along line AB of figure 5.2 (also seen in figures 5.38 and 5.40) 
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Fig. 5.42: Strip gage and strain gage on the front 

 

 
Fig. 5.43: Distant longitudinal strain gage on the front used to check for any out-of-plane 

bending (also seen in figure 5.42) 
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Fig. 5.44: Distant longitudinal strain gage on the back used to check for any out-of-plane 

bending (also seen in figure 5.42) 

 

 
Fig. 5.45: Calibration specimen BACK, having mounted horizontal and vertical strain gages 

TSA-based strains were evaluated from the TSA measured stresses and Hooke’s law (  = 

68.95 GPa = 10 x 10
6
 psi and Poisson’s ratio ν = 0.33). Figure 5.46 shows the test arrangement 

for recording the strain gage data. This photograph includes the overall testing of the 

hydraulically-loaded perforated plate, and associated strain gage cables and instrumentation. A 

close-up of the strain gage conditioning unit is seen in figure 5.47.  
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Fig. 5.46: Overview of the testing setup, including the strain gage switching, oscilloscope and 

balancing equipment 

  

 
Fig. 5.47: 16 Channel, variable excitation strain gage conditioner 
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Figure 5.48 compares the strains (static equivalent specimen load of F = 4,448.22 N = 

1,000lb) along the line AB extending from the end of the elliptical hole (figure 5.2) obtained 

from Thermoelastic Stress Analysis with those from finite element analysis (ANSYS) and strain 

gages. Figure 5.49 contains strain-gage recorded strains along AB for various levels of plate 

loading. These later results demonstrate the response remains linear with load. All strain-gage 

results were recorded under static loading. Note that the element of the strip gage furthest from 

the hole is beyond x/a = 1.7 in figure 5.48. 

 
Fig. 5.48: Strain εyy along AB of figure 5.2 from TSA, ANSYS and strain gages for m+h = 1,849 

input values, m = 1,703 TSA values, k = 26 and F = 4448.2 N (1000 lbs) 
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Fig. 5.49: Strain εyy obtained from strain gages along AB for different loads 
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5.8 Checking Equilibrium 

It is information to integrate the TSA-determined stress in the direction of loading, σyy, 

across the horizontal section of the vertically loaded plate of figure 5.2 to see how well load 

equilibrium is satisfied. Summing σyy across twice the area associated with line AB of figure 5.2, 

i.e.,  ∫        
 

 
 (where t is the thickness), gives a load of 4409.1 N (991.2 lbs). This agrees 

with the applied load of 4448 N (1000 lbs) within one percent. The TSA-based equilibrium 

check along line AB at the elliptical hole is based on the 26 Airy coefficients and the m+h = 

1,849 side conditions associated with the hole.  

The equilibrium analysis along line AB is relatively simple in that σyy = σθθ at θ = 0
o
 

readily provides σyy as an analytic function along the line (series involving the 26 Airy 

coefficients) and which could be easily integrate analytically. However, for the transverse line 

AB extending from the hole of figure 5.2, stress σyy was evaluated instead at 31 discrete locations 

along the line from TSA determined values of σyy = σθθ at these discrete locations and the area 

under the σyy curve integrated using a MATLAB code.  

The TSA analysis does not involve knowing the value of the applied load, F. Rather than 

integrating the longitudinal stress across the plate as an equilibrium check, one could use such an 

action to make this into an inverse problem, i.e., compute the external loads from the 

experimentally-determined longitudinal stresses. Furthermore, using the known magnitude of the 

applied load, F, one could conceivably consider the thermomechanical coefficient, K, as an 

unknown (initially) and evaluate it (perhaps iteratively) by summing the longitudinal stress 

distribution across some transverse plane and equating that value to F/t.  
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5.9 Effect of Varying Pixel Distance from the Edge of the Hole 

To provide further assessment of the results, the input data was selected by moving from 

one pixel to four pixels away from the boundary. The pixel size was found to be 0.48 mm 

(0.0189”). Figure 5.50 shows the comparison of hoop stress    /σ0 on the boundary of the hole 

by moving 1 pixel to 4 pixels away from the boundary of the hole. For convenience, in this 

analysis the number of coefficients and the input data were kept the same. From figure 5.50, it 

can be seen that the pixel action has less of an effect on the results.  

 
Fig. 5.50: Comparison plot of hoop stress    /σ0 on the boundary of the hole (2a= 38.10 mm 

(1.5”), 2b = 19.05 mm (0.75”)) from ANSYS and TSA varying from 1 pixel to 4 pixels 
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5.10 Summary, Discussion and Conclusions 

Thermoelasticity is a full-field, non-contacting technique capable of determining 

isopachic stress information of actual structures in their operating environments with a resolution 

comparable to that of strain gages. Contemporary commercial hardware and software enable 

TSA results to be available within minutes. This contrasts with more labor-intensive and time-

consuming techniques such as moiré, holography, digital image correlation, speckle or strain 

gages. Since TSA directly gives the stresses, unlike displacement-based methods, it does not 

involve differentiating measured information. Combining a stress function with the recorded 

temperature information, plus perhaps some local boundary conditions, makes this general TSA 

approach amenable to a variety of engineering problems, thereby enhancing TSA’s practical 

applicability. The demonstrated use of real variables (in polar coordinates) to evaluate the 

stresses in a finite plate containing an elliptical hole is particularly noteworthy. The TSA-based 

results agree with those from FEM and commercial strain gages. The integrated longitudinal 

TSA-based stress, σyy, satisfies load equilibrium. 

Stress-induced temperature information is combined with a series representation of the 

Airy stress function and the local traction-free conditions at the boundary of the elliptical hole to 

determine the individual components of stress on and in the neighborhood of the hole in a finite 

tensile plate without knowing the constitutive properties, or far-field geometry or loading.  

Measured TSA data were averaged throughout all four quadrants of the plate and the coordinate 

origin is at the center of the hole. Employing more input/side conditions (including measured 

TSA input values) unknown coefficients removing any experimental noise/scatter and thereby 

smoothes the results. Since recorded TSA data are unreliable at edges, the described scheme 
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employs temperature information only beyond at least two pixel locations from the boundary of 

the hole. Nevertheless, and in addition to giving individual components of stress, the current 

technique provides accurate stress values at the boundary of the elliptical hole. Force equilibrium 

is also satisfied along the line AB of figure 5.2. Perhaps the most advantageous feature of the 

present approach is its ability to use a stress function in real (rather than complex) variables for 

other than a circular cut-out. Stress functions formulated in terms of complex variables are 

mathematically more cumbersome. While the traction-free conditions at the hole are applied here 

discretely rather the analytically, the present approach also enjoys the advantage over the 

complex-variable technique of references [15, 19] in that the latter necessitates an iterative 

application for implementation around an entire hole. 

Although demonstrated here successfully for a symmetrical uniaxially-loaded central 

elliptical hole in a finite plate, the present general approach offers the potential for application to 

more irregular-shaped discontinuities, as well as fairly arbitrary external geometry and loading.  

The relatively simple geometry of an elliptical cutout conveniently enables one to discretely 

impose the normal and shear stress-free conditions on the boundary of the hole. More 

complicated-shaped geometric discontinuities might require a more general form of the stress 

function, or benefit from a different (e. g., curvilinear, bipolar) coordinate system. As illustrated 

in Appendix A5, once the stress components have been obtained (all coefficients evaluated) in 

polar coordinates, they can be transformed to most other coordinate systems. 

To my knowledge, this represents the first time measured temperature information has 

been combined with real variables to determine the stresses on and in the neighborhood of the 

edge of the geometric discontinuity other than circular in shape. The author was unaware of any 



205 
 

previous application of experimental methods employing polar coordinates to evaluate the 

stresses associated with holes or notches which are not round (circular). The present application 

of polar coordinates to handle an elliptical cut-out in a finite component is also noteworthy since 

a general form of the Airy stress function is available in polar coordinates. In fact, relatively little 

stress information is available for elliptical cut-outs in members [15, 20 – 26, 28, 29]. Most 

existing solutions are restricted to finite geometries, FEM or BEM techniques to specific cases or 

use complex variables and mapping techniques. Unlike the present TSA approach purely 

numerical and/or strictly analytical methods require accurately knowing the far-field boundary 

conditions. The present availability of the stresses in terms of polar coordinates is convenient if 

there were neighboring geometric discontinuities so that stresses associated with the separate 

discontinuities interacted with each other. 

The stress/strain gradients are quite steep at location A (small radius of curvature, figure 

5.2) on the edge of the hole, figures 5.19, 5.20, 5.25, 5.26 and 5.48. The magnitude of the TSA 

results tends to be slightly less than the ANSYS prediction at such location. Although not done 

so in that TSA results are already very acceptable, future TSA analyses might consider 

incrementally increasing the number of location at which one imposes          on the edge 

of the cut-out to see if this affects the results. The small effective radius of the hole at point A 

essentially precluded locating a strain gage on the curved surface at this location. The present 

general TSA approach is expected to be applicable to elliptical holes in more complicated 

components, under more complicated loading, as well as more complicated shaped cut-outs 

(holes, notches). The technique is not restricted to cases having the current symmetry. 
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The major contribution of this chapter is the demonstrated ability to thermoelastically 

determine the independent components of stress, including on the edge of the hole, in 

components other than circular cut-outs using real (polar) coordinates. 
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Chapter 6 : Investigation of Inverse Problem Using 

Thermoelastic Stress Analysis 

6.1 Introduction 

Mechanical fasteners such as bolted, nailed, doweled or riveted connections are a 

prevalent means of transferring load among individual members of engineering structures or 

machinery. Applications of mechanical joints include those to pressure vessels, buildings, 

towers, bridges, automobiles, motor cycles, bicycles, motor scooters, airplanes, space vehicles, 

machine tools and home appliances, figure 6.1. However, mechanical fasteners are often the  

 

 
Fig. 6.1: Bolted joint utilized in the support structure of a bridge [64] 
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source of structural failures and have received considerable prior attention. References [1, 20, 23, 

39 - 63, 65 - 99] are representative of such studies, including the effects of fastener clearance. 

Determination of the contact stresses between the bolts and a connecting plate is among the 

challenges of this type of problem. Cases where the contact boundary conditions are not known 

are a type of inverse problem in that the unknown boundary conditions, and hence the stresses 

throughout the component, are sometimes evaluated from interior measured information. Not 

knowing the complete boundary conditions can render the ability to obtain reliable purely 

analytical or numerical solutions of such problems essentially impossible, thereby motivating 

experimental approaches.  

Field-assembled mechanical fasteners often possess a reasonable amount of clearance 

between the bolts and the holes. Bolted wood or steel structures typically (but not always [95]) 

utilize holes which are 1/16 inch (1.6 mm) oversize [99 and 100]. This can contrast with the 

clearances in the micron range for the thousands of mechanical fasteners employed in a 

commercial aircraft or other aerospace vehicles, although the fastener diameters of the latter are 

often considerably smaller than with earth-bound structures [61, 89, 90, 93 and 94]. Reference 

[98] demonstrates the serious stress consequences due to clearance in pin-loaded photoelastic 

and aluminum plates, particularly as the plate end-distance decreases. The significant influence 

of fastener clearance is attributed to the sharp load-induced local changes in curvature of an 

originally round hole. Compared to snugly (neat) fitting connections, bolt-hole clearance tends to 

reduce the interface contact area and the fastener stiffness, increase the maximum normal/radial 

bolt-hole contact stress and hence increase early damage, and can influence ultimate strength. 

Inadequate clearance tolerances among separate fasteners of a multi-bolted connection can cause 
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individual holes to load up non-uniformly and/or other than desired/anticipated, as well as be 

problematic fatigue-wise under cyclic loading.  

Influenced by Bickley’s 1928 paper [65], it is not uncommon to assume that the normal 

stress at a bolt/pin-hole interface obeys a cosine distribution, this stress being a maximum at the 

point of initial pin-hole contact and decreasing to zero at ~90
o
 from the position of initial pin-

hole contact. The cosine distribution of the contact interface normal stress in a pin-loaded plate is 

of the same form as the radial stress beneath a concentrated load applied to the edge of a semi-

infinite plate (Flamant solution), page 36 of [98]. Bickley’s analysis, which is for a rigid pin in 

an infinite tensile plate, also has zero shear/frictional stress throughout the pin-hole interface.  

Using photoelasticity, Hyer [77] showed that the radial interface stress approximated a 

cosine distribution for a snugly-fitting pin in a finite-width quasi-isotropic composite plate, but 

that stress did not become zero until at least 100
o
 from the point of initial pin-hole contact. The 

only known previous applications of TSA associated with contact situations appear to be those of 

[53, 54, 62, 101 and 102]. While individual component of stress were not determined on the 

boundary of the hole, Dulieu-Smith and Fulton [54] utilized TSA to evaluate the distribution of 

the isopachic stress S = (σrr + σθθ) around the hole of a snugly-fitting pin-loaded connector.  

Recognizing that mechanical connectors often have little bolt-hole clearance, and the 

superior performance thereof, this chapter applies TSA to determine the stresses in snugly fitting 

fasteners. Under such conditions one often assumes a cosine distribution of the normal stress at 

the bolt-hole interface and, irrespective of whether or not there is any bolt-hole clearance, it is 

not uncommon to simplify the problem by considering the pin to be rigid and ignoring any 
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contact shear/friction stress between the bolt and hole, e.g., [70, 71, 73-76]. If there is pin-hole 

clearance there are high radial stresses (due to the fact that there is less contact between the pin 

and plate) in the contact region when compared to no clearance. A pinned, finite aluminum joint 

is stress analyzed here by synergizing measured temperature data with an Airy stress function 

and available boundary conditions. An over-determined least-squares routine is implemented to 

evaluate the unknown Airy coefficients of the stress function and thereby evaluate the individual 

components of stress at and in the neighborhood of the edge of the loaded hole. The TSA results 

are supported by those from force equilibrium and FEM. The author is unaware of any 

previously published situations where individual stresses have been evaluated on and away from 

the pin-hole contact surface in a pinned connection using TSA. 

Two cases will be discussed in this chapter, the first involves a pin which has a circular 

cross section, and the second where the pin is non-circular. The hole is round in both cases. 

Geometric details will be discussed in section 6.3. The first case will be referred to as plate with 

circular pin and the second as plate with non-circular pin. 

All associated 2D and 3D CAD drawings were modeled using SOLIDWORKS design 

software. Unless mentioned otherwise, all dimensions and units shown on the CAD drawings are 

in inches, which are compatible with the initial design of the specimen, pins, fixture, and applied 

cyclic loads. English units are given in SI units based on one inch = 25.4 mm and one pound = 

4.448 Newtons.  
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6.2 Relevant Stress Function and Stress Components 

The general method employed here uses an Airy stress function along with recorded TSA 

data near the contact area in the pinned connections and discretely imposes the traction-free 

boundary conditions to determine the complete state of stress within a loaded body. Traction-free 

conditions were imposed on the unloaded portion of the pin-loaded hole and on the external 

edges of the aluminum plate. For a two-dimensional continuous medium, a classical plane-stress 

elasto-static stress analysis involves solving the biharmonic equation, 
4 = 0, for the stress 

function  and deriving the individual stresses from derivative of . The solution to the 

biharmonic equation is given by Michell solution [6] as follows: 

 

   

   

'
' ' '

' '

n ( n ) n ( n )

n n n n

n , , ...

' n

n n

a b ln r c r d r ln r A B ln r C r D r ln r

c c
a r b r ln r d r sin a r b r ln r d r cos

r r

A r B r ln r sin A r B r ln r cos

a r b r c r d r sin n

a r b

 

 

   




   



       

  
         
   

   

   

 



2 2 2 2

0 0 0 0 0 0 0 0

3 31 1
1 1 1 1 1 1

1 1 1 1

2 2

2 3 4

   ' ( n ) ' n ' ( n )

n n

n , , ...

r c r d r cos n


   



  2 2

2 3 4

      (6.1) 

The relevant Airy stress function is evaluated based on the given geometry and loading. 

For the pin loaded connection having no conditions of regularity either at the origin or at infinity, 

the generalized Airy stress function of equation 6.1 is simplified here which satisfies the 

boundary conditions, equilibrium and compatibility [1, 6]: 
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Fig. 6.2: Plate loaded with a circular bolt 
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The loaded connection plate can only be in equilibrium if the resultant force which acts 

on its external boundary is balanced by force on the inner boundary of the plate, figure 6.2. 

Coefficients A1 and A1’ of equation 6.2 are related to the resultant forces acting on the inner 

closed contour. Also b1 and b1' must be included for single valued displacements if the A1 and A1' 

terms are present. Since the pinned connections are symmetric about the vertical x-axis, the sine 

terms and Ao of equation 6.2 will be omitted.  However, the problem is not symmetric about the 

y-axis so both even and odd powers of n must be retained. Imposing these restrictions, the polar 

components of individual stresses are given throughout the plate by equations 6.2 through 6.5. 
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Differentiating the stress function as equations 6.3 through 6.5, the polar components of 

individual stresses throughout the plate of the pinned connection become [1]: 
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Along the vertical line of symmetry the shear stress is zero. In equation 6.8, all the terms 

are a function of θ except Ao, therefore Ao is equal to zero. Therefore equation 6.8 becomes: 
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Values of the stresses of equations 6.6 through 6.8 require their Airy coefficients be 

evaluated. Moreover, in practiced one can only retain a finite number of coefficients. Equations 

6.6 through 6.8 involve the material’s Poisson’s ratio, ν, and Rx. These are present due to the fact 

that the mechanical connection of figure 6.1 has non self-equilibrating internal (edge of the hole) 

and external boundaries. Quantity Rx (= P/t) is the resultant force per unit thickness in the 

vertical x-direction of the stress distribution around an interior boundary about the origin. From 

equations 6.6 and 6.7, the isopachic stress becomes: 
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Based on the coordinates of figure 6.2, equations 6.11 through 6.13 are the Cartesian 

components of stress which are derived from the polar components of stress and transformation 

matrix.  
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The individual components of stresses (be they in polar or Cartesian coordinates) involve 

the same unknown coefficients as in the final relevant Airy’s stress function, equation 6.2. The 

coefficient a0 of equation 6.2 disappears in the stress expressions of equations 6.6 through 6.13 

due to differentiation of equation 6.2. Moreover, the equations for Cartesian and polar 

components of stress involve coefficients bo, c1', an' or cn' which are unfortunately not contained 

in the equation of S of equation 6.10. Therefore the individual stress components cannot be 

derived from thermoelastic data alone. However, if one could find any non-contact area between 

the pin and the hole, the traction-free conditions of rr = 0 and rθ = 0 can be imposed discretely 

on that region of the edge of the hole. Therefore to determine the individual stresses from an 

Airy stress function, these coefficients are evaluated experimentally, in this case from measured 

TSA data along with discretely imposing the boundary condition along the un-contact region 

between the pin and the hole. Although not necessary for evaluating stresses on and near the 

edge of the hole, far-field traction-free conditions were also imposed. 
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6.3 Test Configurations 

6.3.1 Considering two different Test Configurations  

Figure 6.3 represents the first approach which involved a setup symmetric about the 

vertical x-axis.  

 
Fig. 6.3: Initial setup 3D CAD model 

This arrangement involved two 6061-T6 aluminum specimens (elastic modulus, E = 

68.95 GPa (10 x 10
6
 psi), Poisson’s ratio, ν = 0.33, ultimate strength = 275 to 311 MPa (40 to 45 

ksi) and yield strength = 241 to 275 MPa = 35 to 40 ksi) each containing two equal size circular 

holes. The idea behind this setup was to perform two experiments at the same time and avoid any 

bending stresses. The two experiments differ in that the top and bottom holes would be loaded 

through different size pins so as to have different clearance between the top and bottom holes of 

each specimen and its pin. Each pin contacted both samples.  
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This arrangement proved difficult in that it was challenging to assemble the various 

separate components together. Due to the tight fit between the two pins and the two specimens 

(essentially no pin/plate clearance), it was hard to assemble the separate components together, 

not to mention the difficulty in correctly aligning the two samples on opposite sides of the end 

loading fixtures. As the diameter of the tight pin was virtually identical to that of its hole in the 

plate, the pin was shrunk using liquid nitrogen and was then inserted into the plate. The liquid 

nitrogen destroyed the black paint (used for TSA) on the specimen. The essentially total lack of 

pin/hole clearance also did not provide any clearance (necessary for imposing traction-free 

boundary conditions when doing the stress analysis later). Moreover, it was necessary to operate 

the MTS machine (Rm. 1341E EH) used for this experiment in displacement-control, not load-

control, which compounded the difficulties. Figure 6.4 is a photograph of the experiment for this 

initial specimen configuration and test setup. Interestingly, loading the clearance-less end of the 

specimen arrangement of figures 6.3 and 6.4 introduced us to the topic of ‘friction welding’. 
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Fig. 6.4: Initial setup experiment 

Figure 6.5 is shows the raw TSA data recorded from this setup of figures 6.3 and 6.4. 

The image is not overly sharp, but the TSA image is fairly symmetrical about the vertical x-axis. 

However, as previously mentioned there was insufficient clearance between the pin and hole for 

the traction-free boundary conditions to be imposed, by which to determine the unknown Airy 

coefficients. 
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Fig. 6.5: Raw TSA data from initial setup experiment 

After encountering the above experimental difficulties, multiple test setups were analyzed 

using FEA/CAD modals and Mr. Dave Arawinko, an instrument maker specialist at the machine 

shop (Rm. B1060 ECB), provided meaningful information on appropriate clearances, etc. As a 

result, a different setup was decided (figure 6.6) that involves only one specimen with one 

circular hole to be tested twice with two different types of pins as to achieve different pin-hole 

clearances i.e., by using a circular and non-circular pin. 
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Fig. 6.6: 3D CAD model of the final setup 

The same new fixture and test specimen were used for both experiments, the only 

difference being the pin. The following subsections will discuss and show the details of the 

specimen, fixture, and the two pins used. 
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6.3.2 Test Specimen Details 

Figures 6.7 show a 2D sketch and isometric 3D CAD model of the specimen. Care was 

taken in evaluating the dimensions that the specimen can be clamped between the hydraulic grips 

of the MTS machine (B321 EH – Fatigue lab). The following include details of the specimen 

tested here: 

 Material of the plate: Aluminum 6061-T6; Elastic Modulus, E = 68.95 GPa (10 x 10
6
 

psi), Poisson’s ratio, ν = 0.33, Ultimate strength = 275 to 311 MPa (40 to 45 ksi) and 

Yield strength = 241 to 275 MPa (35 to 40 ksi), purchased from Wiedenbeck Inc., 

Madison WI. 

 Length of the specimen = 165 mm (6.5”). 

 Width of the specimen = 50.8 mm (2”). 

 Diameter of the circular hole = 25.4 mm (1.000”). 

 Thickness of the specimen = 6.37 mm (0.25”). 

 Specimen is symmetric about the vertical axis (x-axis). 

 Two strain gages were mounted, one on the front and one on the back, to ensure proper 

specimen alignment by monitoring and minimizing any potential bending. (A detailed 

description of the strain gages used and the strain gage analyses is contained in section 

6.6). 

 As mentioned previously, unless indicated otherwise, all dimensions were originally in 

inches. The English units have been converted to mm based on one inch = 25.40 mm. 
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(a)             (b) 

Fig. 6.7: 2D sketch of test specimen (left) and 3D CAD model of test specimen (right) 
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6.3.3 Circular Pin/Bolt 

The circular pin/bolt geometry (figures 6.8 and 6.9) is that of a step cylinder with the 

addition of a flat surface (left side in figure 6.8 and top in figure 6.9) such that a screw can be 

tightened against the surface of the pin to hold the pin in place, i.e., the pin is constrained so that 

it cannot rotate during the test. The diameter of the back portion of the small cross-section of the 

pin in figure 6.8 and bottom section of that portion in figure 6.9 is not of prime interest since it 

does not contact the specimen. The diameter of the second portion (front section, larger cross-

section in figures 6.8 and 6.9) of the cylinder is 0.9991 inches (25.3771 mm) in diameter 

providing a 0.0009 inch (0.0229 mm) diameter clearance between the plate hole (1.0000 inches = 

2.540 mm diameter) and the pin. Again, and compatible with the actual machining and 

dimensional measurements, the dimensions in figures 6.8 and 6.9 are in inches. Both the circular 

and non-circular pins were machined from 4140 steel (chromium-molybdenum steel) having an 

ultimate tensile strength = 655 MPa = 95 ksi, yield strength = 417.1 MPa = 60.5 ksi. 

 
Fig. 6.8: 3D CAD model of circular pin 
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Fig. 6.9: 2D side view of the circular pin 
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6.3.4 Non-circular Pin/Bolt 

The non-circular pin geometry (figures 6.10 and 6.11) is similar to that of the circular 

bolt with two main differences. The first is that the right portion of the cylinder in figure 6.10 is 

half circular and half non-circular. Although there is some uncertainty that the semicircular 

portion is exactly half, the subsequent TSA analysis demonstrates that the pin/plate contact 

region with this pin exceeds 180
o
. The second difference between this pin of figures 6.10 and 

6.11 and the previously described round pin is that the diameter (of the semicircle in this case) is 

0.9993 inch (25.3822 mm) resulting in a pin-hole diametral clearance of 0.0007" = 0.0178 mm. 

As with figures 6.8 and 6.9, the dimensions in figures 6.10 and 6.11 are in inches. 

 
Fig. 6.10: 3D CAD model of the non-circular pin 
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Fig. 6.11: 2D side view of the non-circular pin 
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6.3.5 Back loading Fixture 

The purpose of the top-back fixture in figure 6.6 is to hold the assembly together and 

transmit the load from the MTS loading machine to the aluminum plate specimen through the 

steel pin. This is done by gripping the top flat part of the fixture of figure 6.6 into the MTS 

hydraulic grips and by holding the pin-plate interface. The back fixture (figures 6.12 and 6.13) 

has a 0.75 inch (19.05 mm) diameter round hole through it to accommodate the pin, figure 6.12 

(a). A small, threaded round hole is provided (right face in figure 6.12 (a) and top in figure 6.12 

(b) to accommodate a set screw to tighten against the flat side of the pin (figures 6.8 through 

6.13). Figures 6.12 (a) and 6.12 (b) are a 3D CAD model of the back loading fixture in isometric 

and side views with all dimensions in inches. Figures 6.13 are photographs of the back loading 

fixture with a pin in place. The set screw, which prevents the pin from rotating, and its threaded 

hole, are visible on the side of the loading fixture in figures 6.12 and 6.13. The loading fixture 

was machined from cold rolled 1020 steel having an ultimate tensile strength = 420 MPa = 60.91 

ksi, yield strength = 350 MPa = 50.76 ksi. 
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 (a)      (b) 

Fig. 6.12: 3D CAD model of fixture (left) and CAD side view of fixture (right) 

 

 
Fig. 6.13(a): Front view of back loading fixture showing pin and set screw which bears against 

the pin 
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Fig. 6.13(b): Back view of back loading fixture showing pin and set screw which bears against 

the pin 
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6.3.6 Assembly 

Assembling the separate components with either the circular or non-circular pin was 

considerable easier using the arrangements of figures 6.6 through 6.13 than the earlier scheme of 

figures 6.3 and 6.4. This was largely because of the fewer parts to assemble, better dimensions, 

and more appropriate pin/hole clearances. Recall that the following clearance dimensions were 

used here: 

 Plate hole diameter (drilled and reamed) = 1.0000 inch 

 Circular pin diameter = 0.9991 inch (0.0009" pin/hole diametrical clearance) 

 Non-circular pin diameter = 0.9993 inch (0.0007" pin/hole diametrical clearance) 

The pins were machined on a lathe and then polished with emery clothe. Part of a round 

pin was milled off to provide a non-circular contact area. 

Figure 6.14 shows the separate components (strain-gage test specimen and the loading 

fixture with its pin) before assembly, whereas figures 6.15 are the 3D CAD drawings of the 

complete assembly for both the non-circular and circular pins. The top vertical flat portion of the 

back loading fixture of figures 6.12 and 6.15 was inserted into the top hydraulic grip and the 

bottom of the aluminum connector plate into the bottom hydraulic grip of the MTS machine. 

A sheet of insulating material (G10 phenolic, top black perforated item in figure 6.14) 

was initially placed between the specimen and the loading fixture in order to reduce the friction 

and any possible heat transfer from the loaded plate specimen. The thickness of this sheet 

introduced some specimen misalignment, causing the specimen to bend out-of-its plane.  
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Therefore this insulating sheet was subsequently removed and the perforated aluminum plate was 

allowed to self-align between the hydraulic grips. 

 
Fig. 6.14: Separate assembly components 
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(a)      (b) 

Fig. 6.15: 3D CAD model of the setup with the non-circular pin (left) and circular pin (right) 

6.4 Experimental Details 

6.4.1 Specimen Preparation and Loading 

The first step involved in preparing the specimen was to polish it with 400 grit sandpaper 

in order to have a clean surface finish for the black paint to adhere to. While polishing the plate 

with 400 grit sand paper, care was taken to ensure the edges of the holes were not rounded-off. 

Then two longitudinal strain gages were mounted on the specimen’s surface (one on the front 

side and one on the back). Those are to be used to insure the proper specimen alignment by 

checking for any potential out-of-plane bending during plate loading. Finally, the aluminum 

specimen was sprayed with Krylon Ultra-Flat black paint to provide an enhanced and uniform 
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emissivity. The strain gages and their leads were covered with gage-coat before applying the 

paint to prevent the paint from causing any electrical shorts. The specimen was then ready for the 

TSA experiment. 

The specimen was mounted and properly gripped (in the hydraulic grips) in the loading 

frame of the MTS hydraulic testing machine (B321 EH) and subjected to a cyclic sinusoidal 

loading varying from 3,558.6 N (800 lbs) ± 2,669 N (600 lbs) at a rate of 20 Hz for both circular 

and non-circular pins. An oscilloscope, figure 6.16, was used to accurately monitor the applied 

cyclic load and frequency. The loading was applied using an MTS machine (20Kips capacity 

having hydraulic grips capable up to 18.5 Kips) that can operate in either load or displacement 

control with any of four ranges (10%, 20%, 50% and 100% measure of capacity). For the current 

experiment, 20% range was utilized in load control which allows for a maximum load of 

17,793N (20% of 20,000lb = 4,000lb). The hydraulic grips apply a uniform clamping pressure 

(which can be adjusted as per the material) over the bottom end of the aluminum specimen and 

the top section of the back steel loading fixture (figure 6.17). 
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Fig. 6.16: Oscilloscope 

 
Fig. 6.17: MTS hydraulic grips 
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The test plate was aligned between the top and the bottom grips as illustrated in figure 

6.17 such that the top front plate-like section of the loading fixture of figure 6.6 and the test 

specimen were co-linearly loaded in the MTS grips. When clamping the specimen between the 

hydraulically operated grips, particular care was taken to ensure that the plate is symmetrically 

loaded about vertical x-axis. This was done by measuring the distance from the end of the grips 

to the plate edge (on either side, figure 6.17). Of course TSA images provided the final 

assessment of symmetry about the vertical axis. Any possible out-of-plane bending of aluminum 

plate was minimized by monitoring the strains obtained from the strain gages mounted on the 

front and the back faces of the aluminum plate i.e., the experimental arrangement (loading, plate 

geometry) is symmetrical, so there will be uniform stress across the plate thickness. Details about 

strain gage readings are included in section 6.6. 

The corresponding load-induced temperature data on the surface of the specimen were 

recorded by a TSA Delta Therm model DT1410 camera (Stress Photonics, Madison, WI) as 

shown in figure 6.18. The TSA camera has a sensor array of 256 horizontal x 256 vertical pixels. 

TSA experimental setup (including labels) can be seen in figure 6.19. 

Note that the plate with a non-circular pin was the first experiment. Then that pin was 

replaced with the circular pin and same plate was used for second experiment. The order shown 

in this chapter tends to be reversed i.e., the analysis and results for the circular pin are presented 

first. 
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Fig. 6.18: TSA Delta Therm camera 
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Fig. 6.19: Experimental setup 

Sections 6.4.2 through 6.4.4 contain some photographs and raw TSA data images for the 

two experiments performed (i.e., the plate with the circular and non-circular pin/bolt) and 

corresponding TSA calibrations. 
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6.4.2 Circular Pin 

Figure 6.20 shows a raw TSA image provided by the Delta Vision software for the 

experiment using the circular pin. The TSA sensor array has a spatial resolution of 256 

horizontal x 256 vertical pixels and approximately 27,000 pixels cover the aluminum test plate. 

Using the Delta Vision software, the TSA data was exported to Excel
®
. The raw TSA data were 

then imported into MATLAB and figure 6.21 is the MATLAB reconstructed image of the raw 

TSA data of figure 6.20. Knowing the diameter of the hole or the width of the plate, one can 

obtain the pixel size for the specimen. The pixel size at the plate in the analyses was found to be 

0.4 mm (0.016”). Since the plate is symmetrical about vertical x-axis, the measured TSA data 

were averaged about this vertical axis. Recognizing recorded TSA data tend to be unreliable at 

and near an edge, no TSA input values were used within two pixels of edges of the hole, i.e., 

approximately 0.79 mm (0.03”) from the boundary of a hole. A FEA (discussed later in section 

6.7) indicates that the pin (top of the pin), where it contacts the top of the hole, moves vertically 

less than 0.01 mm during the cyclic applied load range of 1,200 pounds (5,337.86 N), which is 

much smaller than this two-pixel distance of 0.8 mm. 

The “contourf( )” function in MATLAB can be used for making contour plots but I 

preferred writing my own algorithm for making the contour plots like that of figure 6.21. 
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Fig. 6.20: Raw TSA S* Image for the plate with circular pin 
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Fig. 6.21: Raw TSA S* data for the plate with circular pin reconstructed in MATLAB 
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6.4.3 Non-circular Pin 

Figure 6.22 shows the raw TSA image (from the Delta Vision software) for the 

aluminum plate loaded by the non-circular pin. Approximately 29,000 pixels cover the plate. The 

raw TSA data was again imported into MATLAB and figure 6.23 is the MATLAB reconstructed 

image of the raw TSA data of figure 6.22 for the plate with non-circular pin. Pixel size was again 

found to be 0.4 mm (0.016”), which is same as plate with circular pin. As done earlier for the 

circular-pin case, the measured TSA data were averaged about the vertical x-axis. Recognizing 

the unreliable edge data, no recorded TSA values are used within two pixels of the boundary of a 

hole, i.e., approximately 0.79 mm (0.03”). The clearance between the bottom of the hole in the 

plate hole and the non-circular pin is noticeable in figures 6.22 and 6.23. 

 
Fig. 6.22: Raw TSA S* data for the plate with non-circular pin 
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Fig. 6.23: Raw TSA S* data for the plate with non-circular pin reconstructed in MATLAB 
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6.4.4 Calibration 

The reason behind performing a TSA calibration experiment is to simply determine the 

thermoelastic constant   as defined by the equation below: 

     [                  (       )]                                                   (6.14) 

where    is the recorded TSA signal/data and ΔS is the change in isopachic stress or the sum of 

the orthogonal stresses. The coefficient K can be evaluated from a region whose state of stress is 

known, preferably at a location far from any geometric discontinuity where the state of state of 

stress is uniaxial. Since the aluminum test specimen contains a circular hole and the MTS 

hydraulic grips consume a significant portion for the rest of the specimen’s area, a separate 

uniaxial tensile specimen was used for calibration. The calibration specimen has the exact same 

material properties (as it was machined from the same aluminum plate) as the test specimen, as 

well as an identical coating of flat black paint and cyclically-loaded at the same frequency. 

Moreover, the calibration sample was tested on the same day as was the test specimen, thereby 

avoiding any potential effects of changes in temperature and humidity conditions. The same 

specimen was used for calibrating both the experiments. 

Figure 6.24 shows the geometry of the calibration specimen. The only difference 

between this calibration specimen and the test specimen is the former does not have any pin-

loading hole or any such irregularity and is symmetrical about both of its x- and y-axes. 
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Fig. 6.24: Calibration Specimen 

The following include details of the calibration specimen tested here: 

 Material: Aluminum 6061-T6 (Wiedenbeck, Inc., Madison, WI); Ultimate strength = 275 

to 311 MPa (40 to 45 ksi) and yield strength = 241 to 275 MPa (35 to 40 ksi) 

 Length of the specimen = 279.4 mm (11”) 

 Width of the specimen = 25.4 mm (1”) 
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 Thickness of the specimen = 6.37 mm (0.25”) 

 Specimen is symmetric about the both the horizontal and vertical axes 

The stress distribution is uniform and known (only uniaxial tension). Thus, knowing the 

recorded thermoelastic signal, S* (which was scanned along horizontal lines at different 

levels/heights of the strip and then averaged), applied load and the cross sectional area of the 

specimen, the coefficient K was determined from S*/uniform stress. The calibration values for 

the circular-pin case and non-circular-pin case were found to be K = 261 U/MPa (1.8 U/psi) and 

K = 246.58 U/MPa (1.7 U/psi), respectively. There are two different calibration values because 

the plate loaded was first loaded with a non-circular pin on a different day than the plate with a 

circular pin. The original black paint was removed from the calibration specimen using CSM-2 

Degreaser and then this calibration specimen was repainted at the same time as repainting the 

plate for circular pin test. 

Note that the holes at the ends of the calibration specimen are irrelevant to the present 

situation and were covered by the hydraulic grips, figure 6.24. Figure 6.25 shows the 

experimental setup for the calibration specimen. 

Figures 6.26 and 6.27 are the raw TSA data obtained from performing the TSA 

experiment on the calibration sample for the circular and non-circular pin cases. 
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Fig. 6.25: Calibration sample experimental setup 
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Fig. 6.26: Calibration TSA S* image (data) for the plate with circular hole 
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Fig. 6.27: Calibration TSA S* image (data) for the plate with circular hole 

The calibration specimen contained a total of four strain gages, two on the front and two 

on the back (one longitudinal and one transverse on each side), to monitor the strains and thereby 

ensure proper specimen alignment during testing. The local temperature perturbations due to the 

strain gages are apparent towards the ends of the thermograms of figures 6.26 and 6.27. 
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6.5 Data Processing 

The objective of this research is to evaluate the individual components of stresses at and 

in the vicinity of the hole in a pinned/bolted joint problem from the measured isopachic stresses. 

As the plate is symmetrical about the longitudinal x-axis, the TSA data were averaged about the 

x-axis i.e., one half of the plate is used for the analysis. The pixel size was found to be 0.4 mm 

(0.016”) for both the plate with circular pin and non-circular pin experiment, respectively. 

However, the TSA data is unreliable near an edge, and therefore no TSA input values are 

employed within at least two data positions i.e., source locations of TSA input data selected 

extend from near the inner radius for the hole [radius of hole + (2 x pixel size)] to an outer radius 

of 22.86 mm (0.9”). Figure 6.28 indicates the area covered by the source locations of the TSA 

input data used in the analyses of the plate when loaded by the circular pin (the number of TSA 

input values is m1 = 3,413 inputs) and m2 = 3,458 inputs for non-circular pin, respectively. 

Figures 6.29 and 6.30 are the contour plots of the raw TSA data near the edge of the hole i.e., 

these data are before averaging about the vertical x-axis, for the circular pin and non-circular 

shaped pin, respectively. Figures 6.31 and 6.32 are the contour plots after averaging the TSA 

data about the vertical x-axis for the circular pin and non-circular shaped pin, respectively. One 

could use the ‘contourf ( )’ function in MATLAB to make such contour plots but I wrote my own 

algorithm for making the contour plots in this thesis. 
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Fig. 6.28: TSA input locations for circular pin with m1 = 3413 (left side) and non-circular pin 

with m2 = 3458 (right side) 

 
Fig. 6.29: Raw TSA S* data (not averaged about the x-axis) for the circular pin 
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Fig. 6.30: Raw TSA S* data (not averaged about the x-axis) for the non-circular pin 

 
Fig. 6.31: Raw TSA S* data (averaged about the x-axis) for the circular pin 
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Fig. 6.32: Raw TSA S* data (averaged about the x-axis) for the non-circular pin 
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6.5.1 Imposing Traction-free conditions 

Note that the expressions for the individual components of stress of equations 6.6, 6.7, 

6.9, and 6.11 through 6.13 contain coefficients bo, c1’, an’ and cn’ which do not appear in the 

expression for the isopachic stress, S, of equation 6.10. This precludes being able to evaluate the 

coefficients, and hence the stresses, from recorded TSA data (i.e., values of S) alone. However, 

needed additional side conditions with which to help evaluate all of the Airy coefficients in the 

expressions for the stresses are available by the imposing σrr = σrθ = 0 on the non-contacting 

region of the hole between pin and the plate. Although not necessary, traction-free boundary 

conditions are also imposed on the right vertical (σyy = σxy = 0) and top (σxx = σxy = 0) edges of 

the plate. Condition number and RMS plots were made at every iteration in determining the 

traction-free boundary which is further discussed in section 6.5.2. 

Plate loaded with circular pin: 

For the plate loaded by the circular pin, traction-free boundary conditions σrr = σrθ = 0 are 

imposed discretely on boundary of the hole from θ = 0
o
 to 83

o
 measured countered-clockwise 

from vertically downward positive x-axis, figure 6.2. In this case the traction-free conditions 

were found to exist over less than θ = 90
o
 i.e., the contact region (83

o
 ≤ θ ≤ 180

o
) exceeds 90

o
 for 

the half plate. Hyer observed a similar phenomenon [77]. Why the contact angle between the pin 

and the edge of the hole exceeds θ = 90
o
 could be due to the small initial diametral pin/hole 

clearance of only 0.0009 inches such that the originally round hole deforms under connector 

loading to become somewhat elliptical in shape and wraps around the pin so as to contact the 

latter beyond 90
o
. This is supported by marks found after the experiment (and the joint dis-
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assembled) on the boundary of the hole in the aluminum plate, figures 6.33 and 6.34. These 

marks, were measured to start on the surface of the hole from θ = +80
o
 (figure 6.33) on the right 

edge of the hole and θ = -87
o
 (figure 6.34) on the left edge of the hole when facing the plate such 

as in figure 6.15 (b), with θ again measured counter-clockwise from the vertically downward 

positive x-axis. Some marks were also present on the round pin after its test. They are less 

noticeable than those on the aluminum, perhaps due to the steel pins having a higher yield stress 

(417 MPa vs. ~ 250 MPa) than the aluminum, figures 6.35 and 6.36. Based on this information, 

and since the TSA data are averaged about the vertical longitudinal x-axis, an average non-

contacting angle for applying the traction-free conditions on the hole here is taken to be θ = 83
o
. 

This non-contacting angle of θ = 83
o
 is further supported by TSA-determined radial stress, σrr = 

0 (figure 6.37-A) on the boundary of the hole. The comparatively small value of the TSA-

determined shear stress, σrθ (figure 6.38) renders this it to be of little assistance in this matter. 

Application of the zero radial and shear stresses of equations 6.6 and 6.9 along the 

traction-free edge of the hole necessitated numerically determining where on the hole the pin 

loses contact with the plate. This was accomplished iteratively. For the 1200-pound load applied 

to the connector, the point of pin-hole departure was located initially at θ = π/2 and the radial 

stress distribution determined on the edge of the hole from the TSA-evaluated Airy coefficients.   

Where this radial stress σrr passed through, or approached, zero became a new, updated, location 

of pin-plate departure. With the radial and shear stresses set to zero along this new/expanded arc 

length along the edge of the hole, the analysis was rerun and new Airy coefficients were 

determined making it possible to yet again update the location where the pin and plate lose 

contact based on where the correspondingly updated radial stress passed through zero. After very 
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few such iterations of relocating where the pin and plate depart at this load level, the evaluated 

stresses (σrr, σθθ and σrθ) remained essentially unchanged on loaded arc length AB (location A 

being where θ = 180, figure 6.2) with subsequent iterations and this dictated the final position of 

B for this connector load level. 

Figures 6.37 and 6.38 are the plots by imposing the traction-free boundary condition 

from θ = 0
o
 to 83

o
 (measured from the vertically downward positive x-axis) on the boundary of 

the hole (figure 6.2), and on the top and the right edges of the plate, m1 = 3413 TSA values and 

using k = 9 Airy coefficients. For discretely imposing the traction-free boundary conditions, 831 

points are used on the edge of the hole i.e., h1 = 2*831, 101 points are used on the top half edge 

of the plate and another set of 301 points on the right edge of the plate i.e., the total number of 

traction-free conditions on the side and top edge are t1 = 2*101+2*301. Details on determining 

how many Airy coefficients to retain, and how to evaluate them, will be discussed in this chapter 

subsequently. Note that, this experiment was done on the same plate after doing the plate with 

non-circular pin experiment.  

For tightly-fitting bolted connections, the shear stress between the bolt and plate is often 

taken to be zero. Moreover, for such conditions the radial contact stress is assumed to be of the 

form σ = σ* × cosϕ, where angle ϕ is measured from the initial point of bolt-hole contact (θ = 

180
o
 here) and σ* is the radial stress at ϕ = 0. The present connection has extremely little pin-

hole clearance and indeed figures 6.37-B and 6.38 demonstrate that the TSA-determined radial 

contact stress obeys the cosine ϕ assumption and the shear stress is very small at the pin-hole 

contact surface. In figures 6.37-B, stress σ* is determined by dividing the radial stress by the 

absolute value of maximum radial stress so that cos(ϕ) and σ* is 1 at ϕ = 0. The slight departure 
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between the TSA result and the cosϕ assumption for the radial contact stress at ϕ ≥ 75
o
 is perhaps 

associated with the fact that physically the pin-hole clearance is not exactly zero or that the pin 

actually contacts the hole beyond ϕ = 90
o
. Moreover, Bickley assumed an infinite plate and a 

rigid pin. 

 
Fig. 6.33: Marks on right boundary of the hole after loading with the round pin 
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Fig. 6.34: Marks on left boundary of the hole after loading with the round pin 

 
Fig. 6.35: Residual marks on the right boundary of the circular pin (contact surface of the hole 

shown in figure 6.33) 
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Fig. 6.36: Residual marks on the left boundary of the circular pin (contact surface of the hole 

shown in figure 6.34) 

 
Fig. 6.37-A: TSA-determined σrr/σ0 around the boundary of the hole (r/R = 1) for m1+h1+t1 = 

5,479 input values, k = 9 coefficients and m1 = 3,413 TSA values, h1 = 2*831, t1 = 

2*101+2*301 
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Fig. 6.37-B: Plot of cos(ϕ) and TSA-determined σ* (= σrr/σrr(max)) vs. angle ϕ (=180

o
 - θ) around 

the boundary of the hole (r/R = 1) for m1+h1+t1 = 5,479 input values, k = 9 coefficients and m1 

= 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301 

 

 
Fig. 6.38: TSA-determined σrθ/σ0 around the boundary of the hole (r/R = 1) for m1+h1+t1 = 

5,479 input values, k = 9 coefficients and m1 = 3,413 TSA values, h1 = 2*831, t1 = 

2*101+2*301 
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Plate loaded with non-circular pin: 

For the plate loaded by the non-circular pin, traction-free boundary conditions on the 

boundary of the hole are imposed from θ = 0
o
 to 87

o
 measured from the vertically downward 

positive x-axis. Here the pin is not entirely circular i.e., the pin is semicircular for essentially its 

top half which contacts with the round surface of the hole in the plate. Upon careful examination 

of the pin, it is found that the upper portion of the pin which is expected to be exactly semicircle 

is exceeded by +2
o
 and -3

o
 i.e., the semicircle portion of the non-circular pin is not exactly 180

o
 

(exceeds ~3
o 

when considering symmetry). In this experiment, the non-contacting traction-free 

condition between the pin and the hole was found to be less than 90
o
 (or the contact region is 

greater than 90
o
). The reason for this could again be associated with the relatively small diameter 

(0.0007") clearance between the pin and the plate hole. The marks on the sides of the pin (figures 

6.39) illustrate the extent of pin-hole contact. The plate used in this experiment is the same as 

that used subsequently (this test with the non-round pin was done before that with the round pin) 

for the circular pin. Note that the pin/hole clearance in this case is less than that with the circular 

pin. Evidence subsequently will show that the marks on the plate are made by the circular pin. 

This phenomenon is further validated by the plot of TSA-determined radial stress, σrr (figure 

6.41-A), on the boundary of the hole. The magnitude of the contact shear stress, σrθ (figure 6.42), 

is again sufficiently small as to offer little evidence on the extent of the pin/plate contact. Figures 

6.41 and 6.42 are the plots by imposing the traction-free boundary condition from θ = 0
o
 to 87

o
 

(θ measured from the vertically downward positive x-axis) (again used iteration to assess where 

the pin and hole depart) on the boundary of the hole and traction-free boundary conditions on the 

top half edge and the side edge of the plate, m2 = 3458 TSA values and k = 9 Airy coefficients. 
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For imposing the traction-free boundary conditions, 871 points are used on the contact-free edge 

of the hole i.e., h2 = 2*871, 101 points are used on the top edge and another set of 301 points on 

the right edge of the plate i.e., t2 = 2*101+2*301. 

Figures 6.41 are the photograph of the non-circular pin. Figures 6.41-B and 6.42 again 

support the prevalent assumptions for zero pin hole clearance that any shear stress between the 

pin and hole can be ignored and contact radial stress can be approximated by a cosine 

distribution. 

Plots of figures 6.41-A and 6.42 were obtained iteratively similarly as described above 

relative to figures 6.37 and 6.38. 

  
Fig. 6.39-A: Right boundary of the non-circular pin when facing the plate/pin from TSA side 
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Fig. 6.39-B: Left boundary of the non-circular pin when facing the plate/pin from TSA side 

 

 
Fig. 6.40-A: Top view of non-circular pin 
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Fig. 6.40-B: Side view of non-circular pin 

 
Fig. 6.41-A: TSA-determined σrr/σ0 around the boundary of the hole (r/R = 1) for m2+h2+t2 = 

6,592 input values, k = 9 coefficients and m2 = 3,458 TSA values, h2 = 2*871, t2 = 

2*101+2*301 
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Fig. 6.41-B: Plot of cos(ϕ) and σ* (= σrr/σrr(max)) vs. angle ϕ (=180

o
 - θ) around the boundary of 

the hole (r/R = 1) for m2+h2+t2 = 6,592 input values, k = 9 coefficients and m2 = 3,458 TSA 

values, h2 = 2*871, t2 = 2*101+2*301 

 

 
Fig. 6.42: TSA-determined σrθ/σ0 around the boundary of the hole (r/R = 1) for m2+h2+t2 = 

6,592 input values, k = 9 coefficients and m2 = 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301 
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incorporates some noise/scatter, it is typically advantageous to employ significantly more 

equations (i.e., more TSA measured input values of S plus number of traction-free boundary 

conditions on the boundary of hole, and on the right vertical edge (σyy = σxy = 0) and top edge 

(σxx = σxy = 0) of the plate) than the number of unknown coefficients, k, i.e., (m1+h1+t1) > k or 

(m2+h2+t2) > k. Based on the measured TSA data for the plate with circular shaped or non-

circular shaped pin, traction-free boundary conditions at discrete locations, expression for the 

isopachic stress and individual components of stresses, one can develop the following matrix 

equation: 

      1)(1)( xthmkxxkthm dcA            (6.15) 

where matrix [A] involves the m (m1 for the plate with circular pin and m2 for the plate with non-

circular pin) Airy isopachic equations in polar coordinates, r and , for the corresponding input 

locations (i.e., the measured input data value of S (= S*/K)). Matrix [A] also contains h (h1for the 

plate with circular pin and h2 for the plate with non-circular pin) expressions for traction-free 

boundary conditions on the boundary of the hole (rr = rθ = 0), t (t1for the plate with circular 

pin and t2 for the plate with non-circular pin) expressions for traction-free boundary conditions 

on the right edge (σyy = σxy = 0) and the top edge (σxx = σxy = 0) of the plate. Vector {c} of 

equation 6.15 involves the k unknown Airy coefficients. Note that the same number of 

coefficients is used for the analysis of the plate with the circular pin and the non-circular shaped 

pin. This is based on analysis in the following section. Vector {d} contains m measured TSA 

data values of S = S*/K corresponding to the data points used in the S to form matrix [A] as well 

as the zeros corresponding to every expression of h and t traction-free boundary conditions. The 



267 
 

least-squares method is used to solve the over-determined matrix equation Ac = d of equation 

6.15. 
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6.5.2 Number of Coefficients and Input Values  

It is important to determine a suitable number of Airy coefficients, k, to use here for a 

given set of input values, m1+h1+t1 or m2+h2+t2. To evaluate an appropriate value for k, the 

condition number, C, of the Airy matrix and the RMS are plotted against the number of Airy 

coefficients, k, for m1+h1+t1 = 5,479 (plate with circular pin) and m2+h2+t2 = 6,592 (plate with 

non-circular pin) input values. Moreover, the raw TSA data S* are compared with the 

reconstructed plot of S* evaluated using the now known Airy coefficients. Figures 6.43 through 

6.45 are the plots of condition number, log10(C) and RMS against the number of Airy coefficients 

(k) for the analysis of plate with circular pin. Similarly figures 6.46 through 6.48 are the plots of 

condition number, log10(C) and RMS against the number of Airy coefficients (k) for the analysis 

of plate with non-circular pin. 

 
Fig. 6.43: Plot of condition number, C, vs. number of coefficients, k, for m1+h1+t1 = 5,479 input 

values, (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301); circular pin 

5 10 15 20 25 30 35 40
0

1

2

3

4
x 10

6

Number of Coefficients (k)

C
o
n
d
iti

o
n
 N

u
m

b
e
r 

(C
)



269 
 

 
Fig. 6.44: Plot of log10(C) vs. number of coefficients, k, for m1+h1+t1 = 5,479 input values, (m1 

= 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301); circular pin 

 
Fig. 6.45: Plot of RMS vs. number of coefficients, k, for m1+h1+t1 = 5,479 input values, (m1 = 

3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301); circular pin 
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Fig. 6.46: Plot of condition number, C, vs. number of coefficients, k, for m2+h2+t2 = 6,592 input 

values, (m2 = 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301); non-circular pin 

 

 
Fig. 6.47: Plot of log10(C) vs. number of coefficients, k, for m2+h2+t2 = 6,592 input values, (m2 

= 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301); non-circular pin 
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Fig. 6.48: Plot of RMS vs. number of coefficients, k, for m2+h2+t2 = 6,592 input values, (m2 = 

3458 TSA values, h2 = 2*871, t2 = 2*101+2*301); non-circular pin 

Note that from figures 6.43 through 6.48, the value of C or log10C or RMS are reasonably 

consistent for 9 ≤ k ≤ 25. Having large number of Airy coefficients can cause the Airy matrix, 

[A], of equation 6.15 to become unstable or near-singular due to computer round-off errors. 

Moreover adding more coefficients than necessary could require more measured input data. 

Information of figures 6.43 through 6.48 suggests k = 9 (terminating index N = 2) would be a 

reasonable choice with either the round or non-circular pin.  

Figure 6.49 compares contour plots of the experimental TSA data (S*) with the 

reconstructed S* using m1+h1+t1 = 5,479 input values and k = 9 (m1 = 3,413 TSA values, h1 = 

2*831, t1 = 2*101+2*301) for the analysis of the plate loaded by the circular pin. Similarly 

figure 6.50 makes a similar comparison (using m2+h2+t2 = 6,592 input values and k = 9; m2 = 

3458 TSA values, h2 = 2*871, t2 = 2*101+2*301) for the analysis of the plate loaded with the 

non-circular pin. Information of figures 6.49 and 6.50 supports the selection of k = 9 in both 

cases. 
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Fig. 6.49: MATLAB processed experimentally-based TSA input data S* (left) and reconstructed 

S* (right) for plate loaded by circular pin [m1+h1+t1 = 5,479 input values and k = 9 (m1 = 3,413 

TSA values, h1 = 2*831, t1 = 2*101+2*301)] 

 
Fig. 6.50: MATLAB processed experimentally-based TSA input data S* (left) and reconstructed 

S* (right) for plate loaded by non-circular pin [m2+h2+t2 = 6,592 input values and k = 9 (m2 = 

3458 TSA values, h2 = 2*871, t2 = 2*101+2*301)] 
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6.6 Strain Gage Readings 

As mentioned earlier, a longitudinal strain gage was mounted on each of the back and 

front sides of the test specimen to check for any possible out-of-plane bending while loading the 

sample. These single-element Micro-Measurements strain gages (EA-06-050AH-120) have gage 

resistance of 120.0 ± 0.15%, Ω and a gage factor of 2.02 ± 1.0%, and were mounted on the 

opposite sides of the specimen. Figures 6.51 and 6.52 show the strain gages mounted on the 

specimen. A 16-channel variable, but controllable, excitation-voltage strain gage conditioner 

(figure 6.53) was used to record the strain readings. 

 
Fig. 6.51: Strain gage on front side of test specimen 

 

 
Fig. 6.52: Strain gage on back side of test specimen 
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Fig. 6.53: Strain gage conditioner monitoring the output from mounted gages 

 

The output of the gages was recorded during incremental increasing and decreasing static 

loading of the specimen. Figures 6.54 and 6.55 show the strains from both gages for plate 

loading by each of the circular and non-circular pin/bolt. Based on a maximum stress 

concentration factor at the edge of the hole not exceeding 5 (figures 6.80 and 6.88), the 

maximum stress in the aluminum plate at the largest applied static load (<17 ksi) remains within 

the elastic limit of the aluminum (35 – 40 ksi). In each case these static strains were recorded 

immediately after the completing the cyclic loading for the respective TSA analysis and without 

totally unloading the plate so as to ensure the same degree of symmetry in loading prevailed with 
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the static and cyclic loading. The strains are fairly consistent, although in both cases the front of 

the plate was strained slightly more than the back. While any such bending from front to back is 

what one might contemplate based on the loading arrangement, figures 6.15, 6.17 and 6.19, 3-D 

FEM results (section 6.7, figure 6.79) suggests the vertical motion of the pin under system 

loading is essentially uniform along the length of the pin which contacts the edge of the hole. 

Residual markings on the surfaces of either the pins or the hole do not appear greater associated 

with one or other faces of the aluminum plate, further suggesting any plate bending was very 

minor. 

 
Fig. 6.54: Front (TSA side) and back strain gage readings (circular pin experiment) 
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Fig. 6.55: Front (TSA side) and back strain gage readings (non-circular pin experiment) 
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6.7 Numerical Analysis 

6.7.1 Finite Element Modeling 

The finite element method is one of the most popular numerical stress analysis methods 

used in structural engineering. The solution approach is based either on eliminating the 

differential equation completely (steady state problems), or rendering the PDE into an 

approximating system of ordinary differential equations, which are then numerically integrated 

using standard techniques such as Euler's method, Runge-Kutta, etc. Commercially available 

finite element software ABAQUS 6.83 / CAE and Intel Visual Fortran 10.01 were used here for 

all the finite element analysis. ABAQUS 6.83/CAE is versatile software and is widely used in 

the industry and academia to solve complex problems. The motivation behind choosing this 

particular finite element software (ABAQUS) over others (like ANSYS, NASTRAN) is its 

reputed ability to handle contact problems well with robust contact algorithms. Another 

advantage of using ABAQUS is its well documented resources for user defined sub-routines if 

one decides to code his/her own material or sub-routines to solve a particular problem. 

The purpose was to conduct a 2-D and a 3-D FEM stress/displacement analysis of a two-

dimensional pin-loaded member for comparison with experimental results. ABAQUS/Standard 

was used instead of ABAQUS/Explicit as the problem was modeled as a static problem. The 

main disadvantages of this method are the significant computing time that can be needed due to 

the requirement to recalculate the tangent stiffness matrix in each iteration using the Newton-

Raphson method and the difficulty of defining this matrix in some cases. However, the Newton-

Raphson method is the only procedure which can provide quadratic convergence. The solution 

http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Euler%27s_method
http://en.wikipedia.org/wiki/Runge-Kutta


278 
 

obtained is reliable as ABAQUS/Standard uses a stiffness-based solution technique that is 

unconditionally stable. 
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6.7.2 Geometry 

The single-pin, single-lap specimen geometry considered is shown in figures 6.56 and 

6.57. The geometry of the aluminum plate and the steel pin were modeled using the graphical 

user interface in ABAQUS/Standard. 

The CAD models for the geometry of the configuration are detailed below. Since the 

entire configuration was symmetric only half of the geometry was modeled for the purpose of 

finite element analysis. The following components were modeled - 

Pin – The circular pin is modeled as 2-D geometry with a radius of 12.5857 mm. The half 

symmetric model is as shown in figure 6.56-a.  

The non-circular pin is modeled as 2-D geometry. One half is cylindrical with a radius of 

12.5857 mm and the other half is non-circular. The circular half ensures that contact is 

established for ~180
o
. The half symmetric model is as shown in figure 6.56-b. Note: Hole and 

pin diameters were measured by the machinist in inches. The numbers in mm are based on 25.40 

mm = 1.00 inches. 

Aluminum Plate - The aluminum plate is also modeled as 2-D geometry with a length of 

152.4 mm and width of 25.4 mm. A hole of diameter 1.0000 inches (25.4 mm) is located at a 

distance of 38.1 mm from the end. The half symmetric model is as shown in figure 6.57. Same 

plate was used for the circular and non-circular pin specimen. 
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Fig. 6.56-a: Geomtery of the circular pin (Symmetric model) 

 
Fig. 6.56-b: Geomtery of the non-circular pin (Symmetric model) 

 

 
Fig. 6.57-a: Geomtery of the plate for circular and non-circular pins (Symmetric model) with 

dimensions 
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Fig. 6.57-b: Geomtery of the plate for circular and non-circular pins (Symmetric model) 
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6.7.3 Mesh Generation 

The automatic mesh generator built into the ABAQUS 6.83 graphical user-interface was 

used to create the finite element mesh. The 2-D analysis utilized a plane stress formulation with a 

plate thickness of 6.37 mm. The element type used is CPS4R, which is a 4-node bilinear plane 

stress quadrilateral element with reduced integration and hourglass control. The exact element 

size and the procedure followed to generate the mesh is described as follows. 

Pin – For the circular and non-circular pins, the constant element size of 0.2032 mm was 

used for the entire surface of the pin as shown in figures 6.58. This resulted in a fine mesh being 

generated on the geometry of the pin i.e., 8,384 elements were used to model the half pin. 

Increasing the mesh density (number of elements) did not change the results but increased the 

computational time. 

Aluminum Plate – Element size around the hole is constant and is equal to 0.254 mm. At 

a distance of 40 mm away from the center of the hole, the mesh size is increased to 0.354 mm 

and remains constant as shown in the figures 6.59 i.e., 42,593 elements were used to model the 

(half) aluminum plate. The same geometry and mesh were used to analyze both the circular and 

non-circular pin configurations. 
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Fig. 6.58-a: Finite Element model of the round pin configuration 

 

 
Fig. 6.58-b: Finite Element model of the non-circular pin configuration 
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Fig. 6.59: Finite Element model of the plate 
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6.7.4 Boundary Conditions and Loading 

Due to symmetry, only one-half of the assembly was modeled and symmetric boundary 

conditions were applied. The circular and non-circular pin was completely constrained at a small 

region near the center as shown in figures 6.60 (i.e. x = y = z = 0 and Rotx = Roty = Rotz = 0 

where x, y, z are the translational displacements in the x, y, z directions and Rotx, Roty, Rotz are 

the rotational displacements in the x, y, z directions). Moreover, y-symmetry (y = 0 and Rotx = 

Rotz = 0) was also applied along the diameter of the pin as shown in figures 6.60. 

The aluminum plate was constrained along its length with the constraints y = 0, Rotx = 

Rotz = 0 (i.e. y-Symmetry) and a force of 1200 pounds (5337.8 N) was applied to the right end 

as shown in the figure 6.61. The complete assembly of all the parts involved with the associated 

boundary conditions is shown in figure 6.62 (circular pin case) and figure 6.63 (non-circular pin 

configuration). 

 
Fig. 6.60-a: Boundary Conditions applied to the circular pin 
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Fig. 6.60-b: Boundary Conditions applied to the non-circular pin 

 

 
Fig. 6.61: Boundary Conditions and the loads applied to the plate 

 



287 
 

 
Fig. 6.62: Boundary Conditions and the loads associated with the entire assembly for the circular 

pin specimen 

 

 
Fig. 6.63: Boundary Conditions and the loads associated with the entire assembly for the non-

circular pin specimen 
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6.7.5 General Details 

Material Modeling  

The material library in ABAQUS allows most engineering materials to be modeled, 

including metals, plastics, rubbers, foams, composites, granular soils, rocks, and plain and 

reinforced concrete. The two materials that were considered here are steel and aluminum. The 

pinned joint is subjected to a cyclic loading while performing the thermoelastic stress analysis 

which keeps everything in the linear realm. Hence only linear material properties were 

incorporated into the model. The default material properties used are: 

Steel (pin): Young’s Modulus = 200.003 GPa and Poisons ratio = 0.25 

Aluminum (plate): Young’s Modulus = 69.002 GPa and Poisons ratio = 0.33 

Contact Definitions 

Selection of surfaces for the contact pair must be done before proceeding with the contact 

definition. Numerical conditional constraints were applied by ABAQUS at various locations on 

each surface to replicate contact conditions. The contact discretization used in the overall contact 

formulation dictates the locations and conditions of these constraints. The contact formulation in 

ABAQUS works using the master-slave approach wherein surfaces were initially defined as a 

master/slave and the slave surface slides on the master when they come in contact. The relative 

motion of the surfaces involved in the contact formulations were accounted for by two tracking 

approaches built into ABAQUS/Standard: the finite-sliding tracking approach and the small 

sliding tracking approach. Figures 6.64 and 6.65 represent the contact situations for the plate 

with circular and non-circular pin, respectively. 
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Fig. 6.64: Contact surfaces defined on the plate and circular pin 

 

 
Fig. 6.65: Contact surfaces defined on the plate and non-circular pin 

 

The finite-sliding tracking approach 

This is a general approach used for tracking where ABAQUS allows for arbitrary relative 

separation, sliding, and rotation of the contacting surfaces. A bucket sorting technique was used 

to check for penetration of the slave surface and penetration is checked for every iteration. 

The small-sliding tracking approach 

This approach assumes that there will be relatively little sliding of the master and slave 

surfaces involved. Small-sliding contact formulations are useful as they are computationally less 

expensive and are more stable. The small sliding approach was used in the current study. 
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Master and slave surface selection in small-sliding problems 

When using the small-sliding formulation, the slave surface should have a refined mesh 

or the surface on the more deformable body. In the current study the pin was chosen as the slave 

surface and the plate was chosen as the master surface as shown in figures 6.64 and 6.65. 

Friction 

A coulomb friction model was used to define the frictional coefficients. The coulomb 

friction model works by relating the maximum allowable shear stress across an interface to the 

contact pressure between the contacting bodies. Two contacting surfaces can carry shear stresses 

up to a certain magnitude across their interface before they start sliding relative to one another. 

The state when they are not sliding is known as sticking. ABAQUS also provides a model to 

specify a static and a kinetic friction coefficient directly. A static friction coefficient of 0.2 

between the steel-aluminum interfaces was used here. 

Results 

The finite element model used ABAQUS/Standard 6.83. Figures 6.66 through 6.68 show 

the contour plots for the Cartesian components of stress (σxx, σyy and σxy) and figures 6.69 

through 6.71 show the contour plots for polar components of stress (σrr, σθθ and σrθ) for the plate 

with circular pin. Figures 6.72 through 6.74 show the contour plots for the Cartesian components 

of stress (σxx, σyy and σxy) and figures 6.75 through 6.77 show the contour plots for polar 

components of stress (σrr, σθθ and σrθ) for the plate with non-circular pin. Since the finite model 

was modeled in inches, the stresses are in lbs/in
2
. 
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Fig. 6.66: Contour plot of stress in the x-direction (σxx) for the plate with circular pin 

 
Fig. 6.67: Contour plot of stress in the y-direction (σyy) for the plate with circular pin 
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Fig. 6.68: Contour plot of shear stress (σxy) for the plate with circular pin 

 
Fig. 6.69: Contour plot of radial stress (σrr) for the plate with circular pin 
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Fig. 6.70: Contour plot of tangential stress (σθθ) for the plate with circular pin 

 
Fig. 6.71: Contour plot of polar shear stress (σrθ) for the plate with circular pin 
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Fig. 6.72: Contour plot of stress in the x-direction (σxx) for the plate with non-circular pin 

 

 
Fig. 6.73: Contour plot of stress in the y-direction (σyy) for the plate with non-circular pin 
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Fig. 6.74: Contour plot of shear stress (σxy) for the plate with non-circular pin 

 
Fig. 6.75: Contour plot of radial stress (σrr) for the plate with non-circular pin 
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Fig. 6.76: Contour plot of tangential stress (σθθ) for the plate with non-circular pin 

 
Fig. 6.77: Contour plot of polar shear stress (σrθ) for the plate with non-circular pin 
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Possible Pin Bending. 

For an applied load of 5,553 N (1,200 pounds), figure 6.78 shows the FEM-predicted 

vertical displacements (inches) throughout the complete assembly while figure 6.79 emphasizes 

those in the region near the round pin. The top grip of a closed-loop hydraulic MTS testing 

machine remains stationary and the bottom grip moves downward when loading the aluminum 

specimen in tension, figures 6.4, 6.17 and 6.19. Compatible with this, the upper vertical section 

of the loading fixture of figure 6.78, which would be engaged physically in the top MTS grip, 

does not move. Figures 6.78 and 6.79 suggest extremely little bending occurs in the loading 

fixture or the aluminum test plate. The numerically-predicted vertical motion of the pin from its 

very back (back right surface of the back steel loading plate of figures 6.6, 6.12, 6.13 through 

6.15 and 6.17) to the front (TSA side) is 4.834 x 10
-6

 inches (~0.0001 mm) upward (back) to 

2.881 × 10
-4 

inches (0.007 mm) downward (front). While the top of the hole on front face (TSA 

side) of the aluminum specimen is therefore predicted to move downward 0.007 mm, the pin at 

the backside of the aluminum plate (hence the top of the hole on the backside of the specimen) is 

predicted to move downward only 0.004 mm. Since the top of the steel loading fixture and the 

bottom of the aluminum specimen plate are loaded vertically, the FEM would therefore suggest a 

slight bending of the plate, producing a slightly smaller longitudinal strain/stress on the front 

(TSA side) compared to on the back side of the specimen. This prediction agrees with the 

measured strains on the back of the plate exceeding those on the front of the plate, figure 6.54.   

The top of the hole in the aluminum specimen is predicted to move vertically < 0.1 mm under the 

5.6 N (1,200 pound) load and the TSA pixel spacing is approximately 0.4 mm. Not using TSA 

(Thermoelastic Stress Analysis) data within two pixels of an edge, including the top of the hole, 
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therefore means the motion of the edge of the hole during the cycling action is not a technical 

concern. 

The present 3-D CAD models were meshed (ABAQUS C3D8R, continuum elements 

with reduced integration element type) with an element size of 0.2 in (5.08 mm) for a total of 

2604 elements. The numerical solutions were conducted on a Dell Studio 1555 laptop computer 

having an Intel (R) Core (TM) 2 Duo CPU T6600 @ 2.20 GHz processor and 4.0 GB of RAM. 

A 64-bit Operating system with a 500 GB internal hard disk was used for storage. The analyses 

took approximately four to five minutes for each run due to the simplified geometry that was 

used to model the problem. 

 
Fig. 6.78: Predicted vertical (i.e. y direction) displacements (inches) 
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Fig. 6.79: Predicted vertical (i.e. y direction) displacements in the region of the round pin 
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6.8 Results 

After determining all of the unknown Airy coefficients, the individual components of 

stress are evaluated and the results are compared with those from finite element analysis 

(ABAQUS). Cartesian and polar components of stress are normalized with respect to the far field 

stress, σ0 (= 16.56 MPa or 2400 psi). Normalized tangential stress, σθθ, radial stress, σrr and shear 

stress, σrθ, are plotted at various radii on and away from the boundary of the hole, as are 

normalized σθθ = σxx along line θ = 90
o
 and σxx on the boundary of hole. 

Applied load range (F) = 5337.8 N (1200lb) 

Cross-Sectional Area (A) = Width (W) x Thickness (t) 

      = 50.8 x 6.37 = 322.58 mm
2
 (0.5 in

2
) 

 𝑜   
5337 8

3   58
    5  𝑀𝑃        𝑝    

Plate loaded by circular pin:  

Using k = 9 now known Airy coefficients evaluated from m1+h1+t1 = 5,479 input values 

(m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301) for the plate with circular pin, 

normalized individual components of stress are plotted on and away from the boundary of the 

hole, figures 6.80 through 6.87. The results are compared here with those evaluated from an 

approximate finite element analysis. Note that the FEM (ABAQUS) predicts the contact-free 

region between the pin and hole commences at θ > 90
o
 whereas TSA indicates this occurs at θ ~ 

83
o
, figure 6.82. As noted previously, residual markings on the pin and hole support the TSA 

observation that the pin loses contact with the hole at θ ~ 83
o
. This difference in the contact 

region leads to some discrepancy between the results, figure 6.82. The extremely small shear 
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stress on the contact surface of the hole is not incompatible with the frequent approach of 

ignoring any such shearing stress in an absence of any pin/bolt-hole clearance [Bickley], figure 

6.84. The radial clearance here is only 0.00045 inches (0.01 mm) which is less than 0.1 % of the 

pin radius. There is some discrepancy between the TSA and FEM results in figure 6.86, near the 

edge of the plate. This is probably due to the fact that although traction-free conditions were 

imposed on the vertical edge of the plate, no TSA data were collected in the region r/R > 1.8 

with which to evaluate the Airy coefficients. 

 
Fig. 6.80: Plot of σθθ/σ0 around the boundary of the hole (r/R = 1) from ABAQUS and TSA for 

m1+h1+t1 = 5,479 input values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 

2*101+2*301) 
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Fig. 6.81: Plot of σθθ/σ0 along r/R = 1.5 from ABAQUS and TSA for m1+h1+t1 = 5,479 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301) 

 

 
Fig. 6.82: Plot of σrr/σ0 around the boundary of the hole (r/R = 1) from ABAQUS and TSA for 

m1+h1+t1 = 5,479 input values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 

2*101+2*301) 
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Fig. 6.83: Plot of σrr/σ0 along r/R = 1.5 from ABAQUS and TSA for m1+h1+t1 = 5,479 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301) 

 

 

 
Fig. 6.84: Plot of σrθ/σ0 around the boundary of the hole (r/R = 1) from ABAQUS and TSA for 

m1+h1+t1 = 5,479 input values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 

2*101+2*301) 
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Fig. 6.85: Plot of σrθ/σ0 along r/R = 1.5 from ABAQUS and TSA for m1+h1+t1 = 5,479 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301) 

 

 

 
Fig. 6.86: Plot of σxx/σ0 along the line extending from the edge of the hole (x = 0 or θ = 90

o
) from 

ABAQUS and TSA for m1+h1+t1 = 5,479 input values and k = 9 (m1 = 3,413 TSA values, h1 = 

2*831, t1 = 2*101+2*301) 
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Fig. 6.87: Plot of σxx/σ0 around the boundary of the hole (r/R = 1) from ABAQUS and TSA for 

m1+h1+t1 = 5,479 input values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 

2*101+2*301) 
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Plate loaded by non-circular pin:  

Using k = 9 and the now evaluated Airy coefficients from m2+h2+t2 = 6,592 input values 

(m2 = 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301) for the plate loaded by the non-circular 

pin, normalized individual components of stress on and away from the boundary of the hole are 

plotted in figures 6.88 through 6.95. The results are compared here with those from ABAQUS. 

Not unlike when the plate was loaded by the round pin, FEA (ABAQUS) predicts the pin-plate 

contact-free region exceeds 90
o
 whereas TSA indicates this occurs at θ ~ 87

o
. This difference in 

the contact region leads to some discrepancy between the results, figure 6.90. The shear stress on 

the contact surface of the hole is again extremely small, again supporting the frequent 

assumption of zero pin/bolt-hole shearing stress for connector having a closely fitting bolt/pin 

[Bickley], figure 6.92. The radial clearance here is again less than 0.1 % of the pin radius. 

 
Fig. 6.88: Plot of σθθ/σ0 around the boundary of the hole (r/R = 1) from ABAQUS and TSA for 

m2+h2+t2 = 6,592 input values and k = 9 (m2 = 3458 TSA values, h2 = 2*871, t2 = 

2*101+2*301) 
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Fig. 6.89: Plot of σθθ/σ0 along r/R = 1.5 from ABAQUS and TSA for m2+h2+t2 = 6,592 input 

values and k = 9 (m2 = 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301) 

 

 
Fig. 6.90: Plot of σrr/σ0 around the boundary of the hole (r/R = 1) from ABAQUS and TSA for 

m2+h2+t2 = 6,592 input values and k = 9 (m2 = 3458 TSA values, h2 = 2*871, t2 = 

2*101+2*301) 
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Fig. 6.91: Plot of σrr/σ0 along r/R = 1.5 from ABAQUS and TSA for m2+h2+t2 = 6,592 input 

values and k = 9 (m2 = 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301) 

 

 

 
Fig. 6.92: Plot of σrθ/σ0 around the boundary of the hole (r/R = 1) from ABAQUS and TSA for 

m2+h2+t2 = 6,592 input values and k = 9 (m2 = 3458 TSA values, h2 = 2*871, t2 = 

2*101+2*301) 
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Fig. 6.93: Plot of σrθ/σ0 along r/R = 1.5 from ABAQUS and TSA for m2+h2+t2 = 6,592 input 

values and k = 9 (m2 = 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301) 

 

 
Fig. 6.94: Plot of σxx/σ0 along the line extending from the edge of the hole (x = 0 or θ = 90o) 

from ABAQUS and TSA for m2+h2+t2 = 6,592 input values and k = 9 (m2 = 3458 TSA values, 

h2 = 2*871, t2 = 2*101+2*301) 
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Fig. 6.95: Plot of σxx/σ0 around the boundary of the hole (r/R = 1) from ABAQUS and TSA for 

m2+h2+t2 = 6,592 input values and k = 9 (m2 = 3458 TSA values, h2 = 2*871, t2 = 

2*101+2*301) 

 

Compared to the FEA (ABAQUS) results, the deteriorating TSA evaluated stress of 
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6.8.1 Contour Plots 

Using the now known Airy coefficients, the complete state of stress can be determined 

throughout the plate of the loaded connector, i.e., the full-field individual Cartesian and polar 

components of stress can be evaluated. Contour plots showing the stress distributions near the 

pinned end of the specimen are plotted using MATLAB. Again the individual stress components 

are normalized with respect to the far field stress, σ0 (= 16.56 MPa or 2400 psi). The results are 

compared with those from FEM. MATLAB was also used to plot the contours of the raw FEM 

(ABAQUS) data. 

Plate loaded by circular pin: 

Using the k = 9 now known Airy coefficients evaluated from m1+h1+t1 = 5,479 input 

values (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301) for the plate with circular pin, 

the full-field individual Cartesian and polar components of stress can be evaluated. Figures 6.96 

through 6.98 are the contour plots of normalized Cartesian components of stress for the plate 

with the circular pin. Similarly figures 6.99 through 6.101 are the contour plots of normalized 

polar components of stress for the plate loaded by the circular pin. There is a good agreement 

between the TSA and ABAQUS results. The slightly high radial stress (figure 6.99) may be due 

to the stress discontinuities from ABAQUS at the interface of pin and plate hole. 
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Fig. 6.96: Contour plot of σxx/σ0 (loading direction) from TSA (left) for m1+h1+t1 = 5,479 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301) and ABAQUS (right) 

 
Fig. 6.97: Contour plot of σyy/σ0 (lateral direction) from TSA (left) for m1+h1+t1 = 5,479 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301) and ABAQUS (right) 
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Fig. 6.98: Contour plot of σxy /σ0 (shear stress) from TSA (left) for m1+h1+t1 = 5,479 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301) and ABAQUS (right) 

 
Fig. 6.99: Contour plot of σrr /σ0 (radial stress) from TSA (left) for m1+h1+t1 = 5,479 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301) and ABAQUS (right) 
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Fig. 6.100: Contour plot of σθθ /σ0 (tangential stress) from TSA (left) for m1+h1+t1 = 5,479 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301) and ABAQUS (right) 

 
Fig. 6.101: Contour plot of σrθ /σ0 (shear stress) from TSA (left) for m1+h1+t1 = 5,479 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*301) and ABAQUS (right) 
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Plate with non-circular pin: 

Using the k = 9 now known Airy coefficients evaluated from m2+h2+t2 = 6,592 input 

values (m2 = 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301) for the plate with non-circular 

pin, the full-field individual Cartesian and polar components of stress can be evaluated. Figures 

6.102 through 6.104 are the contour plots of normalized Cartesian components of stress for the 

plate with non-circular pin. Similarly figures 6.105 through 6.107 are the contour plots of 

normalized polar components of stress for the plate with non-circular pin. There is good 

agreement between the TSA and ABAQUS results. The slightly high radial stress (figure 6.105) 

may be due to the stress discontinuities (figure 6.90) from ABAQUS at the interface of pin and 

plate hole.  

 
Fig. 6.102: Contour plot of σxx/σ0 (loading direction) from TSA (left) for m2+h2+t2 = 6,592 input 

values and k = 9 (m2 = 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301) and ABAQUS (right) 
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Fig. 6.103: Contour plot of σyy/σ0 (lateral direction) from TSA (left) for m2+h2+t2 = 6,592 input 

values and k = 9 (m2 = 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301) and ABAQUS (right) 

 
Fig. 6.104: Contour plot of σxy /σ0 (shear stress) from TSA (left) for m2+h2+t2 = 6,592 input 

values and k = 9 (m2 = 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301) and ABAQUS (right) 
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Fig. 6.105: Contour plot of σrr /σ0 (radial stress) from TSA (left) for m2+h2+t2 = 6,592 input 

values and k = 9 (m2 = 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301) and ABAQUS (right) 

 
Fig. 6.106: Contour plot of σθθ /σ0 (tangential stress) from TSA (left) for m2+h2+t2 = 6,592 input 

values and k = 9 (m2 = 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301) and ABAQUS (right) 
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Fig. 6.107: Contour plot of σrθ /σ0 (shear stress) from TSA (left) for m2+h2+t2 = 6,592 input 

values and k = 9 (m2 = 3458 TSA values, h2 = 2*871, t2 = 2*101+2*301) and ABAQUS (right) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



319 
 

6.9 Load Equilibrium 

The reliability of the TSA results is evaluated by integrating the vertical (longitudinal) 

stress σxx over the contact region of the hole (figures 6.2 and 6.6) and across horizontal sections 

of the loaded connectors (included sections where the pin does or does not contact the hole) to 

see if equilibrium is satisfied, i.e., to see how well these computations agree with the applied 

load of 5.33 kN (1200 lbs). Load equilibrium is determined by summing/integrating the TSA-

determined σxx across twice (due to symmetry) the area associated with the horizontal lines i.e., 

 ∫       , and on the contact boundary of the hole i.e.,  ∫          (where t is the plate 

thickness and R is the radius of the hole). For the circular pin the contact region between the 

plate and pin is from θ = 83
o
 to 180

o
 and the corresponding value of load based on summing the 

TSA-determined vertical stress on the contact edge of the hole is 1106 lbs (4.91 kN) i.e., 8% 

error (based on the applied load of 5.33 kN). Figures 6.108 and 6.109 are the load equilibrium 

and load ratio plots for the plate loaded by the circular pin. The fact that these load equilibrium 

calculations are quite well satisfied provides confidence in the TSA results. Load equilibrium at 

different horizontal levels (different values of x) based on the TSA-determined vertical stress 

also agree well with the physically applied load (the error is less than 10%, of the applied load 

table 6.1). The angles θ associated with plate of figures 6.108 and 6.109 are the same as those in 

table 6.1. The x-levels in figures 6.108 through 6.111 are in inches (table 6.1).  

 

 



320 
 

Table 6.1: Total load from TSA-based vertical stress scanned at different 

horizontal levels of x for the plate with circular pin. 

R θ 

ϕ 

(180
o
 

- θ) 

ψ 

(θ + ψ = 90
o
) 

Sin(ψ) 
x = 

R*Sin(ψ) 

Load 

Equilibrium 

(lbs) 

Load 

Equilibrium 

(kN) 

% 

error 

0.5" 80
o
 100

o
 10

o
 0.1736 0.0868" 1319 5.86 + 9.9 

0.5" 83
o
 97

o
 7

o
 0.1219 0.0609" 1319 5.86 + 9.9 

0.5" 90
o
 90

o
 0

o
 0 0 1316 5.85 + 9.7 

0.5" 97
o
 83

o
 - 7

o
 - 0.1219 - 0.0609" 1312 5.83 + 9.3 

0.5" 100
o
 80

o
 - 10

o
 - 0.1736 - 0.0868" 1308 5.82 + 9 

 

 
Fig. 6.108: Load equilibrium from scanning TSA-based vertical stress along the boundary of the 

hole and at different horizontal levels of x of the plate with circular pin 
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Fig. 6.109: Load ratio from scanning TSA-based vertical stress along the boundary of the hole to 

that applied physically at different horizontal levels of x of the plate with circular pin 

For the plate loaded by the non-circular pin, the contact-free region between the plate and 

pin was found to be from θ = 87
o
 to 180

o
. Figures 6.110 and 6.111 are the load equilibrium and 

load ratio plots for the plate for the non-circular pin loading. Load equilibrium check at different 

horizontal levels of x are again satisfactory (the error is less than 10%, of the applied load table 

6.2) and in the contact region of plate and the pin the error is less than 14%, figures 6.110 and 

6.111. The angles θ of figures 6.110 and 6.111 are the same as those in table 6.2.  
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Table 6.2: Total load from TSA-based vertical stress scanned at different 

horizontal levels of x for the plate with non-circular pin. 

R θ 

ϕ 

(180
o
 - 

θ) 

ψ 

(θ + ψ = 

90
o
) 

Sin(ψ) 
x = 

R*Sin(ψ) 

Load 

Equilibrium 

(lbs) 

Load 

Equilibrium 

(kN) 

% 

error 

0.5" 80
o
 100

o
 10

o
 0.1736 0.0868" 1312 5.83 + 9.3 

0.5" 83
o
 97

o
 7

o
 0.1219 0.0609" 1312 5.83 + 9.3 

0.5" 90
o
 90

o
 0

o
 0 0 1309 5.82 + 9.1 

0.5" 97
o
 83

o
 - 7

o
 - 0.1219 - 0.0609" 1306 5.81 + 8.8 

0.5" 100
o
 80

o
 - 10

o
 - 0.1736 - 0.0868" 1303 5.79 + 8.6 

 

 
Fig. 6.110: Load equilibrium from scanning TSA-based vertical stress along the boundary of the 

hole to that applied physically at different horizontal levels of x of the plate with non-circular pin 
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Fig. 6.111: Load ratio from scanning TSA-based vertical stress along the boundary of the hole 

and at different horizontal levels of x of the plate with non-circular pin 
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6.10 Summary, Discussion and Conclusions 

Bolted connections are prevalently used to fasten separate mechanical or structural 

members together. Since such joints are frequently the ‘Achilles heel’ relative to physical 

integrity, it is important that their stresses be known. Attempting to fully stress analyze a bolted 

joint is challenging if some of the stresses at the bolt-hole interface are unknown. As with any 

situation when some of the loads are unknown, inadequate information on the contact stresses at 

the edge of the hole makes it difficult to stress analyze bolted connections theoretically or 

numerically. Whereas studies such as that of reference [63] treat 3-D fasteners, including 

inelastically deformed bolts and clamping forces between the plates, the present analyses do not 

admit any transverse clamping loads and assume plane-stress elasticity. Acknowledging the 

aforementioned situations, thermoelastic stress analysis (TSA) is utilized here to stress analyze a 

2-D pin-loaded plate. Synergizing the measured temperature information with an Airy stress 

function is advantageous for such situations in that the technique provides the individual 

components of stress full-field (including on the loaded edge of the hole) in the actual members. 

This is accomplished without necessitating (other than perhaps a black paint) a photoelastic 

model or birefringent coating [45, 51, 60, 77 and 98], any surface pattern or ruling [50] or 

discretely bonded strain gages [59, 98]. Contrasted with moiré, holography, speckle or digital 

image correlation, the present approach requires neither knowing the elastic modulus nor 

differentiating the recorded information. Equations 6.6 through 6.13 involve Poisson’s ratio, ν. 

However, changes in ν tend to be small for different structural materials and Chapter 6 of 

reference [98] demonstrates the relative insignificant effects variations in ν have on the stresses 

in bolted connectors. Unlike other experimental approaches, the present method of processing of 
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the recorded data with an Airy stress function plays a major role in providing reliable individual 

components of stress on the contact edge of the hole. To simplify the analysis, many fastener 

studies assume that the pin/bolt is rigid. Since the modulus of the current steel pin is only three 

times that of the aluminum plate, the pin is not rigid by comparison and the present technique 

account for the latter’s elasticity. 

Recognizing that aerospace mechanical connections, in particular, frequently have little 

bolt-hole clearance, and the importance thereof, this chapter emphasizes snugly fitting fasteners 

[60, 87 – 89, 91 – 93]. Under such conditions the normal stress at the bolt-hole interface is often 

assumed to vary as a cosine function of the angle measured from the point of initial contact [64]. 

Irrespective of whether or not there is any bolt-hole clearance, persons have frequently simplified 

an analysis by ignoring any contact shear/friction stress between the bolt and hole. There will 

always be some normal and hoop stresses at the edge of the bolt-loaded hole. Since equilibrium 

must be satisfied, a solution approach which ignores the contacting shear stress, or assumes an 

incorrect normal stress, might result in an incorrect stress analysis, e.g., consider a boundary-

value stress analysis based on wrong boundary conditions. Incorrectly assuming σrθ = 0 on the 

edge of the loaded hole could well have adverse consequences on the other calculated stress 

components on that boundary. This might be serious as failure initiation can be influenced by the 

polyaxiality of the stresses, e.g., von Mises-type criteria. The situation could be of even greater 

concern with orthotropic materials where strength is directionally dependent [43, 44, 58 and 63]. 

However, the shear stress at the present pin-hole interface is determined to be small and so it is 

of relatively little concern.    
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References [41, 54, 68, 72, 77 and 95] consider snugly fitting pins, [41] also ignored 

friction and analyses such as those of [72 and 73] assumed the cosine contact radial stress 

distribution which was suggested originally by Bickley [65]. As observed here, Hyer and Lui 

[77] also report that the compressive normal stress at the pin-hole interface in a quasi-isotropic 

plate occurs over a total angle exceeding 180
o
.
 
No information is given on their contact shear 

stress. On-the-other-hand, and unlike here, the TSA study analysis of [54] did not evaluate the 

individual components of stress on the edge of the pin-loaded hole.  

A double shear-plane mechanical joint arrangement was initially tested in which there 

was no pin-hole clearance. This scheme was subsequently replaced by a single-shear plane 

arrangement consisting of a steel pin and an aluminum plate. The latter loading configuration 

was also analyzed using 2-D ABAQUS. A 3-D analysis was conducted initially to assess for any 

potential bending of the loading fixture. During loading, any out-of-plane bending was 

minimized physically by monitoring strains from gages mounted on the front and back faces of 

the plate. However, the recorded longitudinal tensile strain (stress) on the front (TSA) face of the 

aluminum test plate was slightly less than that on the back face (figures 6.54 and 6.55) which 

may be due to little pin bending as predicted by 3-D FEA. This might suggest that the TSA-

determines stresses would be on the low side and hence under-predict the applied load. Tables 

6.1 and 6.2, and figures 6.108 through 6.111, which show that summing the TSA-determined 

stresses results in a connector load slightly higher than that applied physically, indicate just the 

opposite to be the case. These differences are small and for which I do not have an explanation. 

As discussed subsequently the F A did not ‘pick-up’ some of the details which actually occur 

physically at the pin-hole interface. 
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Two slightly different single-shear, plane-stressed pinned connections were analyzed. 

Both cases involved virtually no pin-hole clearance. One fastener employed a 0.9991" = 

25.377mm diameter round steel pin in a 1.0000" = 25.400 diameter hole for a diametral 

clearance of 0.0009" = 22.9μ or 0.09% in the aluminum plate, the other connector used a slightly 

non-round pin with major diameter 0.9993" = 25.382mm in the 1.0000" = 25.400mm diameter 

hole in the same aluminum plate, for a diametral clearance of 0.0007" = 17.8μ or 0.07%
1
. These 

are the smallest clearance which permitted the pin to be inserted into the hole without force 

[114]. Machining-wise, the hole in the aluminum plate was bored while the longitudinal surface 

of the pins was ground. 

The plate was first tested with the non-circular pin and subsequently with the circular pin 

but the results shown in this chapter are for circular pin first and then the non-circular pin. The 

larger non-circular pin resulted in a smaller diametral clearance (17.8μ) compared with 22.9μ for 

the smaller round pin. Neither the scratches on the loading pins or the curved surface of the hole 

were noticed until both cases had been tested and the TSA results showed that in each situation 

the total pin/hole contact angle exceeded 180
o
. TSA information at the edge of the hole indicates 

that the residual scratches on the surface of the hole are due to loading by the round pin. When 

iterating the TSA analysis to find the traction-free boundary condition on the edge of the hole, 

interestingly it was found that the non-circular pin and plate were in contact from θ = 87
o
 to 180

o
 

and circular pin and plate remained in contact from θ = 83
o
 to 180

o
. This information supports 

 

1
These bolt diameters and diametral clearances compare with 8" (20.32 cm) and 0.0005" (12.7μ) 

or 0.006%, respectively, for the pin-loaded aluminum plates described in Reference [98]. 
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the position that although the non-circular pin experiment was done prior to the circular pin 

experiment the non-circular pin cannot make any marks on the plate for θ < 87
o
. Therefore at 

least the marks found on the curved surface of the hole in the plate from θ = 83
o
 to 87

o
 were from 

the circular pin experiment.  

The present TSA approach consisted of processing the measured temperatures in the 

aluminum plate with an Airy stress function, plus imposing the traction-fee conditions discretely 

on the non-contact portion part of the edge of the hole. There was originally almost no pin-hole 

clearance but a portion of the boundary of the hole became unloaded (traction-free) once the 

connection was loaded. The combination of measured temperatures and traction-free conditions 

on the edge of the hole enabled the Airy coefficients to be evaluated. Although unnecessary for 

the purposes of evaluating the Airy coefficients, the traction-free conditions were also imposed 

discretely on the external boundaries of the plate. Knowing the Airy coefficients, the individual 

components of stress were determination on and in the neighborhood of the edge of the hole. 

While not particularly effective, the intent behind using the non-round pin was hopefully to 

provide an increased non-contacting pin-hole boundary over which to impose the traction-free 

conditions.  

In addition to agreeing (approximately, in that the current normal stress on the edge of the 

hole extended to beyond φ = 90
o
) with the frequently assumed interface contact stresses in 

mechanical connections which have zero bolt-hole clearance, the present TSA-determined  

stresses satisfy force equilibrium. TSA results also correlate with those from FEM, although the 

latter exhibit some variations at the pin-hole interface. While perhaps contrary to intuition, 

figures 6.81 and 6.88, like [43, 47 and 60], show that the hoop stress on the edge of the hole is 
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compressive at θ = 180
o
 (φ = 0

o
, ψ = -90

o
) and subsequently changes to tension upon progressing 

around the hole. Not unlike the photoelastic analysis by Hyer and Lui [77], the present TSA 

results indicate the pin and edge of the hole in the aluminum plate remained in contact beyond an 

angle of φ = ± 90
o
. The fact that the total pin-hole contact region exceeded 180

o
 is further 

supported by residual markings on the pins and on the transverse curved surface of the hole
2
. It is 

speculated that the tendency for the originally round hole to become somewhat elliptical so its 

minor diameter (transverse to the vertical direction of plate loading) decreased under load could 

contribute to the total pin-hole contact angle exceeding 180
o
. The horizontal diameter of the pin 

probably also increased slightly under connector loading. Although extremely small local 

dimensional variations in the diameters of the hole and pin might have contributed, the load-

induced desire for the hole to contract, and the pin to expand, in the direction normal to the 

vertically applied connector load was probably a key factor in the total contact angle exceeding 

180
o
. The FEA was not sufficiently sophisticated to provide any meaningful information relative 

to the total pin-hole contact angle > 180
o
. Neither increasing the FEM element density nor 

changes in the coefficient of friction between the steel and aluminum had any appreciable 

influence on the results. The fact that the FEA fails to predict the pin-hole contact exceeding 

180
o
 illustrates the challenges that can occur in trying to numerically predict the actual response 

of mechanical fasteners; hence the need for experimental analyses. 

It is uncertain whether possible increases in the local temperatures accompanying the 

physical actions associated with producing the observed residual marks on the surfaces of the  

 

2
That the contact angle φ ≥ ± 90

o 
results in the normal pin/hole interface stress deviating from the 

often assumed cosine distribution at φ ≥ 75
o.
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hole and pin influenced the TSA results. Temperature increases can be a symptom of a 

compressive stress, figures 6.37 and 6.41 indicate a compressive contact normal stress on the 

edge of the hole greater than the often assumed for φ ≥ 75
o and extending beyond φ = 90

o
, and 

equilibrium calculations based on the TSA-determined stresses tend to exceed the actual applied 

load. Since the specimen is cycled at a higher frequency (20Hz, usually use 10Hz with 

Aluminum), the effect of this local temperature changes are probably negligible. Also, doing the 

analysis, the temperature data were collected only two pixels beyond the boundary of the hole. 

As such the cyclically induced adiabaticity would reduce any potential contamination of the 

employed experimental input data. 

I am unaware of any previous use of TSA to fully stress analyze a mechanical fastener, 

including providing the individual stresses at the pin-hole interface. The only other thermoelastic 

stress analyses involving contact situations appear to be those of [53, 54, 62, 101 and 102]. 

A novel aspect of this chapter is the demonstrated ability to determine the individual 

components of stress on and in the vicinity of the edge of a pin-loaded hole in a finite plate from 

recorded temperature information. In addition to agreeing basically with Bickley’s concept that 

for a tightly-fitting pin, the normal bolt-hole contact stress is reasonably predicted by a cosine 

distribution and the interface shear/friction stress is small [65], the current results support the 

observation by Hyer and Lui that a pin can contact the edge of the hole of a loaded fastener 

beyond a total angle of 180
o
. The inability of the FEM to predict better the presently observed 

pin-hole behavior illustrates some of the difficulties when trying to predict numerically the 

physical response of bolted joints. 
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The present joint analyses emphasize those having virtually no bolt-hole clearance. In 

addition to agreeing approximately with the frequently assumed zero shear stress and cosine 

dependency of the normal stress at the bolt-plate interface under such conditions, stresses are 

proportional to the applied load. The latter simplifies the analysis since TSA involves cycling the 

load to satisfy adiabatically. Contemplated future TSA studies of mechanical fasteners include 

multiple pins/bolts [3], elliptically-shaped bolts/holes [23], a square or rectangular bolt in a 

square or rectangular hole [103], bolt-hole clearance, and pin-loaded orthotropic/composite 

plates [15, 43, 44, 46, 62 and 63]. The current formulation is for a plate of finite geometry. The 

approach could be extended to infinite (physically very large) plates by modifying the stress 

function so as to remove any terms which would cause the stresses to become infinite as r 

(radius) goes to infinity. 

Appendix A6 contains some corresponding ANSYS predictions as well as imposing the 

traction-free condition at more locations along the vertical edge of the plate. 

 

6.11 Acknowledgement  

This topic forms a chapter in my thesis. However, Wa’el Samad and Aneesh Kaliyanda 

participated in the testing, Mr. Samad contributed significant CAD contributions and Mr. 

Kaliyanda did the ABAQUS FEM analyses. They will be co-authors on submitted papers based 

on this chapter. Mr. Dave Arawinko of the CoE machine shop, offered many practical 

suggestions and machined the parts. 

 



332 
 

Chapter 7 : Simplified Stress Functions for 

Complicated Geometries and Loading 

7.1 Introduction 

The cases of figures 7.1 and 7.2 were previously stress analyzed by processing the 

recorded load-induced temperature data with an Airy stress function [4, 111 and 116]. Those 

analyses utilized very complicated stress functions which explicitly include the consequence of 

the applied concentrated load, P. While giving correct stresses throughout essentially the entire 

plate, the stress functions were very involved. Contrasted with the earlier analyzes, the presently 

simpler stress function of the present technique does not presuppose the knowledge of the 

external geometry, loading or boundary conditions. The Airy’s stress function is a useful means 

of condensing the stress formulation of a plane stress problem and by just imposing the local 

boundary conditions one can obtain a simplified and much easier to formulate stress function. 

The measured temperature data analyzed here are from reference [4], and are the same as those 

used with the more complicated stress functions of references [4, 111 and 116]. A similar finite 

element modal was constructed and the present TSA results are compared with those obtained 

using finite element methods, the results obtained from reference [4] and strain gages. The stress 

distribution is similar to that obtained from reference [4].  

While applied here to a particular engineering problem and provided one is primarily 

interested in the stresses only at and in the vicinity of a hole or notch, the current concepts can be 
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extended to more complicated situations and/or other techniques of experimental mechanics, i.e., 

there is no need to develop a more complicated stress function which explicitly involves the 

external shape or boundary conditions. The present approach is expected to provide many 

worthwhile solutions based only on the local geometry, i.e., as done here by satisfying the 

traction-free conditions analytically on the edge of the hole. The concept also overcomes the 

traditional difficulties of unreliable measured edge data, and reduces the number of Airy 

coefficients needed. For the same temperature input data, many fewer Airy coefficients were 

needed here compared to the number of coefficients used to stress analyze (TSA) the same two 

cases in references [4, 111 and 116]. As before, the present technique utilizes measured 

temperature data and an Airy stress function in which the traction-free conditions are imposed 

analytically at the boundary of the hole and the individual stresses evaluated by linear least-

squares. This general method is widely applicable for plane stress problems of elasticity.  

The main objective of this study is to demonstrate the accuracy and simplicity of the 

presented solution for stress analysis of edge-loaded plates having a near surface circular cutout. 

As in references [111] and [116], the cases when the edge load is immediately above the hole 

[111] and when it is off-set from [116] the hole are considered separately. The results herein 

demonstrate the effectiveness of the presented method to determine accurately the stresses, stress 

gradients and stress concentrations for such situations. Numerical methods such as F A typically 

require accurately knowing the far-field geometry and distant boundary conditions. The latter are 

often unreliable or unavailable in industrial situations. While providing reliable results at and in 

the neighborhood of a geometric discontinuity such as a hole, the current TSA approach 
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involving the relatively simple stress functions does not necessitate knowing the external loading 

or geometry. 

Thermoelastic stress analysis (TSA) is a contemporary full-field, non-contacting method 

of experimental stress analysis that relates the local change in temperature to the change in first 

stress invariant and (xx + yy = rr +  = 1 + 2). On the other hand, engineering applications 

often require knowing the individual components of stress. The individual components of 

stresses are evaluated here by analytically imposing the traction-free conditions on the edge of 

the hole in combination with the measured TSA (isopachic) data for the plane problem of an 

edge-loaded finite elastic plate having a near surface circular hole. It is convenient to acquire all 

the necessary measured data from a single experimental method in that no supplementary 

measured data are required. That the technique also does not involve differentiating the measured 

temperature data is advantageous. The individual stress components are consequently obtained 

here reliably at least in the region of interest, i.e., at, and adjacent to, the edge of the hole. The 

edge load is either immediately over the hole (figure 7.1) or offset from the hole (figure 7.2). 

Knowing the effects of cutouts relative to the locations of the loads, stress concentrations of such 

plates are important for circuit boards and buried structures.  

For the cases of figures 7.1 and 7.2, the region of interest is in the vicinity of the hole. 

The analysis of figure 7.1 enjoys the advantage of symmetry about the vertical x-axis. The offset 

loading of figure 7.2 lacks symmetry about both of these axes. This will necessitate many more 

Airy coefficients than with the central loading of figure 7.1. Particularly the offset load of figure 

7.2 complicated formulating a relevant stress function in terms of polar coordinates whose origin 

is at the center of the hole by the original approach of reference [116]. Having the origin of the 
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polar coordinates at the center of the hole is virtually necessary in order to satisfy the traction-

free conditions at the hole analytically. On the other hand, a fairly simple relevant stress 

function(s) in terms of polar coordinates can be developed by restricting one’s interest to the 

neighborhood of the hole and imposing the traction-free conditions analytically at the boundary 

of the hole. By focusing on the region at and near the hole, this method ignores the explicit 

contributions of the external geometry or loading. The obtained stresses are consequently not 

applicable far away from the hole, including very close to the applied concentrated load. 

However, in return for giving up reliable stress information far from the hole, one can a use 

much simpler stress function and fewer Airy coefficients. This general approach is thus 

applicable irrespective of the form or magnitude of the loading and stresses are provided without 

the use of measured data on, or immediately near, the edge of the hole. The latter is very 

important because it is the difficult to record reliable temperature information at the edge of a 

discontinuity. In addition to not explicitly incorporating the distant geometry or external 

boundary conditions, including the concentrated load, P (per unit thickness), knowledge of the 

material constitutive properties is not required. As such the method is capable of solving inverse 

problems. 

Dimensions of the perforated plate of figures 7.1 and 7.2 are 88.9 mm (3.5) by 88.9 mm 

(3.5) and 9.53 mm (3/8) thick. The hole has a diameter of 19.05 mm (3/4) and the distance 

from the center of the hole to the top edge of the plate is D = 19.05 mm (3/4). The same 

physical plate was utilized for the two respective cases of figures 7.1 and 7.2. Although the 

radius of the hole is equal to the plate thickness, information of reference [111] substantiated the 

validity of assuming plane stress. 
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Fig. 7.1: Plate containing a near-edge hole beneath a concentrated load 

A

’ 

A 
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Fig. 7.2: Schematic geometry of a large plate containing a near edge hole subjected to an offset 

concentrated load 

 

The general approach is applicable irrespective of the form or magnitude of the loading 

and stresses are provided without the use of measured data on, or immediately near, the boundary 

of the hole. In figures 7.1 and 7.2, the present region of interest is in the vicinity of the hole. 

Therefore, a relevant stress function(s) in terms of polar coordinates can be developed by 

imposing the traction-free conditions analytically at the boundary of the hole so as to further 

reduce the number of needed Airy coefficients. 

 

 

A
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7.2 Stress Functions and Stresses 

This section introduces relevant specific Airy stress functions and their derived stress 

equations for the (i) central and (ii) offset loading conditions for the cases of interest of figures 

7.1 and 7.2, respectively. For two-dimensional isotopic elasticity, the Airy’s stress function, , of 

equation 7.1, is the solution of the governing differential equation, 
4 = 0, which consists of  
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numerous terms, ao, bo, co, do and so forth. Many of these Airy coefficients can often be eliminated 

for a particular situation by various conditions and/or arguments, e.g., any symmetry, single-

value stresses, strains and displacements, whether or not the origin is within the body, self-

equilibrated at individual boundaries and whether the component is finite or infinite in size. For 

the analyses associated with figures 7.1 and 7.2, the origin is at the center of the cut-out so it 

does not occur within the plate, and the shape of the cut-out is defined by analytically imposing 

the traction-free conditions on the edge of the hole. The situation is symmetrical about the 

vertical x-axis for the problem of figure 7.1 but unsymmetrical about both the x- and y-axes in 

figure 7.2. 
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 For the unsymmetrically-loaded offset plate in figure 7.2, since the displacements, strains 

and stresses must be single-valued functions of θ, and there is no resultant force at the origin, 

coefficients d0, B0, C0, D0, B1, B1 and A1, A1, b1, b1 of the complete general expression for the 

stress function, , are all zero [1, 4 and 6]. Restricting the response at and in the area of the hole, 

the stress function of equation 7.1 for the finite plate which is unsymmetrical about both the x-

and y-axes is given by unsym of equation 7.2. Since the consequence of the external geometry 

and loading is not directly accounted for here, the stress function of equation 7.2 does not 

contain P. The expressions for  of equation 7.2 contrasts with that of equation 7.2-A as used in 

reference [116]. The latter explicitly accounts for the external loading and geometry through P, D 

and  . 
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        (7.2) 

The derivation of the stress function offset of equation 7.2-A, which was developed in 

reference [4 and 116] for the offset loaded plate of figure 7.2, involved extensive amount of 

algebra and many Airy coefficients. Upon analytically imposing the traction-free boundary 

condition on the edge of the hole, the individual components of stress from equation 7.2-A 

involve the coefficients F1, . . . . , F9 (corresponding to ORPTERM, OSPTERM, etc., in reference 

[4]) as will be seen in the ultimate expression of the isopachic stress for the offset loaded 
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specimen, equation 7.22-A. These coefficients of equation 7.22-A are functions of geometric 

quantities R, D and E of figure 7.2 [4 and 111]. The stress function of equation 7.2-A includes the 

applied load, P and will ultimately involve more coefficients than equation 7.2. That the stresses 

of the present analysis (based on equation 7.2-A) do not directly involve the applied load P, plate 

dimensions or the location of the hole in the plate is advantageous.  valuating individual 

components of stress using the technique of references [4 and 116] involves complicated 

programming, increased computation time, and the stress function of equation 7.2-A differs 

explicitly as the loading condition changes. However, it is important to be reminded that 

simplifications associated with unsym of equation 7.2 (compared to that of equation 7.2-A) for the 

situation of figure 7.2 imply the deduced stresses are only reliable at and in a reasonable 

neighborhood extending away from the hole. 
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    (7.2-A) 

For the symmetrically loaded plate of figure 7.1, since the displacements, strains and 

stresses must again be single-valued functions of θ and there is no resultant force at the origin, 

coefficients d0, B0, C0, D0, B1, B1 and A1, A1, b1, b1 are again all zero [4 and 111]. The 

symmetry about the vertical x-axis of figure 7.1 means that stresses occurring at any angle, θ = 
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+β would be the same as those at θ = -β i.e., sym(r, θ) = sym(r, -θ). Thus sym for the plate of 

figure 7.1 must be an even function of θ. As a result, A0, an, bn, cn, dn (for n ≥ 1) can all be equated 

here to zero such that only, and cosine terms of equation 7.2 are retained in the present stress 

function (i.e., omit sine and theta terms) for the plate of figure 7.1.  

The stress function of equation 7.2 associated with figure 7.1 can therefore be simplified 

here as sym of equation 7.3:  
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        (7.3)  

where r is the radius from the center of the hole and  is the angle measured clockwise from 

vertical x-axis, figure 7.1. N is the terminating index value of the summation series and it could 

(theoretically) approach infinity (N is a positive integer greater than 1). Taking the x-axis to be 

positive vertical is compatible with the common practice of measuring angle  in the stress 

function from the x-axis which is the direction of loading. Other than that the coordinate origin 

not being within the structural component, the shape of the cut-out is  not yet defined. The 

counterpart of equation 7.2-A for the plate of figure 7.1 is  
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Equation 7.3-A is similar to equation 7.2-A except now   = 0 (loading is vertically above 

the coordinate origin) and Ao = a1 = c1 = d1 = an = bn = cn = dn = 0 (due to symmetry about the 

x-axis). 

The derivation of stress function, cen of equation 7.3-A for the centrally loaded specimen 

of figure 7.1 also involved appreciable algebra and many coefficients other than polar 

coordinates r and  [4 and 111]. Upon analytically imposing the traction-free boundary condition 

on the edge of the round hole of radius R, the individual components of stresses (based on 

equation 7.3-A) involve the coefficients, C1, . . . . , C9 [111] (corresponding to RPTERM, 

SPTERM, etc., in reference [4]) as seen in the expression of isopachic stress for the centrally 

loaded specimen, equation 7.14-A. The coefficients Ci of equation 7.14-A are based on the 

geometric dimensions R and D of figure 7.1 [4 and 112]. Moreover, the expressions for the 

individual components of stress also involve Airy coefficients c0, d1, c2, d2, b3, c3, d3, and cn and 

dn for n > 3 (which depend indirectly on P), which are determined experimentally. On the other 

hand, the present (based on equation 7.3) analysis advantageously determines the stresses 

without explicitly involving the applied load P, plate dimensions or the location of the hole in the 

plate. Of course changes in P or extreme shape could be accounted in the experimentally 

determined values of the Airy coefficients. It is also worth noting that the number of unknown 

coefficients ultimately involved in the stress function of equations 7.2-A and 7.3-A are more 

when compared to the present approach of the simplified stress function (equations 7.2 and 7.3). 

The current plate is finite in size. If the geometry were infinite (mathematically), at least 

an and bn, and an and bn of equations 7.1 and 7.2 must be zero to ensure stresses do not grow to 

infinity as r → ∞.  
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Individual components of stress can be obtained by differentiating the stress function(s) 

of equations 7.2 and 7.3 according to equations 7.4 through 7.6: 
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                (7.6) 

Symmetry about vertical x-axis related to figure 7.1 

Using equations 7.4 through 7.6, the following expressions for individual polar 

components of stress are obtained by differentiating the reduced stress function sym of equation 

7.3, (without regard to most of the specific boundary conditions of figure 7.1), [8] i.e., 
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As a result of differentiation, the coefficients a0 and a1 which appear in the Airy stress 

function sym, equation 7.2, are absent in the expressions for the individual stress components, 

equations 7.7 through 7.9. For isotropy under cyclic loading condition, the Thermoelastic Stress 

Analysis (TSA) recorded temperature variation at a point in a loaded member is linearly 

proportional to the change in the isopachic stress or the first stress invariant. The isopachic stress 

is obtained by adding the radial and tangential components of stress equations 7.7 and 7.8, i.e: 

Ssym = ( rr )sys + ( θθ )sys 
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     (7.10)   

Comparing equations 7.7 through 7.10 shows that the Airy coefficients present in the 

expression for isopachic stress of equation 7.10 are also present in the expressions for individual 

stresses. However, the expressions for the individual components of stress, equations 7.7 through 

7.9, also contain the Airy coefficients b0, an, cn (for n ≥ 2) and c1 which are absent in the 

equation for isopachic stress, equation 7.10. Therefore, using only Thermoelastic Stress Analysis 

data and the expression for the isopachic stress will not suffice to evaluate the individual 

components of stress. However, imposing the traction-free boundary conditions analytically on 

the boundary of the hole will result in all of the coefficients that are present in the equations for 
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individual stresses to also appear in the expression for the isopachic stress. One can then evaluate 

all the three individual components of stress from only measured temperature information. 

Incorporating zero radial and shear stresses on the edge of the hole analytically/continuously is 

advantageous in that it also significantly reduces the number of independent coefficients in the 

stress components. Fewer coefficients typically decrease the number of equations (involved in 

the least squares process) and potentially the amount of measured input data needed to evaluate 

these unknown coefficients. Contemporary commercial TSA systems can provide extensive 

amounts of measured S* expeditiously.  However, obtaining sufficient amounts of measured 

input data can be challenging using other experimental techniques, for instance strain gages. 

In addition to defining the shape of the cut-out, imposing the traction-free boundary 

conditions analytically on the boundary of the hole (rθ = 0 and rr = 0 at r = R = 12.7 mm = 1/2 

is the radius of the hole), and for all values of θ, results in some of the originally independent 

coefficients of equation 7.3 becoming dependent functions of other independent coefficients. By 

replacing these dependent coefficients (c1 , an , cn , a2 , c2 , a3 , b3 ) by their corresponding 

independent coefficients (d1, bn, dn, b2, d2, b0, c0, c3 and d3 ), the stress components of 

equations 7.7 through 7.9 can be rewritten as equations 7.11 through 7.13
*
.  

 

*
 Corresponding equations were originally derived in reference [8]. Equations 7.7 through 7.10 

come from reference [8] and are the equations before imposing the traction-free conditions on 

the edge of the hole. However, after imposing these local traction-free boundary conditions, the 

expressions of reference [8] corresponding to equations 7.11 through 7.14 contained some 

typographical errors. These equations are re-derived and simplified in Appendix 7. Equations 

7.11 through 7.14 are the correct form of the equations but they have not been simplified. The 

form of the present equations 7.11 through 7.14 is simplified as equations 7A.23, 7A.29, 7A.35 

and 7A.42 in Appendix A7. 
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    (7.13) 

Again adding equations 7.11 and 7.12 for the radial and tangential components of stress 

to determine the equation for the isopachic stress (equation 7.14) gives 

 Ssym_analy = ( rr )sym_analy + ( θθ )sym_analy 
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Note the equations 7.11 through 7.14 for the symmetrical case of figure 7.1 can be reduced to 

equations 7A.23, 7A.29, 7A.35 and 7A.42 in Appendix A7 by substituting equation 7A.14 in 

equations 7.11 through 7.14. The reason equations 7.11 through 7.14 were not replaced with 

those from the Appendix A7 is because these equations were used in the analysis of this chapter. 

Moreover, when imposing the stress compatibility between the two holes in Chapter 8, the Airy 

coefficients of figures 8.106 through 8.109 are also based on equations 7.11 through 7.14 

assuming symmetry with respect to x-axis. 

All of the coefficients present in this expression for isopachic stress of equation 7.14 can 

be evaluated experimentally from thermoelastic stress analysis (i.e., measured TSA data, S*, 

which is proportional to the sum of the radial and tangential stresses) and by imposing the 

traction free condition analytically on the boundary of the hole. Since all the coefficients which 

appear in the individual stress components (equations 7.11 through 7.13) for the plate of figure 

7.1 also exist in the equation for isopachic stress (equation 7.11), the complete state of in-plane 

stress for that case is evaluated from the load-induced temperature information (i.e. TSA). 

Equation 7.14-A is the corresponding expression for S associated with the plate of figure 

7.1 but based on the much more complex stress function of equation 7.3-A. 
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                      (7.14-A) 

Non-symmetry related to figure 7.2 

Using equations 7.4 through 7.6, the following expressions for individual polar 

components of stress are obtained by differentiating the reduced stress function unsym of 

equation 7.2, (without regard to most of the specific boundary conditions of figure 7.2) [4], i.e., 
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     (7.17)  

As a result of differentiation, the coefficients a0 and a1 which appear in the Airy stress 

function unsym, equation 7.2, are absent in the expressions for the individual stress components, 

equations 7.15 through 7.17. For isotropy under cyclic loading condition, the Thermoelastic 

Stress Analysis (TSA) measures the temperature variation in a loaded member which is linearly 

proportional to the change in the isopachic or the first stress invariant. Therefore the isopachic 

stress Sunsym of equation 7.18 is obtained by adding the radial and tangential components of stress 

equations 7.15 and 7.16, which is as follows: 



351 
 

   

     

     

0 1 1

2 3 4

2 3 4

4 8 8

4 1 4 1

4 1 4 1
n n

unsym rr unsym unsym

'

N
n n

n n

n , , ...

N
n ' n '

n , , ...

S

c r sin d r cos d

n r b n r d sin n

n r b n r d cos n

 

 













 

         

             

             




      (7.18) 

Comparing equations 7.15 through 7.18 shows that coefficients present in the expression 

for isopachic stress are also present in the expressions for individual stresses. However, the 

expression of isopachic stress Sunsym, of equation 7.18 excludes coefficients b0, c1, c1, A0, and an, 

cn, an, cn for n >1 which appear in the individual stress components, equations 7.15 through 

7.17. Therefore, the individual stresses are not available from the isopachic stress expression of 

equation 7.18 and TSA data alone. However, by again imposing the traction-free boundary 

conditions analytically on the boundary of the hole will result in all of the coefficients that are 

present in the equations for individual stresses to also appear in the expression for the isopachic 

stress. This will enable one to evaluate all the three individual components of stress from only 

measured temperature information.  

If the traction-free conditions on the edge of the hole (rθ = 0 and rr = 0 at r = R (= 12.7 

mm = 1/2 is the radius of the hole) and for all values of θ) of figure 7.2 are analytically 

incorporated, coefficients c1, c1, a2, c2, a3, b3, an and cn (n  3), and an and cn (n > 1) in the 

individual components of stress become dependent variables and the stress components of 

equations 7.15 through 7.17 can be rewritten as equations 7.19 through 7.21. (detailed 

derivations are in Chapter 4 of reference [4].) 
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Based on imposing rr = r = 0 analytically on the edge of the hole, the isopachic 

equation Sunsym_analy in terms of independent coefficients is available from adding the radial and 

hoop stresses of equations 7.19 and 7.20 together to give equation 7.22. 
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          (7.22) 

 Equation 7.22-A is the isopachic stress for the plate of figure 7.2 based on the stress 

function of equation 7.2-A but having satisfied the traction-free condition on the edge of the hole 

[116]. This equation associated with the case of figure 7.2 is the counterpart of equation 7.14-A 

for the plate of figure 7.1. 
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            (7.22-A) 

The isopachic stress Sunsym_analy of equation 7.22 associated with the plate of figure 7.2 

contains all of the Airy coefficients which appear in the relevant expressions for the individual 

components of stress, equations 7.19 through 7.21, i.e., b0, c0, A0, d1, d1, b2, d2, c3, d3, and bn and 

dn (for all n>3), and bn and dn (for all n>1). Thus, once all of the unknown Airy coefficients of 

the isopachic stress expression of equation 7.22 are thermoelastically evaluated (S* = KS = K(rr 

+  = xx + yy = 1 + 2)), individual stresses which satisfy equilibrium and compatibility, at 

least on and near the edge of the hole, can consequently be investigated from equations 7.19 

through 7.21 even without knowledge of the material constitutive information, or external 

geometry or distant boundary conditions. 
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7.3 Thermoelastic Stress Analysis 

Thermoelastic stress analysis provides full-field stress information over the surface. 

Processing the recorded temperature data with a relevant Airy stress function enables one to 

obtain the individual stresses at and in the vicinity of the geometric discontinuity without any 

complicated mathematical algebra or additional experimental and/or numerical techniques. The 

TSA data analyzed here, which are from reference [4, 111 and 116], are for the aluminum (6061 

T6511, ultimate strength of 275 to 311 MPa (= 40 to 45 ksi) and yield point of 241 to 275 MPa 

(= 35 to 40 ksi) plate of figures 7.1 and 7.2. Figure 7.3 are photographs of the experimental set-

up for each of the centrally loaded plate (left) and an offset loaded plate (right). These 

photographs include the DeltaTherm DT1410 infrared camera (sensor array of 256 x 256 pixels) 

used to record the load-induced temperature variations, the loaded plate and the MTS loading 

system. The plate was sprayed with Krylon flat black paint prior to testing to provide an 

enhanced surface emissivity and then was mounted in the 88.96 kN (20,000 lbs) capacity MTS 

testing frame (figure 7.3) and loaded sinusoidally between 222.4 N (50 lbs) and 1112 N (250 lbs) 

at 20 Hz. In each case the load was applied through a short piece of drill rod between the top flat 

platen of the MTS machine and the top of the plate.  
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Fig. 7.3: Thermoelastic stress analysis experimental set up for the centrally loaded plate (left) 

and the offset loaded plate (right) with a near edge hole 

 
Fig. 7.4: Thermoelastic images of loaded specimen, centrally loaded plate (left), figure 7.1 and 

the offset loaded plate (right), figure 7.2 

The thermoelastic images of figure 7.4 were recorded over duration of two minutes. For 

the centrally loaded plate (left image in figure 7.4), the pixel size is 0.73 mm (0.029) and 

approximately 14,500 TSA discrete values cover the entire plate. For offset loaded plate (right 

image in figure 7.4), the pixel size is 0.72 mm (0.028) and approximately 15,000 TSA discrete 

values cover the entire plate. The utilized TSA measured data from the thermograms of figures 

7.4 originated at least 4 pixels away from the hole boundary and the top edge of figures 7.1 and 
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7.2. The number of measured isopachics S (= S*/K) employed here for the analyses of the 

centrally loaded plate is 300 and for offset loaded plate is 849. The thermo-mechanical 

coefficient, K, for both the central and offset loadings is 319 U/MPa (2.21 U/psi). The unit U is 

used to signify the raw TSA output, in un-calibrated signal units. These amounts and source 

locations of the input temperature data, S, and the present value of K are those of references [4, 

111 and 116]. 

Based on the TSA-measured stress information (S = S*/K = rr + ), and when the 

traction-free boundary conditions, rr = r = 0, are analytically imposed on the edge of the hole 

for the central loaded or the offset loaded plate, one can form the linear matrix equation Ac = d of 

equations 7.23 (central loading, figure 7.1) and 7.24 (offset loading, figure 7.2), where matrix A 

contains isopachic expressions of the form of equations 7.14 or 7.22, respectively, with k 

unknown Airy coefficients for the TSA recorded values from figure 7.4. Vector c contains k Airy 

coefficients and vector d contains the thermoelastically measured S = rr +  = S*/K 

information which is based on the analysis of the centrally loaded or offset loaded plate 

corresponding to the set of equations in the isopachic matrix A. Since the expressions for S = rr 

+  for figures 7.1 (equation 7.23) and 7.2 (equation 7.24) contain all of the unknown Airy 

coefficients involved in rr, , and r, the individual stresses can be acquired from the 

measured thermoelastic data without engaging any other information beyond the previously 

imposed traction-free conditions at the hole boundary. 

 xperience indicates that too few coefficients can produce inaccurate results, while too 

many coefficients, k, can cause the Airy matrix, A of equations 7.23 and 7.24 to become unstable 
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or even singular due to computer round-off errors and can also increases the computation time. 

The number of coefficients was efficiently determined here by monitoring the condition number 

of the Airy matrix relative to it becoming singular and the RMS values of TSA measured S = 

S*/K, as well as calculated isopachics, equations 7.23 and 7.24 (figures 7.5 through 7.10) 
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or, the simplified form for equations 7.23 and 7.24, 

1 1[ ] { } { }m k k mA c d  
                      (7.25) 

 
Fig. 7.5: Plot of condition number, C, vs. number of coefficients, k, for the presently analyzed 

centrally loaded plate with m = 300 input values 

 
Fig. 7.6: Plot of log10(C) vs. number of coefficients, k, for the presently analyzed centrally loaded 

plate with m = 300 input values 

 
Fig. 7.7: Plot of condition number, C, vs. number of coefficients, k, for the presently analyzed 

offset loaded plate with m = 849 input values 
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Fig. 7.8: Plot of log10(C) vs. number of coefficients, k, for the presently analyzed offset loaded 

plate with m = 849 input values 

One of the considerations for evaluating an appropriate number of coefficients to use here 

is based on the condition number, C, of the matrix A, that is an indicator to express matrix 

singularity. Figures 7.5 and 7.7 are the plots for condition number C versus the different number 

of coefficients for the Airy matrix A, for central loaded based on the 300 measured input data and 

the offset loaded plate based on the 849 measured input data respectively. Figures 7.6 and 7.8 are 

the log10 values of the condition numbers for the central loaded and offset loaded plate, 

respectively, for different number of coefficients. It is worth noting from figures 7.5 through 7.8 

that for a fixed number of equations, the condition number of the matrix A grows exponentially 

with increased number of coefficients. It is therefore preferable to employ the fewest number of 

coefficients that produces sufficient precisions and advantageously reduces the computation 

time. 

To further assess a realistic number of Airy coefficients to utilize, the RMS (Root Mean 

Square) value of equation 7.26 is used. RMS evaluates the discrepancy between the calculated 

isopachics {d} and the measured values of S in vector {d} of each of equations 7.23 and 7.24. If 

the Airy matrix equation Ac = d of equations 7.23 and 7.24 is over-determined, i.e., m > k, where 

m is the number of equations and k is the number of coefficients, the linear matrix equation will 
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be solved in the least-squares process. Therefore, for an over-determined matrix equation, Ac = 

d, the now-known coefficient vector, {c}, as calculated from c = A\d or c = pinv(A)*d 

(MATLAB notation) (where [A] and {d} consist of known or measured values) and substituting 

the now-known coefficient vector, {c}, into the original matrix equation will give Ac = d, where 

vector {d} is typically not exactly the same as the input data {d} (actually consists of m values 

of S = S*/K). A small RMS value is desired between the evaluated isopachic data, {d′}, and 

thermoelastically measured, {d}.   

 
2

' '

1

( ) /
m

RMS i i

i

d d d d m


  
                     (7.26) 

Figures 7.9 and 7.10 plot the RMS values versus the different number of coefficients, k, 

for central loaded based on the 300 measured input data and offset loaded plate based on the 849 

measured input data, respectively. Inspection for centrally loaded and offset loaded plate 

illustrates that the condition number increases exponentially and RMS values remains almost 

constant with the number of coefficients, k. Therefore k = 9 for the central loaded plate and k = 

17 for the offset loaded plate are satisfactory choices (where is RMS become reasonably constant 

(C indicative of a stable matrix A). More coefficients do not reduce the RMS value very much, 

and would entail more calculations and a bigger condition number for the analytical matrix. This 

can increase the chances of the matrix becoming singular and increases the computation time. 

Moreover more coefficients may possibly imply a need for more measured input data. Equations 

7.14 and 7.22 involve a summation over n, where n goes through positive integers, and the total 

number of coefficients is given by k = 7 + 2(N-3) = 2N+1 for central loaded plate and k = 7+ 
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(2*N) + 2(N-3) = 4N+1 for the offset loaded plate. These imply the terminating index N = 4 in 

both the cases. 

 
Fig. 7.9: Plot of ‘RMS’ values of (d’-d) vs. number of coefficients, k, for the presently analyzed 

centrally loaded plate with m = 300 input values 

 
Fig. 7.10: Plot of ‘RMS’ values of (d’-d) vs. number of coefficients, k, for the presently analyzed 

offset loaded plate with m = 849 input values 
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7.4 Finite Element Analysis 

For comparing TSA results on the boundary of the hole with those predicted by F A 

(ANSYS), the aluminum (elastic modulus,   = 68.95 GPa = (10 x 10
6
 psi) and Poisson’s ratio ν 

= 0.33) plate described in section 7.1 was modeled in ANSYS. Figures 7.11 and 7.12 are the 

finite element ANSYS models of the case of figures 7.1 and 7.2, respectively. Unlike the 

described experimental approach which does not require knowledge of the external boundary 

conditions, finite element analysis requires accurately knowing the material properties, loading 

and external boundary conditions. For this analyses, isoparametric elements (ANSYS element 

type: Plane-82) having 8 nodes per element were employed.  

For the centrally loaded plate where one has, the geometric and loading symmetry about 

the x-axis, the F  model is simplified to one half of the entire plate of figure 7.1 and thus 

subjected to one half of the full edge load (i.e., ½ P*, P* = 200 lbs), figure 7.11. The half–plate 

was modeled with a total of 5,956 elements and 18,305 nodes. The mesh was refined until the 

ANSYS results did not change by more than 0.2% on the boundary of the hole. Symmetrical 

boundary conditions are applied along the vertical line of symmetry to simulate the perforated 

plate of figure 7.1 and a roller constraint is applied along its bottom edge, DC, figure 7.11, 

therefore satisfying the geometric and loading symmetry about the x-axis, figure 7.1. 

For the offset loaded plate, the lack of geometric and loading symmetry necessitated a 

full F  model of figure 7.2. A load of P* = 200 lbs was applied at a top of the plate and at 

distance   = 11.91 mm (= 0.469”) from the x-axis as shown in figures 7.2 and 7.12. The full–
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plate was modeled with a total of 10,341 elements and 31,487 nodes. Roller constraint (assuming 

no vertical motion) was applied along the lower edge of the plate, CDC of figures 7.2 and 7.11. 

 
Fig. 7.11: Finite element model for the analysis of the centrally loaded plate of figure 7.1 
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Fig. 7.12: Finite element model for the analysis of the offset loaded plate of figure 7.2 
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7.5 Results 

After evaluating all the unknown Airy coefficients for each of the centrally loaded and 

offset loaded plate from the measured S*, the individual components of stress were obtained 

from equations 7.11 through 7.13 and 7.19 through 7.21 respectively. These TSA results are 

compared with finite element analysis (ANSYS) predictions and those of references [4, 111 and 

116]. Stresses are normalized with respect to σ0 (= concentrated edge load P*/gross cross-

sectional area = 200 lbs/(3.5*3/8) = 1.05 MPa (152.38 psi)). Stresses for the centrally loaded 

plate are plotted around and away from the boundary of the hole in figures 7.13 and 7.14, 

whereas normalized σrr = σyy and σθθ = σxx are plotted along line AB of figure 7.15 in figures 7.16 

and 7.17. Stress results for the offset loaded plate are plotted around and away from the 

boundary of the hole in figures 7.18 through 7.20. 

Angle θ of figures 7.13, 7.14 and 7.18 through 7.20 is measured clockwise from the 

vertical x-axis, figures 7.1 and 7.2, and r is measured from the center of the hole, figures 7.1 and 

7.2. The actual in-plane dimensions associated with figures 7.16 and 7.17 are plotted normalized 

with respect to the radius R = 9.525 mm = 0.375” of the hole. 

The TSA results based on the presently simpler stress function agree with those from 

FEM and from the references [4, 111 and 116], although the transverse stress (figure 7.17) tends 

to differ from those by FEM along line AB as one move away from the hole. The reliability (or 

lack thereof) of the present TSA-determined σxx along line AB away from the hole might be 

influenced by the fact that the current stress function does not explicitly involve the contribution 

of the concentrated load, P as does that of reference [116]. 
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Fig. 7.13.A: Plot of σθθ/σ0 around the boundary of the hole (r/R = 1) from ANSYS and presently 

analyzed TSA for centrally loaded plate of figure 7.1 with m = 300 input values, and k = 9 

coefficients 

 
Fig. 7.13.B: Plot of σθθ/σ0 at the boundary of the hole (r/R = 1) from references [4 and 111] 

 
Fig. 7.14.A: Plot of σθθ/σ0 along r/R = 1.18 from ANSYS and for presently analyzed TSA for 

centrally loaded plate of figure 7.1 with m = 300 input values, and k = 9 coefficients 

 
Fig. 7.14.B: Plot of σθθ/σ0 for selected locations shown in figure 7.15 from references [4 and 111] 
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Fig. 7.15: Selected data locations for stress component determination 

 
Fig. 7.16: Plot of σyy/σ0 along AB of figure 7.15 from ANSYS and for presently analyzed TSA 

for centrally loaded plate of figure 7.1 with m = 300 input values and k = 9 coefficients 

 
Fig. 7.17: Plot of σxx/σ0 along AB of figure 7.15 from ANSYS and for presently analyzed TSA 

for centrally loaded plate of figure 7.1 with m = 300 input values and k = 9 coefficients 
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Fig. 7.18.A: Plot of σθθ/σ0 around the boundary of the hole (r/R = 1) from ANSYS and for 

presently analyzed TSA for offset loaded plate of figure 7.2 with m = 849 input values, and k = 

17 coefficients 

 
Fig. 7.18.B: Plot of plate of figure 7.2 σθθ/σ0 at the boundary of the hole (r/R = 1) from references 

[4 and 116] 

 
Fig. 7.19.A: Plot of σθθ/σ0 for the hole along r/R = 1.24 from ANSYS and for presently analyzed 

TSA for offset loaded plate of figure 7.2 with m = 849 input values, and k = 17 coefficients 
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Fig. 7.19.B: Plot of σθθ/σ0 for selected locations shown in figure 7.21 of plate of figure 7.2 from 

references [4 and 116] 

 
Fig. 7.20.A: Plot of σrr/σ0 along r/R = 1.24 from ANSYS and for presently analyzed TSA for 

offset loaded plate of figure 7.2 with m = 849 input values, and k = 17 coefficients 

 
Fig. 7.20.B: Plot of σrr/σ0 for selected locations of plate of figure 7.2 shown in figure 7.21 from 

reference [4 and 116] 

 
Fig. 7.21: Selected data locations for stress component determination 
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7.6 Summary and Conclusions 

The stress analyses of the loaded perforated plate of figures 7.1 and 7.2 are conducted by 

combining measured TSA temperatures with the relevant Airy’s stress function based only on 

the extent of symmetry and analytically imposing traction-free conditions on the boundary of the 

hole. Unlike the original approach which explicitly included the contribution of the contact edge 

load, P, and thereby employed extensive amounts of algebra to form the more complicated stress 

functions [4, 111 and 116], the present method demonstrates excellent results are obtainable on 

and in the neighborhood of the hole for either case but by using the much simpler stress 

functions. The number of Airy coefficients employed here is also less than used in references [4, 

111 and 116]. The number of Airy coefficients used for the centrally loaded plate by the present 

technique is k = 9 compared to k = 15 in reference [111]. Similarly, the number of Airy 

coefficients used for the present offset loaded plate used is k = 17 compared to k = 25 in 

reference [116]. The same number and source locations of the measured TSA input values are 

used here as in references [4, 111 and 116]. The presently evaluated individual components of 

the stresses compare well here with those from finite element analysis and reference [4, 111 and 

116], figures 7.13, 7.14 and 7.17 through 7.20. Current results therefore demonstrate the ability 

to separate measured TSA data reliably into the individual stress components for these relative 

complicated situations without knowledge of the material constitutive properties, or distant 

geometry or loading conditions. The general method is suitable for finite (can be difficult 

theoretically) or infinite geometries. TSA enjoys the advantage of not having to differentiate the 

measured data. Imposing the traction-free conditions (σrr = σrθ = 0) on the edge of the hole 
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analytically enables all of the Airy coefficients to be evaluated from measured TSA data. No 

supplemental experimental data (such as moiré or DIC or speckle, etc.) are needed.  

The major contribution of this chapter is to demonstrate the ability to evaluate the stresses 

at and in the neighborhood of geometric discontinuities by TSA without the knowledge of the 

far-field loading conditions and to do so using simple stress functions. This technique gives the 

ability to obtain stresses on the edge of the geometric discontinuities despite unreliable measured 

data at such locations. While the presently relatively simple stress functions provide excellent 

stresses at and in the neighborhood of the hole, the current stresses are not reliable far away from 

the hole, particularly as one approaches the applied edge load. Although this research 

emphasizes the circular geometric discontinuity and a point load, the concept can be extended to 

more complicated geometries and loading conditions. 
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Chapter 8 : Thermoelastically Determined Stresses of 

Multiple Holes in a Finite Plate 

8.1 Introduction 

 In the present chapter, Thermoelastic stress analysis (TSA) is used to determine the 

stresses in the vicinity of multiple holes in a finite geometry. The presence of smaller auxiliary 

hole near a central circular hole in a uniaxially loaded plate makes the stress analysis 

complicated. A major objective of the present work was to evaluate the stresses associated with 

two neighboring holes which are perpendicular and oblique to the direction of the loading and 

whose respective stresses interact and so as to influence the stress concentration factor at the 

boundary of the original hole, figures 8.1 and 8.2. Reference [3] used a similar technique to 

analyze the multiple perforated plate having the holes in the direction of loading. In that case the 

action of the smaller auxiliary hole reduced the tensile stress concentration factor at the larger 

(original) hole. Many engineering structures involve multiple perforated finite plate and it is 

important to be able to evaluate the stresses reliably for cases where theoretical or numerical 

approaches are not available. Some theoretical solutions and finite element analyses (FEA) can 

predict stresses provided the material constitutive properties and boundary/loading conditions are 

sufficiently well known. However, it is extremely difficult to obtain theoretical solutions for 

finite plates and for the finite element analysis boundary conditions are not always sufficiently 

well-known which is illustrated in this chapter for the oblique plate. Recognizing this difficulty 
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in obtaining theoretical solutions and finite element analysis for finite geometries, the present 

TSA results are compared with those from strain gages and approximated finite element analysis.  
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Fig. 8.1: Schematic geometry of a uniaxial tensile finite plate containing two side holes 

Plate thickness = 0.25” (6.35mm) 
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Fig. 8.2: Schematic geometry of an end-loaded finite incline plate (~15

o
 with respect to loading) 

containing two side holes 
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Following are the details of the plate tested for the associated analyses and results: 

 Material of the plate: Aluminum 6061-T6 (Wiedenbeck, Inc., Madison, WI); Ultimate 

strength = 275 to 311 MPa (40 to 45 ksi) and Yield strength = 241 to 275 MPa (35 to 40 

ksi). 

 Cyclic Load = 3558.57 N (800lb) ± 2224.11 N (500lb) at 20Hz, unless indicated 

otherwise. 

 Loading Range (F) = 4448.2 N (1000lb), unless indicated otherwise.  

 Diameter of the large hole (d1) = 19.05 mm (0.75”), drilled, figures 8.1 and 8.2. 

 Diameter of the small hole (d2) = 9.52 mm (0.375”), drilled, figures 8.1 and 8.2. 

 Thickness of the plate (t) = 6.35mm (0.25”). 

 Plate is symmetrical about the horizontal x-axis, figure 8.1 and plate is inclined at an 

angle 15
 
deg with respect to the loading, figure 8.2. 

 Length of the plate (L) ≈ 279.4 mm (11”), figure 8.1. 

 Width of the plate (W) = 76.2 mm (3”), figures 8.1 and 8.2. 

 Center distance between holes (c) = 25.4 mm (1”), figures 8.1 and 8.2. 

 A strip gage consisting of 4 strain gages was mounted along CD in figure 8.1; C’D’ in 

figure 8.2. 

 A strain gage was mounted on the curved edge of the hole to determine the strains 

accurately at the hole boundary. 

 Four strain gages were mounted, two on the front and two on the back, to ensure proper 

specimen alignment by minimizing any out-of-plane bending. 
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The holes in the plate of figure 8.1 are circular and horizontal with respect to the vertical 

direction of loading. The holes in that of figure 8.2 are circular and inclined at angles of 15 deg 

with respect to the vertical direction of loading. The same plate was actually used in both cases. 

TSA is a non-contacting, non-destructive and non-invasive experimental technique that provides 

full-field stress on the surface of a mechanical component based on the temperature changes that 

occur with cyclic loading as result of the thermoelastic effect. If one records TSA measured data 

S* = K(σxx + σyy) = K(σrr + σθθ) and employs a relevant Airy stress function, it is possible to 

obtain the individual stress distributions in the multiply perforated plates, at least at and in the 

vicinity of the geometric discontinuities, without any complex mathematical algebra or 

additional experimental (like morié, holography, speckle, digital image correlation) and/or 

numerical techniques (nonlinear least squares). A two dimensional thermoelastic stress analysis 

was therefore conducted in a uniaxially loaded finite plate to determine the magnitude and 

distribution of stresses around two neighboring horizontal holes (figure 8.1) and inclined holes 

(figure 8.2) which are sufficiently close together that their respective stress fields interact. In 

addition to the present TSA results showed good agreement with the strain gages and finite 

element analyses, integrating the TSA evaluated stresses across the plate also satisfies 

equilibrium. 

The stress functions utilized here are the same utilized in the Chapter 7 i.e., sym of 

Chapter 7 is used to analyze the symmetrically-loaded plate and offset of Chapter 7 is used to 

analyzed the unsymmetrically-loaded plate. Relative to evaluating the individual components of 

stresses, R = r1, radius of the large hole or R = r2, radius of the small hole and for all values of θ. 

Individual coordinate system is used in the analyses of each hole of figures 8.1 and 8.2. TSA-
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wise, the doubly perforated plate of figure 8.1 or 8.2 are analyzed by employing separate stress 

functions associated with individual coordinate systems, these individual coordinate systems 

having their origins at the center of the respective holes. Also, for the analysis associated with 

the large hole the recorded TSA data near that large hole was used along with respective stress 

function (based on the geometry) and similarly for the analyses of the small hole the data near 

the small hole was used along with the respective stress function (based on the geometry). 

Figures 8.1 and 8.2 explicitly indicate the coordinates for the large hole. Coordinates with the 

origin now at the center of the small hole were similarly used relative to the small hole. The plate 

in figure 8.1 has an axis of symmetry (x-axis) which simplifies the stress function by having a 

number of Airy coefficients going to zero and further reducing the number of Airy coefficients 

by analytically imposing the traction-free conditions on the edge of the respective holes. For the 

analysis of figure 8.1, the plate is loaded vertically with the MTS hydraulic grips, and the far-

field loading conditions are well known. It is therefore possible to conduct a confident finite 

element analysis of this loaded plate against which to compare TSA results. That the plate in 

figure 8.2 is unsymmetrical about both the x- and y-axes implies a more complicated stress 

function necessitating more Airy coefficients. Reducing the number of these coefficients by 

imposing the traction-free conditions on the edge of the respective holes analytically now 

becomes increasingly important. Furthermore, the boundary conditions in the unsymmetrical 

plate of figure 8.2 are not well known, so it is very complicating the ability to confident finite 

element analysis. This makes the strain gage results more important for comparison with TSA 

results. 
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8.2 Experimental Details 

8.2.1 Specimen Details, Preparation and Loading 

 Figures 8.1 and 8.2 show the plate geometry, dimensions, and orientation and location of 

the coordinate axes. It is worth mentioning that the same experimental setup was used to analyze 

both the symmetrical and unsymmetrical plate. Following are the details of the horizontal plate 

of figure 8.1 and incline plate of figure 8.2, tested for the succeeding analyses and results: 

Material of the plate: Aluminum 6061-T6 (Wiedenbeck, Inc., Madison, WI); Ultimate 

strength = 275 to 311 MPa (40 to 45 ksi), Yield strength = 241 to 275 MPa (35 to 40 ksi), Elastic 

Modulus E = 68.95 GPa (10 x 10
6
 psi) and Poisson’s ratio ν = 0.33). 

 Unless stated otherwise, the plate was subjected to a cyclically varying sinusoidal load 

with a mean value of 3558.57 N (800lb), maximum value of 5782.68 N (1300lb) and a 

minimum value of 1334.46 N (300lb) at a frequency of 20Hz. 

 

 3558.57 N (800lb) ± 2224.11 N (500lb) at 20Hz, unless state otherwise. 

 Loading Range (F) = 4448.22 N (1000lb), unless state otherwise. 

 Diameter of the large hole (d1) = 19.05 mm (0.75”). 

 Diameter of the small hole (d2) = 9.52 mm (0.375”). 

 Thickness of the plate (t) = 6.35 mm (0.25”). 

 Length of the plate (L) ≈ 279.4 mm (11”). 

 Width of the plate (W) = 76.2 mm (3”). 

 Center distance between holes (c) = 25.4 mm (1”). 
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 Plate is symmetrical about the horizontal x-axis, figure 8.1 and plate is inclined at an 

angle 15
 
deg with respect to the loading, figure 8.2. 

The aluminum plate was sprayed with Krylon Ultra-Flat black paint to enhance the 

thermoelastic pattern (figure 8.3). However, before applying the black paint, the plate was 

polished with 400 grit sand paper so as to have an ideal surface finish. Care was taken when 

machining to ensure that the holes in the specimen do not have round edges. The enhanced 

emissivity and sharp edges of the holes provides reliable temperature data up to near the edge of 

the holes. Plane stress is assumed and the stresses through the thickness remain unchanged.  

 
Fig. 8.3: Aluminum plate coated with Krylon Ultra-Flat black paint 

The symmetrical plate of figure 8.1, was clamped vertically between the cross heads of 

the MTS closed-loop hydraulic testing machine with the help of hydraulic grips making the plate 

symmetrical about x-axes as seen in figure 8.4 The unsymmetrical plate of figure 8.2 was made 

incline at an angle of 15 deg with respect to the loading vertical and clamped between the 

hydraulic grips. The hydraulic grips apply a uniform clamping pressure over both ends of the 

specimen of figures 8.1 and 8.2. The loads were applied using a load cell 20 Kips capacity and 

hydraulic grips are capable of applying up to 18.5 Kips (Room B321, Engineering Hall). This 

MTS machine can operate in any of the following four ranges 10%, 20%, 50% and 100% 
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measure of capacity (i.e., 2 Kips, 4 Kips, 10 Kips and 20 Kips). For the ongoing analyses, the 

10% range was utilized which allows for a maximum load of 8896.45 N (10% of 20,000 lbs = 

2000 lbs). For the TSA analyses, the specimen was tested at a loading range (minimum to 

maximum) of 4448.2 N (1000 lbs) at a sinusoidal frequency of 20Hz.  

The test plate of figures 8.1 and 8.4 was aligned between the top and the bottom grips 

which provides symmetrical loading about the horizontal axis (x-axis) and the plate that of 

figures 8.2 and 8.5 was inclined at an angle of 15
o
 (with respect to the vertical loading) which 

makes the plate unsymmetrical about both the x- and y-axes. In clamping the specimen between 

the hydraulically operated grips, particular care was taken to minimize any out-of-plane bending 

of the plate by ensuring agreement of the strains obtained from the strain gages mounted on the 

front and the back faces of the plate. 
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Fig. 8.4: Symmetrically-loaded specimen in hydraulic grips 
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Fig. 8.5: Unsymmetrically-loaded specimen in hydraulic grips 
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8.2.2 TSA Recording and Calibration 

TSA is based on the fact that materials experience small temperature changes when 

compressed or expanded. A sensitive infrared camera records the small temperature changes due 

to applied mechanical loads. This experimental technique makes it possible to infer the in-plane 

stresses in the multiply perforated plate by computing the small temperature changes induced as 

a result of a cyclic load. It is worth mentioning that the amplitude of a TSA signal is linearly 

dependent on the cyclic stress amplitude. A DeltaTherm DT1410 camera produced by Stress 

Photonics Inc., was employed to acquire the full-field thermal measurements in this study. This 

DT1410 camera uses 256 horizontal × 256 vertical staring photon detector arrays to detect the 

thermal emissivity. The photon detectors require cooling by liquid nitrogen in order to achieve 

high resolution. The DeltaTherm’s photon array detectors synchronize with the applied cyclic 

loading with a sufficient frequency to maintain the adiabatic state in the tested material. 

Therefore, sine function cyclic loading was applied to the specimens at a frequency of 20 Hz. 

Since the input signal to the DeltaTherm camera comes from the MTS machine, only the thermal 

emissivity that responds to the applied frequency will be integrated. The applied cyclic loading 

not only avoids any transient thermoelastic effect but also rejects any non-relevant background 

thermal emissivity. When adiabatic conditions are achieved and maintained during the test, the 

relation between the induced temperature changes and the change in the sum of principal stresses 

is linear, and thus the variation in the sum of principal stresses can be experimentally inferred by 

processing the recorded thermoelastic signal, S. 

The loading and recording for the symmetrically-loaded and unsymmetrically-loaded 

plate is illustrated in figures 8.6 and 8.7 respectively. The Delta Therm camera (Stress Photonics 
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Inc., Madison, WI, USA), which is utilized to record the temperature variations in the perforated 

plates, is aligned to be exactly perpendicular to the surface of the plate. This was done with the 

aid of two spirit levelers which are mounted at the base of the TSA camera (figures 8.6 and 8.7). 

The experimental setup includes the DeltaTherm DT1410 camera, and aluminum plate loaded, 

figure 8.5 in-plane bending as was in tension through the hydraulic grips. Figure 8.8 is 

photograph of an oscilloscope used to monitor the applied load and the sinusoidal frequency. The 

actual pixel size at the plate in the analyses was found to be 0.323 mm (0.0127”). Figures 8.9 

and 8.10 show an actual TSA image for each of the symmetrical and unsymmetrical loading. 

They contain (256x256 = 65,536) data values, of which approximately 60,000 pixels cover the 

plate. The DT1410 camera records the full-field IR images integrated over a two minutes 

duration. Recognizing the typical inability to provide reliable edge data, no TSA input values are 

used within at least two data positions (pixels), i.e. approximately 0.65 mm (0.025”) of the 

boundary of a hole. 

Figures 8.9 and 8.10 shows an actual TSA image for symmetrical and unsymmetrical 

plate as recorded and displayed by the Delta Vision software which provides data acquisition and 

interpretation. Delta Vision Software records the 256 horizontal x 256 vertical pixels and this 

information was exported to EXCEL
®
 in the form of 256 x 256 matrix. The pixel S* data 

associated with figures 8.9 and 8.10 were subsequently processed using MATLAB and the 

corresponding MATLAB images are shown in figures 8.11 and 8.12. The ‘contourf ( )’ function 

in MATLAB is one of the more practical ways of making contour plots. The scales in figures 8.9 

through 8.12 are in terms of S* temperature data and this temperature data can easily be 

converted to S by dividing by K, calibration coefficient.  
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Fig. 8.6: Specimen loading and recording for the symmetrically-loaded plate 

 

 
Fig. 8.7: Specimen loading and recording for the unsymmetrically-loaded plate 
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Fig. 8.8: Oscilloscope for accurate measurement of cyclic loads 

 

 
Fig. 8.9: Actual recorded TSA image, S* for the symmetrically-loaded plate, for a load range of 

4448.22 N (1000lb) 
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Fig. 8.10: Actual recorded TSA image, S* for the unsymmetrically-loaded plate, for a load range 

of 4448.22 N (1000lb) 

 
Fig. 8.11: Original recorded TSA pixel data, S* of figure 8.9 re-plotted using MATLAB 
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Fig. 8.12: Original recorded TSA pixel data, S* of figure 8.10 re-plotted using MATLAB 

 

The strain gages which were bonded on the right curved surface of the large hole and 

associated electrical leads are visible in figures 8.9 through 8.12 

Thermoelastic images are normally presented referred to a scale expressed in thermal 

units. These thermal units can be converted to the units of the using equation 8.1. As discussed in 

this section, under plane stress, the temperature effects relating the stresses for isotropic 

materials are governed by the following equation: 

S* = KΔS = K[Δ(1 + 2)] = K[Δ(rr + θθ)] = K[Δ(XX + YY)]                                 (8.1) 

 
where S* is the recorded TSA signal, K  is the thermo-mechanical coefficient (determined 

experimentally), and S  is the change of the sum of the normal stresses. S is also called the 

isopachic stress or the first stress invariant. 
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The Thermo-mechanical coefficient can after be determined in a region of uniform 

known stress field. The holes in the present specimen did not provide a uniform stress field. 

Therefore uniaxial uniform tensile calibration specimen was consequently needed which is 

exactly similar to the actual test specimen in terms of the material, painted surface and loading 

rate (figure 8.13). The calibration specimen was coated at the same time by the same person, 

with the same Krylon black paint, using an identical technique as used for the actual test 

specimens of figures 8.1 and 8.2. The calibration specimen used is of the same material as the 

actual test specimen (Aluminum 6061-T6), 279.4 mm (11”) in length, 25.4 mm (1”) wide and 

6.35 mm (0.25”) thick. Thus, knowing the recorded thermoelastic signal, S*, applied load and the 

cross sectional area of the specimen, the value of the thermomechanical coefficient, K = 406 

U/MPa (2.8 U/psi), was obtained. Since both these experiments (figures 8.1 and 8.2) were 

performed on the same day, the same calibration value can be used for both the experiments. 

Figure 8.14 shows the calibration specimen in the hydraulic grips. While figure 8.15 is 

the TSA recorded image for the same load range of 4448.22 N (1000lb). The calibration 

specimen contained a total of four strain gages(away from the TSA scanned region), two on the 

front and two on the back (one longitudinal and one transverse on each side), to monitor any out 

of plane bending in the specimen. The holes at the ends of the tensile specimen of figure 8.12 

were associated with the specimen and play no present role in the present analysis. 

The local perturbations to the uniform stress in TSA image at top and bottom in figure 

8.15 are due to strain gages. 
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Fig. 8.13: Schematic of the TSA calibration specimen 
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Fig. 8.14: Calibration specimen loaded in hydraulic grips 
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Fig. 8.15: Actual recorded TSA image for the calibration specimen, S*, for a load range of 

4448.22 N (1000lb) 
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8.3 Data Processing 

 

The thermal images of figures 8.9 and 8.10 each contains approximately 60 thousands 

TSA measured values throughout the specimens of figures 8.1 and 8.2. Since the objective of 

this research was to evaluate individual components of stress in the region of both the holes, the 

analyses emphasize utilizing measured thermal data S* which originate in the neighborhood of 

the respective holes. However, recognizing the typical unreliability of TSA data near an edge, no 

TSA input values are employed within at least two (pixels) data positions approximately 0.6451 

mm (0.0254”) from the boundary of the each hole. Therefore, the source locations of TSA input 

data selected for the small and the large hole extend from near the inner radius for each hole 

[corresponding radius of hole + (2 x actual pixel size)] and the outer radius is [2 x radius of small 

hole] and [2 x radius of large hole] respectively. The symmetrically-loaded plate is symmetrical 

about the x-axis (figure 8.1). Therefore the recorded TSA data obtained were averaged about the 

x-axis so that only one half of the plate is considered during thermoelastic stress analyses. For 

the analysis of the unsymmetrically-loaded plate, the recorded S data were selected without 

considering any symmetry.  

With reference to the symmetrically-loaded the measured TSA values of S* is averaged 

about the symmetrical x-axis and for unsymmetrically-loaded plate the measured TSA values of 

S* in complete region in the vicinity of the hole is taken as input, and the isopachic stress 

expressions in Chapter 6 (which are based on imposing rr = rθ = 0 analytically at r = R (where 

R = R1, radius of the large hole or R = R2, radius of the small hole) and for all values of θ), one 

can develop the following matrix equation: 
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      1mx1kxmxk dcA               (8.2) 

Re-writing equation 8.2 for the symmetrically-loaded plate gives equation 8.3 as follows, 
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Re-writing equation 8.2 for the unsymmetrically-loaded plate gives equation 8.4 as follows, 
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(8.4) 

where matrix [A] involves the m (m1 for the small hole, m2 for the large hole for symmetrically-

loaded plate and m3 for the small hole, m4 for the large hole for unsymmetrically-loaded plate) 

Airy isopachic equations in polar coordinates, r and . One horizontal expression of the upper 
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portion of the [A] matrix of equations 8.3 and 8.4 exists for each measured input data value of S 

(= S*/K) associated with symmetrically and unsymmetrically-loaded plate. Vector {c} of 

equation 8.3 contains the k unknown Airy coefficients (i.e., b0, c0, d1, b2, d2, …, bN, dN) and 

vector {c} of equation 8.4 containing k unknown Airy coefficient (i.e., b0, c0, A0, d1, d1, b2, d2, 

c3, d3, b4, d4,…, bN, dN, b2, d2, …, bN, dN). Vector {d} of equations 8.3 and 8.4 are composed of 

the m measured TSA data values of S=S*/K corresponding to the recorded data for the respective 

loaded plate used in the S to form matrix [A]. The least-squares method was employed to solve 

the over-determined matrix equation Ac = d of equations 8.3 and 8.4. Equations 8.3 and 8.4 are 

solved for unknown Airy coefficients using the ‘\’ matrix division operator or pseudo inverse 

‘pinv’ operator in MATLAB. Both of these operators use the algorithm for least squares and 

calculates vector {c} by c = A\d or c = pinv(A)*d. 

For analyzing the rectangular component of stresses, one uses the following 

transformation matrix: 
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8.4 Finite Element Analysis  

As means of assessing the quality of the TSA results, the latter are compared with those 

predicted from finite element analysis (FEA). The aluminum (E = 68.95 GPa (10 x 10
6
 psi) and 

Poisson’s ratio ν = 0.33) plate described in section 8.1 was modeled using ANSYS. A finite 

element analysis requires accurately knowing the loading and external boundary conditions. For 

the symmetrically-loaded plate of figures 8.1 and 8.4, one can apply symmetry boundary 

condition along the line of symmetry and a uniform tensile stress of 9.19 MPa (1333.33 psi) at 

the other end as shown in figures 8.16 and 8.17. This assumes that the specimen is sufficiently 

long that the lack of symmetry about vertical central line is insignificant at the loading ends. The 

boundary conditions of the unsymmetrically-loaded plate are not well known, which challenges 

the modeling of finite element analysis. The vertical movement of the hydraulic grips of figure 

8.5 will include both tension and in-plane bending to the ends of the plate. Nevertheless an 

approximate finite element model was made for the unsymmetrically-loaded plate having x-

constraint at both the ends of the plate which is the case in the experimental setup that the ends 

of the plate do not move in x-direction (horizontally) when loaded. The far-field stress of 9.19 

MPa (1333.33 psi) is also applied at both the ends. The FE model used 8-node Isoparametric 

elements (ANSYS element type: Plane-82). A very fine mesh was used in the neighborhood of 

the holes to enhance accuracy as shown in figures 8.16 through 8.19. For the analysis of the large 

hole in the symmetrically-loaded plate, the mesh covering the entire one half of the plate utilizes 

a total of 3,500 elements and 10,829 nodes. For the analysis of small hole in the symmetrically-

loaded plate, the mesh covering the entire one half of the plate utilizes a total of 3,323 elements 

and 10,302 nodes. The mesh covering the entire plate for the analysis of large hole in the 
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unsymmetrically-loaded plate utilizes a total of 9,495 elements and 28,990 nodes. For the 

analysis of small hole in the unsymmetrically-loaded plate, the mesh covering the entire plate 

utilizes a total of 8,236 elements and 25,195 nodes. These FEM meshes had been refined until 

the ANSYS results did not vary more than 0.2% on the periphery of either the small or large 

hole. 

Figure 8.20 is the displacement plot (USUM) of unsymmetrically-loaded plate. It is 

worth nothing that the plate is tilted by small amount along the loading direction which does not 

occur physically in the experiment i.e., experimentally the entire far-field will experience the 

same displacement. Although challenging, that there are no theoretical solutions for these 

perforated cases motivating one to try to predict the situation. 

The results of a 3-D FEM analysis in the Appendix A8 validate the plane-stress 

assumptions. 
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Fig. 8.16: Finite element model for the analysis of the large hole in the symmetrically-loaded 

plate 

 
Fig. 8.17: Finite element model for the analysis of the small hole in the symmetrically-loaded 

plate 
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Fig. 8.18: Finite element model for the analysis of the large hole in the unsymmetrically-loaded 

plate 

 
Fig. 8.19: Finite element model for the analysis of the small hole in the unsymmetrically-loaded 

plate 



404 
 

 
Fig. 8.20: Displacement plot for the unsymmetrically-loaded specimen from finite element 

analysis 

8.5 Number of Coefficients and Input Values 

8.5.1 General Comments 

Equations 8.2 through 8.4 were solved by least squares. Since the number of equations 

(i.e. amount of measured input TSA data) is greater than the number of unknown Airy 

coefficients, it is important to determine an appropriate number of Airy coefficients k. Too small 

a number of coefficients, k, can give unreliable results, while too many coefficients can cause the 

Airy matrix of m equations by k coefficients of equations 8.2 through 8.4 to become unstable or 

near-singular due to computer round-off errors. It also requires more computation time. The 

amount of measured input data needed can also depend on the choice of k, in that, more 

coefficients can necessitate more experimental values of S*. To assist in determining an 
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appropriate value for k, the condition number, C, and log10C of the Airy matrix was plotted 

against the number of coefficients, k. Based on the concept of SVD, MATLAB now provides a 

function (i.e., cond(A)) which gives the condition number of the matrix A. 

To further assess in determining the appropriate number of Airy coefficients, self-

consistency of the Airy coefficients was also used to evaluate a minimum value of k for reliable 

results. For this, the over-determined matrix equation, Ac = d, is solved using c = A\d (MATLAB 

notation) and utilizing the now-known coefficient vector, c, in the original matrix equation will 

give Ac = d, where d is typically not exactly the same as the input data d. The discrepancy 

between the calculated isopachic data d′ and thermoelastically measured d can be represented by 

the RMS (Root Mean Square) value of equation 8.5, which is desired to be small, to obtain 

reliable results. 
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8.5.2 Analyses of Symmetrically-Loaded Plate 

For analyzing the symmetrically-loaded plate of figures 8.1, the large and small hole are 

analyzed individually i.e., when analyzing the large hole, the data near that large hole is taken 

along with the corresponding stress function (similarly for the small hole). Since the plate is 

symmetrical about the x-axis, the data was averaged about the axis. A total of m1 = 4,378 and m2 

= 2,031 input values were used to evaluate the corresponding unknown Airy coefficients for the 

large and the small hole, respectively, and their source locations as shown in the figures 8.21 and 

8.22. The source location data will be a cell/entry in the matrix of equation 8.3 that stores the 

respective value of the recorded TSA data S (= S*/K).  
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Fig. 8.21: TSA source locations for large hole, m1 = 4,378 input values 

 

 
Fig. 8.22: TSA source locations for small hole, m2 = 2,031 input values 

 

Using these source locations data for the large and the small hole, appropriate number of 

unknown Airy coefficients to use is evaluated as discussed in section 8.4. Figures 8.23 and 8.24 

are the plots of condition number, C and log10C, vs. the number of Airy coefficients, k, for the 

large hole. Similarly figures 8.25 and 8.26 are the plots of condition number, C and log10C, vs. 

x 

y 

x 

y 
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the number of Airy coefficients, k, for the small hole. The values of C or log10C, are reasonably 

consistent for 9 ≤ k ≤ 13 for the large hole in figures 8.23 and 8.24, and k = 9 is minimum for the 

small hole. Based on the condition number results, this number of coefficients k = 9 is 

considered sufficient for generating the solutions with adequate reliability. Adding more 

coefficients than necessary could necessitate the more measured input data and adversely 

increases the computation time. These data therefore suggest k = 9 as a reasonable choice for 

both the large and small hole of the plate of figures 8.1, 8.4 and 8.6. The isopachic and 

individual components of stress involve summation over n, where n goes through positive 

integers from 4 to N, and the total number of coefficients is given by k = 2(N-3) + 7 = 2N+1. 

Thus, for k = 9 coefficients, the terminating index N = 4. Figures 8.27 and 8.28 are the plots of 

Root Mean Square, RMS vs. the number of Airy coefficients, k, for this large and small hole, 

respectively. These RMS plots further suggest k = 9 as an appropriate choice for number of Airy 

coefficients for both small and the large hole of the plate of figures 8.1, 8.4 and 8.6. 

 
Fig. 8.23: Plot of condition number, C, vs. number of coefficients, k, for m1 = 4,378 input values 
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Fig. 8.24: Plot of Log10(C) vs. number of coefficients, k, for m1 = 4,378 input values 

 
Fig. 8.25: Plot of condition number, C, vs. number of coefficients, k, for m2 = 2,031 input values 

for the small hole 

 

 
Fig. 8.26: Plot of Log10(C) vs. number of coefficients, k, for m2 = 2,031 input values for the 

small hole 

  
Fig. 8.27: Plot of ‘RMS’ values of (d’-d) vs. number of coefficients, k, for m1 = 4,378 input 

values 
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Fig. 8.28: Plot of ‘RMS’ values of (d’-d) vs. number of coefficients, k, for m2 = 2,031 input 

values 

Figures 8.29 and 8.30 are the contour plots for the large and the small hole from the 

experimental data (S*) after averaging about the x-axis and as processed by MATLAB.  

 Figures 8.31 and 8.32 are the reconstructed contour plots (S*) based on the measured 

information and using the now-known Airy coefficients for the large and small hole respectively. 

Results of figures 8.29 through 8.32 further support using k = 9 for both the holes of the plate of 

figures 8.1, 8.4 and 8.6. The reconstructed images of figures 8.31 and 8.32 are obtained by 

taking the data individually in the neighborhood of the large hole and the small hole, and 

combining those data with the Airy’s stress function to form the matrix of equation 8.3. This 

matrix was solved using the least squares technique to evaluate the unknown Airy coefficients. 

Using the now-known Airy coefficients for the large and the small hole, a MATLAB plots 

(figures 8.31 and 8.32) were created. Therefore reconstructed contour plot of figures 8.31 and 

8.32 was obtained based on the TSA-determined values of the nine Airy coefficients, which the 

latter values being different for the large and the small hole. The x- and y-axes of figures 8.29 

through 8.32 are normalized with respect to the center distance (c) between the holes. 
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Fig. 8.29: MATLAB processed Experimental TSA input data S* for large hole 

 

 
Fig. 8.30: MATLAB processed Experimental TSA input data S* for small hole 
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Fig. 8.31: Reconstructed S* for the large hole with m1 = 4,378 and k = 9 
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Fig. 8.32: Reconstructed S* for the large hole with m2 = 2,031 and k = 9 

 

 

 

 

 

 

 

 

 

8.5.3 Analyses of Unsymmetrically-Loaded Plate 

For the analysis of the unsymmetrically-loaded plate of figures 8.2, 8.5 and 8.7, the large 

and the small hole are analyzed individually i.e., when analyzing the large hole the data near that 

large hole are taken along with the corresponding stress function (similarly for the small hole). A 

total of m3 = 9,372 and m4 = 4,094 input values were used to evaluate the corresponding 

unknown Airy coefficients for the large and the small hole, respectively, and their respective 

source locations is shown in the figures 8.33 and 8.34. The source location data will be a 

cells/entries in the matrix of equation 8.4 which stores the respective values of the recorded TSA 

data S (=S*/K).  
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Fig. 8.33: TSA source locations for large hole, m3 = 9,372 input values 

 

x 

y 
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Fig. 8.34: TSA source locations for small hole, m4 = 4,094 input values 

These source location data for the large and the small hole are used to evaluate the 

appropriate number of unknown Airy coefficients to use as discussed in section 8.4. Figures 8.35 

and 8.36 are plots of the condition number, C and log10C vs. the number of Airy coefficients, k, 

for the large hole. Figures 8.37 and 8.38 are corresponding plots for the small hole. The values 

of C and log10C increase rapidly for k ≥ 17, for both the large and the small hole. These 

condition number results suggest k = 17 is adequate. Using too many coefficients there is a risk 

of making the matrix A of equation 8.2 ill-conditional matrix, as well as possibly necessitating 

the more measured input data and adversely increasing the computation time. Since the isopachic 

and individual components of stress involve two summation series over n, where one summation 

series n goes through positive integers from 4 to N and the other goes from 2 to N, the total 

number of coefficients is given by k = 2(N-3) + 2(N-1) + 9 = 4N+1. The terminating index for k 

x 

y 
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= 17 coefficients is N = 4. Figures 8.39 and 8.40 are the plots of Root Mean Square, RMS vs. the 

number of Airy coefficients, k, for the large and small hole, respectively. Results of these RMS 

plots further supports k = 17 as an appropriate choice for number of Airy coefficients for both 

small and the large hole. 

 
Fig. 8.35: Plot of condition number, C, vs. number of coefficients, k, for m3 = 9,372 input values 

 
Fig. 8.36: Plot of Log10(C) vs. number of coefficients, k, for m3 = 9,372 input values 

 
Fig. 8.37: Plot of condition number, C, vs. number of coefficients, k, for m4 = 4,094 input values 

for the small hole 



417 
 

 
Fig. 8.38: Plot of Log10(C) vs. number of coefficients, k, for m4 = 4,094 input values for the 

small hole 

 
Fig. 8.39: Plot of ‘RMS’ values of (d’-d) vs. number of coefficients, k, for m3 = 9,372 input 

values 

 

 
Fig. 8.40: Plot of ‘RMS’ values of (d’-d) vs. number of coefficients, k, for m4 = 4,094 input 

values 

 

Figures 8.41 and 8.42 are the contour plots for the large and the small hole from the 

experimental data (S*). Figures 8.43 and 8.44 are the reconstructed contour plots (S*) based on 

the measured TSA information and using the now-known Airy coefficients for the large and 

small holes respectively. Information of figures 8.41 through 8.43 support the present use of k = 
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17. As for the plate of figures 8.1, 8.4, and 8.6, reconstructed images of figures 8.43 and 8.44 

were obtained by taking the data separately in the neighborhood of the large hole and the small 

hole and combining then with the Airy’s stress function to form the matrix of equation 8.4. This 

matrix was solved using least squares to evaluate the unknown Airy coefficients. The MATLAB 

plots of figures 8.43 and 8.44 were then created using the now-known Airy coefficients for the 

large and the small hole. The reconstructed contour plots of figures 8.43 and 8.44 are based on 

the TSA-determined values of the seventeen Airy coefficients, the value of the seventeen 

coefficients being different for the large and the small hole. The x- and y-axes of figures 8.41 

through 8.44 are normalized with respect to the inclined center distance (c) between the holes of 

figure 8.2. 

 
Fig. 8.41: MATLAB processed Experimental TSA input data S* for large hole 
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Fig. 8.42: MATLAB processed Experimental TSA input data S* for small hole 

 
Fig. 8.43: Reconstructed S* for the large hole with m3 = 9,372 and k = 17 
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Fig. 8.44: Reconstructed S* for the small hole with m4 = 4,094 and k = 17. 
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8.6 Results 

8.6.1 General Comments 

The TSA results obtained are compared with those from finite element analysis 

(ANSYS). Tangential stress, σθθ, radial stress, σrr and shear stress, σrθ, are normalized with 

respect to the far field stress, σ0, and are plotted at various radii around and away from the 

boundary of respective holes, whereas normalized σrr = σxx and σθθ = σyy are plotted along line AB 

of figures 8.1 and 8.2. TSA-computed normalized radial stress, σrr, and shear stress, σrθ, are 

plotted around the boundary of the each hole. The normalizing stress, σ0 = 9.2 MPa (1333.33 psi) 

is based on the applied tensile load, F, divided by the gross area (i.e. away from the regions of 

the holes), figures 8.1 and 8.2. 

Applied load range (F) = 4448.2 N (1000lb) 

Cross-Sectional Area (A) = Width (W) x Thickness (t) 

      = 76.2 x 6.35 = 483.87 mm
2
 (0.75 in

2
) 

 𝑜   
   8  

 83 87
 9   𝑀𝑃    333 33 𝑝    

 

The TSA results agree with those from FEM. Although the transverse stress (figure 3.28) 

tends to differ from those by FEM along line AB as one move away from the hole, these latter 

stresses are very small. 
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8.6.2 Results for the Symmetrically-Loaded Plate 

After evaluating all the unknown Airy coefficients (b0, c0, d1, b2, d2, c3, d3, bn and dn, 

for n = 4) for the symmetrically-loaded plate from the measured S* based separately on the input 

data for the large and the small hole, the individual components of stress were obtained for each 

hole of the plate of figure 8.1. Figures 8.45 through 8.55 are the results for the large hole of the 

symmetrically-loaded plate based on the Airy coefficients for that large hole, while figures 8.56 

through 8.64 are the results for the small hole of the symmetrically-loaded plate based on the 

Airy coefficients for the small hole. Angle θ of figures 8.45 through 8.53 and 8.56 through 8.64, 

is measured counter-clockwise from the positive x-axis and r is measured here from the center of 

the large and small hole, respectively, of figure 8.1. The actual in-plane dimensions associated 

with figures 8.54 and 8.55 are plotted normalized with respect to the radius r1 = 9.525 mm = 

0.375” of the large hole. The actual in-plane dimensions associated with figures 8.65 and 8.66 

are plotted normalized with respect to the radius r2 = 4.76 mm = 0.1875” of the small hole. 

 
Fig. 8.45: Plot of σrr/σ0 on the boundary of the large hole from ANSYS and TSA for k = 9 

coefficients and m1 = 4,378 TSA values 
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Fig. 8.46: Plot of σrr/σ0 for large hole along r/r2 = 1.5 from ANSYS and TSA for k = 9 

coefficients and m1 = 4,378 TSA values. 

 
Fig. 8.47: Plot of σrr/σ0 for large hole along r/r2 = 2 from ANSYS and TSA for k = 9 coefficients 

and m1 = 4,378 TSA values. 

 
Fig. 8.48: Plot of σrθ/σ0 on the boundary of the large hole from ANSYS and TSA for k = 9 

coefficients and m1 = 4,378 TSA values. 

 
Fig. 8.49: Plot of σrθ/σ0 for large hole along r/r2 = 1.5 from ANSYS and TSA for k = 9 

coefficients and m1 = 4,378 TSA values. 
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Fig. 8.50: Plot of σrθ/σ0 for large hole along r/r2 = 2 from ANSYS and TSA for k = 9 coefficients 

and m1 = 4,378 TSA values 

 
Fig. 8.51: Plot of σθθ/σ0 on the boundary of the large hole from ANSYS and TSA for k = 9 

coefficients and m1 = 4,378 TSA values 

 
Fig. 8.52: Plot of σθθ/σ0 for large hole along r/r2 = 1.5 from ANSYS and TSA for k = 9 

coefficients and m1 = 4,378 TSA values 

 

Fig. 8.53: Plot of σθθ/σ0 for large hole along r/r2 = 2 from ANSYS and TSA for k = 9 coefficients 

and m1 = 4,378 TSA values 
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Fig. 8.54: Plot of σxx/σ0 along CD of figure 8.1 obtained from ANSYS and TSA for k = 9 

coefficients and m1 = 4,378 TSA values 

 
Fig. 8.55: Plot of σyy/σ0 along CD of figure 8.1 obtained from ANSYS and TSA for k = 9 

coefficients and m1 = 4,378 TSA values 

 
Fig. 8.56: Plot of σrr/σ0 on the boundary of the small hole from ANSYS and TSA for k = 9 

coefficients and m2 = 2,031 TSA values 

 
Fig. 8.57: Plot of σrr/σ0 for small hole along r/R1 = 1.5 from ANSYS and TSA for k = 9 

coefficients and m2 = 2,031 TSA values 
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Fig. 8.58: Plot of σrr/σ0 for small hole along r/R1 = 2 from TSA and ANSYS for k = 9 

coefficients and m2 = 2,031 TSA values 

 
Fig. 8.59: Plot of σrθ/σ0 on the boundary of the small hole from ANSYS and TSA for k = 9 

coefficients and m2 = 2,031 TSA values 

 
Fig. 8.60: Plot of σrθ/σ0 for small hole along r/R1 = 1.5 from ANSYS and TSA for k = 9 

coefficients and m2 = 2,031 TSA values 

 
Fig. 8.61: Plot of σrθ/σ0 for small hole along r/R1 = 2 from ANSYS and TSA for k = 9 

coefficients and m2 = 2,031 TSA values 
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Fig. 8.62: Plot of σθθ/σ0 on the boundary of the small hole from ANSYS and TSA for k = 9 

coefficients and m2 = 2,031 TSA values 

 
Fig. 8.63: Plot of σθθ/σ0 for small hole along r/R1 = 1.5 from ANSYS and TSA for k = 9 

coefficients and m2 = 2,031 TSA values 

 
Fig. 8.64: Plot of σθθ/σ0 for small hole along r/R1 = 2 from ANSYS and TSA for k = 9 

coefficients and m2 = 2,031 TSA values 

 
Fig. 8.65: Plot of σxx/σ0 along AB of figure 8.1 obtained from ANSYS and TSA for k = 9 

coefficients and m1 = 4,378 TSA values 
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Fig. 8.66: Plot of σyy/σ0 along AB of figure 8.1 obtained from ANSYS and TSA for k = 9 

coefficients and m1 = 4,378 TSA values 

 

 

The experimental TSA and ANSYS-predicted results of figure 8.45 through 8.66 

associated with the large and small holes tend to agree very well. Only far from the large hole 

along line AB are there significant difference between measured (TSA) and predicted (ANSYS) 

results. These discrepancy are probably due to the fact that no TSA input data are used beyond 

r/R = x/R = 2 (figure 8.21). Interestingly, the values of σθθ/σ0 on the edges of the large (figure 

8.51) and small (figure 8.62) are very similar. The slight non-symmetry with respect to θ of both 

these plots reflects the lack of vertical axis of symmetry. Not surprisingly, the values of σθθ/σ0 on 

the edge of the small hole at θ = 90
o
 exceeds that at θ = 180

o
 on the edge of the large hole. 
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8.6.3 Results for the Unsymmetrically-Loaded Plate 

After evaluating all the unknown Airy coefficients(b0, c0, A0, d1, d1, b2, d2, c3, d3, b4, 

d4,…, bN, dN, b2, d2, …, bN, dN) for the unsymmetrically-loaded plate from the measured S* 

based on the input data for the large and the small hole, the individual components of stress were 

obtained for the large and small holes respectively. Figures 8.67 through 8.77 contain the results 

for the large hole of the unsymmetrically-loaded plate based on the Airy coefficients for the large 

hole while figures 8.78 through 8.88 are those for the small hole of the unsymmetrically-loaded 

plate based on the Airy coefficients for the small hole. Angle θ of figures 8.67 through 8.75 and 

8.76 through 8.86, is measured counter-clockwise from the positive x-axis and r is measured 

here from the center of the large and the small hole of figure 8.2 respectively. The actual in-plane 

dimensions associated with figures 8.76 and 8.77 are plotted normalized with respect to the 

radius r1 = 9.525mm = 0.375” of the large hole. The actual in-plane dimensions associated with 

figures 8.87 and 8.88 are plotted normalized with respect to the radius r2 = 4.76 mm = 0.1875” of 

the small hole. 

 

 
Fig. 8.67: Plot of σrr/σ0 on the boundary of the large hole from ANSYS and TSA for k = 17 

coefficients and m3 = 9,372 TSA values 
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Fig. 8.68: Plot of σrr/σ0 for large hole along r/R1 = 1.5 from ANSYS and TSA for k = 17 

coefficients and m3 = 9,372 TSA values 

 
Fig. 8.69: Plot of σrr/σ0 for large hole along r/R1 = 2 from ANSYS and TSA for k = 17 

coefficients and m3 = 9,372 TSA values 

 
Fig. 8.70: Plot of σrθ/σ0 on the boundary of the large hole from ANSYS and TSA for k = 17 

coefficients and m3 = 9,372 TSA values 

 
Fig. 8.71: Plot of σrθ/σ0 for large hole along r/R1 = 1.5 from ANSYS and TSA for k = 17 

coefficients and m3 = 9,372 TSA values 
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Fig. 8.72: Plot of σrθ/σ0 for large hole along r/R1 = 2 from ANSYS and TSA for k = 17 

coefficients and m3 = 9,372 TSA values 

 
Fig. 8.73: Plot of σθθ/σ0 on the boundary of the large hole from ANSYS and TSA for k = 17 

coefficients and m3 = 9,372 TSA values 

 
Fig. 8.74: Plot of σθθ/σ0 for large hole along r/R1 = 1.5 from ANSYS and TSA for k = 17 

coefficients and m3 = 9,372 TSA values 

 
Fig. 8.75: Plot of σθθ/σ0 for large hole along r/R1 = 2 from ANSYS and TSA for k = 17 

coefficients and m3 = 9,372 TSA values 
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Fig. 8.76: Plot of σrr/σ0 along C’D’ of figure 8.2 obtained from ANSYS and TSA for k = 17 

coefficients and m3 = 9,372 TSA values 

 
Fig. 8.77: Plot of σθθ/σ0 along C’D’ of figure 8.2 obtained from ANSYS and TSA for k = 17 

coefficients and m3 = 9,372 TSA values 

 
Fig. 8.78: Plot of σrr/σ0 on the boundary of the small hole from ANSYS and TSA for k = 17 

coefficients and m4 = 4,094 TSA values 

 
Fig. 8.79: Plot of σrr/σ0 for small hole along r/R2 = 1.5 from ANSYS and TSA for k = 17 

coefficients and m4 = 4,094 TSA values 
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Fig. 8.80: Plot of σrr/σ0 for small hole along r/R2 = 2 from ANSYS and TSA for k = 17 

coefficients and m4 = 4,094 TSA values 

 
Fig. 8.81: Plot of σrθ/σ0 on the boundary of the small hole from ANSYS and TSA for k = 17 

coefficients and m4 = 4,094 TSA values 

 
Fig. 8.82: Plot of σrθ/σ0 for small hole along r/R2 = 1.5 from ANSYS and TSA for k = 17 

coefficients and m4 = 4,094 TSA values 

 
Fig. 8.83: Plot of σrθ/σ0 for small hole along r/R2 = 2 from ANSYS and TSA for k = 17 

coefficients and m4 = 4,094 TSA values 
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Fig. 8.84: Plot of σθθ/σ0 on the boundary of the small hole from ANSYS and TSA for k = 17 

coefficients and m4 = 4,094 TSA values 

 
Fig. 8.85: Plot of σθθ/σ0 for small hole along r/R2 = 1.5 from ANSYS and TSA for k = 17 

coefficients and m4 = 4,094 TSA values 

 
Fig. 8.86: Plot of σθθ/σ0 for small hole along r/R2 = 2 from ANSYS and TSA for k = 17 

coefficients and m4 = 4,094 TSA values 

 
Fig. 8.87: Plot of σrr/σ0 along A’B’ of figure 8.2 obtained from ANSYS and TSA for k = 17 

coefficients and m4 = 4,094 TSA values 
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Fig. 8.88: Plot of σθθ/σ0 along A’B’ of figure 8.2 obtained from ANSYS and TSA for k = 17 

coefficients and m4 = 4,094 TSA values 

 

 Many of the figures 8.67 through 8.88 illustrate the consequence of the uncertain ANSYS 

model of the top and bottom end loadings on the plate of figures 8.2, 8.5 and 8.7. The maximum 

values of σθθ/σ0 on the large and small holes (figures 8.73 and 8.84) are approximately 5. In 

retrospect although somewhat related the large stress at and near the edge of the holes in the 

incline-loaded plate are not greatly different from those of the vertically-loaded plate. 
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8.7 Strain Gage Analysis 

 

TSA-based strains were evaluated from the TSA measured stresses and Hooke’s law (  = 

68.95 GPa (10 x 10
6
 psi) and Poisson’s ratio ν = 0.33). These strains which were obtained from 

Thermoelastic Stress Analysis are compared with those obtained using commercial strain gages, 

figures 8.89 through 8.93. In the case of vertical (figure 8.1) and incline (figure 8.2) plate 

specimen there are no analytical solutions and only an approximated finite element model. Strain 

gage results are therefore very important particularly for assessing the reliability of the TSA 

result for the plate associated with figures 8.2, 8.5 and 8.7. Strain gages were mounted before 

spray painting the specimen. M-Bond 200 adhesive (marketed by Vishay Micro-Measurements) 

was used in conjunction with a catalyst (200 Catalyst-C, recommended for use with M-Bond 

adhesive) for long time stability. M-Coat, was applied over the gages to prevent the gages from 

shorting due to the Krylon Ultra-Flat black paint. Since most of the strain gages utilized are self-

temperature compensating, and gages were mounted and testing conducted at room temperature, 

no dummy temperature compensating gages were employed. These Strains were recorded using 

a 16-channel, variable excitation strain gage conditioner (figure 8.94).  

Four single element Micro-Measurements strain gages (EA-13-125-AD-120; gage length 

= 0.125”, overall length = 0.250”, grid width = 0.125”, overall width = 0.125”, matrix length = 

0.40” and matrix width = 0.22”), with a gage resistance of 120Ω each and gage factor of 2.095 ± 

0.5% were mounted two on the front and two on the back of the specimen to monitor and 

minimize any possible out-of-plane bending during loading. Four strain gages (measure εθθ) of a 

Micro-Measurements strip gage (EA-06-031MF-120) on a common backing, with each gage 
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having a gage length of 0. 31”, a gage factor of 2.1± 1% and a gage resistance of 120Ω, were 

mounted along line CD of figure 8.1, which is same as C’D’ of figure 8.2, see figures 8.90 and 

8.91 (four gage elements were cut from the regular commercial 10-element strip gage). A Micro-

Measurements strain gage (CEA-13-032UW-120) having a gage resistance of 120Ω and a gage 

factor of 2.13± 1% (gage length = 0.032”, overall length = 0.180”, grid width = 0.06”, overall 

width = 0.12”, matrix length = 0.27” and matrix width = 0.19”) was also mounted on the curved 

edge of the hole as shown in figure 8.89. The calibration specimen described in section 8.2.2 also 

contained four Micro-Measurements strain gages (EA-13-125-AD-120), two on the front and 

two on the back, to monitor alignment and minimize out-of-plane bending (figure 8.93).  

Figures 8.95 and 8.96 are the photographs of the symmetrically- and unsymmetrically-

loaded specimen while doing the strain gage testing. Figure 8.97 is a photograph of the overall 

testing of the hydraulically-loaded perforated plate, associated strain gage cables, strain gage 

conditioner, TSA camera, oscilloscope, and MTS machine. The oscilloscope connected to the 

MTS control box used to monitor accurately the specified load range is visible in figure 8.97. 
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Fig. 8.89: Strain gage mounted at point C of figure 8.1 and C’ of figure 8.2 on the curved edge of 

the hole 

 
Fig. 8.90: Strip gage mounted along line CD of figure 8.1 and C’D’ of figure 8.2  
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Fig. 8.91: Strip gage mounted along line CD and C’D’ of figures 8.1 and 8.2 respectively, strain 

gage along the curved edge of the hole and the distant transverse strain gage 

 

 
Fig. 8.92: Distant longitudinal strain gage used to check for any out-of-plane bending (gage 

length = 3.175mm = 0.125”) 
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Fig. 8.93: Calibration specimen with mounted horizontal and vertical strain gages on both sides 

of the plate 

 

 
Fig. 8.94: 16 Channel, variable excitation strain gage conditioner 
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Fig. 8.95: Strain gage on back side of the symmetrically-loaded specimen 

 
Fig. 8.96: Strain gage on the back side of unsymmetrically-loaded specimen 
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Fig. 8.97: Overview of the testing setup, including the MTS loading frame, hydraulic grips, TSA 

camera, strain gage switching, oscilloscope and balancing equipment 

For the symmetrically-loaded plate, figures 8.98 and 8.99 illustrate the load in pounds 

and Newton vs. strain (εyy) plots for the different strain gages which are bonded along line CD 

(figure 8.1), gage no.1 on the curved edge of the hole. These results demonstrate the response 

remains linear with load. Figure 8.100 contains strain-gage recorded strains along CD for 

various levels of plate loading. Figure 8.101 compares the strains (static equivalent specimen 

load of F = 4,448.22 N = 1,000lb) along the line CD extending from the large hole (figure 8.1) 

obtained from Thermoelastic Stress Analysis with those from finite element analysis (ANSYS) 

and strain gages. All strain-gage results were recorded under static loading. Of course εyy at x/r1 = 

1 of figure 8.101 is point C (i.e., θ = 0
o
) of figure 8.1. This is the location of the maximum stress 

on the edge of the large hole, figure 8.101. It is worth noting that the TSA results agree well with 

those from strain gages. 
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Fig. 8.98: Load (lbs) vs. Strain εyy for different strain gages along line CD of plate of specimen 

figure 8.1 
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Fig. 8.99: Load (N) vs. Strain εyy for different strain gages along line CD of plate of figure 8.1 

 
Fig. 8.100: Strain εyy from strain gages along CD of figure 8.1 for different loads 
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Fig. 8.101: Strain εyy along CD of figure 8.1 obtained from ANSYS, strain gages and TSA for k 

= 9 coefficients and m1 = 4,378 TSA values 

 

For the unsymmetrically-loaded plate, figures 8.102 and 8.103 show the load in pounds 

and Newton vs. strain (εθθ) plots for different strain gages which are along line C’D’ (figure 8.2), 

gage #1 on the curved edge of the plate. These results demonstrate the response remains linear 

with load. Figure 8.104 contains strain-gage recorded strains along C’D’ for various levels of 

plate loading. Figure 8.105 compares the strains (static equivalent specimen load of F = 4,448.22 

N = 1,000lb) along the line C’D’ extending from the large hole (figure 8.2) obtained from 

Thermoelastic Stress Analysis with those from finite element analysis (ANSYS) and strain 

gages. All strain-gage results were recorded under static loading. Of course εθθ at x/r1 = 1 of 

figure 8.101 is point C’ (i.e., θ = -15
o
) of figure 8.1. This is not the exact location of the 

maximum stress on the edge of the large hole, figure 8.73. It is worth noting that the strain gage 

results had a good agreement with the results obtained from TSA. 
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Fig. 8.102: Load (lbs) vs. Strain εθθ for different strain gages along the line C’D’ of plate of 

figure 8.2 

 
Fig. 8.103: Load (N) vs. Strain εθθ for different strain gages along the line CD of plate of figure 

8.1 
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Fig. 8.104: Strain εθθ obtained from strain gages along C’D’ of figure 8.2 for different loads 

 

 
Fig. 8.105: Strain εθθ along C’D’ of figure 8.2 obtained from ANSYS, strain gages and TSA for k 

= 17 coefficients and m4 = 9,372 TSA values 
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8.8 Imposing Stress Compatibility between the Holes in the 

Symmetrically-Loaded Plate 

The measure temperature information around that individual hole was used to analyze the 

stresses associated with each of the small and large hole. Until now there was no attempt here to 

incorporate explicitly the consequence of the stresses associated with one hole with those of the 

other hole. It is worth noting that the measured input TSA data around either one of the holes 

automatically includes the consequences of the other hole, figures 8.29 through 8.32 and 8.41 

through 8.44. As in Reference [3], the effect of the stress associated with one of the holes on the 

those of the other hole is now done by imposing compatibility conditions for the analyses of the 

stresses associated with the large and the small holes, i.e., ensuring the stresses σxx, σyy and σxy 

given by the individual analysis for each of the large and the small hole are approximately equal 

in the common region between the holes. Based on Airy coefficients of the respective holes, the 

rectangular stress components, σxx, σyy and σxy, in the common overlapping area associated with 

each hole were evaluated at 63 discrete locations in this overlapping region. The common value 

for each of σxx, σyy and σxy at each of the 63 locations (using the stress function and Airy 

coefficients for the individual holes) in the overlapping region between the holes is the average 

value of the respective rectangular components of stress based on the analysis associated with 

each of the small and large hole. The inner radius for each of these regions is the [radius of the 

particular hole + (4 x actual pixel size)] and the outer radius associated with the large and small 

holes are (2 x radius of the large hole) and (2 x radius of the small hole), respectively i.e., the 

common region is the intersection of these two regions. Each stress component, σxx, σyy and σxy 

therefore provides 63 additional conditions so 3*63 = 189 more conditions which are then 
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employed to solve the matrix expression of equation 8.6 and which is solved using least squares 

to evaluate the unknown Airy coefficients. The total number of input values used now becomes 

m1 + 189 = 4,567 for the large hole and m2 + 189 = 2,220 for the small hole, quantities m1 = 

4,378, and m2 = 2,031 are the measured TSA values with k = 9 coefficients for the analysis of 

either hole. Having solved equation 8.6 for the newly-evaluated Airy coefficients, the analysis 

for each of the small and the large holes was again carried out individually at these 63 locations 
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Figures 8.106 and 8.107 show the values of Airy coefficients (bo, co, d1, b2, d2, c3, d3, 

b4 and d4) evaluated from the individual analysis of the large and small hole using the measured 
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TSA data. Figures 8.106 and 8.107 illustrate the first few Airy coefficients i.e., bo, co, d1, b2, d2 

here tend to be large compared to the last few (c3, d3, b4 and d4), the latter being comparatively 

close to zero. Therefore a small change in the later coefficients would be significant, when 

plotting apparent changes in each Airy coefficient for the small and the large holes, figures 8.108 

and 8.109. All of the coefficients in figures 8.108 and 8.109 are normalized by the corresponding 

respective values in figures 8.106 and 8.107, e.g., all the values of bo in figures 8.108 and 8.109 

are normalized by the corresponding respective value of bo in figures 8.106 and 8.107 and so on 

(similarly for co, d1, b2, d2, c3, d3, b4 and d4). Figures 8.45 and 8.55 are plotted using the 

coefficients of figure 8.106 and figures 8.56 through 8.66 are plotted using the coefficients of 

figure 8.107. 

 
Fig. 8.106: Values of the Airy coefficients obtained from the TSA measured data (S*) for the 

large hole after imposing traction-free conditions only at the edge of the large hole 
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Fig. 8.107: Values of the Airy coefficients obtained from the TSA measured data (S*) for the 

small hole after imposing traction-free conditions only at the edge of the small hole 

Case 1 - in figures 8.108 and 8.109, corresponds to the normalized values of the Airy 

coefficients evaluated from TSA measured data and imposing only the traction-free conditions 

analytically at the boundary of the large and the small hole (i.e., situation of figures 8.106 and 

8.107; case 2 - once all the Airy coefficients for each of the small and the large holes have been 

calculated based on the coefficients of case 1, then the individual rectangular stress components 

in the common region are evaluated separately i.e., at 63 points. New Airy coefficients 

associated with each of the large and small hole are now obtained by imposing these 3*63 = 189 

averaged stresses in this common region as additional conditions, along with the recorded 

temperature data, equation 8.6; case 3 - once all the Airy coefficients are known from case 2, 

then the stresses in the common region associated with each of the large and small hole are 

evaluated (using the Airy coefficients obtained from case 2) and their respective components 
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again averaged at each of the 63 locations. It is worth nothing that averaging twice did not made 

much difference i.e., the coefficients of case 2 and case 3 of figures 8.108 and 8.109 are mostly 

identical. 

 
Fig. 8.108: Relative changes in the Airy coefficients for the small hole by satisfying stress 

compatibility between the holes 
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Fig. 8.109: Relative change in the Airy coefficients for the large hole by satisfying stress 

compatibility between the holes 

Figure 8.110 is the plot of TSA and ANSYS determined σθθ/σo around the edge of the 

large hole while figure 8.111 plots the εyy along CD of figure 8.1 based on the nine Airy 

coefficients of the respective case 3 of figure 8.106. Figure 8.112 is the plot of TSA and ANSYS 

determined σθθ/σo around the edge of the small hole based on the nine Airy coefficients of the 

case 3 of figure 8.107. Imposing the stress compatibility between the holes has little effect i.e., 

results of figures 8.110, 8.111 and 8.112 are very similar to those of figures 8.51, 8.101 and 8.66 

respectively. These results indicate that whether or not one mathematically imposes stress 

compatibility between the holes produces relatively little change, i.e., sufficiently reliable results 

are available here on the edge of an individual hole based exclusively on measured temperature 

data associated with that hole. Since the results did not changed much in the case of 

symmetrically-loaded plate, there is no point in doing for unsymmetrically-loaded plate. 
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Fig. 8.110: Plot of σθθ/σ0 around the boundary of the large hole (r/R2 = 1) from ANSYS and TSA 

using coefficients (bo, co, d1, b2, d2, c3, d3, b4 and d4) of case 3 of figure 8.106 

 

 
Fig. 8.111: Strain εyy along CD of figure 8.1 obtained from ANSYS, strain gages and TSA using 

coefficients (bo, co, d1, b2, d2, c3, d3, b4 and d4) of case 3 of figure 8.106 

 

 
Fig. 8.112: Plot of σθθ/σ0 around the boundary of the small hole (r/R1 = 1) from ANSYS and TSA 

using coefficients (bo, co, d1, b2, d2, c3, d3, b4 and d4) of case 3 of figure 8.107 
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8.9 Checking Load Equilibrium 

Load equilibrium was verified for the symmetrically and unsymmetrically-loaded plate 

along the horizontal line of figures 8.1 and 8.2. Since the TSA analyses requires calibration, one 

can use the TSA data (which linearly dependent on the applied load, F) along with load 

equilibrium to evaluate the applied load i.e., considering the thermomechanical coefficient, K, as 

an unknown (initially) and evaluate it (perhaps iteratively) by summing the longitudinal stress 

distribution across some transverse plane and equating that value to applied load, F. This 

approach eliminates having to conduct a separate experiment for the TSA calibration. For the 

symmetrically-loaded plate of figure 8.1, the TSA-determined stress σyy was integrated across a 

horizontal section (AD) of the plate of figure 8.1. For the unsymmetrically-loaded plate the TSA 

determined stress σyy was integrated along a horizontal line 3.3 mm (0.13”) above the origin of 

the large hole of figure 8.2. Before imposing the stress compatibility between the holes, 

summing σyy across line AD (using the coefficients of figure 8.106) of figure 8.1, i.e., ∫        
 

 
 

(where t is the thickness) gives a load 4537 N (1060 lbs) and after imposing the compatibility 

conditions between the holes (i.e., using the case 3 of figure 8.108), the load equilibrium was 

found to be 4684 N (1053 lbs). Integrating the stress σyy (using the coefficient of figure 8.107) 

across a section slightly above the large hole of figure 8.2 gives load equilibrium of 4657 (1047 

lbs). This differs from the applied load of 4715 N (1000 lbs) by only 4 to 6%. These checks on 

load equilibrium by integrating the TSA determined stresses further substantiate the reliability of 

the present TSA analysis. 
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8.10 Summary, Discussion and Conclusions 

This chapter demonstrates the ability to determine the stress component in a multiple 

perforated plate using a hybrid experimental-numerical method which is highly effective for 

stress analysis finite plane-problems. This combines measured temperature information with a 

series representation of an Airy stress function along with analytically imposing the traction-free 

boundary condition on the edge of the hole. The determination of individual components of 

stress is very important in the engineering structures. The present technique is not restricted to a 

specific arrangement of multiple holes and loading conditions. Two different cases were 

conducted: out in which a plate is symmetrical about horizontal x-axis, the other does not enjoy 

such symmetry. The associated stress functions are based on the geometry and traction-free 

conditions, and irrespective of far field loading conditions. For the symmetrically-loaded plate, 

the stress functions assume symmetry only about the horizontal axis, while no symmetry was 

accounted in the stress function for unsymmetrically-loaded plate. The number of Airy 

coefficients utilized is substantiated experimentally. Individual stress components in the multiple 

holes in the finite domain subjected the arbitrary loading is determined. Advantages of the 

presented method includes no limitation for the number of holes, hole spacing, finite/infinite 

geometries, and arbitrary loading conditions. TSA results agree with those predicted by FEM, 

measured strains and load equilibrium is satisfied for both symmetrically-and unsymmetrically 

cases. The uncertain external loading conditions of the symmetrically-loaded plate necessitate an 

assumed FEM model. Whether or not stress compatibility is enforced between the holes, it has 

little effect on the results. The present TSA approach assumes plane-stress. The radius of the 

small hole considered is less than the thickness of the plate. Notwithstanding this situation, a 3-D 
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FEM analysis verifies the stresses are sufficiently uniform through the plate thickness to justify 

this plane stress assumption (Appendix 8). 

The uncertainty of the ANSYS model (results) for the unsymmetrically-loaded plate of 

figure 8.2 raises the validity of the question of the usefulness of comparing TSA and ANSYS 

results for that case. However, the excellent agreement between TSA and measured strains for 

the unsymmetrical situation further substantiates the reliability of TSA for stress analyzing 

practical engineering members. The uncertainty of ANSYS prediction for the plate of figure 8.2 

demonstrates challenges which can occur in numerical modeling engineering problems when the 

external loading (boundary conditions) are not adequately known, therefore necessitating an 

experimental analysis.  

The present analysis considers the stress interactions among two circular holes in a two-

dimensional finite domain. Since stresses at a geometric discontinuity can be influenced by the 

neighboring structural compliance, this chapter emphasizes determining the individual stress 

components in a region containing two different-size neighboring holes whose stress fields 

interact. Interaction effects among holes can be accurately evaluated through stress compatibility 

between the holes for the symmetrically-loaded plate. Little information is available for such 

cases, purely analytical solutions are extremely difficult for finite geometries, and reliable 

numerical approaches are challenging if the external loading is not well known. Although 

illustrated here for neighboring circular holes, the present approach is applicable to non-circular 

holes or notches, or combinations thereof. 

 



458 
 

Chapter 9 : Determining the Full Field Displacement, 

Strain and Stress Components in a Perforated 

Finite Orthotropic Plate from a Single Component 

of Displacement  

9.1 Introduction 

Composite components having holes or cut-outs are frequently used as load bearing 

structural members. Advantages of composites over conventional isotropic materials include 

their superior stiffness-and strength-to-weight ratios. However, composite materials are often 

non-isotropic and the anisotropy can significantly complicate the stresses in the vicinity of any 

geometric discontinuities. This chapter utilizes a hybrid method to evaluate from a single 

component of displacement the full-field stresses (strains, displacements) around a circular hole 

in a finite tensile plate. The method is applicable for both isotropic and orthotropic materials. 

Stress determination by conventional displacement measurement techniques (digital 

image correlation, moiré, and speckle) require physically differentiating the measured 

displacements. Differentiation of such measured data has its own perils. Determining both 

Cartesian components of displacement is often non-trivial using techniques such as moiré, 

holography or speckle. It can also be difficult to measure quality displacements at and very close 

to the edge of the holes or notches (frequently the locations of interest) to say nothing about 

differentiating them reliably. 



459 
 

The glass-epoxy orthotropic composite laminate [0/90/010/90/0] of figure 9.1 is analyzed 

here. The geometry and material properties are taken from [118]. Recognizing the previously 

discussed challenges of sometimes having both components of displacement available, this 

chapter demonstrates the ability to determine the individual stress components from a single 

component of displacement. The technique utilizes complex variables and mapping, and satisfies 

the traction-free condition analytically at the hole. Simulated measured displacement information 

from ANSYS is used as input data.    

 This chapter also compares the various expressions from the literature used for 

conformal mapping, and individual stress and displacement components. The equations used 

here are from references [9, 117 and 118] publications and Baek’s FORTRAN code. However, a 

few the typographical errors in Baek’s equations have been corrected in this chapter. An 

objective of this chapter was to assemble a consistent set of equations free of errors or 

incompatibilities to evaluate the displacements, strains or stresses from one input component of 

displacement. Results of this chapter also somewhat extend those of reference [118]. 

 
Fig. 9.1: Schematic of symmetrically-loaded glass-epoxy orthotropic composite plate with a 

central circular hole  
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9.2 Relevant Equations  

For orthography, the equations of stress equilibrium and strain compatibility can be 

represented in terms of Airy’s stress function, F [119]:  
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    (9.1) 

This equation can also be written as             

where          3     
 

  
 𝜇 

 

  
 

The terms 𝜇  are the roots of the characteristic equation which are associated with the 

compatibility equation given below [119] 

    𝜇
      𝜇

            𝜇
      𝜇          (9.2) 

where,                               are elastic compliances. When aligned in the direction 

of material symmetry, the elastic compliances (   ) are related to the engineering elastic 

quantities as follows. 

     
 

   
                

 

   
                

   
   

                
 

   
    (9.3) 

By expressing the response of an orthotropic material in its directions of material 

symmetry, and using equations 9.3, equation 9.1 reduces to equation 9.4 [119] and equation 9.2 

to equation 9.5. 
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     (9.4) 
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      𝜇
            𝜇

             (9.5) 

Combining equations 9.5 and 9.3 yields equation 9.6  

   𝜇  (
   

   
     ) 𝜇  

   

   
       (9.6) 

The roots of the characteristic equation of equation 9.6 can be seen in equation 9.7 

𝜇                        𝜇                          �̅�                          �̅�         (9.7) 

Quantities         of equation 9.7 are real numbers, both β and δ are positive (   ,      

and    √  . Equation 9.6 indicates that these values depend only on material properties. If the 

roots are pair-wise equal, 𝜇   𝜇        and �̅�  �̅�       .   

For an isotropic material, the elastic moduli are equal and the shear modulus can be 

written in terms of the elastic modulus and Poisson’s ratio, as seen in equation 9.8 

                                 
 

      
    (9.8) 

Equations 9.9a and 9.9b then follow [119]. 

    
   

   
   

   

      
  

   

   
       (9.9a) 

     𝛻          (9.9b) 

Here 𝛻   
  

    
  

    and 𝜇   𝜇    , �̅�  �̅�     ,       [117]. 
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The physical geometry of the plate is denoted as the z-plane. The x and y coordinates 

relate to this plane according to equation 9.10. The 𝜇  in equation 9.10 can be obtained from 

equation 9.6. 

           𝜇               (9.10) 

For orthotropy, the stress function in complex form, F, can then be expressed as [15].  

          [             ]    (9.11) 

where,    denotes the ‘real part’ of the complex number.        and        are analytical 

functions of the complex variables    and   , respectively. It is convenient to introduce the 

following two stress functions [15] 

          
       

   
 and        

       

   
   (9.12) 

from which the stresses of equations 9.13 through 9.15 can be written [15].  Primes in these 

equations denote the differentiation of the respective stress functions.   

          {𝜇 
        𝜇 

       }    (9.13) 

          {             }     (9.14) 

            {𝜇        𝜇       }    (9.15) 

The displacement can be written as in equations 9.16 and 9.17. In these equations,  ,    

and    are arbitrary constants which appear as a result of integration and which characterize the 

rigid body translations (   and   ) and rotation ( ) [119].  



463 
 

       {𝑝       𝑝       }           (9.16) 

     {                }           (9.17) 

In addition to the terms related to rigid motion, equations 9.16 and 9.17 involve additional 

variables which depend only on material properties. These variables, symbolized by 𝑝 , 𝑝 ,    

and   , are defined in equation 9.18 [119].  

𝑝     𝜇 
         𝜇                   𝑝     𝜇 

         𝜇  

      
   𝜇 

         𝜇 

𝜇 
                    

   𝜇 
         𝜇 

𝜇 
   (9.18) 

Just as equation 9.2 can be simplified to equation 9.5, these material properties can then be 

simplified when the material response is written in the directions of material symmetry, i.e.,   

𝑝      𝜇 
                           𝑝      𝜇 

      

         𝜇  
   

𝜇 
                           𝜇  

   

𝜇 
   (9.19) 

The method now makes use of conformal mapping. The basic idea of conformal mapping 

is fairly simple. A two-dimensional geometry can be represented by a coordinate system which 

represents one coordinate axis with imaginary numbers and the orthogonal coordinate axis with 

real numbers. A mapping function can then transform this original complex function 

representing the original geometry to a different complex function on a different coordinate 

plane. This mapping function must preserve angles when going from one coordinate system to 

another. The new coordinate system (and resulting geometry) is usually chosen to aid in solving 

desired equations. The solution from this simplified (mapped) domain can then be mapped back 
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to the original geometry. This mapped solution will be a valid solution to the desired equations 

on the original coordinate system, despite the fact that it was not solved for in this domain. For 

orthotropy, auxiliary planes and their induced mapping functions are defined according to 

reference [15]. 

    (  )     (9.20) 

Here,    represents the physical z-plane, as seen in equation 9.10. The z-plane is then mapped to 

the ζ-plane. The ζ-plane is the mapped complex plane whose coordinates are   and  .   

     𝜇                      (9.21) 

Differentiating equation 9.20 with respect to ζ yields equation 9.22 [120].  

     
   

   
    

   
 
        (9.22) 

From equations 9.12 and 9.20, the stress functions   and   can be rewritten as in equations 9.23 

and 9.24 [120].  

       (      )           (9.23) 

                          (9.24) 

Differentiating equations 9.23 and 9.24 yields equations 9.25 and 9.26 [120]. 

                   
   
   

  
  (  )

   (  )
    (9.25) 

                  
   
   

  
  (  )

   (  )
    (9.26) 
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In the absence of rigid body motion, equations 9.25 and 9.26 can be combined with 

equations 9.13, 9.14, and 9.15 to give [120]  

          [𝜇 
   

(  )

  
 (  )

 𝜇 
   

(  )

  
 (  )

]    (9.27) 

          [
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(  )

  
 (  )

]     (9.28) 

        [𝜇 
  

(  )

  
 (  )

 𝜇 
  

(  )

  
 (  )

]    (9.29) 

By combining equations 9.25 and 9.26 with equations 9.16 and 9.17, and in the absence of rigid 

body motion, the displacements become   

     [𝑝       𝑝      ]    (9.30) 

     [               ]    (9.31) 

such that the u displacement is in the direction of loading, figure 9.1.  

For a circular cutout of radius R in an orthotropic materials, the relevant geometry is 

transformed back from the ζ-plane to the physical z-plane using the mapping function of 

equation 9.32 [9]. This function maps the unit circle of the ζ-plane to the boundary of the circular 

cutout in the physical z-plane [9].  

      (  )  
 

 
[(   𝜇 )   

   𝜇 

  

] ;        (9.32) 
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To map from the physical z-plane to the ζ-plane, the inverse of the mapping function of equation 

9.32 must be used. This can be seen in equation 9.33 [9].  

   (  )     
   √  

       𝜇 
  

     𝜇  
 ;         (9.33) 

The stress components of equations 9.27 through 9.29 involve the derivative of the mapping 

function with respect to   .  This derivative is given below.   

  
  

 

 
[(   𝜇 )  

   𝜇 

  
 ] ;         (9.34) 

The stress components also involve the two complex stress functions,   and  , which 

can be related by conformal mapping. Imposing the traction-free boundary condition on the edge 

of the hole relates these two functions as follows [15]  

            ̅ 
̅̅ ̅̅ ̅̅ ̅̅            (9.35) 

The constants B and C are complex variables which depend only on material properties, as seen 

in equation 9.36.   

  
�̅�  �̅� 

𝜇  �̅� 
         

�̅�  𝜇 

𝜇  �̅� 
    (9.36) 

No steps have yet been made to provide the stress functions. Since the stress functions 

are analytic, they can be represented by either Taylor series or Laurent series 

expansions.  Although both of these series expansions involve a (computationally impossible) 

infinite sum, the larger order terms are nearly negligible, and a truncated series is therefore a 



467 
 

valid approximation.  For this reason, truncated series expansions are used.  Mappings which 

map the boundary of the hole in the physical plate to the real axis of the ζ-plane use truncated 

Taylor series expansions whereas mappings which map the boundary of the circular hole to the 

unit circle of the ζ-plane employ Laurent series expansions [121]. Laurent expansions can be 

applied in circumstances where Taylor series expansions cannot; unlike Taylor series 

expansions, Laurent expansions sum from -  to   instead of from 0 to  . The Laurent 

expansions of the stress functions used are in equations 9.37 and 9.38 and note that j ≠ 0. 

     (9.37) 

    (9.38) 

It should be noted that the two Laurent expansions in equations in equations 9.37 and 

9.38 sum only the odd values of j, i.e., j not only never equals zero, it never equals an even 

number.  This is due to the symmetry around the hole. If one quadrant of the plate of figure 9.1 is 

analyzed, each of the other three quadrants is known through symmetry. The coefficients    

found in equations 9.37 and 9.38, are complex numbers consisting of some real 

component    and some imaginary component   , i.e.,          .  

It is now possible to solve for the coefficients    and    from the known (measured) 

displacements. Combining equations 9.37 and 9.38 with equations 9.30 and 9.31, one obtains  
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 (9.39) 

 (9.40) 

From many known (measured) values of u and/or v, the coefficients    and    can be 

evaluated. For a sufficient number of input known (measured) uniaxial displacements, equation 

9.39 will be over determined. Coefficients    and    can then be determined using the Gauss-

Jordan method in MATLAB. Since the present approach is to use the known (measured) u 

displacement, which is in the direction of loading, equation 9.40 can be written in the following 

matrix form [118].  

[ ]   { }    { }        (9.41) 

For the displacement vector { }  { } having m measured input displacements originating from 

the source locations, and the coefficient vector { }  {  } having k unknown coefficients, then 

the matrix [ ] is m x k given in equation 9.42. The   in vector {c} corresponds to only odd terms 

and sums over the –m to m except j ≠ 0 in the Laurent expansion and therefore the size of k = 

j+1. The vector { } is composed of only {  } because the real part of equation 9.39 is just {  }. 

The size of the rectangular matrix [ ] depends on the number of terms in the Laurent expansion 

and the number of input values. In matrix notation, the equation 9.39 becomes  
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          [𝑝   
 
 𝑝 (   

 
    

  
)]   (9.42) 

The variables    and    differ with every input data location. If { } is known at a 

sufficient number of locations, the coefficients { } can be solved for using some least squared 

method like the Gauss-Jordan technique. Knowing { } then one can evaluate both u and v 

displacements of equations 9.39 and 9.40. 

The derivatives of the stress functions are necessary to solve for the stresses of equations 

9.27 through 9.29. The derivatives of the Laurent expansions of the two stress functions are 

given in equations 9.43 and 9.44. 

    (9.43) 

   (9.44) 

Since    is now known from equations 9.41 and 9.42, the stresses of equations 9.27 through 9.29 

can be found with the help of equations 9.34, 9.36, 9.43 and 9.44, these stresses can be found in 

equations 9.45, 9.46, and 9.47, respectively.   

 (9.45) 



470 
 

  (9.46) 

 (9.47) 
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9.3 Literature Review 

There already exists considerable literature utilizing conformal mapping related to 

determining the full-field stresses around a circular hole. The literature is not particularly 

consistent in how it performs the complex mathematics necessary to produce full field stresses 

from measured data and a traction-free boundary.  

Both of the papers by Baek and Rowlands [9 and 117] use the same fundamental 

mathematic technique as does in this chapter, despite the fact that they used different types of 

input data, i.e., [117] used moiré input data and [9] used biaxial strain gage data. Both papers 

explicitly state that the Laurent expansions (equations 9.37 and 9.38) are summed only over odd 

values and use only real terms because of symmetry.   

The article using the same technique for supplying input data, written by Baek, Chung, 

and Panganiban [118], contains some mathematical differences (typographical errors). Reference 

[118] gives the following mapping function 

      (  )   
 

 
[(   𝜇 )    

   𝜇 

  
]   (9.48) 

This expression differs from the current mapping function provided in equation 9.32 in that the 

numerator in the second term of equation 9.48 is a difference instead of the sum as given by this 

chapter. Additionally, the Laurent expansion for the second stress function in [118] differs from 

that of this chapter and other papers using unit-circle mappings. Their [118] second Laurent 

expansion can be seen in equation 9.49. 
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   (9.49) 

Lin and Rowlands [122], with relevance to moiré, holography, laser Doppler 

interferometry, and thermoelastic stress analysis, derived equations 9.27 through 9.29 from the 

compatibility and equilibrium equations. Reference [122] provides the fundamentals behind the 

Laurent expansions through the relationship between the two stress functions and how they 

match to different mapping techniques. Reference [122] also provides conformal mapping for a 

variety of geometries. This includes conformal mapping equations for straight edges, circular 

openings and notches. However, unlike this chapter, [122] mapped the boundary of a circular 

hole to the real axis of the  -plane, instead of mapping the boundary of the hole to the unit circle 

of the  -plane as done here. Specifically, the mapping function, inverse mapping function and 

the derivative of their mapping function with respect to   of reference [122] appear in equations 

9.50 through 9.52.  

      (  )  
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)          (9.51) 

  
 (  )   

  

 
[(   𝜇 ) 

     (   𝜇 ) 
   ]         (9.52) 

These latter equations can be compared to equations 9.32 through 9.34, respectively.  Another 

difference between the paper by Lin and Rowlands [122] and presently is the Laurent expansion. 
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Their paper uses a Taylor, rather than a Laurant, series expansion; the stress functions are 

approximated by summations from 0 to N instead of from –m to m. Their expansions of their 

stress functions appear in equations 9.53 and 9.54. Here,    represents a point on the traction-

free boundary of the circular cutout and      because it is mapped on the real axis [120].  

    (9.53) 

   (9.54) 

The paper by Huang and Rowlands [19] similarly uses the mapping functions given in 

equations 9.50 through 9.52 instead of those used here (equations 9.32 through 9.34). Reference 

[19] also uses the expression of equation 9.53 instead of that of equation 9.37. However, unlike 

Lin, Huang provides a different coordinate system for the real z-plane and the mapped  -plane. 

Instead of the z-plane provided by equation 9.10 and the  -plane provided by equation 9.21, 

Reference [19] uses equations 9.55 and 9.56. 

                   (9.55) 

                 (9.56) 

The paper by Gerhardt [121] also differed in its conformal mapping techniques. The first 

difference compared with here was its treatment of the physical z-plane. Although the two z-

planes are mathematically equivalent, the z-plane listed in [121] is never simplified to that in 
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equation 9.10. Instead of μj being defined as the distinct roots of equation 9.6, they are defined 

by Gerhardt as the distinct roots of equation 9.2. Gerhardt’s characteristic equation is 

mathematically identical to that here if written with respect to the directions of material 

symmetry. Gerhardt also gives information on whether the stress functions should use Taylor or 

Laurent expansions. Reference [121] gives the following series expansions   

    (9.57) 

   (9.58) 

Gerhardt goes on to say “For unit-circle mappings,      and     . For real-axis mappings, 

    and    .” All of the other herein referenced papers follow this convention except [120], 

which, despite utilizing a unit-circle mapping, defines    . Gerhardt uses the same mapping 

function as Lin [120] for mapping to the real-axis in the  -plane.   

Chen [123] uses the same conformal mapping technique as employed here. However, it is 

used to map an elliptical hole from the real z axis to a unit circle of the  -plane. When the ellipse 

becomes a circle, i.e., when the semi-axes a and b are equal to each other and equal to the radius 

of the circle, the mapping functions used here and in reference [123] are mathematically 

equivalent. However, the derivative of the mapping function in reference [123] is mathematically 

equivalent not to the derivate found here, but rather its inverse (  ’   ⁄ ); as seen in equation 

9.59. 
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 (  )   

   

(   𝜇  )       𝜇     
           (9.59) 

Chen uses a Laurent expansion to approximate the stress functions identical to that used here.   

The papers by Rhee and Rowlands [124 and 125] solve for the full-field stress around a 

variety of geometries, including multiple elliptical holes, single holes, and individual cracks. 

They again map the unit circle from the  -plane to the boundary of each elliptical hole. Other 

than a term accounting for the position of each hole, they contain the same mapping functions as 

employed here. Every detail of their complex mathematics is identical to that utilized here.   

Lin, Feng, and Rowlands [108] solve a different problem. Instead of being concerned 

about a circular hole, they considered a loaded plate with a crack. Because the geometry is 

different, the mapping must necessarily be different. They mapped the boundary of the crack to 

the real-axis, consistent with [119], and they used a truncated Taylor series instead of a Laurent 

expansion to approximate the relevant stress functions. 
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9.4 Analysis and Results 

Numerical experiments were performed here using ANSYS to demonstrate the present 

technique. A quarter symmetrical model of the finite-width tensile plate of figure 9.1 is modeled 

using isoparametric elements (ANSYS element type: Plane-82) in ANSYS. The glass-epoxy 

tensile composite has elastic properties E11 = 34.2 GPa, E22 = 14.1 GPa,     = 0.22 and G12 = 3.4 

GPa using 7,566 elements and 23,229 nodes in ANSYS, figure 9.2. Roots of equation 9.6 for 

these material properties are 𝜇  = 3.059i and 𝜇  = 0.509i. These geometry and material 

properties are from reference [118]. A far-field stress, σ0 (= 25 MPa) was applied on the 

specimen.  

 
Fig. 9.2: Finite element model for the analysis of figure 9.1 

The simulated experimental data for the plate of figure 9.1 from ANSYS are exported to 

MATLAB. A total of m = 3,449 values of the ANSYS-predicted u-displacements was collected 
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on and near the boundary of the hole, figure 9.3. For the m = 3,449 simulated u displacements, k 

= 2 was found to be an appropriate number of coefficients. Using this number of coefficients 

were substantiated by comparing the simulated experimental data from ANSYS with the 

reconstructed data using k = 2 coefficients, figure 9.6. 

 
Fig. 9.3: Source locations of m = 3,449 simulated experimental data  

 

The unknown coefficients are evaluated from the simulated u-displacements according to 

equations 9.41 and 9.42. The individual full-field stress and displacement components are then 

available by substituting these known coefficients into equations 9.39, 9.40 and 9.45 through 

9.47. The results obtained by this hybrid technique are compared with those from ANSYS. 

Cartesian components of stress are normalized with respect to the far field stress, σ0 (= 25 MPa) 
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and are plotted on the boundary of the hole, figures 9.4 and 9.5. Normalized displacement and 

stress contour plots from the present hybrid technique and ANSYS are plotted using MATLAB, 

figures 9.6 through 9.10. The displacements are normalized with the radius of the hole.  

There is an excellent agreement between the ANSYS and the present hybrid technique 

based on evaluated coefficients    for m = 3,449 input numerically simulated measured u-

displacements and k = 2 coefficients. By a similar approach, figures 9.11 and 9.12 plot the 

normalized displacements based on evaluated coefficients for m = 3,449 input numerically 

simulated measured v displacements and k = 2 coefficients. Note that the results based on 

evaluated coefficients,   , from input u-displacements show a better agreement when compared 

to those evaluated coefficients from input v-displacements. This is very probably because the 

input u-displacements are larger than the input v-displacement values. This situation suggests 

(and the method enables one to do so) an advantage of using the input data having the largest and 

most reliable magnitudes. Results of figures 9.4 through 9.12 are all based on σ0 = 25 MPa. 

 
Fig. 9.4: Plot of σxx/σ0 around the boundary of the hole (r/R = 1) from FEA and hybrid method 

for m = 3,449 input u-displacements and k = 2 coefficients 
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Fig. 9.5: Plot of σyy/σ0 around the boundary of the hole (r/R = 1) from FEA and hybrid method 

for m = 3,449 input u-displacements and k = 2 coefficients 

 

 
Fig. 9.6: Contour plot of u/r throughout 6.35mm ≤ r ≤ 12.7mm region adjacent to hole predicted 

by FEA (left side) and based on evaluated coefficients (right side) for m = 3,449 input 

numerically simulated measured u-displacements and k = 2 coefficients (right side) 
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Fig. 9.7: Contour plot of v/r throughout 6.35mm ≤ r ≤ 12.7mm region adjacent to hole predicted 

by FEA (left side) and based on evaluated coefficients (right side) for m = 3,449 input 

numerically simulated measured u-displacements and k = 2 coefficients 

 

 

 
Fig. 9.8: Contour plot of σxx/σ0 throughout 6.35mm ≤ r ≤ 12.7mm region adjacent to hole 

predicted by FEA (left side) and based on evaluated coefficients (right side) for m = 3,449 input 

numerically simulated measured u-displacements and k = 2 coefficients 
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Fig. 9.9: Contour plot of σyy/σ0 throughout 6.35mm ≤ r ≤ 12.7mm region adjacent to hole 

predicted by FEA (left side) and based on evaluated coefficients (right side) for m = 3,449 input 

numerically simulated measured u-displacements and k = 2 coefficients 

 

 

 
Fig. 9.10: Contour plot of σxy/σ0 throughout 6.35mm ≤ r ≤ 12.7mm region adjacent to hole 

predicted by FEA (left side) and based on evaluated coefficients (right side) for m = 3,449 input 

numerically simulated measured u-displacements and k = 2 coefficients 
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Fig. 9.11: Contour plot of u/r throughout 6.35mm ≤ r ≤ 12.7mm region adjacent to hole predicted 

by FEA (left side) and based on evaluated coefficients (right side) for m = 3,449 input 

numerically simulated measured v-displacements and k = 2 coefficients 

 

 
Fig. 9.12: Contour plot of v/r throughout 6.35mm ≤ r ≤ 12.7mm region adjacent to hole predicted 

by FEA (left side) and based on evaluated coefficients (right side) for m = 3,449 input 

numerically simulated measured v-displacements and k = 2 coefficients 
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9.5 Conclusion 

A hybrid method for stress analyzing a perforated orthotropic plate from input values of a 

single component of displacement which combines a stress function in the complex variables and 

conformal mapping, and that analytically satisfies the traction-free conditions on the edge of the 

hole is substantial. Based on reference [118] the earlier capabilities of reference [9, 15, 19, 108, 

117, 120, 122, 124 125] which used thermoelastic (TSA), measured strains or both Cartesian 

components of displacement input information, this chapter emphasizes needing only one 

component of displacement as input. This can greatly simplify the experimental requirements. 

Reference [118] evaluates only the tangential stress on the boundary of the cut-out from a single 

displacement component. This chapter is an extension to reference [118] wherein full-field 

individual stress and displacement components are evaluated. Least squares is used to evaluate 

unknown coefficients from the single displacement component.  

The classical use of displacement measurement techniques like Electronic Speckle 

Pattern Interferometry (ESPI), Digital Image Correlation (DIC), moiré or holography requires 

spatially differentiating these displacements to determine strains or stresses. It can also be 

particularly challenging to obtain accurate experimental data (displacements) on the edge of a 

cutout and differentiating these data can results in inaccurate stresses at holes or notches. These 

are often the location of prime importance. The present technique circumvents this challenge of 

having to physically differentiating the measured displacements and provides accurate stresses 

on the boundary of the cutouts without the knowledge of measured displacements in the 

immediate region of the cutout.  
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Numerical experimental data from ANSYS are used to validate the technique. In the 

present analysis m = 3,449 simulated u-displacements were used to determine k = 2 unknown 

coefficients. There is excellent agreement between the ANSYS simulated results and the present 

hybrid technique. Future potential applications of this method include to stress analyze paper 

and/or wood materials as well as structural composites containing holes or notches.  

Professor Baek’s willingness to share his FORTRAN code is greatly appreciated. 
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Chapter 10 : Summary and Conclusions 

This research focuses on developing, enhancing and simplifying the experimental, 

analytical and numerical tools of solid mechanics to solve important engineering problems. 

Major contributions of this thesis include the following: 

(i) Full-field strain/stress determination without physically differentiating the 

measured displacements (i.e., with a rigorous mechanics basis) for finite 

structures.  

(ii) Use measured values of a single component of displacement or strain to 

determine full-field individual components of stress, strain and displacement. 

(iii) Simplify experimental concepts with potential application to load-cell design. 

(iv) Illustrate potential challenges when applying (or as one approaches) a purely 

boundary collocation method. 

(v) Demonstrate the ability to stress analyze a finite component containing an 

elliptical hole using a stress function in real (polar) coordinates and a single 

experimental technique (TSA).  

(vi) Illustrate the experimental ability to determine the individual components of 

stress on and in the vicinity of the edge of a pin-loaded hole in a finite plate 

without initial knowledge of the pin-plate contact area.  
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(vii) Determine accurate displacements/strains/stresses on the boundary of a hole 

without the knowledge of any measured data on and near the edge of the 

geometric discontinuity. This is accomplished using simple stress functions 

and without knowledge of the far-field loading/boundary conditions. 

(viii) Evaluate the individual stress components associated with two neighboring 

holes which are either perpendicular or inclined to the direction of the loading 

and whose respective stresses interact. 

(ix) Evaluate interface strains between a loaded ring and its central disk. 

Motivation and significance of several of these contributions are more fully discussed in 

Section 1.2, Novelty, of this thesis.  This research is believed to have made significant strides in 

hybridizing experimental techniques with analytical and numerical tools for the displacement, 

strain and stress analysis of engineering problems. However, much remains to be done, as 

indicated under Considerations for Further Research. 

 



487 
 

 Considerations for Future Research 

1) Apply current concepts to more general bolt-loaded finite-size isotropic or orthotropic 

members (bolt-hole clearance, multiple bolted-loaded holes, etc.).  

2) Extend current capability to full-field stress analyze finite structures containing an 

elliptical hole using digital image correlation. 

3) Extend current concepts to inclined elliptical holes. 

4) Assess the potential feasibility of applying TSA, DIC and/or vibrometry to vibrating 

perforated members. 

5) Apply current concepts to neighboring elliptical holes/notches whose stress fields 

interact. 

6) Assess potential advantages of combining TSA and PSA to full-field stress analysis of 

finite structures containing a hole or edge notch. 

7) Assess the feasibility of employing measured displacements (u, v) or strains (   ,    ,    ) 

(using Neou’s method) in terms of rectangular coordinates directly [14] rather than from 

an Airy stress function in polar coordinates as done here. 

8) Hybrid full-field stress analysis of finite structures containing an arbitrarily shaped (or 

square) hole using TSA and/or DIC. Arbitrarily shaped holes are architecturally common 

and plow bolts involve square holes. 
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9) Hybrid full-field analysis of an inclined finite structure containing an arbitrarily shaped 

hole (or vertical tension with an inclined arbitrarily-shaped hole) employing TSA and/or 

DIC. 

10) Assess the feasibility of employing TSA for the NDE of bicycle (motor cycle, moped) 

frames. 

11) Full-field stress, strain or displacement analysis of a metal-plate wood connector using 

DIC, TSA and/or PSA.   

12) Experimental stress, strain or displacement analysis of bovine manure or cellulosic 

materials using DIC, vibrometry or TSA. Such material can be fabricated into furniture 

members plus are potentially useful building material for developing countries. 

13) Non-destructive thermal testing of materials under non-adiabatic conditions using TSA. 

14) Assess potential of combining the friction and adhesion model developed by Dr. Melih 

Eriten (University of Illinois-Urbana/Champaign) with that by Bickley [65] to modify the 

latter’s analytical solution considering friction and shear stress on the contact boundary of 

the hole. 

15) Use DIC, TSA and/or interferometry, plus physical testing, to assess the 

physical/mechanical/structural differences between machined and formed holes in green 

(bovine manure, cellulosic) composites. 

16) Explore the feasibilities of extending the current concepts of measuring a single 

component of strain (single-element strain gages) at discrete locations of Chapters 3, 4 

and 9 to more general situations. Strain gages are the most prevalently used strain-

measuring technique in industry.  
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17) Use DIC to monitor (strain/stress analyze) bolted wood joints which undergo large, non-

linear behavior [128]. 

18) Extend/apply TSA and/or DIC into the micro (or smaller) range. 

19) Extend present thermoelastic concepts to problems involving heat transfer (there are 

some similarities in the equations of heat transfer and stress analysis). 

20) Extend current concepts to more general/extensive/complicated inverse problems (e.g., 

friction). 

21) Extend current concepts to infrared grey-field photoelasticity (GFP, PSA). 

22) Feasibility of Legendre polynomials for processing TSA, DIC or measured strain data. 

23) Potential of extending current concepts to 3-D problems. 

24) Potential advantages of combining TSA or DIC measured data with the FEM-type 

scheme developed by Dr. G. Halford’s colleague at NASA.  

25) Possibilities of extending current photomechanical (TSA) approaches to viscoelastic 

biological or polymeric materials. 

26) Possibilities of extending current photomechanical approaches to pultruded composites 

(I-beams, etc.). 

27) Possible advantage of using radial basis functions to process measured data. 

28) Apply current (plus possibly interferometry and/or vibrometry) concepts to metal-matrix 

composites. 

29) Apply current concepts to functionally-graded materials. 

30) Apply current concepts to fatigue. 

31) Use vibrometry and/or 3-D laser scanner to analyze perforated orthotropic plates 

subjected to large transverse deflections. 
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32) Feasibility of extending TSA to non-flat surfaces. 

33) Use present concepts to fully characterize an orthotropic material (composite) using a 

diametrally load disk (F. Perrion’s virtual field concepts). 

34) Feasibility of fully stress analyzing loaded perforated orthotropic composites by 

combining current photomechanical methods and a stress function in terms of complex 

variables. 

35) Use current concepts to study bolted joints in green materials. 

36) Use current concepts (plus perhaps vibrometry) to analyze vibrating plates of green 

materials (both isotropic and composites). 

37)  Assess the application of TSA to wood and paper materials.  
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 Appendices 

A2 Evaluating Strain and Displacement Equations for a Finite 

Plate with Circular Hole 

An expression for the Airy stress function,  , which satisfies the biharmonic equation 


4 = 0, and thus equilibrium and compatibility, can be written as follows: [3, 5, 6] 
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(2A.1)  

where angle θ is measured counter-clockwise from the positive x-axis of figure 2.1. Depending 

on the situation, many of the above Airy coefficients can often be equated to zero based on 

single-valued stresses, strains or displacements with respect to θ, whether the origin of the 

coordinate system is within or outside of the body, whether or not there is any mechanical and 

geometric symmetry, and whether the body is finite or infinite in size*.  

 

 

* While some of the equations of reference [6] contain some typographical errors, the present 

expressions are all believed to be correct. 
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Based on  of equation 2A.1, and since 
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the individual polar components of stress become 
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(2A.5)  

For a perforated finite plate having symmetry with respect to both its x- and y-axes, and 

its coordinate origin within the cavity, and the plate subjected to uniaxially loading in the vertical 

y-direction figure 2.1, the stress function reduces to [6] 
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And,       
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           (2A.9a)  

Quantity r is the radial coordinate measured from the center of the cavity and angle θ is 

measured counterclockwise from the x-axis, figures 2.1, 2.3 and 2.22.  N is the terminating index 

value of the series (since in practice one can only handle a finite number of terms) and it can be 

any positive even integer.   

Knowing reference [6] and from equations 2A.7 and 2A.8     
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where υ is Poisson’s ratio and   is the elastic modulus.  

Upon integrating, one gets 
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where, g(θ   =  S1cos θ – S2sin θ                  (2A.12) 

Similarly, for isotropy 
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From [6] 
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Using equations 2A.11 and 2A.15, 
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Therefore, after integration one gets 
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Quantities S1 and S2 represent rigid body translations and R* represents a rigid body rotation [7, 

p.472].  Hence for a physical plate loaded in a testing machine, S1, S2  and  R* can be equated to 

zero.  

At this stage, the shape of the cavity containing the origin has not been specified. The 

only restrictions behind the expressions for the stresses of equations 2A.7 through 2A.9a and the 

displacements of equations 2A.11 and 2A.20 are that the coordinate origin not be within the 

material of the structure, and have mechanical and geometric symmetry about the x- and y-axes. 

However, if the shape of the hole is now stipulated to be round of radius R, and the traction-free 
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conditions of rr = 0 and rθ = 0 on the edge of the hole of figure 2.1 are incorporated 

analytically into the above equations, the number of coefficients is reduced, i.e., [4-6, 8].  

Imposing the traction-free conditions at the radius of the hole i.e., at r = R one has 

      and     , where R is the radius of the hole. From equation 2A.7, 
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Similarly, from equation 2A.9 
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Solving equations 2A.21 and 2A.22 give 
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and the previous expressions of equations 2A.7 through 2A.9 for the stresses, strains and 

displacements can now be re-written i.e., 
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Now for all r, after substituting equations 2A.21a, 2A.23 and 2A.24 in equation 2A.7 becomes, 
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Also from equations 2A.21a, 2A.23 and 2A.24, 
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And from equations 2A.21a, 2A.23 and 2A.24, 
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Note that at r = R, equations 2A.25 and 2A.27 give           as they should. Unlike 

equations 2A.7 through 2A.9a, equations 2A.25 through 2A.27 are further restricted to the hole 

containing the coordinate origin being traction-free and round of radius R. Equations 2A.25 

through 2A.27 no longer involve coefficients b0, an and cn which appears in equations 2A.7 

through 2A.9a.  

Upon imposing the traction–free conditions of equations 2A.21 and 2A.22, the strain and 

the displacements become as follows: 
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and from equations 2A.25 and 2A.26 
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Upon integrating one obtains 
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where, g(θ   =  S1cos θ – S2sin θ. Unlike equation 2A.11, equation 2A.28 is further restricted to 

the hole containing the coordinate origin being traction-free and round of radius R. Like the 

stresses of equations 2A.25 through 2A.27, the radial displacement now also depends at most on 

co, bn and dn, and g(θ   =  S1cos θ – S2sin θ. 
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From equation 2.13 
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Equation 2A.29 is restricted to having mechanical and geometric symmetry about the x- 

and y-axes and the hole containing the coordinate origin being round of radius R. As with the 

stress equations 2A.25 through 2A.27, radial displacement of equation 2A.28, the strains of 

equations 2A.27a and 2A.29 contain only the Airy coefficients co, bn and dn. 
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From equation 2A.16 
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Therefore, integrating gives 
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                       (2A.31)

 If there are no rigid body translations or rotations, S1 = S2 = R* =0, and upon satisfying 

the traction-free stresses on the edge of the hole such that one obtains equations 2A.21 through 

2A.24, then the stresses (equations 2A.25 through 2A.27), strains and displacements (equations 

2A.28 and 2A.31) now involve only the coefficients co, bn and dn.  This reduces the number of 

Airy coefficients that must be evaluated by essentially 50% compared to not imposing the 

traction-free conditions on the edge of the hole analytically (i.e., imposing them point by point).  

Having fewer coefficients can be advantageous experimentally in that it reduces the amount of 
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measured displacement data needed by which to evaluate these remaining Airy coefficients, as 

well as simplifying the least square computations associated with equations 2A.25 through 

2A.31. Note that whereas both ur, equation 2A.28, and uθ, equation 2A.31, involve Airy 

coefficients bn, and dn, ur also depends on co. Airy coefficient co does not appear in the 

expression for uθ of equation 2A.31. This is not unlike the situation in that while co appears in the 

expressions for σrr (equation 2A.25) and σθθ (equation 2A.26), it does not in σrθ (equation 2A.27). 

Validating the previous equations: 

From imposing σrr = σrθ = 0 on the edge of the hole, one has 

                             (2A.21a) 
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But before imposing the traction–free conditions on the edge of the hole, 
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Substituting equations 2A.21a, 2A.23, 2A.24 into equation 2A.11, one gets 
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Equations 2A.28 and 2A.32 agree, as they should. 

Now, before imposing the traction–free conditions on the edge of the hole, 
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           (2A.20) 

Substituting equations 2A.21a, 2A.23 and 2A.24 into 2A.20, gives 
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                     (2A.33) 

Equations 2A.31 and 2A.33 are the same, as they should be. 

Also, from figure 2.3 [7, p.472], 

                   

                                    (2A.34) 

where ur and uθ represent the displacements in polar coordinates, and displacements u and v are 

with respect to Cartesian coordinates (u in the x–direction and v in the y–direction). Ignoring the 

rigid body translation or rotation (i.e., S1 = S2 = R* =0), substituting the values of ur, from 

equation 2A.32, and uθ from equation 2A.33, in the above equations, one gets: 
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(2A.36) 

Similarly, calculating v (again omitting any rigid body translation or rotation) 
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(2A.38) 

Equations 2A.36 and 2A.38 illustrate that the rectangular components of displacement, u 

and v, at any polar location r and θ are both functions of Airy coefficients co, bn and dn. Of course 

one could work in rectangular coordinates from x = r cosθ and y = r sinθ. Note that the 

contributions of S1, S2, and R* of equations 2A.32 and 2A.33 are omitted from equations 2A.35 

and 2A.36. With the origin of the coordinate system at the center of the hole, these rigid body 

translations and rotation will disappear when physically loading in a testing machine [7, p.472]. 

Equations 2A.7 through 2A.20 are valid for any externally-shape member which has 

mechanical and geometric symmetry about the x- and y-axes and whose coordinate origin is not 

in the component. Equations 2A.25 through 2A.27 (stresses), equations 2A.27a and 2A.29 

(strains), equations 2A.28, 2A.31 through 2A.33, 2A.36 and 2A.38 (displacements) are further 

restricted to a traction-free round hole of radius R. 

It should be noted that while equations 2A.34 are used here relative to the displacements 

in the vicinity of a hole, they enjoy generally applicability. However, equations 2A.36 and 2A.38 

are only applicable for circular holes having mechanical and geometric symmetry about both x- 
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and y-axes. Provided one satisfies traction-free conditions analytically on the boundary of cut-

out as done here, this general concept can be extended to multiple holes or arbitrary shape cut-

outs. 

The present concept of necessitating only one measured displacement field and satisfying 

the traction-free conditions on the edge of circular holes but for more general loading conditions 

appears feasible as long as one maintains geometric and mechanical symmetry about x- and y-

axes. However the algebra involved in imposing the traction-free conditions becomes more 

involved for situations where the plate is unsymmetrical about one or both axes, e.g., case of 

Chapter 4 of Reference [4]. Also, although it might not be simple to impose traction-free 

conditions analytically on the edge of a non-circular hole, one could continue to use equations 

2A.11, 2A.20 and 2A.34 to evaluate the relevant Airy coefficients from measured either u- or v-

displacements in addition to discretely imposing traction-free boundary conditions on the edge of 

the hole.  Both u and v would again contain all of the Airy coefficients.  
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A3.1 Additional Results for Number of Coefficients, k = 13. 

Figures A3.1 through A3.26 are plotted for the same specimen, loading condition and 

number of measured input strains as those in the chapter 3. The only change in results in this 

Appendix from those of chapter 3 is the number of coefficients used, k = 13 (i.e., c0, bn and dn, 

for n = 12) while the previous results are for k = 5. The strain gage results are again compared 

with those from finite element analysis (ANSYS) and discrete strain gages. As before, the radial 

strain, εrr, tangential strain, εθθ, longitudinal strain, εyy, and lateral strain, εxx, are normalized with 

respect to the far field strain, ε0, and are plotted here for k = 13 at various radii on and away from 

the boundary of the hole, and along the line AB of figure 3.1 in figures A3.1 through A3.14. 

Tangential stress, σθθ, radial stress, σrr, shear stress, σrθ, longitudinal stress, σyy, and lateral stress, 

σxx, are normalized with respect to the far field stress, σ0, and are plotted at various radii around 

and away from the boundary of the hole and along the line AB of figure 3.1 in figures A3.15 

through A3.26. It is worth noting that the results agree very well with the finite element analysis.  

 As before, angle θ of figures A3.1 through A3.9, A3.11 through A3.13, A3.15 through 

A3.17, A3.19 through A3.21, and A3.23 through A3.25, is measured counter-clockwise from the 

positive x-axis and r is measured here from the center of the hole of figure 3.1. The actual in-

plane dimensions associated with figures A3.10, A3.14, A3.18, A3.22, and A3.26 are plotted 

normalized with respect to the radius, R = 10.08 mm = 0.395” of the hole. 
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Fig. A3.1: Plot of εrr/ε0 along boundary of the hole from strain-gage evaluated Airy coefficients 

for k = 13 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.2: Plot of εrr/ε0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.3: Plot of εrr/ε0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. A3.4: Plot of εθθ/ε0 along boundary of the hole from strain-gage evaluated Airy coefficients 

for k = 13 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.5: Plot of εθθ/ε0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.6: Plot of εθθ/ε0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. A3.7: Plot of εxx/ε0 along boundary of the hole from strain-gage evaluated Airy coefficients 

for k = 13 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.8: Plot of εxx/ε0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.9: Plot of εxx/ε0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. A3.10: Plot of εxx/ε0 along AB of figure 3.1 from strain-gage evaluated Airy coefficients for 

k = 13 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.11: Plot of εyy/ε0 along boundary of the hole from strain-gage evaluated Airy coefficients 

for k = 13 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.12: Plot of εyy/ε0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. A3.13: Plot of εyy/ε0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.14: Plot of εyy/ε0 along AB of figure 3.1 from strain-gage (experimental result and 

reconstructed using the known Airy coefficients) for k = 13 coefficients (m = 45 strain-gage 

input values) and ANSYS 

 

 
Fig. A3.15: Plot of σrr/σ0 along boundary of the hole from strain-gage evaluated Airy coefficients 

for k = 13 coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. A3.16: Plot of σrr/σ0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.17: Plot of σrr/σ0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.18: Plot of σxx/σ0 (= σrr/σ0) along AB of figure 3.1 from strain-gage evaluated Airy 

coefficients for k = 13 coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. A3.19: Plot of σrθ/σ0 along boundary of the hole from strain-gage evaluated Airy coefficients 

for k = 13 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.20: Plot of σrθ/σ0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.21: Plot of σrθ/σ0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

0 10 20 30 40 50 60 70 80 90
-2

0

2

4
x 10

-3

Angle °


r 

 /
 


 

 

ANSYS STRAIN GAGE EVALUATED COEFFICIENTS

0 10 20 30 40 50 60 70 80 90
-0.5

0

0.5

1

Angle °


r 

 /
 


 

 

ANSYS STRAIN GAGE EVALUATED COEFFICIENTS

0 10 20 30 40 50 60 70 80 90
-0.5

0

0.5

1

Angle °


r 

 /
 


 

 

ANSYS STRAIN GAGE EVALUATED COEFFICIENTS



545 
 

 
Fig. A3.22: Plot of σrθ/σ0 along AB of figure 3.1 from strain-gage evaluated Airy coefficients for 

k = 13 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.23: Plot of σθθ/σ0 along boundary of the hole from strain-gage evaluated Airy 

coefficients for k = 13 coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.24: Plot of σθθ/σ0 along r/R = 1.5 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 
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Fig. A3.25: Plot of σθθ/σ0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 13 

coefficients (m = 45 strain-gage input values) and ANSYS 

 

 
Fig. A3.26: Plot of σyy/σ0 (= σθθ/σ0) along AB of figure 3.1 from strain-gage evaluated Airy 

coefficients for k = 13 coefficients (m = 45 strain-gage input values) and ANSYS 
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A3.2 Determining the Cartesian Components of Stress and Strain. 

For a perforated finite plate having symmetry with respect to both its x- and y-axes, its 

coordinate origin within the cavity, and imposing the traction-free condition on the boundary of 

the round hole of radius R, the individual stress components in polar coordinates, where c0, bn, 

and dn are Airy coefficients, are given by (Appendix A2): 
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 valuating the Cartesian components of stress using the transformation matrix 
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     (3A.4) 

The above matrix equation can be expanded as: 

            
           

                          (3A.5) 

            
           

                          (3A.6) 

such that the angle θ is measured counter-clockwise from the horizontal x-axis to the polar 

direction r, figure 3.1. Therefore 
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A4 Approaching the Boundary Collocation Method  

The results of this Appendix initially use only five strain-gage inputs along the stationary 

(ring not rotating) horizontal line AB (figure 4.1), plus analytically imposed traction-free 

boundary condition on the inner edge of the ring and discretely imposed traction-free boundary 

conditions at 850,001 points on the external edge for each of  σrr = σrθ = 0. The closest these 

external discretely imposed traction-free conditions occur to the load is at θ = 85
o
. Note that 

because of some highly incorrect hybrid values, the stresses (strains, displacements) in this 

Appendix are quite different compared with those of corresponding plots in Chapter 4. This 

Appendix subsequently employs 25 or 13 measured input strains along with σrr = σrθ = 0 

analytically on the inside of the ring. 

The previous hybrid results of Chapter 4 used 48 input strains, plus the traction-free 

conditions on the edge of the hole analytically, to evaluate the Airy coefficients. Upon moving 

toward a more (pure) boundary collocation approach, one could continue to satisfy the traction-

free conditions analytically on the inside boundary of the hole plus σrr = σrθ = 0 at 850,001 

discrete locations on the external quarter boundary of the ring, but with only the five input values 

of strain along line AB (at θ = 0
o
). Here the disk is not rotated and only the five gages along the 

horizontal line AB provide input strains. This arrangement gives stress, strain and displacement 

results under these conditions of σrr = σrθ = 0 on the inner and outer edge of the ring plus five 

measured input strains along the horizontal stationary line AB (θ = 0
o
), figures A4.1 through 

A4.16. The results are again based on k = 5 Airy coefficients. Particularly figures A4.1, A4.2, 

A4.4 through A4.6 and A4.8 through A4.16 illustrate potential challenges as one approaches (or 

were to use) a purely boundary collocation method. Among other issues, only imposing σrr = σrθ 
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= 0 on the inner and outer edge of the ring would not account for any variations in the applied 

top and bottom loads (e.g., whether or not the normal load is accompanied by significant shear 

(friction) loading).  

 

 
Fig. A4.1: Plot of εyy/εnet along vertical line CD (θ = 90

o
) of figure 4.1 from hybrid method 

(strain-gage evaluated Airy coefficients, 5 input strains) and ANSYS 

 
Fig. A4.2: Plot of εxx/εnet along vertical line CD (θ = 90

o
) of figure 4.1 from hybrid method 

(strain-gage evaluated Airy coefficients, 5 input strains), discrete strain gages and ANSYS 
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Fig. A4.3: Plot of εyy/εnet along horizontal line AB (θ = 0

o
) of figure 4.1 from hybrid method 

(strain-gage evaluated Airy coefficients, 5 input strains), discrete strain gages and ANSYS 

 
Fig. A4.4: Plot of σθθ/σ0 along boundary of the hole from hybrid method (strain-gage evaluated 

Airy coefficients, 5 input strains) and ANSYS 
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Fig. A4.5: Plot of εrr/εnet at r/R = 1.75 from hybrid method (strain-gage evaluated Airy 

coefficients, 5 input strains) and ANSYS 

 

 
Fig. A4.6: Plot of σθθ/(2P/πb) along vertical line CD (θ = 90

o
) of figure 4.1 from hybrid method 

(strain-gage evaluated Airy coefficients, 5 input strains) and Timoshenko [26] 
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Fig. A4.7: Plot of σθθ/(2P/πb) along horizontal line AB (θ = 0

o
) of figure 4.1 from hybrid method 

(strain-gage evaluated Airy coefficients, 5 input strains) and Timoshenko [26] 

 

 

 

 
Fig. A4.8: Contours of u/R from FEA (left side) and hybrid method (strain-gage evaluated Airy 

coefficients, 5 input strains) (right side) 
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Fig. A4.9: Contours of v/R from FEA (left side) and hybrid method (strain-gage evaluated Airy 

coefficients, 5 input strains) (right side) 

 

 
Fig. A4.10: Contours of ur/R from FEA (left side) and hybrid method (strain-gage evaluated Airy 

coefficients, 5 input strains) (right side) 
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Fig. A4.11: Contours of uθ/R from FEA (left side) and hybrid method (strain-gage evaluated Airy 

coefficients, 5 input strains) (right side) 

 

 
Fig. A4.12: Contours of εrr/εnet from FEA (left side) and hybrid method (strain-gage evaluated 

Airy coefficients, 5 input strains) (right side) 
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Fig. A4.13: Contours of εθθ/εnet from FEA (left side) and hybrid method (strain-gage evaluated 

Airy coefficients, 5 input strains) (right side) 

 

 
Fig. A4.14: Contours of σrr/σnet from FEA (left side) and hybrid method (strain-gage evaluated 

Airy coefficients, 5 input strains) (right side) 
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Fig. A4.15: Contours of σθθ/σnet from FEA (left side) and hybrid method (strain-gage evaluated 

Airy coefficients, 5 input strains) (right side) 

 

 

Fig. A4.16: Contours of σrθ/σnet from FEA (left side) and hybrid method (strain-gage evaluated 

Airy coefficients, 5 input strains) (right side) 

 

Figures A4.1, A4.2, A4.4 through A4.6 and A4.8 through A4.16 illustrate the erroneous 

results that can occur when one imposes σrr = σrθ = 0 analytically on the inside edge of the ring 

and over virtually all the outside radius together with little measured information within the ring. 

On the other hand, figures A4.17 through A4.32 again impose σrr = σrθ = 0 analytically on the 

inner edge of the ring only, plus either 25 or 13 input measured strains. For these situations no 

boundary conditions (other than the applied load) are imposed on the outer diameter of the ring. 



575 
 

In this latter case (figures A4.17 through A4.32) which involves appreciably more measured 

input strains (13 or 25 input strains) than those of figures A4.1 through A4.16, good results are 

again achieved except of course under the applied point load. Consequently, other than 

immediately under the loads, reliable results are available from as few as 13 input strains (say at 

40
o
 angle increments) and imposing the traction-free conditions analytically on only the inner 

radius of the ring. 

All hybrid results of this chapter, including the cases in the Appendix, use k = 5 

coefficients. 

 
Fig. A4.17: 25 strain gages locations 
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Fig. A4.18: Plot of εyy/εnet along vertical line CD (θ = 90

o
) of figure 4.1 from hybrid method 

(strain-gage evaluated Airy coefficients, 25 input strains) and ANSYS 

 
Fig. A4.19: Plot of εxx/εnet along vertical line CD (θ = 90

o
) of figure 4.1 from hybrid method 

(strain-gage evaluated Airy coefficients, 25 input strains), discrete strain gages and ANSYS 
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Fig. A4.20: Plot of εyy/εnet along horizontal line AB (θ = 0

o
) of figure 4.1 from hybrid method 

(strain-gage evaluated Airy coefficients, 25 input strains), discrete strain gages and ANSYS 

 
Fig. A4.21: Plot of σθθ/σ0 along boundary of the hole from hybrid method (strain-gage evaluated 

Airy coefficients, 25 input strains) and ANSYS 
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Fig. A4.22: Plot of εrr/εnet at r/R = 1.75 from hybrid method (strain-gage evaluated Airy 

coefficients, 25 input strains) and ANSYS 

 

 
Fig. A4.23: Plot of σθθ/(2P/πb) along vertical line CD (θ = 90

o
) of figure 4.1 from hybrid method 

(strain-gage evaluated Airy coefficients, 25 input strains) and Timoshenko [26] 
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Fig. A4.24: Plot of σθθ/(2P/πb) along horizontal line AB (θ = 0

o
) of figure 4.1 from hybrid 

method (strain-gage evaluated Airy coefficients, 25 input strains) and Timoshenko [26] 

 

 
Fig. A4.25: 13 strain gages locations 
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Fig. A4.26: Plot of εyy/εnet along vertical line CD (θ = 90

o
) of figure 4.1 from hybrid method 

(strain-gage evaluated Airy coefficients, 13 input strains) and ANSYS 

 
Fig. A4.27: Plot of εxx/εnet along vertical line CD (θ = 90

o
) of figure 4.1 from hybrid method 

(strain-gage evaluated Airy coefficients, 13 input strains), discrete strain gages and ANSYS 
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Fig. A4.28: Plot of εyy/εnet along horizontal line AB (θ = 0

o
) of figure 4.1 from hybrid method 

(strain-gage evaluated Airy coefficients, 13 input strains), discrete strain gages and ANSYS 

 
Fig. A4.29: Plot of σθθ/σ0 along boundary of the hole from hybrid method (strain-gage evaluated 

Airy coefficients, 13 input strains) and ANSYS 
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Fig. A4.30: Plot of εrr/εnet at r/R = 1.75 from hybrid method (strain-gage evaluated Airy 

coefficients, 13 input strains) and ANSYS 

 

 
Fig. A4.31: Plot of σθθ/(2P/πb) along vertical line CD (θ = 90

o
) of figure 4.1 from hybrid method 

(strain-gage evaluated Airy coefficients, 13 input strains) and Timoshenko [26] 
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Fig. A4.32: Plot of σθθ/(2P/πb) along horizontal line AB (θ = 0

o
) of figure 4.1 from hybrid 

method (strain-gage evaluated Airy coefficients, 13 input strains) and Timoshenko [26] 
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A5 Stress Equations Corresponding to a Finite plate containing an 

Elliptical Hole. [25, 29 - 35] 

An ellipse is a smooth closed curve which is symmetrical about the x and y axes. In terms 

of the x and y Cartesian rectangular coordinate system, any ellipse may be described by an 

equation of the type 

                             (5A.1) 

 
Fig. A5.1: Ellipse showing the major axis (2a) and minor axis (2b) 

The elliptical coordinate system is appropriate to describe an ellipse. The maximum and 

minimum distances along two perpendicular directions in an ellipse are known as the major axis 

(2a) or transverse diameter, and the minor axis (2b) or conjugate diameter, respectively. There 

are two special points, F1 and F2 in figure 5A.1, which are on either side of the center, C, on the 

major axis such that the sum of the distances from any point on the ellipse to those two points is 

a constant i.e., r1 + r2 = a constant and equal to the major diameter/axis (2a). These two points 

are called the foci of the ellipse. Distance c from a focus point to the center is called the focal 

distance. An ellipse is the locus of a point which moves in a plane such that the ratio of its 
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distances from a fixed point called the focus and from a fixed straight line called the directrix is 

always constant and less than 1. This constant ratio is called the eccentricity of the ellipse. 

Relating Cartesian, x and y, and elliptical coordinates,        , figure 5A.2, [25]: 

                   and                   (5A.2) 

where c is the focal distance, figure 5A.1.   is a non-negative real number and       . 

When   = a constant, for an ellipse, equation 5A.1 can be written as (eliminating   from 

equation 5A.2) 

     
  

    𝑜    
  

  

         
      (5A.3) 

which is the equation of the ellipse, such that 

              &                 (5A.4) 

are the respective semi-axes where     𝑜 defines the edge of the elliptical hole of figures 5.1, 

5.2 and 5A.2 and   is measured counter clock-wise from positive x-axis, figure 5A.2. For 

different values of    one obtains different ellipses all having the same foci, i.e., a family of 

confocal ellipses. On any one of the ellipses,   is a constant and       . This is analogous 

to a circle where r = a (in terms of polar coordinates) is a constant and       . 

Quantity   is called the eccentric angle of a point on the ellipse. If r and θ are the polar 

coordinates of a point on the circle circumscribing an ellipse of semi-diameters a and b, then the 

perpendicular line from this point on the circle to the x-axis intersects the ellipse at x = a.cost 

and y = b.sint. Parameter t is called the eccentric anomaly in astronomy and is not the angle θ 

with the x-axis [30]. 
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Also [31] 

                                     (5A.5) 

 
Fig. A5.2: Coordinates Representation 

 

and from figure 5A.2 [26] 

                          (5A.6) 

where         are the elliptical coordinates and angle   is measured from the positive x-axis, 

figure 5A.2. On the other hand, when   is a constant, eliminating   from equation 5A.2 gives 

[25] 

     
  

    𝑜   
  

  

        
      (5A.7) 

 

  

(x, y;     𝑜   ; r, θ) 
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at     𝑜 
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  variable,   fixed 

(hyperbola) 
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Equation 5A.7 represents a hyperbola having the same foci as the ellipse, where 

            &                (5A.8) 

Also, one has the identity 

               [26]      (5A.9) 

 
Fig. A5.3 Family of conical ellipses [30] 

 

Lines of an ellipse and those of the associated hyperbola intersect at 90
o
, figure 5A.3. 

Figure 5A.3, which includes the overlapping ellipses and hyperbolas, shows that the value of   is 

a non-negative real number and   varies from 0 to 2π.  

A change from Cartesian rectangular coordinates, x, y, to polar coordinates, r, θ, figure 

5A.4, is given by [25] 

         √                    (5A.10) 
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             (
 

 
)                         (5A.11) 

 
Fig. A5.4: Coordinate system 

From figures 5A.2 and 5A.4 and equations 5A.2 and 5A.10, the radius r and the angle θ of 

any point on the ellipse,   =  𝑜    (i.e., edge of the elliptical hole of figures 5.1 and 5A.2) varies 

as, [31, 32] 

       
   

 

         
 
     

                 (5A.12) 

and from equation 5A.11 and figure 5A.4 

            
 

 
                (5A.13) 

Substituting equation 5A.2 into equation 5A.13, one obtains 
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such that 

               𝑜                    (5A.14) 

From equation 5A.4 

  

  
  

      𝑜
      𝑜

 

or 

     𝑜   
 

 
                       (5A.15) 

Also from equation 5A.4 

                 𝑜            𝑜 

                          𝑜         𝑜  

and using equation 5A.5 

                               (5A.16) 

The following expressions summarize many of the relevant formulas dealing with 

tangents, normals, polars and poles of an ellipse centered at the origin and having its major axis 

2a along x-axis [32, page (2-4.10)]. Although many of these equations are not needed here, they 

are gathered here for convenience. 

 Equation of the ellipse: 

                 (5A.1) 

 Equation of the tangent, which is the line passing through an ellipse and contacting it at a 

point  (x1, y1): 

    

    
  

       √    
      

       

     
 

             (5A.17) 
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 Equation(s) of tangent(s) of the slope m to the curve: 

       √                     (5A.18) 

 Pole and Polars: Poles and Polars come in pairs. Poles are plane points; polars are straight 

lines in the same plane. If through a fixed point P1 shown in figure 5A.4, outside, inside, 

or on a conic, a secant is drawn to the conic meeting it in the points A and B, and if P is 

so chosen on the secant that the points P and P1 divide the line harmonically, then the 

locus which contains all the positions of P as the secant revolves about P1 is called the 

polar of P1 with regards to the conic, and the point P1 is called the pole of the locus. [33, 

page 159] 

 Equation of polar of a point (x1, y1) or equation of tangent at a point (x1, y1) on the curve: 

   

  
 

   

  
                 (5A.19) 

 Coordinates x1, y1 of the pole of the straight line Ax + By + C = 0 with respect to the 

curve: 

     
   

 
        

   

 
           (5A.20) 

 Equation of the normal to the curve (ellipse) at a point (x1, y1): 

    

    
  

    

    
               (5A.21) 

 Conditions satisfied by the “line coordinates” u, v of any straight line           

tangent to the curve: 

                          (5A.22) 

Equations 5A.23 through 5A.30 are special formulas relating to ellipses [32, page (2.5-

2)]: 
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 Eccentricity is the ratio obtained when the distance from the center to a focus is divided 

by the distance from the center to one of the vertices 

Eccentricity,    √   
  

  
                (5A.23) 

 Focus is one of the two fixed points on the interior of an ellipse used in the formal 

definition of the curve. 

Focus or foci, (  , 0) and (   , 0)                (5A.24) 

 Directrices are the two parallel lines outside of an ellipse perpendicular to the major axis. 

Equation of directrix or directrices,   
 

 
,     

 

 
           (5A.25) 

 A chord drawn through a focus perpendicular to the major axis is called the latus rectum. 

latus rectum, | 𝑝|   
   

 
               (5A.26) 

 Focal radius or radii of a point (x1, y1) on the curve, r1 = a + x1  and r1 = a - x1  

           (5A.27) 

 Equation of diameter conjugate to chords of slope m,     
  

   
           (5A.28) 

 Area of segment between the vertex convex to the left and a chord through (x1, y1) and 

(x1, -y1), 

 
 

 
    

 

 
(  √     

           

 
)           (5A.29) 

 Equation of ellipse in terms of polar coordinates r, θ is, 

     
  

           
                (5A.30) 
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For a perforated finite plate having mechanical and geometric symmetry with respect to 

both its x- and y-axes, and its coordinate origin within the cavity, and the plate subjected to 

uniaxial loading in the vertical y-direction, the stress function of equation 5.2 reduces to  

𝜙                 
  ∑ {(   

     
       

      
      )      }

 

          
  

                      (5A.31)
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(5A.32)

 
  

so the individual polar components of stress become 

    
  

  
      ∑ [

                                   

                                          ]

 

       

          

                       (5A.33)

 

 

    
   

  
     ∑ [

                                    

                                          ]

 

       

          

                       (5A.34) 

    ∑ [
                                 

                                      ]

 

       

        

             

(5A.35) 

Quantity r is the radial coordinate measured from the center of the cavity and angle θ is 

measured counterclockwise from the x-axis, figures 5A.2 and 5A.4. N is the terminating index 
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value of the series (since in practice one can only handle a finite number of terms) and it can be 

any positive even integer.   

Stresses acting in the r-θ co-ordinate system can be transformed to those in the elliptical 

co-ordinate system,          using the following transformation matrix equation: 

{

   

   

   

}    [

                     

                      

                                

] {

   

   

   

}              (5A.36) 

where        . The above transformation matrix can be expanded as: 

           
         

                           (5A.37) 

           
         

                           (5A.38) 

                                         
                      (5A.39) 

From equations 5A.33 through 5A.39, the individual stresses in the elliptical coordinates become 

those of equations 5A.40 through 5A.71. 

    

[
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        }      
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 {∑ [
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                         (5A.40) 
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From the transformation equation: 
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Now from equations 5.18, 5A.51 and 5A.61, 
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Verifying the equations: 
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and from equations 5A.33 and 5A.34 
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 Equations 5A.74 and 5A.82 agree with each other, as they should. 
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Imposing traction-free conditions discretely on the boundary of the elliptical hole of 

figure 5A.1 having radii a and b: 

when r = R;             and from equations 5A.12 to 5A.16, 

    
   

 

         
 
     

                  (5A.83) 

such that R is the polar distance from the center of the elliptical hole to position  𝑜   𝑜on the 

edge of the hole, where a =  38.1 mm, b = 19.05 mm and   is the associate polar angle in first 

quadrant,  see figure 5A.2. 

 Recognizing that the lines of associate ellipse and hyperbola intersect at 90
o
, an 

alternative approach for imposing            on the edge of the hole might be to consider 

the orthogonal lines of the associated hyperbola at the discrete points on the edge of elliptical 

cut-out. 

 From equations 5A.51 and 5A.71, 
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Hence the least-squares expression of equation 5.34 becomes 
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Stresses acting in r-θ co-ordinate system can be transformed to those in the x-y co-

ordinate system using the following transformation matrix equation 
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The above matrix equation can be expanded as: 
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Calculating the stresses in the x-y direction: 
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Now, 
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Now, 
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Now from equation 5.18 

                     (5A.121) 

and equations 5A.100 and 5A.110 give 
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 Equations 5A.74, 5A.82 and 5A.123 all agree with each other, as they should. 
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A6 Thermoelastic Stress Analysis of a Finite Plate Loaded by a 

Circular Pin. 

This Appendix involves the thermoelastic stress analysis of finite plate loaded by a 

circular pin. The changes in this Appendix compared to the analysis and results of Chapter 6 are 

that the present analyses involves an increased number of side conditions i.e., the number of 

traction-free boundary conditions on the right vertical edge has increased from 301 points to 

3001 points, and the TSA results here are compared with ANSYS which are improved over those 

from the ABAQUS i.e., there are no discrepancies in ANSYS results on or away from the 

boundary of the hole. Figures A6.1 through A6.3 represent plots similar to those of figures 6.37 

through 6.38. The only difference being that the discretely imposed traction-free boundary 

conditions for figures A6.1 through A6.3 are imposed at 3001 point on the right vertical edge of 

the plate. In addition to m1 = 3413 TSA values and h1 = 2*831 discretely imposed traction-free 

boundary conditions on the edge of the hole, 101 points are used on the top-half edge of the plate 

and another set of 3001 points on the right edge of the plate i.e., the total number of traction-free 

conditions on the side and top edge are t1 = 2*101+2*3001. Again for this total of m1+h1+t1 = 

11,279 input values, k = 9 was found to continue to be an appropriate number of coefficients. It 

is worth noting that with a change in the number of traction-free boundary conditions on the right 

vertical edge, there is an insignificant change in the results (figures A6.1 through A6.3). There is 

also no change in the number of Airy coefficients needed. 
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Fig. A6.1: TSA-determined σrr/σ0 around the boundary of the hole (r/R = 1) for m1+h1+t1 = 

11,279 input values, k = 9 coefficients and m1 = 3,413 TSA values, h1 = 2*831, t1 = 

2*101+2*3001 

 
Fig. A6.2: Plot of cos(ϕ) and TSA-determined σ* (= σrr/σrr(max)) vs. angle ϕ (=180

o
 - θ) around the 

boundary of the hole (r/R = 1) for m1+h1+t1 = 11,279 input values, k = 9 coefficients and m1 = 

3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001 
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Fig. A6.3: TSA-determined σrθ/σ0 around the boundary of the hole (r/R = 1) for m1+h1+t1 = 

11,279 input values, k = 9 coefficients and m1 = 3,413 TSA values, h1 = 2*831, t1 = 

2*101+2*3001 

Since ABAQUS was giving the stress discrepancy on the boundary of the hole, the 

numerical analysis was enhanced by remodeling the bolted joint connection in ANSYS. A 2D 

finite element model was constructed in ANSYS using plane82 elements. The material properties 

are incorporated in the model in defining element attributes for plate (E = 68.95 GPa (10 x 10
6
 

psi), Poisson’s ratio, ν = 0.33) and the pin (E = 206 GPa (30 x 10
6
 psi), Poisson’s ratio, ν = 0.27). 

The coefficient of friction of μ = 0.2 was applied between the pin and the hole interface. The 

dimensions for the plate and the pin are described in sections 6.3 and 6.4. The plate and pin were 

modeled such that they have an initial contact. For solving 2D contact problems in ANSYS, one 

needs to define a contact and target elements between the plate and the bolt. CONTA172 was 

used to represent surface-to-surface contact and sliding between 2-D deformable surfaces. It has 

the same geometric characteristics as the solid element face with which it is connected and in the 

present analysis the contact elements are defined on the hole boundary of the plate. In 2D the 

target surface is defined by TARGE169 elements and in the present analysis the target elements 
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are defined on the boundary of the pin. Since the geometry and loading is symmetrical about one 

axis, a symmetrical boundary condition is applied along the line of symmetry and a far-field 

stress of 16.54 MPa (2400 psi) is applied on the plate. Also a small region near the center of the 

pin was completely constrained. The symmetrical model of plate and pin was meshed with a total 

of 66,864 elements and 202,119 nodes. Figures A6.5 through A6.10 are ANSYS generated 

contour plots of σxx, σyy, σxy, σrr, σθθ and σrθ respectively and all the units for these plots are in psi. 

 
Fig. A6.4: Finite Element model of the plate with circular pin in ANSYS 
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Fig. A6.5: Contour plot of stress in the x-direction (σxx) for the plate with circular pin 
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Fig. A6.6: Contour plot of stress in the y-direction (σyy) for the plate with circular pin 
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Fig. A6.7: Contour plot of shear stress (σxy) for the plate with circular pin 
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Fig. A6.8: Contour plot of radial stress (σrr) for the plate with circular pin 
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Fig. A6.9: Contour plot of tangential stress (σθθ) for the plate with circular pin 
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Fig. A6.10: Contour plot of polar shear stress (σrθ) for the plate with circular pin 

 

As done using ABAQUS, The results from ANSYS were exported to MATLAB and are 

plotted against TSA results, figures A6.11 through A6.30. After evaluating k = 9 Airy coefficients 

from m1+h1+t1 = 11,279 input values, the individual components of stresses can be determined 

from equations 6.6, 6.7, 6.9 and 6.11 through 6.13. There is an excellent agreement between the 

experimental and ANSYS-predicted results. The present use of more traction-free conditions on 

the vertical edge of the plate somewhat improved the TSA results, the ANSYS pin-hole contact 

predictions are smoother than those by ABAQUS, and the current ANSYS-TSA results tend to 

agree with each other better than those by the previous ABAQUS-TSA. While the force 
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equilibrium checks of Table 6.1 and figures 6.108 and 6.109 were not re-calculated based on the 

new-TSA results, they are expected to be at least as good as those of the original Table 6.1 and 

figures 6.108 and 6.109. The ANSYS analyses employ approximately twice as many elements as 

used with ABAQUS, although ABAQUS results tend to not change with increased number of 

elements.   

As before, angle θ of figures A6.11 through A6.23 is measured counter-clockwise from 

the downward positive x-axis and r is measured from the center of the hole of figure 6.2. Again 

the stresses are normalized with the far-field stress σ0 = 16.54 MPa = 2400 psi. 

 
Fig. A6.11: Plot of σrr/σ0 around the boundary of the hole (r/R = 1) from ANSYS and TSA for 

m1+h1+t1 = 11,279 input values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 

2*101+2*3001) 
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Fig. A6.12: Plot of σθθ/σ0 around the boundary of the hole (r/R = 1) from ANSYS and TSA for 

m1+h1+t1 = 11,279 input values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 

2*101+2*3001) 

 

 
Fig. A6.13: Plot of σrθ/σ0 around the boundary of the hole (r/R = 1) from ANSYS and TSA for 

m1+h1+t1 = 11,279 input values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 

2*101+2*3001) 
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Fig. A6.14: Plot of σxx/σ0 around the boundary of the hole (r/R = 1) from ANSYS and TSA for 

m1+h1+t1 = 11,279 input values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 

2*101+2*3001) 

 
Fig. A6.15: Plot of σrr/σ0 along r/R = 1.05 from ANSYS and TSA for m1+h1+t1 = 11,279 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) 
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Fig. A6.16: Plot of σθθ/σ0 along r/R = 1.05 from ANSYS and TSA for m1+h1+t1 = 11,279 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) 

 

 

 
Fig. A6.17: Plot of σrθ/σ0 along r/R = 1.05 from ANSYS and TSA for m1+h1+t1 = 11,279 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) 
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Fig. A6.18: Plot of σrr/σ0 along r/R = 1.1 from ANSYS and TSA for m1+h1+t1 = 11,279 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) 

 

 
Fig. A6.19: Plot of σθθ/σ0 along r/R = 1.1 from ANSYS and TSA for m1+h1+t1 = 11,279 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) 
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Fig. A6.20: Plot of σrθ/σ0 along r/R = 1.1 from ANSYS and TSA for m1+h1+t1 = 11,279 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) 

 
Fig. A6.21: Plot of σrr/σ0 along r/R = 1.5 from ANSYS and TSA for m1+h1+t1 = 11,279 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) 
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Fig. A6.22: Plot of σθθ/σ0 along r/R = 1.5 from ANSYS and TSA for m1+h1+t1 = 11,279 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) 

 

 
Fig. A6.23: Plot of σrθ/σ0 along r/R = 1.5 from ANSYS and TSA for m1+h1+t1 = 11,279 input 

values and k = 9 (m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) 
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Fig. A6.24: Plot of σxx/σ0 along the line extending from the edge of the hole (x = 0 or θ = 90

o
) 

from ANSYS and TSA for m1+h1+t1 = 11,279 input values and k = 9 (m1 = 3,413 TSA values, 

h1 = 2*831, t1 = 2*101+2*3001) 

 

  
Fig. A6.25: Contour plot of σxx/σ0 from TSA (left) for m1+h1+t1 = 11,279 input values and k = 9 

(m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) and ANSYS (right) 
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Fig. A6.26: Contour plot of σyy/σ0 from TSA (left) for m1+h1+t1 = 11,279 input values and k = 9 

(m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) and ANSYS (right) 

  
Fig. A6.27: Contour plot of σxy /σ0 from TSA (left) for m1+h1+t1 = 11,279 input values and k = 9 

(m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) and ANSYS (right) 
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Fig. A6.28: Contour plot of σrr /σ0 from TSA (left) for m1+h1+t1 = 11,279 input values and k = 9 

(m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) and ANSYS (right) 

  
Fig. A6.29: Contour plot of σθθ /σ0 from TSA (left) for m1+h1+t1 = 11,279 input values and k = 9 

(m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) and ANSYS (right) 
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Fig. A6.30: Contour plot of σrθ /σ0 from TSA (left) for m1+h1+t1 = 11,279 input values and k = 9 

(m1 = 3,413 TSA values, h1 = 2*831, t1 = 2*101+2*3001) and ANSYS (right) 
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A7 Stress Equations for a Plate Symmetric about x-axis. 

A general expression for the Airy stress function, , which satisfies the biharmonic 

equation 
4 = 0, and thus equilibrium and compatibility, can be written as follows [3 and 6] 
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Based on  of equation 7A.1, and since 
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the individual polar components of stress become 
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For the case of either figures 7.1 and 7.2, the displacements, strains and stresses are 

single-valued functions of θ, and since both the internal and external boundaries of the plates are 

self-equilibrated, there is no resultant force at the origin. Coefficients d0, B0, C0, D0, B1, B1 and 

A1, A1, b1, b1 therefore all goes to zero.  The stress function of equation 7A.1 can therefore be 

simplified here as unsym of equation 7A.6, (applicable for plate of figure 7.2) which satisfies the 

biharmonic equation, equilibrium and compatibility [6], i.e., 
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Using equations 7A.2 and 7A.6, the individual components of stress become 
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                      (7A.9)  

At this stage the coordinate origin is assumed to be located in a cavity of some unknown 

shape. When the plate is symmetrical about the x-axis, stresses induced at any angle, say when θ 

= +β, would be the same as that at the angle when θ = -β, i.e., (r, θ) =  (r, -θ). This indicates 

that  must be an even function of θ. Hence, the sine terms are not retained in the expansion for 

the stress function. As a result, an , bn , cn , dn (for n ≥ 1) are all omitted. Moreover, σrθ is zero at θ 

= 0 so A0 = 0 (equation 3.9). Consequently (applicable to plate of figure 7.1) 
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Using equations 7A.2 and 7A.10, the individual components of stress now become 
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                              (7A.13) 

where r is the radius measured from the origin (which is contained in a cutout of some yet 

undetermined shape) and angle  is measured counter-clock wise from the x-axis. Equations 

7A.10 through 7A.13 are the counterpart of equations 7A.6 through 7A.9 but for symmetry about 

x-axis. Imposing the traction-free conditions σrr = σrθ = 0 for all angle  on the boundary of a 

hole of radius r = R for the plate symmetrical about x-axis (i.e. governed by equation 7A.10 

through 7A.13), gives 
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1) b0  f (c0) 
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For r = R and all values of θ in equations 7A.11 and 7A.13 respectively yields: 
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3) an = f (bn , dn) and cn = f (bn , dn)    

 

For n ≥ 4, r = R and all values of θ in equations 7A.11 and 7A.13 respectively, yields: 

 

'2')22('

')22('2'

')2('

')2('

')2('

')2('

11

11

0
)1()1(

)1()1(
0

0
)2()1()1(

)2()1()1(
0

nn

n

n

n

n

nn

n

n

n

n

n

n

n

n

r

n

n

n

n

n

n

n

n

rr

dR
n

n
bR

n
c

dR
n

bR
n

n
a

RnndRnnc

RnnbRnna
gives

RnndRnnc

RnnbRnna
gives








 









 






















































 

(7A.16) 

 

4) a2  f (b2, d2)   ,   c2  f (b2, d2)    

 

From equation 7A.16 and n = 2, 
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which are also available from equations (7A.16) 
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5) a3  f (b0, c0, c3, d3)  ,   b3  f (b0, c0, c3, d3)   

 

  For n = 3, r = R and all values of θ in equations 7A.11 and 7A.13 respectively, yields: 
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Expanding equation 7A.11 for n = 2 and 3, gives: 
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Substituting equations 7A.14 through 7A.18 in equation 7A.20 yields 
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 Equation 7A.23 is an alternate form of equation 7.11 of Chapter 7 for symmetry about the 

x-axis. 
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Now expanding equation 7A.12 for n = 2 and 3, one gets: 
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Substituting equations 7A.14 through 7A.18 into equation 7A.25, 
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Equation 7A.29 is an alternative form of equation 7.12 of Chapter 7 for symmetry about 

the x-axis. 

Now expanding equation 7A.13 for n = 2 and 3, one gets: 
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Substituting equations 7A.14 through 7A.18 into equation 7A.31, 
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(7A.35) 

Equation 7A.35 is an alternative form of equation 7.13 of Chapter 7 for symmetry about 

the x-axis. 
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Now evaluating the isopachic stress for the symmetrical case from equations 7A.23 and 7A.29: 

S = rr+                     (7A.36) 
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 All coefficients appearing in the stress expressions of equations 7A.23, 7A.29 and 7A.33 

also appear in the isopachic stress of equation 7A.42. This means all components of stress are 

available once the Airy coefficients have been evaluated from the associated temperature data. 

 Equation 7A.42 is an alternative form of equation 7.14 of Chapter 7 for symmetry about 

the x-axis. 
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The stress equations can be simplified further i.e., without expanding the summation for n 

= 2 and 3. Imposing the traction-free conditions σrr = σrθ = 0 at r = R, on the boundary of the 

hole for the plate symmetrical about x-axis (figure 7.1). 
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(same as equation 7A.14) 

For r = R and all values of θ in equations 7A.11 and 7A.13 respectively yields: 
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(same as equation 7A.15) 
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3) an = f (bn , dn) and cn = f (bn , dn)    

 

For n ≥ 2, r = R and all values of θ in equations 7A.11 and 7A.13 respectively, yields: 
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(which are same as equations 7A.16) 

Substituting equations 7A.43 through 7A.45 into equation 7A.11 gives. 
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Equation 7A.49 is a simplified form of equations 7A.23 and equation 7.11 of Chapter 7 

for symmetry about the x-axis. 
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Substituting equations 7A.43 through 7A.45 in equation 7A.12 give 
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Equation 7A.53 is a simplified form of equations 7A.29 and equation 7.12 of Chapter 7 

for symmetry about the x-axis. 
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Substituting equations 7A.43 through 7A.45 in equation 7A.13 give 
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(7A.57) 

Equation 7A.57 is a simplified form of equations 7A.35 and equation 7.13 of Chapter 7 

for symmetry about the x-axis. 
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Now evaluating the isopachic stress from equations 7A.46 and 7A.57: 

S = rr+                     (7A.58) 
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Equation 7A.64 is a simplified form of equations 7A.42 and equation 7.14 of Chapter 7 

for symmetry about the x-axis. Interestingly equation 7A.64 (which is summation of σrr and σθθ 

after imposing traction-free boundary conditions) came out to be similar to equation 7.10 for 

symmetry about the x-axis before imposing the traction-free conditions. Moreover, verifying the 

equations i.e., when expanding equations 7A.49, 7A.53, and 7A.57 for n = 2 and 3, one should 

get equations 7A.23, 7A.29 and 7A.35. 
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Expanding equation 7A.49 for n = 2 and 3 
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Now writing b3 in terms of c3 and d3 from equation 7A.18:  
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Equation 7A.70 agrees with equation 7A.23 so equation 7A.49 is equivalent to equation 7A.23. 
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Expanding equation 7A.53 for n = 2 and 3 
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Now writing b3 in terms of c3 and d3 from equation 7A.18:  
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Equation 7A.76 agrees with equation 7A.29 so equations 7A.53 and 7A.29 are equivalent. 
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Expanding equation 7A.57 for n = 2 and 3 
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Now writing b3 in terms of c3 and d3 from equation 7A.18:  
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(7A.82) 

Equation 7A.82 agrees with equation 7A.35. So equations 7A.57 and 7A.35 are equivalent. 

 Note the equations 7.11 through 7.14 in Chapter 7 for the symmetrical case of figure 7.1 

can be reduced to equations 7A.23, 7A.29, 7A.35 and 7A.42 by substituting equation 7A.14 in 

equations 7.11 through 7.14. 

 Equation sets of 7A.23, 7A.29 and 7A.35 or 7A.49, 7A.53 and 7A.57 or 7.11 through 7.13 

of Chapter 7 represent the components of stress at and near the hole of radius r = R for the finite 

plate of figure 7.1. Note that these expressions do not explicitly contain the load, P, or the plate 

geometrics (dimensions). Rather the effect (magnitude) of the loading will be contained 

indirectly in the experimentally determined values of the Airy coefficients. These equations are 

applicable irrespective of the external shape and loading as long as having mechanical and 

geometric symmetry about the x-axis and have a circular traction-free hole. 
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A8 Check against the Assumption of Plane Stress using 3-D FEA 

The 3-D finite element analysis is conducted in ANSYS for plate of figure 8.1. The FE 

model used 3-D 20-node structural solid elements (ANSYS element type: SOLID95). A fine 

mesh was used in the neighborhood of the holes figure A8.1. For the analysis of the 

symmetrically-loaded plate, a total of 12,962 elements and 23,251 nodes covers the entire one 

half of the plate. Since the plate of figure 8.1 is symmetrical about the x-axis, a symmetry 

boundary condition along the area of symmetry and a uniform far-field stress of 9.19 MPa 

(1333.33 psi) is applied, figures A8.1. Figures A8.2 through A8.9 are ANSYS generated contour 

plots of σxx, σyy, σzz, σrr, σθθ, σrθ, σrz and σθz respectively through the plate thickness and all the 

units for these plots are in psi. The small changes of the stress through the thickness validate the 

assumed plane stress condition. 

 
Fig. A8.1: 3-D Finite element model for the symmetrically-loaded plate, figure 8.1 



690 
 

 
Fig. A8.2: 3-D contour plots of σxx (psi) through the plate thickness 

 
Fig. A8.3: 3-D contour plots of σyy (psi) through the plate thickness 
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Fig. A8.4: 3-D contour plots of σzz/σ0 through the plate thickness 

 
Fig. A8.5: 3-D contour plots of σrr (psi) through the plate thickness 
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Fig. A8.6: 3-D contour plots of σθθ (psi) through the plate thickness 

 
Fig. A8.7: 3-D contour plots of σrθ (psi) through the plate thickness 
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Fig. A8.8: 3-D contour plots of σrz (psi) through the plate thickness 

 
Fig. A8.9: 3-D contour plots of σθz (psi) through the plate thickness 
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A* Non-Destructive Evaluation of Diametrically-Loaded 

Bimetallic Disk  

In this appendix the strain interaction between two different materials which are joined 

and loaded is determined. A non-destructive testing was done using Digital Image Correlation 

(Correlation Solution, Inc., Columbia, SC) i.e., the individual displacement and strain 

components are evaluated as the specimen is diametrically-loaded. The specimen tested here is a 

thin annular disk which is hammered and shrink fitted into a ring to form a solid circular disk. 

The central part of the disk has a diameter of 16.5 mm and outer diameter of the ring is 28 mm. 

The thickness of the entire disk is 1.75 mm. The outer ring part of the disk is made of nickel 

(elastic modulus, E = 206.84 GPa and Poisson’s ratio = 0.31) and center part of the disk is made 

of 92% copper (elastic modulus, E = 117 GPa and Poisson’s ratio = 0.34), 6% aluminum and 2% 

nickel [127]. The specimen was loaded in a machine vise which has a pitch of 1.9 mm 

(0.07554”). A C-clamp along with an aluminum brick was used to fasten the machine vise to the 

table, figure A1. With a standard single camera setup, 2D (u and v) in-plane full-field 

deformations were monitored as the specimen is loaded. Figures A1 through A4 shows the 

specimen loading, experimental setup and DIC recording. The displacement applied to this disk 

is 1.9 mm (0.07554”) i.e., one complete pitch distance. Figures A5 and A6 are the displacement 

plots and figures A7 through A11 are the corresponding strain plots from the DIC software (VIC-

2D). The referenced coordinates are x-axis is horizontal and y-axis is vertical. The motivation for 

doing this is to evaluate interface strains between the ring and central disk. 
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The specimen was first coated with RUST-OLEUM (ULTRA COVER 2x coverage) 

Ultra-Flat white paint to reduce the surface’s reflectiveness and sufficient time was given for the 

paint to dry. If the white paint is wet when applying the speckles, the black paints will blend and 

blur. A speckle pattern was provided on the aluminum specimen using RUST-OLEUM (ULTRA 

COVER 2x coverage) Ultra-Flat black paint. This was accomplished by simply using the spray 

feature of the commercial container containing the paint.  

An approximate finite element model was constructed in ANSYS with 10,595 nodes and 

3,474 elements using PLANE82 element type. The bottom node on the disk is fully constrained 

and a displacement of 1.9 mm (0.07554”) is applied on the top node of the disk. Figures A12 

through A16 are the individual displacement and strain component plots from ANSYS. In figures 

A12-A, A13-A, A14-A, A15-A and A16-A the elements in the region of concentrated load are 

removed and plotted in ANSYS for better understanding the strain and displacement 

distributions. All displacements here are in units of inches.  
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Fig. A1: Specimen loaded in Fixture 
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Fig. A2: Specimen in loading frame with DIC cameras 
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Fig. A3: Test Setup 
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Fig. A4: Additional photograph of test setup 
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Fig. A5: Actual recorded u-displacement data from Vic-2D 
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Fig. A6: Actual recorded v-displacement data from Vic-2D 
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Fig. A7: Actual recorded first principal Lagrange strain (ε1) from Vic-2D 
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Fig. A8: Actual recorded second principal Lagrange strain (ε2) from Vic-2D 
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Fig. A9: Actual recorded strain in x-direction (εxx) from Vic-2D 
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Fig. A10: Actual recorded strain in y-direction (εyy) from Vic-2D 
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Fig. A11: Actual recorded shear strain (εxy) from Vic-2D 
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Fig. A12: u-displacement (in inches) from ANSYS 
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Fig. A12-A: u-displacement (in inches) from ANSYS 
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Fig. A13: v-displacement (in inches) from ANSYS 
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Fig. A13-A: v-displacement (in inches) from ANSYS 
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Fig. A14: Strain (εxx) from ANSYS 
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Fig. A14-A: Strain (εxx) from ANSYS 
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Fig. A15: Strain (εyy) from ANSYS 
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Fig. A15-A: Strain (εyy) from ANSYS 

 



715 
 

 
Fig. A16: Shear strain (εxy) from ANSYS 
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Fig. A16-A: Shear strain (εxy) from ANSYS 
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